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ABSTRACT: A diversity of filamentous microfungi was discovered from thallus surfaces of 

epiphytic lichens preserved in Bitterfeld and Baltic amber. We report seven distinct 

morphologies of dematiaceous hyphomycetes, some of which closely resemble species of 

the extant genera Sporidesmium, Taeniolella s. lat. and Taeniolina. Both the placement of 

the fungi on their substrates and the exquisite preservation of delicate structures indicate 

that the fungi were fully developed before they were engulfed by fresh resin. The lichens 

probably grew on the trunks of resin producing trees and became embedded in resin flows 

together with their fungal associates. The findings demonstrate that a wide range of 

presumably specialised fungi have lived on living and decomposing lichen thalli at least 

since the Paleogene. The findings add an interesting new component to the as yet poorly 

known mycota of the ancient European amber forests. 

 

Lichens are symbiotic between a fungal host and one or several algal and/or cyanobacterial 

partners. Whilst lichens are often perceived as pair-wise interactions between only one 

fungus and one photosynthetic symbiont, they frequently house a plethora of associated 

microorganisms, including specialised assemblages of bacteria and fungi. The associated 

organisms can occur both on lichen surfaces and deep within the photobiont layer and 

medulla of lichen thalli (Girlanda et al. 1997; Grube et al. 2009, 2014; Hodkinson & Lutzoni 

2009; Bates et al. 2011; Hodkinson et al. 2012; U’Ren et al. 2012; Aschenbrenner et al. 

2014, 2016; Sigurbjörnsdóttir et al. 2014). 
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True lichenicolous fungi are obligate associates of lichenforming fungi and/or their 

photobionts (Rambold & Triebel 1992; Lawrey & Diederich 2003). Approximately 1,750 

species of obligate parasites, parasymbionts and/or saprophytes have so far been 

described, but recent estimates suggest that 5,000–7,500 species may exist (Lawrey & 

Diederich 2003, 2016; Werth et al. 2013). Some lichen parasites appear to have evolved 

from saprotrophic ancestors. In addition to enzymes that degrade the cell walls of their 

hosts, some lichenicolous fungi produce enzymes that degrade antifungal lichen 

compounds. Whilst such species may be rare, they have the potential to affect fungal 

community dynamics by enabling less specialised saprotrophs to colonise lichen thalli 

(Lawrey et al. 1999; Torzilli et al. 1999; Lawrey & Diederich 2003; Werth et al. 2013). 

Most lichen-forming fungi are ascomycetes, many of which produce unique 

secondary metabolites (Culberson 1969, 1970; Culberson et al. 1977; Huneck & Yoshimura 

1996; Lumbsch 2002). Whilst the possible physiological and/or ecological functions of most 

such lichen compounds are unknown, some protect lichen symbionts against UV-radiation 

(Rikkinen 1995; Solhaug et al. 2003; Nguyen et al. 2013) and thallus-grazing animals 

(Lawrey 1986; Nybakken et al. 2010; Asplund 2011; Asplund & Wardle 2013). Some lichen 

compounds also protect lichen symbionts against viruses, bacteria and parasitic fungi 

(Lawrey 1986; Halama & Van Haluwyn 2004; Rankovic´ et al. 2007; Fazio et al. 2007). 

Whilst the degree of host-specificity of most lichenicolous fungi remains poorly 

known, virulent parasites that indiscriminately kill their lichen hosts are generally rare 

(Hawksworth 1982a; Lawrey & Diederich 2003;Werth et al. 2013). A majority of host-

specific lichenicolous fungi seem to be mildly parasitic or parasymbiotic, and the nature of 

their interactions may have been modified during coevolution with the hosts. 

Unfortunately, phylogenetic evidence of coevolution between lichen symbionts can be 

difficult to achieve, because photobiont switches and other community level effects may 

have effectively blurred signs of phylogenetic tracking between individual lineages 

(Rikkinen 2003a). The same applies to coevolution and/or evolutionary arms races between 

lichenicolous fungi and their hosts (Lawrey & Diederich 2003; Werth et al. 2013; Millanes et 

al. 2014). 

