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Abstract

Healthy vegetation are essential not just for environmental sustainability but also

for the development of sustainable and liveable cities. It is undeniable that human

activities are altering the vegetation landscape, with harmful implications for the

climate. As a result, autonomous detection, health evaluation, and continual moni-

toring of the plants are required to ensure environmental sustainability. This thesis

presents research on autonomous vegetation management using recent advances in

deep learning.

Currently, most towns do not have a system in place for detection and continual

vegetation monitoring. On the one hand, a lack of public knowledge and political

will could be a factor; on the other hand, no efficient and cost-effective technique of

monitoring vegetation health has been established. Individual plants health condi-

tion data is essential since urban trees often develop as stand-alone objects. Manual

annotation of these individual trees is a time-consuming, expensive, and inefficient

operation that is normally done in person. As a result, skilled manual annotation

cannot cover broad areas, and the data they create is out of date.

However, autonomous vegetation management poses a number of challenges due

to its multidisciplinary nature. It includes automated detection, health assessment,

and monitoring of vegetation and trees by integrating techniques from computer

vision, machine learning, and remote sensing. Other challenges include a lack of

analysis-ready data and imaging diversity, as well as dealing with their dependence

on weather variability. With a core focus on automation of vegetation management

using deep learning and transfer learning, this thesis contributes novel techniques

for Multi-view vegetation detection, robust calculation of vegetation index, and real-

time vegetation health assessment using deep convolutional neural networks (CNNs)

and deep learning frameworks.

The thesis focuses on four general aspects: a) training CNN with possibly inac-

curate labels and noisy image dataset; b) deriving semantic vegetation segmentation

from the ordinal information contained in the image; c) retrieving semantic veg-

etation indexes from street-level imagery; and d) developing a vegetation health

assessment and monitoring system.

Firstly, it is essential to detect and segment the vegetation, and then calculate the

pixel value of the semantic vegetation index. However, because the images in multi-

sensory data are not identical, all image datasets must be registered before being fed



iv

into the model training. The dataset used for vegetation detection and segmenta-

tion was acquired from multi-sensors. The whole dataset was multi-temporal based;

therefore, it was registered using deep affine features through a convolutional neural

network. Secondly, after preparing the dataset, vegetation was segmented by using

Deep CNN, a fully convolutional network, and U-net. Although the vegetation index

interprets the health of a particular area’s vegetation when assessing small and large

vegetation (trees, shrubs, grass, etc.), the health of large plants, such as trees, is de-

termined by steam. In contrast, small plants’ leaves are evaluated to decide whether

they are healthy or unhealthy. Therefore, initially, small plant health was assessed

through their leaves by training a deep neural network and integrating that trained

model into an internet of things (IoT) device such as AWS DeepLens. Another deep

CNN was trained to assess the health of large plants and trees like Eucalyptus. This

one could also tell which trees were healthy and which ones were unhealthy, as well as

their geo-location. Thus, we may ultimately analyse the vegetation’s health in terms

of the vegetation index throughout time on the basis of a semantic-based vegetation

index and compute the index in a time-series fashion.

This thesis shows that computer vision, deep learning and remote sensing ap-

proaches can be used to process street-level imagery in different places and cities,

to help manage urban forests in new ways, such as biomass-surveillance and remote

vegetation monitoring.
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Chapter 1

Introduction

Experiments upon vegetation give

reason to believe that light

combines with certain parts of

vegetables, and that the green of

their leaves, and the various colors

of flowers, is chiefly owing to this

combination.

Antoine Lavoisier

Natural greenery and healthy vegetation are essential characteristics of the urban

environment, which offers various advantages, such as improved air quality, human

health facilities, storm-water runoff control, carbon reduction, and increased property

values. It is widely known that vegetation in urban environments provides a wide

range of ecosystem services to the surrounding environment. They improve the

quality of the environment, alleviate the adverse effects of human presence, enhance

the anthropic environment, and help people identify with their cultural heritage.

Plants in general, and trees in particular, cannot be considered to be independent

of urban activities and infrastructure, as is often assumed to be true. By providing

ecosystem services, urban vegetation can improve the overall quality of life, and it

has been claimed that it can help to minimise the negative effects of global warming



2

on human health. When it comes to Australia, the country is the sixth-largest in

terms of land area, with natural vegetation, forests, and woods covering 16% of the

country’s total land area. Federal and state governments undertake a variety of

initiatives to provide people with access to clean, fresh air while also contributing

significantly to global warming reduction efforts [4].

Environmental monitoring is now considered a critical task in order to evalu-

ate the effectiveness of environmental policies. When it comes to environmental

monitoring, one of the most important aspects is to keep an eye out for informa-

tion about vegetation, which is essential for predicting ongoing trends at an early

stage. In order to preserve and conserve natural resources such as green areas, it

is necessary to conduct continual vegetation identification and monitoring through-

out the year. Vegetation changes in the urban environment have been shown to be

significantly associated with changes in the kind of land cover (for example, build-

ing developments). It is necessary to document the change in vegetation in order

for land management professionals to work in a good way towards improving the

urban environment. Because urban trees are often grown as stand-alone objects, it

is necessary to collect data on individual tree health conditions. However, manual

annotation of these one-of-a-kind trees is a time-consuming and expensive opera-

tion. Thus, manual annotation by specialists is not scalable to wide areas, and the

generated data is not up-to-date in a timely manner. This is accomplished through

a variety of methods, including the use of drones and UAVs, satellites, and remote

sensing, with the assistance of land-care groups, environmental groups, indigenous

organisations, and local councils [4].

The effects of plant disease on quantitative and qualitative production [5] are

devastating, resulting in a striking blow to farmers, traders, and consumers. Tradi-

tionally, farmers detect and diagnose plant diseases through their observations and
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rely upon the opinions of local experts and their past experiences. An expert can

determine whether or not a plant is healthy [6]. If a plant is found unhealthy, no-

ticeable symptoms on its leaves, stems and fruits are observed and reported. Plant

disease diagnosis incorporates a substantially high degree of difficulty through visual

examination of the signs on plant leaves. Because of this challenge and the significant

number of grown plants and their existing phytopathological issues, even qualified

agronomists and plant pathologists sometimes struggle to accurately identify partic-

ular diseases. They are consequently driven to wrong assumptions and remedies [7].

Practical plant health assessment and disease diagnosis can improve product quality

and prevent production loss. Early detection and classification of crop diseases are

significant to securing specific species’ production [8]. When a plant gets infected

by a particular disease, substantial symptoms are shown on the leaves, which help

identify and classify that disease [9]. It is therefore essential to control and assess

disease spread [10].

The study of vegetation segmentation, detection, and health assessment is not

limited to a single field of science; it is a topic of research in a variety of fields such

as computer vision and artificial intelligence (AI). Machine vision is used to examine

vegetation segmentation, detection, and health assessment. With the advancement

in computer vision, researchers are equipped enough to develop the algorithms to

have an automated system for vegetation monitoring.

As in ecology, the vegetation index of some particular sites gives a lot of infor-

mation regarding their environment. Estimating vegetation cover and biomass is

commonly done by calculating various vegetation indexes for automated urban veg-

etation management and monitoring. However, most of these indexes fail to capture

robust estimation of vegetation cover due to their inherent focus on colour attributes,

with limited viewpoint and ignoring seasoning variations. It is critical to document
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changes in vegetation so that land management professionals may work to improve

the urban environment. It turns out that changes in the type of land cover (like build-

ing developments) have a big impact on how plants change around cities. However,

existing approaches have been highly focused on spectral analysis and colour vari-

ations. For instance, the Normalized Difference Vegetation Index (NDVI) tends to

amplify atmospheric noise in the near-infrared reflectance (NIR) and red bands and

becomes very sensitive to background variation. Therefore, it does not work well for

RGB images for street-level vegetation analysis. RGB-based vegetation indexes, on

the other hand, aren’t very good at predicting how much vegetation there is because

they only look at green colours and don’t take into account seasonal changes.

Moreover, human observation’s cost, time, and logistics limit many studies, yet

ecologists have only begun to use automated tools. They are increasingly relying

on diverse datasets, from air-borne photographs to deep-sea videos. Without using

computer vision and deep learning techniques, their ability to manage and analyse

these datasets is limited. Multisensory data, on the other hand, has images that

aren’t the same. All image datasets must be registered before they can be used in

training a model.

Machine learning (ML) [11] algorithms serve a lot in classifying and identifying

vegetation. ML helps monitor the health assessment of plants and predict diseases

in the plants at early stages [9]. New ML models have evolved over time, such

as SVM [12], VGG architectures [13], R-FCN [14], Faster R-CNN [15], SDD [16]

and many others. The researchers used them for their experiments in recognising

and classifying images. Some of those are used in the automation of agriculture

systems [17]. Computer vision is the scientific subject that deals with these areas of

vegetation management analysis study.

Deep Learning (DL) is a relatively new subject in machine learning that has the
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advantage of automatically extracting intermediate feature representations from raw

textual input by building a hierarchical structure [119]. In the field of remote sensing,

deep learning-based image segmentation has been effectively employed to segment

satellite images, including strategies for urban planning and precision agriculture.

Photos taken by drones (UAVs) have also been split up using Deep Learning-based

algorithms, which can help solve major environmental problems caused by climate

change.

Computer vision is a sub-field of artificial intelligence (AI) concerned with the

development of visual perception techniques for computers, which have become an

integral aspect of modern life. Computer vision encompasses image processing, ma-

chine vision, and pattern analysis, all of which are closely linked research areas. The

breadth of approaches and applications they cover overlaps significantly. This means

that the fundamental approaches utilised and developed in these domains are nearly

the same, with minor changes. Success in one sector encourages success in the other.

This thesis uses a multidisciplinary approach to automate vegetation detection

and monitoring. This thesis studies various vegetation traits as a research challenge

in computer vision and video understanding. These in-depth traits and character-

istics can aid in the development of computer vision algorithms that can assist in

separating plants and determining their health. A core focus of this thesis is the use of

semantic segmentation, as robust segmentation of urban vegetation accurately and

efficiently is critical. When it comes to vegetation management, targeted control

and elimination of undesired vegetation, ranging from weeds and shrubs to branches

and trees, are used to achieve the desired result. Semantic segmentation assigns a

set of object kinds to each image pixel (for example, people, trees, sky, and cars).

Pixel-level labelling is the term for this procedure.An image classification task, which

predicts a single label for the whole image or frame, is often a more difficult one.



6

This is because it often takes more time and effort.

The following sections describe motivations, aims , objectives, contributions and

organisation of the thesis.

1.1 Motivation

The adoption of green infrastructure schemes is transforming the urban vegetation

in many places. These are multibillion-dollar programmes [18] that finance or incen-

tivize the installation of green infrastructure (such as parks, bioswales, street trees,

and rain gardens) or the replacement of impervious surfaces (such as asphalt) with

pervious ones (e.g., grass). Despite their size and cost, however, programmes are

rarely empirically evaluated due to data quality and attribution issues. This re-

search investigates whether very high-resolution remotely sensed aerial imagery can

be used to track patterns of urban greening across a metropolis, including differences

in dynamics between public and private areas.

Our passions and intended outcomes increase our self-esteem and motivation.

The motivation for this thesis’ research is based on the artefact of interest to the

work and the benefits of the linked research activity. The following issues prompted

us to investigate and conduct research in the domain of vegetation segmentation and

health assessment:

1. Vegetation segmentation and health is a hot topic in computer vision re-

search [19]. Computer vision experts have solved the majority of low and

mid-level vision difficulties, and they are currently focused on higher-level vi-

sion challenges. The Semantic Vegetation Index is a high-level computer vision

problem that encompasses computer vision’s knowledge, scope, accomplish-

ments, and challenges. On the one hand, the answers to this challenge are
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based on low and mid-level vision solutions, but they can also assist in the

achievement of higher-level computer vision goals.

2. The utility and applicability of a new area in tackling real-world problems is

an essential personal motivation for learning it. The applications and applica-

bility of automated vegetation detection and health monitoring are extensive.

The Semantic Vegetation Index and Monitoring can be used for a variety of

purposes. Automated vegetation index computation, plant health evaluation,

and tree geo-location identification are just a few of the application areas. One

of the most important motivators for studies on vegetation analysis, detec-

tion, understanding, and recognition is the application domains. In addition,

computer vision experts are sorting and suggesting several more use areas.

3. Other disciplines of computer vision recognise the issues that robust multi-

temporal picture registration, semantic vegetation index, and health assess-

ment encounter. If we can develop solutions to these issues and problems, they

will be beneficial to other computer-related professions. The major issues of

dealing with noise, occlusion, temporal variations, feature extraction, robust

matching, avoiding tracking, intra-class variation handling, and correct classi-

fication methods are all well-known in the computer vision, image processing,

and machine learning research fields. During the development of their solutions,

semantic vegetation based index calculation, multi-sensory data registration,

and vegetation health assessment all encounter similar obstacles. As a result,

computer vision and research on vegetation segmentation and monitoring helps

other parts of computer vision and research.

4. Several approaches to automated semantic vegetation segmentation and health

monitoring have been developed in recent years. The accuracy and complex-
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ity of the proposed methodologies vary. Despite these answers, our research

correctly identifies a number of research gaps, which pushes us to continue

working in this area. In this thesis, we attempted to fill in these research

gaps with suggestions and answers to these issues. The next section will go

into the specifics of these research gaps, as well as our role in suggesting fresh

solutions. However, these research gaps are related to the unexplored or under-

utilised exploitation and application of significant deep visual elements in video

sequences and Google Street View imagery for automated health monitoring

and semantic vegetation index computation.

1.2 Aims and Objectives

This thesis aims to answer the following research questions:

1. How are multitemporal imagery such as Fluker post project dataset can be

normalized to use it for convolutional neural network training? (Chapters 2,

3 and 5)

2. How to estimate vegetation segmentation and evaluate health using the ordinal

information provided in image labels for vegetation? (Chapters 3, 4 and 5)

3. How are semantic vegetation index extracted using deep CNNs from street level

imagery such as Google Street view image dataset and Fluker post? (Chapters

6 and 7)

4. How to develop a health assessment and monitoring system for vegetation using

deep learning? (Chapters 4, 5 and 7)

The integration of the main and sub-research questions in the relevant chapters is

illustrated in Figure 1.1.
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Figure 1.1: The organizational chart of main and sub research questions.

1.3 Scope and Contribution

1.3.1 Scope

The main goal of this thesis focuses on semantic vegetation index estimation from

RGB imagery, vegetation health assessment and monitoring. The main objective is

split into interrelated sub-objectives for developing an automated detection system

for vegetation, health assessment and monitoring systems through deep learning.

First and foremost, it is necessary to detect and segment the vegetation, after

which the pixel value of the semantic vegetation index may be calculated. As a result,

because the images in multisensory data are not identical, all image datasets must be

registered before they can be used in model training. Secondly, the vegetation index

analyses the health of a certain area’s vegetation. When assessing small and large

vegetation (trees, bushes, grass, and so on), the health of large plants, such as trees,
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is evaluated by their stems, while the health of small plants, on the other hand, is

evaluated by their leaves to determine whether they are healthy or unhealthy. As a

result, we will be able to assess the health of the vegetation in terms of the vegetation

index over the course of time. All these fall under the scope of this thesis.

1.3.2 Contribution

Through this research, we discovered significant research gaps in the areas of vege-

tation segmentation, vegetation index, health evaluation, and unique solutions with

far-reaching implications for the future of the relevant field throughout this research.

The artefacts of this thesis are the research gaps and their related remedies.

This thesis is presented as a thesis-by-publication, with the following primary

methodology chapters produced utilising linked research publications:

1.3.2.1 Data Preparation and Image Registration using Affine Invariant

Convolutional Features (Chapter 2)

Direct automation of large multi-temporal image collections is not suitable for any

image analysis due to variations in imaging conditions such as variations in view-

points, scales, luminosity, and camera characteristics. In other words, this multi-

temporal image data is not registered. Thus, a robust multi-temporal image regis-

tration is urgently required. Chapter 2 proposes a way to make it easier for computers

to keep an eye on the environment by registering multiple images taken at the same

time. It uses deep convolutional networks to do this.

The practice of overlaying at least two or more images of the same subject ob-

tained at different times and from different views and sensors is known as multi-

temporal image registration. This procedure aligns two images, referred to as sensed

and reference images, geometrically. Various multi-temporal image registration al-
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gorithms for applications such as remote sensing have been proposed over the years.

It can be determined by the size of the region (intensity values) or the characteristics

of the features (hand-crafted features like SIFT [20]). Because of their robustness

against varied image variances, there are many hand-crafted or shallow learning

feature-based approaches. Due to end-to-end feature learning, a few robust ap-

proaches based on deep features [21, 22] have recently been developed that provide

superior accuracy and quality performance compared to hand-crafted feature-based

strategies. These methods, on the other hand, are not resistant to affine transfor-

mations, which are a necessary element of repeat photography. It’s partly due to

the fact that deep convolutional networks aren’t very adept at generalising minor

picture modifications [23]. De Vos et al. [24] proposed a deformable image registra-

tion for medical imaging, but the scope differs from the multi-temporal nature of

environmental imagery.

The affine invariant deep image registration technique used in this study ad-

dresses a gap in the literature by demonstrating how it can control imaging changes

in repeat photography while still maintaining good quality. The following research

questions were addressed in an attempt to provide answers: The question is: (i).

How might deep learning and citizen science be integrated in order to provide auto-

mated, community-based environmental monitoring? (ii). In what ways may deep

convolutional networks be used to improve the accuracy of multi-temporal image reg-

istration while also making it more robust against affine transformations? (iii). Is

it possible to improve the performance of convolutional models in image registration

by increasing the depth of the models?

This chapter makes the following contributions by addressing the following re-

search questions:

1. Introduced a deep affine invariant network for non-rigid image registration of



12

multi-temporal repeat photography, which is used for the first time in this

paper.

2. Integrate affine invariance and robust outlier detection for image point match-

ing in order to achieve robust multi-temporal image registration using image

point matching.

Related publication:

• Multi-temporal registration of environmental imagery using affine invariant

convolutional features.

Khan, A., Ulhaq, A., & Robinson, R. W. (2019, November). Multi-temporal

registration of environmental imagery using affine invariant convolutional fea-

tures. In Pacific-Rim Symposium on Image and Video Technology (pp. 269-

280). Springer, Cham. doi: https://doi.org/10.1007/978-3-030-34879-

3 21.

1.3.2.2 The Vegetation Index Interprets the Health of a Particular Area’s

Vegetation (Chapters 3 and 6)

It has been found in the literature that automated segmentation is used to extract

the vegetation region for the purpose of calculating the vegetation index. There have

been several approaches proposed to use remote sensing imagery for this purpose [25,

26]. However, advances in the field of computer vision have enabled us to employ

approaches to obtain an automated system for vegetation segmentation, allowing us

to calculate quantitative measures relating to vegetation. Fortin et al., [27] proposed

an algorithm for estimating landscape composition from repeat photography, but

they, like other researchers, relied on a manual segmentation scheme.

In the chapter 3, research is being carried out in order to come up with a novel

https://doi.org/10.1007/978-3-030-34879-3_21
https://doi.org/10.1007/978-3-030-34879-3_21
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approach of an automated system for segmentation and then vegetation measurement

in repeat photography, which is done with the help of sophisticated computer vision

techniques. The proposed algorithm carries out processing to calculate the vegetation

index from the images of the same site acquired in different phases of a year as

well as in different years. A machine learning algorithm, support vector machine

(SVM) was deployed for this job, which was trained using colour and texture features

extracted from the patches of the image. The algorithm produced promising results

for segmentation as well as for the calculation of quantitative measures for vegetation

approximation using the dataset provided. In the field of ecology, the vegetation

index of a particular site provides a lot of information about the environment in

which it is located.

Related publication:

• Detection of vegetation in environmental repeat photography: a new algorithmic

approach in data science.

Khan, A., Ulhaq, A., Robinson, R., & Rehman, M. U. (2020). Detection of

vegetation in environmental repeat photography: a new algorithmic approach

in data science. In Statistics for Data Science and Policy Analysis (pp. 145-

157). Springer, Singapore. doi: https://doi.org/10.1007/978-981-15-173

5-8 11.

• A Multiview Semantic Vegetation Index for Robust Estimation of Urban Vege-

tation Cover.

Khan, A., Asim, W., Ulhaq, A., & Robinson, R. W. (2022). A Multiview

Semantic Vegetation Index for Robust Estimation of Urban Vegetation Cover.

Remote Sensing, 14(1), 228. doi: https://doi.org/10.3390/rs14010228.

https://doi.org/10.1007/978-981-15-1735-8_11
https://doi.org/10.1007/978-981-15-1735-8_11
https://doi.org/10.3390/rs14010228
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1.3.2.3 Vegetation Health Assessment (Chapters 4 & 5)

The health assessment of vegetation is carried out by the leaves of small plants

and by the stems of large plants/trees. It is very obvious that the effects of plant

disease on quantitative and qualitative production [5] are devastating, resulting in

a striking blow to farmers, traders, and consumers. The health of vegetation is

very essential not only for the preservation of plant species but also for their impact

on the economy, people, and food production. Traditionally, farmers detect and

diagnose plant diseases through their observations and rely upon the opinions of

local experts and their past experiences. An expert can determine whether or not

a plant is healthy [6]. If a plant is found unhealthy, noticeable symptoms on its

leaves and fruits are observed and reported. Plant disease diagnosis incorporates a

substantially high degree of difficulty through visual examination of the symptoms

on plant leaves. Because of this challenge and the huge number of grown plants

and their existing phytopathological issues, even qualified agronomists and plant

pathologists sometimes struggle to accurately identify particular diseases and are

consequently driven to make wrong assumptions and remedies [7]. Practical plant

health assessment and disease diagnosis can improve product quality and prevent

production loss. But there were some drawbacks, such as a lack of usability because

of hardware complexity issues, inefficient use, and limited real-time use in real-world

operational use.

1.3.2.3.1 Small Plants

Automated identification and classification of plant leaf health is critical for both the

reduction of economic losses and the conservation of specific plant species. Various

machine learning (ML) models have been proposed in the past for the detection and

identification of plant leaf diseases. Despite this, their usability is limited because
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they are very complicated to use, they can’t grow, and they don’t work well in real

life. In chapter 4, DeepLens Classification and Detection Model (DCDM) is a real-

time solution to this problem. It can automatically detect and classify leaf diseases in

fruit trees (apple, peach, strawberry), as well as vegetable plants (potato and tomato)

using scalable transfer learning on Amazon SageMaker and import the results into

AWS DeepLens for real-time functional use. Cloud integration enables our approach

to be scalable and accessible from anywhere at any time. The experiments on a large

image dataset of healthy and unhealthy fruit trees and vegetable plant leaves yielded

very impressive results, including the ability to diagnose plant diseases in real-time

on the leaves of the plants. Using AWS DeepLens, it takes on average 0.349s to test

an image for disease diagnosis and classification. This means that the consumer will

get disease information in less than a second from the service.

Related publication:

• Real-time Plant Health assessment via Implementing Cloud-based Scalable Trans-

fer Learning on AWS DeepLens.

Khan, A., Nawaz, U., Ulhaq, A., & Robinson, R. W. (2020). Real-time plant

health assessment via implementing cloud-based scalable transfer learning on

AWS DeepLens. Plos one, 15(12), e0243243. doi: https://doi.org/10.137

1/journal.pone.0243243.

1.3.2.3.2 Large Plants

Our urban lifestyle places a high value on the identification and continuous mon-

itoring of vegetation (trees). The chapter 5 proposes a deep learning-based net-

work, the Siamese convolutional neural network (SCNN), combined with a modified

brute-force-base line-of-bearing (LOB) algorithm that evaluates the health of euca-

lyptus trees as healthy or unhealthy and identifies their geo-location in real-time

https://doi.org/10.1371/journal.pone.0243243
https://doi.org/10.1371/journal.pone.0243243
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from Google Street View (GSV) and ground truth images. The dataset depicts the

various details of eucalyptus trees, including multiple viewpoints, scales, and dif-

ferent shapes and textures, among other things. This research contributes to the

automated identification of eucalyptus trees with health issues or dead trees, which

can assist urban green management and the local council in making decisions about

tree planting and tree care improvements. As a whole, this study shows that a deep

learning algorithm can identify the majority of healthy and unhealthy eucalyptus

trees in real time, even when the background is complicated.

The key contributions are:

1. classification of trees that are in a healthy or unhealthy state; and

2. identification of the geo-location of the eucalyptus trees.

All of these evaluations are done on the basis of ground truth data collected from

the streets by the researchers themselves. It is demonstrated in the experiments that

the proposed method is capable of detecting and classifying healthy and unhealthy

eucalyptus trees in a variety of datasets with a variety of backgrounds. The proposed

method for geo-location identification gives reliable results and could be applied to

the geo-identification of other objects on the roadside.

Related publication:

• Health Assessment of Eucalyptus Trees Using Siamese Network from Google

Street and Ground Truth Images.

Khan, A., Asim, W., Ulhaq, A., Ghazi, B., & Robinson, R. W. (2021). Health

Assessment of Eucalyptus Trees Using Siamese Network from Google Street

and Ground Truth Images. Remote Sensing, 13(11), 2194. doi: https://do

i.org/10.3390/rs13112194.

https://doi.org/10.3390/rs13112194
https://doi.org/10.3390/rs13112194
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1.3.2.4 Semantic Vegetation Index and Multiview Semantic Vegetation

Index (Chapter 6)

Vegetation indices (VIs) were created in the 1970s so that satellite sensors could

keep an eye on terrestrial landscapes. They have been very successful at measuring

things like vegetation condition, foliage, cover, phenology, and processes like evap-

otranspiration (ET) and primary productivity, which are related to the amount of

light a canopy absorbs (fPAR) [28].

Despite the fact that there are a variety of vegetation indexes available in the

literature, they are either limited to a specific image modality and colour feature, or

they overlook essential flora semantic information. Because of this, they are more

susceptible to noise, resulting in inaccurate estimation.

In order to address these shortcomings, a novel semantic vegetation index (SVI) is

proposed. This approach incorporates deep semantic segmentation into the process

of vegetation index estimation. SVI is robust to the colour, viewpoint, and seasonal

variations. Furthermore, it is capable of being applied directly to RGB images.

Using deep semantic segmentation and multiview field coverage, it can be integrated

into any vegetation management platform. It can be expanded to include multiple

views in order to increase exposure and ensure accurate calculations. A multiview

semantic vegetation index (MSVI) approach was proposed for this purpose. It is

not asserted that the segmentation approach made a significant contribution to this

study. Nonetheless, it compares a variety of approaches in order to determine which

one is the most appropriate for achieving this goal. For example, the MSVI can be

used to look at urban forestry and vegetation biomass in cities. It’s a reliable and

accurate way to figure out how much plant cover there is on the ground at street

level.
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Related publication:

• A Multiview Semantic Vegetation Index for Robust Estimation of Urban Vege-

tation Cover.

Khan, A., Asim, W., Ulhaq, A., & Robinson, R. W. (2022). A Multiview

Semantic Vegetation Index for Robust Estimation of Urban Vegetation Cover.

Remote Sensing, 14(1), 228. doi: https://doi.org/10.3390/rs14010228.

1.3.2.5 Vegetation Health Monitoring Based on Semantic Vegetation In-

dex (Chapter 7)

The calculation of values of various vegetation indexes over a period of time is

frequently attributed to the automated monitoring of vegetation health in a land-

scape. However, such approaches suffer from the inaccurate estimation of vegeta-

tional change as a result of an overreliance on index values based on the colour

attributes of vegetation or the availability of multi-spectral bands. However, one

common observation is that colour attributes are sensitive to seasonal variations as

well as imaging devices, resulting in false and inaccurate change detection and mon-

itoring. An extension of previous work (chapter 6) is added to create a semantic

vegetation health monitoring platform that can be used to keep track of vegetation

health in a large area/landscape. Initially, a deep learning-based semantic segmen-

tation model is used to classify vegetation in repeated photographs, which is the

subject of the proposed article. An index of semantic vegetation is then calculated

and plotted in a time series to account for seasonal variations and environmental

impacts. According to the results, there is a lot more or less vegetation cover each

year. The semantic segmentation model did well when it came to estimating how

much vegetation cover each pixel had.

