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Abstract
Aim: Ancient climatic fluctuations are invoked as the main driving force that generates 
the astonishing biodiversity in ancient mountains. As a result, endemism and spatial 
turnover are usually high and few species are widespread amongst entire mountain 
ranges, precluding the understanding of origins of macroevolutionary patterns. Here, 
we used a species endemic to, but widespread in, one of the most species-rich ancient 
mountains in the globe to test how environmental changes acted on and how their 
macroevolutionary patterns were shaped.
Location: Espinhaço Range, Eastern Brazil.
Taxon: Vriesea oligantha species complex (Bromeliaceae).
Methods: We compiled data for plastidial regions and nuclear microsatellites to as-
sess genetic diversity, population structure, migration rates and phylogenetic rela-
tionships. Using temperature and precipitation variables, we modelled suitable areas 
for the present and the past, estimating corridors between isolated populations. We 
also implemented Bayesian demographic analyses to estimate ancient populations dy-
namics. Finally, we tested if population structure is driven by isolation by environment 
or by distance using a Bayesian modelling approach.
Results: Our results showed that the intraspecific divergence events of V. oligan-
tha are older than those associated with the latest Pleistocene climatic oscillations, 
supporting the view that Quaternary climatic fluctuations are key components for 
understanding its population differentiation processes. Species distribution model-
ling estimated corridors between populations in the past, as also shown in the de-
mographic analyses, depicting a major spatial reorganization during colder climates. 
Besides, the high genetic structure estimated results from both models of isolation by 
distance and by environment.
Main conclusions: V. oligantha is a remarkable model to test the effects of climatic 
oscillations over the biological community, since this species originated in the early-
Pleistocene, prevailing over several cycles of climatic fluctuations until today. The 
estimated demographic dynamics of V. oligantha agrees with the species-pump 
mechanism, suggesting it as the main cause of speciation within the Espinhaço Range. 
Moreover, the phylogeographic patterns of V. oligantha reflect previously recognised 
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1  |  INTRODUC TION

Mountains are remarkable models for evolutionary studies since 
they host a substantial proportion of the world's biodiversity and 
harbour high levels of endemism (Antonelli et al., 2018; Perrigo 
et al., 2020). The drivers of this diversity began to be explored by 
Alexander von Humboldt, who studied the relationship between 
mountain vegetation and abiotic factors (Humboldt, 1807), although 
how this astonishing biodiversity arises is still a debatable subject. 
Geological processes (i.e. orogeny and erosion) and climate are the 
most often reported drivers of diversification in mountain ecosys-
tems (Antonelli et al., 2018; Muellner-Riehl et al., 2019; Perrigo et al., 
2020). For instance, during mountain uplift, new areas are estab-
lished, yielding new opportunities for organisms to occupy novel en-
vironments and accelerating evolutionary responses (i.e. speciation, 
extinction, migration, and adaptation) in endemic lineages (Acuña 
Castillo et al., 2019; Rahbek et al., 2019; Testo et al., 2019). However, 
while this expectation might be true in mountains of recent orogeny 
(e.g. the Andes and the Himalayas; Testo et al., 2019; Ye et al., 2019), 
other lines of evidence are usually adopted to explain the high levels 
of biodiversity in ancient mountains where uplift has ceased (Rull, 
2011; Vasconcelos et al., 2020).

Based on the hypothesis of Quaternary refugia (Haffer, 1969; 
Vanzolini & Williams, 1970), climatic fluctuations are amongst 
the main factors that explain the high biodiversity in mountains 
(Antonelli et al., 2018; Rull, 2011). According to this hypothesis, 
mountaintops would represent interglacial refugia for species that 
would have had a much wider distribution at lower elevation during 
the drier and colder glacial periods. In this scenario, the climate is 
a strong constraint for species survival, either broadening their 
potential distribution when the temperatures are lower (i.e. glacial 
periods) or confining them to areas with milder temperatures, like 
mountaintops, during interglacial periods, resulting in elevational 
displacement of species range (Perrigo et al., 2020). This altitudinal 
displacement may lead to expansion and contraction of suitable hab-
itats and variation in population connectivity (Flantua et al., 2019).

During late Neogene and Pleistocene, pronounced climatic os-
cillations events took place in the globe, resulting in high vegetation 
turnover, favoring pulses of expansion and retraction of the mon-
tane biological community over time, a phenomenon known as flick-
ering connectivity (Flantua et al., 2019). The concept of flickering 
connectivity implies continually interconnection and disconnection 
of adjacent populations associated with shifts of altitudinal limits 

(Flantua et al., 2019). This phenomenon might have changed rates 
of migrants between populations, promoting dispersion pathways to 
new areas or separating populations into isolated fragments, where 
isolation may result in allopatric speciation (Flantua & Hooghiemstra, 
2018). During the continuous processes of flickering connectivity 
several populational evolutionary processes, such as genetic drift, 
local adaptations, secondary contact and hybridization, might ulti-
mately boost the speciation rates of lineages endemic to montane 
areas, a mechanism called species-pump (Haffer, 1997), biodiversity 
pump (Rull, 2005), or also known as the isolation-cooling hypothe-
sis (Rull & Vegas-Vilarrúbia, 2020). The species-pump assumes that 
spatial and environmental isolation are important drivers of spe-
ciation, and a presumably consequence is that endemic species are 
usually restricted to narrow distribution, leading to high spatial turn-
over (Vasconcelos et al., 2020). This demographic dynamic provides 
suitable conditions to the emergence of increasing genetic disparity 
between spatially separated populations due to genetic drift and re-
stricted gene flow as expected in the isolation by distance model 
(Wright, 1943). On the other hand, local adaptations can also arise 
in such scenarios, where isolated populations are more prone to ex-
change migrants between those in more similar environments, re-
gardless of spatial geographic distance (i.e. isolation by environment 
Sexton et al., 2014; Wang & Bradburd, 2014).

