Anglo American Inyosi Coal (Pty) Ltd

ALEXANDER PROJECT

TERRESTRIAL ECOLOGY STUDY, BIODIVERSITY VALUE ASSESSMENT & IMPACT ASSESSMENT

June 2016

Prepared for:	Marline Medallie Environmental Assessment Practitioner Synergistics (SLR Consulting Africa) P.O. Box 1596 Cramerview 2060 Johannesburg, South Africa

Prepared by: ECOREX Consulting Ecologists CC PO Box 57 White River 1240

Author:

Warren McCleland

EXECUTIVE SUMMARY

ECOREX Consulting Ecologists CC conducted an assessment of the terrestrial ecology of the Anglo American Inyosi Coal (AAIC) Alexander Mine Project in Jan 2014 and April 2016. The study comprised flora and vertebrate fauna (mammals, birds, reptiles, frogs). The key objective of the 2016 study was to update the terrestrial ecology baseline and assessment of the biodiversity value of the terrestrial habitats represented, and to conduct an assessment of the potential impacts on terrestrial ecology.

The study area covers approximately 10 700 ha, of which only about 220 ha comprise surface infrastructure. The area is situated almost entirely within Eastern Highveld Grassland, which has a national ecosystem status of **Endangered**. About 8 300 ha, or 78% of the study area, has been transformed, mostly through commercial crop cultivation. The remaining 2 400 ha comprise five untransformed vegetation communities, which were identified within the study area on the basis of distinctive vegetation structure, floristic composition and position in the landscape:

- o Untransformed Grassland on Rocky Ridges;
- o Untransformed Grassland on Hillslopes and Plateaus;
- o Untransformed Grassland on Plains;
- Evergreen Thicket on Rocky Scarps and Outcrops;
- Wetlands.

Two hundred and ninety-six plant species were recorded within the study area during fieldwork. Fifteen of these are protected under the Mpumalanga Nature Conservation Act (No. 10 of 1998). Five plant species of conservation concern were confirmed to occur in the study area, four of which have the status of Declining (*Boophone disticha, Crinum bulbispermum, Eucomis autumnalis subsp. clavata, Hypoxis hemerocallidea*). The fifth species is *Khadia beswickii*, which is classified as Vulnerable. An additional seven species of conservation concern have been recorded within the quarter-degree grid 2629 AD and surrounding grids with similar habitat, of which six species have a moderate or high likelihood of occurring because of the presence of suitable habitat and / or presence of known populations nearby.

Eight fauna species of conservation concern were confirmed during fieldwork, three of which are Vulnerable (Secretarybird, Southern Bald Ibis), and five of which are Near Threatened

(Brown Hyaena, Serval, Black-winged Pratincole, Maccoa Duck, Greater Flamingo). Two Near Threatened mammals (Highveld Golden Mole and Southern African Hedgehog) are considered to have a moderate likelihood of occurring in the study area. A number of mammals classified as Data Deficient have a moderate likelihood of occurring, particularly shrews and rodents. Fifteen bird species confirmed to occur in the general vicinity of the study area during the current South African Bird Atlas Project have Red Data status. Six of these have been confirmed and have been mentioned above. Five other species have a moderate likelihood of occurring, two of which are classified as Vulnerable (White-bellied Korhaan, African Grass Owl), and three are Near Threatened (Pallid Harrier, Red-footed Falcon and Lesser Flamingo). One reptile with Near Threatened status has a moderate likelihood of occurring in any untransformed grassland fragments (Transvaal Grass Lizard). No amphibian species of conservation concern were recorded within the study area, although habitat is present for the Giant Bullfrog, which is Near Threatened.

Five vegetation communities have High Biodiversity Value, namely the three Untransformed Grassland communities, Evergreen Thicket on Scarps and Rocky Outcrops and Wetlands. These are the key ecosystems that need to remain intact and functional. Impacts within these communities will have the highest significance levels and therefore the impact footprint should remain outside of these communities as much as possible.

Much of the untransformed vegetation within the study area falls within a Critical Biodiversity Area (CBA) within the new Mpumalanga Biodiversity Sector Plan (Lötter *et. al,* 2014). A portion of the untransformed vegetation is also classified as Other Natural Habitats, while the transformed areas are classified as Modified. Areas falling within the Modified category are the preferred areas for a wide variety of land-use types, which includes urban and business development. Mining developments within CBAs are considered as inappropriate developments in conflict with the recommended land use guidelines.

An assessment of potential impacts was compiled and is summarised in the table below.

Potential Impact	Project Activity	Environmental significance before mitigation					nce before	Mitigation	Environmental significance after mitigation					
		Ι	D	Е	С	Ρ	S		Ι	D	Е	С	Ρ	S
Construction Phase		•	•		•					•				
Destruction and / or fragmentation of natural habitat	Strip clearing vegetation	М	νн	VL	М	М	MEDIUM	Habitat restoration	Μ	м	VL	М	L	MEDIUM
Loss of plant species of conservation importance	Strip clearing vegetation	н	VH	VL	Н	L	MEDIUM	Staff awareness	Н	VH	VL	Н	VL	MEDIUM
Increased illegal utilisation of natural resources	Increase in number of people	м	Н	VL	м	м	MEDIUM	Security (patrolling ajdacent natural vegetation for evidence of poaching, etc), Staff awareness, Relocation of protected flora	L	L	VL	L	L	LOW
Disturbance and displacement of fauna	Heavy vehicle activity; construction of conveyor line	н	Н	L	н	м	HIGH	Traffic control (speed enforcement, working hours)	Н	L	L	Η	L	MEDIUM
Increased invasion by alien plant species	Strip clearing vegetation	н	VH	VL	н	н	HIGH	Invasive alien plant control	L	L	VL	L	L	LOW
Increase in mortalities of fauna through road collisions	Heavy vehicle activity	м	н	L	м	н	HIGH	Traffic control (speed enforcement, working hours)	L	н	L	М	L	MEDIUM
Operational Phase														
Increased invasion by alien plant species	Exposed areas of bare soil once construction completed	м	L	VL	L	М	MEDIUM	Invasive alien plant control, habitat restoration	L	L	VL	L	L	LOW
Increase in mortalities of fauna through road collisions	Heavy vehicle activity	м	н	L	м	н	HIGH	Traffic control (speed enforcement, working hours)	L	н	L	м	L	MEDIUM

M=Magnitude or Severity; R=Reversibility; D=Duration; E=Extent; C=Context; P=Probability; S=Significance

TABLE OF CONTENTS

LIST OF TABLES	3
LIST OF FIGURES	3
ABBREVIATIONS	4
TERMINOLOGY	4
DECLARATION OF INDEPENDENCE	5
SPECIALIST COMPLIANCE CHECKLIST	6
1. INTRODUCTION	7
1.1 BACKGROUND	7
1.2 BRIEF PROJECT DESCRIPTION	
1.3 Study Team	8
2. TERMS OF REFERENCE	9
3. STUDY AREA	10
4. METHODS	11
4.1 FLORA	
4.2 FAUNA	
4.3 BIODIVERSITY VALUE ASSESSMENT	13
4.4 IMPACT ASSESSMENT	
4.5 ASSUMPTIONS, LIMITATIONS AND KNOWLEDGE GAPS	
4.5.1 Seasonality	
4.5.2 Overlooked Species	
4.5.3 Access Limitations	
5. BIODIVERSITY BASELINE DESCRIPTION	20
5.1 FLORA	
5.1.1 Regional Context	
5.1.2 Local Vegetation Communities	
5.1.3 Conservation-Important Flora	
5.2 TERRESTRIAL FAUNA	
5.2.1 Mammals	
5.2.2 Birds	
5.2.3 Reptiles	
5.2.4 Frogs	
6. BIODIVERSITY VALUE ASSESSMENT	45
7. IMPACT ASSESSMENT	49
7.1 CONSTRUCTION PHASE	49
7.1.1 Destruction or fragmentation of natural habitat	
7.1.2 Loss of plant species of conservation concern	
7.1.3 Disturbance and displacement of fauna	
7.1.4 Increased invasion by alien plant species	
7.1.5 Increased illegal utilisation of natural resources	
7.1.6 Increased mortalities of fauna through collisions with vehicles	
7.2 OPERATIONAL PHASE	E 2
7.2.1 Continued invasion by alien plant species	
7.2.2 Increased mortalities of fauna through collisions with vehicles	52 53

8.1 Pre-Construction Mitigation Measures	55
8.1.1 Locate plant species of conservation concern in infrastructure footprint	55
8.1.2 Compile an invasive alien plant management plan	55
8.1.3 Increase staff awareness	55
8.2 CONSTRUCTION PHASE MITIGATION MEASURES	55
8.2.1 Rescue plant species of conservation concern and protected species	55
8.2.2 Implement invasive alien plant management program	56
8.2.3 Security	
8.2.4 Traffic Control	
8.3 OPERATIONAL PHASE MITIGATION MEASURES	57
8.3.1. Continue control of invasive alien plants	57
8.3.2 Security	
8.3.3 Traffic Control	
8.3.4 Rehabilitate disturbed areas	57
9. CONCLUSIONS	58
9. CONCLUSIONS 10. REFERENCES	
	59
10. REFERENCES	59 61
10. REFERENCES 11. APPENDICES APPENDIX 1. DETAILED DATA: CHECKLIST OF FLORA RECORDED DURING FIELDWORK	59 61 61
10. REFERENCES 11. APPENDICES	59 61 72
10. REFERENCES 11. APPENDICES APPENDIX 1. DETAILED DATA: CHECKLIST OF FLORA RECORDED DURING FIELDWORK APPENDIX 2. DETAILED DATA: FLORA QUADRATS (A)	59 61 72 77
10. REFERENCES 11. APPENDICES APPENDIX 1. DETAILED DATA: CHECKLIST OF FLORA RECORDED DURING FIELDWORK APPENDIX 2. DETAILED DATA: FLORA QUADRATS (A) APPENDIX 3. DETAILED DATA: FLORA QUADRATS (B)	59 61 72 77 81
10. REFERENCES 11. APPENDICES APPENDIX 1. DETAILED DATA: CHECKLIST OF FLORA RECORDED DURING FIELDWORK APPENDIX 2. DETAILED DATA: FLORA QUADRATS (A) APPENDIX 3. DETAILED DATA: FLORA QUADRATS (B) APPENDIX 4. DETAILED DATA: CHECKLIST OF FAUNA RECORDED DURING FIELDWORK	59 61 72 77 81 91
10. REFERENCES 11. APPENDICES APPENDIX 1. DETAILED DATA: CHECKLIST OF FLORA RECORDED DURING FIELDWORK	59 61 72 77 81 91 94 A

List of Tables

Table 1. Method of calculating Biodiversity Value of vegetation communities	15
Table 2. Method of calculating Conservation Importance of vegetation communities	15
Table 3. Method of calculating Functional Importance of vegetation communities	16
Table 4. Sørensen's Coefficient of Similarity Scores for Vegetation Communities	29
Table 5. Conservation-important plant species confirmed during fieldwork	33
Table 6. Potentially Occurring Plant Species of Conservation Concern	34
Table 7. Sørensen's Coefficient of Similarity Scores for Bird Assemblages	41
Table 8. Conservation Importance, Functional Importance and Biodiversity Values for vegetation	
communities in the Study Area	45
Table 9. Summary of Impacts and Mitigations	

List of Figures

Figure 1. Location of Study Area	10
Figure 2. Photos of Untransformed Grassland on Rocky Ridges	
Figure 3. Photos of Untransformed Grassland on Hillslopes and Plateaus	
Figure 4. Photos of Untransformed Grassland on Plains	
Figure 5. Photos of Evergreen Thicket on Scarps and Rocky Outcrops	
Figure 6. Photos of Valley-bottom Wetlands in the Project Area	
Figure 7. Selected photographs of Khadia beswickii, a Vulnerable species occurring in the stud	ly area
Figure 8. Photos of some Declining species in the Project Area	
Figure 8. Photos of some Declining species in the Project Area Figure 9. Vegetation communities identified within the Study Area	
Figure 8. Photos of some Declining species in the Project Area Figure 9. Vegetation communities identified within the Study Area Figure 10. Selected Bushnell TrailCam photos at the Brown Hyaena den	
Figure 9. Vegetation communities identified within the Study Area	
Figure 9. Vegetation communities identified within the Study Area Figure 10. Selected Bushnell TrailCam photos at the Brown Hyaena den	

Abbreviations

BVA	Biodiversity Value Assessment
CBA	Critical Biodiversity Area
IBA	Important Bird Areas
mamsl	Metres Above Mean Sea Level
MBSP	Mpumalanga Biodiversity Sector Plan
MNCA	Mpumalanga Nature Conservation Act (No. 10 of 1998)
MTPA	Mpumalanga Tourism and Parks Agency
NFA	National Forest Act (No. 30 of 1998)
PRECIS	National Herbarium Pretoria (PRE) Computerised Information
	System

Terminology

4

Alien	Introduced from elsewhere: neither endemic nor indigenous.							
Biodiversity	The structural, functional and compositional attributes of an area,							
	ranging from genes to landscapes.							
Degraded	An ecosystem that is in a poor ecological state, usually through							
	impacts such as invasion by alien plants, severe overgrazing, poor							
	burning regimes, etc. These systems still contain a moderate							
	proportion of indigenous flora.							
Geophyte	Plants that produce their growth points from organs stored below							
	the ground, an adaption to survive frost, drought and / or fire.							
Riparian	Pertaining to the river bank.							
Transformed	Transformed ecosystems are no longer natural and contain little or							
	no indigenous flora. Examples include agricultural lands,							
	plantations, urban areas, etc.							

Declaration of Independence

The specialist appointed in terms of the Regulations

Warren Lee McCleland

, declare that -

General declaration

L

- I act as the independent specialist in this application; •
- I will perform the work relating to the application in an objective manner, even if this results in views and . findings that are not favourable to the applicant;
- I declare that there are no circumstances that may compromise my objectivity in performing such work; •
- I have expertise in conducting the specialist report relevant to this application, including knowledge of the • Act, regulations and any guidelines that have relevance to the proposed activity;
- I will comply with the Act, regulations and all other applicable legislation; .
- I will take into account, to the extent possible, the matters listed in Regulation 8; .
- I have no, and will not engage in, conflicting interests in the undertaking of the activity; .
- I undertake to disclose to the applicant and the competent authority all material information in my possession . that reasonably has or may have the potential of influencing - any decision to be taken with respect to the application by the competent authority; and - the objectivity of any report, plan or document to be prepared by myself for submission to the competent authority;
- All the particulars furnished by me in this form are true and correct; and .
- I realise that a false declaration is an offence in terms of Regulation 71 and is punishable in terms of section 24F of the Act.

Signature of specialist:

ECOREX Consulting Ecologists Name of company:

29/04/2016 Date:

Signature of Commissioner of Oaths

Date

10

Designation:

Official stamp (below)

SUID-AFRIKAANSE POLISIEDIENS

2016 -04- 2 9

n/a

Specialist Compliance Checklist

(1) A specialist report prepared in terms of the 2014 Environmental Impact Assessment Regulations must contain-

	(a) details of-	
1	(i) the specialist who prepared the report; and	section 1.3
1	(ii) the expertise of that specialist to compile a specialist report including a curriculum vitae;	Appendix 8
1	(b) a declaration that the specialist is independent in a form as may be specified by the competent authority;	page 5
1	(c) an indication of the scope of, and the purpose for which, the report was prepared;	section 2
1	(d) the date and season of the site investigation and the relevance of the season to the outcome of the assessment;	section 4.2
~	(e) a description of the methodology adopted in preparing the report or carrying out the specialised process;	section 4
~	(f) the specific identified sensitivity of the site related to the activity and its associated structures and infrastructure;	section 6
~	(g) an identification of any areas to be avoided, including buffers;	Fig 12-13
~	 (h) a map superimposing the activity including the associated structures and infrastructure on the environmental sensitivities of the site including areas to be avoided, including buffers; 	Fig 12-13
1	(i) a description of any assumptions made and any uncertainties or gaps in knowledge;	section 4.5
~	 a description of the findings and potential implications of such findings on the impact of the proposed activity, including identified alternatives on the environment; 	section 7
1	(k) any mitigation measures for inclusion in the EMPr;	section 8
х	(I) any conditions for inclusion in the environmental authorisation;	n/a
x	(m) any monitoring requirements for inclusion in the EMPr or environmental authorisation;	n/a
	(n) a reasoned opinion-	
1	(i) as to whether the proposed activity or portions thereof should be authorised; and	section 9
~	 (ii) if the opinion is that the proposed activity or portions thereof should be authorised, any avoidance, management and mitigation measures that should be included in the EMPr, and where applicable, the closure plan; 	section 9
x	 (o) a description of any consultation process that was undertaken during the course of preparing the specialist report; 	n/a
x	(p) a summary and copies of any comments received during any consultation process and where applicable all responses thereto; and	n/a

(q) any other information requested by the competent authority.

6

Х

1. INTRODUCTION

1.1 Background

Anglo American Inyosi Coal (Pty) Ltd (AAIC) is proposing to establish a new underground coal mine (the Alexander Project) within the current AAIC prospecting right areas. Synergistics Environmental Services (Synergistics), an SLR Group Company, has been appointed as the independent environmental assessment practitioner (EAP) responsible for undertaking the necessary environmental assessment and public participation process for the project.

ECOREX Consulting Ecologists CC Enpact conducted a terrestrial ecology assessment (flora and vertebrate fauna) for the Alexander Project in January 2014. The key deliverables of that study were a baseline description of the terrestrial ecology (flora, mammals, birds, reptiles and frogs), an integrated Biodiversity Value Assessment (BVA) and an assessment of the potential impacts on terrestrial ecology associated with the project. The objective of the 2014 study was to provide a basis for assessing potential impacts of the proposed project on terrestrial ecology and guide the design and location of planned infrastructure. Studies were not completed in 2014 due to project delays and therefore the additional surveys were only completed as part of this 2016 study. In addition, specialist reports were needed to be adjusted to meet the requirements of Appendix 6 (Specialist Reports) of Government Gazette No. 38282 of 4 December 2014.

1.2 Brief Project Description

The proposed Alexander Project will involve the development of surface and underground facilities comprising an underground mine, a waste rock dump, topsoil stockpiles, mine related facilities such as workshops, stores and various support infrastructure and services. The proposed project will also require construction of an overland conveyor to transport coal from the proposed Alexander incline shaft to the stockpile area at Elders Colliery from where it will be transported via the Elders overland conveyor to Goedehoop Colliery for beneficiation purposes. More details regarding the project layout are provided in the Scoping Report.

1.3 Study Team

The study team for the 2014 and 2016 studies was as follows:

Warren McCleland (Terrestrial Ecologist). Warren is the owner and director of ECOREX Consulting Ecologists CC, a consultancy of flora and vertebrate fauna specialists based in White River, Mpumalanga. He has been involved in specialist biodiversity assessments for a wide range of developments, particularly mining, throughout sub-Saharan Africa over the past 16 years. These have included over 30 coal mining projects within Mpumalanga alone. Countries of work experience outside of South Africa include Angola, Democratic Republic of the Congo, Republic of Guinea, Sierra Leone, Tanzania, Zambia, Malawi, Mali, Mozambique, Namibia and Swaziland. Warren is the co-author of the acclaimed "Field Guide to the Trees & Shrubs of Mpumalanga & Kruger National Park" published by Jacana in 2002, and is currently working on a field guide to the Wildflowers of Kruger National Park. He received the Marloth Award in 2014 in recognition of his contribution to amateur botany through co-authorship of the Mpumalanga Tree Field Guide.

Duncan McKenzie (Terrrestrial Ecologist). Duncan is a part of the ECOREX team and manages most of the Mpumalanga projects. He has been involved in biodiversity assessments for ECOREX for six years, particularly for coal mining projects on the Mpumalanga Highveld. Other countries of work experience include Lesotho, Swaziland, Mali, Mozambique, Sierra Leone, Tanzania and Democratic Republic of the Congo. Duncan has previously worked as a Regional Coordinator for the Mondi Wetlands Project where he gained considerable experience in wetland delineation and management. He is currently the Regional Coordinator for the South African Bird Atlas Project and is a co-author on the Wildflowers of the Kruger National Park project.

Linda McKenzie (GIS Specialist). Linda is a GIS Specialist/GIS Analyst with over 12 years experience in the industry. For the last 4 years she has operated her own GIS Consultancy (Digital Earth). She has extensive experience in both the private and public sector, as has worked on a wide variety of projects and GIS applications. These include vegetation and sensitivity mapping, landcover data capture, municipal roads master planning, hydroelectric scheme and wind farm feasibility mapping and town planning, land surveyor and engineering support services. Linda currently serves as treasurer for GISSA Mpumalanga and is a registered Professional GISc Practitioner (PGP0170).

2. TERMS OF REFERENCE

- A. Update the assessment of the terrestrial ecosystems within the project area (vertebrate fauna and flora), which will include the following:
 - Updated description of vegetation communities;
 - Revised Vegetation Map (if necessary);
 - Updated description of faunal assemblages (mammals, birds, reptiles and frogs).
- B. Update the assessment of the Biodiversity Value of the vegetation units represented, which will comprise:
 - Assessment of conservation importance and functional importance of each vegetation unit;
 - Revised Biodiversity Value Map (if necessary).
- C. Assess the potential impacts of the project on Terrestrial Ecology, using the methodology provided by Synergistics.

3. STUDY AREA

The study area is situated at the south-eastern boundary of the town of Kriel, and extends on either side of the R545 road between Kriel and Bethal, straddling the shared boundary of Nkangala and Gert Sibande Districts, Mpumalanga Province (Figure 1). The area that was surveyed covered approximately 10 700 hectares, of which only about 220 ha will comprise surface infrastructure. About 8 300 ha, or 78% of the study area, has been transformed, mostly through commercial crop cultivation. This report is relevant to the 2 400 ha of untransformed (natural) habitat, with the direct impacts dealt with in section 7 being specific to the area of above-ground infrastructure.

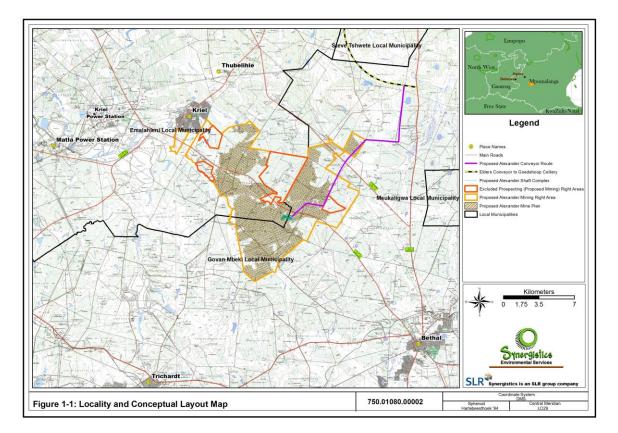


Figure 1. Location of Study Area

4. METHODS

4.1 Flora

Desktop

Vegetation communities were identified prior to fieldwork using satellite imagery. Red Data plant species listed for the quarter-degree grid 2629 AD in the Mpumalanga Tourism & Parks Agency's threatened species database, as well as PRECIS data from the South African National Biodiversity Institute (SANBI), were used to produce a list of the most likely threatened species, which were searched for during fieldwork.

