Additions to the Neotropical Perenniporia: Perenniporia albo-incarnata comb. nov. and Perenniporia guyanensis sp. nov.

Cony DECOCK ${ }^{a}$ \& Leif RYVARDEN ${ }^{b}$
${ }^{a}$ Mycothèque de l'Université catholique de Louvain (MUCL), Earth and Life Institute, Microbiology, Université catholique de Louvain, Croix du Sud 3, B-1348 Louvain-la-Neuve, Belgium, email: cony.decock@uclouvain.be
${ }^{b}$ University of Oslo, Department of Botany, P.O. Box 1045 Blindern, N-0316 Oslo, Norway, email: leif.ryvarden@bio.uio.no

Abstract

In the continuation of the revision of the Neotropical species of Perenniporia (Basidiomycota) with resupinate basidiomes, the new combination Perenniporia alboincarnata and the new species Perenniporia guyanensis are proposed; both species are described and illustrated.

Neotropics / Perenniporia / South America / taxonomy

INTRODUCTION

Perenniporia medulla-panis (Jacq.: Fr.) Donk was commonly considered as a cosmopolitan species, present on all continents (e.g. Cunningham 1965, Gilbertson \& Ryvarden 1987, Núñez \& Ryvarden 2001, Ryvarden \& Gilbertson 1994, Ryvarden \& Johansen 1980). The concept used was evidently too large, representing a heterogeneous assemblage from which smaller entities could be sorted (Decock and Stalpers 2006b).

Decock \& Stalpers (2006a, b) discussed the status and identity of P. medulla-panis and, in the interests of nomenclatural stability, designated an epitype for the latter name and redescribed the species. Its main morphological features are a resupinate, perennial basidiome, a white pore surface with $4-5$ pores $/ \mathrm{mm}$, a dimitic hyphal system with non-dextrinoid skeleto-binding hyphae having the inner side of the wall amyloid, and ellipsoid to ovoid, dextrinoid basidiospores, 4.5-5.5 $\times 3.5-4.5 \mu \mathrm{~m}$, averaging $4.9 \times 3.9 \mu \mathrm{~m}$ (Decock \& Stalpers 2006b). From a biogeographical and ecological perspective, P. medullapanis s.s. might be restricted to temperate areas of Northern and Central Europe, where it grows on angiosperms, preferably Quercus (Fagaceae) (Decock \& Stalpers 2006b). Its occurrence outside Northern and Central Europe is very uncertain; yet, sensu stricto, the species is probably absent from North America (C. Decock, in prep.). A fortiori, all records of P. medulla-panis from the southern, Neotropics (e.g. Rajchenberg \& de Meijer 1990, Gibertoni et al. 2004, Popoff \& Wright 1998), should be critically analyzed.

During the revision of Perenniporia from the Neotropics (Decock \& Ryvarden 1998, 1999a, b, 2000, 2003, Decock et al. 2001, 2010), the type of Polyporus albo-incarnatus Pat. \& Gaillard (Patouillard and Gaillard 1888), a name presumed to be a synonym of P. medulla-panis (Ryvarden 1983), was found to represent a distinct species. It is here recombined in Perenniporia, redescribed, and illustrated.

Two Perenniporia collections originating from French Guyana, provisionally identified as P. medulla-panis s.l. at MUCL, were also revised and found to represent a different, undescribed species. It is described and illustrated below as Perenniporia guyanensis.

MATERIALS AND METHODS

Material and Collection localities. - Materials from French Guyana were collected at approximately $04^{\circ} 53^{\prime} \mathrm{N}-52^{\circ} 47^{\prime} \mathrm{W}$ and $04^{\circ} 34^{\prime} \mathrm{N}-52^{\circ} 28^{\prime} \mathrm{W}$ at an elevation ranging $10-120$ masl. The local ecosystem is the lowland Neotropical rainforest. Specimens studied are preserved at FH, MUCL, NY, and O (herbarium acronyms are from Thiers B. [continuously updated]). MUCL original strains were isolated from basidiome tissues during field works, on malt extract agar supplemented with 2 ppm benomyl (benlate) and 50 ppm chloramphenicol, and later, when necessary, purified in the laboratory. Living cultures (strains) are preserved at MUCL, with the ex-type strain deposited also at the CBS.

