Hier	archical Retrieval	

Objectives

After completing this lesson, you should be able to do the following:

- Interpret the concept of a hierarchical query
- Create a tree-structured report
- Format hierarchical data
- **Exclude branches from the tree structure**

Objectives

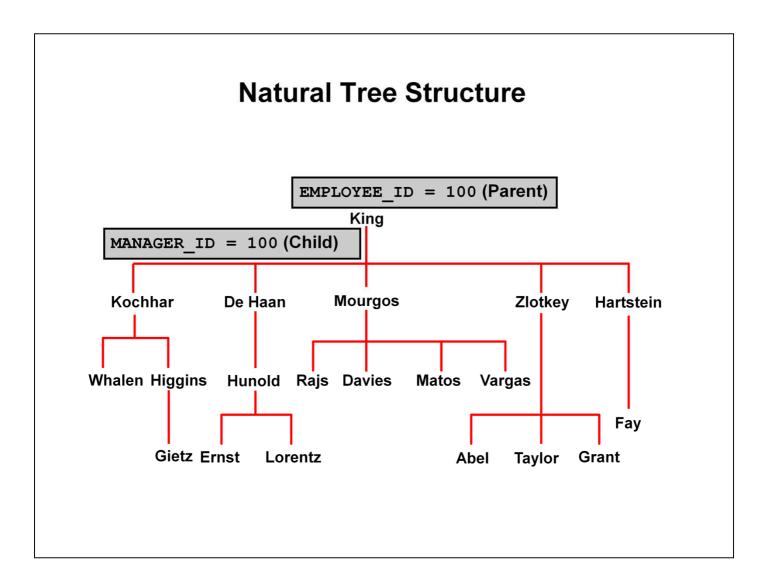
In this lesson, you learn how to use hierarchical queries to create tree-structured reports.

Sample Data from the EMPLOYEES Table

EMPLOYEE_ID	LAST_NAME	JOB_ID	MANAGER_ID
100	King	AD_PRES	
101	Kochhar	AD_VP	100
102	De Haan	AD_VP	100
103	Hunold	IT_PROG	102
104	Ernst	IT_PROG	103
105	Austin	IT_PROG	103
106	Pataballa	IT_PROG	103
107	Lorentz	IT_PROG	103
108	Greenberg	FI_MGR	101

EMPLOYEE_ID	LAST_NAME	JOB_ID	MANAGER_ID
196	Walsh	SH_CLERK	124
197	Feeney	SH_CLERK	124
198	OConnell	SH_CLERK	124
199	Grant	SH_CLERK	124
200	Whalen	AD_ASST	101
201	Hartstein	MK_MAN	100
202	Fay	MK_REP	201
203	Mavris	HR_REP	101
204	Baer	PR_REP	101
205	Higgins	AC_MGR	101
206	Gietz	AC_ACCOUNT	205

107 rows selected.


Sample Data from the EMPLOYEES Table

Using hierarchical queries, you can retrieve data based on a natural hierarchical relationship between rows in a table. A relational database does not store records in a hierarchical way. However, where a hierarchical relationship exists between the rows of a single table, a process called tree walking enables the hierarchy to be constructed. A hierarchical query is a method of reporting, the branches of a tree in a specific order.

Imagine a family tree with the eldest members of the family found close to the base or trunk of the tree and the youngest members representing branches of the tree. Branches can have their own branches, and so on.

A hierarchical query is possible when a relationship exists between rows in a table. For example, on the slide, you see that employees with the job IDs of AD_VP, ST_MAN, SA_MAN, and MK_MAN report directly to the president of the company. We know this because the MANAGER ID column of these records contains the employee ID 100, which belongs to the president (AD_PRES).

Note: Hierarchical trees are used in various fields such as human genealogy (family trees), livestock (breeding purposes), corporate management (management hierarchies), manufacturing (product assembly), evolutionary research (species development), and scientific research.

