INCIDENCES AND SEVERITY OF MAIZE EAR ROT CAUSING PATHOGENS AND RESPONSE OF SELECTED MAIZE HYBRIDS TO *DIPLODIA* (Stenocarpella spp.) IN SELECTED COUNTIES IN NYANZA REGION

BY

CHRISTINE ATENYA WESONGA

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN PLANT PATHOLOGY

DEPARTMENT OF BOTANY

MASENO UNIVERSITY

©2016

DECLARATION

I confirm that this work has not previously been submitted for a degree award in Masene
University or any other University in the world. The work reported herein is my own
individual work, the sources of information have been acknowledged by way of references.
Signature Date
Christine Atenya Wesonga
PG/MSC/051/2006
Declaration by supervisors:
This thesis has been submitted for examination with our approval as the University
supervisors:
Signature Date
Prof. Dida. M. Mathews,
Department of Applied Plant Sciences,
School of Agriculture and Food security,
Maseno University.
Signature Date
Dr. George Opande
Department of Botany,
School of Physical and Biological sciences,
Maseno University.

ACKNOWLEDGEMENTS

I am quite greatful to my two supervisors, Prof. Dida Mathews and Dr. Opande George for their tireless assistance during various stages of my research work. It would have been impossible to accomplish this work without their effort.

I sincerely acknowledge the support offered by Madam Dorah Ochieng of Bondo High School, Mr. Owen Olukohe of Vihiga High school and Mr. Amadi of Mbita High School for their assistance in the field during the identification of the diseases.

I also thank the Maseno University Botany laboratory technicians; Daniel Buyela and Bonface Juveri for assisting in isolation of the ear rots and providing assistance during the use of the laboratory equipment needed during the time.

I am indebted to my sister Janet Okwero, my brothers Philip, Albert and Sylvester for their encouragement and financial support. I appreciate my brother in laws; Philip Onyango and Victor Ochieng for sacrificing their time to show me the divisions in various counties in Nyanza region under which maize farming is done.

Sincere thanks goes to my cousins, Edward kutundo, Tophina Nanzala, Electine Kutondo, Betty Kutundo, Beatrice Nanzala, Sophia Wasie, Jane Mariko, Japheth Okello, Maurice Ngugi and Ruth Kisiangani for their sincere love advice and encouragement to do the course.

Special regards go to friends, Winnie Chelule, James Obila and Violet Mbati for their positive critique of the work.

Finaly, I exhault the almighty God the creator of the Universe for giving me good wisdom and strength to carry out the research.

DEDICATION

This thesis is dedicated to; my parents Mrs. Victorina Wesonga and Mr. Mathias Olando for their love and their role in providing education, my children Tony, Solomon, Paul and Leah for their patience and perseverance during my study and lastly, to my friends Violet Mbati, Zephania Monyeka, Joseph Mwita and Anne Nyasani for their prayers and Financial support. May God bless you all abundantly.

ABSTRACT

Maize (Zea mays) is a staple food grown in almost all agro-ecological zones in Kenya. The production output is very low (2.4 million tons annually) nationally. Nyanza region contributes about 5 million bags. This is not enough to feed its population of 5 million people. Maize ear rot disease contributes to low maize productivity in Nyanza, with annual lossess due to aar rot estimated at 18 percent. These pathogens are reported to lower the quality of the maize crop and produce mycotoxins, which are toxic to both livestock and human. Stenocarpella spp. is a major constraint to maize production in the mid altitude to lowland areas in Kenya. There is need for documented information of incidences and severity of ear rot causing pathogens in Nyanza Kenya. There are a few maize hybrids known to be resistant to ear rot causing fungi in other regions of the world. The hybrids grown in Kenya need to be evaluated for ear rot resistance. The objectives of this study were to survey and determine the severity and incidence of maize causing pathogens in Nyanza regions, to identify Sternocapella spp causing ear rots in Maseno, and to evaluate the response of selected maize hybrids to Sternocapella spp. The study was carried out in 12 Divisions of Nyanza region in successive short rain (September to December 2008) and long rain (February to July 2009) seasons. Stratified Random Sampling design (SRSD) was used, with the four counties representing a stratum, where, five farmers were selected from each strata. The `X` sampling technique was used for maize sample collection in the fields of farmers within the divisions whereby, the samples were randomly collected along the `X` like structured demarcation in fields. A field was sampled 100 times to avoid biasness. Farmer's were located at 5 km apart, and then experiment repeated in Maseno area. Cobs with ear rots were examined microscopically based on spore and mycelia features from isolated fungal cultures using the International Maize and Wheat improvement Center (CIMMYT) in order to approve them as Sternocapella, Giberella, Fusarium, and Nigrosora. Field experiments on hybrid performance against Sternocapella spp. were carried out in Maseno University Research farm, during short rains and long rains of 2008 and 2009 respectively. Nine maize hybrids (EH10, H614D, P323, EH15, EH14, H516, EH13, EH16 and H515) were evaluated in a Randomised Complete Block Design with three replications. These were inoculated artificially with Stenocarpella spp. Three replications were used in Randomised Complete Block Design. Severity and disease incidences were subjected to ANOVA after which the means separated using Fisher's LSD. Sternocapella spp, Giberella spp, Fusarium spp and Nigrospora spp were isolated and identified using identification keys as ear rot causing pathogens. Their prevelance being only higher during long rains seasons than in the short rains season. There were significant differences (α =0.005) in incidences and the severity of the ear rots with Stenocarpella means being highest followed by Fusarium as earlier suggested by other researchers. This was also observed during study in Maseno area. Based on significant differences found within regions; Sakwa, Asego and Imbo were highly affected by the Fungi. This might be due to their adjacent locations dictating similar close environment and similar farming technique by farmers. The 9 hybrids studied had a mean severity score of 1.98. EH10, EH14, EH15, and P3253 hybrids were resistant to Stenocarpella spp., and H614D, EH13, H516, H515, EHI6 hybrids susceptible to the Stenocapella spp. Large number of maize hybrid that are not susceptible to ear rots should be identified and recommended to the farmers as ear rots are highly infested in farming soils of Nyanza regions.

TABLE OF CONTENTS

DECLARATION	ii
ACKNOWLEDGEMENTS	iii
DEDICATION	iv
ABSTRACT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF APPENDICES	xiii
LIST OF PLATES	xiv
LIST OF ABBREVIATIONS	XV
CHAPTER ONE	1
INTRODUCTION	1
1.1 Background Information	1
1.2. Problem Statement	3
1.3. Justification of the research problem	4
1.4 Objectives	5
1.4.1 General objective	5
1.4.2: Specific objectives	5
1.5 Hypotheses	5
CHAPTER TWO	6
LITERATURE REVIEW	6
2.1 Importance of maize	6
2.2 Maize ear rot causing pathogens, incidences and disease severity of Stenocarpella spp	7
2.2.1 Ear rots causing pathogens	7
2.2.2 Disease severity and Incidences of Stenocarpella spp	12

2.2.2.1 Damage Caused by <i>Stenocarpella Spp</i>
2.2.2.2 Control of <i>Stenocarpella</i> ear rots
2. 3. Isolation and identification of ear rot causing pathogens15
2. 3. 1. Sampling techniques
2. 3. 2. Fungal identification
2. 3. 3. Culture preparation
2. 3. 4 Maize inoculation techniques
2.4. Response of maize hybrids to <i>Stenocarpella spp</i>
2.4.1. Biology of the <i>Diplodia</i>
2.4.2. Detection and identification symptoms of <i>Diplodia</i>
2.4.2.1. Seedlings
2.4.2.2. Stalk rot
2.4.2.3. Ear Rot
2.4.2.4. Morphology
2.4.2.5. Detection and Inspection methods
2.4.3.6. Disease Cycle
CHAPTER THREE
MATERIALS AND METHODS
3.1. Field site and soil characteristics
3.2. Determination of disease severity and incidences of maize ear rot causing pathogens in Nyanza region
3.2.1. Survey methods and analysis used in Nyanza region
3.2.2. Sampling procedure used in Nyanza region
3.2.3. Collection of fungi samples in Nyanza regions
3.2.4. Determination of Infectional severity in Nyanza region
3.2.5. Determination of infection incidences in Nyanza region and Maseno Area
3.3. Determination of severity and incidences of various ear rot causing pathogens from maize fields in Maseno area

3.3.1. Collection of fungi samples in Maseno area	26
3.3.2. Determination of fungi infectional severity in Maseno area	26
3.4. Isolation, identification and evaluation of the response of maize Hybrids to <i>Stenocarpella</i> spp Maseno University Research farm	
3.4.1. Maize hybrid seeds	27
3.4.2. Agronomic practices and experimental design	27
3.4.3. Isolation of <i>Stenocarpella</i> ear rot causing fungus	28
3.4.4. Preparation of <i>Stenocarpella</i> inoculum that was induced into maize hybrids	28
3.4.5. Inoculation of maize hybrids using <i>Stenocarpella</i> in Maseno university farm	29
3.4.6. Determination of Stenocarpella infectional severity in Maseno University research farm	29
3.4.7. Determination of infected Stenocarpella maize grain yield, plant stand and days	30
3.5. Statistical data analysis	30
CHAPTER FOUR	31
RESULTS	31
4.1. Survey and determination of severity and incidences of maize ear rot causing pathogens Nyanza regions	
4.1.1. Severity of maize ear rot causing pathogens in Nyanza regions during short rains seasons 2008 and long rains season of 2009	
4.1.2. Incidences of maize ear rot causing pathogens in Nyanza regions during short rains seasons 2008 and long rains season of 2009	
4.1.3. Severity of maize ear rot causing pathogens in Nyanza regions during short rains seasons 2008	
4.1.4. Incidences of maize ear rot causing pathogens in Nyanza region during short rains seasons 2008	
4.1.5. Severity of maize ear rot causing pathogens in Nyanza region during long rains seasons of 20	
4.1.6. Incidences of maize ear rot causing pathogens in Nyanza region during long rains seasons 2009	
4.2. Survey of severity and incidences of various ear rot causing pathogens from maize fields Maseno area	
4.2.1. Severity of maize ear rot causing pathogens in Maseno area during short rains season of 200 and long rains season of 2009	

4.2.2. Incidences of maize ear rot causing pathogens in Maseno area during short rains season of 2008 and long rains season of 2009
4.2.3. Severity of maize ear rot causing pathogens in Maseno area during short rains season of 200840
4.2.4. Incidences of maize ear rot causing pathogens in Maseno area during short rains season of 2008
4.2.5. Severity of maize ear rot causing pathogens in Maseno area during long rains season of 2009 41
4.2.6. Incidences of maize ear rot causing pathogens in Maseno area during long rains season of 2009
4.3.1. Evaluation of severity of Maize hybrids to <i>Stenocarpella spp.</i> within Maseno University research farm during short rains season of 2008
4.3.10. Evaluation of Failed ears of Maize hybrids to <i>Stenocarpella spp.</i> within Maseno University research farm during short rains season of 2008
4.3.11. Evaluation of plant stand of Maize hybrids to <i>Stenocarpella spp</i> . within Maseno University research farm during short rains season of 2008
4.3.12. Evaluation of days to silking of Maize hybrids to <i>Stenocarpella spp</i> . within Maseno University research farm during short rains season of 2008
4.3.13. Evaluation of severity of Maize hybrids to <i>Stenocarpella spp.</i> within Maseno University research farm during long rains season of 2009
4.3.14 Evaluation of incidences of Maize hybrids to <i>Stenocarpella spp.</i> within Maseno University research farm during long rains season of 2009
4.3.15. Evaluation of Yield (Tones/ha) of Maize hybrids to <i>Stenocarpella spp.</i> within Maseno University research farm during and long rains season of 2009
4.3.16. Evaluation of Failed ears of Maize hybrids to <i>Stenocarpella spp</i> . within Maseno University research farm during long rains season of 2009
4.3.17. Evaluation of plant stand of Maize hybrids to <i>Stenocarpella spp</i> . within Maseno University research farm during long rains season of 2009
4.3.18. Evaluation of days to silking of Maize hybrids to <i>Stenocarpella spp</i> . within Maseno University research farm during long rains season of 2009
CHAPTER FIVE
DISCUSSION
5.1. Severity and incidences of maize ear rots
5.2. Ear rot fungi severity and incidences in Maseno area
5.3. Maize hybrid`s response to <i>Stenocarpella spp</i>

CHAPTER SIX	
CONCLUSIONS, RECOMMENDATIONS AND SUGGESTIONS FOR FUTURE STUDIES	59
6.1. Conclusions	59
6.2. Recommendations	
6.3. Suggestions for future studies	60
REFERENCES	62
APPENDICES	69

LIST OF TABLES

Table 1. Shows Counties, Divisions, and number of participating farmers during survey in
Nyanza region
Table 2: Severity, incidences and the responses of Maize hybrids to Stenocarpella spp. within
Maseno University research farm during short rains season of 2008 and long rains
season of 200943
Table 3: Severity, incidences and responses of Maize hybrids to Stenocarpella spp. within
Maseno University research farm during short rains season of 2008. Values are
means of three replicates ± SEs
Table 4: Evaluation of responses of Maize hybrids to Stenocarpella spp. within Maseno
University research farm during long rains season of 2009
Table 5. Mean values for grain yield, Sternocapella severity scores and other agronomic
characters measured on maize hybrid evaluated at Maseno during the long rains of
2009
Table 6. LSD tests for disease severity, incidences and response of maize hybrids to
Sternocapella spp. In Maseno University research farm during long rains seasons
of
2009

LIST OF FIGURES

Figure 4.1.1: Severity of maize ear rot causing pathogens in Nyanza regions during short rains season of 2008 and long rains season of 2009. Values are means of five
farmers ± SEs
Figure 4.1.2a Incidences of maize ear rot causing pathogens in Nyanza regions during short
rains seasons of 2008 and long rains season of 2009. Values are means of five
farmers±SEs
Figure 4.1.2b: Correlation between severity and incidences of maize ear rot causing
pathogens in Nyanza regions during short rains seasons of 2008 and long rains season of 2009
Figure 4.1.3: Severity of maize ear rot causing pathogens in Nyanza regions during short
rains seasons of 2008. Values are means of five farmers \pm SEs
Figure 4.1.4: Incidences of maize ear rot causing pathogens in Nyanza regions during short
rains seasons of 2008. Values are means of five farmers \pm SEs
Figure 4.1.5: Severity of maize ear rot causing pathogens in Nyanza regions during long rains
seasons of 2009. Values are means of five farmers \pm SEs
Figure 4.1.6: Incidences of maize ear rot causing pathogens in Nyanza regions during long rains seasons of 2009. Values are means of five farmers ± SEs
Figure 4.2a. Severity and incidences of maize ear rot causing pathogens in Maseno area
during short rains season of 2008 and long rains season of 2009. Values are
means of five farmers and two seasons±SEs
Figure 4.2b. Severity of maize ear rot causing pathogens in Maseno area during short rains
season of 2008 and long rain season of 2009. Values are means of five farmers
and rain seasons±SEs
Figure 4.2c. Incidences of maize ear rot causing pathogens in Maseno area during short rain
season of 2008 and long rains season of 2009. Values are means of five farmers
and rain seasons \pm SEs

LIST OF APPENDICES

Appendix 1: Map showing sites used in Nyanza regions	69
Appendix 2: Disease severity and incidences of maize ear rot causing pathogens in Nyanza re	gions
during short rains seasons of 2008 and long rains season of 2009	70
Appendix 3: Disease severity and incidences of maize ear rot causing pathogens in Nyanza re	gions
during short rains of 2008	93
Appendix 4: Disease severity and incidences of maize ear rot causing pathogens in Nyanza re	gions
during long rains of 2009	105
Appendix 5: Disease severity and incidences of maize ear rot causing pathogens in Masence) area
during short rains season of 2008 and long rains season of 2009	111
Appendix 6: Disease severity and incidences of maize ear rot causing pathogens in Masence) area
during short rains of 2008	116
Appendix 7: Disease severity and incidences of maize ear rot causing pathogens in Masence) area
during long rains of 2009	121
Appendix 8: Disease severity, incidences and response of maize hybrids to Stenocarpella sp	pp. in
Maseno University Research farm during short rains seasons of 2008 and long rains season of	2009
	125
Appendix 9: Disease severity, incidences and response of maize hybrids to Stenocarpella sp	pp. in
Maseno University Research farm during short rains seasons of 2008	138
Appendix 10: Disease severity, incidences and response of maize hybrids to Stenocarpella sp	pp. in
Maseno University Research farm during long rain seasons of 2009	145

LIST OF PLATES

Plate 1: Plates of identified ear rot	163
Plate 2: Giberrella zeae infected maize cob and husks	164
Plate 3: Microscopic identification of Giberrella zeae isolates at Mg X100	164
Plate 4: Internal part of the cob (a); Mature conidia dark conidiain at Mg X100 (b); Mature
conidia light colored/ yellow conidia at Mg X100	164

LIST OF ABBREVIATIONS

CIMMYT:	International Maize and Wheat Improvement Centre
EPPO:	European and Mediterranian Plant Protection Organization
FAO:	Food and Agricultural Organization
PDA:	Potato Dextrose Agar
RSA – DT:	Rabuor-Sinaga Area Development Trust
SRSD:	Stratified Random Sampling Design
UN:	United Nations

CHAPTER ONE

INTRODUCTION

1.1 Background Information

Maize (*Zea mays* L.) forms the staple carbohydrate sources for over 90 percent of the population in Kenya (Laboso and Ng`eny, 2006) and is grown almost in all agro ecological zones. It is the most important food crop in Kenya with national production of 2.4 million tons in a total area of 1.6 million hectares (Gebrekidan and Njoroge, 2002). However, the economy of Kenya depends on agriculture and losses due to diseases can be enormous leading to less production in the 1.6 million hectares. The yield of maize has not kept up with the ever increasing population growth, thus, this leads to food insecurity (Adejumo *et al.*, 2007). The production of maize is constraint by a number of factors including poor soil fertility, rainfall and diseases. These diseases include leaf spot, leaf blights, maize streak virus and stalk and ear (cob) rots. Maize cob rots are caused by fungal complex including *Fusarium* spp., *Stenocarpella* spp., and *Aspergillus* spp. (Laboso and Ng`eny, 2007).

The ear rots are important because heavy infestations directly result in grain spoilage, significantly reducing both the yield and quality of the crop. The infested grains are light in weight and ears are discolored with shriveled grains. Yields from individual farms are generally low with majority of small holder farmers obtaining less than 1 to 4 tons per hectare (Olantinwo *et al.*, 2004). The annual losses due to ear rot are estimated to be 18 percent in Honduras (Julian *et al.*, 2005). Cob rot fungi produce mycotoxins, which have been linked with a number of mycotoxicoses and carcinomas of humans and domestic animals including esophageal cytological abnormalities in humans, pulmonary edema, and hydrothorax in swine, intoxication and paralysis in cattle (Marasas *et al.*, 2008; Castelo *et al.*, 2008). Despite this, the demand for maize from feed industry, local brewers, small

livestock producers and local consumers is high, indicating people and animals could be ingesting mycotoxins in Africa. For incidence, in Malawi, a South African country, where Cob rots have been ranked among the top three important maize diseases and fourth in distribution (Adipala and Malden *et al.*, 2003).

Yield loss of up to 10% due to cob rots in African countries have been reported (Adipala and Malden *et al.*, 2003). In tropical Africa, maize is produced under diverse ecological conditions and yields are governed primarily by soil moisture availability and atmospheric temperature. The mid altitude zone (800-1500m) represents the major maize growing areas in Kenya, being a high potential area with yield potential of 8-10 tons ha ⁻¹. Most maize genotypes grown in these areas are susceptible to *Stenocarpella*, which has become a major biotic constraint to it`s cultivation (Fajemisin *et al.*, 2002).

Stenocarpella ear rot caused by the fungus Stenocarpella maydis (berk.) Sutton (=Diplodia maydis (Berk.) Sacc., is an important disease in many maize growing regions of the world and was once the most important ear rot pathogen in the United States (Vincelli, 2003). It develops as a result of infection and subsequent inter-and intracellular colonization of the maize ear. S. maydis pycnidiospores germinate and colonize stalk, leaf and shank tissues by directly penetrating epidermal cell walls and host cytoplasm through the formation of appressorium and enzymatic degradation. Ears are usually colonized from the shank up into the ear, and losses are due to reduced seed weight and seed viability. Significant losses due to this disease have recently been reported from isolated locales within the United States (Hanson, 2002; Ajello *et al.*, 2003). Increased incidence of Stenocarpella ear rot occur under conservation tillage systems. More pycnidia are produced and survived on maize stubble on the soil surface than on stubble buried in the soil (Flett and

Wehner, 2001). Hybrid genetics and weather are also major factors. Infection is enhanced by dry weather prior to silking followed by wet conditions at and just after silking. Ears are more susceptible to this disease during the first 2 days after silking. High disease incidences do not normally occur over wide areas but rather occur in isolated fields (Flett and Wehner, 2001).

In Kenya farmers have rated ear rots among their production constraints and have provided an estimate of their annual losses to ear rots at 18 percent (Ajang *et al.*, 2008). Where as many countries have recognized maize ear rots as a disease of concern, in Kenya no quantifiable information is readily available about the incident and severity of the disease (De Leon, 2004). The broad objective of this study therefore is to obtain relative importance of different fungal ear rot causing disease in Nyanza and determine the relative importance of *Stenocarpella* spp and the response of maize genotypes to *Stenocarpella* spp. (Ajanga *et al.*, 2008).

1.2. Problem Statement

Despite widespread dissemination of hybrid materials and fertilizers, yields of maize from individual farms are generally low with the majority of small holder farmer obtaining less than 1 to 4 tons per hectare (Dorrance *et al.*, 2008). Among the diseases that affect maize, ear rots cause significant yield losses that are stimated to is 18 percent (Ajanga *et al.*, 2008). This means that food for the ever increasing population. Reports from Africa indicate that plant pathogenic fungi is a significant constraint to increased maize production in farming systems. Some parts of the low-lying region of Kenya such as Nyanza have conditions that favor the occurrence of ear rots in maize (Ajanga *et al.*, 2008), but information on incidences and severity of fungi to maize is not available in Nyanza. There is no reference on Fungal severity and incidences in cooler environments of Maseno that can compare it to Nyanza fungal severity. Farmers in this region are not aware or do not consider ear rots as a norm (Berger, 2005) thus continuously experience heavy yield losses. Besides yield losses due to ear rots, rotten maize is utilized in various forms; food, beer livestock feed etc with disregard to health hazards associated with mycotoxins. Therefore information that is conclusive is not available on the ear rots within Nyanza and Maseno area and their effects to common maize hybrids grown by farmers. Its also known that Stenocarpella spp. Fungi maize ear rot is reported in most of the area of maize production whenever ear rot Fungi are put into research but its not Known if the same apply for Maseno.

1.3. Justification of The Research Problem

There is availability of overall information on incidences and severity of ear rot causing pathogens in Nyanza and their contribution to crop loss. Pathogens evolve and become more virulent, this calls for the need to continually evaluate our germplasm for ear rot resistance. Information obtained will be utilized to sensitize farmers on importance of ear rots and associated risks. Maize (*Zea mays* L.) is the most important food crop in Kenya with a national production of 2.4 million tons in a total area of 1.6 hectares (Gebrikidan and Njoroge, 2002). Shortage of maize in Kenya often results in famine among the poor urban and rural people. Among the Fungi biotic stresses of over 90 percent of the maize crop diseases are reported in research and extension annual reports but very little is known about disease incidence and severity, pathogenic Fungi distribution, epidemiology, yield losses and physiological specialization and therefore information found in this experiments can is vital to basic data in plant breeding. Maize ear rot complexes caused mostly by *Stenocarpella* are a major constraint to maize cultivation in the mid altitude (800m-1500m) to lowland areas in Kenya. Therefore there is need to carry out a survey and have a clear

picture of the incidence and severity of different ear rot causing pathogens in Nyanza regions regions. This will enable breeders to identify hybrids gene pools that can be induced for resistance to *Stenocarpella* ear rots.

1.4 Objectives

1.4.1 General objective

To survey and identify the incidence and severity of maize ear rot causing pathogens in selected counties of Nyanza region and Maseno area and evaluate the response of maize hybrids to *Stenocarpella spp*.

1.4.2: Specific objectives

- To determine the severity and incidence of maize ear rot causing pathogens in Nyanza regions.
- 2. To identify *Stenocapella* spp causing ear rots in Maseno.
- 3. To evaluate the response of selected maize hybrids to Stenocapella spp

1.5 Hypotheses

- There exists defferences in severity and incidence of maize ear rot causing pathogens in Nyanza region.
- 2. There exists differences in identity of *Stenocapella* spp causing ear rots in Maseno.
- 3. There exist differences in the response of selected maize hybrids to *Stenocapella* spp.

CHAPTER TWO

LITERATURE REVIEW

2.1 Importance of Maize

Maize is the world's third most important crop after rice and wheat with regard to cultivation areas and total production (Osagie and Eka, 2008). About half of this is grown in developing countries, where maize flour is a staple food for people and maize stalks provide dry season feed for farm animals. Diversified uses of maize Worldwide include: maize grain, starch products; corn oil; baby foods; popcorn; maize-based food items; maize flour; forage for animals; maize stalks providing dry season feed for farm animals; maize stalks providing dry season feed for farm animals; maize slage for winter animal feed in cold temperate regions and maize stalks as soil mulch where it is in abundance. Maize grain is used as feed for beef, dairy, hog and poultry operations in developed countries. Maize can be classified on the basis of its protein content and hardness of the kernel. In industrialized countries maize is largely used as livestock feed and as raw materials for industrial products e.g. in Australia as feed, silage , breakfast food and processing (breakfast cereals, corn chips, grits and flour), industrial starch and popcorn. In low-income countries it is mainly used for human consumption (Purseglove, 2002; Osagie and Eka, 2008).

In sub-Saharan Africa, maize is a staple food for an estimated 50 percent of the population and provides 50 percent of the basic calories Per capita. Maize consumption use in Kenya average more than 103 kg per person in a year (Pingali, 2001). It is an important source of carbohydrate, protein, iron, vitamin B and minerals. Africans consume maize as a starch base in a wide variety of porridges, pastes, grits and beer. Green maize (fresh on the cob) is eaten parched, baked, roasted or boiled and plays an important role in filling the hunger gap after the dry season. However, the yields are low, fluctuating around 1.0t/ha. Several African countries have focused attention on increasing maize production in the small

holdings agricultural sectors, but such efforts have been ineffective because of heavy preand post-harvest losses caused by diseases, weeds and pest. In South Africa, in addition to the traditional uses, the country is considering maize fuel; an alcohol based alternative fuel produced by fermenting and distilling the starch rich grains of the crop (Pingali, 2001).

According to UN's Food and Agriculture Organization as reported by Ajang *et al.*, 2008), maize yields currently average 1.5 t/ha in Africa, 3 t/ha in Latin America, and 1.7 t/ha in India. FAO indicates grain yields of 5-6 t/ha in dry land and 8-10 t/ha in irrigated lands. Maize silage with moisture content of 68-70 percent moisture content is produced at a rate of 20 t/ha in dry land and 42 t/ha in irrigated lands. Maize grain has yielded 5.5-6-3 t/ha in Yugoslavia and silage of 35-50 t/ha in France and 25-30 t/ha in the United Kingdom when using high yielding cultivars and intensive cropping practices.

2.2 Maize Ear Rot Causing Pathogens, Incidences and Disease Deverity of Stenocarpella spp

2.2.1 Ear rots causing pathogens

A wide range of pathogens cause maize ear rots. Some of these ear rots are;

Stenocarpella ear rot or dry rot is caused by the fungus *Diplodia maydis*. The same fungus is commonly associated with stalk rot and may cause seed rot-seedling blight. The husks of ears which are infected early appear bleached or straw-colored, in contrast to green healthy ears. Infections occurring within 2 weeks after silking cause the entire ear to be gray-brown, shrunken, very lightweight and completely rotted. Light weight ears stand upright, with the inner husks stuck tightly together and to the ear by white mycelia growth. Ears infected later in the season usually show no external evidence of disease. When the husks are opened a white mold is seen growing between the kernels. All or part of an ear may be rotted. In still later infections, the white mold may or may not be visible between the arrows of kernels. Ears sometimes appear healthy until after shelling, when the brown germs

and dead kernels become evident. Infection usually begins either at the base of the ear progressing toward the tip or at an exposed ear tip, but can also advance from the stalk through the shank and into the ear (Sutton and Weterston, 2006).

Speck-sized, black fruiting bodies (pycnidia) of the Diplodia fungus are often found scattered on the husks and sides of the kernels as well as floral bracts and cob tissues. The pycnidia are filled with thousands of microscopic spores that may be carried to distances by the wind to initiate new infections. Rotted ears have both reduced nutritive value and reduced palatability to hogs. Dry weather early in the season followed by abnormally wet weather just before and after silking favors ear infections. Ears are most susceptible from silking to about three weeks later. Hybrids with poor husk coverage or thin pericarps are often very susceptible. Some isolates of *Diplodia maydis* may induce premature germination of kernels on the ear (Dhanraj, 2006).

Gibberella ear rot sometimes referred to as red ear rot, is caused by the fungus *Gibberella zeae* is common in western part of Kenya in some years. This fungus, however, is much more important as a major cause of stalk rot. A reddish mold, usually starting at the tip of the ear, is characteristic of *Gibberella* ear rot. All kernels become reddish as the fungus colonizes the entire ear (Appendix 11; Plate 3). The husks may adhere tightly to the ear and a pinkish to reddish mold often grows between them. Superficial, speck-sized, blue to black perithecia occasionally develop on the husks and ear shanks. The corn ears are generally susceptible only when they are very young, and cool, wet weather within 3 weeks of silking favors disease development. Ears infected early in the season may rot completely, although complete rotting is rare. Ears with loose, open husks are often more susceptible than those with good husk coverage. Sap beetles are capable of transmitting conidia and ascospores of the fungus, both within and between corn ears, thus increasing the amount of ear rot. Inbreds and hybrids differ in susceptibility. Corn infected with *Gibberella* ear rot is

particularly toxic to hogs, dogs and other animals with similar digestive systems, causing vomiting, dizziness, loss of weight, or even death in severe cases. Infected maize is also toxic to humans (Payne, 2009).

Nigrospora ear rot or cob rot is caused by the fungus *Nigrospora sphaerica*, synonym *N. oryzae*, teleomorph *Khuskia oryzae*. As infection usually starts at the butt end of the ear or sometimes at the tip, this eventually calls for a reduced production since affected ears do not become conspicuous and the disease is widely distributed. Grain production is really reduced by ears that appear chaffy and weigh less than healthy ears and kernels that are loose on the cob. Other features of the rot include; ears that are shredded and sometimes found knocked to the ground by mechanical pickers, Cobs that break into small pieces during shelling, ears that show large numbers of speck-size, jet-black spore masses that are scattered in the shredded pith of the cob and on the tip ends of the kernels that are slightly bleached, whitish streaked kernels that start at the tips and extend towards the crowns and may show a gray mycelia growth. *Nigrospora* rotted maize has almost the same nutritive value as healthy maize. However, it leads to severe arrest to plant growth, killing plants prematurely when other stresses set in such as frost, drought, hail, stalk and root rots, leaf blights, insect damage, root injury an infertile soil (Kirimelashvili *et al*, 2009).

Fusarium kernel rot or ear rot Caused by the fungi *Fusarium moniliforme* and *F. subglutinas*, is the most wide spread disease attacking maize ears in Kenya (Gebrekidan and Njoroge, 2002). Delayed beyond harvest physiological maturity, leads to this fungi increase in occurrence. The first symptom is a salmon pink-to-red brown discoloration of the caps of individual kernels or groups of kernels scattered over the whole ear. As the disease progresses, infected kernels become covered with a powdery or cottony-pink mold growth composed of large numbers of microscopic spores. Kernels infected late in the season develop whitish streaks on the pericarp. The same fungi are commonly found in stalks and

seeds (Adejumo *et al*, 2007). Infection commonly follows some form of injury. Bird feeding encourages infection at the tip of the ear. Disease development and spread are favored by dry, warm weather. Leading to heavy reduction to grain yield.

Gray ear rot is caused by the fungus *Botryosphaeria zeae*, synonym *Physalospora zeae*, and anamorph *Macraphoma zeae*, is a rare ear rot and occur only in restricted areas to it. Early infections may produce symptoms similar to those of *Diplodia* ear rot. A gray white mold develops on and between the kernels, usually starting at the base of the ear; in early infections the husks are bleached and adhere tightly to the ear, the ears are lightweight, stand upright and at harvest are slate gray instead of grayish brown, as in *Diplodia* ear rot and, when the shank and butt are rotted, the ear breaks off . In later stages, gray ear rot may be distinguished from *Diplodia* by the presence of numerous, small, black specks (sclerotia) scattered throughout the interior of the cob, on the husks and under the seed oat of the kernels. Kernels may develop a uniform slate gray to black streaking. The fungus growth on the surface of the ear and between the kernels is also a darker gray than a *Diplodia*-rotted ears. Early infection usually causes the ear to be shriveled, black, and mummified. Disease development is favored by extended periods of warm to hot weather for several weeks after silking (KARI, 1992).

Penicillium rot (*Penicillium* spp.) is found occasionally, particularly on ears injured mechanically or by corn earworms and European corn borers. The typical powdery, blue - green or green mold grows on and between the kernels which are frequently bleached and streaked. Damage usually occurs at the tip of the ear, but may be found on other parts. The same fungi cause seedling blight and 'blue-eye'' storage rot of shelled corn with high moisture content (Tenuta, 2006).

Aspergillus ear rot (*Aspergillus* spp.) is ordinarily of little importance before harvest. However, *Aspergillus* infections often follow drought stress and damage done by maize earworms, therefore there is need to determine the occurrence of this fungi and how it affects maize hybrids, as other stresses have been covered in several research (Lipps and Mills, 2007). A tan, sooty-blank, green yellow mold grows on and between the kernels. Damage is most common at or near the tip of the ear. Silk infection is favored by high day and night temperatures. *Aspergillus flavus* and *Aspergillus. parasiticus*) produce aflatoxin that cause ear and kernel rot. Aflatoxins invades cracks and injuries in shelled maize under storage, then during consumption, as a carcinogenic substance, aflatoxin causes serious digestive problems in a wide range of animals. Maize hybrids grown under nitrogen deficiency are commonly found to contain aflatoxins prior to harvest (Naidoo, 2002).

Trichoderma ear rot caused by *Trichoderma viride* is evident as a green, fuzzy mold growing on and between the husks and kernels. *Trichoderma* is usually secondary to insect or mechanical damage to the ear (Laboso and Ng`eny, 2006).

Cladosporium Kernel rot or ear rot that is initiated by *Cladosporium herbarum*, synonym *Hermodendrum cladosporioides* cause symptoms that include the development of dark, blotched and/or streaked kernels scattered over the ear. The black discoloration appear near the tips of the kernel first and develops toward the crown in more or less irregular streaks. The fungus may also invade crowns damaged by growth cracks however, further rotting may occur during storage leading to reduced weight (Klapproth, 2001).

Black ear rot is caused by Biplorais zeicola, synonym Helminthosporium carbonum, Races 1 or 2; Bipolaris maydis, synonym Helminthosporium maydis, race T; and Exserohilum rostratum synonym Helminthosporium rostratum, is occasionally found, mostly on certain inbred lines, therefore need to study effects of several fungi to a number of hybrids. The same fungi also cause stalk rots, leaf blights and seedling blights. Damage ears have a black "felty" or velvet-like mold growth over and between the kernels.Such ears appear to have been charred by fire (Shurtleff, 2000).

Rhizopus spp ear rot is characterized by a coarse white mold over the ear in which numerous black sporangia appear as black specks. *Rhizopus* rot is usually found only on ears injured by insects or hail a few weeks after silking during and following hot or very humid weather (Nyall,2 009).

Physalospora ear rot is caused by *Botryosphaeria festucae*, synonym *Physalospora zaeicola*, anamoprh *Diplodia frumentii*. It is a rare fungi of maize that develops as dark brown to black mold growth on the ear. Mildy infected ears may have few blackened kernels near the base of the ear that is common during warm, humid weather that favors fungi reproduction (Berger, 2005).

Rhizoctonia ear rot is caused by *Rhizoctonia zaeae* that is a rare fungus. It is recognized in its early stages by a salmon-pink mold growth on the ear. Infected ears later become dull gray. Numerous white to salmon-colored sclerotia develop on the outer husks that later turn to brown and then to black under warm-to-hot, and humid weather (Hassan *et al.*, 2008).

2.2.2 Disease severity and incidences of *Stenocarpella spp*

Wet weather immediately following silking increases disease severity. The disease is also more prevalent where maize follows maize and crop rotation is not used, as it is seen farmers do in Nyanza region mostly. Additionally, the disease is more prevalent where ears are damaged due to insect injury such as those caused by stalk borers. Generally, *Stenocarpella* ear rot is highly and always an expected problem in the fields (Vincelli, 2003).

2.2.2.1 Damage caused by Stenocarpella Spp

Stenocarpella Spp cause plant damage by rotting the ear and the kernels leading to reduced weight and nutritional content that causes yield loss. Yield reduction is because of it's infection at kernels during blister stage that cause reduced kernel size and grain filling. This damage that leads to reduced yield becomes most critical if infection occurs early, that is immediately following flowering. The earlier stage infection is effective, for entire ear may rott or kernels may not develop fully. *Stenocarpella maydis* and *S. macrospora* produce the mycotoxin that make grains harmful to animals especially, birds. Livestock may sense the toxins and refuse grains that are severely affected by *Stenocarpella* ear rot (Patrick and Mills, 2001; Vincelli 2003).

Stalk and grain rots are universally important and among the most destructive disease of maize throughout the world (Kirimelashvilli and Dolizde, 2009). In most cases, a complex of several species of fungi and bacteria causes rots, rather than by a single species, indicating that, it is difficult to assess the loss due to a single fungal pathogen alone. Losses due to stalk and grain rots varies as per seasonal and regional differences, but may be greater than 50 percent by *Stenocarpella macrospora* alone. Although a less percentage of 0-20 yield reductions is common. Losses arise directly from grain filling and indirectly from harvest losses because of lodging. In comparison, *S. maydis* has been found to cause a loss that range between 5 and 37 percent during germination (Kim, 2000). It is also a serious pathogen in maturing plants. Generally, *Stenocarpella* causes up to 80% of the ears roots leading to considerable yield loss worldwide (Patrick and Mills, 2001). Infected ears can weigh up to 35 percent less than healthy ears. Furthermore, infected grain has been reported to cause mycotoxicosis when fed to cattle sheep and humans (Vincelli, 2003).

2.2.2.2 Control of Stenocarpella ear rots

Rotation with other crops is the best approach to control *Stenocarpella*. Rotation deprives starve the fungus by denying food base. This becomes possible, since no crop other than maize is susceptible to *S. maydis* as an example (Woloshuk and Wise, 2009). This clearly suggests that, crop represents a suitable alternative for managing *Stenocarpella* ear rot (Vincelli, 2003). Any rotation away from maize, even for one year, helps to reduce build up of inoculum by allowing infected corn residues to begin decomposition. In fields with moderate to high levels of *Stenocarpella*-infested residues, rotation of two to three years may be required to reduce inoculum to acceptable levels (Woloshuk and Wise, 2009).

Research by Lin *et al.* (2009) indicates that the level of *Stenocarpella* ear rot is proportional to the amount of infested maize residue on the soil surface. However, this is highly expected only if the weather conditions become conducive for disease development during silking (Schaafsma *et al.*, 2003). Tillage practices that partially or completely bury maize residue can provide substantial disease control by greatly reducing spore levels in the field. On contrary, because of soil erosion concerns, many informed farmers may not wish to exercise this option and may even restricted from doing so by their soils conservation organisations. Deep tillage is not a guarantee against the disease since some infested residue may remain on the soil surface. Considerable strength is therefore put to rotation as a preferred option for dealing with fields where *Stenocarpella* ear rot is a single problem (Vincelli, 2003).

Maize hybrids currently on the Kenyan market have not been fully determined of their resistance level to *Stenocarpella* ear rot as found done by Rabie *et al.* (2005). Owing to this information of not knowing the status of *Stenocarpella* ear rot disease in this Kenyan maize hybrids is a limiting factor in increased maize production, because this fungi develop on any maize hybrid provided that the conditions during silking are favorable to it. However,

it is known that hybrids differ in their level of susceptibility to the fungus or any other stress (Pittet, 2008). For instance, The problem for producers is that little information currently is available on hybrid susceptibility to *Stenocarpella* ear rot (Lipps and Mills, 2007). This clearly indicates that, several maize seed companies that have active breeding programs do not currently have enough data to reliably predict varietal performance in the presence of the disease and therefore needed. While all hybrids tested thus far are susceptible to some degree, for example (Ajanga *et al.*, 2008). This literally indicates that, certain hybrids are probably too susceptible for fungus in an infested field (Fajemisin *et al.*, 2002). Hybrids that have repeatedly suffered very high levels of ear rot i.e.,50 percent or more of the ears diseased should be avoided (Vincelli, 2005), but the idear is it will be impoternt to determine the severity fungi to these Kenyan hybrids.

2. 3. Isolation and Identification of Ear Rot Causing Pathogens

2. 3. 1. Sampling techniques

There are many sampling techniques for obtaining data, such as simple random samples, systematic samples, and stratified samples. A common technique of sampling is by random method or uniform interval sampling along a path of predetermined design. Conventional sampling techniques is by diagonal, W, V and X (Lin *et al.*, 2009). The points chosen will take this shapes, such that the whole whole field or restricted subdivisions of a field are represented. According to Line *et al* (2009), in there sampling when studying clustered disease distribution concluded they found out that the sample sizes are more important than the sampling design when the disease is randomly distributed. Entire field sampling design of ``X`` and ``W`` are equivalent to each other and most precise (Cochrans, 2007) and therefore ``X`` applied for this study. Cochrans (2007) described stratified random sampling design (SRSD) as a design where an entire population in a field is divided into uniform sectors. These sectors are none overlapping and together make the entire field.

In his case, once the sector is determined, a randomly located sample is collected from each sector. In this design each plant has an equal chance of being sampled. This design also has the advantage of giving an unbiased estimate of disease incidence and the sectors are also uniform and independent. Stratified random sampling design and variance analysis have been used when studying *Stenocarpella spp* by Klapproth, (2001) and maize inbrids in Nigeria (Kim, 2000). Plant pathologists seldom have good 'rules of thumb' on how many samples to take or how to interpret results from a given number of samples. For example, Madden and Hughes (2009) stated that the precision of estimated disease incidence can be evaluated under a wide set range that includes the hierarchical sampling of groups of individuals, the various levels of spatial heterogeneity of disease, and the situation when all individuals are disease free.

2. 3. 2. Fungal identification

Fungal identification requires a stronger visual acuity than bacteria. The characteristics of fungi are determined by observing colonial growth both microscopically and macroscopically (OEPP., 2006). Morphological features are the classical methods that are routinely used in fungal classifications and identification (Nyall, 2009). There are inabilities and difficulties in identification of fungi in the genus or at specific level. These is due to the fact that, there is ever increasing number of fungi which are difficult to identify using morphological criteria, because by natural selection some do not sporulate (Lin *et al.*, 2009). Therefore other methods have been created at recent times, for example; biochemical tests and DNA analysis. Morphological criteria and biochemical tests were chosen for this study they are readily available and mostly used to determine the genus and species of the fungi. Morphologically, microscopic structures and macroscopic features used for fungal identification include colour, type, shape, size and arrangement of the spores, as well as septation of the hyphae (Sangeetha, 2013). Pictorial guides and fungal identification keys are

also useful just like the scotch tape mount that has been found to be easy and fast. This is a faster method that is mostly used in identification of filamentous fungi on which most structures are found intact for observation (Lipps and Mills, 2007). In this method, lacto-phenol mount is used, whereby the fungi is immersed in the solution. This make the fungi safe for handling outside of the biological safety hood. The tape always dissolve, therefore, no permanent mounts can be made. Meaning, the procedure can only be performed on moulds growing from plates (Navi *et al*, 2009).

2. 3. 3. Culture preparation

Culture preparation is always done aseptically to reduce contamination and to enable the production of pure cultures. Some of the aseptic procedures include the use of the laminar flow hood, moist heat sterilization, and disinfection of benches using acetone, alcohol (Hauser, 2006).

2. 3. 4 Maize inoculation techniques

Methods chosen for inoculation by breeding programs are those that show up as clearly and closely the infection under natural conditions (Berger, 2005). For instance, spraying and pouring methods resulted in higher incidence of *S. maydis* in maize grains, and therefore, higher incidence and higher severity of *Stenocarpella spp* in ears as found by Dai *et al.* (2007) when studying *S. Maydis*. The selected method used in their study therefore, provide consistent data over the years, locations and genotypes, thus making it possible to define a clear distinction of hybrids under study. For it is known that, artificial methods of inoculation in maize breeding programs for evaluation and selection of genetic material for resistance to ear rots are necessary for use (Mario *et al.*, 2011). The pouring method as used by Dai *et al.* (2007) during study of *S. Maydis* lead to the highest incidence of the disease, and therefore this method allow researchers to get clear distinction of the susceptible germplasm from the resistant one. In addition it is so because, climatic oscillations hardly

influence it (Flett and Van, 2011). The pouring method can be recommended for breeding programs and germplasm screening to select genotypes and populations for resistance to ear rot by *S. maydis*. When using this method, both incidence and severity of *S. maydis* can be used as variables for germplasm screening to resistance against the pathogen under field conditions. (Silva *et al*, 2007).

2.4. Response of Maize Hybrids to Stenocarpella spp

Diplodia ear rot is one of the ear diseases found in maize growing fields in Kenya (Gabrekidan and Njoroge, 2002) and it is caused by *Diplodia (Stenocarpella spp)*. In 2.3 above, its noticed that during the growing season with abundant rainfall, disease severity can be high in certain fields that are planted with susceptible hybrids (Adejumo *et al.*, 2007). Indeed, the hybrids used in this study have been developed most recently and proven to have got a high production rate under the changing environments, however there is need to evaluate their response to *Stenocarpella spp*. that affect maize production. The justification is that, the incidence of ear rot in affected fields generally ranges from less than 1% to over 35% of the ears damaged in most of the hybrids. The disease is most severe in fields planted to continuous maize, especially when the previous maize crop residues are left on the soil surface (Dhanraj, 2006).

Lipps and Mills (2001) found out that *Diplodia* ear rot causes damage to corn by causing light weight kernels that reduced grain yield and reduced nutritional value of the affected grain (Appendix 11, Plate 1). High levels of affected grains when used in making feeds calls for unpalatable ability. Under most conditions, damage caused by *Diplodia* ear rot is limited to the field. However, it can be a problem in storage if grain moisture is 20 percent or above (Lipps and Mills, 2001)

2.4.1. Biology of the Diplodia

Hybrids with poor husk coverage or thin pericarps are often very susceptible to *Diplodia*. An organic substance secreted by *Stenocarpella maydis*, induce growth of *Stenocarpella macrospora* (Christensen and Wilcoxson, 2007). For instance, *S. macrospora* can utilize complex carbohydrates only when a growth factor required by the fungus is present. The infection cycle and over wintering are very similar in two species, but *S. maydis* fungus generally occurs in cooler regions. Conidia in *S. maydis* rapidly lose their viability at high temperatures and on exposure to sunlight. At least 24 strains have been reported. Variability appears to be related to temperature requirements (Christensen and Wilcoxson, 2007).

Stenocarpella maydis over winters as viable pycnidia and mycelium on maize debris in the soil, or on seed (Appendix 11; Plate 2). Under warm, moist conditions, spores are extruded from pycnidia in long cirrhi and disseminated by wind, rain and probably, by insects (Keehler, 2000). Maize plants are infected primarily through the crown, mesocotyl, roots and occasionally, at the nodes between crown and ear. Following this, stalks are invaded (Dhanraj, 2006). The development of the stalk rot phase is favored by dry weather in the early growing season, followed by extended periods of rainfall shortly after silking. In stalk infections, injury to the vascular system disrupts translocation and consequently, reduces grain size, unbalanced fertility, low potassium, poor drainage, mechanical and insect damage. At this stage, cultivar and planting density influence disease severity. The ear and grain-rotting phase is similarly favored by above-normal rainfall at stage of silking to harvest, and that, at this phase ears are most susceptible during the weeks after silking (Dhanraj, 2006). Invasion of the ear is usually by way of the shank (Sutton and Watterson, 2006).

2.4.2. Detection and identification symptoms of Diplodia

2.4.2.1. Seedlings

Infected seed gives rise to pre-emergence death in cold soils or blight coloured seedlings in warmer soils. Seedlings develop brown, cortical lesions on the internodes between the scutellum and coleoptile and the seminal roots are frequently destroyed (Sutton and Waterston, 2006).

2.4.2.2. Stalk rot

Symptoms do not usually appear until several weeks after silking, and generally arise following root infection. Oval irregular or elongate, single or confluent lesions, 1-10 cm long, with pale cream-brown centers and indeterminate darker borders are frequently associated with stalk rot infection (Dhanraj, 2006). Leaves wilt, become dry and appear grey to green and the symptoms resemble those of frost damage leading to sudden death of plant. The green color of the internodes fades and they become brown to straw-colored, spongy and easily crushed (Sutton and Waterston, 2006). The pith disintegrates and becomes discolored, with only the vascular bundles remaining intact. Dark, sub-epidermal pycnidia may be seen clustered near the nodes, and white fungal growth may also be present on the surface (Dhanraj, 2006).

2.4.2.3. Ear rot

Infection usually starts at the ear base, moving up from the shank. If infection occurs within two weeks after silking; the entire ear turns to grey then to brown, becomes shrunk and completely rotten with light weight. Sometimes, early infections result in bleached or straw-colored husks. Light weight ears usually stand upright with inner husks adhering tightly to one another or to the ear because of mycelial growth between them. Black pycnidia may be scattered on husks, floral bracts and the sides of kernel. Late infection on the ears show no external symptoms. In this case, ears are broken and grains removed, it is

also noticeable by a white mould that is found growing between the grains whose tips are discolored (Walker, 2009).

2.4.2.4. Morphology

A number of primary and secondary fungi may be present on a plant at a time. Therefore, microscopic observation of fruiting bodies is advisable for correct diagnosis. This microscopic diagnosis identify the fungi as pycnidia are immersed, spherical (Diameter; 200-300 μ m), with multicellular walls and a circular protruding papillate ostiole (Diameter; 30-40 μ m). Conidia of *S. macrospora* are seen straight or curved, rarely irregular, 1(0-3) septate, smooth-walled, pale-brown, with rounded or truncated ends that are relatively large and estimated to be 7.5-11.5x 44-82 μ m (Appendix11; Plate 4a). Conidia of *S. maydis* are straight, curved or irregular, 1(0-2) septate, smooth -walled and pale-brown with rounded or truncated ends, 5-8x15-34 μ m (Shurtleff, 2000).

2.4.2.5. Detection and inspection methods

The detection and inspection methods for *S. macrospora* and *S. maydis* as outlined in EPPO's Quarantine Procedure No. 35 (EPPO, 2006). As per EPPO, seeds of maize should be placed on 1% malt agar and incubated at 20 $^{\circ}$ C for 7 days. This is then followed by microscope observation that reveals the presence of the fungi. On the contrary, the Japanese plant protection service proposes a procedure which required less time by removing the outer layers of the seeds halfway through the incubation period, with subsequent microscopic examination (Dai *et al.*, 2007).

2.4.3.6. Disease cycle

Stenocarpella ear rot is caused by Stenocarpella maydis; the same fungus that causes Stenocarpella stalk rot. For decades, this fungus was known as Diplopodia maydis. Scientists now recognize that the proper name for this fungus is Stenocarpella maydis (Rabie et al., 2005). Another related fungus, Stenocarpella macroscopora, has been found in the United States causing a similar ear rot during warm humid weather (Vincelli, 2005). Stenocarpella macroscopora also produces brown spots and streaks on leaves. Stenocarpella maydis survives between seasons in residue of maize stalks, cobs and fallen kernels. Spores of the fungus are produced in fruiting structures called pycnidia which are produced on infested corn residues. During wet weather, the microscopic spores ooze out of these fruiting structures, they then spread by rain splash. When plants are silking spores that are splashed up to the ear leaf and then deposited by rain water around the ear shank have an opportunity to cause infection. These spores can germinate and penetrate the ear shank, growing up into the cob and outward into the kernels. Ears are most susceptible to infection within a week or two of when 50 percent of plants have completed silking (Walker, 2009). Susceptibility of ears steadily declines after 50 percent silking as found by Sutton and Waterston (2006), although some ears can still be infected as long as four weeks after mid silk (Olantinwo et al., 2004). Wet weather and moderate temperatures during silking allow infection if spores are present. But before silking, the disease is enhanced by dry weather followed by warm, rainy weather. This occasionally prevents spores from being released until the plants are silking (Walker, 2009).

Field observations suggest no association between bird damage or insect injury and *Stenocarpella* ear rot. Without crop rotation, The residue of can produce large amounts of spores that can splash to the next crop as *S.maydis* affects maize alone. There is no research in Kenya, although research conducted in South Africa showed that survival of pycnidia and incidence of *Stenocarpella* ear rot was consistently higher under conservation tillage system (Vincelli, 2005).

CHAPTER THREE

MATERIALS AND METHODS

3.1. Field Site and Soil Characteristics

Twelve divisions in four counties that represents maize growing regions of Nyanza were studied as shown in Table 1 The counties included were Kisumu, Homabay, Migori and Siaya. Five farms in each division were selected randomly and infected cobs with different ear rots within their farms counted. The study was carried out in these counties during the short rains season of September to December 2008 and during the long rains season of February to July 2009.

Table 1. Shows Counties, Divisions, and number of participating

farmers	during	survey	in l	Nyanza	region
---------	--------	--------	------	--------	--------

County	Division	Number of participating farmers
Kisumu	Maseno	5
	Kombewa	5
Homabay	Kasipul	5
	Kabondo	5
Siaya	Sakwa	5
	Imbo	5
Homabay	Rangwe	5
	Asego	5
Migori	Awendo	5
	Rongo	5
Siaya	Madiany	5
	Asembo	5
<u></u>	Total	60

Hassan (1998) defined Nyanza region to be moist mid -altitude zone. This forms a belt around Lake Victoria, from its borders at an altitude of 1110 meters, up to an altitude of about 1500 meters above sea level. Jaetzold and Schmidt (1982) indicate this zone to have characters that corresponds largely with the lower midland temperature belt. These includes;

humidity range from 1(humid) to-6 (arid), and annual rainfall average between 700 mm and 1800 mm and is bimodal, first rainy season starts in February/March and second in August /September. At lower elevation, in particular at the shore of Lake Victoria. The rainfall is less and the second season is less reliable.

Responses of maize hybrids to *Starnocarpella spp* were evaluated at Maseno University Research Farm during the same short rains season and long rains season as those of Nyanza region. Njau (2001) classified Maseno soils as acrisol deep reddish brown clay and well drained with a pH range of 4.5-5.4. Maseno receives both short and long rain averaging to 1750mm per annum with a mean temperature of 28.7°C. Latitude extent 0^{0} 1′N – 0^{0} 12′S; Longitude extent 34^{0} 25′E – $34^{0}47$ ′E is its location at approximate 1500 m above sea level.

3.2. Determination of Disease Severity and Incidences of Maize Ear Rot Causing Pathogens in Nyanza region

3.2.1. Survey methods and analysis used in Nyanza region

Marley and Abar (2001) methods of survey and analysis was used. As adopted from their method, the sample size was one hundred maize plants per every farmer in Nyanza region. The sampling sectors selected were twelve divisions and the five farmers field/experimental plots per division where the maize plants were planted represented the Sampling fields. Lastly disease incidences were the Percentage of diseased plants in a sampling site or sector.

3.2.2. Sampling procedure used in Nyanza region

Stratified random sampling design (SRSD) as stated in Nyall (2009) was used. The samples were stratified by dividing Nyanza divided into four counties that each county represented a stratum. To make sure that, at least 30% of Nyanza region was covered, five farmers were selected from each division. The `X` sampling technique was used for maize

sample collection in the fields of farmers within the divisions whereby, the samples were randomly collected along the `X` like structured demarcation in fields. A field was sampled 100 times to avoid biasness.

3.2.3. Collection of fungi samples in Nyanza regions

The five farmers in each division were at least 2 Kilometres apart. A sample of 100 maize cobs were picked randomly along the `X` demarcation and infected maize cob determined from each farmer. Samples were carefully packed in carton boxes and then taken to Maseno Botany laboratory for analysis. Within the laboratory, 5 kernels from each cob, were picked and fungi cultured on 1 percent malt agar on a petri dish, under a laminar flow hood and incubated at 27 0 C for 7 days as done by Flett and Winner (1991). Subsequent microbial observation revealed the presence of various ear rot causing fungi (Flett *et al.*, 1992), ie., *Diplodia* as in Appendix 11; Plate 2, Giberella (Appendix 11; Plate 4) and *Fusarium* and *Nigrospora* were also determined basing on the microscopic structures.

3.2.4. Determination of infectional severity in nyanza region

The severity of ear rot infection per year was recorded for the short and long rains of on scale of 1-5 as stated in CYMMYT (2004), where;

1=0% no infection on kernels or tips of the ear

2 = 1-25% of the kernels on the ear have visible infection

3=26-50% of the kernels on the ear have visible infection

4=51-75% of the kernels on the ear have visible infection

5=76-100% of the kernels on the ear have visible infection

3.2.5. Determination of infection incidences in Nyanza region and Maseno Area

The incidence per type of ear rot was physically examined and recorded after being calculated equation of Berger (2005) as shown below;

The incidence per type of ear $rot = The number of ears affected by a specific type of ear rot <math>\div$ The total number of the ears assessed.

