WETLAND ASSESSMENT

Proposed De Heus development, Middelburg, Eastern Cape Province, South Africa

View of part of the site. Landscape and mountains in the background are outside the site. Photo: R.F. Terblanche

JULY 2021

COMPILED BY:

Reinier F. Terblanche

(M.Sc, Cum Laude; Pr.Sci.Nat, Reg. No. 400244/05)

TABLE OF CONTENTS

1. INTRODUCTION	. 6
2. STUDY AREA	. 9
3. METHODS	. 11
4. RESULTS	18
5. RISKS, IMPACTS AND MITIGATION	21
6. CONCLUSION	21
7. REFERENCES	23

I) SPECIALIST EXPERTISE

SYNOPTIC CV: REINIER. F. TERBLANCHE

Reinier is an ecologist and in particular a habitat specialist with an exceptional combination of botanical and zoological expertise which he keeps fostering, updating and improving. He is busy with a PhD for which he registered at the Department of Conservation Ecology at the University of Stellenbosch in July 2013. The PhD research focuses on the landscape ecology of selected terrestrial and wetland butterflies in South Africa. Reinier's experience includes being a lecturer in ecology and zoology at the North West University, Potchefstroom Campus (1998-2008). Reinier collaborates with a number of institutes, organizations and universities on animal, plant and habitat research.

Qualifications:

Qualification	Main subject matter	University
M.Sc <i>Cum Laude,</i> 1998: Botany: Ecology	Quantitative study of invertebrate assemblages and plant assemblages of rangelands in grasslands.	North-West University, Potchefstroom
B.Sc Honns <i>Cum Laude</i> , 1992 Botany: Taxonomy	Distinctions in all subjects: Plant Anatomy 75, Taxonomy 84, Modern Systematics 82, System Modelling 75, Plant Ecology 75, Taxonomy Project 77, Statistics Attendance Course.	North-West University, Potchefstroom
B.Sc Botany, Zoology	Main subjects: Botany, Zoology.	North-West University, Potchefstroom
Higher Education Diploma, 1990	Numerous subjects aimed at holistic training of teachers.	North-West University, Potchefstroom

In research Reinier specializes in conservation biology, threatened butterfly species, vegetation dynamics and ant assemblages at terrestrial and wetland butterfly habitats as well as enhancing quantitative studies on butterflies of Africa. He has published extensively in the fields of taxonomy, biogeography and ecology in popular journals, peer-reviewed scientific journals and as co-author and co-editor of books (see 10 examples beneath).

Reinier practices as an ecological consultant and has been registered as a Professional Natural Scientist by SACNASP since 2005: Reg. No. 400244/05. His experience in consultation includes: Flora and fauna habitat surveys, Threatened species assessments, Riparian vegetation index surveys, Compilation of Ecological Management Plans, Biodiversity Action Plans and Status quo of biodiversity for Environmental Management Frameworks, Wetland Assessments, Management of Rare Wetland Species.

Recent activities/ awards: Best Poster Award at Oppenheimer De Beers Group Research Conference 2015, Johannesburg. One of the co-authors of Guidelines for Standardised Global Butterfly Monitoring, 2015, Group on Earth Observations Biodiversity Observation Network, Leipzig, Germany (UNEP-WCMC), GEO BON Technical Series 1. Most recent award: Awarded the prestigious Torben Larsen Memorial Tankard in October 2017; one is awarded annually to the person responsible for the most outstanding written account on Afrotropical Lepidoptera. Lectured as Conservationist-in-Residence in the Wildlife Conservation Programme of the African Leadership University, Kigali, Rwanda, 9-23 February 2019.

EXPERIENCE

Lecturer: Zoology 1998-2008	Main subject matter and level	Organization
Lectured subjects	- <u>3rd year level</u> Ecology, Plantparasitology	North-West University, Potchefstroom
	- <u>2nd year level</u> Ethology	and
	- <u>Master's degree</u>	University of South Africa
	Evolutionary Ethology, Systematics in Practice, Morphology	
	and Taxonomy of Insect Pests, Wetlands.	
Co-promoter	PhD: Edge, D.A. 2005. Ecological factors that influence the survival of the Brenton Blue butterfly	North-West University, Potchefstroom
Study leader/ assistant	Six MSc students, One BSc Honn student: Various quantitative	North-West University, Potchefstroom
study leader	biodiversity studies (terrestrial and aquatic).	•
Teacher	Biology and Science, Secondary School	Afrikaans Hoër
1994-1998		Seunskool, Pretoria
Owned Anthene Ecological	- Flora and Fauna habitat surveys	Private Closed Corporation that has
CC	 Highly specialized ecological surveys 	been subcontracted by many
2008 – present	- Riparian vegetation index surveys	companies
	- Ecological Management Plans	
	- Biodiversity Action Plans	
	 Biodiversity section of Environmental 	
	Management Frameworks	
	- Wetland assessments	
Herbarium assistant	- Part-time assistant at the A.P. Goossens	North-West University, Potchefstroom
1988-1991	herbarium, Botany Department, North-West	
	University, 1988, 1989, 1990 and 1991 (as a	
	student).	

10 EXAMPLES OF PUBLICATIONS OF WHICH R.F. TERBLANCHE IS AUTHOR/ CO-AUTHOR

(Three books, two chapters in books and five articles are listed here as examples)

