Diaporthe is paraphyletic

Yahui Gao^{1, 2*}, Fang Liu^{1*}, Weijun Duan³, Pedro W. Crous^{4,5}, and Lei Cai^{1, 2}

¹State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China ²University of Chinese Academy of Sciences, Beijing 100049, P.R. China; corresponding author e-mail: cail@im.ac.cn

³Ningbo Academy of Inspection and Quarantine, Zhejiang 315012, P.R. China

⁴Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584CT Utrecht, The Netherlands

⁵Department of Microbiology and Plant Pathology, Tree Protection Co-operative Programme, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa

*These authors contributed equally to this work.

Abstract: Previous studies have shown that our understanding of species diversity within *Diaporthe* (syn. *Phomopsis*) is limited. In this study, 49 strains obtained from different countries were subjected to DNA sequence analysis. Based on these results, eight new species names are introduced for lineages represented by multiple strains and distinct morphology. Twelve *Phomopsis* species previously described from China were subjected to DNA sequence analysis, and confirmed to belong to *Diaporthe*. The genus *Diaporthe* is shown to be paraphyletic based on multi-locus (LSU, ITS and *TEF1*) phylogenetic analysis. Several morphologically distinct genera, namely *Mazzantia, Ophiodiaporthe, Pustulomyces, Phaeocytostroma,* and *Stenocarpella,* are embedded within *Diaporthe s. lat.,* indicating divergent morphological evolution. However, splitting *Diaporthe* into many smaller genera to achieve monophyly is still premature, and further collections and phylogenetic datasets need to be obtained to address this situation.

Key words: Ascomycota Diaporthales Phomopsis phylogeny taxonomy

Article info: Submitted: 25 March 2017; Accepted: 22 May 2017; Published: 1 June 2017.

INTRODUCTION

Species of Diaporthe are known as important plant pathogens, endophytes or saprobes (Udayanga et al. 2011, Gomes et al. 2013). They have broad host ranges, and occur on many plant hosts, including cultivated crops, trees, and ornamentals (Diogo et al. 2010, Thompson et al. 2011, Gomes et al. 2013, Huang et al. 2015). Some Diaporthe species are responsible for severe diebacks, cankers, leaf-spots, blights, decay or wilts on different plant hosts, several of which are economically important (Mostert et al. 2001, Van Rensburg et al. 2006, Thompson et al. 2011, Gomes et al. 2013), leading to serious diseases and significant yield losses (Santos et al. 2011). For example, Diaporthe helianthi is the cause of one of the most important diseases of sunflower (Helianthus annuus) worldwide, and has reduced production by up to 40 % in Europe (Masirevic & Gulya 1992, Thompson et al. 2011). Diaporthe neoviticola and D. vitimegaspora, the causal agents of leaf-spot and swelling arm, are known as severe pathogens of grapevines (Vitis vinifera) (Van Niekerk et al. 2005). Úrbez-Torres et al. (2013) indicated that D. neoviticola was one of the most prevalent fungi isolated from grapevine perennial cankers in declining vines. Diaporthe scabra has been reported causing cankers and dieback on London plane (Platanus acerifolia) in Italy (Grasso et al. 2012). Symptoms of umbel browning and necrosis caused by D. angeliace

have been regularly observed on carrots in France, resulting in seed production losses since 2007 (Ménard et al. 2014). Avocado (Persea americana), cultivated worldwide in tropical and subtropical regions, is threatened by branch cankers and fruit stem-end rot diseases caused by D. foeniculina and D. sterilis (Guarnaccia et al. 2016). Furthermore, species of Diaporthe are commonly introduced into new areas as endophytes or latent pathogens along with plant produce. For instance, Torres et al. (2016) reported D. rudis causing stemend rot in avocados in Chile, which was imported via avocado fruit from California (USA). Some endophytes have been shown to act as opportunistic plant pathogens. Diaporthe foeniculina (syn. P. theicola), which is a common endophyte, has been shown to cause stem and shoot cankers on sweet chestnut (Castanea sativa) in Italy (Annesi et al. 2015, Huang et al. 2015). Because of this unique ecology and potential role as plant pathogens, it is of paramount importance to accurately identify species of Diaporthe to facilitate disease surveillance, control, and trade.

The initial species concept of *Diaporthe* based on the assumption of host-specificity, resulted in the introduction of more than 1000 names (http://www.indexfungorum.org/ Names/Names.asp); (Gomes *et al.* 2013, Gao *et al.* 2016). In recent years, however, a polyphasic approach employing multi-locus DNA data together with morphology and ecology has been employed for species delimitation in the genus

© 2017 International Mycological Association

Non-commercial: You may not use this work for commercial purposes.

No derivative works: You may not alter, transform, or build upon this work. For any reuse or distribution, you must make clear to others the license terms of this work, which can be found at http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode. Any of the above conditions can be waived if you get permission from the copyright holder. Nothing in this license impairs or restricts the author's moral rights.

You are free to share - to copy, distribute and transmit the work, under the following conditions:

Attribution: You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).

(Udayanga et al. 2011, Gomes et al. 2013). The nuclear ribosomal internal transcribed spacer (ITS), the translation elongation factor 1-α (TEF1), β-tubulin (TUB), histone H3 (HIS), and calmodulin (CAL) genes are the most commonly used molecular loci for the identification of *Diaporthe* spp. (Dissanayake et al. 2015, Udayanga et al. 2015, Huang et al. 2015, Santos et al. 2017). Furthermore, molecular marker aids are being used to rapidly identify Diaporthe species which tend to be morphologically conserved (Udayanga et al. 2012, Tan et al. 2013, Lombard et al. 2014, Thompson et al. 2015, Huang et al. 2015). However, defining species boundaries remains a major challenge in Diaporthe (Huang et al. 2015), which may be a consequence of limited sampling or the use of DNA loci with insufficient phylogenetic resolution (Liu et al. 2016). It has therefore been proposed that new species in the genus should be introduced with caution, and that multiple strains from different origins should be subjected to a multi-gene phylogenetic analysis to determine intraspecific variation (Liu et al. 2016).

The generic relationships of Diaporthe with other genera in Diaporthaceae remain unclear. The family name Diaporthaceae was established by Wehmeyer (1926) to accommodate Diaporthe, Mazzantia, Melanconis, and some other genera, mainly based on morphological characters such as the position, structure, and arrangement of ascomata, stroma, and spore shapes. Castlebury et al. (2002) reported that Diaporthaceae comprised Diaporthe and Mazzantia based on LSU DNA sequence data, removing other genera to different families in Diaporthales. Additional genera subsequently placed in the Diaporthaceae include Leucodiaporthe (Vasilyeva et al. 2007), Stenocarpella (Crous et al. 2006), Phaeocytostroma (Lamprecht et al. 2011), Ophiodiaporthe (Fu et al. 2013), and Pustulomyces (Dai et al. 2014). All the above genera were represented by a few species or are monotypic. Although they appeared to be morphologically divergent from Diaporthe, their phylogenetic relationships remain unclear.

About 991 names of *Diaporthe* and 979 of *Phomopsis* have been established to date (http://www.indexfungorum. org/Names/Names.asp). Among them, many old epithets lack molecular data, and few morphological characters can be used in species delimitation, making it difficult to merge these names to advance to the one name scenario (Rossman *et al.* 2014, 2015). In China, more than 50 plant pathogenic *Phomopsis* species have been published to date (Chi *et al.* 2007). In order to stabilize these species names in the genus *Diaporthe*, here we introduce 12 new combinations for *Phomopsis* species that have been subjected to DNA sequencing, and whose phylogenetic position has been resolved in *Diaporthe* in the present study.

The objectives of this study were: (1) to examine the phylogenetic relationships of *Diaporthe* with other closely related genera in *Diaporthaceae*; (2) to introduce new species in *Diaporthe*; and (3) to transfer *Phomopsis* species described from China to *Diaporthe* based on morphological and newly generated molecular data.

MATERIAL AND METHODS

Isolates

Strains were isolated from leaves of both symptomatic and healthy plant tissues from Yunnan, Zhejiang, and Jiangxi Provinces in China. A few other strains were obtained via the Ningbo Entry-Exit Inspection and Quarantine Bureau, which were isolated from imported plants from other countries. Single spore isolations were conducted from diseased leaves with visible fungal sporulation following the protocol of Zhang et al. (2013), and isolation from surface sterilized leaf tissues was conducted following the protocol of Gao et al. (2014). Fungal endophytes were isolated according to the method described by Liu et al. (2015). The Diaporthe strains were primarily identified from the other fungal species based on cultural characteristics on PDA, spore morphology, and ITS sequence data. Type specimens of new species were deposited in the Mycological Herbarium, Microbiology Institute, Chinese Academy of Sciences, Beijing, China (HMAS), with ex-type living cultures deposited in the China General Microbiological Culture Collection Center (CGMCC).

Morphological analysis

Cultures were incubated on PDA at 25 °C under ambient daylight and growth rates were measured daily for 7 d. To induce sporulation, isolates were inoculated on PNA (pine needle agar; Smith *et al.* 1996) containing double-autoclaved (30 min, 121°C, 1 bar) healthy pine needles and incubated at a room temperature of *ca.* 25 °C (Su *et al.* 2012). Cultures were examined periodically for the development of conidiomata and perithecia. Conidia were taken from pycnidia and mounted in sterilized water. The shape and size of microscopic structures were observed and noted using a light microscope (Nikon Eclipse 80i) with differential interference contrast (DIC). At least 10 conidiomata, 30 conidiophores, alpha and beta conidia were measured to calculate the mean size and standard deviation (SD).

DNA extraction, PCR amplification and sequencing

Isolates were grown on PDA and incubated at 25 °C for 7 d. Genomic DNA was extracted following the protocol of Cubero et al. (1999). The quality and quantity of DNA was estimated visually by staining with GelRed after 1 % agarose gel electrophoresis. The primers ITS5 and ITS4 (White et al. 1990) were used to amplify the internal transcribed spacer region (ITS) of the nuclear ribosomal RNA gene operon, including the 3' end of the 18S nrRNA, the first internal transcribed spacer region, the 5.8S nrRNA gene; the second internal transcribed spacer region and the 5' end of the 28S nrRNA gene. The primers EF1-728F and EF1-986R (Carbone & Kohn 1999) were used to amplify part of the translation elongation factor 1- α gene (*TEF1*), and the primers CYLH3F (Crous et al. 2004) and H3-1b (Glass & Donaldson 1995) were used to amplify part of the histone H3 (HIS) gene. The primers T1 (O'Donnell & Cigelnik 1997) and Bt2b (Glass & Donaldson 1995) were used to amplify the beta-tubulin gene (TUB); the additional combination of Bt2a/Bt2b (Glass & Donaldson 1995) was used in case of amplification failure of the T1/Bt2b primer pair. The primer pair CAL228F/CAL737R

ARTICLE

Table 1. Sources of isolates and GenBank accession numbers used in the phylogenetic analyses of Diaporthaceae.

Species names*	Culture collection	Isolation sources	Country	GenBan	k Accession	Numbers	References
	no.			ITS	LSU	TEF1	-
D. acaciigena	CBS 129521 (ex- type)	Acacia retinodes	Australia	KC343005	-	KC343731	Gomes <i>et al.</i> (2013)
D. ampelina	FAU 586	<i>Vitis</i> sp.	USA: New York	-	AF439635	-	-
D. angelicae	CBS 111592	Heracleum sphondylium	Austria	KC343027	-	KC343753	Gomes <i>et al.</i> (2013)
	AR 3724	Heracleum sphondylium	Austria	KC343026	-	KC343752	Gomes <i>et al.</i> (2013)
D. apiculata	LC 3418 (ex-type)	Camellia sinensis	China	KP267896	KY011852	KP267970	This study
	LC 3452	Camellia sinensis	China	KP267901	KY011853	KP267975	This study
D. arecae complex	LC 4155	Rhododendron sp.	China	KY011895	KY011879	KY011906	This study
	LC 4159	Rhododendron sp.	China	KY011896	KY011880	KY011907	This study
	LC 4164	Unknown host	China	KY011897	KY011881	KY011908	This study
D. biguttusis	LC 1106 (ex-type)	Lithocarpus glaber	China	KF576282	KY011878	KF576257	This study
D. compacta	LC 3078	Camellia sinensis	China	KP267850	KY011839	KP267924	This study
	LC 3083 (ex-type)	Camellia sinensis	China	KP267854	KY011840	KP267928	This study
	LC 3084	Camellia sinensis	China	KP267855	KY011841	KP267929	This study
D. decedens	CBS 109772	Corylus avellana	Austria	KC343059	-	KC343785	Gomes <i>et al.</i> (2013)
D. detrusa	CBS 109770	Berberis vulgaris	Austria	KC343061	-	KC343787	Gomes <i>et al.</i> (2013)
D. discoidispora	LC 3503	Camellia sinensis	China	KY011887	KY011854	KY011898	This study
D. elaeagni-glabrae	LC 4802 (ex-type)	Elaeagnus glabra	China	KX986779	KY011885	KX999171	This study
	LC 4806	Elaeagnus glabra	China	KX986780	KY011886	KX999172	This study
D. ellipicola	LC 0810 (ex-type)	Lithocarpus glaber	China	KF576270	KY011873	KF576245	This study
D. eres	LC 3198	Camellia sinensis	China	KP267873	KY011845	KP267947	This study
	LC 3205	Camellia sinensis	China	KP714499	KY011846	KP714511	This study
	LC 3206	Camellia sinensis	China	KP714500	KY011847	KP714512	This study
	CBS 109767	Acer campestre	Austria	KC343075	-	KC343801	Gomes <i>et al.</i> (2013)
D. fusicola	LC 1126	Lithocarpus glaber	China	KF576281	KY011836	KF576256	This study
	LC 0778 (ex-type)	Lithocarpus glaber	China	KF576263	KY011877	KF576238	This study
D. hongkongensis	LC 0784	Lithocarpus glaber	China	KC153104	KY011876	KC153095	This study
	LC 0812	Smilax china	China	KC153103	KY011875	KC153094	This study
D. incompleta	LC 6706	Camellia sinensis	China	KX986793	KY011859	KX999185	This study
	LC 1127 (ex-type)	Lithocarpus glaber	China	KF576267	KY011837	KF576242	This study
D. mahothocarpi	LC 0732	Mahonia bealei	China	KC153097	KY011872	KC153088	This study
	LC 0763 (ex-type)	Lithocarpus glaber	China	KC153096	KY011871	KC153087	This study
D. masirevicii	Diaporthe sp.	Camellia sinensis	China	KY011888	KY011861	KY011899	This study
D. neoarctii	CBS 109490	Ambrosia trifida	USA: New Jersey	KC343145	-	KC343871	Gomes <i>et al.</i> (2013)
D. oncostoma	CBS 109741	Robinia pseudoacacia	Russia	KC343161	-	KC343887	Gomes <i>et al.</i> (2013)
D. oraccinii	LC 3166 (ex-type)	Camellia sinensis	China	KP267863	KY011843	KP267937	This study
	LC 3172	Camellia sinensis	China	KP267864	KY011844	KP267938	This study
	LC 3296	Camellia sinensis	China	KP267884	KY011849	KP267958	This study
D. ovoicicola	LC 1128 (ex-type)	Lithocarpus glaber	China	KF576264	KY011838	KF576239	This study
D. penetriteum	LC 3215	Camellia sinensis	China	KP267879	KY011848	KP267953	This study
	LC 3353 (ex-type)	Camellia sinensis	China	KP714505	KY011850	KP714517	This study
	LC 3394	Camellia sinensis	China	KP267893	KY011851	KP267967	This study
D. perjuncta	CBS 109745	Ulmus glabra	Austria	KC343172	-	KC343898	Gomes <i>et al.</i> (2013)