Specimen's description. - Colors are described according to Kornerup \& Wanscher (1981). Sections of the basidiome were carefully dissected under a stereomicroscope in hot $\left(40^{\circ} \mathrm{C}\right) \mathrm{NaOH} 3 \%$ solution, and later examined in NaOH 3% solution at room temperature (Decock et al. 2010). Sections were also examined in Melzer's reagent, and lactic acid cotton blue. All the microscopic measurements were done in Melzer's reagent. In presenting the size range of several microscopic elements, 5% of the measurements at each end of the range are given in parentheses when relevant. In the text, the following abbreviations are used: ave $=$ arithmetic mean, $\mathrm{R}=$ the ratio of length/width of basidiospores, and $a v e_{R}=$ arithmetic mean of the ratio R .

TAXONOMY

Perenniporia albo-incarnata (Pat. \& Gaillard) Decock \& Ryvarden, comb. nov. Figs. 1-3, 7, 9

MYCOBANK MB 519732
三Polyporus albo-incarnatus Pat. \& Gaillard, Bull. Soc. Mycol. Fr. 4: 35, 1888 (basionym).

三Poria albo-incarnata (Pat. \& Gaillard) Saccardo, Syll. Fung. 9: 192, 1891.
Basidiome seasonal to bi-seasonal, resupinate, adnate, effused, confluent, reaching $50-100 \times$ up to 30 mm wide (fide Patouillard \& Gaillard 1888), 1-4 mm thick ($4-5 \mathrm{~mm}$ thick at the centre, fide Patouillard \& Gaillard 1888); margin well marked, $0.5-3 \mathrm{~mm}$ wide appressed, whitish, pinkish, pale creamy to light grayish

Figs. 1-3. Perenniporia albo-incarnata. 1. Basidiome, Colombia LR 16701, scale bar $=15 \mathrm{~mm}$; 2. Basidiome, Costa Rica LR 29603, scale bar $=15 \mathrm{~mm}$. 3. Details of the pore surface, scale bar = 2 mm Costa Rica LR 29603.
orange; pores surface white to pinkish (6A2) bruising yellowish (fide Patouillard \& Gaillard 1888), cream, pale orange white (4A[3-4], 5A2) to pale grayish orange $(5 \mathrm{~B}[2-3])$ to light brown on places (6D[5-6], sunburn to cinnamon); pores round to angular, regular, (4-) 5-6 (-7) / mm, (90-) 90-165 (-200) $\mu \mathrm{m}$ wide, (ave = $114 \mu \mathrm{~m}$); dissepiments thin, entire, smooth, (20-) 25-65 (-72) $\mu \mathrm{m}$ thick (ave = $42 \mu \mathrm{~m}$); tube layer single, up to 2.5 mm thick pale brown (6D(5-6), sunburn, pale cinnamon); context thin, up to 0.5 mm thick, grayish orange, corky.

Hyphal system dimitic in the context and the hymenophoral trama; generative hyphae hyaline, with clamps, poorly branched, 1.5-2.3 $\mu \mathrm{m}$ wide; vegetative hyphae of the skeleto-binding type, hyaline, non- to weakly dextrinoid (better seen in mass), cyanophilous; in the hymenophoral trama skeleto-binding hyphae with an arboriform pattern, made of a unbranched basal stalk, arising

Figs. 4-6. Perenniporia guyanensis, type, MUCL 41995. 4-5. Basidiome, scale bar $=15 \mathrm{~mm}$; 6. Details of the pore surface, scale bar $=2 \mathrm{~mm}$.
from a clamp, (25-) 25-75 (-98) $\mu \mathrm{m}$ long (ave $=44 \mu \mathrm{~m}$), straight to occasionally geniculated, then with occasional aborted lateral processes, thick-walled, lumen visible, progressively widening from (1.3-) 1.7-2.3 (-2.5) $\mu \mathrm{m}$ wide at the basal septum (ave $=2.0 \mu \mathrm{~m})$ to (2.2-) 2.5-3.5 $(-3.5) \mu \mathrm{m}$ wide at the apex (ave $=2.7 \mu \mathrm{~m}$), and several, 1-4, lateral (then in the upper third) or apical branches, thick-walled,

Perenniporia albo-incarnata comb. nov. and Perenniporia guyanensis sp. nov.

