A phylogenetic study of some Septoria species pathogenic to Asteraceae based on ITS ribosomal DNA sequences

Gerard J. M. Verkley1,* and Mieke Starink-Willemse1

Abstract

The phylogenetic relationships of the following 14 Septoria species pathogenic to Asteraceae were inferred from sequence analyses of the 5.8 S gene of nuclear rDNA and flanking internal transcribed spacers: Septoria atropurpurea, S. astericola, S. calendulae, S. erigerontis, S. gerberae, S. helianthi, S. helianthicola, S. lactucae, S. leucanthemi, S. obesa, S. schnabliana, S. senecionis, S. socia, and S. taraxaci. Fifteen additional Septoria species originating from other host families, eight of which have a known Mycosphaerella teleomorph, were included in the alignment. Also included were selected strains of Cercospora, Pseudocercospora (including Paracercospora), Ramularia, and several other anamorph genera linked to Mycosphaerella available from previous studies.

The analyses indicate that the Septoria species from Asteraceae are all closely related, and share an evolutionary history within the Mycosphaerellaceae, grouping amongst miscellaneous Mycosphaerella species, Cercospora and Pseudocercospora spp. Septoria socia is relatively distant from the other Septoria on Asteraceae, and the data suggest that it is more closely related to the maple pathogen S. aceris (tel. M. latebrosa) and poplar pathogen S. populicola (tel. M. populicola). Differences in the ITS sequences indicate that S. socia and S. leucanthemi, which have very similar phenotypes and have been considered to be conspecific in the past, are specifically distinct.

The fungi classified in Septoria Sacc. are pycnidial coelomycetes with filiform, often multiseptate hyaline conidia (SUTTON 1980, Constantinescu 1984, Farr 1991, 1992, Muthumary 1999, Verkley \& Priest 2000). Most taxa cause leaf spot diseases, and some inflict considerable damage to economically important crops, e.g., Septoria apiicola of celery (Sutton \& Waterston 1966, Ryan \& Kavanagh 1971), and S. tritici of wheat (Wiese 1987, McDonald et al. 1999, Cunfer \& Ueng 1999). Over 2000 names have been described in Septoria. On plants of the family Asteraceae (Compositae) alone, some 300 species have been described in the literature (Verkley \& Vanev, unpublished data). Due to the limited number of useful morphological characters, and the paucity of physiological and other data in vitro, the taxonomy of these fungi still remains confusing and largely dependant on the host. Controlled inoculation experiments to test host specificity have only been performed for a limited number of species occurring on composite hosts (WadDELL \& Weber 1963, Punithalingam \& Wheeler 1965).

Several Septoria spp. are responsible for leaf spot or blight of Chrysanthemum cultivars and other ornamental Asteraceae (JøRSTAD 1965, Punithalingam 1967a, Holliday \& PunithaLingam 1970, Punithalingam \& Holliday 1972, Horst \&

[^0]Nelson 1997). Septoria chrysanthemella, S. obesa, S. leucanthemi, and S. socia cause considerable damage in Chrysanthemum nurseries world-wide (Punithalingam 1967 b, c, d, e, Horst \& Nelson 1997). The disease is not always severe, but infected plants usually lose their commercial value. The sexual states of these pathogens are unknown, and the phylogenetic relationships still need clarification. Teleomorphs are known for only a relatively small number of Septoria species, and in all cases they are species of Mycosphaerella Johanson (Dothideales, Ascomycota), a genus with numerous plant pathogenic taxa and over 20 reported anamorph genera (VON Arx 1983, Sutton \& Hennebert 1994, Crous et al. 2000, Crous, Kang \& Braun 2001). Based on sequence analyses of the ITS and D2-LSU regions of the nuclear ribosomal DNA, Verkley et al. (2004) found that several presumably asexual Septoria species from various host families group amongst Mycosphaerella spp., and that Septoria is not monophyletic within Mycosphaerella.

The aim of the present study was to infer a molecular phylogeny of 14 Septoria species pathogenic to Asteraceae by analysing 5.8S ribosomal RNA gene and flanking internal transcribed spacer (ITS1 and ITS2) sequences, and to test our hypothesis that they are closely related to other Septoria and belong within the main Mycosphaerella clade. In the analyses, we also included 15 additional Septoria species originating from other host families. Eight of these species have a known Mycosphaerella teleomorph. Also included were strains of Cercospora Fresen., Pseudocercospora Speg. (syn. Paracer-
cospora Deighton), Ramularia Unger, and several other anamorph genera that have been linked to Mycosphaerella.

