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Abstract

The Begonia flora of Southeast Asia comprises more than 540 species. This exceptional 
species diversity and the wide distribution of the genus in tropical rainforests offers the 
opportunity to address biogeographical questions and to investigate the processes which 
underlie modern patterns of biodiversity, but also poses major taxonomic challenges. 
Only few apomorphies characterising infrageneric taxa in this large genus have been 
identified and delimitation of Asian Begonia sections is highly problematic. A robust 
phylogenetic framework of Asian Begonia informing taxonomic monographs and 
facilitating biogeographical and evolutionary studies is currently lacking.

Maximum parsimony, maximum likelihood and Bayesian analyses of plastid (ndhA 
intron, ndhF-rpl32 spacer, rpl32-trnL spacer; 115 taxa) and nuclear ribosomal (ITS; 89 
taxa) sequence data were used to reconstruct the phylogeny of Southeast Asian Begonia 
and to determine whether major Asian sections are monophyletic. Morphological 
characters which are crucial in current sectional circumscriptions were mapped on the 
phylogeny to determine their degree of homoplasy and to assess their suitability in 
infrageneric classifications. Relaxed molecular clock analyses of a Cucurbitales-Fagales 
datatset (cpDNA: matK gene, rbcL gene, trnL intron, trnL-F spacer; 92 taxa; five fossil 
calibrations) and a Begoniaceae datatset (cpDNA: ndhA intron, ndhF-rpl32 spacer, rpl32-
trnL spacer; 110 taxa; two alternative secondary calibrations), as well as ancestral area 
reconstructions were employed to elucidate temporal and spatial diversification patterns 
in Asian Begonia.

The results indicate that Asian and Socotran Begonia species form a well supported 
clade. Most major Asian sections are not supported as monophyletic and the strong 
systematic emphasis placed on single, homoplasious characters such as undivided 
placenta lamellae (section Reichenheimia) and fleshy pericarps (section Sphenanthera), 
and the recognition of sections primarily based on a plesiomorphic fruit syndrome and 
the absence of characteristic features of other taxa (section Diploclinium) has resulted in 
the circumscription of several highly polyphyletic sections. Ovary and fruit characters 
have traditionally played a major role in sectional delimitation, however the high level of 
homoplasy associated with these has obscured systematic relationships in Asian Begonia. 
Gene trees derived from separate analyses of the plastid and nuclear ribosomal data 
show congruent support for several major clades, but there is hard incongruence within 
the clades comprising species of the species-rich sections Platycentrum s.l. (including 
section Sphenanthera) and Petermannia s.l. (including section Symbegonia), indicating 
that hybridization might have had a significant impact on the evolution of the genus.

The molecular divergence ages and the biogeographical analyses indicate an initial 
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diversification of Asian Begonia on the Indian subcontinent and in continental Southeast 
Asia in the Middle Miocene, and subsequent colonization of Malesia by multiple lineages. 
The predominant directional trend of the reconstructed dispersals between continental 
Asia and Malesia and within Malesia is from west to east including four independent 
dispersal events from continental Southeast Asia and the Malesian Sunda Shelf region to 
Wallacea dating from the Late Miocene to the Pleistocene. Dispersal across the ancient 
deep water channels separating intervening islands of the Sunda Shelf and Wallacea and 
subsequent successful colonisation of Wallacean islands seem to have been infrequent 
events during this period. This suggests that the water bodies which have separated 
the Sunda Shelf region from Wallacea have been distinct, yet porous barriers to the 
predominantly anemochorous dispersal in Begonia. The inferred timing of dispersals 
from the Sunda Shelf region to Wallacea is generally concordant with hypotheses about 
the geological history of the region, which indicate that the period from the Late Miocene 
onwards offered opportunities for dispersal to Wallacea and across Wallacea to New 
Guinea as substantial land masses emerged in Sulawesi and New Guinea, and newly 
emergent volcanic islands along the Sunda Arc, the Banda Arc and the Halmahera Arc 
formed potential routes for dispersal by island hopping.

The results further suggest that Begonia section Petermannia (>270 spp.) originated in 
the Malesian Sunda Shelf region, and subsequently dispersed to Wallacea, New Guinea 
and the Philippines. Lineages within this section diversified rapidly since the Pliocene 
with diversification peaking in the Pleistocene. The timing of diversifications coincides 
with orogenesis on Sulawesi and New Guinea, as well as pronounced glacioeustatic sea-
level and climate fluctuations. It can be hypothesised that a complex interplay of extrinsic 
and intrinsic factors including the presence and formation of suitable microhabitats by 
orogenesis, cyclical vicariance by frequent habitat fragmentations and amalgamations 
caused by sea-level and climate fluctuations, as well as only weakly developed 
mechanisms to maintain species cohesion in fragmented habitats in Begonia could have 
driven speciation in allopatry and could have resulted in the remarkable Begonia species 
diversity found in Southeast Asia today.
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1CHAPTER 1: INTRODUCTION

CHAPTER 1. Introduction

1.1 Introduction to Begonia

1.1.1 The current state of Begoniaceae phylogenetics

Begoniaceae are a pantropically distributed family, which comprises more than 1550 
species of herbs and soft-wooded shrubs (Carlquist, 1985; Doorenbos et al., 1998; Forrest 
and Hollingsworth, 2003; Hughes, 2008). Two genera are currently recognised in the 
family: the monotypic genus Hillebrandia Oliv., and the species-rich and morphologically 
diverse genus Begonia L. (Doorenbos et al., 1998; Forrest and Hollingsworth, 2003). 
Diagnostic characters of the family include asymmetrical leaves, unisexual flowers and 
monoecy, twisted, papillose stigmas, and dry, three-winged capsules (Doorenbos et al., 
1998; Judd et al., 2008). These characters are present in the majority of species, but there 
are numerous deviations from this typical syndrome. The minute seeds of Begoniaceae 
species exhibit an autapomorphic syndrome with a transverse ring of elongated collar 
cells bordering the micropylar-hilar part, whose rupture results in an operculate 
opening of the seed (Bouman and de Lange, 1983; de Lange and Bouman, 1992, 1999). 
Hillebrandia sandwicensis Oliv., which is endemic to Hawaii (Clement et al., 2004), 
can be differentiated from Begonia by a suite of characters including more differentiated 
segments of the perianth (a perigone is present Begonia), semi-inferior ovaries (inferior 
in Begonia), and fruit dehiscence between the styles (usually loculicidal dehiscence with 
lines of dehiscence along most of the length of the ovary in Begonia) (Clement et al., 
2004; Forrest et al., 2005). The Begoniaceae are placed within the order Cucurbitales in 
the Eurosids I (Angiosperm Phylogeny Group, 2003, 2009). A molecular phylogenetic 
study by Zhang et al. (2006) indicates a close relationship of Datiscaceae, Tetramelaceae 
and Begoniaceae, and a sister group relationship of Datiscaceae and Begoniaceae, but the 
latter relationship is only weakly supported.

Begonia is one of the largest genera of vascular plants (Frodin, 2004), with more than 
1550 species divided into 68 sections (de Wilde and Plana, 2003; Doorenbos et al., 1998; 
Forrest and Hollingsworth, 2003; Ku et al., 2007; Ku, 1999; Shui et al., 2002). The genus 
has a pantropical distribution, and is absent only from the Australian tropical forests and 
the Pacific region from the east of Fiji to the Galapagos Islands (Heywood, 2007; Tebbitt, 
2005). A single species, Begonia grandis Dryand., extends the distribution of the genus 
into the temperate zone growing as far north as Hebei Province in China (Heywood, 
2007; Tebbitt, 2005). The African Begonia flora is with c. 160 species relatively species 
poor (Doorenbos et al., 1998; Plana, 2003; Sosef, 1994), while the bulk of the species 
diversity is relatively equally distributed between the Neotropics and Asia (Doorenbos et 
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al., 1998). Based on the Annotated Checklist of Southeast Asian Begonia (Hughes, 2008) 
and subsequent new species descriptions (Girmansyah, 2009; Girmansyah et al., 2009; 
Hughes and Coyle, 2009; Hughes et al., 2010; Hughes et al., 2009; Kiew and Sang, 2009; 
Thomas et al., 2009a; Thomas et al., 2009b; Thomas and Hughes, 2008), a conspicuous 
hotspot of species diversity can be identified in Southeast Asia, whose Begonia flora 
comprises more than 540 species.

Several molecular phylogenetic trees that include low-density worldwide taxon samplings 
of Begonia have been published (Clement et al., 2004; Forrest, 2001; Forrest and 
Hollingsworth, 2003; Forrest et al., 2005; Goodall-Copestake, 2005; Goodall-Copestake 
et al., 2009; Plana, 2002, 2003; Plana et al., 2004). The work by Goodall-Copestake (2005), 
who analysed c. 13 kb of sequence data from eleven regions of nuclear, mitochondrial 
and chloroplast DNA of 31 Begoniaceae species, provides a well resolved phylogenetic 
framework for Begonia (Fig. 1.1). His analyses suggest that both Asian and American 
Begonia lineages are derived from African ancestors, that Socotran and Asian Begonia 
form a well supported monophyletic group, and that the split up of the ancient continent 
of Gondwana long preceded the generation of the pantropical distribution of the genus 
(Goodall-Copestake, 2005).

The phylogenetic relationships within the relatively small group of African Begonias (c. 160 
species) are relatively well understood. Revisions exist for the majority of the 17 African 
sections (see references in Plana, 2003), and their intersectional relationships have been 
studied in some detail using molecular systematic approaches (Plana, 2002, 2003; Plana 
et al., 2004). In contrast to this, there is only very limited knowledge of the phylogenetics 
of the extensive American and Asian Begonia radiations. Morphological circumscriptions 
of several Neotropical and Asian sections are highly problematic. Doorenbos et al. 
(1998: 181), who revised sectional circumscriptions in Begonia, emphasized that several 
neotropical sections “shade off into each other,” i.e. sectional boundaries are often 
inconsistent and transitional species are present. Moreover, several crucial fruit and ovary 
characters traditionally used in infrageneric classifications of Begonia were identified 
as highly homoplasious in phylogenetic trees based on low-density, world-wide taxon 
sampling of the genus (Forrest and Hollingsworth, 2003; Forrest et al., 2005). Doorenbos 
et al. (1998) recognised 18 Asian sections, and another four sections were subsequently 
proposed (Forrest and Hollingsworth, 2003; Ku et al., 2007; Ku, 1999; Shui et al., 2002). 
However, the circumscriptions of several of these sections are questionable. Analyses of 
sequence data of the nuclear ribosomal DNA provided strong evidence for the polyphyly 
of sections Sphenanthera (Hassk.) Warb., Platycentrum (Klotzsch) A.DC. and Leprosae 
(T.C. Ku) Y.M. Shui and hinted at the polyphyly of section Diploclinium (Lindl.) A.DC. 
(Forrest, 2001; Tebbitt et al., 2006). Moreover, the New Guinean genus Symbegonia 
Warb., which was traditionally separated from Begonia based on floral characters 
including a syntepalous perigone and a characteristic monadelphous androecium, was 
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Fig. 1.1. Bayesian majority rule phylogram from Goodall-Copestake (2005: 56). 
Captions from Goodall-Copestake (2005): “Bayesian majority rule consensus phylogram 
for eleven DNA fragment dataset, see methods for the model and partitioning strategy. 
Begoniaceae taxa are colored: H. sandwicensis is purple, African Begonia are green, Asian 
Begonia are red, and American Begonia are blue. The phylogeny confidence measures 
are: Bayesian posterior probability, maximum likelihood bootstrap, maximum parsimony 
bootstrap, and if the inferred branch length is ≥/<3 substitutions long. Branches lengths 
≥3 substitutions are in bold type. No support measures are given for poorly supported 
nodes that were only resolved in the Bayesian consensus topology and nor resolved in 
either of the maximum likelihood and maximum parsimony consensus topologies.” 
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shown to be nested within Begonia section Petermannia (Klotzsch) A.DC. (Forrest and 
Hollingsworth, 2003). However, because of limited taxon sampling and unresolved or 
only poorly statistically supported deeper internal relationships of published phylogenetic 
trees, the intersectional relationships within Asian Begonia have remained only very 
fragmentarily understood.
 
1.1.2 The ecology of Asian Begonia

1.1.2.1 Habitats and life strategies of Asian Begonia
The majority of Begoniaceae species are perennial herbs or soft-wooded shrubs adapted 
to shady, moist microhabitats in primary rainforests, often associated with rocky slopes 
along small streams and waterfalls (Goodall-Copestake, 2005; Kiew, 2005; Phutthai et 
al., 2009). In areas with a limestone karst topography Begonias can frequently be found 
on shaded, moist rocks at the base of limestone hills or growing directly on moist rock 
faces (Kiew, 1998, 2001a, 2001b; Kiew, 2005; Kiew and Sang, 2009). Lithophytic Asian 
Begonias often grow on granite or limestone, but shale, sandstone and quartzite substrates 
have also been reported for some species (Kiew, 2005; Phutthai et al., 2009; locality data 
in Hughes & Pullan, 2007). Many Asian species can grow both lithophytically and on soil 
in the ground layer of primary rainforest, and Kiew (2005) pointed out that most forest 
floor dwelling Begonias are found in habitats with steep inclinations where leaf litter does 
not collect, which would otherwise inhibit the establishment and growth of the minute 
seedlings. Some Asian species can also be found growing epiphytically, either on wet 
bark of tree trunks near the ground (Phutthai et al., 2009), or rarely as climbing epiphytes 
(Begonia oxysperma A.DC. in the Philippines and B. kaniensis Irmsch. in New Guinea). 
Many Begonia species are highly sensitive towards disturbances which significantly alter 
light exposure and humidity intensities in the habitat, and only a few Asian species such 
as the widespread B. longifolia Blume and B. alicida C.B.Clarke, show wider ecological 
tolerances towards habitat disturbances and tolerate high levels of insolation (Phutthai et 
al., 2009; Tebbitt, 2003). 

Adaptations to seasonal climates can be found in several Begonia lineages. Many continental 
Asian and a few Malesian species in sections Parvibegonia A.DC., Diploclinium and 
Sphenanthera can resist drought by dying down during the dry season and by resprouting 
from tuberous or rhizomatous perennating organs in the next rainy season (Kiew, 2005; 
Phutthai et al., 2009). Although they are perennials, some tuberous Asian species, like 
Begonia sibthorpioides Ridl. and B. sinuata Wall. ex Meissner, show a similar life 
strategy as drought avoiding annual plants: they are small plants, i.e. they only produce 
a small amount of biomass in each growth period, mature flowers are often developed 
relatively soon after resprouting and germination, and they profusely regenerate from 
the seed bank in the rainy season (Kiew, 2005). These adaptations seem to be essential to 
survive dry seasonal extremes or pronounced seasonal monsoonal climates with several 
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dry months, not just in continental Southeast Asia (Phutthai et al., 2009) and parts of 
the Himalaya (Sangeeta Rajbhandary, Tribhuvan University, Kathmandu, Nepal, pers. 
com.), but also in the North of the Malay Peninsula (Kiew, 2005), and eastern Java and 
the Lesser Sunda Isles (pers. obs.). Adaptations to seasonally dry climates are also known 
from African Begonia species in the sections Augustia (Klotzsch) A.DC., Peltaugustia 
(Warb.) Barkley, Rostrobegonia Warb., and Sexlaria A.DC. Adaptations in these sections 
include drought avoidance through an annual life cycle (sections Rostrobegonia and 
Sexlaria), drought resistance by resprouting from swollen stem bases (sections Augustia, 
Peltaugustia, and Rostrobegonia), and the production of bubils, i.e. compressed, fleshy 
lateral branches with reduced, scaly leaves, which serve as perennating organs (section 
Peltaugustia) (Goodall-Copestake, 2005; Hughes and Miller, 2002; Plana, 2002, 2003).

1.1.2.2 Reproduction and dispersal in Asian Begonia
The artificial propagation of Begonias by the use of leaf and shoot cuttings is a common 
horticultural practise (Tebbitt, 2005)(Tebbitt, 2005), and clonal reproduction seems to be 
a common phenomenon in the wild. Regeneration of new plantlets on the veins of fallen 
leaves or from shoot or rhizome fragments has been observed in several species and 
natural hybrids (Kiew, 2005; Peng and Chiang, 2000; Peng and Ku, 2009). Other species 
show specialised vegetative organs, which likely serve for vegetative reproduction. 
Examples are the Himalayan species Begonia gemmipara Hook.f. & Thomson which 
produces clusters of bulbils in modified inflorescences (Clarke, 1879; Grierson, 1991), 
and B. sinuata, which develops bulbils at the base of the leaf blades (Kiew, 2005). In other 
species, roots are developed at the apices of their leaves, where new plantlets are developed 
(Begonia elisabethae Kiew, B. vagans Craib), and some species develop plantlets on the 
veins ending in the leaf margins (B. elisabethae) (Craib, 1930; Kiew, 2005).

Most Begonias seem to be zoophilous and pollinated by generalist insect pollinators. 
Stingless bees (Trigona species), honey bees (Apis cerana) and bumble bees (Bombus 
ephippiatus) have been reported as flower visitors and likely pollinators in Begonia 
(Ågren and Schemske, 1991; Burt-Utley, 1985; Hughes and Hollingsworth, 2008; Kiew, 
2005; Schemske et al., 1996). A few species like the neotropical Begonia boliviensis 
A.DC., and B. ferruginea L.f., are thought to be bird-pollinated (Vogel, 1975, 1993, 
1998), which may also be the case in species in the New Guinean Begonia section 
Symbegonia (Warb.) L.L.Forrest & Hollingsw., which is characterised by syntepalous, 
tubular perigones (Hughes, 2002). Moreover, Hughes (2002) suggested that some species 
which grow in wind exposed habitats and exhibit large inflorescences which produce 
copious amounts of pollen may be wind pollinated (e.g. Begonia glabra Aubl.). Female 
Begonia flowers do not offer nectar or other rewards to pollinators. Pollinators apparently 
mistake the rewardless female flowers, which signal reward by the same yellow or orange 
colouration of their styles and stigmas as the androecia of the male flowers, for male 
flowers, which offer a reward in the form of pollen (Renner, 2006; Schemske et al., 1996). 
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The resemblance of male and female flowers seems to be essential for the effectiveness of 
this deceit pollination and effective mimicry may be selected for (Le Corff et al., 1998). 
An exception to the general rewardlessness of female Begonia flowers can be observed 
in the bird-pollinated B. ferruginea, in which nectar secreting tissue is developed in 
the female, but not in the male flowers (Vogel, 1998). Other putatively bird-pollinated 
Begonia species are completely rewardless and pollination is by double deceit, as nectar 
is lacking and pollen is not taken as reward by the bird pollinators (Hughes, 2002; Renner, 
2006).

The majority of Asian species exhibit winged capsules with loculicidal deshiscence, and 
a single capsule produces hundreds to thousands of minute seeds. It has been estimated 
that 30000-70000 begonia seeds are needed to weigh one gram, and it can be assumed 
that these dust seeds, which are usually about 300-600 μm in length, can be effectively 
distributed by wind (de Lange and Bouman, 1992, 1999; Kiew, 2005). Anemochorously 
dispersed taxa usually exhibit capsules with a dry, membranous pericarp and well 
developed wings (Fig. 2.2 A-C). After dehiscence seeds are gradually released through 
slits along the wing attachments when the winged capsules are shaken by wind. However, 
numerous anemochorous species are narrow endemics, and anemochory is unlikely to 
result in long dispersal distances in the sheltered conditions of the moist ground layer 
habitats preferred by the majority of Asian Begonia species (Burt-Utley, 1985; Hughes, 
2002; Hughes and Hollingsworth, 2008). This hypothesis is corroborated by the strong 
genetic and morphological differentiation of subpopulations of some Begonia species 
at very local scales indicating very limited dispersal capabilities and limited gene flow 
between populations (Hughes and Hollingsworth, 2008; Hughes et al., 2003; Matolweni 
et al., 2000).

Alternatives to the predominant anemochorous dispersal mechanisms can be found in 
several Asian sections. The majority of species in section Platycentrum exhibit a rain-
ballist syndrome characterised by capsules with a robust pericarp and two smaller and one 
distinctly larger wing (Fig. 2.2 D). These fruits are held by stiff pedicels, which curve at 
maturity so that parts of the pericarp and the two smaller wings form an upwards facing 
splash cup, while the longer wing points downwards. When rain drops hit the splash cup 
the capsule moves up and down on the stiff pedicel releasing the seeds through lines of 
dehiscence along the bases of the wings (Kiew, 2005; Savile and Hayhoe, 1978; Tebbitt et 
al., 2006). Several species in section Parvibegonia exhibit a similar splash cup syndrome. 
However, the capsules of other species in the section are held on thin pedicels, which wilt 
and hang downward at maturity, releasing their seeds when the capsule is moved by wind 
or rain drops.

While epi- and endozoochorous dispersal seem to be common in African Begonia, 
zoochory has not been observed in Asian Begonia (de Lange and Bouman, 1992, 1999; 
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Tebbitt et al., 2006). However, the development of fleshy pericarps in some Asian 
Begonia sections has been interpreted as indicative of endozoochory (Kiew, 2005; Tebbitt 
et al., 2006). Indehiscent fruits with a thick, fleshy pericarp characterize Begonia section 
Sphenanthera (Fig. 2.2 E-F), and have also been reported from section Leprosa (Shui 
et al., 2002) and a few species in the large section Petermannia (Thomas et al., 2009a). 
Fleshy pericarps have generally been interpreted as related to zoochory, but dispersal of 
some fleshy fruited species may be mainly by rain-wash from the decomposing fruit or 
a combination of rain-wash and epizoochory, which has been proposed as predominant 
dispersal mechanism of c. 40% of the African Begonia flora (de Lange and Bouman, 
1992, 1999; Tebbitt et al., 2006; Thomas et al., 2009a). Tebbitt et al. (2006) hypothesised 
that some fleshy-fruited species in the Asian section Sphenanthera are dispersed by bats 
and other animals, and that zoochory may be a factor contributing to the unusually wide 
distributions of some taxa in the section.

1.2 Introduction to Southeast Asia’s palaeogeography

1.2.1 Palaeogeography of Malesia

The geological history of Southeast Asia is remarkably complex, and has been discussed 
in detail in a large body of geological and biogeographical literature (Hall, 1998, 2001, 
2002, 2009; Metcalfe, 2002; Michaux, 1991; Morley, 2000; Ridder-Numan, 1996). 
This brief overview of the palaeogeography and geological history is mainly based on 
the palaeogeographic and tectonic reconstructions by Robert Hall (Hall, 1998, 2001, 
2002, 2009), which integrated various data sources including GPS measurements 
of plate motions, observations of seismic and volcanic activity, geophysical imaging, 
palaeomagnetic data, isotope data and stratigraphy. These reconstructions provide a 
valuable framework for addressing biogeographical questions, but it is important to note 
that the underlying geological data is often fragmentary and its interpretation sometimes 
contentious (Hall, 2009). 

Southeast Asia is located at a meeting point of several converging, major tectonic plates. 
The Australian continent is moving northwards and is colliding with the eastern Eurasian 
Plate, and the Pacific and Philippine Plates are moving westwards subducting below the 
Eurasian Plate. The present configuration of Southeast Asia has broadly resulted from 
the amalgamation of fragments, which have rifted from Gondwana, with Eurasia, as well 
as convergence of the Australian and the Eurasian Plates closing a large water barrier 
between the land masses, and subsequent subduction, collision and arc volcanism at the 
plate margins (Hall, 2009). These geological processes in combination with sea-level 
fluctuations between glacial and interglacial periods have produced a complex mosaic of 
terrestrial and marine areas evolving throughout the Cenozoic (Hall, 1998, 2001, 2002, 
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2009). Some biogeographically important aspects of the geological genesis of the region 
are elaborated below. 

During the Mesozoic the western Malesian region, including Peninsula Malaysia, 
Sumatra, Borneo, Java and the western part of Sulawesi, was formed by the accretion of 
continental fragments which had broken off the northern margin of Gondwana and rifted 
northwards with the Eurasian plate margin (Hall, 2001, 2009; Metcalfe, 2002). By the 
Late Cretaceous, c. 80 Ma ago, these western Malesian areas had sutured to Eurasia and 
palaeogeographic reconstructions indicate that substantial parts of western Malesia were 
terrestrial throughout the Cenozoic (65.5 Ma onwards) (Fig. 1.2) (Hall, 2001, 2009). In 
the Middle Eocene the Makassar Strait region extended by block faulting and subsidence, 
separating a western Sulawesian fragment from Borneo and forming a deep water 
channel, which purportedly hindered biotic exchange between western Malesia and areas 
to the east throughout the Cenozoic (Hall, 2002, 2009; Morley, 1998; Moss and Wilson, 
1998; Voris, 2000). Most of this western Sulawesian fragment was submerged in the 
Miocene (Hall, 2009), but palynological data indicates that it carried a Laurasian flora, 
which might have survived on smaller emergent parts or neighboring islands acting as a 
source of these Laurasian floristic elements for the eastern Malesian areas (Morley, 2000, 
2003). Nevertheless, the emergent parts of the Sunda Shelf region remained separated 
from terrestrial areas of the Australian plate by a major water barrier throughout the 
Eocene and Oligocene (Hall, 2009).

Eastern Malesia including parts of eastern Sulawesi, the Moluccas, the Lesser Sunda 
Islands and New Guinea is derived from continental fragments of the Australian Plate. 
These fragments drifted to their current position only during the Cenozoic, when western 
Malesian areas had largely been in place already (Fig. 1.2) (Hall, 2002, 2009; Metcalfe, 
2001; van Welzen et al., 2005). The movement of these fragments closed the gap 
between the converging Australian Continent and the Eurasian Plate, but during most 
of their migration the Eastern Malesian fragments were submerged and substantial land 
in Wallacea and New Guinea only emerged from the Late Miocene onwards. However, 
smaller ephemeral islands were present before that and there is some evidence that the 
southeastern parts of Sulawesi had already emerged at 20 Ma (Hall, 2002, 2009; van 
Welzen et al., 2005). By 5 Ma Sulawesi was largely emergent and high mountains were 
present in West and Central Sulawesi (Hall, 2009). The New Guinean orogenesis was 
initiated at around 10 Ma, but the rapid rise of the major mountain ranges of New Guinea 
reaching a height of almost 5000 m probably occurred only since 5 Ma (Hall, 2009; 
Pigram and Davies, 1987). 

Despite the elimination of the wider deep water barrier between the Sunda Shelf region 
and Australia, there was never one clear overland track which allowed biotic exchange 
by overland migration, even during periods of lower sea-level during the Pleistocene, and 
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a variety of scenarios involving island hopping and rafting on tectonic fragments could 
be hypothesized for biotic exchange between the two regions (Hall, 2001). Adding to 
the complexity of these scenarios is the fact that the major Malesian islands and island 
assemblages have a composite nature. Sulawesi is an amalgamation of a continental 
fragment, which rifted from the eastern margin of Borneo during the Eocene, a northern 
volcanic arc, which was part of the subduction margin beneath which the northwards 
moving Indian-Australian Plate subducted in the past, extensive ophiolitic masses, i.e. 
uplifted oceanic crust and associated tectonic melanges, and Australian continental 
fragments such as Banggai-Sula and Buton (Hall, 2001; Morley, 2000; Moss and Wilson, 
1998; Ridder-Numan, 1996). New Guinea consists of a larger southern part, the Australian 
continental craton, which collided and coalesced with about 32 smaller terranes of 
different origin (Daly et al., 1991; Pigram and Davies, 1987). Finally, the Philippines are 
an assemblage of blocks comprising, for the main part, ancient and more recent volcanic 
island arcs, but Palawan and Mindoro are Eurasian continental fragments (Hall, 2002).

Larger-scale patterns of biodiversity are strongly influenced by the physical environment 
(Benton, 2009), and the geological processes which contributed to the geological 
evolution of Southeast Asia certainly had a profound impact on the diversification and 
distribution of the Malesian biota. Physical barriers like large water bodies were reduced, 
e.g. by the convergence of the Australian and the Eurasian Plates, or eliminated, e.g. by 
the creation of land bridges connecting islands on the Sunda Shelf by glacioeustatic sea-
level fluctuations, which potentially facilitated biotic exchange by overland migration 
and rafting on fragments. Other processes like the creation of the Makassar Straits by 
rifting of the western Sulawesi fragment from Borneo, and the genesis of new basins and 
deep water trenches created water barriers which likely acted as biogeographic filters or 
barriers, hindering range expansion of taxa with poor dispersal capabilities. However, the 
creation of physical barriers by fluctuating sea-levels and rifting of tectonic fragments 
could also have lead to speciation by vicariance, when previously wider distributed and 
connected ancestral populations were split and geographically separated. Moreover, the 
creation of topographical heterogeneity as in the relatively recent massive orogenesis 
on New Guinea is likely to promote microallopatric speciation and rapid divergence 
(Lomolino et al., 2006), and the emergence of formerly submerged tectonic fragments, 
terranes and volcanic islands offered opportunities for colonization of new land. Extrinsic 
factors like tectonic processes, changes in the palaeoclimate, and sea-level fluctuations 
have certainly played key roles in shaping biotic distributions in Malesia over millions 
of years.
   
1.2.2 Palaeoclimate and sea-level changes in Southeast Asia

The powerful impact of Pleistocene climate fluctuations and refugial dynamics on 
biogeographic patterns is well documented for Europe and other northern latitude areas, 
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and distinctive genetic patterns and subdivisions in various biota can be linked with 
isolation in cold-stage refugia (Hewitt, 2004; Lomolino et al., 2006; Petit et al., 2002). 
The impact of Pleistocene climate fluctuations on distribution patterns in tropical areas is 
much more contentious (Willis and Whittaker, 2000). The palynological record indicates 
that in tropical areas cooler and drier conditions during the cold stages resulted in the 
expansion of seasonal open forest and savannahs replacing and fragmenting tropical 
rainforest (Morley, 2000). However, the extent of this fragmentation may have differed 
dramatically between the Neotropics, Africa and Asia (Cannon et al., 2009; Colinvaux et 
al., 2000; Willis and Whittaker, 2000). Cyclical vicariance by recurrent isolation of once 
more widespread species in separate rainforest refugia during glacial maxima has been 
proposed as a model to explain the generation of high diversity and centres of endemism 
in the Neotropics (Haffer, 1969, 1997) and recent studies evoke cyclical vicariance as a 
speciation mechanism which may have contributed to large radiations in the Neotropics 
and African tropics (Harris et al., 2000; Janssens et al., 2009; Richardson et al., 2001; 
Sosef, 1994). However, Morley (2000) pointed out that the extent of aridification and 
rainforest contraction may have been overestimated in some cases, e.g. Brandon-Jones 
(2001) proposed almost complete reduction of Southeast-Asian rainforests by glacial 
drought, only leaving small refugia in north Sumatra, the Mentawi islands, north Borneo, 
west Java, northeast Indochina and the Western Ghats of south India. Recent modelling 
of rainforest distribution in Southeast Asia during the last million years incorporating 
geographic, geological and palaeoclimatic data indicate that the current rainforest 
distribution represents a refugial state and that Southeast Asian lowland rainforest had 
its widest extent at the time of Pleistocene glacial maxima (Cannon et al., 2009). This 
expansion might have been possible because the decrease of temperatures lowered the 
elevational zonation between upland and lowland rainforest, while eustatic sea-level 
changes resulted in the exposure of vast areas of the Sunda Shelf, which potentially 
provided suitable habitats for lowland rainforest (Cannon et al., 2009). The presence 
of more widespread rainforests during most of the Pleistocene is also supported by 
phylogeographic data which indicates that the main vicariance events in the region 
occurred before the Pleistocene (Cannon and Manos, 2003; Gorog et al., 2004). However, 
the palynological record also shows indicators for seasonal vegetation and there may have 
been a seasonal climate corridor with open woodland vegetation across the Sunda Shelf, 
and savannah vegetation on Java during substantial phases of the Pleistocene (Cannon et 
al., 2009; Morley, 2000, 2007).

Sequence stratigraphy (Woodruff, 2003, 2010), isotope data (Zachos et al., 2001), and 
the palynological record (Morley, 2000) indicate drastic eustatic sea-level fluctuations, 
and climate and vegetation changes in Southeast Asia long before the Pleistocene. 
From the early Miocene to the Pliocene the climate was predominantly moist, with a 
warm phase peaking around 15-17 Ma (Zachos et al., 2001). During this Mid Miocene 
Climatic Optimum Asian rainforest distribution reached as far north as Japan (Morley, 
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2000, 2007). However, the Miocene-Pliocene climate was not uniformly moist, but there 
were short-lived phases of glaciations, dryer, cooler climates, e.g. a short, deep glaciation 
at the Oligocene/Miocene boundary at around 23 Ma (the Mi-1 glaciation), which was 
followed by several intermittent but smaller glaciations (Zachos et al., 2001). The Mid 
Miocene Climatic Optimum was followed by gradual cooling until the early Pliocene, 
which showed a slight warming trend until ca. 3.2 Ma, when the Northern Hemisphere 
Glaciation commenced (Zachos et al., 2001). Moreover, eustatic sea-level curves indicate 
that during a c. 11 Ma period beginning at 24 Ma in the early Miocene, and during another 
c. 1.0-1.4 Ma period beginning at 5.5 Ma in the early Pliocene, sea-levels were distinctly 
higher than today, and multiple Miocene and Pliocene sea-level changes had amplitudes 
of c. 90 m (Woodruff, 2003, 2010).

Fragmentation and replacement of rainforests by seasonal or savannah vegetation caused 
by drier and cooler climates may have been less pronounced in Southeast Asia and may 
have followed different patterns than in other tropical areas during the Pleistocene (Cannon 
et al., 2009; Morley, 2000, 2007). However, Southeast Asian rainforest distributions did 
show major expansions and contractions based on pronounced cycles of submergence 
and exposure of land and shifts in the elevational zonation during the Quaternary and 
earlier. These fluctuations in combination with the rapid geological reconfiguration of the 
region likely had a profound impact on biotic distributions and diversification patterns 
(Cannon et al., 2009; Morley, 2000, 2007; Woodruff, 2010).

1.3 Aims of the doctoral research and structure of the thesis

The need for a robust phylogenetic framework of Southeast Asian Begonia which 
has the power to inform taxonomic monographs and to facilitate biogeographical and 
evolutionary studies was the motivation for this thesis. The first part of the thesis therefore 
aimed to determine suitable DNA markers for phylogenetic analyses of Southeast Asian 
Begonia species, to reconstruct the phylogeny of Southeast Asian Begonia, to determine 
whether major Asian sections are monophyletic, and to assess the degree of homoplasy 
of morphological characters which are crucial in current sectional delimitations. The first 
empirical research chapter of this thesis (Chapter 2) problematises current classifications 
of Asian Begonia, describes the methods used for DNA sequence generation, and presents 
the results of phylogenetic analyses and ancestral character state reconstructions based on 
this data.

The second part of this study aimed to contribute to a greater understanding of the historical 
biogeography of Southeast Asian Begonia in the context of global climate changes and 
the complex palaeogeography of Southeast Asia. The aims of this part of the research 
were to infer spatial and temporal patterns of Begonia diversification in Southeast Asia 
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and to detect potential geological or climatic correlates, as well as to investigate specific 
hypotheses about the origin and dispersal routes of Malesian Begonia lineages. The second 
empirical research chapter (Chapter 3) gives an introduction to research questions and 
hypotheses about the biogeography of Southeast Asian Begonia, describes the methods 
used to infer molecular divergence age estimates and to reconstruct ancestral areas of 
distribution, and presents biogeographical inferences derived from these analyses.

The final chapter (Chapter 4) summarises the main findings of the research described in 
the two empirical research chapters (Chapters 2 and 3). Research questions raised by the 
results are discussed and recommendations for further research strategies are made.

Finally, Appendix 1 presents three recently published papers, which represent alpha-
taxonomic contributions to the knowledge of the Malesian Begonia flora. These papers 
provide detailed descriptions and IUCN conservation assessments of five Begonia 
species from the Indonesian island of Sulawesi. Some aspects of the character evolution 
in Sulawesi Begonia are discussed.
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CHAPTER 2. Phylogenetics and character evolution of 
Southeast Asian Begonia L. (Begoniaceae)

Chapter Summary

The Begonia flora of Southeast Asia comprises more than 540 species. This exceptional 
species diversity in combination with a wide distribution of the genus in tropical rainforests 
offers the opportunity to address biogeographical questions and to investigate the 
processes which underlie modern patterns of biodiversity, but also poses major taxonomic 
challenges. Only few apomorphies characterising infrageneric taxa in this large genus 
have been identified and delimitation of Asian Begonia sections is highly problematic. A 
robust phylogenetic framework of Asian Begonia informing taxonomic monographs and 
facilitating biogeographical and evolutionary studies is currently lacking.

Maximum parsimony, maximum likelihood and Bayesian analyses of plastid (ndhA 
intron, ndhF-rpl32 spacer, rpl32-trnL spacer, 115 taxa) and nuclear ribosomal (ITS, 89 
taxa) sequence data were used to reconstruct the phylogeny of Southeast Asian Begonia 
and to determine whether major Asian sections (sections Coelocentrum, Diploclinium, 
Parvibegonia, Petermannia, Platycentrum, Reichenheimia, Sphenanthera, Symbegonia) 
are monophyletic. Morphological characters which are crucial in current sectional 
circumscriptions were mapped on the phylogenetic trees to determine their degree of 
homoplasy and to assess their suitability in infrageneric classifications.

The results indicate that Asian and Socotran Begonia species form a well supported clade. 
The basal relationships within this clade involve two small subclades including five species 
placed in sections Haagea, Reichenheimia and Peltaugustia, whose relationships are 
unresolved or only poorly supported. The vast majority of Asian Begonia species fall into 
two major clades: Clade A and Clade B. Clade A includes species of section Parvibegonia, 
continental Asian species of section Diploclinium, and species in sections Platycentrum 
and Sphenanthera. Clade B includes species of section Coelocentrum, Ridleyella, 
Bracteibegonia, Petermannia, Symbegonia and Malesian species of sections Diploclinium 
and Reichenheimia. The cpDNA phylogenetic trees indicate that a base chromosme 
number of n = 15 is ancestral within Asian Begonia, and chromosome counts of 30 or 
44, likely a triploid derivate from the base chromosome number of n = 15, are dominant 
within Clade B, while Clade A seems to be characterised by a primary base chromosome 
number of n = 11. Most major Asian sections are not supported as monophyletic and 
the strong systematic emphasis placed on single, homoplasious characters like undivided 
placenta lamellae (section Reichenheimia), fleshy pericarps (section Sphenanthera), and 
the recognition of sections primarily based on a plesiomorphic fruit syndrome and the 
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absence of characteristic features of other taxa (section Diploclinium) has resulted in 
the circumscription of several highly polyphyletic sections. Ovary and fruit characters 
have traditionally played a major role in sectional delimitation, however the high level of 
homoplasy associated with these has obscured systematic relationships in Asian Begonia. 
The presence or absence and type of stem metamorphoses and perennating organs like 
tubers and rhizomes is of more systematic importance than has been assumed in the past. 

Several major clades are congruently supported in gene trees derived from the analyses 
of the plastid and nuclear ribosomal data, but there is hard incongruence within the clades 
comprising species of the species-rich sections Platycentrum s.l. (including section 
Sphenanthera) and Petermannia s.l. (including section Symbegonia), indicating that 
hybridization might have had a significant impact on the evolution of the genus, and 
highlighting the importance of using multiple independent sources of phylogenetic data 
to detect discrepancies between gene and species trees in Begonia.

2.1 Introduction

The pantropically distributed genus Begonia is with more than 1550 species among the 
ten largest genera of vascular plants (Frodin, 2004; Hughes, 2008). One hotspot of species 
diversity lies in Southeast Asia, whose Begonia flora comprises more than 540 species 
(Girmansyah, 2009; Girmansyah et al., 2009; Hughes and Coyle, 2009; Hughes et al., 
2010; Hughes et al., 2009; Kiew and Sang, 2009; Thomas et al., 2009a; Thomas et al., 
2009b; Thomas and Hughes, 2008). This exceptional species diversity in combination 
with a wide distribution of the genus in tropical rainforests offers opportunities to address 
biogeographical questions and to investigate phenomena such as rapid radiations, shifts in 
diversification rates, character evolution and the evolution of key innovations, but also poses 
major taxonomic challenges. Although Southeast Asian Begonias are morphologically 
diverse, especially with regards to their growth habits, stem metamorphoses, perennating 
organs, leaf shapes, inflorescence architectures and fruit types, only few apomorphies 
characterising infrageneric taxa have been identified and delimitation of Asian sections 
is often problematic (Doorenbos et al., 1998). A robust phylogenetic framework of 
Asian Begonia informing taxonomic monographs and facilitating biogeographical and 
evolutionary studies is currently lacking.

Doorenbos et al. (1998) revised sectional circumscriptions in Begonia recognizing 18 
Asian sections, and another four Asian sections were subsequently proposed (Forrest 
and Hollingsworth, 2003; Ku et al., 2007; Ku, 1999; Shui et al., 2002). These 22 
sections are highly unbalanced with regards to species numbers with the largest eight, 
sections Petermannia, Platycentrum, Diploclinium, Reichenheimia (Klotzsch) A.DC., 
Coelocentrum Irmsch., Parvibegonia, Sphenanthera and Symbegonia, accounting for more 
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than 95% of the ca. 750 species in Asia, while 14 sections, five of which are monotypic, 
have less than five species. Morphological and anatomical fruit and ovary characters have 
traditionally played an essential role as diagnostic characters and for infrageneric taxon 
delimitation in Begonia (Irmscher, 1925; Warburg, 1894), and modern classifications still 
strongly rely on these characters (Doorenbos et al., 1998). One example is the recent 
Begonia treatise in the Flora of China, in which a new monotypic Begonia section was 
proposed and sections present in China were re-circumscribed solely based on character 
combinations of carpel number, ovary locule number, placentation type, and the type of 
placenta divisions (Ku et al., 2007). This allowed clear sectional placement for all of the 173 
described Chinese species. To a lesser extent, vegetative characters like the presence and 
type of perennating organs like tubers and rhizomes, and floral and inflorescence characters 
like the numbers of tepals, the number of style branches and the distribution of male and 
female flowers in the inflorescences have contributed to the delimitation of infrageneric 
taxa in Begonia (Doorenbos et al., 1998). However, recent molecular phylogenetic studies 
challenge the strong emphasis on few easily observable morphological and anatomical 
characters in infrageneric Begonia classifications, and most crucial characters used in 
sectional circumscription were identified as highly homoplasious in phylogenetic trees 
based on low-density, world-wide taxon sampling of the genus (Forrest, 2001; Forrest and 
Hollingsworth, 2003; Tebbitt et al., 2006). The results of a study by Tebbitt et al. (2006), 
who analysed sequence data of the nrDNA internal transcribed spacer region (ITS) of 
46 Asian Begonia species, indicate that fruit syndromes associated with rain and animal 
dispersal evolved multiple times within Asian Begonia, and the sections Sphenanthera, 
Platycentrum and Leprosae were identified as polyphyletic. Moreover, Forrest and 
Hollingsworth (2003) showed, based on nrDNA ITS and 26S sequence data, that the New 
Guinean genus Symbegonia, which was traditionally separated from Begonia based on 
floral characters (a syntepalous perianth and a characteristic monadelphous androecium), 
is nested within Begonia section Petermannia. They proposed to recognize Symbegonia 
at sectional level rendering the large section Petermannia paraphyletic, but retaining a 
morphologically easily recognizable taxon (Forrest and Hollingsworth, 2003). Thus, the 
monophyly of some sections was tested and their phylogenetic positions were clarified 
in molecular phylogenetic studies including a wider sampling of Asian Begonia (Forrest, 
2001; Forrest and Hollingsworth, 2003; Tebbitt et al., 2006). However, these analyses of 
nrDNA sequence data have largely failed to resolve deeper relationships within Asian 
Begonia. One reason for the limited utility of the ITS region for phylogenetic analyses of 
Asian Begonia is the extensive nucleotide and sequence length variation, which can be 
observed in ITS alignments (Forrest and Hollingsworth, 2003; Forrest et al., 2005; Tebbitt 
et al., 2006), e.g. the alignment of 52 Begonia accessions representing 46 Asian and two 
African species in the study by Tebbitt et al. (2006) exhibited c. 56% of variable sites and 
c. 39% of potentially parsimony informative sites. Despite high percentages of potentially 
parsimony informative characters, ITS phylogenetic trees of Asian Begonia show only 
poorly resolved and/or poorly supported backbones, which indicates that the analyses 
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are likely confounded by extensive nucleotide variation and associated high levels of 
alignment ambiguity and homoplasy. Because of limited taxon sampling and the poorly 
resolved phylogenetic trees of previous studies, intersectional relationships within Asian 
Begonia are still only very fragmentarily understood, and the extent to which parallel 
evolution of crucial characters has obscured systematic relationships in Asian Begonia 
requires further investigation. 

The aims of this study are:
•	 to determine suitable markers for phylogenetic analyses of Southeast Asian 

Begonia species;
•	 to reconstruct the phylogeny of Southeast Asian Begonia;
•	 to determine whether major Asian sections (sections Coelocentrum, Diploclinium, 

Parvibegonia, Petermannia, Platycentrum, Reichenheimia, Sphenanthera, 
Symbegonia) are monophyletic;

•	 to map morphological characters which are crucial in current sectional delimitations 
on the phylogenetic trees to determine their degree of homoplasy and to assess 
their suitability in infrageneric classifications.

2.2 Material and Methods

2.2.1 DNA region sampling

The potential utility of ten coding and non-coding plastid regions (3’trnV-ndhC spacer, 
ndhA intron, ndhF-rpl32 spacer, matK gene, petD gene and intron, psbB gene, psbD-
trnT spacer, rpl32-trnL spacer, trnL intron, trnQ-5’rps16 spacer) for phylogenetic 
reconstruction in Asian Begonia were assessed in a trial study. This trial compared the 
ease of amplification of the different regions and the variability of sequences of six Asian 
species (Begonia malabarica Lam., B. kingiana Irmsch., B. morsei Irmsch., B. palmata 
D.Don, B. robusta Blume, B. symsanguinea L.L.Forrest & Hollingsw.) representing a 
wide taxonomic and geographic range in Asia. Based on the results (Table 2.1), the ndhA 
intron, the ndhF-rpl32 spacer and the rpl32-trnL spacer, which are located in the small 
single copy unit of the cpDNA (Fig. 2.1 A) (Shaw et al., 2007), were selected for this study 
as they exhibited high percentages of variable and parsimony informative characters and 
complex potentially phylogenetically informative indel structures, while posing only few 
amplification and alignment difficulties.