Fieldwork

Vegetation was sampled by walking through all patches of natural habitat within the study area, ensuring that all vegetation communities identified during desktop imagery analysis were covered. The search focused on microhabitats for potentially occurring species of conservation concern. Specimens not identified to genus / species level were photographed and collected, dried in a plant press and identified through use of online herbaria and consultation with other experts. Quantitative sampling for determining species richness took place in 10 m x 10 m quadrats placed in each vegetation community. All plant species located in each quadrat were recorded and cover-abundance estimated according to the Braun-Blanquet cover scale (Kent & Coker, 1992).

Data Analysis

Similarity between different plant communities was determined using the Sørensen Coefficient of Similarity (Kent & Coker, 1992), defined as:

Ss =	2a 2a+b+c	•	
where	Ss	=	Sørensen Coefficient of Similarity
	а	=	number of species common to both communities
	b	=	number of species in community 1
	С	=	number of species in community 2

4.2 Fauna

Desktop

Lists of potentially occurring conservation-important mammals, birds, reptiles and frogs were prepared using Friedmann & Daly (2004), Taylor et al. (2015), data from the second Southern African Bird Atlas Project (http://sabap2.adu.org.za), Minter *et.al* (2004), and data from the current South African Reptile Conservation Assessment (http://vmus.adu.org.za). The above data were mostly captured at a quarter-degree spatial resolution, but were refined by excluding species unlikely to occur within the footprint, either because of incorrect habitat or altitude. Bat species thought to only fly over the site and not actually utilize vegetation communities were not included in the assessment.

Fieldwork

Fieldwork for this study was conducted from 6-8 April 2016, which co-incided with the end of the wet season and the period of passage for a number of migrating bird species.

Mammals were recorded along the same transects and at the same points at which birds were sampled. Visual sightings were supplemented with indirect evidence such as spoor or dung, as well as limited audio confirmation. Birds were surveyed during the first four hours of daylight when bird activity was at its highest. Species heard calling only were also included. The sampling technique was Timed-Species Counts (Pomeroy & Tengecho, 1983), which involved spending an hour at each site and recording observations within ten minute segments. Additional incidental observations were made during the less productive time of the day while conducting the vegetation survey.

Reptiles and frogs were searched for during the day by visual scanning of likely habitat, investigating potential refuges such as under logs, beneath old bark on dead trees, leaf litter, etc. Frogs were also sampled through recording calls at acoustical monitoring points. No trapping exercise was undertaken.

4.3 Biodiversity Value Assessment

The biodiversity value of each vegetation community was based on a combination of Conservation Importance and Functional Importance, each of which were rated on a five-point scale, from Very Low to Very High, as indicated in Table 1. This method was based on Biodiversity Action Plan guidelines developed by Anglo American (Coombes, 2004).

Conservation Importance

The method of calculating conservation importance was based on six key parameters, which were each allocated a score that ranged between zero (Not Important) and twenty (Very Important) (Table 2). The overall conservation importance was based on the median value of the six parameters, namely:

- Protection Status. The extent to which the vegetation community is currently formally protected (e.g. World Heritage Site; RAMSAR, National Park; Provincial Game Reserve; Private Conservancy etc);
- Size. The extent to which the larger vegetation type of which the defined area is a representative sample, still exists; this incorporates the conservation status of threatened vegetation types in that vegetation types with the highest threat status are assumed to have the lowest extent of habitat remaining;
- 3. *Species Diversity*. The extent to which the vegetation community supports a high diversity of plants or animals;
- 4. Species of Conservation Concern. The extent to which the vegetation community supports threatened species and other species of conservation concern;
- 5. Unique Habitat or Taxa. Presence of range-restricted plants or animals or unusual natural feature;
- 6. *Present Ecological State*. The extent to which the vegetation community is modified from natural conditions.

Functional Importance

The method of calculating functional importance was based on four ecosystem service categories, which were each allocated a score that ranged between zero (Not Important) and twenty (Very Important) (Table 3). The overall functional importance was based on the median value of the four ecosystem service categories, namely:

- 1. *Provisioning Services*. The extent and frequency that the vegetation community provides consumable goods (e.g. food, freshwater, timber, fibre, medicinal plants, etc);
- 2. *Regulating Services.* The extent to which the vegetation community provides regulating services (e.g. flood attenuation, water purification, storage, climate regulation, carbon sequestration, etc);
- 3. *Cultural Services*. The extent to which the vegetation community provides cultural services (e.g. tourism attraction, spiritual attraction, aesthetic value, etc), and;
- 4. *Supporting Services.* The extent to which the vegetation community provides supporting ecological services, either positive (e.g. migration corridor, refuge area, primary production, pollination, pest control, nutrient cycling, soil formation), or negative (e.g. disease sources, pest outbreaks).

By integrating assessments of the conservation importance and functional importance of the different vegetation communities, an assessment of Biodiversity Value was made. This is indicated spatially in Figure 12.

Conservation Importance	Functional Importance						
	Very High	High	Moderate	Low	Very Low		
Very High	Very High	Very High	High	High	Moderate		
High	Very High	High	High	Moderate	Moderate		
Moderate	High	High	Moderate	Moderate	Low		
Low	High	Moderate	Moderate	Low	Low		
Very Low	Moderate	Moderate	Low	Low	Very Low		

Table 1. Method of calculating Biodiversity Value of vegetation communities

Table 2. Method of calculating Conservation Importance of vegetation communities

Parameter	Very High	High	Moderate	Low	Very Low
Protection Status	International	National	Regional	Local	None
	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Size / Length	Verysmall	Small	Moderate	Large	Very Large
	(<500km ²)	(500 to 1,000km ²)	(1,000 to 20,000km ²)	$(20,000 \text{ to} 50,000 \text{ km}^2)$	(> 50,000km ²)
	20 19 18 17	16 15 14 13	12 11 10 9	8765	4 3 2 1 0
Species Diversity	Noticeably High		Moderate		Noticeably Low
	20 19 18 17	16 15 14 13	12 11 10 9	8765	4 3 2 1 0
Species of Conservation Concern	Noticeably High		Moderate		Noticeably Low
	20 19 18 17	16 15 14 13	12 11 10 9	8765	4 3 2 1 0
Unique Habitat or Taxa	Noticeably High		Moderate		Noticeably Low
	20 19 18 17	16 15 14 13	12 11 10 9	8765	4 3 2 1 0
Present Ecological State	Natural, largely Unmodified	Slightly modified	Moderately Modified	Considerab ly Modified	Severely Modified
	20 19 18 17	16 15 14 13	12 11 10 9	8765	4 3 2 1 0

Parameter	Very High	High	Moderate	Low	Very Low
Provisioning Services	Constant	Regular	Frequent	Occassional	Intermittent
	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Regulating Services	Very High	High	Moderate	Low	Very Low
	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Cultural Services	Very High	High	Moderate	Low	Very Low
	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Supporting Services	Very High	High	Moderate	Low	Very Low
	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210

4.4 Impact Assessment

The method described below is that provided by Synergistics and is the method used in the Scoping Report.

PART A: DEFINITION A	PART A: DEFINITION AND CRITERIA*					
Definition of SIGNIFICAN	ICE	Significance = consequence x probability				
Definition of CONSEQUE	NCE	Consequence is a function of intensity, spatial extent and duration				
Criteria for ranking of the INTENSITY of environmental impacts	VH	Severe change, disturbance or degradation. Associated with severe consequences. May result in severe illness, injury or death. Targets, limits and thresholds of concern continually exceeded. Substantial intervention will be required. Vigorous/widespread community mobilization against project can be expected. May result in legal action if impact occurs.				
	н	Prominent change, disturbance or degradation. Associated with real and substantial consequences. May result in illness or injury. Targets, limits and thresholds of concern regularly exceeded. Will definitely require intervention. Threats of community action. Regular complaints can be expected when the impact takes place.				
	М	Moderate change, disturbance or discomfort. Associated with real but not substantial consequences. Targets, limits and thresholds of concern may occasionally be exceeded. Likely to require some intervention. Occasional complaints can be expected.				
	L	Minor (Slight) change, disturbance or nuisance. Associated with minor consequences or deterioration. Targets, limits and thresholds of concern rarely exceeded. Require only minor interventions or clean-up actions. Sporadic complaints could be expected.				
	VL	Negligible change, disturbance or nuisance. Associated with very minor consequences or deterioration. Targets, limits and thresholds of concern never exceeded. No interventions or clean-up actions required. No complaints anticipated.				

	VL+	Negligible change or improvement. Almost no benefits. Change not measurable/will remain in the current range.
	L+	Minor change or improvement. Minor benefits. Change not measurable/will remain in the current range. Few people will experience benefits.
	M+	Moderate change or improvement. Real but not substantial benefits. Will be within or marginally better than the current conditions. Small number of people will experience benefits.
	H+	Prominent change or improvement. Real and substantial benefits. Will be better than current conditions. Many people will experience benefits. General community support.
	VH+	Substantial, large-scale change or improvement. Considerable and widespread benefit. Will be much better than the current conditions. Favourable publicity and/or widespread support expected.
Criteria for ranking of	VL	Very short, always less than a year.
the DURATION of	L	Short-term, occurs for more than 1 but less than 5 years.
impacts	М	Medium-term, 5 to 10 years.
	Н	Long term, between 10 and 20 years. (Likely to cease at the end of the operational life of the activity)
	VH	Very long, permanent, +20 years (Irreversible. Beyond closure)
Criteria for ranking the	VL	A portion of the site.
EXTENT of impacts	L	Whole site.
	М	Beyond the site boundary, affecting immediate neighbours
	Н	Local area, extending far beyond site boundary.
	v	Regional/National

PART B: DETERMINING CONSEQUENCE									
SEVERITY = VL									
DURATION	Very long	VH	Medium	Medium	Medium	High	High		
	Long term	Н	Low	Medium	Medium	Medium	High		
	Medium term	М	Low	Low	Medium	Medium	Medium		
	Short term	L	Very Low	Low	Low	Medium	Medium		
	Very short	VL	Very Low	Low	Low	Low	Medium		
	·		SEVERI	TY = L					
DURATION	Very long	VH	Medium	Medium	High	High	High		
	Long term	Н	Medium	Medium	Medium	High	High		
	Medium term	М	Low	Medium	Medium	Medium	High		
	Short term	L	Low	Low	Medium	Medium	Medium		
	Very short	VL	Very Low	Low	Low	Medium	Medium		
	·		SEVERI	TY = M					
DURATION	Very long	VH	Medium	High	High	High	Very High		
	Long term	Н	Medium	Medium	High	High	High		
	Medium term	М	Medium	Medium	Medium	High	High		

17 ECOREX Consulting Ecologists CC PO Box 57 White River 1240 (013) 750-1893 (083) 231-5632 warren@ecorex.co.za

	Short term	L	Low	Medium	Medium	Medium	High	
	Very short	VL	Very Low	Low	Medium	Medium	Medium	
SEVERITY = H								
DURATION	Very long	VH	High	High	High	Very High	Very High	
	Long term	Н	Medium	High	High	High	Very High	
	Medium term	М	Medium	Medium	High	High	High	
	Short term	L	Medium	Medium	Medium	High	High	
	Very short	VL	Low	Medium	Medium	Medium	High	
			SEVERIT	Y = VH				

DURATION	Very long	VH	High	High	Very High	Very High	Very High
	Long term	Н	High	High	High	Very High	Very High
	Medium term	М	Medium	High	High	High	Very High
	Short term	L	Medium	Medium	High	High	High
	Very short	VL	Low	Medium	Medium	High	High
			VL	L	М	Н	VH
			A portion of the site	Whole site	Beyond the site boundary, affecting immediate neighbours	Local area, extending far beyond site boundary.	Regional/ National
					EXTENT		

PART C: DETERMINING SIGNIFICANCE									
	Definite/ Continuous	νн	Medium	High	High	Very High	Very High		
PROBABILITY	Probable	Н	Medium	Medium	High	High	Very High		
(of exposure to	Possible / frequent	М	Low	Medium	Medium	High	High		
impacts)	Conceivable	L	Low	Low	Medium	Medium	High		
	Unlikely / Improbable	VL	Very Low	Low	Low	Medium	Medium		
			VL	L	М	Н	VH		
			CONSEQUENCE						

PART D: INTERPRETATION OF SIGNIFICANCE						
Significance	Decision guideline					
Very High	Potential fatal flaw unless mitigated to lower significance.					
High	It must have an influence on the decision. Substantial mitigation will be required.					
Medium	It should have an influence on the decision. Mitigation will be required.					
Low	Unlikely that it will have a real influence on the decision. Limited mitigation is likely to be required.					
Very Low	It will not have an influence on the decision. Does not require any mitigation					

18 ECOREX Consulting Ecologists CC PO Box 57 White River 1240 (013) 750-1893 (083) 231-5632 warren@ecorex.co.za

4.5 Assumptions, Limitations and Knowledge Gaps

4.5.1 Seasonality

The 2014 study was conducted in the middle of the wet season (20-24 January) and coincided with the optimal flowering period for many plants, as well as as peak breeding activity for many bird species. The 2016 survey was undertaken at the end of the wet season and co-incided with the period of passage for many migrating bird species. However, plants which flower in spring or early summer are likely to be underrepresented. An additional survey in September is recommended in order to supplement data with species flowering at that time of the year. However, since the biodiversity value assessment has highlighted all untransformed natural areas as having high value, this limitation is unlikely to have significant consequences on a record of decision.

4.5.2 Overlooked Species

Certain plant species, particularly geophytes, will only flower in seasons when conditions are optimal and may thus remain undetected, even over a survey that encompasses several seasons. Other plant species may be overlooked because of very small size and / or extreme rarity. A sampling strategy will always represent merely a subset of the true diversity of the study area. However, the level of sampling effort for this study was appropriate for the objectives of the study.

4.5.3 Access Limitations

Access was restricted to portions of untransformed habitat that is potentially highly sensitive to development. This was particularly relevant along the western boundary of the study area. This is considered a significant limitation and as such, the precautionary principle has been applied and these areas have been allocated the highest sensitivity status.

5. BIODIVERSITY BASELINE DESCRIPTION

5.1 Flora

5.1.1 Regional Context

According to Mucina & Rutherford (2006), the study area is situated within Eastern Highveld Grassland, which has a national ecosystem status of **Endangered** and is a listed Threatened Ecosystem (Notice 1002 of Government Gazette 34809, 9 December 2011). This vegetation type is virtually endemic to Mpumalanga Province, marginally extending into Gauteng Province. It occurs on the Highveld from Belfast in the east to Johannesburg in the west, and south to a line joining Bethal, Ermelo and Piet Retief. About 44% of Eastern Highveld Grassland has already been transformed, mostly through cultivation, plantations, mines and urbanisation. Only small portions of the remaining untransformed grassland are formally protected. The south-western part of the study area is indicated as bordering on Soweto Highveld Grassland, another Endangered vegetation type, but the boundaries between different grassland vegetation types are vague and usually contain elements of both vegetation types, making it unlikely that Soweto Highveld Grassland is clearly represented in the study area.

The study area is not situated in any of Mpumalanga's floristic centres of endemism, which are areas that have an unusually high number of plants unique to that area (Van Wyk & Smith, 2001).

Much of the northern half of the study area has been disturbed or degraded, mostly through commercial irrigated cultivation, but rocky ridges and valley-bottom wetlands in the study area are mostly untransformed, although often heavily grazed and not in pristine state.

5.1.2 Local Vegetation Communities

Five untransformed vegetation communities were identified within the study area on the basis of distinctive vegetation structure (grassland, woodland, thicket, etc), floristic composition (dominant and diagnostic species) and position in the landscape (mid-slopes, terrace, crest, etc). Transformed areas make up 8 300 ha, or 66% of the study area. The untransformed vegetation communities are described in detail below:

5.1.2.1 Untransformed Grassland on Rocky Ridges

This small and fragmented vegetation community is found on sandstone ridges and scarps, which are concentrated along the western boundary and along the drainage system through the centre of the study area (Figure 2; Figure 9). The vegetation community covers 68 ha, or 5% of the study area. Vegetation structure is Low Closed Grassland or Herbland (*sensu* Edwards, 1983), with large areas of level sheetrock between vegetation patches. Dominant grasses in the vegetation patches are *Microchloa caffra, Eragrostis racemosa, Elionurus muticus, Harpochloa falx* and *Eragrostis curvula*. Creeping or mat-forming succulents are diagnostic for this community, particularly *Mossia intervallaris*, which is present at almost all sites, as well as at least one *Delosperma* species, and *Khadia beswickii*, which is classified as Vulnerable (Victor & Pfab, 2005). Small woody shrubs become established where soil accumulates in cracks in the rock, particularly *Diospyros lycioides* subsp. *guerkei, Diospyros austro-africana* and *Searsia magalismontana*. Prominent herbaceous species occurring in the grassland on skeletal soils include *Commelina africana, Monsonia angustifolia, Ursinia nana, Chaenostoma leve* and *Helichrysum caespititium*.

A total of 139 species (47% of the entire list) was recorded from Untransformed Grassland on Rocky Ridges (Appendix 1), which is remarkably high considering how limited in size this community is. Median species richness for the $100m^2$ sample quadrats was 34.5 (n=4) (Appendix 2). Species fidelity, which is closely linked to community uniqueness, is high, with 49 species (35% of the community list) occurring nowhere else in the study area. Sørensen's Coefficient of Similarity scores indicate that the highest affinity is with Untransformed Grassland on Hillslopes and Plateaus (S_s = 0.29) and Untransformed Grassland on Plains (S_s = 0.24) (Table 4).

Two conservation-important species were recorded (Table 5). Only one of these is considered to be of conservation concern as defined by Raimondo *et al.* (2009), namely *Khadia beswickii*, which is classified as **Vulnerable**. This species was previously thought to be endemic to Gauteng, but has recently been discovered in western Mpumalanga on an ECOREX survey (McCleland & McKenzie, 2012). *Crytanthus tuckii* is protected under the Mpumalanga Nature Conservation Act (No. 10 of 1998), although it is not considered to be of conservation concern.

Figure 2. Photos of Untransformed Grassland on Rocky Ridges

Untransformed Grassland on Rocky Ridges was assessed as having High Biodiversity Value through integration of High Conservation Importance and Moderate Functional Importance scores (Table 8). It was rated as having High Conservation Importance (Appendix 7A) because of a high rating in the following components:

- Protection Status a High score was allocated because of provincial policy to avoid developing rocky ridges and outcrops;
- Size sandstone outcrops and ridges are mostly small and fragmented and are embedded in an Endangered vegetation type;
- Unique Habitat or Taxa numerous plant and animal species are restricted to these outcrops within the study area, e.g. *Mossia intervallaris*, *Crassula setulosa* and *Listia heterophylla*, while another species, *Khadia beswickii*, is Vulnerable;
- Present Ecological State ridges and outcrops in the study area are largely untransformed.

Untransformed Grassland on Rocky Ridges was given a Moderate Functional Importance rating (Appendix 7A) because of low scores in Provisioning and Regulating Services and moderate scores in Cultural Services (aesthetic value) and Supporting Services (outcrops acting as refuge areas for flora and fauna).

5.1.2.2 Untransformed Grassland on Hillslopes and Plateaus

This grassland vegetation community is found mostly on hillslopes above and below scarps, while only a few small plateaus in the study area remain uncultivated. These grasslands are best represented around the sandstone ridges along the western boundary and along the ridges running through the centre of the study area (Figure 3; Figure 9). Untransformed

Grassland on Hillslopes and Plateaus was mapped together with Untransformed Grassland on Plains in Figure 9, representing a combined 3 216 ha, or 25% of the study area. Vegetation structure is Low Closed Grassland (sensu Edwards, 1983). Dominant grasses are Tristachya leucothrix, Themea triandra, a number of Eragrostis species (including E.curvula, E.plana, E. racemosa and E.chloromelas), Elionurus muticus, Harpochloa falx and Setaria sphacelata. Diversity of the herbaceous understory varies significantly between sites, although the least degraded sites usually have the highest diversity. Forbs and fireadapted dwarf shrubs (geoxylic suffrutices) are common under the grass canopy and include Blepharis innocua, Pygmaeothamnus chamaedendrum, Senecio coronatus, Dicoma anomala, Pentanisia angustifolia, Rhynchosia adenodes, Pelargonium luridum, Helichrysum rugulosum, various Berkheya species, Salvia runcinata, Tephrosia capensis, Zornia milneana and Haplocarpha scaposa. Fire-adapted bulbous plants that store most of their resources below the ground (geophytes) are also diagnostic for temperate grasslands such as this community, and include Hypoxis species, Boophone disticha, Eucomis autumnalis, Gladiolus permeabilis, Cyrtanthus tuckii and at least two Chlorophytum species. Numerous grassland patches have been heavily grazed and have unfavourable burning regimes, and have consequently been invaded by unpalatable shrubs such as Berkheya rigida and Seriphium plumosum. These grasslands are indicated in Figure 9 as Degraded Grassland.

A total of 136 species (46% of the entire list) was recorded from Untransformed Grassland on Hillslopes and Plateaus (Appendix 1). Median species richness for the 100m² sample quadrats was 32 (n=4) (Appendix 2). Species fidelity, which is closely linked to community uniqueness, is high, with 56 species (41% of the community list) occurring nowhere else in the study area. Sørensen's Coefficient of Similarity scores indicate that the highest affinity is with Untransformed Grassland on Rocky Ridges ($S_s = 0.29$) and Untransformed Grassland on Plains (S_s = 0.29), which makes sense since Untransformed Grassland on Rocky Ridges is embedded in this one, and Untransformed Grassland on Plains is usually contiguous with this one (Table 4).

Seven conservation-important species were recorded (Table 5). Three of these are considered to be of conservation concern as defined by Raimondo et al. (2009), namely Boophone disticha, Eucomis autumnalis subsp. clavata and Hypoxis hemerocallidea. All three are classified as **Declining** because of unsustainable collecting for the tradional medicine market. Boophone and Eucomis are also protected under the Mpumalanga Nature

Conservation Act (No. 10 of 1998), as well as *Cyrtanthus tuckii*, two *Gladiolus* species and *Eulophia nutans*.

Figure 3. Photos of Untransformed Grassland on Hillslopes and Plateaus

Untransformed Grassland on Hillslopes and Plateaus was assessed as having High Biodiversity Value through integration of High Conservation Importance and Moderate Functional Importance scores (Table 8). It was rated as having High Conservation Importance (Appendix 7B) because of a high rating in the following components:

- Protection Status a High score was allocated because this vegetation community is representative of a gazetted Threatened Ecosystem;
- Size grassland patches are mostly small and fragmented;
- Species Diversity diversity of flora, relative to the small size of most grassland patches, is high;
- Present Ecological State ecological state of grasslands in the study area is varied, with some being largely undisturbed, although others are overgrazed and invaded by shrubs such as *Berkheya rigida* and *Seriphium plumosum*.

Untransformed Grassland on Hillslopes and Plateaus was given a Moderate Functional Importance rating (Appendix 7B) because of low scores in Provisioning and Regulating Services and moderate scores in Cultural Services (aesthetic value) and Supporting Services (grassland fragments acting as refuge areas for flora and fauna).

