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Abstract 

The Electric Vehicle Routing Problem with Time Windows (EVRPTW) is an extension of the well-

known VRPTW where electric vehicles (EVs) are used instead of internal combustion engine 

vehicles. An EV has a limited driving range due to its battery capacity and may need recharging to 

complete its route. Recharging can be made at any battery level and may be at any quantity up to 

the battery capacity. Furthermore, the stations may be equipped with chargers with different power 

supply, power voltage, maximum current options which affect the recharge duration. In this study, 

we model the EVRPTW by allowing partial recharges with three recharging configurations which 

can be referred to as normal, fast and super-fast recharges. In faster options, the battery is charged 

with the same energy in a shorter time but at a higher cost. Our objective is to minimize the total 

recharging cost while operating minimum number of vehicles. We formulated this problem as a 

mixed integer linear program and solved the small instances using CPLEX. To solve the larger 

problems, we develop a matheuristic approach which couples the Adaptive Large Neighborhood 

Search (ALNS) approach with an exact method. Our ALNS is equipped with various destroy-repair 

algorithms to efficiently explore the neighborhoods and uses CPLEX to strengthen the routes 

obtained. We carried out extensive experiments to investigate the benefits of fast recharges and test 

the performance of our algorithm using benchmark instances from the literature. The results show 

the effectiveness of the proposed matheuristic and demonstrate the benefits of fast chargers on the 

fleet size and energy costs. 

1. Introduction 

Transportation systems have a major impact on global energy consumption and CO2 emissions 

with a share of around 20-25%. In the US, 26% of the total greenhouse gas (GHG) emissions in 

2014 was generated by transportation systems that utilize fossil fuels (www.epa.gov). Furthermore, 

74% of the domestic freight in 2012 was moved by trucks and the freight volume is expected to 

grow by 39% in 2040 (Bureau of Transportation Statistics, 2014). Similarly, the EU reported that 

transportation was a main contributor with 23.2% of total GHG emissions in 2014 and freight 

transport activity is predicted to grow by around 80% in 2050 compared to 1990 (ec.europa.eu).  

Transportation will remain a major and growing source of GHGs in the future. Hence, governments 

initiated new environmental measures and targets for reducing emissions and cutting the 

dependency on fossil fuels. For instance, US government targets reducing GHG emissions 20% 
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below 2008 levels by 2020 (www.state.gov). The EU aims a reduction of 80-95% by 2050 with 

respect to 1990 (White Paper on Transport, 2011). In December 2016, a commitment was signed 

by 194 countries in New York to set a global action to stop the global temperature rise (unfccc.int). 

Since transportation plays a major part in GHG emissions and road transport contributes with a 

75% share, the new regulations bring limitations to the use of internal combustion engine vehicles 

(ICEVs). In the EU, the use of ICEVs will be reduced by 50% in urban transport by 2030 and 

phased out by 2050. City logistics in major European urban centers will be CO2-free by 2030 

(White Paper on Transport, 2011). The parliaments of Netherlands and Norway recently passed 

new motions that will end sales of new cars powered by fossil fuels after 2025 (Edelstein, 2016). 

Similarly, German Federal Council accepted a resolution that bans the sales of fossil fuel cars by 

2030 (Khan, 2017). 

The targets set by governments and the new regulations encourage the usage of alternative fuel 

vehicles (AFVs) such as solar, electric, biodiesel, LNG, CNG vehicles. Many municipalities, 

government agencies, non-profit organizations, and private companies are converting their fleets 

to include AFVs, either to reduce their environmental impact voluntarily or to meet new 

environmental regulations (Erdoğan and Miller-Hooks, 2012). Consequently, the advancements in 

the electric vehicle (EV) technology have gained momentum in parallel with the growing 

environmental concerns in societies. 

EVs can be classified as battery electric vehicles (BEVs), hybrid electric vehicles (HEVs), and 

fuel-cell electric vehicles (FCEVs) such as cars, vans, trucks, electric trains, airplanes, boats, and 

two-wheelers. In this paper, we refer to EV as a commercial road BEV. A fleet of EVs can be used 

in a variety of transport needs such as public transportation, home deliveries from grocery stores, 

postal deliveries and courier services, distribution operations in different sectors. The main 

advantages of EVs are zero tailpipe emission, high efficiency, and low operating noise (Pollet et 

al., 2012). The number of moving parts in EVs are much less than that of ICEVs and EVs do not 

require regular oil changes (Feng and Figliozzi, 2013). In addition, due to the regenerative 

breaking, break wear is used less which reduces the maintenance costs (Hiermann et al., 2015). On 

the other hand, operating an EV fleet has several drawbacks such as low achievable driving range, 

limited number of recharging stations, and long battery recharging times (Touati-Moungla and Jost, 

2011). These limitations and additional complexities make the route planning of an EV fleet a 
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challenging combinatorial optimization problem. As a result, Electric Vehicle Routing Problem 

(EVRP) and its variants have attracted considerable attention in the recent literature. 

EVRP is an extension to the Capacitated Vehicle Routing Problem (VRP) where a fleet of EVs is 

used instead of ICEVs. The energy stored in the battery is consumed along the journey proportional 

to the distance travelled and the EV may need recharging to complete its tour. Recharging may be 

performed at any battery state of charge (SoC). The stations are scarce and recharging may require 

a significant amount of time, compared to short refueling times at petrol stations. In this paper, we 

address the EVRP with Time Windows (EVRPTW) which was firstly introduced by Schneider et 

al. (2014). EVRPTW assumes that recharging time is a linear function of the energy transferred 

and the battery is fully charged. Bruglieri et al. (2015) relaxed the full charge restriction and 

allowed partial recharging with any quantity up to the battery capacity, which is the current practice 

in real-world applications. 

In this study, we extend the EVRPTW-PR by introducing fast charging option and refer to this 

problem as EVRPTW and Fast Charging (EVRPTW-FC). Basically, we assume that the stations 

are equipped with multiple charger types. They vary in power supply, power voltage, and 

maximum current options, which affect the recharge duration. We formulate this problem as a 0-1 

mixed integer linear program and propose a matheuristic approach to solve it efficiently. Our 

approach combines the Adaptive Large Neighborhood Search (ALNS) with an exact method. At 

each iteration of the ALNS, the feasible solution is destroyed by removing certain customers and 

stations from their routes and then repaired by inserting the removed customers back to the solution 

along with stations when recharging is necessary. When a station is inserted, the charger type and 

recharge quantity are also determined. The solution found by ALNS is then improved periodically 

by solving a mixed linear integer program which optimizes the decisions associated with recharge 

stations, charger types, and recharge quantities given the sequence of the customers visited. 

The main contributions of the paper can be summarized as follows: 

˗ We extend EVRPTW-PR to allow fast charging using multiple charging equipment types 

and present two mathematical programming formulations of EVRPTW-FC. 

˗ As a solution methodology, we develop a matheuristic approach which combines ALNS 

with an exact method. 
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˗ The proposed ALNS involves new destroy and repair mechanisms specific to the nature of 

the problem. 

˗ For a given sequence of customers, we propose a novel formulation of the charging sub-

problem that can be solved to optimality fast. 

˗ We devise an extensive experimental design to validate the performance of the proposed 

methodology and to show the benefits of fast charging. 

The remainder of the paper is organized as follows: Section 2 reviews the relevant literature. 

Section 3 describes the problem and presents the mathematical models. The proposed solution 

approach is described in Section 4. Section 5 presents the computational study and provides the 

numerical results. Finally, the paper closes with concluding remarks in Section 6. 

2. Related Literature 

VRPs with AFVs context have been studied by several researchers in recent years. Conrad and 

Figliozzi (2011) present the recharging VRP where the EVs are recharged at selected customer 

locations during the service. The primary objective is to minimize the number of vehicles while 

the secondary objective minimizes total costs associated with travel distance, service time, and 

recharging. The latter is a penalty cost incurred at each recharge. The charging time is assumed 

constant and the battery SoC when departing from a customer can be full (fully charged) or 80% 

of the capacity (partially charged). The authors used an iterative route construction and 

improvement procedure to solve the problem.  

Erdoğan and Miller-Hooks (2012) considered Green VRP (GVRP) in which AFVs are refueled at 

stations en-route. Refueling times are assumed constant and after refueling the tank becomes full. 

The fuel is consumed proportional to the distance travelled. The problem does not consider any 

vehicle capacity or customer time windows. The objective is to minimize the total travel distance. 

The authors developed two heuristics and designed 52 instances with varying sizes from 20 up to 

500 customers to test their performances.  

Schneider et al. (2014) introduced EVRP with Time Windows (EVRPTW) as an extension to 

GVRP. In contrast to short refueling times in GVRP, the recharging operation may take a 

significant amount of time in EVRPTW. Recharging starts at any SoC, continues until the battery 

is full, and its duration is proportional to the energy transferred. The objective is to minimize the 

total distance travelled by using minimum number of vehicles. The authors proposed a hybrid 
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Variable Neighborhood Search (VNS) and Tabu Search (TS) method and tested its performance 

on the instances for GVRP and Multi-Depot VRP with Inter-Depot Routes. They also generated 

new instances for EVRPTW by modifying Solomon (1987) data and reported their results. 

Desaulniers et al. (2016) tackled the same problem by considering different charging strategies and 

developed branch-price-and-cut algorithms to solve them optimally. Goeke and Schneider (2015) 

extended EVRPTW to include a mixed fleet of EVs and ICEVs. The objective is to minimize the 

total cost defined as a function of speed, gradient and cargo load. Hiermann et al. (2016) addressed 

the Fleet Size and Mix Vehicle Routing Problem with Time Windows where the fleet consists of 

EVs only. They minimize the total cost of vehicle acquisition and distance travelled. Both studies 

used ALNS as the solution methodology. Bruglieri et al. (2015) and Keskin and Çatay (2016) 

relaxed the full recharge restriction and allowed batteries to be recharged up to any level. The 

former minimized the number of vehicles, travel time, waiting time, and recharging time, 

developed a Variable Neighborhood Search Branching method, and used it to solve small size 

instances. The latter extended the model of Schneider et al. (2014) to formulate EVRPTW with 

Partial Recharges (EVRPTW-PR) and proposed an ALNS approach that improved some of the 

best-known results in the literature. Bruglieri et al. (2016) formulated a more effective 

mathematical model for GVRP by reducing the number of variables and eliminating dominated 

stations for each pair of customers. 

Felipe et al. (2014) addressed EVRP by allowing partial recharges using multiple technologies. 

They restricted total route duration but did not consider time windows. They proposed both local 

search algorithms and a Simulated Annealing (SA) based metaheuristic approach. Recently, the 

impact of fast charging option in the presence of time windows has also been studied by Çatay and 

Keskin (2017). 

Montoya et al. (2017) is the first study that extended EVRP to consider nonlinear charging 

functions. The objective function minimizes the total time which includes travel and charging time. 

The authors proposed a hybrid metaheuristic to solve the problem and introduced new benchmark 

instances. New formulations of this problem are proposed in Froger et al. (2017).  