3.3. Determination of severity and incidences of various ear rot causing pathogens from maize fields in Maseno area

3.3.1. Collection of fungi samples in Maseno area

Just as in when studying in Nyanza (3.2.2. above), five farmers located atleast at least 2 Kilometres apart were selected randomly in Maseno area. A sample of 100 maize cobs were picked randomly along the `X` demarcation and infected maize cob determined from each farmer. Samples were carefully packed in carton boxes and then taken to Maseno Botany laboratory for analysis. Within the laboratory, five kernels from each cob, were picked and fungi cultured on 1 percent malt agar on a petri dish, under a laminar flow hood and incubated at 27 ^oC for 7 days as done by Flett and Winner (1991). Subsequent microbial observation revealed the presence of various ear rot causing fungi (Flett *et al.*, 1992)

3.3.2. Determination of fungi infectional severity in Maseno area

The severity of ear rot infection per year was recorded for the short and long rains of

on scale of 1-5 as stated in CYMMYT (2004), where;

1=0% no infection on kernels or tips of the ear

2 = 1-25% of the kernels on the ear have visible infection

3=26-50% of the kernels on the ear have visible infection

4=51-75% of the kernels on the ear have visible infection

5=76-100% of the kernels on the ear have visible infection

3.4. Isolation, identification and evaluation of the response of maize Hybrids to *Stenocarpella* spp in Maseno University Research farm

The fields were laid during short rains season of September to December 2008 and during the long rains season of February to July 2009.

3.4.1. Maize hybrid seeds

A total of nine maize hybrids treatments that comprised of popular commercial hybrids EH10, EH13, EH14, EH15, EH16, H515, H526, H614D and P3253 were obtained from Kenya seed company.

3.4.2. Agronomic practices and experimental design

The plots were mechanically hand ploughed to depths of 25-30cm. Three seeds of maize hybrids EH10, EH13, EH14, EH15, EH16, H515, H526, H614D and P3253 were then planted per hill, drilling was at a depth of 3-4cm in the ridges and thinned to two plants per hill to give an approximate plant density of 53,333 plants per hectare as done by Bello *et al.* (2012). The plot size was be 3.75×3 m and the plant spacing of 75 cm \times 30 cm, giving 5 rows per plot each with 10 plants (Wabungu *et al.*, 2012). Paths of 0.3 m and 0.75 m were left between the plots in a block and between the blocks, respectively. First planting was done in August, 2008 for short rains season and the second crop planting was done in April, 2009 during long rains season. At planting, the plots were fertilized at 60 kg N and 60 kg P per hectare using the fertilizer 23: 23: 0. The same plots with plants were then later top dressed, with Urea (46% N) at 100 kg N per hectare. Randomized complete block design (RCBD) with three replicates was used in Alpha (0, 1) lattice way (Patterson and Williams, 1976) to take care of soil variability (Banziger and Vivek, 2007). Two treatments were applied inoculation and a non- inoculation.

3.4.3. Isolation of *Stenocarpella* ear rot causing fungus

Pathogens were isolated and identified by the method of CIMMYT (2004). Fungi were isolated from 5 infected ear kernels, then the surface was surface sterilized in 50ml of a 1:10 dilution of commercial hypochlorite. For better sterilization less than 1ml of ethanol was added to help break surface tension on the seed. After two minutes the seed was removed and rinsed with distilled water. The seeds were blotted dry on sterile paper and in this case, three seeds were separated by equal distance on a 9 cm diameter glass petri dish containing half strength acidified potato dextrose agar (PDA).

This was incubated at 27 ^oC under inflorescent lighting for 3-4 days sufficient growth of the fungus inorder to obtain pure cultures of the pathogens. From Pure cultures spores were transferred from 0.2 mm² sections of the growing tip of the mycelium that showed no mixture of different types of mycelium or bacterial growth, to 6 new Petri dishes of half strength acidified PDA. One transfer was made to the center of each Petri dish for development of the culture. After 2-3 weeks when the fungus had covered the surface of the agar, one of the representative cultures were observed in the microscope to assure that the correct fungus was isolated on morphological structures as per the characters for fungi in 3.2.3. The cultures were stored in sealed plastic bag in the refrigerator 10^oC to maintain the good quality cultures for preparing the inoculum (CIMMYT, 2004)

3.4.4. Preparation of Stenocarpella inoculum that was induced into maize hybrids

Colonized tooth picks were prepared. Prior to use of tooth pick; inhibitory compounds such as tannins and phenolic compounds were removed from tooth picks by boiling 2 times, 1 hour each time in tap water to remove toxic substances that would inhibit the growth of fungi. After each boiling the toothpicks were washed in fresh tap water and dried thoroughly in an oven and then placed in glass jars with 200 tooth pick/jar (CIMMYT, 2004).

Forty five millimeters of potato dextrose broth was used to provide sufficient liquid to moisten the tooth picks for good mycelia growth, with a slight excess of liquid in the bottom of the jar. The jar of toothpicks was sterilized for 30 minutes immediately after the broth was added, it was then allowed to cool and inoculated with the mycelium of the pathogen and two bits of agar cultures. After about 3 weeks of incubation at 27 ^oC the *Stenocarpella* was ready for use *Pycnidia* had colonized the tooth picks (CIMMYT, 2004).

3.4.5. Inoculation of maize hybrids using *Stenocarpella* in Maseno university farm

CIMMYT (2004) procedure was used to inoculate all the maize plants with pycnidia *Stenocarpella spp* within a week of mid-silking. A colonized tooth pick with pycnidia was inserted into the shank of the ear at 21 days post female flowering (Silking) as done by Latterel and Rossi (1983), in the process, care was taken not to hurt the peduncle tissue. This is because *Stenocarpella* normally enters the ear through the shank. Therefore, this inoculation method allowed *Stenocarpella* fungus to passes and arrive in the ear. The tooth picks also served to mark the sites of inoculation. Determination of infected maize cobs was then done at harvesting.

3.4.6. Determination of Stenocarpella infectional severity in Maseno University research farm

The responses of the maize hybrids were evaluated at harvesting on the following scale by description of CIMMYT (2004) to show severity in Maseno,

1 = 0% no infection on kernels or tips of the ear

2 = 1-25% of the kernels on the ear have visible infection

3=26-50% of the kernels on the ear have visible infection.

4 = 51-75% of the kernels on the ear have visible infection

5 = 76-100% of the kernels on the ear have visible infection

3.4.7. Determination of infected Stenocarpella maize grain yield, plant stand and days to silking as responses in Maseno University research farm

The maize grain yield was determined and converted to tones/ha, plant stand in percentage and days to silking was also counted for the hybrids in order to compare the responses of hybrid's to *Stenocarpella* infection.

3.5. Statistical data analysis

The data were subjected to Factorial analysis of variance (ANOVA) using SAS statistical computer package (Steel *et al.*, 2006). The factors in Maseno University research farm experiments were two treatments levels i.e. inoculation and non inoculation treatments, three replicates and nine maize hybrids. No inoculation was done within farmers fields during isolation and identification. Measurements for parameters were repeated for one factor, that is maize hybrids (Quinn and Keough, 2006). Fisher's LSD test at 5% level was used to separate the means.

CHAPTER FOUR

RESULTS

4.1. Survey and Determination of Severity and Incidences of Maize Ear Rot Causing Pathogens in Nyanza Regions

4.1.1. Severity of maize ear rot causing pathogens in Nyanza regions during short rains seasons of 2008 and long rains season of 2009

Stenocarpella spp. Fungi is much in Nyanza regions compared to Giberella, Fusarium, Nigorosa and other Fungi (Figure 4.1.1). Imbo and Sakwa have high Fungi severity compared to other regions. During the entire two periods of short rains and long rains severity showed significant differences (p<0.05) within the regions in Nyanza (Appendix 2: Table 1). There were significant differences among five Fungi identified, regions and within the two seasons but no significant differences within farmers (p>0.05). The interaction between fungi and regions had a significant difference (p<0.05). In Appendix 2: Table 2, mean of fungus *Stenocarpella spp*. (3.040) had a significant difference when compered to each of Fusarium (2.41), Giberella (2.34), Nigrosara (2.04), and other Fungi (1.827). There were significant differences when Imbo region mean (2.84) and Sakwa region mean (2.78) were each compared to each of the following regins means; asego(2.6), Madiany (2.36), Asembo (2.3), Kabondo (2.24), Rangwe (2.2), Awendo (2.08), Kombewa (2.08), Kaspul (2.08), and Rongo (2.04). Long rains season means of 2.92 had a significant difference to short rains season means 1.743.

4.1.2. Incidences of maize ear rot causing pathogens in Nyanza regions during short rains seasons of 2008 and long rains season of 2009

High incidences of maize ear rot causing pathogens found in Nyanza showed *Stenocarpella spp.* to be high when compared to the rest (Figure 4.1.2a). Sakwa and Imbo had high incidences. Appendix 2: Table 1, indicates that values measured had significant differences (p<0.05) in Nyanza during the short rains of 2008 and long rains of 2009. There were significant difference (p<0.05) within fungi and even regions of Nyanza. There were no significant difference (p>0.05) when Fungi interacted with regions and when seasons interacted with fungi and regions. Interactions between seasons and fungi, seasons and regions both a significant difference (p<0.05). *Stenocarpella spp.* fungus mean of 3.0455 (Appendix 2; Table 2) was significantly different (p<0.05) when compared to each of Fusarium (2.44), Giberella (2.3455), Nigrosora (2.0182), and other Fungi (1.8273). significant differences were observed when each of regions Sakwa (13.772) and Imbo (12.727), was compared to each of the following regions means; Asego (10.066), Rangwe (9.466), Asembo (9.2806), Madiany (8.751), Kabondo (7.8198), Rongo (7.603), Kaspul (7.5286), Awendo (7.506) and Kombewa (7.2186). long rains season mean of 11.5615 was significantly different (p<0.05) to short rains season means of 6.938.

Apositive correlation value of 0.60445 (Appendix 2, Table 3) between means of severity of ear rots and means of incidences of ear rots in the twelve regions of Nyanza was significantly different (p<0.05) during short rains of 2008 and long rains of 2009. Regression value of 0.223 (Figure 4.1.2 b) was observed when the incidences means were compared to severity.

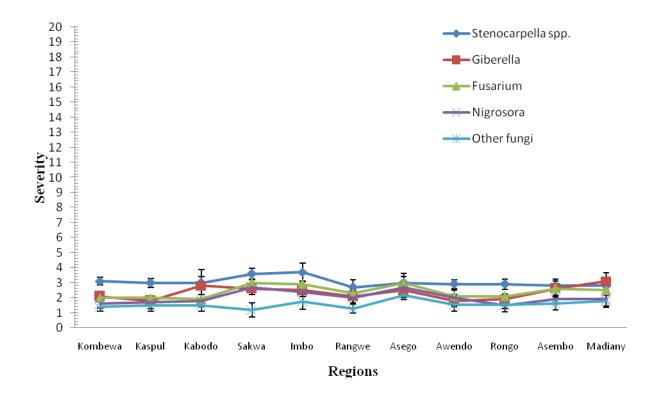


Figure 4.1.1: Severity of maize ear rot causing pathogens in Nyanza regions during short rains season of 2008 and long rains season of 2009. Values are means of five farmers \pm SEs.

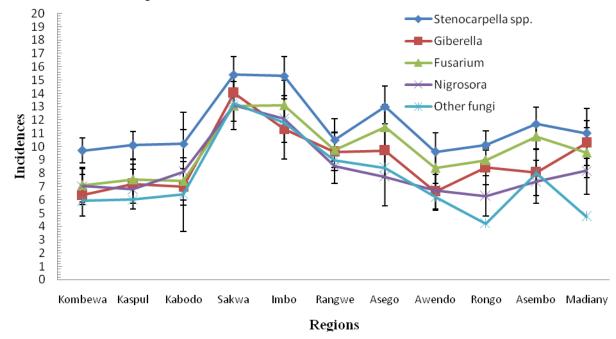


Figure 4.1.2a Incidences of maize ear rot causing pathogens in Nyanza regions during short rains seasons of 2008 and long rains season of 2009. Values are means of five farmers±SEs.

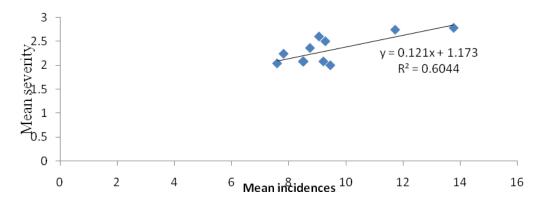


Figure 4.1.2b: Correlation between severity and incidences of maize ear rot causing pathogens in Nyanza regions during short rains seasons of 2008 and long rains season of 2009

4.1.3. Severity of maize ear rot causing pathogens in Nyanza regions during short rains seasons of 2008

Severity of Fungi maize ear rot was very high in Kabondo during short rain season when compared to other regions (Figure 4.1.3). Stenacarpella spp. was high in all other regions when compared to the rest. There were no significant differences (p<0.05) in severity of maize ear rot causing pathogensduring short rains of 2008 within Nyanza region (Appendix 2; Table 5).Alarge value of coefficient of variation (60%) was contributed to by significant differences (p<0.05) that were observed within fungi. There were no significant differences (p>0.05) when fungi interracted with regions. *Stenocarpella spp*. Fungi mean of 2.127, Giberella mean (1.836), and Fusarium mean (1.781) had no significant differences (p<0.05) when each one of them was compared to each other. But, significant differences were observed whenever each one of them was compared to each of; Nigrosora mean (1.5455) and other Fungi mean of 1.3818 (Appendix 3; Table 6).

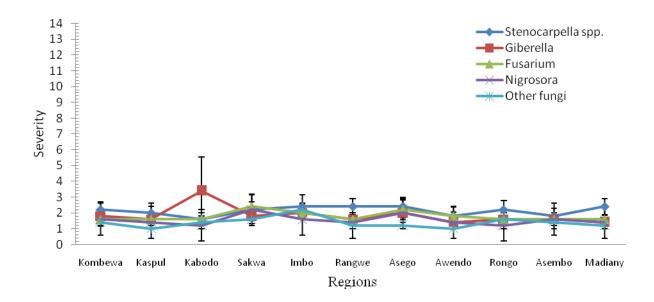


Figure 4.1.3: Severity of maize ear rot causing pathogens in Nyanza regions during short rains seasons of 2008. *Values are means of five farmers* \pm *SEs*.

4.1.4. Incidences of maize ear rot causing pathogens in Nyanza region during short rains seasons of 2008

Sakwa and Imbo had more incidences compared to other regions (Figure 4.1.4). *Stenocarpella spp.* was seen to have more incidences compared to the rest of the Fungi. Significant differences (p<0.05) were observed in incidences of maize causing pathogens during short rain seasons of 2008 within Nyanza region (Appendix 3: Table 5). Fungi and regions had significant differences in their incidences within themselves that contributed to a coefficient of variation of 48%. No significant interaction was observed when Fungi interacted with Regions. *Stenocarpella spp.* (Appendix 3: Table 5) mean (8.4) was significantly different whenever it was compared with each of the following; Fusarium mean (6.9647), Giberella mean (6.6338), Nigrosora mean (6.4487), and other Fungi mean (6.2434). During short rains season, Sakwa region mean (9.8125), Imbo region mean (9.5968) and Rangwe mean (8.1315) of incidences had no significant differences (p<0.05) whenever each was compared to with the other.But, the three had significant differences

when ever each was compared to each of; Asego mean (6.8568), Madiany mean (6.7168), Asembo mean (6.5668), Awendo mean (6.0896), Rongo mean (6.0228), Kaspul mean (6.009), Kabondo mean (5.532) and Kombewa mean (4.9849). Apositive correlation value of 0.35649 (Appendix 2, Table 7) between means of severity of ear rots and means of incidences of ear rots in the twelve regions of Nyanza was significantly different (p<0.05) during short rains of 2008.

4.1.5. Severity of maize ear rot causing pathogens in Nyanza region during long rains seasons of 2009

Rangwe had similar severity of all the Fungi (Figure 4.1.5). *Stenocarpella spp.* fungi had a greater difference in mean when compared to the rest of the fungi. In Kombewa, Kaspul, Kabando, Sakwa, Imbo, and Awendo, *Stenocarpella spp.* had high rate of severity. During long rains of 2009, Nyanza region showed a non significant difference (p>0.05) in severity of maize ear rots (Appendix 4: Table 10). Fungi had a significant differences (p<0.05) within them. Non significant difference were observed within regions and also when there was an interaction between Fungi and regionss (p>0.05). In appendix 4: Table 10, Fungus *Stenocarpella spp.* had a mean of 3.9636 that was not significantly different when compared to each of the following; Fusarium mean (3.0182), Giberella mean (2.8545), and Nigrosora mean (2.4909). Other Fungi found in these regions had a mean of 2.2727 that was always significantly different (p<0.05) whenever compared to the First four Fungi named above. Reagions means of Imbo (3.64) and Sakwa (3.52) had significant differences whenever each them was compared to each of Asego mean (3.24), Madiany mean (3.12), Asembo mean (3.0), Rangwe mean (2.76), Awendo mean (2.68), Kabondo mean (2.68), Kaspul mean (2.64), Kombewa mean (2.44) and Rongo mean (2.44).

4.1.6. Incidences of maize ear rot causing pathogens in Nyanza region during long rains seasons of 2009

High incidences were found to be caused by *Stenocarpella spp*. Sakwa, Imbo, had more incidences for both Fungi (Fugure 4.1.6). There were significant differences (p<0.05) in the incidences of maize ear rots in Nyanza regions (Appendix 4: Table 9). Both Fungi and regions had significant differences (p<0.05) within themselves. The interactions within regions and Fungi were not significantly different (p>0.05). Fungi *Stenocarpella spp*. mean (14.6182) of incidences had significant differences (p<0.05) whenever it was compared to any of the following (Appendix 4: Table 10); Fusarium incidence mean (12.5149), Giberella incidence mean (11.3887), nigrosora incidence mean (10.2638), and other type of Fungin incidence mean (9.0218). Sakwa region region mean (17.732) of incidences and Imbo mean (15.857) of incidences were significantly different when each was compared to each of the following; Asego (13.276), Asembo (12.01), Rangwe (10.801), Madiany (10.786), Kabando (10.108), Kombewa (9.452), Rongo (9.184), Kaspul (9.047) and Awendo (8.922). Apositive correlation value of 0.59028 (Appendix 4, Table 11) between means of severity of ear rots and means of incidences of ear rots in the twelve regions of Nyanza was significantly different (p<0.05) during long rains of 2009.

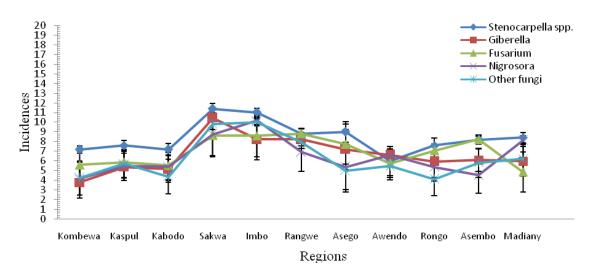


Figure 4.1.4: Incidences of maize ear rot causing pathogens in Nyanza regions during short rains seasons of 2008. Values are means of five farmers \pm SEs.

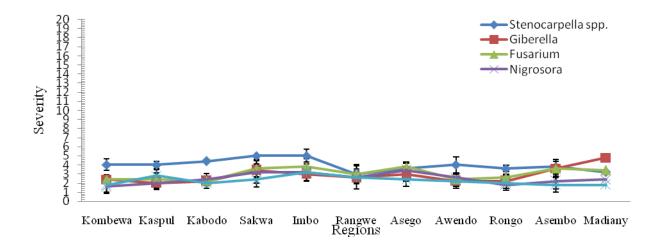
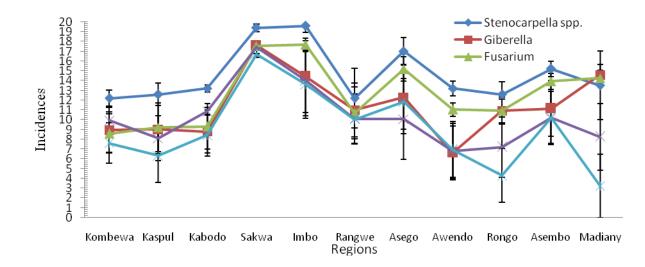
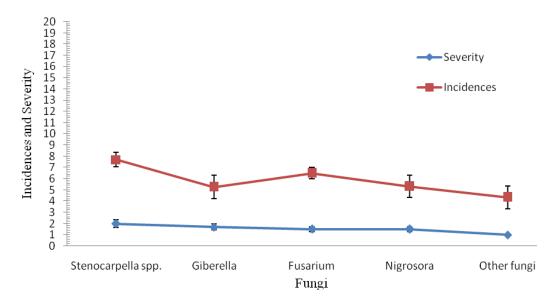
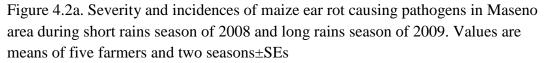


Figure 4.1.5: Severity of maize ear rot causing pathogens in Nyanza regions during long rains seasons of 2009. Values are means of five farmers \pm SEs.


Figure 4.1.6: Incidences of maize ear rot causing pathogens in Nyanza regions during long rains seasons of 2009. Values are means of five farmers \pm SEs.

4.2. Survey of Severity and Incidences of Various Ear Rot Causing Pathogens from Maize Fields in Maseno Area

4.2.1. Severity of maize ear rot causing pathogens in Maseno area during short rains season of 2008 and long rains season of 2009

Severity was very low in other Fungi, but high and almost equal for *Stenocarpella spp.* Giberella, Fusarium and other Fungi (Figure 4. 2a). Appendix 5: Table 13, indicates that severity of maize ear rot causing pathogens was not significantly different (p>0.05) when identified in Maseno area during short rains season of 2008 and long rains season of 2009. Fungi and seasons had significant differences (p<0.05) within themselves when identified. Fungi *Stenocarpella spp.* severity mean (2.2) and Giberella severity mean (1.7) were each significantly different (p>0.05) when compared to each of; *Fasarium* severity mean (1.5), *Nigrosora* severity mean (1.5) and other types of Fungi severity mean of 1.0 (Appendix 5; table14). Long rains season severity mean of 1.88 was significantly different to short rains severity mean (1.28) during short rains season of 2008 and long rains of 2009 in Maseno area.

4.2.2. Incidences of maize ear rot causing pathogens in Maseno area during short rains season of 2008 and long rains season of 2009

Stenocarpella spp. had high severity rate compared to compared to the rest, followed by Fusarium (4.2a). There was a significant differences (p<0.05) in disease incidences when identified in masenon area (Appendix 5: table 13). Fungi and seasons had significant differences (p<0.05) but when fungi and season interacted there was no significant difference (p>0.05). Fungi *Stenocarpella spp.* severity mean (7.7) when compared to each of Fasarium severity mean (6.4913), Nigrosora severity mean (5.3239), Giberella severity mean (5.2563) and other Fungi type severity mean (4.3460) was significantly different (p<0.05). The mean of Fasarium was always significantly different (p<0.05) when compare to each of Nigrosora, Giberella and other types of fungi means (Appendix 5: table 14).

4.2.3. Severity of maize ear rot causing pathogens in Maseno area during short rains season of 2008

Fungi means were always low during short rains of 2008 (Figure 4.2b). *Stenocarpella spp.*, had the highest severity in maize. During short rains, there was no significant differences (p>0.05) in severity of maize ear rot causing pathogens in Maseno area. There was no significant differences (p>0.05) in the Fungi (Appendix 6: Table 17). When means were separated, there wignificant differences (p<0.05). *Stenocarpella spp.* had a significant difference (p<0.05) when compared to each of the following fungi severity mean; Giberellia (1.4), Fasarium (1.2), Nigrosora (1.2) and other fungi (1.0).

4.2.4. Incidences of maize ear rot causing pathogens in Maseno area during short rains season of 2008

Incidences were low, but during short rains season of 2008 (Fugure 4.2c), high incidences were found in *Stenocarpella spp*. and Fusarium. During short rains was no significant difference (p>0.05) in incidences of maize ear rot causing pathogens (Appendix

6: Table 17). There were no significant difference (p>0.05) in Fungi incidences. Disease incidences showed Fungi to lack significant differences (p>0.05) in their means (Appendix 6: Table 18). *Stenocarpella spp.* incidence mean was 6.2, Fasarium incidence mean (6.036), Giberella incidence mean (4.528), Nigrosora incidence mean (3.622) and other fungi group (3.512).

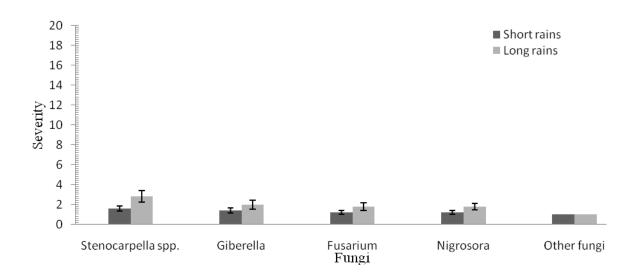


Figure 4.2b. Severity of maize ear rot causing pathogens in Maseno area during short rains season of 2008 and long rain season of 2009. Values are means of five farmers and rain seasons±SEs.

4.2.5. Severity of maize ear rot causing pathogens in Maseno area during long rains

season of 2009

High severity rate was seen to have been caused by *Stenocarpella spp*. during long rains of 2009 (Figure 4.2b). During long rains, there were significant differences (p<0.05) in severity of maize ear rot causing pathogens in Maseno area. This parameter had a coefficient of variation of 23.31% and that Fungi had significant different (p<0.05) for severity (Appendix 7: Table 21). Fungi *Stenocarpella spp*.had a severity mean of 2.5 that was significantly different (p<0.05) if compared to mean severity of Giberella mean (2.0), Fusarium (1.8), Nigrosora mean (1.8) and other Fungi that have a severity mean of 1. 0 (Appendix 7: Table 22).

4.2.6. Incidences of maize ear rot causing pathogens in Maseno area during long rains season of 2009

High incidences were experienced during long rains of 2009 (Figure 4.2c). Very high incidences were found in *Stenocarpella spp*. During long rains, they were significant differences (p<0.05) in incidences of maize ear rot causing pathogens in Maseno area. This parameter had a coefficient variation of 4.0948 % (Appendix 7: Table 21). *Stenocarpella spp*. Fungi mean of incidences (9.4) was significantly different (p<0.05) if compared to each of Nigrosora incidences mean (7.026), Fusarium incidence mean (6.9466), Giberella incidence mean (5.9846) and other Fungi incidence mean of 5.18. Giberella was significantly different when it`s mean was compared to other Fungi and Nigrosora mean of incidences but when each of the two was compared to each of fusarium mean of incidences but when each of the two was compared to each of the rest there was a significant difference (p<0.05).

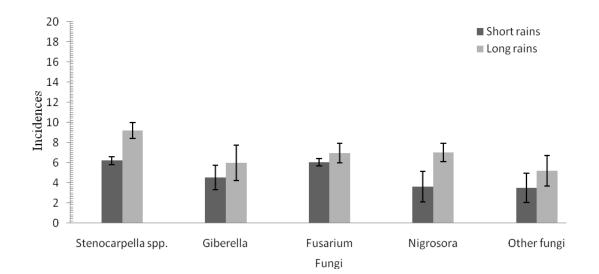


Figure 4.2c. Incidences of maize ear rot causing pathogens in Maseno area during short rain season of 2008 and long rains season of 2009. Values are means of five farmers and rain seasons \pm SEs.

4.3.1. Evaluation of severity of Maize hybrids to Stenocarpella spp. within Maseno

University research farm during short rains season of 2008

During the short rains of 2009, the mean yield was 6.63 with EH10 and EH15 giving the highest yields of 8.75 and 8.09 tones /ha. The plant stand after inoculation with *Sternocapella* was highest in H614D (91.68%) and lowest in P3253 (73.82%). The mean severity score was 1.63 with the EH10, EH14, H641D, and H516 being resistant while the rest of the hybrids were susceptible to *Sternocarpella* infections.

Table 2. Mean values for grain yield, Sternocapella severity scores and other agronomiccharacters measured on maize hybrid evaluated at Maseno during the short rains of2008

HYBRID	GYD(tons/h a)	PLT STD (%)	SEVERITY SCORE	DAT TO SILKING
EH10	8.75	76.18	1.36	75.0
EH14	8.09	90.96	1.56	74.5
EH15	7.32	82.14	1.70	74.5
EH13	7.15	85.71	2.04	73.5
H614D	3.69	91.68	1.50	74.5
H516	5.78	78.57	1.39	74.0
Н515	6.77	75.00	1.93	74.5
P3253	6.22	73.82	1.94	73.5
EH16	5.89	85.71	1.28	74.0
Mean Standard Dev	6.63 1.48	81.09 5.88	1.63 0.28	74.22 0.51

Key: PLT STD (Plant stand), GYD (Grain Yield)

There was statistically significant variation in the incidences, severity, plant stand and days to silking in assessing the response of maize hybrids to *Sternocapella spp*. There was no significant variation in the plant stand. The model accounts for at least 36% of the variation amongst the hybrids (R-Square 0.36 for failed ears).

Table 3. Summary for ANOVA table for disease severity, incidences, and response of maizehybrids to Sternocapella spp. In Maseno University research farm during short rains of 2008

Parameter	R-Square	C.V	Root MSE	Mean	F value	Pr>F
Severity	0.58	35.94	0.54	1.49	2.82	0.0001
Incidences	0.47	41.98	2.04	4.85	1.85	0.014
Yield (T/ha)	0.47	29.75	0.32	1.08	1.85	0.014
Failed Years	0.36	159.63	4.15	2.60	1.16	0.29
Plant stand	0.99	0.94	0.78	83.28	161.84	< 0.0001
Days to silking	0.65	1.23	0.90	73.35	3.86	< 0.0001

In table 4 above there is a significant variation in severity among the hybrids tested, there is no significant variation between EH15 and EH13.

The incidences does not significantly vary between the inoculated and non inoculated hybrids. The yields significantly vary between the inoculated and non inoculated hybrids. There is no significant variation between the hybrids EH10, EH14, EH15 on yield. Hybrid H614D has the highest mean number of failed ears after inoculation (10.667). There is a significant difference in the plant stands between the inoculated and non-innoculated hybrids Table 5 shows combined means for the severity of *Sternocapella* innoculum and other agronomic characters of the various hybrids tested during the long rains of 2009. The yield ranged from 4.5 tones/ha to 10.5 tons/ha. The plant stand ranged from 79% to 91.67%, while the severity of the *Sternocapella* infection on the ear was from 1.7-3.0. The days to silking ranged from 71.5 days to 74 days. H614 hybrid gave the lowest yield while the highest yield was given by EH10 hybrid. The highest severity score was observed in H614D, EH10, EH14, EH13 and P3253 showed high susceptibility, with the rest of the hybrids showed high resistance.

Table 4. LSD test for disease severity, incidences, and response of maize hybrids toSternocapella spp. In Maseno University research farm during short rains of 2008

Hybrid	Severity	Incidences	Yield	Failed years	Plant stand	Days to silking
EH10	1.1667 b	5.62 a	1.42a	1.67b	92.83a	72.33b
EH13	2.5 a	2.95 b	1.05ba	1.33b	87.5c	70c
EH14	1.833ba	5.29 a	1.19ba	2.17b	89.83b	73.33ba
EH15	2.1667a	4.95 a	1.25a	2b	83.17d	73.33ba
EH16	1.333 b	2.95b	1.12ba	2b	90.5a	73.33ba
H515	1.333 b	5.95a	1.15ba	4.17ba	80.17f	73.67a
H516	1.333 b	5.29a	1.15ba	2.17b	82.5ed	73ba
H614D	1.833 ba	1.95b	0.79b	10.67a	92.17a	73ba
P3253	1.333b	6.62a	1.05ba	2.33b	81.83e	73.67a

N=36.Means with the same letter in the same column do not significantly differ at p=0.05

High severity was shown with inoculation in hybrids EH14, EH15, and H614D. In noninnoculation high severity was seen in EH15 and EH13 (Table 2). Disease severity means during the short rains seasons (Appendix 9: Table 29) when *Stenocarpella spp*. was introduced in Maseno University research farm showed significant differences (p<0.05). Treatments and maize hybrids showed a significant differences within them (p<0.05) but the interaction within them did not show a significant difference (p>0.05). Maize hybrids EH13 severity mean (2.5) and EH15 severity mean (2.1667) were each significantly different (p<0.05) when compared (Appendix 9: Table 30) to each of the following maize hybrid means; EH14 (1.833), H614D (1.833), P3253 (1.3333), EH16 (1.33), H516 (1.33), H515 (1.33) and EH10 (1.1667). Severity mean (1.963) of short rains season was significantly different when compared to long rain season mean of 1.333.

High incidences was shown with inoculation in hybrids H515, and P3253, In noninnoculation high incidences was seen in EH10 and EH15 (Table 4.3b). Incidences had significant differences (p<0.05) under *Stenocarpella spp*. (Appendix 10: Table 39). There were significant differences (p<0.05) in maize hybrids, but a non significant differences (p>0.05) was observed in maize hybrids interaction with treatments. In a descending order, incidence mean in hybrids were as follows; P3253 (6.6185), H515 (5.9518), EH10 (5.6185), EH14 (5.2852), H516 (5.2852), EH15 (4.9518). This six hybrids were significantly different (Appendix 9: Table 30) when each of them was compared to each of EH13 (2.9581), EH (2.9518), and H614D (1.958).

High yield was shown with inoculation in hybrids EH10, and EH15, In noninnoculation high yield was seen in EH10 (Table 3). Yield showed a non significant difference (p>0.05) when *Stenocarpella* spp. was introduced as a treatment (Appendix 9: Table 29). There were non significant differences (p>0.05) in maize hybrids and when maize hybrids interacted with treatments, But a significant difference was observed within the means of the two treatment (p<0.05). Hybrids EH10 mean (1.4183) EH15 mean (1.2517) EH14 mean (1.185) mean H515 (1.1517) mean H516 mean (1.1517) mean EH16 mean (1.118) mean EH13 (1.0517) mean P3253 (1.05) had no significant difference (Appendix 9: Table 30). When their means in brackets were compared to each other. But when each of them was compared to hybrid H614D mean of 0.785, there was a significant difference (p<0.05). A significant difference was found when inoculated maize yield mean (1.244) was compared to non inoculated maize yield mean of 1.0144.

Table 5. Mean values for grain yield, *Sternocapella* severity scores and other agronomic characters measured on maize hybrid evaluated at Maseno during the long rains of 2009

HYBRID	GYD(tons/ha)	PLT STD(%)	SEVERITY SCORE	DAT TO SILKING
EH10	10.5	90.26	1.8	72.0
EH14	10.2	88.96	1.9	73.5
EH15	9.25	82.00	1.7	74.0
EH13	9.4	85.71	2.0	71.5
H614D	4.5	91.67	3.0	73.0
H516	7.36	80.57	2.8	72.0
H515	8.72	79.00	2.9	73.5
P3253	8.22	80.21	1.85	74.0
EH16	7.85	89.00	2.9	74.0
Mean	8.44	85.26	2.32	73.06
Standard Dev	1.81	4.89	0.56	0.98

Key:PLT STD (Plant stand), GYD (Grain Yield)

4.3.10. Evaluation of Failed ears of Maize hybrids to Stenocarpella spp. within Maseno

University research farm during short rains season of 2008

High failed ears was shown with inoculation in hybrids EH15, and H614D, In noninnocation high failed ears mean was seen in H515 (Table 4.3b). Failed ears did not indicate a significant difference (p>0.05) during the short rains when *Stenocarpella spp*. was introduced to maize hybrids in Maseno University Research farm (Appendix 9: Table 29). Hybrid maize H615D mean (10.667) was significantly different when compared to other maize hybrid means. In this case H515 (4.167), P3253 (2.333), EH14 (2.167), H516 (2.167), EH15 (2.0), EH16 (2.0), EH10 (1.667) and EH13 mean of 1.333 (Appendix 9: Table 30).

4.3.11. Evaluation of plant stand of Maize hybrids to *Stenocarpella spp*. within Maseno University research farm during short rains season of 2008

High mean of plant stand was shown with inoculation in hybrid EH10. In noninnocation, high mean of plant stand was shown by H614D (Table 4.3b). Plants stand showed a significant difference (p<0.05) when *Stenocarpella spp* was introduced to maize hybrid under Maseno University Research farm (Appendix 9: Table 29). Significant differences (p<0.05) were seen within treatments, maize hybrids and when treatments interacted with maize hybrids. Maize hybrids H10 mean (92.833) and H614D mean (92.1667) was significantly different when compared to each of EH16 (90.5), EH14 (89.833), EH13(87.5), EH15 (83.1667) , EH516 (82.5), P3253 (81.833) and H515 (80.1667). EH16 and EH14 had a significant difference when each was compared to each of EH15 and H516. H13 had a significant comparison to each of H15, H516, P3253 and H515. Long rains seasons (Appendix 9: Table 30) mean (88.22) had asignificant difference to short rains mean (85.22).

4.3.12. Evaluation of days to silking of Maize hybrids to *Stenocarpella spp.* within Maseno University research farm during short rains season of 2008

High mean of days to silking was shown with inoculation in hybrid EH15. In noninnocation high mean of days to silking was seen in EH10 (Table 4.3b). There were significant differences (p<0.05) in maize hybrids under *Stenocarpella spp*. in Maseno University Research farm in the means of days of silking (Appendix 9: Table 29). Maize hybrids had significant differences amongst themselves; but non significant differences were observed in treatments and when toots interacted with maize hybrids (Appendix 9: Table 29). Maize hybrids P3253 (73.67 and H515 (73.67) had a significant difference in there means in brackets when each was compared to each of the following; EH16 (73.33), EH15 (73.33), EH14 (73.0), H614D (73.3), H615 (73.0), EH10 (72.33) and EH13 (70.0). Treatment means did not show a significant difference (p>0.05) (Appendix 9: Table 30).

4.3.13. Evaluation of severity of Maize hybrids to *Stenocarpella spp.* within Maseno University research farm during long rains season of 2009

High mean of severity was shown with inoculation in hybrid EH14. In noninnocation high mean of severity was seen in EH15 and EH13 (Table 4.3c). This were significant differences (p<0.05) in means of severity in maize hybrids treated with *Stenocarpella spp.* under Maseno University Research farm during long rains of 2009 (Appendix 10: Table 33). Hybrids and the interaction between hybrids and treatments had no significant differences (p>0.05). Significant difference was observed in treatments (p<0.05). Maize hybrids P3253 mean (1.5), EH13 mean (1.5) and EH14 mean (1.5) each showed a significant difference when compared to mean of each of EH15 (1.33), H614D (1.33), EH16 (1.1667), EH10 (1.1667), H516 (1.00). Inoculation mean showed a significant difference when compared to non innoculation (1.67 and 1.0 respectively) in Appendix 10: Table 34.

4.3.14 Evaluation of incidences of Maize hybrids to *Stenocarpella spp.* within Maseno University research farm during long rains season of 2009

High mean of incidences was shown with inoculation in hybrid EH14 and EH10. In non-innocation, high mean of incidences was seen in P3253 (Table 4.3c). Incidences showed no significant differences (p>0.05) in when *Stenocarpella spp*. was inoculated into maize hybrids in Maseno University Research farm (Appendix 10: Table 33). Maize hybrids had significant difference (p<0.05) amongest them, but no significant difference were observed in treatments and in the interaction between treatments and maize hybrids. There were no significant differences when mean of inoculation (5.2963) was compared to the mean of non innoculated (4.8753). Maize hybrids means P3253 (7.123), H515 (6.79), EH10 (6.456), H516 (5.79), EH14 (5.123) and EH15 (4.79) were significant different when each one of

them was compared to each of EH13 (3.79), EH16 (3.79) and H614D (2.123) in Appendix 10: Table 34.

4.3.15. Evaluation of Yield (Tones/ha) of Maize hybrids to *Stenocarpella spp.* within Maseno University research farm during and long rains season of 2009

High mean of yield was shown with inoculation in hybrid EH10. In non-innocation high mean of yield was seen in EH15 and EH10 (Table 4.3c). Yields in tonnes per ha had significant differences (p<0.05) when *Stenocarpella spp*. was introduced to maize hybrids in Maseno University Research farm (Appendix 10:Table 33). Hybrids and treatments showed significant differences (p<0.05). Appendix 10: Table 34 indicates that, yield mean of 1.4107 in maize hybrid EH10 was significant different when compared to each of EH15 (1.1773), EH13, (1.144), EH14 (1.1107), H515 (1.0776), P3253 (0.9773), H516 (0.9107), EH15 (0.9107) and H614D (0.5107). There was a significant difference in mean due to inoculation (1.18148) when compared to mean due to non inoculation (0.86948).

4.3.16. Evaluation of Failed ears of Maize hybrids to *Stenocarpella spp.* within Maseno University research farm during long rains season of 2009

High mean of failed ears was shown with inoculation in hybrid EH14 and h515. In non-innocation high mean of failed ears was seen in EH15 and EH14 (Table 5 and 6). There were no significant difference (P>0.05) in failed ears when *Stenocarpella spp*. was introduced into maize hybrids of Maseno University Research farm (Appendix 10: Table 33). Significant differences (P<0.05) were observed between treatment but no significant differences were observed amongest maize hybrids and maize hybrid interactions with treatment. There was a significant difference when mean due to inoculation (2.5185) was compared (Appendix 10: Table 34) to non inoculation mean (1.5556).

4.3.17. Evaluation of plant stand of Maize hybrids to *Stenocarpella spp.* within Maseno University research farm during long rains season of 2009

High mean of plant stand was shown with inoculation in hybrid EH13. In noninnocation high mean of plant stand was seen in EH16 (Table 4.3c). There were significant differences (P<0.05) in plant stand when *Stenocarpella spp*. was introduced to maize hybrid of Maseno University Research farm (Appendix 10: Table 33). Significant differences were observed between treatments and amongst maize hybrids (P<0.05). Interaction between maize hybrids and treatment was not significant (P>0.05). There were significant differences when each of EH13 mean (85.833), EH16 mean (85.5), was compared to each (Appendix 10: Table 34) of EH15 (81.5), EH14 (81.1667), H614D (81.1667), H516 (78.833), EH10 (75.5), H515 (75.1667) and P3253 (73.833). Non inoculation mean (80.33) had a significant difference when compared to inoculation mean of (79.33).

4.3.18. Evaluation of days to silking of Maize hybrids to *Stenocarpella spp.* within Maseno University research farm during long rains season of 2009

High mean of days to silking was shown with inoculation in hybrid EH10. In noninnocation high mean of days to silking was seen in EH10 (Table 4). No significant differences (P>0.05) were observed in mean of days to silking when *Stenocarpella spp*. was introduced under Maseno University Research farm (Appendix 10: Table 33). Maize hybrids showed significant differences (P<0.05) amongst their means. However, there were no significant differences (P<0.05) in treatments and when treatments interacted with hybrids during long rains season of 2009. A mean of 75.0 in hybrid for EH10 showed (Appendix 10: Table 34). it to be significantly different (P<0.05) when compared to each of EH13 (74.0), EH14 (74.0), EH15 (74.00), EH14 (74.00), EH16 (74.00), H515 (74.00), H516 (74.00) and H614D (73.00).

Table 6. LSD tests for disease severity, incidences and response of maize hybrids to *Sternocapella* spp. In Maseno University research farm during long rains seasons of 2009.

Hybrid	l Severity	Incidences	Yield	Failed years	Plant stand	Days to silking
1EH10) 1.667ba	6.456ba	1.411a	0.833a	75.500a	75.000a
2EH13	1.500a	3.790bc	1.144ba	1.667a	85.833	74.000ba
3EH14	1.500a	5.123ba	1.111ba	2.830a	81.167b	74.000ba
4EH15	1.330	4.790ba	1.773ba	1.833aa	81.500b	74.000ba
5EH16	5 1.667ba	3.790bc	0.911b	2.500a	85.500a	74.000ba
6H515	1.500ba	6.790a	1.077ba	2.667a	75.167d	74.000ba
7H516	1.000b	5.790ba	0.911b	1.833a	78.833c	74.000ba
8H614I	D 1.330ba	2.123c	0.511c	2.667a	81.167b	74.000b
9P3253	3 1.500a	7.123a	0.977b	1.500a	73.833e	73.000c

N=36.Means with the same letter in the same column do not significantly differ at p=0.05

CHAPTER FIVE

DISCUSSION

5.1. Severity and Incidences of Maize Ear Rots

Fungi are present in divisions of Nyanza region. There is an also significant difference to maize severity and incidences that indicates these divisions to be under different rate of Fungi infestation. This is well in agreement with reports by Fajemisin *et al.* (2005) that most maize grown in Kenya is susceptible to the ear rot fungus which has become a major constraint in maize cultivation. This has further affirmed that yield losses in maize production systems are partly attributable to the ear rots (Ajanga, 2009). The incidences could still rise, as currently there are no maize hybrids on the market that have high level of resistance to ear rots. Farmers are also not aware of the maize hybrids that repeatedly suffer high levels of ear rot (Vincelli, 2003). The prevalence of maize ear rots could also be attributed partly to multiple yearly cropping cycles that allow the ear rot causing pathogens to build up to a large proportions (Dragich and Nelson, 2014). Similar mean percentages incidences as observed in adjacent divisions of Asembo and Madiany as well as Kabondo, Asego, Sakwa is attributable to the fact that ear rot incidences are associated with the tillage practices that may be similar and also, weather conditions as major factors in adjacent areas (Flett and wehner, 2001).

A significant variation in mean incidences both in the short and long rain seasons would suggest that, the weather conditions could be a contributing factor to the ear rot incidences as also earlier suggested by Ajanga (2009). An occurrence of various ear rot causing fungus studied ie., *Diplodia*, *Giberella*, *Nigrospora* spp, *Fusarium* spp and other minor ear rot pathogens goes in hand with reports by Flett (1992). The reports suggests that, maize ear rots may be a complex of various fungi some of which include the *Fusarium* spp, *Stenocarpella* spp and *Aspergillus spp*. *Diplodia spp*. had the highest incidence, and this is

usual as it has been ranked among the top three important in causing maize ear rot (Kapindu *et al.*, 2009). In Kenya, there is no clear quantifiable information that is readily available on the incidences and severity of the maize ear rot (Ajanga, 2009), the existence of the pathogens shows some need for concern. *Fusarium spp.* and *Giberella spp.* ear rot causing fungus are the second most prevalent fungus. This has also been found by (Ajanga, 2009) in western Kenya regions. Although earlier reports show that *Fusarium moiliforme* is the most wide spread disease attacking maize in Nigeria (Adejumo *et al.*, 2007), in this study it emerged the second in its prevalence. This is a non coherence that can be due to the yearly variation of the ear rot incidences (Dhanraj, 2006). For instance, *Fusarium* spp can be recovered from highly decomposed debris after two years of burial (Adejumo *et al.*, 2007). Therefore, this becomes limiting to the chances of the total eradication of the fungus inoculums in the current farming circumstances where there is high land pressure and high cropping index.

Since *Fusarium spp.* susceptibility is higher during growth period than in adult period (Agrios, 2005), the incidences observed could be attributed to an earlier infection. Presence of propagules incidences that were higher as observed in the surveyed farms in the divisions could also attribute to this suseptability. This might also have had a role in leading to no clear significant differences during inoculation and non inoculation when *Stenocarpella spp.* was introduced under Maseno University Research farm study. Silmilarly there is a complex of several species of fungi causing ear rots rather than a single species, as done by introducing *Stenorcapella spp.*, this therefore made it difficult to assess losses due to a single fungal pathogen alone. Losses due to ear rots also vary significantly due to season and between regions (Nwigwe, 2004) as found in this study. Maize crop is the only host of *S.* maydis so innoculum levels are usually highest in fields of continous maize cultivation

that calls continual infestation as maize residue are left on the soil surface predisposes the prevalence of *S.maydis* (Vincelli, 2003).

There was a general trend of increase of incidences of ear rots during the rainy season. To rxplain this, it is known that monocyclic diseases are not affected by climate change although moisture (rain, dew, high humidity) plays a significant factor in the incidences and epidemics caused by fungi. High moisture promotes infection and spore release and germination in many fungi. Prolonged and repeated moisture lead to epidemics with the pathogens most active at 18° -24^o C. With trends towards warmer summers there is an expected reduction or slowing of progress in number of disease cycles resulting in reduced primary innoculum (Olantinwo, 2004), Thus higher means of incidences being found in long rains seasons of 2009.

A non significant difference in the interaction between the ear rot type and the site suggests the possibility of other factors that influence the ear rot incidences in the twelve divisions studied (Flett *et al*, 2001). *Stenocarpella spp.* ear rot is consistendly high with conventional ploughed systems compared to other tillage system. Relationship exists between incidences and amount of maize stabble affected by environmental conditions and that the rate of relationship also varies with localities. Crop rotation would therefore reduce the incidences significantly for host specific *S.maydis* in 24 months or 2 cropping seasons without a host crop being planted (Flett *et al.*, 2001).

Fusarium spp. incidence is by system infection from contaminated seeds with fungus moving up the plant from the roots and then, sporulation on the tassels of previous crop residues infection depending on physiological state of the silks after pollination will eventually affect the succeeding plant crop (Payne, 2009). Other factors like the ability of *Fusarium spp.* to stay in buried maize stubble for a long period predisposes it prevalence.

Correlation analysis shows a positive correlation between severity and incidence over long and short rains seasons. This indicates that, plant ear rot disease intensity is an occurring a problem over years. Therefore measures of incidence are more easily acquired, that can determine a qualitative relationship and greatly facilitate the evaluation of disease intensity when accurate assessment of disease severity aren't available. The relationship between incidence and severity due to correlation imply that there exist other factors that contributes largely to this correlation.

Mean severity of various ear rots had significant differences in the divisions studied and during the two seasons of 2008 (short rains) and 2009 (long rains). The absolute severity levels ranged from 1.1(Kasipul Division, Nigrospora spp.) to 2.6 (Asembo, Giberella spp). From score percentages, a majority of the mean severities scores represented a kernel infection of 1-25%. Yield losses of up to 10% due to cob rots have been reported by Kapindu et al. (2009). This loses are also accompanied by this range of severity and that severity score of 2 are unusual (Kapindu et al., 2009). High severities have been reported in farmer's fields like those found in Sakwa and Imbo suggest them to be planted continuously with maize. Therefore, relatively high severity as observed in Asembo could have been attributed to by cultural practices adopted by the maize farmers. However it should be noted that, significant differences in severity can also be attributed to by other environmental stress factors that were not determined. These factors include; low potassium, poor drainage, mechanical insect damage to hybrids, and planting density used by farmers in the regions (Dhanraj, 2006). There was an observed a general increase in ear rot severity during the long rains. The ear and the grain rotting phase is generally influenced by high amounts of rainfall (Dhanraj, 2006). The ear rot studied normally have the monocyclic disease cycles. Monocyclic crop disease severity is directly proportional to the amount of innoculum present after the over wintering period. Maize ear rots express this pattern due to the relative

short period of susceptibility of the host plant. This has been confirmed by comparing the ascospore and conidial inoculums with studies showing that disease dispersal during the season indicates the essence of a secondary infection (Flett and Wehner, 2001).

5.2. Ear Rot Fungi Severity and Incidences in Maseno Area

Although Maseno area is located in a relatively cooler environment as compared to the other area studied for the ear rots in Nyanza (Jaetzold and Schmidt, 1982), it's ecological condition does not deter the maize ear rot incidences. The ear rot incidences ranged from 3.5%-6.2% during the short rains and 5.18-9.4% during the long rains. The higher humidity in Maseno could be a cause to this range in ear rot that had significant differences as earlier suggested by (Flett et al., 1992). The Diplodia, Fusarium, Nigrospora and Giberella were the main fungi identified on the infected maize ears in Maseno. The variations in the geographical conditions in the 12 divisions studied and the Maseno area seem not to have had significant differences as to warrant the specialization of various ear rot fungi in Maseno area. Ear rots existence in the Maseno area could therefore be attributed to some of the reasons that contribute to the other divisions studied as suggested also by Kirimelashvili et al. (2009). The higher means of severity and incidences found found in Nigrospora infected maize ears indicates that, Nigrospora and Fusarium are widely distributed and damages could be made severe with condusive weather conditions, prevalence also varies greatly annually with seasons (Kirimelashvili et al, 2009). In both long rains seasons and short rains seasons of Nyanza and Maseno area, Stenocarpella spp. showed highest means that suggest it to be the most common ear rot causing Fungi. This therefore, suggested it to be chosen for further studies in Maseno university research farm. Response it causes to specific maize hybrid can therefore determine the extend and magnitude of its effects.

5.3. Maize Hybrid's Response to Stenocarpella spp.

There are 3 groups of the maize hybrids responding differently to the *Diplodia* inoculum. The EH15, EH14, EH16 group, EH10, P3253 group, and EH13, EH16 group of maize hybrids which responded similarly to inoculation by *Stenocapella* spp fungus. The (EH15, EH14, EH16), shows the least effects from the innoculum based on responses, but was the highest in means for severity, and incidences. Hybrid H614D is distinct in its response to the inoculation by *Stenocapella* spp. It experiences the highest mean effects, although it has been suggested that hybrids would be important to the management of *Stenocapella* ear rots, Maize hybrids vary in their susceptibility (Vincelli, 2003).

During the short rains of 2008, the highest mean yield was for EH10 and EH15. The plant stand after inoculation with *Stenocarpella* was highest in EH13. The mean severity score was 1.63 and EH10, EH14, H641D, H516, and EH16 being resistant while the rest of the hybrids being susceptible to *Stenocarpella* infections. The plant stand significant differences in maize hybrids might have been contributed by genetical (Vincelli, 2003) effects rather than being affected by *Stenocarpella spp*. This is in consideration to the late age at which inoculation was done. Failed ears significant differences in treatments indicated that inoculation had effects to maize hybrids. This is explained by the significant differences in severity and incidences, but the later two caused a reduction in yield due to its significant differences. In some cases there were no significant differences in response effects of *Stenocarpella spp*. treatment when compared to the noninnoculation to maize hybrids during long rains and short rains. This indicates that there were some amount of *Stenocarpella spp*. Fungi in the soils of cultivation in Maseno Universty research farm. This agrees with Vincelli (2003) that there is generally unreliable prediction of hybrid performance in the presence of the disease, while all hybrids tested thus far are susceptible to some degree. Up

to 5 out of the 9 varieties tested during the short rain season showed high susceptibility, while 4 varieties showed severity score below the mean severity score of 1.63. Some relatively resistant hybrids such as EH16 gave relatively lower yields (5.89 tones/ha) and relatively lower percentage plant stand. This suggests that, although ear rots reduce the yields in maize they could also be interacting with other factors in the environment including the temporal as well as environmental stresses or edaphic factors as earlier reported by Olantinwo *et al.* (2004).

The general increase in mean severity scores in long rains as compared to the severity scores during the short rains was observed alongside the other agronomic aspects checked. This agrees with studies by Vincelli (2003) and Walkers (2009) that have implicated wet weather during silking for it enhances severity. The hybrids (H516 and EH16) which were originally resistant during the short rains have been rendered susceptible during the long rain season. For these two varieties, their response suggests a possible interaction between the genetic aspects of resistance and the weather conditions. This therefore would be an aspect for consideration during the selection for resistance to Stenocarpella spp ear rots. In table 10, plant stand does not correspond to high yields as is the case of hybrid H614D with a high plant stand (91.68%) yet relatively lower yield (4.10 tones/ha). The plant stand can therefore not be used for indirect selection for yield. There is no significant interaction between the hybrid and the season on the severity scores. There seem to be a contribution of other factors that lead to severity of ear rot attack. These could be attributed to the innoculum load that must be sufficient to achieve a certain severity level. Innoculum load could be further influenced by the local agricultural practices. Lack of significant interaction could also imply that severity of various ear rots could increase irrespective of the season or hybrid used.

CHAPTER SIX

CONCLUSIONS, RECOMMENDATIONS AND SUGGESTIONS FOR FUTURE STUDIES

6.1. Conclusions

Maize ear rots are prevalent in all the twelve divisions studied, with the main ear rot causing fungi being *Diplodia* spp., and *Fusarium* spp. The prevalence is higher during the long rains as there was a significant difference in the Fungi means. There is an association between the incidence and the severity of the ear rots as to when incidences increased severity also increased causing a positive correlation. Adjacent regions ie Sakwa, Imbo and Asembo had more incidences and severity of Ear rot causing fungi due to slight changes to environments and common cultural practices of the farmers. But significant differences shoe Sakwa as a region to be hilly infested by the Fungi.

The mean severity scores of the 9 hybrids studied show that EH10, EH14, EH15, and P3253 hybrids are resistant to *Stenocarpella spp.* ear rot causing fungus. H614D, EH13, H516, H515, EHI6 hybrids are susceptible to the *Stenocapella* spp ear rot causing fungus. The hybrids (H516 and EH16) which were originally resistant during the short rains are again rendered susceptible during the long rain season. For these two varieties, their response suggests a possible interaction between the genetic aspects of resistance and the weather conditions. This is an aspect for consideration during the selection for resistance to *Stenocarpella* spp ear rots. Failed ears significant differences in treatments indicated that inoculation had effects to maize hybrids. This is explained by the significant differences in severity and incidences, but the later two causes a reduction in yield due to its significant differences suggesting presence of other Fungi infestation in Maeseno Univesity farm.

6.2. Recommendations

- 1. Its recommended that Fungi distribution is expected in most regions because, Maseno area is located in a relatively cooler environment as compared to the other area studied for the ear rots in Nyanza but it has been found that it's ecological condition does not deter the maize ear rot incidences. Its also recommended that all the regions studied as Maseno are highly infected with *Stenocarpella spp*. as it was found significantly varying when compared to other Fungi both during long and short seasons.
- 2. Despite the lack of consistence for significant differences in between inoculation and noninnoculation, and some responses such as failed ears, there was some consistence results where Severity, Incidence, and yield showed that maize hybrids EH10, EH13 and EH16 stood out as showing higher tolerance to ear rots. Based on this results the hybrids may be recommended for cultivation in this ear rot and Fungi accumulated soils soils, where cultural practices that increase the innoculum load should be avoided through extension services to the farmers.