5.1.2.3 Untransformed Grassland on Plains

This grassland vegetation community is found mostly on broad valley bottoms and is usually contiguous with Untransformed Grassland on Hillslopes and Plateaus (Figure 4; Figure 9). Vegetation structure is Low Closed Grassland (*sensu* Edwards, 1983). Dominant grasses are *Themeda triandra*, a number of *Eragrostis* species (including *E.curvula*, *E.plana* and *E.capensis*), *Bothriochloa insculpta*, *Cymbopogon* species, *Cynodon dactylon*, *Digitaria tricholaenoides*, *Heteropogon contortus*, *Pennisetum thunbergii* and *Setaria sphacelata*. *Paspalum urvillei* becomes dominant on moist floodplain grasslands that have been heavily grazed, while *Eragrostis curvula* and *E. plana* are prominent on drier overgrazed plains.

Diversity of the herbaceous understory is not as high as in Untransformed Grassland on Hillslopes and Plateaus. However, forbs and fire-adapted dwarf shrubs (geoxylic suffrutices) are present and include Blepharis subvolubilis, Chaetacanthus setiger, various Berkheya species, species, Conyza Helichrysum aureonitens, Geigeria burkei, Senecio consanguineus and S.erubescens, Erythrina zeyheri, Indigofera hedyantha, Rhynchosia adenodes, Sphenostylis angustifolia, Salvia runcinata, Hermannia depressa, Hibiscus microcarpus and Striga bilabiata. Fire-adapted bulbous plants that store most of their resources below the ground (geophytes) are prominent in this community, particularly on Portion 9 of Farm 79 IS, where fields of geophytes are dominated by Nerine krigei, Haemanthus montanus and Gladiolus elliotii, while elsewhere common geophytes include Hypoxis and Chlorophytum species. Crinum bulbispermum is relatively common on some moist floodplains in the study area. Numerous grassland patches have been heavily grazed and have unfavourable burning regimes, and have consequently been invaded by unpalatable shrubs such as Berkheya rigida, Ulex europaeus and Seriphium plumosum. These grasslands are indicated in Figure 9 as Degraded Grassland.

A total of 90 species (30% of the entire list) was recorded from Untransformed Grassland on Plains (Appendix 1). Median species richness for the $100m^2$ sample quadrats was 23 (n=2) (Appendix 2). Species fidelity, which is closely linked to community uniqueness, is moderate, with 24 species (27% of the community list) occurring nowhere else in the study area. Sørensen's Coefficient of Similarity scores indicate that the highest affinity is with Untransformed Grassland on Hillslopes and Plateaus (S_s = 0.29) and Untransformed Grassland on Rocky Ridges (S_s = 0.24) (Table 4).

Seven conservation-important species were recorded (Table 5). Two of these are considered to be of conservation concern as defined by Raimondo *et al.* (2009), namely *Crinum bulbispermum* and *Hypoxis hemerocallidea*, both of which are classified as **Declining**. The *Crinum* is also protected under the Mpumalanga Nature Conservation Act (No. 10 of 1998), as well as *Haemanthus montanus, Nerine krigei, Aloe ecklonis, Gladiolus elliotii* and *Habenaria epipactidea*.

Untransformed Grassland on Plains was assessed as having High Biodiversity Value through integration of High Conservation Importance and Moderate Functional Importance scores (Table 8). It was rated as having High Conservation Importance (Appendix 7C) because of a high rating in the following components:

- Protection Status a High score was allocated because this vegetation community is representative of a gazetted Threatened Ecosystem;
- Size grassland patches are mostly small and fragmented;
- Species Diversity diversity of flora, relative to the small size of most grassland patches, is high;
- Present Ecological State ecological state of grasslands in the study area is varied, with some being largely undisturbed, although others are overgrazed and invaded by shrubs such as *Berkheya rigida* and *Seriphium plumosum*.

Untransformed Grassland on Plains was given a Moderate Functional Importance rating (Appendix 7C) because of moderate scores in Provisioning and Regulating Services and moderate scores in Cultural Services (aesthetic value) and Supporting Services (grassland fragments acting as refuge areas for flora and fauna).

5.1.2.4 Evergreen Thicket on Scarps and Rocky Outcrops

Small and highly fragmented evergreen to semi-deciduous thickets occur along most scarps and sandstone ridges or outcrops in the study area (Figure 5). The fragments are mostly too small to map accurately, and have not been included in Figure 9. Nor could area calculations be done for this community. Vegetation structure is Low to Tall Thicket (sensu Edwards, 1983). Woody shrubs and trees are the dominant life forms, with grasses and geophytes being conspicuously absent. A few large thickets have formed at the base of the highest scarps on Portion 9 of Farm 79 IS and Portion 1 of Witbank 80 IS that are entirely dominated by the invasive alien Populus alba, with smaller patches on Witbank 80 IS being dominated by alien species such as Robinia pseudo-acacia, Ficus carica, Prunus persicus and Ligustrum sinensis. Common trees and shrubs in the smaller, fragmented indigenous thickets are Diospyros lycioides subsp. guerkei, Diospyros austro-africana, Celtis africana, Kiggelaria africana, Searsia dentata and Searsia magalismontana. Two invasive alien species that are fairly frequent in these thickets are Cotoneaster franchetii and Pyracantha coccinea. Ferns present in shade of the canopy include Adiantum capillus-veneris, Mohria vestita, Cheilanthes viridis and Pellaea calomelanos. The sparse herbaceous understory has shade-loving species such as Achyranthes aspera and Solanum retroflexum, while the thicket edges have species such as Leonotis ocymifolia var. raineriana, Senecio subrubriflorus, Agrimonia odorata and Mentha longfolia.

A total of 52 species (18% of the entire list) was recorded from Evergreen Thicket (Appendix 1). Species richness in the single $100m^2$ sample quadrat was 22 (Appendix 2). Species fidelity, which is closely linked to community uniqueness, is moderate, with 20 species (39% of the community list) occurring nowhere else in the study area. Sørensen's Coefficient of Similarity scores indicate that the highest affinity is with Untransformed Grassland on Rocky Ridges (S_s = 0.19), but very low affinity with the other vegetation communities (Table 4).

Only one conservation-important species was recorded, namely *Zantedeschia albomaculata* (Table 5). This is not considered to be of conservation concern as defined by Raimondo *et al.* (2009), but is protected under the Mpumalanga Nature Conservation Act (No. 10 of 1998).

Evergreen Thicket was assessed as having Moderate Biodiversity Value through integration of Moderate Conservation Importance and Moderate Functional Importance scores (Table 8). It was rated as having Moderate Conservation Importance (Appendix 7D) even though it scored high for Protection Status (because of provincial policy to avoid developing rocky ridges and outcrops) but had moderate rating in the other components. Evergreen Thicket was given a Moderate Functional Importance rating (Appendix 7D) because of high scores in Supporting Services (particularly regarding provision of resources for plant pollinators) and Provisioning Services (provision of food, timber, productive soils), but only moderate scores in Cultural and Regulating Services.

5.1.2.5 Wetlands

Wetlands are being covered in a separate report, so are included here as a biodiversity value assessment with some discussion on conservation-important species. Photos of some of the valley-bottom wetlands are included in Figure 6. Only one species of conservation concern was recorded from the wetland vegetation community, namely *Crinum bulbispermum*, which is classified as Declining and is protected under the Mpumalanga Nature Conservation Act (No. 10 of 1998). It was found to be fairly common in channelled and unchannelled valley-bottom wetlands.

Wetlands were assessed as having High Biodiversity Value through integration of Moderate Conservation Importance and High Functional Importance scores (Table 8). These were rated as having Moderate Conservation Importance (Appendix 7E) in spite of high ratings in the following components:

- Protection Status a High score was allocated because of legislation and • government policy preventing development on wetlands;
- Present Ecological State Wetlands in the study area are only slightly modified, • although a few have been invaded by the alien grass Paspalum urvillei.

However, moderate scores in the other Conservation Importance components reduced the overall score to Moderate. Wetlands were allocated a High Functional Importance rating (Appendix 7E) because of high scores in the following components:

- Provisioning Services fibres, medicinal plants; •
- Regulating Services flood attenuation, water purification; •
- Supporting Services nutrient cycling, migration corridors.

Figure 6. Photos of Valley-bottom Wetlands in the Project Area

	Rocky Ridge Grassland	Rocky Ridge Thicket	Hillslope and Plateau Grassland	Plains Grassland	Wetlands	Transformed Habitats
Rocky Ridge Grassland	-	0.19	0.29	0.24	0.02	0.04
Rocky Ridge Thicket	0.19	-	0.07	0.04	0.02	0.08
Hillslope and Plateau Grassland	0.29	0.07	-	0.29	0.08	0.10
Plains Grassland	0.24	0.04	0.29	-	0.13	0.10
Wetlands	0.02	0.02	0.08	0.13	-	0.13
Transformed Habitats	0.04	0.08	0.10	0.10	0.13	-

29

5.1.3 Conservation-Important Flora

A total of 296 plant species was recorded within the study area during fieldwork (Appendix 1). Fifteen of these are protected under the Mpumalanga Nature Conservation Act (No. 10 of 1998) (Table 5). Five species are considered to be of conservation concern as defined by Raimondo et al. (2009) of which only one is threatened, namely Khadia beswickii, which is classified as Vulnerable. This species was previously thought to be endemic to Gauteng, but has recently been discovered in western Mpumalanga on an ECOREX survey (McCleland & McKenzie, 2012). A small population of ten plants were found on the edge of an area of sheetrock on a low sandstone ridge on Portion 6 of Witrand 103 IS (Figure 7). The four other species are all classified as Declining due to unsustainable illegal collecting for the traditional medicine market. Boophone disticha was only located at one site in the study area, in a fragment of untransformed grassland on Portion 6 of Witrand 103 IS. Several Eucomis autumnalis subsp. clavata plants were found on a hill slope on Portion 11 of Witbank 80 IS and above a scarp on Portion 9 of Farm 79 IS. Crinum bulbispermum was found at numerous localities in unchannelled and channeled valley-bottom wetlands and plains grassland on the farms Witbank 80 IS, Farm 79 IS and Witrand 103 IS. Small colonies of Hypoxis hemerocallidea were located in untransformed grassland on Portions 11 and 12 of Witbank 80 IS. Photographs of these four species are included in Figure 8.

An additional seven species of conservation concern have been recorded within the quarterdegree grid 2629 AD and surrounding grids with similar habitat, of which five species have a moderate or high likelihood of occurring because of the presence of suitable habitat and / or presence of known populations nearby (Table 6). One of these, *Nerine gracilis*, is threatened (Vulnerable). It potentially occurs at the edges of shallow pans or in untransformed grassland on plains, but was not located during early April fieldwork, which falls at the end of its flowering period when it is most visible. However, it is a small species that is easily overlooked, particularly when surveying large tracts of suitable habitat. The other four species are classified as Near Threatened. *Stenostelma umbelliferum* and *Gladiolus robertsoniae* are both species of undisturbed, untransformed grassland, while *Trachyandra erythrorrhiza* occurs in black turf marshes and *Kniphofia typhoides* in unchannelled valleybottom wetlands. Although these species were not confirmed during fieldwork, they could have been overlooked because of the large size of the study area. However, the biodiversity value assessment in this report already classifies the potential habitat of these species as High so this is not seen as a significant limitation.

A = Typical *Khadia beswickii* habitat in the study area; B = Colony of *Khadia beswickii* plants at the edge of sheetrock; C = unripe fruit that hasn't yet opened; D = unusually pale pink flowers of *Khadia beswickii*

Figure 7. Selected photographs of Khadia beswickii, a Vulnerable species occurring in the study area

A - Boophone disticha (old inflorescence); B - Hypoxis hemerocallidea; C - Crinum bulbispermum (with fruit); D - Eucomis autumnalis subsp. clavata (flow ers)

Figure 8. Photos of some Declining species in the Project Area

Species	Family	Cons Status	Protected Status	Rocky Ridge Grassland	Rocky Ridge Thicket	Hillslope and Plateau Grassland	Plains Grassland	Wetlands
Boophone disticha	Amaryllidaceae	Declining	MNCA			х		
Crinum bulbispermum	Amaryllidaceae	Declining	MNCA				х	х
Cyrtanthus tuckii	Amaryllidaceae		MNCA	х		х		
Haemanthus montanus	Amaryllidaceae		MNCA				х	
Nerine krigei	Amaryllidaceae		MNCA				х	
Zantedeschia albomaculata	Araceae		MNCA		х			
Aloe ecklonis	Asphodelaceae		MNCA				х	
Eucomis autumnalis subsp. clavata	Hyacinthaceae	Declining	MNCA			х		
Hypoxis hemerocallidea	Hypoxidaceae	Declining				х	x	
Gladiolus elliotii	Iridaceae		MNCA				х	
Gladiolus permeabilis	Iridaceae		MNCA			х		
Gladiolus sp. (no flowers)	Iridaceae		MNCA			х		
Khadia beswickii	Mesembryanthemaceae	VU		х				
Eulophia nutans	Orchidaceae		MNCA			х		
Habenaria epipactidea	Orchidaceae		MNCA				х	
TOTAL	15	5	13	2	1	7	7	1

Table 5. Conservation-important plant species confirmed during fieldwork

June 2016

Species	Family	Red Data	Protected	Habitat	Likelihood	Reason
Nerine gracilis	Amaryllidaceae	Vulnerable	MNCA	Edge of pans	Moderate	Some suitable habitat available
Stenostelma umbelluliferum	Apocynaceae	Near Threatened		Grassland near drainage lines, on vertic soils with high clay content	Moderate	Some suitable habitat available
Kniphofia typhoides	Asphodelaceae	Near Threatened	MNCA	Valley-bottom wetlands	High	Much suitable habitat present
Trachyandra erythrorrhiza	Asphodelaceae	Near Threatened		Dark clay soils, wetlands	Moderate	Some suitable habitat available
Gladiolus robertsoniae	Iridaceae	Near Threatened	MNCA	Grassland at low rocky ridges	Moderate	Some suitable habitat available
Frithia humilis	Mesembryanthemaceae	Endangered		Level areas of sheetrock on rocky ridges	Low	While some apparently suitable habitat is present, all areas of habitat were carefully searched without success
Brachycorythis conica subsp. transvaalensis	Orchidaceae	Endangered	MNCA	Rocky ridges in grassland	Low	Very rare species with very few records. Nearest confirmed record is a farm about 19 km to the north of the study area

MNCA = Mpumalanga Nature Conservation Act

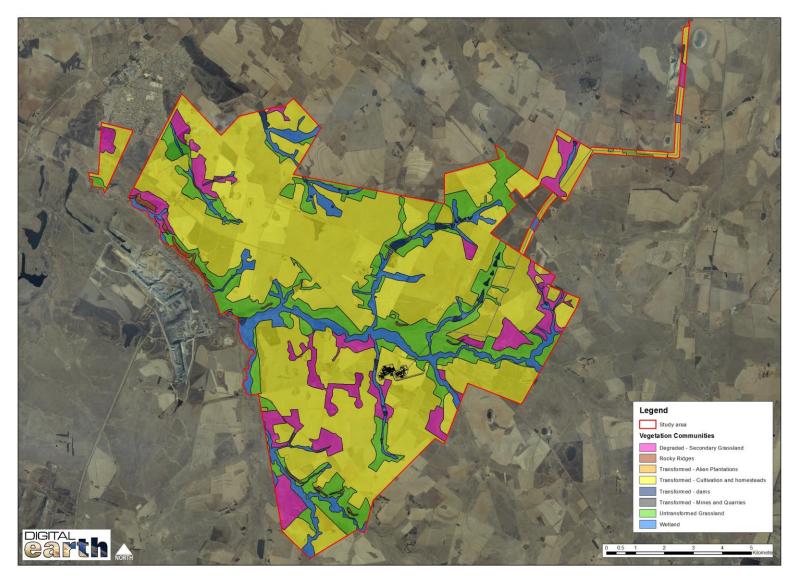


Figure 9. Vegetation communities identified within the Study Area

5.2 Terrestrial Fauna

5.2.1 Mammals

About 66% of the study area has been transformed, mostly through cropland agriculture. This habitat transformation, together with elevated human presence and concomitant impacts such as disturbance, hunting and persecution, has negatively impacted on large mammal occurrence, particularly ungulates and predators. However, several game farms have reintroduced species that occurred in the area in the past such as Blesbok, Springbok and Black Wildebeest, as well as species that were unlikely to have been present historically, such as Waterbuck, Buffalo and Gemsbok. Smaller antelope such as Common Duiker and Steenbok are still present in small numbers.

Important portions of intact indigenous vegetation exist in the western, southern and central parts of the study area. An estimated 10 mammals of conservation concern potentially occur within the area, none of which are threatened (Appendix 6). Two Near Threatened insectivores, Highveld Golden Mole and Southern African Hedgehog, potentially occur in untransformed grassland anywhere in the study area. Two Near Threatened carnivores, Brown Hyaena and Serval, were confirmed to occur through daytime sightings and indirect evidence. Most significantly, a pair of Brown Hyaenas was seen during the early morning at a large den on farm Witbank 80 IS, and a motion-triggered camera placed at the entrance to the den produced several hundred photographs of the hyaenas. Some of the photos confirmed that four hyaenas were present, two of which were younger and most likely were the previous season's juveniles (see photos in Figure 10). The property landowner confirmed that over the past two years several hyaenas had been caught in snares set by poachers for small game, so it appears that there is a viable population within the study area.

The rest of the potentially occurring mammals of conservation concern are classified as Data Deficient, meaning that not enough data were available in order to assess their Red Data status¹. It is probable that at least a few Data-Deficient species do occur, particularly shrews in the genera *Crocidura* and *Suncus* (Appendix 6).

Twenty-six mammal species were confirmed to occur during fieldwork (Appendix 4).

¹ Friedman & Daly, 2004

Figure 10. Selected Bushnell TrailCam photos at the Brown Hyaena den

5.2.2 Birds

The level of transformation of Highveld Grassland has had significant impacts on bird assemblages. Populations of seed-eating species such as Red-billed Quelea and Southern Red Bishop are most likely much higher and less nomadic than in the past because of the planting of crops, resulting in a more predictable and more plentiful food supply. More sensitive grassland specialists such as Botha's Lark, Denham's Bustard, White-bellied Korhaan and Blue Crane have declined dramatically in numbers as their habitat has been reduced. Thus, any sizeable fragment of untransformed grassland should be considered very valuable to populations of conservation-important birds.

Species Diversity and Assemblages

A total of 170 bird species has been reported from the quarter-degree grid 2629 AD, in which the study area falls, during the current second South African Bird Atlas Project (SABAP2), reflecting the moderately high species richness of this part of the Highveld. At a finer scale, data from SABAP2 indicate that 136 bird species have already been recorded from the pentad (mapping unit) in which the bulk of the study area is situated (2615_2915)¹. A pentad covers an area of approximately 72 km², which is considerably smaller than a quarter-degree grid and thus a better indication of which species occur in the study area. This puts into perspective the total of 145 bird species which was recorded during the 2014 and 2016 surveys (Appendix 4). Considering the limited time spent in the field, this is a high total that reflects sufficient sampling for assessing habitat suitability for potentially occurring threatened species, the primary objective of the ornithological component of this study, as well as determining the species composition of bird assemblages in the study area. Six broad assemblages or species-habitat associations were identified, each of which is briefly described below:

I. Grassland Assemblage

This is a prominent bird assemblage in the study area and contained 76 species during fieldwork (Appendix 4). The assemblage is closely linked to two of the Untransformed Grassland vegetation communities (Hillslopes and Plateaus, and Plains) in the study area. The most abundant species in this assemblage during the fieldwork period (Timed-Species Count scores in parentheses) were Cape Longclaw (6.0), Cape Turtle Dove (6.0), Zitting

¹ Data accessed from http://sabap2.adu.org.za/summary_pentad.php?pentad=2615_2915 on 23 Apr 2016

Cisticola (6.0), Barn Swallow (5.7), Laughing Dove (5.7) and Long-tailed Widowbird (5.7) (Appendix 5). Sørenson's Coefficient of Similarity scores indicate that the Grassland assemblage is most similar to the Rocky Outcrops and Cliffs assemblage ($S_s = 0.34$) and Cultivated Lands and Homesteads assemblage ($S_s = 0.34$), with considerable overlap with the Wetland assemblage as well ($S_s = 0.27$) (Table 7). The larger fragments of untransformed grassland in the study area were found to support numerous grassland specialists, such as Cloud Cisticola, Wing-snapping Cisticola, Pale-crowned Cisticola, Spikeheeled Lark, Amur Falcon, Mountain Wheatear, Malachite Sunbird and African Quailfinch. While the study area is situated in mesic Highveld grassland, it is near the edge of a transition zone between moist grassland and arid western grassland bird assemblages. Some typical arid grassland species recorded during fieldwork were Orange River Francolin, Black-chested Prinia, Red-headed Finch, Black-throated Canary and Yellow Canary.

II. Rocky Outcrops and Cliffs Assemblage

This is an assemblage which is confined to the Untransformed Grassland on Rocky Ridges vegetation community and is thus embedded within the Grassland assemblage. Twenty-seven species were recorded in this assemblage during fieldwork (Appendix 4). The habitat was too small and fragmented for the Timed-Species Count sampling method, so no comparative measures of abundance were recorded. Sørenson's Coefficient of Similarity scores indicate that the Rocky Outcrops and Cliffs assemblage is most similar to the Grassland assemblage ($S_s = 0.34$), with some overlap in species composition with the Cultivated Lands and Homesteads assemblage ($S_s = 0.23$) (Table 7). The only diagnostic species that were confined to this assemblage were Mountain Wheatear and Malachite Sunbird, while Cape Longclaw, Orange River Francolin and Wailing Cisticola were shared only with the Grassland assemblage.

III. Wetland Assemblage

This was another prominent assemblage in the study area during fieldwork and contained at least 59 species (Appendix 4). The assemblage is closely linked to the Untransformed Grassland on Plains and Wetlands vegetation communities. The most abundant species in this assemblage (all of which had mean Timed-Species Count scores of 6.0) were African Sacred Ibis, Blacksmith Lapwing, Cattle Egret, Glossy Ibis, Great Egret, Hadeda Ibis, Wood Sandpiper, Yellow-billed Duck and Yellow-crowned Bishop (Appendix 5). Sørenson's Coefficient of Similarity scores indicate that the Wetland assemblage is most similar to the Rivers and Dams ($S_s = 0.40$), Grassland ($S_s = 0.27$) and Cultivated Lands and Homesteads

assemblages ($S_s = 0.27$) (Table 7). A number of species were confined to this assemblage, including African Snipe, Cuckoo Finch, Dark-capped Yellow Warbler, Marsh Owl and Squacco Heron. A small, shallow wetland on Dorstfontein 71 IS had small numbers of two out-of-range tropical wetland birds in January 2014, namely African Crake and Lesser Moorhen, neither of which had previously been recorded in the vicinity of Kriel in SABAP2.

IV. Rivers and Dams Assemblage

This is an assemblage which is confined to open waterbodies such as perennial rivers and farm dams. Sixty-six species were recorded in this assemblage during fieldwork (Appendix 4), which was the second highest total for any assemblage in the study area. This reflects the diversity of habitats associated with rivers and dams, including exposed sandbanks or mudflats. The habitat was too small and fragmented for the Timed-Species Count sampling method, so no comparative measures of abundance were recorded. Sørenson's Coefficient of Similarity scores indicate that the Rivers and Dams assemblage is most similar to the Wetlands assemblage ($S_s = 0.40$), with some overlap in species composition with the Cultivated Lands and Homesteads assemblage, including African Darter, African Spoonbill, Cape Shoveler, Common Sandpiper, Greater Flamingo, Great Crested Grebe, Macco Duck and South African Shelduck. A number of smaller species more typical of the Wetlands assemblage occurred in the vegetated fringes of rivers and dams, including Levaillant's Cisticola, Malachite Kingfisher and Common Waxbill.

