MorgAN
 MAY 1986 £1.20
 AUSTRALIA
 HOLLAND NEW ZEALAND NORTH AMERICA D71699
 The communications and electronics magazine

VIDEO: A TIMING SYSTEM TO MISS THE ADS? TO MISS THE ADS?

COMPUTING: ANALYSINGRMERS TRANSFORMERS

2M ANTENNA:

THE VALVE DIODE: A HISTORY OF SMALL FIRES IN JAM JARS

DATA FILE:
COMMON EMIITER \& COMMON BASE AMPS

Tune into Withers Bargain Centre!

RAYCOM EXCLUSIVE PRODUCTS

Beta 3000 10FM 5W RPT/shift ...£79 Revco RS2000E Scanner £225 Raycom RF Amplifiers 1-3W input V25F 25W .. $£ 49.50$ V45G 45W FM ...52.50 V15L 15W SSB $\begin{array}{r}\text {. } £ 49.50 \\ \hline\end{array}$ V35L .59 .50 V35L 35W SSB $£ 79$ 10 mtr FM BETA 3000 mod 279 10FM FBX/SANYOMOD BOARD fits into most CB's with the Sanyo LC7136/7 chip fitted $£ 22.50$ or we can fit it for $£ 30$ inc post
FBX/SANYO 10FM kit of parts
.£17.50
DNT/LCL 10FM MOD KIT.....£12.95 YAESU FT757GX fast tuning mod kit c/w instructions £29.50 or we can fit it for 37.50 inc NEW FRG9600 Mod Kit extends the UHF range up to $945 \mathrm{mhz}_{\text {, }}$ + improves 'S' meter + sensitivity Send Radio and £25.00 inc post.

HAND HELDS

WE VE THE LARGEST
SELECTION OF HAND-HELDS IN THE UK!
KENPRO KT202 6ch 2mtr XTAL

RIO TH21 2 mt TRIO TH21 2mtr.................... $£ 185.00$
KENPRO KT200EE 2 mtr 2 W
KENPRO KT400EE 70 cm 2 W 169.00
….. $£ 189.00$
YAESU FT209RH 2mtr 3W .. £269.00 YAESU FT203R 2 mtr 2 W £219.00 YAESU FT703R $70 \mathrm{~cm} 2 W$.... $£ 249.00$ YAESU FT709R $70 \mathrm{~cm} 2 W$.... $£ 279.00$ ICOM IC2E 2mtr 2W............ $£ 199.00$ ICOM IC4E 70 cm 2 W £279.00
ICOM ICO2E 2mtr 2W......... £289.00 COM IC04E 70cm2W........... £299.00 ALINCO ALM203E 2mtr 3W
.. $£ 249.00$

+ + MANY MORE MODELS
AVAILABLE.
FREE PORTABLE ANTENNA
WITH EVERY HANDHELD PURCHASED

POWER SUPPLY UNITS

3A G-Com (UK made) £19 50 5A G-Com (UK made)£29.50 10A Bremi (Italy) $£ 52.50$ 10A Moonraker (|taly) $£ 62.50$ 10-12A Moonraker (Italy) £69.00 Yaesu FP757HD 20A Cont... £175.00 Yaesu FP757GX 20A S/M£140.00 Yaesu FP700 20A PSU£150.00 ICOM PS55 matches IC 735
£165.00
SPECIAL universal NI-CAD chargers, takes any cell.........£6.50 WE HAVE MANY BRANDS OF PSU'S IN STOCK TO SUIT YOUR NEEDS.

CALL US NOW FOR ANY ACCESORIES YOU REQUIRE. SEND FOR OUR STOCK LISTS, CATALOGUES AND ANY LEAFLETS YOU REQUIRE OR SEND LARGE S.A.E. PLEASE
ANTENNAS

SUN ANTENNAS (JAPAN) GB9CV 2 metre $£ 9.50$
HB9CV 2 metre £6. 99 HB9CV 70 centimetres.............. £5.99 10/11 mtr loaded $1 / 4$ wave $£ 13.50$ $2 \mathrm{mtr} 7 / 8$ mobile tilt/over $£ 14.50$ $2 \mathrm{mtr} 5 / 8$ mobile tilt/over£1350 Gutter-Clip and cable ass......£9.50 REVCO (British Made) 2mtr 5/8 coil/whip/base£11.89 $10 \mathrm{mtr} 1 / 4 \mathrm{coil} / \mathrm{whip} / \mathrm{b}$ ase $£ 10.99$ 10 mm Colinear double $5 / \mathrm{B} . \mathrm{E}$. 70 cm Colinear double $5 / 8$.... $£ 12.5$ Revco Discone scan/ant £29.95 Revco NEW 2045 scan/ant.... $£ 59.00$ SMC (Japan)
70N2M Dual band mobile£20.95 35870 cm triple $5 / 8 \mathrm{mob} £ 30.95$ HS770 diplexer $2 \& 70 \mathrm{cms} £ 19.55$ WE HAVE NUMEROUS TYPES OF ANTENNASIN STOCKINC FULL RANGE JAYBEAM AND TONNA SPECIAL OFFER
ARM MULTI-PG ANTENNA SPECIAL OFFER COMPLETE COLINEAR ELEMENTS E35.00

£1000 INSTANT CREDIT. HP/PERSONAL LOANS AVAILABLE RWC CREDITCARD (written details on request) CALL NOW

> ■irom OLD PRICES HELD ON EXISTING STOCK

R Withers Communications agent to the stars!

RWC are main agents/distributors for Yaesu, Icom, Kenwood, M Modules, Jaybeam, Tonna, Revco Antennas, Cleartone, MuTek, AKD, Drae, FDK, Welz, Tait, and Neve Radiotelephones to name but a few! We also stock a wide range of BT approved cordless telephones and telephone systems!

Tune into our specialist service!

* We manufacture our own range of VHF/UHF beam antennas, mobile antennas and fittings
We're the only company in the UK that produces modular VHF/UHF Raycom power amplifiers (15-50 watts output)
We supply a large range of power transistors/ modules imported directly from Japan
* We supply/repair amateur/business radio systems We check transceivers on our spectrum analyser £12.50 for a comprehensive report
Only supplier of modified Revco RS2000 60-179 and $380-520 \mathrm{MHz}$ AM/FM extended coverage scanning receiver modified by RWC
Probably the UK's largest seller of used radio equipment, both business and amateur radio We offer the largest selection of radio allied services under one roof, both trade and retail
$* ~$
* GET YOUR LATEST BARGAIN
*

*USED LIST. SEND LARGE ENVELOPE NOW! Even more basement bargains!

TURN THAT BEAM KOPEK ROTATORS 50 kg loading $\mathbf{£ 3 8 . 5 0}$	14"B/W MONITER KIT, complete PCB, tuner, transfomer, tube+full circuit details. Brand new £29.50 Carriage $£ 5$
DATONG AND DRAE MORSE TUTORS £49.50 PASS YOUR MORSE TEST QUICKLY!	$\begin{aligned} & \hline \text { G5RV HG MULTI-BAND } \\ & \text { DIPOLE ANTENNA } \\ & 1 / 2 \text { size } 12.95 \\ & \text { full size } £ 14.95 \end{aligned}$
TRAVELLING JIM 2m E6.95 Incl lead 2m £8.95 10 MTR version $\mathbf{£ 9 . 5 0}$	100W 0-500MHz Dummy Loads (200 watts intermittent) 2ith lead an PL259 connector £12.50
FT290R + Nicads, charger, listen on input $\Sigma 329$ FT690+Nicads (6mtr) £269	DISCONE ANTENNA $60-600 \mathrm{MHz} 16$ ELE very good construction. Complete with 50239 . Fits on standard mast £27.50 inc post
SUN GUTTER MOUNT + CABLEASSEMBLY Top quality complete with PL259 fittings $\mathbf{E 9 . 2 5}$ FULL SUN RANGE IN STOCK	SPECIAL OFFER REVCO RS2000 Ext Coverage 60-179 \& 380$520 \mathrm{MHz} \mathrm{AM/FM}$. memories. Auto search, lock priority $\mathbf{£ 2 2 5}$

CONTENTS

Editor

Duncan Leslie
Assistant Editor Jane Berry
Advertisement Manager
Marian Vidler
Advertisement Executive Richard Hart

Publisher
Peter Williams

Published by

Radio \& Electronics World
Magazines
Sovereign House
Brentwood
Essex CM14 4SE
England
Tel: (0277) 219876
ISSN
0262-2572
Printed
In Great Britain

Newstrade sales

Seymour Press Ltd
334 Brixton Road
London SW9 7AG
Tel: 01-7334444
Subscriptions
Tel: 01-7600409

(c) Copytight 1386

Radlo \& Electronics World Magazines

Safety in the shack

Some of the constructional projects featured refer to additions or modifications to equipment; please note that such alterations may prevent the item from being used in its intended role, and also that its guarantee may be invalidated.
When building any constructional project, bear in mind that sometimes high voltages are involved. Avoid even high voitages are involvec. Avoid even
the slightest risk - safety in the shack the sightest risk
please, at all times.

Whist every care is takon when accopting responsibility for unsatisfactory transactions We wift however, thorbughty investigate any compleints. expressed by contibuters are not receasarlly those of the publishers. that the Every care is taken to ensufe that the
contents of inis magazine are accurate, we contents of mis magazine are accurate, we
assume no responsibility for any effect from sasume to responsibility for any effect from
orrors or ointssions.

Cover Photographs

Top-Olivetti's latest offering in its line of IBM-compatibles (p11)
Bottom - At last! Sinclair's
128 K Spectrum (p10)

SPECIAL FEATURES

16 Spectrum Watch
Nigel Cawthorne reports on the progress of the Scandinavian cellular network and the new 'French revolution'

22 VPS Video Timers

A more efficient video recorder timing system from Germany, by James Fletcher

25 Computing - Transformers

Brian Kendal and Jeff Howell present a program to calculate transformer capabilities

30 Small Fires in Jam Jars!

Valves: Roger Alban gives the low-down on those funny little lightbulb thingies
33 Data File
Voltage amplifying transistor circuits are Ray Marston's subject this month

38 Can You 'ear Me Moother?

A cheap and cheerful 5 -element quad for 2 m from JM Stevenson

42 Damp Detector

Don't wait for ominous stains on your kitchen ceiling from the bathroom above, build this useful device by Terry Pinnell

REGULARS

4 Product News
12 News Desk
19 Amateur Radio World
46 DX-TV Reception Reports
49 ATV on the Air
52 Medium Wave DXing
55 Latest Literature
57 Short Wave News
60 OSO
62 Free Classified Ads
64 Small Ads
READER SERVICES
32 Amateur Radio Subscription Order Form
47 Back Issues Order Form
56 Newsagents Order Form
61 Subscription Order Form
63 Free Classified Ad Form
66 Advertisers Index
66 Advertising Rates and Information

NEXT MONTH

53 What's in Store for You

Next Issue

Cover date June 1986 on sale Thursday, 8 May
Publication Date
Second Thursday of the month preceding cover date

Ollvetll rules, OK3 - page 11

Core of the problem - page 25

007 of the ainwaves - page $5 \overline{5}$

PRODUCT NEWS

Featured on these pages are details of the latest products in communications, electronics and computers. Manufacturers, distributors and dealers are invited to supply information on new products for inclusion in Product News.
Readers, don't forget to mention Radio \& Electronics World when making enquiries

- LOSIC PROBE

The Thandar TP1 logic probe and TP2 logic pulsar are tools for checking both TTL and CMOS circuits.
The TP1 can show fourteen different circuit conditions and can detect pulses down to typically 10 ns .
The TP2 can inject a signal directly into a circuit without damaging sensitive components. Together they can

MHICHRRES MUTIMEIER

A new high-resolution 43/4digit multimeter from MS Components offers a basic accuracy of 0.03% and a total of 28 ranges. dc voltage and current up to $\pm 1200 \mathrm{~V}$ and 10 A respectively, ac up to 750 V and 10A, and resistance up to 32Ω cover the majority of application requirements.
Two additional functions provide frequency measurement, accurate to better than 0.008% from dc to 4 kHz , and a diode testing facility.
Powered by six ' C ' cells, the unit has an input impedance of 10 Mohms , switchable to 100 Mohms to reduce circuit loading below 3.2 V .
Measurements are displayed on a 9 mm high LC display with over-range and low battery warning indication and automatic zero and polarity functions.

MS Components Ltd;

Zephyr House,
Waring Street,
West Norwood,
London SE27 9LH.
Tel: (01) 6704466.
stimulate and monitor responses of components in circuit, greatly aiding fault finding.

They retail at a price of £23.00 each plus VAT.

Thandar Electronics Limited, London Road,
St Ives,
Huntingdon,
Cambs PE17 4HJ.
Tel: (0480) 64646.

- MEASUREMENTKIT
 Accurate and reliable

 electricity supply measurement has now been made possible using the new threephase power measurement kit from the Response Company.The kit comprises a threephase solid state power meter, 3 clip-round 1000A current transformers and 4 quick-fit voltage leads. The Responder 3 meter, together with all fixing leads and operating manual, fits neatiy into a specially designed shoulder-strap carrying case. The kit weighs barely 5.00 kgs .

Levell Electronics Ltd have added two digital multimeters to their product range, the 540 and the 540T. These instruments permit accurate measurements to be made at low cost. Leading features are 2,000 hour battery life, and clear $31 / 2$-digit liquid crystal displays with 0.5 in high characters.
The ranges covered are 200 mV to 750 V ac or $1,000 \mathrm{~V} \mathrm{dc}$, $200 \mu \mathrm{~A}$ to 10 A ac and dc , and 20 ohms (or 200 ohms) to $20 \mathrm{M} \Omega$. The instruments also have a continuity buzzer test and a diode test range. The dc voltage accuracy is $\pm 0.25 \%$ of reading +1 digit and input impedance is 10 Mohms . A transistor gain range is also incorporated in the ' T ' version
Cases are moulded in high impact ABS plastic, $170 \times 87 \times$ 42 mm , weighing only 343 gm . A

tilt stand is provided for bench use.
The multimeters are priced at $£ 37+$ VAT for the 540 and £39 + VAT for the 540T.

Levell Electronics Ltd,
Moxon Street,
Barnet,
Herts EN5 5SD.
Tel: (01) 4495028.

The measurement kit provides comprehensive analysis display and registration of kW, kVA, kVAR, kWH, kVAH and kVARH, all to 1% resolution and with a range of 1000A down to 2A per phase.

The Response Company Limited,
77 Wales Street,
Winchester,
Hampshire SO23 8EY.
Tel: (0962) 67287.

YIMDUSCOPE

Electronic \& Computer Workshop Ltd claim that service engineers working with CCTV and a wide range of computerised equipment can significantly reduce the number of instruments and items of test equipment necessary by using a new combined instrument, the VDU-oscilloscope.
The Crotech 3339 combines a dual-trace 30 MHz oscilloscope with a component tester and a fully 625 -line compatible VDU.
The VDU function allows the test engineer to monitor all types of standard compo-
site video lines (1V p-p) and its built-in zoom facility can be adjusted to give resolutions of up to 15 division horizontally and 20 division vertically. This gives a screen of up to 64 characters wide.

Using this capability the engineer can test a range of CCTV circuits and video output lines. Another application is with computerised equipment, where the 'scope can be used to test a range of digital and analogue lines.
The instrument offers two 30 MHz channels, with a sensitivity of 5 mV per division and sweep speeds to $0.2 \mu \mathrm{~s}$ per division. A range of display modes is available, including $X-Y$, and trigger facilities are sufficiently versatile for many types of measurement application.

The Crotech 3339 VDUoscilloscope is available from ECW at a price of $£ 669.30$, including post-packaging.

Electronic \& Computer

Workshop Ltd,
171 Broomfield Road,
Chelmsford,
Essex CM1 1RY.
Tel: (0245) 262149.

TACHOMETER

Both contact and non-contact measurements of rotary and linear speed can be taken with the new digital tachometer from MS Components.
This compact, battery powered, hand-held instrument covers speeds from 50 to $20,000 \mathrm{rpm}$ in two switched ranges. Indication is by means of a $4^{1 / 2}$-digit LED display and is accurate to ± 1 digit
Non-contact readings can be taken at up to 1 metre using the basic instrument or the optional optical sensor
where visual access is limited. Contact readings can be taken using an optional extension sensor, which can be fitted with an rpm cone or a choice of two linear speed conversion discs, giving readings in feet or metres per minute.

The instrument is supplied complete with reflective tape, batteries and carrying purse.

MS Components Ltd,

Zephyr House,
Waring Street, W Norwood,
London SE27 9LH.
Tel: (01) 6704466.

ACIEST SIAION
 An ac-to-ac power supply

 which enables simulation of power supplies anywhere in the world is the latest addition to the range of power conversion units offered by Systron Donner.The model ACTS500 is an ac test station providing up to 500 VA of output power which may be infinitely varied in any combination of frequency and voltage over the ranges 40 Hz to 1500 Hz and 80 to 280 V .

The ACTS500 will find many applications among design and production engineers needing to test products designed for military and export markets. It will also be invaluable for all electrical and electronic facilities needing to check line regulation and tolerances on ac line powered devices.

The unit is protected against overload, short circuit and inductive surges on the output, and also against overtemperature conditions and failure of supply rails.

Thorn EMI Measurement Ltd, Systron Donner Division, Archcliffe Road, Dover, Kent CT17 9EN.
Tel: (0304) 202620.

A device designed to take he frustration out of positioning and using screws and nails, known as Handigrip, has been introduced by Display Tiling Services Ltd
Handigrip is a small plastic handle which holds the nail or screw in a patented jaw. This allows the fastener to be accurately positioned before driving into any horizontal or vertical surface.
Handigrip is available in three sizes to suit a wide range of screws and nails, from the smallest panel pin through to heavy duty wood screws.

DATARCGINE

A new data logger, Vela from the Data Harvest Group can achieve a high degree of speed, accuracy and convenience in scientific measurements, while eliminating the need for numerous cumbersome instruments.
At the heart of Vela is a powerful microprocessor equipped with fifteen permanently stored, EPROMbased programs which cover transient recording, data logging, timing, pulse counting and waveform generation. More than 60 additional programs for measurement and monitoring are also available.
Vela's abilities include: the analysis of stress in structural members; the logging of breaking point/plastic point; the monitoring of growth of fractures; the measurement of operational life of emergency lighting systems; the analysis of engine exhaust; and a host of other general monitoring and transient recording tasks
The user simply types the appropriate two-digit program number onto the integral keyboard, then enters a parameter and runs the program.

Vela can be used as a portable instrument (with the assistance of an external power source) and as an 'intelligent' fixed interface to computers.

Vela can be powered from a wide range of supplies including rechargeable cells. Battery-backed CMOS memory ensures data retention in the event of power down. The introductory cost of the system is $£ 375.00$.

Data Harvest Group, 28 Lake Street, Leighton Buzzard,
Beds LU7 8RX.
Tel: (0525) 373666.

Handigrip is available through hardware stores, DIY outlets and garage shops. A pack containing a pair of each size and retailing at a recommended price of $69 p$ including VAT will be the standard unit

Display Tiling Services Ltd, Level Street,
Brierley Hill.
West Midlands DY5 1TZ.
Tel: (0384) 263123/4/5.

FRONJPANEL KIIWHex
Most products based on standard Eurocard housings require a small degree of front panel customisation to house the system's controls and user interface. To facilitate the development of this a new prototyping front panel is now available from BICC Vero Electronics

The prototyping front panels are from the KM6 range, and are supplied in a basic unfinished state with only the triple 'Dee' panelfixing holes and the normal
ident sight hole. The kit contains ten panels and a full complement of handles, idents and screws, together with drilling details for the normal handle positions.

