

Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Excited-state lifetimes TRIUMF Postdoc Lecture Series

Jack Henderson

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

Spectroscopy of excited states

A reminder

Why do we measure excited states?

How do we observe excited states?

What are the primary observables?

... why measure state lifetimes?

Why do we measure excited states?

Provide a wealth of information on the structure of the nucleus

Can identify collective and single-particle excitations of many varieties

Level spacings alone provide a lot of information

Why do we measure excited states?

Provide a wealth of information on the structure of the nucleus

Can identify collective and single-particle excitations of many varieties

Level spacings alone provide a lot of information

 $E = \frac{\hbar^2}{2\Im} I(I+1)$ $E(0^+) = 0$ $E(2^+) = 6(\hbar^2/2\Im)$ $E(4^+) = 20(\hbar^2/2\Im)$ $E(6^+) = 43(\hbar^2/2\Im)$ $E(8^+) = 72(\hbar^2/2\Im)$

¹²⁰Te: A lesson from history...

For many years based on its level scheme ¹²⁰Te was considered a textbook example (MeV) of a vibrational Ge3 nucleus ... quite literally 120T Krane Figure 5.19 The low-lying levels of ¹²⁰Te. The single quadrupole phonon state (first 2⁺), the two-phonon triplet, and the three-phonon quintuplet are obviously seen. The 3⁻ state presumably is due to the octupole vibration. Above 2 MeV the structure becomes guite complicated, and no vibrational patterns can be seen.

¹²⁰Te: A lesson from history...

... and then

Transition strength measurements were made

It turns out, the data fit a deformed rotor model far better than a vibrator (similarly in the Cd isotopes)

The lesson: level energies are never enough

TABLE II. Comparison of the measured data for the ^{120,122,124} Te isotopes with various available models.									
	Α	Experiment	Vibrator	Asymmetric rotor	IBA-2				
$Q_s(2^+)/Q_0$	120		0	$-0.179 \ \gamma = 25^{\circ}$	-0.178				
$Q_s(2^+)/Q_0$	122	-0.182 (12)		$-0.105 \ \gamma = 27.5^{\circ}$	-0.140				
$Q_s(2^+)/Q_0$	124	-0.189 (16)			-0.066				
$\frac{B(E2; 4^+ \rightarrow 2^+)}{B(E2; 2^+ \rightarrow 0^+)}$	120	1.640 (33)	2.0	1.426 $\gamma = 25^{\circ}$	1.514				
$\frac{B(E2; 4^+ \rightarrow 2^+)}{B(E2; 2^+ \rightarrow 0^+)}$	122	1.500 (40)		1.394 $\gamma = 27.5^{\circ}$	1.470				
$\frac{B(E2; 4^+ \rightarrow 2^+)}{B(E2; 2^+ \rightarrow 0^+)}$	124	1.162 (53)			1.456				
$\frac{B(E2;6^+\rightarrow 4^+)}{B(E2;2^+\rightarrow 0^+)}$	120	2.37 (58)	3.0	1.781 $\gamma = 25^{\circ}$	1.82				
$\frac{B(E2;6^+ \to 4^+)}{B(E2;2^+ \to 0^+)}$	122			$1.748 \ \gamma = 27.5^\circ$	1.710				
$\frac{B(E2; 6^+ \rightarrow 4^+)}{B(E2; 2^+ \rightarrow 0^+)}$	124				1.614				
$\frac{B(E2; 2^+_2 \rightarrow 2^+)}{B(E2; 2^+ \rightarrow 0^+)}$	120	1.215 (50)	2.0	$0.906 \; \gamma = 25^\circ$	1.560				
$\frac{B(E2; 2_2^+ \rightarrow 2^+)}{B(E2; 2^+ \rightarrow 0^+)}$	122	0.954 (74)		$1.255 \ \gamma = 27.5^\circ$	1.525				
$\frac{B(E2; 2_2^+ \to 2^+)}{B(E2; 2^+ \to 0^+)}$	124	1.115 (175)			1.540				
$\frac{B(E2; 2_2^+ \rightarrow 2^+)}{B(E2; 2_2^+ \rightarrow 0^+)}$	120	82.9 (47)	∞	$20.42 \; \gamma = 25^\circ$	105				
$\frac{B(E2; 2_2^+ \to 2^+)}{B(E2; 2_2^+ \to 0^+)}$	122	102 (11)		$82.60~\gamma=27.5^\circ$	102				
$\frac{B(E2;2^+_2 \to 2^+)}{B(E2;2^+_2 \to 0^+)}$	124	154 (35)			146				
$B(E2; 0^+_{\text{g.s.}} \rightarrow 2^+_1)$	120	0.666 (20)							
$B(E2; 0^+_{\text{g.s.}} \rightarrow 2^+_1)$	122	0.660 (6)							
$\underline{B(E2;0^+_{g.s.}\rightarrow 2^+_1)}$	124	0.567 (5)							