V. Thickets and Plantations Assemblage

The Thickets and Plantations assemblage is confined to small and fragmented evergreen thickets and plantations of alien trees that are closely associated with scarps and rocky outcrops in the study area. Thirty-five species were recorded in this assemblage during fieldwork (Appendix 4). The habitat was too small and fragmented for the Timed-Species Count sampling method, so no comparative measures of abundance were recorded. Sørenson's Coefficient of Similarity scores indicate that the Thickets and Plantations assemblage is most similar to the Cultivated Lands and Homesteads assemblage (S_s = 0.23), with little overlap in species composition with the other bird assemblages in the study area (Table 7). African Paradise Flycatcher and Fiscal Flycatcher were both confined to this assemblage, while numerous typical thicket species were shared with the Cultivated Lands and Homesteads assemblage because of the similarity between wooded gardens of homesteads and evergreen thickets.

VI. Cultivated Lands and Homesteads Assemblage

This is an artificial assemblage consisting of many grassland species such as Amur Falcon, Black-headed Heron, Black-shouldered Kite, Common Fiscal and Red-capped Lark which also forage in recently harvested fields, and also typical thicket species that also occur in wooded gardens of homesteads, such as Black-collared Barbet, Cape Robin-Chat and Cape White-eye. This habitat diversity resulted in a high total of 52 species recorded during fieldwork (Appendix 4). Sørenson's Coefficient of Similarity scores indicate that the Cultivated Lands and Homesteads assemblage had relatively high affinity with all the other bird assemblages in the study area (Table 7).

	Grassland	Rocky Outcrops and Cliffs	Thickets, Plantations	Wetlands	Rivers, Dams	Cultivated Lands, Homesteads	
Grassland	-	0.34	0.11	0.27	0.15	0.34	
Rocky Outcrops and Cliffs	0.34	-	0.14	0.17	0.15	0.23	
Thickets, Plantations	0.11	0.14	-	0.08	0.11	0.24	
Wetlands	0.27	0.17	0.08	-	0.40	0.27	
Rivers, Dams	0.15	0.15	0.11	0.40	-	0.23	
Cultivated Lands, Homesteads	0.34	0.23	0.24	0.27	0.23	-	

Table 7. Sørensen's Coefficient of Similarity Scores for Bird Assemblages

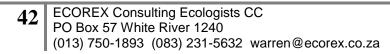
Species of Conservation Concern

Sixteen bird species of conservation concern have been confirmed to occur in the general vicinity of the study area during the current South African Bird Atlas Project (Appendix 6). Six of these were confirmed to occur during fieldwork, three of which are threatened and three of which are Near Threatened. The three threatened species, Southern Bald Ibis, Lanner Falcon and Secretarybird, are classified as Vulnerable. Each is dealt with in more detail below and selected photos shown in Figure 11.

Southern Bald Ibis

This threatened species is endemic to the temperate grasslands of South Africa, Lesotho and western Swaziland, with the distribution core in north-eastern Free State, Mpumalanga Highveld and KwaZulu-Natal Drakensberg (Barnes, 2000). Preferred breeding habitat is on inaccessible cliffs, often near waterfalls, although birds have been known to nest in trees in

the Wakkerstroom area (Tarboton, 2001), in disused mine shafts near Belfast, and a colony has occupied an active granite quarry near Belfast since 2008 (Henderson *et al.*, 2013). Preferred foraging habitat is recently burnt grassland, but the birds also feed in heavily grazed unburnt grassland, cultivated fields and open fields such as sport fields. Southern Bald Ibis has been assessed as Vulnerable because of the small population size, restricted extent of occurrence and being confined to a restricted habitat, i.e. high altitude grasslands. The key threat to this species is loss of grassland habitat, primarily through commercial afforestation, intensive crop farming, open-cast mining and urbanisation. This species is currently the most frequently reported threatened species from the pentad within which the bulk of the study area lies (2615_2915), with a 40% reporting rate¹. A small flock of Southern Bald Ibis was seen flying over cultivated lands in the direction of Kriel town and most likely forage on sports fields or recently burnt lands in the vicinity of town.


Secretarybird

Secretarybird is a widespread species in sub-Saharan Africa, occurring in a wide variety of woodland and grassland habitats. Within South Africa its distribution is centred in the eastern half of the country and the highest reporting rates in the Nama Karoo biome in the Eastern Cape and the Grassland biome in the Free State, Mpumalanga and KwaZulu-Natal². Very few records have been reported for the Kriel area during SABAP2 and it has not yet been reported from the pentad 2615_2915. However, the landowner of the farm Witbank 80 IS confirmed that the species does occur occasionally on his property, while one bird was seen flying overhead during fieldwork in January 2014.

Lanner Falcon

Lanner Falcon is another species occurring throughout Africa in a wide variety of habitats. It is also widespread thoughout South Africa, with strongholds in Lesotho, Eastern Cape and Kwazulu-Natal; within Mpumalanga, the highest reporting rates are from parts of the Highveld, Escarpment and north-western Bushveld regions³. While the reporting rate for the study area pentad is low (incidental records only), adjacent pentads have high reporting rates and the species is probably a fairly regular visitor. A Lanner Falcon was observed flying over grassland on the farm Kafferstad 79 IS in January 2014, where suitable breeding habitat is present for a breeding pair of this species.

³ http://sabap2.adu.org.za/species_info.php?spp=114#menu_left. Downloaded 24 April 2016.

¹ http://sabap2.adu.org.za/pentad_info.php?pentad=2615_2915. Downloaded 24 April 2016.

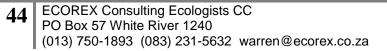
² http://sabap2.adu.org.za/species_info.php?spp=105#menu_left. Downloaded 24 April 2016.

A – Secretarybird (© D.McKenzie); B – Southern Bald Ibis (© W.McCleland); C – Lanner Falcon (© W.McCleland)

The three Near Threatened species that were confirmed to occur are Black-winged Pratincole, Greater Flamingo and Maccoa Duck. Black-winged Pratincole is a non-breeding migrant from Europe and Asia, and is likely to be a regular visitor to grassland, recently harvested fields and wetlands; a loose flock of this species was seen foraging over grassland before an approaching storm in January 2014. Greater Flamingo and Maccoa Duck are confined to the few large shallow pans and dams in the area and are unlikely to be breeding residents, but rather regular visitors to these habitats.

Five bird species of conservation concern have a low likelihood of occurring because of a lack of suitable habitat and are not dealt with any further here. Five species have a moderate likelihood of occurring, two of which are classified as Vulnerable (White-bellied Korhaan and African Grass Owl), while three are Near Threatened (Pallid Harrier, Red-footed Falcon and Lesser Flamingo). Untransformed grassland is the most important habitat in the study area for the first four species, and it is imperative that sufficiently large tracts of this habitat remain untransformed and unfragmented in the study area for these species. Large, shallow pans are the preferred habitat for Lesser Flamingo, although this habitat is sparse in the study area.

5.2.3 Reptiles


Bates *et al.* (2014) provided a recent assessment of reptile conservation status for South Africa, which was conducted at a spatial resolution of quarter-degree grid. The quarter-degree grid in which the study area is situated (2629AD) is indicated as being in an area of moderate reptile diversity (12-14 species per grid) and moderate diversity of endemic reptiles (5 species). Only three reptile species were recorded during fieldwork (Appendix 4),

although a dedicated reptile trapping exercise and nocturnal surveys would have yielded further species. However, the very low number of reptile species of conservation concern in the area makes it unlikely that further reptile surveys would have yielded data with consequences for a record of decision on the project.

Only one of the species indicated as occurring in 2629AD is considered a species of conservation concern, namely Coppery Grass Lizard, which is classified as Near Threatened. This species is endemic to the Grassland Biome in South Africa, occurring marginally in to Lesotho and north-western Swaziland. It has a moderate likelihood of occurrence in any large patches of untransformed grassland in the Alexander project area.

5.2.4 Frogs

Minter *et al.* (2004) indicate ten frog species for the quarter-degree grid within which the Alexander project area is situated (2629AD), none of which are species of conservation concern. Three frog species were recorded in the project area during fieldwork (Appendix 4), although a dedicated frog trapping exercise and nocturnal surveys would have yielded further species. However, the absence of frog species of conservation concern in the area makes it unlikely that further surveys would have yielded data with consequences for a record of decision on the project. While some suitable wetland habitat is present for a Near Threatened frog species, namely Giant Bullfrog, it was not recorded from the grid 2629 AD and surrounding grids during the South African Frog Atlas Project (SAFAP) (Minter *et al.*, 2004), and it is possibly not present in the study area. No other frog species of conservation concern are likely to occur in the study area.

6. BIODIVERSITY VALUE ASSESSMENT

A qualitative integration of conservation importance and functional importance values for the untransformed vegetation communities and the transformed areas represented in the study area provides an indication of the biodiversity values of these communities. The data sheets for conservation importance and functional importance calculations for each community are presented in Appendix 7, and are dealt with in more detail under each vegetation community description. The integrated biodiversity values are summarised in Table 8 and presented spatially in Figure 12.

Five communities / habitats have High Biodiversity Value, namely Untransformed Grassland on Rocky Ridges, Untransformed Grassland on Hillslopes and Plateaus, Untransformed Grassland on Plains, Evergreen Thickets on Scarps and Wetlands. These are the key ecosystems that need to remain intact and functional. Impacts within these communities will have the highest significance levels and therefore the impact footprint should remain outside of these communities as much as possible.

Table 8. Conservation Importance, Functional Importance and Biodiversity Values for
vegetation communities in the Study Area

Vegetation Communities	Conservation Importance	Functional Importance	Biodiversity Value
Untransformed Grassland on Rocky Ridges	High	Moderate	High
Untransformed Grassland on Hillslopes and Plateaus	High	Moderate	High
Untransformed Grassland on Plains	High	Moderate	High
Evergreen Thickets on Scarps and Rocky Outcrops	High	Moderate	High
Wetlands	High	High	High
Transformed	Very Low	Low	Low

Most of the untransformed vegetation within the study area falls within **Critical Biodiversity Areas (CBAs)** according to the Mpumalanga Biodiversity Sector Plan (MBSP) (Lötter *et. al,* 2014). The main river systems and associated rocky ridges that cross the central part of the study area and follow the western boundary are classified as **CBA: Irreplaceable**, while some of the tributaries of these systems are classified as **CBA: Optimal**. These same river systems are also regarded as Ecological Support Areas in the MBSP, while other areas of untransformed vegetation within the study area are classified as Other Natural Habitats. All the transformed areas are classified as either Modified or Modified: Old Lands. Areas falling within the Modified category are the preferred areas for a wide variety of land-use types, which includes mining development.

Critical Biodiversity Areas are areas that are essential for meeting biodiversity targets for species, ecosystems or ecological processes. The desired management objectives for CBAs are that they be kept in a natural or near-natural state, with no further loss of habitat or species. Only low-impact, biodiversity-sensitive land-uses such as low-intensity livestock grazing are considered appropriate, while land-uses such as any form of mining or prospecting, conversion of natural habitat for agriculture or plantation forestry, expansion of existing settlements or infrastructure, and the building of new infrastructure or linear developments such as roads, railways, pipelines, etc., **are considered inappropriate**.

Other Natural Areas refer to areas that have not been identified as a priority in the current systematic biodiversity plan but retain most of their natural character, while performing a range of biodiversity and ecological functions. While not considered priority areas for biodiversity conservation at present, they are still an important part of the natural ecosystem. Other Natural Areas offer much more flexibility in terms of permissible land uses, but the desired management objective should be to minimise habitat and species loss and ensure ecosystem functionality through strategic landscape planning.

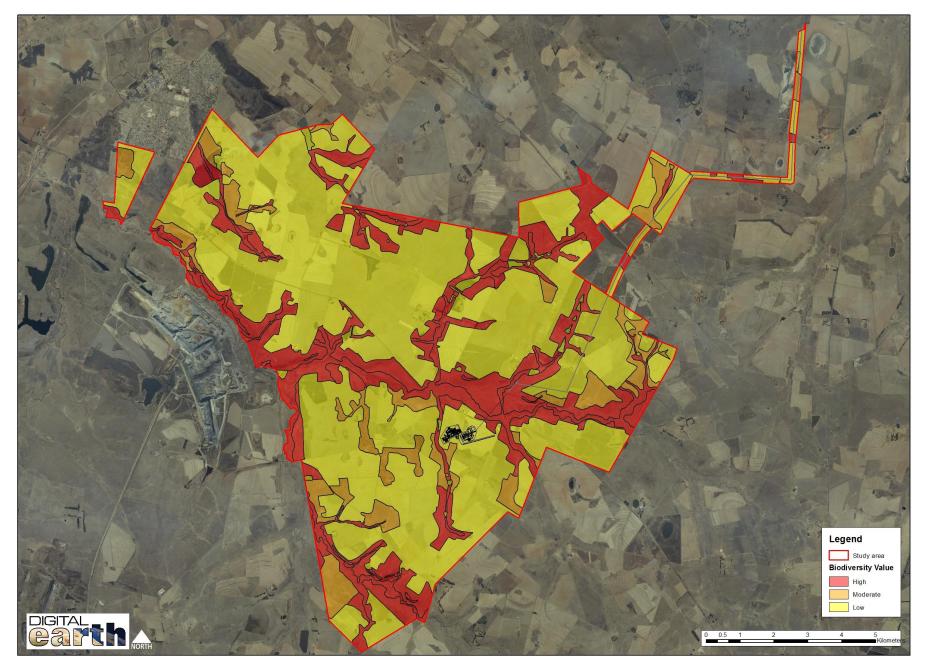


Figure 12. Biodiversity Values of Vegetation Communities in the Study Area

June 2016

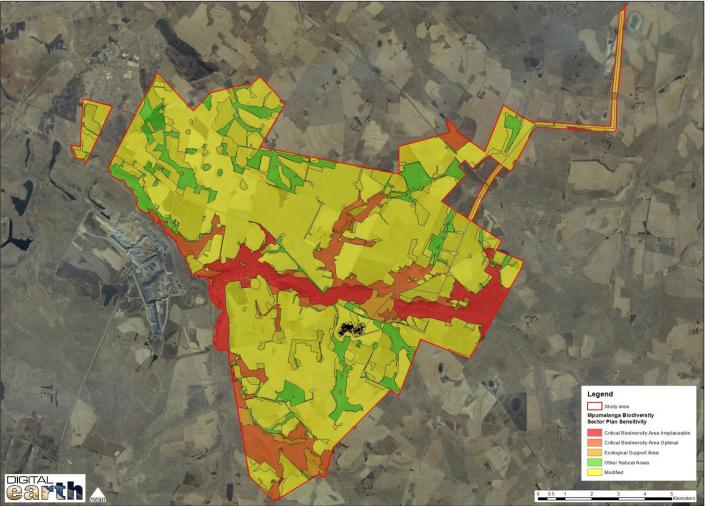


Figure 13. Mpumalanga Biodiversity Sector Plan classification of the Study Area

7. IMPACT ASSESSMENT

This section deals with the potential impacts of the proposed Alexander project on terrestrial ecosystems. Impacts are arranged in order of decreasing overall significance per project phase, and are summarised in Table 9.

7.1 Construction Phase

7.1.1 Destruction or fragmentation of natural habitat

While most of the Alexander mine is located below the ground surface, the current location of the preferred shaft / adit is adjacent to a riparian wetland system, as well as approximately 12 hectares of seep wetland and disturbed grassland.

Site preparation for the shaft area will involve clearing of vegetation and digging of the shaft entrance, where care will need to be taken that the above habitats are not impacted. It is assumed that the conveyor line will be raised above ground and will involve limited habitat loss during construction. The above-ground infrastructure footprint has been shifted away from untransformed (natural) habitat, the intensity / severity of the impact is rated as Medium. The extent of the impact is Very Low, the duration of impact without mitigation is permanent and the consequence is Medium. Since no untransformed (natural) habitat is likely to be impacted by the revised shaft site, the significance of the impact is rated as **Medium**.

Potential Impact	Impact significance before mitigation								
Potential impact	Project Activity	I	D	Е	С	Р	SIGNIFICANCE		
		М	VH	VL	М	М	MEDIUM		
Destruction or fragmentation	Strip-clearing of vegetation		Impa	act si	gnific	cance	e after mitigation		
of natural habitat	for shaft construction	Ι	D	Е	С	Р	SIGNIFICANCE		
		М	М	VL	Μ	L	MEDIUM		

7.1.2 Loss of plant species of conservation concern

One Threatened plant species and four Declining species have been confirmed within the Alexander project area, while one Threatened and four Near Threatened species have a moderate to high likelihood of occurring. However, none of these species have been confirmed to occur within the proposed above ground infrastructure and shaft entrance

footprint. The relocation of the infrastructure footprint away from untransformed habitat makes it unlikely that any of these species could occur within the footprint.

However, if construction machinery were to leave the infrastructure footprint and impact adjacent natural habitat, the intensity and duration of the impact would be High and Very High respectively. However, the extent of the impact is Very Low and the probability of the impact occurring is Low, resulting in a significance of Medium.

Potential Impact	Project Activity	Impact significance before mitigation								
Potential Impact	Project Activity	Ι	D	Е	С	Р	SIGNIFICANCE			
	н	VH	VL	н	L	MEDIUM				
Loss of plant species of	Strip-clearing of vegetation for shaft construction		Im	pact s	igni	fican	ce after mitigation			
conservation concern		Ι	D	Е	С	Р	SIGNIFICANCE			
		Н	VH	VL	Н	VL	MEDIUM			

7.1.3 Disturbance and displacement of fauna

The project area supports relatively high faunal diversity, considering the high proportion of modified habitat present and the high level of fragmentation of natural habitat. Untransformed grassland (101 spp), wetlands (71 spp) and open water habitats such as rivers and dams (66 spp) support the highest faunal diversity. Two Near Threatened mammals (Serval, Brown Hyaena), one Near Threatened bird species (Black-winged Pratincole) and three Vulnerable birds (Southern Bald Ibis, Secretarybird and Lanner Falcon) have been confirmed to occur in the project area. Untransformed grassland supports far more of these species (6 spp) than any other habitat.

While the loss of faunal habitat is likely to be very small, the intensity of the disturbance to fauna, particularly during construction of the conveyor belt, is likely to be High for the duration of the construction phase. The unmitigated consequence of the impact is High, as well as the probability of the impact occurring, and thus the significance of the impact prior to mitigation is **High**. Effective implementation of suggested mitigation measures could reduce the impact significance to Medium.

Detential Immed	Ducia et Activitus	Impact significance before mitigation								
Potential Impact	Project Activity	I	D	Е	С	Р	SIGNIFICANCE			
Disturbance and displacement of fauna	Strip-clearing of vegetation for	н	н	L	н	н	HIGH			
	shaft construction;	Impa	nct si	gnific	ance	afte	er mitigation			
	construction of conveyor line	I	D	E	С	Р	SIGNIFICANCE			

ECOREX Consulting Ecologists CC 50

1			L .		Ι.	
	Н	L	L	н	L	MEDIUM

7.1.4 Increased invasion by alien plant species

Fifty-two species of alien plants have been confirmed to occur in the project area, representing 18% of the plant species list. Woody species such as *Acacia mearnsii, Populus* cf. *alba, Cotoneaster franchetii* and *Pyracantha coccinea* are declared invasive species and are most likely to invade natural habitat in the project area. The high proportion of alien species indicates that a significant seed bank is already present in the project area. Site preparation activities such as strip-clearing of vegetation will result in areas of bare soil that will be vulnerable to colonization by aggressive invasive species until these bare areas are once again vegetated. Without any mitigation measures being implemented, the intensity of this impact is likely to be High and the duration permanent. Even though the extent of the impact is limited to only a small part of the overall project area, the unmitigated consequence is still High and the probability of occurring is High, resulting in an impact significance of **High**. Mitigation measures are well known and relatively easy to implement (see section 8). Effective implementation of these measures could reduce the impact consequence to Low and the impact significance to **Low**.

Detential Impact		Impact significance before mitigation									
Potential Impact	Project Activity	Ι	D	Е	С	Ρ	SIGNIFICANCE				
		н	VH	V L	Н	Н	HIGH				
Increased invasion by alien	Strip-clearing of vegetation		Imp	oact s	ignif	ican	ce after mitigation				
plant species	for shaft construction	Ι	D	Е	С	Р	SIGNIFICANCE				
		L	L	V	L	L	LOW				

7.1.5 Increased illegal utilisation of natural resources

While most of the properties within the project area are privately owned and suitably fenced, many areas do not have resident landowners and illegal utilization of natural resources, such as poaching, does take place (local landowners *pers. comm*). The increase in numbers of people present in the vicinity of the construction footprint could result in an increase in such illegal utilization. It is assumed that any labour teams will be accommodated in Kriel and not on site, lowering this risk considerably. Given that opportunities are likely to be limited to daylight hours, the intensity of this impact is rated as Medium without mitigation. Consequence and probability are both Medium, resulting in a pre-mitigation impact

significance of Medium. Implementation of recommended mitigation measures (see section 8) could reduce the consequence, probability and significance of the impact to **Low**.

Detential Increase		Impact significance before mitigation							
Potential Impact	Project Activity	-	I D E		I D E C P		Ρ	SIGNIFICANCE	
Increased illegal utilisation of natural resources Strip-clearing of vegetation for shaft construction; construction of conveyor line	М	Н	VL	М	М	MEDIUM			
			Im	pact	sign	ifica	nce after mitigation		
	of conveyor line	Ι	D	Е	С	Р	SIGNIFICANCE		
		L	L	VL	L	L	LOW		

7.1.6 Increased mortalities of fauna through collisions with vehicles

Large antelope such as Eland, Gemsbok and Waterbuck, as well as carnivores such as Brown Hyaena and Serval, are present in the project area. These are species that would be vulnerable to collisions with vehicles at night. Even though most properties are well fenced, species such as Eland frequently jump over game fences and the carnivores crawl under them, making it possible to encounter these species on roads at night. During the Construction Phase it is likely that there will be an increase in vehicles using the roads, particularly at night. The intensity / severity of the impact is rated as Medium. Combined with a Low extent of impact and a potential permanent duration of impact, the unmitigated consequence is Medium and the significance of the impact is rated as **High**. The implementation of recommended mitigation measures (see section 8) could reduce the intensity, consequence and probability of the impact, resulting in a significance of **Medium**.

Potential Impact	Broject Activity	Impact	sign	ifica	nce	befo	e mitigation		
Potential Impact	Project Activity	I	D	Е	С	Р	SIGNIFICANCE		
		М	Н	L	М	Н	HIGH		
Increased mortalities of fauna	Vehicle activity during	Impac	t sig	nific	ance	afte	er mitigation		
through collisions with vehicles	construction	I	D	Е	С	Ρ	SIGNIFICANCE		

7.2 Operational Phase

7.2.1 Continued invasion by alien plant species

While the highest risk of this impact is in the Construction Phase, the areas of bare soil within the operations footprint could still be at risk to being colonized by alien plants. However, the intensity of this impact is likely to be Medium and the duration short-term.

