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Recovery of Underwater Visibility and Structure by
Polarization Analysis

Yoav Y. Schechner and Nir Karpel

Abstract—Underwater imaging is important for scientific re-
search and technology as well as for popular activities, yet it is
plagued by poor visibility conditions. In this paper, we present
a computer vision approach that removes degradation effects in
underwater vision. We analyze the physical effects of visibility
degradation. It is shown that the main degradation effects can
be associated with partial polarization of light. Then, an algo-
rithm is presented, which inverts the image formation process for
recovering good visibility in images of scenes. The algorithm is
based on a couple of images taken through a polarizer at different
orientations. As a by-product, a distance map of the scene is
also derived. In addition, this paper analyzes the noise sensitivity
of the recovery. We successfully demonstrated our approach in
experiments conducted in the sea. Great improvements of scene
contrast and color correction were obtained, nearly doubling the
underwater visibility range.

Index Terms—Color, illumination, image enhancement, inverse
problems, polarized light, scattering, three-dimensional recon-
struction, undersea vision, underwater imaging.

I. UNDERWATER VISION

NDERWATER vision is plagued by poor visibility con-

ditions [1]-[6]. According to [7], most computer vision
methods (e.g., those based on stereo triangulation or on struc-
ture from motion) cannot be employed directly underwater. This
is due to the particularly challenging environmental conditions
that complicate image matching and analysis. It is important to
alleviate these visibility problems since underwater imaging is
widely used in scientific research and technology. Computer vi-
sion methods are being used in this mode of imaging for various
applications [5], [6], [8]-[16] such as mine detection, inspection
of underwater power and telecommunication cables, pipelines
[7], [17], nuclear reactors, and columns of offshore platforms
[7]. Underwater computer vision is used commercially to help
swimming pool lifeguards [18]. As in conventional computer
vision, algorithms are sought for navigation and control [19]
of submerged robots. In addition, underwater imaging is used
for research in marine biology [6], [20]-[22], archaeology [1],
[23]-[25], and mapping [19]. Moreover, underwater photog-
raphy [26], [27] is becoming more accessible to a wider public.
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Fig. 1. Underwater Mediterranean archaeological site. Visibility degrades
quickly as a function of distance.

What makes underwater imaging so problematic? To under-
stand the challenge, consider Fig. 1. which shows an underwater
archaeological site about 2.5-m deep. It is easy to see that vis-
ibility degradation effects vary as distances to objects increase
[3], [28]. Since objects in the field of view (FOV) are at different
distances from the camera, the causes for image degradation are
spatially varying. This situation is analogous to open-air vision
in bad weather (fog or haze) described in [29]-[34]. Contrary
to this fact, traditional image enhancement tools, e.g., high pass
filtering and histogram equalization, are typically spatially in-
variant. Since they do not model the spatially varying distance
dependencies, traditional methods are of limited utility in coun-
tering visibility problems, as has been demonstrated in past ex-
periments [33], [35] as well as in this paper.

In this paper, we develop a physics-based approach for re-
covery of visibility when imaging underwater scenes in natural
illumination. Since it is based on the models of image forma-
tion, the approach automatically accounts for dependencies on
object distance and estimates a distance map of the scene as a
by-product. The approach is fast and relies on raw images taken
through different states of a polarizing filter.! These raw images
have slight photometric differences with respect to one another.
The differences serve as initial cues for our algorithm factoring
out turbidity effects. It is interesting to note that marine animals
use polarization for improved vision [6], [21], [22], [40]-[48].

To demonstrate the approach, we built an underwater polar-
ization imaging system composed of both custom and off-the-
shelf components (the considerations for selecting the compo-
nents are described). We used the method by experimenting in

IPolarization-filtered images have been used in various computer vision al-
gorithms dealing with reflections [36]-[38]. These methods evolved along with
developments of polarimetric imaging devices [6], [39].
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Fig. 2. Underwater imaging of a scene through a polarizing filter. (Dashed rays) Illumination enters the water through Snell’s window. Light is scattered towards
the camera by particles in the water, creating veiling light. Veiling light increases with distance z to the object. (Solid ray) Light emanating from the object is

attenuated and somewhat blurred as z increases, leading to the signal S. The

partial polarization of veiling light is significant, contrary to the signal. Without

scattering and absorption along the LOS, the object radiance would have been Lopject-

the sea. Significant improvements of contrast and color are ob-
tained. The recovered range maps indicate that the visibility
range has been approximately doubled by the approach. Partial
preliminary results were presented in [34].

II. RELATION TO PREVIOUS METHODS

A common approach to improve underwater visibility and
color is based on artificial illumination. The most popular re-
alization of this approach uses an off axis widefield strobe [26],
[27] attached to the camera. In practice, this method is limited
to photography of objects that are relatively close to the camera
[26], [27]. This is the result of the falloff of scene irradiance
with the distance from the strobe. Moreover, “sea snow” may
be created by the defocus blur of the strong backscatter from
suspended particles at close distances [26], [27].

To bypass the backscatter problem, advanced research un-
derwater imaging systems use specialized active radiation hard-
ware [2]-[4], [12], [16], [49]-[53]. Yet, the range of such sys-
tems is limited for the reason mentioned with respect to a wide-
field torch: at some distance, the source’s falloff leads to too low
levels of scene irradiance. To handle this problem, such systems
tend to be highly power consuming, complex, and expensive. To
avoid these aspects, in this article we deal with a complementary
approach: passive computer vision that exploits natural illumi-
nation. When available, natural illumination exists all over the
scene, alleviating the need to project energy towards objects.

It was demonstrated decades ago [54] that polarization fil-
tering can enhance contrast in passive underwater vision. Yet,
simple optical filtering [54], [S5] may have a limited? effect, in-
dicating that some postprocessing is needed, based on the ac-
quisition of both components of polarized light [54]. One ap-
proach is based on a simple subtraction of the differently polar-
ization-filtered images [2], [39], or displays the degree of po-
larization (DOP) [5], [46]. That approach has fundamental dis-

2The experiments described in [55] were based on subjective responses of
divers, rather than on photographs. They used polarizing filters having an ex-
tinction ratio of 1:2. This ratio is much worse than the current state of the art.

advantages. It assumes that polarization is associated with the
object radiation rather than the causes that degrade the signal.
However, due to depolarization [14], that assumption becomes
invalid as distances increase. Our approach is based on a con-
trary fact [43], [54], [56], [57]: in natural illumination, under-
water polarization is associated with the prime visibility distur-
bance that we wish to delete (veiling light). This observation has
recently been utilized to enhance visibility in a perpendicular
illumination setting [58]. Nevertheless, enhancement methods
such as those used in [2], [5], [39], [46], and [58] are far from in-
verting the image formation process and recovering the objects.
In contrast, our approach inverts the physical model in general
natural lighting, thus the recovered image is similar to clear vis-
ibility appearance.