Some groups of lichens seem to harbour more host-specific lichenicolous fungi than 

others. For example, a relatively high diversity of lichenicolous species has been described 

from species of Peltigeraceae as compared to those of Parmeliaceae, despite the much 
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larger number of species in the latter family. These differences may be partly explained by 

differences in thallus morphology and types of lichen compounds produced (Hawksworth 

1982b), but also by differences in speciation rates between families, etc. (Kraichak et al. 

2015). 

Lichen fossils are rare in comparison to plant and animal fossils. The oldest fossils of 

fungal–algal symbioses are from the Lower Devonian Rhynie chert from Scotland (Taylor et 

al. 1997; Karatygin et al. 2009) and some of them share many structural features with 

extant lichens (Honegger et al. 2013). Younger lichen fossils have been found from 

different Paleogene amber deposits, and many of them can be assigned to modern lichen 

families and genera (e.g., Rikkinen & Poinar 2002, 2008; Hartl et al. 2015; Kaasalainen et al. 

2015, 2017). 

Here, we describe diverse fossils of lichen-associated filamentous fungi from 

Bitterfeld and Baltic amber, some of which were briefly reported by Kettunen et al. (2016). 

Several distinct morphologies of filamentous fungi growing on crustose and foliose lichens 

are exquisitely preserved, suggesting that a high diversity of dematiaceous hyphomycetes 

has occurred on epiphytic lichens at least since the Paleogene. 

 

 

1. Material and methods 

 

Fossils of lichen-associated fungi are enclosed in a total of ten pieces of Bitterfeld and Baltic 

amber (Table 1). 

Bitterfeld amber originates from the ‘‘Bernsteinschluff ’’ Horizon in the upper part of 

the Cottbus Formation of the Goitzsche mine, near the city of Bitterfeld, Germany. The 

upper Oligocene amber-bearing sediment has an absolute age of 25.3–23.8 million years 

(Knuth et al. 2002; Blumenstengel 2004). A previous notion that Bitterfeld amber 

represents redeposited Eocene Baltic amber is based on the fact that there is a significant 

proportion of identical arthropod morphologies in amber from both localities (Weitschat 

1997). Redeposition of Baltic amber is unlikely, based on the reconstruction of the 

sedimentary environment of this huge amber deposit (Standke 2008). A local reworking of 

pre-Chattian amber, however, has not been dispelled so far (see Dunlop 2010 for 
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discussion). In any case, Bitterfeld amber is Paleogene in age and its minimum age is c.24 

million years. 

The majority of Baltic amber derives from the amber-bearing marine ‘Blue Earth’ 

layers that are predominantly exposed on the Samland Peninsula of the Kaliningrad district 

(Russia), but Baltic amber is also often found washed ashore along the coast of the Baltic 

Sea and in neighboring areas. The commercially mined amber-bearing strata is Priabonian 

in age (34–38 Ma, using the International Chronostratigraphic Chart v2017/02 

www.stratigraphy.org), though there is a lower horizon of Lutetian age (41–48 Ma) 

(Standke 2008). 

For investigation, the amber pieces were further ground and polished manually, using 

a series of wet silicon carbide papers (grit from FEPA P 600–4000 (25.8 mm to 5 mm 

particle size), Struers, Germany) to produce smooth opposite surfaces for investigation. A 

fraction of a millimetre of amber surface was gradually removed from each amber piece, 

while frequently checking the preparation under a stereoscope to ensure that the inclusion 

was not further damaged (see Schmidt et al. 2012 for protocols). 

The amber inclusions were studied under a Carl Zeiss Axio- Scope A1 compound 

microscope, equipped with a Canon 5D digital camera. In most instances, incident and 

transmitted light were used simultaneously. The light-microscopical images (Figs 1, 3–6) 

are digitally stacked photomicrographic composites of up to 70 individual focal planes, 

obtained using the software package Helicon Focus 5.0 for a better illustration of the three-

dimensional inclusions. 

To confirm that the filamentous fungi were growing on lichen thalli, substrate 

fragments from some amber specimens were exposed using a scalpel to remove the 

overlaying amber, and transferred to a carbon-covered SEM-mount using a wet hair from a 

superfine brush, sputtered with goldplatinum/ palladium (2 x 120 seconds at 20 mA, 10 nm 

coat thickness) using an Automatic Sputter Coater (Canemco Inc.) and examined under a 

field emission scanning-electron microscope (Carl Zeiss LEO 1530 Gemini). 

