SUPPLEMENTARY MATERIAL

Contortamide, a new anti-colon cancer cerebroside and other constituents from Tabernaemontana contorta Stapf (Apocynaceae).

Guy R. Ebede ${ }^{\mathrm{a,d}}$, Joseph T. Ndongo ${ }^{\mathrm{b}^{*}}$, Joséphine N. Mbing ${ }^{\mathrm{a}}$, Hector C. M. Kenfack $^{\mathrm{c}}$, Dieudonné E. Pegnyemb ${ }^{\mathrm{a}}$ and Christian G. Bochet ${ }^{\mathrm{d}}$.
${ }^{a}$ Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, P.O Box 812, Yaoundé, Cameroon.
${ }^{b}$ Department of Chemistry, Higher Training College, University of Yaoundé I, P.O Box 47, Yaoundé, Cameroon.
${ }^{c}$ Department of Biochemistry, Faculty of Science, University of Dschang I, P.O Box 67, Dschang, Cameroon.
${ }^{d}$ Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
*Corresponding author: Tel: +237 6902247 80; E-mail: thierry.ndongo@ens.cm (J. T. Ndongo).

Abstract

Tabernaemontana contorta Stapf, a flowering plant, belongs to the family Apocynaceae. In Cameroon, its leaves are used to prevent keloids formation and as antiseptic (Burkill, 1985). A new cerebroside, Contortamide (1) together with nine know compounds spegatrine (2), Lupeol (8), betulinic acid (9), β-sitosterolglycoside (10) were isolated from the bark of trunk of Tabernaemontana contorta Stapf. The new compound $\mathbf{1}$ showed significant activity against Caco-2 colon cancer cells with the MTT method. Compounds 1, 2, 3, 4, 6, 7, $\mathbf{8}$ and $\mathbf{9}$ were isolated for the first time from this species.

Keywords: Contortamide; Tabernaemontana contorta Stapf; Apocynaceae; Colon Cancer.

Figure S1. HRESI-MS spectrum of compound 1.

Figure S2. IR spectrum of compound 1.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)$ of compound 1 .

Figure S4. COSY spectrum $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{1}$.

Figure S5. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right)$ of compound 1 .

Figure S6. DEPT 135 spectrum $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right)$ of compound $\mathbf{1}$.

Figure $\mathbf{S} 7 . \mathrm{HSQC}$ spectrum $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{1}$.

Figure S8. HMBC spectrum $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)$ of compound 1.

Figure S9. NOESY spectrum $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{1}$.

Figure S10. Selected HMBC (\longrightarrow) and $\operatorname{NOESY}($) correlations for compound 1.

Figure S11. ESI-MS Spectrum of compound 1.

Figure S12. Mass fragmentation pattern of compound 1.

Figure S13. Chemical structure of fatty acid (Methyl-2-hydroxypentacosanoate).

Figure S14. ESI-MS of fatty acid (Methyl-2-hydrox ypentacosanoate).

Figure S15. Observation of Caco-2 cancer cells under a microscope.

Figure S16. A comparison of pure compounds, fraction, extract and standard drug actinomycin D growth inhibitory activities against Caco-2. All the results are represented as mean $\pm S D(n=3)$.

Table S1. ${ }^{1} \mathrm{H}\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \mathrm{NMR}$ spectral data and HMBC correlations of compound 1.

Position	$\delta_{\mathrm{H}} \mathrm{ppm}(J$ in Hz$)$	$\delta_{\text {C }} \mathrm{ppm}$	HMBC ($\mathrm{H} \rightarrow \mathrm{C}$)	${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY
1a	4.02 (m)	68.5	C-1', C-1"	H-2
1 b	3.79 (dd, 7.2; 14.8)	68.5	C-1', C-1', C-3	H-2
2	4.24 (m)	50.3	C-1	H-1, H-3
3	3.57 (t, 6.1)	74.4	C-2, C-4, C-5	H-2, H-4
4	3.50 (m)	71.4	-	H-3, H-5
5a	1.98 (m)	32.4	C-6, C-7	H-4
5 b	2.01 (m)	32.4	C-6, C-7	H-4
6	5.40 (dt)	129.4	C-5	H-5
7	5.36 (dt)	130.4	C-8	H-8
8	1.64 (m)	32.0	C-7	H-7
9-16	1.28-1.40 (brs)	$\begin{gathered} 22.2- \\ 31.7 \end{gathered}$		H-8
17	0.89 (t, 6.7)	13.1	C-16	H-17
1^{\prime}		176.2	-	
2^{\prime}	4.00 (m)	71,5	C-1', C-3'	H-3'
3'a	1.73 (m)	34.4	C-2'	H-2'
3'b	1.63 (m)	34.4	C-2'	H-4'
$4^{\prime}-24^{\prime}$	1.28-1.40 (brs)	$\begin{gathered} 22.2- \\ 31.7 \end{gathered}$		H-5'
25^{\prime}	0.89 (t, 6.7)	13.1	C-25'	H-25'
Glucose				
1 "	4.26 (d, 7.8)	103.3	C-1, C-2", C-3"	H-2"
$2{ }^{\prime \prime}$	3.16 (dd, 8; 16.8)	73.6	C-1, C-3"	H-1', H-3'
3 "	3.33 (m)	76.5	C-4"	H-2', H-4'
$4{ }^{\prime \prime}$	3.26 (dd, 4;12.3;)	70.2	C-3', C-5"	H-3', H-5'
$5{ }^{\prime \prime}$	3.27 (m)	76.6	C-3"	H-4', H-6"
6"a	3.85 (dd, $\mathrm{J}=11,2)$	61.3	C-5"	H-5"
6"b	3.64 (dd, $J=4.4 ; 11.2)$	61.3	C-5"	H-5"

