ANTIBACTERIAL ACTIVITY OF PLANTS THAT ARE USED IN THE TREATMENT OF HEARTWATER IN LIVESTOCK AND THE ISOLATION AND IDENTIFICATION OF BIOACTIVE COMPOUNDS FROM *PETALIDIUM OBLONGIFOLIUM* AND *IPOMOEA ADENIOIDES*

By Phatlane William Mokwala

Promoter: Prof. JJM Meyer

Submitted in partial fulfillment of the requirements for the degree Doctor of Philosophy in the Faculty of Natural and Agricultural Sciences Department of Botany University of Pretoria May 2006

ABSTRACT

The general antibacterial activity of Drimia delagoansis, Petalidium oblongifolium and Ipomoea adenioides was determined using selected Gram-positive and Gram-negative bacteria. Only extracts or compounds with high antibacterial activity were then tested against the causative agent of heartwater, Ehlrichia ruminantium, since the latter requires specialised culturing conditions. The crude aqueous extract of D. delagoansis had low antibacterial activity with its highest MIC against Gram-negative bacteria being 20.0 mg ml⁻¹ while the crude methanolic extracts of *P. oblongifolium* and *I.* adenioides had their highest antibacterial activity against Gram-negative bacteria at MIC's of 5.0 and 10.0 mg ml⁻¹ respectively. Two compounds were isolated and identified from I. adenioides and an unidentified one was isolated from P. oblongifolium. The two compounds from *I. adenioides* proved to be caffeic acid with MIC's of 0.8 and 1.0 mg ml⁻¹ against Gram-positive and Gramnegative bacteria respectively; and ethyl caffeate with MIC's of 0.4 and 1.0 mg ml⁻¹ against Gram-positive and Gram-negative bacteria respectively. Synergism between the two compounds increased the respective MIC's to 0.4 and 0.2 μ g ml⁻¹ against Gram-positive and Gram-negative bacteria. The unidentified compound isolated from *P. oblongifolium* had a very low MIC of 2.5 μ g ml⁻¹ against *E. ruminantium*.

ii

Dedicated to:

My wife and the children for their un-ending support

TABLE OF CONTENTS

CHAPTER 1

Plant Uses in Ethnoveterinary medicines	1
1.1 Introduction	1
1.2 Medicinal uses of plants	1
1.2.1 Ethnoveterinary plant use	2
1.3 Livestock diseases	3
1.3.1 Heartwater	4
1.3.1.1 The causative agent of heartwater	5
1.3.1.2 The heartwater vector	6
1.3.1.3 Distribution of heartwater	6
1.3.1.4 Diagnosis of heartwater	8
1.3.1.5 Control of heartwater	8
1.4 Medicinal plant use in the control of heartwater and related	
diseases in South Africa	9
1.5 Self-medication in animals	10
1.6 The future of ethnoveterinary medicine	11
1.7 Structure of thesis	12
1.8 Hypothesis	12
1.9 Objectives of the study	12
1.10 References	13

CHAPTER 2

The Antibacterial activity of Drimia delagoansis	16
2.1 Introduction	16
2.1.1 Bioactive compounds in the subfamily Urgineoidea	18

2.2 Materials and Methods	19
2.2.1 Bacteria	19
2.2.1.1 Bacterial cultures for antibacterial activity	20
2.2.1.2 Bacterial cultures for bioautography	20
2.2.2 Plant material	20
2.2.3 Extraction	20
2.2.4 Agar-diffusion bioassay	21
2.3 Results and Discussion	21
2.4 References	23

CHAPTER 3

Antibacterial Activity of *Petalidium oblongifolium* and the

Isolation of a Bioactive Compound	25
3.1 Introduction	25
3.2 Materials and Methods	26
3.2.1 Plant Material	26
3.2.1.1 Antibacterial activity of crude extract	25
3.2.2 Fractionation and isolation of bioactive compounds	27
3.2.2.1 Extraction	27
3.2.2.2 Fractionation	27
3.2.3 Structure elucidation of the isolated compound	29
3.2.4 Antibacterial activity of isolated the compound	29
3.2.4.1 Efficacy of isolated compound against Gram-negative	
and Gram-positive bacteria	30
3.2.4.2 Efficacy against <i>E. ruminantium</i>	30
3.2.4.2.1 Stock solutions	30
3.2.4.2.2 Endothelial cell cultures	30
3.2.4.2.3 Propagation of E. ruminantium cultures	31
3.2.4.2.4 Treatments	31