Given the limited extent of the potential impact, the unmitigated consequence is Low, while the probability of occurring is Medium, resulting in an impact significance of **Medium**. Mitigation measures are well known and relatively easy to implement (see section 8). Effective implementation of these measures could reduce the impact consequence to Low and the impact significance to **Low**.

Potential Impact	Project Activity		Imp	oact s	igni	fican	ce before mitigation
Potential impact	Project Activity	Ι	D	Е	С	Р	SIGNIFICANCE
		М	L	V L	L	м	MEDIUM
Increased invasion by alien	Heavy vehicle activity in		Im	pact	sign	ifica	nce after mitigation
Increased invasion by alien plant species	Heavy vehicle activity in operations footprint	I	lm D	pact E	sign C	P P	nce after mitigation SIGNIFICANCE

7.2.2 Increased mortalities of fauna through collisions with vehicles

While the period of highest risk of this impact will be during the Construction Phase, it is likely that there will still be a moderate number of vehicles using the roads during the Operational Phase, possibly even at night. The intensity / severity of the impact is rated as Medium. Combined with a Low extent of impact and a potential permanent duration of impact, the unmitigated consequence is Medium and the significance of the impact is rated as **High**. The implementation of recommended mitigation measures (see section 8) could reduce the intensity, consequence and probability of the impact, resulting in a significance of **Medium**.

Potential Impact	Drojact Activity	Impact	sign	ifica	ince	befo	re mitigation
Potential impact	Project Activity	Ι	D	Е	С	Ρ	SIGNIFICANCE
		М	Н	L	М	Н	HIGH
Increased mortalities of fauna	Vehicle activity in operations	Impact significance after mitigatio					
through collisions with vehicles	footprint	1	D	Е	С	Ρ	SIGNIFICANCE
		L	Н	L	М	L	MEDIUM

Table 9. Summary of Impacts and Mitigations

Potential Impact	Project Activity	Er	viron		l sigr itigat		nce before	Mitigation	E	nviror		al sig itigat		ince after
		I	D	Е	С	Ρ	S		I	D	Е	С	Ρ	S
Construction Phase		•	•	•	•					•				
Destruction and / or fragmentation of natural habitat	Strip clearing vegetation	М	VH	VL	М	М	MEDIUM	Habitat restoration	М	М	VL	М	L	MEDIUM
Loss of plant species of conservation importance	Strip clearing vegetation	н	νн	VL	Н	L	MEDIUM	Staff awareness	Н	VH	VL	н	VL	MEDIUM
Increased illegal utilisation of natural resources	Increase in number of people	м	Н	VL	м	Σ	MEDIUM	Security (patrolling ajdacent natural vegetation for evidence of poaching, etc), Staff awareness, Relocation of protected flora	L	L	VL	L	L	LOW
Disturbance and displacement of fauna	Heavy vehicle activity; construction of conveyor line	н	н	L	н	М	HIGH	Traffic control (speed enforcement, working hours)	Н	L	L	н	L	MEDIUM
Increased invasion by alien plant species	Strip clearing vegetation	н	VH	VL	н	Н	HIGH	Invasive alien plant control	L	L	VL	L	L	LOW
Increase in mortalities of fauna through road collisions	Heavy vehicle activity	м	н	L	М	Н	HIGH	Traffic control (speed enforcement, working hours)	L	Н	L	м	L	MEDIUM
Operational Phase														
Increased invasion by alien plant species	Exposed areas of bare soil once construction completed	м	L	VL	L	М	MEDIUM	Invasive alien plant control, habitat restoration	L	L	VL	L	L	LOW
Increase in mortalities of fauna through road collisions	Heavy vehicle activity	м	н	L	м	н	HIGH	Traffic control (speed enforcement, working hours)	L	н	L	м	L	MEDIUM

M=Magnitude or Severity; R=Reversibility; D=Duration; E=Extent; C=Context; P=Probability; S=Significance

8. IMPACT MITIGATION

8.1 Pre-Construction Mitigation Measures

8.1.1 Locate plant species of conservation concern in infrastructure footprint

A suitably experienced botanist should search the conveyor line impact footprint for any plant species of conservation concern and protected species, so that a decision can be made regarding the potential relocation or destruction of those populations, or modifications to the route to avoid such populations.

8.1.2 Compile an invasive alien plant management plan

An invasive plant control management plan for the above-ground infrastructure footprint should be compiled, which should include a strategy for which species to target and where. The plan should also have a monitoring component to ensure that controlled areas are not re-infested. A small team of labourers should be trained in the safe and efficient handling of the appropriate herbicides and provided with suitable equipment.

8.1.3 Increase staff awareness

All employees and contractors involved with the development should be made aware of the requirements of the Environmental Management Plan and the relevant prohibitions (e.g. no hunting, no collection of firewood or any other plant resources, no collection of medical plants, no indiscriminate burning).

8.2 Construction Phase Mitigation Measures

8.2.1 Rescue plant species of conservation concern and protected species

Threatened and protected species occurring in the area of impact that have been identified and marked by the botanist prior to the Construction Phase will need to be translocated to suitable adjacent habitat if possible; this should be under the supervision of a botanist with horticultural experience. Priority should be given to relocating species to habitat as close to their original location as possible.

8.2.2 Implement invasive alien plant management program

An alien plant control team that has been trained in the safe and efficient handling of the appropriate herbicides will need to regularly check areas of soil disturbed during construction activities. During the construction phase it is important that safety and precautionary considerations for herbicide choice, storage, application and equipment maintenance are strictly adhered to so as to avoid contamination of surface water or groundwater. Herbicides should be stored in a locked area that is dedicated for storage of hazardous substances. Equipment used for alien plant control must be washed in a specific area dedicated for this purpose, and all wash-water must be appropriately treated. An ECO should check the construction area at least once a month to ensure that the team is successfully controlling any invasive species.

8.2.3 Security

Security personel should regularly patrol adjacent natural vegetation looking for evidence of poaching, fences being cut, plants being harvested, etc. A staff awareness programme initiated in the Planning Phase should continue through to Operational Phase, including signage on site warning against trespassing on adjacent property.

8.2.4 Traffic Control

While it will be difficult to enforce a traffic control plan on public roads, a speed restriction should be placed on all construction vehicles. Vehicles capable of driving at high speeds should be fitted with GPS units that monitor travel speed. Construction staff should be informed of the consequences of traffic infringements and fined accordingly if speed restrictions are ignored. Use of construction vehicles at night should be prohibited or severely restricted, particularly on dirt roads where nocturnal fauna are more likely to occur.

8.3 Operational Phase Mitigation Measures

8.3.1. Continue control of invasive alien plants

An alien plant control team should undertake regular monitoring and removal of alien invasive plant species in all areas of disturbed soil. This should take place during the first year of the Operational Phase. An audit at the end of that year should determine whether further monitoring and / or control is needed.

8.3.2 Security

Security personell should regularly patrol adjacent natural vegetation looking for evidence of poaching, fences being cut, plants being harvested, etc. A staff awareness programme initiated in the Planning Phase should continue through the life of the mine, and should include signage on site warning against trespassing on adjacent property.

8.3.3 Traffic Control

Vehicles capable of driving at high speeds should be fitted with GPS units that monitor travel speed. Construction staff should be informed of the consequences of traffic infringements and fined accordingly if speed restrictions are ignored. Use of construction vehicles at night should be prohibited or severely restricted, particularly on dirt roads where nocturnal fauna are more likely to occur.

8.3.4 Rehabilitate disturbed areas

Areas of bare soil where construction has taken place should be rehabilitated as soon as practically possible. Rehabilitation of disturbed areas can be facilitated, for example, by preparation of soils and, where necessary, and feasible, revegetation with indigenous plants.

9. CONCLUSIONS

The proposed Alexander project poses no fatal flaws in terms of potential impacts on terrestrial ecology as it pertains to the relevant legislation, and authorisation is recommended with the proviso that the mitigation measures recommended in section 8 be implemented and adhered to.

10. REFERENCES

- Barnes, K.N. 2000. The Eskom Red Data Book of Birds of South Africa, Lesotho & Swaziland. BirdLife South Africa, Johannesburg.
- Coombes, P. 2004. Anglo American Best Practice Environmental Guideline Series 01: Guideline for preparing Biodiversity Action Plans (BAP) Draft Document 03. Anglo American. Johannesburg.
- Department of Agriculture. 2001. Conservation of Agricultural Resources Act, 1983 (Act No. 43 of 1983), Regulations: Amendment. Government Gazette, 30 March 2001.
- Edwards, D. 1983. A broad-scale structural classification of vegetation for practical purposes. *Bothalia* 14:705-712.
- Henderson, C.L., Pretorius, R., De Wet, D. & Von Fintel, E. 2013. Artificial nest sites used by Southern Bald Ibis *Geronticus calvus*. *Ornithological Observations* 4:19-23.
- Lötter, M.C., Lechmere-Oertel, R. & Cadman, M. *In press*. Mpumalanga Biodiversity Sector Plan Handbook. Mpumalanga Tourism & Parks Agency, Nelspruit.
- Friedmann, Y. & Daly, B. (editors). 2004. Red Data Book of the Mammals of South Africa: A Conservation Assessment. CBSG Southern Africa, Conservation Breeding Specialist Group (SSC/IUCN), Endangered Wildlife Trust. South Africa.
- Kent, M. & Coker, P. 1992. Vegetation Description and Analysis a practical approach. John Wiley & Sons, Chichester.
- Minter, L.R., Burger, M., Harrison, J.A., Braack, H.H., Bishop, P.J. & Kloepfer, D. 2004. Atlas and Red Data Book of the Frogs of South Africa, Lesotho and Swaziland. SI/MAB Series No.9. Smithsonian Institution, Washington, DC.
- Mucina, L. and Rutherford, M.C. (eds) 2006. The Vegetation of South Africa, Lesotho and Swaziland. *Strelitzia* 19. South African National Biodiversity Institute, Pretoria.
- Raimondo, D., Von Staden, L., Foden, W., Victor, J.E., Helme, N.A., Turner, R.C., Kamundi,
 D.A. & Manyama, P.A. (eds) 2009. Red List of South African Plants 2009. *Strelitzia* 25. South African National Biodiversity Institute, Pretoria.
- South African National Biodiversity Institute (SANBI) & Department of Environmental Affairs & Tourism (DEAT). 2009. Threatened Ecosystems in South Africa: Descriptions and Maps. DRAFT for Comment. South African National Biodiversity Institute, Pretoria, South Africa.
- Tarboton, W.R. 2001. A Guide to Nests and Eggs of Southern African Birds. Struik, Cape Town.

Van Wyk, A.-E. & Smith, G. 2001. Floristic Centres of Endemism in Southern Africa. Umdaus Publishers.

11. APPENDICES

Appendix 1. Detailed Data: Checklist of Flora recorded during fieldwork

Species	Growth Form	Cons Status	Protected Status	Rocky Ridge Grassland	Rocky Ridge Thicket	Hillslope and Plateau Grassland	Plains Grassland	Wetlands	Transformed Habitats
	F	PTERIDOPH	TES - FERN	S AND FERN	ALLIES				
Adiantaceae									
Adiantum capillus-veneris	Fern				х				
Anemiaceae									
Mohria vestita	Fern			х	х				
Marsileaceae									
Marsilea macrocarpa	Hydrophyte							х	
Sinopteridaceae									
Cheilanthes quadripinnata	Fern			х	х				
Cheilanthes viridis	Fern			х	х				
Pellaea calomelanos	Fern			х	х				
		ANGIOSP	FRMS - FLO	WERING PLA	NTS				
DICOTYLEDONS									
Acanthaceae									
Blepharis innocua	Herb			х		х			
Blepharis subvolubilis	Herb						x		
Chaetacanthus setiger	Herb					х	х		
Crabbea acaulis	Herb					х			
Justicia anagalloides	Herb			х		х	х		
Achariaceae									
Kiggelaria africana	Tree				х				
Amaranthaceae									
Achyranthes aspera *	Herb				х				
Amaranthus hybridus *	Herb								х
Gomphrena celosioides *	Herb			х		х	x		х
Anacardiaceae									
Searsia dentata	Shrub			х	х				

ander Mine - Terrestrial Ecology and	d Biodiversity Value Assessr	ment (ECOREX)		June 2	016		
	Dwarf						
Searsia discolor	Shrub	Х		х			
Searsia magalismontana	Shrub	Х	x				
Searsia pyroides	Shrub	Х	x				
Searsia rigida	Shrub	Х	х				
Apiaceae							
Afrosciadium magalismontanum	Herb			х			
Centella asiatica *	Herb			х			
Apocynaceae							
Araujia sericifera *	Climber		х				
Asclepias aurea	Herb			х			
Asclepias gibba	Herb			х			
Gomphocarpus fruticosus	Shrub	Х					
Gomphocarpus physocarpus	Shrub			х			
Pachycarpus rigidus	Succulent			х			
Xysmalobium cf. undulatum (old fruit)	Succulent			х			
Asteraceae							
Artemisia afra *	Herb		х				
Berkheya echinacea	Herb	Х		х	х		
	Dwarf	х		х	x		
Berkheya rigida	Shrub						
Berkheya setifera	Herb	x		x	x		
Berkheya speciosa	Herb	x		x	х		
Bidens bipinnata *	Herb	x	x	х			
Bidens pilosa *	Herb	х	х				
Cirsium vulgare *	Herb			х	х	х	
Conyza bonariensis *	Herb	х	х		х		
Conyza canadensis *	Herb	х			х		
Conyza podocephala	Herb	х		х	х		
Conyza sp. (no flowers)	Herb	х		х			
Cosmos bipinnatus *	Herb				х		
Crepis hypochaeridea *	Herb	х					
Dicoma anomala	Herb	х		x			
Euryops transvaalensis	Herb			x			
Felicia muricata	Herb	х		х			
Galinsoga parviflora *	Herb		х				
Gazania krebsiana	Herb			х			
Geigeria burkei	Dwarf Shrub				х		

kander Mine - Terrestrial Ecology	and Biodiversity Value Asses	sment (ECOREX)		June 2	016		
Haplocarpha lyrata	Herb			x	x		
Haplocarpha scaposa	Herb	Х		x	x		
Helianthus annuus *	Herb						
Helichrysum aureonitens	Herb			x	х	x	
Helichrysum caespititium	Herb	х					
Helichrysum callicomum	Herb	X					
Helichrysum chionosphaerum	Herb	X					
Helichrysum nudifolium	Herb	~		x	х		
Helichrysum oreophilum	Herb	х		x	X		
Helichrysum pilosellum	Herb	x		~			
Helichrysum rugulosum	Herb	x		x	х		
Helichrysum setosum	Herb	x		~	~		
Hilliardiella aristata	Herb	X		x			
Hilliardiella oligocephala	Herb	х		x	х		
Hypochaeris radicata *	Herb	x		x	x		
Lactuca capensis	Herb	X		~	x		
Pseudognaphalium sp. (photo)	Herb		х		X		
Schkuhria pinnata *	Herb	х	X		х		
Senecio bupleuroides	Herb	X		x	X		
Senecio consanguineus	Herb			~	х		
Senecio coronatus	Herb			x	X		
Senecio erubescens	Herb	х		x	х		
Senecio inornatus	Herb	X		x	x		
Senecio utonniflorus	Herb	х	х	~	X		
Senecio sp. (old flowers)	Herb	X	X	x			
Senecio subrubriflorus	Herb	х	х	x			
Seriphium plumosum	Shrub	x	X	x			
Sonchus sp. (no flowers)	Herb	~		x			
Ursinia nana	Herb	х		x			
Tagetes minuta *	Herb	X		x			
Tolpis capensis	Herb	х		x			
Tragopogon dubius *	Herb			x	х		
Xanthium spinosum *	Herb			~	~	х	
Xanthium spinosum Xanthium strumarium *	Herb				х		
Buddlejaceae					~		
Gomphostigma virgatum	Shrub					х	

ander Mine - Terrestrial Ecology ar	nd Biodiversity Value Assess	ment (ECOREX)		June 2	016
Wahlenbergia cf. undulata	Herb			x	
Wahlenbergia sp.	Herb			x	
Caryophyllaceae				X	
Dianthus mooiensis	Herb	х		х	
Pollichia campestris	Herb	~		x	
Silene burchellii	Herb	x		^	
		×		х	
Silene undulata	Herb	Χ.		^	
Celtidaceae	-				
Celtis africana	Tree		х		
Chenopodiaceae					
Chenopodium sp. (no flowers)	Herb		Х		Х
Convolvulaceae					
Convolvulus sagittatus	Creeper				x
Cuscuta campestris *	Climber	Х			
lpomoea bathycolpos	Creeper	Х		х	
lpomoea oblongata	Creeper	Х			x
Seddera sp. (no flowers)	Creeper	Х		х	
Crassulaceae					
Crassula alba	Succulent	Х			
Crassula capitella subsp. nodulosa	Succulent	Х			
Crassula lanceolata	Succulent	Х			
Crassula setulosa	Succulent	Х			
Dipsacaceae					
Cephalaria pungens	Herb				x
Scabiosa columbaria	Herb	х		х	x
Ebenaceae					
Diospyros austro-africana	Shrub	х	х		
Diospyros lycioides subsp. guerkei	Shrub	х	х		
Ericaceae					
Erica drakensbergensis	Shrub			х	
Euphorbiaceae					
Acalypha caperonioides	Herb	х			
Acalypha sp.	Herb			х	
Fabaceae: Caesalpinoideae					
	Dwarf				
Chamaecrista capensis	Shrub			x	

Fabaceae: Papilionoideae

64

AIC Alexander Mine - Terrestrial Ecology a	nd Biodiversity Value Asse	essment (ECOREX)		June 20	16		
Eriosema cf. cordata	Dwarf Shrub			x			
Erythrina zeyheri	Dwarf Shrub				х		
Indigofera hedyantha	Dwarf Shrub Dwarf			x	x		
Indigofera melanadenia	Shrub Dwarf	х					
Indigofera sp. (no flowers)	Shrub Dwarf	х		x			
Indigofera sp. (photos)	Shrub Dwarf				х		
Leobordea divaricata	Shrub Dwarf	Х		x			
Leobordea eriantha	Shrub Dwarf	х		х			
Listia heterophylla	Shrub	Х					
Medicago sativa *	Herb Dwarf				х		х
Pearsonia cajanifolia	Shrub	Х					
Rhynchosia adenodes	Herb			х	х		
Rhynchosia totta	Creeper			х			
Robinia pseudo-acacia *	Tree		х				
Sesbania punicea *	Shrub					х	
Sphenostylis angustifolia	Creeper				x		
Tephrosia capensis	Herb	х					
Tephrosia elongata	Herb			х			
Tephrosia macropoda	Herb			x			
Trifolium pratense *	Herb			x	х		х
	Dwarf				х		
Ulex europaeus *	Shrub				~		
Vigna unguiculata	Creeper			x			
Zornia milneana	Herb	Х		x			
Geraniaceae							
Monsonia angustifolia	Herb	х					
Pelargonium luridum	Herb			х			
Lamiaceae							
Ajuga ophridis	Herb			x	х		
Leonotis ocymifolia var. raineriana	Dwarf Shrub	х	х				
Mentha longifolia	Herb		x	x		х	
			~	~		~	

ander Mine - Terrestrial Ecology an	id Biodiversity value Assessment (ECOREX)		June 2	016		
Ocimum obovatum subsp. obovatum	Herb	х					
Salvia runcinata	Herb	^		x	х		
Lobeliaceae				~	~		
Monopsis decipiens	Herb	х		х		х	
Malvaceae		X		X		X	
Hermannia coccocarpa	Herb				х		
Hermannia depressa	Herb	х		х	x		
Hermannia transvaalensis	Herb	A		x	X		
Hibiscus aethiopicus var. ovatus	Herb			x			
Hibiscus microcarpus	Herb	х		x	х		
Hibiscus trionum *	Herb	~		x	x		
Mesembryanthemaceae				~	~		
Delosperma cf. sutherlandii (photos)	Succulent	х					
Delosperma cr. surremandir (protos) Delosperma sp. (photos)	Succulent	x					
Khadia beswickii	Succulent Vulnerable	x					
Mossia intervallaris	Succulent	x					
Moraceae	Odobaloni						
Ficus carica *	Tree		х				
Oleaceae	1100		~				
Ligustrum sinensis *	Tree		х				
Onagraceae	1100		~				
Oenothera rosea *	Herb	х		х	х	х	
Oenothera tetraptera *	Herb	x		X	x	X	
Orobanchaceae		X			X		
Striga bilabiata	Herb			x	х		
Striga elegans	Herb			x	~		
Oxalidaceae				~			
Oxalis depressa	Herb				х		
Oxalis obliquifolia	Herb			x	~		
Papaveraceae				~			
Papaver argemone *	Herb				х		
Plantaginaceae	וופוא				~		
Plantaginaceae Plantago lanceolata	Herb	х			х		
Plantago lanceolata Polygalaceae		^			^		
Polygala gracilenta	Herb	x					
Polygala gracilenta Polygala hottentota	Herb	^		х			
				x			
Polygala transvaalensis	Herb			^			