- HENNING, G.A., TERBLANCHE, R.F. & BALL, J.B. (eds) 2009. South African Red Data Book: butterflies. SANBI Biodiversity Series 13. South African National Biodiversity Institute, Pretoria. 158p. ISBN 978-1-919976-51-8
- MECENERO, S., BALL, J.B., EDGE, D.A., HAMER, M.L., HENNING, G.A., KRÜGER, M, PRINGLE, E.L., TERBLANCHE, R.F. & WILLIAMS, M.C. (eds). 2013. Conservation Assessment of Butterflies of South Africa, Lesotho and Swaziland: Red List and atlas. Saftronics (Pty) Ltd., Johannesburg & Animal Demography Unit, Cape Town.
- VAN SWAAY, C., REGAN, E., LING, M., BOZHINOVSKA, E., FERNANDEZ, M., MARINI-FILHO, O.J., HUERTAS, B., PHON, C.-K., KŐRÖSI, A., MEERMAN, J., PE'ER, G., UEHARA-PRADO, M., SÁFIÁN, S., SAM, L., SHUEY, J., TARON, D., TERBLANCHE, R.F. & UNDERHILL, L. 2015. Guidelines for Standardised Global Butterfly Monitoring. Group on Earth Observations Biodiversity Observation Network, Leipzig, Germany. GEO BON Technical Series 1.
- 4. TERBLANCHE, R.F. & HENNING, G.A. 2009. A framework for conservation management of South African butterflies in practice. In: Henning, G.A., Terblanche, R.F. & Ball, J.B. (eds). South African Red Data Book: Butterflies. SANBI Biodiversity Series 13. South African National Biodiversity Institute, Pretoria. p. 68 – 71.
- EDGE, D.A., TERBLANCHE, R.F., HENNING, G.A., MECENERO, S. & NAVARRO, R.A. 2013. Butterfly conservation in southern Africa: Analysis of the Red List and threats. In: Mecenero, S., Ball, J.B., Edge, D.A., Hamer, M.L., Henning, G.A., Krüger, M., Pringle, E.L., Terblanche, R.F. & Williams, M.C. (eds). *Conservation Assessment of Butterflies of South Africa, Lesotho and Swaziland: Red List and Atlas.* pp. 13-33. Saftronics (Pty) Ltd., Johannesburg & Animal Demography Unit, Cape Town.
- TERBLANCHE, R.F., SMITH, G.F. & THEUNISSEN, J.D. 1993. Did Scott typify names in Haworthia (Asphodelaceae: Alooideae)? Taxon 42(1): 91–95. (International Journal of Plant Taxonomy).
- TERBLANCHE, R.F., MORGENTHAL, T.L. & CILLIERS, S.S. 2003. The vegetation of three localities of the threatened butterfly species Chrysoritis aureus (Lepidoptera: Lycaenidae). Koedoe 46(1): 73-90.
- EDGE, D.A., CILLIERS, S.S. & TERBLANCHE, R.F. 2008. Vegetation associated with the occurrence of the Brenton blue butterfly. South African Journal of Science 104: 505 - 510.
- GARDINER, A.J. & TERBLANCHE, R.F. 2010. Taxonomy, biology, biogeography, evolution and conservation of the genus Erikssonia Trimen (Lepidoptera: Lycaenidae) African Entomology 18(1): 171-191.
- **10. TERBLANCHE, R.F.** 2016. Acraea trimeni Aurivillius, [1899], Acraea stenobea Wallengren, 1860 and Acraea neobule Doubleday, [1847] on host-plant Adenia repanda (Burch.) Engl. at Tswalu Kalahari Reserve, South Africa. Metamorphosis 27: 92-102.

* A detailed CV with more complete publication list is available.

II) SPECIALIST DECLARATION

I, Reinier F. Terblanche, as the appointed independent specialist, in terms of the 2014 EIA Regulations (as amended), hereby declare that I:

- I act as the independent specialist in this application;
- I perform the work relating to the application in an objective manner, even if this results in views and findings that are not favourable to the applicant;
- regard the information contained in this report as it relates to my specialist input/study to be true and correct, and do
 not have and will not have any financial interest in the undertaking of the activity, other than remuneration for work
 performed in terms of the NEMA, the Environmental Impact Assessment Regulations, 2014 (as amended) and any
 specific environmental management Act;
- I declare that there are no circumstances that may compromise my objectivity in performing such work;
- I have expertise in conducting the specialist report relevant to this application, including knowledge of the Act, Regulations and any guidelines that have relevance to the proposed activity;
- I will comply with the Act, Regulations and all other applicable legislation;
- I have no, and will not engage in, conflicting interests in the undertaking of the activity;
- I have no vested interest in the proposed activity proceeding;
- I undertake to disclose to the applicant and the competent authority all material information in my possession that
 reasonably has or may have the potential of influencing any decision to be taken with respect to the application by
 the competent authority; and the objectivity of any report, plan or document to be prepared by myself for submission
 to the competent authority;
- I have ensured that information containing all relevant facts in respect of the specialist input/study was distributed or made available to interested and affected parties and the public and that participation by interested and affected parties was facilitated in such a manner that all interested and affected parties were provided with a reasonable opportunity to participate and to provide comments on the specialist input/study;
- I have ensured that the comments of all interested and affected parties on the specialist input/study were considered, recorded and submitted to the competent authority in respect of the application;
- all the particulars furnished by me in this specialist input/study are true and correct; and
- I realise that a false declaration is an offence in terms of regulation 48 and is punishable in terms of section 24F of the Act.

Name of Specialist: Reinier F. Terblanche

Signature of the specialist Date: 6 July 2021

1 INTRODUCTION

A wetland assessment is required for proposed De Heus developments, approximately 4 km southeast of the centre of Middelburg, Eastern Cape Province, South Africa (elsewhere referred to as the site). If wetlands would be present at the site the assessment further focuses on the hydro-geomorphic setting, an estimate of the properties of the wetlands, an assessment of the functional aspects of wetlands and an impact assessment to wetlands, should the development be approved. If riparian zones would be present an indication of the active channel and riparian zone is given.

1.1 Wetlands in South Africa

Wetlands are defined by the National Water Act (Act 36 of 1998) as:

"land which is transitional between terrestrial and aquatic ecosystems where the water table is usually at or near the surface, or the land is periodically covered with shallow water, and which land in normal circumstances supports or would support vegetation typically adapted to life in saturated soil".

According to A practical field procedure for identification and delineation of wetlands and riparian areas (DWAF 2005) wetlands must have one or more of the following attributes:

- Wetland (hydromorphic) soils that display characteristics resulting from prolonged saturation
- The presence, at least occasionally, of water loving plants (hydrophytes)
- A high-water table that results in saturation at or near the surface, leading to anaerobic conditions developing in the top 50cm of the soil

Wetlands, according to the definition of DWAF (2005) are at the interface of aquatic systems and the terrestrial environment. As such the characteristics of the surface water or near surface water in space and time at this interface between the terrestrial and aquatic environment are fundamental to understand the functioning of a particular wetland. At the higher elevations of South Africa surface water at wetlands are characterised by considerable contrasts between seasons and periodic precipitation events. Generally accepted definitions of wetlands which focus on the wetland attributes of soil and vegetation are therefore useful because of its consistency despite seasonal fluctuations.

The Classification System for Wetlands and other Aquatic Ecosystems in South Africa (Ollis *et al.*, 2013) includes wetland ecosystems defined by the National Water Act (Act 36 of 1998) as well as those "wetland sytems" defined by the Ramsar Convention. The broader definition of wetlands, according to the Ramsar Convention is that wetlands are areas of marsh, fen, peatland or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, including areas of marine water to the depth of which at low tide does not exceed six metres (cited by

Ramsar Convention Secretariat 2011). This Ramsar definition of "wetlands" overlaps broadly with the definition of aquatic systems according to the South African system of classifying wetlands and other aquatic ecosystems. In South Africa an aquatic ecosystem is an ecosystem that is permanently or periodically inundated by flowing or standing water, or which has soils that are permanently or periodically saturated within 0.5 m of the soil surface (Ollis *et al.*, 2013). Therefore an important consideration of the Classification System for Wetlands and other Aquatic Ecosystems in South Africa (Ollis *et al.*, 2013) is that a wetland (narrow definition according to water act and not Ramsar definition) is taken to be a unique type of aquatic system.