Materials and methods

The 17 strains of Septoria spp. from Asteraceae used in this study are listed in Tab. 1. These included strains from the CBS culture collection and material newly collected by the first author in Europe. The morphology of these strains in vitro was studied as described by Verkley (1998).

DNA extraction and sequencing

Strains were transferred from agar cultures to 2 mL liquid medium (2% malt extract) and incubated on a rotary shaker (300 rpm) for 3 wk at room temperature. After transer to $2-\mathrm{mL}$ tubes, liquid cultures were centrifuged and washed twice with sterile water. DNA was extracted from mycelia with the FastDNAkit (Omnilabo 6050073, BIO 101, CA) according to the manufacturer's instructions. Part of the ribosomal RNA gene cluster was amplified by PCR with primers V9G (DE Hoog \& Gerrits van den Ende 1998) and LR5 (Vilgalys \& Hester 1990). PCR was performed in 50 BL reaction volumes, each reaction containing $10-100 \mathrm{ng}$ of genomic DNA, 25 pM of each primer, $40 \mu \mathrm{M} \mathrm{dNTP}, 1.0$ unit Supertaq DNA polymerase and $5 \mu \mathrm{~L} 10 \times$ PCR buffer (SphaeroQ, Leiden, the Netherlands). PCR was performed in an Applied Biosystems (Foster City, CA) thermocycler with the following program: $1 \min 95^{\circ} \mathrm{C}, 30 \times\left\{1 \min 95^{\circ} \mathrm{C}, 1 \min 55^{\circ} \mathrm{C}, 2 \min 72^{\circ} \mathrm{C}\right\}$ and followed by a final extension of 5 min at $72^{\circ} \mathrm{C}$. PCR products were cleaned using GFX columns (Amersham Pharmacia, NJ, 27-9602-01). DNA concentration was estimated on a 2% agarose gel. ITS1 and ITS4 (White et al. 1990) were used as internal sequencing primers. Sequencing was performed with the BigDye terminator chemistry (Part number 403049, Applied Biosystems) following the manufacturer's instructions. The sequencing products were cleaned with G50 Superfine Sephadex columns (Amersham Pharmacia 17-0041-01), and separated and analyzed in ABI Prism 3700 DNA Analyzer (Applied Biosystems). Forward and reverse sequences were matched using SeqMan (DNAstar Inc., WI).

Phylogenetic analyses

Pairwise and global alignment of consensus sequences were performed in Bionumerics 3.0 (Applied Maths, Kortrijk, Belgium). The alignment was manually adjusted where necessary. Parsimony analysis was performed in PAUP v. 4.0b10 (Swofford 2003). The heuristic search was performed with the following parameters: characters unordered with equal weight, random taxon addition, branch swapping using tree bisection-reconnection (TBR) algorithm, with branches collapsing if the maximum branch length was zero, and maxtrees set at 10000 . Alignment gaps were treated as missing characters. Parsimony bootstrap analyses were performed using the
full heuristic search option, random stepwise addition, and 1000 replicates, with maxtrees set at 100 .

Neighbor joining analysis was also performed in PAUP, without pairwise corrections. Stability of clusters was tested with 1000 neighbor joining bootstrap replications. BLAST searches in GenBank revealed highest similarity to species of Mycosphaerella and anamorph taxa known to have links with this genus. GenBank accession numbers, taxon names and other information about the sequences from GenBank used in this study are given Tab. 2. GenBank accession numbers of new ITS sequences are given in Tab. 1. A strain of Davidiella tassiana was defined as outgroup, as it was shown by Braun et al. (2003) to be a close sister group of a well-supported main Mycosphaerella clade.

Results

The alignment of the ITS region comprised 514 characters, of which 153 were parsimony-informative. Nineteen of the informative characters which were positioned within small insertions/deletions or regions with ambiguous position homology, were excluded from the analyses (indel comprised 54 characters). In the parsimony analysis, all autapomorphic and constant characters were excluded, while in the neighbor joining analyses only the constant characters were excluded to maintain accurate branch lengths in the phylogram.

The heuristic search involving 5000 random input orders resulted in 2724 MPT's of 474 steps (consistency index 0.508 , retention index 0.849 , rescaled consistency index 0.432 , homoplasy index 0.492). The majority rule consensus tree is shown in Fig. 1. Branch frequencies are given above each branch (those with 100% appear also in the strict consensus tree), bootstrap support over 50% are indicated below the branches. The neighbor joining tree with the obtained bootstrap support values over 50% is given in Fig. 2.