BICC-Vero Electronics

 Unit 5,Industrial Estate,
Flanders Road, Hedge End, Southampton SO3 3LG
Tel: (04892) 5824.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 15/80H \& £3.05 \& 2SE546 \& 23.75 \& 2SD152K \& c2.64 \& AN5111 \& c2. 92 \& BC183L \& £0.11 \& 8 D 380 \& £0.76 \& BF596 \& ع0.18 \& BY225-100 \& ع1.13

\hline 15/85 \& E3.05 \& ${ }_{2 S B 56}$ \& E2.80 \& ${ }_{2 S D}{ }^{\text {S }} 198$ \& ${ }^{23.87}$ \& ANSt20 \& 84.50 \& ВС183Lb \& c0. 26 \& 80410 \& ع0. 52 \& BF597 \& c0.27 \& $\mathrm{BY} 226^{2}$ \& ¢0.25

\hline 16039 \& ع0.79 \& ${ }_{2 S B 618 A}$ \& ع2.22 \& 2SD234 \& ع0.49 \& AN5132 \& E4.39 \& BC184 \& c0.13 \& BD433 \& ع0.47 \& BF694 \& c0.22 \& BY227 \& c0.49

\hline 16181 \& ¢1.04 \& ${ }_{2 S 8631}$ \& ع3.25 \& 2 20235 \& 80.60 \& AN5250 \& ع2. 89 \& BC184L \& £0.14 \& 80434 \& ع0.49 \& BF757 \& ع0.59 \& BY228 \& ${ }^{\text {c. }}$ ¢ 60

\hline 16182 \& £1.04 \& 2 SB643 \& 80.54 \& ${ }^{2 S D 24}$ \& c2.29 \& AN5435 \& ¢3.08 \& - \& ع0.26 \& BD435 \& ¢0.49 \& BF759 \& c. 47 \& BY229-100 \&

\hline 16334 \& ¢0.98 \& ${ }^{258669}$ \& ${ }^{\text {c3.67 }}$ \& 258257

250292 \& c2.94 \& AN5610 \& ${ }_{\text {c }} \mathbf{8 7 . 4 3}$ \& BC136
BC187 \& ${ }_{\text {coser }}$ \& BD 436
B043 \& ¢0.60 \& ${ }_{\text {BF761 }}^{\text {BF762 }}$ \& ع1.05 \& ${ }_{\text {BYY225 }}{ }_{\text {BY2900 }}$ \& ¢0.92

\hline ${ }_{164635}^{1635}$ \& ${ }_{80}$ \& ${ }_{2}^{258687}$ \& ${ }_{\text {c1 }} \times 1.98$ \& 2S0292 \& ${ }_{\text {cel }}$ \& AN5612 \& | c. |
| :--- |
| c3.80 |
| 1 | \& ${ }_{8 \mathrm{BC} 204}$ \& ${ }_{\text {co. }}$ \& ${ }_{80438}$ \& ${ }_{\text {coiche }}$ \& ${ }_{88869}$ \& ع0.65 \& BY295-600 \& ع0.81

\hline ${ }_{16600}$ \& ع1.38 \& ${ }_{2}^{25875}$ \& ع1.04 \& ${ }_{2 S 03250}$ \& ¢1.95 \& AN5630 \& 83.95 \& BC207 \& c0.14 \& 80441 \& £1.42 \& BF870 \& c0.30 \& BY298 \& ع0. 20

\hline 16802 \& ع1.27 \& $2 \mathrm{SB774}$ \& ¢0.65 \& 2 2S348 \& ع16.13 \& AN5701N \& ${ }^{\text {c1. } 1.68}$ \& 8 C 212 \& ع0.11 \& $8 \mathrm{CO42}$ \& ${ }^{\text {c10. }}$ 86 \& BF959 \& ${ }_{80.69}$ \& BY299 \&

\hline 17052 \& ع5.61 \& 2 28819 \& ¢0.87 \& 250350 \& £. 20 \& AN6250 \& \& 8 C 2128 \& ع0.26 \& 80509 \& ${ }_{81.42}$ \& ${ }_{\text {BF970 }}$ \& ${ }_{\text {coibe }}$ \& BY407 \& ${ }_{\text {c1. }}$

\hline 17053 \& ع. 8.81 \& C1034 \& ¢6.75 \& ${ }_{2 S 0535}^{250304}$ \& ع2.80 \& ${ }^{\text {A A } 68300}$ \& c8.780 \& BC213LB \& ع0.15 \& 80519 \& ع1.50 \& BFR39 \& c0.44 \& BY448 \&

\hline 17074 \& c. \& ${ }^{25 C} \mathbf{S C H 5 0}$ \& ${ }_{\text {c. }}^{\text {¢5. }}$ \& ${ }_{2 S}^{2 S 03539}$ \& c. \& ANG320N \& ${ }_{\text {cki }}$ \& BCO 214 \& ع0.10 \& 80529 \& ¢1.32 \& BFR61 \& \& \&

\hline 17089 \& ${ }^{\text {c. }}$. 35 \& 2 SC 1096 \& ع1.16 \& ${ }_{2 S}^{2 S D 389}$ \& ¢2.41 \& ANB3340 \& ${ }_{\text {ceis }}$ \& ${ }_{\text {BC2 }}$ (14LB \& ${ }_{50.28}$ \& B0530 \& \& EFR62 \& \& \&

\hline 17127 \& c3.51 \& $2 \mathrm{2SC104}$ \& £3.98 \& - ${ }^{2 S 5801}$ \& ${ }_{\text {c1. }}$ \& ${ }^{\text {An }}$ ANE344 \& ع6.00 \& ${ }_{8 C 225}$ \& c0.40 \& ${ }_{80533}$ \& ${ }_{\text {coib }}$ \& BFR79 \& ${ }_{80.29}$ \& \& ع0.69

\hline ${ }^{17376}$ \& ع1.58 \& ${ }^{25 C 1106}$ \& ع6.54 \& ${ }_{2 S \mathrm{l}}^{2 \mathrm{SO} 414}$ \& ${ }_{\text {E2 }}$ \& ANE347 \& ${ }_{\text {c1i.61 }}$ \& ${ }_{8}^{8 \mathrm{BC} 237}$ \& co.10 \& ${ }_{80534}$ \& ${ }_{\text {cois }}$ \& BFR81 \& c1.05 \& BYW56 \& c0, 34

\hline 17523
17524 \& ${ }_{\text {c11.32 }}$ \& 2SC1114 \& ${ }_{\text {cis }}$ \& 2SD471
2SD560 \& ¢2.13 \& ${ }_{\text {AN }}$ A 6363 \& ع. 16.00 \& ВС2378J \& E0.12 \& ${ }_{80535}$ \& ${ }_{\text {coi }}$ \& BFRRS \& c1.08 \& BYX10 \& co. 29

\hline $1 \mathrm{~N} 400 \cdot 1$ \& c0.06 \& 2 SC 1124 \& ع1.26 \& ${ }_{2 S} 55888$ A \& ع1.99 \& AN6371 \& E2.00 \& BC238 \& c0. 10 \& $8 \mathrm{BDS3}^{56}$ \& ع0.61 \& BFRB9 \& ع1.63 \& BYX $55-600$ \& ${ }^{\text {co. }} 15$

\hline $1 \mathrm{Na002}$ \& ع0.06 \& 2 SC 1129 \& £0.34 \& 250600 \& ع3.25 \& AN6387 \& ع7.95 \& $8 \mathrm{CL2384}$ \& ${ }^{\text {co. }}$ \& 80537 \& ${ }_{\text {coser }}^{\substack{80.74}}$ \& BFRT90A \& ع1.30 \& 8YX77-600 \& ${ }_{\text {c1. }}^{\text {co. }}$

\hline $1 \mathrm{Na003}$ \& E0.08 \& $2 \mathrm{SCH131}$ \& ع0.50 \& $2 \mathrm{SD601R}$ \& ع0.65 \& AN6531 \& ع1.95 \& ${ }^{81} \mathbf{C} 2388$ \& co. ${ }^{13}$ \& ${ }_{\text {B05 }}^{\text {B4a }}$ \& ${ }_{\text {coiel }}$ \& ${ }_{\text {BFT43 }}$ \& ${ }_{\text {coicle }}$ \& $8{ }_{8 Y} 94$ \& co.14

\hline \& ع0.08 \& ${ }_{2 S}^{2 S C 1158}$ \& ${ }^{\text {c. }}$ \& ${ }^{2 S} 2$ SD6623 \& ¢ 12.67 \& AN6552 \& ${ }_{\text {coice }}$ \& BC2398 \& ${ }^{2} 0.25$ \& B0598. \& E1.25 \& BFT84 \& 80.40 \& BYY56 \& E1.20

\hline 1 N 4006 \& ع0.08 \& ${ }_{2 S C 1172}$ \& ¢2.22 \& 2 250636 \& ¢0.55 \& AN6610 \& ع2.40 \& BC251A \& ع0.12 \& BD677 \& ¢0.53 \& BFW10 \& co.bo \& 8ZY93C30 \& ع1.86

\hline 1 N 4007 \& ع0.07 \& ${ }_{2} \mathrm{SCl195}^{2}$ \& ¢3.28 \& ${ }^{2 S D 639-R}$ \& ع0.85 \& AN6677 \& ع8.60 \& 8 C 294 \& £0.50 \& $8 \mathrm{B679}$ \& ${ }^{80.57}$ \& BFX29 \& ${ }^{\text {co. }} 3.37$ \& BZY88RAN \&

\hline TNa148 \& ${ }^{\text {¢0.04 }}$ \& ${ }_{2}^{2 S C 1212 A}$ \& ${ }^{\text {c1. }} 1.97$ \& 2S0655 \& ع20.98 \& AN7111 \& c1.45 \& BC300
BC301 \& ¢0.35 \& 80680
80861 \& ${ }_{\text {cil }}$ \& - ${ }_{\text {BFXX84 }}$ \& ${ }_{\text {coil }}$ \& BZX61 RA \& GE

\hline TN4448
N 5401 \& ${ }_{\text {¢ }}^{\text {¢0. }}$ \& - ${ }_{2 S C 1213}{ }_{2 S}$ \& ${ }^{\text {ع }} \mathbf{\varepsilon 1 . 4 8}$ \& ${ }^{2 S 0657}$ \& ع2.85 \& AN7114E \& ${ }_{81.75}$ \& ${ }^{\mathrm{BCC} 302}$ \& ${ }_{80.53}$ \& ${ }_{80696}$ \& $\underline{82.47}$ \& BFX86 \& ع0.36 \& B2x61 \& s0.

\hline 1N5402 \& ع0.15 \& 2 SC 1293 \& £0.90 \& 2SD731 \& ¢2.45 \& AN7120 \& ع4.65 \& ${ }^{8 C} 303$ \& ع1.04 \& 8 BD 99 \& ${ }_{5} 83.48$ \& BFX87 \& ${ }_{\text {cel }}$ \& BZX79RANG \&

\hline $1{ }^{\text {N5403 }}$ \& ${ }^{\text {co. }} 16$ \& ${ }_{2}{ }^{\text {SCH1306 }}$ \& ع1.98 \& ${ }_{2 S} 2$ S773 \& ع0.33 \& AN7145 \& c2.80 \& ${ }_{\text {BC30 }}$ \& ع. \& ${ }^{807700}$ \& ${ }_{\text {E13 }}$ \& - ${ }_{\text {BFX }}^{8 \times \times 88}$ \& ع0.44 \& \& ${ }_{\text {co. }}$

\hline 1N5404
in5408 \& ${ }_{\text {cien }}$ \& ${ }^{2 S C 1316}$ \& ع4.10
E0.87 \& ${ }_{2}^{2 S D 8811}$ \& \& AN7146 ${ }^{\text {AN7151 }}$ \& c.

ع2.28 \& ${ }_{\text {BC307A }}$ \& | ع0.14 |
| :--- |
| ع0.18 |
| 18 | \& 80707

80709 \& ع11.06
$\mathbf{8 1 . 1 2}$ \& \& c0.44 \& ${ }_{\text {Clobe }}$ \& ${ }_{\text {co. }}^{\text {co. }}$

\hline 1 N914 \& ${ }^{8} 0.04$ \& ${ }_{2 S C 1364}$ \& ${ }_{\text {¢0, }}$ \& ${ }_{250837}$ \& ع1.20 \& AN7156 \& ع2.85 \& ВС308A \& ¢0.11 \& 8 P 710 \& 80.80 \& BFY51 \& ع0.50 \& ${ }^{C 1129}$ \& ع0.58

\hline 1R3403 \& ¢5.00 \& ${ }_{2 S C 1383}$ \& ع1.20 \& $2 \mathrm{SO841}$ \& c3.65 \& AN7158 \& ع6.75 \& 8C309 \& ع0.17 \& $8 \mathrm{B809}$ \& ع0.75 \& BFY52 \& ع0.27 \& CA3046 \& c. 2.08

\hline 151555 \& ${ }_{\text {coser }}$ \& \& ${ }_{\text {c }} \mathbf{8 2 . 4 5}$ \& ${ }_{2 S 085570}$ \& ${ }_{\text {c. }}^{\text {c. } 2.24}$ \& AN7218 ${ }^{\text {AN7223 }}$ \& ¢ ${ }_{\text {c. }}$ \& ${ }_{\substack{\text { BC3 } \\ \text { B627 }}}$ \& co.13 \& 80870
80879 \& ¢0.69 \& $\stackrel{\text { BFYY90 }}{ }$ \& ${ }_{\text {coibl }}$ \& CA3090a \& c.25

\hline ${ }_{155012}$ A \& ع0.81 \& ${ }_{2 S C 1413 A}$ \& ع.5. 26 \& 2SD882 \& $\Sigma 1.50$ \& AU107 \& E3.50 \& BC328 \& ع0.11 \& $8 \mathrm{B830}$ \& ¢0.79 \& BLY49 \& ¢2.20 \& CA3094 \& c. 2.20

\hline 15921 \& c0.10 \& 2 SC1446 \& ع1.25 \& 2SD894 \& ع1.50 \& AU110 \& c2.25 \& $\mathrm{BC}^{\text {c37 }}$ \& ع0.09 \& $8 \mathrm{BP895}$ \& ¢2.31 \& ${ }^{\text {BRTO0 }}$ \& ${ }_{\text {coin }}$ \& CA3131EM \&

\hline 2N1303 \& ${ }^{\text {co. }}$ (38 \& ${ }_{2} \mathrm{SCl}^{2} 447$ \& ${ }^{\text {¢2.07 }}$ \& ${ }^{2508898}$ \& E.5.45 \& ${ }_{\text {AU }}$ AU13 \& c5.25 \& BC 338
BC 360 \& ${ }_{\text {coin }}^{\text {c0. }}$ \& ${ }^{808999}$ \& ¢ ${ }_{\text {c }}$ \& ${ }_{\text {BR101 }}$ \& ${ }_{\text {E }}$ \& CBF16848N- \& ع1.56

\hline ${ }^{2} \mathbf{2 N 2 1 9 7 4}$ \& c0.40 \& ${ }_{2}^{2 S C 1475}$ \& ${ }_{\text {c1.00 }}$ \& ${ }_{2}^{2 S K} 105 \mathrm{H}$ [152 \& c2.15 \& ${ }_{\text {AY A 105k }}$ \& ${ }_{\text {cil }}$ \& $8 C 360$
BC368 \& ${ }_{\text {co. }}$ \& ${ }_{80902}$ \& ¢ \& -R303 \& \&1.28 \& CDA001 \& ${ }_{\text {co. }}$

\hline ${ }_{\text {2N2646 }}$ \& c0.80 \& ${ }_{2 S C}$ \& ع1.37 \& ${ }_{2}{ }^{25 K} 34$ \& ${ }_{\text {coin }}$ \& ${ }_{\text {BA524 }}$ \& c8. 21 \& ${ }_{\mathrm{BC} 440}$ \& ع1.09 \& 日Dw83C \& ع1.56 \& BRC116 \& ع0.67 \& CD4002 \& ع0.27

\hline 2N2904 \& ¢0.36 \& $2 \mathrm{SC15730}$ \& £1.25 \& 2SK41 \& ¢1.07 \& B250 \& ع2.65 \& BC441 \& c0.44 \& BDW84C \& ع1.58 \& BRC300 \& ع2.01 \& C04008 \& c1.35

\hline 2N2905 \& ع0.43 \& $2 \mathrm{SC1578}$ \& £8.74 \& 2SK79 \& ع2.98 \& 840 \& ع1.55 \& ${ }^{8 C 454}$ \& ${ }_{\text {coin }}$ \& 80x32 \& ع11.75 \& BRC5296
BRC6109 \& ${ }_{\text {¢0, }}^{1}$ \& C0.4012 \& ${ }_{\text {co }}$

\hline ${ }_{2 N}^{2 N 2906}$ \& ${ }_{\text {co }}$ \& ${ }_{2}^{2 S C 1583}$ \& ${ }_{\text {c1 }} 1.17$ \& ${ }_{40594}^{4008}$ \& ${ }_{\text {c1.53 }}$ \& \& ${ }_{\text {c1. }}$ \& ${ }_{\text {BC }}^{8} \times 461$ \& ${ }_{\text {co. }}$ \& ${ }_{80 \times 538}$ \& ¢ ${ }_{\text {¢ }}$ \& $\mathrm{BRCB2}^{\text {a }}$ \& ¢1.08 \& CD4013 \& ¢0.47

\hline ${ }_{\text {2N3053 }}$ \& co. 27 \& ${ }_{2 S C 675}$ \& ع1.41 \& 40636 \& ع1.43 \& BA1320 \& ع1.38 \& BC462 \& E1.15 \& BDX548 \& £2.61 \& BRC83 \& ع2. 19 \& CD4016 \& ع0.48

\hline 2N3054 \& ¢0.99 \& $2 \mathrm{SC1678}$ \& ع1.98 \& 4EX581 \& ع0.80 \& 8 81322 \& ع3.95 \& BC463 \& ¢0.04 \& 80x62A \& £2.15 \& ${ }^{\text {BRC844 }}$ \& £2.08 \& CO4017 \& ع0.82

\hline 2N3055 \& ع0.61 \& 2 SC1741 \& ${ }^{\text {c1. }} 15$ \& 741 \& ع0.30 \& BA 1330 \& ع2.75 \& ${ }_{\substack{\text { BC477 }}}$ \& ${ }_{\text {coi. }}$ \& \& ${ }_{\text {c1. }}$ \& ${ }^{\text {BRX44 }}$ \& ${ }_{¢ 0.53}$ \& ${ }^{\text {COP4022 }}$ \& ع0.39

\hline ${ }_{\text {2N3402 }}$ \& ¢1.16
ع0.14 \& - ${ }_{\text {2SCl810 }}$ \& ${ }_{\text {coise }}$ \& ${ }_{7806}^{7805-T 022}$ \& ¢0.
80.73 \& BA145 \& ${ }_{\text {coi }}$ \& ${ }_{8 C 79}$ \& ${ }_{\text {coi.41 }}$ \& ${ }_{\text {B P P }} 1$ \& ع1.18 \& BrY39 \& ${ }_{80.69}$ \& CD4023 \& ع0.28

\hline 2 N 3703 \& ¢0.14 \& 2 SC1826 \& E0.65 \& 7808 \& ع2.39 \& BA154 \& ع0.40 \& ${ }^{\text {BC532 }}$ \& ${ }^{\text {co. }} 17$ \& BF115 \& ${ }_{50}^{80.40}$ \& ESS38 \& ${ }_{\text {E50. }}$ \& C04025 \& ¢0.64