M. Saxena et al. PRC 90 024316 (2014)

Why measure state lifetimes?

What does a state lifetime tell us? Internal transitions are electromagnetic, and the transition probability can be defined as

$$T_{if}(\lambda L) = \frac{8\pi (L+1)}{\hbar L ((2L+1)!!)^2} \left(\frac{E_{\gamma}}{\hbar c}\right)^{2L+1} B(\lambda L; J_i \to J_f)$$

Which relates the transition probability (and therefore the lifetime) to the reduced transition matrix element, $B(\lambda L)$

Weisskopf estimates

So what?

We can use this reduced matrix element to determine whether the transition is "singleparticle" like

$$B(Wu:EL) = \frac{1.2^{2L}}{4\pi} \left(\frac{3}{L+3}\right)^2 A^{2L/3} e^2 fm^{2L}$$
$$B(Wu:ML) = \frac{10}{\pi} 1.2^{2L-2} \left(\frac{3}{L+3}\right)^2 A^{2L-2} 2\left(\frac{e\hbar}{2Mc}\right)^2 fm^{2L-2}$$

It turns out that very few nuclear excitations can be described well by Weisskopf estimates

... need to introduce deformation and collective motion to explain this

TRIUMF

Deformation

In the rotational model we define deformation with the intrinsic quadrupole moment, Q_0 - which we can relate to the B(E2)

$$B(E2) = \frac{5}{16\pi} Q_0^2 \left| \langle J_i K 20 | | J_f K \rangle \right|^2$$

... and therefore to the state lifetime

$$\frac{1}{\tau} = 1.223 E_{\gamma}^5 \frac{5}{16\pi} Q_0^2 \left| \langle J_i K 20 \right| \left| J_f K \rangle \right|^2$$

... and Q_0 is then related to the deformation parameter, β_2

$$Q_0 = \frac{3}{\sqrt{5\pi}} Z R^2 \beta_2 \left(1 + \frac{1}{8} \sqrt{\frac{5}{\pi}} \beta_2 + \dots \right)$$

Single-particle structure

On the other hand, MI transitions relate closely to the single particle structure of a nucleus

Under certain conditions, for example:

$$B(M1) = \frac{3}{4\pi} \mu_N^2 (g_R - g_R)^2 K^2 \frac{(I - K)(I + K)}{I(2I + 1)}$$

 g_K and g_R are the single particle and collective g factors, which relate to the magnetic moment - itself related to the nucleon configuration

K is the projection of the band on the symmetry axis

Lifetime measurement regimes

- A number of experimental techniques are available
- Each is suited to a different regime (with some overlap)
- Techniques cover practically all potential lifetimes... with provisos

	Lower limit	Upper limit
Electronic timing	10 ps	∞*
RDDS	1 ps	100 ps
DSAM	10 fs	10 ps
Lineshape	1 fs	100 fs
CouEx	0*	∞^{\star}

* with some provisos

"Long-lived" states

We'll define these as anything longer lived than ~I-I0 ns (depending on stats)

No specialized experimental equipment required $N(t) = N_0 e^{\left(-\frac{t}{\tau}\right)}$

... basically, isomers J. Kurpeta

J. Kurpeta et al., PRC 82 064318 (2010)

"Long-lived" states

An example:

¹³⁰ Xe	¹³¹ Xe	¹³² Xe	¹³³ Xe	¹³⁴ Xe	¹³⁵ Xe	¹³⁶ Xe	¹³⁷ Xe	¹³⁸ Xe	¹³⁹ Xe	¹⁴⁰ Xe	¹⁴¹ Xe	¹⁴² Xe	¹⁴³ Xe	¹⁴⁴ Xe	¹⁴⁵ Xe	¹⁴⁶ Xe	¹⁴⁷ Xe	¹⁴⁸ Xe
¹²⁹	¹³⁰	¹³¹	¹³²	¹³³	¹³⁴	¹³⁵	¹³⁶	¹³⁷	¹³⁸	¹³⁹	¹⁴⁰	¹⁴¹	¹⁴²	¹⁴³	¹⁴⁴	¹⁴⁵	lodine Z=53	
¹²⁸ Te	¹²⁹ Te	¹³⁰ Te	¹³¹ Te	¹³² Te	¹³³ Te	¹³⁴ Te	¹³⁵ Te	¹³⁶ Te	¹³⁷ Te	¹³⁸ Te	¹³⁹ Te	¹⁴⁰ Te	¹⁴¹ Te	¹⁴² Te	¹⁴³ Te	Telluri Z=52	um	
¹²⁷ Sb	¹²⁸ Sb	¹²⁹ Sb	¹³⁰ Sb	¹³¹ Sb	¹³² Sb	¹³³ Sb	¹³⁴ Sb	¹³⁵ Sb	¹³⁶ Sb	¹³⁷ Sb	¹³⁸ Sb	¹³⁹ Sb	¹⁴⁰ Sb	Antimo Z=51	ony			
¹²⁶ Sn	¹²⁷ Sn	¹²⁸ Sn	¹²⁹ Sn	¹³⁰ Sn	¹³¹ Sn	¹³² Sn	¹³³ Sn	¹³⁴ Sn	¹³⁵ Sn	¹³⁶ Sn	¹³⁷ Sn	¹³⁸ Sn	Tin Z=50					
¹²⁵ In	¹²⁶ ln	¹²⁷ ln	¹²⁸ In	¹²⁹ In	¹³⁰ ln	¹³¹ In	¹³² ln	¹³³ In	¹³⁴ ln	¹³⁵ In	Indium Z=49	ו						
¹²⁴ Cd	¹²⁵ Cd	¹²⁶ Cd	¹²⁷ Cd	¹²⁸ Cd	¹²⁹ Cd	¹³⁰ Cd	¹³¹ Cd	¹³² Cd	¹³³ Cd	Cadmi Z=48	ium							
¹²³ Ag	¹²⁴ Ag	¹²⁵ Ag	¹²⁶ Ag	¹²⁷ Ag	¹²⁸ Ag	¹²⁹ Ag	¹³⁰ Ag	Silver Z=47		"(An	ior	vit v ²	" ic	n	חסר	'C	
¹²² Pd	¹²³ Pd	¹²⁴ Pd	¹²⁵ Pd	¹²⁶ Pd	¹²⁷ Pd	¹²⁸ Pd	Pallad Z=46	ium					i cy	13			3	

Sn seniority isomers

In the vicinity of closed shells low-lying excited states are constructed by breaking pairs.