The Septoria spp. from Asteraceae all fell within a major clade (parsimony bootstrap percentage 87/ neighbor joining 98), comprising miscellaneous Mycosphaerella species, Cercospora and Pseudocercospora spp., and all other included Septoria except the cereal pathogens S. tritici (tel. M. graminicola) and S. passerinii. Within this clade, high bootstrap support was only found for a clade with Cercospora spp. (93/ 100), and a few single-taxon clades (S. castaneicola, M. populicola, M. latebrosa, M. pyri, M. brassicicola, M. musae, M. fijiensis). Also well-supported were the clade of M. graminicola and S. passerinii (100/100), and a clade comprising all taxa with Ramularia anamorphs, including M. punctiformis, the type species of the genus Mycosphaerella (100/100).

The strains of S. erigerontis (CBS 109094) and S. schnabliana (CBS 186.93) from Erigeron annuus had identical ITS sequences and are probably conspecific. The sequence of S. helianthicola (CBS 122.81) differs by only a single base position from that of S. scabiosicola strains isolated from Succissa pratensis and Knautia arvensis (Dipsacaceae). Other

Tab. 1: GenBank accession numbers of ITS sequences and other data of the strains of Septoria spp. pathogenic to Asteraceae used in this study.

GenBank	Taxon	Host	Origin
AY489274	Septoria astericola Ellis \& Everh.	Aster canus	CBS 347.58; Germany
AY489275	S. atropurpurea Peck	A. canus	CBS 348.58, Germany
AY152566	S. calendulae Bernaux	Calendula arvensis	CBS 349.58; Italy
AY489273	S. erigerontis Peck	Erigeron annuus	CBS 109094; Austria
AY152569	S. gerberae Syd. \& P. Syd.	Gerbera jamesonii	CBS 410.61; Italy
AY489281	S. helianthi Ellis \& Kellerm.	Helianthus annuus	CBS 123.81; Yugoslavia
AY489270	S. helianthicola Cooke \& Harkn.	H. annuus	CBS 122.81; Yugoslavia
AY489282	S. lactucae Pass.	Lactuca sativa	CBS 352.58; Germany
AY489278	S. leucanthemi Sacc. \& Speg.	Chrysanthemum maximum	CBS 353.58; Germany
AY489277	S. leucanthemi Sacc. \& Speg.	C. leucanthemum	CBS 109090; Austria
AY489285	S. obesa Syd.	C. indicum	CBS 354.58; Germany
AY489276	S. schnabliana (Allescher) Died.	Erigeron annuus	CBS 186.93; country unknown
AY489272	S. senecionis Westend.	Senecio fluviatilis	CBS 102366; Netherlands
AY489279	S. senecionis Westend.	S. fluviatilis	CBS 102381; Netherlands
AY489271	S. senecionis Westend.	S. nemorensis subsp. fuchsii	CBS 109087; Austria
AY489284	S. socia Pass.	Chrysanthemum indicum	CBS 357.58; Germany
AY489280	S. taraxaci Hollós	Taraxacum sp.	CBS 567.75; Armenia

strains having identical sequences are those of S. astericola (CBS 347.58) and S. atropurpurea (CBS 348.58), and these differ only by a single position from the strain of S. calendulae (CBS 349.58). Septoria socia appears relatively distant from most other Septoria from Asteraceae, as it differs, for example, in 26 positions from S. erigerontis, and 16 positions from S. obesa. It clustered with several Mycosphaerella spp. with Septoria anamorphs, viz. M. latebrosa (anam. S. aceris) and M. populicola (S. populicola), albeit with low bootstrap support.

Discussion

The results of the ITS sequence analyses indicate that the Septoria species from Asteraceae are all closely related, and share an evolutionary history within the Mycosphaerellaceae. Septoria socia is relatively distant from the other Septoria on Asteraceae, and the ITS sequence data suggest that it is more closely related to the maple pathogen S. aceris (tel. M. latebrosa) and poplar pathogen S. populicola (tel. M. populicola) of the section Longispora M. E. Barr of the genus Mycosphaerella. KuiJper \& Aptroot (2002), who revised this section, placed M. populicola under 'probable synonyms' of M. latebrosa, based on microscopic examination of the type specimens. However, the morphology of the Septoria anamorphs and ITS sequences show that they are separate species. No teleomorphs are currently known for the Septoria species occurring on Asteraceae. If teleomorphs exist that can be connected with these species, they are predicted to have the Mycosphaerella phenotype.