1.2 Importance of wetlands

The importance of wetlands for human well-being and the conservation of biodiversity are recognised world-wide. Ecosystem services which directly or indirectly benefit human well-being are of particular importance when wetlands are considered. Wetlands play a major role to enhance supporting services such as nutrient cycling and primary production, which in turn is the basis for other ecosystem services. Wetlands are very important to regulating services such as maintaining water flow and water quality by processing water and regulating water run-off, provisioning services such as providing freshwater, cultural services such as appreciating the landscape and biodiversity. Overall wetlands play a major role in the sustainability of land use from socio-economic and biodiversity conservation perspectives. The setting and function of wetlands at each site should therefore be evaluated to inform land use management.

Wetland vegetation is of significant importance for wetlands to play a role in valuable ecosystem services. Vegetation plays an important role in natural wetland ecosystems. It holds soil together and slows down the flow of water, reducing the risk of erosion and promoting sediment deposition. Plants are the source of organic material in wetland soils, and form the organic soil in peat wetlands. Vegetation also has an impact on the quality of surface and subsurface water as it (1) provides organic soil matter required by microbes in order to assimilate nutrients and toxicants (2) provides habitat for the microbes in the soil immediately surrounding the roots, and (3) contributes through direct uptake of nutrients and toxicants and incorporation of these into plant tissues (Sieben *et al.* 2009).

1.3 Aims and objectives of the survey

A survey to investigate key elements of habitats on the site, relevant to the conservation of wetlands is conducted. The importance and significance of the site with special emphasis on the current status of biodiversity and ecological services of the wetland are evaluated. Literature investigations are integrated with field observations to identify potential ecological impacts that could occur as a result of the development and to make recommendations to reduce or minimise impacts, should the development be approved.

The objectives of the wetland habitat assessment are to provide:

- > An indication of the existence of wetlands at the site and if so:
- > An identification of major aspects of the hydro-geomorphic setting and terrain unit at which the wetland occur;
- > An estimate of the size and roughness of the wetland
- > An indication of the hydric soils at the site;
- An indication of erodability;
- > An indication of the presence or absence of peat at the site;
- > An outline of hydrological drivers that support the existence and character of the wetland;
- An assessment of the possible presence or absence of threatened or localised plant species, vertebrates and invertebrates of the region, at the site;
- > A description of the functions provided by the wetland at the site;
- > An interpretation of the priority of the wetland for local communities in the area;
- > An interpretation of the priority of the wetland to biodiversity at the site;

2 STUDY AREA

The study area is approximately 4 km southeast of the centre of Middelburg, Eastern Cape Province, South Africa (elsewhere referred to as the site). Site is part of the Nama-Karoo Biome which is represented by the Eastern Upper Karoo vegetation type (Mucina & Rutherford 2006). To serve as local context for the landscape and vegetation at the site an outline of the Eastern Upper Karoo (NKu 4) from Mucina and Rutherford (2006) follows.

NKu 4 Eastern Upper Karoo

Distribution: Eastern Upper Karoo is present in parts of the Northern Cape Province, Eastern Cape Province and Western Cape Province. Eastern Upper Karoo is located between the towns of Carnarvon and Loxton in the west, De Aar, Petrusville and Venterstad in the north, Burgersdorp, Hofmeyr and Cradock in the east and the Great Escarpment and the Sneeuberge-Coetzeesberge mountain chain in the south. Altitude varies mostly between 1000 – 1700 m (Mucina & Rutherford, 2006).

Vegetation and landscape features: Flats and gently sloping plains (interspersed with hills and rocky areas of Upper Karoo Hardeveld in the west, Besemkaree Koppies Shrubland in the northeast and Tarkastad Montane Shrubland in the southeast), dominated by dwarf microphyllus shrubs, with "white" grasses of the genera *Aristida* and *Eragrostis* (these become prominent especially in the early autumn months after good summer rains). The grass cover increases along a gradient from southwest to northeast (Mucina & Rutherford, 2006).

Geology and soils: Mudstones and sandstones of the Beaufort Group (including both Adelaide and Tarkastad Subgroups) supporting duplex soils with prismacutanic and/or pedocutanic diagnostic horizons dominant (Da land type) as well as some shallow Glenrosa and Mispah soils (Fb and Fc land types). In places, less prominent Jurassic dolerites (Karoo Dolerite Suite) are also found (Mucina & Rutherford, 2006).

Climate: Rainfall takes place mainly in autumn and summer, peaking in March. Mean Annual Precipitation (MAP) ranges from about 180 mm in the west to 430 mm in the east. Incidence of frost is relatively high, but ranging widely from <30 days (in the lower-altitude Cradock area) to >80 days of frost per year (bordering the Upper Karoo Hardeveld on the Compassberg and mountains immediately to the west) (Mucina & Rutherford, 2006).

Important taxa. Tall shrubs: Lycium cinereum, Lycium horridum, Lycium oxycarpum. Low shrubs: Chrysocoma ciliata, Eriocephalus ericoides subsp. ericoides, Eriocephalus spinescens, Pentzia globosa, Pentzia incana, Phymaspermum parvifolium, Salsola calluna, Aptosimum procumbens, Felicia muricata, Gnidia polycephala, Helichrysum dregeanum, Helichrysum lucilioides, Limeum aethiopicum, Nenax microphylla, Osteospermum leptolobum, Plinthus karooicus, Pteronia glauca, Rosenia humilus, Selago geniculata, Selago saxatilis. Succulent shrubs: Euphorbia hypogaea, Ruschia intricata. Herbs: Indigofera alternans, Pelargonium minimum, Tribulus terrestris. Geophytic herbs: Moraea pallida, Moraea polystachya, Syringodea bifucata, Syringodea concolor. Succulent herbs: Psicaulon coriarium, Tridentea jucunda, Tridentia virescens. Graminoids: Aristida congesta, Aristida diffusa, Cynodon incompletus, Eragrostis bergiana, Eragrostis bicolor, Eragrostis lehmanniana, Eragrostis obtusa, Sporobolus fimbriatus, Stipagrostis ciliata, Tragus koelerioides, Aristida adscensionis, Chloris virgata, Cyperus usitatus, Digitaria eriantha, Enneapogon desvauxii, Enneapogon scoparius, Eragrostis curvula, Fingerhuthia africana, Heterpogon contortus, Sporobolus ludwigii, Sporobolus tenellus, Stipagrostis obtusa, Themeda triandra and Tragus berteronianus.