\hline ${ }_{\text {2N3705 }}$ \& ${ }_{\text {c. }}^{\text {ع0.16 }}$ \& ${ }_{2}^{2 S C 1829}$ \& \& ${ }_{7815}^{7812-T 022}$ \& ${ }_{\text {c10.64 }}$ \& BA155
BA155 \& ${ }_{\text {coil }}$ \& -8C546 \& ${ }_{\text {co. }}$ \& ${ }_{\text {BF118 }}$ \& ${ }_{\text {¢0, }}$ \& BSTCO246 \& ¢7.25 \& CD4040B \& ¢0.85

\hline 2 N 3707 \& c0.18 \& $2 \mathrm{SC1387K}$ \& ع2.98 \& 7818 \& c0.92 \& BA159 \& c0.12 \& BC548 \& ع0.10 \& BF121 \& ع0. 23 \& BSTCO233 \& ${ }^{\text {c7. }}$ [25 \& ${ }^{\text {COP4047 }}$ \& ${ }^{\text {c1. }} 1.08$

\hline ${ }^{2} \times 3711$ \& ع0.11 \& $2 \mathrm{SCC1893}$ \& ¢3.02 \& ${ }_{7924}$ \& ${ }^{8} 8.64$ \& ${ }_{\text {BA }}^{81822}$ \& ${ }_{\text {cil }}$ \& $8 C 549$
$8 C 550$ \& ${ }_{\text {coser }}$ \& ${ }_{\text {BFP123 }}$ \& ¢0.13 \& ${ }_{\text {BSTOLOM3 }}$ \& ${ }_{\text {c2.85 }}$ \& C04052 \& ${ }_{\text {coi }}$

\hline 2N3771
2N3772 \& c2.04
ع1.71 \& ${ }_{\text {2SCl }}^{2}$ \& ${ }_{\text {c1.37 }}$ \& ${ }_{9368}$ \& ع10.70 \& ${ }_{\text {BA }}^{\text {BA232 }}$ \& ع1.24 \& BC556 \& ${ }_{\text {coi }}$ \& BFF137 \& ع0.28 \& BSV578 \& £3.49 \& CD4066 \& ¢0.38

\hline 2 N 3773 \& ع2.29 \& $2 \mathrm{SC1923}$ \& ع1.07 \& nat \& 18.00 \& BA311 \& ع1.32 \& BC557 \& ع0.10 \& BF153 \& ${ }_{\text {c }}$ \& ${ }_{\text {BSW68 }}^{\text {BS }}$ \& ${ }_{c}^{80.60}$ \& CD4069 \& ${ }_{\text {c0. }}^{\text {cos }}$

\hline 2 N 3819 \& ع0.42 \& $2 \mathrm{SC1929}$ \& ${ }^{\text {c2. } 25}$ \& TELETON \& ع. 4.50 \& \& ${ }_{\text {c. }}^{\text {c. }} \mathbf{7}$ \& ${ }^{\text {BC558 }}$ \& ${ }_{\text {coin }}$ \& BF 154
BF157 \& ${ }_{\text {c0. }}^{50.26}$ \& - BSx19 \& ${ }_{80.34}$ \& ${ }^{\text {COP4081 }}$ \& ${ }_{\text {co }}$

\hline 2 N 3823 \& ع1.17 \& ${ }_{2} \mathrm{SSCl}^{\text {c }}$ 942 \& c5.70 \& ${ }^{\text {AA }}$ \& ع0.12 \& \& ${ }_{\text {coios }}$ \& 8C5598 \& ع0.11 \& BF158 \& c0. 18 \& BSY52 \& E0.50 \& CD4093 \& ¢0.72

\hline 2N3904 \& ${ }_{c 0.62}$ \& ${ }_{\text {2SCl }}^{2 \text { SCl959 }}$ \& ce \& ${ }_{\text {ACl27 }}^{\text {ACl23 }}$ \& ${ }_{\text {co. }}$ \& ${ }_{\text {BA }}^{\text {BA318 }}$ \& ع0.09 \& ${ }_{\text {BC560C }}$ \& 80.14 \& BF159 \& 80.18 \& BSY79 \& co. 51 \& CD4511 \& 81.10

\hline 2 N 4101 \& ع1.33 \& ${ }_{2 S C 1957}$ \& E0.95 \& AC128 \& ع0.34 \& BA328 \& £4.77 \& BC635 \& c0.36 \& BF160 \& ع0.31 \& BT100A \& ع1.61 \& CDP528 \& ¢2.04

\hline $2 \mathrm{Na240}$ \& c3.30 \& $2 \mathrm{SC1953}$ \& ع1.93 \& AC138 \& ع0.24 \& BA333 \& ع1.37 \& ${ }^{\text {BC636 }}$ \& ${ }^{2} \mathbf{c} 0.42$ \& $\stackrel{\text { BF167 }}{8 F 173}$ \& ${ }^{50}$ \& BT106
BT108 \& ع1.55 \& CRO2AMM-8 \& ${ }_{\text {c1.55 }}$

\hline 2 N 4444 \& c0.90 \& $2 \mathrm{SC1} 1962$ \& ع1.93 \& AC141 \& ع0.29 \& BA335 \& ع6.27 \& BC637 \& ع0. 24 \& BF173 \& ${ }_{\text {cose }}$ \& - ${ }^{\text {BT1108 }}$ \& ${ }_{\text {c11.78 }}$ \& CVITE ${ }^{\text {CRIM }}$ \& c3.07

\hline 2N5293 \& co. 50 \& 2SC1969 \& ¢2.92 \& AC142K \& ع0.43 \& BA5102A \& £.78 \& BC639
BC640 \& ${ }_{\text {coin }}$ \& \& ${ }_{\text {co }}$ \& - ${ }^{\text {BT120 }}$ \& ${ }_{\text {cki }}$ \& CX0950 \& E3.14

\hline 2N5294 \& ${ }_{c} 8.50$ \& ${ }_{2}^{2 S C} 1983$ \& ${ }_{\text {co. }}^{\text {c8. }}$ \& ${ }_{\text {ACA }}^{\text {AC17 }}$ \& ${ }_{\text {coin }}$ \& ${ }_{\text {BA514 }}$ \& \& ${ }_{\text {BC879 }}$ \& ع0.39 \& BF179 \& c0.36 \& BT121 \& ع2.48 \& CX104 \& c9.64

\hline 2N5297 \& ${ }_{\text {cose }}$ \& ${ }_{2 S C 2009}^{2 S C 1985}$ \& ${ }_{\text {co. }}$ \& ${ }_{\text {AC179 }}$ \& ع0.28 \& ${ }_{\text {BA521 }}$ \& E2.02 \& BC880 \& ع0.31 \& BFF180 \& c0.36 \& ${ }^{\text {BT123 }}$ \& ع1.98 \& Cx108 \& £10.50

\hline $2{ }^{2} 5298$ \& ¢0.61 \& $2 \mathrm{SC2029}$ \& ع2.33 \& AC183 \& ع0.72 \& BA524 \& c8.94 \& ${ }^{\text {BCX34 }}$ \& ¢0.40 \& BF181 \& ع0.32 \& TBA970 \& ع3.06 \& Cx109 \& 87.86

\hline ${ }^{2} 51771$ \& ع1.18 \& $2 \mathrm{SC2028}$ \& £2.11 \& AC187 \& ع0.39 \& ${ }^{\text {BA5 } 526}$ \& £7.98 \& BCY_{8} \& ${ }_{\text {coin }}$ \& ${ }_{8}^{\text {BF182 }}$ \& ${ }_{\text {co. }}$ \& Blisi-800 \& ¢1.42 \& - \& ع11.04

\hline ${ }^{2} \mathbf{N 6 1 0 9}$ \& ع1. ${ }^{18}$ \& ${ }_{2 S C 2078}^{2 S C 2033}$ \& ${ }_{\text {coise }}$ \& ${ }_{\text {AClisk }}{ }_{\text {AC188 }}$ \& ${ }_{\text {coin }}$ \& ${ }_{\text {BA5532 }}$ \& \& ${ }_{\text {BCY77 }}$ \& ع0.20 \& ${ }_{\text {BF184 }}$ \& ${ }_{\text {co. }}$ \& ${ }_{8}$ \& ${ }_{\text {¢2.51 }}$ \& CX136 \& ع11,49

\hline ${ }^{2} \mathrm{~N} 6133$ \& ${ }_{\text {c1.25 }}$ \& ${ }_{2 S C 2073}$ \& ${ }_{\text {c1. }}$ \& AC188-01 \& ع0.49 \& BA536 \& £2.95 \& 80115 \& ع0.36 \& BF185 \& ${ }^{50.39}$ \& ${ }^{\text {BTITP124 }}$ \& ${ }^{\text {¢ } 4.89}$ \& CX139 \& ع11.83

\hline 2N6180 \& c0.95 \& $2 \mathrm{SC} 2085-\mathrm{Q}$ \& ع1.25 \& AC188k \& ${ }^{\text {¢0. }}$. 43 \& BA6209 \& E4.75 \& BD116
B0124 \& \& - ${ }^{\text {BF194 }}$ \& ${ }_{\text {co. }}$ \& ${ }_{\text {BU }}$ BU106 \& ¢2.48
ع1.50 \& - $\times 158$ \& ${ }_{84.10}$

\hline 2N6292 \& \& ${ }_{2 S C 2141}$ \& ${ }_{\text {c1. }}^{\text {ع1. }} 8$ \& AC:93k \& ${ }_{\text {ع0. }}$ \& ${ }_{\text {BAF7700 }}^{\text {BAE5 }}$ \& ¢ 18.808 \& ${ }_{80124}^{\text {BDI }} 124$ \& £1.31 \& ${ }_{\text {BFI }}$ \& ${ }_{\text {ع }}$ \& ${ }_{8} \mathrm{BU} 109$ \& ${ }_{\text {¢12.25 }}$ \& Cx177 \& ع6.75

\hline ${ }_{2} \mathbf{N} 698$ \& ع0.43 \& ${ }_{2 S C 2166}$ \& ع1.98 \& AD140 \& ع1.06 \& BA841A \& ع16.72 \& , \& c0.69 \& BF197 \& ع0.16 \& BU110 \& ¢5.69 \& CX187 \& ${ }^{\text {c. } 5.26 ~}$

\hline 2SA1006 \& £1.50 \& 2 SC 2216 \& ع0.69 \& AD143 \& ع1.25 \& BA843 \& ع3.96 \& B0131 \& ع0.42 \& BF 198 \& ¢0.17 \& BU117Y \& ع4.18 \& CX755 \& c12.95

\hline 2SA101t \& ع1.65 \& 2 SC 2233 \& £2.20 \& AD145 \& ع1.80 \& BA854 \& ع5.76 \& 80132 \& c0.42 \& BF199 \& ${ }_{\text {c. }}$ \& ${ }_{8}^{\text {BU125 }}$ \& ${ }_{\text {c. }}^{\text {c1. }} \mathbf{8 5}$ \& \& ${ }_{\text {c2. }}$

\hline 2 SA1015 \& ع0.49 \& ${ }^{2 S C 2} 236$ \& ع1.65 \& AD161 \& ${ }_{\text {coin }} \mathbf{8 0 . 5 8}$ \& ${ }^{\text {BAVV18 }}$ \& ${ }_{\text {col }}$ \& 8D133 \& ${ }_{\text {coi }}$ \& ${ }_{\text {BF218 }}$ \& \& ${ }_{\text {BUL }} 137$ \& ${ }_{\text {c9.25 }}$ \& \& ع2.20

\hline ${ }_{\text {2SA1020 }}{ }^{\text {SSA }}$ \& ¢ 1.25
80.88 \& ${ }_{2 S}^{2 S C 2278}$ \& ع1.14 \& \& ع0.45 \& BAV19
BAV20 \& \& ${ }_{80136}$ \& ${ }_{\text {coin }}$ \& ${ }_{8}^{\text {BF224 }}$ \& ${ }_{\text {ع }}$ \& ${ }_{\text {BU205 }}$ \& ¢1.08 \& DS3486N \& 84.33

\hline \& £0.86 \& ${ }_{2 S C 2335-K 1}^{2 S C 234}$ \& ¢2.17 \& \& ${ }_{\text {c1 }} \times 1.25$ \& BAV21 \& ع0.34 \& 8 B137 \& ع0.38 \& BF237 \& ¢0.65 \& BU206 \& ع1.27 \& DS3487N \& ¢4.33

\hline $2 \mathrm{SA473}$ \& £0.75 \& \& £10.41 \& AFI15 \& ع1.24 \& BAW62 \& ع0.19 \& 80138 \& ع0.46 \& BF240 \& ع0.17 \& BU207 \& ع1.65 \& E1222 \& c0.40

\hline ${ }^{2 S A} A 7665$ \& £4.95 \& 2SC2551 \& $\varepsilon 1.26$ \& AF118 \& ع1.20 \& ${ }^{\text {BAX }} 12$ \& ع0.44 \& BD139 \& ${ }_{\text {cos }}$ \& ${ }_{\text {BF2 }}{ }_{\text {EF24 }}$ \& ${ }_{\text {c0. }}$ \& \& ${ }_{\text {c11 }}$ \& E5024 \& co.28

\hline ${ }^{25 \mathrm{SC173}} 17$ \& ع1.25 \& $2 \mathrm{SC2565}$ \& ع.3.36 \& ${ }_{\text {A }}^{\text {Af127 }}$ \& ${ }_{8}$ \& BAX13 \& ع0.11 \& 80144 \& ع1.70 \& BF245A \& ${ }_{\text {c0.37 }}$ \& BU208A \& ع1.12 \& E9903 \& c0,46

\hline ${ }_{2 S C}^{2 S 509}$ \& ${ }_{\text {11.35 }}$ \& ${ }_{2 S C}^{25577}$ \& ع1.75 \& AFF178 \& ع1.45 \& BC-107 \& ${ }^{2} 0.13$ \& 80750 \& ${ }^{\text {co. }}$ 85 \& BF2458 \& c0.49 \& BU2080 \& ${ }_{\text {c1. }}$ \& Espos \& co. ${ }_{\text {cti }}$

\hline ${ }^{2 S D} 13991 \mathrm{RL}$ \& L \& ${ }_{2 S} \mathrm{SCO}_{2} 578$ \& c. 8.75 \& AF179 \& ${ }^{\text {co. }}$ \& ${ }^{\text {BC107A }}$ \& ${ }_{\text {coils }}$ \& ${ }^{80} 8150$ \& ${ }_{\text {ci }}$ \& ${ }_{\text {BF25 }}$ \& ${ }_{\text {co. } 20}$ \& BU226 \& ع2.95 \& FND500 \& c5.78

\hline 2SA 1095 \& ع4.10 \& 2 SC 2571 \& ع1.99 \& AF180 \& ع0.55 \& ${ }_{\substack{8 C 1078 \\ 8 C 108}}$ \& c0.15 \& ${ }_{80163}$ \& co.71 \& ${ }_{\text {BF } 256}$ \& ${ }_{\text {co. } 28}$ \& BU326 \& ع2.00 \& GC374 \& ع1.65

\hline ${ }_{\text {2SA }}^{\text {2SA }}$ (103 \& ${ }_{\text {co. }}^{\text {c6. }}$ \& ${ }_{2}^{2 S C 2826}$ \& ${ }_{\text {c12.07 }}$ \& AF181
AF 186 \& ع0.53 \& ${ }_{\text {BC1088 }}$ \& ${ }_{\text {coin }}$ \& 80165 \& c0.62 \& BF256LB \& c0.42 \& BU326A \& $\underline{2.20}$ \& GO243 \& ¢4.95

\hline ${ }_{2 S A 351}$ \& ع1.17 \& ${ }_{2 S C 3153}$ \& ${ }_{5} 5.28$ \& AF239 \& ع0.43 \& BC109 \& ع0.12 \& 8 B 166 \& c0.42 \& BF256LC \& c0.42 \& BU3265 \& ع2.20 \& GF738 \& c0.84

\hline ${ }^{2 S A 489}$ \& ع1.17 \& $2 \mathrm{SC372}$ \& $\varepsilon 1.40$ \& AF279 \& ¢0.88 \& BC1098 \& ع0.15 \& 80168 \& c0.73 \& BF257 \& co. 34 \& BU406 \& 81.49 \& ${ }_{\text {HAl1215 }}$ \&

\hline 2SA490 \& ع1.67 \& ${ }^{2 S C 373}$ \& $\varepsilon 1.16$ \& AL113 \& ع1.36 \& ${ }^{8 C 1096}$ \& ${ }_{\text {cose }}$ \& 8 BD 175 \& ${ }_{\text {cose }}$ \& ${ }_{8}^{\text {BF258 }}$ \& ${ }_{80.34}$ \& ${ }_{\text {BUA }}$ \& ${ }_{\text {coic }}$ \& HA11211 \& ${ }_{\text {c2.53 }}$

\hline 2 2SA993 \& c2.25 \& ${ }_{2} 5 \mathrm{C} 383$ \& ع1.33 \& AN115 \& ع3.98 \& BC13
$8 \mathrm{BC1} 19$ \& \& ${ }_{80181}$ \& \& ${ }_{8}{ }_{\text {BF262 }}$ \& ${ }_{80.57}$ \& BU4070 \& ¢1.00 \& HA11225 \& £4.29

\hline ${ }_{\text {2SA562 }}$ \& ${ }_{80.58}$ \& ${ }_{2 S}^{2 S C 3388}$ \& ${ }_{\text {¢0, }}^{80.51}$ \& AN155
AN206 \& ¢1.89 \& ${ }_{8 C 126} 8 \mathrm{Cl19}$ \& ${ }_{\text {c0.20 }}$ \& ${ }_{80182}$ \& ${ }_{80.98}$ \& ${ }_{\text {BF263 }}$ \& c0.57 \& BU412 \& ${ }^{85} 5.29$ \& HA11226 \& c8.71

\hline ${ }_{\text {2SA614 }}$ \& 84.88 \& ${ }_{2 S C 403 C}^{2 S}$ \& ${ }_{\text {co. }}$ \& AN208 \& ¢ 2.55 \& BC132 \& co. 14 \& 80183 \& ع0.99 \& BF271 \& co. 34 \& BUA26A \& ع1.67 \& HA11229 \& c2.88

\hline 254628 \& ع1.14 \& $2 \mathrm{SC41}$ \& £2.19 \& AN210 \& ¢2.28 \& ${ }^{\text {BC135 }}$ \& co. 14 \& $8{ }^{8184}$ \& ع1.21 \& ${ }_{\text {BF273 }}$ \& ${ }_{80.20}$ \& ${ }^{\text {BUS }}$ \& ${ }_{\text {c11.88 }}$ \& ${ }_{\text {HAl124 }}$ \& ¢ 5.28 .28

\hline ${ }^{2 S A 6599}$ \& c1.50 \& ${ }_{2}^{2 S C 458}$ \& ع0.39 \& AN211 \& ¢ 8.23 \& ${ }_{\substack{8 C 137 \\ 8 C 138}}$ \& ع0.18 \& ${ }^{80187} 8$ \& ¢0.69 \& ${ }^{8 \mathrm{BF} 274}$ \& ${ }_{\text {co. }}$ \& BU536 \& ¢5.80 \& HA11244 \& ${ }_{82.82}$

\hline ${ }_{\text {2SALF3 }}$ \& c.1.27 \& ${ }_{2 S}^{2 S} 25154$ \& ${ }_{\text {c1. }}$ \& AN231 \& [14.43 \& ${ }_{8 C 139}$ \& ¢0.28 \& 80190 \& ${ }_{80.69}$ \& 8F336 \& ع0.33 \& BU608 \& c2.65 \& HA1251 \& £4.47