The species-pump mechanism derived from climatic oscilla-
tions of the Plio-Pleistocene period was recently evoked to ex-
plain the biota formation in the Espinhaço Range, an Eastern South 
America mountain range (Alcantara et al., 2018; Ribeiro et al., 2014; 
Vasconcelos et al., 2020). This is because the last major tectonic 
events that affected these mountains were during Cretaceous pe-
riod (Dussin & Dussin, 1995; Magalhães Junior et al., 2015) far pre-
ceding the diversification of endemic plant lineages in the Espinhaço 
(Vasconcelos et al., 2020). The Espinhaço Range harbours an as-
tonishing plant diversity, accounting for nearly 15% of the entire 
Brazilian Flora, with approximately 2000 endemic species, making 
these mountains home of one of the highest species richness and 
endemism rates of the world (Silveira et al., 2020). This high degree 
of endemism associated with different portions of the Espinhaço 
Range is remarkably congruent between several organisms (Chaves 
et al., 2015; Echternacht et al., 2011) and has led to the recogni-
tion of distinct biogeographical regions in the northern (e.g. the 
Chapada Diamantina province) and in the mid-southern portions of 
the range (e.g. the Grão-Mogol, the Diamantina Plateau and the Iron 
Quadrangle districts; Colli-Silva et al., 2019).

spatial and temporal macroevolutionary patterns in the Espinhaço Range, providing 
insights into how microevolutionary processes may have given rise to this astonishing 
mountain biodiversity.

K E Y W O R D S
approximate Bayesian computation, Bromeliaceae, campos rupestres, epiphytes, Espinhaço, 
interglacial refugia, phylogeography, species-pump, Vriesea
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Are past climatic fluctuations common factors that could ex-
plain the origin of these congruent biogeographic and diversifica-
tion patterns in the Espinhaço Range? If the species-pump shaped 
the macroevolutionary patterns of a given locality, one can expect 
to observe microevolutionary processes acting at the population 
level in the early stages of population divergence (Li et al., 2018). 
Confirming the effects of such processes in already diverged 
lineages may be challenging, but it might be possible to observe 
these first steps of speciation in extant populations distributed 
amongst isolated mountains (Pinheiro et al., 2013). Even though 
there have been important contributions testing the species-pump 
hypothesis in several montane areas (e.g. Andes: Sedano & Burns, 
2010; Himalayas: Liu et al., 2016; Sierra Nevada: Schoville et al., 
2012), the understanding of how underlying microevolutionary 
processes have promoted the emergence of macroevolutionary 
patterns of mountains habitats is still to be investigated in ancient 
mountains with relatively inactive orogeny, such as the Espinhaço 
Range in Eastern South America.

In this context, we used the widely distributed Espinhaço-
endemic bromeliad Vriesea oligantha species complex as a model 
system to investigate how climatic oscillations might have 
shaped the evolution of endemic lineages in this mountain range. 
Following the wide distribution and the current suitability in high 
altitude areas (800–2000 m. a. s. l.) of V. oligantha, we hypothe-
sised that its evolutionary history likely follows the history of its 
habitat, varying in area and connectivity due to ancient climate 
oscillations. Thus, we predict that (i) isolation by distance together 
with isolation by environment are the main factors driving diver-
sification, in accordance with the flickering connectivity model, 
and (ii) population connections might have existed when climate 
was cooler; while over warmer periods, such connections might 
have faded. If both hypotheses are corroborated, we would expect 
that (iii) the genetic structure of populations of V. oligantha reflect 
the macroevolutionary patterns found in other endemic lineages 
of the Espinhaço Range. To answer these questions, we integrated 
different approaches, including population genetics, dated phy-
logenies and ecological niche modelling.

2  |  MATERIAL S AND METHODS

2.1  |  Target taxon, sampling and DNA extraction

The V. oligantha complex is composed of V. oligantha (Baker) Mez., 
V. lancifolia (Baker) L. B. Sm. and V. pseudoligantha Phlicox, a group 
of plants endemic to the Espinhaço Range. All share similar vegeta-
tive and reproductive traits, such as green-greyish leaves, plumose 
wind-dispersed seeds and nocturnal yellow flowers, which are usu-
ally associated with pollination by moths and bats. Such similari-
ties yielded poor taxonomic delimitation over time (Machado et al., 
2020; Philcox, 1992), although recent morfo-anatomical traits were 
in agreement with these taxa (Silva et al., 2020). For the purpose of 

this work, we considered all sampled individuals as belonging to the 
V. oligantha species complex.

We sampled 229 individuals from 14 populations of the V. oli-
gantha species complex (Table 1) during the years of 2016 and 2017, 
covering its entire distribution range (Figure 1). Total genomic DNAs 
were extracted from silica-gel dried leaves following a modified 
CTAB protocol described by Tel-Zur et al. (1999).

2.2  |  Plastidial DNA sequencing and nuclear 
microsatellite genotyping

Initially, we sequenced six individuals from different populations as 
a test, using 10 plastidial markers (petA-psbJ, petG-trnC, psbA-trnH, 
rpoB-trnC, psbM-trnD, rpoB-trnC-petN, trnK-matK-trnK, trnL-trnF, 
ycf1, ycf6-trnC) and one nuclear (phyC). From our initial test, we se-
lected two plastidial markers based on their higher polymorphism 
levels, ycf1 (Barfuss et al., 2016) and trnL-trnF (Barfuss et al., 2005) 
to be amplified in 95 samples from 14 populations. Amplifications 
for the ycf1 and trnL-trnF markers were performed in a 30 μl reaction 
using 3 ng of genomic DNA, 5x GoTaq Green Master Mix (Promega), 
0.5  µM of each primer and 1% of DMSO. Polymerase chain reac-
tion (PCR) was conducted using a Veriti 96-well Thermal Cycler 
(Applied Biosystems) following the protocols described in Barfuss 
et al. (2005, 2016). PCR products were then purified and sequenced 
in both forward and reverse directions on Macrogen. Consensus se-
quences and the alignment matrix were assembled on Geneious R10, 
using the ClustalW algorithm (Larkin et al., 2007). Indels longer than 
1 base pair were removed due to uncertain homology. Both markers 
were concatenated for subsequent analyses.

For nuclear microsatellites (nrSSR) loci, we genotyped nine 
polymorphic markers previously transferred from other brome-
liads (Cacossi et al., 2019) in 229 individuals from 12 populations. 
Protocols for genotyping followed those described in Cacossi et al. 
(2019).