III. IMAGE COMPONENTS

This section describes the model of image formation. It de-
scribes the assumptions the paper is based upon. This section
also details the approximations we make and the insights be-
hind them. In addition, this section presents the notations we
use. As depicted in Fig. 2, when imaging underwater we sense
two sources. The first source is the scene object at distance z,
whose radiance is attenuated by absorption and scattering in the
water. It is also somewhat blurred. The image corresponding to
this degraded source is the signal. The second source is the am-
bient illumination. Part of the ambient light is scattered towards
the camera by the particles in the water and is termed in the lit-
erature as veiling light [43], [48], [59]-[63], path radiance [64],
[65], spacelight [41], [43], [48], [54], [59], and backscatter [3],
[66]. The veiling light is partially polarized. This fact is used
by our visibility restoration algorithm. We now describe each of
these components.

A. The Signal

1) Direct Transmission: The signal is composed of two
components termed direct transmission and forward scattering
[3], [66], [67]. This section details the direct transmission
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while the next section describes forward scattering. As a light
ray progresses from the object towards the camera, part of its
energy is lost due to scattering and absorption. The fraction that
does reach the camera is the direct transmission? given by

D(xy) = Lobject(xay)e_cz-, (1)

where 2z is the distance to the object, which depends on the pixel
coordinates x and y, while c is the attenuation coefficient. Here,
Lobject 1s the object radiance we would have sensed had there
been no scattering and absorption along the line of sight (LOS).

The attenuation coefficient is given by ¢ = a + b, where a is
the absorption coefficient and b is the total scattering coefficient
of the water. The scattering coefficient b expresses the ability
of an infinitesimal water volume to scatter flux in all directions.
Integrating over all solid angles ©

b= / b(©)d) = 21 0/ b(8) sin(6)do, 2)

(S]

where 6 is the scattering angle relative to the propagation di-
rection. The angular scattering coefficient b(f) is sometimes
referred to as the phase function [57]. Note that the variables
a,b(f), c, and Lopject are all functions of the wavelength .

2) Forward Scattering: The forward scattering component
is similar to the direct transmission. However, it represents light
scattered forward at small angles relative to the LOS. This cre-
ates image blur given by the convolution

F(z,y) = D(z,y) * g-(z,y), 3)

where D is given by (1) and g, is a point spread function (PSF).
The PSF is parameterized by the distance z, since the farther the
object the wider the support of the blur kernel.

There are several models in the literature for the form of the
underwater PSF [66], [68]. Since the PSF depends on the hy-
drosols suspended in the water, the models are typically param-
eterized by various empirical constants. For example, the model
in [3] and [66] is of the form

g. = (e —e™)FHG.} where G.=e K (4
where K > 0 and ~y are empirical constants, F —1 is the inverse
Fourier transform, and w is the spatial frequency in the image
plane. Note that G, is a low pass filter. The effective frequency
“width” of G is inversely proportional to z. This expresses the
increase of spatial blur spread for distant objects. The constant ~y
is limited to || < ¢ [66]. It is important to note that, according
to the models obtained empirically and through numerical simu-
lations [66], [68], the PSF does not conserve energy while light
propagates in z. This is clearly the case in (4). Thus, forward
scattering is a blurred and attenuated version of D.

3There is a proportion factor between scene radiance and image irradiance
that depends on the imaging system but does not depend on the medium and its
characteristics. For this reason, we leave this factor out.
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Accounting for both the direct transmission (1) and the for-
ward scattering (3), we define the signal as

S=D+F. 5)
We define an effective object radiance L¢icct" as
ng?ggve = Lobject + Lobject * g, (6)

It is a somewhat blurred version of Lopject. From (1), (3), and
(5), the signal is
§ = e Lpectve. @)

In Section III-C, we claim and demonstrate that in practice blur
is not the prime cause of underwater image degradation.

B. Veiling Light

Veiling light does not originate from the object on the LOS.
Rather, light coming from ambient illumination sources is
scattered towards the camera (Fig. 2). The LOS is naturally
lit mostly from the water surface above. In addition, the LOS
is illuminated by the sea bottom and by scattering particles
in the surrounding water volume. Before integrating all the
contributions, let us first analyze the effect of a single distant
source.

The source illuminates the particles on the LOS from a di-
rection ©® = (6, ) relative to the LOS with intensity 75" °°.
Following [3] and [66], the contribution of this source to the
veiling light is

z

B(O) = /b(e)lsource(e)e_cz [1 _

0

/
(I +1o)

2
] i, (8

where f is the focal length of the camera and [ is the distance
between the lens and the underwater housing port. This integral
accounts for scattering into the LOS at some distance [ followed
by attenuation until reaching the camera. It also accounts for the
geometric projection of the irradiance on the detector via the
ratio /(1 + lo).

It is shown that we can considerably simplify the expression
for veiling light relative to (8). We can do this because typi-
cally f/(c™! + ly) << 1. Consider typical ranges of values
as ¢! € [3,10 m] (according to [57]), f € [20,50 mm],
lp =~ 80 mm, and object distance in the order of meters. We
assessed the integral numerically. It is shown in Fig. 3 that to an
accuracy of 99%, (8) can be written as

z

B(©)approx = K( f)b(8)7°"¢(O) / e~°ldl, )

0

where the correction coefficient is given by

o B(e)approx
K= 7B(@) . (10)
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Fig. 3. Numerical assessment of the correction coefficient x as a function of
focal length f and attenuation coefficient c.

For instance, as shown in Fig. 3, a focal length of f = 20 mm
yields k ~ 1.06.
Solving the integral in (9) yields

B(©)approx = Boo(©) (1 — ™). (11)

This close-form expression is much simpler than (8). It is easily
seen that the farther the object the larger the veiling light is. In
(11), the variables

Boo(©) = kI (0)b(6) (12)

expresses the veiling light in an LOS that extends to infinity in
the water. Summing up the contribution from light sources at all
directions, the total veiling light is

M%WZ/B@MMMB:Bmﬂ—fﬂ, (13)
o
where

B, = J B..(©)d0

(14)

is a scalar termed the water background [43], [54] that depends
on A. The veiling light B implicitly depends on z and y due to
its explicit dependence on the distance z.

Fig. 4 depicts the scattering of light towards the LOS by par-
ticles close to it. It shows that this light can be represented as
originating from equivalent sources at infinity. This equivalence
is based on an assumption of homogeneous lighting along the
LOS. We believe that this is a reasonable assumption in hori-
zontal photography. The reason is that underwater lighting nat-
urally comes from a limited light cone directly above [21], [47],
[65] and is thus typically unobscured along the LOS. Thanks to
this equivalence, expression (13), which was developed for dis-
tant light sources, is applicable to the general case of scattering
from nondistant particles suspended in the water volume.

C. The Dominant Degradation Component

We now discuss the contribution of each of the above-men-
tioned components. In particular, we claim that image blur is
not the dominant cause for image contrast degradation. Rather,

Fig. 4. (Top) Light scattered towards the LOS by nearby particles. (Bottom)
Light emanating from nearby particles can be represented as originating from
equivalent sources at infinity.

