

Europe's first magazine for personal computers for home and business use

$$
\begin{aligned}
& \text { A mighty micromitc In Action } \\
& \text { Setting Up A Iocal Group } \\
& \text { The Circuil Inppector }
\end{aligned}
$$



## The Altache

One of a growing band of small business machines


He had never seen my computer and he was obviously impressed by the pile of perfectly typed overdue account letters it had just produced.
"How can you possibly afford a computer system in such a small company?" he asked, in that direct way suppliers have when they think that you may be overspending.
I had been anticipating the question. I had seen him glancing enviously at the Cash Flow Forecast, Sales analysis Report, and Back Order Schedule I had been referring to since he arrived.
He had realised that this was the first time ever that I had been able to put my finger on the facts which I need to schedule my next three months deliveries from him.
"I'll buy you lunch if you can get within $£ 1,000$ of the cost of the system," I said, generously, because it was his turn to pay today. "And I'll tell you as much about it as you want to know. "I added.
"Well I can see it does the job one of those word processing machines does, and it's doing most of your accounting - but what does it actually consist of?"
Here was my chance to impress him with my very limited knowledge of the equipment itself.
"Well - here's the visual display terminal with the keyboard. As you can see it has upper and lower case characters and you use the keyboard like a typewriter. This box here is the computer itself which has 40 K of RAM,"I said quickly because that's all I know about it and I was hoping to avoid his next question. However, he butted in -
"What does that mean?"
"Er, well it's the amount of memory it's got."
"It couldn't be much in a box that size," he said.
"Well all I know is that it certainly seems to be enough to cope with any of the programs / use," I said defensively, "and besides these disk drives hold over half a million characters of information which the computer can read whenever it needs them."
"What's that in terms of names and addresses for instance?" he asked.
"Assuming 150 characters for each one it's about $£ 3,800$. And this is the printer which gives a typewriter quality letter or report."
"What else can it be used for?" he asked.
"Well this system is the top end of the range," I said proudly. "but other cheaper models are used for everything from process control to medical interviewing, from playing games to student instruction, and from statistical analysis to travel booking."
"You'll be telling me it can talk next," he said with a hint of sarcasm in his voice.
"Oh did I forget to mention that?"
"Oh no, you've told me enough already - I know it must be cheaper than I would expect because otherwise you couldn't have afforded it, without being rude, but even so it must have cost at least $£ 10,000$."
"Well you're right," I said tantalisingly, "it is cheaper than you would expect. Even with the Speech unit it only cost me $£ 5,673.24$ including the Chancellor's $8 \%$."
"How come I always end up buying you lunch?" he said.

#  <br> AVAILABLE FROM: <br> <br> Computer Systems 

 <br> <br> Computer Systems}

C川 COMPUTER

> LONDON \& MANCHESTER AND MANY OTHER AGENTS THROUGHOUT THE UK \& ABROAD


UK 50p

US $\$ 2.00$
Vol. 1, No. 10
February 1979
Europe's first magazine for personal computers for home and business use

## CONTENTS

PUBLISHER'S LETTER ..... 5
EDITORIAL NOTE ..... 5
LETtERS ..... 9
TIDBITS ..... 11
BEGIN...END Brian Darling . ..... 16
A MIGHTY MICROMITE IN ACTION T.F. Lenihan \&
Les Thurlow
The RCA Cosmac as a little watchman ..... 19
THE JANUS INTERFACE Peter Mather Just one word for this - neat ..... 23
MORE ON THE 8086 T. M. Dixon
A closer look at the 16 bit powerhouse. ..... one more reasonwhy we're bytes ahead of any other computer publication25
PCW REVIEW .. . THE ATTACHE Martin HealeyOne of a growing band of microcomputers (for others,See PCW advertisements) for the small business market29
ON THE LINE .. 2 David Hebditch
What's the owner of a funeral parlour got to do with theGlobal Village?33
FROM ALPHA TO OMEGA Charles Sweeten
Word processing using the SWTPc Computer. And more andmore machines (for instance, the SOL) come with wordprocessing packages34
BUSINESS COMPUTING ... PART 1 Rodnay ZaksA compelling read for anyone who's interested in using hiscomputer in business; a compelling read for any one who'sinterested in the business of organising his own affairs . . . 38
PET PREENING Gordon Bell
The Pet clocks in for some real-time work ..... 43
DRAWPIC O. A. Ellefsen
Have fun! Draw pictures! Written in Tandy Level II, for the 4 K machine ..... 44
GETTING IT TOGETHER Mike Banahan
Concluding the "Build Your Own Assembler" Series ..... 46
THE BYTE CONSERVER Graham Trott
Look at the price of PCW. Look at the worth of this article alone. A micro-assembler for the 6800 ..... 49
RANDOM WRITINGS Michael James
The Kingdom of chance ..... 55
PCW OPEN PAGE Mike Lord ..... 58
SETTING UP A LOCAL GROUP A. M. Cunningham
The Chairman of the Amateur Computer Club gives some sound advice ..... 58
PCW BOOK REVIEW ..... 61
THE CIRCUIT INSPECTOR Mike Brinson MICRODC - A Circuit analysis program for the small computer user ..... 63
SINCLAIRLY YOURS W. Mclvor
If you've gone in for a more expensive calculator and havea Sinclair programmable spare, you can interface it toyour MPU.67
BUZZWORDS Peter Reynolds
These E'zz made easy ..... 70

## Publisher:

## A Zgorelec

Editor:
Meyer N. Solomon
Editorial Assistant:
Roger C. Wilkins
Policy Advisor:
Peter Crofton-Sleigh, FRAS

## Consultants:

John Coll, Mike Dennis, Neil Harrison, Charles Sweeten, Patrick Sutton, Michael James, R. W. Davy,
David Hebditch, Sheridan Williams, Stephen Castell Art: Sauveur Laurent Sant, Kathryn Hamme Secretarial:
Vanessa Blackburn Kiddle
Layout Consu/tants:
D. Norris, T. Gabos

PCW Photography: Yoshi Imamura, Peter McGee
Typesetting \& Artwork: Gilfillan
Cover: The Attache

## CONTRIBUTORS:

We welcome interesting articles written simply and clearly. You need not be a specialist to write for us. MS should not be more than 3000 words long, lines double spaced, with wide margins. Line drawings and photographs wherever possible. Enclose a stamped selfaddressed envelope if you would like your article returned.

Manufacturers, suppliers and deaiers are welcome to contribute technical articles, and send product information, but we are pledged to an independent viewpoint and will publish evaluations and reasoned criticism or praise, space permitting. Naturally there will be right of reply. Views expressed in articles are not necessarily those of Personal Computer World.
We may make arrangements to offer our readers products at special prices, for a limited period, in line with the policy outlined above.

[^0]| QTY. | DIODES/ZENERS |  |  |
| :---: | :---: | :---: | :---: |
| 1 N914 | 100 v | 10 mA | . 05 |
| 1N4005 | 600 v | 1 A | . 08 |
| 1 N4007 | 1000v | 1 A | . 15 |
| 1 N4148 | $75 v$ | 10 mA | . 05 |
| 1N4733 | 5.1 v | 1 W Zener | . 25 |
| 1N753A | 6.2 v | 500 mW Zener | . 25 |
| 1N758A | 10v | " | . 25 |
| 1N759A | 12v | " | . 25 |
| 1 N5243 | $13 v$ | " | . 25 |
| 1N5244B | $14 v$ | " | . 25 |
| 1N5245B | $15 v$ | " | 25 |


| QTY. | SOCKETS/BRIDGES |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 8-pin | pcb | . 20 | ww | . 35 |
|  | 14-pin | pcb | . 20 | ww | . 40 |
|  | 16-pin | pcb | . 20 | ww | . 40 |
|  | 18-pin | pcb | . 25 | ww | . 95 |
|  | 20-pin | pcb | . 35 | ww | . 95 |
|  | 22-pin | pcb | . 35 | ww | . 95 |
|  | 24-pin | pcb | . 35 | ww | . 95 |
|  | 28-pin | pcb | . 45 | ww | 1.25 |
|  | 40-pin | pcb | . 50 | ww | 1.25 |
|  | Molex |  | To-3 So | ckets | . 25 |
|  | 2 Amp Bridge |  | 100 |  | . 95 |
|  | 25 Amp Bridge |  | 200 |  | 1.50 |


| QTY. | TRANSISTORS, LEDS, etc. |  |  |
| :---: | :---: | :---: | :---: |
|  | 2N2222 | (2N2222 Plastic .10) | . 15 |
|  | 2N2222A |  | . 19 |
|  | 2N2907A | PNP | . 19 |
|  | 2N3906 | PNP (Plastic Unmarked) | 10 |
|  | 2N3904 | NPN (Plastic Unmarked) | . 10 |
|  | 2N3054 | NPN | 45 |
|  | 2N3055 | NPN 15A 60v | . 60 |
|  | T1P125 | PNP Darlington | 1.95 |
|  | LED.Green, | Red, Clear, Yellow |  |
|  | D.L. 747 | $7 \mathrm{seg} 5 / 8^{\prime \prime} \mathrm{High}$ com-anod | 1.95 |
|  | MAN72 | 7 seg com-anode (Red) | 1.25 |
|  | MAN3610 | 7 seg com-anode (Orange) | 1.25 |
|  | MAN82A | 7 seg com-anode (Yellow) | 1.25 |
|  | MAN74 | 7 seg com cathode (Red) | 1.50 |
|  | FND359 | $7 \mathrm{seg} . \mathrm{com}$-cathode (Red) | 1.25 |


| 9000 SERIES |  |  |  |
| :---: | :---: | :---: | :---: |
| 9301 | . 85 | 9322 | . 65 |
| 9309 | . 35 | 9601 | . 20 |
| 9316 | 1.10 | 9602 | . 45 |


| QTY. <br> MICRO'S, RAMS, CPU'S, E-PROMS QTY. |  |  |  |
| :---: | :---: | :---: | :---: |
| 8T13 | 1.50 | 2107B-4 | 4.95 |
| 8 T23 | 1.50 | 2114 | 9.50 |
| 8T24 | 2.00 | 2513 | 6.25 |
| 8 T97 | 1.00 | 2708 | 10.50 |
| 74S188 | 3.00 | 2716 D.S. | 34.00 |
| 1488 | 1.25 | 2716.(5v) | 59.00 |
| 1489 | 1.25 | 2758 (5v) | 23.95 |
| 1702A | 4.50 | 3242 | 10.50 |
| AM 9050 | 4.00 | 4116 | 11.50 |
|  |  | 6800 | 13.95 |
| MM 5314 | 3.00 | 6850 | 7.95 |
| MM 5316 | 3.50 | 8080 | 7.50 |
| MM 5387 | 3.50 | 8212 | 2.75 |
| MM 5369 | 2.95 | 8214 | 4.95 |
| TR 16028 | 3.95 | 8216 | 3.50 |
| UPD 414 | 4.95 | 8224 | 3.25 |
| 280 A | 22.50 | 8228 | 6.00 |
| 280 | 17.50 | 8251 | 7.50 |
| Z 80 P10 | 10.50 | 8253 | 18.50 |
| 2102 | 1.45 | 8255 | 8.50 |
| 2102L | 1.75 | TMS 4044 | 9.95 |


| C MOS |  |
| :---: | :---: |
| QTV. 4000 | . 15 |
| 4001 | . 15 |
| 4002 | 20 |
| 4004 | 3.95 |
| 4006 | . 95 |
| 4007 | . 20 |
| 4008 | 75 |
| 4009 | 35 |
| 4010 | 35 |
| 4011 | 20 |
| 4012 | 20 |
| 4013 | 40 |
| 4014 | 75 |
| 4015 | 75 |
| 4016 | . 35 |
| 4017 | 75 |
| 4018 | 75 |
| 4019 | 35 |
| 4020 | . 85 |
| 4021 | 75 |
| 4022 | 75 |
| 4023 | 20 |
| 4024 | 75 |
| 4025 | 20 |
| 4026 | 1.95 |
| 4027 | . 35 |
| 4028 | . 75 |
| 4029 | 1.15 |
| 4030 | . 30 |
| 4033 | 1.50 |
| 4034 | 2.45 |
| 4035 | . 75 |
| 4037 | 1.80 |
| 4040 | 75 |
| 4041 | 69 |
| 4042 | . 65 |
| 4043 | 50 |
| 4044 | 65 |
| 4046 | 1.25 |
| 4048 | . 95 |
| 4049 | . 45 |
| 4050 | . 45 |
| 4052 | . 75 |
| 4053 | . 75 |
| 4066 | . 55 |
| 4069/74C04 | . 35 |
| 4071 | . 25 |
| 4081 | . 30 |
| 4082 | . 30 |
| 4507 | . 95 |
| 4511 | . 95 |
| 4512 | 1.10 |
| 4515 | 2.95 |
| 4519 | . 85 |
| 4522 | 1.10 |
| 4526 | . 95 |
| 4528 | 1.10 |
| 4529 | . 95 |
| MC 1440914 | 14.50 |
| MC 14419 | 4.85 |
| $74 \mathrm{C151}$ | 1.50 |



CABLE ADDRESS: ICUSD
TELEX \#
HOURS: 9 A.M.-6 P.M. MON. thru SUN.

## INTEGRATED CIRCUITS UNLIMITED

7889 Clairemont Mesa Blvd. - San Diego, California 92111 U.S.A.<br>no Minimum

COMMERCIAL AND MANUFACTURING ACCOUNTS INVITED
ALL PRICES IN U.S. DOLLARS. PLEASE ADD POSTAGE TO COVER METHOD OF SHIPPING. ORDERS OVER $\$ 100$ (U.S.) WILL BE SHIPPED AIR NO CHARGE.
PAYMENT SUBMITTED WITH ORDER SHOULD BE IN U.S. DOLLARS.
ALL IC'S PRIME/GUARANTEED ALL ORDERS SHIPPED SAME DAY RECEIVED.
CREDIT CARDS ACCEPTED:
SPECIAL DISCOUNTS

| Total Order | Deduct |
| :--- | :---: |
| $\$ 35-\$ 99$ | $10 \%$ |
| $\$ 100-\$ 300$ | $15 \%$ |
| $\$ 301-\$ 1000$ | $20 \%$ |

Phone (714) 278-4394 BarclayCard/Access / American Express / BankAmericard / Visa / MasterCharge

## Editorial

## Young People

Back in the days when I was a committed chess player I once graciously sat down to give a twelve year old boy a lesson, or perhaps two, in chess. Three games and three defeats later I staggered from my chair wondering what had hit me.

Duncan Willis (see photo) exhibited his 77-68 at our show. He built the whole thing himself, making only one call to Tim Moore at Newbear.


Duncan Willis shows off his 77-68 Micro at the PCW Show. Photo: Nobby Clark, The Observer
Mark Colton (see "Punchlines") was seventeen at the time he wrote his articles for PCW.

Paul M. Jessop is now a veteran writer; he's eighteen or thereabouts.

Articles to come: "Checkmate", by Francis Best, aged eighteen; "Sixteen Bits of Power", by Caspar Bowden, aged seventeen.

I'm delighted. I sincerely think that the word "world" in PCW is all important - it means accommodating (though not necessarily endorsing) varied interests, opinions, levels of knowledge and age groups. (I have an article by a seventy-eight year old coming up.)

My only anxiety (and that's not too strong a word) is that we will not receive articles by women. I would like to issue a strong invitation to women readers to contribute to PCW. Apology

The article "Binary Conversion" in the January issue was wrongly attributed: the author is Leonard L. Leyrer, to whom we offer our sincere apologies.

## THINK OF THE FUTURE. LOOK BACKWARDS!

Back numbers still available, except issue no. 5. Nos. 3, 4 and 6 on the verge of being sold out. Price per copy still only 65 p inc. $P+P$.
Send to:
Personal Computer World
(Back Numbers)
62A Westhourne Grove
London W2

## Publisher's Letter

Dear Reader,
This is our anniversary issue, I would like to thank everyone, readers and advertisers, for their support.

Acquaintances of mine in the publishing business wonder how we get such interesting readers' letters. I reply, "because we have interesting readers".

We're both praised and criticised by readers - but every single letter is a letter from a friend.

I have some great news. We have a stand at the Microsystems 79 exhibition at the West Centre Hotel, Lillie Road, London, SW6 - the same exhibition at which we launched PCW last February. We're going to use this occasion to launch yet another publication Computertrader. It will be full of trade news and information, and will be a monthly.

And in mid-March, if all goes well, there will be a third string to our bow. This will be a bimonthly magazine, Computers And Small Business Applications. No coincidence that its acronym is CASBA!

## SUBSCRIPTIONS

When PCW started publication, we had a special six-issue offer. When these subscriptions expired, we sent out reminders.
The renewal rate was $70 \%$ !
PCW reader loyalty is becoming a byword in publishing. If you're having difficulty in obtaining PCW at your newsagent, take our subscription. You can find the details at the foot of P.3.

## AN ADDITIONAL ADVERTISING REPRESENTATIVE REQUIRED FOR PCW

More and more companies are taking advantage of PCW as the advertising medium for small computers in Europe. This means expanding our service to advertisers.
Our top priority is therefore an advertising representative with some experience and a
flair for working on his own initiative.
Write to the Publisher,
PCW, 62a Westbourne Grove, London, W2
with details of yourself and to arrange an interview.

## REQUEST TO READERS

Personal Computer World, for its future publishing projects, is now compiling a comprehensive list of magazines, periodicals and books on personal computers and microprocessor applications, as well as manufacturers, dealers and suppliers.
Any reader living in Europe who is able to help - please send your information to PCW (Information Publications)
62A Westbourne Grove, London W2 England

# THE RESEARCH MACHINES 3802 COMPUTER SYSTEM 



## THE RESEARCH MACHINES $380 Z$ A UNIQUE TOOL FOR RESEARCH AND EDUCATION

Microcomputers are extremely good value. The outright purchase price of a 3802 installation with dual mini floppy disk drives, digital I/O and a real-time clock, is about the same as the annual maintenance cost of a typical laboratory minicomputer. It is worth thinking about!

The RESEARCH MACHINES $380 Z$ is an excellent microcomputer for on-line data logging and control. In university departments in general, it is also a very attractive alternative to a central mainframe. Having your own 3802 means an end to fighting the central operating system, immediate feedback of program bugs, no more queuing and a virtually unlimited computing budget. You can program in interactive BASIC or, using our unique Text Editor, run very large programs with a 3802 FORTRAN Compiler. If you already have a minicomputer, you can use your 3802 with a floppy disk system for data capture.

What about Schools and Colleges? You can purchase a $380 Z$ for your Computer Science or Computer Studies department at about the same cost as a terminal. A $380 Z$ has a performance equal to many minicomputers and is ideal for teaching BASIC and Cesil. For A Level machine language instruction, the $380 Z$ has the best software front panel of any computer. This enables a teacher to single-step through programs and observe the effects on registers and memory, using a single keystroke.

## WHAT OTHER FEATURES SET THE $380 Z$ APART?

The 3802 with its professional keyboard is a robust, hardwearing piece of equipment that will endure continual handling for years. It has an integral VDU interface - you only have to plug a black and white television into the system in order to provide a display

380Z/32K complete with SINGLE MINI
FLOPPY DISK SYSTEM MDS-1
£1787.00
unit - you do not need to buy a separate terminal. The integral VDU interface gives you upper and lower case characters and low resolution graphics. Text and graphics can be mixed anywhere on the screen. The $380 Z$ has an integral cassette interface, software and hardware, which uses named cassette files for both program and data storage. This means that it is easy to store more than one program per cassette.

Owners of a 3802 microcomputer can upgrade their system to include floppy (standard or mini) disk storage and take full advantage of a unique occurence in the history of computing - the CP/MTM* industry standard disk operating system. The 380 Z uses an 8080 family microprocessor - the $\mathbf{Z 8 0}$ - and this has enabled us to use CP/M. This means that the $380 Z$ user has access to a growing body of CP/M based software, supplied from many independent sources.
$380 Z$ mini floppy disk systems are available with the drives mounted in the computer case itself, presenting a compact and tidy installation. The FDS-2 standard floppy disk system uses double-sided disk drives, providing 1 Megabyte of on-line storage.
*Trademark, Digital Research.
Versions of BASIC are available with the $380 Z$ which automatically provide controlled cassette data files, allow programs to be loaded from paper tape, mark sense card readers or from a mainframe. A disk BASIC is also available with serial and random access to disk files. Most BASICs are available in erasable ROM which will allow for periodic updating.

If you already have a teletype, the 380 Z can use this for hard copy or for paper tape input. Alternatively, you can purchase a low cost 3802 compatible printer for under $£ 300$, or choose from a range of higher performance printers.

380Z/16K System with Keyboard
£965.00

RESEARCH MACHINES Computer Systems are distributed through SINTEL, P.O. Box 75 , Chapel Street, Oxford. Telephone: OXFORD (0865) 49791. Please contact SINTEL for the 380 Z Information Leaflet. Prices do not include VAT @ $8 \%$ or Carriage.

Letters

## PUZZLE DAZZL!E - No. 2

I enclose a small puzzle for those of your readers that own MK14 micro's. I hope you cạn find room in your magazine for it!

## P.S. Anyone for a MK14 Users' Club?

## MK14 Puzzle

A program occupies memory locations OF12 to OFFO
A programmer decides to make the program loop back to OF12. He cannot use the registers P1, P2 or P3, and the program must jump directly from OFFO to OF12.
What coding must he write?

## Geoff Phillips,

8 Poolsford Road,
London NW9 6HP
PCW $£ 5$ goes to Geoff Phillips for setting the puzzle, and $£ 5$ each to first three correct solutions received. PCW

## Catch them young

As a teacher of Mathematical Sciences 1 am finding that pupils aged 14-15 with only a few weeks' experience of computing are avidly buying your magazine. The reason, apparently, is that although many of the articles are meaningless to them, there is' always at least one program that they are able to run, whether it be a long program (Submarine Chase, Geography quiz, etc.) or a short one that they can experiment with - computer art, Pet preening and so on.

Buying your magazine is helping to educate my students with articles that, sooner or later, will become meaningful.

The point of this letter is that with the rank beginner in computing - keep up the good work with the programs.
D. Adams, (Ellis Guilford"Comprehensive School)

367 Spring Lane,
Mapperley Plains,
Nottingham.

## Vintage Whine

I have subscribed to PCW before I ever dreamed of ac tually owning a computer. Now that I do and I have tasted the joys and the frustrations of all that go with being awakened to this new and exciting world, ! have something to say:

I don't think I should complain too much about the fact that the companies involved in marketing personal computers are pathetic in their lack of available peripherals. This is the way the British do business. Thev just happen to be fortunate to have caughit a highly successful bandwagon. In the States these great entrepreneurs would last about $31 / 2$ minutes!

I don't really want to complain about the fact that there is a rip-off market going on in software that is over-priced, full of errors and mechanically faulty.

But what I do want to complain about are the snide remarks and whining negative attitude that oozes out when I mention that I bought my personal computer from Lasky's.

Until dealers realise the reality that there are thousands of prospective customers who cannot afford to blow huindreds of pounds in cash, they are going to have to be-satisfied with a small, one-sided market.

## Ron Singer.

07 Nelson House, Dolphin Square, London SW1V 3MY
PCW A glance through the magazine shows that recently the situation has improved PCW

## Misloçated Title?

The article on computing in geography by J. D. and T. C. Lee in vour November issue cannot be allowed to pass without comment. There would have been no objection if it was called 'Rote learning with a computer' and 'Program to test general knowledge'.

Only in a few schools is the type of geography described still taught. Instead pupils are taught how to look up information of that sort, should they ever need it, and the majority of school geography is spent in a study of the way in which society interacts with its environment in various parts of the world. Pupils are introduced to such varied topics as North Sea oil, its origin, extent, exploitation, and impact; to the problems of declining industrial regions, third world agriculture, and the growing range of urban and rural planning problems. (Computers are used as a teaching aid in all these topics).

The content of geography, and the skills taught within geography, now produce students able to understand major political and social issues without prejudice, It is a rapidly developing subject, changed out of all recognition since most of vour readers left school. Because of this it is not surprising that the authors of the article were unaware of the changes. However, it is important that your readers do not-get the impression that their program has any relevance to contemporary school geography.

One of the most striking features of contemporary geography is its very heavy use of computing, for data analysis, for the development and testing of explanatory models and simulations, and in automated cartography and a wide range of computer graphics.

Nor is this activity confined to universities and polytechnics. The Geographical Association has had a major research grant to investigate the use of computers for teaching purposes and now provides a range of fully documented programs designed for use in a teaching situation, programs which perform the tedious data management and low level calculations often necessary in contemporary geography but of no educational merit. It also acts as a centre for exchange of information and is in touch with about 400 teachers in secondary and tertiary education who are active in the use of computers.

We are now in an exciting phase when microcomputers are increasingly being used in education. Educators are researching the best machinery, and developing educational software that makes effective use of the power and availability of microcomputers.

Full details of the work of the Geographical Association are available from the writer.
David Walker, Lecturer, Dept. of Geography,
University of Technologv, Loughborough, LE11 3TU
PCW Call it what you will - children will still have fun with the program. Of course, that isn't the point of David Walker's letter, and we appreciate and agree with the Geographical Association's outlook. PCW

## Orient vour Computer thisaway

May I make an appeal for assistance through your columns? Wrekin Orienteers is organising the 1979 Midlands Orienteering Championships. It will be held on Sunday 4th March in the Telford area of Shropshire, and will attract upwards of 2,000 competitiors of all ages from 10 to 60 .

Ours is a wholly amateur sport and putting on an event of this size makes heavy demands on our resources. We would like to reduce this burden by using computer assistance in preparation of staff lists, programs and computing results.

Do any of your readers have a microcomputer system, with disc and printer facilities, which we could borrow, or hire at purelv nominal rates, for a period of two months before and immediately after the event? If so, I would be pleased if they would contact me at this address/telephone number.
P. E. Walker, 9 Queens Drive, Newport, Shropshire TF107EU Telephone (evenings) Newport (0952) 810060

## Computer Quips

While it was good to see another attempt at solving the problem of 'What to Do after You Hit 'Return' and it Aborts Your Program", PCW, November 1978, p.34, Mr. Smith inclusive OR your staff must bear the responsibility for the numerous errors in the program shown:

Line 1000: insert a 'space' character between the two backspace arrows. Line 1000: "THEN GO TO" is redundant. Line 1005: In my PET and all others I have seen, SL is 48 and SU is 57. Line 1010: Delete the semicolon. Line 1015: Delete " +1 ", Line 1100: Delete " $=$ ". Add line 1013: "IF SC $=64$ GOTO $1020^{\prime \prime}$. This will prevent the program from aborting on input of upper case characters or lower case characters other than numbers or the specified letters.

While on the subject of PET, here's a strong vote for the use of the following standard code in printed PET programs. Each is two-character, lower case.
sh: shift the next character. (alternately underline the char.) st: shift lock. (hold shift down until sr), sr: shift release. ho: home, cs: clear screen. cl, cr, cu, cd: cursor left, right, up, down. rv: reverse. ro: reverse off, (alternately rl and rr for compatibility with shift code). sp: space. in: insert. de: delete.

The need for some such coding comes about because of PET's flexible cursor facilities and large vocabulary of special graphics symbols.

It's hard to believe, but there are still some surprises hidden in PET. Here are a few I doubt even the designers know about: (Write one of these lines and then call for a listing.)
THE SHAKESPEAREAN ACTOR
4502spREMs1, \#sr Bspsh0 spsh (spsh \# Bsi $1+\mathrm{N}: 4 \mathrm{sr}$
THE RELIGIOUS CONVERSION
26912 spREMs $1 \leftarrow \mathrm{Q} s \mathrm{D}$ !
THE DIRTY OLD MAN;
11234spREMs $1, F(\$=/ Z 0$ ? $\$ Y \$ ?+\mid$ sp; l' $B$ 'UVsr
If it doesn't make any sense, try verbalizing what's on the
screen. If that doesn't help, check vour program lines very carefully. Your PET is trying to tell you somethingl
Frank Chambers, Rock House, Ballycroy, Westport, Co. Mayo, Iroland.;

## Incontinent?

'HOW TO CONTROL YOUR BASIC FUNCTIONS', Christopher Smith, (PCW November 1978) has taken a sledgehammer to crack an egg, with the suggested method for avoiding PET returning to command mode when the RETURN key is pushed in response to an Input request.

## 10 INPUT "ENTER YOUR AGE [2 RIGHT] "[3 LEFT]";

G\$:G=VAL(G\$):IF G=0 THEN PRINT "[2 UP]":GOTO 10 is far simpler.

This line uses the program listing convention for PET from the American magazine People's Computers.

Whenever square brackets appear in the listing, neither the brackets nor the text they enclose should be typed literally. Instead, the text between the brackets should be translated to keystrokes. For example, [2 RIGHT] means press the second CRSR key twice.

## John Collins, 90 Charing Cross Road, London WC2H OJE

## Programmed Profits

I can only conclude from the somewhat erratic delivery of my copy of PCW, and the complete failure of the November issue to-arrive at all, that your computerised system for handling subscriber lists (surely you must have one, with a name like PCW) has not been introduced to software quality assessment techniques. Or was it that the programmer found that he could save the company a lot of money by issuing only $90 \%$ of the copies, and blaming the rest on software errors. This opens a whole new field of business economics!

May I congratulate you on your sortie into the problems of Assembler writing, though I would have liked to have seen an introductory article covering the general principles of syntax decoding. Also, how about an occasional page or two of usefu! routines (e.g. 16 -bit or floating point multiply etc.), along the lines of the technical tips featured in most electronics magazines?
J. R. Keneally, 31 St. Hèlens Road, Weymouth, Dorset DT4 90Y PCW This ingenious approach to increased profits hadn't occurred to us, but now . ... . . PCW

## A PET tip

Here is a tip for PET 2001/8 users who find themselves inputting a null string to an input statement. PET recognises the keyboard as device number 0 . The screen as device number 3.

## 10 OPEN 110,0

20 INPUT \#1,A \$
30 IF A $\$=$ "'END"THEN 100 (OR, IF A $\$=\cdots$ "' THEN 20; INSTEAD OF IF A $\$=$ "END")
40 INSTRUCTIONS FOR WHAT TO DO WITH A \$ GO HERE THEN HAVE A GOTO 20 TO RETURN TO LINE 20
50
60
70
80
90
100 CLOSE 1
(Line 30 allows you out of loop).
No question mark will appear for the input statement, but as long as a string variable is used a null input will not cause the program to return to command level.
Thomas Turnbull (Petsoft Consultant), $49 \times 9$ th Row, Ashington Northumberland NE63 8JY

## Correction to a correction . . . infinite regression?

Re Personal Computer World, November 1978, p. 39 - your corrections to July Punchlines are wrong in one diagram. The rectifier circuit as given would be extremely inefficient if it worked at alll - It should be:


Most constructors would know this but someone who did not would find the rectifier getting very hot and the output unsuitable.
W. G. C. Austin, 33 Slingsby Gardens, Cochrańe Park, Newcastle-upon-Tyne NE7 7RX
PCW The editor is at the moment in a monastery, being scourged

## Zeal for the $\mathbf{Z 8 0}$

You must ask Mike Dennis to stop making vague promises to "get around" to designing a 280 based system! $Z 80$ architects are conspicuous by their absence; having half-volunteered for the task, perhaps he should be sponsored by PCW to produce the best $\mathbf{Z 8 0}$ based home system to date.

Looking, at other projects from the early growth-period of British personal computing we can learn from the experience and criticism which they have raised.

The first point is: that anyone choosing a 6800 or 8080 as the heart of a system is patently "chickening-out" of the use of the slightly-more-daunting Z80. Regárdless of the claimed comparative ease of using the other devices, it must be obvious that the 158 - Instruction-Set $\mathbf{Z 8 0}$ offers greater ultimate versatility and the possibility of tighter programming - particularly in its efficiency when applied to compilers, interpreters and assemblers, and probably also in operating systems.

Before Mike Dennis crawls into his den for a lengthy stint at his self-imposed task, could I start the ball rolling by 'chipping-in' with a skeletal basis of the system I envisage, and hope for comment from other readers which can further assist our designer as he settles to his monastic task?

The circuit should - unlike some - provide for full use of the whole 280 Instruction Set. Circuitry should be chosen for cost effectiveness, and need not be restricted to the 280 'family" of chips. Whether or not to use a 'conventional' bus-structure is a moot point; ribbon connectors can, in many applications, prove both more convenient and reliable, and cheaper than a bus-andmotherboard structure. 'Chassis-bashing', in the earlier days of electronics, was reasonably cheap and effective, and present indications are that it still is I

The power unit should be generous in capacity.
Memory should be at the choice of the user: either static or dynamic-with-refresh, as alternatives. This should also take into account a reasonably generous amount of.ROM for a good land efficient) BASIC, providing three levels of mathematics: integer, six-digit and some larger number of digits; six digits can be common to both the integer and a simple floating-point system, while the other system should leave no-one critical of the machine as a number-cruncher.