2.3  |  Phylogenetic inferences and divergence times

To determine the origin and intraspecific divergence time amongst V. 
oligantha populations, we conducted time calibration analyses in two 
steps. First, we performed a dating analysis of the Tillandsioideae 
subfamily, including six individuals of V. oligantha from different pop-
ulations in a matrix with 171 species of Tillandsioideae and seven 
species from other subfamilies of Bromeliaceae using three plastid-
ial (matK, rpoB-trnC and ycf1) and one nuclear (phyC) marker devel-
oped by Barfuss et al. (2005, 2016) and downloaded from Genbank. 
The phylogenetic tree for Tillandsioideae was inferred using the 
GTR + I + G site model, selected in jModelTest2 (Darriba et al., 2012), 
assuming a Yule speciation prior. Calibration points were extracted 
from Givnish et al. (2011) and set as a lognormal distribution prior at 
the root (19 ± 1.5 Myr) and four other points in the phylogenetic tree 
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(crown group, 17 ± 1.5 Myr; Tillandsioideae, 16 ± 1.5 Myr; Catopsi
deae + Glomeropitcairnieae, 14 ± 1.5 Myr; Vrieseeae, 9 ± 1.5 Myr).

Secondly, using the crown age obtained for the V. oligantha clade, 
we ran a calibration approach to infer the dates of the intraspecific 
diversification of V. oligantha. We used samples from the 95 individu-
als described above, using seven other Tillandsioideae as outgroups. 
We used a normal distribution prior for the calibration age at the 
root, inferred by the previous phylogenetic analysis, the GTR + I + G 
substitution rate model selected using jModelTest2 and a coales-
cent constant size random tree under an uncorrelated exponential 
relaxed-clock model.

Both steps were run in BEAST 1.10.4 and executed in CIPRES 
Portal (Drummond & Rambaut, 2007; Miller et al., 2010). Each anal-
ysis had four independent MCMC runs of 200 million generations 
sampled every 1000. We used Tracer 1.10.4 (Rambaut et al., 2018) 
to assess the convergence and effective sample size (ESS  >  200) 
for each run. As a burn-in, we excluded 10% of trees for each 
step, combining the remaining trees in LogCombiner (available as 
part of the BEAST package). Maximum clade credibility trees for 
Tillandsioideae and V. oligantha were inferred using TreeAnnotator 
(Rambaut & Drummond, 2016) and visualised in FigTree 1.4.4 and in 
the Interactive Tree of Life platform (https://itol.embl.de/).

2.4  |  Genetic diversity

For cpDNA, we calculated the nucleotide diversity (π), haplotype di-
versity (Hd) and polymorphic sites (ss) per population in ARLEQUIN 
3.5 (Excoffier & Lischer, 2010). A haplotype matrix was constructed 
based on ss detected, which were coded as single characters. To 
explore historical relationships amongst haplotypes, we built a 

median-joining-network (Bandelt et al., 1999) on Network 5.0.1.1 
(http://www.fluxu​s-engin​eering.com).

For nrSSR, putative clones were examined and removed using 
GenClone 2.0 (Arnaud-Haond & Belkhir, 2006). The number of 
alleles per locus (A), allelic richness per locus (AR), the observed 
(HO) and the expected (HE) heterozygosity, and the inbreeding co-
efficient (FIS) were estimated per population using GenAlex 6.5 
(Peakall & Smouse, 2012). We evaluated the deviations from the 
Hardy–Weinberg equilibrium (HWE) per population and per locus 
using Genepop software v3.5 (Raymond & Rousset, 1995). Linkage 
disequilibrium between all pairs of loci was tested in FSTAT 2.9.3.2 
(Goudet, 1995).

2.5  |  Population structure and migration

For the population genetic structure of cpDNA, we employed a clus-
tering with linked loci analysis on BAPS 5.2 (Corander et al., 2008), 
testing 15 putative clusters. For nrSSR, we used STRUCTURE v.2.3.3 
(Pritchard et al., 2000) to assign individuals to genetic clusters (K) 
under the admixture model assuming independent allele frequen-
cies. The number of K was set from 1 to 13, with 1,000,000 simula-
tions for each K-value and a burn-in rate of 20%. The most probable 
number of K was examined using Structure Harvester v.6.0 (Earl & 
von Holdt, 2012), following the instructions of Evanno et al. (2005).

Genetic differentiation was estimated using F-statistics (Weir & 
Cookham, 1984), based on cpDNA and nrSSR. Pairwise FST between 
localities was calculated using ARLEQUIN 3.5. We also conducted 
a molecular variance analysis (AMOVA) to evaluate the parti-
tion genetic variance in hierarchical models grouping by lineages 
obtained from the phylogenetic cpDNA tree by running 10,000 

TA B L E  1  Population names, geographic locality and tested individual samples for plastidial and nuclear data

Population Location Latitude Longitude Altitude (m) Plastidial n Nuclear n

JAC Jacobina—BA −11.1704 −40.5112 713 5 16

MKA Miguel Calmon—BA −11.3933 −40.5393 1003 4 —

MCH Morro do Chapéu—BA −11.6263 −41.0000 904 6 19

MUC Mucugê—BA −12.9915 −41.3440 980 5 19

RCO Rio de Contas—BA −13.5244 −41.9567 1577 6 30

ABA Abaíra—BA −13.2838 −41.8998 1654 8 19

LIC Licínio de Almeida—BA −14.5874 −42.5400 915 5 5

GMO Grão Mogol—MG −16.5447 −42.8910 1088 7 20

DIB Diamantina (Biribiri)—MG −18.1787 −43.5447 1339 8 20

DIA Diamantina (Cons. Mata)—MG −18.3012 −43.8224 1313 6 18

DIM Diamantina (Milho 
Verde)—MG

−18.3490 −43.5512 1206 8 —

SGO São Gonçalo do Rio 
Preto—MG

−18.1460 −43.3687 906 10 15

CIP Conceição do Mato 
Dentro—MG

−19.2467 −43.5116 1270 8 23

OUR Ouro Branco—MG −20.5051 −43.6390 1375 9 25

https://itol.embl.de/
http://www.fluxus-engineering.com
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permutations between groups. AMOVA analyses were implemented 
on ARLEQUIN 3.5.

Recent migration events were estimated in BAYESASS 3.04 
(Wilson & Rannala, 2003). Samples were run for 1.0 × 108 interac-
tions with a 10% burn-in, sampling every 1000 interactions. Ancient 
migration events were estimated using MCMC and coalescence the-
ory approach, implemented in MIGRATE 4.4.3 (Beerli & Felsenstein, 
2001), testing two models, using the four phylogenetic lineages as 
groups: a panmictic model and a neighbour-only model, where mi-
gration was only allowed between adjacent groups. For both models, 
we used a Brownian motion model of mutation under the maximum-
likelihood framework and 10 replicates of 1,000,000 runs with a 
10% burn-in. Both recent and ancient migration events were esti-
mated using nrSSR.