In addition, sequences of the ITS region including the fast evolving internal transcribed 
spacers and the conservatively evolving 5.8S-rRNA coding gene of the 18S-5.8S-26S 
nuclear ribosomal DNA cistron (Fig. 2.1 B) (Álvarez and Wendel, 2003; Hughes et al., 
2006; Small et al., 2004) were generated. Nuclear ribosomal genes exist in several hundred 



18CHAPTER 2: PHYLOGENETICS

to several thousand copies in each plant genome, and phenomena like incomplete concerted 
evolution and the evolution of pseudogenes can obscure phylogenetic relationships 
(reviewed in Álvarez and Wendel, 2003). Despite these drawbacks, ITS sequences and 
phylogenetic trees can provide useful insights when analysed carefully, and ITS has 
continued to be the most popular non-plastid region for species-level phylogenetic studies 
of plant groups, as the identification and development of phylogenetically useful low-
copy nuclear markers in non-model organisms is often time and cost prohibitive (Feliner 
and Rossello, 2007). For this study, the ITS region was chosen, because it allowed the 

DNA Region PCR success 
[# of 6 taxa] 

Aligned
positions 

[#] 

Fragment 
length 

[bp]

Variable
sites 

[# (%)] 

Parsimony 
informative sites 

[# (%)] 

SIC Indel 
codes 

[#]* 

Amplification & 
sequencing 
protocols 

ITS 6 698 610-655 178 (25.5) 55 (7.9) 39 Clement et al., 2004 
rpl32-trnL spacer 6 1001 862-987 87 (8.7) 27 (2.7) 28 Shaw et al., 2007 
ndhF-rpl32 spacer 6 1177 1011-1144 105 (8.9) 23 (2.0) 32 Shaw et al., 2007 

ndhA intron 6 1223 1168-1192 73 (6.0) 16 (1.3) 21 Shaw et al., 2007 

petD gene and intron** 6 629 617-624 28 (4.5) 6 (1.0) 5 Copestake, 2005 

psbB gene** 6 1320 1320 19 (1.4) 4 (0.3) 0 Copestake, 2005 

trnL intron** 6 544 536-544 15 (2.8) 1 (0.2) 3 Copestake, 2005 

matK gene** 6 1195 1195 11 (0.9) 1 (0.1) 0 Copestake, 2005 

trnQ-5'rps16 spacer 5 n/a n/a n/a n/a n/a Shaw et al., 2007 

psbD-trnT spacer 4 n/a n/a n/a n/a n/a Shaw et al., 2007 

3'trnV-ndhC spacer 0 n/a n/a n/a n/a n/a Shaw et al., 2007 

* Indels scores calculated with the simple indel coding method (SIC; Ochoterena and Simmons, 2000) as implemented in SeqSate (Müller, 
2005) 

** Sequence data from Goodall-Copestake, 2005 

Table 2.1. Six-taxon comparison of ITS and plastid region variability.

cpDNA

IR A IR B

SSC

LSC

1 2

1
ndhAx1 ndhAx2

5ʹndhA 3ʹndhA

2

trnL(UAG) ndhF

trnL(UAG) ndhF

rpl32-F

rpl32-R

Beg1 Beg2

rpl32
rpl32-trnL spacer

ndhA intron

ndhF-rpl32 spacer

51NT

18S 18S

26S1

ITSBeg1R

5.8S
ITS1 ITS2

26S
IGS

B: nrDNA regions and primers

A: cpDNA regions and primers

Fig. 2.1. cpDNA and nrDNA regions. A: Schematic diagram of the cpDNA and the nrDNA regions used 
in this study (adapted from Shaw et al., 2007). The relative position of used DNA regions is indicated by 
the numbers 1 and 2 (based on the position in the Nicotiana chloroplast genome). DNA region names 
are italicized below and primer names are in regular typeface above with directional arrows. IR A and B: 
inverted repeats; LSC: large single copy region; SSC: small single copy region. B: Schematic diagramm of 
a nrDNA repeat in angiosperms (adapted from Soltis and Soltis, 1998). DNA region names are italicized 
below and primer names are in regular typeface above with directional arrows. IGS: Non-coding intergenic 
spacer; ITS1 and 2: internal transcribed spacers; 5.8S, 18S, 26S: coding genes for rRNA.
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inclusion of published ITS sequences of species of some monotypic or small Asian sections 
and mainland lineages of sections Reichenheimia and Diploclinium, for which no samples 
were available. Moreover, the ITS region is of nuclear origin and hence independent from 
the plastid DNA dataset. This allowed the assessment of conflict between the different 
gene trees, and assessment of potential disparity between gene and species trees, which 
would otherwise go undetected.

2.2.2 Taxon sampling

Non-coding cpDNA dataset: The cpDNA sequence dataset (ndhA intron, ndhF-rpl32 
spacer, rpl32-trnL spacer) comprised 115 taxa sampled broadly from all major Asian 
Begonia sections (sections Coelocentrum, Diploclinium, Parvibegonia, Petermannia, 
Platycentrum, Reichenheimia, Sphenanthera, Symbegonia) with a focus on Malesian 
lineages. Moreover, samples of the small Asian sections Bracteibegonia A.DC., Haagea 
(Klotzsch) A.DC. and Ridleyella Irmsch., and samples of the only two Begonia species 
known from Socotra, B. socotrana Hook.f. and B. samhaensis M.Hughes & A.G.Mill., 
were included. Four African species were chosen to form the outgroup based on molecular 
phylogenetic studies by Goodall-Copestake (2005) and Plana et al. (2004) which indicate 
that Begonia initially diversified in Africa and that the Asian Begonia lineage is derived 
from African Begonia. Because of the unavailability of samples, several monotypic or 
small Asian sections including sections Baryandra A.DC. (one species), Leprosae (three 
species), Monopteron (A.DC.) Warb. (two species), Pleiothece T.C.Ku (one species), 
and Putzeysia (Klotzsch) A.DC. (one species) were only included in the ITS datasets 
using sequences provided by collaborators or downloaded from the nucleotide database 
of the National Centre for Biotechnology Information (http://www.ncbi.nlm.nih.gov/), 
and the sections Alicida C.B.Clarke (three species), Apterobegonia Warb. (one species), 
Heeringia Irmsch. (one species), Lauchea (Klotzsch) A.DC. (two species), Monolobium 
T.C.Ku (one species), and Monophyllon A.DC. (one species), were not included in the 
analyses. However, this likely had only a minor impact on the ability of this study to 
identify major clades and their relationships. Most of these sections, which together 
represent less than three percent of the species diversity of Asian Begonia, are defined 
by single or few apomorphic morphological characters and morphological observations 
indicate that they are likely to be closely related or nested within the major Asian sections 
(see discussion of phylogenetic relationships of sections Parvibegonia, Diploclinium, and 
Platycentrum). All 345 sequences of the cpDNA regions were newly generated for this 
study. Voucher information is listed in Appendix 2.

ITS dataset: The ITS dataset included sequences of 89 taxa. The ingroup comprised 
taxa of all major Asian sections and samples of the monotypic or small Asian sections 
Baryandra, Bracteibegonia, Leprosae, Monopteron, Ridleyella and Putzeysia. Two 
African taxa were chosen as an outgroup based on studies by Plana et al. (2004) and 
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Goodall-Copestake (2005). Twenty-four sequences were downloaded from the nucleotide 
database of the National Centre for Biotechnology Information (http://www.ncbi.nlm.
nih.gov/), an unpublished sequence of Begonia gemmipara was provided by Sangeeta 
Rajbhandary (Tribhuvan University, Kathmandu, Nepal), and 64 sequences were newly 
generated. Voucher information and Genbank accession numbers are listed in Appendices 
2 and 3, respectively.

Reduced cpDNA and ITS datasets: To test for congruence between cpDNA and nrDNA 
gene trees two reduced datasets, each comprising 64 taxa for which both cpDNA and rDNA 
data had been generated, were analysed. For ancestral character state reconstructions, six 
Bornean taxa in Begonia section Petermannia, which showed conflicting positions in 
analyses of the cpDNA and the nrDNA datasets (see results and discussion of gene tree 
incongruence) were excluded from the 115 taxa cpDNA dataset.

Table 2.2 gives an overview of all datasets and analyses.

2.2.3 DNA extraction, amplification and sequencing

Total genomic data was extracted from living material or silica gel dried material using 
the DNeasy Plant Mini Kit (Qiagen, UK) according to the manufacturer’s protocols. For 
amplification of both the cpDNA regions and the ITS region, each 25 μl PCR reaction 

Dataset Data Taxa 
[#]

Partitions in BI and ML analyses 
[# (Name)] 

Analyses 

Cp1A cpDNA 115 0 (concatenated cpDNA) BI, MP 
Cp1B cpDNA 115 3 (ndhA, ndhF-rpl32, rpl32-trnL) BI, ML 

Cp2A cpDNA + indel codes 115 2 (concatenated cpDNA; indel codes) BI, MP 
Cp2B cpDNA + indel codes 115 4 (ndhA, ndhF-rpl32, rpl32-trnL; indel codes) BI 

Cp3A cpDNA 64 0 (concatenated cpDNA) BI-Ge 
Cp3B cpDNA 64 3 (ndhA, ndhF-rpl32, rpl32-trnL) BI-Ge, ML-Ge 

Cp4A cpDNA + indel codes 64 2 (concatenated cpDNA; indel codes) BI-Ge 
Cp4B cpDNA + indel codes 64 4 (ndhA, ndhF-rpl32, rpl32-trnL; indel codes) BI-Ge, ML-Ge 

Cp5A cpDNA + indel codes 109 2 (concatenated cpDNA; indel codes) BI-An 
Cp5B cpDNA + indel codes 109 4 (ndhA, ndhF-rpl32, rpl32-trnL; indel codes) BI-An 

ITS1A ITS 89 0 (concatenated ITS) BI, MP 
ITS1B ITS 89 3 (ITS1, 5.8S, ITS2) BI, ML 

ITS2A ITS + indel codes 89 2 (concatenated ITS; indel codes) BI, MP 
ITS2B ITS + indel codes 89 4 (ITS1, 5.8S, ITS2; indel codes) BI 

ITS3A ITS 64 0 (concatenated ITS) BI-Ge 
ITS3B ITS 64 3 (ITS1, 5.8S, ITS2) BI-Ge 

ITS4A ITS + indel codes 64 2 (concatenated ITS; indel codes) BI-Ge 
ITS4B ITS + indel codes 64 4 (ITS1, 5.8S, ITS2; indel codes) BI-Ge 

Table 2.2. Overview of datasets and analyses. BI: Bayesian inference (MrBayes); BI-An: Ancestral 
character state reconstruction (MrBayes, Mesquite); BI-Ge: ITS and cpDNA gene tree comparison 
(MrBayes); ML: Maximum likelihood analysis (RAxML); ML-Ge: ITS and cpDNA gene tree comparison 
(RAxML); MP: Maximum parsimony analysis (PAUP).
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contained 15.25 μl of ddH2O, 2.5 μl of 10× reaction buffer, 1.25 μl of 25mM MgCl2, 2.5 μl 
dNTPs (2mM), 0.75 μl of each forward and reverse primer (10μM), 0.8 μl bovine serum 
albumin (BSA, 0.4%), 0.2 μl of Biotaq DNA polymerase (Bioline, UK) and 1 μl of DNA 
template. Table 2.3 shows all primers used in this study. Amplification of the cpDNA 
ndhA intron, and the ndhF-rpl32 and rpl32-trnL spacers was carried out using primers 
designed by Shaw et al. (2007). The amplification of the ndhF-rpl32 spacer of some 
samples in Begonia section Reichenheimia, Coelocentrum, and Petermannia failed with 
these primers and required the design of specific internal primers, Beg1F and Beg2R (Fig. 
2.1 A, Tab. 2.3). The PCR temperature profile used was the same as in Shaw et al. (2007): 
template denaturation at 80°C for 5 min followed by 30 cycles of denaturation at 95°C 
for 1 min, primer annealing at 50°C for 1 min, followed by a ramp of 0.3°C/s to 65°C, 
and primer extension at 65°C for 4 min; followed by a final extension step at 65°C for 5 
min. Poly A/T homonucleotide strands composed of eight or more nucleotides, which are 
present in most samples, can cause PCR artefacts by slipped-strand mis-pairing (Shinde 
et al., 2003). To mitigate this problem an alternative amplification protocol was applied 
for some problematic samples using a Pfu-based DNA polymerase which is attached to 
nonspecific DNA binding proteins (Phusion by Finnzymes, Finland). Phusion polymerase 
was shown to reduce slipped-strand mis-pairing, at least for homonucleotide strands of 
up to 15 bp length, possibly because of increased contact surface between enzyme and 
DNA in comparison to Taq polymerases (Fazekas et al., 2010). Each 25 μl PCR reaction 
contained 13.0-14.0 μl of ddH2O, 5.0 μl of 5× Phusion HF buffer, 2.5 μl dNTPs (2mM), 
1.25 μl of each forward and reverse primer (10μM), 0.25 μl of Phusion DNA Polymerase, 
1.0-2.0 μl of DNA template. The PCR temperature profile included template denaturation 
at 98°C for 30 s followed by 32 cycles of denaturation at 98°C for 10 s, primer annealing 
at 62°C (ndhF-rpl32) or 63°C (ndhA intron, rpl32-trnL) for 30 s, primer extension at 
72°C for 30 s; followed by a final extension step at 72°C for 10 min. The ITS region was 
amplified using the primers 51NT and 26S1R (Clement et al., 2004). The amplification of 
several samples, which showed no or poor quantity amplifications products using these 
primers, required the design of an internal Begonia specific reverse primer, ITSBeg1R, 
which is located at the transition of the ITS2 spacer and the 26S rRNA gene and was used 
in combination with the 51NT primer (Fig. 2.1 B, Tab. 2.3). The PCR temperature profile 
used is the same as in Clement et al. (2004): denaturation at 94°C for 4 min followed 
by 35 cycles of denaturation at 94°C for 1 min, primer annealing at 60°C for 1 min, and 
primer extension at 72°C for 1 min; followed by a final extension step at 72°C for 4 min. 
Amplification products were visualized under UV light after electrophoretic separation on 
a 1% agarose gel stained with Sybr Safe (Invitrogen, USA). To remove superfluous dNTPs 
and primers, PCR products were subsequently purified using illustra GFX PCR purification 
spin columns (GE Healthcare, UK) or an enzymatic Shrimp Alkaline Phosphatase-based 
cleanup using ExoSAP-IT (Affymetrix, UK) according to the manufacturer’s protocols. 
Sequencing PCRs were quarter reactions using the BigDye Terminator Cycle Sequencing 
ready Reaction Kit (Applied Biosystems, UK) and involved an initial denaturation at 
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95°C for 1 min, followed by 25 cycles of denaturation at 96°C for 10 s, primer annealing 
at 60°C for 5 s, and primer extension at 60°C for 4 min. Sequencing PCR products were 
sent to the GenePool facilities at the University of Edinburgh (GenePool, UK), were 
purified using Shrimp Alkaline Phosphatase (Amersham, UK) and Exonuclease I (New 
England Biolabs, USA), and subsequently analysed on an AB 3730 DNA Analyser 
(Applied Biosystems, UK).

2.2.4 Alignment and gap coding

Sequences were assembled and edited using GeneiousPro v4.8.4 (Drummond et al., 
2010). Plastid DNA sequences (ndhA intron, ndhF-rpl32 spacer, rpl32-trnL spacer) 
were aligned using the multiple sequence alignment software MUSCLE (Edgar, 2004) 
implemented in GeneiousPro using default settings, and subsequently manually modified 
in GeneiousPro. An inversion of 355 bp, or due to a deletion within this inversion of 309 
bp, flanked on both sides by A/T homonucleotide strands, was identified in the ndhF-
rpl32 spacer region of all Philippine samples of Begonia section Diploclinium. Sequences 
of the rpl32-trnL spacer of two Bornean species in Begonia section Petermannia showed 
single inversions of 27 bp and 37 bp, respectively, which are flanked by complementary 
regions indicating hairpin or stem folding secondary structures. These three inversions 
were reverse-complemented, thereby retaining substitution information in the fragments 
in the matrix (Borsch and Quandt, 2009; Graham et al., 2000; Löhne and Borsch, 2005). 
A fourth inversion, flanked by homonucleotide repeats of four G/Cs on each side, was 
identified in the rpl32-trnL spacer. This 11 bp inversion was present in six Bornean species 
in Begonia section Petermannia as well as in Begonia masoniana Irmsch. ex Ziesenh. 
(section Coelocentrum), and B. roxburghii A.DC. (section Sphenanthera). These species 
are only distantly related in phylogenetic trees resulting from the analysis of the cpDNA 

DNA Region Primer Primer Sequence (5’–3’) Source 
ITS 51NT AGG TGA ACC TGC CGA AGG ATC ATT G Clement et al., 2004

26S1Rev  CGC CTG ACC TGG GGT CG Kuzoff et al., 1998 
ITSBeg1R GGG GTC GCT TYG AYA ACG this study 

3'trnV-ndhC trnV(UAC)x2 GTC TAC GGT TCG ART CCG TA Shaw et al., 2007 
ndhC TAT TAT TAG AAA TGY CCA RAA AAT ATC ATA TTC Shaw et al., 2007 

ndhA intron ndhAx1 GCY CAA TCW ATT AGT TAT GAA ATA CC Shaw et al., 2007 
ndhAx2 GGT TGA CGC CAM ARA TTC CA Shaw et al., 2007 

ndhF-rpl32 rpL32-R CCA ATA TCC CTT YYT TTT CCA A Shaw et al., 2007 
ndhF GAA AGG TAT KAT CCA YGM ATA TT Shaw et al., 2007 
Beg1F TGG ATG TGA AAG ACA TAT TTT GCT this study 
Beg2R TTT GAA AAG GGT CAG TTA ATA ACA A this study 

psbD-trnT psbD CTC CGT ARC CAG TCA TCC ATA Shaw et al., 2007 
trnT(GGU)-R CCC TTT TAA CTC AGT GGT AG Shaw et al., 2007 

rpl32-trnL trnL(UAG) CTG CTT CCT AAG AGC AGC GT Shaw et al., 2007 
rpL32-F CAG TTC CAA AAA AAC GTA CTT C Shaw et al., 2007 

trnQ-5'rps16 trnQ(UUG) GCG TGG CCA AGY GGT AAG GC Shaw et al., 2007 
rpS16x1 GTT GCT TTY TAC CAC ATC GTT T Shaw et al., 2007 

Table 2.3. Primers used in this study.
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nucleotide data, and the region of this homoplasious inversion was excluded from the 
analyses. Twenty-four mutational hotspots, most of which were length differences of T/A 
homonucleotide strands, together c. 5.8% of the aligned positions, were excluded from 
the final matrix because of uncertain homology (Table 2.4) (Borsch and Quandt, 2009; 
Kelchner, 2000, 2002). A 13 bp region of ambiguous alignment caused by poor sequence 
reads at the beginning of sequences of the ndhF-rpl32 intergenic spacer was removed. 
Phylogenetically informative indels were coded as presence/absence characters using 
the simple indel coding method (SIC) (Simmons and Ochoterena, 2000) implemented in 
SeqState (Müller, 2005).

The ITS dataset was partitioned into the 5.8S gene and the ITS1 and the ITS2, which 
were aligned separately. The 5.8S-rRNA gene showed low levels of sequence variation 
and was manually aligned without difficulty. Alignments of the variable ITS1 and ITS2 
regions were performed using MAFFT v6.717 (Multiple Alignment using Fast Fourier 
Transform) (Katoh et al., 2009) applying the iterative refinement method (FFT-NS-i) 
and using default parameter settings (gap opening penalty: 1.53, offset-value: 0.0). The 
resulting alignments were investigated for the presence of the conserved domains C1-C6 
and the variable domains V1-V6 (Hershkovitz and Zimmer, 1996) and other structural 
motifs (Jobes and Thien, 1997; Liu and Schardl, 1994) and manually modified guided 
by the position of conserved motifs and secondary structure predictions of ITS RNA 
transcripts (Forrest, 2001). A highly variable region of 1-16 bp in the ITS2, corresponding 
to a part of the variable domain V1 (Hershkovitz and Zimmer, 1996) was excluded from 
the analyses. Short regions directly adjacent to the primer sites at the end and beginning 

Region Aligned 
sites 
[#]

Excluded
fragments 

[#]

Excluded
aligned sites  

[#]

Excluded 
fragment 
(Position)

Excluded 
aligned sites 
[% aligned]

Inversions 
[#] 

Inversion  
[bp (# taxa)]

Inversion 
(Position)

ndhA 1402 6 39 167-170, 
305-307,
679-686,
715-725,
773-777,

1110-1117 

2.8 0 n/a n/a 

ndhF 1210 8 62 1489-1494, 
1940-1951, 
2084-2089, 
2158-2164, 
2227-2232, 
2347-2357, 
2451-2454, 
2556-2565 

5.1 1 309 (2) 
345 (3) 

1501-1933 
1501-1933 

rpl32 1504 10 138 2720-2722, 
2738-2742, 
3133-3136, 
3177-3209, 
3249-3259, 

3306,  
3404-3410, 
3784-3793, 
3844-3898, 
4102-4110 

9.2 3 11 (8)  
27 (1) 
37 (1) 

3628-3638, 
3939-3975, 
3906-3985 

cpDNA 
combined 

4116 24 239 See above 5.8 4 See above See above 

ITS 842 1 17 483-499 2.1 0 n/a n/a 

Table 2.4. Excluded alignment positions and inversions. Alignment positions refer to the reference 
alignments in Appendix 4 (cpDNA data:115 taxa; ITS: 89 taxa).
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of the ITS were removed because of poor sequence reads. Phylogenetically informative 
indels were coded as presence/absence characters using the same approach as for the 
cpDNA data.

2.2.5 Phylogenetic analyses

The different datasets were analysed using three commonly applied methods for 
phylogenetic analyses: Bayesian inference (BI), maximum likelihood (ML) and maximum 
parsimony (MP). Knoop and Müller (2009) provide an overview of the relative strengths 
and weaknesses of the three methods and the following brief method comparison is 
primarily based on this overview.

Maximum parsimony analyses are based on the minimalistic principle of Ockham’s razor, 
i.e. that the simplest, most parsimonious explanation of a problem should be preferred 
to more complex explanations. In phylogenetic applications of this principle, the tree 
or the trees which require the fewest character changes, provide the most parsimonious 
solution. Advocates of this method see the intuitive simplicity of this approach as a major 
strength in comparison to model-based methods which include numerous underlying 
assumptions. Moreover, software that apply the principle of parsimony for phylogenetic 
analyses, e.g. in Paup* (Swofford, 2002), are computationally very efficient. However, 
the lack of many explicit assumptions does not automatically lead to a good performance 
of the method. Under certain conditions such as a high degree of sequence divergence and 
homoplasy, distinctly unequal frequencies of different kinds of nucleotide substitutions 
and considerably faster evolution of some sequences in an alignment in comparison to 
others, the use of the parsimony optimality criterion can produce misleading results. For 
example, MP analyses are particularly prone to long-branch attraction, i.e. the erroneous 
reconstruction of clades comprising taxa which show long branches in comparison to other 
taxa in the phylogenetic tree and a high degree of random congruence of homoplasious 
characters along these long branches (Bergsten, 2005; Felsenstein, 1978).

ML analyses search for the tree topology that maximizes the likelihood that the observed 
data have occurred under a given model of sequence evolution. In contrast to MP analyses, 
ML analyses can incorporate assumptions about sequence evolution in the form of 
nucleotide substitutions models, can account for among site rate heterogeneity, and do not 
ignore branch length in the evaluation of a tree, but account for the higher probability of 
nucleotide change along longer branches than along shorter branches. Therefore, variable 
but parsimony uninformative characters can be ML informative, and the method is less 
prone to long-branch attraction. However, if incorporated assumptions about sequence 
evolution strongly deviate from the real sequence evolution, the results will be flawed. 
Moreover, the ability to incorporate complex assumptions into ML analyses comes with a 
high computational cost, although the recent and ongoing development of new algorithms 
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implemented in software like GARLI (Zwickl, 2006) and RAxML (Stamatakis, 2006) 
allows the analysis of large datasets without losing much precision (Morrison, 2007). 

BI also uses a likelihood function and an explicit model of sequence evolution, and, 
therefore, shares most strengths of the ML approach. BI uses a stochastic search 
algorithm, an explicit model of sequence evolution and the observed data to estimate 
the posterior probability distribution of trees (Huelsenbeck et al., 2002). This posterior 
probability distribution describes the probability of trees considering the probability of 
trees based on prior knowledge, which is usually very limited, the model of sequence 
evolution, and most importantly the data. Because of the properties of the stochastic 
search algorithm, BI is computationally efficient and can deal with complex, parameter-
rich models. Moreover, BI is able to avoid getting stuck in local suboptimal solutions, and 
by sampling a set of plausible trees, BI directly produces estimates of the uncertainty of 
any branching event, while ML and MP analyses need an extra step, like bootstrapping, 
which is often computationally expensive, to estimate confidence intervals (Huelsenbeck 
et al., 2002). BI also allows the incorporation of prior information in the analyses, e.g. by 
specifying a prior probability distribution of trees. The specification of informative priors 
offers great flexibility, which can be seen as strength of the approach, but the inherent 
subjectivity can also be interpreted as weakness and the sensitivity of the results to priors 
has to be examined carefully (Huelsenbeck et al., 2002). Several specific methodological 
issues have been raised since the introduction of Bayesian methods in phylogenetics, e.g. 
with regards to the apparent overestimation of clade support in BI (Erixon et al., 2003; 
Simmons et al., 2004), the impact of supposedly uninformative priors on posterior clade 
probabilities (Pickett and Randle, 2005), and failure of analyses of complex, partitioned 
datasets (Brown et al., 2010; Marshall, 2010). Despite these drawbacks, BI has become 
one of the most commonly employed methods for phylogenetic reconstruction.

BI analyses were performed in MrBayes v3.1.2 (Huelsenbeck and Ronquist, 2001; 
Ronquist and Huelsenbeck, 2003). Partitions were defined a priori based on spacer, 
intron and coding region identity. For the cpDNA dataset three partitions based on 
spacer and intron identity (ndhA intron, ndhF-rpl32, rpl32-trnL spacer) were chosen, or 
alternatively, the three regions were concatenated and analysed as an unpartitioned matrix. 
For the ITS datasets three partitions were selected based on spacer and coding region 
identity (ITS1, ITS2, 5.8S gene), or alternatively, the three regions were concatenated 
and analysed as an unpartitioned matrix. One additional partition was selected for 
the binary indel code matrices. Table 2.2 gives an overview of the different partition 
strategies. Models of sequence evolution for each nucleotide sequence partition were 
determined using jModelTest (Posada, 2008). Maximum Likelihood topologies were used 
to estimate the optimal evolutionary model comparing 88 distinct models (11 substitution 
schemes, with equal or unequal base frequencies, a proportion of invariable sites, and 
rate variation among sites). Log-likelihoods of different models of substitution under ML 
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tree topologies were compared using the corrected version of the Akaike Information 
Criterion for small samples (AICc) as the model selection criterion (Posada and Buckley, 
2004). The AICc converges towards the AIC, when larger sampling sizes are used, and 
should therefore always be used regardless of the sample size (Burnham and Anderson, 
2004). Selected models which are not implemented in MrBayes were substituted by 
the closest overparameterized implemented model (Huelsenbeck and Rannala, 2004). 
For the indel code partition a simple F81-like binary model with rate variation among 
sites accommodated using four discrete gamma categories was selected as suggested by 
Ronquist et al. (2005). Overall performance of analyses of unpartitioned, concatenated 
nucleotide datasets and partitioned nucleotide datasets were assessed with comparison 
of the mean -lnL of all trees sampled from the posterior distribution at stationarity for 
each strategy, and with Bayes Factor comparison implemented in Tracer v1.5 (Rambaut 
and Drummond, 2009), which is based on smoothed estimates of marginal likelihoods 
(Newton and Raftery, 1994; Suchard et al., 2001). The criterion of 2ln Bayes Factor of 
≥10 was used as a benchmark indicating very strong evidence in favour of one strategy 
over another (Kass and Raftery, 1995). For all datasets, four independent Metropolis-
coupled MCMC analyses were run. Each search used three incrementally heated and 
one cold Markov chain, a temperature constant setting of 0.2, and was run for 2 × 107 
generations and sampled every 1000 generations. If convergence diagnostics indicated 
poor convergence, mixing in these analyses was optimized by using eight incrementally 
heated and one cold Markov chains and applying different heating schemes lowering 
the temperature constant value from the default to minimally 0.05 (temperature constant 
settings of 0.2, 0.15, 0.1, 0.05), so that acceptance rates of attempted swaps between 
adjacent chains were in the range of c. 20-60%. Independent analyses of the partitioned 
datasets showed convergence of the topology and other parameters except for the rate 
multiplier and the gamma shape parameters for some partitions which showed poor 
convergence and different estimates including nonsensically high estimates of the rate 
multiplier. Analyses using low temperature constants (0.05) resulted in considerably 
diffuse posterior distributions of these parameters with samples repeatedly jumping 
between extremely small and extremely large values. This is consistent with observations 
that partitioned MrBayes analyses are prone to become trapped in regions of the parameter 
space characterized by distorted partition rate multipliers and unrealistically long trees, 
which has been demonstrated for both multiple published datasets and simulated data 
(Brown et al., 2010; Marshall, 2010). Following recommendations by Marshall (2010), 
the mean branch length prior was set from the default mean (0.1) to 0.01, which reduces 
the likelihood of stochastic entrapment in local tree length optima, and resulted in good 
convergence and realistic rate multiplier estimates. All parameters except topology and 
branch lengths were unlinked across partitions. Convergence was assessed by using 
the standard deviation of split frequencies as convergence index with values < 0.005 
interpreted as indicating good convergence. Tracer v1.5 (Rambaut and Drummond, 
2009) was used to determine whether the MCMC parameter samples were drawn from 
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a stationary, unimodal distribution, whether adequate effective sample sizes for each 
parameter (ESS > 200) were reached, and to compare mean -lnL of all trees sampled from 
the posterior distribution at stationarity for the different runs. Topological convergence of 
tree topologies resulting from different runs was visually checked using the online version 
of AWTY (Nylander et al., 2008). The initial 25% of samples of each Metropolis-coupled 
MCMC run were discarded as a conservative burnin, and the post burnin samples were 
summarized as 50% majority rule consensus phylograms with nodal support expressed as 
posterior probabilities.

Maximum likelihood analyses were performed using RAxML v7.0.4 (Stamatakis, 2006). 
Only nucleotide datasets were analysed. Chloroplast DNA datasets were divided into 
three partitions based on spacer and intron identity. The ITS datasets were split into three 
partitions based on spacer and coding region identity. One thousand inferences were run 
from distinct random stepwise addition sequence MP starting trees under a general time 
reversible nucleotide substitution model with among-site rate variation modelled with 
a gamma distribution. Subsequently, 1000 non-parametric bootstraps were performed 
under the partition data mode, and bootstrap support values were drawn on the best-
scoring ML tree.

Maximum parsimony searches were performed using PAUP* v4.0b10 (Swofford, 2002) 
with all characters treated as unordered, independent and of equal weight, and gaps treated 
as missing data. A two-stage heuristic search strategy was applied. In the first stage, 
heuristic tree searches were performed using the following specifications: 1000 replicates 
with random taxon sequence addition, tree bisection-reconnection branch-swapping 
(TBR), keeping multiple shortest trees found during branch swapping (MulTrees=on), 
saving no more than 10 trees per replicate to achieve reasonable computing times spent 
on branch swapping, and all other search settings at default values. The shortest trees 
found in the first stage were used as starting trees in the second heuristic search stage 
using the following specifications: tree bisection-reconnection branch-swapping (TBR), 
keeping multiple shortest trees (MulTrees=on), analysing all input trees in subsequent 
swapping rounds (steepest=yes), with a maximum of 10000 trees saved. Non-parametric 
bootstrapping was used to estimate confidence values (Felsenstein, 1985) with 10000 
replicates of simple sequence addition, TBR branch-swapping, saving no more than 10 
trees per replicate. 

All BI and MP analyses were performed using the Titan computer cluster at the University 
of Oslo (Oslo Bioportal, www.bioportal.uio.no). ML analyses were performed using the 
CIPRES Cluster at the San Diego Supercomputer Center (http://phylo.bio.ku.edu:8080/
portal2).
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2.2.6 Ancestral character state reconstructions

2.2.6.1 Characters
Ancestral character states of five characters that have traditionally been used to define 
infrageneric taxa including the presence and type of perennating organs and stem 
metamorphoses, fruit types, locule numbers, placentation types, and placenta divisions 
were reconstructed.
 
Perennating organs and stem metamorphoses: The presence and type of specialised 
perennating organs and stem metamorphoses have traditionally provided important 
diagnostic characters for taxon circumscription in Begonia (Doorenbos et al., 1998), and 
the terms “tuberous” and “rhizomatous” define major Begonia groups in horticultural 
classifications (Tebbitt, 2005).

Rhizomes in Begonia can be defined as stem-homologous organs, which grow 
plagiotropically under- and/or above ground, exhibit compressed internodes, are thickened 
by primary growth, bear adventitious roots, and produce leaves and inflorescences or 
vertical leafy shoots. Rhizomes occur in the majority of major Asian sections of Begonia.

Numerous Asian species in sections Diploclinium and Parvibegonia, as well as species in 
the small Asian sections Alicida, Lauchea, Heeringia, Monophyllon and Putzeysia exhibit 
small but distinctly thickened storage organs directly below the substrate surface. These 
tubers seem to be stem-homologous (Badcock, 1998), although without investigations of 
the ontogeny, histology and vascularisation patterns it is difficult to assess whether tubers 
in all tuberous Asian species are homologous and do not have different histological origins 
(hypocotyl, epicotyl, root or a composite of different tissues). Tubers can be differentiated 
from rhizomes as they do not show a conspicuous plagiotropic length growth. However, 
tubers can occur in clusters, and sometimes short moniliform structures are developed, 
which differ from most rhizomes by the distinct constrictions between the tuberous 
units. For several species in sections Diploclinium and Parvibegonia tubers are essential 
adaptations to survive dry seasons during which the aboveground parts die down (Kiew, 
2005; Phutthai et al., 2009). Some Begonia species in the African sections Augustia 
and Peltaugustia, like B. dregei Otto & Dietr., B. socotrana and B. samhaensis, exhibit 
thickened stem bases as perennating organs, which in the literature are variously referred 
to as swollen stem base, caudex, swollen rootstock or tuber (Hughes and Miller, 2002; 
Irmscher, 1961; Tebbitt, 2005; Warburg, 1894). The Indian Begonia dipetala Graham 
(section Haagea) exhibits fleshy stems and similar, though less distinct, thickened stem 
bases. In Begonia socotrana and B. samhaensis the aboveground surfaces of the thickened 
stem bases are covered by bulbils, which are strongly compressed, fleshy shoots bearing 
scaly bracts (Hughes and Miller, 2002). The reserves in the swollen stems and bulbils 
allow these species to re-sprout after prolonged dry seasons. Four character states are 
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differentiated for the ancestral character reconstructions: 1. No specialisation; 2. Rhizome; 
3. Tuber; 4. Thickened stem base.

Fruit types: Several fruit syndromes have been described in Asian Begonia including dry 
capsules, rain-ballist capsules and indehiscent fleshy fruits (Fig. 2.2) (Doorenbos et al., 
1998; Kiew, 2005; Tebbitt et al., 2006). Fruit types and dispersal mechanisms in Asian 
Begonia are described in the introduction (see 1.1.2.2) and are illustrated in Fig. 2.2. 
Three character states are differentiated for the ancestral character reconstructions: 1. Dry 
capsule; 2. Rain-ballist capsule; 3. Fleshy fruit.

Ovary locule number: The majority of Asian species have three-locular ovaries, but 
several fleshy-fruited species in section Sphenanthera exhibit four-locular fruits (Fig. 
2.2 L), and sections Parvibegonia, Platycentrum and Ridleyella are characterized by 
two-locular ovaries (Fig. 2.2 D, J) (Doorenbos et al., 1998; Tebbitt et al., 2006). Section 
Coelocentrum is characterised by unilocular ovaries (Fig. 2.2. C, I). Four character states 
are differentiated for the ancestral character reconstructions based on locule numbers 
(one to four).

Placenta configuration: The placenta configuration is usually axillary in Asian Begonia, 
with the exception of section Coelocentrum, which exhibits a parietal placentation in 
the middle part of the ovary (Fig. 2.2 I). This character is discussed in more detail in the 
discussion of the phylogenetic relationships of section Coelocentrum (see 2.4.2.7).
Two character states are differentiated for the ancestral character reconstructions: 1. 
Axillary; 2. Parietal.

Placenta division: Types of placenta division have traditionally provided important 
characters in sectional delimitation, which is reflected in names of infrageneric Begonia 
taxa like section Uniplacentales (Clarke, 1879) or Monolobium (Ku et al., 2007). The 
majority of Asian species exhibit placentas which are bilamellate, i.e. each placenta 
is divided into two main lamellae (Fig. 2.2 H-L). These lamellae are usually distinct 
in cross-section, although they can exhibit further branching or folds which enlarge 
the placenta surface. Very rarely more than two main placenta lamellae are developed 
per locule, e.g. in Begonia sizemoreae Kiew (Kiew, 2004). Section Reichenheimia 
is characterized by undivided placentae, which is the only clear differential character 
against section Diploclinium (Doorenbos et al., 1998), and undivided placentae are also 
found in the small or monotypic Asian sections Haagea (Fig. 2.2. G) and Ridleyella, 
and in the Socotran section Peltaugustia. Three character states are differentiated for the 
ancestral character reconstructions: 1. Unilamellate; 2. Bilamellate; 3. More than two 
primary placenta lamellae.



30CHAPTER 2: PHYLOGENETICS

BA C

D E F

G H I

J K L
Fig. 2.2. Overview of fruit and ovary morphology and anatomy in Asian Begonia. A: Begonia dipetala: 
capsule, dry pericarp, equal wings. Scale bar = 16 mm. B: Begonia varipeltata: capsule, dry pericarp, equal 
wings. Scale bar = 12 mm. C: Begonia masoniana: capsule, dry pericarp, unequal wings. Scale bar = 10 
mm. D: Begonia pavonina: rain-ballist capsule, coriaceous pericarp, unequal wings. Scale bar = 8 mm. E: 
Begonia aptera: berry, fleshy pericarp, wings reduced. Scale bar = 10 mm. F: Begonia obovoidea: berry, 
fleshy pericarp, wings absent. Scale bar = 15 mm. G: Begonia dipetala: ovary cross-section, three-locular 
ovary with axillary, undivided placentae. Scale bar = 3 mm. H: Begonia varipeltata: ovary cross-section, 
three-locular ovary with axillary, bilamellate placentae. Scale bar = 3 mm. I: Begonia masoniana: ovary 
cross-section, unilocular ovary with parietal, bilamellate placentae. Scale bar = 3 mm. J: Begonia pavonina: 
ovary cross-section, two-locular ovary with axillary, bilamellate placentae. Scale bar = 3 mm. K: Begonia 
aptera: ovary cross-section, three-locular ovary with axillary, bilamellate placentae. Scale bar = 3 mm. L: 
Begonia obovoidea: ovary cross-section, four-locular ovary with axillary, bilamellate placentae. Scale bar 
= 3 mm. Pictures of F and L taken by T. Phutthai.
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2.2.6.2 Parsimony and likelihood ancestral character state reconstructions
Trees derived from the analyses of the plastid sequence data were chosen as input for the 
ancestral area reconstructions, as they provided much better resolved topologies than the 
trees derived from the analyses of the ITS sequence data (see results and discussion).

Ancestral character states were reconstructed using parsimony and likelihood methods 
implemented in Mesquite v2.7.2 (Maddison and Maddison, 2009). To account for 
phylogenetic uncertainty the “Trace over trees” option was selected, and 1000 randomly 
chosen trees from the stabilized part of the MC3 of the Bayesian analysis of the 109 
taxa dataset (combined cpDNA regions + indel codes, four data partitions) were included 
as input trees. Ancestral character reconstructions were mapped on the majority rule 
consensus tree obtained from the Bayesian analysis. Parsimony reconstruction searches 
for the ancestral character states which minimize the number of required steps of character 
change given a tree and observed extant character distributions at the terminals. Character-
state changes were modelled as unordered for all characters. The “trace over trees” option 
summarizes for every node the percentage of the ancestral character state which was 
reconstructed for the same clade in the 1000 input trees. Likelihood reconstructions 
optimize the character states at each node which maximize the probability of arriving at 
the observed extant character states of the terminals, given a model of evolution. The Mk1 
model (Markov k-state 1 parameter model) (Lewis, 2001) was selected. Under this model 
any particular change is equally probable, and the rate of change is the only parameter. 
The “trace over trees” option summarizes for every node the proportion of the average 
likelihood received by each character state as the ancestral character of a given clade.

2.3 Results

2.3.1 Comparison of DNA region variability

The six-taxon comparison of ITS and plastid region sequence variability showed that 
the three non-coding plastid regions used in this study (ndhA intron, ndhF-rpl32 spacer, 
rpl32-trnL spacer) exhibited distinctly higher percentages of variable and parsimony 
informative sites than several other chloroplast regions which have been used in molecular 
phylogenetic studies of Begonia (matK gene, petD gene and intron, psbB gene, trnL intron) 
(Table 2.1). The percentage of potentially parsimony informative sites for the ndhA intron, 
ndhF-rpl32 spacer, rpl32-trnL spacer datasets ranged from c. 1.3-2.7 percent, the range 
of potentially parsimony informative sites of the datasets of the other analysed plastid 
regions ranged from c. 0.1-0.95 percent, while the ITS dataset exhibited 7.9 percent of 
potentially parsimony informative sites. Parsimony informative indel scores were also 
much higher in the ndhA intron, and ndhF-rpl32 and rpl32-trnL spacer datasets (range 
16-27) than in other analysed plastid region datasets (range 1-6), while the ITS dataset 
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exhibited the highest number of potentially parsimony informative indels (39).

2.3.2 Dataset descriptive statistics and model selection

Descriptive statistics for 115-taxon and 64-taxon cpDNA datasets and the 89-taxon and 
64-taxon ITS datasets and their nucleotide partitions including the number of aligned 
positions, the length of the analysed fragments, the number and percentage of variable 
sites, the number and percentage of parsimony informative sites, and the number of indel 
codes are given in Table 2.5. 

The number and percentage of variable and parsimony informative characters were 
calculated as crude indicators of variability and phylogenetic utility of the different 
analysed DNA regions. Of the three non-coding chloroplast regions used for this study, 
the ndhA intron was the most conservatively evolving region exhibiting distinctly lower 
percentages of variable and potentially parsimony informative sites than the ndhF-rpl32 
and rpl32-trnL spacers.

Nucleotide model selection under the AIC and its corrected version for small sample sizes 
(AICc) did not differ for most partitions (Table 2.6), with the exception of the smallest 
and least variable partitions, the 5.8S coding regions of the ITS datasets. For the 5.8S 

Dataset Partition Aligned 
positions

[#]

Fragment
length
[bp]

Variable
sites

[# (%)] 

Parsimony 
informative 

sites
[# (%)] 

SIC
indel codes* 

[#]

cpDNA, 
115 taxa 

ndhA intron 1363 1077-1186 280 (20.5) 137 (10.1) 79 
ndhF-rpl32 1133 772-991 350 (30.9) 195 (17.2) 87 
rpl32-trnL 1353 620-1097 382 (28.2) 204 (15.1) 116 

 Combined 3849 2745-3250 1012 (26.3) 536 (13.9) 282 
       
cpDNA, 
64 taxa 

ndhA intron 1314 1090-1189 193 (14.7) 82 (6.2) 59 
ndhF-rpl32 1060 772-968 268 (25.3) 125 (11.8) 57 
rpl32-trnL 1246 620-1094 271 (21.8) 127 (10.2) 77 

 Combined 3620 2745-3233 732 (20.2) 334 (9.2) 193 
       
ITS,
89 taxa 

ITS1 292 204-231 197 (67.5) 144 (49.3) 80 
ITS2 367 212-296 228 (62.1) 169 (46.1) 115 

 5.8S 162 160-162 20 (12.4) 10 (6.2) 0 
 Combined 821 587-686 445 (54.2) 323 (39.3) 195 
       
ITS,
64 taxa 

ITS1 273 211-241 177 (64.8) 120 (44.0) 55 
ITS2 342 220-290 208 (60.8) 137 (40.1) 84 

 5.8S 162 160-162 16 (9.9) 6 (3.7) 0 
 Combined 777 600-669 401 (51.6) 263 (33.9) 139 

* Indel scores calculated with the simple indel coding method (SIC; Simmons and Ochoterena, 2000) implemented 
in SeqState (Müller, 2005) 

Table 2.5. Dataset descriptive statistics.
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partitions the relatively complex transitional model (TIM2ef+G; Posada, 2003) was 
chosen under the AIC, while the least parameter-rich model (JC model; Jukes and Cantor, 
1969) was selected under the AICc.

2.3.3 Phylogenetic analyses

In the Bayesian analyses partitioning improved mean –lnL values considerably and the 
analyses using more complex partition strategies provided distinctly better explanations 
of the data than all other analyses according to Bayes Factor comparison (Fig. 2.3). The 
subsequent presentation of the results of the Bayesian analyses will be limited to the trees 
derived from the analyses which showed the best mean –lnL values and were chosen 
based on Bayes Factor comparison over the other analyses. For the results of the Bayesian 
analyses a 90% posterior probability (PP) lower threshold was considered to indicate 
moderate support, and a 95% lower threshold to indicate well supported relationships. 
For the results of the MP and ML analyses a 70% bootstrap support value lower threshold 
was considered to indicate moderate support, and an 85% lower threshold to indicate well 
supported relationships.

Dataset Partition Aligned 
characters 
[#]

Model
selected 
(AIC) 

Model
selected 
(AICc) 

Model
applied 
(MrBayes)

Model
applied 
(RAxML)

cpDNA, 
115 taxa 

ndhA intron 1363 TVM+G TVM+G GTR+G GTR+G 
ndhF-rpl32 1133 TVM+G TVM+G GTR+G GTR+G 
rpl32-trnL 1353 TVM+G TVM+G GTR+G GTR+G 

 Combined 3849 TVM+G TVM+G GTR+G n/a 
Indel codes 282 n/a n/a F81-like n/a 

cpDNA, 
64 taxa 

ndhA intron 1314 TVM+G TVM+G GTR+G GTR+G 
ndhF-rpl32 1060 TVM+G TVM+G GTR+G GTR+G 
rpl32-trnL 1246 TVM+G TVM+G GTR+G GTR+G 

 Combined 3620 TVM+G TVM+G GTR+G n/a 
Indel codes 193 n/a n/a F81-like n/a 

ITS, 
89 taxa 

ITS1 292 TIM3ef+G TrNef+G SYM+G GTR+G 
ITS2 367 TrN+G TIM1ef+I+G SYM+I+G GTR+G 

 5.8S 162 TIM2ef+G JC JC GTR+G 
 Combined 821 TIM3ef+G TIM3ef+G SYM+G n/a 

Indel codes 195 n/a n/a F81-like n/a 
ITS, 
64 taxa 

ITS1 273 TIM3ef+G TrNef+G SYM+G GTR+G 
ITS2 342 TPM2uf+G TPM2uf+G GTR+G GTR+G 
5.8S 162 TIM2ef+G JC JC GTR+G 

 Combined 777 TIM3ef+G TIM3ef+G SYM+G n/a 
Indel codes 139 n/a n/a F81-like n/a 

Table 2.6. Model selection using jModelTest. AIC: Akaike Information Criterion; AICc: Akaike 
Information Criterion corrected for small samples; n/a: not applicable.  Models: JC (Jukes and Cantor, 
1969), F81 (Felsenstein, 1981), TrN (Tamura and Nei, 1993), TPM (‘‘3-parameter model’’ = K81) (Kimura, 
1981), TIM (‘‘transitional model’’) (Posada, 2003), TVM (‘‘transversional model’’) (Posada, 2003), 
SYM (Zharkikh, 1994), and GTR (Tavaré, 1986). +G: among-site rate variation modelled with a gamma 
distribution; +I: proportion of invariable sites; ef: equal base frequencies; uf: unequal base frequencies. For 
different types of the TIM and TPM models see Posada (2008). 
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115 taxa
cpDNA (ndhA, ndhF-rpl32, rpl32-trnL) 

P1: combined P2: 3 partitions

ln Bayes Factors
P1 P2

P1 -- -102.0
P2 102.0 --

-lnL
17440
17460
17480
17500
17520
17540
17560
17580
17600
17620
17640

P1: 2 partitions P2: 4 partitions

ln Bayes Factors
P1 P2

P1 -- -102.0
P2 102.0 --

-lnL
19460
19480
19500
19520
19540
19560
19580
19600
19620
19640
19660

ln Bayes Factors
P1 P2

P1 -- -86.8
P2 86.8 --

115 taxa
cpDNA (ndhA, ndhF-rpl32, rpl32-trnL) + SICs 

64 taxa
cpDNA (ndhA, ndhF-rpl32, rpl32-trnL) 

P1: combined P2: 3 partitions

ln Bayes Factors
P1 P2

P1 -- -102.0
P2 102.0 --

-lnL
12300
12320
12340
12360
12380
12400
12420
12440
12460
12480
12500

P1: 2 partitions P2: 4 partitions

ln Bayes Factors
P1 P2

P1 -- -102.0
P2 102.0 --

-lnL
13480
13500
13520
13540
13560
13580
13600
13620
13640
13660
13680

ln Bayes Factors
P1 P2

P1 -- -86.8
P2 86.8 --

ln Bayes Factors
P1 P2

P1 -- -67.7
P2 67.7 --

ln Bayes Factors
P1 P2

P1 -- -61.5
P2 61.5 --

64 taxa
cpDNA (ndhA, ndhF-rpl32, rpl32-trnL) + SICs 

ln Bayes Factors
P1 P2

P1 -- -102.0
P2 102.0 --

ln Bayes Factors
P1 P2

P1 -- -129.2
P2 129.2 --

89 taxa
nrDNA (ITS1, 5.8S, ITS2) 

P1: combined P2: 3 partitions

ln Bayes Factors
P1 P2

P1 -- -102.0
P2 102.0 --

-lnL
10520
10540
10560
10580
10600
10620
10640
10660
10680
10700
10720

P1: 2 partitions P2: 4 partitions

ln Bayes Factors
P1 P2

P1 -- -102.0
P2 102.0 --

-lnL
12140
12160
12180
12200
12220
12240
12260
12280
12300
12320
12340

ln Bayes Factors
P1 P2

P1 -- -86.8
P2 86.8 --

89 taxa
nrDNA (ITS1, 5.8S, ITS2) + SICs

64 taxa
nrDNA (ITS1, 5.8S, ITS2)  

P1: combined P2: 3 partitions

ln Bayes Factors
P1 P2

P1 -- -102.0
P2 102.0 --

-lnL
7980
8000
8020
8040
8060
8080
8100
8120
8140
8160
8180

P1: 2 partitions P2: 4 partitions

ln Bayes Factors
P1 P2

P1 -- -102.0
P2 102.0 --

-lnL
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9020
9040
9060
9080
9100
9120
9140
9160
9180
9200

ln Bayes Factors
P1 P2

P1 -- -86.8
P2 86.8 --

ln Bayes Factors
P1 P2

P1 -- -67.7
P2 67.7 --

ln Bayes Factors
P1 P2

P1 -- -61.5
P2 61.5 --

64 taxa
nrDNA (ITS1, 5.8S, ITS2) + SICs

ln Bayes Factors
P1 P2

P1 -- -102.0
P2 102.0 --

ln Bayes Factors
P1 P2

P1 -- -129.2
P2 129.2 --

P1: combined P2: 3 partitions

ln Bayes Factors
P1 P2

P1 -- -102.0
P2 102.0 --

ln Bayes Factors
P1 P2

P1 -- -129.2
P2 129.2 --

ln Bayes Factors
P1 P2

P1 -- -111.8
P2 111.8 --

ln Bayes Factors
P1 P2

P1 -- -97.5
P2 97.5 --

ln Bayes Factors
P1 P2

P1 -- -88.5
P2 88.5 --

Fig. 2.3. Bayesian analysis and Bayes Factor comparison of different partition strategies. Charts show 
mean −lnL values of all trees sampled from the posterior distribution at stationarity of four independent runs 
for each partitioning strategy. The bars indicate the 95% interval, and the red dot indicates the mean of the 
distribution. Embedded Base Factor matrices show lnBase Factors calculated in Tracer v1.5 (Rambaut and 
Drummond, 2009). A positive value >5 indicates strong evidence against alternative hypotheses (partition 
strategies indicated in the first column are compared with partition strategies indicated in subsequent 
columns). SICs: Indels derived from simple indel coding (Simmons & Ochoterena, 2000).
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Sectional placement of taxa shown on Figs 2.4-11 primarily follows Doorenbos et al. 
(1998) or more recent sectional placement corrections and new species descriptions 
(Hughes, 2008; Kiew, 2001; Kiew, 2005; Tebbitt and Dickson, 2000). Unidentified species 
are placed to section based on sectional circumscriptions in Doorenbos et al. (1998).

