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Abstract: Black leg, caused by the fungus Leptosphaeria maculans, is a widespread 

disease of winter canola (Brassica napus) in Oklahoma. Major resistance genes (Rlm) are 

expressed in seedlings and interact with avirulence genes in L. maculans (AvrLm) in a 

gene-for-gene manner. Little is known about the avirulence genes and race structure of 

the pathogen population in the southern Great Plains. Likewise, there is limited 

information about the presence of resistance genes in cultivars and hybrids grown in the 

region. The presence of avirulence alleles and the race structure of the L. maculans 

population were determined using a combination of pathogenicity tests on differential 

cultivars harboring resistance genes Rlm1 and Rlm2,3 and PCR amplification of 

avirulence alleles AvrLm1, AvrLm4-7, AvrLm6. Avirulence alleles AvrLm6 and AvrLm4-7 

were prevalent (100%) in the local population (N=95), whereas AvrLm1 and AvrLm2,3 

presence was 38% and 9%, respectively. Four races (Av1,2,3,6,4-7; Av1,6,4-7; Av2,3,6,4-

7; Av6,4-7) were identified in the population. Races Av6,4-7 (56%) and Av1,6,4-7 (35%) 

were the most predominant and were further characterized for AvrLm4, AvrLm5 and 

AvrLm6 based on the phenotype interaction on differential cultivars harboring Rlm4 and 

Rlm5,6. This characterization resulted in a reclassification into three races Av1,6,7,(5); 

Av1,4,6,(5,7) and Av6,7,(5) which were used to screen 53 winter canola cultivars, hybrids 

and breeding lines for seedling resistance. Most (62%) entries were susceptible to all 

three races and lacked specific resistance genes. Several (23%) conventional (non-

glyphosate tolerant) cultivars and hybrids were heterogeneous in resistance to one or 

more races. Glyphosate-tolerant entries currently grown in the region generally lacked 

major resistance genes, except for DKW46-15 which had heterogeneous resistance from 

Rlm4 and Rlm7. The hybrids Dimension, Safran, Visby, DK Sensei, and the rapeseed 

cultivar Rossini (9%), were resistant to all races possibly due to the presence of Rlm6 

and/or Rlm7. Unknown resistance was found in 6% of the entries, which suggested the 

presence of other resistance genes not assessed in this study. Understanding the race 

structure of the pathogen population will be useful for development of resistance and 

effective deployment to control black leg in winter canola. There is a need to grow 

cultivars or hybrids with effective major gene resistance in Oklahoma and surrounding 

states. 
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CHAPTER I 
 

 

INTRODUCTION 

Canola (Brassica napus L.), is a special type of rapeseed which was bred to reduce the 

concentration of erucic acid and glucosinolates and to produce 40% oil content in the seeds 

(Raymer, 2002). Canola is an economically important oilseed crop in many countries (Downey, 

1971; Rakow, 2004) and it has become the second largest source of vegetable oil in the world 

after soybean (USDA ERS 2012). Canola is highly desirable because it produces one of the 

healthiest edible oils and the highest protein content for animal feed (U.S. Canola Association 

n.d.).  

Canola is extensively cultivated in Europe, Asia, Australia and Canada and to a lesser 

extent in the United States. In the U.S., canola is a relatively new crop and its production has 

steadily increased over the past three decades. In 2014, the national acreage planted to canola was 

1.7 million of which 270,000 acres were planted in Oklahoma (USDA NASS 2014). Oklahoma 

has been growing winter-type canola for the past ten years and is now the second leading canola 

producing state after North Dakota. 

Black leg, caused by Leptosphaeria maculans (Desm.) Ces & DeNot, is a fungal disease 

that attacks several Brassica species. The disease has the potential to severely damage canola, 

causing a reduction in yield of up to 50% in fields planted with susceptible cultivars and where 

disease pressure is high (Damicone et al. 2012; Kutcher et al. 2010). Canola is very susceptible to 

black leg infection at the seedling stage, however symptoms
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can be observed during all stages of plant development (Rimmer et al. 2007). The disease first 

appears as leaf spot lesions on the leaves. Stem cankers develop later during ripening stages of 

crop development. Stem cankers may girdle stems and reduce yields by causing lodging and 

premature ripening. Leaf spots are circular, greyish in color and produce numerous dark fruiting 

bodies that impart a speckled appearance within the spots. Stem cankers that usually form at the 

base of stems, are oval in shape, greyish to tan in color, surrounded by a dark-brown margin, and 

often contain fruiting bodies (Rimmer et al. 2007).  

Leptosphaeria maculans is a member of the class Dothideomycetes, order Pleosporales, 

which includes several important plant pathogens (Berbee 2001). In the past, the fungi causing 

black leg on canola were considered a single species. Variability was then observed in virulence 

and the species was divided into highly and weakly aggressive strains. However due to additional 

polymorphisms observed in cultural characteristics and genetics, it was reclassified into two 

closely related species, L. maculans and L. biglobosa (Rouxel and Balesdent 2005). L. maculans 

is the virulent species which causes damaging cankers. L. biglobosa is a weakly virulent species 

that produces smaller leaf spots with less sporulation and only superficial stem cankers.  

L. maculans is a hemi-biotrophic pathogen on B. napus. Necrotrophic infection of leaves 

is often followed by periods of symptomless endophytic colonization, during which the mycelia 

grows through the vascular system of the petiole and into the stem. Finally, the fungus turns 

necrotrophic at the base of the stem and the upper root causing a stem canker, which may girdle 

the stem and lodge the plant (Rimmer et al. 2007).  

Severe epidemics of black leg in other Brassica crops have occurred since the 19th 

century (Henderson 1918). However, black leg became a major concern after the expansion of 

canola as one of the major oilseed crops in the mid-20th century (Rouxel and Balesdent 2005). 

Today, black leg is endemic in most oilseed rape and canola growing regions, including 
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Oklahoma. It can potentially damage the crop when the genetic resistance of the cultivars is 

inadequate and the environmental conditions are favorable (high humidity and cool temperatures) 

for the production of ascospores which are the primary inoculum of the disease (Rouxel and 

Balesdent 2005). Airborne ascospores result from the colonization of stubble from the previous 

canola crops by the fungus. Because farmers widely practice minimum tillage, stubble is left on 

the soil surface providing a readily available inoculum source. In the U.S., black leg of canola 

was first identified in 1989 when an epidemic caused by a pathogenicity group 4 (PG-4) strain 

developed in southern Kentucky (Mengistu et al. 1990).  In North Dakota, black leg was 

identified in 1991 on spring-type canola caused by weakly virulent strains (Lamey and Hershman 

1993). However in 2003, new surveys revealed that the more virulent strains were common in 

North Dakota and Canada (Chen and Fernando 2006). In Oklahoma, the disease was first 

identified in 2009 on winter-type canola and both the highly virulent and weakly virulent species 

were present in the state (del Rio Mendoza et al. 2011). Sexual recombination of the fungus on 

the stubble each year may have led to the development of new pathotypes. 

Strategies for management of the disease include application of fungicides and 

deployment of resistant cultivars or hybrids. Genetic resistance is considered the most efficient 

way to manage the disease. Major-gene resistance, also known as single-gene or race-specific 

resistance, is expressed from the seedling to the adult stage of the plant by one or a few specific 

resistance genes (Delourme et al. 2004). Resistance genes (Rlm) in B. napus interact with 

avirulence (AvrLm) genes in L. maculans in a gene-for-gene manner. The interaction results in a 

resistant reaction, or no disease, whenever a dominant resistance gene in the plant and its 

corresponding dominant avirulence gene in the pathogen are present (Balesdent et al. 2005). 

Conversely, the lack of a Rlm gene in the plant or a recessive gene for virulence (avrlm) in the 

pathogen results in a susceptible reaction or the expression of disease. 
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Resistance genes in B. napus have been characterized based on the genetic identification 

of their corresponding avirulence gene AvrLm in L. maculans (Rouxel and Balesdent 2005). 

Deployment of B. napus resistance genes have proven to be very effective in L. maculans 

populations that possess the corresponding avirulence genes. However, the repeated cropping of 

cultivars with specific resistance genes in extended areas has created a high selection pressure on 

the pathogen population (Rouxel et al. 2003a). The breakdown of Rlm1 in France and 

development of  ‘Surpass’ resistance in Australia caused important economic losses when 

virulent populations of L. maculans became prevalent (Li et al. 2003; Balesdent et al. 2006; 

Rouxel et al. 2003a; Rouxel and Balesdent 2005). The pathogen may adapt to resistance genes 

and overcome resistance in as few as three to four years after their first introduction (Dilmaghani 

et al. 2009).  

The pathogen should be regularly monitored to assess variation in the virulence structure 

of the population in geographic locations where specific resistance has been deployed (Kutcher et 

al. 2010). Knowledge of the virulence structure is crucial to detect races with the ability to 

overcome specific resistance genes, and to choose the best resistance sources to be used locally 

(Dilmaghani et al. 2009). To date, studies describing the avirulence patterns and race structure of 

the pathogen population have been done in few countries in Europe, Australia, and the Americas 

(Balesdent et al. 2005; Balesdent et al. 2006; Dilmaghani et al. 2009). However there is no 

information on the race structure of L. maculans in Oklahoma or the southern Great Plains. 

Knowledge of the frequency of the avirulence (Avr) alleles and the common races of the pathogen 

is needed for identifying and developing canola cultivars resistant to black leg. This will be 

helpful for canola breeders to develop new canola cultivars with specific Rlm genes based on the 

avirulence Avr alleles currently present in a region. Selecting effective resistance genes to deploy 

would contribute to the effective management of black leg in the region.  
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Isolates of L. maculans characterized for avirulence alleles can be used to infer the 

presence of resistance genes by inoculating B. napus cultivars whose resistance is unknown. 

European and Canadian oilseed rape cultivars have been characterized for resistance genes 

(Rouxel et al. 2003b; Kutcher et al. 2010); however, there is a lack of information on the specific 

resistance Rlm genes present in commercial or conventional cultivars of winter canola grown in 

Oklahoma and the southern Great Plains. Screening winter canola cultivars, hybrids and breeding 

lines with local L. maculans races to identify or infer the presence of resistance Rlm genes is 

critical for deployment of resistant cultivars and management of the disease. Breeders and seed 

companies will know which if any Rlm genes are present in the cultivars they are developing, 

which Rlm genes are lacking in their cultivars, and whether the Rlm genes in their cultivars would 

be effective or not in the region. Selecting cultivars with known Rlm genes effective against the 

local Avr alleles in the pathogen population by canola growers will facilitate control of the 

disease in an environmentally friendly manner, reduce the application of fungicides, and increase 

yield and profits.    

The objectives of this thesis research were: i) to determine the frequency of avirulence 

(Avr) alleles in the local L. maculans population in order to define its race structure; and ii) to use 

predominant and broadly virulent races to identify or infer the presence of resistance genes in 

winter canola cultivars grown in the region or breeding lines under development.  
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CHAPTER II 
 

 

LITERATURE REVIEW 

Canola  

Canola (Brassica napus L.), a member of the family Brassicaceae related to rapeseed, 

mustard, cabbage, and oilseed radish, is an economically important oilseed crop in many 

countries around the world (Downey 1971; Rakow 2004). Canola is a special type of rapeseed 

that was first bred in Canada to reduce the concentration of undesirable components to ≤ 2% 

erucic acid in the oil and 3 macromoles of aliphatic glucosinolates in the meal (Raymer 2002). 

The name canola is a registered trademark of the Canola Canada Association which stands for 

“CANadian Oil Low Acid” (Raymer 2002). In Europe, where the term canola is not broadly 

accepted, the terms “double low” or “00” oilseed rape are used. 

 Canola seed at maturity contains about 40% oil. The oil consists of about 6% saturated 

fat, which is the lowest concentration among other vegetable oils and high concentration of 

mono-unsaturated fat (oleic acid). The low production of erucic acid, aliphatic glucosinolates and 

saturated fat have ranked canola as one of the healthiest edible oils and among the top three 

oilseed crops worldwide. Canola meal obtained after crushing the seeds is highly desirable as a 

high protein supplement for livestock. It contains about 38% crude protein and 11% crude fiber 

(U.S. Canola Association, n.d.).   
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Canola oil differs considerably from traditional rapeseed oil in quality characteristics. 

Specialty canola oil refers to canola cultivars with improved edible oil profiles, which are low in 

erucic acid, have high temperature stability, and improved shelf life. Whereas, industrial rapeseed 

oil, comes from oilseed rape cultivars that produce oil with 45% or more erucic acid and meals 

with low protein content. Industrial rapeseed oil is used in industry as lubricants and in hydraulic 

fluids, but not for edible purposes (Raymer 2002).  

Canola quality oilseed rape has been developed in three different Brassica species. 

Brassica napus, also known as Argentine rape, Swede rape, colza or rapeseed; Brassica rapa 

(formerly known as Brassica campestris) commonly called Polish canola, turnip rape, or field 

mustard; and Brassica juncea which is the canola quality brown mustard (Downey 1971; Rimmer 

et al. 2007). Seeds of these species commonly contain 40% or more oil and produce meals with 

35 to 40% protein (Raymer 2002).  

 Brassica napus L. is the most common canola grown and is widely adapted to cool 

seasons. B. napus is an annual or biennial plant, normally 0.5 to 1.3 m tall with branching stems, 

yellow flowers and globular black seeds produced in elongated pods. The basal rosette leaves are 

usually blue-green, lobed, and short-petiolate. The stem leaves are smaller and usually entire. 

Yellow flowers are arranged as a raceme with 4 petals, 1 to 12 ovules and 6 stamens each. Canola 

is primarily self-pollinated, but has entomophilous flowers that are capable of being both self and 

cross-pollinated (Williams et al. 1986). The blooming period differs depending on the type of 

variety. Spring types bloom without vernalization, but winter types rely on a vernalization period 

for flowering. Generally only half of the canola flowers form seed pods. Seeds are arranged in 

pods, they are nearly spherical and they can be reddish-brown, brown or black (Gulden et al. 

2003). 
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Origin and taxonomy  

 Brassica is one of the oldest genera of cultivated plants. Based on the distribution of the 

wild species, it is believed that the genus Brassica originated in the Mediterranean-Middle 

Eastern region. China is considered a secondary center of origin since Brassica species were 

introduced into the region thousand years ago (Rimmer et al. 2007).  

The brassica crops comprise six economically important and interrelated species with 

genetic and morphological diversity. The interrelation between the six species has been described 

by Morinaga in 1934 and confirmed by U in 1935 (Morinaga 1934; Raymer 2002; U 1935). 

Three species are diploids and include B. rapa (genome AA, N=10), B. nigra (genome BB, N=8) 

and B. oleracea (genome CC, N=9). The remaining three species are amphidiploids resulting 

from combining a set chromosomes from each parental taxa and include B. juncea (genome 

AABB, N=18), B. carinata (genome BBCC, N=17) and B. napus (genome AACC, N=19) 

(Rimmer et al. 2007).  

Cultivation 

 Canola grows best on well-drained soils with a pH between 5 and 6. Canola has high 

nitrogen requirements like most non-legumes. It has a low requirement of phosphorous similar to 

that of wheat. Good levels of potassium will help increase the oil content in the seed (Rimmer et 

al. 2007).  

Canola can be seeded in fall or spring depending on the type. For winter-type canola, 

timing of planting in fall is important. The presence of six true leaves at the beginning of winter is 

optimal for survival. Planting spring-type canola should start as soon as the soil texture and 

weather conditions permit. Winter-type canola requires 700 to 800 hours of chilling temperature 

before bolting. Spring type canola needs very little or no winter chill for bolting (Buntin et al. 

2013). Water requirement through the growing season is 41 to 46 cm. Oilseed rape is susceptible 
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to shattering, so it is often harvested by swathing when about one third of the seed have turned 

dark. The crop is then windrowed for about 10 days prior to harvesting with a combine (Rimmer 

et al. 2007). 