An efficient monitor, editing capacity and operating system should be provided; CP/M is rapidly taking over as a standard, and can hardly be left out of this system.

A full keyboard, with the proper feel, should be specified. It should provide all 128 characters, and could have additiona! 'shift' for graphics if desired. There should be provision for a numeric key-pad for anyone wishing to add it as an extra, as should additional kevs for some of the more frequently used functions.

Screen display should be either VDU or TV-modulated, and should provide 80 characters per line for the very practical reason that this is the width of an A4 page; A4 can be very useful in print-out, either in single sheet form, or in 210 mm rolls: In office applications it lends itself readily to copying and filing systems and is a business standard which cannot be overlooked. Regardless of noises to the contrary, a good modulator can quite capably support an 80 character line with good definition; perfectly good TV's are now available on the second-hand market at $£ 8$ to $£ 12$, and good modulators of adequate bandwidth are not expensive - too good an opportunity to missl

As a teaching aid, the system should provide both an LEDbased single-step-and-examine facility, and also single-step screen display as in G. J. Flanagan's September article: "The Soft Facade". One could hardly conceive of a better de-bugging facility or instruction method.

Using the 80 c.p.I. display, an early program for Word Processing should be made availabile. This should be modular, insofar as it should support an automatic correction and edit facility, but in its simplest form this should be a single page program; the exotic multi-page version could be added later. Reason for asking for this facility is to provide a sophisticated standard typewriter capability; many wives are competent typists, and as their financial support is essential to many purchasers it is only fair that they should be given a crack at the apparatus. It is also a good advertising gimmick with which cap-in-hand husbands could obtain their hearts' desire.

Commercially, a tie-up with a major electronics company would be sensible: it leads to lower first cost and better back-up facilities. The larger the company, the better the prospect.
B. A. Martin, 99 Northdown Road, Solihull,

## West Midlands B91 3ND

PCW We would not undertake a PCW system unless we were sure of guaranteed quallty and an absolutely cast iron back-up service

## READERS

Using a SORCERER, IMSAI, MSI6800, HORIZON, VECTOR MZ MZ . . . . . . . or any other small system? Write to us.

# Tid Bits 

PRODUCTS
COMPANY NEWS

## Another Newbear Fact

A VDU, Model 700, from Newbear is low cost, offering: upper case ASCII; $64 \mathrm{Ch} \times 16$ lines; scrolling; full cursor control; RS232C/V24; 110 Baud, 300-1200 Baud; 12" display; separate keyboard; full duplex or half duplex. Price is $£ 299$.
Further details and demonstrations from nearest Newbear Store or write: 7 Bone Lane, Newbury, Berks. RG145SH.
Telephone: (0635) 49223


LTT Electronics, a mail order only outfit, can offer some of the famous Godbout computer products, including the best selling Economoram (TM) range of memory boards. For details of range and prices, write to 37 Orlando Road, London S.W.4.

Brian Reffin Smith (see PCW Vol. 1, No. 8) can offer his "intelligent Programs'" - art/conversational programs on tape for the Research Machines and Pet. He can also give advice on Graphics, and Basic listings of programs he has created. Write to him for full details and catalogue at 32 Kensington Park Gardens, London, W. 2.

Microdigital of 25 Brunswick Street, Liverpool now claims to have the biggest and most comprehensive list of "readware" books on personal computing. Also its own brand of coding pads and high quality cassettes. Details from Bruce Everiss.


Price Breakthrough
The KIM 1
KIM 1 is now $£ 99.95$. Fully assembled, 6502 microprocessor, 2 K bytes of ROM, 1 K of RAM, Keyboard, 6-digit LED display. Full documentation. Expansible. Marketed by the innovative G. R. Electronics of Newport, Gwent; and Marshall's the well known electronics distributors with shops in London, Glasgow and Bristol.
G. R. Electronics also offer a $£ 475$ IBM 'golfball' based printer for PET.

## Home in on the Texas range and Fly with OSI.

Abacus Computers of 62 New Cavendish Street, London, announce that Texas Electronic Instruments have appointed them worldwide distributors for their range of microcomputers.

Abacus are also sole distributors of Ohio Scientific Instruments' range of computers, including the Superboard II. Dealer and general enquiries to Derek Rowe at above address.

## NASCOMpatible

JWM Electronics, 60 Balcombe Street, London N.W. 1 (01-262 2936 or 01 - 402 9244) has jumped on the NASCOM bandwagon with three kits. KIT 1 is for Alphanumerics, Graphics; KIT 2 is a Graphics RAM with colour decoding, R.F. modulation; KIT 3 a programmable sound $F / X$ Generator. Write or ring for details.

## The ICL Gambit

International Computers Ltd., has rescued the famous Hastings International Chess Congress from oblivion.

This public spirited move means that a vital event in the chess world will continue to foster new talent.

## The Almare of Quality

Almarc Data Systems Ltd., have introduced time sharing on the Vector Graphics Z80A microcomputer, and state that as a result the system is ideal for schools. The computer uses the S100 bus standard and so can accommodate a vast range of add-ons such as video graphics boards, music synthesiser, voice recognition, and a real time clock. Free advice and a brochure from 29 Chesterfield Drive, Burton Joyce, Nottingham. Telephone: 0602248565.

## TRITON makes Waves

The Triton hobby microcomputer, designed by Mike Hughes, now has over 400 users. This single board system is expandable to 64 K , and has BASIC, 56 key ASCII keyboard, 256 I/O ports among its features.

## Full details from:

TRANSAM Components Ltd.,
12 Chapel Street, London.
Telephone: 01-4028137
Or write for a catalogue, with s.a.e.

## Teletext/Viewdata from Technalogics

A 6800 microprocessor based decoder with "powerful local computing" facilities - the TECS - is now on the market.

The system is crammed with features, some of which are: program access to Teletext information such as share prices; all colour display facilities inherent in Teletext and Viewdata; ROM -resident TECS mini-Basic; machine code monitor program

## Full details from:

## Technalogics,

## 8 Egerton Street, Liverpool

Telephone: 051-724 2695
Mini Micro, specialists in PET games, now offer books from leading American publications in the computer field. Readers can obtain the Books and Games Catalogues by writing to 47 Queens Road, London, N11 2QP.

New American Micro Magazine: A monthly publication devoted to the Motorola 6800, '68' Micro Magazine is intended to be objective, giving equal space to criticism and rebuttals.

## Details from:

Hamilton Publishing Inc.
3018 Hamill Road,
Hixson, Tn., U.S.A.
Pelco (Electronics) Ltd. draws attention to the Rockwell R6500 - a family of 10 software - compatible CPUS, eight I/O, ROM, RAM and one-chip memory - 1/O-timer circuits operating at 1 MHz or 2 MHz speeds with a single 5 V power supply.

In Rockwell's range is the SYSTEM 65, a floppy-disk based, "powerful yet low cost" complete development system. Contact:
Pelco (Electronics) Ltd.,
83-85 Western Road,
Hove, Sussex BN3 1JB
Teiephone: (0273) 722155

## A new Source of software

Source is a new software company started by two ex-employees of Southwest Technical products (UK).

In the future it will be providing considerable support for the leading microcomputers in the form of powerful system software.

It will also contract to write systems and applications programs for whoever might require them, and interface peripherals which haven't already been connected.
Contact:
Source, 12 Vivian Road, Wellingborough, Northants.
Telephone: (0933) 224040
Research Resources Ltd., offer a statistical package for SWTP compatible microsystems. The package - named SAM (Statistical Analysis for Micro-computers) - requires a minimum configuration of 32 K and a dual floppy disk (mini or standard). The current version contains fourteen analyses; such as edit, histogramming, regression and T-Tests.

## Contact:

RESEARCH RESOURCES Ltd.,
P.O. Box 160, Potters Bar, Herts., England.

Telephone: Potters Bar 54737


New from Philips
Philips' new M-DCR series of Mini-Digital Cassette Recorders provides 128 kbytes of serial memory, recorded on two tracks of interchangeable certified digital Mini-cassettes.
Contact:
V. L. Drayton, M.E.L.,

Manor Royal,
Crawley, West Sussex RH10 2PZ
Telephone: 029332850

## The Tasteful Tangerine - VDU Kit

The TANGERINE 1648 is a fully self-complementing module enabling the transfer of data to and from any computer, albeit micro, mini etc., and linking the intelligent unit with a video display terminal. This can either be a video monitor or a conventional television set that has a UHF tuner and operates at 625 lines with a field rate of 50 Hz .

The TAN 1648 generates 16 rows by 48 characters. Noninterlaced scanning is used with an active line width of $48 \mu$ Secs. Should this be too wide, even after adjusting the width control of the receiver, the left hand margin may be.pulled in by 4 characters thus reducing the line width to 44 characters which with th is VDU kit produces an active line of $44 \mu$ Secs.

Other features: Built in repeat function and lower case function, Composite video output, decoded character control outputs.
Full details:
Tangerine Computer Systems Ltd.,
Rivermill Lodge, London Road,
St. Ives, Huntingdon, PE17 4BR


The Tangerine VDU board

Beyts Logic Ltd., are marketing a plug-in "Suppressor" for systems. Combats mains-borne interference and helps safeguard data integrity. Comes complete with 65 cm lead, 13 amp plug (fused for 7 amp ) for $£ 17.90$.
Details from:
Beyts Logic Ltd.,
Windmills Road, Sunbury, Middx.


NEW PRODUCT - MADE IN THE U.K.
MICROSPEECH is a microprocessor peripheral that produces synthetic speech. The card containing all the electronics plugs into the standard SS50 bus on the SWPTc and MSI 6800 microcomputers. The software translator program (MSP2) converts phonetic code (which is similar to normal spelling) into sets of data that control the speech synthesiser. The data, when decoded, produces nine control paramaters which determine pitch, amplitudes, and resonant frequencies in the speech model. What goes in are phonetically spelt phrases, and what comes out is synthetic speech.


Microspeech: A British synthetic speech board.
The speech model is a three format synthesiser with separate nasal and fricative branches. A digital noise source and a voltage controlied oscillator produce the signals that drive the unit. Alternatively an external signal may be fed in and articulated, making speaking musical sounds readily attainable.

MICROSPEECH is for the microcomputer owner, and a useful tool for those invoived in speech research, education and system design.

As well as the standard phoneme translator package, a disc based BASIC interpreter with speech output is available as a software option.

The software is availabie on floppy disc or cassette Contact:
Costronics Electronics,
13 Field Heath Avenue, Hillingdon, Middx; or Tim Orr, 55 Drive Mansions, Fulham Road, London, S.W. 6

Crystal Clear
Torquay has had for some time, a Micro-computer and Components shop - CC/Crystal Electronics - run by a team of hardware and software engincers, headed by Trevor F. Brownen.

Among their main computer producrs are the Apple II, the Nascom I, the Newbear 77/68 System and the Atari Vidco Computer System, and they are at present evaluating many other products.

The shop is open every day from 9.30 a.m. to $6.00 \mathrm{p} . \mathrm{m}$. ex cept Wednesdays and Sundays.
For advice or help telephone: 080322699.
TRS. 80 Software is now available from A. J. Harding of Bexhill. This includes all types of programmes for the TRS 80 , ranging from games to business software. Mr Harding, the U.K. director of J. \& J. Electronics Ltd., Canadian mail order semiconductor distributors, has available both programs imported from the U.S.A. and programs from English authors. Having been involved with Micro-processors from their inception in North America and being one of the earlier purchasers of TRS 80 equipment, Mr Harding is in a good position to bring to this country a good assortment of software. An SAE will bring you his list:
A. J. Harding, 28 Collington Avenue, Bexhill-on-Sea, E. Sussex. Telephone: (0424) 220391

## EXPANDING YOUR HORIZON

Users who have felt that the maximum disc storage of 270 KB , i.e. three minifloppy Shugart drives of 90 KB each, was insufficient for their needs will now be pleased to know that the North Star Horizon, marketed by Equinox Computer Systems, now supports four double density drives in place of the former three single density drives.

Both the powerful BASIC and DOS have been upgraded to accommodate the increased capacity. Application software will continue to operate with little or no change. Release 5 of the North Star Basic is being issued at the same time.
Further information from:
Mike Kusmirak.
Equinox Computer Systems Ltd.
32/35 Featherstone Street,
London EC1Y 80X
Telephone: 01-253 3781/9837

Payroll package "boosts TI personal-computer sales"
A payroll package developed for the Texas Instruments SR60A personal-computer/calculator by a Nottingham business equipment firm, Betos Systems Ltd., has enabled the company to sell 50 of the machines to local businesses during its first year of operation. Betos believes that the SR60A, with its combination of printout, display and ease of operation, coupled with the payroll package, provides a versatile tool for managements of small to medium-sized businesses.
Contact:
Leonard Gelblum or Norman Burlev,
155 Mansfield Road, Nottingham.


The payroll package developed by Betos Systems for the SR60A.


## TRS-80 SOFTWARE

All types of Software for the TRS-80. Imported and U.K. written! Business, games and general programs stocked for same day shipment. A few examples:-

| User Programmable File Handling | $£ 14.95$ |
| :--- | ---: |
| Microchess | $£ 14.00$ |
| Cross Reference | $£ 7.95$ |
| Star Trek | $£ 14.95$ |
| Accounts Receivable | $£ 19.95$ |
| Inventory Management | $£ 19.95$ |
| Slot Machine | $£ 9.95$ |
| Space Fighter | $£ 9.95$ |

Send SAE for full listing and addition to our mailing list.

## A. J. HARDING

28 Collington Avenue, Bexhill-on-Sea, E. Sussex
Tel: (0424) 220391


## THE NEWBEAR COMPUTING STORE

7 Bone Lane, Newbury.

77-68
The Best Supported Hobbyist 6800 System in the U.K.
Available as Bearbags or as Individual Components.

## * TOUCH KEYBOARD *

- Full ASCII
- Assembled \& Tested
- One Year Guarantee
- Comprehensive Handbook
- Touch Sensitivity Control
£37.50
inc. VAT and P\&P


## Floppy Disc Drives

| 51/2" | SHUGART SA400 DISC DRIVE | £225.00 |
| :---: | :---: | :---: |
| 8' | Carriage by Securicor 'C' Rate | £4.50 |
|  | DRt SINGLE SIDED |  |
|  | DOUBLE DENSITY | £325.00 |
|  | Carriage by Securicor 'C' Rate | £5.00 |
| 8'" | DRI DOUBLE SIDED |  |
|  | DOUBLE DENSITY | £365.00 |
|  | Carriage by Securicor 'O' Rate | £5.00 |

## SYM-1

The new 6502 Micro from Synertek. Fully assembled and tested.
Ex. Stock.

The Z80-Based Microcomputer Kit
Ex. Stock.

## Send for our New Winter Catalogue

## Books

| 77-68 Design Manual | £ 7.50 | .50p |
| :---: | :---: | :---: |
| Introduction to Microcomputers. |  |  |
| Volume 0: The Beginners Book | £ 5.95 | .50p |
| Volume 1: Basic Concepts | £ 5.95 | .50p |
| Volume 2: Some Real Products June 77 rev. | £11.95 | 1.00 |
| 8080A/8085 Assembly Language Programming | £ 6.95 | 50p |
| 6800 Assembly Language Programming | £ 6.95 | 50p |
| Some Common Basic Programmes | £ 5.95 | 50p |
| 6800 Programming for Logic Design | £ 5.95 | 50p |
| 8080 Programming for Logic Design | £ 5.95 | 50p |
| Payroll with Cost Accounting in Basic | £ 9.95 | 1.00 |
| Understanding Microcomputers and |  |  |
| Small Computer Systems | ¢ 7.56 | 50p |
| Scelbi 6800 Software Gourmet Guide and Cookbook | £ 7.95 | 50p |
| Scelbi 8080 Software Gourmet Guide and Cookbook | E 7.95 | .50p |
| The Scelbi Byte Primer | £ 9.95 | 1.00 |
| The 8080 Programmers Pocket Guide | £ 2.35 | . 30 p |
| Microprocessors C201 | ¢ 8.00 | 50́p |
| Microprocess or Interfacing Techniques | £ 8.00 | 50p |
| Guide to SC/MP Programming | £ 3.75 | 50p |
| SC/MP Assembly Language Programming Manual | $\pm 3.75$ | 50p |
| SC/MP Microprocessor Applications Handbook | E 3.75 | .50p |
| Micro - The 6502 Journal | E 1.70 | . 30 p |
| Sym Reference Manual | £ 7.50 | .75p |
| Sym Programming Manual | £ 7.50 | 75p |
| First Book of Kim | £ 7.50 | .75p |
| Kim 1 User Manual | £ 7.50 | .75p |
| 6500 Hardware Manual | £ 7.50 | $75 p$ |
| 6500 Programming Manual | £ 7.50 | .75p |
| 101 Basic Computer Games | E 5.50 | 50p |
| Games, Tricks and Puzzles for a Hand Calculator | £ 2.49 | 50p |
| Games with Pocket Calculators | £ 1.75 | 30p |
| Star Ship Simulation | E 5.10 | .50p |
| Beginning Basic | £ 2.95 | 50p |
| Introduction to Basic | £ 1.95 | 50p |
| Some Common Basic Programmes | £ 5.95 | 50p |
| Payroll with Cost Accounting In Basic | £ 9.95 | 1.00 |
| Instand Freeze and Dried Programming in Basic | £ 4.95 | 75p |
| My Computer Likes me When I speak in Basic | £ 1.65 | . 30 p |
| Computer Programmes that Work | f 2.40 | .75p |
| What you do After You Hit Return | £ 7.00 | .75p |
| 6800 System Design Data | £ 2.00 | .50p |
| Beginning Basic | E 4.95 | .50p |
| Learning Basic Fast | E 6.30 | .50p |
| 8080A Microprocessor Family Quick Reference | £ 1.50 | . $50 p$ |

ALL MAIL ORDERS TO NEWBURY PLEASE

## 24 Hour Turnaround on Orders

Barclaycard and Access welcome, No Minimum. Overseas orders issued with a Proforma invoice. Minimum Official Order £10.00. Send for catalogue to Newbear Computing Store, Bone Lane, Newbury, Berks. Callers welcome Mon. - Sat. $9.00-5.30$, But please phone us first on 0635 49223. New Office - 2A Gateley Road, Cheadle, Cheshire, Tel: 0614912290.


Further details of these terminals and compatible 6800 microprocessor equipment from:


STRUMECH ENGINEERING ELECTRONICS DIVISION Portland House Coppice Side Brownhills 4321

# Begin.. a simple outine of Computing ..End 

Brian Darling

With the continuing downward trend in the cost of computer hardware, many people are now taking their first serious look at computers. But confronted with RAM and ROM, BYTE and BASIC they simply do not know where to start. There is a danger that some will be so intimidated by the difficulties before them that they will give up, which would be a pity. This article sets out to show the complete beginner the outline of computing, leaving him to fill in the details himself. Using a conceptual model, the operation of the computer is explained and a program is devised to read in, add together and print the sum of, two numbers.

## The Computer

A computer consitss of five main units. Three of these; store, arithmetic unit and control unit, together form the central processing unit (C.P.U.). The fourth, is an input device - which for our purpose could most conveniently be a keyboard, similar to that on an electric typewriter. The last is an output device - which could be a printer, but on a personal computer is more likely to be a television screen.

Figure 1 shows the five units.

## PROGRAM



Figure 1. Notice that input goes into store and that output is taken from store.

The function of the input and output devices should be self-evident. The arithmetic unit, as its name suggests, performs the arithmetic and is quite similar to an electronic calculator. Store - which can be imagined as a set of numbered pigeon-holes - is used to store both the data and the program. The fifth unit, control, controls the overall operation of the computer and ensures that the program is executed one step at a time.

Rather surprisingly, this incredibly simple model will allow you to understand how the most complex programs are run.

## The Program

A computer program is a list of instructions which cause a computer to carry out some task. Possibly to guide a space craft to the moon, but more likely to perform some rather mundane clerical job.

As an illustration of what programming involves we will show you how to write a program to add two numbers together. We will assume for the moment that the two numbers are already in store - which, you may remember, we visualize as a set of pigeon holes. In order to add the two numbers, they must be transferred to the arithmetic unit.

The program consists of just three instructions. The first transfers one of the numbers from store to the arithmetic unit. The second transfers the other number to the arithmetic unit, adding it to the first. The last instruction transfers the sum of the numbers back to store. This can be rather confusing at first but it should become clearer when we describe how the program is executed.

The three line program is shown below:
LOAD 103
ADD 127
STORE 107
The three numbers refer to three locations in store. 103 and 127 hold the numbers that are to be added and 107 will be used to store the result. The locations used are quite arbitrary and any others could be used, providing we first load into them the numbers we wish to add.

Be sure that you understand that it is the contents of store locations 103 and 127 that are added, not the numbers 103 and 127 themselves.

## Execution of the Program

Before we can run the program we must enter it, together with the data, into store. This can be done by typing it on the keyboard. We will put the three lines into locations 001, 002 and 003. The program adds together the contents of storage locations 103 and 127, so we must enter into these locations the numbers, or data, that we wish to add. Say, 5 into 103 and 9 into 127.

Execution of the program is controlled by the control unit which has to fetch each instruction from store and execute it. This is known as the fetch/execute cycle. Part of the control unit is a counter which ensures that instructions are executed in the correct sequence. This unit is called the sequence control register (S.C.R.) or program counter.

The first instruction is fetched from location 001 and executed. It is:

LOAD 103
so the contents of 103 (5) are loaded into the arithmetic unit.

The second instruction is fetched from location 002 and executed. It is:

## ADD 127

so the contents of location 127 (9) are added to the contents of the arithmetic unit (5) making the new contents of the arithmetic unit 14.

The third instruction is fetched from location 003 and executed. It is:

## STORE 107

which transfers the contents of the arithmetic unit to store location 107.

Although this program is very simple it does illustrate how data is held in store and how it can be transferred to the arithmetic unit to be added, multiplied etc.

## Machine Language

The above program is written in assembly language and a special program, called an assembler, is used to translate it into a form that the computer can recognize, called machine language. For engineering reasons computers use binary arithmetic, which is a kind of arithmetic employing just two symbols; 0 and 1. Machine language instructions consist of groups of eight binary digits, for example, the ADD instruction for one computer we know of is 00000010 .

A binary digit is called a bit and eight bits together form a byte. Personal computers use a word length of one byte.

Machine language can be quite confusing to the beginner. But don't let this put you off, as your first attempts at programming will almost certainly be in a language called BASIC which we will describe shortly and you should find this much easier. Actually, mach ine language is not so difficult as it looks and you may get to quite like it later.

## High Level Language

You may have been surprised at the amount of work involved in adding a couple of numbers together and, in fact, there is an easier way. High level languages allow instructions to be written in a form quite close to English. The three line program used above can be condensed to a single line in BASIC - which is the most widely used language for personal computers.

The BASIC instruction is shown below:

## LET C $=A+B$

The biggest advantage of using a high level language is that it is no longer necessary to keep track of the store locations used: A program called a compiler, or interpreter, translates each BASIC instruction into machine lánguage and also allocates storage locations to each of the letters $A, B$ and $C$ - called variables - which hold the numbers to be added.

We did not show the input or the print instructions in the assembly language program, but we show them below using BASIC.

## INPUT A, B

## LET C $=A+B$

PRINT C
When the three line BASIC program has been entered through the keyboard it can be executed by typing the command RUN. (This may be slightly different on some small computers). The computer will print a question mark - or display it on the screen - and the user enters a value for A , it prints a second question mark and a value is entered for $B$. Almost instantly, the value of $C$ will be printed.

It should be clear by now that BASIC makes programming very much easier.

## Micro Programming

It is possible on some computers to go down to an even lower level than machine language, called micro programming. Although we described the C.P.U. as being made up of three units, it is more accurately described as three groups of units. Micro programming can be used to open and close doors - metaphorically speaking - and cause a series of 1 s and 0 s to pass between the various units to ach ieve the operations required. As you might imagine, it is a fairly complicated process and is not much used. But for some purposes it does result in extremely efficient programs.

Backing Store
Even on the largest computers the main store is rarely large enough to hold all the data that the user needs to store. For this reason, magnetic tape and magnetic discs - called backing store - are used to provide extra storage capacity.

Most people will be familiar with computer tape units, as whenever a computer is shown in a T.V. play, the tape units are most prominent.

Data is stored serially on magnetic tape, which means that if data has to be read from several locations, the tape will have to be continually rewound. Consequently, the time taken to locate and read a particular piece of data - the access time - is quite long.

Magnetic discs store information randomly; that is, any piece of data can be accessed immediately, in contrast to tape which often has to be wound through most of jts length to locate some item. The disc spins at high speed and the read/write head can be moved from the edge to the centre, to locate a particular piece of data, in much the same way that you can choose to play a particular track of an L.P. gramophone record. As a result, the access time for discs is much faster than for tape. But both are much slower than the computers main store.

Discs are almost never used with personal computers due to their cost but tape is, usually in the form of cassettes.

## RAM and ROM

The letters RAM stand for random access memory. Random, is not used in its usual sense, but rather, it means that any location can be accessed as required. The computer main store is constructed from RAM and each location is identified by a number, referred to as its address.

ROM stands for read only memory. The interpreter of a personal computer is held in ROM because, as we said above, discs are too expensive.

When a computer is switched off the main store is emptied but ROM retains data even without the power on, so the compiler will still be there next time you want to use it.

If you have a lively mind, this article will have raised many more questions than it has answered. But by now you should have a pretty good idea of the framework of computing and thus find it considerably easier to fill in the details.

Finally, do not allow your present lack of knowledge to deter you from pursuing computing, either as a hobby or for business purposes. You will find that learning about the subject is easier and more interesting than you ever imagined.

PCW An extract from a letter the author wrote: "I have always taken the view that several hundred people with $O$ levels are of more use to Society than one Ph.D. in a sea of illiterates".PCW

## PCW <br> TROBE...STROBE...STROB

Newsletters We've been receiving samples of newsletters such as The Nascom MC News, The Pet Newsletter, Liverpool University Computer Laboratory's Microswop, Southampton University's Benchmark. Our reaction - grassroots computing is in á terrifically healthy state. Liverpool University's Microswop has interesting articles such as "Microprocessors aid the blind", and the Nascom newsletter is written in the style of a letter to friends; the same goes for the others. Of course, one has to mention the ACC newsletter which has been so ably edited by Mike Lord.

## IF YOU CAN'T BEAT THEM:-

## VECTOR GRAPHIC INC



VECTOR V18A slot Motherchassis accepts the wide range of Vector S100 cards and makes an ideal base to build a microcomputer system Computing power is available to perform a.wide range of tasks from industrial control to small business.
£350
PR2 12K PROM/RAM card holds a comprehensive monitor program for system testing and configuration. Normal operation is in conjunction with a serial terminal via $1 / 0$ card.
£160
FLASHWRITER, memory mapped VDU with graphics, allows a system to be built without a terminal or I/O card. Specify version EV of monitor program.

1/0, Switchable 110 to 9600 baud serial interface plus two 8 -bit parallel I/O ports.
£125
High resolution graphics interface bit-maps 8 K of RAM to $256 \times 256$ points, or $128 \times 128$ with 16 level grey-scale.

Z80 Processor card
8 K Static RAM 4 MH
Analogue interface
£140 8080 Processor card £70 Precision analog 4 MHZ Precision analogue interface Packmount power supply
$£ 120$
$£ 300$ $£ 300$
$£ 250$ $£ 250$
$£ 90$

## MICROPOLIS



Micropolis disk drives employ higher standards of engineering to pack either 143 K or 315 K bytes per diskette, formatted, Supplied complete with controller card, cables, manual and software they plug directly into the $\$ 100$ bus; 8080 or' $\mathbf{Z 8 0}$.

Extended disc BASIC, mnemonic editor and assembler are provided, to run under the powerful MDOS operating system.

Add-on units are supplied to extend the system to four drives and one drive per system may be powered from the $\$ 100$ bus.

315K System S100 powered $£ 649$ 315K System Mains powered £699

Twin drive System 630K £1159
S100 bus regulator

43K Add-on Mains powered
315K Add-on $\$ 100$ powered $£ 349$ 315K. Add-on Mains powered £399

Twin drive Add-on 630K
$£ 859$
Diskettes per five
£24

## VECTOR MZ



## £2300

Combining the best features of the VECTOR GRAPHIC computer and twin MICROPOLIS 315 K byte drives. The Vector MZ produces, in one package a powerhouse of Microcomputer ability.

The VECTOR PROM monitor bootstraps directly to either MDOS, for housekeeping and Assembly language operation, or to BASIC to run high-level user programs. Provision is made to immediately attach a printer, for example one of the extensive range from Centronics sold by Sintrom, enabling use of the powerful printer-related features in the MICROPOLIS Software.

Applications Software for the VECTOR MZ now in preperation will perform a wide variety of business functions; stock control, invoicing, ledger and mailing lists. Further applications exist as a microcomputer
development system, and low cost replacement for minicomputer control and instrumentation.

ECTOR MZ configuration includes
Twin disk 630K minifloppy.
Full Micropolis disk software.
Z 804 MHZ 32 K processor.
1 Serial port, 2 Parallel ports.
12 K PROM RAM card with extended monitor.
And will support:
Flashwriter, Graphics interface, Analogue interface Additional RAM, additional minifloppy drives.

| Centronics Microprinter | $£ 398$ |
| :--- | :--- |
| Centronics 779 | $£ 780$ |
| ADM3A VDU | $£ 620$ |

£398
ADM3A VDU
£620


SINTROM GROUP

## PRICES EXCLUDE VAT

ALL EQUIPMENT FULLY ASSEMBLED AND TESTED OEM AND DEALER ENQUIRIES WELCOME

DEMONSTRATIONS IN OUR SHOWROOM

## Sintrom Microshop

14. Arkwright Road,

Reading, Berks. RG2 OLS
Tel: Reading (0734) 84322
TELEX: 847395
CABLES: SINTROM READING

# A MIGHTY MICROMITE IN ACTION 


T. F. Lenihan

RCA Laboratories, Princeton, NJ, USA.
and
Les Thurlow RCA Solid State - Europe

## A single-wire alarm system using the COSMAC microtutor

A microprocessor-controlled singlewire burglar alarm system gives the user the benefits of standard multiwire systems, but has additional flexibility and is simpler to install.

Multiwire alarm systems can easily identify the entry point in a burglar alarm system, but they are expensive and installation is complex. Conventional single-wire systems, while inexpensive and simple to install, cannot pinpoint exactly where the breakup has occurred. However, by using a series string of resistors around the perimeter that is being protected, and taking advantage of the voltage divisions present in such an arrangement, it is possible to detect the exact entry point while retaining the ease of installation inherent in singlewire systems.


Fig. 1. Simple resistor-switch loop system with only an analogue/digital convertor works as a single-wire system but with limited flexibility.


Fig. 2. Schematic of alarm interface board shows Microtutor data bus connections BO-B7, inputloutput signals NO, N1, N2, and timing control signals MRD and TPB available at the external device connector of the COSMAC Microtutor. In a multiloop system, only resistor switches S1-S30, the constant-current generator and 10 V regulator would need to be duplicated for each loop.

## Hardware

Fig. 1 shows a basic alarm circuit which combines ease of installation with the ability to locate the entry point. Although it is a single-wire system, the analogue/digital (A/D) convertor can identify the exact location where an intrusion takes place. This arrangement uses a resistor/ switch combination at every door and window being protected. A different value resistor is placed across
each switch in a series arrangement of switches. When a switch is activated, a unique voltage is read across the sensing resistor $R_{s}$, which is shown returned to ground.

However, this simple arrangement works for only about four entry points, i.e. four resistor-switch sensors, before the system breaks down. In practice, the string of resistors must be fed by a constant-current generator. By holding the source vol-
tage and current to constant values, and by varying the resistance alone, the error voltage is developed across the constant-current source. Now we have a system that will cover a multitude of entry points, albeit one that lacks flexibility. For example, entry points intentionally left open cannot be ignored in this system. By adding a microprocessor to the A/D system, this flexibility can be achieved with software. For example, the microprocessor program could be written to disregard a window intentionally left open for ventilation, or perhaps, for a door under repair.

The circuit shown in Fig. 2 interfaces directly with a COSMAC Microtutor and will protect about 30 entry points. It consists of a 26 mA constant-current loop monitored by an 8 -bit A/D convertor. The output of the $A / D$ is latched for input to the central processing unit. The output portion consists of a warning buzzer and alarm-bell circuit. The diodes and capacitors in this section are needed for coil suppression. The circuit uses one input and four output strobes decoded by the CD4514. Another application for this circuit is for use as a keyboard. (In the simplest form of the circuit, the microprocessor could be replaced by hard-wired logic; again, however, the flexibility of the system would be lost.)


Fig. 3. Single-wire alarm system with $A / D$ converter plus microprocessor can be expanded easily to a multiloop system by having the microprocessor poll each loop.