\hline ${ }_{2 S A 684}$ \& ع1.61 \& ${ }_{2 S C 535}$ \& co. 79 \& AN234 \& c5.92 \& BC140 \& ¢0.45 \& 80201 \& £0.53 \& 8F337 \& ¢0.40 \& 8U705 \& ¢3.81 \& HAP1125 \& £4.29

\hline 254697 \& ع0.82 \& ${ }_{2 S} \mathrm{SC536}$ \& c0. 29 \& AN236 \& ع3.78 \& BC141 \& ${ }_{\text {cos }}$ \& 80202 \& ${ }_{\text {cce }}$ \& \& c0.49 \& ${ }^{\text {BUL }} 8007$ \& c0.80 \& HA1138 \& ${ }_{\text {c5.03 }}$

\hline 2 SA 699 \& ${ }_{\text {c1. }} 1.75$ \& ${ }_{2}^{2 S C 537}$ \& \& AN239 ${ }^{\text {AN240 }}$ \& ${ }_{\text {c1.52 }}$ \& ${ }_{\text {BC142 }}{ }_{\text {BC143 }}$ \& ${ }_{\text {col }}^{\text {co. } 34}$ \& (${ }^{80203} 8$ \& c0.40 \& ${ }_{8}^{\text {BF362 }}$ \& ${ }_{80.66}$ \& BU826A \& c2.15 \& HA11414 \& c5.65

\hline 2SA715
2SA74 \& ${ }_{\text {c8. }}^{\text {cos }}$ \& ${ }_{2 \text { 2SC6050 }}$ \& ع1.16 \& AN240P \& \& ${ }_{\text {BCCl4 }}$ \& co. \& 80204 \& ع1.79 \& 8F363 \& 80.60 \& BUW84 \& 81.39 \& HA1144 \& ¢7.87

\hline 254748 \& ع1.08 \& ${ }_{2 S C 643 A}$ \& ع1.54 \& AN245 \& £4.49 \& BC148A \& co. 10 \& $8 \mathrm{BP208}$ \& ع1.23 \& 8F371 \& ¢0.50 \& BUX84 \& ع1.00 \& HA1156 \& ع1.16

\hline $2 \mathrm{SAB17}$ \& ع0.65 \& $2 \mathrm{SC668}$ \& ع0.67 \& AN253 \& c2.97 \& BC1488 \& co.13 \& 8 B 222 \& c0.49 \& BF391 \& ${ }_{\text {c0. } 24}$ \& ${ }_{\text {BUY }}$ B9 ${ }^{\text {a }}$ \& c1.10 \& ${ }_{\text {HA1166 }}$ \& ¢5.25

\hline 2 2SAB18 \& ع1.82 \& $2 \mathrm{SC681}$ \& c4.40 \& AN260 \& ${ }_{\text {c. }}$ \& ${ }_{\text {BC148C }}^{\text {BC149 }}$ \& co.11 \& -80225 \& ${ }_{\text {c0. }}$ \& BF418 \& ¢1.87 \& BY126 \& ¢0.13 \& HA1166X \& E5.36

\hline ${ }_{2 S A B 36}^{2 S A B 35}$ \& ع2.50 \& \& \& \& ع1.98 \& ${ }_{8 C 1498}$ \& ${ }_{80.13}$ \& ${ }_{8029}$ \& ع1.05 \& 8 F 422 \& c0. 29 \& BY127 \& co. 13 \& HA1157 \& c5.36

\hline ${ }_{\text {2SAB44 }}$ \& ع0.89 \& 2SC684
2SC693 \& \& ${ }_{\text {AN281 }}$ \& ${ }_{\text {cke }}$ \& $8 \mathrm{BC453}$ \& 80.14 \& 80232 \& c0.50 \& BF423 \& ${ }^{50.52}$ \& ${ }_{\text {BY } 133}$ \& c0.11 \& HA11702 \& ع6.50

\hline ${ }_{2 S A 872}$ \& ع0.70 \& ${ }_{2 S C 710}$ \& ${ }_{\text {co. }}$ \& AN295 \& ¢5. 52 \& ${ }_{8 C 154}$ \& c0.14 \& $8 \mathrm{BP234}$ \& c0.42 \& BF459 \& ${ }_{80.35}$ \& ${ }_{8}^{\text {BY } 164}$ \& ${ }_{\text {c. }}^{50.47}$ \& HAP1706
HA17705 \& ${ }_{88.00}$

\hline ${ }_{\text {2SABAB4 }}$ \& ع2.15 \& ${ }_{2 S}^{25 C 7114}$ \& ${ }_{\text {c1.28 }}$ \& ${ }_{\text {AN }}$ A 301 \& ¢5.55 \& ${ }_{8}^{8 C 159}$ \& ع0.16 \& 80237
80238 \& c0.47 \& ${ }_{\text {BFF457 }}$ \& ع0.41 \& ${ }_{8 Y 179}$ \& ${ }_{80.62}$ \& HA11703 \& ع9.56

\hline ${ }_{2 S}^{\text {2SA9940 }}$ \& ${ }_{¢ 1.81}$ \& ${ }_{2 S}^{2 S C 717}$ \& ع1.28 \& ${ }_{\text {AN302 }}$ AN303 \& ${ }_{\text {ع }}$ \& ${ }_{8 C 161}$ \& ع0.28 \& 80239 \& c0.45 \& BFF58 \& co. 39 \& BY182 \& c1.05 \& HA11701
HA11710 \& c9.56

\hline $2 \mathrm{SA940}$-2 \& ع2.14 \& ${ }_{2} \mathrm{SSC}_{6} 761-\mathrm{Y}$ \& c0.95 \& A 305 \& ¢9.47 \& $8 \mathrm{BC168}$ \& ¢0.36 \& ${ }^{80240}$ \& ع0.37 \& $\stackrel{\text { BF4 }}{8 \times 49}$ \& ${ }_{\text {c1.58 }}$ \& BY184 \& ${ }_{\text {co. }}$ \& ${ }_{\text {HA11713 }}$ \& ${ }_{\text {c8.13 }}$

\hline ${ }_{2 S A 950}^{2 S A}$ \& c0. 72
$\varepsilon 1.28$ \& ${ }_{2 \mathrm{SCC7} 90 \mathrm{Y}}$ \& ${ }_{\text {c1.64 }}$ \& AN315
AN316 \& ع2.46 \& ${ }^{88 C 1699} \times$ \& cie.18 \& 80242 \& c0.39 \& BF469 \& ${ }_{80} 8.31$ \& 8 BY 189 \& ع1.76 \& HA17711 \& ¢20.18

\hline ${ }_{\text {2SA966-Y }}$ \& ${ }_{\text {c1.18 }}$ \& ${ }_{2 S C 828}$ \& ${ }_{\text {c0. } 28}$ \& AN318 \& £6. 27 \& BC171 \& ع0.11 \& 8D243A \& ¢0.37 \& BF470 \& ع0.55 \& 8 B 198 \& ع1.62 \& HA11715 \& ع8.13

\hline 2SA999 \& ع1.36 \& $2 \mathrm{SC867A}$ \& £3.05 \& AN320 \& c5.47 \& \& ع0.13 \& 80243C \& ${ }_{\text {co. }}$ \& BF471 \& ${ }_{\text {co. }}$ \& 8Y201/20 \& ${ }_{80.41}$ \& ${ }_{\text {HA11714 }}$ \& ع13.10

\hline 2SB774 \& ع1.15 \& ${ }^{25 C 876}$ \& ع0.96 \& AN321 \& ${ }_{\text {c. }}^{8.85}$ \& ${ }_{\text {BC172 }}{ }_{\text {BC173 }}$ \& ع0.27 \& BD244 \& ع0.79 \& $\stackrel{\text { BF479 }}{ }$ \& ${ }_{80.61}$ \& 8 Y 207 \& c0.22 \& HA11725 \& ع18.26

\hline $2 S 8185$
$2 S 8375$ \& c1.13 \& ${ }_{2 S C 935}^{2 S C 930}$ \& ${ }_{\text {c. }}^{\text {c. }}$. 134 \& AN322
AN 331 \& ع8.59 \& ${ }_{\text {BC174 }}$ \& ${ }_{80.27}$ \& ${ }_{80245 C}$ \& ع0.79 \& BF480 \& ${ }_{80.60}$ \& 8Y208 \& ع0.46 \& HA11725M \& P

\hline ${ }_{2 S 8400}^{2 S 8375}$ \& ${ }_{\text {¢ }}$ \& ${ }_{2 S C 936}^{2 S}$ \& ${ }_{\text {ع } 8.686}$ \& AN337 \& ${ }_{65.37}$ \& ${ }_{\text {BC177 }}$ \& co. 20 \& BD246C \& ¢0.89 \& BFF91 \& \& 8Y210-400 \& c0.18 \& \&

\hline ${ }_{2 S 8405}$ \& ع1.03 \& ${ }_{2 S C 940}$ \& E4.68 \& AN340P \& ع1.17 \& ${ }^{8 C 178}$ \& \& ${ }^{\text {BDO253 }}$ \& ${ }_{\text {c1. }}^{\text {ci. }}$ \& ${ }_{8}^{\text {BFF } 495}$ \& \& ${ }^{\text {BYY }}$ B210-600 \& ع0.34 \& ${ }_{\text {HA11781 }}$ \& ¢8.90

\hline ${ }^{2 S 88407}{ }_{28} 84498$ \& c3.24 \& 2S01128 \& c2.90 \& AN355 \& ${ }_{\text {c1 }}$ \& ${ }_{\text {BC172 }}$ \& ${ }_{c}$ \& ${ }^{\text {B0, }} 177$ \& ع2.60 \& BF509 \& ع0.41 \& Br 218 \& £1.64 \& HA1180 \& ${ }_{\text {c. }} \times 1.15$

\hline ${ }_{288511}^{258498}$ \& cei.
ع20 \& ${ }_{2 S 51273}$ \& ${ }_{\text {c1.25 }}$ \& AN370 \& 83.95 \& BC1822 \& c0.10 \& B0318 \& ¢2.85 \& ${ }^{\text {BF5 } 523}$ \& £0.20 \& $\mathrm{Br} 223^{8}$ \& ${ }_{\text {E1. }}$ \& HA1196
HA13001 \& ${ }_{\text {E6.25 }}$

\hline $2 \mathrm{SB54}$ \& E1.39 \& 2 2S1453 \& c0.75 \& AN5010 \& c5.70 \& BC182LB \& $\underline{0.14}$ \& 80375 \& c0.42 \& 8 F 532 \& ع0.45 \& BY224-600 \& \& \&

\hline
\end{tabular}

ECONOMIC DEVICES．TEL：0902－712083 TELEX 338490

REGISTERED OFFIC LM6402A093
 정중즤

적즤의

 $\sum \sum \sum \sum$
MA0

$\sum \sum \sum \sum$

 주N제NN $\sum \sum \sum \sum \sum \sum$ วลวปวลス

$M C$ $M C$

MC MC MCR MCR
 \section*{MC}

3232
 \section*{シ}

ME
$M J$
$M J$
$M J$
$M J$

MJ MJ8 $M J$

ミスる

$M L 2$ $M L 2$ $M L 23$ $M L$ M
 ML9 ML9 MM $M M$

$\frac{3}{3} \frac{2}{3}$

MN

MN MN

323

MP279 MP28 MP85

 $M_{1} \mathrm{C}_{5}$ MPF2$\begin{array}{ll}\text { SKE4F2／10 } & \mathbf{1} 1.24 \\ \text { SKE4G2／02 } & \mathbf{\Sigma 0 . 9 6}\end{array}$
MSM5840H $£ 9.15$
MVS460－02 $£ 0.61$
${ }_{\text {LM567CN }}^{\text {LM6402／011 }} \mathbf{8 1 . 7 1}$

LNEAR AMP

Now available from Walmore Advanced Components Limited is a new 1 GHz linear amplifier/detector with a 500 MHz bandwidth and a 15 ns rise time.
Manufactured by RHG Electronics Laboratory Inc, the model ICE1000 is designed primarily for radar and other applications requiring high speed IF processing. This

A new miniature ac driven relay has been introduced by Italian manufacturer Feme and is available in the UK from Quiller.
The Feme relay is intended to provide a low cost alternative to the present dc driven

[^0]new device, which incorporates a built-in 20dB dynamic range ac coupled video detector, offers 60 dB of gain. The video output is capable of driving 93 ohm loads to 2.2 volts nominal.

Walmore Electronics Ltd, Laser House,

132/140 Goswell Road, London ECTV 7LE.
Tel: (01) 2515115.
devices, and eliminates the need for design and layout of rectifier circuits. Space saving without the dc power source is quite considerable.
Switching up to 16 amps , the ac relay can be supplied in a $\mathrm{c} / \mathrm{o}, \mathrm{n} / \mathrm{o}$ or n / c configuration and can operate over a voltage range of $6-240 \mathrm{~V}$ ac.

Quiller Ltd,
85 Stanley Road,
Bournemouth BH1 4SD.
Tel: (0202) 303424.

बमानालाEन नाड़R

In broadcasting applications there is often a need for a filter which provides a sharply defined frequency range, yet is virtually transparent to the baseband signal itself. A new filter from BAL Components Ltd claims to achieve this.
The LPC filter family exhibits a transition sharpness of 1.17, ie stopband-start to end of passband, while the group delay ripple is controlled to 10 ns peak-to-peak up to within 97% of the 0.10 dB ripple bandwidth. This sharpness compares with, typically, 1.30 to 1.50 for other delay line types.

[^1]
The Amcomm 9000 antenna coupler is a development of the Amtech 300, now incorporating a 1:4 toroidal balun to permit connection of a transmitter to an antenna via 300 ohm balanced feeder.
The antenna coupler utilises a capacitively tuned T network for matching high impedance ($300-600$ ohms) or low impedance (50-75 ohms) antennas to low impedance transmitter outputs. It is general coverage and will tune over the range 1.7 MHz to 30 MHz . Selection of frequency range is by means of
the inductor switch
In operation the tune and load capacitors are adjusted to obtain minimum VSWR at the transmitter. The components in the antenna coupler are rated for operation with power outputs of 100 watts.

Low impedance connections are made via PL259 sockets. High impedance balanced feeder connections are made via insulated screw terminals (red and white).

Amcomm/ARE,

373 Uxbridge Road, Acton,
London W3 9RN.
Tel: (01) 992 5765/6.

ANIINNABPACKG

A bracket to support an antenna mast above the rotator, has been designed by Brian Lee of West Yorkshire. Made in one welded piece, the bracket is extremely rigid and stable. It uses two nylon bearings, which fit snugly round the antenna mast and take the strain which the rotator normally takes, hence prolonging the rotator's life.
The overall length of the bracket is 3 feet, 2 feet of which make up the main bracket, with a 6 inch projection at the top for bearing supports and 6 inches at the bottom for the rotator fixing point, which has a sturdy stiffening rib at the back. It is easily attached by connecting the U /bolts to the mast stub.

The bracket is supplied with U/bolts and wall fixing bolts and is finished in hammer type paint. 10 mm holes are drilled in each of its four corners for wall fixings.

The amount of projection from the wall is fixed according to the customer's specifications, to allow for any obstruction. This is done at no extra cost.

Wmanchen ont
 Tratec, the Dutch satellite product manufacturer, has introduced the TCS-10, a coaxial switch to be used in the $950-1750 \mathrm{MHz}$ satellite IF frequency.
 The upgraded switch includes what the company call 'spectacular features'. Specifications include a return loss of better than 20 dB , an insertion loss of 0.3 dB and isolation of 90 dB .

Tratec BV,
POb 385,
3900 AJ Veenendaal, Holland.

The price for the antenna bracket is $£ 23.50$ plus $£ 6.50$ postage and packing.

Brian Lee,

31 Merton Avenue,
Farsley,
Pudsey,
West Yorkshire LS28 5DX.
Tel: (0532) 567642.

NIWKKNPROMODE1

Hi-Tech Worldwide Ltd have introduced a new Kenpro model to complement the KT200/400 series.
The unit has the following features built in as standard: 24 hour LCD clock, CTCSS sub-audible tone encode (decode optional) DTME touch-tone with 2 autodial memories,
battery economiser on receive (in standby mode), 4 scanning mode/functions, channel spacing steps programmable
from 5 kHz to $100 \mathrm{kHz}, 5$ watts RF output with 12.8 V Nicad, 10 memories with scanning and lockout facility, $144-148 \mathrm{MHz}$ coverage expandable for export versions, direct frequency access with programmable switch-on call channel.

The unit incorporates the latest receiver front-end JFET Iow noise devices with a good sensitivity and blocking performance, quality recovered audio, clear Tx audio from the built-in electret microphone and easy to fit optional accessories such as speaker mic. It also has a built in dc jack for operation without the Nicad pack.

The KT220EE costs £209 (prices may vary owing to fluctuating exchange rates).

Hi-Tech Worldwide Ltd, 584 Hagley Road West,
Oldbury,
Quinton,
Birmingham B68 0BS.
Tel: (021) 4216001.

RECEMVESOFWARE

Technical Software has announced that the RX-4 Multimode Receive Program, which can receive Morse, RTTY, Amtor and slow-scan TV without needing any expensive hardware, has now been completely revised, with improved performance and many new features added.

An advantage with this software is that all four modes are in the same program, only needing one key-press to change mode.

On CW there is a choice of software filters as well as a wideband decoder capable of reading at over 250 wpm . The autotrack facility is controlable up to the maximum speed and can also be locked completely.

RTTY and Amtor have selectable unshift-on-space and switchable normalreverse polarity. Tuning these signals is easy and accurate, as the on-screen frequency scale displays the tones directly. RTTY has four baud rates and decodes any shift automatically without switching. Amtor also reads many commercial TOR transmissions.

The SSTV can display 8, 16
or 32 second frames and good pictures are obtained even in the presence of some noise. The grey scale (picture brightness) can be adjusted from the keyboard and the picture storage allows you to over-write one stored frame with a better one, if required, thus making much more efficient use of the available memory space.

All received text is stored as well as printed on the screen. Stored text and pictures can be recalled to the screen, dumped to a printer or saved on tape or disc.

The Spectrum version needs no hardware at all, connecting directly to the Spectrum's Ear socket. The BBC-B, CBM64 and Vic 20 versions use the same interface as the RTTY/CW transceive program. For CW and RTTY they can also use a suitable terminal unit.

The program costs £25 on tape, £27 on BBC or CBM format disc, and the interface is $£ 5$ as a kit or $£ 20$ ready-made with all connections.

Technical Software,

Fron, Upper Llandwrog,
Caernarfon,
Gwynedd LL54 7RF
Tel: (0286) 881886.

LOWFDOWN

New products from Lowe Electronics include the Trio TS440S HF transceiver ($£ 950$ inc VAT); the Trio TM2550E 2 m FM mobile rig (£399 inc VAT); the Trio TR751E 2 m multimode mobile transceiver; the JRC NRD525 general cover-
age receiver; and the Trio SWC3 remote head for the SW200 meter ($£ 30.20 \mathrm{inc}$ VAT).

Lowe Electronics Ltd, Chesterfield Road, Matlock
Derbyshire DE4 5LE. Tel: (0629) 2817.

MOEDIE RANSCEMVR

ICS Electronics Ltd have announced the new ALR-206E 25/5 watt mobile transceiver.

This compact unit has an easy to read back-lit LCD frequency and S-meter readout with the same programmable features as the company's ALM-203E hand-held transceiver introduced at the end of 1985. These are accessed from a keypad on the rear of the microphone.

Programmable features include: band scan; 10 memory channels; and memory scan. Frequency selection is by means of a large front panel knob or from the microphone up/down buttons. A mobile mount is included as standard.