2.3.3.1 Non-coding cpDNA phylogenetic trees
Trees derived from the analyses of non-coding cpDNA sequences of 115 taxa are presented 
in Figs. 2.4-6. Figure 2.4 shows a phylogram based on the majority rule consensus trees 
of the Bayesian analysis, Fig. 2.5 presents a phylogram based on the best-scoring ML 
tree, and Fig. 2.6 shows the strict consensus tree from the MP analysis.

Asian and Socotran taxa form a strongly supported clade. The relationships of two clades 
which diverge at two of the deepest nodes within the Asian-Socotran crown group are only 
poorly supported. The first of these two clades is well supported and composed of Begonia 
floccifera Bedd. (section Reichenheimia) and B. malabarica (unplaced to section). The 
second includes Begonia dipetala (section Haagea) as sister to a strongly supported clade 
including two species of section Peltaugustia. Apart from these two lineages, two main 
clades can be differentiated: Clade A and Clade B.

Clade A is strongly supported in the Bayesian analyses, moderately supported in the ML 
analysis, but receives only weak support in the MP analyses. It comprises species of 
sections Parvibegonia, Diploclinium, Platycentrum and Sphenanthera. Within Clade A, 
species of section Parvibegonia form a well supported sister clade to the rest of the clade 
whose topology exhibits a grade of species of section Diploclinium, and a well supported 
clade comprising species of sections Platycentrum and Sphenanthera. Within the 
Platycentrum-Sphenanthera clade species of both sections form intermixed assemblages.

Clade B is well supported in all analyses. It comprises species of section Coelocentrum, 
as well as clades consisting of species of sections Diploclinium, Reichenheimia, 
Ridleyella, Bracteibegonia, Petermannia and Symbegonia. Section Coelocentrum is 
sister to the moderately to strongly supported rest of the clade, which comprises four main 
subclades: 1. A strongly supported clade comprising species of section Diploclinium; 2. 
A strongly supported clade comprising species of section Reichenheimia; 3. A strongly 
supported clade of six species of section Petermannia; 4. A strongly supported clade 
which comprises a clade of species of section Bracteibegonia as sister to a well supported 
section Petermannia clade, in a subclade of which the New Guinean section Symbegonia 
is nested. The relationships among these four main clades and the monotypic section 
Ridleyella are unresolved or only poorly supported.

Most major Asian sections are not supported as monophyletic (Fig. 2.7). Section 
Diploclinium is polyphyletic with Asian mainland species found in Clade A, while 
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Fig. 2.4. Bayesian majority rule consensus tree (cpDNA data: ndhA intron, ndhF-rpl32, rpl32-trnL; 3 data 
partitions; 115 taxa). Bayesian posterior probability (PP) support values > 0.5 are indicated next to the nodes, and 
PPs of corresponding clades of an analysis additionally including 282 indel codes are mapped on the tree: PP (analysis 
without indel codes)/PP (analysis with additional indel code partition). Broken lines indicate branches which lead 
to nodes with a PP < 0.9. The scale bar indicates substitutions per site. Sectional placement of taxa is indicated by 
the following abbreviations: AUG: Augustia, BRA: Bracteibegonia, COE: Coelocentrum, DIP: Diploclinium, HAA: 
Haagea, MEZ: Mezierea, PAR: Parvibegonia, PEL: Peltaugustia, PET: Petermannia, PLA: Platycentrum, REI: 
Reichenheimia, RID: Ridleyella, SPH: Sphenanthera, SQA: Squamibegonia, SYM: Symbegonia.
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Fig. 2.5 Best scoring maximimum likelihood phylogram (cpDNA data: ndhA intron, ndhF-rpl32, rpl32-trnL; 3 
data partitions; 115 taxa). Bootstrap support (BS) values > 50 are indicated next to the nodes. Broken lines indicate 
branches which lead to nodes with a BS < 70. The scale bar indicates substitutions per site. Sectional placement of taxa is 
indicated by the following abbreviations: AUG: Augustia, BRA: Bracteibegonia, COE: Coelocentrum, DIP: Diploclinium, 
HAA: Haagea, MEZ: Mezierea, PAR: Parvibegonia, PEL: Peltaugustia, PET: Petermannia, PLA: Platycentrum, REI: 
Reichenheimia, RID: Ridleyella, SPH: Sphenanthera, SQA: Squamibegonia, SYM: Symbegonia.
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Fig. 2.6. Maximum parsimony strict consensus tree (cpDNA data: ndhA intron, ndhF-rpl32, rpl32-trnL; 3 data 
partitions; 115 taxa). Bootstrap support values (BS) > 50 are indicated next to the nodes, and bootstrap support of 
corresponding clades of an analysis additionally including 282 indel codes are mapped on the tree: BS (analysis without indel 
codes)/BS (analysis including indel codes). Broken lines indicate branches which lead to nodes with a BS < 70. Sectional 
placement of taxa is indicated by the following abbreviations: AUG: Augustia, BRA: Bracteibegonia, COE: Coelocentrum, 
DIP: Diploclinium, HAA: Haagea, MEZ: Mezierea, PAR: Parvibegonia, PEL: Peltaugustia, PET: Petermannia, PLA: 
Platycentrum, REI: Reichenheimia, RID: Ridleyella, SPH: Sphenanthera, SQA: Squamibegonia, SYM: Symbegonia.
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Fig. 2.7. Overview of monophyly, paraphyly and polyphyly of Asian Begonia sections based on cpDNA 
data. Tree topologies are based on the Bayesian majority rule consensus tree (cpDNA data: ndhA intron, ndhF-
rpl32, rpl32-trnL; 3 data partitions; 115 taxa) (see Fig. 2.4). Broken lines indicate branches which lead to nodes 
with a PP < 0.9. The scale bar indicates 0.005 substitutions/site.



40CHAPTER 2: PHYLOGENETICS

Philippine species fall into Clade B. Malesian taxa of section Reichenheimia fall in a 
strongly supported clade in Clade B, to which the Indian species Begonia floccifera, 
which has also been placed in section Reichenheimia, is only distantly related. Sections 
Platycentrum and Sphenanthera are also not monophyletic and form interdigitated 
assemblages in Clade A. Species of section Petermannia are found in two apparently 
only distantly related subclades in Clade B, and species in section Symbegonia are nested 
within a subclade of the larger Petermannia clade.

2.3.3.2 ITS phylogenetic trees
Trees derived from the analyses of ITS sequences of 89 taxa are presented in Figs. 2.8-10. 
Figure 2.8 shows a phylogram based on the majority rule consensus trees of the Bayesian 
analyses, Fig. 2.9 present a phylogram showing the best-scoring ML tree, and Fig. 2.10 
shows a strict consensus tree from the MP analyses.

Asian taxa form a strongly supported clade in the Bayesian analyses, but receive only 
weak support in the MP and ML analyses. The backbone of the Asian clade is largely 
unresolved or only poorly supported, and the relationships of several species including 
Begonia boisiana Gagnep. and B. malabarica, both of which are unplaced to section, B. 
kingiana (section Ridleyella), two species placed in section Reichenheimia, and B. grandis 
(section Diploclinium), are unresolved or get only poor support. Apart from these, several 
well supported clades can be differentiated: Clades A-F. All sampled species of section 
Parvibegonia constitute a strongly supported clade (Clade A). Four species of section 
Reichenheimia compose a strongly supported clade (Clade B), but two species assigned 
to this section are not included within this clade and their relationships are only poorly 
supported. A well supported clade contains all sampled species of sections Platycentrum 
and Sphenanthera, but also Begonia nepalensis Warb. (section Monopteron), B. longicarpa 
K.Y.Guan & D.K.Tian (section Leprosae), B. balansana Gagnep. (section Pleiothece) 
as well as two species placed in section Diploclinium (Clade C). Species of section 
Coelocentrum fall into a strongly supported clade with Begonia cavaleriei H.Lév. (section 
Diploclinium) and B. leprosa Hance (section Leprosae) (Clade D). The relationships 
among these species are largely unresolved. Four species of section Diploclinum form 
a clade together with Begonia oxysperma, which constitutes the monotypic section 
Baryandra (Clade E). Other species of section Diploclinium are found in several other 
well supported clades or show unresolved or only poorly supported relationships. All 
samples species of sections Bracteibegonia, Petermannia, and Symbegonia fall into a 
strongly supported clade (Clade F). Within this clades section Bracteibegonia is well 
supported as monophyletic, and section Symbegoniais weakly to moderately supported 
as monophyletic, and nested within a clade also including species assigned to section 
Petermannia.

Most Asian sections are not supported as monophyletic (Fig. 2.11). Section Diploclinum 
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Fig. 2.8. Bayesian majority rule consensus tree (ITS data; 3 data partitions; 89 taxa). Bayesian posterior 
probability (PP) support values > 0.5 are indicated next to the nodes, and PPs of corresponding clades of an analysis 
additionally including 195 indel codes are mapped on the tree: PP (analysis without indel codes)/PP (analysis with 
additional indel code partition). Broken lines indicate branches which lead to nodes with a PP < 0.9. The scale 
bar indicates substitutions per site. Sectional placement of taxa is indicated by the following abbreviations: AUG: 
Augustia, BAR: Baryandra, BRA: Bracteibegonia, COE: Coelocentrum, DIP: Diploclinium, LEP: Leprosae, MEZ: 
Mezierea, PAR: Parvibegonia, PET: Petermannia, PLA: Platycentrum, PLE: Pleiothece, PUT: Putzeysia, REI: 
Reichenheimia, RID: Ridleyella, SPH: Sphenanthera, SQA: Squamibegonia, SYM: Symbegonia.
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Fig. 2.9 Best scoring maximimum likelihood phylogram (ITS data; 3 data partitions; 89 taxa). Bootstrap 
support (BS) values > 50 are indicated next to the nodes. Broken lines indicate branches which lead to nodes 
with a BS < 70. The scale bar indicates substitutions per site. Sectional placement of taxa is indicated by the 
following abbreviations: AUG: Augustia, BAR: Baryandra, BRA: Bracteibegonia, COE: Coelocentrum, DIP: 
Diploclinium, LEP: Leprosae, MEZ: Mezierea, PAR: Parvibegonia, PET: Petermannia, PLA: Platycentrum, PLE: 
Pleiothece, PUT: Putzeysia, REI: Reichenheimia, RID: Ridleyella, SPH: Sphenanthera, SQA: Squamibegonia, 
SYM: Symbegonia.
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Fig. 2.10. Maximum parsimony strict consensus tree (ITS data; 3 data partitions; 89 taxa). Bootstrap support 
values (BS) > 50 are indicated next to the nodes, and bootstrap support of corresponding clades of an analysis 
additionally including 282 indel codes are mapped on the tree: BS (analysis without indel codes)/BS (analysis 
including indel codes). Broken lines indicate branches which lead to nodes with a BS < 70. Sectional placement of 
taxa is indicated by the following abbreviations: AUG: Augustia, BAR: Baryandra, BRA: Bracteibegonia, COE: 
Coelocentrum, DIP: Diploclinium, LEP: Leprosae, MEZ: Mezierea, PAR: Parvibegonia, PET: Petermannia, PLA: 
Platycentrum, PLE: Pleiothece, PUT: Putzeysia, REI: Reichenheimia, RID: Ridleyella, SPH: Sphenanthera, SQA: 
Squamibegonia, SYM: Symbegonia.
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Fig. 2.11. Overview of monophyly, paraphyly and polyphyly of Asian Begonia sections based on ITS 
data. Tree topologies are based on the Bayesian majority rule consensus tree (ITS data; 3 data partitions; 
89 taxa) (see Fig. 2.8). Broken lines indicate branches which lead to nodes with a PP < 0.9. The scale bar 
indicates 0.05 substitutions/site.
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is highly polyphyletic and present in several major clades (Clades C, D, E) as well as in 
unresolved or poorly supported positions. The monotypic section Baryandra is nested 
within Philippine Diploclinium (Clade E). Section Leprosae is polyphyletic with Begonia 
leprosa closely related to section Coelocentrum (Clade D), while B. longicarpa is more 
closely related to section Platycentrum and Sphenanthera (Clade C). Samples from the 
Asian mainland of section Reichenheimia are apparently only distantly related to a well 
supported Malesian Reichenheimia clade (Clade B). Section Symbegonia is nested within 
section Petermannia (Clade F). Species of section Platycentrum and Sphenanthera form 
interdigitated species assemblages, and Begonia nepalensis (section Monopteron) is 
nested within this Platycentrum-Sphenanthera clade (Clade C).

2.3.3.3 Comparison of ITS and cpDNA phylogenetic trees
Two phylograms based on the majority rule consensus trees of the Bayesian analyses of 
the 64 taxa ITS and cpDNA datasets are presented in Fig. 2.12. Support values of the ML 
analyses of these datasets are mapped on the trees.

Direct comparison of the two gene tree topologies is problematic as the backbone of 
the ITS phylogenetic tree is only poorly supported. However, several major clades are 
congruently strongly supported in both the cpDNA and in the nrDNA gene trees: Clades 
I-VI. Clade I is composed of two species of section Parvibegonia. Clade II includes all 
sampled species of sections Platycentrum and Sphenanthera. Clade III includes species of 
section Coelocentrum. Clade IV includes three species of section Diploclinium. Clade V 
comprises species in section Bracteibegonia. Clade VI comprises nine species of sections 
Petermannia and Symbegonia.

However, the two gene trees exhibit hard incongruence, i.e. well supported, conflicting 
positions of several taxa. Multiple conflicting positions can be found within the 
Playcentrum-Sphenanthera clade (Clade II). In the cpDNA phylogenetic tree Begonia 
robusta is part of a strongly supported subclade of clade II also comprising B. multangula 
Blume, B. aff. multangula and B. areolata Miq. In the ITS phylogenetic tree Begonia 
robusta falls into a well supported clade with Begonia pavonina Ridl., B. venusta King, 
and B. decora Stapf. In addition, Begonia palmata is strongly supported as sister to B. 
sizemoreae in the cpDNA phylogenetic tree, but is the sister to the clade comprising 
Begonia robusta, Begonia pavonina, B. venusta, and B. decora in the ITS phylogenetic 
tree. Several taxa placed in section Petermannia show conflicting positions in the cpDNA 
and ITS phylogenetic trees. Within the cpDNA phylogenetic tree Begonia amphioxus 
Sands, B. burbidgei Stapf and two unidentified species form a well supported clade, 
which is not included in a strongly supported clade comprising the majority of species 
of section Petermannia as well as sections Bracteibegonia and Symbegonia. In the ITS 
phylogenetic tree these four species are nested within a moderately to strongly supported 
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Fig. 2.12. Comparison of nrDNA and cpDNA gene trees. Tree topologies are based on the Bayesian majority rule 
consensus trees of analyses of nrDNA (ITS, 3 data partitions, 64 taxa) and cpDNA (ndhA intron, ndhF-rpl32, rpl32-trnL; 
3 data partitions; 64 taxa). Bayesian posterior probability (PP) support values > 0.5 are indicated next to the nodes, and 
boostrap support values > 50 of corresponding clades of ML analyses are mapped on the tree: PP/BS. Broken lines indicate 
branches which lead to nodes which did not receive at least moderate support in both Bayesian and ML analyses (PP ≥ 0.90 
and BS ≥ 70). *PLA1, *SPH1 and *PET1-5 indicates taxa with conflicting positions in the cpDNA and ITS phylogenies.
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Bracteibegonia/Petermannia/Symbegonia clade. This clade is only poorly resolved, 
and while B. amphioxus and B. burbidgei are supported as monophyletic, the two 
unidentified Bornean species show only poorly supported relationships. Finally, Begonia 
capituliformis Irmsch. falls into a strongly supported clade with B. hispidissima Zipp. 
ex Koord. and B. masarangensis Irmsch. in the cpDNA phylogenetic tree, but falls into 
a well supported clade with B. guttapila D.C.Thomas & Ardi, B. rieckei Warb., and B. 
ozotothrix D.C.Thomas in the ITS phylogenetic tree.

2.3.4 Ancestral character state reconstructions

Parsimony and likelihood ancestral character state reconstructions of five characters 
including the presence and type of specialised perennating organs, fruit types, locule 
numbers, placentation types, and placenta divisions are presented in Figs. 2.13-17.

Presence of specialised perennating organs (Fig. 2.13): Reconstructions of the ancestral 
character states at the deepest nodes are equivocal. Within Clade A, species of section 
Parvibegonia, which are the sister to the rest of the clade, and species of section 
Diploclinium exhibit tubers. The reconstructions indicate a character transition from the 
tuberous habit found in species placed in section Diploclinium to the rhizomatous habit 
exhibited by species in the Platycentrum-Sphenanthera clade. Within the rhizomatous 
Platycentrum-Sphenanthera clade, rhizomes were lost in a lineage comprising Begonia 
acetosella Craib, Begonia longifolia and Begonia aptera Blume, which exhibit erect stems 
and fibrous root systems. Within Clade B, species of section Coelocentrum, which form 
the sister clade to the rest of the clade, as well as species in clades comprising Malesian 
taxa of sections Diploclinium, Reichenheimia and the monotypic section Ridleyella, 
are characterized by rhizomatous habits. Rhizomes were lost in the lineage comprising 
sections Bracteibegonia, Petermannia and section Symbegonia. Within this lineage, only 
two species, Begonia siccacaudata J.Door. and B. mendumiae M.Hughes show tuberous 
or rhizomatous organs, respectively, which evolved independently from the rhizomes and 
tubers of other lineages of Asian Begonia.

Fruit type, ovary locule numbers and placenta configuration (Figs. 2.14-16): Character 
state reconstructions indicate that three-locular ovaries developing into dry capsules at 
maturity are ancestral in Asian Begonia. Within Clade A, two-locular ovaries and rain-
ballist fruits likely evolved independently in both sections Parvibegonia and Platycentrum. 
The reconstructions indicate two independent character transitions from two-locular, 
rain-ballist fruits to fleshy fruits within the Platycentrum-Sphenanthera clade. Within 
Clade B, two-locular ovaries are present in section Ridleyella and in a single species in 
the Diploclinium clade, and fleshy fruits evolved in some species of section Petermannia. 
Two-locular ovaries and fleshy fruits evolved independently in both clades A and B. The 
unilocular ovaries with parietal placentation in section Coelocentrum are likely derived 
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Fig. 2.13. Parsimony and likelihood ancestral character reconstruction: Perennating organs and stem 
metamorphoses. Character reconstructions across 1000 Bayesian input trees are shown on the Bayesian majority 
rule consensus tree (cpDNA data: ndhA intron, ndhF-rpl32, rpl32-trnL + indel codes; 4 data partitions; 109 taxa). 
Branch colour indicates parsimony optimization of ancestral character states. Pie charts at each node illustrate the 
likelihood reconstructions and show the proportion of the average likelihood received by each character state as 
the ancestral character of a given clade.
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Fig. 2.14. Parsimony and likelihood ancestral character reconstruction: Fruit types. Character reconstructions 
across 1000 Bayesian input trees are shown on the Bayesian majority rule consensus tree (cpDNA data: ndhA 
intron, ndhF-rpl32, rpl32-trnL + indel codes; 4 data partitions; 109 taxa). Branch colour indicates parsimony 
optimization of ancestral character states. Pie charts at each node illustrate the likelihood reconstructions and show 
the proportion of the average likelihood received by each character state as the ancestral character of a given clade.
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Fig. 2.15. Parsimony and likelihood ancestral character reconstruction: Ovary locule numbers. Character 
reconstructions across 1000 Bayesian input trees are shown on the Bayesian majority rule consensus tree (cpDNA 
data: ndhA intron, ndhF-rpl32, rpl32-trnL + indel codes; 4 data partitions; 109 taxa). Branch colour indicates 
parsimony optimization of ancestral character states. Pie charts at each node illustrate the likelihood reconstructions 
and show the proportion of the average likelihood received by each character state as the ancestral character of a 
given clade.
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Fig. 2.16. Parsimony and likelihood ancestral character reconstruction: Placentation type. Character 
reconstructions across 1000 Bayesian input trees are shown on the Bayesian majority rule consensus tree (cpDNA 
data: ndhA intron, ndhF-rpl32, rpl32-trnL + indel codes; 4 data partitions; 109 taxa). Branch colour indicates 
parsimony optimization of ancestral character states. Pie charts at each node illustrate the likelihood reconstructions 
and show the proportion of the average likelihood received by each character state as the ancestral character of a 
given clade.
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Fig. 2.17. Parsimony and likelihood ancestral character reconstruction: Placenta division. Character 
reconstructions across 1000 Bayesian input trees are shown on the Bayesian majority rule consensus tree (cpDNA 
data: ndhA intron, ndhF-rpl32, rpl32-trnL + indel codes; 4 data partitions; 109 taxa). Branch colour indicates 
parsimony optimization of ancestral character states. Pie charts at each node illustrate the likelihood reconstructions 
and show the proportion of the average likelihood received by each character state as the ancestral character of a 
given clade.
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from a three-locular ovary with axile placentation.

Placenta division (Fig. 2.17): The reconstructions indicate that placentae with undivided 
lamellae are likely to be homoplasious and evolved at least twice independently within 
Clade B (Sections Reichenheimia and Ridleyella, as well as one species in section 
Bracteibegonia). Undivided placentae can also be found in early divergent lineages 
comprising species assigned to sections Haagea, Reichenheimia, Peltaugustia and species 
unplaced to section, but reconstructions are equivocal at the deepest nodes.

2.4 Discussion

2.4.1 Utility of the ITS and non-coding cpDNA markers for phylogenetic analyses of 
Southeast Asian Begonia

Phylogenetic analyses of ITS sequence data have largely failed to resolve deeper 
relationships within Asian Begonia (this study; Forrest et al., 2001; Forrest et al., 2005; 
Tebbitt et al., 2006). One reason for the limited utility of the ITS region for phylogenetic 
analyses of Asian Begonia is the extensive nucleotide and sequence length variation 
which can be observed in ITS datasets (Tables 2.1, 2.5). Sequence variability of the 
ITS1 and ITS2 regions is over 60% in the 89 taxon dataset resulting in high levels of 
ambiguous sequence alignment. Despite high percentages of potentially parsimony 
informative characters, ITS phylogenetic trees of Asian Begonia show only poorly 
resolved backbones, which indicates that the analyses are likely confounded by extensive 
nucleotide variation and associated high levels of alignment ambiguity and homoplasy. 
Non-coding cpDNA regions, i.e. introns and intergenic spacers, are less functionally 
constrained and usually exhibit greater average sequence variation than coding regions, 
but distinctly less average variation than the ITS. However, non-coding cpDNA regions, 
especially introns, can have well-conserved secondary structures resulting in mosaics of 
highly conserved and variable parts (Borsch and Quandt, 2009). While some commonly 
employed markers, like the trnL intron, were shown to have relatively low levels of 
average sequence variation in Begonia (Goodall-Copestake, 2005; Plana, 2003; Plana 
et al., 2004), the three non-coding cpDNA markers employed in the analyses presented 
here (ndhA intron, ndhF-rpl32 spacer, rpl32-trnL spacer) exhibit intermediate levels of 
average variability in comparison to coding cpDNA regions and the ITS region (Tab. 
2.1). The alignments of these non-coding regions show little ambiguity and the analyses 
resulted in well resolved, informative phylogenetic trees of Asian Begonia. However, one 
problematic aspect of employing non-coding cpDNA regions for phylogenetic analyses 
is the frequent occurrence of poly A/T homonucleotide strands. Homology assessment of 
length differences in these plastid microsatellite regions is usually not possible, as they 
show fast mutational dynamics which may involve overlapping insertions and deletions 
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of one to several nucleotides often resulting in highly homoplasious indel structures 
(Borsch and Quandt, 2009; Tesfaye et al., 2007). Consequently, these mutational hotspots 
were excluded from the analyses. Moreover, poly A/T homonucleotide strands composed 
of eight or more nucleotides often cause PCR artefacts due to slipped-strand mis-pairing 
during PCR-mediated DNA replication (Shinde et al., 2003). The sequence chromatograms 
of most samples with poly A/T homonucleotide strands of 8 to 10 bases exhibited noise 
in the sequence chromatogram, while the correct signal was usually still distinct, but 
the quality of the sequence data following longer homonucleotide strands were greatly 
reduced, sometimes to the point of being completely obliterated. The application of Pfu-
based DNA polymerases which are attached to nonspecific DNA binding proteins mitigates 
this problem, at least for homonucleotide strands of up to 15 bp length, possibly because 
of increased contact surface between enzyme and DNA in comparison to Taq polymerases 
(Fazekas et al., 2010). Moreover, the cpDNA alignments presented here show levels of 
conservation which allow unproblematic sequencing primer design for major lineages 
in Asian Begonia. The negatives of additional costs and time requirements to sequence 
these markers by using high-quality Pfu-based DNA polymerases and additional internal 
primers are outweighed by the presence of intermediate rates of sequence evolution, 
which were appropriate for the questions addressed in this study, and which resulted in 
little alignment ambiguity and highly informative phylogenetic trees.

2.4.2 Phylogenetics and character evolution of Southeast Asian Begonia

2.4.2.1 Major subclades of the monophyletic Socotran-Asian clade
The results from the analyses of non-coding cpDNA sequence data show that Asian 
and Socotran Begonia species form a well supported clade. This confirms, with greater 
sampling, the results of former phylogenetic studies (Forrest and Hollingsworth, 2003; 
Forrest et al., 2005; Goodall-Copestake, 2005). The majority of species within the 
Socotran-Asian clade fall into two major subclades in the cpDNA phylogenetic trees: 
Clade A and Clade B (Figs. 2.4-6).
 
Clade A exhibits subclades of species of taxa which are most diverse on the Asian 
mainland including sections Parvibegonia, continental Asian species placed in section 
Diploclinium, and species of section Platycentrum s.l. (inclusive section Sphenanthera). 
Species within this clade exhibit diverse fruit morphologies and anatomies including dry 
capsules, rain-ballist capsules and fleshy fruits and the vast majority of species have tubers 
or rhizomes. The predominant somatic chromosome number within this clade seems to 
be 2n = 22 (Fig. 2.18), which has been reported from species in all sections within the 
clade, but there are also polyploid series and numerous aneuploid derivates (Doorenbos et 
al., 1998; Ku et al., 2007; Legro and Doorenbos, 1969, 1971, 1973; Oginuma and Peng, 
2002). Further chromosome counts in sections Parvibegonia and mainland Diploclinium 
are needed to test whether a base chromosome number of n = 11 was likely present in 
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the most recent common ancestor of Clade A or whether it is characteristic for a subclade 
including sections Platycentrum s.l. and closely related, continental Asian species in 
section Diploclinium (see 2.4.2.5).

Clade B includes species of the predominantly Chinese section Coelocentrum, species 
in the predominantly or exclusively Malesian sections Ridleyella, Bracteibegonia, 
Petermannia, Symbegonia, and Malesian species placed in sections Diploclinium and 
Reichenheimia. Species in most of these taxa exhibit a rhizomatous habit, but rhizomes 
were lost in the large section Petermannia s.l. (inclusive Symbegonia) and the closely 
related section Bracteibegonia. The vast majority of taxa within Clade B exhibit dry 
capsules, but fleshy fruits evolved independently in a few Sulawesian species in section 
Petermannia and, as indicated by ITS data, in two Chinese species in the polyphyletic 
section Leprosae. The predominant somatic chromosome number in this clade seems 
to be 2n = 30 (Fig. 2.18). Chromosome counts are sparse for the Malesian taxa, but 
the vast majority of species in section Coelocentrum, which is the sister to the rest of 
the clade, have a chromosome number of 2n = 30 (Ku et al., 2007; Ku, 2006), somatic 
chromosome numbers of 30 and 44 have been reported from some Malesian species in 
sections Reichenheimia, Diploclinium and Petermannia (Doorenbos et al., 1998; Legro 
and Doorenbos, 1969, 1971, 1973), and Legro and Doorenbos (Legro and Doorenbos, 
1971, 1973) hypothesised that the somatic chromosome numbers of 44 in some species 
in sections Reichenheimia and Petermannia likely arose from triploids of species with 30 
somatic chromosomes.

The basal relationships in the phylogeny, which involve two subclades comprising five 
Indian, Sri Lankan and Socotran species assigned to sections Haagea, Reichenheimia, and 
Peltaugustia, are unresolved or only weakly supported. Somatic chromosome numbers 
are 30 for the three Indian and Sri Lankan species, and 28 for one of the two Socotran 
species, indicating that a primary base chromosome number of n = 15 might be ancestral 
in Asian Begonia.

2.4.2.2 Basal relationships in Asian Begonia
The unresolved or poorly supported basal relationships within the cpDNA phylogenetic 
trees involve two clades which comprise Indian, Sri Lankan and Socotran taxa assigned 
to sections Reichenheimia (Begonia floccifera), Haagea (B. dipetala), Peltaugustia (B. 
samhaensis, B. socotrana) and one species unplaced to section (B. malabarica). This 
corroborates the phylogenetic analyses and molecular divergence age estimates of 
Goodall-Copestake (2005), which indicated that these taxa form the earliest divergent 
subclades within the Socotran-Asian clade. The sequence data supports a close relationship 
of the South Indian and Sri Lankan species Begonia dipetala and the only two species 
known from the Socotra Archipelago, which has not been suggested before. Species in 
both of these basal clades exhibit morphologically heterogeneous growth habits and 
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2.18 Karyotype evolution in Asian Begonia. Somatic chromosome counts (Doorenbos et al., 1998; Ku et al., 2007; 
Legro and Doorenbos, 1969, 1971, 1973; Oginuma and Peng, 2002) are indicated as bold numbers after the taxon names 
of the Bayesian majority rule consensus tree (cpDNA data: ndhA intron, ndhF-rpl32, rpl32-trnL; 3 data partitions; 115 
taxa). Putative base chromosome numbers of Socotran-Asian Begonia and the major subclades A and B are indicated as 
n=15 and n=11. See captions of Fig. 2.4 for explanations of support values and abbreviations.
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floral characters, but, interestingly, most of them show adaptations to survive seasonally 
dry conditions (see 2.2.5.1.1) and the ovaries and fruits of all of these taxa exhibit 
undivided placenta lamellae, while the majority of Asian species exhibit bilamellate 
placentae. However, the character reconstructions remain largely equivocal with regards 
to the question whether undivided or bilamellate placentae are ancestral within Asian 
Begonia. Of the seventeen Begonia species known from the Ghats of India and from Sri 
Lanka (Jayasuriya, 1983; Uddin, 2007), eight, including the lectotype species of section 
Reichenheimia (Begonia thwaitesii Hook., a heterotypic synonym of B. tenera Dryand.; 
designated by Barkley and Baranov, 1972), exhibit undivided placentae and have been 
placed in section Reichenheimia (Doorenbos et al., 1998). Of these eight species, Begonia 
albococcinea Hook., B. phrixophylla Blatt. & McCann, B. subpeltata Wight, B. tenera, 
and B. trichocarpa Dalzell were not included in the analyses, and further phylogenetic 
and detailed morphological studies are needed to investigate their relationships and to 
clarify the morphological circumscriptions of the early divergent lineages within the 
Socotran-Asian clade.

2.4.2.3 Polyphyly of section Reichenheimia and homoplasy of undivided placenta 
lamellae in Asian Begonia

Since Klotzsch (1854) erected the genus Reichenheimia to accommodate two species from 
Sri Lanka and South India, which are characterised by a tuberous, acaulescent habit, and 
three-locular ovaries with undivided placentae, almost all Asian Begonia species which 
exhibit ovaries with undivided placenta lamellae were placed in section Reichenheimia. 
Exceptions are two species placed in section Ridleyella, which Irmscher (1929) described 
to accommodate species with two-locular ovaries and undivided placentae, and the 
erect, non-tuberous Begonia dipetala, which Klotzsch (1854) placed in a separate 
monotypic genus Haagea. Clarke (1879) placed Indian and Indo-Chinese species with 
undivided placenta lamellae, including the Indian and Sri Lankan Begonia floccifera and 
B. malabarica, which fall into the unresolved basal clades of the cpDNA phylogenetic 
trees, in section Uniplacentales, and subsequently most of the species in Clarke’s section 
Uniplacentales were placed in section Reichenheimia (Doorenbos et al., 1998). However, 
Irmscher (1939) already emphasised that the practise of pooling all Asian species with 
three-locular ovaries and undivided placentae in section Reichenheimia had resulted in a 
morphologically heterogeneous group. The analyses of the cpDNA sequence data indicate 
that this morphological heterogeneity is correlated with the polyphyly of the section, and 
the Indian and Sri Lankan Begonia floccifera and B. malabarica form a strongly supported 
clade, which is only distantly related to Malesian species assigned to section Reichenheimia. 
Irmscher (1939) placed four Chinese species in section Reichenheimia, and the recent 
Flora of China treatise (Ku et al., 2007) followed these placements, and another four 
species were added to the list. The relationships of two Chinese species, Begonia henryi 
Hemsl. and B. parvula H.Lév. & Vaniot, which were assigned to section Reichenheimia, 
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are largely unresolved in the ITS phylogenetic trees, but they are not included in a strongly 
supported clade of Malesian species placed in section Reichenheimia. The eight Chinese 
species assigned to section Reichenheimia in the Flora of China (Ku et al., 2007) form a 
morphologically heterogeneous assemblage: six species, including Begonia henryi and B. 
parvula show a similar growth habit as Chinese species placed in section Diploclinium, 
which exhibit a tuberous, acaulescent habit. The development of variably undivided and 
bifid placenta lamellae has been described for some Chinese species placed in section 
Diploclinium (Begonia labordei H.Lév., B. fimbristipula Hance, B. wilsonii Gagnep.), and 
these species seem to morphologically link the tuberous Chinese Reichenheimia species 
with tuberous Chinese species assigned to section Diploclinium (Irmscher, 1939; Shui et 
al., 2002). However, the unresolved or poorly supported early divergent positions in the 
ITS phylogenetic trees, a chromosome count of 2n = 30 for Begonia henryi (Ku et al., 
2007), and the undivided placentae lamellae indicate that B. henryi and B. parvula may 
belong to early divergent lineages within Asian Begonia. The other two Chinese species 
assigned to Reichenheimia, Begonia cylindrica D.R.Liang & X.X.Chen and B. filiformis 
Irmsch., are not tuberous, but exhibit well-developed rhizomes. Begonia cylindrica is 
morphologically aberrant for the section and exhibits rhizomes, fleshy, wingless fruits and 
uni- or bilamellate placentae (Ku et al., 2007; Tebbitt, 2005; Tebbitt et al., 2006). Tebbitt 
et al. (2006) pointed out that Begonia cylindrica is morphologically most similar and 
maybe conspecific with B. leprosa, which, based on ITS data, falls into a well supported 
clade with species of section Coelocentrum (Tebbitt et al., 2006). Begonia filiformis also 
shows close morphological affinities to section Coelocentrum, in which it was placed by 
Shui et al. (2002). The character combination of rhizomes, uniloculate ovaries and the 
yellowish-greenish tepals strongly support this placement.

Ten species which are currently placed in section Reichenheimia have been described 
from Burma, Thailand, Laos, and Vietnam (Hughes, 2008). Most of these species, like 
Begonia brandiana, exhibit tubers and an acaulescent habit morphologically similar to 
Continental Asian Dipoclinium lineages, but some of these species maybe more closely 
related to other tuberous Continental lineages like section Parvibegonia or the early 
divergent South Asian and Socotran lineages, and further phylogenetic and morphological 
studies are needed to clarify their relationships.

Twenty-eight Malesian species are currently placed in section Reichenheimia (Hughes, 
2008; Hughes et al., 2009; Kiew and Sang, 2009). The samples of this group which were 
included in the molecular analyses form a clade which is well supported as monophyletic 
in Clade B of the cpDNA phylogenetic trees, and there is no indication for a close 
relationship to either Sri Lankan, Indian, or Chinese species placed in this section. The well 
developed rhizomes in the Malesian species clearly separate them from most Continental 
species assigned to section Reichenheimia, which are predominantly tuberous and either 
acaulescent or erect. Malesian Reichenheimia species share a suite of vegetative and 
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generative characters with section Ridleyella, which can be separated by two-locular 
ovaries (Irmscher, 1929), and Malesian species assigned to section Diploclinium, which 
can be separated by ovaries with bilamellate placentae (Doorenbos et al., 1998). The 
close relationships between these taxa is indicated by the cpDNA phylogenetic trees, 
although the relationships between section Ridleyella, Malesian Diploclinium and 
Malesian Reichenheimia remain unresolved or only poorly supported. Thus, rhizomatous 
species placed in section Reichenheimia seem to form a natural group, if you exclude 
both the only distantly related rhizomatous Indian species Begonia floccifera and the 
rhizomatous Chinese species which are misplaced in Reichenheimia and belong to section 
Coelocentrum. This Malesian group is mainly distributed in the predominantly everwet 
Sunda Shelf region, and has its centre of diversity on Sumatra and the Malay Peninsula. 
Only few species extend the distributional range to eastern Malesia including the Lesser 
Sunda Islands, Southeast Sulawesi and the Malukku Islands (Fig. 2.19) (Hughes, 2008), 
and it is apparently absent from continental Asian regions north of the Thai-Malay 
Peninsula, which show a monsoonal seasonal climate with pronounced dry seasons. This 
group has been thoroughly revised for the Malay Peninsula (Kiew, 2005) and an ongoing 
revision of section Reichenheimia at the Royal Botanic Garden Edinburgh (Mark Hughes, 
Royal Botanic Garden Edinburgh, Edinburgh, UK, pers. com.) will provide the necessary 
morphological detail for the circumscription and formal description of this taxon.

Begonia section Reichenheimia, in its current circumscription, includes almost all Asian 
species with undivided placentae (Doorenbos et al., 1998), and this section is a prime 
example illustrating how the strong systematic importance associated with a single, 
homoplasious character resulted in the circumscription of a polyphyletic, morphologically 
heterogeneous taxon.

2.4.2.4 Phylogenetic relationships of section Parvibegonia and homoplasy of rainballist 
capsules in Asian Begonia
Sections Parvibegonia and Platycentrum share a character syndrome of two-locular 
fruits with bifid placenta lamellae, and De Candolle (1864) and Clarke (1879) lumped 
several species currently placed in section Parvibegonia together with species currently 
placed in section Platycentrum. However, Irmscher (1929) and Doorenbos et al. (1998) 
treated section Parvibegonia as distinct from section Platycentrum. Species in section 
Parvibegonia are predominantly tuberous, small plants, while species in section 
Platycentrum usually exhibit well developed rhizomes and a much more robust growth 
habit. Moreover, species in section Platycentrum exhibit characteristic anthers with 
elongated connectives, which are not present in section Parvibegonia. The phylogenetic 
relationships of section Parvibegonia remained unclear in a recent phylogenetic study based 
on ITS data (Tebbitt et al., 2006), because of poor statistical support of the relationships 
of the only included species, and Tebbitt et al. (2006) pointed out that the possibility that 
the two-locular rainballist capsules in section Platycentrum arose from similar dispersed 
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Fig. 2.19. Begonia distribution in Southeast Asia: sections Coelocentrum, Monopteron, Platycentrum, 
Reichenheimia, and Ridleyella. Distribution data is based on GPS data and georeferenced locations in the 
Southeast Asian Begonia Database (7946 specimens from 57 herbaria; Hughes and Pullan, 2007). Areas 
shaded in grey (Sri Lanka, India except for the north-eastern states, Bangladesh, China) are not included in 
the database. GIS data was downloaded from the following sites: DIVA-GIS: http://www.diva-gis.org/Data 
(administrative boundaries); Natural Earth: http://www.naturalearthdata.com (10° longitude/latitude grid).

taxa in section Parvibegonia needed further investigation. The results of the analyses of 
the three non-coding cpDNA regions and the ancestral character reconstruction indicate 
that section Parvibegonia, which is well supported as monophyletic, is the sister to a clade 
comprising a grade of continental Asian species assigned to section Diploclinium and a well 
supported subclade of species placed in sections Platycentrum s.l. The two-locular fruits 
and the rain-ballist syndrome apparently evolved independently in sections Parvibegonia 
and Platycentrum.
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Species in several monotypic or small sections which show narrow distributions in Indo-
China and the Malay Peninsula (Fig. 2.20) show close morphological affinities with 
section Parvibegonia. Clarke (1879) lumped several species of section Parvibegonia, 
the monotypic section Monophyllon and section Lauchea in a new section Papyraceae 
C.B.Clarke, and Irmscher (1929) emphasised in his description of the monotypic section 
Heeringia the close relationship to section Parvibegonia. Species in sections Heeringia, 
Monophyllon and Lauchea exhibit a character syndrome with small tubers, two-locular 
fruits and a well developed filament column, which is characteristic of section Parvibegonia. 
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Fig. 2.20. Begonia distribution in Southeast Asia: sections Baryandra, Diploclinium, Heeringia, 
Monophyllon, Parvibegonia, and Putzeysia. Distribution data is based on GPS data and georeferenced 
locations in the Southeast Asian Begonia Database (7946 specimens from 57 herbaria; Hughes and Pullan, 
2007). Areas shaded in grey (Sri Lanka, India except for the north-eastern states, Bangladesh, China) are not 
included in the database. GIS data was downloaded from the following sites: DIVA-GIS: http://www.diva-gis.
org/Data (administrative boundaries); Natural Earth: http://www.naturalearthdata.com (10° longitude/latitude 
grid).
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They are differentiated from section Parvibegonia only by few morphological characters 
like inflorescences which are developed in the axile of a single, sessile leaf (section 
Monophyllon, see Clarke 1879; Doorenbos et al., 1998), verticillate leaves associated 
with the inflorescence (section Lauchea, see Doorenbos et al., 1998), or opposite leaves 
and anther morphology (section Heeringia, see Irmscher, 1929; Kiew, 2005). The poorly 
known, monotypic section Apterobegonia is only based on one specimen described as 
Begonia delicatula Parish ex C.B.Clarke, which exhibits androecia with long filament 
columns, three-locular ovaries and wingless fruits (Clarke, 1879; Warburg, 1894). 
Despite the differences in generative characters, Clarke (1879) associated this species 
with species in section Parvibegonia, but morphologically it is also difficult to distinguish 
from continental Asian Diploclinium lineages.

2.4.2.5 Polyphyly of section Diploclinium
Doorenbos et al. (1998) lumped Asian species previously variously placed in sections 
Diploclinium, Knesebeckia, Begonia and Begoniastrum (Irmscher, 1939; Ku et al., 
2007; Ku, 1999) in section Diploclinium. Thereby, they restricted sections Begonia and 
Knesebeckia to the New World, and the separation of Asian taxa from these New World 
sections has subsequently been supported by morphological and molecular data (Badcock, 
1998; Forrest, 2001). The circumscription of Diploclinium sensu Doorenbos et al. (1998) 
has been widely accepted, with the exception of the Flora of China treatment (Ku et 
al., 2007), in which Chinese species placed in section Diploclinium sensu Doorenbos et 
al. (1998) were instead placed in section Begonia. Doorenbos et al. (1998) emphasized 
that Diploclinium in their wide circumscription is a morphologically heterogeneous 
taxon, and previous molecular phylogenetic studies indicated the polyphyly of section 
Diploclinium, and showed that Philippine species form a well supported clade, while 
some Asian mainland species like Begonia grandis, B. alveolata Yu and B. wenshanensis 
C.M.Hu ex C.Y.Wu & T.C.Ku, may be more closely related to sections Platycentrum and 
Sphenanthera than to other species in section Diploclinium (Badcock, 1998; Forrest, 2001; 
Tebbitt et al., 2006). However, the phylogenetic relationships between the clades which 
include taxa placed in section Diploclinium remained unclear, because of unresolved or 
poorly supported backbones of the phylogenetic trees. The results of phylogenetic analyses 
of the cpDNA sequence dataset further clarify the relationships of this morphologically 
heterogeneous, polyphyletic taxon. Species assigned to section Diploclinium fall into a 
well supported clade of rhizomatous, Malesian species in Clade B, and form a grade of 
predominantly tuberous, erect or acaulescent continental Asian species in Clade A of the 
cpDNA phylogenetic trees (Figs. 2.4-7.)

Malesian species placed in section Diploclinium include a large radiation on the 
Philippines (> 40 spp.), but also five species described from Borneo and seven species on 
New Guinea (Fig. 2.21) (Hughes, 2008; Hughes et al., 2010). The New Guinean species 
assigned to the section are poorly known and morphologically heterogeneous. Some 
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species, like the shortly rhizomatous Begonia sharpeana F.Muell. and related species, 
are morphologically similar to Philippine Diploclinium species. Others, like the climbing 
Begonia kaniensis and the erect species B. brassii Merr. & L.M.Perry and B. oligandra 
Merr. & L.M.Perry seem to be more closely related to New Guinean species of section 
Petermannia than to other species in section Diploclinium. Most Malesian species in 
section Diploclinium exhibit a rhizomatous habit, and can thus be differentiated from 
continental Asian species assigned to the section which predominantly exhibit tubers and 
erect leafy stems or an acaulescent habit. ITS data indicate that the Philippine Begonia 
oxysperma, the only species in the monotypic section Baryandra, is nested within section 
Diploclinium. This corroborates observations of Merrill (1912), who emphasised that the 
two sections can hardly be differentiated. Moreover, Begonia oxysperma and B. calcicola 
Merr., which is placed in section Diploclinium, share the synapomorphic character of 
multicellular hairs which have a broad and flat stalk which divides into few to several 
thinner branches at the apex (Doorenbos et al., 1998). The cpDNA phylogenetic trees 
and morphological similarities indicate close phylogenetic relationships to Malesian 
species placed in section Reichenheimia and to the small Malesian section Ridleyella. 
Philippine Diploclinium species share a suite of morphological characters with these 
sections (Doorenbos et al., 1998), but can be differentiated by the bilamellate placentae. 
Moreover, the five Philippine Diploclinium species included in the analyses of the cpDNA 
dataset are well supported as monophyletic and show a synapomorphic moderately large 
inversion of 345 or, due to deletion, 309 bp in the ndhF-rpl32 spacer.