Note: Though some plant species of the above listed vegetation types are present at the site, not necessarily all of the plant species listed above are present at the site.



Figure 1 Map with indication of the location of the site.

Map information were analysed and depicted on Google images with the aid of Google Earth Pro (US Dept. of State Geographer, MapLink/ Tele Atlas, Google, 2021).

3 METHODS

A desktop study comprised not only an initial phase, but also it was used throughout the study to accommodate and integrate all the data that become available during the field observations.

A survey consisted of visits by R.F. Terblanche during May and June 2021 to note key elements of habitats on the site, relevant to the conservation of wetlands and riparian zones.

Classification of any inland wetland systems that could be present at the site is according to the Classification System for Wetlands and other Aquatic Ecosystems in South Africa (Ollis *et al.*, 2013). One of the major advantages of the Classification System for South Africa (Ollis *et al.*, 2013) is that the functional aspects of wetlands are the focal point of the classification. Wetlands are very dynamic systems and their functionality weighs high against the rapid changes in their appearance, as could be seen from wetland butterfly studies (Terblanche *In prep*). In this document the main guideline for the delineation and identification of wetlands where present is the practical field procedure for identification and delineation of wetlands by DWAF (2005).

The following sections highlight the materials and methods applicable to different aspects that were observed.

3.1 Classification of wetlands (SANBI: Ollis et al., 2013)

3.1.1 System, regional setting and landscape unit (Levels 1, 2 and 3)

Three broad types of Inlands Systems are dealt with in the Classification System namely rivers, open waterbodies and wetlands. These Inland Systems are then classified according to a six-tiered structure that includes six levels.

At the systems level (Level 1) of wetland classification, a distinction is made between Marine, Estuarine and Inland ecosystems using the level of connectivity to the open ocean as discriminator of the biophysical character of each (Ollis *et al.*, 2013). Inland wetland systems are aquatic ecosystems with no no existing connection to the ocean (i.e.

characterised by the complete absence of marine exchange and/ or tidal influence (Ollis *et al.*, 2013). In this case if any wetland is present it obviously qualifies as an Inland wetland system.

At Level 2 the regional setting is a spatial framework that is preferred by the investigator to allow for gaining an understanding of the broad ecological context within which an aquatic system occurs (Ollis *et al.*, 2013). A regional setting can be identified according to the DWA ecoregion classification of Kleynhans *et al.* (2005).

A distinction is made between four landscape units at Level 3 of the Classification System for Inland Systems on the basis of the landscape setting (i.e. topographical position) (Ollis *et al.*, 2013). Four landscape units are recognized: slope, valley floor, plain and bench.

3.1.2 Hydrogeomorphic units (Level 4)

Seven primary hydrogeomorphic (HGM) units are recognised for Inland Systems at Level 4A of the Classification System for Wetlands and other Aquatic Ecosystems in South Africa, on the basis of hydrology and geomorphology (Ollis *et al.*, 2013). These are a River, Channeled valley-bottom wetland, Unchannelled valley-bottom wetland, Floodplain wetland, Depression, Seep and Wetland flat.

3.1.3 Hydrological regime (Level 5)

While the hydrogeomorphic unit (HGM) is influenced by the source of water and how it moves into, through and out of an Inland System, the hydrological regime (as catergorised by the Classification System) describes the behaviour fo the water within the system and, for wetlands, in the underlying soil (Ollis *et al.*, 2013). Together with the hydrogeomorphology the hydrological regime are used to describe the wetland as a functional unit (Ollis *et al.*, 2013). In the case of Inland wetlands which are classified as rivers, perenniality is an important characteristic to describe the hydrological regime. For Inland Systems other than rivers, five categories relating to the frequency and duration of inundation have been provided: Permanently inundated, Seasonally inundated, Intermittently inundated, Never inundated/ rarely inundated and unknown (Ollis *et al.*, 2013). Period of saturation within the upper 0.5 m of the soil is a very important discriminator that also links to the wetland delineation system of DWAF (2005). The following categories for saturation of wetland soils are recognised: Permanently saturated, Seasonally saturated, Intermittently saturated and unknown. These categories of period of saturation of the permanently saturated and unknown.

3.1.4 Wetland descriptors (Level 6)

At Level 6 several "descriptors" are included for the structural/ chemical/ biological characterisation of Inland Systems (Ollis *et al.*, 2013). These descriptors are non-hierarchical to one another and can be applied in any order depending on the purpose of a study and the availability of information. Descriptors include natural vs. artificial, salinity, substratum type, pH, geology and vegetation cover (Ollis *et al.*, 2013). Various definitions are given for the descriptors which are likely to increase the consistency and use of the system.

3.2 Delineation of wetland

Together with terrain unit, indirect indicators of prolonged saturation by water: wetland plants (hydrophytes) and wetland (hydromorphic) soils are identified and used to delineate the wetland (DWAF 2005). Three zones, which may not all three be present in all wetlands, namely the permanent zone of wetness, the seasonal zone and the temporary zone are identified. The temporary zone is the outer zone and is saturated for only a short period of the year that is sufficient, under normal circumstances, for the formation of hydromorphic soils and the growth of wetland vegetation (DWAF 2005). Hydromorphic soils must display signs of wetness within 50cm of the soil to qualify as wetland soil that can support hydrophytic vegetation. Grid references and altitudes are taken on site with a GPS Garmin E-trex 20 ® instrument. Map information are analysed and depicted on Google images with the aid of Google Earth Pro (US Dept. of State Geographer, MapLink/ Tele Atlas, Google, 2012).

3.3 Vegetation at and near wetland

Though vegetation is a key component of the wetland definition in the Water Act, using vegetation as a primary indicator requires undisturbed conditions and expert knowledge (DWAF 2005). Modern wetland classification systems in South Africa therefore place more emphasis on the soil wetness indicators. It remains however, that plant assemblages undergo distinct changes in species composition from the centre of a wetland to the edge, and into adjacent terrestrial areas (DWAF 2005). This change in species composition of vegetation provides valuable clues for determining the wetland boundary and wetness zones (DWAF 2005).