Figs. 7-8. Perenniporia albo-incarnata. 7. Vegetative hyphae from the hymenophoral trama, from the type specimen, scale bar $=40 \mu \mathrm{~m}$. 8. Basidiospores, from the type specimen, scale bar $=5 \mu \mathrm{~m}$.

Figs. 9-10. Perenniporia guyanensis. 9. Vegetative hyphae from the hymenophoral trama, scale $\operatorname{bar}=40 \mu \mathrm{~m} ; 10$. Basidiospores, from the type, scale bar $=5 \mu \mathrm{~m}$.

Perenniporia albo-incarnata comb. nov. and Perenniporia guyanensis sp. nov.
from $25 \mu \mathrm{~m}$ up to $180 \mu \mathrm{~m}$ long, not or few branched ($0-1 \times$ dichotomous), (1.5-) 1.5-2.5 (-2.5) $\mu \mathrm{m}$ wide ($\mathrm{ave}=2.0 \mu \mathrm{~m}$), ending in a thin-walled whip-like tips; in the context similar, though the arboriform pattern less marked, and with longer, less ramified branches; deep in the context, close to the substrate, vegetative hyphae short, much branched, narrow, 1.0-1.5 $\mu \mathrm{m}$ wide. Basidia, basidioles and cystidioles clamped at the basal septum; mature basidia mostly collapsed, hyaline, with 4 sterigmata; basidioles $14-18 \times 7-8 \mu \mathrm{~m}$, pear-shaped; cystidioles fusiform to slightly ventricose, 13-20 $\times 7-8 \mu \mathrm{~m}$; basidiospores subglobose to broadly ovoid, truncate, thick-walled, with an apical germ pore, apiculus small to inconspicuous, hyaline, weakly to strongly dextrinoid, cyanophilous, (5.5-) 6.0-7.0 (-7.5) \times (4.5-) $5.0-6.0(-6.3) \mu \mathrm{m},(\mathrm{ave}=6.3 \times 5.4 \mu \mathrm{~m}), \mathrm{R}=(1.0-) 1.05-1.3(-1.3), \mathrm{ave}_{\mathrm{R}}=1.15$; chlamydospores absent.

Type of rot: a white rot (identified on wood fragments attached to the basidiome);

Substrate: on rotten trunks and dead fallen branches of unidentified angiosperms;

Distribution: known so far only from Central (Costa Rica) to South America (Venezuela and Colombia).

Specimens examined: COLOMBIA, DEP. DEL CHOCO: Municipio Rio Sucio, Parque Nacional Katio, Sautata, 50 masl., 28-30 Jun. 1978, L. Ryvarden 16701, O; COSTA RICA, PROV. HEREDIA: Reserva forestal La Selva, 50 masl, 10 Jun. 1991, L. Ryvarden \# 29603, O; VENEZUELA, HAUT ORENOQUE: Puerto Zamuro, "les troncs pourris" [on rotten trunks], Jul. 1887, A. Gaillard n ${ }^{\circ} 87$, FH (HOLOTYPE).

Commentary: The present description is based on the type (Patouillard \& Gaillard 1888) and two additional collections found within the unidentified Perenniporia collections from O. Both latter, are very similar to the type but have slightly smaller pores (Table I). Given that all other morphological features point toward conspecificity, we include them in the concept of P. albo-incarnata.

