TOSHIBA

TOSHIBA CORPORATION

Semiconductor Company

Preface

Thank you very much for making use of Toshiba microcomputer LSIs. Before use this LSI, refer the section, "Points of Note and Restrictions".

070208EBP

CMOS 32-bit Microcontroller

TMP92CA25FG/JTMP92CA25

1. Outline and Device Characteristics

The TMP92CA25 is a high-speed advanced 32-bit Microcontroller developed for controlling equipment which processes mass data.

The TMP92CA25 has a high-performance CPU (900/H1 CPU) and various built-in I/Os.

The TMP92CA25FG is housed in a 144-pin flat package. The JTMP92CA25 is a chip form product.

Device characteristics are as follows:

- (1) CPU: 32-bit CPU (900/H1 CPU)
 - Compatible with TLCS-900/L1 instruction code
 - 16 Mbytes of linear address space
 - General-purpose register and register banks (
 - Micro DMA: 8 channels (250 ns/4 bytes at fsys = 20 MHz, best case)
- (2) Minimum instruction execution time: 50 ns (at $f_{SYS} = 20 \text{ MHz}$)

RESTRICTIONS ON PRODUCT USE

• The information contained herein is subject to change without notice. 021023_D

TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety
in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such
TOSHIBA products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc. 021023_A

- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. 021023_B
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties. 021023_C
- The products described in this document are subject to foreign exchange and foreign trade control laws. 060925_E
- For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance/Handling Precautions. 030619_S

- (3) Internal memory
 - Internal RAM: 10 Kbytes (can be used for program, data and display memory)
 - Internal ROM: 0 Kbytes (used as boot program)
- (4) External memory expansion
 - Expandable up to 512 Mbytes (shared program/data area)
 - Can simultaneously support 8,- 16- or 32-bit width external data bus ... dynamic data bus sizing
- (5) Memory controller
 - Chip select output: 4 channels
- (6) 8-bit timers: 4 channels
- (7) 16-bit timer/event counter: 1 channel
- (8) General-purpose serial interface: 1 channels
 - UART/synchronous mode
 - IrDA ver.1.0 (115 kbps) mode selectable
- (9) Serial bus interface: 1 channel: 1 channel
 - I²C bus mode only
- (10) I²S (Inter-IC sound) interface: 1 channel
 - I²S bus mode/SIO mode selectable (Master, transmission only)
 - 32-byte FIFO buffer
- (11) LCD controller
 - Supports monochrome for STN
 - Built-in RAM LCD driver
- (12) SPI controller
 - Supported only SPI mode for SD card
- (13) SDRAM controller: 1 channel
 - Supports 16 M, 64 M, 128 M, 256 M, and up to 512-Mbit SDR (Single Data Rate)-SDRAM
 - Supported not only operate as RAM and Data for LCD display but also programming directly from SDRAM
- (14) Timer for real-time clock (RTC)
 - Based on TC8521A
- (15) Key-on wakeup (Interrupt key input)
- (16) 10-bit AD converter (Built-in Sample Hold circuit): 4 channels
- (17) Touch screen interface
 - Available to reduce external components
- (18) Watchdog timer
- (19) Melody/alarm generator
 - Melody: Output of clock 4 to 5461 Hz
 - Alarm: Output of 8 kinds of alarm pattern and 5 kinds of interval interrupt

(20) MMU

- Expandable up to 512 Mbytes (3 local area/8 bank method)
- Independent bank for each program, read data, write data and LCD display data

(21) Interrupts: 49 interrupt

- 9 CPU interrupts: Software interrupt instruction and illegal instruction
- 34 internal interrupts: Seven selectable priority levels
- 7 external interrupts: Seven selectable priority levels (6-edge selectable)
- (21) Input/output ports: 84 pins (Except Data bus (16bit), Address bus (24bit) and RD pin)

(22) NAND flash interface: 2 channels

- Direct NAND flash connection capability
- ECC (error detection) calculation (for SLC- type)

(23) Stand-by function

- Three HALT modes: IDLE2 (programmable), IDLE1, STOP
- Each pin status programmable for stand-by mode

(24) Triple-clock controller

- Clock doubler (PLL) supplies 40 system-clock from external 10MHz oscillator to CPU
- Clock gear function: Select high-frequency clock fc to fc/16
- RTC (fs = 32.768 kHz)

(25) Operating voltage:

- VCC = 3.0 V to 3.6 V (fc max = 40 MHz)
- VCC = 2.7 V to 3.6 V (fe max = 27 MHz)

(26) Package:

- 144-pin QFP (P-LQFP144 -1616-0.40C)
- 144-pin chip form is also available. For details, contact your local Toshiba sales representative.

Figure 1.1 TMP92CA25 Block Diagram

2. Pin Assignment and Functions

The assignment of input/output pins for the TMP92CA25FG, their names and functions are as follows:

2.1 Pin Assignment

Figure 2.1.1 shows the pin assignment of the TMP92CA25FG.

Figure 2.1.1 Pin Assignment Diagram (144-pin QFP)

2.2 PAD Assignment

(Chip size 4.98 mm \times 5.61 mm)

Table 2.2.1 Pad Assignment Diagram (144-pin chip)

											<u>Unit:</u> μm
Pin		Х	Y	Pin		Х	Y	Pin	\bigcirc	Х	Y
No.	Name	point	point	No.	Name	point	point	No.	Name	point	point
1	VREEL	_2363	. 2309	49	DVSS2	_447	_2678	97	A13	. 2359	822
2	VREFH	-2363	2189	50	DVCC2	-297	-2678	98	A14	2359	939
3	PG0	-2363	1934	51	D1002	-172	-2678	99	7/415	2359	1055
4	PG1	-2363	1593	52	D1	-72	-2678	100	P60	2359	1171
5	PG2	-2363	1493	53	D2	28	-2678	101	P61	2359	1288
6	PG3	-2363	1393	54	D3	128	-2678	102	P62	2359	1400
7	P96	-2363	1293	55	D4	228	-2678	103	P63	2359	1514
8	P97	-2363	1192	56	D5	328	-2678	104	DVCC3	2359	1643
9	PA3	-2363	1088	57	D6	429	-2678	105	P64	2359	1779
10	PA4	-2363	988	58	D7	529	-2678	7106	P65	2359	1902
11	PA5	-2363	888	59	P10	629	-2678	107	> P66	2359	2027
12	PA6	-2363	788	60	P11	729	-2678	108	P67	2359	2309
13	PA7	-2363	688	61	P12	829	-2678	109	P70	1994	2675
14	P90	-2363	587	62	P13	929	-2678	110	P71	1874	2675
15	P91	-2363	487	63	P14	1029	-2678	111	P72	1753	2675
16	P92	-2363	387	64	P15	1129	-2678	112	P73	1633	2675
17	P93	-2363	287	65	P16	1229	-2678	113) P74	1527	2675
18	P94	-2363	187	66	PIZ	1329	-2678	114	P75	1420	2675
19	P95	-2363	87	67	PN0	1429	-2678	115	P76	1316	2675
20	PC2	-2363	-13	68	PN1	1529	-2678	116	P80	1211	2675
21	PL0	-2363	-113	69	PN2	1630	-2678	117	PC6	1104	2675
22	PL1	-2363	-213	70-7	PN3	1753	-2678	118	P81	999	2675
23	PL2	-2363	-313	17)) PN4	1873	-2678	119	P82	893	2675
24	PL3	-2363	-413	72	PN5	1994	-2678	120	P83	787	2675
25	PL4	-2363	-514	73	PN6	2359	-2313	121	P84	682	2675
26	PL5	-2363	-614	-74	PN7	2359		122	P85	574	2675
27	PL6	-2363		, 75	PK4	2359	-1708	123	P86	468	2675
28	PL7	-2363	-814	76	PK5	2359	-1587	124	P87	363	2675
29	PK0	-2363	-914	77 <	PK6	2359	-1472	125	PC7	259	2675
30	PK1	-2363	-1014	78	PK7	2359	-1359	126	PF0	154	2675
31	PK2	-2363	-1114	79	PF3	2359	-1243	127	PF1	50	2675
32	PK3	-2363	-1215	80	PF4	2359	-1131	128	PF2	-55	2675
33	PM2	-2363	-1473	81	DVSS3	2359	-1012	129	PC0	-158	2675
34	PM1	-2363	-1594	82	PF5	2359	-885	130	PC1	-261	2675
35	XT1	-2363	-1935	83	PF6	2359	-749	131	PF7	-364	2675
36	XT2	-2363	-2313	84	A0	2359	-639	132	PJ0	-467	2675
37	RTCVCC	-1986	-2678	85	A1	2359	-530	133	PJ1	-568	2675
38	BE	-1853	-2678	>86	A2	2359	-420	134	PJ2	-669	2675
39	PC4	-1732	-2678	87	A3	2359	-311	135	PJ3	-771	2675
40	PC5	-1612	-2678	88	A4	2359	-199	136	PJ4	-872	2675
41		-1499	-2678	89	A5	2359	-88	137	PJ5	-972	2675
42	X1	-1386	-2678	90	A6	2359	23	138	PJ6	-1074	2675
43	DVSS1	-1261	-2678	91	A7	2359	134	139	PJ7	-1175	2675
44	X2	-972	-2678	92	Að	2359	245	140	PAU	-1278	26/5
45	AMU	-8/2	-2678	93	A9	2359	356	141	PA1	-13/9	26/5
40		-112	-20/8	94	A10	2359	4/3	142	PAZ	-1499	20/5
4/	RESEL	-6/2	-26/8	95	A11	2359	589	143	AVSS	-1860	20/5
48	PC3	-572	-2678	96	A12	2359	705	144	AVCC	-1985	2675

2.3 Pin Names and Functions

The following table shows the names and functions of the input/output pins

Table 2.3.1	Pin Names	and Functions	(1/5)
-------------	-----------	---------------	-------

Pin Name	Number of Pins	I/O	Function
D0 to D7	8	I/O	Data: Data bus 0 to 7
P10 to P17	0	I/O	Port 1: I/O port input or output specifiable in units of bits
D8 to D15	0	I/O	Data: Data bus 8 to 15
A0 to A7	8	Output	Address: Address bus 0 to 7
A8 to A15	8	Output	Address: Address bus 8 to 15
P60 to P67	0	I/O	Port 6: I/O port input or output specifiable in units of bits
A16 to A23	0	Output	Address: Address bus 16 to 23
P70	1	Output	Port70: Output port
RD	I	Output	Read: Outputs strobe signal to read external memory
P71		I/O	Port 71: I/O port
WRLL	1	Output	Write: Output strobe signal for writing data on pins D0 to D7
NDRE		Output	NAND flash read: Outputs strobe signal to read external NAND flash
P72		I/O	Port 72: I/O port
WRLU	1	Output	Write: Output strobe signal for writing data on pins D8 to D15
NDWE		Output	Write Enable for NAND flash
P73	1	Output	Port 73: Output port
EA24	I	Output	Extended Address 24
P74	1	Output	Port 74: Output port
EA25	I	Output	Extended Address 25
P75		I/O	Port 75: I/O port
R/W	1	Output	Read/Write: 1 represents read or dummy cycle; 0 represents write cycle
NDR/B		Input	NAND flash ready (1)/Busy (0) input
P76	1	I/O	Port 76: I/O port
WAIT	I	Input	Wait: Signal used to request CPU bus wait

Pin Name	Number of Pins	I/O	Function
P80		Output	Port80: Output port
CS0	1	Output	Chip select 0: Outputs "low" when address is within specified address area
P81		Output	Port81: Output port
CS1	1	Output	Chip select 1: Outputs "low" when address is within specified address area
SDCS		Output	Chip select for SDRAM: Outputs "0" when address is within SDRAM address area
P82		Output	Port82: Output port
CS2	1	Output	Chip select 2: Outputs "Low" when address is within specified address area
CSZA		Output	Expand chip select: ZA: Outputs "0" when address is within specified address area
P83		Output	Port83: Output port
CS3	Ĩ	Output	Chip select 3: Outputs "low" when address is within specified address area
P84		Output	Port84: Output port
CSZB	1	Output	Expand chip select: ZB: Outputs "0" when address is within specified address area
ND0CE		Output	Chip select for NAND flash 0: Outputs "0" when NAND flash 0 is enabled
P85		Output	Port85: Output port
CSZC	1	Output	Expand chip select: ZC: Outputs "0" when address is within specified address area
ND1CE		Output	Chip select for NAND flash 1: Outputs "0" when NAND flash 1 is enabled
P86	1	Output	Port86: Output port
CSZD	1	Output	Expand chip select: ZD: outputs "0" when address is within specified address area
P87	1	Output	Port87: Output port
CSZE	I	Output	Expand chip select: ZE: Outputs "0" when address is within specified address area
P90		I/O	Port90: I/O port
TXD0	1	Output	Serial 0 send data: Open-drain output programmable
I2SCKO		Output	I ⁴ S clock output
P91		I/O	Port91: I/O port (Schmitt-input)
RXD0	1	Input	Serial 0 receive data
I2SDO		Output	I'S data output
P92		1/0	Port92: I/O port (Schmitt-Input)
SCLKU	1	I/O	Serial O dots and anoble (Clear to anot)
		Output	Selial 0 data selicit ellable (Clear to selici) l^2 S word select output
123113			Port 02: 1/0 port
F93	1	1/0	
SDA DO4			Part 9/4 1/0 mart
P94	1	1/0	Port 94: I/O port
SCL		1/0	
P95 CLK22KO	1	Output	Ports: Output port
DOG	-	June ut	
		Input	Port 96: Input port (Schmitt-Input)
		Output	X -Plus: Pin connectted to X_{\pm} for touch screen papel
P97 A		Input	Port 97: Input port (Schmitt-input)
		Input	Interrupt request pin5: Interrupt request with programmable rising/falling edge
PY		Output	Y-Plus: Pin connectted to Y+ for touch screen panel
PA0 to PA7	\rightarrow	Input	Port: A0 to A7 port: Pin used to input ports (Schmitt input, with pull-up resistor)
KI0 to KI7	8	Input	Key input 0 to 7: Pin used for key-on wakeup 0 to 7

Table 2.3.2	Pin	Names	and	Functions	(2/5)
-------------	-----	-------	-----	-----------	-------

Table 2.3.3 Pin Names and Functions	(3/5))
	(-, -,	

Pin Name	Number of Pins	I/O	Function		
PC0		I/O	Port C0: I/O port (Schmitt-input)		
INT0	1	Input	Interrupt request pin 0: Interrupt request pin with programmable level/rising/falling edge		
TA1OUT		Output	8-bit timer 1 output: Timer 1 output		
PC1		I/O	Port C1: I/O port (Schmitt-input)		
INT1	1	Input	Interrupt request pin 1: Interrupt request pin with programmable rising/falling edge		
TA3OUT		Output	8-bit timer 3 output: Timer 3 output		
PC2		I/O	Port C2: I/O port (Schmitt-input)		
INT2	1	Input	Interrupt request pin 2: Interrupt request pin with programmable rising/falling edge		
TB0OUT0		Output	Timer B0 output		
PC3	4	I/O	Port C3: I/O port (Schmitt-input)		
INT3	I	Input	Interrupt request pin 3: Interrupt request pin with programmable rising/falling edge		
PC4 to PC5	2	I/O	Port C4 to C5: U/O port		
PC6		I/O	Port C6: I/O port		
KO8	1	Output	Key Output 8: Pin used of key-scan strobe (Open-drain output programmable)		
EA24		Output	Extended Address 24		
PC7		I/O	Port C7: I/O port		
CSZF	1	Output	Expand chip select: ZF: Outputs "0" when address is within specified address area		
EA25		Output	Extended Address 25		
PF0	4	I/O	Port F0: I/O port (Schmitt-input)		
TXD0	1	Output	Serial 0 send data: Open-drain output programmable		
PF1	1	I/O	Port F1: I/O port (Schmitt-input)		
RXD0	Ι	Input	Serial 0 receive data		
PF2		I/O	Port F2: I/O port (Schmitt-input)		
SCLK0	1	I/O	Serial 0 clock I/O		
CTS0		Input	Serial 0 data send enable (Clear to send)		
PF7	1	Output	Port F7: Output port		
SDCLK	I	Output	Clock for SDRAM (When SDRAM is not used, SDCLK can be used as system clock)		
PG0 to PG1	2	Input	Port G0 to G1 port: Pin used to input ports		
AN0 to AN1	2	Input	Analog input 0 to 1: Pin used to Input to AD conveter		
PG2		Input	Port G2 port: Pin used to input ports		
AN2	1	Input	Analog input 2: Pin used to Input to AD conveter		
MX		Output	X-Minus: Pin connectted to X- for touch screen panel		
PG3	<	Input	Port G3 port: Pin used to input ports		
AN3	1	Input	Analog input 3: Pin used to input to AD conveter		
MY	I	Output	Y-Minus: Pin connectted to Y-for touch screen panel		
ADTRG	~ ~	Intput	AD trigger: Signal used to request AD start		

Pin Name	Number of Pins	I/O	Function
PJ0		Output	Port J0: Output port
SDRAS	1	Output	Row address strobe for SDRAM
SRLLB		Output	Data enable for SRAM on pins D0 to D7
PJ1		Output	Port J1: Output port
SDCAS	1	Output	Column address strobe for SDRAM
SRLUB		Output	Data enable for SRAM on pins D8 to D15
PJ2		Output	Port J2: Output port
SDWE	1	Output	Write enable for SDRAM
SRWR		Output	Write for SRAM: Strobe signal for writing data
PJ3		Output	Port J3: Output port
SDLLDQM	1	Output	Data enable for SDRAM on pins D0 to D7
PJ4		Output	Port J4: Output port
SDLUDQM	1	Output	Data enable for SDRAM on pins D8 to D15
PJ5		I/O	Port J5: I/O port
NDALE	1	Output	Address latch enable for NAND flash
PJ6		I/O	Port J6: I/O port
NDCLE	1	Output	Command latch enable for NAND flash
PJ7		Output	Port J7: Output port
SDCKE	1	Output	Clock enable for SDRAM
PK0		Output	Port K0: Output port
LCP0	1	Output	LCD driver output pin
PK1		Output	Port K1. Output port
II P	1	Output	I CD driver output pin
PK2		Output	Port K2: Output port
I FR	1	Output	I CD driver output pin
PK3		Output	Port K3: Output port
LBCD	1	Output	LCD driver output pin
PK4		1/O	Port K4: I/O port
SPDI	1	Input	Data input pip for SD card
PK5		1/O	Port K5: I/O port
SPDO	1	Outout	Data output pin for SD card
PK6		1/0	Port K6: 1/O port
SPCS	1 /	Output	Chin select nin for SD card
PK7		1/0	Port K7: 1/O port
SPCLK	1	Output	Clock output on for SD card
		Output	Port 0 to 3: Output port
1 D0 to 1 D3	4	Output	Data hus for LCD driver
PI 4 to PI 5		1/0	Port 4 to 5: I/O port
1 D4 to 1 D5	2	Output	Data bus for LCD driver
PI 6	$\left(\begin{pmatrix} 1 \end{pmatrix} \right)$	1/0	Port L6: I/O port
		0utput	Data bus for LCD driver
BUSRO		Input	Bus request: request pin that set external memory bus to high-impedance (for External
Boom			DMAC)
PL7		I/O	Port L7: I/O port
LD7	~	Output	Data bus for LCD driver
BUSAK		Output	Bus acknowledge: this pin show that external memory bus pin is set to high-impedance by receiving BUSRQ (for External DMAC)

Table 2.3.4 Pin Names and Functions (4/5)

Pin Name	Number of Pins	I/O	Function
PM1	1	Output	Port M1: Output port
MLDALM	I	Output	Melody/alarm output pin
PM2		Output	Port M2: Output port
ALARM	1	Output	RTC alarm output pin
MLDALM		Output	Melody/alarm output pin (inverted)
PN0 to PN7	8	I/O	Port N0 to N7: I/O port
KO0 to KO7		Output	Key out pin (Open-drain setting)
			Operation mode:
			Fix to AM1 = "0", AM0 = "1" for 16-bit external bus starting
AM0, AM1	2	Input	Fix to AM1 = "1", AM0 = "0" for 32-bit external bus starting
			Fix to AM1 = "1", AM0 = "1" Prohibit setting
			Fix to AM1 = "0", AM0 = "0" Prohibit setting
X1/X2	2	I/O	High-frequency oscillator connection pins
XT1/XT2	2	I/O	Low-frequency oscillator connection pins
RESET	1	Input	Reset: Initializes TMP92CA25 (with pull-up resistor, Schmitt input)
VREFH	1	Input	Pin for reference voltage input to AD converter (H)
VREFL	1	Input	Pin for reference voltage input to AD converter (L)
RTCVCC	1	I	Power supply pin for RTC
BE	1	Input	Back up enable pin: When power off DV _{CC} and AV _{SS} during RTC is operating, set to "L" level beforehand. Usually, this pin used to "H" level. (Schmitt input)
AVCC	1	-	Power supply pin for AD converter
AVSS	1	-	GND pin for AD converter (0 V)
DVCC	3	-	Power supply pins (All DV _{CC} pins should be connected to the power supply pin)
DVSS	3	_	GND pins (0 V) (All DV _{SS} pins should be connected to GND (0 V))

3. Operation

This section describes the basic components, functions and operation of the TMP92CA25.

3.1 CPU

The TMP92CA25 contains an advanced high-speed 32-bit CPU (TLCS-900/H1 CPU)

3.1.1 CPU Outline

The TLCS-900/H1 CPU is a high-speed, high-performance CPU based on the TLCS-900/L1 CPU. The TLCS-900/H1 CPU has an expanded 32-bit internal data bus to process instructions more quickly.

The following is an outline of the CPU:

Parameter	TMP92CA25	\bigcap		
Width of CPU address bus	24 bits			
Width of CPU data bus	32 bits			
Internal operating frequency	Max 20 MHz	\square		
Minimum bus cycle	1-clock access (50 ns at f _{SYS} = 20MHz)	9		
Internal RAM	32-bit 1-clock access			
	8-bit 2-clock access	, SI,		
Internal I/O	16-bit 2-clock access I2S, SPIC, LCDC	С		
	8-bit 5~6-clock access CGEAR, ADC	O, SBI,		
External SRAM, Masked ROM	8- or 16-bit 2-clock access (waits can be inserted) 16-bit 1-clock access			
External SDRAM				
External NAND flash	8-bit 4-clock access (waits can be inserted)			
Minimum instruction execution cycle	1-clock (50 ns at f _{SYS} = 20MHz)			
Conditional jump	2-clock (100 ns at f _{SYS} = 20MHz)			
Instruction queue buffer	12 bytes			
	Compatible with TLCS-900/L1			
Instruction set	(LDX instruction is deleted)			
CPU mode	Maximum mode only			
Micro DMA	8 channels			

Table 3.1.1 TMP92CA25 Outline

3.1.2 Reset Operation

When resetting the TMP92CA25, ensure that the power supply voltage is within the operating voltage range, and that the internal high-frequency oscillator has stabilized. Then hold the $\overline{\text{RESET}}$ input low for at least 20 system clocks (16 µs at fc = 40 MHz).

At reset, since the clock doubler (PLL) is bypassed and the clock-gear is set to 1/16, the system clock operates at 1.25 MHz (fc = 40 MHz).

When the reset has been accepted, the CPU performs the following:

• Sets the program counter (PC) as follows in accordance with the reset vector stored at address FFFF00H to FFFF02H:

PC<7:0>	\leftarrow data in location FFFF00H
PC<15:8>	\leftarrow data in location FFFF01H
PC<23:16>	\leftarrow data in location FFFF02H

- Sets the stack pointer (XSP) to 00000000H.
- Sets bits <IFF2:0> of the status register (SR) to 111 (thereby setting the interrupt level mask register to level 7).
- Clears bits <RFP1:0> of the status register to 00 (there by selecting register bank 0).

When the reset is released, the CPU starts executing instructions according to the program counter settings. CPU internal registers not mentioned above do not change when the reset is released.

When the reset is accepted, the CPU sets internal I/O, ports and other pins as follows.

- Initializes the internal I/O registers as shown in the "Special Function Register" table in section 5.
- Sets the port pins, including the pins that also act as internal I/O, to general-purpose input or output port mode.

Internal reset is released as soon as external reset is released.

Memory controller operation cannot be ensured until the power supply becomes stable after power on reset. External RAM data provided before turning on the TMP92CA25 may be corrupted because the control signals are unstable until the power supply becomes stable after power on reset.

Figure 3.1.1 Power on Reset Timing Example

3.1.3 Setting of AM0 and AM1

Set AM1 and AM0 pins as shown in Table 3.1.2 according to system usage.

Operation Mode	Mode Setup Input Pin				
	RESET	AM1 AM0			
16-bit external bus starting (MULTI 16 mode)		0 1			
8-bit external bus starting (MULTI 8 mode)		1 0			
Prohibit setting		1			
Reserve (Toshiba test mode)		0 0			

Table 3.1.2 Operation Mode Setup Table

3.2 Memory Map

Figure 3.2.1 is a memory map of the TMP92CA25.

Note 1: The Provisional emulator control area, mapped F00000H to F0FFFH after reset, is for emulator use and so is not available. When emulator WR signal and RD signal are asserted, this area is accessed. Ensure external memory is used.

3.3 Clock Function and Stand-by Function

The TMP92CA25 contains (1) clock gear, (2) clock doubler (PLL), (3) stand-by controller and (4) noise reduction circuits. They are used for low power, low noise systems.

- This chapter is organized as follows:
 - 3.3.1 Block diagram of system clock
 - 3.3.2 SFR
 - 3.3.3 System clock controller
 - 3.3.4 Clock doubler (PLL)
 - 3.3.5 Noise reduction circuits
 - 3.3.6 Stand-by controller

The clock operating modes are as follows: (a) single clock mode (X1, X2 pins only), (b) dual clock mode (X1, X2, XT1 and XT2 pins) and (c) triple clock mode (X1, X2, XT1 and XT2 pins and PLL).

Figure 3.3.1 shows a transition figure.

3.3.1 Block Diagram of System Clock

3.3.	2 SFR								
		7	6	5	4	3	2	1	0
SYSCR0	Bit symbol	XEN	XTEN		/		WUEF		
(10E0H)	Read/Write	R/	W			\sim	R/W		
	After reset	1	1				Q		
	Function	High- frequency oscillator (fc) 0: Stop 1: Oscillation	Low- frequency oscillator (fs) 0: Stop 1: Oscillation				Warm-up timer 0: Write don't care 1: Write start timer 0: Read end warm-up 1: Read do not end warm-up		>
		7	6	5	4 🗸	3	<2 (0
SYSCR1	Bit symbol	/	/			SYSCK	GEAR2	GEAR1	GEAR0
(10E1H)	Read/Write	/	/	/	X	\supset	R	Ŵ	
	After reset				A A	0		0	0
	Function					Select system clock 0: fc 1: fs	Select gear v 000: fc 001: fc/2 010: fc/4 011: fc/8 100: fc/16 101: (Reserv 110: (Reserv 111: (Reserv	alue of high-fr ed) ed)	equency (fc)
		7	6	5	4	3	2	1	0
SYSCR2	Bit symbol		\swarrow	WUPTM1	WUPTMO	HALTM1	HALTM0		
(10E2H)	Read/Write	R/W	Y	~ ((// R/	W			
	After reset				$\langle 0 \rangle$	1	1		
	Function	Always write "0"		Warm-up tim 00: Reserver 01: 2 ⁸ /input f 10: 2 ¹⁴ /input 11: 2 ¹⁶ /input	ner d requency frequency frequency	HALT mode 00: Reserve 01: STOP m 10: IDLE1 m 11: IDLE2 m	d ode ode ode		
			21						

Note 1: The unassigned registers, SYSCR0<bit5:3>, SYSCR0<bit1:0>, SYSCR1<bit7:4>, and SYSCR2<bit6, bit1:0> are read as undefined value.

Note 2: Low-frequency oscillator is enabled on reset.

Figure 3.3.3 SFR for System Clock

	7	6	5	4	3	2	1	0
Bit symbol	PROTECT		\sim		\sim	EXTIN	DRVOSCH	DRVOSCL
Read/Write	R						R/W	
After reset	0	/				0	1	1
Function	Protect flag					1: External	fc oscillator	fs oscillator
	0: OFF					clóck	driver ability	driver ability
	1: ON					Ĉ	1: Normal 0: Weak	1: INORMAI 0: Weak
Bit symbol				I				s. Would
Read/Write						$\overline{\Omega}$		
After reset						$\left(\sqrt{2} \right)$		
Function		Switch the	e protect ON/	OFF by writing	g the followin	g to 1st-KEY,	2nd-KEY	
Bit symbol		1St- 2nd	KEY: Write in		CCR1 = 5AH	EMCCR2 = /	45Н БАЦ	
Read/Write		2110-					JAH	
After reset						>		
Function					\sim		21	\mathbf{i}
Note: When restarting the oscillator from the stop oscillation state (e.g. restarting the oscillator in STOP mode), set EMCCR0-DRVOSCH>, <drvoscl> = '1'. Figure 3.3.4 SFR for System Clock</drvoscl>								
	Bit symbol Read/Write After reset Function Bit symbol Read/Write After reset Function Bit symbol Read/Write After reset Function	7 Bit symbol PROTECT Read/Write R After reset 0 Function Protect flag 0: OFF 1: ON Bit symbol Read/Write After reset Function Bit symbol Read/Write After reset Function Bit symbol Read/Write After reset Function Note: When restarting to EMCCR0 EMCCR0 Void O	7 6 Bit symbol PROTECT Read/Write R After reset 0 Function Protect flag 0: OFF 1: ON Bit symbol Read/Write After reset Switch th Function 1st- Bit symbol Read/Write After reset Switch th Function 1st- Bit symbol Read/Write After reset Switch th Function 1st- Read/Write After reset Function Switch th Structure 2nd- Read/Write After reset Function Structure Note: When restarting the oscillator f EMCCR0 Figure Figure G G G G G G G State G Read/Write After reset Function State G G G G G G	7 6 5 Bit symbol PROTECT Image: Constraint of the symbol of	7 6 5 4 Bit symbol PROTECT 4 After reset 0 5 4 Function Protect flag 5 4 Function Protect flag 5 4 Bit symbol Read/Write After reset 5 6 Function Protect flag 5 6 5 4 Bit symbol Read/Write After reset 5 6 5 4 Function Protect flag Switch the protect ON/OFF by writing 1st-KEY: write in sequence EM 2nd-KEY: write in seq 2nd-KEY: write in sequence E	7 6 5 4 3 Bit symbol PROTECT After reset 0 Function Protect flag 0 0 Bit symbol Read/Write After reset 0 Bit symbol Read/Write Switch the protect ON/OFF by writing the followin 1st-KEY: write in sequence EMCCR1 = 5AH Prunction Switch the protect ON/OFF by writing the followin 1st-KEY: write in sequence EMCCR1 = 5AH After reset Prunction Read/Write After reset Function Switch the protect ON/OFF by writing the followin Note: When restarting the oscillator from the stop oscillation state (erg. restate) EMCCR0-DRVOSCH>, <drvoscl> = "1". Figure 3.3.4 SFR for System Clock</drvoscl>	7 6 5 4 3 2 Bit symbol PROTECT EXTIN EXTIN ReadWrite R 0 0 Hunction Protect flag 0 1: External 0: OFF 1: ON 1: External clock Bit symbol ReadWrite After reset 1: Switch the protect ON/OFF by writing the following to 15t-KEY, 1st-KEY: write in sequence EMCCR1 = 5AH; EMCCR2 = 1: 2nd-KEY: write in sequence EMCCR1 = 5AH; EMCCR2	7 6 5 4 3 2 1 Bit symbol PROTECT R

Ρl	LC	RC

(10E8H)
--------	---

	7	6	5	4	3	2	1	0
Bit symbol		FCSEL	LUPFG					
Read/Write	/	R/W	R	/	/		/	/
After reset		0	0					
Function		Select fc clock 0: f _{OSCH} 1: f _{PLL}	Lock up timer status flag 0: Not end 1: End)r	

 $(0/ \wedge$

Note: Ensure that the logic of PLLCR0<LUPFG> is different from 900/L1's DFM.

PLLCR1 (10E9H)

	7	6	5	4	3	2	1	0
Bit symbol	PLLON				\mathbb{A}	\mathcal{H}		
Read/Write	R/W			/	X			
After reset	0			/			H A	
Function	Control on/off 0: OFF 1: ON				Z)		50	V

Figure 3.3.5 SFR for PLL

PxDR (xxxxH

				20		((//))		
		7	6	5	4	3	_2	1	0
	Bit symbol	Px7D	Px6D	Px5D	Px4D	Px3D	Px2D	Px1D	Px0D
)	Read/Write			()	R/	Ŵ	/		
	After reset	1	1		1		1	1	1
	Function		6	Output/input	t buffer drive-r	egister for sta	ind-by mode		

(Purpose and use)

This register is used to set each pin status at stand-by mode.

All ports have registers of the format shown above. ("x" indicates the port name.)

For each register, refer to "3.5 Function of ports".

Before "Halt" instruction is executed, set each register according to the expected pin-status. They will be effective after the CPU has executed the "Halt" instruction.

This is the case regardless of stand-by mode (IDLE2, IDLE1 or STOP).

The output/input buffer control table is shown below.

		/		
	OE	PxnD	Output Buffer	Input Buffer
Γ	0	0	OFF	OFF
	0((~ 1	OFF	ON
	1	0	OFF	OFF
I	1 <		ON	OFF

Note 1: OE denotes an output enable signal before stand-by mode.

Basically, PxCR is used as OE.

Note 2: "n" in PxnD denotes the bit number of PORTx.

Figure 3.3.6 SFR for Drive Register

3.3.3 System Clock Controller

The system clock controller generates the system clock signal (f_{SYS}) for the CPU core and internal I/O. It contains two oscillation circuits and a clock gear circuit for high-frequency (fc) operation. The register SYSCR1<SYSCK> changes the system clock to either fc or fs, SYSCR0<XEN> and SYSCR0<XTEN> control enabling and disabling of each oscillator, and SYSCR1<GEAR2:0> sets the high-frequency clock gear to either 1, 2, 4, 8 or 16 (fc, fc/2, fc/4, fc/8 or fc/16). These functions can reduce the power consumption of the equipment in which the device is installed.

The combination of settings $\langle XEN \rangle = 1$, $\langle SYSCK \rangle = 0$ and $\langle GEAR2:0 \rangle = 100$ will cause the system clock (f_{SYS}) to be set to fc/32 (fc/16 × 1/2) after reset.

For example, f_{SYS} is set to 1.25 MHz when the 40 MHz oscillator is connected to the X1 and X2 pins.

(1) Switching from normal mode to slow mode

When the resonator is connected to the XI and X2 pins, or to the XT1 and XT2 pins, the warm-up timer can be used to change the operation frequency after stable oscillation has been attained.

The warm-up time can be selected using SYSCR2<WUPTM1:0>.

This warm-up timer can be programmed to start and stop as shown in the following examples 1 and 2.

Table 3.3.1 shows the warm-up time.

- Note 1: When using an oscillator (other than a resonator) with stable oscillation, a warm-up timer is not needed.
- Note 2: The warm-up timer is operated by an oscillation clock. Hence, there may be some variation in warm-up time.

Table 3.3.1 Warm-up Times

Warm-up Time SYSCR2 <wuptm1:0></wuptm1:0>	Change to Normal Mode	Change to Slow Mode
01 (2 ⁸ /frequency)	6.4 (μs)	7.8 (ms)
10 (2 ¹⁴ /frequency)	409.6 (μs)	500 (ms)
11 (2 ¹⁶ /frequency)	1.638 (ms)	2000 (ms)

(2) Clock gear controller

 f_{FPH} is set according to the contents of the clock gear select register SYSCR1<GEAR2:0> to either fc, fc/2, fc/4, fc/8 or fc/16. Using the clock gear to select a lower value of f_{FPH} reduces power consumption.

Example 3: Changing to a high-frequency gear

```
SYSCR1 EQU 10E1H
```

LD (SYSCR1), XXXX0000B ; Changes f_{SYS} to fc/2. LD (DUMMY), 00H ; Dummy instruction

 (\frown)

X: Don't care

(High-speed clock gear changing)

To change the clock gear, write the register value to the SYSCR1<GEAR2:0> register. It is necessary for the warm-up time to elapse before the change occurs after writing the register value.

There is the possibility that the instruction following the clock gear changing instruction is executed by the clock gear before changing. To execute the instruction following the clock gear switching instruction by the clock gear after changing, input the dummy instruction as follows (instruction to execute the write cycle).

 $(\neg \uparrow \land$

Example:		20	i $(\sqrt{3})$
SYSCR1	EQU	10E1H	
	LD	(SYSCR1), XXXX0001B ;	Changes f _{SYS} to fc/4.
	LD	(DUMMY), 00H ;	; Dummy instruction
	Instruct	ion to be executed after clock g	lear has changed
	5		
		ion to be executed after clock g	Jear nas changed

3.3.4 Clock Doubler (PLL)

PLL out low-speed-fi high-freque	puts the fPLL o requency oscilla ncy.	clock signal, tor can be	which is used, even	four times n though	s as fast a the intern	as fOSCH. A al clock is
A reset in before use.	itializes PLL to s	top status, so	setting to F	PLLCR0, P	LLCR1 regis	ter is needed
As with a and it is me MHz	n oscillator, this c asured by a 16-st	ircuit require age binary cou	s time to sta ınter. Lock u	bilize. This up time is a	is called the bout 1.6 ms a	lock up time at fOSCH = 10
Note 1: Inpu The f _{OS} o	ut frequency range input frequency r _{CH} = 6 to 10 MHz	e for PLL ange (High-fre (V _{CC} = 3.0 to 3	quency oscil 3.6 V)	lation) for F	LL is as follo	ws:
Note 2: PLL The Exe The	CR0 <lupfg> logic of PLLCR0< cise care in deter following is an ex</lupfg>	LUPFG> is di mining the en- ample of settin	fferent from s d of lock up t ngs for PLL s	900/L1's DF ime. starting and	M. PLL stopping	,
Example 1: P	'LL starting			C		
PLLCR0 EG PLLCR1 EG	QU 10E8H QU 10E9H D (PLLCR1) 1	xxxxx	B · Enable		on and starts loc	k un
LUP: Bi	IT 5, (PLLCR0) R Z, LUP	1 2 2 2 2 2 2	B Detects	s end of lock u	p.	kup.
X: Don't care					11 12 10 40 WH 12.	
<pllon></pllon>		6				
PLL output: fPLL						JVVVV
Lock up timer		Counts up by	fosch			
<lupfg></lupfg>	N	During	lock up		After lock up	
System clock fsys	Starts PLL Starts lock	operation and	\bigvee	Char Lock up end	nges from 10 M⊢ s	Iz to 40 MHz

Example 2: PLL stopping

Limitations on the use of PLL

- It is not possible to execute PLL enable/disable control in the SLOW mode (fs) (writing to PLLCR0 and PLLCR1). PLL should be controlled in the NORMAL mode.
- 2. When stopping PLL operation during PLL use, execute the following settings in the same order.
 - LD (PLLCR0), 00H LD (PLLCR1), 00H
- Change the clock f_{PLL} to f_{OSCH} PLL stop
- 3. When stopping the high-frequency oscillator during PLL use, stop PLL before stopping the high-frequency oscillator.

Examples of settings are shown below:

(1) Start up/change control

LUP;

(OK) Low-frequency oscillator operation mode (fs) (high-frequency oscillator STOP) \rightarrow High-frequency oscillator start up \rightarrow High-frequency oscillator operation mode (fosch) \rightarrow PLL start up \rightarrow PLL use mode (fPLL)

	LD	(SYSCR0),	111-	-В;	High-frequency oscillator start/warm-up start
WUP:	BIT	2, (SYSCR0)		S`; [Chook for were up and flog
	JR	NZ, WUP		ح ; ۲	Check for warm-up end hag
	LD	(SYSCR1),	0	– B ;	Change the system clock fs to fOSCH
	LD	(PLLCR1),	1 =	– в;	PLL start-up/lock up start
LUP:	BIT	5, (PLLCR0)	$\left(\left(\right) \right)$;]	Check for look up and flag
	JR	Z, LUP		;	Check for lock up end hag
	LD	(PLLCR0),	1	– в 🏹	Change the system clock fOSCH to fPLL
				\sim	

(OK) Low-frequency oscillator operation mode (fs) (high-frequency oscillator Operate) \rightarrow High-frequency oscillator operation mode (fosch) \rightarrow PLL start up \rightarrow PLL use mode (fpLL)

LD	(SYSCR1),	B;	Change the system clock fs to fOSCH
LD	(PLLCR1),	1 — — — — — — — — — — — — — — — — — — —	PLL start-up/lock up start
BIT JR	5, (PLLCR0) Z, LUP		Check for lock up end flag
(LD)	(PLLCR0),		Change the system clock f_{OSCH} to f_{PLL}
	~] [

(Error) Low-frequency oscillator operation mode (fs) (high-frequency oscillator STOP) \rightarrow High-frequency oscillator start up \rightarrow PLL start up \rightarrow PLL use mode (fPLL)

\searrow	LD	(SYSCR0),	11B;	High-frequency oscillator start/warm-up start
WUP:	BIT	2, (SYSCR0)	;	Check for warm-up and flag
	JR	NZ, WUP	; ∫	check for warn-up end hag
	LD	(PLLCR1),	1 B ;	PLL start-up/lock up start
LUP:	BIT	5, (PLLCR0)	;	Check for lock up and flag
	JR	Z, LUP	;	Check for fock up end hag
	LD	(PLLCR0),	– 1 – – – – – B ;	Change the internal clock fOSCH to fPLL
	LD	(SYSCR1),	B;	Change the system clock fs to fPL

- (2) Change/stop control

LD	(PLLCR0),	– 0 – – – – – – B ;	Change the system clock fPLL to fOSCH
LD	(PLLCR1),	0 B;	PLL stop
LD	(SYSCR1),	B;	Change the system clock f _{OSCH} to fs
LD	(SYSCR0),	0 B;	High-frequency oscillator stop

LD	(SYSCR1),	– – – 1 – – B; Change the system clock f _{PLL} to fs	
LD	(PLLCR0),	− 0 − − − − − B; Change the internal clock (fc) fpLL to fOSCH	
LD	(PLLCR1),	0 – – – – – – B ; PLL stop	
LD	(SYSCR0),	0 – – – – – – B; High-frequency oscillator stop	

(OK) PLL use mode (fPLL) \rightarrow Set the STOP mode \rightarrow High frequency oscillator operation mode (fOSCH) \rightarrow PLL stop \rightarrow Halt (High frequency oscillator stop)

LD	(SYSCR2),	– – – 0 1 – – B ; Set the STOP mode
		(This command can be executed before use of PLL)
LD	(PLLCR0),	– 0 – – – – B; Change the system clock f _{PLL} to f _{OSCH}
LD	(PLLCR1),	0 B ; PLL stop
HALT		; Shift to STOP mode

(Error) PLL use mode (fplL) \rightarrow Set the STOP mode \rightarrow Halt (High-frequency oscillator stop)

LD (SYSCR2), ----01--B; Set the STOP mode (This command can execute before use of PLL) HALT; Shift to STOP mode

3.3.5 Noise Reduction Circuits

Noise reduction circuits are built-in, allowing implementation of the following features.

- (1) Reduced drivability for high-frequency oscillator
- (2) Reduced drivability for low-frequency oscillator
- (3) Single drive for high-frequency oscillator
- (4) SFR protection of register contents

When above function is used, set EMCCR0 and EMCCR2 registers

(1) Reduced drivability for high-frequency oscillator

(Purpose)

Reduces noise and power for oscillator when a resonator is used.

(Setting method)

The drive ability of the oscillator is reduced by writing "0" to EMCCR0<DRVOSCH> register. At reset, <DRVOSCH> is initialized to "1" and the oscillator starts oscillation by normal drivability when the power-supply is on.

Note: This function (EMCCR0<DRVOSCH> = "0") is available when $f_{OSCH} = 6$ to 10 MHz.

(2) Reduced drivability for low-frequency oscillator

(Purpose)

Reduces noise and power for oscillator when a resonator is used.

(Block diagram)

(Setting method)

The drive ability of the oscillator is reduced by writing 0 to the EMCCR0<DRVOSCL> register. At reset, <DRVOSCL> is initialized to "1".

(3) Single drive for high-frequency oscillator

(Purpose)

Remove the need for twin drives and prevent operational errors caused by noise input to X2 pin when an external oscillator is used.

(Block diagram)

(Setting method)

The oscillator is disabled and starts operation as buffer by writing "1" to EMCCR0<EXTIN> register. X2 pin's output is always "1".

At reset, <EXTIN> is initialized to "0".

(4) Runaway prevention using SFR protection register

(Purpose)

Prevention of program runaway caused by introduction of noise.

Write operations to a specified SFR are prohibited so that the program is protected from runaway caused by stopping of the clock or by changes to the memory control register (memory controller, MMU) which prevent fetch operations.

Runaway error handling is also facilitated by INTPO interruption.

Specified SFR list

1. Memory controller

B0CSL/H, B1CSL/H, B2CSL/H, B3CSL/H, BECSL/H MSAR0, MSAR1, MSAR2, MSAR3, MAMR0, MAMR1, MAMR2, MAMR3, PMEMCR, MEMCR0

2. MMU

LOCALPX/PY/PZ, LOCALLX/LY/LZ, LOCALRX/RY/RZ, LOCALWX/WY/WZ,

- 3. Clock gear SYSCR0, SYSCR1, SYSCR2, EMCCR0
- 4. PLL

PLLCR0, PLLCR1

(Operation explanation)

Execute and release of protection (write operation to specified SFR) becomes possible by setting up a double key to EMCCR1 and EMCCR2 registers.

(Double key)

1st KEY: writes in sequence, 5AH at EMCCR1 and A5H at EMCCR2 2nd KEY: writes in sequence, A5H at EMCCR1 and 5AH at EMCCR2

Protection state can be confirmed by reading EMCCR0<PROTECT>.

At reset, protection becomes OFF.

INTPO interruption also occurs when a write operation to the specified SFR is executed with protection in the ON state.

0

3.3.6 Stand-by Controller

(1) HALT modes and port drive register

6

When the HALT instruction is executed, the operating mode switches to IDLE2, IDLE1 or STOP mode, depending on the contents of the SYSCR2<HALTM1:0> register and each pin-status is set according to the PxDR register, as shown below:

3

2

1

PxDR (xxxxH)

Bit symbol	Px7D	Px6D	Px5D	Px4D	Px3D	Px2D	Px1D	Px0D
Read/Write				R	/W _	$\left(\frac{7}{5} \right)$		
After reset	1	1	1	1	1		1	1
Function	Output/input buffer drive register for stand-by mode							

4

(Purpose and use)

7

- This register is used to set each pin status at stand-by mode.
- All ports have this registers of the format shown above. ("x" indicates the port name.)

5

- For each register, refer to 3.5 function of ports.
- Before "Halt" instruction is executed, set each register according to the expected pin status. They will be effective after the CPU has executed the "Halt" instruction.
- This is the case regardless of stand-by mode (IDLE2, IDLE1 or STOP).
- The Output/Input buffer control table is shown below.

OE	PxnD	Output Buffer	Input Buffer
0	0	OFF	OFF
0	1	OFF	ON
1	0	OFF	OFF
1	1	ON	OFF

Note 1: OE denotes an output enable signal before stand-by mode.

Basically, PxCR is used as OE.

Note 2: "n" in PxnD denotes the bit number of PORTx

The subsequent actions performed in each mode are as follows:

1. IDLE2: only the CPU halts.

The internal I/O is available to select operation during IDLE2 mode by setting the following register.

Table 3.3.2 shows the register setting operation during IDLE2 mode.

Internal I/O	SFR
TMRA01	TA01RUN <i2ta01></i2ta01>
TMRA23	TA23RUN <i2ta23></i2ta23>
TMRB0	TB0RUN <i2tb0></i2tb0>
SIO0	SC0MOD1 <i2s0></i2s0>
I ² C bus	SBI0BR0 <i2sbi0></i2sbi0>
AD converter	ADMOD1 <i2ad></i2ad>
WDT	WDMOD <i2wdt></i2wdt>

Table 3.3.2 SFR Setting Operation during IDLE2 Mode

- 2. IDLE1: Only the oscillator, RTC (real-time clock) and MLD continue to operate.
- 3. STOP: All internal circuits stop operating.
The operation of each of the different HALT modes is described in Table 3.3.3.

		1 0				
HALT Mode		IDLE2	IDLE1	STOP		
SYSCR2 <haltm1:0> 11 10 01</haltm1:0>						
	CPU	Stop				
	I/O ports	Depend on Px	DR register setting			
-	TMRA, TMRB					
	SIO, SBI	Available to select		2		
Block	AD converter	operation block	\sim (7/ \diamond			
Dieter	WDT		Stop			
	I2S, LCDC, SDRAMC,					
	Interrupt controller, USBC.	Operate	$(\bigcirc)^2$			
	RTC, MLD		Operate	\bigcirc		

Table 3.3.3 I/O Operation during HALT Modes

(2) How to release the HALT mode

These halt states can be released by resetting or requesting an interrupt. The halt release sources are determined by the combination of the states of the interrupt mask register <IFF2:0> and the HALT modes. The details for releasing the halt status are shown in Table 3.3.4.

• Release by interrupt requesting

The HALT mode release method depends on the status of the enabled interrupt .When the interrupt request level set before executing the HALT instruction exceeds the value of the interrupt mask register, the interrupt is processed depending on its status after the HALT mode is released, and the CPU status executing the instruction that follows the HALT instruction. When the interrupt request level set before executing the HALT instruction is less than the value of the interrupt mask register, HALT mode release is not executed. (in non-maskable interrupts, interrupt processing is processed after releasing the HALT mode regardless of the value of the mask register.) However only for INT0 to INT4, INTKEY, INTRTC, INTALM and interrupts, even if the interrupt request level set before executing the halt instruction is less than the value of the interrupt mask register, HALT mode release is executed. In this case, the interrupt is processed, and the CPU starts executing the instruction following the HALT instruction, but the interrupt request flag is held at "1".

Release by resetting

Release of all halt statuses is executed by resetting.

When the STOP mode is released by RESET, it is necessary to allow enough resetting time (see Table 3.3.5) for operation of the oscillator to stabilize.

When releasing the HALT mode by resetting, the internal RAM data keeps the state before the HALT instruction is executed. However the other settings contents are initialized. (Releasing due to interrupts keeps the state before the HALT instruction is executed.)

						-		
Status of Received Interrupt		Interrupt Enabled			Interrupt Disabled			
			(Interrupt	$ evel \ge (nterrorevectoreve$	upt mask)	(Interrupt le	vel) < (Interru	pt mask)
		HALT Mode	IDLE2	IDLE1	STOP	IDLE2	IDLE1	STOP
		INTWD	•	×	х	-	-	-
е		INT0 to INT4 (Note 1)	•	•	♦*1	0	0	0*1
learance		INTALM0 to INTALM4	•	•	×	0)	×
	INTTA0 to INTTA3,	•	~	×			~	
0 O	bt	INTTB0 to INTTB1	•	~	^ ^	$(\sqrt{2})$	^	^
State	erru	INTRX0 to INTTX0, INTSBI	•	×	×	×	×	×
alt S	lut	INTTBO0, INTI2S	•	×	×	×	×	×
of H		INTAD, INT5, INTSPI	•	×	×		×	×
ce c		INTKEY	•	•	♦ * 1	0	0	0*1
onre		INTRTC	•	•	**1	0	10	o*1
0		INTLCD	•	×	×	×	X	×
		RESET			(/ Initialize	LSI		
					LV/			

Table 3.3.4 Source of Halt State Clearance and Halt Clearance Operation

- +: After clearing the HALT mode, CPU starts interrupt processing.
- After clearing the HALT mode, CPU resumes executing starting from the instruction following the HALT instruction.
- ×: Cannot be used to release the HALT mode.
- -: The priority level (interrupt request level) of non-maskable interrupts is fixed to 7, the highest priority level. This combination is not available.
- *1: Release of the HALT mode is executed after warm-up time has elapsed.
 - Note 1: When the HALT mode is cleared by an INT0 interrupt of the level mode in the interrupt enabled status, hold level H until starting interrupt processing. If level L is set before holding level L, interrupt processing is correctly started.

Example: Releasing IDLE1 mode An INTO interrupt clears the halt state when the device is in IDLE1 mode. Address 8200H LD (PCFC), 01H Sets PC0 to INT0. 8203H ĹĎ (IIMC), 00H Selects INT0 interrupt rising edge. 8206H LD (INTEOAD), 06H Sets INT0 interrupt level to 6. 8209H ΕI Sets interrupt level to 5 for CPU. 5 (SYSCR2), 28H Sets HALT mode to IDLE1 mode. 820BH LD 820EH Halts CPU. HAÈ INT0 INT0 interrupt routine

820FH

ĽD

XX, XX

RETI

(3) Operation

1. IDLE2 mode

In IDLE2 mode only specific internal I/O operations, as designated by the IDLE2 setting register, can take place. Instruction execution by the CPU stops.

Figure 3.3.7 illustrates an example of the timing for clearance of the IDLE2 mode halt state by an interrupt.

2. IDLE1 mode

In IDLE1 mode, only the internal oscillator and the RTC and MLD continue to operate. The system clock stops.

In the halt state, the interrupt request is sampled asynchronously with the system clock; however, clearance of the halt state (e.g., restart of operation) is synchronous with it.

Figure 3.3.8 illustrates the timing for clearance of the IDLE1 mode halt state by an interrupt.

Figure 3.3.8 Timing Chart for IDLE1 Mode Halt State Cleared by Interrupt

3. STOP mode

When STOP mode is selected, all internal circuits stop, including the internal oscillator.

After STOP mode has been cleared system clock output starts when the warm-up time has elapsed, in order to allow oscillation to stabilize.

Figure 3.3.9 illustrates the timing for clearance of the STOP mode halt state by an interrupt.

Figure 3.3.9 Timing Chart for STOP Mode Halt State Cleared by Interrupt

Table 3.3.5 Example of Warm-up Time after Releasing STOP Mode

		at fos	_{SCH} = 40 MHz, fs = 32.768 kHz
SYSCR1		SYSCR2 <wuptm1:0></wuptm1:0>	
<sysck></sysck>	01 (2 ⁸)	10 (2 ¹⁴)	11 (2 ¹⁶)
0 (fc)	6.4 μs	409.6 μs	1.638 ms
1 (fs)	7.8 ms	500 ms	2000 ms

		Input Buffer State						
					In	HALT mode (IDLE1/2/STC)P)
Port Name	Input Function Name	During	When the CF	O is operating	<pxdi< td=""><td>R>=1</td><td><pxd< td=""><td>R>=0</td></pxd<></td></pxdi<>	R>=1	<pxd< td=""><td>R>=0</td></pxd<>	R>=0
		Reset	When used	When used	When used	When used	When	When used
			as Evention air	as	as Evention aire	as	used as	as
	D0 D7		Function pin	Input pin	Function pin	Input pin	Function pin	Input pin
D0~D7	D0~D7		external		OFF	_	OFF	
P10~P17	D8~D15	OFF	read			(7/5)		
P60~P67	_		-		_		_	
P71~P72	_		_		- 6	\sim	_	
P75	NDR/B		ON		ON)	OFF	
P76	WAIT		ON					
P90	-		-		$\mathcal{A}(-)$	>	f	
P91	RXD0					~		\sim
P92	CTS0, SCLK0				7/5	~ (δ	
P93~P94	SDA, SCL				\bigcirc		51N)	
P96 *1	INT4			ON		ON		
P97	INT5		ON		ON		OFF	
PA0~PA7 ^{*1}	KI0-KI7	ON		$\langle \langle \rangle$)	
PC0	INT0		G		($\overline{\gamma}_{\wedge}$		
PC1	INT1		20			//))		
PC2	INT2		$\lambda()$		$\langle \rangle$			OFF
PC3	INT3				$\langle \rangle$			
PC4~PC7	_		())		
PF0	-		(\bigcirc)				_	
PF1	RXD0	G	\sim	\land				
PF2	CTS0		ON		ON		OFF	
112	SCLK0		\bigcirc	11				
PG0~PG2*2	_	OFF	-	ON upon port		OFF	_	
PG3 *2	ADTRG		ON	read	ON		ON	
PJ5~PJ6	-		\in	$(\sqrt{3})$	-		-	
PK4	SPDI		ON		ON		OFF	
PK5~PK5	-							
PL4~PL5,	_	\sim		ON	-	ON	-	
PL7				>				
PL6	BUSRQ	ON	ON	r	ON		OFF	
PN0~PN7			(–		-		-	
BE	(+)							
RESET	$\langle / + \rangle$		ON	_	ON	-	ON	-
AM0, AM1		$(\land \land$						
X1, XT1					IC	LE2/IDLE1:C	N, STOP:O	FF

Table	336	3 In	nut	Buffer	State	Table
Table	0.0.0	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	pui	Dunci	Olaic	Table

ON: The buffer is always turned on. A current flows the input buffer if the *1: Port having a pull-up/pull-down resistor. input pin is not driven.

 $\ast 2$: AIN input does not cause a current to flow through the buffer.

OFF: The buffer is always turned off.

-: No applicable

		Output Buffer State						
			When the ODI	Lie en enstine	Ir	n HALT mode (I	DLE1/2/STOF	P)
	Output Function		when the CPU	J is operating	<pxd< td=""><td>R> = 1</td><td><pxd< td=""><td>R> = 0</td></pxd<></td></pxd<>	R> = 1	<pxd< td=""><td>R> = 0</td></pxd<>	R> = 0
Port Name	Name	During Reset	When used as Eunction pin	When used as Output pin	When used as	When used as	When used as Function	When used as Output pin
				Output pin	1 dilotion pin	Output pin	pin	
D0~D7	D0~D7	OFF	ON upon		OFF	-))	-
P10~P17	D8~D15	011	write	ON		ON		OFF
A0~A15	A16~A15,			-				_
P60~P67	A16~A23	ON			Ĉ			
P70	RD)2	OFF	
P71	WRLL, NDRE		ON		ON		\frown	
P72	WRLU, NDWE		ÖN			\geq		
P73	EA24	OFF				Ť.		7
P74	EA25	011		($\overline{\gamma}$		5 >	
P75	R/W				//))	\diamond ((
P76	_		_				C//	
P80	CS0			$\Delta($	\diamond	\square	\mathbf{S}	
P81	CS1, SDCS			$\langle \rangle$		$(\bigcirc$	\sim	
P82	CS2, CSZA			ON	ſ .	ON		OFF
P83	CS3	ON	((7/0		OIT
P84	CSZB, NDOCE	ÖN	G			$\langle \bigcirc \rangle$		
P85	CSZC, ND1CE		40		$\langle \frown \rangle$			
P86	CSZD				\leq)			
P87	CSZE			\sim	ON	/	OFF	
P90	TXD0, I2SCKO						011	
P91	I2SDO	(\sim	\wedge				
P92	I2SWS	OFF	())	\sim				
P93	SDA			7/~				
P94	SCL		Ω					
P95	CLK32KO	ON	\mathcal{V}	$\left(\overline{\Omega} \right) $	~			
P96	PX	OFF	\sim	$(\vee ())$		_		_
P97	PY							

*1: Port having a pull-up/pull-down resistor.

_

ON: The buffer is always turned on. OFF: The buffer is always turned off.

-: Not applicable

		Output Buffer State						
			When the CPI		1	n HALT mode (I	DLE1/2/STOF	?)
Dert Nome	Output Function			J is operating	<pxd< td=""><td>R> = 1</td><td><pxd< td=""><td>R> = 0</td></pxd<></td></pxd<>	R> = 1	<pxd< td=""><td>R> = 0</td></pxd<>	R> = 0
Pull Ivallie	Name	During Reset		When used	When used	When used	When used	When used
			When used as	as	as	as	as Function	as
			r unotion pin	Output pin	Function pin	Output pin	pin	Output pin
PC0	TA1OUT						7	
PC1	TA3OUT		ON		ON		OFF	
PC2	TB0OUT0				\sim	(// 5)		
PC3	-		—		-		-	
PC6	KO8, EA24	OFF		ON		ON		OFF
PC7	CSZF , EA25		ON	ON	ON		OFF	OIT
PF0	TXD0						\bigcirc	
PF1	_		_		$\langle \langle - \rangle \rangle$	<	1(-)	
PF2	SCLK0					\mathcal{L}		
PF7	SDCLK	ON		((// ^ `			
PG2	MX	OFF			\bigcirc		$\mathcal{I}(\mathcal{A})$	_
PG3	MY			()			-0/	
PJ0	SDRAS SRLLB				\sim	$\langle \langle \rangle$		
PJ1	SDCAS, SRLUB			$\langle \langle \rangle$		()		
PJ2	SDWE, SRWR	ON	G		G			
PJ3	SDLLDQM		ON		ON ((5)	OFF	
PJ4	SDLUDQM		20					
PJ5	NDALE	OFF			$\langle \rangle \rangle$			
PJ6	NDCLE			7	$\langle \rangle \rangle$			
PJ7	SDCKE							
PK0	LCP			\sim	\sim			
PK1	LLP	ON (((
PK2	LFR		\square	ON		ON		OFF
PK3	LBCD	(7/		$\langle \rangle$	~			
PK4	-	\bigcirc		$\overline{\Box}$	~ -		_	
PK5		OFF	\sim	(// 5)				
	SPC3							
		ON						
	LD0~LD6							
		OFF		*				
PM1		5	\wedge					
PM2			7(
PN0~PN7	KO0~KO7	OFF						
					1		IDLE	2/1:ON,
X2			2				STOP: 0	output "H"
XT2				_		_	IDLE	2/1:ON,
×12	\sim	\sim					STOP: 0	utput "HZ"

Table 3.3.8 Output Buffer State Table (2/2)

ON: The buffer is always turned on.

OFF: The buffer is always turned off.

-: Not applicable

*1: Port having a pull-up/pull-down resistor.

3.4 Interrupts

Interrupts are controlled by the CPU Interrupt mask register <IFF2:0> (bits12 to 14 of the status register) and by the built-in interrupt controller.

The TMP92CA25 has a total of 49 interrupts divided into the following five types:

Interrupts generated by CPU: 9 sources Software interrupts: 8 sources Illegal instruction interrupt: 1 source Internal interrupts: 33 sources Internal I/O interrupts: 25 sources Micro DMA transfer end interrupts: 8 sources External interrupts: 7 sources Interrupts on external pins (INT0 to INT5, INTKEY)

A fixed individual interrupt vector number is assigned to each interrupt source.

Any one of six levels of priority can also be assigned to each maskable interrupt. Non-maskable interrupts have a fixed priority level of 7, the highest level.

When an interrupt is generated, the interrupt controller sends the priority of that interrupt to the CPU. When more than one interrupt is generated simultaneously, the interrupt controller sends the priority value of the interrupt with the highest priority to the CPU. (The highest priority level is 7, the level used for non-maskable interrupts.)

The CPU compares the interrupt priority level which it receives with the value held in the CPU interrupt mask register <IFF2:0>. If the priority level of the interrupt is greater than or equal to the value in the interrupt mask register, the CPU accepts the interrupt.

However, software interrupts and illegal instruction interrupts generated by the CPU are processed irrespective of the value in <IFF2:0>.

The value in the interrupt mask register <IFF2:0> can be changed using the EI instruction (EI num sets <IFF2:0> to num). For example, the command EI 3 enables the acceptance of all non-maskable interrupts and of maskable interrupts whose priority level, as set in the interrupt controller, is 3 or higher. The commands EI and EI 0 enable the acceptance of all non-maskable interrupts and of maskable interrupts with a priority level of 1 or above (hence both are equivalent to the command EI 1).

The DI instruction (sets <IFF2:0> to 7) is exactly equivalent to the EI 7 instruction. The DI instruction is used to disable all maskable interrupts (since the priority level for maskable interrupts ranges from 1 to 6). The EI instruction takes effect as soon as it is executed.

In addition to the general purpose interrupt processing mode described above, there is also a micro DMA processing mode.

In micro DMA mode the CPU automatically transfers data in one-byte, two-byte or four-byte blocks; this mode allows high speed data transfer to and from internal and external memory and internal I/O ports.

In addition, the TMP92CA25 also has a software start function in which micro DMA processing is requested in software rather than by an interrupt.

Figure 3.4.1 is a flowchart showing overall interrupt processing.

3.4.1 General-purpose Interrupt Processing

When the CPU accepts an interrupt, it usually performs the following sequence of operations. However, in the case of software interrupts and illegal instruction interrupts generated by the CPU, the CPU skips steps (1) and (3), and executes only steps (2), (4) and (5).

(1) The CPU reads the interrupt vector from the interrupt controller.

When more than one interrupt with the same priority level has been generated simultaneously, the interrupt controller generates an interrupt vector in accordance with the default priority and clears the interrupt requests.

(The default priority is determined as follows: the smaller the vector value, the higher the priority.)

- (2) The CPU pushes the program counter (PC) and status register (SR) onto the top of the stack (pointed to by XSP).
- (3) The CPU sets the value of the CPU's interrupt mask register <IFF2:0> to the priority level for the accepted interrupt plus 1. However, if the priority level for the accepted interrupt is 7, the register's value is set to 7.
- (4) The CPU increments the interrupt nesting counter INTNEST by 1
- (5) The CPU jumps to the address given by adding the contents of address FFFF00H + the interrupt vector, then starts the interrupt processing routine.

On completion of interrupt processing, the RETI instruction is used to return control to the main routine. RETI restores the contents of the program counter and the status register from the stack and decrements the interrupt nesting counter INTNEST by 1.

Non-maskable interrupts cannot be disabled by a user program. Maskable interrupts, however, can be enabled or disabled by a user program. A program can set the priority level for each interrupt source. (A priority level setting of 0 or 7 will disable an interrupt request.)

If an interrupt request is received for an interrupt with a priority level equal to or greater than the value set in the CPU interrupt mask register <IFF2:0>, the CPU will accept the interrupt. The CPU interrupt mask register <IFF2:0> is then set to the value of the priority level for the accepted interrupt plus 1.

If during interrupt processing, an interrupt is generated with a higher priority than the interrupt currently being processed, or if, during the processing of a non-maskable interrupt processing, a non-maskable interrupt request is generated from another source, the CPU will suspend the routine which it is currently executing and accept the new interrupt. When processing of the new interrupt has been completed, the CPU will resume processing of the suspended interrupt.

If the CPU receives another interrupt request while performing processing steps (1) to (5), the new interrupt will be sampled immediately after execution of the first instruction of its interrupt processing routine. Specifying DI as the start instruction disables nesting of maskable interrupts.

A reset initializes the interrupt mask register ${\rm <IFF2:0>}$ to 111, disabling all maskable interrupts.

Table 3.4.1 shows the TMP92CA25 interrupt vectors and micro DMA start vectors. FFFF00H to FFFFFFH (256 bytes) is designated as the interrupt vector area.

Default	-	Interrupt Source and Source of	Vector	Address Refer	Micro
Priority	Туре	Micro DMA Request	Value	to Vector	DMA Start
,					vector
1		Reset or [SWI0] instruction	0000H	FFFF00H	
2		[SWI1] instruction	0004H	FFFF04H	
3		Illegal instruction or [SWI2] instruction	0008H	FFFF08H	
4		[SWI3] instruction	000CH	FFFF0CH	
5	Non-	[SWI4] instruction	0010H	FEFF10H	
6	maskable	[SWI5] instruction	0014H	FFFF14H	
7		[SWI6] instruction	0018H	FFFF18H	
8		[SWI7] instruction	001CH	FFFF1CH	
9		(Reserved)	0020H	FFFF20H	
10		INTWD: Watchdog Timer	0024H	FFFF24H	
-		Micro DMA		- (- (Note1)
11		INT0: INT0 pin input	0028H	FFFF28H	OAH (Note 2)
12		INT1: INT1 pin input	002CH	FFFF2CH	0BH
13		INT2: INT2 pin input	0030H	FFFF30H	0CH
14		INT3: INT3 pin input	0034H	FFFF34H	0DH
15		INT4: INT4 pin input (TSI)	0038H	FFFF38H	0EH
16		INTALMO: ALMO (8192 Hz)	003CH	FFFF3CH	0FH
17		INTALM1: ALM1 (512 Hz)	0040H	FFFF40H	10H
18		INTALM2: ALM2 (64 Hz)	0044H	FFFF44H	11H
19		INTALM3: ALM3 (2 Hz)	0048H	FFFF48H	12H
20		INTALM4: ALM4 (1 Hz)	004CH	FFFF4CH	13H
21		INTP0: Protect0 (Write to special SFR)	0050H	FFFF50H	14H
22		(Reserved)	0054H	FFFF54H	15H
23		INTTA0: 8-bit timer 0	0058H	FFFF58H	16H
24		INTTA1: 8-bit timer 1	005CH	FFFF5CH	17H
25		INTTA2: 8-bit timer 2	0060H	FFFF60H	18H
26		INTTA3: 8-bit timer 3	0064H	FFFF64H	19H
27		INTTB0: 16-bit timer 0	0068H	FFFF68H	1AH
28		INTTB1: 16-bit timer 0	006CH	FFFF6CH	1BH
29		INTKEY: Key-on wakeup	0070H	FFFF70H	1CH
30	Maskable	INTRTC: RTC (Alarm interrupt)	0074H	FFFF74H	1DH
31		INTTBO0: 16-bit timer 0 (Overflow)	0078H	FFFF78H	1EH
32		INTLCD: LCDC/LP pin	007CH	FFFF7CH	1FH
33	\sim	INTRX0: Serial receive (Channel 0)	0080H	FFFF80H	20H (Note 2)
34	/	INTTX0; Serial transmission (Channel 0)	0084H	FFFF84H	21H
35		(Reserved)	0088H	FFFF88H	22H (Note 2)
36		(Reserved)	008CH	FFFF8CH	23H
37		(Reserved)	0090H	FFFF90H	24H
38		(Reserved)	0094H	FFFF94H	25H
39		INT5: INT5 pin/input	0098H	FFFF98H	26H
40		INTI2S: I'S (Channel 0)	009CH	FFFF9CH	27H
41	\sim	INTNDF0 (NAND flash controller channel 0)	00A0H	FFFFA0H	28H
42		INTNDF1 (NAND flash controller channel 1)	00A4H	FFFFA4H	29H
43			UUA8H	FFFFA8H	2AH
44			UUACH	FFFFACH	2BH
45		(Reserved)	UUBUH	FFFFB0H	2CH
46		(Reserved)	00B4H	FFFFB4H	2DH
47		(Reserved)	00B8H	FFFFB8H	2EH
48		(Reserved)	00BCH	FFFBCH	2FH
49		(Reserved)	UOCOH	FFFFC0H	30H
50		(Reserved)	00C4H	FFFFC4H	31H

Table 3.4.1 TMP92CA25 Interrupt Vectors and Micro DMA Start Vectors

TOSHIBA

Default Priority	Туре	Interrupt Source and Source of Micro DMA Request	Vector Value	Address Refer to Vector	Micro DMA Start Vector
51		(Reserved)	00C8H	FFFFC8H	32H
52		INTAD: AD conversion end	00CCH	FFFFCCH	33H
53		INTTC0: Micro DMA end (Channel 0)	00D0H	FFFFD0H	34H
54		INTTC1: Micro DMA end (Channel 1)	00D4H	FFFFD4H	35H
55		INTTC2: Micro DMA end (Channel 2)	00D8H	FFFFD8H	36H
56		INTTC3: Micro DMA end (Channel 3)	00DCH	FFFFDCH	37H
57	Maskable	INTTC4: Micro DMA end (Channel 4)	00E0H	FFFFE0H	38H
58		INTTC5: Micro DMA end (Channel 5)	00E4H	FFFFE4H	39H
59		INTTC6: Micro DMA end (Channel 6)	00E8H	FFFFE8H	3AH
60		INTTC7: Micro DMA end (Channel 7)	00ECH	FFFFECH	3BH
-			00F0H	FFFFF0H	-
to		(Reserved)		:	to
-			OOFCH	FFFFCH	-

Note 1: Micro DMA default priority.

Micro DMA initiation takes priority over other maskable interrupts.

Note 2: When initiating micro DMA, set at edge detect mode.

3.4.2 Micro DMA Processing

In addition to general purpose interrupt processing, the TMP92CA25 also includes a micro DMA function. Micro DMA processing for interrupt requests set by micro DMA is performed at the highest priority level for maskable interrupts (level 6), regardless of the priority level of the interrupt source.

Because the micro DMA function is implemented through the CPU, when the CPU is placed in a stand-by state by a Halt instruction, the requirements of the micro DMA will be ignored (pending).

Micro DMA supports 8 channels and can be transferred continuously by specifying the micro DMA burst function as below.

Note: When using the micro DMA transfer end interrupt, always write "1" to bit 7 of SIMC register.

(1) Micro DMA operation

When an interrupt request is generated by an interrupt source specified by the micro DMA start vector register, the micro DMA triggers a micro DMA request to the CPU at interrupt priority level 6 and starts processing the request. The eight micro DMA channels allow micro DMA processing to be set for up to eight types of interrupt at once.

When micro DMA is accepted, the interrupt request flip flop assigned to that channel is cleared. Data in one-byte, two-byte or four-byte blocks, is automatically transferred at once from the transfer source address to the transfer destination address set in the control register, and the transfer counter is decremented by 1. If the value of the counter after it has been decremented is not 0, DMA processing ends with no change in the value of the micro DMA start vector register. If the value of the decremented counter is 0, a micro DMA transfer end interrupt (INTTC0 to INTTC7) is sent from the CPU to the interrupt controller. In addition, the micro DMA start vector register is cleared to 0, the next micro DMA operation is disabled and micro DMA processing terminates.

If micro DMA requests are set simultaneously for more than one channel, priority is not based on the interrupt priority level but on the channel number: the lower the channel number, the higher the priority (channel 0 thus has the highest priority and channel 7 the lowest).

If an interrupt request is triggered for the interrupt source in use during the interval between the time at which the micro DMA start vector is cleared and the next setting, general purpose interrupt processing is performed at the interrupt level set. Therefore, if the interrupt is only being used to initiate micro DMA (and not as a general-purpose interrupt), the interrupt level should first be set to 0 (i.e., interrupt requests should be disabled).

If micro DMA and general purpose interrupts are being used together as described above, the level of the interrupt which is being used to initiate micro DMA processing should first be set to a lower value than all the other interrupt levels. (Note) In this case, edge triggered interrupts are the only kinds of general interrupts which can be accepted.

Note: If the priority level of micro DMA is set higher than that of other interrupts, CPU operates as follows. In case INTxxx interrupt is generated first and then INTyyy interrupt is generated between checking "Interrupt specified by micro DMA start vector" (in the Figure 3.4.1) and reading interrupt vector with setting below. The vector shifts to that of INTyyy at the time.

This is because the priority level of INTyyy is higher than that of INTxxx.

In the interrupt routine, CPU reads the vector of INTyyy because cheking of micro DMA has finished.

And INTyyy is generated regardless of transfer counter of micro DMA.

INTxxx: level 1 without micro DMA

INTyyy: level 6 with micro DMA

Although the control registers used for setting the transfer source and transfer destination addresses are 32 bits wide, this type of register can only output 24-bit addresses. Accordingly, micro DMA can only access 16 Mbytes (the upper eight bits of a 32-bit address are not valid).

Three micro DMA transfer modes are supported: one-byte transfers, two-byte (one-word) transfer and four-byte transfer. After a transfer in any mode, the transfer source and transfer destination addresses will either be incremented or decremented, or will remain unchanged. This simplifies the transfer of data from memory to memory, from I/O to memory, from memory to I/O, and from I/O to I/O. For details of the various transfer modes, see section 3.4.2 (1), detailed description of the transfer mode register.

Since a transfer counter is a 16-bit counter, up to 65536 micro DMA processing operations can be performed per interrupt source (provided that the transfer counter for the source is initially set to 0000H).

Micro DMA processing can be initiated by any one of 34 different interrupts – the 33 interrupts shown in the micro DMA start vectors in Table 3.4.1 and a micro DMA soft start.

Figure 3.4.2 shows a 2-byte transfer carried out using a micro DMA cycle in transfer destination address INC mode (micro DMA transfers are the same in every mode except counter mode). (The conditions for this cycle are as follows: Both source and destination memory are internal RAM and multiples by 4 numbered source and destination addresses.)

(2) Soft start function

The TMP92CA25 can initiate micro DMA either with an interrupt or by using the micro DMA soft start function, in which micro DMA is initiated by a write cycle which writes to the register DMAR.

Writing 1 to any bit of the register DMAR causes micro DMA to be performed once. (If write "0" to each bit, micro DMA doesn't operate). On completion of the transfer, the bits of DMAR which support the end channel are automatically cleared to 0.

Only one channel can be set for DMA request at once. (Do not write "1" to plural bits.)

When writing again 1 to the DMAR register, check whether the bit is "0" before writing "1". If read "1", micro DMA transfer isn't started yet.

When a burst is specified by the DMAB register, data is transferred continuously from the initiation of micro DMA until the value in the micro DMA transfer counter is 0. If execatee soft start during micro DMA transfer by interrupt source, micro DMA transfer counter doesn't change. Don't use Read-modify-write instruction to avoid writign to other bits by mistake.

Symbol	Name	Address	7	6	5	4	3 2	> 1	0
		40011	DREQ7	DREQ6	DREQ5	DREQ4	DREQ3 DREQ2	DREQ1	DREQ0
DMAR	DMA	109H (Drobibit				R/	W		
DIVIAIN	Request	(PTOHIDIC RMW)	0	0	0	0	0 0	0	0
		,		20	1:	DMA reque	st in software		

(3) Transfer control registers

The transfer source address and the transfer destination address are set in the following registers. An instruction of the form LDC cr, r can be used to set these registers.

0 0 0	Mode DMAM0 to DMAM7	
DMAMn[4:0]	Mode Description	Execution State Number
0 0 0 z z	Destination INC mode $(DMADn+) \leftarrow (DMASn)$ $DMACn \leftarrow DMACn - 1$ if DMACn = 0 then INTTCn	5 states
0 0 1 z z	Destination DEC mode $(DMADn-) \leftarrow (DMASn)$ $DMACn \leftarrow DMACn - 1$ if $DMACn = 0$ then INTTCn	5 states
0 1 0 z z	Source INC mode $(DMADn) \leftarrow (DMASn+)$ $DMACn \leftarrow DMACn - 1$ if $DMACn = 0$ then INTTCn	5 states
0 1 1 z z	Source DEC mode $(DMADn) \leftarrow (DMASn-)$ $DMACn \leftarrow DMACn - 1$ if $DMACn = 0$ then INTTCn	5 states
1 0 0 z z	Source and destination INC mode $(DMADn+) \leftarrow (DMASn+)$ $DMACn \leftarrow DMACn - 1$ If DMACn = 0 then INTTCn	6 states
1 0 1 z z	Source and destination DEC mode $(DMADn-) \leftarrow (DMASn-)$ DMACn \leftarrow DMACn $-$ 1 If DMACn = 0 then INTTCn	6 states
110zz	Source and destination Fixed mode (DMADn) ← (DMASn) DMACn ← DMACn – 1 If DMACn = 0 then INTTCn	5 states
11100	Counter mode $DMASn \leftarrow DMASn + 1$ $DMACn \leftarrow DMACn - 1$ if $DMACn = 0$ then INTTCn	5 states

(4) Detailed description of the transfer mode register

ZZ: 00 = 1-byte transfer 01 = 2-byte transfer 10 = 4-byte transfer 11 = (Reserved)

Note1: N stands for the micro DMA channel number (0 to 7)

DMADn+/DMASn+: Post-increment (register value is incremented after transfer) DMADn-/DMASn-: Post-decrement (register value is decremented after transfer) "I/O" signifies fixed memory addresses; "memory" signifies incremented or decremented memory addresses.

Note2: The transfer mode register should not be set to any value other than those listed above.

Note3: The execution state number shows number of best case (1-state memory access).

3.4.3 Interrupt Controller Operation

The block diagram in Figure 3.4.3 shows the interrupt circuits. The left hand side of the diagram shows the interrupt controller circuit. The right hand side shows the CPU interrupt request signal circuit and the halt release circuit.

For each of the 52 interrupts channels there is an interrupt request flag (consisting of a flip-flop), an interrupt priority setting register and a micro DMA start vector register. The interrupt request flag latches interrupt requests from the peripherals. The flag is cleared to zero in the following cases: when a reset occurs, when the CPU reads the channel vector of an interrupt it has received, when the CPU receives a micro DMA request (when micro DMA is set), when a micro DMA burst transfer is terminated, and when an instruction that clears the interrupt for that channel is executed (by writing a micro DMA start vector to the INTCLR register).

An interrupt priority can be set independently for each interrupt source by writing the priority to the interrupt priority setting register (e.g., INTEOAD or INTE12). 6 interrupt priorities levels (1 to 6) are provided. Setting an interrupt source's priority level to 0 (or 7) disables interrupt requests from that source. The priority of non-maskable interrupt (watchdog timer interrupts) is fixed at 7. If more than one interrupt request with a given priority level are generated simultaneously, the default priority (the interrupt with the lowest priority or, in other words, the interrupt with the lowest vector value) is used to determine which interrupt request is accepted first.