An expansion of the system organisation for protecting larger areas is shown in Fig. 3. In this multiloop scheme, the microprocessor sequentially polls several lower-resolution loops. This system will cost less, because the resistor at each entry point can have a wider tolerance, and will also have improved reliability because cutting one wire will not incapacitate the entire system.

## Software

Fig. 4 is a flowchart of the COSMAC microtutor program for the burglaralarm system. The circuit is reset immediately upon starting and, after a 20 -second delay (to enable one to exit), the program reads the A/D latch. To provide a usable margin between adjacent readings, the input byte is shifted three times to the right. To protect against random noise spikes, the program requires 15 consecutive nonzero readings before it advances to the output mode. In the output mode, the entrance num-


Fig. 4. Flowchart for single-wire alarm system; program steps are detailed in Table 2.
ber is displayed in hex notation on the Microtutor and the warning buzzer is activated for 20 seconds. If the 'in' switch is not pressed within 20 seconds, the alarm bell is activated. Pressing 'in' resets the alarm and restarts the program after a 20 second delay.

The program activates the warning buzzer to alert the user to reset the alarm before the bell goes off (if one is entering) or to indicate to an intruder that a circuit has been tripped before entry has been fully gained. Hopefully, this initial alarm will scare off the intruder.

The bell will reset and re-arm automatically one hour after going off, so that if the user is away for an extended period, the bell will not ring continuously until he returns. (A notice to this effect should be posted conspicuously f.or the police.)

## Table I <br> Microtutor register assignments used in the alarm-system program. <br> > RO $=$ Program counter > R3 $=$ Data pointer > R4 $=$ Loop flag > R5 $=$ Short delay counter > R7 $=$ Long delay counter <br> <br> RO $=$ Program counter <br> <br> RO $=$ Program counter <br> <br> R3 $=$ Data pointer <br> <br> R3 $=$ Data pointer <br> <br> R4 = Loop flag <br> <br> R4 = Loop flag <br> <br> R5 = Short delay counter <br> <br> R5 = Short delay counter <br> <br> R7 = Long delay counter

 <br> <br> R7 = Long delay counter}Delays are based on clock speed of 1.72 MHz . Change M004E to vary alarm on-time in 1-min increments, e.g.:

$$
O A=10 \mathrm{~min}
$$

$O F=15 \mathrm{~min}$
$1 E=30 \mathrm{~min}$
$2 D=45 \mathrm{~min}$
$3 C=60 \mathrm{~min}$

## Table lla

Actual alarm-system program is shown in first set of data below. Second set of data (Table IIb) ties in with flowchart (top left) and shows what event occurs at a particular instruction byte in that memory location (M).

| Memory <br> byte | Instruction byte |
| :--- | :---: |
| (M) | $(\mathrm{m})$ |


| 0000 | DO | E0 | 61 | 00 | F8 | FF | B5 | A5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0008 | F8 | OF | FF | 01 | 3A | CA | 25 | 95 |
| 0010 | 3A | 08 | F8 | 00 | B3 | F8 | FF | 85 |
| 0018 | A5 | F8 | 67 | A3 | F8 | 00 | B4 | F8 |
| 0020 | F0 | A4 | EO | 62 | 00 | E3 | 6A | F0 |
| 0028 | F6 | F6 | F6 | 53 | 32 | 49 | 84 | 32 |
| 0030 | 34 | 14 | 30 | 22 | EO | 63 | 00 | E3 |
| 0038 | 64 | 23 | F8 | OF | FF | 01 | 3A | 3 C |
| 0040 | 25 | 37 | 01 | 95 | 3A | 3A | 65 | 30 |
| 0048 | 4D | 64 | 23 | 30 | 1C | F8 | 3 C | A7 |
| 0050 | B7 | F8 | FF | A5 | B5 | F8 | 2 F | FF |
| 0058 | 01 | 3A | 57 | 25 | 37 | 01 | 95 | 3A |
| 0060 | 55 | 27 | 87 | 3 A | 51 | 30 | 01 |  |

The software for implementing this program is shown in Tables I and II. The software was written to accommodate both the CDP1801 and the CDP1802 versions of the microtutor. If the CDP1801 version is used, change the 64 instructions at $M(0038)$ and $M(0049)$ to 60.

The code 00 is the normal closedloop reading. Any other reading indicates a breach of the system. The unique code 1 F indicates that the system wire has been cut.

| Table llb |  |
| :--- | :---: |
| Algorithm | M |
| Top | 0001 |
| Reset bell \& buzzer | 0002 |
| 20-second delay | 0004 |
| Initlalize | 0012 |
| Start conversion | 0022 |
| Read A/D | 0026 |
| Shift rignt 3 times | 0028 |
| Store | 002 B |
| =00? | 002 C |
| If yes, read again, fix pointer | 002 D |
| If no, check loop flag | 002 E |
| =00? | $002 F$ |
| If yes, go to output mode | 0030 |
| If no, increment flag, read again | 0031 |
| Output mode | 0034 |
| Start warning buzzer | 0035 |
| Output coce | 0037 |
| Delay 20 seconds | 003 A |
| Reset? | 0041 |
| If yes, go to top | 0042 |
| If no, continue delay | 0043 |
| Start beil | 0046 |
| Go to long delay | 0047 |
| Output code | 0049 |
| Go to read again | 004 B |
| Long delay | 004 D |
| Set up counters | $004 E$ |
| Change value at M004E | 0055 |
| To vary alarm time | 0051 |
| 1-hour delay | 0054 |
| Decrement counter | $005 B$ |
| Reset? | 005 C |
| If yes, go to top | 005 D |
| If no, continue | $005 E$ |
| Decrement counter | 0061 |
| Done? | 0063 |
| If no, coun: again | 0064 |
| If yes, go to top | 0065 |

## Construction hints

The $\pm 15 \mathrm{~V}$ power supplies to the $\mathrm{A} / \mathrm{D}$ converter should be bypassed as close to the package as possible, and the $\mu \mathrm{A}$ 7805 regulators should be installed with a small heat sink. If magnetic


Fig. 5. Typical installation of resistor switches throughout a house in a singlewire alarm system.

Table III
Resistance values for each entry point to be protected in single-wire ala?m system.

| Resistance <br> value <br> (ohms) | Entry <br> point number <br> (hex readout) | Resistance <br> value <br> (ohms) | Entry <br> point number <br> (hex readout) |
| :---: | :---: | :---: | :---: |
| 33 | 01 | 390 | 10 |
| 47 | 02 | 420 | 11 |
| 75 | 03 | 440 | 12 |
| 100 | 04 | 470 | 13 |
| 120 | 05 | 500 | 14 |
| 150 | 06 | 530 | 15 |
| 160 | 07 | 550 | 16 |
| 200 | 08 | 570 | 17 |
| 220 | 09 | 600 | 18 |
| 240 | $0 A$ | 630 | 19 |
| 270 | 08 | 660 | $1 A$ |
| 290 | $0 C$ | 680 | $1 B$ |
| 310 | CD | 710 | 1 C |
| 340 | $0 E$ | 750 | $1 D$ |
| 370 | OF | 820 | $1 E$ |

switches are used, they should be of the type which are normally open (contacts apart). Using the resistance values shown in Table II, the unit will monitor 30 doors and windows,
a combination covering most houses. All values in Table 111 were determined using standard $5 \%$ resistors. Fig. 5 shows a typical installation of switches throughout a house.


## Britain is a nation

 of PET lovers

Commercial Scientist Education
for the first time user and the professional check out the PET, the world's most popular personal computer

* CAPABLE - just like a traditional computer.
* UNDERSTANDABLE - fast, comprehensive and powerful BASIC is one of the easiest computer languages to learn, understand and use. Machine language accessibility for the professionals.
* PERSONAL - easily portable and operated - just "plug in" and go. Unique graphics make fascinating displays.
* EXPANDABLE - built in IEEE-488 output, 8K RAM expandable to 32 K , parallel user port 2nd. Cassette interface.
* SERVICEABLE - easily serviced - only 3p.c. boards all readilly accessible.

Features of PETS extended BASIC include
Integer, floating point and string variables; A full set of scientific functions, Logical operators, Multi-statement lines. String functions, Left \$, Right \$, Mid \$, Chr \$, Val, Str \$, Peek, Poke, Usr, Sys, to interface to memory and machine language subtrontines. Time of day variable.

Future Commodore developments * FLOPPY DISC * PRINTER

* MEMORY EXPANSION * MODEM

Extensive software readily available.
Contact your nearest PET dealer, call today for a demonstration


Peter Mather is a computer officer at the Computer Centre, University of Birmingham, and is completing a Ph.D in Psychology there. This ingenious little article was arranged when he met the editor at the PCW Show last September.

A major problem with the PET computer has been the difficulty of obtaining hard copy. Although firms are advertising printer interfaces, the waiting lists for these units are normally unreasonably long. This program (diagram 1) was written with the intention of very simply getting round the problem of connecting a PET to a standard printer, such as an ASR33 TTY.

Statements 10-120 poke into the second cassette buffer a machine code subroutine which outputs, on bit 0 of the 1/O port, the argument of the USR routine as a serial string, complete with one start and two stop bits. Statements 130 and 140 set the baud rate for transmission, and may be omitted for 110 baud.

After the 1/O port has been set up and the start address of the USR routine input (Statements 150-180), the program reads data off the PET's cassette and sends it to the teletype, allowing 72 characters/line and appropriate line feeds and carriage returns. Upon encountering an "end of file" the program terminates (Statement 220).

This program will directly read and print data off the cassette: However, in order to get a program listing, the full source must be stored on cassette using:-


Diagram 2

## OPEN 1,1,1

CMD 1
LIST
CLOSE 1
as the "saved" program is not a standard listing.
A circuit for connection of the PET to a typical 20 ma current loop TTY is given in diagram 2. It should be noted that current is flowing when the teletype is waiting for input and R1 should be adjusted to give the 20 ma current in this state. A value of $500 \Omega$ will be about right with a 12 volt supply. The motor servo is left continuously in circuit across the supply.

```
10 DATA 32, 167, 208, 120, 165, 180, 141, 81
20 DATA 3, 32, 140, 3, 169, 0, 141, 79, 232
30 DATA 32, 140, 3, 160,8,78,81, 3, 176
40 DATA 5, 169, 0, 76, 116, 3, 169, 1, 141, 79
50 DATA 232, 32, 140, 3, 136, 208, 235, 169
60 DATA 1, 141, 79, 232, 32, 140, 3, 32, 140
70 DATA 3, 88, 76, 120, 210, 162, 35, 173
80 DATA 73, 232, 205, 73, 232, 240, 251, 202
90 DATA 208, 245, }9
100 FOR I=850 TO 921
110 READ N:POKE I,N
120 NEXT I
130 INPUT "BAUD RATE"; B9
140 POKE 909, INT(3900/B9)
150 POKE 1,82
160 POKE 2,3
170 POKE 59459, 255
180 POKE;59471, 255
190 OPEN 1, 1, O
195 K=O
200 GET # 1, M$:IF M$="" THEN 200
201 K=K+1
202 IF K>72 THEN GOSUB 300
210 PRINT M$:
220 IF ST=64 THEN CLOSE 1:END
230 T=ASC (M$)
240 H=USR(T):IF T=1 3 THEN }26
250 GOTO 200
260 F=USR (10):K=0:GOTO 200
300 K=0:F=USR (13) :F=USR (10) : RETURN
```

Diagram 1

One lesson you'll have to learn on your own - how to tear yourself away from your computer in the early hours. Infoguide provides you with a new concept in recreational, educational and business software.

You'll probably start in the Playgroup.


Insert other Compusettes, and ...

## Middle School

could see you taking your computer on at Mastermind. Or Go!

## High School


sees you and your computer working on statistical programmes. Conversion. Financial management. Forecasting. Thesé and many other functional programs - are on Compusette.

## At Degree Level,

Why not simulate an enzyme reaction? Change any one (or more) of six parameters and see what happens? Maybe discover, when playing chess, that your computer is a Grand Master? A Compusette will supply each of the necessary programs.
An interesting variety of Compusettes are being made available for PET, Apple II and TRS 80. Each is accompanied by a fully detailed booklet with listings of the programs - there are up to three on each tape.
You will find that most dealers handling personal computers will be stocking the Compusette range. Ask you dealer now.
For as little as £2.70 per program* - that's value!

## GOMPUSETTES

Compusettes are produced by Infoguide Ltd,
142 Wardour Street, London W1.
120 El Camino Drive, Suite 108, Bevërley Hills, Cal 90212 USA

[^1]
# More on the SOS6 

T. M. Dixon, Peterhouse, Cambridge

## PCW Readers should refer to Bill Davy's article in the September issue. PCW

I am one of the many people who have been watching the journals keenly for news of the next generation of 16-bit microprocessors. Inspired by the enthusiasm of PCW (September 1978) for Intel's new 8086, I set out to find some further information. What follows is a quick trip around what I feel to be the more important features of the chip for assembler-level programmers.

The two biggest headaches of assembly programming for most small machines are, to my mind at least, the lack of multiply/divide facilities and the considerations necessary to produce easily relocatable code for frequently used subroutines. We have not yet reached the era of on-chip floating-point arithmetic, but the impressive instruction set of the 8086 points along this road. To my knowledge, the 8086 is also the first microcomputer CPU to use a set of registers to contain dynamic base addresses and thus permit not only much simplified and more rapid program-loading, but also dynamic relocation (try that with a SC/MP). A quick overview of the 8086 architecture will help to explain this.

The 8086 chip consists of two distinct blocks, the Bus Interface Unit (BIU) and the Execution/Control (EU). The BIU has the task of locating the next instruction for the EU and placing it in an instruction stream queue six bytes long. Keeping the queue full increases the processor throughput as memory fetches can occur while the previous instruction is being completed. To access the 1 MB memory, the BIU takes the IP register (Instruction Pointer) which is 16 bits long, and adds one of the segment registers (extended to 20 bits with 4 loworder zeroes) to produce a 20 -bit address. To access operands, the Effective Address (EA) so produced may optionally include a base and/or index address taken from the registers of the $E U$, and a displacement.

The EU holds the general registers (A, B, C, D) which are each 16 -bits long. These may be used as word-registers or as eight-byte registers. The A-register is in some cases used as an accumulator, and the other registers have dedicated uses. All registers can be used interchangeably for many instructions. In addition, four 16 -

bit 'registers are available as 'Pointer and Index' registers. These may be used to permit based and indexed addresses; one register is a dedicated Stack Pointer. The EU also holds a set of flags indicating the processor status. The register sets are more or less logical extensions of the 8080 registers.


The address type code has the following fields:-
76543210
mod reg r/m
If $\bmod =11$ then there is no memory access, and $\mathrm{r} / \mathrm{m}$ indicates the second register operand.
Otherwise mod indicates the presence and length of the displacement.
The reg field indicates the register operand (coded according to instruction type).
The r/m field indicates the index/base registers to be used in addressing the memory operand. Up to 2 such registers may be chosen from a pool of 4 .
The presence and length of immediate data is indicated by the op-code.

Fig. 1. 8086 instruction Format (usual).
The instruction set of the 8086 is also an extension of that of the 8080. All 8080 instructions have an equivalent operation on the 8086, but the mnemonics for the instructions are frequently different and the object-code is not compatible. It is thus necessary to re-assemble 8080 code to run on the 8086; and, to obtain the claimed order of magnitude performance increase, it will probably be necessary to rewrite at least the more critical code. The standard clock speed of 5 MHz is probably faster than most 8080 systems.

The more or less standard set of load/store/push/pop instructions is provided, with of course far more addressing modes, and the same is true of the logical and call/jump/return instructions. I/O instructions are allowed to fixed or variable ports (i.e. immediate or register-contained port address), and memory-mapped I/O can be used should these facilities not be adequate. The advanced features are the extended set of arithmetic functions, extended addressing modes and genuine string-handling instructions.

## Addressing Modes

There are many possible variations of the basic instruction set. According to Intel, there are 19 variations of the MOVe instruction. I have not tried to check this, but it illustrates that an assembler is really necessary for any but the smallest programs. The basis of all addressing is the set of segment registers. One of these always contains the logical origin of the program, the others point to data and the stack. The register used as a segment address is implicit, but may be over-ridden by an instruction prefix in some cases. The address of operands in memory may require the addition of one of the base or index registers and a one-or two-byte displacement from the instruction stream. Immediate operands are also permitted. As immediate data and displacement addresses may be one- or two-byte values, and as the shortest instruction is only one byte long, the processor must be able to recognise instructions of between one and six bytes in length. The instruction length may be determined from the op-code but for the full range of addressing modes, an eight-bit code follows the instruction to indicate the addressing type. The format is shown in Fig. 1.

The organisation of the instruction set appears to be the greatest weakness of the 8086 . Presumably in order to reduce the redundancy of information in the instruction, many instructions which do not require the explicit provision of a full address use shortened forms. The instruction to POP a register from the stack is shown in Fig. 2. Whilst this form of instruction is economical on storage, it does eat up eight possible op-codes, one for each register. Most op-codes contain a flag to indicate the length (byte or word) of the operands and possibly further flags. The set of op-codes thus runs out quite quickly, with strange results. Signed and unsigned multiply and divide instructions all have the same op-code and are distinguished only by a sub-code in the register field of the second byte of the instruction. This effectively precludes the use of registers other than the accumulator as the target of these instructions and would seem to prevent the design of upward compatible chips with extended features in the future. The rules which govern the permissible combination of registers to produce an address seem over-complicated;* and the availability of two-levels of indexing seems over generous. I do not like the use of instruction prefixes for any task and in particular would like to see a segment register field in the instruction or some other addressing scheme which perhaps could treat all registers as equal and use only one level of indexing, but perhaps 1 am too used to IBM 370 machines.

## Arithmetic Instructions

Despite my comments about the multiply/divide instructions, the facility is very well worth having and apart from the register limitations, is quite comprehensive. Half- and full-word binary quantities may be multiplied with or without sign to give respectively word and double-word results. Instructions are available to extend the sign - bit of half- and full-word operands to double their length. The divide instruction operates on a double length quantity to produce a single length (8-or 16 -bit) quotient and a single length remainder. Adjustment instructions allow division of unpacked (single byte) decimal quantities giving an unpacked decimal result. Corresponding facilities allow unpacked decimal numbers to be added, subtracted and multiplied. Packed decimal operands may be converted for the addition and subtraction instructions.

## String Instructions

String-handling functions are extremely useful to the interactive programmer and feature in most data-handling problems. The problem is that as the string to which they are applied may be very long, it is desirable that interrupts be accepted during the course of the operation to prevent undue delay. The string functions are basically load and compare instructions which make assumptions about their operands, reducing the number of memory-fetches needed to execute the function. To cause a repeated operation along a string, a REPetition prefix must come before the instruction. When the prefix is supplied, the operation is repeated while the C-register is non-zero. The address may be incremented or decremented after each iteration. An early termination is caused if the zero-flag becomes unequal to a bit set in the prefix. A disadvantage of the prefixed instruction is that the instruction will not complete properly if the REPeat prefix follows any other prefix. This is an unfortunate result of the design of the instruction set, but does not impose any real limitation on the programmer. Most string searches, translates and moves are greatly facilitated by the instructions.
*Too complicated to go into here, but the limitations seem a little arbitrary.

## Control Instructions

A number of control instructions are provided to facilitate the use of many devices on one bus system. The WAIT instruction causes the processor to wait for an external signal on pin 23 before continuing; the LOCK instruction (another of those prefixes) causes a signal to appear indicating that the processor is demanding control of the bus. The most interesting instruction is ESCape. This is effectively a no-op, but places the effective address (computed using the standard 8086 addressing modes) of the operand on the data bus to allow other processors to make use of the addressing features of the 8086 and access data in relocatable storage. Various control signals which are also available, externally, may be used depending on the system configuration.


Fig. 2. Comparison of POP and Multiply/Divide Instructions.

## Peripherals

Two devices which are not strictly peripherals are the 8284 clock generator, which can be used with a crystal to provide the necessary clock signals and generate a suitable RESET signal, and the 8288 Bus Controller. The 8288 is used only in larger systems to fully decode the control lines. The 8259A Interrupt Controller sorts out priorities and interfaces to the 8086 vectored interrupt system. Some new peripheral chips which are not spec ifically designed for the 8086 but which will increase its
applications are the 8271 Floppy Disk Controller, the 8273 HDLC/SDLC controller which will support the newer line protocols and the 8291 interface to the IEEE488 Bus. Other planned devices range from dotmatrix printer controllers to encryption chips.

The sad fact is that these many facilities are only likely to be in the reach of most of us if the price of the 8086 and its support devices drops quite considerably. There are two Intel-developed kits which could conceivably be within the reach of the hobbyist, a Component Evaluation Kit, and a System Design Kit (SDK-86). The former, I am informed, consists only of the integrated circuits necessary to develop a minimum system, and costs about $£ 250$. The latter is a hex-keyboard/seven segment display kit with a simple monitor, 2K memory and TTY support. I have been quoted prices ranging from $£ 400$ to $£ 700$, but no-one was very confident about their estimate. On the face of it there would seem little to justify the high cost when one considers that the 8085 System Design Kit (SDK-85) costs only about $£ 160$. Intel claim that the small die-size of the 8086 chip will lead to reduced cost as production experience (and presumably demand) grows. When one considers the amount of hardware and software needed to make really effective use of such a powerful tool, it would seem that the 8086 is still a device of the future for the hobbyist. Note
Most of the information in this article is drawn from the Intel MCS-86 Preliminary User's Manual. Both Intel and Rapid Recall Ltd. were both of great help in obtaining information. Information taken from the MCS-86 manual may be subject to change and may be protected by copyright.

PCW Next issue: The Motorola 6809 MPU.


## Introducing the personal computer you've waited for.

 The Exidy Sorcerer.
## LOUK at these features

16к $£ 760$
з2к $£ 559$ add 8\% VAT

The Sorcerer Computez is a completely assembled and tested computer system ready to plug in and use. The standard configuration includes 63 key typewriter-style keyboard and 16 key numeric pad dual cassette 1/O with remote computer control at 100 and 1200 bud lor $1 / 0$ for communication 1200 baud data rates. RS232 serial I/O for communication, parallel port for direct Centronics printer attachment, Z80 processor, 4K ROM operating system, 8K Micrsooft BASIC in separate plug-in Rom Pacrm cartridge, composite video of 64 chars $\times 30$ lines, 128 upper/lower case ASCII character set and a 128 userdefined graphic symbols, up to 32 K on-board RAM memory, operators manual, BASIC programming manual and cassette/ video cables, connection for S100 bus expanslon unit giving access to the spectrum of exciting and useful peripheral devices, such as Floppy disk drives, voice recognition/synthesis battery back-up board in case of power failure, additional memory boards, E-PROM cards give you the facility to program and re-program E-PROM cards give you the facility to program and re-program your own ROM memories etc. etc. This is the most useable and flexible system that's now available to the home and business user at such a low price

* WORD PROCESSING, COBAL, FORTRAN etc
* PLUG IN ROM CARTRIDGES
* WORKS WITH NORMAL TV
* S100 EXPANSION UNIT
* CASSETTE INTERFACE
* Z80 CPU
* 32K RAM ON BOARD


## * A REAL BUSINESS MACHINE

please make cheques and postal orders payable to JADE phone your order quoting ACCESS or VISA number for technical information or advice phone 073666565

## UMLOCK BONDAIN ans <br> OFTWARE EMINARS

Complete Facilities for Implementation of Mini-Computers.

COMMODORE 'PET' NORTH STAR HORIZON COMPUCORP EQUINOX 300

Personal Computers to 10 mb Hard Disk Systems.

Evening \& Day Courses on 'Basic' Programming at our City premises.

SUMLOCK ANITA HOUSE CLERKENWELL CLOSE, LONDON. E.C.1.
Phone: 01-253 2447

## 224 ARTICLES

Kitobaud has more artucles than any other microcompuler magazine During 1977 iol instance. Mhere were 224 articles in kitobaud-880 pages or anicles - Mhar slike a very large more articles in 1978
FOR THE BEGINNER If yOU Only sides of microumputers. eacn arucle is whiten beginner in mind No other magazine makes it as easy to undersind miciocomputers.

## THE BEST PROGRAMS

Only kilobaud ofters proprammers boit the publication of their programs in the magazine plus a large rovally for the program if It's issued on cassettes. Is it any wonder all of the really good programs are being published in Kliobaud? You'll find the best in Kilobaud. We tre very heavy on programs.
HOBBY OR BUSINESS?
Boin businessmen and noobyist want the same tning: 10 under. sland microcomputers... and this is the purpose of Kitobaud. know what is avalable and what it will do.

## THE PUBLISHER

Kilobaud is publisted by the sa

Kilobaud is published by the same people who
MONTHLY COLUMNS
keep up with the latest developments and readers' programs through the letters column,.. KIM column... One on the TRS 80 .... a column on BASIC ... etc. The edilorials will keep you up to date on money-making ideas, the progress of the indusiry and more. The New Prccucts column is particularly usetul, including
the results of tests of the latest equipment in the Kitobaud micro. computer labofatory - the mosi complete in ine industry.

## SUBSCRIBE TO KILOBAUD

You can get Kiobaud fast. Copies are llown to Europe immediately upon publicalion and mailed direcily from the United Kingdom, so Kingom Euroe, f20 sterling per year, iors for Uniled
L. P. Enterprises

313 Kingston Road, llford, Essex. 01-553 1001 Barclay Card, VISA, Diner's Club and American Express, Access Card honored.

## MATROX FRFRLTON

1. $\mathrm{ALT}-256^{* *} 2 \mathrm{E}$
2. ALT-2480E
3. MTX-816
4. MTX-1632
5. MTX-A1/MTX-B1年chronised to TV picture)
£162.00
Keyboard scanners and LED driver Single chips direct connection to any CPU bus
£28.00


The Attache

Martin Healey University College, Cardiff

## 1. INTRODUCTION

It is a true reflection of the maturing state of the microcomputer industry that we have a new product line from an existing manufacturer. In fact the ATTACHE is the latest product from the original personal computer company, the makers of the ALTAIR, now under the wing of leading U.S. peripheral manufacturer PERTEC. PERTEC Computer Corporation Microsystems Division markets under two product names in the U.S.A., MITS and ICOM, the Attache appearing to come from the latter stable. MITS are well known in the U.K. and I have used an iCOM floppy disc system on an INTELLEC MDS with no problems for some years new.

In practice the ATTACHE is a repackaging of the ALTAIR components, utilising quite naturally the

S100 bus structure. Thus, while there are some new cards, many well tried and tested components are incorporated.

The major new feature of the hardware is in the packaging, which follows the concept of the Apple by embodying the keyboard in the computer "box" with a video output socket to drive a stand alone monitor. The ATTACHE however is not aimed at the low cost hobbyist market. Bulk data stores are incorporated in separate stand-alone boxes and although a cassette tape interface is available, the ATTACHE is really intended as a floppy disc system. As such it uses MITS BASIC, with disc handling, as its normal user interface.

Unlike the ALTAIR, the ATTACHE is marketed by MONCOLAND, the leading light of which is Derek Moon. This is a further reflec-
tion of growing maturity and commercial interests since he has his roots in commerce and retail marketing and not in computing or amateur enthusiasts. Thus while the ATTACHE has some appeal as a personal computer it is as a small business computer that it will really be marketed. MONCOLAND are actively encouraging marketing through standard (electrical) retail outlets; they are totally committed to providing applications software packages and organised maintenance.

## 2. HARDWARE

The ATTACHE is, as only to be expected, a pleasantly packaged machine. Good simple aesthetic appeal is of course important if the machine is to sell to business users. The in-built keyboard is a 64 Key unit with a good "feel" and a conventional lay-


INSIDE THE ATTACHE
out (thank goodness!). It is a "stepped" keyboard and as such will be quite acceptable to an unskilled operator, helped by the QWERTY layout. The importance of a quality keyboard in commercial systems cannot be overstressed.

The box contains the power supp. ly and a fan with a motherboard with slots for 10 S 100 bus cards. A noise suppression A.C. line filter is incorporated. The system I tested had the usual problem child of a 220 volt transformer, but I am assured that all units are being shipped with proper $50 \mathrm{~Hz}, 240$ volt transformers. In all fairness the machine ran quite cool even with the 220 volt transformer. Being an S100 bus machine the power supplies provided only smoothed D.C. $1+8,+18$, and -18 volt), employing voltage regulators as required on each board. I personally feel that this technique has avoided a lot of potential problems with instability on all S100 bus systems. However it also excludes the use of switching power supplies, a feature of the APPLE which results in reduced weight and heat dissipation.

The CPU card is the standard ALTAIR card featuring a 2 MHz 8080A, with an 8224 clock generator but standard TTL logic for system control, latches and drivers rather than the 8228 (was the 8228 available when this board was designed?). It is surprising now to see a whole board dedicated to a CPU but all MITS boards use low density chip packing with the resulting minimis-
ation of faults and debugging problems.

Both a static and a dynamic 16 Kb RAM board are offered. The static board is quoted with an access time of 215 nanoseconds and the dynamic
(or synchronous as the literature calls it) 350 nanosecond. The latter relies on timing signals from the CPU and therefore presumably inserts wait states for memory refresh cycles. The system tested had only static boards and so I was unable to make performance comparisons. Both would appear plenty fast enough for the 2 MHz 8080 A , in which case the cheaper dynamic memory would be attractive. The static boards supplied are the same as those I have used for a long time in an ALTAIR and can be well recommended. The addresses are of course switch selectable on 16 Kb boundaries. 4 Kb boards are mentioned in the literature, but these are not being supplied in the U.K.

The system employs a board for basic functions called a Turnkey Monitor Board. This supports 1 Kb of RAM and sockets for 41702 (256 Byte) PROM's, used for optional monitors and bootstrap loaders. Auto start circuitry is initialised by depressing a toggle switch mounted on the back of the ATTACHE, which causes an interrupt to start the monitor or bootstrap routine. The ROM address is switch selectable and is set to use the last 1 K of the address space, the monitor starting at FCOOH , followed by the disc bootstrap loader. An alternative multi-boot loader (MBL) is available for booting from cassette. the 1 K RAM is situated immediately prior to the ROM, (Figure 1) and is used as a stack by the monitor. It is not at all clear how a


Figure 1: Memory map for the Attache with BASIC
clash of physical address space is avoided when a 16 Kb RAM card is selected to the top quarter of the address space; presumably there is logic on the monitor board to gain priority for the top 2 Kb . The circuits are provided but time has not yet been found to decypher these.

Also included on the Turnkey board is a UART for a serial I/O port, using ports 16 and 17. An RS232 (V24) standard outlet is provided on the front edge of the card. The board is factory set to 9600 Baud; but jumpers are provided for other speeds.

The I/O from the Turnkey board is directly coupled by a short cable to the Video board. The Video board is in fact a double board (piggy-back), screwed together with only one S100 connector. Since it is thus effectively double width it is plugged into a socket at one end of the motherboard to avoid covering up another socket. The video board has a UART for connecting to the monitor board plus a parallel port for the output from the keyboard. The actual keyboard electronics are mounted on a separate PC̈B under the key pad, and generate ASCII code. Thus keyboard output is routed in parallel to the Video board, in serial to the Turnkey board and thence is parallel to the S100 bus, a rather round about route. The Video board also supports a 1 Kb RAM which is used to generate composite video signals for a 64 character $x 16$ line display. This RAM is loaded by the control logic for interpreting carriage return, etc., is included on the board together with the video refresh logic. The board tested had been modified to 50 Hz standards, generating composite video signals via coax sockets on the rear panel of the box, suitable for a monitor. An external modulator would be required to use a TV set but the lower quality is not suitable for commercial applications anyway.

The combination of Turnkey and Video boards is rather surprising as the short 9600 baud link could have been faster implemented by a parallel link. Alternatively the I/O port could have been directly serviced on the Video board from the S100 bus. As it is the Video board only picks up power from the computer bus, further there should be no need for a double board if some of the newer components were employed. On the credit side, however, the board generates a good quality display, provided a proper video monitor is employed. $64 \times 16$ is rather limiting for commercial applications and even though upper and lower case are supported there are no cursor controls. As already stressed the keyboard is of good standard; it also supports 5 . LED's to indicate system status.

A parallel I/O board is supported, specifically for interfacing a Centronics printer or equivalent. This board is directly supported by the BASIC LPRINT statement.

Mass storage is provided by a choice of either cassette tape or floppy disc. Since this is a PERTEC product there can be little doubt that a hard disc will soon be added to the system. The cassette system is of little interest with the commercial orientation of this machine but for the record the standard ALTAIR 88 UIO single board Kansas City 1300 baud) interface is available, with appropriate version of the Bootstrap Loader PROM for the Turnkey board. The floppy disc system is far more interesting. It comes in a separate metal box, attractively finished to match the processor. It houses two 8" PERTEC drives with separate status indicator lights and its own ( 240 volt!) power supply. The disc controller comprises two S100 bus boards utilising TTL logic rather than single chip controllers which are virtually (probably exactly) the units supplied with the older ALTAIR. The disc drive (and the printer for that matter) are connected by multicore flat ribbon cables to in line sockets at the rear of the ATTACHE.