6.3. Suggestions for Future Ftudies

- In this study survey for severity and incidences were done for two concecutive years within the regions, prevalence should be replicated more over longer periods to monitor epidemiology of the ear rots within the regions.
- 2. The factors of co-occurrence of the studied ear rots should be probed further in Maseno area as Maseno area was found to have same fungi affecting maize despite`s cooler environment for example Maseno area can be sub divided further into several areas for Fungi severity and incidences to be clearly determined.

3. The maize hybrids should be replicated over several sites for their yield performance and resistance levels to be determined before being sampled for farmers as resistant. Response parameters measured such as days to silking were not conclusive and should combine with physiological parameters such as gas exchange parameters for instance measurements of photosynthetic rate, stomatal conductance and transpiration rate among others, because this would indicate the overall rate of photosynthesis since chlorophyll fluorescence concentrated on the activities of photosynthetic apparatus.

Combined fungual treatments ie., all Fusarium, Stenocarpella and Giberella can also be considered se they under long continual experiments because they all occure in maize growing fields at all times. The amount of innoculum given to maize hybrids should also be increased as in normal field condition Fungal multiply within the whole maize life span.

REFERENCES

- Adejumo, T., O., Hettwer, U., and Karlovsky, P. (2007). Occurrence of *Fusarium* species and trichothecenes in Nigeria maize. *International Journal of food Microbiology*, 116: 350-357.
- Adipala, E., Lipps, E.P., and Madden, L.,V. (2003). Occurrence of *Exserohilum turcicumon* maize in Uganda. *Plant Diseases*, 77: 202-205.
- Agrios, G., N. (2005). Plant pathology, 5th Ed. Elsevier academic press, London, Pp. 65
- Ajang, S, Monda, E., O., Alakonya, A., E. (2008). Management of Fusarium verticilloides Root infection Court in Maize using Organic soil amentments. World Applied Science Journal, 5: 161-170.
- Ajello, L., Georg, L., K., Kaplan, W., and Kaufman, L. (2003). Laboratory Manual for medical mycology. *United States Public Health Service*. 994.
- Bansiger, M., and Vivek, B., S. (2007). Field book: Software for managing a maize breeding programme.CIMMYT, Mexico.
- Bello, O., B., Ige, S., A., Azeez, M., A., Afolabi, M., S., Abdulmaliq, S., Y., and Mahamood, J. (2012). Heritability and Genetic Advance for Grain Yield and its Component Characters in Maize (*Zea Mays L.*). *International Journal of Plant Research*, 2: 138-145
- Berger, R.D. (2005).Disease incidence and infection rates of *Cercosporaapii*in plant spacing plots. *Phytopathology*, **65**: 485-487.
- Castelo, M., M., Summer, S., S., and Bullerman, L., B. (2008). Occurrence fumonisins in corn-based food products. *Journal of Food Science*, **63**: 696–698.

Christensen, J., J., and Wilcoxson, R., D. (2007). Stalk rot of corn. Monograph of the America. *Phytopathological Society*, **3**: 59Pp.

CIMMYT. (2004). Maize Diseases: A guide for field Identification.4th edition Mexico.

Cochran, W., G. (2007). Sampling techniques, 3rded, Wiley Newyork, NY. 428 Pp.

- Dai, K., Nagai, M., Sasaki, H., Nakumara, H., Takechi, K. and Warabi, M. (2007). Detection of *Diplodia maydis* from imported corn seed. *Research Bulletin of the Plant Protection Service of Japan*, 23:_1-6.
- De Leon, C. (2004). Maize Diseases: A Guide for Field Identification. CIMMYT 4th edition. Mexico.
- Dhanraj, K., S. (2006). Dry rot maize caused by *Diplodia macrospora*. *Indian-Phytopathology*, **19**: 120.
- Dorrance, A., E., Hinkelman, K., H., and Warren, H., L. (2008). Diallel analysis of Diplodia ear rot resistance in maize. *Plant Disease*, **82**: 699-703.
- Fajemisin, J., M., Kim, S., K., Efron, Y., Sign, J., Bjarnason, M., Thottapilly, G., and Rossel,H., W. (2002). Maize pathology. In Annual Report, International Institute ofTropical Agriculture, 1: 59-65.
- Flett, B., C., and Van Rensburg, J., B. (1992). Effect of Busseola fusca on the incidence of maize ear rot caused by Fusarium moniliform and Stenocapella maydis.South Africa Journal of Plant Soil, 9: 177-179.
- Flett, B., C., Mclaren, N., W., and Wehner, F., C. (2001). Incidence of *Stenocarpella maydis* ear rot of corn under crop rotation systems. *Plant disease*, **85**: 92-4.

- Gebrekidan, B., B., and Njoroge, K. (2002). Agroecological zoning in relation to maize research priorities in Kenya. In KARI proceeding of a workshop, Review of The Kenya National Maize Research program KARI/ ISNAR Management Training Linkage Project. Pp 100.
- Hassan, R, M. (2008).Maize Technology developments and transfer: AGIS Application for research planning in Kenya .Wallingford (United Kingdom): CAB international
- Hassan, R., M., Njorge, K., Njore, M., Otsyula, R., and Laboso, A. (2008). Adoption patterns and performance of improved maize in Kenya. In R. M. Hassan (ed.).
 Maize Technology Development and Transfer: AGIS Application for Research Planning in Kenya. Wallingford, UK: CAB International, CIMMYT, and Kenya Agricultural Research Institute.
- Hauser, J., T. (2006). Techniques for Studying Bacteria and Fungi, York Road, Burlington, North Carolina, USA, Pp 1-30.
- Jaetzold, R., and Schmidt, H. (1982). Farm Management Handbook of Kenya .Ministry of Agriculture in cooperation with GTZ, Nairobi, Kenya.
- Julian, A., M., Wareing, P., W., Philips, S., I., Medlockl, V., F., P., MacDOnald, M., V. and Del Rio, L., E. (1995). Fungal contamination and selected mycotoxins in pre-and post harvest maize in Honduras. *Mycopathologia*, **129**: 5-16.
- KARI. (1992). Information bulletin No 7 Nairobi Kenya.
- Kim, S., K. (2000). Archival Report of Maize Inbred, Hybrid and Mid-Altitude Breeding Ibadan, Nigeria: Maize Research program, International Institute of Tropical Agriculture.

- Kirimerilashvili, I., S., and Dolizde, M., I. (2009). Materials for studies of Nigrospora Ear Rot in Georgia. Reports of plan Protection in Georgia, 21: 92-93.
- Klapproth, J., C. (2001). Evaluation of four inoculation techniques for infecting corn ears with *Stenocarpella maydis*. *Plant Disease*, **75**: 1057-1060.
- Koehler,B.(2000). Corn stalk rots in Illinois.Bulletin, University of Illionois Agricultural Experiment Station No.6589.
- Laboso, A., K., and Nge'ny, J., M., A. (2006). Some factors affecting genotypic. Perfomance in the Kenya highland maize programme. CIMMYT Maize programme. In Proceedings of the fifth Eastern and Southern Africa region maize Conference, held in Arusha, Tanzania. 3rd -7th June, 1996.
- Lin, C., S., Poushinky, G., and Mauer, M. (2009). An examination of five sampling methods under random and clustereed disease distributions using simulation. *Canadian Journal Plant Science*, **59**: 121-130.
- Lipps, F., E., and Mills, D., R. (2007). Diplodia ear Rot of Corn. Ohio State University Extension Fact sheet AC-0046-01. http://ohioline.osu.edu/ac-fact/0046.html downloaded on 31 August 2007.
- Madden, L., V., and Hughes, G. (2009). Sampling for plant disease incidence. *Phytopathology*, **89**: 1088-1103
- Marasas, W., F., O., Jasiewicz, K., Venter, F., S., and Van Schalkwyk, D., J. (2008). *Fusarium moniliforme* contamination of Maize in human oesophageal cancer areas in Transkei. *South Africa Medical Journal*, **74**: 110-114.

- Mário, J., L., Reis, E., M., and Juliatti, F., C. (2011). Three inoculation methods for screening corn germplasm to white ear rot resistance. *Trop. plantpathol.* 36: Pp1-4.
- Marley, P., S., and Aba, D., A. (2009). Current status of sorghum smuts in Nigeria. *Journal* of Sustainable Agriculture, **15**: 119-132.
- McGee, D., C. (2008). Maize disease. A reference source for seed technologies America Phytopathology Society Press, St .Paul, Minnesota, USA.
- Navi, S. S., R., Bandyopadhyay, A., Hall, J., Paula .J., and Bramel C. (2009). A Pictorial Guide for the Identification of Mold Fungi on Sorghum Grain Information Bulletin no. 59: 237-239 International Crops Research Institute for the Semi-Arid Tropics, Pp100 Held on 2/4/2014. Accessed on *link.springer.com/chapter/10.1007%2F978-1-4614-2356-0_19*
- Mwai, G., N., (2001). Growth response of spider plant (*cleome gynandra* L.) to salinity. Msc. thesis, Maseno University, Kenya.
- Nyall, R., F., (2009). Field crop Disease handbook, 2nd ed (AVI), (New York Van Nostrand Reinhold), Pp108-109.
- OEPP/EPPO (2006). Data sheets on quarantine pests No.67: *Stenocarpella macrospora* and *Stenocarpella maydis* <u>http://www.epo/QUARANTINE/ fungi/Stenocareplla</u> <u>macrospora/ DIPDSP_ds.pdf downloaded opn 31</u> August 2007.
- Olantinwo, R., K., Cardwell, A., Menkir, M., and Julian, A. (2004) .Inheritance of Resistance to Stenocarepalla (Earl) Ear Rot of Maise in the Mid-Altitude Zone of Nigeria. *European Journal of Plant Pathology*, **105**: 535-43.

- Osagie, A., U., and Eka, O., U. (2008). Nutritional Quality of Plant Foods. Post Harvest Research Unit, University of Benin, Benin. Pp.34-41.
- Payne, G., A. (2009). Ear and Kernel Rots. In Donald G. White (ed), Compendium of Corn Diseases. St. Paul, Minnesota: *The America Phytopathology Society*, Pp 44-7.
- Pingali, P., L. (2001). CMMYT 199-2000 world maize facts and trends. Meeting world maize needs. Technology opportunities and priorities for the public sector. CIMMYT, Mexico.
- Pittet, A. (2008). Natural occurrence of mycotoxins in food and feeds. An updated review.

Psychopathological Society, StPaul, Minnesota, USA.

- Purseglove, J., W. (2002). Tropical Crops.Monocotyledons.Longman Scientific and Technical, NewYork, Pp 300-305.
- Quinn, G., P., and Keough, M., J. (2006). Split-plot and repeated measures designs: Partly nested analyses of variance, Pp. 301–338. In: Quinn, G., P. and Keough, M., J. (eds.). Experimental design and data analyses for biologist. Cambridge University Press, Edinburgh, UK.
- Rabie, C., J., Kellerman, T., S., Krick, N., P., Van der Westhuizen, C., A., and De Wet, P. (2005). Toxicity of Diplodiamaydis in farm and laboratory animals. *Journal of Food Chemistry and Toxicology*, 23: 349-353.
- Schaafsma, A., W., Miller, J., D., Savard, M., E., and Ewing, R., J. (2003). Ear rot development and mycotoxin production in corn in relation to inoculation method ,corn hybrid,and species of *Fusarium*. *Canadian Journal of Plant Pathology* 15: 185-192.

Shurtleff, M., C. (2000). A compendium of corn diseases, pp.27, 44-45, 51-52. American

- Silva, A., R., Juliatti, F., C., Brito, C., H., and Gomes, L., S. (2007). Métodos de inoculação de *Stenocarpella maydis* emtrêspopulações de milho.Summa. *Phytopathologica*, **31**: 79 - 83.
- Steel, R., G., D., Torrie, J., H., and Dickey, D., A. (2006). Principles and Procedures of Statistics: a Biometrical Approach. Academic Internet Publishers, Moorpark.
- Sutton, B., C., and Waterston, J., M (2006). *Diplopodia maydis*.CMI Descriptions of Pathogenic Fungi and Bacteria No.84 CAB International, Wallingford, UK.
- Tenuta, A. (2006). Identifying Corn Ear Molds.Ontario Ministry of Agriculture, Food and Rural Affairs. <u>http://www.omafra.gov.on.ca/english/crops/friend/news/croppest/</u>
- Vincelli, P. (2003). Ear Rot of Corn Caused by *Stenocarpella maydis*(=*Diplodia maydis*) University of Kentucky Cooperative Extension Service. Datasheet PPA- 43 <u>http://www.ca.uky.edu/agc/pubs/ppa/ppa43.pdf</u> downloaded on 31 August 2007.
- Walker, J., C. (2009). Plant pathology (3rd edition), Pp335, 341.McGraw-Hill, New York ,USA.Zad,J.; Ale Agha , N. (1985) A note on the mycoflora of maize in Iran.
- Wambugu, P., W., Mathenge, P., W., Auma, E., O., and vanRheenen H., A. (2012).Constraints to on-farm maize (Zea mays L.) seed production in western Kenya:Plant growth and yield. *International scholary research notices Agronomy*, 7Pp.

APPENDICES.

Appendix 1: Map showing sites used in Nyanza regions

Source (RSA-DT, 2005).

Appendix 2: Disease severity and incidences of maize ear rot causing pathogens in Nyanza regions during short rains seasons of 2008 and long rains season of 2009

Table 1: Anova for severity and incidences of maize ear rot causing pathogens in Nyanza regions during short rains of 2008 and long rains season 2009

Dependent Variable: severity

Source	Sum of DF Squares Mean Square F Value Pr > F
Model	389 1004.676364 2.582716 1.72 <.0001
Error	160 240.414545 1.502591
Corrected Total	549 1245.090909
R-Square 0.806910	
Source	DF Type I SS Mean Square F Value Pr > F
Fungi Region Season farmers Fungi*Region Season*Fungi Fungi*farmers Season*Region farmers*Region Season*farmers Season*farmers Season*Fungi*Reg Fungi*farmers*Reg Season*Fungi*farmers*Reg Season*Fungi*farmers*Reg Season*farmer*Reg	gion160311.74545451.94840911.300.0507mers1668.06545454.25409092.830.0005egion4026.98545450.67463640.450.9981
Source	Sum of DF Squares Mean Square F Value Pr > F
Model	389 13377.15710 34.38858 2.67 <.0001
Error	160 2060.87759 12.88048
Corrected Total	549 15438.03469
R-Square	Coeff Var Root MSE incidences Mean
0.866506	38.80012 3.588939 9.249815
Source	DF Type I SS Mean Square F Value Pr > F
Fungi Region	4 969.659863 242.414966 18.82 <.0001 10 2419.665489 241.966549 18.79 <.0001

Season 1	2939.1	25432 2	939.125432	228.18	<.0001
farmers 4	174.5	56150 4	3.639037	3.39 0.0	0108
Fungi*Region	40 33	36.096674	8.402417	0.65	0.9430
Season*Fungi	4 20	5.611036	51.402759	3.99	0.0041
Fungi*farmers	16 31	0.052948	19.378309	1.50	0.1038
Season*Region	10 3	68.190674	36.81906	7 2.86	0.0027
farmers*Region	40 15	529.611188	38.24028	0 2.97	7 <.0001
Season*farmers	4 5	6.750221	14.187555	1.10	0.3578
Season*Fungi*Region	40	394.7085	9.867	713 0.	.77 0.8374
Fungi*farmers*Region	160	2428.145	781 15.17	5911	1.18 0.1503
Season*Fungi*farmers	16	288.9101	65 18.056	885 1	.40 0.1467
Season*farmer*Region	u 40	956.0729	23.90	1824 1	.86 0.0039

Table 2: LSD tests for severity and incidences of maize ear rot causing pathogens in Nyanza during short rains of 2008 and long rains season of 2009

NOTE: 1. This test controls the Type I comparison wise error rate, not the experiment wise error rate. 2. Fungi 1, 2, 3, 4, 5 are Diplodia (*Stenocarpella spp*), Giberella, Fusarium, Nigrosora, and other fungi respectively; Regions 1, 2, 3, 4, 5, 6, 7, 8, 9, are Kombewa, Kasipul, Kabondo, Sakwa, Imbo, Rangwe, Asego, Awendo, Rongo, Asembo, and Madiany respectively; seasons 1, 2 are short rains of 2008 and long rains of 2009 respectively.

LSD tests for Severity in Fungi, Regions, Seasons, and farmers

Alpha0.05Error Degrees of Freedom160Error Mean Square1.502591Critical Value of t1.97490Least Significant Difference0.3264Means with the same letter are not significantly different.

t Grouping Mean N Fungi

А	3.0455	110	1
B B	2.4000	110	3
B	2.3455	110	2
C C	2.0182	110	4
C C	1.8273	110	5

Alpha0.05Error Degrees of Freedom160Error Mean Square1.502591Critical Value of t1.97490Least Significant Difference0.4842

Means with the same letter are not significantly different.

t	Grouping	Mea	n	N	Region
	A	2.8400	50	5	
В	A A	2.7800	50	4	
В	А				

В	А	C 2	2.6000	50	7
В	А				
В	D A	С	2.3600) 5	0 11
В	D	С			
В	D	C 2	2.3000	50	10
	D	С			
	D	C 2.	2400	50	3
	D	С			
	D	C 2.	2000	50	6
	D				
	D	2.0	800	50	8
	D				
	D	2.0	800	50	1
	D				
	D	2.0	800	50	2
	D				
	D	2.0	400	50	9

LSD tests for Severity in Fungi, Regions, Seasons, and farmers continues

Alpha0.05Error Degrees of Freedom160Error Mean Square1.502591Critical Value of t1.97490Least Significant Difference0.2064

Means with the same letter are not significantly different.

t Grouping Mean N Season Α 2.9200 275 2 В 1.7345 275 1 Alpha 0.05 Error Degrees of Freedom 160 Error Mean Square 1.502591 Critical Value of t 1.97490 Least Significant Difference 0.3264

Means with the same letter are not significantly different.

t Grouping	Me	an	Ν	farmers
A	2.4364	110	2	
A A A	2.4000	110	1	
A A A	2.3909	110	5	
A A A	2.2727	110	4	
A A	2.1364	110	3	

LSD tests for incidences in Fungi, Regions, Seasons, and farmers

Alpha0.05Error Degrees of Freedom160Error Mean Square12.88048Critical Value of t1.97490Least Significant Difference0.9557

Means with the same letter are not significantly different.

N Fungi t Grouping Mean 11.5091 110 1 Α В 9.7398 110 3 В С В 9.0113 110 2 С С D 8.3563 110 4 D D 7.6326 110 5

LSD tests for incidences in Fungi, Regions, Seasons, and farmers continues

Alpha 0.05 Error Degrees of Freedom 160 Error Mean Square 12.88048 Critical Value of t 1.97490 Least Significant Difference 1.4176 Means with the same letter are not significantly different. t Grouping Mean N Region А 13.7724 50 4 Α Α 12.7270 50 5 В 10.0662 50 7 В 9.4662 50 6 В В В 9.2886 50 10 В С В 8.7512 50 11 С С D 7.8198 50 3 С D С 7.6034 D 50 9 С D С 7.5286 D 50 2 С D С 7.5060 50 8 D D D 7.2186 50 1 Alpha 0.05

лірпа	0.05
Error Degrees of Fre	eedom 160
Error Mean Square	12.88048
Critical Value of t	1.97490

Least Significant Difference 0.6044

А	11.5615	275	2
В	6.9381	275	1

Alpha0.05Error Degrees of Freedom160Error Mean Square12.88048Critical Value of t1.97490Least Significant Difference0.9557Means with the same letter are not significantly different.

t Grouping	Mean N farmers
A	10.0069 110 2
A B A	9.6166 110 5
B A	0.2029 110 1
B A C B C	9.3928 110 1
B C	8.7841 110 4
С	
С	8.4487 110 3

Table 3: Correlation analysis during short rains of 2008 and long rains of 2009 in Nyanza regions

Variables: Season Fungi farmers Region severity incidences

Simple Statistics

Variable	Ν	Mean	Std Dev	Sum	Minimum	Maximum Label	
Season Fungi farmers	550 550 550	1.50000 3.00000 3.00000	0.50046 1.41550 1.41550	825.00000 1650 1650	$\begin{array}{c} 1.0000\\ 1.00000\\ 1.00000\end{array}$	0 2.00000 Season 5.00000 Fungi 5.00000 farmers	
Region severity	550 550	6.00000 2.32727	3.16516 1.50596	3300 1280	1.00000 1.00000	11.00000 Region 12.00000 severity	
incidences	550	9.24981	5.30286	5087	0 2	22.00000 incidences	
Pearson Correlation Coefficients, N = 550 Prob > $ r $ under H0: Rho=0							

	Season	Fungi	farmers	Region	severity	incidences	
Season Season	1.00000	0.00000 1.0000	0 0.000 1.0000	00 0.000 1.0000	000 0.39 <.0001	0395 0.43633 <.0001	3
Fungi Fungi	0.00000 1.0000	1.00000	0.0000 1.0000	0 0.000 1.0000	000 -0.25 <.0001	976 -0.22444 <.0001	4
farmers farmers	0.00000 1.0000	0.00000	0 1.000	00 0.00 1.0000	000 -0.0 0.6892	1709 -0.02069 0.6283	9

Region	0.00000	0.00000	0.00000	1.00000	0.00076	-0.00619
Region	1.0000	1.0000	1.0000	0.9	857 0.8	8849
severity	0.39395	-0.25976	-0.01709	0.00076	1.00000	0.60445
severity	<.0001	<.0001	0.6892	0.9857	<.0	0001
incidences	0.43633	-0.22444	-0.02069	-0.00619	0.60445	1.00000
incidences	<.0001	<.0001	0.6283	0.8849	<.0001	

Table 4: Means breakdown for short rains of 2008 and long seasons of 2009

			Effe	ct=FARMEF	RS			-
		S	td. Error	Std.	Error			
			of N	flean of o	of Mea	an of		
Season	Fungi	farmers	Region	SEVERIT	Y SEVER	RITY	INCIDENCES	INCIDENCES
	1		0.13057	2.40000	0.50403	93	928	
	2		0.14061		0.48818			
			0.13636					
	4		0.15547	2.27273	0.48732 0.48443	8.7	841	
	5		0.15396				166	
	-							
			td. Error		Error			
			of N			an of		
Season	Fungi	farmers	Region	SEVERIT	Y SEVER	RITY	INCIDENCES	INCIDENCES
			0.14577				5091	
. 2			0.15251				113	
. 3	3.		0.13184	2.40000		9.7	398	
. 4			0.13728	2.01818				
	-						22.4	
. 5			Effe				326	
		S	of N	ct=Overall Std. Iean of	Error of Mea	an of		INCIDENCES
Season	Fungi	S farmers	orthesis and the second	ct=Overall Std. Iean of SEVERIT	Error of Mea Y SEVER	an of AITY	INCIDENCES	INCIDENCES
Season	Fungi	farmers . (orthesistic Effective of M Region 0.064214	ct=Overall Std. Iean of G SEVERIT 2.32727	Error of Mea Y SEVER 0.22611	an of RITY 9.24	INCIDENCES	INCIDENCES
Season	Fungi	S farmers . (Effe of M Region 0.064214 Effe	ct=Overall Std. Iean of G SEVERIT 2.32727 ct=REGION	Error of Mea Y SEVER 0.22611	an of RITY 9.24	INCIDENCES	INCIDENCES
Season	Fungi	S farmers . (Contemporation State Effection State Error Of M Region D.064214 Contemporation State Effection State Error	ct=Overall Std. Iean of SEVERIT 2.32727 ct=REGION Std.	Error of Mea Y SEVEF 0.22611 Error	an of RITY 9.24	INCIDENCES	INCIDENCES
Season	Fungi	farmers . (Contemporation State Effection State Effection Contemporation Cont	ct=Overall Std. Iean of SEVERIT 2.32727 ct=REGION Std. Iean of	Error of Mea Y SEVEF 0.22611 Error of Mea	an of RITY 9.24 an of	INCIDENCES	INCIDENCES
Season	Fungi	farmers . (S farmers	Contemporation Contem	ct=Overall Std. Iean of SEVERIT 2.32727 ct=REGION Std. Iean of SEVERIT	Error of Mea Y SEVEF 0.22611 Error Error of Mea Y SEVEF	an of RITY 9.24 an of RITY	INCIDENCES 4981 INCIDENCES	INCIDENCES
Season Season 	Fungi Fungi	farmers . (S farmers 1	Contemporation State Effection State Effection Contemporation Cont	ct=Overall Std. Iean of SEVERIT 2.32727 ct=REGION Std. Iean of	Error of Mea Y SEVER 0.22611 Error of Mea Y SEVER 0.593	an of RITY 9.24 an of RITY 47	INCIDENCES 4981 INCIDENCES 7.2186	INCIDENCES
Season Season 	Fungi Fungi	farmers . (S farmers 1 2	Contemporation State Sta	ct=Overall Std. SEVERIT 2.32727 ct=REGION Std. SEVERIT 2.08	Error of Mea Y SEVER 0.22611 Error of Mea Y SEVER 0.593 0.622	an of RITY 9.24 an of RITY 47 16	INCIDENCES 4981 INCIDENCES 7.2186 7.5286	INCIDENCES
Season Season 	Fungi Fungi	farmers . (S farmers 1	td. Error of M Region 0.064214 Effe d. Error of M Region 0.16373	ct=Overall Std. SEVERIT 2.32727 ct=REGION Std. Mean of SEVERIT 2.08 2.08	Error of Mea Y SEVER 0.22611 Error of Mea Y SEVER 0.593	an of RITY 9.24 an of RITY 47 16 30	INCIDENCES 4981 INCIDENCES 7.2186	INCIDENCES
Season Season 	Fungi Fungi	farmers . (S farmers 1 2 3	Effect Std. Error of M Region 0.064214 Effect Std. Error of M Region 0.16373 0.19132 0.27636	ct=Overall Std. SEVERIT 2.32727 ct=REGION Std. Mean of SEVERIT 2.08 2.08 2.24	Error of Mea Y SEVER 0.22611 Error of Mea Y SEVER 0.593 0.622 0.592	an of RITY 9.24 an of RITY 47 16 30 68	INCIDENCES 4981 INCIDENCES 7.2186 7.5286 7.8198	INCIDENCES
Season Season 	Fungi Fungi	farmers . (S farmers 1 2 3 4	Effect Std. Error of M Region 0.064214 Effect Std. Error of M Region 0.16373 0.19132 0.27636 0.19855	ct=Overall Std. Iean of G SEVERIT 2.32727 ct=REGION Std. Iean of G SEVERIT 2.08 2.08 2.24 2.78	Error of Mea Y SEVER 0.22611 Error of Mea Y SEVER 0.593 0.622 0.592 0.658	an of RITY 9.2 ² an of RITY 47 16 30 68 70	INCIDENCES 4981 INCIDENCES 7.2186 7.5286 7.8198 13.7724	INCIDENCES
Season Season 	Fungi Fungi	farmers . (S farmers 1 2 3 4 5	Effect Control Control Contro	ct=Overall Std. Iean of C SEVERIT 2.32727 ct=REGION Std. Iean of C SEVERIT 2.08 2.08 2.24 2.78 2.84	Error of Mea Y SEVER 0.22611 Error of Mea Y SEVER 0.593 0.622 0.592 0.658 0.816	an of RITY 9.24 an of RITY 47 16 30 68 70 59	INCIDENCES 4981 INCIDENCES 7.2186 7.5286 7.8198 13.7724 12.7270	INCIDENCES
Season Season 	Fungi Fungi	S farmers . (S farmers 1 2 3 4 5 6	Effect Std. Error of M Region 0.064214 Effect Std. Error of M Region 0.16373 0.19132 0.27636 0.19855 0.24304 0.19588	ct=Overall Std. Iean of C SEVERIT 2.32727 ct=REGION Std. Iean of C SEVERIT 2.08 2.08 2.24 2.78 2.84 2.20	Error of Mea Y SEVER 0.22611 	an of ATY 9.24 an of ATTY 47 16 30 68 70 59 87	INCIDENCES 4981 INCIDENCES 7.2186 7.5286 7.8198 13.7724 12.7270 9.4662	INCIDENCES
Season Season 	Fungi Fungi	S farmers . (S farmers 1 2 3 4 5 6 7	Effect Std. Error of N Region 0.064214 Effect Std. Error of N Region 0.16373 0.19132 0.27636 0.19855 0.24304 0.19588 0.22678	ct=Overall Std. Iean of C SEVERIT 2.32727 ct=REGION Std. Iean of C SEVERIT 2.08 2.08 2.24 2.78 2.84 2.20 2.60	Error of Mea Y SEVER 0.22611 	an of RITY 9.24 an of RITY 47 16 30 68 70 59 87 00	INCIDENCES 4981 INCIDENCES 7.2186 7.5286 7.8198 13.7724 12.7270 9.4662 10.0662	INCIDENCES
Season Season 	Fungi Fungi	S farmers . (S farmers 1 2 3 4 5 6 7 8	Effer Std. Error of N Region 0.064214 Effer Std. Error of N Region 0.16373 0.19132 0.27636 0.19855 0.24304 0.19588 0.22678 0.19967	ct=Overall Std. Iean of C SEVERIT 2.32727 ct=REGION Std. Iean of C SEVERIT 2.08 2.08 2.24 2.78 2.84 2.20 2.60 2.08	Error of Mea Y SEVER 0.22611 Error of Mea Y SEVER 0.593 0.622 0.592 0.658 0.816 0.620 0.893 0.611	an of RITY 9.24 an of RITY 47 16 30 68 70 59 87 00 15	INCIDENCES 4981 INCIDENCES 7.2186 7.5286 7.8198 13.7724 12.7270 9.4662 10.0662 7.5060	INCIDENCES

						u long season of 2009 co						
		5	Std. Error	S	td. Error							
				ean of	of Mear	n of						
Season	Fungi	farmers	Region	SEVER	ITY SEVERI	TY INCIDENCES						
1			0.066341	1.7345	5 0.20395	6.9381						
2			0.097768	2.9200	0 0.35254	11.5615						
			Effect-E		S*DECION							
			Effect=F	ARMER	S*REGION							
Std. Error Std. Error of Mean of Mean of												
1	Euro	£										
	Fungi		Region	SEVER								
		1	0.40689	1.9	1.03296	8.0562						
		2	0.44845		1.62226	6.9420						
	1	3 4	0.47140 0.34801		1.18043 1.47005	8.4130 14.3632						
	1	4 5	0.53852		1.47005	14.3632						
	1	5 6	0.53852 0.46667		1.72305	8.7457						
• •	1	7	0.40007	2.2	1.54700	12.1490						
	1	8	0.41033	2.8	1.59865	7.7510						
• •	1	9	0.42164	2.1	1.43313	5.9780						
• •	1	10	0.37118	2.0	1.55627	8.4100						
• •	1	10	0.48189	2.4	2.01517	10.4115						
• •	2	1	0.36515	2.0	1.38087	6.9830						
• •	$\frac{2}{2}$	2	0.45338	2.5	1.00111	11.4018						
• •	2	3	0.41633	1.8	1.24576	7.6150						
• •	2	4	0.38873	2.8	1.47275	13.9110						
• •	2	5	0.49889		1.53868	15.8890						
• •	2	6	0.42687		0.90492	10.8500						
• •	2	7	0.55777	3.0	1.61384	11.8020						
· ·	2	8	0.51208	2.2	1.24798	8.7400						
	2	9	0.31200	2.2	1.70418	8.8120						
· ·	2	10	0.44845	2.3	1.52344	8.1580						
	2	10	0.53748	2.0	1.45770	5.9140						
• •	3	1	0.39581	2.0	1.39975	6.2690						
	3	2	0.42295	1.7	1.05151	5.8230						
•••	3		0.45826		1.37349	8.3060						
· ·	2	4	0.54160	2.4	1.80440	12.8210						
	3	5	0.50000	2.5	1.71044	11.4120						
	3	6	0.36667	2.3	0.67322	11.4300						
	3	7	0.41633	2.2	1.66171	6.7690						
	3	8	0.39581	1.7	1.30359	5.5060						
	3	9	0.40139	1.5	1.03102	4.2260						
	3	10	0.52068	2.6	1.79204	11.5320						
	3	10	0.58119	2.4	1.26594	8.8414						
	4	1	0.23333	1.9	1.04897	5.9140						
	4	2	0.31447	1.9	1.08905	6.3280						
	4	3	1.07961	3.1	1.46921	6.4610						
	4	4	0.52599	3.1	1.62925	12.7270						
	4	5	0.36667	2.7	1.75190	13.2220						
	4	6	0.55877	2.3	1.37495	9.2531						
	4	7	0.39581	1.7	1.92626	5.7880						
	4	8	0.47258	2.3	1.35003	9.0970						

(continued)

		S	td. Error	S	td. Err	or	
			of M	lean of	of	Mean of	
Season	Fungi	farmers	Region	SEVER	ITY	SEVERITY	INCIDENCES
		0	0.00050	1.0	0.0		0.5000
• •	. 4	9	0.29059	1.8		5316	8.5220
	. 4	10	0.44721	2.0	1.1	3839	10.8770
	. 4	11	0.48990	2.2	2.1	4517	8.4360
	5	1	0.44845	2.3	1.69	9636	8.8710
	5	2	0.51640	2.0	1.55	5147	7.1480
	5	3	0.42687	2.4	1.50)277	8.3040
	5	4	0.42817	2.5	1.06	5241	15.0400
	5	5	0.79512	2.9	2.26	5384	11.0110
	. 5	6	0.41633	1.8	1.89	9125	7.0520
	5	7	0.63333	3.3	2.03	3755	13.8230
	5	8	0.52599	2.1	1.22	2424	6.4360
	5	9	0.45338	2.5	1.51	705	10.4790
	5	10	0.44222	2.2	1.5	1854	7.4660
	5	11	0.49554	2.3	2.1	4573	10.1529

Table 4: Means breakdown	ı for short rains	of 2008 and long	rain season of 2009 co	ontinues

			S	td. Error of M		Error of Moon of	
0000	'n	Funci	farmers	Region	SEVERIT	of Mean of Y SEVERITY	INCIDENCES
beasc	ш	Fungi	larmers	Region	SEVERII	I SEVERILI	INCIDENCES
	1	1		0.26560	3.86364	1.12238	11.0000
	1	2		0.24215	3.36364	1.07844	11.5909
	1	3		0.38159	2.81818	0.85654	10.9545
	1	4		0.33151	2.68182	0.84171	11.4091
	1	5		0.32733	2.50000	1.00143	12.5909
	2	1		0.26243	2.90909	1.02426	10.1468
	2	2		0.29823	2.63636	0.97016	10.2409
	2	3		0.28902	2.13636	0.99186	9.2395
	2	4		0.51968	2.31818	1.26503	7.2073
	2	5		0.22964	1.72727	1.34335	8.2218
	3	1		0.21754	2.22727	0.85990	10.5745
	3	2		0.39139	2.68182	0.81187	11.3232
	3	3		0.30669	2.54545	1.11279	8.4882
	3	4		0.26262	2.22727	1.18077	8.4973
	3	5		0.28213	2.31818	1.15438	9.8159
	4	1		0.20735	1.77273	1.29306	8.4220
	4	2		0.24877	1.86364	1.17758	9.0058
	4	3		0.26634	1.68182	1.05914	7.0755
	4	4		0.26262	2.22727	0.91670	9.0650
	4	5		0.46861	2.54545	1.31990	8.2131
	5	1		0.11266	1.22727	1.13858	6.8205
	5	2		0.24215	1.63636	1.25133	7.8736
	5	3		0.17094	1.50000	1.21799	6.4856
	5	4		0.30797	1.90909	1.02026	7.7419
	5	5		0.34999	2.86364	1.22796	9.2414
				Effect=	FUNGI*RE	GION	
			S	td. Error		Error	
						of Mean of	
bease		Fungi	farmers	Region	SEVERIT		INCIDENCES
•	1		1	0.48189		0.93155	9.7000
•	1		2	0.53748		1.02686	10.1000
•	1		3	0.53748		1.05198	10.2000
•	1		4	0.52068	3.6	1.36789	15.4000
						77	

	1		5	0.55877	3.7	1.48361	15.3000
	1		6	0.42295	2.7	1.57233	10.5000
	1		7	0.39441	3.0	1.56347	13.0000
	1		8	0.52599	2.9	1.43914	9.6000
	1		9	0.54671	2.9	1.08985	10.1000
	1		10	0.44222	2.8	1.23873	11.7000
	1		11	0.46667	2.8	1.87972	11.0000
	2		1	0.31447	2.1	1.57096	6.3490
	2		2	0.29059	1.8	1.46658	7.1910
	2		3	1.07290	2.8	1.36868	6.9730
	2		4	0.37118	2.6	1.21324	14.0210
	2		5	0.40139	2.5	2.24906	11.3210
	2		6	0.43333	2.1	1.41126	9.6010
	2		7	0.40139	2.5	2.01117	9.7430
	2		8	0.41633	1.8	1.30848	6.6090
	2		9	0.34801	1.9	1.30803	8.4280
	2		10	0.52068	2.6	1.76108	8.6200
	2		11	0.58595	3.1	1.68509	10.2680
	3		1	0.25820	2.0	1.26482	7.0890
	3		2	0.29814	2.0	1.49491	7.5350
	3		3	0.40689	1.9	1.44709	7.4100
	3		4	0.36515	3.0	1.81775	13.0750
	3		5	0.60461	2.9	1.85951	13.1260
	3		6	0.49554	2.3	1.31846	9.7510
	3		7	0.61464	3.0	1.69086	11.4550
	3		8	0.31447	2.1	1.17055	8.3920
	3		9	0.34801	2.1	0.91040	8.9880
	3		10	0.42687	2.6	0.95740	10.7610
	3		11	0.52175	2.5	1.87876	9.5560
	4		1	0.26667	1.6	1.31589	7.0410
	4		2	0.42295	1.7	1.35702	6.7978
	4		3	0.41633	1.8	1.15211	8.1180
	4		4	0.49554	2.7	1.81938	13.0992
	4		5	0.65320	2.4	1.80424	12.0730
	4		6	0.36515	2.0	1.55305	8.5117
	4		7	0.71570	2.7	2.36945	7.7210
	4		8	0.49441	2.0	1.33686	6.7140
	4		9	0.22361	1.5	1.64063	6.2940
	4		10	0.27689	1.9	1.81480	7.3550
	4		11	0.45826	1.9	1.62731	8.1944
•	5	•	1	0.30551	1.6	1.39938	5.9142

Table 4: Means breakdown for short rains of 2008 and long rain season of 2009 continues

	5	•	2	0.48189	1.9	1.48183	6.0190					
	5		3	0.36667	1.7	1.47860	6.3980					
•	5		4	0.36515	2.0	1.19127	13.2670					
	5		5	0.47258	2.7	1.75267	11.8150					
	5		6	0.50442	1.9	1.26940	8.9671					
	5		7	0.29059	1.8	2.16584	8.4120					
	Effect=FUNGI*REGION											

(continued)

of Mean of of Mean of Season Fungi farmers Region SEVERITY SEVERITY INCIDENCES . 5 . 8 0.42687 1.6 1.51766 6.2150 5 . 0 0.46667 1.8 1.52220 4.2070	
. 5 . 8 0.42687 1.6 1.51766 6.2150	
5 0 0 46667 1.9 1.50020 4.0070	
. 5 . 9 0.46667 1.8 1.52239 4.2070	
. 5 . 10 0.42687 1.6 1.61618 8.0070	
. 5 . 11 0.40139 1.5 1.77779 4.7374	
Effect=SEASON*FARMERS	
Std. Error Std. Error	
of Mean of Mean of	
Season Fungi farmers Region SEVERITY SEVERITY INCIDENCES	
1 . 1 . 0.14040 1.90909 0.50695 6.8670	
1 . 2 . 0.12818 1.80000 0.34699 7.9289	
1 . 3 . 0.11273 1.50909 0.42574 6.4964	
1 . 4 . 0.21927 1.80000 0.47458 6.6104	
1 . 5 . 0.11376 1.65455 0.49708 6.7880	
2 . 1 . 0.20046 2.89091 0.72961 11.9185	
2 . 2 . 0.21997 3.07273 0.82569 12.0849	
2 . 3 . 0.21860 2.76364 0.79769 10.4009	
2 . 4 . 0.20304 2.74545 0.73968 10.9578	
2 . 5 . 0.25033 3.12727 0.83786 12.4453	
Effect=SEASON*FUNGI	
Std. Error Std. Error	
of Mean of Mean of	
Season Fungi farmers Region SEVERITY SEVERITY INCIDENCES	
1 1 0.15364 2.12727 0.28966 8.4000	
1 2 0.21203 1.83636 0.46161 6.6338	

1	3			0.11515	1.78182	0.47434	6.9647						
1	4			0.11840	1.54545	0.49233	6.4487						
1	5			0.09878	1.38182	0.48601	6.2434						
2	1			0.17593	3.96364	0.57295	14.6182						
2	2			0.19834	2.85455	0.78723	11.3887						
2	3			0.20677	3.01818	0.60905	12.5149						
2	4			0.23192	2.49091	0.83309	10.2638						
2	5			0.20995	2.27273	0.89393	9.0218						
				Effect=	SEASON*F	REGION							
Std. Error Std. Error													
				of M	lean of	of Mean of							
Season	Fun	gi	farmers	Region	SEVERIT	Y SEVERITY	INCIDENCES						
1			1	0.16852	1.72	0.65034	4.98488						
1			2	0.17436	1.52	0.57446	6.00992						
				Effect=	SEASON*F	REGION							
(continued)													
			S	td. Error	Std.	Error							
				of M	lean of	of Mean of							
Season	Fun	gi	farmers	Region	SEVERIT	Y SEVERITY	INCIDENCES						
1			3	0.44602	1.84	0.60269	5.5312						
1	•		4	0.21970	2.04	0.63116	9.8125						
1			5	0.19562	2.04	0.60799	9.5968						
1			6	0.17205	1.64	0.41634	8.1315						
1			7	0.21197	1.96	0.87056	6.8568						
1			8	0.15406	1.48	0.48243	6.0896						
1	•		9	0.19044	1.64	0.59839	6.0228						
1	•		10	0.17321	1.60	0.60970	6.5668						
1			11	0.16330	1.60	0.63022	6.7167						
2			1	0.26508	2.44	0.77423	9.4524						
2			2	0.30485	2.64	1.02878	9.0472						
						80							

2	•	•	3	0.31559	2.64	0.79547	10.1084	
2			4	0.25897	3.52	0.25776	17.7324	
2	•	•	5	0.38678	3.64	1.23992	15.8572	
2	•	•	6	0.31770	2.76	1.11841	10.8008	
2	•	•	7	0.36185	3.24	1.28312	13.2756	
2	•	•	8	0.33025	2.68	1.06041	8.9224	
2			9	0.30044	2.44	1.05464	9.1840	
2			10	0.28868	3.00	0.97970	12.0104	
2	•		11	0.36661	3.12	1.42186	10.7856	

Table 4: Means breakdown for short rains of 2008 and long rain season of 2009 continues

			Std. Error		Std. Err			
			of	Mean of	of	Mean of		
Season	Fung	gi farme	ers Region	SEVE	RITY	SEVERITY	INCIDENCES	
	1	1 1	1.0	4.0	2.5		9.5	
	1	1 2	0.5	4.5	2.5		10.5	
	1	1 3	1.0	4.0	3.0		10.0	
	1	1 4	1.0	4.0	4.5		15.5	
	1	1 5	0.0	5.0	4.0		15.0	
	1	1 6	1.0	2.0	5.0		5.0	
	1	1 7	0.0	4.0	4.0		14.0	
	1	1 8	2.0	3.0	7.0		7.0	
	1	1 9	1.0	4.0	2.5		9.5	
	1	1 10	0.5	3.5	3.0		11.0	
	1	1 11		4.5	4.0		14.0	
	1	2 1	0.0	3.0	3.0		9.0	
	1	2 2	0.5	2.5	3.5		12.5	
	1	2 3	2.0	3.0	3.5		9.5	
	1	2 4	1.0	4.0	5.0		15.0	
	1	2 5	1.0	4.0	5.0		17.0	
	1	2 6	0.5	3.5	3.0		12.0	
	1	2 7	0.5	3.5	3.5		14.5	
	1	2 8	0.0	4.0	3.0		11.0	
	1	2 9	0.5	4.5	3.0		12.0	
	1	2 10	0.0	3.0	2.5		11.5	
	1	2 11	1.0	2.0	3.5		3.5	
			Effect=F	UNGI*FA	ARMER	S*REGION -		
			(continued)				
			Std. Error		Std. Err	or		
			of	Mean of				
Season	Fung	gi farme	ers Region	SEVE	RITY	SEVERITY	INCIDENCES	Ι
	1	3 1	1.0	4.0	2.000)	10.000	
	1	3 2	2.0	3.0	1.500)	8.500	
	1	3 3	1.5	2.5	4.000)	10.000	
	1	3 4	2.0	3.0	4.000)	15.000	
	1	3 5	2.0	3.0	4.000		14.000	
	1	3 6	0.5	1.5	2.500)	12.500	

	1	3	7	1.0	2.0	3.000		10.000
•	1	3	8	1.5	2.0 3.5	2.000		9.000
•	1	3	9	2.0	3.0	2.000		7.000
•	1	3	10	1.5	2.5	4.500		13.500
•	1	3	11	2.0	3.0	3.000		11.000
•	1	4	1	0.5	1.5	1.500		8.500
•	1	4	2	1.0	2.0	1.000	9.000	8.500
•	1	4	3	1.5	3.5	2.000	10.000	
•	1	4	4	1.0	4.0	3.000	15.000	
•	1	4	5	2.0	3.0	3.500	15.500	
•	1	4	6	1.0	3.0	3.500	11.500	
•	1	4	7	1.5	3.5	4.500	10.500	
•	1	4	8	1.5	2.5	3.500	11.500	
•	1	4	9	0.5	1.5	1.500	9.500	
•	1	4	10	2.0	3.0	4.000	9.300 12.000	
•	1	4	10	2.0 0.0	2.0	4.000	12.000	
•	1	4 5	1	2.0	3.0	4.300 3.500	12.300	
•	1	5	2	2.0 2.0	3.0	4.000	10.000	
•	1	5	3	2.0 1.0	3.0 2.0	4.000 2.500	11.500	
•	1	5	3 4	2.0	2.0 3.0	2.300 3.500	16.500	
•		5		2.0 1.5	3.5	5.000 5.000	15.000	
•	1 1	5 5	5	1.5 1.5	3.5 3.5	5.000 4.500		
•		5 5	6 7				11.500	
•	1	5		0.0	2.0	5.000	16.000	
•	1	5	8 9	0.5	1.5	2.500	9.500	
•	1	5		0.5	1.5	3.500	12.500	
•	1	5	10	1.0	2.0	3.500	10.500	
•	1	5	11	0.5	2.5	5.000	14.000	
•	2	1	1	0.0	2.0	1.725	8.525	
•	2	1	2	0.0	3.0	2.125	9.125	
•	2	1	3	1.0	3.0	2.220	9.120	
•	2	1	4	0.0	3.0	4.250	14.200	
•	2	1	5	1.5	3.5	3.345	13.845	
•	2	1	6	2.0	3.0	1.785	11.535	
•	2	1	7	1.0	4.0	3.280	13.030	
•	2	1	8	0.5	2.5	3.310	8.810	
•	2	1	9	1.0	2.0	5.125	5.125	
•	2	1	10	0.5	3.5	2.400	10.050	
•	2	1	11	1.5	2.5	8.250	8.250	
•	2	2	1	1.0	3.0	2.675	7.675	
•	2	2	2	0.5	1.5	3.050	11.050	
•	2	2	3	1.0	2.0	3.145	8.145	
•	2	2	4	1.0	2.0	4.310	13.810	
•	2	2	5	0.0	3.0	4.650	16.250	
·	2	2	6	1.0	3.0	3.450	10.450	

Table 4: Means breakdown for short rains of 2008 and long rain season of 2009 continues ------ Effect=FUNGI*FARMERS*REGION ------

(continued)												
			S	td. Error	Std. Er	ror						
of Mean of Mean of												
Seaso	on	Fungi	farmers	Region	SEVERITY	SEVERITY	INCIDENCES					
	2	2	7	0.5	1.5	5.250	5.250					
	2	2	8	2.0	3.0	2.400	9.400					
	2	2	9	0.5	3.5	2.295	10.895					
	2	2	10	1.5	3.5	1.780	10.780					
	2	2	11	2.0	3.0	2.945	8.945					
	2	3	1	0.0	3.0	1.950	8.950					
	2	3	2	1.0	2.0	0.900	6.900					
		2 2 2 2 3	9 10 11 1	0.5 1.5 2.0 0.0	3.5 3.5 3.0 3.0	2.295 1.780 2.945 1.950	10.895 10.780 8.945 8.950					

	2	3	3	0.5	1.5		2.560	8.430		
	2	3	4	1.5	2.5		3.265	13.965		
	2	3	5	0.5	1.5		3.395	13.395		
•	$\frac{1}{2}$	3	6	0.5	1.5		1.660	11.660		
•	2	3	7	1.5	2.5		6.485	6.485		
•	$\frac{1}{2}$	3	8	0.5	1.5		1.560	7.560		
	2	3	9	0.5	1.5	1.210	5.910	1.000		
	2	3	10	2.0	3.0	8.115	8.115			
•	2	3	11	2.0	3.0	1.965	10.265			
	$\frac{1}{2}$	4	1	0.0	1.0	0.000	0.000			
	2	4	2	0.0	1.0	0.000	0.000			
	2	4	3	5.5	6.5	1.170	9.170			
	2	4	4	0.0	3.0	2.580	13.680			
	2	4	5	1.0	3.0	8.615	8.615			
	2	4	6	0.5	1.5	3.750	3.750			
	2	4	7	0.0	2.0	4.180	9.180			
	2	4	8	0.0	1.0	3.880	3.880			
	2	4	9	0.0	1.0	0.680	8.570			
	$\frac{1}{2}$	4	10	1.0	2.0	3.505	11.005			
	2	4	11	1.5	3.5	3.930	11.430			
	2	5	1	0.5	1.5	6.595	6.595			
	$\overline{2}$	5	2	0.5	1.5	2.980	8.880			
	2	5	3	0.0	1.0	0.000	0.000			
	2	5	4	1.5	2.5	3.450	14.450			
	2	5	5	0.5	1.5	4.500	4.500			
	2	5	6	0.5	1.5	3.710	10.610			
	2	5	7	0.5	2.5	4.120	14.770			
	2	5	8	0.0	1.0	3.395	3.395			
	2	5	9	0.5	1.5	3.140	11.640			
		5	10	0.0	1.0	3.150	3.150			
	2 2	5	11	1.5	3.5	4.450	12.450			
	3	1	1	0.5	1.5	1.410	8.910			
	3	1	2	0.5	1.5	5.780	5.780			
	3	1	3	0.0	1.0	2.215	9.015			
	3	1	4	0.5	3.5	3.660	14.240			
	3	1	5	1.0	2.0	3.225	13.225			
	3	1	6	1.0	3.0	2.075	11.375			
	3	1	7	1.0	2.0	3.150	13.150			
	3	1	8	0.0	2.0	2.660	8.640			
	3	1	9	0.0	2.0	1.725	8.725			
	3	1	10	0.5	2.5	2.230	10.330			
	3	1	11	0.5	3.5	2.960	12.930			
	3	2	1	1.0	2.0	2.290	8.270			

Effect=FUNGI*FARMERS*REGION												
			(c	ontinued)								
			S	td. Error	Std. En	ror						
				of N	Iean of of	Mean of						
Sease	on	Fungi	farmers	Region	SEVERITY	SEVERITY	INCIDENCES					
	3	2	2	1.0	3.0	2.8700	11.6300					
	3	2	3	0.0	2.0	2.7450	8.7050					
	3	2	4	0.0	3.0	4.185	0 14.1650					
	3	2	5	2.5	4.5	4.3000	16.0600					
	3	2	6	1.5	2.5	2.1850	11.1550					
	3	2	7	2.5	4.5	2.7400	13.6100					
	3	2	8	0.0	1.0	2.2500	10.1000					
	3	2	9	0.5	1.5	3.2250	10.2250					

	3	2	10	1.5	2	.5	1.2550	11.0350		
	3	2	11	2.0	3.		2.8500	9.6000		
	3	3	1	0.5	1.		0.5250	0.5250		
	3	3	2	0.5	1.		3.3900	3.3900		
	3	3	3	0.5	1.		3.1100	8.9900		
	3	3	4	1.5	3.		3.6250	13.7250		
	3	3	5	1.0	4.0	3.4200	13.1200			
	3	3	6	1.0	4.0	1.9750	11.3750			
	3	3	7	0.5	3.5	2.2450	9.1150			
	3	3	8	0.5	1.5	4.6950	4.6950			
	3	3	9	0.0	1.0	1.3600	6.0100			
	3	3	10	1.0	4.0	3.9250	12.4650			
	3	3	11	0.0	2.0	2.4000	9.9600			
	3	4	1	0.5	2.5	0.7800	7.5600			
	3	4	2	0.5	2.5	0.1850	8.1650			
	3	4	3	0.0	1.0	0.0000	0.0000			
	3	4	4	1.5	2.5	8.1800	8.1800			
	3	4	5	0.0	3.0	2.9300	14.4300			
	3	4	6	0.0	1.0	1.9050	11.4050			
	3	4	7	0.0	1.0	6.6600	6.6600			
	3	4	8	0.0	3.0	2.3750	10.2650			
	3	4	9	1.0	3.0	0.8450	8.7650			
	3	4	10	1.0	2.0	2.8700	10.7300			
	3	4	11	2.0	3.0	7.3100	7.3100			
	3	5	1	0.5	2.5	2.5100	10.1800			
	3	5	2	0.5	1.5	2.9300	8.7100			
	3	5	3	1.0	4.0	1.3700	10.3400			
	3	5	4	0.5	2.5	2.6150	15.0650			
	3	5	5	0.0	1.0	8.7950	8.7950			
	3	5	6	0.0	1.0	3.4450	3.4450			
	3	5	7	1.0	4.0	3.8800	14.7400			
	3	5	8	1.0	3.0	1.2900	8.2600			
	3	5	9	1.0	3.0	2.4250	11.2150			
	3	5	10	1.0	2.0	2.3650	9.2450			
	3	5	11	0.0	1.0	7.9800	7.9800			
	4	1	1	0.0	1.0	4.5500	4.5500			
	4	1	2	0.5	1.5	5.3050	5.3050			
	4	1	3	0.0	1.0	5.3050	5.3050			
	4	1	4	1.5	2.5	4.4340	15.1860			
	4	1	5	0.0	2.0	2.5300	13.3900			
	4	1	6	1.0	2.0	1.3365	11.2735			
 •	4	1	7	1.0	2.0	7.9750	7.9750		 	

-]	Effect=F	UNGI*FA	RMEF	RS*REGION	
				(c	ontinued))			
				S	td. Error	S	td. Er	ror	
					of	Mean of	of	Mean of	
	Seaso	on	Fungi	farmers	Region	SEVER	ITY	SEVERITY	INCIDENCES
		4	1	8	0.0	2.0		2.9200	8.6900
		4	1	9	0.0	1.0		3.4950	3.4950
		4	1	10	0.5	1.5		5.0450	5.0450
		4	1	11	1.0	3.0		2.5725	12.4275
		4	2	1	0.0	1.0		5.3450) 5.3450
		4	2	2	2.0	3.0		2.4510	11.2390
		4	2	3	0.0	1.0		2.3350	8.2750
		4	2	4	0.5	2.5		4.1900	13.4200

	4	2	~	0.5	2.5		4 (100	15.000
•	4	2	5	0.5	2.5		4.6100	15.0600
•	4	2	6	1.0	2.0		2.2050	10.4150
•	4	2	7	0.5	3.5		2.6350	13.0550
•	4	2	8	0.0	1.0		3.6600	3.6600
•	4	2	9	0.5	1.5		2.7100	10.9400
•	4	2	10	0.5	1.5	4 0000	3.5750	3.5750
•	4	2	11	0.0	1.0	4.0800	4.0800	
•	4	3	1	0.5	1.5	1.2300	8.4200	
•	4	3	2	0.0	1.0	1.1850	7.4350	
•	4	3	3	2.0	3.0	3.2200	8.4700	
•	4	3	4	0.0	1.0	8.3350	8.3350	
•	4	3	5	0.0	1.0	4.4500	4.4500	
•	4	3	6	0.5	2.5	1.7350	10.9450	
•	4	3	7	0.0	1.0	3.1050	3.1050	
•	4	3	8	0.0	1.0	3.1600	3.1600	
•	4	3	9	0.0	1.0	2.2100	2.2100	
•	4	3	10	0.5	2.5	3.6950	11.8850	
•	4	3	11	2.0	3.0	2.1650	9.4150	
•	4	4	1	0.5	2.5	0.6300	6.9500	
•	4	4	2	1.0	2.0	0.1300	7.4500	
•	4	4	3	0.0	2.0	1.0850	8.4950	
•	4	4	4	0.0	5.0	2.0300	13.5500	
•	4	4	5	0.0	2.0	2.7200	13.9500	
•	4	4	6	1.5	2.5	2.6950	9.9250	
•	4	4	7	0.0	1.0	0.0000	0.0000	
•	4	4	8	1.0	2.0	2.6900	10.0300	
•	4	4	9	0.0	2.0	0.7250	7.9750	
•	4	4	10	1.0	2.0	3.2200	10.4500	
	4	4	11	0.5	1.5	3.7100	10.9400	
	4	5	1	1.0	2.0	2.7100	9.9400	
•	4	5	2	0.0	1.0	2.5600	2.5600	
•	4	5	3	1.0	2.0	1.6350	10.0450	
	4	5	4	0.5	2.5	2.6750	15.0050	
•	4	5	5	3.5	4.5	4.1550	13.5150	
•	4	5	6	0.0	1.0	0.0000	0.0000	
	4	5	7	2.0	6.0	4.1800	14.4700	
	4	5	8	2.0	4.0	1.6400	8.0300	
	4	5	9	1.0	2.0	6.8500	6.8500	
	4	5	10	1.0	2.0	5.8200	5.8200	
	4	5	11	0.0	1.0	4.1095	4.1095	
	5	1	1	0.0	1.0	0.4740	8.7960	
•	5	1	2	0.0	1.0	4.0000	4.0000	
Table	4: Mea	ns bre	akdown	for shor	t rains o	f 2008 and	long rain sea	son of 2009 cor

