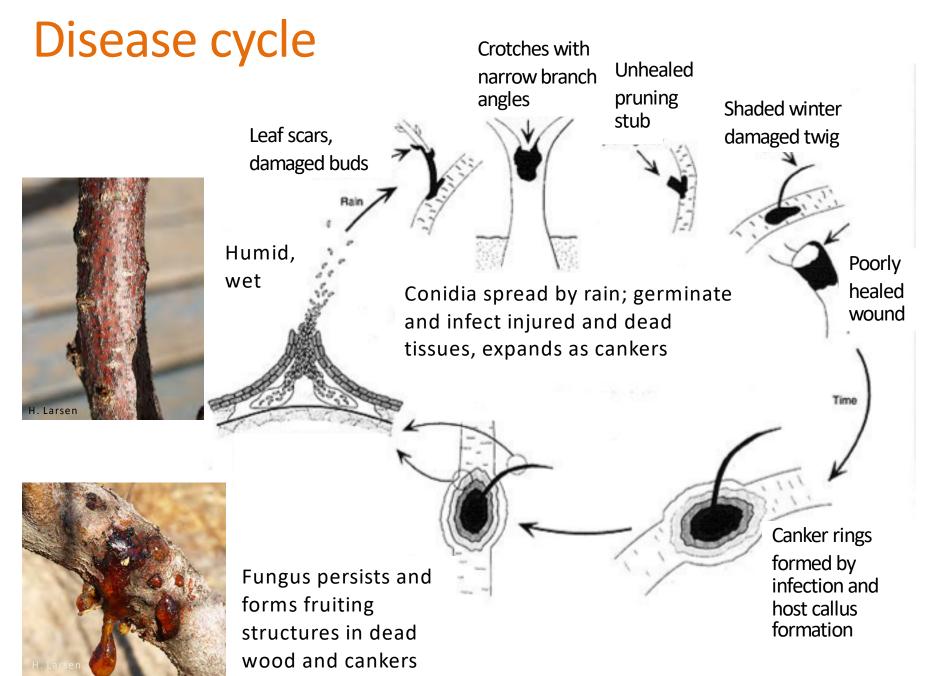


Cytospora Canker on Colorado Peaches: Current Research

Jane E. Stewart Plant Pathologist Colorado State University Bioagricultural Sciences and Pest Management

Cytospora canker


- Caused by fungal species *Cytospora*
- Opportunist pathogens, cannot invade healthy intact bark

Pruning cut with infection

canker

canker

Biggs and Grove 2006. Plant Health Instructor

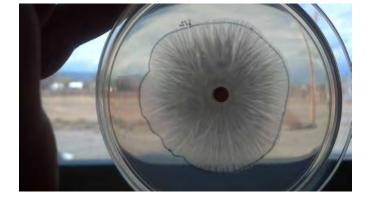
Cytospora presence in Colorado

Surveyed

- 200 acres
- 42 varieties
- 2-32 year old orchards (mean 11 years)

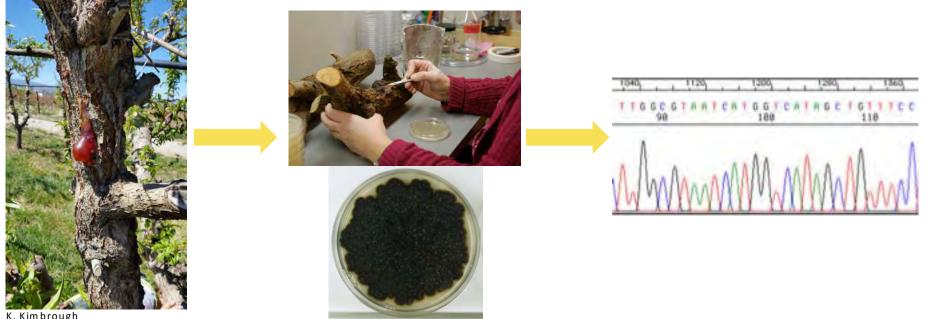
Results

- 100% of orchards surveyed
 infected (mean 75% infected)
- Ave number of infections per tree was 5.2 (range 0-27)
- Currently analyzing relationships between practices and infection


Questions

- How many Cytospora species cause infections on peaches ?
- What chemicals are effective against Cytospora?
 Preventative vs. suppressive?
- Are trees susceptible year around?