3.3 Results	32
3.3.1 Antibacterial activity of the crude extract	32
3.3.2 Fractionation and isolation of bioactive compounds	33
3.3.3 Structure elucidation of the isolated compound	35
3.3.3.1 ¹³ C NMR spectroscopy	35
3.5.3.2 ¹ H NMR spectroscopy	37
3.3.4 Antibacterial activity of purified compound against <i>E. ruminantium</i> .	39
3.4 Discussion	45
3.5 References	48

CHAPTER 4

Antibacterial Activity of Ipomoea adenioides	
and the Isolation of Bioactive Compounds	
4.1 Introduction	51
4.2 Materials and Methods	52
4.2.1 Plant material	53
4.2.2 Bacteria	53
4.2.2.1 Antibacterial activity of extracts	53
4.2.2.2 Bacterial cultures for bioautography	53
4.2.3 Isolation of bioactive compounds	54
4.2.3.1 Extraction	54
4.2.3.2 Fractionation	54
4.2.3.3 Bioautography on TLC plates	54
4.2.3.4 Column chromatography of the ethyl acetate fraction	55
4.2.3.5 Isolation and purification of compounds by paper chromatography	56
4.2.3.6 Isolation and purification of compounds by Sephadex	
column chromatography	56
4.2.4 Compound identification and structure elucidation	57
4.2.5 Antibacterial activity of purified compounds SC1 and SC2	57

4.3 RESULTS	57
4.3.1 Antibacterial activity of crude extract	57
4.3.2 Fractionation and isolation of compounds	58
4.3.3 Identification of isolated compounds	60
4.3.3.1 Characterisation of pure compounds with paper chromatography	60
4.3.3.2. Ultraviolet light absorption spectra of the isolated compounds	60
4.3.3.3 Determination of the structures of PC1, PC2 and PC3	
by UV-VIS spectrophotometry.	61
4.3.4 Identification of PC1, PC2 and PC3 with NMR spectroscopy	63
4.3.4.1 A-ring protons	67
4.3.4.2 B-ring protons	71
4.3.4.3 Sugar protons	72
4.3.5 Characterisation of SC1 and SC2 with UV spectrophotometry	
and shift reagents	76
4.3.6 Identification of SC1 and SC2 by NMR spectrometry	76
4.3.7 Antibacterial activity of SC1 and SC2	82
4.4 Discussion	83
4.5 References	85

CHAPTER 5

General Discussion	88
5.1 References	90

CHAPTER 6

Summary	93

APPENDIX A UV-VIS Absorption spectra of PC1, PC2 and PC3	95
APPENDIX B UV-VIS Absorption Spectra of SC1 and SC2	104

112

ACKNOWLEDGEMENTS

LIST OF FIGURES

Figure 1.1 Endothelial cells A not colonised and B colonised by <i>E. ruminantium</i>	5
Figure 1.2: Distribution of the host ticks for E. ruminantium in Africa	7
Figure 1.3: Occurrence of heartwater in South Africa	8
Figure 2.1: Drimia delagoensis	17
Figure 2.2: Structure of scilliroside, a bufadienolide	18
Figure 2.3: Agar-diffusion antibacterial bioassay	21
Figure 3.1: Petalidium oblongifolium	26
Figure 3.2: Schematic representation of fractionation	28
Figure 3.3: Bioautography of the fractions developed in chloroform-methanol (7:	3)
solvent system	, 33
Figure 3.4: Bioautography of sub-fractions from the ethyl acetate fraction	
developed in chloroform-ethyl acetate (6:1)	34
Figure 3.5: Antibacterial activity of the hexane extracts of the ethyl acetate fracti	ons.
	35
Figure 3.6: ¹³ C-NMR spectrum of purified compound	37
Figure 3.7: ¹ H-NMR spectrum of the purified compound	38
Figure 3.8: Expanded ¹ H-NMR spectrum of the purified compound	38
Figure 3.9: Endothelial cells infected and uninfected with E. ruminantium	39
Figure 1.1 Increase educidas	54
Figure 4.1 Ipomoea adenioides	51
Figure 4.2: Fractionation of extract	54
Figure 4.3 : Bioautography of fractions developed in chloroform-methanol (7:3)	58
Figure 4.4: Autobiograpy of the ethyl acetate fractions developed in	
ethyl acetate-chloroform (2:1)	58
Figure 4.5: ¹³ C-NMR spectrum of PC1	63
Figure 4.6: ¹³ C-NMR spectrum of PC2	64
Figure 4.7: ¹³ C-NMR spectrum of PC3	64
Figure 4.8: ¹ H-NMR spectrum of PC1	67