2.6  |  Paleodistribution and ancestral population 
connections

To predict the current and paleodistributions (i.e. Mid-Holocene, 
MH, 6 kyr; Last Glacial Maximum, LGM, 21 kyr; and Last Interglacial 
Maximum, LIG, 120–140 kyr) of V. oligantha, we conducted species 
distribution modelling (SDMs) based on 55 unique occurrence re-
cords using an ensemble approach that combined the results from 

six distinct modelling algorithms (see Appendix S1 for detailed 
analyses). From the estimated SDMs, we generated population con-
nectivity maps by summing the least-cost path (LCP) amongst all 
populations (Chan et al., 2011) to investigate ancestral suitable con-
nections. We created a Friction Layer by inverting the SDM to a dis-
persal cost layer on ArcMap 10.5 (ESRI, 2016). Next, we calculated 
corridors that minimise the cost of dispersal between populations by 
following paths of lowest frictions. To do so, we used the ‘Least-Cost 
Corridors and Paths > Pairwise: All Sites’ tool from SDMtoolbox 1.1a 
(Brown, 2014), implemented on ArcMap 10.5.

2.7  |  Demographic reconstruction

To evaluate the demographic history of V. oligantha, we used the 
cpDNA data to calculate the Fu's Fs, Taijma's D and Rozas’ R2 statis-
tics and tested their departures from neutrality based on 100,000 
coalescent simulations with DnaSP (Librado & Rozas, 2009). We also 
inferred changes in the species’ effective population size through 
time using an approximate Bayesian computation approach (ABC), 
implemented in ‘abc’ (Csilléry et al., 2012) and ‘pipemaster’ packages 
(Gehara et al., 2017), both in R 3.6.2 (R Core Team, 2019). Briefly, we 
simulated genetic data based on three distinct demographic models: 
expansion, contraction and constant population size, using broad 

F I G U R E  1  (a) Map of the Espinhaço Range (dark green) and its surrounding phytogeographic domains: Caatinga (North, orange), 
Cerrado (West, beige) and Atlantic Forest (East and South, light green). Dark lines are the Brazilian States borders. This map shows the 
entire geographic distribution of Vriesea oligantha. White points represent occurrence data from herbarium specimens and black points are 
the sampled populations. The pie charts represent the frequency of occurrence of each haplotype in each population; haplotype colors 
correspond to those shown in the network; black haplotypes are singletons. (b) Median-joining network depicting the relationships amongst 
the haplotypes of V. oligantha. Population codes: ABA, Abaíra; CIP, Serra do Cipó; DIA, Diamantina (Conselheiro Mata); DIB, Diamantina 
(Biribiri); DIM, Diamantina (Milho Verde); GMO, Grão Mogol; JAC, Jacobina; LIC, Licínio de Almeida; MCH, Morro do Chapéu; MKA, 
Miguel Calmón; MUC, Mucugê; OUR, Ouro Branco; RCO, Rio de Contas; SGO, São Gonçalo do Rio Preto
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prior distributions of parameters. The simulated data followed the 
same number of individuals and sequence length of the lineages es-
timated by our phylogenetic analysis. The Northern Espinhaço line-
age encompassed less than 10 individuals and was not analyzed to 
avoid bias in our subsequent analyses (Gehara et al., 2017). Then, 
we generated a group of summary statistics that are dependent on 
population size and demographic history, evaluating the fit of the 
simulations to our observed data using a principal component analy-
sis (PCA) on the summary statistics. Finally, we conducted an ABC 
model selection to evaluate which of the simulated models best fit 
our observed data. The detailed methods and parametrizations are 
available in Appendix S2.

2.8  |  Roles of climate and geography on 
population structure

We implemented a Bayesian generaliszed linear mixed modelling 
(GLMM) approach to test whether population genetic structure of 
V. oligantha is driven by isolation by environment (i.e. temperature 
and precipitation) and/or isolation by distance models. Refer to 
Appendix S3 for a detailed method.

3  |  RESULTS

3.1  |  Phylogenetic inferences and divergence times

The topology of the time-calibrated tree of Tillandsioideae indicates 
that the V. oligantha complex is monophyletic (posterior probabil-
ity, pp = 1.00) and belongs to Vrieseinae subtribe (Figures S4.1 and 
S4.2 and Table S5.1). The estimated time to the most recent com-
mon ancestor (MRCA) of V. oligantha was dated at 3.26 Myr (95% 
HPD =4.48–1.83 Myr) (Figure 2a and Table S5.1). The phylogenetic 
analysis revealed four lineages in distinct geographic regions of 
the Espinhaço Range (Figure 2a and Figure S4.3). The older clade 
estimated (pp  =  1.00; 1.10  Myr, 95% HPD  =  1.17–1.04  Myr), was 
Chapada Diamantina, which includes the MCH, MUC, RCO and ABA 
populations. Secondly, Diamantina Plateau clade included the GMO, 
DIB, DIA, DIM, SGO and LIC populations (pp  =  0.98, 0.861  Myr, 
95% HPD = 1.06–0.494 Myr). Thirdly, the Southern Espinhaço clade 
comprehended CIP and OUR populations (pp  =  0.99, 0.708  Myr, 
95% HPD  =  0.999–0.274  Myr). Lastly, the youngest clade was 
the Northern Espinhaço (pp = 0.86, 0.702 Myr, 95% HPD = 1.47–
0.076  Myr) and included the most septentrional populations, JAC 
and MKA populations.