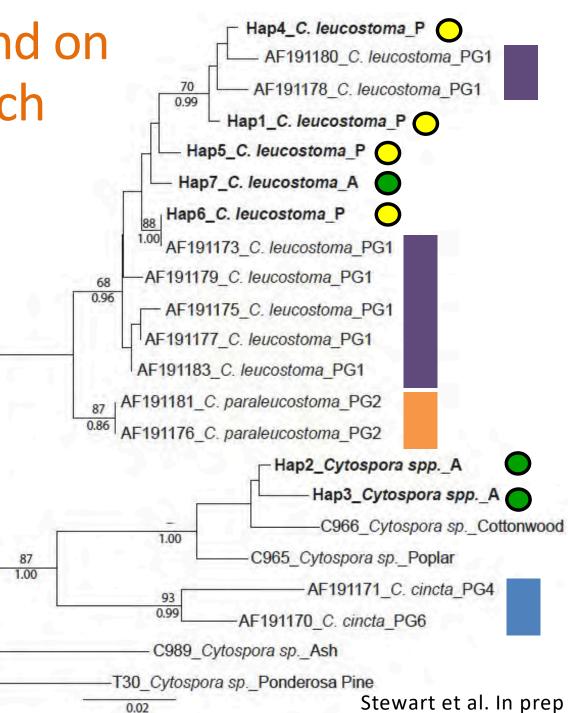
Species differ biologically


- Three species have been identified on peach in other peach growing regions:
 - Cytospora leucostoma
 - Cytospora paraleucostoma
 - Cytospora cincta
 - Variation in occurrence and virulence on different peach varieties

• Found on different locations of the tree

What species are found at **Orchard Mesa and Rogers Mesa?**

- Collections made in July-August 2015
 - 135 isolates were recovered at different elevations
 - Identified species based on DNA sequencing



K. Kimbrough

One species found on Colorado peach

- Cytospora leucostoma
- No difference between orchards low vs. high elevation
- No difference between winter/summer isolates
- Apple and peach isolates genetically distinct

70

Risks of other species introduced into Colorado

- Virulence
 - Difference among *C. leucostoma, C. paraleucostoma, C. cincta*
- Growth at different temperatures
- Fungicide sensitivity
- Sporulation
- Differences with peach varieties

Questions

- How many *Cytospora* species cause cankers and gummosis ?
- What chemicals are effective against Cytospora?

– Preventative vs. suppressive?

• When are trees susceptible?

What chemicals are effective against Cytospora?

- Evaluate the efficacy of conventional and organic fungicides for *Cytospora leucostoma* control
- Test wound sealing alternatives to develop preventive and spore suppressive approaches in existing orchards

Stephan Miller

Infected prune wound

C. leucostoma canker

Miller et al. Plant Disease. submitted

Chemical Testing Phases

Laboratory Assay:

- Testing chemicals *in vitro* on plates
- Testing chemicals on detached branches

Field Trials:

- Testing chemical sprays as preventive measure on branches
- Testing chemicals embedded in paints as preventive measure on branches
- Testing chemicals on existing cankers for spore suppression

Conventional Chemicals Evaluated

Treatment name	Active ingredient	Label rate (per 200 gal.)	Rate chosen	Mode of Action
Microthiol Disperss	Sulfur	10-20 lb	15 lb	Multi-site
Fontelis	Penthiopyrad	14-20 oz	17 oz	Respiration
Torino Pristine	Cyflufenamid	3.4 oz	3.4 oz	Unknown
Aliette WDG	Pyraclostrobin & Boscalid Fosetyl	10.5-14.5 oz 10 lb	12 oz 10 lb	Respiration Unknown
Topsin M WSB	Thiopthanate-methyl	1-1.5 lb	1.25 lb	Cytoskeleton/ motor proteins
Benlate WP	Benomyl	24-32 oz	28 oz	Cytoskeleton/ motor proteins
Captan	N-Trichloromethylthio-4- cyclohexene-1,2-dicarboximide	3-4 qt	3.5 qt	Multi-site
Inspire Super	Difencoconazole & Cyprodinil	16-20 oz	18 oz	Protein synthesis
Ziram	Zinc dimethyldithiocarbamate	3 - 5.3 lb	1.15 lb	Multi-site