It provides a dependable platform for handling citizen science data in the context

https://doi.org/10.3390/rs14010228
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of automated community service initiatives. In general, the use of repeat photogra-

phy in vegetation monitoring adds significant value to other quantitative data derived

from remote sensing and field measurements, as well as to other types of vegetation

monitoring. These photos can also help policymakers and the general public become

more aware of how the landscape and vegetation are changing. They can also show

how land management practices affect the environment.

Related publication:

• A Deep Semantic Vegetation Health Monitoring Platform For Citizen Science

Imaging Data.

Khan, A.; Asim, W.; Ulhaq, A.; Robinson, R.W. “A Deep Semantic Vegeta-

tion Health Monitoring Platform For Citizen Science Imaging Data.”

Under Review with PLOS ONE Journal.

1.4 Research Datasets

Almost all publicly available vegetation related datasets were used in this study.

The utilisation of publicly available datasets enables for comparison of different ap-

proaches and provides insight into respective methodologies’ limitations. The vege-

tation analysis community is familiar with these datasets which range in complexity,

capture environment, and camera settings. The methods suggested in this thesis are

put to the test on these datasets, and compared to current research. This thesis used

the following publicly available or self-acquired datasets for conducting this research:

• Google Street View (GSV): Google Street View is a feature of Google Maps and

Google Earth that provides interactive panoramas from around the world.It

began in numerous locations across the United States in 2007 and has since
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spread to encompass cities and rural areas all around the world. On Google

Maps, streets with Street View imagery are depicted as blue lines. Google

Street View allows users to interact with stitched VR panoramas. The majority

of photography is done on a car, but there is also photography done on a

tricycle, camel, boat, snowmobile, underwater device, and on foot.

• Fluker Post Project dataset: Fluker Posts are actual wooden posts that serve

as photo points in the environment. They are placed in strategic positions

on approximately 168 sites. On a Fluker Post, no camera is left. Instead,

passers-by used their mobile phones to take photos of the incident using the

Fluker Post app. This basic repeat photography approach is a useful tool for

long-term natural resource management.

• PlantVillage dataset: There are 54303 healthy and unhealthy leaf photos in

the PlantVillage dataset, which are grouped into 38 groups based on species

and disease. There are 39 different kinds of plant leaf and background photos

accessible in this dataset. There are 61,486 pictures in this dataset. To increase

the size of the data collection, we applied six distinct augmentation approaches.

Image flipping, gamma correction, noise injection, PCA colour augmentation,

rotation, and scaling are among the techniques used.

• Tarnab Farm image dataset: Tarnab farm Peshawar’s agricultural research or-

ganization has been a driving force behind the province’s agricultural produc-

tion. It has made a significant contribution to the economic prosperity of the

farming community over the course of its 109-year history by introducing and

evolving high-yielding crop, fruit, and vegetable varieties, standardizing agro-

nomic techniques, and disseminating the latest know-how on crop husbandry,

soil management, fertiliser use, and plant protection measures. Farmers are
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told about the findings of the research by reading research papers, technologi-

cal bulletins, and popular publications in their own language.

1.5 Thesis Agenda

This thesis is structured in the format of a “Thesis with publication”. The thesis

chapters are organised and presented on the basis of their uniqueness, in such a way

that they validate the previous claims.

The details of the organisational arrangement of chapters are illustrated in Fig-

ure 1.2.

Figure 1.2: The flow of work in this thesis is shown in this organisation chart.

Chapter 1 presents the thesis background and motivation, aims and scope, con-

tribution and significance, followed by the layout of the thesis with a brief
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description.

Chapter 2 presents a robust multi-temporal image registration approach based on

affine invariance and convolutional neural network architecture. The affine in-

variant deep image registration techniques can handle imaging variations well in

repeat photography while maintaining quality performance. “Multi-temporal

Registration of Environmental Images Using Affine Invariant Convolutional

Features” is the title of this chapter’s research. It was published in Image and

Video Technology, PSIVT 2019, doi: https://doi.org/10.1007/978-3-03

0-34879-3 21, which is a conference on image and video technology.

Chapter 3 represents a novel approach towards automatic environmental analysis

where the algorithm will carry out processing to calculate the vegetation in-

dex based on binary classification from the images of the same site acquired

at different times of the year as well as in different years. The research work

for this chapter has been published as “Detection of Vegetation in Environ-

mental Repeat Photography: A New Algorithmic Approach in Data Science”,

in Statistics for Data Science and policy analysis. Springer, Singapore. Doi:

https://doi.org/10.1007/978-981-15-1735-8 11.

Chapter 4 proposed a DeepLens Classification and Detection Model (DCDM)

for plant leaf health assessment. In this study, transfer learning techniques

are applied in AWS SageMaker, a cloud-based environment, to the proposed

model known as the DeepLens Classification and Detection Model (DCDM), to

identify and classify various fruits and vegetable leaves as either healthy or not,

and to detect their disease based on a deep convolutional neural network. After

completion of training DCDM, it was deployed into AWS DeepLens to make

it a scalable and efficient real-time classification and identification model. The

https://doi.org/10.1007/978-3-030-34879-3_21
https://doi.org/10.1007/978-3-030-34879-3_21
https://doi.org/10.1007/978-981-15-1735-8_11
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related research work has been published as “Real-time plant health assessment

via implementing cloud-based scalable transfer learning on AWS DeepLens.”

Plos one, 15(12), e0243243.doi: https://doi.org/10.1371/journal.pone.0

243243.

Chapter 5 also contains a paper that proposes a deep learning-based network,

the Siamese convolutional neural network (SCNN), combined with a modified

brute-force-base line-of-bearing (LOB) algorithm that evaluates the health of

eucalyptus trees as healthy or unhealthy and identifies their geo-location in

real-time from Google Street View (GSV) and ground truth images. The re-

search paper for this chapter has been published as “Health Assessment of Eu-

calyptus Trees Using Siamese Network from Google Street and Ground Truth

Images”, in Remote Sensing, 13(11), 2194. doi: https://doi.org/10.3390/

rs13112194.

Chapter 6 presents a robust vegetation index based on semantic segmentation

called the multiview semantic vegetation index (MSVI). This MSVI is based on

deep semantic segmentation and multiview field coverage and can be integrated

into any vegetation management platform. This chapter also consists of a

research paper that has been published as “A Multiview Semantic Vegetation

Index for Robust Estimation of Urban Vegetation Cover”, in Remote Sensing,

14 (1), 228. doi: https://doi.org/10.3390/rs14010228.

Chapter 7 is the extension of Chapter 6, which provides automatic vegetation

health monitoring using repetitive photography. In this article, we build upon

our previous work on the development of a Semantic Vegetation Index (SVI)

and expand it to introduce a semantic vegetation health monitoring platform

to monitor vegetation health in a large landscape. The research work for this

https://doi.org/10.1371/journal.pone.0243243
https://doi.org/10.1371/journal.pone.0243243
https://doi.org/10.3390/rs13112194
https://doi.org/10.3390/rs13112194
https://doi.org/10.3390/rs14010228
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chapter has been submitted to a journal, “A Deep Semantic Vegetation Health

Monitoring Platform for Citizen Science Imaging Data” (under production).

Chapter 8 provides a conclusion to the work that has been presented as well as

directions for future exploration.

1.6 Chapter Summary

In this chapter, we presented our research topic, its background, significance, and

applications, our motivation to work on this problem, and the thesis’s organizational

structure.

In the next chapter, we’ll show how deep affine features can be used to register

multi-temporal vision using a convolutional neural network. In addition, we would

establish a link between our research contributions and the elimination of flaws in

earlier techniques.
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Chapter 2

Multi-Temporal Registration of

Environmental Imagery using

Affine Invariant Convolutional

Features

As mentioned in list of publications, this chapter with same title was published as

an original research paper in Pacific-Rim Symposium on Image and Video Tech-

nology (PSIVT) - 2019. Lecture Notes in Computer Science, vol 11854, (pp. 269-

280),Springer, Cham. doi: https://doi.org/10.1007/978-3-030-34879-3 21.

The contents are the same, with the exception of certain layout adjustments to ensure

consistency in the presentation across the thesis.

Abstract

Repeat photography is the practise of collecting multiple images of the same sub-

ject at the same location but at different timestamps for comparative analysis. The

visualisation of such imagery can provide a valuable insight for continuous monitor-

ing and change detection. In Victoria, Australia, citizen science and environmen-

https://doi.org/10.1007/978-3-030-34879-3_21
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tal monitoring are integrated through visitor-based repeat photography of national

parks and coastal areas. Repeat photography, however, poses enormous challenges

for automated data analysis and visualisation due to variations in viewpoints, scales,

luminosity, and camera attributes. To address these challenges brought by data

variability, this paper introduces a robust multi-temporal image registration ap-

proach based on affine invariance and convolutional neural network architecture.

Our experimental evaluation on a large repeat photography dataset validates the

role of multi-temporal image registration for better visualisation of environmental

monitoring imagery. Our research will establish a baseline for the broad area of

multi-temporal analysis.

2.1 Introduction

Australia is the 6th largest country in the world by land, with 16% area covered

by naive vegetation, forests, and woodlands. There are more than 500 national

parks with almost 4% land. The Australian government is seriously taking every

step to take care of the natural environment and keep this country green. Federal

and state governments organise various projects to give fresh and healthy air to the

people and play a vital role in reducing global warming. Environmental monitoring is

essential for all these natural resources, especially to protect and conserve the green

areas and national parks. This is being achieved with the help of land-care groups,

environmental groups, indigenous organisations and local councils by various means,

such as drones, UAVs, satellites and remote sensing. However, such efforts and

approaches have their pros and cons and require extensive resources for operation.

An alternative approach to environmental monitoring could be based on citizen

science, which actually engages local communities and visitors to look after the nat-
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ural resources. It is achievable by taking photos of visited areas with their smart

phones and cameras and sharing them with environmental scientists. Those pho-

tographs can be helpful for important observations, and appropriate interventions

could be designed if any significant change is found during manual inspection. One

example of such a project is the “The Fluker Post Project” [29], which involves

numerous points in more than 150 locations all over Australia. Visitors and local

communities are encouraged to take photos and send them back to the main web-

site. Such projects are based on the concept of repeat photography, which is an

approach for comparing photos of the same location taken at different timestamps

[30]. To date, the project is successfully running and has collected valuable imaging

data about vegetation, parks, catchments and waterways. One example is shown in

Figure 2.1.

Figure 2.1: Illustrative repeat photography from Fluker Post community based image
collection: Right image is reference post (coded as WEPS1) installed at Point Richie,
Warrnambool, Victoria, Australia, left six photos were taken by different visitors at
different times of the year. It can be observed that there is little control how visi-
tors capture images from post or its surroundings. Variations in viewpoints, scales,
lighting conditions and seasonal variations pose enormous challenges for automated
multi-temporal image registration.
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This extensive image data is currently being monitored manually to suggest ap-

propriate interventions by state organisations like Parks Victoria. This manual ap-

proach, however, is less effective due to the abundance of data, and thus more au-

tomation is required to facilitate and speed up the data analysis. It is even more

challenging in the case of repeat photography data, as manual image analysis is so

cumbersome and inefficient. However, direct automation of such a large image collec-

tion is not suitable for any image analysis due to variations in imaging conditions such

as variations in viewpoints, scales, luminosity, and camera characteristics. In other

words, this multi-temporal image data is not registered. Thus, robust multi-temporal

image registration is urgently required. This paper proposes a robust multi-temporal

image registration technique for environmental repeat photography data based on

deep convolutional networks to facilitate automated environmental monitoring.

Multi-temporal image registration is the process of overlaying at least two or

more images of the same subject but taken at different times and from different view

points and sensors. Actually, this process aligns geometrically two images known as

sensed and reference images, respectively. Over the years, various multi-temporal

image registration approaches have been proposed for applications such as remote

sensing. It can be based on area (intensity values) or features (hand crafted fea-

tures like SIFT [20]). Due to their robustness against different imaging variations,

there is an abundance of hand-crafted or shallow learning feature based techniques.

Most recently, a few robust approaches based on deep features [21, 22] that provide

better accuracy and quality performance compared to hand-crafted feature based

techniques due to end-to-end feature learning. However, these approaches are not

robust against affine transformations which is an imperative feature of repeat pho-

tography. It is partially due to the fact that deep convolutional networks do not

provide good generalisation for small image transformations [23]. De Vos et al., [24]
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introduced a deformable image registration for medical images, but the scope is dif-

ferent from the multi-temporal nature of environmental imagery. To address this

gap in the literature, this paper has introduced an affine invariant deep image reg-

istration technique that can handle imaging variations well in repeat photography

while maintaining quality performance.

We attempt to answer the following research questions: (i) How can deep learning

and citizen science be combined to achieve automated, community based environmen-

tal monitoring? (ii) How can multi-temporal image registration be simultaneously

made accurate with deep convolutional networks and robust against affine transfor-

mations? (iii) Can the deepness of convolutional models increase the performance of

image registration?

By addressing these research questions, this paper aims to make the following

contributions:

(i) We introduce a deep affine invariant network for non-rigid image registration

of multi-temporal repeat photography;

(ii) We integrate affine invariance and robust outlier detection for image point

matching for robust multi-temporal image registration.

The rest of this paper is organized as follows: Section 2 reviews the related work.

Section 3 provides a detailed description of our proposed network design and discusses

how robust point matching is performed. Section 4 outlines our experimental set-up

and interprets the results. Section 5 summarises this paper.

2.2 Prior Work

Community Based Monitoring (CBM): Community-based monitoring (CBM)

is defined by Whitelaw et al. [31] as “a process where concerned citizens, government
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agencies, industry, academia, community groups, and local institutions collaborate

to monitor, track, and respond to issues of common community (environmental)

concern”. Over the last few years, a large number of CBM projects have been ini-

tiated around the world, mostly located in the USA, Australia, Canada, and the

Russian Federation. Lawrence and Pretty [32, 33] have reported that since the

1990s, up to 500,000 community-based groups have been established in varying en-

vironmental and social contexts only in the USA and Canada. Mobile services and

technology for community-based monitoring are covered [34]. Smart cities will ben-

efit from the Internet of Things (IoT) and related CBM architecture [35]. Notable

reviews [36, 37, 38, 39, 34, 35] provide valuable insight into community-based moni-

toring projects. These projects collect abundant multi-model data for analysis.

Repeat Photography: It used in CBM research studies due to availability of

low cost cameras and smart phones. Different methods and applications of repeat

photography are presented by Webb [40]. Various projects are available in the lit-

erature. An analysis of vegetation change in the San Juan Mountains using repeat

photography was given by Zier et al. [41] and in the Appalachian Mountains by

Hendrick et al. [42]. Digital repeat photography for phenological research in forest

ecosystems was conducted by Sonnentag et al. [30]. A tourist-based environmental

monitoring system based on principles of repeat photography is introduced by Augar

and Fluker [29] with the help of Fluker posts at various locations in Australia. School

kids were involved in collecting environmental imagery, [43]. Repeat photography

has rarely been used in Australia. Pickard et al.,[44] presented data on vegetation

changes in Australia over a century using repeat photography. However, the major-

ity of all the approaches mentioned entail cumbersome manual inspection work and

lack automation. Recent advances in computer vision, image processing, and deep

learning enable us to automate the analysis of repeat photography. Deep learning
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techniques especially convolutional neural networks, have appeared as revolutionary

development tools for automated recognition and image analysis [45].

Image Registration And Deep Learning: Repeat photography-based envi-

ronmental monitoring requires preprocessing of image collection captured over time.

One of the most important steps is image registration; more specifically, in the con-

text of the present study, it is multi-temporal image registration. Image registration

seeks to remove the two-date images’ geometric position inconsistent, making the

same image coordinates reflect the same objects. Notable surveys [46, 47, 48, 49]

cover various techniques for image registration. Image registration techniques can

be classified based on area (e.g., raw intensity values) or features (e.g., SIFT [20]).

The success of deep learning has also affected the registration process. Recently,

deep approaches are proposed [21, 50, 22] that provide better accuracy and quality

performance compared to hand-crafted feature-based techniques due to end-to-end

feature learning. However, these approaches are not robust against affine transfor-

mations, which is an imperative feature of repeat photography. Although our work

is related to a similar domain, we attempt to address shortcomings in the previous

work in our proposed approach.

2.3 The Proposed Deep Image Registration Frame-

work:

In this section, we describe the architecture of the proposed deep image registration

framework for multi-temporal image registration of repeat photographic data.

Feature-based image registration usually comprises the following stages: First,

a pair of images (sensed and reference) are submitted for feature detection and

feature descriptors are calculated. Preliminary point-wise correspondence or point
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sets are then estimated according to distance based metrics as feature pre-matching is

refined by inlier detection. It is then followed by optimal transformation parameters

estimation that guides the re-sampling and image transformation of the sensed image.

The first goal is to find deep discriminative descriptors. For this purpose, we make

use of a deep convolutional network that comprises two parts. The first part spatially

transforms the input image by generating an affine transformation for each input

sample. It then extracts local key points from feature maps of a convolutional neural

network. The second part outputs local descriptors given patches cropped around

the key points. We name these parts the affine-invariant deep feature extractor and

the deep feature descriptor.

Generation of Feature Maps: We first use ResNet [51] to generate a rich

feature map from an image I, which can be used to extract deep keypoint locations.

The reason for selecting ResNet is its effectiveness in building deep networks with-

out overfitting by injecting identity mappings or so-called shortcut connections. It

also solves the vanishing gradient problem, which refers to the situation where the

gradients from where the loss function is calculated, when the network is too deep,

would shrink to zero after several iterations of the chain rule. Such a problem causes

the weights to never update their values and thus results in no learning. ResNet has

three blocks, block of convolutional filters of 5 × 5 followed by batch normalization,

ReLU activations, and another group of 5 × 5 convolutions. These convolutions are

zero-padded to get the same output size as the input, with 16 output channels.

Affine-Invariant Deep Feature Extractor: After each block, we integrate

a spatial transformer module [52] into the network that introduces explicit spatial

transformations on feature maps, without making any changes to the CNN loss

function. During spatial transformer implementation, we use 2D spatial affine trans-

formations that help during affine invariant keypoint detection. Suppose that the
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output pixels are defined to lie on a regular grid G = Gi of elements of a generic

feature map, τθ is affine transformations, asi , b
s
i as the source coordinates in the input

feature map, and ati, b
t
i as the target coordinates of the regular grid in the output

feature map. We can write the transformation introduced by the affine transformer

as:

asi
bsi

 = τθ(Gi) = τθ


ati

bti

1

 =

θ11 θ12 θ13

θ21 θ22 θ23



ati

bti

1

 (2.1)

The first part of the spatial transformer is a localisation network that takes the

feature map as an input and outputs the parameters of the spatial transformation

that should be applied to the feature map. In the second part, the grid generator

takes the predicted transformation parameters and uses them to generate a sam-

pling grid (a set of points where the input map should be sampled to produce the

transformed output). Finally, the sampler takes the feature map and the sampling

grid as inputs to the sampler, generating the output map sampled from the in-

put at the grid points. For more implementation details of the spatial transformer,

please refer to our previous work [52]. The transformed feature maps are robust to

affine-transformations and we use them to extract affine-invariant deep discrimina-

tive features.

To capture scale-space response, we resize each feature map n times, at uniform

intervals between 1/t and t, where n = 3 and t = 2. The resulting maps are then

convolved with n 5 × 5 filters, resulting in n score maps. It is then followed by

non-maximum suppression by using a softmax operator over 15 × 15 windows in a

convolutional manner, which results in n saliency maps. Due to their scale-invariant

nature, these saliency maps are again resized to the original image size, and the
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score is unaffected. Using another softmax function, all of these saliency maps are

then merged into one map M . Similarly, orientation map θ is calculated using the

arctan function,whis is based on an existing framework [53]. We choose the top K

elements of M as keypoints and we have information of the form {x, y, s, θ} about

these keypoints. These keypoints are invariant to affine transformations, and we call

them affine-invariant deep discriminative features.

Deep Feature Descriptors: For this goal, we crop image patches around the

selected key point locations. We crop and resize them to 32 × 32. Our descriptor

network is an L2 Net [54]. It comprises convolutional layers followed by Local Re-

sponse Normalization layer (LRN) as the output layer to produce unit descriptors.

It results in 128 dimensional descriptor D for every patch.

Feature Pre-Matching And Outlier Removal: For feature matching, we use

Euclidean-distance d between the respective feature descriptors of feature points p

and q as:

d(p, q) = d(D(p), D(q)) (2.2)

These matches may have many outliers for multi-temporal image registration.

In other words, we are interested in detecting among F nearest points in a given

feature map, (pk)k=1,...,F and their predicted corresponding matches. r(pk)k=1,...,F in

the corresponding reference feature map,that is, the largest subset of key points that

follow the same affine model. To achieve such outlier removal, we use an algorithm,

namely the Affine Parameters Estimation by Random Sampling (APERS) [55], which

detects the outliers in a given set of matched points.

Non-Rigid Transformation Estimation: Finding point sets and their cor-

respondences is the most crucial step. Point sets are represented by sensed set,

(xi|xi ∈ Rd, i = {1, . . . , N)} and target set (ti|ti ∈ Rd, i = {1, . . . ,M)}, where the
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sensed set is faced with a transformation, τ . Due to repeated photography, we as-

sume that there exists a significant overlap between the sensed and reference point

sets. If we know the feature descriptor D that can be used to get correspondence,

following the approach described in [56], the point set registration can be formulated

as follows:

E(τ) = λϕ(τ) +
N∑
i=1

M∑
j=1

exp(
||tj − x′

j||2

σ2

−
(D(tj) −D(x′

j))
T
∑−1D(tj) −D(x′

j)

ξ2
) (2.3)

where x′
i = xi = τ is the transformed point,

∑
denotes the covariance matrix of

the feature descriptors, σ.ξ are scales, ϕ(.), the regularization, and λ is used to control

the level of smoothness. We use spatially constrained Gaussian Fields (SCGF) for

non-rigid transformation estimation [56].

Image Resampling and Transformation: The estimated transformation pa-

rameters finally guide the re-sampling and warping of the sensed image for getting

registered image. Due to artefacts and simplicity of pixel level registration, the re-

finement of coarsely registered images to sub-pixel accuracy is performed. However,

rather interpolating image grayscales, we uses functions of the graylevels like [57].

2.4 Experimental Results and Discussion

We conducted experimental studies based on publicly available image datasets. In

this section, we will provide a brief description of the dataset (Fluker Post Vegetation

Dataset), registration accuracy, and other performance comparisons with state-of-

the-art techniques. Our network is based on Keras (with TensorFlow backend) and
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the Nvidia P2000 Quadro GPU.

Fluker Post Vegetation Dataset: This image dataset is collected as a part

of the “The Fluker Post Project” [29]. This project is based on citizen science,

and a part of the project is to place photo-capturing posts in over 150 locations all

over Australia. Visitors and local communities are encouraged to take photos and

send them back to the main website. In each location, multiple images are taken

from the same point, called the Fluker post. This project now has more than 2000

images, all of which are organised into different albums related to different locations

across Australia. The web address of this project is http://www.flukerpost.com.

However, the problem is that all those photos are taken from different viewpoints

and camera sensors. The image resolution also varies across the dataset. Photos are

captured in different seasons as well as different timestamps of the day. All these

make the work challenging. Therefore, it becomes very difficult to compare and

extract some valuable information like vegetational change detection.

Figure 2.2: Illustrative repeat photography image registration from Fluker Post com-
munity based image collection: First Column: All images are input images of dif-
ferent locations in Australia, Second Column, these images are reference images
from relevant Fluker Post, third column shows the point correspondences after SIFT
matching and the last Column shows the point correspondences obtained after au-
tomated deep multi-temporal image registration.

http://www.flukerpost.com


37

Subjective Comparison: We developed a baseline image registration based on

SIFT hand-crafted features. For evaluation, we compared our convolutional feature

with SIFT. For subjective comparison, we have displayed feature correspondences.

Figure 2.2 displays a scenario of image registration and feature matching. We cal-

culated the matching features and warped the images according to the match.

Figure 2.3: Illustrative repeat photography image registration from Fluker Post com-
munity based image collection: First Column: All images are input images of differ-
ent locations in Australia, Second Column, these images are reference images from
relevant Fluker Post, last Column shows the registered image with varied sections
shown by checkerboard after automated deep multi-temporal image registration.

In Figure 2.3, we also displayed a checkerboard to show the parts of the images

that suffered the transformational effects. Both images clearly show that our feature

matching is dense and robust to different variations compared to SIFT.
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Objective Comparison: For objective comparison, we used different metrics.

In each corresponding image pair, we extract feature points using both methods and

use the most reliable 95-105 pairs of matches to measure precision. P as

P =
TP

TP+TF
(2.4)

where TP is true positive TF is true false.

Table 2.1 shows the comparison of our approach vs. SIFT. Additionally, we mark

landmarks with 15 points and record the locations of the landmarks for measuring

errors like root mean squared distance (RMSD), mean absolute distance (MAD),

median of distance (MED), and the standard deviation of distance (STD). Table 2.2

shows the performance of our algorithm compared to other approaches. It can be

observed that our approach is more reliable than all other approaches.

Table 2.1: Feature pre-matching precision test result for Fluker Post Vegetation
Dataset. The used unit is percentage.

Index SIFT Ours

Average 70.75 % 96.35%
Minimum 35.41% 89.76%
Maximum 92.50% 99.6%

Table 2.2: Comparative Analysis in terms of registration accuracy test result on
Fluker Post Vegetation Dataset in terms of different error matrices

Method RMSD MAD MED STD

CPD [58] 12.67 15.38 5.67 8.75
GLMDTPS [59] 26.87 28.92 8.60 11.48
GL-CATE [60] 10.94 14.89 4.25 8.57
Deep Features [21] 9.79 9.23 7.41 5.12
Ours 8.62 8.67 5.68 3.67
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Algorithm 1 Point Set registration Algorithm

input: p, q
output: p′

Initialize: iterations = 30, ϕ, α = 0
for k = 0, k < iterations, k + + do

Get descriptors d(p), d(q)
Assign the correspondences weight C by Eq: 5,6,7 in [56]
Construct the RBF kernel matrix K
Compute the transformation parameter α using Spatially Constrained Gaus-

sian Fields (SCGF)[56]
Update the model point set p′ = p + Kα

end for
Return p′

2.5 Conclusion

In this paper, we investigated the integration of citizen science and deep learning-

based image registration to facilitate automated image analytics for environmental

monitoring. We proposed a novel deep affine invariant network for non-rigid image

registration of multi-temporal repeat photography. We also integrated robust point

matching and affine invariance into our framework for robust multi-temporal image

registration. Extensive experimental studies have been conducted to evaluate the

underlying design based on public datasets. The experimental results indicated that

the proposed approach delivered higher quality performance than the existing tech-

niques. This work would set new research directions to achieve a fully automated

environmental monitoring system.
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Chapter 3

Detection of vegetation in

environmental repeat

photography: a new algorithmic

approach in data science

As mentioned in list of publications, this chapter with same title was published as

an original research paper in the Statistics for Data Science and Policy Analysis,

(2020), (pp 145-157). Springer, Singapore. doi: https://doi.org/10.1007/978-

981-15-1735-8 11. The contents are the same, with the exception of certain layout

adjustments to ensure consistency in the presentation across the thesis.

Abstract

The environment, being one of the major issues in today’s world, needs special at-

tention from researchers. With the advancement in the field of computer vision,

researchers are equipped enough to come up with the algorithms to have an auto-

mated system for environmental monitoring. This paper proposes an algorithm in

this regard, which can be used to monitor the change in vegetation in a specific loca-

https://doi.org/10.1007/978-981-15-1735-8_11
https://doi.org/10.1007/978-981-15-1735-8_11
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tion. This would assist environmental professionals in directing their efforts towards

improving the environmental situation. An algorithm is proposed which registers the

image so that comparison can be carried out in an accurate manner using a single

framework for all the images. The registration algorithm aligns the new image with

the already present previous image by performing a transformation. The registra-

tion process is followed by a segmentation process that separates out the vegetation

region from the image. A novel approach towards segmentation has been proposed,

which works on a machine learning-based algorithm. The proposed algorithm showed

promising results, with an F-measure of 85.36%. The segmentation result leads us to

an easy calculation of the vegetation index, which can be used to create a vegetation

record for a specific site.