The 3rd and 7th bit of the interrupt priority setting register indicate the state of the interrupt request flag and thus whether an interrupt request for a given channel has occurred.

If several interrupts are generated simultaneously, the interrupt controller sends the interrupt request for the interrupt with the highest priority and the interrupt's vector address to the CPU. The CPU compares the mask value set in $\langle IFF2:0 \rangle$ of the status register (SR) with the priority level of the requested interrupt; if the latter is higher, the interrupt is accepted. Then the CPU sets SR $\langle IFF2:0 \rangle$ to the priority level of the accepted interrupt, new interrupt requests with a priority value equal to or higher than the value set in SR $\langle IFF2:0 \rangle$ (e.g., interrupts with a priority higher than the interrupt being processed) will be accepted.

When interrupt processing has been completed (e.g., after execution of a RETI instruction), the CPU restores to SR<IFF2:0> the priority value which was saved on the stack before the interrupt was generated.

The interrupt controller also includes eight registers which are used to store the micro DMA start vector. Writing the start vector of the interrupt source for the micro DMA processing (see Table 3.4.1), enables the corresponding interrupts to be processed by micro DMA processing. The values must be set in the micro DMA parameter registers (e.g., DMAS and DMAD) prior to micro DMA processing.

TOSHIBA

92CA25-52

Figure 3.4.3 Block Diagram of Interrupt Controller

Symbol	Name	Address	7	6	5	4	3	2	1	0
-,				INT			_	IN	ΤΟ	-
	IN I U &		IADC				10C	10M2	I0M1	IOMO
INTE0AD	INTAD	F0H	R		R/W		R		R/W	
	enable		0	0	0	0	0	0	0	0
	INT1		Ū	IN ⁻	т2	0			 T1	Ŭ
	&		I2C	I2M2	I2M1	12M0	I1C	(11M2)	 	I1M0
INTE12	INT2	D0H	R		R/W		R	(\bigcirc)	R/W	
	enable		0	0	0	0	0		0	0
	INT3		-	IN	Γ4	<)) IN	Г3	-
	&		I4C	I4M2	I4M1	I4M0	13C	13M2	I3M1	13M0
INTE34	INT4	D1H	R		R/W		R	>	R/W	
	enable		0	0	0	0		0	0	0
	INT5			INT	12S			IN	f5	
	&		II2SC	II2SM2	II2SM1	II2SM0	I5C	I5M2	I5M1	I5M0
INTE5I2S	INTI2S	EBH	R		R/W	$\overline{\Omega}$	R	8	R/W	
	enable		0	0	0	$(\sqrt{0})$	0 🔿	. (0	0	0
	INTTA0			INTTA1 (TMRA1)		×	INTTAD	TMRA0)	
	&		ITA1C	ITA1M2	ITA1M1	ITA1M0	ITA0C	ITA0M2	ITA0M1	ITA0M0
INTETA01	INTTA1	D4H	R		R/W		R (($\overline{\Delta}$	R/W	
	enable		0	0	0	0	0	~0	0	0
	INTTA2			INTTA3 (TMRA3)		(7)	NTTA2 (TMRA2)	
	&	DELL	ITA3C	ITA3M2	ITA3M1	ITA3M0	ITA2C	ITA2M2	ITA2M1	ITA2M0
INTETA23	INTTA3	D5H	R	$\langle \zeta \rangle$	R/W		R	r	R/W	
	enable		0	0	0	0	0	0	0	0
	INTTB0			INTTB1 (TMRB1)		$\langle \rangle \rangle$	INTTB0 (TMRB0)	
	&	DOLL	ITB1C	ITB1M2	ITB1M1	ITB1M0	ТВОС	ITB0M2	ITB0M1	ITB0M0
INTERBUT	INTTB1	D8H	R	$\langle \rangle$	R/W	$\langle \rangle$	R		R/W	
	enable		0	\mathcal{I}_{0}	0	0	0	0	0	0
			(Ω)	_	- ~	\mathbb{N}		INTT	BO0	
	INT I BOU		$(\vee 2))$	-		\sim	ITBO0C	ITBO0M2	ITBO0M1	ITBO0M0
INTETBOU	(Overnow)		\bigcirc	\sim	(7/		R		R/W	
		\langle / \rangle		Note: Alwa	ys write 0	1	0	0	0	0
	INTRX0	\sim			TX0			INTE	RX0	
INTESO	&		ЛТХОС	ITX0M2	ITX0M1	ITX0M0	IRX0C	IRX0M2	IRX0M1	IRX0M0
INTESU		DBH	R		R/W		R		R/W	
	enable		0	0	0	0	0	0	0	0
			~	(INT	TX1			=	-	
	INTSPI	FOH	ITX1C	ITX1M2	ITX1M1	ITX1M0	-	_	-	-
	enable		R		R/W					
	\sum		$\langle 0 \rangle$) 0	0	0		Note: Alwa	ays write 0	
		\geq	$\langle \ $	INTA	LM1			INTA	LM0	
INTEAL MO1	INTALIMU &	E5H	IA1C	IA1M2	IA1M1	IA1M0	IA0C	IA0M2	IA0M1	IA0M0
	enable	2011	R		R/W		R		R/W	
			0	0	0	0	0	0	0	0
			INTALM3			INTALM2				
INTEALM23	INTALM2 &	E6H	IA3C	IA3M2	IA3M1	IA3M0	IA2C	IA2M2	IA2M1	IA2M0
	INTALM3 enable		R		R/W	i	R		R/W	,
			0	0	0	0	0	0	0	0

(1) Interrupt level setting registers

Symbol	Name	Address	7	6	5	4	3	2	1	0		
				-	-			INTA	LM4			
	INTALM4		-	-	-	-	IA4C	IA4M2	IA4M1	IA4M0		
INTEALM4	enable	E/H					R		R/W			
				Note: Alwa	ays write 0		0	0	0	0		
				-	-				RTC			
	INTRTC		_	-	_	_	IRC	IRM2	IRM1	IRM0		
INTERIC	enable	E8H					R	(()	R/W			
				Note: Alwa	ays write 0		0	0	0	0		
				-	-		~ ((ΚEY			
	INTKEY		_	_	-	-	IKC	KM2	IKM1	IKM0		
INTEKEY	enable	E9H			I	I	R		R/W			
				Note: Alwa	avs write 0		$\left(b \right)$	P o	0	0		
					_	(INTI	CD	-		
	INTLCD			_	_	- 1	ILCD1C	ILCDM2		ILCDM0		
INTELCD	enable	EAH					R		R/W	>		
				Note: Alw:	avs write 0	$-(\overline{\alpha})$	0	0		0		
)			Ű		
			IN1C	IN1M2			INOC	INOM2		INOMO		
INTEND01	INTNDF1	ECH	R		R/M		R		R/W			
	enable		0	0			0		0	0		
			0	U					- P0	0 IA4M0 0 IRM0 0 IRM0 0 IRM0 0 IRM0 0 IRM0 0 IRM0 0 IRM0 0 IRM0 0 IRM0 0 IRM0 0 IRM0 0 IRM0 0 IRM0 1 IRM0		
				_			IPOC	IPOM2	IP0M1	IP0M0		
INTEP0	enable	EEH					- B					
	onabio			Note: Alw	ave write 0		0	0	0	0		
								0	0	•		
				()		\sim						
				$\rightarrow \simeq$	/	~						
			((\sim	•							
				\bigcirc	<							
			$\overline{(7)}$		+ <	\rightarrow						
				IxxM	12 IxxM	1 IxxM	0	Func	tion (Write	e)		
		$\left \right $		~0	0	0	Disable	es interrupt i	requests			
				0	0	/ 1	Sets in	nterrupt prior	ity level to 1			
				0		0	Sets in	nterrupt prior	ity level to 2			
		¥	\checkmark	0		1	Sets in	terrupt prior	ity level to 3			
	Interrupt	equest flag		Y Y		0	Sets in	terrupt prior	ity level to 4			
	2	\searrow				1	Sets in	torrupt prior	ity level to 5			
	\square	\sim			1	1	Disable	es interrunt i				
\sim))					Disabi		Icquests			
	$) \subset$			\mathcal{A}								
		((110))								
	\geq	4	\sim									
	\sim		\sim									

Symbol	Name	Address	7	6	5	4	3	2	1	0
	INTTCO			INTTC1	(DMA1)			INTTC0	(DMA0)	
	&	E1U	ITC1C	ITC1M2	ITC1M1	ITC1M0	ITC0C	ITC0M2	ITC0M1	ITC0M0
INTEICOT	INTTC1	F 11 1	R		R/W		R		R/W	
	enable		0	0	0	0	4 3 2 INTTCO (DM) C1M0 ITCOC ITCOM2 IT 0 0 0 0 0 INTTC2 (DM) ITC2C ITC2M2 IT R 0 0 0 0 INTTC4 (DM) ITC4C ITC4M2 IT R 0 0 0 0 INTTC6 (DM) ITC6C ITC6M2 IT R 0 0 0 INTWD INTWD ITCWD INTWD INTWD INTWD ITCWD INTWD INTWD INTWD ITCWD INTWD INTWD INTWD ITCWD INTWD INTWD ITCWD ITCWD INTWD INTWD INTWD ITCWD ITCWD INTWD INTSA INTWD </td <td>0</td> <td>0</td>	0	0	
	INTTC2			INTTC3	(DMA3)			INTTC2	(DMA2)	
	&	EOH	ITC3C	ITC3M2	ITC3M1	ITC3M0	ITC2C	ITC2M2	ITC2M1	ITC2M0
INTET 625	INTTC3	Г2П	R		R/W		R)R/W	
	enable		0	0	0	0	0	$\bigcirc 0 \land$	0	0
	INTTC4			INTTC5	(DMA5)		$\langle \rangle$	(NTTC4	(DMA4)	
	&	5011	ITC5C	ITC5M2	ITC5M1	ITC5M0	ITC4C	ITC4M2	ITC4M1	ITC4M0
INTETC45	INTTC5	F3H	R		R/W		R	$\langle \rangle$	R/W	
	enable		0	0	0	0	0	0	0	0
				INTTC7	(DMA7)	~	$\langle \rangle$	INTTC6	(DMA6)	
	INTTC6 &		ITC7C	ITC7M2	ITC7M1	ITC7M0	ITC6C	ITC6M2	ITC6M1	TC6M0
INTETC67		F4H	R		R/W	\bigcap	R		R/W	
	enable		0	0	0	0)) 0	○ 0 ((D	0
				-	=		9		WD	
	INTWD		-	-			ITCWD		<u>SQ</u>	-
INTWDT	enable	F7H		I	20	\sim	R	(C)		
				Note: Alwa	avs write 0	$\overline{}$	0	$\sum p$	_	_
							\bigcirc			
			(7 Nxx	M2 Ixx	M1 Jxx	мо	Fu	nction (Wr	ite)
			(\bigtriangledown) (D Disa	ables interrup	ot requests	
			$\overline{\Omega}$		o	$\rightarrow//\sim$	1 Sets	s interrupt pri	ority level to	1
))	o 🦯	$1 \rightarrow 0$	D Sets	s interrupt pri	ority level to	2
		• //	$)) \sim$		o (<i>() i</i>	r 🔿 📔 🤆	1 Sets	s interrupt pri	ority level to	3
	Interrupt	request flag		\leq		$\mathcal{D} = \mathcal{D}$	0 Sets	s interrupt pri	ority level to	4
		\sim	$\langle \rangle$		1 7		1 Sets	s interrupt pri	ority level to	5
			\searrow	\sim		1 (0 Sets	s interrupt pri	ority level to	6
	\sim	\square				1 ,	1 Disa	ables interrup	ot requests	
	\sim	X N		~	\searrow					
				~(7						
~				$\mathcal{A}($						
<	$> \ell$	\mathcal{D}	. 6	\sim						
		()) ~ 5							
$\langle \langle \langle \rangle \rangle$		>	$\langle \langle \rangle \rangle$							
	$\langle \rangle$		$\langle \langle \rangle$							
	\searrow		\sim	>						

Symbol	Name	Address	7	6	5	4	3	2	1	0	
			15EDGE	I4EDGE	I3EDGE	I2EDGE	I1EDGE	I0EDGE	IOLE	-	
			W								
	Interrupt	Foll	0	0	0	0	0	0	0	0	
IIMC	input	F6H (Drobibit	INT5EDGE	INT4EDGE	INT3EDGE	INT2EDGE	INT1EDGE	INTOEDGE	0: INT0	Always	
IIIVIC	mode	(Pronibit RMW)	(Prohibit RMW)	0: Rising	0: Rising	0: Rising	0: Rising	0: Rising	0: Rising	edge	write "0"
	control	,	1: Falling	1: Falling	1: Falling	1: Falling	1: Falling	1: Falling			
									level		
							(77^	mode		

(2) External interrupt control

*INT0 level enable

0	Edge detect INT			\mathcal{D}	
1	"H" level INT	\square	\backslash		

Note 1: Disable INT0 request before changing INT0 pin mode from level sense to edge sense. Setting example:

etting example:		
DI		
LD	(IIMC), XXXXXX0	0B ; Switches from level to edge.
LD	(INTCLR), 0AH	; Clears interrupt request flag.
NOP		; Wait El execution
NOP		
NOP		
EI		$\mathcal{C}(\mathcal{D})$
X: Don't care, -: N	lo change.	

Note 2: See electrical characteristics in section 4 for external interrupt input pulse width.

Interrupt	Pin Name	Mode	Setting Method
INTO	PC0	Falling edge	<i0le> = 0, <i0edge> = 0 <i0le> = 0, <i0edge> = 1 <i0le> = 1</i0le></i0edge></i0le></i0edge></i0le>
INT1	PC1	Rising edge	<i1edge> = 0 <i1edge> = 1</i1edge></i1edge>
INT2	PC2	Rising edge	<i2edge> = 0 <i2edge> = 1</i2edge></i2edge>
INT3	PC3	Rising_edge	<i3edge> = 0 <i3edge> = 1</i3edge></i3edge>
INT4	P96	/ Rising edge ──↓_ Falling edge	<i4edge> = 0 <i4edge> = 1</i4edge></i4edge>
INT5	P97	Rising edge	<i5edge> = 0 <i5edge> = 1</i5edge></i5edge>

Settings of External Interrupt Pin Function

				-								
Symbol	Name	Address	7	6	5	4	3	2	1	0		
			-						-	IR0LE		
			W						V	V		
	SIO		0						1	1		
SIMC	interrupt	F5H (Drohihit	Always					\langle	Always	0: INTRX0		
SIIVIC	mode		write "0"						write "0"	edge		
	control	((iviv))	(Note)					$(\bigcirc$				
									\mathcal{D}	level		
								77^		mode		
INTRX0 ri	INTRX0 rising edge enable											
0	Edge dete	ect INTRX	0			$\langle \rangle$	$\langle \vee \rangle$		4(/	>		
1 '	"H" level l	NTRX0					>					

(3) SIO receive interrupt control

(4) Interrupt request flag clear register

The interrupt request flag is cleared by writing the appropriate micro DMA start vector, as given in Table 3.4.1, to the register INTCLR.

For example, to clear the interrupt flag INTO, perform the following register operation after execution of the DI instruction.

								()			
Symbol	Name	Address	7	6	5	4	3	2	2 1	0	
		5011	CLRV7	CLRV6	CLRV5	CLRV4	CLRV3	CLRV2	CLRV1	CLRV0	
INTCLR	Interrupt clear control	P8H (Prohibit RMW)	\mathbf{W} $((// 5))$								
			0	0	0	0	0	Ő	0	0	
			Interrupt vector								

INTCLR $\leftarrow 0AH$ Clears interrupt request flag INT0.

(5) Micro DMA start vector registers

These registers assign micro DMA processing to sets which source corresponds to DMA. The interrupt source whose micro DMA start vector value matches the vector set in one of these registers is designated as the micro DMA start source.

When the micro DMA transfer counter value reaches zero, the micro DMA transfer end interrupt corresponding to the channel is sent to the interrupt controller, the micro DMA start vector register is cleared, and the micro DMA start source for the channel is cleared. Therefore, in order for micro DMA processing to continue, the micro DMA start vector register must be set again during processing of the micro DMA transfer end interrupt.

If the same vector is set in the micro DMA start vector registers of more than one channel, the lowest numbered channel takes priority.

Accordingly, if the same vector is set in the micro DMA start vector registers for two different channels, the interrupt generated on the lower numbered channel is executed until micro DMA transfer is complete. If the micro DMA start vector for this channel has not been set in the channel's micro DMA start vector register again, micro DMA transfer for the higher-numbered channel will be commenced. (This process is known as micro DMA chaining.)

Symbol	Name	Address	7	6	5	4	3	2	1	0		
	DMAO				DMA0V5	DMA0V4	DMA0V3	DMA0V2	DMA0V1	DMA0V0		
	DiviAU	100H					R/	W				
DIVIAUV	vector	10011			0	0	0	0	0	0		
	Vooloi			/			DMA0 sta	art vector				
					DMA1V5	DMA1V4	DMA1V3	DMA1V2	DMA1V1	DMA1V0		
DMA1V	start	101H					R/	W (
Dimit	vector	10111			0	0	0	0) O	0		
							DMA1 sta	art vector	-			
					DMA2V5	DMA2V4	DMA2V3	DMA2V2	DMA2V1	DMA2V0		
DMA2V	start	102H					R/	W				
2	vector				0	0	(0)	> 0	0	0		
							DMA2 sta	art vector	\sim			
	ΓΜΔ3		\sim		DMA3V5	DMA3V4	DMA3V3	DMA3V2	DMA3V1	DMA3V0		
DMA3V	start	103H					R/	W		7		
vector	vector				0	07	0	0	0	0		
							DMA3 st	art vector				
	DMA4				DMA4V5	DMA4V4	DMA4V3	DMA4V2	DMA4V1	DMA4V0		
DMA4V	start	104H			(R/	W				
	vector	-	\sim		0	0	0 (6	0	0		
							DMA4 sta	DMA4 start vector				
	DMA5		\sim		DMA5V5	DMA5V4	DMA5V3	DMA5V2	DMA5V1	DMA5V0		
DMA5V	start	105H		$ \rightarrow $	\sim			W	i			
	vector		\sim		0	0	0	0	0	0		
			\sim				DMA5 sta	art vector				
	DMA6		\sim	\square	DMA6V5	DMA6V4	DMA6V3	DMA6V2	DMA6V1	DMA6V0		
DMA6V	start	106H	\rightarrow		/		→ R/	W				
DIVIAOV	vector		\rightarrow		0	0	0	0	0	0		
			\rightarrow	\neq		\mathcal{A}	DMA6 sta	art vector				
	DMA7		\mathcal{M}	\sum	DMA7V5	DMA7V4	DMA7V3	DMA7V2	DMA7V1	DMA7V0		
DMA7V	start	107H	\checkmark				R/	W	[
DIVIATV	vector				0//	0	0	0	0	0		
	vector	$\langle \langle \rangle$		1		/	DMA7 sta	art vector				

(6) Specification of a micro DMA burst

Specifying the micro DMA burst function causes micro DMA transfer, once started, to continue until the value in the transfer counter register reaches zero. Setting any of the bits in the register DMAB which correspond to a micro DMA channel (as shown below) to 1 specifies that any micro DMA transfer on that channel will be a burst transfer.

Name	Address	7	6	5	4	3	(2	> 1	0	
		DBST7	DBST6	DBST5	DBST4	DBST3	DBST2	DBST1	DBST0	
DMA	108H				R/	R/W				
burst	10011	0	0	0	0	0	$\langle \rangle$	0	0	
		1: DMA burst request								
	DMA burst	NameAddressDMA burst108H	Name Address 7 DMA burst 108H 0	Name Address 7 6 DMA burst DBST7 DBST6 0 0 0	Name Address 7 6 5 DMA burst DBST7 DBST6 DBST5	Name Address 7 6 5 4 DMA burst DBST7 DBST6 DBST5 DBST4 0 0 0 0 0 0 0 0 1: DMA burst	Name Address 7 6 5 4 3 DMA burst DBST7 DBST6 DBST5 DBST4 DBST3 DMA burst 108H 0 <td< td=""><td>Name Address 7 6 5 4 3 2 DMA burst DBST7 DBST6 DBST5 DBST4 DBST3 DBST2 DMA burst 108H 0 0 0 0 0 Image: Constraint of the state of the st</td><td>Name Address 7 6 5 4 3 2 1 DMA burst DBST7 DBST6 DBST5 DBST4 DBST3 DBST2 DBST1 DMA burst 108H 0</td></td<>	Name Address 7 6 5 4 3 2 DMA burst DBST7 DBST6 DBST5 DBST4 DBST3 DBST2 DMA burst 108H 0 0 0 0 0 Image: Constraint of the state of the st	Name Address 7 6 5 4 3 2 1 DMA burst DBST7 DBST6 DBST5 DBST4 DBST3 DBST2 DBST1 DMA burst 108H 0	

(7) Notes

The instruction execution unit and the bus interface unit in this CPU operate independently. Therefore, immediately before an interrupt is generated, if the CPU fetches an instruction which clears the corresponding interrupt request flag, the CPU may execute this instruction in between accepting the interrupt and reading the interrupt vector. In this case, the CPU will read the default vector 0004H and jump to interrupt vector address FFFF04H.

To avoid this, an instruction which clears an interrupt request flag should always be placed after a DI instruction. And in the case of setting an interrupt enable again by EI instruction after the execution of clearing instruction, execute EI instruction after clearing and more than 3-instructions (e.g., "NOP" × 3 times).

If it placed EI instruction without waiting NOP instruction after execution of clearing instruction, interrupt will be enabled before request flag is cleared.

In the case of changing the value of the interrupt mask register <IFF2:0> by execution of POP SR instruction, disable an interrupt by DI instruction before execution of POP SR instruction.

In addition, please note that the following two circuits are exceptional and demand special attention.

Note: The following instructions or pin input state changes are equivalent to instructions which clear the interrupt request flag.

INT0: Instructions which switch to level mode after an interrupt request has been generated in edge mode.

The pin input changes from high to low after an interrupt request has been generated in level mode. ("H" \rightarrow "L")

INTRX: Instructions which read the receive buffer.

INTRX: Instructions which read the receive buffer.

3.5 Function of Ports

The TMP92CA25 I/O port pins are shown in Table 3.5.1 and Table 3.5.2. In addition to functioning as general-purpose I/O ports, these pins are also used by the internal CPU and I/O functions. Table 3.5.3 to Table 3.5.5 list the I/O registers and their specifications.

	(R: PD = v	vith programm	nable pull-o	down res	sistor, U = with pul	l-up resistor)
Port Name	Pin Name	Number of Pins	I/O	R	I/O Setting	Pin Name for Built-in Function
Port 1	P10 to P17	8	I/O	-	Bit 🔷	D8 to D15
Port 6	P60 to P67	8	I/O	-	Bit	A16 to A23
Port 7	P70	1	Output	-	(Fixed)	RD
	P71	1	I/O	-	Bit	WREL NDRE
	P72	1	I/O	-	Bit	WRLU, NDWE
	P73	1	I/O	-	Bit	EA24
	P74	1	I/O	-	Bit	EA25
	P75	1	I/O	-	Bit	
	P76	1	I/O	-	Bit	WAIT
Port 8	P80	1	Output	-	(Fixed)	CSO
	P81	1	Output	.fC	(Fixed)	CS1, SDCS
	P82	1	Output	12	(Fixed)	CS2, CSZA
	P83	1	Output	$\overline{\langle}$	(Fixed)	CS3
	P84	1	Output		(Fixed)	CSZB, WRUL, NDOCE
	P85	1	Output	\leq	(Fixed)	CSZC, WRUU, ND1CE
	P86	1	Output	_	(Fixed)	ĊSZD
	P87	1 (Output	\geq –	(Fixed)	CSZE
Port 9	P90	1	(1/0)	-	Bit	TXD0, I2SCKO
	P91	1)₽	-	Bit	RXD0, I2SDO
	P92	1 (1/0	-	Bit	SCLK0, CTS0, I2SWS
	P93		//0	-	Bit	SDA
	P94	(7)	I/O	-	Bit	SCL
	P95		Output		(Fixed)	CLK32KO
	P96		Input	(PD/	(Fixed)	INT4, PX
	P97	\sum	Input	J.	(Fixed)	INT5, PY
Port A	PA0 to PA7	8	Input	Z	(Fixed)	KI0 to KI7
Port C	PC0	1	¥Q		Bit	INTO, TA1OUT
\sim	PC1	1	1/0	-	Bit	INT1, TA3OUT
2	PG2	1 🔨	1/0		Bit	INT2, TB0OUT0
G	PC3	1	I/O	-	Bit	INT3
\sim ((PC4	1	1/0	-	Bit	
	PC5)/O	-	Bit	
	PC6	((1))	I/O	-	Bit	KO8, EA24
	PC7		I/O	-	Bit	CSZF , EA25
Port F	PF0	1	I/O		Bit	TXD0
\searrow	PF1	Y	I/O	_	Bit	RXD0
	PF2	1	I/O		Bit	SCLK0, CTS0
	PF3	1	I/O	_	Bit	
	PF4	1	I/O		Bit	
	PF5	1	I/O		Bit	
	PF6	1	I/O	_	Bit	
	PF7	1	Output	_	(Fixed)	SDCLK

Table 3.5.1 Port Functions (1/2)

(R: PD = with programmable pull-down resistor, U = with pull-up resistor)										
Port Name	Pin Name	Number of Pins	I/O	R	I/O Setting	Pin Name for Built-in Function				
Port G	PG0 to PG1	2	Input	-	(Fixed)	AN0 to AN1				
	PG2	1	Input	-	(Fixed)	AN2, MX				
	PG3	1	Input	-	(Fixed)	AN3, ADTRG, MY				
Port J	PJ0	1	Output	-	(Fixed)	SDRAS, SRLLB				
	PJ1	1	Output	-	(Fixed)	SDCAS, SRLUB				
	PJ2	1	Output	-	(Fixed)	SDWE , SRWR				
	PJ3	1	Output	-	(Fixed)	SDLLDQM				
	PJ4	1	Output	-	(Fixed)	SDLUDQM				
	PJ5	1	I/O	-	Bit	NDALE				
	PJ6	1	I/O	-	Bit	NDCLE				
	PJ7	1	Output	-	(Fixed)	SDCKE				
Port K	PK0	1	Output	-	(Fixed)	LCP0				
	PK1	1	Output	-	(Fixed)					
	PK2	1	Output	-	(Fixed)					
	PK3	1	Output	-	(Fixed)	LBCD				
	PK4	1	I/O	- /	Bit	SPDI				
	PK5	1	I/O	-21	Bit	SPDO				
	PK6	1	I/O		Bit	SPCS				
	PK7	1	I/O		Bit	SPCLK				
Port L	PL0 to PL3	4	Output	Y	(Fixed)	LD0 to LD3				
	PL4 to PL5	2	1/0		Bit	LD4 to LD5				
	PL6	1	1/0	\rightarrow	Bit	LD6, BUSRQ				
	PL7	1	((1/0)	-	Bit	LD7, BUSAK				
Port M	PM1	1	Output	/ _	(Fixed)	MLDALM				
	PM2	1	Øutput	-	(Fixed)	ALARM, MLDALM				
Port N	PN0 to PN7	8)1/0	-	Bit	KO0 to KO7				

Table 3.5.2 Port Functions (2/2)	
----------------------------------	--

-	-				X:	Don't care
Port	Din Nama	Specification		I/O Re	egister	
FUI	Fill Name	Specification	Pn	PnCR	PnFC	PnFC2
Port 1	P10 to P17	Input port	Х	0	0	
		Output port	Х	A	0	Nana
		D8 to D15 bus	Х	x	1	none
		A0 to A7 output	Х)	
Port 6	P60 to P67	Input port	Х	0	\leq	
		Output port	X	(/1)	0	None
		A16 to A23 output	X	X	1	
Port 7	P70 to P76	Output port	X	1	0	
	P71 to P76	Input port	X	D_{0}	0	
	P70	RD output	X	None	1	
	P71	WRLL output		1	A(
		NDRE output		1		
	P72	WRLU output) 1	1 ($(\bigcirc 1)$	None
		NDWE output	0	1	4	None
	P73	EA24 output	Х	(\mathbf{T})	$\mathbb{Z}_{\mathbb{Q}}$	/
	P74	EA25 output	Х		1	
	P75	R/W output	X		1	
		NDR/B input	X ()	/ <0	1	
	P76	WAIT input	X	9	1	
Port 8	P80 to P87	Output Port	×		0	0
	P80	CS0 output	x))		1	0
	P81	CS1 output	X//		1	0
		SDCS output	X		Х	1
	P82	CS2 output	Х		1	0
		CSZA Output	Х		0	1
	P83	C\$3 output	Х	None	1	0
	P84	CSZB output	X		1	0
			X		1	1
	P85	CSZC output	X		1	0
	P86		×		1	
	P87		×		1	0
\sim	1.01		~		1	U

Table 3.5.3 I/O Registers and Specifications	(1/3)
	(– .

					X:	Don't care			
			I/O Register						
Port	Pin Name	Specification	Pn	PnCR	PnFC	PnFC2			
Port 9	P90 to P94, P96 to P97	Input port	х	0	0				
	P90 to P94	Output port	Х	1	0	0			
	P95		Х	0) 0>				
	P90	TXD0 output	Х	1					
		I2SCKO output	X	(/0 \	1				
		TXD0 output (Open drain)	X		1	1			
	P91	RXD0 input	X	0	0				
		I2SDO output	X	\mathcal{D}_{0}	1				
	P92	SCLK0 output	X	1	1	None			
		I2SWS output	X	0	<1(
		SCLK0, CTS0 input (Note1)	×	0	0				
	P93	SDA I/O	Лх	1 ($\left(\right)$	0			
		SDA I/O (Open drain)	x	1	51/)) 1			
	P94	SCL I/O	х	4	$\searrow_1 \bigcirc$	0			
		SCL I/O (Open drain)	X	$\left(\begin{array}{c} 1 \end{array} \right)$	1	1			
	P95		X	Y)	0	None			
	P96		×	Nône	1	Nono			
	P97		x	None	1				
Port A	PA0 to PA7				0				
1 01074		KI0 to KI7 input	None	None	1	None			
Port C	PC0 to PC3		x	0	0				
	PC6 to PC7	Output port	×	1	0	None			
	PC0	INT0 input	X	0	1				
		TA1OUT output	Х	1	1	None			
	PC1			1					
		TA3OUT output	1	1	None				
	PC2	INT2 input	Х	0	1	None			
		TB0OUT0 output	Х	1	1	None			
	PC3	INT3 input	Х	0	1				
	PC6	KO8 output (Open drain)	Х	0	1				
\sim	\wedge	EA24 output	0	1	1	None			
	PC7	CSZF output	Х	0	1				
		EA25 output	0	1	1				
Port F	PF0 to PF6	Input port	Х	0	0	0			
\sim	PF0 toPF7	Output port	Х	1	0	0			
	PF0	TXD0 output	Х	1	1	0			
		TXD0 output (Open drain)	Х	1	1	1			
	PF1	RXD0 input	Х	0	0				
\searrow	PF2	SCLK0 output	Х	1	1	None			
		SCLK0, CTS0 input	Х	0	0				
	PF7	SDCLK output	Х	None	1				

Table 2 F 4 1/O Degisters and Specifications	()))	`
Table 3.3.4 I/O Registers and Specifications	(2/3))

Note: To use P92-pin as SCLK0 input or CTS0 input, set "1" to PF<PF2>

					>	: Don't care		
Port	Pin Nama	Specification	I/O Register					
FOIL	Finitiante	opecification	Pn	PnCR	PnFC	PnFC2		
Port G	PG0 to PG3	Input port						
		AN0 to AN3 input		\sim				
	PG3	ADTRG input	Х	None	None	None		
	PG2	MX output		((
	PG3	MY output			\bigcirc			
Port J	PJ0 to PJ7	Output port	Х	$(\overline{1})$	0			
	PJ5 to PJ6	Input port	X	(6)) 0			
	PJ0	SDRAS, SRLLB output	x	\sim	1			
	PJ1	SDCAS, SRLUB output	x (($\langle \rangle \rangle$	1			
	PJ2	SDWE, SRWR output	X	None	1	Nono		
	PJ3	SDLLDQM output			1	None		
	PJ4	SDLUDQM output	K	\sim	1	\searrow		
	PJ5	NDALE output	0	1	4			
	PJ6	NDCLE output)0	Ŕ	(O)			
	PJ7	SDCKE output	X	None))		
Port K	PK4 to PK7	Input port	x	9	\bigcirc	None		
	PK0 to PK3	Output port	X	None	0			
	PK4 to PK7	Output port	Х		/ 0			
	PK0	LCP0 output	X	$\overline{\Omega}$	1			
	PK1	LLP output	X		1	None		
	PK2	LFR output	X	None	1			
	PK3	LBCD output	(x)		1	NONE		
	PK4	SPDI input	X) 0	1			
	PK5	SPDO output	X	1	1			
	PK6	SPCS output	X	1	1			
	PK7	SPCLK output	Х	1	1			
Port L	PL4 to PL7	Input Port	X	0	0			
	PL0 to PL7	Output Port	Х	1	0			
	PL0 to PL7	LD0 to LD7 output	Х	1	1	None		
	PL6	BUSRQ input	Х	1	1			
	PL7	BUSAK output	Х	1	1			
Port M	PM1 to PM2	Output Port	Х		0			
\sim	PM1	MLDALM output	Х	None	1	None		
	PM2	MLDALM output	0		1			
		ALARM output	1		1			
Port N	PN0 to PN7	Input Port	Х	0	0			
		Output Port (CMOS output)	Х	1	0	None		
	\sum	KO output (Open drain output)	Х	1	1			

Table 3.5.5.1/O Registers and Specifications	(3/3)	١
Table 3.5.5 I/O Registers and Specifications	(ວ/ວ)

3.5.1 Port 1 (P10 to P17)

Port 1 is an 8-bit general-purpose I/O port. Bits can be individually set as either inputs or outputs by control register P1CR and function register P1FC.

In addition to functioning as a general-purpose I/O port, port1 can also function as a data bus (D8 to D15).

				Port 1	register						
		7	6	5	4	3	2	1	0		
P1	Bit symbol	P17	P16	P15	P14	P13	P12	P11	P10		
(0004H)	Read/Write				R/	W					
	After reset		Dat	a from externa	al port (Output	latch registe	r is cleared to	"0")			
				Port 1 Co	ntrol registe	er	\langle				
		7	6	5	4	3	2	<u>ل</u>	0		
P1CR	Bit symbol	P17C	P16C	P15C	P14C	P13C	P12C	P11C	P10C		
(0006H)	Read/Write		1		V	v 📏			·		
	After reset	0	0	0	0	0	0	0	0		
	Function				0: Input 2	1: Output)Y				
				Port 1 Fun	ction regist	er	>		>		
		7	6	5	4	3	2		0		
P1FC	Bit symbol					79		012	P1F		
(0007H)	Read/Write	\sim		\sim	\searrow	\leq		744I	W		
	After reset				\mathcal{A}		\searrow		0/1 Note 2		
	Function				$\langle \rangle$	*	$(\bigcirc$		0: Port		
					\sim		\sim		1: Data bus		
				10		((7/		(D8 10 D 15)		
				Port 1 Dr	ive register		\bigcirc				
		7	6	5	, 4 <	3	2	1	0		
P1DR	Bit symbol	P17D	P16D	P15D	P14D	P13D	P12D	P11D	P10D		
(00610)	Read/Write				٧	v V		1			
	After reset	1	1	1	1	1	1	1	1		
	Function Input/Output buffer drive register for standby mode										
			(775)		$\langle \rangle$						
	Note1:Read-m	odify-write is	s prohibited for	P1CR and P	1FC.	7					
	Note2: It is set	to "Port" or	"Data bus" by	AM pin setting							
					aniatas fas l						
	~ /		- Fig	ure 3.5.2 R	egister for i	Port 1					
				\sim							
		\searrow	. (7	>							
)	61								
4	\bigcirc \bigcirc))		\searrow							
		(?	$\sum_{i=1}^{n} \left(\left(\sum_{i=1}^{n} \right)^{i} \right)$)							
\sim		\sim	XV								
		<	\sim								
	\checkmark		\checkmark								

3.5.2 A0 to A7

A0 to A7 pin function is Address bus function only. Driver register is following register.

				Port 4 Drive	e register				
	/	7	6	5	4	3	2	1	0
P4DR	Bit symbol	P57D	P56D	P55D	P54D	P53D	P52D	P51D	P50D
(0084H)	Read/Write				V	V	(\bigcirc)		
	After reset	1	1	1	1	1		1	1
	Function			Input/Output	buffer drive r	egister for sta	ndby mode		
3.5.3	A8 to A	15	Figure 3.	5.3 Driver re	egister for A	AO to A7			
	A8 to	A15 pin fu	unction is A	Address bus Port 5 Driv	e register	only. Drive	r register i	s following	register.
		7	6	5	4	3 (7	2	1	0
P5DR	Bit symbol	P57D	P56D	P55D	P54D	P53D	P52D	P51D	P50D
(0085H)	Read/Write				//				
	After reset	1	1		1	1))	1	1	1
	Function		((Input/Output	buffer drive r	egister for sta	ndby mode		

3.5.4 Port 6 (P60 to P67)

Port 6 is an 8-bit general-purpose I/O port. Bits can be individually set as either inputs or outputs by control register P6CR and function register P6FC.

In addition to functioning as a general-purpose I/O port, port 6 can also function as an address bus (A16 to A23).

					regioter				
		7	6	5	4	3	2	1	0
	Bit symbol	P67	P66	P65	P64	P63	P62	P61	P60
)	Read/Write				R/\	N			
	After reset		Da	ata from externa	al port (Output	latch register	is cleared to	"0")	
				Port 6 Cor	ntrol registe	۶r	\langle	$\langle \rangle$	
		7	6	5	4	3	2	シ1	0
	Bit symbol	P67C	P66C	P65C	P64C	P63C	P62C	P61C	P60(
)	Read/Write			-	V	/		II	
	After reset	0	0	0	0	0	0	0	0
	Function				0: Input 1	: Output	\mathcal{Y}		
				Port 6 Fun	ction regist	er	>		>
		7	6	5	4	7//3	2	51	0
	Bit symbol	P67F	P66F	P65F	P64F	P63F	P62E	P61F)	P60'
)	Read/Write							30	
	After reset Note 2	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
	Function			0: Pc	ort 1: Address	bus (A16 to	A23)	I	
				Port 6 Dr	ive register		\bigcirc		
		7	6	5	4	3	2	1	0
	Bit symbol	P67D	P66D	P65D	P64D	P63D	P62D	P61D	P60
)	Read/Write				W			I	
	After reset	1	1	<u> </u>	1 🔨	1	1	1	1
	Function			Input/Output	buffer drive r	egister for sta	ndby mode		
	Note 1: Re Note 2: It i	ead-modify-v is set to "Por	write is prohib rt" or "Address	ited for P6CR a s bus" by AM pi	and P6FC.	\rightarrow			
		\sim							
			🗸 Fiç	gure 3.5.6 R	egister for I	Port 6			
		2							
	4	\searrow	(\rangle					
			4	(
<	$\leq (C)$))							
	\sim			$\backslash \checkmark$					

Port 6 register

3.5.5 Port 7 (P70 to P76)

Port 7 is a 7-bit general-purpose I/O port (P70 is used for output only).

Bits can be individually set as either inputs or outputs by control register P7CR and function register P7FC.

In addition to functioning as a general-purpose I/O port, P70 to P76 pins can also function as interface pins for external memory.

A reset initializes P70 pin to output port mode, and P71to P76 pin to input port mode.

				FUILT	register				
		7	6	5	4	3	2	1	0
P7	Bit symbol		P76	P75	P74	P73	P72	P71	P70
(001CH)	Read/Write	\sim				R/W			
	After reset		Data from e (Output late set to	external port h register is o "1")	Data fror (Output I se	m external port atch register is et to "0")	Data from e (Output late set t	external port ch register is o "1")	1
				Port 7 Co	ntrol regi	ster	\geq		
		7	6	5	4	3	2) 🖓 1	0
P7CR	Bit symbol		P76C	P75C	P74C	P73C	P72C	P71C	
(001EH)	Read/Write					w <	(\vee)		
	After reset		0	0	0	0	0	0	
	Function				0: Inpi	ut 1: Output			
				Port 7 Fun	ction reg	jister		\frown	
		7	6	5	4	(3	2	1	0
P7FC	Bit symbol		P76F	P75F	P74F	P73F	P72F	P71F	P70F
(001FH)	Read/Write					((/ (w)	~ (
	After reset		0	0	0		0	(1)	0/1 Note 2
	Function		0: Input port		Re	efer to following	g table		0: port
			1: WAIT				$-(C \cong$	\sim	1: RD
				Port 7 Dr	ive regis	ter	\sim)	
		7	6	5	4	3	7/2	1	0
P7DR	Bit symbol		P76D	P75D	P94D	P73D	P72D	P71D	P70D
(0087H)	Read/Write				\searrow	R/W			
	After reset		1		≥ 1	1)) 1	1	1
	Function			Input	Output but	ffer drive regist	er for standby r	node	
P73 Setting			P72 Se	tting			P71 Setting		
<p73c></p73c>	0	1	<p72f></p72f>	72C> C		X	<p71c></p71c>	0	1
0	Input port	Output port	1070	Input	port	Dutput port	0	Input port	Output port
1	(Reserved)	EA24 outpu		(Rese	rved) (at W (at	$\overline{DWE} \text{ output}$ $t < P72 > = 0)$ $\overline{RLH} \text{ output}$ $t < P72 > = 1)$	1	(Reserved)	$\overline{\text{NDRE}} \text{ output}$ at (<p71> = 0) $\overline{\text{WRLL}} \text{ output}$ (at <p71> = 1)</p71></p71>
P76 Setting	1		P75 Se	tting			P74 Setting		
<p76c></p76c>	0	1	<p75f></p75f>	75C> C)	1	<p74c> <p74f></p74f></p74c>	0	1
0	Input port	Output por	t _0	Input	port C	Dutput port	0	Input port	Output port
1 <	WAIT input	(Reserved)		NDR/Ē (at <p7< td=""><td>5 input 5> = 1)</td><td>₹/ ₩ output</td><td>1</td><td>(Reserved)</td><td>EA25 output</td></p7<>	5 input 5> = 1)	₹/ ₩ output	1	(Reserved)	EA25 output
			$\frac{1}{2}$)					
	$\langle \rangle$	4							

Port 7 register

Note 1: Read-modify-write is prohibited for P7CR and P7FC.

Note 2: It is set to "Port" or " $\overline{\texttt{RD}}$ " by AM pin setting.

Note 3: When NDRE and NDWE are used, set registers in the following order to avoid outputting a negative glitch.

Order	Register	Bit2	Bit1
(1)	P7	0	0
(2)	P7FC	1	1
(3)	P7CR	1	1

Figure 3.5.9 Register for Port 7

3.5.6 Port 8 (P80 to P87)

Ports 80 to 87 are 8-bit output ports. Resetting sets the output latch of P82 to "0" and the output latches of P80 to P81, P83 to P87 to "1".

Port 8 can also be set to function as an interface pin for external memory using function register P8FC.

Writing "1" in the corresponding bit of P8FC and P8FC2 enables the respective functions. Resetting <P80F> to <P87F> of P8FC to "0" and P8FC2 to "0", sets all bits to output ports.

				Port 8 R	egister				
		7	6	5	4	3	2	1	0
P8	Bit symbol	P87	P86	P85	P84	P83	P82	P81	P80
(0020H)	Read/Write				R/	W			
	After reset	1	1	1	1	1	0	1	1
			Po	ort 8 Funct	ion Registe	r	\sim		
	/	7	6	5	4	3	2	1	0
P8FC	Bit symbol	P87F	P86F	P85F	P84F	P83F	P82F	> P81F	P80F
(0023H)	Read/Write				W	1	$\langle \rangle$)	
	After reset	0	0	0	0	0	$\sqrt{0}$	0	0
	Function	0: Port	0: Port	Refer to	Refer to	0: Port	Refer to	0: Port	0: Port
		1: CSZE	1: CSZD	following	following table	1: CS3	following	1: CS1	1: CS0
			De						
	<u> </u>	_	FU		in Register				
		7	6	5	4 <	4 3	2		, 0
P8FC2	Bit symbol	P87F2	P86F2	P85F2	P84F2	P83F2	P82F2	P81F2	P80F2
(00210)	Read/Write						$\sim (C$		
	After reset	0	0	0	0	0			0
	Function	0: <p87f></p87f>	0: <p86f></p86f>	Refer to	Refer to	Always write	Refer to	0: <p81f></p81f>	Always write
		1:Reserved	TReserved	table	table	0		T: SDCS	U
				Port 8 Driv	e Register		$\sum D$		
		7	6	.5	4	3	2	1	0
P8DR	Bit symbol	P87D	P86D	P85D	P84D	P83D	P82D	P81D	P80D
(0088H)	Read/Write			\sim	(R/	w			
	After reset	1	1 ((1		1	1	1
	Function			Input/Outp	ut buffer drive	register for sta	andby mode		
			\mathcal{C}		\land	~			
P85 Setting			P84 Se	tting		P82	2 Setting		
<p85f></p85f>			<p8< td=""><td>4F></td><td></td><td>\geq \sim</td><td><p82f></p82f></td><td></td><td></td></p8<>	4F>		\geq \sim	<p82f></p82f>		
	0		(// 5)	0		1		0	1
<p85f2></p85f2>	<u> </u>		<p84f2< td=""><td>></td><td>7/</td><td><p8< td=""><td>2F2></td><td> =</td><td></td></p8<></td></p84f2<>	>	7/	<p8< td=""><td>2F2></td><td> =</td><td></td></p8<>	2F2>	=	
0	Output port	CSZC outp		Output	port CSZB	output		itput port C	S2 output
1	(Reserved)		out	Reser	Ved) NDUCE	output		za output	Reserved
	Note 1: Rea	ad-modify-write	e is prohibited	for P8FC and	d P8FC2.				
	Note 2: Dor	n't write "1" to	P8 <p82> reg</p82>	ister before s	etting P82 pin	to $\overline{CS2}$ or $\overline{CS2}$	SZA because	P82 pin outp	out "0" as
	CE	for program m	emory by res	et.					
			$\mathcal{A}($						
\sim)	Figure	3.5.11 Re	gister for P	ort 8			
	$// \subseteq$		()	\checkmark	•				
$\langle \rangle$			$\langle \bigcup \rangle$						
			\sim						

3.5.7 Port 9 (P90 to P97)

P90 to P94 are 5-bit general-purpose I/O ports. I/O can be set on a bit basis using the control register. Resetting sets P90 to P94 to input port and all bits of output latch to"1".

P95 is 1-bit general-purpose output port and P96 to P97 are 2-bit general-purpose input ports.

Setting the corresponding bits of P9FC enables the respective functions. Resetting resets the P9FC to "0", and sets all bits except P95 to input ports.

(1) Port 90 (TXD0, I2SCKO), Port91 (RXD0, I2SDO), Port 92 (SCLK0, CTS0 I2SWS)

Ports 90 to 92 are general-purpose I/O ports. They also function as either SIO0 or I²S. Each pin is detailed below.

	SIO mode	UART, IrDA mode	I ² S mode	SIO mode
	(SIO0 module)	(SIO0 module)	(I ² S module)	(I ² S module)
P90	TXD0 (Data output)	TXD0 (Data output)	I2SCKO (Clock output)	I2SCKO (Clock output)
P91	RXD0 (Data input)	RXD0 (Data input)	I2SDO (Data output)	I2SDO (Data output)
P92	SCLK0 (Clock input or	CTS0 (Clear to send)	I2SWS (Word select	(No use)

Figure 3.5.12 P90

(3) P95 (CLK32KO)

				Port 9 R	egister							
		7	6	5	4	3		2		1		0
P9	Bit symbol	P97	P96	P95	P94	P93	3	P92		P91		P90
(0024H)	Read/Write	R			•	•	R/W					
	After reset	Data from ex	xternal port	0	Data fro	m extern	al port (Outpu	t latch r	register	is se	et to "1")
			Po	ort 9 Contr	ol Register		4	\sim				
		7	6	5	4	3		2		1		0
POCR	Bit symbol			P95C	P94C	P03	C	P02		P010		Panc
(0026H)	Read/Write		\frown	1 330	1 340	1 33	W	1 92	<u> </u>	1310	,	1 300
	After reset			0	0	0		770		0		0
	Function				, ,	Refer	to follov	ving ta	ble			
			Po	rt 9 Functi	on Register	r (3				
		7	6	5	л то <u></u> дото.	3	$\overline{}$	~ ~		1		0
5050		1	0	J Doct	4	3		2	- /			U
P9FC (0027H)	Bit symbol	P97F	P96F	P95F	P94F	1 P93	\sim	P921		P91+	5	P90F
(00211)	After reset	0	0	0	0			0	12	$\overline{}$	~	0
	Function	0: Input port	0: Input port	0		Refer	to follow	ving ta	hle	<u>v</u>		0
	1 dilotion	1: INT5	1: INT4							$\langle \rangle$		
P92 Setting			P91 Sett	ina	\square		P90 S		$\langle \cdot \rangle$	9		
<p92c></p92c>			C < P91	C>								
	0	1		0	1) o)		1
<p92f></p92f>	-		<p91f></p91f>				<p90f< td=""><td></td><td>-</td><td></td><td></td><td></td></p90f<>		-			
0	Input port SCLK0. CTS0 inpu	Output port	0	Input p RXD0 ji	ort Output	port	Co	ワ	Input	port	Ou	tput port
1	I2SWS output	SCLK0 output	t 1_	12SDO o	utput (Reser	ved)	1		I2SCKO	output	ТХІ	D0 output
			((\mathcal{A}		$\overline{}$	<u>) </u>					
P95 Setting		-	P94 Sett	ing)			P93 Se	etting				
<p95c></p95c>			<p94< td=""><td>C></td><td>$\langle \rangle$</td><td></td><td><p9< td=""><td>93C></td><td></td><td></td><td></td><td></td></p9<></td></p94<>	C>	$\langle \rangle$		<p9< td=""><td>93C></td><td></td><td></td><td></td><td></td></p9<>	93C>				
	0	1	\square) 0					0			1
<p95f></p95f>	<u> </u>	(<p94f></p94f>			\geq	<p93f:< td=""><td>> \</td><td></td><td></td><td></td><td></td></p93f:<>	> \				
0		CLK32KO output		Input p	ort Output	port	0		Input	port	Ou	
1	(Reserved)	(Reserved)				ved)	1		(Rese	rvea)	3	DA 1/0
		$\overline{\mathbb{N}}$	- Por		n Register	2	1					
		7	6	5	4	3		2		1		0
P9FC2	Bit symbol				P94F2	P93F	2	<u> </u>		<u> </u>	<u> </u>	P90F2
(0025H)	Read/Write			\searrow	١	w						W
	After reset	\mathcal{D}			0	0			<u> </u>			0
	Function	\smile	21		0: CMOS	0: CMO	S					0: CMOS
\sim	(())				1: Open drain	1: Oper dra	n iin					1: Open drain
	\leftarrow			Port 9 Drive	Register	did						diditi
$\langle \langle \langle \rangle$	$\overline{\mathbf{\nabla}}$			5 DIVE	4	2		2		4		0
			0	C	4	3		2				U
190R (0080H)	Bit symbol	P97D	P96D	P95D	P94D	P93E)	P92D		P91D		P90D
(00001)	Read/Write		ا <u>د</u>	A	R/	VV 4		4	<u> </u>	4	-	4
	Function	1	Т	T Output/log	T ut buffor drive	T	for store		ode	1		1
	FUNCTION			Output/inp		register	iui stan		Jue			

Note 1: Read modify write is prohibited for P9CR, P9FC and P9FC2.

Note 2: When setting P97 and P96 pin to INT5 and INT4 input, set P9DR<P97D, P96D> to "00" (prohibit input), and when driving P96 and P97 pins to "0", execute HALT instruction. This setting generates INT5 and INT4 inside. If don't use external interrupt in HALT condition, set like a interrupt don't generated. (e.g. change port setting)

Figure 3.5.17 Register for Port 9

3.5.8 Port A (PA0 to PA7)

Ports A0 to A7 are 8-bit input general-purpose ports with pull-up resistor. In addition to functioning as general-purpose I/O ports, ports A0 to A7 can also, as a keyboard interface, operate a key-on wakeup function. The various functions can each be enabled by writing a "1" to the corresponding bit of the port A function register (PAFC).

Resetting resets all bits of the register PAFC to "0" and sets all pins to be input port.

When PAFC = "1", if the input of any of KI0 to KI7 pins fall down, an INTKEY interrupt is generated. An INTKEY interrupt can be used to release all HALT modes.

					•				
		7	6	5	4	3	2	1	0
	Bit symbol	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0
н)	Read/Write				R	/W			
	After reset				Data from	external port			
				Port A Fund	ction Regis	ster			
		7	6	5	4	3	2	1	0
; ;	Bit symbol	PA7F	PA6F	PA5F	PA4F	PA3F	PA2F	PA1F	PA0F
,,,,,	Read/Write			1		w	$(\overline{O}/\overline{A})$		
	After reset	0	0	0	0	0		0	0
	Function			0: Key II	nput disable	1: Key inpu	tenable		
				Port A Dr	ive registe	er	\mathcal{Y}	\bigcirc	
		7	6	5	4	3	2		0
2	Bit symbol	PA7D	PA6D	PA5D	PA4D	PA3D	PA2D	PA1D	PA0D
.п)	Read/Write		1	1 1	((<u>w/ ()</u>	$ \rightarrow ($	O)	[
	After reset	1	1	1	1		<u>1</u>		1
			Figu	ure 3.5.19 F	Register fo	r Port A)		
			Figu	ure 3.5.19 F	Register fo	r Port A)		

3.5.9 Port C (PC0 to PC3, PC6 to PC7)

PC0 to PC7 are 8-bit general-purpose I/O ports. Each bit can be set individually for input or output. Resetting sets port C to an input port.

In addition to functioning as a general-purpose I/O port, port C can also function as an output pin for timers (TA1OUT, TA3OUT and TB0OUT0), input pin for external interruption (INT0 to INT3), output pin for memory ($\overline{\text{CSZF}}$), output pin for key (KO8). These settings are made using the function register PCFC. The edge select for external interruption is determined by the IIMC register in the interruption controller.

(2) PC1 (INT1, TA3OUT), PC2 (INT2, TB0OUT0), PC3 (INT3, TB0OUT1)

(4) PC6 (KO8, EA24)

Figure 3.5.24 Port C7

				Port C	Register				
		7	6	5	4	3	2	1	0
PC	Bit symbol	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
(0030H)	Read/Write				R/\	N			
	After reset		Da	ata from exter	nal port (Outp	ut latch regis	ter is set to	"1")	
			F	Port C Con	trol Registe	r	\sim		
		7	6	5	4	3	2	1	0
PCCR	Bit symbol	PC7C	PC6C	PC5C	PC4C	PC3C	PC2C	PC1C	PC0C
(0032H)	Read/Write				W	1	\sim	9	
	After reset	0	0	0	0	0	$(\bigcirc \emptyset \land$	0	0
	Function				Refer to fol	lowing table			
			P	ort C Func	tion Registe	ər ($\overline{)}$		
		7	6	5	4	3	J 2	1	0
PCFC	Bit symbol	PC7F	PC6F	PC5F	PC4F	PC3F	PC2F	PC1E	PC0F
(0033H)	Read/Write				V	N/ V		20	\rightarrow
	After reset	0	0	0	0	0	0	60	0
	Function				Refer to fol	lowing table	0	Q_{A}	
PC2 Setting	g		PC1 S	etting			C0 Setting	Y//	
<pc2c></pc2c>	0	1		C1C>			<pc0c></pc0c>	0	1
0					nort Outru	<r< td=""><td></td><td></td><td>Output part</td></r<>			Output part
1	INT2	TB0OUT	1				7/1		
PC5 Setting	 ז		PC4 Se	etting			C3 Setting		milliout
PC5C>	0	1		24C> 0			PC3C>	0	1
<pc5f></pc5f>	Input part	Output part	<pc4f:< td=""><td></td><td>mant Outru</td><td></td><td>0</td><td>Input port</td><td>Output port</td></pc4f:<>		mant Outru		0	Input port	Output port
1	(Reserved)	(Reserved)	- 0	Rese	rved) (Rese	at port	0	INT3	(Reserved)
			PC7 S	etting			C6 Setting		
	<		<pc7e></pc7e>	C76>		1 <p< td=""><td><pc6c></pc6c></td><td>0</td><td>1</td></p<>	<pc6c></pc6c>	0	1
			<u>_</u> 0	Input	port Outpu	ut port	0	Input port	Output port
	\leq		1	CSZF	I/O EA25 at <p0< td=""><td>output C7>= 0</td><td>1</td><td>KO8 (Open drain)</td><td>EA24 output at <pc6>= 0</pc6></td></p0<>	output C7>= 0	1	KO8 (Open drain)	EA24 output at <pc6>= 0</pc6>
\langle				Port C Driv	/e Register] L			
	\mathcal{N}	7()	6	5	4	3	2	1	0
PCDR	Bit symbol	PC7D	PC6D	PC5D	PC4D	PC3D	PC2D	PC1D	PC0D
(008CH)	Read/Write		\searrow	•	R	/W			
	After reset	1	1	1	1	1	1	1	1
	Function			Input/Outp	out buffer drive	e register for s	standby mo	de	
	Note1:Read-mo Note2: When s	odify-write is p etting PC3-PC	rohibited for 20 pins to IN	the registers	PCCR and PC	CFC. PC3D:PC0D:	> to "0000"((prohibit input)	and when

Iote2: When setting PC3-PC0 pins to INT3-INT0 input, set PCDR<PC3D:PC0D> to "0000"(prohibit input), and when driving PC3-PC0 pins to "0", execute HALT instruction. This setting generates INT3-INT0 inside. If don't use external interrupt in HALT condition, set like an interrupt don't generated. (e.g. change port setting)

Figure 3.5.25 Register for Port C

3.5.10 Port F (PF0 to PF7)

Ports F0 to F6 are 7-bit general-purpose I/O ports. Resetting sets PF0 to PF6 to be input ports. It also sets all bits of the output latch register to "1". In addition to functioning as general-purpose I/O port pins, PF0 to PF6 can also function as the I/O for serial channels 0 and 1. A pin can be enabled for I/O by writing a "1" to the corresponding bit of the port F function register (PFFC).

Port F7 is a 1-bit general-purpose output port. In addition to functioning as a general-purpose output port, PF7 can also function as the SDCLK output. Resetting sets PF7 to be an SDCLK output port.

(1) Port F0 (TXD0), F1 (RXD0), F2 (SCLK0, CTS0)

Ports F0 to F2 are general-purpose I/O ports. They also function as either SIO0. Each pin is detailed below.

Figure 3.5.26 Port F0

Figure 3.5.28 Port F2

(2) PF3, PF4, PF5, PF6, PF7

Figure 3.5.30 Port F7

				Г	UIT F Regist				
		7	6		5 4	3	2	1	0
PF	Bit symbol	PF7	PF6	Р	F5 PF	4 PF3	PF2	PF1	PF0
(003CH)	Read/Write					R/W			
	After reset	1		C	Data from extern	al port (Output	t latch register	is set to "1")	
				Port I	F Control Re	gister			
		7	6		5 4	3	2(1	0
PFCR	Bit symbol	/	PF6C) PF	5C PF4	C PF30	C PF2C	PF1C	PF0C
(003EH)	Read/Write					W	(0)		
	After reset		0		0 0	0		0	0
	Function					Refer to follo	wing table		
				Port F	F Functon Re	egister	$\sum r$		
		7	6	į	5 4	3	2	1	0
PFFC	Bit symbol	PF7F	PF6F	PF	5F PF4	F PE3F	PF2F	PF1F	PF0F
(003FH)	Read/Write					W	>	14	
	After reset	1	0	(0 0	((//))	_ 0	(\bigcirc)	0
	Function			Refe	er to following ta	ble	\sim	RXD0 pin	Refer to
					(selection	following
							(\mathcal{O})	0: Port F1	lable
						\checkmark		1: Port 91	
PF2 Setting	g			PF1 Setting		>	PF0 Setti	ng	
<pf2c></pf2c>	0	1	<	PF1C>	0		<pre>>PF0C: <pe0f></pe0f></pre>	0	1
	Input po	rt, Out	out	0	Input port,	Qutput	0	Input port	Output port
0	SCLK0, CTS	o input po	rt		RXD0 input from P	F1, port))	(Reserved)	TXD0 output
0	From PF2 pin at	<pf2> = 0</pf2>			RXD0 input from F	91 Reserved	/		
	From P92 pin at	<pf2> = 1</pf2>		$\overline{2}_{1}$		\land	1		
1	(Reserv	ed) SCL	KU (~				
PF5 Settin	ng	044		PF4 Setting		\sim	PF3 Set	ting	
PF5C>	0	\frown	∇	¥₽F4C>			PF30	>	
<pf5f></pf5f>	0			PF4F	(0/)	· 1	<pf3f></pf3f>	0	1
0	Input port	Output p	ort	0 <	Input	Output	0	Input port	Output port
1	(Reserved) (Reserve	ed)	1	(Reserved)	(Reserved)	1	(Reserved)	(Reserved)
PF7 Setting	1			PF6 Settin	g	1	_		
DETE	\sim	>		PF6C>	0	1			
<pf f=""></pf>		inut port					t		
1	SDC	K output			(Reserved)	(Reserved)		
					(10001100)	(1.0001700	,		
	$\langle \langle C \rangle$		$(\subset$	$\mathcal{I}_{\mathcal{I}}$					
$\langle -$			110))					
		`	$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	/					

Port F Register

						··· <u>~</u>			
		7	6	5	4	3	2	1	0
PFFC2	Bit symbol	-	\sim				-		PF0F2
(003DH)	Read/Write	W					W		W
	After reset	0					0		0
	Function	Always					Always write		Output buffer
		write "0"						\langle	0: CMOS
)	1: Open drain
				Port F Dri	ve Register	r 🔨	$\overline{(75)}$		
		7	6	5	4	3	2	1	0
PFDR	Bit symbol	PF7D	PF6D	PF5D	PF4D	PF3D	PF2D	PF1D	PF0D
(008FH)	Read/Write				R/	W	\bigcirc	\frown	
	After reset	1	1	1	1	$\mathcal{A}(1)$	1		1
	Function			Input/Outp	ut buffer drive	register for s	tandby mode	2	v
	Note: Read-m	nodify-write is	prohibited for	the registers	PFCR, PFFC	and PFFC2.		\sim	
			Figu	ire 3.5.31 R	egister for	Port F		Z/N)	
					\square	>		50	
						~	(C)	\checkmark	
					\sim				
					\bigcirc	((7/5		
							(\bigcirc)		
					\rightarrow /				
				\bigcirc		\geq))		
			((())			/		
			\square		~	\sim			
				$\left(\right)$					
				ノ	$\langle \boldsymbol{e} \rangle$				
			$(7/\Lambda)$		$\langle \rangle$	~			
			$\langle \bigcup \rangle$	/	$\overline{\Omega}$	>			
		$\left(\left(\right) \right)$		$\langle \langle \rangle$	$\sqrt{5}$				
			$\langle \langle \rangle$						
	~	~	\checkmark	\sim					
	\sim	$\langle \rangle$		\sim					
	\sim	\bigtriangledown	(7	>					
			41						
\langle	\mathcal{A}))		\searrow					
		$^{\prime}$							
$\langle \in$		C	$\sqrt{2}$	/					
	\geq	Z	\sim						
	\searrow		\searrow						

Port F Functon Register 2

3.5.11 Port G (PG0 to PG3)

PG0 to PG3 are 4-bit input ports and can also be used as the analog input pins for the internal AD converter. PG3 can also be used as the ADTRG pin for the AD converter. PG2 and PG3 can also be used as the MX and MY pins for a touch screen interface.

3.5.12 Port J (PJ0 to PJ7)

PJ0 to PJ4 and PJ7 are 6-bit output ports. Resetting sets the output latch PJ to "1", and they output "1". PJ5 to PJ6 are 2-bit I/O ports.

In addition to functioning as a port, port J also functions as output pins for SDRAM (\overline{SDRAS} , \overline{SDCAS} , \overline{SDWE} , SDLLDQM, SDLUDQM and SDCKE), SRAM (\overline{SRWR} , \overline{SRLLB} , \overline{SRLUB}) and NAND flash (NDALE and NDCLE).

The above settings are made using the function register PJFC.

However, H either SDRAM or SRAM output signals for PJ0 to PJ2 are selected automatically according to the setting of the memory controller.

			Port J R	egister				
	7	6	5	4	3	2	1	0
Bit symbol	PJ7	PJ6	PJ5	PJ4	PJ3	PJ2	PJ1	PJ0
Read/Write				R/	W			
After reset	1	Data from e (Output latch to '	external port register is set '1")	1	1	1	1	1
		F	Port J Contr	ol Register				
	7	6	5	4	3	2) 1	0
Bit symbol		PJ6C	PJ5C			Mr.	\sim	\backslash
Read/Write		V	V	\sim	\mathcal{A}	$\forall \rightarrow$	\sim	\backslash
After reset		0	0		\searrow	\triangleleft		
Function		0: Input	1: Output			$\langle \rangle$		
		Р	ort J Functi	on Registe	r	Ľ	\bigcirc	
	7	6	5	4 <	3	2	$\left(1\right)$	0
Bit symbol	PJ7F	PJ6F	PJ5F	PJ4F	PJ3F	PJ2F	PJ1F	PJ0F
Read/Write				(())	$\sqrt{2}$	~ ((
After reset	0	0	0	0	\mathcal{I}_0	d d	(/_0)	0
Function	0: Port	0: Port	0: Port	0: Port	0: Port	0: Port	0: Port	0: Port
	1: SDCKE at <pj7> = 1</pj7>	1: NDCLE at <pj6> = 0,</pj6>	1: NDALE at <pj5> = 0</pj5>	1: SDLUDQM at <pj4> = 1</pj4>	1: SDLLDQM at <pj3> = 1</pj3>	1: SDWE SDWR	1: SDCAS , SRLUB	1: SRRAS , SRLLB
			Port J Drive	e Register	6	50		
	7	6	5	∕∕4	3))2	1	0
Bit symbol	PJ7D	PJ6D	PJ5D	PJ4D	PJ3D	PJ2D	PJ1D	PJ0D
Read/Write				RA	N))			
After reset	1	1 ((1	1		1	1	1
Function			Input/Outpu	t buffer drive	register for sta	andby mode		
Note: Read-mc	odify-write is p	rohibited for th	e registers PJ	ICR and PJFC gister for P	2. Port J			
	Bit symbol Read/Write After reset Bit symbol Read/Write After reset Function Bit symbol Read/Write After reset Function Bit symbol Read/Write After reset Function	7 Bit symbol PJ7 Read/Write After reset 1 1 Read/Write 7 Bit symbol Read/Write After reset 7 Bit symbol PJ7F Read/Write After reset After reset 0 Function 0: Port 1: SDCKE at <pj7> = 1 7 Bit symbol PJ7D Read/Write 7 Bit symbol PJ7D Read/Write After reset 7 Bit symbol 9 7 Bit symbol PJ7D Read/Write After reset After reset 1 Function I Note: Read-modify-write is p</pj7>	76Bit symbolPJ7PJ6Read/WriteData from e (Output latch to 'After reset1Data from e (Output latch to '76Bit symbolPJ6CRead/WriteVAfter reset0Function0: InputP76Bit symbolPJ7FPJ6FRead/Write0Function0: Port 1: SDCKE at <pj7> = 176Bit symbolPJ7FPJ6PRead/WriteAfter reset00Port 1: NDCLE at at <pj7> = 176Bit symbolPJ7DPJ6DRead/WriteAfter reset111FunctionFigureNote: Read-modify-write is prohibited for thFigure</pj7></pj7>	765Bit symbolPJ7PJ6PJ5Read/WriteAfter reset1Data from external port (Output latch register is set to "1")Port J Contr765Bit symbolPJ6CPJ5CRead/WriteWAfter reset00Function0: Input 1: OutputPort J Function765Bit symbolPJ7FPJ6FPJ6FPJ5FRead/WriteAfter reset00765Bit symbolPJ7FPJ6FPJ6FPJ5FRead/WriteAfter reset001: SDCKE at <pj7> = 11: NDALE at <pj6>=0,765Bit symbolPJ7DPJ6DPJ5DRead/WriteAfter reset11111FunctionInput/OutputJote:Read-modify-write is prohibited for the registers PJFigure 3.5.36 Re</pj6></pj7>	7 6 5 4 Bit symbol PJ7 PJ6 PJ5 PJ4 Read/Write R/ After reset 1 Data from external port (Output latch register is set to "1") 1 Port J Control Register 7 6 5 4 Bit symbol PJ6C PJ5C 1 Read/Write W After reset 0 0 Function 0: Input 1: Output Port J Function Register 7 6 5 4 Bit symbol PJ7F PJ6F PJ5F PJ4F Read/Write // // // // After reset 0 0 0 0 Function 0: Port 0: Port 0: Port 1: SDLUDOM After reset 0 0 0 0 0 Function 0: Port 0: Port 1: SDLUDOM - - After reset 0 0 0 0 - Port J Drive Register - - - - - </td <td>76543Bit symbolPJ7PJ6PJ5PJ4PJ3Read/WriteR/WAfter reset1Data from external port (Output latch register is set to "1")1Port J Control Register765489PJ6CPJ5CRead/WriteWAfter reset00011Port J Control Register76548399PJ6CPJ5CRead/WriteWAfter reset009PJ7FPJ6FPJ5FPJ4FPJ3FRead/WriteWAfter reset00000Function0: Port0: Port1: SDCKE at <pj7>=1: NDCLE at <pj6>=0: SP14>=11: SDCKE at <pj7>=1: NDCLE at <pj6>=0: SP14>=11: SDCKE at <pj7>=1: NDCLE at <pj6>=0: SDLDQM <pj5>=01: SDCKE at <pj7>=1111: NDCLE at at <pj7>=1: RAWAfter reset11111FunctionInput/Output buffer drive register for stateNote: Read-modify-write is prohibited for the registers PJCR and PJFC.Figure 3.5.36 Register for Port JFigure 3.5.36 Register for Port J</pj7></pj7></pj5></pj6></pj7></pj6></pj7></pj6></pj7></td> <td>T 6 5 4 3 2 Bit symbol PJ7 PJ6 PJ5 PJ4 PJ3 PJ2 Read/Write R/W R/W R/W R/W R/W After reset 1 Data from external port to "11" 1 1 1 1 Port J Control Register 7 6 5 4 3 2 Bit symbol PJ6C PJ5C Read/Write W Read/Write SDWR SDWR<td>7 6 5 4 3 2 1 Bit symbol PJ7 PJ6 PJ5 PJ4 PJ3 PJ2 PJ1 Read/Write RW After reset 1 Data from external port (Output latch register is set 1</td></td>	76543Bit symbolPJ7PJ6PJ5PJ4PJ3Read/WriteR/WAfter reset1Data from external port (Output latch register is set to "1")1Port J Control Register765489PJ6CPJ5CRead/WriteWAfter reset00011Port J Control Register76548399PJ6CPJ5CRead/WriteWAfter reset009PJ7FPJ6FPJ5FPJ4FPJ3FRead/WriteWAfter reset00000Function0: Port0: Port1: SDCKE at <pj7>=1: NDCLE at <pj6>=0: SP14>=11: SDCKE at <pj7>=1: NDCLE at <pj6>=0: SP14>=11: SDCKE at <pj7>=1: NDCLE at <pj6>=0: SDLDQM <pj5>=01: SDCKE at <pj7>=1111: NDCLE at at <pj7>=1: RAWAfter reset11111FunctionInput/Output buffer drive register for stateNote: Read-modify-write is prohibited for the registers PJCR and PJFC.Figure 3.5.36 Register for Port JFigure 3.5.36 Register for Port J</pj7></pj7></pj5></pj6></pj7></pj6></pj7></pj6></pj7>	T 6 5 4 3 2 Bit symbol PJ7 PJ6 PJ5 PJ4 PJ3 PJ2 Read/Write R/W R/W R/W R/W R/W After reset 1 Data from external port to "11" 1 1 1 1 Port J Control Register 7 6 5 4 3 2 Bit symbol PJ6C PJ5C Read/Write W Read/Write SDWR SDWR <td>7 6 5 4 3 2 1 Bit symbol PJ7 PJ6 PJ5 PJ4 PJ3 PJ2 PJ1 Read/Write RW After reset 1 Data from external port (Output latch register is set 1</td>	7 6 5 4 3 2 1 Bit symbol PJ7 PJ6 PJ5 PJ4 PJ3 PJ2 PJ1 Read/Write RW After reset 1 Data from external port (Output latch register is set 1

3.5.13 Port K (PK0 to PK7)

Port K is a 4-bit output port. Resetting sets the output latch PK to "0", and PK0 to PK3 pins output "0".

 $\rm PK4$ to $\rm PK7$ are 4-bit input ports. Resetting sets the PLCR to "0", and set input port.

In addition to functioning as an output port, port K also functions as output pins for an LCD controller (LCP0, LLP, LFR and LBCD) and pin for an SPI controller (SPCLK, \overline{SPCS} , SPDO and SPDI).

The above settings are made using the function register PKFC.

Figure 3.5.39 Port K5 to K7

6 PK6 Data from 6 it latch regist 6 PK6C 0 0: Input 6 PK6F 0 PK6F 0 0: Port 1: SPCS output	5 PK5 external port ter is cleared t Port K Con 5 PK5C W 0 1: Output Port K Func 5 PK5F 0 0: Port 1: SPDO	4 PK4 R/ o "0") trol Registe 4 PK4C 0 ction Regist 4 PK4F V 0 0 0 0 0 0 0 0 0 0 0 0 0	3 PK3 W 0 er 3 PK3F V 0	2 PK2 0 2 2 PK2F	1 PK1 0 1 PK1F	0 PK(0 0 0 0 PK0F
PK6 Data from e it latch regist 6 PK6C 0 0: Input 6 PK6F 0 0: Port 1: SPCS output	PK5 external port er is cleared t Port K Con 5 PK5C W 0 1: Output Port K Func 5 PK5F 0 0 0: Port 1: SPDO	PK4 R/ o "0") trol Registe 4 PK4C 0 ction Regist 4 PK4F V 0	PK3 W 0 er 3 PK3F	РК2 0 2 РК2F	РК1 0 1 РК1F	РК(0 0 0 0 РКОГ
Data from 6 It latch regist 6 PK6C 0 0: Input 6 PK6F 0 0: Port 1: SPCS output	external port ter is cleared t Port K Con 5 PK5C W 0 1: Output Port K Func 5 PK5F 0 0: Port 1: SPDO	R/ o "0") ttrol Registe 4 PK4C 0 ction Regist 4 PK4F V 0	W 0 er 3 er 3 PK3F	0 2 2 PK2F	0 1 1 PK1F	0 0 0 0 PK0F
Data from e It latch regist 6 PK6C 0 0: Input 6 PK6F 0 0: Port 1: SPCS output	external port er is cleared t Port K Con 5 PK5C N 0 1: Output Port K Fund 5 PK5F 0 0: Port 1: SPDO	o "0") trol Registe 4 PK4C 0 ction Regist 4 PK4F V 0	0 er 3 PK3F	0 2 2 PK2F	0 1 1 PK1F	0 0
11 latch regist	er is cleared t Port K Con 5 PK5C W 0 1: Output Port K Func 5 PK5F 0 0: Port 1: SPDO	o "0") trol Registe 4 PK4C 0 ction Regist 4 PK4F V 0 0 0 0 0 0 0 0 0 0 0 0 0	er 3 PK3F	2 2 2 PK2F	1 1 PK1F	0 0 9 0 9K0F
6 PK6C 0 0: Input 6 PK6F 0 0: Port 1: SPCS output	Port K Con 5 PK5C W 0 1: Output Port K Fund 5 PK5F 0 0: Port 1: SPDO	trol Registe 4 PK4C 0 ction Regist 4 PK4F V 0	er 3 PK3F	2 2 PK2F	1 1 РК1F	0
6 PK6C 0 0: Input 6 PK6F 0 0: Port 1: SPCS output	5 PK5C N 0 1: Output Port K Fund 5 PK5F 0 0: Port 1: SPDO	4 PK4C 0 ction Regist 4 PK4F V	3 er 3 PK3F	2 2 2 PK2F	1 1 PK1F	0 0 0 PK0F
PK6C 0 0: Input 6 PK6F 0 0: Port 1: SPCS output	PK5C N 0 1: Output Port K Fund 5 PK5F 0 0: Port 1: SPDO	PK4C 0 ction Regist 4 PK4F V 0	er 3 PK3F	2 PK2F		0 PK0F
0 0: Input 6 PK6F 0 0: Port 1: SPCS output	W 0 1: Output Port K Fund 5 PK5F 0 0: Port 1: SPDO	0 ction Regist 4 PK4F V	er 3 PK3F	2 PK2F	1 PKIF	0 PK0F
0 0: Input 6 PK6F 0 0: Port 1: SPCS output	0 1: Output Port K Func 5 PK5F 0 0: Port 1: SPDO	0 ction Regist 4 PK4F V	er 3 PK3F	2 PK2F	1 PK1F	0 РКог
0: Input 6 PK6F 0 0: Port 1: SPCS output	1: Output Port K Func 5 PK5F 0 0: Port 1: SPDO	tion Regist 4 PK4F 0	er 3 PK3F	2 PK2F	1 PK1F	О
6 PK6F 0 0: Port 1: SPCS output	Port K Fund 5 PK5F 0 0: Port 1: SPDO	4 PK4F V	er 3 PK3F	2 PK2F	1 РК1F	0 РКОІ
6 PK6F 0 0: Port 1: SPCS output	5 PK5F 0 0: Port 1: SPDO	4 PK4F V 0	3 PK3F	2 PK2F	1 PK1F	0 PK0I
PK6F 0 0: Port 1: SPCS output	PK5F 0 0: Port 1: SPDO	PK4F V 0 0: Port	PK3F	PK2F	C PK1F	PKO
0 0: Port 1: SPCS output	0 0: Port 1: SPDO	0 0: Port	()	\sim ((
0 0: Port 1: SPCS output	0 0: Port 1: SPDO	0 0: Port				
0: Port 1: SPCS output	0: Port	0. Port	0	0	FUM)	0
1: SPCS output	1. SPDO		0: Port	0: Port	0: Port	0: Port
output		1: SPDI	1: LBCD	1: LFR	1. LLP	1: LCP(
	output <	output		()		
PK5F>	0	1	<pk4f< th=""><th>PK4C></th><th>0</th><th>1</th></pk4f<>	PK4C>	0	1
0	Input port	Output po	rt () Inpu	ut port	Output port
1 (Reserved	SPDO outp	out	SPD	l input	Reserved
\square		~				
PK7 Setting	\square		PK	6 Setting		
<pre>PK7C> PK7E></pre>	/) o		<pk6< td=""><td>(PK6C></td><td>0</td><td>1</td></pk6<>	(PK6C>	0	1
0	Input port	Output po	rt	0 Inp	out port	Output po
(1)	Reserved	SPCLK out	put	1 Re	served	SPCS outp
\sim	\wedge	$\left(// \right)$				
	Port K Dri	ve Register	r			
6	5	4	3	2	1	0
	PK5D	PK4D	PK3D	PK2D	PK1D	PK0
PK6D						
PK6D	\sim	R/	W			
PK6D	1	R/	W 1	1	1	1
	PK5C> >K5F> 0 1 PK7 Setting PK7C> >K7F> 0 1 6	PK5C> 0 0 Input port 1 Reserved PK7 Setting 0 PK7F> 0 0 Input port 1 Reserved PK7E> 0 Input port 0 Input port 1 Reserved PK7E> 5	<pk5c> 0 1 0 Input port Output port 1 Reserved SPDO output PK7 Setting 0 1 PK7 Setting 0 1 PK7 Setting 0 1 PK7E> 0 1 0 Input port Output port 0 Input port Output port 1 Reserved SPCLK out Port K Drive Register 6 5 4</pk5c>	PK5C> 0 1 0 Input port Output port 1 Reserved SPDO output PK7 Setting PK7 0 Input port Output port PK7F> 0 1 0 Input port Output port 0 Input port <td>PK5C> 0 1 PK4C> 0 Input port Output port 0 Input 1 Reserved SPDO output 1 SPD PK7 Setting PK6 Setting PK6 Setting PK6C> PK7E> 0 1 SPD 0 Input port Output port 0 Input 1 Reserved SPDC witput 1 SPD PK7E> 0 1 PK6 Setting PK6F> 0 Input 0 Input port Output port 0 Input 1 Re Port K Drive Register 6 5 4 3 2</td> <td>PK5C> 0 1 PK4C> 0 0 Input port Output port 0 Input port 0 1 Reserved SPDO output 1 SPDI input PK7 Setting PK6 Setting PK7F> 0 1 PK6 Setting PK7F> 0 1 PK6C> 0 0 Input port Output port 0 Input port 1 Reserved SPCLK output 1 Reserved Port K Drive Register 6 5 4 3 2 1</td>	PK5C> 0 1 PK4C> 0 Input port Output port 0 Input 1 Reserved SPDO output 1 SPD PK7 Setting PK6 Setting PK6 Setting PK6C> PK7E> 0 1 SPD 0 Input port Output port 0 Input 1 Reserved SPDC witput 1 SPD PK7E> 0 1 PK6 Setting PK6F> 0 Input 0 Input port Output port 0 Input 1 Re Port K Drive Register 6 5 4 3 2	PK5C> 0 1 PK4C> 0 0 Input port Output port 0 Input port 0 1 Reserved SPDO output 1 SPDI input PK7 Setting PK6 Setting PK7F> 0 1 PK6 Setting PK7F> 0 1 PK6C> 0 0 Input port Output port 0 Input port 1 Reserved SPCLK output 1 Reserved Port K Drive Register 6 5 4 3 2 1

3.5.14 Port L (PL0 to PL7)

PL0 to PL3 are 4-bit output ports. Resetting sets the output latch PL to "0", and PL0 to PL3 pins output "0".