Fig. 5. Simulating underwater imaging. The bottom part of the scene is
set to be 0.5 m away. The distance linearly changes to 3.5 m at the top. (a)
Original image Lopject- (b) Rendering the effective object ngf;;;;ve, which
accounts for underwater blur (forward scattering). (c) Rendering the sensed
image I*°t®! accounting for attenuation blur and veiling light. The latter effect
is the prime cause for contrast degradation. (Color version available online at
http://ieeexplore.ieee.org.)

veiling light is the dominant one. We performed a simulation of
underwater imaging, whose results are shown in Fig. 5. The ef-
fects of water are simulated using a model for oceanic water [57]
with a low concentration of chlorophyll and a moderate concen-
tration of hydrosols. Fig. 5 shows a colorful set of objects with
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radiance Lobject- Then it shows LEective, which accounts for
blur by forward scattering. The colors slightly change due to for-
ward scattering since (4) includes an attenuation factor, which
is implicitly wavelength dependent. We simulated the effects of
varying distances by setting a distance map to the scene: the dis-
tance linearly increases from 0.5 m at the bottom of the image
to 3.5 m at its top.

Incorporating veiling and attenuation effects as well as blur,

the total image irradiance [29] is

Itotal — S+ B=¢ ¢ Leffective + B.

object

5)

Visibility strongly deteriorates* at image It°*2!. Now, even ob-
jects at moderate distances are swamped in a veiling blue light
and become obscured. Veiling light affects the color and con-
trast of all objects.

We now turn to a quantitative analysis of the images shown
in Fig. 5. As a criterion for image quality, we look at contrast.
The reason is that measurement of contrast underlies the deter-
mination of the modulation transfer function (MTF) of media
[64]. Moreover, contrast has been shown to correspond to un-
derwater visual performance such as stereoscopic acuity [70].
Contrast between two points v = 1,2 is usually defined [55],
[64] as |I; — Iz|/|I1 + I2|, where I, is the intensity at point
v. We generalize this definition such that in a region having N
pixels, we use

_ STD{I,}

c(I) = , (16)
NI

where STD{I,} is the standard deviation of the N intensity
values. To calculate the contrast in a region of a color image
having N pixels, we use

N v\ 2
. \/% Ev:l szred_,green_,blue (IZ( - IX)

c(I) ~ a7
szred,green,blue
where Y is an index of the chromatic channel and
1 N
Ix=_— IX. 18
i Z:jl g (18)
The contrast of the effective object C (ngjo-ggi"c) and the sensed

image C(I*°*2!) are calculated. Relative to the contrast of the
original scene, the degradations of contrast are

C (Lgfiete)
C(Lobje(‘,t )

C(Itotal)
C(Lobje(‘,t) '
(19)

effective __

total __
object D -

and

Before inspecting these values, we define an image resulting
from all degradation effects excluding blur

total

(no blur) = e*CZ LObjECt + B7 (20)
with a respective contrast degradation measure
7 total
total c (Inc()) l?lur)
D = 2D

(no blur) — C(Thjm)

4The weight of the veiling light relative to the signal depends on the object
albedo. The larger the albedo, the stronger the signal is. Based on empirical
studies of typical terrestrial objects [69], we set the average albedo to 0.2.
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The contrast degradation in the scene depicted in Fig. 5 is given
as a function of distance in Table I. The effect of blur alone is not
negligible, especially at long distances, as reflected in the values
of Dggﬁ’ggi"e. Nevertheless, the effect of the complementary pro-

. . . . total .
cesses is much more dramatic, as indicated by D(no blur) While

most of the contrast is maintained in LEESSHY, it is reduced by
orders of magnitude by the veiling light, which increases while
the signal is attenuated.

This observation is consistent with experiments described>
in [64]. In addition, this observation is consistent with anal-
ogous conclusions regarding visual degradation in the atmos-
phere [33], [69] that ambient light scattered into the LOS is the
most important contributor to aerial image degradation rather
than blur. It has also been noted in psychophysical studies [71]
that human perception of an “atmosphere” is attributed to the ad-
ditive contribution, which is associated with the path radiance. A
similar conclusion applies underwater: veiling light is the dom-
inant contributor to image degradation.

D. Polarization

Underwater scattering involves polarization effects. In the
following sections, these effects are exploited to compensate for
underwater visibility degradation. First, however, we describe
the models for these effects. Consider a narrow source that illu-
minates the scattering particles residing on the LOS. The narrow
source and the LOS from the camera to the object define a plane
of incidence. We divide the veiling light into two polarization
components that are parallel and perpendicular to this plane,
Bll(©) and B+(0), respectively. Typically, B+(©) > Bll(0);
i.e., light is partially polarized perpendicular to the plane.

In general, irradiance of the LOS is not due to a narrow
source. Had illumination been isotropic, no specific direction
in space could have set a preferred polarization vector; hence,
overall the veiling light would not have been polarized. Fortu-
nately, the LOS is generally illuminated in a highly anisotropic
manner. Natural underwater light originates from the sun and
sky above the water. This light is restricted to a cone around
the zenith called the optical manhole [28], [72] or Snell’s
window [21], [40]. Scattering in the water leads to illumination
of the LOS from other directions as well (e.g., from below and
from the sides), but with lower intensity [47], [65]. Changes
caused by this scattering to the angular irradiance distribution
gradually depend on the underwater depth. As we go deeper,
the illumination reaches an asymptotic distribution [43], [47],
[57], [65] that is strongly peaked around the zenith.

Due to the anisotropy of the LOS irradiance, typical under-
water natural veiling is significantly partially polarized [43]. As
depth increases, this polarization reaches an asymptotic value,
which is maintained to an infinite depth [47], [65]. The direc-
tion of polarization depends on the sun’s bearing [47] (unless it
is occluded by clouds) and the viewing direction. However, this
orientation typically tends to be approximately horizontal [13],
[21], [28], [48], [56], [58], [72], [73] for horizontal LOSs.

5Tn [64], the MTF was characterized using black stripes over a white paper.
The albedo and contrast of that target had thus been much higher than the values
we use in the simulation above, since the values we use are based on natural
characteristics [69]. This leads to some moderation in [64] of the relative con-
tribution of the veiling light to the degradation of visibility of the calibration
target. Still, veiling light degraded the contrast much more than blur.
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TABLE 1
CHANGES OF CONTRAST OF AN EFFECTIVE IMAGE COMPARED TO A
CORRESPONDING SENSED BLURRED IMAGE AND A SENSED IMAGE
EXCLUDING BLUR. AS CAN BE SEEN, BLUR IS NOT AS DOMINANT AS THE
COMPLEMENTARY EFFECTS

z (meters) Dggjcecfé"c (percent) Dzﬁ?{)lm) (percent) | DFotal (percent)
0.75 89 8 7
1.5 78 5 4
2.0 73 34 2.7
2.5 70 2.2 1.7
3.5 62 1 0.7

In order to sense the different polarization components, we
image the scene through a polarizing filter (Fig. 2). Since nat-
ural veiling is partially polarized, then its intensity depends on
the filter’s orientation around the optical axis. There are two or-
thogonal orientations of the polarizer for which its transmittance
of the veiling light reaches extremum values B™2* and B™",
These are the two linear polarization components of the veiling
light, i.e.,

B — pmax + Bmin7 (22)
where B is given by (13). The DOP of the veiling light is defined
by

(Bmax _ Bmin)
B

p (23)

As for the signal S, we assume that it has insignificant influ-
ence on the polarization of the measured light relative to the
influence of the veiling light. Four reasons are listed for this
assumption.

