Mining endophytic bacteria and fungi for polyketide biosynthetic genes

Gabriel Padilla Departamento de Microbiologia Instituto de Ciências Biomédicas Universidade de São Paulo

Topics

- Endophytic microorganisms
- Prospecting a culture collection
- Polyketide genes
- PKS I Fungi
- PKS II Actinobacteria
- PKS III Actinobacteria

700 strains
65% bacteria
30% fungi
5% archaea

Culture Collection LGM ESALQ LGS ICB NIB UMC

Bioprospection of endophytic microorganisms

Endophytics are bacteria and fungi which live within plant tissues for all or part of their life cycle and cause no apparent infection

Curr. Sciences 90:1309 (2006)

WHY TO STUDY ENDOPHYTIC MICROORGANISMS?

- Poorly biotechnologically explored
- They form a significant part of the microbiota
- Compounds with low toxicity
- Diverse biological activity (antibacterial, antifungic, antitumoral, antiviral, antioxidant, imunossupressor, inseticide and control of diabetes and malaria).
- Taxol (Plaxitaxel): produced byr Taxomyces andreanae, endophytic fungus from Taxus brevifolia.

Biotechnological applications of endophytic microorganisms

Polyketides

Current Opinion in Structural Biology

Biosyntesis of polyketides

KS ketosynthase AT acyl transferase, ACP acyl carrier protein DH dehydratase ER enoylreductase, KR ketoreductase TE thiosesterase MeT metyltransferase

PKSs classification

Depending of the kind of organism and FAS structural organization (analogy)

PKS type I Modular

AT = Acyliransferase ACP = Acyl carrier pro-KS = Ketosynthuse KR = Ketoreductase ER = Enoyl reductase DH = Dehydratase TE = Thioesterase

PKS type I Interactive

NR : Non- reduced

PR: Parcial reduced

HR: Highly reduced

Bioprospection of polyketides in endophytics

Endophytic bacteria and fungi

(ESALQ/Piracicaba - isolates from plants with economical importance)

PKS I Juan Diego Rojas Lovastatins X Filaments fungi

PKS II

Erik Saenz Antracyclines X Actinomycetes **PKS III** Fabiana Andrieli Flavonoids X Actinomycetes