Yang and Sun (2015) modeled location and routing decisions simultaneously for a capacitated EV 

fleet. They consider battery swap stations (BSSs) instead of recharging stations where the EVs 

always depart from stations with full battery. Hof et al. (2017) also investigated EVRP with BSSs 
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and developed an Adaptive VNS (AVNS) approach to solve it. Recently, Schiffer and Walther 

(2017) proposed a location-routing model for EVRPTW allowing partial recharging at customer 

locations. They analyzed the effects of different objective functions. Paz et al. (2017) also modeled 

the same problem considering multi depots and battery swapping option in some locations.  

Pelletier et al. (2017) integrated battery degradation into the model and optimized charging 

schedules at the depot. They also provided managerial insights considering degradation, grid 

restrictions, charging costs, and charging schedules of the fleet. A detailed survey of the goods 

distribution with EVs can be found in Pelletier et al. (2016) and Pelletier et al. (2017). 

3. Problem Description and Model Formulation 

3.1 Problem Description 

Given a homogeneous fleet of EVs, EVRPTW-FC aims to determine a set of routes involving 

customers with known demands, delivery time windows, service durations, and recharging stations 

with different types of chargers. The charging levels can be classified into three categories: Level 

1 (1.4 kW to 1.9 kW), Level 2 (4 kW to 19.2 kW), and Level 3 (50 kW to 100 kW) (Yilmaz and 

Krein, 2013). In line with the current technology, we assume that every station is equipped with 

three types of chargers, which may be referred to as normal, fast, and super-fast charger, 

respectively. While recharging takes less time in fast and super-fast charging options, the unit cost 

of energy is higher since the installation of the chargers requires substantial electrical infrastructure 

and the equipment is more expensive. The charge durations are linear with respect to time at the 

first phase of charging which corresponds to almost full battery while the second phase is non-

linear and can take hours to obtain a fully charged battery (Montoya et al. 2017). On the other hand, 

it is a common industrial practice to operate within the first phase because recharging the battery 

up to full capacity can adversely affect its lifespan (Sweda et al., 2017). So, without loss of 

generality we assume linear recharging times in this study. In addition, we allow only one recharge 

between two consecutive customers which is the realistic situation within the context of urban 

logistics. Our objective function is hierarchical where minimizing the number of vehicles is the 

primary objective while minimizing the total cost of energy consumed is the secondary. 
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(a) Optimal solution using single charger (Total cost=273.93) 

 

(b) Optimal solution using multiple chargers (Total cost=267.60) 

Figure 1. Route plans when each recharging station is equipped with (a) only normal chargers, 

(b) normal, fast and super-fast chargers 
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To describe the general setting and highlight the advantage of using fast chargers we employ the 

instance c104c10-s3 of Schneider et al. (2014) which involves ten customers and three stations. 

The problem is solved using CPLEX and the optimal solution is illustrated in Figure 1. The 

recharging stations are represented with charger icons. The numbers on the icons refer to level 1 

(normal), level 2 (fast), and level 3 (super-fast) chargers. The cargo and battery capacities of the 

vehicles are 200 and 77.75 units, respectively. The vehicles travel one unit distance in one unit of 

time consuming one unit of energy. Normal, fast, and super-fast chargers transfer one unit of energy 

in 3.47, 0.62, and 0.28 time units, respectively, at the cost of 1, 1.1, and 1.2 units, respectively. The 

demands and time windows are provided in Table 1. The values given in brackets placed at the 

beginning (end) of an arc represent the time and battery SoC, respectively, at departure (arrival) 

from (at) the corresponding customer. The arc distances are shown in bold. For ease of 

understanding, we rounded all the values in the figure to the nearest integer whereas the objective 

function values are exact. 

Table 1. Demand and time-window data for the example illustrated in Figure 1 

Depot

D C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Demand - 10 10 30 10 10 40 20 10 20 20

Early service time 0 0 177 0 0 0 0 0 0 0 0

Late service time 1236 1129 243 1119 1122 1094 1111 1126 1122 1113 1133

Customers

 

 

In Figure 1.a, we see the optimal solution of the problem when only normal chargers are available 

at the stations. Two vehicles travel a total distance of 273.93 units at a total energy cost of 273.93. 

The two values coincide because the problem involves only normal chargers and one unit of energy 

is consumed to travel one unit of distance. On the other hand, Figure 1.b shows that all customers 

can be served by only one vehicle in a single tour when fast and super-fast chargers are available. 

This is due to the reduced recharging times at stations which enable the EV to catch the time 

windows of all customers. In this case, the total distance travelled is 239.13 and total cost of energy 

is 267.60. Although fast and super-fast recharges are more expensive, the total cost of energy 

decreases because the EV makes a shorter trip consuming less energy. 
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Table 2. Mathematical notation 

  Sets:  
𝑉 Set of customers 

𝐹 Set of recharging stations 

𝐹′ Set of recharging stations with their copies 

𝑉′ Set of customers and stations with their copies (𝑉 ∪ 𝐹′) 

𝐷𝐷 Set of departure depots 

𝐴𝐷 Set of arrival depots 

𝑉𝐷𝐷 Set of customers and departure depots (𝑉 ∪ 𝐷𝐷) 

𝑉𝐴𝐷 Set of customers and arrival depots (𝑉 ∪ 𝐴𝐷) 

𝑉𝐷𝐷
′  Set of customers, departure depots, and stations with their copies (𝑉′ ∪ 𝐷𝐷) 

𝑉𝐴𝐷
′  Set of customers, arrival depots, and stations with copies (𝑉′ ∪ 𝐴𝐷) 

𝐹𝐷𝐷
′  Set of departure depots and stations with their copies (𝐹′ ∪ 𝐷𝐷) 

𝑉𝐷𝐷,𝐴𝐷
′  Set of customers, arrival/departure depots, and stations with their copies (𝑉′ ∪ 𝐴𝐷 ∪ 𝐷𝐷) 

  Parameters: 

𝑑𝑖𝑗  Distance from node i to node j 

𝑡𝑖𝑗  Travel time from node i to node j 

𝑞𝑖 Demand of customer i 

𝑠𝑖 Time required to serve customer i 

[𝑒𝑖, 𝑙𝑖] Service time window of customer i 

C Cargo capacity of the vehicles 

Q Battery capacity of the vehicles 

  Decision variables: 

𝜏𝑖 Service starting time at node i 

𝑢𝑖 Remaining cargo level at node i 

𝑦𝑖  Battery state of charge at the arrival at node i 

𝑌𝑖  Battery state of charge at the departure from node i  

𝑥𝑖𝑗  1 if the vehicle traverses arc (i, j); 0 otherwise 

𝑎𝑖 1 if is recharged with normal charger at station i; 0 otherwise 

𝑏𝑖 1 if the vehicle is recharged with fast charger at station i; 0 otherwise 

𝜃𝑖
𝑚 Amount of energy recharged at station i using charger type m 

 

3.2 Problem Formulation 

We follow the notation used in Keskin and Çatay (2016) for ease of understanding. Let 𝑉 and 𝐹 

denote the set of customers and the set of recharging stations, respectively. Since recharging 

stations may be visited multiple times by the same vehicle or different vehicles we create sufficient 

number of copies and allow at most one visit to each in the mathematical model. So, we define 𝐹′ 

as the set of all recharging stations along with their copies and 𝑉′ = 𝑉 ∪ 𝐹′. We assume that each 

station is equipped with all types of chargers but only one is used at each visit to the station. This 
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assumption can be easily relaxed but may not be practical in the real business environment. We 

also assume that all EVs are recharged with normal (cheapest) charger type over night at the depot 

and depart in the morning with full battery. To keep track of each EV’s energy consumption along 

its tour we create copies of the depot by defining sets DD and AD as the departure depot and arrival 

depot vertices, respectively. We define  𝑉𝐷𝐷 = 𝑉 ∪ 𝐷𝐷 and 𝑉𝐴𝐷 = 𝑉 ∪ 𝐴𝐷. Let 𝑉𝐷𝐷
′ = 𝑉′ ∪ 𝐷𝐷, 

𝑉𝐴𝐷
′ = 𝑉′ ∪ 𝐴𝐷, and 𝐹𝐷𝐷

′ = 𝐹′ ∪ 𝐷𝐷. Then, the problem can be represented by a complete graph 

𝐺 = (𝑉𝐷𝐷,𝐴𝐷
′ , 𝐴) where 𝐴 = {(𝑖, 𝑗)|𝑖 ∈ 𝑉𝐷𝐷

′ , 𝑗 ∈ 𝑉𝐴𝐷} and 𝑉𝐷𝐷,𝐴𝐷
′ = 𝑉′ ∪ 𝐴𝐷 ∪ 𝐷𝐷. 

Each arc is associated with distance 𝑑𝑖𝑗 and travel time 𝑡𝑖𝑗. The energy is consumed at a rate of h 

and the battery is discharged by ℎ𝑑𝑖𝑗 when the vehicle traverses arc (𝑖, 𝑗). Each customer 𝑖 ∈ 𝑉 is 

associated with demand 𝑞𝑖, service time 𝑠𝑖, and time window [𝑒𝑖, 𝑙𝑖]. The fleet is homogeneous and 

consists of vehicles with cargo capacity 𝐶 and battery capacity 𝑄. The continuous decision 

variables 𝜏𝑖, 𝑢𝑖, and 𝑦𝑖 keep track of the service start time, remaining cargo level, and battery SoC 

upon arrival to each vertex, respectively. 𝑌𝑖 keeps track of the battery SoC at the departure from 

either the depot or a station. Finally, the binary variable 𝑥𝑖𝑗 takes value of 1 if arc (𝑖, 𝑗) is traversed 

and 0, otherwise. The mathematical notation is given in Table 2. 

In what follows, we present two alternative 0-1 mixed integer linear programming formulations of 

the problem. 

3.2.1 Model 1 

In this model, we define binary variables 𝑎𝑖 and 𝑏𝑖 to determine which charging equipment is used 

to recharge the vehicle at station 𝑖 ∈ 𝐹′: 𝑎𝑖 = 1 if charger type 1 (normal) is used, 𝑏𝑖 = 1 if type 2 

(fast) is used, and 𝑎𝑖 = 𝑏𝑖 = 0 if the charger type is 3 (super-fast). The battery recharging rate and 

unit energy cost depend on the charger type 𝑚 ∈ 𝑀 and are referred to as 𝑔𝑚 and 𝑐𝑚, respectively. 

