Diagnosis and Management of Trunk and Scaffold Canker Diseases of Almond in California

Leslie Holland & <u>Florent Trouillas</u>
UC Davis, Department of Plant Pathology
Kearney Agricultural Research and Extension

Almond canker diseases – what are we talking about?

Trunk and scaffold canker diseases (TSCD):

- Fungal canker diseases
 - Ceratocystis, Botryosphaeria, Eutypa, Cytospora, Silver leaf
- Aerial Phytophthora
- Bacterial canker
- Foamy canker

Etiology and management of almond canker diseases: Research in my lab

Field surveys and sampling:

- 2015, 2016, 2017
- 100 orchards, 13 counties
- Approx. 350 fungal isolates
- Annotation of symptoms (dieback, gumming, scaffold or trunk cankers)
 - Orchards 2- to 25-year-old

Species associated with almond TSCD:

Species associated with almond canker diseases:

Most of these pathogens also occur in Spain

Botryosphaeriaceae

- · Botryosphaeria dothidea
- Neofusicoccum mediterraneum
- Neofusicoccum vitifusiforme
- Neofusicoccum parvum
- · Neofusicoccum arbuti
- Diplodia seriata
- Diplodia mutila
- Dothiorella iberica
- Macrophomina phaseolina
- Spencermartinsia viticola
- Neoscytalidium dimidiatum

26 fungal species!

Ceratocystis fimbriata

Collophora hispanica Collophora paarla

Cytospora eucalypti Cytospora sorbicola Cytospora sp. 1 Cytospora sp. 2 Cytospora sp. 11

Cytospora sp. 13

Diaporthe australafricana Diaporthe eres Diaporthe rhusicola

Eutypa lata

Phytophthora cinnamomi Phytophthora cactorum

- Caused by the fungus Ceratocystis variospora (syn. Ceratocystis fimbriata)
 - Associated with mechanical-harvest injuries and pruning wounds
 - Amber gum at the canker margin
 - Cankers are most active during the growing season
 - Bark injuries and pruning wounds are susceptible for up to 14 days
 - May be unique to CA almond production systems
 - Not yet reported in Spain

Pruning wounds

Ceratocystis canker: Thinning almond trees...

- The fungus develops only in the cambium and xylem tissue of the current year
- Perithecia containing the infectious spores are formed in mycelial mats under the bark of injured trees
- Sticky spore droplet can be picked up or ingested by insects (sap-feeding beetles and a drosophilid fly) and moved to fresh wounds

Management of Ceratocystis canker:

- Avoid shaker injuries and intensive pruning
- Clean wounded area to promote healing/callusing
- Copper-oil treatment, Thiophanate methyl
- Paint, sealer or tape NOT needed
- Surgery in winter when insects are not active

- Caused by oomycetes Phytophthora citricola and P. cactorum
 - Associated with scaffold crotch pocket
 - Cankers are fast growing
 - Tree may die over one or two growing season
 - Gum balls occur throughout the disease area
 - Inoculum blown onto trees during harvest

Photo: B. Holtz

Photo: R. Bostock

University of California
Agriculture and Natural Resources

Phytophthora cankers:

Management

- The bud union of almond trees should be planted to remain above the soil surface
- Proper scaffold selection to avoid pockets to form at the tree crotch
- Phosphite drench and foliar applications
- EU recently decided that all phosphite (phosphonate, phosphorous acid) products are exclusively pesticides
- This has triggered the need for a Maximum Residue Limit (MRL)
- Early spring application of mefenoxam (Ridomil Gold SL) (Preventive)

- Band Canker: currently a major problem in California almonds, possibly emerging in Spain
 - Associated with growth cracks
 - 2 to 6-year-old trees, vigorous cultivars (NP, Carmel, Padre, Butte)
 - Orchards receiving excessive amounts of N and water

Photo credits: Roger Duncan

Botryosphaeria canker diseases: Band canker

• Multiple forms of symptoms

Photo credits: Catherine Pope

Band canker:

Trees usually do not die but severe cases are now reported in California

Sprinklers wetting the trunk favor Band canker: <u>use splitters or drip</u>

Photo: M. Jansen

Photo: D. Lightle

Cankers at pruning wounds on trunk and branches

Disease epidemiology:

- Caused by fungal pathogens
 Botryosphaeria
- Broad host range
- Common in riparian areas
- Ornamental
- Walnut, pistachio, olive
- Grapevine
- Requires pruning wounds or cracks to infect
- Infect trees during rain events
- Sprinkler irrigation

Photo credits: Themis Michailides

- Disease epidemiology
 - Spore trapping study in grapevine:

J.R Urbez-Torres

Eutypa dieback:

Caused by Eutypa lata

- Associated with scaffold crotch pocket and pruning wounds
- It likes more humid regions
- Common disease of apricot, sweet cherry and grapevine

Eutypa dieback:

- Disease epidemiology
 - Inoculum sources: <u>Perithecia</u> on dead wood of apricot

Eutypa dieback:

- Disease epidemiology
 - Spore trapping study in grapevine:

Collophora canker:

Reported in California and Spain

Cytospora canker:

Cytospora canker: devastating the prune industry in CA

Results – Pathogenicity on almond

Cultural practices that creates wounds (=sites of infection) in almond production