2	5
ī	כ
Ē	
2	צ
<	L

Table 1. (Continued).							
Species names*	Culture collection	Isolation sources	Country	GenBank	Accession	Numbers	References
	no.			ITS	LSU	TEF1	
D. pseudophoenicicola	LC 6150	Phoenix canariensis	China	KY011891	KY011865	KY011902	This study
	LC 6151	Phoenix canariensis	China	KY011892	KY011866	KY011903	This study
D. pustulata	CBS 109742	Acer pseudoplatanus	Austria	KC343185	-	KC343911	Gomes <i>et al.</i> (2013)
	CBS 109760	Acer pseudoplatanus	Austria	KC343186	-	KC343912	Gomes <i>et al.</i> (2013)
	CBS 109784	Prunus padus	Austria	KC343187	-	KC343913	Gomes <i>et al.</i> (2013)
D. rudis	LC 6147	Dendrobenthamia japonica	USA	KY011890	KY011864	KY011901	This study
	LC 6145	llex aquifolium	China	KY011889	KY011863	KY011900	This study
D. saccarata	CBS 116311	Protea repens, cankers	South Africa	KC343190	-	KC34391	Gomes <i>et al.</i> (2013)
D. sclerotioides	CBS 296.67	Cucumis sativus	Netherlands	KC343193	-	KC343919	Gomes <i>et al.</i> (2013)
D. tectonendophytica	LC 6623	Unknown host	China	KX986795	KY011857	KX999187	This study
D. tectonigena	LC 6512	Camellia sinensis	China	KX986782	KY011856	KX999174	This study
D. ternstroemiae	LC 0777 (ex-type)	Ternstroemia gymnanthera	China	KC153098	KY011874	KC153089	This study
D. ueckerae	LC 3564	Camellia sinensis	China	KP267912	KY011855	KP267986	This study
D. undulata	LC 6624	Unknown host	China	KX986798	KY011858	KX999190	This study
D. velutina	LC 4414	Lithocapus sp.	China	KX986788	KY011882	KX999180	This study
	LC 4419	Neolitsea sp.	China	KX986789	KY011883	KX999181	This study
	LC 4421 (ex-type)	Neolitsea sp.	China	KX986790	KY011884	KX999182	This study
D. xishuangbanica	LC 6707	Camellia sinensis	China	KX986783	KY011860	KX999175	This study
·	LC 6744	Camellia sinensis	China	KX986784	KY011862	KX999176	This study
D. yunnanensis	LC 6168	Coffea sp.	China	KX986796	KY011867	KX999188	This study
Diaporthe sp.	LC 3156	Camellia sinensis	China	KP267861	KY011842	KP267935	This study
, ,	LC 6170	Coffea sp.	China	KY011893	KY011869	KY011904	This study
	LC 6171	Solanum melongena	China	KY011894	KY011870	KY011905	This study
	LC 6232	Theobroma cacao	China	KX986797	KY011868	KX999189	This study
Mazzantia napelli	AR 3498	Aconitum vulparia	Austria	-	AF408368	EU222017	Castlebury et al. (2002)
Ophiodiaporthe cyatheae	BCRC 34961	Cyathea lepifera	Taiwan	JX570889	JX570891	KC465406	Fu <i>et al.</i> (2013)
Phaeocytostroma ambiguum	CPC 17071	Zea mays	South Africa	FR748036	-	FR748068	Lamprecht <i>et al.</i> (2011)
	CPC 17072	Zea mays	South Africa	FR748037	FR748096	FR748069	Lamprecht <i>et al.</i> (2011)
Ph. plurivorum	CBS 113835	Helianthus annuus	Portugal	FR748046	FR748104	FR748078	Lamprecht <i>et al.</i> (2011)
Ph. sacchari	CBS 275.34	-	Japan	FR748047	FR748105	FR748079	Lamprecht <i>et al.</i> (2011)
Ph. megalosporum	CBS 284.65	Rice-field soil	India	FR748045	FR748103	FR748077	Lamprecht <i>et al.</i> (2011)
Pustulomyces bambusicola	MFLUCC 11-0436	on dead culm of bamboo	Thailand	-	KF806753	KF806755	Dai <i>et al.</i> (2014)
Stenocarpella macrospora	CBS 117560	Rain damaged Bt maize hybrid, 2003-04 season	South Africa	FR748048	DQ377934	-	Lamprecht <i>et al.</i> (2011)
S. maydis	CBS 117558	Traditional/landrace maize from 2003/04 season	South Africa	FR748051	DQ377936	FR748080	Lamprecht <i>et al.</i> (2011)
Valsa ambiens	CFCC 89894	Pyrus bretschneideri	China	KR045617	KR045699	KU710912	Fan <i>et al.</i> (2014)

*New species described in this paper are shown in bold.

(Carbone & Kohn 1999) and LR0R/LR5 primer pair (Rytas & Mark 1990) were used to amplify the calmodulin gene (*CAL*) and the LSU rDNA, respectively. Amplification reactions of 25 μ L were composed of 10 × EasyTaq buffer (MgCl²⁺ included; Transgen, Beijing), 50 μ M dNTPs, 0.2 μ M of each forward and reverse primers (Transgen), 0.5 U EasyTaq DNA polymerase (Transgen) and 1–10 ng of genomic DNA. PCR parameters were as follows: 94 °C for 5 min, followed by 35 cycles of denaturation at 94 °C for 30 s, annealing at a suitable temperature for 30 s (52 °C for ITS and LSU, 56 °C for CAL, HIS, TEF1 and TUB), extension at 72 °C for 30 s and a final elongation step at 72 °C for 10 min. DNA sequencing was performed by Omegagenetics Company, Beijing.

Phylogenetic analyses

The DNA sequences generated with forward and reverse primers were used to obtain consensus sequences using MEGA v. 5.1 (Tamura et al. 2011), and subsequently aligned using MAFFT v. 6 (Katoh & Toh 2010); alignments were manually edited using MEGA v. 5.1 when necessary. Two datasets were employed in the phylogenetic analyses. LSU, ITS and TEF1 loci were selected to infer the generic relationships within Diaporthaceae (Table 1), with Valsa ambiens as outgroup. All available sequences of Diaporthe species were included in the dataset of combined ITS, HIS, TEF1, TUB, and CAL regions to infer the interspecific relationships within Diaporthe (Table 2) with Diaporthella corylina as outgroup. Maximum likelihood (ML) gene trees were estimated using the software RAxML v. 7.4.2 Black Box (Stamatakis 2006, Stamatakis et al. 2008). The RAxML software selected the GTR model of nucleotide substitution with the additional options of modelling rate heterogeneity (Γ) and proportion invariable sites (I). Bayesian analyses (critical value for the topological convergence diagnostic set to 0.01) were performed on the concatenated loci using MrBayes v. 3.2.2 (Ronguist et al. 2012) as described by (Crous et al. 2006) using nucleotide substitution models for each data partition selected by jModeltest (Darriba et al. 2012) and MrModeltest v. 2.3 (Nylander 2004). Bayesian analyses were launched with random starting trees for 10 000 000 generations, and Markov chains were sampled every 1000 generations. The first 25 % resulting trees were discarded as burn-in. The remaining trees were summarized to calculate the posterior probabilities (PP) of each clade being monophyletic. Trees were visualized in FigTree v. 1.1.2 (http://tree.bio.ed.ac.uk/ software/). New sequences generated in this study were deposited in NCBI's GenBank nucleotide database (www. ncbi.nlm.nih.gov; Table 1).

RESULTS

Collection of Diaporthe strains

Twenty-one *Diaporthe* strains including presumed plant pathogens and endophytes were isolated from 11 different host plant species (Table 2) collected from three provinces

(Jiangxi, Yunnan, Zhejiang) in the northern part of China. In addition, 28 strains were isolated from the plant samples inspected by Jiangsu Entry-Exit Inspection and Quarantine Bureau.

The paraphyly of Diaporthe

Phylogenetic analysis was conducted with 224 sequences derived from 76 ingroup taxa from *Diaporthaceae* with *Valsa ambiens* as the outgroup (Table 1). The combined alignment comprised 1 817 characters including gaps (795 for LSU, 558 for ITS, 464 for *TEF1*). Based on the results of the Mrmodeltest, the following priors were set in MrBayes for the different data partitions: GTR+G models with gamma-distributed rates were implemented for LSU and ITS, HKY+I+G model with invgamma-distributed rates were implemented for TEF1. The Bayesian analysis lasted 7 × 10⁸ generations and the consensus tress and posterior probabilities were calculated from the trees left after discarding the first 25 % generations for burn-in (Fig. 1).

The generic relationships of Mazzantia, Ophiodiaporthe, Phaeocytostroma, Pustulomyces, and Stenocarpella with Diaporthe from this analysis are shown in Fig. 1. The topology and branching order of the phylogenetic trees inferred from ML and Bayesian methods were essentially similar. Five genera from Diaporthaceae did not form discrete clades from Diaporthe species but are scattered in the latter, although the family remains monophyletic. The paraphyletic nature of Diaporthe, however, is demonstrated (Fig. 1). Ophiodiaporthe formed a well resolved and distinct clade represented by strain YMJ 1364, and clustered together with the ex-type culture of D. sclerotioides (CBS 296.67) (BPP 0.99, MLBS: 90). Stenocarpella, represented by S. maydis and S. macrospora, was well supported (BPP 1, MLBS = 96) and closely related to several species of Phaeocytostroma. Mazzantia, however, was poorly supported for its phylogenetic position in Diaporthaceae (Fig. 1).

Phylogenetic analyses of the combined datasets of *Diaporthe* species

In total, 1089 sequences derived from 273 ingroup taxa were combined and *Diaporthella corylina* was used as outgroup. A total of 2783 characters including gaps (568 for *CAL*, 554 for *HIS*, 523 for ITS, 636 for *TEF1* and 456 for *TUB*) were included in the multi-locus dataset, comprising sequences generated from this study and others downloaded from GenBank (Table 2). For the Bayesian inference, GTR+I+G model was selected for *CAL*, *HIS* and ITS, HKY+I+G for *TEF1* and *TUB* through the analysis of Mrmodeltest. The maximum likelihood tree conducted by the GTR model confirmed the tree topology and posterior probabilities of the Bayesian consensus tree.

The topology and branching order for the phylogenetic trees inferred from ML and Bayesian methods were essentially similar (Fig. 2). Based on the multi-locus phylogeny and morphology, 49 strains were assigned to 13 species, including eight taxa which we describe here as new (Fig. 2).

Fig. 1. Phylogenetic tree of the family *Diaporthaceae* from a maximum likelihood analysis based on the combined multi-locus dataset (ITS, LSU, *TEF1*). The ML bootstrap values \geq 70 %, bayesian probabilities BPP \geq 0.90 are marked above the branches. The tree is rooted with *Valsa ambiens*.

Fig. 2. Phylogenetic tree of the genus *Diaporthe* from a maximum likelihood analysis based on the combined multi-locus dataset (*CAL*, *HIS*, ITS, *TEF1*, *TUB*). The ML bootstrap values \geq 70 %, bayesian probabilities BPP \geq 0.90 are marked above the branches. The tree is rooted with *Diaporthella corylina*. The novel species are highlighted.

ARTICLE

Fig. 2. (Continued).

Fig. 2. (Continued).

Gao et al.

ARTICLE

0.2

Fig. 2. (Continued).

Table 2. Sources of	solates and GenBank accession	numbers used in the phylogenetic an	alyses of Diaporth	ie. Newly sequ	enced materia	I is indicated i	n bold type.		
Species names*	Culture collection no.	Isolation sources	Host family		GenBank A	ccession Nun	nbers		References
				ПS	TEF1	TUB	SIH	CAL	
D. acaciigena	CBS 129521 (ex-type)	Acacia retinodes	Mimosaceae	KC343005	KC343731	KC343973	KC343489	KC343247	Gomes <i>et al.</i> (2013)
D. acerina	CBS 137.27	Acer saccharum	Aceraceae	KC343006	KC343732	KC343974	KC343490	KC343248	Gomes <i>et al.</i> (2013)
D. acutispora	CGMCC 3.18285 = LC 6161	<i>Coffea</i> sp., endophyte	Rubiaceae	KX986764	KX999155	KX999195	KX999235	KX999274	This study
	LC 6142	Camellia sasanqua, endophyte	Theaceae	KX986762	KX999153	KX999193	KX999233	KX999272	This study
	LC 6160	Camellia sasanqua, endophyte	Theaceae	KX986800	KX999192	KX999232	KX999271	KX999293	This study
D. alleghaniensis	CBS 495.72 (ex-type)	<i>Betula alleghaniensis</i> , branches	Betulaceae	KC343007	KC343733	KC343975	KC343491	KC343249	Gomes <i>et al.</i> (2013)
D. alnea	CBS 146.46 (ex-type)	Alnus sp.	Betulaceae	KC343008	KC343734	KC343976	KC343492	KC343250	Gomes <i>et al.</i> (2013)
	CBS 159.47	Alnus sp.	Betulaceae	KC343009	KC343735	KC343977	KC343493	KC343251	Gomes <i>et al.</i> (2013)
D. ambigua	CBS 114015	Pyrus communis	Rosaceae	KC343010	KC343736	KC343978	KC343494	KC343252	Gomes <i>et al.</i> (2013)
	CBS 117176	Aspalathus linearis, crown	Fabaceae	KC343011	KC343737	KC343979	KC343495	KC343253	Gomes <i>et al.</i> (2013)
D. ampelina	CBS 114016	Vitis vinifera	Vitaceae	AF230751	AY745056	JX275452	ı	AY745026	Gomes <i>et al.</i> (2013)
	CBS 111888	Vitis vinifera	Vitaceae	KC343016	KC343742	KC343984	KC343500	KC343258	Gomes <i>et al.</i> (2013)
D. amygdali	CBS 126679 (ex-type)	Prunus dulcis	Rosaceae	KC343022	KC343748	KC343990	KC343506	KC343264	Gomes <i>et al.</i> (2013)
	CBS 111811	Vitis vinifera	Vitaceae	KC343019	KC343745	KC343987	KC343503	KC343261	Gomes <i>et al.</i> (2013)
D. anacardii	CBS 720.97 (ex-epitype)	Anacardium occidentale	Anacardiaceae	KC343024	KC343750	KC343992	KC343508	KC343266	Gomes <i>et al.</i> (2013)
D. angelicae	CBS 111592 (ex-epitype)	Heracleum sphondylium	Apiaceae	KC343027	KC343743	KC343995	KC343511	KC343269	Gomes <i>et al.</i> (2013)
	CBS 123215	Foeniculum vulgare	Apiaceae	KC343028	KC353754	KC343996	KC343512	KC343270	Gomes <i>et al.</i> (2013)
D. apiculata	LC 4152	<i>Camellia</i> , leaf	Theaceae	KP267915	KP267989	KP293495	KP293562		Gao <i>et al.</i> (2016)
	LC 3418, (ex-type)	Camellia sinensis, leaf, endophyte	Theaceae	KP267896	KP267970	KP293476	KP293550		Gao e <i>t al.</i> (2016)
D. arctii	CBS 136.25	Arctium sp.	Arecaceae	KC343032	KC343758	KC344000	KC343516	KC343273	Gomes <i>et al.</i> (2013)
D. arecae	CBS 535.75	<i>Citrus</i> sp., fruit	Rutaceae	KC343033	KC343759	KC344001	KC343517	KC343275	Gomes <i>et al.</i> (2013)
	CBS 161.64 (ex-isotype)	<i>Areca catechu</i> , fruit	Arecaceae	KC343032	KC343758	KC344000	KC343516	KC343274	Gomes <i>et al.</i> (2013)
D. arengae	CBS 114979 (ex-type)	Arenga engleri	Arecaceae	KC343034	KC343760	KC344002	KC343518	KC343276	Gomes <i>et al.</i> (2013)
D. asheiola	CBS 136967, CPC 16508, (ex-type)	Vaccinium ashei	Ericaceae	KJ160562	KJ160594	KJ160518	ı	KJ160542	Lombard <i>et al.</i> (2014)
	CBS 136968, CPC 16511	Vaccinium ashei	Ericaceae	KJ160563	KJ160595	KJ160519		KJ160543	Lombard <i>et al.</i> (2014)
D. aspalathi	CBS 117168	Aspalathus linearis	Fabaceae	KC343035	KC343761	KC344003	KC343519	KC343277	Gomes <i>et al.</i> (2013)
	CBS 117169, (ex-type)	Aspalathus linearis	Fabaceae	KC343036	KC343762	KC344004	KC343520	KC343278	Gomes <i>et al.</i> (2013)
D. australafricana	CBS 111886	Vitis vinifera	Vitaceae	KC343038	KC343764	KC344006	KC343522	KC343280	Gomes <i>et al.</i> (2013)
	CBS 113487	Vitis vinifera	Vitaceae	KC343039	KC343765	KC344007	KC343523	KC343281	Gomes <i>et al.</i> (2013)
D. baccae	CBS 136971	Vaccinium corymbosum	Ericaceae	KJ160564	KJ160596				Lombard <i>et al.</i> (2014)
	CBS 136972 (ex-type)	Vaccinium corymbosum	Ericaceae	KJ160565	KJ160597	ı	ı	ı	Lombard <i>et al.</i> (2014)