Since we consider three charger types, 𝑀 = {1,2,3} and 𝑚 = 1 corresponds to the normal (slowest) 

charger whereas 𝑚 = 3 represents the super-fast (fastest) charger. 𝜃𝑖
𝑚 denotes the amount of 

energy recharged at station 𝑖 by using charger type m. Then, the problem is formulated as follows:   

Min 
∑ ∑ 𝑐𝑚𝜃𝑖

𝑚

𝑚𝜖𝑀𝑖𝜖𝐹′

+ 𝑐1 (𝑄 ∑ ∑ 𝑥𝑖𝑗

𝑗𝜖𝑉′𝑖𝜖𝐷𝐷

− ∑ 𝑦𝑖

𝑖𝜖𝐴𝐷

) 

 

 (1) 
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s.t. ∑ 𝑥𝑖𝑗 ≤ 1

𝑗∈𝑉𝐴𝐷

 ∀𝑖 ∈ 𝐹′ (2) 

 ∑ 𝑥𝑖𝑗

𝑗𝜖𝑉𝐴𝐷
′

= 1 ∀𝑖 ∈ 𝑉 (3) 

 ∑ 𝑥𝑖𝑗

𝑖𝜖𝑉𝐷𝐷
′

= ∑ 𝑥𝑗𝑖

𝑖𝜖𝑉𝐴𝐷
′

 ∀𝑗 ∈ 𝑉′ (4) 

 ∑ 𝑥𝑖𝑗

𝑗𝜖𝑉′

≤ 1 ∀𝑖 ∈ 𝐷𝐷 (5) 

 ∑ 𝑥𝑖𝑗

𝑖𝜖𝑉′

≤ 1 ∀𝑗 ∈ 𝐴𝐷 (6) 

 ∑ ∑ 𝑥𝑖𝑗

𝑗𝜖𝑉′𝑖𝜖𝐷𝐷

= ∑ ∑ 𝑥𝑗𝑖

𝑗𝜖𝑉′𝑖𝜖𝐴𝐷

  (7) 

 𝜏𝑖 + (𝑡𝑖𝑗 + 𝑠𝑖)𝑥𝑖𝑗 − 𝑙0(1 − 𝑥𝑖𝑗) ≤ 𝜏𝑗 ∀𝑖 ∈ 𝑉𝐷𝐷, ∀𝑗 ∈ 𝑉𝐴𝐷
′  (8) 

 𝜏𝑖 + 𝑡𝑖𝑗𝑥𝑖𝑗 + ∑ 𝑔𝑚𝜃𝑖
𝑚

𝑚∈𝑀

− (𝑙0 + 𝑔1𝑄)(1 − 𝑥𝑖𝑗) ≤ 𝜏𝑗 ∀𝑖 ∈ 𝐹′, ∀𝑗 ∈ 𝑉𝐴𝐷 (9) 

 𝑒𝑗 ≤ 𝜏𝑗 ≤ 𝑙𝑗 ∀𝑗 ∈ 𝑉𝐷𝐷,𝐴𝐷
′  (10) 

 0 ≤ 𝑢𝑗 ≤ 𝑢𝑖 − 𝑞𝑖𝑥𝑖𝑗 + 𝐶(1 − 𝑥𝑖𝑗) ∀𝑖 ∈ 𝑉𝐷𝐷
′ , ∀𝑗 ∈ 𝑉𝐴𝐷

′  (11) 

 0 ≤ 𝑢𝑖 ≤ 𝐶 ∀𝑖 ∈ 𝐷𝐷 (12) 

 0 ≤ 𝑦𝑗 ≤ 𝑦𝑖 − (ℎ𝑑𝑖𝑗)𝑥𝑖𝑗 + 𝑄(1 − 𝑥𝑖𝑗) ∀𝑖 ∈ 𝑉, ∀𝑗 ∈ 𝑉𝐴𝐷
′  (13) 

 0 ≤ 𝑦𝑗 ≤ 𝑌𝑖 − (ℎ𝑑𝑖𝑗)𝑥𝑖𝑗 + 𝑄(1 − 𝑥𝑖𝑗) ∀𝑖 ∈ 𝐹𝐷𝐷
′ , ∀𝑗 ∈ 𝑉𝐴𝐷 (14) 

 0 ≤ 𝑦𝑖 ≤ 𝑌𝑖 ≤ 𝑄 ∀𝑖 ∈ 𝐹𝐷𝐷
′  (15) 

 𝑌𝑖 = 𝑄 ∀𝑖 ∈ 𝐷𝐷 (16) 

 𝑌𝑖 − 𝑦𝑖 = ∑ 𝜃𝑖
𝑚

𝑚∈𝑀

 ∀𝑖 ∈ 𝐹′ (17) 

 0 ≤ 𝜃𝑖
1 ≤ 𝑄𝑎𝑖 ∀𝑖 ∈ 𝐹′ (18) 

 0 ≤ 𝜃𝑖
2 ≤ 𝑄𝑏𝑖 ∀𝑖 ∈ 𝐹′ (19) 

 0 ≤ 𝜃𝑖
3 ≤ 𝑄(1 − 𝑎𝑖 − 𝑏𝑖) ∀𝑖 ∈ 𝐹′ (20) 

 𝑎𝑖, 𝑏𝑖 ∈ {0,1} ∀𝑖 ∈ 𝐹′ (21) 

 𝑥𝑖𝑗 ∈ {0,1} ∀(𝑖, 𝑗) ∈ 𝐴 (22) 
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The objective function (1) minimizes the total energy cost which consists of three terms. The first 

term corresponds to the total cost of energy recharged along the route. The second is the total cost 

of initial charging at the depot. All vehicles are recharged fully using the cheapest (slowest) charger 

type at the depot overnight. The third is associated with the battery SoC at the end of the trip and 

deducts the value of the remaining energy from the total cost since that amount of energy has not 

been consumed en-route. Constraints (2)-(4) are the connectivity constraints which ensure that each 

customer is visited exactly once and each recharging station may be visited at most once. 

Constraints (5) and (6) keep track of departures from and arrivals at the depots. Constraints (7) 

guarantee that all EVs departed from the depot arrive at the depot at the end of their tour. Service 

times are controlled by constraints (8)-(10). Constraints (11) and (12) observe the load on the 

vehicle and make sure that total load does not exceed the cargo capacity. Constraints (13) and (14) 

keep track of battery SoC when departing from customers and stations, respectively. Constraints 

(15) define the bounds for variables 𝑦𝑖 and 𝑌𝑖 while constraints (16) ensure that EVs depart from 

the depot with full battery. Constraints (17) determine the amount of energy transferred while 

constraints (18)-(20) control which charger type is utilized for recharging. Note that 𝑎𝑖 and 𝑏𝑖 

cannot be 1 simultaneously because of nonnegativity of 𝜃𝑖
3 variables. Finally, constraints (21) and 

(22) define the binary decision variables. 

3.2.2 Model 2 

The second model is a simple modification of EVRPTW-PR formulation and was first presented 

in Çatay and Keskin (2017). Here, instead of defining 𝑎𝑖 and 𝑏𝑖 variables to determine the charger 

type utilized at the station, we use three copies of each station where each copy represents a 

different charger type. In other words, each recharging station is equipped with only one charger 

type but we have three stations at the same location. Thus, the total number of stations increases 

three-fold. So, 𝐹 includes all these stations and 𝐹′ is this set of stations and their copies to allow 

multiple visits to each station. Let 𝑔𝑖 and 𝑐𝑖 be the recharging rate and unit energy cost for station 

𝑖 ∈ 𝐹′, respectively. 𝑔0 is the recharging rate of the slowest charger and 𝑐0 is the associated unit 

cost. Then, the mathematical model is formulated as follows: 

Min ∑ 𝑐𝑖(𝑌𝑖 − 𝑦𝑖)

𝑖𝜖𝐹′

+ 𝑐0 [𝑄 ∑ ∑ 𝑥𝑖𝑗

𝑗𝜖𝑉′𝑖𝜖𝐷𝐷

− ∑ 𝑦𝑖

𝑖𝜖𝐴𝐷

]  (23) 

s.t. (2)-(16) and (22)   
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The objective function (23) represents the same energy cost as (1) but with different terms. All 

constraints in Model 1 remain in Model 2 except constraints (17)-(21) which are associated with 

charger types. 

3.2.3 Evaluation of the Two Models 

We compare the efficiency of models 1 and 2 by solving small instances of EVRPTW data set of 

Schneider et al. (2014). The data set includes three subsets of 12 problems, each involving 5, 10, 

and 15 customers. We used CPLEX 12.6.2 solver running on a single thread and the time limit is 

set to 7200 seconds. The experiments were carried on a workstation with Intel Xeon E5 3.30 GHz 

processor and 64 GB RAM. 

Table 3. Comparison of the two models 

#Cust #Opt #NFS AvgTime #Opt #NFS AvgTime #Better

5 12 0 265 12 0 <1 0

10 7 0 3618 12 0 179 0

15 0 1 7200 3 0 5582 6

Model 2 Model 1

 

 

The results are summarized in Table 3. The column “#Cust” gives the number of customers in the 

problem set. “#Opt” refers to the number of optimal solutions found within the time limit whereas 

“#NFS” indicates the number of instances for which no feasible solution could be found. 

“AvgTime” is the average of the run times in seconds for each subset and “#Better” in the last 

column reports the number of instances in which Model 1 gives better solutions than Model 2. 

Since 5-customer instances are very small, CPLEX found the optimal solutions with both models; 

however, the solution times were significantly smaller with Model 1. For the 10-customer 

instances, CPLEX failed to prove the optimality of five problems within the time limit using Model 

2 while all problems were solved to optimality with Model 1, again in substantially less time. 

Finally, for the 15-customer instances, three problems were solved optimally with Model 1 and 

none with Model 2. Furthermore, Model 2 could not yield a feasible solution in one problem. 

Overall, Model 1 provided the optimal solutions faster and in many instances, it provided better 

upper bounds when the time limit is reached. So, we decided to use the results obtained with Model 

1 to benchmark our solution methodology that we will describe in the next section. 
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4. Description of the Matheuristic 

For solving EVRPTW-FC, we propose a two-phase matheuristic approach where in the first phase, 

we attempt to find good heuristic solutions using ALNS and then improve them using an exact 

method in the second phase. For the exact method, we resort to CPLEX solver but any open-source 

or commercial solver can be utilized instead. Matheuristics use mathematical models in a heuristic 

framework and they have been applied to various routing problems. We refer the interested reader 

to Archetti and Speranza (2014) for the details of the approach and an overview of 

implementations. 

ALNS is a neighborhood search approach which was proposed by Ropke and Pisinger (2006a, 

2006b) and has been utilized to solve several types of VRPs (Pisinger and Ropke, 2007; Ribeiro 

and Laporte, 2012; Demir et al., 2012; Aksen et al., 2014; Grangier et al.,2016; Emeç et al.,2016; 

Koç et al., 2016) including EVRPs (Goeke and Schneider, 2015; Hiermann et al., 2015; Schiffer 

and Walther, 2016; Keskin and Çatay, 2016; Wen et al., 2016; Schiffer et al., 2017). It consists of 

an iterative destroy and repair framework where at each iteration some nodes from the current 

solution are removed and reinserted by means of several mechanisms in an attempt to improve the 

incumbent solution. At each iteration, a removal and an insertion mechanism are selected randomly 

based on the scores they are associated with. These scores are calculated depending on their 

performance to improve the solution quality. If the selected mechanisms yield good solutions, the 

probability of their selection in the subsequent iterations is increased by updating their scores. The 

adaptive nature of the algorithm comes from this update and selection mechanism.  