¹³⁰ Xe	¹³¹ Xe	¹³² Xe	¹³³ Xe	¹³⁴ Xe	¹³⁵ Xe	¹³⁶ Xe	¹³⁷ Xe	¹³⁸ Xe	¹³⁹ Xe	¹⁴⁰ Xe	¹⁴¹ Xe	¹⁴² Xe	¹⁴³ Xe	¹⁴⁴ Xe	¹⁴⁵ Xe	¹⁴⁶ Xe	¹⁴⁷ Xe	¹⁴⁸ Xe
¹²⁹	¹³⁰	¹³¹	¹³²	¹³³	¹³⁴	¹³⁵	¹³⁶	¹³⁷	¹³⁸	¹³⁹	¹⁴⁰	¹⁴¹	¹⁴²	¹⁴³	¹⁴⁴	¹⁴⁵	lodine Z=53	
¹²⁸ Te	¹²⁹ Te	¹³⁰ Te	¹³¹ Te	¹³² Te	¹³³ Te	¹³⁴ Te	¹³⁵ Te	¹³⁶ Te	¹³⁷ Te	¹³⁸ Te	¹³⁹ Te	¹⁴⁰ Te	¹⁴¹ Te	¹⁴² Te	¹⁴³ Te	Telluri Z=52	um	
¹²⁷ Sb	¹²⁸ Sb	¹²⁹ Sb	¹³⁰ Sb	¹³¹ Sb	¹³² Sb	¹³³ Sb	¹³⁴ Sb	¹³⁵ Sb	¹³⁶ Sb	¹³⁷ Sb	¹³⁸ Sb	¹³⁹ Sb	¹⁴⁰ Sb	Antimo Z=51	ony			
¹²⁶ Sn	¹²⁷ Sn	¹²⁸ Sn	¹²⁹ Sn	¹³⁰ Sn	¹³¹ Sn	¹³² Sn	¹³³ Sn	¹³⁴ Sn	¹³⁵ Sn	¹³⁶ Sn	¹³⁷ Sn	¹³⁸ Sn	Tin Z=50					
¹²⁵ In	¹²⁶ In	¹²⁷ ln	¹²⁸ ln	¹²⁹ In	¹³⁰ ln	¹³¹ In	¹³² ln	¹³³ In	¹³⁴ ln	¹³⁵ In	Indium Z=49	n						
¹²⁴ Cd	¹²⁵ Cd	¹²⁶ Cd	¹²⁷ Cd	¹²⁸ Cd	¹²⁹ Cd	¹³⁰ Cd	¹³¹ Cd	¹³² Cd	¹³³ Cd	Cadm Z=48	ium							
¹²³ Ag	¹²⁴ Ag	¹²⁵ Ag	¹²⁶ Ag	¹²⁷ Ag	¹²⁸ Ag	¹²⁹ Ag	¹³⁰ Ag	Silver Z=47										
¹²² Pd	¹²³ Pd	¹²⁴ Pd	¹²⁵ Pd	¹²⁶ Pd	¹²⁷ Pd	¹²⁸ Pd	Pallad Z=46	lium										

Experiment looking for these isomers in ^{136,138}Sn performed at RIBF - RIKEN (Japan)

Results in isomerism. See lecture 6 - shell evolution

Sn seniority isomers

Sn seniority isomers

Fast electronic timing

- Specialized setup using fast response detectors
- HPGe and Si detectors no-longer fit the bill
- Need something... faster

	LaBr ₃	NaI(Tl)	BaF_2	BGO
Light Yield LY [ph./keV]	61	41	1.8	9
Decay Time τ [ns]	16	250	0.7	300
F.O.M (τ/LY)	0.26	6	0.38	33
Energy Res. $@662 \text{ keV}$	2.7	5.6	11.4	9

LaBr₃(Ce) fits the bill

Why LaBr₃?

Aside from the obviously beneficial fast rise-time...

Large light-yield / MeV

Makes selecting the transition of interest more practical

Large signal also means less "jitter" in the timing signal

Fast timing systems

There are now a few dedicated fast-timing setups around the world - typically coupled with HPGe

Also regularly folded into other spectroscopy setups (GRIFFIN, EURICA, etc.)

Fast electronic timing

Gate on feeding transition (start)

Gate on decay transition (stop)

Excited-state lifetimes

Feeding

In direct lifetime measurements feeding isn't really an issue

Becomes important when you cannot explicitly gate on the transition into a state

Can sometimes be neglected for vastly different lifetimes

Generally an issue which plagues lifetime measurements - in particular older ones

As a rule: if the data weren't taken with some form of coincidences, there's a good chance they're wrong...

Lifetimes sufficiently short that we can't directly measure them

Use some physical effects to help us

Run at multiple separation distances to effectively probe different times

Example spectra taken at NSCL (Michigan)

Left hand spectra are forward angles ("blue shifted"), right hand backwards ("red shifted")

We see the ratio of components in the slow (S) and fast (F) peaks changes as we move the plunger

A. J. Nichols et al., Phys. Lett. B 733 52 (2014)

$$\tau \approx \frac{\Delta x}{v} \frac{I^s}{I^r}$$

Three foils - means you can probe two decay lifetimes simultaneously

e.g. I7C: $\tau(1/2^+) \approx 500 \text{ ps}, \tau(5/2^+) \approx 20 \text{ ps}$

Example, ⁷²Kr:

Oblate ground state, first-excited 0⁺ state, potential transition to prolate at low excitation E

Used a triple plunger - allows for a wide range of lifetimes (1-100ps)

⁷⁴Kr used as a test case

Example, ⁷²Kr:

Models struggle to reproduce vastly different B(E2)s

Could be explained by a change in shape...?