PL4 to PL7 are 4-bit general-purpose I/O ports. Each bit can be set individually for input or output using the control register PLCR. Resetting resets the control register PLCR to "0" and sets PL4 to PL7 to input ports. In addition to functioning as a general-purpose I/O port, port L can also function as a data bus for an LCD controller (LD0 to LD7) and external bus open request input (\overline{BUSRQ}),answer output (\overline{BUSAK}). The above settings are made using the function register PLFC.

Figure 3.5.44 Port L7

				Port L R	egister						
		7	6	5	4	3	2	1	0		
PL (0054H)	Bit symbol	PL7	PL6	PL5	PL4	PL3	PL2	PL1	PL0		
	Read/Write	R/W									
	After reset	Data from external port 0 0 0 0							0		
	(Output latch register is cleared to "0")										
			P	ort L Contro	ol Register			-			
PLCR (0056H)		7	6	5	4	3	2	1	0		
	Bit symbol	PL7C	PL6C	PL5C	PL4C						
	Read/Write		W	1			7/A				
	After reset	0	0	0	0	A	\sim				
	Function		0: Input 1	: Output		\sim					
			Po	ort L Functio	on Register	\cdot	7(
PLFC (0057H)		7	6	5	4	3	2		0		
	Bit symbol	PL7F	PL6F	PL5F	PL4F	PL3F	PL2F	PL1F	PL0F		
	Read/Write	W W									
	After reset	0	0	0	0	0 (○ 0 (C))) 0	0		
	Function		Refer follo	wing table		0: Port	1: Data bus f	or LCDC (LC	03 to LD0)		
			PL5 Setti	ng	$\square(\bigcirc)$	PL	4 Setting				
		PL5C> 0 1 $PL4C>$ 0 1									
	0 Input port Output 1 Reserved LD5 o					port 0 Input port Output pc					
						ttput			LD4 output		
			PL7 Setti	ng	7 //	PL	6 Setting				
		<pl7< td=""><td>1</td><td></td><td><pl6c></pl6c></td><td>0</td><td>1</td></pl7<>			1		<pl6c></pl6c>	0	1		
		0		Input port Output			0 Ir				
				BUSAK ou				SRO input	L D6 output		
			+	BOOAR OC			. 00.		200 output		
				Port L Drive	Register						
		7 (6	5	4	3	2	1	0		
PLDR	Bit symbol	PLZD	PL6D	PL5D	PL4D	PL3D	PL2D	PL1D	PL0D		
(0095H)	Read/Write			\land $(!)$	/)) R/	N					
	After reset		1		\bigcirc_1	1	1	1	1		
	Function		5	Input/Outpu	t buffer drive i	register for sta	andby mode				
		\checkmark									
Ν	lote1: Read-mo	dify-write is p	orohibited for th	ne registers P	LCR and PLF	C.					
Ν	lote2: When Po	ort Lare use	d at LD0/to Ll	D7, If set PL6	5 pin to BUS	RQ function	input tempora	arily, CPU m	ay not be		
	operate no	ormally. There	efore, set regis	sters by follow	ving order.						
\sim	(())	-		· ·	-						
	Order Regis	ster Setti	ng value	\checkmark							

. . . . _

Figure 3.5.45 Port L Register

PLCR

PLFC

ł

1

(1)

(2)

3.5.15 Port M (PM1 to PM2)

 $\rm PM1$ and $\rm PM2$ are 2-bit output ports. Resetting sets the output latch PM to "1", and PM1 and PM2 pins output "1".

In addition to functioning as a port, port M also functions as output pins for the RTC alarm ($\overline{\text{ALARM}}$), and as the output pin for the melody/alarm generator (MLDALM, $\overline{\text{MLDALM}}$).

The above settings are made using the function register PMFC.

Only PM2 has two output functions - ALARM and MLDALM. These are selected using PM<PM2>.

Figure 3.5.47 Port M2

3.5.16 Port N (PN0 to PN7)

PN0 to PN7 are 8-bit general-purpose I/O port. Each bit can be set individually for input or output. Resetting sets Port N to an input port.

In addition to functioning as a general-purpose I/O port, Port N can also as interface pin for key-board (KO0 to KO7). This function can set to open-drain type output buffer.

				FOILINIE	gister						
		7	6	5	4	3	2	1	0		
PN	Bit symbol	PN7	PN6	PN5	PN4	PN3	PN2	PN1	PN0		
(005CH)	Read/Write	R/W									
	After reset	Data from external port (Output latch register is set to "1")									
			Р	ort N Contre	ol Registe	r					
		7	6	5	4	3	2	1	0		
PNCR (005EH)	Bit symbol	PN7C	PN6C	PN5C	PN4C	PN3C	PN2C	PN1C	PN0C		
	Read/Write				W		$(7/\delta)$				
	After reset	0	0	0	0	0	$\langle 0 \rangle$	0	0		
	Function				0: Input	1: Output					
	Port N Function Register										
		7	6	5	4	3	2		0		
PNFC	Bit symbol	PN7F	PN6F	PN5F	PN4F	RN3F	PN2F	RN1F	PN0F		
(005FH)	Read/Write				W		2	$\langle \rangle$			
	After reset	0	0	0	0 ((/	0	<u> </u>		0		
	Function	0: CMOS output 1:Open drain output									
			F	Port N Drive	Register	>	\mathcal{C}				
		7	6	5 <	4	3	(2)	1	0		
PNDR	Bit symbol	PN7D	PN6D	PN5D	PN4D	PN3D	PN2D	PN1D	PN0D		
(0097H)	Read/Write	a RW ((//))									
	After reset	1	1		1		1	1	1		
	Function			Input/Outpu	ut buffer drive	e register for s	tandby mode	•			
	Å		Figure	3.5.50 Reg	gister for P	Port N					
		\bigcirc	\sim								

3.6 Memory Controller

3.6.1 Functions

The TMP92CA25 has a memory controller with a variable 4-block address area that controls as follows.

(1) 4-block address area support

Specifies a start address and a block size for the 4-block address area (block 0 to 3).

- SRAM or ROM: All CS blocks (CS0 to CS3) are supported.
- SDRAM : Only either CS1 or CS2 blocks are supported.
- Page ROM : Only CS2 blocks are supported.
- NAND flash : CS setting is not needed.
- (2) Connecting memory specifications

Specifies SRAM, ROM and SDRAM as memories that connect with the selected address areas.

(3) Data bus width selection

Whether 8 bits, 16 bits is selected as the data bus width of the respective block address areas.

(4) Wait control

Wait specification bit in the control register and \overline{WAIT} input pin control the number of waits in the external bus cycle. Read cycle and write cycle can specify the number of waits individually.

The number of waits is controlled in the 6 modes listed below.

0 waits, 1 wait,

2 waits, 3 waits, 4 waits

N waits (controls with \overline{WAIT} pin)

3.6.2 Control Register and Operation after Reset Release

This section describes the registers that control the memory controller, the state following reset release and the necessary settings.

(1) Control register

The control registers of the memory controller are as follows and in Table 3.6.1 and Table 3.6.2.

Control register: BnCSH/BnCSL (n = 0 to 3, EX)

Sets the basic functions of the memory controller; the memory type that is connected, the number of waits which are read and written.

- Memory start address register: MSARn (n = 0 to 3) Sets a start address in the selected address areas.
- Memory address mask register: MAMR (n = 0 to 3) Sets a block size in the selected address areas.
- Page ROM control register: PMEMCR Sets the method of accessing page ROM.
- Memory controls control register: MEMCR0 Sets waveform selection of RD pin and setting method of CS0 to CS3.
| | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------------------|-------------|---------------|-----------------|----------|---------------------|--------|-------------------------|--------------------|--------|
| B0CSL | Bit symbol | / | B0WW2 | B0WW1 | B0WW0 | | B0WR2 | B0WR1 | B0WR0 |
| (0140H) | Read/Write | | | W | | | | W | |
| | After reset | | 0 | 1 | 0 | | 6 | 1 | 0 |
| B0CSH | Bit symbol | B0E | - | - | BOREC | B0OM1 | BOOMO | B0BUS1 | B0BUS0 |
| (0141H) | Read/Write | | | | ٧ | V | ((| | |
| | After reset | 0 | 0 (Note) | 0 (Note) | 0 | 0 | 0 |) | 0 |
| MAMR0
(0142H) | Bit symbol | M0V20 | M0V19 | M0V18 | M0V17 | M0V16 | M0V15 | M0V14 to
M0V9 | M0V8 |
| | Read/Write | | | | R/ | w | | | |
| | After reset | 1 | 1 | 1 | 1 | 1 ((| X | 1 | 1 |
| MSAR0 | Bit symbol | M0S23 | M0S22 | M0S21 | M0S20 | M0S19 | M0S18 | M0S17 | M0S16 |
| (0143H) | Read/Write | | | | R/ | w 🦳 | | | |
| | After reset | 1 | 1 | 1 | 1 | 25 | > 1 | _1(| 1 |
| B1CSL | Bit symbol | / | B1WW2 | B1WW1 | B1WW0 | \sim | B1WR2 | B1WR1 | B1WR0 |
| (0144H) | Read/Write | | | W | ((| 7/4/ | ~ (| | |
| | After reset | / | 0 | 1 | 0 | Y. | 0 | (γ) | 0 |
| B1CSH | Bit symbol | B1E | _ | - | B1REC | B1OM1 | B1OM0 | B1BUS1 | B1BUS0 |
| (0145H) | Read/Write | | | | V | \sim | (\mathcal{C}) | \bigtriangledown | |
| | After reset | 0 | 0 (Note) | 0 (Note) | $\langle 0 \rangle$ | 0 | 0 |) 0 | 0 |
| MAMR1
(0146H) | Bit symbol | M1V21 | M1V20 | M1V19 | M1V18 | M1V17 | M1V16 | M1V15 to
M1V9 | M1V8 |
| | Read/Write | | | | R/ | W | $\overline{\mathbb{C}}$ | | |
| | After reset | 1 | 1 | X | \sim 1 / | 1 | 1 | 1 | 1 |
| MSAR1 | Bit symbol | M1S23 | M1S22 | M1S21 | M1S20 | M1S19 | M1S18 | M1S17 | M1S16 |
| (0147H) | Read/Write | | | (()) | R/ | w | / | | |
| | After reset | 1 | 1 | | 1 | 1 | 1 | 1 | 1 |
| B2CSL | Bit symbol | | B2WW2 | B2WW1 | B2WW0 | | B2WR2 | B2WR1 | B2WR0 |
| (0148H) | Read/Write | / | |)/w | $\langle \rangle$ | 7 | | W | |
| | After reset | | | 1 | _0 | | 0 | 1 | 0 |
| B2CSH | Bit symbol | B2E | (B2M) | - | B2REC | B2OM1 | B2OM0 | B2BUS1 | B2BUS0 |
| (0149H) | Read/Write | | | | (// Ś V | V | | | |
| | After reset | | 0 | 0 (Note) | 0 | 0 | 0 | 0 | 0 |
| MAMR2 | Bit symbol | M2V22 | M2V21 | M2V20 | M2V19 | M2V18 | M2V17 | M2V16 | M2V15 |
| (014AH) | Read/Write | | | | R/ | W | | | |
| | After reset | 2 1 | 1 | - X | 1 | 1 | 1 | 1 | 1 |
| MSAR2 | Bit symbol | M2S23 | M2S22 | M2S21 | M2S20 | M2S19 | M2S18 | M2S17 | M2S16 |
| (014BH) | Read/Write | | 4 | | R/ | W | | | |
| 5 | After reset | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| B3CSL | Bit symbol | \sum | B3WW2 | B3WW1 | B3WW0 | \sim | B3WR2 | B3WR1 | B3WR0 |
| (014CH) | Read/Write | \mathcal{A} | $\sim \bigcirc$ |) W | | | | W | |
| | After reset | 1 | | 1 | 0 | | 0 | 1 | 0 |
| B3CSH | Bit symbol | B3E | | - | B3REC | B3OM1 | B3OM0 | B3BUS1 | B3BUS0 |
| (01400) | Read/Write | | ~ | [| V | V | | | |
| | After reset | 0 | 0 (Note) | 0 (Note) | 0 | 0 | 0 | 0 | 0 |
| | Bit symbol | M3V22 | M3V21 | M3V20 | M3V19 | M3V18 | M3V17 | M3V16 | M3V15 |
| (U14EH) | Read/Write | | | | R/ | W | | | |
| | After reset | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| MSAR3 | Bit symbol | M3S23 | M3S22 | M3S21 | M3S20 | M3S19 | M3S18 | M3S17 | M3S16 |
| (U14FH) | Read/Write | | | | R/ | W | | | |
| | After reset | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

Table 3.6.1	Control Register	
-------------	------------------	--

Note 1: Always write "0".

Note 2:Read-modify-write is prohibited for BnCS0 and BnCSH (n = 0 to 3) registers.

		7	6	5	4	3	2	1	0
BEXCSH (0159H)	Bit symbol			/	/	BEXOM1	BEXOM0	BEXBUS1	BEXBUS0
	Read/Write						W	/	
	After reset			/	/	0	0	0	0
BEXCSL (0158H)	Bit symbol		BEXWW2	BEXWW1	BEXWW0	/	BEXWR2	BEXWR1	BEXWR0
	Read/Write			W		/		W	
	After reset		0	1	0	/	0	1	0
PMEMCR	Bit symbol				OPGE	OPWR1	OPWR0	J)PR1	PR0
(0166H)	Read/Write			/			R/W		
	After reset			/	0	0	$(\sqrt{0})$	1	0
MEMCR0 (0168H)	Bit symbol		/	/	/	\nearrow	CSDIS	RDTMG1	RDTMG0
	Read/Write			/	/	4	\sum	R/W	
	After reset						\mathcal{I}_{0}	0	0

Table 3.6.2 Control Register

Note: Read-modify-write is prohibited for BEXCSH and BEXCSL registers.

(2) Operation after reset release

The start data bus width is determined by the state of AM1/AM0 pins just after reset release. The external memory is then accessed as follows

AM1	AM0	Start Mode
0	0	Don't use this setting
0	1	Start with 16-bit data bus (Note)
1	0	Start with 8-bit data bus (Note)
1	1	Don't use this setting

Note: The memory to be used on starting after reset must be either NOR flash or masked ROM. NAND flash and SDRAM cannot be used.

AM1/AM0 pins are valid only just after reset release. In other cases, the data bus width is set by the control register $\langle BnBUS1:0 \rangle$.

On reset, only the control register (B2CSH/B2CSL) of the block address area 2 becomes effective automatically (B2CSH<B2E> is set to "1" on reset).

The data bus width which is specified by AM1/AM0 pins is loaded to the bit for specification of the bus width of the control register in the block address area 2.

The block address area 2 is set to 000000H to FFFFFFH address on reset (B2CSH<B2M> is reset to "0").

After reset release, the block address areas are specified by the memory start address register (MSARn) and the memory address mask register (MAMRn). The control register (BnCS) is then set.

Set the enable bit (BnE) of the control register to "1" to enable the setting.

3.6.3 Basic Functions and Register Setting

This section describes the setting of the block address area, the connecting memory and the number of waits out of the memory controller's functions.

(1) Block address area specification

The block address area is specified by two registers.

The memory start address register (MSARn) sets the start address of the block address areas. The memory controller compares the register value and the address every bus cycle. The address bit which is masked by the memory address mask register (MAMRn) is not compared by the memory controller. The block address area size is determined by setting the memory address mask register. The value that is set to the register is compared with the block address area on the bus. If the result is a match, the memory controller sets the chip select signal (CSn) to "low".

(i) Memory start address register setting

The MS23 to MS16 bits of the memory start address register correspond with addresses A23 to A16 respectively. The lower start addresses A15 to A0 are always set to address 0000H.

Therefore the start addresses of the block address area are set to all 64 Kbytes of addresses 000000H to FF0000H.

(ii) Memory address mask register setting

The memory address mask register determines whether an address bit is compared or not. In register setting, "0" is "compare", and "1" is "do not compare".

The address bits that can be set depends on the block address area.

Block address area 0: A20 to A8

Block address area 1: A21 to A8

Block address area 2 to 3: A22 to A15

The upper bits are always compared. The block address area size is determined by the result of the comparison.

Size (bytes) CS area	256	512	32 K	64 K	128 K	256 K	512 K	1 M	2 M	4 M	8 M
CS0 🗸	3	0	9>	0	0	0	0	0	0		
CS1	0	0	2	0	0	0	0	0	0	0	
CS2 to CS3			0	0	0	0	0	0	0	0	0
			\sim	\sim							

The size to be set depending on the block address area is as follows.

Note: After reset release, only the control register of the block address area 2 is valid. The control register of block address area 2 has the <B2M> bit. If the <B2M> bit is set to "0", block address area 2 is set to addresses 000000H to FFFFFFH. (This is the state following reset release .) If the <B2M> bit is set to "1", the start address and the address area size are set, as in the other block address areas.

(iii) Example of register setting

To set the block address area 64 Kbytes from address 110000H, set the register as follows.

Bit	7	6	5	4	3	2	1	0
Bit symbol	M1S23	M1S22	M1S21	M1S20	M1S19	M1S18	M1S17	M1S16
Specified value	0	0	0	1	0	0	0	1

MSAR1 Register

M1S23 to M1S16 bits of the memory start address register MSAR1 correspond with address A23 to A16.

A15 to A0 are set to "0". Therefore, if MSAR1 is set to the above mentioned value, the start address of the block address area is set to address 110000H.

			100 000	i i i i i i i i i i i i i i i i i i i		\sim	\frown	
Bit	7	6	5	4	3	2		0
Bit symbol	M1V21	M1V20	M1V19	M1V18	M1V17	M1V16	M1V15 to M1V9	M1V8
Specified value	0	0	0	0	(//0) ~	0		1

MAMR1 Register

M1V21 to M1V16 and M1V8 bits of the memory address mask register MAMR1 are set whether addresses A21 to A16 and A8 are compared or not. In register setting, "0" is "compare", and "1" is "do not compare". M1V15 to M1V9 bits determine whether addresses A15 to A9 are compared or not with bit 1. A23 and A22 are always compared.

When set as above, A23 to A9 are compared with the value that is set as the start addresses. Therefore, 512 bytes (addresses 110000H to 1101FFH) are set as block address area 1, and if it is compared with the addresses on the bus, the chip select signal CS1 is set to "low".

The other block address area sizes are specified in the same way.

A23 and A22 are always compared with block address area 0. Whether A20 to A8 are compared or not is determined by the register.

Similarly, A23 is always compared with block address areas 2 to 5. Whether A22 to A15 are compared or not is determined by the register.

Note 1: When the set block address area overlaps with the built-in memory area, or both two address areas overlap, the block address area is processed according to priority as follows.

Built-in I/O > Built-in memory > Block address area 0 > 1 > 2 > 3

Note 2: If an address area other than $\overline{CS0}$ to $\overline{CS3}$ is accessed, this area is regarded as \overline{CSEX} . Therefore, wait number and data bus width controls follow the setting of \overline{CSEX} (BEXCSH, BEXCSL register).

(2) Connection memory specification

Setting the <BnOM1:0> bit of the control register (BnCSH) specifies the memory type that is connected with the block address areas. The interface signal is outputted according to the set memory as follows.

<bnom1></bnom1>	<bnom0></bnom0>	Function						
0	0	SRAM/ROM (Default)						
0	1	Reserved						
1	0	Reserved						
1	1	SDRAM						

	<bnom1:< th=""><th>0> Bit (</th><th>(BnCSH</th><th>Register)</th></bnom1:<>	0> Bit ((BnCSH	Register)
--	--	----------	--------	-----------

Note 1: SDRAM should be set to block either 1 or 2.

Note 2: Set "00" for NAND flash, RAM built-in LCDD.

(3) Data bus width specification

The data bus width is set for every block address area. The bus size is set by setting the control register (BnCSH)<BnBUS1:0> as follows.

BnBUS 1	BnBUS 0	Function								
0	0	8-bit bus mode (Default)								
0	1	16-bit bus mode								
1	0	Reserved								
1		Don't use this setting								

-RnRI IS1.0	hit (BUCCH	Pogistor)
	DIL	DIICOL	Register

Note: SDRAM should be set to either "01" (16-bit bus).

This method of changing the data bus width depending on the accessing address is called "dynamic bus sizing". The part of the data bus to which the data is output depends on the data size, baus width and start address.

Number of external data bus pin in TMP92CA25 are 16 pins. Therefore, please ignore case of memory data size is 32 in each tables.

Note: Since there is a possibility of abnormal writing/reading of the data if two memories with different bus width are put in consecutive addresses, do not execute an access to both memories with one command.

Operand Data	Operand Start	Memory Data Size			CPU	Data	
Size (bit)	Address	(bit)	CPU Address	D31 to D24	D23 to D16	D15 to D8	D7 to D0
	4n + 0	8/16/32	4n + 0	XXXXX	XXXXX	XXXXX	b7 to b0
	4n + 1	8	4n + 1	XXXXX	XXXXX	XXXXX	b7 to b0
		16/32	4n + 1	XXXXX	XXXXX	b7 to b0	XXXXX
8	4n + 2	8/16	4n + 2	XXXXX	XXXXX	XXXXX	b7 to b0
-		32	4n + 2	XXXXX	b7 to b0	XXXXX	XXXXX
	4n + 3	8	4n + 3	XXXXX	XXXXX	xxxxx	b7 to b0
		16	4n + 3	XXXXX	XXXXX) b7 to b0	XXXXX
		32	4n + 3	b7 to b0	XXXXX	XXXXX	XXXXX
	4n + 0	8	(1) 4n + 0 (2) 4n + 1	XXXXX	XXXXX	XXXXX	
		16/22	(2) 411 + 1	****	* ****	h15 to b9	b 15 to b0
	4n + 1	8	(1) 4n + 1	*****		22222	b7 to b0
	411 + 1	Ū	(2) 4n + 2	XXXXX	XXXXX	****	b15 to b8
		16	(1) 4n + 1	XXXXX	XXXXX	b7 to b0	XXXXX
			(2) 4n + 2	XXXXX	XXXXX	XXXXX	b15 to b8
		32	4n + 1	xxxxx	b15 to b8	b7 to b0	xxxxx
16	4n + 2	8	(1) 4n + 2	XXXXX	xxxxx	xxxxx	b7 to b0
10			(2) 4n + 1	xxxxx	XXXXX	XXXXX	b15 to b8
		16	4n + 2	XXXXX	XXXXX	b15 to b8	b7 to b0
		32	4n + 2	b15 to b8	b7 to b0	XXXXX	XXXXX
	4n + 3	8	(1) 4n + 3	XXXXX	XXXXX	XXXXX	b7 to b0
			(2) 4n + 4	XXXXX	XXXXX	XXXXX	b15 to b8
		16	(1) 4n + 3	XXXXX	XXXXX	b7 to b0	XXXXX
		22	(2) 4n + 4	XXXXX	XXXXX	XXXXX	b15 to b8
		32	(1) $4n + 3$ (2) $4n + 4$		XXXXX	XXXXX	XXXXX h15 to h9
	4m + 0	o ((2) 411 + 4 (1) 4n + 0	XXXXX			b15 t0 b8
	411 + 0	0	(1) 411 + 0 (2) 4n + 1	*****	*****	*****	b15 to b8
			(2) + (1) + (3)	XXXXX	XXXXX	****	b10 to b0
		(())	(4) 4n + 3	xxxxx	xxxxx	XXXXX	b31 to b24
		16	(1) 4n + 0	XXXXX	XXXXX	b15 to b8	b7 to b0
		$(\subset \land$	(2) 4n + 2	xxxxx	xxxxx	b31 to b24	b23 to b16
		32)	4n+0	b31 to b24	b23 to b16	b15 to b8	b7 to b0
	4n + 1	8	(1) 4n + 0	XXXXX	XXXXX	XXXXX	b7 to b0
		$(// \land$	(2) 4n + 1	XXXXX	XXXXX	XXXXX	b15 to b8
		$\langle O \rangle$	(3) 4n + 2	XXXXX	XXXXX	XXXXX	b23 to b16
	//)L		(4) 4n + 3	XXXXX	XXXXX	XXXXX	b31 to b24
		16	(1) 4n + 1	XXXXX	XXXXX	b7 to b0	XXXXX
			(2) 4n + 2 (2) $4n + 4$	XXXXX	XXXXX	b23 to b16	b15 to b8
		22	(3) 411 + 4 (1) 4n + 1	XXXXX b22 to b16	XXXXX h15 to h9	h7 to b0	031 10 024
	$\land \land$	32	(1) 411 + 1 (2) 4n + 4	VYYYY	×××××		h31 to h24
32	$4n \pm 2$	8	(1) 4n + 2	xxxxx	xxxxx	XXXXX	b7 to b0
		\wedge	(2) 4n + 3	XXXXX	XXXXX	XXXXX	b15 to b8
	$\langle \rangle$	$\langle \mathcal{A} $	(3) 4n + 4	xxxxx	xxxxx	xxxxx	b23 to b16
\sim	())		(4) 4n + 5	xxxxx	xxxxx	xxxxx	b31 to b24
		16	(1) 4n + 2	XXXXX	XXXXX	b15 to b8	b7 to b0
			(2) 4n + 4	XXXXX	XXXXX	b31 to b24	b23 to b16
		32	(1) 4n + 2	b15 to b8	b7 to b0	XXXXX	ххххх
	4		(2) 4n + 4	XXXXX	XXXXX	b31 to b24	b23 to b16
	4n + 3	8	(1) 4n + 3	XXXXX	XXXXX	XXXXX	b7 to b0
			(2) 4n + 4	XXXXX	XXXXX	XXXXX	D15 to b8
			(3) 4n + 5 (4) 4n + 6	XXXXX	XXXXX	XXXXX	U∠3 t0 D16
		16	(4) 411 + 0 (1) $4n \pm 3$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	h7 to b0	
		10	(1) 411 ± 3 (2) $4n \pm 4$	~~~~~ XYYYY	~~~~~ XYYYY	h23 to h16	h15 to b8
			(3) 4n + 6	XXXXX	XXXXX	XXXXX	b31 to h24
		32	(1) 4n + 3	b7 to b0	XXXXX	XXXXX	XXXXX
		-	(2) 4n + 4	XXXXX	b31 to b24	b23 to b16	b15 to b8

xxxxx: During a read, data input to the bus ignored. At write, the bus is at high impedance and the write strobe signal remains non active.

(4) Wait control

The external bus cycle completes a wait of at least two states (100 ns at $f_{SYS} = 20$ MHz).

Setting the <BnWW2:0> and <BnWR2:0> of BnCSL specifies the number of waits in the read cycle and the write cycle. <BnWW2:0> is set using the same method as <BnWR2:0>.

0 0 1 2 states (0 waits) access fixed mode 0 1 0 3 states (1 wait) access fixed mode (D	
0 1 0 3 states (1 wait) access fixed mode (D	
	Default)
1 0 1 4 states (2 waits) access fixed mode	
1 1 0 5 states (3 waits) access fixed mode	
1 1 1 6 states (4 waits) access fixed mode	\sim
0 1 1 WAIT pin input mode	$\overline{}$
Others (Reserved)	$\langle \rangle$

<bnww>/<bnwr></bnwr></bnww>	(BnCSI	Register)	۱
		Register	,

Note 1: For SDRAM, the above setting is ineffective. Refer to 3.16 SDRAM controller.

Note 2: For NAND flash, this setting is ineffective.

For RAM built-in LCDD, this setting is effective.

(i) Waits number fixed mode

The bus cycle is completed following the number of states set. The number of states is selected from 2 states (0 waits) to 6 states (4 waits).

(ii) \overline{WAIT} pin input mode

This mode samples the $\overline{\text{WAIT}}$ input pins. In this mode, a wait is inserted continuously while the signal is active. The bus cycle is a minimum 2 states. The bus cycle is completed if the wait signal is non active ("High" level) at the second state. The bus cycle continues if the wait signal is active after 2 states or more.

(5) Recovery (Data hold) cycle control

Some memory is defined by AC specification about data hold time by \overline{CE} or \overline{OE} for read cycle. Therefore, a data conflict problem may occur. To avoid this problem, 1-dummy cycle can be inserted after CSm-block access cycle by setting "1" to BmCSH<BmREC> register.

This 1-dummy cycle is inserted when the next cycle is for another CS-block.

Above function (BnCSH<BnREC>) is inserted dummy cycle and performance go down. Therefore, TMP92CA25 have changing function of $\overline{\text{RD}}$ pin falling timing except for <BnREC>. This function can be changed falling timing of $\overline{\text{RD}}$ pin by changing MEMCR0<RDTMG1:0>. This function can be avoided A.C speck shortage about data-hold time from $\overline{\text{OE}}$, and it can be avoided data conflict problem.

This function can use with $\langle BnREC \rangle$. And, this function doesn't depend on CS block. Cycle until from memory \overline{OE} to data output becomes short by using this function. If using this function, please be careful.

00	\overline{RD} "H" pulse width = 0.5T(Default)
01	\overline{RD} "H" pulse width = 0.75T
10	\overline{RD} "H" pulse width = 1.0T
11	(Reserved)

<rdtmg1:0></rdtmg1:0>	(MEMCR0	register)
-----------------------	---------	-----------

- (6) Basic bus timing
 - (a) External read/write cycle (0 waits)

(c) External read/write cycle (0 waits at \overline{WAIT} pin input mode)

Example of wait input cycle (5 waits)

(7) Connecting external memory

Figure 3.6.1 shows an example of how to connect an external 16-bit SRAM and 16-bit NOR flash to the TMP92CA25.

Figure 3.6.1 Example of External 16-Bit SRAM and NOR Flash Connection

3.6.4 ROM Control (Page mode)

This section describes ROM page mode accessing and how to set registers. ROM page mode is set by the page ROM control register.

(1) Operation and how to set the registers

The TMP92CA25 supports ROM access of the page mode. ROM access of the page mode is specified only in block address area 2.

ROM page mode is set by the page ROM control register (PMEMCR). Setting <OPGE> of the PMEMCR register to "1" sets the memory access of the block address area to ROM page mode access.

The number of read cycles is set by the <OPWR1:0> of the PMEMCR register.

			_
<opwr1></opwr1>	<opwr0></opwr0>	Number of Cycle in a Page	
0	0	1 state (n-1-1-1 mode) (n ≥ 2)	
0	1	2 state (n-2-2-2 mode) (n ≥ 3)	6
1	0	3 state (n-3-3-3 mode) (n ≥ 4)	(\bigcirc)
1	1	(Reserved)	70

<opwr1:0> (</opwr1:0>	PMEMCR	register

Note: Set the number of waits ("n") using the control register (BnCSL) in each block address area.

The page size (the number of bytes) of ROM in the CPU size is set by the <PR1:0> of the PMEMCR register. When data is read out up to the border of the set page, the controller completes the page reading operation. The start data of the next page is read in the normal cycle. The following data is set to page read again.

Figure 3.6.2 Page mode access Timing (8-byte example)

3.6.5 Cautions

(1) Note on timing between $\overline{\text{CS}}$ and $\overline{\text{RD}}$

If the parasitic capacitance of the $\overline{\text{RD}}$ (Read signal) is greater than that of the $\overline{\text{CS}}$ (Chip select signal), it is possible that an unintended read cycle occurs due to a delay in the read signal. Such an unintended read cycle may cause a problem, as in the case of (a) in Figure 3.6.3.

the toggle bit correctly since it always reads same value for the toggle bit. To avoid this phenomenon, data polling function control is recommended.

(2) Note on NAND flash area setting, LCD driver area setting with built-in RAM

Figure 3.6.5 shows a memory map for a NAND flash and RAM built-in LCD driver.

Since it is recommended that CS3 area be assigned to the address 000000H to 3FFFFFH, the following explanation is given.

In this case, the NAND flash and RAM built-in LCD driver overlap with CS3 area.

However, each access control circuit in the TMP92CA25 operates independently.

So, if a program on CS3 area accesses NAND flash, both $\overline{CS3}$ and NAND flash will be accessed at the same time and a problem such as data conflict will occur.

To avoid this phenomenon, TMP92CA25 have MEMCR0<CSDIS>. If set <CSDIS> to "1", $\overline{CS3}$ pin don't active in case of access 001D00H to 001FFFH (768B) in area that is set as CS3 area. Above phenomenon can be avoided by this setting. This function is valid not only $\overline{CS3}$ but also all $\overline{CS0}$ to $\overline{CS3}$ pins.

- Note1: In above setting, the address from 000000H to 005FFFH of 24 Kbytes for CS3's memory can't be used.
- Note2: 512 byte area (001D00H to 001EFFH) for NAND flash are fixedlike a following without relation ship to setting CS block. Therefore, NAND flash area don't conform to CS3 area setting.
 - (NAND flash area specification)
 - 1. bus width : Fixed 8 bit
 - 2. WAIT control : Depend on NDnFSPR<SPW> of NAND flash controller

Figure 3.6.5 Recommended CS3 and CS0 Setting

(3) The cautions at the time of the functional change of a $\overline{\text{CSn}}$.

A chip select signal output has the case of a combination terminal with a general-purpose port function. In this case, an output latch register and a function control register are initialized by the reset action, and an object terminal is initialized by the port output ("1" or "0") by it.

Functional change

Although an object terminal is changed from a port to a chip select signal output by setting up a function control register (PnFC register), the short pulse for several ns may be outputted to the changing timing. Although it does not become especially a problem when using the usual memory, it may become a problem when using a special memory.

The measure by software

The countermeasures in S/W for avoiding this phenomenon are explained.

Since CS signal decodes the address of the access area and is generated, an unnecessary pulse is outputted by access to the object CS area immediately after setting it as a CSn function. Then, if internal area is accessed also immediately after setting a port as CS function, an unnecessary pulse will not output.

1. The ban on interruption under functional change (DI command)

- 2. A dummy command is added in order to carry out continuous internal access.
- 3. (Access to a functional change register is corresponded by 16-bit command.

3.7 8-Bit Timers (TMRA)

The TMP92CA25 features 4 built-in 8-bit timers (TMRA0-TMRA3).

These timers are paired into two modules: TMRA01 and TMRA23. Each module consists of two channels and can operate in any of the following four operating modes.

- 8-bit interval timer mode
- 16-bit interval timer mode
- 8-bit programmable square wave pulse generation output mode (PPG: Variable duty cycle with variable period)
- 8-bit pulse width modulation output mode (PWM: Variable duty cycle with constant period)

Figure 3.7.1 and Figure 3.7.2 show block diagrams for TMRA01 and TMRA23.

Each channel consists of an 8-bit up counter, an 8-bit comparator and an 8-bit timer register. In addition, a timer flip-flop and a prescaler are provided for each pair of channels.

The operation mode and timer flip-flops are controlled by a five-byte SFR (special function register).

Each of the two modules (TMRA01 and TMRA23) can be operated independently. All modules operate in the same manner; hence only the operation of TMRA01 is explained here.

The contents of this chapter are as follows.

- 3.7.1 Block Diagrams
- 3.7.2 Operation of Each Circuit
- 3.7.3 SFR
- 3.7.4 Operation in Each Mode
 - (1) 8-bit timer mode
 - (2) 16-bit timer mode
 - (3) 8-bit PPG (programmable pulse generation) output mode
 - (4) 8-bit PWM (pulse width modulation) output mode
 - (5) Mode settings

Table 3.7.1 Registers and Pins for Each Module

1	/			
4	\sum	Module	TMRA01	TMRA23
	External	Input pin for external clock	No	No
((pin	Output pin for timer flip-flop	TA1OUT (Shared with PC0)	TA3OUT (Shared with PC1)
	\sum	Timer run register	TA01RUN (1100H)	TA23RUN (1108H)
\mathbb{N}	SFR	Timer register	TA0REG (1102H) TA1REG (1103H)	TA2REG (110AH) TA3REG (110BH)
	(Address)	Timer mode register	TA01MOD (1104H)	TA23MOD (110CH)
\geq		Timer flip-flop control register	TA1FFCR (1105H)	TA3FFCR (110DH)

Figure 3.7.2 TMRA23 Block Diagram

3.7.2 Operation of Each Circuit

(1) Prescalers

A 9-bit prescaler generates the input clock to TMRA01.

The clock $\phi T0$ is divided into 8 by the CPU clock fsys and input to this prescaler.

The prescaler operation can be controlled using TA01RUN<TA01PRUN> in the timer control register. Setting <TA01PRUN> to "1" starts the count; setting <TA0PRUN> to "0" clears the prescaler to "0" and stops operation. Table 3.7.2 shows the various prescaler output clock resolutions.

				Timer counter	input clock			
System clock	Clock gear							
Selection	Selection		I MRA prescaler					
SYSCR1	SYSCR1	-	TAxMOD <taxclk1:0></taxclk1:0>					
<sysck></sysck>	<gear2:0></gear2:0>		φT1(1/2)	φ T 4(1/8)	φT16(1/32)	φT256(1/512)		
1 (fs)	-		fs/16	fs/64	fs/256	fs/4096		
	000 (1/1)		fc/16	fc/64	fc/256	fc/4096		
	001 (1/2)	1/9	fc/32	fc/128	fc/512	fc/8192		
0 (fc)	010 (1/4)	170	fc/64	fc/256	fc/1024	fc/16384		
	011 (1/8)		fc/128	fc/512	fc/2048	fc/32768		
	100 (1/16)		fc/256	fc/1024	fc/4096	fc/65536		

Table 3.7.2 Prescaler Output Clock Resolution

xxx: Don't care

(2) Up counters (UC0 and UC1)

These are 8-bit binary counters which count up the input clock pulses for the clock specified by TA01MOD.

The input clock for UC0 is selectable and can be either the external clock input via the TA0IN pin or one of the three internal clocks ϕ T1, ϕ T4 or ϕ T16. The clock setting is specified by the value set in TA01MOD<TA01CLK1:0>.

The input clock for UC1 depends on the operation mode. In 16-bit timer mode, the overflow output from UC0 is used as the input clock. In any mode other than 16-bit timer mode, the input clock is selectable and can either be one of the internal clocks ϕ T1, ϕ T16 or ϕ T256, or the comparator output (the match detection signal) from TMRA0.

For each interval timer the timer operation control register bits TA01RUN<TA0RUN> and TA01RUN<TA1RUN> can be used to stop and clear the up counters and to control their count. A reset clears both up counters, stopping the timers.

(3) Timer registers (TA0REG and TA1REG)

These are 8-bit registers, which can be used to set a time interval. When the value set in the timer register TAOREG or TA1REG matches the value in the corresponding up counter, the comparator match detect signal goes Active. If the value set in the timer register is 00H, the signal goes Active when the up counter overflows.

TAOREG has a double buffer structure, making a pair with the register buffer.

The setting of the bit TA01RUN<TA0RDE> determines whether TA0REG's double buffer structure is enabled or disabled. It is disabled if <TA0RDE> = "0" and enabled if <TA0RDE> = "1".

When the double buffer is enabled, data is transferred from the register buffer to the timer register when a 2^n overflow occurs in PWM mode, or at the start of the PPG cycle in PPG mode. Hence the double buffer cannot be used in timer mode.

A reset initializes <TAORDE> to "0", disabling the double buffer. To use the double buffer, write data to the timer register, set <TAORDE> to "1", and write the following data to the register buffer. Figure 3.7.3 show the configuration of TAOREG.

(4) Comparator (CP0)

The comparator compares the value in an up counter with the value set in a timer register. If they match, the up counter is cleared to "0" and an interrupt signal (INTTA0 or INTTA1) is generated. If timer flip-flop inversion is enabled, the timer flip-flop is inverted at the same time.

(5) Timer flip-flop (TA1FF)

The timer flip-flop (TA1FF) is a flip-flop inverted by the match detects signals (8-bit comparator output) of each interval timer.

Whether inversion is enabled or disabled is determined by the setting of the bit TA1FFCR<TA1FFIE> in the timer flip-flops control register. A reset clears the value of TA1FF to "0". Writing "01" or "10" to TA1FFCR<TA1FFC1:0> sets TA1FF to "0" or "1". Writing "00" to these bits inverts the value of TA1FF (this is known as software inversion).

The TA1FF signal is output via the TA1OUT pin (which can also be used as PC0).

When this pin is used as the timer output, the timer flip-flop should be set beforehand using the port C function register PCCR and PCFC.

Note: When the double buffer is enabled for an 8-bit timer in PWM or PPG mode, caution is required as explained below.

If new data is written to the register buffer immediately before an overflow occurs by a match between the timer register value and the up-counter value, the timer flip-flop may output an unexpected value.

For this reason, make sure that in PWM mode new data is written to the register buffer by six cycles ($f_{SYS} \times 6$) before the next overflow occurs by using an overflow interrupt.

When using PPG mode, make sure that new data is written to the register buffer by six cycles before the next cycle compare match occurs by using a cycle compare match interrupt,

3.7.3 SFR

				TMRA01 R	tun Registe	er					
		7	6	5	4	3	2	1	0		
TA01RUN	Bit symbol	TA0RDE				I2TA01	TA01PRUN	TA1RUN	TA0RUN		
(1100H)	Read/Write	R/W					R/	W			
	After reset	0				0	0	0	0		
	Function	Double				IDLE2	TMRA01	UP counter	UP counter		
		buffer				0: Stop	prescaler	(UC1)	(000)		
		1. Enable				1. Operate	0: Stop and (lear			
			ible buffer con	trol		\geq		Timer run/stor			
				10					and clear		
			bic								
	Note: The	values of bit	s 4 to 6 of TA0	1RUN are un	defined when	read.	/		>		
					C	77~		5			
	<	1	1	TMRA23 F	tun Registe	er))	\diamond ((
		7	6	5	4	3	2	90/	0		
TA23RUN	Bit symbol	TA2RDE				I2TA23	TA23PRUN	TA3RUN	TA2RUN		
(11001)	Read/Write	R/W					R/	W			
	After reset	0		\rightarrow	\rightarrow			0	0		
	Function	Double			\searrow	IDLE2	IMRA23	UP counter	UP counter		
		0. Disable		$\langle \langle \rangle$	\geq /	1. Onerate	0: Stop and	(UC3)	(001)		
		1: Enable					1: Run (Cour	count up)			
			(()							
		TA2REG dou	uble buffer con	trol			$ \longrightarrow^{-} $	Fimer run/stop	o control		
		0 Disa	able	\bigtriangleup				0 Stop	and clear		
		1 Ena	ble))				1 Run ((Count up)		
			\square			\rightarrow					
	Note: The	values of bit	s 4 to 6 of TA2	3RUN are un	defined when	read.					
		Figure 3	.7.4 TMRAC	1 Run Reg	ister and T	MRA23 Ru	ın Register				
			>								
	\sim	2									
	4	\searrow	\wedge	\sim							
	\square	\sim	21								
\sim))									
	\langle / \subset		()								
$\langle \in$	$ \rightarrow $		$\wedge \bigcirc$								
		2	\sim								
	\searrow										

TMRA23 Mode Register

TMRA1 Flip-Flop Control Register

TMRA3 Flip-Flop Control Register

TMRA Register											
Symbol	Address	7	7 6 5 4 3 2 1 0								
TA0REG	1102H		– W Undefined								
TA1REG	1103H	W									
		Undefined									
TAOD 50	440411		-								
TA2REG	110AH	W									
					Unde		(\bigcirc)				
TAODEO	440011				-						
TA3REG	110BH				V	<u>v ((</u>					
					Unde	efined	\bigcirc r				

Note: Read-modify-write instruction is prohibited.

Figure 3.7.9 8-Bit Timers Register

3.7.4 Operation in Each Mode

(1) 8-bit timer mode

Both TMRA0 and TMRA1 can be used independently as 8-bit interval timers.

1. Generating interrupts at a fixed interval (using TMRA1)

To generate interrupts at constant intervals using TMRA1 (INTTA1), first stop TMRA1 then set the operation mode, input clock and a cycle to TA01MOD and TA1REG register, respectively. Then, enable the interrupt INTTA1 and start TMRA1 counting.

Example: To generate an INTTA1 interrupt every 40 μ s at f_C = 40 MHz, set each register as follows:

	MS	MSB						LS	SB
		7	6	5	4	3	2	1	0
TA01RUN	←	-	Х	Х	Х	-	-	0	-
TA01MOE	→ (0	0	Х	Х	0	1	-	-
TA1REG	←	0	1	1	0	0	1	0	0
INTETA01	←	Х	1	0	1	-	-	-	- (
TA01RUN	←	_	Х	Х	Х	_	1	1	- <
X: Don't ca	re, -: N	o cł	nang	e					\bigcirc

♦T256

Stop TMRA1 and clear it to "0". Select 8-bit timer mode and select ϕ T1 (= (16/fc)s at f_C = 40 MHz) as the input clock. Set TREG1 to 40 µs ÷ ϕ T1 = 100 = 64H. Enable INTTA1 and set it to level 5. Start TMRA1 counting.

Select the input clock using Table 3.7.3

Table 0.7.0 Calenting International Joke and the Long M Ole fid lains	
Iable 3 / 3 Selecting interring interval and the induity lock using	1 X-RIT LIMER

Input Clock		Interrupt Interval (at f _{SYS} = 20 MHz)	Resolution
φT1	(8/f _{SYS})	0.4 μs to 102.4 μs	0.4 μs
φ T 4	(32/f _{SYS})	1.6 μs to 409.6 μs	1.6 μs
φT16	(128/f _{SYS})	6.4 μs to 1.638 ms	6.4 μs
φT256	(2048/f _{SYS})	102.4 µs to 26.21 ms	102.4 μs

Note: The input clocks for TMRA0 and TMRA1 differ as follows:

TMRA0: Uses TMRA0 input (TA0IN) and can be selected from ϕ T1, ϕ T4 or ϕ T16

TMRA1: Matches output of TMRA0 (TA0TRG) and can be selected from ϕ T1, ϕ T16,

2. Generating a 50 % duty ratio square wave pulse

The state of the timer flip-flop (TA1FF1) is inverted at constant intervals and its status output via the timer output pin (TA1OUT).

Example: To output a 2.4- μ s square wave pulse from the TA1OUT pin at fc = 40 MHz, use the following procedure to make the appropriate register settings. This example uses TMRA1; however, either TMRA0 or TMRA1 may be used.

3. Making TMRA1 count up on the match signal from the TMRA0 comparator Select 8-bit timer mode and set the comparator output from TMRA0 to be the

input clock to TMRA1.

(2) 16-bit timer mode

A 16-bit interval timer is configured by pairing the two 8-bit timers TMRA0 and TMRA1.

To make a 16-bit interval timer in which TMRA0 and TMRA1 are cascaded together, set TA01MOD<TA01M1:0> to "01".

In 16-bit timer mode, the overflow output from TMRA0 is used as the input clock for TMRA1, regardless of the value set in TA01MOD<TA01CLK1:0>. Table 3.7.2 shows the relationship between the timer (interrupt) cycle and the input clock selection.

To set the timer interrupt interval, set the lower eight bits in timer register TAOREG and the upper eight bits in TA1REG. Be sure to set TAOREG first (as entering data in TAOREG temporarily disables the compare, while entering data in TA1REG starts the compare).

Setting example: To generate an INTTA1 interrupt every 0.4 s at $f_C = 40 \text{ MHz}$, set the timer registers TA0REG and TA1REG as follows:

If ϕ T16 (= (256/fc)s at f_C = 40 MHz) is used as the input clock for counting, set the following value in the registers: 0.4 s ÷ =(256/fc)s = 62500 = F424H; e.g. set TA1REG to F4H and TA0REG to 24H.

The comparator match signal is output from TMRA0 each time the up counter UC0 matches TA0REG, though the up counter UC0 is not cleared.

In the case of the TMRA1 comparator, the match detect signal is output on each comparator pulse on which the values in the up counter UC1 and TA1REG match. When the match detect signal is output simultaneously from both the comparator TMRA0 and TMRA1, the up counters UC0 and UC1 are cleared to "0" and the interrupt INTTA1 is generated. Also, if inversion is enabled, the value of the timer flip-flop TA1FF is inverted.

(3) 8-bit PPG (Programmable pulse generation) output mode

Square wave pulses can be generated at any frequency and duty ratio by TMRA0. The output pulses may be active low or active high. In this mode TMRA1 cannot be used.

TMRA0 outputs pulses on the TA1OUT pin (which can also be used as PC0).

Figure 3.7.13 8-Bit PPG Output Waveforms

In this mode a programmable square wave is generated by inverting the timer output each time the 8-bit up counter (UC0) matches the value in one of the timer registers TA0REG or TA1REG.

The value set in TA0REG must be smaller than the value set in TA1REG.

Although the up counter for TMRA1 (UC1) is not used in this mode, TA01RUN<TA1RUN> should be set to "1" so that UC1 is set for counting.

Figure 3.7.14 shows a block diagram representing this mode.

If the TAOREG double buffer is enabled in this mode, the value of the register buffer will be shifted into TAOREG each time TA1REG matches UCO.

Example: To generate 1/4 duty 62.5 kHz pulses (at $f_C = 40$ MHz) 16 μs Calculate the value which should be set in the timer register. To obtain a frequency of 62.5 kHz, the pulse cycle t should be: t = 1/62.5 kHz = 16 µs ϕ T1 (=(16/fc)s (at f_C = 40 MHz); $16 \ \mu s \div (16/fc)s = 40$ Therefore set TA1REG to 40 (28H) The duty is to be set to 1/4: t \times 1/4 = 16 μs \times 1/4 = 4 μs $4 \ \mu s \div (16/fc)s = 10$ Therefore, set TA0REG = 10 = 0AH. 7 6 5 4 3 2 1 0 TA01RUN Stop TMRA0 and TMRA1 and clear it to "0". 0 0 0 0 Х Х Х TA01MOD Set the 8-bit PPG mode, and select oT1 as input clock. 0 Х х Х Х 0 1 **TAOREG** 0 0 0 0 1 0 Write 0AH. 0 1 TA1REG Write 28H. 0 0 1 0 1 0 0 0 TA1FFCR 0 Х Set TA1FF, enabling both inversion and the double buffer. Х Х Х Х 1 1 10 generate a negative logic pulse. PCCR 1 Set PC0 as the TA1OUT pin. PCFC Start TMRA0 and TMRA1 counting. TA01RUN Х Х Х 1 1 X: Don't care, -: No change

(4) 8-bit PWM output mode

This mode is only valid for TMRA0. In this mode, a PWM pulse with the maximum resolution of 8 bits can be output.

When TMRA0 is used the PWM pulse is output on the TA1OUT pin (which is also used as PC1). TMRA1 can also be used as an 8-bit timer.

The timer output is inverted when the up counter (UC0) matches the value set in the timer register TA0REG or when 2^n counter overflow occurs (n = 6, 7 or 8 as specified by TA01MOD<PWM01:00>). The up counter UC0 is cleared when 2^n counter overflow occurs. The following conditions must be satisfied before this PWM mode can be used.

Figure 3.7.17 Block Diagram of 8-Bit PWM Mode
In this mode the value of the register buffer will be shifted into TAOREG if 2^n overflow is detected when the TAOREG double buffer is enabled.

Use of the double buffer facilitates the handling of low duty ratio waves.

				PWM cycle								
System clock	Clock gear					TΑγ	xMOD <pwi< td=""><td>Mx1:0></td><td></td><td></td><td></td></pwi<>	Mx1:0>				
SYSCR0	SYSCR1	-		2 ⁶ (x64)			2 ⁷ (x128)		2 ⁸ (x256)			
<sysck></sysck>	<gear2:0></gear2:0>		TAxxMOD <taxclk1:0></taxclk1:0>			TAxxN	/IOD <taxcl< td=""><td colspan="2">K1:0> TAxxM0</td><td>MOD<taxcl< td=""><td colspan="2">10D<taxclk1:0></taxclk1:0></td></taxcl<></td></taxcl<>	K1:0> TAxxM0		MOD <taxcl< td=""><td colspan="2">10D<taxclk1:0></taxclk1:0></td></taxcl<>	10D <taxclk1:0></taxclk1:0>	
			φT1(x2)	φT4(x8)	φT16(x32)	φT1(x2)	φT4(x8)	φT16(x32)	φT1(x2)	φT4(x8)	φT16(x32)	
1(fs)			1024/fs	4096/fs	16384/fs	2048/fs	8192/fs	32768/fs	4096/fs	16384/fs	65536/fs	
	000(x1)		1024/fc	4096/fc	16384/fc	2048/fc	8192/fc	32768/fc	4096/fc	16384/fc	65536/fc	
	001(x2)	~8	2048/fc	8192/fc	32768/fc	4096/fc	16384/fc	65536/fc	8192/fc	32768/fc	131072/fc	
0(fc)	010(x4)	×0	4096/fc	16384/fc	65536/fc	8192/fc	32768/fc	131072/fc	16384/fc	65536/fc	262144/fc	
	011(x8)		8192/fc	32768/fc	131072/fc	16384/fc	65536/fc	262144/fc	32768/fc	131072/fc	524288/fc	
	100(x16)		16384/fc	65536/fc	262144/fc	32768/fc	131072/fc	524288/fc	65536/fc	262144/fc	1048576/fc	

Table 3.7.4 PWM Cycle

(5) Settings for each mode

Table 3.7.5 shows the SFR settings for each mode.

Table 3.7.5 Timer Mo	de Setting Registers
----------------------	----------------------

Register name		TA01	MOD	\sim (C	TA1FFCR
<bit symbol=""></bit>	<ta01m1: 0=""></ta01m1:>	<pwm01:00></pwm01:00>	<ta1clk1:0></ta1clk1:0>	<ta0clk1: 0=""></ta0clk1:>	<ta1ffis></ta1ffis>
Function	Timer Mode	PWM Cycle	Upper Timer Input Clock	Lower Timer Input Clock	Timer F/F Invert Signal Select
8-bit timer × 2 channels	00	-	Lower timer match, \$\$T1, \$\$T16, \$\$T256 (00, 01, 10, 11)	External clock,	0: Lower timer output 1: Upper timer output
16-bit timer mode	01			External clock,	_
8-bit PPG × 1 channel	10			External clock, φT1, φT4, φT16 (00, 01, 10, 11)	_
8-bit PWM × 1 channel	11	2 ⁶ , 2 ⁷ , 2 ⁸ (01, 10, 11)		External clock, φT1, φT4, φT16 (00, 01, 10, 11)	_
8-bit timer × 1 channel	11	\sim	φT1, φT16, φT256 (01, 10, 11)	_	Output disabled

-: Don't care

3.8 External Memory Extension Function (MMU)

By providing 3 local areas, the MMU function allows for the expansion of the program/data area up to 512 Mbytes.

The recommended address memory map is shown in Figure 3.8.1.

However, when the memory used is less than 16 Mbytes, it is not necessary to set the MMU register. In this case, please refer to the Memory Controller section.

An area which can be set as a bank is called a local area. Since the address for local areas is fixed, it cannot be changed. And, area which cannot be set as a bank is called Common area.

Basically one series of program should be closed within one bank. Please don't jump to the same LOCAL-area in the different bank directly by JP instruction and so on. Refer to the examples as follows.

It is not possible for a program to branch between different banks of the same local area.

The TMP92CA25 has the following external pins for memory LSI connection.

Address bus: EA25, EA24 and A23 to A0

Chip select: CS0 to CS3, CSZA to CSZF, SDCS NDOCE and ND1CE Data bus: D15 to D0

3.8.1 Recommended Memory Map

Figure 3.8.1 shows one recommended address memory map. This is for maximum expanded memory size and for a system in which an internal boot ROM with NAND flash is not required.

Note: CSZA is a chip select for not only bank 0 to 15 of LOCAL-Z but also COMMON-Z.

Figure 3.8.1 Recommended Memory Map for Maximum Specification (Logical address)

Figure 3.8.2 Recommended Memory Map for Maximum Specification (Physical address)

3.8.2 Control Registers

There are 12 MMU registers, covering 4 functions (program, data read, data write and LCDC display data), in each of 3 local areas (Local-X, Y and Z), providing easy data access.

(Instructions for use)

First, set the enable register and bank number for each LOCAL register.

The relevant pin and memory settings should then be set to the ports and memory controller.

When the CPU or LCDC outputs a local area logical address, the MMU converts and outputs this to the physical address according to the bank number. The physical address bus is output to the external address bus pin, thereby enabling access to external memory.

- Note 1: Since the common area cannot be used as local area, do not set a bank number to LOCAL register which overlaps with the common area.
- Note 2: Changing program BANK number (LOCALPX, Y or Z) is disabled in the LOCAL area. The program bank setting for each local area must be changed in the common area. (But bank setting of read data, write data and data for LCD display can be changed in the local area.)
- Note 3: After data bank number register (LOCALRn, LOCALWn or LOCALLn; where "n" means X, Y or Z) is set by an instruction, do not access its memory by the following instruction because several clocks are required for effective MMU setting. For this reason, insert between them a dummy instruction which accesses SFR or another memory, as in the following example.

((Example)					
		ld	xix, 200000H			
		ld	(localrx), 81H		Data bank number is set	
		ld	wa, (localrx)		← Inserted dummy instruction which accesses SFR	_
	\bigcap	Id	wa, (xix)		Instruction which reads BANK 1 of LOCAL-X area.	
	Note 4:	When L	OCAL-Z area i	s used, chi	ip select signal CSZA should be assigned t	O
		P82 pin		\square		
		In this c	ase, CSZA wor	ks as chip s	select signal for not only BANK 0 to 15 but als	0
\sim	\land	COMMO	DN-Z.			
	$\langle \cdot \rangle$	The follo	owing setting af	ter reset is	required before setting Port82.	
	\sim	ld	(localpz), 80H	;	LOCAL-Z bank enable for program	
$(\subset$		ld	(localrz), 80H	;	LOCAL-Z bank enable for data read	
\mathcal{I}		ld	(localwz), 80H	;	LOCAL-Z bank enable for data write (*1)	
		∕∕ld (((locallz), 80H	;	LOCAL-Z bank enable for LCD display memory (*2)	
$ \rightarrow $	((p8fc),	-0 - B;	Set P82 pin to CSZA output	
		ld	(p8fc2),	-1B ;		
(*1)	If COMMC	DN-Z area	is not used as data	write memory	/, this setting is not required.	
(*2)	If COMMC	DN-Z area	is not used as LCD	display memo	ory, this setting is not required.	

(1) Program bank register

The bank number used as program memory is set to these registers. It is not possible to change program bank number in the same local area.

(2) LCD Display bank register

The bank number used as LCD display memory is set to these registers. Since the bank registers for CPU and LCDC are prepared independently, the bank number for CPU (Program, Read data or Write data) can be changed during LCD display.

LOCAL-X Register for LCDC Display Data

(3) Read data bank register

The bank register number used as read data memory is set to these registers. The following is an example where the read data bank register of LOCAL-X is set to "1". When "Id wa, (xix)" instruction is executed, the bank becomes effective only at the read cycle for xix address.

(4) Write data bank register

The bank number used as write data memory is set to these registers. The following is an example where the data bank register of LOCAL-X is set to "1". When "ld (xix), wa" instruction is executed, the bank becomes effective only at the write cycle for xix address.

3.8.3 Setting Example

Below is a setting example.

No		Momory	Sotting	MMLLAroo	Logical	Physical
INO.	Useu as	Memory	Setting	IVIIVIO Alea	Address	Address
(a)	Main routine	NOR flash	CSZA , 32 bits	COMMON-Z	C00000H to	D FFFFFFH
(b)	Character ROM	1 pcs)	1 wait	Bank 0 in LOCAL-Z	800000H to BFFFFFH	000000H to SFFFFFH
(c)	Sub routine	SRAM	CS1,	Bank 0 in LOCAL-Y	400000H to 5FFFFFH	000000H to 1FFFFFH
(d)	LCD display RAM	(16 Mbytes, 1 pcs)	0 waits	Bank 1 in LOCAL-Y		200000H to 3FFFFFH
(e)	Stack RAM	Internal RAM (16 Kbytes)	_ (32 bits, 1 clock)		002000H to	005FFFH

(a) Main routine (COMMON-Z)

Logical Address	Physical Address	No	Instruction	Comment
		1	org C00000H	
C00000H	\leftarrow (Same)	2	ldw (mamr2), 80FFH	; CS2 800000-FFFFF/8 Mbytes
C000xxH	\downarrow	3	ldw (b2csl), C222H	; CS2 32-bit ROM, 1 wait
		4	ldw (mamr1), 40FFH	; CS1 400000-7FFFFF/4 Mbytes
		5	ldw (b1csl), 8111H	; CS1 16-bit RAM, 0 waits
		5.1	ld (localpz), 80H	; LOCAL-Z bank enable for program
		5.2	ld (localrz), 80H	; LOCAL-Z bank enable for data read
		6	ld (p8fc), 02H	; P81: CS1
		7	ld (p8fc2), 04H	; P82: CSZA
		8	ld (pjfc), 07H	; PJ2: SRWR , PJ1: SRLUB , PJ0: SRLLB
		9	ld) xsp, 6000H	; Stack pointer = 6000H
		10	ld (localpy), 80H	; BANK 0 in LOCAL-Y is set as program for sub routine
	\sum	[11]		,
C000yyH	←)	12	call 400000H	; Call sub routine
		13		2
		14		2
		15		

• Instructions from No.2 to No.8 are settings for ports and memory controller.

No.9 is a setting for stack pointer. It is assigned to internal RAM.

- No.10 is a setting to execute No.12's instruction.
- No.12 is an instruction to call sub routine. When CPU outputs 400000H address, this MMU will convert and output 000000H address to external address bus: A23 to A0. And $\overline{CS1}$ for SRAM will be asserted because its logical address is in the CS1area at the same time. These instructions allow the CPU to branch to sub routine.

Note: This example assumes a sub routine program is already written on SRAM.

Logical Address	Physical Address	No		Instruction	Comment
		16	org	400000H	- 7
400000H	000000H	17	ld	(localwy), 81H	; BANK 1 in LOCAL-Y is set as write data for LCD display RAM
4000xxH	0000xxH	18	ld	(locally), 81H	; BANK 1 in LOCAL-Y is set as LCD display data for LCD display RAM
		19	ld	(localrz), 80H	; BANK 0 in LOCAL-Z is set as read data for character ROM
		20	ld	xiy, 800000H	; Index address register to read character ROM
		21	ld	wa, (xiy)	; Reading character ROM
		22	:		; Convert it to display data
		23	ld	(localpy), 82H	
		24	ld	xix, 400000H	; Index address register to write LCD display data
		25	ld	(xix), bc	; Writing LCD display data
		26	:	$(\overline{\Omega})$; Setting LCD controller
		27	:		
		28	ld	xiz, 400000H	; Setting LCD start address to LCDC
		29	ld	(Isarcl), xiz	
		30	ld	(IcdctI0), 01H	; Start LCD display operation
		31	:		
5000yyH	1000yyH	32	ret		; ((// <

(b) Sub routine (Bank 0 in LOCAL-Y)

- No.17 and No.18 are settings for BANK 1 of LOCAL-Y. In this case, LCD display data is written to SRAM by CPU.
 So, (LOCALWY) and (LOCALLY) should be set to the same BANK 1.
- No.19 is a setting for BANK 0 of LOCAL-Z to read data from character ROM.
- No.20 and No.21 are instructions to read data from character ROM. When CPU outputs 800000H address, this MMU will convert and output 000000H address to external address bus: A23 to A0. And CSZA for NOR flash will be asserted because its logical address is in the CS2 area at the same time.

These instructions allow the CPU to read data from character ROM.

- No.23 is an instruction which changes the program BANK number in the local area. <u>This</u> <u>setting is disabled.</u>
- No.24 and No.25 are instructions to write data to SRAM. When CPU outputs 400000H address, this MMU will convert and output 200000H address to external address bus: A23 to A0. And CS1 for SRAM will be asserted because its logical address is in the CS1area at the same time.

These instructions allow the CPU to write data to SRAM.

No.28 and No.29 are settings to set LCD starting address to LCD controller. When LCDC outputs 400000H address in DMA cycle, this MMU will convert and output 200000H address to external address bus: A23 to A0. And $\overline{CS1}$ for SRAM will be asserted because its logical address is in the CS1 area at the same time.

These instructions allow the LCDC to read data from SRAM.

• No.30 is an instruction to start LCD display operation.

3.9 Serial Channels

The TMP92CA25 includes 1 serial I/O channels. For the channel, either UART mode (asynchronous transmission) or I/O interface mode (synchronous transmission) can be selected. And SIOO includes data modulator that supports the IrDA 1.0 infrared data communication specification.

I/O interface mode ———	Mode 0:	For transmitting and receiving I/O data using the synchronizing signal SCLK for extending I/O.
UART mode	Mode 1: Mode 2:	7-bit data
	Mode 2: Mode 3:	9-bit data

In mode 1 and mode 2 a parity bit can be added. Mode 3 has a wakeup function for making the master controller start slave controllers via a serial link (a multi controller system).

Figure 3.9.2 is block diagrams for SIO0.

SIO0 is compounded mainly prescaler, serial clock generation circuit, receiving buffer and control circuit, transmission buffer and control circuit.

This chapter contains the following sections:

- 3.9.1 Block diagram
- 3.9.2 Operation of each circuit
- 3.9.3 SFR
- 3.9.4 Operation in each mode
- 3.9.5 Support for IrDA mode

Mode 0 (I/O interface mode)	
$\frac{1}{\sqrt{2}} \frac{3}{4} \frac{4}{5} \frac{6}{7} \frac{7}{7}$ $\leftarrow Transfer direction$	
Mode 1 (7-bit UART mode)	
No parity	
ParityStart_Bit0 1 2 3 4 5 6 Parity Stop	
Mode 2 (8-bit UART mode)	
No parity	
Parity - Start Bit0 1 2 3 4 5 6 7 Parity Stor	<u> </u>
Mode 3 (9-bit UART mode)	\geq
$\frac{1}{3} \frac{1}{2} \frac{3}{3} \frac{4}{5} \frac{5}{6} \frac{7}{8} \frac{8}{5} \frac{5}{6} \frac{1}{7} \frac{1}{8} \frac{1}{5} \frac{1}{6} \frac{1}{7} \frac{1}{8} \frac{1}{5} \frac{1}{1} \frac{1}$	<u></u>
Wakeup Start Bit0 1 2 3 4 5 6 7 Bit8 Stor)
When bit8 = 1, Address (Select code) is denoted.	
When bit8 = 0, Data is denoted.	
Figure 3.9 Data Formats	

3.9.1 Block Diagrams

Figure 3.9.2 Block Diagram of Serial Channel 0

3.9.2 Operation for Each Circuit

(1) SIO Prescaler and prescaler clock select

There is a 6-bit prescaler for waking serial clock.

The prescaler can be run by selecting the baud rate generator as the waking serial clock.

Table 3.9.1 shows prescaler clock resolution into the baud rate generator.

System clock selection SYSCR1	Clock gear selection SYSCR1	_	Baud rate generator input clock SIO prescaler BR0CR <br0ck1:0></br0ck1:0>					
<sysck></sysck>	<gear2:0></gear2:0>		φ Τ0	φT2(1/4)	φ T8(1/16)	φT32(1/64)		
1(fs)	-		fs/8	fs/32	fs/128	fs/512		
0(fc)	000(1/1)		fc/8	fc/32	fc/128	fc/512		
	001(1/2)	1/8	fc/16	fc/64	fc/256	fc/1024		
	010(1/4)		fc/32	fc/128	fc/512	fc/2048		
	011(1/8)		fc/64	fc/256	fc/1024	fc/4096		
	100(1/16)		fc/128	fc/512	fc/2048	fc/8192		

T-1-1-004	Due e e e le mole	al. Daaaluttaa ta		
Table 391	Prescaler Ulo	CK Resolution to) Ralid Rate	- (-enerator
10010 0.0.1	1 100000101 0100		buuu ituu	

The baud rate generator selects between 4 clock inputs: $\phi T0$, $\phi T2$, $\phi T8$, and $\phi T32$ among the prescaler outputs.

(2) Baud rate generator

The baud rate generator is a circuit which generates transmission and receiving clocks that determine the transfer rate of the serial channels.

The input clock to the baud rate generator, $\phi T0$, $\phi T2$, $\phi T8$ or $\phi T32$, is generated by the 6-bit SIO prescaler, which is shared by the timers. One of these input clocks is selected using the BR0CR<BR0CK1:0> field in the baud rate generator control register.

The baud rate generator includes a frequency divider, which divides the frequency by 1 or N + (16 - K)/16 or 16 values, thereby determining the transfer rate.

The transfer rate is determined by the settings of BR0CR<BR0ADDE, BR0S3:0> and BR0ADD<BR0K3:0>.

- In UART mode
- (1) When BROCR < BROADDE > = 0

The settings BR0ADD<BR0K3:0> are ignored. The baud rate generator divides the selected prescaler clock by N, which is set in BR0CK<BR0S3:0>. (N = 1, 2, 3 ...16)

(2) When BR0CR < BR0ADDE > = 1

The N + (16 - K)/16 division function is enabled. The baud rate generator divides the selected prescaler clock by N + (16 - K)/16 using the value of N set in BR0CR<BR0S3:0> (N = 2, 3...15) and the value of K set in BR0ADD<BR0K3:0> (K = 1, 2, 3...15)

Note: If N = 1 or N = 16, the N + (16 - K)/16 division function is disabled. Set BR0CR<BR0ADDE> to 0.

• In I/O interface mode

The N + (16 - K)/16 division function is not available in I/O interface mode. Set BR0CR<BR0ADDE> to 0 before dividing by N.

The method for calculating the transfer rate when the baud rate generator is used is explained below.

• In UART mode

Baud rate =
$$\frac{\text{Input clock of baud rate generator}}{\text{Frequency divider for baud rate generator}} \div 16$$

• In I/O interface mode

Baud rate = $\frac{\text{Input clock of baud rate generator}}{\text{Frequency divider for baud rate generator}} \div 2$

• Integer divider (N divider)

For example, when the source clock frequency (f_C) is 39.3216 MHz, the input clock is ϕ T2 (f_C/32), the frequency divider N (BR0CR<BR0S3:0>) = 8, and BR0CR<BR0ADDE> = 0, the baud rate in UART mode is as follows:

* Clock condition Clock gear : 1/1 Baud rate = $\frac{\text{Input clock of baud rate generator}}{\text{Frequency divider for baud rate generator}} \div 16$ = $\frac{\text{fc}/32}{8} \div 16$

 $= 39.3216 \times 10^6 \div 16 \div 8 \div 16 = 9600 \text{ (bps)}$

Note: The N + (16 – K)/16 division function is disabled and setting BR0ADD<BR0K3:0> is invalid.

• N + (16 – K)/16 divider (UART mode only)

Accordingly, when the source clock frequency (fc) = 31.9488 MHz, the input clock is ϕ T2 (fc/32), the frequency divider N (BR0CR<BR0S3:0>) = 6, K (BR0ADD<BR0K3:0>) = 8, and BR0CR<BR0ADDE> = 1, the baud rate in UART mode is as follows:

```
* Clock condition Clock gear
```

Baud rate = $\frac{\text{Input clock of baud rate generator}}{\text{Frequency divider for baud rate generator}} \div 16$ $= \frac{\text{fc}/32}{6 + (16 - 8))} \div 16$ $= 31.9488 \times 10^6 \div 16 \div (6 + \frac{8}{16}) \div 16 = 9600 \text{ (bps)}$

Table 3.9.2 show examples of UART mode transfer rates.

Additionally, the external clock input is available in the serial clock. (Serial channels 0 and 1). The method for calculating the baud rate is explained below:

In UART mode

Baud rate = external clock input frequency \div 16

It is necessary to satisfy (External clock input cycle) $\ge 4/f_{SYS}$

• In I/O interface mode

Baud rate = external clock input frequency

It is necessary to satisfy (External clock input cycle) $\ge 16/f_{SYS}$

f _{SYS} [MHz]	Input Clock	φΤ0 (f _{SYS} /4)	φT2 (f _{SYS} /16)	фТ8 (f _{SYS} /64)	φT32 (f _{SYS} /256)
					7
9.8304	2	76.800	19.200	4.800	1.200
1	4	38.400	9.600	2.400	0.600
↑	8	19.200	4.800 ((1.200	0.300
\uparrow	10	9.600	2.400	0.600	0.150
12.2880	5	38.400	9.600	2.400	0.600
\uparrow	А	19.200	4.800	1.200	0.300
14.7456	2	115.200	28.800	7.200	1.800
\uparrow	3	76.800 🔇	19.200	4.800	1.200
\uparrow	6	38.400	9.600	2.400	0.600
\uparrow	С	19.200	4.800	1.200	0.300
19.6608	1	307.200	//76.800 <	19.200	4.800
\uparrow	2	153.600	38.400	9.600	2.400
\uparrow	4	76.800	19.200	4.800	1.200
\uparrow	8 <	38.400	9.600	2.400	0.600
\uparrow	10	19.200	4.800	1.200	0.300
22.1184	3	1,15.200	28.800	7.200	1.800
24.5760	1	384.000	96.000	24.000	6.000
\uparrow	2	192.000	48.000	12.000	3.000
\uparrow	4	96.000	24.000	6.000	1.500
\uparrow	5 ()	76.800	19,200	4.800	1.200
\uparrow	8	48.000	12.000	3.000	0.750
\uparrow	(A A	38.400	9.600	2.400	0.600
\uparrow	10	24.000	6.000	1.500	0.375

Table 3.9.2 Selection of Transfer Rate (1) (when baud rate generator is used and BR0CR<BR0ADDE> = 0)

Unit (Kbps)

Note: Transfer rates in 1/0 interface mode are eight times faster than the values given above.

In UART mode, TMRA match detect signal (TA0TRG) can be used for serial transfer clock.

Method for calculating the timer output frequency which is needed when outputting trigger of timer

TA0TRG frequency = Baud rate \times 16

Note: The TMRA0 match detect signal cannot be used as the transfer clock in I/O Interface mode.

- (3) Serial clock generation circuit
 - This circuit generates the basic clock for transmitting and receiving data.
 - In I/O interface mode

In SCLK output mode with the setting SCOCR < IOC > = 0, the basic clock is generated by dividing the output of the baud rate generator by 2, as described previously.

In SCLK input mode with the setting SC0CR<IOC> = 1, the rising edge or falling edge will be detected according to the setting of the SC0CR<SCLKS> register to generate the basic clock.

• In UART mode

The SC0MOD0<SC1:0> setting determines whether the baud rate generator clock, the internal clock f_{IO}, the match detect signal from TMRA0 or the external clock (SCLK0) is used to generate the basic clock SIOCLK.

(4) Receiving counter

The receiving counter is a 4-bit binary counter used in UART mode, which counts up the pulses of the SIOCLK clock. It takes 16 SIOCLK pulses to receive 1 bit of data; each data bit is sampled three times, on the 7th, 8th and 9th clock cycles.

The value of the data bit is determined from these three samples using the majority rule.

For example, if the data bit is sampled respectively as 1, 0 and 1 on 7th, 8th and 9th clock cycles, the received data bit is taken to be 1. A data bit sampled as 0, 0 and 1 is taken to be 0.

(5) Receiving control

• In I/O interface mode

In SCLK output mode with the setting SCOCR < IOC > = 0, the RXD0 signal is sampled on the rising edge or falling of the shift clock, which is output on the SCLK0 pin, according to the SCOCR <SCLKS> setting.

In SCLK input mode with the setting SC0CR<IOC> = 1, the RXD0 signal is sampled on the rising or falling edge of the SCLK0 input, according to the SC0CR<SCLKS> setting.

In UART mode

The receiving control block has a circuit which detects a start bit using the majority rule. Received bits are sampled three times; when two or more out of three samples are 0, the bit is recognized as the start bit and the receiving operation commences.

The values of the data bits that are received are also determined using the majority rule.

(6) The receiving buffers

To prevent overrun errors, the receiving buffers are arranged in a double buffer structure.

Received data is stored one bit at a time in receiving buffer 1 (which is a shift register). When 7 or 8 bits of data have been stored in receiving buffer 1, the stored data is transferred to receiving buffer 2 (SC0BUF); this causes an INTRX0 interrupt to be generated. The CPU only reads receiving buffer 2 (SC0BUF). Even before the CPU reads receiving buffer 2 (SC0BUF), the received data can be stored in receiving buffer 1. However, unless receiving buffer 2 (SC0BUF) is read before all bits of the next data are received by receiving buffer 1, an overrun error occurs. If an overrun error occurs, the contents of receiving buffer 1 will be lost, although the contents of receiving buffer 2 and SC0CR<RB8> will be preserved.

SC0CR<RB8> is used to store either the parity bit – added in 8-bit UART mode – or the most significant bit (MSB) – in 9-bit UART mode.

In 9-bit UART mode the wakeup function for the slave controller is enabled by setting SC0MOD0<WU> to 1; in this mode INTRX0 interrupts occur only when the value of SC0CR<RB8> is 1.

SIO interrupt mode is selectable by the register SIMC.

(7) Transmission counter

The transmission counter is a 4-bit binary counter used in UART mode and which, like the receiving counter, counts the SIOCLK clock pulses; a TXDCLK pulse is generated every 16 SIOCLK clock pulses.

Figure 3.9.3 Generation of the Transmission Clock

(8) Transmission controller

In I/O interface mode

In SCLK output mode with the setting SCOCR < IOC > = 0, the data in the transmission buffer is output one bit at a time to the TXD0 pin on the rising or falling edge of the shift clock which is output on the SCLK0 pin, according to the SCOCR < SCLKS > setting.

In SCLK input mode with the setting SCOCR<IOC> = 1, the data in the transmission buffer is output one bit at a time on the TXD0 pin on the rising or falling edge of the SCLK0 input, according to the SCOCR<SCLKS> setting.

• In UART mode

When transmission data sent from the CPU is written to the transmission buffer, transmission starts on the rising edge of the next TXDCLK, generating a transmission shift clock TXDSFT.

Handshake function

Use of $\overline{\text{CTS0}}$ pin allows data to be sent in units of one frame; thus, overrun errors can be avoided. The handshake function is enabled or disabled by the SC0MOD<CTSE> setting.

When the $\overline{\text{CTS0}}$ pin goes high on completion of the current data send, data transmission is halted until the $\overline{\text{CTS0}}$ pin goes low again. However, the INTTX0 interrupt is generated, and it requests the next data send from the CPU. The next data is written in the transmission buffer and data sending is halted.

Though there is no $\overline{\text{RTS}}$ pin, a handshake function can be easily configured by setting any port assigned to be the $\overline{\text{RTS}}$ function. The $\overline{\text{RTS}}$ should be output "high" to request send data halt after data receive is completed by software in the RXD interrupt routine.

(9) Transmission buffer

The transmission buffer (SC0BUF) shifts out and sends the transmission data written from the CPU in order from the least significant bit (LSB). When all the bits are shifted out, the transmission buffer becomes empty and generates an INTTX0 interrupt.

(10) Parity control circuit

When SCOCR<PE> in the serial channel control register is set to "1", it is possible to transmit and receive data with parity. However, parity can be added only in 7-bit UART mode or 8-bit UART mode. The SCOCR<EVEN> field in the serial channel control register allows either even or odd parity to be selected.

In the case of transmission, parity is automatically generated when data is written to the transmission buffer SCOBUF. The data is transmitted after the parity bit has been stored in SCOBUF<TB7> in 7-bit UART mode or in SCOMODO<TB8> in 8-bit UART mode. SCOCR<PE> and SCOCR<EVEN> must be set before the transmission data is written to the transmission buffer.

In the case of receiving, data is shifted into receiving buffer 1, and the parity is added after the data has been transferred to receiving buffer 2 (SC0BUF), and then compared with SC0BUF<RB7> in 7-bit UART mode or with SC0CR<RB8> in 8-bit UART mode. If they are not equal, a parity error is generated and the SC0CR<PERR> flag is set.

(11) Error flags

Three error flags are provided to increase the reliability of data reception.

1. Overrun error <OERR>

If all the bits of the next data item have been received in receiving buffer 1 while valid data still remains stored in receiving buffer 2 (SC0BUF), an overrun error is generated.

The below is a recommended flow when the overrun-error is generated.

- (INTRX interrupt routine)
- 1) Read receiving buffer
- 2) Read error flag
- 3) If $\langle OERR \rangle = 1$

then

- a) Set to disable receiving (Write "0" to SC0MOD0<RXE>)
- b) Wait to terminate current frame
- c) Read receiving buffer
- d) Read error flag
- e) Set to enable receiving (Write "1" to SC0MOD0<RXE>)
- f) Request to transmit again
- 4) Other

2. Parity error <PERR>

The parity generated for the data shifted into receiving buffer 2 (SC0BUF) is compared with the parity bit received via the RXD pin. If they are not equal, a parity error is generated.