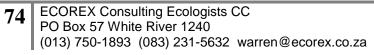
xander Mine - Terrestrial Ecology ar	nd Biodiversity Value Assessr	nent (ECOREX)		June 2	016		
Polygonaceae							
Persicaria decipiens	Herb					х	
Rumex lanceolatus	Herb				х	~	
Portulacaceae	Helb				^		
Portulaca kermesina	Herb	х					
	Heib	Χ.					
Ranunculaceae						х	
Ranunculus multifidus	Herb					X	
Rosaceae							
Agrimonia odorata *	Herb	Х	x				
Cotoneaster franchetii *	Tree		x				
Prunus persicus *	Tree		X				
Prunus sp. *	Tree		х				
Pyracantha coccinea *	Tree	Х	х				
Rubus ludwigii	Shrub		х				
Rubus rigidus	Shrub		Х				
Rubiaceae							
Anthospermum rigidum	Herb	Х			х		
Pentanisia angustifolia	Herb			х			
Pentanisia prunelloides	Herb			х			
	Dwarf	х		х			
Pygmaeothamnus chamaedendrum	Shrub						
Richardia brasilense *	Herb						
Salicaceae	_						
Populus cf. alba	Tree		Х				
Scrophulariaceae							
Chaenostoma leve	Herb	Х		x			
Jamesbrittenia aurantiaca	Herb			х			
Nemesia fruticans	Herb	Х					
Selago densiflora	Herb	Х					
Veronica anagallis-aquatica	Hydrophyte					х	
Zaluzianskya cf. elongata	Herb	Х					
Solanaceae							
Solanum cf. capense	Dwarf Shrub			х			
Solanum G. Capense	Dwarf						
Solanum lichtensteinii	Shrub				х		
Solanum nigrum *	Herb		х				
-	Dwarf	v		×			
Solanum panduriforme *	Shrub	Х		х			

kander Mine - Terrestrial Ecology a	nd Biodiversity	Value Asses	sment (ECO	REX)		June 2016			
Solanum pseudocapsicum *	Dwarf Shrub				x				>
Solanum retroflexum	Herb			х	х				
Solanum sisymbriifolium *	Shrub			x	x				2
Thymelaeaceae	0								
Gnidia burchellii	Shrub			х	x	х			
	Dwarf								
Gnidia caffra	Shrub					x			
Gnidia microcephala	Herb			Х					
Verbenaceae									
Verbena bonariensis *	Herb			Х	х				
MONOCOTYLEDONS									
Agavaceae									
Agave americana *	Succulent					х			
Amaryllidaceae									
Boophone disticha	Geophyte	Declining	MNCA			х			
Crinum bulbispermum	Geophyte	Declining	MNCA				х	х	
Cyrtanthus tuckii	Geophyte		MNCA	х		х			
Haemanthus montanus	Geophyte		MNCA				х		
Nerine krigei	Geophyte		MNCA				х		
Anthericaceae									
Chlorophytum sp. 1 (photos)	Geophyte			х		х			
Chlorophytum sp. 2	Geophyte			х					
Araceae									
Zantedeschia albomaculata	Geophyte		MNCA		х				
Asparagaceae									
Asparagus cooperi	Herb				х				
Asparagus laricinus	Herb				х				
Asphodelaceae									
Aloe ecklonis	Geophyte		MNCA				х		
Commelinaceae									
Commelina africana	Herb			х	х	x			
Commelina subulata	Herb			х					
Cyanotis speciosa	Herb			х			х		
Cyperaceae									
Bulbostylis sp.	Sedge			х		х			
Cyperus congestus	Sedge							х	

ander Mine - Terrestrial Ecology a	nd Biodiversity \	/alue Asses	sment (ECO	REX)		June 2	016	
Cyperus fastigiatus	Sedge							х
Cyperus longus	Sedge							x
Cyperus obtusiflorus	Sedge			х		х		~
Cyperus rupestris	Sedge			x		x	х	
Cyperus sp.	Sedge			A		x	x	
Eleocharis dregeana	Sedge					X	A	х
Fuirena pubescens	Sedge							x
Kyllinga erecta	Sedge					х	х	x
Kyllinga pulchella	Sedge					~	~	x
Pycreus macranthus	Sedge							x
Schoenoplectus corymbosus	Sedge							x
Hyacinthaceae	Ocuge							X
Dipcadi sp. (no flowers)	Geophyte			х				
Dipcadi sp. (no nowers) Dipcadi viride	Geophyte			x				
Dipcadi Vinde Drimia multisetosa	Geophyte			x				
Drimia muliselosa Drimiopsis burkei	Geophyte			x	x			
Eucomis autumnalis subsp. clavata	Geophyte	Declining	MNCA	A	A	х		
Ledebouria ovatifolia	Geophyte	Decining	MINOA	х		x	х	
Ledebouria ovalinolia Ledebouria sp. (no flowers)	Geophyte			x		X	A	
Hypoxidaceae	Ocophyte			~				
Hypoxis hemerocallidea	Geophyte	Declining				х	х	
Hypoxis obtusa	Geophyte	Decining		х		x	x	
Hypoxis rigidula	Geophyte			X		x	x	
Iridaceae	Coopilyto							
Gladiolus elliotii	Geophyte		MNCA				х	
Gladiolus permeabilis	Geophyte		MNCA			х		
Gladiolus sp. (no flower)	Geophyte		MNCA			x		
Moraea sp. (no flowers)	Geophyte						х	
Orchidaceae	Coopilyto							
Eulophia nutans	Geophyte		MNCA			х		
Habenaria epipactidea	Geophyte		MNCA				х	
Poaceae	Coopilyle							
Agrostis eriantha	Grass						х	х
Alloteriopsis semialata	Grass			х			~	
Andropogon appendiculatus	Grass			~			х	x
Andropogon appendiculatus Andropogon eucomus	Grass						x	x
Aristida adscensionis	Grass					х	~	~

ander Mine - Terrestrial Ecology a	nd Biodiversity Value Asses	sment (ECOREX)		June 2	016	
Aristida bipartita	Grass			x		
Aristida junciformis	Grass	х		x		
Bothriochloa insculpta	Grass	X		X	х	
Brachiaria serrata	Grass	х		х	x	
Ctenium concinnum	Grass	X		X	~	
Cymbopogon cf. dieterlenii	Grass	^			х	
	Grass	х			x	
Cymbopogon pospischilii *		×		×		
Cynodon dactylon	Grass	X		X	х	
Digitaria eriantha	Grass	X		X	×	
Digitaria tricholaenoides	Grass	Х		x	х	
Diheteropogon amplectens	Grass	Х		х		
Diheteropogon filifolius	Grass	Х				
Echinochloa sp.	Grass					х
Elionurus muticus	Grass	Х		x	х	
Eragrostis capensis	Grass	Х			x	
Eragrostis cf. viscosa	Grass	Х				
Eragrostis chloromelas	Grass	х				
Eragrostis curvula	Grass		х	х	х	
Eragrostis gummiflua	Grass	х				
Eragrostis plana	Grass	х			х	
Eragrostis racemosa	Grass	х		х		
Eragrostis sp.1 (photo, specimen)	Grass	Х		х		
Eragrostis superba	Grass			х		
Festuca cf. scabra	Grass			х		
Harpochloa falx	Grass	х		х		
Hemarthria altissima	Grass					х
Heteropogon contortus	Grass	х		х	х	
Hyparrhenia cf. anamesa	Grass	х				
Hyparrhenia dregeana	Grass			х		
Imperata cylindrica	Grass					х
Leersia hexandra	Grass					х
Loudetia simplex	Grass	х				
Melinis nerviglumis	Grass	х				
Microchloa caffra	Grass	х				
Panicum natalense	Grass	х		х		
Paspalum dilatatum *	Grass		x			
Paspalum distichum	Grass					х
Paspalum urvillei *	Grass			х	х	x

exander Mine - Terrestrial Ecolog	der Mine - Terrestrial Ecology and Biodiversity Value Assessment (ECOREX) Jun								June 2016				
Pennisetum sphacelatum	Grass							x					
Pennisetum thunbergii	Grass						х						
Phragmites australis	Reed							х					
Setaria cf. pumila	Grass			х									
Setaria sphacelata	Grass					х	х						
Setaria verticillata	Grass				х								
Sporobolus africanus	Grass				х	х							
Themeda triandra	Grass			х		х	х						
Tragus berteronianus	Grass						х						
Trichoneura grandiglumyx	Grass					х							
Tristachya leucothrix	Grass			х		х							
Zea mays *	Grass												
TOTAL		5	13	135	47	136	90	32	:				


MNCA = Mpumalanga Nature Conservation

Appendix 2	. Detailed	Data: Flora	Quadrats	(A)
------------	------------	-------------	----------	-----

Species	Family	Quadra t 1	Quadra t 2	Quadra t 3	Quadra t 4	Quadra t 5	Quadra t 6	Quadra t 7	Quadra t 8	Quadra t 9	Quadra t 10	Quadra t 11
Blepharis innocua	Acanthaceae					+	+					
Chaetacanthus setiger	Acanthaceae				+							+
Crabbea acaulis	Acanthaceae					+		+				
Achyranthes aspera *	Amaranthaceae		1									
Gomphrena celosioides *	Amaranthaceae									1		
Cyrtanthus tuckii	Amaryllidaceae			+								
Searsia dentata	Anacardiaceae		+									
Searsia discolor	Anacardiaceae						+					
Searsia magalismontana	Anacardiaceae						2					
Searsia pyroides	Anacardiaceae		+									
Chlorophytum sp. 1	Anthericaceae	+		1								
Chlorophytum sp. 2	Anthericaceae						+	+				
Centella asiatica *	Apiaceae			1							1	
Xysmalobium cf. undulatum (old fruit)	Apocynaceae					+					+	
Asparagus cooperi	Asparagaceae		+									
Berkheya echinacea	Asteraceae				1						+	
Berkheya rigida	Asteraceae				+				3		+	+
Berkheya setifera	Asteraceae							+				
Berkheya speciosa	Asteraceae					+	1					
Bidens bipinnata *	Asteraceae		+		+		1					
Bidens pilosa *	Asteraceae		3									
Conyza bonariensis *	Asteraceae		1		+							
Conyza canadensis *	Asteraceae						+					
Conyza podocephala	Asteraceae				+	+	1					
Conyza sp. (no flowers)	Asteraceae			1								
Crepis hypochaeridea *	Asteraceae									+		
Dicoma anomala	Asteraceae					+	+	2				
Euryops transvaalensis	Asteraceae					+				1		
Felicia muricata	Asteraceae	1					1					
Galinsoga parviflora *	Asteraceae		+									
Haplocarpha lyrata	Asteraceae					1					1	
Haplocarpha nervosa	Asteraceae											1
Haplocarpha scaposa	Asteraceae			1	1		1	+			+	

Helichrysum aureonitens	Asteraceae					+				+		
Helichrysum caespititium	Asteraceae						+					
Helichrysum callicomum	Asteraceae							+				
Helichrysum nudifolium	Asteraceae					1						
Helichrysum rugulosum	Asteraceae			1	2	2	1					2
Hilliardiella oligocephala	Asteraceae						+					
Hypochaeris radicata *	Asteraceae			+	1	+		1		1	1	
Pseudognaphalium sp.	Asteraceae		+									
Schkuhria pinnata *	Asteraceae	+				+			1	1		
Senecio consanguineus	Asteraceae								1		+	+
Senecio coronatus	Asteraceae			1		+						
Senecio erubescens	Asteraceae	+							1		1	1
Senecio inornatus	Asteraceae										+	
Senecio othonniflorus	Asteraceae						+					
Senecio sp. (old flowers)	Asteraceae					+		+				
Senecio subrubriflorus	Asteraceae			1	1	+	+					
Seriphium plumosum	Asteraceae			+			1	2				
Sonchus sp. (no flowers)	Asteraceae			+								
Tagetes minuta *	Asteraceae			1		+						
Tragopogon dubius *	Asteraceae					+						
Ursinia nana	Asteraceae	1										
Dianthus mooiensis	Caryophyllaceae					+	+					
Pollichia campestris	Caryophyllaceae				+							
Silene undulata	Caryophyllaceae			+								
Chenopodium sp. (no flowers)	Chenopodiaceae		+									
Commelina africana	Commelinaceae	1		1	1	+	1	1		1		
Convolvulus sagittatus	Convolvulaceae								+			
Seddera sp. (no flowers)	Convolvulaceae						1					
Crassula alba	Crassulaceae						+					
Bulbostylis sp.	Cyperaceae				+			+				
Cyperus obtusiflorus	Cyperaceae			+		1						
Cyperus rupestris	Cyperaceae	1				+			+	+		
Kyllinga erecta	Cyperaceae			+		2		2			+	
Scabiosa columbaria	Dipsacaceae			+	1						1	
Diospyros austro-africana	Ebenaceae						1					
Diospyros lycioides subsp. guerkei	Ebenaceae		+				2					

	Fabaceae:		1	1	1	+	I	l				1
Chamaecrista capensis	Caesalpinoideae					т						
Indigofera sp. (no flowers)	Fabaceae: Papilionoideae			+								
Indigofera sp.	Fabaceae: Papilionoideae								+			
Leobordea divaricata	Fabaceae: Papilionoideae							+				
Leobordea eriantha	Fabaceae: Papilionoideae						+					
Rhynchosia adenodes	Fabaceae: Papilionoideae			+		+						
Robinia pseudo-acacia *	Fabaceae: Papilionoideae		4									
Tephrosia capensis	Fabaceae: Papilionoideae					1		+				
Tephrosia elongata	Fabaceae: Papilionoideae							+				
Trifolium pratense *	Fabaceae: Papilionoideae										1	
Vigna unguiculata	Fabaceae: Papilionoideae					+						
Zornia milneana	Fabaceae: Papilionoideae					1		+				
Monsonia angustifolia	Geraniaceae	+					+					
Pelargonium luridum	Geraniaceae			+								
Dipcadi sp. (no flowers)	Hyacinthaceae							+				
Dipcadi viride	Hyacinthaceae									1		
Drimia multisetosa	Hyacinthaceae									+		
Ledebouria ovatifolia	Hyacinthaceae								+		+	
Hypoxis hemerocallidea	Hypoxidaceae				+	+						
Hypoxis obtusa	Hypoxidaceae					1						
Hypoxis rigidula	Hypoxidaceae										+	
Ajuga ophridis	Lamiaceae			1	+	1		1				
Leonotis ocymifolia var. raineriana	Lamiaceae						1					
Ocimum obovatum subsp. obovatum	Lamiaceae							1				
Salvia runcinata	Lamiaceae				1				2			
Hermannia coccocarpa	Malvaceae								+			
Hibiscus aethiopicus var. ovatus	Malvaceae					+						
Hibiscus trionum *	Malvaceae								1			
Delosperma cf. sutherlandii	Mesembryanthemaceae							+				
, Khadia cf. beswickii	Mesembryanthemaceae									1		
Mossia intervallaris	Mesembryanthemaceae	2								1		
Ligustrum sinensis *	Oleaceae		+									
Oenothera rosea *	Onagraceae				+						1	1
Oxalis depressa	Oxalidaceae										1	
Oxalis obliquifolia	Oxalidaceae					+						

AAIC Alexander Mine - Terrestrial Ecology and Biodiversity Value Assessment (ECOREX)

Plantago lanceolata	Plantaginaceae									+	1	
Agrostis eriantha	Poaceae								+			
Alloteriopsis semialata	Poaceae							+				
Andropogon appendiculatus	Poaceae										1	
Andropogon eucomus	Poaceae										+	
Aristida adscensionis	Poaceae				1					+		
Aristida junciformis	Poaceae			+				1				
Bothriochloa insculpta	Poaceae										+	
Brachiaria serrata	Poaceae						+					
Cymbopogon cf. dieterlenii	Poaceae										+	+
Cynodon dactylon	Poaceae									1		1
Digitaria eriantha	Poaceae				1							
Digitaria tricholaenoides	Poaceae	1		1							+	
Diheteropogon amplectens	Poaceae					+	1					
Diheteropogon filifolius	Poaceae							+				
Elionurus muticus	Poaceae			+		2	2	+		+		1
Eragrostis capensis	Poaceae										+	
Eragrostis cf. viscosa	Poaceae	+										
Eragrostis chloromelas	Poaceae									2	2	2
Eragrostis curvula	Poaceae		1	2	2			2	+	2		
Eragrostis gummiflua	Poaceae						+	1				
Eragrostis plana	Poaceae	1								2	2	2
Eragrostis racemosa	Poaceae			1		2	2	1				1
Eragrostis sp.1	Poaceae	+				1						
Eragrostis superba	Poaceae				1	+						
Festuca cf. scabra	Poaceae			+								
Harpochloa falx	Poaceae			2				1		2		
Heteropogon contortus	Poaceae			1	1	1	1			1		
Hyparrhenia cf. anamesa	Poaceae									1		
Loudetia simplex	Poaceae									+		
Melinis nerviglumis	Poaceae									+		
Microchloa caffra	Poaceae	2			1							
Panicum natalense	Poaceae			1	1	+		1		1		1
Paspalum dilatatum *	Poaceae		1									
Paspalum urvillei *	Poaceae				1						1	
Pennisetum thunbergii	Poaceae				1				1			

AAIC Alexander Mine - Terrestrial Ecology and Biodiversity Value Assessment (ECOR	EX)
---	-----

Setaria cf. pumila	Poaceae	1						1				
Setaria sphacelata	Poaceae			1	2	1	+			1	+	
Sporobolus africanus	Poaceae		1	+								
Themeda triandra	Poaceae				2	3	1	1	1	1	3	2
Tristachya leucothrix	Poaceae			3				1		+		
Polygala gracilenta	Polygalaceae						+					
Rumex lanceolatus	Polygonaceae										1	
Agrimonia odorata *	Rosaceae		+									
Pyracantha coccinea *	Rosaceae						+					
Anthospermum rigidum	Rubiaceae						+	1		1		+
Pentanisia angustifolia	Rubiaceae			+		+		1				
Pentanisia prunelloides	Rubiaceae			+								
Pygmaeothamnus chamaedendrum	Rubiaceae			1	1							
Populus cf. alba	Salicaceae		1									
Chaenostoma leve	Scrophulariaceae									+		
Nemesia fruticans	Scrophulariaceae						+					
Selago densiflora	Scrophulariaceae						+					
Zaluzianskya cf. elongata	Scrophulariaceae									1		
Cheilanthes viridis	Sinopteridaceae		1									
Solanum nigrum *	Solanaceae		1									
Solanum panduriforme *	Solanaceae	+			+	+		+		+		1
Solanum sisymbriifolium *	Solanaceae						+					
Gnidia burchellii	Thymelaeaceae		+							1		
Gnidia caffra	Thymelaeaceae							+		+		
Verbena bonariensis *	Verbenaceae		1		1	+					+	
TOTAL	165	16	22	36	28	45	40	36	15	33	31	16

	Q	uadrat 1
Location	S26.32543 E29.29052	
Topography	Upper slopes	
Elevation	1579 masl	and the second s
Soil	Coarse sand betw een	inter a day both
	sandstone sheetrock	A CONTRACTOR OF THE OWNER OWNER OF THE OWNER OWNE
Vegetation	Low Open to Closed Herbland	AN IL MANAGER LANDARD
Total Species	16	
Dominant Species	Mossia intervallaris, Microchloa caffra, Digitaria tricholaenoides	
	Q	uadrat 2
Location	S26.32572 E29.29119	
Topography	Low scarp	
Elevation	1565 masl	
Soil	Brown sandy loam at base of	And the second second
	scarp	
Vegetation	Low to Tall Closed Woodland	
Total Species	22	
Dominant Species	Robinia pseudo-acacia *, Bidens pilosa *, Sporobolus africanus	
	Q	uadrat 3
Location	S26.32591 E29.28999	
Topography	Upper slopes	
Elevation	1580 masl	the second
Soil	Grey-brow n coarse sand	and and and and a second se
Vegetation	Low Closed Grassland	
Total Species	36	
Dominant Species	Tristachya leucothrix, Harpochloa falx, Eragrostis curvula, Senecio coronatus	

Appendix 3. Detailed Data: Flora Quadrats (B)

	Q	uadrat 4
Location	S26.32520 E29.29347	
Topography	Upper slopes	
Elevation	1586 masl	adaption for PERA.
Soil	Grey-brow n coarse sand	the second secon
Vegetation	Low Closed Grassland	
Total Species	28	and the second
Dominant Species	Themeda triandra, Helichrysum rugulosum, Setaria sphacelata, Berkheya echinacea	
	Q	uadrat 5
Location	S26.32482 E29.32323	the second second second
Topography	Upper slopes	the second second second second
Elevation	1619 masl	A State of the second sec
Soil	Grey-brown sandy loam	
Vegetation	Low Closed Grassland	A STATE OF A
Total Species	45	The second s
Dominant Species	Themeda triandra, Helichrysum rugulosum, Eragrostis racemosa, Elionurus muticus	
	Q	uadrat 6
Location	S26.32591 E29.32311	and the second s
Topography	Low sandstone ridge	
Elevation	1595 masl	
Soil	Coarse sand betw een	
	sandstone sheetrock	and the second sec
Vegetation	Low Closed Grassland	
Total Species	40	and the second second
Dominant Species	Diospyros lycioides subsp. guerkei, Searsia magalismontana, Eragrostis racemosa, Elionurus muticus	

		Quadrat 7
Location	S26.33481 E29.36722	a state and the state of the st
Topography	Top of scarp	the second se
Elevation	1622 masl	
Soil	Coarse sand betw een	
501	sandstone sheetrock	
Vegetation	Low Closed Grassland	
Total Species	36	
Dominant Species	Eragrostis curvula, Dicoma anomala, Seriphium plumosum, Kyllinga erecta, Aristida junciformis	

	Qı	uadrat 8
Location	S26.33756 E29.36948	and the second
Topography	Plains	and the second s
Elevation	1508 masl	
Soil	Deep grey-brow n sandy loam	
Vegetation	Low Closed Grassland or Herbland	
Total Species	15	
Dominant Species	Berkheya rigida, Salvia runcinata, Senecio erubescens, Pennisetum thunbergii	

	Qı	uadrat 9
Location	S26.37541 E29.31185	
Topography	Low sandstone ridge	
Elevation	1581 masl	an Aller and a second s
Soil	Coarse sand betw een sandstone sheetrock	
Vegetation	Low Closed Grassland or Herbland	1. P.C.
Total Species	33	a the second sec
Dominant Species	Eragrostis curvula, Eragrostis plana, Eragrostis chloromelas, Harpochloa falx	

	Qu	iadrat 10
Location	S26.37908 E29.31500	and the second sec
Topography	Plains	
Elevation	1567 masl	
Soil	Deep sandy loam	And the second
Vegetation	Low Closed Grassland	
Total Species	31	The second second second second second
Dominant Species	Themeda triandra, Eragrostis plana, Eragrostis chloromelas, Senecio erubescens	
		adrat 11
Location	S26.36547 E29.32573	
Topography	Upper slopes	
Elevation	1622 masl	
Soil	Brown sandy loam	and a second share and a second start of the second
Vegetation	Low Closed Grassland	
Total Species	16	
Dominant Species	Themeda triandra, Eragrostis plana, Eragrostis chloromelas, Helichrysum rugulosum	

Appendix 4. Detailed Data: Checklist of Fauna recorded during fieldwork

					Assemblages					
Species	Family	Protected	Endemic	Red Data	Thicket	Grassland	Wetland	Rivers, Dams	Transformed	Rocky Outcrop
Mammals										
ORDER LAGOMORPHA										
Family: Leporidae (rabbits & hares)										
Scrub Hare	Lepus saxatilis					Х				х
ORDER: RODENTIA										
Family: Hystricidae (porcupines)										
Cape Porcupine	Hystrix africaeaustralis				Х	Х			х	х
Family Pedetidae (springhare)										
Springhare	Pedetes capensis					Х				
ORDER: CARNIVORA										
Family: Canidae (dogs, jackals, wolves)										
Black-backed Jackal	Canis mesomelas				х	х	х			х
Family: Felidae (cats)										
Serval	Leptailurus serval	NEMBA		NT		Х	х			
Family: Herpestidae (mongooses)										
Slender Mongoose	Galerella sanguinea				х					х
Water Mongoose	Atilax paludinosus				Х		х	х		
Yellow Mongoose	Cynictis penicillata					х				
Suricate	Suricata suricatta					х				
Family: Hyaenidae (hyaenas)										
Aardwolf *	Proteles cristatus	MNCA				х				
Brown Hyaena	Parahyaena brunnea	NEMBA		NT	х	х	х			Х
ORDER HYRACOIDEA										
Family Procaviidae (hyraxes)										
Rock Hyrax	Procavia capensis				х					Х