Lowe (1963) and Ryvarden (1983) considered Polyporus albo-incarnatus as a synonym of P. medulla-panis. It differs, however, from P. medulla-panis in several morphological features: a broad sterile margin, slightly smaller pores (5-6 $(-7) / \mathrm{mm}, 90-165 \mu \mathrm{~m}$ wide against $4-5 / \mathrm{mm}, 125-200 \mu \mathrm{~m}$ wide in P. medulla-panis), none to weakly dextrinoid vegetative hyphae without any amyloid reaction of the inner side of the hyphal wall, and larger basidiospores (ave $=6.3 \times 5.4 \mu \mathrm{~m}$ in P. albo-incarnata versus ave $=4.9 \times 3.9$ in P. medulla-panis).

Within the neotropical area, P. albo-incarnata is comparable to P. roseoisabellina (Pat. \& Gaillard) Ryvarden (Ryvarden 1983). The latter has distinctly larger pores and distinctly longer basidiospores (Table I). Perenniporia cremeopora Decock \& Ryvarden, P. minutopora Ryvarden \& Decock, P. parvispora Decock \& Ryvarden (Decock \& Ryvarden 2000), and P. guyanensis (see below) all differ in having distinctly smaller basidiospores (Table I).

Perenniporia albo-incarnata could be compared also to P. centrali-africana Decock \& Mossebo, described from tropical Africa (Decock \& Mossebo 2001). The latter was described with pileate to broadly decurrent basidiomes (Decock \& Mossebo 2001) but additional collections from the western part of Central Africa showed that the basidiomes can be widely effused, with only marginal pseudopilei (Decock, pers. obs.). In addition to the pseudopilei, P. centraliafricana differs from P. albo-incarnata in having distinctly dextrinoid skeletal hyphae and slightly smaller, more globose basidiospores (4.8-6.0 (-6.5) \times 3.8-5.3 $(-5.5) \mu \mathrm{m}$, ave $=5.4 \times 4.7$.

Table 1. Pores and basidiospores data of several Neotropical Perenniporia species with resupinate basidiomes

Species	Specimen	Country	Basidiospores			Pores/mm
			Range	ave	$l / L\left(a v e ~ e_{R}\right)$	
P. albo-incarnata	Type	Venezuela	(5.5-) 6.0-7.0 (-7.5) \times (4.5-) 4.5-6.0 (-6.3)	6.4×5.4	1.0-1.3 (1.18)	(4-) 5-6
	LR 29603	Costa Rica	(6.0-) 6.5-7.5 (-7.5) \times (4.7-) 4.5-6.0 (-6.3)	6.9×5.4	1.0-1.4 (1.2)	6-7 (-8)
	LR 16701	Colombia	(5.7-) 6.0-6.5 (-7.0) \times (4.8-) 4.8-6.0 (-6.0)	6.1×5.4	1.0-1.25 (1.14)	7-8
P. chromatica	Type	Brazil	(5.5-) 5.5-7.0 (-7.0) \times (4.5-) 4.5-6.0 (-6.2)	6.2×5.2	1.1-1.4 (1.25)	4
	Farr AM104	Brazil	(5.3-) 5.5-6.5 (-6.5) \times (4.3-) 4.5-5.5 (-5.8)	6.1×4.9	1.1-1.4 (1.2)	4-5
	Patouillard	Venezuela	(5.0-) 5.5-7.0 (-7.0) \times (4.0-) 4.0-5.7 (-6.0)	6.3×4.8	1.1-1.6 (1.3)	4-5
P. cremeopora	Type	Domin. Rep.	(3.8-) 4.0-5.0 (-5.0) \times (3.0-) 3.0-3.5 (-3.8)	4.4×3.3	1.0-1.5 (1.2)	6-8
	LR 41730	Jamaica	(3.5-) 4.0-5.0 (-5.0) \times (3.0-) 3.2-3.5 (-3.8)	4.3×3.4	1.1-1.4 (1.25)	8-9
P. guyanensis	Type*	Fr. Guyana	(5.0-) 5.0-5.5 (-5.5) \times (3.7-) 4.0-4.5 (-4.5)	5.2×4.1	1.1-1.4 (-1.25)	(7-) 8-9
	PT	Fr. Guyana	(5.0-) 5.0-5.5 (-6.0) \times (3.5-) 4.0-4.5 (-4.5)	5.3×4.1	1.1-1.4 (-1.25)	(7-) 8-9
P. minutopora	Type	Guyana	(4.0-) 4.2-5.0 (-5.2) \times (3.0-) 3.0-3.7 (-4.0)	4.6×3.3	1.2-1.6) (1.4)	(5-) 6-7
P. parvispora	Type	Venezuela	$\text { (3.5-) 3.5-4.0(-4.0) } \times(3.0-) 3.0-3.7(-4.0)$	3.8×3.4	1.0-1.3 (1.1)	(6-) 7-8
	Corner	Brazil	(3.5-) 3.5-4.2 (-4.5) $\times(2.5-)$ 2.8-3.5 (-3.5)	4.0×3.2	1.1-1.5 (1.2)	8-9
	LR 42332	Venezuela	(3.5-) 3.8-4.2 (-4.5) \times (3.0-) 3.0-3.7 (-3.7)	3.9×3.4	1.0-1.3 (1.2)	(7-) 8-9
P. roseo-isabellina	Type (FH)	Venezuela	(7.0-) 7.6-9.2 (-9.4) \times (5.2-) 5.5-6.5 (-6.7)	8.2×5.9	1.2-1.6 (1.4)	(2-) 3-4
	IT (NY)	Venezuela	(7.2-) 7.5-8.9 (-9.5) \times (5.3-) 5.5-6.8 (-7.0)	8.1×6.0	1.1-1.5 (1.3)	(2-) 3-4
	LR 29227	Venezuela	(6.8-) 7.0-8.0 (-8.0) \times (5.2-) 5.5-6.5 (-6.8)	7.6×6.0	1.1-1.4 (1.3)	(2-) 3-4