In our matheuristic approach, while ALNS explores the neighborhoods to find promising routes, 

after every Ω iterations we further enhance the current best solution by optimizing the charging 

decisions along the tour of an EV by fixing the sequence of customers visited. A similar problem 

was also solved by Montoya et al. (2017). They name this problem as Fixed-Route Vehicle-

Charging Problem (FRVCP) after the Fixed-Route Vehicle-Refueling Problem (FRVCP) 

introduced by Suzuki (2014). Montoya et al. (2017) solve the EVRP by using a sequence-first split-

second approach where they first construct a TSP tour and then split it to extract vehicle routes by 

ignoring the EV range limit. If any of the resulting routes is energy-infeasible, then they try to 

repair it by solving FRCVP. This approach cannot be implemented for solving EVRPTW because 

building vehicle routes without considering the recharge needs/durations of EVs and then trying to 
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insert stations may cause many time-window violations. So, at each iteration of ALNS our repair 

procedure yields a feasible solution which is further improved by means of mathematical 

programming using CPLEX. 

For most of the ALNS destroy and repair mechanisms we resort to the neighborhoods utilized in 

Keskin and Çatay (2016). In addition, we propose new removal and insertion methods specific to 

the fast charging nature of the problem. 

4.1 Removal Heuristics 

Since the problem has two types of vertices, namely customers and recharging stations, their 

removal will have different impact on the solution. So, we employ separate customer removal (CR) 

and recharging station removal (SR) operators for destroying the solution. 

4.1.1 Customer Removal 

In addition to the well-known CR heuristics widely used in the literature such as Random, Worst-

Distance, Worst-Time, Shaw, Proximity-based, Demand-based, Time-based, Zone, Random 

Route, and Greedy Route removals, we utilize Remove Customer with Preceding Station and 

Remove Customer with Succeeding Station operators introduced by Keskin and Çatay (2016) 

where customers are removed along with the station visited immediately before or after serving 

that customer. At each iteration, one of these CR operators is selected randomly to remove 𝛾 

customers from the solution and put them in a removal list. The value of 𝛾 depends on the total 

number of customers and is determined randomly between 𝑛𝑐 and 𝑛̅𝑐 using a uniform distribution. 

4.1.2 Station Removal 

We use Random and Worst-Distance Station removals proposed in Keskin and Çatay (2016). In 

addition, we propose the following two new SR operators:  

Least Used Station Removal: The motivation behind this heuristic is to reduce the cost of visiting 

recharging stations often. So, we attempt to eliminate unnecessary recharges and satisfy the energy 

needs of EVs by visiting less number of stations. This can be achieved by utilizing the visited 

stations to recharge the battery as much as possible instead of recharging small quantities with 

frequent visits. The operator lists the stations (chargers) in the non-decreasing order of the quantity 

of energy they charge and removes a pre-determined number of stations from the top of the list.    
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Expensive Station Removal: Our aim in this removal heuristic is to save from energy cost by 

eliminating unnecessary recharges using more expensive charging options. The operator lists the 

stations (chargers) in the non-increasing order of the cost they incur and removes a pre-determined 

number of stations from the top of the list. 

In all the SR operators, 𝜎 recharging stations are removed from the solution after every 𝑁𝑆𝑅 

iterations. 𝜎 is determined in a similar way as 𝛾 based on the number of stations visited in the 

current solution. 

4.2 Insertion Heuristics 

As in removal heuristics, different insertion mechanisms are designed for customers and recharging 

stations. A customer insertion (CI) mechanism is used after every CR operation whereas the station 

insertion (SI) follows only an SR operation. 

4.2.1 Customer Insertion 

We use the Greedy, Regret-2, Time-based, and Zone insertions as proposed in Keskin and Çatay 

(2016). In addition, we employ these mechanisms only with the fastest recharging option when a 

station insertion is needed to feasibly add a removed customer into a tour. We refer to these new 

operators as Fast Recharge (FR) Greedy, FR Regret-2, FR Time-based, and FR Zone insertions. 

Our aim is to shorten the charge durations which may allow serving more customers along the tour 

and thus reduce the number of vehicles. Eventually, the charge-related decisions will later be 

optimized in the second phase using a solver as described in Section 4.4.  

4.2.2 Station Insertion 

We adapt the Greedy and Best Station insertions introduced in Keskin and Çatay (2016) using the 

cost criterion as follows: when a recharging station is inserted in a route, first, we try the normal 

charger since it is the cheapest option. If the normal charge is infeasible due to its longer duration, 

we try fast and super-fast chargers consecutively. This procedure is repeated for all feasible stations 

and candidate stations are determined along with the charger type. Then, the insertion is performed 

according to the criteria used in the corresponding SI operator. 

4.3 Constructing the Initial Solution 

We use three initialization approaches for comparison. The first uses the best-known solutions 

reported in Keskin and Çatay (2016). Basically, these solutions were obtained by only allowing 

normal recharge at the stations and can be considered as an upper bound for the fast recharge case. 



18 
 

In the second approach, we implement the ALNS of Keskin and Çatay (2016) by allowing the 

super-fast recharge only and feed its solution to initiate the matheuristic. The last approach 

randomly puts all customers into the removal list and applies the FR Greedy CI heuristic. 

Henceforth, we will refer to these initialization approaches as IA 1, IA 2, and IA 3, respectively.  

4.4 Route Enhancement 

To improve the solution quality, we employ a post-optimization procedure systematically 

throughout the ALNS process. This procedure uses a commercial solver to optimize the charge-

related decisions along each EV route by fixing the sequence of the customers. These decisions 

include the locations of the stations, selection of the charger type, and the amount of energy 

transferred.  

An easy way to solve this problem is to use Model 1 by reducing the customer set to include only 

those visited along the route of the vehicle considered and fixing their sequence. However, this 

formulation will be weak and solving it may require significant computation time particularly when 

the EV makes frequent stops. To overcome this drawback and speed-up the algorithm, we propose 

a tighter formulation which also eliminates the need for using copies of the stations. Our approach 

is similar to the ideas presented in Bruglieri et al. (2016). Let  𝑉̅ = {1, … , 𝐾} be the set of customers 

served by the vehicle. 0 and 𝐾 + 1 represent the depot. We define 𝑉̅0 = 𝑉̅ ∪ {0} and 𝑉̅𝐾+1 = 𝑉̅ ∪ 

{𝐾 + 1}. Let 𝜃𝑖,𝑖+1
𝑚  denote the amount of energy recharged using charger type 𝑚 if the EV visits a 

station on its way from customer 𝑖 and to customer 𝑖 + 1. As in Model 1, binary variables 𝑎𝑖,𝑖+1 

and 𝑏𝑖,𝑖+1 are used to determine the charger type if the EV is recharged at a station between 

customers 𝑖 and 𝑖 + 1. Note that these variables are defined for only consecutive customers and the 

number of 𝑎𝑖,𝑖+1 and 𝑏𝑖,𝑖+1 variables is the same as the number of arcs on the route. The 

mathematical model is formulated as follows: 

 

Min ∑ ∑ 𝑐𝑚𝜃𝑖,𝑖+1
𝑚

𝑚∈𝑀𝑖∈𝐹

+ 𝑐1(𝑄 − 𝑦𝐾+1) 

 

 (24) 

s.t. 𝜏𝑖 + 𝑠𝑖 + ∑(

𝑗∈𝐹

𝑡𝑖𝑗 + 𝑡𝑗𝑘)𝑥𝑖𝑗 + ∑ 𝑔𝑚𝜃𝑖,𝑖+1
𝑚

𝑚∈𝑀

≤ 𝜏𝑖+1 ∀𝑖 ∈ 𝑉̅0 (25) 

 𝑒𝑖 ≤ 𝜏𝑖 ≤ 𝑙𝑖  ∀𝑖 ∈ 𝑉̅𝐾+1 (26) 
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𝑦𝑖 − ℎ [𝑑𝑖,𝑖+1 (1 − ∑ 𝑥𝑖𝑗

𝑗∈𝐹

) + ∑(𝑑𝑖𝑗 + 𝑑𝑗,𝑖+1)𝑥𝑖𝑗

𝑗∈𝐹

]

+ ∑ 𝜃𝑖,𝑖+1
𝑚

𝑚∈𝑀

= 𝑦𝑖+1 

∀𝑖 ∈ 𝑉̅0 (27) 

 𝑦𝑖 − ℎ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗

𝑗∈𝐹

≥ 0 ∀𝑖 ∈ 𝑉̅0 (28) 

 ∑ 𝜃𝑖,𝑖+1
𝑚

𝑚∈𝑀

≤ 𝑄 ∑ 𝑥𝑖𝑗

𝑗∈𝐹

 ∀𝑖 ∈ 𝑉̅0 (29) 

 ∑ 𝜃𝑖,𝑖+1
𝑚

𝑚∈𝑀

≤ 𝑄 − (𝑦𝑖 − ℎ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗

𝑗∈𝐹

) ∀𝑖 ∈ 𝑉̅0 (30) 

 0 ≤ 𝜃𝑖,𝑖+1
1 ≤ 𝑄𝑎𝑖,𝑖+1 ∀𝑖 ∈ 𝑉̅0 (31) 

 0 ≤ 𝜃𝑖,𝑖+1
2 ≤ 𝑄𝑏𝑖,𝑖+1 ∀𝑖 ∈ 𝑉̅0 (32) 

 0 ≤ 𝜃𝑖,𝑖+1
3 ≤ 𝑄(1 − 𝑎𝑖,𝑖+1 − 𝑏𝑖,𝑖+1) ∀𝑖 ∈ 𝑉̅0 (33) 

 𝑦0 = 𝑄  (34) 

 𝑎𝑖,𝑖+1, 𝑏𝑖,𝑖+1 ∈ {0,1} ∀𝑖 ∈ 𝑉̅0 (35) 

 𝑥𝑖𝑗 ∈ {0,1} ∀𝑖 ∈ 𝑉̅0, 𝑗 ∈ 𝐹 (36) 

 

The objective function (24) minimizes total energy cost of the route. The first term represents the 

cost of recharges en-route while the second is the cost of energy, calculated based on the difference 

of SoCs between departure from and arrival at the depot. Constraints (25)-(26) satisfy time-window 

feasibility of the customers and the depot. Constraints (27) keep track of the battery SoC: if the EV 

does not visit a recharging station after leaving customer 𝑖, then SoC at arrival at customer 𝑖 + 1 is 

calculated by subtracting the energy consumed along the arc (𝑖, 𝑖 + 1) from SoC at customer 𝑖. If 

it visits a station, then the energy recharged at station 𝑗 is added to the amount described in the 

previous case and the energy consumed along the arc (𝑗, 𝑖 + 1) is subtracted. Constraints (28) make 

sure that if the EV visits a recharging station after customer 𝑖, SoC at the arrival at station 𝑗 is 

nonnegative. Constraints (29) ensure that the recharging variables 𝜃𝑖,𝑖+1
𝑚  take a positive value only 

if the vehicle visits a station between customers 𝑖 and 𝑖 + 1. Constraints (30) guarantee that SoC 

after the recharge does not exceed the battery capacity 𝑄. Constraints (31)-(33) determine the 

charger type if the EV is recharged between 𝑖 and 𝑖 + 1. Constraint (34) makes sure that the vehicle 
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departs from the depot with a full battery while constraints (35)-(36) define the binary decision 

variables.  