Apart from botanical aspects which are integrated into the description of a wetland it is imperative to note the existence or not of threatened plant species or other plant species of conservation concern, such as near-threatened, data deficient or declining species at a wetland. Floristic composition is therefore also considered during the wetland assessment. Voucher specimens of plant species are only taken where the taxonomy is in doubt or where the plant specimens are of significant relevance for invertebrate conservation. Field guides such as those by Germishuizen (2003), Manning (2003), Manning (2009), Van Oudtshoorn (1999), Van Wyk (2000), Van Wyk & Malan (1998) and Van Wyk & Van Wyk (1997) were used to confirm the taxonomy of the species. Works on specific plant groups (often genera) such as those by Goldblatt (1986), Goldblatt & Manning (1998), Jacobsen (1983), McMurtry, Grobler, Grobler & Burns (2008), Smit (2008), Van Jaarsveld (2006) and Van Wyk & Smith (2003) were also consulted to confirm the identification of species. An important source of identifications of plant species for the wetland survey is Van Ginkel, Glen, Gordon-Gray, Cilliers, Muasya & Van Deventer (2011). In this case no plant specimens were needed to be collected as voucher specimens or to be send to a herbarium for identification. For the most recent treatise of scientific plant names and broad distributions, Germishuizen, Meyer & Steenkamp (2006) or Raimondo *et al.* (2009) or updated lists on SANBI websites are followed to compile the lists of species.

3.4 Fauna at and near wetland

Species composition of fauna is not used in wetland characterization and assessments. However, it is important to note species that favour wetlands and especially whether threatened animal species are present at a wetland or not.

Mammals are noted as sight records by day. For the identification of species and observation of diagnostic characteristics Smithers (1986), Skinner & Chimimba (2005), Cillié, Oberprieler and Joubert (2004) and Apps (2000) are consulted. Sites are been walked, covering as many habitats as possible. Signs of the presence of mammal species, such as calls of animals, animal tracks (spoor), burrows, runways, nests and faeces are recorded. Walker (1996), Stuart & Stuart (2000) and Liebenberg (1990) are consulted for additional information and for the identification of spoor and signs. Trapping is only done if necessary. Habitat characteristics are also surveyed to note potential occurrences of mammals. Many mammals can be identified from field sightings but, with a few exceptions bats, rodents and shrews can only be reliably identified in the hand, and even then some species needs examination of skulls, or even chromosomes (Apps, 2000).

Birds are noted as sight records, mainly with the aid of binoculars (10x30). Nearby bird calls of which the observer was sure of the identity were also recorded. For practical skills of noting diagnostic characteristics, the identification of species and observation techniques Ryan (2001) is followed. For information on identification, biogeography and ecology Barnes (2000), Hockey, Dean & Ryan, P.G. (2005), Cillié, Oberprieler & Joubert (2004), Tarboton & Erasmus (1998) and Chittenden (2007) are consulted. Ringing of birds falls beyond the scope of this survey. Sites are walked, covering as

many habitats as possible. Signs of the presence of bird species such as spoor and nests are additionally been recorded. Habitat characteristics are surveyed to note potential occurrences of birds.

Reptiles are noted as sight records in the field. Binoculars (10x30) can also be used for identifying reptiles of which some are wary. For practical skills of noting diagnostic characteristics, the identification of species and observation techniques, Branch (1998), Marais (2004), Alexander & Marais (2007) and Cillié, Oberprieler and Joubert (2004) are followed. Sites are walked, covering as many habitats as possible. Smaller reptiles are sometimes collected for identification, but this practice was not necessary in the case of this study. Habitat characteristics are surveyed to note potential occurrences of reptiles.

Frogs and toads are noted as sight records in the field or by their calls. For practical skills of noting diagnostic characteristics, the identification of species and observation techniques Carruthers (2001), Du Preez (1996), Conradie, Du Preez, Smith & Weldon (2006) and the recent complete guide by Du Preez & Carruthers (2009) are consulted. CD's with frog calls by Carruthers (2001) and Du Preez & Carruthers (2009) are used to identify species by their calls when applicable. Sites are walked, covering as many habitats as possible. Smaller frogs are often collected by pitfall traps put out for epigeal invertebrates (on the soil), but this practice falls beyond the scope of this survey. Habitat characteristics are also surveyed to note potential occurrences of amphibians.

Invertebrates of which enough information is available to be integrated into an assessment, such as butterflies, are recorded as sight records, photographic records or voucher specimens. Voucher specimens are mostly taken of those species of which the taxa warrant collecting due to taxonomic difficulties or in the cases where species can look similar in the veldt. Many butterflies use only one species or a limited number of plant species as host plants for their larvae. Myrmecophilous (ant-loving) butterflies such as the *Aloeides*, *Chrysoritis*, *Erikssonia*, *Lepidochrysops* and *Orachrysops* species (Lepidoptera: Lycaenidae), which live in association with a specific ant species, require a unique ecosystem for their survival (Deutschländer & Bredenkamp, 1999; Terblanche, Morghental & Cilliers, 2003; Edge, Cilliers & Terblanche, 2008; Gardiner & Terblanche, 2010). Known food plants of butterflies are therefore also recorded. Other invertebrate groups such as fruit chafer beetles and mygalomorph spiders are also investigated where relevant.

3.5 Present Ecological Status

Ecological status of wetlands are based on models such as the modified Habitat Integrity approach developed by Kleynhans (1996, 1999). Present ecological status PES methodology is then largely based on criteria for assessing the habitat integrity of floodplain wetlands and notes for allocating a score to attributes and rating the confidence level associated with each score (DWAF 1999). Such criteria are selected on the assumption that anthropogenic modification

can generally be regarded as the primary causes of degradation of the ecological integrity of a wetland (see DWAF 1999). This is done by using Table W4-1 given by DWAF (1999):

- Score each attribute according to the guidelines provided in the footnote.
- Calculate a mean score for Table W4-1 using the individual scores for all attributes.
- Provide a confidence rating for each score according to the guidelines provided in the footnote to indicate the areas
 of uncertainty in the determination.

Table W4-2 provides guidelines for the determination of the Present Ecological Status Class (PESC), based on the mean score determined for Table W4-1. If any of the attributes scores < 2 (i.e., it is considered to be seriously or critically modified) this score and not the mean should be taken into consideration. This approach is based on the assumption that extensive degradation of any of the wetland attributes may determine the Present Ecological Status Category (PESC). In any case, the mean on which the assessment of the PESC is based should be regarded as a guideline and should also be tested against the opinion of local experts (DWAF 1999).

Biological integrity is not directly estimated through this approach though in some systems or parts of systems, information on biological integrity is available. In such cases, the information on biological integrity can be used as a check of the PES Category determination. The mean is used to relate the ecological state of the wetland to a particular PES Category (Table W4-2) (DWAF 1999).