The limited available molecular data indicates that continental Asian taxa placed in 
section Diploclinium do not form a monophyletic group, but instead form a grade within 
Clade A of the cpDNA phylogenetic trees (Fig. 2.4-7). Some taxa seem to be more closely 
related to a species in sections Sphenanthera and Platycentrum than to other mainland 
Diploclinium species, and Begonia flagellaris Hara, which is endemic to Nepal, is the 
sister to the Platycentrum-Sphenanthera clade in the cpDNA phylogenetic trees. The 
analyses of the ITS data further indicate that Begonia gemmipara, the only species placed 
in the monotypic section Putzeysia, falls into a strongly supported clade with B. flagellaris 
(Figs. 2.8-11). Clarke (1879) placed this species into section Knesbeckia, and the Asian 
species of this section were later transferred to section Diploclinium (Badcock, 1998; 
Doorenbos et al., 1998). Doorenbos et al. (1998) retained section Putzeysia as a distinct 
section because of conspicuous autapomorphic characters including papillate seed testae, 
and clusters of bulbils produced in modified inflorescences (Clarke, 1879; Grierson, 
1991). However, Doorenbos et al. (1998) also emphasised that in other respects section 
Putzeysia could be accommodated in section Diploclinium. The ITS phylogenetic trees 
corroborates the hypothesis of a close relationship of sections Putzeysia and continental 
Asian Diploclinium lineages.

Species in the small section Alicida were not included in the analyses, but as they exhibit 
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a tuberous, erect habit, three-locular capsules with bifid placentae and monadelphous 
androecia, this section cannot be differentiated from the current circumscription of 
Begonia section Diploclinium, and species in section Alicida are likely closely related to 
other tuberous continental Asian Diploclinium lineages.

The rhizomatous, Chinese species Begonia cavaleriei seems to be misplaced in section 
Diploclinum. It falls into a clade with species of section Coelocentrum in the ITS 
phylogenetic trees. The ovaries of this species have been described as three-locular and 
bilamellate (Ku et al., 2007), but the rhizomatous habit and a chromosome number of 2n 
= 30 (Ku et al., 2007; Ku, 2006) like in most species in section Coelocentrum, support 
the molecular data.

The current circumscription of section Diploclinium is not based on synapomorphic 
characters, but is primarily based on a plesiomorphic ovary and fruit syndrome with dry, 
three-locular capsules with bilamellate placentae, and the absence of easily observable 
morphological characters like unilamellate placentae, fleshy fruits, rain-ballist fruits 
etc. which are characteristic for other infrageneric taxa. Rhizomatous Malesian species 
of Diploclinium form a well supported clade in the cpDNA phylogenetic trees, and are 
clearly distinct from tuberous Indian, Sri Lankan and continental Asian species assigned 
to section Diploclinium. An ongoing revision of Philippine Diploclinium by Rosario 
Rubite (Rosario Rubite, University of Manila, Manila, Philippines, pers. com.) (Rubite, 
2010) will provide the necessary morphological and anatomical detail to circumscribe 
and formally describe this group. However, molecular analyses based on a geographically 
robust taxon sampling of the predominantly tuberous Indian, Sri Lankan and continental 
Asian species placed in section Diploclinium and detailed morphological studies are 
needed to identify major clades and apomorphic characters within this heterogeneous 
group.

2.4.2.6 Paraphyly of section Platycentrum, polyphyly of section Sphenanthera, and 
homoplasy of fleshy fruits in Asian Begonia
Species of sections Sphenanthera and Platycentrum form a well supported clade in the 
molecular analyses of the cpDNA dataset. Within this clade, species of section Sphenanthera 
form two derived subclades nested within a paraphyletic section Platycentrum. This 
is largely congruent with findings of former morphological and molecular studies 
(Doorenbos et al., 1998; Forrest, 2001; Tebbitt et al., 2006). Species of these two sections 
are predominantly rhizomatous, although rhizomes were secondarily lost in the Begonia 
longifolia complex (Tebbitt, 2003), and they exhibit androecia with characteristic anthers 
which dehisce via lateral slits and exhibit apically elongated connectives (Tebbitt et 
al., 2006). Some authors have emphasised that the two sections also share a somatic 
chromosome number of 2n = 22 (Forrest, 2001; Legro and Doorenbos, 1973; Tebbitt et al., 



65CHAPTER 2: PHYLOGENETICS

2006). However, the phylogenetic framework provided by the cpDNA phylogenetic trees 
indicates that a primary base chromosome number of n = 11 might be a synapomorphic 
character for a wider taxon as somatic chromosome numbers of 2n = 22 have also been 
reported for the continental Asian B. picta Sm., B. rubella Buch.-Ham. ex D.Don, and B. 
fimbristipula which have been placed in section Diploclinium (Doorenbos et al., 1998; 
Forrest, 2001; Ku et al., 2007; Legro and Doorenbos, 1969, 1971, 1973). Moreover, 
somatic chromosome counts of 2n = 22 have reported for Begonia tenuifolia Dryand. 
in section Parvibegonia (Legro and Doorenbos, 1971), species of which form the sister 
clade to the rest of the Clade A in the cpDNA phylogenetic trees. This might indicate that 
a primary base chromosome number of n = 11 is synapomorphic for all taxa in Clade A, 
but further chromosome counts from species in sections Parvibegonia and Diploclinium 
are needed to test this hypothesis.

Within the Platycentrum-Sphenanthera clade, three and four-locular, fleshy, indehiscent 
fruits, which are characteristic of section Sphenanthera, apparently evolved multiple 
times independently from ancestors which had two-locular, rain-ballist capsules, which 
characterize section Platycentrum (Fig. 2.14). Doorenbos et al. (1998) emphasised 
that the fleshy-fruited Begonia robusta, which is placed in section Sphenanthera, is 
morphologically quite divergent from most species in the section, and could be easily 
accommodated in section Platycentrum, if it did not have a three-locular ovary. In the 
analyses of the cpDNA dataset, Begonia robusta, the morphologically similar species 
B. multangula, a species with strong morphological affinities to B. multangula from 
Sulawesi, and B. areolata form a well supported clade. These taxa show similarities in 
their growth habits characterized by short stout rhizomes from which well developed 
leafy stems arise. However, Begonia areolata exhibits two-locular capsules, while the 
other species have three-locular fleshy fruits. A second Sphenanthera clade is formed 
by other three- or four-locular fleshy-fruited species placed in section Sphenanthera 
including species of the Begonia longifolia complex. The analyses by Tebbitt et al. (2006) 
indicate that fleshy fruits likely evolved not just twice, but multiple times from rain-
ballist ancestors within the Platycentrum-Sphenanthera clade. However, the backbone of 
the Platycentrum-Sphenanthera clade is only poorly supported in their ITS phylogenetic 
tree, and the comparison of cpDNA and ITS gene trees presented here shows hard 
incongruence within the Platycentrum-Sphenanthera clade, indicating that hybridisation 
and/or biological processes like incomplete or differential homogenisation of the ITS may 
have obscured phylogenetic relationships and character evolution within this group (see 
discussion of gene tree incongruence in 2.4.3). The analyses of the ITS data elucidate the 
phylogenetic relationships of the small sections Monopteron and Pleiothece (Fig. 2.8-11). 
Section Monopteron includes two morphologically similar species, Begonia nepalensis 
and B. griffithiana Warb., which are endemic to the Himalaya region (Fig. 2.19). Begonia 
nepalensis is deeply nested within the Platycentrum-Sphenanthera clade in the ITS 
phylogenetic trees, and the rhizomatous habit and the two-locular capsules found in section 
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Monopteron, and a chromosome count of 2n = 22 for the second species in this section, B. 
griffithiana, are consistent with the same placement for this taxon. The monotypic section 
Pleiothece was erected for Begonia balansana, which exhibts an autapomorphic ovary 
and fruit syndrome with very unusual fleshy, 5-7-locular fruits. In the ITS phylogenetic 
trees Begonia balansana falls into a well supported clade, which also includes all other 
samples of sections Platycentrum and Sphenanthera, but also two Chinese species placed 
in section Diploclinium (B. wenshanensis, B. alveolata), and one species placed in the 
polyphyletic section Leprosae (B. longicarpa). Tebbitt et al. (2006) hypothesised that 
some of the earliest divergent lineages in the Sphenanthera-Platycentrum clade, including 
the capsule-fruited Begonia wenshanensis, B. alveolata, and B. versicolor Irmsch., 
exhibit fruit syndromes which are somewhat transitional between two-locular rain-ballist 
capsules and the typical three-locular, dry capsules of wind dispersed taxa as indicated 
by considerable variation in pericarp thickness, locule numbers, style numbers and fruit 
wing development within this group. Moreover, Irmscher (1939) observed elongated 
anther connectives, similar to those which characterize sections Platycentrum and 
Sphenanthera, in Begonia yunannensis H.Lév. (syn. Begonia modestiflora Kurz), which 
otherwise fit the circumscription of Begonia section Diploclinium well. The interpretation 
of this variation as putatively morphologically transitional between sections Diploclinium 
and Platycentrum s.l. is plausible, but further molecular data from independent sources 
like the plastome should be analysed to investigate whether there are indicators of 
hybridization, which could lead to similar variation, within this group.

Section Monolobium, which was not included in the analyses, is differentiated from section 
Platycentrum only by unilamellate placentae (Ku et al., 2007). However, the original 
description of the only species in the monotypic section, Begonia wutaiana C.I.Peng 
& Y.K.Chen, shows that the placenta and ovary locule development is variable in this 
species and both bilamellate placentae and three-locular ovaries have been described in 
this species, which was originally assigned to section Platycentrum (Peng et al., 2005). 
The short, stout rhizome, the coriaceous pericarp and the elongated connectives of the 
anthers strongly support this placement.

2.4.2.7 Paraphyly of section Coelocentrum and polyphyly of section Leprosae
Irmscher (1939) described section Coelocentrum to accommodate four Chinese species 
with uniloculate ovaries and a parietal placentation in the middle part of the ovary (Fig. 2.2 
I). Since Irmscher’s description numerous species exhibiting these conspicuous characters 
were discovered in Southeastern China and Northern Vietnam, and the recent Flora of 
China treatise lists 35 species in the section (Ku et al., 2007). Irmscher (1939) interpreted 
the unilocular ovaries and the parietal placentation in section Coelocentrum as a derived 
character within Asian Begonia, but Jin and Wang (1994), after detailed anatomical 
studies, linked the ovary syndrome in Coelocentrum to the parietal placentation known 
from the African section Mezierea (Gaud.) Warb., and interpreted it as ancestral within 
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Asian Begonia. Consecutive cross-sections of ovaries of species in section Coelocentrum 
show that septa are usually developed in the basal part of the ovary, which shows a typical 
three-locular ovary with axillary placentation, while in the middle part of the ovary a 
parietal placentation is developed (Jin and Wang, 1994; Ku, 2006; Wu and Raven, 2008). 
Each of the three parietal placentas consists of a stem, which is equivalent to one of the 
septa developed in the basal part of the ovary, but which does not radially reach the centre 
of the ovary. Two placenta branches adhere to this stem, each equivalent with one placenta 
branch of two adjacent locules developed at the base of the ovary. The ancestral character 
reconstructions presented here indicate that parietal placentation is not plesiomorphic, but 
likely derived from three-locular ovaries with axillary placentae. Parietal placentae are 
likely derived from axillary placentae in many groups of angiosperms by developmental 
inhibition of the radial growth of the septae of a coenocarp gynoecium, so that the 
placentae are developed at the periphery of the ovary (Leins, 2000). The results of the 
analyses of the cpDNA dataset indicate that species in section Coelocentrum form a well 
supported monophyletic group, which is the sister to the moderately to strongly supported 
clade which includes Philippine species of section Diploclinium, Malesian species of 
section Reichenheimia, and species of sections Ridleyella, Bracteibegonia, Petermannia 
and Symbegonia. Analyses of ITS data and morphological observations indicate further 
that Begonia leprosa and B. cylindrica, two of the three species assigned to the small 
section Leprosae, are closely related to section Coelocentrum, while a third species placed 
in section Leprosae, B. longicarpa, is more closely related to section Platycentrum s.l. 
(Tebbitt et al., 2006). The results of the ITS analyses presented here indicate that Begonia 
leprosa is not the sister taxon to section Coelocentrum but likely nested within this section 
(Fig. 2.8-11). This species shows three-locular ovaries with axillary, uni- or bilamellate 
placentae, and a thick, fleshy pericarp. The presence of this species nested within the 
Coelocentrum clade indicates that reversals from a unilocular ovary to a three-locular 
ovary state may have occurred in this group, which seems to be a small developmental 
step given that the ovaries of most Coelocentrum species exhibit a three-locular basal part 
with axillary placentation. It also indicates that fleshy fruits evolved independently within 
sections Petermannia and Coelocentrum (inclusive section Leprosae pro parte), species 
of both of which form subclades in the major Asian Clade B in the cpDNA phylogenetic 
trees (Figs. 2.4-7).

2.4.2.8 Phylogenetic relationships of section Ridleyella
Section Ridleyella includes only two species endemic to the Malay Peninsula (Fig. 2.19), 
one of which is considered to be extinct (Kiew, 2005). Irmscher (1929) separated Begonia 
kingiana and B. eiromischa Ridl. in section Ridleyella from other sections because of 
the unique character combination of a rhizomatous habit, two-locular ovaries and 
undivided placentae, and further hypothesized that section Ridleyella is derived from 
section Reichenheimia, whose species exhibit three-locular ovaries, but share a suite 
of vegetative and generative characters including a rhizomatous habit and undivided 
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placentae lamellae with the species assigned to section Ridleyella. In the cpDNA phylogenetic 
trees section Ridleyella falls in a clade in which subclades are formed by Malesian species 
assigned to section Reichenheimia, Malesian species assigned to section Diploclinium, and 
species assigned to sections Bracteibegonia, Petermannia and Symbegonia. However, the 
relationships between these subclades and Begonia kingiana are not resolved or only poorly 
supported in the cpDNA phylogenetic trees.

2.4.2.9 Paraphyly of section Petermannia and phylogenetic relationships of sections 
Bracteibegonia and Symbegonia 
Begonia section Petermannia comprises with c. 270 species almost half of the Begonia species 
diversity in Southeast Asia, and the results of recent expeditions to under-collected areas on 
Borneo, Sulawesi, and New Guinea as well as studies of available herbarium material indicate 
that there are numerous morphologically distinct species awaiting description (Girmansyah, 
2009; Hughes and Coyle, 2009; Hughes et al., 2009; Kiew and Sang, 2009; Thomas et al., 
2009a; Thomas et al., 2009b; Thomas and Hughes, 2008). Section Petermannia has an almost 
exclusively Malesian distribution with only a few species extending the geographic range of the 
section to Thailand and Vietnam (Fig. 2.21) (Hughes, 2008). Shui and Chen (2004) placed three 
species from Southeast China in section Petermannia, but this placement was not followed in 
the Flora of China (Ku et al., 2007), and a combination of characters which are rare or absent in 
section Petermannia, including peltate leaves, distinctly monadelphous androecia, two-tepaled 
female flowers and apparently bisexual, protandrous inflorescences, indicate that at least the 
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Fig. 2.21. Begonia distribution in Southeast Asia: sections Bracteibegonia, Petermannia, Symbegonia. 
Distribution data is based on GPS data and georeferenced locations in the Southeast Asian Begonia Database 
(7946 specimens from 57 herbaria; Hughes and Pullan, 2007). Areas shaded in grey (Sri Lanka, India except 
for the north-eastern states, Bangladesh, China) are not included in the database. GIS data was downloaded 
from the following sites: DIVA-GIS: http://www.diva-gis.org/Data (administrative boundaries); Natural 
Earth: http://www.naturalearthdata.com (10° longitude/latitude grid).
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Chinese species Begonia sinofloribunda Dorr. is misplaced in section Petermannia.

The majority of species assigned to section Petermannia fall into a well supported 
subclade in Clade B of the cpDNA phylogenetic trees, but a small, well-supported clade 
of Bornean species including Begonia amphioxus, B. burbidgei, B. pendula Ridl., and 
three unidentified species (Fig. 2.4-6) is not included in this clade and has unresolved 
or poorly supported relationships within Clade B. However, both groups fall into a well 
supported, but poorly resolved clade in the ITS phylogenetic trees (Figs. 2.8-11), and this 
incongruence between the results of cpDNA and nrDNA datasets is discussed below (see 
2.4.3). Analyses of nrDNA data (26S, ITS) indicate that species traditionally assigned 
to Symbegonia, a separate genus within the Begoniaceae, are nested within a Philippine 
and New Guinean clade of species assigned to Begonia section Petermannia (Forrest 
and Hollingsworth, 2003). This is corroborated by the results of the analyses of non-
coding plastid regions presented here. Species in section Symbegonia lack rhizomes 
or tubers, as do the vast majority of species in section Petermannia, the two sections 
share a suite of generative characters including three-locular ovaries with bifid placentae, 
and most of the species exhibit protogynous, two- or sometimes one-flowered female 
inflorescences or partial inflorescences, which are basal to or not directly associated with 
the male inflorescences. Forrest and Hollingsworth (2003) proposed the recognition of 
Symbegonia at sectional level rendering the large section Petermannia paraphyletic, but 
retaining a morphologically distinct taxon. Species placed in section Symbegonia can be 
easily identified by a floral syndrome with a syntepalous perianth and a characteristic 
monadelphous androecium, and most species in this section exhibit characteristic 
endothecial cells of the anthers with faint or lacking endothecial thickenings (Tebbitt and 
MacIver, 1999). However, the presence of basally fused tepals in some species assigned 
to section Petermannia (Forrest and Hollingsworth, 2003; Sands, 2009) as well as 
transitions between the endothecial types found in Symbegonia and Petermannia (Tebbitt 
and MacIver, 1999) indicate that there are morphologically and anatomically transitional 
species between the two taxa.

Section Bracteibegonia includes only four species from Sumatra and Java, but there 
are several more species to be described from Sumatra (Hughes, 2008; Hughes et al., 
2009). Species assigned to section Bracteibegonia form the well supported sister clade to 
the major Petermannia s.l. clade in the cpDNA phylogenetic trees. Some of the species 
assigned to section Bracteibegonia exhibit prostrate or weak stems, but rhizomes are not 
developed in this section, a derived character within Clade B of the cpDNA phylogenetic 
trees, which supports a close relationship of the two sections. Doorenbos et al. (1998) 
emphasised the general morphological similarities of the two sections, but they retained 
Bracteibegonia as a distinct section, because species of this section exhibit bisexual 
inflorescences which consist of one to few-flowered cymes and lack the clear separation 
of a basal female part and a distal male part, or separate female and male inflorescences, 
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which are characteristic for the vast majority of species in section Petermannia (Irmscher, 
1914; Thomas et al., 2009b). The cpDNA phylogenetic trees clearly support the distinctness 
of section Bracteibegonia.

2.4.3 Incongruence of cpDNA and nrDNA gene trees

Reproductive barriers are notoriously weak in Begonia. Thousands of frequently 
fertile Begonia hybrids have been developed artificially in cultivation (Tebbitt, 2005), 
a considerable number of putative natural Begonia hybrids have been observed in 
the field (Burt-Utley, 1985; Kiew et al., 2003; Sosef, 1994; Teo and Kiew, 1999), and 
hybridization and allopolyploidy seem to be common in some regional Begonia floras 
such as the extensively studied Begonia flora of Taiwan (Chiang et al., 2001; Ku et al., 
2007; Oginuma and Peng, 2002; Peng and Chiang, 1998; Peng and Chen, 1991; Peng and 
Chiang, 2000; Peng and Ku, 2009; Peng and Sue, 2000). However, the genus Begonia 
exhibits very high numbers of local, often morphologically very distinct endemics, 
widespread species are rare in the genus, and population-genetic studies indicate very 
strong population structures and limited dispersal capabilities of some species (Hughes 
and Hollingsworth, 2008; Hughes et al., 2003; Matolweni et al., 2000). This may explain 
to a certain extent, why natural hybrids have not been reported more frequently.

Phylogenetic incongruence between independent datasets like the nuclear ITS and the 
non-coding plastid region employed in this study can be indicative of hybridisation 
(Linder and Rieseberg, 2004), but several other biological processes like incomplete 
homogenization of the numerous copies in nrDNA arrays, the stochasticity of lineage 
sorting, recombination, gene paralogy, and pseudogene formation, can result in 
similar patterns (Álvarez and Wendel, 2003; Feliner and Rossello, 2007; Linder and 
Rieseberg, 2004; Small et al., 2004). The phylogenetic analyses of the 64 taxon plastid 
and nuclear datasets indicate considerable phylogenetic incongruence between the 
plastid phylogenetic tree and the ITS phylogenetic tree. While several major clades are 
congruently supported, there are several taxa which show conflicting positions in the two 
phylogenetic trees. However, direct comparison is confounded by the poor resolution, 
especially of the deeper relationships, of the ITS phylogenetic tree. Major contributing 
factors causing this poor resolution are high levels of sequence variability and associated 
alignment ambiguity and high levels of homoplasy in the ITS1 and ITS2 regions. Soft 
incongruence, i.e. weakly supported conflicting positions in the plastid and nuclear 
phylogenetic trees, is probably, to a large extent, the result of these confounding factors 
rather than other biological processes. However, there are also several instances of hard 
incongruence, i.e. strongly supported conflicting positions of taxa in the phylogenetic 
trees, especially in the species-rich sections Platycentrum s.l. and Petermannia s.l., 
which need further investigation. One instance of incongruence at a deeper level of the 
phylogeny involves four Bornean species placed in Begonia section Petermannia. In 
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the cpDNA phylogenetic tree Begonia amphioxus, B. burbidgei and two unidentified 
species (indicated with *PET1-4 in Fig. 2.12) form a well supported clade which is 
not included within the strongly supported clade comprising all other species placed in 
section Petermannia, as well as sections Bracteibegonia and Symbegonia. In the ITS 
phylogenetic tree these four species are not supported as monophyletic and are nested in 
three different subclades in a moderately to strongly supported but poorly resolved clade 
comprising all samples of sections Petermannia, Bracteibegonia and Symbegonia (Fig. 
2.12). Species in the two separated Petermannia clades in the cpDNA phylogenetic tree 
are morphologically similar: they do not have rhizomes (except for one species from 
Sulawesi), which is a derived condition within Clade B of the plastid phylogenetic tree, they 
share characteristic protogynous, two- or sometimes one-flowered female inflorescences 
or partial inflorescences, which are basal to or separated from the male inflorescences, 
and species in both groups exhibit characteristic perforate cell wall thickenings in the 
endothecium layer of the anthers, while the endothecium cells of species of other Asian 
section predominantly show U-shaped wall thickenings (Tebbitt and MacIver, 1999). The 
inclusion of the four orphan species in the main Petermannia clade, as indicated by the 
ITS data, is concordant with the morphological and anatomical data, which supports a 
close relationship with other species placed in section Petermannia. The plastid and ITS 
gene trees seem to reflect different evolutionary histories, and the observed patterns seem 
to be consistent with an evolutionary scenario which involves the transfer of foreign 
plastids in a Bornean Petermannia lineage via hybridisation, introgression and plastid 
capture, and subsequent diversification on Borneo. However, only Begonia amphioxus 
and B. burbidgei are supported as monophyletic in the ITS phylogenetic tree, while the 
other two species fall in two other subclades. The relationships within the Petermannia-
Bracteibegonia-Symbegonia clade are only poorly resolved or poorly supported in the ITS 
phylogenetic tree making further interpretation difficult, but the non-monophyly of these 
four taxa might hint at additional confounding factors including alignment ambiguity 
and homoplasy, incomplete homogenization or further hybridisation and differential 
homogenization of the ITS copies of Bornean species in section Petermannia. A second 
example of incongruence within the main Petermannia clade involves the Sulawesian 
species Begonia capituliformis indicated with *PET5 in Fig. 2. This species is an 
endemic to Northern Sulawesi and falls in a well supported clade with two other Northern 
Sulawesian species in the cpDNA phylogenetic tree, but falls in a clade with B. rieckei 
and species from Southwest and central Sulawesi in the ITS phylogeny. Begonia rieckei 
is a fleshy-fruited species which is unusually widespread on Sulawesi, while the vast 
majority of Sulawesian Begonia species in section Petermannia are local endemics. The 
more widespread distribution of Begonia rieckei makes sympatry and hence hybridisation 
with other Petermannia species more likely. The observed incongruence in the plastid 
and nuclear DNA phylogenetic trees might indicate hybridisation, but further analyses 
including data from multiple accessions, data from other nuclear markers, and cloning 
of nrDNA regions, which was beyond the scope of this study, are needed to achieve a 



72CHAPTER 2: PHYLOGENETICS

better resolved nuclear phylogeny and to investigate whether incomplete homogenization 
and incompletelineage sorting were factors which contributed to the incongruence found 
in this group, which is likely the result of a massive, relatively recent diversification on 
Sulawesi in the Plio- and Pleistocene (see Chapter 3).

Further incongruence can be detected in conflicting positions of taxa placed in section 
Platycentrum s.l. All samples of sections Platycentrum and Sphenanthera form well 
supported clades in both the plastid and the ITS phylogenetic trees, but some taxa like 
Begonia sizemoreae and B. robusta exhibit conflicting phylogenetic position within 
these clades. The most conspicuous incongruence in the Platycentrum-Sphenanthera 
clade involves Begonia robusta, which is indicated with *SPH1 in the cpDNA and ITS 
phylogenetic trees in Fig. 2.12. In the analyses of the cpDNA dataset Begonia robusta 
falls into a clade with B. multangula, an unidentified species with strong morphological 
affinities to B. multangula from Sulawesi, and B. areolata. Begonia robusta and B. 
multangula are morphologically most similar and are characterised by fleshy fruits and a 
short, stout rhizome from which well developed leafy stems arise. Hughes (2008) pointed 
out that some specimens are morphologically intermediate between the typical forms of 
these two species, and maybe of hybrid origin. Begonia areolata exhibits two-locular 
capsules, but a somewhat similar growth habit as B. multangula. Begonia robusta falls 
into a well supported clade with B. decora, B. pavonina, and B. venusta, all of which 
show two-locular rain-ballist capsules, in the ITS phylogenetic tree. Begonia multangula, 
the unidentified morphologically similar species from Sulawesi, and B. areolata are 
not included in this clade and can be found in two subclades within the Platycentrum-
Sphenanthera clade of the ITS phylogenetic tree. Overall morphology is more concordant 
with the clade retrieved in the cpDNA analyses, and the separation of the morphologically 
most similar Begonia robusta, B. multangula, and B. aff. multangula from Sulawesi 
in three different clades in the ITS phylogenetic tree indicates that the ITS gene tree 
may not accurately reflect the species tree. A tentative somatic chromosome count of 
2n = 88 for Begonia robusta (Doorenbos et al., 1998), while the majority of species in 
Platycentrum s.l. show a somatic chromosome of 2n = 22, indicates that allopolyploidy 
might have played an important role in the evolution of this group. The incorporation of 
xenologous loci in the nuclear genome through hybridization, and subsequent incomplete 
homogenization and/or different directions of homogenization to either parental species 
can lead to complex patterns as observed in the ITS phylogenetic tree (Álvarez and Wendel, 
2003; Cronn et al., 2003; Sang et al., 1995). However, studies using multiple accessions 
and cloning efforts are needed to test whether different homogenization directions can be 
detected and whether divergent intragenomic ITS copies are present in the nrDNA arrays. 

The results highlight the importance of using multiple independent sources of 
phylogenetic data to detect discrepancies between gene and species trees in Begonia. The 
considerable incongruence between the plastid and the nuclear marker phylogenetic trees 
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presented here may be partially explained by hybridisation. However, other biological 
processes, like incomplete homogenization of the numerous copies in nrDNA arrays, 
the stochasticity of lineage sorting, recombination, gene paralogy, and pseudogene 
formation, can result in similar patterns (Álvarez and Wendel, 2003; Feliner and Rossello, 
2007; Linder and Rieseberg, 2004; Small et al., 2004), and further research is needed to 
identify and disentangle the relative impacts of these processes in causing incongruence 
in phylogenetic reconstructions of Begonia.

2.4.4 Conclusions

The species in the mega-diverse genus Begonia exhibit an enormous vegetative diversity 
and even closely related species often show conspicuous differences in growth habits, 
indumentum characters and leaf morphologies. It is likely that this morphological diversity 
arose due to both genetic drift and natural selection for adaptations to specific habitat 
conditions (Kidner and Umbreen, in press; Matolweni et al., 2000; Neale et al., 2006). In 
contrast to this, generative organs provide easily observable, qualitative and quantitative, 
and apparently relatively complex characters such as differences in carpel and ovary 
locule numbers, placentation types, and pericarp types, which have been crucial for the 
circumscription of sections in Asian Begonia. The results of the phylogenetic analyses 
and ancestral character reconstructions presented here indicate that apparently complex 
fruit syndromes like three- or four-locular indehiscent fruits with fleshy pericarps, and 
two-locular rain-ballist capsules evolved multiple times independently in Asian Begonia. 
The genetic-developmental complexity, an essential criterion in character homology 
assessments, of the gain or loss of carpels, the inhibition of the development of locules in 
a three-locular ovary, the development of unilamellate or bilamellate placentae, and the 
development of a fleshy pericarp seem to have been overestimated in the past. The extensive 
homoplasy of these characters has confused systematic relationships in Asian Begonia 
and most Asian sections are not supported as monophyletic in the phylogenetic analyses. 
The strong systematic emphasis placed on single, homoplasious characters like undivided 
placenta lamellae (section Reichenheimia), fleshy pericarps (section Sphenanthera), and 
the recognition of sections primarily based on a plesiomorphic fruit syndrome and the 
absence of characteristic features of other taxa (section Diploclinium) has resulted in the 
circumscription of several highly polyphyletic taxa. The results indicate further that the 
presence and absence and type of stem metamorphoses and perennating organs like tubers 
and rhizomes and correlated growth habits are of greater systematic value in Asian Begonia 
than has been assumed in the past. These vegetative characters allow us to differentiate 
monophyletic predominantly Malesian species groups in both sections Reichenheimia 
and Diploclinum from distantly related Indian, Sri Lankan and continental Asian species 
placed in these polyphyletic sections. The Malesian taxa are characterized by usually 
plagiotropically growing rhizomes, which directly produce leaves and inflorescences at 
their nodes, while the distantly related Indian, Sri Lankan and continental Asian species 
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placed in sections Diploclinium and Reichenheimia predominantly exhibit tubers which 
produce erect leafy stem, or, in acaulescent species, directly leaves and inflorescences. 
Several Chinese rhizomatous species which were placed in sections Reichenheimia and 
Diploclinium were shown to be more closely related to the predominantly Chinese, 
rhizomatous section Coelocentrum, while others seem to be more closely related to section 
Platycentrum s.l. However, detailed comparative morphological and anatomical studies 
are needed to further investigate the homology and systematic importance of these organs 
in Begonia. Moreover, their ecological significance as perennial organs, anchor organs, 
and in habitat occupation and clonal reproduction are only poorly understood and studies 
are needed to establish whether there are correlations between precipitation, seasonality, 
substrate types and other environmental factors and the development of tubers, clusters 
of tubers and rhizomes.

Previous phylogenetic and population-genetic studies have indicated that most Begonia 
species seem to have low dispersal capabilities and a strong geographic structure has been 
observed at different geographic and taxonomic levels reaching from the continental, 
sectional level (Goodall-Copestake, 2005; Plana, 2003; Plana et al., 2004) to the regional, 
population-genetic level (Hughes and Hollingsworth, 2008; Hughes et al., 2003; Matolweni 
et al., 2000). The cpDNA phylogenetic trees of Asian Begonias exhibit the same trend, and 
indicates a stronger geographic structure than previously suggested. Clade A comprises 
taxa like sections Parvibegonia, and Platycentrum s.l. (incl. section Sphenanthera) and 
continental Asian lineages in the polyphyletic sections Diploclinium, which are most 
diverse on the Asian mainland, although several smaller Malesian lineages can also be 
recognized. Clade B comprises the predominantly Chinese section Coelocentrum, several 
predominantly or exclusively Malesian sections (Ridleyella, Bracteibegonia, Petermannia 
s.l.) and Malesian species groups in both sections Reichenheimia and Diploclinum that 
are only distantly related to Indian, Sri Lankan and other continental Asian species which 
were placed in these two highly polyphyletic sections. The strong geographic structure 
in cpDNA phylogeny and the general preponderance of narrow endemics in the genus 
highlight the potential of Begonia as model group to study the biogeography of the 
Southeast Asian tropical region.

The current artificial infrageneric classification of Asian Begonia has a certain diagnostic, 
but only poor predictive value, and has hampered the understanding of the evolution of 
morphological and anatomical characters, karyotypes and the ecology and biogeography 
of Southeast Asian Begonia. The phylogenetic trees derived from non-coding plastid data 
provides for the first time a reasonably resolved, supported phylogenetic framework for 
Asian Begonia, which has the power to inform taxonomic work, and evolutionary and 
biogeographical studies. This cpDNA phylogenetic framework represents an important 
step towards a natural re-classification of Asian Begonia, and it clarifies the phylogenetic 
relationships, and aspects of the character evolution and karyotype evolution within this 
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species-rich and morphologically diverse group. However, it also indentifies several 
problematic groups including Indian, Sri Lankan and continental Asian lineages of 
species placed in the polyphyletic sections Diploclinium and Reichenheimia, whose 
phylogenetic relationships are still only fragmentarily understood. Before the aim of a 
comprehensive, stable and natural re-classification can be achieved, it will be essential 
to further elucidate the phylogenetic relationships of these groups using morphological 
and phylogenetic studies based on a geographically robust taxon sampling and multiple 
independent sources of molecular data.
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CHAPTER 3. Historical biogeography of Southeast Asian 
Begonia L. (Begoniaceae)

Chapter summary

The biogeography of the species-rich and geologically complex phytogeographic region 
of Malesia has intrigued biologists since Alfred Russel Wallace’s seminal zoogeographical 
studies in the nineteenth century. Wallace identified major faunistic differences between 
neighbouring central Malesian islands such as Bali and Lombok and emphasized the 
impact of past geological connections and past biotic migrations on current distribution 
patterns. Many of Wallace’s hypotheses were supported by research in the 20th and 21st 
century, and the multitude of islands and island assemblages in Malesia differ indeed 
greatly in their origin, age and their past land connections, as well as in the composition of 
their biota. However, despite the long-standing interest in the biogeography and geology 
of the Malay Archipelago, the relative contributions of overland migration, rafting on 
tectonic fragments, long-distance dispersal, vicariance, and autochthonous speciation to 
the composition of Malesian island biota are still poorly understood. Few phylogenetic 
studies have investigated the temporal and spatial diversification patterns of taxa whose 
distributions span the wider archipelago.

This study focuses on the mega-diverse genus Begonia (> 1550 spp.) to explore questions 
about Malesian biogeography. Bayesian phylogenetic and relaxed molecular clock 
analyses of a Cucurbitales-Fagales datatset (92 taxa; cpDNA: matK gene, rbcL gene, 
trnL intron, trnL-F spacer; five fossil calibrations) and a Begoniaceae datatset (110 taxa; 
cpDNA: ndhA intron, ndhF-rpl32 spacer, rpl32-trnL spacer; two alternative secondary 
calibrations), as well as likelihood and Bayesian ancestral area reconstructions were 
employed to elucidate temporal and spatial diversification patterns in Asian Begonia, the 
temporal and spatial origin of Malesian Begonia lineages, and the timing and frequency of 
crossings of purported dispersal barriers like the ancient deep water channels separating 
the Sunda Shelf region (Peninsula Malaysia, Borneo, Sumatra, Java, Bali) from Wallacea 
(Sulawesi, the Maluku Islands, the Lesser Sunda Islands east of Bali).

The analyses suggest an initial diversification of Asian Begonia on the Indian subcontinent 
and in continental Southeast Asia in the Middle Miocene, and subsequent colonization 
of Malesia by multiple lineages. The predominant directional trend of dispersals between 
continental Asia and Malesia and within Malesia is from west to east including four 
independent dispersal events from continental Southeast Asia and the Malesian Sunda 
Shelf region to Wallacea dating from the Late Miocene to the Pleistocene. Dispersal 
across the ancient deep water channels separating intervening islands of the Sunda 
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Shelf and Wallacea and subsequent successful colonisation of Wallacean islands seem 
to have been infrequent events during this period, suggesting that the water bodies which 
have separated the Sunda Shelf region from Wallacea have been distinct, yet porous 
barriers to dispersal in Begonia. The inferred timing of dispersals from the Sunda Shelf 
region to Wallacea is generally concordant with hypotheses about the geological history 
of the region, which indicate that the period from the Late Miocene onwards offered 
opportunities for dispersal to Wallacea and across Wallacea to New Guinea as substantial 
land masses emerged in Sulawesi and New Guinea, and newly emergent volcanic islands 
along the Sunda Arc, the Banda Arc and the Halmahera Arc formed potential routes for 
dispersal by island hopping.

The results further suggest that Begonia section Petermannia (>270 spp.) originated in 
the Malesian Sunda Shelf region, and subsequently dispersed to Wallacea, New Guinea 
and the Philippines. Lineages within this section diversified rapidly since the Pliocene 
with diversification peaking in the Pleistocene. The timing of diversifications coincides 
with orogenesis on Sulawesi and New Guinea, as well as pronounced glacioeustatic sea-
level and climate fluctuations. It can be hypothesised that a complex interplay of extrinsic 
and intrinsic factors including the presence and formation of suitable microhabitats by 
orogenesis, cyclical vicariance by frequent habitat fragmentations and amalgamations 
caused by sea-level and climate fluctuations, as well as only weakly developed 
mechanisms to maintain species cohesion in fragmented habitats in Begonia could have 
driven speciation in allopatry and could have resulted in the remarkable Begonia species 
diversity found in Southeast Asia today.

3.1 Introduction

The phytogeographic region of Malesia, also known as the Malay Archipelago, extends 
from southern Thailand through Malaysia, Singapore, Indonesia and East Timor, to the 
Philippines, Papua New Guinea and the Solomon Islands (Raes and van Welzen, 2009). 
It is one of the three regions in the world with extensive areas of tropical rainforest and 
comprises biodiversity hotspots like the Sunda Shelf region, Wallacea, the Philippines, 
and New Guinea, harbouring an estimated 42,000 species of vascular plants (Brooks 
et al., 2006; Myers et al., 2000; Roos, 1993). Within the geographic range of Malesia 
three floristic subregions can be differentiated based on species-level floristic similarities: 
1. The everwet Sunda Shelf area in the west comprising Peninsula Malaysia, Sumatra 
and Borneo; 2. The everwet Sahul Shelf area in the east including New Guinea and 
adjacent island groups; and 3. Wallacea, a biotic interface region in the heart of the 
Malay Archipelago comprising the Lesser Sunda Islands, Sulawesi, the Moluccas and 
the Philippines (Fig. 3.1) (van Welzen and Slik, 2009; van Welzen et al., 2005). These 
three floristic subregions largely correlate with the geological history of Southeast Asia, 
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Fig. 3.1. Begonia distribution in Asia and delimitation of geographic regions used in ancestral area 
reconstructions. Begonia distribution based on data from the Global Biodiversity Information Facility (http://www.
gbif.org/), the South East Asian Begonia Database (Hughes and Pullan, 2007), the eFlora of China and the eFlora 
of Pakistan (eFloras, 2008), Uddin (2007), Kumar (1993) and Parmar (1987). The upper map shows the geographic 
regions used in the ancestral area reconstructions: Africa and the Yeminite Socotra Archipelago; Continental Asia and 
adjacent major islands (Sri Lanka, Taiwan, Hainan); the Sunda Shelf region (southern Thailand, Peninsula Malaysia, 
Sumatra, Borneo, Java, Bali); Wallacea (Sulawesi and adjacent islands, the Lesser Sunda Islands and the Maluku 
Islands between Wallace’s and Lydekker’s Line); the Philippines inclusive Palawan; New Guinea and adjacent 
islands (islands east of Lydekker’s Line, the Bismarck Archipelago, the Solomon Islands). The lower map shows the 
topography of the region. GIS data was downloaded from the following sites: DIVA-GIS: http://www.diva-gis.org/
Data (administrative boundaries); CGIAR Consortium for Spatial Information: http://srtm.csi.cgiar.org/ (topographic 
data); Natural Earth: http://www.naturalearthdata.com/ (bathymetric data, longitude/latitude grid).
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except for the position of the Indonesian island of Java, which geologically belongs to the 
Sunda Shelf region, but is floristically associated with the islands of Wallacea, large parts 
of which like most of Java exhibit a dryer monsoonal climate (Hall, 2009; van Welzen et 
al., 2005).

The biogeography of the remarkably species-rich Malesian region has intrigued biologists 
since Alfred Russel Wallace’s seminal zoogeographical studies in the 19th century. Wallace 
identified major faunistic differences between neighbouring central Malesian islands 
such as Bali and Lombok and emphasized the impact of past geological connections and 
past biotic migrations on current distribution patterns (George, 1981; Lomolino et al., 
2006; Wallace, 1860, 1863, 1869, 1876; Whitten et al., 2002). Many of Wallace’s ideas 
were supported by research in the 20th and 21st century, and the multitude of islands and 
island assemblages in Malesia indeed differ greatly in their origin, age and their past 
land connections, as well as in the composition of their biota (Hall, 2002, 2009; van 
Welzen and Slik, 2009; van Welzen et al., 2005). However, despite the long-standing 
interest in the biogeography and geology of the Malay Archipelago, the origins and 
biogeographical affinities of its biota have remained enigmatic. The relative contributions 
of overland migration, rafting on tectonic fragments, long-distance dispersal, vicariance, 
and autochthonous speciation to the composition of Malesian island biota are still only 
poorly understood. Few phylogenetic studies have investigated the temporal and spatial 
diversification patterns of taxa whose distributions span the wider archipelago (Alfaro et 
al., 2008; Evans et al., 2003; Muellner et al., 2008; Su and Saunders, 2009).

This study focuses on the mega-diverse genus Begonia (> 1550 spp.) to explore 
questions about Malesian biogeography. The great potential of this genus with regards 
to biogeographical analyses lies in its wide distribution in Asia, which spans the biotic 
interface of Wallacea as well as the wider Malay Archipelago and large parts of continental 
Asia; in its good representation with regards to species numbers on all major islands and 
island groups in Malesia (> 540 spp. in Southeast Asia); in the preponderance of narrow 
endemics limited to primary habitats and the low dispersal capabilities of most Begonia 
species as indicated by population genetic studies (Hughes and Hollingsworth, 2008); in 
the high geographic structure observed in studies at different geographic and taxonomic 
levels reaching from the continental, sectional level (Goodall-Copestake, 2005) to the 
local, population-genetic level (Hughes and Hollingsworth, 2008; Hughes et al., 2003; 
Matolweni et al., 2000). This study uses phylogenetic analyses, reconstructions of 
ancestral areas of distribution and molecular divergence age estimates of Southeast Asian 
Begonia to disentangle the impacts of earth-driven processes which create or eliminate 
physical barriers and can lead to vicariance and geodispersal (sensu Liebermann, 2005), 
and stochastic processes such as long-distance dispersal, on current distribution patterns 
in Malesia. Pattern congruence between the sequence and timing of geological events 
and the sequence and timing of cladogenetic events indicates a key role of geology in 
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shaping current distribution patterns. However, if congruence at either the temporal or 
the spatial level is not evident, key roles of vicariance and geodispersal are not supported, 
and hypotheses based on other explanatory processes such as long-distance dispersal 
across physical barriers must be evoked (Rutschmann et al., 2004). By correlating the 
phylogeny, divergence ages, and reconstructions of ancestral areas of Southeast Asian 
Begonia with knowledge about the palaeogeography of the region, this study investigates 
the following topics:

1. Colonization of the Malay Archipelago: There is some support for the hypothesis that 
Southeast Asian Begonia first diversified in Continental Southeast Asia and subsequently 
colonized the Malay Archipelago. A molecular phylogenetic study, analysing eleven DNA 
regions of a low-density world-wide taxon sample of the genus, indicates that Socotran 
and Asian Begonias form a strongly supported clade (Goodall-Copestake, 2005). Within 
this Socotran-Asian clade, the Socotran species Begonia socotrana is the sister taxon to 
the Asian clade, and within the Asian clade South Indian and Sri Lankan species form 
the sister clade to the rest of the clade. However, the deepest nodes in the Socotran-Asian 
clade received only weak statistical support. Previous molecular divergence age estimates 
indicate that migration from Africa to Asia likely occurred in the early Miocene (c. 20 
Ma), possibly by an overland migration route via the Arabian Peninsula, which might 
have been hospitable for Begonias during moist and humid phases in the Miocene, or 
by sweepstake dispersal from Africa to Western Asia (Goodall-Copestake, 2005). The 
molecular divergence age estimates put the diversification of Asian Begonia into a time 
frame long after initial collision and final suturing of the Indian Plate and the Eurasian 
Plate c. 50 Ma ago (Beck et al., 1995; Briggs, 2003; Morley, 2000). If the Asian Begonia 
lineage initially diversified in Western and South Asia, when land connections between 
India and the Southeast Asian mainland were already established, progressive overland 
range expansions may have led to colonization of and diversifications in suitable habitats 
on the Southeast Asian mainland and subsequent colonization of the Malay Archipelago 
from west to east. Phylogenetic trees and ancestral area reconstructions which indicate 
that Malesian clades are derived from Southeast Asian mainland ancestors would 
corroborate this hypothesis. However, secondary migration from Malesia to continental 
Southeast Asia, as well as long-distance dispersal from India to Malesia, and subsequent 
dispersal to continental Asia may have resulted in much more complex scenarios than the 
simple progression scenario outlined above. While the Indian Plate continued drifting 
northwards after the initial collision with the Eurasian Plate it came relatively close to 
Western Malesian areas (Briggs, 2003; van Welzen et al., 2005), and palaeopalynological 
and phylogenetic studies indicate an exchange of floral elements between India and 
Malesia and especially from India to Southeast Asia as early as the Middle Eocene, maybe 
facilitated by the establishment of a moist rainforest corridor between India and Southeast 
Asia (Morley, 2000, 2003; van Welzen et al., 2005). Phylogenetic trees and ancestral area 
reconstructions which indicate that continental Southeast Asian taxa are derived from 
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Malesian ancestors would support hypotheses involving initial diversification in Malesia 
and subsequent colonization of the Southeast Asian mainland.