Scaffold selection

Annually, starting at 4th leaf

Mechanical harvesting

As needed

Maintenance pruning

Trunk/Scaffold canker diseases:

Cankers develop at pruning wounds on trunk and branches

Almond tree pruning:

Slide credits: Roger Duncan

Standard trained, pruned annually

Minimally trained, minimally pruned

Untrained, unpruned

Almond tree pruning:

Slide credits: Roger Duncan

Standard trained, pruned annually

Minimally trained, minimally pruned

Untrained, unpruned

Management of trunk canker diseases:

- Protect pruning wounds following scaffold collection
 - Protect wounds on the trunk
 - Prevent disease establishment in the early years

Management of trunk/scaffold canker diseases:

Fungicides, pastes, sealants, paints, biocontrol agents were tested

#	Products	Products active ingredient(s)		Class	Туре	
1	Water (control)				Control	
2	AMV4002	Trichoderma atroviride			biocontrol	
3	Pruning wound sealant	acrylic paint (brand: Tanglefoot)			sealant	
4	CropSeal	wax			sealant	
5	Ziram	ziram	M3	Carbamate (DMDC)	fungicide	
6	Bravo	chlorothalonil	M5	Chloronitrile	fungicide	
7	Quash	metconazole	3	DMI-triazole	fungicide	
8	Luna Experience	fluopyram/tebuconazole	3 & 7	DMI-triazole/SDHI	fungicide	
9	Merivon	pyraclostrobin/fluxapyroxad	7 & 11	SDHI/QoI	fungicide	
10	Topsin M	thiophanate-methyl	1	MBC	fungicide	
11	Inspire Super	difenoconazole/cyprodinil	3 & 9	DMI-triazole/AP	fungicide	
12	Quadris Top	difenoconazole/azoxystrobin	3 & 11	DMI-triazole/QoI	fungicide	
13	Pristine	pyraclostrobin/boscalid	7 & 11	SDHI/QoI	fungicide	
14	EXP1	thyme oil			biofungicide	
15	EXP2	neem oil			biofungicide	
16	Quilt Xcel	propiconazole/azoxystrobin	3 & 11	DMI-triazole/QoI	fungicide	
17	Fontelis	penthiopyrad	7	SDHI	fungicide	
18	Viathon	tebuconazole/phosphonate	3 & 33	DMI-triazole/phosphonate	fungicide	
19	Luna Sensation	fluopyram/trifloxystrobin	7 & 11	SDHI/QoI	fungicide	
20	Abound	azoxystrobin	11	QoI	fungicide	
21	Rally	myclobutanil	3	DMI-triazole	fungicide	
22	Indar	febuconazole	3	DMI-triazole	fungicide	

Eutypa lata, Ceratocystis variospora, Cytospora sp., Botryosphaeria dothidea, Neoscytalidium dimidiatum, Neofusicoccum parvum, Neofusicoccum mediterraneum, Diplodia mutila

Pruning wound protection trials:

Pruning wound protection trials:

Product	Cytospora sp.	Eutypa lata	C. fimbriata	B. dothidea	N. parvum	N. mediterraneum	Neosc. dimidiatum	Avg. recovery
Control	25	75	50	50	100	50	50	57.1
fluopyram/tebuconazole	75	25	25	25	0	25	25	28.6
pyraclostrobin/fluxapyroxad	50	25	25	0	25	50	50	32.1
thiophanate-methyl	0	0	0	0	0	0	0	0
metconazole	25	50	0	0	25	50	50	28.6
difenoconazole/cyprodinil	25	75	0	0	0	25	25	21.4
difenoconazole/azoxystrobin	100	0	0	0	0	0	100	28.6
myclobutanil	50	25	0	0	25	0	50	21.4
thyme oil #1	100	100	0	75	50	75	50	64.2
thyme oil #2	75	25	0	50	100	75	100	60.7
neem oil	100	100	0	100	100	100	100	85.7
Avg. recovery	56.8	45.4	9.1	27.3	38.6	40.9	54.5	

Duration of pruning wound susceptibility (Fresno Co.)

Management of trunk/scaffold canker diseases:

Prevention and appropriate cultural practices

- Prevent disease establishment in the early years
- Protect wounds near the trunk
- Pruning sealers and Acrylic paint are not so great
- Promising fungicides: Topsin M, Trichoderma
- Don't prune trees during rainy weather
- Remove dead wood, stumps and dead trees from the orchard
- Avoid wetting the tree trunks with sprinklers
- Remedial surgery, cut into the clean wood
- Now testing spray application of fungicides

Appropriate tree training and scaffold selection, or minimal pruning

Trunk/Scaffold canker diseases:

Cankers at cracks formed at the tree crotch

Management of trunk canker diseases:

 Appropriate tree training and scaffold selection to prevent crack formation

Foamy canker: etiology unknown

Photo: D. Doll

Ceratocystis canker vs Verticillium vs herbicide injury:

Bacterial canker vs Phytophthora vs Acid burn:

Bacterial canker

Phytophthora

Acid burn

Acid burn:

Boron toxicity:

Glyphosate injury: Trunk

Root bound: potted almond trees

Thank you!