[^0]Perenniporia albo-incarnata comb. nov. and Perenniporia guyanensis sp. nov.
Perenniporia guyanensis Decock \& Ryvarden sp. nov.
MYCOBANK MB 519733
Basidiomata resupinata; margine alba; pori rotundati (7-) 8-9 / mm, (75-) 80-110 (-115) μ m lati, griseo-brunnei; systema hypharum dimiticum, hyphae generativae hyalinae, fibulatae; contextus hyphis skeletalibus pauci ramosis, crassitunicatis, hyalinis; trama hymenophori hyphis skeletalibus hyalinis, laxe ad dense arboriformibus, crassitunicatis, dextrinoideis, parte stipitiforme (10)-15-45 (-50) $\mu \mathrm{m}$ longo, ramulis 1-3, crassitunicatis, laxe ramosis, usque ad $120 \mu \mathrm{~m}$ longis efformata; basidia clavata vel pedunculata, tetraspora; basidiosporae ovoideae, apice truncatae, crassitunicatae, leviter ad distincte dextrinoideae, 5.0-$5.5(-6.0) \times(3.5-) 4.0-4.5 \mu \mathrm{~m}, ~ R=(1.1-) 1.2-1.4(-1.4)$, (ave $=5.2 \times 4.1 \mu \mathrm{~m}$, ave ${ }_{R}=$ 1.25).Holotypus in herb. MUCL conservatur sub nr 41995, isotypi: NY, O. (culture exholotype MUCL 41995, CBS)

Basidiome seasonal, resupinate, effused, adnate, individual basidiomes up to $50 \times 30 \mathrm{~mm}$, merging to form larger patches, up to $1-1.2 \mathrm{~mm}$ thick; margin narrow, almost absent, or spreading, then forming wide sterile patches, up to 4 mm wide, white when fresh, whitish to grayish cream when dried, contrasting with the pore surface; pores surface cork-colored to pale brown (grayish orange, $6[\mathrm{C}-\mathrm{D}][3-4]$, café au lait, camel); pores round to slightly ellipsoid, (7-) 8-9 / mm, (75-) 80-110 (-115) $\mu \mathrm{m}$ wide (ave $=91 \mu \mathrm{~m})$; dissepiments entire, agglutinated, 35$80 \mu \mathrm{~m}$ thick, (ave $=48 \mu \mathrm{~m}$ thick); tubes layer single, up to 1 mm thick, whitish to pale cork-colored (pale grayish orange), with a corky consistency; context very reduced, to 0.2 mm thick.