The price of the ALR-206E is $£ 295.00$ including VAT plus $£ 3$ post and packing.
Also available from ICS is a complete 30W 2 m hand-held system, consisting of the ALM-203E and a separate 30W FM amplifier with a 10 dB gain GaAsFET pre-amp. The price, including connecting cable, is $£ 249.95$ including VAT, plus £4 postage and packing.
ICS has also announced that the ISO144 2 m isopole antenna is again available at a price of $£ 39.95$ including VAT, plus $£ 2.50$ postage and packing.

ICS Electronics Ltd,
PO Box 2, Arundel, West Sussex BN18 ONX. Tel: (024 365) 590.

RXMODIEMAITN
RWC Ltd have announced a modification for the Yaesu FRG9600 scanning receiver. The standard frequency range of $60-905 \mathrm{MHz}$ has been extended to cover up to 945 MHz (940 MHz guaranteed) with adequate sensitivity to cover the 934 MHz range.

The modification also includes improved receiver sensitivity and ' S ' meter recalibration.

Customers who purchase the FRG9600 at RWC can have the modification fitted at no cost, (including existing customers). Owners of the FRG9600 can have the modification and the other
improvements fitted for $£ 25$ including VAT and return post. They are warned, however, that the warranty will be affected on sets not supplied by RWC.
Further developments are in progress, with a low frequency option under way to enable operation below 60 MHz . It may also be possible to include additional bands to be fitted in 20 MHz increments.

R Withers

Communications Ltd,
584 Hagley Road West,
Oldbury, Quinton,
Birmingham B68 OBS.
Tel: (021) 4218201.

 have launched their new low cost dongle, the SSS. Plugged into the serial port of the computer, the dongle is interrogated under instructions from the software package and transmits a decryption key, which can be millions of bits long, into the computer to enable the software to be decrypted. Unless the correct key is used the package will not run.
The serial port can still be used in the normal way, the dongle acting merely as a passive connection, once the software has been authorised.
The SSS is available for £22.50.

Data Encryption Systems Ltd,

Nore Road, Portishead,
Bristol BS20 8EY.
Tel: (0272) 849522.

WID MSTCT

Wild Vision, the Newcastle based electronic vision company, has launched the Hawk V8, a low cost, high performance real-time image processing system for the BBC microcomputer.
The Hawk V8 consists of a single PCB mounted inside the BBC micro and an image processing software package. Video images from a camera are digitised in realtime and stored directly into the graphics display memory of the computer.

The direct memory access method used provides a system with a performance
comparable to high-speed framestores, yet at a fraction of the cost. Moreover, the use of the computer's internal memory means that much higher processing speeds can be achieved.

Wild Vision,

Mari House,
20-22 Jesmond Road,
Newcastle-upon-Tyne
NE2 4PQ.
Tel: (091) 2817861.

Abstract

SRFCTMMM128 As expected, Sinclair launched the new Spectrum 128 onto the UK market during February (a similar machine has been available in Spain since before Christmas). It features, of course, 128 K of RAM, with 32 K of ROM, and will retail at £179.99. The most notable features of the Spectrum 128's hardware, apart from the added memory, are the RS232/MIDIout port and the keypad interface (both software driven), and the RGB/compo-

site video output. It retains the earlier Spectrum's cassette port. TV output and expansion bus. There is, somewhat surprisingly, no joystick port.

There is also a 3-channel sound chip, which means no more weedy beeping, and a RAM disc file system usable from Basic. This latter means that some of the on-chip memory can be used for data storage in the same way as a disc is used. Access to such data is virtually instantaneous (and therefore much faster than disc).
The built-in software ('firmware') includes 48 Basic for those who want it, but has in addition a new 128 Basic with a full screen editor and onentry syntax checker. 'Tape Loader' and 'Tape Tester' facilities will help with loading programs from cassette.
The new Spectrum 128 is claimed to be fully compatible with earlier Spectrum software, so there is already a massive amount of software available for it.

olvenilpos

Olivetti is demonstrating an increased commitment to the business computer market with plans for the introduction of three new IBM-com patible computers. The M19 M22 and M28 are being launched during April, with availability being forecast for the second quarter (M19 M 28) and the end of the third quarter (M22).P

Over the last two years Olivetti has seen its share of the European PC market double, so that it now stands at an estimated 11.7%, and the company is the foremost competitor to IBM in international terms, other companies competing only in their home markets.
The new machines will complement Olivetti's current range of M24 series models, which have gained an excellent reputation since they were introduced. When designing the M24 Olivetti sought to compete with the IBM PC on the grounds of performance, giving a higher specification for a roughly
comparable price (not difficult, some would say, given the IBM PC's lacklustre design, its success in becoming a de facto standard being a result more of IBM's sheer size). Some other companies have taken a 'same performance, lower price' attitude, with Epson, for example, offering a basic IBM-compatible PC for $£ 777$. Lately such competition has resulted in companies like Olivetti reducing their prices as well.
Of the new machines, the M28 has the highest specification. Based on an 80286 processor running at 8 MHz , it is claimed to be 30\% faster and 25% smaller than the IBM PC AT. It is equipped with 512 K of RAM as standard, expandable to 1 MB on-board and to 7 MB using the expansion slots, and uses a 20 MB hard disc drive.

The M28 also caters for those requiring a multi-user system. A serial multiport board can be fitted, allowing the machine to support four extra workstations, and Olivetti has announced full

Olivetti's former flagship, the M24SP

Xenix \bar{V} support
The M22 is a full-function portable computer with 256 K of RAM as standard, a single $360 \mathrm{~K} 51 / 4$ inch floppy disc drive, and an 80 column $\times 25$ line LCD display. Serial, parallel and mouse ports are standard, and the machine is battery-powered.

The M19 compact PC is primarily intended for the workstation market, with the small business and education markets also seen as likely areas for sales. It is a very small 8088-based computer, with serial and parallel ports
as standard and an integral graphic display controller which offers 640×200 pixel resolution (compared to the M28's 640×400) or 320×200 with 4 colours/shades.
In addition to the new hardware, Olivetti is to extend its range of third party software optimised to run on its PCs, and to offer further communications packages.

British Olivetti Ltd,
PO Box 89,
86/88 Upper Richmond Road, London SW15 2UR.
Tel: (01) 7856666.

SATIHLTE SYSTEMS

Now available in the UK through Skidmore 4WD Ltd are the Superwinch satellite antenna control systems. Superwinch are known in the States for their good quality vehicle-mounted electric winches, and have applied this experience in building a robust actuator for satellite dishes.

The actuator employs a $1 / 8$ horsepower motor to provide a 2000lb thrust rating through solid steel motor gears. Much attention has been given to weatherproofing.
Two indoor control systems are offered. The manual version provides a 3-digit readout of dish position, with two buttons to control movement. The programmable controller also has the 3-digit display and a manual facility, but also offers 16 preset positions.

Both consoles have lock and key security so that the dish may be left pointing at a particular satellite or between satellites.

The outdoor actuator unit is available separately for those who might have requirements other than for a total system.

Skidmore 4WD Ltd

60 Sandwell Street,

Walsall,

West Midlands WS1 3EB.
Tel: (0922) 613633
Nidd Valley Micro Products, whose Slomo speed controller generated a lot of interest last year, has now introduced new systems of mouse control.

The Anamouse is an analogue input device which uses a precision tracker ball and potentiometer system. It is designed for the professional and serious user to give outstanding
positional accuracy for CAD, graphic art and tracing applications.

Anamouse connects directly into the analogue port of the BBC and costs $£ 34.95$ including VAT. A Spectrum Anamouse interface will be available soon which will feature a Centronics printer port, plus Nidd Valley's patented slow motion control. The price of the Spectrum interface has not yet been fixed but is expected to be around the $£ 25$ mark.
Digimouse uses a preci-
sion tracker ball and encoder system to give a highly accurate digital pulse output, and is compatible with many existing graphic art and word processing packages.

The BBC Digimouse connects directly into the user port and is priced at $£ 34.95$ including VAT. For Spectrum users, Nidd Valley has designed the Digimouse ZX and Digimouse JS interfaces to provide accurate mouse control to any program or game written for Kempston joystick protocol.
Spectrum Digimouse retails at £34.95 including VAT. The ZX interface is $£ 14.95$, and the JS with full Centronics
printer port and software utility is $£ 24.95$. Both the Spectrum interfaces are fitted with Nidd Valley's patented Slomo device, which gives not only program speed control but also mouse sensitivity control.
Adaptations of Anamouse and Digimouse for other computers are planned, including the CBM64 and Amstrad, which will be released in June this year.

Nidd Valley Micro Products, Stepping Stones House, Thistle Hill,
Knaresborough,
North Yorkshire.
Tel: (0423) 864488.

Racing ahead

The RACE project (Research in Advanced Communications for Europe) has entered its Definition Phase, the first part of a major programme to establish a pan-European advanced wideband telecommunications network by 1995.
RACE is the second major project to be launched by the Information Technologies and Telecommunications Task Force, which was set up by the Commission of the European Communities in 1983, when ESPRIT was agreed. ESPRIT (European Strategic Programme of Research and Development in Information Technology) is a five year co-operative project in basic research involving industry, universities and research organisations.
The RACE Definition Phase involves the issuing of research contracts to a total of 109 different organisations, including telecommunications administrations, manufacturers, broadcasters and universities, who will work
together through the Task Force and organisations such as ECTEL, the manufacturers' body, and CEPT.

Since the call for proposals last September the Task Force has moved at a breakneck pace, and all the contracts had been negotiated by the first week of March. Some had even been signed by the New Year, with work by now well under way.

The Definition Phase will run for 18 months, by which time the requirements of the Europe-wide telecommunications infrastructure will be established. The areas to be covered include the transmission of text, graphics and video as well as voice, and the digital technology involved means that control software will play a major part in the project. The ultimate goals include such services as videoconferencing and high quality flat screen television.

The speed and degree of co-operation achieved result from the appreciation by all concerned that only such a united effort can compete with the economic muscle

A flexi-rigid circuit board produced by Flexible technology, a company recently acquired as part of further expansion by Cambridge Electronic Industries
available to the Americans and Japanese. A standardised European network would offer a home market of comparable size to that available to these foreign competitors, thus giving the cost benefits of community scale production.

New videotex standard

Prestel, British Telecom's public videotex service, is backing a new European protocol for data transfer on videotex systems.
The proposed standard has been developed by the European telecommunications technical standards organisation, CEPT, for inclusion in the new European videotex terminal standards.
While enabling information to be displayed on a videotex terminal, the new standard will allow data to be used for other purposes, for example the remote control of computer peripherals such as printers, and downloading of telesoftware with automatic error detection and correction.

The biter bit

It is unfortunately the case that adverts sometimes cause offence or indignation because of their wording, although this is usually unintentional. Hence the following extract from a letter sent in by $J S$ Paton G6RAZ of B\&J Telecommunications of Thornbury, near Bristol, referring to Scarab Systems ad in the February issue:
"The opening paragraph of this reads 'Have you had your appetite whetted on cheap ineffective programs from part-time software writers ... I must defend my own parttime interest in B\&J Telecommunications and point out that all software marketed by ourselves is written by professional software writers, eg Ham Tel, Grosvenor Software and Pearsons Computing, and that these programs were selected by ourselves as being the best available for each of the computers concerned.
"B\&J Telecommunications manufacture hardware to support these programs and were forerunners in the use of the XR2211 IC in the receive side of RTTY terminal
units. As far as the Spectrum computer is concerned with audio input, our audio tone processor not only filters both tones but also buffers and amplifies to give up to 5 V output from signals as low as 100 mV . This has been designed around the G1FTU program but will greatly enhance the performance of any audio input system and must not be confused with cheap single tone filters. The logic of this (pun intended) is that you do not need 599 signals and can run audio input systems from the record output of many receivers."
I must agree with Mr Paton that 'part-time' does not necessarily mean 'unprofessional', and the software companies he mentions are known for the quality of their products. However, to be fair to Scarab Systems it must be pointed out that their criticism was directed at those purveyors of 'cheap and cheerful' software who offer utility programs which have not been thoroughly debugged or are rather inelegantly written.
While the quality of such offerings can vary from excellent to laughable, a prospective buyer has little chance of determining the quality before purchase. It is probably wise to rely on an established reputation (ie a company such as B\&J Telecommunications or Scarab Systems), but, as the saying goes, you pays your money and you takes your choice.

Mobile radio

The DTI has announced that licences for nationwide private mobile radio networks in Band III will go to GEC and

The multicontrol TV from ITT (see News Desk in the March issue) has a revolutionary 'picture in picture facility
the consortium led by Pye Telecom. The two other contenders were Motorola and National Radiofone.
The Pye consortium intends to form a company to operate the network which will be jointly owned by Pye, Racal, Securicor, Investors in Industry (3i) and Digital Mobile Communications. It is interesting to note that Racal and Securicor are rivals in the field of cellular radio (Racal operate the Vodafone service and Securicor, in conjunction with $B T$, operate Cellnet).
A common technical standard has yet to be agreed, but the provisional start-up is given as January 1987. The networks will use the technique of trunking (essentially, automatic allocation of channels) to give users quicker access than would otherwise be available.
The prime users of the networks will be truckers, coach and taxi firms, etc.

In addition to the two nationwide networks there will also be a number of regional networks, and in this area the relative lightweight National Radiofone will operate services in London, Birmingham, Merseyside and Scotland.

Pretentious, moi?

Weather satellite enthusiasts would be well advised to get hold of the latest edition of The Maplin Magazine, which features a VHF receiver for use with a standard TV set. Aerial requirements are included, and Maplin will undoubtedly be making a kit of parts available.

The news release from Maplin publicising their magazine caused a little amusement in the office. Describing this issue as 'action-packed', it went on to say that 'Maplin Research Engineers have developed the world's first VHF Weather Satellite Receiver'. Just a shade pompous, n'est-ce pas?

More Maplin

More news from Maplin concerns their wholesale operation, Maplin Professional Supplies, set up in 1985 to cater for the professional, trade, industry and educational customer.

It seems to have attracted a lot of interest, and Maplin are consequently devoting greater resources to this area.
The MPS quarterly price list is sent free of charge to all customers, and is also available at the five Maplin retail stores. Further details are available from Doug Simmons on (0702) 552961.

Digitally assisted television

Digitally assisted television (DATV) is a new concept proposed by BBC research engineers. DATV involves the transmission of analogue picture signals together with high data rate digital signals carrying control or supplementary information about the picture. One application of DATV might be to reduce the bandwidth of a high definition television (HDTV) signal so that it can be accommodated within a single DBS channel, previously planned for 625-line television services.

DATV is a bandwidth compression technique intended for use with high quality television signals. The essential role of the digital component in DATV is to provide the

Marconi Radar's new 13m C Band antenna is seen here installed at the Sana'a earth station in the Yemen Arab Republic. The antenna will be accessing services from the Arabsat satellite network
receiver with control information to assist in recorstruction of the picture without significant degradation in quality compared with the original.
One example of the use of the digital component of DATV is to carry information about which parts of the picture are moving and which are stationary; several bandwidth reduction techniques rely upon such information being available in the receiver. Another example is to carry data to help in the reconstruction of a sequentially scanned picture where, to save bandwidth in transmission, the signal has been converted from sequential scanning to interlaced scanning.
Early results from the experiments at the BBC's research department at Kingswood Warren indicate

SMT service

Frazer-Nash Electronics, a design and development company based in Leatherhead, are now offering a surface mounting technology (SMT) prototype and preproduction service. Their aim is to provide a facility for proving runs in batches of between 5 and 500 before clients commit themselves to major investment.

Surface mounting technology, in case you're uncertain about it, involves soldering the components in a circuit onto a board without using leads which pass through holes in the board to be soldered on the other side. The devices are mounted on the same side as the copper tracks and soldered directly to them. This obviously means that connections are shorter, and using SMDs (surface mounted devices) results in a considerable reduction in board size for a given circuit. There is also, perhaps more importantly, a reduction in
the cost of assembly (no holes to drill, a smaller area to plate, etc).
Boards using SMT are assembled fully automatically, with the devices usually being glued to the board to keep them in place before being wave-soldered.
The devices themselves look rather unusual to anyone used to the more conventional leaded components.

Resistors and capacitors, for instance, look like tiny bricks, and transistors have a similar appearance but with the addition of short, stumpy leads. ICs can be packaged in plastic leaded chip carriers (PLCCs), resembling the familiar DIL packages but smaller, or leadless ceramic chip carriers (LCCCs), which have a series of metal contacts around their edges.

The fabulous TE LEBOX an INVALUABLE MUST for the owner of ANY
Made by a major UK Ca as a TOP QUALITY, stand alone UHF
tuner and costing OVER $£ 75$ to manufacture this opportunity to give your monitor a DUAL FUNCTION must not be missed! The TELEBOX consists of a compact, stylish two tone charcoal, to simply plug in and convert your previously dedicated computer monitor into a HIGH QUALITY COLOUR* TV SET, giving a real
benefit to ALL the family! Don't worry if your monitor doesn't have sound- THE TELEBOX even has an integrall watt audio amplifier quality television sound via your headphories or HI FI system etc. $7.5^{\prime \prime} \mathrm{d} \times 3.5^{\prime \prime} \mathrm{h}$, latest technology, BRITISH manufacture fully luneable 7 channel push button tuner, Auto AGC circuit SAW filter, LIMITED QUANTITY-DON'T MISS THIS OFFER: ONLY £24.95 ORE19.95 if purchased with ANY of ou video monitors. Supplied BRAND NEW with full instructions and 2 YEAR

cocom s moworynoms montion richlas

'SYSTEM ALPHA' 14" COLOUR MULTI INPUT MONITOR system this monitor has all the features to suit your immediate and future
requirements Two video inputs: RGB and PAL Composite Videa allow direct connection to B8C/IBM and most other makes of micro computers or VCR's,
including our very own TELEBOX An internal speaker and audio amp may be including our very own TELEBOX An internal speaker and audio amp may be PIL tube, Matching BBC case colour. Major controis on front panel Separate
Contrast and Brightness - even in RGB mode. Separate Colour and audio Contrast and Brightness - even in RGB mode
controls for Composite Video input, BNC plug fo
plug for RGB input modular construction etcetc Suppiled BRAND NEW and BOXED, complete with DATA and 90 day guarantee ONLY $£ 149.00$ as above OR IBM PC Version $£ 165.00$
T5 Day D' skt $£ 1.00$ BNC skt 75 p BBC intertace cable $£ 5.50$ DECCA $8016^{\prime \prime}$ COLOUR monitor. RGB input. Little or hardiy used manufacturer's surplus enabies us to offer this special
converted DECCA RGB Coliur Video TV Monitor at a super iow price of only £99.00, a price for a colour monitor as yet unheard of Our own intertace, satety modification and special 16 high detinition PAion and quality found only seen to be believed! Supplied complete and ready to plug direct to a BBC are: internal speaker, modular construction, auto degaussing circuit attractive quarantee Allthough used, units are supplied in EXCELLENT condition