F I G U R E  2  (a) Maximum clade credibility tree of Vriesea oligantha, depicting four lineages: Northern Espinhaço, Chapada Diamantina, 
Diamantina Plateau and Southern Espinhaço. Bayesian posterior probabilities higher than 95% are represented by asterisks in each node; 
mean clade ages (in million years) are written next to each node; values in parentheses are the 95% highest posterior density (HPD). A 
silhouette of V. oligantha is in the inset. (b) The Espinhaço Range bioregionalization proposed by Colli-Silva et al. (2019) is constituted of two 
provinces, Chapada Diamantina (red) and the Southern Espinhaço, which is subdivided in three districts: Grão-Mogol (light blue), Diamantina 
Plateau (dark blue) and the Iron Quadrangle (yellow). The elevation gradient is represented by a grey scale, from lower (light) to higher (dark) 
altitudinal levels. Population codes: ABA, Abaíra; CIP, Serra do Cipó; DIA, Diamantina (Conselheiro Mata); DIB, Diamantina (Biribiri); DIM, 
Diamantina (Milho Verde); GMO, Grão Mogol; JAC, Jacobina; LIC, Licínio de Almeida; MCH, Morro do Chapéu; MKA, Miguel Calmón; MUC, 
Mucugê; OUR, Ouro Branco; RCO, Rio de Contas; SGO, São Gonçalo do Rio Preto
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3.2  |  Genetic diversity

The final alignment matrix with consensus cpDNA sequences of 
V. oligantha had 2065 bp (trnLF-trnF, 753 bp and ycf1, 1,312 bp), 
showing 17 polymorphic sites and 22 haplotypes (Figure 1). The 
haplotype diversity per population ranged from zero to 0.785 and 
the nucleotide diversity from zero to 0.000761, with an overall 
haplotype and nucleotide diversity of 0.392 and 0.000280, re-
spectively (Table 2). Few haplotypes are shared amongst popu-
lations, but the most frequent haplotype (H7) was found in five 
populations of the Diamantina Plateau clade, which also showed 
the highest values of nucleotide and haplotype diversity (Figure 1 
and Table 2).

From the nrSSR, we found a total of 162 alleles across loci 
and 67 were exclusive to single populations. Populations JAC and 
MUC presented the highest number of private alleles with 16 
and 13 alleles, respectively (Table 2). Populations of V. oligantha 
showed an averaged allelic richness ranging from 1.713 to 3.124, 
whereas variance in allele size ranged from 2.975 to 22.585 
(Table 2). Observed and expected heterozygosity per population 
varied from 0.034 to 0.550 and 0.266 to 0.627, respectively. The 
mean inbreeding coefficient (FIS) was high and significant for 
most populations, except for LIC population ranging from 0.125 
in DIB and 0.888 in MCH (Table 2).

3.3  |  Population structure

BAPS results, based on cpDNA markers, indicated six clusters   
amongst populations of V. oligantha (Figure 3a and Table S5.9). 
Northern populations (JAC and MKA) are grouped in a cluster, whilst 
populations from Chapada Diamantina (ABA, MUC and RCO) are clus-
tered together, with exception of MCH, which constitutes a unique 
group. Diamantina Plateau populations (DIB, DIA, DIM, LIC and SGO) 
belong to a separate cluster whilst GMO and three individuals of DIB 
are assembled into a single cluster. The Southern Espinhaço popula-
tions (CIP and OUR) form the sixth genetic cluster. STRUCTURE clus-
tering analysis (Figure 3b and Table S5.7), based on nrSSR, revealed a 
large number of genetic clusters amongst all populations (K = 11).

The pairwise FST values amongst populations were mostly sig-
nificant, ranging from 0.117 to 1.000 for cpDNA data and from 
0.007 to 0.794 for nrSSR data, indicating a widely heterogeneous 
structure between populations (Figure S4.5 and Tables S5.2 and 
S5.3). AMOVA showed high values of structure for both markers 
(cpDNA, FST = 0.822; nrSSR, FST = 0.432). When considering a higher 
hierarchical level (i.e. phylogenetic lineages), AMOVA for cpDNA 
also showed that the largest proportion of variance was confined 
amongst populations (FST = 0.853, p < 0.001) (Table 3).

Gene flow estimation from BAYESASS showed few contempo-
rary migration events, only amongst nearby populations (Table S5.4). 

TA B L E  2  Genetic diversity and tests of neutrality of 14 populations of Vriesea oligantha

Pop

Plastidial Nuclear

Haplotypes p Hd ss Fu D R2 P A AP R Var HO HE FIS

JAC H15–H16 0.000194 0.400 1 0.090 −0.816 0.400 100 50 16 3.014 21.839 0.486 0.556 0.182a 

MKA H16 0 0 0 0 0 0 — — — — — — — —

MCH H19 0 0 0 0 0 0 66.7 19 5 1.725 2.975 0.034 0.288 0.888a 

MUC H20 0 0 0 0 0 0 100 53 13 3.124 17.813 0.471 0.627 0.281a 

RCO H1, H22 0.000517 0.533 2 1.723 1.031 0.266 66.7 21 0 1.713 3.694 0.181 0.266 0.357a 

ABA H1–H2 0.000259 0.535 1 0.866 1.166 0.267 88.9 36 7 2.248 13.705 0.147 0.444 0.679a 

LIC H7, H17–H18 0.000581 0.7 3 −0.185 −1.048 0.266 77.8 20 3 2.084 22.585 0.519 0.377 −0.258

GMO H11–H14 0.000484 0.714 2 −1.483* 0.927 0.250 77.8 32 2 1.980 6.389 0.219 0.322 0.343a 

DIB H6-H9 0.000761 0.785 4 −0.328 0.081 0.172 100 59 3 3.111 13.687 0.550 0.609 0.125a 

DIA H7, H10 0.000161 0.333 1 −0.002 −0.933 0.372 100 51 8 3.043 14.433 0.350 0.592 0.441a 

DIM H7, H9–H10 0.000242 0.464 2 −0.998 −1.310 0.216 — — — — — — — —

SGO H7 0 0 0 0 0 0 88.9 41 3 2.718 10.507 0.361 0.510 0.325a 

CIP H3-H5 0.00045 0.464 3 0.071 −0.812 0.161* 88.9 32 3 2.251 12.496 0.145 0.430 0.676a 

OUR H3, H21 0.000269 0.555 1 1.015 1.401 0.277 55.6 23 4 1.773 9.245 0.071 0.291 0.766a 

Abbreviations: A, number of alleles; AP, number of private alleles; D, Tajimas's D statistics; FIS, Inbreeding coefficient; Fu, Fu's Fs statistics; Hd, 
haplotype diversity; HE, Expected heterozygosity; HO, Observed heterozygosity; p, nucleotide diversity; P, percentage of polymorphic loci; R, allelic 
richness; R2, Ramos-Onsins-Rozas’ statistics; ss, polymorphic sites; Var, variance in allele size.
aDepartures of within-population inbreeding coefficients from Hardy–Weinberg equilibrium (p-value < 0.01).
*p-value < 0.01.
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Similarly, MIGRATE estimated few ancient migration events be-
tween neighbouring populations (Figure S4.4 and Table S5.5), where 
the migration only between adjacent groups model was better sup-
ported than the panmictic model (Table S5.6).