1) Light reflected from rough surfaces is naturally depolar-
ized [43].

2) Contrary to reason 1, light reflected from specular di-
electric objects may be highly polarized. However, under-
water specular reflection is weaker [40] than in air since
the refraction index of water is closer to that of the re-
flecting dielectric. As an example, Fig. 6 plots the re-
flectance of glass in water divided by this reflectance in
air. It shows that for almost all incidence angles, the spec-
ular reflection underwater is much weaker than in air.

3) Even if light emanating from the object is partially polar-
ized, the signal polarization decreased as the distance to
the camera increases. This is caused by multiple scattering
along the LOS [14], [73].

4) Even if the signal reaches the camera with substantial
polarization, its influence is typically smaller than that
of the veiling light. The reason is that the signal de-
creases (7) while the veiling light (13) increases with
distance. Thus, veiling light and its polarization domi-
nate the measurements as distance increases. Therefore,
the accuracy of the model increases where it is needed
most—at distant objects, which are most affected by vis-
ibility degradation.

Nevertheless, note that this assumption may not hold at very
close distances in a relatively good visibility if the object
strongly polarizes light as in [6], [22], and [46].

0.9/
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Fig. 6. Ratio of the reflectance of glass in water relative to its reflectance in
air. At most angles, the values are small, indicating the weakening of specular
reflectance inside the water.

IV. IMAGE ACQUISITION

In this section, we describe the first part of our visibility
restoration method: image acquisition. In particular, we describe
our apparatus. When a polarizer is mounted, the sensed intensity
at each image pixel changes as a function of the filter orientation
angle. Similar to veiling light, there are two orthogonal polar-
izer angles corresponding to extremum values of intensity 7™2*
and 1™ where

Itotal — [max + Imin7 (24)

while It°2! is given by (15). Since we assume that the signal

polarization is insignificant, the polarizer modulates only the
veiling light. This assumption is consistent with observations
reported in [43] and [54]. Therefore, the raw images® corre-
sponding to the extrema of the intensity measure are

. S ! ;
Imax — + Bmax and IH]II’I —

5 (25)

S .
_ Bmll’l.
9 +

Note that ™" is the image taken at the “best state” of the polar-
izer, where the disturbing veiling is minimal [48], [54]. On the
other hand, I™®* is the image taken at the “worst state” of the
polarizer, where the veiling is maximal.

In order to acquire such images, we built a custom system
for underwater polarimetric imaging, which we term the
Aqua-Polaricam. Several specifications determined its design,
as detailed in the Appendix. The system is shown in Fig. 7.
The housing is manufactured by Sealux and is commercially
available. For the reasons explained in the Appendix, we chose
the housing with a 120-mm dome port made of glass while
an inverted circular polarizer is attached externally to it. The

61t is not necessary to use the minimum and maximum intensity values. Al-
most any two images (i.e., polarizer angles) that modulate the polarized com-
ponent may be used. Nevertheless, the extrema images provide the strongest
modulation, yielding the most reliable outcome. The exception is when the two
images have identical values as occurs when the polarizer is oriented at +45°
and —45° to the veiling light polarization.
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Fig. 7. The Aqua-Polaricam. (Left) With the polarizer mount separated, the
dome and lens are visible. (Right) The complete imaging system mounted on a
tripod. (Color version available online at http://ieeexplore.ieee.org.)

surrounding water flows to the space between the external po-
larizer and the dome through several openings in the housing’s
interface to the polarizer mount. We use the Nikon D100 digital
single lens reflex (SLR) camera that enables extraction of raw
output data. This data is linearly related to the scene radiance
(i.e., the camera has no gamma correction in this mode) without
automatic white balancing.” We used a 20-mm wide-angle
Nikon lens. The distance [, to the dome was 80 mm. Prelim-
inary experiments revealed that stray light enters the housing
from its back viewing ports and then reflects into the lens. Stray
light was blocked by slightly modifying the internal structure
of the commercial housing.

We performed experiments by scuba diving and taking im-
ages using the system (Fig. 8). At each scene, two photographs®
were taken to capture I™* and ™", As an example, we scuba-
dived in Eilat at the Red-Sea to a depth of 26 m in an area con-
taining coral reefs. The raw images® are shown in Fig. 9. Both
of the images have a very low contrast, yet their slight differ-
ence provides the key for substantial visibility improvement by
a mathematical algorithm, described next.

V. CLEAR UNDERWATER VISIBILITY

The algorithm for improving underwater visibility overcomes
the “veiling” effect caused by scattered light [48], [58]. For this
reason, the adjective “unveiled” is used to describe the image re-
sulting from the algorithm. In addition to “unveiling”, we need
to address the underwater illumination color bias. As we go
deeper underwater, the red portion of the illumination spectrum
is absorbed by the water [27]. Hence, for perceptual plausibility,
we include a white balancing procedure.

TWe confirmed the linear response of the system using different exposures of
the MacBeth ColorChecker calibration chart.

8The method assumes that illumination does not change in time between
image acquisitions, as indeed was the case in our experiments. However, due
to light refraction through moving surface waves, the illumination may fluc-
tuate. Effects arising from these fluctuations can be suppressed based on a few
additional frames, as described in [74].

9For clarity of display, the brightness of the displayed pictures in this paper
underwent the same standard contrast enhancement (stretching) while their hue
and color saturation were untouched. The recovery algorithms, obviously, used
the raw (not brightness enhanced) images.
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Fig. 8. Images were taken manually during scuba dives. (Color version
available online at http://ieeexplore.ieee.org.)

Fig.9. Underwater scene in Eilat at the Red-Sea, 26 m below the water surface.
The images were taken using horizontal and vertical polarizer orientations. Both
images are contrast stretched, yet their visibility is poor. Their difference is
hardly noticeable. (Color version available online at http://ieeexplore.ieee.org.)

A. Naive Attempt for Color Correction

As mentioned in Section I, space-invariant enhancement
methods do not model the spatially varying distance depen-
dencies of visibility problems. As a result, they are of limited
utility. As an example of a naive space-invariant enhancement,
let us consider a simplistic method for compensating the illumi-
nation blue color bias. We know that the sand in the diving site
shown in Fig. 9 is rather white. If the scene does not include
such a natural object, then a white target can be introduced to
the scenery [20]. Suppose that we normalize the color of the
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best polarized raw image by the color of a sandy patch in the
FOV

raw
Imodiﬁed _ Ired
red - Jraw
sand red
raw
modified __ Igreen
1
green - Iraw
sand green
Imodiﬁed _ I‘;‘%l‘ive (26)
blue - Iraw

sand blue

This multiplicative normalization does not compensate for
the additive spatially varying veiling light. For this reason, the
measured color values of a white patch 13375 veqs I3ana greens and
132 114 depend on the image coordinates x, y of the selected
patch. Therefore, this compensation is ill defined.