Natural Tree Structure

The EMPLOYEES table has a tree structure representing the management reporting line. The hierarchy can be created by looking at the relationship between equivalent values in the EMPLOYEE_ID and MANAGER_ID columns. This relationship can be exploited by joining the table to itself. The MANAGER_ID column contains the employee number of the employee's manager.

The parent-child relationship of a tree structure enables you to control:

- The direction in which the hierarchy is walked
- The starting point inside the hierarchy

Note: The slide displays an inverted tree structure of the management hierarchy of the employees in the EMPLOYEES table.

Hierarchical Queries

```
SELECT [LEVEL], column, expr...

FROM table
[WHERE condition(s)]

[START WITH condition(s)]
[CONNECT BY PRIOR condition(s)];
```

WHERE condition:

```
expr comparison_operator expr
```

Keywords and Clauses

Hierarchical queries can be identified by the presence of the CONNECT BY and START WITH clauses.

In the syntax:

SELECT Is the standard SELECT clause

LEVEL For each row returned by a hierarchical query, the LEVEL

pseudocolumn returns 1 for a root row, 2 for a child of a root, and

so on.

FROM *table* Specifies the table, view, or snapshot containing the columns. You can

select from only one table.

WHERE Restricts the rows returned by the query without affecting other rows of

the hierarchy

condition Is a comparison with expressions

START WITH Specifies the root rows of the hierarchy (where to start). This clause is

required for a true hierarchical query.

CONNECT BY Specifies the columns in which the relationship between parent and

child PRIOR rows exist. This clause is required for a hierarchical

query.

The SELECT statement cannot contain a join or query from a view that contains a join.

Walking the Tree

Starting Point

- Specifies the condition that must be met
- Accepts any valid condition

```
START WITH column1 = value
```

Using the EMPLOYEES table, start with the employee whose last name is Kochhar.

```
...START WITH last_name = 'Kochhar'
```

Walking the Tree

The row or rows to be used as the root of the tree are determined by the START WITH clause. The START WITH clause can be used in conjunction with any valid condition.

Examples

Using the EMPLOYEES table, start with King, the president of the company.

```
... START WITH manager_id IS NULL
```

Using the EMPLOYEES table, start with employee Kochhar. A START WITH condition can contain a subquery.

If the START WITH clause is omitted, the tree walk is started with all of the rows in the table as root rows. If a WHERE clause is used, the walk is started with all the rows that satisfy the WHERE condition. This no longer reflects a true hierarchy.

Note: The clauses CONNECT BY PRIOR and START WITH are not ANSI SQL standard.

Walking the Tree

CONNECT BY PRIOR column1 = column2

Walk from the top down, using the EMPLOYEES table.

... CONNECT BY PRIOR employee_id = manager_id

Direction

Top down Column1 = Parent Key
Column2 = Child Key

Bottom up Column1 = Child Key
Column2 = Parent Key

Walking the Tree (continued)

The direction of the query, whether it is from parent to child or from child to parent, is determined by the CONNECT BY PRIOR column placement. The PRIOR operator refers to the parent row. To find the child rows of a parent row, the Oracle server evaluates the PRIOR expression for the parent row and the other expressions for each row in the table. Rows for which the condition is true are the child rows of the parent. The Oracle server always selects child rows by evaluating the CONNECT BY condition with respect to a current parent row.

Examples

Walk from the top down using the EMPLOYEES table. Define a hierarchical relationship in which the EMPLOYEE_ID value of the parent row is equal to the MANAGER_ID value of the child row.

... CONNECT BY PRIOR employee_id = manager_id Walk from the bottom up using the EMPLOYEES table.

... CONNECT BY PRIOR manager_id = employee_id

The PRIOR operator does not necessarily need to be coded immediately following the CONNECT BY. Thus, the following CONNECT BY PRIOR clause gives the same result as the one in the preceding example.