Canola production  

Canola is the second largest source of vegetable oil in the world after soybean. In 2008 

and 2009, the world production of rapeseed/canola was 15 percent of the total world oil crop 

production (USDA ERS 2012). Canola is extensively cultivated in Europe, Canada, Asia, and 

Australia and to a lesser extent in the United States. Brassica napus, B. rapa and B. juncea are the 

most commonly commercialized species. Spring-type canola is mainly produced in Canada, 

northern Europe, Australia and northern and southeastern parts of the United States. Winter-type 

canola is grown in most of Europe, parts of China, and the southern Great Plains of the U.S., 

including Oklahoma (Raymer 2002). 

In the United States, canola is considered a relatively new crop, yet its production has 

steadily increased over the past three decades after the FDA recognized canola oil as a safe edible 

oil. According to the U.S. Department of Agriculture, over 1.3 million acres of canola were 

planted in 2013 nationwide, and increased up to 1.7 million acres in 2014. Canola is a new crop 

introduced in Oklahoma about ten years ago. Acreage increased to 205,000 acres in 2013 and 

270,000 acres in 2014 (USDA NASS 2015). Oklahoma is now the second leading canola 

producing state after North Dakota.  However, the U.S continues importing canola just to meet 

the increasing consumer demand for healthier edible oils (Boyles and Sanders, 2009). 

U.S. canola production is concentrated in the northern Plains where a drier, shorter 

growing season makes corn and soybean production less attractive (USDA ERS 2012). However, 

canola is also well-adapted to the southern Great Plains. Both spring and winter types of canola 

are grown in the United States. Winter canola has a greater yield potential than spring types. 
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Spring canola has a shorter grain-filling period because it flowers one month later than the winter 

type after vernalization. Winter-type cultivars are the most commonly grown in the southern 

Great Plains (Boyles and Peeper n.d.). The production of winter canola has been well accepted in 

Oklahoma and the Great Plains because it has shown to be a viable and profitable rotational crop 

with winter wheat. Wheat has been traditionally grown for decades in the region. Thus, the 

monoculture practice and the lack of crop rotation has increased the appearance of weeds and 

diseases that have significantly reduced wheat yields. Most importantly, grassy winter weeds that 

are resistant to most herbicides build up in continuous wheat fields. Rotating fields with 

glyphosate-tolerant winter canola facilitates effective weed control in contaminated fields. 

Therefore, winter canola has been adopted as a sustainable rotational crop with winter wheat in 

the region, since it has the same growing season and it has been shown to increase wheat yields in 

the following season (Boyles and Peeper n.d.). It is recommended to plant canola only once every 

three to four years on the same field. 

Black leg disease   

 Black leg (also known as Phoma stem canker), caused by the ascomycete fungus 

Leptosphaeria maculans (Desm.) Ces. & DeNot, is an economically important disease of canola 

(Brassica napus L.) in most regions of the world where the crop is grown (Rouxel and Balesdent 

2005). This disease attacks several Brassica species such as cabbage, cauliflower, and broccoli; 

and has the potential to severely damage canola. Black leg can cause a reduction in yield of up to 

50 percent in fields planted with susceptible cultivars where disease pressure is high (Damicone 

et al. 2012; del Rio Mendoza et al. 2012; Kutcher et al. 2010; West et al. 2001). Yield losses 

attributed to black leg have been reported in Europe, Australia, Canada and some parts in the 

United States (Balesdent et al. 2005; Hayden et al. 2007; Mengistu et al. 1991). 
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History of Black leg 

Severe epidemics of black leg or stem canker in cabbage, cauliflower, and rapeseed have 

occurred in Europe, Australia and North America during the 19th century and into the 20th century 

(Henderson 1918). Black leg became a major concern after the expansion of oilseed rape and 

canola as major oilseed crops in the mid-20th century (Rouxel and Balesdent 2005). Winter 

rapeseed has been severely affected by this disease in Europe since 1950. Similarly, the rapeseed 

industry almost vanished in western Australia in 1972, two years after introducing Canadian 

spring rapeseed cultivars to the area (Gugel and Petrie 1992). In Canada in 1975 a virulent strain 

of the fungus was discovered in Saskatchewan and now it is widespread in most regions that 

produce the crop, often causing important economic losses (Gugel and Petrie 1992). Today, black 

leg is endemic in most oilseed rape growing regions, except Asia. It can potentially damage the 

crop when the genetic resistance of the cultivars is inadequate and the environmental conditions 

are favorable (high humidity and cool temperatures) for the production of ascospores which are 

the primary inoculum of the disease (Rouxel and Balesdent 2005).  

L. maculans isolates were originally classified into pathogenicity groups, based on a 

standardized pathogenicity test on cotyledons of differential cultivars (Mengistu et al. 1991). The 

cotyledon assay permitted classification of isolates of the pathogen into four pathogenicity groups 

(PGs) from the highly virulent PG-4 to the weakly virulent PG-1 (Mengistu et al. 1991). In the 

United States, black leg was first identified in 1989 when an epidemic caused by a PG-4 strain 

developed in southern Kentucky (Mengistu et al. 1990). In 1991, black leg was identified on 

spring canola in North Dakota caused by strains belonging to the weakly virulent PG-1 and PG-2 

isolates (Lamey and Hershman 1993). However, in 2003, a survey of isolates in the state revealed 

for the first time the presence of the more virulent PG-3 and PG-4 strains which were previously 

found in western Canada (Bradley et al. 2005; Chen and Fernando 2006; Fernando and Chen 

2003). To date, PG-4 is the predominant pathogenicity group in Canada and North Dakota (Nepal 
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et al. 2014). In Georgia, the disease was first observed on winter canola late in the 1992-1993 

cropping season at several locations (Buntin et al. 2013). In Oklahoma, the disease was first 

identified in 2009 on winter type canola caused by strains belonging to weakly virulent (PG-1) 

and highly virulent pathogenicity groups (PG-4) (del Río Mendoza et al. 2011). An increase in 

the incidence and prevalence of black leg caused by highly virulent strains of the fungus has 

important implications to canola breeding programs, management of black leg and the canola 

industry in the U.S. Therefore, research has focused on the characterization of the strains of the 

pathogen, identifying genetic resistance, assessment of fungicides, and yield loss studies in the 

region (Damicone et al. 2012). 

Symptoms 

L. maculans is a hemibiotrophic pathogen on B. napus and in most brassica hosts. In 

winter canola L. maculans oversummers as a saprophyte on infested stubble (crop residue), where 

it undergoes sexual recombination and forms pseudothecia and ascospores (sexual spores). 

Airborne ascospores are the primary inoculum for black leg epidemics. Airborne ascospores 

result from the colonization of stubble from the previous canola crops by the fungus. Because 

farmers widely practice minimum tillage, stubble is left on the soil surface providing a readily 

available inoculum source. Sexual recombination of the fungus on the stubble each year has led to 

the development of new pathotypes. Ascospores can be transported in air currents up to 5 km 

(Hall 1992) where they can land on cotyledons or true leaves and cause infections via stomata or 

wounds (Rimmer et al. 2007). Ascospores can be discharged from infected stubble anytime from 

one week to more than a year after harvest (Hershman and Perkins 1995). Previous studies 

reported that L. maculans could survive and discharge ascospores for at least 3 to 5 years after 

harvest (Alabouvette and Brunin 1970; McGee and Petrie, 1979; Petrie 1978). Discharge of 

ascospores is common during fall and the beginning of winter, which coincides with the time at 

which fall-seeded canola is the most susceptible to infection (Hershman and Perkins 1995).  
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After leaf infection, the fungus becomes necrotrophic and causes leaf spots. Lesions are 

round or irregularly shaped, becoming necrotic and greyish with age. Lesions may have a dark 

margin and produce pycnidia in the center of the lesions, which appear as black specks. Under 

moist and warm conditions, single-cell conidia (asexual spores) are produced in a pink ooze 

exuded by pycnidia which are dispersed at short distances by rain-splash (Hayden et al. 2007; 

Rimmer et al. 2007). 

After leaf penetration, the fungus endophytically colonizes the plant. Mycelia grow in the 

vascular tissue from the site of entry on the leaves to the petiole, and continue into the basal stem 

(Hayden et al. 2007). During the ripening stages of crop development near the end of the growing 

season, the fungus turns necrotrophic at the base of the stem and the upper root, causing a stem 

canker. Stem lesions are usually oval, with a grey to tan colored center and dark margin, and 

internally the xylem is decayed and blackened. Pycnidia often form in stem cankers. Severely 

infected stems become malformated and brown to grey in color as decay of the basal stem 

advances. Finally, the stem becomes girdled, plants ripen prematurely and the crop is more likely 

to lodge (Rimmer et al. 2007). Seed stalks and pods can also be infected by spores that land on 

upper plants surfaces. Symptoms are gray to tan lesions, often with pycnidia, and surrounded by a 

dark border (Rimmer et al. 2007).  

Causal Agent 

 Leptosphaeria maculans (Desm.) Ces. & De Not. (anamorph Phoma lingam Tode) was 

first described by Tode in Germany in 1791, who reported black leg on dried red cabbage stems 

(Brassica oleracea) and named the pathogen Sphaeria lingam (Henderson 1918). In France in 

1849, Desmazieres recognized the fungus on living cabbage plants and named the pathogen 

Phoma lingam (Henderson 1918; Rouxel and Balesdent 2005). In 1956, Smith first discovered 

the perfect (sexual) stage of P. lingam and named it Leptosphaeria napi, later changing it to 
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Leptosphaeria maculans (Smith and Sutton 1964). At present, L. maculans is a member of the 

class Dothideomycetes, order Pleosporales which includes other important plant pathogens from 

the genera Pleospora, Alternaria, Venturia, Cochliobolus, among others (Berbee 2001). 

In the past, the fungus causing stem canker or black leg on crucifers, more specifically on 

oilseed rape and canola, was considered a single species. Variability was then observed in 

virulence and the species was divided into highly and weakly aggressive strains. However due to 

additional polymorphisms observed in cultural characteristics and genetics, it was reclassified 

into two closely related species, L. maculans and L. biglobosa (Rouxel and Balesdent 2005). This 

species complex resulted in a division into two groups, highly aggressive and weakly aggressive, 

or also termed as virulent and avirulent, group A and group B, or Tox+ and Tox0 (West et al. 

2001). These species may infect the same host, sometimes the same individual. However, they 

exhibit differences in cultural characteristics, genetics, toxin (sirodesmin) production, and the 

symptoms they cause on hosts (Kaczmarek and Jedryczka 2011).   

Leptosphaeria maculans (group A) is a highly virulent fungus that can attack plants at all 

ages causing damaging stem cankers and significantly affecting yield, while  Leptosphaeria 

biglobosa (group B) is recognized as a weakly aggressive pathogen that and generally affects 

plants later in the season by causing stem lesions that minimally impact yield (Shoemaker and 

Brun 2001). 

Leptosphaeria maculans morphology 

L. maculans is a heterothallic species and displays some variability in cultural 

characteristics and pathogenicity. The fungus produces a range of phytotoxins known as 

sirodesmins. According to Boerema et al. (2004), L. maculans produces two types of pycnidia in 

vivo. Pycnidial type I which develops in leaf spots, stems, pods, and seed, is variable in shape 

from subglobose to flask-shaped with broad base and variable in size from 150 to 400 µm in 
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diameter. At maturity, pycnidial type I usually develops one distinct black poroid papilla which 

may grow into a long neck. Pycnidial type II, present in woody parts of old crop residue, is highly 

variable in shape and size, mostly suglobose with an irregular flat base. Type II pycnidia are 

relatively large and range in size from 200 to 1000 µm in diameter, non-papillate or only slightly 

papillate, with a narrow pore or opened by rupture. Conidia are ellipsoidal, occasionally with 2 

small polar gutulles 2.5-5 x 1-2 µm. Pseudothecia develop in the subepidermis of stems while 

oversummering and can reach a size of 600 µm in diameter. Asci are 100-150 x 12-16 µm, 8-

spored, quadriseriate above and biseriate below. Ascospores are 35-70 x 4.5-8 µm, narrowly 

fusiform, 5 septate, and yellowish-brown with guttules (Boerema et al. 2004).  

 In vitro, L. maculans colonies are slow growers on oatmeal agar reaching 1.5 to 2.5 cm 

diameter after 7 days with regular and irregular border, usually with abundant aerial mycelium 

varying in color from white, grey, green or brown. Pycnidial type I is abundant in or on agar, 

mostly globose-papillate, black and relatively small at 150 to 250 µm in diameter. In old cultures, 

thickened pycnidial walls are common (Boerema et al. 2004).  

Leptosphaeria biglobosa morphology  

Boerema et al. (2004), classified L. biglobosa under the unnamed phoma-anamorph of 

Leptosphaeria sensu lato group. In vitro, L. biglobosa produces thin walled pycnidia on and in 

the agar that are globose papillate, 150 to 400 µm in diameter, black or greyish brown in color. 

The conidial matrix is reddish brown. Conidia are subcilindrical, straight biguttulate, hyaline, and 

4-5 x 1.5-2 µm. Pseudothecia possess a long neck that is swollen on the upper part (Boerema et 

al. 2004). Colonies of L. biglobosa are fast growers on oatmeal agar, (5 to 7 cm in 7 days) are 

white or grey in color and characterized by a yellow-brown discoloration on the agar which can 

vary from pale straw to cinnamon color (Boerema et al. 2004) 
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Epidemiology  

 Environmental conditions can influence the production of ascospores. Ascospores are 

discharged during the months when temperatures range from 8o to 15oC and relative humidity is 

high.  In the northern part of the United States and Canada, ascospores are dispersed during May 

to July when spring type canola is most susceptible (Rimmer et al. 2007). In France and regions 

of the U.S. where winter type canola is grown, the period of ascospore dispersion occurs during 

fall and the first months of winter, when winter canola is most susceptible to infection (i.e plants 

that are at or before 6 leaf stage) (Alabouvette and Brunin 1970; Hershman and Perkins 1995).  

Minor ascospore discharges occur in the spring from February to April in the year after the crop 

was planted (Hershman and Perkins 1995). Ascospore biology has been modeled and used to 

predict disease outbreaks in areas where canola is grown. 

  Temperature influences the appearance of symptoms on infected leaves. Above 20oC, 

lesions mature rapidly and temperature is the optimal pycnidial development on leaf spots, and 

for pycnidial and pseudothecial development on stems cankers. At temperatures at or below 10oC, 

colonization is symptomless in the plant (Rimmer et al. 2007). 

Disease Management  

 Strategies to manage black leg on brassica crops include cultural practices, application of 

fungicides, and deployment of resistant cultivars or hybrids. Cultural practices such as crop 

rotation, management of stubble (old crop residue), and use of certified seeds help decreasing the 

risk of infection. Rotation with non-host crops effectively reduces the pathogen population. The 

length of an effective crop rotation varies from 3 to 4 years between host crops. A shorter rotation 

results in an increased amount of infested stubble in the field (West et al. 2001). Infested stubble 

on the soil surface available for ascospore production can be reduced by sanitation, removal or 

deep tillage. Buried residues decompose faster and the soil interfers with spores release, however, 
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deep tillage is not a recommended practice anymore because it increases soil erosion and quality 

(West et al. 2001). In Europe, Australia and North America a greater use of minimum tillage is 

recommended (West et al. 2001). Flooding soils for 6 to 10 days can effectively eliminate the 

pathogen from the residues (Rimmer et al. 2007). In China and India, black leg is not considered 

an important problem because the entire plant is removed at harvest and fields are flooded during 

rice production the next season. The utilization of disease-free seed is recommended in areas 

where black leg has not been reported to prevent introducing the pathogen or new races of the 

pathogen to new areas. Adjusting the planting date is also a strategy to reduce the risk of infection 

by released ascospores. In France, early sowing is recommended to allow the crop to have a 

sufficient number of leaves in order to evade or survive the infection by ascospores at its most 

sensitive stage (Le Page 1995; West et al. 2001).   