1. Isolation

Brazilian Sugar Cane

2. ITS seque

ISP Multiple alignment of the Keto- synthase sequences

	10	20	30	40	50	60	70
		.					
YWA1_KS	SGQDIDTYFIP	GGNRAFTPGRI	YYFK FSGPSVSV	DTACSSS	LAAIHLACNSI	WRNDCDTAI	TGGVNILTNP-
WA_A_parasiticus	AAQDIGTYFIT	GGIRAFGPGRI	YYFKFE GPSFS₩	DTACSSS	LAAIQLACTSL	WSGDCDT AV	TGGLSVLTSP-
$A_terreusCBA164_LC$	AAEKIDMYYIP	GLIRVFVSGRI	NYHVKFKGPSYNV	DTACSSS	FAAIQLACTSL	LAKECDTAL	AGGLNVMTTP-
290LC	SGQDIDTYFSS	AGNRAFTPGRI	VYYFKFSGPSVSV	DTACSSS	LAAIHVACNSL	WRTECDSAV	TGGVNILTNP-
23LC	SGQDIDTYFIP	GGNRAFTPGRI	YYFK FS <mark>G</mark> PSVSV	DTACSSS	LAAIHVACNSL	WRNECDSAV	AGGVNILTNP-
77LC	SGQDIDTYFIP	GGNRAFTPGRI	YYFKFSGPSV SV	DTACSSS	LAAIHVACNSL	WRNECDSSV/	AGGVNILTNP-
42LC	SGQDIDTYFIP	GGNRAFTPGRI	YYFKFSGPSV SV	DTACSSS	LAAIHVACNSL	WRNECDS AV	AGGVNILTNP-
145LC	SGQDVDTYFIP	GGNRAFTPGRI	YYFK FS <mark>G</mark> PSVSV	DTACSSS	LAAIHVACNSL	WRNECDS AV	AGGVNILTNP-
41LC	SGQDIDTYFIP	GGNRAFTPGRI	\Y <mark>HFK</mark> FS <mark>G</mark> PS∀S∀	DTACSSS	LAAIHMACNSL	WKNDCDT AT	AGGTNVLTNP-
196LC	SGQDIDTYFIP	GGNRAFTPGRI	\Y <mark>HFK</mark> FS <mark>G</mark> PS∀S∀	DTACSSS	LAAIHMACNSL	WKNDCDTAI	AGGTNVLTNP-
251LC	AAENIDTYFIT	GGVRAFAPGRI	YYFK FS <mark>G</mark> PSYSI	DTACSSS	LAAIQLACTSL	WAGDCDT AC	AGGLNVLTNP-
TH4LC	AAENIDTYFIT	GGVRAFAPGRI	YYFK FS <mark>G</mark> PSYSI	DTACSSS	LAAIQLACTSL	WAGDCDT AC	AGGLNVLTNPK
13LC	AAQEVDTYFIT	GGVRAFGPGRI	NYYFGFSGPSLNI	DTACSSS	AAALQVACTSL	WAKECDTAI	VGGLSCMTNS-
253LC	AAQEVDTYFIT	GGVRAFGPGRI	NYHFGFSGPSLNI	DTACSSS	AAAMNVACSSL	WARDCDTAI	VGGLSCMTNS-
LDKS_KS	QRQPEALPRYFIT	GNAGTMLANRV	SHFY DLRG PSVSI	DTACSTT	LTALHLAIQSL	RAGESDMAI	VAGANLLLNP-
LNKS KS	TRDLESIPTYSAT	GVAVSVASNRI:	SYFF D WHGP SMT I	DTACSSS	LVAV <mark>H</mark> LAVQQL	RTGQSSMAI	AAGANLILGP-
A_terreus_CBA164_KS	TRDLENIPTYSAT	GVAVSVASNRI:	SYFF D WHGP SMT I	DTACSSS	LVAV <mark>H</mark> LAVQQLI	RTGQSSMAI	AAGANLILGP-
13KS	SRQFLCIQTT	GCATSLQSNRI	SYYF <mark>DLK</mark> GPSMTV	DTACSSS	LTAICNLASEP	PVRNVRRRY	VGGSHVNTTP-
196KS	LRDVAT IPMHQTT	GCATSLQSNRI	SYYF DLK GPSMTV	ETACSSS	LTALHLACQGL	RSKECSTAL	VGGCHINLLP-
77KS	LRDVAT IPMHQTT	GCATSLQSNRI	SYYFDLTGP SMT V	DTACSSS	LTALHLACQSL	RSKECSTAL	VGGSHVNLLP-
209KS	LRDVAT IPMHQTT	GCATSLQSNRI	SYYF DLK GPSMTV	DTACSSS	LTALHLACQSL	RSKECSTAL	VGGSHVNLLP-
290KS	LRDVAT IPMHQTT	GCATSLQSNRI	SYYF DLK GPSMTV	DTACSSS	LTALHLACQSL	RSKECSTAL	VGGSHVNLLP-
23KS	ERDELNASQYAAT	GNASSIIANRI:	SYFY D FHGPSMTV	DTACSAS	LVAL <mark>H</mark> QAVLAI	RAGETEMAC	VAGVNLMLTP-
234KS	ERDELNASQYAAT	GNASSIIANRI:	SYFY <mark>DFHG</mark> PSMTV	DTACSAS	LVAL <mark>H</mark> QAVLAI	RAGETEMAC	VPGVNLMLTP-
253KS	ERDELNASQYAAT	GNASSIIANRI:	SYLY <mark>DFHG</mark> PSMTV	DTACSAS	LVAL <mark>H</mark> QAVLAI	RAGETEMAC	VAGVNLMLTP-
24KS	LRDSETMARYNAT	GT ARSIISNRI	SYFFDLKGASMT I	DTACSSS	LVALHQAVLSL	QNREAKASI	VAGANLLLDP-
				*			