3.1 Introduction

In today’s world, the population has increased rapidly with the advancement of

technology, which has created a need and importance for environmental monitoring.

Humans have affected the environment to such an extent that the time has come

to pay attention to this issue. The change in climate and the change in land are

interconnected powers of global change prompted by human beings [61], [62].

Environment monitoring is now an important task to do so that information

can be processed to assess environmental effectiveness. It has been proven to be

helpful in monitoring humidity and temperature. One of the most important parts

of environmental monitoring is paying attention to the information about vegetation,

which helps us figure out what’s going to happen in the future at an early stage.

Nowadays, satellite and aerial podiums are used to get remote sensing images that

can be used for environmental monitoring. But for a very long time, photographs
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taken from the ground have been used to record the change in the environment and

ecosystem [44]. Repeat photography is one of the most common methods used for

monitoring any change, where images are taken repeatedly of a particular location at

different times. So, by aring the repeated photographs, analysis can be carried out

regarding the change. While in the case of analysing environmental change, the time

difference between image repetition is measured in months and years. This repeated

photography conveys the change in the environment over time [63]. The advance-

ment in remote sensing images has made these repeating photography methods lose

their importance. But if environmental analysis needs to be carried out in a trans-

parent manner, then revitalization of this technology is necessary so that researchers

can utilise these images in their research. As repeated photographs give detailed

information regarding the transformation in vegetation regarding some particular

sites.

For decades, repeated photography has been used for various monitoring tasks,

such as geomorphological development [64] [65] [66], change in trees arrangement

[67] [68], coastal locales [69], plant phenology [70] [71] [72] [73] and many others.

Literature shows that researchers have immensely utilised repeat photography for

vegetation cover [74] [75] [42] [42] [76]. Repeat photography involves many issues,

like background clutter, high inter-class variation, and illumination variance [77] [78].

However, with the advancement of technology and the introduction of new ap-

proaches, these limitations are encountered. Repeated photography is used to carry

out different analyses. Hall et al., [79] and Roush et al., [67] have proposed an

algorithm where an image is divided into rectangular grids and then, using those

rectangular grids, the percentage of vegetation cover is calculated. Point sampling is

also used to quantify the vegetation change [77]. Where classification is performed

to classify each image into different cover types, which are treated as different classes.
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Moreover, different cover types represent different quantitative measures. In liter-

ature, papers can be found that utilise automated segmentation for extracting the

vegetation region for calculating the vegetation index. But the approaches proposed

utilise remote sensing imagery for this purpose [25] [26]. However, the advancement

in the computer vision field enables us to use approaches to get the automated system

for the segmentation of vegetation so that quantitative measures regarding vegeta-

tion can be calculated. Fortin et al., [27] have proposed an algorithm for estimation

of landscape composition from repeat photos, but like other researchers, they have

used a manual segmentation scheme.

The purpose of the study was to develop an approach for an automated system

for segmentation and vegetation measurement in repeat photography using advanced

computer vision techniques. The proposed algorithm showed promising results for

segmentation as well as the calculation of quantitative measures for vegetation ap-

proximation. As in the field of ecology, the vegetation index of some particular sites

gives a lot of information regarding their environment.

The rest of the paper is organised in the following manner: Section 2 discusses the

dataset used in this paper. Section 3 discusses the main methodology, and each step

is discussed in detail. Section 4 carries details regarding the results of the proposed

algorithm on the dataset discussed in Section 2. Section 5 presents the conclusion of

the research.

3.2 Dataset

A dataset called Fluker Post [80] is used in the paper. This dataset has different

images of the same scene taken at different points in time. Figure 3.1 shows some of

the example images of two different scenes and their three different time span images.
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The dataset contains images of 22 locations in total, and in each location there are

images of multiple scenes. The dataset is the first initiative towards monitoring more

than 150 important sites.

Figure 3.1: Figure shows dataset images where row figures shows different time spans
and columns represent different scenes

3.3 Proposed Methodology

The proposed methodology involves multiple steps which lead to the calculation of

the vegetation index present in an image. Figure 3.2 shows the general flow diagram

followed for the extraction of vegetation index for any input image with regard to

previous images of the particular scene the input image belongs to. This section
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further discusses all the building blocks of the proposed methodology.

Figure 3.2: General Flow Diagram

3.3.1 Image Pre-processing

As the images in the dataset are taken at different time spans with different cameras,

the images in the dataset have varying light intensities. Therefore, the dataset images

need to be preprocessed before their registration process. For this process, image

histogram equalisation is adopted to encounter the said problem. The image was

divided into R, G, and B channels, after which image histogram equalisation was

applied to the individual channels. The resultant channels were combined together

to get the RGB image.

3.3.2 Image Registration

Acquired images are of the same scene, but they are not on a single coordinate system

because they are captured from different viewpoints, as can be seen in Figure 3.1.

Image registration is the process that can be used to tackle this problem. Image

Registration transforms one image with respect to the other in such a manner that

they can both be compared. Barbara et al., [47] have described the general steps
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that need to be followed for image registration in any research problem. Those steps

are,

• Feature Detection

• Feature Matching

• Model Estimation for Transformation

• Image Transformation

3.3.2.1 Feature Detection:

Gradients in an image hold great importance as they represent information regarding

edges. Similarly, in the case of mitotic and non-mitotic cells, gradients can play a

vital role. As discussed earlier as well, mitotic and non-mitotic cells differentiate

from each other on the basis of texture and shape. So gradients give us information

about edges, and edges represent the texture or shape of the image. Therefore, using

HOG can be significant for the good performance of cell detection. HOG generates

the histogram of the orientation of a window or patch selected. The working steps

of HOG are discussed below.

• In the first step, the image is divided into small patches, and each patch is

known as the detection window. The size of the window NxN is dependent on

the input image size and the number of gradients we want to extract.

• Colour and gamma normalisation are performed for the extraction of strong

gradients in the image.

• A Gaussian derivative is used to compute the gradients fx and fy in horizontal

and vertical directions, respectively. The following filter kernels are used for
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[−1, 0, 1] and [−1, 0, 1]T (3.1)

• Now orientation binning is performed in which cell histograms are developed.

In a spatial cell, each pixel holds a specific weight which is derived from the

gradient calculated. Histogram channels are spread evenly with a difference of

20 degrees.

• Contrast Normalization is performed on the overlapping blocks in cells. The

normalisation factor used can be seen in the below equation.

Norm : L =
B√

||B||22 + t2
(3.2)

where “B” represents the un-normalized vector and “t” represents the threshold

value which will remain constant for all windows.

• The last step is the collection of all HOGs in each block. This predicts our

feature vector, which can now be used for classification..

3.3.2.2 Feature Matching:

In this step, the features of two images are matched together to calculate correspon-

dence between them. We have used the Brute-Force Matcher method for calculating

similarity between detected features. The Brute-Force Matcher works on a simple

phenomenon where a distance between K1 (keypoint features extracted from image

1) and K2 (keypoint features extracted from image 2) is calculated. The minimum

euclidean distance between K1 and K2 will be considered as matched points.
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3.3.2.3 Model Estimation for Transformation:

After the feature matching task, the most important task is to remove the outliers.

Outliers are those feature points which do not fit in our model. Removing them

is necessary so that an accurate transformation parameter can be calculated. The

proposed architecture utilises RANSAC for outlier removal tasks. The RANSAC

algorithm works on four main steps, which are,

• From the dataset containing outliers, select a random subset to start the pro-

cess.

• Model fitting is performed on the designated subset.

• Number of outliers is calculated for the fitted model.

• Repeat all three of the above steps for the selected number of iterations. The

desired model with the check on the number of outliers against it is considered

the best fit model.

For model estimation, we have used the similarity transform as a global mapping

model. This model tackles three main transformation constraints, which are trans-

lation, rotation, and scaling. This model is also known as the “shape-preserving

mapping model” because it conserves the angle as well as the curvature present in

an image that needs to be transformed. So in our case, it is really important to con-

serve the angles because we need to segment out the output image of the registration

block.

Equations 3 and 4 show the formulation used to calculate u and v, which are

transformation coordinates. Where i and j are the coordinates of the original image,

s, p, and t show scale factor, rotation, and translation factor, respectively, which are
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calculated using the global mapping model.

u = s ∗ (i ∗ cos(p) − j ∗ sin(p)) + ti (3.3)

v = s ∗ (i ∗ sin(p) − j ∗ cos(p)) + tj (3.4)

3.3.2.4 Image Transformation:

A mapping function was constructed in the previous step, which would be used

to transform the image so that two images can have the same scale, rotation, and

translation. which is necessary so that we can know the change in vegetation index

between two images in an accurate manner. Each pixel is individually transformed

using equations 3 and 4 discussed in the previous step.

Figure 3.3: Proposed Segmentation Algorithm for Vegetation Index Calculation
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3.3.3 Image Feature Extraction

After we register an image, we need to find the features in the image. To do this,

we break the image into small chunks of 4x4 pixels. From each chunk or patch,

colour and texture features were extracted. Figure 3.3 shows the algorithm adopted

after image registration for the process of segmentation and finally achieving the

vegetation index. The features extracted from the image are.

3.3.3.1 Colour Features:

Three colour features (red, green, and blue) pixel values from a block of 4x4 were

extracted and presented as the mean values of all three channels in a block.

3.3.3.2 Texture Features:

Five texture features were extracted, which were: energy, entropy, contrast, homo-

geneity, and correlation. Equations 5–9 are used for the extraction of these features

after converting the patch from RGB to grey scale. Where “I” is the pixel value of

a gray-scale patch, l and m are the coordinates of the patch.

Energy =
∑
l

∑
m

I2(l,m) (3.5)

Entropy = −
∑
l

∑
m

I(l,m)log(I(l,m)) (3.6)

Contrast =
∑
l

∑
m

(l −m)2I(l,m) (3.7)

Homogeneity =
∑
l

∑
m

I(l,m)

1 + |l −m|
(3.8)
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Correlation =

∑
l

∑
m(l − µx)(m− µy)I(l,m)

σxσy

(3.9)

3.3.4 Classification for Segmentation

After feature extraction of each patch of the image, we need to classify the patches

into vegetation and non-vegetation classes. Each chunk was labelled with vegetation

or non-vegetation using the Image Labelling application in MATLAB. A Support

Vector Machine was used as a classifier. SVM was trained using 100 different scene

images taken from Fluker post project dataset [80]. An SVM is a linear classifier

that generates a boundary between the two classes for classification purposes. The

boundary is created using the optimal hyperlane, which is the best fit model for

classification of classes P and Q.

p . x + q = 0 (3.10)

The optimal hyperlane equation 3.10 is required to full-fill two conditions which are,

• Hyperlane should be such that it satisfies below two equations,

f(x) = p . x + q should only be positive if x ϵ P (3.11)

f(x) ≤ 0 if x ϵ Q (3.12)

• The hyperlane should be at the maximum possible distance from all the ob-

servations, which would depict the robustness of the system. The hyperlane
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distance from the observation is defined as.

|p . x + q|
||p||

(3.13)

After classification of all patches, vegetation patches are segmented out from the

image and combined together in a single image

3.3.5 Calculating Vegetation Index

After the segmentation process, an image is achieved that only contains vegetation

content in the image. So we can now calculate the vegetation index with the help of

pixels being segmented out. The equation used for calculating the vegetation index

is shown below.

Vegetation Index =
Number of pixels segmented

Total number of pixels in original image
(3.14)

3.4 Results

As discussed earlier, 100 images from the Fluker Post dataset were taken into account

for training purposes. For testing purposes, we took another 50 images from the

same dataset. On those images, registration was applied on the basis of the model

image from each source cite. Then the developed algorithm was applied to segment

the vegetation region in the image. Example images can be seen in Figure 3.4. It

clearly shows that high performance segmentation is performed for the extraction of

vegetation regions.

For further evaluation of the proposed segmentation algorithm, a few numerical
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Figure 3.4: Column A shows the example registered imaged followed by the segmen-
tation mask for vegetation region extraction in column B

approaches were adopted. The F-measure of the classification process carried out

by SVM based on given features was evaluated on 50 test images. The equation of

F-measure is shown below,

F-measure =
2 ∗ Precision * Recall

Precision + Recall
(3.15)

Where precision is the ratio of correctly classified vegetation patches to the total

number of patches classified as vegetation region by SVM, and recall that the ratio
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between the number of correctly classified vegetation and the number of vegetation

patches present in the whole labelled image.

The F-measure achieved for the 50 test images from the Fluker post dataset is

85.36%. Moreover, we have calculated the vegetation index of the images as well.

As shown in Figure 4, the calculated vegetation index is 0.47, indicating that 47.6%

of the image is covered by vegetation.

3.5 Conclusion

Authors have proposed a novel approach to automatic environmental analysis. The

proposed algorithm will carry out processing to calculate the vegetation index from

images of the same site acquired in different phases of the year as well as in different

years. The proposed algorithm for the segmentation of vegetation regions has shown

promising results. A machine learning algorithm was trained on images using colour

and texture features extracted from the patches of the RGB image. The segmen-

tation algorithm is analysed using precious and recall values, where the calculated

F-measure is 85.36%.
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Chapter 4

Real-Time Plant Health

Assessment via Implementing

Cloud-Based Scalable Transfer

Learning on AWS DeepLens

As mentioned in list of publications, this chapter with same title was published as

an original research paper in the Plos one, (2020), 15(12): e0243243. doi: https:

//doi.org/10.1371/journal.pone.0243243. The contents are the same, with the

exception of certain layout adjustments to ensure consistency in the presentation

across the thesis.

Abstract

The control of plant leaf diseases is crucial as it affects the quality and production of

plant species with an effect on the economy of any country. Automated identifica-

tion and classification of plant leaf diseases is, therefore, essential for the reduction of

economic losses and the conservation of specific species. Various Machine Learning

(ML) models have previously been proposed to detect and identify plant leaf disease;

https://doi.org/10.1371/journal.pone.0243243
https://doi.org/10.1371/journal.pone.0243243
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however, they lack usability due to hardware sophistication, limited scalability and

realistic use inefficiency. By implementing automatic detection and classification of

leaf diseases in fruit trees (apple, grape, peach and strawberry) and vegetable plants

(potato and tomato) through scalable transfer learning on Amazon Web Services

(AWS) SageMaker and importing it into AWS DeepLens for real-time functional

usability, our proposed DeepLens Classification and Detection Model (DCDM) ad-

dresses such limitations. Scalability and ubiquitous access to our approach is pro-

vided by cloud integration. Our experiments on an extensive image data set of

healthy and unhealthy fruit trees and vegetable plant leaves showed 98.78% accu-

racy with a real-time diagnosis of diseases of plant leaves. To train DCDM deep

learning model, we used forty thousand images and then evaluated it on ten thou-

sand images. It takes an average of 0.349s to test an image for disease diagnosis and

classification using AWS DeepLens, providing the consumer with disease information

in less than a second.

4.1 Introduction

The effects of plant disease on quantitative and qualitative production [5] are dev-

astating, resulting in a striking blow to farmers , traders and consumers. A 14.1%

relative disease loss across all crops was observed in a US-based study conducted

by the U.G.A. Center for Agribusiness and Economic Growth [81]. A description of

losses due to plant disease reported by the University of Georgia Extension in the

2017 Georgia Farm Gate Value Study (AR-18-01) [81].

Traditionally farmers detect and diagnose plant diseases through their observa-

tions and rely upon the opinions of local experts and their past experiences. An ex-

pert can determine whether or not a plant is healthy [6]. If a plant is found unhealthy,
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noticeable symptoms on its leaves and fruits are observed and reported. Diagnosis

of plant disease incorporates a substantially high degree of difficulty through visual

examination of the symptoms on plant leaves. Because of this challenge and the huge

number of grown plants and their existing phytopathological issues, even qualified

agronomists and plant pathologists sometimes struggle to accurately identify partic-

ular diseases and are consequently driven to wrong assumptions and remedies [7].

Practical plant health assessment and diseases diagnosis can improve product qual-

ity and prevent production loss. Early detection and classification of crop disease

are significant to secure the specific species production [8]. Various research studies

have found that early detection of plant diseases is crucial as over the period, diseases

start affecting the growth of their species, and their symptoms appear on the leaves

[17]. When a plant got infected by a specific disease, and then significant symptoms

are shown on the leaves, which help in the identification and classification of that

particular disease [9]. It is therefore essential to control and assess disease outspread

[10]. A specific fungus or bacterium is frequently associated with the colour, scale,

form, and margins of spots and blight (lesions). Many fungi develop disease “signs”,

such as mould growth or fruiting bodies that appear in the dead area as dark specks.

Early stages of bacterial infections that develop during humid weather on leaves or

fruits sometimes appear as dark and water-soaked spots with a separate margin and

often a halo, a lighter-coloured ring around the site. As in peach plant, for instance,

the decayed area is small and looks similar in appearance to neighbouring healthy

tissue at an early stage; therefore, it is tough to detect diseases [82].

In the exploration of the agricultural field, technology plays a vital role. With

the use of various machine learning and image processing techniques, researchers

are trying to explore plant disease detection and classification. It is difficult, time-

consuming and unreliable to detect plant diseases manually. Since a health evaluation
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is tedious and time-consuming for an individual plant in a large plot, this testing

procedure is replicated over time [6]. A single plant may have different diseases hav-

ing the same pattern of symptoms; moreover, various conditions of the plant show

similar signs and symptoms [83], making it challenging to identify the specific dis-

ease. For instance, the key Grapevine Yellow (GY) symptoms are very common and

outstanding in late summers, such as leaf discolouration, bunch drying and abnormal

wood ripening, allowing GY to be recognized and, by and large, differentiated from

other grapevine disorders that may exhibit similar alterations (e.g. leafroll or direct

damage due to feeding of leafhopper). However, the expression of symptoms among

different GYs is very standardized, so symptomatology is not helpful to distinguish

one GY from another. Since phytoplasmas are poorly transmitted by grafting on

woody plants and because the symptomatic response induced by various GY agents

in Baco 22A is the same, even indexing on the hybrid Baco 22A, used in the past,

did not help much [84][85].

Machine learning (ML) [11] algorithms are serving a lot in the process of clas-

sification and identification of plant diseases automation. ML helps in monitoring

of health assessment of plant and predicting diseases in the plant at early stages

[9]. With the time progression, new ML models evolved, such as SVM [12], VGG

architectures [13], R-FCN [14], Faster R-CNN [15], SDD [16] and many others. The

researchers used them for their experiments in the field of recognising and classifying

images. Some of those are used in automation of Agriculture systems [17].

The advancement in deep learning (DL) [86] has provided promising results and

solutions in crop disease diagnosis and classification. Islam et al., [87] presented the

integration of machine learning and image processing for the detection and classi-

fication of leaf disease images. They developed an SVM model for potato disease

detection and used potato leaves dataset, consisting of healthy leaves and diseased
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leaves. For performance, they used performance parameters such as accuracy, sen-

sitivity, recall and F1-score. Dubey et al., [88] came up with an image processing

technique by using the K-Means algorithm for the detection and classification of

apple fruit disease and then used multiclass SVM for training and testing images.

Al-Amin et al., [9] trained their model for potato disease detection through Deep

CNN, and they computed performance for analysing the result using parameters

such as recall, precision and F1-score. This model achieved an accuracy of 98.33%

in experiments. According to Sladojevic et al., [89] to learn features, CNN must be

trained on a large dataset of a large number of images. They developed a CNN model

for classification of leaves diseases of apple and tomato plants and the experimental

accuracy findings of their research for numerous diseases trial with an accuracy of

96.3%. Miaomiao et al., [90] presented an effective solution for grape diseases detec-

tion as they mentioned that two entirely different basic models integrated, it would

be more useful to obtain remarkable results and improve the accuracy of detection.

Therefore, they proposed a UnitedModel based on the integration of GoogLeNet

with ResNet, whereas GoogLeNet raises the total units for all layers of a network

and ResNet to increase the total number of layers in a network. Ye Sun et al., [82]

developed a model based on structured-illumination reflectance imaging (S.I.R.I.) for

identification of peach fungal diseases. In their work, CNN and three image classifica-

tion methods used for processing of ratio images, alternating component (AC) images

and direct component (DC) images to detect the diseases and area of peach. As a

result, they found that A.C. images performance is better than D.C. images in peach

diseases detection and ratio images gave a high accuracy rate. Hyeon Park et al., [8]

developed a CNN network of two convolutional and three fully connected layers, for

disease detection in the strawberry plant. They worked on a small dataset of leaves

images consisting of healthy leaves and a powdery mildew strawberries disease class.
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Xiaoyue et al., [91] worked on four typical grapes diseases, and for detection, they

proposed a Faster DR-IACNN detector, based on deep learning. They reported that

their proposed detector automatically detects the diseased spots on grapes leaves,

thus giving an excellent result for the detection of diseases in real-time. In order to

detect leaves diseases in vegetables, Zhang et al., [92] come up with an RGB model

colours based three channels CNN. Konstantinos et al., [7] detected and classified

25 plant diseases by using different CNN based architectures. They trained and

tested their model on the open-source dataset named PlantVillage. However, the

results obtained in terms of accuracy may differ from using the same dataset for

both training and testing purposes.

According to the above-discussed studies, CNN [93][94] always played a signif-

icant role and is widely used in the detection and classification of different plant

diseases and provided agreeably results. There were some limitations, however, such

as a lack of usability due to hardware complexity problems, minimal scalability, in-

efficiency and minimal real-time inferences in real-world operational use. The recent

development in cloud-based services and efficient deep learning has motivated us to

devise a practical and scalable solution to agricultural problems, and this paper lies

in the similar domain. We found that most of the images in the PlantVillage dataset

are either white or grey background; however, the real-world situation is different and

may contain other colours in the background. Thus model trained only on uniform

background colour may result in low accuracy or wrong prediction. Therefore, to ad-

dress this research issue, we used a combination of publically available PlantVillage

dataset [95] and images collected from Tarnab Farm (an agriculture research insti-

tute, Pakistan) real-cultivation environment to achieve high accuracy and a robust

model. For training and testing, we used AWS SageMaker, a Cloud-based environ-

ment for our proposed model known as DeepLens Classification and Detection Model
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(DCDM) to identify and classify various fruits and vegetables leaves diseases, based

on Deep Convolutional Neural Network (DCNN) [96]. After completion of train-

ing DCDM, it was deployed in the Internet of Things (IoT) device known as AWS

DeepLens to make it a scalable and efficient real-time classification and identifica-

tion model. AWS Deeplens is DL based high definition (H.D) video camera with 4

Mega-Pixel sensors for ML related projection integration and implementation.

With our DCDM, we evaluated seven different CNN architectures using accu-

racy results and computation time. Those CNN architectures include ResNet-50

[51], AlexNet [97], VGG-16 [13], VGG-19 [13], DenseNet [98], SqueezeNet [99] and

DarkNet [100]. All these architectures were trained and tested keeping the environ-

ment constantly. Our DCDM model out-performed all other architectures in terms

of computation time as well as performance-wise. It obtained an average accuracy

rate of 98.78% on test images. Our findings are the first step towards a system based

on an AWS DeepLens camera for plant disease diagnosis. Moreover, in our work, we

also extracted feature maps [89] of an input image after passing through the CNN

model and applied filters to visualise the activations through the CNN layers [101].

The overall flow of the proposed DCDM model is illustrated in Figure 4.1.

Figure 4.1: The data flow diagram of the DCDM that illustrates the process of our
proposed disease diagnosis.
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The rest of the paper is organised as follow: Section 2 explains the materials and

methodology, including pre and post-processing datasets, describing the proposed

CNN model, AWS DeepLens transfer learning, and performance assessment. A de-

tailed overview of experimental results is given in section 3. Section 4 introduces the

discussion, while Section 5 offers recommendations for conclusion and future work,

followed by references part.

4.2 Materials and Methodology

The development process of the DCDM model for plant leaves disease detection,

and classification involved various stages, i.e. starting with data collection along

with data pre-processing and preparation, training model in AWS Cloud (Sage-

Maker Studio) [102] and implementing in AWS DeepLens for inferences purpose. A

strawberry plant is chosen for real-time disease assessment shown in Figure 4.2.

Figure 4.2: Identification & classification of strawberry plant leaf disease by AWS
DeepLens in real-time.
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4.2.1 Dataset Preparation

We used around 50,000 of plant leaves images (including both healthy and infected

leaf images for fruit trees and vegetable plants) from local farmlands and publicly

available dataset known as PlantVillage [95]. The dataset was categorised into dif-

ferent classes and assigned labels where each label is representing either a plant-leaf

disease class or a healthy plant (leaf). A sample image for each class label shown in

Figure 4.3.

Figure 4.3: Sample images from dataset: (a). Apple Scab, (b). Black Rot, (c).
Cedar Apple Rust, (d). Apple Healthy, (e). Grape Black Rot, (f). Grape Esca,
(g). Grape Leaf Blight, (h). Grape Healthy, (i). Peach Bacterial Spot, (j). Peach
Healthy, (k). Potato Early Blight, (l). Potato Late Blight, (m). Potato Healthy,
(n). Strawberry Leaf Scorch, (o). Strawberry Healthy, (p). Tomato Bacterial Spot,
(q). Tomato Early Blight, (r). Tomato Late Blight, (s). Tomato Leaf Mold, (t).
Tomato Septoria Leaf Spot, (u). Tomato Spider Mites, (v). Tomato Target Spot,
(w). Tomato Leaf Curl Virus, (x). Tomato Mosaic Virus, (y). Tomato Healthy.
From PlantVillage: (c), (d), (e), (g), (j), (k), (l), (m), (r), (s), (t), (w) and (z).
From Tarnab Farm: (a), (b), (f), (h), (i), (n), (o), (p), (q), (u), (v) and (y).
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4.2.2 Data Augmentation

A large number of images are used to train a DCNN model to achieve highly precise

prediction and accuracy. In our case, some of the plants leaves disease classes had

fewer images in number; therefore, the process of data augmentation (technique)

applied to those limited number of image diseases classes.

Figure 4.4: Data augmentation technique examples: (a). Original Image, (b). Blur,
(c) Random Gaussian Noise, (d). Random Contrast, (e). Random Bright, (f). Scale
Proportionality, (g). Random Crop, (h). Deterministic Crop, (i). Vertical Flip, (j).
Horizontal Flip, (k). Rotate Without Padding, (l). Y-Sheared.

The process of data augmentation [103] provided us with new images from our

existing images. Different augmentation techniques like blurriness, rotation, flipping

(horizontal and vertical), shearing (horizontal and vertical), and the addition of noise



65

were applied accordingly. An illustration of different augmentation techniques shown

in Figure 4.4. By using this technique, the number of images in our dataset increased,

which is essential for obtaining more accurate results after the training stage of CNN.

4.2.3 Image Registration and Classes Annotation

After completion of data augmentation process, we had to re-register the images in

the same dimensions, as we used two types of a dataset having different dimensions.

Image registration is an essential step in image processing whenever two or more

images are processed and analysed [104]. It is a method of overlaying images (two

or more) of the same scene taken at different times, from different points of view

and/or from different sensors. It aligns two images (reference and sensed images)

geometrically [47][4]. We resized all the images into 272 x 363 pixels and annotated

all the images before putting image as an input to any model/network for pre-training

CNN structures. The classes of leaf diseases for fruits and vegetables that we used

in our training and testing dataset are listed in the Table 4.1 with both regular and

botanical names.

Table 4.1: The dataset for leaf disease classes.

Class

No.

Pant

Name

Plant Botani-

cal Name

Disease

Name

Disease Botanical

Name

Total

Images

1 Apple Malus domestica Scab Venturia inaequalis 183

2 Apple Malus domestica
Black

rot

Botryosphaeria

obtusa
182
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3 Apple Malus domestica

Cedar

apple

rust

Gymnosporangium

juniperivirginianae
67

4
Apple

(Healthy)
Malus domestica 172

5 Grapes Vitis vinifera
Black

rot

Guignardia

bidwellii
218

6 Grapes Vitis vinifera Esca
Phaeomoniella

chlamydospora
138

7 Grapes Vitis vinifera
Leaf

blight

Pseudocercospora

vitis
207

8
Grapes

(Healthy)
Vitis vinifera 182

9 Peach Prunus persica

Bacte-

rial

spot

Xanthomonas

campestris
229

10
Peach

(Healthy)
Prunus persica 186

11 Potato
Solanum

tuberosum

Early

blight
Alternaria solani 200

12 Potato
Solanum

tuberosum

Late

blight

Phytophthora

infestans
200

13
Potato

(Healthy)

Solanum

tuberosum
165
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14
Straw-

berry
Fragaria spp.