ORDER: PERISSODACTYLA										
Family: Equidae (horses, zebras)										
Burchell's Zebra	Equus quagga burchellii	NEMBA				х				
ORDER: CETARTIODACTYLA										
Family: Suidae (pigs)										
Bushpig	Potamochoerus larvatus				Х	х	х		х	
Family: Bovidae (cattle, antelope)										
Buffalo	Syncerus caffer	MNCA				х				
Eland	Tragelaphus oryx	MNCA			Х	х	х		х	х
Gemsbok	Oryx gazella					х				
Waterbuck	Kobus ellipsiprymnus	MNCA				х	х			
Common Reedbuck *	Redunca arundinum	MNCA				х	х			
Black Wildebeest	Connochaetes gnou	NEMBA	Е			х				
Red Hartebeest	Alcephalus buselaphus	NEMBA				х				
Blesbok	Damaliscus pygargus	NEMBA	Е			х				
Springbok	Antidorcas marsupialis					х				
Steenbok *	Raphicerus campestris	MNCA				х				
Grey Duiker	Sylvicapra grimmia				Х	х			х	
Family: Cervidae (deer)										
Fallow Deer	Dama dama					х				
Subtotal	26	12	2	2	9	23	8		4	7
Birds										
ORDER STRUTHIONIFORMES										
Family: Struthionidae (ostriches)										
Common Ostrich	Struthio camelus					х				
ORDER ANSERIFORMES										
Family Anatidae (ducks & geese)										
White-faced Duck	Dendrocygna viduata						х	х		
Spur-winged Goose	Plectropterus gambensis							х		
Egyptian Goose	Alopochen aegyptiacus						х	х		
South African Shelduck	Tadorna cana							х		
Yellow-billed Duck	Anas undulata						х	х		
Cape Shoveler	Anas smithii							х		

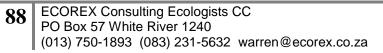
African Black Duck	Anas sparsa							х		
Red-billed Teal	Anas erythrorhyncha						х	x		
Southern Pochard	Netta erythrophthalma						Λ	x		
Maccoa Duck	Oxyura maccoa							x		
ORDER: GALLIFORMES	Chydra maeeda							~		
Family: Numididae (guineafowl)										
Helmeted Guineafowl	Numida meleagris				х	х			х	х
Family Phasianidae (pheasants, francolins, sp										
Orange River Francolin	Scleroptila levaillantoides					х				
Swainson's Spurfowl	, Pternistis swainsonii					х			х	х
Common Quail	Coturnix coturnix					х				
ORDER PODICIPEDIFORMES										
Family Podicipedidae (grebes)										
Little Grebe	Tachybaptus ruficollis							х		
Great Crested Grebe	Podiceps cristatus							х		
ORDER PHOENICOPTERIFORMES										
Family Phoenicopteridae (flamingos)										
Greater Flamingo	Phoenicopterus ruber			NT				х		
ORDER CICONIIFORMES										
Family Ciconiidae (storks)										
White Stork	Ciconia ciconia					х				
ORDER: PELECANIFORMES										
Family Threskiornithidae (ibises, spoonbills)										
African Sacred Ibis	Threskiornis aethiopicus					х		х		
Southern Bald Ibis	Geronticus calvus	NEMBA	Е	VU					х	
Hadeda Ibis	Bostrychia hagedash					х	Х		х	
Glossy Ibis	Plegadis falcinellus						Х			
African Spoonbill	Platalea alba							Х		
Family Ardeidae (herons, egrets, bitterns)										
Black-crowned Night-Heron	Nycticorax nycticorax						Х			
Squacco Heron	Ardeola ralloides						Х			
Western Cattle Egret	Bubulcus ibis					х	Х	х	Х	
Grey Heron	Ardea cinerea							Х		

xander Mine - Terrestrial Ecology and Biodiversity Val	lue Assessment (ECOREX)	June 2016				
Black-headed Heron	Ardea melanocephala		х	x		
Purple Heron	Ardea purpurea		~	x		
Great Egret	Egretta alba			x	х	
Yellow-billed Egret	Egretta intermedia			x	x	
Little Egret	Egretta garzetta			x	x	
Family Scopidae (Hamerkop)				Λ	X	
Hamerkop	Scopus umbretta				х	
ORDER SULIFORMES						
Family Phalacrocoracidae (cormorants)						
Reed Cormorant	Phalacrocorax africanus				х	
White-breasted Cormorant	Phalacrocorax carbo				X	
Family Anhingidae (darters)						
African Darter	Anhinga rufa				х	
ORDER: ACCIPITRIFORMES	~					
Family Sagittariidae (Secretarybird)						
Secretarybird	Sagittarius serpentarius	VU	х			
Family Accipitridae (kites, hawks & eagles)						
Black Sparrowhawk	Accipiter melanoleucus		х)
Black-shouldered Kite	Elanus caeruleus		х			
Common Buzzard	Buteo vulpinus		х			
ORDER OTIDIFORMES						
Family Otididae (bustards & korhaans)						
Blue Korhaan	Eupodotis caerulescens	E	х			
ORDER GRUIFORMES						
Family Rallidae (crakes, rails, moorhens)						
African Crake	Crecopsis egregia			х		
African Purple Swamphen	Porphyrio madagascariensis			х		
Lesser Moorhen	Gallinula angulata			х		
Red-knobbed Coot	Fulica cristata				х	
Common Moorhen	Gallinula chloropus				Х	
ORDER: CHARADRIIFORMES						
Family Burhinidae (thick-knees)						
Spotted Thick-knee	Burhinus capensis		х			

AAIC Alexander Mine - Terrestrial Ecology and Biodiversity Value Assessment (ECOREX)

June 2016

Family Recurvirostridae (stilts & avocet)								
Black-winged Stilt	Himantopus himantopus			х	(х		
Family Charadriidae (plovers)								
Blacksmith Lapwing	Vanellus armatus			х	(х		
Crowned Lapwing	Vanellus coronatus		>	(х	
African Wattled Lapwing	Vanellus senegallus		>	(x	(х		
Three-banded Plover	Charadrius tricollaris			х	(х		
Family Scolopacidae (sandpipers)								
African Snipe	Gallinago nigripennis			х	(
Common Sandpiper	Actitis hypoleucos			х	(х		
Common Greenshank	Tringa nebularia			х	(х		
Wood Sandpiper	Tringa glareola			х	(х		
Little Stint	Calidris minuta					х		
Ruff	Philomachus pugnax			х	(х		
Family Glareolidae (coursers & pratincoles)								
Black-winged Pratincole	Glareola nordmanni	NT	>	(
Family Laridae (gulls & terns)								
Grey-headed Gull	Larus cirrocephalus					х	х	
Whiskered Tern	Chlidonias hybrida					х		
ORDER: COLUMBIFORMES								
Family Columbidae (pigeons, doves)								
Speckled Pigeon	Columba guinea		>	(х	х
Rock Dove	Columba livia						х	
Cape Turtle-Dove	Streptopelia capicola		x >	(х	х	х
Red-eyed Dove	Streptopelia semitorquata		x >	(х	х	х
Laughing Dove	Streptopelia senegalensis		x >	(х	х	х
ORDER: CUCULIFORMES								
Family Cuculidae (cuckoos & coucals)								
Diderick Cuckoo	Chrysococcyx caprius		x >	k x	(х	х	
Family Strigidae (owls)				_				
Marsh Owl	Asio capensis			×	(
Spotted Eagle-Owl	Bubo africanus		х					
ORDER: APODIFORMES								


ORDER: APODIFORMES

Family Apodidae (swifts)								
Little Swift	Apus affinis		over	over	over	over	over	over
African Black Swift	Apus barbatus		over	over	over	over	over	over
White-rumped Swift	Apus caffer		over	over	over	over	over	over
Horus Swift	Apus horus		over	over	over	over	over	over
African Palm-Swift	Cypsiurus parvus		over	over	over	over	over	over
ORDER: COLIIFORMES								
Family Coliidae (mousebirds)								
Speckled Mousebird	Colius striatus		х				х	
Red-faced Mousebird	Urocolius indicus						х	
ORDER: CORACIIFORMES								
Family Alcedinidae (kingfishers)								
Malachite Kingfisher	Alcedo cristata				х	х		
Giant Kingfisher	Megaceryle maximus					х		
Pied Kingfisher	Ceryle rudis					х		
Family Meropidae (bee-eaters)								
European Bee-eater	Merops apiaster		х	х				
ORDER: PICIFORMES								
Family Lybiidae (African barbets)								
Crested Barbet	Trachyphonus vaillantii		х				х	
Black-collared Barbet	Lybius torquatus		х				х	
Family Picidae (woodpeckers)								
Red-throated Wryneck	Jynx ruficollis		х					х
ORDER: FALCONIFORMES								
Family Falconidae (falcons)								
Amur Falcon	Falco amurensis			х	х		х	
Lanner Falcon	Falco biarmicus	VU		х				
ORDER: PASSERIFORMES								
Family Laniidae (shrikes)								
Southern Fiscal	Lanius collaris			х	х		х	Х
Family Monarchidae (monarchs)								
African Paradise Flycatcher	Terpsiphone viridis		х					

xander Mine - Terrestrial Ecology and Biodiver	sity Value Assessment (ECOREX)	June 2016				
Spike-heeled Lark	Chersomanes albofasciata		v			
Rufous-naped Lark	Mirafra africana		X X			
Red-capped Lark	Calandrella cinerea					
Family Pycnonotidae (bulbuls)	Calandrella cinerea		Х			
	Duananatus triaslar	_				
Dark-capped Bulbul	Pycnonotus tricolor	>				Х
Family Hirundinidae (swallows & martins)	•					
Brown-throated Martin	Riparia paludicola		Х	х	х	
Banded Martin	Riparia cincta		Х			
Barn Swallow	Hirundo rustica	>		х	х	Х
White-throated Swallow	Hirundo albigularis		Х	х	х	
Rock Martin	Hirundo fuligula		Х			х
Common House-Martin	Delichon urbicum		Х	х	х	
Greater Striped Swallow	Hirundo cucullata	>	Х	х	х	Х
South African Cliff-Swallow	Hirundo spilodera	BE	Х	х	х	
Family Phylloscopidae (leaf warblers & al	llies)					
Willow Warbler	Phylloscopus trochilus	>	[
Family Acrocephalidae (reed warblers & a	allies)					
Great Reed-Warbler	Acrocephalus arundinaceus)	[х		
African Reed-Warbler	Acrocephalus baeticatus			х		
African Yellow Warbler	lduna natalensis	>	x			
Family Cisticolidae (cisticolas & allies)						
Wailing Cisticola	Cisticola lais		х			
Levaillant's Cisticola	Cisticola tinniens		х	х		
Neddicky	Cisticola fulvicapilla	>	x			
Zitting Cisticola	Cisticola juncidis		х			
Cloud Cisticola	Cisticola textrix		х			
Pale-crowned Cisticola	Cisticola cinnamomeus		х	х		
Wing-snapping Cisticola	Cisticola ayresii		х			
Black-chested Prinia	Prinia flavicans)				
Family Zosteropidae (white-eyes)		,				
Cape White-eye	Zosterops virens)				х
Family Sturnidae (starlings)		,				
Pied Starling	Spreo bicolor	E	х			

Common Myna	Acridotheres tristis					х	
Cape Glossy Starling	Lamprotornis nitens					х	
Family Turdidae (thrushes)							
Karoo Thrush	Turdus smithi					х	
Family Muscicapidae (chats & Old World	flycatchers)						
Fiscal Flycatcher	Sigelus silens	х					
Cape Robin-Chat	Cossypha caffra	х				х	
African Stonechat	Saxicola torquatus		х	х			
Anteating Chat	Myrmecocichla formicivora		х				
Mountain Wheatear	Oenanthe monticola					х	х
Family Nectariniidae (sunbirds)							
Amethyst Sunbird	Chalcomitra amethystina					х	
Malachite Sunbird	Nectarinia famosa	х	х				
Family Passeridae (Old World sparrows)							
House Sparrow	Passer domesticus					х	
Cape Sparrow	Passer melanurus		х		х	х	
Southern Grey-headed Sparrow	Passer diffusus	х	х		х	х	х
Family Ploceidae (weavers & widowbirds							
Southern Masked-Weaver	Ploceus velatus	х	х	х	х	х	х
Red-billed Quelea	Quelea quelea	х	х	х	х	х	х
Yellow-crowned Bishop	Euplectes afer		х	х		х	
Southern Red Bishop	Euplectes orix		х	х	х	х	
Fan-tailed Widowbird	Euplectes axillaris		х	х		х	
White-winged Widowbird	Euplectes albonotatus		х			х	
Long-tailed Widowbird	Euplectes progne		х				
Family Estrildidae (waxbills, mannikins)							
Red-headed Finch	Amadina erythrocephala		х		х	х	
Common Waxbill	Estrilda astrild		х	х	х		
Orange-breasted Waxbill	Amandava subflava			х			
African Quailfinch	Ortygospiza atricollis		х		х		
Family Viduidae (indigobirds & whydahs)							
Pin-tailed Whydah	Vidua macroura		х	х		х	
Cuckoo Finch	Anomalospiza imberbis		х				

Family Motacillidae (wagtails & pipits)										
Cape Wagtail	Motacilla capensis						х	х	х	
Cape Longclaw	Macronyx capensis					х	х			
African Pipit	Anthus cinnamomeus					х		х	х	
Family Fringillidae (finches, canaries & allies)										
Black-throated Canary	Crithagra atrogularis				х	х	х		х	х
Yellow Canary	Crithagra flaviventris				х	х			х	х
Cape Canary	Serinus canicollis				х	х	х	х	х	х
Subtotal	146	1	4	5	35	76	59	66	52	27
Reptiles										
ORDER: SQUAMATA										
Family: Elapidae (cobras & mambas)										
Rinkhals *	Hemachatus haemachatus					х				
Family: Scincidae (skinks)										
Speckled Rock Skink	Trachylepis punctatissima									х
Family: Varanidae (monitor lizards)										
Water Monitor	Varanus niloticus						х			
Subtotal	3	0	0	0	0	1	1		0	1
Amphibians										
ORDER: ANURA										
Family: Pyxicephalidae (African frogs)										
Comon River Frog	Amietia angolensis						х			
Boettger's Caco	Cacosternum boettgeri					х	х			
Family: Pipidae (platannas)										
Common Platanna	Xenopus laevis						х			
Subtotal	3	0	0	0	0	1	3		0	0
TOTAL	178	13	6	7	44	101	71		56	35

E = Endemic

BE = Breeding Endemic

NT = Near Threatened

VU = Vulnerable

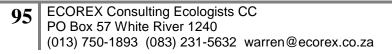
MNCA = Mpumalanga Nature Conservation Act

NEMBA = National Environmental Management Biodiversity Act * Landowner Record

Appendix 5. Detailed Data: Timed-Species Counts

Species			Grassla	and	
Species	TSC1	TSC2	TSC3	Total score	Average TSC
Cape Longclaw	6	6	6	18	6.00
Cape Turtle-Dove	6	6	6	18	6.00
Zitting Cisticola	6	6	6	18	6.00
Barn Swallow	6	5	6	17	5.67
Laughing Dove	6	6	5	17	5.67
Long-tailed Widowbird	6	5	6	17	5.67
African Pipit	4	6	6	16	5.33
Greater-striped Swallow	5	6	5	16	5.33
Helmeted Guineafowl	6	3	6	15	5.00
Common Waxbill	5	5	4	14	4.67
Diderick Cuckoo	6	2	5	13	4.33
Levaillant's Cisticola	2	5	6	13	4.33
African Quailfinch	6	3	3	12	4.00
Hadeda Ibis		6	6	12	4.00
South African Cliff-Swallow	6	6		12	4.00
African Stonechat	6		5	11	3.67
Amur Falcon	6		5	11	3.67
Cattle Egret	3	2	6	11	3.67
Fan-tailed Widowbird	2	4	5	11	3.67
Southern Masked Weaver	5	6		11	3.67
Swainson's Spurfowl	6		5	11	3.67
Common House Martin		4	6	10	3.33
Southern Red Bishop	5	5		10	3.33
White-rumped Swift	6	1	3	10	3.33
Wing-snapping Cisticola	5	5		10	3.33
Yellow-crowned Bishop		4	6	10	3.33
African Wattled Lapwing		5	4	9	3.00
Banded Martin		6	3	9	3.00
Black-throated Canary	1	6	2	9	3.00
Cape Canary	6		3	9	3.00
Pale-crowned Cisticola		3	6	9	3.00
Red-capped Lark		5	4	9	3.00
White-winged Widowbird	4		5	9	3.00
Yellow Canary	5	4		9	3.00
Red-billed Quelea	5	1	2	8	2.67
African Sacred Ibis			6	6	2.00
Anteating Chat		6		6	2.00
Common Quail			6	6	2.00
Glossy Ibis			6	6	2.00
African Snipe			5	5	1.67
Blacksmith Lapwing			5	5	1.67
Pin-tailed Whydah	1		4	5	1.67
Red-eyed Dove	5			5	1.67
White Stork			5	5	1.67
Black-chested Prinia	3		1	4	1.33

Black-headed Heron		4		4	1.33
Blue Korhaan			4	4	1.33
Cape Wagtail			4	4	1.33
Cloud Cisticola	4			4	1.33
Horus Swift	4			4	1.33
Pied Starling		4		4	1.33
Three-banded Plover			4	4	1.33
White-throated Swallow		4		4	1.33
Little Swift	3			3	1.00
Orange River Francolin	3			3	1.00
Spike-heeled Lark	3			3	1.00
Common Fiscal	1		1	2	0.67
Malachite Sunbird			2	2	0.67
Rock Martin		2		2	0.67
Spotted Thick-knee			2	2	0.67
Cape Sparrow	1			1	0.33
Crowned Lapwing			1	1	0.33
Southern Grey-headed					
Sparrow	1			1	0.33


Creation		We	etland	
Species	TSC1	TSC2	Total score	Average TSC
African Sacred Ibis	6	6	12	6
Blacksmith Lapwing	6	6	12	6
Cattle Egret	6	6	12	6
Glossy Ibis	6	6	12	6
Great Egret	6	6	12	6
Hadeda Ibis	6	6	12	6
Wood Sandpiper	6	6	12	6
Yellow-billed Duck	6	6	12	6
Yellow-crowned Bishop	6	6	12	6
African Wattled Lapwing	5	6	11	5.5
Brown-throated Martin	6	5	11	5.5
Common Waxbill	5	6	11	5.5
Egyptian Goose	6	5	11	5.5
Fan-tailed Widowbird	5	6	11	5.5
Red-knobbed Coot	6	5	11	5.5
Southern Red Bishop	5	6	11	5.5
White-throated Swallow	6	5	11	5.5
Levaillant's Cisticola	4	6	10	5
Little Grebe	6	4	10	5
Southern Pochard	6	4	10	5
African Reed Warbler	3	6	9	4.5
African Snipe	3	6	9	4.5
Cape Shoveller	6	3	9	4.5
Reed Cormorant	6	3	9	4.5
Ruff	3	6	9	4.5
Southern Masked	3	6	9	4.5

Weaver	1			
African Darter	6	2	8	4
Barn Swallow	2	6	8	4
Pale-crowned Cisticola	3	5	8	4
Red-billed Teal	6	2	8	4
Purple Heron	1	6	7	3.5
Black-winged Stilt	6		6	3
Common Greenshank	6		6	3
Common Moorhen	4	2	6	3
Three-banded Plover		6	6	3
Whiskered Tern		6	6	3
Grey Heron		5	5	2.5
Marsh Owl		5	5	2.5
Spur-winged Goose		5	5	2.5
Squacco Heron	5		5	2.5
Yellow-billed Egret	5		5	2.5
Cape Wagtail	4		4	2
Malachite Kingfisher		4	4	2
Black-crowned Night				
Heron		3	3	1.5
Great Crested Grebe		3	3	1.5
Little Egret	3		3	1.5
Pied Kingfisher		1	1	0.5

Appendix 6. Potentially occurring fauna of conservation concern in the study area

Species	Scientific Name	Red Data	Protected	Habitat		Reason
Mammals						
Red Hartebeest	Alcelaphus buselaphus		NEMBA	Grassland	Confirmed	
Highveld Golden Mole	Amblysomus septentrionalis	NT		Grassland	Moderate	Some suitable habitat present
Cape Clawless Otter	Aonyx capensis	NT		Rivers, streams, dams	Moderate	Some suitable habitat present
Southern African Hedgehog	Atelerix frontalis	NT		Wide variety of habitats	Moderate	Some suitable habitat present
Black Wildebeest	Connochaetes gnou		NEMBA	Grassland	Confirmed	Re-introduced on certain farms
Reddish-grey Musk Shrew	Crocidura cyanea	DD		Wide variety of habitats	Moderate	Some suitable habitat present
Swamp Musk Shrew	Crocidura mariquensis	DD		Wide variety of habitats	Moderate	Some suitable habitat present
Peters' Musk Shrew	Crocidura silacea	DD		Wide variety of habitats	Moderate	Some suitable habitat present
Blesbok	Damaliscus pygargus		NEMBA	Grassland	Confirmed	
African Marsh Rat	Dasymys incomtus	NT		Wetlands, rivers, streams	Moderate	Some suitable habitat present
Burchell Zebra	Equus quagga burchelli		NEMBA	Grassland	Confirmed	
Black-footed Cat	Felis nigripes		NEMBA	Grassland	Low	Edge of range
Rock Dormouse	Graphiurus platyops	DD		Rocky outcrops in grassland	Moderate	Some suitable habitat present
Single-striped Grass-Mouse	Lemniscomys rosalia	DD		Grassland	Moderate	Some suitable habitat present
Serval	Leptailurus serval	NT	NEMBA	Grassland, wetlands	Confirmed	
Spotted-necked Otter #	Lutra maculicollis	NT		Rivers, streams, dams	Moderate	Some suitable habitat present
Brown Hyaena	Parahyaena brunnea	NT		Wide variety of habitats	Confirmed	
African Weasel	Poecilogale albinucha	DD		Wide variety of habitats	Moderate	Some suitable habitat

						present
Geoffroy's Horseshoe Bat	Rhinolophus clivosus	NT		Wide variety of habitats	Moderate	Some suitable habitat present
Least Dwarf Shrew	Suncus infinitesimus	DD		Wide variety of habitats	Moderate	Some suitable habitat present
Lesser Dwarf Shrew	Suncus varilla	DD		Wide variety of habitats	Moderate	Some suitable habitat present
Cape Fox #	Vulpes chama		NEMBA	Wide variety of habitats	Moderate	Some suitable habitat present
Subtotal	22	16	7			
	Birds					
Half-collared Kingfisher	Alcedo semitorquata	NT		Wooded rivers and streams	Low	Limited suitable habitat
Blue Crane	Anthropoides paradiseus	NT	NEMBA	Grassland	Low	Some suitable habitat present, but very rare in Mpumalanga
Pallid Harrier	Circus macrourus	NT		Grassland	Moderate	Some suitable habitat present
African Marsh Harrier	Circus ranivorus	EN		Large wetlands, grasslands	Low	Limited suitable habitat
White-bellied Korhaan	Eupodotis senegalensis	VU		Tall grassland	Moderate	Some suitable habitat present
Lanner Falcon	Falco biarmicus	VU		Wide variety of habitats	Confirmed	
Red-footed Falcon	Falco vespertinus	NT		Grassland, plantations	Moderate	Some suitable habitat present
Southern Bald Ibis	Geronticus calvus	VU	NEMBA	Grasslands, burnt fields	Confirmed	
Black-winged Pratincole	Glareola nordmanni	NT		Large wetlands, grasslands	Confirmed	
Yellow-billed Stork	Mycteria ibis	EN		Large pans	Low	Limited suitable habitat present
Maccoa Duck	Oxyura maccoa	NT		Shallow pans, dams	Confirmed	
Greater Flamingo	Phoenicopterus ruber	NT		Pans, artificial dams	Confirmed	
Lesser Flamingo	Phoenicopterus minor	NT		Pans, artificial dams	Moderate	Some suitable habitat present
Secretarybird	Sagittarius serpentarius	VU		Wide variety of habitats	Confirmed	
Caspian Tern	Sterna caspia	VU		Large pans	Low	Limited suitable habitat
African Grass-Owl	Tyto capensis	VU		Large wetlands, grasslands	Moderate	Some suitable habitat

						present
Subtotal	15	15	2			
Reptiles & Frogs						
Transvaal Grass Lizard	Chamaesaura aenea	NT*		Grassland	Moderate	Some suitable habitat present
Spotted Harlequin Snake	Homoroselaps lacteus	NT		Variety of grassland types	Moderate	Some suitable habitat present
Giant Bullfrog	Pyxicephalus edulis	NT		Pans, wetlands in grassland	Moderate	Some suitable habitat present
Subtotal	3	3	0			
TOTAL	40	34	9			