To disambiguate the process, we measure a patch that is as
close as possible to the camera. This corresponds to the bottom
of the photograph. At that place, the veiling is least intense, thus
the value of the white patch best represents the illumination.
Nevertheless, as mentioned above, (26) does not account for the
additive spatially varying veiling light. Hence, the result will not
perform a proper color compensation at varying distances and
will certainly not remove turbidity effects, as shown on the left
part of Fig. 10.

B. Recovering the Object Radiance

We now describe the mathematical algorithm that solves the
problem posed in this paper. The method inverts the visibility
degradation effects and in addition enables proper compensa-
tion for the color bias. Assume for a moment that we have an
estimate of the global parameters B, and p. From (22), (23),
and (25), the veiling light is estimated as

> [Imax(z,y) - Imin(x’y)]

B(z,y) = , .

Inserting this estimate into (13), (15), and (24), we obtain an
estimate for the “unveiled” object radiance

|1, y) = Ba,y)|

27

ﬁeff@ctive , — _ , 28
object (I y) t(fl?,y) ( )
where
. B
i(r.y) =1~ 20 29)

is the estimated water transmittance. The transmittance is re-
lated to the object distance z by

f=e°

(30)

Recall that all the variables in these equations are functions
of the light wavelength A. To account for the wavelength
dependence, it is best to analyze the images with a fine spectral
resolution. Each wavelength band can be analyzed indepen-
dently. In our experiments, though, we used the traditional
coarse wideband red, green, and blue (RGB) sampling of the
spectrum. Therefore, the method is applied to every color
channel separately.

The “unveiled” image is an estimate of Lg{f}’gﬁi"e. Thus, we
do not compensate for image blur but only for the veiling effect

Fig. 10. Comparison between the best raw image and the recovered image.
These images underwent white balancing based on a close white sand patch.
For the raw image, this process quickly loses its effectiveness as objects become
more distant. In the recovered “unveiled” image, colors are recovered to large
distances. (Marked points) The regions around the points have the same contrast
in their respective images. However, the point in the recovered image part is
twice as distant as the one in the raw image part, indicating the increase of
visibility range. (Color version available online at http://ieeexplore.ieee.org.)

of scattered light and for attenuation. At this point we make
do with this estimate. The reason stems from the discussion in
Section III-B: veiling light is the prime reason for image contrast
degradation; hence, overcoming veiling light rather than blur is
the prime step for recovering visibility.

1) Compensation for the Illumination Color: Equations
(27), (28), and (29) invert the spatially varying visibility degra-
dation effects. This enables proper compensation for the color
bias of the illumination. Assume that the illumination is uni-
form. Similar to Section V-A, we use a patch of sand, which we
know should be white, if it were not for the blue illumination
color. However, contrary to Section V-A, we now perform the

1 1 : 7 effective
compensation using the recovered image L} SCcy
T effective
imodiﬁed — object red
red ieffective
sand red
T effective
[ modified _ object green
green ieffective
sand green
T effective
T dified object blue
LmO — _2obJject b-Re 31
blue Leffective ( )
sand blue

We now turn to the experiment corresponding to Fig. 9. The
result of the full scene recovery algorithm (unveiling and color
compensation) is shown in the right part of Fig. 10. This re-
sult can be compared to the left part of Fig. 10 in which no un-
veiling was attempted. Clearly, the recovered image has a much
improved contrast and color. The ability to see objects in such
hues under natural illumination at such an underwater depth is
remarkable considering the common knowledge [27].

As another example, consider the images shown in Fig. 11.
Here, the raw images were acquired at a depth of 10 m below
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best polarization state ]

Underwater scene in Eilat (the Red-Sea), 10 m deep. (Left) The raw images taken through a polarizer. (Middle) White-balanced results. The recovered

unveiled image is much clearer, especially at distant objects, than the raw image. (Right) The recovered image reveals structures and details that are not visible in
the raw image. This occurs even if a standard contrast stretch is applied to the selected area. (Color version available online at http://ieeexplore.ieee.org.)

the water surface. Similar to Fig. 10, we show the result of our
unveiling algorithm in conjunction with the result obtained by
a naive attempt to balance the color without unveiling. Once
again, the corals in the recovered part of the picture are much
clearer than in the part showing the “best polarized” image.
Moreover, this recovered image reveals distant structures that
are not visible in the raw images. To see this, we enlarged a
square inset to the right of the figure. The enlarged square re-
veals a subtle structure in the recovered image, which is not vis-
ible at all in the raw image. The structure is somewhat revealed
in the raw image if a standard contrast stretch is performed lo-
cally inside this square. Nevertheless, when the same contrast
stretch operation is performed on the recovered image, the struc-
ture is much clearer and more detailed.

2) Quantitative Performance: Figs. 10 and 11 indicate a
great deal of improvement in visual quality. However, it is
interesting to seek a quantitative measure of the performance of
this method and compare it to the raw image and to the result of
naive color correction. We use the contrast criterion described
in (17) and apply it to I™4fied defined in (26), to [medified
defined in (31), and to the best polarized image [ min_ Before
applying (17), we contrast stretched the brightness of each of
these images to occupy the full dynamic range [0,1].

For better insight, we calculate the contrast at distinct image
segments corresponding to different ranges of object distances.
We obtain an estimate of these distances using the method we
describe in Section VII. The results corresponding to Figs. 9 and
10 are given in Table II. The contrast of the raw image ™" is
not monotonically decreasing with distance. The reason is that
contrast depends on the scene objects whose inherent proper-
ties generally vary with their positions in the scene. Neverthe-
less, for each distance, the contrast resulting from naive white
balancing is similar to that of the raw image. This is contrary to
the improvement demonstrated in the recovered image. Similar
conclusions can be drawn from Table III, which shows the re-
sults corresponding to Fig. 11.

TABLE 1I
RESULTS CORRESPONDING TO THE SCENE IN FIGS. 9 AND 10. THE CONTRAST
OF THE RAW IMAGE /™" AND ITS WHITE BALANCED VERSION [™edified [g
COMPARED TO THAT OF THE RECOVERED IMAGE

o C(Imln) C([modiﬁcd) C(Lmodiﬁcd)
(percent) (percent) (percent)
0.47 27 24 86
0.51 22 20 63
0.91 8 8 53
1.00 10 10 39
1.20 5 5 20
1.50 3 3 12
2.30 2 3 9
TABLE III

RESULTS CORRESPONDING TO THE SCENE IN FIG. 11. THE CONTRAST OF THE
RAW IMAGE /™™ AND ITS WHITE BALANCED VERSION [medified [g
COMPARED TO THAT OF THE RECOVERED IMAGE

C(Imin) C(Imodiﬁed) C(Lmodiﬁed)
cz
(percent) (percent) (percent)
0.64 31 27 62
0.80 30 26 47
1.04 15 12 22
1.24 5 3 13
1.62 2 2 7