Combinations of fungicide treatments such as seed treatments and foliar sprays are used 

for management of black leg. Seed treatment with fungicides such as benomyl, flutriafol, thiram, 

and iprodione are used to eradicate the pathogen from the seed in Canada, Europe, Australia 

(West et al. 2001). Foliar sprays with the fungicide benomyl in combination with a cultivar with a 

low level of resistance or no resistance was not effective against stem canker in Australia (Brown 

et al. 1976; West et al. 2001). Similarly, in Canada, propiconazole has not provided adequate 

levels of stem canker protection.  In Europe, a combination of foliar sprays with difenoconazole 

plus carbendazim or flusilazole plus carbendazil, has been effective for the control of stem 

canker. The higher yields obtained in Europe justify the application of fungicides (West et al. 

2001). In the U.S., several fungicides have been registered for black leg control including 

azoxystrobin, picoxystrobin, prothioconazole, pyraclostrobin, and a combination of 

pyraclostrobin and fluxapyroxad (Damicone 2015). Seed-treatment fungicides registered for 

control of black leg include azoxystrobin, trifloxystrobin, difenconazole, fludioxanil, carboxin 

and metalaxyl (Damicone 2015).  
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However, fungicides are effective only for a limited period of time, due to degradation, 

leaf expansion, and growth of new untreated leaves. Therefore it is important to correctly time 

applications (West et al. 2000; West et al. 2001). In addition, after a certain growth stage, some 

authors suggest that it is unnecessary to apply foliar fungicides because there would not be 

sufficient time for the pathogen to cause severe stem cankers that affect yield (Hammond and 

Lewis 1986; McGee and Petrie 1979). Others believe that the critical growth stage for applying a 

fungicide is difficult to identify because it varies depending on the environmental conditions. 

Therefore, use of forecasting systems to optimize the use of fungicides for black leg control are 

recommended (Fitt et al. 1997).  

The most effective strategy to manage black leg disease is the planting of cultivars with 

genetic resistance. Using resistant cultivars harboring different specific resistance genes has been 

suggested for sustainable management of black leg. At present, both vertical and horizontal types 

of resistance have been identified in B. napus and have been used to develop resistant cultivars. 

Cultivars with moderate to high resistance are being used in Australia, Canada, and Europe (West 

et al. 2001). However, the breakdown of race-specific resistance has been reported in different 

countries as a consequence of planting single gene resistance where the inoculum pressure is 

high. The increase of inoculum pressure is due to the short period of rotations between oilseed 

rape crops, in combination with use of minimum tillage of the fields. The pathogen undergoes 

sexual recombination each year on stubble left on the soil surface which may favor the rapid 

ability of the fungus to adapt to new resistance genes. 

Genetic resistance  

Genetic resistance is considered the most environmentally friendly and efficient method 

of control of black leg (Balesdent et al. 2001). Two types of genetic resistance have been 

distinguished in canola, polygenic and single gene resistance. Polygenic resistance, also known as 
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quantitative, horizontal, or durable resistance occurs at the adult stage of the plant and confers 

partial resistance to the disease. It is mediated by a combination of multiple, generally 

uncharacterized, resistance genes which confer a moderate level of resistance that is broadly 

effective (Balesdent et al. 2001). Single-gene or major-gene resistance, also known as qualitative, 

vertical or race-specific resistance is expressed from the seedling to the adult stage of the plant by 

a single or a few specific resistance genes (Delourme et al. 2004; Marcroft et al. 2012). Adult-

plant resistance is determined by evaluating the severity of stem and crown cankers in the field at 

the end of the season; while seedling resistance is assessed by evaluating leaf spot severity on 

cotyledons or young leaves under controlled conditions (Balesdent et al. 2001). Race-specific 

resistance has great potential for avoiding the formation of stem cankers because it prevents the 

pathogen from entering the plant, which otherwise would grow systemically through the leaf, 

petiole, and then stem to cause a stem canker (Balesdent et al. 2001; Hammond et al. 1985). 

Screening for the latter type of resistance is the main focus of this research.   

L. maculans has a gene for gene interaction with B. napus, where the outcome of the 

infection (resistance or susceptibility) depends on the presence of a major gene for resistance 

(Rlm) in the plant and a corresponding avirulence (Avr) gene in the pathogen (Balesdent et al. 

2005; Marcroft et al. 2012). Conversely, the lack of a dominant resistance gene in the plant or a 

recessive gene for virulence (avrLm) in the pathogen results in a susceptible reaction or the 

expression of disease. For example, resistance gene Rlm1 interacts with AvrLm1, resulting in an 

incompatible reaction (no disease) between the plant harboring the Rlm1 and the isolate harboring 

the AvrLm1 by inhibiting infection from the germinated ascospores or conidia and subsequent 

development of leaf lesions (Fitt et al. 2006). 

To date, 17 major resistance genes have been identified (Rlm1 to Rlm11, LepR1 to 

LepR4, BLMR1, and BLMR2) in Brassica species conferring resistance to Leptosphaeria 

maculans (Marcroft et al. 2012; Van de Wouw et al. 2014b). Although only one, LepR3, has been 
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cloned (Larkan et al. 2013).  Most of these genes have been positioned on B. napus linkage maps 

and have shown to be organized in clusters (Delourme et al. 2006; Delourme et al. 2004). Rlm1, 

Rlm3, Rlm4, Rlm7 and Rlm9 were shown to belong to linkage group 10 (Howlett 2004).  Of the 

corresponding avirulence genes in L. maculans, five have been cloned and sequenced (AvrLm1, 

AvrLm4-7, AvrLm6, AvrLm11 and AvrLmJ1) (Fudal et al. 2007; Gout et al. 2006; Parlange et al. 

2009; Balesdent et al. 2013; Van de Wouw et al. 2014a). Balesdent et al. (2002) reported the 

clustering of several Avr genes into two main clusters, “AvrLm1-AvrLm2-AvrLm6” and “AvrLm3 

- AvrLm4 - AvrLm7”, which have shown to be genetically linked at specific loci. 

Dominant major specific genes have been identified through genetic studies involving 

different oilseed rape cultivars/lines and different characterized L. maculans isolates. Rlm1 is in 

B. napus cv. Quinta and in cv. Lirabon having resistance to PG-3 (Ansan‐Melayah et al. 1998). 

Rlm2 is in cv. Glacier controlling resistance to PG-2 (Ansan‐Melayah et al. 1998). Rlm3 is a 

single dominant allele derived from Glacier that confers resistance to European races (Delourme 

et al. 2004). Rlm4 controls resistance in cv. Jet Neuf, and it is closely linked to Rlm1 (Balesdent et 

al. 2002). Rlm5 and Rlm6 have been identified in B. juncea (Indian mustard) cvs. Picra and Aurea 

(Balesdent et al. 2002). Rlm7 was identified in B. napus and is linked to Rlm3 (Balesdent et al. 

2002). Rlm8 is present in B. rapa (Balesdent et al. 2002). Rlm9 is in B. napus cv. Darmor 

(Balesdent et al. 2002; Delourme et al. 2004). Rlm10 and Rlm11 are from B. nigra (Chevre et al. 

1997).  

Race specific resistance genes 

A standardized pathogenicity test which uses inoculation of cotyledons has been 

developed to evaluate the interaction phenotype (resistant or susceptible reaction) on sets of 

Brassica differentials (Mengistu et al. 1991). This assay was the first step towards classification 
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and genetic analysis of the specificity of the interaction between B. napus and L. maculans 

(Mengistu et al. 1991; Williams et al. 1979).  

L. maculans isolates were at first categorized into pathogenicity groups (PG) based on the 

interaction phenotype of the isolate when inoculated on the cotyledons of three B. napus 

differential cultivars Westar (susceptible control), Glacier (Rlm2, Rlm3) and Quinta (Rlm1) 

(Mengistu et al. 1991). Using this set of B. napus differential cultivars, three pathogenicity groups 

(PG) could be discriminated in a L. maculans population. PG-4 isolates were virulent on Westar, 

Glacier and Quinta. PG-3 were virulent on Westar and Glacier but avirulent in Quinta, and PG-2 

were virulent only on Westar but avirulent on Quinta and Glacier (Balesdent et al. 2005; 

Mengistu et al. 1991). PG-1 was avirulent on all three cultivars and was classified as a weakly 

aggressive isolate, now recognized as L. biglobosa (Shoemaker and Brun, 2001). Chen and 

Fernando (2005) added PGT, a new pathogenicity group, which is virulent on Westar and Quinta, 

but not Glacier. Originally, PG-2 was prevalent in western Canada, whereas PG-3 and PG-4 were 

mainly present in Europe and Australia. However, from 2002 to 2004, PG-3 and PG-4 isolates 

were found in western Canada and North Dakota (Chen and Fernando, 2005). 

Badawy et al. (1991) proposed a second set of differentials, replacing spring type B. 

napus cv. Westar with winter cv. Lirabon and adding cv. Jet Neuf (Rlm4) to Glacier and Quinta 

(Badawy et al. 1991; Balesdent et al. 2005; Fitt et al. 2006). This new set of differential cultivars 

allowed the subdivision of each PG-2, PG-3 and PG-4 into 2 groups and classified the isolates of 

L. maculans into a six corresponding PGs termed A1 to A6 (Badawy et al. 1991; Balesdent et al. 

2005; Koch et al. 1991).  

The classification of Leptosphaeria maculans isolates based on pathogenicity groups 

gives ambiguous information of all the possible avirulence (Avr) genes existing in an isolate. A 

single isolate may possess more than one Avr gene. Therefore isolates having different 
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combination of avirulence genes could be found in the same pathogenicity group (PG) (Rouxel 

and Balesdent 2005). In other words, the isolates belonging to the same PG could be polymorphic 

at the Avr loci (Chen and Fernando 2006). In order to avoid this confusion among pathogenicity 

groups and avirulence genes, the terminology to classify Leptosphaeria maculans has changed 

from pathogenicity groups into races. The race terminology names the avirulence genes present in 

the isolate indicating all Avr loci for which the isolate is avirulent, preceeded by the letters ‘Av’ 

(Balesdent et al. 2005; Rouxel and Balesdent 2005). Thus, the race of an isolate harboring 

avirulence alleles AvrLm1, AvrLm2 and AvrLm4 but lacking AvrLm3 would be named Av 1,2,4 

using the race terminology. One benefit of using the race terminology is that it directly provides 

the information necessary to know which corresponding resistance genes may be used to manage 

the disease in places where the pathogen population has been characterized.  

L. maculans has adapted to new and different major resistance genes. Mutation or 

deletions in the coding regions of the avirulence genes due to selection pressure imposed by the 

host, and changes in the frequency of avirulent to virulent isolates in the pathogen population can 

lead to major gene resistance being overcome (Gout et al. 2006; Gout et al. 2007; Kutcher et al. 

2007; Marcroft et al. 2012; Parlange et al. 2009; Van de Wouw et al. 2010). In Europe, Canada, 

and Australia, several resistant cultivars have been released followed by a breakdown of race-

specific resistance as a result of the rapid adaption of L. maculans populations (Delourme et al. 

2006). In France, resistance gene Rlm1 was overcome causing important economic losses when 

virulent strains became prevalent within three growing seasons (Balesdent et al. 2006). A similar 

case occurred in Australia when the B. napus cultivar Surpass400 harboring the LepR3 resistance 

gene became susceptible after only three years of being released to the market, resulting in 90% 

yield losses (Hayden et al. 2007; Li et al. 2003; Van de Wouw et al. 2010). Both are examples of 

the breakdown of major-gene resistance due to strong selection pressure on the pathogen 

population by resistant cultivars. The pathogen may adapt to resistance genes and overcome 
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resistance in a little as three to four years (Dilmaghani et al. 2009). Virulence changes in L. 

maculans populations in short period of time have been documented also in the U.S. (Chen and 

Fernando 2006; del Rio Mendoza et al. 2012; Li et al. 2003). In western Canada and North 

Dakota in 2002, most of the cultivars planted were considered resistant or partially resistant to 

PG-2 strains. However, one year later, strains from PG-3 and PG-4 were found in canola residues 

from the same area (Chen and Fernando 2006; del Rio Mendoza et al. 2012). 

Knowledge of the PGs and the virulence alleles involved in black leg epidemics is key in 

breeding for black leg resistance. Information on the occurrence of avirulence alleles in the 

population and the race structure of the pathogen is useful for breeders attempting to develop 

canola cultivars that have effective black leg resistance. Avirulence alleles and race structure of L. 

maculans populations have been analyzed in Germany, France, Chile, Mexico, Canada, Australia 

and southeastern United States (Dilmaghani et al. 2009). However, there is no information on the 

race structure of L. maculans in Oklahoma or the southern Great Plains regions of winter canola 

production. Likewise, having an understanding of the genetic basis of the resistance in canola is 

strategically important for identification and deployment of resistant cultivars. The presence of 

major resistance genes in unknown B. napus germplasm has been inferred using L. maculans 

isolates with known genotype in several studies (Marcroft et al. 2012; Rouxel et al. 2003). It is 

important to know which major genes are present in the common cultivars and hybrids grown in 

Oklahoma and the southern Great Plains so that resistant types can be recommended and planted.  
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CHAPTER III 
 

 

ANALYSIS OF THE RACE STRUCTURE OF Leptosphaeria maculans IN OKLAHOMA 

ABSTRACT 

Black leg, caused by the fungus Leptosphaeria maculans, is a widespread disease of 

winter canola (Brassica napus L.) in Oklahoma. Strategies to manage the disease are cultural 

practices, application of fungicides, and deployment of resistance genes. Resistance genes (Rlm) 

in canola interact with avirulence genes in the fungus (AvrLm) in a gene-for-gene manner. Little 

is known about the diversity and local distribution of pathogenicity groups (PGs), frequency of 

avirulence (Avr) genes in the pathogen population, and race structure in Oklahoma. A collection 

of 107 isolates of Leptosphaeria spp. from different counties was first assigned to four 

pathogenicity groups PGs based on the phenotype interaction on cotyledons of the differential 

cultivars Westar, Glacier (Rlm2, Rlm3) and Quinta (Rlm1). PG-4, virulent on all differentials, 

indicated that the virulence alleles avrLm1, avrLm2 and avrLm3 were common in 49% of the 

population. PG-3, avirulent on Quinta, revealed that the avirulence allele AvrLm1 was present in 

22% of the isolates. PG-2 avirulent on Glacier and Quinta represented either AvrLm1,2,3; 

AvrLm1,2 or AvrLm1,3  in 8% of the isolates, and PG-1 the weakly virulent group and avirulent 

on the three differentials was found at 21%. Amplification of the ITS region specific for the 

highly virulent group (HV) and mating type locus (MAT) further classified the local pathogen 

collection as mostly highly virulent L. maculans isolates (N=95) and fewer weakly virulent L. 

biglobosa isolates (N=12). L. maculans isolates were characterized for avirulence alleles AvrLm1, 

AvrLm2,3, AvrLm4-7 and AvrLm6 based on phenotype interaction on differentials harboring  
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Rlm1, Rlm2 and Rlm3 and amplification of AvrLm1, AvrLm4-7, AvrLm6 alleles by polymerase 

chain reaction (PCR). Avirulence alleles AvrLm4-7 and AvrLm6 were predominant (100%) in the 

local L. maculans population. AvrLm1 was found in 38% of the population, and AvrLm2,3 at only 

9%. Four distinct races (combination of avirulence alleles) were identified in the collection 

(Av1,2,3,6,4-7; Av1,6,4-7; Av2,3,6,4-7; Av6,4-7). Races Av6,4-7 (56%) and Av1,6,4-7 (35%) were 

predominant in Oklahoma. Resistance genes Rlm6 and Rlm4 and/or Rlm7 should be broadly 

effective resistance genes in Oklahoma. Rlm1, Rlm2 and Rlm3 are not expected to be effective 

against the corresponding avirulence alleles that occured at low frequency. Understanding the 

avirulence frequency and race structure in the pathogen population will be useful for the 

identification and development of resistant cultivars and hybrids to control black leg disease of 

winter canola in Oklahoma.  