 

Figure 2. Set of recharging stations between customers 𝑖 and 𝑖 + 1 

 

We also introduce a pre-processing procedure to reduce the set of the recharging stations as 

follows: Let 𝑖 and 𝑖 + 1 be two consecutive customers in the route and 𝐹𝑖,𝑖+1 be the set of recharging 

stations that the EV may visit when traveling from customer 𝑖 to 𝑖 + 1. Initially, 𝐹𝑖,𝑖+1 = 𝐹. Then, 

we make a pairwise comparison of the stations with respect to their distance to customers 𝑖 and 

𝑖 + 1. For instance, consider two stations 𝑗, 𝑗′ ∈ 𝐹𝑖,𝑖+1. If 𝑑𝑖𝑗′ > 𝑑𝑖𝑗 and 𝑑𝑗′,𝑖+1 > 𝑑𝑗,𝑖+1 then 𝑗 is 

said to dominate 𝑗′ and 𝑗′ cannot be visited in the optimal solution since 𝑗 is closer to both 𝑖 and 

𝑖 + 1. Hence, 𝑗′ is removed from 𝐹𝑖,𝑖+1. We repeat this procedure for all station pairs in  𝐹𝑖,𝑖+1 to 

reduce its size. The same procedure is applied to all customer pairs (𝑖, 𝑖 + 1) in the route. 

Figure 2 illustrates the case of four recharging stations 𝑗, 𝑗′, 𝑗′′, and 𝑗′′′, which can be visited 

between customers 𝑖 and 𝑖 + 1. It can be easily identified that 𝑗′ is dominated by 𝑗 as explained 

above. However, neither one of 𝑗, 𝑗′′, and 𝑗′′′ dominates the other since both conditions are not 

satisfied. So, 𝐹𝑖,𝑖+1 includes 𝑗, 𝑗′′, and 𝑗′′′. 
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Figure 3. Station insertion between two nodes 

 

In Figure 3, the structure of fixed-route problem is illustrated using a segment of the route 

consisting of three customer vertices. Since the pre-processing may eliminate some of stations that 

can be visited between a pair of customers, each arc is associated with a different recharging station 

set. So, we do not need to create any copies of the stations to allow multiple visits in the 

mathematical model. This decreases the number of decision variables significantly. 

4.5 Reducing the Number of Vehicles 

Since the primary objective is to minimize the number of vehicles, we devote some iterations 

throughout the ALNS to this purpose. After every 𝑁𝑅𝑅 iterations we dedicate 𝑛𝑅𝑅 consecutive 

iterations to remove customers using the Random Route Removal or Greedy Route Removal 

operators and insert them using FR CI heuristics described in Section 4.2.1. Using only super-fast 

chargers when recharging is needed decreases the duration of the recharge and allow serving more 

customers along the route which is not possible otherwise due to time-windows restrictions. This 

yields longer routes with more frequent visits to customers and thus offers an opportunity to reduce 

the total number of vehicles in the fleet. 

The general structure of the proposed matheuristic is provided in Appendix A. 
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5. Experimental Design and Numerical Results 

We test the performance of the proposed matheuristic on the EVRPTW data sets that Schneider et 

al. (2014) generated and on the GVRP-MTPR data set of Felipe et al. (2014). The larger instances 

of Schneider et al. (2014) include 100 customers and 21 recharging stations. The vertices in the 

data are randomly distributed, clustered, and both clustered and randomly distributed over a 100 × 

100 grid and classified as r, c, and rc data set, respectively. Each of these data sets has also two 

subsets, type 1 and type 2, which differ by the length of the time windows, vehicle load, and battery 

capacities. The small instances were generated by randomly selecting a subset of customers and 

stations from the large instances. 

The data set of Felipe et al. (2014) is referred to as FORT instances and consists of two different 

configurations involving five and nine stations. Each configuration includes three sets of ten 

instances with 100, 200 and 400 customers distributed randomly. In total, the data set includes 60 

instances.   

In ALNS, we used the same parameter values as reported in Keskin and Çatay (2016) (see 

Appendix B). For the recharging speed and cost of different chargers, we used the values given in 

Felipe et al. (2014). In the optimization phase, we employed CPLEX 12.6.2 with its default setting 

using single thread. The matheuristic was implemented in Java programming language and the 

experiments are conducted on the same workstation described in Section 3.2.3. 

5.1 Results for Large Instances 

We first investigate how different initialization approaches and optimization frequencies affect the 

solution quality in order to determine the best configuration. Next, we examine the benefits of 

utilizing fast chargers in terms of fleet size and energy costs.  

5.1.1 Analysis of Different Configurations 

We optimize the recharging decisions of the best solution of that round every Ω iterations, which 

we refer to as CPLEX call frequency. On the one hand, choosing this number too small may 

increase the run time. On the other hand, choosing it too large may deteriorate the solution quality. 

Our preliminary experiments revealed that calling CPLEX after 200 and 500 iterations shows a 

good compromise. So, we decided to consider these values for further investigation. 



23 
 

Table 4. Comparison of results obtained with different configurations  

Instance #Veh TC #Veh TC #Veh TC #Veh TC #Veh TC #Veh TC

c101 12 1043.38 12.00 1043.38 12.00 1043.38 12.00 1043.38 12.00 1044.51 12.00 1044.51

c102 10 1078.12 10.00 1096.73 10.00 1009.86 10.00 1009.86 10.00 1080.95 10.00 1055.41

c103 10 962.78 10.00 962.78 10.00 961.78 10.00 961.78 10.00 992.25 10.00 997.27

c104 9 1113.85 10.00 878.81 9.00 1006.12 9.00 1006.12 10.00 893.66 10.00 900.29

c105 10 1102.47 10.00 1124.58 10.00 1031.58 10.00 1031.58 10.00 1141.21 10.00 1166.01

c106 10 1141.19 10.00 1082.12 10.00 1044.96 10.00 1044.96 10.00 1083.49 10.00 1166.84

c107 10 1017.80 10.00 1022.24 10.00 1015.81 10.00 1015.81 10.00 1146.72 10.00 1048.87

c108 10 1025.15 10.00 1025.15 10.00 1022.36 10.00 1022.36 10.00 1191.61 10.00 1074.91

c109 10 940.38 10.00 940.38 10.00 959.66 10.00 959.66 10.00 1126.70 10.00 1057.56

c201 4 629.95 4 629.95 4 629.95 4 629.95 4 629.95 4 629.95

c202 4 629.95 4 629.95 4 629.95 4 629.95 4 629.95 4 641.13

c203 4 629.95 4 629.95 4 629.95 4 629.95 4 638.17 4 638.17

c204 3 746.75 3 787.77 3 719.89 3 720 3 741.99 3 846.81

c205 4 629.95 4 629.95 4 629.95 4 629.95 4 629.95 4 629.95

c206 4 629.95 4 629.95 4 629.95 4 629.95 4 629.95 4 629.95

c207 4 629.95 4 629.95 4 629.95 4 629.95 4 638.17 4 629.95

c208 4 629.95 4 629.95 4 629.95 4 629.95 4 629.95 4 630.06

r101 17 1772.39 17 1829.99 16 1815.77 17 1642.9 17 1845.09 17 1817.59

r102 15 1583.3 15 1561.71 15 1436.95 15 1436.95 15 1572.01 15 1585.49

r103 13 1256.95 12 1395 12 1233.72 12 1233.72 12 1423.86 12 1472.09

r104 11 1076.25 11 1076.25 10 1048.69 10 1048.69 11 1210.75 11 1261.95

r105 13 1515.67 13 1547.43 13 1364.98 13 1366.89 14 1549.83 14 1572.14

r106 12 1446.52 13 1300.36 12 1280.16 12 1280.16 12 1386.04 12 1435.11

r107 11 1159.07 11 1184.88 10 1130.86 10 1130.86 11 1261.46 11 1234.65

r108 10 1213.32 11 1030.48 10 1010.68 10 1010.68 10 1223.7 10 1168.6

r109 12 1359.11 12 1310.09 11 1198.55 11 1198.55 12 1433.76 12 1389.78

r110 11 1089.9 11 1089.9 10 1127.7 10 1127.7 11 1206.9 11 1336.29

r111 11 1180.33 11 1192.5 11 1086.1 11 1086.1 11 1325.5 11 1276.08

r112 11 1016.3 11 1016.3 10 1015.49 10 1015.49 11 1181.79 11 1168.92

r201 3 1262.06 3 1262.06 3 1295.95 3 1257.50 3 1576.58 3 1378.97

r202 3 1051.46 3 1051.46 3 1060.18 3 1060.18 3 1068.4 3 1097.62

r203 3 895.54 3 895.54 3 898.96 3 898.96 3 932.9 3 923.22

r204 2 779.71 2 780.13 2 785.7 2 785.7 2 816.47 3 728.46

r205 3 987.36 3 987.36 3 1001.85 3 1006.86 3 1020.8 3 1047.23

r206 3 922.7 3 922.7 3 928.56 3 928.56 3 956.58 3 974.17

r207 2 846.43 2 846.43 2 857.07 2 859.3 3 825.55 3 829.16

r208 2 736.13 2 736.13 2 737.43 2 739.64 2 739.15 2 747.66

r209 3 866.67 3 866.67 3 900.77 3 900.77 3 931.26 3 892.07

r210 3 843.21 3 843.21 3 856.76 3 859.13 3 879.16 3 871.9

r211 2 862.56 2 862.56 2 840.61 2 857.74 3 783.63 3 797.63

rc101 15 1744.85 15 1744.85 14 1800.73 15 1640.57 15 1827.93 15 1810.49

rc102 14 1526.31 14 1526.27 13 1557.39 13 1557.39 14 1657.06 13 1645.16

rc103 12 1389.5 12 1444.88 12 1355.71 12 1355.71 12 1497.5 12 1552.26

rc104 11 1201.04 11 1200.24 10 1192.6 10 1193.86 11 1257.48 11 1389.82

rc105 14 1449.53 13 1587.57 13 1425.92 13 1425.92 13 1488.58 13 1590.97

rc106 13 1402.95 13 1398.85 12 1388.85 12 1388.85 13 1541.1 13 1490.22

rc107 11 1294.2 11 1300.44 11 1249.03 11 1247.87 11 1366.75 11 1440.09

rc108 11 1182.84 11 1182.84 10 1199.24 10 1199.24 11 1302.43 11 1262.57

rc201 4 1446.84 4 1446.84 4 1485.23 4 1485.23 4 1482.53 4 1501.32

rc202 3 1416.96 3 1416.96 3 1426.88 3 1424.86 4 1287.24 4 1313.06

rc203 3 1064.33 3 1064.33 3 1081.57 3 1081.57 3 1144.73 3 1114.98

rc204 3 886.23 3 886.19 3 895.18 3 895.18 3 898.97 3 894.21

rc205 3 1257.92 3 1257.92 3 1256.30 3 1256.30 3 1341.91 3 1451.59

rc206 3 1206.06 3 1206.06 3 1229.67 3 1229.67 3 1223.51 3 1296.31

rc207 3 992.14 3 992.14 3 991.65 3 991.65 3 1073.96 3 1090.87

rc208 3 839.71 3 839.71 3 884.76 3 885.76 3 886.36 3 944.14

#Best

IA 2 IA 3IA 1
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Our stopping criterion is a limit on the number of iterations. For different initialization 

algorithms, we set different limits. We perform 25,000 iterations of ALNS when we utilize IA 

1 and IA 2 to generate the initial solution. Then, we apply the matheuristic for 10,000 iterations. 