2. Colonization of Wallacea and the crossing of purported biogeographical boundaries 
in Malesia: Several deep water channels and marine basins have purportedly acted as 
physical biogeographic barriers or filters in Malesia hindering range expansion of taxa 
with poor dispersal capabilities. The most prominent of these is the ancient deep water 
channel of the Makassar Straits separating Borneo and Sulawesi that coincide with 
Wallace’s Line, the well-known demarcation of the faunistic divide which Alfred Russel 
Wallace observed in central Malesia (Fig. 3.1) (Simpson, 1977; Wallace, 1860, 1869; 
Whitten et al., 2002). The Makassar Straits remained a barrier even at times of low sea-
levels caused by glacioeustatic fluctuations associated with the change of ice volume in 
the Northern Hemisphere during the Pleistocene, when the Western Malesian islands and 
the surrounding continental shelf formed a vast landmass, and a major landbridge was 
present between New Guinea and the Australian continent (Hall, 2009; Lomolino et al., 
2006; Voris, 2000). Wallace’s Line also demarcates the western border of Wallacea, the 
biotic interface region in central Malesia where the western Malesian Sunda Shelf flora 
and the Australian-New Guinean flora meet. The eastern border of Wallacea is located 
west of New Guinea and demarcated by another prominent biogeographical division, 
Lydekker’s Line, which was set to mark the western boundary of a strictly Australian fauna 
(Lydekker, 1896; Simpson, 1977). According to van Welzen et al. (2005) and van Welzen 
and Slik (2009) the whole of Wallacea acted as biogeographic barrier or filter between 
the Sunda Shelf region and the New Guinean-Australian region. Reasons for this are that, 
firstly, the continental fragments which constitute parts of Wallacea migrated to their 
current position only during the Cenozoic, when Western Malesia was largely in place 
already (Hall, 2009); secondly, the fragments which formed Wallacea were submerged 
during most of their migration and substantial land emerged in Sulawesi only from the 
middle of the Miocene onwards (Hall, 2009); thirdly, there were no major land-bridges in 
Wallacea even at Pleistocene times of maximum glaciations causing substantial lowering 
of sea-levels (Voris, 2000); fourthly, large parts of Wallacea exhibit a dryer monsoonal 
climate, while the Sunda Shelf and New Guinea have a predominantly everwet climate 
(van Welzen and Slik, 2009; van Welzen et al., 2005). Crucial questions with regards to 
the biogeography of Wallacea are: 

•	 When, by which paths and how frequently were purported barriers crossed and 
newly available land in the interface region of Wallacea colonized? 

•	 Did rafting on tectonic fragments contribute to the composition of the Wallacean 
flora?

3. Origin and diversification of Begonia section Petermannia: The largest Asian Begonia 
section, section Petermannia, comprises with more than 270 species almost half of the 
Begonia species diversity in Southeast Asia. It exhibits an almost exclusively Malesian 
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distribution with only four species extending the geographic range of the section to 
Thailand, Vietnam and possibly Southeastern China (Fig. 2.21) (Hughes, 2008; Shui 
and Chen, 2004). Despite a decrease of sectional diversity from the west to the east of 
Malesia, eastern Malesian areas such as the Philippines and New Guinea show Begonia 
floras which together with the Begonia flora of Borneo are the most species-rich in Asia. 
This is mainly based on the large numbers of species in Begonia section Petermannia 
(Hughes, 2008). The temporal and spatial origin of this section, and the timing of and the 
factors contributing to the remarkable diversification in Begonia section Petermannia are 
unknown. Key questions with regards to this topic are:

•	 Where and when did the species-rich section Petermannia originate? 
•	 Which factors contributed to the massive radiations in this section resulting in 

large numbers of predominantly narrow endemics?

3.2 Material and Methods

3.2.1 Molecular divergence age estimates

3.2.1.1 Methodological approach
To evaluate the impact of climatic and geological events on the evolution of Southeast 
Asian Begonia, a timeframe provided by molecular divergence age estimates is crucial. 
However, molecular divergence age estimation for Begoniaceae is problematic, as 
Begoniaceae fossils are absent from the known pre-Pleistocene fossil record and suitable 
fossils for direct calibration are lacking. Former studies have addressed this problem by 
using either island emergence dates as calibrations (Plana, 2002; Plana et al., 2004) or by 
putting Begoniaceae in a wider phylogenetic context using suitable fossils calibrations in 
related taxa (Clement et al., 2004, 2005; Goodall-Copestake, 2005; Goodall-Copestake et 
al., 2009). One of the primary aims of the study presented here was to check for the temporal 
coincidence of diversifications and geological events in Southeast Asia. Therefore, island 
emergence dates or other geological calibrations, which assume that a geological event 
caused a divergence and enforce temporal congruence between these events, are not used 
in this study to avoid the potential pitfall of circularity (Renner, 2005). This study applied 
a two-stage approach using fossil calibrations. In the first stage (Stage 1, Cucurbitales-
Fagales dataset), a 92 taxon dataset including Begoniaceae and related taxa in the orders 
Cucurbitales and Fagales, and data of well-conserved to medium variable cpDNA regions 
(matK gene, rbcL gene, trnL intron, trnL-F spacer), was analysed. This allowed the 
integration of multiple fossil based calibration points, and to estimate the divergence ages 
of the Begoniaceae and Begonia crown groups. In the second stage (Stage 2, Begoniaceae 
dataset), the divergence age estimates of the Begoniaceae and Begonia crown groups 
inferred in Stage 1 were applied as secondary calibration points. A 110 taxon Begoniaceae 
data matrix including data from three fast evolving non-coding chloroplast regions (ndhA 
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intron, ndhF-rpl32 spacer, rpl32-trnL spacer) was analysed to estimate the divergence 
ages of major Asian lineages.

3.2.1.2 Taxon sampling
The Cucurbitales-Fagales dataset analysed in Stage 1 comprised 92 taxa representing 
a low-density sampling of all families of the orders Fagales and Cucurbitales (sensu 
Angiosperm Phylogeny Group, 2009). Thirty-one species of Cucurbitaceae and 24 
species of Begoniaceae, which broadly cover the known major taxonomic lineages and 
the geographic ranges of these two larger Cucurbitales families, were included.

The Begoniaceae dataset analysed in Stage 2 consisted of sequences of 110 Begoniaceae 
taxa including the monotypic sister genus of Begonia, Hillebrandia, and 6 African 
and 103 Asian taxa. Sampling of Asian species included samples of all major Asian 
sections of Begonia (sections Coelocentrum, Diploclinium, Parvibegonia, Petermannia, 
Platycentrum, Reichenheimia, Sphenanthera, Symbegonia) as well as the small Asian 
Begonia sections Bracteibegonia, Haagea, and Ridleyella.

3.2.1.3 DNA region sampling
For Stage 1, the data matrix included sequences of four conserved to medium variable 
protein-coding and non-coding cpDNA regions: the maturase K coding gene (matK), the 
large subunit of the ribulose-1,5-bisphosphate carboxylase/oxygenase gene (rbcL), the 
trnL intron (trnL) and the trnL-F intergenic spacer region (trnL-F), all of which have 
been used to elucidate phylogenetic relationships within Cucurbitales and Cucurbitaceae 
(Schaefer et al., 2009; Zhang et al., 2006) and Fagales (Cook and Crisp, 2005; Li et 
al., 2004). These four regions were chosen to achieve a robust Fagales and Cucurbitales 
taxon sampling based on published data, to maximize sequence length while minimizing 
ambiguous alignment positions and ultimately achieve resolution of the interfamiliar and 
major infrafamiliar relationships. DNA sequences were downloaded from the nucleotide 
database of the National Centre for Biotechnology Information (http://www.ncbi.nlm.nih.
gov/), 46 Begonia sequences by Goodall-Copestake (2005) were used, and 46 rbcL and 
trnL-F sequences were newly generated. Voucher information and Genbank numbers can 
be found in Appendices 2 and 3, respectively.

For Stage 2, the datamatrix comprised sequences of three fast evolving non-coding cpDNA 
regions: the ndhA intron, the ndhF-rpl32 spacer, and the rpl32-trnL spacer (Shaw et al., 
2007). These three regions are distinctly more variable than other chloroplast regions 
used in molecular Begonia systematics (matK gene, petD gene and intron, psbB gene, 
trnLUAA intron), and have considerable utility for Begonia systematics at the inter- and 
infrasectional level (see Chapter 2). All sequences of these three non-coding regions were 
newly generated. Voucher information can be found in Appendix 2.
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3.2.1.4 DNA extraction, amplification and sequencing
DNA extraction, PCR master mix composition, purification, amplification of the ndhA 
intron, and the ndhF-rpl32 and rpl32-trnL spacers, and sequencing protocols are the same 
as described in the methods sections of Chapter 2. Amplification of the rbcL gene was 
carried out using the primers z-1 and z1375R (Clement et al., 2004). The PCR temperature 
profile used was the same as in Clement et al. (2004): template denaturation at 95°C for 
4 min followed by 35 cycles of denaturation at 95°C for 1 min, primer annealing at 55°C 
for 1 min, and primer extension at 72°C for 1 min; followed by a final extension step at 
72°C for 4 min. The trnL-F spacer region was amplified using the universal primers e 
and f (Taberlet et al., 1991). The PCR temperature profile used was the same as in Zhang 
and Renner (2003): template denaturation at 94°C for 3 min followed by 30 cycles of 
denaturation at 94°C for 1 min, primer annealing at 53°C for 1 min, and primer extension 
at 72°C for 2 min; followed by a final extension step at 72°C for 7 min. All primers used 
in this study are listed in Table 3.1.

3.2.1.5 Alignment
Sequences were assembled and edited using GeneiousPro v4.8.2 (Drummond et al., 2010). 
Plastid DNA sequences of the Cucurbitales-Fagales dataset (matK, rbcL, trnL intron, 
trnL-trnF spacer) were aligned using the multiple sequence alignment software MUSCLE 
(Edgar, 2004) implemented in GeneiousPro using default settings, and subsequently 
manually modified in GeneiousPro. Exon sequences of the matK were translated into 
amino acid sequences using the translate function in GeneiousPro to check for the 
presence of pseudogenes. All matK sequences exhibited open reading frames indicating 
that only functional genes were included in the dataset. Alignment posed few difficulties, 
but a highly variable region of the trnL intron (14-65 bp) was removed due to uncertain 
homology. The region of an inversion (24-44 bp) characterising all Cucurbitaceae taxa 
except Austrobryonia argillicola I.Telford and Neoalsomitra sarcophylla (Wall.) Hutch. 
was removed from the trnL-F spacer alignment of all 92 taxa (see Kocyan et al., 2007).

Alignment of the Begoniaceae dataset was performed as described in the methods section 

DNA Region Primer Primer Sequence (5’–3’) Source 
ndhA intron ndhAx1 GCY CAA TCW ATT AGT TAT GAA ATA CC Shaw et al., 2007

ndhAx2 GGT TGA CGC CAM ARA TTC CA Shaw et al., 2007 
ndhF-rpl32 rpL32-R CCA ATA TCC CTT YYT TTT CCA A Shaw et al., 2007 

ndhF GAA AGG TAT KAT CCA YGM ATA TT Shaw et al., 2007 
Beg1F TGG ATG TGA AAG ACA TAT TTT GCT this study 
Beg2R TTT GAA AAG GGT CAG TTA ATA ACA A this study 

rbcL z-1 ATG TCA CCA CAA ACA GAA ACT AAA GCA AGT Clement et al., 2004
 z1375R AAT TTG ATC TCC TTC CAT ATT TCG CA Clement et al., 2004
rpl32-trnL trnL(UAG) CTG CTT CCT AAG AGC AGC GT Shaw et al., 2007 

rpL32-F CAG TTC CAA AAA AAC GTA CTT C Shaw et al., 2007 
trnL-F e GGT TCA AGT CCC TCT ATC CC Taberlet et al., 1991

f ATT TGA ACT GGT GAC ACG AG Taberlet et al., 1991

Table 3.1. Primers used in this study.
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of chapter 2. The position and the length of inversions and excluded sites are shown in 
Table 3.2.

3.2.1.6 Bayesian divergence age estimation
Bayesian divergence time estimation was performed using the uncorrelated relaxed 
lognormal clock model implemented in the software package BEAST v1.5.3 (Drummond 
and Rambaut, 2007). In contrast to other methods of divergence time estimation, 
e.g. the Non-Parametric Rate Smoothing (NPRS) and Penalized Likelihood (PL) 
methods implemented in the software r8s (Sanderson, 2003), BEAST does not require 
a user-specified tree topology as input, but directly uses sequence data and calibration 
constraints or DNA substitution rates to generate estimates of topology and divergence 
ages simultaneously, accommodating topological uncertainty in the estimation of all 
parameters including divergence ages (Drummond et al., 2006; Drummond et al., 2007). 
Moreover, in contrast to NPRS and PL, the uncorrelated relaxed molecular clock methods 
implemented in BEAST does not work under the a priori assumption of rate autocorrelation, 
i.e. that evolutionary rates among branches are correlated in a phylogenetic tree because 
of inherited factors like life-history traits or biochemical mechanisms. This intuitive 
assumption can be problematic, e.g. when strong rate changes occur; when very closely 
related taxa are analysed and little of the rate variation between the taxa can be attributed 
to inherited factors and stochastic or environmental factors become more important; or 
when only distantly related lineages are analysed, especially with a sparse taxon sampling, 
and variation is so strong that rate autocorrelation from lineage to lineage breaks down 
(Drummond et al., 2006; Ho et al., 2005). Uncorrelated clock models treat evolutionary 

Region Aligned 
sites 
[#]

Excluded
fragments

[#]

Excluded
aligned sites 

[#]

Excluded 
fragment
(Position)

Excluded 
aligned sites 
[% aligned] 

Inversions 
[#]

Inversion  
[bp (# taxa)] 

Inversion 
(Position)

ndhA intron 1406 6 39 172-175, 
310-312,
683-690,
719-729,
777-781,

1114-1121 

2.8 0 n/a n/a 

ndhF-rpl32 1208 8 68 1493-1498, 
1939-1950, 
2059-2068, 
2083-2088, 
2157-2163, 
2229-2234, 
2349-2359, 
2558-2567 

5.6 1 309 (2) 
345 (3) 

1506-1932 
1506-1932 

rpl32-trnL 1509 10 114 2722-2724, 
2740-2744, 
3135-3138, 
3180-3187, 
3251-3261, 
3308-3308, 
3406-3412, 
3629-3639, 
3838-3892, 
4111-4119 

7.6 3 11 (8)  
27 (1) 
37 (1) 

3629-3639, 
3900-3966, 
3900-3994 

trnL intron 749 1 92 3126-3217 12.3 0 n/a n/a 
trnL-F 634 1 45 3849-3893 7.1 1 29-40 (29) 3849-3893 

Table 3.2. Excluded alignment positions and inversions. Alignment positions refer to the reference 
alignments in Appendix 4 (Cucurbitales-Fagales dataset, 92 taxa; Begoniaceae dataset, 110 taxa). n/a: not 
applicable.
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rates among branches as random variables, and permit post-analysis assessment of 
whether the data indicates autocorrelation or not (Drummond et al., 2006).

To assess whether the data behaves in a clock-like manner the estimates of the coefficient 
of variation parameter were assessed with Tracer v1.5 (Rambaut and Drummond, 
2009) after the analyses of the Cucurbitales-Fagales and the Begoniaceae datasets. A 
frequency histogram abutting against zero indicates that a strict molecular clock cannot 
be rejected, while if the frequency histogram is not abutting to zero it indicates among 
branch heterogeneity within the data (Drummond et al., 2007). Partitions were defined 
a priori for both the Cucurbitales-Fagales dataset and the Begoniaceae dataset. For the 
Cucurbitales-Fagales dataset three partition strategies were employed: 1. no partitioning; 
2. partitioning based on coding region (matK, rbcL) and spacer and intron identity (trnL 
intron, trnL-F spacer); 3. partitioning based on spacer and intron identity and subdivision 
of the coding regions (rbcL, matK) in two codon position partitions, the first one of which 
comprised 3rd codon positions, the second one comprised 1st and 2nd codon positions. 
For the Begoniaceae dataset two partition strategies were employed: No partitioning and 
partitioning based on spacer and intron identity (ndhA intron and the ndhF-rpl32, rpl32-
trnL spacer). Models of sequence evolution for each partition were determined using 
jModelTest (Posada, 2008). Maximum likelihood topologies were used to estimate the 
optimal evolutionary model comparing 88 distinct models (11 substitution schemes, with 
equal or unequal base frequencies, a proportion of invariable sites, and rate variation 
among sites). Log-likelihoods of different models of substitution under ML tree topologies 
were compared using the corrected version of Akaike Information Criterion for small 
samples (AICc) as model selection criterion (Posada and Buckley, 2004). The AICc 
converges towards the AIC, when larger sampling sizes are used, and should therefore 
always be used regardless of the sample size (Burnham and Anderson, 2004). Table 3.3 
gives an overview of the different partition strategies and the selected models. Overall 
performance of unpartitioned and partitioned datasets were assessed with comparison of 
the mean -lnL of all trees sampled from the posterior distribution at stationarity for each 
strategy, and with Bayes Factor comparison implemented in Tracer, which is based on 
smoothed estimates of marginal likelihoods (Newton and Raftery, 1994; Suchard et al., 
2001). The criterion of 2ln Bayes Factor of ≥10 was used as a benchmark indicating strong 
evidence of one strategy over another (Kass and Raftery, 1995). A Birth-and-death process 
prior was selected modelling cladogenesis and extinction of lineages, and a single overall 
uncorrelated lognormal relaxed clock model was applied for all partitions. For analyses of 
both Cucurbitales-Fagales and the Begoniaceae datasets starting trees for the MCMC runs 
satisfying all calibration priors (see 3.2.1.7) were generated in TreeEdit v1.0a10 (Rambaut 
and Charleston, 2002) by editing trees retrieved in maximum parsimony analyses. Several 
short BEAST runs were performed for each analysis to assess the MCMC performance, and 
to adjust the operators as suggested by the output diagnostics. Finally, for each analysis of 
both datasets two separate MCMC analyses were run, each with 4 × 107 generations and 
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sampling every 1000th generation. Times-series plots of all parameters were analysed in 
Tracer to check for convergence and to confirm that stationarity and adequate effective 
sampling sizes were reached. Trees were combined in LogCombiner v1.5.3, setting the 
burn-in to 25% of the initial samples of each MCMC run. Trees were then summarized 
using the maximum clade credibility option in TreeAnnotator v1.5.3.

3.2.1.7 Fossil constraints and secondary calibrations
The concept of stem group and crown group is crucial for the correct placements of fossils 
on a phylogenetic tree (Renner, 2005). The crown group comprises all extant taxa of a 
clade, their most recent common ancestor (MRCA) and all extinct taxa which diverged 
after the origin of the MRCA of the living taxa. The crown group is preceded by the 
stem lineage which comprises all extinct taxa that are closer to their crown clade than to 
another crown clade. The divergence point of the stem group, i.e. crown group plus stem 
lineage, from its sister, is the stem node, which is older than the point of origin of the 
crown clade (Benton and Donoghue, 2007; Forest, 2009; Renner, 2005). Assignment of 
fossils to extant taxa is based on shared derived characters. These apomorphic characters 
evolved along the stem lineage leading from the stem node to the crown group. As it is 
uncertain when an apomorphy evolved along the stem lineage, according to some authors 
a fossil placement on a phylogenetic tree has to assign a fossil constraint to the stem node 
rather than the crown node to account for this uncertainty (Forest, 2009; Magallón, 2004; 
Renner, 2005). Fossils provide minimum constraints as the fossil record is incomplete 

Dataset Partitions 
[#] 

Partitions Aligned 
characters 
[#] 

Model
selected  
(AIC) 

Model
selected
(AICc) 

Model
applied
(BEAST)

Cucurbitales-
Fagales,  
92 taxa 

1 Combined 3910 GTR+I+G GTR+I+G GTR+I+G 

Cucurbitales-
Fagales,  
92 taxa 

4 matK 1259 TVM+G TVM+G GTR+G 

 rbcL 1429 GTR+I+G GTR+I+G GTR+I+G 

trnL intron 656 TVM+G TVM+G GTR+G 

trnL-F 566 GTR+G GTR+G GTR+G 

Cucurbitales-
Fagales,  
92 taxa 

6 matK 1st+2nd codon pos. 840 TVM+G TVM+G GTR+G 

matK 3rd codon pos. 419 TVM+G TVM+G GTR+G 

rbcL 1st+2nd codon pos. 953 TVM+G TVM+G GTR+G 

rbcL 3rd codon pos. 476 TIM3+I+G TPM3uf+I+G GTR+G 

trnL intron 656 TVM+G TVM+G GTR+G 

trnL-F 566 GTR+G GTR+G GTR+G 

Begoniaceae, 
110 taxa 

1 Combined 3893 TVM+G TVM+G  GTR+G 

Begoniaceae, 
110 taxa 

3 ndhA intron 1370 TVM+G TVM+G  GTR+G 

ndhF-rpl32 1136 TVM+G TVM+G  GTR+G 

rpl32-trnL 1387 TVM+G TVM+G GTR+G 

Table 3.3. Partitioning strategies and model selection using jModelTest. Models: TPM (‘‘3-parameter 
model’’ = K81) (Kimura, 1981), TIM (‘‘transitional model’’) (Posada, 2003), TVM (‘‘transversional 
model’’) (Posada, 2003), and GTR (Tavaré, 1986). +G: among-site rate variation modelled with a gamma 
distribution; +I: proportion of invariable sites; uf: unequal base frequencies. For different types of the TIM 
and TPM models see Posada (2008). Codon pos.: codon position.
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and it is likely that the fossil record documents when a structure became abundant rather than its 
time of origin (Magallón, 2004). Fossil minimum constraints require the oldest relevant fossil, 
which shares apomorphic characters of a given group, a well supported phylogenetic hypothesis, 
and a well dated stratum from which the fossil originated (Benton and Donoghue, 2007). The 
assumption that a divergence event is older than the oldest relevant fossil, assumptions about 
the quality of a fossil constraint and uncertainty of fossil ages can be modelled using probability 
distributions (Drummond et al., 2007; Ho, 2007; Ho and Phillips, 2009). The software BEAST 
allows the specification of priors for the ages of internal nodes defined by statistical distributions 
such as lognormal, exponential and normal distributions. Lognormal prior distributions can be used 
to model the assumption that the actual divergence likely occurred sometime before the earliest 
appearance of fossil evidence by assigning the highest point probability for a nodal age to an older 
age than the fossil constraint. Exponential prior distributions also allow for older ages than the age 
of a fossil as the distribution exhibits a long tail of diminishing probability with growing difference 
between the estimated nodal age and the fossil age. Selection of this distribution is reasonable to 
model the assumption that, based on well-dated and abundant fossils, there is a high probability 
of a small time lapse between the fossil age and the actual divergence event. A normal distribution 
is not suitable for fossil calibration, except for few exceptions, as it models non-directional 
uncertainty, i.e. towards both younger and older ages. Normally distributed priors can be applied to 
model uncertainty of the ages of geological events, e.g. island emergence dates, or for secondary 
calibrations based on other molecular studies (Ho, 2007). 

Fossil constraints in the anlysis of the Cucurbitales-Fagales dataset: For the assignment of 
numerical ages to stages of the geologic time scale, this study follows Gradstein et al. (2004). 
Five fossil calibration points (C1-C5) were used in this study (Table 3.4). For calibration point C1 
a uniform prior was chosen to assign a maximum constraint of 125 Ma to the root node using the 
first occurrences of tricolpate pollen indicative of Eudicots as a provisory maximum age constraint 
(discussed below). For calibration point C2, which is based on fagalean fossil pollen and associated 

Constraint Clade Anchor fossil Assigned  
age
[Ma] 

Uniform prior 
[min, max] 

Lognormal 
prior
[mean, SD] 

Exponential 
prior
[set-off, mean] 

References 

C1 Cucurbitales-
Fagales 

Tricolpate pollen 
grains 

125 0, 125 0,1 n/a Doyle and Hotton, 1991; 
Hughes and McDougall, 1990 

C2 Core Fagales-
Fagaceae 

Normapolles taxa 
pollen grains, 
Caryanthus

96.55 n/a n/a 96.55, 1.02 Friis et al., 2006 

C3 Coryloideae 
crown 

Corylus, Carpinus 50 50, 125 0,1 n/a Pigg et al., 2003 

C4 Cucurbitaceae 
crown 

Cucurbitaceae 
seeds, 
Trichosanthes 

65.5 65.5, 125 0,1 n/a Collinson et al., 1993; 
Collinson, 1986 

C5 Tetramelaceae-
Datiscaceae  

Tetrameleoxylon 68.05 68.05, 125 0,1 n/a Lakhanpal, 1970;  
Lakhanpal and Verma, 1965 

Table 3.4. Fossil calibrations. Ma: Millions of years ago; n/a: not applicable; SD: standard deviation.
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floral macrofossils, an exponential prior was chosen reflecting the assumption that based 
on the good fossil record from numerous localities and well dated strata, and the lack 
of similar fossils from older strata, the age of the oldest relevant fossils is relatively 
close to the actual divergence date. Calibration points C3-5 are based on few fossils or 
on a single fossilized structure, and actual divergence of given clades likely occurred 
earlier than the oldest relevant fossil record. A lognormal prior distribution seems to be 
the most appropriate to model this assumption, as it includes a fossil age as lower hard 
bound, but allows for older ages by providing a soft upper bound defined by the shape 
of the lognormal distribution and the age interval which contains 95% of the probability. 
However, defining the upper soft bound is highly problematic and setting of the mean is 
somewhat subjective, especially when there is inadequate paleontological data (Benton 
and Donoghue, 2007; Ho, 2007). Therefore, a mean of 0 and a standard deviation of 1 
were chosen to define lognormal prior distributions, which provide a soft upper bound 
allowing older node ages than the fossil ages, but ensure that 95% of the probability 
fall within reasonable age intervals. Alternatively, in an independent analysis priors with 
uniform distributions were applied with the lower hard bound defined by the fossil ages of 
calibration points C3-5 and the upper boundary set to 125 Ma based on the first occurrences 
of tricolpate pollen indicative of Eudicots as provisory maximum age constraint.

Constraint C1: The root node was constrained to a maximum age of 125 Ma based on the 
fossil record of tricolpate pollen indicative of Eudicots. The fossil record of tricolpate pollen 
grains provides one of the firmest dates for fossil calibrations as it is based on numerous 
samples from an extensive stratigraphic range from the transition of the Barremian and 
Aptian (125 Ma) onwards (Doyle and Hotton, 1991; Hughes and McDougall, 1990), and 
this can been used as a provisory maximum age constraint for Eudicots (Bell et al., 2005; 
Magallón and Sanderson, 2001, 2005; Wang et al., 2009). Molecular data indicate that 
early divergent eudicot lineages and core eudicots originated in rapid temporal succession, 
and subsequent to the eudicot origin there is extremely rapid phylogenetic branching of 
major eudicot lineages (Magallón and Sanderson, 2005; Moore et al., 2010; Wang et al., 
2009). A constraint of 125 Ma for the Cucurbitales-Fagales divergence likely biased the 
analyses towards older ages, but represents a reasonable choice for a maximum constraint 
on the Cucurbitales stem node. This constraint was applied by assigning a uniform prior 
with a lower boundary of zero and an upper boundary of 125 Ma to the Cucurbitales stem 
node.

Other studies have used considerably younger ages to constrain the Cucurbitales-Fagales 
split. Within the Fagales crown group, Nothofagaceae and Fagaceae are the subsequent 
sisters to the core Fagales, which comprise all other extant Fagales families (Li et al., 2004). 
Wikström et al. (2001) and Wang et al. (2009) used generative macrofossils from Santonian 
strata of the Gaillard Formation in central Georgia, U.S.A, described as Antiquacupula 
Sims, Herend. & P.R.Crane and Protofagacea Herend., P.R.Crane & Drinnan, which 
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exhibit cupules and prolate pollen indicating a relationship to Nothofagaceae and 
particularly Fagaceae (Friis et al., 2006; Herendeen et al., 1995; Sims et al., 1998), to 
constrain the Cucurbitales-Fagales split to 84 or 85 Ma. However, Wikström et al. (2001) 
already discussed that it is unclear whether this fossil constraint should be assigned to 
the Fagales crown node or on the stem node, and their assignment to the stem node was 
made to control the direction of incorporated errors and to be confident to underestimate 
the age of the calibration point. Cook and Crisp (2005) assigned a fossil constraint based 
on Antiquacupula and Protofagacea fossils to a subclade within the Fagales crown group 
constraining the split between the Nothofagaceae and the Fagaceae plus core Fagales. 
Cook and Crisp (2005) and Goodall-Copestake et al. (2009) used the first occurrence of 
fagalean pollen of the Normapolles type in the Cenomanian, to constrain the age of the 
Fagales-Cucurbitales split to 96 or 97 Ma. However, Magallón and Sanderson (2001) 
and Magallón and Castillo (2009) assigned this fossil constraint to the Fagales crown 
node, and fagalean Normapolles type pollen gains and associated floral macrofossils were 
confidently placed within a subclade of Fagales, the core Fagales, based on a suite of 
shared floral characters, the oblate pollen form and the lack of a cupule (Friis et al., 2005; 
Friis et al., 2006; Sims et al., 1999). Therefore, this fossil constraint is here assigned to 
the core Fagales stem node as constraint C2.

Constraint C2: Fagales are well represented in the fossil record (Kubitzki et al., 1993) and 
Friis et al. (2006) state that the stratigraphic range of fagalean micro- and macrofossils 
indicates that “all major fagalean lineages were present by the Cenomanian or earlier.” 
The oldest Fagales fossils are fagalean pollen grains of the Normapolles type, which 
are characterised by their oblate form, and complex, protruding apertures consisting of 
an exo- and endoaperture (Friis et al., 2006). These pollen grains and associated floral 
macrofossils have been reported from numerous localities and an extensive stratigraphic 
range from the Cenomanian (99.6-93.6 Ma) onwards (Friis et al., 2006; Sims et al., 1999), 
and they share a suite of floral and palynological characters with extant families of the 
core Fagales (Friis et al., 2006; Sims et al., 1999). Therefore, the first occurrences of 
fagalean Normapolles type pollen grains and associated fossil floral structures in the 
middle Cenomanian was used as fossil constraint by assigning an exponential prior to 
core Fagales stem node (offset: 96.55 Ma, SD: 1.02), i.e. the divergence of Fagaceae and 
core Fagales. A standard deviation of 1.02 was chosen so that 95% of the probability is 
contained in an interval between the midpoint and the upper boundary of the Cenomanian 
(96.55-99.6 Ma).

Constraint C3: Generative Fagales macrofossils from the middle Eocene Republic flora 
of northeastern Washington State, U.S.A., have been assigned to the modern genera 
Corylus L. and Carpinus L. representing the oldest fossils of the subfamily Coryloideae 
of the Betulaceae (Pigg et al., 2003). These fossils were found in the Klondike Mountain 
Formation, which was dated to 50-49 Ma by radiometric Argon-Argon dating (Pigg et al., 
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2003). This fossil data has been used in molecular studies to constrain the crown group 
age of Coryloideae to 50 Ma (Cook and Crisp, 2005). Following Cook and Crisp (2005) 
this fossil constraint was assigned to the MRCA of the crown group of the Coryloideae. 
A lognormal prior distribution was selected with an off-set based on the radiometric dates 
(50 Ma).

Constraint C4: Seed fossils from the Uppermost Paleocene and Lower Eocene 
London Clay have been assigned to Cucurbitaceae and the extant Cucurbitaceae genus 
Trichosanthes L. (Chandler, 1964; Collinson, 1986; Collinson et al., 1993; Schaefer et al., 
2008). This fossil data has been used in molecular studies to constrain the crown group 
age of Cucurbitaceae to 65 Ma, which is at the upper boundary of the Paleocene (Schaefer 
et al., 2009). This study follows Schaefer et al. (2009) by assigning a lognormal prior to 
the Cucurbitaceae crown node with a lower bound of 65.5 Ma, which is at the Paleocene-
Eocene boundary.

Constraint C5: Tetrameles-like fossil bark described as Tetrameleoxylon prenudiflora 
Lakhanpal & Verma has been described from the Deccan intertrappean beds at 
Mohgaonkalan in India (Lakhanpal, 1970; Lakhanpal and Verma, 1965). These beds 
have been dated to the Maastrichtian (65.5-70.6) (Khajuria et al., 1994). Tetrameleoxylon 
prenudiflora exhibits “characteristics consistent with Tetrameles” (E. Wheeler, personal 
communication cited in Zhang et al., 2006), and this fossil constraint has either been 
placed on the split of Tetramelaceae and Datiscaceae (Goodall-Copestake et al., 2009: 
68 Ma; Schaefer et al., 2009: 68 or 65.5 Ma; Zhang et al., 2007: 68 Ma) or on the split 
of Tetrameles R.Br. and Octomeles Miq. (Clement et al., 2004, 2005: 55 Ma). Following 
Zhang et al. (2007), Goodall-Copestake et al., 2009, and Schaefer et al. (2009) this fossil 
constraint is here assigned to the MRCA of Datiscaceae and Tetramelaceae using the 
midpoint of the Maastrichtian (68.05 Ma) as lower boundary of the lognormal prior 
distribution.

To explore the sensitivity of the molecular age estimates of the Begoniaceae and Begonia 
crown group to priors C3-5, which are based on only few fossils or single fossilized 
structures, alternative MCMC runs which tested different fossil combinations were 
performed. These included the more reliable fossil calibration points C1-2, and all 
combinations of calibrations points C3-5. MCMC runs used the same setting as described 
3.2.1.5, employing the four partitions scheme and used lognormally distributed priors for 
calibration points C3-5.

Secondary constraints in the analysis of the Begoniaceae dataset: Secondary calibration, 
i.e. the use of molecular age estimates from previous analyses to calibrate a molecular 
clock, is problematic as errors of the primary analysis are propagated and likely magnified 
in the secondary analysis (Graur and Martin, 2004; Renner, 2005). In the absence of 
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suitable fossils for calibrations as is the case in Begonia, secondary calibration provides a 
useful source of calibration information, but has to be implemented with caution.

As outlined above, Begoniaceae and Begonia crown node age estimates were calculated 
in two primary analyses of the Cucurbitales-Fagales dataset. The first primary analysis 
included five fossil calibrations and used lognormally distributed priors of calibration 
points C3-5. The second primary analysis included five fossil calibrations and used 
uniform priors of calibration points C3-5. The mean estimates and 95% highest posterior 
density date ranges (HPDs) of the Begoniaceae and Begonia crown node ages were used 
to define secondary calibration points for the analyses of the Begoniaceae dataset. Two 
different priors were applied in independent analyses (Table 3.5).

Secondary calibration S1: To account for the uncertainty of the age estimates of the two 
primary analyses the age prior of the MRCA of the Begonia crown group was modelled 
as normal distribution with its mean set to 26.0 Ma, which is the average of the mean 
age estimates of the Begonia crown group divergence of the two primary analyses of the 
Cucurbitales-Fagales data set. The 95% confidence interval was specified by setting the 
standard deviation to 4 (95% probability interval: 18.2-33.8 Ma) including most of the 
ranges of the 95% HPDs of the two primary analyses (primary analysis 1: 18.3-34.0 Ma; 
primary analysis 2: 18.2-34.3 Ma).

Secondary calibration S2: Alternatively, the root age prior was modelled as a uniform 
distribution, having lower and upper boundaries equal to the mean age estimates of the 
Begoniaceae crown group divergence of the two primary analyses of the Cucurbitales-
Fagales data set. This approach uses a secondary calibration point based on only the 
highest probability densities of the two primary analyses. The lower boundary was set to 
40.1 Ma, and the upper boundary was set to 41.8 Ma to specify this prior.

3.2.2 Biogeographic analyses

3.2.2.1 Area delimitation
Seven areas based on the geological history of Asia and the extant distributions of Begonia 

Constraint Clade Basis Uniform 
Prior
[min, max] 

Normal 
Prior
[mean, SD] 

S1 Begonia crown Mean = Average of mean values 
of primary analyses 1 and 2.  
SD chosen to incorporate the 95% 
HPDs of primary analyses 1 and 2 

n/a 26.0, 4 

S2 Hillebrandia-
Begonia

Bounds = Mean age estimates of 
primary analyses 1 and 2  

40.1, 41.8 n/a 

Table 3.5. Secondary calibrations. HPD: highest posterior density date range; Ma: Millions of years ago, 
n/a: not applicable; SD: standard deviation.
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and Hillebrandia species were considered in the analysis (Fig. 3.1): 1. Hawaii, USA, to 
which Hillebrandia sandwicensis is endemic; 2. Africa including the Yemenite Socotra 
Archipelago; 3. Continental Asia and adjacent major islands (Sri Lanka, Taiwan, Hainan); 
4. the Sunda Shelf region, which extends from just north of the Thai-Malay border, through 
the Malay Peninsula, Sumatra, Borneo, and Java to Bali; 5. Wallacea, which comprises 
Sulawesi and adjacent islands, and the Lesser Sunda Islands and the Maluku Islands 
between Wallace’s and Lydekker’s Line; 6. the Philippines including Palawan; 7. New 
Guinea and adjacent islands (islands east of Lydekker’s Line, the Bismarck Archipelago, 
Solomon Islands).

Most Begonia species are narrow endemics and the distributions of only few species 
span more than one of the defined regions. The analysed dataset contains only five taxa 
which show wider distributions. Four of these more widespread taxa exhibit fleshy fruits 
and belong to difficult species complexes. Begonia longifolia is the most widespread 
species of Begonia in Asia. Its distribution ranges from continental Asia (Nepal, Bhutan, 
India, China, Laos, Vietnam, Thailand and Peninsula Malaysia) through Sumatra, Java 
and Bali, to Sulawesi (Hughes, 2008; Tebbitt, 2003). Begonia aptera, which is closely 
related to Begonia longifolia, is mainly distributed on Sulawesi and the Moluccas, but 
has been recently collected in Western New Guinea (George Argent, Royal Botanic 
Garden Edinburgh, UK, pers. com.). Begonia multangula is distributed on Java and the 
Lesser Sunda Islands and maybe Sulawesi, and taxa in the B. rieckei complex exhibit 
a wide distribution in eastern Malesia including Sulawesi, the Philippines and New 
Guinea (Hughes, 2008). Finally, Begonia fenicis Merr. is the only Begonia species which 
exhibits a distribution including both the Philippines (islands of the Taiwan-Luzon arc) 
and Taiwan. As likelihood and Bayesian reconstructions require the assignment of single 
discrete character states, the samples of the five more widespread taxa were assigned to 
the areas of their collection localities. Alternatively, five additional composite area states 
were defined: 8. Continental Asia plus the Philippines (Begonia fenicis), 9. Sunda Shelf 
region plus Wallacea (B. multangula); 10: Wallacea plus New Guinea (B. aptera); 11. 
Continental Asia plus Sunda Shelf region plus Wallacea (B. longifolia); 12. Wallacea plus 
Philippines plus New Guinea (B. rieckei).

3.2.2.2 Likelihood ancestral area reconstructions
Ancestral areas were reconstructed using the likelihood method implemented in Mesquite 
v2.7.2 (Maddison and Maddison, 2009). In contrast to parsimony analyses, likelihood 
reconstructions can account for time-proportional branch-length information, and estimate 
relative probability values for each nodal reconstruction. To account for phylogenetic 
uncertainty the “Trace over trees” option was selected, and 1000 randomly chosen trees 
from the stabilized part of the MCMC of the BEAST analysis (Begoniaceae dataset, 110 
taxa, secondary calibration S1) were included as input trees. Likelihood reconstructions 
optimize the area states at each node which maximize the probability of arriving at the 
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observed extant areas of the terminals, given a model of evolution. The Mk1 model 
(Markov k-state 1 parameter model) (Lewis, 2001) was selected. Under this model 
any particular change is equally probable, and the rate of change is the only parameter. 
The “trace over trees” option calculates for every node the likelihoods of all area states 
averaged over all trees possessing the node in the 1000 input tree sample. Ancestral area 
reconstructions were mapped on the maximum clade credibility chronogram derived from 
the BEAST analysis of the 110 taxon Begoniaceae dataset using secondary calibration S1.

3.2.2.3 Bayesian ancestral area reconstructions
Bayesian ancestral area reconstructions were performed in BEAST based on an analysis 
of the 110 taxon Begoniaceae dataset using the continuous-time Markov chain (CTMC) 
model for discretized diffusion specified by Lemey et al. (Lemey et al., 2009), considering 
diffusion among the seven areas specified in 3.2.2.1 (K=7). The CTMC model for 
discretized diffusion is the equivalent of the GTR model for nucleotide substitutions, 
and allows for K*(K-1)/2 different diffusion rates. The model incorporates two main 
parameters, the relative rate parameter, which describes how often diffusion between 
two locations occurs during evolution in relation to other location transitions, and the 
geosite model parameter, which rescales location transitioning into time units. A gamma 
prior (shape=1.0) was chosen for the rates parameter and an exponential prior (mean=1) 
for the geosite model parameter following recommendations by Lemey et al. (2009). 
The parameters were sampled from simultaneously estimated time-scaled phylogenies. 
Bayesian inference settings included two separate MCMC analyses, each run for 4 × 107 
generations, parameter sampling every 1000th generation, using an uncorrelated relaxed 
lognormal clock model, and a birth-and-death process prior. The Begonia stem node was 
calibrated using the secondary calibration S1 (see Table 3.5).

3.3 Results

3.3.1 Molecular age estimates: Cucurbitales-Fagales dataset

Summary statistics of the concatenated 92-taxon Cucurbitales-Fagales dataset and its 
partitions are shown in Table 3.6. Sequence alignment of the four combined plastid 
regions (matK, rbcL, trnL intron, trnL-trnF spacer) yielded a dataset of 3910 aligned 
characters. Of the analysed regions, the rbcL fragment exhibited the lowest variability 
with 27.4 percent of polymorphic sites and 16.6 percent of potentially parsimony 
informative sites, and the third codon position partition of the rbcL fragment showed the 
least variability of all six data partitions with 17.2 percent of polymorphic sites and 11.1 
percent of potentially parsimony informative sites. The matK fragment and its codon 
position partitions exhibited the highest variability with 54.6 percent of polymorphic sites 
and 36.9 percent of potentially parsimony informative sites.
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Estimates of the coefficient of variation of the analysis of the Cucurbitales-Fagales dataset 
were checked in Tracer to assess whether the data behaves in a clock-like manner. The 
frequency histogram did not abut against zero indicating considerable among branch rate 
heterogeneity, which indicated that a relaxed molecular clock approach was appropriate 
(Drummond et al., 2007). Nucleotide model selection under the AIC and its corrected 
version for small sample sizes (AICc) did not differ for most partitions with the exception 
of the smallest and least variable partition, the 3rd codon position partition of the rbcL 
fragment (Table 3.3). For this partition the TIM3 (transitional model; Posada, 2003), was 
selected under the AIC, while the slightly less parameter-rich TPM3uf model (= K81 
model, Kimura, 1981) was selected under the AICc. More complex models, the TVM 
(transversional model; Posada 2003) or the GTR model (General time reversible model; 
Tavaré, 1986), were selected for all other partitions. Partitioning improved mean –lnL 
values considerably and the analyses using a partition strategy with four partitions based 
on gene, intron and spacer identity provided distinctly better explanations of the data than 
both the more complex partition strategy including partitions based on codon positions 
for the coding regions and unpartitioned analyses according to Bayes Factor comparison 
(Fig. 3.2). The subsequent presentation of the results of the analyses of the Cucurbitales-
Fagales dataset will be limited to the analyses using four data partitions.

The maximum clade credibility chronogram resulting from the analyses using five 
fossil calibrations is presented in Fig. 3.3. Mean date estimates and 95% HPDs for the 
Begonia stem and crown nodes derived from nine analyses using different combinations 
of constraints and different calibration prior distributions are shown in Figure 3.4. The 
95% HPD date range associated with each estimate varied depending on the combination 
and prior distributions of the applied constraints. In the analyses using lognormal priors 
for constraints C3-5 and eight alternative sets of constraints, the HPDs of the Begonia 
stem node ages estimates extended from 21-54 Ma, and the HPDs of the Begonia crown 

Dataset Partition Aligned 
positions

[#]

Fragment
length
[bp]

Variable  
sites

[# (%)] 

Parsimony
informative

sites
[# (%)] 

Cucurbitales-Fagales,
92 taxa 

matK 1259 750-1203 687 (54.6) 465 (36.9) 
matK 1st+2nd codon  pos. 840 500-803 458 (54.5) 310 (36.9) 
matK 3rd codon  pos. 419 250-400 229 (54.6) 155 (37.0) 
rbcL 1429 994-1425 392 (27.4) 237 (16.6) 
rbcL 1st+2nd codon  pos. 953 664-950 310 (32.5) 184 (19.3) 
rbcL 3rd codon  pos. 476 330-475 82 (17.2) 53 (11.1) 
trnL intron 656 277-533 291 (44.4) 177 (27.0) 
trnL-F 566 185-389 290 (51.2) 179 (31.6) 
Combined 3910 2809-3467 1660 (42.5) 1058 (27.1) 

Begoniaceae,
110 taxa 

ndhA intron 1370 1076-1188 327 (23.9) 147 (10.7) 
ndhF-rpl32 1136 772-991 378 (33.3) 203 (17.9) 
rpl32-trnL 1387 439-1099 387 (27.9) 200 (14.4) 
Combined 3893 2448-3254 1092 (28.1) 550 (14.1) 

Table 3.6. Descriptive statistics of the Cucurbitales-Fagales and the Begoniaceae datasets.



96CHAPTER 3: HISTORICAL BIOGEOGRAPHY

node ages estimates extended from 14-34.0 Ma. The two primary analyses using all five 
constraints but differing in using lognormal priors or alternatively uniform prioirs for 
constraints C3-5 produced similar mean values for the Begonia stem node (lognormal 
prior analysis: 40 Ma, uniform prior analysis: 41.8 Ma) and crown node (lognormal prior 
analysis: 26 Ma, uniform prior analysis: 26 Ma) with slightly older ages estimates and 
broader HPDs in the analyses using uniform priors. Highest posterior density credibility 
date ranges of the Begonia stem node extended from 28 to 54 Ma in the analysis using 
lognormal priors, and from 28 to 57 Ma in the analysis using uniform priors. Highest 
posterior density credibility sets of the crown node extended from 18 to 34 Ma in the 
analysis using lognormal priors and from 18 to 34 Ma in the analysis using uniform 
priors. The results of the analyses using nine alternative sets of calibration constraints 
show the sensitivity of the analysis to different calibration points (Fig. 3.4). The absence 
of constraints C3-5 had a strong impact on age estimates and resulted in distinctly younger 
age estimates than in the analyses including all five constraints. Inclusion of constraints 
C3-5 pushed the estimated ages back in time, and the absence or presence of constraint 
C3 (Coryloideae crown group) had the strongest impact, while the constraint on the 
Tetramelaceae-Datiscaceae split (C5), which is the phylogenetically closest constraint to 
the Begoniaceae crown clade, had the weakest impact on the age estimates.
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Fig. 3.2. Divergence time estimation: Bayes Factor comparison of different partitioning strategies 
for the Cucurbitales-Fagales dataset. Charts show −lnL values of two independent BEAST runs for 
three different partitioning strategies (P1, P4, P6) and two different calibration prior settings (C3-5 with 
lognormal distribution; C3-5 with uniform distribution, see Table 3.4). The bars indicate 95% highest 
posterior density date ranges, the red dots indicate mean values. The table shows ln Base Factors calculated 
from harmonic means of likelihoods in Tracer v1.5. A positive value of > 5 indicates strong evidence 
against alternative hypotheses (partition strategies indicated in the first column are compared with partition 
strategies indicated in subsequent columns).
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Fig. 3.3. Maximum clade credibility chronogram: Cucurbitales-Fagales dataset. Divergence time estimations based 
on an analysis of the Cucurbitales-Fagales dataset using BEAST and five fossil calibrations (C1-5, using lognormal prior 
distributions for C3-5, see Table 3.4.). Node heights indicate mean ages and node bars indicate 95% HPD date ranges. 
Mean ages derived from an alternative analysis using five fossil calibrations (C1-5, using uniform distributed priors for 
C3-5, see Table 3.4) are mapped on the chronogram as red circles, the centres of which indicate the mean age estimates. 
Broken lines indicate branches which lead to nodes with a PP < 0.95. ANI: Anisophylleaceae, BET: Betulaceae, CAS: 
Casuarinaceae, COA: Coriariaceae, COR: Corynocarpaceae, DAT: Datiscaceae, FAG: Fagaceae, JUG: Juglandaceae, 
MYR: Myricaceae, NOT: Nothofagaceae, RHO: Rhoipteleaceae, TET: Tetramelaceae, TIC: Ticodendraceae.
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Fig. 3.4. Divergence age estimates for the MRCAs of the Begoniaceae and Begonia. Divergence 
time estimations are based on analyses of the Cucurbitales-Fagales dataset using BEAST. Analyses using 
different combinations of fossil calibrations are indicated (C1-5, see Table 3.4). Published age estimates of 
previous studies are indicated (Clement et al., 2004, 2005; Goodall-Copestake, 2005; Goodall-Copestake 
et al., 2009; Plana et al., 2004). Red dots indicate mean estimates, and bars indicate 95% HPDs and 95% 
confidence ranges. BRC: Bayesian relaxed clock method; BRCL: Bayesian uncorrelated relaxed lognormal 
clock method; exp: exponential prior distribution; log: lognormal prior distribution; NPRS: Non-Parametric 
Rate Smoothing method; PL: Penalized Likelihood method; uni: uniform prior distribution. Geological 
epochs are indicated in different shades of grey.