•	5	1	2	0.0	1.0	4.0000	4.0000	
Table 4	4: Mea	ns bre	akdown	for short	rains o	of 2008 and	long rain se	eason of 2009 continues
]	Effect=FU	NGI*F	ARMERS*I	REGION	

				Lince-P	UNUI I'A	NULLI	V2. KFOION	
			(c	ontinued))			
			S	td. Error	S	td. Er	ror	
				of	Mean of	of	Mean of	
Seaso	on	Fungi	farmers	Region	SEVER	ITY	SEVERITY	INCIDENCES
	5	1	3	0.0	1.0		1.625	8.6250
	5	1	4	0.5	2.5		4.590	0 12.6900
	5	1	5	0.0	1.0		5.045	0 5.0450
	5	1	6	0.0	1.0		4.545	0 4.5450
	5	1	7	0.0	2.0		2.6900) 12.5900
	5	1	8	0.0	1.0		5.615	0 5.6150
	5	1	9	0.0	1.0		3.0450	3.0450
	5	1	10	0.0	1.0		5.6250	5.6250
	5	1	11	0.0	1.0		4.4500	4.4500
	5	2	1	0.0	1.0		4.625	60 4.6250
	5	2	2	1.5	2.5		2.6900	10.5900

	5	2	3	0.0	1.0		3.4500	3.4500
·	5	$\frac{2}{2}$	4	1.5	2.5		4.1100	13.1600
•	5	2	5	1.0	3.0		4.1750	15.0750
•	5	$\frac{2}{2}$	6	0.0	1.0		2.0400	10.2300
•		2	7	1.0	2.0		2.6950	12.5950
·	5 5	$\frac{2}{2}$	8	1.0	2.0		1.7400	9.5400
•	5	$\frac{2}{2}$	9	0.0	1.0	0.0000	0.0000	7.5400
•	5	2	10	0.0	1.0	3.9000	3.9000	
·	5	$\frac{2}{2}$	11	0.0	1.0	3.4450	3.4450	
·	5 5	$\frac{2}{3}$	1	0.5	1.5	3.4500	3.4500	
•	5	3	2	0.0	1.0	2.8900	2.8900	
·		3	3	0.0	1.0	5.6400	5.6400	
•	5 5	3	4	1.0	2.0	3.1900	13.0800	
·	5	3	5	0.0	3.0	3.1850	12.0950	
·	5	3	6	0.0	2.0	1.5700	10.6700	
·		3	7	1.0	2.0	5.1400	5.1400	
•	5 5	3	8	0.0	1.0	3.1150	3.1150	
·	5	3	9	0.0	1.0	0.0000	0.0000	
·	5	3	10	0.0	1.0	3.5750	11.6950	
•	5	3	11	0.0	1.0	3.5670	3.5670	
•	5 5	4	1	0.0	2.0	0.6300	6.5600	
•	5	4	2	1.0	2.0	0.1350	7.0250	
•	5	4	3	1.5	2.5	4.6400	4.6400	
•	5	4	4	0.0	1.0	2.2550	13.2250	
•	5	4	5	0.5	2.5	2.6650	13.6150	
•	5	4	6	2.5	3.5	2.6955	9.6855	
•		4	7	0.0	1.0	2.6000	2.6000	
•	5 5	4	8	2.0	3.0	2.4700	9.8100	
	5	4	9	0.5	1.5	0.3800	7.8000	
	5	4	10	0.0	1.0	3.0800	10.2000	
	5	4	11	0.0	1.0	0.0000	0.0000	
	5	5	1	1.5	2.5	6.1400	6.1400	
	5	5	2	2.0	3.0	5.5900	5.5900	
	5	5	3	0.0	3.0	1.6450	9.6350	
	5	5	4	1.0	2.0	3.0700	14.1800	
	5	5	5	2.0	4.0	4.0350	13.2450	
	5	5	6	1.0	2.0	3.5850	9.7050	
•	5	5	7	1.0	2.0	9.1350	9.1350	
	5	5	8	0.0	1.0	2.9950	2.9950	
•	5	5	9	0.5	4.5	3.0700	10.1900	
	5	5	10	1.0	4.0	2.6650	8.6150	
	5	5	11	1.5	3.5	4.0250	12.2250	

Effect=SEASON*FARMERS*REGION												
		S	td. Error	Std. En	ror							
			of M	lean of of	Mean of							
Season	Fungi	farmers	Region	SEVERITY	SEVERITY	INCIDENCES						
1	. 1	1	0.40000	1.6	1.5042	1 5.9244						
1	. 1	2	0.63246	2.0	1.8868	4.6000						
1	. 1	3	0.40000	1.6	1.3855	5.5400						
1	. 1	4	0.40000	2.4	0.5237	0 10.0764						
1	. 1	5	0.73485	2.2	0.1996	5 10.4900						
1	. 1	6	0.40000	1.6	0.1795	8 9.6154						
1	. 1	7	0.58310	2.2	1.9830	3 7.9300						
1	. 1	8	0.24495	1.6	1.4105	3.4500						
1	. 1	9	0.40000	1.6	1.36534	4 5.4160						
1	. 1	10	0.44721	2.0	1.9406	4.7500						

1		1	11	0.58310	2.2		1.94688	7.7450
1		2	1	0.40000	1.6		1.39815	3.3960
1		2	2	0.37417	1.8		0.22472	8.4896
1		2	3	0.20000	1.2		0.30060	5.9600
1		2	4	0.44721	2.0		0.19265	9.5520
1		2	5	0.24495	2.4		0.28856	11.3420
1		2	6	0.58310	1.8	0.36371	8.2740	
1		2	7	0.37417	2.2	0.19314	10.5380	
1		2	8	0.60000	1.6	0.18718	7.5940	
1		2	9	0.63246	2.0	1.67528	6.5660	
1		2	10	0.37417	1.8	0.47119	8.5460	
1		2	11	0.40000	1.4	0.34729	6.9600	
1		3	1	0.44721	2.0	1.46732	5.8180	
1		3	2	0.20000	1.2	0.23066	6.3620	
1		3	3	0.00000	1.0	1.15745	4.6000	
1		3	4	0.40000	1.6	2.09405	8.3380	
1		3	5	0.48990	1.8	0.24981	9.5020	
1		3	6	0.44721	2.0	0.19304	9.5420	
1		3	7	0.60000	1.6	1.64499	4.0160	
1		3	8	0.24495	1.4	1.28831	5.1100	
1		3	9	0.00000	1.0	0.94304	3.7540	
1		3	10	0.48990	1.8	1.69967	6.7700	
1		3	11	0.20000	1.2	0.22129	7.6488	
1		4	1	0.24495	1.6	1.31460	5.2060	
1		4	2	0.40000	1.6	1.52394	6.0380	
1		4	3	2.11187	3.6	1.91445	4.6820	
1		4	4	0.74833	2.6	2.28661	9.1180	
1		4	5	0.37417	2.2	2.29056	9.1360	
 1	•	4	6	0.24495	1.4	0.44673	7.8440	

		(0	ontinued)		8	
		S	Std. En	ror		
			of M	ean of of	Mean of	
Season	Fungi	farmers	Region	SEVERITY	SEVERITY IN	ICIDENCES
1	. 4	7	0.24495	1.4	1.33327	3.2400
1	. 4	8	0.40000	1.4	0.13841	7.6660
1	. 4	9	0.24495	1.4	0.15088	7.6960
1	. 4	10	0.00000	1.0	0.17148	7.5420
1	. 4	11	0.24495	1.6	1.86000	4.5460
1	. 5	1	0.48990	1.8	1.87376	4.5800
1	. 5	2	0.00000	1.0	1.15032	4.5600
1	. 5	3	0.48990	1.8	1.72872	6.8740
1	. 5	4	0.40000	1.6	0.39377	11.9780
1	. 5	5	0.24495	1.6	1.88590	7.5140
1	. 5	6	0.24495	1.4	1.35475	5.3820
1	. 5	7	0.50990	2.4	2.14334	8.5600
1	. 5	8	0.24495	1.4	0.19304	6.6280
1	. 5	9	0.48990	2.2	1.70239	6.6820
1	. 5	10	0.40000	1.4	1.32045	5.2260
1	. 5	11	0.24495	1.6	1.67967	6.6838
2	. 1	1	0.73485	2.2	0.51629	10.1880
2	. 1	2	0.67823	2.6	2.35377	9.2840
2	. 1	3	0.87178	2.4	0.47298	11.2860
2	. 1	4	0.37417	3.8	0.51200	18.6500
2	. 1	5	0.80000	3.2	3.46735	13.7120
2	. 1	6	0.80000	2.8	3.21854	7.8760
2	. 1	7	0.50990	3.4	0.44888	16.3680

2	. 1	8	0.67823	2.6		0.51166	12.0520
· ,	. 1 . 1	8 9	0.07823	2.0 2.4		2.68707	6.5400
2 2	. 1 . 1	9 10	0.74855	2.4		0.65963	12.0700
2	. 1 . 1	10	0.58510	2.8 3.6		3.30584	13.0780
		1		2.4		0.43876	
2	. 2	1 2	0.60000	2.4 3.2		0.45876	10.5700
2	. 2		0.73485		2 25026		14.3140
	. 2	3	0.74833	2.4	2.35026	9.2700	
	. 2	4	0.40000	3.6	0.47209	18.2700	
	. 2	5	0.74833	4.4	0.48273	20.4360	
	. 2	6	0.54772	3.0	0.48454	13.4260	
2	. 2	7	0.96954	3.8	3.29910	13.0660	
2	. 2	8	0.80000	2.8	2.51332	9.8860	
2	. 2	9	0.73485	2.8	2.78212	11.0580	
2	. 2	10	0.80000	2.8	3.18538	7.7700	
2	. 2	11	0.97980	2.6	2.98234	4.8680	
2	. 3	1	0.67823	2.6	2.56167	6.7200	
2	. 3	2	0.80000	2.2	2.18565	5.2840	
2	. 3	3	0.73485	2.8	0.53122	12.0120	
	. 3	4	0.91652	3.2	0.46664	17.3040	
2	. 3	5	0.80000	3.2	3.35839	13.3220	
2	. 3	6	0.60000	2.6	0.46900	13.3180	
2	. 3	7	0.48990	2.8	2.43523	9.5220	
2	. 3	8	0.77460	2.0	2.43083	5.9020	
2	. 3	9	0.77460	2.0	1.94493	4.6980	
2	. 3	10	0.81240	3.4	0.47340	16.2940	
2	. 3	11	0.87178	3.6	2.54001	10.0340	
2	. 4	1	0.37417	2.2	1.72415	6.6220	
		(ce	ontinued)		1.72110	0.0220	
			ontinued) td. Error	St	d. Error	0.0220	
			ontinued) td. Error of Me	St ean of	d. Error of Me	an of	
Season	Fungi		ontinued) td. Error	St	d. Error of Me		IDENCES
	-	Safarmers	ontinued) td. Error of Mo Region	St ean of SEVERI	d. Error of Me TY SEVE	an of RITY INC	
2	. 4	Starmers 2	ontinued) td. Error of Ma Region 0.48990	St ean of SEVERI 2.2	d. Error of Me TY SEVE 1.72416	an of RITY INC 5 6.6180	
2 2	. 4 . 4	Starmers	ontinued) td. Error of Ma Region 0.48990 0.81240	St ean of SEVERI 2.2 2.6	d. Error of Me TY SEVE 1.72416 2.11332	an of RITY INC 6 6.6180 8.2400	
2 2 2	. 4 . 4 . 4	farmers 2 3 4	ontinued) td. Error of Ma Region 0.48990 0.81240 0.74833	St ean of SEVERI 2.2 2.6 3.6	d. Error of Me TY SEVE 1.72416 2.11332 0.45164	an of RITY INC 6 6.6180 8.2400 16.3360	
2 2 2 2	. 4 . 4 . 4 . 4	farmers 2 3 4 5	ontinued) td. Error of Ma Region 0.48990 0.81240 0.74833 0.58310	St ean of SEVERI 2.2 2.6 3.6 3.2	d. Error of Me TY SEVE 1.72416 2.11332 0.45164 0.46559	an of RITY INC 6 6.6180 8.2400 16.3360 9 17.3080)
2 2 2 2 2 2	. 4 . 4 . 4 . 4 . 4	Stress St	ontinued) td. Error of Ma Region 0.48990 0.81240 0.74833 0.58310 0.96954	St ean of SEVERI 2.2 2.6 3.6 3.2 3.2 3.2	d. Error of Me TY SEVE 1.72416 2.11332 0.45164 0.46559 2.70460	an of RITY INC 6 6.6180 8.2400 16.3360 17.3080 10.6622)
2 2 2 2 2 2 2 2	. 4 . 4 . 4 . 4 . 4 . 4 . 4	Stress St	ontinued) td. Error of Ma Region 0.48990 0.81240 0.74833 0.58310 0.96954 0.77460	St ean of SEVERI 2.2 2.6 3.6 3.2 3.2 2.0	d. Error of Me TY SEVE 1.72416 2.11332 0.45164 0.46559 2.70460 3.41663	an of RITY INC 6 6.6180 8.2400 16.3360 17.3080 10.6622 8.3360)
2 2 2 2 2 2 2 2 2 2	. 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4	Sec. 5	ontinued) td. Error of Ma Region 0.48990 0.81240 0.74833 0.58310 0.96954 0.77460 0.66332	St ean of SEVERI 2.2 2.6 3.6 3.2 3.2 2.0 3.2	d. Error of Me TY SEVE 1.72416 2.11332 0.45164 0.46559 2.70460 3.41663 2.67556	an of RITY INC 6 6.6180 8.2400 16.3360 17.308 10.6622 8.3360 5 10.528)
2 2 2 2 2 2 2 2 2 2 2 2	. 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4	S farmers 2 3 4 5 6 7 8 9	ontinued) td. Error of Ma Region 0.48990 0.81240 0.74833 0.58310 0.96954 0.77460 0.66332 0.48990	St ean of SEVERI 2.2 2.6 3.6 3.2 3.2 2.0 3.2 2.0 3.2 2.2	d. Error of Me TY SEVE 1.72416 2.11332 0.45164 0.46559 2.70460 3.41663 2.67556 0.47914	an of RITY INC 6 6.6180 8.2400 16.3360 17.3080 10.6622 6 8.3360 5 10.5280 9.3480)
2 2 2 2 2 2 2 2 2 2 2 2 2 2	. 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4	Sr farmers 2 3 4 5 6 7 8 9 10	ontinued) td. Error of Ma Region 0.48990 0.81240 0.74833 0.58310 0.96954 0.77460 0.66332 0.48990 0.63246	St ean of SEVERI 2.2 2.6 3.6 3.2 2.0 3.2 2.0 3.2 2.2 3.0	d. Error of Me TY SEVE 1.72416 2.11332 0.45164 0.46559 2.70460 3.41663 2.67556 0.47914 0.49105	an of RITY INC 6 6.6180 8.2400 16.3360 17.308 10.6622 8.3360 5 10.5280 9.3480 14.2120)))
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	. 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4	Sr farmers 2 3 4 5 6 7 8 9 10 11	ontinued) td. Error of Ma Region 0.48990 0.81240 0.74833 0.58310 0.96954 0.77460 0.66332 0.48990 0.63246 0.91652	St ean of SEVERI 2.2 2.6 3.6 3.2 2.0 3.2 2.0 3.2 2.2 3.0 2.8	d. Error of Me TY SEVE 1.72416 2.11332 0.45164 0.46559 2.70460 3.41663 2.67556 0.47914 0.49105 3.11163	an of RITY INC 6 6.6180 8.2400 16.3360 17.308(10.6622 8.3360 10.528(9.3480 14.212(12.3260))))
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sr farmers 2 3 4 5 6 7 8 9 10 11 1 1	ontinued) td. Error of Ma Region 0.48990 0.81240 0.74833 0.58310 0.96954 0.77460 0.66332 0.48990 0.63246 0.91652 0.73485	St ean of SEVERI 2.2 2.6 3.6 3.2 2.0 3.2 2.0 3.2 2.2 3.0 2.8 2.8	d. Error of Me TY SEVE 1.72416 2.11332 0.45164 0.46559 2.70460 3.41663 2.67556 0.47914 0.49105 3.11163 0.48176	an of RITY INC 6 6.6180 8.2400 16.3360 17.3080 10.6622 6 8.3360 5 10.5280 9.3480 5 14.2120 5 12.3260 13.1620))))
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sr farmers 2 3 4 5 6 7 8 9 10 11 1 1 2	ontinued) td. Error of Ma Region 0.48990 0.81240 0.74833 0.58310 0.96954 0.77460 0.66332 0.48990 0.63246 0.91652 0.73485 0.83666	St ean of SEVERI 2.2 2.6 3.6 3.2 3.2 2.0 3.2 2.2 3.0 2.8 2.8 3.0	d. Error of Me TY SEVE 1.72416 2.11332 0.45164 0.46559 2.70460 3.41663 2.67556 0.47914 0.49105 3.11163 0.48176 2.48187	an of RITY INC 6 6.6180 8.2400 16.3360 17.3080 10.6622 8.3360 6 10.5280 9.3480 6 14.2120 12.3260 13.1620 9.7360	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sr farmers 2 3 4 5 6 7 8 9 10 11 1 2 3	ontinued) td. Error of Ma Region 0.48990 0.81240 0.74833 0.58310 0.96954 0.77460 0.66332 0.48990 0.63246 0.91652 0.73485 0.83666 0.63246	St ean of SEVERI 2.2 2.6 3.6 3.2 3.2 2.0 3.2 2.2 3.0 2.8 2.8 3.0 3.0 3.0	d. Error of Me TY SEVE 1.72416 2.11332 0.45164 0.46559 2.70460 3.41663 2.67556 0.47914 0.49105 3.11163 0.48176 2.48187 2.48023	an of RITY INC 6 6.6180 8.2400 16.3360 17.308 10.6622 8.3360 6 10.528 9.3480 6 14.2120 12.3260 13.1620 9.7360 9.7340))))
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sr farmers 2 3 4 5 6 7 8 9 10 11 1 2 3 4	ontinued) td. Error of Ma Region 0.48990 0.81240 0.74833 0.58310 0.96954 0.77460 0.66332 0.48990 0.63246 0.91652 0.73485 0.83666 0.63246 0.63246 0.50990	St ean of SEVERI 2.2 2.6 3.6 3.2 3.2 2.0 3.2 2.2 3.0 2.8 2.8 3.0 3.0 3.0 3.4	d. Error of Me TY SEVE 1.72416 2.11332 0.45164 0.46559 2.70460 3.41663 2.67556 0.47914 0.49105 3.11163 0.48176 2.48023 0.48607	an of RITY INC 6 6.6180 8.2400 16.3360 17.3080 10.6622 8.3360 5 10.5280 5 10.5280 5 10.5280 5 10.5280 5 11.5280 5 12.3260 13.1620 9.7360 5 9.7340 5 9.7340 5 18.1020)))))
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sr farmers 2 3 4 5 6 7 8 9 10 11 1 2 3	ontinued) td. Error of Ma Region 0.48990 0.81240 0.74833 0.58310 0.96954 0.77460 0.66332 0.48990 0.63246 0.91652 0.73485 0.83666 0.63246 0.50990 1.39284	St ean of SEVERI 2.2 2.6 3.6 3.2 2.0 3.2 2.0 3.2 2.2 3.0 2.8 2.8 3.0 3.0 3.4 4.2	d. Error of Me TY SEVE 1.72416 2.11332 0.45164 0.46559 2.70460 3.41663 2.67556 0.47914 0.49105 3.11163 0.48176 2.48187 2.48023 0.48607 3.6594	an of RITY INC 6 6.6180 8.2400 16.3360 17.3080 10.6622 8.3360 6 10.5280 9.3480 6 10.5280 9.3480 14.2120 12.3260 13.1620 9.7360 9.7340 18.1020 1 14.508)))))
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sr farmers 2 3 4 5 6 7 8 9 10 11 1 2 3 4	ontinued) td. Error of Ma Region 0.48990 0.81240 0.74833 0.58310 0.96954 0.77460 0.66332 0.48990 0.63246 0.91652 0.73485 0.83666 0.63246 0.63246 0.50990	St ean of SEVERI 2.2 2.6 3.6 3.2 3.2 2.0 3.2 2.2 3.0 2.8 2.8 3.0 3.0 3.0 3.4	d. Error of Me TY SEVE 1.72416 2.11332 0.45164 0.46559 2.70460 3.41663 2.67556 0.47914 0.49105 3.11163 0.48176 2.48023 0.48607	an of RITY INC 6 6.6180 8.2400 16.3360 17.3080 10.6622 8.3360 6 10.5280 9.3480 6 10.5280 9.3480 14.2120 12.3260 13.1620 9.7360 9.7340 18.1020 1 14.508)))))
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Second Se	ontinued) td. Error of Ma Region 0.48990 0.81240 0.74833 0.58310 0.96954 0.77460 0.66332 0.48990 0.63246 0.91652 0.73485 0.83666 0.63246 0.50990 1.39284	St ean of SEVERI 2.2 2.6 3.6 3.2 2.0 3.2 2.0 3.2 2.2 3.0 2.8 2.8 3.0 3.0 3.4 4.2	d. Error of Me TY SEVE 1.72416 2.11332 0.45164 0.46559 2.70460 3.41663 2.67556 0.47914 0.49105 3.11163 0.48176 2.48187 2.48023 0.48607 3.6594	an of RITY INC 6 6.6180 8.2400 16.3360 17.308 10.6622 8.3360 6 10.5280 9.3480 6 14.2120 12.3260 13.1620 9.7360 9.7340 18.1020 1 14.508 8.7220)))))
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Sr farmers 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8	ontinued) td. Error of Ma Region 0.48990 0.81240 0.74833 0.58310 0.96954 0.77460 0.66332 0.48990 0.63246 0.91652 0.73485 0.83666 0.63246 0.50990 1.39284 0.80000	St ean of SEVERI 2.2 2.6 3.6 3.2 2.0 3.2 2.0 3.2 2.2 3.0 2.8 2.8 3.0 3.0 3.4 4.2 2.2	d. Error of Me TY SEVE 1.72416 2.11332 0.45164 0.46559 2.70460 3.41663 2.67556 0.47914 0.49105 3.11163 0.48176 2.48023 0.48607 3.6594 3.58692	an of RITY INC 6 6.6180 8.2400 16.3360 17.308 10.6622 8.3360 9.3480 6 10.5280 9.3480 6 14.2120 12.3260 13.1620 9.7360 9.7360 18.1020 1 4.508 8.7220 2 19.086)))))) 0
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Sr farmers 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7	ontinued) td. Error of Ma Region 0.48990 0.81240 0.74833 0.58310 0.96954 0.77460 0.66332 0.48990 0.63246 0.91652 0.73485 0.83666 0.63246 0.50990 1.39284 0.80000 1.06771	St ean of SEVERI 2.2 2.6 3.6 3.2 2.0 3.2 2.0 3.2 2.2 3.0 2.8 2.8 3.0 3.0 3.4 4.2 2.2 4.2	d. Error of Me TY SEVE 1.72416 2.11332 0.45164 0.46559 2.70460 3.41663 2.67556 0.47914 0.49105 3.11163 0.48176 2.48023 0.48607 3.6594 3.58692 0.48862	an of RITY INC 6 6.6180 8.2400 16.3360 17.308(10.6622 6 8.3360 5 10.528(9.3480 5 14.212(5 12.3260 13.1620 9.7360 9.7360 5 9.7340 1 4.508 8.7220 2 19.086 5 6.2440)))) 0
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Sr farmers 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8	ontinued) td. Error of Ma Region 0.48990 0.81240 0.74833 0.58310 0.96954 0.77460 0.66332 0.48990 0.63246 0.91652 0.73485 0.83666 0.63246 0.50990 1.39284 0.80000 1.06771 0.96954	St ean of SEVERI 2.2 2.6 3.6 3.2 2.0 3.2 2.0 3.2 2.2 3.0 2.8 2.8 3.0 3.0 3.4 4.2 2.2 4.2 2.8	d. Error of Me TY SEVE 1.72416 2.11332 0.45164 0.46559 2.70460 3.41663 2.67556 0.47914 0.49105 3.11163 0.48176 2.48023 0.48607 3.6594 3.58692 0.48862 2.58625	an of RITY INC 6 6.6180 8.2400 16.3360 17.3080 10.6622 6 8.3360 6 10.5280 9.3480 6 14.2120 14.2120 9.7360 9.7360 9.7360 9.7360 18.1020 1 8.1020 1 14.508 8.7220 2 19.086 6 6.2440 14.2760))))) 0

Table 4: Means breakdown for short rains of 2008 and long rain season of 2009 continues ------ Effect=SEASON*FUNGI*FARMERS

Std. Error Std. Error of Mean of of Mean of

Season	Fung	i farmer	s Region	SEVERITY	SEVER	ITY INC	IDENCES
1	1	1.	0.30424	3.27273	(0.93861	8.09091
1	1	2 .	0.25062	3.09091		0.57352	8.72727
1	1	3.	0.19498	1.27273		0.55596	8.00000
1	1	4.	0.20730	1.54545		0.56187	8.45455
1	1	5.	0.15746	1.45455	0.61925	8.72727	
1	2	1.	0.25062	2.09091	1.11138	6.70909	
1	2 2	2 . 3 .	0.22636	1.81818	0.65200	7.92727	
1 1	2		0.19498 0.96638	1.27273 2.54545	1.10160 1.17222	6.23364 5.65909	
1		4 . 5 .	0.15746	1.45455	1.10742	6.64000	
1	3	1 .	0.23706	1.72727	0.90609	7.74818	
1	3	2 .	0.20730	1.54545	0.59465	8.51455	
1	3	3.	0.31492	2.09091	1.06620	6.31636	
1	3	4.	0.24393	1.63636	1.34104	5.40273	
1	3	5.	0.28459	1.90909	1.17309	6.84182	
1	4	1.	0.14084	1.27273	1.49198	4.92400	
1	4	2.	0.20730	1.45455	0.86347	7.62709	
1	4	3.	0.24393	1.36364	0.76771	6.29000	
1 1		4 . 5 .	0.35675 0.30963	2.00000 1.63636	0.89204 1.31691	7.28000 6.12264	
1	4 5	5. 1.	0.30903	1.18182	1.08089	6.86291	
1				ASON*FUNC			
			(continued)				
			Std. Error	Std. E	rror		
			of M	lean of of			
Season	Fung	i farmer	s Region	SEVERITY	SEVER	ITY INCI	IDENCES
1	5	2.	0.09091	1.09091	1	.08333	6.8482
1	5	2	0.04700				
		3.	0.24730	1.54545	1	.15402	5.6422
1	5	3 . 4 .	0.24730 0.19498	1.54545 1.27273		.15402 .07859	5.6422 6.2555
1 1	5				1		
-	5	4.	0.19498	1.27273	1 1	.07859 .17859	6.2555
1	5 5	4 . 5 .	0.19498 0.32525	1.27273 1.81818	1 1 1	.07859 .17859 .64844	6.2555 5.6082
1 2	5 5 1 1 1	4 . 5 . 1 . 2 . 3 .	0.19498 0.32525 0.36590 0.41060 0.30963	1.27273 1.81818 4.45455 3.63636 4.36364	1 1 1 1	1.07859 1.17859 1.64844 1.70754 1.01314	6.2555 5.6082 13.9091
1 2 2 2 2	5 5 1 1 1 1	4 . 5 . 1 . 2 . 3 . 4 .	0.19498 0.32525 0.36590 0.41060 0.30963 0.40041	1.27273 1.81818 4.45455 3.63636 4.36364 3.81818	1 1 1 1 0	1.07859 1.17859 1.64844 1.70754 1.01314 0.95606	6.2555 5.6082 13.9091 14.4545 13.9091 14.3636
1 2 2 2 2 2 2	5 5 1 1 1 1 1 1	4 . 5 . 1 . 2 . 3 . 4 . 5 .	0.19498 0.32525 0.36590 0.41060 0.30963 0.40041 0.45455	1.27273 1.81818 4.45455 3.63636 4.36364 3.81818 3.54545	1 1 1 1 0 0 0	1.07859 1.17859 1.64844 1.70754 1.01314 0.95606 0.91814	 6.2555 5.6082 13.9091 14.4545 13.9091 14.3636 16.4545
1 2 2 2 2 2 2 2 2 2	5 5 1 1 1 1 1 1 2	4 . 5 . 1 . 2 . 3 . 4 . 5 . 1 .	0.19498 0.32525 0.36590 0.41060 0.30963 0.40041 0.45455 0.30424	1.27273 1.81818 4.45455 3.63636 4.36364 3.81818 3.54545 3.72727	1 1 1 1 0 0 0 0	1.07859 1.17859 1.64844 1.70754 1.01314 0.95606 0.91814 0.89863	 6.2555 5.6082 13.9091 14.4545 13.9091 14.3636 16.4545 13.5845
1 2 2 2 2 2 2 2 2 2 2 2	5 5 1 1 1 1 1 2 2	4 . 5 . 1 . 2 . 3 . 4 . 5 . 1 . 2 .	0.19498 0.32525 0.36590 0.41060 0.30963 0.40041 0.45455 0.30424 0.43408	1.27273 1.81818 4.45455 3.63636 4.36364 3.81818 3.54545 3.72727 3.45455	1 1 1 1 0 0 0 0 0	1.07859 1.17859 1.64844 1.70754 1.01314 0.95606 0.91814 0.89863 1.56760	6.2555 5.6082 13.9091 14.4545 13.9091 14.3636 16.4545 13.5845 12.5545
1 2 2 2 2 2 2 2 2 2 2 2 2 2	5 5 1 1 1 1 1 2 2 2 2	4 . 5 . 1 . 2 . 3 . 4 . 5 . 1 . 2 . 3 . 3 . 3 .	0.19498 0.32525 0.36590 0.41060 0.30963 0.40041 0.45455 0.30424 0.43408 0.40452	1.27273 1.81818 4.45455 3.63636 4.36364 3.81818 3.54545 3.72727 3.45455 3.00000	1 1 1 1 0 0 0 0 1 1	1.07859 1.17859 1.64844 1.70754 1.01314 0.95606 0.91814 0.89863 1.56760 1.05418	6.2555 5.6082 13.9091 14.4545 13.9091 14.3636 16.4545 13.5845 12.5545 12.2455
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 5 1 1 1 1 1 2 2 2 2 2	4 . 5 . 1 . 2 . 3 . 4 . 5 . 1 . 2 . 3 . 4 . 3 . 4 . 4 .	0.19498 0.32525 0.36590 0.41060 0.30963 0.40041 0.45455 0.30424 0.43408 0.40452 0.43598	1.27273 1.81818 4.45455 3.63636 4.36364 3.81818 3.54545 3.72727 3.45455 3.00000 2.09091	1 1 1 1 1 0 0 0 0 0 0 1 1 1 2	1.07859 1.17859 1.64844 1.70754 1.01314 0.95606 0.91814 0.89863 1.56760 1.05418 2.20631	6.2555 5.6082 13.9091 14.4545 13.9091 14.3636 16.4545 13.5845 12.5545 12.2455 8.7555
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 5 1 1 1 1 1 2 2 2 2 2 2 2	4 . 5 . 1 . 2 . 3 . 4 . 5 . 1 . 2 . 3 . 4 . 5 . 3 . 4 . 5 . 5 .	0.19498 0.32525 0.36590 0.41060 0.30963 0.40041 0.45455 0.30424 0.43408 0.40452 0.43598 0.42640	1.27273 1.81818 4.45455 3.63636 4.36364 3.81818 3.54545 3.72727 3.45455 3.00000 2.09091 2.00000	1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 2 2	1.07859 1.17859 1.64844 1.70754 1.01314 0.95606 0.91814 0.89863 1.56760 1.05418 2.20631 2.41919	6.2555 5.6082 13.9091 14.4545 13.9091 14.3636 16.4545 13.5845 12.5545 12.2455 8.7555 9.8036
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 5 1 1 1 1 1 1 2 2 2 2 2 2 2 3	4 . 5 . 1 . 2 . 3 . 4 . 5 . 1 . 3 . 4 . 5 . 1 . 5 . 1 . 1 .	0.19498 0.32525 0.36590 0.41060 0.30963 0.40041 0.45455 0.30424 0.43408 0.40452 0.43598 0.42640 0.30424	1.27273 1.81818 4.45455 3.63636 4.36364 3.81818 3.54545 3.72727 3.45455 3.00000 2.09091 2.00000 2.72727	1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 2 2 2 0	1.07859 1.17859 1.64844 1.70754 1.01314 0.95606 0.91814 0.89863 1.56760 1.05418 2.20631 2.41919 0.82882	6.2555 5.6082 13.9091 14.4545 13.9091 14.3636 16.4545 13.5845 12.5545 12.2455 8.7555 9.8036 13.4009
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 5 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3	4 . 5 . 1 . 2 . 3 . 4 . 5 . 1 . 2 . 3 . 4 . 5 . 3 . 4 . 5 . 5 .	0.19498 0.32525 0.36590 0.41060 0.30963 0.40041 0.45455 0.30424 0.43408 0.40452 0.43598 0.42640	1.27273 1.81818 4.45455 3.63636 4.36364 3.81818 3.54545 3.72727 3.45455 3.00000 2.09091 2.00000	1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 2 2 2 0 0 0 0	1.07859 1.17859 1.64844 1.70754 1.01314 0.95606 0.91814 0.89863 1.56760 1.05418 2.20631 2.41919 0.82882 0.91491	6.2555 5.6082 13.9091 14.4545 13.9091 14.3636 16.4545 13.5845 12.5545 12.2455 8.7555 9.8036

2	3	4	•	0.40041	2.81818	1	.46359	11.5918
2	3	5		0.46887	2.72727	1	.56579	12.7900
2	4	1		0.33278	2.27273	1	.53270	11.9200
2	4	2		0.42834	2.27273	2.16757	10.384	5
2	4	3	•	0.46710	2.00000	1.99967	7.8609)
2	4	4	•	0.38996	2.45455	1.44792	10.850	0
2	4	5		0.81312	3.45455	2.16995	10.303	6
2	5	1		0.19498	1.27273	2.06786	6.7782	2
2	5	2		0.42251	2.18182	2.27872	8.8991	l
2	5	3	•	0.24730	1.45455	2.18097	7.3291	l
2	5	4		0.52853	2.54545	1.66334	9.2283	3
2	5	5		0.43598	3.90909	1.51790	12.874	5
				- Effect=SEA	ASON*FUN	IGI*REGIO)N	

			St	d. Error	Std. Ei		
					ean of of	Mean of	
Season	Fung	gi	farmers	Region	SEVERITY	SEVERITY	INCIDENCES
1	1		1	0.48990	2.2	0.3741	7 7.20
1	1		2	0.63246	2.0	0.509	90 7.60
1	1		3	0.40000	1.6	0.5831	0 7.20
1	1		4	0.48990	2.2	0.5099	0 11.40
1	1		5	0.74833	2.4	0.4472	21 11.00
1	1		6	0.50990	2.4	0.5831	0 8.80
1	1		7	0.50990	2.4	1.0488	9.00
1	1		8	0.58310	1.8	1.5165	6.00
1	1		9	0.58310	2.2	0.7483	33 7.60
1	1		10	0.48990	1.8	0.3741	7 8.20
1	1		11	0.50990	2.4	0.5099	00 8.40
1	2		1	0.37417	1.8	1.5740	3.76
1	2		2	0.40000	1.6	1.3980	0 5.38

				Effect=SE	ASON*FUN	GI*REGION		
			(0	ontinued)				
			S	td. Error	Std.	Error		
				of M	ean of o	of Mean of		
Season	Fu	ingi	farmers	Region	SEVERITY	SEVERITY	INC	CIDENCES
1	2		3	2.15870	3.4	1.382	290	5.1540
1	2		4	0.48990	1.8	0.31	145	10.4500
1	2		5	0.31623	2.0	2.097	/24	8.2200
1	2		6	0.24495	1.6	0.68	037	8.2300
1	2		7	0.31623	2.0	2.073	332	7.1800
1	2		8	0.24495	1.4	0.394	41	6.6100
1	2		9	0.40000	1.6	1.647	/01	5.9380
1	2		10	0.40000	1.6	1.581	49	6.0900
1	2		11	0.24495	1.4	1.541	62	5.9600

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	3		1	0.40000	1.6		1.42812	5.5860	
13.3 0.40000 1.61.488875.522013.4 0.40000 2.42.200628.622013.6 0.40000 1.6 0.48869 8.812013.7 0.58310 2.22.065207.720013.8 0.37417 1.81.476365.738013.9 0.24495 1.6 0.69091 7.072013.10 0.40000 1.6 2.05199 4.856014.1 0.40000 1.61.701204.148014.2 0.40000 1.41.501345.495614.3 0.20000 1.21.459015.402014.4 0.73485 2.2 2.25043 8.766414.5 0.24495 1.4 0.30606 6.628014.6 0.40000 1.61.851904.514014.9 0.20000 1.21.484555.378014.10 0.40000 1.6 0.57196 9.824014.10 0.40000 1.6 0.57196 9.824014.10 0.40000 1.6 0.57196 9.824015.1 0.24495 1.4 0.76846 4.230415.<										
13.4 0.40000 2.4 2.20062 8.6220 13.5 0.44721 2.0 2.18547 8.5920 13.7 0.58310 2.2 2.06520 7.7200 13.8 0.37417 1.8 1.47636 5.7380 13.9 0.24495 1.6 0.69091 7.0720 13.10 0.40000 1.6 0.47302 8.2320 13.11 0.40000 1.6 1.70120 4.1480 14.2 0.40000 1.4 1.50134 5.4956 14.2 0.40000 1.4 1.50134 5.4956 14.3 0.20000 1.2 1.45901 5.4020 14.5 0.24495 1.6 0.44422 10.1600 14.6 0.40000 1.4 1.78876 6.9174 14.7 0.63246 2.0 2.32473 5.3840 14.9 0.20000 1.2 1.48455 5.3780 14.10 0.40000 1.6 1.85190 4.5140 14.10 0.24495 1.4 1.77944 4.2384 15.3 0.40000 1.6 0.57196 9.8240 15.1 0.24495 <td></td>										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
13.6 0.40000 1.6 0.48869 8.8120 13.7 0.58310 2.2 2.06520 7.7200 13.9 0.24495 1.6 0.69091 7.0720 13.10 0.40000 1.6 0.67302 8.3320 13.11 0.40000 1.6 0.05991 7.0720 14.1 0.40000 1.6 1.70120 4.1480 14.2 0.40000 1.6 1.70120 4.1480 14.2 0.40000 1.4 1.50134 5.4956 14.3 0.20000 1.2 1.45901 5.4020 14.5 0.24495 1.6 0.44422 10.1600 14.5 0.24495 1.6 0.44422 10.1600 14.7 0.63246 2.02 2.23473 5.3840 14.9 0.20000 1.2 1.48455 5.3780 14.10 0.4495 1.4 0.76846 4.2304 14.10 0.4495 1.4 0.76846 4.2304 15.1 0.24495 1.4 0.77916 8.1428 15.1 0.24495 1.4 0.77916 8.1428 15.1 0.24495 1.4 0.78893 <td></td>										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							2.06520			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	3		11	0.40000	1.6	2.05199	4.8560		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	4			0.73485	2.2	2.25043	8.7664		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	4		5	0.24495	1.6	0.44422	10.1600		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	4		6	0.40000	1.4	1.78876	6.9174		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	4		7	0.63246	2.0	2.32473	5.3840		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	4		8	0.24495	1.4	0.30606	6.6280		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	4		9	0.20000	1.2	1.48455	5.3780		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	4		10	0.40000	1.6	1.85190	4.5140		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	4		11	0.24495	1.4	0.47791	8.1428		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	5		1	0.24495	1.4	1.76846	4.2304		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	5		2	0.00000	1.0	1.48394	5.7140		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	5		3	0.40000	1.4	1.79744	4.3780		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	5		4	0.40000	1.6	0.57196	9.8240		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	5		5	0.37417	2.2	0.42024	10.0120		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	5		6	0.20000	1.2	0.58893	7.8980		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1			7	0.20000	1.2	2.21427	5.0000		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1			10						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5		11	0.20000		1.59805			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1			0.63246	4.0	1.16619	12.6000		
2 1 . 5 0.00000 5.0 0.67823 19.6000 2 1 . 6 0.70711 3.0 3.05614 12.2000 2 1 . 7 0.50990 3.6 1.37840 17.0000		1						13.2000		
2 1 . 6 0.70711 3.0 3.05614 12.2000 2 1 . 7 0.50990 3.6 1.37840 17.0000										
2 1 . 7 0.50990 3.6 1.37840 17.0000										
				6						
2 1 . 8 0.54772 4.0 0.73485 13.2000										
	2	1	•	8	0.54772	4.0	0.73485	13.2000		

Table 4: Means breakdown for short rains of 2008 and long rain season of 2009 continues
------ Effect=SEASON*FUNGI*REGION -------

				Effect=SE	ASON*FU	JNG	I*REGION		
			(c	ontinued)					
			S	td. Error	Std	l. Err	or		
				of M	lean of	of	Mean of		
Seasor	1	Fungi	farmers	Region	SEVERIT	ΓY	SEVERITY	IN	ICIDENCES
2	1		9	0.87178	3.6		1.2884	11	12.6000
$\frac{2}{2}$	1	•	10	0.37417	3.8		0.8000		15.2000
2	1		11	0.80000	3.2		3.5014		13.6000
2	2		1	0.50990	2.4		2.2970	-	8.9380
2	2		2	0.44721	2.0		2.4667	70	9.0020
2	2		3	0.58310	2.2		2.2052	21	8.7920
2	2		4	0.24495	3.4		0.3882	27	17.5920
2	2		5	0.70711	3.0		3.681	80	14.4220
2	2		6	0.81240	2.6		2.7494	18	10.9720
2	2		7	0.70711	3.0		3.258	61	12.3060

2	2	8	0.80000	2.2		2.74755	6.6080	
2	2	9	0.58310	2.2		1.37350	10.9180	
2	2	10	0.74833	3.6		2.87312	11.1500	
2	2	11	0.20000	4.8		1.05914	14.5760	
2	3	1	0.24495	2.4		2.00746	8.5920	
2	3	2	0.50990	2.4		2.49975	9.2100	
2	3	3	0.73485	2.2	2.32901	9.2980		
2	3	4	0.50990	3.6	0.33415	17.5280		
2	3	5	1.01980	3.8	0.71075	17.6600		
2	3	6	0.83666	3.0	2.67260	10.6900		
2	3	7	1.01980	3.8	1.27492	15.1900		
2	3	8	0.50990	2.4	0.68140	11.0460		
2	3	9	0.60000	2.6	1.19033	10.9040		
2	3	10	0.40000	3.6	0.83849	13.2900		
2	3	11	0.81240	3.4	0.79254	14.2560		
2	4	1	0.40000	1.6	0.84456	9.9340		
2	4	2	0.77460	2.0	2.27705	8.1000		
2 2	4	3	0.74833	2.4	0.39505	10.8340		
	4	4	0.66332	3.2	0.66675	17.4320		
2	4	5	1.24097	3.2	3.55269	13.9860		
2	4	6	0.50990	2.6	2.52653	10.1060		
2	4	7	1.28841	3.4	4.13875	10.0580		
2	4	8	0.92736	2.6	2.81868	6.8000		
2	4	9	0.37417	1.8	3.08044	7.2100		
2	4	10	0.37417	2.2	2.71211	10.1960		
2	4	11	0.87178	2.4	3.41860	8.2460		
2	5	1	0.58310	1.8	2.06569	7.5980		
2	5	2	0.80000	2.8	2.76271	6.3240		
2	5	3	0.63246	2.0	2.13710	8.4180		
2	5	4	0.60000	2.4	0.36308	16.7100		
2	5	5	0.86023	3.2	3.46719	13.6180		
2	5	6	0.92736	2.6	2.51652	10.0362		
2	5	7	0.40000	2.4	3.22257	11.8240		
2	5	8	0.80000	2.2	2.84676	6.9580		
2	5	9	0.77460	2.0	2.74595	4.2880		
2	5	10	0.80000	1.8	2.65988	10.2160		
2	5	11	0.80000	1.8	3.25000	3.2500		

Appendix 3: Disease severity and incidences of maize ear rot causing pathogens in Nyanza regions during short rains of 2008

Table 5: Anova for severity and incidences of maize ear rot causing pathogens in Nyanza regions during
short rains of 2008

ependent Variable:	
Source	Sum of DF Squares Mean Square F Value Pr > F
Model	114 157.1709091 1.3786922 1.26 0.0856
Error	160 174.4509091 1.0903182
Corrected Total	274 331.6218182
R-Square	Coeff Var Root MSE severity Mean
0.473946	60.19923 1.044183 1.734545
Source Fungi Region farmers Fungi*Region Fungi*farmers farmers*Region	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
ependent Variable:	incidences Sum of
Source	DF Squares Mean Square F Value $Pr > F$
Model	114 1682.578135 14.759457 1.63 0.0023
Error	160 1451.548991 9.072181
Corrected Total	274 3134.127126
R-Square 0.536857	Coeff VarRoot MSEincidences Mean43.412333.0120066.938135
Source Fungi Region farmers Fungi*Region Fungi*farmers farmers*Region	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 6: LSD tests for severity and incidences of maize ear rot causing pathogens in Nyanza during short rains of 2008

NOTE: 1. This test controls the Type I comparison wise error rate, not the experiment wise error rate.
2. Fungi 1, 2, 3, 4, 5 are Diplodia (*Stenocarpella spp*), Giberella, Nigrospora, Fusarium, and other fungi respectively; Regions 1, 2, 3, 4, 5, 6, 7, 8, 9, are Kombewa, Kasipul, Kabondo, Sakwa, Imbo , Rangwe, Asego, Awendo, Rongo, Madiany, and Asembo, and Madiany respectively.

LSD tests for Severity in Fungi, Regions, and farmers

Alpha 0.05 Error Degrees of Freedom 160 1.090318 Error Mean Square Critical Value of t 1.97490 Least Significant Difference 0.3932 Means with the same letter are not significantly different. t Grouping Mean N Fungi А 2.1273 55 1 Α В 1.8364 55 2 А В А В 1.7818 55 3 А В С В 1.5455 55 4 С С 1.3818 55 5 Alpha 0.05 Error Degrees of Freedom 160 Error Mean Square 1.090318 Critical Value of t 1.97490 Least Significant Difference 0.5833 Means with the same letter are not significantly different. t Grouping Mean N Region 2.0400 25 5 А

Α			
A	2.0400	25	4
A A	1.9600	25	7
A			
A A	1.8400	25	3
А	1.7200	25	1
A A	1.6400	25	6
А		-	
A A	1.6400	25	9
А	1.6000	25	10
A A	1.6000	25	11
А			
A A	1.5200	25	2
 A	1.4800	25	8

Table 6: LSD tests for incidences of maize ear rot causing pathogens in Nyanza during short rains of 2008 continues

0.05

Alpha	0.05	
Error Degrees of Fre	eedom	160
Error Mean Square	1.0	90318
Critical Value of t	1.97	490
Least Significant Di	fference	0.3932

Means with the same letter are not significantly different.

t Gro	uping	Mea	ın	Ν	farmers
	А	1.9091	55	1	
	А				
В	А	1.8000	55	2	
В	А				
В	Α	1.8000	55	4	
В	А				
В	А	1.6545	55	5	
В					
В		1.5091	55	3	

LSD tests for incidences in Fungi, Regions, and farmers

Alpha Error Degrees of Freedom 160 Error Mean Square 9.072181 Critical Value of t 1.97490 Least Significant Difference 1.1343

Means with the same letter are not significantly different. t Grouping Mean N Fungi

А	8.4000	55	1	
В	6.9647	55	3	
В				
В	6.6338	55	2	
В				
В	6.4487	55	4	
В				
В	6.2434	55	5	
Alpha			0.05	
Error I	Degrees of	Free	dom	160
Error N	Aean Squa	re	9.0	072181
Critica	l Value of	t	1.97	490
Least S	Significant	Diffe	erence	1.6825

Means with the same letter are not significantly different.

t C	brouping	Mea	n	N	Region
	А	9.8125	25	4	
	A A	9.5968	25	5	
В	A A	8.1315	25	6	
B B	С	6.8568	25	7	
B B	C C	6.7167	25	11	l

B C				
B C	D	6.5668	25	10
С	D			
С	D	6.0896	25	8
С	D			
С	D	6.0228	25	9
С	D			
С	D	6.0099	25	2
С	D			
С	D	5.5312	25	3
	D			
	D	4.9849	25	1

 Table 6: LSD tests for incidences of maize ear rot causing pathogens in Nyanza during short rains of 2008 continues

Alpha0.05Error Degrees of Freedom160Error Mean Square9.072181Critical Value of t1.97490Least Significant Difference1.1343

Means with the same letter are not significantly different. t Grouping Mean N farmers

A	7.9289	55	2	
A B A	6.8670	55	1	
B B	6.7880	55	5	
ь В	0.7880	33	3	
В	6.6104	55	4	
В				
В	6.4964	55	3	

Table 7: Correlation analysis of short rains season of 2008

5 Va	ariables:	Fungi	farmers Statistics	Region	severity	incidences
		Simple	Statistics			
Variable	Ν	Mean	Std Dev	Sum	Minimur	n Maximum Label
Fungi	275 3.	.00000	1.41679	825.00000	1.000	00 5.00000 Fungi
farmers	275 3	3.00000	1.41679	825.00000	0 1.000	00 5.00000 farmers
Region	275 6	5.00000	3.16804	1650	1.00000	11.00000 Region
severity	275 1	.73455	1.10014	477.00000) 1.000	00 12.00000 severity
incidences	275	6.93813	3.38207	1908	0	13.00000 incidences
			ation Coef under H0:	ficients, N Rho=0	= 275	
	Fungi	farme	ers Re	gion sev	verity i	ncidences
Fungi Fungi	1.000	000 0. 1.000	.00000 00 1.0	0.00000 000 0.0	-0.2294 0001	7 -0.18844 0.0017
farmers farmers	0.000		.00000	0.00000 0000 0.	-0.0655 2786	56 -0.06186 0.3067

Region Region	0.00000 1.0000	$0.00000 \\ 1.0000$	1.00000 0.3	-0.05445 3684 0.7	0.01853 7597	
severity severity	-0.22947 0.0001	-0.06556 0.2786	-0.05445 0.3684	1.00000 <.0	0.35649 001	
incidences incidences	-0.18844 0.0017	-0.06186 0.3067	0.01853 0.7597	0.35649 <.0001	1.00000	

Table 8: Means breakdown for short rains season of 2008

			Effe	ct=FARMEI	RS			-
		S	Std. Error	Std.	Error			
			of N	Aean of	of Mea	n of		
Season	Fungi	farmers	Region	SEVERIT	Y SEVER	RITY	INCIDENCES	INCIDENCES
•	. 1		0.14040	1.90909	0.50695	6.86	5702	
	. 2		0.12818	1.80000	0.34699	7.92	2887	
	. 3		0.11273	1.50909	0.42574	6.49	644	
	. 4		0.21927	1.80000	0.47458	6.61	.036	
	. 5		0.11376	1.65455	0.49708	6.78	5798	
			Effe	ect=FUNGI				
		S	Std. Error	Std.	Error			
			of N	Aean of	of Mea	n of		
Season	Fungi	farmers	Region	SEVERIT	Y SEVER	ITY	INCIDENCES	INCIDENCES
	1.		0.15364	2.12727	0.28966	8.40	0000	
	2.		0.21203	1.83636	0.46161	6.63	382	
	3.		0.11515	1.78182	0.47434	6.96	5473	
	4.		0.11840	1.54545	0.49233	6.44	875	
	5.		0.09878	1.38182	0.48601	6.24	338	

Table 8: Means breakdown for short rains season of 2008 continues

				Effe	ct=Overall					
			S	Std. Error	St	td. Err	or			
				of N	lean of	of	Me	ean of		
Seaso	n	Fungi	farmers	Region	SEVERI	ITΥ	SEVE	RITY	INCIDENCES	INCIDENCES
		•		•						
			. (0.066341	1.73455	0.	20395	6.93	3813	
				Effe	ct=REGIO)N				
			S	Std. Error	St	td. Err	or			
				of N	lean of	of	Me	ean of		
Seaso	n	Fungi	farmers	Region	SEVERI	ITY	SEVE	RITY	INCIDENCES	INCIDENCES
		-		Ū.						
			1	0.16852	1.72	0.65	6034	4.984	88	
			2	0.17436	1.52	0.57	/446	6.009	92	
			3	0.44602	1.84	0.60	269	5.531	20	
			4	0.21970	2.04	0.63	3116	9.812	48	
			5	0.19562	2.04	0.60)799	9.596	80	
			6	0.17205	1.64	0.41	634	8.131	48	
			7	0.21197	1.96	0.87	056	6.856	580	
			8	0.15406	1.48		3243	6.089		
			9	0.19044	1.64		839	6.022		
•	•	•	10	0.17321	1.60			6.56		
•	•	•	10	0.16330	1.60		3022	6.716		
•	•	•	11	0.10550	1.00	0.0	5622	0.710	512	

		S	td. Error	St	d. Error		
				lean of		an of	
eason	Fungi	farmers	Region	SEVER	TY SEVE	RITY INCIDENCES	INCIDENCES
1.			0.066341	1.7345	5 0.20395	6.93813	
		S	td. Error	St	d. Error		
			of M	lean of	of Me	an of	
Season	Fungi	farmers	Region	SEVER	TY SEVE	RITY INCIDENCES	INCIDENCES
	1	1	0.40000	1.6	1.50421	5.9244	
	1	2	0.63246	2.0	1.88680	4.6000	
	1	3	0.40000	1.6	1.38550	5.5400	
	1	4	0.40000	2.4	0.52370	10.0764	
		5	0.73485	2.2	0.19965	10.4900	
	1	6	0.40000	1.6	0.17958	9.6154	
	1	7	0.58310	2.2	1.98303	7.9300	
		8	0.24495	1.6	1.41051	3.4500	
		9	0.40000	1.6	1.36534	5.4160	
		10	0.44721	2.0	1.94062	4.7500	
		11	0.58310	2.2	1.94688	7.7450	
	2	1	0.40000	1.6	1.39815	3.3960	
• •	2	2	0.37417	1.8	0.22472	8.4896	
		3	0.20000	1.2	0.30060	5.9600	
• •	2	4	0.44721	2.0	0.19265	9.5520	
• •	2	5	0.24495	2.4	0.28856	11.3420	
	2	6	0.58310	1.8	0.36371	8.2740	
• •	2	7	0.37417	2.2	0.19314	10.5380	
• •	2	8	0.60000	1.6	0.18718	7.5940	
• •	2	9	0.63246	2.0	1.67528	6.5660	
• •	2	10	0.37417	1.8	0.47119	8.5460	
• •	2	11	0.40000	1.4	0.34729	6.9600	
• •	3	1	0.44721	2.0	1.46732	5.8180	
• •	3	2	0.20000	1.2	0.23066	6.3620	
• •		3 4	0.00000	1.0	1.15745	4.6000	
• •			0.40000	1.6	2.09405	8.3380	
• •		5 6	0.48990	1.8	0.24981	9.5020	
• •		6 7	0.44721 0.60000	2.0	0.19304	9.5420	
• •	3 3	8	0.80000	1.0 1.4	1.64499 1.28831	4.0160 5.1100	
• •	3	8 9	0.24493	1.4 1.0	0.94304	3.7540	
• •	3	9 10	0.48990	1.0	0.94304 1.69967	6.7700	
• •	3	10	0.48990	1.8	0.22129	7.6488	
• •	3 4	1	0.24495	1.2 1.6	1.31460	5.2060	
• •	4	2	0.24493	1.0 1.6	1.52394	6.0380	
• •	4	3	2.11187	3.6	1.91445	4.6820	
• •	4	4	0.74833	2.6	2.28661	9.1180	
• •	4	4 5	0.37417	2.0	2.28001	9.1360	
• •	4	6	0.24495	1.4	0.44673	7.8440	
• •	4	7	0.24495	1.4	1.33327	3.2400	
• •	4	8	0.40000	1.4	0.13841	7.6660	
• •	4	9	0.24495	1.4	0.15088	7.6960	

