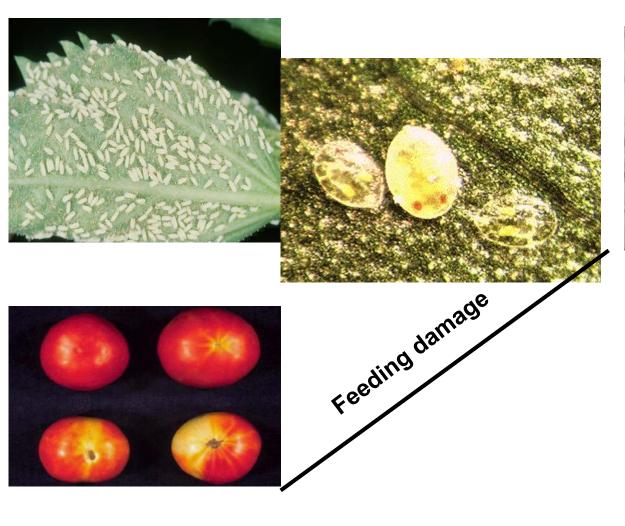
Prediction and possible remedy in managing thrips (Thysanoptera: Thripidae) and MEAM1 (Hemiptera: Aleyrodidae) in tomato

D.R. Seal and R.A. Khan


Tropical Research and Education Center, University of Florida-IFAS

Homestead, FL 33031

FACTS

- Tomato is grown globally in 144 countries on 3.7 million ha
- United States ranks as the top three tomato producing nations
- Florida and California are the major states in producing fresh market tomato in the nation.
- Florida generates \$348 million harvesting 33,000 acres
- Production cost/acre \$4.5 6.0 thousands
- Insecticide cost \$500-700/acre

SILVERLEAF WHITEFLY- direct damage

Honey dew secretion and sooty mould

50-100 eggs 5-7 days to hatch Males are haploid Females are diploid

SILVERLEAF WHITEFLY-indirect damage

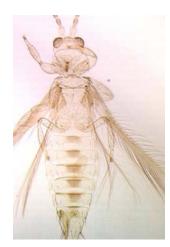
Tomato Yellow Leaf Curl Virus :TYLCV

Silverleaf whitefly : SLW

- Crop and ornamental plant
- damage: in excess of \$1 billion

Bean Golden Mosaic Virus : BGMV

Thrips in tomato fields


Melon thrips

Common blossom thrips

Western flower thrips

Chilli thrips

Florida flower thrips

Onion thrips

Melon thrips damage

Melon thrips adults

Melon thrips larvae

Eggplant

Cucumber

Squash

TCSV infected tomato field surrounded by weeds and vegetable crop

Mean number of flower thrips/100 feet long plot (6 wk after planting).

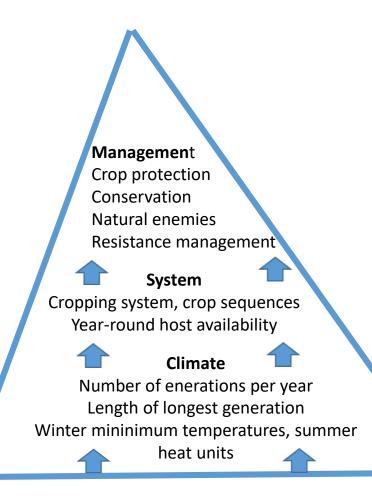
West

Mean no. thrips

South side

East side Avocado grove

9 beds, each 800 feet long. Each bed was divided into 8 100-feet long plots. Five sub sample, each consisting of 10 randomly selected leaves, were collected from each plot.



Prediction

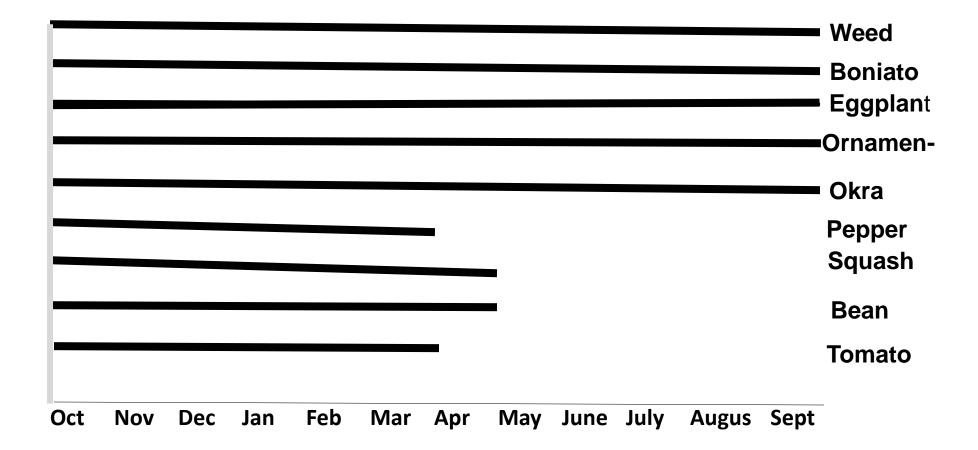
Accurate prediction about pest populations help in:


- a. Developing appropriate cultural practices
- b. Implementing management program in time
- c. Providing time for biological control
- d. Using less insecticide
- e. Managing resistance problem
- f. Saving money

Favorable situations for pest outbreak

Important factors for pest outbreak

- 1. The pest requires a <u>suitable climate</u>
- A <u>favorable system</u> of suitable hosts before crop season
 Alternate host crops, ornamental plants and weeds in sequences
- 4. Use practices that disrupt natural enemies



Zelus longipes

O. insidiosus

Staphylinid

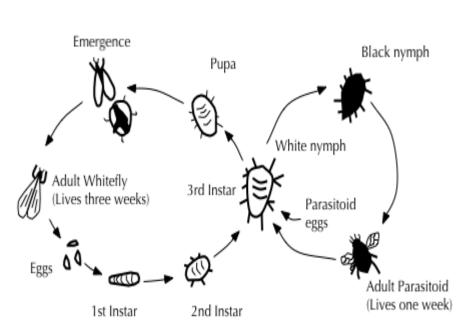
Crops growing period in Miami-Dade County

Specialty and Ethnic Vegetables

ornamental •Sweet potatoes •sparagus •Baby vegetables •Tomatoes - specialty •Luffa gourds •Cabbage •Mushrooms- agaricus, types •Carrots • shiitake, oyster, morel, etc. •Truffles •Onions (transplants, shallots, •Wasabi •Celery sweet, early) •Chinese water chestnuts •Cole crops (broccoli, cauliflower, Organically grown vegetables of all Brussels sprouts, kohlrabi) types •Corn, miniature •Oriental vegetables •Fenugreek •Peas and pea shoots •Peppers - specialty types (purple, •Edible flowers •Garlic hot, etc.) •Pumpkins •Gourds, ornamental Red beets •Greenhouse production for outof-season crops Salad greens - mesclun •Heirloom varieties of any Herbs -Sprouts (alfalfa, bean, etc.) culinary and medicinal Squash •Horseradish Okra •Eggplant (Indian and Thailand

Crop and ornamental hosts

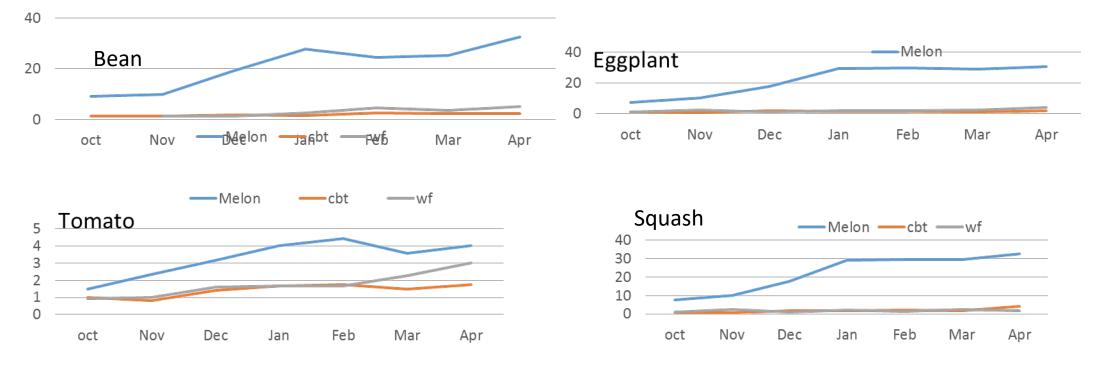
• 500 species of plant (USDA 1994)