3.4  |  Palaeoclimatic distribution and ancestral 
population connections

Our SDMs indicated that between 120 and 140  kyr ago (LIG), high 
suitable areas for V. oligantha were concentrated in sparse fragments, 
southwards from the current distribution, although midsuitability would 
be observed all over the Espinhaço Range. Later, as the climate got 
colder, during the LGM (21 kyr), suitable areas of V. oligantha might have 

increased, becoming progressively connected (Figure 4c). According 
to our SDMs, the V. oligantha's distribution became more fragmented 
once again during the Mid-Holocene (6 kyr), with suitable areas in the 
Northern Espinhaço (Figure 4b). The current distribution mainly reflects 
areas of high altitude in the Espinhaço Range (Figure 4a).

Analysis of the LCP across isolated populations revealed suitable 
areas of ancestral connection over all investigated periods, espe-
cially between the Chapada Diamantina and the Diamantina Plateau 
populations (Figure 5). However, those connections seem broader 
in the LIG (Figure 5d), while they become progressively narrow until 
the current climate conditions, with high suitability amongst pop-
ulations in the Diamantina Plateau (Figure 5a–c). Populations from 
the northern and southern peripheries of the distribution presented 
lower connections with the central groups in all periods.

F I G U R E  3  Clustering methods used for Vriesea oligantha populations based on (a) cpDNA, using BAPS, depicting six clusters and 
(b) nrSSR, using STRUCTURE software, depicting eleven clusters. In all plots, each color represents a given cluster. Population codes: ABA, 
Abaíra; CIP, Serra do Cipó; DIA, Diamantina (Conselheiro Mata); DIB, Diamantina (Biribiri); DIM, Diamantina (Milho Verde); GMO, Grão 
Mogol; JAC, Jacobina; LIC, Licínio de Almeida; MCH, Morro do Chapéu; MKA, Miguel Calmón; MUC, Mucugê; OUR, Ouro Branco; RCO, 
Rio de Contas; SGO, São Gonçalo do Rio Preto

TA B L E  3  Analysis of molecular variance on cpDNA sequences and nrSSR, based on the phylogenetic lineages

Clustering method Source of variation df
Sum of 
Squares

Variance 
components Variation (%) F-statistics

cpDNA

All populations Amongst populations 13 125.787 1.38841 82.2 FST = 0.822

Within populations 81 24.297 0.29997 17.7

Amongst lineages 3 95.702 1.35333 65.9 FCT = 0.659

Phylogenetic lineages Amongst populations 
within lineages

10 30.085 0.39953 19.4 FSC = 0.571

Within populations 81 24.297 0.29997 14.6 FST = 0.853

Total 94 150.084 2.05283 100

nrSSR

All populations Amongst populations 11 302.447 0.70207 43.2 FST = 0.432

Within populations 446 410.732 0.92092 56.7

Total 457 88079.555 238.4214 100

All values of F-statistics are significant (p-value < 0.001).
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3.5  |  Demographic analyses

All populations exhibited no departure from neutrality on demo-
graphic analyses, except for GMO (in Fu's FS) and CIP (in Roza's R2) 
(Table 2). From our ABC analysis, all analyzed lineages fitted within 
the simulate data, as observed by the PCA (Figure S4.6). The ex-
pansion model was consistently supported as the most likely of the 
three demographic models for all three lineages analyzed. The prob-
ability of expansion was ≥60%, and the probability of the other mod-
els was ≤34% for all analyzed lineages (Table S5.8).

3.6  |  Relative roles of climate and geography

Our GLMM analysis indicated that environmental and geographi-
cal distances are both good predictors of genetic variation in V. 

oligantha. Contrasted with other predictors, the model including 
a combination of both isolation by geographic distance (IBD) and 
by environment (IBE) had the best model fit as indicated by DIC 
(Deviance Information Criterion) for both plastidial and nuclear ge-
nomes (Table 4).

4  |  DISCUSSION

4.1  |  Geographic and environmental isolation are 
the main drivers of population divergence in Vriesea 
oligantha

The divergence age between V. oligantha and its outgroup dates back 
to the Pliocene-Pleistocene transition (3.26 Myr; Figure 2a), mirror-
ing previous phylogenetic analyses (Kessous et al., 2019; Machado 

F I G U R E  4  Ensemble distribution 
models for Vriesea oligantha under (a) 
Current, (b) Mid-Holocene (6 kyr), (c) Last 
Glacial Maximum (21 kyr) and (d) Last 
Interglacial Maximum (120 kyr) climatic 
conditions. The thin line represents the 
current delimitation of the Espinhaço 
Range

(a) (b)

(c) (d)
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et al., 2020). This period is marked by a decrease in global tempera-
ture and the beginning of glaciations in the Northern Hemisphere 
(Prell, 1984). In this context, V. oligantha is a remarkable model to 

test the effects of climatic oscillations over the biological commu-
nity, since this species originated in the early-Pleistocene, prevailing 
over several cycles of climatic fluctuations until today.

F I G U R E  5  Potential dispersal 
corridors between Vriesea oligantha 
populations based on friction layers 
throughout the Espinhaço Range, 
across four period times. (a) Current; 
(b) Mid-Holocene (6 kyr); (c) Last Glacial 
Maximum (21 kyr); and (d) Last Interglacial 
Maximum (120 kyr). Each color within 
circles represents a lineage from the 
phylogenetic tree—pink, Northern 
Espinhaço; red, Chapada Diamantina; blue, 
Diamantina Plateau; yellow, Southern 
Espinhaço. The elevation gradient 
is represented by a grey scale, from 
lower (light) to higher (dark) altitudinal 
levels

(a) (b)

(c) (d)

Model

cpDNA nrSSR

DIC ΔDIC
DIC 
weight DIC ΔDIC

DIC 
weight

Null 810.1204 9.6164 0.0077 113.2596 9.5066 0.0045

Geography 811.7689 11.2648 0.0034 106.2901 2.5372 0.1461

Climate 806.3522 5.8482 0.0504 103.7529 <0.001 0.5196

Geography + Climate 800.5041 <0.001 0.9386 104.6625 0.9096 0.3297

The best model for each data set is highlighted in bold.
Abbreviation: DIC, deviance information criterion.