The floppy disc drives currently supplied are standard $8^{\prime \prime}$ single sided, single density PERTEC FD512 with 360 RPM, 400 millisec average access time and a data transfer rate of approximately $32 \mathrm{KByte} / \mathrm{sec}$. The discettes are hard sectored, 32 sectors/track, 77 tracks; note that this is not the standard soft sectored IBM format. Using 32 rather than $26 \mathrm{sec}-$
tors per track gives a total capacity per discette of $310 \mathrm{~Kb}, 620 \mathrm{~Kb}$ for the dual drive system. A dual density version is promised soon.

A number of other ALTAIR cards are offered, e.g. serial I/O, process control I/O, etc. However for a full commercial system with CPU, Video, Turnkey, $4 \times 16 \mathrm{~Kb}$ RAMs, printer and $2 \times$ disc controller, all 10 slots are used.

## 3. SYSTEM SOFTWARE

The ATTACHE is supplied with iCOM software, largely based around the MITS BASIC. In fact three versions of BASIC are available, a simple 8 K version, a 16 K version which is available on a single ROM board as an option, and the disc extended version, referred to as MITS300-5A. This is the only one of interest for commercial programming. Figure 2 is a summary of characteristics. The system $\mid$ tested used the Version 5 BASIC which must be the best BASIC available on microcomputers for commercial work. This version of BASIC has strong overtones of DEC's BASIC-PLUS, the Rolls Royce of BASIC (written by the way by MICROSOFT Corp. and available under CP/M and other operating systems on other microcomputers) and BASIC-PLUS would make interesting reading - suffice it to say that the standard is more than we dare have hoped for in such a short span of microcomputer development. MITS BASIC includes sequential and random access to disc files. An ISAM package is also available which gives access to files by key names, an im-

| FEATURES | BASIC VERSION |  |  |
| :---: | :---: | :---: | :---: |
|  | 8K | EXTENDED | MITS300-5A |
| Minimum Memory Requirement | 8K | 16K | 24K |
| Numeric Types Single Precision Double Precision Integer | $\begin{aligned} & Y \\ & N \\ & N \end{aligned}$ | $\begin{aligned} & Y \\ & Y \\ & Y \end{aligned}$ | $\begin{aligned} & Y \\ & Y \\ & Y \end{aligned}$ |
| Strings | $Y$ | $Y$ | Y |
| PEEK and POKE | $Y$ | $Y$ | Y |
| INP and OUT | $\gamma$ | $Y$ | $Y$ |
| Arrays - any size or dimensionality | $Y$ | $Y$ | Y |
| IF...THEN...ELSE | N | Y | $Y$ |
| PRINT USING for formatted output | N | $Y$ | $Y$ |
| EDIT command | N | $Y$ | $Y$ |
| Automatic line numbering | N | $Y$ | $Y$ |
| Error trapping | N | $Y$ | $Y$ |
| Trace | N | $Y$ | Y |
| Disc files for programs and data | N | N | $Y$ |
| Functions Intrinsic User-defined | $\begin{aligned} & 11 \\ & Y^{*} \end{aligned}$ | $\begin{gathered} 22 \\ \forall \end{gathered}$ | $\begin{gathered} 23 \\ Y \end{gathered}$ |
| Machine language subroutines | $Y$ | $\gamma$ | $Y$ |

*In 8K BASIC, functions must be defined on one line and may have only one argument.
Figure 2: Summary of characteristics of the three versions of BASIC offered. MITS300-5A is, in fact, M-BASIC.
portant feature for a commercial sys. tem.

The system | tested was fitted with a Bootstrap ROM so that toggling the Reset button automatically loaded BASIC. There is a short dialogue to identify memory size, number of disc drives and file limits and printer type and you are away. For commercial applications a new loader is being developed to give instant access to a MENU for program selection.

The BASIC incorporates a useful edit facility. The PRINT USING and ERROR TRAPPING features are most desirable in commercial applications. Machine code functions can also be supported but must be loaded by using the POKE command, after translating binary code to decimal. There is no direct Assembler support so that this feature is of little interest here.

The literature describes an alternative discette-based software system to the BASIC supplied called FDOSIII. This is also an iCOM product of unknown origin, but it looks like a useful Assembler language program development facility.

From the literature, remembering that I haven't had the opportunity to try it yet, FDOSIII utilises a memory resident system monitor, which I presume is booted down by the DBL PROM on start-up, rather than the simple ROM monitor which is bypassed by the bootstrap anyway. The system includes a text editor with a paging command to allow page at a time in memory so that large programs can be edited - remember that the source code for a 10 Kb object program will exceed 64 Kb . The Assembler generates relocatable code so that a linking loader is also provided to resolve global symbol references and to create complete programs from disc resident modules. There is no mention of Macros or conditional assembly control. There is also a Debug module which allows insertion of break-points and display of register contents, etc.

The BASIC system includes a few utility programs, in particular a file transfer package called PIP. This is of course essential for making archive copies of data files in commercial applications.

## 4. RETAIL PRICES

The retail price list provided by MONCOLAND follows. Note that the list as published does not cover the options such as process control interfaces. Nor does it include video monitors or Centronic printers. There is no price either for the FDOSIII software or the 8 K BASIC. All this firmly reflect MONCOLAND's policy of stressing commercial data processing systems.

Basic System
Case + CPU + Turnkey monitor
board + 16 K RAM
£1,466
Video board £ 271
16Kb Static RAM
£ 347
Printer interface card
£ 208
Floppy disc sub system
$2 \times 310 \mathrm{~Kb}$ discettes + controller

+ box, etc.
£1,701
Basic interpreter
(on floppy disc) £ 41
Also offered are the ROM BASIC on a single 16 Kb board at $£ 261$ and the Kansas City standard cassette tape interface at $£ 251$. All prices are exclusive of VAT.

From this list a simple personal computer figuration with 16 Kb and cassette interface would cost $£ 2,000$, guessing at a small allowance for 8 K BASIC, excluding video monitor and cassette recorder. A full business computer system with 64 Kb , twin discettes and printer interface comes out at $£ 4,728$, to which must be added a good quality video monitor at about $£ 150$ and a Centronics printer, costing around $£ 1,400$, is essential for commercial work, else preprinted stationary cannot be used. A working system will therefore cost about $£ 6,300$.

## 5. MAINTENANCE

In keeping with the commercial orientation of the ATTACHE, MONCOLAND have arranged a maintenance agreement with Computer Field Maintenance (CFM) for business users. The price for maintenance is broken down into units but comes out to $£ 522$ per annum for a full system plus printer and video monitor maintenance at about $£ 350$ per annum. This is a reasonable charge from a reputable nationwide independent maintenance organisation which compares well with the rates for VRC's and other small business computers. Maintenance for the business man is of extreme importance of course; he cannot rely on amateur "fix it".

## 6. APPLICATIONS SOFTWARE

This is a real sign of the times! Already the U.S. predictions suggest that the importance of microcomputers in commercial applications will outweigh the home market. Here we have proof of the pudding in a U.K. company. MONCOLAND have in. vested real money in developing applications programs which are to be marketed at the quite amazing price of between $£ 30$ - $£ 40$ a module. I was provided with a pre-release of the Order Processing System which comprised four modules, Order Entry, Stock Control, Customer File Maintenance, and Invoicing. At a total cost of around $£ 160$ this represents remarkable value for money. The draft documentation looks prop-
erly organised to suit the non-computer specialist business man. The full system is due for release by midDecember. Other suites for Sales Ledger, Purchase Ledger, Nominal Ledger and VAT and Payroll are under development and will be progressively released during the early part of 1979.

I am personally convinced that provided applications programs are designed on the 80/20 principle, then by utilising potential bulk sales, software can be successfully marketed at low prices - the 'Woolworth's principle". The 80/20 principle implies that the programs are specified to do $80 \%$ of the job, which is common to most users. The $20 \%$ extra will cost considerably more to provide than the basic program. I believe that for any realistic small business it makes sense to cover the bulk of the accountancy requirements at minimal cost rather than get too involved with complex computing.

## 7. CONCLUSIONS

The outstanding feature of the ATTACHE is the high quality of the product. It is not really a product for the home enthusiast, but a properly configured small computer. The standard of construction of the boards, and the keyboard in particular, leave nothing to be desired compared to most accounting computers. It would probably be more attractive if the screen was built into the processor/ keyboard box but a small low price screen like the PET would not be acceptable for commercial applications; hence a high quality video monitor is a good compromise. The current video board only generates a $64 \times 16$ display; an $80 \times 24$ is desirable although a standard VDU could be used as an alternative to the video board - at a cost.

Frankly, as a personal computer "toy" the ATTACHE doesn't rank alongside the APPLE. The latter offers colour graphic support with BASIC programming commands and switching-mode power supplies at a lower cost, admittedly employing the slower 6502 CPU. However with a full 10 slot S100 bus motherboard, the ATTACHE is much more versatile. Fully figured with large memories and disc stores, plus the high performance BASIC, well suited to commercial applications programming, backed by details like ISAM packages it is a very good product indeed. I shall be very surprised if MONCOLAND with their applications programs and organised commercial standard maintenance don't succeed in taking a big share of the growing small business system market. Throw your Visible Record Computer (VRC) away as soon as possible and look at these types of machines - the time has arrived!


David Hebditch

## 2. Telecommunications Futures

In the first article in this series, I wrote about the symbiosis of computers, communications and broadcasting leading to telecommuting and Marshal McLuhan's farsighted concept of the Global Village. The emphasis on the symbiosis is important: it is the combination of advanced computer and communications technology which is the key.

Unquestionably, the pace of computer development is much faster than that of telecommunications. There are many reasons for this but two of the major ones are that (1) telecommunications networks are much more complex and widespread than the average computer system and (2) the telephone network is dealing with analogue input and output. I shall come back to these points later.

The British telephone system is, on the whole, crude, inefficient and unreliable. The switching of lines uses the Strowger System which is an electromechanical arrangement. The basic principles of this were first devised over 100 years ago by an undertaker (the original Mr. Strowger) in the American Mid-West, who was losing business because his competitor had 'nobbled' the operator of the small-town's manual exchange. Modern exchanges use computer-controlled switching and it is no coincidence that one of Europe's most successful private branch exchanges is made by IBM (the 3750).

The Post Office has no computer-based switches instalied. In the USA, AT \& T have been commissioning them for well over ten years. The Post Office project to develop a new standard exchange for the future; it is called System $X$ and looks very exciting on paper. Unfortunately, the project seems to be fraught with technical, managerial and political difficulties.

Switching is just one aspect of telecommunications; transmission technology is another. As 1 mentioned before, the fundamentally analogue nature of speech makes it difficult for the Post Office (or any telecommunications administration) to benefit from recent advances in microelectronics as the computer industry has. In simple terms, speech is transmitted as an electrical analogy of the sound waves made by the voice.

These signals need to be periodically reamplified; a process which does nothing to improve the signal-to-noise ratio. If speech could first be digitized then regenerative repeaters could be used instead of the amplifiers. This has two benefits; firstly the noise problem is significantIy eased and, secondly, they can be made from LSI digital components. (This problem of handling analogue signals is illustrated by the fact that a standard pocket calculator can have as many as ten times more components than a colour television set).

The Post Office have been at the forefront of developments in the area of speech digitization, notably with

Pulse-Code Modulation (PCM). But the performánce of any telecommunications system is measured by the quality of the service received and the size of your telephone bill. Whereas advances in electronics can be readily and speedily implemented in small, autonomous units such as personal computers, the very widespread and complex structure of the telephone system makes such a change in technology a massive and costly undertaking. Almost everything has to be changed before the subscriber sees much benefit and no-one should expect to see any massive improvements before 1990.

What about the much-vaunted age of the communications satellite? As far as Europe is concerned the problem of managing the scarce resource of the available frequency bandwidth will probably restrict their use to long-haul international links (e.g. Italy-Scandanavia, UK - Greece). The future more probably lies in the use of very high capacity cables of the co-axial, waveguide and/ or optical types.

Once higher transmission capacities and improved switching techniques do become available, then a whole new range of services may be possible. Getting these new services, especially electronic mail, off the ground is going to be difficult within the present Post Office structure. I think the only way it can work is if the telecommunications departments are split off to form a separate corporation.

The present management/union infrastructure at the Post Office is just not geared up to handle major technical advances. Look what happened to a very minor technical advance; the Post Code. For years the Post Office has been exhorting us to use the Post Code but hardly does so itself. The number of letters which are routed source-to-destination by code only is very small indeed.

If the Post Office in its present form cannot handle a relatively simple thing like the post code, there is no chance for electronic mail. Clearly, major changes are needed.

For more on telecommunications read James Martin's book 'Telecommunications and the Future'. (Prentice Hall).

Next Month: How PCW Readers can tune their own computers to the telephone network.

BASIC PROGRAMS ON CASSETTE FOR PET, TRS-80 AND APPLE 2
Business Accounts, Ledger, Payroll, Inventory, V.A.T. at E9.95 each.
S.A.E. for price list. R. JACQUES

16 Market Place, Hexham, Northumberland NE46 1XQ Tel: 3423

# From <br> Alpha to OmegaWORD PROCESSING 

Charles Sweeten

There are now many offices and small business that are considering some form of word processing. Prices for the usual systems range from 3500 pounds to 65,000 pounds, with a worthwhile system for the small user, with one station and disk backing, working out at about 6000 pounds minimum. /BM offer a system at around 12,000 pounds which attracts many people, and the Rank Xerox system comes out at about 7500 pounds.

These are high prices to pay, and in addition, these same concerns may well wish to have some form of computer accounting or stock control. I want to describe a word processing system costing around 4000 pounds which will also provide computing power for the smaller office or company.

The South West Technical Products (SWTP) computer has now established itself as a useful computing tool in the business field I believe, but it seems to be less well known as a Word Processor. Indeed it is surprising that such a company as Computer Workshop who market SWTP in this country have not had a greater response from the business community to this feature of the SWTP system. Let me say that I have no connection with this company, and that I have used their system al ong with several others from other manufacturers, and that I look forward to the day when they all have Word Processing.

## What is a Word Processor?

Quite simply, a Word Processing machine is one that separates the process of typing from that of printing. What is typed is displayed, and can be corrected, modified, moved around, and recorded in machine readable form. The final version or versions may then be typed out in a wide variety of ways which are governed by a set of Processing commands. Such a machine would in other circumstances be called a computer with a program in it. SWTP sell a Text Processing System which is just such a program. Naturally it only runs on their computer. The process of entering words (Text) and manipulating them is carried out by a Text Editor. These two programs are called off the system disk as required, and operate on any file that is held on a working disk.

However, before describing the operation of this system in detail, let me give you some facts.

The average typist spends one third of her typing time on correcting errors.

She spends a further quarter of her time in making author's corrections.

A typist in a convevancing office mav spend 90 per cent of her time in typing standard clauses.

A golfball machine types at 30 characters per second.
A daisywheel printer prints at 50 characters per second.
A dot matrix printer can print at 200 characters per second.
A keyboard and screen display can cost as little as 500 pounds and as much as 2000 pounds.

## THE EQUIPMENT

In order to do Word Processing on the SWTP system you will need:

1 MP-68.2 Computer System; 2 MP-8 8K Memory Boards; 1 MP-L Parallel Interface.
Options: MP-8 more 8K Memory Boards: 1 CT-64 VDU Terminal or any other VDU such as SOROC, LYME, HAZELTINE: 1 MF-68 Minifloppy Disk System
or DMAF-1 Large Floppy Disk System; 1 RICHO Printer (daisy wheel) or QUME Printer (daisy wheel) or CENTRONICS Printer (dot matrix) or DIABLO Printer (daisy wheel) or any other Printer with full column width and with proper lower case letters.

The extra memory is useful for handling quantities of text in the region of more than five pages of $A 4$ at a time, but is not by any means essential.

The difference between VDU's lies in what they will do, how much they will display, the quality of the keyboard, and the quality of the casing. The last two have a direct relation to price, but the first two do not except within one retailer's product range.

The mini floppy disks hold 80,000 characters on each side and the large ones currently hold 300,000 characters.

The choice between printers lies between quality of print and speed of printing. Daisy wheel printers operate at between 40 and 55 characters per second, and provide a choice of good quality print fonts. Some of them offer the ability to produce proportionally spaced output, though, at the time of writing, the Word Processor does not support this feature and would have to be extensively rewritten. Proportional spacing means that letters such as ' $i$ ' take up less room than letters such as ' $w$ '. Dot matrix printers operate at speeds from 30 to 240 characters per second, and though the quality of print can be quite high, it does not compare with that from a daisy wheel printer. A further option is to use a modified IBM golfball typewriter. This has the advantages of cheapness, and a choice of IBM type fonts, but the speed is only 30 characters per second. An IBM service contract can be arranged to cover the typewriter, but with its dependence on many mechanical parts, it has not proved to be robust enough to stand up to heavy computer use. To be fair, we did not have a maintenance contract.

## Entering the text

Text is entered under the operation of 'Text Editor'. This is a comprehensive editor that has a great many options and commands, but it is quite possible to use it and use only a limited range of these commands. I am not going to describe the operation of the whole computer system as a computer, so we shall have to accept that the machine is running and ready for use by a sec-
retary. The first thing you do is summon Text Editor. from the disk by typing: EDIT LEGAL1, where LEGAL1 is the name of the document being created. I am going to take the example of a Conveyance of property as this represents a rather complex document, and gives me the opportunity to show some of the special features of this system. You should not imagine therefore that the system is designed for solicitors; it could be of use in any office. The secretary then begins to type, and let us suppose that you type the following:

```
\(1.00=\) LEGAL 1
\(2.00=\)
\(3.00=\) THIS CONVEYAN゙CE is made the
\(4.00=\) Fifth day of November
\(5.00=\) One thousand nine hundred and seventy eight
\(6.00=\) BETWEEN
\(7.00=\) CHARLES SWEETEN
\(8.00=\) of 18 South Road Oundle Peterborough
\(9.00=\) (hereinafter called "the Vendor")
\(10.00=\) of the one part and
\(11.00=\) ARTHUR BELVEDERE CRUNCH
\(12.00=\) of 27 Shingles Way Cambridge
\(13.00=\) (hereinafter called "the Purchaser")
\(14.00=\) of the other part
\(15.00=\) WHEREAS the Vendor is seized of the property
\(16.00=\) hereinafter described for an estate in
\(17.00=\) fee simple free from incumbrances subject
\(18.00=\) only as hereinafter mentioned and has agreed
\(19.00=\) with the Purchaser for the sale to him
\(20.00=\) of the said property at the price of
\(21.00=\) twenty five thousand pounds
\(22.00=\) NOW THIS DEED WITNESSETH as follows:-
```

.... and so on, until you are done, when you will type \# at the beginning of the line. This brings you out of the entry mode and into the editing mode.

While you are typing, you will make mistakes, and you will correct these by backspacing and retyping. But there will be later corrections and amendments. For example you may wish to alter something in line 15. To do this there is a Change command 15C/seiz/sies/
where ' $/$ ' is used 'as a separator, and ' 15 ' indicates that the command should operate on line 15.

In order to inspect the text it is only necessary to type a command such as: 10P15, which will cause 15 lines to be typed, starting at line 10.

You will notice that the lines are of uneven length, and a solicitor would also tell you that the final document must be typed without leaving spaces. The ability to cope with this automatically is one of the attractions of this system which will be described later under "Word Processor'.

In documents such as these there are a number of paragraphs (clauses) that are to some extent standard. These can be called from the disk file system and, if any modification is needed, they can be modified. For example:
READ
TAPE OR DISK (T-D) ? D
FILE NAME? CL184
you ask to load
you reply D for disk
you supply the name of the clause you want
The clause will now be at the bottom of the file. A typical clause that might be wanted quite frequently is:

The Purchasers so as to bind the property hereby conveyed and every part thereof jointly and severally COVENANT with the Vendor that the Purchasers and their successors in title will at all times hereafter observe and perform the covenants contained in the Second Schedule to the said Conveyance dated the

## One thousand nine hundred and seventy eight

It is easy to insert the correct date into the appropriate blank line.

What 1 am suggesting is that complicated documents such as a Conveyance, can well be put together from a
bank of clauses held on disk files, leaving only the oneoff clauses to be typed.

Suppose now that you decide that the 12 lines which make up clause 3 , starting at line 103 , should be deleted. This is easily done by: 103D 12

And suppose that the 22 lines starting at line 214 should be moved down by 31 lines. This is easily done by: 214MO 3122

You now wish to 'Save" this typing on the disk, and this is done by typing S . This will result in a file being created on the floppy disk which will be called LEGAL1. The disk can be labelled and filed, and as part of the operating system of the computer, a catalogue of the contents of the disk can be printed out automatically to go in the manual filing system.

You may then Edit another file or the same one again. If you Edit the same one, the machine will automatically set aside a copy of the file as it then exists. Each time you Edit the same file, the machine will delete the previous backup file and replace it with the current file.

Suppose at some later stage the whole transaction gets postponed from the 5th November to the 16th of December; or it might be that you wanted a similar document for another house on the same housing estate. The date might perhaps occur at several points, and you wish to change them all. Obviously you could go through changing each occurrence as you found it under the operation of the Text Editor, but as a small example of how the full range of commands make the task of editing simpler, this is all you need to type to change all occurrences:-

## C/Fifth day of November/Ninth day of December/! *

Yes, I agree it looks complicated, but it is doing something quite complicated, and you don't need to use it. Many businessmen have been surprised to find that their secretaries are often exceedingly intelligent, and if they care to demonstrate the simple use of the machine, and then leave the manual in a handy place, they might well find their secretaries becoming more proficient than themselves!

In order to obtain a printed copy of the file you will merely type: P LIST LEGAL1 and switch on the printer. This is in itself a form of word processing as described so far, in that it enables typed material to be stored, edited, amended, and typed as often as desired.

This paragraph should be skipped by those who are unfamiliar with Editors. TSC Text Editor (which is what I have been describing) is a pretty good editor, but it does have its failings in that it lacks some features to be found on others. For example: there is only one edit buffer; no macro can be defined (this is the most serious defect; there are several facilities that are desirable, for example looping, and conditional termination of loop); there are no character orientated commands - like 'move 3 positions' - 'insert CRLF'. The lack of the latter is quite infuriating at times. However it does have features which are not always found elsewhere. For example: the $<$ line $>$ directive $<$ target $>$ structure which allows a command to take effect over a specified range; line overlays; settable tabbing; definable special characters; and of course, the one that I regard as indispensible, the move command. Recently, a much more powerful Editor has been developed by SOURCE, which is a new software house started by ex-pupils of Oundle School. This Editor has most of the desiráble features referred to above.

It would not be worth considering such a system as I have outlined for what has been described so far, though there is no doubt that your secretary would thank you.

One feature of this system which is good is that having started the machine on printing out a finished file, you may then start to edit the next file while the printing is still going on. But the major attraction comes
when you examine the options offered by the part of the system known as 'Text Processor'.

## Printing the text

The 'Text Processor' is a very complex program which gives the user a staggering degree of control over the exact layout of the printed output from this system. It works on the principle that there is a default mode of operation unless the user specifies otherwise. This means that you do not have to know anything about it at all. However, in this case, a little knowledge is a useful thing.

What can be done with Text Processor? You may specify the exact fitting of the page; this means that you can decide on the margins, and the length of text on each line and on each page. You can do automatic numbering of the pages and put in page titles and text headings. You can perform left and right justification of the text, so that both the left and right margins are straight. You can centre text lines automatically. You can define combinations of commands and refer to these by your own command. This last feature is particularly useful as it enables a relatively inexperienced user to use complicated procedures that someone else has worked out, and remain unaware (and not frightened) of the complexities involved. There are several more features that are available, but they are successively more difficult to describe without lengthy demonstration.

One more feature is worth mentioning though, and that is the ability to give a reference to a footnote, follow that with the footnote itself (which is the logical way to write it), and end up with the footnote fitted in correctly at the bottom of the correct page.

If you read that last paragraph again slowly and then think about what you can actually do with these features, you will realise that you are well on the way to being able to produce text to the standard produced by a professional printer. The limitations at present consist of proportional spacing and the range of character fonts and point size of lettering. The first of these will inevitably be done by someone soon. The second depends on the printer manufacturers, and the third has reached the stage where certain dot matrix printers will print double height lettering.

I shall now give examples of what I have outlined above. It is likely that I shall not see proofs of what I have provided for the printers of this article and so everything will depend on their type-setting. Naturally, I am using the 'Text Editor' and 'Word Processor' to produce it exactly as I want it as copy for the Editor of PCW.

In order to get the 'Word Processor' to take special action, for example on titles and page length etc., it is necessary to give commands that refer to particular sections of the text. This is done by inserting the commands into the text itself. They are distinguished from the text by occupying a line of their own, and by marking that line by a full stop in the first character position (it is unlikely that you would want to have a full stop here under any normal circumstances).

So for example, you might decide that the line length of the document given above was to be 60 characters, and that the page length was to be 50 lines. So you would insert two lines at the beginning of your text:

| . LN 60 | line length $=60$ |
| :--- | :--- |
| PL 50 | page length $=50$ |

Please note that the comments on the right are NOT required, but are put in for ease of understanding in this description.

Legal documents that I have seen do have a habit of starting at the top, and continuing to the end without punctuation, paragraphs or pause. This means that no more commands are necessary for the 'Word Processor' which will now be able to output the document with
everything in its place, and with both margins straight, and with no gaps in the text. This would output the text shown earlier in the following kind of format. The length of line would default to 60 characters, but I have shortened it to 40 to fit the PCW column.

> THIS CONVEYANCE is made the Fifth day of November One thousand nine hundred and seventy eight BETWEEN CHARLES SWEETEN of 18 South Road Oundle Peterborough (hereinafter called "the Vendor") of the one part and ARTHUR BELVEDERE CRUNCH of 27 Shingles Way Cambridge (hereinafter called "the Purchaser") of the other part WHEREAS the Vendor is seized of the property hereinafter described for an estate in fee simple free from incumbrances subject only as hereinafter mentioned and has agreed with the Purchaser for the sale to him of the said property at the price of twenty five thousand pounds NOW THIS DEED WITNESSETH as follows:-

Those of you who are more ambitious in the way that you write may wish to read on. You will want to centre your title, and under-line it, in the middle of the line. So you insert a command in front of the title, and follow the title with 3 blank lines by inserting another command:
.CE 2 centre the next two lines
CONVEYANCE for SALE OF LAND

## SP 3 space down three lines

Now you want to start your paragraphs by leaving. two lines blank and by indenting the first line 6 spaces. To avoid putting the commands for this in each time, you define your own composite command (known as a macrol to do what you want. In this case I shall call the macro by the name '.PP' and I shall use the command for a single line indent.

| .DM PP | define the name 'PP' |
| :--- | :--- |
| .SP 2 | leave 2 lines blank |
| .SI 6 | indent 6 spaces |
| . | end of macro command sequence |

So in front of your paragraph start you insert your new command like this:
.PP

1) IN pursuance of the said agreement and in consideration of the sum of
TWENTY FIVE THOUSAND POUNDS
paid by the Purchaser to the Vendor
(the receipt of which sum the Vendor hereby acknowledges) the Vendor as beneficial owner HEREBY COVENANTS etc

Assuming a line length of 40 characters (it has to fit inside a PCW column width!!, the output could look like

CONVEYANCE for SALE OF LAND

THIS CONVEYANCE is made the Fifth day of November One thousand nine hundred and seventy eight BETWEEN
CHARLES SWEETEN of 18 South Road Oundle Peterborough (hereinafter called "the Vendor") of the one part and ARTHUR BELVEDERE CRUNCH of 27 Shingles Way Cambridge (hereinafter called "the Purchaser") of the other part

WHEREAS the Vendor is seized of the property hereinafter described for an estate in fee simple free from incumbrances subject only as hereinafter mentioned and has agreed with the Purchaser for the sale to him of the said property at the price of
twenty five thousand pounds
NOW THIS DEED WITNESSETH as follows:-

1) IN pursuance of the said agreement and in consideration of the sum of

TWENTY FIVE THOUSAND POUNDS paid by the Purchaser to the Vendor (the receipt of which sum the Vendor hereby acknowledges) the Vendor as beneficial owner HEREBY COVENANTS etc

The manual that describes the 58 different commands and the 26 registers and the 7 special characters has been written with a degree of conciseness that does not make things easy. Each command gets an average of four lines of description, and you have to look elsewhere for the all too rare examples. However they have provided a 'standard set' of commands to deal with footnotes, two column output, and form letters.

If you intend to do something else which is not very simple indeed, then you would be wise to obtain help, or expect to take some time in mastering the difficulties. It is worth quoting the authors, Technical Systems Consultants, on the subject. "The TSC Text Processor is the most complex program released by TSC to date. Do not expect to master the system with one reading of the manual. The entire document should be read lightly the first time through, followed by more rigorous reading. Many results may occur which are contrary to the user's intentions. If strange output is encountered, reread the manual." And most software distributors go out of their way to tell you how easy it is to use! Fortunately the difficulties only start when you try to be clever, and so far I have yet to meet anyone who has not finally realised that the Processor does exactly what it is told to do.

## Conclusion

The cost of the programs 'Text Editor' and 'Word Processor' is 25 pounds each - not expensive. The cost of a mini-disk computer system is about 1900 pounds plus printer. The computer and the programs are available from Computer Workshop who in turn have a number of agents in the UK. The printers can be bought from any source which offers a good price, though there is something to be said for the original manufacturer.

The system works well, and offers considerable scope for the computer to help in other areas of a business. But I regard the keyboard/terminal as supplied from SWTP as sub-standard and only to be tolerated if you cannot afford a better one. Replacing it with say, a LYME would raise the price by 200 pounds. I have only seen the system with a RICOH daisy wheel printer attached, and so unless the retailer can demonstrate another daisy wheel actually in use on the system, I would recommend that. Dot matrix printers are fairly simple to connect, but again I would recommend seeing them attached before placing an order.

This must represent outstanding value for money as a Word Processing system. I understand though that there will be a similar type of system which operates on those machines which have the SC/M operating system. As is usual then, I must advise anyone contemplating a purchase that they would be well advised to wait for a year. At which time I will again advise them to wait for a year. And so on.

# Capacitive Touch Keyboard 

 £37.50 inc.

The Standard Unit Offers:-

* 7 bit parallel ASCII encoded output.
* Positive and negative strobe edges.
* All code outputs will drive 4 TTL loads.
* LED's to show code of selected character.
* Audio feedback with volume/tone control.
* Adjustable character rate.
* Touch sensitivity control.
* Auto repeat.
* Automatic scan facility.
- Requires 5 Volts at only 200 mA .
* Gold plated edge connector provided.
* Low profile case.
* Assembled, tested and burnt-in.
* 6 month guarantee.
* All 128 character ASCIt set.
* Comprehensive Handbook supplied.

Optional Extras:-
Include, Serial output - RS232, On-board 5
Volt regulator. Plus 8 others.
For further details please write to:-
STAR DEVICES LTD.,
P.O. BOX 21, NEWBURY, BERKSHIRE.


Example of SMALL BUSINESS APPLICATION: SWTPC
Computer used as a word processor.

# BUSINESS 

 COMPUTING
## Part 1

Rodnay Zaks

## INTRODUCTION

For the first time the progress of technology makes it possible to enjoy the benefits of a computer in a small business environment for less than five thousand pounds. Or is that really true? The answer is "yes, but ..." The purpose of this article is to justify the "yes" and to describe the "but".

Can a low-cost microcomputer system provide true business computing capabilities? Yes.

Is there any one system presently available that does? No.

It will be seen that the essential deficiency of actual microcomputer systems is not at the hardware level but at the software level. This has always been the case, ever since computers were introduced, and history has consistently repeated itself every time a new generation of hardware was introduced: It will be seen that the necessary hardware to process efficiently a number of business app. lications can indeed be purchased for $£ 5,000$ to $£ 20,000$. However, software is just beginning to become available. Naturally many trade-offs exist in function of the capabilities one wishes to acquire, and these will be studied.

Therefore, the classical applications of computers in business will first be reviewed, in order to define the processing capabilities required to achieve specific business goals. In order for the businessman to make a reasonable choice of a computer system, it is imperative that he understands the trade-offs between the various solutions available today as there is no "best". The choice can be somewhat compared to the selection of a new car or of a new complex machine in function of a specific intended application. There is no gen-eral-purpose choice fit for all applicațions.

Understanding the hardware required and the hardware available is a relatively simple matter. The more complex and difficult problem is understanding the software capabilities required. This is where a large majority of persons purchasing a business system make mistakes. These mistakes are generally more costly than hardware ones. Typically software investment in a system will quickly become the dominant one.
An inadequate system will limit the possible growth of the capabilities of the system, and possibly of the business. A transition to a different system might be costly and disruptive, For these reasons, the reader is strongly encouraged to study and understand the software concepts as well as the hardware ones that will be presented.