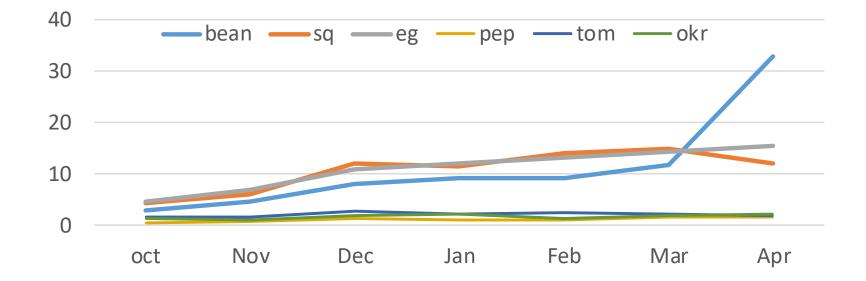

Crop hosts that support large populations include alfalfa, broccoli, cabbage, cantaloupe, cauliflower, cotton, cucumber, tomato, squash, peanut, pepper, beans, and watermelon (Perring, *et. al.*, 1993b; USDA, 1994)

Ornamental hosts that support large populations include poinsettia, hibiscus, lantana, garden mum, Gerber daisies, mandevilla, and verbena (Gruenhagen, *et. al.*, 1993; USDA, 1994).

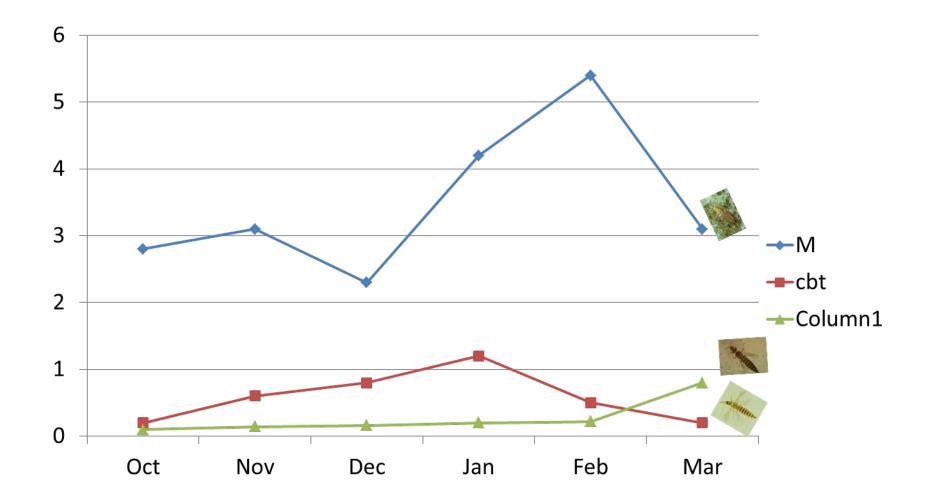

• Other preferred ornamental hosts: lilies, bearded iris, crepe myrtle, petunia, rose, and bottle brush.

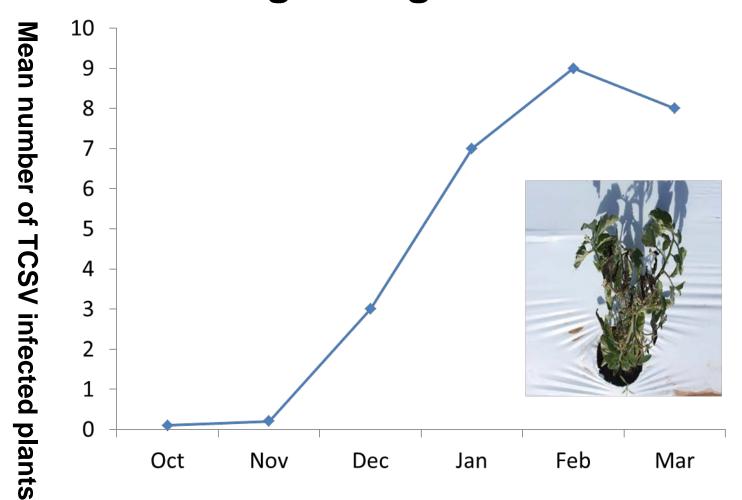
Biological control


- Predators
- Parasitoids
- Pathogens
- Competitors



Seasonal distribution pattern of three species of thrips in five common vegetable crops (Average of 2015, 2016 and 207 data




Seasonal distribution pattern of MEAM1 in five common vegetable crops (Average of 2015, 2016 and 207 data

Seasonal trend of common thrips in tomato fields

Mean numbers of TCSV infected tomato plants in different months of tomato growing season

Area-wide Action

Local Scale:

Based on suitable conditions, population multiply at one location or multiple locations

Regional scale:

Insect pests spread in all directions for new hosts

POSSIBLE REMEDY

BIOLOGICAL CONTROL CHEMICAL CONTROL CULTURAL CONTROL

Daily prey consumption rate of <u>O. insidiosus</u> by instars

Day	of		Instars		
Inst	ars 1 st	2^{nd}	3 rd	4 th	5 th
1	13.1(9)	13.8(9)	14.6(5)	17.0(5)	17.7(5)
2	13.0(9)	15.4(8)	14.8(8)	12.0(7)	15.4(6)
3	20.0(5)		14.5(5)	19.0(5)	12.6(5)
4					15.0(5)
5					15.5(3)

CHEMICAL CONTROL

Control of thrips

1. Verimark Exirel Admire

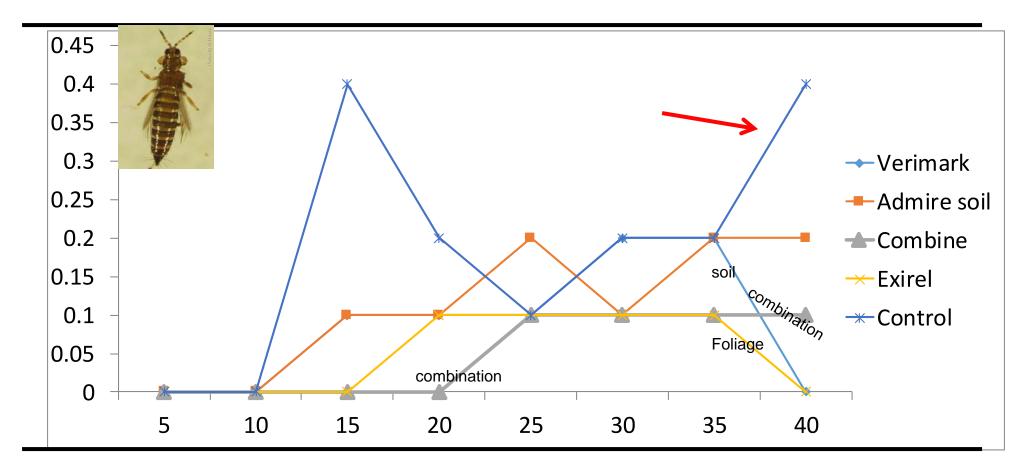
2. Experimental Danitol Azera

BAM FX
Admire
Movento
Radiant
Tolfenpyrad

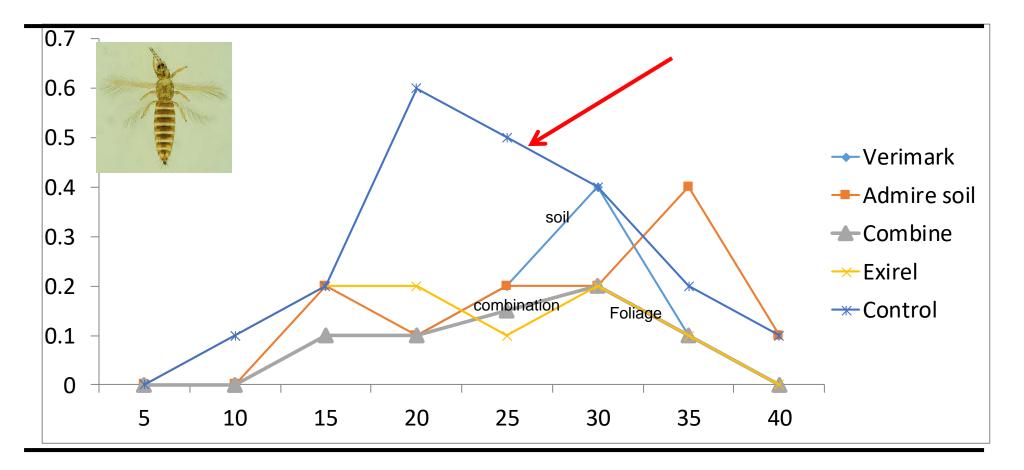
Control of MEAM1

Movento Sivanto Admire

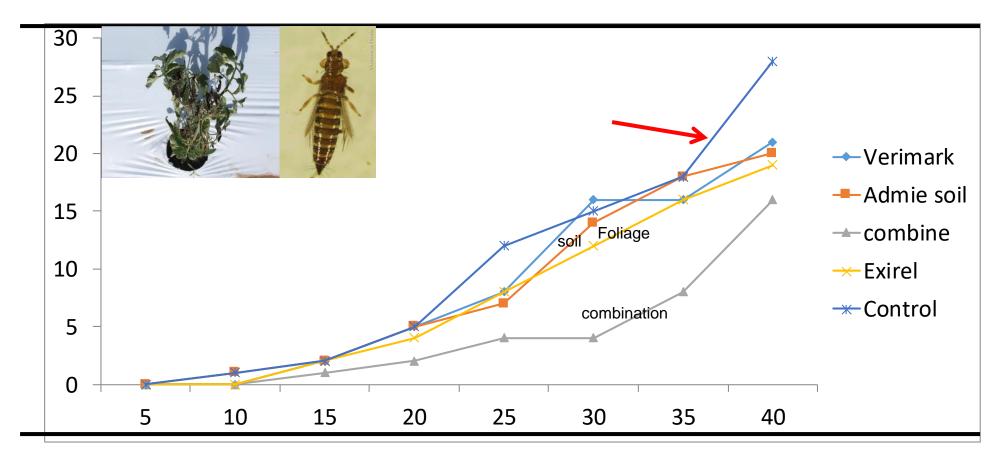
Experimental Danitol Azera


BAM FX Admire Movento Radiant Tolfenpyrad

Control of Flower thrips and Common blossom thrips in tomato by applying <u>Cyantraniliprole</u> as a soil drench