After investigation, the pieces were fully embedded in a high-grade epoxy (Buehler 

Epoxicure) under vacuum (see Nascimbene & Silverstein 2000 for protocols) to ensure 

longterm preservation of the fossils. 
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Institutional repositories. GZG, Geoscientific Collections of the Georg August 

University, Göttingen, Germany; Grabenhorst, Heinrich Grabenhorst Amber Collection, 

Wienhausen, Germany. 

 

 

2. Results 

 

All the filamentous fungi grew on epiphytic lichens attached to tree bark and were 

preserved together with their substrate. As many crustose lichens grow tightly attached to 

or even partly immersed in their substrate, it can be extremely difficult to recognise their 

fossils as such, especially if deeply imbedded in refracting amber. In some cases, distinctive 

reproductive structures such as apothecia (Fig. 1A) or soredia (Fig. 1B) were present, but in 

most cases only degraded fragments of leprose or areolate thalli were present. The SEM 

analysis of some thallus fragments confirmed that their internal structure was lichen-like; 

i.e., that both fungal hyphae and photobiont cells were present within a stratified thallus 

(Fig. 2). On the basis of very few preserved features, none of the crustose lichens can be 

identified with any precision, but they probably represent species of the predominately 

lichen-forming order Lecanorales with trebouxioid green algal photobionts. 

 

 

2.1. Sporidesmium-like fungi 

Bitterfeld amber (specimens GZG.BST.27298 and GZG. BST.27294) contains three slightly 

distinguished morphologies of fungi resembling the extant genus Sporidesmium Link, 1809 

(Fig. 3). One form, growing on the thallus surface of an Ochrolechia-like crustose lichen, 

formed dark brown to black, punctiform colonies, forming clusters of upright 

conidiophores. Conidiophores are macronematous, unbranched, mid to dark brown, 10–50  

μm long and 6–9  μm wide (Fig. 3B). Conidiogenous cells appear monoblastic, doliiform or 

lageniform, lighter brown, and sometimes integrated. Conidia are multicellular, 55–120  

μm long and 6–15  μm wide phragmoconidia, with cells tapering gradually towards the 

apex. Conidia are produced solitarily, acrogenous, straight or curved, obclavate, with cells 

being moniliform or doliiform, brown to dark brown. Conidial cells are usually broader than 

long, 6–15  μm wide (usually 10– 12  μm) and 4–10  μm long (usually 7–8  μm). Apical cells 
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are elongate, light brown or hyaline. The conidia have at least 7– 11 septa and their 

detachment is schizolytic (Fig. 3C). 

A second form of Sporidesmium-like fungi differs in having prominent apical 

extensions and in producing globular to pyriform structures presumed to be conidial initials 

(Fig. 3A). Colonies are dark brown to black, formed solitarily or in clusters of upright 

conidiophores. Mycelium is immersed or partially superficial, hyphae 1–3  μm wide. 

Conidiophores are macronematous, unbranched, mid to dark brown, length and width 

often difficult to assess, but up to at least 30  μm long and 6  μm wide. Conidiogenous cells 

appear monoblastic, doliiform or lageniform and brown. Conidia are multicellular 

phragmoconidia, 75–160  μm long and 9–15  μm wide (at the widest part), cells tapering 

gradually towards the apex. Conidia are produced solitarily; they are acrogenous, straight 

or curved and obclavate. Conidial cells at the widest point are moniliform or doliiform, 

brown to dark brown. The apical cells are lighter brown or hyaline, forming elongated 

apexes 30–100  μm long and 3–6  μm wide. Some of the apical parts have formed globular, 

subglobular to pyriform septate structures 12–18  μm long and 9–12  μm wide (one non-

septate initial stage 9  μm long and 6  μm wide), possibly representing the initial stages of 

new conidia. Detachment of the conidia appears to be schizolytic. No germinating conidia 

have been seen. The fungus grows on a degraded lichen thallus. 

The third form of Sporidesmium-like fungi (Fig. 3D, E) may either represent immature 

stages, another species or indicate a wide morphological variety of a single fossil species. 

These fungi produced dark brown trunk-like structures with two to three thin and lighter 

brown appendages branching out from the apex. The structures are 30–70  μm long, the 

widest parts being 12–15  μm and the thinnest parts 3–6  μm wide. There are also some 

small flat and globular initial stages 9–15  μm in diameter. Attached to these structures 

there are dark fungal hyphae 1–3  μm wide (Fig. 3D). 