Organic Chemicals Evaluated

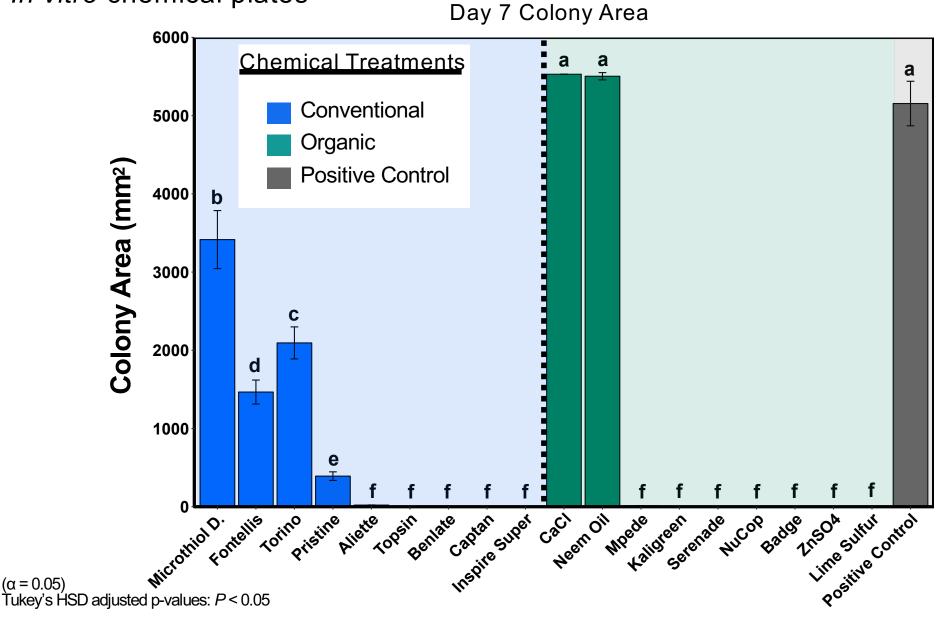

Treatment name	Active ingredient	Label rate (per 200 gal.)	Rate chosen	Mode of Action
CaCl	CaCl	48 oz	48 oz	Multi-site
Neem Oil	Neem Oil	3 qt	3 qt	Not classified
Mpede	Potassium salts	2-4 gal	3 gal.	Multi-site
Kaligreen	Potassium bicarbonate	2.5-3 lb	2.75 lb	Not classified
Serenade	Bacillus subtilis	14-20 oz	17 oz	Lipid synthesis/ transport
NuCop WP	Copper Hydroxide	8-20 lb	10 lb	Multi-site
Badge X2	Copper Hydroxide & Copper Oxychloride	3.5-5.25 lb	4.25 lb	Multi-site
ZnSO4	ZnSO4	4-6 lb	5 lb	Multi-site
Lime sulfur	Calcium polysulfide	20-24 gal.	22 gal.	Multi-site

Methods In vitro chemical plates

1. Chemical treatments amended in agar solution, at commercial mid-rate

2. Isolates inoculated onto plates

3. Inoculated plates incubated at 25°C for 7 days


C. leucostoma growth in chemically amended plates

4. Colony areas assessed every24 hours

Several Effective Conventional + Organic Chemicals

In vitro chemical plates

 $(\alpha = 0.05)$

Methods

Detached branches, chemically submerged

1. Detached branches wounded then submerged in mid-rate chemical solutions for 5 minutes

Conventional chemicals:

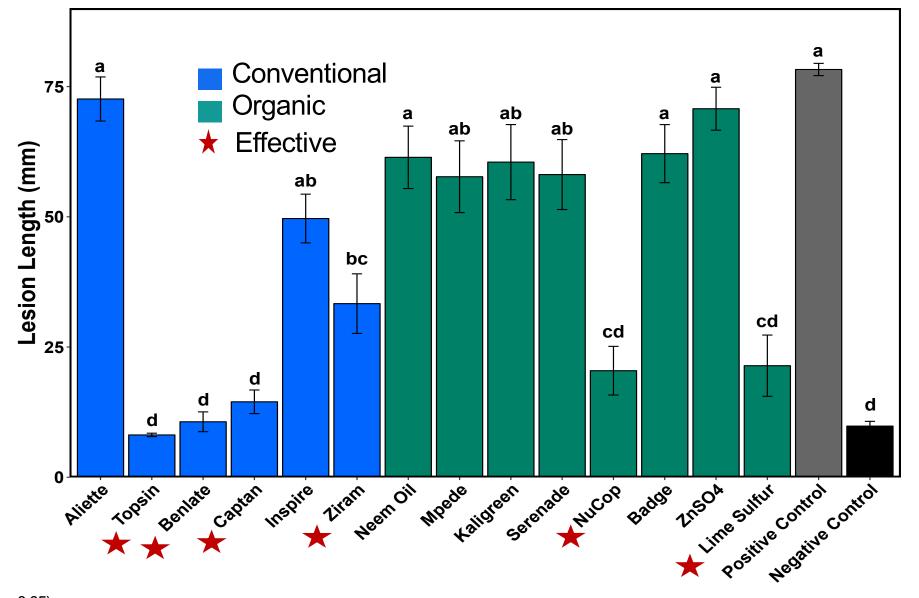
Aliette, Topsin, Benlate, Captan, Inspire, Ziram