... CONNECT BY employee_id = PRIOR manager_id

Note: The CONNECT BY clause cannot contain a subquery.

Walking the Tree: From the Bottom Up

```
SELECT employee id, last name, job id, manager id
FROM
      employees
            employee id = 101
START
      WITH
CONNECT BY PRIOR manager id = employee id
```

EMPLOYEE_ID	LAST_NAME	JOB_ID	MANAGER_ID
101	Kochhar	AD_VP	100
100	King	AD_PRES	

Walking the Tree: From the Bottom Up

The example on the slide displays a list of managers starting with the employee whose employee ID is 101.

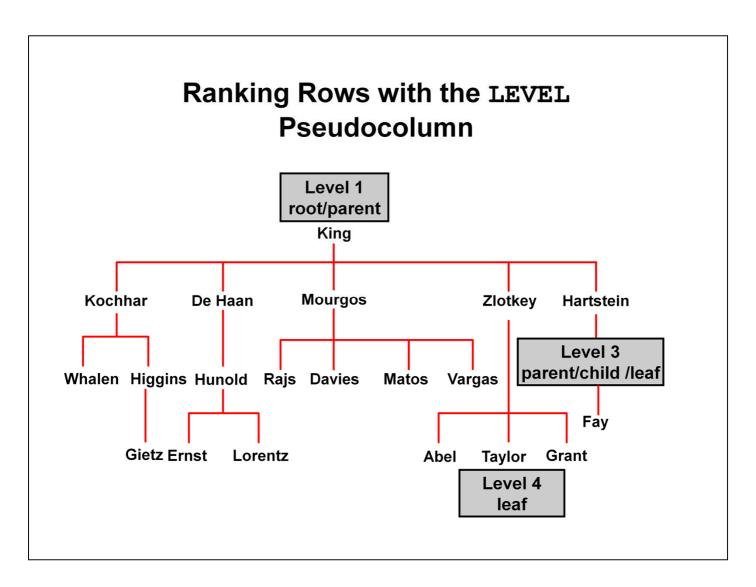
Example

In the following example, EMPLOYEE_ID values are evaluated for the parent row and MANAGER_ID, and SALARY values are evaluated for the child rows. The PRIOR operator applies only to the EMPLOYEE_ID value.

```
... CONNECT BY PRIOR employee_id = manager_id
                           AND salary > 15000;
```

To qualify as a child row, a row must have a MANAGER_ID value equal to the EMPLOYEE_ID value of the parent row and must have a SALARY value greater than \$15,000.

Walking the Tree: From the Top Down


```
last name | | ' reports to ' | |
SELECT
        last name "Walk Top Down"
PRIOR
FROM
        employees
START
        WITH last name = 'King'
CONNECT BY PRIOR employee id = manager id ;
```

Walk Top Down
King reports to
King reports to
Kochhar reports to King
Greenberg reports to Kochhar
Faviet reports to Greenberg
Chen reports to Greenberg

108 rows selected.

Walking the Tree: From the Top Down

Walking from the top down, display the names of the employees and their manager. Use employee King as the starting point. Print only one column.

Ranking Rows with the LEVEL Pseudocolumn

You can explicitly show the rank or level of a row in the hierarchy by using the LEVEL pseudocolumn. This will make your report more readable. The forks where one or more branches split away from a larger branch are called nodes, and the very end of a branch is called a leaf, or leaf node. The diagram on the slide shows the nodes of the inverted tree with their LEVEL values. For example, employee Higgens is a parent and a child, whereas employee Davies is a child and a leaf.

The LEVEL Pseudocolumn

Value	Level
1	A root node
2	A child of a root node
2	A 191 C 191 1

On the slide, King is the root of parent (LEVEL = 1). Kochhar, De Haan, Mourgos, Zlotkey, Hartstein, Higgens, and Hunold are children and also parents (LEVEL = 2). Whalen, Rajs, Davies, Matos, Vargas, Gietz, Ernst, Lorentz, Abel, Taylor, Grant, and Fay are children and leaves. (LEVEL = 3 and LEVEL = 4)

Note: A *root node* is the highest node within an inverted tree. A *child node* is any nonroot node. A parent node is any node that has children. A leaf node is any node without children. The number of levels returned by a hierarchical query may be limited by available user memory.