C. Sensitivity to Noise

In this section, we analyze the sensitivity of the method to
noise. Let the noise in the raw images be independent and having
zero mean. Denote the STD of the noise in the raw images ™"
and /™% as omin and o max, respectively. The noise variance
of the unveiled image is

~ . 2 ~ .
effective effective
2 aI’object 2 Lobject 2
Orecovered — 8Imin O min + W O max .
(32)
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Differentiating (28) and making use of (27) and (29)

T effecti 7 effectivef
OLGpject™ _ 1 (1 1 ) i 4 Lobject™ &)

aImax t2 P pBoo

7 effecti 7 effectivef
Oobject™ _ L 1() | 1Y Lobiea™ ) (34)

0[111111 t2 P pBoo

Consider the case where system noise is roughly determined
by system quantization of the image irradiance to n bits. Then
the noise STD of the raw images is equal to

(35)

Omin = Omax = 0 = 27",

where the dynamic range of the imaging system is normalized
to 1. Inserting (33), (34), and (35) into (32), the STD of the
recovered image is

N . 2
effective
J\/E 1 Lob ject
Orecovered — x 14 ") 1— ——— . (36)
t P Boo
This noise depends on the recovered scene radiance Lgfg;ggive,

thus somewhat complicating its analysis. Nevertheless, inter-
esting insights can be drawn from this result. First, note that if
the polarization of the veiling light is very low, i.e., p — 0, then
the recovery is very unstable. This is understandable since low
polarization does not convey significant information beyond a
simple unpolarized image and hence is not useful for reliable
recovery. To contain the output noise (36), we may thus need to
use in the recovery equations (27), (28), and (29) a value of p
that is slightly biased relative to the true one. Moreover, insta-
bility always occurs at pixels that correspond to large distances,
where ¢ — 0, since there the signal S may be lower than the
system noise. Hence, ¢ may need to be biased as well. These
ideas are further explored in Section V-D.

Accounting for the distance dependence of # in (30) and the
dependence of noise on quantization bits [see (35)]

cz—nln2

(37

Orecovered X €

The signal-to-noise ratio (SNR) decreases exponentially with
the distance z. This is not a distinctive shortcoming of our po-
larization-based method. Rather, it is due to the attenuation of
the signal with the distance from the object, as is the case for
other underwater imaging modalities. In methods based on arti-
ficial illumination, the SNR decreases even faster as a function
of object distance. The reason is that radiation is attenuated for
approximately twice the object distance, beyond the 1 /22 falloff
of the artificial illumination incident on the object, caused by
free space propagation. Equation (37) indicates that for a given
level of output noise, the visibility range is proportional to the
number of reliable camera bits. Thus, information from a 12-bit
camera can recover objects that are 50% farther than those re-
coverable from data taken by an 8-bit camera if quantization is
an effective indication for the overall noise.

Noise can be reduced by spatial filtering, e.g., local av-
eraging. Performing this directly on the raw images or on
ﬁggﬁ’gﬁ;‘e(x, y) would result in image blur; however, there is a
way to bypass this problem. Note that B(x,) and #(z,y) do
not vary rapidly across the FOV. The veiling light is typically a
smooth function of spatial location, contrary to the rapid spatial
variations of intensity and texture of the object Lobject(Z,Yy)-
Thus, spatial noise filtering of B(x,y) and #(z, y) does not blur

Leftectve(x, y), yet it decreases the noise in LEFechve (x, ).

D. Estimation of B, and p

To perform scene recovery, estimates of the global parame-
ters Boo and p are needed. These are intrinsic parameters of the
water and lighting. This estimation is similar to algorithms de-
veloped for open-air imaging [32]. These estimates are obtained
by measuring pixels corresponding to the water background,
i.e., of objects so distant inside the water that their signals are
negligible due to attenuation.!® Let us denote these measured
values by p and Beo.

The value p obtained from direct measurement of image
pixels should be slightly modified for two reasons. The first is
to limit instability, as described in Section V-C. The second
is the need to minimize the instances of negative pixel values.
Negative pixel values stem from inaccurate measurement of p
and EOO and from image noise. From (15) and (27)

. ftotal .
p
where
P(LEU) — Imax(xhy) - Imln(z7y) (39)

ftotal (I, y)

is the DOP of the measured scene (i.e., the signal combined with
the veiling light). If our estimate of the veiling light DOP is too
low (p < p), then negative values can appear in the image of
the signal. This is especially relevant to distant objects because
P(z,y) — p when z — 0.

Both of these problems can be considerably alleviated with
ease if we slightly bias p by multiplying it by a factor ¢ such
that 1 < e < 1/p

P — €p. (40)
The increased p makes it less likely to encounter negative
values in (38). In addition, noise amplification becomes bear-
able. While it is clear from (36) that using a larger p decreases
the noise, this is not the major contribution of this move since
we advocate using only a small bias. Rather, conditioning is
obtained mainly thanks to the influence of this step on 7. As
seen from (27) and (29), increasing p leads to an increase of
t. This eliminates the instances of £ — 0 in (36). The noise in
pixels corresponding to distant objects is then

1
1
Urecovered(z = OO) = \/50' <1 - —> . 41
€

10The visibility range underwater is very short. Therefore, there are usually
plenty of horizontal viewing directions in which no object is visible.
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Fig. 12. Results of the recovery based on different values of the bias factor e.
(a) No bias, e = 1. The image is noisy at pixels corresponding to distant objects.
(b) e = 1.05. (c) ¢ = 1.13: minor bias. These results look similar to (a), yet
with lower noise. (d) Recovery using p = 1 is equivalent to the raw image.

Thus, the unveiling process amplifies noise in pixels corre-
sponding to distant objects, but this amplification decreases
with the increase of e.

How does this bias affect the recovered intensity and color?
It can be shown that when € > 1, the estimated value of objects
at infinity is

7 effective _ _
Lobject (Z - OO) - BOO

(42)

Thus, intensity and color of the raw unpolarized image are au-
tomatically retained in the recovered pixels at infinite distance.
Thus, the result will have a bluish background, as is perceptu-
ally expected from an underwater image. In addition, the orig-
inal raw value is retained at z = 0 where

Lefiective(a,y) = 0%z, ).

(43)
At all other distances, the inverse solution (28) is moderated
by weighting it with the “best polarized” raw image. By using
a small value of ¢ > 1, the result is very similar to (28) but
stabilized at the problematic pixels.

These aspects are demonstrated in Fig. 12, showing results on
part of the FOV of the scene shown in Fig. 9. On one extreme,
Fig. 12(a) shows that when no bias is used (e = 1), there is ex-
cessive noise in an area corresponding to a long distance. On the
other extreme, Fig. 12(d) shows the result of maximum bias, i.e.,
e = (1/p) = 8. Here, the result is simply the “best raw” image
after undergoing the simple white balancing operation described
in Section V-A. As these are the extreme cases, their difference
is significant. The situation is, however, different in Fig. 12(b)
and (c) for which regularization is minor: ¢ = 1.05, 1.13. These
results look very similar to the one corresponding to € = 1, ex-
cept for distant objects. At long distances, noise is effectively
reduced to a tolerable level.