3. Framing error <FERR>

The stop bit for the received data is sampled three times around the center. If the majority of the samples are 0, a framing error is generated.

(12) Timing generation

1. In UART mode

Receiving

Mode	9 Bits (Note)	8 Bits + Parity (Note)	8 Bits, 7 Bits + Parity, 7 Bits
Interrupt Timing	Center of last bit (bit8)	Center of last bit (parity bit)	Center of stop bit
Framing Error Timing	Center of stop bit	Center of stop bit	Center of stop bit
Parity Error Timing	_	Center of last bit (parity bit)	Center of stop bit
Overrun Error Timing	Center of last bit (bit8)	Center of last bit (parity bit)	Center of stop bit

Note1: In 9-bit and 8-bit + parity modes, interrupts coincide with the ninth bit pulse.

Thus, when servicing the interrupt, it is necessary to wait for a 1-bit period (to allow the stop bit to be transferred) to allow checking for a framing error.

Note2: The higher the transfer rate, the later than the middle receive interrupts and errors occur.

Transmitting

Mode	9 Bits	8 Bits + Parity	8 Bits, 7 Bits + Parity, 7 Bits
Interrupt Timing	Just before stop bit is transmitted	Just before stop bit is transmitted	Just before stop bit is transmitted

2. I/O interface

Transmission Interrupt Timing	SCLK output mode	Immediately after last bit data. (See Figure 3.9.13.)
	SCLK input mode	Immediately after rise of last SCLK signal rising mode, or immediately after fall in falling mode. (See Figure 3.9.14.)
Receiving Interrupt Timing	SCLK output mode	Timing used to transfer received to data receive buffer 2 (SC0BUF) (e.g. immediately after last SCLK). (See Figure 3.9.15.)
	SCLK input mode	Timing used to transfer received data to receive buffer 2 (SC0BUF) (e.g./immediately after last SCLK). (See Figure 3.9.16.)
	SCLK input mode	Timing used to transfer received data to receive buffer 2 (SC0BUF) (e.g./immediately after last SCLK). (See Figure 3.9.16.)

3.9.3 SFR

Г

SC (12

	7 6		5	4	3	2	1	0	
COMOD0	Bit symbol	TB8	CTSE	RXE	WU	SM1	SM0	SC1	SC0
202H)	Read/Write		•	•	R/	Ŵ			
	After reset	0	0	0	0	0	0	0	0
	Function Transfer Hand data bit8 shake 0: CTS disable 1: CTS enable		Receive function 0: Receive disable 1: Receive enable	Wakeup function 0: Disable 1: Enable	Serial transmission mode 00: I/O interface mode 01: 7-bit UART mode 10: 8-bit UART mode 11: 9-bit UART mode		Serial transmission clock (UART) 00: TMRA0 trigger 01: Baud rate generator 10: Internal clock f _{IO} 11: External clock (SCLK0 input)		
						Serial 00 T 01 E 10 In 11 E Note: 7 i Serial 00 I 01 01 10 10 10 10 10 10 10 10	transmission MRA0 match Baud rate gene internal clock f External clock f External clock sele interface mode serial control r transmission O interface m JART mode up function -bit UART interrupt gener when data is re- interrupt gener only when SCOCR < RB8> ving function Receive disable Receive enable intake function Disabled (alwa Enabled	clock sourc detect sign erator IO (SCLK0 inp ection for the e is controll egister (SC mode 7-bit mod 8-bit mod 9-bit mod 9-bit mod 9-bit mod 10-00 10	e (UART) al but) e I/O ed by the 0CR). de de de de de de de de de de
	\searrow		\searrow			 Transr 	mission data d	лю	

Figure 3.9.6 Serial Mode Control Register (Channel 0, SC0MOD0)

Note2:Set BR0CR <BR0ADDE> to 1 after setting K (K = 1 to 15) to BR0ADD<BR0K3:0> when +(16-K)/16 division function is used. Writes to unused bits in the BR0ADD register do not affect operation, and undefined data is read from these unused bits.

Figure 3.9.8 Baud Rate Generator Control (Channel 0, BR0CR, BR0ADD)

Figure 3.9.9 Serial Transmission/Receiving Buffer Registers (Channel 0, SC0BUF)

						$\langle \rangle$	//))		
		7	6	5	4	3	2	1	0
SC0MOD1	Bit symbol	12S0	FDPX0			\mathcal{H}			
(1205H)	Read/Write	R/W	R/W	/	/	Ľ			
	After reset	0	0	/		Ľ	/	A	
	Function	IDLE2	Duplex		\sim			2017	*
		0: Stop	0: Half				52		
		1: Run	1: Full				\sim (C		

 $(\Omega \wedge$

Figure 3.9.10 Serial Mode Control Register 1 (Channel 0, SC0MOD1)

3.9.4 Operation in Each Mode

(1) Mode 0 (I/O interface mode)

This mode allows an increase in the number of I/O pins available for transmitting data to or receiving data from an external shift register.

This mode includes the SCLK output mode to output synchronous clock SCLK, and SCLK input mode to input external synchronous clock SCLK

Figure 3.9.12 Example of SCLK Input Mode Connection

1. Transmission

In SCLK output mode 8-bit data and a synchronous clock are output on the TXD0 and SCLK0 pins respectively each time the CPU writes data to the transmission buffer. When all data is output, INTESO<ITX0C> will be set to generate the INTTX0 interrupt.

Figure 3.9.13 Transmitting Operation in I/O Interface Mode (SCLK0 output mode) (Channel 0)

In SCLK input mode, 8-bit data is output on the TXD0 pin when the SCLK0 input becomes active after the data has been written to the transmission buffer by the CPU. When all data is output, INTESO<ITX0C> will be set to generate an INTTX0 interrupt.

Figure 3.9.14 Transmitting Operation in I/O Interface Mode (SCLK0 input mode) (Channel 0)

2. Receiving

In SCLK output mode the synchronous clock is output on the SCLK0 pin and the data is shifted to receiving buffer 1. This is initiated when the receive interrupt flag INTESO<IRX0C> is cleared as the received data is read. When 8-bit data is received, the data is transferred to receiving buffer 2 (SC0BUF) following the timing shown below and INTESO<IRX0C> is set to 1 again, causing an INTRX0 interrupt to be generated.

Figure 3.9.15 Receiving Operation in I/O Interface Mode (SCLK0 output mode)

In SCLK input mode the data is shifted to receiving buffer 1 when the SCLK input goes active. The SCLK input goes active when the receive interrupt flag INTESO<IRX0C> is cleared as the received data is read. When 8-bit data is received, the data is shifted to receiving buffer 2 (SC0BUF) following the timing shown below and INTESO<IRX0C> is set to 1 again, causing an INTRX0 interrupt to be generated.

Figure 3.9.16 Receiving Operation in I/O Interface Mode (SCLK0 input mode)

Note: The system must be put in the receive-enable state (SC0MOD0<RXE> = 1) before data can be received.

3. Transmission and receiving (Full duplex mode)

When full duplex mode is used, set the receive interrupt level to 0, and only set the interrupt level (from 1 to 6) of the transmit interrupt. Ensure that the program which transmits the interrupt reads the receiving buffer before setting the next transmit data.

The following is an example of this:

F 1	C	1		10	0.0	тт	7 .						
Example	Baud rate = 9600 bps												
	B	baud rate = 9600 bps $f_c = 4.9152 \text{ MHz}$											
	tc	IC = 4.9152 MHz											
Main routing		* Clock condition. Clock gear 1/1(tc)											
Main routine	7	6	F	4	2	2	1	0	(())				
INTESO	Y	0	5 0	4	з Х	2	0	0	Set the INITYO level to 1				
INTESO	~	0	0		~	0	0	0	Set the INTRX0 level to 0.				
PFCR	_	_	_	_	_	1	0	1	Set PF0, PF1 and PF2 to function as the TXD0,				
PFFC	-	-	-	-	-	1	0	1	RXD0 and SCLK0 pins respectively.				
SC0MOD0	0	0	0	0	0	0	0	Ø	Select I/O interface mode.				
SC0MOD1	1	1	0	0	0	0	0	0	Select full duplex mode.				
SCOCR	0	0	0	0	0	0	16	0	SCLK output, transmit on negative edge, receive				
BRACR	0	0	0	1	1 <	\mathcal{A}	0	n n	Baud rate = 9600 bps				
SCOMODO	0	0	1	0	0	0	0	0	Enable receiving				
SCOBUF	*	*	*	*	*	*	*	*	Set the transmit data and start.				
INTTX0 interru	ıpt	rou	itine	ŧ	$\langle \rangle$		\sim						
A _{CC} ←	sc	ювι	JF	Ĺ		\searrow		/	Read the receiving buffer.				
SCOBUF	*	*	*	*	*	*	*	*	Set the next transmit data.				
X: Don't care, -: N	lo cł	hang	ge										
	_	~	\leq	צ				~					
(ſ	~ <	\mathcal{A}					$\langle \rangle$					
	$\langle -$)				\langle	\sim					
$(\overline{\alpha})$	2					2		$\overline{7}$					
))						-	_	>				
			~		()	(/)	$\langle \hat{\zeta} \rangle$						
				$\langle \rangle$		Ľ	ر						
		_			\leq								
			$\overline{}$	_									
\sim				$\langle \rangle$									
		\sim			\checkmark								
	\checkmark												
		Ľ											
		\sum	$\overline{}$										
$\sum \left(\left(\right) \right) = \left(\left(\right) \right)$))											
	_												
	>												
\sim	r												

(2) Mode 1 (7-bit UART mode)

7-bit UART mode is selected by setting the serial channel mode register SC0MOD0<SM1:0> field to 01.

In this mode a parity bit can be added. Use of a parity bit is enabled or disabled by the setting of the serial channel control register SCOCR<PE> bit; whether even parity or odd parity will be used is determined by the SCOCR<EVEN> setting when SCOCR<PE> is set to 1 (enabled).

Setting example: When transmitting data of the following format, the control registers should be set as described below.

	Star	tÆ	Bit0	X	1		2	3		4 5 6 Even Stop
	+			Tran	smi	ssio	n diı	ecti	on (Tra	ansmission rate: 2400 bps at f_{C} = 39.3216 MHz)
							*C	lock	condit	ion: Clock gear 1/1(fc)
		7	6	5	4	3	2	1	0	
PFCR	←	-	-	-	-	-	-	-	1	Cat PEO to turation on the TVD0 pin
PFFC	←	-	-	-	-	-	-	_	1	Set Proto function as the TXD0 pin.
SC0MOD0	\leftarrow	Х	0	-	Х	0	1	0	1	Select 7-bit UART mode.
SC0CR	\leftarrow	Х	1	1	Х	Х	Х	0	0	Add even parity.
BR0CR	\leftarrow	0	0	1	0	1	0	0	0 (Set the transfer rate to 2400 bps.
INTES0	\leftarrow	Х	1	0	0	_	_	_	- 4	Enable the INTTX0 interrupt and set it to interrupt level 4.
SC0BUF	\leftarrow	*	*	*	*	*	*	*	*	Set data for transmission.
X: Don't care	e, -:	No	chai	nge					$\left(\right)$	\searrow ((// \checkmark)

(3) Mode 2 (8-bit UART mode)

8-bit UART mode is selected by setting SCOMOD0<SM1:0> to 10. In this mode a parity bit can be added (use of a parity bit is enabled or disabled by the setting of SCOCR<PE>); whether even parity or odd parity will be used is determined by the SCOCR<EVEN> setting when SCOCR<PE> is set to 1 (enabled).

Setting example: When receiving data of the following format, the control registers should be set as described below.

Bit0 2 4 X 5 6 7 **y** Stop Start 1 3

Transmission direction (Transmission rate: 9600 bps at f_C = 39.3216 MHz)

Main settings										
		7	6	5	4	3	2	1	0	
PFCR	←	-	-	-	-	-	-	0	-	
PFFC	←	-	-	-	-	-	-	0	-	
SC0MOD0	←	-	0	1	Х	1	0	0	1	
SC0CR	←	Х	0	1	Х	Х	Х	0	0	
BR0CR	←	0	0	0	1	1	0	0	0	
INTES0	←	-	-	-	-	Х	1	0	0	
Interrupt proce	essir	ng								
A _{CC}	\leftarrow	SC	0CR	AN	D 00	0011	100)		
if A _{CC} ≠ 0 then ERROR										
A _{CC}	←	SC	0BU	F						
X: Don't care, -	-: No	o cha	ange	•						

Set PF1 to function as the RXD0 pin.

Enable receiving in 8-bit UART mode. Add odd parity.

Set the transfer rate to 9600 bps.

Enable the INTTX0 interrupt and set it to interrupt level 4.

Check for errors Read the received data

(4) Mode 3 (9-bit UART mode)

9-bit UART mode is selected by setting SC0MOD0<SM1:0> to 11. In this mode a parity bit cannot be added.

In the case of transmission the MSB (9th bit) is written to SCOMODO<TB8>. In the case of receiving it is stored in SCOCR<RB8>. When the buffer is written or read, <TB8>or <RB8> is read or written first, before the rest of the SCOBUF data.

Wakeup function

In 9-bit UART mode, the wakeup function for slave controllers is enabled by setting SC0MOD0<WU> to 1. The interrupt INTRX0 can only be generated when<RB8> = 1.

Note: The TXD pin of each slave controller must be in open-drain output mode.

Figure 3.9.17 Serial Link Using Wakeup Function

Protocol

- 1. Select 9-bit UART mode on the master and slave controllers.
- 2. Set the SC0MOD0<WU> bit on each slave controller to 1 to enable data receiving.
- 3. The master controller transmits data one frame at a time. Each frame includes an 8-bit select code which identifies a slave controller. The MSB (bit8) of the data (<TB8>) is set to 1.

- 4. Each slave controller receives the above frame. Each controller checks the above select code against its own select code. The controller whose code matches clears its <WU> bit to 0.
- 5. The master controller transmits data to the specified slave controller (the controller whose SC0MOD0<WU> bit has been cleared to 0). The MSB (bit8) of the data (<TB8>) is cleared to 0.

6. The other slave controllers (whose <WU> bits remain at 1) ignore the received data because their MSBs (bit8 or <RB8>) are set to 0, disabling INTRX0 interrupts. The slave controller whose <WU> bit = 0 can also transmit to the master controller. In this way it can signal the master controller that the data transmission from the master controller has been completed.
Setting example: To link two slave controllers serially with the master controller using the internal clock fIO as the transfer clock.

3.9.5 Support for IrDA

SIO0 includes support for the IrDA 1.0 infrared data communication specification. Figure 3.9.18 shows the block diagram.

(1) Modulation of the transmission data

When the transmit data is 0, the modem outputs 1 to TXD0 pin with either 3/16 or 1/16 times for width of baud rate. The pulse width is selected by the SIRCR<PLSEL>.

When the transmit data is 1, the modem outputs 0.

(2) Modulation of the receive data

When the receive data has an effective pulse width of "1", the modem outputs "0" to SIO0. Otherwise the modem outputs "1" to SIO0. The effective pulse width is selected by SIRCR<SIRWD3:0>.

Figure 3.9.20 Receiving Example

(3) Data format

The data format is fixed as follows:

- Data length: 8 bits
- Parity bits: none
- Stop bits: 1 bit
- (4) SFR

Figure 3.9.21 shows the control register SIRCR. Set SIRCR data while SIO0 is stopped. The following example describes how to set this register:

1) SIO setting Set the SIO to UART mode. ; \downarrow 2) LD (SIRCR), 07H Set the receive data pulse width to $16 \times$. ; (SIRCR), 37H TXEN, RXEN Enable the transmission and receiving. 3) LD \downarrow The modem operates as follows: 4) Start transmission and receiving for SIO0 · SIO0 starts transmitting. IR receiver starts receiving

- (5) Notes
 - 1. Baud rate for IrDA

When IrDA is operated, set 01 to SC0MOD0<SC1:0> to generate baud rate. Settings other than the above (TA0TRG, f_{IO} and SCLK0 input) cannot be used.

2. The pulse width for transmission

The IrDA 1.0 specification is defined in Table 3.9.3.

Baud Rate	Modulation	Rate Tolerance (% of rate)	Pulse Width (min)	Pulse Width (typ.)	Pulse Width (max)			
2.4 Kbps	RZI	±0.87	1.41 μs	78.13 μs	88.55 μs			
9.6 Kbps	RZI	±0.87	1.41 μs	19.53 μs	22.13 μs			
19.2 Kbps	RZI	±0.87	1.41 μs	9.77 μs	11.07 μs			
38.4 Kbps	RZI	±0.87	1.41 μs	4.88 μs	5.96 μs			
57.6 Kbps	RZI	±0.87	1.41 μs	3.26 μs	4.34 μs			
115.2 Kbps	RZI	±0.87	1.41 µs	1.63 μs	2.23 µs			

Table 3.9.3 Baud Rate and Pulse Width	S	pecifications
		poontoutiono

The pulse width is defined as either baud rate T \times 3/16 or 1.6 µs (1.6 µs is equal to 3/16 pulse width when baud rate is 115.2 Kbps).

The TMP92CA25 has a function which can select the pulse width of transmission as either 3/16 or 1/16. However, 1/16 pulse width can only be selected when the baud rate is equal to or less than 38.4 Kbps.

For the same reason, when using IrDA 115.2 Kbps with USB, the +(16 - K)/16 division function in the baud rate generator of SIO0 cannot be used to generate a 115.2 Kbps baud rate, except under special conditions as explained in (6) below.

The + (16 - K)/16 division function cannot be used alsowhen the baud rate is 38.4 Kbps and the pulse width is 1/16.

Pulso Width	\mathbb{N}))	Baud	Rate		
Pulse Width	115.2 Kbps	57.6 Kbps	38.4 Kbps	19.2 Kbps	9.6 Kbps	2.4 Kbps
T × 3/16	× (Note)	0		0	0	0
T × 1/16		-	\rightarrow	0	0	0
	\sim					

Table 3.9.4 Baud Rate and Pulse Width for (16 - K)/16 Division Function

○: (16 – K)/16 division function can be used.

 \times : (16 – K)/16 division function cannot be used.

-: Cannot be set to 1/16 pulse width.

Note: (16 - K)/16 division function can be used under special

conditions.

3.10 Serial Bus Interface (SBI)

The TMP92CA25 has 1-channel serial bus interface which an I²C bus mode. The serial bus interface is connected to an external device through P93 (SDA) and P94 (SCL) in the I²C bus mode.

Each pin is specified as follows.

3.10.2 Serial Bus Interface (SBI) Control

The following registers are used to control the serial bus interface and monitor the operation status.

- Serial bus interface 0 control register 1 (SBI0CR1)
- Serial bus interface 0 control register 2 (SBI0CR2)
- Serial bus interface 0 data buffer register (SBI0DBR)
- I²C bus 0 address register (I2C0AR)
- Serial bus interface 0 status register (SBI0SR)
- Serial bus interface 0 baud rate register 0 (SBI0BR0)
- Serial bus interface 0 baud rate register 1 (SBI0BR1)

The above registers differ depending on a mode to be used. Refer to section 3.10.4 "I²C Bus Mode Control Register".

3.10.3 The Data Formats in the I²C Bus Mode

The data formats in the I²C bus mode is shown below.

Figure 3.10.2 Data Format in the I²C Bus Mode

3.10.4 I²C Bus Mode Control Register

The following registers are used to control and monitor the operation status when using the serial bus interface (SBI) in the I²C bus mode.

Serial Bus Interface 0 Control Register 1

Figure 3.10.3 Registers for the I²C Bus Mode

guaranteed in that case.

Serial Bus Interface Control Register 2

Note 2: Switch a mode to port mode after confirming that the bus is free.

Switch a mode between I²C bus mode after confirming that input signals via port are high level.

Figure 3.10.4 Registers for the I²C Bus Mode

Serial Bus Interface Baud Rate Register 0

- 3.10.5 Control in I²C Bus Mode
 - (1) Acknowledge mode specification

Set the SBI0CR1<ACK> to "1" for operation in the acknowledge mode. The TMP92CA25 generates an additional clock pulse for an acknowledge signal when operating in master mode. In the transmitter mode during the clock pulse cycle, the SDA pin is released in order to receive the acknowledge signal from the receiver. In the receiver mode during the clock pulse cycle, the SDA pin is set to the low in order to generate the acknowledge signal.

Clear the <ACK> to "0" for operation in the non-acknowledge mode. The TMP92CA25 does not generate a clock pulse for the acknowledge signal when operating in the master mode.

(2) Number of transfer bits

Since the SBI0CR1<BC2:0> is cleared to "000" on start up, a slave address and direction bit transmissions are executed in 8 bits. Other than these, the <BC2:0> retains a specified value.

- (3) Serial clock
 - 1. Clock source

The SBI0CR1<SCK2:0> is used to specify the maximum transfer frequency for output on the SCL pin in the master mode. Set the baud rates, which have been calculated according to the formula below, to meet the specifications of the I²C bus, such as the smallest pulse width of t_{LOW} .

2. Clock synchronization

In the I²C bus mode, in order to wired-AND a bus, a master device which pulls down a clock pin to the low level, in the first place, invalidate a clock pulse of another master device which generates a high-level clock pulse. The master device with a high-level clock pulse needs to detect the situation and implement the following procedure.

This device has a clock synchronization function which allows normal data transfer even when more than one master exists on the bus.

The following example explains the clock synchronization procedures used when there are two masters present on the bus.

When master A pulls the internal SCL output to the low level at point "a", the bus's SCL pin goes to the low level. After detecting this, master B resets a counter of high-level width of an own clock pulse and sets the internal SCL output the low level.

Master A finishes counting low-level width of an own clock pulse at point "b" and sets the internal SCL output to the high level. Since master B is holding the bus's SCL pin the low level, master A waits for counting high-level width of an own clock pulse. After master B has finished counting low-level width of an own clock pulse at point "c" and master A detects the SCL pin of the bus at the high level, and starts counting high level of an own clock pulse.

The clock pulse on the bus is determined by the master device with the shortest high-level width and the master device with the longest low-level width from among those master devices connected to the bus.

(4) Slave address and address recognition mode specification

When this device is to be used as a slave device, set the slave address <SA6:0> and <ALS> in I2C0AR.

Clear the <ALS> to "0" for the address recognition mode.

(5) Master/slave selection

To operate this device as a master device set the SBI0CR2<MST> to "1".

To operate it as a slave device clear the SBI0CR2<MST> to "0". The <MST> is cleared to "0" in hardware when a stop condition is detected on the bus or when arbitration is lost.

(6) Transmitter/receiver selection

To operate this device as a transmitter set the SBI0CR2<TRX> to "1". To operate it as a receiver clear the SBI0CR2<TRX> to "0".

When data with an addressing format is transferred in the slave mode, when a slave address with the same value that an I2C0AR or a GENERAL CALL is received (All 8-bit data are "0" after a start condition), the $\langle TRX \rangle$ is set to "1" in hardware if the direction bit (R/\overline{W}) sent from the master device is "1", and is cleared to "0" in hardware if the bit is "0".

In the master mode, when an acknowledge signal is returned from the slave device, the <TRX> is cleared to "0" in hardware if the value of the transmitted direction bit is "1", and is set to "1" in hardware if the value of the bit is "0". If an acknowledge signal is not returned, the current state is maintained.

The <TRX> is cleared to "0" in hardware when a stop condition is detected on the I²C bus or when arbitration is lost.

(7) Start/stop condition generation

When the SBI0SR<BB> = "0", slave address and direction bit which are set to SBI0DBR is output on the bus after generating a start condition by writing "1111" to the SBI0CR2<MST, TRX, BB, PIN>. It is necessary to set transmitted data to the data buffer register (SBI0DBR) and set "1" to the <ACK> beforehand.

Figure 3.10.9 Start Condition Generation and Slave Address Generation

When the SBI0SR<BB> = "1", the sequence for generating a stop condition can be initiated by writing "111" to the SBI0CR2<MST, TRX, PIN> and writing "0" to the SBI0CR2<BB>. Do not modify the contents of the SBI0CR2<MST, TRX, BB, PIN> until a stop condition has been generated on the bus.

The state of the bus can be ascertained by reading the contents of the SBI0SR<BB>. The SBI0SR<BB> will be set to "1" if a start condition has been detected on the bus, and will be cleared to "0" if a stop condition has been detected.

Stop condition generation in master mode have limit. Therefore, please refer to 3.10.6 (4) "Stop condition generation".

(8) Interrupt service requests and interrupt cancellation

When a serial bus interface interrupt request 0 by transfer of the slave address or the data (INTSBI) is generated, the SBI0SR<PIN> is cleared to "0". The SCL pin is pulled down to the low-level while the $\langle PIN \rangle = "0"$.

The <PIN> is cleared to "0" when a single word of data is transmitted or received. Either writing data to or reading data from SBI0DBR sets the <PIN> to "1".

The time from the $\langle PIN \rangle$ being set to "1" until the release of the SCL pin is t_{LOW}.

In the address recognition mode (e.g., when <ALS> = "0"), the <PIN> is cleared to "0" when the slave address matches the value set in I2COAR or when a GENERAL CALL is received (All 8-bit data are "0" after a start condition). Although the SBI0CR2<PIN> can be set to "1" by a program, writing "0" to the SBI0CR2<PIN> does not clear it to "0".

(9) Serial bus interface operation mode selection

The SBI0CR2<SBIM1:0> is used to specify the serial bus interface operation mode. Set the SBI0CR2<SBIM1:0> to "10" when the device is to be used in I²C bus mode after confirming pin condition of serial bus interface to "H".

Switch a mode to port after confirming a bus is free.

(10) Arbitration lost detection monitor

Since more than one master device can exist simultaneously on the bus in I²C bus mode, a bus arbitration procedure has been implemented in order to guarantee the integrity of transferred data.

Data on the SDA pin is used for I^2C bus arbitration.

The following example illustrates the bus arbitration procedure when there are two master devices on the bus. Master A and master B output the same data until point "a". After master A outputs "L" and master B, "H", the SDA pin of the bus is wire-AND and the SDA pin is pulled down to the low level by master A. When the SCL pin of the bus is pulled up at point "b", the slave device reads the data on the SDA pin, that is, data in master A. Data transmitted from master B becomes invalid. The master B state is known as "ARBITRATION LOST". Master B device which loses arbitration releases the internal SDA output in order not to affect data transmitted from other masters with arbitration. When more than one master sends the same data at the first word, arbitration occurs continuously after the second word.

Figure 3.10.11 Arbitration Lost

This device compares the levels on the bus's SDA pin with those of the internal SDA output on the rising edge of the SCL pin. If the levels do not match, arbitration is lost and the SBI0SR<AL> is set to "1".

When the $\langle AL \rangle$ is set to "1", the SBIOSR $\langle MST, TRX \rangle$ are cleared to "00" and the mode is switched to a slave receiver mode. Thus, clock output is stopped in data transfer after setting $\langle AL \rangle =$ "1".

The <AL> is cleared to "0" when data is written to or read from SBI0DBR or when data is written to SBI0CR2.

Figure 3.10.12 Example of a Master Device B (D7A = D7B, D6A = D6B)

(11) Slave address match detection monitor

The SBI0SR<AAS> is set to "1" in the slave mode, in the address recognition mode (e.g., when the I2COAR<ALS> = "0"), when a GENERAL CALL is received, or when a slave address matches the value set in I2COAR. When the I2COAR<ALS> = "1", the SBI0SR<AAS> is set to "1" after the first word of data has been received. The SBI0SR<AAS> is cleared to "0" when data is written to or read from the data buffer register SBI0DBR.

(12) GENERAL CALL detection monitor

The SBIOSR<AD0> is set to "1" in the slave mode, when a GENERAL CALL is received (all 8-bit received data is "0", after a start condition). The SBIOSR<AD0> is cleared to "0" when a start condition or stop condition is detected on the bus.

(13) Last received bit monitor

The value on the SDA pin detected on the rising edge of the SCL pin is stored in the SBI0SR<LRB>.

In the acknowledge mode, immediately after an INTSBI interrupt request has been generated, an acknowledge signal is read by reading the contents of the SBI0SR<LRB>.

(14) Software reset function

The software reset function is used to initialize the SBI circuit, when SBI is locked by external noises, etc.

An internal reset signal pulse can be generated by setting SBI0CR2<SWRST1:0> to "10" and "01". This initializes the SBI circuit internally.

All command (except SBI0CR2<SBIM1:0>) registers and status registers are initialized as well.

The SBI0CR1<SWRMON> is automatically set to "1" after the SBI circuit has been initialized.

(15) Serial bus interface data buffer register (SBI0DBR)

The received data can be read and the transferred data can be written by reading or writing the SBI0DBR.

When the start condition has been generated in the master mode, the slave address and the direction bit are set in this register.

(16) I²C bus address register (I2C0AR)

I2C0AR<SA6:0> is used to set the slave address when this device functions as a slave device.

The slave address output from the master device is recognized by setting I2C0AR<ALS> is set to "0". The data format is the addressing format. When the slave address in not recognized at the <ALS> is set to "1", the data format is the free data format.

(17) Baud rate register (SBI0BR1)

Write "1" to the SBI0BR1<P4EN> before operation commences.

(18) Setting register for IDLE2 mode operation (SBI0BR0)

The setting of SBI0BR0<I2SBI0> determines whether the device is operating or is stopped in IDLE2 mode.

Therefore, setting <I2SBI0> is necessary before the HALT instruction is executed.

3.10.6 Data Transfer in I²C Bus Mode

(1) Device initialization

Set the SBI0BR1<P4EN> and the SBI0CR1<ACK, SCK2:0>. Set the SBI0BR1<P4EN> to "1" and clear bits 7 to 5 and 3 of the SBI0CR1 to "0".

Set a slave address in I2C0AR<SA6:0> and the I2C0AR<ALS> (<ALS> = "0" when an addressing format.)

For specifying the default setting to a slave receiver mode, clear "000" to the <MST, TRX, BB>, set "1" to the <PIN>, set "10" to the <SBIM1:0> and set "00" to the <SWRST1:0>.

- (2) Start condition and slave address generation
 - 1. Master mode

In the master mode the start condition and the slave address are generated as follows.

Check a bus free status (when $\langle BB \rangle = "0"$).

Set the SBI0CR1<ACK> to "1" (Acknowledge mode) and specify a slave address and a direction bit to be transmitted to the SBI0DBR.

When the <BB> is "0", the start condition is generated by writing "1111" to the SBIOCR2<MST, TRX, BB, PIN>. Subsequently to the start condition, 9 clocks are output from the SCL pin. While 8 clocks are output, the slave address and the direction bit which are set to the SBIODBR. At the 9th clock pulse the SDA pin is released and the acknowledge signal is received from the slave device.

An INTSBI interrupt request occurs on the falling edge of the 9th clock pulse. The <PIN> is cleared to "0". In the master mode the SCL pin is pulled down to the low level while the <PIN> is "0". When an INTSBI interrupt request occurs, the value of <TRX> is changed according to the direction bit setting only if the slave device returns an acknowledge signal.

2. Slave mode

In the slave mode, the start condition and the slave address are received.

After the start condition is received from the master device, while 8 clocks are output from the SCL pin, the slave address and the direction bit which are output from the master device are received.

When a GENERAL CALL or the same address as the slave address set in 12C0AR is received, the SDA line is pulled down to the low level at the 9th clock, and the low level at the 9th clock, and the acknowledge signal is output.

An INTSBI interrupt request occurs on the falling edge of the 9th clock. The <PIN> is cleared to "0". In slave mode the SCL line is pulled down to the low-level while the <PIN> = "0".

SCL pin	
SDA pin	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Start condition Slave address + Direction bit
-	Slave device
<pin></pin>	
INTSBI interrupt request	
	Output of master Output of slave
	Figure 3.10.13 Start Condition Generation and Slave Address Transfer
(3)) 1-word data transfer
	Check the <mst> setting using an INTSBI interrupt process after the transfer of</mst>
	each word of data is completed and determine whether the device is in the master
	mode or the slave mode.

1. When the <MST> is "1" (Master mode)

Check the <TRX> setting and determine whether the device is in the transmitter mode or the receiver mode.

When the <TRX> is "1" (Transmitter mode)

Check the $\langle LRB \rangle$ setting. When the $\langle LRB \rangle = "1"$, there is no receiver requesting data. Implement the process for generating a stop condition (See section 3.10.6 (4).) and terminate data transfer.

When the <LRB> = "0", the receiver is requesting new data. When the next transmitted data is 8 bits, write the transmitted data to the SBI0DBR. When the next transmitted data is other than 8 bits, set the <BC2:0>, set the <ACK> to "1" and write the transmitted data to the SBI0DBR. After the data has been written, the <PIN> is set to "1", a serial clock pulse is generated to trigger transfer of the next word of data via the SCL pin, and the word is transmitted. After the data has been transmitted, an INTSBI interrupt request is generated. The <PIN> is set to "0" and the SCL pin is pulled down to the low level. If the length of the data to be transferred is greater than one word, repeat the latter steps of the procedure, starting from the check of the <LRB> setting.

SCL pin	1 2 3 4 5 6 7 8 9	Ĵ
SDA pin	D7 X D6 X D5 X D4 X D3 X D2 X D1 X D0 X AC	к
\searrow		Acknowledge
	-	- signal from a
<pin></pin>		
INTSBI		(
interrunt request		ìП
	- Output from master	

– – Output from slave

Figure 3.10.14 Example in which <BC2:0> = "000" and <ACK> = "1" in Transmitter Mode

When the <TRX> is "0" (Receiver mode)

When the next transmitted data is other than 8 bits, set the <BC2:0> again. Set the <ACK> to "1" and read the received data from the SBI0DBR so as to release the SCL pin. (The value of data which is read immediately after a slave address is sent is undefined.) After the data has been read, the <PIN> is set to "1". Serial clock pulse for transferring new 1 word of data is defined SCL and outputs "L" level from SDA pin with acknowledge timing.

An INTSBI interrupt request is generated and the <PIN> is set to "0". Then this device pulls down the SCL pin to the low level. This device outputs a clock pulse for 1 word of data transfer and the acknowledge signal each time that received data is read from SBI0DBR.

Figure 3.10.15 Example of when <BC2:0> = "000", <ACK> = "1" in Receiver Mode

In order to terminate the transmission of data to a transmitter, clear the <ACK> to "0" before reading data which is 1 word before the last data to be received. The last data does not generate a clock pulse for the acknowledge signal. After the data has been transmitted and an interrupt request has been generated, set the <BC2:0> to "001" and read the data. This device generates a clock pulse for a 1-bit data transfer. Since the master device is a receiver, the SDA pin on a bus keeps the high level. The transmitter receives the high-level signal as an ACK signal. The receiver indicates to the transmitter that data transfer is complete.

After 1-bit data is received and an interrupt request has occurred, this device generates a stop condition (See section 3.10.6 (4).) and terminates data transfer.

Figure 3.10.16 Termination of Data Transfer in Master Receiver Mode

2. When the <MST> is "0" (Slave mode)

In the slave mode, this device operates either in normal slave mode or in slave mode after losing arbitration.

In the slave mode, an INTSBI interrupt request occurs when this device receives a slave address or a GENERAL CALL from the master device, or when a GENERAL CALL is received and data transfer is complete, or after matching a received slave address. In the master mode, this device operates in a slave mode if it is losing arbitration. An INTSBI interrupt request occurs when word data transfer terminates after losing arbitration. When an INTSBI interrupt request occurs, the <PIN> is cleared to "0", and the SCL pin is pulled down to the low level. Either reading data to or writing data from the SBIODBR, or setting the <PIN> to "1" releases the SCL pin after taking tLOW time.

Check the SBI0SR<AL>, <TRX>, <AAS>, and <AD0> and implements processes according to conditions listed in the next table.

<trx></trx>	<al></al>	<aas></aas>	<ad0></ad0>	Conditions	Process
1	1	1	0	This device loses arbitration when transmitting a slave address and receives a slave address of which the value of the direction bit sent from another master is "1".	Set the number of bits in 1 word to the <bc2:0> and write the transmitted data to the SBI0DBR.</bc2:0>
	0	1	0	In the slave receiver mode, this device receives a slave address of which the value of the direction bit sent from the master is "1".	
		0	0	In the slave transmitter mode, 1-word data is transmitted.	Check the <lrb>. If the <lrb> is set to "1", set the <pin> to "1" since the receiver does not request the next data. Then, clear the <trx> to "0" to release the bus. If the <lrb> is cleared to "0", set the number of bits in a word to the <bc2:0> and write transmitted data to the SBIODBR since the receiver requests next data.</bc2:0></lrb></trx></pin></lrb></lrb>
0	1	1	1/0	This device loses arbitration when transmitting a slave address and receives a GENERAL CALL or slave address of which the value of the direction bit sent from another master is "0".	Read the SBI0DBR for setting the <pin> to "1" (Reading dummy data) or set the <pin> to "1".</pin></pin>
		0	0	This device loses arbitration when transmitting a slave address or data and terminates transferring word data.	(75)
	0	1	1/0	In the slave receiver mode, this device receives a GENERAL CALL or slave address of which the value of the direction bit sent from the master is "0".	
		0	1/0	In the slave receiver mode, the device terminates receiving 1-word data.	Set the number of bits in a word to the <bc2:0> and read received data from the SBI0DBR.</bc2:0>

Table 3.10.1 Operation in the Slave Mode

(4) Stop condition generation

When the SBI0SR<BB> is "1", the sequence for generating a stop condition is started by writing "111" to SBI0CR2<MST, TRX, PIN> and "0" to SBI0CR2<BB>. Do not modify the contents of SBI0CR2<MST, TRX, PIN, BB> until a stop condition is generated on a bus.

When the bus's SCL line has been pulled down by other devices, this device generates a stop condition when the other device has released the SCL line and the SDA pin rising.

(5) Restart

Restart is used during data transfer between a master device and a slave device to change the data transfer direction. The following description explains how to restart when this device is in the master mode.

Clear the SBI0CR2<MST, TRX, BB> to "000" and set the SBI0CR2<PIN> to "1" to release the bus. The SDA line remains the high level and the SCL pin is released. Since a stop condition is not generated on the bus, other devices assume the bus to be in a busy state. Check the SBI0SR<BB> until it becomes "0" to check that the SCL pin of this device is released. Check the <LRB> until it becomes 1 to check that the SCL line on a bus is not pulled down to the low level by other devices. After confirming that the bus stays in a free state, generate a start condition with procedure described in 3.10.6 (2).

In order to meet setup time when restarting, take at least 4.7 μ s of waiting time by software from the time of restarting to confirm that the bus is free until the time to generate the start condition.

3.11 SPIC (SPI Controller)

 SPIC is the controller that can be connected to SD card, MMC (Multi Media Card) etc. in SPI mode.

The features as follows.

Double buffer (Transmit/Receive)

Generate CRC7 and CRC16 (Transmit/Receive data)

Baud Rate \div 20Mbps max and 400Kbps min

Connect several SD cards and MMC. (Use other output port for $\overline{\text{SPCS}}$ pin as $\overline{\text{CS}}$)

Use as general clock synchronous SIO

MSB/LSB-first, 8/16bit data length, clock Rising/Falling edge

 $1 \ Interrupt \\ \vdots \ INTSPI \\$

Read, Mask, Clear interrupt and Clear enable can control each 4 interrupts: RFR (Receive buffer of SPIRD: Full), RFW (Transmission buffer of SPITD: Empty), REND (Receive buffer of SPIRS: Full), TEND (Transmission buffer of SPITS; Empty).

RFR, RFW can high-speed transaction by micro DMA.

3.11.1 Block diagram

It shows block diagram and connection to SD card in Figure 3.11.1

Note2: Please use general input port or interrupt signal for WP (Write Protect) and CD (Card Detect).

Figure 3.11.1 SPIC Block diagram and Connection example

3.11.2 SFR

SFR of SPIC are as follows. These are connected to CPU with 16bit data bus.

(1) SPIMD (SPI Mode setting register)

SPIMD register is fo	r operation	mode or	clock etc.
----------------------	-------------	---------	------------

				SPIM	D Register				
		7	6	5	4	3	2		0
SPIMD	bit Symbol		XEN		/		CLKSEL2	CLKSELI	CLKSEL0
(0820H)	Read/Write		R/W				$\overline{\mathbf{G}}$	R/W	
	After Reset		0			4	L (I)//	5) 0	0
	Function		SYSCK 0: disable 1: enable				Select baud 000:f _{SYS} 001: f _{SYS} /2 010: f _{SYS} /4 011: f _{SYS} /8	rate 100: f _{SYS} /10 101: f _{SYS} /32 111: f _{SYS} /64 111:Reserv	5 2 4 ed
		15	14	13	12		> 10	9	8
(· · · · ·	bit Symbol	LOOPBACK	MSB1ST	DOSTAT		TCPOL	RCPOL	TDINV	RDINV
(0821H)	Read/Write	R/W			$\not\models$	R/W))
	After Reset	0	1	1	A	0	0	0	0
	Function	LOOPBACK test mode 0:disbale 1:enable	Start bit for transmit/rece ive 0:LSB 1:MSB	SPDO pin (no transmit) 0:fixed to "0" 1:fixed to "1"		Synchronous clock edge during transmitting 0: fall 1: rise	Synchronous clock edge during receiving 0: fall 1: rise	Invert data During transmitting 0: disable 1: enable	Invert data During receiving 0: disable 1: enable

Figure 3.11.2 SPIMD Register

(a) <LOOPBACK>

Because Internal SPDO can be input to internal SPDI, it can be used as test. Set <XEN>=1 and <LOOPBACK>=1, outputs clock from SPCLK pin regardless of operation of transmit/receive.

Please change the setting when transmitting/receiving is not in operation.

(b) <MSB1ST>

Select the start bit of transmit/receive data Please change the setting when transmitting/receiving is not in operation.

(c) <DOSTAT>

Set the status of SPDO pin during no transmitting (after transmitting or during receiving). Please change the setting when transmitting/receiving is not in operation. (d) <TCPOL> Select the edge of synchronous clock during transmitting. Please change the setting during $\langle XEN \rangle = "0"$. And set the same value of $\langle RCPOL \rangle$. SPCLK pin (<TCPOL> = "0") SPCLK pin (<TCPOL>= "1") SPDO pin MSB Bit1 Bit3 Bit4 Bit0 Bit2 Bit7 Figure 3.11.4 <TCPOL> Register function (e) <RCPOL> Select the edge of synchronous clock during receiving. Please change the setting during <XEN>= "0". And set the same value of <TCPOL>. SPCLK pin (<RCPOL>= "0") SPCLK pin (<RCPOL>= "1") SPDI pin MSB Bit0 Bit1 Bit3 Bit4 Bit2 Bit7 Figure 3.11.5 < TCPOL> Register function (f) <TDINV> Select logical invert/no invert when output transmitted data from SPDO pin. Please change the setting when transmitting/receiving is not in operation. Data that input to CRC calculation circuit is transmission data that is written to SPITD. This input data is not corresponded to <TDINV>. <TDINV> is not corresponded to <DOSTAT>> it set condition of SPDO pin when it is not transferred. (g) < RDINV >Select logical invert/no invert for received data from SPDI pin. Please change the setting when transmitting/receiving is not in operation. Data that input to CRC calculation circuit is selected by <RDINV>. <XEN> (h) Select the operation for the internal clock.

(i) <CLKSEL2:0>

Select baud rate. Baud rate is created from fSYS and settings are in under table. Please change the setting when transmitting/receiving is not in operation.

<clksel2:0> f_{SYS} =12MHz f_{SYS} =16MHz f_{SYS} =20MHz f_{SYS} 12 16 20 f_{SYS}/2 6 8 10 f_{SYS}/4 3 4 5 f_{SYS}/8 1.5 2 2.5 f_{SYS}/16 0.75 1 1.25 f_{SYS}/32 0.375 0.5 0.625 f_{SYS}/64 0.1875 0.25 0.3125</clksel2:0>	<clksel2:0> $f_{SYS} = 12MHz$ $f_{SYS} = 16MHz$ $f_{SYS} = 20MHz$ f_{SYS} 12 16 20 $f_{SYS}/2$ 6 8 10 $f_{SYS}/4$ 3 4 5 $f_{SYS}/8$ 1.5 2 2.5 $f_{SYS}/16$ 0.75 1 1.25 $f_{SYS}/32$ 0.375 0.5 0.625 $f_{SYS}/64$ 0.1875 0.25 0.3125</clksel2:0>	CLKSEL2:0> f _{SYS} =12MHz f _{SYS} =16MHz f _{SYS} =20MHz f _{SYS} 12 16 20 f _{SYS} /2 6 8 10 f _{SYS} /4 3 4 5 f _{SYS} /8 1.5 2 2.5 f _{SYS} /8 0.75 1 1.25 f _{SYS} /32 0.375 0.5 0.625 f _{SYS} /64 0.1875 0.25 0.3125	<clksel2:0> f_{SYS}=12MHz f_{SYS}=16MHz f_{SYS}=20MHz f_{SYS} 12 16 20 f_{SYS}/2 6 8 10 f_{SYS}/4 3 4 5 f_{SYS}/8 1.5 2 2.5 f_{SYS}/16 0.75 1 1.25 f_{SYS}/32 0.375 0.6 0.625 f_{SYS}/64 0.1875 0.25 0.3125</clksel2:0>	~		Baud rate [Mbps]	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<clksel2:0></clksel2:0>	f _{SYS} =12MHz	f _{SYS} =16MHz	f _{sys} =20MHz
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	fsys/2 6 8 10 fsys/4 3 4 5 fsys/8 1.5 2 2.5 fsys/16 0.75 1 1.25 fsys/32 0.375 0.5 0.625 fsys/64 0.1875 0.25 0.3125	fsys/2 6 8 10 fsys/4 3 4 5 fsys/8 1.5 2 2.5 fsys/16 0.75 1 1.25 fsys/32 0.375 0.5 0.625 fsys/64 0.1875 0.25 0.3125	fşyş/2 6 8 10 fşyş/4 3 4 5 fşyş/8 1.5 2 2.5 fşyş/16 0.75 1 1.25 fşyş/32 0.375 0.5 0.625 fşyş/64 0.1875 0.25 0.3125	f _{SYS}	12	16	20
fsys/4 3 4 5 fsys/8 1.5 2 2.5 fsys/16 0.75 1 1.25 fsys/32 0.375 0.5 0.625 fsys/64 0.1875 0.25 0.3125	t _{SYS} /4 3 4 5 f _{SYS} /8 1.5 2 2.5 f _{SYS} /16 0.75 1 1.25 f _{SYS} /32 0.375 0.5 0.625 f _{SYS} /64 0.1875 0.25 0.3125	tşys/4 3 4 5 tşys/8 1.5 2 2.5 tşys/16 0.75 1 1.25 tşys/32 0.375 0.5 0.625 tşys/64 0.1875 0.25 0.3125	fsys/4 3 4 5 fsys/8 1.5 2 2.5 fsys/16 0.75 1 1.25 fsys/32 0.375 0.5 0.625 fsys/64 0.1875 0.25 0.3125	f _{SYS} /2	6	8	10
f _{SYS} /8 1.5 2 2.5 f _{SYS} /16 0.75 1 1.25 f _{SYS} /32 0.375 0.5 0.625 f _{SYS} /64 0.1875 0.25 0.3125	t _{SYS} /8 1.5 2 2.5 t _{SYS} /16 0.75 1 1.25 t _{SYS} /32 0.375 0.5 0.625 t _{SYS} /64 0.1875 0.25 0.3125	tşys/8 1.5 2 2.5 tşys/16 0.75 1 1.25 tşys/32 0.375 0.5 0.625 tşys/64 0.1875 0.25 0.3125	fsys/8 1.5 2 2.5 fsys/16 0.75 1 1.25 fsys/32 0.375 0.5 0.625 fsys/64 0.1875 0.25 0.3125	f _{SYS} /4	3	4	5
fsys/16 0.75 1 1.25 fsys/32 0.375 0.5 0.625 fsys/64 0.1875 0.25 0.3125	fsys/16 0.75 1 1.25 fsys/32 0.375 0.5 0.625 fsys/64 0.1875 0.25 0.3125	fsys/16 0.75 1 1.25 fsys/32 0.375 0.5 0.625 fsys/64 0.1875 0.25 0.3125	fşyş/16 0.75 1 1.25 fşyş/32 0.375 0.5 0.625 fşyş/64 0.1875 0.25 0.3125	f _{SYS} /8	1.5	2 ((2.5
fsys/32 0.375 0.5 0.625 fsys/64 0.1875 0.25 0.3125	fsys/32 0.375 0.5 0.625 fsys/64 0.1875 0.25 0.3125	fsys/32 0.375 0.5 0.625 fsys/64 0.1875 0.25 0.3125	fşys/32 0.375 0.5 0.625 fsys/64 0.1875 0.25 0.3125	f _{SYS} /16	0.75	1	1.25
f _{SYS} /64 0.1875 0.25 0.3125	f _{SYS} /64 0.1875 0.25 0.3125	t _{SYS} /64 0.1875 0.25 0.3125	t _{5Y5} /64 0.1875 0.25 0.3125	f _{SYS} /32	0.375	0.5	0.625
				f _{SYS} /64	0.1875	0.25	0.3125
							B

Table 2 11 1 Ex nlo of h drat (2) SPICT(SPI Control Register)

SPICT register is for data length or CRC etc.

						-			
		7	6	5	4	3	2 🔨	1	0
SPICT	bit Symbol	CEN	SPCS_B	UNIT16			ALGNEN	RXWEN	RXUEN
(0822H)	Read/Write		R/W				(R/W	
	After Reset	0	1	0			0	0	0
	Function	communication control 0: disable 1: enable	SPCS pin 0: output "0" 1: output "1"	Data length 0: 8bit 1: 16bit		$\langle \rangle$	Full duplex alignment 0: disable 1: enable	Sequential receive 0: disable 1: enable	Receive UNIT 0: disable 1: enable
		15	14	13	12	11	10	9	8
(0822H)	bit Symbol	CRC16_7_B	CRCRX_TX_B	CRCRESET_B		Å	\swarrow	DMAERFW	DMAERFR
	Read/Write		R/W					R	w 🔿
	After Reset	0	0	0		\mathcal{A}		0	0
	Function	CRC select 0: CRC7 1: CRC16	CRC data 0: Transmit 1: Receive	CRC calculate register 0:Reset 1:Release Reset				Micro DMA 0: Disable 1: Enable	Micro DMA 0: Disable 1: Enable

SPICT Register

Figure 3.11.6 SPICT Register

- (a) <CRC16_7_B> Select CRC7 or CRC16 to calculate.
- (b) <CRCRX_TX_B>

Select input data to CRC calculation circuit.

(c) <CRCRESET_B>

Initialize CRC calculate register.

The process that calculating CRC16 of transmits data and sending CRC next to transmit data is explained as follows.

- 1. Set SPICT <CRC16_7_B> for select CRC7 or CRC16 and <CRCRX_TX_B> for select calculating data.
- 2. For reset SPICR register, write "1" after set <CRCRESET_B> to "0".
- 3. Write transmit data to SPITD register, and wait for finish transmission all data.
- 4. Read SPICR register, and obtain the result of CRC calculation.
- 5. Transmit CRC which is obtained in (4) by the same way as (3).

CRC calculation of receive data is the same process.

(d) <DNAERFW>

Set clearing interrupt in CPU to unnecessary because be supported RFR interrupt to Micro DMA. If write "1" to, it be set to one-shot interrupt, clearing interrupt by SPIWE register become to unnecessary. SPIST<RFW> flag generate 1-shot interrupt when change from "0" to "1"(Rising).

(e) <DMAERFR>

Set clearing interrupt in CPU to unnecessary because be supported RFR interrupt to Micro DMA. If write "1" to, it be set to one-shot interrupt, clearing interrupt by SPIWE register become to unnecessary. SPIST<RFR> flag generate 1-shot interrupt when change from "0" to "1"(Rising).

(f) <CEN>

Select enable/disable of the pin for SD card or MMC. When the card isn't inserted or no-power supply to DVcc, penetrated current is flowed because SPDI pin becomes floating. In addition, current is flowed to the card because $\overline{\text{SPCS}}$, SPCLK and SPDO pin output "1". This register can avoid these matters.

If write "0" to $\langle CEN \rangle$ with PKCR and PKFC selecting \overline{SPCS} , SPCLK, SPDO and SPDI signal, SPDI pin is prohibit to input (avoiding penetrated current) and \overline{SPCS} , SPCLK,

SPDO pin become high impedance.

Please write <CEN> = "1" after card is inserted, supply power to Vcc of card and supply clock to this circuit (SPIMD<XEN> = "1").

(g) <SPCS_B>

Set the value output to SPCS pin.

(h) <UNIT16>

Select the length of transmit/receive data. Data length is described as UNIT downward. Please change the setting when transmitting/receiving is not in operation.

(i) <ALGNEN>

Select whether using alignment function for transmit/receive per UNIT during full duplex.

Please change the setting when transmitting/receiving is not in operation.

(j) <RXWEN>

Set enable/disable of sequential receiving.

(k) <RXUEN>

Set enable/disable of receiving operation per UNIT. In case <RXWEN> = "1", this bit is not valid.

Please change the setting when transmitting/receiving is not in operation.

[Transmit / receive operation mode]

It is supported 8 operation modes. They are selected in <ALGNEN>, <RXWEN> and <RXUEN> registers.

Operation mode	R	egister setting]	Noto
Operation mode	<algnen></algnen>	<rxwen></rxwen>	<rxuen></rxuen>	Note Note
(1) Transmit UNIT	0	0	0	Transmit written data per UNIT
(2) Sequential transmit	0	0	0	Transmit written data sequentially
(3) Receive UNIT	0	0	1	Receive data of only 1 UNIT
(4) Sequential receive	0	1	0	Receive automatically if buffer has space
(5)Transmit/Receive UNIT with no alignment	0	0		Transmit/receive 1 UNIT at once with no alignment per each UNIT
(6) Sequential Transmit/Receive UNIT with no alignment	0	1	0	Transmit/receive sequentially at once with no alignment per each UNIT
(7) Transmit/Receive UNIT with alignment	1	0	1	Transmit/receive 1/UNIT with alignment per each UNIT
(8) Sequential Transmit/Receive UNIT with alignment	1		0	Transmit/receive sequentially with alignment per each UNIT

Table 3.11.2 transmit/receive operation mode	Table 3.11.2	transmit/receive	operation mode	<
--	--------------	------------------	----------------	---

Difference between UNIT transmission and Sequential transmission

UNIT transmit mode is transmitted every 1 UNIT by writing data after confirmed SPIST<TEND>=1.The written transmission data is shifted in turn. In hard ware, transmission is kept executing as long as data exists. If it transmit data sequentially, write next data when SPITD is empty and SPIST<REND>=1.

UNIT transmission and sequential transmission depend on the way of using. Hardware doesn't depend on.

Figure 3.11.8 show Flow chart of UNIT transmission and Sequential transmission.

Difference between UNIT receive and Sequential receive

UNIT receive is the mode that receiving only 1 UNIT data.

By writing "1" to SPICT<RXUEN>, receives 1UNIT data, and received data is loaded in receive data register (SPIRD). When SPIRD register is read, read it after wrote "0" to SPICT<RXUEN>.

If data was read from SPIRD with the condition SPICT<RXE>= "1", 1 UNIT data is received again automatically. In hardware, this mode receives sequentially by Single buffer.

SPIST<REND> is changed during UNIT receiving.

Sequential receive is the mode that receive data and automatically when receive FIFO has space.

Whenever buffer has space, next data is received automatically. Therefore, if data was read after data is loaded in SPIRD, it is received sequentially every UNIT. In hardware, this mode receives sequentially by double buffer.

Figure 3.11.9 show Flow chart of UNIT receive and Sequential receive

Figure 3.11.9 Flow chart of UNIT receive and Sequential receive
No alignment transmit/receive and alignment transmit/receive

In no-alignment mode, transmit/receive operate asynchronous and individually. This is the sample waveform when starts UNIT receive by writing <RXUEN>= "1", and then write transmit data in (SPITD) register before finishing the receiving.

Note: In no-alignment mode, clock is sometimes output from transmitter/receiver even when no data is in receiver/transmitter.

Figure 3.11.10 No-alignment transmit/receive

In alignment mode, it differs from no-alignment mode in transmit/receive is synchronous every UNIT though it is identical in transmit and receive operate simultaneously.

Writing <ALGNEN>= "1" first, and SPICT<RXE>= "1" and keep waiting state for starting UNIT receiving. When writing SPICT<RXE>= "1" after <ALGNEN>= "1", receiving does not start right away. This is because the data to transmit at the same time has not been prepared. Transmit/receive start when writing the data to (SPITD) register with the condition <TXE>= "1".

The waveform of each transmit/receive operation is as follows;

(3) Interrupt, Status register

Read of condition, Mask of condition, Clear interrupt and Clear enable can control each 4 interrupts; RFR (SPIRD receiving buffer is full), RFW (SPITD transmission buffer is empty), REND (SPIRS receiving buffer is full), TEND (SPITS transmission buffer is empty).

RFR, RFW can high-speed transaction by micro DMA.

Following is description of Interrupt \cdot status (example RFW).

Status register SPIST<RFW> show RFW (internal signal that show whether transmission data register exist or not). This register is "0" when transmission data exist. This register is "1" when transmission data doesn't exist. It can read internal signal directly. Therefore, it can confirm transmission data at any time.

Interrupt status register SPIIS<RFWIS> is set by rising edge of RFW. This register keeps that condition until write "1" to this register and reset when SPIWE<RFWWE> is "1".

RFW interrupt generate when interrupt enable register SPIIE<RFWIE> is "1". When it is "0", interrupt is not generated.

Interrupt request register SPIIR<RFWIR> show whether interrupt is generating or not. Interrupt status write enable register SPIWE<RFWWE> set that enables reset for reset interrupts status register by mistake.

Circuit config of transmission data shift register (SPITS), receiving register (SPIRD), receiving data shift register (SPIRS) are same with above register.

Control register SPICT<DMAERFW>, SPICT<DMAERFR> is register for using micro DMA. When micro DMA transfer is executed by using RFW interrupt, set "1" to <DMAERFW>, and when it is executed by using RFR interrupt, set "1" to <DMAERFR>, and prohibit other interrupt.

Figure 3.11.12 Figurer for interrupt, status

(3-1) SPIST(SPI status register)

SPIST shows 4 status.

				SPIS	ST Registe	r			
		7	6	5	4	3	2 <	1	0
SPIST	bit Symbol					TEND	REND	RFW	RFR
(0824H)	Read/Write							2()}	
	After Reset					1	0	1	0
	Function					Receiving 0:operation 1: no operation	Receive Shift register 0: no data 1: exist data	Transmit buffer 0: untransmitted data exist 1: no untransmitted data	Receive buffer 0:no valid data 1:valid data exist
	/	15	14	13	12	11	10	9	8
(000511)	bit Symbol				/	\mathcal{T}		\mathcal{A}	\downarrow
(0825H)	Read/Write				/	$\overline{\langle}$	$\left \right $	L L L	
	After Reset				4	\sim			\rightarrow
	Function							\mathcal{O}^{\vee}	

Figure 3.11.13 SPIST Register

(a) <TEND>

This bit is set to "0" when valid data to transmit exists in the shift register for transmit. It is set to "1" when finish transmitting all the data.

(b) <REND>

This bit is set to "0" when receiving is in operation or no valid data exist in receive shift register.

It is set to "1", when valid data exist in receive read register and keep the data without shifting.

It is cleared to "0", when CPU read the data and shift to receive read register.

(c) <RFW>

After wrote the received data to receive data write register, shift the data to receive data shift register. It keeps "0" until all valid data has moved. And it is set to "1" when it can accept the next data with no valid data.

(d) <RFR>

This bit is set to "1" when received data is shifted from received data shift register to received data read register and valid data exist. It is set to "0" when the data is read and no valid data.

(3-2) SPIIS(SPI interrupt status register)

SPIIS register read 4 interrupt status and clear interrupt.

This register is cleared to "0" by writing "1" to applicable bit. Status of this register show interrupt source state. This register can confirm changing of interrupt condition, even if SPI interrupt enable register (SPIIE) is masked.

Figure 3.11.14 SPIIS Register

(a) <TENDIS>

This bit read status of TEND interrupt and clear interrupt. If write this bit, set "1" to SPIWE<TENDWE>.

(b) <REMDIS>

This bit read status of REND interrupt and clear interrupt. If write this bit, set "1" to SPIWE<RENDWE>.

(c) <RFWDIS>

This bit read status of RFW interrupt and clear interrupt. If write this bit, set "1" to SPIWE<RFWWE>.

(d) <RFRIS>

This bit read status of RFR interrupt and clear interrupt. If write this bit, set "1" to SPIWE<RFRWE>. (3-3) SPIWE(SPI interrupt status write enable register)

SPIWE register set clear enable for 4 interrupt stasus bit.

			SPIN	E Registe	51			
	7	6	5	4	3	2 📐	1	0
bit Symbol					TENDWE	RENDWE	REWWE	RFRWE
Read/Write						R	W	-
After Reset					0	0	0	0
					Clear SPIIS	Clear SPIIS	Clear SPIIS	Clear SPIIS
Function					<tendis></tendis>	<rendis></rendis>	<tfwis></tfwis>	<rfris></rfris>
					0: disable 1: enable	U: disable	1: enable	U: disable
	15	14	13	12	11	10	9	1. enable
oit Symbol					\square	\sim		$\overline{\mathbb{N}}$
Read/Write	\frown		\backslash	\frown			- A	
After Reset	\sim		/					
					$(\vee /))$	\diamond	(O)	6
								$\mathcal{O}\mathcal{I}$
Function				20	\searrow	(\mathcal{A})		
1 dilotion				$\mathcal{A}(\mathbb{Z})$	\triangleright		$\sum_{i=1}^{n}$	
			/		·			
			1					
This (b) <ren This (c) <rfw< th=""><th>bit set cle NDWE> bit set cle</th><th>ar enable</th><th>of SPIIS</th><th><tendis< th=""><th></th><th></th><th></th><th></th></tendis<></th></rfw<></ren 	bit set cle NDWE> bit set cle	ar enable	of SPIIS	<tendis< th=""><th></th><th></th><th></th><th></th></tendis<>				
This	bit set cle	ar enable	of SPHS	<rfwis></rfwis>	·.			
(d) <rfr< td=""><td>WE></td><td>></td><td>\square</td><td></td><td></td><td></td><td></td><td></td></rfr<>	WE>	>	\square					
This	bit set cle	ar enable	of SPIIS	RFRIS>.				

(3-4) SPIIE(SPI interrupt enable register)

SPIIE register set output enable for 4 interrupt.

						·			
		7	6	5	4	3	2 🔿	1	0
SPIIF	bit Symbol				/	TENDIE	RENDIE	RFWIE	RFRIE
(082CH)	Read/Write						R/	W	
	After Reset					0	0		0
						TEND	REND	RFW	RFR
	Function					interrupt	interrupt	interrupt	interrupt
	Function					0: Disable	0: Disable	0: Disable	0: Disable
						1: Enable	1: Enable	1: Enable	1: Enable
		15	14	13	12	11	10	9	8
	bit Symbol					\sum		\sim	\swarrow
	Read/Write					\square			X
(082DH)	After Reset								\sum
(- ,						(V/)	\land	(())	
					\frown				γ
					10	$\langle \rangle$		J//C	/
	Function						(C)	\sim	
						\sim		\mathcal{O}	
				($\sim >$		$(\overline{\Omega})^{\prime}$		
					$\overline{}$	\sim	$(\forall))$	1	
				. 20					
			F	igure 3.11.	16 SPIIE I	Régister			
				()	\checkmark))		
	(a) <ten< td=""><td>JDIE></td><td></td><td>$\langle \bigcup \rangle$</td><td></td><td></td><td>~/</td><td></td><td></td></ten<>	JDIE>		$\langle \bigcup \rangle$			~/		
	This	s bit set TF	END inter	rupt enab	ole.	\sim	~		
	1110		(()		~				
	(b) <ren< td=""><td>NDIE></td><td></td><td></td><td>1</td><td>$\langle \rangle$</td><td></td><td></td><td></td></ren<>	NDIE>			1	$\langle \rangle$			
	,, <u>1011</u>					1/4			
	This	s dit set RI	intel UNLY	rrupt enat	Die.				
	() . ה דיני	, ())	\sim	\sim	$(\sqrt{5})$				
	(c) <kfv< td=""><td>ATE></td><td></td><td></td><td>$\langle \bigcirc \rangle$</td><td></td><td></td><td></td><td></td></kfv<>	ATE>			$\langle \bigcirc \rangle$				
	This	s bit set RI	W interr	upt enabl	e				
			1						
	(d) <rfr< td=""><td>NE></td><td></td><td></td><td>></td><td></td><td></td><td></td><td></td></rfr<>	NE>			>				
	This	bit set RI	R interm	uot enable	×				
					·•				
6	$\langle (() \rangle$))		$\langle \rangle$					
	$// \bigcirc$	ノ へ	$(\bigcirc$	$\backslash \checkmark$					
		((110))					
/			X S						
		$\langle \rangle$							
	\checkmark		\sim						

SPIIE Register

(3-5) SPIIR(SPI interrupt request register)

SPIIR register show generation condition for 4 interrupts.

This regiter read "0" (interrupt doesn't generate) always when SPIninterrupt enable register (SPIIE) is masled.

				SPII	R Registe	r	\langle		
		7	6	5	4	3	2 ((1)	0
SPIIR	bit Symbol					TENDIR	RENDIR	RFWIR	RFRIR
(082EH)	Read/Write							रं	
	After Reset					0	0)) o	0
	Function					TEND interrupt 0: none 1:generate	REND interrupt 0: none 1:generate	RFW interrupt 0: none 1:generate	RFR interrupt 0: none 1:generate
	\sim	15	14	13	12	11	10	9	8
	bit Symbol							\searrow	\sim
(082EH)	Read/Write	\sim	\sim	\sim	\sim	$\forall \mathcal{O}$	4	\mathbb{N}	
(002111)	After Reset		\sim			\sim			\rightarrow
	Function							9	
	(a) <ten This (b) <ten This (c) <rfw This</rfw </ten </ten 	IDIR> bit shows IDIR> bit shows VIR> bit shows	condition condition	n of TENI n of RENI n of RENI	17 SPIIR	Register t generati t generati generatio	on. ion. n.		
	(d) <rfr< td=""><td>IR></td><td>~(</td><td>2</td><td></td><td></td><td></td><td></td><td></td></rfr<>	IR>	~(2					
	This	bit shows	condition	n of RFR i	nterrupt ş	generation	1.		

(4) SPICR (SPI CRC register)

SPICR register load result of CRC calculation for transmission/receiving in it.

				SPIC	CR register	r			
		7	6	5	4	3	2 <	1	0
SPICR	bit Symbol	CRCD7	CRCD6	CRCD5	CRCD4	CRCD3	CRCD2	CRCD1	CRCD0
(0826H)	Read/Write				F	8	($\langle \rangle \rangle$	
	After reset	0	0	0	0	0	0		0
	Function			CRC cal	culation res	sult load reg	jister [7:0]	\mathcal{D}	
		15	14	13	12	11		9	8
(09274)	bit Symbol	CRCD15	CRCD14	CRCD13	CRCD12	CRCD11	CRCD10	CRCD9	CRCD8
(002711)	Read/Write				F	2		G	
	After reset	0	0	0	0	ø	✓ ₀	\sim	Ø
	Function			CRC calc	ulation resu	Ilt load regis	ster [15:8]	6	\diamond

Figure 3.11.18 SPICR register

(a) <CRCD15:0>

The result that is calculated according to the setting; SPICT<CRC16_7_b>, <CRCRX_TX_B> and <CRCRESET_B>, are loaded in this register.

In case CRC16, all bits are valid. In case CRC7, lower 7 bits are valid.

The flow will be showed to calculate CRC16 of received data for instance by flowchart. Firstly, initialize CRC calculation register by writing $\langle CRCRESET_B \rangle = "1"$ after set $\langle CRC16_7_b \rangle = "1"$, $\langle CRCRX_TX_B \rangle = "0"$, $\langle CRCRESET_B \rangle = "0"$.

Next, finish transmitting all bits to calculate CRC by writing data in SPITD register. Confirming whether receiving is finished or not use SPIST<TEND>.

If SPICR register was read after finish, CRC16 of transmission data can read.

(5) SPITD(SPI transmisson data register)

SPITD register is register for write transmission data.

				SPIT	D Registe	r			
		7	6	5	4	3	2 <	1	0
SPITD	bit Symbol	TXD7	TXD6	TXD5	TXD4	TXD3	TXD2	TXD1	TXD0
(0830H)	Read/Write				R/	W	($\langle \rangle \rangle$	
	After Reset	0	0	0	0	0	0		0
	Function			Tra	ansmission d	ata register [7:0]	\mathcal{D}	
		15	14	13	12	11 (9	8
	bit Symbol	TXD15	TXD14	TXD13	TXD12	TXD11	TXD10	TXD9	TXD8
(0831H)	Read/Write				R/	W (G	
	After Reset	0	0	0	0	ø	<i>∨</i> ₀	0	0
	Function			Trai	nsmission da	ta register [1	5:8]	$\left(\begin{array}{c} \\ \end{array} \right)$	$\langle \rangle \langle \rangle$

Figure 3.11.19 SPITD Register

(a) <TXD15:0>

This bit is bit for write transmission data. When read, the last written data is read. The data is overwritten when next data was written with condition of this register does not

empty. In this case, please write after checked the status of RFW.

In case SPICT<UNIT16>= "1", all bits are valid.

In case SPICT<UNIT16>= "0", lower 7 bits are valid.

(7) SPITS (SPI receiving data shift register)

SPITS register change transmission data to serial. This register is used for confirming changing condition when LSI test.

				SPIT	S Registe	r	\sim		
		7	6	5	4	3	2	1	0
SPITS	bit Symbol	TSD7	TSD6	TSD5	TSD4	TSD3	TSD2	TSD1	TSD0
(0834H)	Read/Write			_	F	R		\bigcirc	
	After Reset	0	0	0	0	0	0	0	0
	Function			Tra	ansmit data s	shift register [7:0]	\mathcal{D}	
		15	14	13	12	11		9	8
	bit Symbol	TSD15	TSD14	TSD13	TSD12	TSD11	TSD10	TSD9	TSD8
(0835H)	Read/Write				F	12 8	\searrow)\	$\langle \rangle$
(000011)	After Reset	0	0	0	0	0	0	0	0
	Function			Trar	nsmit data sh	ift register [1	5:8]	\mathcal{Q}	\mathbb{Z}_{λ}

Figure 3.11.21 SPITS Register

(a) <TSD15:0>

This register is register for reading the status of transmission data shift register. In case SPICT<UNIT16>= "1", all bits are valid.

In case SPICT<UNIT16>= "0", lower 8 bits are valid.

(8) SPIRS(SPI receive data shift register)

SPIRS register is register for reading receive data shift register.

					O Registe	1			
		7	6	5	4	3	2 📐	1	0
SPIRS	bit Symbol	RSD7	RSD6	RSD5	RSD4	RSD3	RSD2	RSD1	RSD0
(0836H)	Read/Write				F	8	(
	After Reset	0	0	0	0	0	0		0
	Function			Re	eceive data s	hift register [7:0]	$\langle \rangle \rangle$	
		15	14	13	12	11	(10)	9	8
	bit Symbol	RSD15	RSD14	RSD13	RSD12	RSD11	RSD10	RSD9	RSD8
(0837H)	Read/Write				F	\sim		G	
	After Reset	0	0	0	0	0	0	0	0
	function			Rec	eive data shi	ift register [1	5:8]	6	

SPIRS Register

Figure 3.11.22 SPIRS Register

(a) <RSD15:0>

This register is register for reading the status of receives data shift register. In case SPICT<UNIT16>= "1", all bits are valid.

In case SPICT<UNIT16>="0", lower 7 bits are valid.

3.11.3 Operation timing

Following examples show operation timing.

• Setting condition 1: Transmission in UNIT=8bit, LSB first

In above condition, SPIST<RFW> flag is set to "0" just after wrote transmission data. When data of SPITD register finish shifting to transmission register (SPITS), SPIST<RFW> is set to "1", it is informed that can write next transmission data, start transmission clock and data from SPCLK pin and SPDO pin at same time with inform.

In this case, SPIIS, SPIIR change and INTSPI interrupt generate by synchronization to rising of SPIST<RFW> flag. When SPIIR register is setting to "1", interrupt is not generated even if SPIST<RFW> was set to "1".

When finish transmission and lose data that must to transmit to SPITD register and SPITS register, transmission data and clock are stopped by setting "1" to SPIST<TEND>, and INTSPI interrupt is generated at same time. In this case, if SPIST<TEND> is set to "1" at different interrupt source, INTSPI is not generated. Therefore must to clear SPIIS<RFW> to "0".

 Settir UNIT to 	ng condition 2: ransmission in UNIT = 8bit, LSB first
SPIRD Read pulse	Ω
SPIST <rfr></rfr>	
SPIIS <rfris></rfris>	
SPIIS <rendis></rendis>	
SPCLK pin (<rcpol>= "0") SPCLK pin (<rcpol>= "1") SPDI pin</rcpol></rcpol>	
	Figure 3.11.24 UNIT receiving (SPICT <rxuen>=1)</rxuen>

If set SPICT<RXUEN> to "1" without valid receiving data to SPIRD register (SPIST<RFR>="0"), UNIT receiving is started. When receiving is finished and stored receiving data to SPIRD register, SPIST<RFR> flag is set to "1", and inform that can read receiving data. Just after read SPIRD register, SPIST<RFR> flag is cleared to "0" and it start receiving next data automatically.

If be finished UNIT receiving, set SPICT<RXUEN> to "0" after confirmed that SPIST<RFR> was set to "1".

 Setting condition 3: Sequential receiving in UNIT=8 bit, LSB first

If set SPICT<RXWEN> to "1" without valid receiving data in SPIRD register (SPIST<RFR>=0), sequential receiving is started. When first receiving is finished and stored receiving data to SPIRD register, SPIST<RFR> flag is set to "1", and inform that can read receiving data. Sequential receiving is received until receiving data is stored to SPIRD and SPIRS registers If finished sequential receiving, set SPICT<RXWEN> to "0" after confirmed that SPIST<REND> was set to "1".

If all bits of SPIIE register are "0" and SPICT<DMAERFW> is "1", transmission is started by writing transmission data to SPITD register.

If data of SPITD register is shifted to SPITS register and SPIST<RFW> is set to "1" and can write next transmission data, INTSPI interrupt (RFW interrupt) is generated. By starting Micro DMA at this interrupt, can transmit sequential data automatically.

However, If transmit it at Micro DMA, set Micro DMA beforehand.

• Setting condition 5: Receiving by using micro DMA in UNIT=8bit, LSB first

INTSPI Interrupt	pulse	ſ
SPIRD Read pulse		
·	Γ	
SPIST <rfr></rfr>		
SPIST <rend></rend>		
SPIIS <rfr></rfr>		
SPIIS <rend></rend>		
SPCLK pin (<rcpol>= "0") SPCLK pin</rcpol>		
SPDI pin	XLSB X X XMSB Bit0 Bit1 Bit2 Bit3 Bit4 Bit7	XLSBX X X X - XMSBX Bito Bit1 Bit2 Bit3 Bit4 Bit7

Figure 3.11.27 Micro DMA transmission (UNIT receiving (SPICT<REUEN>=1))

If all bits of SPIIE register is "0" and SPICT<DMAERFR> is "1", UNIT receiving is started by setting SPICT<RXUEN> to "1". If receiving data is stored to SPIRD register and can read receiving data, INTSPI interrupt (RFR interrupt) is generated. By starting Micro DMA at this interrupt, it can be received sequential data automatically.

However, If receive it at Micro DMA, set Micro DMA beforehand.

3.11.4 Example

Following is discription of SPIDCC setting method.

(1) UNIT transmission

This example show case of transmission is executed by following setting, and it is generated INTSPI interrupt by finish transmission.

UNIT: 8bit LSB first Baud rate : f_{SYS}/8 Synchronous clock edge: Rising

Setting expample

ld	(pkfc), 0xf0	; Port setting PK4: SPDI, PK5: SPDO, PK6:SPCS_B, PK7: SPCLK
ld	(pkcr), 0xe0	; port setting PK4: SPDI, PK5: SPDO, PK6:SPCS_B, PK7: SPCLK
ldw	/ (spict),0x0080	; Connection pin enable, SPCS pin output "0", set data length to 8bit
ldw	(spimd),0x2c43	; System clock enable, baud rate selection: f _{SYS} /8
		; LSB first, synchronous clock edge setting: set to Rising
ld	(spiie),0x08	; Set to TEND interrupt enable
ld	(intespi),0x10	; Set INTSPI interrupt level to 1
ei		; Interrupt enable (iff=0)
loop	;(Confirm that transmission data register doesn't have no transmission data
bit	1,(spist)	; <rfw>=1 ?</rfw>
jr	z,loop	
	(7/	
ld	(spitd),0x3a	; Write Transmission data and Start transmission
•		\sim (\checkmark))
•		
•		
\sim	>	
SPITD		\sim
Write puls		
SPCLK OL	itput —	
\sim		
SPDO out	iput	
INTSPI	signal)

Figure 3.11.28 Example of UNIT transmission

(2) UNIT receiving

This example show case of receiving is executed by following setting, and it is generated INTSPI interrupt by finish receiving.

LSB fir Baud r Synchr	'st ate selection : f _{SYS} /8 onous clock edge: Risi	ng
Setting	example	
ld	(pkfc),0xf0	; Port setting PK4:SPDI, PK5:SPDO, PK6:SPCS_B, PK7:SPC
ld	(pkcr),0xe0	; Port setting PK4:SPDI, PK5:SPDO, PK6:SPCS_B, PK7:SPC
ldw	(spict),0x0080	; Connection pin enable, SPCS pin "0" output, set data length
ldw	(spimd),0x2c43	; System clock enable, baud rate selection : f _{SYS} /8
		; LSB first, synchronous clock edge setting: set to Rising
ld	(spiie),0x01	; Set to RFR interrupt enable
ld	(intespi),0x10	; Set INTSPI interrupt level to 1
el		; Interrupt enable (IIT=0)
set	0x0.(spict)	Start UNIT receiving
	,(
	G	
SPICT Write	pulse	
SPCL	Koutput	un an
SPDK	nput	
INTS	PI	
Interr	upt signal	
		<u> </u>
\sim	Eiguro 2.11	29 Example of LINIT receiving

(3) Sequential transmission

This example show case of transmission is executed by following setting, and it is executed 2byte sequential transmission.

UNIT: LSB fir	8bit rst	
Synchr	onous clock edge: Rising	g
<u>Setting</u>	example	
ld	(pkfc),0xf0	; Port setting PK4:SPDI, PK5:SPDO, PK6:SPCS_B, PK7:SPCLK
ld	(pkcr),0xe0	; Port setting PK4:SPDI, PK5:SPDO, PK6:SPCS_B, PK7:SPCLK
ldw	(spict),0x0080	; Connection pin enable, SPCS pin "0" output, set data length to 8bit
ldw	(spimd),0x2c43	; System clock enable, baud rate selection: f _{SYS} /8
		; LSB first, synchronous clock edge setting: set to Rising
loop1:		; Confirm that transmission data register doesn't have no transmission data
bit	1,(spist)	; <rfw>=1?</rfw>
jr	z,loop1	
ld	(spitd),0x3a	; Write transmission data of first byte and start transmission
loop2		; Confirm that transmission data register doesn't have no-transmission data
bit	1,(spist)	; <rfw>=1 ?</rfw>
jr	z,loop2	
	$\left(\left(\begin{array}{c} \cdot \\ \cdot \end{array} \right) \right)$	
ld	(spitd),0x55	; Write transmission data of second byte
	(7/5)	
loop3:		; Confirm that transmission data register doesn't have no-transmission data
bit	3,(spist)	<tend>=1 ?</tend>
jr	z,loop3	
•		; Finish transmission
\sim 7		
		\checkmark
SPITD	\sim	
Write puls	e j	
SPCLK ou		
SPDO out	tput	
INTSPI (I	RFW)	

Note: Timing of this figure is an example. There is also that transmission interbal between first byte and sescond byte generate. (High baud rate etc.)

Figure 3.11.30 Example of sequential transmission

(4) Sequential receiving

This example show case of receiving is executed by following setting, and it is executed 2byte sequential receiving.

Figure 3.11.31 Example of sequential receiving

(5) Sequeintial Transmission by using micro DMA

This example show case of sequential transmission of 4byte is executed at using micro DMA by following setting.