## Applications of Computers in <br> Business

Every business needs primarily to maintain a number of files. The best known files are: accounts receivable, accounts payable, inventory, general ledger. Additional files which are úsually desirable are: personnel, customers list, mailing list, back-orders lists, sales list, vendors list, cash situation, company property, and more.

These lists are managed either by hand (typically by a bookkeeper), or with the help of electro-mechanical devices, or by computer, or by a combination of the above.

In addition to maintaining files, every business applies specific processing techniques to each of them. For example, a payroll program will process the personnel file and generate payroll reports, as well as print cheques. A tax program will process the sales reports and the personnel
files to produce the required tax reports. A transaction procedure program will manage updates of specific files, and changes, or entry, of new data. A typical example is a new sale: the transaction program will utilize the inventory file, supplier file, customer file, and perhaps others. It will update them, and print reports.

Similarly an incoming shipment procedure will handle shipments coming in and will enter them in the inventory file, check for back orders, and add entries to the accounts payable list.

Any payment received will update the accounts receivable list and the cash situation list.

In addition to the main programs a number of additional programs must be available in order to produce useful reports. These additional facilities required will be described in more detail in the text following.

It is important to note that the principle is quite simple:

1- Files must be created and maintained.

2- Programs should be available to provide the interface between the user and the files, and supply the required processing functions.

Unfortunately in a real business system, this is only part of the processing required. In fact, in most businesses, the direct maintenance of a single file is reasonably simple. The bulk of the processing required is due to the simultaneous cross-referencing and automatic updating of multiple files.

Let us look at an example. An order is received by mail. It will be processed by the transaction manager program. The sale will be entered in the sales file for the day. A complex sequence of events now unfolds. As a result of this entry, the name of the customer will be added to the custo-
mers list automatically. In addition his name will probably be coded in function of the purchase he has made or of the amount of the purchase, or of his job position. In addition, his name will be checked for credit information before the order is processed. Provided the sale is not "vetoed" by the credit manager program, the next step is to honour the order. The saleable inventory file will now be checked for the availability of the items ordered. In this example three items are ordered: A, B and C. $A$ and $B$ are in stock. $C$ is not.

As a result, an invoice to the customer is generated, a shipping list and a back order are generated. The back order is added to the back order list. In our example, item B is available in stock. The inventory list is structured with a special field which specified the re-order level. The re-order level of item B is four. As a further result of this transaction, a back-order or re-order will also be generated for item B for a standard quantity of 25 items (the number 25 was specified in the inventory file). The address of the vendor is obtained from the vendors file by using the vendor number as an index to the list.

This simple sales transaction has required the use of five files within our system and of several processing programs. For specific businesses, it might even be necessary to update, check, or modify additional files, or perform additional processing functions. It should be clear from this example that, in order to be truly useful, a business system must provide ways to access, modify and process conveniently a variety of files. In addition it must provide a mechanism for performing all the required functions automatically, not manually.

Unfortunately, it will be seen that the majority of so-called business systems available today, using microcomputers, do not perform such a complete service. They provide usually single file management and do not automate completely the complete transaction process. Much has to be done "by hand".

## Word Processing

"Word processing" refers to computerized typewriter operation, where the user can easily change, modify, or format text. It requires an "editor" program, a standard facility of traditional computers. The cost of the processor has become so small that it can be dedicated to a function such as word processing so that "standalone" word processors are multiplying. The majority use a Selectric or similar typewriter. By contrast, business systems offer the option of displays or multi-terminals.

## Using a Computerized Business System

Let us use now an in-house microcomputer for a simple transaction. We will specify the type of program, and our choices in response to choices or questions appearing on the screen of the CRT terminal.

Initially, the system displays a "menu". A "menu" is simply a mul-tiple-choice question. The question asked by the system is stressed by one or more "prompt characters" (here, ".."), designed to indicate that the microcomputer is waiting for an answer.


Fig. 1
A "MENU"
The "business program" has been selected. The system should load it automatically from the disk. A directory of options appears again.


Fig. 2 THE BUSINESS "SUBMENU"
We specify the "accounts receivable". At this point, the system may request that a new diskette be inserted. Let us assume not, and proceed.


Fig. 3
THE ACCOUNTS RECEIVABLE FILE

We specify a new sale, and the system will request all data needed to record the transaction, generate an invoice, and later update all related files such as bank, accounts receivable, inventory, customer list. The dialogue becomes now highly interactive with the system requesting all necessary data.


Fig. 4
ENTERING A NEW SALE


Fig. 5
SALE ENTRY, CONTINUED


Fig. 6
SALE ENTRY, END

The transaction is now completed.
The mode of interaction with the system should now be clear. The program asks all necessary questions, enforcing a discipline. In addition, we will see that it should also check the validity of data being entered (no gross errors). Finally it should automatically print invoices, and later update all related files.

Let us now examine in more detail the actual requirements.

The Requirements of a Business System
The requirements of a business sys-
$\longdiv { \text { MICRODIGITAL } }$
The Microcomputer only shop providing a complete service from a single chip to a commercial data processing installation. Well worth a visit for a look around and a chat.

## Science of Cambridge <br> MK 14

This Kit is the least expensive complete home computer. Usually ex. stock. but ring to confirm.
MK 14 Kit. £
43.15

Socket Set. 3.89
$256 \times 4$ RAM ( 2 needed)
INS 8154 RAM IO
Power Supply.
Cassette Interface.
…
Revised Monitor in ROM
5.75

Prom Blower
8.59
10.75

VDU with character generator TBA VDU without character generator TBA

## BOOKS

A guide to SC/MP Programming. . 4.00 A guide to KITBUG.1.00


Read the reviews and the other advertisements for this remarkable computer. Our price includes:

16K of RAM, 8 K of Microsoft BASIC. International 240 V U.K. Power Supply UHF Modulated Video Output
£820.80

## APPIE II

Apple is a developed product with unmatched flexibility and versatility. Made to the highest professional standards, Apple brings commercial computer quality at the price of a good Hi-Fi system.
Simply the best
16K APPLE
£1063.80

availability of this superlative device.

> ALLPRICES
> INCLUDEVAT \&CARRIAGE


New uprat kits include Aztec keyboard case, improved software notes + FREE from us 10 C15 cassettes, coding pad and keyboard bleep kit.

Join the microcomputer revolution now with a nascom 1. A complete computer on one board, connects to your domestic T.V. and cassette recorder. Unrivalled value for money: Z80, full professional quality QWERTY keyboard, powerful 1 K Monitor, 2K RAM, good documentation and an active users club. Tried, tested and proven, in excess of 4,000 delivèred. Kits and built up ex stock
Expand you Nascom with extra RAM and ROM, high level languages and graphics. Floppy disks and 1/0 boards to come.

|  |  |
| :---: | :---: |
| 2.2 Amp power supply built | 26.46 |
| Buffer Board Kit | 27.00 |
| 8K RAM Kit. | 91.00 |
| 16K RAM Kit. | 151.20 |
| 32K RAM Kit | 216.00 |
| Tiny BASIC in EPROM | 27.00 |
| Super Tiny Basic in Epro | 37.80 |
| Graphics Card. | 102.60 |
| Mother Board | 10.26 |
| Mini Mother Board | 3.13 |
| 19" Racking System | 31.86 |
| Keyboard Cabinet | 3.78 |
| 1/O Board. | 37.80 |
| BOOKS |  |
| Nascom Hardware Manual. | 1.50 |
| Nascom Software Manual. | 1.50 |
| Seminar Notes | 1.50 |
| Z80 Programming Manual | 4.50 |
| The Z80 Microcomputer Ha |  |
| Logic |  |
| Design | 5.95 |

## SERVICE

Kits built, tested, burnt in and guaranteed
54.00

Standard Repair Charge 27.00

## BITS \& PIECES

UHF Modulator with full
instructions.........
Keyboard Bleeper Kit........
Keyboard ribbon cable, with,
.plugs.


We are stockists for Bearbags containing the 6800 based 77/68 system and for the new Panda integrated unit microcomputer with superb VDU and Basic in ROM.

VDU - model 700 upper case ASCII 64 ch x 16 lines scrolling. Full cursor control RS 232C/V24 110 Baud, 300 to 1200 Baud 12 inch display separate keyboard. Full or Half Duplex Quality Professional keyboard (Hi-Tek mechanism.)
British designed and built $\mathbf{£ 3} \mathbf{3} .92$

## CHIPSHDP

A selection from our range of semiconductor devices:

| Z80 CPU | £16.20 |
| :---: | :---: |
| SC/MP II CPU. | $£ 9.72$ |
| 8080 CPU. | $£ 9.72$ |
| 6800 CPU | $£ 9.27$ |
| 6502 CPU | £16.12 |
| 6802 CPU. | £10.80 |
| 6850 ACIA | £7.78 |
| 6402 UART | £5.94 |
| 3881 PIO. | £8.64 |
| 3882 CTC | 8.64 |
| 5204 UVEPROM | £7.56 |
| 2708 UVE PROM | £10.80 |
| 8154 RAM I/O | £8.82 |
| 2111 RAM | £3.19 |
| 1103 DRAM | £1.19 |
| 4116 DRAM. | £13.50 |
| 96364 VDU | £12.69 |
| 6820 PIO | £4.59 |
| 6821 PIO. | £4.59 |

TIL 31.1 dot format hexadecimal display, fits 14 pin DIL socket, incorporates TTL compatible four bit latch, decoder and display driver.
$£ 6.75$

## BCDh

Microdigital are worth a visit for just the books. The best selection of microcomputer literature in the country, our titles are added to almost daily. The following are a small sample to whet your appetite.

## MICRODIGITAL LTD. <br> 25 BRUNSWICK STREET LIVERPOOL LL OBJ

## Tel: 051-236 0707



What to do after you hit return Game playing vision. Starship simulationters. Chess and Computers chess skill.
Game playing with computers 8080 Galaxy Game.
Superwumpus
BASIC
lustrating Basic. Basic Basic. Advanced Basic Instant Basic. Beginning Basic..... Introduction tomistry. Basic in Cnemis on method. Basic. A wan business Basic
applications Guided tour of computer programming in Basic. Basic and the personal computer.

## GENERAL

How to build a computercontrolled Robot T.V. Typewriter Co Best of Byte Vol 1 , Bel 1.................

## PASCAL

Pascal user manual and report
$£ 5.52$
Microcomputer Problem Solving $£ 7.84$ using PASCAL............ $£ 7.50$ £7.00
$£ 5.56$ $£ 5.56$ Programming in Pascal.......... £5.10 $£ 5.16$
$£$ £11.84 PASCAL......................... $£ 4.95$

## OPENING HOURS:

9.5.30 Monday to Saturday. Friendly, expert staff always on hand!

## INTRODUCTORY <br> Understanding Micro. computers

## HEAVYWEIGHTS

Software Tools.
Fundamental Algorithms Sorting and Searching. Analysis and Design
Digital Circuits.... Handbook
Handbook rammed APL
£7.20 . $£ 8.50$ £ 17.85 .$£ 16.40$
$£ 11.99$

A Microprogration.
POPULAR TITLES
The Cheap Video Cookbook
£7.95 Microprocessors from

$$
£ 14.75
$$

Microcomputer Primer £1.90 Microcomp Computer £6.36 Your ting Acquainted £4.95 Getting Acquit with Microcomputers...
£7.12 An Introduction to Personal
£6.50 And Business Comp
£2.75 and Home computer £6.36 Revolution.

Revolution
Home Computers Vol 1
Hardware. Home Computers Vol 2 £4.16 Home Software.

Software....
understanding Computers
£10.36 Understand $\begin{aligned} & \text { Osborne Vol } 0 .\end{aligned}$ Osborne vol 1 .
Osborne with your
Getting Involved Getting Involved er
£6.35 Chips to Systems....acing
£4.95 Microprocessor Techniques............. £5.50 £7.95 Basic Computer One.
. 6.75 Dr. Dobs
£2.75 Tools - To help you work sinclair computer we \& R Brewster £6.50 Multimeter, S \& \& , and the OK soldering equipment
$£ 5.95$ machine tool range.
 £4.75 Level 3........... £120.00
MONITEL clock and telephone
£7.95 Digital deskulator. $£ 28.08$
£5.95 U.K. model. Ci 5 cassettes with Charge model. C15 cassettes with
U. Quality
library cases and
and 87.50 library cases and and Micros. Computer Lib.
£6.95 8080 2085 Software Design 80801808 S ware Gourmet 8080 Software Gook Book. Guide andine Language
8080 Machine Programming. $£ 7.95$ CODING FORMS £5.10 We have designed and printed a $\varepsilon 7.95 \begin{aligned} & \text { versatile univ } \\ & \text { coding form. }\end{aligned}$ Pads, approximately 100 sheets. 8080 A18085 Assembly Language Programming. $£ 6.95$ 8080 Programming for Logic Design
£6.36 Own Compute use Minis
£6.36
1 pad.
10 Pads.
100 Pads.
£20.00
£185.00
$\rightarrow$

Best of cr
vol 2.

## Phone in your Number on 051-236-0707 or complete this order <br>  form

```
ENEADDRESS ABOVE
I ENCLOSE:
CHEQUEIPOSTAL ORDER NO
BARCLAYCARD NO.
ACCESS CARD NO
NAME
ADDRESS
```

tem will be analysed here in terms of the essential files that must be maintained and of the essential processing functions which must be performed.

## Accounts Receivable

This is essentially the file which contains a copy of all invoices generated by the system. Naturally the file does not contain the actual copy, but the minimum amount of information that it is possible to store, which allows the system to actually generate a complete invoice. Typically, it will store the date of the transaction, the name and address of the customer, shipment point, sales information such as salesman, how shipped, when shipped, and specific details of the items sold. It may not be necessary to store all the information which appears in a usual invoice within this accounts receivable file. If a sales file exists, all this information is stored there, and one needs to be accessed frequently and which needs to be processed efficiently.

Efficient informațion processing by any computer requires that all elements within a file be of equal length. For this reason, all files which are processed often, or by complex programs, use fixed length entries or "blocks". An accounts receivable file can be structured in that manner. Fixed fields can be allocated to essential information such as date, name, amount due, transaction or customer code, invoice number. The presence of the invoice number allows the user of the system to access the remainder of this information in the sales list or in the invoice file. In computer jargon; the presence of a number used to access information stored elsewhere is called a pointer. The invoice number is a pointer to the actual invoice. In business jargon, this is part of the audit trail.

The accounts receivable file must be distinguished from the accounts receivable program. The accounts receivable file is simply the list of accounts. The advantages or disadvantages of its format are easy to evaluate by the business user. A typical requirement is that it contain, in an easily accessible way, all the fields that the business user requires frequently.

The accounts receivable program is responsible for manipulating this file, updating it, and generating the required report. It must also generate specialised reports such as the printing of accounts older than 30, 45,60 or 90 days (this is called "aging"). This program can be even responsible for generating automatically reminder notices. However, the reminder notification program may be a separate program. In this case
the accounts receivable program would be used for generating a file of overdue accounts. This file would then be used in turn by the reminder notice program in order to generate personalised reminders to all customers listed in the overdue file. Whether to separate functions into individual programs or integrate them within a single program has little impact on the value of this system. It is largely a matter of programming convenience for the system designer. The important point is that all the facilities be available.

## Accounts Payable

The accounts payable file is essentially a list of all bills or invoices received by the business. Typically, whenever an "OK to pay" order has been entered, the accounts payable manager program will automatically print payment cheques for the goods received. Typically, the cheque will be printed either at a specified date, or else at a programmed date such as thirty days after receipt of invoice. (A good cheque printing program should also check that the cash balance in the bank account is sufficient to cover the expenditures!)

## Inventory

There is no optimal inventory file, as inventory information is different depending on specific business needs. For this reason, most general purpose inventories files will carry a large number of categories. Not all categories will be used by the business. The unavailability of some categories can be felt to be a drawback by some users. The availability of too many categories on the other hand, means that a significant amount of space is wasted in the system. This translates into a relatively smaller number of items that may be entered in the inventory. However, with the ever decreasing costs of memory, the clear trade-off now is to provide as many categories as possible, for most types of businesses, even if some of them are never going to be used. It should be remembered that the size of the inventory file is limited by the physical storage available, such as the size of a diskette.

Typical information which may be included in an inventory file is the following:

CODE - ITEM NO. - ITEM DESCRIPTION - STORAGE LOCATION - NUMBER AVAILABLE - VENDOR NUMBER - FILLING PRICE - PURCHASE PRICE - LAST SALE DATE - MINIMUM QUANTITY FOR RE-ORDER.

Typically 64 to 128 bytes at a minimum must be provided for such an entry. Using such a format, 1800
to 3600 items may be stored in a typical diskette.

The inventory control program must provide many functions. It must provide generalised inventory management facilities:

- complete inventory maintenance, including automatic updates of any category of information with. in the file.
- sales order entry
- purchase order entry
- sales history
- automated backorders
- list of quantity, class, cost, vendor, item no., date of sale
- minimum quantity search
- selective update
- activity reports
- inventory lists in functions of combinations of criteria.
As a rough indication, a minimal inventory management, written in BASIC will require 10 K words of memory (for all practical purposes a "word" is a "byte" here, in the case of 8 -bit microprocessors). A more general program will easily require 90K or more. Since the central memory of a microprocessor is never larger than 64 K , an overlay technique is used, so that such large BASIC programs can be run on a smaller main memory. An overlay consists in executing one part of the program, then bringing in the memory an additional part of the program and overwriting a no-longer-required segment of the previous one which had been installed in the main memory, and so on. The complete BASIC program is therefore never completely resident in the memory in one piece. Pieces of it are brought into the central memory as needed. Naturally this reduces the efficiency of the processing. However, if the overlays are cleverly written, the impact on efficiency is reasonably small.


## Update

It is important to note once more, that, technically, update on an inventory file can all be performed by hand. The user can examine the list of items in the inventory and modify any of the entries such as the unit cost. However the real value of the computer system is again in automating the updating of identical information in many files. Therefore a comprehensive business system should automatically update the inventory file, whenever relevant information is changed somewhere else. For example, should the unit cost of the product be changed, it should be updated automatically in the inventory file as well as in any other file where it might reside.

PCW To be concluded in the next issue. Extracted from the author's book. "An Introduction to Personal and Business Computing", published by Sybex, 313 rue Lecorbe, Paris, France. Highly recommended. PCW.


One interesting feature of the PET is the real time clock which runs continually all the time the PET is switched on. The time is easily obtained via the Basic programming language by accessing the variable TI\$.

The following program allows the PET to behave as a timing device with specific tasks being undertaken automatically at specified times of the day. The times at which events are to occur are read into the program from a DATA statement and stored in array $A \$$ (a rogue value of 9999 is used to terminate the data). The real time clock is then accessed and the time obtained is compared to the times stored in the array A\$. If a match is found then a given subroutine will be performed and control returned so the time comparisons
can continue. The program shown is given as a basic skeleton which readers can modify for their own purposes by writing their own subroutines and entering them at the appropriate locations in the program.

I believe most readers will have their own ideas regarding what they would like to do within the subroutines rather than the more obvious ones of printing messages on the screen or turning external devices on or off via the user port.

Finally, before running the program, the programmer must remember of course to initialise the real time clock with the correct time as described in the PET handbook.
[Readers of my article in the October issue please note that there should be two brackets, viz. II after RND 131.

Gordon Bell, Micro Systems

| 10 | DIM A \$ 10 ) |
| :---: | :---: |
| 20 | DATA 1600, 1601, 1602, 1603, 1604, 1605, 9999 |
| 30 | $\mathrm{x}=\mathrm{x}+1$ |
| 40 | READ A \$ $(X)$ |
| 50 | IF A \$(X)<>"9999" THEN 30 |
| 60 | B \$ = LEFT \$ (TI \$ 4) |
| 70 | FOR $Y=1$ TO $X$ |
| 80 | IF B \$ $<>$ A \$ $(\mathrm{Y})$ THEN 100 |
| 90 | $Z=Y$ |
| 95 | A \$ $(Y)=$ "0000" |
| 100 | NEXT Y |
| 105 | IF $\mathrm{Z}=0$ THEN 60 |
| 110 | ON Z GOSUB 200, 400, 600, 1200 |
| 115 | z = 0 |
| 120 | GO TO 60 |
| 200 | GOSUB 1400 |
| 210 | RETURN |
| 400 | GOSUB 1400 |
| 405 | RETURN |
| 600 | GOSUB 1400 |
| 610 | RETURN |
| 800 | GOSUB 1400 |
| 810 | RETURN |
| 1200 | GOSUB 1400 |
| 1210 | RETURN |
| 1400 | PRINT '/TIME = '"; B\$ |
| 1410 | RETURN |

PCW The author may be reached at 55 Belvedere Road, Hessle, North Humberside PCW.

## ANNOUNCING THE M/GBOS

JOIN THE MICRO REVOLUTION

£399 for a Z80 based microcomputer, built and tested
Designed for educational establishments, personal computing and small business users

* Includes 1 K monitor Eprom, 47 key solid state keyboard, video, TV, cassette and teletypewriter interfaces,serial i/o, 2 parallel i/o ports, 2 K bytes RAM, power supplies and instrument housing.
*. Connect to domestic TV or video monitor to complete the system
* $48 \times 16$ character video matrix
* 47 key contactless ASC11-keyboard
* Hard copy on teletypewriter
* 2 TTL compatible parallel i/o ports
* RS232 serial i/o port

THE MICRONICS COMPANY

1. STATION ROAD TWICKENHAM MIDDLESEX

PART OF THE MICRO REVOLUTION
Prices exclusive of VAT and carriage

# DRAWPIC <br> Taking the sweat out of Computer Graphics 

A. O. Ellefsen

The following very short and simple program (see listing) was written on the Tandy TRS 80 Level Two 4K Micro Computer whilst working on a major printed circuit design project.

It will give the kids something to play with (not to mention the mums and dads) and does form the basis for more serious work.

The object of the exercise is to provide a means of drawing pictures on the VDU using the "INKEY\$" statement which enables your program to be manipulated whilst executing. The system commands are:

```
\(T=\) Trace (draw a line on the screen)
C = Cursor (move a cursor about on the screen)
\(L=\) Move one increment left
R \(=\) Move one increment right
\(U=\) Move one increment up
D = Move one increment down
\(M=\) Reproduce pattern from memory
\(W=\) Wash out current pattern
\(E=\) Erase screen
\(Z=\) Zero memory
```

The size and complexity of patterns that can be stored are determined by the amount of memory available and is fixed in line 4. A running check of how much room is available is printed out continuously in the bottom right hand corner of the screen prefixed by ' N ', also the current cursor/trace position prefixed respectively by ' $X$ ' and ' $Y$ '. To give an absolute check on memory add on to lines 58 and $1 \emptyset 55$ " $\mathrm{MEM}^{\prime \prime}$; MEM; and make use of the TRS80's 'Print Mem.' command.

The top left hand corner of the screen reminds you which of the two major command modes you are in by printing "Trace" or "Cursor". Make sure in line 19 that a space occurs between the 'E' of TRACE and the final inverted commas. Otherwise, after passing through the 'CURSOR' mode, the final ' $R$ ' of CURSOR will appear at the end of TRACE resulting in 'TRACER' thereafter.

I suggest that lines 20 and $102 \emptyset$ be written exactly as shown without modification. Some very odd effects can occur if this is not done. The rather cumbersome method of writing the Trace module lines 19 to $6 \emptyset$ and the Cursor module lines $1 \emptyset 19$ to $1 \emptyset 6 \emptyset$ is directly attributable to this problem.

Lines 3000 and 3001 ensure that when reproducing patterns using the ' M ' command the starting point of the pattern is linked directly to the current cursor or trace position. Take care when moving the cursor about that you do not let it erase parts of your existing display. A bit of effort and ingenuity could probably avoid this problem by using the Tandy 'POINT ( $X, Y$ )' command which detects if a particular section of the screen is already 'occupied'.

On first running the program one enters the Trace module. If cursor control is required hit ' C ' but on first time round also hit any key other than 'Break', or any of the command keys to ensure that when you move the cursor away from the centre of the screen, a spot does not remain illuminated in the centre of the VDU field.

After producing a pattern on the screen it is important to remember that when reproducing this pattern its starting point will be from the current cursor position. Therefore, it is advisable to go into the cursor mode before hitting " M ". Check that the cursor position is known by moving it in the appropriate direction to avoid erasing any of the existing pattern. If, accidentally, any of the existing pattern is erased, restore the cursor to its original position and hit " $\mathrm{M}^{\prime \prime}$.

Hitting break and entering, in the instantaneous mode:

FOR $N=1 T O(C-1): P R I N T Z(N) ; W(N) ;$ NEXT enables one to inspect the $X, Y$ coordinates of the current pattern. After one or two experiments performed in this manner one realises that it gets rather boring when one is constantly retyping the same line again and again. A fairly obvious solution is to write new lines between say 1045 and 1055 such as, for example:

1046 IF A $\$=$ " 5 " THEN 5000 ..... then adding the punch line ..... 5000 CLS:FOR $N=1$ TO (e8tt:PRINT Z(N);W(N),: NEXT (c-1)
I have a feeling that this would be useful if you need to do any debugging or, more importantly, if you are using a machine other than the TRS80 which may have a different Basic dialect.

It will be quickly seen that for any given pattern the coordinate listing remains constant wherever the pattern is generated on the screen. Substituting $F(N)$ for $W(N)$ and $G(N)$ for $Z(N)$ in $5 \emptyset \emptyset \emptyset$ lists the coordinates for specific placements on the screen.

Once you start experimenting you can reach for the sky. For example, try the following. But make sure, if you're using a 4 K system, that you have sufficient mem. ory available. A certain amount of trimming in line 4 helps.

600 FOR $N=1$ TO (C-1) : SET (Z(N) /2,W(N)/2): NEXT: GOTO 1019
When my daughter saw $6 \emptyset \emptyset \emptyset$ being executed she exclaimed ''Ooo ....! look, it's having a baby". Hence routine $8 \emptyset \emptyset \emptyset$ - make sure your patterns don't exceed the $I$ increment of $1 \emptyset$.

8000 FOR $N=1$ TO (C-1) : IF (F $(N)+1) 127$ THEN 8020
8005 SET (F(N) +I,G(N))
8006 NEXT
$80101=1+10:$ GOTO 8000
$802 \emptyset 1=\emptyset:$ GOTO 1019

When running this always hit " $M$ " when in the cursor mode before " 8 ". It takes little imagination to extend this proliferation into the Y axis. Who said computers were sexless!

By this time your finger will almost be dropping off with pushing the cursor around the screen, so try this one:

```
90\emptyset\emptysetPRINT@\emptyset,"ENTER X,Y COORDINATES";
9010INPUT X,Y
9020 GOTO 19
One could go on and on. Don't forget your entries:
1047 IF A $ = "6" THEN 6000
1049 IF A $ = ''8'' THEN 8000
105\emptysetIF A $= "g" THEN 9000
```

I hope you will excuse my liberal extension into high line numbers. This is engendered by the fact that the level 2 TRS80 allows up to 65,529 of them; but, as a final thought, keep a few available for subroutines such as a large alphabet. Use the INKEY $\$$ command and all the letters $A$ to $Z$ but enter them into the program whilst holding down the shift key so as not to confuse them with the existing commands. You will require some form of incrementing as listed under 8000 and further incrementing in the Y direction at the end of each line at the same time setting I to zero. For each letter generated you will need to substitute variable names for $W(N)$ and $\mathrm{Z}(\mathrm{N})$ but this is no problem as Level two has plenty of these - in the neighbourhood of 900 .

| 2 | CLS |
| :---: | :---: |
| 3 | CLEAR |
| 4 | DIM F(130),G(130), Z(130),W(130) |
| 6 | $N=0$ |
| 10 | $X=64: Y=23$ |
| 19 | PRINT@ ©, "TRACE"; |
| 20 | A $=$ INKEY \$: IF A \$ ='"'THEN 20 |
| 25 | IF A $\$=$ 'W' THEN 4000 |
| 30 | IF A ${ }^{\text {= " }}$ "" THEN $X=X-1$ |
| 40 | IF A $\$=$ 'R'' THEN $X=X+1$ |
| 42 | IF A $\$=$ ' $U$ ' THEN $Y=Y-1$ |
| 43 | IF $A$ S = "D" THEN $Y=Y+1$ |
| 47 | IF A $\$=$ "E" THEN CLS: $=0$ = COTO 20 |
| 48 | IF A $=$ " 2 " THEN 2 |
| 49 | IF A $=$ = ' $\mathrm{M}^{\prime}$ ' THEN 3000 |
| 50 | $\operatorname{SET}(X, Y)$ |
| 51 | IF A \$ = "C" THEN 1019 |
| 52 | $\mathrm{N}=\mathrm{N}+1$ |
| 53 | $W(N)=Y: Z(N)=X$ |
| 55 | $\mathrm{C}=\mathrm{N}+1$ |
| 58 | PRINT @ 1000, "X'; $\mathrm{X}^{\prime \prime}, \mathrm{Y}^{\prime \prime} ; Y^{\prime \prime \prime} \mathrm{N}^{\prime \prime} ; \mathrm{N}$; |
| 60 | GOTO 20 |
| 1019 | PRINT @ Ø, "CURSOR"; |
| 1020 | A \$ = INKEY \$: IF A = ' $\cdot \cdots$ THEN 1020 |
| 1025 | $\mathrm{Q}=\mathrm{Q}+1$ :IFQ $<=1$ THEN 1025 |
| 1030 | IF A $\$=$ "L" $\operatorname{THENX}=X-1$ :SET $(X, Y):$ RESET $(X+1, Y)$ : IF $\mathrm{Q}=2$ THEN SET $(X+1, Y)$ |
| 1040 | IF A $\$=$ " $R$ " THEN $X=X+1$ :SET $(X, Y)$ :RESET $(X-1, Y)$ IF $\mathrm{Q}=2$ THEN SET $(\mathrm{X}-1, \mathrm{Y})$ |
| 1042 | IF $A \$=$ " $U$ " THEN $Y=Y-1$ :SET $(X, Y):$ RESET $(X, Y+1)$ : IF $\mathrm{Q}=2$ THEN SET $(X, Y+1)$ |
| 1043 | IF $A \$=$ " $D$ " THEN $Y=Y+1$ :SET $(X, Y): R E S E T(X, Y-1)$ : IF $\mathrm{Q}=2$ THEN SET $(\mathrm{X}, \mathrm{Y}-1)$ |
| 1044 | IF A\$ = 'M' THEN 3000 |
| 1045 | IF A $=$ " "T" THEN 19 |
| 1055 |  |
| 1060 | GOTO 1020 |
| 3000 | $E=X-Z(1)$ |
| 3001 | $U=Y-W(1)$ |
| 3005 | $\begin{aligned} & \text { FOR } N=1 \text { TO }(C-1): F(N)=Z(N)+E: G(N)=W(N)+U: N E X T \\ & N=\emptyset \end{aligned}$ |
| 3010 | FOR $\mathrm{N}=1$ TO(C-1) :SET (F(N),G(N) ) :NEXT |
| 3015 | $N=\emptyset$ |
| 3016 | $Q=\emptyset$ |
| 3020 | GOTO 1020 |
| 4000 | FOR $\mathrm{N}=1 \mathrm{TO}(\mathrm{C}-1): \operatorname{RESET}(\mathrm{F}(\mathrm{N}), \mathrm{G}(\mathrm{N})$ ) :NEXT |
| 4010 | GOTO 20 |



Of all the micro-computer systems now available, the Commodore PET is the one best supported by software.
The widest range of programs is offered by one company - PETSOFT.
You will find a hundred programs in the new 12. page catalogue, covering Business applications, Programming Aids, and some superb Games. Here are just a few examples:

VAT £17.50 A package for small businesses. Consultancy Service available.
PAYROLL $£ 25.00$ A four program package providing an easy method of pay computation and access to monthend and year end data. Update service available.
STOCK CONTROL $£ 12.00$ Stores data on up to 150 items per tape file for rapid recall and amendment.
PERCENTAGE COSTING £49.50 A powerful method of handling cost information, facilitating the study of percentage changes in total due to individual changes.
MICROCHESS $£ 14.00$ Play against latest version of our famous chess program. Excellent graphics.
ASSEMBLER/EDITOR £25.00 Translates assembly language programs intó machine code for direct execution.
DATA FILE HANDLER $£ 12.00$ Provides a working file handling structure to be used when writing your own programs.
MICRO TEXT EDITOR $£ 15.00$ Line oriented text editor for word processing applications etc.
BRIDGE CHALLENGER $£ 10.00$ You and dummy play four person Contract Bridge against the computer,
PET BASIC TUTORIAL $£ 15.00$ Let your PET teach you to program in Basic with our best-selling tutorial suite.
PET WORKBOOKS $£ 15.00$ Set of five professionally written workbooks covering all aspects of the PET.