JøRSTAD (1965) considered Septoria obesa and S. leucanthemi to be conspecific, as both have similar conidial morphologies and occur on several Chrysanthemum spp. Jørstad studied fresh material and herbarium specimens and observed that morphological variation in Septoria spp. was in part hostdetermined. Punithalingam (1967 c, d), however, considered Septoria obesa and S. leucanthemi to be distinct species, noting that the conidia of S. obesa are consistently wider than those of S. leucanthemi. Differences in the ITS sequences (eight positions) also indicate that they are distinct species. This is further supported by differences in host ranges: S. obe$s a$ is restricted to various species of Chrysanthemum, while S. leucanthemi is also capable of infecting Tagetes, Achillea, Centaurea and Helianthus (Waddell \& Weber 1963, Punithalingam 1967 c, d). Septoria obesa also shows morphological similarities with the sunflower pathogen, S. helianthi, since the conidia are morphologically similar (S. helianthi $50-85 \times 2-3 \mu \mathrm{~m}$; S. obesa $50-90 \times 2.5-3.5 \mu \mathrm{~m}$). However, conidia in S. obesa form 5-11 septa, while those of S. helianthi seldomly form more than five. The ITS sequences differ by more than 20 base positions, which indicates that S. obesa and S. helianthi are relatively distant.

At present it is difficult to determine the significance of the ITS variation observed within Septoria morphospecies. For example, M. populicola and M. fragariae show infraspecific variation in ITS, whereas no infraspecific variation has been recorded so far in M. brassicicola, M. latebrosa, and S. apiicola. The ITS sequences of two strains of S. leucanthemi differed by a single base, which could be correlated with their different origins, one being from C. maximum in Germany,
Tab. 2: GenBank ITS sequences of fungal isolates included in analyses, in alphabetical order of the anamorph name.