ARTICLE

Table 2. (Continued)									
Species names*	Culture collection no.	Isolation sources	Host family		GenBank A	ccession Nun	lbers		References
				ΠS	TEF1	TUB	SIH	CAL	
D. batatas	CBS 122.21	Ipomoea batatas	Convolvulaceae	KC343040	KC343766	KC344008	KC343524	KC343282	Gomes et al. (2013)
D. beckhausii	CBS 138.27	Viburnum sp.	Caprifoliaceae	KC343041	KC343767	KC344009	KC343525	KC343283	Gomes <i>et al.</i> (2013)
D. beilharziae	BRIP 54792 (ex-type)	Indigofera australis	Papilionaceae	JX862529	JX862535	KF170921			Thompson <i>et al.</i> (2015)
D. benedicti	CFCC 50062 (ex-type)	Juglans mandshurica	Juglandaceae	KP208847	KP208853	KP208855	KP208851	KP208849	Fan <i>et al</i> . (2015)
	CFCC 50063	Juglans mandshurica	Juglandaceae	KP208848	KP208854	KP208856	KP208852	KP208850	Fan <i>et al</i> . (2015)
D. betulae	CFCC 50469 (ex-type)	Betula platyphylla	Betulaceae	KT732950	KT733016	KT733020	KT732999	KT732997	Du <i>et al.</i> (2016)
	CFCC 50470	Betula platyphylla	Betulaceae	KT732951	KT733017	KT733021	KT733000	KT732998	Du <i>et al.</i> (2016)
D. betulicola	CFCC 51128 (ex-type)	Betula albosinensis	Betulaceae	KX024653	KX024655	KX024657	KX024661	KX024659	Du <i>et al.</i> (2016)
	CFCC 51129	Betula albosinensis	Betulaceae	KX024654	KX024656	KX024658	KX024662	KX024660	Du <i>et al.</i> (2016)
D. bicincta	DP0659, CBS 121004	<i>Juglans</i> sp., dead wood	Juglandaceae	KC343134	KC343860	KC344102	KC343618		Udayanga <i>et al.</i> (2014a)
D. biconispora	ZJUD 60, CGMCC 3.17250	Citrus sinensis	Rutaceae	KJ490595	KJ490474	KJ490416	KJ490537		Huang <i>et al.</i> (2015)
	ZJUD 61, CGMCC 3.17251	Fortunella margarita	Rutaceae	KJ490596	KJ490475	KJ490417	KJ490538		Huang <i>et al.</i> (2015)
	ZJUD 62, CGMCC 3.17252	Citrus grandis	Rutaceae	KJ490597	KJ490476	KJ490418	KJ490539		Huang <i>et al.</i> (2015)
D. biguttulata	ZJUD 47, CGMCC 3.17248 (ex-type)	Citrus limon	Rutaceae	KJ490582	KJ490461	KJ490403	KJ490524	ı	Huang <i>et al.</i> (2015)
	ZJUD 48, CGMCC 3.17249	Citrus limon	Rutaceae	KJ490583	KJ490462	KJ490403	KJ490525		Huang <i>et al.</i> (2015)
D. biguttusis	CGMCC 3.17081 (ex-type)	Lithocarpus glabra	Fagaceae	KF576282	KF576257	KF576306			Gao <i>et al.</i> (2015)
D. brasiliensis	CBS 133183 (ex-type)	Aspidosperma tomentosus	Apocynaceae	KC343042	KC343768	KC344010	KC343526	KC343284	Gomes <i>et al.</i> , 2013
	LGMF 926	Aspidosperma tomentosus	Apocynaceae	KC343043	KC343769	KC344011	KC343527	KC343285	Gomes <i>et al.</i> , 2013
D. canthii	CBS 132533 (ex-type)	Canthium inerme	Rubiaceae	JX069864	KC843120	KC843230		KC843174	Du <i>et al.</i> (2016)
D. carpini	CBS 114437	Carpinus betulus	Corylaceae	KC343044	KC343770	KC344012	KC343528	KC343286	Gomes <i>et al.</i> (2013)
D. caulivora	CBS 127268 (ex-neotype)	Glycine max	Fabaceae	KC343045	KC343771	KC344013	KC343529	KC343287	Gomes <i>et al.</i> (2013)
	CBS 178.55	Glycine soja	Fabaceae	KC343046	KC343772	KC344014	KC343530	KC343288	Gomes <i>et al.</i> (2013)
D. celastrina	CBS 139.27	Celastrus scandens	Celastraceae	KC343047	KC343773	KC344015	KC343531	,	Gomes <i>et al.</i> (2013)
D. cf. heveae 1	CBS 852.97	Hevea brasiliensis	Euphorbiaceae	KC343116	KC343842	KC344084	KC343600	KC343358	Gomes <i>et al.</i> (2013)
D. cf. heveae 2	CBS 681.84	Hevea brasilliensis, leaf	Euphorbiaceae	KC343117	KC343843	KC344085	KC343601	KC343359	Gomes <i>et al.</i> (2013)
D. chamaeropis	CBS 454.81	Chamaerops humilis, dead part of leaf	Arecaceae	KC343048	KC343774	KC344016	KC343532	KC343290	Gomes <i>et al.</i> (2013)
	CBS 753.70	Spartium junceum, dead branch	Fabaceae	KC343049	KC343775	KC344017	KC343533	KC343291	Gomes <i>et al.</i> (2013)
D. charlesworthii	BRIP 4884m (ex-type)	Rapistrum rugostrum	Brassicaceae	KJ197288	KJ197250	KJ197268	ı	ı	Thompson <i>et al.</i> (2015)
D. cinerascens	CBS 719.96	Ficus carica	Moraceae	KC343050	KC343776	KC344018	KC343534	KC343292	Gomes <i>et al.</i> (2013)
D. citri	CBS 230.52	Citrus sinensis	Rutaceae	KC343052	KC343778	KC344020	KC343536	KC343294	Gomes <i>et al.</i> (2013)
	CBS 199.39		ŀ	KC343051	KC343777	KC344019	KC343535	KC343293	Gomes <i>et al.</i> (2013)
	AR 3405	Citrus sp.	Rutaceae	KC843311	KC843071	KC843187	KJ420881		Udayanga <i>et al.</i> (2014b)

Table 2. (Continued).									
Species names [*]	Culture collection no.	Isolation sources	Host family		GenBank A	ccession Nun	nbers		References
				ΠS	TEF1	TUB	HIS	CAL	
D. citriasiana	ZJUD 30 (ex-type)	Citrus unshiu, dead wood	Rutaceae	JQ954645	JQ954663	KC357459		KC357491	Huang <i>et al.</i> (2015)
	ZJUD 33	<i>Citrus paradise</i> , stem-end rot fruit	Rutaceae	JQ954658	JQ972716	KC357460		KC357493	Huang <i>et al.</i> (2015)
D. citrichinensis	ZJUD 34	Citrus sp.	Rutaceae	JQ954648	JQ954666	ı	ı	KC357494	Huang <i>et al.</i> (2015)
	ZJUD 35	<i>Citrus unshiu</i> , dead wood	Rutaceae	JQ954649	JQ954667	KC357461		KC357495	Huang <i>et al.</i> (2015)
	ZJUD 36	Citrus unshiu, dead wood	Rutaceae	KC357556	KC357525	KC357462		KC357496	Huang <i>et al.</i> (2015)
D. compacta	LC3083 (ex-type)	<i>Camellia sinensis</i> , leaf, endophyte	Theaceae	KP267854	KP267928	KP293434	KP293508		Gao <i>et al.</i> (2016)
	LC3084	Camellia sinensis, leaf, endophyte	Theaceae	KP267855	KP267929	KP293435	KP293509		Gao <i>et al.</i> (2016)
D. convolvuli	CBS 124654	Convolvulus arvensis	Convolvulaceae	KC343054	KC343780	KC344022	KC343538	KC343296	Huang <i>et al.</i> (2015)
D. crataegi	CBS 114435	Crataegus oxyacantha	Rosaceae	KC343055	KC343781	KC344023	KC343539	KC343297	Gomes <i>et al.</i> (2013)
D. crotalariae	CBS 162.33 (ex-type)	Crotalaria spectabilis	Fabaceae	KC343056	KC343782	KC344024	KC343540	KC343298	Gomes <i>et al.</i> (2013)
D. cuppatae	CBS 117499	Aspalathus linearis	Fabaceae	KC343057	KC343783	KC344025	KC343541	KC343299	Gomes <i>et al.</i> (2013)
D. cynaroidis	CBS 122676	Protea cynaroides	Proteaceae	KC343058	KC343784	KC344026	KC343542	KC343300	Gomes <i>et al.</i> (2013)
D. cytosporella	AR 5149	Citrus sinensis	Rutaceae	KC843309	KC843118	KC843222	ı	KC843143	Udayanga <i>et al.</i> (2014b)
D. decedens	CBS 114281	Corylus avellana	Corylaceae	KC343060	KC343786	KC344028	KC343544	KC343302	Gomes <i>et al.</i> (2013)
	CBS 109772	Corylus avellana	Corylaceae	KC343059	KC343785	KC344027	KC343543	KC343301	Gomes <i>et al.</i> (2013)
D. detrusa	CBS 109770	Berberis vulgaris	Berberidaceae	KC343061	KC343787	KC344029	KC343545	KC343303	Gomes <i>et al.</i> (2013)
	CBS 114652	Berberis vulgaris	Berberidaceae	KC343062	KC343788	KC344030	KC343546	KC343304	Gomes <i>et al.</i> (2013)
D. discoidspora	ZJUD 87, CGMCC 3.17254	Citrus sinensis	Rutaceae	KJ490622	KJ490501	KJ490443	KJ490564	ı	Huang <i>et al.</i> (2015)
	ZJUD 89, CGMCC 3.17255	Citrus unshiu	Rutaceae	KJ490624	KJ490503	KJ490445	KJ490566	ı	Huang <i>et al.</i> (2015)
D. elaeagni	CBS 504.72	<i>Elaeagnus</i> sp., twig	Elaeagnaceae	KC343064	KC343790	KC344032	KC343548	KC343306	Gomes <i>et al.</i> (2013)
D. elaeagni-glabrae	CGMCC 3.18287 = LC 4802	<i>Elaeagnus glabra</i> , pathogen	Elaeagnaceae	KX986779	KX999171	KX999212	KX999251	KX999281	This study
	LC 4806	<i>Elaeagnus glabra</i> , pathogen	Elaeagnaceae	KX986780	KX999172	KX999213	KX999252	KX999282	This study
D. ellipicola	CGMCC 3.17084 (ex-type)	Lithocarpus glabra, diseased leaves	Fagaceae	KF576270	KF576245	KF576291	I	ı	Gao <i>et al.</i> (2015)
D. endophytica	CBS 133811 (ex-type)	Schinus terebinthifolius	Anacardiaceae	KC343065	KC343791	KC344033	KC343549	KC343307	Gomes <i>et al.</i> (2013)
	LGMF 911	Schinus terebinthifolius	Anacardiaceae	KC343066	KC343792	KC344034	KC343550	KC343308	Gomes <i>et al.</i> (2013)
D. eres	AR5193, CBS 13859 (ex- epitype)	Ulmus laevis	Ulmaceae	KJ210529	KJ210550	KJ420799	KJ420850	I	Udayanga <i>et al.</i> (2014a)
	CBS 113470	Castanea sativa	Fagaceae	KC343146	KC343872	KC344114	KC343630	ı	Udayanga <i>et al.</i> (2014a)
D. eugeniae	CBS 444.82	Eugenia aromatica, leaf	Mrytaceae	KC343098	KC343824	KC344066	KC343582	KC343340	Gomes <i>et al.</i> (2013)
D. fibrosa	CBS 109751	Rhamnus cathartica	Rhamnaceae	KC343099	KC343825	KC344067	KC343583	KC343341	Gomes <i>et al.</i> (2013)
	CBS 113830	Rhamnus cathartica	Rhamnaceae	KC343100	KC343826	KC344068	KC343584	KC343342	Gomes et al. (2013)

ш	
U	
_	
H	
2	
4	

Table 2. (Continued)									
Species names [*]	Culture collection no.	Isolation sources	Host family		GenBank A	ccession Nun	hers		References
				ITS	TEF1	TUB	SIH	CAL	
D. foeniculina	CBS 116957	Pyrus pyrifolia	Rosaceae	KC343103	KC343829	KC344071	KC343587	KC343345	Gomes et al. (2013)
	CBS 187.27 (ex-type of <i>P. theicola</i>)	<i>Camellia sinensis</i> , leaves and branches	Theaceae	KC343107	KC343833	KC344075	KC343591	KC343349	Gomes <i>et al.</i> (2013)
	CBS 123208	Foeniculum vulgare	Apiaceae	KC343104	KC343830	KC344072	KC343588	KC343346	Gomes <i>et al.</i> (2013)
D. fraxini- angustifolia	BRIP 54781 (ex-epitype)	<i>Fraxinus-angustifolia</i> subsp. oxycapa	Oleaceae	JX862528	JX852534	KF170920	ı	ı	Tan <i>et al.</i> (2013)
D. ganjae	CBS 180.91 (ex-type)	<i>Cannabis sativa</i> , dead leaf	Cannabaceae	KC343112	KC343838	KC344080	KC343596	KC343354	Gomes <i>et al.</i> (2013)
D. gardeniae	CBS 288.56	Gardenia florida, stem	Rubiaceae	KC343113	KC343839	KC344081	KC343597	KC343355	Gomes <i>et al.</i> (2013)
D. goulteri	BRIP 55657a (ex-type)	Helianthus annuus	Asteraceae	KJ197289	KJ197252	KJ197270			Thompson <i>et al.</i> (2015)
D. gulyae	BRIP 54025 (ex-type)	Helianthus annuus	Asteraceae	JF431299	JN645803	KJ197271	,		Thompson <i>et al.</i> (2015)
D. helianthi	CBS 344.94	Helianthus annuus	Asteraceae	KC343114	KC343840	KC344082	KC343598	KC343356	Gomes <i>et al.</i> (2013)
	CBS 592.81 (ex-type)	Helianthus annuus	Asteraceae	KC343115	KC343841	KC344083	KC343599	KC343357	Gomes <i>et al.</i> (2013)
D. helicis	AR 5211	Hedera helix	Araliaceae	KJ210538	KJ210559	KJ420828	KJ420875	KJ435043	Udayanga <i>et al.</i> (2014a)
D. hickoriae	CBS 145.26 (ex-epitype)	Carya glabra	Juglandaceae	KC343118	KC343844	KC344086	KC343602	KC343360	Gomes <i>et al.</i> (2013)
D. hongkongensis	CBS 115448 (ex-type)	Dichroa febrifuga, fruit	Hydrangeaceae	KC343119	KC343845	KC344087	KC343603	KC343361	Gomes <i>et al.</i> (2013)
D. hordei	CBS 481.92	Hordeum vulgare	Poaceae	KC343120	KC343846	KC344088	KC343604	KC343362	Gomes <i>et al.</i> (2013)
D. impulsa	CBS 114434	Sorbus aucuparia	Rosaceae	KC343121	KC343847	KC344089	KC343605	KC343363	Gomes <i>et al.</i> (2013)
	CBS 141.27	Sorbus americana	Rosaceae	KC343122	KC343848	KC344090	KC343606	KC343364	Gomes <i>et al.</i> (2013)
D. incompleta	CGMCC 3.18288 = LC 6754	<i>Camellia sinensis</i> , pathogen	Theaceae	KX986794	KX999186	KX999226	KX999265	KX999289	This study
	LC 6706	<i>Camellia sinensis</i> , pathogen	Theaceae	KX986793	KX999185		KX999264	KX999288	This study
D. inconspicua	CBS 133813 (ex-type)	<i>Maytenus ilicifolia</i> , endophytic in petiole	Celastraceae	KC343123	KC343849	KC344091	KC343607	KC343365	Gomes <i>et al.</i> (2013)
D. infecunda	CBS 133812 (ex-type)	Schinus terebinthifolius	Anacardiaceae	KC343126	KC343852	KC344094	KC343610	KC343368	Gomes <i>et al.</i> (2013)
	LGMF 908	Schinus terebinthifolius	Anacardiaceae	KC343127	KC343853	KC344095	KC343611	KC343369	Gomes <i>et al.</i> (2013)
D. kongii	BRIP 54031 (ex-type)	Helianthus annuus	Asteraceae	JF431301	JN645797	KJ197272	ı	ı	Thompson <i>et al.</i> (2011)
D. lichicola	BRIP 54900 (ex-type)	Litchi chinensis	Sapindaceae	JX862533	JX862539	KF170925	1	,	Tan <i>et al.</i> (2013)
D. longicicola	CGMCC 3.17089 (ex-type)	Lithocarpus glabra	Fagaceae	KF576267	KF576242	KF576291	1	,	Gao <i>et al.</i> (2015)
D. longicolla	FAU 599	Glycine max	Fabaceae	KJ590728	KJ590767	KJ610883	KJ659188		Udayanga <i>et al.</i> (2015)
D. longispora	CBS 194.36 (ex-type)	<i>Ribes</i> sp.	Grossulariaceae	KC343135	KC343861	KC344103	KC343619	KC343377	Gomes <i>et al.</i> (2013)
D. lusitanicae	CBS 123212 (ex-type)	Foeniculum vulgare	Apiaceae	KC343136	KC343862	KC344104	KC343620		Gomes <i>et al.</i> (2013)
	CBS 123213	Foeniculum vulgare	Apiaceae	KC343137	KC343863	KC344105	KC343621	KC343379	Gomes <i>et al.</i> (2013)
D. macintoshii	BRIP 55064a	Rapistrum rugostrum	Brassicaceae	KJ197290	KJ197251	KJ197269			Thompson <i>et al.</i> (2015)
D. mahothocarpus	CGMCC 3.15181	Lithocarpus glabra	Fagaceae	KC153096	KC153087				Gao <i>et al.</i> (2014)
D. manihotia	CBS 505.76	Manihot utilissima, leaves	Euphorbiaceae	KC343138	KC343864	KC344106	KC343622	KC343380	Gomes <i>et al.</i> (2013)

