SUPPLEMENTARY MATERIAL

Contortamide, a new anti-colon cancer cerebroside and other constituents from *Tabernaemontana contorta* Stapf (Apocynaceae).

Guy R. Ebede^{a,d}, Joseph T. Ndongo^{b*}, Joséphine N. Mbing^a, Hector C. M. Kenfack^c, Dieudonné E. Pegnyemb^a and Christian G. Bochet^d.

^a Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, P.O Box 812, Yaoundé, Cameroon.

^bDepartment of Chemistry, Higher Training College, University of Yaoundé I, P.O Box 47, Yaoundé, Cameroon.

^c Department of Biochemistry, Faculty of Science, University of Dschang I, P.O Box 67, Dschang, Cameroon.

^d Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.

*Corresponding author: Tel: +237 690 22 47 80; E-mail: thierry.ndongo@ens.cm (J. T. Ndongo).

Abstract

Tabernaemontana contorta Stapf, a flowering plant, belongs to the family Apocynaceae. In Cameroon, its leaves are used to prevent keloids formation and as antiseptic (Burkill, 1985). A new cerebroside, Contortamide (1) together with nine know compounds spegatrine (2), affinisine (3), N_b -methylaffinisine (4), ursolic acid (5), α-amyrin (6), bauerenol acetate (7), Lupeol (8), betulinic acid (9), β-sitosterolglycoside (10) were isolated from the bark of trunk of *Tabernaemontana contorta* Stapf. The new compound 1 showed significant activity against Caco-2 colon cancer cells with the MTT method. Compounds 1, 2, 3, 4, 6, 7, 8 and 9 were isolated for the first time from this species.

Keywords: Contortamide; *Tabernaemontana contorta* Stapf; Apocynaceae; Colon Cancer.

Figure S1. HRESI-MS spectrum of compound 1.

Figure S2. IR spectrum of compound 1.

Figure S3. ¹H NMR spectrum (CD₃OD, 400 MHz) of compound 1.

Figure S4. COSY spectrum (CD₃OD, 400 MHz) of compound 1.

Figure S5. ¹³C NMR spectrum (CD₃OD, 100 MHz) of compound 1.

Figure S6. DEPT 135 spectrum (CD₃OD, 100 MHz) of compound 1.

Figure S7. HSQC spectrum (CD₃OD, 400 MHz) of compound 1.

Figure S8. HMBC spectrum (CD₃OD, 400 MHz) of compound 1.

Figure S9. NOESY spectrum (CD₃OD, 400 MHz) of compound 1.

Figure S10. Selected HMBC () and NOESY() correlations for compound 1.

Figure S11. ESI-MS Spectrum of compound 1.

Figure S12. Mass fragmentation pattern of compound 1.

Figure S13. Chemical structure of fatty acid (Methyl-2-hydroxypentacosanoate).

Figure S14. ESI-MS of fatty acid (Methyl-2-hydroxypentacosanoate).

Figure S15. Observation of Caco-2 cancer cells under a microscope.

Figure S16. A comparison of pure compounds, fraction, extract and standard drug actinomycin D growth inhibitory activities against Caco-2. All the results are represented as mean \pm SD (n = 3).

Table S1. 1 H (CD₃OD, 400 MHz) and 13 C (CD₃OD, 100 MHz) NMR spectral data and HMBC correlations of compound **1**.

Position	$\delta_{\rm H}$ ppm (J in Hz)	$\delta_{ m C}$ ppm	HMBC (H→C)	¹ H- ¹ H COSY
1a	4.02 (m)	68.5	C-1', C-1"	H-2
1b	3.79 (dd, 7.2; 14.8)	68.5	C-1', C-1", C-3	H-2
2	4.24 (m)	50.3	C-1	H-1, H-3
3	3.57 (t, 6.1)	74.4	C-2, C-4, C-5	H-2, H-4
4	3.50 (m)	71.4	-	H-3, H-5
5a	1.98 (m)	32.4	C-6, C-7	H-4
5b	2.01 (m)	32.4	C-6, C-7	H-4
6	5.40 (dt)	129.4	C-5	H-5
7	5.36 (dt)	130.4	C-8	H-8
8	1.64 (m)	32.0	C-7	H-7
9 - 16	1.28-1.40 (brs)	22.2-		H-8
		31.7		
17	0.89 (t, 6.7)	13.1	C-16	H-17
1'		176.2	-	
2'	4.00 (m)	71,5	C-1', C-3'	H-3'
3'a	1.73 (m)	34.4	C-2'	H-2'
3'b	1.63 (m)	34.4	C-2'	H-4'
4' - 24'	1.28-1.40 (brs)	22.2-		H-5'
	` '	31.7		
25'	0.89 (t, 6.7)	13.1	C-25'	H-25'
Glucose				
1''	4.26 (d, 7.8)	103.3	C-1, C-2", C-3"	H-2"
2"	3.16 (dd, 8; 16.8)	73.6	C-1, C-3"	H-1", H-3"
3"	3.33 (m)	76.5	C-4"	H-2", H-4"
4''	3.26 (dd, 4;12.3;)	70.2	C-3", C-5"	H-3", H-5"
5"	3.27 (m)	76.6	C-3"	H-4", H-6"
6''a	3.85 (dd, J = 11,2)	61.3	C-5"	H-5"
6''b	3.64 (dd, <i>J</i> = 4.4; 11.2)	61.3	C-5"	H-5"