Hyphal system dimitic, identical in the subiculum and the hymenophoral trama; generative hyphae hyaline, clamped, sparingly branched, 1.5-2.5 $\mu \mathrm{m}$ wide; vegetative hyphae of the skeleto-binding type, hyaline, strongly dextrinoid, cyanophilous; in the subiculum, skeleto-binding hyphae terminal, then with a poorly developed arboriform branching pattern, or occasionally intercalary; in the hymenophoral trama skeleto-binding hyphae with an variably developed arboriform branching pattern, densely intertwined, and difficult to separate, with a basal stalk, arising from a clamp, (10)-15-45 (-50) $\mu \mathrm{m}$ long (ave $=28 \mu \mathrm{~m}$), straight to geniculated, then with occasional lateral aborted processes, thickwalled but the lumen open, slightly swelling in $\mathrm{KOH} 4 \%$, progressively widening from $1.8-2.2 \mu \mathrm{~m}$ wide at the basal septum to $2.2-2.7 \mu \mathrm{~m}$ wide at the apex (ave $=$ $2.4 \mu \mathrm{~m}$), occasionally widened up to $3.2 \mu \mathrm{~m}$, and several lateral and apical/subapical (occasionally basal) branches, thick-walled, measured up to $120 \mu \mathrm{~m}$ long, not or once branched, 2.2-2.5 $\mu \mathrm{m}$ wide down to $1.5-2.0 \mu \mathrm{~m}$ wide in a thin-walled rounded tip. Basidia clamped at the basal septum; mature basidia seen mostly collapsed, hyaline, with 4 sterigmata; basidiospores broadly ellipsoid to broadly ovoid, with a small basal apicule, the apex truncate, thick-walled but with an apical germ pore, hyaline, faintly to moderately dextrinoid, cyanophilous, 0-1 gutta, 5.0-5.5 (-6.0) $\times(3.5-) 4.0-4.5 \mu \mathrm{~m}, \mathrm{R}=(1.1-) 1.2-1.4(-1.4)$, (ave $=5.2 \times$ $4.1 \mu \mathrm{~m}, \mathrm{ave}_{\mathrm{R}}=1.25$); chlamydospores absent.

Type of rot: white rot (presence of laccases positive when tested with syringaldazine [Harkin and Obst 1974]);

Substrate: on dead fallen branches (5-10 cm diam) of an unidentified angiosperm;

Distribution: known so far only from French Guyana.
Specimens examined: FRENCH GUYANA, CACAO MUNICIPALITY: Montagne de Cacao, approx. $04^{\circ} 34^{\prime} \mathrm{N}, 52^{\circ} 28^{\prime} \mathrm{W}$, on a dead fallen, rotten branch on the ground, covering the inferior side, 25 Jan. 2000, C. Decock FG-2154, in MUCL (MUCL 41995, Holotype; NY, O, Isotype) (culture ex-holotype MUCL 41995, CBS); KOUROU MUNICIPALITY: Montagne Saint Michel, on the hill above the carbet of Lionel Collado (Association Canopée), approx. $04^{\circ} 53^{\prime} \mathrm{N}$,
$52^{\circ} 47^{\prime} \mathrm{W}$, on a small dead, fallen and rotten trunk, suspended to a liana, 04 Jul. 2002, C. Decock FG-02-76, in MUCL (MUCL 43986) (culture ex. MUCL 43986).

Commentary. Perenniporia guyanensis is characterized by the combination of a cork-colored to greyish brown (coffee with milk) pore surface, small pores (Figs 4-6), dextrinoid basidiospores, and dextrinoid vegetative hyphae.

In the Neotropics, P. guyanensis could be compared to P. minutopora or P. cremeopora. It differs from P. minutopora in having smaller pores, slightly larger basidiospores (Table I), and strongly dextrinoid vegetative hyphae (not dextrinoid in P. minutopora, Decock and Ryvarden 2000). Perenniporia cremeopora has a distinctly whitish to pale cream pore surface (Decock \& Ryvarden 2000).