Organic chemicals:

Neem oil, Mpede, Kaligreen, Serenade, NuCop, Badge, ZnSO4, lime sulfur

2. *Cytospora* inoculated onto wounded branches

3. Lesion lengths assessed 8 days post inoculation


Inoculated detached branches

C. leucostoma lesion

C. leucostoma lesion

Several Conventional + Organic Chemicals Effective

($\alpha = 0.05$) Tukey's HSD adjusted p-values: P < 0.05

Methods Chemical field sprays

- 1. Wounds made on 1-year wood
- 2. Label mid-rate chemical sprays applied after wounding
 - Conventional: Topsin and Captan
 - Organic: Lime Sulfur and NuCop
- 3. Inoculation (Summer, Fall, Spring)
- 4. Branches harvested

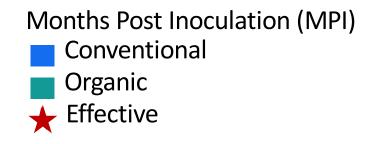
Cytospora Inoculation

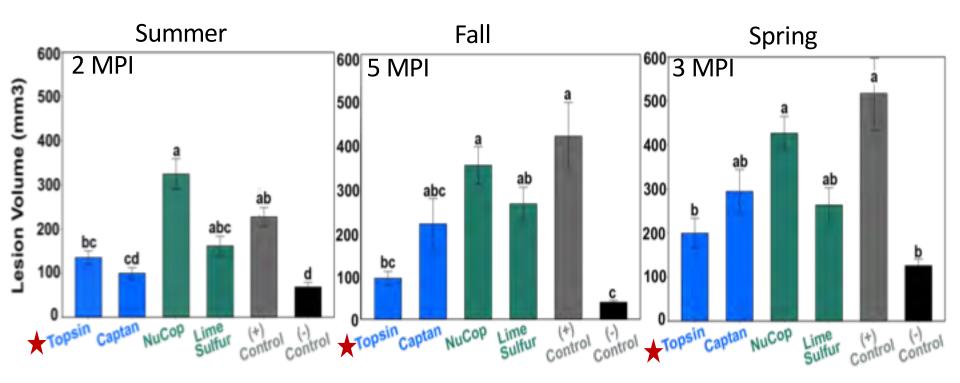
Cytospora lesion

Prune wound on 1 peach shod

Chemical applications

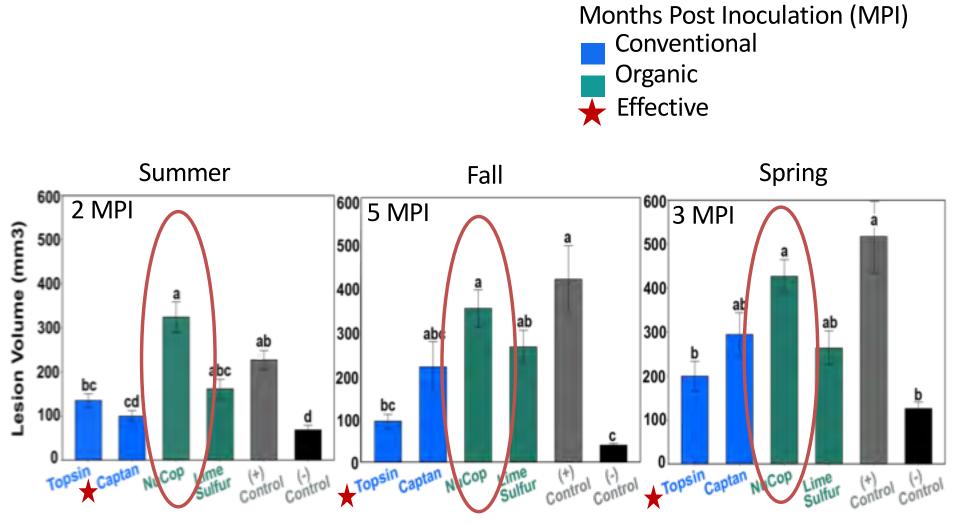
Inoculation on peach shoot pruning cut





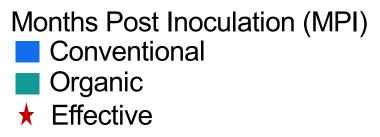
Opening Cytospora infected branch

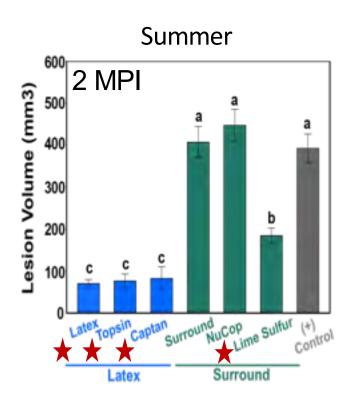
Cytospora lesion in prune wound


Topsin and Captan Seasonal Efficacy

(α = 0.05) (Tukey's HSD adjusted p-values: *P* < 0.05)