INTRODUCTION 

Canola (Brassica napus L.) is a relatively new crop in the United States. Oklahoma has 

been growing winter-type canola for the past ten years and is now the second leading canola 

producing state after North Dakota (USDA NASS 2014). Black leg disease, caused by the fungus 

Leptosphaeria maculans (Desm.) Ces. & DeNot, is an economically important disease of oilseed 

rape and canola in most regions of the world where crop is grown (Rouxel and Balesdent, 2005). 

Canola is susceptible to black leg infection at seedling stage; however, symptoms can be 

observed during all stages of crop development (Rimmer et al. 2007). Primary infection during 

the early stages appear as leaf spots. Stem cankers that girdle stems and may kill the plant, 

develop during ripening stages, which occur near the end of the season (Rimmer et al. 2007). The 

disease is associated with a complex of two closely related species, L. maculans and L. biglobosa 

(Mendes-Pereira et al. 2003; Shoemaker and Brun 2001); which were previously classified as 

highly virulent and the weakly virulent forms of the pathogen respectively (Cunningham, 1927; 

Petrie, 1978; Shoemaker and Brun 2001). These species may share the same ecological niche, 
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have similar epidemiology and infection strategies; however, they differ in symptoms, severity of 

the disease and genetics (West et al. 2002). L. maculans has been found to be a highly specialized 

pathogen interacting in a gene-for-gene manner with B. napus. By contrast, L. biglobosa has not 

exhibited these specialized interactions (Vincenot et al. 2008).  

Major gene resistance has been widely used to control black leg (Delourme et al. 2006). 

Major gene resistance occurs as a gene-for-gene interaction between B. napus and L. maculans, 

where the resistant phenotype depends on the presence of a major gene for resistance (Rlm) in the 

plant and a corresponding avirulence (AvrLm) gene in the pathogen (Balesdent et al. 2005; 

Marcroft et al. 2012). Conversely, the lack of a resistance gene in the plant or a recessive gene for 

virulence (avrlm) in the pathogen results in a susceptible reaction and the expression of disease. 

To date, at least 17 major resistance genes have been identified (Rlm1 to Rlm11, LepR1 to LepR4, 

BLMR1 and BLMR2) in Brassica species conferring resistance to Leptosphaeria maculans 

(Marcroft et al. 2012; Van de Wouw et al. 2014). Although only one, LepR3, has been cloned 

(Larkan et al. 2013).  Most of these genes have been positioned on B. napus linkage maps and 

have shown to be organized in clusters (Delourme et al. 2006; Delourme et al. 2004). Of the 

corresponding avirulence genes in L. maculans conferring host specificity, five have been cloned 

and sequenced (AvrLm1, AvrLm4-7, AvrLm6, AvrLm11 and AvrLmJ1) (Fudal et al. 2007; Gout et 

al. 2006; Parlange et al. 2009; Balesdent et al. 2013; Van de Wouw et al. 2014).  

For a better understanding of the variation of virulence and genetic interaction between B. 

napus and L. maculans, the phenotype interaction on a set of B. napus differential cultivars 

Westar, Glacier (Rlm2,3) and Quinta (Rlm1), was originally used to classify L. maculans isolates 

into pathogenicity groups (PGs) (Mengistu et al. 1991). PG-4 isolates were virulent on Westar, 

Glacier and Quinta; PG-3 were avirulent on Quinta; PG-2 were avirulent on Glacier and Quinta. 

Avirulence on Westar discriminated L. biglobosa (PG-1) from L. maculans. This PG system was 

initially valuable to detect changes in pathogen population, however it is limited only to four 
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pathogenicity groups based on two differential cultivars (Kutcher et al. 2010a). In order to 

overcome this limitation, a race system was proposed as a new system of classification (Balesdent 

et al. 2005). Race is designated as the Avr allele composition of each isolate by listing all the Avr 

loci for which an isolate has been characterized and is avirulent, preceded by the letters ‘Av’. The 

Avr loci for which a characterization is not possible, due to the unavailability of differentials with 

single resistance genes, is indicated in parenthesis (Balesdent et al. 2005).  

Resistance genes in B. napus have been characterized based on the genetic identification 

of corresponding avirulence alleles (AvrLm) in L. maculans (Rouxel and Balesdent 2005). 

Deployment of B. napus resistance genes have proven to be very effective in L. maculans 

populations that display the corresponding avirulence genes. However, the repeated planting of 

the cultivars with specific resistance genes in extended areas has created high selection pressure 

on the pathogen population (Rouxel et al. 2003). In as few as three to four years the pathogen 

may adapt to resistance genes and overcome resistance (Dilmaghani et al. 2009). In France, 

resistance gene Rlm1 was overcome after three growing seasons causing important economic 

losses (Balesdent et al. 2006; Rouxel et al. 2003). Similarly, the resistance gene LepR3 declined 

three years after deployment in Australia (Hayden et al. 2007; Li et al. 2003).  

The pathogen should be monitored at regular intervals to assess changes in the Avr 

structure of the population in different geographic locations to effectively employ specific 

resistance (Kutcher et al. 2010b). Knowledge of the race structure is crucial to detect races with 

the ability to overcome current specific resistance genes, and to choose the best resistance sources 

to be used locally (Dilmaghani et al. 2009). To date, studies describing the avirulence patterns 

and race structure of the pathogen population have been done in few countries such as Germany 

and France in Europe; Chile in South America; Mexico, Canada and the southeastern United 

States in North America, and in Australia (Balesdent et al. 2006; Balesdent et al. 2005; 

Dilmaghani et al. 2009) using different sets of differential cultivars. However there is no 
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information on the race structure of the L. maculans population in Oklahoma and surrounding 

states in the southern Great Plains where winter canola is grown.  

The objective of this study was to determine the race structure of L. maculans in 

Oklahoma using a combination of pathogenicity tests on B. napus differential cultivars (Westar, 

Glacier and Quinta) and amplification of avirulence genes (AvrLm1, AvrLm4-7, AvrLm6) by 

polymerase chain reaction (PCR). Understanding the diversity of avirulence Avr alleles and the 

race structure of L. maculans in Oklahoma is necessary in order to identify effective Rlm genes to 

deploy for black leg control.  

MATERIALS AND METHODS 

Pathogen sampling, isolation and inoculum production  

The pathogen collection consisted of 107 single-pycnidial isolates of Leptosphaeria spp. 

that were obtained from Brassica napus leaves with leaf spot symptoms. From 2009 to 2013, 

samples were collected from nine counties in Oklahoma and one county in Kansas. Pycnidia were 

isolated and cultured on clarified V8 juice agar amended with streptomycin (100ppm), hyphal-tip 

purified at least twice, and incubated for 12 to 15 days at 24⁰C and under continuous fluorescent 

light until sporulation (Mengistu et al. 1991). For long-term storage, the fungus was grown on V8 

juice agar overlaid with sterile filter paper. Small pieces of filter paper colonized with mycelia were 

stored dry at 4⁰C in sterile vials.  

Inoculum of L. maculans was produced by collecting conidia from sporulating cultures on 

clarified V8 juice agar as described by Mesgistu et al. (1991). Conidial suspensions were prepared 

by flooding plates with sterile distilled water, gently rubbing culture surfaces with a sterile spreader 

and then straining the suspensions through cheesecloth. Sporulating cultures were produced by 

spreading conidial suspensions over the surface of YPS agar or V8 juice agar and incubating at 

room temperature under continuous white fluorescent light. For pathogenicity tests, conidia were 
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collected from 10 to 15-day-old sporulating cultures presenting a dense lawn of mature pycnidia 

with little mycelium (Balesdent et al. 1998). Spore suspensions were adjusted to 3 x 106 spores ml-

1 using a hemocytometer. Aliquots of the spore suspensions, were centrifuged and kept frozen until 

needed to produce new sporulating cultures (Mengistu et al. 1991).  

Pathogenicity tests 

Seeds of Brassica napus cvs. Westar (spring type) with no Rlm genes, Glacier (winter 

type) harboring Rlm2 and Rlm3 and Quinta (winter type) harboring Rlm1 (Balesdent et al. 2002; 

Balesdent et al. 2001) were obtained from the USDA Germplasm Resources Information 

Network (GRIN) and increased in the greenhouse. Seeds were sown in plastic flats fitted with 72 

celled packs containing growing media (vermiculite, canadian sphagnum peat moss, coarse 

perlite, dolomitic limestone). Seedlings were maintained for seven days in a growth chamber at 

24⁰C and RH 80%, with continuous fluorescent light. Plants were watered as needed and 

nutrients were supplied by applying fertilizer (24-8-16 g/L N/P/K respectively) within the first 

week.  

Seven days after sowing, seedlings were wounded by puncturing each half of a cotyledon 

with a 200 µl micropipette tip. Each wound was inoculated with a 5 µl droplet of conidial 

suspension adjusted to 106 spores ml-1. Two wounds were made per cotyledon resulting in four 

wounds per plant. Inoculated seedlings were placed in a dew chamber for 2 days at 24⁰C, 100% 

RH and no light. Seedling were transferred back to the growth chamber for another 8 days. 

Emerging true leaves were removed every two to three days by pinching the growing tip of the 

seedlings to help the cotyledons remain green until assessing disease severity (Mengistu et al. 

1991). Each isolate was inoculated onto eight plants, and experiments were repeated at least twice 

(Balesdent et al. 2005). 



40 
 

The phenotype interactions were scored ten days after inoculation, by assessing disease 

severity using the IMASCORE rating scale comprised of six infection classes (IC) proposed by 

Volke (1999) and used by Balesdent et al. (2001). Infection classes IC1 to IC3 correspond to 

avirulent isolates that exhibit a resistant reaction, and IC4 to IC6 correspond to virulent isolates 

which produce susceptible reactions. IC1 is the hypersensitive response, IC2 represents a larger 

(1.5 to 3mm) dark necrotic lesion, and IC3 is a non-sporulating lesion that is sharply delimited by 

a dark necrotic margin. IC4 to IC6 are characterized by spreading, gray-green lesions with no 

dark margin. IC4 has no sporulation, IC5 has a few pycnidia, and IC6 has abundant sporulation. 

The result of each isolate-cultivar interaction was averaged and classified as resistant or 

susceptible. A resistant phenotype interaction implied the presence of the corresponding 

avirulence (Avr) allele in the pathogen, whereas a susceptible reaction implied the presence of a 

virulence (avr) allele.  

Race was designated as proposed by Balesdent et al. (2005) which describes the Avr 

allele composition of each isolate by listing all the Avr loci for which the isolate has been 

characterized and is avirulent, preceded by the letters ‘Av’. The Avr loci for which the 

characterization was not possible, because differentials with single resistance genes were 

unavailable, were indicated in parenthesis. For example, race Av 1,4,6,(7) is composed of isolates 

containing AvrLm1, AvrLm4, and AvrLm6, and can either be avirulent AvrLm7 or virulent 

avrLm7.   

PCR amplification of avirulence alleles 

Leptosphaeria spp. isolates were characterize for mating type, virulence group, and 

avirulence alleles AvrLm1, AvrLm6 and AvrL4-7 (confers dual recognition of Rlm4 and Rlm7), by 

polymerase chain reaction (PCR). Genomic DNA was extracted from semi-dried mycelia of the 
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107 isolates cultured in clarified V8 juice broth with the DNeasy 96 Plant Kit (Qiagen S.A) 

following the manufacturer’s recommendations and amplified using specific primers.  

Leptosphaeria maculans was identified using the primer pair HV17 and HV26C which 

amplified the ITS region (377 bp) specific for highly virulent isolates and Leptosphaeria 

biglobosa was identified using the primer pair WV17 and 5.8C (237 bp) specific for the weakly 

virulent isolates (Mahuku et al. 1995; Xue et al. 1992). The mating type amplification was used 

as a control for DNA quality and to confirm the identification of L. maculans species. Specific 

primers for the two alternate forms of the mating type (MAT) locus were used in a multiplex 

polymerase chain reaction (PCR) (Cozijnsen and Howlett 2003). A PCR fragment of 686 bp was 

amplified for MAT1-1 isolates, and a 443 bp fragment was amplified for MAT1-2 isolates. 

The frequency of avirulence alleles AvrLm1, AvrLm4-7 and AvrLm6 was determined for 

L. maculans isolates. Primers pair AvrLm-F and AvrLm1-R was used to amplify AvrLm1 gene 

(695 bp) (Van de Wouw et al. 2010). The pair of primers Avr47ext-Lo and Avr47ext-Up3 

amplified the gene AvrLm4-7 (788 bp) (Parlange et al. 2009). Finally, primers AvrLm6-F and 

AvrLm6-R amplified AvrLm6 (751 bp) (Van de Wouw et al. 2010). PCR amplifications were 

carried out in 25 µl reactions. PCR reactions for each gene were performed in a Techne TC-4000 

Thermal Cycler as described previously (Cozijnsen and Howlett 2003; Mahuku et al. 1995; 

Parlange et al. 2009; Van de Wouw et al. 2010). The PCR products were separated by 

electrophoresis in 1.2% agarose gels in TAE buffer. 

RESULTS 

Pathogenicity grouping of isolates according to PG  

Inoculation of differential cultivars harboring specific resistance genes Westar, Glacier 

(Rlm2, Rlm3) and Quinta (Rlm1), allowed the classification of the isolates into pathogenicity 

groups PG-1 to PG-4 according to the phenotype interaction. Half of the population was PG-4, a 
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virulent group that had virulence alleles avrLm1, avrLm2 and avrLm3 (Table3.1). PG-3 isolates 

were avirulent on Quinta and had the avirulence allele AvrLm1 represented 22% of the isolates. 

Only a few isolates (8%) were classified as PG-2, avirulent on Glacier and Quinta, and had 

AvrLm1,2,3; AvrLm1,2 or AvrLm1,3. PG-1 isolates were avirulent on Westar and were found at a 

frequency of 21%. PG-1 isolates, were considered the weakly virulent group classified as L. 

biglobosa (Kutcher et al. 2010a; Shoemaker and Brun 2001). 

TABLE 3.1. Frequency of pathogenicity groups (PG)a and corresponding avirulence and 

virulence alleles in the local Leptosphaeria maculans population.  

PG Avirulence and virulence alleles 
No. of 

isolates 

Frequency 

(%) 

PG-4  avrLm1,2,3 52 49 

PG-3  AvrLm1,avr2,3 24 22 

PG-2  AvrLm1,2,3 or AvrLm1,2 avr3 or AvrLm1,3 avr2 9 8 

PG-1           22 21 

Total  107 100 
a Pathogenicity group: PG-4 isolates virulent on Westar, Glacier and Quinta; PG-3 avirulent on 

Quinta; PG-2 avirulent on Glacier and Quinta; PG-1 avirulent on all cutivars and classified as 

L. biglobosa. 

 

Avr allele frequencies in the collection 

Amplification of the ITS region specific for the highly virulent (HV) group and mating 

type (MAT) locus differentiated L. maculans isolates from L. biglobosa isolates in the local 

collection. Of the 107 isolates, 12 failed to amplify the ITS region specific for highly virulent 

isolates and the mating type locus using L. maculans specific primers. In addition, the ITS region 

specific for weakly virulent isolates or L. biglobosa was amplified with specific primers for these 

12 isolates. These isolates produced small necrotic spots and chlorosis on Westar that were 

different from the susceptible symptoms observed when inoculated with L. maculans. L. 

biglobosa isolates were found in Kiowa and Major Counties in 2012, and in Kingfisher County in 

2011. The rest of the isolates (N=95), positive for the highly virulent group and for the MAT 

locus, were classified as L. maculans. Amplification and sequencing of few isolates (N=5 of 95) 
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using general ITS primers (ITS1 and ITS4) confirmed the species as L. maculans.  MAT1-1 

isolates (49%) and MAT1-2 (51%) isolates occurred at similar frequencies in the population. 