UNIT: 8bit LSB first Baud rate : fsys/8 Synchronous clock edge: Rising

Setting example

Main routine

;-- micro DMA setting --

- (dma0v),0x2a ld
- ld wa,0x0003
- dmac0,wa ldc
- a.0x08 ld
- ldc dmam0,a
- xwa,0x806000 ld
- **Idc** dmas0,xwa
- ld xwa,0x830
- dmad0,xwa ldc

;-- SPIC setting --

- ld (pkfc),0xf0
- (pkcr),0xe0 ld
- ldw (spict),0x0080
- (spimd),0x2c43 ldw

- (spiie),0x00 ld
- 1,(spict+1) set
- (intetc01),0x01 ld

loop1: bit 1,(spist)

z,loop1

ld (spitd),0x3a

Interrupt routine (INTTC0)

```
loop2:
```

jr

ir

ei

ir

bit 1,(spist) ; <RFW> = 1 ? z,loop2 3,(spist) ; <TEND> = 1 ? bit z,loop2 nop

- ; Set micro DMA0 to INTSPI
- ; Set number of micro DMA transmission to that number -1 (third time)
- ; micro DMA mode setting: source INC mode, 1 byte transfer
- ; Set source address
- ; Set source address to SPITD register
- ; Port setting PK4:SPDI, PK5:SPDO, PK6:SPCS_B, PK7:SPCLK ; Port setting PK4:SPDI, PK5:SPDO, PK6:SPCS_B, PK7:SPCLK
 - ; Connection pin enable, SPCS pin output "0", set data length to 8bit
 - ; System clock enable, baud rate selection: fSYS/8
 - ; LSB first, synchronous clock edge setting: set to Rising
 - ;Set to interrupt disable ; Set micro DMA operation by RFW to enable Set INTTC0 interrupt level to 1
 - ; Interrupt enable (iff=0)

; Confirm that transmission data register doesn't have no transmission data : <RFW>=1 ?

; Write Transmission data and Start transmission

92CA25-237

(6) UNIT receiving by using micro DMA

This example show case of UNIT receiving sequentially 4byte is executed at using micro DMA by following setting.

; Set micro DMA0 to INTSPI

; Set source address

; Set source address to SPIRD register

; Set number of micro DMA transmission to that number -1 (third time)

; micro DMA mode setting: source INC mode, 1 byte transfer

; Port setting PK4:SPDI, PK5:SPDO, PK6:SPCS_B, PK7:SPCLK

Port setting PK4:SPDI, PK5:SPDO, PK6:SPCS_B, PK7:SPCLK

; System clock enable, baud rate selection: $f_{\mbox{SYS}}/8$

; Set micro DMA operation by RFR to enable

; LSB first, synchronous clock edge setting: set to Rising

; Connection pin enable, SPCS pin output "0", set data length to 8bit

UNIT: 8bit LSB first Baud rate : f_{SYS}/8 Synchronous clock edge: Rising

Setting example

Main routine

;-- micro DMA setting --

- ld (dma0v),0x2a
- ld wa,0x0003
- ldc dmac0,wa
- ld a,0x00
- ldc dmam0,a
- ld xwa,0x832
- ldc dmas0,xwa
- ld xwa,0x807000
- ldc dmad0,xwa

;-- SPIC setting --

- ld (pkfc),0xf0
- ld (pkcr),0xe0
- ldw (spict),0x0080
- ldw (spimd),0x2c43
- ld (spiie),0x00 set 0,(spict+1)
- ld (intetc01),0x01
- set 0x0,(spict)
- ; Start UNIT receiving

; Interrupt enable (iff=0)

; Set to interrupt disable

Set INTTC0 interrupt level to 1

Interrupt routine (INTTC0)

loop2:

ei

- bit 0,(spist)
- jr z,loop2
- res 0,(spict) ld a,(spird)
- nop

- ; Wait receiving finish case of UNIT receiving
- ; <RFR> = 1 ?
- ; UNIT receiving disable
- ; Read last receiving data
- 92CA25-238

3.12 Analog/Digital Converter

The TMP92CA25 incorporates a 10-bit successive approximation type analog/digital converter (AD converter) with 4-channel analog input.

Figure 3.12.1 is a block diagram of the AD converter. The 4-channel analog input pins (AN0 to AN3) are shared with the input only port G so they can be used as an input port.

Note: When IDLE2, IDLE1 or STOP mode is selected, in order to reduce power consumption, the system may enter a stand-by mode with some timings even though the internal comparator is still enabled. Therefore be sure to check that AD converter operations are halted before a HALT instruction is executed.

3.12.1 Analog/Digital Converter Registers

The AD converter is controlled by the three AD mode control registers: ADMOD0, ADMOD1 and ADMOD2. The four AD conversion data result registers (ADREG0H/L to ADREG3H/L) store the results of AD conversion.

Figure 3.12.2 shows the registers related to the AD converter.

Figure 3.12.2 AD Converter Related Register

AD Mode Control Register 1

Note: As pin AN3 also functions as the \overline{ADTRG} input pin, do not set $\langle ADCH1:0 \rangle =$ "11" when using \overline{ADTRG} with $\langle ADTRGE \rangle$ set to "1".

		7	6	5	4	3	2	1	0
ADREG0L (12A0H)	Bit symbol	ADR01	ADR00			\bigcirc	//	\bigcirc	ADR0RF
	Read/Write	R							R
	After reset	Unde	efined			\backslash			0
	Function	Stores lower 2 bits of							AD conversion
		AD conver	sion result.						1: Conversion
								7(result stored
			AD Cor	version Re	sult Registe	er 0 High	$\overline{0}$		
		7	6	5	4	3	2	1	0
ADREG0H	Bit symbol	ADR09	ADR08	ADR07	ADR06	ADR05	ADR04	ADR03	ADR02
(12A1H)	Read/Write				F		9	\sim	
	After reset				Unde	fined			
	Function			Stores u	pper 8 bits of	AD conversio	n result.		1
					(0	77~	C C	5	
	< <u> </u>		AD Co	nversion Re	esult Regist	er 1 Low		20	
		7	6	5	4	3	2		0
ADREG1L	Bit symbol	ADR11	ADR10		\sim		TA.	/	ADR1RF
(12A2H)	Read/Write		R		$\frac{1}{2}$		P A		R
	After reset	Unde	efined		\searrow		774		0
	Function	Stores low	ver 2 bits of		\searrow		$\langle \rangle \rangle$		AD conversion result flag
		AD conver	sion result.	$\langle \langle \rangle$	\supset /	\frown	\bigcirc		1: Conversion
									result stored
			AD Cor	version Re	sult Registe	er 1 High			
		7	6	5	4	3	2	1	0
ADREG1H	Bit symbol	ADR19	ADR18	ADR17	ADR16	ADR15	ADR14	ADR13	ADR12
(12A3H)	Read/Write		\square		F			-	4
	After reset	\frown	$(\vee/)$		Unde	fined			
	Function	unction Stores upper 8 bits of AD conversion result.							
		\langle / \rangle			$\overline{\mathbb{C}}$				
	Cha	nnel x			4 3 2	2 1 0			
	con	ersion result							
		\searrow						ADREG	ixl
	\square		7 6 5	¥ 4 3 2	2 1 0	76	5 4 3	2 1 0	
\sim))		X T			$\overline{\sqrt{\sqrt{N}}}$	Ŵ	7
			(\bigcirc)			LL			ļ
$\langle \langle \langle \rangle \rangle$		\mathcal{C}	$2 \bigcirc$)			N read as 1	¢	
		2/		Dis J to 1 are always fedu as 1. Dis J to 1 are always fedu as 1. Dis J to 1 are always fedu as 1.					
	\searrow		\searrow	DITU IS THE AD CONVERSION traits storage may <adrxrf>.</adrxrf>					
					vvnen t	THE ALL CONVER	sion result is	stored, the fla	ag is set to
					1. Whe	n either of the	e registers (Al	JREGXH, AD	REGXL) IS
read, the flag is cleared to 0.									

AD Conversion Result Register 0 Low

Figure 3.12.4 AD Converter Related Registers

					Suit Negist					
		7	6	5	4	3	2	1	0	
ADREG2L (12A4H)	Bit symbol	ADR21	ADR20						ADR2RF	
	Read/Write	R							R	
	After reset	Unde	efined						0	
	Function	Stores lower 2 bits of							AD conversion data storage flag	
		AD conver	sion result.						1: Conversion	
)Y	result stored	
			AD Cor	version Re	sult Registe	er 2 High	$\overline{0}$			
		7	6	5	4	3	2	1	0	
ADREG2H	Bit symbol	ADR29	ADR28	ADR27	ADR26	ADR25	ADR24	ADR23	ADR22	
(12A5H)	Read/Write				F	2	9			
	After reset				Unde	fined		$\langle (\rangle \rangle$		
	Function			Stores u	pper 8 bits of	AD conversio	n result.		\checkmark	
						25		$\sum_{i=1}^{n}$		
	<hr/>	_	AD Cor	iversion Re	esuit Regist	er 3 Low		(1/2)		
		7	6	5	4	3	2		0	
ADREG3L	Bit symbol	ADR31	ADR30			>	162		ADR3RF	
(12A0H)	Read/Write	F	R			\sum	\rightarrow		R	
	After reset	Undefined			\searrow		7/~~		0	
	Function	Stores lower 2 bits of				\sim	()		AD conversion data storage flag	
			Son rosult.		> /	\frown			1: Conversion	
									result stored	
	5		AD Cor	version Re	sult Registe	er 3 High				
		7	6	5	4 🔨	3	2	1	0	
ADREG3H	Bit symbol	ADR39	ADR38	ADR37	ADR36	ADR35	ADR34	ADR33	ADR32	
(12A7H)	Read/Write		$(\overline{\Omega})$		F	र				
	After reset		$(\vee \bigcirc)$	/	Unde	fined				
	Function	//))	$\overline{}$	Stores	pper 8 bits of	AD conversio	n result.			
		\bigvee			\bigcirc					
			98	7 6 5	4 3 2	2 1 0				
	Chan	nel x ersion result		\sum						
	$\langle \rangle$	\searrow						ADREG	SxL	
	\bigcap		7 6 5	• 4 3 2	2 1 0	* 76	5 4 3	2 1 0		
\langle										
$\langle \in$			\sqrt{O})						
		\sim	$\langle \ $		Bits 5 to	o 1 are alway	s read as 1.			
	\searrow	~	\rightarrow	 Bit0 is the AD conversion data storage flag <adrxrf>.</adrxrf> 						
	*				When t	the AD conver	rsion result is	stored, the fla	ag is set to	
					1. Whe	en either of the	e registers (Al	DREGxH, AD	REGxL) is	
					read, th	read, the flag is cleared to 0.				

AD Conversion Result Register 2 Low

- 3.12.2 Description of Operation
 - (1) Analog reference voltage

A high level analog reference voltage is applied to the VREFH pin; a low level analog reference voltage is applied to the VREFL pin. To perform AD conversion, the reference voltage, the difference between VREFH and VREFL, is divided by 1024 using string resistance. The result of the division is then compared with the analog input voltage.

To turn off the switch between VREFH and VREFL, write a 0 to ADMOD1 \langle VREFON> in AD mode control register 1. To start AD conversion in the OFF state, first write a 1 to ADMOD1 \langle VREFON>, wait 3 µs until the internal reference voltage stabilizes (this is not related to fc), then set ADMOD0 \langle ADS> to 1.

(2) Analog input channel selection

The analog input channel selection varies depending on the operation mode of the AD converter.

- In analog input channel fixed mode (ADMOD0<SCAN> = 0) Setting ADMOD1<ADCH1:0> selects one of the input pins AN0 to AN3 as the input channel.
- In analog input channel scan mode (ADMOD0<SCAN> = 1) Setting ADMOD1<ADCH1:0> selects one of the four scan modes.

Table 3.12.1 illustrates analog input channel selection in each operation mode.

On a reset, ADMOD0<SCAN> is set to 0 and ADMOD1<ADCH1:0> is initialized to 00. Thus pin AN0 is selected as the fixed input channel. Pins not used as analog input channels can be used as standard input port pins.

<adch1:0></adch1:0>	Channel Fixed <scan> = "0"</scan>	Channel Scan <scan> = "1"</scan>
00	AN0	ANO
01	AN1	$AN0 \rightarrow AN1$
10	AN2	$ANO \rightarrow AN1 \rightarrow AN2$
11	AN3	ANO \rightarrow AN1 \rightarrow AN2 \rightarrow AN3

Table 3.12.1 Analog Input Channel Selection

(3) Starting AD conversion

To start AD conversion, write a 1 to ADMOD0<ADS> in AD mode control register "0" or ADMOD2<ADTRGE> in AD mode control register 2, and input falling edge on ADTRG pin. When AD conversion starts, the AD conversion busy flag ADMOD0<ADBF> will be set to 1, indicating that AD conversion is in progress.

During AD conversion, a falling edge input on the ADTRG pin will be ignored.

(4) AD conversion modes and the AD conversion end interrupt

The four AD conversion modes are:

- Channel fixed single conversion mode
- Channel scan single conversion mode
- Channel fixed repeat conversion mode
- Channel scan repeat conversion mode

The ADMOD0<REPEAT> and ADMOD0<SCAN> settings in AD mode control register 0 determine the AD mode setting.

Completion of AD conversion triggers an INTAD AD conversion end interrupt request. Also, ADMOD0<EOCF> will be set to 1 to indicate that AD conversion has been completed.

1. Channel fixed single conversion mode

Setting ADMOD0<REPEAT> and ADMOD0<SCAN> to 00 selects conversion channel fixed single conversion mode.

In this mode, data on one specified channel is converted once only. When the conversion has been completed, the ADMOD0<EOCF> flag is set to 1, ADMOD0<ADBF> is cleared to 0, and an INTAD interrupt request is generated.

2. Channel scan single conversion mode

Setting ADMOD0<REPEAT> and ADMOD0<SCAN> to 01 selects conversion channel scan single conversion mode.

In this mode, data on the specified scan channels is converted once only. When scan conversion has been completed, ADMOD0<EOCF> is set to 1, ADMOD0<ADBF> is cleared to 0, and an INTAD interrupt request is generated.

3. Channel fixed repeat conversion mode

Setting ADMOD0<REPEAT> and ADMOD0<SCAN> to 10 selects conversion channel fixed repeat conversion mode.

In this mode, data on one specified channel is converted repeatedly. When conversion has been completed, ADMOD0<EOCF> is set to 1 and ADMOD0<ADBF> is not cleared to 0 but held at 1. INTAD interrupt request generation timing is determined by the setting of ADMOD0<ITM0>.

Setting <ITM0> to 0 generates an interrupt request every time an AD conversion is completed.

Setting <ITM0> to 1 generates an interrupt request on completion of every fourth conversion.

4. Channel scan repeat conversion mode

Setting ADMOD0<REPEAT> and ADMOD0<SCAN> to 11 selects conversion channel scan repeat conversion mode.

In this mode, data on the specified scan channels is converted repeatedly. When each scan conversion has been completed, ADMOD0<EOCF> is set to 1 and an INTAD interrupt request is generated. ADMOD0<ADBF> is not cleared to 0 but held at 1.

To stop conversion in a repeat conversion mode (e.g., in cases 3. and 4.), write a 0 to ADMOD0<REPEAT>. After the current conversion has been completed, the repeat conversion mode terminates and ADMOD0<ADBF> is cleared to 0.

Switching to a halt state (IDLE2 mode with ADMOD1<I2AD> cleared to 0, IDLE1 mode or STOP mode) immediately stops operation of the AD converter even when AD conversion is still in progress. In repeat conversion modes (e.g., in cases 3. and 4.), when the halt is released, conversion restarts from the beginning. In single conversion modes (e.g., in cases 1. and 2.), conversion does not restart when the halt is released (the converter remains stopped).

Table 3.12.2 shows the relationship between the AD conversion modes and interrupt requests.

Mode	Interrupt Request	ADMOD0			
Mode	Generation	<itm0></itm0>	<repeat></repeat>	<scan></scan>	
Channel fixed single conversion mode	After completion of conversion	х	0	0	
Channel scan single conversion mode	After completion of scan conversion	х	0	1	
Channel fixed repeat conversion mode	Every conversion	0	1	0	
	Every fourth conversion	1	I	U	
Channel scan repeat conversion mode	After completion of every scan conversion	х	1	1	

Table 3.12.2 Relationship between AD Conversion Modes and Interrupt Requests

X: Don't care

(5) AD conversion time

 $84 \text{ states} (8.4 \,\mu\text{s} \text{ at } f\text{SYS} = 20 \text{ MHz})$ are required for the AD conversion of one channel.

(6) Storing and reading the results of AD conversion

The AD conversion data upper and lower registers (ADREG0H/L to ADREG3H/L) store the results of AD conversion. (ADREG0H/L to ADREG3H/L are read-only registers.)

In channel fixed repeat conversion mode, the conversion results are stored successively in registers ADREG0H/L to ADREG3H/L. In other modes the AN0, AN1, AN2, AN3 and AN4 conversion results are stored in ADREG0H/L, ADREG1H/L, ADREG2H/L and ADREG3H/L respectively.

Table 3.12.3 shows the correspondence between the analog input channels and the registers which are used to hold the results of AD conversion.

Table 3.12.3 Correspondence between Analog Input Channels and AD Conversion Result Registers

	AD Conversion Result Register				
Analog Input Channel (Port G)	Conversion Modes Other than at Right	Channel Fixed Repeat Conversion Mode (ADMOD0< TM0 = 1>)			
AN0	ADREG0H/L	ADREG0H/L			
AN1	ADREG1H/L	ADREG1H/L			
AN2	ADREG2H/L	ADREG2H/L			
AN3	ADREG3H/L	ADREG3H/L			

<ADRxRF>, bit0 of the AD conversion data lower register, is used as the AD conversion data storage flag. The storage flag indicates whether the AD conversion result register has been read or not. When a conversion result is stored in the AD conversion result register, the flag is set to 1. When either of the AD conversion result registers (ADREGxH or ADREGxL) is read, the flag is cleared to 0.

Reading the AD conversion result also clears the AD conversion end flag ADMOD0<EOCF> to 0.

Setting example:

1. Convert the analog input voltage on the AN3 pin and write the result to memory address 2800H using the AD interrupt (INTAD) processing routine.

```
Main routine:
                                             0
                      6
                          5
                              4
                                  3
                                      2
                                          1
                                                    Enable INTAD and set it to interrupt level 4.
INTE0AD
                          0
                              0
ADMOD1
                       1
                          0
                              0
                                  0
                                      0
                                          1
                                             1
                                                    Set pin AN3 to be the analog input channel.
ADMOD0
                      Х
                          0
                              0
                                  0
                                      0
                                          0
                                             1
                                                     Start conversion in channel fixed single conversion mode.
                  Х
Interrupt routine processing example:
                                                     Read value of ADREG3L and ADREG3H into 16-bits
WA
               ← ADREG3
                                                     general-purpose register WA.
                                                     Shift contents read into WA six times to right and zero fill
WA
                  >>6
                                                     upper bits.
(2800H)
                                                     Write contents of WA to memory address 2800H.
                  WA
               ←
2. This example repeatedly converts the analog input voltages on the three pins ANO, AN1 and AN2, using channel
   scan repeat conversion mode.
                                                     Disable INTAD.
INTE0AD
                       0
                          0
                              0
                                                     Set pins AN0 to AN2 to be the analog input channels.
ADMOD1
                          0
                              0
                                  0
                                      0
                                          1
                                             0
                       1
               ←
                   1
ADMOD0
                              0
                                                     Start conversion in channel scan repeat conversion mode.
                                  0
                                      1
              ←
                  Х
                      Х
                          0
                                          1
                                             1
X: Don't care, -: No change
```

3.13 Watchdog Timer (Runaway detection timer)

The TMP92CA25 contains a watchdog timer of runaway detecting.

The watchdog timer (WDT) is used to return the CPU to the normal state when it detects that the CPU has started to malfunction (runaway) due to causes such as noise. When the watchdog timer detects a malfunction, it generates a non-maskable interrupt INTWD to notify the CPU of the malfunction.

Connecting the watchdog timer output to the reset pin internally forces a reset.

(The level of external $\overline{\text{RESET}}$ pin is not changed.)

3.13.1 Configuration

Figure 3.13.1 is a block diagram of the watchdog timer (WDT).

3.13.2 Operation

Internal reset

The watchdog timer generates an INTWD interrupt when the detection time set in the WDMOD<WDTP1:0> has elapsed. The watchdog timer must be cleared to zero in software before an INTWD interrupt will be generated. If the CPU malfunctions (e.g., if runaway occurs) due to causes such as noise, but does not execute the instruction used to clear the binary counter, the binary counter will overflow and an INTWD interrupt will be generated. The CPU will detect malfunction (runaway) due to the INTWD interrupt, and in this case it is possible to return the CPU to normal operation by means of an anti-malfunction program.

The watchdog timer begins operating immediately on release of the watchdog timer reset.

The watchdog timer is reset and halted in IDLE1 or STOP mode. The watchdog timer counter continues counting during bus release (when BUSAK goes low).

When the device is in IDLE2 mode, the operation of the WDT depends on the WDMOD<I2WDT> setting. Ensure that WDMOD<I2WDT> is set before the device enters IDLE2 mode.

The watchdog timer consists of a 22-stage binary counter which uses the clock ϕ (2/fIO) as the input clock. The binary counter can output 2¹⁵/fIO, 2¹⁷/fIO, 2¹⁹/fIO and 2²¹/fIO.

WDT counter	n X Overflow X 0	_
WDT interrupt		_
WDT clear (Software)	Write clear code	-
The run	Figure 3.13.2 Normal Mode away detection result can also be connected to the reset pin internally.	
In this ca	se, the reset time will be between 22 and 29 system clocks (35.2 to $46.4 \mu s$	at
fOSCH = 40	0 MHz) as shown inFigure 3.13.3. After a reset, the fIO clock is fFPH/4, whe	re
fFPH is gei	nerated by dividing the high-speed oscillator clock (fOSCH) by sixteen through t	he
clock gear	function.	
	Overflow	
WDT counter		_
WDT interrupt		_

22 to 29 clocks (35.2 to 46.4 μs at f_{OSCH} = 40 MHz)

Figure 3.13.3 Reset Mode
3.13.3 Control Registers

The watchdog timer (WDT) is controlled by two control registers WDMOD and WDCR.

- (1) Watchdog timer mode register (WDMOD)
 - 1. Setting the detection time for the watchdog timer in <WDTP1:0>

This 2-bit register is used for setting the watchdog timer interrupt time used when detecting runaway.

On a reset this register is initialized to $WDMOD < WDTP1:0 \ge 00$.

The detection time for WDT is $2^{15}/f_{IO}$ [s]. (The number of system clocks is approximately 65,536.)

2. Watchdog timer enable/disable control register <WDTE>

difficult for the watchdog timer to be disabled by runaway.

At reset, the WDMOD<WDTE> is initialized to 1, enabling the watchdog timer. To disable the watchdog timer, it is necessary to set this bit to 0 and to write the disable code (B1H) to the watchdog timer control register (WDCR). This makes it

However, it is possible to return the watchdog timer from the disabled state to the enabled state merely by setting <WDTE> to 1.

3. Watchdog timer out reset connection <RESCR>

This register is used to connect the output of the watchdog timer with the RESET terminal internally. Since WDMOD<RESCR> is initialized to 0 at reset, a reset by the watchdog timer will not be performed.

(2) Watchdog timer control register (WDCR)

This register is used to disable and clear the binary counter for the watchdog timer.

Disable control

The watchdog timer can be disabled by clearing WDMOD<WDTE> to 0 and then writing the disable code (B1H) to the WDCR register.

Enable control

WDCR

Set WDMOD<WDTE> to 1.

Watchdog timer clear control

To clear the binary counter and cause counting to resume, write the clear code (4EH) to the WDCR register.

 \leftarrow 0 1 0 0 1 1 1 0 Write the clear code (4EH).

Note1: If the disable control is used, set the disable code (B1H) to WDCR after writing the clear code (4EH) once. (Please refer to setting example.)

Note2: If the watchdog timer setting is changed, change setting after setting to disable condition once.

- 3.14 Real Time Clock (RTC)
 - 3.14.1 Function Description for RTC
 - 1) Clock function (hour, minute, second)
 - 2) Calendar function (month and day, day of the week, and leap year)
 - 3) 24- or 12-hour (AM/PM) clock function
 - 4) +/-30 s adjustment function (by software)
 - 5) Alarm function (alarm output)
 - 6) Alarm interrupt generate

3.14.2 Block Diagram

Note 1: Western calendar year column:

This product uses only the final two digits of the year. Therefore, the year following 99 is 00 years. In use, please take into account the first two digits when handling years in the western calendar.

Note 2: Leap year:

A leap year is divisible by 4, but the exception is any leap year which is divisible by 100; this is not considered a leap year. However, any year which is divisible by 400, is a leap year. This product does not take into account the above exceptions. Since this product accounts only for leap years divisible by 4, please adjust the system for any problems.

3.14.3 Control Registers

						,		, 0			
Symbol	Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Function	Read/Write
SECR	1320H	/	40 sec	20 sec	10 sec	8 sec	4 sec	2 sec	1 sec	Second column	R/W
MINR	1321H		40 min	20 min	10 min	8 min	4 min	2 min	1 min 🗸	Minute column	R/W
HOURR	1322H			20 hours/ PM/AM	10 hours	8 hours	4 hours	2 hours	1 hour	Hour column	R/W
DAYR	1323H						W2	W1	WO	Day of the week column	R/W
DATER	1324H	/	/	Day 20	Day 10	Day 8	Day 4	Day 2	Day 1	Day column	R/W
MONTHR	1325H	/	/	/	Oct.	Aug.	Apr.	Feb.	Jan.	Month column	R/W
YEARR	1326H	Year 80	Year 40	Year 20	Year 10	Year 8	Year 4	Year 2	Year 1	Year column (Lower two columns)	R/W
PAGER	1327H	Interrupt enable			Adjustment function	Clock enable	Alarm enable		PAGE setting	PAGE register	W, R/W
RESTR	1328H	1Hz enable	16Hz enable	Clock reset	Alarm reset		Always	write "O"		Reset register	W only

Table 3.14.1 PAGE 0 (Clock function) Registers

Note: When reading SECR, MINR, HOURR, DAYR, MONTHR and YEARR of PAGE0, the current state is read.

Table 3.14.2 PAGE 1 (Alarm function) Registers

Symbol	Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Function	Read/Write
SECR	1320H	/	/	/	/	\mathcal{M}	\sum		WAS		R/W
MINR	1321H	/	40 min	20 min	10 min	8 min	4 min	2 min	1 min	Minute column	R/W
HOURR	1322H	\searrow		20 hours/ PM/AM	10 hours	8 hours	4 hours	2 hours	1 hour	Hour column	R/W
DAYR	1323H				\mathcal{N}	\searrow	W2	W1	wo	Day of the week column	R/W
DATER	1324H			Day 20	Day 10	Day 8	Day 4	Day 2	Day 1	Day column	R/W
MONTHR	1325H			\mathcal{A}	¥		\sum		24/12	24-hour clock mode	R/W
YEARR	1326H	/	/	λ		/	\mathcal{F}	LEAP1	LEAP0	Leap-year mode	R/W
PAGER	1327H	Interrupt enable	\searrow	X	Adjustment function	Clock enable	Alarm enable		PAGE setting	PAGE register	W, R/W
RESTR	1328H	1Hz enable	16Hz enable	Clock reset	Alarm reset		Always	write "0"		Reset register	W only

Note: When reading SECR, MINR, HOURR, DAYR, MONTHR, YEARR of PAGE1, the current state is read.

3.14.4 Detailed Explanation of Control Register

RTC is not initialized by system reset.

Therefore, all registers must be initialized at the beginning of the program.

	7	6	5	4		3	2	1	0
Bit symbol		SE6	SE5	SE4	4 5	SE3	SE2	SE1	SE0
Read/Write				-	F	R/W	\sim	ノ	
After reset					Und	lefined	(1)		
Function	"0" is read.	40 sec.	20 sec.	10 se	ec. 8	sec.	4 sec.	2 sec.	1 sec.
		column	column	colur	nn co	lumn	column	column	column
							γ		
		0	0	0	0 ((0	0	θ	0 sec
		0	0	0	0	6	0	$\mathcal{A}(1)$	1 sec
		0	0	0	0	0	1	0	2 sec
		0	0	0	$(\sqrt{0})$	0	1(())	3 sec
		0	0	0	0	1	~~~	$\langle 0 \rangle$	4 sec
		0	0	0	0	1	0	J.	5 sec
		0	0	0	Ŏ	1	(C_{1})	0	6 sec
		0	0	0	✓ 0	1		1	7 sec
		0	0		1		0	0	8 sec
		0	0	0	1		0	1	9 sec
		0	0	\sim			0	0	10 sec
				2 1				1	10 000
		0		0	0	0	0	0	20 500
				0					20 300
		0	<u>}</u> 1	0	1	0	0	1	29 sec
		0	/1	1	0	0	0	0	30 sec
		$\left(\frac{\alpha}{2} \right)$						· · ·	
		$\langle 0 \rangle$	1		∕_1	0	0	1	39 sec
	//)L		0	(0)	0	0	0	0	40 sec
				$\overline{\bigcirc}$:	,		· · · · · ·	
		1	0	0	1	0	0	1	49 sec
		/ 1	0		0	0	0	0	50 sec
	$\langle \rangle$	1 ~	0	1	1	0	0	1	59 sec
	\searrow	Note	Do not sot	data othor	than as she	own above		1 1	
(\frown)		Mole:	Do not set	uala Ulifel	uiali as she		.		

(1) Second column register (for PAGE0 only)

SEC (132

	7	6	5	4		3	2	1	0
Bit symbol		MI6	MI5	MI4		MI3	MI2	MI1	MIO
Read/Write						R/W			
After reset					Ur	ndefined	\wedge		
Function	"0" is read.	40 min	20 min	10 m	in	8 min	4 min	2 min	1 min
		column	column	colun	nn c	olumn	column	column	column
		0	0	0	0	0	(7/0)	0	0 min
		0	0	0	0	Q		1	1 min
		0	0	0	0	0	1	0	2 min
		0	0	0	0	0) 🖓 1	1	3 min
		0	0	0	0	X	0	0	4 min
		0	0	0	0		0		5 min
		0	0	0	0	1	1	0	💛 6 min
		0	0	0	$\left(\begin{array}{c} 0 \end{array} \right)$	1	1	5	7 min
		0	0	0	1/2)) 0	00	20	8 min
		0	0	0		0	0	G(1//	9 min
		0	0	14	0	0	0	0	10 min
				7	: _		$(\bigcirc$	-	
		0	0		<u> </u>	0	0/_	1	19 min
		0	1 (0	0	0	7/0	0	20 min
			6			\sim (V	\bigcirc		
		0	A	0	1	0	0	1	29 min
		0	_1	_ 1	6	0	0	0	30 min
		(()	*					
		0		1	1	×_0	0	1	39 min
		$\int \int \int dz$	0	0	0	0	0	0	40 min
))	6	_//:				
			0	0	$\langle 1 \rangle$	0	0	1	49 min
		1	0	1	0	0	0	0	50 min
	$\langle \rangle$		\sim	$(\overline{0})$	- :			Γ.	
	<< /-	1	0	(1	0	0	1	59 min

(2) Minute column register (for PAGE0/1)

MINR (1321H)

- In 24-hour clock mode (MONTHR<MO0> = "1") 1. 6 5 4 3 2 1 0 7 HO5 HO4 HO3 HQ2 HO1 HO0 HOURR Bit symbol (1322H) Read/Write R/W After reset Undefined 2 hours "0" is read. Function 8 hours 20 hours 10 hours 4 hours 1 hour column column column column column column 0 o'clock 0 0 0 0 0 0 0 0 0 0 0 1 1 o'clock 0 0 0 0 1 0 2 o'clock 1: 0 0 1 0 0 0 8 o'clock 0 0 1 0 0 1 9 o'clock 0 1 Ó 0 0 0 10 o'clock 0 Þ 0 0 1 19 o'clock 1 1 ٥/ 0 0 0 0 20 o'clock 1 0 0 0 1 1 23 o'clock Note: Do not set data other than as shown above. In 12-hour clock mode (MONTHR<MO0>="0") 2. 7 5 3 2 6 4 1 0 HOURR HO5 HO4 HO3 HO2 HO1 HO0 Bit symbol (1322H) Read/Write R/W Undefined After reset Function "0" is read, PM/AM 10 hours 8 hours 4 hours 2 hours 1 hour column column column column column 0 o'clock 0 0 0 0 0 0 (AM) 0 0 0 0 0 1 1 o'clock 0 0 0 0 1 0 2 o'clock ÷ 0 9 o'clock 0 1 0 0 1 0 1 0 0 0 10 o'clock 0 0 1 0 0 0 1 11 o'clock 1 0 0 o'clock 0 0 0 0 (PM) 1 1 1 o'clock 0 0 0 0

(3) Hour column register (for PAGE0/1)

Note: Do not set data other than as shown above.

	7	6	5	4		3	2	1	0
Bit symbol							WE2	WE1	WE0
Read/Write								R/W	
After reset							\wedge	Undefined	
Function			"0" is read.				W2	W1	W0
						0	0) v o	Sunday
						0	0	1	Monda
						0	(// 1)	0	Tuesda
						0		1	Wednese
							0	0	Thursda
)) o	1	Friday
					.((1	1	0	Saturda
					<	Note: Do	not set data	a other than	as show
						💙 al	bove.	$\langle \rangle \rangle$	
				((//)	(($)) \sim$	
(5) Day	column	register (P	AGE0/1)		S	/		(//)	
	7	6	5	4	\rightarrow	3	2	>1	0
Bit symbol	<					A3	(DA2)	DA1	DA0
Dit Symbol			DAJ			/ 10			
Read/Write			DAG			R/W	$\overline{\nabla}$		
Read/Write After reset						R/W Undefir	ned		
Read/Write After reset Function	"0" is	s read.	Day 20	Day 10	Da	R/W Undefir	ned Day 4	Day 2	Day 1
Read/Write After reset Function	"0" is	s read.	Day 20	Day 10		R/W Undefir ay 8	ned Day 4	Day 2	Day
Read/Write After reset Function	"0" is	s read.	Day 20	Day 10	Di	R/W Undefir ay 8	Day 4	Day 2 0	Day ⁻
Read/Write After reset Function	"0" is	s read.	Day 20	Day 10		R/W Undefir ay 8 0	Day 4	Day 2 0 1	Day 0 1st da
Read/Write After reset Function	"0" is	e read.	Day 20	Day 10		R/W Undefir ay 8 0 0	Day 4	Day 2 0 1 0	Day 0 1st da 2nd da
Read/Write After reset Function	"0" is	e read.	Day 20	Day 10 0 0 0 0	0 0 0 0 0	R/W Undefir ay 8 0 0 0	0 0 1 1	Day 2 0 1 0 1	Day 0 1st da 2nd da 3rd da
Read/Write After reset Function	"0" is	s read.	Day 20	Day 10 0 0 0 0 0		R/W Undefin ay 8 0 0 0 0	Day 4 0 0 1 0	Day 2 0 1 0 1 0	Day 0 1st da 2nd da 3rd da 4th da
Read/Write After reset Function	"0" is	s read.	Day 20	Day 10 0 0 0 0 0		R/W Undefir ay 8 0 0 0 0 1	Day 4 0 0 1 1 0	Day 2 0 1 0 1 0	Day 0 1st da 2nd da 3rd da 4th da
Read/Write After reset Function	"0" is		Day 20	Day 10 0 0 0 0 0 0		R/W Undefir ay 8 0 0 0 0 1	Day 4 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Day 2 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0	Day 0 1st da 2nd da 3rd da 4th da 9th da
Read/Write After reset Function	"0" is	e read.	Day 20	Day 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		R/W Undefir ay 8 0 0 0 0 1 1	Day 4 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Day 2 0 1 0 1 0 1 0	Day 0 1st da 2nd da 3rd da 4th da 9th da 10th d
Read/Write After reset Function	"0" is	e read.	Day 20 0 0 0 0 0 0 0 0 0 0 0 0 0	Day 10 0 0 0 0 0 0 0 0		R/W Undefination ay 8 0	Day 4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Day 2 0 1 0 1 0 1 0	Day o 0 1st da 2nd da 3rd da 4th da 9th da 10th da 11th da
Read/Write After reset Function	"0" is	s read.	Day 20 0 0 0 0 0 0 0 0 0 0 0 0 0	Day 10 0 0 0 0 0 0 0 1		R/W Undefinary 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Day 4 0 0 1 0 0 0 0 0 0 0 0 0 0	Day 2 0 1 0 1 0 1 0 1 0 1	Day o 0 1st da 2nd da 3rd da 4th da 9th da 10th da 11th da
Read/Write After reset Function	"0" is	a read.	Day 20 0 0 0 0 0 0 0 0 0 0 0 0 0	Day 10 0 0 0 0 0 0 1 1 1		R/W Undefir ay 8 0 0 0 0 0 1 1 0 0 0 0 0 0 0	Day 4 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Day 2 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 1 1	Day o 0 1st da 2nd da 3rd da 4th da 9th da 10th da 11th da
Read/Write After reset Function	"0" is	s read.	Day 20 0 0 0 0 0 0 0 0 1	Day 10 0 0 0 0 0 0 0 1 1 1 0		R/W Undefir ay 8 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0	Day 4 0 0 1 1 0	Day 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	Day 0 1st da 2nd da 3rd da 4th da 9th da 10th da 11th da 19th da 20th da
Read/Write After reset Function	"0" is	e read.	Day 20 0 0 0 0 0 0 0 0 0 0 0 0 0	Day 10 0 0 0 0 0 0 0 0 0 1 1 1 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	R/W Undefir ay 8 0 0 0 0 0 1 0 0 0 0 0 0	Day 4 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Day 2 0 1 0 1 0 1 0 1 1 0 1 1	Day 0 1st da 2nd da 3rd da 4th da 9th da 10th da 11th da 19th da 20th da
Read/Write After reset Function		s read.	Day 20 0 0 0 0 0 0 0 0 1 1	Day 10 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	R/W Undefir ay 8 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0	Day 4 0 0 1 1 0	Day 2 0 1 0 1 0 1 0 1 0 1 0 1 1 0	0 1st da 2nd da 3rd da 4th da 9th da 10th da 11th da 20th da 29th da
Read/Write After reset Function	"0" is	s read.	Day 20 0 0 0 0 0 0 0 0 0 1 1 1	Day 10 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 1 0 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	R/W Undefir ay 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Day 4 0 0 1 1 0	Day 2 0 1 0 1 0 1 0 1 0 1 1 0 1 0	Day ² 0 1st da 2nd da 3rd da 4th da 9th da 10th da 10th da 11th da 20th da 29th da 29th da
Read/Write After reset Function	"0" is	e read.	Day 20 0 0 0 0 0 0 0 0 1 1 1 1 1	Day 10 0 0 0 0 0 0 0 1 1 0 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	R/W R/W Undefir ay 8 0	Day 4 0 0 1 1 0	Day 2	Day 0 1st da 2nd da 3rd da 4th da 9th da 10th da 10th da 11th da 20th da 20th da 30th da 31st da

(4) Day of the week column register (for PAGE0/1)

		-	<u> </u>	~		C C	C C		
		7	6	5	4	3	2	1	0
MONTHR (1325H)	Bit symbol				MO4	MO4	MO2	MO1	MO0
(152511)	Read/Write						R/W		
	After reset						Undefined	0 //	
	Function		"0" is read.		10 months	8 months	4 months	2 months	1 month
				F					In contract of
					0		0		January
					0		$\left(\frac{1}{2} \right)^{1}$	0	February
					0			1	March
					0			1	Арпі
					0			0	lviay
					0			0	July
					0				
					0		0		Sentember
					1		0		October
					1				November
									December
							2		December
				4	Note: Do no	ot set data oth	er than as sho	own above.	
	(-) 0					G.D.4 1	$\sim \mathcal{D}$		
	(7) Sel	lect 24-hoi	ur clock or	12-hour e	lock (tor PA	(+EL on Kv)	7/.		
1	>			12 11041 0		IGEI OIIIy/			
		7	6	5	4	3	2	1	0
MONTHR	Bit symbol	7	6	5	4		2	1	0 MO0
MONTHR (1325H)	Bit symbol Read/Write	7	6	5	4		2	1	0 MO0 R/W
MONTHR (1325H)	Bit symbol Read/Write After reset	7	6	5	4	3	2	1	0 MO0 R/W Undefined
MONTHR (1325H)	Bit symbol Read/Write After reset Function	7	6	5	4 "0" is read		2	1	0 MO0 R/W Undefined 1: 24-hour
MONTHR (1325H)	Bit symbol Read/Write After reset Function	7	6		4 "0" is read.	3	2	1	0 MO0 R/W Undefined 1: 24-hour 0: 12-hour
MONTHR (1325H)	Bit symbol Read/Write After reset Function	7	6	5	4 "0" is read.		2	1	0 MO0 R/W Undefined 1: 24-hour 0: 12-hour
MONTHR (1325H)	Bit symbol Read/Write After reset Function	7	6	5	4 "0" is read.	3	2	1	0 MO0 R/W Undefined 1: 24-hour 0: 12-hour
MONTHR (1325H)	Bit symbol Read/Write After reset Function	7	6		4 "0" is read.		2	1	0 MO0 R/W Undefined 1: 24-hour 0: 12-hour
MONTHR (1325H)	Bit symbol Read/Write After reset Function	7	6		4 "0" is read.		2	1	0 MO0 R/W Undefined 1: 24-hour 0: 12-hour
MONTHR (1325H)	Bit symbol Read/Write After reset Function		6		"0" is read.		2	1	0 MO0 R/W Undefined 1: 24-hour 0: 12-hour
MONTHR (1325H)	Bit symbol Read/Write After reset Function	7	6		"0" is read.		2	1	0 MO0 R/W Undefined 1: 24-hour 0: 12-hour
MONTHR (1325H)	Bit symbol Read/Write After reset Function	7	6		"0" is read.		2	1	0 MO0 R/W Undefined 1: 24-hour 0: 12-hour
MONTHR (1325H)	Bit symbol Read/Write After reset Function	7	6		"0" is read.		2	1	0 MO0 R/W Undefined 1: 24-hour 0: 12-hour
MONTHR (1325H)	Bit symbol Read/Write After reset Function				"0" is read.		2	1	0 MO0 R/W Undefined 1: 24-hour 0: 12-hour
MONTHR (1325H)	Bit symbol Read/Write After reset Function				"0" is read.		2	1	0 MO0 R/W Undefined 1: 24-hour 0: 12-hour
MONTHR (1325H)	Bit symbol Read/Write After reset Function				"0" is read.		2	1	0 MO0 R/W Undefined 1: 24-hour 0: 12-hour
MONTHR (1325H)	Bit symbol Read/Write After reset Function				"0" is read.		2	1	0 MO0 R/W Undefined 1: 24-hour 0: 12-hour
MONTHR (1325H)	Bit symbol Read/Write After reset Function				"0" is read.		2	1	0 MO0 R/W Undefined 1: 24-hour 0: 12-hour
MONTHR (1325H)	Bit symbol Read/Write After reset Function				"0" is read.		2	1	0 MO0 R/W Undefined 1: 24-hour 0: 12-hour
MONTHR (1325H)	Bit symbol Read/Write After reset Function				4 "0" is read.		2	1	0 MO0 R/W Undefined 1: 24-hour 0: 12-hour

(6) Month column register (for PAGE0 only)

	(0) 10		register (Jiiiy)						
		7	6		5	4	3		2		1	0
YEARR	Bit symbol	YE7	YE6	Y	E5	YE4	YE3		YE2		YE1	YE0
(1326H)	Read/Write					R/	Ŵ					
	After reset					Unde	efined		\sim			
	Function	80 years	40 years	20 y	ears	10 years	8 years	4	l year	s	2 years	1 year
										\sum	\sim	
			0	0	0	0	0	9		0	0	00 years
			0	0	0	0	0	0	// <	0	1	01 years
			0	0	0	0	0	Ò	\leq	/1	0	02 years
			0	0	0	0	0	0		1	1	03 years
			0	0	0	0	0)	0	0	04 years
		l	0	0	0	0	0	1		0	1	05 years
		ī						>			1(
		l	1	0	0	1	N N	0		0		99 years
			Note: Do	o not se	t data of	ther than as t	shown above	e. <	> _	$(\bigcirc$		
	(9) Le	ap year re	gister (for	PAG	E1 onl	y)				\nearrow	-0/	
		7	6	-	5	4	3	((2/		1	0
YEARR	Bit symbol		/			\swarrow		$\langle \rangle$	\leq	4	LEAP1	LEAP0
(1326H)	Read/Write		/	/	4	\swarrow	\square	(7)	X	/	R/	W
	After reset				\sim		\geq	Y C	\mathcal{H}	/	Unde	fined
	Function			<	$\left(\right)$	> //	\frown			00): Leap ye	ear
				\bigcirc	$\langle \rangle$	\sim	\geq)			01	1: One yea	ar after
				$\left(\left(\right) \right)$),			/			leap yea	ar
			\frown		"0" is r	read.				10): Two yea	ars after
			((((\land						1.	leap yea	ar Jooro offor
))						'	lean ve	ears ailei
			$\overline{(1)}$								icup you	
			$(\vee \bigcirc)$		6							
		//))		\sim		//		0	0	Curre	nt year is a	leap year
		$\langle \! \rangle \! / \! /$			\mathcal{I}	\bigcirc		0	1	Curre	nt year i	is the year
								0	'	follow	ing a leap y	/ear
		> >		$\overline{\ }$				1	0	Currei a leap	nt year is tv year	vo years after
		\sim	()	>	\searrow			1	1	Currei after a	nt year is a leap year	three years
		\backslash	41									
<))		$\langle \rangle$								
			(\bigcirc)	\backslash								
	$ \rightarrow $	$(\ (\ (\ (\ (\ (\ (\ (\ (\ (\$	$\gamma \bigcirc$									
		2/	\backslash									
	\searrow		\searrow									

(8) Year column register (for PAGE0 only)

	(10) Sett	ing PAGE	register (for PAGE0	/1)				
		7	6	5	4	3	2	1	0
PAGER	Bit symbo	I INTENA			ADJUST	ENATMR	ENAALM	/	PAGE
(1327H)	Read/Writ	e R/W			W		R/W		R/W
	After reset	t 0			Undefined	Un	defined		Undefined
Read-modify-writ	e Function	INTRTC			0: Don't	Clock	ALARM		PAGE
instruction is		0: Disable	"0"	is read.	care	0: Disable	0: Disable	"0" is read.	selection
prohibited.		1: Enable			1: Adjust	1: Enable	1: Enable		
	Note: Plea Clock// (Example) (se keep the Alarm setting Clock setting/ Id (pa Id (pa	setting order and interrupt Alarm setting ager), 0ch ager), 8ch	r below of <e setting. : Cloci : Inter</e 	NATMR>, <ef k, Alarm enabl rupt enable</ef 	le	d «INTENA».	Set different	times for
					_ (0	Select	t Page0	\leq	
				PAG	e 😽	Select	t Page1	JA	
						9		90/	
						Don't	care	\mathbf{S}	
				ADJUST		Adjust When becon is 0 – 30-59 counte during once, (PAGI	t sec. counter, this bit is set to bes "0" when the 29. When the v the min. count or becomes "0" 1 cycle of f_{SYS} Adjust is releas 50 only)	o "1" the sec. e value of the so value of the so ter is carried a . Output Adju g. After being sed automatio	counter sec. counter ec. counter is and sec. st signal adjusted adjusted ally.
г	(11) Sett	ting reset	register (f	or PAGE0/2		2	2	4	0
DECTD		/		C DOTTAD		- 3	2	I	0
(1328H)		DISTRZ	DISTORIZ	RSTIME			_	_	_
Deed medity	After react		7	$\rightarrow ($		v			
write-instruction n is prohibited.	Function	1Hz 0: Enable 1: Disable	16Hz 0: Enable 1: Disable	1:Clock reset	1: Alarm reset		Always	write "0"	
		\sum	$\left(\right)$	\checkmark					
\sim		RSTALM	0	Unused					
				Reset alar	m register				
		(C,	()						
		RSTTMR	0	Unused					
		$\langle \rangle$	1	Reset cou	nter				
	\sim	<dis1hz:< td=""><td>> <</td><td>DIS1HZ></td><td>(PAGEF <enaal< td=""><td>२) M></td><td>Source signa</td><td>al</td><td></td></enaal<></td></dis1hz:<>	> <	DIS1HZ>	(PAGEF <enaal< td=""><td>२) M></td><td>Source signa</td><td>al</td><td></td></enaal<>	२) M>	Source signa	al	
		1		1	1		Alarm		
		0		1	0		1Hz		
		1		0	0	_	1647		
	l			0	0		10112		

3.14.5 Operational description

(1) Reading clock data

1. Using 1Hz interrupt

1Hz interrupt and the count up of internal data synchronize. Therefore, data can read correctly if reading data after 1Hz interrupt occurred.

2. Using two times reading

There is a possibility of incorrect clock data reading when the internal counter carries over. To ensure correct data reading, please read twice, as follows:

(2) Writing clock data

When a carry over occurs during a write operation, the data cannot be written correctly. Please use the following method to ensure data is written correctly.

1. Using 1Hz interrupt

1Hz interrupt and the count up of internal data synchronize. Therefore, data can write correctly if writing data after 1Hz interrupt occurred.

2. Resetting a counter

There are 15-stage counter inside the RTC, which generate a 1Hz clock from 32,768 KHz. The data is written after reset this counter.

However, if clearing the counter, it is counted up only first writing at half of the setting time, first writing only. Therefore, if setting the clock counter correctly, after clearing the counter, set the 1Hz-interrupt to enable. And set the time after the first interrupt (occurs at 0.5Hz) is occurred.

Figure 3.14.3 Flowchart of data write

2. Disabling the clock

A clock carry over is prohibited when "0" is written to PAGER<ENATMR> in order to prevent malfunction caused by the Carry hold circuit. While the clock is prohibited, the Carry hold circuit holds a one sec. carry signal from a divider. When the clock becomes enabled, the carry signal is output to the clock, the time is revised and operation continues. However, the clock is delayed when clock-disabled state continues for one second or more. Note that at this time system power is down while the clock is disabled. In this case the clock is stopped and clock is delayed.

3.14.6 Explanation of the interrupt signal and alarm signal

The alarm function used by setting the PAGE1 register and outputting either of the following three signals from $\overline{\text{ALARM}}$ pin by writing "1" to PAGER<PAGE>. INTRTC outputs a 1-shot pulse when the falling edge is detected. RTC is not initialized by RESET. Therefore, when the clock or alarm function is used, clear interrupt request flag in INTC (interrupt controller).

- (1) When the alarm register and the clock correspond, output "0".
- (2) 1Hz Output clock .
- (3) 16Hz Output clock.
- (1) When the alarm register and the clock correspond, output "0"

When PAGER<ENAALM>= "1", and the value of PAGE0 clock corresponds with PAGE1 alarm register, output "0" to ALARM pin and generate INTRTC.

The methods for using the alarm are as follows:

Initialization of alarm is done by writing "1" to RESTR<RSTALM>. All alarm settings become Don't care. In this case, the alarm always corresponds with value of the clock, and if PAGER<ENAALM> is "1", INTRTC interrupt request is generated.

Setting alarm min., alarm hour, alarm date and alarm day is done by writing data to the relevant PAGE1 register.

When all setting contents correspond, RTC generates an INTRTC interrupt if PAGER<INTENA><ENAALM> is "1". However, contents which have not been set up (don't care state) are always considered to correspond.

Contents which have already been set up, cannot be returned independently to the Don't care state. In this case, the alarm must be initialized and alarm register reset.

The following is an example program for outputting an alarm from ALARM -pin at noon (PM12:00) every day.

LD	(PAGER), 09H	; Alarm disable, setting PAGE1
LD	(RESTR), D0H	; Alarm initialize
LD	(DAYR), 01H	(/ XNO
	(DATAR),01H	1 day
~U/	(HOURR), 12H	; Setting 12 o'clock
LD	(MINR), 00H	; Setting 00 min
	~	; Set up time 31 µs (Note)
LD	(PAGER), 0CH	; Alarm enable
XLD	(PAGER), 8CH	; Interrupt enable)

When the CPU is operating at high frequency oscillation, it may take a maximum of one clock at 32 kHz (about 30us) for the time register setting to become valid. In the above example, it is necessary to set 31us of set up time between setting the time register and enabling the alarm register.

Note: This set up time is unnecessary when you use only internal interruption.

(2) With 1Hz output clock

RTC outputs a clock of 1Hz to ALARM pin by setting up PAGER<ENAALM>= "0", RESTR<DIS1HZ>= "0", <DIS16HZ>= "1". RTC also generates an INTRC interrupt on the falling edge of the clock.

(3) With 16Hz output clock

RTC outputs a clock of 16Hz to ALARM pin by setting up PAGER<ENAALM>= "0", RESTR<DIS1HZ>= "1", <DIS16HZ>= "0". RTC also generates INTRC an interrupt on the falling edge of the clock.

3.15 LCD Controller

This LSI incorporates two types of liquid crystal display driving circuit for controlling LCDs. One circuit supports an internal RAM LCD driver that can store display data in the LCD driver itself, and the other circuit supports a shift-register type (SR mode) LCD driver that must serially transfer the display data to the LCD driver for each display picture.

It is possible for SR type to use PAN function which is shifted the display without rewriting display data.

1) Shift register type LCD driver control mode (SR mode)

Before setting start register, set the mode of operation, the start address of source data save memory and LCD size to control register.

After setting start register, the LCDC outputs a bus release request to the CPU and reads data from source memory.

The LCDC then transmits LCD size data to the external LCD driver through the special LCDC data bus (LD7to LD0). At this time, the control signals connected to the LCD driver output the specified waveform which is synchronized with the data transmission. After display data reading from RAM is completed, the LCDC cancels the bus release request and the CPU will re-start. It is possible to read the data from display memory at high-speed by FIFO buffer. And it is possible to transfer from LCD-driver-bus corresponded to the AC-standard of connected LCD driver.

In the TMP92CA25, SRAM and SDRAM burst mode can be used for the display RAM. 10-Kbytes of internal RAM are available for use as display RAM. As internal SRAM access is very fast (32-bit bus width, 1 SYSCLK read/write), it is possible to reduce CPU load to a minimum, enabling LCDC DMA. In addition, it can decrease much power consumption during displaying by using internal SRAM. It is possible to display 320×240(QVGA size at max size) using internal SRAM.

2) Internal RAM LCD driver control mode (RAM mode)

Data transmission to the LCD driver is executed CPU command. After setting operation mode to control register, when CPU command is executed the LCDC outputs chip select signal to the LCD driver connected externally by control pin (LCP0 etc.). Therefore control of data transmission numbers corresponding to LCD size is controlled by CPU command.

This mode supports random-access-type and sequential-access-type.

3.15.1 LCDC features by Mode

The various features and pin operations of are as follows.

Table 3 15 1	I CDC features b	v Mode	(example: usir	na TOSHIBA I CD	driver)
10010 011011	LODO IOUUIOO D	,	(ontampion don	.g . 00	an

		Shift Register Type LCD Driver Control Mode	RAM Built-in Type
	LCD driver	STN A	LCD Driver Control
		311	Mode
Display	color	Monochrome	Depends on LCD driver
		Monochrome, 4-, 8- and 16-level grayscale) 🖓
The num	nber of picture	Row (Common):	
element	s which can be	64, 120, 128, 160, 200, 240, 320, 480	Depends on LCD driver
handled		Column (Segment):	
		64, 128, 160, 240, 320, 480, 640	
[(S	Data bus width RAM, SDRAM)	16 bits, 32 bits (Internal RAM)	Depends on CS/WAIT controller
0	Data bus width	4 hits 8 hits	(Same as normal
(Desti	nation: LCD driver)		memory access)
Maximu		12.5 ns/byte at Internal RAM	
(at	ISYS = 20 [IVIHZ])	25 hs/byte at external SRAM, 50 hs/byte at external SRAM,	Depends on LCD driver
		Connect to data bus of I CD driver.	Depends on LOD unver
	LCD data bus	8-bit LD7 to LD0	Not used
		4-bit LD3 to LD0	
	D7 to D0	Notused	LCD driver.
	Bus state R/W	Not used	Connect to \overline{WR} pin of LCD driver.
	Address bus	Not used	Connect to D/I pin of
	A0		of data or instruction.
su		Shift clock 0 for column LCD driver	Chip enable signal for
iq l	LCP0	Connect to CP pin of column LCD driver. LD bus data is latched at falling	Connect to CE pip of 1st
ina			column LCD driver.
Exte		Latch pulse output for column and row LCD driver	Chip enable signal for
	LLP	Connect to LP pin of column and row LCD driver. Display data is renewed	column LCD driver
		to output builer at insing edge of this signal.	2nd column LCD driver.
		Alternating signal for LCD display control.	Chip enable signal for
	LFR	Connect to FR pin of LCD driver.	column LCD driver
		$) \bigcirc (7/4)$	3rd column I CD driver
		Refresh rate signal	Chip enable signal for
			row LCD driver
	2000		Connect to LE pin of

3.15.2 SFRs

					0 Register						
		7	6	5	4	3	2	1	0		
DMODE0	Bit symbol	RAMTYPE1	RAMTYPE0	SCPW1	SCPW0	LMODE	INTMODE	LDO1	LDO0		
40H)	Read/Write				R	/W					
	After reset	0	0	1	0	0	0	0	0		
	Function	Display RAM	I	LD bus trans	us transmission LCD driver Interrupt LD bus widt			LD bus width	n control		
				speed		type	0:LP	00: 4bit A_ty	pe		
		00: Internal F	RAM1	00: Reserved	1	0: SR	1: BCD	01: 4bit B_ty	ре		
		01: External	SRAM	01: 2 × ISYS		1: RAM built-in	$\langle \mathcal{O} \rangle$	10: 8bit type			
		10: SDRAM		10. $4 \times 1_{SYS}$				Others: Rese	erved		
							97				
	Note: Onl	y "burst 1cl	k access" S	SDRAM ac	cess is sup	ported			7		
	<u> </u>	-		LCD f _{FP}	Register				0		
	Ditaurahal	/	6	5	4		Z		0		
0282H)	Bit Symbol Read/M/rite	FP7	FPO	FPO		<u>ү грэ</u> W	FP2		FPU		
,	After reset	0	0	0		0		0	0		
	Function	Setting bit7 to bit0 for fre									
		7	6	Divide FRN	I Register		2	1	0		
CDDVM	Bit symbol	FMN7	EMNG	FMN5	FMN4	EMN3	EMN2	FMN1	EMN0		
0283H)	Read/Write	1 101117		1 101113	R	W	1 1011 12				
	After reset	0		0	0	0	0	0	0		
	Function		$\overline{\Omega}$		Setting DVI	V bit7 to bit0					

					-	-				
		7	6	5	4		3	2	1	0
LCDSIZE	Bit symbol	COM3	COM2	COM1	COM	0	SEG3	SEG2	SEG1	SEG0
(0843H)	Read/Write				_	R/	Ŵ	-		
	After reset	0	0	0	0		0	0	0	0
	Function		Commo	n setting				Segmer	t setting	
		0000: Reserv	/ed 0101:20	0			0000: Rese	erved 0101:	320	
		0001:64	0110: 24	0			0001:64	0110:	480	
		0010: 120	1000:48	:0 :0			0010: 126	Other	040 s: Reserved	
		0100: 160	Others: F	Reserved			0100: 240		3. 10301700	
				LCD Cont	rol-0 Re	aiste	er			
		7	6	5	4	0	3	2		0
LCDCTL0	Bit symbol	/	ALL0	FRMON	-		EP9	MMULCD	FP8	START
(0844H)	Read/Write	\frown	R/	W	R/W	1	$\sim \sim$	R	Ŵ	
	After reset		0	0	0	((ρ	∧ 0 (())	0
	Function		Column	Frame	Always	$\overline{\ }$	fFP setting	Built-in RAM	fFP setting	LCDC start
			data setting	divide	write "0"	\langle	bit9	type LCD	bit8	0: Stop
			0: Normal	1: Operate			v ²	driver	\sim	1: Start
			data "0"	1. Operate	\sum	\checkmark		0: Sequential		
			uala U	((\sim		(1: Random		
								access		
					\bigtriangledown					
	K		LCDC S	Source Cle	ock Cou	nter	Register)	-	-
		7	6	5	4		3	2	1	0
LCDSCC	Bit symbol	SCC7	SCC6	SCC5	SC	24	SCC3	SCC2	SCC1	SCC0
(0846H)	Read/Write	•))		R	vw			
	After reset	0		0	0	\sum	0	0	0	0
	Function		$\left(\left(\right) \right)$	LC	DC source	cloc	k counter bi	t7 to bit0		
			\bigvee	~	$\frac{1}{2}$	~				-
	$\overline{\}$	s //s	art Addres	s Registe	()		Number	of Common	Register	
		ΎΗ,	M		K		Н	L		
		(Bit23 to	16) (Bit15	to 8) (Bi	t7 to 1)		(Bit8)	(Bit7 to 0)	_	
1	A area	LSARAH	I LSAR	AM	SARAL	(CMNAH	CMNAL		1
ļ	A diea	(0852H)	(0851	H) (0	850H)	(0855H)	(0854H)		_
	After reset	40H	00+	1	00H		00H	00H		_
$\langle \rangle$	B area	(0858H)	LSARBM (0857H)		LSARBL (0856H)		CMNBH 085BH)	CMNBL (085AH)	_	
	After reset	40H	00H	1	00H		00H	00H		
	C area	LSARCH (085EH)	LSAR (085D	CM LS OH) (C	SARCL 85CH)		-	_	_	
	After reset	40H	00+	1	00H					1

LCD Size Setting Register

Note: All registers can read-modify-write.

LCDC0L/LCDC0H/LCDC1L/LCDC1H/LCDC2L/LCDC2H/LCDR0L/LCDR0H Register

	7	6	5	4	3	2	1	0			
Bit symbol	D7	D6	D5	D4	D3	D2	D1	D0			
Read/Write		Depends on external LCD driver specification.									
After reset		Depends on external LCD driver specification.									
Function		Depends on external LCD driver specification.									

Address	Function	Chip Enable Pin	\sum
3C0000H to 3CFFFFH	Built-in RAM LCD Driver1	LCP0)
3D0000H to 3DFFFFH	Built-in RAM LCD Driver2	LLP	
3E0000H to 3EFFFFH	Built-in RAM LCD Driver3	LFR	
3F0000H to 3FFFFFH	Built-in RAM LCD Driver4		A

3.15.3 Shift Register Type LCD Driver Control Mode (SR mode)

3.15.3.1 Description of Operation

Set the mode of operation, start address of display memory, grayscale level and LCD size to control registers before setting start register.

After setting start register, the LCDC outputs a bus release request to the CPU and reads data from source memory. After data reading from source data is completed, the LCDC cancels the bus release request and the CPU will restart. The LCDC then transmits LCD size data to the external LCD driver through the LD bus (special data bus only for LCD driver). At this time, the control signals (LCP0 etc.) connected to the LCD driver output the specified waveform which is synchronized with the data transmission.

The LCD controller generates control signals (LFR, LBCD, LLP etc.) from base clock LCDSCC. LCDSCC is the clock generator for the LCD controller, which is generated by system clock f_{SYS}.

This LSI has a special clock generator for the LCDC. Details of LCD frame refresh rate can be set using this special generator. This generator is made from an 8-bit counter and 1/16 speed clock from the system clock.

- Note 1: During display data read from source memory (during DMA operation), the CPU is stopped by the internal BUSREQ signal. When using SR mode LCDC, programmers must monitor CPU performance.
- Note 2: This LSI has a 16-Kbyte SRAM, this internal RAM is available for use as display RAM. Internal RAM access is very fast (32-bit bus width, 1 SYSCLK read/write), it is possible to reduce CPU load to a minimum. It can also be used 16bits access mode if using internal RAM. This mode is for internal RAM to use as display RAM effectively.

When using display RAM as SDRAM, set SDRAM size by SDACR2 register of SDRAMC.

Data output width is selectable between 4 bits or 8 bits, and data output sequence selectable between 2 modes.

SR type LCD control setting is described below.

3.15.3.2 Memory Space (Common spec. SR mode and TFT mode)

The LCDC can display an LCD panel image which is divided horizontally into 3 parts; upper, middle and lower. Each area is called A area, B area and C area with the characteristics shown below.

The Start/End address of each area in the physical memory space can be defined in the LCD start/end address registers. C area can be defined only in start address.

A and B areas can be displayed by program and set to enable or not in Start Address register and Row Number register. When the Row Number registers of A and B areas are set to 0, C area takes over all panel space.

When the size of A or B area is greater than the LCD panel, the area of the panel is all C area because the displaying priority is A > B > C. If the A area is set to enable while the panel area is defined as all C area (A and B areas are disabled), C area is shifted below the LCD panel and A area is inserted from the top of the LCD panel. Similarly if the B area is set to enable while the panel area is defined as all C area, B area is inserted from the bottom of the C area overlapping.

Figure 3.15.1 Memory Mapping from Physical Memory to LCD Panel

3.15.3.3 Display Memory Mapping and Panning Function (Common spec. SR mode and TFT mode)

The LCDC can only change the panel window if you change each start address of A, B and C areas. The display area can be panned vertically and horizontally by changing the row address and column address. This LCDC can select many display modes: 1 bpp (monochrome), 2 bpp (4 grayscales), 3 bpp (8 grayscales), 4 bpp (16 grayscales), 8 bpp (256 colors) and 12 bpp (4096 colors) and 1-line (row). Data volume is different for each display mode. When using the panning function, care must be exercised in calculating the address for each display mode. For details, refer to Figure 3,15.2, "Relation of memory map image and output data". This LCDC can also support external SDRAM, SRAM and internal SRAM for display RAM.

When using SDRAM for display RAM, data from one line to the next line cannot be input continuously in display RAM, even if the panning function is not used. One row address of display SDRAM corresponds to the first line of the display panel. Second line display data cannot now be set within the first row address of the display RAM even if the necessary data for the size you want to display does not fill the capacity of first row address of the display SDRAM. Adding one line to the display panel is equal to adding one address to the row address of the display SDRAM. In other words, when using SDRAM for display RAM, address calculation for panning is simple.

When using SRAM for display RAM, data from one line to the next line must be input continuously to the display RAM. However, address calculation for panning is complex and horizontal panning function is not supported.

And when setting segment \neq 240 and select internal RAM, the limitation is added under below.

The last 16bits data in 8th access is thrown away. If using all data effectively, set internal SRAM2 mode (16bit access mode). And it is possible to allocate data tightly.

3.15.3.4 Data Transmission

This LSI has an LD bus (LD7 to LD0): a special data bus for LCD driver. Bus width of 4-bits_Atype, 4-bits_B-type or 8-bits type can be supported. Relation between memory mapping and Output data is shown to Figure 3.15.2.

• Monochrome: 1 bpp (bit per pixel) Display memory image

1	Jish	lay	m	enno	Лу	ma	ige																			
LSI	3	А	ddr	ess	0				/	Addres	ss 1					A	ddre	ess 2				A	ddres	ss 3		MSB
D0	_									ス													へ			D31
		_			_		Ŧ	$\overline{\Box}$	0 40			<u>_</u>	4 4	Y_{a}	47	40	40				Í a		0710			ਹੁਕ
0	1	2	3	4	э	0	1	0	9 10			3 1	4 13	5 10	17	10	19	20	21 22	23	24 2	25 26	21 2	20 2	9 30	51
																				\sim						
LD bu	s out	put s	sequ	uenc	e																					
4-bit w	idth /	A ty	be							4-bit	t wid	th B	type	•						(8-bit v	width ty	ре			
LD0	0	\rightarrow	4	\rightarrow	8	\rightarrow	12	2		LD0		4	\rightarrow	0	\rightarrow	12	\rightarrow	8			LQ0) 0	\rightarrow	8		
LD1	1	\rightarrow	5	\rightarrow	9	\rightarrow	13	3		LD1		5	\rightarrow	1	\rightarrow	13	\rightarrow	9	/		LD1	21	\rightarrow	9		
LD2	2	\rightarrow	6	\rightarrow	10	\rightarrow	14	۱		LD2		6	\rightarrow	2	\rightarrow	14	\rightarrow	10	((LD2	2	\rightarrow	10		
LD3	3	\rightarrow	7	\rightarrow	11	\rightarrow	15	5		LD3		7	\rightarrow	3	\rightarrow	15	\rightarrow	11)		LD3	3	\rightarrow	11		
LD4	Not	use								LD4		Not	use	d				6		$\overline{}$	LD4	4	\rightarrow	12		
LD5	Not	use								LD5		Not	use	d				()	Y	LD5	5	\rightarrow	13		
LD6	Not	use								LD6		Not	use	d			6		\leq		LD6	6	\rightarrow	14		
LD7	Not	use								LD7		Not	use	d			1(\geq		LD7	. (7	¥	15		
																	$\langle \rangle$		~			\leq		\sim		
					Eia		。	15 0		otion	of	M-	mor		~		22		Outr	+ Г		5	\geq			
					гıy	ure	ა.	10.2	Rei	alion		we	mor	y ivi	ah i	<u>n</u> a	ge	anu	Outp		Jala))	\sim			
														6		0	١			~ <	\sim	7.0/	\mathcal{D}			
														()		\leq				\frown		J.	/			
													_	\frown		\sim			(Ć		\checkmark				
													\leq		\sim	>				S_	\mathcal{D}					
												6	\sim	\sim	>			/	$\overline{\Box}$	7, <	\bigcirc					
											/	7(\searrow				(\mathbb{V}))						
											21	\square	$\langle \rangle$	>		(_		\sim)						

3.15.3.5 Refresh Rate Setting

Frame cycle (refresh rate) is generated from setting of LSCC (LCDSCC<SCC7:0>) and FP [9:0] (LCDCTL0<FP9, 8>, LCDFFP<FP7:0>). The LBCD terminal outputs one pulse every cycle and the LFR normally outputs an inverted signal every cycle. But when the DIVIDE FRAME function is used, the LFR signal changes to a special signal for high quality display.

(1) Basic clock setting

This LSI has a special clock generator for basic source clock used in the LCD controller. This generator can set details of the refresh rate for the LCDC.

This generator is made by dividing the system clock by 16 and an 8-bit counter.

The following shows the method of setting and calculation.

f_{BCD}[Hz]: Frame rate (Refresh rate: Frequency of LBCD signal) FP: FP [9:0] setting value of FFP register SCC: <SCC7:0> setting value of LSCC register

 f_{BCD} [Hz] = f_{SYS} [Hz] / ((SCC+1) × 16 × FP)

Example:

```
f<sub>SYS</sub> [Hz] = 20MHz, 240COM (FP = 240), target refresh rate = 70Hz
```

```
70 [Hz] = 20000000 [Hz]/((SCC+1) × 16 × 240)
```

```
(SCC+1) = 2000000/(70 ×16 × 240) = 74.4
```

Value of setting to register is only integer, SCC \neq 73. The floating value is disregarded.

In this case, the refresh rate comes to 70.3 [Hz]

LCDC	Source	Clock	Counter	Register
------	--------	-------	---------	----------

LCDSCC (0846H)

7 6 5 4 3 2 0 1 SCC7 Bit symbol SCC6 SCC5 SCC4 SCC3 SCC2 SCC1 SCC0 Read/Write R/W After reset 0 0 0 0 0 0 0 0 Function LCDC Source Clock Counter bit7 to bit0

- * Data should be written from 1-hex to FFFF-hex in the above register. It cancannot operate if set to "0".
- If the refresh rate is set too fast, it may not be in time with the display data. t_{LP} time is determined by SCC.

$$t_{LP}[s] = (1/f_{SYS}[Hz]) \times 16 \times (SCC + 1)$$

 t_{LP} is shown in 1-line (ROW) display time. 1-line data transmission must be completed during t_{LP} cycle time. AboutRefer to "Data transmission and bus occupation" for details of data transmission time.

(2) Refresh rate adjust function (Correct function)

In this function, the LBCD frequency: refresh rate is generated by setting LCDSCC<SCC7:0> and FP [9:0] register. The FFP value is normally set at the same value as the ROW number, but this value can be used for correction of BCD frequency: refresh rate.

This function always uses a value greater than the ROW number, set to slower frequency. The LCDC cannot operate correctly if a value smaller than the ROW number is set.

The following is an example of settings:

Example:

```
f<sub>SYS</sub> [Hz] = 20 MHz, 240COM ( FP = 240 ), Target refresh rate = 70 Hz
```

```
140 [Hz] = 20000000 [Hz]/((SCC+1) × 16 × 240)
```

```
(SCC+1) = 2000000/(70 × 16 × 240) = 74.4
```

Value of setting to register is only integer, SCC = 73. The floating value is disregarded.

In this case, refresh rate comes to 70.3 [Hz] f_{BCD} [Hz] = f_{SYS} [Hz]/((SCC+1) × 16,×FP)

FP value is adjusted to set SCC=73 in above equation again.

70 [Hz] = 20000000/(74 × 16 × FP) FP = 241.3

Value of setting to register is only integer, FP = 241.

In this case, refresh rate comes to 70.0 [Hz]

LCD f_{FP} Register

LCDFFF (0841H)

		7	6	5	4	3	2	1	0
Р	Bit symbol	FP7	FP6	FP5	FP4	FP3	FP2	FP1	FP0
)	Read/Write		$\langle \cup \rangle$	(R/	W			
	After reset	(0)	0	<u> </u>	0	0	0	0	0
	Function				Setting bit7 t	o bit0 for f _{FP}			

Reference) We recommend refresh rate values in the region of: Monochrome: 70 [Hz]

(3) Divide frame adjust function

The DIVIDE FRAME function allows for adjustments to reduce uneven display in large LCD panels.

When this function is enabled by setting <FRMON> = 1, the LFR signal alternates between high and low level with each LLP cycle for the LCDDVM register values given below.

When this function is disabled by setting LCDCTL<FRMON> = 0, the LFR signal alternates between high and low level with each LBCD cycle. This function is not affected by the LBCD timing.

Note: Availability of this function depends on the actual LCD driver or LCD panel used. We recommend checking that register's value when used in the proposed environment.

		7	6	5	4	J) 3	2		0			
LCDDVM	Bit symbol	FMN7	FMN6	FMN5	FMN4	FMN3	FMN2	FMN1	FMN0			
(0842H)	Read/Write			. (R	V	$(C \land)$	7				
	After reset	0	0	0		0	$\bigcirc))$	0	0			
	Function	Setting DVM bit7 to bit0										

Divide Frame Register

(Reference) In general, prime numbers (3, 5, 7, 11, 13 ...) are best for the value of the LCDDVM register.

3.15.3.6 LCD Data Transmission Speed and Data Bus Occupation Rate

After setting start register, the LCDC outputs a bus release request to the CPU and reads data from source memory. The LCDC then transmits LCD size data to the external LCD driver through the special LCDC data bus (LD11 to LD0). At this time, the control signals connected to the LCD driver output the specified waveform which is synchronized with the data transmission. After data reading from RAM for display is completed, the LCDC cancels the bus release request and the CPU will restart.

During data read from source memory (during DMA operation), the CPU is stopped by the internal BUSREQ signal. When using SR mode LCDC, programmers must monitor CPU performance. The occupation rate of the data bus depends on data size, transmission speed (CPU clock speed) and display RAM type used.

Display RAM	Bus Width	Valid Data Reading Time (f _{SYS} Clock/Byte)	Valid Data Reading Time t_{LRD} (ns/Byte) (at) $f_{SYS} = 20$ MHz
Extornal SPAM	16 bits	2/2	50
	32 bits	2/4	25
Internal RAM	32 bits	1/4	12.5
External SDRAM	16 bits	*1/2	*25

Note: When using SDRAM for display RAM, overhead time (+ 8 clocks) is required for every 1 row data reading.

 $t_{\rm STOP}$ refers to the CPU stoppage time during transmission of 1 row data. $t_{\rm STOP}$ is calculated by the equation below for each display mode.

 $t_{STOP} = (SegNum / 8) \times t_{LRD}$

SegNum : Number of segment

When SDRAM is used, more overhead time is required. $t_{STOP} = (SegNum / 8) \times t_{LRD} + ((1/f_{SYS}) \times 8)$

Data bus occupation rate equals the percentage of tSTOP time in tLP time.

Data bus occupation rate = t_{STOP}/t_{LP}

Note: For t_{LP} time, refer to "refresh rate setting".

3.15.3.7 Timing Diagram of LD Bus

The TMP92CA25 can select to display RAM for external SRAM: Available to set WAIT, internal SRAM of 10Kbyte and external SRAM: 64, 128, 256 and 512 Mbits.

As a 160-bit FIFO buffer is built into this LCDC, the LD bus speed can be controlled.

The speed can be selected from 3 kinds of LCP cycle: (fsys/2, fsys/4, and fsys/8)

LD bus data: LD7 to LD0 is out at rising edge of LCP, LCD driver receives at falling edge of LCP.

Figure 3.15.6 Selection of LCP Cycle

If LCP cycle is not set at a suitable speed with respect to the refresh rate, LD bus data will not transfer correctly. tLP time is shown in the equation below.

 $t_{LP} [s] = (1/f_{SYS} [Hz]) \times 16 \times (SCC+1)$

Data transmission must finish in t_{LP} time. Set SCC clock and LCP0 speed to be less than t_{LP} time. For setting of SCC, refer to "basic clock setting" of "refresh rate setting".

3.15.3.8 Example of SR mode LCD driver connection

3.15.3.9 Program Example (4 K colors STN)

3.15.4 Built-in RAM Type LCD driver Mode

3.15.4.1 Description of Operation

Data transmission to the LCD driver is executed by a transmit instruction from the CPU.

After setting operation mode of to the control register, when a CPU transmits instruction is executed the LCDC outputs a chip select signal to the LCD driver connected externally by the control pin (LCP0...). Therefore control of data transmission numbers corresponding to LCD size is controlled by CPU instruction. There are 2 kinds of LCD driver address in this case, which are selected by the LCDCTL<MMULCD> register.

3.15.4.2 Random Access Type

This corresponds to address direct writing type LCD driver when <MMULCD> = "1". The transmission address can also assign the memory area 3C0000H – 3FFFFF, the four areas each being 64 Kbytes.

Interface and access timing are the same as for normal memory. Refer to the memory access timing section.

Address	Function	Chip Enable Terminal
3C0000H to 3CFFFFH	Built-in RAM LCD driver 1	LCP0
3D0000H to 3DFFFFH	Built-in RAM LCD driver 2	LLP
3E0000H to 3EFFFFH	Built-in RAM LCD driver 3	LFR
3F0000H to 3FFFFFH	Built-in RAM LCD driver 4	LBCD

Table	3.15.2	Random	Access	Type E	Built-in	RAM 1	Type L	ĊD	drive	۶r

3.15.4.3 Sequential Access Type

Data transmission to the LCD driver is executed by a transmit instruction from the CPU.

After setting operation mode to the control register, when a CPU transmit instruction is executed the LCDC outputs a chip select signal to the LCD driver connected externally by the control pin (LCP0...). Therefore control of data transmission numbers corresponding to LCD size is controlled by CPU instruction . There are 2 kinds of LCD driver address in this case, which are selected by the LCDCTL<MMULCD> register.

This corresponds to a LCD driver which has each 1 byte of instruction register and display data register in LCD driver when $\langle MMULCD \rangle = "0"$. Please select the transmission address at this time from 1FE0H to 1FE7H.

	7	6	5	4	3	2		0			
Bit symbol	D7	D6	D5	D4	D3	D2	IZ D1	D0			
Read/Write		Depends on external LCDD specification									
After reset			Depen	ds on exterr	nal LCDD specif	fication	7UN)				
Function		Depends on external LCDD specification									

LCDC0L/LCDC0H/LCDC1L/LCDC1H/LCDC2L/LCDC2H/LCDR0L/LCDR0H Register

Note 1: This waveform is in the case of 3-state access.

Note 2: Rising timing of chip enable signal (e.g LCP0) is different.

Figure 3.15.8 Example of Access Timing for Built-in RAM Type LCD Driver (Wait = 0)

3.15.4.4 Example of Built-in RAM LCD driver connection

Figure 3.15.9 Interface Example for Built-in RAM and Sequential Access Type LCD Driver

3.15.4.5 Program Example

• Setting example: when using 80 segments × 65 commons LCD driver. Assign external column driver to LCDC1 and row driver to LCDC4.

This example uses LD instruction in setting of instruction and micro DMA burst function for soft start in setting of display data.

3.16 Melody/Alarm Generator (MLD)

The TMP92CA25 contains a melody function and alarm function, both of which are output from the MLDALM pin. Five kinds of fixed cycle interrupt are generated using a 15-bit counter for use as the alarm generator.

The features are as follows.

1) Melody generator

The Melody function generates signals of any frequency (4 Hz to 5461 Hz) based on a low-speed clock (32.768 kHz), and outputs the signals from the MLDALM pin.

The melody tone can easily be heard by connecting an external loudspeaker.

2) Alarm generator

The alarm function generates eight kinds of alarm waveform having a modulation frequency (4096 Hz) determined by the low-speed clock (32.768 kHz). This waveform can be inverted by setting a value to a register.

The alarm tone can easily be heard by connecting an external loudspeaker.

Five kinds of fixed cycle interrupts are generated (1 Hz, 2 Hz, 64 Hz, 512 Hz, and 8192 Hz) by using a counter which is used for the alarm generator.