Leaf

scorch

Diplocarpon

earlianum
223

15

Straw-

berry

(Healthy)

Fragaria spp. 185

16 Tomato
Lycopersicum

esculentum

Bacte-

rial

spot

Xanthomonas

campestris

pv. Vesicatoria

213

17 Tomato
Lycopersicum

esculentum

Early

blight
Alternaria solani 225

18 Tomato
Lycopersicum

esculentum

Late

blight

Phytophthora

infestans
190

19 Tomato
Lycopersicum

esculentum

Leaf

mold
Fulvia fulva 225

20 Tomato
Lycopersicum

esculentum

Septoria

leaf spot

Septoria

lycopersici
187

21 Tomato
Lycopersicum

esculentum

Spider

mites

Tetranychus

urticae
167

22 Tomato
Lycopersicum

esculentum

Target

spot

Corynespora

cassiicola
160

23 Tomato
Lycopersicum

esculentum

Leaf curl

virus
385

24 Tomato
Lycopersicum

esculentum

Mosaic

virus

Tomato mosaic

virus
237
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25
Tomato

(Healthy)

Lycopersicum

esculentum
165

4.2.4 CNN and DeepLens Classification and Detection Model

(DCDM)

A typical CNN consists of various layers. Each layer consists of multiple nodes with

some activation function attached. The first layer is the input layer that takes input

data, whereas, the last layer is the output layer that generates output. A random

number of layers exists between the input and output layer, referred to as hidden

layers (i.e. convolutional or convo, pooling, dense or fully connected and softmax

layer) [93][94]. If CNN contains two or more than two hidden layers, it is known as

Deep Convolutional Neural Network (DCNN) [96].

We designed our DCDM using deep learning TensorFlow framework [105] and

Keras [106] library. Keras is an open-source deep-learning library used to perform

different deep learning applications. We used it for the implementation of DCDM

architecture, inspired by Visual Geometry Group (VGG) Neural Networks. It is

an advanced model of object-recognition supporting up to 16-19 weight layers [13].

Constructed as a deep CNN, VGG also out-performs baselines outside of ImageNet

on several tasks and datasets. There are two variants of VGG Neural Networks

namely VGG-16, which comprises of 16 convolutional layers and VGG19 comprises

of 19 convolutional layers. VGG is also one of the most used architectures for image

recognition today. This architecture uses filters of the same width and height for all

the convolutional layers. The architecture of VGG-16 and VGG-19 out-performed

than the other state-of-the-art architectures like ResNet-50, DenseNet, Inception-
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VNet [107] as they converge very quickly and score over 90% accuracy during the

first epochs of training. The VGG-19 architecture consists of roughly about 138

million parameters [108] while VGG-16 has less number of parameters due to less

number of layers, however, a large number of parameter makes computationally ex-

pensive for training purpose.

Our proposed architecture has the same sequential structure as of VGG Neural

Network but with some less number of layers, thus, the numbers of parameters are

extensively low, which makes it computationally less expensive and fast.

Our DCDM architecture contains a total of nine layers with six convolutional

layers and three fully connected layers shown in Figure 4.5.

Figure 4.5: The representation of DeepLens classification and detection model
(DCDM) architecture.

Convolutional layers are having non-linearity activation units following by max-

pooling layers. The non-linearity activation is often used with convolutional layers.

This activation is also known as a ramp function which has a shape of the ramp and

transfers the output once it is a positive value; else it results in 0. The last layer,

which is also known as a SoftMax layer comprising of 25 nodes in the output layer

where each node specifies an individual class of our dataset.
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The details of these layers are described below and shown in Table 4.2.

Convolutional Layer: The above stated proposed model used six convolutional

layers. There are two types of characteristics in each layer, i.e., input and numeral

filters. The filter numbers are then convolved on each layer which extracts the useful

features and passes it to the next connected layer. For an RGB image, each filter

is applied to all three colour channels, and thus, a corresponding matrix is obtained

accordingly. We used a filter size of 3 x 3 for all convolutional layers. Pooling Layer:

Most commonly, the pooling layer follows each convolutional layer. There are five

max-pooling layers in the proposed method. The pooling layers are often used to

minimise computational cost as it reduces the size of each convolutional layer output.

The max-pooling has an activated filter which slides on the input and based on the

size of the filter, and the max value is selected as an output. We used a filter of 2 x

2 for all max-pooling layer.

Dense Layer: It is also known as an artificial neural network (ANN) classifier.

Our model has three dense or fully connected layers. In fully-connected layers, each

node is connected with only one node of another layer. The first two fully-connected

layers have ReLu activation during the last layer, which is also known as the output

layer, has a softmax activation. The softmax activation works by finding the node

with the highest probability value of prediction being made. Hence the node with

the higher value is forwarded as an output.

Dropout: The overfitting issue is prevented by the addition of a dropout of 0.5.

It is added to the dense layers of the model.

Parameters: The total model parameters of our model are 51,161,305.

The model takes the image data as an input, then processes that input data by

extracting features from the image and then classifies it either healthy or a diseased

leaf, if it is an infected leaf then it further predicts the disease class name, the most
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resemble one. The expected class then results as an output.

Table 4.2: The summary Of DCDM layered architecture.

Layer (type) Output Shape Param #

conv2d (Conv2D) (None, 272, 363, 64) 1792

conv2d 1(Conv2D) (None, 272, 363, 64) 36928

max pooling2d(MaxPooling2D) (None, 136, 181, 64) 0

conv2d 2(Conv2D) (None, 136, 181, 128) 73856

max pooling2d 1(MaxPooling2D) (None, 68, 90, 128) 0

conv2d 3(Conv2D) (None, 68, 90, 256) 295168

max pooling2d 2(MaxPooling2D) (None, 34, 45, 256) 0

conv2d 4(Conv2D) (None, 34, 45, 512) 1180160

max pooling2d 3(MaxPooling2D) (None, 17, 22, 512) 0

conv2d 5(Conv2D) (None, 17, 22, 512) 2359808

max pooling2d 4(MaxPooling2D) (None, 8, 11, 512) 0

flatten(Flatten) (None, 45056) 0

dense(Dense) (None, 1024) 46138368

dense 1(Dense) (None, 1024) 1049600

dense 2(Dense) (None, 25) 25625

Total parameters: 51,161,305

Trainable parameters: 51,161,305

Non-trainable parameters: 0

We made changes to the hyper-parameters shown in the Table 4.3 to optimise our

model. We selected the optimizer of Stochastic Gradient Descent (SGD), proving

to be an optimal trade-off between accuracy and effectiveness [109]. The SGD is

clear and reliable. The hyper-parameters model to be tuned, in particular the initial
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Table 4.3: Hyper-parameters of the experiments.

Hyper-Parameters Value

Optimizer SGD
Momentum 0.9

Epochs 50
Batch Size 32

Dropout rate 0.5
No. of Layer 9

Learning Rate 1.0x10−3

Loss Function Cross Entropy

learning rate, which is used in optimization as it explains how rapidly the weights are

altered to achieve a minimum of the local or global loss function. The momentum (=

0.9) tends to accelerate SGD in the correct direction and dampens the oscillations

[110]. In addition, regularisation is a very effective method to avoid over-fitting. The

most common way of regularisation is L2 Regularization, where the combination with

SGD results in weight decay, in which the weights for each update are scaled by a

factor slightly smaller than one [111]. A total of 50 epochs are performed in each

experiment, where each epoch is the number of training iterations. Finally, DCDM

is trained at a batch size of 32 and stopped training on epoch-50.

4.2.5 Transfer Learning in AWS Cloud

Transfer learning (TL) is a concept in the ML which simply means that a method

learns basic knowledge in solving a particular problem and later reusing that knowl-

edge for other more or less similar problem solution [112]. This technique encourages

us to use for solving any relevant problem for which there is not sufficient data avail-

able. Thus it relaxed the assumption of training and testing data, should be both

distributed identically and independently [113]. It takes a long time and large-

sized dataset for training CNN from scratch. Hence in certain situations where the



73

dataset is limited, then TL is a helpful method. We used TL from scratch for DCDM

training. Amazon’s Cloud platform and AWS DeepLens were selected to address the

scalability constraints. The Amazon cloud infrastructure offers data collection , data

transfer and computing resources for the application development and deployment.

AWS provides many services and several different applications. They also have a

platform for building, preparation and rollout, as well as validating models of ma-

chine learning. On AWS Services or some other compatible systems , for example,

AWS DeepLens, the trained model can be deployed.

4.2.6 Lambda Function on DeepLens

AWS DeepLens is a deep-learning-based high definition (H.D), 4-mega-pixel video

camera that is designed specifically for machine learning models developments and

implementation. It has a built-in 8GB memory and 16GB storage capacity with 32

GB SD card (extendable). It has more than 100 GFLOPS computing power so it

can process machine learning projects independently as well as those integrated with

AWS Cloud [114]. It has a straightforward usage process as the user can take picture/

image through DeepLens camera, then store it and process it to use in machine

learning projects [115]. There are a large number of pre-trained models, built-in to

it, but a customised model can also be used with DeepLens camera. For instance,

any custom based model can be trained or imported into in SageMaker and then can

be implemented in AWS DeepLens through various deep learning frameworks such

as Tensorflow or Caffe [114],[115]. A lambda function is used to establish a successful

connection to access the DeepLens on a local computer. The lambda functions are

the pre-defined functions executed by DeepLens once the project has been deployed

[116]. Lambda function streamlines the development process by managing the servers

necessary to execute code. They serve as the connection between the AWS DeepLens
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and Amazon Sagemaker for the camera to generate a real-time inference [117]. It

controls various resources such as computing capability and power, networking. It

has a user-specified function embedded in code, and Lambda function invoke that

user code when it is executed. The code returns a message containing data from the

event received as input [117]. The visual illustration of the AWS DeepLens work-flow

is shown in Figure 4.6.

After completing the training stage in SageMaker, we implemented the subse-

quent trained Model in AWS DeepLens camera for inferences of Leaves health as-

sessment.

Figure 4.6: Basic workflow of a deployed AWS DeepLens project [1].

4.2.7 Evaluation and Performance Measurement

Several methods are used to measure the efficiency of neural networks, including

precision, recall, accuracy, and f1-score. The precision tells us about the correct pre-

dictions made out of false-positive while recall tells us about the accurate predictions

made out of false negatives. The accuracy is the number of correct predictions out of

both false positives and false negatives. All the performance metrics for our trained

model have been determined using the formulas in Eq (1), (2), (3), and (4) are listed.
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We calculated the values from the confusion matrix shown in Figure 4.10.

Precision =
TP

TP + FP
(4.1)

Recall =
TP

TP + FN
(4.2)

Accuracy =
TP + TN

TP + TN + FN + FP
(4.3)

F1 − Score = 2 ∗ Precision ∗ Recall

Precision + Recall
(4.4)

Where TP is true positives, TN is true negatives, FP is false positives and FN is

false negatives. Here the TP and TN are the correct predictions while the FP and

FN are the wrong predictions made by our model.

4.2.8 Features Maps Extraction and Filters Visualization in

CNN Layers

4.2.8.1 Extraction of Feature Maps

Feature maps [118] are used to present the local information passing through the

CNN Layers. In an ideal feature mapping of CNN, they are sparse and help in the

understanding of the classical model. In convolutional layer, to extract feature maps

from the source image, several mathematical computations are carried out [119]. In

Figure 4.7, a visual representation for the extraction of feature maps presented for

various layers of our model. It also provides information about each layer, i.e. what
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and how a particular layer of CNN gains information from other layers, such piece

of information can help the developer to make proper adjustments in the developing

model for best results. From our visualisation images, we found that our model is

gaining information in the hierarchical order. It means that the high-level layers

present more specific features and vice versa.

Figure 4.7: Visualization of feature map from DCDM convolutional layer for a sample
leaf.

Similarly, if the dimensions are higher than feature maps, images would also be

more accurately classified. For instance, in an image, the edge corners and some

abstract colour features are presented by a deep layer Figure 4.7, while other corners

and edges represented in shallows layers. Moreover, the middle layers are usually

responsible for capturing the same textures because these layers are having complex

invariance and more layers in number, after extracting higher-level abstract features,

the striking posture of the entire image shown by the high-level feature map.

The feature maps extracted in the first layer represents the overall physical ap-
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pearance of the leaf image. In the middle layers, the patterns of disease are extracted

as can be seen in Figure 4.7. The last layers in Figure 4.7 often extract the delicate

features as they are then used to finalise the predicted class.

4.2.9 Filter Visualization in Model Layers

Generally, filters are used for the detection of unique patterns in an input image.

It is done by detecting the change in the intensity values of the image. Thus, each

filter has its particular importance for feature extraction [120]. As an example, a

high pass filter detects the existence of edges in an image. In our DCDM model,

various filters are used to extract features like edges, shape, the colour of the leaf,

and many more useful features.

Figure 4.8: Visualisation of filter activation in DCDM convolution layers.

In Figure 4.8, a visual representation for a few filters presented where each filter
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has its application for extracting leaf features. After detecting the specific feature of

the image by a filter, it is then passed to the next layer where other filters extract the

additional feature. This process continues until the last layer, and thus integrating

all together helps to define the predicted class for an input image.

4.3 Experimental Results

The entire dataset was distributed into different training sets (80%, 70% and 60%)

and testing data (20%, 30% and 40%) for performance evaluation, as shown in Table

4.4. The model was using 10% of the each training set split for validation purpose

during its training phase.

Table 4.4: Dataset split for training and testing.

Train - Test Data Split (%) Training Images Testing Images

80 - 20 40000 10000
70 - 30 35000 15000
60 - 40 30000 20000

The performance indicator, accuracy for each data split is shown in the Table

4.5. After every ten epochs of preparation, the values are presented. However,

in comparison with another train-test dataset splits for DCDM model performance

evaluation, the data split of 80% – 20% performed very well at the epoch scale of 50

with the maximum accuracy of 98.78% as shown in Table 4.5.
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Table 4.5: Dataset split for training/testing and accuracy obtained per epoch.

Dataset (Train/Test)

Split in %

Accuracy [%]

10

Epochs

20

Epochs

30

Epochs

40

Epochs

50

Epochs

80 – 20 92.31 95.84 96.86 97.39 98.78

70 – 30 91.23 94.89 96.15 96.77 97.46

60 – 40 90.70 94.92 95.04 95.98 96.21

In Figure 4.9 (a) (b), the accuracy and loss for both training and testing/validating

are presented for each epoch. These graphs were generated for the data split of 80%

– 20%. The accuracy graph visually shows that accuracy increases gradually for

both training and testing, and then tends to converge on a specific point. It also

shows that after 40 epochs, the change in accuracy reduces as the validation accuracy

appears to be equivalent to training accuracy. Similarly, the right graph shows how

the loss starts decreasing gradually as the model learns on a given dataset. The loss

of validation data becomes stable after 43 epochs and thus tends towards a specific

value.

Figure 4.9: Trend graph for accuracy and loss in training and validation.

The validation process gives a confusion matrix shown in Figure 4.10. After
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computing values from the confusion matrix, the results are shown for the 80%-20%

split ratio in Table 4.6.

Table 4.6: DCDM performance report.

Evaluation Metrics Value in %

Precision 98.38%
Recall 97.98%

Accuracy 98.78%
F1-Score 98.17%

Figure 4.10: Confusion matrix for 80 -20 % dataset split set.

The confusion matrix shows the predictions made by 80-20 dataset split are

presented in the Figure 4.10. The matrix displays the number of predictions that
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are true and false. It also offers the information for which class is more reliably

predicted and vice versa. The groups of Apple Cedar Rust, Grape Leaf Blight, Grape

Healthy, Potato Early Blight, and Strawberry Healthy have been correctly predicted,

so these groups have not been wrongly predicted. While the Tomato Early Blight,

Tomato Late Blight, Tomato Spider Mites, and Tomato Goal Spot classes have the

most inaccurate predictions from other classes. Likewise, the Potato Late Blight

and Tomato Septoria Leaf Spot groups have an average number of false predictions.

The remaining groups are expected with a minimum number of incorrect predictions,

such as Apple Scab, Apple Black Rot, Apple Safe, etc.

Some of the sample output images with an AWS DeepLens are shown in Figure

4.11.

Figure 4.11: Sample results from real field and controlled environment images.
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4.3.1 Comparative Analysis

A comparative overview of different CNN architectures with the DCDM, is given in

this section. Training the model on different architectures is a crucial approach used

to define the best architecture for targeted application. The architectures we used for

the identification and classification problem are the highest performing architectures.

We compared the performance of DCDM, ResNet-50 [51], DensNet [98], VGG-16

[13], VGG-19 [13], AlexNet [97], SqueezeNet [99] and DarkNet [100] architecture for

each training and testing dataset split using same hyper-parameters. An evaluation

metric of accuracy was used for comparison, based on Equation 3.

For each CNN architecture, we obtained an output accuracy of more than 90%.

AlexNet architecture works with the lowest precision of 92.43%. This architecture is

considered to be the smallest and most simple architecture of all. However, it still

provides us with a accuracy of over 90%. With some slight changes and a differ-

ent number of layers, the VGG-16 and VGG-19 architectures are the same. For the

classification challenges, they have an important record of doing very well. They pro-

vide us with an accuracy of 94.05% and 96.89% respectively for our research dataset.

Similarly, SqueezeNet and DenseNet architecture also performed with an accuracy of

94.67% and 96.59%. The ResNet-50 architecture is well-known for good performance

on large datasets. It has a bulk of 50 layers with different inter-connections. Thus,

performing with an accuracy of 97.85% and being able to score the position of the

third-best architecture in our list. The architecture of DarkNet provides an accuracy

close to DCDM model. It results from the accuracy of 98.21%, scoring the position

of second-best architecture while DCDM architecture performed outstanding and

stood with the position of best architecture with an accuracy of 98.78%. The results

for each architecture based on accuracy is visually represented in Figure 4.12.
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Figure 4.12: Average accuracy obtained by each CNN model.

The comparison of each architecture concerning time consumed has also been

made which implies the time required for training. The time consumed by our

architecture requires less computation time, thus having the lowest average time

during training per epoch. It testifies that our architecture is the most efficient both

performance as well as computation wise. The results for each architecture on the

basis of computation time taken per epoch is shown in Table 4.7.

Table 4.7: Average time consumed by CNN’s per epoch.

Trained CNN Models
Average Time
Per Epoch (in Minutes)

ResNet-50 2:03
DensNet 2:38
VGG-16 1:53
VGG-19 1:59
AlexNet 1:44

SqueezeNet 2:32
DarkNet 2:13
DCDM 1:26
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The DCDM model realises higher convergence speed and greater accuracy during

the training phase relative to the regular CNN architectures (ResNet-50, VGG-16,

VGG-19, DensNet, AlexNet, SqueezeNet, DarkNet, etc.). The findings of this study

show that end-to-end classification of plant leaf diseases is realised by the proposed

algorithm and offers a solution and a reference for the implementation of deep learn-

ing approaches in plant disease classification.

4.4 Discussion

The conventional approach to image classification methods focused on hand-engineered

features such as SIFT [121], HoG [122] and SURF [123] etc., has previously been used

to remove features from pictures. Thus, relying heavily on the pre-defined features

underlying them, added to the success of all these methods. Function descriptors

themselves are a complicated and repetitive process that may be revisited if there

is a substantial change in the topic at hand or the parameters of the correspond-

ing dataset. In all conventional attempts to diagnose plant diseases utilizing image

recognition, this difficulty has arisen because they rely solely on hand-engineered fea-

tures, techniques of image enhancement, and a variety of several other challenging

and exhaustive methodologies [101].

DL has significantly advanced in many research areas. Deep Neural Network

for Convolution (CNN) Architectures [124] have become famous recently as they

eliminate the dependency on explicit hand-crafted features instead, learn strong fea-

ture representations directly, from raw data. The integration of these deep neu-

ral networks features at different specificity levels (ranging from low-level functions

such as edges to abstract high-level features such as objects) [125] and comprehen-

sive classifiers, fashion from end-to-end. Indeed, the architecture of Deep CNN has



85

state-of-the-art performance obtained on image classification tasks [126],[97].

We find that most of the images in the PlantVillage dataset are either white

or grey background, but the real-world situation is different and can include other

background colours. Thus, the only uniform background colour trained in the model

will result in low accuracy of false prediction. To achieve high accuracy and a stable

model, we used a mix of PlantVillage dataset and images gathered from Tarnab Farm,

Pakistan the real-cultivation and research environment. We applied various data

augmentation techniques to the training data to maximize the number of those leaf

disease classes where they were less in number. Thus the processed dataset comprised

of around fifty thousand images of twenty-five different infected and healthy plant

leave classes from six plants i.e. apple, grapes, peach, strawberry, potato and tomato.

We proposed a DeepLens Classification and Detection Model (DCDM) to recog-

nise and diagnose multiple fruit trees and vegetable plant leaf diseases. We used a

cloud-based environment for DCDM training and testing to address the concerns of

scalability and applicability. It was deployed on AWS DeepLens after completion of

DCDM training. For ML projects, AWS Deeplens is a DL-based camera with a 4

mega-pixel high definition (HD) sensor.

We compared DCDM with seven different CNN architectures utilising perfor-

mance accuracy and computation time. ResNet-50 [51], AlexNet [97], VGG-16 [13],

VGG-19 [13], DenseNet [98], SqueezeNet [99] and DarkNet [100] are included in these

CNN architectures. All of these models have been trained and tested under the same

environment, i.e. same dataset set was used for training and testing phases using the

same hyper-parameters for all. All other architectures exceeded our DCDM model

in terms of computing time, as shown in Table 4.7. On real field and test images,

DCDM obtained an overall accuracy rate of 98.78%, which is higher than others as

shown in Figure 4.12. Our study findings are the first step towards a system for
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plant disease diagnosis based on an AWS DeepLens camera.

At the current point, however, there are a range of weaknesses that need to

be dealt with in future work. Firstly, in addition to AWS Deeplens, it can be

easily implemented in the future on multiple mobile platforms such as iOS, Android

or Windows-based mobile applications due to the fast classification process of our

model. Secondly, More plant species will be introduced to make this model more

scalable in the future. As there are few plant species at present, they are included

and evaluated. Lastly, in future work, modern techniques such as Multi-spectral and

Hyper-spectral images should also be tested for the detection and classification of

plant diseases.

4.5 Conclusion

With this proposed deep model applied on AWS DeepLens, 25 separate disease

classes in Apple, Grape, Peach, Potato, Strawberry and Tomatoes can be predicted in

real-time. In real-time predictions and classifications for field experiments, our model

gained 98.78% accuracy. This practical method would facilitate the practitioners

and society relevant to agriculture by contributing to the enhancement of the agri-

economy, as the severe issue of plant (leaves) diseases, can be instantly recognised

and classified. In addition, this approach is scalable, and it can also be used as

an online repository for plant leaves disease identification and classification. More

classes of other vegetables and fruit leaves can also be added in future. To improve

its usability and applicability, we will incorporate our model into various mobile

platforms such as iOS, Windows and Android-based applications in our future work.

Thus, due to regular smartphone use, the functionality would become more flexible

and easy to use. Moreover, new techniques such as multi-spectral and hyper-spectral
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images should also be evaluated in future work for the identification and classification

of plant diseases.
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Chapter 5

Health Assessment of Eucalyptus

Trees using Siamese Network from

Google Street and Ground Truth

Images

As mentioned in list of publications, this chapter with same title was published as

an original research paper in the Remote Sensing, (2021), 13(11), 2194, an official

journal of MDPI, doi: https://doi.org/10.3390/rs13112194. The contents are

the same, with the exception of certain layout adjustments to ensure consistency in

the presentation across the thesis.

Abstract

Urban greenery is an essential characteristic of the urban ecosystem, which offers var-

ious advantages, such as improved air quality, human health facilities, storm-water

run-off control, carbon reduction and an increase in property values. Therefore, iden-

tification and continuous monitoring of the vegetation (trees) has vital importance

in our urban lifestyle. This paper proposes a deep learning-based network, Siamese

https://doi.org/10.3390/rs13112194
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convolutional neural network (SCNN), combined with a modified brute-force-base

line-of-bearing (LOB) algorithm that evaluates the health of eucalyptus trees as

healthy or unhealthy and identifies their geo-location in real-time from Google Street

View (GSV) and ground truth images. Our dataset represents eucalyptus trees’ var-

ious details from multiple viewpoints, scales and different shapes to texture. The

experiments carried out in the Wyndham city council area in the state of Victo-

ria, Australia. Our approach obtained an average accuracy of 93.2% in identifying

healthy and unhealthy trees after training on around 4500 images and testing on

500 images. This study helps in identifying the eucalyptus tree with health issues

or dead trees in an automated way that can facilitate urban green management and

the local council to decide about the plantation and improvement in looking after

trees. Overall, this study shows that even in a complex background, most healthy

and unhealthy eucalyptus trees detected by our deep learning algorithm in real-time.

5.1 Introduction

Street trees are an essential feature of urban or metropolitan areas, although rela-

tively ignored. Their benefits include air filtering, water interception, cooling, min-

imising energy consumption, erosion reduction, pollution management, and run-off

detection [127], [128]. Various trees are planted in urban areas due to street trees’

social, economic and environmental advantages. One such tree, eucalyptus, is a valu-

able asset for communities in urban areas (Australia). Eucalyptus trees are icons

of the Australian flora, often called gum trees. They dominate the Australian land-

scape with more than 800 species, forming forests, woodlands and shrub-lands in all

environments, except for the aridest deserts. Evidence from DNA sequencing and

fossil discovery shows that eucalyptus had its evolutionary roots in Gondwana when
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Australia was still linked to Antarctica [129]. Traditionally, indigenous Australians

have used almost all parts of eucalyptus trees. Leaves and leaf oils have medicinal

properties, and saps may be used as adhesive resins; bark and wood were used to

make vessels, tools and weapons, such as spears and clubs [130]. For the conservation

of Australia’s rich biodiversity, eucalyptus native forests are significant.

There are two factors that are detrimental to the health of street trees. Firstly,

urban trees are under persistent strain, i.e. excessive soil moisture and soil mounding

in nurseries on roots that have an adverse effect on their health [131]. Secondly, urban

ecosystem distinguished by elevated peak temperatures relative to nearby rural areas

[132], soil compaction, limited growth of roots, pollution of groundwater [133], and

high air pollution concentrations caused by community activities. Usually, urban

soil contains a significant volume of static building waste, contaminants, de-icing

salts, low soil quality and a significant degree of volume density, thus maintaining

a low natural activity and the inferior organic material substance provided [134],

[135]. Both of these reasons raise the likelihood of water and nutrient pressure,

which degrades the metabolism and development of a tree and reduces its capacity

to provide ecosystem services. Urban tree conditions are adversely affected due to

soil compaction, low hydraulic conductivity, low compaction aeration and mostly

insufficient available rooting space [135]. In addition, inadequate conditions at the

site raise the threat of insect disease, and infestation [132].

The evaluation of tree health conditions is highly critical for biodiversity, forest

management, global environmental monitoring and carbon dynamics. Unhealthy

tree features are identifiable and can build a detection and classification model using

deep learning to intelligently diagnose eucalyptus in a healthy and unsanitary/dead

tree. To consider the importance of urban trees to the community, they should

be adequately maintained, including obstacle prevention, regeneration and substi-
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tution of dead or unhealthy trees. Ideally, skilled green managers need to monitor

the precise and consistent spatial data on tree’s health. About 60% of the riparian

tree vegetation in extensive wetlands and floodplains reported being in poor health,

or extinct [136]. Chronic decreases are associated with extreme weather conditions

due to human resources management, various pathogens, pests and various para-

sites. Trees are stressed [137] in the landscape, where the soil has a poor drainage

mechanism, also resulting in low growth of trees. The most common factors such as

soil erosion, nutrient deficiency, allelopathy, biodiversity, pests, and diseases affect

eucalyptus species’ health.