3.3.2 Molecular age estimates: Begoniaceae dataset

Summary statistics of the concatenated 110-taxon Begoniaceae dataset and its partitions 
are shown in Table 3.6. Sequence alignment of the three combined plastid regions (ndhA 
intron, ndhF-rpl32, rpl32-trnL) yielded a dataset of 3893 aligned characters. Of the 
analysed regions, the ndhA intron exhibited the lowest variability with 23.9 percent of 
polymorphic sites and 10.7 percent of potentially parsimony informative sites. The ndhF-
rpl32 fragment exhibited the highest variability with 33.3 percent of polymorphic sites 
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and 17.9 percent of potentially parsimony informative sites.

Estimates of the coefficient of variation of the analysis of the Begoniaceae dataset 
were checked in Tracer to assess whether the data behaves in a clock-like manner. The 
frequency histogram did not abut against zero indicating considerable among branch rate 
heterogeneity. Nucleotide model selection under the AIC and its corrected version for 
small sample sizes (AICc) did not differ for the three partitions, and a complex model, 
the TVM (transversional model; Posada 2003), was selected for all partitions (Table 3.3). 
Partitioning improved mean –lnL values considerably and the analyses using a partition 
strategy with three partitions based on intron and spacer identity provided distinctly 
better explanations than analyses of unpartitioned datasets according to Bayes Factor 
comparison (lnBayes Factors 46.8 for the analyses using calibration S1; lnBayes Factors 
46.9 for the analyses using calibration S2). The subsequent presentation of the results of 
the analyses of the Cucurbitales-Fagales dataset will be limited to the analyses using three 
data partitions.

Figure 3.5 shows a maximum clade credibility chronogram resulting from the analysis 
using secondary calibration S1 (MRCA Begonia, normally distributed prior, mean: 26 
Ma, SD: 4, 95% probability interval: 18.2-33.8). Mean values of the analysis using 
calibration S2 (MRCA Begoniaceae, uniform prior, lower bound: 40.8, upper bound: 
41.8) are mapped on the chronogram, and mean values within the 95% HPD date ranges 
for the divergences of several major clades are shown in Figure 3.6. Age estimates for 
diversifications within a well supported clade comprising Asian and Socotran Begonia 
species differ slightly between the two analyses constraining either the root node 
(calibration S2) or the Begoniaceae crown node (calibration S1), with mean age estimates 
differing by no more than 1.01 Ma, and generally slightly older ages and slightly 
wider HPDs in the analyses constraining the root node (Fig. 3.6). Age estimates in the 
following presented results are given as mean values and 95 % HPDs in brackets, and 
estimates of the analysis using calibration S1 are followed by estimates of the analysis 
employing calibration S2. The age of the stem lineage of Asian plus Socotran Begonia 
was estimated as c. 18 (11-25) and c. 20 (12-28) Ma old, the crown group age estimates 
are c. 15 (9-21) and c. 16 (10-23) Ma. The phylogenetic relationships of two small, early 
divergent clades comprising species in sections Haagea, Peltaugustia, Reichenheimia 
and one species unplaced to section, are not well supported. Apart from these two early 
divergent lineages, two well supported main clades can be differentiated: Clades A and 
B. The crown group age of Clade A, which includes species in sections Parvibegonia, 
Diploclinium, and Platycentrum s.l. (containing section Sphenanthera), is estimated as c. 
13 (8-19) Ma and c. 14 (9-21) Ma old. The crown group age of a well supported subclade 
containing species of section Platycentrum s.l. is estimated as c. 5 (3-7) Ma and c. 5 (3-
8) Ma. The crown group age estimates of Clade B, which includes species of sections 
Coelocentrum, Ridleyella, Reichenheimia, Diploclinium, Bracteibegonia, Petermannia 
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Fig. 3.5. Maximum clade credibility chronogram: Begoniaceae dataset. Divergence time estimations based on an 
analysis of the Begoniaceae dataset using BEAST and secondary calibration S1 (see Table 3.5). Node heights indicate 
mean ages and node bars indicate the 95% HPD date ranges. Mean ages derived from an alternative analysis using 
secondary calibration S2 (see Table 3.5) are mapped on the chronogram as red circles, the centre of which indicates 
the mean age estimates. Broken lines indicate branches which lead to nodes with a PP < 0.95. Geological epochs are 
indicated in different shades of grey. Sectional placement of taxa is indicated by the following abbreviations: AUG: 
Augustia, BRA: Bracteibegonia, COE: Coelocentrum, DIP: Diploclinium, HAA: Haagea, IGN: unplaced to section, 
MEZ: Mezierea, PAR: Parvibegonia, PEL: Peltaugustia, PET: Petermannia, PLA: Platycentrum, REI: Reichenheimia, 
RID: Ridleyella, SPH: Sphenanthera, SQU: Squamibegonia, SYM: Symbegonia.
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s.l. (inclusive section Symbegonia), are c. 12 (7-18) Ma and c. 13 (8-19) Ma. The crown 
group age estimates for the subclade comrising species of sections Bracteibegonia and 
Petermannia s.l. are c. 6 (3-9) Ma and c. 6 (4-9) Ma. Mean age estimates and associated 
HPDs of diversifications in the species-rich sections Platycentrum and Petermannia fall 
predominantly in the Plio-Pleistocene range.

3.3.3 Ancestral area reconstructions 

Figure 3.7 shows a maximum clade credibility chronogram derived from the Bayesian 
ancestral area reconstruction in BEAST using the seven area states delimited in 3.2.2.1. 
Branches are coloured according to the most probable area state of their descendent nodes, 
and area state posterior probability (PP) distributions are indicated. Figure 3.8 shows the 
maximum clade credibility chronogram resulting from the analysis of the Begoniaceae 
dataset in BEAST (see 3.3.2) with branches coloured according to the area state which 
received the highest proportional likelihood at their descendent nodes according to 
likelihood ancestral area reconstructions in Mesquite using the seven main area states 
plus the five composite area states delimited in 3.2.2.1. Proportional likelihoods (PL) of 
ancestral area reconstructions are indicated.

Bayesian and likelihood reconstructions produced similar results, and the use of five 
additional composite area states for the five more widespread taxa had a negligible impact 
on nodal reconstructions except for the reconstruction at the stem and crown node of a 
clade comprising taxa in the Begonia longifolia complex (discussed below).

Mean age estimates indicate an area transition from Africa to Asia between the Early and 
Middle Miocene and the analyses reconstruct continental Asia as most probable ancestral 
area at the crown node (PP: 0.93; PL: 0.96) of a well supported clade containing Socotran 
and Asian Begonia species. Within this clade, two early divergent lineages, both of which 
show only poorly supported phylogenetic relationships, form two clades which comprise 
species with distributions in South India/Sri Lanka and the Yemenite Socotra Archipelago. 
Reconstructions at the crown node of the clade which includes one species from South 
India and the only two species known from the Socotra Archipelago, indicate continental 
Asia as the most probable ancestral area (PP: 0.93, PL: 0.96) for this clade. 

Continental Asia is also the most probable ancestral area for both Clade A (stem node PP: 
0.99, PL: 1) and Clade B (stem node PP: 0.96, PL: 0.96). Within Clade A, most nodal 
reconstructions indicate continental Asia as most probable ancestral area, with several 
lineages showing area transitions to the Sunda Shelf and Wallacea. The Wallacean species 
in Clade A belong to two recently diverged clades comprising some more widespread taxa 
placed in the polyphyletic section Sphenanthera. The first clade is comprised of Begonia 
longifolia, and the two subspecies of B. aptera, and ancestral area reconstructions at the 
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Fig. 3.7. Bayesian ancestral area reconstructions. Maximum clade credibility chronogram derived from a phylogeographic 
analysis in BEAST using secondary calibration S1 (see Table 3.5) and seven area states as defined in 3.2.2.1. Branches 
are coloured according to the most probable area state of their descendent nodes, and area state posterior probability 
(PP) distributions are indicated for nodes at which the most probable area state received < 0.98 PP. Broken lines indicate 
branches which lead to nodes with a clade PP < 0.95. Geological periods or epochs are indicated in different shades of grey. 
Sectional placement of taxa is indicated by the following abbreviations: AUG: Augustia, BRA: Bracteibegonia, COE: 
Coelocentrum, DIP: Diploclinium, HAA: Haagea, IGN: unplaced to section, MEZ: Mezierea, PAR: Parvibegonia, PEL: 
Peltaugustia, PET: Petermannia, PLA: Platycentrum, REI: Reichenheimia, RID: Ridleyella, SPH: Sphenanthera, SQU: 
Squamibegonia, SYM: Symbegonia.
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Fig. 3.8. Likelihood ancestral area reconstructions. Maximum clade credibility chronogram derived from divergence 
age estimates in BEAST using secondary calibration S1 (see Table 3.5). Branches are coloured according to the area 
state which received the highest proportional likelihood at their descendent nodes based on likelihood ancestral area 
reconstructions in Mesquite using the seven main area states plus the five composite area states defined in 3.2.2.1. Broken 
lines indicate branches which lead to nodes with a clade PP < 0.95. Geological epochs are indicated in different shades 
of grey. Sectional placement of taxa is indicated by the following abbreviations: AUG: Augustia, BRA: Bracteibegonia, 
COE: Coelocentrum, DIP: Diploclinium, HAA: Haagea, IGN: unplaced to section, MEZ: Mezierea, PAR: Parvibegonia, 
PEL: Peltaugustia, PET: Petermannia, PLA: Platycentrum, REI: Reichenheimia, RID: Ridleyella, SPH: Sphenanthera, 
SQU: Squamibegonia, SYM: Symbegonia.



105CHAPTER 3: HISTORICAL BIOGEOGRAPHY

crown node of the clade are equivocal, especially in the analyses using five additional 
composite area states for wider distributions. However, reconstructions at the stem nodes 
indicate continental Asia as most probable area state (PP: 0.99, PL: 1) for the Begonia 
longifolia complex. The second clade comprises Begonia multangula and B. robusta, and 
reconstruction at the crown node (PP: 1, PL: 1) and two subsequent deeper nodes support 
the Sunda Shelf area as most probable ancestral area. Mean divergence age estimates 
indicate that the divergences of the stem lineages of these two clades occurred in the 
Pleistocene. 

Within Clade B, only species in section Coelocentrum, which form the sister clade to 
the rest of the clade, show a continental Asian distribution, while all other clades are 
predominantly or exclusively Malesian. The reconstructions indicate several area 
transitions from the Sunda Shelf region to the Philippines and to Wallacea, although 
statistical support is not always strong: 1. The Sunda Shelf is the most probable ancestral 
area both for the stem node (PP: 0.90, PL: 0.95) and for the crown node (PP: 0.84, PL: 
0.96) of a clade comprising species of section Reichenheimia including two Sumatran 
and one Javanese species as well as one species from Sumbawa (Lesser Sunda Islands) 
and one species from Buton Island (Southeast Sulawesi). 2. The Sunda Shelf region is 
the most probable ancestral area reconstructed for the stem node (PP: 0.89, PL: 0.95) 
of a clade comprising five Philippine species of section Diploclinium. 3. In the clade 
comprising species of sections Bracteibegonia and Petermannia s.l. (including section 
Symbegonia) species in section Bracteibegonia with distribution on the Sunda Shelf form 
the sister clade to section Petermannia, and within section Petermannia Bornean and 
Sumatran species form the sister clade to a clade comprising Sulawesian, New Guinean 
and Philippine species. The Sunda Shelf region is the most probable area reconstruction 
at the stem node (PP: 0.89, PL: 0.95) and at the crown node (PP: 0.93, PL: 0.97) of the 
Bracteibegonia-Petermannia clade, as well as at the crown node (PP: 0.84, PL: 0.87) 
of the Petermannia clade indicating an area transition from the Sunda Shelf region to 
Wallacea. Within the eastern Malesian Petermannia clade, Wallacea is the most probable 
ancestral area, and Philippine and New Guinean taxa form a well supported clade, with 
New Guinea as most probable ancestral area reconstruction at the stem node (PP: 0.98, 
PL: 0.98) of the clade comprising the Philippine samples. Mean divergence estimates 
indicate that the two independent transitions to Wallacea in Clade B occurred in the Late 
Miocene (in section Reichenheimia) and Pliocene (in section Petermannia), respectively.

The predominant trend of area transitions between continental Southeast Asia, the Sunda 
Shelf region and Wallacea, as well as across Wallacea is from west to east (Table 3.7).
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Area State Transitions Node Geological 
time frame 

Directionality Reconstruction 
support [PL] 

Africa ↔ Continental Asia     
Africa → Continental Asia Asian + Socotran Begonia stem Early Miocene West → East 0.96 
Continental Asia → Socotra PEL stem Middle Miocene East → West 0.96 
Continental Asia ↔ Sunda Shelf 
region 

    

Continental Asia → Sunda Shelf 
region 

Sister clade of COE stem Middle Miocene West → East 0.88 

 B. tenuifolia divergence Pliocene West → East 0.94 
 B. venusta/B. decora-B. pavonia 

stem 
Pliocene West → East 0.99 

 B. aff. multangula/B. areolata/ 
B. robusta-B. multangula stem 

Pliocene West → East 0.99 

Wallace's Line     
Continental Asia → Wallacea B. aptera-B. longifolia stem Pleistocene West → East 1 
Sunda Shelf → Wallacea REI (Sulawesi + Sumbawa) stem Late Miocene West → East 0.96 
 PET (Wallacea + New Guinea + 

Philippines) stem 
Pliocene West → East 0.87 

 B. aff. multangula divergence Pleistocene West → East 0.51 
New Guinea → Philippines PET (Philippines) stem Pliocene East → West 0.95 
Huxley's Line     
Continental Asia → Wallacea B. aptera-B. longifolia stem Pleistocene West → East 1 
Sunda Shelf → Wallacea REI (Sulawesi + Sumbawa) stem Late Miocene West → East 0.95 
 PET (Wallacea + New Guinea + 

Philippines) stem 
Pliocene West → East 0.87 

 B. aff. multangula divergence Pleistocene West → East 0.51 
Sunda Shelf → Philippines DIP (Philippines) stem Late Miocene West → East 0.95 
New Guinea → Philippines PET (Philippines) stem Pliocene East → West 0.98 
Lydekker's Line     
Wallacea → New Guinea PET (New Guinea + Philippines) 

stem 
Pliocene West → East 0.95 

New Guinea → Philippines PET (Philippines) stem Pliocene East → West 0.98 

 

Table 3.7. Area state transitions. Based on likelihood ancestral area reconstructions in Mesquite (see Fig. 3.8). 
PL: Proportional likelihood. Taxon abbreviations: COE: Coelocentrum, DIP: Diploclinium, PEL: Peltaugustia, 
PET: Petermannia, REI: Reichenheimia.

3.4 Discussion

3.4.1 Molecular age estimates for the Begoniaceae and Begonia crown group divergences

Estimates of the coefficient of variation of the analysis of the Cucurbitales-Fagales dataset 
indicated considerable among branch rate heterogeneity, which suggested that a relaxed molecular 
clock approach was appropriate (Drummond et al., 2007).

The analyses which only included fossil calibration constraints on the root node of the phylogenetic 
tree and the stem node of the core Fagales yielded distinctly younger age estimates than the 
analyses using three additional fossil constrains on divergences in Fagales and Cucubitales. The 
absence or presence of a constraint on the Coryloideae crown group divergence had the strongest 
impact and yielded ages for the Begoniaceae crown group divergence, which were 6.4 Ma older 
than when only the root node and core Fagales constraints were applied (Fig. 3.4). Given the good 
quality of the Coryloideae fossils, which are derived from well dated strata (Pigg et al., 2003), it is 
unlikely that an erroneous placement or dating errors are causing the strong impact of this single 
constraint on divergence estimates. It rather indicates the sensitivity of the relaxed molecular cock 
method to a relatively old age constraint (50 Ma) on the divergence of a strongly derived clade 
within the Fagales. This highlights the merits of including multiple fossil constraints at different 
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hierarchical levels, and the potential importance of the inclusion of fossil constraints in 
groups which are phylogenetically distant to a node of particular interest.

Several previous studies, which primarily investigated the historical biogeography of 
Begoniaceae (Goodall-Copestake, 2005), Hillebrandia (Clement et al., 2004, 2005), 
Begonia (Goodall-Copestake et al., 2009), and African Begonia (Plana et al., 2004) 
provide age estimates for the Begoniaceae crown divergence (Fig. 3.4). The mean age 
estimates of c. 40 and c. 42 Ma, derived here from the analyses of sequence data from 
four plastid regions and a low-density sampling of all families within Cucurbitales and 
Fagales, and five fossil constraints (Fig. 3.3-4), indicate that the Begoniaceae crown 
group diverged in the Eocene. These age estimates are slightly younger than an estimate 
of 46 Ma by Goodall-Copestake (2005), who used rbcL data, three fossil calibrations, and 
the Bayesian relaxed molecular clock method implemented in MULTIDIVTIME (Thorne 
and Kishino, 2002). The results from Clement et al. (2004, 2005) based on rbcL data, two 
fossil calibrations, and the non-parametric rate smoothing method (NPRS) implemented 
in r8s (Sanderson, 1997), indicate a similar timeframe (45 Ma), while their analyses using 
penalised likelihood (PL; Sanderson, 2002) resulted in distinctly older age estimates 
of 59 Ma. Plana et al. (2004) used ITS data, alternative single geological calibrations 
based on island emergence ages, and the NPRS method, and their analyses resulted in 
point estimates of either 16 or 43 Ma for the divergence of the Begoniaceae crown group 
depending on the employed geological calibration. However, Plana et al. (2004) cautioned 
that their age estimates were tentative as they used only island emergence dates to 
calibrate the divergence of single island endemics rather than island diversifications, and 
that large standard deviations were expected for the estimates of the Begoniaceae crown 
group divergence. Goodall-Copestake et al. (2009), who rigorously tested the impact of 
different methods, single or combined DNA region analyses and fossil calibrations on the 
age estimates, provide the most robust previous estimates for the divergence age of the 
Begonia crown group. The mean age estimates of their analyses of rbcL and 18S datasets 
using NPRS, PL, a Bayesian relaxed molecular clock method assuming autocorrelated 
rates (Thorne and Kishino, 2002) and the uncorrelated relaxed lognormal clock method 
implemented in BEAST fall within the boundaries of the Oligocene, i.e. 23-34 Ma (Fig. 
3.4). The mean age estimates of c. 26 Ma derived from the analyses of sequence data of 
four plastid markers and the Fagales-Cucurbitales dataset (Figs. 3.3-4) fall within this 
range.

Despite the variety of data sources, taxon samplings, calibrations and methods, all of 
which are factors which have a substantial impact on molecular age estimates (Goodall-
Copestake et al., 2009; Renner, 2005; Rutschmann, 2006), several previous studies 
correspondingly suggest that the divergence of the Begoniaceae crown group likely 
occurred in the Middle Eocene (Clement et al., 2004, 2005; Goodall-Copestake, 2005; 
Plana et al., 2004). The age estimates presented here (Fig. 3.3-4), which are based on a 
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more robust DNA region sampling and a more robust taxon sampling in Cucurbitales and 
Fagales in comparison to previous studies, suggest a similar timeframe, which provides 
some confidence that useful secondary calibrations can be derived from these estimates.

3.4.2 Temporal and spatial diversification patterns in Asian Begonia

3.4.2.1 Dispersal from Africa to Asia and early diversification in the Socotran-Asian 
clade
Intriguingly, the only two Begonia species known from the Yemenite Socotra Archipelago, 
which is more than 2000 km away from the distribution area of their closest relative 
in South India and Sri Lanka, fall into an early divergent subclade of a well supported 
Socotran-Asian clade in the cpDNA phylogenetic tree (Fig. 3.5). Goodall-Copestake 
(2005) hypothesised that Begonia dispersal from Africa to Asia may have occurred either 
by sweepstake dispersal, or, considering the monophyly of Socotran and Asian Begonia, 
adaptations to seasonal climates in Socotran Begonia and paleoclimatic reconstructions 
of periods of warm and moist conditions during the Paleogene and Neogene (Zachos 
et al., 2001), via an Arabian corridor during a time when more hospitable conditions 
existed than at present. The mean age estimates for the divergences of the Asian-Socotran 
Begonia stem lineage (18 Ma, 95% HPD: 11-25) and crown group (15 Ma, 95% HPD: 
9-21) indicate that an area transition from Africa to Asia may have occurred in the Early 
to Middle Miocene (Figs. 3.5, 3.7-8), a period of predominantly moist and warm climates 
in Southeast Asia and with a global warm phase, the Middle Miocene climatic optimum, 
peaking at c. 17-15 Ma (Zachos et al., 2001). Reconstructions of rainforest distributions 
suggest that this warm phase led to the expansion of megathermal vegetation in Asia 
with rainforests spreading as far north as southern Japan and as far east as the northwest 
of the Indian subcontinent (Morley, 2007). However, evaporite and calcrete deposits 
suggest dry and warm conditions for extensive areas of western Asia and the Arabian 
Peninsula during this period (Morley, 2007; Scotese, 2003). An overland migration of 
Begonia species from Africa to Asia through this dry area seems unlikely, as most extant 
Asian Begonia species require shady, humid habitats, although some lineages in sections 
Parvibegonia and continental Asian Diploclinium show adaptations, such as tubers, 
which allow them to survive seasonally dry conditions. Kürschner (1986) and Kürschner 
et al. (2006) hypothesised that former exchange and migrations of the Indo-Malayan flora 
across Arabia have occurred in the past, and they interpreted the presence of putatively 
relictual mesic-African and mesic-Indo-Malayan elements in putative refuges including 
several fog oases, i.e. sea facing escarpments along the coastal mountains of the Southern 
Arabian Peninsula which capture rain and fog precipitation brought by the moist air from 
the sea, as indicative of former migrations. However, clear links between the Socotran 
flora, which shows strongest affinities to the geographically close African and Arabian 
floras, and the tropical Indian and tropical Southeast Asian flora are rare, and only few 
Indo-Malayan genoelements, like the genera Livistona R.Br. (Arecaceae) and Wendlandia 
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Bartl. ex DC. (Rubiaceae), have been recognized (Kilian et al., 2004; Mies, 1996; Miller 
and Morris, 2004). Molecular divergence age estimates for the genus Livistona, which 
predominantly exhibits an Asian-Australian distribution, suggest that the split between 
Livistona carinensis (Chiov.) J.Dransf. & N.W.Uhl, which is distributed in Somalia, 
Djibouti and Yemen, and an Asian-Australian clade likely occurred in the Early to Middle 
Miocene (Crisp et al., 2010). The Mid Miocene Climatic Optimum was followed by gradual 
cooling until the early Pliocene (c. 6 Ma) (Zachos et al., 2001) and was associated with 
a decline in CO2 levels, which may have directly impacted the productivity of terrestrial 
vegetations (Kürschner et al., 2008). This global cooling and the associated decline in CO2 
levels resulted in the retraction of megathermal rainforests to the tropical zone and the 
expansion of grasslands and deserts across much of the lower and mid-latitudes (Morley, 
2007). Yuan et al. (2005) investigated the historical biogeography of the genus Exacum 
L. (Gentianaceae) and hypothesised, based on phylogenetic data, molecular divergence 
age estimates and biogeographical analyses, that Exacum originated on Madagascar, 
dispersed to the South Indian-Sri Lankan region where the colonizer underwent a 
range expansion to northern India, mainland Southeast Asia and Socotra-Arabia during 
favourable moist and warm conditions in the Miocene. Subsequent to diversifications 
during these favourable conditions Exacum species retreated from many areas, possibly 
as a consequence of the expansion of drier vegetation after the Mid Miocene Optimum 
(Yuan et al., 2005). A similar scenario can be hypothesised for the early diversifications 
in Socotran-Asian Begonia. Within the well supported Socotran-Asian clade of the 
cpDNA phylogenetic tree (Fig. 3.5) five South Indian-Sri Lankan and Socotran species 
form two early divergent clades, whose relationships to the two main subclades A and 
B, which comprise all other species in the phylogenetic tree, are only poorly supported. 
The clade which comprises the only two Begonia species known from Socotra is not 
resolved as the sister clade to Asian Begonia, but falls in a well supported clade with 
B. dipetala, which is distributed in South India and Sri Lanka, and the biogeographic 
analyses suggest continental Asia rather than Africa as the likely ancestral area at the 
stem node of the Socotran lineage (Fig. 3.7-8). The conspicuous long-branches which 
support the crown group of Socotran Begonia in cpDNA phylogenetic trees (Fig. 2.3-
4) suggests extinction of taxa of the stem lineage of the Socotran clade and/or a long 
isolation of the Socotran lineage. The geographic structure in the phylogenetic trees and 
the apparent paleoendemism of the Socotran lineage can be explained by long-distance 
dispersal from the Sri Lankan-South Indian region to the Socotra-Arabian region, or by a 
range expansion and diversifications of South Indian-Sri Lankan Begonia lineages over 
North India to continental Southeast Asia in the east and suitable habitats in the drier 
Arabian-Socotran region in the west, with subsequent extinctions in the Socotran-Arabian 
region, possibly as a consequence of the expansion of drier vegetation after the Mid 
Miocene Optimum. However, these hypothesised scenarios are tentative, as extensive 
extinction may have obscured the directionality of migrations. A broader taxon sampling 
of Sri Lankan-South Indian Begonia and data from additional DNA regions are needed 
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to resolve the relationships of the early divergent clades in Socotran-Asian Begonia, to 
mitigate potential long-branch attraction artefacts associated with the conspicuously long 
branches in the Socotran and South Indian-Sri Lankan lineages, and to ultimately further 
elucidate biogeographic patterns in the early diversifications within this group.

3.4.2.2 Colonization of the Malay Archipelago
The biogeographical analyses support the hypothesis that subsequent to an initial 
diversification of Begonia in South Asia and continental Southeast Asia, multiple 
migrations occurred from continental Southeast Asia to the Malay Archipelago (Figs. 
3.7-8). Mean estimates of the stem node (12 Ma, 95% HPD: 7-18) and crown node ages 
(11 Ma, 95% HPD: 7-16) of a large, predominantly Malesian clade, which comprises 
sections Ridleyella, Bracteibegonia, Petermannia s.l. (including section Symbegonia) 
and Malesian lineages in the polyphyletic sections Reichenheimia and Diploclinium, 
indicate the Middle or Late Miocene as the likely timeframe for the origin of this group. 
Moreover, one area transition occurred in section Parvibegonia, and at least three area 
transitions are indicated for section Platycentrum s.l. (including section Sphenanthera). 
Stem and crown node estimates of the Malesian lineages in sections Parvibegonia and 
Platycentrum indicate the Plio- to Pleistocene as likely timeframe of these transitions. 
Palaeogeographical reconstructions suggest that substantial parts of the Sunda Shelf 
region, including the Malay Peninsula, were terrestrial throughout the Miocene and 
onwards (Fig. 1.2) (Hall, 2001, 2009). Extensive land connections existed between the 
Malay Peninsula and emergent parts of the Sunda Shelf during substantial intervals in the 
Miocene and Pliocene, and the Western Malesian islands and the surrounding continental 
shelf formed a vast landmass during long phases of low sea-levels caused by glacioeustatic 
fluctuations associated with the change of ice volume in the Northern Hemisphere during 
the Pleistocene (Voris, 2000; Woodruff, 2010). Thus, overland migrations in phases during 
which continuous suitable habitats existed sufficiently explain the pattern of multiple area 
transitions from continental Asia to the Sunda Shelf region (Fig. 3.7-8.).

3.4.2.3 Current distributions and diversification patterns in Southeast Asian Begonia

Sections Bracteibegonia and Petermannia: The large section Petermannia contains with 
c. 270 species almost half of the Begonia species diversity in Southeast Asia, and its 
distribution spans the biotic interface region of Wallacea as well as the wider Malay 
Archipelago (Fig. 2.20). Species in section Bracteibegonia, which is exclusively distributed 
in Western Malesia (Fig. 2.20), form the sister clade to a clade which comprises all 59 
accessions of species placed in section Petermannia in the cpDNA phylogenetic trees 
(Figs. 3.5, 3.7-8). This Petermannia clade exhibits strong geographic structure. Ancestral 
area reconstructions and divergence age estimates for the stem lineage (6 Ma, 95% HPD: 
3-9) and the crown group (5 Ma, 95 % HPD: 3-7) of the Petermannia clade suggest that 
this large section originated in the Malesian Sunda Shelf region in the Late Miocene 
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or Early Pliocene. Within the Petermannia clade, western Malesian taxa form a well 
supported clade, which is the sister to a clade which comprises Wallacean, New Guinean 
and Philippine taxa (Fig. 3.7-8). The biogeographical analyses and mean divergence age 
estimates for the stem lineage (5 Ma, 95% HPD: 3-7) and crown group (5 Ma, 95% HPD: 
3-7) of this clade suggest that dispersal from the Sunda Shelf region across Wallace’s 
Line to Wallacea likely occurred in the Early Pliocene. The biogeographic analyses 
further suggest a spatial sequence of dispersals and diversifications form the Sunda 
Shelf region through Wallacea to New Guinea, and from New Guinea to the Philippines. 
Geological data indicates that there was never one clear overland track which allowed 
biotic exchange between the Sunda Shelf region, Sulawesi, the Philippines and New 
Guinea by overland migration in the Late Miocene, Pliocene, or even during phases of 
past sea-levels 120 m below present levels during the Pleistocene (Hall, 2001, 2009; 
Voris, 2000). However, the period from the Late Miocene onwards offered opportunities 
for dispersal to and across Wallacea as substantial land masses emerged in Sulawesi, and 
the emergence of numerous volcanic islands along the Sunda Arc, the Banda Arc and the 
Halmahera Arc offered potential avenues for dispersal by island hopping (Hall, 2001, 
2009). A migration from New Guinea to the Philippines in the Pliocene may have been 
facilitated by the emergence of volcanic islands of the Halmahera Arc (Hall, 2009), and 
putative genealogical connections of taxa between Northern New Guinea, Halmahera 
and Southern Philippines have been described by Michaux (2001) as the Melanesian arc 
track.

The strong geographic structure of the phylogenetic trees supports the hypothesis that 
subsequent to the dispersal to the major islands massive autochthonous radiations 
occurred. Mean diversification rates of 1.14 species/Ma (0.77-1.99 species/Ma)1 for the 
crown group of Begonia section Petermannia fall into the range of exceptionally high 
diversification rates which have been recently reported from several rapid plant and 
animal radiations (see Scherson et al., 2008; Valente et al., 2010, and references therein). 
The analyses included only low density samplings of New Guinean and Philippine species 
placed in Begonia section Petermannia, but also 38 accessions of Sulawesian species 
placed in the section representing a geographically robust sampling including over 50% 
of the known species as well as several putatively new species from the island (Thomas 
et al., 2009a; Thomas et al., 2009b). Within this sample there is no indication of exchange 
between neighbouring islands, except for the presence of Begonia rieckei. Begonia 
rieckei is the oldest published name in a taxonomically difficult species complex, which 
includes two taxa endemic to Sulawesi, B. koordersii Warburg ex L.B.Sm. & Wassh. and 

	  1This estimate is based on a mean age estimate of 4.9 Ma (the rate range in brackets is based on 
the lower and upper bounds of the 95% HPD; i.e. 2.8 and 7.2 Ma) for the crown group diversification in 
section Petermannia (Fig. 3.5), and a conservative assumption of 270 extant species in the section, and as-
sumes a random speciation Yule model: r = [ln(n1) − ln(n0)]/ t , where r = rate of species diversification; 
n0 = initial species diversity, here taken as 1; n1 = extant species; t = mean age estimate or upper or lower 
bound of the 95% HPD of the crown group divergence.
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B. strictipetiolaris Irmsch., but also B. rieckei (Sulawesi, Moluccas, New Guinea), B. 
pseudolateralis Warb. (Philippines), B. brachybotrys Merr. & L.M.Perry (New Guinea 
and surrounding islands), and B. peekelii Irmsch. (Bismarck Archipelago) (Hughes, 
2008). According to Hughes (2008), these taxa may be best considered as one widespread 
species, as they show only minor morphological differences. The presence of Begonia 
rieckei nested within a clade of Sulawesi endemics indicates that this species complex 
originated on the island, and subsequently became widespread east of Huxley’s Line 
(Fig. 3.1). Begonia rieckei shows conspicuous fruit and inflorescence syndromes, which 
are unusual in section Petermannia, and which may partially explain the colonization 
success of this species. First, their inflorescences and partial inflorescences are bisexual 
and do not exhibit effective dichogamy, while the inflorescences of the vast majority of 
species in section Petermannia are characterised by protogyny and a clear separation of 
a basal female part and a distal male part, or separate female and male inflorescences 
(Irmscher, 1914; Thomas et al., 2009b). It has not been investigated whether Begonia 
rieckei is autogamous, but numerous Begonia species were shown to be self-fertile in 
cultivation (East, 1940), and some Begonia species which lack effective dichogamy 
were found to be highly selfing in the wild (Ågren and Schemske, 1993). Autogamy is 
expected to be beneficial to colonization success, because a single individual is sufficient 
for colonisation, and autogamous plant lineages are well represented in current invasive 
floras (see Harmon-Threatt et al., 2009 and citations therein). Second, the fruits of 
Begonia rieckei exhibit a fleshy pericarp and reduced wings, while the vast majority of 
species in the section exhibit thin-walled capsules with well developed wings and a dry, 
membraneous pericarp at maturity. Tebbitt et al. (2006) hypothesised that some fleshy-
fruited species in section Platycentrum s.l. are dispersed by bats and other animals, and 
that zoochory may be a factor contributing to the unusually wide distributions of some 
taxa in the section. It can be speculated that zoochory may also occur in the fleshy-fruited, 
widespread Begonia rieckei complex. However, despite its wide distribution, the ecology 
of this species is only poorly known, and more cryptic physiological characteristics such 
as wider tolerances towards different soil types, pHs, light intensities, humidity levels and 
habitat disturbance may also explain the widespread distribution of this species.

Section Reichenheimia: Malesian species placed in section Reichenheimia form a strongly 
supported clade in the phylogenetic trees, and are apparently only distantly related to 
Indian, Sri Lankan and continental Asian species placed in this section (Fig, 3.5; see 
discussion of phylogenetic relationships in Chapter 2). This group is mainly distributed 
in the Sunda Shelf region, and most species have been described from the Malay 
Peninsula and Sumatra (Hughes, 2008; Kiew, 2005), while it is apparently absent from 
Continental Asian regions north of the Thai-Malay Peninsula, which show a monsoonal 
seasonal climate with pronounced dry seasons. Only Begonia muricata Blume, and a few 
putatively new species extend the distributional range to islands east of Wallace’s Line 
including the Lesser Sunda Islands (Sumba, Sumbawa), Buton and Wowoni, which lie 
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off the southeastern coast of the Southeastern arm of Sulawesi, and Seram (Fig. 2.19) 
(Hughes, 2008, for records from Southeast Sulawesi see Coode s.n. at K, L). The Sunda 
Shelf region is reconstructed as the likely ancestral area at stem and crown nodes of the 
Malesian Reichenheimia clade and divergence age estimates of the crown and stem nodes 
of a clade comprising two unidentified species from Sumbawa and Southeast Sulawesi 
indicate that migration from the Sunda Shelf region to Wallacea occurred sometime in the 
Late Miocene or Pliocene (Fig, 3.5, 3.7-8).

Section Diploclinium: Malesian species placed in the polyphyletic section Diploclinium 
include a large radiation on the Philippines (> 40 spp.) (Rubite, 2010), five species 
described from Borneo and seven species on New Guinea (Fig. 2.21) (Hughes, 2008; 
Hughes et al., 2010). The analyses only included samples from the Philippines (including 
Palawan), which limits their power to elucidate the historical biogeography of this 
group. Philippine species placed in section Diploclinium form a well supported clade in 
a subclade of Clade B which comprises several other major Malesian lineages (Fig. 3.5). 
The Sunda Shelf region is reconstructed as likely ancestral area at the stem node of this 
clade, but additional data from the Bornean and New Guinean species placed in section 
Diploclinium are needed to test whether Bornean and New Guinean lineages are nested 
within and derived from lineages of the large Philippine radiation, or whether Bornean 
taxa form early divergent lineages within this group, which would evoke an origin on 
Borneo and dispersal from Borneo to the Philippines along probable avenues for dispersal 
such as Palawan and the Sulu Archipelago (Atkins et al., 2001; Evans et al., 2003).

Section Platycentrum s.l.: Malesian species in section Platycentrum s.l. are predominantly 
distributed on the Malay Peninsula, Sumatra, and Java (Hughes, 2008). Only one 
species has been described from Borneo, and only few species extend the range of 
the section to the east of Wallace’s Line (Fig. 2.19). These eastern Malesian lineages 
belong to two taxonomically difficult complexes of fleshy-fruited species: the Begonia 
longifolia complex (Tebbitt, 2003) and the Begonia robusta complex (Hughes, 2008). 
Begonia longifolia is the most widespread species in Asia and its distribution ranges from 
Northeastern India, Bhutan, China, Indo-China, through the Malay Peninsula, Sumatra, 
Java, Bali to Sulawesi (Hughes, 2008; Tebbitt, 2003). Based on morphological data and 
current distributions, Tebbitt (2003) hypothesised that Begonia longifolia originated in 
the mountainous region between northeastern India and northern Vietnam, and migrated 
from there along mountain corridors to Malesia and Taiwan. Population genetic and 
phylogeographic approaches using data from highly variable markers and multiple 
accessions are needed to elucidate the historical biogeography of this species, but the 
biogeographical analyses clearly corroborate the hypothesis that ancestors of the Begonia 
longifolia complex first diversified on the Southeast Asian mainland and that the Malay 
Archipelago was subsequently colonized during the Pleistocene. The analyses indicate 
similar temporal and spatial patterns for the Begonia robusta complex, the distribution 
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of which extends from Sumatra and Java to the Lesser Sunda Islands, and Sulawesi 
(Hughes, 2008) (Fig. 3.7-8). Species in both these groups seem to have colonized large 
areas in Malesia in a relatively short period of time during the Pleistocene (Fig. 2.19), 
and the fleshy fruits and associated putative zoochory by bats and other animals (Tebbitt 
et al., 2006), as well as relatively wide ecological tolerances of some species (Tebbitt, 
2003) may, to a certain extent, explain their colonisation success. Moreover, the relatively 
recent origins of these groups in combination with putative good dispersal capabilities 
facilitating gene flow between populations may explain the relatively poor morphological 
differentiation within these widespread species complexes.

Section Parvibegonia: Only two of c. 30 species placed in section Parvibegonia were 
included in the analyses, but current distribution patterns in combination with the 
phylogenetic data and divergence age estimates provide the basis for some hypotheses about 
the historical biogeography of this group. Section Parvibegonia is diverse on the Asian 
mainland and the Malay Peninsula, but only five species extend the distributional range of 
the section to the island of Banka, which lies off the east coast of Sumatra, and to Java and 
the Lesser Sunda Islands (Fig. 2.19) (Hughes, 2008; Kiew, 2005). Many Malesian species 
in section Parvibegonia can resist drought by dying down during the dry season and by 
resprouting from tuberous perennating organs in the next rainy season. Although they are 
perennials, these species show a similar life strategy as drought avoiding annual plants. 
Most species in the section are small plants, i.e. a single plant produces a relatively low 
quantity of biomass, mature flowers are often developed relatively soon after resprouting 
and germination, and they profusely regenerate from the seed bank in the rainy season 
(see species descriptions in Kiew, 2005). These adaptations seems to be essential to 
survive dry seasonal extremes or more pronounced seasonal monsoonal climates with 
several dry months, not just on continental Southeast Asia (Phutthai et al., 2009), but also 
in the North of the Malay Peninsula (Kiew, 2005), eastern Java and the Lesser Sunda 
Islands (pers. obs.). In contrast to this, the majority of Malesian Begonia species depend 
on moist, shady habitats and more or less everwet conditions. The current distribution of 
species in section Parvibegonia may be partially correlated with the current climate in 
Malesia, which is characterised by predominantly everwet conditions on the Sunda Shelf 
in the west and the Sahul Shelf in the east, while parts of Wallacea and Java exhibit a drier 
monsoonal, seasonal climate (van Welzen et al., 2005). Section Parvibegonia is absent from 
large parts of the Sunda Shelf including Sumatra except for Bangka Island, and Borneo. 
However, four species have been described from Java, and Begonia tenuifolia extends the 
range of the section to the east of Wallace’s Line to the islands of Nusa Tenggara Barat 
(Fig. 2.20) (Hughes, 2008). The record of the widespread and variable species Begonia 
sinuata from Bangka Island is interesting, as paleogeographic reconstructions indicate 
that Bangka Island was part of a land corridor, which connected the Malay Peninsula with 
Borneo and southwest Sumatra and at times with eastern Java in the Late Miocene and 
Pliocene. Continental Asia is reconstructed as the most probable ancestral area at the stem 
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node of the Parvibegonia clade (Fig. 3.7-8), and it can be hypothesised that ancestors of 
the Malesian lineages in section Parvibegonia, which were likely preadapted to seasonal 
climates, successfully colonized the Malesian Sunda Shelf region from the mainland via 
the Malay Peninsula and possibly via a land corridor which included Bangka Island. This 
migration may have been facilitated by phases of low sea-levels and more widespread 
seasonal climates caused by glacioeustatic fluctuations in the Pliocene and Pleistocene. It 
can be further speculated that phases of more widespread everwet conditions may have 
resulted in retractions of the distributions of Malesian species in section Parvibegonia 
because they were outcompeted by species which were better adapted to these climatic 
conditions. Van Welzen et al. (2005) hypothesised similar scenarios for the historical 
biogeography of some grass species in the genus Arthraxon P.Beauv. which show disjunct 
distributions on the Asian mainland and in the more seasonal areas of Java and Wallacea, 
but are largely absent from the everwet Sunda and Sahul Shelf regions apart from several 
locally dryer areas most of which are influenced by mountain rain shadows. 

3.4.2.4 Drivers of diversification in Southeast Asian Begonia
Molecular age estimates indicate that lineages in Begonia section Petermannia have 
diversified rapidly since the Pliocene with diversification peaking in the Pleistocene 
(Figs. 3.7-8), and massive autochthonous radiations occurred on Borneo (c. 90 spp.), 
Sulawesi (c. 35 spp.), New Guinea (c. 70 spp.) and the Philippines (c. 65 spp.) resulting 
in almost entirely endemic Begonia floras (Girmansyah, 2009; Girmansyah et al., 2009; 
Hughes, 2008; Hughes and Coyle, 2009; Hughes et al., 2010; Hughes et al., 2009; Kiew 
and Sang, 2009; Thomas et al., 2009a; Thomas et al., 2009b; Thomas and Hughes, 
2008). The timing of diversifications coincides with substantial orogenesis on Sulawesi, 
New Guinea and the Philippines (Hall, 2001, 2009). Many Southeast Asian species 
in Begonia are local endemics restricted to rather narrow altitudinal ranges in single 
mountain chains or even a single peak or valley (Hughes, 2008; Kiew, 2005; Sands, 
2001). Examples for local endemism come from the mountain flora of Mt. Kinabalu 
(4094 m) on Borneo, from which 17 indigenous Begonia species have been described 
(Sands, 2001). Fourteen of the 17 species, most of which are confined to altitudinal 
ranges in upland and montane rain forests, are only known from the Kinabalu massif 
(Sands, 2001). Similar patterns can be observed in the Cameron Highlands of the Malay 
Peninsula (Kiew, 2005), and the less well-studied mountain floras of Sulawesi and New 
Guinea. Three Begonia species placed in section Petermannia (B. hekensis D.C.Thomas, 
B. stevei M.Hughes, B. varipeltata D.C.Thomas) were described from Gunung Hek in 
eastern Central Sulawesi (Hughes, 2006; Thomas et al., 2009b; Thomas and Hughes, 
2008). These species are morphologically very distinct from each other with regards to 
both vegetative and generative characters (see Appendix 1), but all of them fall into a well 
supported clade in the cpDNA phylogenetic tree indicating a local radiation, in which 
a high degree of morphological differentiation evolved in a relatively short period of 
time (Fig. 3.5). Considering the preponderance of narrow endemics in Southeast Asian 
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Begonia, the majority of which are confined to upland or montane primary rainforests, and 
the strong genetic and morphological differentiation of subpopulations of some Begonia 
species at very local scales indicating very limited dispersal capabilities and limited 
gene flow between populations (Hughes and Hollingsworth, 2008; Hughes et al., 2003; 
Matolweni et al., 2000), it can be hypothesised that the presence of geologically dynamic 
highlands on Borneo and the formation and patchy distribution of suitable habitats by 
orogenesis on Sulawesi, the Philippines and New Guinea was likely a crucial factor in 
the diversification in Begonia in the Southeast Asian tropics. Moreover, the concentration 
of rapid diversification in Southeast Asian Begonia in the Plio- and Pleistocene coincides 
with pronounced climate and sea-level fluctuations, which have been proposed as crucial 
drivers of diversifications in the tropics (e.g. Haffer, 1969, 1997: Amazonian forest birds; 
Gorog et al., 2004: Southeast Asian murine rodents; Harris et al., 2000: Aframomum 
K.Schum., Zingiberaceae; Janssens et al., 2009: Impatiens L., Balsaminaceae; Quek et 
al., 2007: Southeast Asian ants; Richardson et al., 2001: Inga Mill., Fabaceae; Sosef, 
1994: African Begonia, Begoniaceae). Fragmentation and replacement of rainforests by 
seasonal vegetation due to drier and cooler climates during the Pleistocene may have 
been less pronounced in Southeast Asia and may have followed different patterns than in 
other tropical areas (Cannon et al., 2009; Morley, 2000, 2007), but climate fluctuations 
may still have provided isolating mechanisms when montane rainforests expanded and 
contracted and Begonia populations were forced to migrate following their required 
habitat conditions, which may have resulted in frequent isolation and amalgamation 
of populations. Moreover, eustatic sea-level changes and associated land exposure and 
submergence may have had an impact on the diversification of lowland rainforest species, 
especially in the Sunda Shelf region and the Philippines. Paleogeographic reconstructions 
show that land bridges connected the current major islands in the Sunda Shelf region 
during substantial phases of the Pliocene, and that there were almost continuous land 
connections between continental Southeast Asia and the islands of Sumatra, Java and 
Borneo for most of the last 2 Ma (Hall, 2009; Woodruff, 2010), which may have facilitated 
migrations between the islands and expansion of the distributions of lowland species of 
Begonia. Fragmentation of more widespread populations during phases of high sea-levels 
may have led to disjunct distributions and allopatric speciation. Van Welzen et al. (van 
Welzen et al., 2005) pointed out that phylogenetic trees of various plant taxa distributed 
on the Sunda Shelf indicate a pattern of vicariance and exchange between the western 
Malesian islands. Multiple exchanges between Sumatra and Borneo are also indicated in 
the phylogenetic trees, in which Sumatran and Bornean species placed in Begonia section 
Petermannia form mixed assemblages within a Western Malesian clade.
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3.5 Summary and Conclusions

The geographically structured phylogenetic trees and the divergence age estimates suggest 
a biogeographical scenario involving initial diversification of Southeast Asian Begonia 
on the Asian mainland in the Miocene and multiple subsequent dispersals into Malesia. 
Overland migration sufficiently explains dispersal from continental Asia to Malesia and 
migrations across the Sunda Shelf region, as substantial parts of the Sunda Shelf region 
were terrestrial and connected with continental Asia throughout most of the Miocene and 
onwards and potentially provided contiguous habitats suitable for Begonia (Fig. 1.2) (Hall, 
2001, 2009). Biogeographic analyses further indicate that the predominant directional 
trend of dispersals between continental Asia and Malesia as well as within Malesia has 
been from west to east, including at least four independent area transitions from continental 
Asia and the Sunda Shelf region across Wallace’s Line to Wallacea dating from the Late 
Miocene to the Pleistocene (see Table 3.7). The inferred large scale diversification patterns 
seem to be correlated with the geological processes in the region. While parts of western 
Malesia were terrestrial throughout the Oligocene, Miocene and onwards, substantial 
land east of Wallace’s Line, in Wallacea and New Guinea, only emerged during the Late 
Miocene and Pliocene (Hall, 2001, 2009). The divergence ages suggest that once land 
became available in Wallacea, at least four Begonia lineages independently dispersed into 
the region east of Wallace’s Line. However, the monophyly of a large eastern Malesian 
clade, which comprises all samples of Sulawesian, New Guinean and Philippine species 
placed in section Petermannia, as well as the monophyly of the well sampled Sulawesian 
species of this section, show that despite high species numbers on the major islands and 
island groups in eastern Malesia, there is no indication for frequent dispersal between 
Wallacea and the Malesian Sunda Shelf region. Dispersal across the ancient deep water 
channels separating intervening islands of the Sunda Shelf and Wallacea and subsequent 
successful colonisation of Wallacean islands seem to have been rather infrequent events, 
suggesting that the water bodies which have separated the Sunda Shelf region from 
Wallacea have been distinct, yet porous barriers to dispersal in Begonia. Dispersal of 
multiple Begonia lineages from the Sunda Shelf region to Wallacea occurred within the 
last 10 Ma, and likely within a Plio- to Pleistocene timeframe. Dated phylogenetic trees 
of taxa which are well represented with regard to species numbers on all major Malesian 
islands are still rare, but diversification patterns of several other plant taxa show similar 
spatial and temporal sequences with predominantly west to east migrations, and dispersal 
from the Sunda Shelf region to Sulawesi and New Guinea in the Middle to Late Miocene 
(Muellner et al., 2008: Aglaia Lour., Meliaceae; Su and Saunders, 2009: Pseuduvaria 
Miq., Annonaceae; Poulsen, 2009: Etlingera Giseke, Zingiberaceae; Twyford, 2009: 
Rhododendron L. subgenus Vireya, Ericaceae). The period from the Late Miocene onwards 
offered opportunities for dispersal to and across Wallacea to New Guinea as substantial 
land masses emerged in Sulawesi and New Guinea, and the emergence of volcanic islands 
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along the Sunda Arc, the Banda Arc and the Halmahera Arc offered potential avenues 
for dispersal by island hopping (Hall, 2001, 2009). Tectonic migration, i.e. rafting on 
continental microfragments has been proposed as another potential mechanism aiding 
dispersal into and within Malesia (Ladiges et al., 2003; Michaux, 1991; Morley, 2000; 
1998). The Makassar Strait extended by block faulting and subsidence, separating 
a fragment from Borneo and forming a deep water channel in the Eocene, and the 
separated fragment subsequently amalgamated with elements of volcanic, ophiolitic, and 
Australian continental origin to form the composite island of Sulawesi (Hall, 2001, 2009; 
Morley, 2000; Moss and Wilson, 1998; Ridder-Numan, 1996). However, the molecular 
divergence age estimates indicate that the extension of the Makassar Straits in the Eocene 
long preceded the diversification of Begonia within Malesia, and palaeogeographic 
reconstructions suggest that the continental microfragments which amalgamated to form 
parts of Sulawesi were submerged during long phases of the migration to their current 
position (Hall, 2001, 2009). Thus, it is unlikely that tectonic migration was an important 
factor in the dispersal and diversification of Begonia in Malesia.