GenBank	Anamorph	Teleomorph	Origin
AY266168	Cercospora apii Fresen.	Mycosphaerella state unknown	CA1, ATCC 12246
AY152576	C. beticola Sacc.	Mycosphaerella state unknown	CBS 539.71; Beta vulgaris, Rumania
AY266165	C. beticola Sacc.	Mycosphaerella state unknown	CB4
AY152577	C. kikuchii (Matsumoto \& Tomoyasu) Gardner	Mycosphaerella state unknown	CBS 128.27 (ex type); Glycine max, Japan
AY166260	C. kikuchii (Matsumoto \& Tomoyasu) Gardner	Mycosphaerella state unknown	CK 39; Glycine max, Illinois, U.S.A.
AY266161	C. kikuchii (Matsumoto \& Tomoyasu) Gardner	Mycosphaerella state unknown	CK 35; Glycine max, Illinois, U.S.A.
AY152598	Cercosporidium magnoliae (J.B. Ellis \& Harkn.) Sivan.	Mycosphaerella milleri Hodges \& Haasis	CBS 541.63; Magnolia grandiflora, North Carolina, U.S.A.
AY152552	Cladosporium herbarum (Pers. : Fr.) Link	Davidiella tassiana (De Not.) Crous \& U. Braun	CBS 289.49; Allium schoenoprasum, Switzerland
AY152575	Phloeospora ulmi (Fr. : Fr.) Wallr.	Mycosphaerella ulmi Kleb.	CBS 344.97; Ulmus glabra, Austria
AY266152	Pseudocercospora fijiensis (M. Morelet) Deighton	M. fijiensis M. Morelet	ATCC 22116, PF7 ; Philippines
AY266150	Ps. fijiensis (M. Morelet) Deighton**	M. fijiensis M. Morelet	ATCC 36054, PFD9 ; Honduras
AY266153	Ps. cruenta (Sacc.) Deighton	M. creunta Latham	PCR18, ATCC 26271, Vigna unguiculata, Puerto Rico
AY266149	Ps. musae (Zimm.) Deighton	M. musicola J. L. Mulder	PM 10, ATCC 22115, IMI 139520; Musa sp., Philippines
AY266148	Ps. musae (Zimm.) Deighton	M. musicola J. L. Mulder	PM11, ATCC 36143
AY152590	Pseudocercospora sp.	Mycosphaerella laricina R. Hartig	CBS 326.52; Larix decidua, Switzerland
AY152595	Ramularia grevilleana (Tul. \& C. Tul.) Jørst.	M. fragariae (Tul.) Lind.	CBS 259.36; Fragaria sp., Netherlands
AY152597	R. grevilleana (Tul. \& C. Tul.) Jørst.	M. fragariae (Tul.) Lind.	CBS 719.84; Fragaria sp., Netherlands
AY152596	R. grevilleana (Tul. \& C. Tul.) Jørst.	M. fragariae (Tul.) Lind.	CBS 298.34; Fragaria sp., Netherlands
AY490762*	Ramularia sp.	M. punctiformis (Pers. : Fr.) Starb.	CBS 113871; Quercus robur, Netherlands
AY490763*	Ramularia sp.	M. punctiformis (Pers. : Fr.) Starb.	CBS 113265 (ex epitype); Quercus robur, Netherlands
AY490764*	Ramularia sp.	M. punctiformis (Pers. : Fr.) Starb.	CBS 113868; leaf endophyte Quercus robur, Netherlands
AY490765*	Ramularia sp.	M. punctiformis (Pers. : Fr.) Starb.	CBS 113869; leaf endophyte Quercus robur, Netherlands
AY152593	Ramularia sp.	Mycosphaerella sp.	CBS 943.97; Quercus sp., Netherlands
AY152594	Ramularia sp.	Mycosphaerella sp.	CBS 184.97; Acer pseudoplatanus, Netherlands
AY490768*	Septoria aceris (Lib.) Berk. \& Br.	Mycosphaerella latebrosa (Cooke) Schröt.	CBS 183.97; Acer pseudoplatanus, Netherlands
AY490769*	S. aceris (Lib.) Berk. \& Br.	M. latebrosa (Cooke) Schröt.	CBS 652.85; Acer pseudoplatanus, Netherlands
AY152553	S. aceris (Lib.) Berk. \& Br.	M. latebrosa (Cooke) Schröt.	CBS 687.94; Acer pseudoplatanus, Netherlands
AY152571	S. aciculosa Ellis \& Everh.	Mycosphaerella state unknown	CBS 177.77; Fragaria sp., New Zealand
AY152572	S. apiicola Speg.	Mycosphaerella state unknown	CBS 395.52, IMI 092627; Apium sp., Netherlands
AY152573	S. apiicola Speg.	Mycosphaerella state unknown	CBS 389.59; Apium graveolens, Italy
AY152574	S. apiicola Speg.	Mycosphaerella state unknown	CBS 400.54, IMI 092628; Apium graveolens, Netherlands
AY152579	S. berberidis Niessl	Mycosphaerella berberidis (Auerswald) Lind.	CBS 324.52; Berberis vulgaris, Switzerland
AY152566	S. calendulae Bernaux	Mycosphaerella state unknown	CBS 349.58; Calendula arvensis, Italy
AY152588	S. castaneicola Desm.	Mycosphaerella state unknown	CBS 102377; Castanea sativa, Netherlands
AY152589	S. castaneicola Desm.	Mycosphaerella state unknown	CBS 102323; Castanea sativa, Netherlands
AY152563	S. lamiicola Sacc.	Mycosphaerella state unknown	CBS 109113; Lamium album, Austria
AY152564	S. Iamiicola Sacc.	Mycosphaerella state unknown	CBS 102328; Lamium album, Netherlands