For further details of these and the other ninety programs in our free catalogue, call or write to us today.
We also accept credit card orders over the telephone.

## Petsuft

MICROCOMPUTER SOFTWARE
PO Box 9, Newbury, Berks. RG13 1PB
Tel. 0635-201131 01-352 1100 Telex 8951672
PET is the trademark of Commodore.



## MICRO TRADE•IN

## Does Your Micro <br> Meet Your Needs?

If it does not or you simply want to change it drop us a line.

We buy or allow trade-in on good factorybuilt microcomputers.

Write to:

## Micro Trade•In

FREEPOST, WELWYN GARDEN CITY, HERTS.
jum Announce the expandable system for the NASCOM I* V.D.U.

Microcomputer Accessories


Kit 1 provides 64 graphics pre-programmed on a 2708 EPROM. Other features include inverse video (black characters on white background) and flash (adjustable flash rate). Available now. Price $£ 32.50$
Kit 2 when used in conjunction with kit 1 provides 1 Kb of programmable colour gráphics. Also included is à colour/audio R.F modulator enabling direct connection to a colour TV aerial socket (NTSC or PAL). Available April. Price £52.20.
Kit 3 is a programmable sound effects generator which can be used by itself or with kit 2 to provide audio from a TV loudspeaker. The generator can provide "bell" sounds for keyboard etc. Available April. Price £18.96
*Conversion boards will shortly become available for other systems.
Keep your Programs in order! Use our Machine Code Programming Sheets. A4 size available now in pads of 100 sheets. Suitable for any micro being programmed in machine code. Price £1.75 each.
All kits supplied include fibre-glass PCB, all components and full documentation. Ready made kits available at $£ 2$ extra. Please add $8 \%$ VAT and 50p postage/packing.
J.W.M. (Electronics) Ltd., 60 Balcombe Street, London N.W.1.

TEL: $01-2622936$
01-4029244

# THE BYTE COSEßVER <br> Graham Trott <br>  



6800 MICRO-ASSEMBLER
Any serious user of a microprocessor is going to get involved in assembly-language programming sooner or later. BASIC is fine for computer-type applications, but operations on a bit level, controlling relays, or squeezing the utmost in performance out of the machine require the user to understand and control the detailed operation of the processor in a way that high-level lans guages are either not suited to or are designed to make unnecessary (as long as you stick to number-crunching). Many users, of course, either cannot afford the luxury of sufficient memory to run a decent version of BASIC, or are perhaps writing programs to run in ROM, which effectively bars the use of interpreters (although not compilers).

An assembler, then, is high on the software shopping list, unless you are the sort of freak that can think in two's complement hexadecimal and remember a couple of hundred op-codes. Most assemblers either require around 8 K of RAM to run in or need a separate editor to create the source program. In either case you spend most of your time loading programs from tape; and if that's not enough, you often require two cassette drives, at least one with remote control facilities.

There are many occasions when the program you wish to try out is only a dozen or so lines long. A conventional assembler is inconvenient to use under these circumstances, and indeed you may be trying to patch a program that occupies the same area as your assembler. The micro-assembler that I am about to describe is written for the 6800. It is designed to run in ROM, and is therefore always available. It requires the use of no editor or mass-storage device, since its function is to translate typed mnemonics directly into machine code, for immediate execution or for later use.

Upon starting up, the micro-assembler requests the address at which the assembled code is to be saved. It then accepts three characters from the terminal and checks that they constitute a valid mnemonic. All of the 6800 mnemonics are catered for, together with a few useful extras, viz:-

BHS (Branch if Higher or Same) $=B C C$
BLO (Branch if LOwer)
$=\mathrm{BCS}$
SK1 (Skip one byte)
SK2 (Skip two bytes)
NOTE: the last two generate $\$ 81$ (CMPA) and $\$ 8 \mathrm{C}(\mathrm{CPX})$ respectively. Do not use them unless you understand the implications as regards the condition code register.

The assembler pseudo-instructions FCC and FCB allow the direct insertion of text and hex digits respectively into memory The former is terminated by Control D (\$04), which is saved as the last character of the text, and the latter is terminated by any non-hex character.

Once the mnemonic has been accepted, the assembler outputs a space. At this point, some instructions are complete, e.g. INX, CLC, TBA, etc. In that case, the corresponding machine instruction is displayed and written to memory. (The microassembler will always check that there is RAM to accept object code.) If the instruction is not complete, further input is required. This may be simply $A$ or $B$, in the case of accumulator inherent addressing. Multiple-byte instructions must indicate the mode of addressing, i.e. Immediate (I), Direct (D), Indexed (X) or Extended (E). Relative (branch) instructions require no identifier. Lastly the operand must be supplied, in hexadecimal characters representing either 8 or 16 bits (the assembler will always know which). A typical sequence might be:-
ADDRESS - 0100
0100 - LDA A 1018601
0102 - ABA 1B
0103 - STA A |*** ERROR *** (store immediate is illegal)
0103 - STA A D 319731
0105 - LDX E 013F FE 013F
0108 - TST X 00 6D 00
010A - BRA 0102 20 F6
010C - FCC THIS IS TEXT DIRECTLY INSERTED INTO MEMORY.
0137 - FCB 04 FF 6A B8 $3389<C R>$
$013 D$ - <CR >
ADDRESS - E000
E000 - NOP ***ERROR *** (no RAM)
E000 -- <CR >
ADDRESS - <CR>

* (Back in MIKBUG)

Note in particular the use of the BRA instruction. The operand is calculated by the assembler and an error will result if the range is too great. Note also that a carriage-return is used to exit the assembler or to start assembly at a new address. In the above example, all spaces were inserted by the assembler - all the user types is the mnemonics and the operands (in hex only).

The listing shows the assembler to have its origin at $\$ 1000$, which will locate it at the top of an 8 K system, but since it is fully relocatable, it may be run at any convenient address. I am prepared to make available copies of the micro-assembler, either on CUTS cassette or in a 2708 EPROM. In the former case I will also include a routine that will enable the user to move the assembler to any desired RAM position. Anyone interested should contact me at the following address: G. J. Trott, 99 Mili Lane, Felixstowe, Suffolk IP11 8LN.




## STATPACIK <br> Part 5 <br> Colin Chatfield

0005 REA STATS
0080 GOSUB 9380: LIME $=1$
0100 ? TAB(20);"STAT5 FOR PROGRESSIUE AUERAGE":?
1150 GOSUB 9600
1160 ? "YOUR ARRAY IS SET AT ";A;"×";B;CHR\$(8);". ";A*1;"ITEMS."
1180 GOSUB 3300
190 60SUB $9360: A 4=0: A 5=0: A 6=0: A 7=0$
1210 IF LEFTS $(A s, 1)=$ "K"THEN 1260
1230 IWPUT * ENTER `Y' IF PROGRESSIVE ", A\$ 1240 IF As ="Y"THEM 1180 1250 CHAIM STATI 1260 ; TAB(20);"STATPACK END": EMD 3300 reh progressive auerage calculation 3310 GOSUB 9400:A4=0 3325 GOSUB 9380:70(29),"PROGRESSIVE AVERAGE FOR COLUMH i";B2 3330 ? (Z9), "ITEN","VALUE","TOTAL","AVERAGE" 3340 FOR \(1=110 A: A 4=A 4+C(1, B 2)\) \(3350 \mathrm{B3}(1)=A 4 / 1\) 3360 P \(1(Z 9), 1, \mathrm{C}(1, \mathrm{~B} 2), \mathrm{A4}, \mathrm{B3}(\mathrm{I})\) 3370 MEXT 3380 INPUT: EMTER \(Y\) ) 3380 INPUT " EMTER 冫Y' FOR CHART", AS 3400 REM PRINTOUT OF DATA 3405 GOSUB 9380 3410 ? (29), TAB(15);"PROGRESIVE AVERAGE CHART" 3420 ? (29): \(\mathrm{A} 4=9.9 \mathrm{E}-99: \mathrm{A} 5=9.9 \mathrm{E} 99\) 3430 FOR \(1=110 A: 1 F B 3(1)>A 4 \quad\) THENA \(4=B 3(1)\) 3440 MEXT I 3450 FOR I=1T0A:IFB3(I)<A5 THENA5=B3(I) 3460 HEXT I 3470 A7 \(=0\) : IFAS \(<0\) THENA \(=1\) 3480 A8=A4 3490 FOR \(I=12\) TO1STEP-1 3500 \#(29), TMT( \((A 8 * 100)+.5) / 100\) 3520 A \(6=A 4 / 12\) : GOTO3540 3530 A \(6=(A 4-A 5) / 12\) 3540 FOR \(J=1\) IOA 3550 ? ( 29\(), \mathrm{TAB}((\mathrm{J} * 2)+10)\); 3560 IF B3(J))=A6*I THEN?月(29),"*"; : GOT03590 3570 IF \(\mathrm{I}=1\) THEMTH (29), "." ; :GOTO3590 3580 ? R(29), 3590 NEXT J: \(7 \mathbf{T I}(Z 9)\) :A8=A8-A6: MEXTI 3600 FOR I=1TO5:TM (Z9):NEXTI:RETURN 9000 REK SUB PRO6RAKS 9360 ENTER `Y' FOR MORE, 'N' FOR NONE " ${ }^{\prime}$,As:RETURII
9380 ? CHRs(25);:9CHRs(25);:TCHRs(22);:9CHRs(12); :RETURM
9400 IF $B=1$ THENB2 $=1: 60$ T09430
9420 IF B2>B THENY"TOO HIOH"
HIGH"; : GOT09410
9600 OPEM H10, STAT
9610 OPEN ${ }^{20}$, STATFL2 FOR INPUT
9620 FIELD $110, F=6$
9630 FIELD $\# 20, A=6, B=6$
9640 SET \#10=1:SETH20=1: $6 E T \# 20$
9650 DIM $C(A, B), B 3(A)$
9660 FOR $I=1 T O A: F O R J=1 T O B: G E T I 10: C(I, J)=F: M E X T J: N E X T I$
9683 INPUT " ENTER Y' FDR UISUAL OF DATA", X\$:IFXSC)"Y"THEN9690 9685 ? IFORI=1TOA:FORJ=ITOB: TC(I, J);:MEXTJ:?:NEXTI: 9690 CLOSE 10:CLOSE $120:$ RETURN

## THE GHOST

CHAINSTATS
Enter OUTPUT PORT H ? STATS for progressive auerage
ENTER ' $Y$ ' FOR UISUAL OF DATA? Y
32002311505000100000
10024111002020000010
10101111003320101011
$\begin{array}{llllllllllllllllllll}3 & 1 & 0 & 1 & 0 & 2 & 1 & 1 & 2 & 1 & 0 & 2 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 3 & 1 & 0 & 0 & 2 & 3 & 1 & 3 & 2 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0\end{array}$
31100211502000011010
YOUR ARRAY IS SET AT $6 \times 19$. 114 ITEMS.
COLUMN \# STATISTIC REQuired FOR ? 6

| PRO6RESSIVE | average for | COLUMN | 16 |
| :---: | :---: | :---: | :---: |
| ITEM | value |  | total |
| 1 | 3 |  | 3 |
| 2 | 4 |  | 7 |
| 3 | 1 |  | 8 |
| 4 | 2 |  | 10 |
| 5 | 3 |  | 13 |
| 6 | 2 |  | 15 |

ENTER ' $Y$ PROGRESIVE AVERAGE CHART

| 3.5 | $*$ |
| :--- | :--- | :--- |
| 3.21 | $*$ |
| 2.92 | $* *$ |
| 2.62 | $* * *$ |
| 2.33 | $* * * * *$ |
| 2.04 | $* * * * *$ |
| 1.75 | $* * * * * *$ |
| 1.46 | $* * * * *$ |
| 1.17 | $* * * * * *$ |
| 0.87 | $* * * * *$ |
| 0.58 | $* * * * * *$ |
| 0.29 | $* * * * * *$ |
| ENTER | $*$ FOR NORE, W' FOR NONE ? N |
|  |  |

THE GHOST

## V. \& T. ELECTRONICS

| 21L02 450ns | 8 off | £ 6.00 |
| :---: | :---: | :---: |
| 21L02 250ns | 8 off | £ 7.00 |
| 4116 16K dynamic | 8 off | £ 70.00 |
| 2114 1Kx4 | 2 off | £ 11.50 |
| 2708 EPROM | 1 off | £ 5.90 |
| 2716 EPROM Texas | 1 off | £ 16.00 |
| 2716 EPROM Intel | 1 off | £ 23.00 |
| Z80 CPU | 1 off | £ 13.00 |
| Z80A CPU | 1 off | £ 16.00 |
| 36149 HEX MOS DRIVER | 1 off | £ 1.60 |
| DS0026 MOS DRIVER | 1 off | £ 2.50 |
| 1M6402 UART | 1 off | £ 6.00 |
| SHUGART 5" FLOPPY DRIVE |  | £200.00 |
| SHUGART 8" FLOPPY DRIVE |  | £330.00 |
| VERSA FLOPPY CONTROLLER KIT |  | £ 99.99 |
| JADE Z80 CPU KIT |  | £ 85.00 |
| EXPANDORAM 16k |  | £160.00 |
| EXPANDORAM 32k |  | £250.00 |
| JADE 8K STATIC KIT |  | £ 85.00 |
| NASCOM MICROCOMPUTER |  | £197.50 |
| ASSEMBLER FOR NASCO | on tape | £ 10.00 |

Conversion kit to put Nascom Monitor on Page "F" Please write for details.
Please add 8\% VAT \& 40p Postage.
V\&T ELECTRONICS,
151 Dartmouth Road, London N.W.2.
Telephone: 01-452 9920

## EQUINOX 300

A powerful multi-user
multi-tasking
multi-language
16 -bit microcomputer time-sharing system
supporting

* BASIC
* LISP
* PASCAL
* Floppy discs
* Hard discs
including a powerful Text Formatter,
Assembly Language Development System and disc-based Sort utilities.

Priced from under $£ 5,000$

Write or phone for further information

## EQUINOX COMPUTER SYSTEMS LTD <br> 32-35 Featherstone Street, <br> London EC1Y 80X. <br> (Tel: 01-253 3781/9837)

## BASIC for YOUR NASCOM!

GET THE EASE AND SIMP LICITY OF PROGRAMMING IN BASIC WITH . . . .
TINY BASIC LEVEL A

- No extra memory needed on any NASCOM!
- Fitted in 2 minutes in place of your existing PROM(s)
- Integer arithmetic $+,-, x, \div$
- Random number generation
- Key board pause and interrupt
- Abbreviated commands allow economical use of your memory and include
LET; PRINT; IF; GOSUB; RETURN; REM; STOP; RND; GOTO; INPUT; RAM; SAVE; LIST; NEW; RUN
TINY BASIC LEVEL B with enhanced features runs on systems with extra memory and has all the commands above PLUS
PEEK; POKE; CALL; LOAD; DUMP; FOR: NEXT; ABS; IN: OUT for complete machine code capability
LEVEL A or B in two 2708 PROMS $£ 21.50$ inc. LEVEL B only on cassette B BUG format $£ 7.50^{\circ}$ Documentation included

C C SOFT
83 Longfield St., London SW18
Tel: 01-870 4891

## ITT 2020 Micro Computer



8 - 48 K RAM.
Colour graphics.
ITT floppy disc drives.
ITT serial printers.

SOUTH EASTERN DISTRIBUTORS:-
Tor Business Systems Ltd.
83 Timberbank,
Vigo Village,
Meopham, KENT
Tel: 0732822956
01-7345351
Dealer enquiries also welcome

[^2]
# $R^{A} N^{2} O^{M}$ <br>  

If the idea of a book, a fairly hefty volume too, containing nothing but a million "random" numbers" seems absurd to you then so should the idea of your computer or pocket calculator producing random digits, e.g., 1 to 6, for your computer games. The whole idea of randomness seems to be against the act of filling a book with random numbers. The fact that one could look at the same page more than once to find out what was coming wipes out the usual element of surprise that the word random contains! It is perhaps less obvious that computer generated random numbers are just as repeatable - and hence expected. In fact, some applications demand that a sequence of random numbers is repeatable. Where does all this madness take us? In short, what is random about "random" numbers?

Randomness v. pseudo-randomness
We all have a clear idea about randomness. The flip of a coin. The fall of a dice. These events are random. Their outcome is not predictable and not repeatable (at will). If we wanted to build an electronic dice into a computer, to enable us to play games say, then a direct solution would be to take some electronic device which behaved randomly, for example, the output of a Zener diode or a saline cell. We could use the device to determine the state of a memory location in our computer and bingo! we have our random number generator. This is the way ERNIE, your friendly premium bond selecting machine works. This is a very good technique for generating random numbers that nobody can ever guess at - it is the lack of repeatability which is important here. However, even though fair and right for the job, machines such as ERNIE are very expensive things to construct well and for a lot of applications a much simpler solution will do.

Let us think about the properties we would like a computer-simulated dice to have.

1) Each digit should come up, on average, as often as any other.
2) By observing which digits have come up already it should not be possible to predict the next digit.
Condition one concerns the fairness of the dice and condition two concerns the independence of consecutive throws. Fairness is not a difficult condition to satisfy. It is the second condition which causes all the problems. First, we should notice that there is nothing in our two conditions which says that these digits should be produced randomly in the sense of coin tossing. I could have a list of numbers in which every number occurred about equally often and in which knowledge of any set of numbers would not help me to guess the next. These would satisfy our conditions and if I read them from the list one after the other you could not tell if I was tossing a dice or reading a list. Such numbers are called pseudo-random numbers because they are not produced by a random mechanism and because they are, in principle, repeatable.

The requirement of not being able to predict the next random number in the sequence, given knowledge of the rest, is a problem because, if the numbers are generated by a nonrandom method, i.e. they are repeatable, then there must exist a method of predicting them! (This is, of course, using another copy of the program or list which gave rise to them in the first place.) So it seems that we cannot meet the second requirement. On closer examination it is obvious that we are asking too much of our random numbers - all we need is that they are not predictable in the circumstance that we are using them in. For example, if the
method of prediction is either too obscure to be deduced or too difficult to be used by a human then our random numbers are O.K. for game playing on a computer. (For most applications we usually settle for successive numbers being uncorrelated with one another).

## Generating random numbers

One of the first computer (pseudo) random number generators, the midsquare method, was suggested by Von Neumann in 1951. It is easy to use but generates fairly low quality random numbers - it has a tendency to produce numbers like $00 X Y$ and XYOO periodically, but it is easy to understand:

1) Specify the number of digits to be generated - say four. 2) Choose any starting value - 5069. 3) Square the starting value - 25694761 . 4) The next random number is in the middle four digits -6947 . 5) Steps 3 and 4 are repeated with the new random number.

A short BASIC program for the mid-square method is given below and the reader might have some fun experimenting with it.

## Mid-square

10 INPUT "STARTING VALUE", A
$20 \mathrm{~L}=\operatorname{LEN}(\operatorname{STR} \$(\mathrm{~A}))$
$30 \quad \mathrm{P}=10 \mathrm{t}(\mathrm{INT}(\mathrm{L} / 2))$
$40 \mathrm{Q}=10 \mathrm{~L}$
$50 \mathrm{~A}=\operatorname{INT}\left(\mathrm{A}^{*} \mathrm{~A} / \mathrm{P}\right)$
$60 \mathrm{~A}=\mathrm{A}-\operatorname{INT}(\mathrm{A} / \mathrm{Q}) * \mathrm{Q}$
70 PRINTA
80 GOTO 50
The most popular type of random number generator in use today is the so-called congruential generator. It is not as easy to understand as the midsquare method but it does give high quality numbers with known properties. A typical generator is given below as a BASIC program. (This particular generator is also of historic interest as it was first used on ENIAC.)

## Congruential

10 INPUT "STARTING VALUE", A
$20 A=A^{*} 23$
$30 \mathrm{~A}=\mathrm{A}-\operatorname{INT}(\mathrm{A} / 100000001)$
*100000001
$40 \mathrm{U}=\mathrm{A} / 100000001$
50 PRINT A,U
60 GO TO 20

The general congruential generator works by multiplying the old random number by a constant and then expressing it modulo some other constant to get the new random number, i.e.

$$
A_{n+1}=\left[A_{n}{ }^{*} K\right] \bmod P
$$

Expressing a number modulo $P$ is simply done by finding the remainder after dividing by $P$. In our example $K=23$ and $P=100000001$. $A$ further refinement is to divide $A_{n}$ by $P$ to give a random number between 0 and 1 ( $U$ in our example). Congruential generators repeat themselves eventually but this can take a long time and depends on the choice of $K$, $P$ and $A_{1}$. (Our example can generate $5,882,352$ numbers before repeating.) Constructing a very good congruential generator is difficult, but our example will do for most applications.

## Monte Carlo

Random numbers can be used to solve some types of mathematical problems as well as in computer game playing. For example, suppose we are about to design a garage and we want to decide how many petrol pumps to install. Too many and some will stand idle and we could have saved our capital. Too few and we will lose customers as the queues get longer. Putting this another way, what we need to know is the average length of the queue for various numbers of pumps. The answer to this problem depends on the number of customers per second and the time it takes to serve them. It is not easy to get the answer by the usual mathematical methods.

A method of solving the problem is to simulate it using a random number generator. By writing a program in which customers arrived and were served with the right probabilities, we could obtain answers simply by running the program and keeping a count of the number of customers served and turned away.

The collection of methods based on using random numbers to solve mathematical problems is generally called the Monte Carlo method. The previous simulation example is easy to understand and the role of the random numbers is obvious. However, random numbers can be used to solve problems which seem to have nothing to do with random. ness.

For example, suppose we wish to evaluate

$$
\theta=\int_{0}^{1} x^{2} d x
$$

In other words, find the area below the graph of $x^{2}$ in the interval 0 to 1 (Fig. 1). We could use the usual methods of numerical integration, i.e. Simpson's Rule, or even solve the problem directly by $x^{2}=\frac{1}{3} x^{3}$. But suppose we instead generate two random numbers $\mathrm{U}_{1}$ and $\mathrm{U}_{2}$ which define a point in the unit square, i.e. they are both positive and less than one (see Fig. 1). If $U_{1}$ and $U_{2}$ are evenly distributed then the probability of the random point being below the curve is exactly equal to the area beneath the curve. Thus if we generate N random points, the area under the curve is estimated by the probability $\mathrm{H} / \mathrm{N}$ where H is the number of points below the curve. A BASIC program to carry out this method for $x^{2}$ is given below.


Fig. 1

## Integration program

| 10 | $H=0$ |
| :--- | :--- |
| 20 | $N=0$ |
| 30 | DEF FNA $(X)=X^{*} X$ |
| 40 | U1 $=$ RND |
| 50 | U2 = RND |
| 60 | IF U2 $<$ FNA (U1) THEN $H=H+1$ |
| 70 | $N=N+1$ |
| 80 | PRINT "AREA ESTIMATE $="$, |
|  | $H / N, " N=\cdots ; N$ |
| 90 | GOTO 40 |

It is easy to find any one-dimensional integral over 0-1 by changing the function (FNA) statement. A quick look at the program shows that the method is simple when compared with other methods. However, a little experimentation will soon reveal its disadvantage - you have to do a lot of work to get a reasonable answer. For example, at $N=100$ the estimate was 0.435 and even at 1000 it was only 0.361 . (The correct value is 0.333 ). This would seem to make Monte Carlo integration of little use, but with a few improvements it is one of the best techniques we have for high-dimensional integrals. It is
rarely used for one-dimensional integrations, i.e, finding areas, but it is nearly always preferred for twodimensional cases, i.e. finding volumes.

There are other examples of turning a non-random problem into a random one and then solving by simulation but the reader is referred to the suggested reading at the end of this article for more details.

## Testing random number generators

Whenever you use a random number generator you should a/ways satisfy yourself that it is good enough for your purpose. This can be done either by statistical tests or, for the least exacting work, simply by examining a histogram of the output.

For game playing most random number generators are good enough. For the various Monte Carlo techniques it is advisable to conduct statistical tests before relying on the results. (Details of these tests can be found in the further reading.) I have tested a number of random number generators supplied with various versions of BASIC and found them all reasonable - none of them have been as bad as the mid-square method! One annoying feature of some BASIC random number generators is their randomisation. By starting the generator off with a new starting value, obtained from some arbitrary memory location, we lose the repeatability of pseudo-random numbers. This is excellent for game playing - otherwise you'd play the same game every time - but for Monte Carlo methods this is a nuisance. It is impossible to say how good such a randomised generator is because its properties depend on the starting value used.

## Conclusion

Random numbers play an important part in the personal computer revolution. For game playing the random number generator supplied with BASIC (or some other high-level language) is usually good enough. Monte Carlo simulation techniques increase the usefulness of random numbers but also require better generators. A good Monte Carlo simulation is simple, effective and can be fun - after all a computer game is usually nothing more than a Monte Carlo simulation of some "real" game.

## Reference

1. A Million Random Digits with 100,000 Normal Deviates, The Rand Corporation, 1955.

## Further Reading

The Generation of Random Variates, T, G. Newman and P. L. Odell, Griffin, 1971.

The Monte Carlo Method, ed. Yu. A. Schreider, Pergamon Press, 1966.


For further information and details of Apple II, CONTACT:
Keen Computers Ltd.,
as from 2nd January 1979, we will be trading from:
$b$ The Poultiry, nottingham

Tele: $385234 / 3 / 6$

now DISPLAYING and DEMONSTRATING
the PET 2001-8 computer
in our new Camberley showrooms.
All Commodore and Petsoft programmes available for instant running and evaluation

Engineering and Programming experts at hand to discuss your precise requirements

Centronics line-printers in stock with PET interfaces

## for full details

millhouse designs lid. 185 LONDON ROAD, CAMBERLEY. Telephone Camberley 23581

## EOUINOX 300

A powerful multi-user multi-tasking multi-language
16 -bit microcomputer time-sharing system
supporting

* BASIC
* LISP
* PASCAL
* Floppy discs
* Hard discs
including a powerful Text Formatter. Assembly Language Development System and disc-based Sort utilities.

Priced from under $£ 5,000$

Write or phone for further information

## EQUINOX COMPUTER SYSTEMS LTD

 32-35 Featherstone Street,London EC1Y 80X.
(Tel: 01.253 3781/9837)

## Written for the Nascom

Among the programs written to run on the Nascom-1 and available now are:

## ICL Dataskil Letter Editor

This software provides a comprehensive set of data operations. Text can be input, displayed, edited, stored on tape, retrieved and further amended. Control functions include cursor, character, word, line, scrolling, tabbing, tape store and retrieve, text printing. All in less than 2 K byte plus workspace for up to almost two full screens. Price on cassette £70 plus VAT.

## TINY BASIC

A 2 K BASIC Interpreter in $2 \times 2708$ EPROM. Normal commands: 1-32767 MSL/single array/arithmetic constant $/<>\leqq \geqq=\neq /$ strings valid in print/listing description and user manual/additional three level keyboard control/compatible with NASBUG and B. Bug Price $£ 25$ Plus VAT.

An extended version of the above is our TINY BASIC PLUS which has all the TINY BASIC functions plus increased operator manipulation in all sub-routines. Price in $3 \times 2708$ EPROM $£ 35$ plus VAT

## ZEAP

An editor assembler which runs under NASBUG and provides the powerful advantages of writing programs in 280 assembly language instead of directly in machine code. Uses less than $3 K$ bytes of memory and is supplied on cassette priced $£ 30$ plus VAT,

121 High Street, Berkhamsted, Herts. Tel: (04427) 74343


## THE AMATEUR VIEW

## LOCAL INTERESTS

The Mersevside Microcomputer Group is now flourishing to such an extent that even bigger rooms are having to be booked for their monthly meetings. Special Interest groups are being formed to cater for NASCOM, PET and Z-80 devotees, and for people interested in the uses of computers in education, while to keep everyone informed of the group's activities, MMG are now producing a group newsletter. Potential new members are invited to contact the chairman, Martin Beer, at the Computer Laboratory, University of Liverpool, P.O. Box 147, Liverpool L69.3BX, telephone 051 - 7096022 ext. 2967.

Another university based group has now started in Oxford. Although it is called the 'St. John's College Microcomputer Society'; membership is open to all in the Oxford area who care to get in touch with the society's secretary Rupert Steele at St. John's College, Oxford.

Despite atrocious weather, the North Kent ACC had a successful inaugural meeting at Biggin Hill in mid November, and have now established a regular series of meetings. Amateur computing enthusiasts living in the area should contact Barry Biddles, 3 Acer Road, Biggin Hill, Kent, telephone 71742.

Twenty people and two computers turned up at the Cross Hands, Beechwood, Newport, where, in convivial surroundings, they agreed to form the Gwent Group and to arrange talks and visits to places of computing interest such as the Llanwern steelworks. Pete Hesketh has all the details for anyone who cares to 'ring him on Shirenewton (02917) 596.

Recent meetings of the Exeter and District ACC have been attended by more than 50 people, and details of future meetings may be obtained from David Carne of 44 George Street, Exmouth (telephone Exmouth 74479). After some experimentation they have now settled on a format for the meetings consisting of a talk on a particular processor or piece of equipment followed by 'RAM-Time'. This is a question and answer forum at which any member is welcome to ask any question on computing and any member may answer. This seems to be an idea which could usefully be adopted by other groups.

Pete Harris of 119 Carpenter Way, Potters Bar, Herts telephone 01-2488000 ext. 7065, reports that although he has had an encouraging response to the mention in this column a few months ago; he feels that there must be more readers who would
like to join a 'personal' PDP/LSI11. User Group to promote the interchange of ideas and expertise on these classic machines;

A new group has been formed in the East End of London by Jim Turner of 63 Millais Road, London E11, and will be holding meetings on the 20th February and the 20th March in the Meeting Room of the Harrow Green Library from 7 to $10 \mathrm{p} . \mathrm{m}$. The Library is at the Leytonstone Road end of Cathall Road in Leytonstone.

Readers living near or visiting Hamburg are invited to meetings of the Hamburg CC, which meets on the first Wednesday of each month. Ring'Pete Bendall on (04191) 6538 and he'll put you in touch with the club.

Closer to PCW headquarters', a South. East London Group has been formed by Roy Mitchell of 58 Kenilworth Gardens, Shooters Hill, London SE 18 3JB (01-856 2489).

The Newcastle Personal Computer Society is holding meetings on the first Tuesday of each month, usually comprising a lecture, informal discussion, and the demonstration of a particular microprocessor system. For further details ring Dr. W. G. Allen on 0632851528.

## NATIONAL INTEREST

In the September issue of PCW, this column raised the question of a new standard for cassette tape recordings - on the basis that the de-facto standard: CUTS, is agonisingly slow and there are a host of later developments now available for comparison. Readers will recall that Alan Secker volunteered to compare proposals and organise a debate on the subject.

Inevitably, issues such as this take a while to resolve; however an interim report from Alan indicates that there appear to be two designs which meet the original requirements of simplicity, reliability and acceptability, and these are the 'Tarbell' system already popular in the U.S.A., and a high speed version of CUTS which uses the same frequencies but less cycles per bit, as described by Bob Cottis and Mike Blandford in the December issue of PCW. The investigation continues.

## CLEAR TO SEND

If you want the world to know of your local group, SIG, or any other activity of interest to the amateur computing enthusiast, just drop a line to Mike Lord, 7 Dordells, Basildon, Essex.

## SETTING UP A LOCAL GROUP

## James A. M. Cunningham

Chairman, ACC

During the last Personal Computer World exhibition, two of the most persistent questions asked at the Amateur Computer Club stand were:
"Is there a local group for me to join?"
"How do I start one?"
This small article is an attempt to satisfy the above two questions.

The Amateur Computer Club (ACC) was set up to provide, by using a news-letter, a forum to exchange information between members. This has resulted in a nat-
ional membership scattered all over Britain, but with the membership now greater than 1700 there cannot be many members who are totally isolated. Thus, provided members can meet one another there should be little difficulty in forming local groups based on a fairly compact area, so anyone who resides in an area in which a local club does not operate and wishes to belong to one should think about starting one himself/herself. However, the Amateur Computer Club by its very nature cannot assist in setting up local groups as the manpower is not available.

The first action should be to attempt to contact those of like mind in their local, easy travelling distance, area. To do this there are several methods:
(i) a small advertisement in the local paper.
(ii) write to be mentioned in the newsletter and magazines such as Practical Electronics, Personal Computer World etc.
When the replies start pouring in, the next job is to decide where to hold your first meeting. The size of the place required will depend on the number of people who replied. A suitable place would be a Public House, which would provide refresh ments for all concerned! Although, it's surprising how many people can be accommodated in the lounge of a house for a first meeting.

If you are going to form a club, you will need officers to run it, these being a Chairman, Secretary and a Treasurer. At the beginning and especially if the number of possible members is small, all that is needed is someone who could be loosely called Secretary, to call meetings and indicate when to have them. The Chairman and Treasurer really come into their own when the Club is large enough to justify a constitution, and the Secretary is being over-burdened with work. When this occurs, the following personnel will be required: Chairman, Secretary, Treasurer, as officers; and usually three to five others as a Committee to assist the three officers.