Table 2. (Continued)									
Species names [*]	Culture collection no.	Isolation sources	Host family		GenBank A	ccession Nur	nbers		References
				ΠS	TEF1	TUB	HIS	CAL	
D. maritima	NB 382-2E	Picea rubens needle	Pinaceae	KU552026	KU552024	KU574614			Tanney <i>et al.</i> (2016)
	NB 463-3A	Picea rubens needle	Pinaceae	KU552027	KU552022	KU574616		,	Tanney <i>et al.</i> (2016)
	NB 365-711 (ex-type)	Picea rubens needle	Pinaceae	KU552025	KU552023	KU574615		,	Tanney <i>et al.</i> (2016)
D. masirevicii	BRIP 57330	<i>Chrysanthemoides monilifera</i> subsp. <i>rotundat</i> a	Rosaceae	KJ197275	KJ197237	KJ197255	ı	ı	Huang <i>et al.</i> (2015)
	BRIP 57892a (ex-type)	Helianthus annuus	Asteraceae	KJ197277	KJ197239	KJ197257	ı		Huang <i>et al.</i> (2015)
D. mayteni	CBS 133185 (ex-type)	Maytenus ilicicolia	Celastraceae	KC343139	KC343865	KC344107	KC343623	KC343381	Gomes <i>et al.</i> (2013)
D. megalospora	CBS 143.27	Sambucus canadensis	Caprifoliaceae	KC343140	KC343866	KC344108	KC343624	KC343382	Gomes <i>et al.</i> (2013)
D. melonis	CBS 435.87	Glycine soja	Fabaceae	KC343141	KC343867	KC344109	KC343625	KC343383	Gomes <i>et al.</i> (2013)
	CBS 507.78 (ex-isotype)	Cucumis melo	Cucurbitaceae	KC343142	KC343868	KC344110	KC343626	KC343384	Gomes <i>et al.</i> (2013)
D. middletonii	BRIP 57329	<i>Chrysanthemoides monilifera</i> subsp. <i>rotundata</i>	Rosaceae	KJ197285	KJ197247	KJ197265	ı	·	Thompson <i>et al.</i> (2015)
	BRIP 54884e (ex-type)	Rapistrum rugostrum	Brassicaceae	KJ197286	KJ197248	KJ197266			Thompson <i>et al.</i> (2015)
D. miriciae	BRIP 55662c	Glycine max	Fabaceae	KJ197283	KJ197245	KJ197263			Thompson <i>et al.</i> (2015)
	BRIP 54736j (ex-type)	Helianthus annuus	Asteraceae	KJ197282	KJ197244	KJ197262			Thompson <i>et al.</i> (2015)
	BRIP 56918a	Vigna radiata	Papilionaceae	KJ197284	KJ197246	KJ197264			Thompson <i>et al.</i> (2015)
D. multigutullata	ZJUD 98	Citrus grandis	Rosaceae	KJ490633	KJ490512	KJ490454	KJ490575		Huang <i>et al.</i> (2015)
D. musigena	CBS 129519; CPC 17026 (ex-type)	<i>Musa</i> sp., leaves	Musaceae	KC343143	KC343869	KC344111	KC343627	KC343385	Gomes <i>et al.</i> (2013)
D. neilliae	CBS 144.27	<i>Spiraea</i> sp.	Rosaceae	KC343144	KC343870	KC344112	KC343628	KC343386	Udayanga <i>et al.</i> (2014a)
D. neoarctii	CBS 109490 (ex-type)	Ambrosia trifida	Asteraceae	KC343145	KC343871	KC344113	KC343629	KC343387	Gomes <i>et al.</i> (2013)
D. neoraonikayapo- rum	MFLUCC 14-1136	Tectona grandis	Verbenaceae	KU712449	KU749369	KU743988		KU749356	Doilom <i>et al.</i> (2017)
	MFLUCC 14-1137	Tectona grandis	Verbenaceae	KU712450	KU749370	KU743989	ı	KU749357	Doilom <i>et al.</i> (2017)
	MFLUCC 14-1133	Tectona grandis	Verbenaceae	KU712448	KU749368	KU743987		KU749355	Doilom <i>et al.</i> (2017)
D. nobilis	CBS 200.39	Laurus nobilis, stem	Lauraceae	KC343151	KC343877	KC344119	KC343635	KC343393	Gomes <i>et al.</i> (2013)
D. nomurai	CBS 157.29	<i>Morus</i> sp.	Moraceae	KC343154	KC343880	KC344122	KC343638	KC343396	Gomes <i>et al.</i> (2013)
D. nothofagi	BRIP 54801 (ex-type)	Nothofagus cunninghamii	Fagaceae	JX862530	JX862536	KF170922	ı	ı	Tan <i>et al.</i> (2013)
D. novem	CBS 127269	Glycine max	Fabaceae	KC343155	KC343881	KC344123	KC343639	KC343397	Gomes <i>et al.</i> (2013)
	CBS 127270 (ex-type)	Glycine max	Fabaceae	KC343156	KC343882	KC344124	KC343640	KC343398	Gomes <i>et al.</i> (2013)
D. oncostoma	CBS 100454	<i>Robinia pseudoacacia</i> , leaf spot	Fabaceae	KC343160	KC343886	KC344128	KC343644	KC343402	Gomes <i>et al.</i> (2013)
	CBS 109741	Robinia pseudoacacia	Fabaceae	KC343161	KC343887	KC344129	KC343645	KC343403	Gomes <i>et al.</i> (2013)
D. oraccinii	LC 3166 (ex-type)	Camellia sinensis, leaf, endophyte	Theaceae	KP267863	KP267937	KP293443	KP293517	ı	Gao <i>et al.</i> (2016)
	LC 3296	<i>Camellia sinensis</i> , leaf, endophyte	Theaceae	KP267884	KP267958	KP293464	KP293538		Gao <i>et al.</i> (2016)

ARTICLE

Table 2. (Continued).									
Species names [*]	Culture collection no.	Isolation sources	Host family		GenBank A	ccession Nun	nbers		References
				ΠS	TEF1	TUB	SIH	CAL	
D. ovalispora	ZJUD 93, CGMCC 3.17256	Citrus limon	Rosaceae	KJ490628	KJ490507	KJ490449	KJ490570	1	Huang <i>et al.</i> (2015)
D. oxe	CBS 133186 (ex-type)	Maytenus ilicifolia	Celastraceae	KC343164	KC343890	KC344132	KC343648	KC343406	Gomes <i>et al.</i> (2013)
	CBS 133187	Maytenus ilicifolia	Celastraceae	KC343165	KC343891	KC344133	KC343649	KC343407	Gomes <i>et al.</i> (2013)
D. padi var. padi	CBS 114200	Prunus padus	Rosaceae	KC343169	KC343895	KC344137	KC343653	KC343411	Gomes <i>et al.</i> (2013)
	CBS 114649	Alnus glutinosa	Betulaceae	KC343170	KC343896	KC344138	KC343654	KC343412	Gomes <i>et al.</i> (2013)
D. paranensis	CBS 133184 (ex-type)	Maytenus ilicifolia	Celastraceae	KC343171	KC343897	Kc344139	KC343655	KC343413	Gomes <i>et al.</i> (2013)
D. pascoei	BRIP 54847 (ex-type)	Persea americana	Lauraceae	JX862532	JX862538	KF170924			Tan <i>et al.</i> (2013)
D. penetriteum	LC 3353	Camellia sinensis, leaf	Theaceae	KP714505	KP714517	KP714529	KP714493		Gao <i>et al.</i> (2016)
	LC 3394	Camellia sinensis, leaf	Theaceae	KP267893	KP267967	KP293473	KP293547		Gao <i>et al.</i> (2016)
D. perjuncta	CBS 109745 (ex-type)	Ulmus glabra	Ulmaceae	KC343172	KC343898	KC344140	KC343656	KC343414	Gomes <i>et al.</i> (2013)
D. perniciosa	CBS 124030	Malus pumila, bark	Rosaceae	KC343149	KC343875	KC344117	KC343633	KC343391	Gomes <i>et al.</i> (2013)
D. perseae	CBS 151.73	Perseae gratissima, young fruit	Lauraceae	KC343173	KC343899	KC344141	KC343657	KC343415	Gomes <i>et al.</i> (2013)
D. phaseolorum	AR 4203, CBS 139281	Phaseolus vulgaris	Fabaceae	KJ590738	KJ590739	KJ610893	KJ659220	,	Huang <i>et al.</i> (2015)
	CBS 116019	Caperonia palustris	Euphorbiaceae	KC343175	KC343901	KC344143	KC343659	KC343417	Gomes <i>et al.</i> (2013)
	CBS 116020	Aster exilis	Asteraceae	KC343176	KC343902	KC344144	KC343660	KC343418	Gomes <i>et al.</i> (2013)
D. podocarpi- macrophylli	CGMCC 3.18281 = LC 6155	Podocarpus macrophyllus, endophyte	Podocarpaceae	KX986774	KX999167	KX999207	KX999246	KX999278	This study
	LC 6144	Podocarpus macrophyllus, endophyte	Podocarpaceae	KX986773	KX999166	KX999206	KX999245	ı	This study
	LC 6194	Podocarpus macrophyllus, endophyte	Podocarpaceae	KX986765	KX999156	KX999196	KX999236	KX999275	This study
	LC 6197	Podocarpus macrophyllus, endophyte	Podocarpaceae	KX986777	KX999170	KX999210	KX999249	KX999279	This study
	LC 6200	Podocarpus macrophyllus, endophyte	Podocarpaceae	KX986769	KX999161	KX999201	KX999240	KX999276	This study
	LC 6229	Olea europaea, endophytes	Oleaceae	KX986771	KX999164	KX999204	KX999243	KX999277	This study
D. pseudomangi í - erae	CBS 101339 (ex-type)	Mangifera indica	Anacardiaceae	KC343181	KC343907	KC344149	KC343665	KC343423	Gomes <i>et al.</i> (2013)
	CBS 388.89	Mangifera indica, peel of fruit	Anacardiaceae	KC343182	KC343908	KC344150	KC343666	KC343424	Gomes <i>et al.</i> (2013)
D. pseudophoenici- cola	CBS 462.69 (ex-type)	Phoenix dactylifera, dead tops of green leaves	Anacardiaceae	KC343184	KC343910	KC344152	KC343668	KC343426	Gomes <i>et al.</i> (2013)
	CBS 176.77	<i>Mangifera indica</i> , showing dieback	Anacardiaceae	KC343183	KC343909	KC344151	KC343667	KC343425	Gomes <i>et al.</i> (2013)
D. pterocarpi	MFLUCC 10-0571	Pterocarous indicus	Papilionaceae	JQ619899	JX275416	JX275460		JX197451	Udayanga <i>et al.</i> (2012)
	MFLUCC 10-0575	Pterocarous indicus	Papilionaceae	JQ619901	JX275418	JX275462		JX197453	Udayanga <i>et al.</i> (2012)

Table 2. (Continued).									
Species names [*]	Culture collection no.	Isolation sources	Host family		GenBank A	ccession Nur	nbers		References
				ПS	TEF1	TUB	HIS	CAL	
D. pterocarpicola	MFLUCC 10-0580a (ex-type)	Piterocarpus indicus	Papilionaceae	JQ619887	JX275403	JX275441		JX197433	Udayanga <i>et al.</i> (2012)
	MFLUCC 10-0580b	Piterocarpus indicus	Papilionaceae	JQ619888	JX275404	JX275442	ı	JX197434	Udayanga <i>et al.</i> (2012)
D. pulla	CBS 338.89	Hedera helix	Araliaceae	KC343152	KC343878	KC344120	KC343636	ı	Udayanga <i>et al.</i> (2014a)
D. pustulata	CBS 109742	Acer pseudoplatanus	Aceraceae	KC343185	KC343911	KC344153	KC343669	KC343427	Gomes <i>et al.</i> (2013)
	CBS 109760	Acer pseudoplatanus	Aceraceae	KC343186	KC343912	KC344154	KC343670	KC343428	Gomes <i>et al.</i> (2013)
D. raonikayaporum	CBS 133182 (ex-type)	Spondias mombin	Anacardiaceae	KC343188	KC343914	KC344156	KC343672	KC343430	Gomes <i>et al.</i> (2013)
D. rhoina	CBS 146.27	Rhus toxicodendron	Anacardiaceae	KC343189	KC343915	KC344157	KC343673	KC343431	Gomes <i>et al.</i> (2013)
D. rudis	CBS 113201 (ex-type)	Vitis vinifera	Vitaceae	KC343234	KC343960	KC344202	KC343718	KC343476	Machingambi <i>et al.</i> (2015)
	CBS 114011	Vitis Vinifera	Vitaceae	KC343235	KC343961	KC344203	KC343718	KC343477	Machingambi <i>et al.</i> (2015)
D. saccarata	CBS 116311 (ex-type)	Protea repens, cankers	Proteceae	KC343190	KC343916	KC344158	KC343674	KC343432	Gomes <i>et al.</i> (2013)
D. sackstonii	BRIP 54669b (ex-type)	Helianthus annuus	Asteraceae	KJ197287	KJ197249	KJ197267			Gomes <i>et al.</i> (2013)
D. salicicola	BRIP 54825 (ex-type)	Salix purpurea	Salicaceae	JX862531	JX862537	KF170923			Gomes <i>et al.</i> (2013)
D. schini	LGMF 910, CPC 20286	Schinus terebinthifolius, endophytic in leaf	Anacardiaceae	KC343192	KC343918	KC344160	KC343676	KC343434	Thompson <i>et al.</i> (2015)
	CBS 133181 (ex-type)	Schinus terebinthifolius, endophytic in leaf	Anacardiaceae	KC343191	KC343917	KC344159	KC343675	KC343433	Tan <i>et al.</i> (2013)
D. sclerotioides	CBS 296.67 (ex-type)	Cucumis sativus	Cucurbitaceae	KC343193	KC343919	KC344161	KC343677	KC343435	Gomes <i>et al.</i> (2013)
	CBS 710.76	Cucumis sativus	Cucurbitaceae	KC343194	KC343920	KC344162	KC343678	KC343436	Gomes <i>et al.</i> (2013)
D. scobina	CBS 251.38	<i>Fraxinus Excelsior</i> , living and dead twig	Oleaceae	KC343195	KC343921	KC344163	KC343679	KC343437	Gomes <i>et al.</i> (2013)
D. serafiniae	BRIP 55665a (ex-type)	Helianthus annuus	Asteraceae	KJ197274	KJ197236	KJ197254	ı	ı	Gomes <i>et al.</i> (2013)
	BRIP 54136	Lupinus albus "Rosetta"	Fabaceae	KJ197273	KJ197235	KJ197253			Gomes <i>et al.</i> (2013)
D. siamensis	MFLUCC 10_0573a	Dasymaschalon sp.	Annonaceae	JQ619879	JX275393	JX275429	ı	ı	Thompson <i>et al.</i> (2015)
	MFLUCC 10_0573b	Dasymaschalon sp.	Annonaceae	JQ619880	JX275395	JX275430	ı	ı	Thompson <i>et al.</i> (2015)
D. sojae	CBS 100.87	Glycine soja	Fabaceae	KC343196	KC343922	KC344164	KC343680	KC343438	Udayanga <i>et al.</i> (2012)
	CBS 116017	Euphorbia nutans	Euphorbiaceae	KC343197	KC343923	KC344165	KC343681	KC343439	Udayanga <i>et al.</i> (2012)
	FAU 635	Glycine max	Fabaceae	KJ590719	KJ590762	KJ610875	KJ659208	ı	Gomes <i>et al.</i> (2013)
D. sterilis	CBS 136969 (ex-type)	Vaccinium corymbosum	Ericaceae	KJ160579	KJ160611	KJ160528	I	KJ160548	Gomes <i>et al.</i> (2013)
	CBS 136970	Vaccinium corymbosum	Ericaceae	KJ160580	KJ160612	KJ160529		KJ160549	Huang <i>et al.</i> (2015)
D. stewartii	CBS 193.36		·	FJ889448	GQ250324	ı	ı	ı	Lombard <i>et al.</i> (2014)
D. stictica	CBS 370.54	Buxus sampervirens, dead twig	Buxaceae	KC343212	KC343938	KC344180	KC343696	KC343454	Lombard <i>et al.</i> (2014)
D. subclavata	ZJUD 83, CGMCC 3.17253	Citrus grandis cv. Shatianyou	Rosaceae	KJ490618	KJ490497	KJ490439	KJ490560	1	Udayanga <i>et al.</i> (2011)