Tab. 2: Continued

GenBank	Anamorph	Teleomorph	Origin
AY152570	S. linicola (Speg.) Garovaglio	Mycosphaerella linicola Naumov	CBS 316.37; Linum usitatissimum, Argentina
AF181697	S. passerinii	Mycosphaerella state unknown	UM011, ATCC 26516; Hordeum vulgare, Minnesota, U.S.A.
AF181699	S. passerinii	Mycosphaerella state unknown	P78; Hordeum vulgare, Minnesota, U.S.A.
AY152583	S. populicola Peck	M. populicola G. Thompson	CBS 100045; Populus trichocarpa, Washington, U.S.A.
AY152584	S. populicola Peck	M. populicola G. Thompson	CBS 100052; Populus trichocarpa, Washington, U.S.A.
AY152585	S. populicola Peck	M. populicola G. Thompson	CBS 100044; Populus trichocarpa, Washington, U.S.A.
AY152586	S. populicola Peck	M. populicola G. Thompson	CBS 100051; Populus trichocarpa, Washington, U.S.A.
AY152587	S. populicola Peck	M. populicola G. Thompson	CBS 100047; Populus trichocarpa, Washington, U.S.A.
AY152591	S. pyricola (Desm.) Desm.	M. pyri (Auerswald) Boerema	CBS 222.31; Pyrus communis
AY152592	S. pyricola (Desm.) Desm.	M. pyri (Auerswald) Boerema	CBS 640.72; Pyrus communis, Netherlands
AY152581	S. ribis (Lib.) Desm.	M. grossulariae (Fr.) Lind.	CBS 235.37; Ribes nigrum, Netherlands
AY152565	S. rubi West.***	M. rubi Roark	CBS 238.37; Rubus strigosus, lllinois, U.S.A.
AY152578	S. rubi West.***	M. rubi Roark	CBS 102327; Rubus fruticosus s.l., Netherlands
AY152580	S. rubi West.***	M. rubi Roark	CBS 109017; Rubus idaeus, Austria
AY152558	S. scabiosicola Desm.	Mycosphaerella state unknown	CBS 108981; Knautia arvensis, Austria
AY152559	S. scabiosicola Desm.	Mycosphaerella state unknown	CBS 102336; Knautia arvensis, Netherlands
AY152560	S. scabiosicola Desm.	Mycosphaerella state unknown	CBS 317.37
AY152561	S. scabiosicola Desm.	Mycosphaerella state unknown	CBS 182.93; Succissa pratensis, France
AY152562	S. scabiosicola Desm.	Mycosphaerella state unknown	CBS 102335; Knautia arvensis, Netherlands
AY152567	S. sii Rob. \& Desm.	Mycosphaerella state unknown	CBS 102369; Berula erecta, Netherlands
AY152568	S. sii Rob. \& Desm.	Mycosphaerella state unknown	CBS 118.96; Berula erecta, Netherlands
AY152601	S. tritici Rob.	Mycosphaerella graminicola (Fuckel) Schröt.	CBS 100330 (IPO 6566.1); Triticum aestivum
AY152602	S. tritici Rob.	M. graminicola (Fuckel) Schröt.	CBS 100335; Triticum aestivum, Netherlands
AY152603	S. tritici Rob.	M. graminicola (Fuckel) Schröt.	CBS 392.59; Triticum aestivum
AF181692	S. tritici Rob.	M. graminicola (Fuckel) Schröt.	IPO 323; Triticum aestivum, Netherlands
AF181693	S. tritici Rob.	M. graminicola (Fuckel) Schröt.	T1; Triticum aestivum, Minnesota, U.S.A.
AY152599	Stenella parkii Crous \& Alfenas	Mycosphaerella parkii Crous et al.	CBS 387.92 (STE-U 353 ; ex type); Eucalyptus grandis, Brazil
AY489283*	Unknown	M. harthensis (Auersw.) Migula	CBS 325.52; Betula sp., Switzerland
AY152600	Unknown	M. marksii Carnegie \& Keane	CBS 682.95 (STE-U 842); Eucalyptus grandis, South Africa
AY152554	Unknown ****	M. brassicicola (Fr.) Lind.	CBS 267.53; Brassica oleracea, Netherlands
AY152555	Unknown ****	M. brassicicola (Fr.) Lind.	CBS 228.32; Brassica oleracea, Denmark
AY152556	Unknown ****	M. brassicicola (Fr.) Lind.	CBS 174.88; Brassica oleracea, Germany
AY152557	Unknown ****	M. brassicicola (Fr.) Lind.	CBS 173.88; Brassica oleracea, Germany

[^1]

Fig. 1: Majority consensus tree of 2724 MPT's of 474 steps ($\mathrm{CI}=0.508, \mathrm{RI}=0.849, \mathrm{RCI}=0.432, \mathrm{HI}=0.492$), obtained in PAUP using a heuristic search of the ITS region of nuclear rDNA, using 153 parsimony-informative characters. Numbers above the branches are branch frequencies. Numbers below the branches are bootstrap values obtained from 1000 replications and rounded to the nearest integer, shown only for branches supported by more than 50%. Names of taxa from Asteraceae are shown in bold, and the host genus is also indicated. Species are presented by teleomorph name, if known (anamorph names are given in Tab. 2). Davidiella tassiana was used as outgroup taxon.

-0.01 substitutions/site
Fig. 2: Neighbor joining tree derived from 197 parsimony-informative and autapomorphic characters of the ITS region of nuclear rDNA, calculated in PAUP without pairwise corrections. Numbers below branches are bootstrap values obtained from 1000 replications and rounded to the nearest integer, shown only for branches supported by more than 50%. Length of branches is proportional to number of changes. Species are presented by teleomorph name, if known (anamorph names are given in Tab. 2). Sequence of Davidiella tassiana was used as outgroup to root the tree.
and the other from wild montane C. leucanthemum in an alpine meadow in Austria at 1400 m elevation. Two strains of S. senecionis, both of which were isolated from Senecio fluviatilis in the same river-bank forest in the Netherlands, showed difference in two base positions. A third S. senecionis strain, originating from S. nemorensis subsp. fuchsii in a montane forest in Austria, differed even by five positions from the other two. In contrast, the anamorphs were all morphologically indistinguishable and the Austrian isolate only differed slightly from the Dutch isolates in colony pigmentation.