It is important not to have too large a committee as the committee meetings can take too long and very little is decided owing to conflicting opinions. If this happens, reduce the size of the committee. If, however, the reverse happens you can always co-opt another member on to the committee to reduce the burden of work.

On choosing the meeting place, there are two main considerations to be determined. One is to try and choose some place central for the majority of those who are members, and secondly it all depends on what meeting places are available to hold meetings in. The problem of meeting places will arise quite often as the club grows.

The secretary's duties are reasonably simple but can be hard work. He is normally responsible for
i) calling committee meetings and providing agendas,
ii) taking minutes at meetings and distributing them if necessary,
iii) ensuring that the speaker gets to the general meeting on time and that any equipment requested is available,
iv) announcing the speaker and any other notices he has to hand, (sometimes the Chairman does this),
v) ensuring that the Chairman is kept up to date with any correspondence etc., likely to affect the club,
vi) co-ordinating the activities of the committee members.
The Chairman has a job which, if the secretary is up to his/her job, is fairly easy but it does require qualities which are not present in any other job. It is his job to ensure that at committee meetings the agenda is adhered to, that conflicting arguments are not allowed to get out of hand and away from the subject under discussion. It is sometimes necessary to point out that the person speaking is wandering away from the subject (usually because he tries to make things too complicated). It is also necessary for the chairman to think ahead and to attempt to foresee if the club is heading in the correct direction bearing in mind the membership who are usually of varying experience from expert (small number) to beginner (large number). There is little use having speakers who give talks which are over the heads of most of the members present.

He should also give some thought to his secretary and who he could get in his place if anything happened to him. The lack of a secretary for even one month could cause a lot of unnecessary confusion and upset. It is also his responsibility to periodically examine the treasurer's accounts with the treasurer to ensure that all is well. It also keeps the treasurer on his toes.

The treasurer's function is to control the club's finances. To this end the club has a bank account from which money can be drawn, usually on the chairman's and treasurer's signatures. He should be able to provide at each committee meeting a brief on the finances of the club with an explanation of the drawings and deposits. He should also be able to analyse the finances so that he can give warning in advance that the club is running into a cash flow crisis. This gives the committee time to take action to correct the problem.

At the Annual General Meeting (A.G.M.) he should provide a financial and an audited balance sheet for the meeting along with his recommendations for the future.

Wherever possible a small surplus should be planned every year which will allow future committees greater freedom of action. Periodically he should present his accounts to the chairman for vetting.

A constitution will be needed to provide a basis on which the running of the Club depends.

The subjects the constitution cover are:
i) aims of the club.
ii) officers and committee - election of
iii) necessary qualifications (if any) for those joining
iv) fees, both annual and if necessary per meeting to pay for the meeting room.
v) limits of action of the officers and committee
vi) rules for the AGM and EGM
vii) any others considered required.

The Annual General Meeting (AGM) is held at the end of the club year. A typical agenda would be:

1. Chairman welcomes members to the AGM. 2. Chairman reads out the minutes of the last AGM and has them accepted. 3. Points arising. 4. Chairman's report. 5. Secretary's report. 6. Treasurer's report and accounts. This has to be proposed and accepted. 7. Election of Chairman - previous chairman carries on, the Secretary and Treasurer standing down until new Chairman takes over. 8. Election of Secretary and Treasurer. 9. Election of new committee. 10. Any business to be discussed, proposed and accepted or noted on. 11. Any other business (AOB).

On the running of the general meeting there is little concrete advice one can give as most clubs run it differently.

The most common procedure seems to be:
a) Welcome the Members to the meeting. b) Make any announcements to be made. c) Obtain reports on any activities which have taken place since the last meeting. d) Announce the speaker. e) Thank the speaker after the talk and question time. f) Close the meeting.

On the subject of speakers, amateur computing is still too new in Britain for a group of speakers to have built up, thus most clubs will have to depend on their own resources.

If a speaker is available it is usual to meet him after travelling, give him dinner, and pay his travelling expenses and hotel bill if necessary.

It is hoped that the information given in this article will be of assistance to anyone thinking of starting a club in his area. It should be pointed out, however, that the information given can be only a guide, as each club seems to be unique.

## PCW Open Page Service for Amateurs The POP Service

Buy, sell, exchange. Entries are free, limited (in future) to not more than 50 words. The POP Service is on p. 69.

## One year, three seminars and 12,000 kits later, Nascom presents APPLLCATIINS 79

Two one day seminars to be held in London in the Spring of 1979.

Day one will be on small business applications. Day two will be specifically aimed at the personal user.

Write for further details now.

121 High Street, Berkhamsted, Herts. Tel: (04427) 74343

The world's bestiselling personal computer

*New powerful basic and new graphics on Rom. $£ 75$ card.

- Talk to Apple with voice recognition, speaker trained,

32 word vocabulary. $£ 165$ card.
"Colour Graphics. High resolution $280 \mathrm{~h} \times 192 \mathrm{v}, 6$ colours, easy-to-use. Low resolution $40 \mathrm{~h} \times 48 \mathrm{v}, 16$ colours, very powerful.
*Apple's disks. Powerful DOS. 116K bytes capacity, multiple drives, fast access. $£ 395$.
*Use Apple as a computer terminal 110 or 300 BAUD. Full or half duplex or use with a Dec-writer. $£ 95$ card.
"Use any 8 bit parallel printer with Apple 11. Print up to 3,700 lines per minute. 255 character lines, upper and lowercase. $£ 100$ card.
Dersonal Computers Limited
DISTRIBUTOR
18-19 Fish Street Hill, London E.C.3.
Tel. 01-283 3391
New address from August 21st
194-200 Bishopsgate, London E.C.2.


## SIRTDN PRDDUCTS sp <br> We specialise in the S. 100 Bus System with 8080 or 2.80 CPU'S. <br> 

## MAINFRAME

Desk Top, with power-supply, motherboard \& fan etc. £187.00
SIRTON VDU Self Contained Unit
16 lines 64 characters, 1 K RAM, case, power supply and UHF modulator, with Reverse Video and Flash etc. £ 97.50 Serial Interface 110 Baud Crystal Controlled $\quad$ £ 16.75
Serial Interface 75-1200 Baud Crystal Controlled £ 26.75
SIRTON DATA ENTRY ...NEW !!!
Self Contained Data Entry/Store/Editor \& Display with 2K store, RS232 Serial Output/Input \& Integral Keyboard
'Apply for Data Sheet

## KEYBOARDS

56 key - George Risk Tri-mode ASCII output (without case) - built
f 49.90
56 Key - George Risk Tri-mode ASCII output (built into SIRTON case)
£ 74.90
f 38.00
£ 50.00
£ 19.95
£ 94.50
£ 99.50
£ 72.50
£ 95.50
£ 94.50
£119.50
£ 47.00
£ 92.50
$£ 96.50$
£ 75.50

280 STARTER KIT featuring on board Keyboard, 2 K Monitor, 1K RAM, $2 \times 8$ bit I/O Ports, Prom Programmer etc. $£ 185.00$

## BARE BOARDS

280 CPU Board
£ 31.00
8K RAM Board
Proto-type Board
$£ 25.50$
19.75

FLOPPY DISCS
SHUGART SA400 mini floppy $511_{4}{ }^{\prime \prime}$
£195.00
Versafloppy Disc Controller, controls up to 4 drives $£ 135.00$

## HARDWARE

S100 edge connectors gold plated solder tail
£ 3.45
Transformer Pri 110/240v; sec. $8 \mathrm{v} @ 10 \mathrm{~A}$ and 25 v CT @ 2 A
Bridge Rectifier 25 Amp £ 12.75

INTEGRATED CIRCUITS
8080A CPU Chip $2 \mu$ Sec $\quad$ £ 6.95
2IL02 RAM $1 \mathrm{~K} \times 1$ Bit Low Power 450 n Sec $\quad £ 1.20$
21 L02 RAM 1 Kx 1 Bit Low Power 250 n Sec £ 1.40
2708 EPROM 1 Kx8 Bit 450 n Sec
£ 7.00
8212 I/O PORT 8 Bit £ 3.10
2513 Character Generator, Upper Case (5 volt) £ 6.25
Z80 Monitor
£ 14.00
Apply for prices of ready-built and tested items. Please add
WRITE OR PHONE FOR LATEST CATALOGUE. 8\% VAT.

## SIRTON PRODUCTS

13 Warwick Road, Coulsdon, Surrey CR3 2EF.
Tel: 01.6605617

## Post \& Packing

Keyboards:
Trander $\quad £ 1.00$ each
Kits:
$\begin{array}{llll}\text { Keyboards: } & £ 1.00 \text { each } & \text { Kits: } & \\ \text { Transformer: } & \text { £1.00 each } & \text { Hardware/IC's: } & \text { 30p per kit } \\ \text { 30p }\end{array}$
80p per kit

# PCW Book Review  

## VERY PERSONAL OPINIONS

A. J. Aylward

D. GRIES - COMPILER CONSTRUCTION FOR DIGITAL COMPUTERS<br>Wiley, $£$ ? (Less than $£ 7$ )

The most basic text on constructing compilers, interpreters or assemblers. A must for anyone who wishes to do such work.

Buy yourself a good set of data books. It may cost a bit, but it will pay divideńds. Five pounds for the TEXAS TTL 'bible', another $£ 3$ for the Intel data book and the master manuals for your own processor are essential.

Adam Osborne has written some very good books; on the whole they are worth buying, perhaps more so than any other books on micros.

Make up your mind what you want, a toy, a status symbol or a computer. If you want the latter, try IBM or one of the other well established firms. Failing that, build one for yourself. You will learn an awful lot that way. If you just want a toy or a status symbol, there are plenty of people who are willing to take your money off you,

Anything you get for free is worth what you paid for it. Two great fallacies: S-100 and BASIC. Neither are universal, standard or even much use.
Murphy's Law: "If a thing can go wrong, it will".
O'Toole's Law: "Murphy's an optimist".
Jenkinson's Law: "It won't work"
Sattinger's Law: "It works better if you plug it in"
Most people won't learn even by experience. Never underestimate the power of Human Stupidity. "The better a program is, the fewer variables it possesses". Write programs that you can understand, then they will have a chance of working.
"My program takes half the space of yours and runs three times as fast"
"Yes, but my program works, yours doesn' t "
Remember the Dinosaurs. To them mammals were small, slow and over-specialised. Where are the dinosaurs now?

Perhaps computers should take over the world. After all, we haven't done too well with it.

If fifty thousand people believe a foolish thing it is still a foolish thing. (The S-100 ?)

Standards are there to help you. They mean that you can borrow my equipment and know for sure that it will work in your rig. It means that you don't have to keep on re-inventing the wheel, you can copy someone else's. Only make sure your standard is standard.
"If in doubt, leave it out"
I recommend the following books; they cover various ranges and various degrees of expertise. I own them all and would not recommend a book I do not or have not owned.

## D. E. KNUTH - FUNDAMENTAL ALGORITHMS Addison Wesley. $£ 7.50$

This book is just what its title suggests. It is a gentle introduction to the art of computer programming. Though it contains much maths, do not let this put you off, little of it is needed for the bulk of the work covered.

PETER WEGNER - PROGRAMMING LANGUAGES,
Information Structures and Machine Organisation McGraw Hill. £3.75
An easy, though by no means a layman's introduction to a variety of aspects of computing, both software and hardware. A good primer for anyone past the Adam Osborne stage.
B. W. KERNIGHAN \& P. J. PLAUGER - SOFTWARE TOOLS Addison Wesley. £7.20
A fundamental text on good programming. Quite apart from being a collection of tried and tested programs, which figure amongst the most useful I have ever come across, this book serves to illustrate the best elements of programming style. Essential for anyone who thinks he will ever want to write software.
J. J. DONOVAN - SYSTEMS PROGRAMMING McGraw Hill. £6.55
A 'Noddy's Guide' to the writing of assemblers, linkers, loaders, macro-processors and the kernel of an operating system. This contains most of the basic theory of computing and is very readable. Its examples gently lead the reader into writing all the essential blocks of what has been termed 'system software'.
D. LEWIN - THEORY \& DESIGN OF DIGITAL COMPUTERS 8 LOGICAL DESIGN OF SWITCHING CIRCUITS Nelson. $£ 7.50$ each
The 'bible' of hardware design. A tremendously well researched book with a fantastic bibliography. Very readable.

## J. B. PEATMAN - THE DESIGN OF DIGITAL SYSTEMS McGraw Hill. £6.65

Not as readable as the Lewin books, but a mine of examples of how to do things. A source book more than anything else, but still a good tutor.

MARGARET BODEN - ARTIFICIAL INTELLIGENCE AND NATURAL MAN.

Harvester Press. £4.95

An Open University set book. Extremely readable and very engrossing. A lot of book for your money. Not directly relevant to most of personal computing at the moment, but a taste of things to come.
B. RANDALL \& L.J. RUSSELL -

ALGOL 60 IMPLEMENTATION
Academic Press. $£ 5,40$
A how to implement ALGOL 60 book. Contains all the algorithms and flowcharts necessary to implement ALGOL on an 8, 16 or 24 bit machine.

PCW We don't regard personal computers as tovs. We don't think the $S-100$ is all that foolish. We don't this world for dissent. Isn't there? PCW.

##  my sales ledger was up in 20 minutes."

What is important is whether the system works for you and how long it takes to get you on the air.

We are distributors of the full range of Gapple products and other peripherals with software back-up.


## Collins Consultants

For information or demonstration ring Collins Consultants, Tel: (02816) 2572 or Templeman Software, Tel: (0789) 66237

## The great RAM sale



The Nascom system offers major expansion at sale prices. To give you as much choice as possible we offer RAM boards in three configurations to accommodate up to 16 memory ICs of either MK4027 or MK4116, all socketed.

The memory board kit options are:

> 8 K £85.00
> $16 \mathrm{~K} £ 140.00$
> 32 K £200.00

Boards will also accommodate up to four EPROMS of type 2708 at $£ 10.50$ plus VAT each. And if you wish to upgrade 16 K to 32 K it will only cost you an additional $£ 70$.
Memory boards plug straight into a NASBUS and an edge connector is included for this. All boards must be used in conjunction with the buffer board which, like the memory boards, is available in kit form ex-stock from approved Nascom distributors.


121 High Street, Berkhampsted, Herts. Tel: (04427) 74343

## LOOK FOR THE LABEL!

The Micro-Digital " own-brand' C15 Cassette means high quality, specially made for your micro-computer.

* Tape made against DIN reference tape 45513/16 C528V with anti-static carbon additive.
* Five screw case fixing and transport mechanism using precision stainless steel roller axles.
* Two special graphite impregnated slip shields guide tape ed ges to prevent pack scramble and dispel residual static.
10 quality C15 cassettes with


## MICRODIGITALLTD <br> 25 Brunswick St., Liverpool L2 OBJ. Tel: 051-236 0707

Nascom Microcomputers


PERIPHERALS FOR PET
DAMS JOYSTICK (including sof tware)
£25
DAMS 625 VIDEO ADAPTOR (for TV or monitor) £25 DAMS PAGE PRINTER INTERFACE (for 20 ma loop) £25
PET 8K £643.52 COMPUCOLOR 2 8K £1331.93
2ND CASSETTE £ 55.00 OHIO SCIENTIFIC
APPLE $16 \mathrm{~K} £ 985.00$ SUPERBOARD 2 £ 285.00
APPLE DISK £425.00 KIM 1 £ 99.95
Send for our comprehensive software and hardware catalogue.
We supply all Petsoft, CBM \& DAMS software.
NEW SOFTWARE
DAMS BINARY RENUMBER ( $\mathrm{m} / \mathrm{c}$ code routine renumbers GOTOS \& GOSUBS)
T.I.M. 1.5 (vastly improved Terminal Interface Monitor) DOUBLE DENSITY (4000pt. plot, $80 \times 50$ on Pet)
POLAR PLOT (an example of dynamic reprogramming, ingenious)
GAMES
TREASURE DIVE - excellently written, good graphic control
£4
SWAT - a good chance game, double density graphics DEFLECTION - a TV type ball game completely variable
This is only a selection from a very large range.
Phone Graham Knott or Jeff Orr for details of any of our stock. ADD 8\% VAT TO ALL PRICES. POSTAGE \& PACKING 50p PER ORDER.
D.A.M.S. (Office Equipment) Ltd., 30/36 Dale Street, Liverpool L2 5SF. Phone: 0512273301 (10 lines).

## micro Bits

We can supply the EXIDY SORCERER with BASIC and 32 K RAM for just $£ 850$ or even with a quality 80 column printer, twin cassette recorders and $12^{\prime \prime}$ T.V. monitor for $£ 1599$.

Did you know that you can have BASIC, ASSEMBLER, FORTRAN and even A.P.L. as an 8 K ROM pack? There are several packages available including WORD PROCESSING so please contact us for further details.

We also have NEWBEAR BEARBAGS for the fabulous 77-68 computer kit which is probably the best supported kit available. We will shortly have many components available to support our microcomputer systems.

The NORTH STAR HORIZON, CROMEMCO 22/3, SWTPC 6800, EXIDY SORCERER, NEWBEAR PANDA, 77-68 will soon be available for demonstration in our showroom.

We have what is probably the LARGEST COMPUTER BOOK LIST in the U.K. so if you want ANY computer book CALL US FIRST.
Micro Bils
34b London Road, Blackwater, Camberley, Surrey. Tel: 027634044

All Prices less VAT
We Accept Access, Barclaycard/Trust Card

# THE CIIRCUIT INSPECTOR 

MICRODC, A.D.C. Circuit Analysis Program for the Small Computer User

Mike Brinson, B.Sc., Ph.D., MinstP., CEng., MIERE

Interactive Computer Aided Design (CAD) of electronic circuits has in the last decade become an established engineering technique. The simulation of circuit performance allows designers to refine the operation of their circuits before constructing and testing a circuit on the bench. The availability of microcomputers, with a BASIC language interpreter, offers the home user the opportunity to experiment with circuit analysis programs which were previously only available to engineers who had access to a large computer.

Provided a CAD analysis program is carefully written with a modular structure, the owner of a very modest computer can get started in this area of personal computing. The minimum configuration that is needed to run a small analysis program is a system which will support a BASIC interpreter, with a floating point package, and 4 k of user random access memory.

MICRODC is an interactive BASIC program which can be used as a circuit design aid. The program is capable of analysing d.c. circuit performance to determine component voltages, currents and power dissipations. Circuits for analysis can include transistors. In MICRODC, transistors are modelled using d.c. networks which represent the device circuit function.

To use the program, answers to questions displayed on a VDU are entered from the VDU keyboard. These questions include requests for data describing the circuit components and their connection, commands for the d.c. analysis of circuit performance, commands to increment component values and commands to modify component values. The increment option is mainly used to observe the effects of component charges on circuit performance.

Obviously, to use MICRODC successfully a working knowledge of basic electronics is essential. To use the program, simply respond to the questions asked by the computer.

Many readers are probably asking the question: what exactly does MICRODC do?

The best way to answer this question is to consider an example. Shown in figure 1 is a simple circuit consisting of a battery and three resistors. The battery is represented in the diagram as a one volt source with an internal resistance of 0.01 ohm. For this circuit it is a simple calculation, using Ohm's law, to determine the voltage developed across each of the resistors and the current flowing in the circuit components.

However, if we were to add to the circuit series and parallel components, d.c. analysis would become more difficult and often time consuming. Given the information contained in a circuit diagram, MICRODC will automatically compute the component voltages, currents and power dissipations. The two essential pieces of information needed for these calculations are 1. the connection of the circuit components, and 2. the type and

value of the components which form the circuit. The MK/1 version of MICRODC allows the following types of component:


The direction of assumed current flow is given by the arrows. Resistor $\mathrm{R}_{\mathrm{C}}$ may be any circuit resistor. To specify where a component is connected in the circuit, the component interconnection points are numbered starting with zero for the earth or reference connection. The connection points are called nodes. For convenience, each type of component is also numbered but starting from one this time. Figure 2 illustrates this process using the example introduced in figure 1. In figure 2a the nodes and circuit components are shown numbered. In figure 2 b since batteries are not understood by MICRODC the battery $\mathrm{V}_{1}$ has been replaced by a current generator in parallel with $R_{1}$. Assumed current directions are indicated by the arrows. Using figure 2 b as a guide the following data list is prepared.

1. Highest numbered node: 2.
2. Number of resistors: 3.
3. Number of independent current sources: 1.
4. Number of current controlled current sources: 0.
5. Specification of components and their connection:

R, 1,1,0;0.01
R,2,1,2,1
R,3,1,0,1
I, 1,0,1,100
E
The end of the data list is terminated with the code $\mathbf{E}$ for end. Each of the resistor and independent current sources are described by the following data format:

| Type <br> code | component <br> number | Node number from <br> which the component <br> cutrent is assumed <br> to flow | Node number to <br> which the compon- <br> ent current is. <br> assumed to flow | Component <br> value |
| :--- | :--- | :--- | :--- | :--- |

The program first displays the heading MICRODC MK/1 Followed by \#\# COMMAND \#\# ?


To enter circuit data, type DATA followed by a carriage return. In the following text, to help readers understand the computer output; keyboard response are underlined. After entering DATA the program responds with

```
NODES ? ? 2
NO-R
NO-I
NO-B
TYPE ? R
? 1, 1,0,0,01
?,2,1,2,1
TYPE ? R
?3,1,0,1
? 1,0,1,100
TYPE ? E
```

The end of the data list is communicated to the program by typing the letter E followed by a carriage return. MICRODC then responds with a request for a further command.

```
# # COMMAND # # ?
```

Responding with LIST and a carriage return will display the stored data. After the circuit data has been displayed on the VDU, MICRODC will again request a further command. A d.c. analysis of the stored circuit data is carried out by responding with DC and a carriage return. MICRODC then displays

```
NODENO NODE VOLTAGE
0.995024874
2
0.497512439
```

TThis output tells the user the voltage at each circuit node with respect to the earth or reference node.

On completion of each task MICRODC will request the input of a new command. The full range of options available are:

1. DATA Enter circuit data (only used to enter data at the start of a program).
2. LIST List stored circuit data.
3. DC Undertake a d.c. analysis of the stored circuit data.
4. POWER Display component voltages, currents and 5. MOD Mower dissipations.
5. INC Increment component values and display the node voltages for two circuit nodes.
6. FINISH


Fig. $3^{\circ}$
In the previous example the current controlled current generator was not used. The most common use of this circuit element is to model a transistor. Shown in figure 3 is a single stage transistor amplifier. MICRODC can be used to determine the amplifier bias conditions provided we model the transistor with circuit elements the program can accept. A very basic model for the transistor is shown in figure 4. The current controlled current generator is used to represent the transistor current gain. The 200 and 30 ohm resistors are the device base and emitter resistors and the 0.6 volt battery represents $V_{B E}$. Figure 5 shows the amplifier circuit with the transistor model inserted and the nodes and components numbered.


Fig. 4


The data describing the current controlled current gener－ ator is entered from the VDU keyboard with the format：

| Type ， code | Component number | Node number from which the controlled current generator current is assumed to flow |
| :---: | :---: | :---: |
| node number， to which the controlled current generator current is assumed to flow | current gain | number of resistor through which the controlling current flows |

When a voltage or current is displayed as a negative number this often implies that the original assumption for the direction of current flow through a component is incorrect．If during the calculations the program finds that the current flow is in the opposite direction to that assumed in the data list，the program displays this fact as a negative number．Normally the INC command will dis－ play the node voltages for the two highest numbered nodes．However，other node voltages can be displayed by entering the code N when the INC command responds with CODE．Also if the code letter C is entered after the MOD command displays CODE the program will res－ pond with TYPE．This facility allows the user not only to change the component value but also the position in the circuit where the component is connected．However， extra components cannot be added to the circuit．If you try to do this an array subscript error will result． Remember in BASIC an array can only be dimensioned once during program operation．

The BASIC listing for MICRODC MK／1 is given in Table 1．The program was developed on a SWTPC 6800 system using the 8 k 2．0 BASIC interpreter．MICRODC will operate with other interpreters provided they are similar，with for example full floating point arithmetic， functions and string handling．A computer with either 12 k or 16 k random access memory is needed to run part or the complete package．To save space，dynamic arrays are used by MICRODC to store the circuit data， program lines 1050 to 1053 ．Hence the exact amount of memory used by MICRODC will depend on the number of analysis options included and on the size of the circuit being analysed．

To understand the operation of parts of the program requires a specialist knowledge of circuit theory and
numerical mathematics．However，for those readers in－ terested in writing their own analysis programs the following brief notes and the listing may help to unravel the coding．

At the start of the program，lines 12 to 101，a specific option is selected and the program branches to the rele－ vant section of the code．When a DC analysis is reques－ ted，the circuit data stored in the dimensioned arrays is used to form a set of simultaneous linear equations which relate the node voltages，independent current gen－ erators and the component values．These equations are generated by the subroutine starting at line 1500．At lines 1900 and 1901 subroutines 9000 and 9300 are en－ tered．These two subroutines solve the simultaneous equations to determine the node voltages．Finally sub－ routine 2000 is used to print the results of a DC analysis． Often with a large analysis task the size of the computer memory is not large enough to store the circuit data． Also the user may not need to use the full range of anal－ ysis options．Options may be removed to create space in memory for circuit data．To remove options the follow－ ing program lines should be deleted．

| TO REMOVE OPTION | DELETE LINES |
| :--- | :--- |
| POWER | 19 and 4001 to 4490 |
| LIST | 23 and 3401 to 3451 |
| MOD | 25 and 3706 to 3749 |
| INC | 26 and 3802 to 3898 |

As the majority of 8 k BASIC interpreters are equipped with instructions for storing BASIC programs on cassette or disk，the analysis package can be split into a number of sections corresponding to the main routines and options．One or more of the options can then be merged with the main routines by using the BASIC APPEND instruction．

Although MICRODC MK／1 is limited in its capabil－ ities I hope that it will encourage electronics enthusiasts to experiment with circuit simulations．A second version of the program is planned for the future．MICRODC MK／2 will again be modular with extra analysis options and an extended range of components．

The author writes：At present I am mainly working＊on the design of high frequency circuits over the frequency range $1-6$ GHz ．The design work is undertaken using microprocessors－in particular，the M6800 SWTPC system with mini floppy discs and 20 K core．

Table 1

```
0001 LTNE= = 100
0001 LINE= 100 
lol
0005 A$= "NODE VOL
0012 FFXNT "MICFODC MK/1"
0018 INFUT "EfE COMIMAND IEES
0019 IF C串:"FOWER" HHEN4000%
0020 TF C&="FINTSH"THENSTOF
0021. IF C$="DC*THEN1.490
0022 IF C$="DATA"THEN1.001
0022 IF C&="DATA"THEN1.001
0023 IF C&=:LIST"THEN3401
0025 XF C$="MOD" THEN3706
0026 TF C.$="TNC"THEN380%
0101 GOTO 18
1001. LNFUT "NODESS = ",N
1002 TNFUT "NO-F = ",N1
1003 TNFUT "NOWIT = ",N2
1004 DNFUT "NO-EE =- ",N3
1050 DIM Y(NyN),E(N),U(N)
1051 DTM F1 (1+N1) ッF2(1+N1), F゙ (1+N1)
1052 DIM S1(1+N2),S2(1+N2) YS(1+N2)
1053 DTM U1 (1+N3),U2(1+N3),U3(1+N3),N4(1+N3)
1080 TNFUT "TYFE", C$$
1082 XF C&="F"THENINFUTIッR1(I) ッFZZ(I) थR(I)
1083 IF C$w"E"THEN18
1084 TF C&="I"THENTNFUTI,S1(I),S2(T),S(I)
1085 IF C$="E"THENINFUT, U1 (I),U2(I),U3(I),U4(I)
1196 GOTO 1080
1490 GOSUE 1500
1492% GOSUE 2000
1493 GOTO 188
1500 Ml=0
1510 FOF I=1TON
1510 FOF I=1.7ON
1512 U(T)=0
1516 FOF }x=1\textrm{TON
```

```
1518 E(I)=0
1520 FOR J==1TON
1522 Y(I,J)=0
1523 NEXT J
1.524 NEXT I
153% FFOF K=1TON:
1534 X=R1(K)
1536 J.下"(K)
1.338 G=1/R゙(K)
1547 NEXY 850
1552 FOF K=1TON2
1554 I==S1(K)
1556 J=52(K)
1558 G=S(K)
1560 GOSUE 85:0
1562 NEXT K
1563 XF N3=0THEN1.900
1564 FOF: K=1 TON3
1565 I=U1 (K)
1566 J=\\2(K)
1567 L F=1 (U4(K))
1568 M=F2(U14(K))
1569 G:=U3(K)/R(U4(K))
1570 GOSUE: 8530
1571 NEXT K
1900 b0s,uE:9000
1%01 GOSUE: 9300
1902 E=0
1903 FOR J=1TON
1904 E=E +(U(J)-E(J))*(U(J)-E(J))
1905 V(J)=E6J)
1906 NEXT J
1.907 M1-M1+1
1908 IF E 1E-3THENRE TUFN
1909 IF M1 15THEN1S1S
    Cont. p66
```

```
1921. STOP
2000 FRCINT D$,A$
2003 FOOF T=1TON
2004 FFEINT I,U(I)
205 NEXT T
2006 RETURN
3401. FOR I=1TOBO
```



```
3403 IF I<mN2THENFFTNT"T "AT;St(I) =S2(I);S(I)
3404 IF I<NN3THENFFINT"E *;I;U1(I);U2(I);UЗ(I);U4(I)
3450 NEXT I
3451 EOTO 18
3706 INFUT "CODE: " (C&
3707 TF C&w"R"THENINFUT"R-NO R ",I,F(I)
3708 IF C$="T"THENINFUTT"I.-NO I ",IyS(I)
3709 IF C$=W"E 'THEN18
3710 IF C' % = "C,'THENN1080
3711. IF C$="B"THENINFUT"B-NO E",I,U3(I)
3749 GOTO 3706
3802 01=NN-1
3803 02mN
3804 TNFUT "CODE ",C&
3805 IF C%="R"THEN:3860
3805 IF C&=="R"THENN3860
3807 IF C$$="N"THENTNFFUT"N1 N% ",01.902
3807 IF C$="N"THENINF
3808 IF C&#"E"THEN18
3809 IFOT0 3804
3860 INPUT "R-NO FS RFF",Z,Q1,Q2
3860 INFUT "R
3862. FRTNT A$
3863 FRINT "F-NO " %Z,DD$0,O1,D$%O2
3864 FOR X=0TOL0
3865 Fं(Z) =FNA (X)
3866 COSSUE 1500
3867 FFXNT Fi(z),U(01),v(02)
3868 NEXT X
3869 G0TO 3804
3874 TNFUT "X-NO IS XF "y2,Q1,Q%
387S PRINT A$
3877 FRTNT "T-NO " FZ,D$;O1,D$;O%
3878 FOFR X=0TO:0
3879 S(Z)=FNA(X)
3880 GOSUE 1500
3881. FRINT S(Z),U(01),U(02)
3日82 NEXT X
3883 GOTO 3804
3890 INFUT "E:-NO ES EF*,Z,Q2,Q2
3891. FRINT A$
3892 FKINT "E-NO * FZ,D$;O1,D$;O2
3893 FOF X=0TO10
3894 U3(z) =FNA (X)
389'% GOSUE 1500
3896 FFNTNT U\3(z) vU(01),v(02)
3897 NEXT X
3898 GOTO 3804
4001. FRINT "CODE ", "UOLTAGE", "CUFKRENT ", "FOWEFR"
4003 FOFR I=1TON1
4004 < Z1=F1(1)
4005 Z2=F2%(I)
4006 GOSUE 4450
4007 FFTNT "K ":I,Z.Z/K(I),ZZ*Z/Ki(I)
4 0 0 8 ~ N E X T ~ I . ~
4010 FOOF I"m1TONa
4011 Z1=S1(I)
4012 Z2==52(I)
40:13 gosue 4450
4014 FRINT "I ";I,Z.S(I),Z*S(I)
4015 NEXT I
401.6 TF N'3:0THEN:18
40.17 FOF I=1TON3
4 0 1 8 \quad \mathrm { Z1=U1(I) }
4 0 1 9 ~ Z 2 : = U 2 ( I )
4020 GOSUE 4450
4021 Z:3=2
4 0 2 2 ~ 2 . 1 = F ' 1 . ( U 4 ( I ) ) ~
402:3 Z2%=R2(U4(I))
4 0 2 4 \text { cosue 4450}
4 0 2 5 ~ Z = Z / F ( U 4 ( I ) )
4026 FRINT "E *iI,Z3,Z*U3(I),Z3*Z*U3(I)
4449 GOTO 18
4450 TF 21=0
4450 TF Z1=0THEN4454
4451. IF Z2=0THEN4456
4452 Z=v(Z1)-v(ZZ2)
4453 RETURN
4454 Z=-U(ZZ2)
4455 RETUNRN
4456 Z=U(Z1)
4457 RETURN
4490 GOTO 18
8500 TF I=OTHENB504
8502 Y(I,I)=Y(I,I)+G
8504 TF Jm0THEN8514
8506 Y(J,J)=Y(J,J) +G;
8508 IF I=0THEN8514
8510 Y(J,I)=Y (J,I)-G
B512 Y(I,J)==Y(I,J)-G
8514 RETURN
8520 IF I=0THEN85524
852%2 E(T)=E(I)-G
8524 IF J=OTHENRETUFN
8526 B(J)=E(J)+G
8528 RETURN
8530 IF I=0THENB535
8531 IF L=0THEN8553
8531 IF L=0THEN8533
8532. Y(IN M=0THENB535
8533 IF M=0THEN8535
8535 TF J=OTHENNETURN
3536 IF M=0THENBSN
8537 Y(J,M)=Y(J,M)+G
8538 IF L=0THENFETUFN
8539 Y(J,L)==Y(J,L)--G
540 RETURN
000 I=0
9010 I=I+1
9020 I I=I+1
9030 I2=I-1
040 FOR L=IITON
9050 IF I2=0THEN9090
060 FOR J=1TOI2
9070 Y(I,L)=Y(I,L)-Y(I,J)wY(J,L)
9 0 8 0 ~ N E : X T ~ \ , ~
9090 Y(I,L)=Y(I,L)/Y(X,I)
100 NEXT L
9110 L=I1
120 T3 =m--1
930 FOR K == L. TO N
9140 FOR M=1TOX3
9150 Y(K,L. )=Y(K,L...--Y(Ky,M)*Y(M,L.,
9160 NEXT M
170 NEXT K
9180 IF L = N THEN RETUFN
9 1 9 0 ~ G O T O ~ 9 0 1 0
9300 FOK K=1TON
9310 K1=K--1
9310 K1=K-1. 
9320 IF K1=0THEN93
9340 E(K)=E E(K)-Y(K,I)*E(I)
9340 E(K)=1%
9360 E(K)=EB(K)/Y(K,K)
9370 NEXT K
9 3 8 0 ~ K Z = N - 1
9390 FOR K3=1TOK2
9390 FOR K3=1TOK2
9400 K=N-K3
9410 K4=K+1
9420 FOOR JI=K4TON
9430 E(K)=W(K)-Y(KyJ1) *E(J1)
9440 NEXT J1
9450 NEXT K3
9460 FEETURN
```



## Approved Nascom UK Distributors

```
Nascom-1 available at \(£ 197.50\) plus VAT from:
```

Barrow-in-Furness
Camera Centre
Tel: 0229-20473
Torquay
CC Electronics
Tel: 0803-22699
Egham \& Manchester
Electrovalue
Tel: 07843-3603
Glenfield, Leicester
Eley Electronics
Tel: 0533-871522
London W2
Henrys Radio
Tel: 01-723 1008
Oldham, Lancs Lock Distribution
Tel: 061-652 0431
Chesham, Bucks
Lynx Electronics
Tel: 02405-75151
Liverpool L2
Microdigital
Tel: 051-236 0707
New Barnet, Herts Comp Components
Tel: 01-441 2922

## Glasgow

Strathand
Tel: 0415526731
Bristol
Target Electronics


Tel: 0272421196

```
Nascom Microcomputers
```


# SINCLAIRLY YOURS 

W. Mclvor

MPU - Calculator Interface Winning a Sinclair Programmable Calculator in the PCW competition in issue one presented me with a problem. What do I do with two Sinclair Programmables? I bought one shortly after they were announced. My solution was to interface one of them to my MPU system.