DECCA $80,16^{\prime \prime}$ COLOUR monitor. Composite video input Same as above mode! but fitted with Composite Video input and audio amp for COMPUTER,
VCR or AUDIO VISUAL use ONLY $£ 99.00$ Carr. REDIFFUSION MARK 3, 20^{*} COLOUR monitor. Fitted with standard 75 ohm composite video input and sound amp RLUBS and other AUDIO VISUAL appli BUDGET RANGE EX EQUIPMENT MONOCHROME video monitors
units are fully cased and set for 240 v standard working with compostle video All units are fully cased and set for 240 v standard working with composte video
inputs. Units are pre tested and set up for up to 80 column use Even when
MinOR screen burns exist - normal data displays are unaffected 30 day quarantee $320-1 \mathrm{~B} / \mathrm{W}$ band width input. will display up to 132×25 lines. $£ 32.95$ $12^{\prime \prime}$ KGM $320-1$ B/W bandwidth input will display up to 132×25 lines. $£ 32$
$12^{\prime \prime}$ GREEN SCREEN version of KGM $320-1$ Only $£ 39.95$
$9^{\prime \prime}$ KGM 324 GREEN SCREEN fully cased very compact unit Only $£ 49.00$

GOULD OF443 enclosed, compact switch mode supply with DC regulated $11 \times 6 \mathrm{~cm} 110$ or 240 input. BRAND NEW only $£ 16.95$

rugged ALLOY chassis to continuousty supply fuily regulated
$@ 3$ amps,$~$
$5 v @ 0.6$ amps and $+24 v @ 5$ amps. Shor crrcuit and overvoltage

REMIRDR

Manutacturer's BRAND NEW surplus.
DEC LA34 Uncoded keyboard with 67 qua
matrix- Ideal micro conversions etc $£ 24.95$
matrix - Ideal micro conversions etc. $£ 24.95$
AMKEY MPNK-114 Superb word processor chassis keyboard on single PCB
with 116 keys Many features such as On board Micra Single 5 v rail, full ASCl coded character set with 31 function keys numeric keypad cursor pad

DON'T MISS THE CPM Deal

 OF the CENTUBY The FABULOUS CPM TATUNG FCROOO Professional Business System CENTRONICS and system expansion (1Mo and if that's not enough a ready to plug into STANDARDB"DRIVE port for up to FOUR $8^{\prime \prime}$ disk drives either in double density or IBM format. The ultra slim 92 key, detachable keyboard features 32 user definable keys. numeric keypad and text editing keys even its own integral microprocessor which allows the main Z80A to devote ALL its time to USER programs eliminating "Ost character" problems found on other mach nes the attractive, detachable 12 monitor combine 2.2, user manuals and full 90 day guarantee Full data sheet and info on request
ee. Full data sheet and info on request
$\begin{array}{ll}\text { PC2000 System } & \text { PC2000 Business System with CPM } \\ \text { with CPM Etc. } & \text { and 'Ready to Run' FAST Sales and }\end{array}$

Norburen 140
 Purchase ledger, supports up to
 Now only 8399 NOW only E499:

SDRPLUS SPETLIS OV

 minamanama
oin the comman to suit all applications and budgets....
BRAND NEW State of the art products
DACOM DSL 2123 Multi standard $300-300,1200-75$ Auto answer etc
DACOM DSL2123AQ Auto dial, smart modem with
mult standard AUTO SPEED detect and data butfer with flow control etc
DACOM DSL2123GT The CREAM of the $£ 365.00$ modems auto dial, auto call, index buffer
etc etc. etc etc.
Steebeck SB1 212 V22 1200 baud FULL $\begin{aligned} & \text { DUPLEX } \\ & \text { \&465.00 }\end{aligned}$ Sync or async optional auto dial
TRANSDATA $307 A$ Acoustic coupler 300 baud fult duplex originate only. RS232 interiace Ex BRITISH TELECOM full spec, CCITT, ruggedised bargain offers Sold TESTED with data Will work on any MICRO or system with RS232 interface.
MODEM 134300 baud unit only 2"' high fits under phone CALL mode only
MODEM 20-1. $75-1200$ baud Compact unit tor use as subscriber end to PRESTEL, TELECOM GOLD, MICRONET etc
MODEM 20-2 1200.75 baud $\begin{aligned} & \text { Same as } 20-1 \text { but for } \\ & \varepsilon 65.00+\text { pp } \varepsilon 6.50\end{aligned}$ DATEL 2412. Made by SE Labs for BT this two part unit is for synchronous data links at 1200 or 2400
baud using $2780 / 3780$ protocol etc. Many features include 2 or 4 wire working, self test auto answer etc
COST OVER 8800 . Our price ONLY $£ 199$ tpo $£ 8.00$
DATEL 4800 , RACAL MPSA800 baud modem. EX DATEL 4800, RACAL MPS4800 baud modem EX SPECIAL OFFER

MODEM TG2393. EX B1, up to 200 baud ful

ChuXRUNH:

PC2000 Wordprocessor System

only 5798

, 80 track double sided disk Sold as NEW with 90 day guarantee ONLY 885.00 SUGART SA4OO SS FH 35 TRK 555.00
SIEMENS FDD 100 SS FH 40 TRK $£ 65.00$
carriage on $51 / 4^{\prime \prime}$ drives $£ 5.50$
Brand NEW metal $5^{1 / a^{\prime \prime}}$ DISK CASES with internal PSU
 $\begin{array}{ll}\text { DSKC } 2 \text { for } 1 \text { HH drive } & £ 22.95 \text { +pp } 83.50 \\ \text { DKSC } 3 \text { AS DSK LESS PSU } & \varepsilon 12.95+p p \varepsilon 2.50 \\ \text { DSKC } 4 \text { AS DSK2 LESS PSU } & \varepsilon 10.95+p p \varepsilon 2.00\end{array}$ DSKC 4 AS DSK2 LESS PSU E10.95 +pp 22.00 $\begin{array}{ll}\text { SHUGART } 800 / 801 \text { SS } & £ 175.00+p p £ 8.50 \\ \text { SHUGART } 851 & \text { DS } \\ \text { TWINSHUGART851's } 2 \text { Mb totai capacity in smart case }\end{array}$ TWINSHUGART851's 2 Mb total capacity in smart Case
COMplete with PSU etc.
$£ 595.00$
 SAB50R. BRAND NEW a
£29.00 + pp $£ 1.00$
Various disk drive PSU HARD DISK DRIVES DRE/DIABLO Series 302.5 Mb front foad $£ 525.00$
Exchangeabie version $£ 295.00$. ME3029 PSU $£ 95.00$ Exchangeable version $£ 295.00$. ME3029 PSU $£ 95.00$
DIABLC $44 / D R E 4000$, $5+5 \mathrm{Mb}$ from $£ 750.00$ CDCLHAWK $5+5 \mathrm{Mb} £ 795.00$. CDC $976280 \mathrm{MbRMO3}$
 Clearance items - Sold as seen - No guarantee C1earance 2314 BRAND NEW $14^{\prime \prime}$ MD Removable pack hard
ICIL 2 ONLI $£ 99.00$ $\begin{array}{lr}\text { disk drive cost over } £ 2000 \text { with data } & \text { ONLY } £ 99.00 \\ \text { BASF } 6172 \mathbf{8 "}^{\prime \prime} 23 \mathrm{MD} \text { Winchesters } & £ 199.00\end{array}$ Unless stated ali drives are refurbished with 90 day PLESSEY vUTELL, ultra compact unit, slightly larger
than a telephone features A STANDARD DTMF TELEPRONE (tone dal with 5 CRT monitor and
integral modem etc. tor diect connection to PRESTEL
VIEWDATA etc. Designed to sell to the EXECUTIVE at
over 5600 Il Our price BRAND NEW AND BOXED at over £600! Our price BRAND NEW AND BOXED at
only $£ 99.00$ yp1 complete Professional PRESTEL system in slimline desk top unit containing Modem, standard RGB colour monitor Many other features include: Printer output, Full keyboard input, Cassette
port etc. BRAND NEW with DATA. A FRACTION OF COST only $E 55.00$
ALPHATANTEL. Very compact unit with integral FULL recelver and you have a superb PRESTEL system and tound!! Many features' CENTRONICS Printęr output, Memory dialling etc Supplied complete with data and
DiY mod tor RGB or Composite video outputs. AS NEW Only E125.00

 $\begin{array}{lll}6116 \\ 2764 & £ 4.50 & 27128 £ 5.506800 £ 2.506821 ~ E 1\end{array}$ 88088 £8 NEC765 £8 WD2793 £28 8202A Z80ACPU 200 Thousands of IC's EX STOCK

DIER DRIKO

suarales office for details

ERS - PRINTERS - PRINTERS - PRINTERS

SUPER DEAL? NO - SUPER STEAL THE FABULOUS 25 CPS "TEC STARWRITER"

Made to the very

 highesi spec the TECFP1 $500-25$ features a very heavy duty die cas tyassis and mechanism giving superb
registration and print quality. Micro-processo electronics offer full

DIABLOIOUME command compatability and full Contro via CPM WORDSTAR ETC. Many other features include bi-directional printing, switchable 10 or 12 pitch Full width 381 mm paper handling with up to 163 characters per line, friction feed roliers for single sheet or continuous paper, and FREE daisy wheel and dust cover. Order NOW or contact sales office for more information. Optional extras RS232 data cable £10.00. Tech manual £7.50. Tractor Feed £140.00. Spare daisy wheel £3.50. Carriage \& Ins (UK Mainland) £10.00.

SUMMER OFFER ONLY £399.99!!

DIY PRINTER MECH

Brand New surplus of this professional printer chassis gives an outstanding opportunity for the Student, Hobbyist or Robotics constructor to build a printer - plotter-digitiser etc, entirely to their own specification. The printer mechanism is supplied ready built aligned and pre tested but WITHOUT electronics. Many features include all metal chassis, phosphor bronze bearings, 132 characte optical shaft position encoder, NINE needle head, $2 \times$ two phase 12 V stepper motors for carriage and paper control, $9.5^{\prime \prime}$ Paper platten etc etc. Even a manufacturer's print sample to show the unit's capabilities Overall dimensions $40 \mathrm{~cm} \times 12 \mathrm{~cm} \times 21 \mathrm{~cm}$.
Sold BRAND NEW at a FRACTION of cost ONLY £49.50 + pp £4.50.

TELETYPE ASR33 DATA I/O TERMINALS

Industry standard, combined ASCI 110 baud printer, keyboard and 8 hole paper tape punch and reader Standard RS232 serial interface Ideal as cheap hard copy unit or tape prep. for CNC and NC machines. TESTED and in good condition. Only £235.00 1100 stand £10.00. Carr \& Ins. £15.00.

EXNEWS SERVICE PRINTERS

Compact ultra reliable qualty built unit made by the USA EXTEL Corporation. Often seen in major hotels printing up to the minute News and Financial inform ation, the unit operates on 5 UNIT BAUDOT CODE from a Current loop RS232 or TTL serial interface. May be connected to your micro as a low cost printer or via a simple interface and filter to any communications receiver to TELEX and RTTY services.
Supplied TESTED in second hand condition complete with DATA, 50 an 75 baud xtals and large paper roll. TYPE AE11
50 Column
ONLY £49.95 Spare paper roll for AE11 ONLY £49.50 TYPE AF11R 72 COI.
£65.00

TYPE AH11R 80 Col.

£185.00
Carriage and Insurance $£ 7.50$

20,000 FEET OF ELECTRONIC AND COMPUTER GOODIES ENGLAND'S LARGEST SURPLUS STORE - SEEING IS BELIEVING!!

dec corner

PDP 1140 Sysiem comprising of CPU. 124k memory \& MMU 15 ine RS232 interiace AP02 9 track hard disk drive.
TU10 9 track 800 BPI Mag tape drive, dua rack system. V10 VDU. etc. etc. Tested and 8A11-MB 3.5" Box, PSU, LTC OH11-AD $16^{\prime \prime} \times$ RS232 DMA
OLV11-J4 \times ElA interface OLV11-E Serial. Modem support DUP11 Synch. Serial data i/o OQ200 Dilog-multi AK controlie KDF11-B M8189 PDP 1123 PLUS E395.00
£1,900.00 £350.00 £190.00 £650.00 $£ 495.00$
$\varepsilon 650.00$
£1,100.00 £80.00 £ 270.00 $\begin{array}{r}£ 80.00 \\ \hline 450\end{array}$ £450.00 £850.00 £ 450.00
$1,850.00$,850.00
£70.00 £ 650.00 $£ 175.00$
$£ 75.00$
A30 printer and Keyboard 20 mA loop
MS11-JP Unibus 32kb Ram MS11-LB Unibus 128 kb Ram MS11-LDUnibus 256 ko Ram Pop11/05 Cpu Ram, 1/o etc
PDP11/40 Cpu, 124 k MMU RT11 ver 3 B documentation k RKO5.J 2.5 Mb disk drives KL8 JA PDP 8 async $1 / 0$ M18E PDP 8 Bootstrap option $V 50$ VDU and Keyboard 20 mA
TT52 VDU and RS232 interface

> Give your VT100 a Birthday 1 II
> Brand New VT100 Keyboards Brand New VT100 Ke
only 885.00 1000's of EX STOCK spares for
DEC PDPS, PDP8A, PDP11 systems \& peripherals. Call for details. All types of Computer equipment and sp
PROMPT CASH PAYMENT

MAG TAPE DRIVES

Many EX STOCK computer tape drives and spares by PERTEC, CIPHER, WANGO, DIGIDATA, KENNEDY etc. Special offer this month on DEI Cartridge tape drives ONLY £450.00 each.

CALL FOR DETAILS

COMPUTER/SYSTEM CABINET \& PSU

All in one quality computer cabinet with integra switched mode PSU, mains filtering, and twin fan cooling. Originally made for the famous DEC PDP8 computer system costing thousands of pounds
 Made to run 24 hours per day the psu is fully
screened and will deliver a massive $+5 v \mathrm{DC}$ at 17 a screened and will deliver a massive +5 v DC at $17 \mathrm{amps}+15 \mathrm{vDC}$ at 1 amp and -15 v DC at 5 amps . The complete unit is fully enclosed with removable top lid, filtering, trip switch, power and run leds mounted on ali front panel, rear cable entries, etc. etc. Units are in good but used condition - supplied for 240 V operation complete with ull circuit and tech. man. Give your system that professional finish or only £49.95 + carr. $19^{\prime \prime}$ wide $16^{\prime \prime}$ deep $10.5^{\prime \prime}$ high. Useable area $16^{\prime \prime}$ w $10.5^{\prime \prime} \mathrm{h} 11.5$ "d.
Also available less psu, with fans etc. Internal dim. $19^{\prime \prime} w, 16^{\prime \prime} d, 10.5^{\prime \prime} h$ £19.95. Carriage £8.75

Due to our massive bułk purchasing programme, which enables us to bring you the best possible bargains, we have thousands of ICs. Transistors. Relays, Caps. PCB have sufficient slocks of any one item to include in our ads we are packing all these items into the BARGAIN OF A LIFETIME. Thousands of components at giveaway prices. Guaranteed to be worth at least 3 times what you pay. Unbeatable value ano perhaps one of the most consistently useful items you will every buyll! Sold by weight.
$2.5 \mathrm{kls} £ 5.25+\mathrm{pp} £ 1.25$
$5 \mathrm{kls} £ 6.90+£ 1.80$
20kls $£ 19.50+\mathrm{pp} £ 4.75$

GE TERMIPRINTER

A massive purchase of these desk top printer terminals enables us to offer you these quality 30 of 120 cps printer ost of Price againsi Uni comprises of full OWERTY, electroni keyboard and printer mech with prin lace similar to correspondence quality enables full width - up to $13.5^{\prime \prime} 120$ column paper, upper _ lower case standard RS232 serial interface, interna vertical and horizontal tab settings standard ribbon, adjustable baud rates, quiet operation plus many othe features. Supplied complete with manua Guaranteed working GE
GE1200 $120 \mathrm{cps} E 175.00$
Getested GE30 565.00 stand £12.50 Carr \& Ins. £1000

SEMICONDUCTOR 'GRAB BAGS'

Mixed Semis amazing value contents include transistors digital, linear. IC's All devices guaranteed brand new full spec with manufacturer's markıngs, fully guaranteed
$50+£ 2.95100+£ 5.15$
TL 74 Series. A gigantic purchase of an "across the board" range of 74 TTL serie C's enables us to offer $100+$ mixed "mostly TTL" grab bags at a price which normally cost to buy Fully guaranteed ail iC's full spec. $100+\varepsilon 6.90$ $200+£ 12.30,300+£ 19.50$

GENTRONIGS 710 PRINTERS

Ex RENTAL Heavy duty full width carriage printer up to 132 columns on 17 fan fold sprocket fed paper. 60 cps MA speed with standard RS232 or 20 used condition with data. ONLY E85.00 carriage and in surance $£ 10.00$.

MAINS FILTERS

CURE those unnerving hang ups and data glitches caused by mains interference with protessional quality filters SD5A match box size up to 1000 watt 240 V
Load ONLY $£ 5.95$. L12127 compact completely cased unit with 3 pin fitted socket up to 750 watts ONLY £9.99.

EPROM COPIERS

The amazing SOFTY 2 The "Complete Toolkit" for copying, writing, modifying and
listing EPROMS of the 2516,2716 . 2532, 2732 sange. Many other functions include integrai keyboard, cassette inter. face, serial and parallel i/o UHF modulator
ONLY£195.00 $+\mathrm{pp} £ 2.50$
"GANG OF EIGHT" intelligent $\mathbf{Z 8 0}$ controfled 8 gang programmer for ALL single $5 v$ rail EPROMS up to 27128. Will LCO display and checkinuTES fnterna LDIOT PROOF operation. Only $£ 395.00+$ pp E3.00.
"GANG OF EIGHT PLUS" Same spec. as above but with additional RS232 serial interface for down line loading data from computer elc. ONLY $£ 445.00+p p \varepsilon 3.00$ Data sheets on request

By the end of 1985, the four country Scandinavian NMT-450 cellular network had a total of 218,000 subscribers. The country breakdown was Sweden 76,000, Norway 63,000, Denmark 46,000 and Finland 33,000 . With a total population of only 22 million, the average number of cellular subscribers per 1,000 Scandinavians is now 9.7 (or just under 1%).
The highest cellular penetration is in Norway, where in December ' 85 there were 15.4 cellular subscribers for every 1,000 Norwegians (1.5% of the population).
The NMT-450 network first came into service in Norway and Sweden in late 1981. The annual sales growth for all four countries combined was: $1981-3,000$; 1982-29,000; 1983-43,000; 1984-59,000; 1985-84,000.
Today's Scandinavian NMT network uses 6,900 channels, 903 cells and 9 mobile switches. Subscribers can roam freely within any of the four Scandinavian countries. A 900 MHz expansion is being planned. This will relieve congestion in the major city areas. The first NMT-900 cells are scheduled to be operational by late 1986 in Helsinki, Stockholm and Oslo.
Cellular services will be extended to Greenland and the Faroe Islands during 1986/87.

No to 900 MHz

The UK's two cellular network operators, Cellnet and Vodafone, have both been experiencing overload problems in the densely packed central London area. The UK's 900 MHz TACS cellular network has been operational for just over a year
and the subscriber total is now just on 55,000 , many of these being in the London area.

The success of cellular radio has resulted in an overcrowding of the spectrum in London. At busy times of day it can be difficult to obtain a line and users can be cut off during calls.

More channels

The DTI were asked for an additional 400 channels in the 900 MHz band. Each network operator currently has 300 25 kHz duplex channels, which together occupy $890-905 \mathrm{MHz}$ and $935-950 \mathrm{MHz}$. The remaining unallocated 400 channels ($905-915 \mathrm{MHz}$ and $950-960 \mathrm{MHz}$) have been reserved for the Pan-European digital network. The UK government is reluctant to allocate extra 900 MHz frequencies because this would weaken efforts to involve the UK in the Pan-European digital cellular system.
Cellular subscriber growth (in percentage of population terms) has been faster in the UK than anywhere else. After just over one year's operation, the subscriber bases of the two operators are for 31,000 Cellnet and for 24,000 Vodafone.
Vodafone, which claims to cover over 50% of the UK population, has 4 mobile exchanges (London, Birmingham, Manchester and Glasgow) in operation, 125 sites, 250 cells and 1,500 voice channels.