ш
U
_
H
2
◄

Table 2. (Continued)									
Species names*	Culture collection no.	Isolation sources	Host family		GenBank A	ccession Nun	hers		References
				ΠS	TEF1	TUB	HIS	CAL	
	ZJUD 95, CGMCC 3.17257	Citrus unshiu	Rosaceae	KJ490630	KJ490509	KJ490451	KJ490572	1	Gomes et al. (2013)
D. subordinaria	CBS 101711	Plantago lanceolata	Plantaginaceae	KC343213	KC343939	KC344181	KC343697	KC343455	Huang <i>et al.</i> (2015)
	CBS 464.90	Plantago lanceolata	Plantaginaceae	Kc343214	KC343940	KC344182	KC343698	KC343456	Huang <i>et al.</i> (2015)
D. tecomae	CBS 100547	<i>Tabebuia</i> sp.	Bignoniaceae	KC343215	KC343941	KC344183	KC343699	KC343457	Gomes <i>et al.</i> (2013)
D. tectonae	MFLUCC 12-0777	Tectona grandis	Verbenaceae	KU712430	KU749359	KU743977		KU749345	Gomes <i>et al.</i> (2013)
	MFLUCC 14-1138	Tectona grandis	Verbenaceae	KU712437	KU749365	KU743984		KU749352	Gomes <i>et al.</i> (2013)
D. tectonendo- phytica	MFLUCC 13-0471	Tectona grandis	Verbenaceae	KU712439	KU749367	KU743986		KU749354	Doilom <i>et al.</i> (2017)
D. tectonigena	MFLUCC 12-0767	Tectona grandis	Verbenaceae	KU712429	KU749371	KU743976		KU749358	Doilom <i>et al.</i> (2017)
D. terebinthifolii	CBS 133180	Schinus terebinthifolius	Anacardiaceae	KC343216	KC343942	KC344184	KC343700	KC343458	Doilom <i>et al.</i> (2017)
	LGMF 907	Schinus terebinthifolius	Anacardiaceae	KC343217	KC343943	KC344185	KC343701	KC343459	Doilom <i>et al.</i> (2017)
D. thunbergii	MFLUCC 10_0756a	Thunbergia laurifolia	Acanthaceae	JQ619893	JX275409	JX275449		JX197440	Doilom <i>et al.</i> (2017)
	MFLUCC 10_0756b	Thunbergia laurifolia	Acanthaceae	JQ619894	JX275410	JX275450		JX197441	Doilom <i>et al.</i> (2017)
D. toxica	CBS 534.93 (ex-type)	Lupinus angustifolius, stem	Fabaceae	KC343220	KC343946	KC344188	KC343704	KC343462	Udayanga <i>et al.</i> (2012)
	CBS 535.93	Lupinus sp.	Fabaceae	KC343221	KC343947	KC344189	KC343705	KC343463	Udayanga <i>et al.</i> (2012)
D. tulliensis	BRIP 62248a	Theobroma cacao	Sterculiaceae	KR936130	KR936133	KR936132			Gomes <i>et al.</i> (2013)
D. ueckerae	FAU 656	Cucumis melo	Cucurbitaceae	KJ590726	KJ590747	KJ610881	KJ659215		Gomes <i>et al.</i> (2013)
	FAU 658	Cucumis melo	Cucurbitaceae	KJ590725	KJ590746	KJ610880	KJ659214	,	Crous <i>et al.</i> (2015)
D. undulata	CGMCC 3.18293 = LC 6624	Unknown host, pathogen	I	KX986798	KX999190	KX999230	KX999269		Huang <i>et al.</i> (2015)
	LC 8110	Unknown host, pathogen	ı	KY491545	KY491555	KY491565			Huang <i>et al.</i> (2015)
	LC 8111	Unknown host, pathogen	ı	KY491546	KY491556	KY491566			This study
D. unshiuensis	ZJUD 51, CGMCC 3.17568	Fortunella margarita	Rutaceae	KJ490586	KJ490465	KJ490407	KJ490528		This study
	ZJUD 52, CGMCC 3.17569	Citrus unshiu	Rosaceae	KJ490587	KJ490466	KJ490408	KJ490529		This study
D. vaccinii	CBS 160.32 (ex-type)	Oxycoccus macrocarpos	Ericaceae	KC343228	KC343954	KC344196	KC343712	KC343470	Huang <i>et al.</i> (2015)
	CBS 118571	Vaccinium corymbosum	Ericaceae	KC343223	KC343949	KC344191	KC343707	KC343465	Huang <i>et al.</i> (2015)
D. vawdreyi	BRIP 57887a	Psidium guajava	Sterculiaceae	KR936126	KR936129	KR936128			Gomes <i>et al.</i> (2013)
D. velutina	CGMCC 3.18286 = LC 4421	Neolitsea sp., pathogen	Lauraceae	KX986790	KX999182	KX999223	KX999261		Gomes <i>et al.</i> (2013)
	LC 4419	Neolitsea sp., pathogen	Lauraceae	KX986789	KX999181	KX999222	KX999260	KX999286	Crous <i>et al.</i> (2015)
	LC 4641	<i>Callerya cinerea</i> , pathogen	Fabaceae	KX986792	KX999184	KX999225	KX999263	KX999287	This study
	LC 4788	Unknown host, pathogen		KX986785	KX999177	KX999218	KX999256	KX999285	This study
	LC 6708	Camellia sinensis, pathogen	Theaceae	KX986787	KX999179	KX999220	KX999258		This study
D. vexans	CBS 127.14	Solanum melongena	Solanaceae	KC343229	KC343955	KC344197	KC343713	KC343471	This study
D. virgilia	CMW 40755 (ex-type)	Virgilia oroboides	Unknown	KP247573		KP247582		ı	This study

д .	
nuec	
conti	
0 0	

Table 2. (Continued).									
Species names*	Culture collection no.	Isolation sources	Host family		GenBank A	ccession Nur	nbers		References
				ΠS	TEF1	TUB	HIS	CAL	
	CMW 40748	Virgilia oroboides	Unknown	KP247566	,	KP247575			Gomes <i>et al.</i> (2013)
D. woodii	CBS 558.93	Lupinus sp.	Fabaceae	KC343244	KC343970	KC344212	KC343728	KC343486	Gomes <i>et al.</i> (2013)
D. woolworthii	CBS 148.27	Ulmus americana	Ulmaceae	KC343245	KC343971	KC344213	KC343729	KC343487	Gomes <i>et al.</i> (2013)
D. xishuangbanica	CGMCC 3.18282= LC 6707	Camellia sinensis, pathogen	Theaceae	KX986783	KX999175	KX999216	KX999255		This study
	LC 6744	Camellia sinensis, pathogen	Theaceae	KX986784	KX999176	KX999217			This study
D. yunnanensis	CGMCC 3.18289 = LC6168	Coffea sp., endophytes	Rubiaceae	KX986796	KX999188	KX999228	KX999267	KX999290	This study
	LC 8106	Coffea sp., endophytes	Rubiaceae	KY491541	KY491551	KY491561		KY491571	This study
	LC 8107	Coffea sp., endophytes	Rubiaceae	KY491542	KY491552	KY491562		KY491572	This study
Diaporthe sp.	LC 6496	Camellia sinensis, endophytes	Theaceae	KX986781	KX999173	KX999214	KX999253	KX999283	This study
	LC 6512	Camellia sinensis, endophyte	Theaceae	KX986782	KX999174	KX999215	KX999254	KX999284	This study
	LC 6232	<i>Theobroma cacao</i> , endophyte	Sterculiaceae	KX986797	KX999189	KX999229	KX999268	KX999291	This study
	LC 8108	<i>Theobroma cacao</i> , endophyte	Sterculiaceae	KY491543	KY491553	KY491563		KY491573	This study
	LC 8109	<i>Theobroma cacao</i> , endophyte	Sterculiaceae	KY491544	KY491554	KY491564	ı	KY491574	This study
	LC 6623	Unknown host, pathogen		KX986795	KX999187	KX999227	KX999266		This study
	LC 8114	Unknown host, pathogen		КҮ491549	KY491559	KY491569	ı		This study
	LC 8115	Unknown host, pathogen		KY491550	KY491560	KY491570	ı		This study
	LGMF 947	Glycine max, seed	Fabaceae	KC343203	KC343929	KC344171	KC343687	KC343445	Gomes <i>et al.</i> (2013)
	CBS 119639	Man, abscess	ı	KC343202	KC343928	KC344170	KC343687	KC343444	Gomes <i>et al.</i> (2013)
Diaporthe sp. 1	CGMCC 3.18292 = LC 0771	<i>Alnus</i> sp., pathogen	Betulaceae	KX986799	KX999191	KX999231	KX999270	KX999292	This study
Diaporthe sp. 2	CGMCC 3.18291 = LC 6140	Acer sp., endophyte	Aceraceae	KX986799	KX999191	KX999231	KX999270	KX999292	This study
	LC8112	Acer sp., endophyte	Aceraceae	KY491547	KY491557	KY491567	ı	KY491575	This study
	LC8113	Acer sp., endophyte	Aceraceae	КҮ491548	KY491558	KY491568		KY491576	This study
Diaporthella corylina	CBS 121124	Corylus sp., dying stems	Corylaceae	KC343004	KC343730	KC343972	KC343488	KC343246	Gomes <i>et al.</i> (2013)
P. conorum	CBS 587.79	Penus pentaphylla	Pinaceae	KC343153	KC343879	KC344121	KC343637	KC343395	Gomes <i>et al.</i> (2013)
P. emicis	BRIP 45089a (ex-type)	Emex australis	Polygonaceae	JF957784	JX275414	JX275458		JX197449	Udayanga <i>et al.</i> (2012)
P. fukushii	CBS 116953	Pyrus pyrifolia	Roseceae	KC343147	KC343873	KC344115	KC343631	KC343389	Gomes <i>et al.</i> (2013)
	BRIP 45089b	Emex australis	Polygonaceae	JQ619898	JX275415	JX275459		JX197450	Udayanga <i>et al.</i> (2012)
actil al beblittere to a f									

-: not provided in literatures.

Fig. 3. *Diaporthe acutispora* (CGMCC 3.18285). **A–B.** 30-d-old culture on PNA medium. **C.** Conidiomata. **D–E.** Conidiophores. **F–G.** Alpha conidia. Bars: C = 100 μm; D–G = 10 μm.

TAXONOMY

Diaporthe acutispora Y.H. Gao & L. Cai, **sp. nov.** MycoBank MB820679 (Fig. 3)

Etymology: Named after the acute spores.

Diagnosis: Diaporthe acutispora is phylogenetically distinct and morphologically differs from species reported from the host genera *Coffea* and *Camellia* in the larger conidiophores and alpha conidia (Table 3).

Type: **China**: *Yunnan Province*: Aini Farm, on healthy leaves of *Coffea* sp., 20 Sep. 2014, *W.J. Duan* (HMAS 247086 – holotype, dried culture; CGMCC 3.18285 = LC 6161 – ex-type culture).

Description: On PNA: *Conidiomata* pycnidial, globose, brownish, embedded in tissue, erumpent at maturity, 99–473 µm diam, often with a yellowish conidial cirrus exuding from the ostioles. *Conidiophores* 10–34.5 × 2–3 µm, cylindrical, hyaline, septate, branched, straight or slightly curved, tapering towards the apex. *Alpha conidia* abundant in culture, 7–10.5 × 2–3 µm (\overline{x} = 8.4 ± 0.7 × 2.6 ± 0.2, *n* = 30), aseptate, hyaline, ellipsoidal to fusoid, multi-guttulate. *Beta conidia* not observed.

Culture characters: Cultures incubated on PDA at 25 °C in darkness, growth rate 7.5 mm diam/d. Colony entirely white at surface, reverse with pale brown pigmentation, white, fluffy aerial mycelium.

Additional material examined: China: Yunnan Province: Xishuangbanna, on healthy leaves of Camellia sasanqua, 20 Sep. 2014, W.J. Duan, culture LC 6142; *ibid*. culture LC 6160.

Diaporthe elaeagni-glabrae Y.H. Gao & L. Cai, sp. nov. MycoBank MB820680 (Fig. 4)

Etymology: Named after the host species Elaeagnus glabra.

Diagnosis: *Diaporthe elaeagni-glabrae* can be distinguished from the closely related species *D. elaeagni* (96 % in ITS, 93 % in *TEF1*, 94 % in *TUB*, 96 % in *HIS*, and 94 % in *CAL*) and *D. stictica* (96 % in ITS, 95 % in *TEF*, 97 % in *TUB*, 96 % in *HIS*, and 96 % in *CAL*) (Fig. 2). *Diaporthe elaeagni-glabrae* differs from other species recorded from *Elaeagnus* in the significantly longer alpha conidia (Table 3).

Type: **China**: *Jiangxi Province*: on diseased leaves of *Elaeagnus* glabra, 5 Sep. 2013, Y.H. Gao (HMAS 247089 – holotype, dried culture; CGMCC 3.18287 = LC 4802 – ex-type culture).

Host genera	Species	Conidiomata (µm)	Conidiophores (µm)	Alpha conidia (µm)	Beta conidia (µm)	References
Coffea	P. coffeae	200–250	12–16 × 2	8–9 × 2.5	-	Uecker (1988)
Camellia	D. acutispora	99-473	10-34.5 × 2-3	6.9–10.4 × 2.1–3.1	1	This study
	D. amygdali	160–220 × 120–300	7.4–36.3 × 1.5–3.2	(4.18–)6.27–6.32(–9.64) × (1.63–)2.36– 2.38(–3.31)		Diogo <i>et al.</i> (2010)
	D. apiculata	74–195 (–416)	9.0-12.5 × 1.5-2.5	6.5–10 × 2–3	(20.0–)25.0-39.0 × 1.0–1.5	Gao <i>et al.</i> (2016)
	D. compacta	237–350	6.0-12.5 × 1.5-2.5	6–7.5 × 2–3	20.0–24.5 × 1.0–1.5	Gao <i>et al.</i> (2016)
	D. discoidispora	200 × 118	8.9–23.4 × 1.3–2.7	5.6-8 × 2.1-3.2	21.2–38.7 × 0.9–1.6	Huang <i>et al.</i> (2015)
	D. eres	200–250	10–15 × 2–3	$(6-)6.5-8.5(-9) \times 3-4$	(18–)22–28(29) × 1–1.5	Udayanga <i>et al</i> . (2014b)
	D. foeniculacea	560 × 350	10–13 × 1.5–3	(5.4–)6.8–7(–9) × (2–)2.3–2.4(–3.1)	(16.8–)19.6–21(–24.2) × (1.1–)1.3– 1.4(–1.7)	Phillips (2003)
	D. foeniculina	400-700	9–15(–18) × 1–2	$(7.5-)8.5-9(-9.2) \times (2-)2.3-2.5(-2.7)$	(20–)22–28(–29) × (1.1–)1.4–1.6(–2)	Udayanga <i>et al</i> . (2014c)
	D. hongkongensis	to 200	5-12 × 2-4	$(5-)6-7(-8) \times (2-)2.5(-3)$	18–22 × 1.5–2	Gomes <i>et al.</i> (2013)
	D. oraccinii	400	10.5–22.5 × 1–2	$5.5-7.5 \times 0.5-2$	$24.5-31.0 \times 1.0-1.5$	Gao <i>et al.</i> (2016)
	D. penetriteum	176–486	13–21.5 (–27) × 1–2	4.5–5.5 × 1.5–2.5	$16.5-27.5 \times 1.0-2.0$	Gao <i>et al.</i> (2016)
	D. ueckerae	150-200	(9–)12–28(–30) × 1.5–2.5	(6–)6.4–8.2(–8.6) × (2–)2.3–3	1	Udayanga <i>et al.</i> (2014a)
	D. xishuangbanica	180–310	$13-34.5 \times 1.5-3$	$7-9.5 \times 2.5-3.5$	1	This study
	D. yunnanensis	195–880		3-6.5 × 1-2.5	13.5–33.5 × 1–1.5	This study
	P. acaciicola			7–9 × 3–3.5	1	Diedicke (1911)
	P. theae	40 × 25		6–8 × 1.5–2	18–24 × 0.75	Petch (1925)
Elaeagnus	P. arnoldiae	900 × 500	6–12 × 1–2	5.5–11 × 1.5–2	15–20	Uecker (1988)
	P. elaeagni	500-750	20–25 × 1–1.5	6-10 ×2-3	1	Uecker (1988)
	P. elaeagnicola	175–413 × 83–185	10.0-22.5 × 1.5-2.7	6.0-7.4 × 1.7-2.2	19–43 × 0.7–1.2	Chang <i>et al.</i> (2005)
	D. elaeagni-glabrae	330-1170	16–28 × 1.5–2.5	6–13 × 1.5–3	7.5–22.5 × 1–2	This study
	D. incompleta	207–650	8–22 × 1–2.5		19-44 × 0.5-1.5	This study
Neolitsea	D. velutina	69-428	10-23 × 1-2.5	5.5–10 × 2–2.5	11–27.5 × 0.5–1.5	This study
AR, DP, FAU BRIP: Austra China. CGM maintained at at Institute of	: Isolates in culture co lian plant pathogen cu CC: China General Mi t the Westerdijk Institu Microbiology, CAS, CP	Illection of Systematic N Inture collection, Queen crobiological Culture Co te; LGMF: Culture colle nina; MFLUCC: Mae Fa	lycology and Microbiology La sland, Australia; CBS : Weste ollection; CMW : culture colle ction of Laboratory of Geneti h Luang University Culture C	boratory, USDA-ARS, Beltsville, Maryland, I ardijk Fungal Biodiversity Institute, Utrecht, 1 ction (CMW) of the Forestry and Agricultura cto Microorganisms, Federal University of collection; ZJUD : Zhe Jiang University, Chine	JSA; BCRC : Bioresource Collection and The Netherlands; CFCC : China Forestry ¹ al Biotechnology Institute; CPC : working Parana, Curitiba, Brazil; LC : Working col a.	Research Center, Taiwan; Cutture Collection Center, collection of Pedro Crous bilection of Lei Cai, housed

Table 3. Synoptic characters of Diaporthe spp. referred to in this study.