Septoria helianthicola CBS 122.81 and S. scabiosicola had almost identical ITS sequences (one C insertion in S. helianthicola), indicating that this region sometimes may not even be sufficiently variable to distinguish species. The strains of S. astericola, S. calendulae, S. taraxaci, S. atropurpurea, S. erigerontis, which have highly similar ITS sequences, and also S. gerberae, S. senecionis and S. leucanthemi, were found to be very closely related to S. helianthicola. We also ran analyses which included partial sequences of S. chrysanthemella (CBS 483.63 and 354.73). These analyses indicated that S. chrysanthemella also grouped among these Septoria species. Because ITS1 and ITS 2 sequences of the S. chrysanthemella strains were incomplete, they were excluded from the analyses presented here. These Septoria species are very difficult to discriminate morphologically in planta, as they all have relatively narrow and pointed conidia with largely overlapping length ranges. In culture they typically grow relatively slowly and produce brightly red or yellowish diffusable pigments. In practice it is impossible to name such Septoria spp. when the host remains unidentified.

Species with Septoria anamorphs are scattered amongst taxa with hyphomycetous anamorphs. The only exception is the clade of S. passerinii and S. tritici, which obtained maximum bootstrap support in parsimony as well as neigbor joining analysis, as was also the case in earlier work (VERKLEY et al. 2004). Septoria is not monophyletic within Mycosphaerella, and conidiomatal structure seems to have little predictive value for phylogenetic relatedness. In the neigbor joining tree, S. lactucae and S. obesa occupied a basal position in a major clade comprising most other Septoria spp. on Asteraceae, and other Septoria as well as Cercospora spp. from other host plant families. This major clade is insufficiently supported, and more taxa and genes need to be analyzed before any firm conlusions can be drawn. It is, nevertheless, interesting to further investigate the possible role of species on Asteraceae in the evolution of Septoria and Cercospora on various host plant families. In the present study, Ramularia and Cercospora both formed well-supported clades, but for the latter this is almost certainly due to the limited sampling in this study (Goodwin, Dunkle \& Zismann 2001).

The information presented here can contribute to a better understanding of the evolution of Septoria pathogens of Asteraceae. The relationships between Septoria on wild plants and pathogens invading nurseries are still poorly understood. It is hoped that the information obtained in this study will ulti-
mately lead to improved control of the disease of Chrysanthemum and other ornamentals.

Acknowledgements

Drs R. C. Summerbell and P. W. Crous are kindly acknowledged for critical reading of the manuscript.

References

Arx JA von (1983) Mycosphaerella and its anamorphs. - Proceedings Koninklijke Nederlandse Akademie van Wetenschappen, Serie C, 86: 15-54.
Braun U, Crous PW, Dugan F, Groenewald JZ, De Hoog GS (2003) Phylogeny and taxonomy of Cladosporium-like hyphomycetes, including Davidiella gen. nov., the teleomorph of Cladosporium s. str. - Mycological Progress 2: 3-18.

Constantinescu O (1984) Taxonomic revision of Septoria-like fungi parasitic on Betulaceae. - Transactions of the British Mycological Society 83: 383-398.
Crous PW, Aptroot A, Kang J-C, Braun U, Wingfield MJ (2000) The genus Mycosphaerella and its anamorphs. - Studies in Mycology 45: 107-121.
Crous PW, Kang J-C, Braun U (2001) A phylogenetic redefinition of anamorph genera in Mycosphaerella based on ITS rDNA sequence and morphology. - Mycologia 93: 1081-1101.
Cunfer BM, Ueng PP (1999) Taxonomy and identification of Septoria and Stagonospora species on small-grain cereals. - Annual Revue of Phytopathology 37: 267-284.
FARr DF (1991) Septoria species on Cornus. - Mycologia 83: 611623.

FARR DF (1992) Species of Septoria on the Fabaceae, subfamily Faboidae, tribe Genistae. - Sydowia 44: 13-31.
Goodwin SB, Dunkle LD, Zismann VL (2001) Phylogenetic analysis of Cercospora and Mycosphaerella based on the internal transcribed spacer region of ribosomal DNA. - Phytopathology 91: 648-658.
Holliday P, Punithalingam E (1970) Septoria helianthi. CMI Descriptions of Pathogenic Fungi and Bacteria no. 276.
Hoog GS de, Gerrits van den Ende AHG (1998) Molecular diagnostics of clinical strains of filamentous basidiomycetes. Mycoses 41: 183-189.