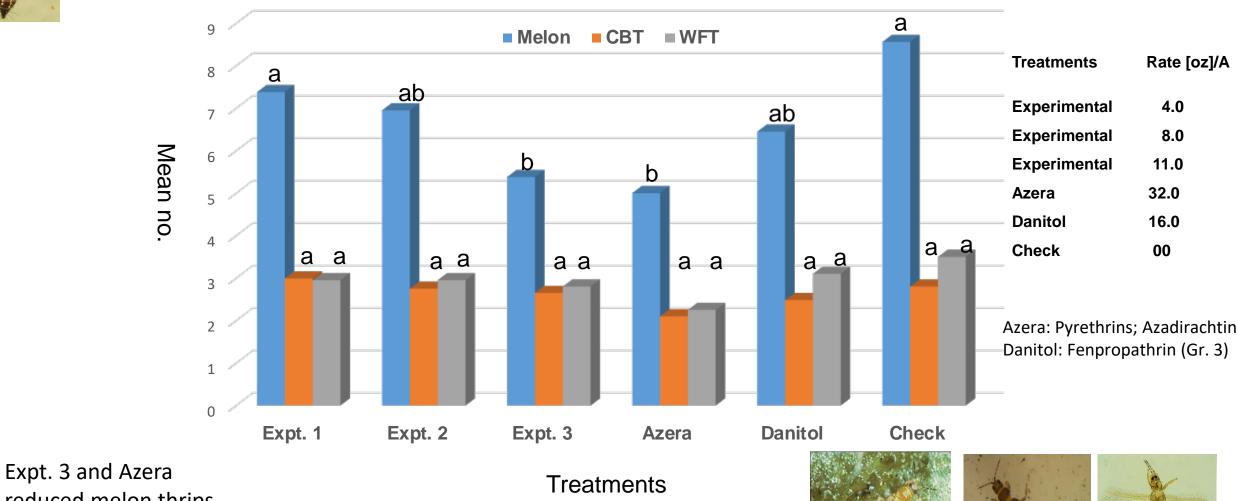

Treatments	Rate [oz]/A	Method of application	
1 Verimark 20SC	13.5	At plant	
2. Admire Pro Verimark 20SC	10.5 10.3	At plant Drip at 14 & 28 DAP	
3. Admire Pro	10.5	At plant	
4. Exirel 20SC	10.3	On foliage	
5. Untreated check			

Control of *F. schultzei* in tomatoes using DPX and Admire Pro as a soil drench


DPX applied on foliage provided better reduction of *F. schultzei* than other treatments *F. Schultzei* was not recorded on the combination treatment for the first 20 d

Control of *F. occidentalis* in tomatoes using DPX and Admire Pro as a soil drench

DPX applied on foliage provided better reduction of *F. occidentalis* than other treatments, but did not differ from the combination treatment
F. occidentalis was not recorded on the DPX treatments for the first 10 d