Fig. 4. *Diaporthe elaeagni-glabrae* (CGMCC 3.18287). **A–B.** 14-d-old culture on PDA; **C.** Conidiomata; **D–H.** Conidiophores; **I.** Alpha conidia; **J.** Beta conidia. Bars: C = 100 µm; D–J = 10 µm.

Description: On PDA: Conidiomata globose, to 330–1170 µm, erumpent, with slightly elongated black necks, yellowish or dirty white, spiral conidial cirri extruding from ostioles. Conidiophores 16–28 × 1.5–2.5 µm, cylindrical, phialidic, septate, branched, sometimes inflated. Alpha conidia 6–13 × 1.5–3 µm ($\overline{X} = 8.3 \pm 1.4 \times 2.2 \pm 0.3$, n = 30), hyaline, fusiform or oval, usually biguttulate. Beta conidia 7.5–22.5 × 1–2 µm ($\overline{X} = 15.1 \pm 3.5 \times 1.2 \pm 0.2$, n = 40), hyaline, filiform, smooth, curved, base truncate.

Culture characters: Cultures incubated on PDA at 25 °C in darkness, growth rate 7 mm diam/d. Colony pale yellowish, greenish to brownish at the centre, reverse pale yellowish and brownish at the centre with age. Aerial mycelium white, sparse, fluffy, with irregular margin and visible conidiomata at maturity.

Additional material examined: China: Jiangxi Province: on diseased leaves of *Elaeagnus glabra*, 5 Sep. 2013, Y.H. Gao, culture LC 4806.

Diaporthe helianthi Munt.-Cvetk. *et al.*, *Nova Hedwigia* 34: 433 (1981). (Fig. 5)

Description: Sexual morph not produced. Conidiomata pycnidial globose to subglobose, dark brownish to black,

erumpent or immersed in medium, translucent conidia exuded from the ostioles, 110–380 µm diam. *Conidiophores* cylindrical, straight or sinuous, apical or base sometimes swelling, 11.5–23.5 × 1.8–3.5 µm ($\overline{X} = 16 \pm 3 \times 2.5 \pm 0.5$, n = 30). *Beta conidia* filiform, hamate or slightly curved, base truncate, tapering towards one apex, 11.5–32 × 0.5–2 µm ($\overline{X} = 20 \pm 7.5 \times 1 \pm 0.4$, n = 20). *Alpha conidia* not observed.

Culture characters: Cultures on PDA at 25 °C in dark, with 12/12 h alternation between daylight and darkness pure white (surface) and pale yellow to cream (reverse). Colony pellicular, forming less pigmented sectors, with concentric rings of gummy mycelium. Growth rate was 10.5 mm diam/d.

Material examined: Ukraine: from seeds of Helianthus annuus, 30 Oct. 2015, W.J. Duan culture LC 6173. – Japan: Lagerstroemia indica, 30 Oct. 2015, W.J. Duan, culture LC 6185.

Notes: Diaporthe helianthi, responsible for stem canker and grey spot disease of sunflower (*Helianthus annuus*) (Muntanola-Cvetkovic *et al.* 1981), has been listed in the Chinese quarantine directory. There is increasing evidence that this serious sunflower pathogen is being quickly and globally disseminated with international trade. The cases reported here were intercepted from imported sunflower seeds from Ukraine and *Lagerstroemia indica* from Japan.

Fig. 5. *Diaporthe helianthi* (LC 6185). **A–B.** 7-d-old culture on PDA; **C.** Conidiomata; **D–F.** Conidiophores; **G–H.** Beta conidia. Bars: C = 100 μm; D–H = 10 μm.

Diaporthe incompleta Y.H. Gao & L. Cai, **sp. nov.** MycoBank MB820681 (Fig. 6)

Etymology: Named after the absence of alpha conidia.

Diagnosis: Diaporthe incompleta is phylogenetically distinct and differs morphologically from other species recorded from *Elaeagnus* and *Camellia* in the much longer beta conidia (Table 3).

Type: **China**: *Yunnan Province*: Xishuangbanna, on diseased of *Elaeagnus glabra*, 19 Apr. 2015, *F. Liu* (HMAS 247088 – holotype, dried culture; CGMCC 3.18288 = LC 6754 – ex-type culture).

Description: Conidiomata pycnidial, subglobose to globose, brownish to black, 207–650 µm diam, cream to pale luteous

conidial droplets exuding from the central ostioles. Conidiophores 8–22 × 1–2.5 µm, cylindrical, hyaline, septate, unbranched, smooth, slightly curved, tapering towards apex. Alpha conidia not observed. Beta conidia 19–44 × 0.5–1.5 µm ($\overline{X} = 30.5 \pm 8.7 \times 1.1 \pm 0.4$, n = 30), smooth, hyaline, filiform, base subtruncate, straight or curved.

Culture characters: Cultures incubated on PDA at 25 °C in darkness, growth rate 16.5 mm diam/d. Colony entirely white, flat, reverse pale yellowish, becoming brownish zoned at the centre with age. Aerial mycelium white, cottony, margin lobate, conidiomata visible at maturity.

Additional material examined: **China**: Yunnan Province: Xishuangbanna, on diseased leaves of *Camellia sinensis*, 19 Apr. 2015, *F. Liu*, culture LC 6706.

Fig. 6. *Diaporthe incompleta* (CGMCC 3.18288). **A.** Leaves of host plant; **B–C.** 7-d-old culture; **D.** Conidiomata; **E–F.** Conidiophores; **G.** Beta conidia. Bars: D = 100 μm; E–G = 10 μm.

Diaporthe podocarpi-macrophylli Y.H. Gao & L. Cai, sp. nov. MycoBank MB820682 (Fig. 7)

Etymology: Named after the host plant *Podocarpus macrophyllus*.

Diagnosis: *Diaporthe podocarpi-macrophylli* can be distinguished from the phylogenetically closely related species *D. pseudophoenicicola* (97 % identity in ITS, 90 % in *TEF1*, 98 % in *TUB*, 97 % in *HIS*, and 97 % in *CAL*). Morphologically, *D. podocarpi-macrophylli* differs from other species occurring on the host genera *Podocarpus* and *Olea*, i.e. *D. cinerascens* and *Phomopsis podocarpi* in its wider and shorter alpha co-

Fig. 7. *Diaporthe podocarpi-macrophylli* (CGMCC 3.18281). A–B. 30-d-old culture on PDA; C. Conidiomata; D–F. Conidiophores; G–I. Alpha and beta conidia. Bars: C = 100 µm; D–I = 10 µm.

nidia and the presence of beta conidia (Chang *et al.* 2005, Gomes *et al.* 2013; https://nt.ars-grin.gov/fungaldatabases/).

Type: **Japan**: on healthy leaves of *Podocarpus macrophyllus*, 20 Sep. 2014, *W.J. Duan* (HMAS 247084 – holotype, dried culture; CGMCC 3.18281 = LC 6155 – ex-type culture).

Description: Conidiomata pycnidial in culture on PDA, solitary or aggregated, deeply embedded in the PDA, erumpent, dark brown to black, 222–699 µm diam, yellowish translucent conidial drops exuding from the ostioles. Alpha conidiophores $6-18 \times 1.5-3 \text{ µm}$ ($\overline{X} = 12.3 \pm 2.6 \times 2.1 \pm 0.3, n = 30$), hyaline, septate, branched, cylindrical, straight to sinuous, sometimes inflated, occurring in dense clusters. Beta conidiophores

10.5–27 × 1.5–2.5 µm (\overline{x} = 15.3 ± 4.3 × 2.1 ± 0.3, *n* = 30), cylindrical to clavate, hyaline, septate, branched, smooth, straight. *Alpha conidia* 3.5–8.5 × 1–3 µm (\overline{x} = 6.3 ± 1.7 × 2.1 ± 0.7, *n* = 50), unicellular, aseptate, fusiform, hyaline, usually biguttulate and acute at both ends. *Beta conidia* 8.5–31.5 × 0.5–2 µm (\overline{x} = 19.5 ± 7.1 × 1.1 ± 0.4, *n* = 30), hyaline, aseptate, eguttulate, filiform, curved, tapering towards both ends, base truncate.

Culture characters: Cultures incubated on PDA at 25 °C in darkness, growth rate 12.5 mm diam/d. Colony at first white, becoming cream to yellowish, flat, with dense and felted mycelium, reverse pale brown with brownish dots with age, with visible solitary or aggregated conidiomata at maturity.

Fig. 8. Diaporthe undulata (CGMCC 3.18293). A. Leaves of host plant; B–C. 30-d-old culture on PNA medium; D. Conidiomata; E. Conidiophores; F–G. Alpha conidia. Bars: D = 100 μm; E–G = 10 μm.

Additional material examined: Japan: on healthy leaves of *Podocarpus macrophyllus*, 20 Sep. 2014, *W.J. Duan*, culture LC 6141; *ibid*. culture LC 6144; *ibid*. culture LC 6156; *ibid*. culture LC 6157. – **China:** *Zhejiang Province*: on healthy leaves of *P. macrophyllus*, 10 Jul. 2015, *W.J. Duan*, culture LC 6194; *ibid*. culture LC 6195; *ibid*. culture LC 6196; *ibid*. culture LC 6197; *ibid*. culture LC 6198; *ibid*. culture LC 6199; *ibid*. culture LC 6200; *ibid*. culture LC 6201; *ibid*. culture LC 6202; *ibid*. culture LC 6235. – **Italy:** on healthy leaves of *Olea europaea*, 20 Sep. 2014, *W.J*. Duan, culture LC 6229.

Diaporthe undulata Y.H. Gao & L. Cai, **sp. nov.** MycoBank MB820683 (Fig. 8)

Etymology: Named after the colony's undulate margin.

Diagnosis: Diaporthe undulata differs from the most closely related species, *D. biconispora*, in several loci (94 % in ITS, 84 % in *TEF1*, and 93 % in *TUB*), and from other *Diaporthe* species in the obpyriform conidiophores and shorter and wider alpha conidia (Table 3).

Type: **China-Laos border**: on diseased leaves of unknown host, 19 Apr. 2014, *F. Liu* (HMAS 247091 – holotype, dried culture; CGMCC 3.18293 = LC 6624 – ex-type culture).

Description: Conidiomata pycnidial, irregular, embedded in the needle, erumpent, necks, hairy, 282–543 µm long, coated with short hyphae, one to several necks forming from a single pycnidium. *Conidiophores* obpyriform, hyaline, phiailidic, septate, branched, 5–17.5 × 2–3 µm ($\overline{X} = 9.7 \pm 4.0 \times 2.4 \pm 0.5$, n = 20). *Alpha conidia* ellipsoid, hyaline, biguttulate, rounded at both ends, 5–6.5 × 2–3 ($\overline{X} = 5.8 \pm 0.4 \times 2.3 \pm 0.3$, n = 50). *Beta conidia* not observed.

Culture characters: Cultures incubated on PDA at 25 °C in darkness, growth rate 10.5 mm diam/d. Colony entirely white, reverse pale yellowish and dark brownish at the centre with age. Aerial mycelium white, cottony, dense, with undulate margin and visible conidiomata at maturity.

Additional material examined: China-Laos border: unknown host, 19 Apr. 2014, F. Liu, culture LC 8110; *ibid*. culture LC 8111.

Diaporthe velutina Y.H. Gao & L. Cai, **sp. nov.** MycoBank MB820684 (Fig. 9)

Etymology: Named after the felted colony.

Diagnosis: *Diaporthe velutina* is distinguished from *D. anacardii* in the ITS, *TEF1*, *TUB* and *HIS* loci (99 % in ITS, 95 % in *TEF1*, 99 % in *TUB*, and 98 % in *HIS*), and from

Fig. 9. *Diaporthe velutina* (CGMCC 3.18286). **A.** Diseased leaves; **B–C.** 30-d-old culture on PDA; **D.** Conidiomata; **E.** Conidiophores; **E.** Alpha and beta conidia. Bars: D = 100 μm; E–F = 10 μm.

other *Diaporthe* species reported from *Camellia sinensis* in the more variable size of the alpha conidia (Table 3).

Type: **China**: *Jiangxi Province*: on diseased leaves of *Neolitsea* sp., 5 Sep. 2013, *Y.H. Gao* (HMAS 247087 – holotype, dried culture; CGMCC 3.18286 = LC 4421 – ex-type culture).

Description: Conidiomata pycnidial, globose, black, embedded in PDA, aggregated in clusters, 69–428 µm diam, cream translucent drop of conidia exuded from the central ostioles. *Conidiophores* 10–23 × 1–2.5 µm, cylindrical, hyaline, branched, densely aggregated, slightly tapering towards the apex, sometimes slightly curved. *Alpha conidia* 5.5–10 × 2–2.5 µm ($\overline{X} = 6.9 \pm 0.9 \times 2.2 \pm 0.2$, n = 50), unicellular, aseptate, hyaline, fusoid to ellipsoid or clavate, bi-guttulate or multi-guttulate. *Beta conidia* 11–27.5 × 0.5–1.5 µm ($\overline{X} = 16.1 \pm 5.0 \times 0.8 \pm 0.4$, n = 30), smooth, hyaline, apex acutely rounded, curved.

Culture characters: Cultures incubated on PDA at 25 °C in darkness, growth rate 18.75 mm diam/d. Colony entirely white, surface mycelium greyish to brownish at the centre,

dense, felted, conidiomata erumpent at maturity, reverse centre yellowish to brownish.

Additional material examined: **China**: Jiangxi Province: Yangling, on diseased leaves of *Neolitsea* sp., 5 Sep. 2013, *Y.H. Gao*, culture LC 4419; *ibid*. culture LC 4422; Gannan Normal University, unknown host, 23 Apr. 2013, *Q. Chen*, culture LC 4788; Fengshan, on diseased leaves of *Callerya cinerea*, 5 Sep. 2013, *Y.H. Gao*, culture LC 4641. *Yunnan Province*: Xishuangbanna, on diseased leaves of *Camellia sinensis*, 19 Apr. 2015, *F. Liu*, culture LC 6708; *loc. cit.*, on healthy leaves of *C. sinensis*, 21 Apr. 2015, *F. Liu*, culture LC 6519.

Diaporthe xishuangbanica Y.H. Gao & L. Cai, sp. nov. MycoBank MB820685 (Fig. 10)

Etymology: Named after the locality, Xishuangbanna.

Diagnosis: *Diaporthe xishuangbanica* can be distinguished from the phylogenetically closely related *D. tectonigena* in several loci (98 % in ITS, 90 % in *TEF1*, and 96 % in *TUB*)

Fig. 10. Diaporthe xishuangbanica (CGMCC 3.18283). A–B. 7-d-old culture on PDA; C–D. 30-d-old culture on PNA medium; E. Conidiomata;
F–K. Conidiophores; L–N. Alpha conidia. Bars: E = 100 μm; F–N = 10 μm.

(Fig. 2), and from other *Diaporthe* species reported from *Camellia* in the longer conidiophores and alpha conidia (Table 3).

Type: **China**: *Yunnan Province*: Xishuangbanna, on diseased leaves of *Camellia sinensis*, 19 Apr. 2015, *F. Liu* (HMAS 247083 – holotype, dried culture; CGMCC 3.18283 = LC 6744 – ex-type culture).