 

2.2. Taeniolella-like fungi 

Bitterfeld amber (specimens GZG.BST.27299 and Grabenhorst- Ri-49) contains fungal fossils 

closely resembling species of the extant genera Taeniolella Hughes, 1958 s. l. and 

Taeniolina Ellis, 1976. Colonies are effuse or pulvinate, brown to dark brown (Fig. 4A–D). 

Mycelium is mostly immersed. Conidiogenous cells appear monoblastic, integrated, 

terminal, determinate, cylindrical or doliiform. Conidia are multicellular, doliiform, brown 
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to dark brown, in simple or sparingly branched 50–180  μm long chains. Conidial cells are 

6–9  μm wide and 3–8  μm long, smooth or somewhat ornamented. Some detached conidia 

have been preserved (Fig. 4E–G). Mycelia of pale, narrow (approx. 1–2  μm wide) hyphae, 

some of them growing partially attached to the lichen thalli of specimen GZG.BST.27299, 

indicate that the fungi grew on decomposing lichens. 

Amber specimen Grabenhorst-Le-91 (Bitterfeld) contains a fungus (Fig. 4C) that 

closely resembles the Taeniolella-like fungus from specimens GZG.BST.27299 and 

Grabenhorst- Ri-49, but it has slightly smaller conidial cells that are 3–6  μm wide and 3–6  

μm long. The colonies are also less dense. 

 

2.3. Other lichen-associated fungi 

In addition to the Sporidesmium-like and Taeniolella-like hyphomycetes described above, 

we found six other fungal morphologies associated to lichen thalli. 

Sporidesmium-like fungi are sometimes accompanied by a more delicate 

hyphomycete (Fig. 5G-I). Conidiophores of this fungus are macronematous, dark brown and 

75–100  μm high. Conidiogenous cells are polyblastic and brown. Conidia are multicellular, 

3–6-septate, brown, elliptical or oblong, 3–5  μm wide and 9–12  μm long, individual cells 

3–5  μm wide and 1.5– 3  μm long (Fig. 5I). Conidial ontogeny is acroblastic; larger cells 

develop at the tips of a conidiophore and gradually become multiseptate. 

Some Taeniolella-like fungi are associated with light brown filamentous fungi. Cells of 

thin hyphae and conidial chains are cylindrical, rounded or doliiform, 2–3  μm wide and 3–6  

μm long (Fig. 6 H–I). 

Bitterfeld (specimen Grabenhorst-Ri-30) and Baltic (specimen Grabenhorst-Ri-54) 

ambers contain a lichen-associated hyphomycete with dark stalked conidiophores and 

curved multiseptate conidia (Fig. 5A–F). Colonies are effuse, dark brown to black. Mycelium 

is mostly superficial, 3–6  μm wide, dark brown. Conidiophores are macronematous, 

growing solitarily or in groups, dark brown to black, multiseptate and unbranched, 

percurrent, 180–360  μm long and 6–9  μm wide. Conidiogenous cells are monoblastic, 

forming chains of ellipsoid to oblong cells at the apical region of the conidiophore, brown, 

9–12  μm wide and 12–15  μm long. Conidia are multicellular phragmoconidia, 10–14  μm 

wide and up to 75  μm long. They are produced solitarily, acrogenous, curved when mature 
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and up to 10-septate, brown to dark brown. The detachment of the conidia appears to be 

schizolytic. 

Lichens from Bitterfeld and Baltic ambers are sometimes covered by dense mycelia of 

sooty moulds (Figs 3E, 6A, B). The tapering branching vegetative hyphae of these fungi are 

brown to dark brown and 6–12  μm wide. 

Small-celled ’toruloid’ fungi are quite frequent on the fossil lichen thalli (Table 1, Figs 

3E, 6C, E, F). These grew parallel to the lichen surface, sometimes producing protruding cell 

chains (Figs 3E, 6C–G). Cells are usually 3–6  μm in diameter, globular or slightly oblong, 

brown to dark brown, attached to 2–4  μm-wide hyphae. These fungi form flat, globular 

clusters consisting of round cells and hyphae that are partly embedded in the lichen 

thallus. The clusters can be around 50  μm in diameter, and possibly represent young 

initials of ascomata or microsclerotium-like resting phases. Sometimes cell chains protrude 

from these structures. 