17

P Multiplce Alignment of C- methyl transferase sequences

	Motif	10	20	30		Motif	11	50		0	70	
	· · · · · · · · · · · · · · · ·	1] .								1] .		
41 CMT	ALRWGRGPG	GASIHM	KGLAGH-		CHSYT	TDIS.	AGFF	EAAQER	FREYSS	LMEWAVI	DIER	59
PKS17	ILEMGAGTG	GTTIKM	QLLARL-	GI	PVKYT	ITDLS	SSLV	AARKE	FKQYKF	-LEFKVI	DIEA	60
PKSCT	ILENGAGTG	GTTVKMI	PLLERL-	GV	PVEYT	TDLS	SSLI	AAARKE	FKKYPF	MKFKVV	NIES	60
209 CMT	-DEMGAGTG	SATGFVI	NSLTKG-	GTQR	YSSYT	YTDYS'	ESFF:	OGEER	FSNYED	-IDYRL)	DMEK	61
234 CMT	-DEMGAGTG	SATRSEV	SALRSEP	NRKFGSGS	LRLARYD	FTDIS	LAFT	ERVSEE	FSGYKS	OMTESAL	DIER	69
77 CMT	-DEMGAGTG	GTTYHVI	ERLENPE	GSSK	AAQYF	FTDIS	GFL	AKAADB	FNKDGS	IMOFGTI	NIEN	63
PKSN	ILEIGAGTG	GTTYHVI	ERLENPE	GTSK	AAQYY	FTDIS	GFL	AKAADP	FNQDAS	IMOFGTI	NIEN	64
LDKS	ILEIGGGTG	GCTQLVV	DSL	GPNP	P-VGRYD	FTDVS.	GFF	BAARKE	FAGWON	VMDFRKI	DIED	61
24 CMT	-DEMGAGTG	SATLPII	EGFGGKD	GKST	PRFSHFM	TDIS	[GFF]	EKARGE	FHAWNS	LMSYGSI	DITK	65
Fum1p	VLEIGAGTG	GGAQVII	EGLTN	GKER	L-FSTYA	YTDIS.	AGFF	VAAQER	FKAYKG	-TDERAI	DITK	62
LNKS	ILEIGAGTG	GATKYVI	ATPQL	G	FNSYT	TDIS	GFF	EQAREC	FAPFED	RMVFEPI	DIRR	59
		Motif	III ₉₀	100		110						
41 CMT	DPCEHRIRE	AFIBLVI	MSSNALH	ATKSWRR-	-HQHMXT	PEARR	P 10	1				
PKS17	APDSSLL	HSQHIVI	-ATNCVH	ATRNLTIS	TTNIHKI	LRPDG	- 10	D				
PKSCT	PPDPQLV	HSQHIII	-ATNCVH	ATRNLEIS	TRNIHRI	LRPDG	- 10	0				
209 CMT	TPEEQGIEP	ESYDLVI	-ASCVVH	WTANVVNA	SEEYSPA	POARRI	P 10	4				
234 CMT	DLESQGFKQ	GEYDLAA	-ADNVLH	ATSDIAKT	LRNVRRA	SKARR	P 11	2				
77_CMT	EPTEQGESP	ESFDLIV	-CANVLE	ATKSIQET	LAHCKSL	LKPGG	0 10	6				
PKSN	APTEQGESP	ELFDLIV	-CANVLH	ATKSIQET	LTHCKLL	LKPGG-	- 10	6				
LDKS	DPEAQGEVC	GSYDAAI	-ACQVLI	ATSNMORT	LTNVRKL	LKPGG	- 10	3				
24_CMT	DPIDQGYTD	SSYDLII	-ACNVLH	ATPHIDET	ISNVRKL	LKPGG	0 10	В				
Fumlp	DPSEQGFES	GSFDLII	-VCNAIH	ATPTLNET	LANVRKL	LAPEG	- 10	4				
LNKS	SPAEQGFEP	HAYDLII	-ASNVLH	ATPDLEKT	MAHARSL	LKPGG	0 10	2				

Phylogenetic analysis of CmeT sequences

Non reducing PKSs

Reducing PKSs

Streptomyces globisporus CMT

Aligment of Cmet SAM dependents

Kagan and Clarck, 1994

Comparative tridimensional modelling

•Transferase

•B cetoacil-ACP synthase •beta-ketoacyl-[acyl carrier protein] synthase II from *Streptococcus pneumoniae*, tricyclic form

- •Transferase
- •Metil transferase SAM dependent

•Crystal structure of hypothetical methyltransferase2 ttha0223 from *Thermus thermophilus* hb8

4. Prospecting for Statins

TLC of extracts from strain 24 TLC of endophytic extracts

Dichlorometan: Etyl Acetate: Methanol

```
7:3:1
```

H: Lovastatin hydroxy acid

L: Lovastatin lactone

Chromatogram Strain 24 (extract)

NMR ¹H from extract strain 24

Biological Activity of extracts strain 24

Roze *et al*, 1998

Chamilos et al, 2006

Mucor sp.

Candida albicans

Chin *et al,* 1997 Lorenz *et al*, 1990

Kelvin, 2003

PKS Type II in Actinobacteria

Α

Polyketide synthase type III

- Biosynthetic superfamily enzymes (15 types) all with homology with CHS;
- Superior plants (1970): Chalcona synthase (CHS) catalise the flavonoids biosynthesis.

CHS structure alfafla (green). THNS structure from de *S. coelicolor (red).* Cysteine catalytic site (bars and spheres).