This section is constituted as follows

- 3.16.1 Block Diagram
- 3.16.2 Control Registers
- 3.16.3 Operational description
 - 3.16.3.1 Melody Generator
 - 3.16.3.2 Alarm Generator

3.16.1 Block Diagram

3.16.2 Control Registers

				ALM R	egister				
		7	6	5	4	3	2	1	0
ALM	Bit symbol	AL8	AL7	AL6	AL5	AL4	AL3	AL2	AL1
(1330H)	Read/Write			•	R/	W	\sim	•	
	After reset	0	0	0	0	0	0	0	0
	Function				Setting ala	irm pattern		7	
				MELALMO	Register	$\langle \rangle$	75)	
		7	6	5	4	3	2	1	0
MELALMC	Bit symbol	FC1	FC0	ALMINV	-	_(()>-	-	MELALM
(1331H)	Read/Write				R/	N	ク	(
	After reset	0	0	0	0		0	0	0
	Function	Free-run cour 00: Hold 01: Restart 10: Clear 11: Clear and	nter control	Alarm waveform invert 1: Invert		Always	vrite "0"		Output waveform select 0: Alarm 1: Melody
	Note 1: N	IELALMC <fc< td=""><td>1> is always r</td><td>ead "0".</td><td>$\langle \rangle$</td><td></td><td>(C_{a})</td><td>\checkmark</td><td></td></fc<>	1> is always r	ead "0".	$\langle \rangle$		(C_{a})	\checkmark	
	Note 2: W "(/hen setting M)1".	IELALMC reg	ister except < MELFL F	FC1:0> while	the free-run	counter is rur	nning, <fc1:(< td=""><td>)> is kept</td></fc1:(<>)> is kept
		7	6	5	4	3))	2	1	0
MELFL	Bit symbol	ML7	ML6	ML5	ML4	ML3	ML2	ML1	ML0
(1332H)	Read/Write		$\overline{\mathcal{A}}$		R/	w			
	After reset	0	0	0	0	0	0	0	0
	Function			Setting	g melody frequ	uency (Lower	8 bits)		
				MELFH	Register				
		(< 7)/-	6	< ₹ \\	4	3	2	1	0
MELFH	Bit symbol	MELON		$ \longrightarrow $	\backslash	ML11	ML10	ML9	ML8
(1333H)	Read/Write	R/W	\int	1			R/	W	
	After reset	0		\checkmark		0	0	0	0
	Function	Control melody counter 0: Stop and clear 1: Start		\rightarrow		Setting	ı melody freq	uency (Upper	4 bits)
					Dogiotor				
			\searrow		Register				
		7	6	5	4	3	2	1	0
ALMINT	Bit symbol			-	IALM4E	IALM3E	IALM2E	IALM1E	IALM0E
(1334H)	Read/Write				i	R/	N	i	
	After reset			0	0	0	0	0	0
	Function			Always write "0"	1:	Interrupt enal	ble for INTAL	M4 to INTAL	ЛО

Operational description 3.16.3

The Melody function generates signals of any frequency (4 Hz to 5461 Hz) based on a low-speed clock (32.768 kHz) and outputs the signals from the MLDALM pin.

The melody tone can easily be heard by connecting an external loud speaker.

(Operation)

MELALMC<MELALM> must first be set as 1 in order to select the melody waveform to be output from MLDALM. The melody output frequency must then be set to 12-bit registers MELFH and MELFL.

The following are examples of settings and calculations of melody output frequency.

(Formula for calculating melody waveform frequency)

at fs = 32.768 [kHz] $f_{MLD} [Hz] = 32768/(2 \times N + 4)$ Melody output waveform $N = (16384/f_{MLD}) - 2$ Setting value for melody (Note: N = 1 to 4095 (001H to FFFH), 0 is not acceptable.)

(Example program)

LD

LD

When outputting an "A" musical note (440 Hz)

- (MELALMC), -- X X X X X 1 B Select melody waveform
- LD (MELFL), 23H (MELFH), 80H
 - ; Start to generate waveform

; N = 16384/440 - 2 = 35.2 = 023H

Reference) Basic musical scale setting table

	Scale	Frequency [Hz]	Register Value: N
	С	264	03CH
	D	297	035H
	() () ()	330	030H
	F	352	02DH
$\langle \langle \rangle$	G	396	027H
	A	440	023H
	в	495	01FH
	C	528	01DH

3.16.3.2 Alarm Generator

The alarm function generates eight kinds of alarm waveform having a modulation frequency of 4096 Hz determined by the low-speed clock (32.768 kHz). This waveform is reversible by setting a value to a register.

The alarm tone can easily be heard by connecting an external loud speaker .

Five kinds of fixed cycle (interrupts can be generated 1 Hz, 2 Hz, 64 Hz, 512 Hz, 8 192 Hz) by using a counter which is used for the alarm generator.

(Operation)

MELALMC<MELALM> must first be set as 0 in order to select the alarm waveform to be output from MLDALMC. The "10" must be set on the MELALMC <FC1:0> register, and clear internal counter.

Finally the alarm pattern must then be set on the 8-bit register of ALM. If it is inverted output-data, set <ALMINV> as invert.

The following are examples of program, setting value of alarm pattern and waveform of each setting value.

(Setting value of alarm pattern)

8	
Setting Value for ALM Register	Alarm Waveform
00H	Write "0"
01H	AL1 pattern
02H	AL2 pattern
04H	AL3 pattern
08H	AL4 pattern
10H	AL5 pattern
20H	AL6 pattern
40H	AL7 pattern
80H	AL8 pattern
Others	Undefined
	(Do not set)
40H 80H Others	AL7 pattern AL8 pattern Undefined (Do not set)

(Example program)

When outputting AL2 pattern (31.25 ms/8 times/1 s)

(MELALMC), COH ΡĎ

LD (ALM), 02H

- ; Set output alarm waveform
- ; Free-run counter start
- ; Set AL2 pattern, start

Example: Waveform of alarm pattern for each setting value (Not inverted)

3.17 SDRAM Controller (SDRAMC)

The TMP92CA25 includes an SDRAM controller which supports SDRAM access by CPU/LCDC.

The features are as follows.

(1) Support SDRAM

Data rate type:	Only SDR (Single data rate) type	
Bulk of memory:	16/64/128/256/512 Mbits	
Number of banks:	2/4 banks	
Width of data bus:	16	\sim
Read burst length:	1 word/full page	
Write mode:	Single/burst	\sim

(2) Initialize function

All banks precharge command 8 times auto refresh command Set the mode register command

(3) Access mode

	CPU Access	LCDC Access
Read burst length	1 word/full page selectable	Full page
Addressing mode	Sequential	Sequential
CAS latency (clock)	2	()) 2
Write mode	Single/burst selectable	-

(4) Access cycle

CPU Access (Read/write)	7~	\land
Read cycle:	1 word- 4 stat	es/full page – 1 state
Write cycle:	Single – 3 sta	tes/burst - 1 state
Access data width:	1 byte/ 1 word	/ 1 long word
))	\sim

```
LCDC Burst Access (Read only)
Read cycle: full page – 1 state
Full page Over head: 4 states (200 ps a
```

 $\label{eq:Full page Qver head: 4 states (200 ns at f_{SYS} = 20 \mbox{ MHz}) \\ \mbox{Access data width: 1 word/ 1 long word}$

(5) Refresh cycle auto generate

Auto-refresh is generated while another area is being accessed.

Refresh interval is programmable.

```
Self-refresh is supported
```

Note 1: Display data for LCDC must be set from the head of each page.

Note 2: Condition of SDRAM's area set by CS1 setting of memory controller.

3.17.1 Control Registers

Figure 3.17.1 shows the SDRAMC control registers. Setting these registers controls the operation of SDRAMC.

			_		,	9			
		7	6	5	4	3	2	1	0
SDACR1	Bit symbol	-	-	SMRD	SWRC	SBST	SBL1	SBL0	SMAC
(0250H)	Read/Write				R/	W	4())		
	After reset	0	0	0	0	0		0	0
	Function	Always	Always	Mode	Write	Burst stop	Selecting bu	rst length	SDRAM
		write "0"	write "0"	register set	recover	command	(Note 1)		controller
				0: 1 clock	0: 1 clock	0: Precharge	00: Reserved	d 	0: Disable
				1: 2 clocks	1: 2 clocks	1: Burst stop	write	e read, burst	1: Enable
				1. 2 0100110	1. 2 0100110		10: 1-word re	ead, single	
						$\langle \langle \rangle \rangle$	write	20	>
							11: Full-page	e read, single	
							write		
	Note 1: I	ssue mode re	gister set com	mand after ch	anging <sbl*< td=""><td>1:0>. Exercise</td><td>care in setting</td><td>gs when chan</td><td>ging from</td></sbl*<>	1:0>. Exercise	care in setting	gs when chan	ging from
	"	full-page read	l" to "1-word re	ead". Please r	efer to "Limita	tions arising v	when using SI	DRAM".	
						~	$(C \frown)$	\checkmark	
			SDRA	M Access	Control Reg	gister 2	()		
		7	6	5	4	3	2	1	0
SDACR2	Bit symbol				SBS	SDRS1	SDRS0	SMUXW1	SMUXW0
(0251H)	Read/Write			AC.	\supset /		R/W		
	After reset			λ	0	0	0	0	0
	Function		(()	Number of	Selecting RC	OW address	Selecting ad	dress
				\bigcirc	banks	SIZE	· (11 h:ta)	multiplex typ	e
			(C)	\land	0: 2 banks	00: 2048 row	/S(11 Dits)	00: TypeA (A	(9-) (10.)
))	1. 4 Daliks	10: 8192 row	/s (12 bits) /s (13 hits)	10: TypeC (A	(10-) (11-)
			$\overline{\Omega}$			11: Reserve	d	11: Reserve	d
			$(\forall f)$				-		-
		//)	SDR/	AM Refresh	Control R	egister			
		7	6	5	4	3	2	1	0
SDRCR	Bit symbol	- \	\sum	<u> </u>	SSAE	SRS2	SRS1	SRS0	SRC
(0252H)	Read/Write	R/W	/	ľ,			R/W		
	After reset	0		\searrow	1	0	0	0	0
	Function	Always	.(7		SR Auto	Refresh inter	val		Auto
~		write "0"	91		Exit	000: 47 state	s 100:1	56 states	refresh
\langle))		\supset	function	001: 78 state	s 101:19	95 states	0: Disable
	$\backslash \backslash $	$\langle \rangle$	(())	-	0: Disable	010: 97 state	s 110: 24	49 states	1: Enable
$\langle \in$	$ \rightarrow $	$\langle \zeta \rangle$	2		I. LIIADIE	011: 124 stat	es 111:3	12 states	
		Zr							
	\searrow		\searrow						

SDRAM Access Control Register 1

					0				
		7	6	5	4	3	2	1	0
SDCMM	Bit symbol						SCMM2	SCMM1	SCMM0
(0253H)	Read/Write							R/W	
	After reset						_0	0	0
	Function						Command is (Note 1) (No 000: Not exe 001: Initializa a. Precha b. Eight A c. Mode 100: Mode R 101: Self Re 110: Self Re Others: Rese	sue te 2) acute arge All comm Auto Refresh o Register Set o fresh Entry co fresh Exit com erved	e and commands ommand ommand mmand umand

SDRAM Command Register

Note 1: <SCMM2:0> is automatically cleared to "000" after the specified command is issued. Before writing the next command, make sure that <SCMM2:0> is "000". In the case of the Self Refresh Entry command, however, <SCMM2:0> is not cleared to "000" by execution of this command. Thus, this register can be used as a flag for checking whether or not Self Refresh is being performed.

Note 2: The Self Refresh Exit command can only be specified while Self Refresh is being performed.

Figure 3.17.1 SDRAM Control Registers

3.17.2 Operation Description

(1) Memory access control

SDRAM controller is enabled when SDACR1<SMAC> = 1. And then SDRAM control signals (\overline{SDCS} , \overline{SDRAS} , \overline{SDCAS} , \overline{SDWE} , SDLLDQM, SDLUDQM, SDCLK and SDCKE) are operating during the time CPU or LCDC accesses CS1 area.

1. Address multiplex function

In the access cycle, outputs row/column address through A0 to A15 pin. And multiplex width is decided by setting SDACR2<SMUXW0:1> of use memory size. The relation between multiplex width and Row/Column address is shown in Table 3.17.1 Address Multiplex.

		Ad	dress of SDRA	M Accessing Cycle	$\mathcal{A}(\mathbb{Q})$
TMP92CA25		Row Address	G	Column	Address
Pin Name	TypeA <smuxw> "00"</smuxw>	TypeB <smuxw> "01"</smuxw>	TypeC <smuxw> "10"</smuxw>	16-Bit Data Bus Width B1CSH <bnbus> = "01"</bnbus>	32-Bit Data Bus Width B1CSH <bnbus> = "10"</bnbus>
A0	A9	A10	A11	A1	A2
A1	A10	A11	A12	A2(A3
A2	A11	A12	A13	A3	A4
A3	A12	A13	A14	(A4/	A5
A4	A13	A14	A15	A5	A6
A5	A14	A15	A16	A6	A7
A6	A15	A16	A17	A7	A8
A7	A16	A17	A18	A8	A9
A8	A17	A18	A19	A9	A10
A9	A18	A19	A20	A10	A11
A10	A19	A20	A21	AP *	AP *
A11	A20	A21	A22	\rightarrow	
A12	A21	A22	A23		
A13	A22	A23	EA24	Row a	ddress
A14	A23	EA24	EA25		
A15	EA24	EA25	EA26		

Table 3 17 1	Address	Multiplex

* AP: Auto Precharge

Burst length of SDRAM read/write by CPU can be select by setting SDACR1<SBL1:0>. Burst length of accessing by LCDC is fixed to operation contents.

SDRAM access cycle is shown in Figure 3.17.2 and Figure 3.17.3.

SDRAM access cycle number does not depend on the settings of B1CSL register. In the full page burst read cycle, a mode register set cycle and a precharge cycle are automatically inserted at the beginning and end of a cycle.

(2) Instruction executing on SDRAM

The CPU can execute instructions on SDRAM. However, the following functions do not operate.

- a) Executing HALT instruction
- b) Execute instructions that write to SDCMM register

These operations must be executed by another memory such as the built-in RAM.

Figure 3.17.3 Timing of CPU Write Cycle (Structure of Data Bus: 16 bits \times 1, operand Size: 2 bytes, address: 2n + 0)

(3) Refresh control

This LSI supports two refresh commands: auto-refresh and self-refresh.

(a) Auto-refresh

The auto-refresh command is automatically generated at intervals set by SDRCR<SRS2:0> by setting SDRCR<SRC> to "1". The generation interval can be set from between 47 to 312 states (2.4 μ s to 15.6 μ s at fSYS = 20 MHz).

CPU operation (instruction fetch and execution) stops while performing the auto-refresh command. The auto-refresh cycle is shown in Figure 3.17.4 and the auto-refresh generation interval is shown in Table 3.17.2. The Auto-Refresh function cannot be used in IDLE1 and STOP modes. In these modes, use the Self-Refresh function to be explained next.

Note: A system reset disables the Auto-Refresh function.

Figure 3.17.4 Timing of Auto-Refresh Cycle

			Table 3.17.2	Refresh 0	Cycle Insei	rtion Interv	al		(Unit: μs)
SDR	CR <srs< td=""><td>2:0></td><td>Insertion</td><td>></td><td>f_{SYS}</td><td>Frequency</td><td>(System of</td><td>clock)</td><td></td></srs<>	2:0>	Insertion	>	f _{SYS}	Frequency	(System of	clock)	
SRS2	SRS1	SRS0	Interval (State)	6 MHz	10 MHz	12.5 MHz	15 MHz	17.5 MHz	20 MHz
0	0	0 🗸	47	7.8	4.7	3.8	3.1	2.7	2.4
0	0	1	78	13.0	7.8	6.2	5.2	4.5	3.9
0	1	0	97	16.2	9.7	7.8	6.5	5.5	4.9
0	1	1	124	20.7	12.4	9.9	8.3	7.1	6.2
1	0	0	156	26.0	15.6	12.5	10.4	8.9	7.8
1	0	1	195	32.5	19.5	15.6	13.0	11.1	9.8
1	1	0	249	41.5	24.9	19.9	16.6	14.2	12.4
1	1	1	312	52.0	31.2	25.0	20.8	17.8	15.6

(b) Self-refresh

The self-refresh ENTRY command is generated by setting SDCMM<SCMM2:0> to "101". The self-refresh cycle is shown in Figure 3.17.5. During self-refresh Entry, refresh is performed within the SDRAM (an auto-refresh command is not needed).

- Note 1: When standby mode is released by a system reset, the I/O registers are initialized and the Self Refresh state is exited. Note that the Auto Refresh function is also disabled at this time.
- Note 2: The SDRAM cannot be accessed while it is in the Self Refresh state.
- Note 3: To execute the HALT instruction after the Self Refresh Entry command, insert at least 10 bytes of NOP or other instructions between the instruction to set SDCMM<SCMM2:0> to "101" and the HALT instruction.

Self-Refresh condition is released by executing Serf-Refresh command. Way to execute Self-Refresh EXIT command is 2 ways: write "110" to SDCMM<SCMM2:0>, or execute EXIT automatically by synchronizing to releasing HALT condition. Both ways, after it executes Auto-Refresh at once just after Self-Refresh EXIT, it executes Auto-Refresh at setting condition. When it became EXIT by writing "110" to <SCMM2:0>, <SCMM2:0> is cleared to "000".

EXIT command that synchronize to release HALT condition can be prohibited by setting SDRCR<SSAE> to "0". If don't set to EXIT automatically, set to prohibit. If using condition of SDRAM is satisfied by operation clock frequency (clock gear down, SLOW mode condition and so on) is falling, set to prohibit. Figure 3.17.6 shows execution flow in this case.

Figure 3.17.6 Execution flow example (Execute HALT instruction at low-speed clock).

; *******	**Sample p	rogram *******		
LUUF I.	LDB ANDB	A, (SDCMM) A, 00000111B	;	Check the command register clear
	J	NZ, LOOP1	;	~
	LDW	(SDRCR), 0000010100000011B	3;	Auto Exit disable \rightarrow Self-refresh Entry
	NOP×10 LD	(SYSCR1), 00001B	;	Wait for execution of self-refresh entry
	HALT NOP		;	Self-refresh Exit (Internal signal only)
	LD	(SYSCR1), 00000B	;	fc
	LD LD	(SDCMM), 00000110B (SDRCR), 00011B	; ;	Self-refresh Exit (command) Auto Exit enable
			.(
			$\frac{\alpha}{2}$	
	(\overline{a}	
			Z	3)
			\geq	
<	X			
	$\overline{\mathbb{N}}$			
\square		$(\langle \rangle () \rangle^{\vee}$		
		- All and a second seco		
\sim		\sim		

(4) SDRAM initialize

This LSI can generate the following SDRAM initialize routine after introduction of power supply to SDRAM. The command is shown in Figure 3.17.7.

- 1. Precharge all command
- 2. Eight Auto Refresh commands
- 3. Mode Register set command

The above commands are issued by setting SDCMM<SCMM2:0> to "001".

While these commands are issued, the CPU operation (an instruction fetch, command execution) is halted.

Before executing the initialization sequence, appropriate port settings must be made to enable the SDRAM control signals and address signals (A0 to A15).

After the initialization sequence is completed, SDCMM<SCMM2:0> is automatically cleared to "000".

(5) Connection example

Figure 3.17.8 shows an example of connections between the TMP92CA25 and SDRAM

Figure 3.17.8 Connection with SDRAM (4 M word × 16 bits)

3.17.3 Limitations arising when using SDRAM

Take care to note the following points when using SDRAMC.

1. WAIT access

When using SDRAM, some limitation is added when accessing memory other than SDRAM. In WAIT-pin input setting of the Memory Controller, if the setting time is inserted as an external WAIT, set a time less than the Auto-Refresh cycle × 8190 (Auto- Refresh function controlled by SDRAM controller).

2. Execution of SDRAM command before HALT instruction (SR (Self refresh)-Entry, Initialize, Mode-set)

When a SDRAM controller command (SR-Entry, Initialize and Mode-set) is issued, several states are required for execution time after the SDCMM register is set.

Therefore, when a HALT instruction is executed after the SDRAM command, please insert a NOP of more than 10 bytes or 10 other instructions before executing the HALT instruction.

3. AR (Auto-Refresh) interval time

When using SDRAM, set the system clock frequency to satisfy the minimum operation frequency for the SDRAM and minimum refresh cycle.

In a system in which SDRAM is used and the clock is geared up and down exercise care in AR cycle for SDRAM.

4. Note when changing access mode

If changing access mode from "full page read" to "1 word read", execute the following program. This program must not be executed on the SDRAM.

; Interrupt Disable (Added) di ld a, (optional external memory ; Dummy read instruction (Added) address) ld (sdacr1),00001101b Change to "1-word read" ld (sdcmm),0x04 Execute MRS (mode register setting) ei ; Interrupt enable (Added)

3.18 NAND-Flash Controller

3.18.1 Characteristics

The NAND-Flash controller (NDFC) is provided with dedicated pins for connecting with NAND-Flash memory. The NDFC also has an ECC calculation function for error correction. Although the NDFC has two channels (channel 0, channel 1), all pins except for Chip Enable are shared between the two channels. These signals are controlled by NDCR<CHSEL>.

Only the operation of channel 0 is explained here.

The NDFC has the following features:

1) Controlled NAND-Flash interface by setting registers

2) ECC calculating circuits. (for SCL-type)

Note 1: The WP (Write Protect) pin of NAND Flash is not supported. If this function is needed, prepare it on an external circuit.

Note 2: The two channels cannot be accessed simultaneously. It is necessary to switch between the two channels.

3.18.2 Block Diagram

- 3.18.3 Operation Description
 - 3.18.3.1 Accessing NAND-Flash Memory

The NDFC accesses data on NAND Flash memory indirectly through its internal registers. It also contains the ECC calculating circuits. Please see 3.18.3.2 for details of the ECC. This section explains the operations for accessing the NAND Flash.

Basically, set the command in ND0FMCR and then read or write to ND0FDTR. The read cycle for ND0FDTR is completed after the external read cycle for the NAND-Flash is finished. Likewise, the write cycle for ND0FDTR is completed after the external write cycle for the NAND-Flash is finished.

1) Initialize

The initialize sequence is as follows.

- (1) ND0FSPR: Set the low pulse width.
- (2) ND0FIMR: Set 0x81 if interrupt is required. (Release interrupt mask)
- 2) Write

The write sequence is as follows.

(1) ND0FMCR: Set 0x7C for ECC data reset.

(2) Write 512 bytes
ND0FMCR: Set 0x9D for NDCLE signal enable and command mode.
ND0FDTR: Set 0x80 for the serial data input command.
ND0FMCR: Set 0x9E for NDALE signal enable and address mode.
ND0FDTR: Write address. Set A [7:0], A [16:9], and A [24:17]. If it is required, set A [25].
ND0FMCR: Set 0xBC for the data mode.

ND0FDTR: Write 512 bytes data.

(3) Read ECC data

ND0FMCR: Set 0xDC for the ECC data read mode.

NDECCRD: Read 6 bytes ECC data.

	First data:	LPR [7:0]
7	Second data:	LPR [15:8]
6	Third data:	CPR [5:0], 2'b11
	Fourth data:	LPR [23:16]
	∑Fifth data:	LPR [31:24]
	Sixth data:	CPR [11:6], 2'b11

(4) Write 16-byte redundant data ND0FMCR: Set 0x9C for the data mode without ECC calculation. ND0FDTR: Write 16-byte redundant data. D520: LPR [23:16] LPR [31:24] D521: D522: CPR [11:6], 2'b11 LPR [7:0] D525: D526: LPR [15:8] D527: CPR [5:0], 2'b11 (5) Run page program Set 0x9D for NDCLE signal enable and command mode. ND0FMCR: ND0FDTR: Set 0x10 for the page program command. ND0FMCR: Set 0x1C for NDALE signal disable. Wait several states (e.g., "NOP" \times 10) ND0FSR: Check BUSY flag. If it is 0, go to the next. If it is 1, wait until it becomes 0. (6) Read status Set 0x1D for NDCLE signal and command mode. ND0FMCR: ND0FDTR: Set 0x70 for Status read command. ND0FMCR: Set 0x1C for NDCLE signal disable. ND0FDTR: Read the Status data from the NAND-Flash. (7) Repeat 1 to 6 for all other pages if required.

3) Read

The read sequence is as follows.

(1) ND0FMCR: Set 0x7C for ECC data reset.

(2)	Read 512 bytes	
	ND0FMCR:	Set $0x1D$ for NDCLE signal enable and command mode.
	ND0FDTR:	Set 0x00 for the read command.
	ND0FMCR:	Set 0x1E for NDALE signal enable and address mode.
	ND0FDTR:	Set A [7:0], A [16:9], and A [24:17]. If it is required, set A [25].
	ND0FMCR:	Set 0x1C for NDALE signal disable.

Wait several states (e.g., "NOP" × 10)

ND0FSR:	Check BUSY flag. If it is 0, go to the next.
	If it is 1, wait until it becomes 0.
ND0FMCR:	Set 0x3C for the data mode with ECC calculation.
ND0FDTR:	Read 512 byte data.
ND0FMCR:	Set 0x1C for the data mode without ECC calculation.
ND0FDTR:	Read 16-byte redundant data.

(3) Read ECC data

ND0FMCR: Set 0x5C for the ECC data read mode.

NDECCRD: Read 6-byte ECC data.

- First data: LPR [7:0] Second data: LPR [15:8]
- Third data: CPR [5:0], 2'b11
- Fourth data: LPR [23:16]
- Fifth data: LPR [31:24]
- Sixth data: CPR [11:6], 2'b11

(4) Software routine:

Compare ECC data and redundant data, run the error routine if error is generated.

(5) Read other pages

Set 0x1C.

ND0FMCR: ND0FSR:

Check BUSY flag. If it is 0, go to the next. If it is 1, wait until it becomes 0. 4) ID read

The ID read sequence is as follows.

- (1) ND0FMCR: Set 0x1D for NDCLE signal enable and command mode.
- (2) ND0FDTR: Set 0x90 for the ID Read command.
- (3) ND0FMCR: Set 0x1E for NDALE signal enable and the address mode.
- (4) ND0FDTR: Set 0x00.
- (5) ND0FMCR: Set 0x1C for the data mode without ECC calculation.
- (6) ND0FDTR: Read Maker code.
- (7) ND0FDTR: Read Device code.

3.18.3.2 ECC Control

The NDFC contains the ECC calculating circuits. The circuits are controlled by ND0FMCR. This circuit executes ECC data calculation. However, ECC comparison and error correction is not executed. This must be executed using software.

The calculated ECC data can be read from the NDECCRD register when ND0FMCR is 0xD0 (write mode) or 0x50 (read mode). This is 6-byte data, and six NDECCRD read operations are required. The order of the data is as follows.

	First data:	LPR [7:0]
	Second data:	LPR [15:8]
	Third data:	CPR [5:0], 2'b11
(Fourth data:	LPR [23:16]
	Fifth data:	LPR [31:24]
	Sixth data:	CPR [11:6], 2'b11
		75
		\geq
S.		
$ \longrightarrow $	\bigcirc	
	>	

3.18.4 Registers

		-
Address	Register	Register Name
1D00H (1D00H to 1EFFH)	ND0FDTR	NAND-Flash data transfer register
1CB0H (1CB0H to 1CB5H)	ND0ECCRD	NAND-Flash ECC-code read register
1CC4H	ND0FMCR	NAND-Flash mode control register
1CC8H	ND0FSR	NAND-Flash status register
1CCCH	ND0FISR	NAND-Flash interrupt status register
1CD0H	ND0FIMR	NAND-Flash interrupt mask register
1CD4H	ND0FSPR	NAND-Flash strobe pulse width register
1CD8H	ND0FRSTR	NAND-Flash reset register

Table 3.18.1 NAND-Flash Control Registers for Channel 0

Table 3.18.2 NAND-Flash Control Registers for Channel 1

Address	Register	Register Name
1D00H (1D00H to 1EFFH)	ND1FDTR	NAND-Flash data transfer register
1CB0H (1CB0H to 1CB5H)	ND1ECCRD	NAND-Flash ECC-code read register
1CE4H	ND1FMCR	NAND-Flash mode control register
1CE8H	ND1FSR	NAND-Flash status register
1CECH	ND1FISR	NAND-Flash interrupt status register
1CF0H	ND1FIMR	NAND-Flash interrupt mask register
1CF4H	ND1FSPR	NAND-Flash strobe pulse width register
1CF8H	ND1FRSTR	NAND-Flash reset register

Table 3.18.3 NAND-Flash Control Registers

Address	Register	Register Name
01C0H	NDCR	NAND-Flash control register

3.18.4.1 NAND-Flash Data Transfer Register (ND0FDTR and ND1FDTR)

Bit (s)	Mnemonic	Field Name	Description
7:0	DATA	DATA	NAND-Flash data. Read: Read the data that was read from the NAND-Flash. Write: Write data to the NAND-Flash.

Note 1: This register has a 512-address window from 1D00H to 1EFFH since a NAND-Flash page size is either 256 or 512 bytes.

When the CPU reads from or writes to the NAND-Flash, and if the block transfer instruction ("LDIR" instruction) is used, the following restriction applies to the 900/H1 CPU.

[Restriction for using the block transfer instruction]

1) The source address for "LDIR" instruction should be set to (1F00H - read (or write) byte number)

Exan	nple 1) Ir	a case of 512-byte re	ead
	ld	bc, 512 ;	512 bytes
	ld	xix, 2000H 🗧	dst = 2000H
	ld	xiy, 1D00H ;	src = (1F00H - 512) = 1D00H
	ldir	(xix +), (xiy +) (;	Block transfer instruction
Exan	nple 2) Ir	a case of 16-byte rea	ad
	ld	bc, 16 ;	16 bytes
	ld	xix, 2000H ;	dst = 2000H
	ld	xiy, 1EF0H ;	src = (1F00H - 16) = 1EF0H
	ldir	(xix +), (xiy +) ;	Block transfer instruction
		\sim	~

Note 2: Both ND0FDTR and ND1FDTR are assigned to the same address. The NDCR<CHSEL> register determines which channel is accessed.

Figure 3.18.2 NAND-Flash Data Transfer Register (ND0FDTR and ND1FDTR)

3.18.4.2 NAND-Flash ECC-code Read Register (ND0ECCRD and ND1ECCRD)

Bit (s)	Mnemonic	Field Name		Description	\sim	
7:0	ECC-code	ECC-code	Read calculated ECC data.		\sum	<u>}</u>

Note 1: Both ND0ECCRD and ND1ECCRD are assigned to the same address. The NDCR<CHSEL> register determines which channel is accessed.

Figure 3.18.3 NAND-Flash ECC-code Read Register (ND0ECCRD) and ND1ECCRD)

3.18.4.3 NAND-Flash Mode Control Register (ND0FMCR and ND1FMCR)

Bits	Mnemonic	Field Name	Description
7	WE	Write enable	Write enable (Default: 0) This bit enables the data write operation. When writing the data to the NAND-Flash, set this bit to "1". When writing command or address, this bit need not be set to "1". 0: Disable write operation 1: Enable write operation
6	ECC1	ECC control	ECC control (Default: 00) Control the ECC calculating circuits with <ce> (bit4) register. 11 (at<ce> = X): Reset ECC circuits 00 (at<ce> = 1): ECC circuits are disabled.</ce></ce></ce>
5	ECC0		01 (at <ce> = 1): ECC circuits are enabled. 10 (at<ce> = 1): Read ECC data calculated by NDFC 10 (at<ce> = 0): Read ID data</ce></ce></ce>
4	CE	Chip enable	Chip enable (Default: 0) Enable NAND-Flash access. Set "1" to this bit when accessing the NAND-Flash. 0: Disable (NDCE is High.) 1: Enable (NDCE is Low.)
3	PCNT1	Power control	Power control (Default: 00)
2	PCNT0		Always write "11"
1	ALE	Address latch enable	Address latch enable (Default: 0) This bit specifies the value of the NDALE signal. 0; Low 1: High
0	CLE	Command latch enable	Command latch enable (Default: 0) This bit specifies the value of the NDCLE signal. 0: Low 1: High

Figure 3.18.4 NAND-Flash Mode Control Register (ND0FMCR and ND1FMCR)

3.18.4.4 NAND-Flash Status Register (ND0FSR and ND1FSR)

Bits	Mnemonic	Field Name	Description
7	BUSY	BUSY	BUSY (Default: Undefined)
			This bit shows the status of the NAND-Flash.
			0: Ready
			1: Busy
6:0	-	-	Reserved

Note: A noise-filter for some states is built into the NDFC, so when the NDR/ \overline{B} pin changes, a <BUSY> flag is not renewed at the same time. Therefore, insert several delays (e.g., "NOP" instruction × 10) using software before starting this flag check.

3.18.4.5 NAND-Flash Interrupt Status Register (ND0FISR and ND1FISR)

Bits	Mnemonic	Field Name	Description
7:1	_	_	Reserved
0	RDY	Ready	Ready (Default: 0)
			When NDR/ \overline{B} signal changes from low (BUSY) to High (READY) and NDFIMR <mrdy> is "1", this bit is set to "1". By writing "1", this bit is cleared to 0.</mrdy>
			Read:
			0: None
			1: Change NDR/B signal from BUSY to READY.
			Write:
			0: No change
			1: Clear to "0"

Figure 3.18.6 NAND-Flash Interrupt Status Register (ND0FISR and ND1FISR)

3.18.4.6 NAND-Flash Interrupt Mask Register (ND0FIMR and ND1FIMR)

Bits	Mnemonic	Field Name	Description			
7	INTEN	Interrupt enable	Interrupt enable (Default: 0)			
		\bigcirc \lor \bigcirc	When <inten> and <mrdy> are set "1" and NDFISR<rdy> becomes "1",</rdy></mrdy></inten>			
	/	$()) \sim$	INTNDFC occurs.			
			0: Disable			
			1: Enable			
6:1	-		Reserved			
0	MRDY	Mask RDY	Mask RDY interrupt (Default: 0)			
		interrupt	This bit masks the NDFISR <rdy>. If <mrdy> is "1" and NDR/\overline{B} signal changes</mrdy></rdy>			
		5	from Low to High, NDFISR <rdy> is set to "1".</rdy>			
			0: Disable to set NDFISR <rdy></rdy>			
	(())		1: Enable to set NDFISR <rdy></rdy>			

Figure 3.18.7 NAND-Flash Interrupt Mask Register (ND0FIMR and ND1FIMR)

3.18.4.7 NAND-Flash Strobe Pulse Width Register (ND0FSPR and ND1FSPR)

Bits	Mnemonic	Field Name	Description
7:4	-	—	Reserved
3:0	SPW	Strobe pulse width	Strobe pulse width (Default: 0000) These bits set the Low pulse width of the NDRE and NDWE signals. The Low pulse width is ((value set to SPW) +1) × fSYS clock

Figure 3.18.8 NAND-Flash Strobe Pulse Width Register (ND0FSPR and ND1FSPR)

	$\overline{\mathbb{Z}}$	
(\int)	\sim	
	75)	
	>	

3.18.4.8 NAND-Flash Reset Register (ND0FRSTR and ND1FRSTR)

Bits	Mnemonic	Field Name	Description
7:1	-	_	Reserved
0	RST	Reset	Reset (Default: 0)
			By setting this bit, reset the NDFC (except NDCR <chsel> register).</chsel>
			By reset, this bit is automatically cleared to "0".
			0: Don't care
			1: Reset

Note: After writing <RST> register, several waits are required (about 10 states) before accessing the NDFC.

Figure 3.18.9 NAND-Flash Reset Register (ND0FRSTR and ND1FRSTR)

3.18.4.9 NAND-Flash Control Register (NDCR)

NDCR (01C0H)

				\frown			> O		
		7	6	5	Å	3 ((2	1	0
H)	Bit symbol	CHSEL		X	\sum	\searrow	\sum		/
	Read/Write	R/W	/	1		Ţ		/	
	After reset	0		Ľ		Ż		/	
	Function	0: Channel 0		\square					
		1: Channel 1	\square		\wedge	\sim			
			((\sum					

3.18.5 Timing Diagrams

3.18.5.2 Data Read Cycle

Figure 3.18.11 shows a timing chart example for a Data Read cycle from the NAND-Flash at ND0FSPR = 02H.

3.18.5.3 Data Write Cycle

Figure 3.18.12 shows a timing chart example for a Data Write cycle to the NAND-Flash at ND0FSPR = 02H.

3.18.6 Example of NAND-Flash Use

Note 1: By reset, both NDRE and NDWE pins become input ports (Port 71 and Port 72) And so require pull-up resistors. Note 2: Use the NAND-Flash memory and board capacitance to set the correct value for the NDR/B pin

pull-up resistor . 2 k Ω is a typical value.

Note 3: The NAND-Flash WP (write protect) pin is not supported by the TMP92CA25. It must be provided by an external circuit if required.

Figure 3.18.13 Example of NAND-Flash Connection
3.19 16-Bit Timer/Event Counters (TMRB0)

The TMP92CA25 incorporates one multifunctional 16-bit timer/event counter (TMRB0) which has the following operation modes:

- 16-bit interval timer mode
- 16-bit event counter mode
- 16-bit programmable pulse generation (PPG) mode

The timer/event counter consists of a 16-bit up counter, two 16-bit timer registers (one of them with a double buffer structure), a 16-bit capture register, two comparators, a capture input controller, a timer flip-flop and a control circuit.

The timer/event counter is controlled by an 11-byte control SFR.

This chapter includes the following sections:

- 3.19.1 Block Diagrams
- 3.19.2 Operation of Each Block
- 3.19.3 SFRs
- 3.19.4 Operation in Each Mode
 - (1) 16-bit interval timer mode
 - (2) 16-bit programmable pulse generation (PPG) output mode

Spec.	Channel	TMRBO
External	External clock/capture trigger input pins	None
pins	Timer flip-flop output pins	TB0OUT0 (also used as PC2
$\langle \rangle$	Timer run register	TB0RUN (1180H)
	Timer mode register	TB0MOD (1182H)
	Timer flip-flop control register	TB0FFCR (1183H)
		TB0RG0L (1188H)
	Timer register	TB0RG0H (1189H)
(Address)		TB0RG1L (118AH)
	(TB0RG1H (118BH)
	41	TB0CP0L (118CH)
	Capture register	TB0CP0H (118DH)
	Capitile legister	TB0CP1L (118EH)
		TB0CP1H (118FH)

Table 3.19.1 Pins and SFR of TMRB0

3.19.2 Operation of Each Block

(1) Prescaler

The 5-bit prescaler generates the source clock for timer 0. The prescaler clock (ϕ T0) is a divided clock (divided by 8) from the f_{FPH}.

This prescaler can be started or stopped using TB0RUN<TB0PRUN>. Counting starts when <TB0PRUN> is set to "1"; the prescaler is cleared to 0 and stops operation when <TB0PRUN> is cleared to "0".

	Tuble	0.10.2 11					
System clock selection SYSCR1	Clock gear selection SYSCR1	_	Timer counter input clock TMRB prescaler TB0M0D <tb0clk1:0></tb0clk1:0>				
<sysck></sysck>	<gear2:0></gear2:0>		φT1(1/2)	φT4 (1/8)	φT16 (1/32)		
1 (fs)	-		fs/16	fs/64	fs/256		
	000 (1/1)		fc/16)) fc/64	fc/256		
	001 (1/2)	1/8	fc/32	fc/128	fc/512		
0 (fc)	010 (1/4)	170	fc/64	fc/256	fc/1024		
	011 (1/8)		fc/128	fc/512	fc/2048		
	100 (1/16)		fc/256	fc/1024	fc/4096		

Table 2 10 2	Dresseler	Clock	Decelôtion
	Prescaler	CIUCK	Resolution

XXX: Don't care

(2) Up counter (UC10)

UC10 is a 16-bit binary counter which counts up pulses input from the clock specified by TB0MOD<TB0CLK1:0>.

Any one of the prescaler internal clocks ϕ T1, ϕ T4 and ϕ T16 can be selected as the input clock. Counting or stopping and clearing of the counter is controlled by TB0RUN<TB0RUN>.

When clearing is enabled, the up counter UC10 will be cleared to "0" each time its value matches the value in the timer register TB0RG1H/L. If clearing is disabled, the counter operates as a free-running counter.

Clearing can be enabled or disabled using TB0MOD<TB0CLE>.

A timer overflow interrupt (INTTBOF0) is generated when UC10 overflow occurs.

(3) Timer registers (TB0RG0H/L and TB0RG1H/L)

These 16-bit registers are used to set the interval time. When the value in the up counter UC10 matches the value set in this timer register, the comparator match detect signal will go active.

Setting data for both Upper and Lower timer registers is always needed. For example, either using a 2-byte data transfer instruction or using a 1-byte data transfer instruction twice for the lower 8 bits and upper 8 bits in order.

The TB0RG0H/L timer register has a double-buffer structure, which is paired with a register buffer. The value set in TB0RUN<TB0RDE> determines whether the double-buffer structure is enabled or disabled: it is disabled when <TB0RDE> = "0", and enabled when <TB0RDE> = "1".

When the double buffer is enabled, data is transferred from the register buffer to the timer register when the values in the up counter (UC10) and the timer register TB0RG1H/L match.

After a reset, TB0RG0H/L and TB0RG1H/L are undefined. If the 16-bit timer is to be used after a reset, data should be written to it beforehand.

On a reset <TB0RDE> is initialized to "0", disabling the double buffer. To use the double buffer, write data to the timer register, set <TB0RDE> to 1, then write data to the register buffer as shown below.

TB0RG0H/L and the register buffer both have the same memory addresses (001188H and 001189H) allocated to them. If $\langle TB0RDE \rangle = "0"$, the value is written to both the timer register and the register buffer. If $\langle TB0RDE \rangle = "1"$, the value is written to the register buffer only.

The addresses of the timer registers are as follows:

TMRB0	····//···		1
TBORGOH/L	TBOR	G1H/L	
Upper 8 bits (TB0RG0H) (TB0RG0L)	Upper 8 bits (TB0RG1H)	Lower 8 bits (TB0RG1L)	
001189H 001188H	00118BH	00118AH	1

The timer registers are write-only registers and thus cannot be read.

(4) Capture registers (TB0CP0H/L and TB0CP1H/L)

These 16-bit registers are used to latch the values in the up counters.

All 16 bits of data in the capture registers should be read. For example, using a 2-byte data load instruction or two 1-byte data load instructions. The least significant byte is read first, followed by the most significant byte.

The addresses of the capture registers are as follows:

:	- TMRB0				·····			
i –	TB0C	P0H/L	TB0CP1H/L					
	Upper 8 bits (TB0CPH)	Lower 8 bits (TB0CP0L)		Upper 8 bits (TB0CP1H)	Lower 8 bits (TB0CP1L)			
	00118DH	00118CH		00118FH	00118EH			

The capture registers are read-only registers and thus cannot be written to.

(5) Capture input control

This circuit controls the timing to latch the value of the up counter UC10 into TB0CP0H/L and TB0CP1H/L.

The value in the up counter can be loaded into a capture register by software. Whenever "0" is programmed to TB0MOD<TB0CP0I>, the current value in the up counter is loaded into capture register TB0CP0H/L. It is necessary to keep the prescaler in run mode (i.e., TB0RUN<TB0PRUN> must be held at a value of 1).

(6) Comparators (CP10 and CP11)

CP10 and CP11 are 16-bit comparators which compare the value in the up counter UC10 with the value set in TB0RG0H/L or TB0RG1H/L respectively, in order to detect a match. If a match is detected, the comparator generates an interrupt (INTTB00 or INTTB01 respectively).

(7) Timer flip-flops (TB0FF0)

These flip-flops are inverted by the match detect signals from the comparators and the latch signals to the capture registers. Inversion can be enabled and disabled for each element using TB0FFCR<TB0C0T1, TB0E1T1 and TB0E0T1>.

After a reset the value of TB0FF0 is undefined. If "00" is programmed to TB0FFCR <TB0FF0C1:0>, TB0FF0 will be inverted. If "01" is programmed to the capture registers, the value of TB0FF0 will be set to "1". If "10" is programmed to the capture registers, the value of TB0FF0 will be cleared to "0".

The values of TB0FF0 can be output via the timer output pin TB0OUT0 (which is shared with PC6). Timer output should be specified using the port B function register.

3.19.3 SFRs

				TMRB0 R	un Registe	r			
		7	6	5	4	3	2	1	0
TB0RUN	Bit symbol	TBORDE	-			I2TB0	TB0PRUN		TB0RUN
(1180H)	Read/Write	R	W			R	w 🔨		R/W
	After reset	0	0			0	0	\sim	0
	Function	Double	Always			IDLE2	TMRB0)2	Up counter
		buffer	write "0"			0: Stop	Prescaler	\mathcal{I}	UC10
		0: Disable				1: Operate	0: Stop and	clear	
		1: Enable					1: Run (Cou	nt up)	
	Note: 1, 4	and 5 of TBO	RUN are read	as undefined	Registers	For TMRB		Count operat	on ond clear nt

TMRB0 Flip-Flop Control Register

				1 1011	CD0 regist							
	/	7	6	5	4	3	2	1	0			
TB0RG0L	bit Symbol	_										
(1188H)	Read/Write	W										
	After reset				Unde	efined						
TB0RG0H	bit Symbol				-	_	<					
(1189H)	Read/Write				١	N		\geq				
	After reset				Unde	efined		$\left(\left(\right) \right)$				
TB0RG1L (118AH)	bit Symbol				-	_						
	Read/Write	W (7/A										
	After reset	Undefined										
TB0RG1H (118BH)	bit Symbol				-	_						
	Read/Write	w (())?										
	After reset	Undefined										
TB0CP0L	bit Symbol				-	- 20						
(118CH)	Read/Write		W									
	After reset				Unde	efined	\checkmark	6	\searrow			
TB0CP0H	bit Symbol				-	-(V_)	\bigcirc		\bigcirc			
(118DH)	Read/Write											
	After reset				Unde	efined	6	2				
TB0CP1L	bit Symbol				2(>	\rightarrow		$\langle \rangle$				
(118EH)	Read/Write					N		9				
	After reset				Unde	efined	_((7/<)				
TB0CP1H	bit Symbol				\sim .	-)				
(118FH)	Read/Write					N /	$\overline{)}$					
	After reset			\square	Unde	efined						
							77					

TMRB0 register

Note: All registers are prohibited to execute read-modify-write instruction.

Figure 3.19.5 The Registers for TMRB

3.19.4 Operation in Each Mode

(1) 16-bit interval timer mode

Generating interrupts at fixed intervals.

In this example, the interrupt INTTB01 is set to be generated at fixed intervals. The interval time is set in the timer register TB0RG1H/L.

5 4 3 2 1 0 6 **TBORUN** Х 0 Λ Stop TMRB0. n Х х Enable INTTB01 and set interrupt level 4. Disable INTTB00. INTETB01 0 0 Х 0 0 Х 1 0 Disable the trigger. TB0FFCR 0 0 0 0 1 1 1 TB0MOD Select internal clock for input and disable the capture function. 0 1 0 n 1 01, 10, 11) TB0RG1 Set the interval time (16 bits). Start TMRB0. **TBORUN** Х 1 0 Х Х X: Don't care, -: No change

(2) 16-bit programmable pulse generation (PPG) output mode

Square wave pulses can be generated at any frequency and duty ratio. The output pulse may be either low active or high active.

The PPG mode is obtained by inversion of the timer flip-flop TB0FF0 that is enabled by the match of the up counter UC10 with timer register TB0RG0H/L or TB0RG1H/L and is output to TB0OUT0. In this mode the following conditions must be satisfied.

(Value set in TB0RG0H/L) < (Value set in TB0RG1H/L)

When the TB0RG0H/L double buffer is enabled in this mode, the value of register buffer 10 will be shifted into TB0RG0H/L at match with TB0RG1H/L. This feature facilitates the handling of low duty waves.

Figure 3.19.7 Operation of Register Buffer

The following block diagram illustrates this mode.

3.20 Touch Screen Interface (TSI)

The TMP92CA25 has an interface for a 4-terminal resistor network touch screen. This interface supports two procedures: an X/Y position measurement and touch detection. Each procedure is executed by setting the TSI control register (TSICR0 and TSICR1) and using an internal AD converter.

3.20.2 Touch Screen Interface (TSI) Control Register

TSICR0 (01F0H)

	7	6	5	4	3	2	1	0
Bit symbol	TSI7		PTST	TWIEN	PYEN	PXEN	MYEN	MXEN
Read/Write	R/W		R			R/W		
After reset	0		0	0	0	9	0	0
Function	0: Disable 1: Enable		Detection condition 0: no touch 1: touch	INT4 interrupt control 0: Disable 1: Enable	SPY 0 : OFF 1 : ON	SPX 0:OFF 1:ON	SMY 0 : OFF 1 : ON	SMX 0 : OFF 1 : ON

TSI Control Register

PXD (Internal Pull-down resistance) ON/OFF setting

<pxen> <tsi7></tsi7></pxen>	0	1
0	OFF	OFF
1	ON	OFF

	\mathcal{I}
\checkmark	
Register	\mathcal{C}

		2	_ \/ .
Dohounoo	Time	Cotting	Dogiate
Depounce	Time	Semina	Rediste

				^		0					
		7	6	5	4	3	2	1	0		
TSICR1 (01F1H)	Bit symbol	DBC7	DB1024	DB256	DB64	DB8 (()	DB4	DB2	DB1		
	Read/Write	RW									
	After reset	0	0	0	> 0 /	0	0	0	0		
	Function	0: Disable	1024	256	64	8))	4	2	1		
		1: Enable	Enable Debounce time is set by the formula "(N × 64 – 16)/f _{SYS} ".								
			"N" is the number of bits between bit6 and bit0 which are set to "1". Note2)								

Note1: Since an internal clock is used for the debounce circuit, when IDLE1, STOP mode, the de-bounce circuit don't operate and also interrupt which through this circuit is not generated. When IDLE1, STOP mode, set this circuit to disable (Write "0" to TSICR1<DBC7>) before entering HALT state.

Note2: Ex: $TSICR1=95H \rightarrow N = 64 + 4 +$ 1/= 69

3.20.3 Touch Detection Procedure

The Touch detection procedure shows procedure until a pen is touched by the screen and it is detected.

By touching, TSI generates interrupt (INT4) and this procedure terminates. After an X/Y position measuring procedure is terminated, return to this procedure and wait for the next touch.

When the waiting state, make ON only the SPY switch ON and OFF the other 3 switches (SMY, SPX and SMX).

The pull-down resistor that is connected to the P96/INT4/PX pin is ON when the SPX switch is OFF.

During this waiting state, P96/INT4/PX pin's level is L because the internal Pull-down resistors (PXD) between the X and Y directions in the touch screen are not connected and INT4 is not generated.

When the pen touches the screen, P96/INT4/PX pin's level is H because the internal resistors between the X and Y directions in the touch screen are connected and INT4 is generated.

In order to avoid the generation of several interrupts from one touch, a debounce circuit is used, as below.

This can ignore the pulse under the time which is set to TSICR1 register.

The circuit detects the rising of signal, counts-up the time of the counter which is set, after count, receive the signal internal. During counting, when the signal is set to Low, counter is cleared. And the state become to state of waiting a rising edge.

3.20.4 X/Y Position Measuring Procedure

During the INT4 routine, execute an X/Y position measuring procedure as below.

<X position measurement>

Make both the SPX and SMX switches ON, and the SPY and SMY switches OFF.

With this setting, an analog voltage which shows the X position will be input to the PG3/MY/AN3 pin. The X position can be measured by converting this voltage to digital code using the AD converter.

- <Y position measurement>
 - Next, make both the SPY and SMY switches ON and the SPX and SMX switches OFF.

With this setting, an analog voltage which shows the Y position will be input to the PG2/MX/AN2 pin. The Y position can be measured by converting this voltage to digital code using the AD converter.

The above analog voltage which is inputted to AN3 or AN2 pin can be calculated as follows.

It is the ratio between the resistance value in the TMP92CA25F and the resistance value in the touch screen as shown in Figure 3.20.5.

Therefore, if the pen touches an area on the touch screen, the analog voltage will be neither 3.3 V nor 0.0 V.

Please remember to take into consideration the variation in the rate of resistance.

It is also recommended that an average taken from several AD conversions be adopted as the correct code.

3.20.5 Flow Chart for TSI

(1) Touch detection procedure

(2) X/Y position measurement procedure

(a) Main routine (condition of waiting INT4 interrupt) (pbfc)<P96F>,<P97F>= "1" : P96: int4/PX , P97:PY (inte34) : Set interrupts level of INT4 (tsicr0)=98h : Pull down resister on, SPY on, Interrupt-set<TWIEN> : Enable interrupt ei TMP92CA25 Touch screen control AVCC PXEN ON PYEN SPX SPY Dec

- (b) X position measurement (Start A/D conversion) (tsicr0)=85h : SMX, SPX on (admod1)=83h : AN3 measure
 - (admodd)=01h : A/D start

(c) Y position measurement (Start A/D conversion) (tsicr0)=8ah : SMY, SPY on (admod1)=82h : AN2 measure (admod0)=01h : A/D start

3.21 I²S (Inter-IC Sound)

An $\mathrm{I}^2\!\mathrm{S}$ format compatible serial output circuit is built-in.

This product can be used in digital audio system applications by connecting LSI for sound generation (e.g., a DA converter).

This circuit has both I²S mode and general SIO mode. But both modes have only clock output and data transmitting functions.

Table 3.21.1 shows an outline for each mode.

	I ² S mode	SIO mode
1) Format	I ² S-format compatible	General
	(Only master and transmitting)	(Only master and transmitting)
2) Used pin	1. I2SCKO (Clock output)	1. I2SCKO (Clock output)
	2. I2SDO (Clock output)	2. I2SDO (Data output)
	3. I2SWS (Word select output)	
3) WS frequency	Selectable either fs/4 or TA1OUT (TMRA1 output)	$) \diamond - \varphi $
4) Baud rate (at fc = 40 MHz)	Selectable either 20), 10, 5, or 2.5 Mbps
5) Transmittion buffer	16 bytes × 2 channels (Right, left)	32 bytes
6) Direction of data	Selectable either M	ISB first or LSB first
7) Data length	Selectable eithe	r 8 bits or 16 bits
8) Edge of clock	Selectable either risin	g edge or falling edge
9) Interrupt	INTI2S (FIFO e	empty interrupt)

Table 3 21	1 Outline for	Fach Mode
10010 0.21.		Laon mous

3.21.1 Block Diagram

3.21.2 SFR

The following tables show the SFR for I²S. This I²S is connected to the CPU by the 16-bit data bus. When the CPU accesses the SFR, use a 2-byte load instruction.

I2SCTL0 Register																	
		-	7	6	6	Ę	5		4		3	<	2		1		0
I2SCTL0	Bit symbol	Tک	ΚE	FN	ΛT	BU	SY	D	DIR		BIT		CK1	M	CK0	I2S	WCK
(080EH)	Read/Write		R/	Ŵ		F	र					R/W					
	After reset	(0	(0)	(0		0	$\left(\left(\right) \right)$	0		0		0
	Function	Trans	ransmit Mod			Status	5	First I	oit	Bit nự	mber	Baud	rate				lock
		0: Sto	р	0: I ² S		0: Stop)	0: MS	BB	0:8 b	its	00: fe	SYS	10: f _{SY}	′S/4	0: fs/4	4
		1: Sta	ırt	1: SIC)	1: Und trans	er smitting	1: LS	В	1:16	bits	01: fg	SYS/2	11: f _{SY}	′S/8	1: TA	10UT
Note: <i2swck> is effective only for I²S mode.</i2swck>																	
	15			1	14 13			1	12 11			10 9			8		
(080FH)	Bit symbol	I2SWLVL EDGE			I2SF	2SFSEL I2SCLKE			\wedge		_	-4	6	$\langle \rangle$	SYS	SCKE	
	Read/Write	R/				/W	W			\overline{D}		\uparrow	1		A	R	z/W
	After reset	0 0			0		0		0	\sim			\rightarrow	, A	+		0
	Function WS level Clock edge					Selec	t for	Clock	$\langle \rangle$	7		((System		
		0: Low left for data ou				stereo)	clock		с 	
		1: Hıç	gh left	0: Fa	lling	0: Ste	ereo	(Atte	transmit)						0: Disable		
				T: RIS	sing	(2 CI	nanneis)	0: Op	0: Operation)			1: En	lable
			'				hannel)	1: Sto	p /	\sim	\sim	\supset					
	Note: <1	2.5\WL\	/1 > <1	2ESEL	s and a	12SCI	KEyar	e effec	tive on	1 in 1^2	Smode						
	1010. 1	LOWE	v L>, <n< td=""><td></td><td></td><td></td><td></td><td>e enec</td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td></n<>					e enec				•					
						125	BUFF	R Reg	jister		\sim						
		15	14	13	(12	<u></u>	10	9	8	7	6	5	4	3	2	1	0
I2SBUFR	Bit symbol	R15	R14	R13	R12	R11	R10	R9	R8	R7	R6	R5	R4	R3	R2	R1	R0
(0800H)	Read/Write			((//	$\langle \uparrow \rangle$			\langle) M	1							
Read-modify- write	After reset		\sim	N.	J		($\overline{}$	Unde	fined							
instruction is	Function) [Regist	er for tr	ansmit	ting bu	ffer (Fl	FO) (R	ight ch	annel)				
pronibiled							$\langle /$	\bigcirc									
			\searrow	>		125	BUFL	Reg	ister								
	\int	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
I2SBUFL	Bit symbol	L15	N Ļ 14	L13	L12	L11	L10	L9	L8	L7	L6	L5	L4	L3	L2	L1	L0
(0808H)	Read/Write	$\overline{)}$			~(N	/							
Read-modify- write	After reset								Unde	fined							
instruction is	Function)			\sim	Regis	ter for t	ransmi	itting bu	uffer (F	IFO) (L	.eft cha	annel)				
			$\langle \langle \rangle$	$\mathcal{S}_{(l)}$	\bigcirc												
	\searrow		$\langle \rangle$		>	Figur	e 3.2′	1.2 I ²	S SFF	२							

3.21.3 Explanation of I²S Mode

(1) Connection example

Figure 3.21.3 shows an example with external LSI.

Note: After reset, P90 to P92 are placed in a high-impedance state. Connect each pin with a pull-up or pull-down resistor as necessary.

Figure 3.21.3 Example with External LSI

(2) Procedure

A 32-byte FIFO is built-in. If the FIFO's data becomes empty, an INTI2S interrupt is generated.

In the interrupt routine, write the next transmission data to the FIFO.

The following shows a setting example and timing diagram.

(Setting example) Transmitting by l^2 S mode, l2SWS = 8.192 kHz, l2SCKO = 10 MHz, synchronous with rising edge (at fevs = 20 MHz)

		17	12.1	10 I U	5			·,	
(Main routine)		((//	$\left(\right)$					
	7	6	5	4	3	2	1	0	7/~
INTE5I2S	X_	0	0	1	Х	$\langle \langle \rangle$	-	-77	Set interrupts level.
P9CR	_	_		—	_	0	0	0	Set pins to P90 (I2SCKO), P91 (I2SDO), and P92 (I2SWS).
P9FC	-	_	-	- <	F	1	1	\rightarrow	
I2SCTL0	0	0	-	0	0	0	1	0	Set I ² S mode, MSB first, 8 bits, f _{SYS} /2 clocks.
	0	1	0	1	0	0	0	7	Set rising edge, clock stop.
I2SBUFR	**	**	**	**	**	**	**	**	Write 16-byte data to FIFO for right (8 times).
I2SBUFL	**	**	**	**	**	**	**	**	Write 16-byte data to FIFO for left (8 times).
I2SCTL0	1	0	-	0	0	0	1	0	Start transmitting.
	0	1	0	1	0	0	0	1	
	7		$\left(\left(\right) \right)$						
(INTI2S interrupt rou	utine	€Y	$\langle \rangle$	\subseteq					
I2SBUFR	**/	**	**	**	**	**	**	**	Write 16-byte data to FIFO for right (8 times).
I2SBUFL	**	**	**	**	**	**	**	**	Write 16-byte data to FIFO for left (8 times).
X: Don't care, -: No	cha	inge	Э						

TOSHIBA

- (3) Notes
 - 1) INTI2S timing

INTI2S is generated after the last data of FIFO is loaded to the internal shifter. FIFO is now empty and it is possible to write the next data.

2) I2SCTL0<TXE>

A transmission is started by programming "1" to the <TXE> register and stopped by writing "0".

After<TXE> is programmed "1" once, the transmission is repeated automatically from right to left in order, alternately.

If a transmission should be stopped, program "0" to <TXE> after <BUSY> changes to "0" in the INTI2S interrupt routine.

When <TXE> is programmed "0" during transmitting, transmitting stops immediately.

3) FIFO size

A 16-byte FIFO is provided for both right and left channels. It is not necessary to use all data, but please use the even numbers $(2, 4 \dots 16)$.

4) I2SCTL0<I2SFSEL>

Write "1" to <I2SFSEL> and use the right channel FIFO for monaural.

It is not necessary to write data to the left channel FIFO. Channel transmission data is fixed at "0".

5) Address for I2SBUFR and I2SBUFL

If writing data to I2SBUFR or I2SBUFL, use "word or long word data load instruction". A "byte data load instruction" cannot be used.

The address of I2SBUFR selectable from 0800H to 0803H, and I2SBUFL is selectable from 0808H to 080BH.

3.21.4 Explanation of SIO Mode

(1) Connection example

Figure 3.21.6 shows an example with external LSI.

Note: Since P90 to P91 become high impedance by reset, connect a pull-up or pull-down resistor if necessary.

Figure 3.21.6 Example with External LSI

(2) Procedure

A 32-byte FIFO is built-in. If the FIFO's data becomes empty, an INTI2S interrupt is generated.

In the interrupt routine, write the next transmission data to the FIFO. The following shows a setting example and timing diagram.

(Setting example) Transmitting by SIO mode, I2SCKO = 10 MHz, synchronous with rising edge (at f_{SYS} = 20 MHz)

	(Main routine)				$\langle -$	\mathcal{I})				
		7	6	5	4	3	2	1	0	5	
	INTE5I2S	X	0	Ø))	Х	-	-	-		Set interrupts level.
	P9CR	7)) –	-	2	-	_	0	0	(7)	Set pins to P90 (I2SCKO) and P91 (I2SDO).
	P9FC	/'	=	7	-	-	- <	L	1	V	\mathcal{D}
	I2SCTL0	0	1	_	1	0	0	1	}	\sim	Set SIO mode, LSB first, 8 bits, f _{SYS} /2 clocks.
		-	1	_	1	0	0	0	1	\geq	Set rising edge.
	I2SBUFR	**	**	**	**	**	**	**	**		Write 32-byte data to FIFO (16 times).
	I2SCTL0	1	1	_	1	0	0	X	\mathbf{r}		Start transmitting.
		_	1	-	1/	0	0	0	1		
					2	(
\land	(INTI2S interrupt ro	outin	ne)	_		$\langle \ \rangle$					
\sim	I2SBUFR	**	**	**	**	**	**	**	**		Write 32-byte data to FIFO (16 times).
	If <busy></busy>	(="1	1" th	en V	AIT	els	e NI	EXT			Confirm termination of the 32-byte data transfer.
	12SCTL0	A	1	_	1	0	0	1	_		Start transmitting.
$\overline{)}$			\sim	$ \leq $	1	0	0	0	1		
	X: Don't care, -: No	o ch	ange	e	7						

TOSHIBA

INTI2S is generated after the last data of FIFO is loaded to the internal shifter. FIFO is now empty and it is possible to write the next data.

2) I2SCTL0 <TXE>

A transmission is started by programming "1" to the <TXE> register and stopped by programming "0".

<TXE> register is cleared to "0" when <BUSY> changes from "1" to "0".

When <TXE> is programmed "0" during transmitting, transmitting stops immediately.

3) FIFO size

A 32-byte FIFO is provided for SIO mode. It is not necessary to use all data but please use even numbers $(2, 4 \dots 32)$.

The <BUSY> will be changed to "0" and <TXE> will be cleared to "0" automatically after transmitting all programmed data to FIFO. In case of continuous transmitting, program "1" to <TXE> after programming data to FIFO.

The number of data programmed to FIFO is counted automatically and held by programming "1" to $\langle TXE \rangle$.

4) Address for I2SBUFR and I2SBUFL

If writing data to I2SBUFR (I2SBUFL cannot be written), use "word or long word data load instruction". A "byte data load instruction" cannot be used.

The address of I2SBUFR is selectable from 0800H to 0803H.

Figure 3.22.2 Outside circuit example for PSB

power supply backup mode by using the $\overline{\text{BE}}$ pin (Backup enable) and the $\overline{\text{RESET}}$ pin. $| \leftarrow 10 \mu s \rightarrow |$ BE RESET Power source RTCVCC is always supplied. (DVCC) Figure 3.22.3 Shift from Normal Mode to PSB Mode Over 20 system clocks after oscillator becomes stable BE RESET Power source RTCVCC is always supplied. (DVCC) Figure 3.22.4 Shift from PSB Mode to NORMAL Mode

TMP92CA25 has the power supply backup mode which is desighed to work for only low-speed oscillator, RTC and port M under sub battery supply. TMP92CA25 is set to the Figure 3.22.3 and Figure 3.22.4 shows the timing diagram of $\overline{\text{BE}}$ pin and $\overline{\text{RESET}}$ pin.

Backup enable pin (\overline{BE})

Low frequency oscillator, RTC and Port M can work also if $\overline{BE} = "L"$.

If $\overline{BE} = "L"$, Low frequency oscillator, RTC and Port Mare separated from CPU and so on in internal. Therefore, it is prohibited accessing to RTC register and Port M. In addition, Low frequency oscillator (fs) isn't provided except RTC circuit (Melody Alarm generator etc.). So, \overline{ALARM} (= output function of RTC) can output from PM2 pin, if port is set before set to $\overline{BE} = "L"$.

Note:

- 1: If "H" level signal was inputted to general purpose port with power off condition, current is used more than always. Therefore, set to "I" level or High-impedance condition. If this back up function is used, set BE pin to "L" level when DVCC power off.
- 2: When $\overline{\text{BE}}$ pin is set to "L", Low frequency oscillator operation become same with EMCCR0<DRVOSCL> = "0", forcibly. Therefore, don't set to $\overline{\text{BE}}$ = "L", when it is not operated Low frequency oscillator.
- 3: When BE pin is set to "L", PM2, PM1 pins condition change according to setting value of PMDR<PM2D, PM1D>. If keep output PM2, PM1 pins write "11" to <PM2D, PM1D> before set to BE = "L".
- 4: If release RESET, release RESET after $\overline{BE} \neq "H"$.

3.23 External bus release function

TMP92CA25 have external bus release function that can connect bus master to external. Bus release request (\overline{BUSRQ}), bus release answer (\overline{BUSAK}) pin is assigned to Port L6 and L7. And, it become effective by setting to PLCR and PLFC.

Figure 3.23.1 shows operation timing. Time that from $\overline{\text{BUSRQ}}$ pin inputted "0" until busis released ($\overline{\text{BUSAK}}$ is set to "0") depend on instruction that CPU execute at that time.

3.23.1 Non release pin

If it received bus release request, CPU release bus to external by setting BUSAK pin to "0" without start next bus. In this case, pin that is released have 3 types (A, B and C). Eve operation that set to high impedance (HZ) is different in 3 types. Table 3.23.1 shows support pin for 3 types. Any pin become non release pin only case of setting to that function by setting port. Therefore, if pin set to output port and so on, it is not set non release pin, and it hold previous condition.

	≤ 2	Tabl	le 3.23.1 Non release pin
(Туре	Eve operation that set to HZ	Support function (Pin name)
		Drive "1"	A23-A16(P67-P60), A15-A0, RD (P70), WRLL (P71), WRLU (P72), EA24(P73), EA25(P74), R/ W (P75), CS0 (P80), CS1 (P81), SDCS (P81), CS2 (P82), CSZA (P82), CS3 (P83), CSZB (P84), CSZC (P85), CSZD (P86), CSZE (P87), EA24(PC6), EA25(PC7), CSZF (PC7), SRLLB, SDRAS (PJ0), SRLUB, SDCAS (PJ1), SRWR, SDWE (PJ2), SDCLK(PF7), SDLLDQM(PJ3), SDLUDQM(PJ4)
	В	Drive "0"	SDCKE(PJ7)
	С	None operation	D15-D8(P17-P10), D7-D0

3.23.2 Connection example

Figure 3.23.2 show connection example.

3.23.3 Note

If use bus release function, be careful following notes.

1) Prohibit using this function together LCD controller and, SDRAM controller

If use this function, prohibit use LCD controller in SR mode. And, prohibitalso SDRAMC basically, but if external bus master use SDRAM, set SDRAM to SR (self refresh) condition before bus release request. And, when finish bus release, release SR condition. In this case, confirm each condition by handshake of general purpose port.

Support standby mode

The condition that can receive this function is only CPU operationg condition and during IDLE2 mode. During IDLE1 and STOP condition don't receive. (Bus release function is ignored).

Internal resource access disable

External bus master cannnot access to internal memory and internal I/O of TMP92CA25. Internal I/O operation during bus releasing.

4) Internal I/O operation during bus releasing

Internal I/O continue operation during bus releasing, please be careful. And, if set the watchdog timer, set runaway time by consider bus release time.

5) Non release pin

3)

Control output pin for NAND-Flash (\overline{NDOCE} , \overline{NDICE} , NDALE, NDCLE, \overline{NDRE} , \overline{NDWE}) are not non release pins.

4. Electrical Characteristics

4.1 Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Power Supply Voltage	V _{CC}	-0.5 to 4.0	V V
Input Voltage	VIN	-0.5 to VCC + 0.5	V
Output Current	I _{OL}	2	mA
Output Current (MX, MY pin)	I _{OL}	15	mA
Output Current	I _{ОН}	-2	mA
Output Current (PX, PY pin)	I _{ОН}	-15	())mA
Output Current (Total)	Σ I _{OL}	80	── mA
Output Current (Total)	ΣI_{OH}	-80	mA
Power Dissipation (Ta = $85^{\circ}C$)	PD	600	mW
Soldering Temperature (10 s)	T _{SOLDER}	260	°C
Storage Temperature	T _{STG}	-65 to 150	°C
Operation Temperature	T _{OPR}	-20 to 70	°C
			()

Note: The Absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, the device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded.

Solderability of lead free products

((

Test parameter	Test condition	Note
Solderability	 (1) Use of Sn-37Pb solder Bath Solder bath temperature = 230°C, Dipping time = 5 seconds The number of times = one, Use of R-type flux (2) Use of Sn-3.0Ag-0.5Cu solder bath Solder bath temperature = 245°C, Dipping time = 5 seconds The number of times = one, Use of R-type flux (use of lead-free) 	Pass: solderability rate until forming ≥ 95%

4.2 DC Electrical Characteristics (1/2)

V_{CC} = 3.3 \pm 0.3V/X1 = 6 to 40 MHz/Ta = –20 to 70°C
$V_{CC} = 2.7 - 3.6 V/X1 = 6$ to 27 MHz/Ta = -20 to 70°C

Parameter	Symbol	Min	Тур.	Max	Unit	Condition		
Power supply voltage	Vee	3.0		2.6	V	X1 = 6 to 40 MHz	XT1 - 20 to 24 kHz	
(DVCC = AVCC) (DVSS = AVSS = 0 V)	VCC	2.7		5.0	v	X1 = 6 to 27 MHz	XTT = 50 to 54 km2	
Input low voltage for D0 to D7 P10 to P17 (D8 to D15)	V _{ILO}			0.6				
Input low voltage for P40 to P47, P50 to P57, P60 to P67, P71 to P76, P90, P93 to P94, PC4 to PC7, PF3 to PF6, PG0 to PG3, PJ5 to PJ6, PK4 to PK7, PL4 to PL7	VIL1	-0.3		0.3 × V _{CC}				
Input low voltage for P91 to P92, P96 to P97, PA0 to PA7, <u>PC</u> 0 to PC3, PF0 to PF2, BE, RESET	V _{IL2}			0.25 × Vcc			$\widetilde{\mathcal{D}}$	
Input low voltage for AM0 to AM1	V _{IL3}			0.3		\mathcal{C}		
Input low voltage for X1, XT1	V_{IL4}			$0.2 \times V_{CC}$	(
Input high voltage for D0 to D7 P10 to P17 (D8 to D15)	VIHO	2.0				\bigcirc		
Input high voltage for P40 to P47, P50 to P57, P60 to P67, P71 to P76, P90, P93 to P94, PC4 to PC7, PF3 to PF6, PG0 to PG3, PJ5 to PJ6, PK4 to PK7, PL4 to PL7	VIH1	0.7 × Vcc		V _{CC} +0.3	v)		
Input high voltage for P91 to P92, P96 to P97, PA0 to PA7, PC0 to PC3, PF0 to PF2, BE, RESET	VIH2	0.75 × VC6						
Input high voltage for AM0 to AM1	VIH3	V _{CC} - 0.3						
Input high voltage for X1, XT1	VIH4	$0.8 \times V_{CC}$	$\langle \rangle$					

Parameter	Symbol	Min	Тур.	Max	Unit	Cond	lition	
Output low voltage	VOL			0.45		I _{OL} = 1.6 mA		
	V _{OH1}	2.4			V	I _{OH} = -400 μA		
Output high voltage	V _{OH2}	$0.9 \times V_{CC}$				I _{OH} = -20 μA		
Internal resistor (ON) MX, MY pins	IMon			30	0	V _{OL} = 0.2V	$V_{00} = 30 \text{ to } 36 \text{ V}$	
Internal resistor (ON) PX, PY pins	IMon			30	52	$V_{OH} = V_{CC} - 0.2V$	VCC = 3.0 10 3.0 V	
Input leakage current	ILI		0.02	±5	μA	$0.0 \le V_{IN} \le V_{CC}$		
Output leakage current	ILO		0.05	±10	μA	$0.2 \leq V_{IN} \leq V_{CC} - 0.2$	2 V	
Power down voltage at STOP (for internal RAM backup)	VSTOP	1.8		3.6	v	$V_{\text{IL2}} = 0.2 \times V_{\text{CC}},$ $V_{\text{IH2}} = 0.8 \times V_{\text{CC}}$		
Pull-up resistor for $\overline{\text{RESET}}$, PA0 to PA7	R _{RST}	00		500		1 million		
Programmable pull down resistor for p96	R _{KH}	00		500	KSZ			
Pin capacitance	CIO			10	ρF	fc=1 MHz		
Schmitt width for P91 to P92, P96 to P97, PA0 to PA7,P <u>C</u> 0 to PC3, PF0 to PF2, BE, RESET	V _{TH}	0.4	1.0) v			
NORMAL (Note 2)			42	65		$V_{CC} = 3.6 V$, fc = 40 M	MHz	
IDLE2			13	26	mA	(\bigcirc)		
IDLE1			3.1	8.7				
SLOW (Note 2)			41	110 70		Ta ≤ 70°C V _{CC} Ta ≤ 50°C ^{fs} =	; = 3.6 V, 32 kHz	
IDLE2	Icc		15	80 30		Ta ≤ 70°C Ta ≤ 50°C		
IDLE1) 4	60 20	μΑ	/ Ta ≤ 70°C Ta ≤ 50°C		
STOP		(\bigcirc)	0.2	50 15		$\begin{array}{c} Ta \leq 70^{\circ}C \\ Ta \leq 50^{\circ}C \end{array} V_{CC} \end{array}$	s = 3.6 V	

DC Electrical Characteristics (2/2)

Note 1: Typical values are for when $Ta = 25^{\circ}C$ and VCC = 3.3 V unless otherwise noted.

Note 2: ICC measurement conditions (NORMAL, SLOW):

All functions are operational; output pins except the bus pin are opened, and input pins are fixed.

Bus pin $C_L = 30 \text{ pF}$

4.3 AC Characteristics

4.3.1 Basic Bus Cycle

Read cycle

No	No. Parameter		Vari	able	40 MH 2	36 MH7	27 MH 7	Unit
NO.		Symbol	Min	Max	40 1011 12	50 Wil 12		Onit
1	OSC period (X1/X2)	tosc	25	166.7	25	27.7	37.0	
2	System clock period (= T)	tCYC	50	333.3	50	55.5	74.0	
3	SDCLK low width	t _{CL}	0.5 T – 15		10	12.7	22	
4	SDCLK high width	t _{CH}	0.5 T – 15		107/	12.7	22	
5 1	A0 to A23 valid \rightarrow D0 to D15	t _{AD} (3.0 V)		2.0 T – 30	70)) 81	-	
5-1	Input at 0 waits	t _{AD} (2.7 V)		2.0 T – 35		<u> </u>	113	
5-2	A0 to A23 valid \rightarrow D0 to D15	tadd (3.0 V)		3.0 T – 30	120	136.5	-	
02	Input at 1 wait	t _{AD3} (2.7 V)		3.0 T – 35		-	187	
		t _{RD(a)}		1.5 T - 30	45	53.3	81	
6-1	RD falling \rightarrow D0 to D15	t _{RD(b)}		1.25 T - 30	32.5	39.5	62.5	
	input at 0 waits	t _{RD(c)}		1.0 T - 30	20	25.7	44	
		tRD3(a)		2.5/T - 30	95	108.8	155	
$6-2 RD falling \rightarrow D0 to Base t A wait$	RD falling \rightarrow D0 to D15	t _{RD3(b)}	0	2.25 T - 30	82.5	95	136.5	
	Input at 1 wait	t _{RD3(c)}	(2.0T - 30	70	312	/118	
			1.5 T – 20	>	55	63.2	91	
7-1	7-1 RD low width at 0 waits	tRR(b)	1.25 T – 20	\geq	42.5	49.4	72.5	
		t _{RR(c)}	-1.0 T - 20		30	35.6	54	
		t _{RR3(a)}	2.5 T – 20		105	118.8	165	ns
7-2	\overline{RD} low width at 1 wait	tRR3(b)	2.25 T – 20		92.5	105	146.5	
		tRR3(c)	2.0 T – 20		80	91.2	128	
		^t AR(a)	0.5 T – 20	$\langle \langle \rangle$	5	7.7	17	
8	A0 to A23 valid $\rightarrow \overline{RD}$ falling	(t _{AR} (a)	0.75 T – 20		/17.5	21.5	35.5	
		t _{AR(a)}	1.0 T – 20		30	35.3	54	
		t _{RK(a)}	0.5 T – 20		5	7.7	17	
9	\overline{RD} falling \rightarrow SDCLK rising	tRK(b)	0.25 T – 20		-7.5	-6.1	-1.5	
		t _{RK(c)}	0 T – 20	27	-20	-20	-20	
10	A0 to A23 valid \rightarrow D0 to D15 hold	tHA	0		0	0	0	
11	$\overline{\text{RD}}$ rising \rightarrow D0 to D15 hold	tHR	6	\sim	0	0	0	
12	WAIT setup time	tж	(15 <		15	15	15	
13	WAIT hold time	tkt.	5		5	5	5	
14	Data byte control access time for SRAM	tsba		1.5 T – 30	45	53.3	81	
	\sim	tRRH(a)	0.5 T – 15		10	12.7	22	
15	RD high width	t _{RRH(b)}	0.75 T – 15		22.5	26.5	40.5	
		tRRH(c)	√1.0 T – 15		35	40.3	59	

AC measuring condition

• Output: High = 0.7 VCC, Low = 0.3 VCC, C_L = 50 pF

 \sim

Input: High = 0.9 VCC, Low = 0.1 VCC

Note1: The figures in the "Variable" column cover the whole VCC range (2.7 V to 3.6 V). Exceptions are shown by the VCC (min), "(3.0 V)" or "(2.7 V)", added to the "Symbol" column.

Note2: The figures in the (a), (b) and (c) of "Symbol" column shows difference of falling timing of \overline{RD} pin. Falling timing of \overline{RD} pin is set by MEMECR0<RDTMG1:0>. If MEMCR0<RDTMG1:0> is "00", it correspond with (a) in above table, and "01" is (b), "10" is (c).
No	Paramotor	Symbol	Vari	able		26 MU-7	27 M⊔ -	Lloit
NO.	Falaillelei	Symbol	Min	Max	40 1011 12	30 1011 12	27 11112	Onit
16-1	D0 to D15 valid $\rightarrow \overline{\text{WRxx}}$ rising at 0 waits	t _{DW}	1.25T – 35		27.5	34.3	57.5	
16-2	D0 to D15 valid $\rightarrow \overline{WRxx}$ rising at 1 wait	t _{DW3}	2.25T – 35		77.5	89.8	131.5	
17-1	WRxx low width at 0 waits	tww	1.25T – 30		32.5	34.3	62.5	
17-2	WRxx low width at 1 wait	t _{WW3}	2.25T – 30		82.5	89.8	136.5	
18	A0 to A23 valid $\rightarrow \overline{WR}$ falling	t _{AW}	0.5T – 20		5	7.7	17	
19	\overline{WRxx} falling \rightarrow SDCLK rising	twĸ	0.5T – 20	\sim	(5 //	7.7	17	
20	$\overline{\text{WRxx}}$ rising \rightarrow A0 to A23 hold	t _{WA}	0.25T – 5		7.5	8.8	13.5	
21	$\overline{\text{WRxx}}$ rising \rightarrow D0 to D15 hold	t _{WD}	0.25T – 5		7.5	8.8	13.5	ns
22	\overline{PD} rising $\rightarrow D0$ to D15 output	t _{RDO} (3.0 V)	0.5T – 5		20	22.7	-	
22		tRDO (2.7 V)	0.5T – 7		>	-	30	
23	Write pulse width for SRAM	tSWP	1.25T – 30		32.5	39.3	62.5	
24	Data byte control to end of write for SRAM	tSBW	1.25T – 30		32.5	39.3	62.5	
25	Address setup time for SRAM	tSAS	0.5T – 20 /	$(\Omega / \Lambda^{\vee})$	5	11	17	
26	Write recovery time for SRAM	tSWR	0.25T – 5	\vee	7.5	(8.8)	13.5]
27	Data setup time for SRAM	tSDS	1.25T - 35		27.5	34.3	57.5]
28	Data hold time for SRAM	tSDH	0.25T - 5		7.5	8.8	13.5	

Write cycle

AC measuring condition

- Output: High = 0.7 VCC, Low = 0.3 VCC, C_L = 50 pF
- Input: High = 0.9 VCC, Low = 0.1 VCC
- Note: The figures in the "Variable" column cover the whole VCC range (2.7 V to 3.6 V). Exceptions are shown by the VCC (min), "(3.0 V)" or "(2.7 V)", added to the "Symbol" column.