Formatting Hierarchical Reports Using LEVEL and LPAD

Create a report displaying company management levels, beginning with the highest level and indenting each of the following levels.

```
COLUMN org_chart FORMAT A12

SELECT LPAD(last_name, LENGTH(last_name)+(LEVEL*2)-2,'__')

AS org_chart

FROM employees

START WITH last_name='King'

CONNECT BY PRIOR employee_id=manager_id
```

Formatting Hierarchical Reports Using LEVEL

The nodes in a tree are assigned level numbers from the root. Use the LPAD function in conjunction with the pseudocolumn LEVEL to display a hierarchical report as an indented tree.

In the example on the slide:

- LPAD(char1, n [, char2]) returns char1, left-padded to length n with the sequence of characters in char2. The argument n is the total length of the return value as it is displayed on your terminal screen.
- LPAD(last_name, LENGTH(last_name)+(LEVEL*2)-2,'_')defines the display format.
- char1 is the LAST_NAME, n the total length of the return value, is length of the LAST_NAME + (LEVEL*2)-2, and char2 is '_'.

In other words, this tells SQL to take the LAST_NAME and left-pad it with the '_' character until the length of the resultant string is equal to the value determined by LENGTH(last_name)+(LEVEL*2)-2.

For King, LEVEL = 1. Therefore, (2 * 1) - 2 = 2 - 2 = 0. So King does not get padded with any '_' character and is displayed in column 1.

For Kochhar, LEVEL = 2. Therefore, (2*2) - 2 = 4 - 2 = 2. So Kochhar gets padded with $2'_{-}$ characters and is displayed indented.

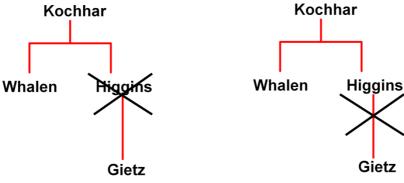
The rest of the records in the EMPLOYEES table are displayed similarly.

Formatting Hierarchical Reports Using LEVEL (continued)

ORG_CHART
King
King
Kochhar
Greenber g
Faviet
Chen
Sciarr a
Urman
Popp
Whalen
Mavris
Baer
Higgins
Gietz
Kumar
Zlotkey
Abel
Hutton
Taylor
Livingst on
Grant
Johnson
Hartstein
Fay

108 rows selected.

Pruning Branches


Use the WHERE clause to eliminate a node.

Use the CONNECT BY clause to eliminate a branch.

```
WHERE last_name != 'Higgins'CONNECT BY PRIOR

employee_id = manager_id

AND last_name != 'Higgins'
```


Pruning Branches

You can use the WHERE and CONNECT BY clauses to prune the tree; that is, to control which nodes or rows are displayed. The predicate you use acts as a Boolean condition.

Examples

Starting at the root, walk from the top down, and eliminate employee Higgins in the result, but process the child rows.

```
SELECT department_id, employee_id,last_name, job_id, salary
FROM employees
WHERE last_name != 'Higgins'
START WITH manager_id IS NULL
CONNECT BY PRIOR employee_id = manager_id;
```

Starting at the root, walk from the top down, and eliminate employee Higgins and all child rows.

```
SELECT department_id, employee_id,last_name, job_id, salary
FROM employees
START WITH manager_id IS NULL
CONNECT BY PRIOR employee_id = manager_id
AND last_name != 'Higgins';
```

Summary

In this lesson, you should have learned the following:

- You can use hierarchical queries to view a hierarchical relationship between rows in a table.
- You specify the direction and starting point of the query.
- You can eliminate nodes or branches by pruning.