3.6 Ecological Importance and Sensitivity

The assessment of the ecological importance and sensitivity is according to DWAF (1999) which in turn is adapted from Kleynhans (1996) and Kelynhans (1999). "Ecological importance" of a water resource is an expression of its importance to the maintenance of ecological diversity and functioning on local and wider scales. "Ecological sensitivity" refers to the system's ability to resist disturbance and its capability to recover from disturbance once it has occurred. The Ecological Importance and sensitivity (EIS) provides a guideline for determination of the Ecological Management Class (EMC) DWAF (1999).

In the method outlined here, a series of determinants for EIS according to Table W5-1 of DWAF (1999) are assessed on a scale of 0 to 4, where 0 indicates no importance and 4 indicates very high importance. The method is used as a guideline for the professional judgement of individuals familiar with an area and its wetlands. The assessors must substantiate and document their judgement as far as possible for future reference and revision (DWAF 1999).

3.7 Limitations

Wetlands or riparian zones are very dynamic systems and owing to time constraints a glimpse of conditions at wetlands are taken, even though the hydrogeomorphological setting, soil wetness characteristics and established vegetation constitute some long-term features of a wetland. For each site visited, it should then be emphasized that surveys can by no means result in an exhaustive list of wetland plants and animals present on the site, because of the time constraint. A desktop study comprised not only an initial phase, but also it was used throughout the study to accommodate and integrate all the data that become available during the field observations.

The survey at the site was conducted during May and June 2021 to note key elements of habitats on the site, relevant to the conservation of wetlands and riparian areas. The focus of the survey remains a habitat survey that concentrates on the hydrogeomorphological, hydrological and additional descriptors to classify and assess wetlands where present and to assess for the likelihood of occurrence or not of any wetland fauna and flora of particular conservation concern.

4 RESULTS AND DISCUSSION

Photo 1 View of part of the site. Plains and hills in the distance are beyond the site. Photo: R.F. Terblanche.

Photo 2 Large bare areas are found at the site. Plains and mountains in the distance are outside the site. Photo: R.F. Terblanche

Photo 3 Old furrow at the site. Photo: R.F. Terblanche.

Photo 4 Vegetation and exposed soil adjacent to the old furrow at the site. Photo: R.F. Terblanche

Photo 5 Soil sample at a furrow at the site. The furrows at the site appear to be dysfunctional at present. Photo: R.F. Terblanche.

Photo 6 Soil at bare area where erosion and poor recovery of vegetation are visible, at the site. Photo: R.F. Terblanche

4.1 Assessment of presence of wetlands at the site

4.1.1 Absence of wetlands

Large areas, where sheet erosion occurs, are present at the site. Old furrows which appear to have lost their function are also present at the site. Wetlands such as floodplain wetlands, channelled valley-bottom wetlands, unchannelled valley-bottom wetlands, depressions, seeps and wetland flats appear to be absent at the site. In conclusion no wetlands are found at the site.

5 RISKS, IMPACTS AND MITIGATION

No wetlands are present at the site so that risks and mitigations for wetlands at the site do not apply.

6 CONCLUSION

- Wetlands such as floodplain wetlands, channelled valley-bottom wetlands, unchannelled valley-bottom wetlands, depressions, seeps and wetland flats appear to be absent at the site. In conclusion no wetlands are found at the site.
- Fairly large covers of the alien invasive herb Atriplex lindleyi are conspicuous at areas where the soil have been exposed in the past. Tall shrubs include the indigenous Lycium cinereum, Lycium horridum and Hertia pallens as well as the exotic Atriplex nummularia. Low shrubs include Salsola tuberculata, Salsola calluna, Eriocephalus ericoides subsp. ericoides, Pentzia incana, Chrysocoma ciliata, Aptosimum spinescens, Aptosimum procumbens, Ruschia intricata, Osteospermum leptolobum, Pteronia glauca and Rosenia humilus. Conspicuous indigenous grass species at the site are Eragrostis lehmanniana, Aristida congesta, Eragrostis obtusa, Tragus berteronianus, Enneapogon desvauxii and Stipagrostis uniplumis. Few indigenous trees are found at the site which include Searsia lancea and Vachellia karroo.
- Old furrows which do not appear to have a significant function currently are present at the site.
- Large bare areas are present where signs of sheet erosion are visible. Signs of excavations or scraping of extensive areas are noticeable, despite substantial rainfall of the summer season. A number of pioneer and

alien plant species that are conspicuous may also be reflection of possible "harsh soil conditions" and/or disturbances of the past.

- Site is part of the Fish to Tsitsikamma Water Management Area (WMA 15). The site is not part of a Freshwater Ecosystem Priority Area (FEPA) and also not part of a wetland cluster (Nel *et al.*, 2011a, 2011b).
- A low sensitivity from the SANBI EIA Screening Tool for relative aquatic biodiversity is indicated.
- If the site is developed there appears to be not threat to any wetland animal or plant species.

7 REFERENCES

Alexander, G. & Marais, J. 2007. A guide to the reptiles of Southern Africa. Cape Town: Struik.

- Apps, P. 2000. Smither's mammals of southern Africa: a field guide. Cape Town: Struik. 364 p.
- Armstrong, A.J. 1991. On the biology of the marsh owl, and some comparisons with the grass owl. Honeyguide 37:148-159.
- Barnes, K.N. *ed.* 2000. The Eskom Red Data Book of birds of South Africa, Lesotho and Swaziland. Johannesburg: BirdLife South Africa. 169 p.
- Branch, B. 1998. Field guide to snakes and other reptiles of southern Africa. 3rd ed. Cape Town: Struik. 399 p.
- Branch, W.R., Tolley, K.A., Cunningham, M., Bauer, A.M., Alexander, G., Harrison, J.A., Turner, A.A. & Bates, M.F. eds.
 2006. A plan for phylogenetic studies of southern African reptiles: proceedings of a workshop held at Kirstenbosch,
 February 2006. Biodiversity Series 5. Pretoria: South African National Biodiversity Institute. 48 p.

Bromilow, C. 2001. Problem Plants of South Africa. Pretoria: Briza Publications.

Carruthers, V. 2001. Frogs and froging in southern Africa. Cape Town: Struik.

Chittenden, H. 2007. Roberts Bird Guide. Cape Town: John Voelcker Book Fund.

Cillié, B., Oberprieler, U. & Joubert, C. 2004. Animals of Pilanesberg: an identification guide. Pretoria: Game Parks Publishing.