New service

The DTI has reportedly issued a draft specification for trunked Personal Radio Services (PRS) to operate in a 1 MHz slot alongside the current 934 MHz CB allocation.
The UK's 934 MHz CB segment is
tucked in just below the $935-960 \mathrm{MHz}$ cellular base-station band. The 40 channels of the proposed trunked PRS would lie between 933 and 934 MHz . Trunking means that communication is automatically set up on a clear channel. Frequency selection is dynamic (by the use of a calling frequency and a signalling procedure) and is not under the control of the user.
Switzerland already has operational PRS using the whole of the $933-935 \mathrm{MHz}$ band. PRS is seen by many as a reliable short range business communications medium for small local businesses that do not require and cannot afford the services offered by other mobile services. Being both trunked and at 900 MHz , PRS is noise-free when compared to the clatter of 27 MHz !

French revolution

Up until last year, TV broadcasting in France was relatively simple and easy to understand. There were three stateowned channels (TF1, Antenne 2 and FR3) which, after the closure of France's old 819 -line VHF channels, reached their audiences via an entirely UHF transmission network, consisting of over 400 transmitters and 6,000 repeaters.
France's fourth channel, Canal Plus, is an over-the-air pay TV service. The French government has a major stake in Canal Plus through the state-owned publicity giant, Havas.

Canal Plus started transmissions in late 1984 on a mixed VHF and UHF network. Unlike the UK, where four channels could be squeezed into the UHF band, in France this did not prove possible, so Canal Plus has had to make do with a hybrid VHF/UHF network.

Canal Plus VHF transmissions use Band III frequencies liberated by the close down of the old 819-line black and white network. During its early months of operation, Canal Plus suffered a slower than projected subscriber take-up rate, but recently announced the signing up of its 800,000 th subscriber. Canal Plus transmissions are encrypted.

Channels 5 and 6

However, apart from the four TV channels already in operation in France, there are now two other new national TV channels which planned to come on air in late February. There is also a project for a new cultural channel. All this is in addition to the forty new local TV stations
planned as part of the liberalisation of broadcasting in France.
It was just over a year ago that President Mitterand gave the green light for France's two national private TV channels. The announcement last November that the fifth channel, the first fully private channel after TF1, A2, FR3 and Canal Plus, was to be given to a group of investors which included the Italian private TV entrepreneur, Silvio Berlusconi, provoked a major political storm in France, with the opposition threatening to disband the new commercial channel if, as is widely expected, it gains a majority in the National Assembly in the March general elections.
The go-ahead for the second private channel (France's sixth TV channel) was given in late January. The sixth TV channel will concentrate on music programmes and, like the fifth channel, was due to come on air before the end of February.

Eiffel Tower dispute

The political controversy surrounding the new TV channels is spilling over into broadcast engineering. The two new channels wanted to install transmitters on the Eiffel Tower to cover the Paris area. The four existing TV programmes each use Paris' famous landmark as their main transmitter site for the city (TF1 Ch25, Antenne 2 Ch22, FR3 Ch28, each with 700kW ERP at UHF and Canal Plus on VHF Ch06), but the bill that would allow the new channels to use the Eiffel Tower site was ruled as 'unconstitutional' by France's Constitutional Council.
Bitter arguments were still raging only weeks before the new channels were due to open. The operators of the new TV channels were complaining that if they were forced to use a site other than the Eiffel Tower, then their potential audience in the Paris area would be drastically reduced. TV antennas in the central Paris area all point towards the Eiffel Tower.

Channel Sept

Final decisions on how France's seventh (state-run) TV channel will be organised have still to be announced. A start up budget allocation of 300 m francs has already been made. The seventh TV channel, which will be cultural, will use one of the four transponders on TDF-1, France's DBS satellite now scheduled for launch in November. The new seventh channel will also be transmitted over the FR3 terrestrial network while awaiting the launch of TDF-1.
France's DBS bird, TDF-1, has suffered further delays. Arianespace has again had to put back the launch date. The failure of Ariane flight V15 last September (which included the loss of what was to be Europe's third Eutelsat communications satellite) has delayed the launch by three to four months.

Control room of the $4 \times 500 \mathrm{~kW}$ Brown Boveri built SW transmitter station in Abu Dhabi

Within the last 18 months there have been many major and controversial changes to the whole framework of TV broadcasting in France. How broadcasting further develops, or even if it continues to develop in the same direction, will only become clearer after the elections in March.

Another chance

The Home Office, which is responsible for the broadcasting policy in the UK, plans to ask the IBA to advertise for operators for three new high-power DBS TV channels for the UK.

The IBA, which would be the regulatory body for the DBS project, is expected to advertise the franchises in the national press soon.

The UK's previous attempt to launch a DBS project collapsed last June, when the consortium (Club of 21) formed by the BBC, the Independent TV companies and five non-broadcasting bodies decided that the risks were too great. One reason then given for the collapse was the UK government's insistence on the use of a British satellite.

UK Home Secretary Douglas Hurd said in Parliament at the end of February that contractors planning to offer DBS services would not be precluded from buying a foreign satellite, if necessary.

Then we'll have a foreign satellite sending us foreign programmes interspersed, no doubt, with adverts for foreign goods. But at least it will still be called UK-DBS!

Modern integrated naval communications consoles such as this Rediffusion equipment still have a Morse key on the desk!
(Photo: Rediffusion)

ELMASET INSTRUMENT CASE

 300×133×217mm deep $\mathbf{\Sigma 1 0 . 0 0}$ ea ($\mathbf{\Sigma 2} .20$) REGULATORS
LM317T Plastic T0220 variable $\mathbf{\Sigma 1 . 0 0}$

LM317 Metal
12 v 1 A 1A...... 7812 Metal 12v 1A..... \qquad 7905/12/15/24 plastic
.................. regulator CA3085 T099 Variable regulator 50p $1000+16 p$ 50p $1000+17 p$

COMPUTERICS

Used Eproms are erased and verified
 2764 Intel/Fujitsu 300 nS £2.50. Used E1.50 2716 EX EQPT \qquad 2732 EX EQPT
... . 2 10..... 82.50 2114 EX EQPT 60p 4116 EX EQPT \qquad 70p 6264LP158K static ram $\$ 3.50$ 6116-2 (TC5517AP-2) ...

POWER TRANSISTORS

2SC1520 sim BF259 /\&1 100/ع22

 2 SD794 sim BD1314/E1 100/E20 TIP141, 142, 147 £1. ea, TIP112, 125, 42B............ 2/£1.00 TIP35B 1 130 TIP35 \qquad5C.. $\begin{array}{r}\text {..... } \mathbf{\Sigma 1 . 5 0} \\ \hline 1.00 \\ \hline\end{array}$ TIP35B £1.30 TIP35C..................................... $£ 1.50$SE9302 100V 1OA DARL SIM TIP 121 $2 / £ 1.00$ 2N3055 Ex eqpt tested 4/£1.00 Plastic 3055 or 2955 equiv 50p.................... 100/£30.00 2N3773 NPN 25A 160V $£ 1.80$. DISPLAYS
Futaba 4 digit clock, fluorescent display 5-LT 16
. $E 1.50$
Futaba 8 digit calculator, fluorescent display 9CT-01-3L. E1.50
 $7 \mathrm{seg} 0.3^{\prime \prime}$ display comm cathode . 2/E1.00

QUARTZ HALOGEN LAMPS

A1/216 24v 150w. 82.25 H1 12v 55w (car spot).. $\mathbf{£ 1 . 2 5}$

MISCELLANEOUS

FX2243 POT CORE \& BOBBIN............................. $\mathbf{\Sigma 1 . 5 0}$ FX2243 POT CORE \& BOBBIN 5/E1 Linear hall effect IC Micro switch no 613554 51M R5 304-267 ..50 100+£1.50 OSCILLOSCOPE PROBE KIT X1X10 $\mathbf{£ 1 0 . 0 0}$ Micro-switch no 613 SS4 sim RS 304-267 Cheap phono plugs............................ 100/E2 1000/E18 tpole 12 way Rotary switch4/\&1 Audio Ics LM380 LM386.. Coax plugs..5/£1 4×4 MEMBRANE KEYBOARD $\mathbf{\Sigma 1 . 5 0}$ INDUCTOR $20 \mu \mathrm{H}$ 1.5A. COAX PLUGS.. 5/\&1.00
$15,000 \mu \mathrm{~F} 40 \mathrm{y}$
\qquad 5/E1.00
NEW BRITISH TELECOM.................................... $\mathbf{E 3}_{(1.50)}$ 1.25" Panel Fuseholders PLUG+LEAD E1.50 5/\&1.00 STA ROCKER SWITCHES 6A SPST $5 / \AA 1$ STAINLESS STEEL HINGES $14.5^{\prime \prime}$ BY $1^{\prime \prime}$ OPEN $£ 1.00$ each. 10/87.00 MAINS TRANSIENT SUPPRESSORS 245 v $3 / \mathbf{/ 1 . 0 0}$ TOK KEY SWITCH 2 POLE 3 KEYS - ideal for car/home alarms \qquad £3 $£ 100+$ E2.00 12v 1.2 w small wire ended lamps fit AUDI/VW TR7 VOLVO SAAB... 10/\&1.00 12 v MES lamps10/£1 Large Heat shrunk sleeving pack \qquad PTFE sleeving pack asstd colours. \qquad . 82.00 250 mixed res diodes, zeners. E1.00 Mixed electrolytic caps. \qquad Stereo cass R/P head
$0 / E 2.00$ 0/22.00 £2.50 ...50p

Thermal cut-outs $50^{\prime}, 77^{\prime}, 85^{\prime}, 120^{\circ} \mathrm{C}$ Thermal fuse $121^{\prime} \mathrm{C} 240 \mathrm{v} 15 \mathrm{~A} . .$.
 TO220 Micas + bushes 10/50p ... \qquad RELAYS 240 V AC coil PCB maunting 2 pole changeover£1 3 pole c/o................................ £1.00 Fig. 8 mains cassette.leads 3/£1.00 KYNAR wire wrapping wire 202 reel $£ 1.00$ PTFE min. screened cable $10 \mathrm{~m} / \mathbf{£ 1 . 0 0}$ TOKIN MAINS RFI FILTER 250v 15A $£ 3.00$ IEC Chassis plug/rfi filter 10A................................ $\mathbf{\Sigma 3 . 0 0}$ Mercury tilt switch small.................................. $£ 1.00$ Min. rotary sw. 4 p c/0 1/8" shaft 2/ع1.00 Thorn 9000 TV audio o/p stage 2/\&1.00 10 m 7 CERAMIC FILTER 50p 100/ع20.00 6 m or 9 m CERAMIC FITLER 50 p 100/ع25.00 240 v AC FAN $4.6^{\prime \prime}$ SQUARE NEW............ $\mathbf{\Sigma 5 . 5 0}$ ($£ 1.60$) 240/115v AC FAN $4.6^{\prime \prime}$ SQ. NEW $\mathbf{\Sigma 7 . 0 0}$ ($£ 1.60$) BELLING-LEE 12-way block L1469 4/£1.00 POTENTIOMETERS short spindle
2k5 10k 25 K 1 M Lin . \qquad . $4 / \mathrm{L} 1.00$ 500 k lin 500 k log long spindle 5/E1 40KHZ ULTRASONIC TRANSDUCE................ 4/E1 NO DATA ... STICK-ON CABINET FEET 30/£1.00 T03 TRANSISTOR COVERS......................... 10/\&1.00 TRANSISTOR MOUNTING PADS T05/T018 £3/1K DIL REED RELAY 2 POLE N/O CONTACTS..... $\mathbf{\Sigma 1 . 0 0}$ ZETTLER 24 V 2 POLE c/o relay $30 \times 20 \times 12 \mathrm{~mm}$ sim RS 348-649...
£1.50 100+£1

RECTIFIERS

SCRs

ACOV8FGM 800 mA 400 v TO-92 Triac 3/\&1 . MCR72-6 400v

V...........

2N5061 800 mA 60V T092.. \qquad
\qquad 4/\&1.00 TICV106D .8A 400V T092 3/E1...................... 100/\&15.00 MEU21 Prog. unijunction 3/£1.00

TRIACS

diacs 25p
CAL225 8A 400V 5mA gate 2/£1.00 100/£35.00
CONNECTORS (EX EOPT. price per pair)
Centronics 36 way IDC plug $\mathbf{\Sigma 4} 10+£ 3.50$ Centronics 36way IDC skt 4.50 Centronics 36way IDC skt ….......... $£ 4.50$
Centronics 36 way plug (solder type).
...... 14
D' 9 -way $£ 1$; 15 -way $£ 1.50$; 25 -way...............................

37 -way $£ 2 ; 50$-way $£ 3.50$; covers 50 p ea

WIRE WOUND RESISTORS

W21 orsim2.5W10OFONE VALUEFOR £1.00 R47 1R0 2R0 2R73R95R0 10R 12R 15R 18R 20R 27R 33R 36R 47R 120R 180R 200R 330 R 390 R 470R 560 R680R 820 R 910R
1K 1K15 1K2 1K3 1K5 1K8 2K4 2K7 3K3 10K
R05 (50 milli -ohm) 1% 3watt 4 for \&1
K3
W22 or sim 6 watt 7 OF ONE VALUE for............. $\mathbf{\Sigma 1 . 0 0}$ R47 1R5 9R1 10R 12R 20R 33R 51R 56R 62R 120R 180 270R 390R R47 560R 620R 1K 1K2 2K2 3K3 3K9 10K W23 or sim 9 watt 6 OF ONE VALUE for............. £1.00 R22 R47 1R0 3R0 6R8 56R 62R 100R 220R 270R 390R

680R 1K 1K8 10 K
W24/ sim. 12 watt 4 OF ONE VALUE for £1.00 R50 2R0 10R 18R 47R 68R 75R 82R 150R 180R 200R 270R 400R 620R 820R 1 K

PHOTO DEVICES

TIL81 T018 Photo transistor.............................. £1.00	
	L38 Infra red
OPI2252 Opto isolator 50	
Photo diode 50p.. 6/	
EL12 (Photo darlington base n / c) 50p	
RPY58A LDR 50p ORP12 LDR.............................. 85p	
GREEN or YELLOW 3 or $5 \mathrm{~mm} 10 / \mathrm{E} 11$ 100/ع6.50FLASHING RED $5 \mathrm{~mm} 50 \mathrm{p} . ~ 100 / \mathbf{2 0} 30.00$	
DOD	
1N4148 .. 1	
1S3740 Germanium 100/E2.00	
1N4004 or SD4 1A 300v 100/E3.00	
1N5401 3A 100V... 10/E1.00	
BA157 1A 400V Fast recovery 100/82.50	
159 1A 1000V Fast recovery 100/£4.00	
MULT TURN PRESETS	

10R 20R 100 R 200 R 500 R ...
2 K 5 K 22 K 50 K 100 K 200 K
50p

IC SOCKETS

6-pin 15/£1 8-pin 12/£1; 14-pin 10/£1.00; 18/20-pin 7/£1; $100 / \varepsilon 12 ; 1 \mathrm{k} / \mathrm{E} 50 ; 22 / 28$-pin $25 \mathrm{p} ; 24$-pin $25 \mathrm{p} ; 100 / \mathrm{f} 20 ;$ 1k/E100; 40-pin 30p; 16-pin 12/E1; 100/£6
TRIMMER CAPACITORS small
GREY 1.5-6.4pF GREEN 2-22pF 5 for 50p GREY larger type 2-25pF................................. 5 for50p
SOLID STATE RELAYS NEW 10A 250v AC
Zero voltage switching
Control voltage 8-28V DC $\mathbf{\Sigma 2} .50$ VARIAC 0 to 130 V 6 A new uncased $\mathbf{\Sigma 8 . 0 0}$ (£2)

POLYESTER/POLYCARB CAPS

1n/3n3/5n6/8n2/10n $1 \% 63 v 10 m m$..
 \qquad 100/E6

 $10 \mathrm{n} / 15 \mathrm{n} / 22 \mathrm{n} / 33 / 47 \mathrm{n} / 68 \mathrm{n} 10 \mathrm{~mm}$ rad.....................100/E3.00 100 N 250 V radial $10 \mathrm{~mm} 100 / \mathrm{E} 3$2 u 2160 v rad 22 mm . \qquad 100/E10.00 (£1.50)
470 n 250 v AC X rated rad.. \qquad .4/£1.00 $33 \mathrm{n} / 47 \mathrm{n} 250 \mathrm{v}$ AC X rated rad $15 \mathrm{~mm}$. 10/\&1.00 10 n 250 v AC X rated rad 10 mm 10/£1.00 100 n 600V SPRAGUE axial 10/£1 100/88.00 (£1)

BEAD THERMISTORS

250R 1K2 50K 220K 1M4
R53 THERMISTOR.
80p

BEAD TANTALUM CAPS
825 V 47 u 3 V 12/£1.. 100/£6.00 2u2 20V 8/£1.. 100/ع8.00
MONOLOTHIC CERAMIC CAPS
100 n 50 v .
100/ع6 $1 \mathrm{k} / \mathrm{E40} 10 \mathrm{k} / \varepsilon 300$ 100 N 50 V axial Shortleads... \qquad 100/E3.00 10 N 50 V . 100/\&3.00 470N 50V 100/\&7 1 μ F 50 V ... \qquad .. 100/玉14 10N 50 v dil package $0.3^{\prime \prime}$ rad. $£ 4 / 100$................... $\mathbf{\varepsilon 3 5} / 1 \mathrm{k}$
STEPPER MOTOR 4 PHASE 2 9v WINDINGS
£3.50 .. 10/£30.00

KEYTRONICS
332 LEY STREET, ILFORD, ESSEX IG1 4AF
Shop open Mon-Sat 10am-2pm TELEPHONE: 01-553 1863 ELECTRONIC COMPONENTS BOUGHT FOR CASH

AMATEUR RADIO WORLD

Compiled by Arthur C Gee G2UK

?
In our January contribution to this feature we drew attention to the efforts being made by David Dodds GM4WLL to get more activity going on the 4 metre band. It was proposed that Wednesday evening be made a special 70 MHz activity night. This has now been changed to Tuesday evening to fit in with 70 MHz activity organised by G4SEU.
Throughout 1986, the callsign GB4MTR will be used for operations from thirteen different stations, each in a different county. The callsign will be used on most amateur bands, depending on the equipment available at the operating station. It is hoped that these operations will include 70 MHz operation and that 4 metre operators will make either twoway contacts, crossband contacts or send in SWL reports. An award will be available, details of which can be obtained by contacting G4SEU, 49 Lincoln Avenue, Nuneaton, Warks CV12 OHR (sae please).

So far the callsign has been operated from G4VOZ in Leicestershire in January, G4ENA in Gloucestershire during February, GW4HBK in Gwent during March and G4ENB in Bedfordshire during April. Further volunteers are required for the project and anyone interested should contact G4SEU.

Oscar 10

Having reached its most southerly orbital position at the beginning of March, the slow precession of Oscar 10's orbital plane is now bringing its apogee back to the north, when it will reach its most northerly latitude early in 1988. Its south to north passage takes about 22 months. It crosses the equator in January 1987.