Summary

You can use hierarchical queries to retrieve data based on a natural hierarchical relationship between rows in a table. The LEVEL pseudocolumn counts how far down a hierarchical tree you have traveled. You can specify the direction of the query using the CONNECT BY PRIOR clause. You can specify the starting point using the START WITH clause. You can use the WHERE and CONNECT BY clauses to prune the tree branches.

Practice 7: Overview

This practice covers the following topics:

- Distinguishing hierarchical queries from nonhierarchical queries
- Walking through a tree
- Producing an indented report by using the LEVEL pseudocolumn
- **Pruning the tree structure**
- Sorting the output

Practice 7: Overview

In this practice, you gain practical experience in producing hierarchical reports.

Note: Question 1 is a paper-based question.

Practice 7

1. Look at the following output examples. Are they the result of a hierarchical query? Explain why or why not.

Exhibit 1:

EMPLOYEE_ID	LAST_NAME	MANAGER_ID	SALARY	DEPARTMENT_ID
100	King		24000	90
101	Kochhar	100	17000	90
102	De Haan	100	17000	90
201	Hartstein	100	13000	20
205	Higgins	101	12000	110
174	Abel	149	11000	80
149	Zlotkey	100	10500	80
	Hunold	102	9000	60
200	Whalen	101	4400	10
	vvnaien		4400	
107	Lorentz	103	4200	60
141	Rajs	124	3500	50
142	Davies	124	3100	50
143	Matos	124	2600	50
144	Vargas	124	2500	50

20 rows selected.

EMPLOYEE_ID	LAST_NAME	DEPARTMENT_ID	DEPARTMENT_NAME
205	Higgins	110	Accounting
206	Gietz	110	Accounting
100	King	90	Executive
101	Kochhar	90	Executive
102	De Haan	90	Executive
149	Zlotkey	80	Sales
174	Abel	80	Sales
176	Taylor	80	Sales
103	Hunold	60	IT
104	Ernst	60	IT
107	Lorentz	60	IT

11 rows selected.

Practice 7 (continued)

Exhibit 3:

RANK	LAST_NAME
	King
2	Kochhar
2	De Haan
3	Hunold
4	Ernst

2. Produce a report snowing an organization chart for Mourgos's department. Print last names, salaries, and department IDs.

LAST_NAME	SALARY	DEPARTMENT_ID
Mourgos	5800	50
Rajs	3500	50
Davies	3100	50
Matos	2600	50
Vargas	2500	50
Walsh	3100	50
Feeney	3000	50
OConnell	2600	50
Grant	2600	50

9 rows selected.

Display his immediate manager first.

	LAST_NAME	
Hunold		
De Haan		
King		

Practice 7 (continued)

4. Create an indented report showing the management hierarchy starting from the employee whose LAST_NAME is Kochhar. Print the employee's last name, manager ID, and department ID. Give alias names to the columns as shown in the sample output.

NAME	MGR	DEPTNO
Kochhar	100	90
Greenberg	101	100
Faviet	108	100
Chen	108	100
Sciarra	108	100
Urman	108	100
Popp	108	100
Whalen	101	10
Mavris	101	40
Baer	101	70
Higgins	101	110
Gietz	205	110

If 12 rows selected.

5. Produce a company organization chart that shows the management hierarchy. Start with the person at the top level, exclude all people with a job ID of IT_PROG, and exclude De Haan and those employees who report to De Haan.

LAST_NAME	EMPLOYEE_ID	MANAGER_ID
King	100	
Kochhar	101	100
Greenberg	108	101
Faviet	109	108
Chen	110	108
Sciarra	111	108

•	

LAST_NAME	EMPLOYEE_ID	MANAGER_ID
Livingston	177	149
Grant	178	149
Johnson	179	149
Hartstein	201	100
Fay	202	201

101 rows selected.