Wheat

Harlan Centers of Origin

Diffusion of Wheat Based on Oldest Remains

Evolution of Wheat

Wheat-Species, Older

■ Shot wheat *Triticum aestivum* subsp. spherococcum (21 chromosome pairs), round seed. Emmer/Polonicum wheat T. turgidum subsp. dicoccum (14 chromosome pairs), feed. Einkorn T. monococcum (7 pairs).

Wheat-Species, Minor

 Spelt - Triticum aestivum subsp. spelta (21 chromosome pairs) nonfree threshing.
Club T. aestivum subsp. compactum

(21 chromosome pairs) - 2 gene difference controlling head density.

Club Wheat

Wheat-Species, Commercial

Bread wheat *Triticum aestivum* (21 chromosome pairs)
Durum wheat *T. turgidum* subsp. *durum* (14 chromosome pairs)

Feekes Wheat Growth Stage Scale

Feekes stage

Feekes stage 11

Feekes stage 10.2

World Cereal Production

World Wheat Production

Spring wheat harvested - 2006 Production by County

Winter wheat harvested - 2006 Production by County

Harvested Acres

Idaho Dollar Value

Types of Wheat

Winter habit - fall seeded requiring vernalization Spring habit - spring seeded no vernalization required Facultative - Development hastened by vernalization, often fall seeded

An overview of US wheat market classes

	Hard endosperm	Soft endosperm
Red Bran	Hard Red Spring Hard Red Winter	Soft Red
White bran	Hard White	Soft White

Uses of Wheat

■ Soft white wheat: Cakes, cookies, crackers, flat bread, batter, breakfast cereal, pancakes. ■ Hard red wheat: Bread, rolls, other leavened food. Durum wheat: Pasta and similar foods. • Hard white wheat: Oriental noodles.

Production

Planting - cultivation decisions Weed management Fertility management Disease and insect problems Irrigation management Harvest and storage

Chisel Plow

Disc Cultivators

Harrow Cultivators

Production Recommendations

- Early stand establishment is critical to high yields.
- Plant locally adapted cultivars.
- Hard red or white wheats are favored in stress environments,

Seeding rate varies from 750,000 plants per acre to 1.5 million plants/acre.
 Seeding rate 70-110 lb seed/acre.

Seed Drills

UIII JOHN DEERE III

752

AND ALLER ALLANDIA LAN

R

ii)

Air Seed Drills

Direct seed drills

je.

Production Recommendations

Stand establishment: Plant early but avoid green bridges. • Fertilizer management: Longer period in field often requires split applications of N. Winter-kill and winter diseases. Tolerant cultivars.

Fertility Management

- The amount of nitrogen (N) fertilizer applied on any wheat field depends on:
 - The cultivar, it's market class, and it's potential seed yield.
 - The amount of usable nitrogen in the soil profile.
 - Total precipitation.
 - Plant stand and density.
 - The previous crop.

Soil Sampling

- A soil sample should be taken at least once during each crop rotation cycle.
- Soil samples should be taken 2-4 weeks prior to planting.
- ✓ Allow 1-3 weeks to get results back from laboratory.
- Avoid sampling very wet, very dry, or frozen soils.

Dry Land Wheat

Nitrogen (N)

- N is essential for maximum yield, and accounts for the largest share of fertilizer costs for wheat production.
- Nitrogen determination:
 - Total N requirement.
 - Soil Test.
 - Residual inorganic N levels.
 - Previous crop residue levels.

Total Nitrogen Needed

Annual Precipitation (inches)	Total N Spring	Total N Winter
21 inches or less	2.3 x Yield (bu/a)	2.5 x Yield (bu/a)
22 to 24 inches	2.4 x Yield (bu/a)	2.6 x Yield (bu/a)
More than 24 inches	2.5 x Yield (bu/a)	2.7 x Yield (bu/a)

Hard red wheat (14% protein) requires between 3.1 and 3.5 lb N / bu of wheat harvested.

Managing N for High Grain Protein

- Use split-application of Nitrogen.
 Apply all but ~ 40 lbs N/ac pre-plant.
 Monitor protein level with flag leaf nitrogen.
- Apply the remaining 40 lbs N/ac as a top-dress at heading if needed.

Phosphorus (P)

- Spring wheat P requirements are typically less than other crops grown in Idaho.
- Soil test results <11 ppm at the 0-12 inch depth reflect deficient soil P levels.</p>
- Fertilizer P must be applied pre-plant either as a broadcast application or banded with the seed.

Phosphorus

Soil test P	Application Rates			
0-12 inches	P_2O_5 P			
ppm	(lb/ac)			
0 - 3	160	70		
4 - 7	120	53		
8 - 11	60	26		
over 12	0	0		

 $P_2O_5 \ge 0.44 = P$ P \times 2.29 = P_2O_5

Potassium

 Spring wheat K requirements are typically less than other crops grown in Idaho.