(1) Read cycle (0 waits)

Note1: The phase relation between X1 input signal and the other signals is undefined. The above timing chart is an example.

Note2: RD pin falling timing depends on MEMCR0<RDTMG1:0> setting in memory controller.

(2) Write cycle (0 waits)

Note: The phase relation between X1 input signal and the other signals is undefined. The above timing chart is an example.

4.3.2 Page ROM Read Cycle

No	Deremeter	Symbol	Vari	able				Linit
INO.	Parameter	Symbol	Min	Max				Unit
1	System clock period (= T)	tCYC	50	166.7	50	55.5	74	
2	A0, A1 \rightarrow D0 to D15 input	t _{AD2}		2.0T – 50	50	61	98	
3	A2 to A23 \rightarrow D0 to D15 input	t _{AD3}		3.0T – 50	100	116.5	172	
		t _{RD3(a)}		2.5T – 45	80	93.8	140	
4	$\overline{\text{RD}}$ falling \rightarrow D0 to D15 input	t _{RD3(b)}		2.25T – 45	67.5	79.6	121.5	ns
		t _{RD3(c)}		2.0T – 45	55	66	103	
5	A0 to A23 Invalid \rightarrow D0 to D15 hold	t _{HA}	0			0	0	
6	$\overline{\text{RD}}$ rising \rightarrow D0 to D15 hold	t _{HR}	0	((0	0	0	

(1) 3-2-2-2 mode

AC measuring condition

- Output: High = 0.7 VCC, Low = 0.3 VCC, $C_L = 50 \text{ pF}$
- Input: High = 0.9 VCC, Low = 0.1 VCC

Note: The figures in the (a), (b) and (c) of "Symbol" column shows difference of falling timing of RD pin. Falling timing of RD pin is set by MEMECR0<RDTMG1:0>. If MEMCR0<RDTMG1:0> is "00", it correspond with (a) in above table, and "01" is (b), "10" is (c).

No	Parameter	Symbol	Varia	able	40 MH 7	36 MH7	27 MHz	Lloit
NO.	raidilletei	Symbol	Min	Max	40 1011 12	50 IVII 12	27 11112	Unit
1	Ref/active to ref/active command period	t _{RC}	2T		100	111	148	
2	Active to precharge command period	t _{RAS}	2T	12210	100	111	148	
3	Active to read/write command delay time	^t RCD	т		50	55.5	74	
4	Precharge to active command period	t _{RP}	Т		50 (55.5	74	
5	Active to active command period	t _{RRD}	3T		150	166.5	222	
6	Write recovery time (CL* = 2)	t _{WR}	Т		50	55.5	74	
7	Clock cycle time (CL* = 2)	tCK	Т	\langle	50	55.5	74	
8	Clock high level width	^t CH	0.5T – 15		10	12.7	22	
9	Clock low level width	t _{CL}	0.5T – 15	(10	12.7	22	ne
10	Access time from clock (CL* =2)	t _{AC}		T – 30	20	25.5	44	115
11	Output data hold time	tон	0			0	0	
12	Data in setup time	t _{DS}	0.5T – 10		15	17	27	
13	Data in hold time	^t DH	T – 15	$\langle \rangle$	→ ₃₅	40.5	59	
14	Address setup time	t _{AS}	0.75T – 30	\bigcirc	7.5	11.6	25.5	
15	Address hold time	t _{AH}	0.25T – 9	$(// \land)$	3.5	4.8	9.5	
16	CKE setup time	tCKS	0.5T – 15		10	12.7	22	
17	Command setup time	tCMS	0.5T - 15		10	12.7	/22	
18	Command hold time	tсмн	0.5T 15	$\langle \rangle$	10	12.7	22	
19	Mode register set cycle time	t _{RSC}			50	55.5	74	

4.3.3 SDRAM Controller AC Characteristics

CL*: CAS latency.

AC measuring conditions

- Output level: High = 0.7 VCC, Low = 0.3 VCC, $C_L = 50 \text{ pF}$
- Input level: High = 0.9 VCC, Low = 0.1 VCC

(1) SDRAM read timing (CPU access or LCDC normal access)

(2) SDRAM write timing (CPU access)

(3) SDRAM burst read timing (Start of burst cycle)

(4) SDRAM burst read timing (End of burst cycle)

(5) SDRAM initialize timing

No	Paramotor	Symbol	Varia	ble	10 MH-	26 MU-	27 M⊔-	Llpit
INU.	Farameter	Symbol	Min	Max				Onit
1	NDRE low width	t _{RP}	(1 + n) T – 12		38	43.5	62	
2		t _{REA} (3.0 V)		(1 + n) T – 25	25	30.5	=	
	NDRE data access time	t _{REA} (2.7 V)		(1 + n) T – 30		-	44	
3	Read data hold time	tон	0		0	9 A	0	ns
4	NDWE low width	t _{WP}	(0.75 + n) T – 20		17.5(21.6	35.5	
5	Write data setup time	t _{DS}	(3.25 + n) T - 30		132.5	150.3	210.5	
6	Write data hold time	t _{DH}	0.25 T – 2		10.5	11.8	16.5	

4.3.4 NAND Flash Controller AC Characteristics

AC measuring conditions

- Output level: High = 0.7 VCC, Low = 0.3 VCC, C_L = 50 pF
- Input level: High = 0.9 VCC, Low = 0.1 VCC

Note 1: The "n" shown in "Variable" refers to the wait number which is set to NDnFSPR<SPW3:0> register.

Example: When NDnFSPR<SPW3:0> = "0001", $t_{RP} = (1 + n)T - 12 = 2T - 12$

Note 2: The figures in the "Variable" column cover the whole VCC range (2.7 V to 3.6 V). Exceptions are shown by the VCC (min), "(3.0 V)" or "(2.7 V)", added to the "Symbol" column.

Example: (3.0V): VCC range = 3.0V to 3.6V

4.3.5 Serial Channel Timing

(1) SCLK input mode (I/O interface mode)

Poromotor	Symbol	Varia	able		26 MU-	27 MU-	Llpit
Falameter	Symbol	Min	Max				Onit
SCLK cycle	tSCY	16T		0.8	0.888	1.184	μS
Output data \rightarrow SCLK rising/falling	toss	$t_{SCY}/2 - 4T - 110$		90 🔪	114	186	
SCLK rising/falling \rightarrow Output data hold	tohs	$t_{SCY}/2 + 2T + 0$		500	554	740	
SCLK rising/falling \rightarrow Input data hold	t _{HSR}	3 T + 10		160	175	232	ns
SCLK rising/falling \rightarrow Input data valid	tSRD		t _{SCY} – 0	800	888	1184	
Input data valid \rightarrow SCLK rising/falling	t _{RDS}	0	\land	$\left(\left(0 \right) \right)$	0	0	

(2) SCLK output mode (I/O Interface mode)

Paramotor	Symbol	Vari	able		26 MU-	22 M⊔-	Linit
Falameter	Symbol	Min	Max	40 10112	30 1011 12		Unit
SCLK cycle (Programmable)	tSCY	16 T	8192T	0.8	0.888	1.184	μS
Output data \rightarrow SCLK rising/falling	toss	t _{SCY} /2 – 40		360	404	552	
SCLK rising/falling \rightarrow Output data hold	tOHS	t _{SCY} /2 – 40		360	404)) 552	
SCLK rising/falling \rightarrow Input data hold	t _{HSR}	0		0	6	0	ns
SCLK rising/falling \rightarrow Input data valid	tSRD		t _{SCY} – 1T – 180	570	654	967	
Input data valid \rightarrow SCLK rising/falling	t _{RDS}	1 T + 180	$\langle \rangle$	230	233	253	

4.3.6 Interrupt Operation

Parameter	Symbol	Vari	able	40 MHz	36 MHz	27 MHz	Llnit
Falameter	Symbol	Min	Max				Offic
INT0 to INT5 low width	<i>t</i>INTAL	4 T + 40		240	262	336	ne
INT0 to INT5 high width	tintah	4 T + 40		240	262	336	115

4.3.7 LCD Controller (SR mode)

Paramotor	Symbol	Vari	40 MH-	36 MH-	27 MH-	Unit	
r arameter	Symbol	Min	Max		30 1011 12		Offic
LCP0 clock period (= tm)	t _{CW}	2 T		100	111	148	
LCP0 high width	tCMH	0.5 tm – 12		38	43.5	62	
LCP0 low width	tCWL	0.5 tm – 12		38	43.5	62	ns
Data valid \rightarrow LCP0 falling	tDSU	0.5 tm – 20		30 🔾	35.5	54	
LCP0 falling \rightarrow Data hold	t _{DHD}	0.5 tm – 5		45 ((50.5	69	

4.3.8 I²S Timing (I²S, SIO Mode)

Parameter	Symbol	Vari	iable		36 MH7	27 MHz	Llnit
r arameter	Symbol	Min	> Max		30 1011 12	27 1011 12	Unit
I2SCKO clock period	t _{CR}			50)	55	74	
I2SCKO high width	t _{HB}	0.5 t _{CR} – 15		10	12	22	
I2SCKO low width	t _{LB}	0.5 t _{CR} – 15		10	12	22	ns
I2SDO, I2SWS setup time	t _{SD}	0.5 t _{CR} – 15)) 10	12	22	
I2SDO, I2SWS hold time	t _{HD}	0.5 t _{CR} – 5		20	22	32	

AC measuring conditions

4.3.9 SPI control Timing

Parameter	Symbol	Var	iable	40 MU-	26 MU-	27 MU-7	Lloit
Falameter	Symbol	Min	Max		50 IVII 12	27 1011 12	Offic
SPCLK frequency (=1/S)	t _{CR}		20	20	18	13.5	MHz
SPCLK rising time	t _{HB}		6	6	6	6	
SPCLK falling time	t _{LB}		6	6	6	6	
SPCLK Low pulse width	t _{SD}	0.5S –6		19	21	31	
SPCLK High pulse width	t _{HD}	0.5S –13		12	14	24	
Output data valid \rightarrow SPCLK rise		0.5S –18	\sim		9	19	ns
Output data valid \rightarrow SPCLK fall		0.5S –21	\rightarrow	Å (6	16	
SPCLK rise \rightarrow Output data hold		0.5S –10	((15	17	27	
Input data valid \rightarrow SPCLK rise		0S + 5		5	5	5	
SPCLK rise \rightarrow Input data hold		0S + 5		5	5	5	

AC measuring conditions

- Output level: High = 0.7 VCC, Low = 0.3 VCC, C_L = 25 pF
- Input level: High = 0.9 VCC, Low = 0.1 VCC

4.3.10 External bus release function

								1		
	Deremeter	Symbol	Vari	able	101		26 MH-	27		Linit
	Falanlelei	Symbol	Min	Max	401		30 1011 12	21		Unit
	Floating time until BUSRQ falling	t _{ABA}	0	30	0	30	0 30	0	30	MHz
	Floating time until BUSAK rising	t _{BAA}	0	30	0	30	0 30	0	30	ns
BU	Floating time until BUSRQ falling Floating time until BUSAK rising SRQ SAK lease pin Note: This line show only that o	t _{ABA} t _{BAA}	0 0	30 30 -55 -55	0 0	30 30 (Note)	0 30 0 30	0 0	30 30	MHz
\langle										

4.4 AD Conversion Characteristics

Parameter	Symbol	Min	Тур.	Max	Unit
Analog reference voltage (+)	V _{REFH}	V _{CC} - 0.2	V _{CC}	V _{CC}	
Analog reference voltage (-)	V _{REFL}	V _{SS}	V _{SS}	V _{SS} + 0.2	
AD converter power supply voltage	AV _{CC}	V _{CC}	V _{CC}	Vcc	V
AD converter ground	AV _{SS}	V _{SS}	V _{SS}	VSS	
Analog input voltage	AVIN	V _{REFL}		VREFH	$\langle \rangle \rangle$
Analog current for analog reference voltage <vrefon> = 1</vrefon>	loce		0.8	1.35	mA
Analog current for analog reference voltage <vrefon> = 0</vrefon>	IKEF		0.02	5.0	μΑ
Total error (Quantize error of \pm 0.5 LSB is included.)	ET		±1.0	±4.0	LSB

Note 1: 1LSB = (VREFH - VREFL) / 1024 [V]

Note 2: Minimum frequency for operation

AD converter operation is guaranteed only when using fc (high-frequency oscillator). It is not guaranteed. However, operation is guaranteed if the clock frequency selected by the clock gear is over 4MHz. Note 3: The value for Icc includes the current which flows through the AV_{CC} pin.

4.5 Recommended Oscillation Circuit

The TMP92CA25 has been evaluated by the oscillator vender below. Use this information when selecting external parts.

- Note: The total load value of the oscillator is the sum of external loads (C1 and C2) and the floating load of the actual assembled board. There is a possibility of operating error when using C1 and C2 values in the table below. When designing the board, design the minimum length pattern around the oscillator. We also recommend that oscillator evaluation be carried out using the actual board.
- (1) Connection example

High-frequency oscillator

Low-frequency oscillator

Rd

(2) Recommended ceramic oscillator: Murata Manufacturing Co., Ltd.

C1

XT1

MCU	Oscillation		Para	ameter	of eleme	ents	Running Condition		
	Frequency	Oscillator Product Number	C1	C2	Rf	Rd	Voltage of Power		
	[MHZ]		[pF]	[pF]	[Ω]	[Ω]	[V]		
TMP92CA25FG	6.00	CSTCR6M00G55-R0	(39)	(39) <					
	10.00	CSTCE10M0G55-R0	(33)	(33)	Open	0	2.7 ~ 3.6	-20 ~ +80	
	20.00	CSTCE20M0V53-R0	(15)	(15)	\sim				

Note 1: The figure in parentheses () under C1 and C2 is the built-in condenser type.

Note 2: The product numbers and specifications of the oscillators made by Murata Manufacturing Co., Ltd. are subject to change. For up-to-date information, please refer to the following URL:

TOSHIBA

5. Table of Special function registers (SFRs)

The SFRs include the I/O ports and peripheral control registers allocated to the 4-Kbyte address space from 000000H to 001FFFH.

- (1) I/O Port
- (2) Interrupt control
- (3) Memory controller
- (4) MMU
- (5) Clock gear, PLL
- (6) LCD controller
- (7) Touch screen I/F
- (8) SDRAM controller
- (9) 8-bit timer
- (10) 16-bit timer

Table lavout

(12)	SBI
(13)	SPI controller
(14)	AD converter
(15)	Watchdog timer
(16)	RTC (Real time clock)
(17)	Melody/alarm generator
(18)	NAND flash controller

(11) UART/serial channel

Table layout						$\supset \subset$	
Symbol	Name	Address	76	Ĩ (1/0	
		2(-		—→Bit symbol
				$\langle \langle \rangle$			—→Read/Write
					\mathbb{K}		→Initial value after reset
)		\sim		→ Remarks
		\overline{C}		\wedge			

(19)

Note: "Prohibit RMW" in the table means that you cannot use RMW instructions on these register.

Example: When setting bit0 only of the register PxCR, the instruction "SET 0, (PxCR)" cannot be used. The LD (transfer) instruction must be used to write all eight bits.

Both read and write are possible.

Only read is possible.

Only write is possible.

Both read and write are possible (when this bit is read as "1".) Read-modify-write instructions are prohibited. (The EX, ADD, ADC, BUS, SBC, INC, DEC, AND, OR, XOR, STCF, RES, SET, CHG, TSET, RLC, RRC, RL, RR, SLA, SRA, SLL, SRL, RLD and RRD instruction are read-modify-write instructions.)

Read-modify-write is prohibited when controlling the pull-up resistor.

[1] Port				_					
Address	Name	Address	Name		Address	Name		Address	Name
0000H		0010H			0020H	P8 <	/	0030H	PC
1H		1H			1H	P8FC2	\geq	1H	
2H		2H			2H		(2H	PCCR
3H		3H			3H	P8FC		💛 зн	PCFC
4H	P1	4H			4H	P9 (7)	$\langle \langle$	4H	
5H		5H			5H	P9FC2	Σ	5Н	
6H	P1CR	6H			6H	P9CR		6H	
7H	P1FC	7H			7H	P9FC		7H	
8H		8H	P6		8H	PA		8H	
9H		9H			9Ĥ	$\langle \rangle$		9H	
AH		AH	P6CR		AH			AH	
BH		BH	P6FC		((вн	PAFC		ВН	\sim
CH		CH	P7		CH	\mathcal{I} \sim	\sim	Сн	PF
DH		DH			DH		~	DH	PFFC2
EH		EH	P7CR		ÉH	(()		EH E	PFCR
FH		FH	P7FC	\sum	FH	e	\sim	/) FH	PFFC
					\searrow	(\overline{q})			
Address	Name	Address	Name		Address	Name		Address	Name
0040H	PG	0050H	РК	>	0080H			0090H	PGDR
1H		1H			114	P1DR		1H	
2H		2H	PKCR		2H			2H	
3H		3H	PKFC		3H			3H	PJDR
4H 5H		(⁴ ⊓ 5н	PL		4H	P4DR P5DR		4H 5H	
6H		6H	PLCR		6H	P6DR		6H	PMDR
7H			PLFC	$\langle \cdot \rangle$	TH	P7DR		7H	PNDR
8H		81	PM	7	8H	P8DR		8H	
9H		9H	$\sim (0$	[)) эн	P9DR		9H	
AH		AH		/ /	AH	PADR		AH	
BH		BH	PMFC	\geq	BH	DODD		BH	
			PN		СН	FUDK		СН	
EH	PJCR	FH	PNCR		EH			EH	
FH	PJEC	FH	PNFC		FH	PFDR		FH	
				_					

Table 5.1 I/O Register Address Map

[2] INTC	[2] INTC									
Address	Name	1 [Address	Name		Address	Name		Address	Name
00D0H	INTE12	11	00E0H	INTESPI		00F0H	INTE0AD		0100H	DMA0V
1H	INTE34		1H	INTESBI		1H	INTETC01		1H	DMA1V
2H			2H	Reserved		2H	INTETC23		2H	DMA2V
3H			3H	Reserved		3H	INTETC45		ЗН	DMA3V
4H	INTETA01		4H	Reserved		4H	INTETC67	À	4H	DMA4V
5H	INTETA23		5H	INTALM01		5H	SIMC	$\left(\left(\right) \right)$	5H	DMA5V
6H			6H	INTALM23		6H	IIMC	/	6Н	DMA6V
7H			7H	INTALM4		7H	INTWDT	$\langle \langle$	7H	DMA7V
8H	INTETB01		8H	INTERTC		8H	INTCLR	ر) 8Н	DMAB
9H			9H	INTEKEY		9H			9H	DMAR
AH	INTETBO0		AH	INTELCD		AH	(())		AH	Reserved
BH	INTES0		BH	INTE5I2S		BH			BH	
CH			CH	INTEND01		CH	\frown		СН	
DH			DH	Reserved		DH			C DH	
EH			EH	INTEP0		EH			EH EH	
FH			FH	Reserved		((FH	$\int $		(FH	
[3] MEMC										
[3] MEM	IC				$\left(\begin{array}{c} \\ \\ \end{array} \right)$		(C		[4] MMU	J
[3] MEM Address	IC Name	[Address	Name	2	Address	Name		[4] MMU Address	J Name
[3] MEM Address 0140H	IC Name B0CSL		Address 0150H	Name	1110	Address 0160H	Name		[4] MMU Address 01D0H	J Name LOCALPX
[3] MEM Address 0140H 1H	IC Name B0CSL B0CSH		Address 0150H 1H	Name	1110	Address 0160H 1H	Name		[4] MMU Address 01D0H 1H	J Name LOCALPX LOCALPY
[3] MEM Address 0140H 1H 2H	IC Name B0CSL B0CSH MAMR0		Address 0150H 1H 2H	Name	JU111 ~	Address 0160H 1H 2H	Name		[4] MMU Address 01D0H 1H 2H	J Name LOCALPX LOCALPY
[3] MEM Address 0140H 1H 2H 3H	IC Name B0CSL B0CSH MAMR0 MSAR0		Address 0150H 1H 2H 3H	Name	~ U/// ~	Address 0160H 1H 2H 3H	Name		[4] MMU Address 01D0H 1H 2H 3H	Name LOCALPX LOCALPY LOCALPZ
[3] MEM Address 0140H 1H 2H 3H 4H	IC Name BOCSL BOCSH MAMRO MSARO B1CSL		Address 0150H 1H 2H 3H 4H	Name		Address 0160H 1H 2H 3H 4H	Name		[4] MMU Address 01D0H 1H 2H 3H 4H	Name LOCALPX LOCALPY LOCALPZ LOCALLX
[3] MEM Address 0140H 1H 2H 3H 4H 5H	IC Name B0CSL B0CSH MAMR0 MSAR0 B1CSL B1CSH		Address 0150H 1H 2H 3H 4H 5H	Name		Address 0160H 1H 2H 3H 4H 5H	Name		[4] MMU Address 01D0H 1H 2H 3H 4H 5H	Name LOCALPX LOCALPY LOCALPZ LOCALLX LOCALLY
[3] MEM Address 0140H 1H 2H 3H 4H 5H 6H	IC Name B0CSL B0CSH MAMR0 MSAR0 B1CSL B1CSL B1CSH MAMR1		Address 0150H 1H 2H 3H 4H 5H 6H	Name		Address 0160H 1H 2H 3H 4H 5H 6H	Name		[4] MMU Address 01D0H 1H 2H 3H 4H 5H 6H	Name LOCALPX LOCALPY LOCALPZ LOCALLX LOCALLY
[3] MEM Address 0140H 1H 2H 3H 4H 5H 6H 7H	C Name B0CSL B0CSH MAMR0 MSAR0 B1CSL B1CSL B1CSH MAMR1 MSAR1		Address 0150H 1H 2H 3H 4H 5H 6H 7H	Name		Address 0160H 1H 2H 3H 4H 5H 6H 7H	Name		[4] MMU Address 01D0H 1H 2H 3H 4H 5H 6H 7H	Name LOCALPX LOCALPY LOCALPZ LOCALLX LOCALLY LOCALLZ
[3] MEM Address 0140H 1H 2H 3H 4H 5H 6H 7H 8H	C Name B0CSL B0CSH MAMR0 MSAR0 B1CSL B1CSL B1CSH MAMR1 MSAR1 B2CSL		Address 0150H 1H 2H 3H 4H 5H 6H 7H 8H	Name		Address 0160H 1H 2H 3H 4H 5H 6H 7H 8H	Name PMEMCR MEMCR0		[4] MMU Address 01D0H 1H 2H 3H 4H 5H 6H 7H 8H	Name LOCALPX LOCALPY LOCALPZ LOCALLX LOCALLY LOCALLZ LOCALLZ
[3] MEM Address 0140H 1H 2H 3H 4H 5H 6H 7H 8H 9H	C Name B0CSL B0CSH MAMR0 MSAR0 B1CSL B1CSL B1CSH MAMR1 MSAR1 B2CSL B2CSL B2CSH		Address 0150H 1H 2H 3H 4H 5H 6H 7H 8H 9H	Name BEXCSL BEXCSH		Address 0160H 1H 2H 3H 4H 5H 6H 7H 8H 9H	Name PMEMCR MEMCR0		[4] MMU Address 01D0H 1H 2H 3H 4H 5H 6H 7H 8H 9H	Name LOCALPX LOCALPY LOCALPZ LOCALLX LOCALLY LOCALLZ LOCALRX LOCALRY
[3] MEM Address 0140H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH	IC Name BOCSL BOCSH MAMR0 MSAR0 B1CSL B1CSH MAMR1 MSAR1 B2CSL B2CSH MAMR2		Address 0150H 1H 2H 3H 4H 5H 6H 7H 8H 8H 4H	Name BEXCSL BEXCSH		Address 0160H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH	Name PMEMCR MEMCR0		[4] MMU Address 01D0H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH	Name LOCALPX LOCALPY LOCALPZ LOCALLX LOCALLY LOCALLZ LOCALLZ LOCALRX LOCALRY
[3] MEM Address 0140H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH	C Name BOCSL BOCSH MAMR0 MSAR0 B1CSL B1CSL B1CSH MAMR1 MSAR1 B2CSL B2CSL B2CSH MAMR2 MSAR2		Address 0150H 1H 2H 3H 4H 5H 6H 7H 8H BH	Name BEXCSL BEXCSH		Address 0160H 1H 2H 3H 4H 5H 6H 7H 8H 9H 8H	Name PMEMCR MEMCR0		[4] MMU Address 01D0H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH	Name LOCALPX LOCALPY LOCALPZ LOCALLX LOCALLX LOCALLZ LOCALRX LOCALRY
[3] MEM Address 0140H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH CH	Name BOCSL BOCSH MAMR0 MSAR0 B1CSL B1CSH MAMR1 MSAR1 B2CSL B2CSL B2CSH MAMR2 MSAR2 B3CSL		Address 0150H 1H 2H 3H 4H 5H 7H 8H 6H H CH	Name BEXCSL BEXCSH		Address 0160H 1H 2H 3 4H 5 6 7 8 8 6 7 8 8 6 8 6 8 6 8 8 6 8 6 8 6	Name PMEMCR MEMCR0		[4] MMU Address 01D0H 1H 2H 3H 4H 5H 6H 7H 8H 9H 8H 8H CH	Name LOCALPX LOCALPY LOCALPZ LOCALLX LOCALLY LOCALLZ LOCALRX LOCALRY LOCALRZ LOCALRZ
[3] MEM Address 0140H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH CH DH	Name BOCSL BOCSH MAMR0 MSAR0 B1CSL B1CSH MAMR1 MSAR1 B2CSL B2CSL B2CSH MAMR2 MSAR2 B3CSL B3CSL B3CSL		Address 0150H 1H 2H 3H 4H 5H 7H 8H 8H CH DH	Name BEXCSL BEXCSH		Address 0160H 1H 2H 3H 4H 5H 6H 7H 8H 9H 8H 6H CH DH	Name PMEMCR MEMCR0		[4] MMU Address 01D0H 1H 2H 3H 4H 5H 6H 7H 8H 9H АH ВH СH DH	Name LOCALPX LOCALPY LOCALPZ LOCALLX LOCALLX LOCALLZ LOCALRX LOCALRY LOCALRZ LOCALRZ LOCALWX LOCALWY
[3] MEM Address 0140H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH CH DH EH	Name BOCSL BOCSH MAMR0 MSAR0 B1CSL B1CSH MAMR1 MSAR1 B2CSL B2CSL B2CSH MAMR2 MSAR2 B3CSL B3CSL B3CSL B3CSH MAMR3		Address 0150H 1H 2H 3H 4H 5H 7H 8H 7H 8H CH DH EH	Name BEXCSL BEXCSH		Address 0160H 1H 2H 3H 4H 5H 7H 8H 9H 8H 7H 8H 7H 8H 7H 8H 7H 8H 7H 8H 7H 8H 7H 8H 7H 8H 7H 8H 7H 8H 7H 8H 7H 8H 8H 8H 8H 8H 8H 8H 8H 8H 8H 8H 8H 8H	Name PMEMCR MEMCR0		[4] MMU Address 01D0H 1H 2H 3H 4H 5H 6H 7H 8H 9H АH ВH CH DH EH	Name LOCALPX LOCALPY LOCALPZ LOCALLX LOCALLX LOCALLZ LOCALRX LOCALRY LOCALRZ LOCALWX LOCALWX

Note: Do not access un-named addresses.

U

[5] CGEAR, PLL

Address	Name
10E0H	SYSCR0
1H	SYSCR1
2H	SYSCR2
3H	EMCCR0
4H	EMCCR1
5H	EMCCR2
6H	Reserved
7H	
8H	PLLCR0
9H	PLLCR1
AH	
BH	
СН	
DH	
EH	
FH	

[6] LCDC

Address	Name		Address	Name	
0840H	LCDMODE0		0850H	LSARAL	\square
1H	LCDFFP		1H	LSARAM	
2H	LCDDVM		2H	LSARAH	7
3H	LCDSIZE		ЗH	CMINAL	
4H	LCDCTL0		4H	CMNAH	
5H			5H		
6H	LCDSCC		6H	LSARBL	
7H			(भूम	LSARBM	
8H			8H	LSARBH	~
9H			(/ / 9Ĥ	CMNBL	4
AH			(AH	CMNBH	77
BH		2	BH	$\sim (0$	// ·
CH		_	— СН	LSARCL))
DH			DH	LSARCM	
EH			> EH	LSARCH	7
FH	\bigtriangledown		FH		

>

[/] 151		[8] SDR.	AMC	[9] 8-bit	timer	[10] 16-bit timer		
Address	Name	Address	Name	Address	Name	Address	Name	
01F0H	TSICR0	0250H	SDACR1	1100H	TA01RUN	1180H	TBORUN	
1H	TSICR1	1H	SDACR2	1H		1H		
2H		2H	SDRCR	2H	TA0REG	2H	TB0MOD	
3H		3H	SDCMM	3H	TA1REG	ЗН	TB0FFCR	
4H		4H		4H	TA01MOD	4H		
5H		5H		5H	TA01FFCR	5H		
6H		6H		6H	6	6H		
7H		7H		7H		7H	TRADON	
8H		8H		8H	TAZ3RUN	8H	TBORGOL	
9H		9H		9H	TAODEC	9H	TBORGOH	
					TA2REG			
СН		СН		СН	TASKEG	СН	TBOCPOL	
DH		DH		DH	TASEFCR		TBOCPOH	
EH		EH		EH		EH	TB0CP1L	
FH		FH		ਿੱਸ	\wedge	FH	TB0CP1H	
[11] SIO	Nama	[12] SBI	Nama		(C	\mathcal{D}		
Address		Address			$\overline{\Omega}$			
1200H 1H	SCOCR	1240H 1H	SBIODBR		\sim VO)		
2H	SCOMOD0	2H	I2COAR	\rightarrow $(/ / / / / / / / / / / / / / / / / / $	\sim			
 3H	BROCR	3H	CRIOCD2/CDIOC					
4H			3DIUCKZ/3DIU3	R				
	BR0ADD	4H	SBIOBRO	ir				
5H	BR0ADD SC0MOD1	4H 5H	SBIOBRO SBIOBR1	R				
5H 6H	BR0ADD SC0MOD1	4H 5H 6H	SBIOBRO SBIOBR1	iR				
5H 6H 7H	BR0ADD SC0MOD1	4H 5H 6H 7H	SBIOBRO SBIOBR1	R				
5H 6H 7H 8H	BR0ADD SC0MOD1	4H 5H 6H 7H 8H	SBIORRO SBIOBR1	SR				
5H 6H 7H 8H 9H	BR0ADD SC0MOD1	4H 5H 6H 7H 8 9H	SBIORRO SBIOBRO SBIOBR1	SR				
5H 6H 7H 8H 9H AH	BR0ADD SC0MOD1	4H 55 EF 85 EF 85 EF 85 EF	SBIOBRO SBIOBR1	ir and the second se				
5H 6H 7H 8H 9H AH BH	BR0ADD SC0MOD1	4H 5H 7H 7H 7H 7H 7H 7H 7H 7H 7H 7H 7H 7H 7H	SBIOBRO SBIOBR1	ir A				
5Н 6Н 7Н 8Н 9Н ВН СН СН	BR0ADD SC0MOD1	4H 5H 7H 7H 7H 7H 7H 7H 7H 7H 7H 7H 7H 7H 7H	SBIORO SBIOBRO SBIOBR1	ir A				
5H 6H 7H 8H 9H CH DH EH	BR0ADD SC0MOD1	4H 55 77 85 77 85 77 85 77 85 77 85 77 85 77 85 77 85 77 85 77 85 77 85 77 85 77 85 77 85 77 85 76 85 76 85 77 85 76 85 76 85 76 85 76 85 76 85 76 85 76 85 76 85 76 85 76 76 76 76 76 76 76 76 76 76 76 76 76	SBIORRO SBIOBRO	SR AND				
5H 6H 7H 8H 9H 8H 0H EH FH	BR0ADD SC0MOD1	4H 5H H 6H H 8H H 8H H 8H H 8H H 8H H 8H H 8	SBIOBRO SBIOBR1	SR				
5H 6H 7H 8H 9H 6H CH 6H FH	BR0ADD SC0MOD1	4H 55 EF 75 BF 75	SBIOCR2/SBIOS SBIOBRO SBIOBR1	SR				

Address	Name		Address	Name			
0820H	SPIMD		0830H	SPITD			
1H	SPIMD		1H	SPITD			
2H	SPICT		2H	SPIRD			
3H	SPICT		ЗH	SPIRD			
4H	SPIST		4H	SPITS			
5H	SPIST		5H	SPITS			
6H	SPICR		6H	SPIRS			
7H	SPICR		7H	SPIRS			
8H	SPIIS		8H				
9H	SPIIS		9H				
AH	SPIWE		AH				
BH	SPIWE		BH				
СН	SPIIE		СН				
DH	SPIIE		DH				
EH	SPIIR		EH				
FH	SPIIR		FH				

[13] SPI controller

[14] 10 - b	oit ADC				[15] WD	Т	
Address	Name	Address	Name		Address	Name	
12A0H	ADREG0L	12B0H			1300H	WDMOD	
1H	ADREG0H	1H			1H	WDCR	
2H	ADREG1L	2H			2H	~	
3H	ADREG1H	ЗН			3H	<	
4H	ADREG2L	4H			4H		$\langle \rangle$
5H	ADREG2H	5H			5H		$\langle () \rangle$
6H	ADREG3L	6H			6H		
7H	ADREG3H	7H			7H	\sim (7)	$\langle \wedge \rangle$
8H	Reserved	8H	ADMOD0		8H		\mathcal{D}
9H	Reserved	9H	ADMOD1		9H		
AH	Reserved	AH	ADMOD2		AH	(())	
BH	Reserved	BH	Reserved		BH		
СН	Reserved	СН			CH		
DH	Reserved	DH			DH	$\langle \ \lor$.21
EH	Reserved	EH			EH		\mathcal{A}
FH	Reserved	FH			((ғн		(\bigcirc)
[16] RTC) Norma	[17] MI	D Nama		\searrow	(C	$\overline{\mathcal{O}}$
Address	Name	Address	Name		\supset		\bigcirc
1320H	SECR	1330H	ALM		>	$(\vee/)$)
1H	MINR	1H	MELALMC	>	6		1
2H	HOURR	2H	MELFL	Y			
3H		3H	MELFH				
4H		41	ALMINI				
Hc		HC			\wedge	\sim	
이 7니			$\langle \rangle$				
/11 8H	RESTR	84	\cup		$\langle \geq \rangle$	<u>_</u>	
он	NEO IN				\neg / \neg	r	
АН					$\langle \rangle$		
BH		ВН	\sim ((7/	$\langle \uparrow \rangle$		
СН		СН		\leq	ノノ		
DH		DH			/		
EH		ЕН	$\langle - \rangle$	\geq			
FH	$\frown \frown$	FH					
	ZX N						
		. (7				

[18] NAND flash controller

$[19] I^2S$

Address	Name
0800H	I2SBUFR
1H	
2H	
3H	
4H	
5H	
6H	
7H	
8H	I2SBUFL
9H	
AH	
BH	
СН	
DH	
EH	I2SCTL0
FH	I2SCTL0

(1) I/O ports (1/7)

P1 Port 1 0004H P17 P16 P13 P13 P12 P11 P10 P6 Port 6 0018H Data from external port (Output latch register is cleared to "0") P67 P66 P65 P64 P63 P62 P61 P60 P7 Port 6 0018H Data from external port (Output latch register is cleared to "0") P74 P73 P	Symbol	Name	Address	7	6	5	4	3	2	1	0		
P1 Port 1 0004H RW P6 Port 6 0018H P67 P66 P65 P64 P83 P62 P61 P60 P7 Port 6 0018H P76 P76 P74 P73 P72 P71 P70 P7 Port 7 001CH Data from external port [Output latch register is cleared to "0") P87 P74 P73 P72 P71 P70 P7 Port 7 001CH Data from external port[Data from external port] p87 P86 P85 P84 P83 P82 P81 P80 P8 Port 8 0020H 1				P17	P16	P15	P14	P13	P12	P11	P10		
P6 Port 6 Ot18H P67 P66 P64 P63 P62 P61 P60 P63 P64 P63 P62 P61 P60 P63 P64 P63 P62 P61 P60 P63 P64 P63 P62 P61 P60 P61	P1	Port 1	0004H				R	/W					
P6 Port 6 0018H P66 P68 P64 P63 P63 P64 P66 P60 P7 Port 6 0018H Data from external port (Output latch register is cleared to '0') P74 P73 P72 P71 P70 P7 Port 7 001CH Data from external port[Output latch register is cleared to '0') R/W P75 P74 P73 P72 P71 P70 P8 Port 8 0020H 1				D = -	Data fr	om external	port (Outpu	t latch regis	ter is cleare	ed to "0")	5.0.0		
P6 P016 0018H Data from external port (Output latch register is Cleared to "0") P7 Port 7 001CH Data from external port(Output latch register is Cleared to "0") P72 P71 P70 P7 Port 7 001CH Data from external portData from external portData from external portData from external portData from external port (Output latch register is Cleared to "0") 1	DC	Dart	004.011	P67	P66	P65	P64	P63	P62	P61	P60		
P7 Port 7 O01CH P76 P73 P73 P73 P74 P73 P74 P73 P74	PO	POILO			R/W								
P70 P70 P73 P74 P73 P73 P74 P73 P73 P74 P73 P73 P74 P73 P74 P73 P74 P73 P74 P73 P74 <thp73< th=""> <thp73< th=""> <thp74< th=""></thp74<></thp73<></thp73<>				<hr/>	Data II						D70		
P7 Port 7 001CH Data from external portData from external port (Uutput latch register is eard or 17) Data from external portData from external port (Uutput latch register is eard or 17) 1 P8 Port 8 0020H P87 P86 P85 P84 P83 P82 P81 P80 P9 Port 8 0020H 1					F70	F73	F/4	R/M			F7U		
Number Number Output latch register is bet 0*17 Output latch register is pleared to 70 Output latch register is pleared to 70 International latch (big to 11) 1 P8 Port 8 0020H P8 P85 P84 P82 P81 P80 P9 Port 8 0020H 1 </td <td>P7</td> <td>Port 7</td> <td>001CH</td> <td>$\overline{}$</td> <td>Data from e</td> <td>external port</td> <td>Data from e</td> <td>external port</td> <td>Data from e</td> <td>external port</td> <td></td>	P7	Port 7	001CH	$\overline{}$	Data from e	external port	Data from e	external port	Data from e	external port			
set to "1") cleared to "0", (set to "1") (set to "1"					(Output late	h register is	(Output latc	h register is	Output late	ch register is	1		
P8 Port 8 0020H P87 P86 P85 P84 P83 P82 P81 P80 P9 Port 9 0024H 1					set to "1")	-	cleared to "	0") ((set to "1")	in regiotor io	-		
P8 Port 8 0020H RW RW 1 1 1 1 1 0 1 1 P9 Port 9 0024H R R R RW P92 P91 P92 P91 P92 P91 P90 P91 P92 P91 P90 P91 P92 P91 P92 P91 P90 P91 P92 P91 P90 P91 P92 P91 P90 P91 P91 P92 P91 P90 P3 P92 P31 P31 <td></td> <td></td> <td></td> <td>P87</td> <td>P86</td> <td>P85</td> <td>P84</td> <td>P83</td> <td>P82</td> <td>P81</td> <td>P80</td>				P87	P86	P85	P84	P83	P82	P81	P80		
P9 Port 9 0024H 1 <th< td=""><td>P8</td><td>Port 8</td><td>0020H</td><td></td><td>•</td><td></td><td>R</td><td>/W</td><td></td><td>•</td><td></td></th<>	P8	Port 8	0020H		•		R	/W		•			
P9 Port 9 P97 P96 P95 P94 P93 P92 P91 P90 P4 R R R RWV				1	1	1	1		N O	1	1		
P9 Port 9 0024H R RW Data from external port 0 Data from external port (Output latch register is set to "1") PA Port A 0028H PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0 PA Port A 0028H PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0 PC Port A 0028H PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0 PC Port C 0030H PC7 PC6 PC3 PC2 PC1 PC0 PF Port F 003CH PF7 PF6 PF5 PF4 PF3 PF2 PF1 PF0 PF Port G 0040H PA7 PA3 PA2 PA1 PA0 RW PJ Port G 0040H PF7 PF6 PF3 PF2 PF1 PF0 PJ Port G 0040H PA7 P				P97	P96	P95	P94	P93	P92	P91	P90		
Data from external port 0 Data from external port 0 Data from external port (Output latch register is set to "1") PA Port A 0028H PA7 PA6 PA6 PA4 PA3 PA2 PA1 PA0 PC Port A 0030H PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0 PF Port C 0030H PF7 PF6 PF5 PF4 PF3 PF2 PF1 PF0 PF Port F 003CH PF7 PF6 PF5 PF4 PF3 PF2 PF1 PF0 PG Port G 0040H PG3 PG3 PG3 PG3 PG3 PG3 PG4 PG4 PG4	P9	Port 9	0024H	F	२			\frown	F	λ/ Μ			
PA Port A 0028H PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0 PC Port A 0028H			Data	from	0	Data from	external no	rt (Output la	tch register i	s set to "1")			
PA Pat PA6 PA6 PA6 PA2 PA1 PA0 PA Port A 0028H				extern	al port	°	Data Itolik						
PA Port A Ouzah PC7 PC6 PC3 PC2 PC1 PC0 PC Port C 0030H PC7 PC6 PC3 PC2 PC1 PC0 PC Port C 0030H PC7 PC6 PC3 PC2 PC1 PC0 PF Port C 0030H PF7 PF6 PF3 PF2 PF1 PF0 PG Port F 003CH PF7 PF6 PF3 PF2 PF1 PF0 PG Port G 0040H PG3 PG2 PG1 PG0 PG Port J 004CH PJ3 PJ2 PJ1 PJ0 PJ7 PJ6 PJ5 PJ4 PJ3 PJ2 PJ1 PJ0 PK Port J 004CH 1 1 1 1 1 1 1 PK Port K 0050H Data from external port (Output latch register is cleared to "0") 0 0 0 0		Dort A	002011	PA7	PA6	PA5		PA3	PA2	PA1	PA0		
PC Port C 0030H PC7 PC6 PC5 PC4 PC1 PC0 PF Port C 0030H	PA	POILA	0028H	Data from external port									
PC Port C 0030H TCV RW PF Port C 003CH PF7 PF6 PF5 PF4 PF3 PF2 PF1 PF0 PG Port F 003CH 1 Data from external port (Output latch register is set to "1") PG3 PG2 PG1 PG0 PG Port G 0040H PJ7 PJ6 PJ3 PJ2 PJ1 PJ0 PJ Port J 004CH Data from external port (Output latch register is set to "1") PK PK7 PK6 PK4 PK3 PK2 PK1 PK0 PK Port K 0050H PK7 PK6 PK4 PK3 PK2 PK1 PK0 PL7 PL6 PL5 PL4 PL3 PL2 PL1 PL0 <td< td=""><td></td><td></td><td></td><td>PC7</td><td>PC6</td><td>PC5</td><td></td><td></td><td>L PC2</td><td>PC1</td><td>PC0</td></td<>				PC7	PC6	PC5			L PC2	PC1	PC0		
PF Port F 003CH PF7 PF6 PF5 PF4 PF3 PF2 PF1 PF0 PG Port G 0040H 1 Data from external port (Output latch register is set to "1") PG3 PG2 PG1 PG0 PJ Port G 0040H PJ7 PJ6 PJ5 PJ4 PJ3 PJ2 PJ1 PG0 PJ Port J 004CH PJ7 PJ6 PJ5 PJ4 PJ3 PJ2 PJ1 PJ0 PJ Port J 004CH 1 004CH PK5 PK4 PK3 PK2 PK1 PK0 PK Port K 0050H Data from external port (Uutput latch register is cleared to "0") 0	PC Port C	0030H	107	100	1051		 /W			100			
PF Port F 003CH PF7 PF6 PF5 PF4 PF3 PF2 PF1 PF0 PG Port G 0040H 1 Data from external port (Quiput latch register is set to "1") PG3 PG2 PG1 PG0 PG Port G 0040H PJ7 PJ6 PJ5 PJ4 PJ3 PJ2 PJ1 PJ0 PJ Port J 004CH Data from external port (Output latch register is set to "1") R/W R/W R/W R/W PJ Port J 004CH Data from external port (Output latch register is set to "1") 1 <			Data from external port (Output latch register is set to "1")										
PF Port F 003CH R/W PG Port G 0040H 1 Data from external port (Output latch register is set to "1") PG Port G 0040H PG3 PG2 PG1 PG0 PJ Port J 0040H PJ7 PJ6 PJ5 PJ4 PJ3 PJ2 PJ1 PJ0 PJ Port J 004CH Data from external port external port 1	PF Port F 0		PF7	PF6	RF5	PF4	PF3	PF2	PF1	PF0			
I Data from external port (Output latch register is set to "1") PG Port G 0040H R PJ Port J 0040H PJ7 PJ6 PJ3 PJ2 PJ1 PJ0 PJ Port J 004CH PJ7 RJ6 PJ5 PJ4 PJ3 PJ2 PJ1 PJ0 PJ Port J 004CH Data from external port (Output latch register is set to "1") 1		003CH			(\land)	R/	w (7)	$\langle \wedge \rangle$					
PG Port G 0040H PG3 PG2 PG1 PG0 PJ Port G 0040H PJ7 PJ6 PJ5 PJ4 PJ3 PJ2 PJ1 PJ0 PJ Port J 004CH Data from external port 1 1				1	1 Data from external port (Output latch register is set to "1")								
PG Port G 0040H R PJ Port J 004CH PJ7 PJ6 PJ5 PJ4 PJ3 PJ2 PJ1 PJ0 PJ Port J 004CH PJ7 PJ6 PJ5 PJ4 PJ3 PJ2 PJ1 PJ0 PK Port J 004CH Data from external port is set to "1") 1				\sim	- 4	\rightarrow		PG3	PG2	PG1	PG0		
PJ Port J 004CH PJ7 PJ6 PJ5 PJ4 PJ3 PJ2 PJ1 PJ0 RW	PG	Port G	0040H				L/			R			
PJ Port J 004CH PJ7 PJ6 PJ5 PJ4 PJ3 PJ2 PJ1 PJ0 R/W R/W </td <td></td> <td></td> <td></td> <td></td> <td>\mathcal{A}</td> <td></td> <td>1</td> <td></td> <td>Data from</td> <td>external port</td> <td></td>					\mathcal{A}		1		Data from	external port			
PJ Port J 004CH Data from external port (output latch register is set to "1") R/W PK Port K 0050H PK7 PK6 PK5 PK4 PK3 PK2 PK1 PK0 PK Port K 0050H PK7 PK6 PK5 PK4 PK3 PK2 PK1 PK0 PK Port K 0050H PL7 PL6 PL5 PL4 PL3 PL2 PL1 PL0 PL Port L 0054H O054H PL7 PL6 PL5 PL4 PL3 PL2 PL1 PL0 PL Port L 0054H O054H PL7 PL6 PL5 PL4 PL3 PL2 PL1 PL0 PM Port L 0058H PL7 PL6 PL5 PL4 PL3 PL2 PM1 PM1 PM2 PM1				PJ7	RJ6	PJ5	PJ4	PJ3	PJ2	PJ1	PJ0		
PJ Port J 004CH Data from external port (0utput latch register is set to "1") 1 <th1< th=""> <th1< th=""> 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>/</td><td>R</td><td>/w~</td><td>i</td><td>ii</td><td></td></t<></th1<></th1<>						/	R	/w~	i	ii			
PK Port K 0050H PK7 PK6 PK5 PK4 PK3 PK2 PK1 PK0 PK Port K 0050H PK7 PK6 PK5 PK4 PK3 PK2 PK1 PK0 PK Port K 0050H PK7 PK6 PK5 PK4 PK3 PK2 PK1 PK0 PL Port K 0050H Data from external port (Output latch register is cleared to "0") 0	PJ	Port J	004CH	((Data	from							
PK Port K 0050H PK7 PK6 PK5 PK4 PK3 PK2 PK1 PK0 PK Port K 0050H PK7 PK6 PK5 PK4 PK3 PK2 PK1 PK0 PK Port K 0050H Data from external port (Output latch register is cleared to "0") 0 <				1	extern	al port		1	1	1	1		
PK Port K 0050H PK7 PK6 PK5 PK4 PK3 PK2 PK1 PK0 R/W Data from external port (Output latch register is cleared to "0") 0				$(\overline{\alpha})$	is set	to "1")	\square						
PK Port K 0050H R/W PL PL7 Data from external port (Output latch register is cleared to "0") 0 0 0 0 PL Port L 0054H PL7 PL6 PL5 PL4 PL3 PL2 PL1 PL0 PL Port L 0054H Data from external port (Output latch register is cleared to "0") 0 0 0 0 0 PM Port M 0058H PN7 PN6 PN5 PN4 PN3 PN2 PN1 PN0 PN Port N 005CH PN5 PN4 PN3 PN2 PN1 PN0 Data from external port (Output latch register is set to "1") Data from external port (Output latch register is set to "1") Data from external port (Output latch register is set to "1")			\frown	PK7	PK6	PK5	PK4	PK3	PK2	PK1	PK0		
Number Data from external port (Output latch register is cleared to "0") 0 0 0 0 PL Port L 0054H PL7 PL6 PL5 PL4 PL3 PL2 PL1 PL0 PL Port L 0054H Data from external port (Output latch register is cleared to "0") 0 0 0 0 PM Port M 0058H PN7 PN6 PN5 PN4 PN3 PN2 PN1 PN Port N 005CH PN7 PN6 PN5 PN4 PN3 PN2 PN1 PN0	PK	Port K	0050H		/	(α)	R	/W					
PL Port L O054H PL7 PL6 PL5 PL4 PL3 PL2 PL1 PL0 PL 0054H Data from external port (Output latch register is cleared to "0") 0 0 0 0 PM Port M 0058H PN7 PN6 PN5 PN4 PN3 PN2 PN1 PN Port N 005CH PN7 PN6 PN5 PN4 PN3 PN2 PN1 PN0 Data from external port (Output latch register is set to "1") Data from external port (Output latch register is set to "1") PN0		i on n			Data from e	xternal port))	0	0	0	0		
PL PL7 PL6 PL5 PL4 PL3 PL2 PL1 PL0 PL 0054H Data from external port (Output latch register is cleared to "0") 0 <td< td=""><td></td><td></td><td></td><td>(Output</td><td>t latch regist</td><td>er is cleared</td><td>1∕to "0")</td><td>51.0</td><td></td><td>Б. (</td><td>51.0</td></td<>				(Output	t latch regist	er is cleared	1∕to "0")	51.0		Б. (51.0		
PL Port L 0054H Data from external port (Output latch register is cleared to "0") 0 0 0 0 PM Port M 0058H PM2 PM1 PN Port N 005CH R/W PN Port N 005CH R/W Data from external port (Output latch register is set to "1") PN1				PL7	PL6	PL5	PL4	PL3	PL2	PL1	PL0		
PM Port M 0058H PN7 PN6 PN5 PN4 PN3 PN2 PN1 PN Port N 005CH 005CH <td< td=""><td>PL</td><td>Port L</td><td>0054H</td><td>\checkmark —</td><td>Data from o</td><td>vternal port</td><td>R</td><td>/ V V</td><td></td><td></td><td></td></td<>	PL	Port L	0054H	\checkmark —	Data from o	vternal port	R	/ V V					
PM Port M 0058H PM2 PM1 PN Port N 005CH R/W 1 1 PN Port N 005CH R/W PN3 PN2 PN1 PN Port N 005CH R/W 005CH <		\sim	\rangle	(Output	latch regist	er is cleared	d to "0")	0	0	0	0		
PM Port M 0058H R/W PN PNT PN7 PN6 PN5 PN4 PN3 PN2 PN1 PN0 PN Port N 005CH Extra constraints R/W Extra constraints Data from external port (Output latch register is set to "1") Extra constraints			$\nabla \nabla$	(11) p di				/	PM2	PM1			
PN Port N 005CH PN7 PN6 PN5 PN4 PN3 PN2 PN1 PN0 R/W Data from external port (Output latch register is set to "1")	PM	Port M	0058H			/		/	R	/W	/		
PN Port N 005CH PN7 PN6 PN5 PN4 PN3 PN2 PN1 PN0 R/W Data from external port (Output latch register is set to "1")	A.	$(\bigcirc$	\wedge	\sim	\mathcal{T}		\sim	$\langle \rangle$	1	1			
PN Port N 005CH Data from external port (Output latch register is set to "1")	\langle	ji	\mathcal{I}	PN7	RN6	PN5	PN4	PN3	PN2	PN1	PN0		
Data from external port (Output latch register is set to "1")	PN	Port N	005CH				R	/W					
		\rightarrow) Data	from extern	nal port (Out	put latch reo	gister is set	to "1")			

(1) I/O ports (2/7)

Symbol	Name	Address	7	6	5	4	3	2	1	0			
	_	0006H	P17C	P16C	P15C	P14C	P13C	P12C	P11C	P10C			
DICD	Port 1						V						
FICK	control	(Pronibit RMW)	0	0	0	0	0	0	0	0			
	register					0: Input	1: Output	\sim					
								Į		P1F			
	Dort 1	00074						$\overline{\gamma}$		W			
P1FC	function	(Prohibit						\mathcal{A}	\mathcal{T}	0/1			
1 11 0	register	RMW)					/		/	0:Port			
	0	,					$ \land ($	(// s)		1:Data bus			
										(D8 to D15)			
	Port 6	001AH	P67C	P66C	P65C	P64C	P63C	P62C	P61C	P60C			
P6CR	control	(Prohibit		i _	i	<u>۱</u>	N (1 _	-			
	register	RMW)	0	0	0	0	0	0	0	0			
			D075	Deer	DOFE	0: Input	1: Output	Deer		Daar			
	Port 6	001BH	P67F	P66F	P65F	P64F	P63F	P62F	P61F	P60F			
P6FC	function	(Prohibit RMW)											
	register		1	1	1	1	5) 1	_ 1 (())1	1			
			-	0: Port 1: Address bus (A16 to A23)									
	Port 7 control register	001EH (Prohibit RMW)		P76C	P75C	P75C	P74C	P72C	P710				
P7CR						\sim	V	(\mathcal{C})	\checkmark				
				0	000	0	0	(\bigcirc)	0				
						0: Input	1: Output						
			$ \rightarrow$	P76F	P75F	P74F	P73F	R72F	P71F	P70F			
			\sim										
	Port 7	001FH		0 <		0	0	0	0	1			
P7FC	function register	(Prohibit			0: Port	0: Port	0: Port	0: Port	0: Port	0: Port			
		RMW)		1. VVAI	at	1. EA25	1. EA24	at <p72>=0</p72>	at <p71>=0</p71>	1. KD			
					<p75>=1,</p75>		\sim	WRLU	WRLL				
				$\overline{\mathcal{C}}$	R/W	\frown		at <p72>=1</p72>	at <p71>=1</p71>				
			P87F	P86F	P85F	P84F	P83F	P82F	P81F	P80F			
	Port 8	0023H				1631	V						
P8FC	function	(Prohibit	00	∧ 0	0 <	0	0	0	0	0			
	register	RMW)	0: Port	0: Port	0: Port	0: Port	0: Port	0: <u>Port,</u>	0: Port	0: Port			
			1: CSZE	1: CSZD	1: CSZC ,	1: CSZB ,	1: CS3		1: CS1	1: CS0			
			D8752	DRED				D82E2	D81E2				
			FOITZ	FOULT	10312	F 04FZ	 //	FOZEZ	FOILT				
Deres	Port 8	0021H	$\overline{}$	0		0	0	0	0	0			
P8FC2	function	(Prohibit	0. <p87f></p87f>	0. < P86E>	0. Port	0. Port	Always write	0. Port	0. < P81E>	Always write			
	register2	2 RMW)	1:Reserved	1: Reserved	CSZC	CSZB	"0"	$\overline{CS2}$	1: SDCS	"0"			
	<	(\searrow)		$\left(\right)$	1: ND1CE	1: ND0CE		1: CSZA					

(1) I/O ports (3/7)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			/		P95C	P94C	P93C	P92C	P91C	P90C
								W		
			/		0	0	0	0	0	0
	Port 9	0026H			0: Port	0: Port	0:Port	0:Port,	0: Port,	0:Port,
P9CR	control				1:	1: Port,	1: Port,	SCLK0,	RXD0	I2SCKO
	register	RIVIVV)			CLK32KO	SCL	SDA	CTS0	I2SDO	1: Port,
								12SWS	1: Port	TXD0
								SCLK0		
			P97F	P96F	P95F	P94F	P93F	P92F	P91F	P90F
			10/1	1.001	1 001	1041	W		1011	1 001
		000711	0	0	0	0		0	0	0
DOEC	Port 9	0027H (Drohihit	0 [.] Port	0 [.] Port	0.Port	0 [.] Port	0. Port	0 [.] Port	0 [.] Port	0 [.] Port
P9FC	register		1: INT5	1: INT4	CLK32KO	1: SCL	1: SDA	SCLK0.	RXD0	1: I2SCKO.
	register	RIVIVV)	-		1: Reserved			CTSO	1: 12SDO	TXD0
						$\leq \langle \rangle$		1: I2SWS,	$\langle \rangle \rangle$	
			~	-	~			SCLK0		
		0025H (Prohibit RMW)				P94F2	P93F2			P90FC2
	Port 9 function register2					X	<u>v</u> <			W
P9FC2						0	0	1	10/-	0
					20	0: CMOS	0: CMOS	>		0: CMOS
						1: Open	1: Open	\bigcirc		1: Open
				DAGE	-DACD	drain	drain	- Finet		drain
	Port A	002BH	PA/F	PA6F	PASE	PA4F	PAJE	AZF	PATE	PAUF
PAFC	function	(Prohibit	0	0		0		$))_{0}$	0	0
	register	RMW)	0							
			PC7C	PC6C	PC5C	PC4C	PC3C	PC2C	PC1C	PCOC
	Port C	0032H	1010		1000		w	1 020	1010	1 000
PCCR	control	(Prohibit	0	$\left(\begin{array}{c} 0 \end{array} \right)$	0	0	Ø	0	0	0
	register	RIVIVV)			/	0: Input	1: Output			
			PC7F	PC6F	PC5F	PC4F	PC3F	PC2F	PC1F	PC0F
PCFC				\bigcirc		\mathcal{A}	W		•	
			(07)	0	0	0	0	0	0	0
	Port C	0033H	0: Port	0: Port	0: Port	0: Port	0: Port	0: Port	0: Port	0: Port
	function	(Prohibit	1: CSZF,	1:KO8	1:Reserved	1:Reserved	1: INT3	1: INT2,	1: INT1,	1: INT0,
	register		EA25 at	(Open				TB0OUT0	TA3OUT	TA1OUT
			<pc7> = 0</pc7>	-Drain)		/				
				EA24 at						
			\sim	<pc6> = 0</pc6>						

(1) I/O ports (4/7)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			/	PF6C	PF5C	PF4C	PF3C	PF2C	PF1C	PF0C
					•		W	•	•	
				0	0	0	0	0	0	0
				0: Port	0: Port	0: Port	0: Port	0: Port,	0: Port,	0: Port
	Port F	003EH		1: Port	1: Port	1: Port	1: Port	SCLK0,	RXD0	1: Port,
PFCR	control	(Prohibit						CTS0 ,	1: Port	TXD0
	register	$(\nabla W W V)$						(From PF2 at)		
							~ (C	(from P92 at		
						4	$\sim \lor$	<pf2> = 1)</pf2>		
								1: Port,		
			PF7F	PF6F	PE5E	PF4F	PESE	PF2F	PF1F	PEOE
				1101	1101	X	V	1121	\frown	1101
			0	0	0	0		0		0
	Dort E	003EH	0: Port	0: Port	0: Port	0: Port	0: Port	0: Port.	0: Port	0: Port
PFFC	function	(Prohibit	1: SDCLK	1: Reserved	1:Reserved	1:Reserved	1:Reserved	SCLK0, CTSO	RXD0	1: TXD0
	register	RMW)					<	(from PF2 at	(from PF1	
					G			<pf2>=0)</pf2>	pin)	
							/	<pf2> =1)</pf2>	(from P91	
							((1:SCLK0	pin)	
			_		\gg	\sim	\searrow	$\overline{\mathcal{A}}$		PF0F2
	Port F function		W				$\neg Q$	w	\sim	W
		003DH	0			\sim	\prec	0	\sim	0
PFFC2		(Prohibit	Always	T S			$\langle \rangle$	Always		Output buffer
	registerz	RIVIVV)	write "0"		$\langle \rangle$			write "0"		0: CMOS
				(())						1: Onon drain
				PIGC	P 15C		$\overline{\mathbf{V}}$			Open-urain
	Port J	004EH	$\sim (c$	V 1300	V 1 000	$\overline{\mathbb{A}}$				
PJCR	control	(Prohibit	\uparrow	$ \rightarrow $			\sim			
	register	RMW)	01	0·Input 1	· Output					
			PITE	PIEF	PISE	PIAF	P I3F	P I2F	P I1F	P IOF
				1.001		1 J H	v	1 021	1011	1 001
	Port I	004FH		0		0	0	0	0	0
PJFC	function	(Prohibit	0: Port	0. Port	0. Port	0: Port	0: Port	0: Port	0: Port	0: Port
	register	RMW)	1: SDCKE	1: NDCLE at	1: NDALE at	1:	1:	1: SDWE ,	1: SDCAS ,	1: SDRAS
	\sim		at <pj7>=1</pj7>	<pj6>=0</pj6>	<pj5>=0</pj5>	SDLUDQM	SDLLDQM	SDWR	SRLUB	SRLLB
		$\langle \rangle$			\supset	at <pj4>=1</pj4>	at <pj3>=1</pj3>			
	_		PK7C	PK7C	PK7C	PK7C				
	Port K	0052H	\langle	N //	V			\sim		\sim
FRUK	Register	(Pronibit RMW)	0	0	0	0				
			> ((0:Input	1: Output					
1			PK7F	PK6F	PK5F	PK4F	PK3F	PK2F	PK1F	PK0F
	Port K	0053H	\sim					١	W	
PKFC	function	(Prohibit	0	0	0	0	0	0	0	0
	register	RMW)	0: Port	0: Port	0: Port	0: Port	0: Port	0: Port	0: Port	0: Port
			1: SPCLK	1: SPCS	1: SPDO	1: SPDI	1: LBCD	1: LFR	1: LLP	1: LCP0

(1) I/O ports (5/7)

Symbol	Name	Address	7	6	5	4	3	2	1	0	
		0056H	PL7C	PL6C	PL5C	PL4C				/	
PLCR	Port L		W								
	register	(PTOTIDIT RMW)	0	0	0	0					
	0	,		0: Input	1: Output			\geq			
			PL7F	PL6F	PL5F	PL4F	PL3F	PL2F	PL1F	PL0F	
	Dort	00574	W								
PLFC	function	(Prohibit	0	0	0	0	0 ((7/0	0	0	
	register	RMW)	0: Port	0: Port	0: Port	0: Port	$\langle \langle \rangle$	$\langle O \rangle$			
			1: LD7,	1: LD6,	1: LD5	1: LD4	0: Port	1: Data bus	for LCDC (L	D3 to LD0)	
			BUSAK	BUSRQ				N N			
	Port M function register	005BH					\sim	PM2F	PM1F	$\overline{)}$	
								١			
PMFC		(Prohibit						0	0		
		RMW)				(Ω)	\sim	0: Port	0: Port		
) <				
			PN7C	PN6C	PN5C	PN4C	PN3C	PN2C	PN1C	PN0C	
	Port N	005EH			6	$\langle \ \rangle$ 1	N /	7	\rangle		
FNCK	Control Register	(Prohibit RMW)	0	0	0	0	0	\bigcirc $)$	0	0	
	regiotoi	(XIVIVV)				0:Input	1: Output				
	Dort N	00551	PN7F	PN6F	PN5E	PN4F	PN3F	PN2F	PN1F	PN0F	
	Function	005FH		20	\mathcal{N}	\square	N C	ノ			
	Register	(Prohibit RMW)	0	0	0	Q	0	0	0	0	
	regiotor			(\bigcirc)	∕∕0: CM0	DS output 1	: Open drain	output			

(1) I/O ports (6/7)

Symbol	Name	Address	7	6	5	4	3	2	1	0
5,1100	. taino		P17D	P16D	P15D	P14D	P13D	– P12D	P11D	P10D
	Port 1	0081H	. –			R/	W			
P1DR	drive		1	1	1	1	1	1	1	1
	register				Input/Output	buffer drive	register for s	tandby mod	<u>،</u>	
			P47D	P46D	P45D	P44D	P43D	P42D	P41D	P40D
	Port 4			1 102	1.102	R/	W			1 102
P4DR	drive	0084H	1	1	1	1	1		1	1
	register			1	Input/Output	buffer drive	register for s	tandby mod	۰ ۵	1
			P57D	P56D	P55D	P54D	P53D	P52D	P51D	P50D
	Port 5			1002	1 002	R/	w >	97-	1012	
P5DR	drive	0085H	1	1	1	1		1	1	1
	register			1	Input/Output	huffer drive	register for a	tandby mod	•	
			P67D	P66D	P65D	P64D	P63D	P62D	P61D	P60D
	Port 6		1010	1.000	1000	R	w		1	1000
P6DR	drive	0086H	1	1	1	1		1		1
	register		I	1		-(7/s)				1
			<	DZOD		butter drive i	egister for s	andby mode		D70D
	Port 7			P76D	P75D	PY4D	P73D	PY2D T		P70D
P7DR	drive	0087H	$ \rightarrow$		2		R/W	\rightarrow		
	register			1	1()	1	1 (\square	1	1
					Input/O	utput buffer	drive registe	r for standby	/ mode	
Po P8DR dri regi	Devite		P87D	P86D	P85D	🗸 P84D	P83D	P82D	P81D	P80D
	drive register	0088H		($\frac{1}{2}$	R/	<u>w</u>))		
			1	1 21		1		1	1	1
					Input/Output	buffer drive i	egister for s	tandby mode	e	
			P97D	P96D	P95D	P94D	P93D	P92D	P91D	P90D
DODD	Port 9 drive register	0089H			2	R/	W			
FBDK			1 (\sim \checkmark	1	<u>\</u> 1	1	1	1	1
	5				Input/Output	buffer drive	register for s	tandby mod	е	
	_		PA7D	PA6D	PA5D	PA4D	PA3D	PA2D	PA1D	PA0D
	Port A	Port A drive 008AH	(7/5)			R/	W			
PADR	register			1	(h)	$\overline{1}$	1	1	1	1
	rogiotor			\sim	Input/Output	buffer drive	register for s	tandby mod	е	
		\searrow	PC7D	PC6D	PC5D	PC4D	PC3D	PC2D	PC1D	PC0D
DODD	Port C	000011				R/	W			
PCDR	drive	008CH	\checkmark 1	X	1	1	1	1	1	1
	register	\geq			Input/Output	buffer drive i	eaister for s	tandby mode	9	
		$ \land \land$	PF7D	PF6D	PF5D	PF4D	PF3D	PF2D	PF1D	PF0D
	Port F		~][R/	W			
PFDR	dríve	008FH	1		1	1	1	1	1	1
<	register	ワ ,			Input/Output	buffer drive i	edister for s	tandhy mode	<u>،</u>	
	\rightarrow			\rightarrow			PG3D			
$\langle \langle \rangle$			\checkmark	\prec		\sim	- 000 P/	W		/
	Port G	4		\sim	\leftarrow		1	4	\square	
PGDR	drive	drive 0090H egister	\rightarrow		\rightarrow	\rightarrow		1		
	register						Input/Outp	out buffer		
							standby	/ mode		

(1) I/O ports (7/7)

	-												
Symbol	Name	Address	7	6	5	4	3	2	1	0			
			PJ7D	PJ6D	PJ5D	PJ4D	PJ3D	PJ2D	PJ1D	PJ0D			
	Port J		R/W										
PJDR	drive	0093H	1	1	1	1	1	1	1	1			
	register			Input/Output buffer drive register for standby mode									
			PK7D	PK6D	PK5D	PK4D	PK3D	PK2D	PK1D	PK0D			
PKDR	Port K drive	0094H		R/W									
TRER	register	000411	1	1	1	1	1		フ 1	1			
				Input/Output buffer drive register for standby mode									
	Port L drive register		PL7D	PL6D	PL5D	PL4D	PL3D	PL2D	PL1D	PL0D			
		0095H				R/	w >						
FLUK			1	1	1	1	(1)	1	1	1			
			Input/Output buffer drive register for standby mode										
				/		\sim)/ /	PM2D	PM1D				
	Port M					-4	1	R/	wl (//				
PMDR	drive	0096H				\searrow	K	1 (
	register					(7/)	\sim	Input/Out	put buffer				
) .	drive r	egister				
								for stand	by mode				
	Port N		PN7D	PN6D	PN5D	PN4D	PN3D	PN2D	RN1D	PN0D			
PNDR	drive	0097H				R/	W	(\Box)	~				
	register	ister	1	1		\searrow_1	1	\mathcal{I}	1	1			
				Ir	put/Output I	ouffer drive	register for s	tandby mod	le				

(2) Interrupt control (1/4)

Symbol	Name	Address	7	6	5	4	3	2	1	0	
				IN	T2			IN	T1		
	INT1 & INT2	00000	I2C	I2M2	I2M1	I2M0	I1C	I1M2	I1M1	I1M0	
	enable	000011	R		R/W		R		R/W		
			0	0	0	0	0	0	0	0	
			INT4				INT3				
INTE34	INT3 & INT4	00D1H	I4C	I4M2	I4M1	I4M0	I3C	(3M2)	> I3M1	I3M0	
	enable	000111	R		R/W		R		R/W		
			0	0	0	0	0		0	0	
				INTTA1	(TMRA1)	4	$\langle \langle V \rangle$	INTTA0 ((TMRA0)	i	
INTETA01	INTTA1	00D4H	ITA1C	ITA1M2	ITA1M1	ITA1M0	ITAOC	ITA0M2	ITA0M1	ITA0M0	
	enable		R		R/W		R	>	R/W		
			0	0	0	0	0))	0	0	0	
	INTTA2 &			INTTA3	(TMRA3)	(C		INTTA2	(TMRA2)		
INTETA23	INTTA3	00D5H	ITA3C	ITA3M2	ITA3M1	ITA3M0	ITA2C	ITA2M2	ITA2M1	ITA2M0	
	enable		R	-	R/W		R		R/W		
			0	0		$\left(\begin{array}{c} 0 \\ \end{array} \right)$	$\bigvee 0$			0	
	INTTB0 &									ITDOMO	
INTETB01	INTTB1 enable	NTTB1 00D8H enable	IIB1C	TTB1M2		THEIMO	TIBUC	INBOINS C		TTB0IM0	
			R O	0	K/W		R 0			0	
			0	0		0	0 ((0	
	INTTBO0 (Overflow) enable			-			ITROOG	ITROOM2			
INTETBO0		00DAH	_	(-	P P			TI BOUIVIU	
				Always	write "0")) 0	0	0	
	INTRX0 & INTTX0	TRX0 &					INT	RX0	Ŭ		
			ITX0C	ITX0M2	TX0M1	ITXOMO	IRX0C	IRX0M2	IRX0M1	IRX0M0	
INTES0		00DBH	R		R/W		R		R/W		
	enable		0		0	0	0	0	0	0	
			6		SPI	\wedge		_	_	•	
	INTSPI	005011	ISPIC	ISPIM2	ISPIM1	ISRIM0	_	_	-	_	
INTESPI	enable	UUEUH	R	\supset	R/W	21	_		_		
			(0)	0	0	0		Always	write "0"		
			$(\nabla /)$	-		$\langle \rangle$	INTSBI				
	INTSBI		$\overline{\mathbf{S}}$	~	(7/	- \	ISBIC	ISBIM2	ISBIM1	ISBIM0	
INTESDI	enable 🗸		F	\sim)	R		R/W		
		\sim		Always	write "0"		0	0	0	0	
		$\langle \rangle$	>		LM1			INTA	LM0		
		005511	IA1C	IA1M2	IA1M1	IA1M0	IA0C	IA0M2	IA0M1	IA0M0	
INTEALM01	enable	UUE⊃H	R		R/W		R		R/W	1	
	Chable	\sum	0 /	0	0	0	0	0	0	0	
			N		LM3		-	INTA	LM2		
\sim	INTALM2 &		IA3C	JA3M2	IA3M1	IA3M0	IA2C	IA2M2	IA2M1	IA2M0	
INTEALM23	INTALM3	/ 00E6H	R		R/W		R		R/W		
	enable	(($\sqrt{0}$)) o	0	0	0	0	0	0	
7/		-	+	/		-			-	-	
	_										
------------	---------	---------	-------	--------	-----------	---------------------	-----------------------------------	----------	--------	--------	---
Symbol	Name	Address	7	6	5	4	3	2	1	0	
				-	-			INTA	LM4		
	INTALM4		-	-	-	-	IA4C	IA4M2	IA4M1	IA4M0	
INTEALIVI4	enable	002711	=		-		R		R/W		
				Always	write "0"		0 <	0	0	0	
				-	-			INTE	RTC		
	INTRTC	005011	_	-	-	_	IRC	IRM2	IRM1	IRM0	
INTERIC	enable	00600	-		-		R	())	R/W		
				Always	write "0"		0	0	0	0	
				-	-			() INTI	ΚEY		
INTEREV	INTKEY		_	-	-	-	IKC	JKM2	IKM1	IKM0	
INTERET	enable	00690	_		-		R		R/W		
				Always	write "0"		$\left(\left(0 \right) \right)$	0	0	0	
				-	-	6		INTI	CĐ		
	INTLCD		-	-	-		ILCD1C	ILCDM2	ILCDM1	ILCDM0	
INTELCO	enable	UUEAN	_		-		R		R/W		
				Always	write "0"	$\overline{\Omega}$	> 0	25	0	0	
				INT	I2S	$(\vee))$					
			II2SC	II2SM2	II2SM1	II2SM0	I5C	15M2	15M1	15M0	
INTESI25	enable	UULDII	R		R/W		R		R/W		
	onabio		0	0	0	0	0		0	0	
				INTN	IDET (\geq		//)INTN	IDF0		
		00ECH	IN1C	IN1M2	_IN1M1	IN1M0	INOC	/INOM2	IN0M1	IN0M0	
INTENDOT	enable	002011	R	(R/W		(R)/l		R/W		
	enable		0	0	Õ /	0	0/)) 0	0	0	
				2(-		\square	\sum	INT	P0		
	INTP0	00EEH	-	_	<u> </u>		IP0C	IP0M2	IP0M1	IP0M0	
	enable	00EEH	=	()	> _) R		R/W		
	5110010		F		Always	write "0"		//0	0	0	0

(2) Interrupt control (2/4)

Symbol	Name	Address	7	6	5	4	3	2	1	0
				INT	AD			IN	Т0	
			IADC	IADM2	IADM1	IADM0	I0C	10M2	I0M1	I0M0
	enable	001 011	R		R/W		R		R/W	
	Chable		0	0	0	0	0	0	0	0
				INTTC1	(DMA1)			INTTCO	(DMA0)	
		005411	ITC1C	ITC1M2	ITC1M1	ITC1M0	ITC0C	ITCOM2	ITC0M1	ITC0M0
INTEICOT	enable		R		R/W		R	()	R/W	
	chabic		0	0	0	0	0		0	0
				INTTC3	(DMA3)		· (()	7/INTTC2	(DMA2)	
	INTTC2 &	005011	ITC3C	ITC3M2	ITC3M1	ITC3M0	TC2C	ITC2M2	ITC2M1	ITC2M0
INTETC23	INTIC3	00F2H	R		R/W		R	9	R/W	
	enable		0	0	0	0		0	0	0
				INTTC5	(DMA5)	-		INTTC4	(DMA4)	
	INTTC4 &		ITC5C	ITC5M2	ITC5M1	ITC5M0	NTC4C	ITC4M2	/TC4M1	ITC4M0
INTETC45	INTTC5	00F3H	R	1100ml	R/W		R	11011112	R/W	
	enable		0	0	0	0	0	0	0	0
			-	INTTC7	(DMA7)	$(\overline{\Omega})$	\checkmark	INTTC6	(DMA6)	
	INTIC6 &	005411	ITC7C	ITC7M2	ITC7M1	ITC7M0	ITC6C 🔷	ITC6M2	JTC6M1	ITC6M0
INTETC67	INTIC/ enable	00F4H	R		R/W		R	1	R/W	
	enable		0	0	0	0	0	0	6	0
			_	/	Ya			\sim	_	IR0LE
			W	/	1			$\rightarrow \rightarrow$	V	V
	810		0			\sim	$\langle \rangle$	\sim	1	1
	interrupt	00F5H	Always	(\bigcirc			\land	Always	0: INTRX0
SIMC	mode	(Prohibit	write "0".	G	$\langle \ \rangle$))	write "1".	edge
	control	RMW)		$\mathcal{A}($						mode
										1: INTRX0
				()	\searrow					level
						10770.017			101 5	mode
			15EDGE	MEDGE	I3EDGE	12EDGE	11EDGE	10EDGE	IOLE	-
				\sim	-	W			R/	W
	Interrupt		0	0	0	0	0	0	0	0
IIMC	input mode	(Prohibit	INT5	HNT4	INT3	HNT2	INT1	INT0	0: INT0	Always
mino	control	RMW)	edge	edge	edge	edge	edge	edge	edge	write "0".
	Control			0: Rising	0: Rising	0: Rising	0: Rising	0: Rising	mode	
		$/ \cap$	1: Failing	1: Failing	17 Failing	1: Failing	1: Failing	1: Failing	1:INT0	
	4	$\langle \langle \rangle \rangle$			$\vee \bigcirc$)			mode	
								INT	WD	
	INTWD		-			_	ITCWD	_	_	_
INTWDT	enable	00F7H			_		R			
				Always	write "O"		0	_	_	_
		$\sim h$								
	Interrupt	00F8H	ULKV/	CLKVO	ULKV5	ULKV4		ULKV2	ULK V1	ULK VU
INTCLR	clear control	(Prohibit			0	V	v o	0	0	0
	clear control	RMW)	U	0	U		U	U	U	U
		$ \rightarrow $	()			merrup				
			$\wedge \land \land$	ノノ						

(2) Interrupt control (3/4)

(2)	Interrupt control	(4/4)
-----	-------------------	-------

Symbol	Name	Address	7	6	5	4	3	2	1	0
				/	DMA0V5	DMA0V4	DMA0V3	DMA0V2	DMA0V1	DMA0V0
	DMA0	0100	\sim			•	R/	W		
DIVIAUV	start vector	010011			0	0	0	0	0	0
							DMA0 sta	art vector		
					DMA1V5	DMA1V4	DMA1V3	DMA1V2	DMA1V1	DMA1V0
	DMA1	0101H					R/	W		
	start vector	010111			0	0	0	$\left(\begin{array}{c} 0 \end{array} \right)$	0	0
							DMA1 sta	art vector		
			/	/	DMA2V5	DMA2V4	DMA2V3	DMA2V2	DMA2V1	DMA2V0
	DMA2	0102	\sim	/		<	R/	w)		
DIVIAZV	start vector	01020	\sim		0	0	0	0	0	0
							DMA2 sta	art vector		
			/		DMA3V5	DMA3V4	DMA3V3	DMA3V2	DMA3V1	DMA3V0
	DMA3	0102	\sim			((R/	W	\bigcirc	
DIVIASV	start vector	01030			0	Q	0	0 🔨		0
							DMA3 sta	art vector		
					DMA4V5	DMA4V4	DMA4V3	DMA4V2	DMA4V1	DMA4V0
	DMA4	0104				$(\vee /))$	R/	w (O)		
	start vector	010411	\sim		0	O	0	070	0	0
							DMA4 sta	art vector	\bigcirc	
					DMA5V5	DMA5V4	DMA5V3	DMA5V2	DMA5V1	DMA5V0
	DMA5	0105		/		\searrow	R/	W))		
DIVIAGV	start vector	010511	\sim	\backslash	0	0	0	\simeq_0	0	0
					\bigcap		DMA5 sta	art vector		
					DMA6V5	DMA6V4	DMA6V3	DMA6V2	DMA6V1	DMA6V0
	DMA6	0106H		Å	\geq		R/	W		
DIVIAUV	start vector	010011		$\langle \rangle$	0	<0	0	0	0	0
				()	\sim		DMA6 sta	art vector		
				¥ ¥	DMA7V5	DMA7V4	DMA7V3	DMA7V2	DMA7V1	DMA7V0
DMA7V	DMA7	0107H	\sim			<u></u>	✓ R/	W		
D	start vector	010111			0	0	0	0	0	0
					6		DMA7 sta	art vector		
			DBST7	DBST6	DBST5	DBST4	DBST3	DBST2	DBST1	DBST0
DMAB	DMA burst	0108H	$\left(\left(\right) \right)$			N R/	W	-		
				0		~ 0	0	0	0	0
		(/)]	\sim	<u> </u>	((// 1; 0	MA reques	t on burst mo	ode		
	<	0109H	DREQ7	DREQ6	DREQ5	DREQ4	DREQ3	DREQ2	DREQ1	DREQ0
DMAR	DMA	DMA 0109H (Prohibit				R/	W	r	r	
	request	(Prohibit RMW)	0		0	0	0	0	0	0
		RMW)	7		1:	: DMA reque	est in softwar	e		