Lineages in the largest Asian section, section Petermannia, diversified rapidly since the 
Pliocene with diversification peaking in the Pleistocene. The timing of diversification 
coincides with massive orogenesis on Sulawesi and New Guinea, as well as pronounced 
sea-level and climate fluctuations. It can be hypothesised that a complex interplay 
of extrinsic and intrinsic factors including the presence and formation of suitable 
microhabitats by orogenesis, cyclical vicariance by frequent habitat fragmentations and 
amalgamations caused by sea-level and climate fluctuations, as well as only weakly 
developed mechanisms to maintain species cohesion in fragmented habitats in Begonia 
could have driven speciation in allopatry and could have resulted in the remarkable 
Begonia species diversity found in Asia today.
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CHAPTER 4. General conclusions

Studies of the diversifications in giant genera such as Astragalus L., Begonia, Croton 
L., and Impatiens, have provided insights into the processes which underlie modern 
patterns of biodiversity (Sosef, 1994: African Begonia; Wojciechowski et al., 1999: 
Astragalus; Plana et al., 2004: African Begonia; Berry et al., 2005: Croton; Scherson 
et al., 2008: Astragalus; Jannsens et al., 2009: Impatiens). However, because of their 
sheer size and their morphological complexity, robust alpha-taxonomic foundations and 
a good understanding of the phylogenetics of major lineages within mega-diverse genera 
have often remained elusive, impeding biogeographical and evolutionary research. 
Considerable progress has recently been made on the systematics and phylogenetics 
of species-rich Asian Begonia, which has a great potential as model group to study 
patterns of diversifications in the Asian tropics. Important advances in the research on 
this group include the conspectus of sections of Begonia by Doorenbos et al. (1998), the 
well resolved framework phylogeny of Begoniaceae by Goodall-Copestake (2005), and 
The Southeast Asian Begonia Database (Hughes and Pullan, 2007) and The Annotated 
Checklist of Southeast Asian Begonia (Hughes, 2008), which have greatly facilitated 
alpha-taxonomic work in the region. The alpha-taxonomic foundation of Asian Begonia 
studies has been improved by the revision of Begonia from the Malay Peninsula (Kiew, 
2005), the recent Flora of China treatment of the genus (Ku et al., 2007), and over 50 
publications describing new species of Asian Begonia which have been published since 
Golding and Wasshausen’s synopsis (2002) (see ISI Web of Knowledge: http://apps.
isiknowledge.com). Several other flora treatments and regional revisions have recently 
been completed or are underway (Grierson, 1991: Bhutan; Sangeeta Rajbhandary, 
Tribhuvan University, Kathmandu, Nepal, pers. com.: Nepal; Thamarat Phutthai, Prince 
of Songkla University, Hat Yai, Thailand, pers. com.: Thailand; Mark Hughes, Royal 
Botanic Garden Edinburgh, UK, pers. com.: Sumatra; Girmansyah, 2009: Bali and 
Lombok; Deden Girmansyah, Cibinong Science Centre, Cibinong, Indonesia, pers. com.: 
Java and the Lesser Sunda Islands; Harry Wiriadinata, Deden Girmansyah, Cibinong 
Science Centre, Cibinong, Indonesia, pers. com.: Sulawesi; Hughes and Coyle, 2009, 
Hughes and Coyle, 2010: Palawan; Rubite, 2010: section Diploclinium on the Philippines; 
Gagul, 2009: section Symbegonia on New Guinea). Moreover, molecular phylogenetic 
studies have identified several polyphyletic Asian sections and the homoplasy of some 
characters traditionally used to define sections (Badcock, 1998; Forrest, 2001; Forrest 
and Hollingsworth, 2003; Forrest et al., 2005; Tebbitt et al., 2006). However, the poorly 
resolved deeper internal relationships within published phylogenies of Asian Begonia, 
most of which are based on fast evolving nrDNA markers, have been an impediment to 
a better understanding of the evolution and biogeography of this group (Badcock, 1998; 
Forrest, 2001; Forrest and Hollingsworth, 2003; Forrest et al., 2005; Tebbitt et al., 2006). 
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The results of the phylogenetic reconstructions based on ITS and non-coding chloroplast 
sequence data presented here (Chapter 2), demonstrate the value of moderately fast 
evolving non-coding cpDNA markers in phylogenetic reconstructions of Southeast Asian 
Begonia. The phylogenies derived from analyses of the non-coding plastid data presented 
in this thesis provide for the first time a reasonably resolved and supported phylogenetic 
framework for Asian Begonia, which clarifies aspects of the character evolution within 
this species-rich and morphologically complex taxon. Some taxonomic consequences can 
immediately be derived from the results, and the formal description on sectional level of 
two monophyletic, morphologically distinct predominantly Malesian groups of species 
currently placed in sections Diploclinium and Reichenheimia are underway (Rubite, 
2010; Mark Hughes, Royal Botanic Garden Edinburgh, UK, pers. com.). However, before 
a comprehensive, stable and natural reclassification of Asian Begonia can be achieved 
further phylogenetic studies including a broader taxon sampling of several Indian, Sri 
Lankan and continental Asian lineages which were are currently placed in the highly 
polyphyletic sections Diploclinium and Reichenheimia are needed.

Whole chloroplast genomes of sixteen Begonia species, including the Socotran Begonia 
socotrana and the Asian B. varipeltata and B. venusta, have been sequenced and 
assembled in the Kidner lab at the Royal Botanic Garden Edinburgh (Catherine Kidner, 
Nicola Burton, Royal Botanic Garden Edinburgh, UK, pers. com.), and comprehensive 
comparisons of coding and non-coding cpDNA region variability based on this sample 
will greatly facilitate the identification of suitable markers for phylogenetic analyses at 
various taxonomic levels. This research will also pave the way for phylogenetic work 
in Begonia based on whole or large scale chloroplast genome data, which may have the 
power to resolve the basal relationships within the Socotran-Asian clade, as well as the 
relationships between section Ridleyella, Malesian Diploclinium, Malesian Reichenheimia 
and the monophyletic group which comprises sections Bracteibegonia and Petermannia, 
which have remained elusive. However, the observed conflicting positions of some taxa in 
nrDNA ITS and cpDNA gene trees indicate that reticulation may have been an important 
factor in the evolution of Begonia (Chapter 2). A single genome approach, even if based on 
large quantities of cpDNA sequence data, has very limited power to detect and investigate 
the processes which cause phylogenetic incongruence in Begonia. Independent sources 
of molecular phylogenetic data such as sequence data from mitochondrial regions and 
unlinked nuclear genes are needed to further investigate the impact of reticulation in 
the evolutionary history of Begonia. Once multiple independent datasets are generated, 
phylogenetic network methods may be more appropriate than standard MP, ML and 
Bayesian phylogenetic reconstruction methods to detect and quantify factors such as 
reticulation and homoplasy which can lead to gene tree conflict (Huson and Bryant, 2006; 
Vriesendorp and Bakker, 2005).
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The molecular divergence age estimates in combination with biogeographical analyses 
based on non-coding cpDNA sequence data indicated broad scale patterns of the temporal 
and spatial diversification of Begonia in Southeast Asia, and allowed hypothesising about 
potential geological and climatic correlates (Chapter 3). The inferred west to east trend in 
the colonization of the Malay Archipelago and in dispersal across Malesia, and the likely 
timing of crossings of purported barriers to dispersal in Malesia from the Late Miocene 
onwards are largely concordant with both hypotheses about the palaeogeography of 
the region (Hall, 2009) and spatio-temporal diversification patterns observed in other 
taxa (Muellner et al., 2008: Aglaia, Meliaceae; Su and Saunders, 2009: Pseuduvaria, 
Annonaceae; Poulsen, 2009: Etlingera, Zingiberaceae; Twyford, 2009: Rhododendron 
subgenus Vireya). The preponderance of narrow endemics, the limitation to primary 
habitats, and apparently low dispersal capabilities of Begonia make the genus not only 
an excellent model group to investigate biogeographical patterns at the intercontinental 
(Goodall-Copestake, 2005) or continental scale (Plana et al., 2004: Africa; this study: Asia), 
but also at much narrower, regional levels. For example, the phylogenetic relationships of 
the geographically robust sample of Begonia section Petermannia from Sulawesi included 
in the cpDNA phylogeny exhibits distinct subclades of species endemic to the Northern 
arm, the Southwestern arm and the Southeastern arm of the island. Phylogenetic and 
phylogeographic studies of patterns of Begonia diversification based on geographically 
robust samplings may provide valuable insights into the geological and evolutionary 
processes underlying current Begonia distribution patterns on the major Malesian islands, 
and could be used to test hypotheses about postulated local areas of endemism and the 
factors shaping them (Evans et al., 2003).

The rationale of the biogeographical inference approach adopted here (Chapter 3) was to 
focus on the detection of pattern congruence between cladogenesis, molecular divergence 
ages, and geological or climatic events indicated by palaeogeographical and climatic 
reconstructions. This approach did not directly include geographical constraints, e.g. 
a higher likelihood of area transitions between neighbouring areas than between more 
distant areas, or constraints placed on the timing of area transitions based on the presence 
or absence of windows of dispersal opportunity as indicated by postulated emergence 
or submergence of land bridges in Malesia in palaeogeographic reconstructions, in the 
inferences. An alternative approach is outlined by Sanmartin et al. (2008) and Ree and 
Sanmartin (2009), who convincingly argue for an integration of organismal phylogenies, 
divergence age estimates, and information about historical landscapes in inferences of 
the range evolutions of taxa. The methodologies of their model approaches are in an 
early stage. Modelling can be a powerful tool for the inference of range evolution on 
volcanic island chains or archipelagos, whose geological history is relatively simple and 
well understood, but complex region histories as in Southeast Asia make model parameter 
definition more problematic (Ree and Sanmartin, 2009). However, using the existing 
detailed geological and palaeogeographic reconstructions of Southeast Asia (Hall, 2002, 
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2009) as a framework for model approaches, and rigorously testing the sensitivity of 
results to parameter variation, may be a way to integrate disparate sources of available 
data and to test hypotheses about the range evolution of Begonia lineages in the region 
(Ree and Webb, 2009).

The active and often cooperative research on Southeast Asian Begonia has resulted in a 
comprehensive checklist (Hughes, 2008), an online database which provides protologue, 
type and specimen information and pictures (Hughes and Pullan, 2007), as well as in a large 
body of alpha-taxonomic studies and flora treatments. Given this taxonomic foundation, 
the existing and growing taxonomic expertise, and the insights into the phylogenetics 
and historical biogeography presented here, the ambitious aim of a modern conspectus of 
Southeast Asian Begonia seems to be within reach.
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BEGONIA VAR IPELTATA (BEGONIACEAE ) :

A NEW PELTATE SPEC IES FROM

SULAWES I , INDONES IA

D. C . THOMAS
1 & M. HUGHES

2

A new species of Begonia (Begoniaceae), B. varipeltata D.C.Thomas, is described from the 

Indonesian island of Sulawesi. It exhibits peltate leaves, which are rare in Begonia section 

Petermannia, to which it belongs. 

Keywords. Begonia, new species, peltate, Sulawesi. 

Introduct ion

The Indonesian island of Sulawesi (formerly more commonly known as Celebes) has 

been of prime interest to biogeographical research for almost 150 years (e.g. Wallace, 

1860; Whitmore, 1981; Van Balgooy, 1987; Evans et al., 2003; Mendum & Atkins, 

2004; Van Welzen et al., 2005). There are several reasons for this: (i) the island’s 

complex geological history, in which fragments of different tectonic plates were 

amalgamated (Hall, 2002); (ii) Sulawesi’s location at the western border of Wallacea, 

an interface region where Asian and Australian biotas meet (Van Welzen et al., 

2005); and (iii) Sulawesi’s apparent floristic and faunistic separation from its 

nearest neighbouring island, Borneo (Wallace, 1860; Whitmore, 1981; Van Welzen 

et al., 2005). 

The taxonomy of many species-rich genera on Sulawesi (e.g. Cyrtandra and 

Aeschynanthus (Gesneriaceae) – Mendum & Atkins, 2004; Begonia (Begoniaceae) –  

Hughes, 2006; Hughes & Pullan, 2007), which would be ideal subjects for bio

geographical studies, is very poorly known and revisions are needed. Thirty-one 

indigenous Begonia species have been described from Sulawesi (Doorenbos et al., 

1998; Doorenbos, 2000; Tebbitt, 2005; Hughes, 2006; Hughes & Pullan, 2007), but ‘it 

is likely that a complete account of Sulawesi Begonia will more than double this 

total’ (Hughes & Pullan, 2007). Recent expeditions to Sulawesi organised by the 

Royal Botanic Garden Edinburgh (RBGE) have brought to light several new 

Begonia species (Hughes, 2006), and another new species, which was brought into 

cultivation at RBGE, is described below. The majority of Begonia species from 

Sulawesi are classified in Begonia section Petermannia (27 species); one introduced 

1 Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, Scotland, UK. 

E-mail: d.thomas@rbge.ac.uk 
2 Singapore Botanic Gardens, 1 Cluny Road, Singapore 259569. E-mail: mark_hughes@nparks.gov.sg 

Appendix 1. Additions to the Begonia flora of Sulawesi, Indonesia.



143APPENDIX

370  D .  C .  T H O M A S  &  M .  H U G H E S  

species, Begonia hirtella Link, belongs to Begonia section Doratometra (Doorenbos 

et al., 1998; Hughes & Pullan, 2007), and the remaining species belong to Begonia

section Sphenanthera (to the ‘Begonia longifolia Blume complex’; see Tebbitt, 1997, 

2003). The new species described below is classified in Begonia section Petermannia

because it exhibits typical characters of the section: protogynous inflorescences, bifid 

placentae and anthers with unilaterally positioned slits (Fig. 1). 

All available Begonia specimens from B, BM, E, K, L and SING (plus photo­

graphic duplicates from BO) have been consulted, and hence it must be assumed, at 

least until more intensive collecting in Sulawesi may reveal otherwise, that this 

species has a very restricted range. Figure 2 shows the collecting localities in Central 

Sulawesi (Tengah). 

Cultivated material grown from the same seed collection as the holotype was used 

to supplement the description. 

Begonia varipeltata D.C.Thomas, sp. nov. Sect. Petermannia. Fig. 1.

Begoniae macintyreanae M.Hughes similis a qua caulibus pendulis (non erectis) 

et foliis aliquantis peltatis (non omnibus basifixis) differt. – Type: Cultivated at the 

Royal Botanic Garden Edinburgh, from seed collected in the wild (Indonesia, 

Sulawesi, Tengah, Luwuk District, Bunta Subdistrict, Sumber Agung Village, 

Sungai SPA, 00°09912.60S, 122°09928.80E, 200 m), 24 ix 2007, D.C. Thomas 07-21 

(holo E; iso L). 

Perennial, monoecious herb. Stems woody at base, to 12 mm across, erect for 

30–70 cm in the basal part, but pendent in the more distal part, the pendent part up 

to 54 cm long, internodes 3–10.2 cm long, glabrous. Leaves alternate, excentrically 

peltate or both excentrically peltate and basifixed leaves present; stipules 14–23 3
4–10 mm, oblong or narrowly elliptic, cymbiform with abaxially prominent midrib 

forming a thin, c.1–2 mm long appendage at the apex, caducous; petioles 1.2–4.2 cm 

long, glabrous; lamina very asymmetric, ovate, narrowly elliptic or oblong, 9.7–21.5 3

3.1–6.9 cm, margin irregularly serrate to dentate, glabrous, dark green above and 

pale green below, venation palmate-pinnate, base cordate (basifixed leaves) with 

not or only slightly overlapping lobes, apex acuminate. Inflorescences bisexual 

or unisexual, protogynous, cymose, composed of (0–)1 basal, female (partial-) 

inflorescence with 2 female flowers and (0–)1–6 distal, male (partial-) inflorescen­

ce(s), each with 2–7 cymose branching points, dichasial or with dichasial branching 

in the basal part and monochasial branching in the distal part, with c.5–30 flowers. 

Male flowers: pedicels 2–14 mm; tepals 2, broadly ovate to subcircular, 6–10 3
5–11 mm, base cuneate to truncate or tepal margin convex at base, apex rounded, white 

or pinkish, glabrous; androecium of c.25–30 stamens, yellow, symmetric, filaments 

slightly fused at the base, unequal, the longer in the middle, anthers obovate, slightly 

longer than to c.2 times shorter than the filaments, c.0.7–1.2 mm long, dehiscing 

through unilaterally positioned slits . ½ as long as the anther, connective not 

extended. Female flowers: pedicels 9–26 mm; tepals 5, obovate, unequal, 9–16 mm long, 
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FIG. 1. Begonia varipeltata D.C.Thomas. A, habit (scale bar 5 30 cm); B, peltate leaves (scale 

bar 5 15 cm); C, stipule (scale bar 5 2 cm); D, female partial inflorescence (scale bar 5 2 cm); 

E, female flower (scale bar 5 1.5 cm); F, ovary, cross-section, 3-locular with bifid placentae 

(scale bar 5 2 mm); G, male inflorescence of 6 dichasial–monochasial male partial inflorescen

ces (scale bar 5 10 cm); H, male partial inflorescence with dichasial branching pattern (scale 

bar 5 1.2 cm). A, E, G, H: D.C. Thomas 07-22; B, C, D, F: D.C. Thomas 07-21. 

the four outer 5–12 mm wide, the innermost 3–7 mm wide, white, glabrous; ovary 

8–12 mm long, 3-locular, placentation axile, placentae bifid, ovary 3-winged, wings 

subequal, 12–14 mm long and 5–11 mm wide at the widest point (in the most distal 

part), apex truncate or with convex margins, base with convex margins or cuneate, 
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FIG. 2. Distribution of Begonia varipeltata in eastern Central Sulawesi (Tengah). d 5
collection locality. 

glabrous; style fused only in the very basal part, 3-branched, each stylodium 

bifurcate in the stigmatic region, deciduous, stigmatic surface a twice spirally twisted 

papillose band, greenish-yellow or yellow. Fruits pendulous, 3-winged, wing shape as 

for ovary, dehiscent, drying pale brown, glabrous. Seeds barrel-shaped, c.0.3 mm 

long, collar cells c.2⁄3 the length of the seed. 

Distribution. Endemic to Sulawesi. Known only from two collections from the 

Luwuk District, Bunta Subdistrict, Sumber Agung, Sungai SPA in eastern Central 

Sulawesi (Tengah) (Fig. 2). 

Habitat. Growing on rock walls along the sides of river banks and in disturbed 

primary forest at low altitudes (two collections at 92 m and 200 m, respectively). 

Proposed IUCN conservation category. VU D2. The likelihood that this species has a 

very restricted range in an area which shows clear signs of anthropogenic distur

bance, especially timber harvesting, and which has no legal protection as a national 

park, wildlife or forest reserve, makes it ‘prone to the effects of human activities or 
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stochastic events within a very short time period in an uncertain future’ (IUCN, 

2001). 

Additional specimens examined. SULAWESI. Tengah: Luwuk District, Bunta Subdistrict, Sumber 

Agung, Sungai SPA, 92 m, 24 ii 2004, Hendrian, M. Newman, S. Scott, M. Nazre Saleh &

D. Supriadi 858 (E!); Cultivated RBGE, from seed collected in the wild in Luwuk District, 

Bunta Subdistrict, Sumber Agung Village, Sungai SPA, 00°09912.60S, 122°09928.80E, 200 m, 

D.C. Thomas 07-22 (E). 

The epithet varipeltata refers to the variable transition of petiole and lamina in this 

species, which ranges from basifixed, to strongly excentrically peltate to almost cen

trally peltate. This great variation is similar to the condition described for Begonia

amphioxus Sands (Sands, 1990). However, Begonia amphioxus clearly differs from 

B. varipeltata in both vegetative and generative morphology – for example, B.

amphioxus has male flowers with four tepals, two-locular and usually two-winged 

ovaries, and distinctly narrower, spotted leaves (see Sands, 1990). Peltate species are 

rare in Begonia section Petermannia (only Begonia amphioxus and B. baramensis

Merr.), and no peltate species of Begonia have been described from Sulawesi before. 

However, an analysis of all available Begonia specimens from Sulawesi in B, BM, E, 

K, L and SING (plus photographic duplicates from BO) showed that there are 

several undescribed peltate Begonia species from Sulawesi, which will be described in 

a subsequent paper. 
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TWO NEW SPEC IES OF BEGONIA

(BEGONIACEAE ) FROM CENTRAL SULAWES I ,

INDONES IA

D. C. THOMAS
1, W. H. ARD I

2 & M. HUGHES
3

Two new species of Begonia (Begoniaceae), Begonia ozotothrix and Begonia hekensis, are

described from the Indonesian island of Sulawesi. Both species belong to Begonia section

Petermannia. Begonia ozotothrix is unusual amongst Asian Begonia in having branched

trichomes on the stems, petioles and the abaxial lamina surfaces, and it is unusual

amongst species of Begonia section Petermannia in having extremely compressed cymose-

subumbellate male partial inflorescences.

Keywords. Begonia section Petermannia, inflorescence, new species, Sulawesi, trichome.

Introduct ion

Thirty-two indigenous species of Begonia L. have been reported from the Indonesian

island of Sulawesi (Table 1; Hughes, 2008; Thomas & Hughes, 2008). A revision of

two difficult species complexes containing some widespread taxa, the Begonia longi-

folia Blume complex and the Begonia rieckei Warb. complex (Table 1), may result in

a reduction of the number of currently accepted names in the Sulawesi Begonia flora

through synonymy, reduction to infraspecific rank and correction of misidentifica-

tions (see discussions on synonymy and species boundaries in these two complexes in

Tebbitt, 1997, 2003; Tebbitt & Dickson, 2000; Hughes, 2008). However, most species

from Sulawesi are local endemics and morphologically very distinct, and a close

examination of all available Begonia specimens from Sulawesi from A, B, BM, BO,

CEB, E, K, L and SING indicates that there are numerous endemic species awaiting

description. The majority of Begonia species from Sulawesi are classified in Begonia

section Petermannia (Klotzsch) A.DC. (Doorenbos et al., 1998; Hughes, 2008) (28

species, including the four closely related or conspecific taxa in the B. rieckei

complex). Four species have been classified in Begonia section Sphenanthera (Hassk.)

Warb. (including the three closely related or conspecific taxa in the B. longifolia

1 Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, Scotland, UK. E-mail:

d.thomas@rbge.ac.uk
2 Center for Plant Conservation, Bogor Botanic Garden, Jl. Ir. H. Juanda No. 13, Bogor 16003, Indonesia.
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complex, and B. robusta Blume), which was shown to be paraphyletic with respect to

Begonia section Platycentrum (Klotzsch) A.DC. (Tebbitt et al., 2006).

All recent expeditions to Sulawesi organised by the Royal Botanic Garden

Edinburgh (RBGE) have brought to light some new species of Begonia (Hughes,

2006; Thomas & Hughes, 2008). This is not surprising given that, firstly, the mega-

diverse genus Begonia has a centre of diversity in Southeast Asia; secondly, fewer

botanical collections have been made on Sulawesi than on any other major island in

Indonesia, and from several large regions of Sulawesi only a very small number of

TABLE 1. Indigenous Begonia species of Sulawesi

Section Species/species complex

Petermannia Begonia bonthainensis Hemsl.

Begonia capituliformis Irmsch.

Begonia carnosa (Teijsm. & Binn.) Teijsm. & Binn.

Begonia celebica Irmsch.

Begonia chiasmogyna M.Hughes

Begonia cuneatifolia Irmsch.

Begonia flacca Irmsch.

Begonia gemella Warb. ex L.B.Sm. & Wassh.

Begonia grandipetala Irmsch.

Begonia hekensis D.C.Thomas

Begonia heteroclinis Miq. ex Koord.

Begonia hispidissima Zipp. ex Koord.

Begonia humilicaulis Irmsch.

Begonia imperfecta Irmsch.

Begonia insularum Irmsch.

Begonia macintyreana M.Hughes

Begonia masarangensis Irmsch.

Begonia mendumiae M.Hughes

Begonia ozotothrix D.C.Thomas

Begonia rachmatii Tebbitt

‘Begonia rieckei Warb. complex’

Begonia koordersii Warb. ex L.B.Sm. & Wassh.

Begonia pseudolateralis Warb.

Begonia rieckei Warb.

Begonia strictipetiolaris Irmsch.

Begonia sarasinorum Irmsch.

Begonia siccacaudata J.Door.

Begonia sphenocarpa Irmsch.

Begonia stevei M.Hughes

Begonia strachwitzii Warb. ex Irmsch.

Begonia varipeltata D.C.Thomas

Sphenanthera ‘Begonia longifolia Blume complex’

Begonia aptera Blume

Begonia longifolia Blume

Begonia renifolia Irmsch.

Begonia robusta Blume
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specimens has been collected (Kessler et al., 2002; Cannon et al., 2007); and thirdly,

Sulawesi Begonia have never been revised. Two further species collected on a joint

expedition of the RBGE and Bogor Botanic Garden are described below. They are

classified in Begonia section Petermannia as they exhibit typical characters of the

section: protogynous, two-flowered female inflorescences, three-locular ovaries with

axile placentation and bilamellate placentae, fruits with equal or subequal wings, and

anthers with unilaterally positioned slits (Figs 1, 2). All available Begonia specimens

from A, B, BM, BO, CEB, E, K, L and SING have been consulted, and hence it must

be assumed, at least until more intensive collecting on Sulawesi may reveal otherwise,

that these two species have restricted ranges and are endemic to Central Sulawesi

(Sulawesi Tengah) (Fig. 3).

Spec ie s Descr ipt ions

Begonia ozotothrix D.C.Thomas, sp. nov. Sect. Petermannia. Figs 1, 3–5.

Ab aliis speciebus sectionis Petermanniae in caule, petiolis et in laminae facie

abaxiali pilos ramosos habenti differt. – Type: Indonesia, Sulawesi, Sulawesi

Tengah, Tojo Una-una District, close to Watusongo Village, Gunung Katopas, on

wet rock wall at riverbank, 01°10917.90S, 121°28940.50E, 615 m, 7 v 2008, D.C.

Thomas & W.H. Ardi 08-67 (holo E; iso BO, CEB).

Perennial, monoecious, erect herb, to 75 cm tall, hairy with microscopic, c.0.05–0.2 mm

long, simple trichomes on all vegetative parts and heterotrichous on the stems, petioles

and the veins of the abaxial lamina surface by the addition of a few interspersed

multicellular, multiseriate, branched trichomes, c.0.3–1.8 mm long. Stems branched;

internodes 2.9–7.9 cm long, hairy. Leaves alternate; stipules 20–32 3 6–20 mm, very

asymmetric, oblong to narrowly elliptic, cymbiform with abaxially prominent midrib

forming a thin, short appendage at the apex, persistent, abaxially densely hairy;

petioles 4.1–18.6 cm long, hairy; lamina basifixed, 14.5–24.8 3 7.2–15.3 cm, very

asymmetric, elliptic, base cordate with non- or only very slightly overlapping lobes,

apex acuminate, margin dentate, the teeth bristle-pointed, adaxial and abaxial surface

hairy, adaxial surface mid green and abaxial surface pale green, or adaxial surface dark

green and abaxial surface reddish, venation palmate-pinnate. Inflorescences proto-

gynous; female inflorescences basal to male inflorescences or solitary, 2-flowered, sub-

tending leaves foliose, peduncles 1–5 mm long, bracts (subtending the pedicels of the

female flowers) 8–11 3 6–7 mm, ovate to elliptic, abaxially hairy; male inflorescences

distal to one female inflorescence, composed of 1–5 strongly compressed, cymose-

subumbellate partial inflorescences, subtending leaves bracteose, c.8–11 3 7–9 mm,

elliptic, abaxially hairy, peduncles 2–25 mm, hairy, bracts of only the most basal di-

chotomous branching developed, 3–10 3 2–6 mm, elliptic, abaxially hairy, caducous,

each partial inflorescence branching once dichotomously at the base, then 1–2 times

dichasially and the lateral branches of the most distal dichasia branching (0–)1–4

times monochasially. Male flowers: pedicels 2–15 mm, hairy; tepals 2, white or pink,
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8–11 3 9–12 mm, broadly ovate, base slightly cordate or with convex margins, apex

rounded, abaxially sparsely hairy to glabrescent; androecium of c.25–35 stamens, yellow,

filaments c.0.4–1.6 mm long, slightly fused at the very base, unequal, longer in the

middle of the androecium, anthers c.0.8–1.4 mm long, obovate, dehiscing through

FIG. 1. Begonia ozotothrix D.C.Thomas. A, habit (scale bar 5 20 cm); B, stipule (scale

bar 5 12 mm); C, inflorescence (scale bar 5 2 cm); D, female inflorescence (scale bar 5 2 cm); E,

female flowers (scale bar5 12 mm); F, capsules (scale bar5 2 cm); G, ovary, cross-section, three-

locular with axillary, bilamellate placentae (scale bar5 2 mm); H, male flowers (scale bar5 10 mm).

A, B, C, F, H: D.C. Thomas & W.H. Ardi 08-58; D, E, G: D.C. Thomas & W.H. Ardi 08-53.
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unilaterally positioned slits c.1/2 as long as the anther, connective not projecting.

Female flowers: pedicels 1–4 mm, hairy; tepals 5, unequal to subequal, the four larger

ones ovate or elliptic, 9–14 3 7–9 mm, the innermost obovate or narrowly elliptic,

8–11 3 3–8 mm, white or pale pink, abaxially hairy; ovary 12–21 3 10–18 mm, locules 3,

placentation axile, placentae bilamellate, wings 3, narrowly triangular, rounded at the

FIG. 2. Begonia hekensis D.C.Thomas. A, habit (scale bar 5 7 cm); B, male inflorescence and

infructescence (scale bar 5 3 cm); C, infructescence (scale bar 5 1.5 cm); D, ovary, cross-

section, three-locular with axillary, bilamellate placentae (scale bar 5 3 mm); E, male inflor-

escence with subtending leaves (scale bar 5 1.5 cm); F, male flowers (scale bar 5 2 cm); G,

androecium, anther dehiscing through short, unilaterally positioned slits (scale bar 5 4 mm).

A–G: D.C. Thomas & W.H. Ardi 08-43.
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base, widest at the apex, hairy, style fused only in the most basal part, 3-branched,

each stylodium bifurcate in the stigmatic region, stigmatic surface a spirally twisted

papillose band, the style and stylodia pale yellow, the stigma bands orange. Fruits:

capsules cylindric, 19–22 3 4–6 mm (without wings), on stout, erect, 1–4 mm long,

hairy pedicels, dehiscent, splitting along the wing attachment, drying pale brown, hairy

to glabrescent, wing shape as for ovary, wings 5–10 mm wide at the widest point (at

the apex), hairy to glabrescent. Seeds ellipsoidal, c.0.3 mm long, collar cells c.1/2–3/4

of the length of the seed.

Distribution. Indonesia, Sulawesi, Central Sulawesi (Sulawesi Tengah), Gunung

Katopas, and the lowland rainforest area between the villages of Bulan Jaya and

Uwetangko, and the upland rainforest north of Uwetangko (Fig. 3).

Habitat. This species grows in the herb layer or on wet rock walls in lowland and

upland primary rainforest, often at the sides of rivers or small streams, between c.300

and 800 m.

FIG. 3. Distribution of Begonia ozotothrix and Begonia hekensis in eastern Central Sulawesi

(Tengah), Indonesia.
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Proposed IUCN conservation category. LC. This species is locally common and more

than 20 populations were observed along a c.40 km walking trail between the villages of

Bulan Jaya and Uwetangko, and the upland rainforest north of Uwetangko. Addi-

tionally, several populations were observed on Gunung Katopas. While the lowland

rainforest area of this species is fragmented by plantations (cacao and others), most of

the upland populations were found in areas which are very difficult to access and show

no or only slight signs of anthropogenic disturbance by rattan collecting.

Additional specimens examined. SULAWESI. Tengah: Tojo Una-una District, close to Bulan Jaya

village, side of track through primary lowland rainforest, at forest margin close to river,

01°17932.40S, 121°57911.60E, 369 m, 21 iv 2008, D.C. Thomas & W.H. Ardi 08-52 (BO, CEB,

E); close to Bulan Jaya village, disturbed lowland rainforest, margin of Theobroma plantation,

01°17930.70S, 121°57902.60E, 370 m, 21 iv 2008, D.C. Thomas & W.H. Ardi 08-53 (BO, CEB,

E); between the villages of Bulan Jaya and Linkasa, on wet rock wall next to small stream,

01°17924.40S, 121°56910.30E, 364 m, 21 iv 2008, D.C. Thomas & W.H. Ardi 08-56 (BO, CEB,

E); close to Uwetangko village, primary lowland rainforest, next to small waterfall,

01°17909.60S, 121°48967.00E, 322 m, 22 iv 2008, D.C. Thomas & W.H. Ardi 08-58 (BO,

CEB, E); Watusongo Village, Gunung Katopas, on wet rock, primary rainforest margin at

river side, 01°10929.30S, 121°28936.30E, 750 m, 11 v 2008, D.C. Thomas & W.H. Ardi 08-72

(BO, CEB, E); Watusongo Village, Gunung Katopas, on vertical, wet rock at the side of

a small stream, primary rainforest, 01°10914.90S, 121°28949.30E, 625 m, 11 v 2008, D.C.

Thomas & W.H. Ardi 08-74 (BO, CEB, E).

The epithet ‘ozotothrix’ (from Greek ozotos – branched, and thrix – hair) refers to the

very unusual branched, multicellular, multiseriate trichomes found on the stem, the

petioles and the abaxial lamina surfaces of Begonia ozotothrix (Fig. 4). Begonias with

branched trichomes are rare outside of Africa and have not previously been reported

for Begonia section Petermannia. Stellate hairs have been described in only two Asian

sections, Begonia section Parvibegonia A.DC. (B. sinuata Wall. ex Meisn.) and Begonia

section Diploclinium (Lindl.) A.DC. (B. cladotricha M.Hughes). Begonia picta Sm.

(Begonia section Diploclinium) has branched, flattened scale-like hairs on the capsules.

Begonia calcicola Merr. and B. oxysperma A.DC. (both in Begonia section Diploclinium,

although the latter is usually classified in the monotypic Begonia section Baryandra

A.DC.) have hairs with a broad and flat stalk divided at the apex into few to several

thinner branches on the vegetative parts (Doorenbos et al., 1998; Hughes, 2007). The

morphology of the male inflorescences of Begonia ozotothrix is noteworthy as they

exhibit a strong reduction syndrome. The male inflorescence morphology predom-

inantly found in Begonia section Petermannia is characterised by cymose-dichasial

branching with only very few or no monochasial branchings in the most distal part,

clearly developed axes, and small bracts usually subtending the lateral branches in

the cymose inflorescence (Irmscher, 1914; Doorenbos et al., 1998). However, Irmscher

(1914) has already indicated that there are several variations of this typical syndrome

in the huge section Petermannia. In Begonia ozotothrix the axes are strongly com-

pressed resulting in a subumbellate appearance of the cymose inflorescences, only the

bracts subtending the peduncles and the bracts subtending the lateral branches of the

basal dichotomous branchings of the male partial inflorescences are developed, and
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there are only one or sometimes two basal dichasial branchings and up to four distal

monochasial branchings (Figs 1C, 5). Similar compressed subumbellate syndromes

have been described for the Sulawesi endemics Begonia siccacaudata J.Door., which

shows male partial inflorescences with only one basal dichasial branching and the

end flower flanked by two monochasia (Doorenbos, 2000), and Begonia mendumiae

M.Hughes, which shows male inflorescences with compressed monochasial partial

inflorescences (Hughes, 2006). An analysis of herbarium material from Sulawesi

(A, B, BM, BO, CEB, E, K, L and SING) shows that similar subumbellate male in-

florescences are characteristic for several undescribed species from Sulawesi, and

this reduction syndrome might represent a synapomorphy for several species derived

from an endemic radiation on Sulawesi. However, phylogenetic analyses of mor-

phological and/or molecular data are needed to test this hypothesis.

Begonia hekensis D.C.Thomas, sp. nov. Sect. Petermannia. Figs 2, 3.

Begoniae hispidissimae Zipp. ex Koord. similis a qua pedunculis inflorescentiarum

feminearum longioribus, pedicellis capsularum valde deflexis differt. – Type:

Indonesia, Sulawesi, Sulawesi Tengah, Luwuk District, Bunta Subdistrict, Sumber

Agung, Gunung Hek, riverbank near small waterfall, 01°01972.20S, 122°11954.70E,

1009 m, 12 iv 2008, D.C. Thomas & W.H. Ardi 08-43 (holo E; iso BO, CEB).

Perennial, monoecious, erect herb, to c.100 cm tall, hairy with up to c.1.2 mm long,

multicellular, multiseriate, simple trichomes and microscopic, glandular trichomes

on all vegetative parts. Stems branched; internodes 2.2–8.3 cm long, densely hairy.

Leaves alternate; stipules 8–28 3 2–10 mm, narrowly ovate, cymbiform with abaxially

FIG. 4. Branched, multicellular trichome from the petiole of Begonia ozotothrix (scale

bar 5 500 lm) (D.C. Thomas & W.H. Ardi 08-58).
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prominent midrib forming a thin, short appendage at the apex, persistent, abaxially

densely hairy; petioles 0.7–11.2 cm long, densely hairy; lamina basifixed, 2.5–15.2 3 1.1–

8.2 cm, very asymmetric, ovate or elliptic, base cordate with non- or only very slightly

overlapping lobes, apex acuminate, margin dentate to serrate, teeth bristle-pointed,

abaxial surface hairy, adaxial surface sparsely hairy, adaxial surface mid green and

abaxial surface pale green, venation palmate-pinnate. Inflorescences protogynous;

FIG. 5. Schematic inflorescence branching pattern of Begonia ozotothrix. A. Schematic

branching of the inflorescence. The axes of the branches of the cymose-subumbellate male partial

inflorescences are elongated in relation to the original in order to illustrate the branching pat-

tern. The sequence of anthesis in the male partial inflorescences is indicated by circle size: the

larger the size, the earlier the anthesis. B. Diagram of a male partial inflorescence. b9, bracteose

leaf subtending the male partial inflorescence; b9-f, foliose leaf subtending the female inflor-

escence; b0, bracteose leaf subtending the branches of the male partial inflorescence, or sub-

tending the pedicels of the female flowers.
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female inflorescences basal to male inflorescences or solitary, 2-flowered, subtending

leaves foliose, peduncles 2.6–3 cm long (in fruit), bracts (subtending the pedicels of the

female flowers) c.16 3 6 mm, narrowly elliptic, abaxially hairy; male inflorescences

distal to one female inflorescence or solitary, subtending leaves frondose-bracteose

(lamina strongly reduced in size), peduncle 9–12 mm long, bracts (subtending the

lateral branches) 4–12 3 1–6 mm, oblong, the basal ones abaxially hairy, the distal

ones glabrous, a once-branched dichasium or with one dichotomous branching at

the base, and each of the two resulting branches branching once dichasially,

sometimes the lateral branches of the dichasia branching once monochasially. Male

flowers: pedicels 4–23 mm, hairy; tepals 2, white, 11–18 3 10–18 mm, broadly ovate

to subcircular, base cordate or tepal margin convex at base, apex rounded, abaxially

sparsely hairy; androecium of c.24–38 stamens, yellow, filaments c.0.4–2 mm long,

slightly fused at the very base, unequal, longer in the middle of the androecium,

anthers c.1–2 mm long, obovate or oblong, dehiscing through unilateral positioned

slits , 1/2 as long as the anther, connective not projecting. Female flowers: unknown.

Fruits: capsules ellipsoid, 14–17 3 5–8 mm (without wings), on apically strongly

deflexed, 18–24 mm long, hairy pedicels, dehiscent, splitting along the wing

attachment, drying brown, hairy, locules 3, placentation axile, placentae bilamellate,

wings 3, sublunate, base rounded, widest in the middle to subapical part, subequal,

one slightly larger than the other two, 7–8 mm wide in the widest part, the smaller

two 6–7 mm in the widest part, hairy. Seeds ellipsoidal, c.0.3–0.4 mm long, collar

cells c.1/3–1/2 of the length of the seed.

Distribution. Indonesia, Sulawesi, Central Sulawesi (Sulawesi Tengah), Gunung Hek

(Fig. 3).

Habitat. This is an upland species which grows in the herb layer of primary rain-

forests, often along the sides of small streams, at c.850–1200 m.

Proposed IUCN conservation category. VU D2. This species is known only from

Gunung Hek and has a very restricted range in an area which has no legal protection as

a national park or nature reserve. Although the forest is in good condition in this area at

around 1000 m, there are clear signs of anthropogenic disturbance, especially selective

timber harvesting and rattan collection, at slightly lower altitudes. Therefore, the

populations are ‘prone to the effects of human activities or stochastic events within

a very short time period in an uncertain future’ (IUCN, 2001).

Additional specimens examined. SULAWESI. Tengah: Luwuk District, Bunta Subdistrict, Sumber

Agung, Gunung Hek, Sungai Hek, between Cabang Tiga and Agathis Camp, 01°019100S,

122°109300E, 980 m, 1 iii 2004, Hendrian, M. Newman, S. Scott, M. Nazre Saleh & D. Supriadi

1015 (E); Sumber Agung, Gunung Hek, side of steep track, 01°01958.20S, 122°10990.90E,

870 m, 10 iv 2008, D.C. Thomas & W.H. Ardi 08-30 (BO, CEB, E); Sumber Agung, Gunung

Hek, small isle in Sungai Hek, 01°01981.20S, 122°11935.00E, 1080 m, 11 iv 2008, D.C. Thomas

& W.H. Ardi 08-33 (BO, CEB, E); Sumber Agung, Gunung Hek, side of small tributary of

Sungai Hek, 01°01976.00S, 122°11942.40E, 993 m, 12 iv 2008, D.C. Thomas & W.H. Ardi 08-41

(BO, CEB, E).
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The epithet ‘hekensis’ is composed of ‘Hek’, a reference to Gunung Hek where the

type material was collected, and ‘-ensis’ (Latin – originating from).

Begonia hekensis is morphologically similar to Begonia hispidissima and Begonia

masarangensis Irmsch. These three species exhibit a character combination which

differentiates them from most other Sulawesian Begonia section Petermannia species:

densely hairy stems and petioles, few-flowered male inflorescences, male flowers

with abaxially hairy tepals, and short, hairy ovaries and capsules. However, Begonia

hekensis can be easily differentiated from Begonia masarangensis by its ovate to

elliptic leaves with a dentate to serrate margin and the compressed, purely, or at least

partially, dichasially branching male inflorescences (versus oblong to narrowly elliptic

leaves with double serrate margin and purely monochasially branching male inflor-

escences). Begonia hekensis differs from B. hispidissima by the apically strongly de-

flexed pedicels of the fruits (Figs 2B–C) and the peduncles of the female inflorescences

which may be up to 3 cm long (versus not or only slightly deflexed pedicels and

peduncles up to c.1.5 cm long in B. hispidissima).
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TWO NEW SPEC IES OF BEGONIA

(BEGONIACEAE ) FROM SOUTH SULAWES I ,

INDONES IA

D. C . THOMAS
1, W. H . ARD I

2, HARTUT IN INGS IH
3

& M. HUGHES
4

Two new species of Begonia (Begoniaceae), Begonia didyma D.C.Thomas & Ardi and

Begonia guttapila D.C.Thomas & Ardi, are described from the Latimojong Mountains,

South Sulawesi (Sulawesi Selatan), Indonesia. Both species belong to Begonia sect.

Petermannia.

Keywords. Begonia, new species, Sulawesi.

Introduct ion

The Begonia L. living collections at the Botanic Garden ‘Eka Kaya’ Bali, which hold

more than 60 indigenous Indonesian species, are an important resource for Begonia

systematics in SE Asia. Recent expeditions organised by the Botanic Garden Bali,

seed exchange with numerous institutions, as well as collaborations with the

Herbarium Bogoriense, Bogor Botanic Garden, the New England Tropical Conser-

vatory and the Royal Botanic Garden Edinburgh, have led to a rapid increase in the

number of species in the collection. The new accessions include several species

collected on the Indonesian island of Sulawesi (Hartutiningsih, 2005).

The Begonia flora of undercollected Sulawesi is poorly known. Thirty-four

indigenous species of Begonia have been reported, 30 of which are classified in

Begonia sect. Petermannia (Klotzsch) A.DC., the other four belonging to Begonia

sect. Sphenanthera (Hassk.) Warb. (Hughes, 2008; Thomas et al., 2009). Recent

expeditions have brought to light several new species (Hughes, 2006; Thomas &

Hughes, 2008; Thomas et al., 2009), and a close examination of all available Begonia

herbarium specimens from Sulawesi from A, B, BM, BO, CEB, E, K, L and SING

and the living collections at the Botanic Garden Bali and the Royal Botanic Garden

Edinburgh indicates that there are numerous endemic species awaiting description.

1 Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, Scotland, UK. E-mail:

d.thomas@rbge.ac.uk
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Two new species cultivated at the Botanic Garden Bali are described below. As with

the majority of species on Sulawesi, the new species belong to Begonia sect.