TA B L E  4  Results of generalised 
linear mixed models (GLMM) testing 
the influence of geographic distance 
and climatic differences, based on 19 
bioclimatic variables, on the genetic 
divergence amongst populations of 
Vriesea oligantha
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Our results showed that the intraspecific divergence events 
of V. oligantha are older than those associated with the latest 
Pleistocene climatic oscillations, thus cannot be explained solely by 
the late-Quaternary refugia hypothesis (Haffer, 1969; Rull, 2011). 
Moreover, extreme amplitude in climatic fluctuations was remark-
able events in the mid-Pleistocene (Lisiecki & Raymo, 2007), when 
V. oligantha lineages diversified (Figure 2). This supports the view 
that climate fluctuations that occurred along the whole Quaternary 
are key components for understanding population differentiation 
processes due to the flickering connectivity amongst populations 
that led to the species-pump mechanism. Altogether, these find-
ings reinforce the importance of climate changes throughout the 
whole Pleistocene in the diversification of the montane biota in 
the Neotropics (Antonelli et al., 2018; Perrigo et al., 2020; Silva 
et al., 2018; Vasconcelos et al., 2020). Accordingly, diversification 
events throughout the Quaternary are congruent amongst many 
extant lineages from distinct Neotropical montane formations, as 
in the Espinhaço itself (e.g. Barres et al., 2019; Bonatelli et al., 2014; 
Chaves et al., 2019; Nascimento et al., 2018; Vasconcelos et al., 
2020); Serra do Mar and Mantiqueira mountains (Mota et al., 2020); 
the páramos (e.g. Hughes & Atchison, 2015; Madriñán et al., 2013) 
and the pantepuis (e.g. Rull & Vegas-Vilarrúbia, 2020; Salerno et al., 
2012), although the role of species pump in these latter remain to 
be tested.

Populations of V. oligantha are genetically differentiated by a 
combined interplay of both geographic distances and environmen-
tal differences, as expected under the IBD and IBE models, respec-
tively (Table 4). These results suggest that climatic variables along 
the Espinhaço Range were determinant predictors of the genetic 
structure of the populations of V. oligantha. In fact, climate along 
the Espinhaço Range is quite heterogeneous (Giulietti et al., 1987) 
(Table 4). For instance, the Northern Espinhaço climate is markedly 
drier and hotter, with long periods of low (or even absence of) pre-
cipitation while the climate of the mid-south Espinhaço has milder 
temperatures and higher humidity levels (Giulietti et al., 1987; Zappi 
et al., 2003). Such climatic variation has the potential to rapidly in-
fluence evolution by triggering ecological divergence (Campbell 
& Powers, 2015), especially in a scenario with reduced interpop-
ulation gene flow as observed in V. oligantha (Figure 3 and Figure 
S4.4). In fact, the four phylogeographic lineages (Figure 2) present 
some anatomical and morphological differences (Silva et al., 2020) 
that might be associated with adaptive responses to environmental 
factors.

Our ABC demographic analyses showed that most lineages 
of V. oligantha presented a demographic expansion over the LGM 
(Table S5.8), depicting a major spatial reorganization of this spe-
cies during a colder climate. The expansion and the consequen-
tial population contractions towards the present might have 
promoted connections and disconnections amongst adjacent 
populations. Similarly, the SDMs using extant and past climatic 
variables revealed middle to lower suitability during warmer 
periods (current; mid-holocene: 6  kyr, and LIG: 120–140  kyr) 

when populations of V. oligantha might have survived in sparse 
fragment of small areas of its distribution (Figure 4). As ex-
pected, during the LGM (21 kyr), the colder climate might have 
promoted the increase of suitable habitats and populations 
might have become more connected (Figure 4). Despite these 
differences due to past climatic variations, suitable areas of 
ancestral connections amongst populations were present all-
over investigated periods, which might have allowed eventual 
migrations, at least amongst core populations (i.e Diamantina 
Plateau populations—Figure 5). In agreement, MIGRATE anal-
ysis revealed that gene flow amongst populations was limited 
to adjacent populations (Figure S4.4 and Tables S5.5 and S5.6). 
Therefore, we expect the impacts of Pleistocene climate changes 
on V. oligantha populations differentiation to be associated 
with local persistence during multiple cycles of demographic 
expansion and contraction. Demographic dynamics estimated 
by our ABC analyses and the SDMs are in agreement with the 
postulated species-pump mechanism in the divergence of intra-
specific lineages of V. oligantha and possible to other endemic 
lineages of the Espinhaço Range. Accordingly, paleopalinologi-
cal studies in the Espinhaço area have also showed herbaceous 
vegetation turnover in the last thousand years (Behling, 2002; 
de Barros et al., 2011; Horák-Terra et al., 2015), concurring with 
the flickering connectivity effect in the Espinhaço Range.

Together with climatic differences, the other important pre-
dictor of V. oligantha population differentiation was geographic 
distances, as expected in IBD model (Table 4). In general, most 
populations of V. oligantha had extremely low gene flow amongst 
each other, with only a few connected adjacent populations 
(Figure S4.5 and Tables S5.2 and S5.3). In fact, restricted pop-
ulation connectivity has been reported for several naturally 
fragmented habitats, especially in mountain systems (e.g. Mota 
et al., 2020; Muellner-Riehl et al., 2019). Such limited gene flow 
amongst populations suggests that both pollen and seed disper-
sal might be restricted. Since maternal inheritance of plastidial 
DNA and biparental inheritance of nuclear DNA are the most 
common pattern for Angiosperms (Ennos, 1994), the genetic dif-
ferentiation results indicate that gene flow via seeds is compara-
tively less efficient than via pollen, as noticed by the much higher 
genetic structure of cpDNA (FST = 0.82, Table 3 and Figure S4.5) 
than nrSSR (FST = 0.43, Table 3 and Figure S4.5). The discrepancy 
between the two genomes may indicate the role of pollinators in 
maintaining a relative cohesion between close populations, since 
seeds are poorly dispersed, a common trend in other plant lin-
eages of the Espinhaço Range (Silveira et al., 2020). However, it 
is important to notice that both coalescent and Bayesian analy-
sis revealed limited nuclear migration rates amongst populations 
(Tables S5.4 and S5.5) suggesting a restricted dispersal even via 
pollen. Future investigations on specific and effective pollinators 
and their foraging behaviours may help us to understand their 
role in connectivity and population differentiation of V. oligantha 
in such naturally fragmented habitats.
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4.2  |  Phylogeography of Vriesea oligantha: insights 
from micro to macroevolution in the Espinhaço Range

The phylogeographic results of V. oligantha showed a remarkable 
congruence between the population genetic structure and the bi-
oregionalization proposed by Colli-Silva et al. (2019), based on pat-
terns of plant endemism in the Espinhaço Range (Figure 2). Similar 
biogeographic patterns were also pointed out by several other stud-
ies using floristic and faunistic composition, as well as endemicity 
indexes (e.g. Bitencourt & Rapini, 2013; Bünger et al., 2014; Campos 
et al., 2019; Chaves et al., 2015) and phylogenetic histories (e.g. 
Chaves et al., 2019; Ribeiro et al., 2014). These results not only sug-
gest that evolutionary history and community assembling of distinct 
areas in the Espinhaço Range (Zappi et al., 2017) might be under the 
same influence of climatic oscillations and spatial connectivity but 
also imply that population differentiation and macroevolutionary di-
versification should be linked over a deep evolutionary time.