Metabolites synthesized by PKS type III

Bioprospection of endophytic *Actinomycetes*

 46 endophytic actinomycetes + 4 Streptomyces control (Streptomyces sp, Nocardia sp e Nocardiopsis sp)

 Extraction of genomic DNA (Method Salting out: Prospiech & Newmann, 1995)

Detection of rppA-like (PKS III) genes in endophytics

Transcription analysis by RT-PCR

THNS in Streptomyces

- THNS enzyme (1,3,6,8-tetrahidroxynaphtalene synthase) ou RppA = PKS III (Streptomyces) (Li et al, 2007).
- Biosynthesis:
 - 1° part:: THNS catalize malonil-CoA condensation to form na intermediary polyketide.
 - 2° part: THNS catalize two condensations (Claisen and Aldol) to form the metabolite THN.
- THN: melanin metabolism and backbone of metabolites (flavioline).
- Biological activity (antibiotic, antitumoral)

rppA-like genes between the endophytics

BLAST p - GenBank	

Endophytic	Enzyme	Organism/C	Funçtion	% identid.
		ód.		/similarid.
C7	THNS	S. coelicolor	Condensation	92 %
		(pdb1U0M)	enzyme	
A12-1(31)	RppA	S. lividans	u	89%
		(BAB91445.1		
)		
A82(50)	RppA	S.	u	84%
		antibioticus		
		(BAB94443.1		
)		
JR1	STS e CHS	Streptomyces	"	90%
		sp		
		(ZP06276870		
		.1)		
JR3	CHS	S. griseus	u	90%
		(BAA33495.1		
)		
H43/C73	STS e CHS	Streptomyces	"	91%
		sp		
		(ZP06276870		
		.1)		

Endophytic a.a. sequences aligment with THNS of S. coelicolor

Insertions or delitions

S. coelicolor THNS structure

THNS Homodímers (KS monomers) A and B chains; catalytic site in colours

Structural model

S. coelicolor THNS

Hypothetic JR1 THNS

Catalytic residues (Cys, His, Asn)

Structural analysis

THNS_S.coel	PGFEDRNKVYEREAKSRVPAVIQRALDDAELLATDIDVIIYVSCTGFMMP	50
Endofítico JR1	FLMP	4
THNS_S.coel	SLTAWLINEMGFDSTTRQIPIAQLGCAAGGAAINRAHDFCTAYPEANALI	100
Endofítico JR1	SLTAWLINTMGFRAGTRQLPIAQLGCAAGGAAINRAHDFCRAYPGSNVLI	54
	*	
THNS_S.coel	VACEFCSLCYQPTDLGVGSLLCNGLFGDGIAAAVVRGRGGTGVRLERNGS	150
Endofítico JR1	VSCEFCSLCYQPTDIGVGSLLSNGLFGDAISAAVVRGEGGTGMSLERNGS	104
	* * *	
THNS_S.coel	YLIPKTEDWIM Y DVKATGFHFLLDKRVPATMEPLAPALKELAGEHGWDAS	200
Endofítico JR1	HLVPDTEDWIS Y AVRDTGFHFLLDKRVPGTMEMLAPVLKDIVDLHGWTVP	154
	*	
THNS_S.coel	DLDFYIV H AGGPRILDDLSTFLEVDPHAFRFSRATLTEYG NIA SAVVLDA	250
Endofítico JR1	AMDFFII H AGGPRILDDLCHYLDLPMEMFRYSRATLTERG NIA RS	199
	* **	
THNS_S.coel	LRRLFDEGGVEEGARGLLAGFGPGITAEMSLGCWQTADVRRGIRQDVTRT	300
Endofítico JR1		
THNS_S. coel	AARGVSRRVRQA 312	
Endofítico JR1		

THNS S. coelicolor Hypothetic JR1 THNS

Catakytic site conserved in both structures

Antimicrobial activity

semeada no centro em meio N.A (4 dias/28°C). Endophytic A82 (50) semeada no centro em meio N.A (4 dias/28°C).

Control Meio NA, Sem endofítico, 37°C/24h.

a e b= *B. subtilis*, c= *Proteus* sp, d= *Salmonella*, e= *E. coli* Culture conditions 37°C/24h

Research Team

- Juan Diego Rojas
- Karen Massini
- Fabiana Andrieli
- Erik Saenz
- Renata Furlan
- Welington Araújo
- Lara Duraes Sette
- Massuo Jorge Kato
- Nidia Yoshida
- CNPq, CAPES, FAPESP