However, amplification of the ITS region of the highly virulent (HV) group and mating type 

(MAT) locus demonstrated that 10 of the 22 isolates avirulent on Westar were actually L. 

maculans and had been misclassified as PG-1 and L. biglobosa based on pathogenicity.  

 Leptosphaeria maculans isolates (N=95) were characterized for avirulence alleles 

AvrLm1, AvrLm2,3, AvrLm4-7 and AvrLm6 based on phenotype interaction on differentials 

harboring Rlm1, Rlm2 and Rlm3 and PCR amplification of AvrLm1, AvrLm4-7, AvrLm6  (Table 

3.2). The frequency of AvrLm1 (Fig. 3.1) was determined by the resistant phenotypic interaction 

on differential cultivar Quinta and by PCR. The frequencies of isolates that gave a resistant 

phenotype on Quinta (35%) and positive for the amplification of the AvrLm1 (38%) were similar. 

Avirulence alleles AvrLm2,3 determined by a resistant phenotype on Glacier were the lowest 

frequency found (9%) (Fig. 3.1). Avirulence alleles AvrLm4-7 and AvrLm6 were present in all 

isolates of the population (Fig. 3.1). The frequency of AvrLm4-7 and AvrLm6 was similar for 

years and geographic location (Fig. 3.2 and Fig. 3.3). 

TABLE 3.2. Characterization of isolates of Leptosphaeria maculans for interaction phenotype 

with host differentials, pathogenicity groups (PG), avirulence (Avr) alleles and races. 

      Interaction phenotypeb    Genotype AvrLmd   

Isolate Name     Year   Countya Westar 
Glacier 
(Rlm2,3) 

Quinta 
(Rlm1) 

PG c  1  2,3   4-7   6    Race e 

CV-12-3 2012 Major V V V 4 - - + + Av6,4-7 

K-VT-12-4 2012 Kiowa V V A 3 + - + + Av1,6,4-7 

K-VT-12-5 2012 Kiowa V V V 4 + - + + Av1,6,4-7 

K-VT-12-6 2012 Kiowa V V V 4 + - + + Av1,6,4-7 

K-VT-12-7 2012 Kiowa V V V 4 - - + + Av6,4-7 

K-HC125-12-1 2011 Kiowa V V V 4 - - + + Av6,4-7 

K-HC125-12-2 2011 Kiowa A A A 1 - - + + Av6,4-7 

K-HC125-3 2011 Kiowa V V V 4 - - + + Av6,4-7 

Lahoma11 2011 Garfield A A A 1 - - + + Av6,4-7 

Lahoma19 2011 Garfield V V V 4 - - + + Av6,4-7 
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BL-CC-2012-1 2012 Caddo V V V 4 - - + + Av6,4-7 

BL-CC-2012-2 2012 Caddo V V V 4 - - + + Av6,4-7 

BL-CC-2012-3 2012 Caddo V A A 2 - + + + Av2,3,6,4-7 

BL-CC-2012-4 2012 Caddo V V V 4 - - + + Av6,4-7 

BL-CC-2012-5 2012 Caddo V V V 4 - - + + Av6,4-7 

BL-CC-2012-7 2012 Caddo A A A 1 + - + + Av1,6,4-7 

BL2-2010-3 2010 Unknown A A A 1 - - + + Av6,4-7 

CS5 2009 Kiowa V V A 3 + - + + Av1,6,4-7 

C1C5 2009 Kiowa V V V 4 + - + + Av1,6,4-7 

C5A-2C8 2009 Kiowa V V A 3 + - + + Av1,6,4-7 

K-12-14 2012 Kiowa V V V 4 + - + + Av1,6,4-7 

C3 2009 Kiowa V V V 4 - - + + Av6,4-7 

CS3 2009 Kiowa V V A 3 + - + + Av1,6,4-7 

C5B-C2 2009 Kiowa V V A 3 + - + + Av1,6,4-7 

K-VT-12-8 2012 Kiowa V V A 3 + - + + Av1,6,4-7 

Lahoma 12-2 2011 Garfield V A A 2 + + + + Av1,2,3,6,4-7 

BL-2010#2 2010 Unknown V V V 4 - - + + Av6,4-7 

Lahoma 13-2 2011 Garfield V V A 3 + - + + Av1,6,4-7 

CS 1 2009 Kiowa A A A 1 - - + + Av6,4-7 

STW-2012-1 2013 Payne V V V 4 - - + + Av6,4-7 

STW-2012-2 2013 Payne V V V 4 - - + + Av6,4-7 

STW-2012-3 2013 Payne V V V 4 - - + + Av6,4-7 

OK-1-2013 1 2013 Cotton V V A 3 + - + + Av1,6,4-7 

OK-1-2013 2 2013 Cotton V V A 3 + - + + Av1,6,4-7 

F1-2013-6 2013 Cotton V A A 2 - + + + Av2,3,6,4-7 

F1-2013-4 2013 Cotton V V A 3 + - + + Av1,6,4-7 

F1-2013-7 2013 Cotton A A A 1 + - + + Av1,6,4-7 

F2-2013-6 2013 Canadian A A A 1 - - + + Av6,4-7 

F2-2013-13 2013 Canadian A A A 1 - - + + Av6,4-7 

F2-2013-10 2013 Canadian V V V 4 - - + + Av6,4-7 

F3-2013-1 2013 Blaine V V A 3 + - + + Av1,6,4-7 

F3-2013-2 2013 Blaine V V V 4 - - + + Av6,4-7 

F3-2013-3 2013 Blaine V V A 3 + - + + Av1,6,4-7 

F5-2013-4 2013 Grant V V A 3 + - + + Av1,6,4-7 

F5-2013-6 2013 Grant V A A 2 - + + + Av2,3,6,4-7 

F5-2013-9 2013 Grant V V V 4 + - + + Av1,6,4-7 

F6-2013-9 2013 Grant V V V 4 - - + + Av6,4-7 

F6-2013-7 2013 Grant V V V 4 - - + + Av6,4-7 

F7-2013-4 2013 Grant V V V 4 - - + + Av6,4-7 

F7-2013-6 2013 Grant V V A 3 + - + + Av1,6,4-7 

F8-2013-2 2013 Grant V V V 4 - - + + Av6,4-7 

F8-2013-3 2013 Grant V A A 2 - + + + Av2,3,6,4-7 

F8-2013-4 2013 Grant V V V 4 - - + + Av6,4-7 
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F9-2013-4 2013 Grant V V A 3 + - + + Av1,6,4-7 

F10-2013-1 2013 Grant V V V 4 - - + + Av6,4-7 

F10-2013-2 2013 Grant V V A 3 + - + + Av1,6,4-7 

F10-2013-5 2013 Grant V V A 3 + - + + Av1,6,4-7 

F11-2013-6 2013 Grant V V V 4 - - + + Av6,4-7 

F12-2013-9 2013 Garfield V V V 4 + - + + Av1,6,4-7 

F13-2013-2 2013 Garfield V V A 3 + - + + Av1,6,4-7 

F13-2013-4 2013 Garfield V V V 4 - - + + Av6,4-7 

F6-2013-6 2013 Grant V V V 4 - - + + Av6,4-7 

F11-2013-4 2013 Grant V V V 4 - - + + Av6,4-7 

F11-2013-5 2013 Grant V V A 3 - - + + Av6,4-7 

F14-2013-2 2013 Noble V V V 4 - - + + Av6,4-7 

F14-2013-3 2013 Noble V V V 4 - - + + Av6,4-7 

F15-2013-4 2013 Noble V V V 4 - - + + Av6,4-7 

F15-2013-5 2013 Noble V A A 2 - + + + Av2,3,6,4-7 

F9-2013-6 2013 Grant V A A 2 + + + + Av1,2,3,6,4-7 

F9-2013-7 2013 Grant V V A 3 + - + + Av1,6,4-7 

F15-2013-1 2013 Noble A A A 1 - - + + Av6,4-7 

F14-2013-1 2013 Noble V V V 4 - - + + Av6,4-7 

F12-2013-6 2013 Garfield V V V 4 - - + + Av6,4-7 

F6-2013-5 2013 Grant V A A 2 + + + + Av1,2,3,6,4-7 

F6-2013-1 2013 Grant V A A 2 - + + + Av2,3,6,4-7 

F13-2013-1 2013 Garfield V V A 3 + - + + Av1,6,4-7 

STW2013F1-1 2013 Payne V V V 4 - - + + Av6,4-7 

STW2013F2-1 2013 Payne V V V 4 - - + + Av6,4-7 

STW2013F3-1 2013 Payne V V V 4 + - + + Av1,6,4-7 

STW2013F4-1 2013 Payne V V V 4 - - + + Av6,4-7 

STW2013F5-1 2013 Payne V V V 4 + - + + Av1,6,4-7 

STW2013F6-1 2013 Payne V V V 4 - - + + Av6,4-7 

ER-2013F-1-1 2013 Canadian V V V 4 - - + + Av6,4-7 

ER-2013F-2-1 2013 Canadian V V V 4 - - + + Av6,4-7 

ER-2013F-5-1 2013 Canadian V V V 4 - - + + Av6,4-7 

ER-2013F-6-1 2013 Canadian V V A 3 + - + + Av1,6,4-7 

ER-2013F-7-1 2013 Canadian V V A 3 + - + + Av1,6,4-7 

CV-2013F-1-1 2013 Major V V V 4 - - + + Av6,4-7 

CV-2013F-2-1 2013 Major V V V 4 - - + + Av6,4-7 

CV-2013F-3-1 2013 Major V V V 4 - - + + Av6,4-7 

CV-2013-4-1 2013 Major V V V 4 - - + + Av6,4-7 

CV-2013F-6-1 2013 Major V V V 4 + - + + Av1,6,4-7 

CV-2013F-7-1 2013 Major V V A 3 - - + + Av6,4-7 

C1 2009 Kiowa A A A 1 - - + + Av6,4-7 

CS6 2009 Kiowa V V V 4 - - + + Av6,4-7 
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a Kiowa county in Kansas and counties in Oklahoma where isolate was collected. 
b Differential cultivars were Westar (no Rlm genes), Glacier (Rlm2,3), Quinta (Rlm1). V= 

virulence, resistant interaction between isolate and cultivar, A = avirulence, susceptible 

interaction between the isolate and the differential. 
c PG = pathogenicity groups. PG-4 isolates virulent on Westar, Glacier and Quinta; PG-3 

avirulent on Quinta; PG-2 avirulent on Glacier and Quinta; PG-1 avirulent in all cutivars. 
d Genotype AvrLm: + = presence of the avirulence allele (Avr), - = presence of the virulence allele 

(avr). AvrLm1 was determined by pathogenicity tests on Quinta (Rlm1) and by PCR. AvrLm2-3 

was determined by pathogenicity tests on Glacier (Rlm2,3). AvrLm4-7 and AvrLm6 were 

determined by PCR   
e Race nomenclature indicates the avirulence Avr alleles present in the isolate. 

 

 

Fig. 3.1. Frequency of avirulence alleles in the L. maculans population from Oklahoma and 

Kansas (N=95). AvrLm1 was determined by pathogenicity tests on Quinta (Rlm1) and by PCR. 

AvrLm2-3 was determined by pathogenicity tests on Glacier (Rlm2,3). AvrLm4-7 and AvrLm6 

were determined by PCR. 

 

Depending on the Avr locus and the county of origin of the isolate, the frequency of Avr 

ranged from 0 to 1. The frequency of loci AvrLm4-7 and Avrlm6 was the same (100%) for every 

county. In contrast, site-to-site variation was observed in AvrLm1 (0-80%) and AvrLm2,3 (0-23%)  

(Table 3.3). Significant differences were observed between counties for loci AvrLm1 and 

AvrLm2,3 according to the Fisher’s exact test (Table 3.3). 
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TABLE 3.3 Number of races and frequencies of avirulence (Avr) alleles in the population of 

Leptosphaeria maculans by county of isolate origin. 

 Number of   Frequency of Avr alleles 

Origin Isolates  Races  AvrLm1 AvrLm2,3  AvrLm4-7 AvrLm6 

Blaine, OK 3 2  0.67 0.00 1 1 

Caddo, OK 6 3  0.17 0.17 1 1 

Canadian, OK 8 2  0.25 0.00 1 1 

Cotton, OK 5 2  0.80 0.20 1 1 

Garfield, OK 9 3  0.56 0.11 1 1 

Grant, OK 22 4  0.36 0.23 1 1 

Kiowa, KS 18 2  0.56 0.00 1 1 

Major, OK 7 2  0.14 0.00 1 1 

Noble, OK 6 2  0.000 0.17 1 1 

Payne, OK 9 2  0.22 0.00 1 1 

Total 93 4  0.38 0.10 1 1 

p-values a      0.04 <0.01 0.5 0.5 
a Probability that AvrLm allele frequency differed according to the Fisher’s exact test.  

 

 

 

Fig. 3.2. Avirulence (Avr) allele frequency by year from 2009 to 2013. 
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Fig. 3.3. Avirulence (Avr) allele frequency by county. Isolates were collected from nine counties 

in Oklahoma and one in Kansas. 

Race structure of L. maculans   

The race structure of the L. maculans population (N=95) was determined based on the 

avirulence alleles identified from the phenotypic interactions on differential cultivars harboring 

Rlm1, Rlm2 and Rlm3 and the amplification of AvrLm1, AvrLm4-7, AvrLm6 (Table 3.2). There 

were four single or combined avirulence alleles that could be identified in the collection AvrLm1, 

AvrLm2,3, AvrLm4-7, and AvrLm6. In theory, a total of 16 different races (24 combinations) could 

exist in the population. The combination of Avr alleles identified in each isolate resulted in the 

presence of four of the 16 possible races, which included Av 1,2,3,6,4-7; Av 1,6,4-7; Av 2,3,6,4-7; 

and  Av 6,4-7 (Fig. 3.4). Race Av 6,4-7 was the most prevalent race occurring at a frequency of 

56%, followed by Av 1,6,4-7 at 35%. The least frequent were Av 2,3,6,4-7 at 6% and race Av 

1,2,3,6,4-7, which has all of the avirulence genes assessed in this research, at only 3% of isolates. 

These four races also contained a combination of 0 to 3 of the virulence (avrLm) alleles in the 

population.  
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Fig. 3.4. Races of Leptosphaeria maculans identified in Oklahoma. 

DISCUSSION  

Understanding the diversity of avirulence alleles and the race structure of L. maculans in 

Oklahoma is necessary to develop both integrated and durable management strategies to control 

black leg disease by selecting specific resistance genes for deployment. To date, studies 

describing the avirulence patterns and race structure of the pathogen population have been done 

in Europe, North America, and Australia (Balesdent et al. 2006; Balesdent et al. 2005; 

Dilmaghani et al. 2009; Mengistu et al. 1991; Rouxel et al. 2003) using different sets of 

differential cultivars and systems. The present study is the first to determine the avirulence alleles 

and race structure of a collection of L. maculans isolates obtained from production areas of the 

southern Great Plains.  

Both species of the Leptosphaeria complex, L. maculans and L. biglobosa, were 

identified in the local population. According to the old pathogenicity group system, results of 

isolate classification showed that the highly virulent isolates of L. maculans (PG-2, PG-3 and PG-

4); and the weakly virulent isolates (PG-1), now recognized as L. biglobosa (Shoemaker and Brun 
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2001) were present in canola fields in Oklahoma and southern Kansas. There was no relationship 

observed between PG and geographic location (data not shown), which may be due to the close 

proximity between sampled sites (Dilmaghani et al. 2009). Amplification of the mating type locus 

suggested sexual recombination is possible since both mating types (MAT1-1 and MAT1-2) were 

identified at similar frequencies in the population (Cozijnsen and Howlett 2003). These results 

support the observations of ascospore production on stubble left on the soil surface following 

canola production. 