------ Effect=FARMERS*REGION ------(continued) Std. Error Std. Error 98

Seaso	on	Fungi	farmers	of M Region	lean of SEVERI		an of RITY INCIDEN	CES	INCIDENCES
		-		-					
		4	10	0.00000	1.0	0.17148	7.5420		
	•	4	11	0.24495	1.6	1.86000	4.5460		
•	•	5	1	0.48990	1.8	1.87376	4.5800		
•	•	5	2	0.00000	1.0	1.15032	4.5600		
•	•	5	3	0.48990	1.8	1.72872	6.8740		
•	•	5	4	0.40000	1.6	0.39377	11.9780		
•	•	5	5	0.24495	1.6	1.88590	7.5140		
•	•	5	6	0.24495	1.4	1.35475	5.3820		
•	•	5	7	0.50990	2.4	2.14334	8.5600		
•	•	5	8	0.24495	1.4	0.19304	6.6280		
•	•	5	9	0.48990	2.2	1.70239	6.6820		
•	•	5	10	0.40000	1.4	1.32045	5.2260		
•	·	5	11	0.24495	1.6	1.67967	6.6838		
			3	td. Error		l. Error	on of		
Saac		Fungi	farmers	of M Region	lean of SEVERI		an of RITY INCIDEN	CES	INCIDENCES
Sease	л 1	-		0.30424	3.27273		8.09091	CES	INCIDENCES
•	1		•	0.30424	3.09091		8.72727		
•	1		•	0.23002	1.27273		8.00000		
•	1		•	0.20730	1.54545		8.45455		
•	1		•	0.15746	1.45455		8.72727		
•	2		•	0.25062	2.09091		6.70909		
•	2			0.22636	1.81818		7.92727		
•	2			0.19498	1.27273		6.23364		
	2	4		0.96638	2.54545		5.65909		
	2	5		0.15746	1.45455		6.64000		
	3			0.23706	1.72727		7.74818		
	3			0.20730	1.54545		8.51455		
	3			0.31492	2.09091	1.06620	6.31636		
	3			0.24393	1.63636		5.40273		
	3	5		0.28459	1.90909	1.17309	6.84182		
	4	1		0.14084	1.27273		4.92400		
•	4	2		0.20730	1.45455	0.86347	7.62709		
	4	3		0.24393	1.36364	0.76771	6.29000		
	4	4		0.35675	2.00000	0.89204	7.28000		
	4	5		0.30963	1.63636		6.12264		
	5			0.12197	1.18182		6.86291		
	5	2		0.09091	1.09091	1.08333	6.84818		
	5			0.24730	1.54545		5.64218		
	5		•	0.19498	1.27273		6.25545		
	5	5	•	0.32525	1.81818	1.17859	5.60818		

				Effect=	FUNGI*F	REGIO	DN			
			S	td. Error	Std. Error					
				of N	lean of	of	Me	an of		
Seaso	n	Fungi	farmers	Region	SEVERI	ΤY	SEVE	RITY	INCIDENCES	INCIDENCES
	1		1	0.48990	2.2	0.37	417	7.200	00	
	1		2	0.63246	2.0	0.50)990	7.60	00	
	1		3	0.40000	1.6	0.58	310	7.200	00	
	1		4	0.48990	2.2	0.50	990	11.40	00	
	1		5	0.74833	2.4	0.44	721	11.00	00	
	1		6	0.50990	2.4	0.58	310	8.800	00	

			-	0 50000	2.4	1.0.4001	0.000		
•	1	•	7	0.50990	2.4	1.04881	9.000		
•	1	•	8	0.58310	1.8	1.51658	6.000		
•	1	•	9	0.58310	2.2	0.74833	7.600		
•	1	•	10	0.48990	1.8	0.37417	8.20		
•	1	•	11	0.50990	2.4	0.50990	8.40		
•	2		1	0.37417	1.8	1.57404	3.760		
	2		2	0.40000	1.6	1.39800	5.380	00	
•	2		3	2.15870	3.4	1.38290	5.154	0	
	2		4	0.48990	1.8	0.31145	10.45	00	
	2		5	0.31623	2.0	2.09724	8.220	00	
	2		6	0.24495	1.6	0.68037	8.230	00	
	2		7	0.31623	2.0	2.07332	7.180	00	
	2		8	0.24495	1.4	0.39441	6.610		
	2		9	0.40000	1.6	1.64701	5.938		
-	2		10	0.40000	1.6	1.58149			
•	2		11	0.24495	1.4	1.54162	5.96		
•	3		1	0.40000	1.6	1.42812	5.586		
•	3		2	0.24495	1.6	1.55075	5.860		
•	3		3	0.24495	1.6	1.48887	5.522		
•			4	0.40000	2.4	2.20062	8.622		
•	3								
•	3		5	0.44721	2.0	2.18547	8.592		
•	3		6	0.40000	1.6	0.48869	8.812		
•	3		7	0.58310	2.2	2.06520	7.720		
•	3		8	0.37417	1.8	1.47636	5.738		
•	3		9	0.24495	1.6	0.69091	7.072		
•	3		10	0.40000	1.6	0.47302	8.23		
	3		11	0.40000	1.6	2.05199	4.85	60	
•	4		1	0.40000	1.6	1.70120	4.148	30	
	4		2	0.40000	1.4	1.50134	5.495	6	
	4		3	0.20000	1.2	1.45901	5.402	20	
	4		4	0.73485	2.2	2.25043	8.766	54	
	4		5	0.24495	1.6	0.44422	10.16	00	
	4		6	0.40000	1.4	1.78876	6.917	/4	
	4		7	0.63246	2.0	2.32473	5.384		
	4		8	0.24495	1.4	0.30606	6.628		
•	4		9	0.20000	1.2	1.48455	5.378		
•	4		10	0.40000	1.6	1.85190	4.51		
•	4		10	0.24495	1.0	0.47791	8.14		
•	5		1	0.24495	1.4	1.76846	4.230		
•	5		2	0.00000	1.4	1.48394			
•				0.40000	1.0	1.48394	1 270		
·	5	•				1./9/44	4.378		
•	5	•		0.40000 0.37417	1.6	0.57196 0.42024	9.824	10 20	
•	5								
•	5			0.20000					
•	5				1.2				
					FUNGI*	REGION			
				ontinued)					
			S	td. Error		td. Error			
		_		of M	lean of		Mean of		
Seaso	on	Fungi	farmers	Region	SEVER	ITY SEV	ERITY	INCIDENCES	INCIDENCES
•	5	•	8 9	0.0	1.0	1.40881	5.4720		
	5		9	0.6	1.6	1.69882	4.1260		
	5		10	0.4	1.4	1.49645	5.7980		
	5		8 9 10 11	0.2	1.2	1.59805	6.2248		
				td. Error		td. Error			
							Mean of		
Seaso	on	Fungi	farmers					INCIDENCES	INCIDENCES
		-0-		0					

1	•	1		0.14040	1.90909	0.50695	6.86702	
1		2		0.12818	1.80000	0.34699	7.92887	
1		3		0.11273	1.50909	0.42574	6.49644	
1		4		0.21927	1.80000	0.47458	6.61036	
1		5		0.11376	1.65455	0.49708	6.78798	
				Effect	=SEASON*FU	JNGI		
			S	td. Error	Std. E	Error		
				of N	Mean of of	f Mea	an of	
Season	Fι	ıngi	farmers	Region	SEVERITY	SEVE	RITY INCIDENCES	INCIDENCES
1	1			0.15364	2.12727	0.28966	8.40000	
1	2			0.21203	1.83636	0.46161	6.63382	
1	3			0.11515	1.78182	0.47434	6.96473	
1	4			0.11840	1.54545	0.49233	6.44875	
1	5			0.09878	1.38182	0.48601	6.24338	

			Effect=	SEASON	*REGI	ON			
			td. Error		d. Erro				
			of M	ean of	of	Mea	an of		
Season	Fungi	farmers	Region	SEVERI	TY 3	SEVEF	RITY	INCIDENCES	INCIDENCES
		1	0.16852	1.72	0.65	034	4.984	88	
1		2	0.17436	1.52	0.57	446	6.009	92	
1		3	0.44602	1.84	0.60	269	5.531	20	
1		4	0.21970	2.04	0.63	116	9.812	48	
1		5		2.04	0.60	799	9.596	80	
1		6	0.17205	1.64	0.41	634	8.131	48	
1		7	0.21197	1.96 1.48	0.87	056	6.856	80	
1		8	0.15406	1.48	0.48	243	6.089	60	
1		9	0.19044	1.64	0.59	839	6.022	80	
1		10	0.17321	1.60	0.60)970	6.566	580	
1		11	0.16330	1.60	0.63	3022	6.716	572	
			Effect=SEA	ASON*FA	ARMEI	RS*RE	GION		
		S	td. Error	St	d. Erro	r			
			of M	ean of			an of		
Season	Fungi	farmers		SEVERI	TY	SEVEF	RITY	INCIDENCES	INCIDENCES
	. 1	1	0.40000	1.6	1.50		5.924	14	
1	. 1	2	0.63246	2.0	1.88	680	4.600	00	
	. 1	3	0.40000	1.6	1.38	550	5.540	00	
	. 1	4	0.40000	2.4	0.52		10.07	64	
1	. 1	5	0.73485	2.2	0.19	965	10.49	00	
1	. 1	6	0.40000	1.6	0.17	958	9.615	54	
1	. 1	7	0.58310	2.2	1.98		7.930	00	
	. 1	8	0.24495	1.6	1.41	051	3.450	00	
1	. 1	9	0.40000	1.6	1.36	534	5.416	50	
1	. 1	10	0.44721	2.0		4062	4.75		
1	. 1	11	0.58310	2.2	1.94	688	7.74	50	
1	. 2	1	0.40000	1.6	1.39		3.396		
	. 2	2	0.37417	1.8	0.22		8.489		
	. 2	3	0.20000	1.2	0.30	060	5.960	00	
1	. 2	4	0.44721	2.0	0.19	265	9.552	20	
1	. 2	5	0.24495	2.4	0.28	856	11.34	20	
1	. 2	6	0.58310	1.8	0.36		8.274		
1	. 2	7	0.37417	2.2	0.19		10.53		
				ASON*FA	ARMEI	RS*RE	GION		
			ontinued)						
		S	td. Error		d. Erro				
			of M	ean of	of	Mea	an of		
					4.0				

101

Season	Fungi	farmers	Region	SEVERIT	TY SEVE	RITY INC	CIDENCES	INCIDENCES
1	. 2	8	0.60000	1.6	0.18718	7.5940		
1	. 2	9	0.63246	2.0	1.67528	6.5660		
1	. 2	10	0.37417	1.8	0.47119	8.5460		
1	. 2	11	0.40000	1.4	0.34729	6.9600		
1	. 3	1	0.44721	2.0	1.46732	5.8180		
1	. 3	2	0.20000	1.2	0.23066	6.3620		
1	. 3	3	0.00000	1.0	1.15745	4.6000		
1	. 3	4	0.40000	1.6	2.09405	8.3380		
1	. 3	5	0.48990	1.8	0.24981	9.5020		
1	. 3	6	0.44721	2.0	0.19304	9.5420		
1	. 3	7	0.60000	1.6	1.64499	4.0160		
1	. 3	8	0.24495	1.4	1.28831	5.1100		
1	. 3	9	0.00000	1.0	0.94304	3.7540		
1	. 3	10	0.48990	1.8	1.69967	6.7700		
1	. 3	11	0.20000	1.2	0.22129	7.6488		
1	. 4	1	0.24495	1.6	1.31460	5.2060		
1	. 4	2	0.40000	1.6	1.52394	6.0380		
1	. 4	3	2.11187	3.6	1.91445	4.6820		
1	. 4	4	0.74833	2.6	2.28661	9.1180		
1	. 4	5	0.37417	2.2	2.29056	9.1360		
1	. 4	6	0.24495	1.4	0.44673	7.8440		
1	. 4	7	0.24495	1.4	1.33327	3.2400		
1	. 4	8	0.40000	1.4	0.13841	7.6660		
1	. 4	9	0.24495	1.4	0.15088	7.6960		
1	. 4	10	0.00000	1.0	0.17148	7.5420		
1	. 4	11	0.24495	1.6	1.86000	4.5460		
1	. 5	1	0.48990	1.8	1.87376	4.5800		
1	. 5	2	0.00000	1.0	1.15032	4.5600		
1	. 5	3	0.48990	1.8	1.72872	6.8740		
1	. 5	4	0.40000	1.6	0.39377	11.9780		
1	. 5	5	0.24495	1.6	1.88590	7.5140		
1	. 5	6	0.24495	1.4	1.35475	5.3820		
1	. 5	7	0.50990	2.4	2.14334	8.5600		
1	. 5	8	0.24495	1.4	0.19304	6.6280		
1	. 5	9	0.48990	2.2	1.70239	6.6820		
1	. 5	10	0.40000	1.4	1.32045	5.2260		
1	. 5	11	0.24495	1.6	1.67967	6.6838		

Effect=SEASON*FUNGI*FARMERS													
Std. Error Std. Error													
				of M	lean of of	Mean	of						
Season	Fun	gi	farmers	Region	SEVERITY	SEVERI	ΤY	INCIDENCES	INCIDENCES				
1	1	1	•	0.30424	3.27273	0.93861	8.0	9091					
1	1	2		0.25062	3.09091	0.57352	8.7	2727					
1	1	3		0.19498	1.27273	0.55596	8.0	00000					
1	1	4		0.20730	1.54545	0.56187	8.4	5455					
1	1	5		0.15746	1.45455	0.61925	8.7	2727					
]	Effect=SEA	ASON*FUNC	JI*FARME	RS -						
			(c	ontinued)									
			S	td. Error	Std. E	rror							
				of M	ean of of	Mean	of						
Season	Fun	gi	farmers	Region	SEVERITY	SEVERI	ΤY	INCIDENCES	INCIDENCES				
1	2	1		-	2.09091			'0909					
1	2	2		0.22636	1.81818	0.65200	7.9	2727					
1	2	3		0.19498	1.27273	1.10160	6.2	3364					
1	1 Fun; 2 2	5 1 2	(co Si	0.15746 Effect=SEA ontinued) td. Error of M Region 0.25062 0.22636	1.45455 ASON*FUNC Std. E lean of of SEVERITY 2.09091 1.81818	0.61925 3I*FARME rror SEVERI 1.11138 0.65200	8.7 RS n of TY 6.7 7.9	2727 INCIDENCES 0909 2727					

1	2	4		0.96638	2.54545	1.17222	5.65909	
1	2	5		0.15746	1.45455	1.10742	6.64000	
1	3	1		0.23706	1.72727	0.90609	7.74818	
1	3	2		0.20730	1.54545	0.59465	8.51455	
1	3	3		0.31492	2.09091	1.06620	6.31636	
1	3	4		0.24393	1.63636	1.34104	5.40273	
1	3	5		0.28459	1.90909	1.17309	6.84182	
1	4	1		0.14084	1.27273	1.49198	4.92400	
1	4	2		0.20730	1.45455	0.86347	7.62709	
1	4	3		0.24393	1.36364	0.76771	6.29000	
1	4	4		0.35675	2.00000	0.89204	7.28000	
1	4	5		0.30963	1.63636		6.12264	
1	5	1		0.12197	1.18182	1.08089	6.86291	
1	5	2		0.09091	1.09091	1.08333	6.84818	
1	5	3		0.24730	1.54545	1.15402	5.64218	
1	5	4		0.19498	1.27273	1.07859	6.25545	
1	5	5		0.32525	1.81818	1.17859	5.60818	
							ON	
				td. Error		. Error		
				of M	ean of	of Mea	an of	
Season	Fun	gi	farmers	Region	SEVERIT	Y SEVER	RITY INCIDENCES	INCIDENCES
1	1		1	0.48990	2.2	0.37417	7.200	
1	1		2	0.63246	2.0	0.50990	7.600	
1	1		3	0.40000	1.6	0.58310	7.200	
1	1		4	0.48990	2.2	0.50990	11.400	
1	1		5	0.74833	2.4	0.44721	11.000	
1	1	•	6	0.50990	2.4	0.58310	8.800	
1	1		7	0.50990	2.4	1.04881	9.000	
1	1		8	0.58310	1.8	1.51658	6.000	
1	1		9	0.58310	2.2	0.74833	7.600	
1	1	•	10	0.48990	1.8	0.37417	8.200	
1	1		11	0.50990	2.4	0.50990	8.400	
1	2		1	0.37417	1.8	1.57404	3.760	
1	2	•	2	0.40000	1.6	1.39800	5.380	
1	2		3	2.15870	3.4	1.38290	5.154	
1	2		4	0.48990	1.8	0.31145	10.450	
1	2		5	0.31623	2.0	2.09724	8.220	
1	2		6	0.24495	1.6	0.68037	8.230	
1	2	•	7	0.31623	2.0	2.07332	7.180	
1	2		8	0.24495	1.4	0.39441	6.610	
1	2		9	0.40000	1.6	1.64701	5.938	
1	2		10	0.40000	1.6	1.58149	6.090	
1	2		11	0.24495	1.4	1.54162	5.960	

				Effect=SE	ASON*F	FUNG	*REGION -		
			(c	ontinued)					
			S	td. Error	S	td. Err	or		
				of M	lean of	of	Mean o	f	
Sea	son	Fungi	farmers	Region	SEVER	ITY	SEVERITY	INCIDENCES	INCIDENCES
1		3.	1	0.40000	1.6	1.42	2812 5.:	5860	
1		3.	2	0.24495	1.6	1.5	5075 5.	8600	
1		3.	3	0.40000	1.6	1.48	8887 5.:	5220	
1		3.	4	0.40000	2.4	2.20	0062 8.	5220	
1		3.	5	0.44721	2.0	2.18	8547 8.:	5920	
1		3.	6	0.40000	1.6	0.48	8869 8.3	8120	

1	3	7	0.58310	2.2	2.06520	7.7200
1	3	8	0.37417	1.8	1.47636	5.7380
1	3	9	0.24495	1.6	0.69091	7.0720
1	3	10	0.40000	1.6	0.47302	8.2320
1	3	11	0.40000	1.6	2.05199	4.8560
1	4	1	0.40000	1.6	1.70120	4.1480
1	4	2	0.40000	1.4	1.50134	5.4956
1	4	3	0.20000	1.2	1.45901	5.4020
1	4	4	0.73485	2.2	2.25043	8.7664
1	4	5	0.24495	1.6	0.44422	10.1600
1	4	6	0.40000	1.4	1.78876	6.9174
1	4	7	0.63246	2.0	2.32473	5.3840
1	4	8	0.24495	1.4	0.30606	6.6280
1	4	9	0.20000	1.2	1.48455	5.3780
1	4	10	0.40000	1.6	1.85190	4.5140
1	4	11	0.24495	1.4	0.47791	8.1428
1	5	1	0.24495	1.4	1.76846	4.2304
1	5	2	0.00000	1.0	1.48394	5.7140
1	5	3	0.40000	1.4	1.79744	4.3780
1	5	4	0.40000	1.6	0.57196	9.8240
1	5	5	0.37417	2.2	0.42024	10.0120
1	5	6	0.20000	1.2	0.58893	7.8980
1	5	7	0.20000	1.2	2.21427	5.0000
1	5	8	0.00000	1.0	1.40881	5.4720
1	5	9	0.60000	1.6	1.69882	4.1260
1	5	10	0.40000	1.4	1.49645	5.7980
1	5	11	0.20000	1.2	1.59805	6.2248

Appendix 4: Disease severity and incidences of maize ear rot causing pathogens in Nyanza regions during long rains of 2009

Table 9: Anova for severity and incidences of maize ear rot causing pathogens in Nyanza during long rains season of 2009

pendent Variable:	severity
,	Sum of
Source	DF Squares Mean Square F Value $Pr > F$
Model	114 342.5309091 3.0046571 1.27 0.0798
Error	160 377.7090909 2.3606818
Corrected Total	274 720.2400000
R-Square	Coeff Var Root MSE severity Mean
0.475579	52.61819 1.536451 2.920000
Source	DF Type I SS Mean Square F Value $Pr > F$
Fungi	4 93.8400000 23.4600000 9.94 <.0001
Region	10 43.200000 4.3200000 1.83 0.0593
farmers	4 6.7127273 1.6781818 0.71 0.5856
Fungi*Region	40 60.4000000 1.5100000 0.64 0.9507
Fungi*farmers	16 100.0509091 6.2531818 2.65 0.0010
farmers*Region	40 38.3272727 0.9581818 0.41 0.9994
pendent Variable: Source	incidences Sum of DF Squares Mean Square F Value Pr > F
Model	
Model	114 6327.307752 55.502700 2.92 <.0001
Error	160 3037.474374 18.984215
Corrected Total	274 9364.782127
R-Square	Coeff Var Root MSE incidences Mean
0.675649	37.68620 4.357088 11.56149
Source	DF Type I SS Mean Square F Value Pr > F
Fungi	4 1012.880689 253.220172 13.34 <.0001
Region	10 2158.804543 215.880454 11.37 <.0001
	4 150 1 (20 (0) 20 20 2 (5 0) 10 0 0 0 0 0
farmers	4 159.163060 39.790765 2.10 0.0838
farmers Fungi*Region	40 552.089365 13.802234 0.73 0.8811
farmers	

Table 10: LSD tests for severity and incidences of maize ear rot causing pathogens in Nyanza during long rains season of 2009

NOTE: 1. This test controls the Type I comparison wise error rate, not the experiment wise error rate. 2. Fungi 1, 2, 3, 4, 5 are Diplodia (*Stenocarpella spp*), Giberella, Nigrospora, Fusarium, and other fungi respectively; Regions 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 are Kombewa, Kasipul, Kabondo, Sakwa, Imbo, Rangwe, Asego, Awendo, Rongo, Madiany, and Asembo, and Madiany respectively

LSD tests for severity in Fungi, Regions, and farmers Alpha 0.05 Error Degrees of Freedom 160 Error Mean Square 2.360682 Critical Value of t 1.97490 Least Significant Difference 0.5786 Means with the same letter are not significantly different t Grouping Mean N Fungi Α 3.9636 55 1 3.0182 В 55 3 В В 2.8545 55 2 В С В 2.4909 55 4 С С 2.2727 55 5 Alpha 0.05 Error Degrees of Freedom 160 Error Mean Square 2.360682 Critical Value of t 1.97490 Least Significant Difference 0.8582 Means with the same letter are not significantly different. t Grouping Mean N Region А 3.6400 25 5 А В А 3.5200 25 4 В Α В А С 3.2400 25 7 В А С С В А 3.1200 25 11 В Α С В Α С 3.0000 10 25 В С В С 2.760025 6 С В В С 2.6800 25 8 C C 2.6400 25 3 С С 2.6400 25 2 С С 2.4400 25 1 С С 2.4400 25 9 Alpha 0.05 Error Degrees of Freedom 160 Error Mean Square 2.360682 Critical Value of t 1.97490 Least Significant Difference 0.5786 Means with the same letter are not significantly different. t Grouping Mean N farmers 3.1273 А 55 5 А 3.0727 55 2 А 2.8909 55 1 А 2.7636 55 3

LSD tests for incidences in Fungi, Regions, and farmers continues Alpha 0.05 Error Degrees of Freedom 160 Error Mean Square 18.98421 Critical Value of t 1.97490 Least Significant Difference 1.6409 Means with the same letter are not significantly different. t Grouping Mean N Fungi Α 14.6182 55 1 55 3 В 12.5149 В С В 11.3887 2 55 С С D 10.2638 55 4 D D 9.0218 55 5 Alpha 0.05 Error Degrees of Freedom 160 Error Mean Square 18.98421 Critical Value of t 1.97490 Least Significant Difference 2.4338 Means with the same letter are not significantly different. t Grouping Mean N Region 25 4 А 17.732 15.857 25 5 А В 13.276 25 7 В С В 12.010 25 10 С С D 10.801 25 6 С D С D 10.786 25 11 С D С D 10.108 25 3 D D 9.452 25 1 D D 9.184 25 9 D D 9.047 25 2 D D 8.922 25 8 0.05 Alpha Error Degrees of Freedom 160 Error Mean Square 18.98421 Critical Value of t 1.97490 Least Significant Difference 1.6409 Means with the same letter are not significantly different. t Grouping Mean N farmers А 12.4453 55 5 А 55 2 А 12.0849 107

	А			
В	А	11.9185	55	1
В	Α			
В	Α	10.9578	55	4
В				
В		10.4009	55	3

Table 11: Correlation analysis of long rains season of 2009

Table 11: Correlation analysis of long rains season of 2009
5 Variables: Fungi farmers Region severity incidences
Simple Statistics
Variable N Mean Std Dev Sum Minimum Maximum Label
Fungi 275 3.00000 1.41679 825.00000 1.00000 5.00000 Fungi
farmers 275 3.00000 1.41679 825.00000 1.00000 5.00000 farmers
Region 275 6.00000 3.16804 1650 1.00000 11.00000 Region
severity 275 2.92000 1.62130 803.00000 1.00000 8.00000 severity
incidences 275 11.56149 5.84620 3179 0 22.00000 incidences
Pearson Correlation Coefficients, $N = 275$
Prob > r under H0: Rho=0
Fungi farmers Region severity incidences
Fungi 1.00000 0.00000 0.00000 -0.32730 -0.29851
Fungi 1.0000 1.0000 <.0001 <.0001
former 0.00000 1.00000 0.00000 0.01271 0.00179
farmers 0.00000 1.00000 0.00000 0.01271 -0.00178
farmers 1.0000 1.0000 0.8338 0.9765
Region 0.00000 0.00000 1.00000 0.03837 -0.02195
Region 1.0000 1.0000 0.5263 0.7170
severity -0.32730 0.01271 0.03837 1.00000 0.59028
severity <.0001 0.8338 0.5263 <.0001
incidences -0.29851 -0.00178 -0.02195 0.59028 1.00000
incidences <.0001 0.9765 0.7170 <.0001
Table 12: Means breakdown for long rains season of 2009
Effect=FARMERS
Std. Error Std. Error
of Mean of Mean of
Fungi farmers Region SEVERITY SEVERITY INCIDENCES INCIDENCES
. 1 . 0.20046 2.89091 0.72961 11.9185
. 2 . 0.21997 3.07273 0.82569 12.0849
. 3 . 0.21860 2.76364 0.79769 10.4009
. 4 . 0.20304 2.74545 0.73968 10.9578
. 5 . 0.25033 3.12727 0.83786 12.4453
Effect=FUNGI

		Std. Error	Std	l. Error		
		of 1	Mean of	of Mean	of	
Fungi	farmers	Region S	SEVERITY	SEVERITY	INCIDENCES	INCIDENCES
1		0.17593	3.96364	0.57295	14.6182	
2		0.19834	2.85455	0.78723	11.3887	
3		0.20677	3.01818	0.60905	12.5149	
4		0.23192	2.49091	0.83309	10.2638	
5		0.20995	2.27273	0.89393	9.0218	

----- Effect=Overall -----Std. Error

Std. Error

		of	Mean of	of N	lean of	
Fungi	farmers	Region	SEVERITY	SEVER	ITY INCIDENCES	INCIDENCES
		0.097768	2.92	0.35254	11.5615	
	. 1	0.26508	2.44	0.77423	9.4524	
	. 2	0.30485	2.64	1.02878	9.0472	
	. 3	0.31559	2.64	0.79547	10.1084	
	. 4	0.25897	3.52	0.25776	17.7324	
	. 5	0.38678	3.64	1.23992	15.8572	
	. 6	0.31770	2.76	1.11841	10.8008	
	. 7	0.36185	3.24	1.28312	13.2756	
	. 8	0.33025	2.68	1.06041	8.9224	
	. 9	0.30044	2.44	1.05464	9.1840	
	. 10	0.28868	3.00	0.97970	12.0104	
	. 11	0.36661	3.12	1.42186	10.7856	

Table 12: Means breakdown for long rains season of 2009 continues

				Std. Erro		,	l. Error	_00	, continue.			
				of	Mea	n of	of N	Mean	n of			
Fu	ngi	farme	rs	Region	SEV	ERITY	SEVER	ITY	INCIDE	NCES	INCIDENC	ES
		1	1	0.7348	35	2.2	0.51629		0.1880			
		1	2	0.6782	23	2.6	2.35377		9.2840			
		1	3	0.8717	'8	2.4	0.47298	1	1.2860			
		1	4	0.3741		3.8	0.51200		8.6500			
		1	5	0.8000	00	3.2	3.46735		13.7120			
		1	6	0.8000	00	2.8	3.21854		7.8760			
		1	7	0.5099		3.4	0.44888		16.3680			
		1	8	0.6782		2.6	0.51166		12.0520			
		1	9	0.7483		2.4	2.68707		6.5400			
			10	0.583		2.8	0.65963		12.0700			
			11	0.678	23	3.6	3.30584		13.0780			
		2	1	0.6000		2.4	0.43876		10.5700			
		2	2	0.7348		3.2	0.46806		14.3140			
		2	3	0.7483		2.4	2.35026		9.2700			
		2	4	0.4000		3.6	0.47209		18.2700			
		2	5	0.7483		4.4	0.48273		20.4360			
		2	6	0.5477	2	3.0	0.48454	1	13.4260			
		2	7	0.9695		3.8	3.29910		13.0660			
		2	8	0.8000		2.8	2.51332		9.8860			
		2	9	0.7348		2.8	2.78212		1.0580			
			10	0.800		2.8	3.18538		7.7700			
			11	0.979		2.6	2.98234		4.8680			
		3	1	0.6782		2.6	2.56167		6.7200			
		3	2	0.8000		2.2	2.18565		5.2840			
		3	3	0.7348		2.8	0.53122		2.0120			
		3	4	0.9165		3.2	0.46664		17.3040			
		3	5	0.8000		3.2	3.35839		13.3220			
		3	6	0.6000		2.6	0.46900		13.3180			
		3	7	0.4899		2.8	2.43523		9.5220			
		3	8	0.7746		2.0	2.43083		5.9020			
		3	9	0.7746		2.0	1.94493		4.6980			
			10	0.812		3.4	0.47340		16.2940			
			11	0.871		3.6	2.54001		10.0340			
		4	1	0.3741		2.2	1.72415		6.6220			
		4	2	0.4899		2.2	1.72416		6.6180			
		4	3	0.8124		2.6	2.11332		8.2400			
		4	4	0.7483		3.6	0.45164		6.3360			
•		4	5	0.5831		3.2	0.46559		7.3080			
•		4	6	0.9695	64	3.2	2.70460	1	10.6622			

•	4 7	0.77460	2.0	3.41663	8.3360		
•	4 8	0.66332	3.2	2.67556	10.5280		
	4 9	0.48990	2.2	0.47914	9.3480		
	4 10	0.63246	3.0	0.49105	14.2120		
	4 11	0.91652	2.8	3.11163	12.3260		
	5 1	0.73485	2.8	0.48176	13.1620		
	5 2	0.83666	3.0	2.48187	9.7360		
	5 3	0.63246	3.0	2.48023	9.7340		
	5 4	0.50990	3.4	0.48607	18.1020		
	5 5	1.39284	4.2	3.65941	14.5080		
	5 6	0.80000	2.2	3.58692	8.7220		
	5 7	1.06771	4.2	0.48862	19.0860		
	5 8	0.96954	2.8	2.58625	6.244		
	5 9	0.80000	2.8	0.49974	14.276		
	5 10	0.63246	3.0	2.47475	9.706		
-		Std. Error		l. Error	,		
			ean of		an of		
Fungi	farmers		VERITY	SEVERIT		INCIDENCES	
1	1.	0.36590	4.45455	1.64844	13.9091		
1	2 .	0.41060	3.63636	1.70754	14.4545		
1	3.	0.30963	4.36364	1.01314	13.9091		
1	4 .	0.40041	3.81818	0.95606	14.3636		
1	5.	0.45455	3.54545	0.91814	16.4545		
2	5 . 1 .	0.30424	3.72727	0.89863	13.5845		
2	$ \frac{1}{2} $	0.43408	3.45455	1.56760	12.5545		
2	2 · · 3 ·	0.40452	3.00000	1.05418	12.2455		
2 2 2	3. 4.	0.43598	2.09091	2.20631	8.7555		
2	- · · · 5 · ·	0.42640	2.00000		9.8036		
3	$\begin{array}{ccc} J & . \\ 1 & . \end{array}$	0.30424	2.00000	0.82882	13.4009		
3	$\begin{array}{ccc} 1 & . \\ 2 & . \end{array}$	0.58493	3.81818	0.82882	14.1318		
3	3^{2} .	0.50452	3.00000	1.76655	10.6600		
3	3. 4.	0.30432	2.81818	1.46359	11.5918		
3		0.46887	2.72727	1.40339	12.7900		
4	5.	0.40887	2.12121	1.53270	11.9200		
4	$\begin{array}{ccc} 1 & . \\ 2 & . \end{array}$	0.33278	2.27273	2.16757	10.3845		
4	3.	0.46710	2.00000	1.99967	7.8609		
4	4.	0.38996	2.45455	1.44792	10.8500		
4	5.	0.81312	3.45455	2.16995	10.3036		
5	1.	0.19498	1.27273	2.06786	6.7782		
5	2.	0.42251	2.18182	2.27872	8.8991		
5	3.	0.24730	1.45455	2.18097	7.3291		
5	4.	0.52853	2.54545	1.66334	9.2283		
5	5.	0.43598	3.90909	1.51790	12.8745		
Table 12: M	leans brea	kdown for lo	ng rains s	eason of 20	09 continues		
				DECISI			
		Std. Error		l. Error	C		

of Mean of of Mean of Fungi farmers Region SEVERITY SEVERITY INCIDENCES INCIDENCES 0.63246 4.0 0.80000 12.2 1 1 . 1 2 0.63246 4.0 1.16619 12.6 • 0.40000 0.37417 1 3 4.4 13.2 • 4 0.00000 5.0 0.40000 19.4 1 • 5 0.00000 5.0 0.67823 19.6 1 . ----- Effect=FUNGI*REGION ------(continued) Std. Error Std. Error of Mean of of Mean of

Fungi	farm	ers	Region	SEV	ERITY	SEVERI	TY	INCIDEN	ICES	INCIDENCES
1		6	0.7071	1	3.0	3.05614	12.3	2000		
1		7	0.5099		3.6	1.37840		0000		
1		8	0.5477		4.0	0.73485		2000		
1		9	0.8717		3.6	1.28841		5000		
1		10	0.374		3.8	0.80000		2000		
1		11	0.800		3.2	3.50143		6000		
2		1	0.5099		2.4	2.29708		380		
2		2	0.4472		2.0	2.46670		020		
2		3	0.5831		2.2	2.20521		920		
2		4	0.2449		3.4	0.38827		5920		
2		5	0.7071	1	3.0	3.68180	14.4	4220		
2		6	0.8124	40	2.6	2.74948	10.9	9720		
2		7	0.7071	1	3.0	3.25861	12.3	3060		
2		8	0.8000)0	2.2	2.74755	6.6	080		
2		9	0.5831	0	2.2	1.37350	10.9	9180		
2		10	0.748	33	3.6	2.87312	11.	1500		
2		11	0.200	00	4.8	1.05914	14.	5760		
3		1	0.2449	95	2.4	2.00746	8.5	920		
3		2	0.5099	90	2.4	2.49975	9.2	100		
3	•	3	0.7348	35	2.2	2.32901	9.2	980		
3	•	4	0.5099	90	3.6	0.33415	17.5	5280		
3	•	5	1.0198		3.8	0.71075		5600		
3		6	0.8366		3.0	2.67260		5900		
3		7	1.0198		3.8	1.27492		900		
3		8	0.5099		2.4	0.68140)460		
3	•	9	0.6000		2.6	1.19033		9040		
3	•	10	0.400		3.6	0.83849		2900		
3	•	11	0.812		3.4	0.79254		2560		
4	•	1	0.4000		1.6	0.84456		340		
4	•	2	0.7746		2.0	2.27705		000		
4	•	3	0.7483		2.4	0.39505		3340		
4	•	4	0.6633		3.2	0.66675		4320		
4	•	5	1.2409		3.2	3.55269		9860		
4	•	6	0.5099		2.6	2.52653		1060		
4	•	7	1.2884		3.4	4.13875)580		
4	•	8	0.9273		2.6	2.81868		000		
4 4	•	9 10	0.3741 0.374		1.8 2.2	3.08044 2.71211		100 1960		
4	•	10	0.374		2.2	3.41860		1900 2460		
5	•	1	0.5831		1.8	2.06569		980		
5	•	2	0.8000		2.8	2.76271		240		
5	•	3	0.6324		2.0	2.13710		180		
5	•	4	0.6000		2.0	0.36308		7100		
5	•	5	0.8602		3.2	3.46719		5180		
5	•	6	0.8002		2.6	2.51652)362		
5	•	7	0.9273		2.0	3.22257		3240		
5	•	8	0.8000		2.4	2.84676		580		
5	•	9	0.7746		2.0	2.74595		880		
5		10	0.800		1.8	2.65988		2160		
5		11	0.800		1.8	3.25000		2500		
-	•		5.000	~~	1.0	2.20000	5.2			

Appendix 5: Disease severity and incidences of maize ear rot causing pathogens in Maseno area during short rains season of 2008 and long rains season of 2009

Table 13: Anova for severity and incidences of maize ear rot causing pathogens in Maseno area during
short rains 2008 and long rains season of 2009

Dependent Variable:	severity
	Sum of
Source	DF Squares Mean Square F Value $Pr > F$
Model	33 26.58000000 0.80545455 1.70 0.1311
Error	16 7.6000000 0.47500000
Corrected Total	49 34.18000000
R-Square 0.777648	
Source	DF Type I SS Mean Square F Value $Pr > F$
Fungi Season farmers Fungi*Season Fungi*farmers farmers*Season Dependent Variable:	4 7.4800000 1.8700000 3.94 0.0207 1 4.5000000 4.5000000 9.47 0.0072 4 4.2800000 1.07000000 2.25 0.1089 4 1.8000000 0.4500000 0.95 0.4623 16 7.9200000 0.49500000 1.04 0.4676 4 0.60000000 0.15000000 0.32 0.8632
Dependent variable.	Sum of
Source	DF Squares Mean Square F Value $Pr > F$
Model	33 392.0520488 11.8803651 9.08 <.0001
Error	16 20.9334217 1.3083389
Corrected Total	49 412.9854705
R-Square 0.949312	Coeff VarRoot MSEincidences Mean19.641561.1438265.823500
Source	DF Type I SS Mean Square F Value Pr > F
Fungi	4 67.2153134 16.8038284 12.84 <.0001
Season	1 54.4905362 54.4905362 41.65 <.0001
farmers	4 126.0708376 31.5177094 24.09 <.0001
Fungi*Season	4 11.3136577 2.8284144 2.16 0.1200
Fungi*farmers	16 115.1637780 7.1977361 5.50 0.0007
farmers*Season	4 17.7979259 4.4494815 3.40 0.0340
Table 14: LSD tests	for severity and incidences of maize ear rot causing pathogens in Maseno area
	2008 and long rains season of 2009
NOTE: 1. This test co	ntrols the Type I comparison wise error rate, not the experiment wise error rate.
	3, 4, 5 are Diplodia (Stenocarpella spp), Giberella, Nigrospora, Fusarium, and other
fungi respectiv	vely; seasons 1, 2 are short rains of 2008 and long rains of 2009 respectively.
	in Fungi, and farmers
Alph	
	r Degrees of Freedom 16
	r Mean Square 0.475
	cal Value of t 2.11991
	t Significant Difference 0.6534
	h the same letter are not significantly different.
t Grou	ping Mean N Fungi

A 2.2000 10 1

А В А 1.7000 10 2 В В С 1.5000 10 3 В С В С 1.5000 10 4 С С 1.0000 10 5 LSD tests for severity in Fungi, season, and farmers continues Alpha 0.05 Error Degrees of Freedom 16 0.475 Error Mean Square Critical Value of t 2.11991 Least Significant Difference 0.6534 Means with the same letter are not significantly different. t Grouping Mean N farmers 1.9000 10 А 4 А А 1.8000 10 2 А В Α 1.7000 10 1 В А В А 1.4000 10 5 В В 1.1000 10 3 0.05 Alpha Error Degrees of Freedom 16 0.475 Error Mean Square Critical Value of t 2.11991 Least Significant Difference 0.4132 Means with the same letter are not significantly different. t Grouping Mean N Season A 1.8800 25 2 В 1.2800 25 1 LSD tests for incidences in Fungi, season, and farmers Alpha 0.05 Error Degrees of Freedom 16 1.308339 Error Mean Square Critical Value of t 2.11991 Least Significant Difference 1.0844 Means with the same letter are not significantly different. t Grouping Mean N Fungi А 7.7000 10 1 В 6.4913 10 3 С 5.3239 10 4 С С 5.2563 10 2 С С 4.3460 10 5

0.05 Alpha Error Degrees of Freedom 16 Error Mean Square 1.308339 Critical Value of t 2.11991 Least Significant Difference 1.0844 Means with the same letter are not significantly different. t Grouping Mean N farmers А 7.9596 10 2 Α 7.3630 10 4 А В 5.3273 10 1 В С В 4.6660 10 5 С С 3.8016 10 3 0.05 Alpha Error Degrees of Freedom 16 Error Mean Square 1.308339 Critical Value of t 2.11991 Least Significant Difference 0.6858 Means with the same letter are not significantly different. t Grouping Mean N Season 25 2 A 6.8674 В 4.7796 25 1

Table 15: Correlation analysis for short rains of 2008 and long rains seasons of 2009

5 Var	iables: Sea	son Fungi	farmers	severity inc	cidences
Variable Season Fungi	N Mea 50 1.500 50 3.0000		75.00000		2.00000 Season
farmers		0 1.42857			-
severity	50 1.5800	0 0.83520	79.00000	1.00000	4.00000 severity
incidences			5 291.1750		11.00000 incidences
		orrelation Coe		= 50	
	Prob	> r under H0:	: Rho=0		
	Season	Fungi far	mers sev	erity inci	dences
Season Season	1.00000	0.00000 1.0000 1.	0.00000 0000 0.	0.36284 0096 0	0.36324).0095
Fungi Fungi	0.00000 1.0000	1.00000 1.0	0.00000 0000 0.0	-0.44472 0012 0.	-0.32676 .0206
farmers farmers	$0.00000 \\ 1.0000$	0.00000 1.0000	1.00000 0.	-0.08552 5548 0	-0.09444 0.5142
severity severity	0.36284 0.0096	-0.44472 0.0012	-0.08552 0.5548	1.00000 <	0.57793 .0001
incidences	s 0.36324	-0.32676	-0.09444	0.57793 114	1.00000

incidences 0.0095 0.0206 0.5142 <.0001

nciden	ces 0	0.0095 0.0206 0.5142 <.0001	
e 16: M	leans bre	eakdown for short rains of 2008 and long short rains season of 2009	
		Effect=FARMERS	
		Std. Error Std. Error	
		of Mean of Mean of	
Fungi	farmers	Season SEVERITY SEVERITY INCIDENCES	
	1.		
•		0.24944 1.8 0.53265 7.9596	
•	3.	0.10000 1.1 0.69024 3.8016	
•	4.	0.27689 1.9 0.93638 7.3630	
•	5.	0.30551 1.4 0.81942 4.6660	
		Effect=FUNGI	
		Std. Error Std. Error	
г .	C	of Mean of Of Mean of	
Fungi	farmers	Season SEVERITY SEVERITY INCIDENCES	
1		0.35901 2.2 0.65064 7.7000	
2			
3			
4			
5		0.00000 1.0 1.02915 4.3460	
		Effect=Overall	
		Std. Error Std. Error	
		of Mean of Mean of	
Fungi	farmers	Season SEVERITY SEVERITY INCIDENCES	
		0.11811 1.58 0.41057 5.8235	
·		Effect=SEASON	
		Std. Error Std. Error	
		of Mean of Mean of	
Fungi	farmers	S Season SEVERITY SEVERITY INCIDENCES	
1 41181			
	. 1	0.09165 1.28 0.50908 4.77956	
		0.20265 1.88 0.58166 6.86744	
		Effect=FARMERS*SEASON	
		Std. Error Std. Error	
		of Mean of Mean of	
Fungi		Season SEVERITY SEVERITY INCIDENCES	
	1 1		
•	1 2		
•	2 1		
•	2 2		
•	3 1		
•	3 2		
•	4 1		
•	4 2		
•	5 1		
•	5 2	2 0.58310 1.8 1.31929 4.894	

Table 16: Means breakdown for short rains of 2008 and long short rains season of 2009 continues

			E	Effect=FUI	NGI*FARM	MERS	
			Std. Erro	or	Std. Error		
			of	Mean of	of	Mean of	
Fungi	far	mers	Season	SEVERI	TY SEV	ERITY INCIDENCES	
1	1		1.0	3.0	1.5000	7.5000	
1	2		0.5	2.5	2.0000	9.0000	
1	3		0.5	1.5	1.0000	6.0000	

1	4		0.5	1.5	2.0000		9.0000	
1	5		1.5	2.5	1.0000		7.0000	
2	1		0.0	2.0	0.7400		6.4900	
2	2		1.0	2.0	1.6250		7.6250	
2	3		0.0	1.0	0.0615		4.0615	
2	4		0.5	2.5	1.2150		8.1050	
2	5		0.0	1.0	0.0000		0.0000	
3	1		0.5	1.5	0.4750		6.3750	
3	2		0.5	1.5	1.0000		7.7900	
3	3		0.0	1.0	0.3735		4.4965	
3	4		0.5	2.5	1.2450		8.1150	
3	5		0.0	1.0	0.0700		5.6800	
4	1		0.0	1.0	0.3385		6.2715	
4	2		0.0	2.0	1.3770		8.2330	
4	3		0.0	1.0	2.3250		2.3250	
4	4		1.0	2.0	4.2900		4.2900	
4	5		0.5	1.5	0.1800		5.5000	
5	1		0.0	1.0	0.0000		0.0000	
5	2		0.0	1.0	1.1300		7.1500	
5	3		0.0	1.0	2.1250		2.1250	
5	4		0.0	1.0	0.8850		7.3050	
5	5		0.0	1.0	0.0300		5.1500	
 			E	Effect=FUI	NGI*SEA	SON		
			Std. Erro		Std. Erro			
			of	Mean of		Mean		
Fungi	farn	ners	Season	SEVERI	TY SEV	VERITY	INCIDENCES	
			0.04			0.05445	< 2 000	
1	•	1	0.2449			0.37417	6.2000	
1	•	2	0.5831			0.80000	9.2000	
2	•	1	0.2449			1.22517	4.5280	
2	•	2	0.4472			1.76946	5.9846	
3	•	1	0.2000			0.36905	6.0360	
3	•	2	0.3741			0.97445	6.9466	
4	•	1	0.2000			1.49867	3.6218	
4	•	2	0.3741			0.91439	7.0260	
5	•	1	0.0000			1.44915	3.5120	
5	•	2	0.0000	0 1.0		1.52262	5.1800	

Appendix 6: Disease severity and incidences of maize ear rot causing pathogens in Maseno area during short rains of 2008

Table 17: Anova for severity and incidences of maize ear rot causing pathogens in Maseno area during short rains of 2008 Dependent Verichle exercity

Dependent Variable: severity									
		Sum of							
Source	DF	Squares	Mean Square	F Value $Pr > F$					
Model	8	2.48000000	0.31000000	1.94 0.1238					

Error	16 2.56000000 0.16000000
Corrected Total R-Square 0.492063	
Source	DF Type I SS Mean Square F Value Pr > F
Fungi	4 1.0400000 0.26000000 1.62 0.2165
farmers	4 1.44000000 0.36000000 2.25 0.1092
Dependent Varia	ble: incidences
-	Sum of
Source	DF Squares Mean Square F Value Pr > F
Model	8 71.2787755 8.9098469 1.69 0.1762
Error	16 84.2202046 5.2637628
Corrected Total	24 155.4989802
R-Square	Coeff Var Root MSE incidences Mean
0.458387	48.00210 2.294289 4.779560
Source	DF Type I SS Mean Square F Value Pr > F
Fungi	4 33.03345136 8.25836284 1.57 0.2305
farmers	4 38.24532416 9.56133104 1.82 0.1750

Table 18: LSD tests for severity and incidences of maize ear rot causing pathogens in Maseno area during short rains of 2008

NOTE: 1. This test controls the Type I comparison wise error rate, not the experiment wise error rate. 2. Fungi 1, 2, 3, 4, 5 are Diplodia (*Stenocarpella spp*), Giberella, Nigrospora, Fusarium, and other fungi respectively;

LSD tests for severity in Fungi, and farmers
Alpha 0.05
Error Degrees of Freedom 16
Error Mean Square 0.16
Critical Value of t 2.11991
Least Significant Difference 0.5363
Means with the same letter are not significantly different.
t Grouping Mean N Fungi
A 1.6000 5 1
A
B A 1.4000 5 2
ВА
B A 1.2000 5 3
B A
B A 1.2000 5 4
B A 1.2000 5 4
B 1.0000 5 5
B 1.0000 5 5
Alpha 0.05
Error Degrees of Freedom 16
Error Mean Square 0.16
Critical Value of t 2.11991
Least Significant Difference 0.5363
Means with the same letter are not significantly different.
t Grouping Mean N farmers
A 1.6000 5 4

A В А 1.4000 5 1 В А В Α 1.4000 5 2 В В 1.0000 3 5 В В 1.0000 5 5

LSD tests for incidences in Fungi, and farmers

Alpha 0.05 Error Degrees of Freedom 16 Error Mean Square 5.263763 Critical Value of t 2.11991 Least Significant Difference 3.0761 Means with the same letter are not significantly different. t Grouping Mean N Fungi 6.200 А 5 1 А 6.036 Α 5 3 Α A 4.528 5 2 A 3.622 5 А 4 5 A 3.512 5 Alpha 0.05 Error Degrees of Freedom 16 Error Mean Square 5.263763 Critical Value of t 2.11991 Least Significant Difference 3.0761 Means with the same letter are not significantly different. Mean N farmers t Grouping 6.533 5 2 A 5.436 5 4 В Α В А В А 4.717 5 1 В А В А 4.438 5 5 В В 2.774 5 3 Table 19: Correlation analysis of short rains of 2008 in Maseno area 4 Variables: Fungi severity incidences farmers Variable Ν Mean Std Dev Sum Minimum Maximum Label Fungi 25 3.00000 1.44338 75.00000 1.00000 5.00000 Fungi farmers 25 3.00000 1.44338 75.00000 1.00000 5.00000 farmers severity 25 1.28000 0.45826 32.00000 1.00000 2.00000 severity

> Pearson Correlation Coefficients, N = 25 Prob > |r| under H0: Rho=0 Fungi farmers severity incidences

2.54541 119.48900

incidences

25

4.77956

Fungi	1.00000	0.00000	-0.44096	-0.35623
Fungi		1.0000	0.0274	0.0805

0

7.00000 incidences

				00 1.0					1	
	Tarmer	rS	1.000	00	0.3	030	0.65	000		
				96 -0.1 4 0.3					2	
				623 -0 805 0.				1.000	00	
Table 20				n for sho				aseno a	rea	
			S	td. Error						
Seasor	n Fun	ngi	farmers		Mean of SEVE					CIDENCES
		1		0.24495	1.4			1.1798	86	4.7166
		2		0.24495	1.4			0.2163	30	6.5332
		3		0.00000					46	2.7740
		4		0.24495					52	5.4360
•	•			0.00000		. at				
			S	td. Error	Mean of			ean of		
Seaso	n Fun	ngi	farmers						INC	CIDENCES
	1			0.24495 0.24495 0.20000 0.20000	1.6			0.374	17	6.2000
	2			0.24495	1.4					4.5280
	3			0.20000	1.2					6.0360
•	4			0.20000	1.2					3.6218
•	5			0.00000	110					3.5120
				Effe td. Error						
			3		Mean of			ean of		
Season	n Fun	ngi	farmers						INC	CIDENCES
			. (0.091652	1.28	0.50	0908	4.779	56	
			S	td. Error				_		
a	-		C		Mean of					
Seaso	n Fun	igi	tarmers	Region	SEVE	RITY	SEVI	ERITY	INC	CIDENCES
				0.091652 Eff						
				td. Error		SON Std. Eri				
			5		Mean of			ean of		
Seasor	ı Fun	ngi	farmers						INC	CIDENCES
1				0.091652	1.28	0.5	0908	4.779	956	
				- Effect=	FARME					
			S	td. Error		Std. En				
~	_			of l	Mean of	of	Μ	ean of		
Seaso	n Fun	ıgi	farmers	Region	SEVE	RITY	SEVI	ERITY	INC	CIDENCES
		1	1	0 24405	1 4			1 170	86	17166
•		1 2	1	0.24495 0.24495	1.4 1 /					4.7166 6.5332
•		23	1	0.24493	1.4					2.7740
	•	4	1	0.24495	1.6					5.4360
•	•			0.00000						4.4380
				td. Error		Std. En				
					Mean of			ean of		
							4.0			

Season	Fungi	farmers	Region	SEVERITY	SEVERITY IN	CIDENCES
	1.	1	0.24495	1.6	0.37417	6.2000
. 2	2.	1	0.24495	1.4	1.22517	4.5280
. 3	3.	1	0.20000	1.2	0.36905	6.0360
. 4	4.	1	0.20000	1.2	1.49867	3.6218
	5.	1	0.00000	1.0	1.44915	3.5120

Table 20: Means breakdown for short rains of 2008 in Maseno area continues

				Sto			6		
-	г .	C	of M	lean of	of TV	M	lean of	DV	CIDENCES
Season	Fungi	farmers	Region	SEVERI	ΓY	SEVE	ERITY		A 7166
1	. 1	•	0.24495	1.4			1.1/9	86	4./166
1	. 2	•	$\begin{array}{c} 0.24495\\ 0.24495\\ 0.00000\\ 0.24495\\ 0.00000\end{array}$	1.4			0.2163	50 1.C	6.5332
1	. 3	•	0.00000	1.0			1.145	46	2.7740
1	. 4	•	0.24495	1.6			1.362	62 27	5.4360
1	. 3	•	0.00000				1.120	27	4.4380
			td. Error						
		C C		lean of			ean of		
Season	Fungi	farmers						INC	CIDENCES
	1 41181	141111010	11081011	SE EI		02.11			
1	1.		0.24495	1.6			0.374	17	6.2000
1	2.		0.24495	1.4			1.2251	7	4.5280
1	3.		0.20000	1.2			0.369	05	6.0360
1	4.		0.20000	1.2			1.4986	57	3.6218
1	5.		0.20000 0.20000 0.00000	1.0			1.4491	5	3.5120
			Effect=	SEASON*	*REG	ION -			
		S	td. Error	Sto	d. Err	or			
			of M	lean of	of	Μ	lean of		CIDENCES
Season	Fungi	farmers	Region	SEVERI	ΤY	SEVI	ERITY	INC	CIDENCES
1		1	0.091652	1.28	0.5	0908	4.77	956	
							EGION		
		S	td. Error				c c		
-	г .	C		lean of				DV	
Season	Fungi	farmers	Region	SEVERI	IY	SEVI	EKITY		CIDENCES
1	. 1	1	0.24495	1.4			1.1/98	20	4./100
1	. 2	1	0.24495	1.4			0.216	3U 4C	0.3332
1	. 3	1	0.00000	1.0			1.145	40	2.7740
1	. 4	1	0.24495 0.24495 0.00000 0.24495 0.00000	1.0			1.3626	02 027	5.4360
1	. 3	1	U.UUUUU			*DEC	1.120 NON	121	4.4380
		Std. Erro	Ellect-SE	SON FI	UNU	I KEC	10N		
. EII0I		5tu. E110		lean of	of	м	ean of		
Season	Fungi	farmers	Pagion	SEVERI	ти	SEVE	TRITY	ING	CIDENCES
1	1	1		1.6		~ , 1	0.3741	7	6.2000
1	2	1	0.24495	1.4			1.2251	7	4.5280
1	3.	1	0.20000	1.2	0.3	6905	6.036	50	
-		1	0.20000	1.2	1.4	9867	3 621	8	
1	4.	1							

Appendix 7: Disease severity and incidences of maize ear rot causing pathogens in Maseno area during long rains of 2009

Table 21: Anova for severity and incidences of maize ear rot causing pathogens in Maseno	area during
long rains season of 2009	

Dependent Variable:	severity
Dependent variable.	Sum of
Source	DF Squares Mean Square F Value $Pr > F$
Source	Di Squares mean square i value 11 / 1
Model	24 40.88000000 1.70333333 9.46 <.0001
Error	25 4.5000000 0.18000000
Corrected Total	49 45.38000000
	Coeff Var Root MSE severity Mean
0.900837	23.31121 0.424264 1.820000
Source	DF Type I SS Mean Square F Value $Pr > F$
Fungi	4 11.68000000 2.92000000 16.22 <.0001
farmers	4 6.88000000 1.72000000 9.56 <.0001
Fungi*farmers	16 22.32000000 1.39500000 7.75 <.0001
Dependent Variable:	incidences
-	Sum of
Source	DF Squares Mean Square F Value Pr > F
	1 1
Model	24 416.4421483 17.3517562 216.90 <.0001
Error	25 2.0000000 0.0800000
2	
Corrected Total	49 418.4421483
R-Square	Coeff Var Root MSE incidences Mean
0.995220	
Source	DF Type I SS Mean Square F Value $Pr > F$
Fungi	4 100.6412795 25.1603199 314.50 <.0001
farmers	4 207.8491187 51.9622797 649.53 <.0001
Fungi*farmers	16 107.9517501 6.7469844 84.34 <.0001

Table 22: LSD tests for severity and incidences of maize ear rot causing pathogens in Maseno area during long rains season of 2009

NOTE: 1. This test controls the Type I comparison wise error rate, not the experiment wise error rate.