Horst RK, Nelson PE (1997) Compendium of Chrysanthemum diseases. APS Press.
JøRSTAD I (1965) Septoria and septoroid fungi on dicotyledones in Norway. - Skrifter Norske Videnskaps-Akademi Oslo, I: MatNaturv Klasse 22: 1-110.
Kuijpers AFA, Aptroot A (2002) A revision of Mycosphaerella section Longispora (Ascomycetes). - Nova Hedwigia 75: 451468.

Mcdonald BA, Zhan J, Yarden O, Hogan K, Garton J, Pettway RE (1999) The population genetics of Mycosphaerella graminicola and Stagonospora nodorum. In Lucas JA, Bowyer P, Anderson, HM (eds) Septoria on Cereals: a study of pathosystems, pp. 44-69. CABInternational Wallingford.
Muthumary J (1999) First contribution to a monograph of Septoria species in India. Centre for advanced studies in Botany, Madras.

Punithalingam E (1967a) Septoria adanensis. CMI Descriptions of Pathogenic Fungi and Bacteria no. 136.
Punithalingam E (1967b) Septoria chrysanthemella. CMI Descriptions of Pathogenic Fungi and Bacteria no. 137.
Punithalingam E (1967c) Septoria leucanthemi. CMI Descriptions of Pathogenic Fungi and Bacteria no. 138.
Punithalingam E (1967d) Septoria obesa. CMI Descriptions of Pathogenic Fungi and Bacteria no. 139.
Punithalingam E (1967e) Septoria socia. CMI Descriptions of Pathogenic Fungi and Bacteria no. 140.
Punithalingam E, Holliday P (1972) Septoria lactucae. CMI Descriptions of Pathogenic Fungi and Bacteria no. 335.
Punithalingam E, Wheeler BEJ (1965) Septoria spp. occurring on species of Chrysanthemum - Transactions of the British Mycological Society 48: 423-439.
Ryan, EW, Kavanagh T (1971) Comparison of fungicides for control of leaf spot (Septoria apiicola) of celery. - Annals of Applied Biology 67: 121-129.
Sutton BC (1980) The Coelomycetes. Commonwealth Mycological Institute, Kew.
Sutton BC, Hennebert GL (1994) Interconnections amongst anamorphs and their possible contribution to ascomycete systematics. In Hawksworth DL (ed) Ascomycete systematics: Problems and perspectives in the nineties, pp. 77-100. Plenum Press, New York.
Sutton BC, Waterston JM (1966) Septoria apiicola. CMI Descriptions of Pathogenic Fungi and Bacteria no. 88.

Swofford DL (2003) Phylogenetic analysis using parsimony (PAUP), Sunderland, Massachusetts, Sinauer Associates.
Verkley GJM, Priest MJ (2000) Septoria and similar coelomycetous anamorphs of Mycosphaerella. - Studies in Mycology 43: 123-128.
Verkley GJM, Starink-Willemse M, Iperen A van, Abeln ECA (2004) Phylogenetic analyses of Septoria species based on the ITS and LSU-D2 regions of nuclear ribosomal DNA. - Mycologia 96: 558-571.
VERKLEY GJM (1998) Ultrastructure of conidiogenesis in two species of Septoria sensu lato. - Mycologia 90: 189-198.
Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. - Journal of Bacteriology 172: 4238-4246.
Waddell HT, Weber GF (1963) Physiology and pathology of Septoria species on Chrysanthemum. - Mycologia 55: 442-452.
White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds), PCR Protocols, pp. 315-322. Harcourt Brace Jovanovich, Toronto.
Wiese, MV (1987) Compendium of wheat diseases, $2^{\text {nd }}$ ed. APS Press.

Accepted: 2.7.2004

[^0]: 1 Centraalbureau voor Schimmelcultures, Fungal Biodiversity Centre, P.O.Box 85167, NL-3508 AD Utrecht, The Netherlands

 * Corresponding author: E-mail: Verkley@cbs.knaw.nl

[^1]: = new sequence
 $=$ previously as Ps. Fijiensis var. difformis, but no longer recognized.
 $=$ unconfirmed
 $=$ Asteromella b
 **
 ** ** = Asteromella brassicae (F. Chevallier) Boerema \& van Kesteren spermatial state