Finally, yet another morphologically simple conidiogenous fungus accompanies the 

Taeniolella-like colonies and other fungi in Bitterfeld amber specimen GZG.BST.27299, 

forming clusters of small, round conidia, 2–4  μm in diameter (Fig. 6G). 

3. Discussion 

 

The superb preservation of delicate structures, such as upright conidiophores, in the lichen-

associated fungi indicates that they were already fully developed on the lichen surfaces 

when their substrates were engulfed by fresh resin and finally preserved in amber. 

Although epiphytic lichens were most likely quite common in Paleogene amber forests, 

particularly foliose and fruticose species were not likely candidates for preservation. Due to 

their three-dimensional structure, some parts of the thallus were almost invariably left 

outside the resin, allowing microbial decomposers to also degrade the submerged parts of 

the lichen. However, several lichen-forming ascomycetes have so far been described from 

European amber, and recent findings indicate that such fossils are more common than 

previously thought (Rikkinen & Poinar 2002; Rikkinen 2003b; Schmidt et al. 2013; Hartl et 

al. 2015; Kaasalainen et al. 2015, 2017). 

Saprotrophic filamentous fungi, including species of Cladosporium Link, 1816, 

Penicillium Link, 1809 and Aspergillus Micheli ex Haller, 1768, can occasionally grow on 

extant lichens, especially on dead and decomposing thalli (Hawksworth 1979, 1982a; 
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Petrini et al. 1990; Girlanda et al. 1997). However, saprotrophic fungi are clearly more 

common and diverse on decomposing plant remains. The relative scarcity of saprotrophic 

fungi on lichens may reflect the common presence of biologically active, potentially 

mycotoxic lichen compounds in lichen thalli. It is possible that the fossilised fungi were able 

to tolerate the presence of such metabolites in their substrates. 

All the lichen-associated fungi here described were probably saprophytes or, at most, 

weak parasites which continued to grow on dead and decomposing lichen thalli 

(Hawksworth 1982a). Their placement on the host thalli was clearly not random, which 

may indicate a level of substrate specialisation. For example, the conidial clusters of the 

Sporidesmium-like fungi consistently developed on thallus ridges and other high spots on 

the substrate (Figs 3A, B, E, 4A, C), which presumably represented favourable spots for the 

wind dispersal of conidia. 

Whilst over 400 species have been described in Sporidesmium, the genus is clearly 

polyphyletic and consists of several unrelated lineages with convergent morphologies 

(Shenoy et al. 2006). Only three species have been described from lichens: Sporidesmium 

bacidiicola Alstrup, 1991, growing on Bacidia rubella (Hoffmann) Massalongo, 1852 in 

Sweden (Alstrup 1991); S. lichenicola Iturriaga, Hawksworth & Crane, 2008, growing on a 

degraded Leptogium (Acharius) Gray, 1821 specimen in Venezuela (Iturriaga et al. 2008); 

and S. usneae Etayo, 2017, growing on Usnea in Peru (Etayo 2017). In their overall 

morphology, the fossils more resemble S. lichenicola, but have longer conidia and apical 

extensions (especially in Bitterfeld specimen B). Sporidesmium lichenicola is either a 

saprotroph or a parasite that persists on the host lichen after its death (Iturriega et al. 

2008). The fossilised Sporidesmium-like fungi may have had a very similar ecology.  

Most extant species of Taeniolella s. l. are saprophytes that grow on decomposing 

plant material, bark or wood, but the genus also includes lichenicolous species. 

Hawksworth (1979) described four Taeniolella species from lichens, all of them with 1–3 

septate conidia; and the many other known lichenicolous species (Lawrey & Diederich 

2016) also produce conidia with only one or a few septa. In a phylogenetic analysis, Ertz et 

al. (2016) recovered Taeniolella as strongly polyphyletic: the generic type Taeniolella exilis 

(Karsten) Hughes, 1958 belongs to Kirschsteiniotheliaceae (Dothideomycetes); other 

saprotrophic species belong to Sordariomycetes; whilst the lichenicolous taxa belong to 

Asterotexiales (Dothideomycetes). The Taeniolella-like fossils have multiseptate conidia 
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and thus more resemble extant plant saprophytic species such as T. stilbospora (Corda) 

Hughes, 1958. Whereas secession of conidia in extant Taeniolella is schizolytic (Seifert et al. 