Description: Conidiomata pycnidial, globose, 180–310 µm diam, scattered on the pine needle. Conidiophores cylindrical, 13–34.5 × 1.5–3 µm (\overline{x} = 20.9 ± 5.2 × 2.1 ± 0.3, *n* = 40), branched, septate, straight, sometimes sinuous or lateral. Alpha conidia 7–9.5 × 2.5–3.5 µm (\overline{x} = 8.3 ± 0.7 × 2.8 ± 0.3, *n* = 30), fusiform, hyaline, multi-guttulate. Beta conidia not observed.

Culture characters: Cultures incubated on PDA at 25 °C in darkness, growth rate 17.5 mm diam/d. Colony entirely white, reverse pale yellowish to greenish. Aerial mycelium white, velvety, margin well defined, with visible conidiomata at maturity.

Additional material examined: China: Yunnan Province: Xishuangbanna, on diseased leaves of Camellia sinensis, 19 Apr. 2015, F. Liu, culture LC 6707 (CGMCC 3.18282).

Diaporthe yunnanensis Y.H. Gao & L. Cai, **sp. nov.** MycoBank MB820686 (Fig. 11)

Etymology: Named after the location where the fungus was collected, Yunnan Province.

Diagnosis: Diaporthe yunnanensis can be distinguished from the phylogenetically closely related *D. siamensis* (96 % in ITS, 91 % in *TEF1*, and 94 % in *TUB*) (Fig. 2), and from other *Diaporthe* species reported on the genus *Camellia* in the smaller alpha conidia (Table 3).

Type: **China**: *Yunnan Province*: Xishuangbanna, on healthy leaves of *Coffea* sp., 20 Sep. 2014, *W.J. Duan* (HMAS 247096 – holotype, dried culture; CGMCC 3.18289 = LC 6168 – ex-type culture).

Description: Conidiomata pycnidial, 195–880 µm diam, globose or irregular, erumpent, solitary or aggregated together, dark brown to black. *Conidia* exuding from the pycnidia in white to cream drops. *Conidiophores* cylindrical, straight or slightly curved. *Alpha conidia* 3–6.5 × 1–2.5 µm ($\overline{x} = 5.5 \pm 1 \times 2 \pm 0.5$, n = 30), fusiform, hyaline, biguttulate, with one end obtuse and the other acute. *Beta conidia* 13.5–33.5 × 1–1.5 µm ($\overline{x} = 27.5 \pm 5.5 \times 1.5 \pm 0.3$, n = 30), hyaline,

Fig. 11. *Diaporthe yunnanensis* (fCGMCC 3.18289). **A–B.** 7-d-old culture on PDA; **C.** Conidiomata; **D.** Conidiophores; **E.** Alpha and beta conidia; **F.** Beta conidia. Bars: C = 100 μm; D–F = 10 μm.

aseptate, hamate or curved, base truncate.

Culture characters: Colonies on PDA flat, with a moderate growth rate of 5.5 mm diam/d, with abundant dirty white and yellowish pigmented mycelium, dry, felted, extensive thin, and in reverse the centre cream, with zone rings of pale to dark brownish pigmentation.

Additional material examined: China: Yunnan Province: Xishuangbanna, on healthy leaves of *Coffea* sp., 20 Sep. 2014, *W.J. Duan*, culture LC 8106; *ibid*. culture LC 8107.

Diaporthe sp. 1 (Fig. 12)

(119.12)

Description: Conidiomata pycnidial, subglobose to globose, dark brown to black, deeply embedded in the substrate, scattered on the substrate surface, embedded in PDA, clusters in group of 2–7 pycnidia, 268–509 µm, yellowish drop of conidia diffusing from the central ostioles. Conidiophores 6.5–19.5 × 1–3 µm, cylindrical, hyaline, septate, branched, straight to sinuous, base inflated, slightly tapering towards the apex. Alpha conidia 7.5–13.5 × 2–3.5 µm ($\overline{X} = 9.9 \pm 1.4 \times 2.8 \pm 0.4$, n = 30), unicellular, hyaline, fusoid to ellipsoid or clavate, two or several large guttulae

observed, base subtruncate. *Beta conidia* 15–40.5 × 1–2.5 μ m (\overline{x} = 26.0 ± 5.8 × 1.8 ± 0.5, *n* = 30), smooth, hyaline, curved, base subtruncate, tapering towards one apex.

Culture characters: Cultures incubated on PDA at 25 °C in darkness, growth rate 7.83 mm diam/day. Colony entire, white to dirty pink, cottony, sparse, brownish to black conidiomata erumpent at maturity, coated with white hypha, granular at margin, reverse pale brown, with brownish dots when maturity.

Material examined: **China**: *Zhejiang Province*: Gutianshan Nature Reserve (29°20' N 18°14' E), on leaves of *Alnus mill*, Jan. 2010, *Y.Y. Su* (culture CGMCC 3.18292 = LC 0771).

Notes: The present culture belongs to the *Diaporthe eres* complex, which is reported from a very wide range of host plants and includes mostly opportunistic pathogens or secondary invaders on saprobic host substrata (Udayanga *et al.* 2014a, Gao *et al.* 2016). Species delimitation in this complex is currently unclear. Udayanga *et al.* (2015) accepted nine phylogenetic species in the *D. eres* complex, including *D. alleghaniensis*, *D. alnea*, *D. bicincta*, *D. celastrina*, *D. eres*, *D. helicis*, *D. neilliae*, *D. pulla*, and *D. vaccinia*. Gao *et al.* (2016) examined 17 isolates belonging to the *D. eres*

Fig. 12. *Diaporthe* sp. 1 (CGMCC 3.18292). **A.** Leaves of host plant; **B–C.** 30-d-old culture on PDA; **D.** Conidiomata; **E–F.** Conidiophores; **G.** Beta conidia; **H–I.** Alpha conidia. Bars: D = 100 μm; E–I = 10 μm.

complex, and reported that many presented intermediate morphology among "species" and the phylogenetic analyses often resulted in ambiguous clades with short branch and moderate statistical support. The identification of taxa in this group remains unresolved.

Diaporthe sp. 2

Culture characters: Cultures incubated on PDA at 25 °C in darkness, growth rate, slow, 3.83 mm diam/d. Colony low, convex, entire white to yellowish, reverse brownish. Aerial mycelia white, dry, downy, with near-circular margin.

Material examined: Japan: on leaves of *Acer* sp., 20 Sep. 2014, *W.J. Duan*, culture CGMCC 3.18291 = LC 6140, culture LC 8112; *ibid.* culture LC 8113.

Notes: Although three isolates clustered in a clade distinctly different from known species in the genus included, they are not formally described because they were sterile. *Diaporthe* sp. 2 shares a low homology to the most closely related species, *D. rhoina* (95 % in ITS, 87 % in *TEF1*, 97 % in *TUB*, 94 % in *HIS*, and 95 % in *CAL*). Five *Diaporthe* species are so far only known from the sterile state, including *D. endophytica*, *D. inconspicua*, *D. infecunda*, *D. asheicola*, and *D. sterilis* (Gomes *et al.* 2013, Lombard *et al.* 2014).

Diaporthe averrhoae (C.Q. Chang *et al.*) Y.H. Gao & L. Cai, comb. nov.

MycoBank MB821437

Basionym: Phomopsis averrhoae C.Q. Chang et al., Mycosystema 24: 6 (2005).

Type: **China**: *Fujian Province*: on living branches of *Averrhoa carambola*, *Y.H. Cheng* (SCHM 3605 – holotype; AY618930, ITS sequence derived from the holotype SCHM 3605).

Diaporthe camptothecae (C.Q. Chang *et al.*) Y.H. Gao & L. Cai, comb. nov.

MycoBank MB821438

Basionym: Phomopsis camptothecae C.Q. Chang et al., Mycosystema 24: 145 (2005).

Type: **China**: *Hunan Province*: on living branches of *Camptotheca acuminate*, *L.J. Luo* (SCHM 3611 – holotype; AY622996, ITS sequence derived from the holotype SCHM 3611).

Diaporthe chimonanthi (C.Q. Chang *et al.*) Y.H. Gao & L. Cai, comb. nov.

MycoBank MB821439

Basionym: Phomopsis chimonanthi C.Q. Chang et al., Mycosystema 24: 146 (2005).

Type: **China**: *Hunan Province*: on living branches of *Chimonanthus praecox*, *C.Q. Chang* (SCHM 3614 – holotype; AY622993, ITS sequence derived from the holotype SCHM 3614).

Diaporthe eucommiae (F.X. Cao *et al.*) Y.H. Gao & L. Cai, comb. nov.

MycoBank MB821440

Basionym: Phomopsis eucommiae F.X. Cao et al., J. Middle-South China Forestry Coll. **10**: 34 (1990); as 'eucommi'.

Type: **China**: *Guangdong Province*: from leaves of *Eucommia ulmoides*, *F.X. Cao* (SCHM 0020 – holotype; AY601921, ITS sequence derived from the holotype SCHM 0020).

Diaporthe eucommiicola (C.Q. Chang *et al.*) Y.H. Gao & L. Cai, comb. nov.

MycoBank MB821441

Basionym: Phomopsis eucommiicola C.Q. Chang et al., Mycosystema 24: 147 (2005).

Type: **China**: *Hunan Province*: on living branches of *Eucommia ulmoides* and *Styrax hypoglauca*, *L.J. Luo* (SCHM 3607 – holotype; AY578071, ITS sequence derived from the holotype SCHM 3607).

Diaporthe glabrae (C.Q. Chang *et al.*) Y.H. Gao & L. Cai, comb. nov.

MycoBank MB821443

Basionym: Phomopsis glabrae C.Q. Chang et al., Mycosystema 24: 8 (2005).

Type: **China**: *Fujian Province*: on living branches of *Bougainvillea glabra*, *Y.H. Cheng* (SCHM 3622 – holotype; AY601918, ITS sequence derived from the holotype SCHM 3622).

Diaporthe lagerstroemiae (C.Q. Chang *et al.*) Y.H. Gao & L. Cai, comb. nov.

MycoBank MB821444

Basionym: Phomopsis lagerstroemiae C.Q. Chang et al., Mycosystema 24: 148 (2005).

Type: **China**: *Hunan Province*: on living branches of *Lagerstroemia indica*, *C.Q. Chang* (SCHM 3608 – holotype; AY622994, ITS sequence derived from the holotype SCHM 3608).

Diaporthe liquidambaris (C.Q. Chang *et al.*) Y.H. Gao & L. Cai, comb. nov.

MycoBank MB821446

Basionym: Phomopsis liquidambaris C.Q. Chang et al., Mycosystema 24: 9 (2005).

Type: **China**: *Fujian Province*: on living branches of *Liquidambar formosana*, Y.H. Cheng (SCHM 3621 – holotype; AY601919, ITS sequence derived from the holotype SCHM 3621).

Diaporthe loropetali (C.Q. Chang *et al.*) Y.H. Gao & L. Cai, comb. nov.

MycoBank MB821448

Basionym: Phomopsis loropetali C.Q. Chang et al., Mycosystema 24: 148 (2005).

Type: **China**: Hunan Province: on living branches of *Loropetalum chinense*, *C.Q. Chang* (SCHM 3615 – holotype; AY601917, ITS sequence derived from the holotype SCHM 3615).

Diaporthe magnoliicola Y.H. Gao & L. Cai, nom. nov. MycoBank MB821459

Replaced name: Phomopsis magnoliae M.M. Xiang et al., My-cosystema **21**: 501 (2002). *Type*: **China**: *Guangdong Province*: on leaves of *Magnolia coco*, *Z.D. Jiang* (SCHM 3001 – holotype; AY622995, ITS sequence derived from the holotype SCHM 3001).

Note: The epithet *magnoliae* is occupied, so *Diaporthe magnoliicola* is proposed as a replacement name.

Diaporthe michelina (C.Q. Chang *et al.*) Y.H. Gao & L. Cai, **comb. nov.**

MycoBank MB821460

Basionym: Phomopsis michelina C.Q. Chang et al., Mycosystema 24: 9 (2005); as 'micheliae'.

Type: **China**: *Fujian Province*: on living branches of *Michelia alba*, *Y.H. Cheng* (SCHM 3603 – holotype; AY620820, ITS sequence derived from the holotype SCHM 3603).

Diaporthe phyllanthicola (C.Q. Chang *et al.*) Y.H. Gao & L. Cai, comb. nov.

MycoBank MB821461

Basionym: Phomopsis phyllanthicola C.Q. Chang et al., Mycosystema 24: 10 (2005).

Type: **China**: *Fujian Province*: on living branches of *Phyllanthus emblica*, *Y.H. Cheng* (SCHM 3680 – holotype; AY620819, ITS sequence derived from the holotype SCHM 3680).

DISCUSSION

In this study, eight new species of *Diaporthe* are introduced, having been isolated from various plant hosts collected in different countries. Twelve *Phomopsis* species described from China were subjected to molecular analysis, and transferred to *Diaporthe* to conform to the "one fungus one name" rule (Udayanga *et al.* 2011, Rossman *et al.* 2016). To address the taxonomy of the other *Phomopsis* species described from China, neo- or epitypes will need to be designated to resolve their position and confirm their placement in *Diaporthe*.

Previous taxonomic studies in *Diaporthe* (syn. *Phomopsis*) have been primarily based on morphology, which has been shown to be unnatural in reflecting evolutionary history due to the simple and plastic morphological characters (Gao et al. 2015). The same applies to many other genera of ascomycetes. For example, species referred to Phoma have been shown to be highly polyphyletic and scattered throughout at least six families within Pleosporales (Aveskamp et al. 2010, Chen et al. 2015). Although Diaporthe was previously thought to be monophyletic based on its typical and unique Phomopsis asexual morph and diaporthalean sexual morph (Gomes et al. 2013), a paraphyletic nature is revealed in the present study (Fig. 1). Several genera, notably Ophiodiaporthe (Fu et al. 2013), Pustulomyces (Dai et al. 2014), Phaeocytostroma, and Stenocarpella (Lamprecht et al. 2011), are shown to be embedded in Diaporthe s. lat., none of which present an independent lineage from Diaporthe as currently circumscribed (Fig. 1). These genera were established based on their morphological characteristics (Vasilyeva et al. 2007, Lamprecht et al. 2011, Fu et al. 2013, Dai et al. 2014). For example, Ophiodiaporthe produces only one type of globose or subglobose conidia that differs from the dimorphic (fusiform and filiform) conidia of Diaporthe (Fu et al. 2013); Phaeocytostroma and Stenocarpella produce pigmented alpha conidia which differ from the hyaline conidia of Diaporthe (Lamprecht et al. 2011); Pustulomyces produces larger, straight or sigmoid conidia (Dai et al. 2014). Phaeocytostroma and Stenocarpella were originally suspected to be members of Botryosphaeriaceae (Botryosphaeriales) because of their pigmented alpha conidia and diplodia-like morphology (Crous et al. 2006). However, they were subsequently allocated to Diaporthales based on phylogenetic analysis (Lamprecht et al. 2011), which is confirmed in this study.

The large "Diaporthe" clade embedded with the heterogeneous genera Ophiodiaporthe, Pustulomyces, Phaeocytostroma, and Stenocarpella is probably a typical example of divergent evolution in morphological characters. Such an evolution could have been driven by host and/or environmental adaptations. For example, the monotypic Ophiodiaporthe is associated with Cyathea lepifera (a fern), while Pustulomyces is bambusicolous (Dai et al. 2014). On the contrary, none of the previously named over 1 900 Diaporthe / Phomopsis species was recorded from a fern or Bambusaceae (https:// nt.ars-grin.gov/fungaldatabases/). It is therefore reasonable to speculate that the speciation of Ophiodiaporthe and Pustulomyces, as well as the distinctly different morphologies from their close Diaporthe allies, are the consequences of evolutionary adaption to new hosts. Similarly, Phaeocytostroma and Stenocarpella are mainly restricted to maize (Zea mays), causing root stalk and cob rot (Stovold et al. 1996, Lamprecht et al. 2011).

Splitting *Diaporthe* into many smaller genera would achieve monophyletic groupings, but would also create many additional problems. The "new genera" split from *Diaporthe* would have no recognisable morphological distinctions in either sexual or asexual morphs. In addition, splitting *Diaporthe* into many smaller genera will result in numerous name changes, which is certainly an unfavourable option for both mycologists and plant pathologists.

Diaporthe has long been well-known to include plant pathogens, some on economically important hosts, such as Helianthus annuus (sunflower; Thompson et al. 2011) and Glycine max (soybean; Santos et al. 2011). However, the number of known endophytic Diaporthe species has increased rapidly in recent years (Huang et al. 2015, Gao et al. 2016). Wang et al. (2013) concluded that our current knowledge of the ecology and biology of endophytic Diaporthe species is just the "tip of the iceberg". In 2013, a new sterile endophytic species, Diaporthe endophytica, was formally named (Gomes et al. 2013). The research on Citrus conducted by Huang et al. (2015) recorded seven apparently undescribed endophytic Diaporthe species. Inspection of Diaporthe species on Camellia sinensis resulted in the description of four new and five known species, all occurring as endophytes (Gao et al. 2016). Because many of these plant pathogenic Diaporthe species are commonly encountered as sterile endophytes, a multigene DNA database will be essential to aid in their future identification.