Cilliers, S.S., Müller, N. & Drewes, E. 2004. Overview on urban nature conservation: situation in the western-grassland biome of South Africa. *Urban forestry and urban greening* 3: 49-62.

- Conradie, W., Du Preez, L.H., Smith, K. & Weldon, C. 2006. Field guide to the frogs and toads of the Vredefort Dome World Heritage Site. Potchefstroom: School of Environmental Sciences and Development, Gauteng University.
- DWAF (Department of Water Affairs and Forestry). 1997. South African Water Quality Guidelines for Aquatic Ecosystems.
- DWAF (Department of Water Affairs and Forestry). 1999. Resource Directed Measures for Protection of Water Resources: Wetland Ecosystems: W4. Department of Water Affairs and Forestry, Pretoria.
- DWAF (Department of Water Affairs and Forestry). 2005. A practical field procedure for identification and delineation of wetland and riparian areas. DWAF, Pretoria.
- Deutschländer, M.S. & Bredenkamp, C.J. 1999. Importance of vegetation analysis in the conservation management of the endangered butterfly *Aloeides dentatis* subsp. *dentatis* (Swierstra) (Lepidoptera: Lycaenidae). *Koedoe* 42(2): 1-12.
- Dippenaar-Schoeman, A.S. 2002. Baboon and trapdoor spiders in southern Africa: an identification manual. Plant Protection Research Institute Handbook No. 13. Pretoria: Agricultural Research Council.
- Dippenaar-Schoeman, A.S. & Jocqué, R. 1997. African spiders: an identification manual. Plant Protection Research Institute Handbook No. 9. Pretoria: Agricultural Research Council.
- Du Preez, L.H. 1996. Field guide and key to the frogs and toads of the Free State. Bloemfontein: Department of Zoology and Entomology, University of the Orange Free State.
- Du Preez, L.H. & Carruthers, V. 2009. A complete guide to the frogs of southern Africa. Struik Nature, Cape Town. 488p. CD with calls included.
- Ellery, W., Grenfell, M., Grenfell, S., Kotze, D., McCarthy, T., Tooth, S., Grundling, P-L., Beckedahl, H., Le Maitre, D. & Ramsay, L. 2009. WET-origins: controls on the distribution and dynamics of wetlands in South Africa.

Filmer, M.R. 1991. Southern African spiders: an identification guide. Cape Town: Struik.

Germishuizen, G. 2003. Illustrated guide to the wildflowers of northern South Africa. Briza, Pretoria. 224 p.

- Germishuizen, G., Meyer, N.L. & Steenkamp (*eds*) 2006. A checklist of South African plants. Southern African Botanical Diversity Network Report No. 41. SABONET, Pretoria.
- Goldblatt, P. 1986. The Moraeas of Southern Africa. Annals of Kirstenbosch Botanic Gardens, Volume 14. National Botanic Gardens, Cape Town. 224 p.

Goldblatt, P. & Manning, J. 1998. Gladiolus in Southern Africa. 320 p.

Henderson, L. Alien weeds and alien invasive plants: a complete guide to the declared weeds and invaders in South Africa. Plant Protection Research Institute Handbook No. 12. Pretoria: ARC: Plant Protection Research Institute.

Henning, G.A. & Roos, P.S. 2001. Threatened butterflies of South African wetlands. *Metamorphosis* 12(1): 26-33.

- Henning, G.A., Terblanche, R.F. & Ball, J.B. (eds) 2009. South African Red Data Book: butterflies. SANBI Biodiversity Series No 13. South African National Biodiversity Institute, Pretoria. 158 p.
- Hill, C.J. 1995. Conservation corridors and rainforest insects. (*In* Watt, A.D., Stork, N.E. & Hunter, M.D. (*eds.*), Forests and Insects. London: Chapman & Hall. p. 381-393.)
- Hockey, P.A.R., Dean, W.J.R. & Ryan, P.G. (*eds.*). 2005. Roberts Birds of Southern Africa. Cape Town: John Voelcker Bird Book Fund.

Holm, E. & Marais, E. 1992. Fruit chafers of southern Africa. Hartebeespoort: Ekogilde.

- IUCN. 2001. IUCN Red List Categories and Criteria: Version 3.1. IUCN Species Survival Commission. IUCN, Gland, Switzerland and Cambridge, UK.
- Kemper, N.P. 2001. RVI: Riparian Vegetation Index, final report, WRC Report No. 850/3/1. Institute for Water Research, Pretoria.
- Kleynhans, C.J. 1999. A procedure for the determination of the ecological reserve for the purposes of the national water balance model for South African River. Institute of Water Quality Studies, Department of Water Affairs & Forestry, Pretoria.

- Kleynhans, C.J., Thirion, C. & Moolman, J. 2005. A level 1 ecoregion classification system for South Africa, Lesotho and Swaziland. Report No. N/0000/00/REQ0104. Resource Quality Services, Department of Water Affairs and Forestry, Pretoria.
- Kotze, D., Marneweck, G., Batchelor, A., Lindley, D. and Collins, N. 2008. WET-EcoServices: A technique for rapidly assessing ecosystem services supplied by wetlands. Wetland Management Series. Water Research Commission Report TT339/08, Water Research Commission, Pretoria.

Liebenberg, L. 1990. A field guide to the animal tracks of Southern Africa. Cape Town: David Philip Publishers.

Leeming, J. 2003. Scorpions of southern Africa. Cape Town: Struik.

Leroy, A. & Leroy, J. 2003. Spiders of southern Africa. Cape Town: Struik.

Low, A.B. & Rebelo, A.G. (Eds.) 1996. Vegetation of South Africa, Lesotho and Swaziland. Pretoria: Department of Environmental Affairs and Tourism.

Manning, J. 2003. Photographic guide to the wild flowers of South Africa. Briza, Pretoria. 352 p.

Manning, J. 2009. Field guide to the wild flowers of South Africa. Struik, Cape Town. 487 p.

- Marneweck, G.C. & Batchelor, A. 2002. Wetland inventory and classification. In: Ecological and economic evaluation of wetlands in the upper Olifants River catchment. Palmer, R.W., Turpie, J., Marneweck, G.C. and Batchelor, A. (eds). Water Research Commission Report No. 1162/02.
- McMurtry, D., Grobler, L., Grobler, J. & Burns, S. 2008. Field guide to the orchids of northern South Africa and Swaziland. Umdaus Press, Hatfield. 482 p.
- Minter, L.R., Burger, M., Harrison, J.A., Braack, H.H., Bishop, P.J. & Kloepfer, D. *eds.* 2004. Atlas and Red Data Book of the Frogs of South Africa, Lesotho and Swaziland. SI/MAB series 9. Washington, DC: Smithsonian Institution.
- Mucina, L. & Rutherford, M.C. *eds.* 2006. The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19. Pretoria: South African National Biodiversity Institute. 807 p.