When we utilize IA 3 for initialization, the solution is constructed very fast by the greedy 

algorithm whereas the matheuristic is performed for 25,000 iterations. In other words, we allow 

a more intensive search during the initial solution generation in the former case whereas in the 

latter case matheuristic is the only actor and it benefits from the mathematical programming 

more rigorously. 

For each configuration, we performed 30 runs for each instance and reported the best results in 

Table 4. “#Veh” and “TC” represent the number of vehicles needed and total cost of energy, 

respectively. The best solutions among six different configurations are indicated in bold. The 

row “#Best” shows the total number of instances for which the corresponding configuration 

yielded the best solution. 

We observe that the initialization approaches have a significant effect on the performance of 

the matheuristic. While IA 2 yields better solutions in type-1 instances where customers have 

narrow time windows, IA 1 performs better in type-2 instances which involve customers with 

wide time windows. In other words, determining the initial solution through ALNS by 

considering only normal chargers works better in type-2 problems whereas using the same 

initialization approach with super-fast chargers has a better performance in type-1 problems. 

Moreover, we also see that the superiority of IA 2 in type-1 problems is usually in terms of the 

number of vehicles while in type-2 problems IA 1 performs slightly better than IA 2 in total 

cost. The former is an expected outcome as the utilization of super-fast chargers may 

significantly cut down the recharge time at stations and allow the EV serve more customers 

along its route which will translate into a reduction in fleet size. However, the latter can be 

considered as a surprising result and we will further elaborate on this issue in the next section. 

Table 5. Average run times of different configurations (in minutes) 
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When we examine the role of CPLEX call frequency on the solution quality we do not observe 

any substantial difference, yet Ω = 200 performs slightly better than Ω = 500, which is not 

surprising and supports the role of optimization in achieving higher quality solutions. 

Independent of the value of Ω, the results obtained by using IA 3 are inferior than those given 

by the other two initialization approaches. In other words, searching for a good initial solution 

pays back the effort spent. 

In Table 5, we report the average run time of each problem subset to evaluate the computational 

effort required by different configurations. The numbers are in minutes. The results indicate 

that type-2 problems require more time than type-1 problems. This is well expected and in 

parallel with many studies that utilized Solomon (1987) data because wide time windows 

expand the search space bringing more feasible insertions to be evaluated and long planning 

horizon allows an EV make longer trips visiting more customers (more than 50 in certain 

instances) requiring more recharges. On the other hand, we observe that the run time of the 

implementation with IA 2 is significantly smaller than those with IA 1 and IA 3. Although IA 

1 and IA 2 perform the same number of iterations using the same ALNS mechanisms, the 

station insertion procedure requires less computational effort in IA 2. This is due to the fact 

that the search for a feasible station for insertion takes more time when only normal chargers 

are available because of their longer recharging durations. 

 

 

Figure 4. Percentage of computational effort required by ALNS vs. CPLEX 
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Table 6. Comparison of results obtained by multiple fast charging vs. single normal charging 

Instance Q #Veh TC/TD #L1 Qty #Veh TC TD #L1 Qty #L2 Qty #L3 Qty

c101 79.69 12 1043.38 8 165.96 12 1043.38 1043.38 8 165.96 0 0.00 0 0.00

c102 79.69 11 1032.49 10 202.56 10 998.48 1009.86 6 143.66 3 70.67 1 21.57

c103 79.69 10 973.39 9 229.52 10 946.79 961.78 5 98.76 2 87.40 2 31.25

c104 79.69 10 886.72 7 140.48 9 984.82 1006.12 7 93.07 5 136.11 1 38.43

c105 79.69 11 1037.78 9 206.52 10 1024.01 1031.58 7 172.50 3 75.72 0 0.00

c106 79.69 11 1024.18 9 212.81 10 1028.89 1044.96 6 125.67 3 104.42 1 28.11

c107 79.69 10 1058.11 11 273.32 10 1005.84 1015.81 7 138.76 3 99.71 0 0.00

c108 79.69 10 1033.50 10 252.33 10 1014.21 1022.36 8 174.26 3 81.54 0 0.00

c109 79.69 10 946.84 9 170.88 10 940.38 940.38 9 164.42 0 0.00 0 0.00

c201 118.31 4 629.95 3 168.26 4 629.95 629.95 3 168.26 0 0.00 0 0.00

c202 118.31 4 629.95 3 168.26 4 629.95 629.95 3 168.26 0 0.00 0 0.00

c203 118.23 4 629.95 3 168.50 4 629.95 629.95 3 168.50 0 0.00 0 0.00

c204 118.12 4 629.95 3 168.83 3 697.22 719.89 3 157.52 3 143.98 1 41.36

c205 117.78 4 629.95 3 169.85 4 629.95 629.95 3 169.85 0 0.00 0 0.00

c206 117.70 4 629.95 3 170.09 4 629.95 629.95 3 170.09 0 0.00 0 0.00

c207 117.66 4 629.95 3 170.21 4 629.95 629.95 3 170.21 0 0.00 0 0.00

c208 117.66 4 629.95 3 170.21 4 629.95 629.95 3 170.21 0 0.00 0 0.00

r101 62.14 18 1641.42 22 533.93 16 1788.25 1815.77 23 518.81 12 275.20 0 0.00

r102 62.14 16 1461.38 24 469.22 15 1422.69 1436.95 19 353.90 6 142.64 0 0.00

r103 62.14 13 1262.75 17 457.31 12 1195.76 1233.72 8 136.87 10 254.93 2 62.32

r104 67.15 11 1078.99 12 343.29 10 1015.81 1048.69 3 102.62 7 154.61 3 87.09

r105 62.14 15 1373.94 18 454.85 13 1338.52 1364.98 15 278.83 9 264.56 0 0.00

r106 62.60 13 1310.46 18 496.66 12 1246.47 1280.16 10 186.17 14 336.85 0 0.00

r107 66.28 12 1118.91 14 326.82 10 1096.09 1130.86 6 90.64 12 337.60 1 5.06

r108 64.06 11 1031.14 13 331.25 10 987.04 1010.68 7 135.59 5 192.14 2 22.16

r109 65.17 13 1197.57 15 360.49 11 1156.36 1198.55 5 82.61 9 306.66 2 57.64

r110 67.12 11 1090.92 17 352.61 10 1078.66 1127.70 4 77.84 7 168.81 4 160.81

r111 65.80 12 1084.13 13 304.56 11 1064.34 1086.10 8 153.74 5 155.99 1 30.81

r112 65.48 11 1017.31 14 297.03 10 986.79 1015.49 6 82.95 8 211.04 1 37.99

r201 187.86 3 1262.10 6 698.52 3 1257.50 1257.50 7 693.92 0 0.00 0 0.00

r202 238.34 3 1052.32 3 337.30 3 1051.46 1051.46 3 336.44 0 0.00 0 0.00

r203 187.90 3 895.54 4 331.84 3 895.54 895.54 4 331.84 0 0.00 0 0.00

r204 247.66 2 780.14 2 284.82 2 779.71 779.71 2 284.39 0 0.00 0 0.00

r205 198.88 3 987.36 3 390.72 3 987.36 987.36 3 390.72 0 0.00 0 0.00

r206 181.23 3 922.70 3 379.01 3 922.70 922.70 3 379.01 0 0.00 0 0.00

r207 267.18 2 846.59 2 312.23 2 846.43 846.43 2 312.07 0 0.00 0 0.00

r208 218.03 2 736.12 2 300.06 2 736.12 736.12 2 300.06 0 0.00 0 0.00

r209 181.83 3 868.95 4 323.46 3 866.67 866.67 4 321.18 0 0.00 0 0.00

r210 187.87 3 843.36 3 299.98 3 843.21 843.21 3 299.84 0 0.00 0 0.00

r211 265.71 2 862.56 2 331.14 2 840.61 840.61 4 309.19 0 0.00 0 0.00

rc101 79.69 15 1754.75 22 573.65 14 1769.82 1800.73 17 403.60 7 191.95 2 58.61

rc102 79.69 14 1526.31 17 455.00 13 1531.90 1557.39 12 269.33 8 213.47 1 20.68

rc103 79.69 13 1329.58 13 366.84 12 1332.38 1355.71 12 222.11 4 129.22 1 52.05

rc104 79.69 11 1202.93 14 326.34 10 1165.39 1192.60 7 121.53 8 221.88 1 25.08

rc105 79.69 14 1449.53 17 356.63 13 1403.53 1425.92 10 156.40 7 223.88 0 0.00

rc106 79.69 13 1402.95 16 372.68 12 1369.51 1388.85 10 236.05 8 193.48 0 0.00

rc107 79.69 12 1261.03 14 314.68 11 1221.72 1247.87 8 161.81 6 149.77 1 55.85

rc108 79.69 11 1164.32 13 289.47 10 1171.71 1199.24 7 156.53 5 161.34 1 56.95

rc201 211.04 4 1446.84 4 602.68 4 1446.84 1446.84 4 602.68 0 0.00 0 0.00

rc202 273.13 3 1416.96 4 597.57 3 1416.96 1416.96 4 597.57 0 0.00 0 0.00

rc203 209.92 3 1069.27 5 439.51 3 1064.33 1064.33 7 434.57 0 0.00 0 0.00

rc204 159.68 3 886.23 6 407.19 3 886.19 886.19 5 407.15 0 0.00 0 0.00

rc205 194.58 3 1262.22 8 678.48 3 1255.15 1256.30 8 659.89 1 11.51 0 0.00

rc206 229.26 3 1206.09 6 518.31 3 1206.06 1206.06 5 518.28 0 0.00 0 0.00

rc207 212.23 3 992.14 4 355.45 3 991.65 991.65 5 354.96 0 0.00 0 0.00

rc208 165.63 3 839.71 4 342.82 3 839.71 839.71 4 342.82 0 0.00 0 0.00

1-Charger 3-Chargers 
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Regarding CPLEX call frequency, we do not see any major difference between the run times 

with Ω = 200 and Ω = 500 in any setting. This indicates that CPLEX does not require 

extensive computational effort to find the optimal solution for the fixed-route problem and 

validates the effectiveness of the proposed mathematical formulation.  To further investigate 

the computational burden of route enhancement with CPLEX we illustrate the percentage of 

total computational time spent by ALNS and CPLEX in Figure 4. This figure reveals that 

CPLEX does not require more than 1% of the total run time in type-2 problems whereas in 

type-1 problems the optimization can take up to 8% of total time. Although route enhancement 

seems to require relatively more effort in type-1 problems, the total computation time for type-

2 problems is substantially higher (see Table 4) and the time devoted to route enhancement 

corresponds to a small proportion within this large amount of time. 