EN = Endangered
VU = Vulnerable
NT = Near-threatened
DD = Data Deficient
MNCA = Mpumalanga Nature Conservation Act
NEMBA = National Environmental Management: Biodiversity
Act

Appendix 7. Biodiversity Values of vegetation communities represented within the study area

Untransformed Grassland on Rocky Ridges

Conservation Importance

Parameter	Score	Very High	High	Moderate	Low	Very Low
Protection Status		International	National	Regional	Local	None
	15	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Size / Length		Verysmall	Small	Moderate	Large	Very Large
		(<500km ²)	(500 to 1,000km ²)	(1,000 to 20,000km ²)	(20,000 to 50,000km ²)	(> 50,000km ²)
	15	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Species Diversity		Noticeably High		Moderate		Noticeably Low
	12	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Threatened Species		Noticeably High		Moderate		Noticeably Low
	12	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Unique Habitat or Taxa		Noticeably High		Moderate		Noticeably Low
	15	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Present Ecological State		Natural, largely Unmodified	Slightly modified	Moderately Modified	Considerably Modified	Severely Modified
	16	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
MEDIAN Score	15.0	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210

Parameter	Score	Very High	High	Moderate	Low	Very Low
Provisioning Services		Constant	Regular	Frequent	Occassional	Intermittent
	8	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Regulating Services		Very High	High	Moderate	Low	Very Low
	8	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Cultural Services		Very High	High	Moderate	Low	Very Low
	14	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Supporting Services		Very High	High	Moderate	Low	Very Low
	12	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
MEDIAN Score	10.0	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210

Untransformed Grassland on Hillslopes and Plateaus

Conservation Importance

Parameter	Score	Very High	High	Moderate	Low	Very Low
Protection Status		International	National	Regional	Local	None
	15	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Size / Length		Verysmall	Small	Moderate	Large	Very Large
		(<500km ²)	(500 to 1,000km ²)	(1,000 to 20,000km ²)	(20,000 to 50,000km ²)	(> 50,000km ²)
	13	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Species Diversity		Noticeably High		Moderate		Noticeably Low
	14	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Threatened Species		Noticeably High		Moderate		Noticeably Low
	12	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Unique Habitat or Taxa		Noticeably High		Moderate		Noticeably Low
	14	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Present Ecological State		Natural, largely Unmodified	Slightly modified	Moderately Modified	Considerably Modified	Severely Modified
	13	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
MEDIAN Score	13.5	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210

Parameter	Score	Very High	High	Moderate	Low	Very Low
Provisioning Services		Constant	Regular	Frequent	Occassional	Intermittent
	12	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Regulating Services		Very High	High	Moderate	Low	Very Low
	8	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Cultural Services		Very High	High	Moderate	Low	Very Low
	12	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Supporting Services		Very High	High	Moderate	Low	Very Low
	12	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
MEDIAN Score	12.0	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210

Untransformed Grassland on Plains

Conservation Importance

Parameter	Score	Very High	High	Moderate	Low	Very Low
Protection Status		International	National	Regional	Local	None
	15	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Size / Length		Verysmall	Small	Moderate	Large	Very Large
		(<500km ²)	(500 to 1,000km ²)	(1,000 to 20,000km ²)	(20,000 to 50,000km ²)	(> 50,000km²)
	13	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Species Diversity		Noticeably High		Moderate		Noticeably Low
	14	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Threatened Species		Noticeably High		Moderate		Noticeably Low
	12	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Unique Habitat or Taxa		Noticeably High		Moderate		Noticeably Low
	14	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Present Ecological State		Natural, largely Unmodified	Slightly modified	Moderately Modified	Considerably Modified	Severely Modified
	13	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
MEDIAN Score	13.5	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210

Parameter	Score	Very High	High	Moderate	Low	Very Low
Provisioning Services		Constant	Regular	Frequent	Occassional	Intermittent
	12	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Regulating Services		Very High	High	Moderate	Low	Very Low
	8	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Cultural Services		Very High	High	Moderate	Low	Very Low
	12	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Supporting Services		Very High	High	Moderate	Low	Very Low
	12	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
MEDIAN Score	12.0	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210

Evergreen Thickets on Scarps and Rocky Outcrops

Conservation Importance

Parameter	Score	Very High	High	Moderate	Low	Very Low
Protection Status		International	National	Regional	Local	None
	15	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Size / Length		Verysmall	Small	Moderate	Large	Very Large
		(<500km ²)	(500 to 1,000km ²)	(1,000 to 20,000km ²)	(20,000 to 50,000km ²)	(> 50,000km ²)
	15	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Species Diversity		Noticeably High		Moderate		Noticeably Low
	10	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Threatened Species		Noticeably High		Moderate		Noticeably Low
	8	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Unique Habitat or Taxa		Noticeably High		Moderate		Noticeably Low
	13	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Present Ecological State		Natural, largely Unmodified	Slightly modified	Moderately Modified	Considerably Modified	Severely Modified
	14	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
MEDIAN Score	13.5	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210

Parameter	Score	Very High	High	Moderate	Low	Very Low
Provisioning Services		Constant	Regular	Frequent	Occassional	Intermittent
	12	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Regulating Services		Very High	High	Moderate	Low	Very Low
	8	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Cultural Services		Very High	High	Moderate	Low	Very Low
	12	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Supporting Services		Very High	High	Moderate	Low	Very Low
	12	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
MEDIAN Score	12.0	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210

Wetlands

Conservation Importance

Parameter	Score	Very High	High	Moderate	Low	Very Low
Protection Status		International	National	Regional	Local	None
	15	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Size / Length		Verysmall	Small	Moderate	Large	Very Large
		(<500km ²)	(500 to 1,000km ²)	(1,000 to 20,000km ²)	(20,000 to 50,000km ²)	(> 50,000km ²)
	15	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Species Diversity		Noticeably High		Moderate		Noticeably Low
	8	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Threatened Species		Noticeably High		Moderate		Noticeably Low
	9	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Unique Habitat or Taxa		Noticeably High		Moderate		Noticeably Low
	13	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Present Ecological State		Natural, largely Unmodified	Slightly modified	Moderately Modified	Considerably Modified	Severely Modified
	13	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
MEDIAN Score	13.0	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210

Parameter	Score	Very High	High	Moderate	Low	Very Low
Provisioning Services		Constant	Regular	Frequent	Occassional	Intermittent
	12	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Regulating Services		Very High	High	Moderate	Low	Very Low
	13	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Cultural Services		Very High	High	Moderate	Low	Very Low
	9	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Supporting Services		Very High	High	Moderate	Low	Very Low
	14	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
MEDIAN Score	12.5	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210

Transformed Areas

Conservation Importance

Parameter	Score	Very High	High	Moderate	Low	Very Low
Protection Status		International	National	Regional	Local	None
	4	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Size / Length		Verysmall	Small	Moderate	Large	Very Large
		(<500km ²)	(500 to 1,000km²)	(1,000 to 20,000km ²)	(20,000 to 50,000km ²)	(> 50,000km²)
	12	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Species Diversity		Noticeably High		Moderate		Noticeably Low
	2	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Threatened Species		Noticeably High		Moderate		Noticeably Low
	4	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Unique Habitat or Taxa		Noticeably High		Moderate		Noticeably Low
	4	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Present Ecological State		Natural, largely Unmodified	Slightly modified	Moderately Modified	Considerably Modified	Severely Modified
	4	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
MEDIAN Score	4.0	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210

Parameter	Score	Very High	High	Moderate	Low	Very Low
Provisioning Services		Constant	Regular	Frequent	Occassional	Intermittent
	15	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Regulating Services		Very High	High	Moderate	Low	Very Low
	6	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Cultural Services		Very High	High	Moderate	Low	Very Low
	4	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
Supporting Services		Very High	High	Moderate	Low	Very Low
	4	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210
MEDIAN Score	5.0	20 19 18 17	16 15 14 13	12 11 10 9	8765	43210

Appendix 8. Curriculum Vitae of Specialists

Name	:	Warren Lee McCleland
Profession	:	Terrestrial Ecologist
Date of Birth	:	7 Sep 1972
Name of Firm	:	ECOREX Consulting Ecologists cc
Position in Firm	:	Sole Member
Years with firm	:	10
Nationality		South African

Qualifications:

 N.Dip. [Nature Conservation]
 Cape Peninsula University of Technology 1993

Membership in Professional Societies:

- Herpetological Association of Africa
- South African Association of Botanists
- International Association for Impact Assessment (SA)

Languages :

SpeakingEnglish (home):ExcellentAfrikaans:GoodisiZulu:GoodsiSwati:Fair		<u>Writing</u> Excellent Good Fair Poor	
--	--	---	--

Countries of Work Experience

Angola, Botswana, Democratic Republic of the Congo, Malawi, Mali, Mozambique, Namibia, Republic of Guinea, Sierra Leone, South Africa, Swaziland, Tanzania, Zambia, Zimbabwe.

OVERVIEW OF EXPERIENCE

- 15 years experience in conducting baseline surveys, data analysis and report writing in various biomes in southern and tropical Africa, particularly savannah, forest and grassland biomes
- 5 years experience game reserve management (KwaZulu-Natal, Mpumalanga)
- Co-author of acclaimed Field Guide to Trees and Woody Shrubs of Mpumalanga & Kruger National Park, Jacana Publishers, 2002;
- Specialist knowledge of identification of plants, mammals, birds, reptiles and frogs;
- Experience in reporting according to IFC Performance Standards for numerous international projects in Sierra Leone, Angola, Democratic Republic of the Congo, Republic of Guinea, Tanzania, Malawi, Mali, Mozambique and Zambia.
- Accredited with the discovery of three new plant species: Gladiolus diluvialis Goldblatt & Manning (Fish River Canyon, Namibia), Streptocarpus sekhukhuniensis ms (Stoffberg, Mpumalanga) and Asclepias sp.nov. (Steenkampsberg Mts, Mpumalanga).
- 2014 Recipient of the Marloth Medal from the Botanical Society of South Africa for coauthoring the Kruger tree field guide.

Employment Record:

2005 - present	ECOREX Consulting Ecologists CC	Ecologist; Sole Member	
2001 - 2005	Lawson's Birding Tours	Specialist Guide	
2000 - 2001	Escarpment Ecological Consultants cc	Founder Director	
1996 – 2000	Crystal Springs Game Reserve	Reserve Manager	
1995	Mutemwa Lodge, western Zambia	Lodge manager, guide	
1993 - 1994	Natal Parks Board	Cadet field ranger	

SELECTED RECENT PROJECTS & EXPERIENCE

SELECTED	RECEN	IT PROJECTS & EXPERIENCE	
		West Africa	
	2014	Biodiversity Baseline Study and Impact Assessment for Kalana Gold Mine, Yanfolila	Epoch Resources – Fanie Coetzee (fanie@epochresources.co.za)
Mali	2042	Biodiversity Baseline Study and Impact	Epoch Resources – Fanie Coetzee
	2013	Assessment for Fekola Gold Mine, Fedougou	(fanie@epochresources.co.za)
Republic of		Review of Specialist Studies conducted for an EIA	Epoch Resources – Fanie Coetzee
Guinea	2012	for an aluminium mine near Bel-Air, in Bofa	(fanie@epochresources.co.za)
		Prefecture. Biodiversity Baseline Study and Impact	
Sierra Leone	2011	Assessment for Marampa Iron Ore Mine, Lunsar	SRK (U.K.) - Nicola Rump (nrump@srk.co.uk)
	ļ	East Africa	ł
		Biodiversity Baseline Study and Impact	
Tanzania	2011	Assessment for Mkuju River Uranium Project,	Epoch Resources – Fanie Coetzee (fanie@epochresources.co.za)
		Selous Game Reserve, Songea	
	1	Southern and South-central A	
Angola	2013	Biodiversity Management Plan for the raising of	ERM – Jessica Hughes
-		the Cambambe Dam wall, Kwanza River, Dondo Biodiversity Baseline Study and Impact	(jessica.hughes@erm.com) Epoch Resources – Fanie Coetzee
	2014	Assessment for Pumpi Copper Mine, Kolwezi	(fanie@epochresources.co.za)
	0040	Biodiversity Assessment of selected wetland	Wetland Consulting Services – Gary
Democratic	2013	habitats, Kamoa Copper Mine, Kolwezi	Marneweck (GaryM@wetcs.co.za)
Republic of		Biodiversity Baseline Study and Impact	Knight Piesold - Amelia Briel
the Congo	2009-2011	Assessment for Kinsevere Copper Mine,	(abriel@knightpiesold.com)
		Lubumbashi Biodiversity Baseline Study for Ulindi Hydropower	Knight Riccold Amelia Briel
	2008	Scheme, Itombwe Mts, Kivu South	Knight Piesold - Amelia Briel (abriel@knightpiesold.com)
	2045	Terrestrial Ecology Survey of sugar mill site,	
Malawi	2015	Ethco, Dwangwa	ERM - Rachel Conti (Rachel.Conti@erm.com)
IVIA IA WI	2010	Terrestrial Ecology Survey of Kanyika Uranium	Synergistics - Bronwyn Williams
		Mine, Kasungu	(bronwyn@synergistics.co.za)
	0040	Biodiversity Baseline Study and Impact	ERM – Jessica Hughes
	2016	Assessment for an onshore gas pipeline, Inhassoro, Inhambane province	(jessica.hughes@erm.com)
		Critical Habitat Assessment for coastal dry forest	Enviro-Insight - Luke Verburgt (luke@enviro-
	2015	in Palma District, Cabo Delgado province	insight.co.za)
			integration_a/
	2015	Biodiversity Baseline Study for a Regional ESIA of Seismic Exploration blocks, SASOL, Inhassoro	Golder - Warren Aken (waken@golder.co.za)
		Biodiversity Baseline Study and Impact	ERM – Jessica Hughes
Mozambique	2014	Assessment for a coastal road between Pemba and Palma, Cabo Delgado province	(jessica.hughes@erm.com)
		Biodiversity Monitoring Plan for Benga Coal Mine,	Rio Tinto - Isaac Ndlovu
	2013	Moatize	(Isaac.ndlovu@riotinto.com)
		Biodiversity Baseline Study and Action Plan for	Nepid Consultants – Dr Rob Palmer
	2012	the Muanza Quarry, Gorongosa NP, Sofala	rob@nepid.co.za)
		province	
		Terrestrial Ecology component of the Biodiversity Study for the Four Dams Project (Corumana Dam,	Austral-Cowi - Jacob Ulrich
	2011	Gorongosa Dam, Metuchira Weir, Ressano Weir),	(jacob.ulrich@australcowi.co.mz)
		Maputo and Sofala provinces	····· ,
Namibia	2009	Biodiversity Baseline Study and Impact	Knight Piesold - Amelia Briel
Namibia	2003	Assessment for Neckartal Dam, Keetmanshoop	(abriel@knightpiesold.com)
	0040	Faunal Baseline Study and Impact Assessment	Aurecon - Nelis Bezuidenhout
	2013	for Riemvasmaak Hydro-electric Scheme, Augrabies Falls NP	(Nelis.Bezuidenhout@aurecongroup.com)
		Biodiversity Baseline Study and Impact	
South Africa	2010	Assessment for Hoogland Chrome Mine,	Metago Environmental Engineers - Hylton
		Steenkampsberg Mts, Mpumalanga	Allison (hallison@slrconsulting.com)
		Assessment of the status of Pelargonium	South African National Biodiversity Institute -
	2010	sidoides and harvesting potential in Lesotho and	Domitilla Raimondo (Raimondo@sanbi.org)
		South Africa	
Swaziland		Biodiversity Baseline Study and Impact Assessment for Ethemba Dam, Hlatikulu	Knight Piesold - Neal Neervoort (nneervoort@knightpiesold.com)
	2014	Biodiversity Value Assessment for the Mhlumeni	
		Community Conservation land, Siteki	Rod de Vletter (devletter@gmail.com)
Zambia	2015	Botanical survey for ESIA for Ngonye Falls	Ecotone - Michiel Jonker (michiel@ecotone-
	2013	Hydropower Project, Zambezi River, Senanga	sa.co.za)
		Biodiversity Baseline Study and Impact	
	2013	Assessment for Mulungushi Hydropower Project,	ERM – Zoe Daniels (Zoe.Daniel@erm.com)
		Kabwe Biodiversity Baseline Study and Impact	Knight Piesold - Amelia Briel
	2008	Assessment for Lumwana Copper Mine, Solwezi	(abriel@knightpiesold.com)
Zimbabwe	2011	Biodiversity Baseline Study and Impact	Epoch Resources - Fanie Coetzee

Name:	:	Duncan Robert McKenzie
Profession	:	Terrestrial Ecologist
Date of Birth	:	9 Nov 1977
Name of Firm	:	ECOREX Consulting Ecologists cc
Position in Firm	:	Ecologist
Years with firm	:	8
Nationality	:	South African

Qualifications :

- N.Dip. [Nature Conservation]
- N.Cert. [Nature Guiding]

UNISA, RSA Drumbeat Academy, RSA 2007 2004

Membership in Professional Societies:

- BirdLife South Africa
 - Animal Demography Unit, University of Cape Town
- Botanical Society of South Africa

Languages :

	<u>Speaking</u>	<u>Reading</u>	Writing
English (home):	Excellent	Excellent	Excellent
Afrikaans:	Good	Good	Good
isiZulu:	Good	Fair	Fair
Spanish:	Fair	Fair	Fair

Countries of Work Experience

: Botswana, Lesotho, Mozambique, Namibia, South Africa, Swaziland, Zimbabwe (Guiding). South Africa, Mozambique, DRC, Mali, Lesotho, Tanzania, Swaziland, Sierra Leone (Consulting Ecologist)

OVERVIEW OF EXPERIENCE

- 8 years' experience in specialist species identification, conducting baseline surveys, data analysis and report writing in various biomes in southern Africa, particularly savannah, forest and grassland biomes
- 2 years experience game reserve management (KwaZulu-Natal)
- 5 years' experience (part time) of wetland delineation and management
- 2 years experience of plant propagation and use for rehabilitation
- Specialist knowledge of identification of vascular plants
- Specialist knowledge of identification of mammals, birds, reptiles and amphibians
- SABAP2 Regional Co-ordinator: Mpumalanga
- Member of the Kwa-Zulu-Natal Bird Rarities Committee

Employment Record:

2007 - present	ECOREX	Ecologist		
2005 - 2006	Iglu (London, UK)	Specialist Travel Agent		
1997 - 2005	Duncan McKenzie Bird Tours	Owner, Specialist Guide		
2001	KZN Wildlife	District Conservation Officer, Reserve Manager		
1999 - 2001	Institute of Natural Resources	Part-time Horticulturalist and Rehabilitation Officer		
1997-2001	Mondi Wetlands Project	Part-time Field Assistant and Regional Co- ordinator		
1996-1997	Natal Parks Board	Ranger		

SELECTED REPORTS AND EXPERIENCE

		West Africa					
		Biodiversity Baseline Study and Impact					
Sierra Leone	2011	Assessment for Marampa Iron Ore Mine,	SRK (U.K.) - Nicola Rump				
		Lunsar	(nrump@srk.co.uk)				
	2014	Biodiversity Baseline Study and Impact	Epoch Resources - Fanie Coetzee				
	2014	Assessment for Kalana Gold Mine, Yanfolila	(fanie@epochresources.co.za)				
Mali			(lane@epochiesources.co.za)				
	2013	Biodiversity Baseline Study and Impact	Epoch Resources - Fanie Coetzee				
		Assessment for Fekola Gold Mine, Fedougou	(fanie@epochresources.co.za)				
East Africa							
		Biodiversity Baseline Study and Impact					
Tanzania	2011	Assessment for Mkuju River Uranium Project,	Epoch Resources - Fanie Coetzee				
		Selous Game Reserve, Songea	(fanie@epochresources.co.za)				
		Southern and South-central Africa	1				
Democratic	2014	Biodiversity Baseline Study and Impact	Epoch Resources - Fanie Coetzee				
Republic of		Assessment for Pumpi Copper Mine, Kolwezi	(fanie@epochresources.co.za)				
Congo		Biodiversity Baseline Study and Impact					
g-	2011	Assessment for Kinsevere Copper Mine,	Knight Piesold - Amelia Briel				
		Lubumbashi	(abriel@knightpiesold.com)				
	2015	Biodiversity Baseline Study for a SASOL Gas	ERM - Jessica Hughes				
	2015	Pipeline, Inhassoro	(jessica.hughes@erm.com)				
		Terrestrial Fauna Survey of the Terrestrial					
	2014	Fauna Survey of the Quirimbas Palma-Pemba	ERM - Jessica Hughes				
Mozambique		Coastal Road	(jessica.hughes@erm.com)				
	2013	Biodiversity Baseline Study and Impact	Nepid Consultants - Dr Rob				
	2013	Assessment for Benga Coal Mine, Tete	Palmer rob@nepid.co.za)				
	2008	Terrestrial Ecology Study for Chinhanguanine	ACER (Africa) Environmental				
		Sugar Expansion Project, Maputo Province	Managment Consultants				
		Survey of the current status, population	Tommie Steyn - Mpumalanga				
	2015	dynamics and distribution of Aloe simii (Pole-	Tourism and Parks Agency				
		Evans) in Mpumalanga	(tommie.mtpa@telkomsa.net)				
	2014	Terrestrial Ecology Study for Alexander Mine	WCS - Dieter Kassier				
		Coal Project for Anglo Biodiversity Baseline Study and Impact	(dieter@wcs.co.za)				
	2010		Metago Environmental Engineers - Hylton Allison				
		Assessment for Hoogland Chrome Mine, Steenkampsberg Mts	(hallison@slrconsulting.com)				
South Africa		Assessment of the status of Pelargonium	South African National Biodiversity				
	2010	sidoides and harvesting potential in Lesotho	Institute - Domitilla Raimondo				
	2010	and South Africa	(Raimondo@sanbi.org)				
		Terrestrial Ecology Study for SASOL Block 2	De Castro & brits - Tony De Castro				
	2009	North Coal Project	(mwdcandb@iafrica.com)				
	2007	Terrestrial Ecology Study for the Groot Letaba					
		Water Resource Development Scheme,	lliso Consulting - Terry Baker				
		Tzaneen	(terry@iliso.com)				
	2014		Linda Loffler				
Swaziland		Ekhutuleni Sugar Farms Plant Rescue Report	(lindad@realnet.co.sz)				
Swaziidiiu	2009	Biodiversity Baseline Study for Siphofaneni	Aurecon Nelspruit				
		Road Developments	(mbombela@aurecongroup.com)				