Identification of the Avr alleles in the local L. maculans population provided relevant 

information about the frequency of Avr alleles in the state and the Rlm genes that would be the 

most effective in managing black leg in the region. The frequency of the avirulence alleles in the 

population was determined based on the phenotype interaction on a set of B. napus differentials 

Westar, Glacier and Quinta and on the amplification of AvrLm1, AvrLm4-7 and AvrLm6 alleles. 

However, inconsistencies were observed for some isolates when classified by pathogenicity or 

PCR amplification, mostly related to the interaction of Rlm1 and AvrLm1. Some isolates showed 

avirulence on Quinta but were PCR negative for AvrLm1; others where virulent on Quinta and 

PCR positive for AvrLm1. Therefore, the accuracy of the resulting phenotype interactions 

between differential Quinta and local isolates was not always supported by the amplification of 

the corresponding AvrLm1 avirulence gene.  

The avirulence allele AvrLm1 was found in 38% (N=36) of the local population of L. 

maculans when determined by PCR. However, 17 of the 36 isolates showed discrepancies when 

classified by pathogenicity to Quinta and PCR amplification of AvrLm1. Two isolates classified 

as PG-3 and six isolates classified as PG-2 were avirulent on Quinta, but were PCR negative for 

the AvrLm1 allele. Nine isolates classified as PG-4 and virulent on Quinta, were positive for 

AvrLm1 by PCR. These inconsistencies related to Rlm1 and AvrLm1 may have resulted from 

differential cultivar Quinta being a heterogeneous genotype. Others have reported that Quinta 
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harbors Rlm1 (Ansan-Melayah et al. 1995) and, depending on the seed lot origin, it is probable 

that Quinta also carries Rlm3 (Kutcher et al. 2010a), or Rlm4 as linked resistance genes 

(Balesdent et al. 2001). It is also possible that some of the isolates avirulent on Quinta and 

classified as PG-2 and PG-3 were actually avrLm1 virulent and AvrLm3 or AvrLm4 avirulent. 

Thus, Quinta is probably not a good differential cultivar used for characterization of L. maculans 

isolates. Instead, other available differential cultivars that harbor Rlm1 in combination with 

another Rlm gene, like cvs. Columbus (Rlm1, Rlm3) (Balesdent et al. 2002), or Cooper (Rlm1, 

Rlm4) (Dilmaghani et al. 2009) should be used. However, these differentials were not available 

for this study. Also, cases where resistant phenotypes were observed on Quinta in the absence of 

amplification of AvrLm1, could be due to the presence of a different Rlm not assessed in this 

study or the presence of a novel Rlm not discovered or described yet (Dilmaghani et al. 2009). 

Another possibility could be that the L. maculans population in Oklahoma may have a non-

functional AvrLm1 (PCR positive but virulent), or DNA sequence variation at the primer 

annealing sites (PCR negative but avirulent).  

Both avirulence genes AvrLm2 and AvrLm3, identified only by phenotypic interaction on 

cultivar Glacier, were found at the lowest frequency (9%). This result indicates that resistance 

genes Rlm2 and Rlm3, separate or combined, are not expected to be completely effective in this 

region. Similar to the cultivar Quinta, Glacier has more than one genotype, it contains 

simultaneously resistance genes Rlm2 and Rlm3 (Dilmaghani et al. 2009). If this cultivar were 

extensively grown in the region its resistance would be expected to be overcome quickly by the 

virulence alleles avrLm2 and avrLm3 present in the population due to selective advantage in favor 

of pathogen genotypes carrying these alleles.   

In contrast, avirulence alleles AvrLm4-7 and AvrLm6, identified by PCR, represented the 

highest frequency (100%) in all the sampled counties. Since AvrLm4-7 and AvrLm6 are fixed in 

the population, cultivars with the corresponding resistance gene Rlm4-7 or Rlm6 should be 
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broadly effective if deployed in Oklahoma and surrounding states at this time. Resistance gene 

Rlm6 has been introgressed into B. napus from B. juncea (Chèvre et al. 1997). Therefore, the fact 

that all isolates from the collection carry avirulence allele AvrLm6 and are avirulent to Rlm6 is 

expected as this resistance gene had been mostly used in experimental research (Chèvre et al. 

1997; Kutcher et al. 2010b) To date, it is only present in a few canola cultivars in Europe 

designated by a “MX” trademark. Therefore, it is unlikely that the local population of L. 

maculans in Oklahoma had been exposed to Rlm6. Similarly, AvrLm7 is expected to be present in 

a high frequency because Rlm7 has been widely used in European germplasm (Mathew Clarke, 

personal communication), but is not common in North American cultivars. Conversely, 

avirulence gene AvrLm4 is expected to be found, at a lesser extent in Oklahoma because 

resistance gene Rlm4 has been present in the southern Great Plains since winter canola was first 

grown in the region 15 years ago. Rlm4 was incorporated from the French B. napus cultivar Jet 

Neuf (Rlm4) into the U. S. winter canola germplasm, and used as a parental line to develop new 

cultivars and breeding lines that are now commonly grown in the southern Great Plains (Rife and 

Shroyer 2000; Stamm et al. 2012). Unfortunately, at this point of the study, there are no results on 

the independent frequencies of AvrLm4 and AvrLm7. 

It would be ideal to work with an available set of differential cultivars where each 

cultivar possesses only one specific resistance Rlm gene, and if not possible, work with an 

extended number of differentials with complementary combinations of Rlm genes to assess all the 

possible Avr alleles that exist in the population (Balesdent et al. 2005). In this case, it would be 

convenient if cultivars harboring only one resistance gene Rlm2, Rlm3, Rlm4 or Rlm7 were 

available in order to discriminate the presence of AvrLm2, AvrLm3, AvrLm4 or AvrLm7 in the 

local collection of L. maculans isolates. The B. napus cultivar Jet Neuf (Rlm4) (Balesdent et al. 

2001) and B. juncea cultivar Aurea (Rlm5,6) (Balesdent et al. 2002) were recently added to the 

set of differentials used to screen the isolates from the present study. Consequently, more 
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information could be obtained about the frequency of AvrLm1, AvrLm2,3, AvrLm4, AvrLm5, 

AvrLm6 and AvrLm7 and theoretically 64 races could be differentiated.   

Until this study, there was little known about the L. maculans race structure in Oklahoma 

or the southern Great Plains region. Surveys to determine the race structure of L. maculans in the 

United States have been reported from Georgia in the southeastern U.S. and North Dakota in the 

northern part of the country (Chen and Fernando 2006; Dilmaghani et al. 2009). This study, 

although lacking a set of differential cultivars with specific resistance genes for every Avr locus, 

provides the first overview of the L. maculans race structure in Oklahoma and Kansas. The 

avirulence alleles for four single or grouped Avr genes (AvrLm1; AvrLm2 and AvrLm3; AvrLm4 

and/or AvrLm7; AvrLm6) were confirmed in Oklahoma L. maculans population. Although 

potentially 16 races (24) could be present, the combination of Avr alleles identified in each isolate 

revealed the presence of only four races in the local pathogen population. Furthermore only two 

major races, Av6,4-7 and Av1,6,4-7, predominated. All local isolates had the avirulence alleles 

AvrLm6 and AvrLm4-7. The virulence alleles avrLm1, avrLm2, avrLm3 were also common in the 

population. L. maculans race structure in Oklahoma might actually be more diverse than 

expected. Race diversity could be better assessed if AvrLm2, AvrLm3, AvrLm4, and AvrLm7 

could be analyzed individually, and if additional Rlm and AvrLm genes were added to the 

analysis. It should be noted that there were large differences in the number of isolates collected 

from each county and from each year. Extended sample sizes might provide more robust 

information about Avr allele variation over counties and years. 

The avirulence allele and race structure of the L. maculans population in Oklahoma, 

showed features similar to those reported by Dilmanghani et al. (2009) in other parts of the world. 

Isolates from Chile and Georgia in the U.S showed lack of avirulence allelles AvrLm2, AvrLm3, 

and AvrLm9; and a prevalence of avirulence alleles AvrLm6 and AvrLm7. Isolates from Europe 

also lacked AvrLm2 and AvrLm9; AvrLm3, AvrLm1 and AvrLm4 to a lesser extent, while AvrLm6 
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and AvrLm7 were prevalent (Balesdent et al. 2006). Similarly, the Oklahoma and Kansas 

population had a low frequency of avirulence alleles AvrLm2 and AvrLm3, and high prevalence of 

AvrLm6 and most likely AvrLm7. Frequencies of the individual alleles AvrLm4 and AvLm7 are 

still being studied. Isolates from Oklahoma and Kansas were not characterized for AvrLm9 in this 

study. The population from Oklahoma and Kansas differed from those in Australia and Canada, 

where only frequencies of the avirulence alleles AvrLm6 and AvrLm7 were similar among 

populations. Avirulence alleles AvrLm3 and AvrLm7 were common in isolates from western 

Australia. Ontario’s predominant avirulence alleles were AvrLm1 and AvrLm6. By contrast, 

isolates from central Canada and North Dakota were predominantly PG-2 harboring AvrLm2 

and/or AvrLm3 and AvrLm1 and/or AvrLm4 (Chen and Fernando 2006). Likewise, the most 

prevalent Avr alleles in Mexico were AvrLm1 and AvrLm2 (Moreno-Rico et al. 2001). PG-2 

isolates were not common in Oklahoma.    

As in other studies, results from this research showed that more than one race can be 

classified as the same pathogenicity group when evaluating the phenotype interaction between L. 

maculans and B. napus (Balesdent et al. 2005). PG-4, PG-3 and PG-2 included two races each.  

PG-1 which should not include any race because it is considered L. biglobosa, also contained two 

different races. The races included in PG-1 can be explained by the 10 L. maculans isolates that 

were misclassified as PG-1 group for being avirulent on Westar. Poor sporulation of these ten 

isolates may had led to inconsistent results from the inoculations on differentials (Balesdent et al. 

2005). This demonstrates the need to classify the isolates based on the Avr allele combinations for 

each isolate instead the arbitrary system of pathogenicity groups. Thus, based on the race system, 

information is provided about the characterized avirulence Avr genes, the Avr genes not 

characterized, and the avirulence and the virulence alleles present in the isolates. Classification of 

isolates by the Avr allele pattern, rather than by a low or high virulent pathogenicity status, is 

more informative and specific for deployment of resistance genes. 
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The results presented in this study were limited by a set of differential cultivars that were 

insufficient to identify all the possible Avr alleles present in the L. maculans local population. 

Nevertheless, this study provides significant knowledge of the avirulence allele variation and race 

structure of L. maculans population in Oklahoma. There is now need to provide a more extensive 

overview of race structure population using additional informative differential cultivars to cover 

all the possible Avr alleles in the population or to develop PCR primers to amplify more Avr 

alleles. Knowledge of avirulence gene frequency and race structure of L. maculans across 

Oklahoma and in other canola growing regions of the U.S. will allow pathologists, breeders, 

growers and the canola industry to develop efficient strategies to manage and maintain specific 

resistance. 
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CHAPTER IV 
 

 

SCREENING WINTER CANOLA FOR MAJOR-GENE RESISTANCE TO BLACK LEG 

ABSTRACT 

Black leg disease, caused by the fungus Leptosphaeria maculans, is a common disease of 

winter canola (Brassica napus) in Oklahoma. Major resistance genes (Rlm) are expressed in 

seedlings and interact with avirulence genes in L. maculans (AvrLm). The presence of avirulence 

alleles and the race structure of the L. maculans population were determined by inoculating 

differential cultivars harboring Rlm1 and Rlm2,3 and PCR amplification of avirulence alleles 

AvrLm1, AvrLm4-7, AvrLm6. Avirulence alleles AvrLm6 (100%) and AvrLm4-7 (100%) were 

prevalent in the local population (N=95), whereas AvrLm1 and AvrLm2 and/or AvrLm3 presence 

was only 38% and 9%, respectively. Four races (Av1,2,3,6,4-7; Av1,6,4-7; Av2,3,6,4-7; Av6,4-7) 

were identified in the population. Races Av 6,4-7 (56%) and Av 1,6,4-7 (35%) were predominant 

in Oklahoma and Kansas and were further characterized for AvrLm4, AvrLm5 and AvrLm6 based 

on phenotype interaction on differential cultivars harboring Rlm4 and Rlm5,6. This 

characterization resulted in a reclassification into three races Av1,6,7,(5); Av1,4,6,(5,7) and 

Av6,7,(5) which were used to screen 53 winter canola cultivars, hybrids, and breeding lines for 

seedling resistance. Most (62%) cultivars and breeding lines were susceptible to all three races 

and lacked specific resistance genes. Several (23%) conventional (non-glyphosate tolerant) 

cultivars and hybrids were heterogeneous in resistance to one or more races. Glyphosate tolerant 

(Roundup-Ready) entries currently grown in the region generally lacked major resistance genes, 

except for DKW46-15 which appeared to have heterogeneous resistance from Rlm4 and possibly  
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Rlm7. The conventional hybrids Dimension, Safran, Visby, DK Sensei, and the rapeseed cultivar 

Rossini (9%), were resistant to all races possibly due to the presence of resistance gene Rlm6 

and/or Rlm7. Unknown resistance was found in 6% of the entries, which suggested the presence 

of other resistance genes not assessed in this study. There is a need to grow cultivars or hybrids 

with effective major gene resistance in Oklahoma and surrounding states. 

INTRODUCTION 

Canola (Brassica napus L.) is a broadleaf crop relatively new in the United States, yet its 

production has steadily increased over the past three decades. Winter canola cultivars adapted to 

the southern Great Plains have been developed within the past fifteen years and the crop has been 

commercially grown in Oklahoma for about ten years (Boyles and Sanders, 2009). Oklahoma is 

the second leading canola-producing state in the U.S. after North Dakota (USDA NASS 2014). 

Black leg disease, caused by the fungus Leptosphaeria maculans (Desm.) Ces. & DeNot, is an 

economically important disease of oilseed and canola in most regions of the world where the crop 

is grown (Rouxel and Balesdent 2005). Symptoms of black leg are leaf spots and stem cankers. 

The stem canker phase of the disease can severely affect the plant by girdling the stem and killing 

the plant. Black leg has the potential to severely damage canola causing a reduction in yield up to 

50% in fields planted with susceptible cultivars (Damicone et al. 2012). 

 Major gene resistance, also known as seedling resistance because it is expressed at the 

seedling stage of the plant, has been widely used to control black leg (Delourme et al. 2006). 

Major gene resistance consists of a gene-for-gene interaction between B. napus and L. maculans, 

where the resistant phenotype depends on the presence of a dominant major gene for resistance 

(Rlm) in the plant and a dominant corresponding avirulence (Avr) gene in the pathogen (Balesdent 

et al. 2005; Marcroft et al. 2012a). Conversely, the lack of a dominant resistance gene in the plant 



 63 

or a recessive gene for virulence (avr) in the pathogen results in a susceptible reaction and the 

expression of disease. 

 To date, at least 17 major resistance genes have been identified (Rlm1 to Rlm11, LepR1 to 

LepR4, BLMR1, and BLMR2) in Brassica species conferring resistance to Leptosphaeria 

maculans (Marcroft et al. 2012a; Van de Wouw et al. 2014b). LepR3, is the only Rlm gene that 

has been cloned (Larkan et al. 2013).  Most of these genes have been positioned on B. napus 

linkage maps and have shown to be organized in clusters (Delourme et al. 2006; Delourme et al. 

2004). Of the corresponding avirulence genes in L. maculans conferring host specificity, 

(AvrLm1, AvrLm4-7, AvrLm6, AvrLm11 and AvrLmJ1) have been cloned and sequenced (Fudal et 

al. 2007; Gout et al. 2006; Parlange et al. 2009; Balesdent et al. 2013; Van de Wouw et al. 