2011), some fossil conidia are rhexolytically ruptured (Figs 4E–G). It is possible, however, 

that the conidia broke accidentally during embedment in the tree resin. 

In addition, some Taeniolina species, such as Taeniolina scripta (Karsten) Kirk, 1981 

(formerly Taeniolella scripta (Karsten) Hughes, 1958), are quite similar to the fossils, and 

the latter species is known to occasionally grow on lichen thalli (Hawksworth 1979, 2003). 

The fossils in Bitterfeld amber specimens GZG.BST.27299 and Grabenhorst-Ri-49 are 

morphologically indistinguishable, but it is possible that the small fungus in Bitterfeld 

amber specimen Grabenhorst-Le-91 represents a second species. It is noteworthy that all 

three fossils were found on the surfaces of epiphytic lichens, indicating that these fungi 

must have been common on lichens in the Bitterfeld amber forest. 

In their overall habit, the fungi shown in Fig. 5A–F somewhat resemble modern 

species of the genera Troposporopsis Whitton, McKenzie & Hyde, 1999 and Penzigomyces 

Subramanian, 1992. However, species of the former genus grow on plants and have 

helicoid conidia with distinct areas of light and dark pigmentation (Whitton et al. 1999). 

Extant Penzigomyces species grow on bark, wood and dung and have not been reported 

from lichens. The genus was established by Subramanian (1992) to accommodate 

Sporidesmium-like fungi with lageniform, doliiform or nodose percurrent proliferations in 

the conidiophores. The fossil has such proliferations, but the distinctly curved conidia do 

not correspond with those of Penzigomyces. 

Minute fungi, morphologically more or less identical to the small toruloid fungus in 

several amber specimens (Fig. 6D–F), are exceedingly common on extant lichens and often 

grow partly immersed into the vegetative thallus or apothecia of their hosts. However, only 

a few examples of such fungi have been studied in any detail and have usually been placed 

in the genus Intralichen Hawksworth & Cole, 2002. Thus, it is not possible to assign the 

minute toruloid fossil fungi to any modern group. 

Based on characteristic gradually tapering vegetative hyphae, the sooty moulds 

preserved on the fossil lichens are assignable to the family Metacapnodiaceae 

(Capnodiales, Ascomycota). Several fossils of sooty moulds have been found from 

Paleogene amber, some growing on lichen thalli (Rikkinen et al. 2003; Schmidt et al. 2014). 

Many extant sooty moulds get their nutrition from insect excretions, especially from the 
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honeydew produced by sap-sucking aphids and scale insects. Modern sooty moulds are 

also occasionally found on lichens (Braun et al. 2009). It is quite possible that the fossil 

lichens also grew on resin-producing trees that also supported sap-feeding insects, with 

honeydew dripping on the lichen thalli. Thus, we interpret the occurrence of sooty moulds 

on the fossil lichens as incidental, and not as evidence of an ecological association with 

lichens.  

Bitterfeld and Baltic ambers preserved distinct morphologies of filamentous 

microfungi from epiphytic lichens, demonstrating that a range of presumably specialised 

microfungi lived on dead and decomposing lichen thalli. The host lichens most probably 

grew on resin-producing trees and became embedded in resin flows, together with their 

fungal associates. These new fossil findings add a previously unknown ecological 

component to the as yet poorly known mycota of the ancient European amber forests. 
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TABLES 

 

Table 1. Origin and repository of the amber pieces containing lichen-associated filamentous fungi. Collections: 

GZG: Geoscientific Collections of the Georg August University Göttingen; Grabenhorst: Heinrich Grabenhorst 

Amber Collection (Wienhausen, Germany).  

 

Repository Amber deposit Lichen-associated fungi Illustration 

GZG.BST.27298 Bitterfeld amber Sporidesmium-like fungus, 

toruloid fungi and further conidial 

fungi 

Figs 3B,C; 5G–I, 6F 

GZG.BST.27294 Bitterfeld amber Sporidesmium-like fungus, 

Metacapnodiaceae, toruloid 

fungi. 