Both Northern Espinhaço and Chapada Diamantina lineages and 
their clustering analyses support the congruence with the Chapada 
Diamantina province (Colli-Silva et al., 2019). Populations from the 
Diamantina Plateau clade mainly match the Diamantina Plateau dis-
trict, though the GMO population is a noteworthy exception. As ev-
idenced by the clustering analysis (BAPS and STRUCTURE—Figure 3 
and Tables S5.7 and S5.9), GMO remained distinct as a single clus-
ter, unarguably fitting into the Grão-Mogol district (Colli-Silva et al., 
2019). The particularity of this district has already been reported 
elsewhere (e.g. Echternacht et al., 2011; Pirani et al., 2003). Its envi-
ronmental discontinuity might be a factor leading to the singularity 
of these mountains, since they are an ecotone between the Cerrado 
and Caatinga domains, possibly affecting the dynamics of the bio-
logical community of this region and resulting in a particular evolu-
tionary history.

The fourth estimated clade, the Southern Espinhaço, includes 
CIP and OUR populations, the latter coinciding with the Iron 
Quadrangle district, the southernmost bioregion of the Espinhaço 
Range (Colli-Silva et al., 2019). However, we could not directly link 
this clade with the Iron Quadrangle district, since its diagnostic 
characteristic is the presence of ironstone outcrops, while CIP and 
OUR are associated with quartzitic soils (Saadi, 1995). Despite the 
soil differences, the relative geographic proximity of CIP and OUR 
with the Iron Quadrangle district may promote the divergence of 
the Southern Espinhaço clade due to biotic interactions and con-
straints fostered by the singular environment and community of 
the Iron Quadrangle (Jacobi et al., 2007; Zappi et al., 2017). Further 
analyses exploring the role of ecological interactions and how they 
affect speciation amongst communities could improve this hypothe-
sis (Johnson & Stinchcombe, 2007).

The evolution of species-rich biotas is remarkably known for its 
complex drivers (Antonelli et al., 2018; Rull, 2011), and other triggers 
might also help understanding the intraspecific lineage diversifica-
tion of organisms from montane systems worldwide, such as polli-
nation strategies (Franceschinelli et al., 2006), niche conservatism 
(de Mattos et al., 2019) and edaphic adaptations to heterogeneous 

topography (Alcantara et al., 2018). Major tectonic events in the 
Espinhaço Range far precede many of the angiosperm intraspecific 
differentiation (Dussin & Dussin, 1995; Magalhães Junior et al., 
2015; Vasconcelos et al., 2020), and erosion rates are much lower 
in this region than in tectonically active mountainous areas, such as 
Himalayas, Alps and Northern Andes (Herman et al., 2013), suggest-
ing the Pleistocene climatic fluctuation effects on biodiversity di-
versification as more relevant than those geological processes. Still, 
neotectonic events could play a role in the dynamics of microevolu-
tionary processes that have shaped the current macroevolutionary 
patterns of the Espinhaço biota. For instance, the fluvial dynamics 
in the region was intense over all Pleistocene, resulting in fluvial 
dissection and shaping valleys that led to the formation of flood 
plains constituted mainly by sediments derived from quartzite soils 
(Magalhães Junior et al., 2015; Saadi, 1995). Such dynamics could 
influence the species-pump dynamics by, for example, preventing 
the contact of populations due to ancient river barriers. Despite 
the link between geological evolution and species diversification is 
still growing, new approaches connecting both subjects, such as the 
‘geogenomics’ (Baker et al., 2014) or the ‘mountain-geobiodiversity’ 
(Muellner-Riehl et al., 2019), are emerging fields with exciting dis-
coveries, combining genomic, climatic and geological data in order 
to elucidate the processes that influenced evolution in these areas 
(Antonelli et al., 2018). Such approaches could, in fact, shed light 
on recent discussions about mountain evolution and the possible 
older divergence events masked by extinctions during Pleistocene 
climatic changes (Perrigo et al., 2020). In the future, the relative role 
of the microevolutionary processes could be tested by incorporating 
association analyses of the entire or partial genomes from multiple 
species with climatic, geological, geophysical, geochronological and 
functional ecological datasets under a comparative framework.

4.3  |  Microevolutionary processes as a proxy for 
understanding macroevolutionary patterns

We showed that microevolutionary processes underlying the phy-
logeographic patterns of V. oligantha are a consequence of IBD and 
IBE throughout its distribution. This suggests continuous cycles of 
climate changes in the Pleistocene might be a key for understanding 
evolutionary responses (speciation, extinction, migration and adap-
tation) due to the flickering connectivity amongst populations that 
led to the species-pump mechanism. Considering the assumption 
that population differentiation is the basic mechanism of speciation, 
the concordant patterns between the divergence amongst lineages 
within the V. oligantha complex and the Espinhaço Range biogeogra-
phy generate powerful insights into how climatic variables and lim-
ited gene flow might have shaped early stages of macroevolutionary 
patterns. Despite the long-standing debate in biogeography about 
whether correlation between congruence in time and space would be 
sufficient to yield causation (Perrigo et al., 2020), our study attempts 
to fill the gap between microevolutionary and macroevolutionary 
scales, a necessary approach to pave the way on the initial effects 
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of population differentiation that ultimately lead to the origin of new 
species and spatial patterns of biodiversity distribution. Additional 
evidence using distinct organisms could also provide contrasting ex-
amples of how microevolutionary processes act and translate into the 
current biogeographic patterns of tropical montane biotas.
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