Fig. 1.

I was faced with two basic problems. Firstly, level conversion between the 9 volt calculator levels and the 5 volt MPU levels; and secondly getting the timing right.

Although based on a MPU with on-board ROM and RAM the Sinclair Programmable can be regarded as an ordinary calculator with segment and digit lines and keyboard input lines
as shown in Fig. 1. Input to the calculator consists of taking one of the keyboard input lines to 0 volts when a selected digit line goes low. This is usually achieved by pressing a key which simply connects one of the digit lines to one of the keyboard input lines. Output consists of reading the segrnent lines when the selected digit line goes low. The calculator does this by using a multiplexed display.

These input and output methods give the block diagram of the interface shown in Fig. 2. The block 'data detect' is used to detect when the display is turned on. The Sinclair Programmable blanks the display
while it is performing an operation and so when the display turns on we know that the calculator is ready to receive another instruction.

## Digit Select

Figure 3 shows the circuit used to select the required digit line for input and output operations. CMOS is used here for two reasons. Firstly to avoid loading of the calculator circuit, and secondly to avoid the need to convert all 9 digit lines to 5 volt TTL levels.

A 4051 is used to select digit lines 0 to 7 . The 4051 is an analogue multiplexer but it is cheaper and just as effective as the digital equivalent the


Fig. 2.


Fig. 3.
4512. Digit line 8 is selected using a 4011 quad 2 input NAND gate which selects either the output of the 4051 or digit line 8 depending on the most significant bit of the 4 bit select code.
The output of the select system is converted to 5 volt levels by using a 4049 buffer. The buffers in a 4049 when operating from a 5 volt supply give logic ' 1 ' outputs of 5 volts but will accept logic ' 1 ' inputs of 5 volts to 15 volts. The drive capability of the buffer is increased to standard TTL drive by further buffering using a gate from a 7432 quad 2 input OR gate. Separate signals are used for enabling the keyboard inputs and sending the 'digit ready' signal to the MPU, but this is simply to use up spare gates that are available.

The digit select code is written into a 7475 quad latch by the MPU and converted to 9 volt logic levels

Fig 5.

Level conversion is achieved by using a 7426 which contains four, 2 input NAND gates with high voltage open collector outputs.

## Segment Buffer

The segment buffer and data detect circuits are shown in Figure 5. The 4049 buffers provide level conversion to 5 volt levels. The 81LS98 provides tri-state control for connection to the MPU data bus and also reinverts



Fig. 4.
by using 7406 high voltage open collector buffers.

## Keyboard Input Select

Figure 4 is the keyboard input select circuit. A logic ' 1 ' is written into the position in the latch corresponding to the input line required. When the selected digit period occurs the outputs of the latch are inverted and presented to the keyboard inputs by means of four NAND gates. Thus the bit containing a logic ' 1 ' presents a ' O ' to the corresponding keyboard input during the selected digit period. Outside this period the digit select signal is at logic ' O ' so the outputs of the NAND gates present logic ' 1 ' levels to the input lines.
the segment data. When the display is blanked all inputs to the 4068 are logic ' 1 ' so the data ready signal is at logic ' O '. Whenever any segment is turned on at least one input to the 4068 goes low and the data ready therefore goes high. Although this output is never continuously at logic ' 1 ', because segment data only appears for part of the digit period, it


Fig. 6A

## Connections

Figure 7 shows the PCB of the Sinclair Programmable. The easiest way to make the connections to the digit and keyboard lines is to remove the keyboard, drill holes in the appropriate pads on the PCB, solder veropins into these holes and make connections to the veropins. The three digit lines not taken to the keyboard can be taken to spare pads isolated by cutting the tracks leading to them.

The segment lines are best accessed at the current limiting resistors behind the display as shown in Figure $7 B$. If required, the connections to the digit lines could be made at the display, and the keyboard input lines at the main IC, taking care not to bridge tracks or overheat components. If this is done the keyboard can still be used, with zero written into the keyboard input select latch, to operate the calculator manually.

## Software - Input

To simulate a key entry an 8 bit word is written to the interface. The lower 4 bits are a BCD number corresponding to the digit period required. The upper 4 bits have one bit at logic ' 1 ' corresponding to the keyboard input line required. Table 1 gives the codes required for each key.


Fig. 6B

The complete input sequence is:-

1) Send 8 bit keycode.
2) Wait for calculator debounce time.
3) Send hex 00, (Key release).
4) Wait for calculator debounce time.
5) Wait for data ready to go high.
6) Send next instruction.

| Hex Code | Key | Hex Code | Key |
| :---: | :---: | :---: | :---: |
| 12 | 0 | 26 | /EE/- |
| 13 | 1 | 42 | $\pm / 4$ |
| 14 | 2 | 43 | C/CE |
| 15 | 3 | 44 | RUN |
| 16 | 4 | 82 | $=$ |
| 17 | 5 | 83 | - |
| 22 | 6 | 84 | $\div$ |
| 23 | 7 | 85 | + |
| 24 | 8 | 86 | $\times$ |
| 25 | 9 |  |  |

Table 1

## Output

Getting the 7 -segment data is more tricky. The 8 bit word has the upper


Fig 7A.

4 bits all zero and the lower 4 bits specifying the required digit. When digit ready goes high the segment data is ready a specific time later.
This time should be constant if a stabilised 9 volt supply is used, but as the main IC has no stable external clock it may vary for each calculator.

The output sequence therefore is:-

1) Write digit required.
2) Wait for digit ready to go low.
3) Wait for digit ready to go high.
4) Wait for segment data set up time.
5) Read segment data.
6) Read next digit.

Step 2 is in case we request data in the middle of the required digit period. The delay in step 4 was $148 \mu \mathrm{~s}$ in the prototype circuit though some experimenting may be required. Also it should be noted that the data ready signal cannot be used for step 4 because we may be reading a blank digit which contains no segment data and does not cause data ready to go high.


Fig. 7B

## Other Software Considerations

The calculator is very slow compared with the MPU and so where possible the data ready signal should be used to interrupt the MPU. This allows other processing to take place while the MPU is waiting for a result.

Input and output are not compatible with each other or with any normal representation used with MPU's (i.e. ASCII, BCD, Binary) and so if the calculator is to be used, for example, in a Basic interpreter, conversion routines will be required.

A simple interpreter can be written to take a list of key codes similar to table 1 but modified to allow single and double shift functions to be specified in one byte. Special functions such as request input, display output and halt can be added. When used with a simple keyboard and display connected to the MPU, or with the calculator keyboard and display directly, the result is a system similar to the Sinclair Programmable but with the number of program steps limited only by the MPU memory. This also gives the system access to over 600 pieces of software in the form of the Program Library available for the Sinclair Programmable.

It is also possible to write a program into the calculator program memory allowing it to run a long iterative calculation while the MPU performs other tasks.

Finally, if the interface is used with any other calculator the data ready signal cannot be used. In this case a software delay is necessary to allow the operation to be completed before sending the next key entry code.

## POP SERVICE

from page 59

| FOR SALE |  |  |
| :--- | :--- | :---: |
| Floppy Disc Drive: $8^{\prime \prime}$ PERTEC FD400, with 6 diskettes and  <br> technical data. Demo. One only: $£ 199$ <br> Watford 44946 St. Albans 64077 |  |  |

## TRS-80 FOR SALE BRAND NEW

One TRS 80 complete boxed 16 K Level II with many taped programs $50+$, and 19 Basic Program Books. The value of this system as above $£ 950$ : I will sell it to the first person for $£ 700$. Buyer collects.
Telephone about 7.00 pm 084261648 Home or 0379 852111, Extension 266 Office. P. Turner

## East London Group of the ACC

Future meetings on 3rd Tuesday each month (7pm - 10pm) in Meeting Hall, Harrow Green Library, Leytonstone (nearest tube Leyton), from 16th Januarv.
Contact Jim Turner, 63 Millais Road, London E114HB.

## 6800 D2 MICROPROCESSOR DEVELOPMENT SYSTEM PLUS EXTRAS

Little used Development System (Kit) assembled in full working order. Complete with 512 bvtes onboard RAM. Cassette/Keyboard/Display/Interfaces etc., included with Basic System are 8 position exorciser bus motherboard/ X2 Viking connectors/part complete 4 K bytes exorciser RAM board (no chips)/ 3 amp 5 V power supply/cassette recorder/all wired and working in purpose built case. Also Motorola applications manual plus some software and full documentation and Motorola applications notes on expanding the Basic MEK 6800D2 System.

Complete for $£ 140.00$
R. W. Wilmot,

Telephone: Horsham Sussex (0403) 69835

## Editor Program for NASCOM I Users

This versatile Editor runs on the minimum system with no hardware modifications.

The program allows data files on cassette to be created, examined, and updated, and displays pages of up to 15 lines by 48 characters one at a time. Lines or characters (upper/lower case or any special character) may be inserted or deleted at any position in the page currently displayed.

Price including cassette, listing and documentation £3.00.

Further details and other software available on request. Contact Nick Purver, 74 Stubbington Lane, Stubbington, Near Fareham. Hants. PO14 2PE.


Warning
Buzzwords exist to aid concise communication in an area where new ideas are emerging at an unprecedented rate, but people do occasionally use terms imprecisely, by error or intent, and sometimes the new meaning overtakes the old. That much overworked letter $K$, for example, stands for kilo or thousand which is often equated with 1024, the nearest round number in the binary progression which goes $2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768,65536 \ldots$. So a memory with 65536 elements may be called 64 k or 65 k , but that is not the end of the confusion because the size of each element has not been specified. Most probably bytes of eight bits, they might equally be the bits themselves or even words of some other bit-length, such as 4, 12, 16, 24 or 32 bits. Good practice will avoid ambiguity by writing $4 \mathrm{k} \times 8$ bit or $\mathbf{4 k} 8$.

Still another ambiguity arises when old hands refer to memory as core, which is what they used to be made of, much as any domestic vacuum cleaner may be called a hoover.

So be on your guard.

E (1) Symbol for voltage, as in the equation $E=I R$ (voltage equals current in amperes multiplied by resistance in ohms).
(2) Symbol for exponential notation, where for example 1.23 E-3 means 1.23 multiplied by $10^{-}$, or 0.00123 .
e Symbol for the exponential constant, used as the base for natural logarithms.
E.13.B. A standard font for magnetic ink characters capable of interpretation by MICR reading devices.
EAROM. Electrically Alterable Read Only Memory - a form of ROM wherein the contents stored may be altered by an appropriate electrical current.
Earth. A path to earth for an electric current. It is generally necessary for a computer, in common with other electrical and electronic apparatus, to carry a connection to earth. With powerful equipment it is important that this connection be made with care in order to avoid interference with, or pickup of random signals caused, by other apparatus. (Compare the noise which may be heard on a car radio if the various parts of the motor car are not effectively suppressed and earthed by bonding to one another.) Synonymous with ground.
Earth Fault. An electrical fault either -

1) making a connection to earth where none should exist, or
2) in the quality of a designed earth connection, e.g. high resistance.
Earth Loop. Provision of more than one route to earth from a point in an electronic circuit. In some cases this can cause spurious signals to be picked up, like mains hum in an audio amplifier, which is most undesirable in a computer!
Earth-Spike (or Spikey Earth). A transient high voltage appearing on an earth connection, normally from some external source.
Earthy (end). The conductor or connection in a set whose potential is closest to
zero or that of earth, even if it is not directly connected to earth.
EBCDIC. Extended Binary Coded Decimal Interchange Code. A code, something like ASCII, used for data transmission.
Echo Check. A system of checking the accuracy of data transmission by causing the apparatus at the receiving end to send it back to the transmitter. The echo is compared with the data originally sent, and if they do not coincide some other procedure is brought into use, such as automatic re-transmission of the suspect data or an alarm signal to the operator.
ECL. Emitter-Coupled Logic.
ECMA 'B'. The font of natural typeface, readable by both man and machine, adopted by the European Computer Manufacturers' Association. The same as OCR-B.
Edge Card. A circuit board (or card) with contact strips along one edge, designed to mate with an edge connector.
Edge Connector. An electrical socket, slot-shaped, whereby a circuit card may be attached to a mother-board or chassis.
Edge Cutter/Trimmer. A device for removing the sprocketed margin from continuous stationery.
Edge Punched. Edge punched cards may be similar in size to conventional punch cards or a little smaller. Data is punched along the bottom edge of the card in paper tape code. This leaves the greater part of the card to be written upon freely.

Edge-punched cards are normally provided in fanfold pack joined to each other by the short edge.
Edit. To prepare data in suitable format and remove obvious errors or irrelevancies before input to an EDP system.
Editing Run. In batch processing the editing program will check the data for ostensible validity le.g. test that dates and num-
bers fall within the expected ranges, compare totals with separately entered batch or hash totals and prove check digits) and identify any errors for correction and resubmission.
Editor. Computer software to make it easy to review and alter a file or program interactively. For example one editing command might locate and display the first occurrence of a given string of characters: a second command might delete or change those characters wherever they occur.
EDP. Electronic Data Processing - generally synonymous with computing.
EDS. Exchangeable Disc Store.
EHT. Extremely High Tension - a voltage likely to give a severe shock even to a person not directly connected to earth.
Electronic. Pertaining to the flow of electricity through semiconductors, valves and filters, by contrast with the free flow of current through simple conductors. The essence of computer technology is the selective use and combination of electronic apparatus whereby current can be allowed to flow or can be halted by electronic switches working at very high speed.
Emitter-Coupled Logic. Form of connecting transistors in computer circuity (integrated or discrete). generally allowing faster and better operation.
Electronic Data Processing. A synonym for computing originally adopted to distinguish the activity from automatic data processing, using mechanic rather than electronic equipment. The acronym EDP is still popular because it is short.
Electrode. One of a set of two or more points in a device between which an electric current may flow. For example electrodes are found in batteries, in electroplating or may be applied to the human body for therapy or the measurement of voltages or skin-resistance.

Electrolyte. A liquid designed to conduct electric currents, as in a car battery.
Electrolytic. Using an electrolyte as for example in electrolytic condenser, a form of capacitor in which one plate is a metal surface and the other plate is electrolytic liquid, which deposits a very thin layer of insulation or dielectric on the metal surface.
Electro-Mechanical (device). Using electrical signals to trigger physical movements, for instance in an electric typewriter where touching a key closes a switch which makes the chosen letter hit the paper.
Electro-Sensitive (paper). Printer paper with a thin coating of conductive material; such as aluminium. Print becomes visible through darkening where a matrix-type print head allows electric current to flow on to the conductive surface.
Emittor. One of the three elements in an ordinary transistor, the other two being collector and base.
Emulate. To copy the performance of another, less powerful computer. Emulation, achieved by special hardware control, is similar in effect to the simulation attained by software. The facility may be useful when a computer is replaced by a new machine before re-writing of the old programs for conversion (almost invariably desirable for commercial routines) has been completed.
Enable. To switch a computer device or facility so that it can operate; the opposite. of disable.
Encode. To apply a code to computer datta or instructions, for example, to change values expressed in decimal figures to an experession in excess- 3 code, or from assembler mnemonics to hexadecimal values in machine language.

Encoder. A device which produces machine-readable output, for example, paper tape, either from manual keyboard depressions or from data already recorded in some other code.
Encrypt. To make data unintelligible to those not entitled to read it by an ordered arrangement of transpositions etc., that can be restored to clarity by a device suit: ably programmed but difficult to manage otherwise.
End Mark/Word. Coded signal used to identify the finish of some piece of data in a variable length store.

Entry Point., A particular instruction in a program sequence at which the work may be taken up. This need not always be at the beginning and a program can have more than one entry point. There is a parallet in the programs of some washing machines which allow the user to start at an intermediate 'rinse' or 'spin dry' operation without going through the whole wash cycle.
Environment. In computing context this is more likely to refer to the mode of operation - e.g. 'in a timesharing environment' than to physical conditions of temperature, humidity etc. But either kind of environment may affect operational efficiency.
EOF. End of File.
EOT. End of Transmission: a term from Telex usage.
EPROM. Electrically Programmable Read Only Memory. The bit content of each loc̣ation may be changed from 0 to 1 by a current pulse strong enough to break a fusable link.
Equivalence Element. A circuit which produces a signal if, and only if, two items of inputs are identical.

Erase. To empty an area of store of all information, leaving it ready to receive new data.
Erase code. The code for "erase" which in paper tape practice comprises a hole punched in every position. The advantage of this convention is that it can be superimposed on any other punching.
Erase Head. In a domestic tape recorder, the erase head is the device which cleans the tape of earlier signals immediately before new matter is recorded. In a computer storage device based on magnetisation of ferro-oxide surfaces (for example, tape, card or disc, but not core) the erase head operates immediately before the write head to perform a precisely similar function.
Ergonomics. The study of workers and their environment; adapting machines to the convenience of operators, with the general aim of maximum efficiency. For example, adding a numeric keypad to a standard keyboard.
Errata Slip. A list of last-minute corrections frequently found with suppliers' in: struction manuals for hardware and software alike. Always mark up these corrections before following the instructionsl
Error. Deviation from true value. See also absolute error, balanced error and biased error. Syritax error however means only that the rules of a programming language have been broken.
Error Code. An error message dísplayed by a computer in the form of a number whose significance the operator must look up in a book.
Error Detection Routine. A routine designed to detect whether or not any error has occurred in processing or operating. Detects but does. not necessarily locate errors.

## NIGRO

The Magazine of the APPPLE, K1M, PET and Other 6502 Systems.

Single issue $£ 1.50$ Subscription $£ 7.50$
Overseas Subscription $£ 8.00$


How to Order:
In Sterling on U.K. Bank, by Cheque; P.O. or Credit Card made payable to:

L.P. ENTERPRISES<br>Room PW/J<br>313 Kingston Road ilford<br>Essex IG1 1PJ<br>U.K.

Phone: 015531001 for Credit Caid orders
(24 hour service)


121 High Street, Berkhampsted,
Herts.
Tel: (04427) 74343

Error Message. A computer message, generated by its operating system or other software, to advise the operator when a fault condition is detected and (generally) to indicate how to locate and correct it.
Escape. A keyboard character (generally non-printablel which, like shift or control, translates the following character to a'different character set.
Etching. The process that produces a printed circuit board from a suitably masked sheet of copper laminate.
Euro-Card. A dimensional standard (one of several choices) for a circuit board used in small processors.
Even Parity. The convention for checking data after transmission which expects an even number of ones in each group of bits transmitted.
Excess-3 Code. A system of binary numbering in which each binary equivalent is three greater than it normally would be. For example:Decimal Digit
0
1
2
3
4
5
6
7
8
9

Excess-3 Code
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
When numbers expressed in the excess- 3 code are added together, "carry" digits arise at the same times as when the decimal equivalents are added; for this reason the excess-3 code is favoured in binary coded decimal. Another feature of excess3 code numbers is that the code can express three negative values, viz $-1,0010$; $-2,0001 ;-3,0000$ : This can be of value in certain "compare" operations.

Exchange/Sort. A system of sorting in which the key digits of two blocks of data are compared, and if they are not initially in proper sequence they are returned to store and their original locations transposed.

Exclusive "OR" Operator. A logical operator (Boolean algebra) which has the property that, if $P$ and $Q$ are two statements, the statement $P^{*} Q$ (where the asterisk is the exclusive OR operator) is true if either $P$ or $Q$, but not both, is true and is false if $P$ and $Q$ are both false or both true, according to the following table. (Figure 1 indicates a binary digit or truth):

| $P$ | $O$ | $P^{*} Q$ |
| :--- | :--- | :--- |
| 0 | 0 | 0 (even) |
| 0 | 1 | 1 (odd) |
| 1 | 0 | 1 (odd) |
| 1 | 1 | 0 (even) |

Note that the exclusive $O R$ is the same as the inclusive OR except that with both statements true there is no output; that is, $P^{*} Q$ is true if either $P$ or $Q$ is true but not if both are true.

Execute. Decode a machine instruction to effect the required computer operation.

Executive (program). Generally synonymous with operating'system.

Execution Time. The elapsed time taken by a computer to perform an instruction, such as add.
Exit. The last obeyed instruction of a routine, or the address of this instruction.
Exponent. The power to which a number is raised. Thus in $10^{6}$ (meaning one million) the exponent is 6 .
Expression. A mathematical quantity of several elements, e.g. 'SQR(A/B)', rather than a single element such as ' $B$ ' or ' 17 '.

Extended BASIC. A version of the original Dartmouth BASIC programming language which has been enhanced by adding extra commands or facilities, e.g. to perform matrix arithmetic or to evaluate the trigonometric functions.
Extract. To take out part only of some data held in a storage area; for example, the area might hold 15 digits and the extract be confined to, say, the 8 th, 9 th and 10 th digits.

## BINDERS for PCW

We anticipate a very large demand for PCW binders. Full details will be given in the March 1979 issue. In the meanwhile, to ensure your order has priority, write in now. Don't send any money.
"Binders" PCW, 61A Westbourne Grove, London, W2.


TRUMPET, VOLUNTARY
Responding to TIDBITS information or an advertisement?

Say you saw it in PCW
Blow your own trumpet.
Mention your magazine.

## The <br> NORTH STAR HORIZON Computer

HORIZON - a complete high preformance microcomputer system with integrated floppy disk memory
HORIZON is attractive, professionally engineered deal for business, educational and personal applications.

To begin programming in EXTENDED BASIC, merely add a CRT, teletype or other hard-copy terminal HORIZON-1 includes a $Z-80 A$ processor. 16K RAM. minifloppy disk and 12 -slot S-100 motherboard with serial terminal interface, all standard equipment.

## and software, tool

HORIZON includes the North Star disk operating system and full EXTENDED BASIC from disk ette ready at power-on.

This Basic, now in widespread use, has virtually everything desired in a Basic, including sequential and random disk files, formatted output, a powerful line editor, strings, machine language call, and more.

OPTIONAL software (under CP/M) include - C -Basic Compiler/Interpreter Basic, Microsoft Disk Extended Basic, MAC Macro Assembler. Microsoft COBOL-80 and FORTRAN-80, and more.

## OUALITY AT THE RIGHT PRICE:

HORIZON Z-80A processor board, RAM FPB, and micro disk system can be bought separately for either $\geq 80$ or 8080 S-100 bus systems.

NEW LOW PRICES
*HORIZON-1-16K: £1265 (£ 995 kit)
*HORIZON-1-24K: £1375 (£1090 kit)
*HORIZON-2-16K: £1575 (£1295 kit)
*HORIZON-2-24K: £1695 (£1395 kit)
All prices are exclusive of VAT and carriage. Subject to change.

Full details: PCW, Interam Computer Systems Ltd. 59 Moreton Street, Victoria, London SW1V 2NY Tel: $01.8340261 / 2733$


THE TOTAL SOLUTION FROM


## OF COURSE!

Now Almarc \& Vector Graphic offer the complete solution to your computing needs for $£ 2300.00^{*}$. The Vector MZ needs only the addition of a V.C.U. and its ready to go. Completely assembled and fully tested the Vector MZ offers the following features as standard:

* $\mathrm{s}-100$ bus
* 4 MHz 280 processor
* 158 instructions
* two quad density Micropolis floppies - over 630 K bytes on line
* serial port
* two parallel ports
* 32K static ram
* 12 K prom/ram board with extended monitor
* Extended disc Basic

Simply connect your peripherals (Elbit V.D.us \& Centronics printers are available from Almarc) and your up and running and, because the $M Z$ uses the $S-100$ bus, you can plug in a massive range of add on units.

## Ring or Write for a demonstration to:-

Alnarc Data Systems Ltd.,
29 Chesterfield Drive, Burton Joyce, Nottingham.
Telephone 0602248565

* Discount terms available


## THE SORCERER HAS ARRIVED



## Introducing the personal computer you've waited for. The Exidy Sorcerer.

I didn't buy my personal computer until I found the one that had all the features I was looking for.
The Exidy Sorcerer does everything I wanted to do and a few things I never dreamed of.
It isn't magic. Exidy started with the best features of other computers, added some tricks of their own, and put it all together with more flexibility than ever before available. Presto! My reasons for waiting just disappeared.

## I wanted pre-packed programs.

Software on inexpensive cassette tapes for the Sorcerer is available from Exidy and many other software makers.

## I wanted user programmability

The Sorcerer's unique plug-in ROM PAC ${ }^{\text {M }}$ Cartridges contain programming languages such as Standard (Altair 8k*) BASIC, Assembler and Editor (so I can develop system software), operating systems such as DOS (so I can also use FORTRAN and COBOL) and applications packages such as Word Processor.

- Altair is a trademark of

Pertec Computer Corp.

I wanted Graphics, and the Sorcerer is super. Its 256 character set - more than any other personal computer includes 128 graphic symbols that I can define.
I wanted high resolution video.
With 122,880 points in a $512 \times 240$ format, I get the most detailed illustrations.
I wanted to display more information. The Sorcerer displays 1920 characters in 30 lines of 64 characters - equal to a double-spaced typed page.
I wanted a full, professional keyboard. The Sorcerer's 79 -key data processing keyboard provides designated graphics, the complete ASCII character set in upper and lower case, and a 16-key numeric pad.
I wanted memory. The 12 k of ROM holds a Power-On Monitor and Standard BASIC; 32k of RAM is supplied on board.
I wanted expandability. Serial and parallel I/Os are built in, and the op-
tional 6-slot S-100 expansion unit lets my system grow.
I wanted a computer that's easy enough for children to use. I just connect my Sorcerer to a video display and a cassette tape recorder, and if I have any questions the easy-to-understand Operation and BASIC Programming manuals have the answers.
I wanted to buy from an experienced Manufacturer. In five years Exidy has become the third largest producer of microprocessor-based video arcade games.
I wanted to spend less than $£ 1,000$. (This is where COMP. does a little magic). My Sorcerer cost me $£ 950$ !. Now, what are you waiting for? Call COMP. on 01-441 2922 or write to


14 Station Road,
New Barnet, Herts. EN5 10W.
(Price shown ex. VAT)

## HORIZON



## THE PROFESSIONAL COMPUTER

 For Business, Scientific and Educational Uses.
## PROFESSIONAL HARDWARE

Use of the North Star Horizon for a short period will enable you to appreciate the professionalism in the product. There's a solid well-built chassis, a good power supply, a quiet fan and an attractive wooden case. There's a Z80A processor running at 4 MHz with the 250 ns static RAM boards.

There are dual integral Shugart minifloppy drives (capacity of about 360 KB on line, with an option for a further two drives), enabling easy and quick handling and copying of programs and data files.

And of course, there's the 12 slot $\mathrm{S}-100$ bus which enables you to plug in many types of peripheral boards, including a hardware floating point board for increased "number crunching" performance.

## PROFESSIONAL SOFTWARE

North Star Computers built their professional reputation around their powerful, but simple, Disc Operating System and Disc Extended BASIC Interpreter.

The latter contains, in addition to the usual BASIC commands, random and sequential access disc files, strings, string operators, multiple dimensioned arrays, formatted output, machine language CALL, memory EXAMine and FILL, line editor, program chaining and more.

The CP/M operating system is also available as an option and provides access to a Macro Assembler, C BASIC Compiler and FORTRAN-80 and COBOL-80 Compilers. A standard UCSD PASCAL has now been implemented.

## TYPICAL APPLICATIONS SOFTWARE

- Financial
- Purchase Ledger
- Mathematical
- Statistical
- Educational
- Games
- Sales Ledger
- Stock Control
- Payroll
- General Ledger
- Estate Agents Package
- Incomplete Records
- Employment Agents

HORIZON with dual drives, 24 K RAM and standard serial port - £1823. Extra 8K 250ns static memory $£ 155$. Extra serial port - $£ 45$. Parallel port $-£ 45$.

## COMPLETE HORIZON BUSINESS SYSTEM

(hardware) with 24 K RAM, dual mini-floppy drives, VDU and 30 cps printer - $£ 3616$; 32 K RAM, dual mini-floppy drives, VDU and 150 cps printer $£ 4658$.
Prices exclude VAT and carriage.
Dealer, OEM and Educational Discounts available.


COMPUTER SYSTEMS LTD. 32-35 FEATHERSTONE STREET LONDON EC1Y 80X
01-253 3781/9837


[^0]:    Published monthly by Intra Press. 62A Westbourne Grove. Londan W2. Phone $01-2295599$. Contents fully protected by copyright All rights reserved. Subscription rates. Britain f 8 for 12 issues. Prices include postage, USA - $\$ 10$ for six issues, $\$ 20$ for 12 issues. Continent and elstwhere $\mathbf{E 9 . 8 0}$ for twelve issues. Prices include postage. Printed by Carlisle Web Offset. 55 Conduit Street. New

[^1]:    * Based on three programs on an $£ 8.00$ Compusette.

[^2]:    XITAN
    SOUTHERN STOCKISTS
    Stockist for professional quality microcomputers.

    CROMEMCO SYSTEMS and S100 Boards

    NORTH STAR HORIZON PROCESSOR TECHNOLOGY SOL COMART MICROBOX S100 CHASSIS DYNABYTE MEMORY
    LEAR SIEGLER VDU'S
    DECWRITER II
    INFO 2000 DISK SUBSYSTEM CP/M
    for NORTH STAR, SOL and
    CROMEMCO SYSTEMS
    

    Now in New Showrooms at: 23 Cumberland Place, Southampton SO1 2BB
    Tel No: Southampton (0703) 38740 Hours 9.30-5.30 Tues - Sat.