2014a). Balesdent et al. (2002), reported the clustering of several Avr genes into two main 

clusters, “AvrLm1 - AvrLm2 - AvrLm6” and “AvrLm3 - AvrLm4 - AvrLm7”, which have been 

shown to be genetically linked at specific loci.  

Breeding programs and crop management practices can improve durability of genetic 

resistance. Rotation of cultivars harboring different major resistance genes has been shown to 

improve the durability of seedling resistance (Marcroft et al. 2012b). In order to implement this 

strategy, knowledge of the resistance genotype in sown cultivars is required. However very few 

cultivars have been characterized for major resistance genes. Rouxel et al. (2003) genotyped 

Australian cultivars for resistance genes Rlm1, Rlm2 and Rlm4 based on phenotype interaction 

with L. maculans isolates with known Avr genotypes. B. napus accessions from Canada and 

France also have been screened for major genes resistance (Rouxel et al. 2003). Similarly, major 

resistance genes against black leg were characterized in Canadian canola germplasm by Zhang et 

al. (2013). Studies that have characterized major resistance genes have indicated that cultivars 

that were thought to have one resistance gene actually have more resistance genes. For example, 

the ‘sylvestris resistance’ in cultivar ‘Surpass400’ was initially thought to be from resistance gene 
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LepR3 (Li and Cowling 2003) and later it was found to also involve Rlm1 and RlmS (Van de 

Wouw et al. 2009). Unfortunately, there is no information about the major resistance genes 

contained in winter canola cultivars commonly sown in Oklahoma and surrounding states, or in 

breeding lines used in the development of winter canola cultivars.   

 Major gene resistance has been assessed on seedling cotyledons in growth chamber 

pathogenicity experiments (Ansan‐Melayah et al. 1998), because this type of resistance is 

effective at site of infection on leaves of young plants (Kutcher et al. 2010). The cotyledon test 

has become the accepted method for determining gene-for-gene interaction (Williams et al. 1979) 

between Brassica spp. and L. maculans and has been used in numerous studies to screen for 

corresponding resistance genes or novel resistance genes (Rimmer and Van den Berg 1992; 

Williams et al. 1979). However due to the difficulty of obtaining isolates harboring a single 

avirulence allele or at least a few well-defined avirulence alleles, these studies usually used 

isolates with more than one Avr allele which makes the identification of the corresponding 

resistance genes difficult (Rouxel et al. 2003).  Most of the field isolates characterized harbor 

numerous Avr alleles (Balesdent et al. 2002). 

 The analyses of the L. maculans race structure in Oklahoma (Chapter 3) enabled us to 

identify four races (Av1,2,3,6,4-7; Av1,6,4-7; Av2,3,6,4-7; Av6,4-7) in the population. Races 

Av6,4-7 (56%) and Av1,6,4-7 (35%) were predominant in the population. The objective of this 

study was to use predominant races of L. maculans to identify or infer the presence of resistance 

genes present in winter canola cultivars grown in the region. L. maculans isolates representing the 

two common and broadly virulent races in Oklahoma were used to discriminate seedling 

resistance genes Rlm1, Rlm4, Rlm6 and Rlm7 in winter B. napus commercial cultivars, hybrids 

and breeding lines.  
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MATERIALS AND METHODS  

Brassica napus germplasm 

The B. napus cultivar Westar, which is the susceptible control; the B. napus differential 

cultivars Glacier, Quinta, Jet Neuf; and the B. juncea cultivar Aurea were used to characterize L. 

maculans isolates from Oklahoma (Table 4.1). These were obtained from the USDA Germplasm 

Resources Information Network (GRIN) and increased in the greenhouse and/or field. In addition, 

a total of 53 entries were analyzed for major resistance genes against black leg. The B. napus 

germplasm consisted of glyphosate-tolerant (Roundup Ready) and conventional (non-glyphosate 

tolerant) cultivars and hybrids. Glyphosate-tolerant cultivars and hybrids are grown on over 90% 

of the acreage in the southern Great Plains. The entries were part of the National Winter Canola 

Variety Trial (NWCVT) which is a regional and national testing system that evaluates the 

performance of experimental and commercial cultivars (Stamm and Dooley 2013), and were 

obtained from M. Stamm at Kansas State University. 

Characterization of the avirulence genotype of L. maculans isolates 

Races were characterized based on the combination of Avr alleles expressed in each 

isolate from the phenotype interaction on differential cutivars harboring the resistance genes 

Rlm1, Rlm2 and Rlm3 (Table 4.1) and amplification of avirulence alleles AvrLm1, AvrLm4-7, and 

AvrLm6 by polymerase chain reaction (See Chapter 3). Three isolate representatives of the two 

common and broadly virulent races, AvrLm6,4-7, which was virulent on Westar, Glacier and 

Quinta, and AvrLm1,6,4-7 virulent on Westar and Glacier, were selected for further 

characterization of the avirulence alleles AvrLm4 and AvrLm5 using the newly acquired 

differential B. napus cv. Jet Neuf (Rlm4) and B. juncea cv. Aurea (Rlm5, Rlm6).  

Cotyledons of 7-day old seedlings were wounded (four wounds per plant) and inoculated 

with conidial suspension (106 conidia per droplet) of each isolate (Marcroft et al. 2012a; 
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Mengistu et al. 1991). Eight plants were inoculated with each isolate-cultivar combination. After 

inoculation, seedlings were kept under high humidity and darkness in a dew chamber at 25⁰C for 

two days and then returned to a growth chamber where conditions were 24⁰C, RH 80% and 

continuous light. Phenotype interactions (disease severity) were scored 10 days after inoculation 

using the IMASCORE rating scale described by Volke (1999) and used by Balesdent et al. (2001) 

which consisted of 6 infection classes (IC). Infection classes IC1 to IC3 correspond to resistant 

reactions, where IC1 is the hypersensitive response, IC2 is a larger (1.5 to 3mm) dark necrotic 

lesion, and IC3 is a non-sporulating lesion that is sharply delimited by a dark necrotic margin. 

IC4 to IC6 correspond to susceptible reactions and are characterized by spreading, gray-green 

lesions with no dark margin. IC4 has no sporulation, IC5 has a few pycnidia, and IC6 has 

abundant sporulation. Mean IC values were determined from the 32 inoculation sites and values 

below 4 were considered resistant reactions and, values equal or above 4 were considered 

susceptible (Marcroft et al. 2012a). Experiments with each isolate and cultivar combination were 

repeated at least twice. 

Race terminology as proposed by Balesdent et al. (2005) was used to describe the Avr 

allele composition of each isolate by listing all the Avr loci for which an isolate was avirulent, 

preceded by the letters ‘Av’. The Avr loci for which the isolates were not characterized due to the 

unavailability of differentials with single resistance genes were indicated in parenthesis 

(Balesdent et al. 2005). The races with known avirulence genotypes were then used to screen 

canola cultivars, hybrids, and breeding lines for seedling resistance. 
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TABLE 4.1. Cultivars with specific resistance (Rlm) genes used to characterize 

Leptosphaeria maculans 

Plant genotype Resistance gene Reference 

Westar  None Balesdent et al. 2002 

Glacier Rlm2, Rlm3 Balesdent et al. 2002 

Quinta Rlm1, (Rlm3 or Rlm4) Balesdent et al. 2001, 2002 

Jet Neuf Rlm4 Balesdent et al. 2001  

Aurea*  Rlm5, Rlm6 Balesdent et al. 2002 
* B. juncea cultivar. 

  

Characterization of major resistance genes in Brassica napus 

Brassica napus cultivars, hybrids, and breeding lines were characterized for major 

resistance genes by inoculating them with isolates with known avirulence genotypes. Based on 

the phenotype interaction of each race - cultivar combination, the absence or presence of the 

corresponding Rlm genes was inferred (Rouxel et al. 2003). Phenotype interactions were scored 

ten days after inoculation, using the IMASCORE rating scale describe above. Each race was 

inoculated onto eight plants and four cotyledons per plant, and experiments were repeated at least 

twice. A resistant phenotype interaction implied the presence of the corresponding resistance 

gene in the plant, whereas a susceptible reaction implied the absence of an Rlm gene in the plant.  

A major resistance gene was considered present if more than 80% of the plants of a 

particular entry exhibited a resistant reaction towards the isolate harboring the corresponding 

avirulence allele. A major resistance gene was considered absent if more than 80% of the plants 

of a specific cultivar exhibited a susceptible reaction when inoculated with an isolate with a 

particular avirulence gene (Marcroft et al. 2012a). The race and cultivar interaction was 

heterogeneous when 20% to 80% of plants showed resistance to a particular avirulence allele 

(Rouxel et al. 2003). The susceptible cultivar Westar, which has no Rlm genes, was used as 

positive control for each cultivar and isolate combination. 
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RESULTS 

The addition of the winter Brassica napus cultivar Jet Neuf (Rlm4) and the Brassica 

juncea cultivar Aurea (Rlm5,6) allowed further characterization of three isolates from the two 

common races, Av1,6,4-7 and Av6,4-7. Based on phenotype interaction on differential cultivars 

harboring specific resistance genes Rlm1, Rlm2, Rlm3, Rlm4, Rlm5 and Rlm6 and PCR 

amplification of AvrLm1, AvrLm4-7, and AvrLm6 alleles, there were three races Av1,6,7,(5), 

Av1,4,6,(5,7) and Av6,7,(5) represented in the three isolates (Table 4.2). The reclassification of 

these races was based on differences in the virulence alleles avrLm1 and avrLm4. 

Table 4.2. Avirulence genotypes of Leptosphaeria maculans isolates based on response 

phenotype of inoculated Brassica cultivars and amplification of Avr genes. 

  Differential phenotype interaction a   PCR b   

Isolate  
Westar 
No Rlm 

Glacier 

Rlm2,3 

Quinta 

Rm1 

Jet Neuf 

Rlm4 

Aurea 

Rlm5,6 
     AvrLm1  AvrLm4-7 AvrLm6 Avr genotypec 

102 V V A V A  + + + Av 1,6,7,(5) 

165 V V V A A  + + + Av 1,4,6,(5,7) 

124 V V V V A   - + + Av 6,7,(5) 
a Phenotype interaction on differentials, Westar (no Rlm genes), Glacier (Rlm2,3), Quinta (Rlm1, 

Rlm3 or Rlm4); Jet Neuf (Rlm4), Aurea (Rlm5,6). A= avirulence, resistant interaction between 

isolate and cultivar, V = virulence, susceptible interaction between the isolate and the 

differential. 
b PCR + = presence of the avirulence (Avr) allele, - = presence of the virulence (avr) allele.  
c Race indicates the avirulence Avr loci for which the isolate is avirulent; numbers in parentheses 

indicates Avr loci for which the allele has not been determined (Balesdent et al. 2005). 

 

In order to identify effective resistance genes to the three races, 53 Brassica napus winter 

canola cultivars, hybrids and breeding lines were screened for major-gene resistance to L. 

maculans (Tables 4.3 and 4.4). Most (62%) entries were susceptible to the three races and lacked 

any resistance genes. Several (23%) conventional (non-glyphosate tolerant) cultivars and hybrids 

were heterogeneous in resistance to one or more races. For these entries, only 20 to 80% of the 

seedlings contained the expected major resistance gene (Rouxel et al. 2003). Most of the 

heterogeneous resistance was observed in open pollinated cultivars. Glyphosate tolerant 

(Roundup-Ready) entries currently grown in the region generally lacked major resistance genes, 
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except for DKW46-15 which appeared to have heterogeneous resistance from Rlm4 and possibly 

Rlm7. The conventional hybrids Dimension, Safran, Visby, DK Sensei, and the rapeseed cultivar 

Rossini (9%), were resistant to all races possibly due to the presence of resistance gene Rlm6 

and/or Rlm7. A few entries (6%) including KS4506, Hornet and Linglandor, exhibited unknown 

resistance which could not be associated with the Rlm genes assessed in the study. 

 

Table 4.3. Interaction phenotypes of Brassica napus cultivars determined by their response to 

Leptosphaeria maculans isolates (races) with known avirulence genotypes. 

  Racesb  

Cultivar Typea AvrLm1,6,7,(5) AvrLm1,4,6,(5,7) AvrLm6,7,(5) Resistance genotypec 

Westar  S S S None 

Monsanto /Dekalb   

DKW41-10d OP S S S None 

DKW44-10d OP S S S None 

DKW46-15d OP R/S R/S R/S Rlm6(H),Rlm7(H),Rlm4?(H) 

DKW47-15d OP S S S None 

DK Sensei Hyb R R R Rlm6, Rlm7 

DK ExStorm Hyb R R/S S Rlm1(H), Rlm4?(H) 

DK Imiron Cl Hyb R/S R/S S Rlm1(H), Rlm4?(H) 

DK ImpressionCl Hyb S S S None 

CROPLAN by WinField  

HC125Wd OP S S S None 

HC115Wd OP S S S None 

Kansas State University    

Kiowa OP R/S R/S R Rlm6(H),Rlm7(H),Rlm4?(H) 

Riley OP S S S None 

Sumner OP S R/S R/S Rlm4(H), Unknown  

Wichita  OP R/S R/S R/S Rlm6(H),Rlm7(H),Rlm4?(H) 

Griffin/KS4022 OP S S S None 

KS4410 OP S S S None 

KS4426 OP R/S R/S R Rlm6(H),Rlm7(H),Rlm4?(H) 

KS4428 OP R/S R R/S Rlm4, Rlm6(H), Rlm7(H) 

KS4564 OP R/S R R/S Rlm4, Rlm6(H), Rlm7(H) 

KSUR21 OP S S S None 

KS4506 OP S S R/S Unknown 

KSR073525d OP S S S None 

KSRO7363d OP S S S None 
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Virginia State University    

Virginia OP S S S None 

VSX-3 OP S S S None 

DL Seeds Inc. / Rubisco Seeds LLC  

Dimension  Hyb R R R Rlm6, Rlm7 

Safran  Hyb R R R Rlm6, Rlm7 

Visby Hyb R R R Rlm6, Rlm7 

Hornet Hyb S S R/S Unknown 

Sitro Hyb S S S None 

Mercedes  S S S None 

Popular  S S S None 

MOMONT, France    

Chrome Hyb R/S S R/S Rlm7(H) 

MH09E3  S S S None 

Technology Crops International 

Rossini (rapeseed)  OP R R R Rlm6, Rlm7 

Syngenta     

NK Techni Hyb S S S None 

NK Petrol Hyb S S S None 

SY Marten Hyb S S S None 

SY Saveo Hyb S S S None 

DuPont Pioneer     

46W94d Hyb S S S None 

46W99d Hyb S S S None 

X12W377C  Hyb S S S None 

X12W447C Hyb S S S None 

High Plains Crop Development 

HPX 501 OP S S S None 

Limagrain      

Albatros Hyb S R/S S Rlm4(H) 

Miscellaneous Entries  

TT11 OP S S S None 

Zhongyou OP S S S None 

Synia OP S S S None 

Linglandor OP R/S S S Unknown 

Lindora-00 OP S S S None 

MAR OP S S S None 

PI649127 OP S S S None 

Liradonna OP S R/S S Rlm4(H) 
a Type: OP = Open pollinated, Hyb = Hybrid 
b Phenotype interaction with races: S = susceptible reaction, absence of the major resistance gene; R = 

resistant reaction, presence of the major resistance gen; R/S = heterogeneous resistance where a percentage 

of 20% to 80% of plants of an entry contain the major resistance gene.  
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c Resistance genotype describes the major resistance genes that are present in a cultivar; Unknown refers 

either to the presence of a new resistance gene or the combination of resistance genes that cannot be 

distinguished. None refers to the absence of all resistance genes tested in the current study. Other seedling 

resistance genes may be present. ? =possible presence of a major resistance gene. 
d Glyphosate tolerant.      