(3) Memory controller (1/3)

Symbol	Name	Address	7	6	5	4	3	2	1	0
				B0WW2	B0WW1	B0WW0	/	B0WR2	B0WR1	B0WR0
					W	•	\backslash		W	•
	BLOCK0	0140		0	1	0	/	0	1	0
BOCSI	CS/WAIT	(Prohibit		Write waits				Read waits		
DOODL	control	RMW)		001: 0 wait	s 010:	1 wait		001: 0 wait	s 010:	1 wait
	register low	,		101: 2 wait	s 110:	3 waits		101: 2 wait	s 110:	3 waits
				011: (1+ N)	waits 111	4 waits		011: (1+ N)	waits 111:	4 waits
				Others: Re	served	1		Others: Re	served	
			B0E	-	-	BOREC	B0OM1	B0OM0	B0BUS1	B0BUS0
			-	-		V		()		- 11
	BLOCKU	0141H	0	0	0	0	0		0/1	0/1
B0CSH	CS/WAIT	(Prohibit	CS select	Always	Always	Dummy	00: ROM/S	RAM	Data bus w	vidth
	register high	RMW)	0: Disable	write "0".	write "0".		01: Reserve	ed	00: 8 bits	
	regiotor night		I. Enable			insert	11. Reserve	ed	10:32 bits	
						1. Insert		Ju	11: Reserv	ed
			/	B1WW2	B1WW1	B1WW0		B1WR2	B1WR1	B1WR0
				Dimit	W			Billing	W	Brittio
	BLOCK1		\sim	0	1					0
DICOL	CS/WAIT	0144H (Drohihit	/	Write waits				Read waits	(\mathcal{A})	0
BICSL	control			001: 0 wait	s 010:	1 wait		001: 0 wait	s 010:	1 wait
	register low	$\nabla (v v)$		101: 2 wait	s 110	3 waits		101: 2 wait	s 110:	3 waits
				011: (1+ N)	waits 111:	4 waits	((011: (1+ N)	waits 111:	4 waits
				Others: Reserved			(Others: Re	served	
			B1E	- ($\left(- \right)$	B1REC	B10M1	B1OM0	B1BUS1	B1BUS0
				G		V	V VZ))		
	BLOCK1	0145H	0	0/(0	0	0	0	0/1	0/1
B1CSH	CS/WAIT	(Prohibit	CS select	Always	Always	Dummy	00: ROM/S	RAM	Data bus w	vidth
	register high	RMW)	0: Disable	write "0".	write "0".	cycle	01: Reserve	ed	00: 8 bits	
	register night		1: Enable			U:INO incort	10: Reserve	ed 1	01: 16 DIts	
						1: Insert	TI. SDRAW	1	10. 32 bits	ed
			\sim	B2\WW2	B2\\/\/\/1	B2W/W/O		B2\W/R2	B2W/R1	B2WR0
			/t		W C	DZWWO		DZWINZ	W	DZWIN
	BLOCK2		4		10			0	1	0
DOOD	CS/WAIT	0148H	$\left(/ \mathcal{A} \right)$	Write waits				Read waits	1	0
B2CSL	control		$\langle \mathcal{O} \rangle$	001: 0 wait	s 010	1 wait		001: 0 wait	, s 010:	1 wait
	register low			101: 2 wait	s /110:	3 waits		101: 2 wait	s 110:	3 waits
		$\langle / /$		011: (1+ N)	waits 111	4 waits		011: (1+ N)	waits 111:	4 waits
				Others: Re	served			Others: Re	served	
			B2E	B2M	1	B2REC	B2OM1	B2OM0	B2BUS1	B2BUS0
	~ ^		~			V	V			
	BLOCK2	0149H	1	0	0	0	0	0	0/1	0/1
B2CSH	CS/WAIT	Prohibit	CS select	0: 16 MB	Always	Dummy	00: ROM/S	RAM	Data bus w	vidth
	control	RMW)	0: Disable	1: Sets	write "0".	cycle	01: Reserve	ed	00: 8 bits	
~	register high	n í	1: Enable	area		0:No	10: Reserve	ed	01: 16 bits	
	$\sim \sim \sim$	V .	\square	$\langle \rangle$		insert	11: SDRAM	1	10: 32 bits	1
		r p		<u>}</u>		1: Insert			11: Keserv	ed
$\langle \langle \langle \langle \rangle \rangle$			\sim	ノ						
		2	\sim	-						

(3) Memory controller (2/3)

J

Symbol	Name	Address	7	6	5	4	3	2	1	0
				B3WW2	B3WW1	B3WW0		B3WR2	B3WR1	B3WR0
					W		/		W	
	BLOCK3	014CH	/	0	1	0	\sim	~ 0	1	0
B3CSL	CS/WAIT	(Prohibit		Write waits		•		Read waits	5	
	control	RMW)		001: 0 wait	s 010:	1 wait		001: 0 wait	s 010:	1 wait
	register low	,		101: 2 wait	s 110:	3 waits		101: 2 wait	s 110	3 waits
				011: (1 + N) waits 111	: 4 waits		011: (1 + N) waits 111	: 4 waits
			DOF	Others: Re	servea		DOMA	Others: Re	Served	DODUCO
			B3E	-	-	B3REC	B30M1	B30M0	B3BUS1	B3B020
	BLOCK3		0	0	0				0/1	0/1
	CS/WAIT	014DH	U CS select	Alwaye		Dummy		PAM	U/ I Data bus w	// I
B3CSH	control	(Prohibit	0: Disable	write "0".	write "0".	cvcle	00: ROM/S	ed	00: 8 bits	nuun
	register high	RIMIVV)	1: Enable			0:No	10: Reserv	ed	01: 16 bits	
						insert	11: Reserv	ed	10: 32 bits	
						1: Insert	~		11: Reserv	ed
			/	BEXWW2	BEXWW1	BEXWW0	\downarrow	BEXWR2	BEXWR1	BEXWR0
					W	(//)		(C)) W ((
BEXCSL	BLOCK EX CS/WAIT control register low	EX T 0158H (Prohibit RMW)		0	1		\sum	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Z/1))	0
				Write waits	. ((Read waits		
				001: 2 waits 010: 1 wait 101: 2 waits 110: 2 waits			/	001: 2 wait	s 010:	1 wait
							(101: 2 wait	s 110:	2 waits
				011: (1 + N) waits			011: (1 + N) waits	
					served	\sim	DEVOM1			
						\sim	DEADIVIT		DEADUST	DEXDUSU
	BLOCK EX	0150H		$\sim \mathcal{A}$	\rightarrow	\searrow			V 0/4	0/4
BEXCSH	CS/WAIT	(Prohibit							0/1	0/1
	control	RMW)		$\left(\right)$	$\langle \lor$		00. ROIVI/3	ad	00. 0 Dits	
	register nign	,)		10: Reserv	ed	10: 32 bits	
				\sim		~	11: Reserv	ed	11: Reserv	ed
				A	/	OPGE	OPWR1	OPWR0	PR1	PR0
				\mathcal{T}		\geq		R/W		
			A		4	$\langle 0 \rangle$	0	0	1	0
	Page ROM		$\left(\left(\right) \right) $			ROM	Wait numb	er on page	Byte numb	er in a
PMEMCR	control	0166H			$\left(\overline{\Omega} \right)$	page	00: 1 CLK (n	-1-1-1 mode)	page	
	register	/		\sim		access	01: 2 CLK (n	-2-2-2 mode)	00: 64 byte	S
		$\langle \rangle \rangle$			\sim	0: Disable	10: 3 CLK (n	-3-3-3 mode)	01: 32 byte	S
						1: Enable	11: Reserve	d	10: 16 byte	S
									11: 8 bytes	

Symbol	Name	Address	7	6	5	4	3	2	1	0
	Memory		M0V20	M0V19	M0V18	M0V17	M0V16	M0V15	M0V14-9	M0V8
MAMRO	address	0142H				R	/W			-
111/11110	mask	011211	1	1	1	1	1	1	1	1
	register 0				0: Compa	are enable	1: Compa	re disable		
	Memory		M0S23	M0S22	M0S21	M0S20	M0S19	M0S18	M0S17	M0S16
MSAR0	start	0143H				R	W	$\langle \rangle$		r
	address	011011	1	1	1	1	1	$\left(\begin{pmatrix} 1 \end{pmatrix} \right)$	7 1	1
	register 0				Se	et start addre	ess A23 to A	16		r
	Memory		M1V21	M1V20	M1V19	M1V18	M1V17	M1V16	MV15-9	M1V8
MAMR1	address	0146H				R		())		i
	mask		1	1	1	1			1	1
	register 1				0: Compa	are enable	1: Compa	re disable		
	Memory		M1S23	M1S22	M1S21	M1S20	M1S19	M1S18	M1S17	M1S16
MSAR1	start	0147H				R	W			
	address		1	1	1	M	<u> </u>	1		1
	register i				Se	et start addre	ess A23 to A	.16		
	Memory		M2V22	M2V21	M2V20	M2V19	M2V18	M2V17	M2V16	M2V15
MAMR2	address	014AH		4			w	$-(\bigcirc$		
	mask register 2		1	1	1		1		<u>///)</u>	1
	10913101 2		110000	110000	U: Compa	are enable	1: Compa	re disable	10/	110010
	Memory		M2S23	M2S22	M2821	M2S20	M2S19	_M2S18	M2S17	M2S16
MSAR2	address	er 2	4	4	4			()	1	4
	register 2		1	1		t atort addr			1	
	Mamani		M2\/22	M2\/21	Mayan		10 A	10	M2\/16	M2\/15
	address		1013 0 2 2	1013 0 2 1	1013020	1013 V 19			1012010	1013 0 13
MAMR3	mask	014EH	1				1	1	1	1
	register 3		I		0:Com	nare enable	1.Compare	disable	I I	
	Memory		M3823	M3522	M3S21	M3S20	M3\$10	M3S18	M3S17	M3S16
	start		1010020		100021	1010020 R	M	100010	100017	100010
MSAR3	address	014FH	1		1	▲ 1	1	1	1	1
	register 3				Se	et start addre	ess A23 to A	16		
	_		\sim	+	\sim	1	\sim	CSDIS	RDTMG1	RDTMG0
			D.		\sum	\sim		002.0	R/W	
			H					0	0	0
	Momony		$\langle \bigcirc \rangle$		$\overline{\Omega}$			0: Disable	00: RD "H"	pulse width
MEMCR0	control	0168H		\sim	$\left(\left(\right) \right) $			1: Enable	= 0.5	5T (Default)
MEMORO	register 0								01: RD "H"	pulse width
	- 3	\sum								= 0.75T
			>	$\langle -$	\rightarrow				10: RD "H"	pulse width
	~ ~		<						14. D	=1.0T
	\sim								11: Reserve	ð

(3) Memory controller (3/3)

(4) MMU

Symbol	Name	Address	7	6	5	4	3	2	1	0
			LXE		/	X4	X3	X2	X1	X0
	LOCALX		R/W	/	/			R/W		
LOCALPX	register for	01D0H	0	/	/	0	0	0	0	0
	program		LOCALX				BANK num	ber for LOCA	ALX Setting	
						٧4	Y3	¥2	Y1	YO
	LOCALY		R/W			14	10	RW	2	10
LOCALPY	register for	01D1H	0		\sim	0	0		0	0
	program		LOCALY				DANK num			•
			1: Enable	_			DAINK HUH			
			LZE	Z6	Z5	Z4	Z3	Z2	Z1	Z0
	LOCALZ	01D3H	R/W	0	<u> </u>	0	R/W		0	0
LOOMEN Z	program	012011		0	0	0		0	0	0
			1: Enable			BANK num	nber for LOC	ALZ Setting	$\langle (\rangle \rangle$	
			LXE			X4	X3	X2 🔿	X1	X0
	LOCALX		R/W			(n)	\sim	R/W	$\gamma >$	
LOCALLX	register for	01D4H	0) 0 <	$) 0 \bigcirc$	0	0
	LUDU		LOCALX		G		BANK num	ber for LOC	ALX Setting	
			LYE		\sim	Y4	Y3	7Y2	Y1	Y0
	LOCALY		R/W	\sim	A		(R/W		
LOCALLY	register for	01D5H	0	\sim	\searrow	0	0		0	0
	LCDC		LOCALY		$\langle \rangle \rangle$	V	BANK num	her for LOC.	ALY Setting	
			1: Enable	70	70	7/4	20	70		70
				Zb	¥5	4		Z2	Ζ1	20
LOCALLZ	register for	01D7H	0					0	0	0
	LCDC		LOCALZ					0	0	0
			1: Enable		/	BANK num	nber før LOC	ALZ Setting	-	
			LXE			X4	X3	X2	X1	X0
	LOCALX		R/W	\supset		\geq	1	R/W	i	
LUGALKA	register for						0	0	0	0
			1. Enable)		$\langle \rangle$	BANK num	ber for LOCA	ALX Setting	
		/()	LYE			Y4	Y3	Y2	Y1	Y0
	LOCALY	$\langle \rangle / /$	R/W	\sim	NO NO	/		R/W		
LOCALRY	register for	01D9H	0	\backslash		0	0	0	0	0
	read		LOCALY				BANK num	ber for LOC	ALY Setting	
	\sim	7	1: Enable	76	75	74	72	72	71	70
			R/W	20	23	24	R/W	22	21	20
LOCALRZ	register for	01DBH	0 /	0	0	0	0	0	0	0
~	read		LOCALZ		0		bor for LOC	ALZ Cotting	Ŭ	•
			1: Enable		< <u> </u>	DAINK NUIT		ALZ Setting		
			LXE			X4	X3	X2	X1	X0
	register for	01DCH	R/W					R/W		
200, 211,	write					0	0	0	0	0
			1: Enable				BANK num	ber for LOCA	ALX Setting	
			LYE			Y4	Y3	Y2	Y1	Y0
	LOCALY		R/W					R/W	r	
LOCALWY	register for	01DDH	0			0	0	0	0	0
	Anto		LOCALY 1: Enable				BANK num	ber for LOC	ALY Setting	
			LZE	Z6	Z5	Z4	Z3	Z2	Z1	Z0
	LOCALZ		R/W				R/W			
LOCALWZ	register for	01DFH	0	0	0	0	0	0	0	0
	wille		LOCALZ			BANK num	nber for LOC	ALZ Setting		

(5) Clock gear, PLL

Symbol	Name	Address	7	6	5	4	3	2	1	0
			XEN	XTEN				WUEF		\backslash
			R/	W				R/W		\backslash
	System		1	1	\sim			0		
SYSCR0	clock control	10E0H	H-OSC	L-OSC				Warm-up	/	
	register 0		(fc)	(fs)				timer		
			0: Stop	0: Stop						
			1: Oscillation	1: Oscillation				$\left(\left(\right) \right)$	>	
							SYSCK	GEAR2	GEAR1	GEAR0
			/	/		/		R/	W	
			/	/			0	$\langle \rangle$	0	0
	System						Select	Select gear	r value of hig	h
SYSCR1	clock control	10E1H					system	frequency ((fc)	
	register 1						clock	2000: fc	101: (Res	served)
							0. fc	001: fc/2	110: (Res	served)
							1: ts	010: fc/4	111: (Res	served)
										\sim
					WUPTIMI	WUPTINO	HALINI	HALTING		\backslash
			K/W		1		1	-		/
	System		Δίνκονο	/	N/orm up ti	mor			$\langle n \rangle$	/
SYSCR2	clock control	10E2H	Always write "O"		00: Posorioo					
	register 2		white 0		00. Reserved	d frequency		node	\bigcirc	
					$10.2^{14}/Inputt$	ed frequency	10. IDI E1	node		
					11: 2 ¹⁶ /Inputt	ed frequency	11: IDLE2	node		
			PROTECT				$\overline{\langle}$	EXTIN	DRVOSCH	DRVOSCL
			R	\sim	\sim	\sim	++/2		R/W	
			0	4	$\overline{\ }$	$\langle \rangle$	\sim	0	1	1
	EMC		Protect	\mathcal{C}	\searrow		$\langle \rangle$	1: External	High	Low
EMCCR0	control	10F3H	flag			$\langle \langle \rangle$		clock	frequency	frequency
	register 0		0: OFF	(\bigcirc)	\sim))		oscillator	oscillator
			1: ON	())			\sim		driver	driver
				\sim		~	\sim		ability	ability
				\land		$\langle \rangle$			1: NORMAL	1: NORMAL
	FMO			\mathcal{Y}					0: WEAK	0: WEAK
EMCCP1	EMC	10541	$\overline{\Omega}$			$\langle - \rangle$				
LINCORT	register 1	102411	$\left(\left(\right) \right) $	Switching	the protect C	N/OFF by v	vrite to follov	ving 1st KEY	, 2nd KEY	
	EMC	$\langle \cap \rangle$	$\langle \bigcirc \rangle$	1st KE	EY: EMCCR1	1=5AH, EMC	CR2=A5H i	n successio	n write	
FMCCR2	control	10F5H		2nd KE	EY: EMCCR	1=A5H, EM0	CCR2=5AH	in successio	n write	
	register 2									
			/	FCSEL	LUPFG			/	/	
			\sum	R/W	Ŕ	\sim	\sim	/	\backslash	/
			/	0	0	//	/	/		/
PLLCR0	control	10E8H		Select fc	Lock up					
	register 0	\bigcirc	(clock	timer					
		\smile	2	0: fosch	status flag					
				1: f _{PLL}	-	-	~	-	-	-
		~	PLLON	\rightarrow						
		5)	R/W							
$\leq =$	PLL		\sim							
PLLCR1	control	10E9H	Control							
	register 1	Ť	on/off							
	\sim		U: OFF							
	1	1	11: ON		1	1	1			

Symbol	Name	Address	7	6	5	4	3	2	1	0
			RAMTYPE1	RAMTYPE0	SCPW1	SCPW0	LMODE	INTMODE	LDO1	LDO0
				•	•	R	Ŵ		•	
			0	0	1	0	0	0	0	0
	LCD		Display RAM	1	LD bus trans	smission	LCDD type	Select	LD bus width	o control
LCDMODE0	mode 0	0840H	00: Internal S	SRAM1	speed		0: SR	interrupt	00: 4bit width	n A_type
	register		01: External	SRAM	00: Reserve	d	1: Built-in	0: LP	01: 4bit width	n B_type
			10: SDRAM		01: $2 \times f_{SYS}$		RAM type	1: BCD	10: 8bit width	n type
			11: Internal S	SRAM2	10: 4× fsys				Others: Rese	erved
			507	FDO	11: 8× fsys	504	500	(200)	504	500
	LCD frame		FP/	FP6	FP5	FP4	FP3		FP1	FP0
LCDFFP	frequency	0841H		i	i	R/	W		i	
	register		0	0	0	0	0	0	0	0
						bit7 to bit0	fFP setting)]^	-	
	LCD		FMN7	FMN6	FMN5	FMN4	EMN3	FMN2	FMN1	FMN0
LCDDVM	divide FRM	0283H		1	1	R/	\mathbb{W}		()	
	register		0	0	0	0	0	0	0	✓ 0
						DVM bit7 to	bit0 setting	(\sim	
			COM3	COM2	COM1	COMO	SEG3	SEG2	SEG1	SEG0
		size 0843H				R	W		24//	
			0	0	0	(0)	0	0		0
	LCD size		Common se	etting		\sim	Segment se	etting	\	
LODOILL	register	00-011	0000: Rese	erved 01	01:200		0000: Rese	rved 0101:	320	
			0001:64	01	10:240		0001:64	0110?	480	
			0010: 120	01	11: 320) í	0010:128	0111:	640	
			0100 160	Ot	hers: Reserv	ved /	0100-240	Other	s: Reserved	
			<u> </u>	ALLO	FRMON		FP9		FP8	START
							R/W			•
				6	0	0		0	0	0
				Seament	FR divide	Always	frp setting	Built-in	fro setting	LCDC start
	LCD			Data	setting	write "0"	bit 9	RAM LCDD	bit 8	0: STOP
LCDCTL0	control 0	0844H		setting	0: Disable			setting		1: START
	register			0: Normal	1: Enable	$\langle \Box \rangle$		0:		
			$\overline{\Omega}$	1; All	4		7	Sequential		
			(/ / / / / / / / / / / / / / / / / /	display				access		
		1	$\gamma < $	data "0"	$(\cap$	7~~~		1: Random		
								access		
	LCD source		SCC7	SCC6	SCC5	SCC4	SCC3	SCC2	SCC1	SCC0
LCDSCC	ClOCK	0846H				R/	W	[
	register		0	0	0	0	0	0	0	0
		\land			LCDC	source clock	counter bit	r to bit0		

(6) LCD controller (1/2)

(6) LCD controller $(2/2)$	
----------------------------	--

Symbol	Name	Address	7	6	5	4	3	2	1	0
	Start		SA7	SA6	SA5	SA4	SA3	SA2	SA1	SA0
	address	0850H				R/	W			
LOANAL	register	000011	0	0	0	0	0	0	0	0
	A area (L)				Start a	ddress for A	area (bit7 t	o bit0)		
	Start		SA15	SA14	SA13	SA12	SA11	SA10	SA9	SA8
LSARAM	address	0851H				R/	W	()		
-	register		0	0	0	0	0	(0)	/ 0	0
	A alea (M)				Start a	ddress for A	area (bit15	to bit8)		
	Start		SA23	SA22	SA21	SA20	SA19	SA18	SA17	SA16
LSARAH	address	0852H	0	4	0	K/	VV V		0	0
	A area (H)		0	I	U Start ac	U droce for A	aroa (hit23 t	0	0	0
	Common		CA7	CA6	CA5				CA1	CAO
	number		UKI	CAU	0A3	R/	W	UAZ	UAT	CAU
CMNAL	register	0853H	0	0	0	0.	0	0		0
	A area (L)			•	Common nu	mber setting	g for A area	(bit7 to bit0)		
	<u> </u>						5		\checkmark	CA8
	Common		/		/	++++		19		R/W
CMNAH	register	0854H				$\overline{\nabla}$			$\overline{\lambda}$	0
	A area (H)				$(\cap$			\mathcal{A}	O	A area
					20			\sim	\bigcirc	(bit8)
	Start		SB7	SB6	SB5	SB4	SB3 (SB2	SB1	SB0
LSARBL	address	0856H				✓ R/	W			
	register		0	0	0	0	-(2)	0	0	0
	D alea (L)		00/5		Start a	ddress for E	3 area (bit7 t	o bit0)	050	0.5.0
	Start		SB15	SB14	SB13	SB12	SB11	SB10	SB3	SB8
LSARBM E	register	0857H	0	-0	0	K/	VV	0	0	0
	B area (M)		0		Start a	ddress for B	area (hit15	to hit8)	0	0
	Start		SB23	SB22	SB21	SB20	SB19	SB18	SB17	SB16
	address		OBLO		0021	A R/	W	OBIO	0011	OBIO
LSARBH	register	0858H	0	<u>\</u> 1	0	0	0	0	0	0
	B area (H)			\mathcal{I}	Start ac	dress for B	area (bit23 t	o bit16)		
	Common		CB7	CB6	CB5	CB4	CB3	CB2	CB1	CB0
CMNRI	number	09501	$\left(\left(// \right) \right)$			R/	W			
CIVINDL	register	00336	$\langle 0 \rangle$	0	0	0	0	0	0	0
	B area (L)	(/) L		\frown	Common nu	imber setting	g for B area	(bit7 to bit0)	_	
	Common	\bigtriangledown		\sum	X					CB8
	number	005 011								R/W
CININBH	register	U85AH		$\overline{/}$						0
	B area (H)									B area
	Cto#		SC7 A	906	SCE	804	503	802	SC1	
	address	\bigcirc	307	300	505		W 303	502	501	500
LSARCL	register	085CH	0	0	0	0	0	0	0	0
\sim	C area (L)				Start a	ddress for C	area (bit7 t	o bit0)		.
	Start	\wedge	SC15	SC14	SC13	SC12	SC11	, SC10	SC9	SC8
ISADOM	address	09504	~ 10)		R/	W			
LOAROW	register		$\langle \rangle$	0	0	0	0	0	0	0
	C area (M)	\sim			Start a	ddress for C	area (bit15	to bit8)		
	Start		SC23	SC22	SC21	SC20	SC19	SC18	SC17	SC16
LSARCH	address	address 085FH				R/	W			
	register	register 085EH	0	1	0	0	0	0	0	0
	C area (H)				Start ac	dress for C	area (bit23 t	o bit16)		

(7) Touch screen I/F

Symbol	Name	Address	7	6	5	4	3	2	1	0
			TSI7	/	PTST	TWIEN	PYEN	PXEN	MYEN	MXEN
			R/W		R			R/W		
	Touch		0	/	0	0	0	0	0	0
TELCDO	screen I/F		0: Disable		Detection	INT4	SPY	(SPX	SMY	SMX
ISICKU	control		1: Enable		condition	interrupt	0 : OFF	0 : OFE	0 : OFF	0 : OFF
	register 0				0: no	control	1 : ON	1:0N	1 : ON	1 : ON
					touch	0: Disable		()	2	
					1: touch	1: Enable		\sim		
			DBC7	DB1024	DB256	DB64	DB8	7/ Ø₿4	DB2	DB1
	Touch					R/	W V	()		
TOLODA	screen I/F	04 5411	0	0	0	0	0	0	0	0
ISICKI	control	UTFTH	0: Disable	1024	256	64	8	4	2	1
	register 1		1: Enable	Del	oounce time	is set by the	formula "(N	l×64 − 16)/1	sys" – form	ula.
				"N" is s	um ofthe nu	mber of bits	between bit	6 and bit0 w	hich is are s	et to "1"
						Al		6	1	

(8)	SDRAM co	ontroller				$\left(\overline{\mathcal{A}} \right)$) <	, (6		
Symbol	Name	Address	7	6	5	4	3	$\langle 2 \rangle$	L N	0
			-	-	SMRD	SWRC	SBST	SBL	SBL0	SMAC
						R/	W ((
			0	0	0	> 0	0	())	0	0
			Always	Always	Mode	Write	Burst stop	Select read	l burst	0: Disable
	SDRAM		write "0"	write "0"	register	recovery	command	length		1: Enable
SDACR1	control	0250H		. (C	set delay	time		00: Reserv	ed	
	register 1				time		\sim	01: Full pag	ge read,	
	. egietei i				\geq			Burst V	read	
				(())	~			Single	write	
				$\langle \bigcirc \rangle$			\sim	11: Full page	ne read	
			G			\land	~	Single	write	
			\downarrow			SBS	SDRS1	SDRS0	SMUXW1	SMUXW0
	SDRAM](\neq	1	1		R/W		
	access		TTTA		4	0	0	0	0	0
SDACR2	control	0251H	$(\vee /))$			Number	Selecting F	NOM	Selecting a	ddress
	register 2	$ \cap \rangle$	\bigcirc	~	(7/	of banks	address siz	ze	Multiplex ty	/pe
	4)				
			-		$\langle \rangle$	SSAE	SRS2	SRS1	SRS0	SRC
			R/W	V				R/W		
	SDRAM		0			1	0	0	0	0
SDRCR	retresh	0252H	Always		\supset	SR Auto	Refresh int	erval		Auto
	register	\sim)	write "0"	\geq		exit	000: 47 sta	tes 100:	156 states	refresh
	register		2			Tunction	001: 78 Sta	tes 101:	295 states	1: Enchlo
\sim)				1: Enable	010: 97 sta	ates 111:	312 states	
	\sim				/	\sim	\sim	SCMM2	SCMM1	SCMM0
	SDRAM		X	\rightarrow	\sim	\sim	\backslash		R/W	
SDCMM	command	0253H	\sim				\sim	0	0	0
	register	4						lss	uing comma	and

(9)	8-bit timer										
Symbol	Name	Address	7	6	5	4	3	2	1	0	
			TA0RDE	/	/	/	I2TA01	TA01PRUN	TA1RUN	TAORUN	
			R/W					R/	W		
			0				0	0	0	0	
	IMRA01	110011	Double				IDLE2	TMRA01	UP	UP	
TAUTRUN	RUN	1100H	buffer				0: Stop	prescaler	counter	counter	
	register		0: Disable				1: Operate		(UC1)	(UC0)	
			1: Enable					0: Stop and	clear		
								1: Run (Co	unt up)		
		1102H				-	× (()				
TAOREG	8-bit timer	(Prohibit				Ń	W V	$\bigcirc)$			
	register o	RMW)				Unde	efined				
	8-bit timer	1103H				-	-(())	\geq			
TA1REG	register 1	(Prohibit				V	v V	*			
	regiotor :	RMW)				Unde	efined				
			TA01M1	TA01M0	PWM01	PWM00	TA1CLK1	TA1CLK0	TA0CLK1	TA0CLK0	
				i _	i	R/	Ŵ				
	TMRA01		0	0	0	(()	<u> </u>	0	0	0	
TA01MOD	mode	1104H	Operation I	node	PWM cycle	$(\vee \langle \rangle)$	Source clock	for TMRA1	Source clock	tor TMRA0	
	register		00: 8-Dit tin	imer mode	00: Reserv	ea	00: TAUTR	5 N	00: Reserve	ea	
			10: 8-bit P	PG mode	10^{-27}		10 [.] φT16	\sim	10· dT4		
			11: 8-bit P\	VM mode	11:28		11: oT256	\sim	11: oT16		
			/		L L	\checkmark	TA1FFC1	TA1FFC0	TA1FFIE	TA1FFIS	
			/		\mathcal{L}			y C	R/	W	
	TMRA1	1105H			\square) 1	0	0	
TA1FFCR	flip-flop	(Prohibit			1		00: Invert T	A1FF	TA1FF	TA1FF	
-	register	RMW)					01: Set TA	1FF	control for	Inversion	
		register	register	,				$\langle \rangle$	10: Clear T	A1FF	inversion
				(())	~		11: Don't c	are	0: Disable	0: TMRA0	
					/			TAGODDUN	T: Enable	1: IMRA1	
						$\overline{\langle}$	121 AZ3	TA23PRUN	TAJRUN	TAZRUN	
						$\overline{\mathcal{A}}$	0	Г./ 0		0	
	TMRA23		Double	<u> </u>			IDI E2	TMPA23			
TA23RUN	RUN	1108H	buffer				0: Stop	propolar	counter	counter	
	register	\frown	0: Disable			\sim	1: Operate	prescaler		(UC4)	
		$/ \bigcirc$	1: Enable	~	(7/			0: Stop and	(000) I clear	、 ,	
		$ \langle \rangle _{r}$			$\langle \vee \rangle$			1. Run (Co	unt un)		
		110AH		_		-	_		unt up)		
TA2REG	8-bit timer	(Prohibit				V	V				
	register 2	RMW)				Unde	efined				
	0 hit times	110BH			\geq	-	_				
TA3REG	8-bit timer	(Prohibit	/	>	~	V	V				
	register 5	RMW)	~			Unde	efined				
\langle	()		TA23M1	TA23M0	PWM21	PWM20	TA3CLK1	TA3CLK0	TA2CLK1	TA2CLK0	
			\square			R/	W				
	TMRA23	5)	0	0	0	0	0	0	0	0	
TA23MOD	mode	110CH	Operation I	mode .	PWM cycle		Source clock	for TMRA3	Source clock	for TMRA2	
	register		00: 8-bit tin	ner mode	00: Reserve	ed	00: TA2TR	G	00: Reserve	ed	
	\searrow		10. 8-bit PF	PG mode	10.2		01. φ11 10· 4T16		01. φ11 10· 4T4		
	~		11: 8-bit P\	VM mode	11: 2 ⁸		11: b T256		11: dT16		
			\sim	\sim	/		TA3FFC1	TA3FFC0	TA3FFIE	TA3FFIS	
			\sim	\sim	\sim	\sim	V	V	R/	W	
	TMRA3	11000	\sim	\sim	\sim	\sim	1	1	0	0	
TA3FECR	flip-flop	(Prohihit					00: Invert T	A3FF	TA3FF	TA3FF	
	control	RMW)					01: Set TA	3FF	control for	inversion	
	register	,					10: Clear T	A3FF	inversion	select	
							11: Don't c	are	0: Disable	0: TMRA2	
									1: Enable	1: TMRA3	

Symbol	Name	Address	7	6	5	4	3	2	1	0
			TB0RDE	-			I2TB0	TB0PRUN		TBORUN
			R/	W			R/	W		R/W
	TMRBO		0	0			0	0		0
TBORUN	RUN	1180H	Double	Always			IDLE2	TMRB0		Up
Donton	register	110011	buffer	write "0"			0: Stop	Prescaler		counter
	- 3		0: Disable				1: Operate	$\langle \frown \rangle$		UC10
			I. Enable					0: Stop and	clear	
							6	1: Run (Co	unt up)	
			-	-	TB0CP0I	TB0CPM1	TB0CPM0	TBOCLE	TB0CLK1	TB0CLK0
			R/	VV O	VV*			R/W	<u> </u>	0
	TMRBO	1182H		0	1 Evecute	0 Conturo tin		0 Control		U uraa alaak
TBOMOD	mode	(Prohibit	Always will	.e 00.	Execute				100 Pocory	od
	register	RMW)			canture	00. Disable	ed	0. Disable	00. Reserv	eu
	0	,			0: Software	10: Reserv	ed	clearing	10: ¢T4	
					capture	11: TA1OL	JT↑	1: Enable 🔇	11: øT16	
					1: Undefined	TA10L	ίπ↓	clearing		
			=	=	TB0CT1	TB0C0T1	TB0E1T1	TB0E0T1	TB0FF0C1	TB0FF0C0
			N	/*		$\langle \rangle \rangle$	R/W 🔇	\rightarrow \bigcirc	M N	/*
			1	1	0	O	0	070	//	1
	TMDDO		Always writ	e "11".	20	TB0FF0 invo	ersion trigge	5 🚫	Control TB	0FF0
	flin-flon	1183H				0: Disable tr	igger		00: Invert	
TB0FFCR	control	(Prohibit				TEnable tri	gger		10: Cloar	
	register	RMW)		(the UC	the LIC	the UC	the LIC	10. Clear 11: Don't c	are
	- 3			4	value is	value is	value	value	* Always re	ead as "11"
				AC	loaded into	loaded into	matches	matches		
					TB0CP1.	TB0CP0.	the value in	the value in		
					$\langle \rangle$		TB0RG1.	TB0RG0.		
	16-bit timer	1188H		()			_//			
TBORGOL	register 0	(Prohibit	(\square		V	<u>v</u>			
	IOW	RIVIVV)	6			Unde	efined			
TRADCOLL	16-bit timer	1189H (Drohihit)	~		-			
TBURGUH	register U					V	V			
	16 hit timer	110011	$(\Omega \land$			Unde	ennea			
TB0RG1	register 1	(Probibit	(\bigcirc)			\sim				
1 Bonton E	low	RMW)		\sim	$-(//\uparrow)$	Unde	fined			
	16-bit timer	118BH			$\overline{\langle \cdot \rangle}$	Unde	_			
TB0RG1H	register 1	(Prohibit	-		$\overline{)}$	V	V			
	high	RMW)	\geq	$\langle - \rangle$		Unde	fined			
	Capture					-	_			
TB0CP0L	register 0	118CH			\geq	F	२			
	low	\sum	(\geq		Unde	efined			
	Capture)	Z			-	-			
TB0CP0H	register 0	118DH				F	२			
	high			\sim		Unde	efined			
	Capture	((_			
TB0CP1L	register 1	118EH	$\sqrt{2}$	/		F	२			
	low	Ľ.				Unde	fined			
TRACE	Capture	4467	\rightarrow			-				
TB0CP1H	régister 1	118FH				F	۲			
	nigh					Unde	efined			

(11) UART/serial channel

Symbol	Name	Address	7	6	5	4	3	2	1	0
	Serial	1200H	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0
SC0BUF	channel 0	(Prohibit	TB7	TB6	TB5	TB4	TB3	TB2	TB1	TB0
-	buffer	RMW)			R (F	Receiving)/M	/ (Transmiss	ion)		
	register		000		DE			CEDD		100
			RB8	EVEN			PERR	PERR odina)	SULKS	
	Serial		R Undefined	0	0					0
00000	channel 0	400411	Receive	Parity	Parity	0	1: Error		0. SCI K0	0 [.] Baud
SCUCK	control	1201H	data bit8	0: Odd	0: Disable	Overrun	Parity	Framing	1: SCLK0↓	rate
	register			1: Even	1: Enable			$\langle \rangle \rangle$		generator
							$\sum ($	\mathcal{I}		1: SCLK0
										pin input
			TB8	CTSE	RXE	WU	SM1	/ SM0	SC1	SC0
			0	0	0	R/	W	0	0	0
	Serial		U	0.010		Wake up	0 00: VO Into	U rfaco mode		
SC0MOD0	channel 0	1202H	mission	disable	disable	0. Disable	00. #0 inte		01: Baud r	ate
	mode 0		data bit8	1: CTS	1: Receive	1: Enable	10: 8-bit U/	ART mode	genera	ator
	register			enable	enable	$(\sqrt{5})$	11: 9-bit U	ART mode	10: Interna	al clock f _{IO}
						\mathcal{I}	\sim	~ ~	11: Extern	al clock
										0 input)
	O · · ·		-	BR0ADDE	BR0CK1	BR0CK0	BR0S3	BR0S2	BR0S1	BR0S0
	Serial		0	0			w (c		0	0
BR0CR	baud rate	1203H		U (16 K)/16		0	0 Sot th		U divisor "N" (I	U D to E)
2.10011	control		write "0"	divided	00. 010 01· 0T2		Securi	enequency		J (O F)
	register		inite e	0: Disable	10: ¢T8)		
				1: Enable	11: ∳T32		$\langle \rangle$	*		
	Serial			\langle		ľ	BR0K3	BR0K2	BR0K1	BR0K0
BR0ADD	channel 0	1204H	/	\square	/	\mathcal{A}		R/	W	
2.10/122	K setting			\frown			0	0	0	0
	register		-			A.	Set the	e frequency	divisor "K" (1 to F)
			12S0	FDPX0						
	Serial		R/	Ŵ		\rightarrow		\backslash		
	channel 0			0						
SC0MOD1	mode 1	1205H	0: Stop	interface		\sim				
	register	//	1: Operate	mode	$((// \land$					
	<	\leq / r		0: Half duplex	$\langle \mathcal{O} \rangle$					
				1: Full duplex						
			PLSEL	RXSEL	TXEN	RXEN	SIRWD3	SIRWD2	SIRWD1	SIRWD0
	~ ~				-	R/	W	-		-
	IrDA		0 Select	0 Dessive	0 Atronomit	0 Deceive	0	0	0	0
SIRCR	control	1207H		data	1 ransmit	Receive	Select rece	ive pulse wi	dth	
-	register		pulse	0: "H" pulse	1: Enable	1: Enable	Set effectiv	ve pulse wi	ath for equa	al or more
\frown	(())		width	1: "L" pulse			than $2x \times (x)$	(alue + 1) + (alue + 1)	TOONS	
	\sim	~	0: 3/16	$\langle \mathbf{n} \rangle$			Can not bo	. 1 10 14 Sot: 0 15		
	<u></u>		1: 1/16)			San not be	301. 0, 13		
12		\sim	$\langle \bigtriangledown $	/						
		4								
	\searrow		\sim							

(12) Serial bus interface (SBI)

									-
		BC2	BC1	BC0	ACK		SCK2	SCK1	SCK0/
	1240H		W		R/W	\sim	V	V	R/W
Serial bus	(l²C Mada)	0	0	0	0	\sim	0	0	0/1
control register 1	(Prohibit RMW)	Number of 000: 8 00 100: 4 10	transfer bits 01: 1 010: 01: 5 110:	2 011: 3 6 111: 7	Acknowle -dge mode 0: Disable 1: Enable	(1	Setting for 000: 5 00 100: 9 10 111: Reser	the devisor v 01: 6 010: 01: 10 110: ved	value "n" 7 011: 8 11
Serial bus	1241H	DB7	DB6	DB5	DB4		DB2	DB1	DB0
interface	(Prohibit			R (R	Receiving)/V	V (Transmiss	sion)		
register	RMW)				Unde	efined	\geq		
		SA6	SA5	SA4	SA3	SA2	SA1	SA0	ALS
					4	V			
I2CBUS0	1242H (Probibit	0	0	0	0	0	0	0	0
register	RMW)			Slav	e address se	etting			Address recognition 0: Disable 1: Enable
		MST	TRX	BB	PIN	SBIM1	SBIMO	SWRST1	SWRST0
				20	V V	v (\mathcal{O}		
	1243H	0	0	0	1	0	0	0	0
Serial bus interface Interface control register 2	(I ² C Mode) (Prohibit RMW)	0: Slave 1: Master	0: Receiver 1: Transmit	Start/Stop condition generation 0: Stop condition 1: Start condition (Case of MST, TRX, Pin are "1")	INTSBI interrupt monitor 0: Request 1: Cancel	SBI operati selection 00: Port mc 01: Reserve 10: I ² C mod 11: Reserve	on mode ode ed de ed	Software re generate w and "01", th internal res generated.	eset rrite "10" nen an set signal is
		MST	TRX	BB	PIN	AL	AAS	AD0	LRB
		$\left(\overline{\Omega} \right)$		6		2			
	1243H) 0	0	7	0	0	0	0
Serial bus	Mode)	0: Slave	0: Receiver	Bus status	INTSBI	Arbitration	Slave	GENERAL	Last
interface	(Wode)	T.Master	T. Transmit	0:Free	interrupt	lost	address	CALL	received
status				1:Busy	1: Cancel	monitor	detection	monitor	0:0
register	(Prohibit	\supset	$\langle \langle \langle \rangle$			0: –	monitor	0:	1:1
\sim	RMW)					1: Detected	0:		
	~ ~		~	\searrow			Undetected	1: Detected	
	\rightarrow	_ ^	12SBI0						
Carlabhua		W	R/W	\sim					
interface	1244H								
Baud rate	(Prohibit	Always	IDLE2						
register 0	KIVIVV)	write "0"	0: Stop						
	~		1: Run						
\sim		P4EN	-						
Sorial hua		٧	V				/		
interface	1245H	0	0						
Baud rate register 1	(Prohibit RMW)	Internal clock 0: Stop	Always write "0"						
	Serial bus interface 0 control register 1 Serial bus interface buffer register I2CBUS0 address register Serial bus interface control register 2 Serial bus interface status register Serial bus interface status register Serial bus interface status register Serial bus interface status register 1	Serial bus interface 0 control register 1(l²C Mode) (Prohibit RMW)Serial bus interface buffer register1241H (Prohibit RMW)I2CBUS0 address register1242H (Prohibit RMW)Serial bus interface control register 21242H (Prohibit RMW)Serial bus interface control register 21243H (l²C Mode)Serial bus interface status register1243H (l²C Mode)Serial bus interface status register1243H (l²C Mode)Serial bus interface status register1243H (l²C Mode)Serial bus interface status register1243H (l²C Mode)Serial bus interface status register1243H (l²C Mode)Serial bus interface Baud rate register 01244H (Prohibit RMW)Serial bus interface Baud rate register 11245H (Prohibit RMW)	Serial bus interface 0 control register 1(l²C Mode) (Prohibit RMW)Number of 000: 8 00 100: 4 10Serial bus interface buffer register1241H (Prohibit RMW)DB7 (I00: 4 10)I2CBUS0 address register1242H (Prohibit RMW)0I2CBUS0 address register1242H (Prohibit RMW)0I2CBUS0 address register1242H (Prohibit RMW)0I2CBUS0 address register1242H (Prohibit RMW)0Serial bus interface control register 21243H (Prohibit RMW)0Serial bus interface status registerMST1243H (Prohibit RMW)00Serial bus interface status register1243H (Prohibit RMW)0Serial bus interface gator register1243H (Prohibit RMW)0Serial bus interface Baud rate register.1243H (Prohibit RMW)0Serial bus interface Baud rate r	Serial bus interface 0 control register 1(1²C Mode) (Prohibit RMW)WWSerial bus interface buffer register1241H (Prohibit RMW)DB7DB6Serial bus interface buffer register1241H (Prohibit RMW)DB7DB6I2CBUS0 address register1242H (Prohibit RMW)00I2CBUS0 address register1242H (Prohibit RMW)00I2CBUS0 address register1242H (Prohibit RMW)00I2CBUS0 address register1243H (Prohibit RMW)00I1243H (I²C Mode)000Interface control register 2(Prohibit RMW)MSTTRXSerial bus interface status register.01243H (Prohibit RMW)00Serial bus interface status register.01243H (Prohibit RMW)00Serial bus interface status register.01243H (Prohibit RMW)00Serial bus interface Baud rate register 11243H (Prohibit RMW)-125BI0 WSerial bus interface Baud rate register 11245H (Prohibit RMW)-125BI0 WSerial bus interface Baud rate register 11245H (Prohibit RMW)Serial bus interface Baud rate register 11245H (Prohibit RMW)-0Serial bus interface Baud rate register 11245H (Prohibit RMW)	Serial bus interface 0 control register 1 I241H (Prohibit RMW) W W Serial bus interface buffer register 1241H (Prohibit RMW) DB7 DB6 DB5 122CBUS0 address register 1242H (Prohibit RMW) DB7 DB6 DB5 12CBUS0 address register 1242H (Prohibit RMW) DB7 DB6 DB5 1242H address register 1242H (Prohibit RMW) 0 0 0 1243H (I ² C Interface Interface status register 1243H (I ² C Mode) MST TRX BB 1243H (I ² C Mode) 0 0 0 0 0 11transmit register 2 (Prohibit RMW) MST TRX BB 1243H (I ² C Mode) 0 0 0 0 0 1243H (I ² C (Prohibit RMW) 1243H (I ² C (Prohibit RMW) 0 0 0 0 1243H (Prohibit RMW) 1243H (I ² C (Prohibit RMW) - 125BI0 0 0 1243H (Prohibit RMW) 1243H (Prohibit RMW) - 125BI0 0 0 1243H (Prohibit RMW) <td< td=""><td>Serial bus interface 0 control register 1 1240H (Prohibit RMW) W R/W Serial bus interface buffer register 1241H (Prohibit RMW) DB7 DB6 DB5 DB4 1242H address register 1242H (Prohibit RMW) DB7 DB6 DB5 DB4 1242H address register 1242H (Prohibit RMW) DB7 DB6 DB5 DB4 1242H address register 1242H (Prohibit RMW) SA6 SA5 SA4 SA3 1243H (I[°]C control register 2 1243H (I[°]C Mode) 0 0 0 1 1243H (I[°]C mode 0 0 0 1 1 Canceliver Start/Stop (Start) Interrupt monitor 11erface control register 2 1243H (I[°]C Mode) MST TRX BB PIN 11erface status register 1243H (I[°]C Mode) 0 0 0 1 1 1243H (I[°]C Mode) 1243H (I[°]C Mode) 0 0 0 1 1 11erface status register 1243H (I[°]C Mode) 1 - 1 1 1<!--</td--><td>Serial bus interface 0 control register 1 1240+ (°C Mode) control register 1 W R/W R/W With register 1 Mode) control register 1 Mode) (°C Mode) 0 0 0 0 0 Serial bus interface buffer register 1241H (Prohibit RMW) DB7 DB6 DB5 DB4 DB3 I22BUS0 interface buffer register 1242H (Prohibit RMW) DB7 DB6 DB5 DB4 SA2 I22BUS0 interface control register 2 1242H (Prohibit RMW) SA6 SA5 SA4 SA3 SA2 I243H (Prohibit register MST TRX BB PIN SBIM1 I243H (Prohibit register 2 MST TRX BB PIN SBIM1 I1243H (Prohibit register 2 Mode) 0 0 0 0 1 0 0 Interface control register 2 (Prohibit RMW) MST TRX BB PIN SBI operAti condition (Case of MOde) 0 0 0 0 0 0 0 0 0 0 0<td>Serial bus interface control register 1 1240H (°C Mode) W R/W V V Serial bus interface perister (°C Mode) 0</td><td>Serial Lus interface control register 1 IV IV R/W W Generative register 1 (Prohibit (Prohibit RMW) 0</td></td></td></td<>	Serial bus interface 0 control register 1 1240H (Prohibit RMW) W R/W Serial bus interface buffer register 1241H (Prohibit RMW) DB7 DB6 DB5 DB4 1242H address register 1242H (Prohibit RMW) DB7 DB6 DB5 DB4 1242H address register 1242H (Prohibit RMW) DB7 DB6 DB5 DB4 1242H address register 1242H (Prohibit RMW) SA6 SA5 SA4 SA3 1243H (I [°] C control register 2 1243H (I [°] C Mode) 0 0 0 1 1243H (I [°] C mode 0 0 0 1 1 Canceliver Start/Stop (Start) Interrupt monitor 11erface control register 2 1243H (I [°] C Mode) MST TRX BB PIN 11erface status register 1243H (I [°] C Mode) 0 0 0 1 1 1243H (I [°] C Mode) 1243H (I [°] C Mode) 0 0 0 1 1 11erface status register 1243H (I [°] C Mode) 1 - 1 1 1 </td <td>Serial bus interface 0 control register 1 1240+ (°C Mode) control register 1 W R/W R/W With register 1 Mode) control register 1 Mode) (°C Mode) 0 0 0 0 0 Serial bus interface buffer register 1241H (Prohibit RMW) DB7 DB6 DB5 DB4 DB3 I22BUS0 interface buffer register 1242H (Prohibit RMW) DB7 DB6 DB5 DB4 SA2 I22BUS0 interface control register 2 1242H (Prohibit RMW) SA6 SA5 SA4 SA3 SA2 I243H (Prohibit register MST TRX BB PIN SBIM1 I243H (Prohibit register 2 MST TRX BB PIN SBIM1 I1243H (Prohibit register 2 Mode) 0 0 0 0 1 0 0 Interface control register 2 (Prohibit RMW) MST TRX BB PIN SBI operAti condition (Case of MOde) 0 0 0 0 0 0 0 0 0 0 0<td>Serial bus interface control register 1 1240H (°C Mode) W R/W V V Serial bus interface perister (°C Mode) 0</td><td>Serial Lus interface control register 1 IV IV R/W W Generative register 1 (Prohibit (Prohibit RMW) 0</td></td>	Serial bus interface 0 control register 1 1240+ (°C Mode) control register 1 W R/W R/W With register 1 Mode) control register 1 Mode) (°C Mode) 0 0 0 0 0 Serial bus interface buffer register 1241H (Prohibit RMW) DB7 DB6 DB5 DB4 DB3 I22BUS0 interface buffer register 1242H (Prohibit RMW) DB7 DB6 DB5 DB4 SA2 I22BUS0 interface control register 2 1242H (Prohibit RMW) SA6 SA5 SA4 SA3 SA2 I243H (Prohibit register MST TRX BB PIN SBIM1 I243H (Prohibit register 2 MST TRX BB PIN SBIM1 I1243H (Prohibit register 2 Mode) 0 0 0 0 1 0 0 Interface control register 2 (Prohibit RMW) MST TRX BB PIN SBI operAti condition (Case of MOde) 0 0 0 0 0 0 0 0 0 0 0 <td>Serial bus interface control register 1 1240H (°C Mode) W R/W V V Serial bus interface perister (°C Mode) 0</td> <td>Serial Lus interface control register 1 IV IV R/W W Generative register 1 (Prohibit (Prohibit RMW) 0</td>	Serial bus interface control register 1 1240H (°C Mode) W R/W V V Serial bus interface perister (°C Mode) 0	Serial Lus interface control register 1 IV IV R/W W Generative register 1 (Prohibit (Prohibit RMW) 0

(13)SPI controller (1/4)

Symbol	Name	Address	7	6	5	4	3	2	1	0	
				XEN				CLKSEL2	CLKSEL1	CLKSEL0	
				R/W		/			R/W		
				0				1	0	0	
		0820H		SYSCK 0: Disable 1: Enable				Baud rate s 000: f _{SYS} 001: f _{SYS} /2 010: f _{SYS} /4 011: f _{SYS} /8	election 100: f _{SYS} 101: f _{SYS} 110: f _{SYS} 111: Res	s/16 s/32 s/64 served	
SPIMD	SPI mode setting		LOOPBACK	MSB1ST	DOSTAT		TCPOL	RCPOL	TDINV	RDINV	
	register			R/W				R/	W		
			0	1	1			0	0	0	
		0821H	LOOPBACK test mode 0: Disable 1: Enable	Start bit for transmit 0: LSB 1: MSB	SPDO pin (No transmit) 0: Fixed to "0" 1: Fixed to "1"		Synchronous clock edge during transmitting 0: Falling 1: Rising	Synchronous clock edge during receiving 0: Falling 1: Rising	Invert data during transmitting 0: Disable 1: Enable	Invert data during receiving 0: Disable 1: Enable	
			CEN	SPCS_B	UNIT16	\mathbb{A}	\sim	ALGNEN	RXWEN	RXUEN	
				R/W	.(\mathbb{Z}	\square	$(C \land$	R/W		
			0	1	0	1		(0)	0	0	
		0822H	Communic ation control 0: Disable 1: Enable	SPCS pin 0: Output "0" 1:Output "1"	Data length 0: 8bit 1: 16bit			Full duplex alignment 0: Disable 1: Enable	Sequential receive 0: Disable 1: Enable	Receive UNIT 0: Disable 1: Enable	
SPICT	SPI control		CRC16_7_B	CRCRX_TX_B	CRCRESET_B		\sim		DMAERFW	DMAERFR	
	register			R/W	7	/	\checkmark		R/	Ŵ	
			0	0	0	Ł			0	0	
		0823H	CRC selection 0: CRC7 1: CRC16	CRC data 0: Transmit 1: Receive	CRC Calculation register 0:Reset 1:Relese				Micro DMA 0: Disable 1: Enable	Micro DMA 0: Disable 1: Enable	
					reset	\sim	TEND	DEND		DED	
							TEND	REND		кгк	
	~	~					1		1	0	
SPIST	SPI status register	SPI status register					1 Receiving 0: Operation 1: No operation	U Receive shift t register 0: No data 1: Exist data	1 Transmit buffer 0: Exist un-transmit ted data 1: No un-transmit ted data	U Receive buffer 0: No valid data 1: Exist valid data	
	\searrow										
		08251									
		0020H				//					

Symbol	Name	Address	7	6	5	4	3	2	1	0
			CRCD7	CRCD6	CRCD5	CRCD4	CRCD3	CRCD2	CRCD1	CRCD0
		0000011					R			
		0826H	0	0	0	0	0	~0	0	0
	SPI			•	CRC ca	lculation re	sult load regi	ster [7:0]	•	•
SPICK	CRC		CRCD15	CRCD14	CRCD13	CRCD12	CRCD11	CRCD10	CRCD9	CRCD8
	register	000711					R)/	
		0827H	0	0	0	0	0 /		0	0
					CRC cal	culation res	sult load regis	ter [15:8]		
			/				TENDIS	RENDIS	RFWIS	RFRIS
				\sim		\sim		R/	N	
			/		/		0	0	0	0
						~	Read	Read	Read	Read
SPIIS SPIIS status		0828H					0:No interrupt	0:No interrupt	0:No interrup	t0:No interru
	SPI					$\overline{\Omega}$	1:interrupt	1:interrupt	1:interrupt	1:interrupt
	interrupt						()	$ \land (($	D)	
	status register						Write	Write	Write	Write
					1	$(\)$	0:Don't care	0:Don't care	0:Don't care	0:Don't care
			/			\sim	1:Clear	1:Clear	1:Clear	1:Clear
						\checkmark		\searrow		
		0829H				\sum				
		002011			$\overline{\mathcal{A}}$			\bigcirc		
				4						
					\mathbb{N}	\sim	TENDWE	RENDWE	RFWWE	RFRWE
				$\underline{\gamma}$		\square	\searrow	R		
			/	$\overline{\mathcal{A}}$			0	0	0	0
	SDI	082AH	(7		\frown	Clear SPIIS	Clear SPIIS	Clear SPIIS	Clear SPIIS
SPIWE	interrupt		(())		$\sim \sim $	<tendis></tendis>	<rendis></rendis>	<rfwis></rfwis>	<rfris></rfris>
	status write				~	$\langle \langle \langle \rangle \rangle$	0: Disable	0: Disable	0: Disable	0: Disable
	enable	(\Diamond	4	\sum	1: Enable	1: Enable	1: Enable	1: Enable
	register		T.	\sum	4					
		0000011			\mathbb{A}	\rightarrow			/	
		082BH				\sim	$\left \right\rangle$	\geq	\sim	\square

(13)SPI controller (2/4)

Symbol Name Address 7 6 5 4 3 2 1 0 TENDIE RENDIE RFWIE RFRIE R/W 0 0 0 0 082CH TEND RÊND RFW RFR SPI interrupt interrupt interrupt interrupt interrupt SPIIE 0: Disable 0: Disable 0: Disable 0: Disable enable 1: Enable 1: Enable 1: Enable 1: Enable register 082DH TENDIR RENDIR REWIR RFRIR R 0 0 0 0 082EH TEND REND RFW RFR SPI interrupt interrupt interrupt interrupt interrupt SPIIR 0: None 0: None 0: None 0: None request 1: Generate 1: Generate 1: Generate 1: Generate register 082FH TXD7 TXD6 TXD5 TXD4 TXD3 TXD0 TXD2 TXD1 R/W 0830H 0 <u>_/0/</u> 0 0 0 0 0 0 SPI transmissio Transmission data register [7:0] SPITD n data TXD15 TXD14 TXD13 TXD12 TXD11 TXD10 TXD9 TXD8 register R/W 0831H 0 0 0 4 0 0 0 0 0 Transmission data register [15:8]

(13) SPI controller (4/4)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			RXD7	RXD6	RXD5	RXD4	RXD3	RXD2	RXD1	RXD0
	ĺ	0832H				R	R			
		005211	0	0	0	0	0	\sim^{0}	0	0
SPIRD	SPI receive				F	eceive data	register [7:0	0]		
	register		RXD15	RXD14	RXD13	RXD12	RXD11	RXD10	RXD9	RXD8
		0833H				R	R		75	
	ĺ	000011	0	0	0	0	0	$\overline{\bigcirc}$	0	0
					R	eceive data	register [15:	8] ())		
			TSD7	TSD6	TSD5	TSD4	TSD3	TSD2	TSD1	TSD0
	ĺ	0834H				R		12		
	SPI	n	0							
SPITS transm data	SPI transmission				Transi	mission data	shift registe	er [7:0]		
	data shift		TSD15	TSD15 TSD14 TSD13 TSD12 TSD11 TSD10 TSD9 TSD8						
	register					(\mathcal{O})	2, >>	Ć	5 >	
	ĺ	000011	0	0	0	0)) o	$\bigcirc 0 ()$	\mathcal{D}	0
					Trar	ismission da	ta register [15:8]	4//	
			RSD7	RSD6	RSD5	RSD4	RSD3	RSD2	RSD1	RSD0
	ĺ	0836H			$\mathcal{A}($	R	2	(\bigcirc)		
	ĺ	003011	0	0	0	0	0	0	0	0
SPIRS	SPI receive		L		\square	\sim	(7)			
	register		RSD15	RSD14	RSD13	RSD12	RSD11	RSD10	RSD9	RSD8
	- 5	0927		<	\sum	/ R/	w			
	ĺ	003711	0	0	0	0	0))	0	0	0
							\bigtriangledown			

2007-02-28

(14) AD converter (1/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			EOCF	ADBF	-	-	ITM0	REPEAT	SCAN	ADS
			F	र			R/	W		
			0	0	0	0	0	0	0	0
	AD mode	100011	AD conversion	AD conversion	Always write "0"	Always write "0"	0: Every 1 time	Repeat mode	Scan mode 0: Fixed	AD conversion
ADIVIODU	register 0		end flag	BUSY flag			1: Every	0: Single	channel	start
	register o		1:END	1: Busy			4 times	mode	mode	1: Start
								1: Repeat	1: Channel	always
							\sim ((scan	read
								$\langle \rangle \rangle$	mode	as "0"
			VREFON	I2AD	_	_			ADCH1	ADCH0
			R/W	R/W			(R/	W.		
	AD mode		0	0	0	0		0	0	0
ADMOD1	control	12B9H	Ladder	IDLE2	Always	Always	Always	Always	Input chan	nel
	register 1		resistance	U: Stop	write "0"	write .0.4	write '0'	write "0"	000: ANU	>
			1: ON	1. Operate			\searrow	52	010: AN2	
			-			((// {			011: AN3	
			-	-	-				UA)	ADTRG
					((R/	W		70/	
			0	0	0	0	0	$\overline{}$	0	0
	AD mode	405.411	Always	Always	Always	Always	Always	Always	Always	AD
ADMOD2	control	12BAH	write "0"	write "0"	write "0"	write "0"	write "0"	write "0"	write "0"	external
	register i				$\left(\bigcirc \right)$			\land		trigger start
				G	\sim))		control
				40			\sim			0: Disable
	AD result		ADR01	ADR00	t l	$\langle \rangle$	\rightarrow		\sim	
ADREG0L	register 0	12A0H	/ LD I KO I	2			$\neg \downarrow$		\sim	R
	low		Unde	efined			\prec		\sim	0
	AD result		ADR09	ADR08	ADR07	ADR06	ADR05	ADR04	ADR03	ADR02
ADREG0H	register 0	12A1H				F	२			
	high			\subseteq	(Unde	fined			
	AD result		ADR11	ADR10	1	1				ADR1RF
ADREG1L	register 1	12A2H		7		1			/	R
	low		Unde	efined 🔨	+					0
	AD result	$\langle \rangle / /$	ADR19	ADR18	ADR17	ADR16	ADR15	ADR14	ADR13	ADR12
ADREG1H	register 1	12A3H			\sim	F	२			
	high			$\langle -$		Unde	fined		-	
	AD result	_	ADR21	ADR20						ADR2RF
ADREG2L	register 2	12A4H	I	२						R
	low <	\sum	Unde	efined						0
	AD result		ADR29	ADR28	ADR27	ADR26	ADR25	ADR24	ADR23	ADR22
ADREG2H	register 2	12A5H				F	२			
	nign	1			<u> </u>	Unde	fined	<u> </u>		
	AD result		ADR31	ADR30						ADR3RF
ADREG3L	register 3	12A6H		<u>ب</u>						R
	iuw	<	Unde	etined						0
	AD result	404711	ADR39	ADR38	ADR37	ADR36	ADR35	ADR34	ADR33	ADR32
ADREG3H	high	IZA/H					۲ اند ما			
	nign	1				Unde	med			

		-								
Symbol	Name	Address	7	6	5	4	3	2	1	0
			WDTE	WDTP1	WDTP0		-	I2WDT	RESCR	-
				R/W		/		R/	W	
	WDT		1	0	0	/	0	0	0	0
WDMOD	mode register	1300H	WDT control 1: Enable	$\begin{array}{c} \text{Select dete} \\ 00: \ 2^{15}/f_{\text{IO}} \\ 01: \ 2^{17}/f_{\text{IO}} \\ 10: \ 2^{19}/f_{\text{IO}} \\ 11: \ 2^{21}/f_{\text{IO}} \end{array}$	cting time		Always write "0"	IDLE2 0: Stop 1: Operate	1: Internally connects WDT out to the reset pin	Always write "0"
WDCR	WDT control register	1301H (Prohibit RMW)			B1H: WDT	- V disable code	- V - 4E: WD	Clear code		

(15) Watchdog timer

Symbol	Name	Address	7	6	5	4	3	2	1	0
			/	SE6	SE5	SE4	SE3	SE2	SE1	SE0
0500	Second	400011					R/W			
SECR	register	1320H					Undefined			
	-		"0" is read	40 sec.	20 sec.	10 sec.	8 sec.	4 sec.	2 sec.	1 sec.
			/	MI6	MI5	MI4	MI3	MI2	MI1	MIO
	Minute	400411					R/W			
MINK	register	1321H					Undefined		12	
			"0" is read	40 min.	20 min.	10 min.	8 min.	4 min.	2 min.	1 min.
			/	/	HO5	HO4	HO3	7HO2	HO1	HO0
				/			R/	W/))		
HOURR	Hour	1322H		/			Unde	fined		
	register		"0" is	read	20 hours (PM/AM)	10 hours	8 hours	4 hours	2 hours	1 hour
			/				\sim	WF2	WF1	WE0
	Dav								R/W	
DAYR	register	1323H		\square	\vee		\sim		Undefined	
	5				"0" is read			W2	W1	W0
			/		DA5	DA4	DA3	DA2	DA1	DAO
	Date			\square	2710		R/	W		Brio
DATER	register	1324H	\vee	\vee	(Unde	fined	4//-	
	0		"0" is	read	20 days	10 davs	8 davs	4 davs	2 davs	1 dav
				<u> </u>		MO4	MO3	MO2	MO1	MO0
		1325H			\sim			R/W		
					$\sqrt{2}$	\sim	6	Undefined		
		PAGE0		"0" is read	$\mathcal{I}(\mathcal{I})$	10 month	8 month	4 month	2 month	1 month
	Month	PAGE1								0. Indicator
WONTIK	register			\leq	$\langle \rangle$					for 12
						"0" is read				hours
					<u>)</u> ~	U is read	$\langle \rangle$			1: Indicator
))					for 24
				\sim	/	<u>A</u>	\sim			hours
			YE7	YE6	YE5	YE4	YE3	YE2	YE1	YE0
		1326H		\sum		R/	W			
				\sim	~	Unde	efined	·	·	·
	Year	PAGE0	80 years	40 years	20 years	10 years	8 years	4 years	2 years	1 year
TEARK	register	PAGE1	$) \bigcirc$		$\left(\alpha \right)$	^			Leap year	setting
				\sim					00: Leap ye	ear
					0.15	read			10: Two yo	ar after
									11. Three y	ais allei lears after
			INTENA	$\overline{\mathcal{T}}$	\sim		ENATMR	ENAALM	<u> </u>	PAGE
	\sim	\wedge	R/W	/	/	W	R/	/W		R/W
DAGED	Page	1327H	0		$\overline{\mathbf{v}}$	Undefined	Unde	fined	\sim	Undefined
PAGER	register	Prohibit	INTRTC	$\overline{1}$		0: Don't	Clock	Alarm /		PAGE
		rivivv)	0: Disable	"0" is	read	care	enable	enable	"0" is read	setting
\sim			1: Enable			1: Adjust				
	//C	J /	DIS1/HZ	DIS16HZ	RSTTMR	RSTALM	-	_	-	_
		1320				V	N			
RESTR	Reset	(Prohihit	\sum	9		Unde	efined			
	register	RMW)	(1Hz	16Hz	1: Reset	1: Reset				
	\searrow		0: Enable	0: Enable	Clock	alarm		Always	write "0"	
\searrow			1: Disable	1: Disable						

(16) RTC (Real time clock)

Symbol	Name	Address	7	6	5	4	3	2	1	0	
ALM	Alarm pattern register	1330H	AL8	AL7	AL6	AL5	AL4	AL3	AL2	AL1	
			R/W								
			0	0	0	0	0	0	0	0	
				Alarm pattern set							
MELALMC			FC1	FC0	ALMINV	-	-		-	MELALM	
			RW								
	Melodv/		0	0	0	0	0	0) > 0	0	
	alarm control register	1331H	Free run co control 00: Hold 01: Restar 10: Clear 11: Clear a	ounter t and start	Alarm frequency invert 1: Invert	Varm requency nvert : Invert Always write "0" Output freque 0: Alar 1: Mel					
	Melody frequency L-register		ML7	ML6	ML5	ML4	ML3	ML2	ML1	ML0	
		1332H	R/W								
			0	0	0	0	0	0	Q	0	
			Melody frequency set (Low 8bit)								
	Melody frequency H-register	1333H	MELON			TV-))ML11	∧ML10())ML9	ML8	
			R/W			\mathcal{H}		~ _ R/	w//))		
			0			\mathbb{A}	0	0		0	
MELFH			Melody counter control 0: Stop and clear	Å			Meloc	dy frequency	v set (Upper	4 bits)	
			1: Start								
ALMINT	Alarm	m upt 1334H le ter		\sim		IALM4E	IALM3E	IALM2E	IALM1E	IALM0E	
	interrupt enable register					0	R/	W	0	0	
						0	9	U	U	U	
			(($\left(\begin{array}{c} \\ \end{array} \right)$	write "0"		nable				

(17) Melody/alarm generator

(18) NAND flash controller (1/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0		
	NAND flash data transfer	1D00H	D7	D6	D5	D4	D3	D2	D1	D0		
			R/W									
	register			F001	Data w	indow to rea		Dilash				
			VVE	ECCI	ECCO		W	PCNIU	ALE	ULE		
			0	0	0	0	0	$\left(\left(0 \right) \right)$	0	0		
			0: Disable	ECC circuit		Chip	Power Con	trol	Address	Command		
	NAND floob mode		write	11 (at <ce></ce>	=X): Reset	enable	(0	7/	Latch	Latch		
ND0FMCR	control	1CC4H	operation	00 (at <ce></ce>	=1): Disable	0: Disable <	Always writ	e "11"	Enable	Enable		
	register		write	10 (at <ce></ce>	=1): Read	hiah)			0: Low	0: Low		
			operation	ECC data	calculated	1: Enable			1: High	1: High		
				by NDFC		(NDCE IS						
				10 (at <ce></ce>	=0): Read ID	low)			$\langle \rangle$			
			BUSY			\sim	\sim	\sim	$\overline{}$			
	NAND		R		\sim	7774	\rightarrow	$\overline{5}$	\rightarrow	\sim		
ND0FSR	status	1CC8H	Undefined			$\forall \forall J$	4	Ţ				
	register		0: Ready		G			\sim	(/))			
			1: Busy			\rightarrow				DDV		
										R/W		
			\square						\sim	0		
				(\sim		$\left(\Omega \right)$	~		Read:		
	NAND			Ĝ	$\langle \rangle$))		0: None		
ND0FISR	interrupt status register	1CCCH		$\mathcal{A}($			\square			1: Change		
										signal from		
				()	\sim					BUSY to		
				(\bigcirc)			\geq			READY.		
			$(\subset $	7		\land	\sim			Write: 0: No change		
				()	~					1: Clear to "0"		
	NAND		INTEN	\neq	\int	$ \rightarrow $				MRDY		
	flash		R/W 🔿		\sim					R/W		
ND0FIMR	interrupt mask	1CD0H								0		
	register		0: Disable	\sim	(// 5)					NIASK TOP		
	NAND			\longrightarrow	\sim	\sim	SPW3	SPW2	SPW1	SPW0		
	flash strobe pulse width register				\mathcal{A}	\sim	0.110	R/	W	0.110		
ND0FSPR		1CD4H			\sim	\sim	0	0	0	0		
		pulse		\sim			Pu	lse width for		NE		
		\sum	/	>	\sim		= f _{SY}	$v_{\rm S} imes$ (This re	gister's valu	e + 1)		
			A	/	/			/	/	RST		
		NAND								R/W		
NDOFRSIR	flash reset	1CD8H	\rightarrow							0		
	register))						Reset controller		
\mathcal{H}			CHSEL					/				
NDCR	NAND	o1C0H	R/W		/				/			
			0			/	/					
	control		Channel									
	register		selection									
			0: Channel 0									
	ΝΔΝΓ		1: Channel 1	De	D5	D4	D3	D2	D1	DO		
	flash ECC	10001		20	- 55	F	2	02		00		
NDUEGGKD	code	ICDUH	Data window to read ECC code									
	register		Data window to read ECC code									

(17) NAND flash controller (2/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0	
	NAND flash data transfer register	1D00H	D7	D6	D5	D4	D3	D2	D1	D0	
			R/W								
Non Dire			Undefined								
					Data w	indow to rea	d/write NAN	D flash			
			WE	ECC1	ECC0	CE	PCNT1	PCNT0	ALE	CLE	
			0	0	0	R/	0		0	0	
			0. Disable	ECC circuit	0	Chin	Power Con	trol	Address	Command	
	NAND		write	11 (at <ce></ce>	=X): Reset	enable		77.	Latch	Latch	
ND1FMCR	mode	1CE4H	operation	00 (at <ce></ce>	=1): Disable	0: Disable	Always write "11"		Enable	Enable	
	control		1: Enable	01 (at <ce>=1): Enable</ce>		(NDCE is					
	register		write	10 (at <ce>=1): Read</ce>		high) 1: Epoblo			0:Low	0: Low	
			operation	by NDFC					I. Figh	ı. ⊓ıgri	
				10 (at <ce>=0): Read ID</ce>		low)					
				data		1A					
	NAND		BUSY						\sim		
	flash	1000	R						\rightarrow		
NUIFOR	status	ICEON	O: Roady			\lor	4				
	register		1: Busy		G	\sim		J D	10/		
	NAND flash interrupt status register	1CECH				\sim		\rightarrow	\sim	RDY	
				\sim	XC	\sim		\mathcal{A}	\sim	R/W	
					\mathcal{I}			\sum		0	
				(7	$(\overline{\Omega})$	\wedge		Read:	
				Ĝ	$\langle \ \rangle$))		0: None	
ND1FISR				$\leq \langle$						1: Change	
										signal from	
				()	\sim					BUSY to	
							\geq			READY.	
			6			\land	\sim			Write: 0: No change	
				()	~					1: Clear to "0"	
	NAND		INTEN	\leq				/	/	MRDY	
	flash	ash	(R/W \		4					R/W	
ND1FIMR	interrupt	1CF0H	(vø))			\rightarrow				0	
	mask		0: Disable	\sim	((// 5					Mask for	
				$\overline{}$		<hr/>		SD///2		RDY SDW0	
	NAND flash strobe pulse width	1CF4H			\rightarrow		SPW3 SPW2 SPW1 SPW				
				\sum	\sim		0	0	0	0	
NDIFORK							0			0	
					\sim		Pulse width for NDRE, NDWE				
	register		<u> </u>				= 15				
ND1FRSTR	NAND		4							RSI	
	flash reset register	1CF8H	4							0	
			$(\cap$	$\gamma \sim \gamma$						Reset	
			//	<u>//</u>						controller	
	NAND	2	D7	D6	D5	D4	D3	D2	D1	D0	
ND1ECCRD	flash ECC	ECC 1CB0H				F	२				
	register		Data window to read ECC code								

(19) I	$^{2}\mathrm{S}$												
Symbol	Name	Address	7	6	5	4	3	2	1	0			
		0000	R15/R7	R14/R6	R13/R5	R12/R4	R11/R3	R10/R2	R9/R1	R8/R0			
12SBLIER	I ² S FIFO	(Prohihit	W										
1200011	buffer (R)	(FIOIIIDIC RMW)	Undefined										
			Register for transmitting buffer (FIFO) (Right channel)										
		0808H	L15/L7	L14/L6	L13/L5	L12/L4	L11/L3	L10/L2	L9/L1	L8/L0			
12SBUFI	I ² S FIFO buffer (L)	(Prohibit		W									
		RMW)		Undefined									
		,		Register for transmitting buffer (FIFO) (Left channel)									
			TXE	FMT	BUSY	DIR	BIT	MCK1	MCK0	I2SWCK			
			R/W		R	R/W							
	I ² S control register 0	080EH	0	0	0	0	>0	0	0	0			
			Transmit	Mode	Status	First bit	Bit	Baud rate		WS clock			
			0: Stop	0:1-5	0: Stop	0: MSB	number	00: f _{SYS}	10: f _{SYS} /4	0: fs/4			
			1: Start	1: SIO	1: Under	1: LSB	0:8 bits	01: t _{SYS} /2	11: fsys/8	1: TA10UT			
		S rrol er 0 080FH	1001411		transmitting	IDEOKT		<hr/>	\bigcirc	OVOCKE			
I2SCTL0			IZSVVLVL	EDGE	IZOFOEL	IZSURE				DAN			
			0	к/ 0	0			$\frac{1}{2}$		K/VV			
			U WS lovel	Clock	0 Calaat far			$-\mathcal{P}$		0 Curatara			
				edge	Select for	CIOCK			$\langle / \rangle \rangle$	System			
			1: High left	0: Falling		(Atter			10/	CIUCK			
			ge.t	1: Rising	0: Stereo	(Aner transmit)		\sim		1. Enable			
				Ŭ	(2 channel)	() () () () () () () () () () () () () ((($\langle \rangle \rangle$					
					1: Monaural	1: Stop							
				((1 channel)	1. 0.00	$\left(\Omega \right)$						
				Ĝ))					

6. Notes and Restrictions

6.1 Notation

- (1) The notation for built-in I/O registers is as follows: Register symbol <Bit symbol> Example: TA01RUN<TA0RUN> denotes bit TA0RUN of register TA01RUN.
- (2) Read-modify-write instructions (RMW)

An instruction in which the CPU reads data from memory and writes the data to the same memory location in one instruction.

```
3, (TA01RUN); Set bit3 of TA01RUN.
Example 1:
            SET
                  1, (100H); Increment the data at 100H.
Example 2:
            INC
 Examples of read-modify-write instructions on the TLCS-900
  Exchange instruction
   EX
         (mem), R
 Arithmetic operations
   ADD (mem), R/#
                        ADC
                              (mem), R/#
   SUB (mem), R/#
                        SBC
                              (mem), R/#
                              #3, (mem)
   INC #3, (mem)
                        DEC
 Logic operations
                        OR
   AND (mem), R/#
                               (mem), R/#
   XOR (mem), R/#
  Bit manipulation operations
   STCF#3/A, (mem)
                        RES
                              #3, (mem)
                        CHG #3, (mem)
   SET #3, (mem)
   TSET#3, (mem)
 Rotate and shift operations
   RLC (mem)
                        RRC (mem)
   RL
         (mem)
                        RR
                              (mem)
   SLA (mem)
                        SRA
                              (mem)
   SLL (mem)
                        SRL
                              (mem)
    RLD (mem)
                        RRD
                              (mem)
```

(3) fOSCH, fc, fFPH, fSYS, fIO and one state

The clock frequency input on pins X1 and 2 is referred to as f_{OSCH}. The clock selected by PLLCR0<FCSEL> is referred as fc.

The clock selected by SYSCR1<SYSCK> is refer to as fFPH. The clock frequency give by fFPH divided by 2 is referred to as system clock fSYS. The clock frequency give by fSYS divided by 2 is referred to as fIO.

One cycle of fSYS is referred to as one state.

6.2 Notes

(1) AM0 and AM1 pins

These pins are connected to the V_{CC} (Power supply level) or the V_{SS} (Grand level) pin. Do not alter the level when the pin is active.

(2) Reserved address areas

The 16 bytes area (FFFFF0H ~ FFFFFH) cannot be used since it is reserved for use as internal area. If using an emulator, an optional 64 Kbytes of the 16M bytes area is used for emulator control. Therefore, if using an emulator, this area cannot be used.

(3) Standby mode (IDLE1)

When the HALT instruction is executed in IDLE1 mode (in which only the oscillator operates), the internal RTC (Real-time-clock) and MLD (Melody-alarm-generator) operate. When necessity, stop the circuit before the HALT instruction is executed.

(4) Warm-up counter

The warm-up counter operates when STOP mode is released, even if the system is using an external oscillator. As a result, a time equivalent to the warm-up time elapses between input of the release request and output of the system clock.

(5) Watchdog timer

The watchdog timer starts operation immediately after a reset is released. Disable the watchdog timer when is not to be used.

(6) AD converter

The string resistor between the VREFH and VREFL pins can be cut by program so as to reduce power consumption. When STOP mode is used, disable the resistor using the program before the HALT instruction is executed.

(7) CPU (Micro DMA)

Only the "LDC cr, r" and "LDC r, cr" instructions can be used to access the control registers in the CPU. (e.g., the transfer source address register (DMASn).)

(8) Undefined SFR

The value of an undefined bit in an SFR is undefined when read.

(9) POP SR instruction

Please execute the POP SR instruction during DI condition.

7. Package Dimensions

Package Name: P-LQFP144-1616-0.40C

Unit: mm