NuCop Potential Phytotoxicity to Peach




(α = 0.05) (Tukey's HSD adjusted p-values: *P* < 0.05)

Methods Chemical paint field sprays

- 1. Wounds made on 1-year wood
- 2. Label mid-rate chemical sprays applied after wounding
 - Conventional: Latex, Topsin and Captan
 - Organic: kaolin clay (Surround), Lime Sulfur and NuCop
- 3. Inoculation (Summer, Fall, Spring)
- 4. Branches harvested

Latex Combinations and Lime Sulfur Show Evidence of Seasonal Efficacy

Infected Prune Wound on Peach Tree

Most Effective **Preventive** Treatment?

 Conventional treatments:
 Topsin
 Captan
 50% Latex (Combinations)

Organic treatments:
Lime Sulfur

Chemical Testing Phases

Laboratory Assay: Testing chemicals *in vitro*

Laboratory Assay:

Testing chemicals on detached branches

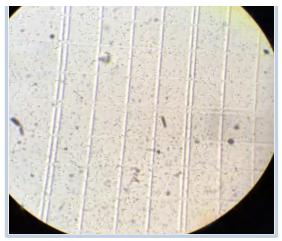
Field Trials:

- Testing chemical sprays as preventive measure on branches
- Testing chemicals embedded in paints as preventive measure on branches
- Testing chemicals on existing cankers for spore suppression

Methods Painting existing cankers

1. Cytospora cankers selected randomly in field

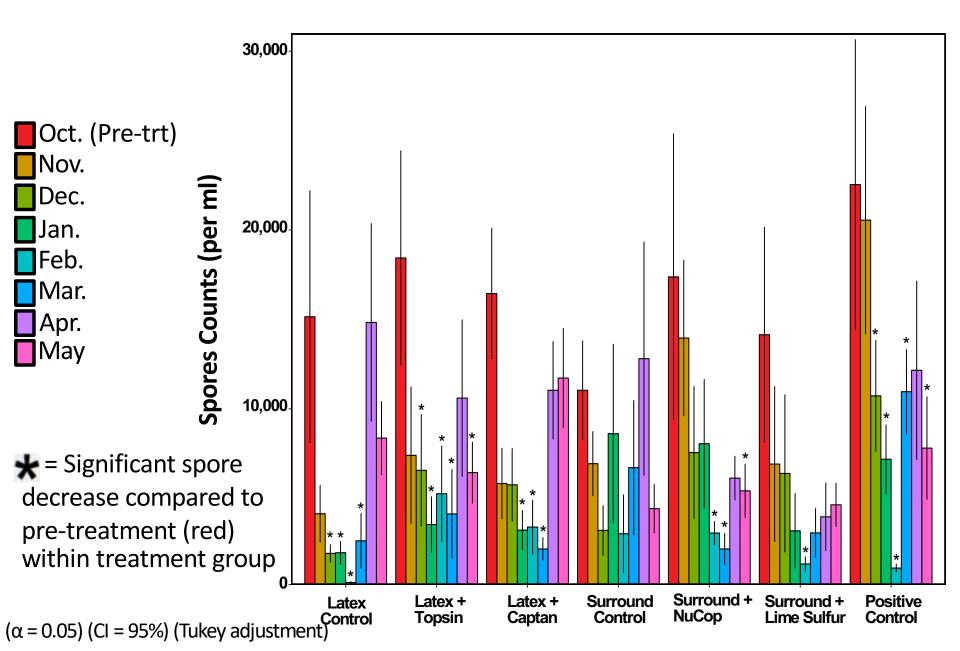
2. 10 ml of water (spore effluent) collected from cankers for pre-treatment measurements


- 3. Chemicals paint combinations applied to cankers:
- **Conventional Chemicals:** Topsin + latex, Captan + latex, and latex
- **Organic Chemicals:** Lime sulfur + Surround, NuCop + Surround and Surround