Petermannia. In common with most members of that section they exhibit: two-

tepaled male flowers, anthers with unilaterally positioned slits, five-tepaled female

flowers, two-flowered female inflorescences or solitary female flowers, three-locular

ovaries with axile placentation and bilamellate placentae, and fruits with equal or

subequal wings (Figs 1, 2).

Spec ie s Descr ipt ions

Begonia didyma D.C.Thomas & Ardi, sp. nov. Sect. Petermannia. Figs 1, 3.

Begoniae gemellae Warb. ex L.B.Sm. & Wassh. similis a qua in caule, foliis et in

tepalorum faciebus abaxialibus pilos multicellulares habenti, inflorescentia mas-

cula semper biflora (non biflora ad quinqueflora), pedunculis inflorescentiarum

feminearum brevioribus et pedicellis florum feminearum brevioribus differt.

– Type: Cultivated at Bali Botanic Garden from vegetative material collected in

the wild (Indonesia, Sulawesi, Sulawesi Selatan, Luwu District, Latimojong Moun-

tains, Ranteballa village, 03°219200S, 120°079360E, 1225 m), 16 v 2008, D.C.

Thomas & W.H. Ardi 08-77 (holo E; iso BO).

Perennial, monoecious herb with prostrate to erect stems, to c.35 cm tall, with

a moderate to dense indumentum of multicellular, simple trichomes up to c.2 mm

long and a sparse indumentum of microscopic, glandular trichomes on all above-

ground vegetative parts. Stems much-branched, rooting at the lower nodes;

internodes c.2–6 cm long. Leaves alternate; stipules persistent, 10–15 3 2–5 mm,

elliptic, with an abaxially prominent midrib that projects up to c.4 mm at the apex,

abaxially densely hairy along the midvein; petioles 2.5–5.6 cm long; lamina basifixed,

4.2–6.7 3 2.6–4.7 cm, very asymmetric, elliptic, base cordate, lobes not overlapping,

apex acuminate, margin double serrate to double dentate, the teeth bristle-pointed,

adaxial surface mid green and abaxial surface pale green, the margin reddish,

venation palmate-pinnate. Inflorescences: female flowers solitary, basal to or not

associated with the male inflorescences, branches bearing the female flowers c.1–

2 mm long, subtending leaf foliose, 2 bracts present at the base of the pedicels of the

female flowers, c.2–3 3 2–3 mm, broadly ovate; male inflorescences distal to or not

associated with the female flowers, composed of 1–2 two-flowered partial inflor-

escences, each a once-branched monochasium, subtending leaves foliose, peduncles

2–7 mm long, bracts (subtending the pedicels) c.2–3 3 2–3 mm, elliptic to

subcircular. Male flowers: pedicels 17–27 mm long, sparsely hairy; tepals 2, white

or white with a tinge of pink, 12–17 3 10–14 mm, broadly ovate, base slightly

cordate or with convex margins, apex rounded, abaxially sparsely hairy; androecium

of c.35–43 stamens, yellow, filaments c.0.6–1.4 mm long, slightly fused at the very

base, anthers c.0.9–1.2 mm long, obovate, dehiscing through unilaterally positioned

slits c.1/2 as long as the anther, connective not projecting. Female flowers: pedicels
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FIG. 1. Begonia didyma D.C.Thomas & Ardi. A, habit (scale bar 5 15 cm); B, leaves (scale

bar 5 3 cm); C, stipule (scale bar 5 6 mm); D, female flower, side view (scale bar 5 12 mm); E,

female flower, front view (scale bar 5 10 mm); F, ovary, cross-section, three-locular with axile,

bilamellate placentae (scale bar 5 2 mm); G, fruit (scale bar 5 5 mm); H, male inflorescence

(scale bar 5 10 mm). A–F, H: D.C. Thomas & W.H. Ardi 08-77; G: Mogea et al. 6596.
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2–3 mm long, hairy; tepals 5, white, unequal, the two outer ones 12–13 3 10–12 mm,

broadly obovate or elliptic, the two larger inner ones 13–14 3 8–9 mm, obovate, the

smallest inner one 8–13 3 3–6 mm, obovate, abaxially sparsely hairy; ovary 10–13 3

11–14 mm, ellipsoid, locules 3, placentation axile, placentae bilamellate, wings 3,

FIG. 2. Begonia guttapila D.C.Thomas & Ardi. A, habit (scale bar 5 50 cm); B, leaves (scale

bar 5 5 cm); C, stipule (scale bar 5 5 mm); D, female inflorescence (scale bar 5 12 mm); E,

female flower, side view (scale bar 5 8 mm); F, ovary, cross-section, three-locular with axile,

bilamellate placentae (scale bar 5 2 mm); G, fruits (scale bar 5 14 mm); H, male inflorescence

(scale bar 5 12 mm). A–H: D.C. Thomas & W.H. Ardi 08-81.
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narrowly triangular, rounded at base, widest at the truncate apex, hairy, style basally

fused for c.1.5–2 mm, 3-branched, each stylodium bifurcate in the stigmatic region,

stigmatic surface a spirally twisted papillose band, yellow. Fruits on thin, c.3–4 mm

long, sparsely hairy pedicels; capsules ellipsoid, c.9–10 3 5–6 mm (excluding the

wings), dehiscent, splitting along the wing attachment, drying pale brown, sparsely

hairy, wing shape as for ovary, 4–7 mm wide at the widest point (at the apex), hairy.

Seeds unknown.

Distribution. Indonesia, Sulawesi, South Sulawesi (Sulawesi Selatan), Luwu District,

Latimojong Mountains (Fig. 3).

Habitat. Upland primary rain forest, on rocky ground, between c.1000 and 1250 m.

Proposed IUCN conservation category. VU D2. This species is only known from two

collections on the eastern border of the Latimojong Forest Reserve. Despite the

area’s legal protection as a forest reserve, there are clear signs of anthropogenic

disturbance (coffee plantations) close to the locality of this species. All available

Begonia specimens from A, B, BM, BO, CEB, E, K, L and SING have been

consulted, and hence it must be assumed, at least until more intensive collecting on

FIG. 3. Distribution of Begonia didyma and Begonia guttapila in South Sulawesi (Sulawesi

Selatan), Indonesia.
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Sulawesi may reveal otherwise, that this species has a very restricted range.

Therefore, it is ‘prone to the effects of human activities or stochastic events within

a very short time period in an uncertain future’ (IUCN, 2001).

Additional specimen examined. SULAWESI. South Sulawesi: Luwu District, Latimojong Moun-

tain Range, Desa Lambanan Dusun Tibusan, 2 xi 1994, J.P. Mogea, M. Amir & H. Alrasyid

6596 (BO).

The epithet ‘didyma’ (Greek didymos – twin) refers to the two-flowered male in-

florescences of this species. Begonia didyma is morphologically similar to Begonia

gemella Warb. ex L.B.Sm. & Wassh. Both species exhibit relatively thin stems

rooting at the nodes, few-flowered monochasial male inflorescences and solitary

female flowers. However, Begonia didyma can easily be distinguished from Begonia

gemella by its moderate to dense indumentum of up to c.2 mm long, multicellular

trichomes on all above-ground vegetative parts and on the tepals and the ovary

of the female flowers (versus only sparsely and microscopically glandular hairy in

B. gemella). The male inflorescences of Begonia didyma are strictly 2-flowered mono-

chasial without any rudimentary, unopened flowers (Fig. 1H), while the male

inflorescences of Begonia gemella are few-flowered monochasial (2–5-flowered).

Warburg (see Koorders, 1904) probably chose the epithet ‘gemella’ (Latin – twin)

as reference to the male inflorescences of Begonia gemella, which predominantly

show two fully developed flowers, but an examination of recently collected material

of this species (K. Armstrong 364 at E), as well as the illustration in Koorders-

Schumacher (1922: pl. 94) and a sketch by Irmscher on a herbarium sheet of type

material of Begonia gemella (S.H. Koorders 16243b at B), show that the male

inflorescences of this species comprise two to five flowers. Moreover, Begonia didyma

exhibits very compressed branches bearing the female flowers (up to 2 mm long) and

very short pedicels of the female flowers and fruits (up to 4 mm long), while in

Begonia gemella these structures, though still short, are distinctly longer than in

B. didyma (the branches bearing the female flowers are 5–25 mm long and the

pedicels of the female flowers and fruits are 7–18 mm long).

Begonia guttapila D.C.Thomas & Ardi, sp. nov. Sect. Petermannia. Figs 2, 3.

Ab aliis speciebus celebicis sectionis Petermanniae in ovariis pilis insignibus basi

bulboso habenti differt. – Type: Cultivated at Bali Botanic Garden from

vegetative material collected in the wild (Indonesia, Sulawesi, Sulawesi Selatan,

Luwu District, Latimojong Mountains, Ranteballa village, 03°219330S, 120°079330E,

1359 m), 16 v 2008, D.C. Thomas & W.H. Ardi 08-81 (holo E; iso BO).

Perennial, monoecious herb, stems first erect, but soon arching over and trailing-

scrambling, to c.60 cm tall, with a sparse indumentum of microscopic, glandular

hairs on all above-ground vegetative parts and a very sparse indumentum of

multicellular hairs on the stems and the abaxial lamina surface or multicellular

hairs absent. Stems branched; internodes c.2–16.5 cm long. Leaves alternate; stipules
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14–18 3 4–6 mm, elliptic to oblong, with abaxially prominent midrib that projects

shortly at the apex, caducous; petioles 1.5–5.2 cm long; lamina basifixed, 5–13 3
2.5–6 cm, very asymmetric, narrowly elliptic, elliptic, narrowly ovate or ovate, base

cordate, lobes not overlapping, apex acuminate, margin double serrate, the teeth not

or only slightly bristle-pointed, adaxial surface dark green and abaxial surface pale

green, venation palmate-pinnate. Inflorescences: female inflorescences solitary,

composed of 1–2 two-flowered partial inflorescences, subtending leaves foliose,

peduncles c.2 mm long, bracts (subtending the pedicels) c.6–7 3 3–4 mm, narrowly

ovate to narrowly elliptic; male inflorescences solitary, subtending leaves foliose,

peduncles 6–9 mm, cymose-subumbellate with one dichotomous branching at the

base, each of the two resulting branches branching once dichasially, the lateral

branches of the dichasia branching up to three times monochasially, bracts

(subtending the pedicels) c.1.5–6 3 1–2 mm, ellipsoid to oblong. Male flowers:

pedicels 8–12 mm long, sparsely, microscopically, glandular hairy; tepals 2, white,

8–10 3 9–11 mm, broadly ovate to suborbicular, base slightly cordate or with convex

margins, apex rounded, abaxially sparsely, microscopically, glandular hairy; an-

droecium of c.38–46 stamens, yellow, filaments c.0.4–1.6 mm long, slightly fused at

the very base, anthers c.0.7–1.2 mm long, obovate to oblong, dehiscing through

unilaterally positioned slits . 1/2 as long as the anther, connective not projecting.

Female flowers: pedicels 1–2 mm, sparsely, microscopically, glandular hairy; tepals 5,

subequal, 10–17 3 5–9 mm, elliptic to obovate, white or pale pink, abaxially

sparsely, microscopically, glandular hairy; ovary 8–12 3 12–15 mm, ellipsoid, locules 3,

placentation axile, placentae bilamellate, wings 3, not developed in the basal

part of the ovary, but expanding distally after c.1/3–1/2 of the ovary’s length,

equal, triangular, with concave margin at the base, widest at the truncate apex,

microscopically, glandular hairy, the ovary surface between the wings hairy with

c.0.6–2 mm long, multicellular trichomes with broad, bulbous base narrowing into a

fine extended tip, style fused at the base, 3-branched, each stylodium bifurcate in

the stigmatic region, stigmatic surface a spirally twisted papillose band, yellow.

Fruits on stout, c.1–2 mm long, microscopically, glandular hairy pedicels; capsule

ellipsoid, 12–15 3 5–9 mm (excluding the wings), fleshy and indehiscent, red, wings

thickened and hardened, 6–9 mm wide at the widest point (at the apex), wing shape

and indumentum as for ovary. Seeds ellipsoidal, c.0.3–0.4 mm long, collar cells c.1/2–

2/3 of the length of the seed.

Distribution. Indonesia, Sulawesi, South Sulawesi (Sulawesi Selatan), Luwu District,

Latimojong Mountains (Fig. 3).

Habitat. This species grows in upland primary rain forest at c.1350 m.

Proposed IUCN conservation category. VU D2. This species is only known from one

collection on the eastern border of the Latimojong Forest Reserve. All available

Begonia specimens from A, B, BM, BO, CEB, E, K, L and SING have been

consulted, and hence it must be assumed, at least until more intensive collecting on
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Sulawesi may reveal otherwise, that this species has a very restricted range.

Therefore, it is ‘prone to the effects of human activities or stochastic events within

a very short time period in an uncertain future’ (IUCN, 2001).

The epithet ‘guttapila’ is a compound of gutta (Latin – a drop of fluid) and pilus

(Latin – hair). It refers to the very unusual hairs on the ovaries and fruits of this species,

which, with their bulbous base narrowing into a fine extended tip (Figs 2E–F),

resemble stylised drops of water. The fruits of this species are unusual in Begonia

sect. Petermannia not only because of their indumentum, but also because of their

fleshy pericarp. In contrast to the dry, thin-walled capsules predominantly found in

this section, Begonia guttapila exhibits red, fleshy and apparently indehiscent fruits,

which have thickened, relatively hard wings. These characters might be adaptations

to zoochory, but as for the other fleshy-fruited species of Begonia in SE Asia,

observations of animal dispersal are lacking (Lange & Bouman, 1999; Tebbitt et al.,

2006), and the dispersal of the seeds of this species might be mainly by rain-wash

from the decomposing fruit.

The male inflorescence morphology predominantly found in Begonia sect.

Petermannia is characterised by dichasial branching, few or no distal monochasial

branchings, and clearly developed axes (Irmscher, 1914; Doorenbos et al., 1998).

However, Irmscher (1914) also emphasised that there are several variations of this

typical syndrome in the huge section Petermannia. The male inflorescences of

Begonia guttapila, which are characterised by strongly compressed axes resulting

in an umbel-like appearance, are similar to the subumbellate male partial inflor-

escences found in the Sulawesian endemic Begonia ozotothrix D.C.Thomas (Thomas

et al., 2009). An examination of herbarium material from A, B, BM, BO, CEB, E, K,

L and SING shows that a similar syndrome is present in several other undescribed

species from Sulawesi. Compressed subumbellate male partial inflorescences have

also been described for the Sulawesian endemic Begonia siccacaudata J.Door., which

shows male partial inflorescences with one basal dichasial branching and the end

flower flanked by two monochasia (Doorenbos, 2000). Compressed cymose partial

inflorescences are also present in the ‘Begonia rieckei Warb. complex’, which in-

cludes two taxa endemic to Sulawesi, B. koordersii Warb. ex L.B.Sm. & Wassh. and

B. strictipetiolaris Irmsch., but also B. rieckei (Sulawesi, Moluccas, New Guinea),

B. pseudolateralis Warb. (Philippines), B. brachybotrys Merr. & L.M.Perry (New

Guinea and surrounding islands), and B. peekelii Irmsch. (Bismarck Archipelago)

(Hughes, 2008). According to Hughes (2008), these taxa may be best considered as

one widespread species, as they show only minor morphological differences.

Examination of material from Sulawesi and the Philippines showed that in contrast

to the cymose-subumbellate male inflorescences of some Sulawesian species, and in

contrast to all other species in Begonia sect. Petermannia, the cymose-subumbellate

partial inflorescences of species in the Begonia rieckei complex comprise both male

and female flowers. Despite this major difference, the subumbellate partial in-

florescence architecture in the Begonia rieckei complex seems to indicate a close
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relationship with the cymose-subumbellate taxa from Sulawesi. It is tempting to

speculate that the observed variation in male inflorescence morphology of Sulawe-

sian Begonia sect. Petermannia species may be the result of evolution from many-

flowered male inflorescences with well-developed axes and predominantly dichasial

branching (e.g. B. grandipetala Irmsch., B. macintyreana M.Hughes, B. stevei

M.Hughes, B. varipeltata D.C.Thomas) to subumbellate, dichasial–monochasial

male inflorescences with strongly compressed axes (e.g. B. guttapila, B. ozotothrix) to

compressed, purely monochasial inflorescences including the two-flowered mono-

chasial inflorescences of B. didyma. Other Sulawesian species, such as Begonia

chiasmogyna M.Hughes, exhibit male inflorescences with monochasial branching

and well-developed axes, which are most likely derived from dichasial–monochasial

male inflorescences with well-developed axes. However, phylogenetic analyses of

morphological and/or molecular data are necessary to investigate these hypotheses.
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Appendix 2. Accessions used for the generation of DNA sequence data. Acc. nom.: 
accession number of living material cultivated at botanic gardens; BaBG: Bali Botanic Garden; BoBG: 
Bogor Botanic Garden; BrBG: Brooklyn Botanic Garden; GBG: Glasgow Botanic Gardens; PCHW: 
Private collection of Harry Wiriadinata (Indonesia, Bogor); RBGE: Royal Botanic Garden Edinburgh; SBG: 
Singapore Botanic Gardens. Locality data of cultivated material is given when seed or vegetative material 
was collected in the wild. Locality data in square brackets indicates that the source locality is unknown, 
and is based on the known distribution of a taxon. Herbarium acronyms follow the Index Herbariorum at 
http://sciweb.nybg.org/

 

 

 

 

Taxon Origin Voucher (Herbarium)
Begonia acetosella Craib Cultivated: GBG (acc. 

nom.: 001 073 96), 
Vietnam 

Thomas, D. C. & Ardi, W. H. 08-105 
(E) 

Begonia aff. bracteata Jack Indonesia, Sumatra Wilkie, P., Hughes, M., Sumadijaya, 
A., Rasnovi, S., Marlan & Suhardi 
621 (E) 

Begonia aff. celebica Irmsch. 1 Indonesia, Sulawesi Thomas, D. C. & Ardi, W. H. 09-102 
(E) 

Begonia aff. celebica Irmsch. 2 Indonesia, Sulawesi Thomas, D. C. & Ardi, W. H. 09-104 
(E) 

Begonia aff. congesta Ridl. Cultivated: SBG, 
Malaysia, Borneo 

Thomas, D. C. 09-05 (E) 

Begonia aff. elisabethae Kiew Cultivated: RBGE (acc. 
nom.: 20081038), Vietnam 

Thomas, D. C. 08-149 (E) 

Begonia aff. labordei H.Lév. Cultivated: RBGE (acc. 
nom.: 20020477), China 

Möller, M. 01-156B (E) 

Begonia aff. multangula Blume Indonesia, Sulawesi Thomas, D. C. & Ardi, W. H. 09-85 
(E) 

Begonia aff. ozotothrix
D.C.Thomas

Indonesia, Sulawesi Thomas, D. C. & Ardi, W. H. 09-76 
(E) 

Begonia aff. propinqua Ridl. Cultivated: SBG, 
Malaysia, Borneo 

Thomas, D. C. 09-06 (E) 

Begonia amphioxus Sands Cultivated: GBG (acc. 
nom.: 001 156 94), 
Malaysia, Borneo 

Forrest, L. L. 141 (E) 

Begonia aptera Blume subsp.
hirtissima Girmansyah & 
D.C.Thomas

Indonesia, Sulawesi Thomas, D. C. & Ardi, W. H. 08-75 
(E) 

Begonia aptera Blume susbsp. 
aptera

Indonesia, Sulawesi Smith, P. & Galloway, L. 
67 (E) 

Begonia areolata Miq. Cultivated: BoBG, 
Indonesia, Java 

Thomas, D. C. & Ardi, W. H. 09-137 
(E) 

Begonia argenteomarginata
Tebbitt

Cultivated: GBG (acc. 
nom.: 008 038 87), Papua 
New Guinea 

Forrest, L. L. 145 (E) 

Begonia boliviensis A.DC. Cultivated: GBG (acc. 
nom.: 00801998) [Bolivia] 

No voucher available 

Begonia bonthainensis Hemsl. Indonesia, Sulawesi Thomas, D. C. & Ardi, W. H. 09-63 
(E) 

Begonia bracteata Jack Indonesia, Java Ardi, W. H. & Thomas, D. C. 25 (E) 
Begonia brevirimosa Irmsch. Cultivated: RBGE (acc. 

nom.: 19821108, Papua 
New Guinea 

Forrest, L. L. 137 (E 

Begonia burbidgei Stapf Cultivated: RBGE (acc. 
nom.: 2006.1666), 
Malaysia, Borneo 

Thomas, D. C. 07-26 (E) 

Begonia capituliformis Irmsch. Indonesia, Sulawesi Kinho, J. & Poulsen, A. 169  (E) 
Begonia chiasmogyna M.Hughes Cultivated: RBGE (acc. 

nom.: 20021895), 
Indonesia, Sulawesi 

Thomas, D. C. 07-29 (E) 
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Begonia chloroneura P.Wilkie & 
Sands

Cultivated: RBGE (acc. 
nom.: 19972555), 
Philippines, Luzon Island 

Forrest, L.L. 128 (E) 

Begonia chlorosticta Sands Cultivated: SBG, 
Malaysia, Borneo 

Thomas, D. C. 09-04 (E) 

Begonia cleopatrae Coyle Philippines, Palawan Wilkie, P., Mendum, M., Argent, G. 
C. G., Cronk, Q., Middleton, D. J., 
Fuentes, R. & Chavez, R. V. 25373 
(E) 

Begonia corrugata Kiew & S.Julia Cultivated: SBG, 
Malaysia, Borneo 

Thomas, D. C. 09-02 (E) 

Begonia decora Stapf Cultivated: RBGE (acc. 
nom.: 20021608), 
Malaysia, Peninsula 
Malaysia 

Neale, S. 8C (E) 

Begonia didyma D.C.Thomas & 
Ardi

Indonesia, Sulawesi Thomas, D. C. & Ardi, W. H. 08-77 
(E) 

Begonia dipetala Graham Cultivated: GBG (acc. 
nom.: 001 004 86) [India, 
Sri Lanka] 

Forrest, L. L. 239 (E) 

Begonia dregei Otto & Dietr. Cultivated: RBGE (acc. 
nom.: 20000902), South 
Africa)

McLellan, T. 415 (E) 

Begonia fenicis Merr. Cultivated: GBG (acc. 
nom.: 003 023 02), 
Philippines 

Thomas, D. C. 08-119 (E) 

Begonia flagellaris Hara Nepal Rajbhandary, S. & Bista ,S. 54 (E) 
Begonia floccifera Bedd. Cultivated: GBG (acc. 

nom.: 030 099 89) [India, 
Sri Lanka] 

Forrest, L. L. 238 (E) 

Begonia foliosa H.B. & K. Cultivated: RBGE (acc. 
nom.: 19691804), 
[Columbia] 

No voucher available  

Begonia goegoensis N.E.Br. Cultivated: GBG (acc. 
nom.: 011 125 57), 
Indonesia, Sumatra 

Thomas, D. C. & Ardi, W. H. 08-107 
(E) 

Begonia grandis Dryand. Cultivated: RBGE (acc. 
nom.: 19521036), China 

Thomas, D. C. 08-145 (E) 

Begonia goudotii A.DC. Madagascar Plana, V. 120 (E)  
Begonia guttapila D.C.Thomas & 
Ardi

Cultivated: BaBG, 
Indonesia, Sulawesi 

Thomas, D. C. & Ardi, W. H. 08-81 
(E) 

Begonia hatacoa Buch.-Ham. Cultivated: GBG (acc. 
nom.: 004 005 89), Nepal 

Thomas, D. C. 08-110 (E) 

Begonia hekensis D.C.Thomas Indonesia, Sulawesi Thomas, D. C. & Ardi, W. H. 08-43 
(E) 

Begonia herbacea Vell. Cultivated: RBGE (acc. 
nom.: 19731857), [Brazil] 

Forrest, L. L. 163 (E) 

Begonia hernandioides Merr. Cultivated: GBG (acc. 
nom.: 006 035 89), 
Philippines 

Forrest, L.L. 129 (E), 

Begonia hispidissima Zipp. ex 
Koord.

Indonesia, Sulawesi Kinho, J. & Poulsen, A. 168  (E) 

Begonia incisa A.DC. Cultivated: RBGE (acc. 
nom.: 006 151 95), 
Philippines, Luzon 

Forrest, L. L. 139 (E) 

Begonia kingiana Irmsch. Cultivated: GBG (acc. 
nom.: 018 070 07), 
Malaysia, Peninsula 
Malaysia 

Thomas, D. C. 08-102 (E) 

Begonia laruei M.Hughes Indonesia, Sumatra Hughes, M. 1389 (E) 
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Begonia longifolia Blume Cultivated: RBGE (acc. 
nom.: 20021614), 
Malaysia, Peninsula 
Malaysia 

Neale, S. 11C (E) 

Begonia macintyreana M.Hughes Cultivated: RBGE (acc. 
nom.: 20021848), 
Indonesia, Sulawesi 

Thomas, D. C. 07-28 (E) 

Begonia malabarica Lam. Cultivated: GBG (acc. 
nom.: 002 018 96), [India, 
Sri Lanka] 

Forrest, L. L. 288 (E) 

Begonia masarangensis Irmsch. Cultivated: PCHW, 
Indonesia, Sulawesi 

Thomas, D. C. & Ardi, W. H. 09-131 
(E) 

Begonia masoniana Irmsch. ex 
Ziesenh.

Cultivated: RBGE (acc. 
nom.: 19980075), [China] 

Thomas, D. C. 07-24 (E) 

Begonia mendumiae M.Hughes Cultivated: RBGE (acc. 
nom.: 20021912), 
Indonesia, Sulawesi 

Thomas, D. C. 07-27 (E) 

Begonia morsei Irmsch. Cultivated: RBGE (acc. 
nom.: 19980076), China 

No voucher available 

Begonia multangula Blume Indonesia, Bali Thomas, D. C. & Ardi, W. H. 08-90 
(E) 

Begonia multijugata M.Hughes Indonesia, Sumatra Wilkie, P., Hughes, M., Sumadijaya, 
A., Rasnovi, S., Marlan & Suhardi 
768 (E) 

Begonia muricata Blume Indonesia, Java Ardi, W. H. & Thomas, D. C. 27 (E) 

Begonia negrosensis Elmer Philippines, Negros Wilkie, P. 76 (E) 
Begonia nelumbiifolia Cham. & 
Schlecht.

Cultivated: RBGE (acc. 
nom.: 19791888), Mexico 

Hunt, D.R. 7516 (K) 

Begonia nigritarum Steud. Cultivated: RBGE (acc. 
nom.: 19991994), 
Philippines, Luzon Island 

Thomas, D. C. 07-25 (E) 

Begonia oxyloba Welw. ex Hook.f. Cultivated: RBGE (acc. 
nom.: 19982761), 
Tanzania 

Thomas, D. C. 08-141 (E) 

Begonia ozotothrix D.C.Thomas Indonesia, Sulawesi Thomas, D. C. & Ardi, W. H. 08-58 
(E) 

Begonia palmata D.Don Cultivated: RBGE (acc. 
nom.: 20020476), China 

Möller, M. 01-127 (E) 

Begonia pavonina Ridl. Cultivated: RBGE (acc. 
nom.: 20021611), 
Malaysia, Peninsula 
Malaysia 

Neale, S. 9C (E) 

Begonia pendula Ridl. Cultivated: SBG, 
Malaysia, Borneo 

Thomas, D. C. 09-03 (E) 

Begonia piurensis L.B.Smith & 
B.G.Schubert

Cultivated: GBG (acc. 
nom.: 00403476), Ecuador 

No voucher available 

Begonia poculifera Hook.f.  Cultivated: RBGE (acc. 
nom.: 19923143), 
Cameroon 

Forrest, L. L. 234 (E) 

Begonia polygonoides Hook.f. Ivory Coast van der Burg, W. J. 244 (WAG)
Begonia radicans Vell. Cultivated: GBG (acc. 

nom.: 00908995) [Brazil] 
No voucher available 

Begonia rieckei Warb. Indonesia, Sulawesi Thomas, D. C. & Ardi, W. H. 08-62 
Begonia robusta Blume Cultivated: BaBG, 

Indonesia, Java 
Thomas, D. C. & Ardi, W. H. 08-133 
(E) 

Begonia roxburghii A.DC. Cultivated: GBG (acc. 
nom.:  011 007 97), India 

Thomas, D. C. 08-103 (E) 

Begonia samhaensis M.Hughes & 
A.G.Mill.

Cultivated: RBGE (acc. 
nom.: 1999.0412), Yemen, 
Socotra 

Thomas, D. C. 09-01 (E) 
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Begonia serratipetala Irmsch. Cultivated: RBGE (acc. 
nom.: 19681637), 
Papua New Guinea 

Forrest, L. L. 135 (E) 

Begonia siccacaudata J.Door. Indonesia, Sulawesi Thomas, D. C. & Ardi, W. H. 09-60 
(E) 

Begonia sikkimensis A.DC. Cultivated: RBGE (acc. 
nom.: 20051755), India 

Thomas, D. C. 08-144 (E) 

Begonia silletensis (A.DC.) 
C.B.Clarke subsp. mengyangensis
Tebbitt & K.Y.Guan

Cultivated: GBG (acc. 
nom.:  001 152 95), China 

Thomas, D. C. 08-104 (E) 

Begonia sizemoreae Kiew Cultivated: GBG (acc. 
nom.: 001 014 00), 
Vietnam 

Thomas, D. C. 08-111 (E) 

Begonia socotrana Hook.f. Yemen, Socotra Miller, A. G. 19210/10 (E) 
Begonia spec. Borneo 1 Cultivated: SBG, 

Malaysia, Borneo 
Thomas, D. C. 09-07 (E) 

Begonia spec. Borneo 2 Cultivated: SBG, 
Malaysia, Borneo 

Thomas, D. C. 09-08 (E) 

Begonia spec. Borneo 3 Cultivated: BoBG, 
Indonesia, Borneo 

Thomas, D. C. & Ardi, W. H. 09-136 
(E) 

Begonia spec. Borneo 4 Cultivated: RBGE (acc. 
nom.: 20030131), 
Malaysia, Borneo 

Thomas, D. C. 07-1 (E) 

Begonia spec. China 1 Cultivated: RBGE (acc. 
nom.: 19980067), China 

Forrest, L. L. 31 (E) 

Begonia spec. New Guinea 1 Indonesia, Papua Armstrong, K. 351 (E) 
Begonia spec. New Guinea 2 Cultivated: BoBG, 

Indonesia, Papua 
Thomas, D. C. & Ardi, W. H. 09-139  
(E) 

Begonia spec. Philippines 1 Cultivated: RBGE (acc. 
nom.: 20080433), 
Philippines: Luzon Island 

Thomas, D. C. 08-146  (E) 

Begonia spec. Solomon Islands 1 Solomon Islands Pitisopa, F., Gardner, M. F., 
Herrington, S. 10 (E) 

Begonia spec. Sulawesi 1 Cultivated: PCHW, 
Indonesia, Sulawesi 

Thomas, D. C. & Ardi, W. H. 08-92 
(E) 

Begonia spec. Sulawesi 2 Cultivated: PCHW, 
Indonesia, Sulawesi 

Thomas, D. C. & Ardi, W. H. 09-132 
(E) 

Begonia spec. Sulawesi 3  Cultivated: BaBG, 
Indonesia, Sulawesi 

Thomas, D. C. & Ardi, W. H. 08-84 
(E) 

Begonia spec. Sulawesi 4  Indonesia, Sulawesi Vermeulen, J.J. 2301 (L) 
Begonia spec. Sulawesi 7  Indonesia, Sulawesi Thomas, D. C. & Ardi, W. H. 09-108 

(E) 
Begonia spec. Sulawesi 8  Indonesia, Sulawesi Thomas, D. C. & Ardi, W. H. 09-112 

(E) 
Begonia spec. Sulawesi 9  Indonesia, Sulawesi Thomas, D. C. & Ardi, W. H. 09-120 

(E) 
Begonia spec. Sulawesi 10  Indonesia, Sulawesi  Thomas, D. C. & Ardi, W. H. 09-

121 (E) 
Begonia spec. Sulawesi 11  Indonesia, Sulawesi Thomas, D. C. & Ardi, W. H. 09-125 

(E) 
Begonia spec. Sulawesi 12  Indonesia, Sulawesi Thomas, D. C. & Ardi, W. H. 08-20 

(E) 
Begonia spec. Sulawesi 13  Indonesia, Sulawesi Thomas, D. C. & Ardi, W. H. 09-110 

(E) 
Begonia spec. Sulawesi 14  Indonesia, Sulawesi Smith, P. & Galloway, L. 73A (E) 
Begonia spec. Sulawesi 15   Cultivated: BrBG, 

Indonesia, Sulawesi 
Tebbitt, M. s.n. (E) 

Begonia spec. Sulawesi 16  Indonesia, Sulawesi Thomas, D. C. & Ardi, W. H. 09-97 
(E) 
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Begonia spec. Sulawesi 17   Indonesia, Sulawesi Thomas, D. C. & Ardi, W. H. 09-51 
(E) 

Begonia spec. Sulawesi 18  Indonesia, Sulawesi Thomas, D. C. & Ardi, W. H. 09-100 
(E) 

Begonia spec. Sulawesi 19  Indonesia, Sulawesi Thomas, D. C. & Ardi, W. H. 09-123 
(E) 

Begonia spec. Sulawesi 20  Cultivated: BaBG, 
Indonesia, Sulawesi 

Thomas, D. C. & Ardi, W. H. 09-53 
(E) 

Begonia spec. Sulawesi 21 Indonesia, Sulawesi Thomas, D. C. & Ardi, W. H. 09-62 
(E) 

Begonia spec. Sulawesi 22 Indonesia, Sulawesi Thomas, D. C. & Ardi, W. H. 09-78 
(E) 

Begonia spec. Sumatra 1  Cultivated: BoBG, 
Indonesia, Sumatra 

Thomas, D. C. & Ardi, W. H. 08-132 
(E) 

Begonia spec. Sumatra 2 Indonesia, Sumatra Hughes, M. 1402 (E) 
Begonia spec. Sumatra 3 Cultivated: BoBG, 

Indonesia, Sumatra 
Thomas, D. C. & Ardi, W. H. 09-134 
(E) 

Begonia spec. Sumatra 4 Cultivated: RBGE (acc. 
nom.: 20080584), 
Indonesia, Sumatra 

Hughes, M. 1502 (E) 

Begonia spec. Sumatra 5 Cultivated: RBGE (acc. 
nom.: 20070752), 
Indonesia, Sumatra 

Thomas, D. C. 07-31 (E) 

Begonia spec. Sumbawa 1 Cultivated: BaBG, 
Indonesia, Sumbawa 

Thomas, D. C. & Ardi, W. H. 08-85 
(E) 

Begonia spec. Sumbawa 2  Cultivated: BoBG, 
Indonesia, Sumbawa 

Thomas, D. C. & Ardi, W. H. 09-138 
(E) 

Begonia stevei M.Hughes Cultivated: RBGE (acc. 
nom.: 20040642), 
Indonesia, Sulawesi 

Thomas, D. C. 07-30 (E) 

Begonia strigosa (Warb.) 
L.L.Forrest & Hollingsw.

Cultivated: GBG (acc. 
nom.: Papua New Guinea) 

Forrest, L. L. 143 (E) 

Begonia sudjanae Jansson Cultivated: GBG (acc. 
nom.: 026 054 99) 
[Indonesia, Sumatra] 

Thomas, D. C. & Ardi, W. H. 08-109 
(E) 

Begonia sutherlandii Hook.f. Cultivated: RBGE (acc. 
nom.: 2001.0167), South 
Africa

Thomas, D. C. 08-140 (E) 

Begonia symsanguinea
L.L.Forrest & Hollingsw.

Cultivated: GBG (acc. 
nom.: 003 127 93), Papua 
New Guinea 

Forrest, L. L. 142 (E) 

Begonia tenuifolia Dryand. Indonesia, Bali Thomas, D. C. & Ardi, W. H. 08-86 
(E) 

Begonia thomeana C.DC. Cultivated: GBG (acc. 
nom.: 05407997), São 
Tomé 

Forrest, L. L. 199 (E) 

Begonia ulmifolia Willd. Cultivated: RBGE (acc. 
nom.: 19682869), 
[Guyana] 

Forrest, L. L. 169 (E) 

Begonia varipeltata D.C.Thomas Indonesia, Sulawesi Thomas, D. C. & Ardi, W. H. 08-51 
(E) 

Begonia venusta King Cultivated: RBGE (acc. 
nom.: 20021596), 
Malaysia, Peninsula 
Malaysia 

Neale, Sophie 7 (E) 

Begonia verecunda M.Hughes Indonesia, Sumatra Wilkie, P., Hughes, M., Sumadijaya, 
A., Rasnovi, S., Marlan & Suhardi 
618 (E) 

Begonia versicolor Irmsch. Cultivated: RBGE (acc. 
nom.: 19980037), China 

Forrest, L. L. 2 (E) 
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Begonia watuwilensis Girmansyah Cultivated: BaBG, 
Indonesia, Sulawesi 

Thomas, D. C. & Ardi, W. H. 09-55 
(E) 

Hillebrandia sandwicensis Oliv. USA, Hawaii Morris, R. 1264-2005 (E) 
 



176APPENDIX

Appendix 3. Genbank accessions used in the analyses. Sequences were downloaded from the 
nucleotide database of the National Centre for Biotechnology Information (http://www.ncbi.nlm.nih.gov/).
 

Taxon ITS matK rbcL trnL
intron

trnL-F
spacer 

Alnus sinuata (Regel) Rydb. n/a AY263914 AY263926 AY147067 AY147067 
Alsomitra macrocarpa M.Roem. n/a DQ536632 DQ535780 DQ536784 DQ536784 
Anisophyllea corneri Ding Hou n/a AY968444 AF027109 AY968559 AY968375 
Anisophyllea fallax Scott-Elliot n/a AY935923 AY935742 AY968560 AY935779 
Annamocarya sinensis (Dode) J.-
F.Leroy

n/a AY263919 AY263935 AY147080 AY147080 

Austrobryonia argillicola
I.Telford

n/a EF487555 EF487549 EF487572 EF487572 

Baijiania yunnanensis (A.M.Lu & 
Zhi Y.Zhang) A.M.Lu & J.Q.Li

n/a DQ469138 DQ501258 DQ501270 DQ501270 

Begonia alveolata Yu AY048977 n/a n/a n/a  n/a
Begonia balansana Gagnep. AF485091 n/a n/a n/a  n/a
Begonia boisiana Gagnep. AF534719 n/a n/a n/a  n/a
Begonia cavaleriei H.Lév. GU176060 n/a n/a n/a  n/a
Begonia chloroneura P.Wilkie & 
Sands

AF485134 n/a n/a n/a  n/a

Begonia cirrosa L.B.Sm. & 
Wassh.

AY048979 n/a n/a n/a  n/a

Begonia grandis Otto ex A.DC. AF485088 n/a n/a n/a  n/a
Begonia henryi Hemsl. GU176061 n/a n/a n/a  n/a
Begonia hernandioides Merr. AF485135 n/a n/a n/a  n/a
Begonia incisa A.DC. AF485148 n/a n/a n/a  n/a
Begonia labordei H.Lév. AF485122 n/a n/a n/a  n/a
Begonia leprosa Hance AY753722 n/a n/a n/a  n/a
Begonia longicarpa K.Y.Guan & 
D.K.Tian

AF485109 n/a n/a n/a  n/a

Begonia malabarica Lam. AF485140 n/a n/a n/a  n/a
Begonia muricata Blume AY753725 n/a n/a n/a  n/a
Begonia nepalensis Warb. AY753726 n/a n/a n/a  n/a
Begonia nigritarum Steud. AF534715 n/a n/a n/a  n/a
Begonia oxysperma A.DC. AF485131 n/a n/a n/a  n/a
Begonia parvula H.Lév. & Vaniot GU176066 n/a n/a n/a  n/a
Begonia rajah Ridl. & Ridl. AF485136 n/a n/a n/a  n/a
Begonia serratipetala Irmsch. AF485143 n/a n/a n/a  n/a

Begonia variabilis Ridl. AY753732 n/a n/a n/a  n/a
Begonia versicolor Irmsch. AF485090 n/a n/a n/a  n/a
Begonia wenshanensis C.M.Hu ex 
C.Y.Wu & T.C.Ku

AY048974 n/a n/a n/a  n/a

Betula platyphylla Sukaczev n/a AB015457 AY263927 AY147068 AY147068 
Carpinus betulus L. n/a AY263915 AY263928 AY147070 AY147070 
Carya ovata (Mill.) K.Koch n/a U92850 AY263931 AY147074 AY147074 
Castanea seguinii Dode n/a AY263920 AY263937 AY147082 AY147082 
Castanopsis tibetana Hance n/a AY263921 AY147096 AY147083 AY147083 
Casuarina equisetifolia L. n/a AB015462 AY263930 AY147090 AY147090 
Coccinia sessilifolia Cogn. n/a AY968446 AY968520 AY968568 AY968385 
Combretocarpus rotundatus
(Miq.) Danser

n/a AY968447 AF127698 AY968561 AY968376 

Comptonia peregrina (L.) 
J.M.Coult.

n/a U92856 X69529 AY263905 AY263905 

Coriaria myrtifolia L. n/a AB016459 AY968521 AY091824 AY091824 
Coriaria nepalensis Wall. n/a AB016460 AY968522 AY091825 AY091825 
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Coriaria ruscifolia L. n/a AB016462 AB016448 AY091826 AY968380 
Coriaria sarmentosa G.Forst. n/a AB016464 AB016450 AY091829 AY968381 
Corylus avellana L. n/a AY263916 AY263929 AY147072 AY147072 
Corynocarpus laevigata J.R.Forst. 
& G.Forst.

n/a AY968448 X69731 AY968565 AY968382 

Cucurbita pepo L. n/a DQ536666 AF206756 DQ536808 DQ536808 
Cyclocarya paliurus (Batal.)
Iljinsk.

n/a AY147098 AY263942 AY147075 AY147075 

Datisca cannabina L. n/a AB016467 AB016453 AY238600 AY968383 
Datisca glomerata (C.Presl) Baill. n/a AY968449 L21940 AY238601 AY968384 
Dendrosicyos socotranus Balf.f. n/a AY973018 AY973022 AY973005 AY973005 
Ecballium elaterium (L.) A.Rich. n/a AY973019 AY973023 EU102417 EU102420 
Engelhardia fenzelii Merr. n/a AY147099 AY147095 AY147076 AY147076 
Fagus grandifolia Ehrh. n/a U92861 AY263936 AY147087 AY147087 
Fevillea pergamentacea Cogn. n/a DQ536679 DQ535813 DQ536819 DQ536819 
Gerrardanthus grandiflorus Gilg 
ex Cogn.

n/a DQ536668 DQ535805 DQ536768 DQ536768 

Gurania spinulosa Cogn. n/a DQ536681 DQ535815 DQ536822 DQ536822 
Gynostemma pentaphyllum
(Thunb.) Makino

n/a AY968451 AY968523 EU436355 EU436355 

Hemsleya amabilis Diels n/a EU436407 EU436384 EU436356 EU436356 
Hillebrandia sandwicensis Oliv. n/a AY968452 U59822 AY238599 AY968379 
Juglans mandshurica Maxim. n/a AF118033 AY263932 AY147077 AY147077 
Lagenaria breviflora (Benth.) 
Roberty

n/a AY935934 AY935747 AY968570 AY935788 

Lithocarpus henryi Rehder & 
E.H.Wilson 

n/a AY263923 AY147097 AY147086 AY147086 

Marah macrocarpa Greene n/a AY968453 AY968524 AY968571 AY968387 
Melothria pendula L. n/a DQ536699 DQ535828 DQ536839 DQ536839 
Momordica charantia L. n/a DQ491019 DQ535760 DQ501269 DQ501269 
Myrica cerifera L. n/a U92857 AF119179 AY147089 AY147089 
Neoalsomitra sarcophylla (Wall.)
Hutch.

n/a AY968454 AY968525 AY968572 AY973008 

Nothofagus antarctica (G.Forst.) 
Oerst.

n/a AY263924 AY263939 AY147091 AY147091 

Octomeles sumatrana Miq. n/a AY968455 L21942 AY968574 AY968389 
Ostrya virginiana K.Koch n/a AB015460 X56620 AY147069 AY147069 
Ostryopsis davidiana Decne. n/a AY263917 AF081515 AY147071 AY147071 
Papuasicyos papuanus (Cogn.) 
Duyfjes

n/a EU590121 EU590122 EU590123 EU590123 

Parasicyos dieterleae Lira & 
R.Torres

n/a DQ536712 DQ535763 DQ536846 DQ536846 

Penelopeia suburceolata Urb. n/a DQ536713 DQ535834 DQ536847 DQ536847 
Platycarya strobilacea Siebold & 
Zucc.

n/a AY147100 AY263933 AY147078 AY147078 

Polyclathra cucumerina Bertol. n/a DQ536717 DQ535767 DQ536849 DQ536849 
Pterocarya hupehensis Skan n/a AY263918 AY263934 AY147079 AY147079 
Quercus multinervis (W.C.Cheng 
& T.Hong) J.Q.Li

n/a AY263922 AY263938 AY147084 AY147084 

Rhoiptelea chiliantha Diels & 
Hand.-Mazz.

n/a U92852 AF017687 AY147081 AY147081 

Schizopepon bryoniifolius Maxim. n/a AY968456 AY973025 AY973009 AY973009 
Seyrigia humbertii Keraudren n/a AY968457 AY968526 AY973010 AY973010 
Siraitia grosvenorii (Swingle) 
C.Jeffrey ex A.M.Lu & Zhi 
Y.Zhang

n/a DQ536736 DQ535850 DQ536869 DQ536869 

Telfairia pedata Hook. n/a DQ491021 DQ535853 DQ501271 DQ501271 
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Tetrameles nudiflora R.Br. n/a AY968458 AF206828 AY091831 AY091831 
Thladiantha hookeri C.B.Clarke n/a DQ491022 DQ535734 DQ536780 DQ536780 
Ticodendron incognitum Gómez-
Laur. & L.D.Gómez

n/a U92855 AF061197 AY147073 AY147073 

Trichosanthes amara L. n/a EU037001 EU037000 DQ536873 EU037004 
Trigonobalanus verticillata
Forman

n/a U92866 AJ235812 AY147085 AY147085 

Vaseyanthus insularis Rose n/a DQ536748 DQ535776 DQ536880 DQ536880 
Xerosicyos danguyi Humbert n/a AY968459 AY973026 AY968573 AY968388 
Zehneria bodinieri (H.Lév.) 
W.J.de Wilde & Duyfjes

n/a DQ536754 DQ535865 DQ536885 DQ536885 

Zombitsia lucorum Keraudren n/a DQ491024 DQ501260 DQ501273 DQ501273 
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Appendix 4. DNA sequence data and reference alignments.

Files on the accompanying DVD comprise DNA sequence data and sequence 

alignments in FASTA format. 

File Contents 
1 Chapter2 Reference 

alignment 115taxa cpDNA.fas 

Alignment of concatenated ndhA intron, ndhF-rpl32, rpl32-trnL

sequences for 115 taxa 

2 Chapter2 Reference 

alignment 89 taxa ITS.fas 

Alignment of ITS sequences for 89 taxa 

3 Chapter3 Reference 

alignment 92 taxa cpDNA.fas 

Alignment of concatenated matK, rbcL, trnL intron and trnL-F spacer 

sequences for 92 taxa (Cucurbitales-Fagales dataset) 

4 Chapter3 Reference 

alignment 110 taxa 

cpDNA.fas 

Alignment of concatenated ndhA intron, ndhF-rpl32, rpl32-trnL

sequences for 110 taxa (Begoniaceae dataset) 

5 ITS data.fas Unaligned ITS sequences for 65 taxa 

6 ndhA intron data.fas Unaligned ndhA sequences for 116 taxa 

7 ndhF-rpl32 spacer data.fas Unaligned ndhF-rpl32 spacer sequences for 116 taxa 

8 rbcL data.fas Unaligned rbcL sequences for 23 taxa 

9 rpl32-trnL spacer data.fas Unaligned rpl32-trnL spacer sequences for 116 taxa 

10 trnL-F data.fas Unaligned trnL-F sequences for 23 taxa 

 
The positions of highly variable regions and inversions which were excluded from the 

reference alignments prior to the analysis are indicated in Tables 2.4 and 3.2. 
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