^{2.} Fungi 1, 2, 3, 4, 5 are Diplodia (*Stenocarpella spp*), Giberella, Nigrospora, Fusarium, and other fungi respectively;

LSD tests for severity in Fungi, and farmer	S
Alpha 0.03	5
Error Degrees of Freedom	25
Error Mean Square	0.18
Critical Value of t 2.	05954
Least Significant Differenc	e 0.3908
Means with the same letter are not	t significantly different.
t Grouping Mean N	Fungi
A 2.5000 10 1	
B 2.0000 10 2	
В	
B 1.8000 10 3	
В	
B 1.8000 10 4	
C 1.0000 10 5	
	101

Alpha0.05Error Degrees of Freedom25Error Mean Square0.18Critical Value of t2.05954Least Significant Difference0.3908Means with the same letter are not significantly different.

t Grouping	Mea	n	Ν	farmers
Ă	2.2000			
A A	2.2000	10	4	
В	1.8000	10	5	
B B	1.7000	10	1	
С	1.2000	10	3	

LSD tests for incidences in Fungi, and farmers

Alpha0.05Error Degrees of Freedom25Error Mean Square0.08Critical Value of t2.05954Least Significant Difference0.2605Means with the same letter are not significantly different.

t Grouping Mean N Fungi А 9.4000 10 1 В 7.0260 10 4 В В 6.9466 10 3 С 5.9846 10 2 D 5.1800 10 5 Alpha 0.05 Error Degrees of Freedom 25 Error Mean Square 0.08 2.05954 Critical Value of t Least Significant Difference 0.2605 Means with the same letter are not significantly different. t Grouping Mean N farmers 9.3860 10 2 А 9.2900 10 4 А В 6.1380 10 1 С 4.8940 10 5 С С 4.8292 10 3

Table 23: Correlation analysis of long rains season of 2009 in Maseno area

4 Variables: Fungi

			0		•	
Variable	Ν	Mean	Std Dev	Sum	Minimum	Maximum Label
Fungi	50	3.00000	1.42857	150.00000	1.00000	5.00000 Fungi
farmers	50	3.00000	1.42857	150.00000	1.00000	5.00000 farmers

farmers severity incidences

severity incidences	50 Pea	6.90744	2.92227 ation Coe ander H0)	0 11.00			
Fungi Fungi		1.00000 1		0 -0.4750 0.0005		-0.36169 099			
farme farme		0.00000 1.0000	1.0000	00 0.0296 0.8378		-0.12632 820			
severi severi		-0.47503 0.0005	0.0296 0.8378			0.52362 001			
incide incide	ences	0.0099	0.382		1	1.0000	-		
Table 24: Mea			0						
		Std. Error of N		Std. Error of N	/lean c	f			
Fungi	farn	ners SEV		SEVERITY			ES		
	1				6.13				
	2	0.24944	2.2	0.30739					
	3	0.13333	1.2 2.2		4.82	292			
	4	0.32660	2.2		9.29				
	5		1.8	0.87953	4.89				
				=FUNGI					
		Std. Error		Std. Error		6			
	c		Iean of		lean c				
Fungi				SEVERITY			£S		
1	·	0.40139	2.5	0.56174	9.40 5.98				
2 3	•	0.29814 0.24944	2.0 1.8		5.98 6.94				
4	·	0.24944	1.8	0.60959	7.02				
4 5	•		1.0	1.01508	5.18				
	•			Overall					
		Std. Error		Std. Error					
			Iean of		lean c	f			
Fungi	farn	ners SEV	ERITY	SEVERITY	IN IN	CIDENCE	ES		
		0.12610	1.00	0 41227	6.00	744			
•	·	0.13610		0.41327 JNGI*FARN					
		Std. Error		Std. Error	al KS			 	
			Iean of		lean c	f			
Fungi	farn		ERITY	SEVERITY		CIDENCE	ES		
1 angi	1	1.5	2.5		1	10.000			
1	2	0.0	3.0		0	11.000			
1	3	0.0	2.0		0	7.000			
1	4	0.0	1.0	(C	11.000			
1	5	0.0	4.0	(C	8.000			
2	1	0.0	2.0		0	7.230			
2	2	0.0	3.0		0	9.250			
2	3	0.0	1.0)	4.123			
2	4	0.0	3.0)	9.320			
2	5 1	0.0	1.0		0	0.000			
3 3	1 2	$\begin{array}{c} 0.0\\ 0.0\end{array}$	2.0 2.0		0 0	6.850 8.790			
5	4	0.0	2.0		0	0.790			

3	3	0.0	1.0	0	4.12	23	
3	4	0.0	3.0	0	9.36	360	
3	5	0.0	1.0	0	5.61	510	
4	1	0.0	1.0	0	6.61	510	
 			Effect=FU	JNGI*FAI	RME	ERS	
		(coi	ntinued)				
		Std. Error	,	Std. Error			
		of	Mean of	of	Me	lean of	
Fungi	farm	ers SE			TΥ	INCIDENCES	
4	2	0	2		0	9.61	
4	3	0	1		0	0 4.65	
4	4	0	3		0	0 8.58	
4	5	0	2		0	0 5.68	
5	1	0	1		0	0.00	
5	2	0	1		0	0 8.28	
5	3	0	1		0		
5	4	0	1		0	8.19	
5	5	0	1		0		
		-			-		

Appendix 8: Disease severity, incidences and response of maize hybrids to Stenocarpella spp. in Maseno University Research farm during short rains seasons of 2008 and long rains season of 2009

 Table 25: Anova for Disease severity, incidences and response of maize hybrids to Stenocarpella spp. in

 Maseno University Research farm during short rains seasons of 2008 and long rains season of 2009

Dependent Variab							
Carrier	Sum of						
Source	DF Squares Mean Square F Value Pr > F 35 28.32407407 0.80925926 2.82 0.0001						
Model Error	72 20.666666667 0.28703704						
Corrected Total							
R-Squ							
	52 35.93907 0.535758 1.490741						
0.5701	52 55.75707 0.555750 1.470741						
Source	DF Type ISS Mean Square F Value Pr > F						
Maize_hybrid	8 7.74074074 0.96759259 3.37 0.0025						
Rains_season	1 2.67592593 2.67592593 9.32 0.0032						
Treatment	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
Maize hvb*Ra	ins seas 8 4.07407407 0.50925926 1.77 0.0963						
Treatment*Mai	ins_seas84.074074070.509259261.770.0963ze_hybr81.740740740.217592590.760.6404ns_seas10.009259260.009259260.030.8580						
Treatment*Rain	ns_seas 1 0.00925926 0.00925926 0.03 0.8580						
Treatm*Maize	_*Rains_ 8 0.74074074 0.09259259 0.32 0.9549						
Dependent Variab							
•	Sum of						
Source	DF Squares Mean Square F Value Pr > F						
Model	35 268.7405050 7.6783001 1.85 0.0140						
Error	72 298.66666667 4.1481481						
Corrected Total	1 107 567.4071716						
	are Coeff Var Root MSE incidences Mean						
0.4736	529 41.97523 2.036700 4.852148						
a							
Source	DF Type I SS Mean Square F Value $Pr > F$						
Maize_hybrid	8 248.2962963 31.0370370 7.48 <.0001						
Rains_season							
Treatment	1 9.4625280 9.4625280 2.28 0.1353						
Maize_hyb*Ra							
	ze_hybr80.00000000.00000000.001.0000ns seas10.78950700.78950700.190.6639						
	—						
Dependent Variable: Yield (Tonnes/ha) Sum of							
Source	DF Squares Mean Square F Value $Pr > F$						
Model	35 6.65493285 0.19014094 1.85 0.0141						
Error	72 7.4000000 0.10277778						
Corrected Total							
R-Squar							
0.473494							
Source	DF Type I SS Mean Square F Value $Pr > F$						
Maize_hybrid	8 4.00518519 0.50064815 4.87 <.0001						
Rains_season	1 0.29182404 0.29182404 2.84 0.0963						
Treatment	1 1.98290700 1.98290700 19.29 <.0001						
Maize_hyb*Ra							
Treatment*Mai							
Treatment*Rain							
	125						

Treatm*Maize_	*Rains_	8 0.0	0000000	0.00000000	0.00	1.0000
Dependent Variab	le: Failed	ears				
	S	um of				
Source	DF	Squares	Mean S	quare F Value	Pr > F	7
Model	35	701.87963	30 20.0	53704 1.16	0.2904	
Error	72 1	242.00000	0 17.25	0000		
Corrected Total	107	1943.8	79630			
R-Squa	re Coeff	f Var R	oot MSE	Failed_ears Mea	an	
0.3610	72 159.	6291 4.	153312	2.601852		
Source	DF	Type I S	S Mean S	Square F Valu	e Pr>	F
Maize_hybrid	8	259.962	9630 32	2.4953704 1.	88 0.0	758
Rains_season	1	34.4537	037 34.	4537037 2.0	0 0.16	19
Treatment	1	0.453703	0.45	37037 0.03	0.8716	
Maize_hyb*Rai	ns_seas	8 171	.2962963	21.4120370	1.24	0.2881
Treatment*Maiz	ze_hybr	8 101	.6296296	12.7037037	0.74	0.6590
Treatment*Rain	s_seas	1 18.7	500000	18.7500000	1.09	0.3006
Treatm*Maize_	*Rains_	8 11:	5.33333333	14.4166667	0.84	0.5743

Table 25: Anova for Disease severity, incidences and responses of maize hybrids to *Stenocarpella spp.* in Maseno University Research farm during short rains seasons of 2008 and long rains season of 2009 continues

-

Dependent Variable: Plant stand	
Sum of	
Source DF Squares Mean Square F Value $Pr > F$	
Model 35 3461.666667 98.904762 161.84 <.0001	
Error 72 44.00000 0.611111	
Corrected Total 107 3505.666667	
R-SquareCoeff VarRoot MSEPlant_stand_ Mean0.9874490.9387090.78173683.27778	
Source DF Type I SS Mean Square F Value Pr > F	
Maize_hybrid 8 1438.000000 179.750000 294.14 <.0001	
Rains_season 1 1281.333333 1281.333333 2096.73 <.0001	
Treatment 1 108.00000 108.00000 176.73 <.0001	
Maize_hyb*Rains_seas 8 607.333333 75.916667 124.23 <.0001	
Treatment*Maize_hybr 8 0.000000 0.000000 0.00 1.0000	
Treatment*Rains_seas 1 27.000000 27.000000 44.18 <.0001	
Treatment Rains_seas 1 27.000000 27.000000 44.10 <.0001 Treatm*Maize_*Rains_ 8 0.000000 0.000000 0.00 1.0000	
Dependent Variable: Days to silking	
Sum of	
Source DF Squares Mean Square F Value Pr > F	
Model 35 109.9629630 3.1417989 3.86 <.0001	
Error 72 58.66666667 0.8148148	
Corrected Total 107 168.6296296	
R-Square Coeff Var Root MSE Days_to_silking Mean	
0.652098 1.230604 0.902671 73.35185	
0.052070 1.250007 0.702011 15.55105	
Source DF Type I SS Mean Square F Value Pr > F	
Maize_hybrid 8 30.29629630 3.78703704 4.65 0.0001	
Rains_season 1 31.14814815 31.14814815 38.23 <.0001	
Treatment 1 0.0000000 0.0000000 0.00 1.0000	
Maize_hyb*Rains_seas 8 48.51851852 6.06481481 7.44 <.0001	
Treatment*Maize hybr 8 0.0000000 0.0000000 0.00 1.0000	
Treatment *Rains_seas 1 0.00000000 0.0000000 0.00 1.0000	
Treatm*Maize_*Rains_ 8 0.00000000 0.0000000 0.00 1.0000	

 Table 26: LSD tests for Disease severity, incidences and response of maize hybrids to Stenocarpella spp.

 in Maseno University Research farm during short rains seasons of 2008 and long rains season of 2009

NOTE: 1. This test controls the Type I comparison wise error rate, not the experiment wise error rate. 2. Maize hybrids 1, 2, 3, 4, 5, 6, 7, 8, 9 are EH10, EH13, EH14, EH15, EH16, H515, H516, H614D and P3253 respectively; seasons 1, 2 are short rains of 2008 and long rains of 2009 respectively; Treatments 1, 2 are innoculated and non-innoculated.

LSD tests for Severity
Alpha 0.05
Error Degrees of Freedom 72
Error Mean Square 0.287037
Critical Value of t 1.99346
Least Significant Difference 0.436
Means with the same letter are not significantly different.
Maize_
t Grouping Mean N hybrid
A 2.0000 12 2
B A 1.7500 12 4
B A C 1.6667 12 3
B D A C 1.5833 12 8
B D C 1.4167 12 9
B D C 1.4167 12 6
D C 1.2500 12 5
D 1.1667 12 7
D 1.1667 12 1

Table 26: LSD tests for Disease severity, incidences and response of maize hybrids to *Stenocarpella spp*. in Maseno University Research farm during short rains seasons of 2008 and long rains season of 2009 continues

```
LSD tests for Severity continues
                 Alpha
                                       0.05
                 Error Degrees of Freedom
                                                72
                 Error Mean Square
                                          0.287037
                 Critical Value of t
                                         1.99346
                 Least Significant Difference 0.2055
            Means with the same letter are not significantly different.
                                  Rains
              t Grouping
                              Mean
                                      Ν
                                          season
                   A
                         1.6481
                                  54 2
                   В
                         1.3333
                                  54
                                      1
                                       0.05
                 Alpha
                 Error Degrees of Freedom
                                                72
                                          0.287037
                 Error Mean Square
                 Critical Value of t
                                         1.99346
                 Least Significant Difference 0.2055
           Means with the same letter are not significantly different.
             t Grouping
                                     N Treatment
                            Mean
                  Α
                        1.8148
                                54 1
                  В
                        1.1667
                                 54
                                     2
LSD tests for incidences
                                       0.05
                 Alpha
                 Error Degrees of Freedom
                                                72
                                          4.148148
                 Error Mean Square
                 Critical Value of t
                                         1.99346
                 Least Significant Difference 1.6575
           Means with the same letter are not significantly different.
                                   Maize_
                                       N hybrid
               t Grouping
                               Mean
                    А
                          6.8707 12 9
                                                  127
```

12 В А 6.3707 6 В А 6.0373 12 1 В А 5.5373 12 7 В 5.2040 12 3 В С 4.8707 4 12 D С 3.3707 2 12 D С 3.3707 12 5 D 2.0373 12 8 0.05 Alpha Error Degrees of Freedom 72 4.148148 Error Mean Square 1.99346 Critical Value of t Least Significant Difference 0.7814 Means with the same letter are not significantly different. Rains_ t Grouping Mean N season А 5.0858 54 1 А 4.6185 54 2 0.05 Alpha Error Degrees of Freedom 72 Error Mean Square 4.148148 Critical Value of t 1.99346 Least Significant Difference 0.7814 Means with the same letter are not significantly different. t Grouping Mean N Treatment 5.1481 54 1 А 4.5561 54 2 A

Table 26: LSD tests for Disease severity, incidences and response of maize hybrids to *Stenocarpella spp*. in Maseno University Research farm during short rains seasons of 2008 and long rains season of 2009 continues

continues
LSD tests for Yield (Tonnes/ha)
Alpha 0.05
Error Degrees of Freedom 72
Error Mean Square 0.102778
Critical Value of t 1.99346
Least Significant Difference 0.2609
Means with the same letter are not significantly different.
Maize_
t Grouping Mean N hybrid
A 1.4145 12 1
B A 1.2145 12 4
B 1.1478 12 3
B 1.1145 12 6
B 1.0978 12 2
B 1.0312 12 7
B 1.0145 12 9
B 1.0145 12 5
C 0.6478 12 8
Alpha 0.05
Error Degrees of Freedom 72
Error Mean Square 0.102778
Critical Value of t 1.99346
Least Significant Difference 0.123
Means with the same letter are not significantly different.
128

Rains_ t Grouping Mean N season А 1.12944 54 2 А 1.02548 54 1 0.05 Alpha Error Degrees of Freedom 72 Error Mean Square 0.102778 Critical Value of t 1.99346 Least Significant Difference 0.123 Means with the same letter are not significantly different. t Grouping Mean N Treatment 1.21296 54 1 А В 0.94196 54 2 LSD tests for Failed ears Alpha 0.05 Error Degrees of Freedom 72 Error Mean Square 17.25 Critical Value of t 1.99346 Least Significant Difference 3.3801 Means with the same letter are not significantly different. Maize_ N hybrid t Grouping Mean А 6.667 8 12 В Α 3.417 12 6 В 2.500 12 3 В 2.250 12 5 В 2.000 12 7 В 1.917 12 4 В 12 9 1.917 В 2 1.500 12 В 1.250 12 1 Alpha 0.05 Error Degrees of Freedom 72 Error Mean Square 17.25 Critical Value of t 1.99346 Least Significant Difference 1.5934 Means with the same letter are not significantly different. N Rains season Mean t Grouping 3.1667 54 2 А 2.0370 54 1 А Alpha 0.05 Error Degrees of Freedom 72 Error Mean Square 17.25 Critical Value of t 1.99346 Least Significant Difference 1.5934 Means with the same letter are not significantly different. t Grouping Mean N Treatment 54 1 2.6667 А 2 2.5370 54 А

Table 26: LSD tests for Disease severity, incidences and response of maize hybrids to *Stenocarpella spp*. in Maseno University Research farm during short rains seasons of 2008 and long rains season of 2009 continues

LSD tests for	Plant stand		
	Alpha	0.05	
	Error Degrees	of Freedom	72
			129

0.611111 Error Mean Square Critical Value of t 1.99346 Least Significant Difference 0.6362 Means with the same letter are not significantly different. Maize_ Mean N hybrid t Grouping 88.0000 A 12 5 2 В 86.6667 12 В 86.6667 12 8 С 85.5000 12 3 D 84.1667 12 1 Е 82.3333 12 4 F 80.6667 12 7 G 77.8333 12 9 G 77.6667 12 6 Alpha 0.05 Error Degrees of Freedom 72 Error Mean Square 0.611111 Critical Value of t 1.99346 Least Significant Difference 0.2999 Means with the same letter are not significantly different. Rains_ t Grouping Mean N season 86.7222 54 2 A В 79.8333 54 1 Alpha 0.05 Error Degrees of Freedom 72 Error Mean Square 0.611111 Critical Value of t 1.99346 Least Significant Difference 0.2999 Means with the same letter are not significantly different. t Grouping Mean N Treatment A 84.2778 54 2 В 82.2778 54 1 LSD tests for Days to silking Alpha 0.05 Error Degrees of Freedom 72 Error Mean Square 0.814815 Critical Value of t 1.99346 Least Significant Difference 0.7346 Means with the same letter are not significantly different. Maize_ N hybrid t Grouping Mean А 73.8333 12 6 В Α 73.6667 12 1 В Α 73.6667 12 5 В Α 73.6667 12 4 73.5000 В А 12 3 В А 73.5000 12 7 В А 73.3333 12 9 73.0000 В 12 8 С 12 2 72.0000 0.05 Alpha Error Degrees of Freedom

72

Error Mean Square 0.814815 Critical Value of t 1.99346 Least Significant Difference 0.3463 Means with the same letter are not significantly different. Rains_ t Grouping Mean Ν season А 73.8889 54 1 В 72.8148 54 2

Table 26: LSD tests for Disease severity, incidences and response of maize hybrids to *Stenocarpella spp*. in Maseno University Research farm during short rains seasons of 2008 and long rains season of 2009 continues

LSD tests for Days to silking

Alpha0.05Error Degrees of Freedom72Error Mean Square0.814815Critical Value of t1.99346Least Significant Difference0.3463Means with the same letter are not significantly different.t GroupingMeanNTreatment

A 73.3519 54 1 A A 73.3519 54 2

 Table 27: Correlation analysis for parameters under Stenocarpella spp. in Maseno University Research farm during short rains of 2008 and long rains of 2009

6 Variables: Treatment Maize hybrid Rains season Severity	
incidences Yield (Tonnes/ha)	
Variable N Mean Std Dev Sum Minimum Maximum	
Treatment 108 1.50000 0.50233 162.00000 1.00000 2.00000	
Maize_hybrid 108 5.00000 2.59403 540.00000 1.00000 9.00000	
Rains_season 108 1.50000 0.50233 162.00000 1.00000 2.00000	
Severity 108 1.49074 0.67665 161.00000 1.00000 4.00000	
incidences 108 4.85215 2.30280 524.03200 0.23700 12.00000	
Yield_Tonnes_ha_ 108 1.07746 0.36243 116.36600 0.28800 2.00000	
Pearson Correlation Coefficients, $N = 108$	
Prob > r under H0: Rho=0	
Yield (
Maize Rains Tonnes/	
Treatment hybrid season Severity incidences ha)	
Treatment 1.00000 0.00000 0.00000 -0.48117 -0.12914 -0.37561	
Treatment 1.0000 1.0000 <.0001 0.1829 <.0001	
Maize_hybrid 0.00000 1.00000 0.00000 -0.10117 0.02816 -0.39167	
Maize hybrid 1.0000 1.0000 0.2975 0.7723 <.0001	
Rains_season 0.00000 0.00000 1.00000 0.23371 -0.10194 0.14409	
Rains season 1.0000 1.0000 0.0149 0.2938 0.1368	
Severity -0.48117 -0.10117 0.23371 1.00000 -0.00019 0.17623	
Severity0.48117-0.101170.233711.00000-0.000190.17623Severity<.0001	
Sevency <.0001 0.2775 0.0147 0.7705 0.0001	
incidences -0.12914 0.02816 -0.10194 -0.00019 1.00000 0.20075	
incidences 0.1829 0.7723 0.2938 0.9985 0.0372	

Yield_Tonnes_ha-0.37561-0.391670.144090.176230.200751.00000Yield (Tonnes/ha)<.0001<.00010.13680.06810.0372
Table 28: Means breakdown for parameters under Stenocarpella spp. in Maseno
University Research farm during short rains of 2008 and long rains of 2009
Effect=MAIZE_HYBRID
Std. Error
Std. Error Std. Error of Mean of
Maize Rains of Mean of Of Mean of YIELDTONNESYIELD
Treatment hybrid season SEVERITY SEVERITY INCIDENCES INCIDENCES HA_
TONNES_HA_
1 0 11237 1 16667 0 85536 6 03733 0 11052 1 41450

•	1	•	0.11237	1.1000/	0.83330	0.05/35	0.11032	1.41430
	2		0.24618	2.00000	0.25491	3.37067	0.05931	1.09783
	3		0.18803	1.66667	0.30006	5.20400	0.12233	1.14783
	4		0.17944	1.75000	0.22278	4.87067	0.07117	1.21450
	5		0.13056	1.25000	0.52641	3.37067	0.10377	1.01450
	6		0.14865	1.41667	0.55444	6.37067	0.10970	1.11450
	7		0.11237	1.16667	0.23412	5.53733	0.07315	1.03117
	8		0.28758	1.58333	0.30017	2.03733	0.06182	0.64783
	9		0.19300	1.41667	0.86705	6.87067	0.09164	1.01450

Table 28: Means breakdown for parameters under Stenocarpella spp. in Maseno University Research
farm during short rains of 2008 and long rains of 2009 continues

					d. Error			
					of Mea			
	Maize	e Rains	FAI	LED_ F	FAILED_	PLANT_	PLAN	NT_ DAYS_TO_ DAYS_TO_
Treat								D_ SILKING SILKING
•	1	. 0.25	000	1.25000	2.64814	84.1667	0.41439	73.6667
•	2	. 0.33	710	1.50000	0.46602	86.6667	0.65134	72.0000
•	3	. 0.51	493	2.50000	1.35680	85.5000	0.28868	73.5000
•					0.46602		0.28427	73.6667
					0.86164			
•	6	. 0.51	432	3.41667	0.83787	77.6667	0.32177	73.8333
	7	. 0.32	2567	2.00000	0.67794	80.6667	0.28868	73.5000
	8	. 3.33	788	6.66667	1.69819	86.6667	0.17408	73.0000
	9	. 0.60	875	1.91667	1.26031	77.8333	0.22473	73.3333
				E	ffect=Overa	ıll		
						1. Error		
		Std. E	rror	Sto	l. Error	of	Mean o	of
	Maize	Rains	of	Mean	of of	Mean of	YIELD	TONNES_ YIELD
Treat	ment hy	brid sea	son S	SEVERIT	TYSEVE	RITY IN	ICIDENC	ES INCIDENCES HA_
TONN	ES_HA	<u>_</u>						
		0.065	5111	1.49074	0.22159	4.85215	0.03487	1.07746
		Std. E	rror	Std	. Error	Std. Erro	r	
					of Mea			
	Maize	Rains	FAI	LED_ F	AILED_	PLANT_	PLAN	NT_ DAYS_TO_ DAYS_TO_
Treat	ment hy	brid sea	lson	EARS	EARS	STAND_	STAND	D_ SILKING SILKING
		0.41	014	2.60185	0.55078	83.2778	0.12080	73.3519
				Effec	ct=RAINS_	SEASON -		
					Sto	l. Error		
		Std. E	rror	Sto	l. Error	of	Mean o	of
	Maize	Rains	of	Mean	of of	Mean of	YIELD	TONNES_ YIELD

Treatment hybrid season SEVERITY__ SEVERITY__ INCIDENCES INCIDENCES HA TONNES_HA_ . . 1 $0.06994 \quad 1.33333 \quad 0.34144 \quad 5.08580 \quad 0.052988$ 1.02548 2 0.10626 1.64815 0.28216 4.61850 0.044735 1.12944 . Std. Error Std. Error Std. Error of Mean of of Mean of of Mean of Maize Rains FAILED_ FAILED_ _PLANT_ PLANT_ DAYS_TO_ DAYS_TO_ Treatment hybrid season EARS EARS STAND_ STAND_ SILKING SILKING . 1 0.22269 2.03704 0.57477 79.8333 0.12586 73.8889 . . 2 0.78586 3.16667 0.66845 86.7222 0.17944 72.8148 ----- Effect=TREATMENT -----Std. Error Std. Error Std. Error of Mean of Maize Rains of Mean of of Mean of YIELD TONNES YIELD Treatment hybrid season SEVERITY SEVERITY INCIDENCES INCIDENCES HA TONNES_HA_ $1 \qquad . \qquad 0.099172 \quad 1.81481 \quad 0.31100 \quad 5.14815 \quad 0.045484 \quad 1.21296$. . 0.057614 1.16667 0.31341 4.55615 0.046360 0.94196 2 Std. Error Std. Error Std. Error of Mean of of Mean of Mean of Maize Rains FAILED_ FAILED_ _PLANT_ _PLANT_ DAYS_TO_ DAYS_TO_ Treatment hybrid season EARS EARS STAND_ STAND_ SILKING SILKING . . 0.24083 2.66667 0.72704 82.2778 0.17164 73.3519 . . 0.78806 2.53704 0.81152 84.2778 0.17164 73.3519 2 ----- Effect=MAIZE HYBRID*RAINS SEASON ------Std. Error Std. Error Std. Error of Mean of Maize Rains of Mean of of Mean of YIELD__TONNES__YIELD__ Treatment hybrid season SEVERITY SEVERITY INCIDENCES INCIDENCES HA TONNES HA 1 1 0.16667 1.16667 1.38563 6.45617 0.13157 1.41067 1 2 0.16667 1.16667 1.10865 5.61850 0.19085 1.41833 . 2 1 0.22361 1.50000 0.37709 3.78950 0.09417 1.14400 . Std. Error Std. Error Std. Error Mean of of Mean of of of Mean of Maize Rains FAILED_ FAILED_ __PLANT_ __PLANT_ DAYS_TO_ DAYS_TO_ Treatment hybrid season EARS EARS STAND_ STAND_ SILKING SILKING 0.30732 0.83333 0.42817 75.5000 0.00000 75.0000 1 1 0.33333 1.66667 0.79232 92.8333 0.21082 72.3333 1 2 0.33333 1.66667 0.30732 85.8333 0.36515 74.0000 2 1 0.34157 2.50000 0.27121 2.95183 2 2 0.07587 1.05167 0.22361 1.50000 0.56566 5.12283 3 1 0.16323 1.11067 3 0.30732 1.83333 0.27121 5.28517 2 0.19658 1.18500 4 1 0.21082 1.33333 0.37709 4.78950 0.07288 1.17733 4 2 0.16667 2.16667 0.27121 4.95183 0.12815 1.25167 0.16667 1.16667 0.73634 3.78950 5 1 0.18613 0.91067 0.21082 1.33333 0.77903 2.95183 1.11833 5 2 0.09178 0.19316 6 1 0.22361 1.50000 0.97067 6.78950 1.07733 6 2 0.21082 1.33333 0.58328 5.95183 0.12284 1.15167 7 1 0.00000 1.00000 0.37709 5.78950 0.08152 0.91067 7 2 0.21082 1.33333 0.27121 5.28517 0.10531 1.15167 8 1 0.21082 1.33333 0.56566 2.12283 0.07288 0.51067 2 8 0.54263 1.83333 0.27121 1.95183 0.06307 0.78500 9 1 0.34157 1.50000 1.52315 7.12283 0.16727 0.97733 9 2 0.21082 1.33333 0.98104 6.61850 0.09178 1.05167 Table 28: Means breakdown for parameters under Stenocarpella spp. in Maseno University Research

farm during short rains of 2008 and long rains of 2009 continues

Std. Error 133

Std. Error

Std. Error

					f Mean			
_	Maiz	ze Ra	ains FAII	LED_ FA	ILED	_PLANT_	PLAN	T_ DAYS_TO_ DAYS_TO_
				EARS		STAND_		_ SILKING SILKING
•	2				0.76376		0.36515	
•	3	1	0.79232		0.30732		0.36515	
•	3	2	0.70317		0.70317	89.8333		73.0000
•	4	1	1.04616	1.8333	0.42817	81.5000		74.0000
•	4	2	0.51640	2.0000	0.70317	83.1667		73.3333
•	5	1	0.67082	2.5000	0.42817	85.5000		74.0000
•	5	2	0.25820	2.0000	0.76376	90.5000		73.3333
•	6	1	0.71492	2.6667	0.30732	75.1667		74.0000
•	6	2	0.65405	4.1667	0.70317	80.1667		73.6667
•	7	1	0.60093	1.8333	0.30732	78.8333		74.0000
•	7	2	0.30732		0.76376	82.5000		73.0000
•	8	1	0.55777					73.0000
•	8	2	6.50470		0.70317		0.00000	
•	9	1	0.67082		0.30732		0.36515	
•	9						0.21082	
			J	EIIect=1 R			_птвкір	
		C	td. Error	6+1	Sta. Error	. Error of	Maca -	f
	Mair	ze Ra						CONNES_ YIELD
Troate								S INCIDENCES HA_
TONN			u season S	U VENII I		<u></u> IN	CIDENCE	S INCIDENCES FIA_
TOWN	പാ_⊓	. n _						
1	1		0.21082	1 33333	1.25610	6 33333	0.15221	1.55000
1	2	•	0.34157		0.33333		0.06667	
1	3	•	0.16667	2.16667	0.33333		0.17013	
1	4	•	0.25820	2.00000	0.30732	5.16667	0.08466	
1	5	•	0.23820	1.50000	0.30732	3.66667	0.13844	
1	6		0.22301	1.83333	0.70012	6.66667	0.15000	
1	7	•	0.21082	1.33333	0.30732	5.83333	0.08433	
1	8		0.21082	1.83333	0.30732	2.33333	0.06009	
1	8 9	•	0.47720	1.83333	1.27584	2.33333 7.16667	0.12042	
2	1	•	0.00000	1.00000	1.27384	5.74133	0.12042	
$\frac{2}{2}$	2	•	0.22361	1.50000	0.37384	3.07467	0.15241	
$\frac{2}{2}$	2 3	•	0.22301 0.16667	1.16667	0.37384		0.00072	
2	4	•	0.22361	1.50000	0.42104	4.50800	0.08818	
		•						
2	5	•	0.00000	1.00000 1.00000	0.77873 0.82042	3.07467	0.14446 0.15202	
2 2	6 7	•	0.00000			6.07467		
$\frac{2}{2}$	7 8	•	0.00000	1.00000	0.33420	5.24133	0.09533	
$\frac{2}{2}$	8 9	•	0.33333	1.33333 1.00000	0.42852 1.28259	1.74133 6.57467	0.07655	
L	9	c	0.00000 td. Error	1.00000 Std. 1		Std. Erro	0.12292 r	2 0.07700
		3		an of o			Mean of	
	Mair	70 D.		LED_ FA				T_ DAYS_TO_ DAYS_TO_
Traatr			d season			_PLANT_ STAND_	PLAN STAND	
1	1 1	190110	0.33333		2.67348	83.1667	0.61464	73.6667
1	2	•		1.83333	0.33333	85.6667	0.01404	72.0000
1	2 3	•		2.83333	1.72723	84.50007	0.90009	73.5000
1	4	•	0.79232		0.33333	84.3000	0.42817 0.42164	73.6667
1	4 5	•	0.91894		0.33555 0.96609	81.3333	0.42104 0.21082	73.6667
1	5 6	•		4.00000	0.96609	87.0000 76.6667	0.21082	73.8333
1	0 7	•		2.50000		79.6667	0.47726	
	8	·			0.66667			73.5000
1 1		•		4.00000	2.24598	85.6667	0.25820	73.0000
	9 1	•	0.98036		1.57938	76.8333	0.33333	73.3333
2	1	•	0.30732		4.11839	85.1667	0.61464	73.6667
2 2	2	•	0.30732		0.66667	87.6667	0.96609	72.0000
2	3	•	0.70317	2.1000/	2.17179	86.5000	0.42817	73.5000
						171		

2	4		0.67082	1.50000	0.66667	83.3333	0.42164	73.6667
2	5		0.47726	1.83333	1.39044	89.0000	0.21082	73.6667
2	6		0.70317	2.83333	1.35810	78.6667	0.47726	73.8333
2	7		0.42817	1.50000	1.08525	81.6667	0.42817	73.5000
2	8		6.75607	9.33333	2.69155	87.6667	0.25820	73.0000
2	9		0.80277	1.66667	2.02347	78.8333	0.33333	73.3333
]	Effect=TR	EATMEN	Γ*RAINS_	SEASON	
					Std.	Error		
		S	td. Error	Std.	Error	of	Mean o	f
	Maiz	e R	ains of	Mean o	f of	Mean of	YIELD_7	TONNES_ YIELD
Treat	ment h	iybri	d season S	EVERITY	SEVE	RITY IN	ICIDENCE	ES INCIDENCES HA_
TONN	ES_H	A_						
1		1	0.10675	1.66667	0.48574	5.29630	0.06919	1 1.18148
1		2	0.16436	1.96296	0.39585	5.00000	0.05975	6 1.24444
2		1	0.00000	1.00000	0.48574	4.87530	0.06919	1 0.86948
2	•	2	0.10675	1.33333	0.39585	4.23700	0.05975	6 1.01444

	S	td. Error		Error		
			an of of			Mean of
Ma	aize R	ains FAII	LED_ FA	ILED	PLANT_	PLANT_ DAYS_TO_ DAYS_TO_
Treatmen	t hybri	d season	EARS	EARS S	STAND_	STAND_ SILKING SILKING
1.	1	0.32629	2.51852	0.81475	79.3333	0.17969 73.8889
1.	2	0.35820	2.81481	0.90792	85.2222	0.25619 72.8148
2.	1	0.27906	1.55556	0.81475	80.3333	0.17969 73.8889
2.	2	1.54272	3.51852	0.90792	88.2222	0.25619 72.8148
		Effec	t=TREAT	MENT*M	AIZE_HY	BRID*RAINS_SEASON
					Error	
	S	td. Error	Std. 1	Error	of	Mean of
Ma	aize R	ains of	Mean of	f of	Mean of `	YIELD_TONNES_ YIELD_
Treatmen	t hybri	d season S				CIDENCES INCIDENCES HA_
TONNES						_
1 1		0.33333	1.33333	2.18581	6.66667	0.17638 1.56667
1 1	1 2	0.33333				
	2 1	0.00000				
	2 2	0.57735				
	3 1	0.00000				
	3 2	0.33333				
	4 1	0.33333			5.00000	
	4 2	0.33333				
	5 1	0.33333		1.15470		
	5 2	0.33333		1.20185		
		td. Error	Std. E		Std. Error	
	~		an of of			
Ma	aize R					PLANT_ DAYS_TO_ DAYS_TO_
				EARS		
	1 1			0.57735		
	2			0.66667		0.33333 72.3333
	2 1		2.00000		85.3333	0.57735 74.0000
	2 2		1.66667		86.0000	0.57735 70.0000
	3 1		3.33333	0.33333	80.6667	0.57735 74.0000
	3 2		2.33333	0.33333	88.3333	0.57735 73.0000
	4 1		2.33333	0.57735	81.0000	0.57735 74.0000
	4 2		2.33333	0.33333	81.6667	0.66667 73.3333
1 5			3.00000	0.55555	85.0000	0.00000 74.0000
1 .	, I	1.00000	5.00000	0.57755	05.0000	0.00000 / 1.0000

1	5	2					0.33333		
					IENT*MA	AIZE_HYE	BRID*RAII	NS_SEASON	
			(0	continued)	a 1	-			
		~		a 1 r		Error			
			td. Error	Std. E		of	Mean of		
m .	Maiz			Mean of				ONNES_ YIELI	
		•	d season SI	EVERITY_	_ SEVER	IIY_IN	CIDENCES	5 INCIDENCES	HA_
	JES_H	_	0.00000	a 00000	1 50750	7 00000	0.00400	1 00000	
1	6	1	0.00000	2.00000	1.52753	7.00000	0.28480		
1	6	2	0.33333	1.66667	0.88192	6.33333	0.17638		
1	7	1	0.00000	1.00000	0.57735	6.00000	0.06667		
1	7	2	0.33333	1.66667	0.33333	5.66667	0.14530		
1	8	1	0.33333	1.66667	0.88192	2.33333	0.03333		
1	8	2	1.00000	2.00000	0.33333	2.33333	0.05774		
1	9	1	0.57735	2.00000	2.40370	7.33333	0.24037		
1	9	2	0.33333	1.66667	1.52753	7.00000	0.12019		
2	1	1	0.00000	1.00000	2.18581	6.24567	0.17638		
2	1	2	0.00000	1.00000	1.73205	5.23700	0.29059		
2	2	1	0.00000	1.00000	0.57735	3.57900	0.10000		
2	2	2	0.00000	2.00000	0.33333	2.57033	0.08819		
2	3	1	0.00000	1.00000	0.88192	4.91233	0.23333		
2	3	2	0.33333	1.33333	0.33333	4.90367	0.30000		
2	4	1	0.00000	1.00000	0.57735	4.57900	0.03333		
2	4	2	0.00000	2.00000	0.33333	4.57033	0.18559		
2	5	1	0.00000	1.00000	1.15470	3.57900	0.27285	0.75467	
2	5	2	0.00000	1.00000	1.20185	2.57033	0.12019	1.00333	
2	6	1	0.00000	1.00000	1.52753	6.57900	0.28480	0.92133	
2	6	2	0.00000	1.00000	0.88192	5.57033	0.17638	1.03667	
2	7	1	0.00000	1.00000	0.57735	5.57900	0.06667	0.75467	

 Table 28: Means breakdown for parameters under Stenocarpella spp. in Maseno University Research farm during short rains of 2008 and long rains of 2009 continues

						Std. Erro		
		5				n of of		
	Maize	e Ra					PLANTDAYS_TO_	
Treat							STAND_ SILKING	
1	6	´1					0.57735 74.0000	
1	6	2	1.2019			78.6667		
1	7	1	0.8819		0.33333	78.3333	0.57735 74.0000	
1	7	2	0.3333		0.57735	81.0000	0.57735 73.0000	
1	8	1	0.8819	3.3333	0.33333	80.6667	0.57735 73.0000	
1	8	2	1.2019	4.6667	0.33333	90.6667	0.00000 73.0000	
1	9	1	1.2019	1.6667	0.33333	73.3333	0.57735 73.0000	
1	9	2	1.7638	2.6667	0.33333	80.3333	0.33333 73.6667	
2	1	1	0.3333	0.3333	0.57735	76.0000	0.00000 75.0000	
2	1	2	0.3333	1.3333	0.66667	94.3333	0.33333 72.3333	
2	2	1	0.3333	1.3333	0.33333	86.3333	0.57735 74.0000	
2	2	2	0.5774	1.0000	0.57735	89.0000	0.57735 70.0000	
2	3	1	1.2019	2.3333	0.33333	81.6667	0.57735 74.0000	
2	3	2	1.0000	2.0000	0.33333	91.3333	0.57735 73.0000	
2	4	1	1.3333	1.3333	0.57735	82.0000	0.57735 74.0000	
2	4	2	0.6667	1.6667	0.33333	84.6667	0.66667 73.3333	
2	5	1	1.0000	2.0000	0.57735	86.0000	0.00000 74.0000	
2	5	2	0.3333	1.6667	0.57735	92.0000	0.33333 73.3333	
2	6	1	1.1547	2.0000	0.33333	75.6667	0.57735 74.0000	
2	6	2	0.6667	3.6667	0.33333	81.6667	0.88192 73.6667	
2	7	1			0.33333			
			Effec	t=TREA7	TMENT*N	IAIZE_HY	BRID*RAINS_SEASON	

(continued)

Std. Error

		S	td. Error	Std.	Error	of	Mean o	f		
	Maiz	e Ra	ains of	Mean of	of of	Mean of	YIELD_7	FONNES_	YIELD_	
Treat	ment h	ybrio	l season	SEVERITY	ZSEVEI	RITYIN	ICIDENCE	ES INCIDE	NCES	HA_
TONN	ES_H	A_								
2	7	2	0.0000	0 1.00000	0.33333	4.90367	0.1453	0 1.036	67	
2	8	1	0.0000	0 1.00000	0.88192	1.91233	0.0333	0.354	67	
2	8	2	0.6666	7 1.66667	0.33333	1.57033	0.0577	4 0.670	00	
2	9	1	0.0000	0 1.00000	2.40370	6.91233	0.2403	0.821	33	
2	9	2	0.0000	0 1.00000	1.52753	6.23700	0.1201	9 0.936	67	
		S	td. Error	Std. 1	Error	Std. Erro	r			
			of M	lean of o	f Mean	of of	Mean of	Ĩ		
	Maiz	e Ra	ains FA	ILED_ FA	ILED	_PLANT_	PLAN	T_ DAYS	S_TO_	
Treat	ment h	ybrio	l season	EARS	EARS	STAND_	STAND	SILKI	NG	
2	7	2	0.3333	1.6667	0.57735	84.0000	0.57735	73.0000		
2	8	1	0.5774	2.0000	0.33333	81.6667	0.57735	73.0000		
2	8	2	13.195	1 16.6667	0.33333	93.6667	0.00000	73.0000		
2	9	1	0.8819	1.3333	0.33333	74.3333	0.57735	73.0000		
2	9	2	1.5275	2.0000	0.33333	83.3333	0.33333	73.6667		

Appendix 9: Disease severity, incidences and response of maize hybrids to Stenocarpella spp. in Maseno University Research farm during short rains seasons of 2008

Table 29: Anova for Disease severity, incidences and response of maize hybrids to <i>Stenocarpella spp</i> . in
Maseno University Research farm during short rains seasons of 2008
Dependent Variable: Severity

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Dependent Variable:	Severity
		Sum of
$ \begin{array}{ccccc} Error & 36 & 16.0000000 & 0.4444444 \\ Corrected Total & 53 & 32.31481481 \\ R.Square & Coeff Var & Root MSE & Severity_Mean \\ 0.504871 & 40.44944 & 0.666667 & 1.648148 \\ Source & DF & Type ISS & Mean Square F Value Pr > F \\ Maize_hybrid & 8 & 10.14814815 & 1.26851852 & 2.85 & 0.0145 \\ Treatment & 1 & 5.35185185 & 5.35185185 & 12.04 & 0.0014 \\ Treatment & 1 & 5.35185185 & 5.35185185 & 0.23 & 0.9830 \\ \hline \end{tabular} \end{tabuar} \end{tabular} \end{tabular} \end{tabular} \end{tabular} t$	Source	DF Squares Mean Square F Value $Pr > F$
Corrected Total 53 32.31481481 R-Square Coeff Var Root MSE Severity_Mean 0.504871 40.44944 0.666667 1.648148 Source DF Type ISS Mean Square F Value $Pr > F$ Maize_hybrid 8 10.44814815 1.26851852 2.28 0.0145 Treatment 1 5.35185185 5.35185185 12.04 0.0014 Treatment Maize_hybr 8 0.81481481 0.10185185 0.23 0.9830 Dependent Variable: incidences Source DF Sum of Squares Mean Square F Value $Pr > F$ Model 17 130.5259482 7.6779970 2.84 0.0042 Error 36 97.333333 2.7037037 Corrected Total 53 227.8592815 R-Square Coeff Var Root MSE incidences Mean 0.572836 35.60234 1.644294 4.618500 Source DF Type ISS Mean Square F Value $Pr > F$ Maize_hybrid 8 122.6666667 15.3333333 5.67 0.0001 Treatment 1 7.8592815 7.8592815 2.91 0.0968 Treatment Maize_hybrid 8 122.6666667 15.3333333 5.67 0.0000 Table 29: Anova for Disease severity, incidences and response of maize hybrids to <i>Stenocarpella spp.</i> in Maseno University Research farm during short rains seasons of 2008 continues Dependent Variable: Yield (Tonnes/ha) Source DF Squares Mean Square F Value $Pr > F$ Model 17 2.11415000 0.12436176 1.24 0.2857 Error 36 3.6133333 0.10037037 Corrected Total 53 5.72748333 R-Square Coeff Var Root MSE Yield_Tonnes_ha_Mean 0.339124 28.05022 0.316813 1.129444 Source DF Type ISS Mean Square F Value $Pr > F$ Maize_hybrid 8 1.0000000 0.00000000 0.00 1.74 0.1217 Treatment 1 0.71415000 0.71415007 7.12 0.0114 Treatment*Maize_hybr 8 0.00000000 0.00000000 0.00 1.0000 Dependent Variable: Failed ears Sum of Source DF Type ISS Mean Square F Value $Pr > F$ Maize_hybrid 8 1.4000000 0.17500000 1.74 0.1217 Treatment 1 0.7141500 7.112 0.0114 Treatment*Maize_hybr 8 0.1533333 3.1537037 Corrected Total 53 1.767.50000 R-Square Coeff Var Root MSE Failed_ears Mean 0.357661 177.3406 5.615785 3.166667 Source DF Type ISS Mean Square F Value $Pr > F$ Maize_hybrid 8 409.666667 51.2083333 1.62 0.1524 Treatment*Maize_hybr 8 2.158.148148 2.02.0120.0148 Treatment*Maize_hybr 8 2.158.148148 2.69768519 0.86 0.5618	Model	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Error	
$\begin{array}{ccccccc} 0.50^4871 & 40.44944 & 0.666667 & 1.548148 \\ Source DF Type ISS Mean Square F Value Pr > F \\ Maize_hybrid & 10.14814815 & 1.26851852 & 2.85 & 0.0145 \\ Treatment 1 & 5.35185185 & 5.35185185 & 12.04 & 0.0014 \\ Treatment*Maize_hybr & 8 & 0.81481481 & 0.10185185 & 0.23 & 0.9830 \\ \hline \end{tabular}$		
Source DF Type 1 SS Mean Square F Value Pr > F Maize_hybrid 8 10.14814815 1.26851852 2.85 0.0145 Treatment 1 5.3518155 5.35185155 12.04 0.0014 Treatment*Maize_hybr 8 0.81481481 0.10185185 0.23 0.9830 Dependent Variable: incidences Source DF Sum of Squares Mean Square F Value Pr > F Model 17 130.5259482 7.6779970 2.84 0.0042 Error 36 97.33333333 2.7037037 Corrected Total 53 227.8592815 A.618500 Source DF Type 1SS Mean Square F Value Pr > F Maize_hybrid 8 122.6666667 15.333333 5.67 0.0001 Treatment*Maize_hybr 8 0.0000000 0.0000000 0.00000 1.0000 Treatment*Maize_hybr 8 0.0000000 0.0000000 0.000000 1.0000		
$\begin{tabular}{l l l l l l l l l l l l l l l l l l l $		
$\begin{tabular}{l lllllllllllllllllllllllllllllllllll$		
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$		
Source DF Sum of Squares Mean Square F Value Pr > F Model 17 130.5259482 7.6779970 2.84 0.0042 Error 36 97.3333333 2.7037037 Corrected Total 53 227.8592815 Resquare FValue Pr > F Maize_hybrid 8 122.6666667 15.333333 5.67 0.0001 Treatment 1 7.8592815 7.8592815 2.91 0.0968 Treatment*Maize_hybrid 8 0.0000000 0.0000000 0.000 1.00000 Table 29: Anova for Disease severity, incidences and response of maize hybrids to Stenocarpella spp. in Maseno University Research farm during short rains seasons of 2008 continues Dependent Variable: Yield (Tonnes/ha) Sum of Sum of Sum of Source DF Squares Mean Square F Value Pr > F Model 17 2.11415000 0.12436176 1.24 0.2857 Error 36 3.6133333 0.10037037 Corrected Total 53 5.72748333 .129444 4.01217 Treatment 1<		- •
$\begin{array}{cccccc} Model & 17 & 130.5259482 & 7.6779970 & 2.84 & 0.0042 \\ Error & 36 & 97.333333 & 2.7037037 \\ Corrected Total & 53 & 227.8592815 \\ R-Square & Coeff Var & Root MSE & incidences Mean \\ 0.572836 & 35.60234 & 1.644294 & 4.618500 \\ Source & DF & Type I SS & Mean Square F Value Pr > F \\ Maize_hybrid & 8 & 122.6666667 & 15.3333333 & 5.67 & 0.0001 \\ Treatment & 1 & 7.8592815 & 7.8592815 & 2.91 & 0.0968 \\ Treatment*Maize_hybr & 8 & 0.0000000 & 0.000000 & 0.0000 \\ \hline Table 29: Anova for Disease severity, incidences and response of maize hybrids to Stenocarpella spp. in Maseno University Research farm during short rains seasons of 2008 continues \\ \hline Dependent Variable: Yield (Tonnes/ha) \\ \hline Sum of \\ Source & DF & Squares & Mean Square F Value Pr > F \\ Model & 17 & 2.11415000 & 0.12436176 & 1.24 & 0.2857 \\ \hline Error & 36 & 3.61333333 & 0.10037037 \\ \hline Corrected Total & 53 & 5.72748333 \\ R-Square & Coeff Var & Root MSE & Yield_Tonnes_ha_Mean \\ 0.369124 & 28.05032 & 0.316813 & 1.129444 \\ Source & DF & Type I SS & Mean Square F Value Pr > F \\ Maize_hybrid & 8 & 1.40000000 & 0.07500000 & 1.74 & 0.1217 \\ Treatment & 1 & 0.71415000 & 0.174 50000 & 0.124 \\ Treatment*Maize_hybr & 8 & 0.00000000 & 0.000 \\ \hline Dependent Variable: Failed ears \\ Sum of \\ Source & DF & Squares & Mean Square F Value Pr > F \\ Maize_hybrid & 8 & 1.40000000 & 0.0000000 & 0.00 & 1.0000 \\ \hline Dependent Variable: Failed ears \\ Sum of \\ Source & DF & Squares & Mean Square F Value Pr > F \\ Model & 17 & 632.166667 & 37.186275 & 1.18 & 0.3279 \\ Error & 36 & 1135.33333 & 31.537037 \\ Corrected Total & 53 & 1767.500000 \\ R-Square & Coeff Var & Root MSE & Failed_ears Mean \\ 0.357661 & 177.3406 & 5.615785 & 3.166667 \\ Source & DF & Type I SS & Mean Square F Value Pr > F \\ Maize_hybrid & 8 & 409.66666667 & 51.2083333 & 1.62 & 0.1524 \\ Treatment*Maize_hybrid & 8 & 143.81484 & 26.9768519 & 0.86 & 0.5618 \\ \hline \end{array}$	-	
$ \begin{array}{cccccc} & & & & & & & & & & & & & & & & $		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c ccccc} \mbox{Maize_hybrid} & 8 & 122.6666667 & 15.333333 & 5.67 & 0.0001 \\ \mbox{Treatment} & 1 & 7.8592815 & 7.8592815 & 2.91 & 0.0968 \\ \mbox{Treatment*Maize_hybr} & 8 & 0.0000000 & 0.0000000 & 0.00 & 1.0000 \\ \hline \mbox{Table 29: Anova for Disease severity, incidences and response of maize hybrids to Stenocarpella spp. in \\ \hline \mbox{Maseno University Research farm during short rains seasons of 2008 continues} \\ \hline \mbox{Dependent Variable: Yield (Tonnes/ha) } \\ \hline \mbox{Source} & DF & Squares & Mean Square F Value $Pr > F \\ \hline \mbox{Model} & 17 & 2.11415000 & 0.12436176 & 1.24 & 0.2857 \\ \hline \mbox{Error} & 36 & 3.6133333 & 0.10037037 \\ \hline \mbox{Corrected Total} & 53 & 5.72748333 \\ \hline \mbox{R-Square} & Coeff Var & Root MSE Yield_Tonnes_ha_Mean \\ 0.369124 & 2805032 & 0.316813 & 1.129444 \\ \hline \mbox{Source} & DF & Type I SS & Mean Square F Value $Pr > F \\ \hline \mbox{Maize_hybrid} & 8 & 1.40000000 & 0.174 & 0.1217 \\ \hline \mbox{Treatment}^* Maize_hybrid & 8 & 0.00000000 & 0.00000000 & 0.00 & 1.0000 \\ \hline \mbox{Dependent Variable: Failed ears } \\ \hline \mbox{Source} & DF & Squares & Mean Square F Value $Pr > F \\ \hline \mbox{Maize_hybrid} & 8 & 0.00000000 & 0.174 & 0.1217 \\ \hline \mbox{Treatment} & 1 & 0.71415000 & 0.71415000 & 7.12 & 0.0114 \\ \hline \mbox{Treatment}^* Maize_hybr & 8 & 0.00000000 & 0.00000000 & 0.00 & 0.000 \\ \hline \mbox{Dependent Variable: Failed ears } \\ \hline \mbox{Source} & DF & Squares & Mean Square F Value $Pr > F \\ \hline \mbox{Model} & 17 & 632.166667 & 37.186275 & 1.18 & 0.3279 \\ \hline \mbox{Error} & 36 & 1135.33333 & 31.537037 \\ \hline \mbox{Corrected Total} & 53 & 1767.500000 \\ \hline \mbox{R-Square} & Coeff Var & Root MSE Failed_ears Mean \\ \mbox{0.357661} & 177.3406 & 5.615785 & 3.166667 \\ \hline \mbox{Source} & DF & Type ISS & Mean Square F Value $Pr > F \\ \hline \mbox{Maize_hybrid} & 8 & 409.6666667 & 51.2083333 & 1.62 & 0.1524 \\ \hline \mbox{Treatment} & 1 & 6.6851852 & 0.21 & 0.6480 \\ \hline \mbox{Treatment}^* Maize_hybrid & 8 & 215.8148148 & 26.9768519 & 0.86 & 0.5618 \\ \hline \mbox{Treatment}^* Maize_hybrid & 8 & 215.8148148 & 26.9768519 \\ \hline \mbox{Treatment}^* M$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Maize_nybrid	
Table 29: Anova for Disease severity, incidences and response of maize hybrids to Stenocarpella spp. in Maseno University Research farm during short rains seasons of 2008 continues Dependent Variable: Yield (Tonnes/ha) Sum of Source DF Squares Mean Square F Value Pr > F Model 17 2.11415000 0.12436176 1.24 0.2857 Error 36 3.61333333 0.10037037 Corrected Total 53 5.72748333 R-Square Coeff Var Root MSE Yield_Tonnes_ha_Mean 0.369124 28.05032 0.316813 1.129444 Source DF Type ISS Mean Square F Value Pr > F Maize_hybrid 8 1.40000000 0.17500000 1.74 0.1217 Treatment 1 0.71415000 7.12 0.0114 Treatment*Maize_hybr 8 0.00000000 0.0000000 0.000000 Dependent Variable: Failed ears Sum of Source DF Squares Mean Square F Value Pr > F </td <td></td> <td></td>		
Maseno University Research farm during short rains seasons of 2008 continues Dependent Variable: Yield (Tonnes/ha) Sum of Source DF Squares Mean Square F Value Pr > F Model 17 2.11415000 0.12436176 1.24 0.2857 Error 36 3.61333333 0.10037037 Corrected Total 53 5.72748333 R-Square Coeff Var Root MSE Yield_Tonnes_ha_Mean 0.369124 28.05032 0.316813 1.129444 Source DF Type ISS Mean Square F Value Pr > F Maize_hybrid 8 1.40000000 0.17500000 1.74 0.1217 Treatment 1 0.71415000 7.12 0.0114 Treatment*Maize_hybr 8 0.00000000 0.0000000 0.00 1.0000 Dependent Variable: Failed ears Sum of Surve of Squares Mean Square F Value Pr > F <t< td=""><td></td><td></td></t<>		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		
SourceDFSquaresMean SquareF Value $Pr > F$ Model172.114150000.124361761.240.2857Error363.613333330.10037037Corrected Total535.72748333R-SquareCoeff VarRoot MSEYield_Tonnes_ha_Mean0.36912428.050320.3168131.129444SourceDFType I SSMean SquareF ValuePr = Type I SSMean SquareF Value $Pr > F$ Maize_hybrid81.400000000.0714150007.120.0114Treatment10.714150000.000000000.0001.0000Dependent Variable: Failed earsSum ofSourceDFSquaresMean SquareF Value $Pr > F$ Model17632.16666737.1862751.180.3279Error361175.53333331.537037Corrected Total531767.500000R-SquareCoeff VarRoot MSEFailed_earsMean0.357661177.34065.6157853.166667SSourceDFType I SSMean SquareF Value $Pr > F$ Maize_hybrid8409.666666751.20833331.620.1524Treatment16.68518520.210.6480Treatment16.68518520.210.6480Treatment*Maize_hybr8215.814814826.97685190.86	×	
SourceDFSquaresMean SquareF Value $Pr > F$ Model172.114150000.124361761.240.2857Error363.613333330.10037037Corrected Total535.72748333R-SquareCoeff VarRoot MSEYield_Tonnes_ha_Mean0.36912428.050320.3168131.129444SourceDFType I SSMean SquareF Value $Pr > F$ Maize_hybrid81.400000000.175000001.740.1217Treatment10.714150000.714150007.120.0114Treatment*Maize_hybr80.000000000.000000000.000Dependent Variable: Failed earsSum ofSourceDFSquaresMean SquareF Value $Pr > F$ Model17632.16666737.1862751.180.3279Error361135.3333331.537037InterventInterventCorrected Total531767.500000R-SquareCoeff VarRoot MSEFailed_ears Mean0.357661177.34065.6157853.166667S0urceDFType I SSMean SquareF Value $Pr > F$ Maize_hybrid8409.666666751.20833331.620.1524Ireatment16.68518520.2110.6480Treatment16.68518520.2110.6480Ireatment*Maize_hybr8215.814814826.97685190.860.5618	Dependent Variable:	
Model172.114150000.124361761.240.2857Error363.613333330.10037037Corrected Total53 5.72748333 R-SquareCoeff Var Root MSEYield_Tonnes_ha_Mean 0.3691240.36912428.050320.3168131.129444SourceDFType I SSMean SquareF Value Pr > F Maize_hybridMaize_hybrid81.400000000.714150007.12Treatment10.714150000.7120.0114 Treatment*Maize_hybrTreatment*Maize_hybr80.000000000.0000000Dependent Variable: Failed cars Sum ofSum ofSourceDFSquaresMean SquareSourceDFSquaresMean SquareModel17632.16666737.1862751.180.357661177.500000R-SquareCoeff Var Root MSER-SquareCoeff Var Coff Var Root MSESalied_ears Mean 0.3576610.57661177.34065.6157853.166667SourceDFType I SS Mean SquareF Value Pr > F Maize_hybridMaize_hybrid8409.666666751.2083333Corrected Total5.6157853.166667SourceDFType I SS Mean SquareF Value Pr > F Maize_hybridMaize_hybrid8409.6666667SurceDFType I SS Mean Square0.1524 TreatmentTreatment16.68518520.210.6480 Treatment*Maize_hybr82	Source	
Error 36 3.6133333 0.10037037 Corrected Total 53 5.72748333 R-Square Coeff Var Root MSE Yield_Tonnes_ha_Mean 0.369124 28.05032 0.316813 $1.129444Source DF Type I SS Mean Square F Value Pr > FMaize_hybrid 8 1.40000000 0.71700000 1.74 0.1217Treatment 1 0.71415000 0.71415000 7.12 0.0114Treatment*Maize_hybr 8 0.00000000 0.00000000 0.00 1.0000Dependent Variable: Failed earsSum ofSource DF Squares Mean Square F Value Pr > FModel 17 632.166667 37.186275 1.18 0.3279Error 36 1135.33333 31.537037Corrected Total 53 1767.50000R-Square Coeff Var Root MSE Failed_ears Mean0.357661$ 177.3406 5.615785 $3.166667Source DF Type I SS Mean Square F Value Pr > FMaize_hybrid 8 409.6666667 51.2083333 1.62 0.1524Treatment 1 6.6851852 6.6851852 0.21 0.6480Treatment*Maize_hybr 8 215.8148148 26.9768519 0.86 0.5618$	Source	Dr Squares Mean Square r value ri >r
Error 36 3.6133333 0.10037037 Corrected Total 53 5.72748333 R-Square Coeff Var Root MSE Yield_Tonnes_ha_Mean 0.369124 28.05032 0.316813 $1.129444Source DF Type I SS Mean Square F Value Pr > FMaize_hybrid 8 1.40000000 0.71700000 1.74 0.1217Treatment 1 0.71415000 0.71415000 7.12 0.0114Treatment*Maize_hybr 8 0.00000000 0.00000000 0.00 1.0000Dependent Variable: Failed earsSum ofSource DF Squares Mean Square F Value Pr > FModel 17 632.166667 37.186275 1.18 0.3279Error 36 1135.33333 31.537037Corrected Total 53 1767.50000R-Square Coeff Var Root MSE Failed_ears Mean0.357661$ 177.3406 5.615785 $3.166667Source DF Type I SS Mean Square F Value Pr > FMaize_hybrid 8 409.6666667 51.2083333 1.62 0.1524Treatment 1 6.6851852 6.6851852 0.21 0.6480Treatment*Maize_hybr 8 215.8148148 26.9768519 0.86 0.5618$	Model	17 2 11415000 0 12436176 1 24 0 2857
$\begin{array}{ccccccc} Corrected Total & 53 & 5.72748333 \\ R-Square & Coeff Var & Root MSE & Yield_Tonnes_ha_Mean \\ 0.369124 & 28.05032 & 0.316813 & 1.129444 \\ Source & DF & Type I SS & Mean Square & F Value & Pr > F \\ Maize_hybrid & 8 & 1.40000000 & 0.17500000 & 1.74 & 0.1217 \\ Treatment & 1 & 0.71415000 & 0.71415000 & 7.12 & 0.0114 \\ Treatment*Maize_hybr & 8 & 0.00000000 & 0.00000000 & 0.00 & 1.0000 \\ \hline \end{tabular}$	Widder	17 2.11413000 0.12430170 1.24 0.2037
$\begin{array}{ccccccc} Corrected Total & 53 & 5.72748333 \\ R-Square & Coeff Var & Root MSE & Yield_Tonnes_ha_Mean \\ 0.369124 & 28.05032 & 0.316813 & 1.129444 \\ Source & DF & Type I SS & Mean Square & F Value & Pr > F \\ Maize_hybrid & 8 & 1.40000000 & 0.17500000 & 1.74 & 0.1217 \\ Treatment & 1 & 0.71415000 & 0.71415000 & 7.12 & 0.0114 \\ Treatment*Maize_hybr & 8 & 0.00000000 & 0.00000000 & 0.00 & 1.0000 \\ \hline \end{tabular}$	Error	36 3.61333333 0.10037037
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20101	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Corrected Total	53 5.72748333
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
SourceDFType I SSMean SquareF Value $Pr > F$ Maize_hybrid81.400000000.175000001.740.1217Treatment10.714150000.714150007.120.0114Treatment*Maize_hybr80.000000000.000000000.001.0000Dependent Variable: Failed earsSum ofSourceDFSquaresMean SquareF Value $Pr > F$ Model17632.16666737.1862751.180.3279Error361135.3333331.537037Corrected Total531767.500000R-SquareCoeff VarR-SquareCoeff VarRoot MSEFailed_ears Mean0.357661177.34065.6157853.166667SourceDFType I SSMean SquareF Value $Pr > F$ Maize_hybrid8409.6666666751.20833331.620.1524Treatment16.68518520.210.6480Treatment*Maize_hybr8215.814814826.97685190.860.5618	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Source	DF Type I SS Mean Square F Value $Pr > F$
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Maize_hybrid	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Treatment	1 0.71415000 0.71415000 7.12 0.0114
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Treatment*Maize	_hybr 8 0.00000000 0.00000000 0.00 1.0000
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Dependent Variable:	Failed ears
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Sum of
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
Corrected Total 53 1767.500000 R-Square Coeff Var Root MSE Failed_ears Mean 0.357661 177.3406 5.615785 3.166667 Source DF Type I SS Mean Square F Value Pr > F Maize_hybrid 8 409.66666667 51.2083333 1.62 0.1524 Treatment 1 6.6851852 6.21 0.6480 Treatment*Maize_hybr 8 215.8148148 26.9768519 0.86 0.5618	Model	
R-Square Coeff Var Root MSE Failed_ears Mean 0.357661 177.3406 5.615785 3.166667 Source DF Type I SS Mean Square F Value Pr > F Maize_hybrid 8 409.66666667 51.2083333 1.62 0.1524 Treatment 1 6.6851852 6.21 0.6480 Treatment*Maize_hybr 8 215.8148148 26.9768519 0.86 0.5618		
0.357661 177.3406 5.615785 3.166667 Source DF Type I SS Mean Square F Value Pr > F Maize_hybrid 8 409.66666667 51.2083333 1.62 0.1524 Treatment 1 6.6851852 6.6851852 0.21 0.6480 Treatment*Maize_hybr 8 215.8148148 26.9768519 0.86 0.5618		
SourceDFType I SSMean SquareF ValuePr > FMaize_hybrid8409.6666666751.20833331.620.1524Treatment16.68518526.68518520.210.6480Treatment*Maize_hybr8215.814814826.97685190.860.5618	-	
Maize_hybrid8409.6666666751.20833331.620.1524Treatment16.68518526.68518520.210.6480Treatment*Maize_hybr8215.814814826.97685190.860.5618		
Treatment16.68518526.68518520.210.6480Treatment*Maize_hybr8215.814814826.97685190.860.5618		
Treatment*Maize_hybr 8 215.8148148 26.9768519 0.86 0.5618		
•		
Dependent Variable: Plant stand		•
	Lionondont Variable	Hentstond