Control of TCSV in tomatoes using DPX and Admire Pro as a soil drench

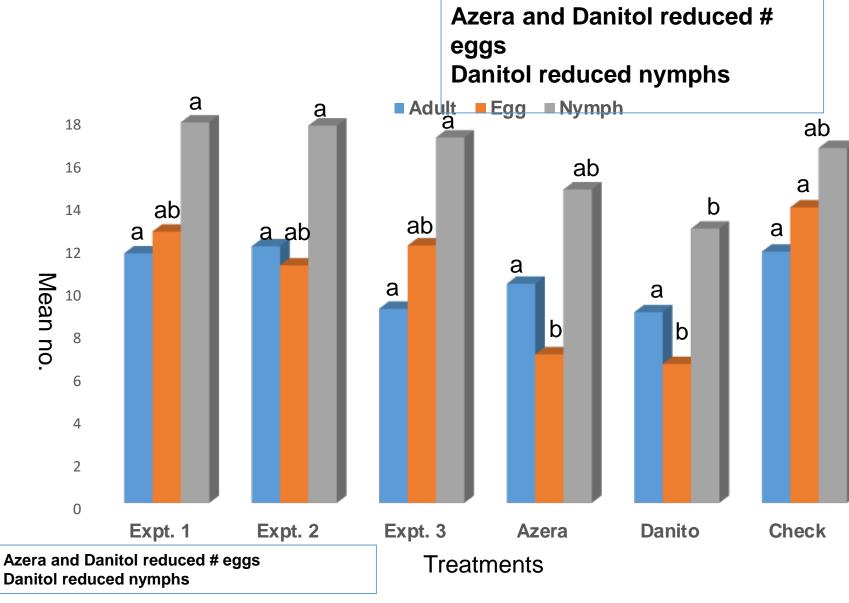
DPX applied on foliage did not differ from DPX applied in soil in reducing GRSV Admire at soil followed be DPX on foliage was significantly better than all other treatments in reducing GRSV incidence.

Effectiveness of various insecticide treatments in controlling thrips on tomato

reduced melon thrips

MANAGEMENT OF SILVERLEAF WHITEFLY

Treatments	Rate [oz]/A	Method of application	Time of Application	
Movento	5.0	Foliar spray	3 and 5 WAP	
Sivanto	21.0	Drench	At plant	
Movento	5.0	Foliar spray	3 & 5 WAP	
Admire	10.5	Drench	At plant	
Movento	5.0	Foliar spray	3 & 5 WAP	
Movento –	5.0	Foliar spray	3 WAP	
Sivanto	10.5	Foliar spray	5 WAP	
Control				


Mean numbers of SLW eggs

Treatments	Rate [oz]/A	11 may	20 May	27 May	
Movento	5.0	4.75b	5.05b	9.70b	
Sivanto Movento	21.0 5.0	5.95b	3.35b	6.35b	
Admire Movento	10.5 5.0	4.90b	3.25b	5.05b	All treatments significa- ntly reduced eggs
Movento – Sivanto	5.0 10.5	1.95b	9.15b	9.65b	
Control	Rate [oz]/A	301.80a	242.20a	275.55a	

Mean numbers of SLW nymphs

Treatments	Rate [oz]/A	11 May	20 May	27 May	
Movento	5.0	0.05b	0.30b	0.40b	
Sivanto Movento	21.0 5.0	0.75b	0.45b	0.25b	
Admire Movento	10.5 5.0	0.55b	0.45b	28.58b	All treatments significantly reduced nymphs
Movento – Sivanto	5.0 10.5	0.10b	1.45b	0.45b	
Control		77.60a	83.25a	43.65a	

Effectiveness of various insecticide treatments in controlling silverleaf whitefly on tomato

Treatments	Rate [oz]/A
Experimental	4.0
Experimental	8.0
Experimental	11.0
Azera	32.0
Danitol	16.0
Check	00

Azera: Pyrethrins; Azadirachtin Danitol: Fenpropathrin (Gr. 3)

- Insecticide treatments did not reduce adults
- Azera and Danitol reduced # SLW eggs
- Danitol reduced # SLW nymphs

Mean number of melon thrips/five leaf sample of tomato treated with BAM-FX

Treatment No.	BAM	l-Ins-N	NPK*	14 Dec	14 Dec	28 Dec	04 Jan	11 Jan	18 Jan
1	Fol	0	0	0.19a	0.44ab	0.25bc	0.69c	0.67b	0.90bc
2	Soil	0	0	0.31a	0.44ab	0.63ab	1.06bc	0.17c	1.00b
3	Fol	Ins	0	0.13a	0.00c	0.31bc	0.56c	0.09c	0.50cd
4	Soil	Ins	0	0.25a	0.18bc	0.13c	0.56c	0.08c	0.40d
5	0	Ins	NPK	0.50a	0.56ab	0.81a	1.63ab	1.00b	1.30b
6	0	0	NPK	0.50a	0.75a	1.19a	1.94a	2.33a	2.75a

Means within a column followed by a same letter do not differ significantly (P > 0.05; Waller-Duncan K-ratio t Test.