Outside of the Neotropics, P. guyanensis resembles superficially also P. djaensis Decock \& Mossebo (Decock \& Mossebo 2002). The latter is, so far, its closest relative in phylogenetic inferences based on a combined data set of partial LSU and ITS regions (sequence data set of >200 collections of Perenniporia of worldwide origin, unpubl. data). Perenniporia guyanensis shares with P. djaensis the cork-colored pore surface and similar basidiospores, both in size and shape (5.0-6.0 $\times 3.6-4.2 \mu \mathrm{~m}$, averaging $5.4 \times 3.9 \mu \mathrm{~m}$ in P. djaensis, Decock \& Mossebo 2002) but differs in having much smaller pores (3-4/ mm in P. djaensis,) and a different branching pattern of the vegetative hyphae that are poorly branched, almost skeletal-like (Decock \& Mossebo 2002).

The Neotropical species of Perenniporia with resupinate basidiomes have been dealt with in various publications (e.g. De Jesus \& Ryvarden 2010, Decock \& Ryvarden 1999b, 2000, Rajchenberg \& Wright 1982, Ryvarden 1983, 1984, 1987). Fifteen species are currently reported from the area. These are, in addition to P. guyanensis and P. albo-incarnata: P. amazonica De Jesus \& Ryvarden, P. aurantiaca (David \& Rajchenb.) Decock \& Ryvarden, P. chromatica (Berk. \& Cooke) Decock \& Ryvarden, P. cremeopora, P. gomezii Rajchenb. \& Wright, P. inflexibilis (Berk.) Ryvarden, P. isabellina (Pat. ex. Sacc.) Ryvarden, P. minutopora, P. parvispora, P. roseo-isabellina, P. sinuosa Ryvarden, P. tephropora (Mont.) Ryvarden, and P. xantha Decock \& Ryvarden.

Acknowledgements. Cony Decock gratefully acknowledges the financial support received from the Belgian State - Belgian Federal Science Policy through the BCCM research program (contract BCCM C4/10/013) and the FNRS-FRFC (projects \# 2.4551.99 and 2.4.544.10.F).

REFERENCES

CUNNINGHAM G.H., 1965 - Polyporaceae of New Zealand. New Zealand Department of Science and Industrial Research Bulletin 164: 1-304.
DE JESUS M.A. \& RYVARDEN L., 2010 - Studies in Neotropical polypores 28: Two new species from Amazonas. Synopsis Fungorum 27: 73-77.
DECOCK C. \& MOSSEBO D.C., 2001 - Studies in Perenniporia (Basidiomycetes, Aphyllophorales): African taxa. II. Perenniporia centrali-africana, sp. nov. from Cameroon. In E. Robbrecht, J. Degreef \& I. Friis (Eds), Plant systematics and phytogeography for the understanding of African biodiversity. Proceedings of the XVIth AETFAT Congress. Systematic and Geography of Plants (Belgium National Botanical Garden) 71: 607-612.
DECOCK C. \& MOSSEBO D.C., 2002 - Studies in Perenniporia (Basidiomycetes, Polyporaceae): African taxa. III. The new species Perenniporia djaensis and some records of Perenniporia for the Dja Biosphere Reserve, Cameroon. Systematic and Geography of Plants 72: 55-62.
DECOCK C. \& RYVARDEN L., 1998 - Microporellus straminellus comb. nov. and a note on Perenniporia stipitata. Cryptogamie Mycologie 19: 171-179.