	Sum of
Source	DF Squares Mean Square F Value $Pr > F$
Model	17 1254.833333 73.813725 110.72 <.0001
Error	36 24.000000 0.666667
Corrected Total	53 1278.833333
R-Square	Coeff Var Root MSEPlant_stand_ Mean
0.981233	0.941508 0.816497 86.72222
Source	DF Type I SS Mean Square F Value $Pr > F$
Maize_hybrid	8 1133.33333 141.6666667 212.50 <.0001
Treatment	1 121.500000 121.500000 182.25 <.0001
Treatment*Maize	_hybr 8 0.000000 0.000000 0.00 1.0000
Dependent Variable:	
	Sum of
Source	DF Squares Mean Square F Value $Pr > F$
Model	17 61.48148148 3.61655773 4.25 0.0001
Error	36 30.666666667 0.85185185
Corrected Total	
R-Square	
0.667203	
Source	DF Type I SS Mean Square F Value $Pr > F$
Maize_hybrid	8 61.48148148 7.68518519 9.02 <.0001
Treatment	1 0.00000000 0.0000000 0.00 1.0000
Treatment*Maize	_hybr 8 0.0000000 0.0000000 0.00 1.0000

Table 30: LSD tests for Disease severity, incidences and response of maize hybrids to Stenocarpella spp.in Maseno University Research farm during short rains seasons of 2008NOTE: 1. This test controls the Type I comparison wise error rate, not the experiment wiseerror rate.

2. Maize hybrids 1, 2, 3, 4, 5, 6, 7, 8, 9 are EH10, EH13, EH14, EH15, EH16, H515, H516, H614D and P3253 respectively; Treatments 1, 2 are inoculated and non-innoculated

LSD tests for Severity		
Alpha		0.05
Error Deg	grees of Freed	om 36
Error Mea	an Square	0.44444
Critical V	alue of t	2.02809
Least Sign	nificant Differ	rence 0.7806
Means with the s	same letter are	not significantly different.
	Mai	ze_
t Grouping	Mean	N hybrid
A	2.5000 6	2
A	2.1667 6	4
B A	1.8333 6	3
B A	1.8333 6	8
В	1.3333 6	9
В	1.3333 6	5
В	1.3333 6	7
В	1.3333 6	6
В	1.1667 6	1
Alpha		0.05
Error Deg	grees of Freed	om 36
Error Mea	an Square	0.44444
Critical V	'alue of t	2.02809
Least Sign	nificant Differ	rence 0.368
Means with the s	same letter are	not significantly different.

t Grouping Mean Ν Treatments 27 А 1.9630 1 В 1.3333 27 2 LSD tests for incidences Alpha 0.05 Error Degrees of Freedom 36 Error Mean Square 2.703704 Critical Value of t 2.02809 Least Significant Difference 1.9253 Means with the same letter are not significantly different Maize_ n N hybrid Mean t Grouping 9 6.6185 А 6 6 6 А 5.9518 А 5.6185 6 1 5.2852 6 3 А 5.2852 7 А 6 А 4.9518 6 4 2 В 2.9518 6 В 2.9518 6 5 В 1.9518 8 6 Alpha 0.05 Error Degrees of Freedom 36 Error Mean Square 2.703704 Critical Value of t 2.02809 Least Significant Difference 0.9076 Means with the same letter are not significantly different. N Treatment t Grouping Mean 5.0000 27 А 1 4.2370 27 2 А

Table 30: LSD tests for Disease severity, incidences and response of maize hybrids to Stenocarpella spp. in Maseno University Research farm during short rains seasons of 2008 continues LSD tests for Yield (Tonnes/ha) LSD tests for Yield (Tonnes/ha)

sts for Y	Yie	ld (To	nnes/ha)				
	Al	pha			0.05	5	
	Er	ror De	grees of Fr	eed	om	36	
	Er	ror Me	an Square			0.10037	
	Cr	itical V	/alue of t		2.0	02809	
	Le	ast Sig	nificant Di	iffeı	enc	e 0.371	
Means	wi	ith the	same letter	are	e not	t significantly different.	
]	Mai	ze_		
t C	Gro	uping	Mear	1	Ν	hybrid	
		А	1.4183	6	1		
		А	1.2517	6	4		
		А	1.1850	6	3		
	В	А	1.1517	6	6		
	В	А	1.1517	6	7		
	В	А	1.1183	6	5		
	В	А	1.0517	6	2		
	В	А	1.0517	6	9		
	В		0.7850	6	8		
	Al	pha			0.05	5	
	Error Degrees of Freedom 36						
			an Square			0.10037	
	Cr	itical V	/alue of t		2.0	02809	

Least Significant Difference 0.1749 Means with the same letter are not significantly different. t Grouping Mean N Treatment А 1.24444 27 1 В 1.01444 27 2 LSD tests for Failed ears Alpha 0.05 Error Degrees of Freedom 36 Error Mean Square 31.53704 Critical Value of t 2.02809 Least Significant Difference 6.5756 Means with the same letter are not significantly different. Maize t Grouping Mean N hybrid А 10.667 6 8 В Α 4.167 6 6 9 В 2.333 6 В 2.167 3 6 В 2.167 7 6 В 2.000 4 6 5 В 2.000 6 В 1.667 6 1 2 В 1.333 6 Alpha 0.05 Error Degrees of Freedom 36 Error Mean Square 31.53704 Critical Value of t 2.02809 Least Significant Difference 3.0998 Means with the same letter are not significantly different. Mean N Treatment t Grouping А 3.519 27 2 Α 2.815 27 1 LSD tests for Plant stand Alpha 0.05 Error Degrees of Freedom 36 Error Mean Square 0.666667 Critical Value of t 2.02809 Least Significant Difference 0.9561 Means with the same letter are not significantly different. Maize_ t Grouping N hybrid Mean А 92.8333 6 1 А 92.1667 6 8 В 90.5000 5 6 В 89.8333 3 6 С 87.5000 6 2 D 83.1667 6 4 Ε D 82.5000 6 7 81.8333 6 9 Ε F 80.1667 6 6

Table 30: LSD tests for Disease severity, incidences and response of maize hybrids to Stenocarpella spp.in Maseno University Research farm during short rains seasons of 2008 continues

LSD tests for Plant stand continues					
Alpha	0.05				
Error Degrees of F	Freedom	36			

Error Mean Square 0.666667 Critical Value of t 2.02809 Least Significant Difference 0.4507 Means with the same letter are not significantly different. t Grouping N Treatment Mean 27 А 88.2222 2 В 85.2222 27 1 LSD tests for Days to silking Alpha 0.05 Error Degrees of Freedom 36 Error Mean Square 0.851852 Critical Value of t 2.02809 Least Significant Difference 1.0807 Means with the same letter are not significantly different. Maize_ t Grouping N hybrid Mean 9 А 73.6667 6 А 73.6667 6 6 В 73.3333 5 Α 6 В А 73.3333 6 4 В А 73.0000 6 3 В А 73.0000 8 6 В А 73.0000 6 7 В 72.3333 6 1 6 2 С 70.0000 Alpha 0.05 Error Degrees of Freedom 36 Error Mean Square 0.851852 Critical Value of t 2.02809 Least Significant Difference 0.5095 Means with the same letter are not significantly different. N Treatment t Grouping Mean 72.8148 27 А 1

 Table 31: Correlation analysis for parameters under Stenocarpella spp. in Maseno University Research farm during short rains of 2008