- Mucina, L., Rutherford, M.C., and Powrie, L.W. *eds.* 2005. Vegetation map of South Africa, Lesotho and Swaziland, 1:1 000 000 scale sheet maps. Pretoria: South African National Biodiversity Institute.
- Nel, J.L., Driver, A., Strydom, W.F., Maherry, A.M., Petersen, C.P., Hill, L., Roux, D.J., Nienaber, S., Van Deventer, H., Swartz, E.R. & Smith-Adao, L.B. 2011a. Atlas of Freshwater Ecosystem Priority Areas in South Africa: Maps to support sustainable development of water resources. WRC Report No. TT 500/11. Water Research Commission, Pretoria.
- Nel, J.L., Murray, K.M., Maherry, A.M., Petersen, C.P., Roux, D.J., Driver, A., Hill, L., Van Deventer, H., Funke, N., Swartz, E.R., Smith-Adao, L.B., Mbona, N., Downsborough, L. & Nienaber, S. 2011b. Technical Report for the Freshwater Ecosystem Priority Areas Project. WRC Report No. TT 1801/2/11. Water Research Commission, Pretoria.
- New, T.R. 1993. ed. Conservation biology of Lycaenidae (butterflies). Occasional paper of the IUCN Species Survival Commission No. 8. 173 p.
- Ollis, D.J., Snaddon, C.D., Job, N.M. & Mbona, N. 2013. Classification System for Wetlands and other Aquatic Ecosystems in South Africa. User Manual: Inland Systems. SANBI Biodiversity Series 22. South African National Biodiversity Institute, Pretoria.
- Pfab, M.F. 2002. Priority ranking scheme for Red Data plants in Gauteng, South Africa. *South African Journal of Botany* (68): 299-303.
- Pfab, M.F. & Victor, J.E. 2002. Threatened plants of Gauteng, South Africa. South African Journal of Botany (68): 370-375.
- Picker, M., Griffiths, C. & Weaving, A. 2004. Field guide to insects of South Africa. 2nd ed. Cape Town: Struik.
- Pooley, E. 1998. A field guide to wild flowers of KwaZulu-Natal and the eastern region. Natal Flora Publications Trust, Durban. 630 p.
- Pringle, E.L., Henning, G.A. & Ball, J.B. *eds.* 1994. Pennington's Butterflies of Southern Africa. Cape Town: Struik Winchester.

Pryke, S.R. & Samways, M.J. 2001. Width of grassland linkages for the conservation of butterflies in South African afforested areas. *Biological Conservation* 101: 85-96.

Pullin, A.S. ed. 1995. Ecology and conservation of butterflies. London: Chapman & Hall.

Rautenbach, I.L. 1982. The mammals of the Transvaal. Ecoplan monograph 1: 1-211.

- Retief, E. & Herman, P.P.J. 1997. Plants of the northern provinces of South Africa: keys and diagnostic characteristics. Strelitzia 6. Pretoria: National Botanical Institute.
- Rutherford, M.C. & Westfall, R.H. 1994. Biomes of southern Africa: An objective categorisation, 2nd ed. Memoirs of the Botanical Survey of South Africa, Vol. 63, pp. 1-94. Pretoria: National Botanical Institute.

Ryan, P. 2001. Practical Birding: A guide to birdwatching in southern Africa. Cape Town: Struik. 96 p.

SANBI. 2009. Further development of a proposed National Wetland Classification System for South Africa. Primary Project Report. Prepared by the Freshwater Consulting Group (FCG) for the South African National Biodiversity Institute (SANBI).

Samways, M.J. 2005. Insect diversity conservation. Cambridge: Cambridge University Press.

- Sieben, E.E., Kotze, D.C., Ellery, W.N. & Russell, W.B. 2009. Chapter 6: Using vegetation in wetland rehabilitation. In: Russel, W. 2009. WET-RehabMethods: National guidelines and methods for wetland rehabilitation. WRC Report TT 341/09, Water Research Commission, Pretoria, pp. 54-94.
- Skinner, J.D. & Chimimba, C.T. 2005. The mammals of the southern African subregion. Cape Town: Cambridge University Press.

Smit, N. 2008. Field guide to the Acacias of South Africa. Briza, Pretoria.

Smithers, R.H.N. 1986. South African Red Data Book: Terrestrial mammals. South African National Scientific Programmes Report No. 125. Pretoria: CSIR.

South Africa. 2004. National Environmental Management: Biodiversity Act No. 10 of 2004. Pretoria: Government Printer.

Stuart, C. & Stuart, T. 2000. A field guide to the tracks and signs of Southern and East Africa. Cape Town: Struik.

Tarboton, W. & Erasmus, R. 1998. Owls and owling in southern Africa. Struik, Cape Town.

Terblanche, R.F. In prep. Wetland butterflies of South Africa, a preliminary synthesis with ecological notes for environmental management.

Terblanche, R.F. & Edge, D.A. 2007. The first record of an Orachrysops in Gauteng. Metamorphosis 18(4): 131-141.

- Thomas, C.D. 1995. Ecology and conservation of butterfly metapopulations in the fragmented British landscape. (*In* Pullin, A.S. *ed.* Ecology and conservation of butterflies. London: Chapman & Hall. p. 46-64.)
- Van Ginkel, C.E., Glen, R.P., Gordon-Gray, K.D., Cilliers, C.J., Muasya, M. & Van Deventer, P.P. 2011. Easy identification of some South African wetland plants. WRC Report No TT 479/10. Water Research Commission, Gezina, South Africa.

Van Jaarsveld, E.J. 2006. The Southern African *Plectranthus* and the art of turning shade to glade.

Van Oudtshoorn, F. 2012. Guide to grasses of southern Africa, 3rd ed. Briza, Pretoria.

Van Wyk, B. 2000. A photographic guide to wild flowers of South Africa. Struik, Cape Town.

Van Wyk, B. & Malan, S. 1998. Field Guide to the Wild Flowers of the Highveld. Cape Town:Struik.

Van Wyk, B.E. & Smith, G.F. 2003. Guide to the aloes of South Africa. 2nd ed. Pretoria: Briza Publications.

Van Wyk, B. & Van Wyk, P. 2013. Field guide to trees of southern Africa 2nd ed. Struik Nature an imprint of Penguin Random House, Cape Town.

Walker, C. 1996. Signs of the Wild. 5th ed. Cape Town: Struik.