DECOCK C. \& RYVARDEN L., 1999a - Studies in Perenniporia. Perenniporia detrita and its taxonomic synonyms. Mycologia 91: 386-395.
DECOCK C. \& RYVARDEN L., 1999b - Studies in Neotropical polypores 1. Some colored resupinate Perenniporia species. Mycological Research 103: 1138-1144.
DECOCK C. \& RYVARDEN L., 2000 - Studies in Neotropical polypores. 6. New resupinate Perenniporia species with small pores and small basidiospores. Mycologia 92: 354-360.
DECOCK C. \& RYVARDEN L., 2003 - Perenniporiella gen. nov. segregated from Perenniporia, including a key to neotropical Perenniporia species with pileate basidiomes. Mycological Research 107: 93-103.
DECOCK C. \& STALPERS J.A., 2006a - Proposal to conserve the name Perenniporia against Physisporus with a conserved type (Basidiomycota). Taxon 55: 227.
DECOCK 'C. \& STALPERS J., 2006b - Studies in Perenniporia: Polyporus unitus, Boletus medullapanis, the nomenclature of Perenniporia, Poria and Physisporus, and a note on European Perenniporia with a resupinate basidiome. Taxon 55: 759-778.
DECOCK C., HERRERA FIGUEROA S., \& RYVARDEN L., 2001 - Studies in Perenniporia. Perenniporia contraria and its presumed taxonomic synonym, Fomes subannosus. Mycologia 93: 195-203.
DECOCK C., VALENZUELA R. \& CASTILLO G., 2010 - Studies in Perenniporia s.l.: Perenniporiella tepeitensis comb. nov., an addition to Perenniporiella. Cryptogamie Mycologie 31: 419-429.
GIBERTONI T.B., RYVARDEN L. \& DE QUEIROZ CAVALCANTI M.A., 2004 - Poroid fungi (Basidiomycota) of the Atlantic rainforest in Northern Brazil. Synopsis Fungorum 18: 33-43.
GILBERTSON R.L. \& RYVARDEN L., 1987 - North American Polypores. Vol. 2. Fungiflora, Oslo, Norway: 437-885.
HARKIN J.M. \& OBST J.R., 1974 - Use of syringaldazine for detection of laccases in sporophores of wood-rotting fungi. Mycologia 66: 469-476.
KORNERUP A. \& WANSCHER J.H., 1981 - Methuen handbook of colour, Ed. 3, London, Methuen.
LOWE J., 1963 - A synopsis of Poria and similar fungi from the tropical regions of the world. Mycologia 55: 453-486.
NÚÑEZ M. \& RYVARDEN L., 2001 - East Asian Polypores. Vol. 2. Fungiflora, Oslo, Norway: 170522.

PATOUILLARD N.T. \& GAILLARD A., 1888 - Champignons du Venezuela et principalement de la région du Haut-Orénoque, récoltés en 1887 par M.A. Gaillard. Bulletin de la Société Mycologique de France 4: 7-46, pl. 6-13.
POPOFF O.F. \& WRIGHT J.E., 1998 - Fungi of Paraguay. I. Preliminary checklist of woodinhabiting polypores (Aphyllophorales, Basidiomycota). Mycotaxon 67: 323-340.
RAJCHENBERG M. \& WRIGHT J.E., 1982 - Two new South American species of Perenniporia (Polyporaceae). Mycotaxon 15: 306-310.
RAJCHENBERG M. \& DE MEIJER A.A.R., 1990 - New and noteworthy polypores from Paraná and São Paulo States, Brazil. Mycotaxon 38: 173-185.
RYVARDEN L., 1983 - Type studies in the Polyporaceae. 14. Species described by N. Patouillard, either alone or with other mycologists. Occasional Papers of the Farlow Herbarium 18: 1-39.
RYVARDEN L., 1984 - Type studies in the Polyporaceae. 16. Species described by J.M. Berkeley, either alone or with other mycologists from 1856 to 1886. Mycotaxon 20: 329-363.
RYVARDEN L., 1987 - New and noteworthy polypores from tropical America. Mycotaxon 28: 525541.

RYVARDEN L. \& GILBERTSON R.L., 1994 - European polypores. Part 2. Fungiflora, Oslo, Norway: 394-743.
RYVARDEN L. \& JOHANSEN I., 1980 - Preliminary polypores flora of East Africa. Fungiflora, Oslo, Norway: 1-636.
THIERS B., [continuously updated] - Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden's Virtual Herbarium. http:// sweetgum.nybg.org/ih/.

[^0]: * Basidiospores measurements from a basidiospores print; IT = Isotype; LR = Leif Ryvarden; PT = paratype