Mean number of SLW adults/five leaf sample of tomato treated with BAM-FX

Treatme nts	BAN	I-Ins-I	NPK*	14 Dec	21 Dec	28 Dec	04 Jan	11 Jan	18 Jan
1	Fol	0	0 ¹	0.17c	0.25b	0.67bc	0.50c	0.67b	0.90bc
2	Soil	0	0	0.17c	0.17b	0.50c	0.58c	0.17c	1.00b
3	Fol	Ins	0	0c	0.25b	0.25c	0.33c	0.09c	0.50cd
4	Soil	Ins	0	0.25c	0.50b	0.33c	0.42c	0.08c	0.40d
5	0	Ins	NPK	0.91b	1.92a	1.17b	1.17b	1.00b	1.30b
6	0	0	NPK	1.42a	2.42a	2.17a	2.16a	2.33a	2.75a

Mean number of SLW eggs/leaf sample of tomato treated with BAM-FX

Treatm ents	BAM	-Ins-N	PK*	14 Dec	21 Dec	28 Dec	04 Jan	11 Jan	18 Jan
1	Fol	0	0	0.08b	1.00b	2.08c	2.08c	2.08c	2.05bc
2	Soil	0	0	0.25b	0.83b	1.58cd	1.58cd	1.25d	2.65b
3	Fol	Ins	0	0.17b	0.50b	0.92e	0.92e	1.00de	0.40d
4	Soil	Ins	0	0.17b	0.58b	1.00de	1.00de	0.58e	0.55d
5	0	Ins	NPK	1.00a	1.92b	3.50b	3.50b	3.92b	1.80c
6	0	0	NPK	1.42a	2.83a	4.67a	4.67a	6.33a	3.95a

Mean number SLW nymphs/leaf sample of tomato treated with BAM-FX

Treatm ent	BAM	-Ins-N	IPK*	14 Dec	21 Dec	28 Dec	04 Jan	11 Jan	18 Jan
1	Fol	0	0	0.25b	0.58b	0.42c	0.42c	0.83b	0.65b
2	Soil	0	0	0.08b	0.25b	0.33c	0.33c	0.42b	0.75b
3	Fol	Ins	0	0.17b	0.25b	0.33c	0.33c	10.27ab	0.00c
4	Soil	Ins	0	0.08b	0.25b	0.08c	0.08c	0.0b	0.10c
5	0	Ins	NPK	1.08a	2.00a	1.83b	1.83b	2.17ab	0.85b
6	0	0	NPK	1.33a	2.08a	3.00a	3.00a	4.50a	2.65a

Mean number of TYLCV/plot of tomato treated with various treatments

Treatme nts	BAM	-Ins-N	IPK*	14 Dec	21 Dec	28 Dec	04 Jan	11 Jan	18 Jan
1	Fol	0	0	0.26b	1.00a	1.75bc	3.25bc	2.50bc	1.75
2	Soil	0	0	0.25b	1.25a	1.75bc	3.00bc	2.75bc	2.00
3	Fol	Ins	0	0b	1.00a	1.00c	1.50d	2.25c	1.25
4	Soil	Ins	0	0b	0.75a	1.50c	2.25cd	2.25c	0.75
5	0	Ins	NPK	0.75b	1.00a	2.75ab	4.00b	4.50a	3.00
6	0	0	NPK	1.75a	1.25a	4.00a	6.00a	3.25ab	4.00

Mean number of TCSV/plot of tomato treated with various treatments

Treatme	BAM	Ins-NF	νK	14 Dec	21 Dec	28 Dec	04 Jan	11 Jan	18
nts									Jan
1	Fol	0	0	0.25ab	0.50a	1.00ab	2.25ab	3.00a	1.40
2	Soil	0	0	0b	0.50a	0.75b	1.75b	2.00ab	1.48
3	Fol	ins	0	0b	0.50a	1.50ab	2.00b	2.25ab	1.21
4	Soil	ins	0	0b	0.50a	1.25ab	1.75b	2.00ab	0.90
5	0	Ins	NPK	0.50ab	0.50a	2.25a	2.50ab	2.25ab	1.79
6	0	0	NPK	1.00a	1.25a	2.25a	3.50a	1.50b	2.05

Number of fruits/tomato plant treated with various treatments

Treatments	BAM-Ins-NPK			2014	2016
1	Fol	0	0	3.20bc	4.95c
2	Soil	0	0	2.30c	3.50d
3	Fol	ins	0	3.40bc	6.10b
4	Soil	ins	0	4.25b	5.40bc
5	0	Ins	NPK	12.60a	13.85a
6	0	0	NPK	11.75a	12.85a

CULTURAL CONTROL

Table 1.