In summary, we can conclude that our matheuristic using IA 2 for initialization and performing 

route enhancement every 200 iterations (i.e. Ω = 200)  exhibits the best performance in terms 

of both solution quality and run time. 

5.1.2 Effect of Multiple Chargers 

In this section, we compare the best results obtained by the proposed matheuristic with the best 

results that ALNS of Keskin and Çatay (2016) yields for the single charge case where the 

stations are equipped with only Level 1 (normal) chargers. The results are presented in Table 

6. In this table, “Q” stands for the battery capacity and “TC/TD” refers to the total cost which 

is equivalent to total distance travelled in the normal charge case. Columns “#L1”, “#L2”, and 

“#L3” report the total number of recharges performed by using Level 1, Level 2, and Level 3 

chargers, respectively, and “Qty” shows the corresponding quantity of energy transferred. The 

improvements over the single charger results are highlighted in bold. 

When we compare the 3-charger results with 1-charger results we see that fast charging is more 

beneficial when the customers have narrow time windows (i.e. type-1 problems). This is 

expected because the time spent at stations for recharging the EV can be reduced significantly 

with fast chargers and the vehicle may be able to serve additional customers along its route 

including customers that cannot be served otherwise due to strict time-window restrictions. If 

the EV can serve more customers along its route then more efficient solutions may be 

constructed which require less number of vehicles and/or consume less energy due to shortened 

travel distance. The cost of total energy may also go down depending on the charger types 

utilized and the quantity of energy transferred. In type-1 data set, out of 29 instances we have 

achieved better solutions in 28 whereas the solution for one instance (c101) has not changed. 

In addition, the number of vehicles is decreased by two in 8 instances and by one in 20. The 
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fleet size is reduced in all r- and rc-type problems. Furthermore, both the fleet size and energy 

cost are improved in 13 type-1 instances. We can conclude that the improvements in type-1 

problems were accomplished by utilizing fast and super-fast chargers effectively based on the 

number of recharges and the energy quantities given in the last four columns.  

When we analyze the results for type-2 instances we observe that fast charging is able to reduce 

the fleet size in only one instance (c204) out of 27 and by only one vehicle. Since the time 

windows can be easily satisfied in these problems the vehicles can serve more customers on 

their routes and the number of EVs is already few (between 2 and 4). Hence, a reduction in the 

fleet size is usually impossible. We also observe that fast charging does not help cutting down 

the costs either: total energy cost is reduced in 12 instances and the average improvement is 

only 0.17%. The main contributor to this average value is problem r211 where a 2.54% 

reduction in energy cost is achieved. These results are in parallel with Desaulniers et al. (2016) 

who highlighted the minor influence of wide time-window constraints on recharging decisions. 

Further investigation on these results reveals that #L2 and #L3 values are 0 in most of the 

instances. So, these slight improvements were achieved by an extended search of the solution 

space of single charger case rather than by using fast or super-fast chargers. Noting again that 

IA 1 constructs the initial solution by using only normal chargers, these results now explain 

why the matheuristic using IA 1 showed a better performance in type-2 problems in Section 

5.1.1.  

5.2 Results for Small Instances 

In this section, we solve the small instances to compare the solutions of the matheuristic with 

the optimal solutions or best bounds given by CPLEX. With CPLEX, we solve Model 1 using 

a single thread and set the time limit to 7200 seconds. Since the problems are smaller we 

perform IA 2 for 10,000 iterations and run the matheuristic 10,000 iterations with Ω = 200. 

The results are presented in Table 7. The computation times reported in columns “Time” are in 

seconds. The values given following “c” and “s” in the instance names represent the number 

of customers and stations, respectively. Note that CPLEX results reported with a run time of 

7200 seconds show the best upper bounds found within the given time limit and are not 

necessarily the optimal solutions. CPLEX solves all 5- and 10-customer instances to optimality. 

Our matheuristic also solves them optimally; however, it requires more computational time in 

most of the instances. On the other hand, the matheuristic outperforms CPLEX in 15-customer 

instances both in terms of solution quality and run time. The improved results are highlighted 

in bold in the table. We see that our matheuristic achieved better cost figures in two instances 

(c103c15-s5 and rc204c15-s7) and provided a solution with one less vehicle in another instance 
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(rc202c15-s5). The latter case corresponds to a major improvement as the fleet size is reduced 

to a single vehicle from two. We believe that these results show the effectiveness of the 

proposed matheuristic approach. 

Table 7. Comparison of results on small size instances 

Instance #Veh TC Time #Veh TC Time

c101c5-s3 2 250.69 < 1 2 250.69 2.50

c103c5-s2 1 175.37 < 1 1 175.37 2.76

c206c5-s4 1 242.56 < 1 1 242.56 3.02

c208c5-s3 1 164.34 < 1 1 164.34 2.62

r104c5-s3 2 136.69 < 1 2 136.69 0.98

r105c5-s3 2 156.08 < 1 2 156.08 2.09

r202c5-s3 1 128.88 < 1 1 128.88 3.08

r203c5-s4 1 179.06 < 1 1 179.06 3.43

rc105c5-s4 2 233.77 < 1 2 233.77 1.67

rc108c5-s4 2 253.93 < 1 2 253.93 2.44

rc204c5-s4 1 185.16 < 1 1 185.16 3.17

rc208c5-s3 1 167.98 < 1 1 167.98 3.23

c101c10-s5 3 382.93 1 3 382.93 4.34

c104c10-s4 1 267.60 27 1 267.60 8.48

c202c10-s5 1 304.06 1 1 304.06 7.99

c205c10-s3 1 283.29 3 1 283.29 5.91

r102c10-s4 3 249.19 1 3 249.19 3.78

r103c10-s3 2 206.30 57 2 206.30 5.22

r201c10-s4 1 241.25 1159 1 241.25 7.76

r203c10-s5 1 222.64 14 1 222.64 26.90

rc102c10-s4 4 415.99 12 4 415.99 3.13

rc108c10-s4 3 347.90 2 3 347.90 4.27

rc201c10-s4 1 412.86 865 1 412.86 6.50

rc205c10-s4 2 325.98 < 1 2 325.98 6.86

c103c15-s5 2 368.91 7200 2 368.80 12.47

c106c15-s3 2 310.79 1375 2 310.79 10.04

c202c15-s5 2 381.23 453 2 381.23 19.29

c208c15-s4 1 339.21 7200 1 339.21 21.09

r102c15-s8 5 411.03 7200 5 411.03 5.73

r105c15-s6 3 340.62 353 3 340.62 5.63

r202c15-s6 1 449.81 7200 1 449.81 30.08

r209c15-s5 1 313.24 7200 1 313.24 44.49

rc103c15-s5 4 397.67 7200 4 397.67 5.91

rc108c15-s5 3 370.25 7200 3 370.25 6.87

rc202c15-s5 2 394.39 7200 1 648.05 15.95

rc204c15-s7 1 392.76 7200 1 340.25 62.45

CPLEX Matheuristic
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5.3 Results for FORT instances of Felipe et al. (2014)   

To the best of our knowledge, Felipe et al. (2014) is the only study that addressed EVRP with 

multiple charger types and partial recharges but without considering time windows and using 

a different objective function which minimizes total cost of energy and battery degradation. To 

further evaluate the performance of our method, we adapt it to solve their case and perform 

five runs for each instance of FORT data. We implement IA2 with Ω=200 and run the algorithm 

with two different configurations: (A) 25,000 iterations of ALNS for initialization and 10,000 

iterations of matheuristic; (B) 2500 iterations of ALNS and 1000 iterations of matheuristic. 

Our aim in performing test (B) is to investigate the trade-off between the solution quality and 

computation time, and to make a fair comparison with the heuristic of Felipe et al. (2014) in 

terms of run time. Note that they coded their algorithm in Fortran 95 and executed on an Intel 

Core i5 2.8 GHz processor and 8 GB RAM. 

Table 8. Comparison of average results with Felipe et al. (2014) on FORT instances*

N S Avg TC Avg Time Avg TC Avg Time % Imp Avg TC Avg Time % Imp

100 9 71.19 274 64.66 181 9.17 65.01 20 8.73

5 71.59 268 65.12 180 9.02 65.24 31 8.85

200 9 110.38 533 98.75 798 11.19 101.81 80 8.62

5 114.36 522 101.27 770 11.44 104.02 122 9.03

400 9 195.75 1181 176.61 2936 9.84 182.43 329 6.84

5 203.18 1101 181.61 3247 10.58 188.18 533 7.33

Average 647 1352 10.21 186 8.23

Matheuristic (A) Matheuristic (B)FORT

 

 

The average results are presented in Table 8 and detailed results are given in Appendix C. In 

this table, “N” and “S” refer to the number of customers and number of stations in the data, 

respectively. “Avg TC” and “Avg Time” report the average total cost and the average 

computation time (in seconds) of the corresponding problem set. “% Imp” shows the percentage 

improvement achieved by our matheuristic for each configuration and calculated as (FORT −

Matheuristic)/FORT.  

The results reveal that our matheuristic provides significantly better solutions than FORT using 

both configurations (A) and (B). Reducing the number of iterations in configuration (B) 

deteriorates the solution quality by 2% on the average while the average run time is 

approximately ⅛ of that of configuration (A). Felipe et al. (2014) reported an average run time 

                                                 
* The cost figures are kindly provided by Gregorio Tirado. The average computation times correspond to the 

average running times of SA approach reported in Felipe et al. (2014). 
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of 647 seconds whereas our matheuristic (A) and (B) spent on the average 1352 and 186 

seconds, respectively. Even though the problem addressed is slightly different and the two 

methods were executed on different processors, we believe that these results show the 

superiority of our matheuristic and confirm its effectiveness.  

6. Conclusions 

In this paper, we tackled the Electric Vehicle Routing Problem with Time Windows and Fast 

Chargers (EVRPTW-FC). In EVRPTW-FC, the stations are equipped with multiple chargers 

which vary in power supply, power voltage, and maximum current options. We considered 

three charger types, namely normal, fast, and super-fast. We formulated two different 

mathematical models of this problem and compared them in terms of solution quality and 

computational time. Since the medium and large size problems are intractable, we developed a 

matheuristic approach to solve the problem efficiently. Our approach combines ALNS with an 

exact method. In ALNS, while we employed destruction and repair algorithms from the 

literature, we also introduced new mechanisms specific to the nature of the problem. In the 

exact method, we fixed the sequence of the customers visited by each vehicle in the solution 

provided by ALNS and utilized CPLEX solver to optimize the charging related decisions. We 

also developed an efficient mathematical formulation for this fixed-route single-vehicle 

problem to be able to find the optimal solution in reasonable run time. 