Detection and recognition of eucalyptus tree health presents a challenging task

since many trees have few pixels across input images, and some trees are also over-

shadowed by other trees and cannot be found due to weather conditions or lighting.

For addressing these challenges and achieving high accuracy and precise prediction, a

large amount of labelled training data for feature extraction of healthy and unhealthy

class features is required. For this purpose, we used GSV imagery and ground truth

images were obtained from various viewpoints and at different times. This study

uses the Siamese Convolutional Neural Network (SCNN) [138], to develop an auto-

mated model for identification and classification and a line-of-bearing measurement

approach paired with a spatial aggregation approach is used to estimate the geo-

location of the eucalyptus tree. We concentrated on the identification of healthy

and unhealthy eucalyptus trees along the streets and roads in the Wyndham city

council area [139]. This study aims to use a self-created ground truth and GSV [140]

imagery for finding the geo-location, identification and classification of healthy and

unhealthy eucalyptus trees to prevent damage that can significantly reduce ecosys-

tem harm and financial loss. GSV is an open image series of streetwise panoramic

views with approximate precise geo-location details acquired on mobile platforms
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using GPS, wheel encoder, and inertial navigation sensor (using multiple sources

such as cars, trekkers and boats) [141]. This GSV has been widely used to increase

geographical information in a variety of areas of interest, including urban greenery

[2], [142], land use classification [143],[144] and tree shade provision [145].

Our key contributions are a.) classification of trees that are in a healthy or un-

healthy state and b.) identification of geo-location of the eucalyptus trees. All these

evaluations are done based on and self-gathered ground truth data from streets.

Our experiments show that this proposed method can effectively detect and clas-

sify healthy and unhealthy eucalyptus trees with various dataset and complex back-

grounds. Our proposed method for geo-location identification gives us reliable results

and could be applied for geo-identification of other objects on the roadside. Figure

5.1 shows the overall visual representation of this study.

Figure 5.1: General workflow diagram of classifying healthy or unhealthy and geo-
tagging eucalyptus trees from GSV and ground truth images.
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5.2 Related Work

Numerous work has been done on detection and recognition in various areas such as

fruits and vegetable plant leaves disease detection [146], vegetation detection [147],

pedestrian detection [148], face detection [149], object detection [150], using various

deep learning algorithms [151]. Automatic data analysis in the remote sensing (RS)

[152] and computer vision [153] field is of vital significance. RS data has been used

in urban areas to assess trees health. A large volume of the study shows various

RS techniques used to determine the current condition of trees. In contrast, on

the other side, a minimal amount of research shows interest in the identification

and classification of dead trees. Milto Miltiadou et al., [154] presented a new way

to detect dead eucalyptus camaldulensis with the introduction of DASOS (feature

vector extraction). They tried to explore the probability of dead trees detection

without tree delineation from Voxel-based full-waveform (FW) LiDAR. Shendryk et

al., [155] suggested a bottom-up algorithm to detect eucalyptus tree trunks and the

delineation of individual trees with complex shapes. Agnieszka Kamińska et al., [156]

used remote sensing techniques, including airborne laser scanner and colour infrared

imagery, to classify between living or dead trees and concluded that only airborne

laser scanner detects dead tree at the single tree level.

Martin Weinmann et al., [157] proposed a novel two-step approach to detect a

single tree in heavily sampled 3D point cloud data obtained from urban locations

and tackled semantical classification by assignment of semantic class labelling to ir-

regularly separated 3D points and semantic segmentation by separating individual

items within the named 3D points. S. Briechle et al., [158] worked on the Point-

Net++ 3D deep neural network with the combination of imagery data (LiDAR and

multispectral) to classify various species as well as standing dead tree crowns. The
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values of laser echo pulse width and multispectral characteristics were also intro-

duced into the classification process, and individual tree’s 3D segments were created

in a pre-processing stage of a 3D detection system. Yousef Taghi Mollaei et al., [159]

developed an object-oriented model using high-resolution images to map the pest-

dried trees. The findings confirm that the object-oriented approach can classify the

dried surfaces with precise detail and high accuracy. W. Yao et al., [160] proposed

an approach to individual dead tree identification using LiDAR data in mountain

forests. The three-dimensional coordinates were derived from laser beam reflexes,

pulse intensity and width using waveform breakdowns and 3D single trees were then

detected by an optimized method that describes both the dominated trees and small

under-story trees within the canopy model.

According to Xiaoling Deng et al., [161],[162] machine learning has been used to

set several benchmarks in the field of agriculture. W. Yao et al.[160] and Shendryk

et al., [163] published their prior work on the identification of dead trees is performed

by individual tree crown segmentation prior to the health assessment. Meng R. et

al., [164], Shendryk et al., [155], López-López M et al., [165], Barnes et al., [166],

Fassnacht et al., [167], mentioned that most of the current tree health studies centred

either on evaluating the defoliation of the tree crown or the overall health status of

the tree, although there was minimal exposure to the discolouration of the tree

crown. Dengkai et al., [168] used a group of fields assessed tree health indicators to

define tree health that was classified with a Random Forest classifier using airborne

laser scanning (ALS) data and hyperspectral imagery (HSI). They compared the

outcomes of ALS data and HIS and also their combination and then analysed the

accuracy degree of classification. Nasi et al., [169], [170] reported in two different

pieces of research that the potential of UAV-based photogrammetry and HSI for

mapping bark beetle in an urban forest, damage at tree level. Degerickx et al., [171]
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performed tree health classification based on chlorophyll and leaf area index derived

from HSI, where for individual tree crown segmentation, they used ALS data. Xiao

et al., [172] used normalised difference vegetation index (NDVI) to detect healthy

and unhealthy trees. They found it challenging to map tree health across various

species or in places where many tree species coexist. Goldbergs et al., [173] evaluated

local maxima and watershed models for the detection of individual trees, and they

found the efficient performance of these models for dominant and co-dominant trees.

Fabian et al., [174] presented their work on random forest regression to predict total

trees using local maxima and a classification process to identify a tree, soil and

shadow. Li et al., [175] introduced a Field-Programmable Gate Array (FPGA) for

tree crown detection, significantly rapid calculations without loss of functioning.

Siamese network [138] has been used in a variety of applications, including ob-

ject tracking [176], plant leaves disease detection [177], signature verification [178],

railway track switches [179], coronavirus diseases detection [180]. H Bromley et al.,

[181] proposed a neural network model for signature matching by introducing for the

very first time Siamese network. Bin Wang et al., [182] presented a few-shot learning

method for leaf classification with a small sample size based on the Siamese network.

However, we are using a Siamese convolutional neural network (SCNN) combined

with a modified brute-force-based line-of-bearing (LOB) algorithm to classify euca-

lyptus trees as healthy or unhealthy and to find their geo-location.

5.3 Material and Methods

5.3.1 Study Area and GIS Data

The Wyndham city council (VIC, Australia) area [139] was chosen as the study area,

as shown in Figure 5.2. It is located on Melbourne’s western outskirts and covers
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an area of 542 km2 and has a coastline of 27.4 km. It has an estimated resident

population of 270,478, according to the 2019 census. Wyndham is currently the

Figure 5.2: a.) Location of the study area in Victoria, Australia. b.) Suburbs in the
Wyndham city council.

third fastest-growing local council in Victoria. Wyndham’s population is growing

and diverse, and the community forecasts indicate the population will be more than

330,000 by 2031 [139]. There are 19 suburbs (Cocoroc, Eynesbury, Hoppers Crossing,

Laverton North, Laverton RAAF, Little River, Mambourin, Mount Cottrell, Point

Cook, Quandong, Tarneit, Truganina, Werribee, Werribee South, Williams Landing,

Wyndham Vale) in Wyndham [183]. Wyndham City Council is committed to en-

hancing the environment and liveability of residents. As part of this commitment,

thousands of new trees are planted each year to increase Wyndham’s tree canopy

cover through the street tree planting program.

5.3.2 Google Street View (GSV) Imagery

The orientation of eucalyptus trees (healthy and unhealthy) in a 360° GSV can be

identified by GSV images. Images of the static street view have been downloaded

via the GSV image application programming interface (API) [184] by supplying the

corresponding parameter information with uniform resource locators (URLs) [185].
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The GSV API snaps the requested coordinates automatically to the nearest GSV

viewpoint. We have taken four GSV images with the fov of 90° and headings of 0°,

90°, 180°, 270°, respectively as shown in Figure 5.3.

Figure 5.3: GSV images were obtained from 4 different viewpoints.

The “street-view” python package [186] was used for acquiring accurate latitude

and longitude values for each GSV viewpoint to convert the coordinates requested to

the nearest available Panorama IDs (i.e., unique panorama ID with purchased date

[year, month], latitude and longitude). The latest Panorama ID was then used as

the input location parameter as shown in the Figure 5.4.

Figure 5.4: Different location images of the study area with latitude, longitude values
and panorama IDs.

We built a Python script to create the URLs and download 1000 GSV images to
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cover the study field automatically. In order to remove the Google logos, we cropped

the downloaded images.

5.3.3 Annotation Data

For deep supervised learning algorithms to be practical, large image data is essential.

From GSV images acquired with screen captures on Google Maps, we created 1000

images data points by manually tagging eucalyptus trees, as can be seen in Figure 5.5.

To increase the methodology’s transferability, random eucalyptus trees’ around 3500

images at the Wyndham city council, Victoria, Australia, were also taken for training,

validation and testing of the model. We used “labelling” [187] for ground truth and

panorama images. It is a tool written in Python for graphical image annotation and

uses Qt for its graphical interface. Annotations are stored in PASCAL VOC, the

format used by ImageNet, as XML files. We used the PASCAL VOC format because

the Siamese network supports it. In DL, training an algorithm requires an ample

training and validation dataset to minimise and prevent overfitting the model. At

the same time, a test dataset is required to assess the trained model’s performance.

In total, 4500 images from GSV and self-gathered images were annotated and used

as a dataset for training, 500 for validation and the other 500 for testing (accuracy)

evaluation.

5.3.4 Training Siamese CNN

We trained Siamese CNN based on its central idea that if we use two input images

from the same class, then their feature vectors must also be identical, and if two input

images are not of the same class, then their feature vectors must also be different.

Depending on the input image types, the vector features must be very different in

these situations and the similarity score will also be different.
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Figure 5.5: a.) Command prompt-LabelmeImg screenshot, b.) Annotating single
tree image, c.) Annotating panorama image.

5.3.5 Siamese CNN Architecture

The word Siamese refers to twins [138]. Siamese Neural Network is a sub-class

of neural network architecture that comprises of two or more networks [188]. These

networks must be two copies of the same network, i.e., having the same configuration

with the same parameters and weights.

We used the Siamese network, consisting of two identical convolutional neural

networks (CNN) [189]. The network architecture is the same as in our previous work

[146], where an individual CNN is comprising of 6 convolutional layers and three fully

connected or Dense layers. Each convolution layer contains two feature types, input

and numeral filters. We used a 3x3 filter size for all convolution layers. The number

of the filter is transformed into the next linked layer for each layer, which extracts the

valuable features. One of the key benefits of the convolutional network is that the
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input image to the network can be much bigger than the size of the candidate image.

Furthermore, in one evaluation, it will measure the similarity in all translated sub-

windows on a dense grid. We search multiple scales in one forward-pass by assembling

a mini-batch of scaled images. The output of this network performance is a score

chart. For enhancing convergence speed, batch normalization [190] is applied to all

convolutional layers except the last layer. We used five max-pooling layers that follow

each convolutional layer to minimize the computational cost. The max-pooling has

an active filter of 2x2 that slides on the input image and, based on the filter size;

then the maximum value is selected as an output. The first two layers of the fully

connected layers have ReLU activation [191] while the last layer (also known as

the output layer) has a SoftMax activation [192]. The SoftMax activation finds the

maximum probability value node and forwarded it as an output. A dropout of 0.5

is added to the fully connected layers to prevent over-fitting issues in the model.

The total model parameters of our model are 51,161,305. Figure 5.6 is the visual

representation of our Siamese network.

5.3.5.1 Contrastive Loss Function

Features extracted by the subnetworks are fed into the decision-making network

component, which determines the similarity. This decision-making network can be

a loss function [193], i.e., contrastive loss function [194].

We trained Siamese CNN with contrastive loss function [194]. Contrastive loss is

a distance-based loss function used to find embeddings where the Euclidean distance

is small in two related points and high in two separate points, [194]. Therefore,

if input images are of same class, then loss function allows the network to output

features close to feature space and if the input images are not similar then the output

features are away. The similarity feature function is:
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Figure 5.6: Visual representation of Siamese network architecture that takes two
different inputs and provides the inference.

Dw (x1, x2) = ∥Fw (x1) − Fw (x2)∥ (5.1)

Where x1 and x2 are the input images that shares the parameter vector w and

Fw(x1), Fw(x2) represents the input mapping in the feature space and Dw is the

Euclidean distance. By calculating the Euclidean distance, Dw, between the feature

vectors, the co-evolutionary Siamese network can be seen as a measuring function

that measures the similarity between x1 and x2.

We use contrastive loss function defined by Chopra et. al., [195], [196], in Siamese

network training, defined as follow:

L (w, y, x1, x2) =
y

2
Dw (x1, x2)2 +

1 − y

2
(max {0,m−Dw (x1, x2)})2 (5.2)
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where y is a binary label assigned to input images x1 and x2, y=1 if both the

inputs are of the same class and y=0 if both inputs are of different class, while m

> 0 is a margin value, must be chosen experimentally depending on the application

domain.

Minimizing L(w, y, x1, x2) with respect to w will then result in a small value of

Dw(x1, x2) for images of the same species and a high value of Dw(x1,x2) for images

of different species. This is visually represented in Figure 5.7.

Figure 5.7: Contrastive loss function examples of a.) Positive (similar) and b.)
Negative (different), images embedded into a vector space.

5.3.5.2 Mapping to Binary Function

Siamese network takes an input of a pair of images, and the output is a similarity

score. The similarity score will be 1 if both images belong to the same class, and it

will be 0 if both input images are from different classes.
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5.3.6 Geo-location Identification

Our proposed DL-based automatic mapping method for eucalyptus tree from GSV

includes three main steps as shown in Figure 5.8. They are the following.

1. Detect eucalyptus tree in the GSV images using a trained DL network.

2. Calculate the azimuth, (Azimuth is an angular measurement in a spherical

coordinate system. The vector from an observer (origin) to a point of interest

is projected perpendicularly onto a reference plane; the angle between the

projected vector and a reference vector on the reference plane is called the

azimuth [197] ) from each viewpoint to the detected eucalyptus tree based

on the known azimuth angles of the GSV images, relative to their view point

locations, and the horizontal positions of the target in the images as shown

in Figure 5.8 (2) using the mean value of two X values of the bounding box.

For Example; suppose a detected eucalyptus tree has a bounding box that is

centered on column 228 in a GSV image that is centered at 0° azimuth relative

to the image viewpoint. Each GSV image contains 640 columns and spans

a 90° horizontal field-of-view; thus, each pixel spans 0.14. The center of the

eucalyptus tree is 130 pixels to the right of the image center (at column 320)

and so has an azimuth of 18.2° relative to the image viewpoint.

3. The final step is to estimate the target locations based on the azimuths calcu-

lated from the second step as presented in Figure 5.8 (3).

5.3.6.1 LOB Measurement Method

The bounding boxes of detected eucalyptus trees, which result from the implementa-

tion of odometry from monocular vision of GSV images, are the outputs of eucalyptus
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Figure 5.8: The process of using deep learning to map eucalyptus trees from GSV.

tree detection in GSV images using Siamese CNN, as shown in Figure 5.9. As a re-

sult, estimating eucalyptus tree positions in pure GSV images is a multiple-source

localization issue based on passive angle measurements that has been extensively

studied [198], [199]. One of three major multiple-source localization methods is the

LOB-based method [200]. Since detected eucalyptus tree are not signal sources like

propagating signal sources whose signal intensity can be calculated, a LOB calcula-

tion was used to estimate the position of a target eucalyptus tree shown in Figure 5.9.

Other methods (such as synchronization and power transit) necessitate more strin-

gent requirements for a LOB calculation. Azimuths from multiple image viewpoints

to a given eucalyptus tree enable the eucalyptus tree position to be triangulated in

LOB localization presented in Figure 5.9. Since the LOB move through the target,

the intersection of several LOB is ideally the exact location of the target as can be

seen in Figure 5.9.

When the LOB calculation is used in a dense emitter setting, however, many ghost

nodes (i.e., false targets) appear, as shown in our study for estimating eucalyptus
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Figure 5.9: An example of using bearing measurements to determine a target position
from three different locations using a sensor

tree locations in GSV images [201] as shown in Figure 5.11.

As a result, a modified brute-force-based three-station cross position algorithm

was used to reduce the ghost node problem of multiple-source localization using LOB

measurement as shown in Figure 5.10; source localization from viewpoints A, B, and

C, based on two assumptions:

1. Targets and sensors are in the xy plane, and

2. All LOB measurements are of equal precision [202].

The LOB measurement method shown in Figure 5.11 consists of the following

steps:

1. Find the closest neighboring viewpoints for a given viewpoint; we tested the
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Figure 5.10: Bounding boxes of labelled eucalyptus tree in 4 GSV images (a-d)

algorithm’s performance using 2 to 8 of the closest neighboring viewpoints (i.e.,

the corresponding number of views is 3 to 9);

2. Measure the angles between each pair of LOBs from all viewpoints [203];

3. Check whether there are positive associations among LOBs (set at 50 m length)

from current viewpoint and its neighboring viewpoints.

4. Repeat the process from step 1 to step 3 for every intersection point.

To be more precise, a positive association among LOB is produced by three

positive detections from any three views within an angle threshold (β) [202]. As a

result, assuming constant detection rates, the number of predicted eucalyptus trees

increases as the number of views increases, based on the likelihood of combination.

For example, suppose the total number of eucalyptus trees estimation possibilities

is t( t ε N); if the detection rate remains constant, the likelihood of a positive
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Figure 5.11: An example of how to use the brute-force-based three-station cross
position algorithm to remove ghost nodes from four views with a 5° angle threshold.

association with seven views (i.e., C(7, 3)/t ) is greater than the probability of

positive association with four views. (i.e., C(4, 3)/t ). In order to perform cross-

validation in this analysis, the closest perspectives were chosen. A list of the nearest

neighbouring perspectives (2, 3, 4, 5, 6, 7 and 8 viewpoints; that is 3, 4, 5, 6, 7, 8

and 9 views) and angle thresholds (1°, 2° and 3°) is used for testing to determine

whether there is a positive correlation and which threshold functions better. Because

of the span of the LOB and the interval between GSV acquisitions, only nine views

were chosen for research (10 m). Eight perspectives are on a line on one side of

the present perspective in the extreme case of 9 views. For the intersection of two

50-meter LOB, 80 meters is almost the maximum distance needed.
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5.3.6.2 Multiple LOB Intersection Points Aggregation

If we use a modified brute-force-based three-station cross-location algorithm, the re-

sult will be more than one LOB intersection point, and all these are possible targets

for each eucalyptus tree. In order to overcome this situation, we can further apply a

geospatial algorithm, i.e., spatial aggregation (Spatial Aggregation calculates statis-

tics in areas where an input layer overlaps a boundary layer [204] ) to determine

where a eucalyptus tree can be found. The primary purpose of this geospatial aggre-

gation algorithm is to provide a central location (expected correct target) within a

range of 10m (this 10m distance is given to the geospatial algorithm to apply aggre-

gation on) of LOB intersection points. There are three main steps of this geospatial

aggregation algorithm, as shown in Figure 5.12.

Figure 5.12: An example of aggregating multiple LOB intersection points.

1. Compute the Euclidean distance matrix between all LOB intersection points.

2. The Euclidean distances between LOB intersection points are used to cluster

LOB intersection points.
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3. Determine the centroid of each intersection point cluster.

5.3.6.3 Spatial Aggregation and Calculation of Points

Aggregation is the process of combining several objects with similar characteristics

into a single entity, resulting in a less detailed layer than the original data [205].

Aggregation, like any other type of generalization, removes some information (both

spatial and attribute) but simplifies things for the consumer who is more interested

in the unit as a whole rather than each individual component within it [205]. Spatial

aggregation can be applied on Line, Points or Area; however, the calculation method

is slightly different when calculating points. For line and area features, average

statistics are determined using a weighted mean. Only the point features inside the

input boundary are used to summarise point layers. As a result, no equations are

weighted. The following equation is used to calculate weighted mean [204].

x̄w =

∑N
i=1wi.xi∑N
i=1wi

(5.3)

Where N = number of observations, xi = observations and Wi = weights.

It must be ensured that all data from the same database link is stored in the same

spatial reference system while performing spatial aggregation or spatial filtering [204].

5.4 Experiments and Results

5.4.1 Experiments

We implemented our experiments in Keras [206] backend TensorFlow [207]. Typ-

ically, any state-of-the-art architecture may be used as a backbone to extract the

features. We performed our experiments with VGG-16 [208], AlexNet [209] and
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ResNet-34 [210] to explore how effective the backbone network is in extracting fea-

tures. Siamese network consists of two sister/twin CNNs as both are two copies

of the same network. They share the same parameters and network weights were

initialized. The initial learning rate was set at 0.001 with an optimizer Stochastic

Gradient Descent (SGD) [211], dropout was set to 0.5 and momentum 0.9. We used

L2 Regularization to avoid over-fitting in the network [146]. All input images were

resized into 100×100 before feeding into two identical networks in the Siamese net-

work. The two input images of eucalyptus trees (X1 and X2) are passed through the

networks and then through a fully connected layer to generate a feature vector for

each (X1) and (X2)). We added a dense layer with ReLU activation and then finally

an output layer with SoftMax activation.

5.4.2 System Configuration

All our experiments were performed on Intel Core i7-9700K CPU @ 3.60GHz (8

cores and 8 threads), 32 GB RAM, NVidia Titan RTX 24GB VRAM GPU. For

development and implementation of methodology, we used Python 3.8 and Keras-

2.2 with Tensorflow-2.2.0 backend as the deep learning framework.

5.4.3 Approach

The entire dataset was split into 70% training, 10% validation and 20% test set. We

applied various data augmentation techniques on the images and resized all images

into 100×100 before feeding it into the Siamese network. The weights were initialized

to avoid the layer activation from disappearing during the forward passage through a

deep neural network [212]. We also used early stopping with a patience of 50 epochs.
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5.4.4 Results

We used various networks such as VGG-16 [208], ResNet-34 [210], and AlexNet [209]

in our experiments. While performing experiments, first, we froze a few layers in

the backbone network and trained the network on the remaining layers that we

added. The obtained results from the experiments with various networks were not

satisfactory, i.e., 85.33%, 82.67% and 79.89%, respectively. The achieved results

from the frozen layers were not satisfactory, so we unfroze all the layers and again

performed the experiments to extract features for eucalyptus trees input images. This

time the results were 93.2%, 90.43% and 86.26%, respectively. In each experiment,

a total of 50 epochs were conducted, where each epoch is the number of iterations.

Finally, the Siamese network was trained at a batch size of 32 and stopped training

on epoch-50 as shown in Figure 5.13.

Figure 5.13: Validating the object detection model learning.

The initial experiments with VGG-16, ResNet-34, and AlexNet demonstrated

that VGG-16 consistently produced the best results in our scenario, so we used it

as the backbone for all of our experiments.The resulting features of VGG-16 exper-

iments are transferred to the decision network to identify whether or not two input

images are similar. A sample output is shown in Figure 5.14.
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Figure 5.14: Examples of identifying and classification of healthy and unhealthy
eucalyptus trees from GSV and ground truth images.

There are many ways of performance measurement that are used to evaluate the

performance of neural networks. They include precision, recall, accuracy, and f1-

score. The precision tells us about the correct predictions made out of false-positive

while recall tells us about the correct predictions made out of false negatives. The

accuracy is the number of correct predictions out of both false positives and false

negatives. We calculated all the performance measures for our trained model using

formulas listed in Eq (4), (5), (6), and (7) from the confusion matrix.

Precision =
TP

TP + FP
(5.4)

Recall =
TP

TP + FN
(5.5)

Accuracy =
TP + TN

TP + TN + FN + FP
(5.6)

F1 − Score = 2 ∗ Precision ∗ Recall

Precision + Recall
(5.7)

Where TP is true positives, TN is true negatives, FP is false positives and FN is
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false negatives. Here the TP and TN are the correct predictions while the FP and

FN are the wrong predictions made by our model. After computing values from the

confusion matrix, the results are shown in Table 5.1.

Table 5.1: Classification / Model Performance Report

Evaluation Metrics Value in %

Precision 93.38%
Recall 92.98%

Accuracy 93.2%
F1-Score 92.17%

5.4.4.1 Location Estimation Accuracy Evaluation

The location estimation accuracy of the eucalyptus tree is shown in Table 5.2 as a

percentage of the number of predicted eucalyptus tree positions within the buffer

zones of a reference eucalyptus tree. To assess the effects of the number of views,

the angle threshold, and the distance to the middle of a chosen road, we considered

seven views (i.e., 3, 4, 5, 6, 7, 8, 9), three angle thresholds (i.e., 1°, 2°, and 3°),

and three distance thresholds to the centre of a selected road (i.e., 3m, 4m, and

5m) to determine the impacts of the number of views, the angle threshold, and the

distance threshold to the centre of a selected road. Around half of the estimated

eucalyptus tree locations were within the 6m buffer zone of their reference locations

using the method we tested, and up to 79% of the estimated locations were within the

10m buffer zone of their reference locations using the method we tested. However,

about 12% of the approximate eucalyptus tree positions were inside the 2m reference

position buffer zone.

Table 5.2 reveals that using more views and higher angle thresholds resulted in

a more approximate eucalyptus tree in the modified brute-force-based three-station
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cross-location algorithm, which is due to the increased relaxation of the modified

brute-force-based three-station cross-location algorithm. Meanwhile, because relax-

ation allows more ghost nodes to be estimated eucalyptus trees, more estimated

eucalyptus trees may result in lower accuracy (see Table ref mytable).

Table 5.2 shows that when comparing the results of other numbers of views, the

average percentage of predicted eucalyptus tree positions being inside all buffer zones

of reference eucalyptus trees for the results of 8 views is the highest (47.80%). Using

greater distance to the centre of selected road thresholds, on the other hand, resulted

in less approximate eucalyptus trees. Since the optical GSV imagery was the only

data source used to perform the localization, the precision of the position estimation

for the eucalyptus tree is fair, and the estimated data is helpful.

It is worth noting that GSV image distortion, terrain relief, GSV position ac-

curacy, or limitations in the process we used may have caused location mismatches

in some cases due to the ground positions of eucalyptus trees varying from the or-

thographic predicted locations estimated from GSV images. For areas where GSV

imagery is available and a eucalyptus tree distribution map with a 10 m accuracy is

appropriate, our proposed approach has a lot of promise. When a given eucalyptus

tree was not identified in at least three GSV images out of a certain number of views,

our method failed to estimate the eucalyptus tree’s location. Three is the minimum

number of images needed to triangulate a position and remove ghost nodes (as can

be seen in Figure 5.11). This explains why the number of projected eucalyptus trees

rises in tandem with the number of views (see Table 5.2).
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5.5 Discussion

Eucalyptus trees are evergreen, however, an early sign that shows it is unhealthy if

it turns brown, either partially or completely. Various signs / aspects can be spotted

in unhealthy eucalyptus trees such as one of the most apparent is the loss or decrease

of leaf growth in all or parts of the tree. Other symptoms include the bark of the

tree becoming brittle and peeling off, or the trunk of the tree becoming sponge-like

or brittle. A tree may have bare branches, i.e., without leaves, in any season can

be a sign of dead tree or branches that are loose and weak could indicate a dead or

dying tree. Weak joints of eucalyptus tree can be dangerous, as it means branches

can come loose during bad weather [213]. If the whole eucalyptus is dead, it can be

left untouched for a period of maximum two years; however, after this, it becomes

unsafe and needs to be removed.

Some of the common diseases in eucalyptus [214] trees are shown in Figure 5.15

a.), b.) and c.). It is critical to identify such unhealthy trees in order to improve the

urban eucalyptus tree’s health and environment.

a. Canker disease that infects the bark and then goes inside of the tree,

b. Phytophthora disease goes directly under the bark by discolored leaves and

dark brown wood, and

c. The heart disease damages the tree from inside and outside.