Figure 4.9: Expanded ¹ H-NMR spectrum of PC1	67
Figure 4.10: ¹ H-NMR spectrum of PC2	68
Figure 4.11: Expanded ¹ H-NMR spectrum of PC2	68
Figure 4.12: ¹ H-NMR spectrum of PC3	69
Figure 4.13: Expanded ¹ H-NMR spectrum of PC3	70
Figure 4.14: Quercetin-3-rhamnoside	72
Figure 4.15: Quercetin-3-galactoside	72
Figure 4.16: Quercetin-3-arabinoside	73
Figure 4:17: ¹³ C-NMR spectrum of SC1	76
Figure 4:18: ¹³ C-NMR spectrum of SC2	77
Figure 4.19: ¹ H-NMR spectrum of SC1	78
Figure 4:20: Expanded ¹ H-NMR Spectrum of SC1	78
Figure 4:21: ¹ H-NMR spectrum of SC2	79
Figure 4:22: Expanded ¹ H-NMR spectrum of SC2	79
Figure 4.23: Caffeic acid (SC1)	80
Figure 4.24: Ethyl caffeate (ethyl ester of caffeic acid, SC2)	81

LIST OF TABLES

Table2.1:	Minimum inhibitory concentrations (MIC's) of the crude	
	extract of D. delagoansis against selected Gram-positive and	
	Gram-negative bacteria.	22
Table 3.1:	Minimum inhibitory concentrations (MIC's) of the	
	crude extract of Petalidium oblongifolium against selected	
	Gram-positive and Gram-negative bacteria.	32
Table 3.2:	: Assignments of the ¹³ C-NMR signals of the purified	
	compound according to Breitmaier and Voelter (1990)	36
Table 3.3:	: Proton assignments of the ¹ H-NMR spectrum of the purified	
	compound	37
Table3.4:	Endothelial cell counts	41
Table 3.5:	Infected and uninfected endothelial cell counts for Treatment A	42
Table 3.6:	Infected and uninfected endothelial cell counts for Treatment B	43
Table 3.7:	Infected and uninfected endothelial cell counts for Treatment C	44
Table 3.8:	Susceptibility of E. ruminantium to the isolated compound	45
Table 4.1:	Minimum inhibitory concentrations (MIC) of the crude extract	
	of I. adenioides against selected Gram-positive and Gram-	
	negative bacteria.	58
Table 4.2	Characterisation of PC1, PC2, PC3, SC1 and SC2 on paper	
	chromatograms by visible and ultraviolet light (366nm) developed	
	in 15% aqueous acetic acid (HOAc) and tert-butanol-acetic-acid	
	water (3:1:1) (TBA)	60
	: UV absorption spectra of PC1, PC2 and PC3 with shift reagents	62
Table 4.4:	¹³ C-NMR spectral data (ppm values) of PC1, PC2 and PC3 in DMSO i	n
	comparison with values obtained from the literature.	66
Table 4.5:	¹ H-NMR spectral data of PC1, PC2 and PC3	72
Table 4.6:	Characterisation of SC1 and SC2 with UV spectrophotometry	
	and shift reagents	75

Table 4.7: NMR spectral data of SC1 and SC2	81

 Table 4.8: Minimum inhibitory concentrations of SC1, SC2 and

tetracycline hydrochloride (positive control) on selected

Gram-positive and Gram-negative bacteria.

83