Figs 3A,D,E; 6B,D 

GZG.BST.27299 Bitterfeld amber Taeniolella-like fungus, further 

microfungi, hyphae and conidial 

chains 

Figs 4A,D–G; 6G–I 

GZG.BST.27293 Bitterfeld amber Toruloid fungi Fig. 6C 

Grabenhorst-Ri-49 Bitterfeld amber Taeniolella-like fungus Fig. 4B 

Grabenhorst-Le-91 Bitterfeld amber Taeniolella-like fungus Fig. 4C 

Grabenhorst-Ri-30 Bitterfeld amber Fungus with curved conidia Figs 5A–F 

Grabenhorst-Ri-35 Baltic amber Metacapnodiaceae Fig. 6A 

Grabenhorst-Ri-54 Baltic amber Fungus with curved conidia (as in 

Grabenhorst-Ri-30) 

not shown 

Grabenhorst-Ri-51 Baltic amber Minute toruloid fungus Fig. 6E 
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FIGURES 

 

 

 

Figure 1 Lichen substrates preserved in Bitterfeld and Baltic amber: (A) specimen GZG.BST.27298 (Bitterfeld 

amber) contains a crustose lichen colonised by Sporidesmium-like fungi. Three apothecia of the host lichen 

are indicated (Ap); (B) specimen Grabenhorst-Ri-51 (Baltic amber) contains a partly i μmersed crustose 

lichen colonised by a minute toruloid fungus. Laminal soralia (So), with globose heaps of soredia (granular 

symbiotic propagules consisting of algal cells enveloped with fungal hyphae), are seen on the upper surface 

of the thallus. Scale bars = 1  μm (A); 100  μm (B). 
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Figure 2 Scanning electron microscopical image of photobiont layer in crustose lichen in Bitterfeld amber 

(specimen GZG.BST.27299). Several shrivelled photobiont cells and details of the mycobiont–photobiont 

interface have been preserved. Scale bar = 2  μm. 
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Figure 3 Sporidesmium-like fungi from Bitterfeld amber: (A) colony possessing prominent apical 

extensions and globular to pyriform structures (GZG.BST.27294); (B) clusters of upright conidiophores 

with conidia on an elevated lichen thallus ridge (GZG.BST.27298); (C) detached conidium 

(GZG.BST.27298); (D, E) possible i μmature stages with two to three thin and lighter brown 

appendages on wide trunk-like structures (GZG.BST.27294). Other microfossils associated with the 

Sporidesmium-like fungus include small toruloid cell chains (upper arrowhead) and hyphae of sooty 

moulds (lower arrowhead). Scale bars = 50  μm (A, B, D, E); 20  μm (C). 
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Figure 4 Taeniolella-like fungi from Bitterfeld amber: (A) overview of colony and detached conidia on 
crustose lichen (GZG.BST.27299); (B) three colonies and degraded remains of crustose lichen (Grabenhorst-
Ri-49). (C) hyphae and conidia on the ridge of a lichen thallus (Grabenhorst-Le-91); (D) colony with numerous 
mature conidia on a lichen thallus ridge (GZG.BST.27299); (E–G) conidia and robust vegetative hyphae 
(GZG.BST.27299). Scale bars = 50  μm. 
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Figure 5 Lichen-associated dematiaceous hyphomycetes from Bitterfeld amber: (A–F) hyphomycete with 

dark upright conidiophores and curved multiseptate conidia (Grabenhorst-Ri-30); (G–I) conidiophores and 

conidia in specimen GZG.BST.27298. Scale bars = 20  μm. 
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Figure 6 Diverse lichen-associated filamentous fungi from Bitterfeld and Baltic amber: (A) sooty 

mould in Baltic amber (Grabenhorst-Ri-35); (B) sooty mould in Bitterfeld amber (GZG.BST.27294); 

(C), (D), (F) toruloid microfungi in Bitterfeld amber: (C) GZG.BST.27293; (D) GZG.BST.27294; (F) 

GZG.BST.27298; (E) toruloid microfungus in Baltic amber (Grabenhorst-Ri-51); (G) microfungus in 

Bitterfeld amber (GZG.BST.27299); (H, I) hyphae and conidial chains in Bitterfeld amber 

(GZG.BST.27299). Scale bars = 50  μm (A, C, E, H); 20  μm (B, D, F, G, I). 

 