 K fertilizer is not very mobile in soil and should be incorporated during final seed bed preparation.

Potassium

K soil test	Potassium rates		
0-12 inches	K ₂ O	K	
ppm	lb/ac		
0 - 21	240	200	
22 - 45	160	133	
46 - 68	80	66	
over 68	0	0	

 $K_2O \ge 0.84 = K$ $K \ge 1.20 = K_2O$

Sulfur

Soils low in S (less than 10 ppm SO₄⁻² in the plow layer or 8 ppm in the 0- to 12-inch depth) should receive 20 to 40 lbs S/acre.

 Fields irrigated with Snake river water should not be deficient.

Micronutrients (B, Cl, Cu, Fe, Mn, Mo, Ni, Zn)

Micronutrient response has not been observed in Idaho.
Severely scraped soils may require micronutrient application.

Irrigated Wheat

Expected Yield (Bu/acre)	Total nitrogen (lb/acre)
80	160
100	200
120	240
140	270
160	300
180	330

Previous Crop Factor

Previous Crop	Nitrogen Credit (lb/acre)
Grain or corn residue	-50
Grain, residue removed	0
Potato, onion, sugar beet	0
Bean or pea	+40
Alfalfa plowed in early fall	+60
Alfalfa plowed in late fall	+40

Managing N for High Grain Protein

- Apply pre-plant N based on yield goal.
- Monitor protein level with flag leaf nitrogen.
- Top-dress 15- to 20-lbs N/ac from boot to heading if needed.

Nutrient Summary

- Soil sampling is essential.
- Excessive nitrogen application results in nitrate leaching and ground water pollution; lodging and yield loss.
- Regions with less than 22 inches of precipitation use split-application of nitrogen.
- In regions with heavy winter precipitation (annual >24 inches) over 70% of nitrogen should be spring top-dressed.

Nutrient Summary

- Use caution in topdressing nitrogen after boot stage increases protein levels in soft white wheat.
- If banding nitrogen and phosphorus, reduce nitrogen application rate by 10%, and phosphorus by 20%.
- Ammonium and ammonia) do not leach as readily as NO₃.

Wheat Cultivars

Washington

Winter Wheat by Class

Idaho Wheat Aces by Class

	District	District	District	District
Class	10	70	80	90
Soft White Winter	270,000	89,000	64,000	162,000
Hard Red Spring	70,000	5,000	30,000	165,000
Hard Red Winter	78,000	1,000	55,000	126,000
Soft White Spring	46,000	8,000	29,000	107,000
Hard White Spring	1,000	23,000	53,000	77,000
Winter Club	22,000	-	-	22,000
Durum	-	-	3,000	12,000
Hard White Winter	-	-	1,000	2,000
Spring Club	3,000	-	-	-
Total	490,000	103,000	205,000	627,000

Selection of New Varieties

UI Wheat Breeding

- www.agls.uidaho.edu/cerealsci
- UI Extension Service
 - http://www.uidaho.edu/aberdeen/cereals
- WSU Extension Service
 - http://variety.wsu.edu/
- Oregon State University Extn. Service
 - http://www.css.orst.edu/cereals/
- On-farm testing guide
 - http://pnwsteep.wsu.edu/onfarm.html

Weeds

Winter annual grasses:
 Wild oat, cheatgrass, jointed gloat grass
 Summer annuals:
 kochia, Russian thistle, pigweed, lambsquarter, wild buck wheat.

85% of Pacific Northwest and Northern Plainsgrowers use herbicides, compared with only20% in the Northern Central region.

Cheat grass

Wild Oat
Kochia

Russian Thistle

Dog Fennel

Pig Weed

Lambsquarter

Herbicides

Herbicide	Control		
Axial Xl	Annual ryegrass, wild oat, foxtails, barnyard grass, wild oat.		
Bromoxynil	Broadleaves.		
Curtail	Many annual weeds, i.e. ragweed, lambsquarter, field pennycress. Suppresses Canadian thistle.		
Dicamba	Winter annual broadleaves.		
Express	Broadleaves, i.e. shepherds purse, wild mustard. Partial control of Canadian thistle.		
Harmony Extra	Broadleaves.		
Maverick/Olympus	Suppress Downey broom, wild oat and cheat grass.		
Metrabuzin	Winter annuals, crop injury?		
Puma/Discover NG	Wild oat.		
Stinger	Canadian thistle, Russian thistle.		
2,4-D	Broadleaves.		

Clearfield[®] Production System for Wheat

Cheat grass

Wild Oat

Common Pests & Diseases

• Pests:

- Armyworm, cutworm
- Russian wheat aphid, peach aphid, cereal beetle
- Cereal cyst nematode, root know nematode.
- Diseases:
 - Wheat stripe rust, cephalsporium strip, powder mildew.
 - Common bunt, karnel bunt dwarf bunt, ergot.
 - Takeall, Fusarium, strawbreaker snow mold.
 - Barley yellow dwarf virus, wheat streak mosaic virus.