Accurate identification of fungal pathogens is the basis of quarantine and disease control (Udayanga *et al.* 2011).

Thompson *et al.* (2011) reported significant damage to sunflower in Australia caused by *Diaporthe helianthi* which was originally only known from Europe (former Yugoslavia), and is apparently an invasive species in Australia. *Diaporthe helianthi* is listed in the Chinese quarantine directory, and has long been considered a predominant disease limiting production in Europe (Desanlis *et al.* 2013). Duan *et al.* (2016) reported this pathogen on sunflower seeds imported from Ukraine into China. Here, we report another interception of *D. helianthi* from *Lagerstroemia indica* imported from Japan to China. This serves as additional evidence of how quickly serious pathogens such as *Diaporthe* species can be distributed as endophytes or latent pathogens with global trade.

ACKNOWLEDGEMENTS

We thank all the members in LC's lab for help and assistance. This work was supported by grants from the National Natural Science Foundation of China (NSFC 31110103906), and the Ministry of Science and Technology, China (MOST 2014FY120100).

REFERENCES

- Annesi T, Luongo L, Vitale S, Galli M, Belisario A (2015) Characterization and pathogenicity of *Phomopsis theicola* anamorph of *Diaporthe foeniculina* causing stem and shoot cankers on sweet chestnut in Italy. *Journal of Phytopathology* **164**: 412–416.
- Aveskamp MM, de Gruyter J, Woudenberg JHC, Verkley GJM, Crous PW (2010) Highlights of the *Didymellaceae*: a polyphasic approach to characterise *Phoma* and related *pleosporalean* genera. *Studies in Mycology* **65**: 1–60.
- Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. *Mycologia* **91**: 553–556.
- Castlebury LA, Rossman AY, Jaklitsch WJ, Vasilyeva L (2002) A preliminary overview of the *Diaporthales* based on large subunit nuclear ribosomal DNA sequences. *Mycologia* **94**: 1017–1031.
- Chang CQ, Cheng YH, Xiang MM, Jiang ZD (2005) New species of *Phomopsis* on woody plants in Fujian Province. *Mycosystema* **24**: 6–11.
- Chen Q, Jiang JR, Zhang GZ, Cai L, Crous PW (2015) Resolving the *Phoma* enigma. *Studies in Mycology* **82**: 137–217.
- Chi PK, Jiang ZD, Xiang MM (2007) *Flora Fungorum Sinicorum*. Vol. 34. *Phomopsis*. Beijing: Science Press.
- Crous PW, Groenewald JZ, Risède JM, Simoneau P, Hywel-Jones NL (2004) *Calonectria* species and their *Cylindrocladium* anamorphs: species with sphaeropedunculate vesicles. *Studies in Mycology* **50**: 415–430.
- Crous PW, Slippers B, Wingfield MJ, Rheeder J, Marasas WFO, *et al.* (2006) Phylogenetic lineages in the *Botryosphaeriaceae*. *Studies in Mycology* **55**: 235–253.
- Crous PW, Wingfield MJ, Le Roux JJ, Richardson DM, Strasberg D, *et al.* (2015) Fungal Planet Description Sheets: 371–399. *Persoonia*: **35**: 264–327.
- Cubero OF, Crespo A, Fatehi J, Bridge PD (1999) DNA extraction and PCR amplification method suitable for fresh, herbarium-stored,

lichenized, and other fungi. *Plant Systematics and Evolution* **216**: 243–249.

- Dai DQ, Wijayawardene NN, Bhat DJ, Chukeatirote E, Bahkali AH, et al. (2014) Pustulomyces gen. nov. accommodated in Diaporthaceae, Diaporthales, as revealed by morphology and molecular analyses. Cryptogamie, Mycologie 35: 63–72.
- Darriba D, Taboada G L, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. *Nature Methods* **9**: 772.
- Desanlis M, Aubertot JN, Mestries E, Debaeke P (2013) Analysis of the influence of a sunflower canopy on *Phomopsis helianthi* epidemics as a function of cropping practices. *Field Crops Research* **149**: 63–75.
- Diogo EL, Santos JM, Phillips AJ (2010) Phylogeny, morphology and pathogenicity of *Diaporthe* and *Phomopsis* species on almond in Portugal. *Fungal Diversity* **44**: 107–115.
- Dissanayake AJ, Liu M, Zhang W, Chen Z, Udayanga D, *et al.* (2015) Morphological and molecular characterisation of *Diaporthe* species associated with grapevine trunk disease in China. *Fungal Biology* **119**: 283–294.
- Doilom M, Dissanayake AJ, Wanasinghe DN, Boonmee S, Liu JK, et al. (2017) Microfungi on *Tectona grandis* (teak) in northern Thailand. *Fungal Diversity* **82**: 107–182.
- Du Z, Fan XL, Hyde KD, Yang Q, Liang YM, *et al.* (2016). Phylogeny and morphology reveal two new species of *Diaporthe* from *Betula* spp. in China. *Phytotaxa* **269**: 90–102.
- Duan WJ, Duan LJ, Chen XF, Cai L (2016) Identification of the quarantine fungus *Diaporthe helianthi* from the corn seeds imported from Ukraine. *Mycosystema* **35**: 1503–1513.
- Fan XL, Hyde KD, Udayanga D, Wu XY, Tian CM (2015) Diaporthe rostrata, a novel ascomycete from Juglans mandshurica associated with walnut dieback. Mycological Progress 14: 82.
- Fan XL, Tian CM, Qin Y, Liang YM, You CJ, *et al.* (2014) *Cytospora* from *Salix* in northern China. *Mycotaxon* **129**: 303–315.
- Fu CH, Hsieh HM, Chen CY, Chang TT, Huang YM, et al. (2013) Ophiodiaporthe cyatheae gen. et sp. nov., a diaporthalean pathogen causing a devastating wilt disease of Cyathea lepifera in Taiwan. Mycologia **105**: 861–872.
- Gao YH, Sun W, Su YY, Cai L (2014) Three new species of *Phomopsis* in Gutianshan nature reserve in China. *Mycological Progress* **13**: 111–121.
- Gao YH, Su YY, Sun W, Cai L (2015) *Diaporthe* species occurring on *Lithocarpus glabra* in China, with descriptions of five new species. *Fungal Biology* **119**: 295–309.
- Gao YH, Liu F, Cai L (2016) Unravelling *Diaporthe* species associated with *Camellia*. Systematics and *Biodiversity* **14**: 102–117.
- Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. *Applied and Environmental Microbiology* **61**: 1323–1330.
- Gomes R, Glienke C, Videira S, Lombard L, Groenewald J, *et al.* (2013) *Diaporthe*: a genus of endophytic, saprobic and plant pathogenic fungi. *Persoonia* **31**: 1–41.
- Grasso FM, Marini M, Vitale A, Firrao G, Granata G (2012) Canker and dieback on *Platanus acerifolia* caused by *Diaporthe scabra*. *Forest Pathology* **42**: 510–513.
- Guarnaccia V, Vitale A, Cirvilleri G, Aiello D, Susca A, *et al.* (2016) Characterisation and pathogenicity of fungal species associated with branch cankers and stem-end rot of avocado in Italy. *European Journal of Plant Pathology* **146**: 963–976.

- Huang F, Udayanga D, Wang X, Hou X, Mei X, et al. (2015) Endophytic Diaporthe associated with Citrus: A phylogenetic reassessment with seven new species from China. Fungal Biology 119: 331–347.
- Katoh K, Toh H (2010) Parallelization of the MAFFT multiple sequence alignment program. *Bioinformatics* **26**: 1899–1900.
- Lamprecht SC, Crous PW, Groenewald JZ, Tewoldemedhin YT, Marasas WF (2011) *Diaporthaceae* associated with root and crown rot of maize. *IMA Fungus* **2**: 13–24.
- Diedicke H (1911) Die Gattung *Phomopsis. Annales Mycologici* **9**: 8–35.
- Liu F, Wang M, Damm U, Crous PW, Cai L (2016) Species boundaries in plant pathogenic fungi: a *Colletotrichum* case study. *BMC Evolutionary Biology* **16**: 81.
- Liu F, Weir BS, Damm U, Crous PW, Wang Y, *et al.* (2015) Unravelling *Colletotrichum* species associated with *Camellia*: employing ApMat and GS loci to resolve species in the *C. gloeosporioides* complex. *Persoonia* **35**: 63–86.
- Lombard L, Van Leeuwen GCM, Guarnaccia V, Polizzi G, Van Rijswick PC, et al. (2014) Diaporthe species associated with Vaccinium, with specific reference to Europe. Phytopathologia Mediterranea 53: 287–299.
- Machingambi NM, Dreyer LL, Oberlander KC, Roux J, Roets F (2015) Death of endemic *Virgilia oroboides* trees in South Africa caused by *Diaporthe virgiliae* sp. nov. *Plant Pathology* **64**: 1149–1156.
- Masirevic S, Gulya T (1992) Sclerotinia and *Phomopsis*—two devastating sunflower pathogens. *Field Crops Research* **30**: 271–300.
- Ménard L, Brandeis PE, Simoneau P, Poupard P, Sérandat I, et al. (2014) First report of umbel browning and stem necrosis caused by *Diaporthe angelicae* on carrot in France. *Plant Pathology* 98: 421.
- Mostert L, Crous PW, Kang JC, Phillips AJ (2001) Species of *Phomopsis* and a *Libertella* sp. occurring on grapevines with specific reference to South Africa: morphological, cultural, molecular and pathological characterization. *Mycologia* **93**: 146–167.
- Muntanola-Cvetkovic M, Mihaljcevic M, Petrov M (1981) On the identity of the causative agent of a serious *Phomopsis-Diaporthe* disease in sunflower plants. *Nova Hedwigia* **34**: 417–435.
- Nylander JAA (2004) *MrModeltest v. 2.* Program distributed by the author. Uppsala: Evolutionary Biology Centre, Uppsala University.
- O'Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus *Fusarium* are nonorthologous. *Molecular Phylogenetics and Evolution* **7**: 103–116.
- Petch T (1925) Additions to Ceylon fungi. III. Annals of the Royal Botanic Gardens, Peradeniya **9**: 313–328
- Phillips AJL (2003) Morphological characterization of *Diaporthe foeniculacea* and its *Phomopsis* anamorph on *Foeniculum vulgare*. *Sydowia* **55**: 274–285.
- Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, *et al.* (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. *Systematic Biology* **61**: 539–542.
- Rossman AY, Adams GC, Cannon PF, Castlebury LA, Crous PW *et al.* (2015) Recommendations of generic names in *Diaporthales* competing for protection or use. *IMA Fungus* **6**: 145–154.
- Rossman AY, Allen WC, Braun U, Castlebury LA, Chaverri P, et al. (2016) Overlooked competing asexual and sexually typified

generic names of *Ascomycota* with recommendations for their use or protection. *IMA Fungus* **7**: 289–308.

- Rossman A, Udayanga D, Castlebury LA, Hyde KD (2014) (2304) Proposal to conserve the name *Diaporthe eres* against twenty-one competing names (*Ascomycota: Diaporthales: Diaporthaceae*). *Taxon* **63**: 934–935.
- Rytas V, Mark H (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. *Journal of Bacteriology* **172**: 4238–4246.
- Santos JM, Vrandecic K, Cosic J, Duvnjak T, Phillips AJ (2011) Resolving the *Diaporthe* species occurring on soybean in Croatia. *Persoonia* **27**: 9–19.
- Santos L, Alves A, Alves R (2017) Evaluating multi-locus phylogenies for species boundaries determination in the genus *Diaporthe*. *PeerJ* **5**: e3120.
- Smith H, Wingfield MJ, Coutinho TA, Crous PW (1996) Sphaeropsis sapinea and Botryosphaeria dothidea endophytic in Pinus spp. and Eucalyptus spp. in South Africa. South African Journal of Botany 62: 86–88.
- Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. *Bioinformatics* **22**: 2688–2690.
- Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. *Systematic Biology* **57**: 758–771.
- Su YY, Qi YL, Cai L (2012) Induction of sporulation in plant pathogenic fungi. *Mycology* **3**: 195–200.
- Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. *Molecular Biology and Evolution* 28: 2731– 2739.
- Tan Y, Edwards J, Grice K, Shivas R (2013) Molecular phylogenetic analysis reveals six new species of *Diaporthe* from Australia. *Fungal Diversity* 61: 251–260.
- Thompson S, Tan Y, Young A, Neate S, Aitken E, *et al.* (2011) Stem cankers on sunflower (*Helianthus annuus*) in Australia reveal a complex of pathogenic *Diaporthe* (*Phomopsis*) species. *Persoonia* **27**: 80–89.
- Thompson S, Tan Y, Shivas R, Neate S, Morin L, *et al.* (2015) Green and brown bridges between weeds and crops reveal novel *Diaporthe* species in Australia. *Persoonia* **35**: 39–49.
- Torres C, Camps R, Aguirre R, Besoain XA (2016) First report of *Diaporthe rudis* in Chile causing Stem-End rot on 'Hass' avocado fruit imported from California, USA. *Plant Disease* **100**: 1951.
- Udayanga D, Castlebury LA, Rossman AY, Chukeatirote E, Hyde KD (2014a) Insights into the genus *Diaporthe*: phylogenetic species delimitation in the *D. eres* species complex. *Fungal Diversity* **67**: 203–229.
- Udayanga D, Castlebury LA, Rossman AY, Chukeatirote E, Hyde KD (2015) The *Diaporthe sojae* species complex: phylogenetic re-assessment of pathogens associated with soybean, cucurbits and other field crops. *Fungal Biology* **119**: 383–407.
- Udayanga D, Castlebury LA, Rossman AY, Hyde KD (2014b) Species limits in *Diaporthe*: molecular re-assessment of *D. citri*, *D. cytosporella*, *D. foeniculina* and *D. rudis*. *Persoonia* **32**: 83–101.
- Udayanga D, Liu X, McKenzie EHC, Chukeatirote E, Bahkali AHA, *et al.* (2011) The genus *Phomopsis*: biology, applications, species concepts and names of common phytopathogens. *Fungal Diversity* **50**: 189–225.

- Udayanga D, Liu X, Mckenzie EHC, Chukeatirote E, Hyde KD (2012) Multi-locus phylogeny reveals three new species of *Diaporthe* from Thailand. *Cryptogamie, Mycologie* **33**: 295–309.
- Uecker FA (1988) A World list of *Phomopsis* names with notes on nomenclature, morphology and biology. *Mycological Memoir* 13:1–231.
- Úrbez-Torres JR, Peduto F, Smith RJ, Gubler WD (2013) *Phomopsis* dieback: a grapevine trunk disease caused by *Phomopsis viticola* in California. *Plant Disease* **97**: 1571–1579.
- Van Niekerk JM, Groenewald JZ, Farr DF, Fourie PH, Halleen F, et al. (2005) Reassessment of *Phomopsis* species on grapevines. *Australasian Plant Pathology* 34: 27–39.
- Van Rensburg JCJ, Lamprecht SC, Groenewald JZ, Castlebury LA, Crous PW (2006) Characterisation of *Phomopsis* spp. associated with die-back of rooibos (*Aspalathus linearis*) in South Africa. *Studies in Mycology* **55**: 65–74.
- Vasilyeva LN, Rossman, AY, Farr DF (2007) New species of the *Diaporthales* from eastern Asia and eastern North America. *Mycologia* **99**: 916–923.
- Wang J, Xu X, Mao L, Lao J, Lin F, et al. (2013) Endophytic Diaporthe from southeast China are genetically diverse based on multilocus phylogeny analyses. World Journal of Microbiology and Biotechnology 30: 237–243.

- Wehmeyer LE (1926) A biologic and phylogenetic study of stromatic Sphaeriales. American Journal of Botany **13**: 575–645.
- Stovold GE, Newfield A, Priest MJ (1996) Root and stalk rot of maize caused by *Phaeocytostroma ambiguum* recorded for the first time in New South Wales. *Australasian Plant Pathology* **25**: 50–54.
- White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: *PCR Protocols: a guide to methods and applications*. (Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds): 315–322. San Diego: Academic Press.
- Tanney JB, Mcmullin DR, Green BD, Miller JD, Seifert KA (2016) Production of antifungal and antiinsectan metabolites by *Picea* endophyte *Diaporthe maritima* sp. nov. *Fungal Biology* **120**: 1448–1457.
- Zhang K, Su YY, Cai L (2013) An optimized protocol of single spore isolation for fungi. *Cryptogamie, Mycologie* **34**: 349–356.