We tested the performance of our algorithm on both small and large benchmark instances from 

the literature. Our numerical results in small-size instances showed that our matheuristic 

outperformed CPLEX both in solution quality and run time. In large-size instances, the results 

revealed the advantage of using fast charging in terms of fleet size and energy consumption. 

Specifically, we were able to obtain route plans requiring less EVs or reducing energy cost or 

both in all instances where the time windows are narrow. On the other hand, the influence of 

the availability of fast chargers was minor when the time windows are wide. 

In this study, we assumed that all stations were already located and equipped with all types of 

chargers. However, this may not be the case considering the high installation costs and lack of 

infrastructure. So, the problem can be extended to a location routing problem where the 

recharging stations are sited, their charger equipment and capacities are determined, and the 

EVs are routed simultaneously. Further research on this topic may also address the 

heterogeneous fleet case where the vehicles vary by their cargo capacities, battery condition 

and age which affect their cruising range and discharge/recharge durations. Furthermore, we 

assumed that recharging stations and chargers were always available. In real life, there may be 
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queues in the stations and the EVs may need to wait for service. Alternatively, it may drive to 

another station. So, variability in recharging times can be investigated within the stochastic 

context. The authors are currently working on this extension. 

Acknowledgments 

The authors are grateful to Gregorio Tirado for sharing the detailed results of the heuristic of 

Felipe et al. (2014). They also thank the two anonymous reviewers for their valuable comments 

and suggestions. 

Appendix A. ALNS Parameters 

In Table A.1, we provide the list of the ALNS parameters and the values we used throughout 

the experimental study.  

Table A.1. ALNS parameters and their values 

Par. Description Value 

𝜎1 Score of the best solution 25 

𝜎2 Score of the better solution 20 

𝜎3 Score of the worse solution 21 

𝜌 Roulette wheel parameter 0.25 

𝜙1 First Shaw parameter 0.5 

𝜙2 Second Shaw parameter 0.55 

𝜙3 Third Shaw parameter 0.53 

𝜙4 Fourth Shaw parameter 0.25 

𝜀 Cooling rate of SA 0.9994 

𝜇 Initial temperature control parameter of SA 0.4 

𝜅 Worst removal determinism factor 4 

𝜂 Shaw removal determinism factor 12 

𝑛𝑍 Number of zones in zone removal 25 

𝑛𝑐 Lower limit for the number of customers to be removed 𝑚𝑖𝑛 {0.1|𝑁|, 30} 

𝑛𝑐 Upper limit for the number of customers to be removed 𝑚𝑖𝑛 {0,4|𝑁|, 60}  

𝑁𝐶  Number of iterations between two consecutive updates of CR and CI operators  200 

𝑁𝑆 Number of iterations between two consecutive updates of SR and SI operators  5500 

𝑁𝑆𝑅 Number of iterations between two consecutive SR and SI calls 60 

𝑁𝑅𝑅 Number of iterations between two consecutive sections in which only route 

removal operators are performed 

2000 

𝑚𝑟 Route removal upper bound 0.3 

𝑛𝑅𝑅 Number of consecutive iterations during the sections in which only route 

removal operators are performed  

1250 

Ω Number of iterations between two consecutive route enhancement procedures 200 
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Appendix B. Outline of the Matheuristic 

In Algorithm 1, we provide the pseudocode of the proposed methodology. 

 

Algorithm 1: Pseudocode of the proposed matheuristic 

1: Generate an initial solution, current solution ← initial solution 

2: Initialize the scores and probabilities of the operators, 𝑖𝑡𝑒𝑟 ← 1 

3: while termination criterion is not met do 

4:      if 𝑖𝑡𝑒𝑟 is a multiple of 𝑁𝑆𝑅 then 

5:            Select an SR operator and remove stations  

6:            Select an SI operator and repair solution 

7:      else if 𝑖𝑡𝑒𝑟 is a multiple of 𝑁𝑅𝑅 then 

8:            for 𝑛𝑅𝑅 iterations do 

9:                   Select RRR or GRR operator and remove customers 

10:                   Select a CI operator and repair solution 

11:                   if 𝑖𝑡𝑒𝑟 is a multiple of 𝑁𝑆𝑅 then 

12:                         Select an SR operator and remove stations  

13:                         Select an SI operator and repair solution 

14:                   end if 

15:                   if 𝑖𝑡𝑒𝑟 is a multiple of Ω then Apply Route Enhancement to current best solution 

16:            end for 

17:      else   

18:            Select a CR operator and remove customers 

19:            if the destroyed solution is infeasible then Perform Greedy Station Insertion 

20:            Select a CI operator and repair solution 

21:      end if 

22:      Accept/reject the solution using Simulated Annealing criterion  

23:      𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1 

24:      if 𝑖𝑡𝑒𝑟 is a multiple of Ω then Apply Route Enhancement to current best solution 

25:      if 𝑖𝑡𝑒𝑟 is a multiple of 𝑁𝐶  then Update adaptive weights of CR and CI operators 

26:      if 𝑖𝑡𝑒𝑟 is a multiple of 𝑁𝑆 then Update adaptive weights of SR and SI operators 

27: end while 

SR: Recharging Station Removal        CR: Customer Removal     RRR: Random Route Removal 

SI: Recharging Station Insertion        CI: Customer Insertion     GRR: Greedy Route Removal 
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Appendix C. Comparison with Felipe et al. (2014) 

The detailed results of the experiments for the problem of Felipe et al. (2014) using FORT 

instances are presented in Tables C.1-C.3. The results were obtained by using IA2 with Ω=200 

and by implementing two configurations: (A) 25,000 iterations of ALNS for initialization and 

10,000 iterations of matheuristic; (B) 2500 iterations of ALNS and 1000 iterations of 

matheuristic. “S” shows the number of stations in the problem, “TC” and “Time” refer to the 

total cost and computation time (in seconds), respectively, and “% Imp” represents the 

percentage improvement achieved by our matheuristic for each configuration and calculated as 

(FORT − Matheuristic)/FORT.  Note that for the instances where TC of FORT is shown with 

“–” Felipe et al. (2014) did not report any results. 

 

Table C.1. Comparison of results on 100-customer instances of Felipe et al. (2014) 

FORT

S Instance TC TC Time % Imp TC Time % Imp

9 p1 73.42 65.12 197 11.31 65.43 22 10.88
p2 65.97 60.49 173 8.31 60.81 19 7.82

p3 66.98 62.95 175 6.01 61.46 21 8.24
p4 70.96 65.41 191 7.83 65.44 19 7.78

p5 78.22 73.82 190 5.63 75.27 19 3.77
p6 72.16 65.72 174 8.93 65.94 21 8.63
p7 73.87 65.40 171 11.46 67.33 20 8.86

p8 62.70 57.21 186 8.76 57.44 21 8.40
p9 72.45 62.80 186 13.32 63.15 21 12.83

p10 66.70 60.21 168 9.73 60.21 18 9.73

5 p1 73.79 65.29 197 11.52 65.47 32 11.28
p2 66.58 60.92 168 8.51 60.95 30 8.46
p3 66.92 63.12 189 5.68 63.28 33 5.44
p4 71.74 68.24 183 4.89 65.88 30 8.17
p5 82.02 76.28 165 7.00 76.37 29 6.88
p6 73.59 66.25 167 9.98 66.36 31 9.83
p7 74.00 67.65 180 8.59 67.91 30 8.23
p8 62.74 57.21 187 8.81 57.23 30 8.78
p9 73.28 65.37 196 10.79 65.54 31 10.56

p10 71.19 60.91 164 14.44 63.46 29 10.86

Matheuristic (A) Matheuristic (B)
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Table C.2. Comparison of results on 200-customer instances of Felipe et al. (2014) 

FORT

S Instance TC TC Time % Imp TC Time % Imp

9 p1 - 105.54 768 - 110.49 80 -
p2 108.24 96.40 757 10.94 97.47 83 9.95
p3 110.21 97.34 827 11.68 99.06 77 10.12
p4 108.69 95.78 794 11.87 99.54 77 8.42
p5 117.44 103.65 781 11.74 106.33 75 9.46
p6 111.26 98.17 869 11.76 101.66 83 8.62
p7 110.42 98.48 773 10.81 102.46 78 7.21
p8 102.37 93.66 813 8.51 94.65 84 7.54
p9 110.08 97.41 821 11.51 101.62 86 7.68

p10 114.71 101.06 780 11.90 104.86 73 8.59

5 p1 124.11 110.48 706 10.98 114.43 113 7.80
p2 110.15 98.49 788 10.59 101.97 126 7.43
p3 109.64 99.18 718 9.54 103.34 117 5.74
p4 112.65 99.03 769 12.09 100.29 122 10.97
p5 121.81 104.88 703 13.90 109.69 119 9.95
p6 115.05 102.23 831 11.14 103.10 127 10.38
p7 113.76 102.52 805 9.88 103.32 124 9.17
p8 106.70 92.42 835 13.38 96.71 129 9.36
p9 113.46 100.32 792 11.58 100.75 129 11.21

p10 116.23 103.12 749 11.28 106.60 117 8.28

Matheuristic (A) Matheuristic (B)

 

 

Table C.3. Comparison of results on 400-customer instances of Felipe et al. (2014)

FORT

S Instance TC TC Time % Imp TC Time % Imp

9 p1 198.48 179.56 2715 9.53 182.81 333 7.90
p2 196.50 176.34 2928 10.26 180.94 341 7.92
p3 195.72 177.34 2631 9.39 183.52 335 6.23
p4 190.28 172.00 3292 9.61 179.11 329 5.87
p5 192.67 176.13 2880 8.59 181.20 348 5.95
p6 200.66 179.52 2810 10.53 184.82 311 7.89
p7 194.40 176.17 2903 9.38 182.97 318 5.88
p8 194.92 176.03 3103 9.69 183.16 332 6.03
p9 198.16 175.12 2976 11.63 182.46 334 7.92

p10 - 177.88 3123 - 183.30 311 -

5 p1 206.60 182.70 3265 11.57 189.73 545 8.17
p2 201.98 180.38 3393 10.69 181.00 542 10.39
p3 207.55 183.56 2780 11.56 188.32 539 9.27
p4 192.96 177.07 3765 8.24 187.02 555 3.08
p5 199.21 177.34 3386 10.98 184.44 556 7.42
p6 206.75 184.41 3200 10.80 188.15 505 9.00
p7 205.96 182.73 3261 11.28 190.41 541 7.55
p8 195.06 181.10 3203 7.16 191.48 509 1.84
p9 207.38 184.38 3173 11.09 191.94 531 7.44

p10 208.33 182.41 3046 12.44 189.35 503 9.11

Matheuristic (A) Matheuristic (B)
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