Armyworm

Russian Wheat Aphid

Cereal Leaf Beetle

Grasshopper

Labeled Wheat Insecticides

- Baythriod XL (Beta-cyfluthrin)
- Sevin (Carbaryl
- Lorsban, Nufos, Pilot, Warhawk and Whirlwind (*Chlorpyrios*)
- Cobalt (Chlorpyrifos plus gamma-cyhalothrin)
- Dimate (Cygon) (Dimethoate)
- □ Lannate (*Methomyl*)
- Tracer (Spinosad)
- □ Mustang MAX EC (*Zeta-cypermethrin*)

Wheat strip rust

Powder Mildew

Cephalosporium stripe

Labeled Wheat Foliar Fungicides

- Quilt
- Tilt
- Headline
- Caramba
- Tank mixes:
 - Headline 2.08 EC/Tilt 3.6 EC
 - Headline 2.08 EC/Carama

Include non-ionic surfactant

Common Bunt

Karnel Bunt

Dwarf Bunt

Take all

Snow Mold

Strawbreaker Foot Rot

Labeled Wheat Seed Treatments

- Poncho 600 FS (Insecticide)
- □ Gaucho 600 FS (insecticide)
- Cruiser (Insecticide)
- Helix Extra (Fungicide & Insecticide)
- Dividend Extreme
 FS/Apron XL ES
 (Fungicide)
- Raxil XT WP (Fungicide)

Barley Yellow Dwarf Virus

Cereal cyst nematode

Root knot

Crop Rotation

Wheat performs best: with non-cereals with other cereals with winter/spring cereals Wheat one of the few cereals where monoculture is attempted.

Crop Rotation

- Wheat one of the few cereals where monoculture is attempted:
 - Continuous winter wheat.
 - Winter/Spring/Fallow.
 - Winter wheat/crop fallow.
 - Winter/Winter/Potato (irrigated) or pea/canola (rain fed).

Effects of Monoculture

• Winter annual grasses. Seedling diseases: • Pythium. ■ Root diseases: Rhizoctonia, Take-all, Strawbreaker (*Pseudocercosporella*) foot rot. Effects Compounded by Reduced Tillage: • Hessian fly. Cephalosporium strip.

Avoid Monoculture Effects

Hessian fly (Spring wheat) Resistance monogenic (H3 common) Strawbreaker foot rot resistance VPM1: (*pch1*) Madsen, Weatherford Cephalosporium strip resistance Eltan, Karl (Midwest)

Avoid Monoculture Effects

Pop-up fertilizer to manage seedling diseases. Grasses managed with: Selective sulfonylureas (Maverick). Non-selective spring application followed by spring crop. IMI-tolerant wheat cultivars.

JGG Wheat Hydrid

Irrigation Effects

Irrigation Treatment	Yield	Flour Yield	Flour Protein	Flour Ash
	Bu/a	%	%	%
Minimum	100.7 c	63.9 c	12.0 a	0.406 b
Moderate	111.7 b	64.8 b	12.1 a	0.391 a
Optimum	131.5 a	65.9 a	11.5 b	0.389 a

Harvest

Grain Storage

fh:

Grain Storage

- High purity: Cleaned to remove admixtures, weed seeds and chaff.
- Good physical condition: no shrinkage or discoloration.
- Minimal physical damage: cracks and splits.
- High viability: If used for planting.
- No insect damage (holes or devoured contents).
- No disease or molds: Suitable drying prior to storage can reduce these.

Grain Storage

- No contamination from rodent droppings.
- No pesticide residues, particularly is treated with pesticides while in storage.
- No toxic microbial metabolites as a result of mold infection.
- No loss of flavor caused by excessive heat .
- No foul odor caused my high moisture or disease.
- Adequate seed moisture (i.e. US grade 1, 2 and 3 = 13, 14 and 15% moisture in soybean).
Wheat Grades

	U.S. Grade Numbers				
Factor	1	2	3	4	5
Test weight	Minimum pounds limit of:				
HRS or White club (lbs/bu)	58	57	55	53	50
All other classes	60	58	56	54	51
	Maximum % limits of:				
Heat damaged kernels	0.2	0.2	0.5	1.0	3.0
Total damaged kernels	2.0	4.0	7.0	10.0	15.0
Shrunken & broken kernels	3.0	5.0	8.0	12.0	20.0
Foreign material	0.4	0.7	1.3	3.0	5.0
Other contrasting wheat classes	1.0	2.0	3.0	10.0	10.0
Other wheat classes total	3.0	5.0	10.0	10.0	10.0
Stones	0.1	0.1	0.1	0.1	0.1