Conveniently, the results were not very sensitive to the pre-
cise value of ¢, as seen from the comparison of Fig. 12(b) and
(c). This parameter does, however, offer the user a degree of
freedom in deciding how aggressive the scene recovery should
be. This is analogous to parameters used in standard regular-
ization techniques, where typically a user-selected parameter
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Fig. 13. Image after unsharp masking. Noise is somewhat amplified. A color
version of this image can be found at [76].

trades a data-fitting term against an image-smoothness term. A
benefit of this simple technique is that it does not impose blur
for noise control, contrary to standard regularization. However,
we do not claim this to be the optimal method for limiting noise
amplification. We currently pursue further development of this
issue. In the experimental results shown in Figs. 10 and 11, we
used e = 1.13.

VI. COMPARISON TO PRIOR METHODS

In this section, we compare our results to prior methods that
rely on natural illumination (see Section II). First, we discuss
the standard image processing procedures of histogram equal-
ization [75] and unsharp masking. Then, we discuss prior polar-
ization-based methods.

Both histogram equalization and unsharp masking are space-
invariant methods and are therefore useful when contrast degra-
dation is uniform across the raw image. As previously described,
underwater the contrast loss is strongly affected by the distance
and is therefore spatially variant. As shown here, the effective-
ness of the standard image processing method is limited. Un-
sharp masking [75] is a linear enhancement method in which
the image Laplacian is added to the original image. In Fig. 13,
this method sharpens the image, but only slightly improves the
long-range visibility, while increasing noise. It is noted that un-
sharp masking can be applied to our recovered image should we
want to sharpen it in trade of noise.

In Fig. 14, histogram equalization of the raw image slightly
improves the areas corresponding to distant objects, but on the
other hand the visibility of close objects is worse (saturated).
Furthermore, because the histogram of an image depends on the
objects in the scene, the histogram of a partial frame image is
different than that of the whole frame, leading to inconsistent
results (Fig. 14). Moreover, histogram equalization of color im-
ages is ill defined, and therefore colors are generally distorted
by this operation. Hence, the histogram-equalized image is dis-
played in grayscale.

The DOP [5] and polarization difference imaging (PDI)
methods [2], [39] are based on imaging through a polarizer.
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saturation

Fig. 14. (a) Image ™" in grayscale. (b) Image after histogram equalization.
While visibility is somewhat improved in some areas, it is worse in others.
As seen when comparing with (c), histogram equalization is inconsistent when
applied to part of the frame.

DOP and DPI use ™% and I™" differently than our method
and implicitly assume that polarization is associated with the
signal rather than the veiling light, contrary to our method.
Fig. 15 shows the results of those methods as applied to the
raw data shown in Figs. 9 and 11. Clearly, the prior methods
do not recover the scenes at all, especially at long distances.!!
Recently, Chang et al. [58] suggested a different equation
to enhance underwater polarization images. That method is

HJt is interesting to observe in Fig. 15 that the DOP is high in some pixels
corresponding to corals at close distances. The reason is that some points on the
corals are very dark, thus light measured in these points is dominated by veiling
light. Therefore, their polarization is significant.

formulated for grayscale images. The results of this formation
are given in Fig. 16 and indicate that it has been unsuccessful
in our experiment.

VII. How FAR DO WE SEE?

As a by-product of the radiance recovery process, we get an
estimate of the distance map of the scene. From (30), the dis-
tance z is estimated as a function of (z, %) up to a global scale
factor c. It is given by

B(z,y)

oo

z(z,y) = —In |1 - (44)

Unless a transmissiometer is used, we do not know what the
attenuation coefficient c is. Nevertheless, we can quantitatively
determine the relative distances in the scene. Note that if we
know the distance to a single point, we can set the scale of the
relative distance map. We can then derive the absolute distance
to any point in the scene as well as the attenuation coefficient.

Similar to Section V-C, analyzing the noise sensitivity yields
the noise STD of the recovered distance as

ov2 e”.

cpBoo

z

(45)

Equation (45) indicates that this noise is greatly amplified if
B, — 0. Recall that the illumination of scenes at deeper water
typically suffers from low energy in the red portion of the spec-
trum, thus B;gd < B},’g“e. Hence, the distance recovery at the
blue portion of the spectrum can be expected to be more reli-
able. Therefore, in our experiments, we derived the relative dis-
tance maps using (44) based on the blue channel. These maps
are shown in Figs. 17 and 18.

Thanks to the relative distance map, we can compare two
image regions and determine that one of them is, say, three times
as distant from the camera as the other one. This fact enables as-
sessing the ratio of improvement of the visibility range achieved
by the recovery method. The visibility range is the distance at
which we may still observe certain details [77], [78]. Thus, to
calculate the ratio of visibility ranges, we should compare the
appearance of the same object at different distances. We have
yet to conduct controlled experiments using standard targets.
Nevertheless, for a rough estimate, we selected from the scene,
appearing in Fig. 9, two regions that have the following charac-
teristics.

1) Both regions have a similar object content.

2) The contrast level of one region in the raw image matches
the contrast of the second region in the recovered image.
The selected pair of regions is around the marked points in

Fig. 10. Both regions contain the same type of objects: chunks
of the coral reef. We therefore assume that the intrinsic ob-
ject properties are the same in these two regions. The contrast
C ([medified) of the marked left region in the raw image is the
same as the contrast C (f/mOdiﬁed) of the marked right region in
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visibility
Fig. 15. Results of past methods for polarization-based enhancement. (a) DOP and (b) PDI, as applied to the images shown in Fig. 9. (¢) DOP and (d) PDI, as

applied to the images shown in Fig. 11. Those methods yield poor results. Visibility at long distances is not enhanced.

Fig. 16. Results of the method suggested in [58]. No significant improvement
is noticed at long distances. Compare to the color images in Figs. 10 and 11.

Fig. 17. Estimated range map of the object in Fig. 10. Longer distances are
displayed by darker gray levels. The distance to some points is written in units
of the attenuation distance ¢! of the blue channel.

the recovered image.!2 To conclude, both regions have a similar
object content. The contrast level of one region at a certain dis-

12In order to minimize the contribution of noise, we estimated C' using only
the blue channel in (16).

Fig. 18. Estimated range map of the object in Fig. 11. Longer distances are
displayed by darker gray levels.

tance in the raw image matches the contrast of the second region
in the recovered image but at a longer distance. Using (44), the
range ratio between the points is 1.8. We therefore conclude that
the method demonstrated an increase of the visibility range by
a factor of ~1.8. We plan to enhance the credibility of this esti-
mate in the future.