 

 

The presence or absence of major resistance genes Rlm1, Rlm4, Rlm6 and Rlm7 was 

determined in winter canola germplasm based on reactions with the three races of L. maculans 

with characterized avirulence genotypes (Table 4.4). Known major resistance genes (Rlm1, Rlm4, 

Rlm6, Rlm7) were inferred in 17 entries (32%). Twelve of those entries had heterogeneous 

resistance. None of the major resistance genes assessed in this study were identified in 33 entries 

(62%). Three entries (6%) were classified as having unknown resistance, that might have 

additional major resistance genes not considered in this study or new uncharacterized resistance 

genes. Within 17 cultivars that had at least one major resistance gene, it was inferred that 12 

entries contained Rlm6 and/or Rlm7, 8 entries contained Rlm4, and 2 entries contained Rlm1.  

 

Table 4.4. Major resistance genes present in lines and cultivars of Brassica napus determined by 

their response to L. maculans isolates with known avirulence genotypes.  

 Resistance genesa    

Cultivar  Rlm1 Rlm2 Rlm3 Rlm4 Rlm5 Rlm6 Rlm7 Other  Resistance genotype  

Westar - n.d n.d - n.d - -  None 

Monsanto /Dekalb        

DKW41-10 - n.d n.d - n.d - -  None 

DKW44-10 - n.d n.d - n.d - -  None 

DKW46-15 H n.d n.d H n.d H H  Rlm6(H),Rlm7(H),Rlm4?(H) 

DKW47-15 - n.d n.d - n.d - -  None 

DK Sensei - n.d n.d - n.d + +  Rlm6, Rlm7 

DK ExStorm H n.d n.d H? n.d - -  Rlm1(H), Rlm4?(H) 

DK Imiron Cl H n.d n.d H? n.d - -  Rlm1(H), Rlm4?(H) 

DK Impression Cl - n.d n.d - n.d - -  None 

CROPLAN by WinField        

HC125W - n.d n.d - n.d - -  None 

HC115W - n.d n.d - n.d - -  None 

Kansas State University 

Kiowa - n.d n.d H? n.d H H  Rlm6(H),Rlm7(H),Rlm4?(H) 
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Riley - n.d n.d - n.d - -  None 

Sumner - n.d n.d H n.d - - + Rlm4(H), Unknown  

Wichita  - n.d n.d H? n.d H H  Rlm6(H),Rlm7(H),Rlm4?(H) 

Griffin/KS4022 - n.d n.d - n.d - -  None 

KS4410 - n.d n.d - n.d - -  None 

KS4426 - n.d n.d H? n.d H H  Rlm6(H),Rlm7(H),Rlm4?(H) 

KS4428 - n.d n.d + n.d H H  Rlm4, Rlm6(H), Rlm7(H) 

KS4564 - n.d n.d + n.d H H  Rlm4, Rlm6(H), Rlm7(H) 

KSUR21 - n.d n.d - n.d - -  None 

KS4506 - n.d n.d - n.d - - + Unknown 

KSR073525 - n.d n.d - n.d - -  None 

KSRO7363 - n.d n.d - n.d - -  None 

Virginia State University 

Virginia - n.d n.d - n.d - -  None 

VSX-3 - n.d n.d - n.d - -  None 

DL Seeds Inc. / Rubisco Seeds LLC       

Dimension  - n.d n.d - n.d + +  Rlm6, Rlm7 

Safran  - n.d n.d - n.d + +  Rlm6, Rlm7 

Visby - n.d n.d - n.d + +  Rlm6, Rlm7 

Hornet - n.d n.d - n.d - - + Unknown 

Sitro - n.d n.d - n.d - -  None 

Mercedes - n.d n.d - n.d - -  None 

Popular - n.d n.d - n.d - -  None 

MOMONT, France         

Chrome - n.d n.d - n.d - H  Rlm7(H) 

MH09E3 - n.d n.d - n.d - -  None 

Technology Crops International        

Rossini (rapeseed) - n.d n.d - n.d + +  Rlm6, Rlm7 

Syngenta          

NK Techni - n.d n.d - n.d - -  None 

NK Petrol - n.d n.d - n.d - -  None 

SY Marten - n.d n.d - n.d - -  None 

SY Saveo - n.d n.d - n.d - -  None 

DuPont Pioneer       

46W94 - n.d n.d - n.d - -  None 

46W99 - n.d n.d - n.d - -  None 

X12W377C  - n.d n.d - n.d - -  None 

X12W447C - n.d n.d - n.d - -  None 

High Plains Crop Development        

HPX 501 - n.d n.d - n.d - -  None 

Limagrain           

Albatros - n.d n.d H n.d - -  Rlm4(H) 

Miscellaneous Entries      
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TT11 - n.d n.d - n.d - -  None 

Zhongyou - n.d n.d - n.d - -  None 

Synia - n.d n.d - n.d - -  None 

Linglandor - n.d n.d - n.d - - + Unknown 

Lindora-00 - n.d n.d - n.d - -  None 

MAR - n.d n.d - n.d - -  None 

PI649127 - n.d n.d - n.d - -  None 

Liradonna - n.d n.d H n.d - -  Rlm4 (H) 
a + = Presence of the major resistance gene; - = absence of the major resistance gene; n.d. = resistance gene 

whose presence or absence could not be determined; H = cultivars with heterogeneous resistance, where 

20% to 80% of the plants contain the major resistance gene.  
b Resistance genotype describes the major resistance genes that are present in a cultivar; Unknown refers 

either to the presence of a new resistance gene or the combination of resistance genes that cannot be 

distinguished. None refers to the absence of all resistance genes tested in the current study. Other major 

resistance genes may be present. ? =possible presence of a major resistance gene.    

 

DISCUSSION 

Based on cultivar and isolate interactions, three isolates with known avirulence genotype 

representative of three L. maculans races present in Oklahoma were used to characterize major 

resistance genes in winter-type Brassica germplasm. This study, although lacking of a set of L. 

maculans isolates harboring single avirulence alleles (Avr), allowed us to infer the presence of 

resistance genes Rlm1, Rlm4, Rlm6 and Rlm7 and to provide an overview of the major resistance 

genes common in winter canola cultivars and hybrids grown in the southern Great Plains. 

However, for total confirmation of the presence of major resistance genes, mapping and cloning 

are required (Marcroft et al. 2012a).  

Of the 53 winter canola cultivars, hybrids, and breeding lines analyzed, 17 (32%) had 

major resistance to one or more races including homogeneous and heterogeneous resistance. The 

most common major resistance genes (71%) within the entries with seedling resistance were 

Rlm6 and/or Rlm7 (12 entries). The hybrids Dimension, Safran, Visby, DK Sensei, and the 

cultivar Rossini had homogeneous resistance reactions to all races, likely due to resistance gene 

Rlm6 and/or Rlm7. The cultivars DKW 46-15, Kiowa and Wichita; the breeding line KS4426 and 

the hybrids Chrome and possibly DK ExStorm had heterogeneous resistance from Rlm6 and/or 

Rlm7. The resistance gene Rlm6 has been introgressed into B. napus from B. juncea (Chèvre et al. 
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1997). According to Kutcher et al. (2010), the resistance gene Rlm6 has been mostly used in 

experimental research and it is only present in few canola cultivars in Europe with a “MX” 

trademark. Therefore, it is unlikely that winter canola cultivars developed for seeding in the U.S. 

harbor resistance gene Rlm6. Consequently, it can be assumed that the resistant reaction exhibited 

in these 12 entries is more likely to be due to resistance gene Rlm7. The finding of Rlm7 in DK 

Sensei and possibly in DK ExStorm, both commercial DEKALB hybrids from Monsanto, was 

consistent with the information in its advertisements which indicates that Rlm7 is present in 

combination with polygenic resistance to provide durable protection against black leg 

(DEKALB/Monsanto, 2014). The hybrids DK Imiron Cl and DK Impression Cl, which are for 

exclusive use with Cleranda herbicide, also combine Rlm7 with polygenic resistance against 

black leg (DEKALB/Monsanto, 2014). However, Rlm7 was not identified in these two hybrids 

when screened with the three characterized L. maculans races.   

The presence of resistance gene Rlm4 was found to a lesser extent (41%) in 7 of 17 

entries exhibiting resistance. Entries KS4428, KS4564 showed homogeneous resistance to Av 

1,4,6,7,(5) which harbors AvrLm4, and heterogeneous resistance to Av1,6,(5,7) and Av6,7,(5) 

which suggests the presence of Rlm4, Rlm6 and Rlm7. The hybrid Albatros and cultivar 

Liradonna exhibited heterogeneous resistance to Av1,4,6,(5,7), but susceptible reaction to Av 

1,6,7,(5) and Av6,7,(5) which infers that these two entries may contain heterogeneous seed with 

Rlm4 and a lack of Rlm6 and/or Rlm7. The cultivar Kiowa and breeding line KS4426 indicated 

heterogeneous resistance to Av1,4,6,(5,7) and could possibly harbor Rlm4 besides Rlm6 and/or 

Rlm7. The cultivar Sumner exhibited heterogeneous resistance to Av1,4,6,(5,7) and Av6,7,(5), but 

it was susceptible to Av1,6,7,(5) which suggested that the cultivar may contain heterogeneous 

seeds with Rlm4 and some other Rlm gene that was not assessed in this study.  

In the late 1990s, Australia began incorporating European winter canola germplasm, 

especially from France, to expand and diversify their breeding programs (Marcroft et al. 2012a). 
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Similarly in the U.S., the cultivar Wichita from Kansas State University (KSU), was developed 

from the French B. napus cultivar Jet Neuf (Rlm4) and released in 1999 as a new winter canola 

cultivar to be used in the southern Great Plains (Rife and Shroyer 2000). Since then, other 

cultivars including Kiowa and Riley have been released and breeding lines developed by the KSU 

breeding program using Wichita as a parental line (Stamm et al. 2012). This probably reflects the 

presence of Rlm4 in the breeding lines KS4428 and KS4564, and the cultivars Sumner and Kiowa 

developed by KSU. Conversely, in this study the cultivar Wichita exhibited heterogenous 

resistance and Riley was susceptible to Av1,4,6,(5,7) which harbors AvrLm4. Results from rating 

scores (% of plants with resistant reaction to a corresponding Avr allele) for both cultivars were 

25% and 17% resistance, near to the borderline (20%) that would be considered as heterogeneous 

resistance.  

Resistance gene Rlm1 was found only in 12% of the entries with major resistance genes. 

The hybrids DK ExStorm and DK Imiron Cl exhibited heterogeneous resistance to  Av1,6,7,(5) 

and Av1,4,6,(5,7), both harboring AvrLm1, AvrLm6 and AvrLm7. Similarly, it is probable that 

both hybrids contain heterogeneous seed for Rlm6 and/or Rlm7.  

Finally, an unknown pattern of resistance was observed in three entries (6%). Unknown 

resistance suggests the presence of other seedling resistance whose corresponding Avr genes were 

absent in the selected races and not assessed in this screening. Likewise, it is possible that entries 

that exhibited a major resistance gene Rlm1, Rlm4, Rlm6 and Rlm7 could possibly contain other 

resistance genes in their genetic background. Therefore, it is desirable to have a set of isolates 

with single Avr alleles that correspond to known Rlm genes to completely assess resistance genes 

in winter canola genotypes.  

Heterogeneous resistance was common within the screened entries. By definition, entries 

with heterogeneous resistance had only 20 to 80% of the seedlings exhibiting a resistant 
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phenotype (Rouxel et al. 2003). Most of the heterogeneous resistance was observed in open 

pollinated cultivars. These results may reflect a lack of selection for Rlm genes in breeding 

programs or low disease pressure for identification of resistance. Crosspollination by insect 

vectors may be an additional source of heterogeneous seeds. In Australia, changes in breeding 

practices were made to overcome heterogeneity in seeds, and now plants are being bagged when 

in flower to ensure self-pollination. Additionally hybrids and double haploids are being produced 

which facilitates the uniform insertion of traits (Marcroft et al. 2012a). 

The rating scale used to qualitatively assess each isolate/entry interaction, as 

incompatible or resistant (more than 80% of resistant plants with an Rlm gene), compatible or 

susceptible (more than 80% of susceptible plants without an Rlm gene), or heterogeneous (20% to 

80% of plants showing resistance) has been applied in previous studies that screened for 

resistance genes to L. maculans in B. napus accessions from France, Australia and Canada 

(Rouxel et al. 2003; Marcroft et al. 2012a). However, the interaction of some isolates and entries 

falls into intermediate categories between resistance and heterogeneous resistance (70 to 80 %) 

and susceptible and heterogeneous resistance (20% to 30%). Imprecise reaction assessments may 

have contributed to heterogeneous reactions of the DK hybrids and cultivar Wichita, which were 

expected to have resistance from Rlm7 and Rlm4, respectively. Different results for isolate and 

entry interactions were sometimes observed when the interactions were recorded by the average 

of the IC index values (1-6). Mean IC values that were less than 4 were considered resistant 

reactions and greater than or equal to 4 were considered susceptible (Marcroft et al. 2012a). 

Assessing reactions using mean IC values fit better with the isolate/entry interaction that showed 

unexpected results. For example, the hybrid DK Exstorm which is reported to have Rlm7, was 

resistant to Av1,6,7,(5), heterogeneous to Av1,4,6,(5,7), and susceptible to Av6,7,(5) because 81% 

of the plants exhibited susceptible phenotypes. Similarly, the Rlm7 hybrid DK Imiron Cl,  showed 

heterogeneous resistance to Av1,6,7,(5) and Av1,4,6,(5,7), but was susceptible to Av6,7,(5) 
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because 84% of the plants had susceptible symptoms. However, when rated by the average of IC 

score, the hybrid DK Exstorm and DK Imiron Cl were resistant to the three races with mean IC 

values less than 4. Similarly, cultivar Wichita which is suspected to have resistance gene Rlm4, 

showed heterogeneous resistance to race Av1,4,6,(5,7), but was considered resistant by the 

average IC score (3.6).    

This research demonstrated that most of the entries exhibiting major resistance genes 

contained resistance gene Rlm7 and Rlm4 which should be useful in management of black leg, 

because of the high frequency of avirulence alleles AvrLm6, AvrLm4 and/or AvrLm7 in the 

regional population of L. maculans. There is a need to include a more diverse set of isolates that 

harbor single avirulence Avr alleles to improve and complete the screening of cultivars and 

hybrids and detect all the possible major resistance genes. The identification of major resistance 

genes to black leg disease in winter B. napus enables the development of resistant cultivars and 

hybrids. Cultivar selection is one of the most important decisions made by canola growers. 

Producers should carefully review cultivar characteristics to make effective choices. In addition 

to yield, several traits to consider when selecting a winter canola include winter survival, 

sulfonylurea residual tolerance, herbicide resistance, pod shattering resistance, oil quantity and 

quality, and black leg resistance (Boyles et al. 2012). However, growers in the southern Great 

Plains are not currently planting cultivars with effective resistance genes. They are mostly 

planting cultivars that are glyphosate tolerant (Roundup-Ready) because they prefer that 

convenience. Currently, more than 90% of the acreage in the southern Great Plains regions is 

planted to glyphosate-tolerant HyClass and DeKalb cultivars, and Pioneer Hybrids (John 

Damicone, personal communication). Knowledge about the resistance genes present in the 

cultivars and hybrids commonly grown in the region should help growers better manage the 

disease, avoid having to spray a fungicide for disease control and to avoid selecting a cultivar 

with a defeated (ineffective) resistance gene. For example, a selection of Rlm1 would only be 
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effective against about 35% of the local L. maculans population. It would be useful for breeders 

to determine what experimental lines should be released as new cultivars and where those 

cultivars can be effectively deployed to resist black leg disease based on a previous knowledge of 

the pathogen race structure. 
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