rai ili uur ilig silo	1 t I ams 01 20	00				
5 Variables:	Treatment	Maize	e_hybrid	Severity_	incide	nces
Yiel	ldTonnes_h	ia_				
Variable	N M	Iean S	Std Dev	Sum	Minimum	Maximum
Treatment						2.00000
Maize_hybrid	54 5	5.00000	2.60623	270.000	000 1.0000	
Severity	54 1.6	54815	0.78084	89.00000	1.00000	4.00000
incidences	54 4.6	51850	2.07346	249.39900	0.23700	9.00000
YieldTonnes_	_ha_ 54	1.129	44 0.328	873 60.9	99000 0.57	2.00000
	Pearson Corr	elation C	Coefficients	, N = 54		
	Prob > a	l under l	H0: Rho=0			
				Yield	l	
	Mai	ze		Т	onnes	
7	Freatment	hvbrid	Severity	inci	dences	ha
			~~~			
Treatment	1.00000	0.00	000 -0.	40696	-0.18572	-0.35311
Treatment		1.0000		3 0.1		
Maize_hybrid	0.0000	0 1.0	- 0000	0.17616	0.04190	-0.32153
_ ) * *				142		
				7472		

27 2

А

72.8148

Maize hybrid	1.0000		0.2026	0.7636	0.0178
Severity Severity %	-0.40696 0.0023	-0.17616 0.2026	1.00000	-0.0409	96 -0.00004 0.9998
	-0.18572	0.04190	-0.04096	1.0000	
incidences	0.1788	0.7636	0.7687		0.3413
YieldTonnes_ha_	_			• • •	.13201 1.00000
Yield (Tonnes/ha)	0.0088	0.0178	0.9998	0.341	13

Table 32: Means breakdown for j	parameters under	Stenocarpella s	spp. in	Maseno	University	Research
farm during short rains of 2008						

farm di	uring	g short rains	5 01 2008 Effo	ot_MAIZE				
				St	d Error			
		Std Error	Std	Error	of	Mean of	NES_ YIELD	
	Mai	ze of	Mean of	of N	Aean of Y	ELD TON	NES YIELD	)
Treatn	nent	hybrid SEV	ERITY	SEVERIT	Y INCII	DENCES IN	CIDENCES	HA
TONNE		•						_
	1	0.16667	1.16667	1.10865	5.61850	0.19085	1.41833	
	2	0.34157	2.50000	0.27121	2.95183	0.07587	1.05167	
	3	0.30732	1.83333	0.27121	5.28517	0.19658	1.18500	
		0.16667					1.25167	
	5	0.21082	1.33333	0.77903	2.95183	0.09178	1.11833	
	6	0.21082	1.33333	0.58328	5.95183	0.12284	1.15167	
•	7	0.21082	1.33333	0.27121	5.28517	0.10531 0.06307 0.09178	1.15167	
	8	0.54263	1.83333	0.27121	1.95183	0.06307	0.78500	
	9	0.21082	1.33333	0.98104	6.61850	0.09178	1.05167	
		Std. Error	Std	. Error	Std. E	rror		
						of Mean		
	Mai	ze FAILE	D_ FAIL	.ED	PLANT_	PLANT_	DAYS_TO_	
						STAND_		
•						0.21082		
•						0.36515		
•						0.36515		
•		0.51640	2.0000	0.70317	83.1667	0.42164	73.3333	
•	5	0.25820	2.0000	0.76376	90.5000	0.21082	73.3333	
•	6	0.65405	4.1667	0.70317	80.1667	0.55777 0.36515 0.00000 0.21082	73.6667	
•	7	0.30732	2.1667	0.76376	82.5000	0.36515	73.0000	
•	8	6.50470	10.6667	0.70317	92.1667	0.00000	73.0000	
•	9	1.05409	2.3333	0.70317	81.8333	0.21082	/3.666/	
			E					
		C( 1 E	0.1	St	d. Error	Mean of		
	Mai	Stu. Error	Stu. Maan of	Error	01 Acon of Vi	Mean of	NES_ YIELD	
Traatn	Mai	Ze OI hubrid SEV		CEVEDIT		IELD_ION	CIDENCES	/
TONNE				SEVENII	I INCH	JENCES IN	CIDENCES	па_
			1 6/815	0.28216	4 6185	0.044735	1 1 2 9 4 4	
•	·	Std. Error					1.12744	
							of	
	Mai			FD IN	$\mathbf{PI} \Delta \mathbf{NT}$	$PI \Delta NT$	of DAYS_TO_	
Treatn	hent	hybrid E	ARS F	ARS S	TAND	STAND	SILKING	
						0.17944		
			L/1.		d. Error			
		Std. Error	Std	Error	of	Mean of		
	Mai						NES_ YIELD	)
Treatn						DENCES IN		HA
TONNE		•						
	-~							

1						0.059756		
2						0.059756	1.01444	
		Std. Error		Error			c	
	Maiz	EATTEN		FD P	μισι ο Γαντ	f Mean of PLANT	DAYS_TO_	
Treatr						STAND_		-
						0.25619		
						0.25619		
			Effect=7			E_HYBRID -		
	c		C 4 J		. Error	Maanaf		
						Mean of	NES_ YIELI	n
Treatr							CIDENCES	
TONN								
1	1		1.33333	1.73205	6.00000	0.29059	1.53333	
1	2	0.57735		0.33333			1.16667	
1	3	0.33333	2.33333	0.33333			1.30000	
1 1	4 5	0.33333 0.33333	2.33333 1.66667		5.33333 3.33333		1.36667 1.23333	
1	6	0.33333	1.66667		6.33333		1.26667	
1	7	0.33333	1.66667	0.33333	5.66667		1.26667	
1	8	1.00000	2.00000		2.33333		0.90000	
1	9	0.33333	1.66667	1.52753	7.00000	0.12019	1.16667	
2	1	0.00000				0.29059	1.30333	
2	2	0.00000				0.08819		
2	3			0.33333 Error		0.30000	1.07000	
	L.					f Mean of	of	
	Maiz	e FAILE	D FAIL	ED P	LANT	PLANT	DAYS_TO_	
Treatr								-
1	1					0.33333		
1		1.20185		0.57735		0.57735		
1	3		2.33333	0.33333			73.0000	
1 1	4 5		2.33333 2.33333	0.33333 0.57735	81.6667 89.0000		73.3333 73.3333	
1		1.20185	4.66667	0.33333	78.6667		73.6667	
1	7	0.33333	2.66667	0.55555	81.0000		73.0000	
1	8	1.20185	4.66667	0.33333	90.6667		73.0000	
1	9	1.76383	2.66667	0.33333	80.3333	0.33333	73.6667	
2	1	0.33333	1.33333	0.66667	94.3333		72.3333	
2	2	0.57735	1.00000	0.57735	89.0000		70.0000	
2	3	1.00000	2.00000	0.33333	91.3333		73.0000	
		eans break short rains			s under S	tenocarpella	spp. in Mase	eno University Research
					NT*MAIZ	E HYBRID -		
			(continue		1 1011 112	L_III DRID		
				,	. Error			
		Std. Error		Error	of	Mean of		_
<b>T</b>	Maiz		Mean of				NES_ YIELI	
Treatr TONNI		•	EKITY	SEVERITY	INCIL	DENCES INC	LIDENCES	HA_
10NNI 2	ез_н <i>ғ</i> 4	4_ 0.00000	2.00000	0.33333	4.57033	0.18559	1.13667	
2	5	0.00000	1.00000	1.20185	2.57033	0.12019	1.00333	
2	6	0.00000	1.00000	0.88192	5.57033	0.17638	1.03667	
2	7	0.00000	1.00000	0.33333	4.90367	0.14530	1.03667	
2	8	0.66667	1.66667	0.33333	1.57033	0.05774	0.67000	
2	9	0.00000	1.00000	1.52753	6.23700	0.12019	0.93667	
		Std. Error of M		Error of Mea	Std.E n of o		∫.	
				on mea			Л	
					144			

I	Maiz	e FAILEI	D_ FAIL	.EDP	LANT_	PLANT_	DAYS_TO_	
Treatme	nt h	ybrid EA	RS E	ARS ST	AND_	STAND_	SILKING	
2	4	0.6667	1.6667	0.33333	84.6667	0.66667	73.3333	
2	5	0.3333	1.6667	0.57735	92.0000	0.33333	73.3333	
2	6	0.6667	3.6667	0.33333	81.6667	0.88192	73.6667	
2	7	0.3333	1.6667	0.57735	84.0000	0.57735	73.0000	
2	8	13.1951	16.6667	0.33333	93.6667	0.00000	73.0000	
2	9	1.5275	2.0000	0.33333	83.3333	0.33333	73.6667	

Appendix 10: Disease severity, incidences and response of maize hybrids to Stenocarpella spp. in Maseno University Research farm during long rain seasons of 2009

Table 33: Anova for Disease severity, incidences and response of maize hybrids to Stenocarpella spp. inMaseno University Research farm during long rains season of 2009Dependent Variable: Severity

Dependent Variable: Se	everity
	Sum of
Source	DF Squares Mean Square F Value $Pr > F$
Model	17 9.33333333 0.54901961 4.24 0.0001
Error 3	6 4.666666667 0.12962963
Corrected Total	53 14.00000000
R-Square	Coeff Var Root MSE Severity Mean
0.666667	27.00309 0.360041 1.333333
Source	DF Type I SS Mean Square F Value Pr > F
Maize_hybrid	8 1.666666667 0.20833333 1.61 0.1572
Treatment	1 6.0000000 6.0000000 46.29 <.0001
Treatment*Maize_hy	ybr 8 1.666666667 0.20833333 1.61 0.1572
Dependent Variable: in	ncidences
_	Sum of
Source	DF Squares Mean Square F Value $Pr > F$
Model	17 132.3186794 7.7834517 1.39 0.1975
Error 3	6 201.3333333 5.5925926
Corrected Total	53 333.6520128
R-Square	Coeff Var Root MSE incidences Mean
0.396577	46.49943 2.364866 5.085796
Source	DF Type I SS Mean Square F Value Pr > F
Maize_hybrid	8 129.9259259 16.2407407 2.90 0.0132
Treatment	1 2.3927535 2.3927535 0.43 0.5172
Treatment*Maize_hy	ybr 8 0.0000000 0.0000000 0.00 1.0000
Dependent Variable: Yi	ield (Tonnes/ha)
	Sum of
Source	DF Squares Mean Square F Value $Pr > F$
Model	17 4.24895881 0.24993875 2.38 0.0143
Error 3	6 3.786666667 0.10518519
Corrected Total	53 8.03562548
R-Square C	Coeff Var Root MSE Yield_Tonnes_ha_ Mean
0.528765 3	31.62638 0.324323 1.025481
Source	DF Type I SS Mean Square F Value Pr > F
Maize_hybrid	8 2.93481481 0.36685185 3.49 0.0045
Treatment	1 1.31414400 1.31414400 12.49 0.0011
Treatment*Maize_hy	
Dependent Variable: F	ailed ears
	Sum of

Source	DF	Squares	Mean Square	F Value	Pr > F
Model	17	35.2592593	2.0740741	0.70	0.7820
Error	36 1	06.6666667	2.9629630		
Corrected Total	53	141.92592	259		
R-Square	Coef	f Var Root	MSE Failed	_ears Mea	an
0.248434	84.5	0145 1.72	1326 2.0	37037	
Source	DF	Type I SS	Mean Square	F Value	e $Pr > F$
Maize_hybrid	8	21.592592	59 2.699074	0.9	91 0.5185
Treatment	1	12.51851852	2 12.5185185	52 4.22	2 0.0471
Treatment*Maize_	hybr	8 1.148	14815 0.143	351852	0.05 0.9999

## Table 33: Anova for Disease severity, incidences and response of maize hybrids to Stenocarpella spp. in Maseno University Research farm during long rains season of 2009 continues Dependent Variable: Plant stand

Dependent variable:	Plant stand
	Sum of
Source	DF Squares Mean Square F Value $Pr > F$
Model	17 925.5000000 54.4411765 97.99 <.0001
Error	36 20.0000000 0.5555556
Corrected Total	53 945.5000000
R-Square	Coeff Var Root MSEPlant_stand_ Mean
0.978847	0.933640 0.745356 79.83333
Source	DF Type I SS Mean Square F Value Pr > F
Maize_hybrid	8 912.0000000 114.0000000 205.20 <.0001
Treatment	1 13.5000000 13.5000000 24.30 <.0001
Treatment*Maize	_hybr 8 0.0000000 0.0000000 0.00 1.0000
<b>Dependent Variable:</b>	Days to silking
-	Sum of
Source	DF Squares Mean Square F Value Pr > F
Model	17 17.33333333 1.01960784 1.31 0.2408
Error	36 28.0000000 0.7777778
Corrected Total	53 45.33333333
R-Square	Coeff Var Root MSE Days_to_silking Mean
0.382353	1.193572 0.881917 73.88889
Source	DF Type I SS Mean Square F Value Pr > F
Maize_hybrid	8 17.33333333 2.166666667 2.79 0.0165
Treatment	1 0.00000000 0.00000000 0.00 1.0000
Treatment*Maize	_hybr 8 0.00000000 0.00000000 0.00 1.0000
T-11-24-16D4-4-6	an Diagona constitut in sidon and normance of mains habridg to Standarm II

Table 34: LSD tests for Disease severity, incidences and response of maize hybrids to Stenocarpella spp.in Maseno University Research farm during long rains seasons of 2009

**NOTE:** 1. This test controls the Type I comparison wise error rate, not the experiment wise error rate. 2. Maize hybrids 1, 2, 3, 4, 5, 6, 7, 8, 9 are EH10, EH13, EH14, EH15, EH16, H515, H516, H614D and P3253 respectively; Treatments 1, 2 are inoculated and non-innoculated respectively.

#### LSD tests for Severity

Alpha0.05Error Degrees of Freedom36Error Mean Square0.12963Critical Value of t2.02809Least Significant Difference0.4216

Means with the same letter are not significantly different.

		-		
t Grouping	Mea	n	Ν	hybrid
А	1.5000	6	9	
А	1.5000	6	2	
А	1.5000	6	3	
А	1.5000	6	6	
B A	1.3333	6	4	

В	A 1.3333	68		
В	A 1.1667	65		
В	A 1.1667	6 1		
В	1.0000	6 7		
Alp	ha	0.05		
Erro	or Degrees of F	reedom	36	
Erro	or Mean Square	. 0.	12963	
Crit	ical Value of t	2.02	809	
Lea	st Significant E	oifference	0.1987	
Means with	h the same lette	er are not s	ignificantly different.	
t Groupi	ng Mean	N Tre	atment	
А	1.66667 2	27 1		
В	1.00000 2	7 2		

### Table 34: LSD tests for Disease severity, incidences and response of maize hybrids to Stenocarpella spp. in Maseno University Research farm during long rains seasons of 2009 continues

LSD tests for incidences Alpha 0.05 Error Degrees of Freedom 36 5.592593 Error Mean Square Critical Value of t 2.02809 Least Significant Difference 2.7691 Means with the same letter are not significantly different. Maize_ N hybrid t Grouping Mean А 7.123 9 6 6.790 6 А 6 В 6.456 6 1 Α 5.790 7 В А 6 В 5.123 3 А 6 С 4.790 В А 6 4 В С 3.790 6 2 С В 3.790 6 5 С 2.123 6 8 Alpha 0.05 Error Degrees of Freedom 36 Error Mean Square 5.592593 Critical Value of t 2.02809 Least Significant Difference 1.3054 Means with the same letter are not significantly different. t Grouping Mean N Treatment Α 5.2963 27 1 4.8753 27 2 Α LSD tests for Yield (Tonnes/ha) Alpha 0.05 Error Degrees of Freedom 36 0.105185 Error Mean Square Critical Value of t 2.02809 Least Significant Difference 0.3798 Means with the same letter are not significantly different. Maize_ t Grouping N hybrid Mean 1.4107 А 6 1 Α 1.1773 6 4 В B A 1.1440 6 2

В А 1.1107 6 3 В А 1.0773 6 6 В 0.9773 9 6 В 0.9107 7 6 0.9107 В 6 5 С 0.5107 6 8 0.05 Alpha Error Degrees of Freedom 36 0.105185 Error Mean Square Critical Value of t 2.02809 Least Significant Difference 0.179 Means with the same letter are not significantly different. t Grouping Mean N Treatment 1.18148 27 1 А В 0.86948 27 2 LSD tests for Failed ears Alpha 0.05 Error Degrees of Freedom 36 Error Mean Square 2.962963 Critical Value of t 2.02809 Least Significant Difference 2.0155 Means with the same letter are not significantly different. Maize_ N hybrid t Grouping Mean А 2.8333 3 6 2.6667 6 6 A 2.6667 6 8 А 2.5000 6 5 А А 1.8333 6 7 А 1.8333 6 4 А 1.6667 6 2 1.5000 6 9 А 0.8333 Α 6 1 Table 34: LSD tests for Disease severity, incidences and response of maize hybrids to Stenocarpella spp. in Maseno University Research farm during long rains seasons of 2009 continous

LSD tests for Failed ears continous

0.05 Alpha Error Degrees of Freedom 36 2.962963 Error Mean Square Critical Value of t 2.02809 Least Significant Difference 0.9501 Means with the same letter are not significantly different. t Grouping Mean N Treatment А 2.5185 27 1 В 1.5556 27 2 LSD tests for Plant stand Alpha 0.05 Error Degrees of Freedom 36 Error Mean Square 0.555556 Critical Value of t 2.02809 Least Significant Difference 0.8728 Means with the same letter are not significantly different. Maize_ t Grouping N hybrid Mean 85.8333 6 2 А

A 85.5000 6 5 В 81.5000 6 4 В 81.1667 3 6 В 81.1667 8 6 С 78.8333 7 6 D 75.5000 6 1 D 75.1667 6 6 E 9 73.8333 6 0.05 Alpha Error Degrees of Freedom 36 Error Mean Square 0.555556 Critical Value of t 2.02809 Least Significant Difference 0.4114 Means with the same letter are not significantly different. t Grouping Mean N Treatment 27 2 Α 80.3333 В 79.3333 27 1 LSD tests for Days to silking Alpha 0.05 Error Degrees of Freedom 36 Error Mean Square 0.777778 Critical Value of t 2.02809 Least Significant Difference 1.0327 Means with the same letter are not significantly different. Maize_ t Grouping N hybrid Mean 75.0000 Α 1 6 74.0000 6 2 Α В В А 74.0000 6 3 В 74.0000 4 Α 6 В А 74.0000 6 5 В А 74.0000 6 6 В А 74.0000 6 7 В 73.0000 6 8 Alpha 0.05 Error Degrees of Freedom 36 Error Mean Square 0.777778 Critical Value of t 2.02809 Least Significant Difference 0.4868 Means with the same letter are not significantly different. t Grouping Mean N Treatment А 73.8889 27 1 А 73.8889 27 2

 Table 35: Correlation analysis for parameters under Stenocarpella spp. in Maseno University Research farm during long rains of 2009

5 Variables:	Treatmen	t Maiz	e_hybrid	Severity	incidenc	es
Yiel	dTonne			<i>y</i>		
	Si	mple Statis	tics			
Variable	Ν	Mean	Std Dev	Sum Mi	inimum 1	Maximum
Treatment	54	1.50000	0.50469	81.00000	1.00000	2.00000
Maize_hybrid	54	5.00000	2.60623	270.00000	1.00000	9.00000
Severity	54	1.33333	0.51396	72.00000	1.00000	3.00000
incidences	54	5.08580	2.50905	274.63300	0.57900	12.00000
				1.10		

Yield_Tonnes_ha_ 54 1.02548 0.38938 55.37600 0.28800 1.90000									
Pearson Correlation Coefficients, $N = 54$									
Prob >  r  under H0: Rho=0									
Yield									
MaizeTonnes									
Treatment hybrid Severity incidences ha_									
Treatment 1.00000 0.00000 -0.65465 -0.08468 -0.40440									
Treatment 1.0000 <.0001 0.5426 0.0024									
Maize_hybrid 0.00000 1.00000 0.00000 0.01731 -0.46110									
Maize hybrid 1.0000 1.0000 0.9011 0.0004									
Severity0.65465 0.00000 1.00000 0.10909 0.35274									
Severity % <.0001 1.0000 0.4323 0.0089									
incidences -0.08468 0.01731 0.10909 1.00000 0.27945									
incidences 0.5426 0.9011 0.4323 0.0407									
Yield_Tonnes_ha0.40440 -0.46110 0.35274 0.27945 1.00000									
Yield (Tonnes/ha) 0.0024 0.0004 0.0089 0.0407									

Effect=MAIZE_HYBRID									
		Std. Err	or Sof Mean	td. Error					
Ν	Aaize	Rains	of Mean	of of	Mean of				
Treatmen	t hybrid	Rep sease	on SEVERIT	Y SEVER	RITY IN	CIDENCES			
	1.	. 0.166	57         1.16667           51         1.50000           51         1.50000	1.38563	6.45617				
	2.	. 0.223	51 1.50000	0.37709	3.78950				
•	3.	. 0.223	51 1.50000	0.56566	5.12283				
	4.		82 1.33333						
	5.	. 0.166	1.16667	0.73634	3.78950				
			51 1.50000						
	7.	. 0.000	00 1.00000	0.37709	5.78950				
	8.	. 0.210	32 1.33333	0.56566	2.12283				
	9.	. 0.341	1.50000	1.52315	7.12283				
		Std. Ei	ror	Std. Error					
			Mean of						
			ELD_TONN						
Treatmen	t hybrid	Rep sease	on HA_	TONNES	_HA_ EA	ARS			
	1.	. 0.13	157 1.410	67 0.30732	2 0.83333				
	2 . 3 . 4 . 5 . 6 .	. 0.094	1.144	00 0.3333	3 1.66667				
	3.	. 0.16	323 1.110	67 0.79232	2 2.83333				
	4.	. 0.16 . 0.07 . 0.18 . 0.19	288 1.177	33 1.0461	6 1.83333				
	5.	. 0.18	513 0.910	67 0.67082	2 2.50000				
	6.	. 0.19	288         1.177           513         0.910           316         1.077           152         0.910           288         0.510           288         0.510           727         0.977	33 0.71492	2 2.66667				
	7.	. 0.08	0.910	67 0.60093	3 1.83333				
	8.	. 0.072	288 0.510	67 0.5577	7 2.66667				
	9.	. 0.16	0.977	33 0.67082	2 1.50000				
		Sta. Err	or Sto	l. Error					
		of	Mean of	of Mean	n of				
		Rains _	_PLANT	_PLANT_ 1	DAYS_TO_				
			on STAND_			NG			
			75.5000						
			85.8333						
•	3.	. 0.307	81.1667	0.36515	74				
	4.	. 0.428	17 81.5000	0.36515	74				
			85.5000						
•	6.	. 0.307	32 75.1667	0.36515	74				
				150					

	7			0.30732	78.8333	0.36515	74
	8			0.30732	81.1667	0.36515	73
•	9	•	•	0.30732	73.8333	0.36515	73

	Std. Error Std. Error
Maiza	Rains of Mean of Mean of
Traatmant hybrid	Rep season SEVERITY SEVERITY INCIDENCES
Treatment hybrid	. 0.069941 1.33333 0.34144 5.08580
	Std. Error Std. Error
Maina	
	Rains YIELD_TONNES_YIELD_ FAILED_ FAILED_
Treatment hybrid	Rep season HA_ TONNES_HA_ EARS EARS
	. 0.052988 1.02548 0.22269 2.03704
	Std. Error Std. Error
Maiza	of Mean of of Mean of RainsPLANTPLANT_ DAYS_TO_ DAYS_TO_
Traatmant hybrid	Rep season STAND_ STAND_ SILKING SILKING
Treatment Tryottu	. 0.57477 79.8333 0.12586 73.8889
	Effect=RAINS_SEASON
	Std. Error Std. Error
Maize	Rains of Mean of Mean of
	Rep season SEVERITY SEVERITY INCIDENCES
	1 0.069941 1.33333 0.34144 5.08580
• • •	Std. Error Std. Error
	of Mean of Mean of
Maize	Rains YIELD_TONNES_ YIELD_ FAILED_ FAILED_
Treatment hybrid	Ren season HA TONNES HA FARS FARS
freatment hybrid	1 0.052988 1.02548 0.22269 2.03704
	Rep         season         HA_         TONNES_HA_         EARS         EARS           1         0.052988         1.02548         0.22269         2.03704           Std. Error         Std. Error         Std. Error
	of Mean of Mean of
Maize	RainsPLANTPLANT_ DAYS_TO_ DAYS_TO_
	Rep season STAND_ STAND_ SILKING SILKING
	1 0.57477 79.8333 0.12586 73.8889
	1 0.57477 77.0555 0.12500 75.0007
	Effect=REP
	Std. Error Std. Error
	Effect=REP
Maize	Std. Error Std. Error
Maize Treatment hybrid	Std. Error Std. Error Rains of Mean of of Mean of Rep season SEVERITY SEVERITY INCIDENCES . 0.11824 1.38889 0.20450 3.78950
Maize Treatment hybrid	Std. Error Std. Error Rains of Mean of of Mean of Rep season SEVERITY SEVERITY INCIDENCES . 0.11824 1.38889 0.20450 3.78950
Maize Treatment hybrid	Std. Error       Std. Error         Rains       of       Mean of       Mean of         Rep       season       SEVERITY       INCIDENCES         .       0.11824       1.38889       0.20450       3.78950         .       0.14003       1.33333       0.68789       5.45617         .       0.10863       1.27778       0.64653       6.01172
Maize Treatment hybrid	Effect=REP         Std. Error         Rains       of         Mean of       of         Mean of       SEVERITY         INCIDENCES         .       0.11824         1.338389       0.20450         3.78950         .       0.14003         1.33333       0.68789         5.45617         .       0.10863         1.27778       0.64653         6.01172         Std. Error       Std. Error
Maize Treatment hybrid 1 2 3	Effect=REP           Std. Error           Rains         of           Mean of         of           Mean of         of           Rep         season           SEVERITY         SEVERITY           INCIDENCES         .           0.11824         1.38889           0.20450         3.78950           .         0.14003           1.33333         0.68789           5.45617           .         0.10863           1.27778         0.64653           6.01172           Std. Error           of         Mean of           Mean of         of
Maize Treatment hybrid 1 2 3 Maize	Std. Error       Std. Error         Rains       of       Mean of         Rep       season       SEVERITY         INCIDENCES       .       0.11824         1.38889       0.20450       3.78950         .       0.14003       1.33333       0.68789         5.45617       .       0.10863       1.27778         0.64653       6.01172       Std. Error       Std. Error         of       Mean of       of       Mean of         Rains       YIELDTONNESYIELD       FAILED
Maize Treatment hybrid . 1 . 2 . 3 Maize Treatment hybrid	Std. ErrorStd. ErrorStd. ErrorRainsofMean ofMean ofofMean ofRepseasonSEVERITYINCIDENCES.0.118241.388890.20450.0.140031.333330.687895.45617.0.108631.27778.0.108631.277780.646536.01172Std. ErrorStd. ErrorofMean ofMean ofRainsYIELD_TONNES_YIELDRepseasonHA <tonnes_ha< td="">EARS</tonnes_ha<>
Maize Treatment hybrid . 1 . 2 . 3 Maize Treatment hybrid . 1	Effect=REP         Std. Error         Rains       of         Mean of       3.78950         .       0.11824         1.33333       0.68789         5.45617       .         .       0.10863         1.27778       0.64653         6.01172       Std. Error         of       Mean of         Rains       YIELD_TONNES_YIELD_         Rep       season         HA_       TONNES_HA_         .       0.10565         1.03289       0.44383         2.38889
Maize Treatment hybrid 1 2 3 Maize Treatment hybrid 1 2	Effect=REP         Std. Error         Rains       of         Mean of       3.78950         .       0.11824         1.33839       0.20450         3.78950       3.78950         .       0.14003         1.33333       0.68789         5.45617       .         .       0.10863         1.27778       0.64653         6.01172       Std. Error         of       Mean of         Rains       YIELD_TONNES_         YIELD_TONNES_       YIELD_         Rep       season         HA_       TONNES_HA_         2.38889       .         0.09031       1.15511         0.32812       1.94444
Maize Treatment hybrid . 1 . 2 . 3 Maize Treatment hybrid . 1	Effect=REP         Std. Error         Rains       of         Mean of       3.78950         .       0.11824         1.33839       0.20450         3.78950       3.78950         .       0.14003         1.33333       0.68789         5.45617       .         .       0.10863         1.27778       0.64653         6.01172       Std. Error         of       Mean of         Rains       YIELD_TONNES_         YIELD_TONNES_       YIELD_         Rep       season         HA_       TONNES_HA_         EARS       .         .       0.10565         1.03289       0.44383         2.38889       .         .       0.06960         0.88844       0.38396         1.77778
Maize Treatment hybrid 1 2 3 Maize Treatment hybrid 1 2	Effect=REP         Std. Error         Rains       of       Mean of       of         Rep       season       SEVERITY
Maize Treatment hybrid 1 2 3 Maize Treatment hybrid 1 2 3	Effect=REP         Std. Error         Rains       of       Mean of       of         Rep       season       SEVERITY       SEVERITY       INCIDENCES         .       0.11824       1.38889       0.20450       3.78950         .       0.11824       1.38889       0.20450       3.78950         .       0.14003       1.33333       0.68789       5.45617         .       0.10863       1.27778       0.64653       6.01172         Std. Error       Std. Error       Std. Error       of         of       Mean of       of       Mean of         Rep       season       HA_       TONNES_HA_       EARS         .       0.10565       1.03289       0.44383       2.38889         .       0.009031       1.15511       0.32812       1.94444         .       0.06960       0.88844       0.38396       1.77778         Std. Error       Std. Error       of       Mean of       0
Maize Treatment hybrid 1 2 3 Maize Treatment hybrid 1 2 3 Maize Maize Maize	Effect=REP         Std. Error         Rains       of       Mean of       of         Rep       season       SEVERITY INCIDENCES         .       0.11824       1.38889       0.20450       3.78950         .       0.11824       1.38889       0.20450       3.78950         .       0.14003       1.33333       0.68789       5.45617         .       0.10863       1.27778       0.64653       6.01172         Std. Error       Std. Error       of       Mean of       Mean of         Rains       YIELDTONNESYIELDFAILED       FAILED         Rep       season       HATONNES_HAEARS         .       0.10565       1.03289       0.44383       2.38889         .       0.009031       1.15511       0.32812       1.94444         .       0.06960       0.88844       0.38396       1.77778         Std. Error       Std. Error       Std. Error       of       Mean of         Rains      PLANTPLANTDAYS_TO       DAYS_TO
Maize Treatment hybrid 1 2 3 Maize Treatment hybrid 1 2 3 Maize Treatment hybrid	Effect=REP         Std. Error         Rains       of         Mean of       3.78950         .       0.11824         1.33333       0.68789         5.45617       .         .       0.10863         1.27778       0.64653         6.01172       Std. Error         of       Mean of         Mean of       of         Rep season       HA_         TONNES_HA_       EARS         .       0.10565       1.03289         .       0.10565       1.03289         .       0.009031       1.15511         .       0.06960       0.88844         .       0.06960       0.88844         .       0.06960       0.88844         .       0.06960       0.88844         .       0.10565       I.77778         Std. Error       Std. Error
Maize Treatment hybrid 1 2 3 Maize Treatment hybrid 1 2 3 Maize Treatment hybrid 1	Effect=REP         Std. Error         Rains       of         Mean of       3.78950         .       0.11824         1.33333       0.68789         5.45617       .         .       0.10863         1.27778       0.64653         6.01172       Std. Error         of       Mean of         Mean of       of         Rep season       HA_         TONNES_HA_       EARS         .       0.10565       1.03289         .       0.10565       1.03289         .       0.009031       1.15511         .       0.06960       0.88844         .       0.06960       0.88844         .       0.06960       0.88844         .       0.06960       0.88844         .       0.10565       I.77778         Std. Error       Std. Error
Maize Treatment hybrid 1 2 3 Maize Treatment hybrid 1 2 3 Maize Treatment hybrid	Effect=REP         Std. Error         Rains       of         Mean of       3.78950         .       0.11824         1.33333       0.68789         5.45617         .       0.14003         1.33333       0.68789         5.45617         .       0.10863         1.27778       0.64653         6.01172         Std. Error       Std. Error         of       Mean of         Mean of       Mean of         Rep season       HA_         TONNES_HA_       EARS         .       0.10565       1.03289         .       0.10565       1.03289         .       0.09031       1.15511         .       0.06960       0.88844       0.38396         .       0.06960       0.88844       0.38396         .       TON       Std. Er

	Effect=TREATMENT
	Std. Error Std. Error
Maize	Rains of Mean of Mean of
Treatment hybrid	Rep season SEVERITY SEVERITY INCIDENCES
1.	. 0.10675 1.66667 0.48574 5.29630
2	. 0.00000 1.00000 0.48574 4.87530
	Std. Error Std. Error
	of Mean of of Mean of
Maize	Rains YIELDTONNESYIELD FAILED_
Treatment hybrid	Rep season HA_ TONNES_HA_ EARS
1	. 0.069191 1.18148 0.32629 2.51852
2	. 0.069191 0.86948 0.27906 1.55556
	Std. Error Std. Error
	of Mean of Mean of
	RainsPLANTPLANT_ DAYS_TO_
	Rep season STAND_ STAND_ SILKING
	. 0.81475 79.3333 0.17969 73.8889
	. 0.81475 80.3333 0.17969 73.8889
	Effect=MAIZE_HYBRID*RAINS_SEASON
	Std. Error Std. Error
Maize	Rains of Mean of Mean of
•	Rep season SEVERITYSEVERITY INCIDENCES
	1 0.16667 1.16667 1.38563 6.45617
. 2.	1 0.22361 1.50000 0.37709 3.78950 1 0.22361 1.50000 0.56566 5.12283
	1 0.22301 1.30000 0.30300 3.12283 1 0.31092 1.22222 0.37700 4.78050
. 4 . . 5 .	1 0.21082 1.33333 0.37709 4.78950 1 0.16667 1.16667 0.73634 3.78950
. 6	
	1 0.00000 1.00000 0.37709 5.78950 1 0.21082 1.33333 0.56566 2.12283
. 8 .	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
. 7 .	1 0.34137 1.30000 1.32313 7.12203

Table 36: Means breakdown for parameters under Stenocarpella spp. in Maseno University Research
farm during long rains of 2009 continues

		<u> </u>			Std. Error			Std. Error			
				of	of Mean		of	of	Mea	n of	
											FAILED_
Treatmer	nt	hybrid	Rep	seas	on	HA_	-	TON	INES_I	HA_	EARS
			1	0.13	3157	1.4	1067	0	.30732	0.8	33333
	2		1	0.09	9417	1.1	4400	0	.33333	1.6	56667
	3		1	0.16	5323	1.1	1067	0	.79232	2.8	83333
	4		1	0.07	7288	1.1	7733	1	.04616	1.8	83333
	5		1	0.18	3613	0.9	1067	0	.67082	2.5	50000
	6		1	0.19	9316	1.0	7733	0	.71492	2.6	56667
	7		1	0.08	3152	0.9	1067	0	.60093	1.8	33333
	8		1	0.07	7288	0.5	1067	C	).55777	2.0	66667
	9		1	0.16	5727	0.9	7733	0	.67082	1.5	50000
			S	td. Eri	or	9	Std. E	rror			
						ean of					
]	Mai	ize	Rair	ıs _	_PLA	NT_	PI	LANT	Γ_ D/	AYS_	_TO_
Treatmen	nt	hybrid	Rep	seas	on	STAN	D_	ST	AND_	SI	LKING
	1		1	0.428	317	75.50	00	0.00	000	75	
	2		1	0.307	732	85.833	33	0.365	515	74	
	3		1	0.307	732	81.166	57	0.365	515	74	
	4		1	0.428	317	81.500	00	0.36	515	74	
	5		1	0.428	317	85.500	)0	0.000	000	74	
	6		1	0.307	732	75.166	57	0.365	515	74	
	7		1	0.307	732	78.833	33	0.36	515	74	
	8		1	0.307	732	81.166	57	0.36	515	73	

	9				73.8333 Maize hvi		73
			St	d Error	Std	Error	
	Ma	ize	Rain	s of	Mean o	f of	Mean of ERITYINCIDENCES
Treatm	ent	hybrid	Ren	season	SEVERITY	SEVE	ERITY INCIDENCES
ireatin	1	1		0.5	1.5	0.2105	3.7895
•		2				0.2105	4.7895
•	1					0.2105	10.7895
•	2					0.2105	5 3.7895
•	2		•				5 2.7895
•	2	3					5 4.7895
•	3			~ -			5 3.7895
•	3		•		1.5	0.2105	
•	3						6.7895
•	4			0.5	1.5	0.2105	
•	4			0.0	1.0	0.2105	
•	4		•	0.5	1.0 1.5	0.2105	
•		5	•				
					Mean of		
	Ma	ize	Rain		D_TONNE		
Treatm	ent	hybrid	Ren	season	HA_	TONNE	S HA EARS
mean	1	1	кер	0 156	1.744	0.5	
•					1.344		
•		3	•			0.5	
•	2		•	0.150		0.0	
•	2	2	•	0.156		0.5	
•	2		•	0.156			
•	3	1	•	0.156	0 744	0.5 0.5	4.5
•	3	2	•	0.156	0.744 1.544	0.5	3.5
•	3	-			1.044	0.5	0.5
•	4	1		0.156	1.144	1.0	5.0
•	4	2	•	0.150	1.144	0.5	0.5
•	4		:		1.144		
•	4	5			Std.		0:0
			51		Mean of (		an of
	Ма	170	Doin				DAYS_TO_
Treatm							DSILKING
Treatin					76.5		
•		2	•	0.5	76.5	0	
•	1	3	•	0.5	73.5 74.5	0	75
•	2	1	•	0.5	86.5	0	74
•	2	2	•	0.5	80.5 85.5	0	75
•	2	2	•	0.5	85.5 85.5	0	73
•	2 3	5 1	•	0.5	85.5 81.5	0	75
•	3	2	•	0.5	81.5	0	74
•	3	23	•	0.5	80.5 81.5	0	73
•	4	5 1	•	0.5	81.5	0	75
•	4	2	•	0.5	82.5 81.5	0	73
•	4	2	•	0.5	81.5 80.5	0	74
•	4	3	•	0.5	00.5	U	/+

	Effect=MAIZE_HYBRID*REP											
		St	d. Error		Std. Err	or						
Ma	nize	Rain	Rains of		Mean of of		Mean of	of				
Treatment	hybrid	Rep	season	SEVER	RITY	SEV	ERITY	INCIDENCES				
. 5	1	•	0.5	1.5	0.2105	5	3.7895					
. 5	2	•	0.0	1.0	0.2105	5	5.7895					

	5	3		0.0	1.0	0.2105	1.7895	
	6	1		0.5	1.5	0.2105	4.7895	
•	6	2	•	0.5	1.5	0.2105	5.7895	
•			·					
•	6	3	•	0.5	1.5	0.2105	9.7895	
•	7	1	•	0.0	1.0	0.2105	4.7895	
•	7	2	•	0.0	1.0	0.2105	6.7895	
	7	3	•	0.0	1.0	0.2105	5.7895	
	8	1		0.0	1.0	0.2105	1.7895	
	8	2		0.5	1.5	0.2105	0.7895	
	8	3		0.5	1.5	0.2105	3.7895	
				Std. Error		Std. Error		
				of	Mean of		Mean of	
	Mai	70	Dair		D_TON		ELD	FAILED_
Turnetur								
Treatm		hybrid	Rep		HA_		ES_HA_	EARS
•	5	1	·	0.156	0.54		3.5	
•	5	2	•	0.156	1.44		3.5	
•	5	3		0.156	0.74	4 0.5	0.5	
	6	1		0.156	1.64	4 1.0	1.0	
	6	2		0.156	0.74	4 0.5	2.5	
	6	3		0.156	0.84		4.5	
-	7	1	•	0.156	1.04		3.5	
•	7	2	•	0.156	0.84		0.5	
•			·					
•	7	3	•	0.156	0.84		1.5	
•	8	1	•	0.156	0.54		2.5	
•	8	2	•	0.156	0.54		1.5	
	8	3	•	0.156	0.44	4 1.0	4.0	
			St	td. Error	S	td. Error		
				of N	lean of	of M	ean of	
	Mai	ize	Rair	is PL	ANT	PLANT_	DAYS	ТО
Treatm		hybrid			STANE			ILKING
ITeutif	5	1		0.5	86.5	0	74	
•	5	2	·	0.5	85.5	0	74	
•	5	3	•				74	
•			•	0.5	84.5	0		
•	6	1	•	0.5	75.5	0	75	
•	6	2	•	0.5	74.5	0	74	
•	6	3	•	0.5	75.5	0	73	
	7	1		0.5	79.5	0	75	
	7	2		0.5	78.5	0	74	
	7	3		0.5	78.5	0	73	
	8	1		0 7			74	
-	8				80.5		73	
•	8				00.5			
		12		05	Q1 5			
	0	3		0.5		0	72	
	0	-		- Effect=]	MAIZE_F	0	72	
			(	- Effect=1 continued	MAIZE_F	0	72	
Std. Erro	or		(d Std. Er	- Effect= continued ror	MAIZE_H )	0 IYBRID*RI	72 EP	
	or Mai	ize	() Std. Er Rair	- Effect= continued ror us of	MAIZE_H ) Meai	0 IYBRID*RI	72 EP Mea	n of
	or Mai nent	ize hybrid	( Std. Er Rain Rep	- Effect= continued ror is of season	MAIZE_H ) Meai SEVERI	0 IYBRID*RH n of of TY SEV	72 EP Mean /ERITY_	
	or Mai nent	ize	( Std. Er Rair Rep	- Effect= continued ror us of season 0.5	MAIZE_H ) Meau SEVERI 1.5	0 IYBRID*RI n of of FY SEV 0.2105	72 EP Mean /ERITY 3.7895	n of
	or Mai ient 9	ize hybrid 1	( Std. Er Rair Rep	- Effect= continued ror us of season 0.5	MAIZE_H ) Meau SEVERI 1.5	0 IYBRID*RI n of of FY SEV 0.2105	72 EP Mean /ERITY 3.7895	n of
	or Mai nent 9 9	ize hybrid 1 2	( Std. Er Rain Rep	- Effect=] continued ror as of season 0.5 1.0	MAIZE_H ) Mear SEVERI 1.5 2.0	0 IYBRID*RI n of of FYSEV 0.2105 0.2105	72 EP /ERITY_ 3.7895 11.7895	n of
	or Mai nent 9 9	ize hybrid 1	(t Std. Er Rain Rep	- Effect= continued ror us of season 0.5 1.0 0.0	MAIZE_H ) SEVERI 1.5 2.0 1.0	0 IYBRID*RH n of of TY SEV 0.2105 0.2105 0.2105	72 EP Mean /ERITY 3.7895 11.7895 5.7895	n of
	or Mai nent 9 9	ize hybrid 1 2	(t Std. Er Rain Rep	- Effect=] continued ror us of season 0.5 1.0 0.0 Std. Error	MAIZE_F ) Mean SEVERI 1.5 2.0 1.0	0 IYBRID*RH n of of TY SEV 0.2105 0.2105 0.2105 Std. Error	72 EP Mean /ERITY	n of
	or Mai ient 9 9 9	ize hybrid 1 2 3	(( Std. Er Rair Rep	- Effect=] continued ror ls of season 0.5 1.0 0.0 Std. Error of	MAIZE_F ) SEVERI 1.5 2.0 1.0 Mean of	0 IYBRID*RI n of of TY SEV 0.2105 0.2105 0.2105 Std. Error 5 of	72 EP /ERITY 3.7895 11.7895 5.7895 Mean of	n of _ INCIDENCES
Treatm	or Mai ient 9 9 9 Mai	ize hybrid 1 2 3	(( Std. Er Rair Rep	- Effect=] continued ror is of season 0.5 1.0 0.0 Std. Error of is YIEL	MAIZE_F ) SEVERI 1.5 2.0 1.0 Mean of D_TONI	0 IYBRID*RI n of of TY SEV 0.2105 0.2105 0.2105 Std. Error tof NESYI	72 EP /ERITY 3.7895 11.7895 5.7895 Mean of ELD	n of _ INCIDENCES FAILED_
Treatm	or Mai ent 9 9 9 Mai nent	ize hybrid 1 2 3 ize hybrid	(4 Std. Er Rain Rep	- Effect=] continued ror is of season 0.5 1.0 0.0 Std. Error of is YIEL season	MAIZE_F ) SEVERI 1.5 2.0 1.0 Mean of D_TONI HA_	0 IYBRID*RI n of of TY SEV 0.2105 0.2105 0.2105 Std. Error of NESYI TONN	72 EP /ERITY 3.7895 11.7895 5.7895 Mean of ELD ES_HA_	n of _ INCIDENCES FAILED_
Treatm	or Mai ent 9 9 9 Mai nent 9	ize hybrid 1 2 3 ize hybrid 1	(4 Std. Er Rain Rep	- Effect=] continued ror as of season 0.5 1.0 0.0 Std. Error of as YIEL season 0.156	MAIZE_F ) Mean SEVERI 1.5 2.0 1.0 Mean of D_TONI HA_ 0.84	0 IYBRID*RI n of of FY SEV 0.2105 0.2105 0.2105 Std. Error E of NESYI TONN 4 0.0	72 EP /ERITY 3.7895 11.7895 5.7895 Mean of ELD ES_HA_ 0.0	n of _ INCIDENCES FAILED_
Treatm	or Mai nent 9 9 9 Mai nent 9 9	ize hybrid 1 2 3 ize hybrid 1 2	(4 Std. Er Rair Rep	- Effect=] continued ror as of season 0.5 1.0 0.0 Std. Error of as YIEL season 0.156 0.156	MAIZE_F ) Mean SEVERI 1.5 2.0 1.0 Mean of DTONI HA_ 0.84 1.44	0 IYBRID*RI n of of FY SEV 0.2105 0.2105 0.2105 0.2105 Std. Error Std. Error MESYI TONN 4 0.0 4 0.5	72 EP /ERITY 3.7895 11.7895 5.7895 Mean of ELD ES_HA_ 0.0 3.5	n of _ INCIDENCES FAILED_
Treatm	or Mai ent 9 9 9 Mai nent 9	ize hybrid 1 2 3 ize hybrid 1	(4 Std. Er Rair Rep	- Effect=] continued ror us of season 0.5 1.0 0.0 Std. Error of us YIEL season 0.156 0.156 0.156	MAIZE_F ) Mean SEVERI 1.5 2.0 1.0 Mean of DTONI HA_ 0.84 1.44 0.64	0 IYBRID*RI n of of TY SEV 0.2105 0.2105 0.2105 Std. Error Std. Error TONN 4 0.0 4 0.5 4 0.0	72 EP /ERITY 3.7895 11.7895 5.7895 Mean of ELD ES_HA_ 0.0	n of _ INCIDENCES FAILED_
Treatm	or Mai nent 9 9 9 Mai nent 9 9	ize hybrid 1 2 3 ize hybrid 1 2	(4 Std. Er Rair Rep	- Effect=] continued ror us of season 0.5 1.0 0.0 Std. Error of us YIEL season 0.156 0.156 0.156 td. Error	MAIZE_F ) Mear SEVERI 1.5 2.0 1.0 Mean of DTONI HA_ 0.84 1.44 0.64 S	0 IYBRID*RI n of of TY SEV 0.2105 0.2105 0.2105 Std. Error Of NESYI TONN 4 0.0 4 0.5 4 0.0 td. Error	72 EP 3.7895 11.7895 5.7895 Mean of ELD ES_HA_ 0.0 3.5 1.0	n of _ INCIDENCES FAILED_
Treatm	or Mai nent 9 9 9 Mai nent 9 9	ize hybrid 1 2 3 ize hybrid 1 2	(4 Std. Er Rair Rep	- Effect=] continued ror us of season 0.5 1.0 0.0 Std. Error of us YIEL season 0.156 0.156 0.156 td. Error	MAIZE_F ) Mear SEVERI 1.5 2.0 1.0 Mean of DTONI HA_ 0.84 1.44 0.64 S	0 IYBRID*RI n of of TY SEV 0.2105 0.2105 0.2105 Std. Error Std. Error TONN 4 0.0 4 0.5 4 0.0	72 EP 3.7895 11.7895 5.7895 Mean of ELD ES_HA_ 0.0 3.5 1.0	n of _ INCIDENCES FAILED_

Maize		RainsPL		.ANTPLANT_ I		DAYS_TO_ DAYS	S_TO_
Treatmen	t hybrid	Rep	season	STAND_	STAND_	SILKING SI	LKING
	9 1		0.5	74.5 0			
	9 2		0.5	73.5 0	72		
	9 3		0.5	73.5 0	74		
			Effect=	REP*RAINS	_SEASON		
		S	td. Error	Std.	Error		
Ν	Maize	Rair	ns of	Mean of	of	Mean of	
Treatmen	t hybrid	Rep	season	SEVERITY_	SEVER	ITY INCIDENC	CES INCIDENCES
	. 1	1	0.11824	1.38889	0.20450	3.78950	
•	. 2	1	0.14003	1.33333	0.68789	5.45617	

Tarini during long ra	ins of 2009 continues
	Std. Error Std. Error
	of Mean of Mean of
Maize	Rains YIELD TONNES YIELD FAILED FAILED
Treatment hybrid	Rains YIELDTONNESYIELD FAILEDFAILED_ Rep season HATONNES_HAEARS_EARS
,	1 – – – –
1	1 0 10565 1 03289 0 44383 2 38889
1	1 0.10565 1.03289 0.44383 2.38889 1 0.09031 1.15511 0.32812 1.94444
2	Std. Error Std. Error
Maiza	of Mean of of Mean of RainsPLANTPLANT_ DAYS_TO_ DAYS_TO_
	Rep season STAND_ STAND_ SILKING SILKING
reatment nybrid	Rep season STAND_ STAND_ SILKING SILKING
1	1         1.01701         80.5         0.16612         74.4444           1         1.01701         79.5         0.22222         73.7778
2	1 1.01/01 /9.5 0.22222 /3.///8
	Effect=REP*RAINS_SEASON
	(continued)
	Std. Error Std. Error
Maize	Rains of Mean of Mean of
Treatment hybrid	Rep season SEVERITY SEVERITY INCIDENCES INCIDENCES
3	1 0.10863 1.27778 0.64653 6.01172
	Std. Error Std. Error
	of Mean of Mean of
Maize	Rains YIELD_TONNES_ YIELD_ FAILED_ FAILED_
Treatment hybrid	Rep season HA_ TONNES_HA_ EARS EARS
3	1 0.069604 0.88844 0.38396 1.77778
	1 0.069604 0.88844 0.38396 1.77778 Std. Error Std. Error
	of Mean of Mean of
Maize	RainsPLANTPLANT_ DAYS_TO_ DAYS_TO_
Treatment hybrid	Rep season STAND_ STAND_ SILKING SILKING
	1 0.99097 79.5 0.20166 73.4444
	Effect=TREATMENT*MAIZE_HYBRID
	Std. Error Std. Error
Maize	Rains of Mean of Mean of
Treatment hybrid	Rep season SEVERITY SEVERITY INCIDENCES INCIDENCES
1 1	. 0.33333 1.33333 2.18581 6.66667
1 2	. 0.00000 2.00000 0.57735 4.00000
1 2 .	0.00000 2.00000 0.87755 4.00000
1 J . 1 A	. 0.00000 2.00000 0.88192 5.33333 . 0.33333 1.66667 0.57735 5.00000
1 4 .	Std. Error Std. Error
	of Mean of Of Mean of
Maira	Rains YIELD_TONNES_ YIELD_ FAILED_ FAILED_
Treatment hubed	Name     Nam     Name     Name     Name
	$\mathbf{R} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} C$
	Rep season         HA_         TONNES_HA_         EARS         EARS           .         0.17638         1.56667         0.33333         1.33333         .           .         0.10000         1.30000         0.57735         2.00000
1 2 .	. 0.10000 1.30000 0.57735 2.00000
1 3.	. 0.23333 1.26667 1.20185 3.33333

1	4			0.03333	1.33333	1.8559	92 2.33	3333			
			S	td. Error	Std. E	Error					
	of Mean of Mean of										
Maize RainsPLANTPLANT_ DAYS_TO_ DAYS_TO_										)_	
Treatm	nent hył	orid	Rep	season	STAND_	SIL	KING	SILKIN	NG		
1	1			0.57735	75.0000	0.00000	75				
1	2			0.33333	85.3333	0.57735	74				
1	3			0.33333	80.6667	0.57735	74				
1	4			0.57735	81.0000	0.57735	74				
				Effect=TH	REATMENT*	MAIZE_H	YBRID				
			(	continued	)						
			S	td. Error	Std.	Error					
	Maize		Rair	ns of	Mean of	of	Mean	of			
Treatm	nent hył	orid	Rep	season	SEVERITY_	_ SEVE	RITY	INCIDE	ENCES	INCIDENCES	
1	5			0.33333	1.33333	1.15470	4.000	000			
1	6			0.00000	2.00000	1.52753	7.000	000			
1	7			0.00000	1.00000	0.57735	6.000	000			
1	8			0.33333	1.66667	0.88192	2.333	333			
1	9			0.57735	2.00000	2.40370	7.333	333			
2	1			0.00000	1.00000	2.18581	6.245	567			
2	2			0.00000	1.00000	0.57735	3.579	900			
2	3			0.00000	1.00000	0.88192	4.912	233			
2	4			0.00000	1.00000	0.57735	4.579	900			
2	5			0.00000	1.00000	1.15470		900			
2	6			0.00000	1.00000	1.52753	6.579	900			
2	7	•	•	0.00000	1.00000	0.57735	5.579	900			

 Table 36: Means breakdown for parameters under Stenocarpella spp. in Maseno University Research farm during long rains of 2009 continues

			S	td. Error	Std	. Error		
					Mean of		n of	
	Mai	ize	Rair	ns YIELD	) TONNES	YIELD	FAILE	D_ FAILED_
Treatme							HA_ EAR	
1		•		0.27285	1.06667	1.00000	3.00000	
1	6			0.28480	1.23333	0.88192	3.33333	
1	7			0.06667	1.06667	0.88192	2.33333	
1	8			0.03333	0.66667	0.88192	3.33333	
1	9			0.24037	1.13333	1.20185	1.66667	
2	1			0.17638	1.25467	0.33333	0.33333	
2	2			0.10000	0.98800	0.33333	1.33333	
2	3			0.23333	0.95467	1.20185	2.33333	
2	4			0.03333	1.02133	1.33333	1.33333	
2	5			0.27285	0.75467	1.00000	2.00000	
2	6			0.28480	0.92133	1.15470	2.00000	
2	7			0.06667	0.75467	0.88192	1.33333	
			S	td. Error				
					ean of of			
	Mai						AYS_TO_	
Treatme	ent	hybrid	Rep				SILKING	SILKING
1	5		•	0.57735	85.0000	0.00000	74	
1			•	0.33333	74.6667			
1	7		•	0.33333		0.57735		
1	8		•	0.33333	80.6667	0.57735	73	
1	9		•	0.33333	73.3333	0.57735	73	
2	1	•	•	0.57735	76.0000	0.00000	75	
2	2		•	0.33333	86.3333	0.57735	74	
2	3		•	0.33333			74	
2	4		•	0.57735	82.0000	0.57735	74	
2	5	•	•	0.57735	86.0000	0.00000	74	

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	. 0.33333 75.6667 0.57735 74 . 0.33333 79.3333 0.57735 74
	. 0.55555 /9.5555 0.57755 /4 Effect=TREATMENT*MAIZE_HYBRID
	(continued)
	Std. Error Std. Error
Maize	Rains of Mean of Mean of
Treatment hybrid	Rep season SEVERITY SEVERITY INCIDENCES INCIDENCES
2 8 .	. 0.00000 1.00000 0.88192 1.91233
29.	. 0.00000 1.00000 2.40370 6.91233
	Std. Error Std. Error
	of Mean of Mean of
	Rains YIELD_TONNES_ YIELD_ FAILED_ FAILED_
Treatment hybrid	Rep season HA_ TONNES_HA_ EARS EARS
2 8 .	. 0.03333 0.35467 0.57735 2.00000
29.	. 0.03333 0.35467 0.57735 2.00000 . 0.24037 0.82133 0.88192 1.33333 Std. Error Std. Error
	Std. Error Std. Error
Maira	of Mean of of Mean of RainsPLANTPLANT_ DAYS_TO_ DAYS_TO_
Maize Trootmont hybrid	RainsPLAN1PLAN1_ DAYS_10_ DAYS_10_ Rep season STAND_ STAND_ SILKING SILKING
	. 0.33333 81.6667 0.57735 73
2 0 . 2 9	. 0.33333 74.3333 0.57735 73
	Effect=TREATMENT*RAINS_SEASON
	Std. Error Std. Error
Maize	Rains of Mean of Mean of
Treatment hybrid	Rep season SEVERITY SEVERITY INCIDENCES INCIDENCES
1	1 0.10675 1.66667 0.48574 5.29630
2	1 0.00000 1.00000 0.48574 4.87530
	Std. Error Std. Error
	of Mean of Mean of
Maize	Rains YIELDTONNES_ YIELD FAILED_ FAILED_
	Rep season HA_ TONNES_HA_ EARS EARS
1	
2	1 0.069191 0.86948 0.27906 1.55556
	Std. Error Std. Error
Maiza	of Mean of of Mean of RainsPLANTPLANT_ DAYS_TO_ DAYS_TO_
	Rep season STAND_ STAND_ SILKING SILKING
	1 0.81475 79.3333 0.17969 73.8889
$\begin{array}{cccc} 1 & \cdot & \cdot \\ 2 & \cdot & \cdot \end{array}$	1 0.81475 80.3333 0.17969 73.8889
	Effect=TREATMENT*REP
	Std. Error Std. Error
Maize	Rains of Mean of Mean of
Treatment hybrid	Rep season SEVERITY SEVERITY INCIDENCES INCIDENCES
1.1	. 0.14699 1.77778 0.28868 4.00000
1 . 2	. 0.23570 1.66667 1.00000 5.66667
1.3	. 0.17568 1.55556 0.93953 6.22222
2 . 1	. 0.00000 1.00000 0.28868 3.57900
$2 \cdot 2$	. 0.00000 1.00000 1.00000 5.24567
2.3	. 0.00000 1.00000 0.93953 5.80122

Tur III uur IIIg	urin uuring tong tunis of 2007 continues												
		S	Std. Error	St	d. Error								
		of		Mean of	of Mean	ı of							
Maize		Rain	s YIELD	D	_ YIELD_	_ FAILED_	FAILED_						
Treatment	hybrid	Rep	season	HA_	TONNES_H	A_ EARS	EARS						
1.	. 1	•	0.14380	1.18889	0.67586	2.88889							
1.	2		0.11954	1.31111	0.44444	2.44444							
1.	. 3	•	0.08517	1.04444	0.59577	2.22222							

2		1		0.14380	0.8	7689 (	).56383	1.88889
2		2		0.11954	0.9	9911 (	).44444	1.44444
2		3		0.08517	0.7	3244 (	0.47140	1.33333
				td. Error				
				of M	lean of	of	Mean of	YS_TO_ DAYS_TO_
_	Mai	ze	Rair	nsPL	ANT_	PLAN	T_ DA	YS_TO_ DAYS_TO_
Treatm	hent	hybrid	Rep	season	STANI	DST	AND_	SILKING SILKING
	•	1	•	1.47196	80	0.2421	6 74.4	1444
1	•	2	•	1.47196 1.43372	79	0.3239	4 73.7	7778
1	•	3	•	1.433/2	/9	0.2939	7 73.4 7 74 4	1444
2 2	•	1	•	1.47196 1.47196	81	0.2421	6 /4.4	1444 1770
2				1.47190				
	•	5	Ff	1.43372 fect-MAI	ZE HVB	RID*RFI	D*RAINS	S_SEASON
			St	td. Error		Std. Error		5_5LASON
	Mai	ze	Rair	is of	Mea	n of	of N	Mean of
Treatm	nent	hvbrid	Rep	season	SEVERI	ITY S	SEVERIT	Mean of 'Y INCIDENCES INCIDENCES
•	1	1	1	0.5	1.5	0.2105	3.78	395
	1	2	1	0.5 0.0	1.0	0.2105	4.78	395
	1	3	1	0.0	1.0	0.2105	10.78	895
		1	1	0.5	1.5	0.2105	3.78	395
	2	2	1	0.5	1.5	0.2105	2.78	395
	2		1		1.5	0.2105	4.78	395
•	3		1			0.2105		395
	3		1			0.2105		395
	3			0.5	1.5	0.2105	6.78	395
	4	1	1	0.5	1.5	0.2105	3.78	
•	4	2		0.0	1.0	0.2105	5.78	
•	4	3	1	0.5	1.5	0.2105	4.78	395
				Std Frror				
			•			Std. Er		C
	Mai			of	Mean o	f of	Mean	
Troote			Rair	of ns YIELI	Mean o DTON	f of NES_	Mean YIELD_	_ FAILED_ FAILED_
	nent 1	hybrid	Rair Rep	of ns YIELI season	Mean o D_TON HA	f of NES_ TOI	Mean YIELD NNES_H	_ FAILED_ FAILED_ A_ EARS EARS
	nent 1	hybrid 1	Rair Rep 1	of ns YIELI season 0.156	Mean o DTON HA_ 1.74	f of NES_ _ TO 44 0	Mean YIELD_ NNES_H	_ FAILED_ FAILED_ A_ EARS EARS .5
	nent 1 1 1	hybrid 1 2	Rair Rep 1 1	of season 0.156 0.156	Mean o DTON HA_ 1.74 1.34	f of NES_ _ TOI 44 0 44 0	Mean YIELD	_ FAILED_ FAILED_ A_ EARS EARS .5 .5
	nent 1 1 1 1	hybrid 1 2 3	Rair Rep 1 1 1	of season 0.156 0.156 0.156	Mean o DTON HA_ 1.34 1.34	f of NES_ TO 44 0 44 0 44 0	Mean YIELD NNES_H .5 0. .5 0. .5 1.	_ FAILED_ FAILED_ A_ EARS EARS .5 .5 .5
	nent 1 1 1 2	hybrid 1 2 3 1	Rair Rep 1 1 1 1	of season 0.156 0.156 0.156 0.156 0.156	Mean o D_TON HA_ 1.74 1.34 1.14 1.04	f of NES_ TO 44 0 44 0 44 0 44 0	Mean YIELD	_ FAILED_ FAILED_ A_ EARS EARS .5 .5 .5 .0
	nent 1 1 1 2 2	hybrid 1 2 3 1 2	Rair Rep 1 1 1 1 1	of season 0.156 0.156 0.156 0.156 0.156 0.156	Mean o DTON HA_ 1.74 1.34 1.14 1.04 1.34	f of NES_ TOI 44 0 44 0 44 0 44 0 44 0	Mean YIELD	_ FAILED_ FAILED_ A_ EARS EARS .5 .5 .5 .0 .5
	nent 1 1 1 2 2 2	hybrid 1 2 3 1	Rair Rep 1 1 1 1 1 1	of season 0.156 0.156 0.156 0.156 0.156 0.156 0.156	Mean o DTON HA_ 1.74 1.34 1.14 1.04 1.34 1.04	f of NES_ TOI 44 0 44 0 44 0 44 0 44 0 44 0	Mean YIELD NNES_H .5 0. .5 0. .5 1. .5 1. .5 1. .5 2.	_ FAILED_ FAILED_ A_ EARS EARS .5 .5 .5 .0 .5 .5
	nent 1 1 1 2 2 2 3	hybrid 1 2 3 1 2 3 1 2 3 1	Rair Rep 1 1 1 1 1	of season 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156	Mean o DTON HA_ 1.74 1.34 1.14 1.04 1.35 1.04 0.74	f of NES_ TOI 44 0 44 0 44 0 44 0 44 0 44 0 44 0	Mean YIELD NNES_H. .5 0. .5 0. .5 1. .5 1. .5 1. .5 2. 0.5 4.	_ FAILED_ FAILED_ A_ EARS EARS .5 .5 .5 .0 .5 .5 .5
	nent 1 1 1 2 2 2	hybrid 1 2 3 1 2 3	Rair Rep 1 1 1 1 1 1 1 1	of season 0.156 0.156 0.156 0.156 0.156 0.156 0.156	Mean o DTON HA_ 1.74 1.34 1.14 1.04 1.34 1.04	f of NES_ TOI 44 0 44 0 44 0 44 0 44 0 44 0 44 0 44	Mean YIELD NNES_H. .5 0. .5 0. .5 1. .0 1. .5 1. .5 2. .5 4. .5 3.	_ FAILED_ FAILED_ A_ EARS EARS .5 .5 .5 .0 .5 .5
	nent 1 1 1 2 2 2 3 3	hybrid 1 2 3 1 2 3 1 2 3 1 2	Rair Rep 1 1 1 1 1 1 1 1	of season 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156	Mean o DTON HA_ 1.7 1.3 1.1 1.0 1.3 1.0 0.7 1.5	f of NES_ TOI 44 0 44 0 44 0 44 0 44 0 44 0 44 0 44	Mean YIELD NNES_H .5 0. .5 0. .5 1. .5 1. .5 1. .5 2. .5 4. .5 3. .5 0.	_ FAILED_ FAILED_ A_ EARS EARS .5 .5 .5 .0 .5 .5 .5 .5
	nent 1 1 1 2 2 2 3 3 3 3	hybrid 1 2 3 1 2 3 1 2 3 3	Rair Rep 1 1 1 1 1 1 1 1 1 1	of season 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156	Mean o DTON HA_ 1.74 1.34 1.14 1.04 1.33 1.04 0.74 1.54 1.04	$\begin{array}{cccc} {\rm f} & {\rm of} \\ {\rm NES}_{-} & {\rm TOI} \\ {\rm 44} & {\rm 0} \\ {\rm 44} & {\rm 1} \\ \end{array}$	Mean YIELD NNES_H .5 0. .5 0. .5 1. .5 1. .5 1. .5 2. .5 4. .5 3. .5 0. .5 0. .5 0. .5 0.	_ FAILED_ FAILED_ A_ EARS EARS .5 .5 .5 .0 .5 .5 .5 .5 .5 .5
	nent 1 1 1 2 2 2 3 3 3 4	hybrid 1 2 3 1 2 3 1 2 3 1 2 3 1	Rair Rep 1 1 1 1 1 1 1 1 1 1 1	of season 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156	Mean o DTON HA_ 1.74 1.34 1.14 1.04 1.34 1.04 0.74 1.54 1.04 1.14	$\begin{array}{ccc} {\rm f} & {\rm of} \\ {\rm NES}_{-} & {\rm TOI} \\ {\rm 44} & {\rm 0} \\ {\rm 14} & {\rm 0} \\ {\rm 0} \\ {\rm 14} & {\rm 0} \\ {\rm $	Mean YIELD NNES_H .5 0. .5 0. .5 1. .5 1. .5 1. .5 2. .5 3. .5 0. .5 0. .5 0. .5 0.	_ FAILED_ FAILED_ A_ EARS EARS .5 .5 .5 .0 .5 .5 .5 .5 .5 .5 .5 .5 .0
	nent 1 1 1 2 2 2 3 3 3 4 4	hybrid 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1	Rair Rep 1 1 1 1 1 1 1 1 1 1 1 1 1	of season 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 td. Error	Mean o DTON HA_ 1.7 1.3 1.1 1.0 1.3 1.0 0.7 1.5 1.0 1.1 1.1 1.1 1.1 1.1 1.1	f of NES_ TOI 44 0 44 0 44 0 44 0 44 0 44 0 44 0 44	Mean YIELD NNES_H. .5 0. .5 1. .0 1. .5 1. .5 2. .5 3. .5 3. .5 0. .0 5. .5 0. .0 5.	_ FAILED_ FAILED_ A_ EARS EARS .5 .5 .5 .0 .5 .5 .5 .5 .5 .5 .5 .0 .0 .5 .5 .0
	nent 1 1 1 2 2 2 3 3 3 4 4 4 4	hybrid 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 3 1 2 3 3 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3	Rair Rep 1 1 1 1 1 1 1 1 1 1 1 1 5	of season 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 td. Error of M	Mean o D_TON HA_ 1.74 1.34 1.14 1.04 1.34 1.04 0.77 1.55 1.04 1.14 1.14 1.24 S Iean of	$      f  of \\ NES_{-}  TOI \\            44  0 \\            44  0 \\          $	Mean YIELD	_ FAILED_ FAILED_ A_ EARS EARS .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5
	nent 1 1 1 2 2 3 3 3 4 4 4 4 4 Maii	hybrid 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 3 1 2 3 3 1 2 3 3 2 3 3 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	Rair Rep 1 1 1 1 1 1 1 1 1 1 1 1 1 5 8 8 8 8 8 8	of season 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 td. Error of M asPL	Mean o DTON HA_ 1.7 1.3 1.1 1.0 1.3 1.0 0.7 1.5 1.0 1.1 1.1 1.1 1.1 1.2 S Iean of ANT_	$\begin{array}{cccc} {\rm f} & {\rm of} \\ {\rm NES}_{-} & {\rm TOI} \\ {\rm 44} & {\rm 0} \\ {\rm 5td. \ Error} \\ {\rm of} \\ _{\rm PLAN} \end{array}$	Mean YIELD	FAILEDFAILED AEARSEARS .5 .5 .5 .5 .5 .5 .5 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5
	nent 1 1 1 2 2 3 3 3 4 4 4 4 4 Main nent 1	hybrid 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	Rair Rep 1 1 1 1 1 1 1 1 1 1 1 8 8 8 8 8 8 8 8	of season 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156	Mean o DTON HA_ 1.74 1.34 1.14 1.00 1.33 1.04 0.74 1.54 1.04 1.14 1.14 1.24 S Iean of ANT_ STANI	$\begin{array}{ccccccc} {\rm f} & {\rm of} \\ {\rm NES}_{-} & {\rm TOI} \\ {\rm 44} & {\rm 0} \\ {\rm 5td. \ Error} \\ {\rm of} \\ _{\rm PLAN} \\ {\rm D}_{-} & {\rm ST} \end{array}$	Mean YIELD NNES_H .5 0. .5 0. .5 1. .0 1. .5 1. .5 2. .5 3. .5 0. .0 5. .5 0. .0 5. .5 0. .0 0. Mean of TDA AND	FAILEDFAILED AEARSEARS .5 .5 .5 .5 .5 .5 .5 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5
	nent 1 1 1 1 2 2 3 3 4 4 4 4 Main nent 1 1	hybrid 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	Rair Rep 1 1 1 1 1 1 1 1 1 1 1 8 7 8 7 8 7 8 7 8	of season 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156	Mean o DTON HA_ 1.74 1.34 1.14 1.00 1.35 1.00 0.74 1.55 1.00 1.14 1.12 Stan of ANT_ STANI 76.5	$      f  of \\ NES_ \\ TOI \\                                $	Mean YIELD NNES_H .5 0. .5 0. .5 1. .5 1. .5 1. .5 1. .5 2. .5 4. .5 3. .5 0. .0 5. .5 0. .0 5. .5 0. .0 5. .5 0. .0 5. .5 0. .5 0. .5 1. .5 0. .5 1. .5 0. .5 0.5 0. .5 0.5	FAILEDFAILED AEARSEARS .5 .5 .5 .5 .5 .5 .5 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5
	nent 1 1 1 2 2 3 3 3 4 4 4 4 4 Main nent 1 1 1	hybrid 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 2 3 1 2 3 1 2 3 2 3 1 2 3 1 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 2 3 2 3 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 2 2 3 2 2 3 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2	Rair Rep 1 1 1 1 1 1 1 1 1 1 1 1 8 8 8 8 8 8 8	of season 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 td. Error of M sseason 0.5 0.5	Mean o DTON HA_ 1.74 1.34 1.14 1.04 1.34 1.04 1.34 1.04 1.35 1.04 1.14 1.14 1.14 1.14 1.24 S Iean of ANT_ STANI 76.5 75.5	$      f  of \\ NES_ \\ TOI \\                                $	Mean YIELD NNES_H .5 0. .5 0. .5 1. .5 1. .5 1. .5 2. .5 4. .5 3. .5 0. .0 5. .5 0. .0 5. .5 0. .0 5. .5 0. .0 5. .5 0. .5 0. .5 0. .5 1. .5 0. .5 1. .5 0. .5 1. .5 0. .5 0. .5 1. .5 0. .5 0.5 0. .5 0.5	FAILEDFAILED AEARSEARS .5 .5 .5 .5 .5 .5 .5 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5
	nent 1 1 1 2 2 2 3 3 3 4 4 4 4 4 Main nent 1 1 1 1	hybrid 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 1 2 2 3 1 2 2 2 2 2 2 2 2 2 2 2 2 2	Rair Rep 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 1 Rair Rep 1 1 1	of season 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 td. Error of M sseason 0.5 0.5 0.5	Mean o DTON HA_ 1.7 1.3 1.1 1.0 1.3 1.0 0.7 1.5 1.0 0.7 1.5 1.0 1.1 1.1 1.1 1.1 1.2 S Iean of ANT_ STANI 76.5 75.5 74.5	f of NES_ TOI 44 0 44 0 44 0 44 0 44 0 44 0 44 0 44	Mean YIELD NNES_H .5 0. .5 0. .5 1. .5 1. .5 1. .5 2. .5 3. .5 0. .0 5. .5 0. .0 5. .5 0. .0 5. .5 0. .0 5. .5 0. .0 5. .5 0. .5 0. .5 1. .5 2. .5 0. .5 1. .5 0. .5 0. .5 0. .5 1. .5 0. .5 0. .0 5. .5 0. .0 5. .5 0. .0 5. .5 0. .0 5. .5 0. .5 7. .5 7	FAILEDFAILED AEARSEARS .5 .5 .5 .5 .5 .5 .5 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5
	$\begin{array}{c} \text{nent} & 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 4 \\ 4 \\ 4 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 4 \\ 4 \\ 1 \\ 1 \\ 2 \\ 2 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 3 \\ 4 \\ 4 \\ 4 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 4 \\ 4 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 4 \\ 4 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 4 \\ 4 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 4 \\ 4 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 4 \\ 4 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 4 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 4 \\ 4 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 4 \\ 4 \\ 4 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 4 \\ 4 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 4 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 4 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 4 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	hybrid 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 1 2 2 3 1 2 1 2 2 3 1 2 2 2 2 2 2 2 2 2 2 2 2 2	Rair Rep 1 1 1 1 1 1 1 1 1 1 1 1 8 5 8 8 8 8 7 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1	of season 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 td. Error of N season 0.5 0.5 0.5 0.5	Mean o DTON HA_ 1.7 1.3 1.1 1.0 1.3 1.0 0.7 1.5 1.0 0.7 1.5 1.0 0.7 1.5 1.0 0.7 1.5 1.0 0.7 1.5 1.0 0.7 1.5 1.0 1.1 1.1 1.1 1.1 1.2 S Ean of ANT_ STANI 76.5 75.5 74.5 86.5	$      f  of \\ NES_{-}  TOI \\                                  $	Mean YIELD NNES_H .5 0. .5 0. .5 1. .0 1. .5 1. .5 2. .5 3. .5 0. .0 5. .5 0. .0 5. .5 0. .0 5. .5 0. .0 0. Mean of T_ DA AND_ 75 75 75 74	FAILEDFAILED AEARSEARS .5 .5 .5 .5 .5 .5 .5 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5
	nent 1 1 1 2 2 2 3 3 4 4 4 4 4 4 Mai: nent 1 1 1 2 2	hybrid 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 3 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	Rair Rep 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	of season 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 td. Error of N season 0.5 0.5 0.5 0.5 0.5	Mean o DTON HA_ 1.7 1.3 1.1 1.0 1.3 1.0 0.7 1.5 1.0 0.7 1.5 1.0 1.1 1.1 1.1 1.1 1.1 1.2 S Iean of ANT_ STANI 76.5 75.5 74.5 86.5 85.5	$      f  of \\ NES_ \\ TOI \\                                $	$\begin{array}{c} \text{Mean}\\ \text{YIELD}_{-}\\ \text{NNES}_{-}\text{H}\\ \text{.5} & 0\\ \text{.5} & 0\\ \text{.5} & 1\\ \text{.0} & 1\\ \text{.5} & 1\\ \text{.0} & 1\\ \text{.5} & 1\\ \text{.5} & 2\\ \text{.5} & 2\\ \text{.5} & 3\\ \text{.5} & 0\\ \text{.5} & 3\\ \text{.5} & 0\\ \text{.5} & 0\\ \text{.5} & 0\\ \text{.0} & 5\\ \text{.5} & 0\\ \text{.0} & 0\\ \text{Mean of}\\ T_{-} & DA\\ \hline \text{Mean of}\\ T_{-} & DA\\ \hline \text{AND}_{-}\\ 75\\ 75\\ 75\\ 74\\ 75\\ \end{array}$	FAILEDFAILED AEARSEARS .5 .5 .5 .5 .5 .5 .5 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5
	nent 1 1 1 1 2 2 3 3 4 4 4 4 Main nent 1 1 1 2 2 2 3 3 4 4 4 4 1 1 2 2 2 3 3 4 4 4 1 1 2 2 2 3 3 4 4 4 4 4 1 1 2 2 2 3 3 4 4 4 4 4 1 1 1 1 2 2 2 3 3 4 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1	hybrid 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3	Rair Rep 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	of season 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Mean o DTON HA_ 1.74 1.33 1.14 1.00 1.33 1.00 0.77 1.54 1.10 1.14 1.14 1.24 S Iean of ANT_ STANI 76.5 75.5 74.5 86.5 85.5 85.5	$      f  of \\ NES_ \\ TOI \\ 44  0 \\ 44  0 \\ 44  0 \\ 44  0 \\ 44  0 \\ 44  0 \\ 44  0 \\ 44  0 \\ 44  0 \\ 44  0 \\ 44  0 \\ 44  0 \\ 44  0 \\ 5d. Error \\ of \\ _PLAN \\ D_  ST \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{c} \text{Mean}\\ \text{YIELD}_{-}\\ \text{NNES}_{-}\text{H}\\ .5 & 0\\ .5 & 0\\ .5 & 1\\ .0 & 1\\ .5 & 1\\ .0 & 1\\ .5 & 1\\ .5 & 2\\ .5 & 3\\ .5 & 0\\ .5 & 3\\ .5 & 0\\ .5 & 0\\ .5 & 0\\ .5 & 0\\ .0 & 0\\ \end{array}$ $\begin{array}{c} \text{Mean of}\\ \text{T}_{-} & \text{DA}\\ \text{AND}_{-}\\ 75\\ 75\\ 75\\ 74\\ 75\\ 73\\ \end{array}$	FAILEDFAILED AEARSEARS .5 .5 .5 .5 .5 .5 .5 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5
	nent 1 1 1 1 2 2 3 3 4 4 4 4 Main nent 1 1 1 2 2 3 3 4 4 4 4 2 3 3 4 4 4 4 5 1 1 2 2 3 3 3 4 4 4 4 5 1 1 1 2 2 3 3 3 4 4 4 4 5 1 1 1 1 1 1 1 1 2 2 3 3 3 4 4 4 4 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1	hybrid 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 2 3 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 2 3 1 2 2 3 1 2 2 2 2 2 2 2 2 2 2 2 2 2	Rair Rep 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	of season 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Mean o DTON HA_ 1.74 1.34 1.14 1.04 1.33 1.04 0.77 1.55 1.04 1.14 1.24 Stan of ANT_ STANI 76.5 75.5 74.5 86.5 85.5 85.5 81.5	$      f  of \\ NES_ \\ TOI \\                                $	$\begin{array}{c} \text{Mean} \\ \text{YIELD}_{-} \\ \text{NNES}_{-} \\ \text{H}_{.5} & 0. \\ \text{.5} & 0. \\ \text{.5} & 1. \\ 0.5 & 1. \\ 0.5 & 1. \\ 0.5 & 1. \\ 0.5 & 1. \\ 0.5 & 2. \\ 0.5 & 4. \\ 0.5 & 3. \\ 0.5 & 3. \\ 0.5 & 3. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\ 0.5 & 0. \\$	FAILEDFAILED AEARSEARS .5 .5 .5 .5 .5 .5 .5 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5
	nent 1 1 1 1 2 2 3 3 4 4 4 4 Main nent 1 1 1 2 2 3 3 3 4 4 4 4 2 2 3 3 3 4 4 4 4 5 2 2 3 3 3 4 4 4 4 5 2 2 3 3 3 4 4 4 4 5 2 2 3 3 3 4 4 4 4 5 2 2 3 3 3 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	hybrid 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 1 2 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 1 2 2 3 1 2 1 2 2 1 2 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	Rair Rep 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	of season 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 td. Error of M season 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Mean o DTON HA_ 1.74 1.34 1.14 1.04 1.34 1.04 0.77 1.55 1.04 1.14 1.24 S Iean of ANT_ STANI 76.5 75.5 74.5 86.5 85.5 81.5 80.5	$      f  of \\ NES_ \\ TOI \\                                $	$\begin{array}{c} \text{Mean}\\ \text{YIELD}_{-}\\ \text{NNES}_{-}\text{H}\\ .5 & 0\\ .5 & 0\\ .5 & 1\\ .0 & 1\\ .5 & 1\\ .5 & 1\\ .5 & 2\\ .5 & 3\\ .5 & 0\\ .5 & 3\\ .5 & 0\\ .5 & 0\\ .0 & 5\\ .5 & 0\\ .0 & 0\\ \end{array}$ $\begin{array}{c} \text{Mean of}\\ \text{T}_{-} & \text{DA}\\ \text{AND}_{-}\\ 75\\ 75\\ 75\\ 74\\ 75\\ 75\\ 74\\ 75\\ 74\\ \end{array}$	FAILEDFAILED AEARSEARS .5 .5 .5 .5 .5 .5 .5 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5
	nent 1 1 1 1 2 2 3 3 4 4 4 4 Main nent 1 1 1 2 2 3 3 4 4 4 4 2 3 3 4 4 4 4 5 1 1 2 2 3 3 3 4 4 4 4 5 1 1 1 2 2 3 3 3 4 4 4 4 5 1 1 1 1 1 1 1 1 2 2 3 3 3 4 4 4 4 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1	hybrid 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 2 3 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 2 3 1 2 2 3 1 2 2 2 2 2 2 2 2 2 2 2 2 2	Rair Rep 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	of season 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.156 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Mean o DTON HA_ 1.74 1.34 1.14 1.04 1.33 1.04 0.77 1.55 1.04 1.14 1.24 Stan of ANT_ STANI 76.5 75.5 74.5 86.5 85.5 85.5 81.5	$      f  of \\ NES_ \\ TOI \\                                $	$\begin{array}{c} \text{Mean}\\ \text{YIELD}_{-}\\ \text{NNES}_{-}\text{H}\\ .5 & 0\\ .5 & 0\\ .5 & 1\\ .0 & 1\\ .5 & 1\\ .0 & 1\\ .5 & 1\\ .5 & 2\\ .5 & 3\\ .5 & 0\\ .5 & 4\\ .5 & 3\\ .5 & 0\\ .5 & 0\\ .5 & 0\\ .0 & 5\\ .5 & 0\\ .0 & 0\\ \end{array}$ $\begin{array}{c} \text{Mean of}\\ \text{T}_{-} & \text{DA}\\ \text{Mean of}\\ \text{T}_{-} & \text{DA}\\ \text{AND}_{-}\\ 75\\ 75\\ 75\\ 74\\ 75\\ 73\\ 75\\ 75\\ 75\\ 75\\ 75\\ 75\\ 75\\ 75\\ 75\\ 75$	FAILEDFAILED AEARSEARS .5 .5 .5 .5 .5 .5 .5 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .0 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5

	4	2	1	0.5	81.5	0	73				
	4	3	1	0.5	80.5	0	74				
			Ef	fect=MA	ZE HYE	BRID*RE	P*RAINS SE	ASON			
(continued)											
Maize			Rair	ns std. Ei	ror of N	lean of	Std. Error of	Mean of			
Treatm	ent	hybrid	Rep	season	SEVER	ITY_ S	SEVERITY	INCIDENCES	INCIDENCES		
	5	1	1	0.5	1.5	0.2105	3.7895				
	5	2	1	0.0	1.0	0.2105	5.7895				
	5	3	1	0.0	1.0	0.2105	1.7895				
	6	1	1	0.5	1.5	0.2105	4.7895				
	6	2	1	0.5	1.5	0.2105	5.7895				
	6	3	1	0.5	1.5	0.2105	9.7895				
	7	1	1	0.0	1.0	0.2105	4.7895				
	7	2	1	0.0	1.0	0.2105	6.7895				
	7	3	1	0.0	1.0	0.2105	5.7895				
	8	1	1	0.0	1.0	0.2105	1.7895				
	8	2	1	0.5	1.5	0.2105	0.7895				
	8	3	1	0.5	1.5	0.2105	3.7895				

Std. Error Std. Error											
				of			lean of				
	Mai	ze	Rain	of Mean of Rains YIELD_TONNES_					FAILED	FAILED_	
Treatm	nent	hybrid		season					EARS		
	5	1	1	0.156	0.54	4	0.5	3.5			
	5	2	1	0.156	1.44	4	0.5	3.5			
	5	3	1	0.156	0.74	4	0.5	0.5			
	6	1	1	0.156	1.64	4	1.0	1.0			
	6	2	1	0.156	0.74	4	0.5	2.5			
	6	3	1	0.156	0.84	4	0.5	4.5			
	7	1	1	0.156	1.04	4	0.5	3.5			
	7	2	1	0.156	0.84	4	0.5	0.5			
	7	3	1	0.156	0.84	4	0.5	1.5			
	8	1	1	0.156	0.54	4	0.5	2.5			
	8	2	1	0.156	0.54	4	0.5	1.5			
	8	3	1	0.156	0.44	4	1.0	4.0			
			St	d. Error	St	d. Erroi	r				
					lean of		Mean				
	Mai	ze	Rain	sPL	ANT_	_PLAN	NT_	DAYS_	TO_ DA		
Treatn	nent	hybrid	Rep	season	STAND	_ S'	TAND	_ SI	LKING S	SILKING	
	5	1	1	0.5	86.5	0	74				
•	5	2	1	0.5	85.5	0	74				
	5	3	1	0.5	84.5	0	74				
•	6		1	0.5	75.5	0	75				
	6	2	1	0.5	74.5	0	74				
•	6	3	1	0.5	75.5	0	73				
•	7	1	1	0.5	79.5	0	75				
•	7	2	1	0.5	78.5	0	74				
•	7	3	1	0.5	78.5	0	73				
	8	1	1	0.5	81.5	0	74				
•	8	2	1	0.5	80.5	0	73				
•	8	3	1	0.5	81.5	0	72				
						ID*RE	P*RAI	NS_SE	ASON		
				continued							
				d. Error		td. Erro					
	Mai	ze	Rain	s of	Mean	of	of	Mea	n of		
Treatm	nent	hybrid	Rep	season	SEVERIT	TY	SEVE	RITY	INCIDEN	NCES INCIDENCES	
						1	59				

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	. 9 1	1 0.5 1.5 0.2105 3.7895
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	. 9 2	1 1.0 2.0 0.2105 11.7895
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	. 93	1 0.0 1.0 0.2105 5.7895
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Std. Error Std. Error
Treatment       hybrid       Rep       season       HA_       TONNES_HA_       EARS       EARS         .       9       1       1       0.156       0.844       0.0       0.0         .       9       2       1       0.156       1.444       0.5       3.5         .       9       3       1       0.156       0.644       0.0       1.0         Std. Error         of       Mean of       Mean of         Maize       Rains       _PLANT_       _PLANT_       DAYS_TO_       DAYS_TO_         Treatment       hybrid       Rep       season       STAND_       STAND_       SILKING       SILKING         .       9       1       1       0.5       74.5       0       73         .       9       2       1       0.5       73.5       0       74         Std. Error       Std. Error         Std. Error         Std. Error         Maize       Rains       of       Mean of       Mean of         Treatment       hybrid       Rep       season       SEVERITY       SEVERITY       INCIDENCES		
Treatment       hybrid       Rep       season       HA_       TONNES_HA_       EARS       EARS         .       9       1       1       0.156       0.844       0.0       0.0         .       9       2       1       0.156       1.444       0.5       3.5         .       9       3       1       0.156       0.644       0.0       1.0         Std. Error         of       Mean of       Mean of         Maize       Rains       _PLANT_       _PLANT_       DAYS_TO_       DAYS_TO_         Treatment       hybrid       Rep       season       STAND_       STAND_       SILKING       SILKING         .       9       1       1       0.5       74.5       0       73         .       9       2       1       0.5       73.5       0       74         Std. Error       Std. Error         Std. Error         Std. Error         Maize       Rains       of       Mean of       Mean of         Treatment       hybrid       Rep       season       SEVERITY       SEVERITY       INCIDENCES	Maize	Rains YIELD_TONNES_ YIELD_ FAILED_ FAILED_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Treatment hybrid	Rep season HA_ TONNES_HA_ EARS EARS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	. 9 1	1  0.156  0.844  0.0  0.0
Std. ErrorStd. ErrorofMean ofMaizeRainsPLANTPLANTDAYS_TODAYS_TO_TreatmenthybridRepseasonSTANDSILKINGSILKINGSILKING $\cdot$ 910.574.5 $\cdot$ 9210.573.5 $\cdot$ 9310.573.5 $\cdot$ 9310.573.5 $\cdot$ 74	. 92	1 0.156 1.444 0.5 3.5
Std. ErrorStd. ErrorofMean ofMaizeRainsPLANTPLANTDAYS_TODAYS_TO_TreatmenthybridRepseasonSTANDSILKINGSILKINGSILKING $\cdot$ 910.574.5 $\cdot$ 9210.573.5 $\cdot$ 9310.573.5 $\cdot$ 9310.573.5 $\cdot$ 74	. 93	1 0.156 0.644 0.0 1.0
Maize         Rains         PLANT         PLANT         DAYS_TO         DAYS_TO           Treatment         hybrid         Rep         season         STAND         STAND         SILKING         SILKING           .         9         1         1         0.5         74.5         0         73           .         9         2         1         0.5         73.5         0         72           .         9         3         1         0.5         73.5         0         74		Std. Error Std. Error
Maize         Rains         PLANT         PLANT         DAYS_TO         DAYS_TO           Treatment         hybrid         Rep         season         STAND         STAND         SILKING         SILKING           .         9         1         1         0.5         74.5         0         73           .         9         2         1         0.5         73.5         0         72           .         9         3         1         0.5         73.5         0         74		of Mean of Mean of
Treatment       hybrid       Rep       season       STAND_       STAND_       SILKING       SILKING         .       9       1       1       0.5       74.5       0       73         .       9       2       1       0.5       73.5       0       72         .       9       3       1       0.5       73.5       0       74	Maize	RainsPLANTPLANT_ DAYS_TO_ DAYS_TO_
.       9       2       1       0.5       73.5       0       72         .       9       3       1       0.5       73.5       0       74         Effect=TREATMENT*MAIZE_HYBRID*RAINS_SEASON	Treatment hybrid	Rep season STAND_ STAND_ SILKING SILKING
.       9       2       1       0.5       73.5       0       72         .       9       3       1       0.5       73.5       0       74         Effect=TREATMENT*MAIZE_HYBRID*RAINS_SEASON		
.       9       2       1       0.5       73.5       0       72         .       9       3       1       0.5       73.5       0       74         Effect=TREATMENT*MAIZE_HYBRID*RAINS_SEASON	. 9 1	1 0.5 74.5 0 73
Effect=TREATMENT*MAIZE_HYBRID*RAINS_SEASONStd. ErrorStd. ErrorMaizeRainsofMean ofofMean ofTreatmenthybridRepseasonSEVERITY_SEVERITY_INCIDENCES110.333331.333332.185816.666671210.00000Std. ErrorStd. Error	. 9 2	1 0.5 73.5 0 72
Std. ErrorStd. ErrorMaizeRainsofMean ofTreatmenthybridRepseasonSEVERITYINCIDENCES11.10.333331.333332.185816.6666712.10.000000.577354.00000Std. ErrorStd. ErrorStd. ErrorStd. Error	. 9 3	1 0.5 73.5 0 74
Maize         Rains         of         Mean of         Mean of           Treatment         hybrid         Rep         season         SEVERITY         SEVERITY         INCIDENCES         INCIDENCES           1         1         .         1         0.33333         1.33333         2.18581         6.666667           1         2         .         1         0.00000         2.00000         0.57735         4.00000           Std. Error         Std. Error         Std. Error         Std. Error         Std. Error		
Treatment         hybrid         Rep         season         SEVERITY         SEVERITY         INCIDENCES         INCIDENCES           1         1         .         1         0.33333         1.33333         2.18581         6.666667           1         2         .         1         0.00000         2.00000         0.57735         4.00000           Std. Error         Std. Error         Std. Error         Std. Error         Std. Error		Std. Error Std. Error
1 1 . 1 0.33333 1.33333 2.18581 6.66667 1 2 . 1 0.00000 2.00000 0.57735 4.00000 Std. Error Std. Error		
1 2 . 1 0.00000 2.00000 0.57735 4.00000 Std. Error Std. Error	Treatment hybrid	Rep season SEVERITY SEVERITY INCIDENCES INCIDENCES
Std. Error Std. Error	1 1 .	1 0.33333 1.33333 2.18581 6.66667
	1 2 .	
of Mean of Mean of		
Maize Rains YIELD_TONNES_ YIELD_ FAILED_ FAILED_		
Treatment hybrid Rep season HA_ TONNES_HA_ EARS EARS	Treatment hybrid	Rep season HA_ TONNES_HA_ EARS EARS
1 1 . 1 0.17638 1.56667 0.33333 1.33333	1 1 .	1 0.17638 1.56667 0.33333 1.33333
1 2 . 1 0.10000 1.30000 0.57735 2.00000	1  2 .	
Std. Error Std. Error		
of Mean of Mean of		
Maize Rains PLANT PLANT DAYS TO DAYS TO		
Treatment hybrid Rep season STAND_ STAND_ SILKING SILKING		
1 1 . 1 0.57735 75.0000 0.00000 75		
1 2 . 1 0.33333 85.3333 0.57735 74	1 2 .	1 0.33333 85.3333 0.57735 74

			- Effec	t=TREAT	MENT*MAIZ	E_HYBRI	D*RAINS_	SEASON			
			(	continued)	)						
Std. Error Std. Error											
]	Mai	ze	Rair	is of	Mean of	of	Mean of				
Treatmen	nt .	hybrid	Rep	season	SEVERITY_	SEVER	ITY IN	CIDENCES	INCIDENCES		
1	3		1	0.00000	2.00000	0.88192	5.33333				
1	4		1	0.33333	1.66667	0.57735	5.00000				
1	5		1	0.33333	1.33333	1.15470	4.00000				
1	6		1	0.00000	2.00000	1.52753	7.00000				
1	7		1	0.00000	1.00000	0.57735	6.00000				
1	8		1	0.33333	1.66667	0.88192	2.33333				
1	9		1	0.57735	2.00000	2.40370	7.33333				
2	1		1	0.00000	1.00000	2.18581	6.24567				
2	2		1	0.00000	1.00000	0.57735	3.57900				
2	3		1	0.00000	1.00000	0.88192	4.91233				
2	4		1	0.00000	1.00000	0.57735	4.57900				
2	5		1	0.00000	1.00000	1.15470	3.57900				

				Std. Error		Std. Error	n of	
	Maize	•	Dair		Mean of		In of FAILED_	FAILED_
Trootm				season			HA_ EARS	EARS
1	em n		кер 1		па_ 1.2666			EARS
1	5 4	•	1	0.23555 0.03333	1.3333			
1		•	1	0.03333				
1	-	•	1		1.2333			
1	0 7	•	1	0.20.00				
1	8	•	1					
1	o 9	•	1					
2	9	•	1	0.24037 0.17638	1.1333 1.2540			
2	2	•	1	0.17038	0.9880			
2	3	•	1					
2	3 4	•	1	0.23333	0.9546 1.0213	1.20185 33 1.33333		
$\frac{2}{2}$	4 5	•	1	$0.03333 \\ 0.27285$	0.7546			
2	3	•		td. Error	0.7340		2.00000	
			3			Error of Mean o	£	
	Moiz		Doir				AYS_TO_ DA	VS TO
Treatm	Maize					STAND		SILKING
1 reatm	$\frac{1}{3}$		кер 1	0.33333			74	DILININU
1	3 4	•	1	0.33333 0.57735	80.0007	0.57735	74 74	
1	-	•	1	0.57735	81.0000	0.00000	74 74	
1	6		1	0.33333	74.6667	0.00000	74 74	
1	7	•	1	0.33333	78.3333	0.57735	74	
1	8	•	1	0.33333	80.6667	0.57735	73	
1	9	•	1	0.33333	73.3333	0.57735	73	
2	1	•	1	0.55555	76.0000	0.00000	75	
2	2	•	1	0.33333	86.3333	0.57735	73	
$\frac{2}{2}$	3		1	0.33333	80.3333	0.57735	74 74	
$\frac{2}{2}$		•	1	0.55555 0.57735	81.0007	0.57735	74 74	
2		•	1	0.57735	86.0000	0.00000	74 74	
		•						ON
				continued)			KAINS_SEAS	JN
			,	td. Error	Std	. Error		
	Maize	L	Rair				Mean of	
Treatm								NCES INCIDENCE
2			1			1.52753		
$\frac{2}{2}$						0.57735		
2	8		1				1.91233	
2	9	•	1			2.40370		
-	/	•	-	Std. Error		Std. Error	0.71200	
			•		Mean of		n of	
	Maize	e.	Rair				FAILED_	FAILED_
Treatm							HA_ EARS	
2	6			0.28480				
2	7		1			57 0.88192		
$\frac{1}{2}$	8					67 0.57735		
2	9		1			0.88192		
-	-	-	-	td. Error		Error		
				of Me	an of c	of Mean o	of	
	Maize	e	Rair	ns PLA	NT I	PLANT DA	AYS_TO_ DA	YS TO
Treatm								SILKING
2	-		-				74	
2	7			0.33333			74	
4			1	0.33333	81.6667	0.57735	73	
$\frac{2}{2}$								
	9		1	0.33333	14.3333	0.57735	73	
2	9	•						

Ma	aize	Rain	ns of	Mean of	of	Mean of	
Treatment	hybrid	Rep	season	SEVERITY	SEVER	ITY INCIDENCES	INCIDENCES
1.	1	1	0.14699	1.77778	0.28868	4.00000	
1.	2	1	0.23570	1.66667	1.00000	5.66667	
1.	3	1	0.17568	1.55556	0.93953	6.22222	
2.	1	1	0.00000	1.00000	0.28868	3.57900	
2.	2	1	0.00000	1.00000	1.00000	5.24567	
2.	3	1	0.00000	1.00000	0.93953	5.80122	

Table 37: Means breakdown for parameters under Stenocarpella spp. in Maseno Univ	versity Research
farm during long rains of 2009 continues	

						G( 1 E					
Std. Error Std. Error of Mean of of Mean of											
		ize				ES_ YII			_		
Treatme	ent	hybrid	-			TONN			RS	EARS	
1		1	1	0.14380	1.18	889 0.6	7586	2.88889			
1		2	1	0.11954	1.31	111 0.4	4444	2.44444			
1		3	1	0.08517	1.044	444 0.5	9577	2.22222			
2		1	1	0.14380	0.87	689 0.5	6383	1.88889			
2		2	1	0.11954	0.99	911 0.4	4444	1.44444			
2		3	1	0.08517	0.732	244 0.4	7140	1.33333			
			St	td. Error	Std	l. Error					
				of M	ean of	of Me	ean of				
	Ma	ize	Rain	is PL/	ANT	PLANT_	DAY	S TO	DAY	YS TO	
Treatme	ent	hybrid				STAN				SILKING	
1		1	1	1.47196	80	0.24216	74.44	144			
1		2	1	1.47196	79	0.32394	73.77	78			
1		3	1	1.43372	79	0.29397	73.44	44			
2		1	1	1.47196	81	0.24216	74.44				
2	•	2	1	1.47196	80	0.32394	73.77				
2		3	1	1.43372	80	0.29397	73.44				



Plate 1: Plates of identified ear rot



Plate 2: Giberrella zeae infected maize cob and husks



Plate 3: Microscopic identification of Giberrella zeae isolates at Mg X100

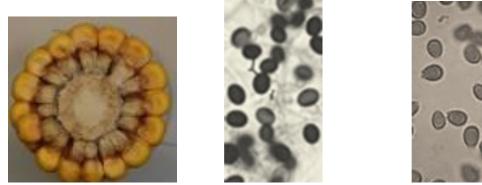



Plate 4: Internal part of the cob (a); Mature conidia dark conidiain at Mg X100 (b); Mature conidia light colored/ yellow conidia at Mg X100