Number of various thrips species on different <u>ornamental</u> <u>plants</u> grown inside commercial greenhouses

Name of	Common name of	No. of thrips found					
ornamental plants	ornamental plants	WFT	СВТ	МТ	Larva		
Torenia sp.	wishbone flowers	15	0	9	10		
Hibiscus sp.	China rose	90	0	33	117		
Fuchsia sp.	Fuchsia	14	0	9	4		
Ericameria arborescens	Golden Fleece	0	2	0	5		
Petinia sp.	Petunia	8	0	5	3		
Cosmos sp.	Cosmos	23	0	6	6		
Tagetes sp.	Marygold	11	0	0	13		
Pentas lanceolata	Egyptian starcluster	0	0	3	0		
Gerbera sp.	Garbers Daisy	5	0	4	17		
Portulaca oleracea	Purselane	42	2	2	44		
Gazania linearis	Treasure flower	70	2	23	10		
Lantana camara	lantanas	3	0	3	10		
Impatiens walleriana			2	0	13		

Name of	Common name of					
ornamental plants	ornamental plants	WFT	СВТ	МТ	Larva	
Begonia semperflorens	Begonia	5	0	3	0	
Kalanchoe blossfeldiana	Kalanchoe	8	0	0	3	
Lilium matrix	Lilium	39	0	5	5	
Helianthus annuus	Sunflower	18	0	0	12	
Catharanthus roseus	rose periwinkle	0	0	0	2	
Canna spp.	Cannatropical	13	0	0	14	
Celosia argentea	plumed cockscomb	22	0	5	8	
Plumbago auriculata	Blue plumbago,	28	7	2	13	
Agastache sp.	Arozona Sandstone	49	2	0	351	
Mandevilla sp.	Rocktrumpet.	15	5	0	30	

Number of various thrips species on different <u>weed host</u> near a tomato field

Name of the weed	Common name	No. of thrips found				
species	of weed	WFT	CBT	MT	Larva	
Chenopodium album	pigweed	0	2	23	7	
Euphorbia heterophylla	wild poinsettia/	0	0	2	3	
Ipomea hederopholia	Scarlet morning glory	0	0	0	0	
Parthenium hysterophorus	Santa-Maria	0	3	0	5	
Bidens alba	Spanish needles	0	2	289	182	
Phylla nodiflora	frog fruit/sawtooth fogfruit	0	0	0	0	
Euphorbia hirta	Milkweed	0	2	10	28	
Chamaesyce hyssopifolia	Hyssopleaf sandmat	0	0	12	17	
Amaranthus polygonoides	Tropical amaranth/	0	1	66	28	
Amaranthus spinosus	Spiny amaranth	0	0	35	43	
Acalypha alepecurodea	Foxtail copperleaf	0	0	0	0	

Name of the weed	Common name	No.	Ind		
species	of weed	WT	CBT	МТ	Larva
Lantana camara	wild-sage/red-sage	0	0	5	5
Macroptilium lathyroides	Phasey bean/wild bushbean	0	1	0	0
Portulaca oleracea	Purslane	0	11	4	26
Sida ulmifolia	Common wireweed	0	0	0	0
Sida spinosa	Prickly fanpetals	0	0	0	0
Jasminum fluminense	Brazilian jasmine	0	20	3	5
Phyllanthus amarus	Bahupatra (Sanskrit)	0	0	0	8
Stylosanthes hamata	Cheesytoes	0	1	12	38
Spermacoce verticillata	Shrubby false buttonweed	0	2	0	4
Morinda royoc	cheese shrub	0	0	0	0

Conclusion

- Accurate prediction about pests outbreak is essential for developing successful management program.
- Prediction should be based on area-wide basis
- Admire in combination with Verimar and Exirel provide suppression of F. schultzei and TCSV incidence in tomato
- Azera effective in suppressing thrips and silverleaf whitefly populations and should be considered as a partner in rotation program for controlling these pests
- Sivanto and Movento in rotation is effective treatments for controlling whitefly population.
- Further studies should be continued to determine BAM FX fit in vegetable pest management.

IFAS