Boppler-shift attenuation method

For yet shorter lifetimes, recoils decay before traversing the medium between foils

Proceed using the Doppler shift coupled with the stopping power of the target

$$E'_{\gamma} = \frac{E_{\gamma}}{\gamma \cdot (1 - \beta \cos(\theta))}$$

$$F(\tau) = \frac{1}{v_0 \tau} \int_0^\infty v(t) exp\left(-\frac{t}{\tau}\right) dt$$

RIVER Doppler-shift attenuation method

Lineshape methods

For even shorter lifetimes (~fs) no distinct shape can be resolved

Instead, have to model the line shape of the decay (basically: DSAM but trickier...)

Lineshape methods

In addition to directly measuring the lifetime of the state, some reactions can be used to infer it.

e.g. Coulomb excitation

If we make sure our nuclei don't touch, the nuclear forces don't contribute... can basically just consider electromagnetic effects ...which are entirely understood

RIUMF

Coulomb excitation

Since we are only dealing with an electromagnetic interaction, the entire reaction can be solved

$$\frac{da_k}{d\omega} = -i\sum_{\lambda\mu n} Q_{\lambda\nu}(\epsilon,\omega)\zeta_{kn}^{\lambda\mu} \cdot \langle I_k | |M(\lambda)| |I_n\rangle \cdot exp(i\zeta_{kn}(\epsilon \sinh(\omega) + \omega)) \cdot a_n(\omega)$$

Looks complicated, but is solvable

Importantly, the transition matrix element is directly related to the cross section

"Safe" Coulomb excitation

In order to ensure that there are no nuclear contributions, we define a "safe" Coulomb excitation limit. Basically, we demand that there is a 5 fm separation between nuclear surfaces

What do we measure?

We measure the cross-section vs scattering angle, which relates directly to the transition matrix elements

Coulomb excitation

An example:

Matrix element	23	20Rn	²²⁴ Ra			
" E2 I	m.e. (e fm²)	B(Ελ)↓ (WU)	m.e. (e fm²)	<i>Β</i> (Ελ)↓ (WU)		
<0 ⁺ E1 1 ⁻ >	<0.10	$< 1.5 \times 10^{-3}$	<0.018	<5 × 10 ⁻⁵		
<2 ⁺ E1 1 ⁻ >	< 0.13	$<3 \times 10^{-3}$	<0.03	<1.3 × 10		
<2 ⁺ E1 3 ⁻ >	<0.18	$< 2 \times 10^{-3}$	0.026 ± 0.005	$3.9^{+1.7}$ × 1		
<4+ E1 5->	0.028 ± 0.009	$3.0^{+2}_{-1.6} \times 10^{-5}$	0.030 ± 0.010	$4^{+3}_{2} \times 10^{-1}$		
<6 ⁺ E1 7 ⁻ >	<1.3	<0.5	<0.10	<3 × 10 ⁻⁴		
<0 ⁺ E2 2 ⁺ >	137 ± 4	48 ± 3	199 ± 3	98±3		
<1 ⁻ E2 3 ⁻ >	180 ± 60	60+50	230 ± 11	93 ± 9		
<2 ⁺ E2 4 ⁺ >	212 ± 4	63 ± 3	315±6	137 ± 5		
<3 ⁻ E2 5 ⁻ >	220 ± 150	60 ⁺¹⁰⁰	410 ± 60	190 ± 60		
<4 ⁺ E2 6 ⁺ >	274 ± 14	73 ± 8	405 ± 15	156 ± 12		
<6+ E2 8+>			500 ± 60	180 ± 60		
<0 ⁺ E2 2 ⁺ ,->	32 ± 7	2.6 ± 1.1	23 ± 4	1.3 ± 0.5		
<0 ⁺ E3 3 ⁻ >	810 ± 50	33 ± 4	940 ± 30	42 ± 3		
<2 ⁺ E3 1 ⁻ >	<2,600	<760	1,370 ± 140	210 ± 40		
<2 ⁺ E3 3 ⁻ >	<5,300	<1,400	<4,000	<600		
<2 ⁺ E3 5 ⁻ >	1,700 ± 400	90 ± 50	1,410 ± 190	61 ± 17		

Octupole deformation in radon and radium

Summary

- State lifetimes are a vital experimental observables
- Relate to reduced matrix elements $B(\lambda L)$
- Vital input for many nuclear models
 - Large B(E2)s indicate collectivity
 - Can be used to probe shell closures
- A number of experimental techniques covering most potential lifetimes