4. Spore effluent collected from cankers after chemical applications once a month for 7 months

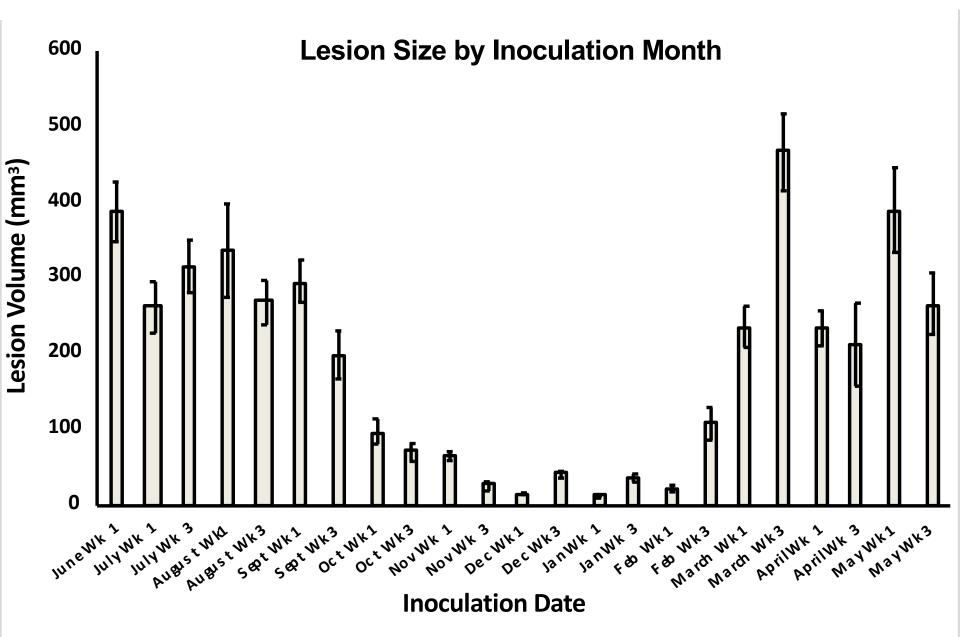
Spore effluent collection from canker

Spore counts in hemacytometer



Pre-treatment Cytospora canker

Latex treated Cytospora canker


Continuous Spore Production in all Treatments

Questions

- How many *Cytospora* species cause cankers and gummosis ?
- What chemicals are effective against Cytospora?
 Preventative vs. suppressive?
- When are trees susceptible?

Cytospora can infect peach at any season

Cytospora research summary 2016-2017

- Cytospora leucostoma was identified as fungal pathogen
- Chemical options for preventive and suppressive control
- Trees are susceptible year round
- The development of a molecular tool to study epidemiology
- Spores are dissemination through the year, when conditions are favorable

Most Effective **Preventive** Treatments (Conventional)

Treatment name	Active ingredient	Label rate (per 200 gal.)	Rate chosen	Mode of Action
Microthiol Disperss	Sulfur	10-20 lb	15 lb	Multi-site
Fontelis	Penthiopyrad	14-20 oz	17 oz	Respiration
Torino	Cyflufenamid	3.4 oz	3.4 oz	Unknown
Pristine	Pyraclostrobin & Boscalid	10.5-14.5 oz	12 oz	Respiration
Aliette WDG	Fosetyl	10 lb	10 lb	Unknown
Topsin M WSB	Thiopthanate-methyl	1-1.5 lb	1.25 lb	Cytoskeleton/ motor proteins
Benlate WP	Benomyl	24-32 oz	28 oz	Cytoskeleton/ motor proteins
Captan	N-Trichloromethylthio-4- cyclohexene-1,2-dicarboximide	3-4 qt	3.5 qt	Multi-site
Inspire Super	Difencoconazole & Cyprodinil	16-20 oz	18 oz	Protein synthesis
Ziram	Zinc dimethyldithiocarbamate	3 - 5.3 lb	1.15 lb	Multi-site

Most Effective **Preventive** Treatments (Organic)

Treatment name	Active ingredient	Label rate (per 200 gal.)	Rate chosen	Mode of Action
CaCl	CaCl	48 oz	48 oz	Multi-site
Neem Oil	Neem Oil	3 qt	3 qt	Not classified
Mpede	Potassium salts	2-4 gal	3 gal.	Multi-site
Kaligreen	Potassium bicarbonate	2.5-3 lb	2.75 lb	Not classified
Serenade	Bacillus subtilis	14-20 oz	17 oz	Lipid synthesis/ transport
NuCop WP	Copper Hydroxide	8-20 lb	10 lb	Multi-site
Badge X2	Copper Hydroxide & Copper Oxychloride	3.5-5.25 lb	4.25 lb	Multi-site
ZnSO4	ZnSO4	4-6 lb	5 lb	Multi-site
Lime sulfur	Calcium polysulfide*	20-24 gal.	22 gal.	Multi-site