Numerous approaches are studied in the current literature with regards to trees

and their health in urban areas. Shendryk et al., [155] worked on the trunks of

eucalyptus trees, as well as their complex shapes. They used Euclidean distance

clustering for individual tree trunk detection. Up to 67 per cent of trees with diame-

ters greater than or equal to 13 cm were successfully identified using their technique.
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Figure 5.15: Some common diseases a.) Heart rot and b.) Phytophthora, and c.)
Canker.

Milto Miltiadou et al., [154] presented a new way to detect dead eucalyptus camald-

ulensis with the introduction of DASOS (feature vector extraction). To do so, they

attempted to research the odds of dead trees being detected using Voxel-based full-

waveform (FW) LiDAR without tree delineation. It has been discovered that it is

possible to determine tree health without outlining the trees, but since this is a new

area of research, there are still many improvements to be made. Xiao et al., [172]

presented that the trees were examined using remote sensing data and GIS tech-

niques to examine their health. Trees had their conditions analysed in relation to

physiognomy on two scales: the tree itself and in terms of pixels. A pixel-by-pixel

analysis was performed in which each tree pixel within the tree crown was classified

as either healthy or unhealthy based on values of vegetation index. A quantitative

raster-based analysis was conducted on all of the trees, where they used the tree

health index, which is a quantitative value that describes the number of healthy pix-

els compared to the total tree pixels on the crown. Classifying the tree as healthy if

the index was greater than 70% of the overall index indicated that a random sample

of 1,186 trees was used to verify the accuracy of the tree data. When viewed at the

whole tree level, approximately 86% of campus trees were found to be healthy and

approximately 88% of mapping accuracy.
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In contrast to the above-discussed literature, we propose a deep learning-based

network, Siamese convolutional neural network (SCNN), combining a modified brute-

force-base line-of-bearing (LOB) algorithm to classify Eucalyptus trees as healthy or

unhealthy and to find their geo-location from the GSV and ground truth imagery.

Our proposed method successfully achieved an average accuracy of 93.2% in identi-

fying healthy and unhealthy trees and their geo-location. For training and validation

of SCNN, a dataset of approximately 4,500 images was used.

The main purpose of using Google imagery is that Google imagery is available

publicly online and no privately man laboured efforts are required in order to capture

the images. Secondly, using of sentinel imagery would be an expensive option and

time consuming solution, as the sentinel’s imagery requires longer time period to

get the images of specific location and needs to subscribe to pay for getting service;

i.e., not publicly available. The sentinel imagery is also protected by copyrights.

Therefore, in this work, we used GSV and ground truth image for getting better result

and overcome the some of the challenges as discribed in the introduction section. It

is worth mentioning that “the satellite data on Google Maps is typically between 1 to

3 years old”. According to the Google Earth and other sources, data updates usually

about once a month, but they may not show real-time images. Google Earth gathers

data from various satellite and aerial photography sources, and it can take months to

process, compare and set up the data before it appears on a map. However, in some

circumstances, Google Maps are updated in real-time to mark major events and to

provide assistance in emergency situations. For example, it updated imagery for the

2012 London Olympic Games just before the Opening Ceremony, and it provided

updated satellite crisis maps to help aid teams assess damage and target locations

in need of help shortly after the Nepal earthquake in April 2015 [215], [216].

The primary purpose of using Google imagery is that Google imagery is available
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publicly online, and no privately manual laboured efforts are required to capture the

images. Secondly, using sentinel imagery would be an expensive and time-consuming

solution. The sentinel’s imagery requires a longer period of time to obtain images

of a specific location and a subscription to pay for service, i.e., it is not publicly

available for free. Copyrights also protect sentinel imagery. Therefore, in this work,

we used GSV and ground truth images to get better results and overcome some of

the challenges described in the introduction section. It is worth mentioning that “the

satellite data on Google Maps is typically between 1 to 3 years old”. According to

Google Earth and other sources, data updates are usually about once a month, but

they may not show real-time images. Google Earth gathers data from various satellite

and aerial photography sources, and it can take months to process, compare and set

up the data before it appears on a map. However, in some circumstances, Google

Maps are updated in real-time to mark significant events and provide assistance in

emergencies. For example, it updated imagery for the 2012 London Olympic Games

just before the Opening Ceremony, and it provided updated satellite crisis maps to

help aid teams assess the damage and target locations in need of help shortly after

the Nepal earthquake in April 2015 [215], [216].

5.6 Conclusion, Limitations and Future Directions

Identifying various healthy and unhealthy eucalyptus trees using traditional and

manual methods is time-consuming and labor-intensive. This study is primarily an

exploratory one that employs a DL-based method for identification, classification,

and geolocation estimation. In this study, we present a Siamese CNN (SCNN) ar-

chitecture trained to identify and classify healthy and unhealthy eucalyptus trees

and their geographical location. The SCNN uses the contrastive loss function to

calculate its similarity score from two input images (one for each CNN). With the

large number of GSV images available online, the method could be a useful tool for
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automatically mapping healthy and unhealthy eucalyptus trees, as well as mapping

their geo-location on metropolitan streets and roads. Although the model correctly

identifies the eucalyptus tree’s health status and position, there are certainly worth

mentioning limitations to consider. Firstly, it is still challenging to map up-to-date

GSV images with geographical location information because the changing nature

of imagery is rapid. Secondly, to achieve reasonable accuracy for geo-location with

the DL, a large amount of training data is needed. Thirdly, when eucalyptus trees

have a big lean, the LOB method requires more attention; this is due to terrain and

GSV’s visual distortion without compensation. Finally, the method suggested for

automatic tree geo-location recognition can be useful, and in future study, it might

be used to detect and classify other objects along the roadside.
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Chapter 6

A Multiview Semantic Vegetation

Index for Robust Estimation of

Urban Vegetation Cover

As mentioned in list of publications, this chapter with same title was published as

an original research paper in the Remote Sensing. (2022), 14(1), 22814(1), 228, an

official journal of MDPI, doi: https://doi.org/10.3390/rs14010228, in a special

issue: Advances in Object and Activity Detection in Remote Sensing Imagery. The

contents are the same, with the exception of certain layout adjustments to ensure

consistency in the presentation across the thesis.

Abstract

In the contemporary era, urban vegetation growth is vital for creating sustainable

and livable cities since it directly helps people’s health and well-being. Estimating

vegetation cover and biomass is commonly done by calculating various vegetation in-

dexes for automated urban vegetation management and monitoring. However, most

of these indexes fail to capture robust estimation of vegetation cover due to inherent

focus on colour attributes with limited viewpoint and ignoring seasoning variations.

https://doi.org/10.3390/rs14010228
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This article proposed a novel vegetation index to address this weakness robust to the

colour, viewpoint, and seasonal variations. Moreover, it can be applied directly to

RGB images. This Multiview Semantic Vegetation Index (MSVI) is based on deep

semantic segmentation and Multiview field coverage and can be integrated into any

vegetation management platform. This index has been tested on Google Street View

(GSV) imagery of Wyndham Council, Melbourne, Australia. The experiments and

training achieved 89.4% and 92.4% overall pixel accuracy from FCN and U-Net, re-

spectively. Thus, the MSVI can be a helpful instrument for analysing urban forestry

and vegetation biomass since it provides an accurate and reliable objective method

for assessing the plant cover at the street level.

6.1 Introduction

The changing land use patterns and population growth have had a significant impact

on the vegetation composition in the world [217, 218, 219] which is essential for better

living conditions of city dwellers. As indicated by Wolf, K.L. [220], a city’s vegetation

cover (i.e. street woods, lawns, etc.) has long been acknowledged as a key component

of urban landscape planning. According to Appleyard [221], the instrumental role

of street vegetation is to absorb airborne pollutants through carbon sequestration

and oxygen production, to mitigate noise pollution in urban heat islands [222], and

reduce storm waters [223, 224]. In addition, the life of vegetation generally raises

the aesthetic evaluation of people in urban settings [225, 226]. For this purpose, it

is critical to document changes in vegetation so that land management professionals

may work to improve the urban environment. Furthermore, changes in the type

of land cover (such as building developments) have been found to have a strong

correlation with the changes of vegetation in the urban environment.
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Moreover, changes in an urban environment are generally very important such as

food consumption, energy, water, and land used by urban residents has a significant

impact on the environment. Therefore, automated detection of vegetation cover is

often done through calculations of various vegetation indexes [227] that hold impor-

tant information regarding vegetation cover of a particular location. In past, various

algorithms were employed for the calculation of vegetation index using various image

modalities. However, existing approaches have highly focused on spectral analysis

and color variations. For instance, Normalized Difference Vegetation Index (NDVI)

tends to amplify atmospheric noise in the Near Infrared Reflectance (NIR) and Red

bands and becomes very sensitive to background variation. Therefore, it does not

work well for RGB images for street-level vegetation analysis. Remote sensing data

collected from above by sensors (aircraft, space) misses the glimpse of urban flora

at street level. Thus, profile views of urban greenery from the road level are insuffi-

ciently assessed, even though green indices derived from remotely sensed image data

might help quantify urban greenery. There is a distinction between vegetation view

through ground experience and the view captured by remote sensing systems [228].

Li et al. [2, 229], discovered that people had unequal access to distinct types of ur-

ban greenery (street vegetation, private yard total vegetation, private yard trees and

shrubs, and urban parks), providing the groundwork for subsequent research into

urban greenery inequity.

On the other hand, RGB based vegetation indexes are prone to wrong estimations

due to reliance on green colour and ineffectiveness to capture seasonal variations.

Rencai et al. [3] utilise the green view index (GVI) as a quantitative indicator to

determine how much greenery can be seen by pedestrians and then apply an image

segmentation algorithm to figure out how much greenery can be seen by pedestrians

in street view images. Zhang et al. [230] used an extensive street view image data set,
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as well as a horizontal green view index (HGVI) to calculate the quantity of greenery

visible from the street in their research. Long et al. [231] analysed 245 Chinese

cities, calculating the GVI values of their central regions and comparing them to the

overall GVI conditions of the respective cities. As a result, they discovered that more

affluent and well-run cities have longer and greener streets. Several visual qualities

of streets such as salient region saturation, visual entropy, a green view index, and

a sky-openness index were measured by Cheng et al. [232].

Kendal et al. [233] used colour threshold for extraction of vegetation index. The

technique proved to be promising, but only using colour features for segmentation

is not an efficient model as any clutter information in the image can match the

vegetation colour. Further, in recent years Bawden et al. and Kattenborn et al.

[234, 235] used convolutional neural network (CNN) for two studies: In the first

approach, they used a CNN-based approach to train data acquired from unmanned

aerial vehicle (UAV)-based high-resolution RGB imagery visual interpretation, a

fine-grained map for two species of vegetation. While in the second approach, they

mapped species of trees or plants cover in different vegetation UAV RGB imagery.

However, these approaches suffer due to reliance on colour and specific image features

and are unable to handle large variations in vegetation characteristics.

Recent advancements in deep learning have introduced a new level of accuracy in

identifying objects of interest through semantic segmentation. Jonathan et al. [236]

introduced a fully convolutional neural network (FCN), and Dvornik et al. [237]

proposed BlitzNet for object segmentation. Yi et al. [238] constructed an instance

aware based semantic segmentation model, which utilized the advantages of FCN

for segmentation and classification. As a result of the development, the model was

capable of simultaneously recognizing and segmenting the object instances. Liang-

Chieh et al. [239] applied fully convolutional neural networks (FCN) to a multi-scale
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input image in order to achieve the required results.

Figure 6.1: A data flow diagram for the MSVI, which highlights the process of
calculating the proposed vegetation index.

Motivated with the success of deep semantic segmentation, the conducted re-

search proposes a semantic vegetation index (SVI) for RGB images with robustness

against colour changes and seasonal variations. To deal with the limitation of single

image coverage, its extension called multi-view semantic vegetation index (MSVI) is

also introduced that can estimate vegetation cover from multiple views. The overall

framework of this study is presented graphically in Figure 6.1.

The Contribution: According to the literature, semantic vegetation index (SVI) is

one of the first approaches to integrate deep semantic segmentation into the process

of vegetation index estimation. Although there are a variety of vegetation indexes

in the literature, they are limited to a specific image modality and colour feature, or

they overlook essential flora semantic information. It makes them more susceptible

to noise, resulting in erroneous estimation. The proposed index is robust to colour

and seasonal variations and works for any imaging modality. Furthermore, it can

be extended to multiple views to expand exposure and reliable calculation. The
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segmentation approach is not claimed to have made a contribution in this study.

Nonetheless, it compares many ways to determine which are the most appropriate

for this aim.

The rest of the paper is organized as follows: Section 2 explains the material and

methods taken into account, Section 3 presents detailed information regarding the

experiments and results achieved by the proposed methodology, Section 4 presents

the comparative analysis with the previous work , section 5 presents a detailed

discussion of the proposed work, while Section 6 is the conclusion section of this

paper.

6.2 Materials and Methods

6.2.1 Study area

Figure 6.2: The research area in Victoria, Australia, which was chosen for this study.
a.) Victoria (Australia), b.) Wyndham City Council, Victoria, Australia, c.) One
sample site and d.) a sample street view from a sample site.

Figure 6.2 shows the municipal council of Wyndham (VIC, Australia),as the
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selected area for this study. It lies on the western outskirts of Melbourne (VIC,

Australia) and covers an area of 542 km2. According to the 2019 census, its estimated

population is 270,478. Wyndham is the third fastest-growing council in the state of

Victoria. The population of Wyndham is diverse, and the community development

projects suggest that by 2031 more than 330,000 people are expected to come and

live. Wyndham is home to 16 suburbs (Cocoroc, Eynesbury, Hoppers Crossing,

Laverton North, Laverton RAAF, Little River, Mambourin, Mount Cottrell, Point

Cook, Quandong, Tarneit, Truganina, Williams Landing, Manor Lakes, Quandong

and Werribee South). The City Council of Wyndham is committed to improving

residents’ environment and livelihoods. Every year, thousands of new trees and

vegetation are planted in this commitment to increase Wyndham’s tree canopy cover

through the street tree planting program [240].

Figure 6.3: A sample panorama image of a selected study site from Google street
view imagery.

6.2.2 Input Dataset / Google Street View Image Collection

In this research work, Google street view images (GSV) [241] is used for the multiview

semantic vegetation index (MSVI) estimation. A sample GSV image of a Wyndham

Council in Melbourne, Victoria, is shown in Figure 6.3. The GSV panorama view is

identical to the real-world view. The process of producing a 360° GSV panorama is
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to sequentially capture horizontal X-number (X=6) images and vertical Y-numbers

(Y=3) images of the camera [242]. The GSV Image API (Google) [241], together

with the position and travelling direction of the GSV car, can be used to obtain

every accessible GSV image in an HTTP URL form, for example (https://maps

.googleapis.com/maps/api/streetview?parameters). The static GSV image

as shown in Figure 6.4, can be retrieved for every point where the GSV is available

by establishing URL parameters supplied via a specific HTTP request utilising the

GSV Image API (Google) [241].

Figure 6.4: A static image of a research site taken from Google Street View imagery.

Figure 6.5: a.) Sample of images taken from pedestrian view in six different angles
and b.) From pedestrian view, three images taken from three vertical angles (45°,
0°, -45°).

 https://maps.googleapis.com/maps/api/streetview?parameters
 https://maps.googleapis.com/maps/api/streetview?parameters
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The GSV images for each sample site in six directions were collected as illustrated

in Figure 6.5 (a), and in three vertical angles to determine the green areas visible

to pedestrians as presented in Figure 6.5 (b). 0°, 60°, 120°, 180°, 240°, and 300°

were set as the heading parameters whereas 45°, 0°, and -45° as pitch parameters.

As a result, a total of eighteen images are captured for a specific location, ensuring

that no vegetation area is left out of the index calculation. A Python programming

language script is executed on all the GSV images to read and downloaded from each

example site by automatically parsing the GSV URL.

6.2.3 Deep Semantic Segmentation

The act of grouping sections of an image in such a way that each pixel in a group

correlates to the object class represented by the group as a whole can be defined as

semantic segmentation for images in this manner [243, 244]. The object classes in

the current work correspond to trees and green vegetation terrain. Images can be

segmented by allocating each pixel of an input image to a label class object, which

is referred to as semantic image labelling [245]. Image segmentation is also known as

semantic image labelling. This method often combines image segmentation with ob-

ject identification techniques to produce a final result. Various deep learning-based

segmentation models, such as FCN [246], DeepLabv3+ [247], Mask R-CNN [248], are

being developed for use in a variety of applications and environments. For the pur-

pose of semantic vegetation segmentation and to calculate the vegetation index from

GSV imagery in this research work, FCN [236], and U-Net [249] semantic segmenta-

tion models are used. Their selection was based on their high precision and excellent

performance in medical imaging area. The results of the experiments demonstrate

that deep learning-based segmentation models are effective at segmenting vegetation

images using semantic attributes.
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6.2.3.1 Fully Convolutional Network (FCN)

Fully Convolutional Network (FCN) [236] uses locally connected layers, such as up-

sampling, pooling, and convolution, to achieve segmentation. The architecture does

not include any dense layers in order to reduce the amount of time it takes to

compute and the number of parameters it requires. A segmentation map uses two

paths to obtain output: the first is a down-sampling road, which is used to collect

semantic/contextual information, and the second is an up-sampling path, which is

used to recover spatial features. The architecture of FCN is depicted in Figure 6.6.

Fully convolutional network architecture (FCN) was presented by Long et al. [236]

for robust segmentation by adopting fully convolutional layers in place of the last

fully linked layers. This approach allows the network to generate a dense pixel-wise

prediction as a result of the advancement. The combination of up-sampled outputs

with high-resolution activation maps results in improved localisation performance,

which is then passed to the convolution layers to produce the correct output. The

performance of FCN motivated to employ it as an important component of the

proposed approach.

Figure 6.6: The architecture of fully convolution network (FCN) showing network
processes. The masks for trees and vegetation are shown as RGB color codes.
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6.2.3.2 U-Net

The second model employed in this work is U-Net [249], which has a similar encoder-

decoder architecture to that of FCN but has two significant traits that distinguish

it from the former. Since U-Net is symmetric, it bypasses the connections between

the up-and down-sampling paths, which is useful when employed as a concatenation

operator. Using the colour variable, models assign a colour to an item after they

have been trained. The U-Net network (Figure 7.5) is built on an encoder-decoder

architecture [249]. The encoder consists of a stack of convolutions and max-pooling

layers that work together. The decoder is a symmetric expanding path that up-

samples the feature maps with the use of learnable deconvolution filters, which can

be learned. The major innovation brought about by this network is the way in which

the so-called skip connections are utilised. To be more specific, they enable the con-

catenation of the output of the transposed convolution layers with the corresponding

feature maps from the encoder stage during the convolution stage [250]. The main

objective of this step is to get all the fine characteristics that were learned through-

out the contracting stages in order to restore the spatial resolution of the original

input image [249].

Figure 6.7: The architecture of U-Net showing network processes. The masks for
trees and vegetation terrain are shown as RGB color codes.
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According to standard practice, in the U-Net approach, the input image is initially

processed by an encoder path, which is comprised of convolutional and pooling layers

that degrade the spatial resolution of the input image. It is then followed by a

decoder path that restores the original spatial imagery resolution by adopting up-

sampling layers followed by convolutional layers, which is a technique known as “up-

convolution”. Apart from that, the network makes use of so-called skip connections,

which connect the output of the relevant layers in the encoder path to the inputs

of the decoder path by adding them to the inputs of the decoder path. Whereas

FCN allows pixel-wise classification performed for segmentation where features from

initial convolutional layers are upsampled to develop deconvolution layers. These

deconvolution layers develop the same size image, which is segmented on the basis

of learnt features. Fine-tuning was performed to allow the network to learn efficient

features of the vegetation region.

6.2.4 Vegetation Index Calculation from RGB Images

Various approaches are adopted in the literature for vegetation index calculation.

Some of those are listed in section 2.4.1. However, most of them used either colour,

threshold or green area segmentation that might lead to promising results. To achieve

robustness in vegetation index calculation, a semantic approach based on the unique

colour for each class of plants is proposed in this article. RGB colour codes (107, 142,

35 and 152, 251, 152) for trees and vegetation terrain were assigned, respectively.

After segmentation of the vegetation (trees and vegetation terrain), respective masks

are applied to calculate accurate vegetation index as discussed in section 2.4.2. For

a better understanding of the RGB colour space, 3D data distribution in the RGB

domain in Figure 6.8 is shown.
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Figure 6.8: A sample image is presented in 3D color spaces for better understanding
of data distribution. a.) sample image, b.) data distribution in RGB color space. As
data in different color channels is tightly correlated, it provides inherent difficulties
to differentiate colour and semantic information in RGB domain.

6.2.4.1 Green View Index (GVI)

Mohamed et al. [251], explored extracting green vegetation from remotely sensed

multispectral images. It has been identified that both, i.e., near-infrared and red

bands, are being utilised quite often for vegetation detection. One of the primary

reasons is that on red bands, the vegetation shows less absorption, and on infrared,

they show great reflection. However, GSV images cover only the blue, red, green,

and near-infrared bands. It was established by Yang et al. [228] that the GVI value

was affected by two factors: the size of a tree’s crown and the distance between the

camera and the subject. A non-supervised classification methodology was used by

Li et al. [2] to extract green vegetation from GSV images, which was justified by the

fact that a significant number of GSV images were not available in the near-infrared

band. According to their findings, green vegetation is significantly less reflective in

red and blue bands. The red bands, on the other hand, are extremely reflective.

As a result of this phenomenon, they developed extracting green vegetation from

GSV images based on the natural hues of the images. There are a number of steps
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involved in the workflow.

Step - 1: First of all, the subtraction of red band from green band generates Diff 1,

and subtraction of blue band from green band gives Diff 2.

Step - 2: Then the two images Diff 1 and Diff 2 were multiplied to create one Diff

image. Normally, the green vegetation has greater reflectance values in the

green band than the other two red and blue bands, hence the Diff image has

positive green vegetation pixels.

Step - 3: The pixels that has lower values in green band as compared to the red and

blue bands, exhibit negative values in the Diff image

Step - 4: As a result, an additional criterion was added stating that pixel values in

the green band must be greater than those in the red band.

Usually, multiple spark points existed in the resulting images after the initial clas-

sification images utilising the pixel-based classification approach as described in the

steps above ( steps 1 - 4) were obtained [252]. The spectral vegetation variation has

led to classifying individual pixels differently from their surrounding areas, leading

to sparks in the classed image.

Green View Index =
Number of green pixels segmented

Total number of pixels in an image
(6.1)

The above equation gives information regarding the available greenery in the

image. Yang et al. [228] proposed the Green View Index (GVI), which measures the

visibility of urban woods in terms of greenery. Its GVI was defined as the relationship

between the total green space and four image(s) taken at the intersection of the road

and the sum of the four images taken at the intersection as shown in the following

equation:
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Green V iew Index =

∑4
i=1Areag−i∑4
i=1Areat−i

∗ 100% (6.2)

Here the Areag−i present the green pixels of the images taken in the direction

of ith out of the four images taken in the (north, east, south, and west) directions.

Areat−i represents the total number of pixels in the image in the direction of ith.

According to Li et al. [2], in this scenario, some surrounding vegetation may be

missed from the calculation of the GVI since only four images cannot be seen in the

fields of vision from pedestrian view. Therefore they modified the equation (2) as

below:

Green V iew Index =

∑6
i=1

∑3
j=1Areag−ij∑6

i=1

∑3
j=1Areat−ij

∗ 100% (6.3)

Where Areag−ij denotes the number of green pixels in one of these images, which

were taken in six directions with three vertical view angles for each sample site

and then averaged over all six directions. As a result, Areat−ij represents the total

amount of pixels included within each one of the eighteen GSV images.

6.2.4.2 The Proposed Semantic Vegetation Index (SVI)

For robust calculation of the vegetation index of each sample location on the road

or street, the approach of semantic pixels (SP) is used, which is based on the unique

colour pixels assigned to vegetation’s specific class (Vegetation terrain and trees),

and are extracted based on the deep features through the use of a deep neural

network. For index calculations, Google street view (GSV) images was used as such

dataset is readily available. Therefore, for calculating the vegetation index in this

investigation, used a single image to calculate the vegetation index accurately based

on the semantic pixels so that to cover all the vegetation area in the image. Hence,
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in each sample image, the number of semantic pixels will be determined as SPa, with

the Area being the total semantic pixel numbers in one GSV image. The original

equation 1 has been updated and is now referred to as the semantic vegetation index

(SVI).

SV I =

∑n
i=1 SPa−i∑n

i=1Areat−i

∗ 100% (6.4)

Where SVI stands for semantic vegetation index, n is the total number of images,

SPa−i denotes the amount of semantic pixel area representing greenery in an image

and Areat−i denotes the total amount of pixels in an image.

Similarly, for calculating the multiview semantic vegetation index, a total of

six images covering the 360° horizontal environment with three vertical angles of,

i.e., 45°, 0°and -45° are used. The process is shown in Figure 6.5 (b) to calculate

the vegetation index accurately based on the semantic pixels so that to cover all

vegetation area. Hence, in each sample site, the number of semantic pixels will be

determined as SPa−ij, with the Area being the total semantic pixel numbers in one

of the 18 GSV images. The equation 3 has been modified for utilising semantic pixels

for calculating the multiview semantic vegetation index (MSVI ).

MSV I =

∑6
i=1

∑3
j=1 SPa−ij∑6

i=1

∑3
j=1Areat−ij

∗ 100% (6.5)

Where MSVI stands for multi-view semantic vegetation index, SPa−ij presents

semantic pixels area of vegetation in input images which are taken from different

pitch angles (45°, 0° and -45°) vertically as well as six horizontal direction covering

360° area and Areat−ij represents the sum of pixels in an image from the eighteen

images of GSV.
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6.3 Results

6.3.1 Preparation and Annotation of Dataset

For the experiments and implementation of the proposed model, first downloaded a

total of 3000 Google street view (GSV) images using a python script. The next step

was the pre-processing of the dataset so that the images could be used for training and

testing phases. For the annotation of the training data, a cloud-based tool known as

“Apeer”, a ZEISS initiative [253] has been used. Image annotation generates labels

that serve as the basis for machine learning training. Machine learning accuracy is

determined by the amount of training data as well as the accuracy of annotations.

The process of Annotation is summarised in Figure 6.9.

6.3.2 Experimental Environment Configuration:

For the experiments and results, the hardware and software resources used are listed

in the Table 7.1.

Table 6.1: Configuration of experimental environment

Item Name Parameter
Central processing unit (CPU) Intel i7 9700k
Operating system MS Windows 10
Operating volatile memory 32GB RAM
Graphic processing unit (GPU) Nvidia Titan RTX

Development environment configuration
Python 3.8 + TensorFlow 2.5 +
CUDA 11.2 + cuDNN V8.1.0 +

Visual Studio 2019
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Figure 6.9: The process of data annotation shown in this figure. a.) A data anno-
tation cloud based platform known as “Apeer”, b.) sample image for annotation,
c) After completion of annotation and d.) Area zoomed for annotation in c.) and
pointed with arrow.

6.3.3 Training of Deep Semantic Segmentation Models

The complete data set was split up into three distinct sections: training, validation,

and testing sets, each comprising 80%, 15%, and 5% of the total, respectively. Before

starting the training, hyperparameters were set to avoid the overfitting and under-

fitting issues of the model. The hyper-parameters used for the training of semantic

segmentation model are: batch size kept as 16, learning rate as 0.0001, loss function

as categorical cross-entropy, number of iteration/epochs as 200, NMS threshold as

0.45 and an optimizer as stochastic gradient descent “SGD”. The training loss, val-

idation loss, training accuracy and validation accuracy curve graphs are presented
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in Figures 6.10 a.) and b.) and 6.11 a.) and b.) for FCN Model and U-Net Model,

respectively. The accuracy curve for the U-Net beats the accuracy curve for the

FCN, as shown in the graph in Figure 6.11.

Figure 6.10: FCN segmentation model trend graphs for (a.) training and validation
loss. & (b.) training and validation accuracy.