The recovered range map can be used to render the scene from
viewpoints other than the ones used during acquisition. We used
the estimated range map to create a three-dimensional (3-D) sur-
face and changed the viewpoint. To emphasize the difference be-
tween the viewpoints, we inserted virtual objects into the scene
(four spheres) as in Fig. 19. Note the occlusions due to the ter-
rain. This visual effectis clearly seen in amovie that can be down-
loaded at [76]. For example, one of the spheres is completely seen
inFig. 19(a), whereinFig. 19(d)itis mostly occluded. Figs. 19(b),
(c), and (d) are rotated by 13°, 19°, and 25° relative to the normal
viewing direction of Fig. 19(a). See [76] for better effects.
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Fig. 19. We use the recovered image (a) together with the recovered range map described in Section VII to render 3-D images of the scene as if seen from different
viewpoints. In addition, we inserted virtual objects (spheres) into the 3-D scene to illustrate occlusion effects. (b), (c), and (d) are arbitrarily rotated by angles of

13°, 19°, and 25° relative to the normal viewing direction presented in (a).

VIII. SUMMARY OF THE METHOD

For convenience, we hereby summarize our method.

1) Acquire two images through a polarizing filter, at two dif-
ferent polarizer angles, preferably corresponding to ex-
tremum intensity values.

2) Select an area in the image where only the water back-
ground is seen. From this area, measure p and BOO.

3) Apply (40) in order to enhance stability, as described in
Section V-C.

4) Apply (27) to recover the veiling light B(z, ). Option-
ally, apply spatial noise filtering to B(:n, y), as described
in Section V-C.

5) Apply (44) to obtain a distance map. Optionally, prefer a
color channel that yields better stability, as described in
Section VII.

6) Apply (24), (28), (29), and (31) to obtain the recovered
scene.

IX. DISCUSSION

We presented a method that can overcome degradation effects
occurring in underwater vision. The method is based on a simple
analysis of a pair of images acquired through a polarizing filter.
Since it is physics based, the method also recovers information
about the scene structure (distances). The algorithm does not
require any calibration of the environmental parameters and ex-
ploits natural lighting. We believe that this approach can lead
to useful tools in underwater photography, underwater research,
and underwater technological applications.

The practical ability to see farther into the water with high
clarity may change some of the common practices of under-
water photography. Underwater photography has focused on
very short distances using wide-angle lenses or macrolenses.
However, the practical ability to see farther through water tur-
bidity enables zooming on distant objects. This aspect is par-
ticularly important in marine biology research, where close en-
counters may affect animal behavior.

The current formulation of the method has limitations. It as-
sumes uniform lighting along the LOS and is thus best com-
patible with horizontal photography rather than acquisitions in
the downwards direction. In addition, the uniform lighting as-
sumption is invalid if artificial sources are used, as is the case
in deep-water explorations. Generalization of our approach to
such cases is a subject for further research. An additional chal-
lenge is to extend the method to handle polarizing objects at
close distances. In addition, we are planning to conduct some
experiments with standard targets in order to quantitatively val-
idate the recovery.

APPENDIX
BUILDING AN UNDERWATER POLARICAM

As mentioned in Section IV, several considerations have
dictated the configuration of our underwater imaging system.
They arise since we make quantitative photometric measure-
ments with the polarizer. In this Appendix, we detail those
considerations. This will enable the reproduction of our results
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(Top) Unwanted effect: photoelasticity in the port (window) changes the polarization. When light passes through an internal polarizer, this manifests in

changes of image intensity and color. (Bottom) The preferred design: placing the polarizer externally to the port minimizes this effect.

by others and indicate important aspects that may be faced in
future developments of this imaging approach.

For reduced noise in the scene radiance measurements, the
camera should have a linear radiometric response, besides being
of low noise. For flexibility in this research phase, we required
full control of the camera parameters (exposure time, aperture,
etc.) while it is placed in a watertight housing. The most inter-
esting aspects of the system are related to its optical properties,
as described next.

Optical Considerations

The main concern in the optical design is its effect on po-
larization. We use a polarizer to analyze the scene. However,
we would like the rest of the optical system components to
have minimal effects or sensitivities related to polarization. We
achieve this by making the following decisions.

An external or internal polarizer? Stress in the transparent
port’s material changes the polarization of the light it transmits.
This phenomenon is called the photoelastic effect [79]. Due to
inhomogeneities in the material, this polarization effect is spa-
tially varying. In our case, if the polarizer was inserted in the
housing (Fig. 20), this could spatially vary the transmittance
though the polarizer, depending on A and the polarization state.
Moreover, the effect may vary with the underwater depth due to
changes in the external water pressures.

In principle, placing the polarizer externally should eliminate
visible photoelastic effects. We thus decided to place the po-
larizing filter outside the housing. Consider the bottom part of
Fig. 20. The filter is the first optical component the light from
the scene encounters as it enters the imaging system. The space
between the external polarizer and the port is filled with the
water coming from the surroundings. In practice, the photoe-
lastic visible effects are indeed greatly diminished. However,
we were concerned that residual effects persist (as has been sus-
pected in [54] with regard to birefringence in diving masks) due
to complicated refractions in the transparent material. To mini-
mize such residual effects, we made the following decision.

A glass window. The photoelastic effect is much smaller in
glass than in polycarbonate (plastics) materials [79]. We thus
decided to use a glass port. We avoid the use of crystal glass win-
dows, which are commercially available, since they may posses
birefringence, possibly affecting the polarization readout.

A dome port or a flat port? Consider Fig. 21. The chief ray
from an object point in the water to the detector undergoes an
angular deviation [26], [27] at flat window interfaces. In this
case, window transmittance depends on the polarization of the
passing light [79] as can be derived from the Fresnel equations
(Fig. 22). This polarization dependence distorts the intensity
readouts and therefore affects the polarization estimation.

Dome ports, on the other hand, alleviate most of this problem.
If the dome’s center coincides with the center of projection of
the camera, then the chief ray from an object point to the de-
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Fig. 22. Transmittance of the polarization components derived from Fresnel
equations. These components are in a local coordinate system: they are parallel
and perpendicular to the plane created by the chief ray and the window’s
normal. These are not necessarily the parallel and perpendicular components
of the veiling light.

tector is normal to the dome interface. At normal incidence, the
transmittance is independent of the linear polarization state [79].
For this reason, we decided to use a dome port [80], [81].

A linear or an inverted circular polarizer? Even if we use
a dome port, not all light rays have a normal incidence. One

polarizer

Fig. 23. Inverted circular polarizer composed of a linear polarizer and a /4
plate. It filters the linear polarization of its input (scene) while it outputs circular
polarization.

reason is that the dome may not be precisely concentric with
the center of projection. In nonnormal incidence, different po-
larization components are transmitted differently, affecting the
intensity readouts. To reduce this effect, we decided to use an in-
verted circular polarizer. An inverted circular polarizer (Fig. 23)
is composed of a linear polarizer followed by a A\/4 plate. It fil-
ters the linear polarization of its input (scene) while it outputs
circular polarization [79] to the dome. In this case, dome trans-
mittance is invariant to the polarizer angle. We note that circular
polarizers are tuned to normal incidence and to a narrow spec-
tral band. Light outside that band or off axis creates elliptical
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polarization.!? The port transmittance of elliptical polarization
is still less variant to the polarizer angle than when light is par-
tially linearly polarized. So, while this measure helps in mini-
mizing unwanted polarization effects, the other considerations
listed above should be employed as well.
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