* Rate was 3% Lime sulfur

Funding: USDA-CDA Specialty Crop February 2018 – November 2019

Project title: Cytospora management in peach orchards through cultural practices, cultivar selection, and stress mitigation

- Pls: Jane E. Stewart & Ioannis S. Minas
 - Research Associate: David Sterle
 - Student: Stephan Miller PhD Research

Project 1 - Preventive Chemical Applications

Started March 20

- Topsin
- Vitaseal
- Vitaseal + Topsin
- 70% Latex
- 50% Latex + Topsin
- 70% Latex + Topsin

- JMS Oil + Lime Sulfur
- Nufilm + Lime Sulfur
- 70% Latex + Lime Sulfur

Project 2 - Preventive Chemical Applications

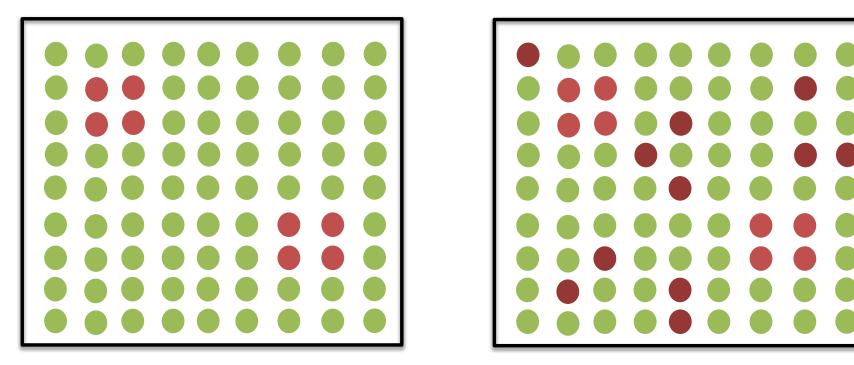
Vitaseal + Lime Sulfur

Project 3 - Tolerance of cultivars to Cytospora

Tolerance under high pH and drought

Funding: USDA-CDA Specialty Crop February 2019 – November 2020

- **Project title:** Determining dispersal pathways of *Cytospora* for the development of management strategies for Cytospora canker on peaches
- PI: Jane E. Stewart
 - Student: Stephan Miller PhD Research

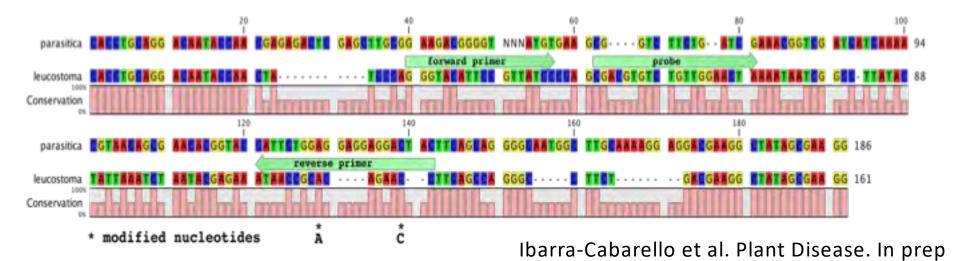

Dispersal of spores/epidemiology Wind, insects, pruning tools

Is inoculum spread similar in Colorado?

Pattern of disease if spread only by rain splash

Patterns we observe in orchards in Colorado

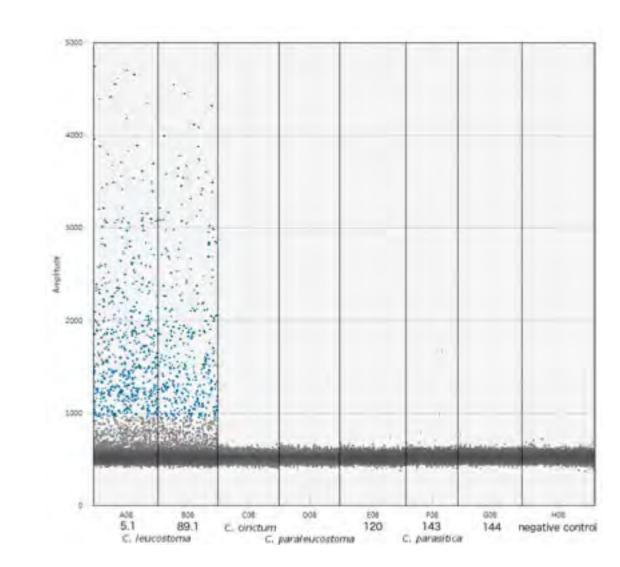
What are ways spores travel long distances? Wind, insects, humans? The need for a molecular tool for *Cytospora* identification


- Spores are small and difficult to differentiate
- Cytospora is a slow grower and is out competed by other fungi

Spores of Cytospora leucostoma at 40X

Marker development as an epidemiology tool

- Genomes of several Colorado isolates were used to identify unique regions in *C. leucostoma*
- A digital drop molecular assay was developed and tested against closely-related species of *Cytospora*



Jorge Ibarra-Cabarello

Molecular assay identifies only C. leucostoma

- Collect insects and test for vectors
- Test pruning shears
- Test nursery stock

Thanks!