Figure 6.11: The U-Net segmentation model trend graphs for (a.) training, validation
loss. & (b.) training and validation accuracy.

Some of the sample results using FCN and U-Net segmentation models are shown

in Figure 6.12 and vegetation index values are computed using Equation (4). The

vegetation index values calculated from FCN for the test input images are 43%, 30%

and 32%. While vegetation index values calculated from U-Net for the test input

images are 41.4%, 33% and 37%. The results show that the U-Net segmentation
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Figure 6.12: Segmentation and extraction of vegetation results from test input im-
ages. a.) presenting input images, b.) is the results generated using FCN and c.)
presenting results generated using U-Net model.

model is giving comparatively more accurate and promising results than the FCN

segmentation model. The ground truth results are computed manually for compar-

ing the results after masking manually and then calculating the pixel values of the

vegetation, using Adobe Photoshop application software. The computed results are

in percentage, as evident from Equation (4). Thus, on the basis of the ground truth

data, U-Net vegetation index results are quite promising and are more close to the

ground truth results.
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6.3.4 Performance Evaluation of Semantic Segmentation Net-

works

The performance of the semantic segmentation technique is evaluated using the met-

rics of precision, recall, F1-score, pixel accuracy (PA), intersection over union (IoU),

and mean intersection over union (mIoU). Figure 6.13 shows the results of FCN and

U-Net.

Figure 6.13: Performance Evaluation of FCN and U-Net segmentation models

The accuracy of object contour segmentation is measured using the PA method,

while the accuracy of an object detector on a particular dataset is measured using

the IoU metric. mIoU is the average of IoU and is defined to show the overall

enhancement of semantic segmentation accuracy.

6.3.4.1 Precision, Recall and F1-Score

FCN and U-Net segmentation models were compared in terms of precision, recall,

and F-measure. The results of the comparison are shown in the Table 7.2.

Precision is defined as the relationship between the number of accurately seg-

mented vegetation pixels and the total number of pixels segregated as a vegetation



147

region by the technique. The recall is the ratio between the number of successfully

segmented vegetation pixels and the total number of vegetation pixels in the labelled

image.

Precision =
TP

TP + FP
(6.6)

Recall =
TP

TP + FN
(6.7)

The equation of F1-score is shown below,

F1 − score =
2 ∗ Precision ∗Recall

Precision + Recall
(6.8)

6.3.4.2 Pixel accuracy (PA)

In the evaluation of segmentation models, the pixel accuracy metric is the most

commonly employed. It is defined as the accuracy of the pixel-wise prediction, given

as;

PA =

∑k
i=0 pii∑k

i=0

∑k
j=0 pij

(6.9)

Where k represents the total number of pixels in a test image, and pii is used

to present the true positive predicted pixels as of class i, while pij is presenting the

ground class i pixels as the number of pixels of class j.

6.3.4.3 Intersection Over Union (IoU)

Intersection over Union (IoU) is also known as the Jaccard Index [254], and it is a

typically used assessment statistic for segmentation models that is used to calculate

their overall performance. As shown below, it is commonly defined as the ratio of
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intersection and union areas between the projected segmentation map and ground

truth.

IoU =
pii∑k

j=0 pij +
∑k

j=0 pji − pii
(6.10)

Where k indicates the total number of classes, pii represents the number of true

positives, and pij and pji represent the number of false positives and false negatives,

respectively.

6.3.4.4 Mean-IoU (mIoU)

mIoU is yet another matrix that is commonly used in segmentation models. It is

calculated as the average value of all IoU label classes taken as a whole. This type

of report is commonly used to summarise the performance of segmentation models,

given as;

mIoU =
1

k + 1

k∑
i=0

pii∑k
j=0 pij +

∑k
j=0 pji − pii

(6.11)

Where k indicates the total number of classes, pii represents the number of true

positives, and pij and pji represent the number of false positives and false negatives,

respectively.

Table 6.2: Performance evaluation results

Segmentation
Model Precision Recall F1-Score Pixel Accuracy IoU mIoU

FCN 93.2 87.3 90.1 89.4 82.3 80

U-Net 95 90.8 92.3 92.4 86.5 83

Table 7.2 shows the results achieved by different segmentation models used for

vegetation index calculation on the basis of semantic pixels in an image. The U-Net
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model showed really promising results.

6.4 Comparative Analysis

Extraction of green vegetation from street view images is a difficult task because of a

variety of factors, including the presence of shadows and spectral confusion between

vegetation and other artificial green features (green walls, windows, shadows, and

signboards etc.). Two studies are most relevant to this research: Yang et al. [228]

used four GSV images in their work. As a result, Li et al. [2] modified the Green View

Index (GVI) calculation, and they subsequently conducted a case study assessment

of street vegetation using GSV images in the East Village of Manhattan District,

New York City. They assert that the modified GVI may be a relatively objective

measure of street-level greenery and that the use of GSV in conjunction with the

modified GVI may be particularly effective in directing urban landscape planning

and management practices.

For the purpose of comparison with literature, sample images containing green

vegetation, as well as green walls, signboards, and décor, were segmented and ex-

tracted for the vegetation index calculation. Sample images segmentation results

based on Li et al. [2] and Rencai et al. [3] are presented in Figure 6.14 and Table 6.3.

Table 6.3: Comparison Table for vegetation segmentation and their vegetation index
calculation using various vegetation extraction and index calculation approaches.

S.No. GVI [2] GVI [3] SVI [ours]
1 57.50% 55.91% 47.55%
2 46.62% 43.12% 35.44%
3 52.68% 51.25% 40.33%
4 43.08% 40.55% 27.42%

From the results, it can be seen that the results of segmentation also included

other green objects as vegetation because both the studies are principally based on
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Figure 6.14: a.) Sample of images and their segmentation (vegetation extraction)
using different approaches a.) input images, b.) Li et al. [2], c.) Rencai et al. [3] and
SVI [proposed].

green colour. Both of the studies have mentioned this drawback in their studies

and results. Thus yielding inaccurate vegetation index because of the other green

colour objects inclusion. Hence the vegetation index calculated values are higher

as compared to our results. However, this study results included vegetation only

while ignoring other green colour objects for calculating index because it is based on

semantic segmentation, thus giving an accurate vegetation index value.

Multi-view semantic vegetation index calculation for panoramic images taken at

different angles horizontally (a.) and with varying angles of pitch vertically (b.)

as shown in Figure 6.5 and the respective calculated vegetation index values are

presented in Table 6.4.
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Table 6.4: Comparative analysis of vegetation index calculation through various
approaches

Li et al. [2] Rencai et al. [3] MSVI [Proposed]

63.40% 62.9% 56.19%

In the table, it is clear that results of Li et al. [2], and Rencai et al. [3] are

quite similar as both studies rely on green colour; hence there are chances that

during the calculation of vegetation index, most of the time include other objects

of green colour as mentioned before in the sample segmentation result shown in the

Table 6.3. Therefore, the results are inaccurate, and the vegetation index percentage

indicated is larger than ours because both comparison studies employed the green

area index, and the tram in the image was also used to compute green colour in those

studies shown in Figure 6.5. On the other hand, the proposed model extracted only

vegetation index. The input image on the second row in the Figure 6.14 is taken

from Li et al. [2] paper just only for the comparison purpose. Where exactly, they

mentioned that their algorithm is based on green colour, thus include another green

object during the calculation of the green view index.

6.5 Discussion

Based on the research study, the semantic segmentation leads to accurate index cal-

culation. The publicly available GSV imagery of the urban areas used to quantify

street greenery, i.e. SVI of the urban streets. As GSV are publicly freely available

and can be used in machine learning/computer vision in an efficient way to perform

multiple activities automatically. The SVI can be utilized as useful information/data

for a better assessment of urban greenery by considering people’s envisioned vege-

tation on a street scale for urban planners and others. To assess the greenery of
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street vegetation, GSV images captured from the ground should be similar to those

of pedestrians.

A single vertical point of view is insufficient to express correctly the surround-

ing vegetation index that pedestrians may observe; two vertical points of view are

required. Therefore, the multiview semantic vegetation index (MSVI) is employed

for six GSV images in this experiment to calculate the vegetation index, each span-

ning a 360° horizontal and three vertical angles of 45°, 0°and -45°, to calculate the

vegetation index appropriately on the basis of the semantic pixels.

According to the findings of this study, GSV images are qualified for assessing

street greenery, and the modified GVI may be a more objective measurement of

street-level greenery. The multiview semantic vegetation index (MSVI) took advan-

tage of the characteristics of GSV images, used 18 GSV images taken from different

viewing angles, making the index more efficient for evaluating street greenery in ur-

ban areas. Because it measures the amount of visible urban greenery on the ground,

the SVI formula is simpler to understand for the general public. As a result, it can

give a monitoring tool to analyze gains or losses in urban vegetation. It may serve

to help urban planners select the sites, sizes and varieties of greenery for best effect

in the planning stage of an urban greening program. It, therefore, seems to be a

promising instrument, not a mere gadget for users, for future urban planning and

urban environmental management.

The strength of SVI lies in its robustness to colour variations and viewpoint

contraints. The limitation of the approach is its reliance on captured viewpoints and

attributes of the captured image, like its zoom level and image quality. Therefore, if

SVI is utilised for long-term vegetation monitoring, it is proposed that proper dataset

normalisation and image registration scale or affine invariant [4] be used before SVI

estimation.



153

6.6 Conclusions

This research paper, proposes a robust vegetation index based on semantic segmen-

tation called a multiview semantic vegetation index (MSVI). The Google street view

(GSV) imagery dataset is used for calculating and indexing the vegetation cover of

an urban area of the Wyndham city council in Melbourne, Australia. The MSVI

is based on the deep features learned from a deep neural network to calculate the

vegetation index of each sample location in the urban area. For vegetation segmenta-

tion, different deep learning-based semantic segmentation models, such as FCN and

U-Net, were tried. Using the GSV data set, both segmentation models were trained

and tested to improve their overall performance.

The proposed method for segmenting urban vegetation areas has yielded promis-

ing results. Generally speaking, U-Net shows better results than FCN. FCN and

U-Net models achieve Pixel Accuracy of 89.4% and 92.4%, Precision of 93.2% and

95%, IoU of 82.3% and 86.5%, and mIoU of 80% and 83% respectively. The proposed

MSVI index measures the broad visible urban greenery on the ground, which can

assist urban planners and strategists in better understanding urban green spaces.

It is intended to use this approach in the future for real-time vegetation index

calculation using Google panoramic cameras such as Pilot Era 360°, INSTA360 PRO,

and INSTA360 PRO2, which will be of great help in the quest for ecological improve-

ment.
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Chapter 7

Deep Semantic Vegetation Health

Monitoring Platform for Citizen

Science Imaging Data

As mentioned in list of publications, this chapter with same title is accepted as an

original research paper in the ‘PLOS ONE’, journal. Now it is under production.

The contents are the same, with the exception of certain layout adjustments to ensure

consistency in the presentation across the thesis.

Abstract

Automated monitoring of vegetation health in a landscape is often attributed to cal-

culating values of various vegetation indexes over a period of time. However, such

approaches suffer from an inaccurate estimation of vegetational change due to the

over-reliance of index values on vegetation’s colour attributes and the availability of

multi-spectral bands. One common observation is the sensitivity of colour attributes

to seasonal variations and imaging devices, thus leading to false and inaccurate

change detection and monitoring. In addition, these are very strong assumptions in

a citizen science project. In this article, we build upon our previous work on de-
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veloping a Semantic Vegetation Index (SVI) and expand it to introduce a semantic

vegetation health monitoring platform to monitor vegetation health in a large land-

scape. However, unlike our previous work, we use RGB images of the Australian

landscape for a quarterly series of images over six years (2015–2020). This Semantic

Vegetation Index (SVI) is based on deep semantic segmentation to integrate it with

a citizen science project (Fluker Post) for automated environmental monitoring. It

has collected thousands of vegetation images shared by various visitors from around

168 different points located in Australian regions over six years. This paper first

uses a deep learning-based semantic segmentation model to classify vegetation in

repeated photographs. A semantic vegetation index is then calculated and plotted

in a time series to reflect seasonal variations and environmental impacts. The results

show variational trends of vegetation cover for each year, and the semantic segmen-

tation model performed well in calculating vegetation cover based on semantic pixels

(overall accuracy = 97.7%). This work has solved a number of problems related to

changes in viewpoint, scale, zoom, and seasonal changes in order to normalise RGB

image data collected from different image devices.

7.1 Introduction

The increasing population of the world and the change in land use by them have

significantly affected vegetation and landscape composition [218, 219]. It has been

discovered that changes in the kind of land cover (such as building developments)

have a substantial relationship with changes in vegetation. Calculations of various

vegetation indexes are frequently used to automate the identification of vegetation

cover and important variations in the environment [227]. Therefore, all of these

natural resources require environmental monitoring to be protected and conserved,
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and this is especially true for open green areas and public lands. Because vegetation

plays a vital role in the improvement of an ecosystem, it enables the climate to

have the positive change required for better living. This is being done with the help

of land-care agencies, environmental groups, and local governments using drones,

UAVs, satellites, and remote sensing.

Vegetation landscapes, by their very nature, are dynamic and constantly chang-

ing in response to human use. Unfortunately, not all changes to the landscape

are positive ones. In turn, this has negative consequences for farmland and graz-

ing resources, landscape diversity, cultural values, and biological variety [255, 256].

Vegetative landscape monitoring is a good way to make sure that changes in the

landscape are going in the right direction.

It is recommended to monitor anything throughout time, which means observ-

ing and documenting any changes that occur. Monitoring is all about performing

periodic assessments or surveys, collecting outcomes, and then comparing them to

determine the efficacy of activities or the development of projects. Management ac-

tions might be evaluated based on the feedback they receive via the monitoring team,

and it also helps to determine whether natural resources are improving, stabilising,

or decreasing. Understanding how and why the land and its vegetation behave over

time is essential for land managers to do their jobs effectively.

Researchers have developed a number of different algorithms for calculating the

vegetation index from photographs. According to reports, researchers have placed a

strong emphasis on remote sensing [257] images because of their numerous advan-

tages, including large area exposure, reliability, and many others. The green area

seen in remote sensing photos is used to extract the vegetation region available in

certain places [258]. Remote sensing data is collected from above by sensors (air-

craft, space) that misses the glimpse of vegetation. Accordingly, ground-level profile
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views are inadequate for assessing urban greenery even if green indices generated

from remotely sensed image data could assist in quantifying greenery. There’s a big

difference between what the average person sees on the ground and what remote

sensing technologies see [228].

A simple but extremely important way of monitoring vegetation, whether it is

remnant vegetation or revegetated sites, is to take a series of images, which is referred

to as “photopoint monitoring” or “repeat photography” [44]. Repeat photography

is a method where ground-level photographs are taken from exactly the same loca-

tion at different points in time. In the case of landscapes, the time stamps between

the images are usually several years or decades, sometimes even up to a whole cen-

tury. However, with the technological advances in aerial and satellite remote sens-

ing, ground-based photographs have lost most of their relevance in modern landscape

monitoring. A repeat photograph is a photograph that has been purposefully created

to reproduce certain characteristics of another, previously taken photograph. The

new image often duplicates the location coordinates of the original, presenting the

user with the identical scenario for the second time and encouraging them to compare

the two images [147]. In the literature, many researchers have used repeat photogra-

phy for many purposes, like estimating changes in tree lines [?], for analysing plant

phenology, vegetation cover estimation [?, 71, ?, 73] and many others.

A number of ecological studies used a combination of repeat photographs as well

as field measurements to obtain quantitative results [76]. Clark et al., [77] performed

point sampling along horizontal transects that were randomly placed through the im-

age to create their results. They manually categorised each image into cover classes,

and they developed the concept of image cover as a quantitative metric. Roush et

al., [67] calculated the vegetation cover percentage by applying a rectangular grid on

top of each photo. Fortin et al., [27] used repeat photographs collected as part of the
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Mountain Legacy Project to derive class-specific land cover estimates and compared

them to Landsat classifications. There is one thing that all of these studies have in

common: the classification step is completed manually, usually by drawing polygons

around specified landscape objects and then performing a visual interpretation of the

results. Despite the fact that there is a large range of automatic segmentation and

classification algorithms for aerial and satellite images, there is no single best solu-

tion, but the fact that ground-based images have such an angular viewpoint means

that these approaches do not operate in the same manner [26]. Rohde et al., [259]

findings are based on a comparison of 100 re-photographed or “matched” historical

landscape images. Changes in woody cover at every photo site were analysed and

used as a proxy for climatic change in the area. Toda et al., [260], used the Bartlett

Experimental Forest data to compare the phenological metrics of leaf area index,

plant area index, and their associated transition dates. They gathered digital repeat

photography images using two separate methods: “canopy cover” and “phenocam”.

Zier et al., [41] presented his findings from an investigation of vegetation change

in the San Juan Mountains conducted with repeat photography and Hendrick et

al., [42] in the Appalachian Mountains. In Australia, the practise of repeat photog-

raphy has been quite rare in recent years. With the help of repetitive photos, John

Pickard [44], demonstrated how the landscape of Australia has changed throughout

time. But most of the methods that were talked about involve a lot of manual work

that takes a lot of time and does not use automation.

Digital image classification has become increasingly automated with the help of

machine learning and deep learning, which has quickly become one of the most popu-

lar methodologies [261, 262]. In particular, deep learning eliminates the requirement

for the time-consuming and complex feature extraction (such as fractal dimension,

local binary patterns, texture features, shape features, colour features, etc.) method
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that was previously required. Instead, throughout the CNN training process, the

model learns and extracts the necessary information on its own, without the need

for human intervention. Deep learning’s most major drawback is that it necessitates

the use of massive amounts of labelled training data [263]. Convolutional neural

networks (CNN) are one of the deep learning architectures that are particularly well

suited for image analysis because of their capacity to extract spatial characteristics

from images. In convolutional neural networks, the image is fed into the network in its

raw form (pixels). The network transforms the image many times. First, the image

goes through many convolutional layers. In those convolutional layers, the network

learns new and increasingly complex features in its layers. Then the transformed

image information goes through the fully connected layers and turns into a classifi-

cation or prediction. CNNs have been shown to be quite effective in a wide range

of applications, including object detection [264], plant segmentation [147], classifica-

tion [265, 266, 267, 268, 269], plant disease identification and classification [146, 270]

and semantic segmentation [271, 272, 236].

Researchers have proposed various algorithms for the calculation of the vegetation

index using images. However, it appears that researchers have placed a high priority

on remote sensing images due to benefits such as large area exposure, repeatability,

and many others [257]. Remote sensed images are used to extract the green area

present in them, which represents the vegetation region available in some particular

region [258]. Images from remote sensing are taken from above or from the air,

which is higher than ground level and captures a larger area. This makes it hard to

estimate how much vegetation there is in a certain place. Pictures taken from the

ground can help a lot with figuring out how the vegetation is changing, which can

be used to help the environment.

The profile view of the site can provide in-depth analysis, as demonstrated by
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Yang et al., [228]. They compare profile views of two different forests and demon-

strate how depth information can be extracted using this technique. However, the

advancement in computer vision has enabled researchers to work on the profile view

images and carry out comparisons between two images taken at different times from

different angles, which is basically a phenomenon of repeat photography.

Kendal et al., [?] used colour thresholding for the extraction of vegetation index.

The technique proved to be promising. However, only using colour features for

segmentation is not an efficient method as any clutter information in the image can

match the vegetation colour. Harbaš et al., [273] used a fully convolutional network

(FCN) to detect and segment roadside vegetation for the navigation of autonomous

vehicles. Hung et al., [274] used a learned feature approach to classify weeds and

non-weeds. The images used were acquired by an unmanned vehicle. Furthermore, in

recent years, Bawde et al., [275] proposed an algorithm that classifies forbs and grass.

However, researchers did not focus on the change in vegetation index using repeat

photography. The major focus remained on the classification of different species, as

it is really important to get information about vegetation change so that steps for

the improvement of the environment can be taken.

This paper focuses on the calculation of changes and monitoring in vegetation

index for which registration of images is performed at an initial level. Registration is

carried out because focus of authors is on repeat photography, which carries angle and

scale variation. Therefore, transformation is needed to be done for this problem. This

has already been done by the authors in their previously published work [4]. A novel

deep affine invariant network was proposed for non-rigid image registration of multi-

temporal repeated photography. Strong point matching and affine invariance are

included in the suggested framework for reliable multi-temporal image registration.

Furthermore, a novel approach to semantic segmentation is adopted to efficiently
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extract the vegetation region from the image. The vegetation region can then be

used for the calculation of the vegetation index in an effective manner. The overall

work flow of this proposed study is presented in Fig 7.1.

Figure 7.1: The general data flow diagram shows how the proposed system for check-
ing the health of plants would work.

The rest of the paper is organised as follows: Section 2 is about the dataset taken

into account; section 3 is detailed information regarding the proposed algorithm and

methodology; section 4 discusses the results achieved by the proposed methodology;

and section 5 is the conclusion section of this paper.

7.2 Materials and Methods

7.2.1 Taking Repeat Photographs

It has become increasingly vital to be able to work with large numbers of images

and annotate them for specific purposes. The images may come from a variety of

sources, including different users, the media, artists, or even video surveillance. The

images used and how they are assembled can distinguish the content and audience

relevance of a work [276]. Repeat photography is more than simply taking a second

picture at the same moment in time when conducting scientific research.
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In order to avoid perspective shifts, these images must be taken from the same

place every time. This is more important than the physical characteristics [276]

shown in Fig 7.2. It needs careful planning and preparation, as well as close attention

to the physical environment around it.

Figure 7.2: An example of repeat photography, showing images taken of a site at
different times.

Lighting, weather, and seasonal changes should be as similar as possible in order

to produce visually identical image pairs. However, weather and lighting circum-

stances are difficult to recreate in practise due to the fact that field activities must

be planned in advance, finances are limited, and deadlines are frequently constrained

in nature [277].

7.2.2 Study Area / Fluker post project dataset

For the proposed technique, we used the Flukerpost dataset [80]. The Fluker Post

dataset is an initiative taken by the Victorian Government and Victoria University

to maintain a record of the environmental conditions of different sites throughout
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Australia. The dataset has been put together and is ready for people to contribute.

There are around one hundred and sixty-eight (168) Fluker post point sites. At a

Fluker Post point, there is no camera installed. Instead, visitors passing by from

fixed photo-points use the Fluker Post app on their own phones to snap a photo of

the sight in front of them. This simple method of taking pictures over and over again

is a good way to manage natural resources over the long term.

The Fluker Post has been running effectively so far, collecting useful imagery

data about vegetation, parks, watersheds, rivers, streams, etc. An example of a

repeated image collected from 2015 to 2020 quarterly of one study site is presented

in the Fig 7.3.

Figure 7.3: Sample images of the Warrnambool Region site, one of the Fluker post
points of collection, taken quarterly over several years between 2015 and 2020.

This vast amount of photographic data is currently being manually analysed in
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order to point out areas where state agencies like Parks Victoria might be able to

help. But because of the large volume of data, this traditional approach is less

successful, and more automation is needed to improve and speed up data processing.

Manual image analysis is significantly more time-consuming and inefficient when

dealing with repeat photography data. In total, more than 4000 photographs have

been collected for this project, all of which have been sorted into albums according

to various areas throughout Australia. This project’s website address is https:

//www.flukerpost.com/, and its interface is shown in Fig 7.4. The issue, however,

is that the images were captured using a variety of camera sensors and from various

vantage points. Photographs are taken at random times of the day and seasons. All

of these things make it hard to do, and as a result, comparing and extracting useful

information like vegetation change detection has become very challenging.

Figure 7.4: Fluker Post Project Location and Details: a.) The green circles indicate
the locations of posts installed across Australia. b.) Details about each post’s
location, as well as the number of images saved for a specific site.

 https://www.flukerpost.com/
 https://www.flukerpost.com/
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7.2.3 Vegetation Segmentation

The advancement of convolutional neural networks (CNNs) has achieved many mile-

stones in the field of computer vision. They have given state of the art results

for many research problems as the algorithm doesn’t require extraction of features

separately and machine learning processes separately. It performs both tasks in the

network and provides promising results. Networks take the image’s complex features

and use them to identify any object in the image.

Our major focus is to calculate and then monitor the vegetation index of a loca-

tion over different time series. For our process to be completed, we need to classify

the vegetation region and non-vegetation region in the input image. We have devel-

oped a pixel-wise classification algorithm so that segmentation of vegetation can be

done with the greatest efficiency.

7.2.4 U-Net

The U-Net model [249], which has an encoder-decoder architecture, as shown in

Fig 7.5. was used in this research. The fact that U-Net is symmetric means that

it does not have to deal with the connections between the up and down-sampling

paths, which is advantageous when used as a concatenation operator. After they

have been trained based on the colour variable in the dataset, models assign a colour

to an object.

Typically, in the U-Net approach, the input image is first processed by an encoder

path, which is composed of convolutional and pooling layers that degrade the spatial

resolution of the input image, according to conventional practice. It is then followed

by a decoder path that restores the original spatial imagery resolution by adopting

up-sampling layers followed by convolutional layers, which is a technique known
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Figure 7.5: The architecture of U-Net shows network processes.

as ”up-convolution”. Apart from that, the network makes use of so-called skip

connections, which connect the output of the relevant layers in the encoder path to

the inputs of the decoder path by adding them to the inputs of the decoder path.

7.2.5 Vegetation Index Calculation From RGB Images

There are a variety of methods for calculating and monitoring the vegetation index.

However, the majority of them employed either colour, threshold, or green area seg-

mentation, which could lead to some encouraging outcomes. As a result, we propose

a semantic-based approach for calculating and monitoring a robust vegetation in-

dex based on the distinctive colour of certain classes using a color-based approach.

In the proposed work, RGB colour codes (107, 142, 35) were assigned to trees and

vegetation terrain. After the trees and vegetation terrain have been separated, the

correct masks are used to calculate the vegetation index.
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7.2.6 The Proposed Semantic Vegetation Index (SVI)

For robust calculation and monitoring of the vegetation index of each sample location

over different time stamps, we used the approach of semantic pixels (SP ) calculation,

based on the unique colour pixels assigned to a specific class and extracted based on

the deep features through the use of a deep neural network.

For vegetation index calculation and monitoring, we used the Fluker Post project

image dataset, as the data is available with a time series. We observed that one

image of a location is not sufficient for index monitoring. Therefore, for calculating

the vegetation index in this investigation, we used the repeat photography technique.

We selected four images, quarterly, per year between 2015 and 2020 for each site,

out of 168 total sites. Some of the sample images of a specific site (Warrnambool

Region, VIC) are shown in Fig 7.3. In each sample photo, the number of semantic

pixels will be counted, and the area will be equal to the total number of semantic

pixels in one of the three photos of a certain place.

Consequently, for the purpose of this study, a single image was used to precisely

compute the vegetation index based on the semantic pixels in order to cover the

whole vegetation area seen in the image, and the vegetation index was calculated

using the semantic pixels approach. The number of semantic pixels in each sample

image will be computed as SPa with respect to the total pixels (Areat) of an image.

The semantic vegetation index (SVI) is calculated with the following equation:

SV I =

∑n
i=1 SPa−i∑n

i=1Areat−i

∗ 100% (7.1)

Where SVI stands for Semantic Vegetation Index, SPa−i presents semantic pixels

area in an image and Areat−i represents the sum of pixels in an image of a specific

location/site.
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7.3 Experiments and Results

7.3.1 Data preprocessing & preparation

The data set consists of around 3500 images taken at different times over several

years. Therefore, it is essential to preprocess and prepare the data for model train-

ing in order to achieve better outcomes. We registered the images, performed data

augmentation, labelled the data, and then separated the data into training, valida-

tion, and testing data (80%, 15% and 5% respectively) throughout the preprocessing

and data preparation processes.

7.3.1.1 Image Registration

Image registration is one of the most critical processes in this process. Image reg-

istration allows the system to compare two images that have undergone a similar

alteration to one another. The image that is being transformed is referred to as

the sensed image, and the image that is being altered in relation to it is referred to

as the reference image. Image registration tries to eliminate the geometric position

inconsistency between two photographs, resulting in the same image coordinates re-

flecting the same objects on both dates. To properly handle and analyse multiple

images, it is necessary to perform image registration first. The vegetation images

must be re-registered in the same dimensions as the images in the dataset because

the images in the dataset were taken at various times, seasons, and locations, so

their dimensions are different. To properly handle and analyse multiple photos, it

is necessary to perform image registration first [104]. It’s a technique for combining

photos (two or more) obtained at various times, from various vantage points, and

with various sensors to create a composite image. The image registration technique



169

is adapted from the authors’ (our) [4] previously published work. In that paper, the

authors proposed a new deep affine invariant network for non-rigid image registration

of multi-temporal repeat photography. Robust point matching and affine invariance

are also part of the proposed framework for robust multi-temporal image registra-

tion. An example of image registration in the form of a checkerboard is presented in

the Fig 7.6.

In this study, the images taken quarterly over a year of various site locations were

used and resized to 256 x 256 pixels after the image registration process. Because

the images are taken from different angles and sensors, it was necessary to use an

image registration process to normalise the data for the neural network training and

get better results.

Figure 7.6: An example of image registration is applied to an input and sensed image.

7.3.1.2 Data augmentation

A large number of images are used to train a deep neural network model to achieve

highly precise prediction and accuracy. In our case, some of the Fluker post sites

had fewer images than others. Because of this, the technique of data augmentation

was used on the sites with fewer images. The process of data augmentation [278]

provided us with new images based on our existing images. Different augmenta-
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tion techniques like blurriness, rotation, flipping (horizontal and vertical), zooming,

translation, and the addition of noise were applied accordingly. An illustration of

different augmentation techniques is shown in Fig 7.7. By using this method, the

number of images in our dataset grew, which is important for getting more accurate

results after the training stage of a CNN.

Figure 7.7: Different data augmentation technique applied include: (a). Original
Image, (b). Vertical Flip, (c). Horizontal Flip, (d) Random Gaussian Noise, (e). 90
degree rotation, (f). 180 degree rotation, (g). Random zoom, (h). Translation, and
(i). Blur
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7.3.1.3 Data Labelling

The light intensity of the dataset images varies since the images were taken at dif-

ferent times and with different cameras. Therefore, preprocessing of the dataset

images is required before the registration procedure to ensure that the images are

usable for the training and testing process. The training dataset was annotated with

a cloud-based program called “Apeer” [253], which is available for free as part of

a ZEISS initiative. Image annotation generates labels that serve as the basis for

machine learning training. The amount of training data as well as the correctness of

annotations are both important factors in determining machine learning accuracy.

Fig 7.8. presents a high-level overview of the annotation process. The region of

interest (ROI) is the labelled area of an image slice, which is usually only a small

portion of the image. The ROI mask is inserted into the CNN with the image as a

binary map, with pixels belonging to the ROI set to one and pixels belonging to the

background set to zero.

Figure 7.8: Apeer, an annotation tool’s interface, and a sample annotated image.
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7.3.2 Network model training

The entire dataset was divided into three parts: training, validation, and testing sets,

each comprising 80%, 15%, and 5% of the total, respectively. Before starting the

training, hyperparameters were set to avoid the overfitting and underfitting issues

of the model. The hyper-parameters are set as: batch size kept at 16, learning rate

as 0.0001, loss function as categorical cross-entropy, number of iterations/epochs as

200, NMS threshold as 0.45, and an optimizer as Stochastic gradient descent (SGD).

The loss function ensures that the neural network optimises itself by reducing the

amount of error it generates during the training process. The training loss indicates

how well the model optimises the training data, while the validation loss indicates

how well the model fits new data. Non-Maximum Suppression (NMS) is a technique

used in numerous computer vision tasks. It is a class of algorithms to select one

entity (e.g., bounding boxes) out of many overlapping entities. Most of the time, the

criteria are some kind of probability number and a way to measure overlap, such as

”intersection over union”. The training loss, validation loss, training accuracy, and

validation accuracy curve graphs are presented in Fig 7.9 a.) Training and Validation

Loss; b.) Accuracy of U-Net Model Training and Validation.

The Table 7.1 lists the hardware and software resources used in the experiments

and results.

7.3.3 Model Performance Evaluation

Both the training and validation sets were used to calculate the accuracy and loss

of the model. The prediction accuracy on individual images was calculated using

the 175 images from the test set (= 5%), which had been separated from the total

number of samples before training. The confusion matrix is made up of pixel numbers
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Figure 7.9: Over 90 epochs, the learning process for loss (on the left) and model
accuracy (on the right) are shown. If dropout is used on the training data, the
accuracy of the training data and the validation data will be different.

Table 7.1: The details of the configuration of the experimental environ-
ment.

Item Name Parameter
Central processing unit (CPU) Intel i7 9700k
Operating system MS Windows 10
Operating volatile memory 32GB RAM
Graphic processing unit (GPU) Nvidia Titan RTX

Development environment configuration
Python 3.8 + TensorFlow 2.5 +
CUDA 11.2 + cuDNN V8.1.0 +

Visual Studio 2019

representing true positives (TP), true negatives (TN), false positives (FP), and false

negatives (FN). As for accuracy metrics, we use Precision, Recall, F1− score, and

Overall Accuracy (OA). These metrics are calculated as follows:

Precision =
TP

TP + FP
(7.2)

Recall =
TP

TP + FN
(7.3)

F1 − score =
2 ∗ Precision ∗Recall

Precision + Recall
(7.4)
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Overall Accuracy (OA) =
TP + TN

TP + TN + FP + FN
(7.5)

The learning process stopped after 90 epochs when the learning curve converged

and loss values stopped decreasing. Fig 7.9. depicts the improvement in loss and

accuracy during the training process. It is a fact, that when dropout and data

augmentation are applied exclusively to training data, the validation accuracy often

exceeds the training accuracy. The model achieved a maximum accuracy of 96.6%

(loss = 0.11), based on the validation set. Additionally, we examined the model’s

performance on a second test dataset consisting of n = 175 unique images that were

not utilised in the model selection procedure. The model achieved an accuracy of

97.4% (loss = 0.07) on these individual images. After testing the model, overall

accuracy varied significantly amongst images, ranging from 74.1% to 96.6%.

A comparison was also performed through two CNN architectures: Fully convolu-

tional network (FCN) and U-Net, while keeping the same technical environments as

mentioned in Table 7.1. After conducting experiments, the following results, as men-

tioned in Table 7.2, were achieved. A more comprehensive comparison has already

been performed with the current literature studied in the author’s (our) previous

published work [271].

Table 7.2: Comparative analysis of FCN and U-Net results.

Segmentation
Model Precision Recall F1-Score Pixel Accuracy IoU mIoU

FCN 94.2 85.3 91.1 90.4 83.3 81

U-Net 96 91.8 92.3 93.4 87.5 84

The Fig 7.10. shows some of the segmentation results from the randomly selected

test images. They are quite promising results.
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Figure 7.10: Some sample segmentation results for the randomly selected test input
images.

7.4 Discussion

While evaluating the trained U-Net model’s performance in classifying vegetation in

repeated landscape photographs, an over-all accuracy (OA) of 97.4% on individual

images was achieved. In contrast, several studies for similar problems, such as Zhang

et al., [279] used a spatial contextual superpixel model to achieve an accuracy of

79.8% on the class ”tree” in real roadside images. For trees in ground images, Byeon

et al., [280] used an LSTM Re-current Neural Network (RNN) to get a class accuracy
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of 64.2%. In a similar manner, Shuai et al., [281] paired a CNN with a directed acyclic

graphic RNN (DAG-RNN) for scene identification and achieved an accuracy of 82.5%

for the tree-class.

The quality of the image was recognised as a significant influencing element. It is

possible that the wide range of image content, resolution, scale, and illumination used

in a specific job has an impact on the classification and identification accuracy. The

advancements in digital camera technology have resulted in a significant improvement

in image quality over time. As a result, older RGB images are often of poorer

quality than current RGB images, which has a negative impact on the efficacy of

the classification and detection methods. Clark et al., [77] encounter the same image

quality issues when attempting to measure vegetation changes between repeat images

using transect point sampling.

When Skovsen et al., [282] attempted to differentiate clover from grasses and

weeds using fuzzy images, they found a greater rate of misclassification because of

the quality of the images.

Segmentation and computing the index values were done for all the Fluker Post

sites. However, only a few of them (Youyung Park, the Warrnambool region, Knox,

and the Kororoit Creek site) are shown in the Fig 7.11. From the results, it is

observed that those Fluker post sites where the visitors frequently go have a large

number of images for each month of the year, while some sites have fewer images.

Also, there were only a couple of images for some sites. The above facts may impact

the results in terms of trends. To overcome the above issue, an average index value

was computed to show the trend of a specific site. For example, in Fig 7.11, the

semantic vegetation index values computed are the average index values for each

quarter of a year.

Seasonal variation affecting the vegetation health: According to the Bu-



177

Figure 7.11: Figures depicting the average semantic vegetation index calculated
quarterly from 2015 to 2020 for a.) Youyung Park, b.) Warrnambool region, c.)
City of Knox, and d.) Kororoit Creek site.

reau of Meteorology, Australia, there are several environmental factor that seriously

affect the vegetation health [283]. They are:

• Low rainfalls

• Extremely dry season

• Consecutive periods of dry or cold weather

• Early and long-lasting devastating bushfires

Low rainfalls: Australia had a very wet winter and spring in 2016. In 2017,

things dried up a lot. Most of the interior of southeastern Australia didn’t get much

rain in 2017, 2018, and 2019. In some places, like western Victoria and western

Queensland, there was more dry weather than other parts of the country had in

these years. Only a slight recovery followed a very dry and cool season in October
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and December 2017 and 2018. For several years, there was record-low rainfall. This

year’s cool season was very dry, and it did not end until the end of the year. From

January 2017 to December 2019, the Murray–Darling Basin and New South Wales

have had the driest three years on record, as shown in Fig 7.12. Other areas that

have not been getting enough rain for a long time include eastern Victoria, eastern

and northern Tasmania, eastern South Australia, except for the southeast and some

parts of the southwest, and Western Australia.

Figure 7.12: Australian rainfall deciles for the combined three-year April–September
periods of 2017, 2018, and 2019. (based on all years since 1900).

Extremely dry season: Extremely dry conditions, especially in the northern

half of New South Wales, have had the worst droughts over long periods of time.This

is in stark contrast to what occurred during the Millennium drought, when the

southern basin had the worst droughts and the north had the best. Two other places
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with a long-term lack of rain, namely Gippsland in eastern Victoria and eastern

Tasmania, were two others. In Gippsland, the most severe deficits were found. 2019

was marked as the third year in a row that the area did not receive enough rain.

While it wasn’t as dry as in 2017 and 2018, the lack of rain kept building up over

time. This led to multi-year deficits. The east coast of Tasmania also saw a lot less

rain than usual during this time.

Consecutive dry, cool seasons: These three years (2017-2019) didn’t get

enough rain, but they were terrible in the fall and winter. From 2017 to 2019, it was

very dry in a lot of New South Wales from April to September each year. It was the

same in Queensland, south of the Tropic of Capricorn, where the weather was the

same. People in New South Wales and the Murray–Darling Basin didn’t get much

rain in April and September.

Early and long-lasting devastating bushfires: As measured by the Forest

Fire Danger Index (FFDI), which is a common way to measure fire weather con-

ditions, spring 2019 saw the highest level of fire weather danger across the whole

country. Record high FFDI values were found in all states and territories. The

hot weather made things even more dangerous for fires in December 2019 and early

January 2020.

As can be seen from the above trends in Fig 7.13, during the years 2017–2019,

the environmental factors mentioned above significantly affected the vegetation in

most of the Australian regions and territories. Therefore, it can be seen that the

average semantic vegetation index calculated has low values due to environmental

factors. However, beginning in 2020, those areas were given extra care with the help

of citizens and the government to help the plants grow back and save the biodiversity.
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Figure 7.13: Trends of vegetation with respect to environmental factors from 2015-
2020 quarterly for a.) Panboola (NSW), b.) Derrimut (VIC), c.) Queensland and
d.) Donn2 (Tasmania).

7.5 Conclusion

This research article proposes automatic vegetation health monitoring using repet-

itive photography. This study tried to address challenges related to citizen science

data processing. For this purpose, we normalise data collected from various visitors

who visited Fluker post point sites in Australia and use it to estimate the vegetation

cover change from images taken quarterly over six years in various specific locations

throughout Australia. In general, using repeat photography in vegetation monitoring

brings significant value to other quantitative data retrieved from remote sensing and

field measurements. Furthermore, visitor-acquired photographs can raise awareness

about landscape and vegetation change among policymakers and the general public

and provide clear feedback on the effects of land management. It is observed that

a few significant factors can impact the performance of the automatic approach, in-

cluding image quality, shadow cast, and varying scale. Deep characteristics learned
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from a deep neural network are used to make sure that the vegetation index for each

sample location is accurate. The proposed method for segmenting vegetative areas

has produced encouraging results. Based on the results achieved from the semantic

segmentation model, the trends are plotted. Those plotted trends revealed that some

of the Fluker post site vegetation increased gradually at some locations, the vegeta-

tion treads remained almost the same, showing no significant increase or decrease,

while some of the study sites showed a dramatic decline in vegetation due to floods

and harsh weather. Thus, those results present the increase or decrease of vegetation

at specific site locations, which can be beneficial information for agriculture man-

agement officials and the research community on a wide range of research issues. It

provides a robust platform to handle citizen science data for automated community

service projects. The images in the Fluker Post Project are the collection of images

acquired by visitors and citizens over different times of the year with their handheld

cameras and mobile devices, in other words, through various sensors. However, there

are a few challenges to be kept in mind. If the same pictures were taken with the

UAV, it would be important to make sure that only authorised people with licences

and basic knowledge of taking pictures were doing it. Secondly, UAV equipment is

expensive, so cost would be allocated for that. The same idea could be used to look

at changes in vegetation in a city using Google Street View (GSV) imagery, as long

as there are enough images for that city.
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Chapter 8

Conclusions And Future Work

Recommendations

This chapter outlines the project’s primary outcomes and advantages before making

various recommendations for future research based on identified research gaps. De-

spite the fact that each chapter’s conclusion is delivered at the end, the overall key

findings are presented in this chapter. Finally, based on the findings of this study, it

makes some recommendations for future research directions.

8.1 Conclusions:

Through a series of published works, this thesis has its core focus on the automation

of vegetation segmentation and health monitoring using deep learning. Using deep

convolutional neural networks (CNNs), this thesis contributes novel techniques for

multiview vegetation segmentation, robust calculation of vegetation indexes, and

real-time vegetation health assessment. This chapter summarises its contributions,

discusses the research findings, and suggests future research directions.

In today’s world, the population has increased rapidly with the advancement of

technology, which has created a need for and importance of environmental moni-
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toring. Humans have affected the environment to such an extent that the time has

come to pay our attention to this issue. One of the most important components of

environmental monitoring is observing the information regarding vegetation, which

is essential to predict at an early stage regarding ongoing trends. Even though ur-

ban landscapes are getting bigger and more complicated, planners and experts are

becoming more aware of how vegetation can help solve many of the problems that

come with urbanization.

Vegetation management and vegetation index calculation pose a number of chal-

lenges due to their multidisciplinary nature, such as automated detection, health

assessment, and monitoring of vegetation and trees by integrating techniques from

computer vision, machine learning, and remote sensing. As computer vision and ma-

chine learning have become more advanced, researchers are now able to come up with

new algorithms that will allow an automated system to monitor the environment.

In this thesis, studies were conducted using a range of remote sensing datasets

to examine the following critical areas of vegetation management:

• Automatic vegetation detection techniques provide new methods for vegetation

segmentation and indexing in repeat photography.

• DeepLens Classification and Detection Model (DCDM) for real-time health

assessment of plant leaves based on Amazon SageMaker.

• The classification of healthy and unhealthy trees and the identification of their

geo-location.

• Multiview Semantic Vegetation Index (MSVI) model for sematic segmentation

based vegetation index calculation.

• Semantic vegetation index (SVI) calculation and application for time series-
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based vegetation health monitoring.

To demonstrate the applicability of remote sensing for vegetation management,

this thesis has provided a pragmatic framework for vegetation monitoring in ur-

ban environments. In the introduction of this thesis, four fundamental questions of

vegetation monitoring were identified, including:

• How Multi-temporal imagery such Fluker post project dataset can be nor-

malised to use it for convolution neural network training?

• How are vegetation indexes extracted using deep CNNs from street level im-

agery such as the Google Street View image dataset?

• How to utilise the ordinal information contained in image labels to derive a

semantic vegetation index?

• How to build a health monitoring system using deep learning to quantify the

vegetation’s health in terms of an index?

Methodologies addressing each of the research questions were presented through

a set of published papers, and their contributions are summarised as follows.

Chapter 2 of this thesis is based on data preparation techniques and a paper

presented at the Pacific-Rim Symposium on Image and Video Technology (PSIVT),

2019, published in Lecture Notes in Computer Science, vol. 11854. Springer, Cham.

The main focus of this paper is how multi-temporal image registration can be simul-

taneously made accurate with deep convolutional networks and robust against affine

transformations. In this paper, we investigated the integration of citizen science and

deep learning-based image registration to facilitate automated image analytics for

environmental monitoring. We proposed a novel deep affine invariant network for

non-rigid image registration of multi-temporal repeat photography. It is described
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in this chapter that direct automation of large image collections is not suitable for

any image analysis and registration due to variations in imaging taken by multi-

sensors, i.e., variations in viewpoints, scales, luminosity, and camera characteristics.

This multi-temporal image data is not registered. Thus, robust multi-temporal im-

age registration is urgently required. We also integrated robust point matching and

affine invariance into our framework for robust multi-temporal image registration.

The experimental results indicated that the proposed approach delivered higher qual-

ity performance than the existing techniques. This work would open up new research

directions to achieve a fully automated environmental monitoring system.

Related publication:

• Multi-temporal registration of environmental imagery using affine invariant

convolutional features.

Khan, A., Ulhaq, A., & Robinson, R. W. (2019, November). Multi-temporal

registration of environmental imagery using affine invariant convolutional fea-

tures. In Pacific-Rim Symposium on Image and Video Technology (pp. 269-

280). Springer, Cham. doi: https://doi.org/10.1007/978-3-030-34879-

3 21.

Chapter 3 of this thesis presents a paper, published at Statistics for Data Science

and Policy Analysis. Springer, Singapore. In this chapter, a novel approach towards

segmentation is proposed, which works on a machine learning-based algorithm for

vegetation index calculation. The proposed algorithm registers the image so that

comparison can be carried out in an accurate manner using a single framework for

all the images. The registration algorithm aligns the new image with the already

present previous image by performing a transformation. The registration process is

followed by a segmentation process that segments out the vegetation region from the

https://doi.org/10.1007/978-3-030-34879-3_21
https://doi.org/10.1007/978-3-030-34879-3_21
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image.

The proposed algorithm showed promising results, with an F-measure of 85.36%.

The segmentation result leads us to an easy calculation of the vegetation index.

which can be used to create a vegetation record for a specific site.

Related publication:

• Detection of vegetation in environmental repeat photography: a new algorithmic

approach in data science.

Khan, A., Ulhaq, A., Robinson, R., & Rehman, M. U. (2020). Detection of

vegetation in environmental repeat photography: a new algorithmic approach

in data science. In Statistics for Data Science and Policy Analysis (pp. 145-

157). Springer, Singapore. doi: https://doi.org/10.1007/978-981-15-173

5-8 11.

Chapter 4 is about plant health assessment. This chapter is composed of a

research paper that was published in the PLOS ONE journal on December 17, 2020.

This research paper describes the real-time health assessment of small plants. For

implementing automatic detection and classification of a plant’s health, Amazon

SageMaker, a cloud-based environment, is used for training and testing of a model.

The proposed model, known as the DeepLens Classification and Detection Model

(DCDM), to identify and classify various fruits and vegetables’ leaf diseases is based

on Deep Convolutional Neural Network (DCNN) [96]. After completion of training

DCDM, it was deployed on the Internet of Things (IoT) device known as AWS

DeepLens to make it a scalable and efficient real-time classification and identification

model.

To train the DCDM deep learning model, forty thousand images were used, and

then it was evaluated on ten thousand images. It takes an average of 0.349s to test

https://doi.org/10.1007/978-981-15-1735-8_11
https://doi.org/10.1007/978-981-15-1735-8_11
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an image for disease diagnosis and classification using AWS DeepLens, providing the

consumer with disease information in less than a second. It obtained an average

accuracy rate of 98.78% on test images. The findings are the first step towards a

system based on an AWS DeepLens camera for plant disease diagnosis. Moreover,

in this chapter, I also extracted feature maps [89] of an input image after passing

through the CNN model and applied filters to visualise the activations through the

CNN layers [101].

Related publication:

• Real-time Plant Health assessment via Implementing Cloud-based Scalable

Transfer Learning on AWS DeepLens.

Khan, A., Nawaz, U., Ulhaq, A., & Robinson, R. W. (2020). Real-time plant

health assessment via implementing cloud-based scalable transfer learning on

AWS DeepLens. Plos one, 15(12), e0243243. doi: https://doi.org/10.137

1/journal.pone.0243243.

Chapter 5 presents a siamese convolutional neural network for health assessment

and is described via a research article, Remote Sensing 13, no. 11: 2194. This paper

proposes a deep learning-based network, the Siamese convolutional neural network

(SCNN), combined with a modified brute-force-base line-of-bearing (LOB) algorithm

that evaluates the health of eucalyptus trees as healthy or unhealthy and identifies

their geo-location in real-time from Google Street View (GSV) and ground truth

images. The reason behind this work was that street trees are an essential feature of

urban or metropolitan areas, although relatively ignored. One such tree, eucalyptus,

is a valuable asset for communities in urban areas (Australia).

The evaluation of tree health conditions is highly critical for biodiversity, forest

management, global environmental monitoring and carbon dynamics. Unhealthy

https://doi.org/10.1371/journal.pone.0243243
https://doi.org/10.1371/journal.pone.0243243
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tree features are identifiable and can be used to build a detection and classification

model using deep learning to intelligently diagnose eucalyptus in healthy and un-

sanitary/dead trees. Detection and recognition of eucalyptus tree health presents

a challenging task since many trees have few pixels across their input images, and

some trees are also overshadowed by other trees and cannot be found due to weather

conditions or lighting. To address these challenges and achieve high accuracy and

precise prediction, a large amount of labelled training data for feature extraction of

healthy and unhealthy class features is required. For this, we used GSV imagery,

and ground truth images were taken from different viewpoints and a variety of places

at different times.

Related publication:

• Health Assessment of Eucalyptus Trees Using Siamese Network from Google

Street and Ground Truth Images.

Khan, A., Asim, W., Ulhaq, A., Ghazi, B., & Robinson, R. W. (2021). Health

Assessment of Eucalyptus Trees Using Siamese Network from Google Street

and Ground Truth Images. Remote Sensing, 13(11), 2194. doi: https://do

i.org/10.3390/rs13112194.

Chapter 6 contains a research article published in Remote Sens. 2022, 14, 228.

This article proposed a novel vegetation index, the Multiview Semantic Vegetation

Index (MSVI), that is robust to colour and seasonal variations and works for any

imaging modality. MSVI is based on deep semantic segmentation and Multiview

field coverage and can be integrated into any vegetation management platform. The

MSVI is based on the deep features learned from a deep neural network to calculate

the vegetation index of each sample location in the urban area. The Google Street

View (GSV) imagery dataset is used for calculating and indexing the vegetation. A

https://doi.org/10.3390/rs13112194
https://doi.org/10.3390/rs13112194
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single vertical point of view is insufficient to accurately express the surrounding veg-

etation index that pedestrians may observe; two vertical points of view are required.

Therefore, the multiview semantic vegetation index (MSVI) is employed for six GSV

images in this experiment to calculate the vegetation index, each spanning a 360°

horizontal and three vertical angles of 45°, 0°and -45°, to calculate the vegetation

index appropriately on the basis of the semantic pixels.

The Multiview semantic vegetation index (MSVI) took advantage of the charac-

teristics of GSV images and used 18 GSV images taken from different viewing angles,

making the index more efficient for evaluating street greenery in urban areas. As a

result, it can provide a monitoring tool to analyse gains or losses in urban vegeta-

tion. During the experiments and training phase, FCN and U-Net achieved overall

pixel accuracy of 89.4 percent and 92.4 percent, respectively. Thus, the MSVI can

be a helpful instrument for analysing urban forestry and vegetation biomass since it

provides an accurate and reliable objective method for assessing the plant cover at

street level.

Related publication:

• A Multiview Semantic Vegetation Index for Robust Estimation of Urban Vege-

tation Cover.

Khan, A., Asim, W., Ulhaq, A., & Robinson, R. W. (2022). A Multiview

Semantic Vegetation Index for Robust Estimation of Urban Vegetation Cover.

Remote Sensing, 14(1), 228. doi: https://doi.org/10.3390/rs14010228.

Chapter 7 of this thesis represents the health monitoring platform for citizen

science data. In this paper, I build upon my previous work on the development

of a Semantic Vegetation Index (SVI), mentioned in Chapter 6, and expand it to

introduce a sematic vegetation health monitoring platform to monitor vegetation

https://doi.org/10.3390/rs14010228
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health in a large landscape. This Semantic Vegetation Index (SVI) is based on deep

semantic segmentation to integrate it into a citizen science project for automated

environmental monitoring. In this paper, a deep learning-based semantic segmenta-

tion model is first used to classify vegetation in repeated photographs. A semantic

vegetation index is then calculated and plotted in a time series to reflect seasonal

variations and environmental impacts. In this work, we have addressed several chal-

lenges related to viewpoint variations, scale viand zoom related image variations,

and seasonal variations to normalise RGB imaging data collected from diverse image

devices. It is a robust platform that can handle citizen science data for automated

community service projects.

It is observed that a few significant factors can impact the performance of the

automatic approach, including image quality, shadow cast, and varying scale. The

proposed method for segmenting vegetative areas has produced encouraging results.

Based on the results achieved from the semantic segmentation model, the trends are

plotted. Those plotted trends revealed that some of the Fluker post site vegetation

increased gradually at some locations, the vegetation treads remained almost the

same, showing no significant increase or decrease, while some of the study sites

showed a dramatic decline in vegetation due to floods and harsh weather. Thus,

those results present the increase or decrease of vegetation at specific site locations,

which can be beneficial information for agriculture management officials and the

research community on a wide range of research issues (Overall accuracy = 97.7%).

Related publication:

• A Deep Semantic Vegetation Health Monitoring Platform For Citizen Science

Imaging Data.

Khan, A.; Asim, W.; Ulhaq, A.; Robinson, R.W. “A Deep Semantic Vegeta-
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tion Health Monitoring Platform For Citizen Science Imaging Data.”

Under production with PLOS ONE Journal..

8.2 Future Research Recommendations:

This study has demonstrated the critical function that data acquired from remote

sensing can play in index calculation and monitoring vegetation in urban contexts

at various scales. However, the studies were conducted within certain boundaries,

prompting further investigation. Hence, there are a few more areas where future

research could be concentrated.

• In future work, to investigate the semantic segmentation of various tree types

in thermal and LiDAR imagery, a new state-of-the-art algorithm could be

further developed, for example, to aid in the classification of tree species and

the accurate estimation of crown radius (CR) and crown base heights (CBH),

which would aid in the evaluation of wood quality.

• Automating species identification and conservation, on the other hand, re-

quires expertise in species identification, which can only be acquired through

extensive training and experience. Field researchers, land managers, educa-

tors, government officials, and the general public would all benefit significantly

from easily accessible, up-to-date tools that automate the process of species

identification.

• Technological advancements such as imaging spectroscopy and LIDAR, the

increasing free availability of satellite image time series, and online sharing of

ecological data through crowd sourcing and open access datasets will enable

further development in this field of mapping and monitoring vegetation at
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various scales in the future.

• Conservation drones or unmanned drones may be effective in vegetation con-

dition monitoring since they can correlate with the timing of site-based assess-

ments, but their coverage is limited due to flying duration constraints. Such

advancements could lead to a better understanding of vegetation’s complex

spatial patterns and processes, which is important for evidence-based natural

resource management and measuring vegetative condition at various scales.
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[156] Agnieszka Kamińska, Maciej Lisiewicz, Krzysztof Stereńczak, Bart lomiej
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