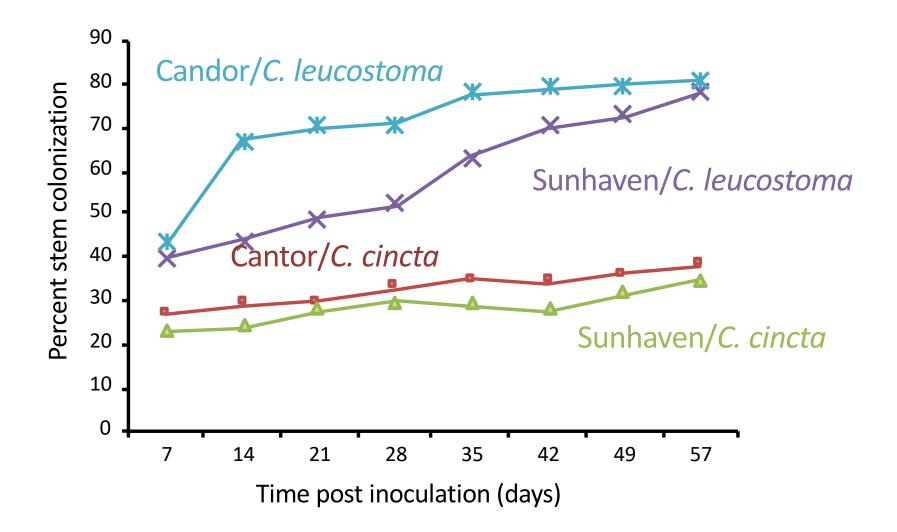
70+ years dedicated to the future development of agriculture in Western Colorado

COLORADO

Department of Agriculture

Collaborators:

Greg Litus, Frank Stonaker, Harold Larsen, Jordge Lafantasie, Brady Shanahan, Anne Hess, Bruce Talbott, Cytospora working group – Larry Traubel and Steve Ela

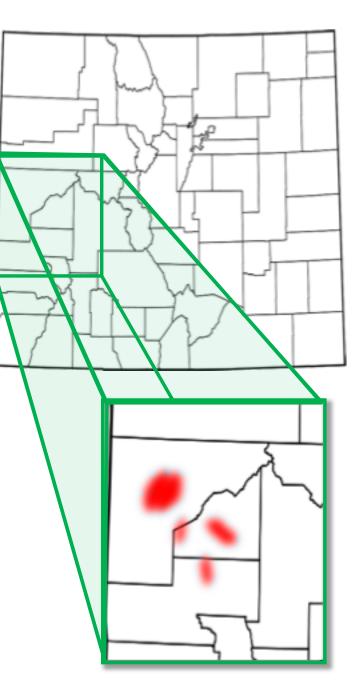

Cytospora Working Group

Objectives

- Collaborate with local commercial growers to prioritize research efforts
- Prevention/Protection measures
- Disease management/spread measures
- Support in funding opportunities

Want to join? Contact: Jane Stewart: <u>Jane.Stewart@colostate.edu</u> Ioannis Minas: <u>Ioannis.Minas@colostate.edu</u>

Species differ in virulence


Biggs. 1986. Phytopathology

Species differ in location on tree

	Percent cankers for each causal pathogen		
Canker location	C. leucostoma	C. cincta	C. paraleucostoma
Branch Trunk	82.55 94.50**	16.00*° 4.50	1.15 ns 0.17

Recent Survey of Colorado Orchards

- Estimate incidence and severity of *Cytospora* in major peach production areas of Western Colorado
- March/April 2015
- Conducted in Grand Valley, North Fork and Olathe areas
 - Focus on gathering data from a widespread area and range of orchard management

Methods

- Surveyed by orchard and variety
- Recorded presence/absence for every 10th tree
- Counted and rated infection severity for every 50th tree

Interviewed growers

K. Kimbrough

- Irrigation
- Orchard floor management
- Pruning practices
- Pre-plant practices (replant, fallow, rotation)
- Frost protection
- Fertilization practices
- Pesticide application