The aurora

About a year ago we reported a dramatic 'fade-out' of radio signals which affected pretty well all of the HF amateur bands. At the time we commented that such sudden fade-outs are quite frequently associated with solar cycle minimum times - a state which we are experiencing at present.
Another such fade-out occurred over the first weekend in February. On the Sunday there was an almost total blackout of the HF amateur bands. The ionospheric disturbance was accompanied by outstanding auroral displays and
excellent auroral propagation conditions. The latter gave the VHF DX enthusiasts a real field-day!
Contacts were made from this country with most other European countries on the two metre band and the new 50 MHz (six metre) band provided some good DX conditions, producing much excitement among those who have just got going on this band.
Auroral propagation is an interesting form of VHF propagation, occurring when the ionosphere above the polar regions of the Earth becomes highly ionised through unusual solar activity. Streams of electrified particles are injected into space from the sun and travel towards the Earth, where they encounter the Earth's magnetic field. This directs the stream of particles towards the north and south poles.
In equatorial regions the Earth's magnetic fields run parallel to the surface of the planet, whereas at the magnetic poles they come down toward the poles and are thus vertical to the surface. Hence they have more influence on the ionospheric layers, and if severe enough produce such effects as the aurora.
There are two types of solar phenomena which produce these streams of particles. There are the so-called 'flares', which are related to sunspots, and 'coronal holes', which are areas of diminished solar magnetic field from which electrically charged particles escape in the form of jet streams. Both sunspots and coronal holes rotate with the sun, so their effects have a cyclic periodicity, provided of course they do not cease to exist before they are due to appear again, having gone all the way around the sun.
After major ionospheric storms it often takes about three weeks or so for conditions to improve, which is about the time it takes for the 27 day cycle of the sun's rotation. If the sunspots or coronal holes are still in existence then, poor propagation conditions will re-occur.

Beacons

Amateur radio beacons have been in existence for quite a long time now. The original idea was to provide a means, in the days of home-built receiving equipment for VHF use, for checking such gear out. Later on, with the advent of
commercially produced VHF/UHF receiving equipment this requirement ceased, so they became a means for checking propagation conditions and for carrying out propagation research studies, particularly in the fields of sporadic-E, tropospheric and auroral propagation.
They were very useful too when provided for bands such as 10 metres, which became little used due to the vagaries of their characteristics, as indicators of whether the band was open or not.
The first beacon to be established was GB3IGY, which as its callsign suggests was operated for radio propagation studies during the international Geophysical Year, 1957/8. This was established for 144 MHz band studies and was located in Kent.
As the value of these beacons became apparent more were established, both in this country and elsewhere. Those in this country are controlled by the RSGB and new ones will only be licensed if a genuine need and proof of their value to a sound scientific project can be put forward. An example of such a need was for investigations into the 50 MHz band characteristics before it was released for amateur use.

Phase 3C

The next amateur radio satellite in the Phase 3 series is nearing completion, as teams in West Germany and the United States progress with the project. The anticipated launch is in August this year from an Ariane 4 launcher. However, slips in the Ariane 6 launch last January may push the actual launch of Phase 3C into September.
At the Phase 3C integration facility in Golden, Colorado, AMSAT technicians have carried out the all important thermal/vacuum tests. These tests are crucial in determining if the spacecraft is flight ready, the combination of heat and vacuum duplicating the environment in space in which the satellite will operate. Components in the spacecraft will thus be under as much pressure as they will be in space, and any suspect component can thus be replaced.

The two back-up battery packs have been mounted and the primary battery pack has been fitted with its cells. The individual cells in the main battery pack

AMATEUR RADIO WORLD

have yet to be wired together.
The helium bottle mounting bracket gave some problems. A couple of dimensional errors in the components of this bracket made it necessary to remachine parts and move mounting holes, which had, to be done without disturbing other spacecraft systems.

The ionospheric ' F ' layer

Long distance radio communication using frequencies below about 28 to 30 MHz occurs as a result of bending of the radio waves in the ionosphere, a layer between about 50 to 200 miles above the Earth's surface, where free ions and electrons exist in numbers sufficient to affect the direction in which radio waves entering it will travel. This layer of ionisation is produced by the ultra-violet radiation from the sun.
In fact there are several layers, designated the ' E ' layer, the ' D ' layer and so on, but the one of most significance to radio amateurs is the ' F ' layer. It is about 175 miles high at night, at which height the air is so thin that the recombination of the ions only takes place slowly. During daytime the layer splits into two, designated the 'F1' and the 'F2' layers at heights of 140 and 200 miles respectively. The maximum distance for single-hop
propagation via the ' F ' layer is around 2500 miles.
It is interesting to recall how these ionised layers became designated by letters of the alphabet in the way they are. Soon after Marconi had managed to send radio signals across the Atlantic in 1901, attempts were made to explain how it was that these electromagnetic waves, which were known to travel in straight lines like light waves, could have been bent round the surface of the Earth in their travels from one side of the Atlantic to the other.
A physicist named Heaviside in England and another in America named Kennelly almost simultaneously suggested that there must be some sort of reflector in the upper atmosphere which reflected the waves downward. Heaviside's name is usually given to this hypothetical reflector rather than Kennelly's for the reason that Heaviside wrote an article for the scientific journal The Electrician, but it was rejected! Later on, in 1912, a radio physicist called Eccles wrote a paper on the effects of the ionised upper atmospheric layer on radio signals, and knowing of Heaviside's rejected article went out of his way to call the layer the Heaviside Layer, the name which is still used today.

Still later, as knowledge of the structure of this reflecting layer developed, it was realised that there was not only one reflecting layer, but several. One of the investigators whose name became associated with the work was Appleton. He discovered that there was in fact another layer above the Heaviside Layer, and this layer became known as the Appleton Layer to start with.

A more objective way

However, supposing there were other layers? Would it be sensible to go on calling them by the name of the person who discovered them? It was decided to adopt a more objective way of naming them. The part of the atmosphere responsible for reflecting radio waves would be called the ionosphere, and the layers within it would be designated by letters of the alphabet, starting from the bottom. To leave room for possible undiscovered layers above and below the known ones, Appleton called the Heaviside Layer the 'E' layer and the one he had discovered the ' F ' layer.
So far, apart from a vague region below the ' E ' layer called the ' D ' region, and dividing Appleton's layer into two layers, viz the ' $F 1$ ' and the ' $F 2$ ' layers, no further layers have been so designated.

ATTENTION ALL RTTY OPERATORSH

DID YOU KNOW that 'Software-only approaches may demonstrate some elegent programming, but for reliability

 youcan't beat a terminal unit' REW March '86.
WELL SCARAB SYSTEMS ARE PLEASED TO ANNOUNCE THE NEXT BEST THING.

SCARAB SYSTEMS are pleased to announce the NITE-2 RTTY filter unit. This is a new concept in RTTY filters as it not only improves filtering on conventional terminal units but also provides the computer operator who is operating a software only package with substantial signal enhancement. The NITE-2 features a pre-amplifier, limiter, tuneable bandpass filter and output amplifier. The output from the unit is variable so allowing maximum drive for users of non interfaced programs. An audio isolating transformer is included, this has been found to reduce the noise fed back into the transceiver from the computer. The NITE-2 is a must for all RTTY operators and especially for those computer users still running programs requiring no terminal unit.

The NITE-2 is supplied either ready boxed (matching the MPTU-1) or as a ready assembled PCB excluding switches, LEDs and case.

The fully cased NITE-2 is available at $£ 34.95$ + £1.00 P\&P.

The unboxed fully assembled NITE-2 is available at $£ 24.95+50$ p P\&P.

PLEASE NOTE. Software is not provided.

SCARAB SYSTEMS produce many other high quality software programs for other computers-please write for further details.

Distributors
\section*{UK Ward Electronics, D W Electronics, S P Electronics.}
Scandinavia. Chara Electronics, Hofors - Sweden. Australasia. Essex Mellor Pty Adelaide. Or available directly from:-

 39 STAFFORD ST, GILLINGHAM, KENT ME7 5EN TEL: MEDWAY (0634) 570441

The prices quoted in my Catalogue are below normal trade price - some at only one tenth of manufacturers quantity trade. Just send large 24p stamped addressed envelope for free copy.

Millions of components: thousands of different lines Rechargeable Nickel Cadmium batteries (ex unused equipment)
AA(HP7) 1.25 volt 500 mA .. Set of four $£ 2$ ITT Mercury Wetted relay 20-60 VDC Coil. SPCo, 2A

$$
79 \text { p or } 10 \text { for } £ 7
$$ Clear LED illuminates Red, Green or Yellow depending upon polarity/current. Oblong $5 \times 21 / 2 m m$ Face

.25 p or 100 for $£ 23$ or 1000 for $£ 200$25p or 10 for $£ 2.25$ VAC 10 mixed VAC 10 mixed popular sizes
. $1.50,50$ for $£ 5.00$
IN4004 or IN4006 Diodes... 300 for $£ 6.50$ KBS005/01/02 3 amp $50 \mathrm{~V} / 100 \mathrm{~V} / 200 \mathrm{~V} / \mathrm{bridge}$ rectifiers, $35 \mathrm{p} / 36 \mathrm{p} / 40 \mathrm{p} .10$ off $£ 3.20 / £ 3.40 / £ 3.70 .100$ off $£ 30 / £ 31 / £ 34$
Plessey SL403 3 Watt amp, From Bankrupt source, hence sold as untested.. \qquad 4 for 60 p or 10 for $£ 1.20$ p 5 mm LED, clear, lighting hyperbright (600 mcd), red up to 200 times brighter (gives beam of light)25p, 100/£20, 1000/£150 Mullard 5 mm LED, 40 red, 30 green, 30 yeilow $=100$ mixed $£ 7$ 'HARVI' Hardware packs (nuts-bolts-screws-self tappers, etc) marked 35 p retail, 100 mixed packs for £11.
Modern silver/black/aluminium, etc knobs 50 mixed, $£ 6$ (sent as 10 sets of $4+5$ sets of $2-15$ different type/sizes).

SEND PAYMENT PLUS 17p SAE

Postal orders/cash - prompt dispatch.
Cheques require 9 days from banking to clear.
Crossed postal orders and cheques -- add 20 p handling due to Bank's increasing 'commission' on business accounts.

Cheques drawn on Barclay's Bank not accepted.
Prices you would not believe before inflation!
BRIAN J REED
TRADE COMPONENTS, ESTABLISHED 29 YEARS 161 ST JOHNS HILL, CLAPHAM JUNCTION LONDON SW11 1TQ.
Open 11am till 6.30pm Tues to Sat. Telephone 01-223 5016

James Fletcher looks at the new video recorder timing system now being used in Germany

Surveys show that the vast majority of video recorders are used mainly to 'time-shift' programmes that are recorded off-air, for playback at a more convenient time. The one thing that the new owner of a video recorder soon learns, however, is that it won't provide more hours in the day for TV watching, and I wonder how many of these timed recordings are in fact subsequently watched.
Also, how many people can actually understand the instructions that come with their recorders? Modern recorders offer very sophisticated timed-recording facilities, often allowing the viewer to record many different programmes at different times over a period of up to a fortnight, or to have individual episodes of a favourite soap opera recorded every night for a week.

Understand how it works

Unfortunately, most viewers never take the trouble to learn how to make full use of the timer facilities and restrict themselves to being able to record just one programme, finding this sufficient for their everyday purposes. Installation engineers say that the only people who make use of the full range of the timer facilities are teenage children, and many a return call to a customer with a new VCR can be avoided if the installer makes sure that the children of the family understand how it all works!
Another problem with timed recordings is that the broadcasters don't always keep to their published schedules, which can lead to great disappointment when the film doesn't
start until later than the published time, and you find that you have recorded all but the last ten minutes of it and will never know who dunnit!
These problems are not restricted to our own backward shores, and to help overcome them the Germans have designed a much simpler system of controlling timed recording sessions. The VPS (Video Programme System) switching system has been developed by the West German broadcasting organisations, in conjunction with their version of BREMA, the ZVEI, and has been operational since the autumn of last year.

With VPS each programme carries a teletext-like coded label on line 16 of each picture, and when the information on the transmitted label matches the information that has previously been put into the recorder, and not before, the programme will be recorded. At the end of the programme the recorder will switch off until it recognises another label for a programme which it has been asked to record. Therefore, the actual time at which the programme is transmitted is unimportant, since the VCR will not start until it recognises the label at the beginning of the required transmission.
If the broadcasters would co-operate by putting 'off' and 'on' labels at the start and finish of advertisements, the VPS system could even allow films to be recorded without recording the socalled 'natural breaks', but I guess that sound commercial reasons will be found for preventing this!

For some years now the West German broadcasters have been carrying bi-

Format of VPS data in 4 bytes of line 16
phase coded data at a rate of $2.5 \mathrm{Mbit} / \mathrm{s}$ on line 16 of each TV picture, one of the socalled Insertion Data lines. This data is used to provide source identification, remote control of the network, identification of stereophonic sound channels, and for the transmission of test measurement results. The VPS labels for each programme item are carried in four bytes of the data transmitted on line 16, which have up until recently been spare, these being bytes 11-14. The comparator in the home video recorder continuously checks to see if the label information decoded from bytes 11-14 of line 16 matches the information that has previously been programmed into it by the viewer.

Automatic selection

The system allows for the automatic selection of label-controlied or timercontrolled operation of the VCR, so as to cope with programmes that haven't been labelled. The use of the timer can allow the recorder to wait for a label only during a particular time slot, perhaps half an hour before and an hour after the expected transmission time, thus minimising power consumption.

The actual inputting of instructions telling the recorder which programmes to record and when can be done in several ways. Since the labels contain the month, date, hour and minute of the programme's starting time, plus the code for the programme source, it is easy to use the remote control handset to insert the required information when prompted by a message on the television screen.
Even easier is to wipe a simple 'lightpen' over the bar-codes that are printed in the programme journals. Merely passing this pen over the codes for all the programmes you would like to record sets up the required labels without any further action on the viewer's part, and this is bound to make life much easier for the non-technical.

Many engineers will wonder why the Germans are not making use of the standard teletext transmissions for tape recorder switching purposes, since the IBA demonstrated that such a scheme was practicable back in the late 1970s. At that time the intention was to use

automatic teletext-controlled switching to allow UK schools' broadcasts to be transmitted during the night. The UK teletext standard, on which the German teletext system is based, actually contains a pseudo row address in magazine 8 specifically for this purpose. When challenged with this, the German engineers say that the lower data rate of VPS, $2.5 \mathrm{Mbit} / \mathrm{s}$ compared with $6.9375 \mathrm{Mbit} / \mathrm{s}$ for teletext, leads to a better error rate, with simpler error detection and clock regeneration, resulting in a more reliable system.

Reliable transmissions

This all sounds theoretically fine until you remember that the teletext system was not adopted until large numbers of tests had shown that the $6.9 \mathrm{Mbit} / \mathrm{s}$ transmissions was reliable over a whole range of different terrains, including that of Bavaria. It also seems strange to introduce yet another decoder circuit into the receiver, now that teletext is available on millions of receivers.
A more plausible reason for not adopting a teletext-based system, if you disregard commercial reasons of the 'not invented here' variety, is that the federalist structure of West Germany's broadcasting system has led to a system where each region has its own programming, but not necessarily its own teletext service. The Germans claim that if teletext signals from a centrally generated service had to be multiplexed with locally generated video-recorder
switching signals, this would prove extremely expensive. All regions already make use of the existing data transmissions on line 16, and it would therefore be fairly simple to introduce the extra video recorder switching bytes in each region. UK broadcasters currently make use of line 16 for standard teletext transmissions.
Grundig are actually making recorders with VPS at the moment, several German networks are transmitting the labels, and Austria and Switzerland have announced that they too intend to introduce VPS shortly.
It looks as though this West German initiative is set for considerable success, thanks to manufacturers and broadcasters having worked hand in hand. Having
seen what happened when the Germans introduced stereo sound with TV and how the UK has had to rush to catch up, a speedy agreement between UK manufacturers and broadcasters would seem to be required if the VPS system is not to become a fait accompli throughout Europe.
The forecast for the introduction of an alternative, teletext-based switching system doesn't look too good when you remember that the earlier IBA ideas were never taken up. The bar-code system of programming was demonstrated by the BBC for use in conjunction with radio recorders several years ago, but it was claimed that the printers couldn't print accurate bar codes on the paper used for the Radio Times! [new]

Every home constructor has learned rom bitter experience that the cost of the power unit used for any project frequently exceeds the cost of the project itself, and very often the most expensive component in the power unit is the mains transformer.
For some projects - such as valve linear amplifiers - suitable new transformers are extremely difficult to obtain at reasonable cost, and in consequence recourse has to be made to those available from club junk sales, stalls at rallies, etc.
Unfortunately, the connections of these transformers are frequently unmarked and even when they are, except on ex-government transformers, the power ratings are rarely given. Of course, it is possible to make a 'guesstimation' of the rating from the physical appearance of the transformer, but its inability to cope with the intended load may not be found out until too late, and replacement requires a complete rebuild of the power unit.
This program has been written to overcome this problem; by taking a few simple physical and electrical measurements and then applying these in the program, it is possible to calculate the capability of the transformer.
Within the program a number of assumptions have been made, but as these are based on standard design practice we feel they are acceptable.
Unfortunately, the program is only appropriate to conventional transformers and will not cope with high-power (over 5kVA), ferrite cored or toroidal transformers, or with variacs or autotransformers. Despite the length of this list, most surplus transformers will fall within the scope of the program.
As with all our previous programs, this is written in standard Microsoft Basic and has been tested on both Sanyo and BBC B (32K) machines. It should also run with little or no modification on many other machines such as the Dragon or TRS80, although we have not tested the program on these.

Using the program

The power capability of any conventional transformer depends on several factors, the first of which is the crosssectional area of the core. The first requirement is therefore to measure the width and height of the centre core lamination stack (d1, d2).
This complete, the dc resistance of each winding should be carefully mea-

$\vdash \mathbf{d 1}-1$
Fig 1 Dimensions required for the calculations
sured, and it should then be possible to determine which is the primary winding. If this is not possible, choose one of the higher resistance windings as primary, because if the wrong selection has been made it does not matter at this stage as the error will become evident later.
It is likely that the resistance of the low voltage secondary windings will be too low to be accurately determined by most multimeters. If this is the case, resort to passing a current from a low voltage source through the winding, measuring the current through, and the voltage drop across the winding and calculate the resistance by Ohm's law. The more accurate the resistance measurements can be made, the more accurate will be the final result.

Many transformers have tapped secondary windings. Treat each tap as the beginning of another winding, unless you are confident that the tapped winding uses the same wire gauge throughout.

It is now time to apply some voltage to the primary winding of the transformer. The value of this voltage is not important provided that it is sufficient for the transformer to give adequate output from its low voltage secondary windings for reasonably accurate measurement. For this, bearing safety in mind, probably $24-48$ volts ac (not dc) would be suitable, although mains voltage could be applied if the primary winding is marked as such. If mains voltage is used, a low value fuse (not exceeding 3 mps) should be placed in series with the supply.
Wire a resistor of suitable value (typically 10 to 15 ohms) in series with the selected primary winding and apply the test voltage. Measure the voltage across the resistor and across the primary winding. It should be noted that the sum of the voltage across the resistor and that across the winding will not equal the supply voltage, for the inductance of the

Fig 2 Measurements to be entered
winding will cause a phase difference. Finally, measure the output voltage for each secondary winding in turn.
It then only remains to run the program, inserting the measured figures as requested. The program will then print out a set of operating conditions, together with power losses, for which the transformer may have been originally designed. These figures are a valuable guide to the capabilities of the device, but nevertheless will rarely coincide with the intended application. For example, the calculated output may be 20 volts at 5 amps , but 8 amps is required and a slightly lower output voltage acceptable. Equally, the estimated input voltage may vary considerably from that supplied.
At the end of the printed table, therefore, the user is invited to insert the desired primary input voltage and the anticipated load on each secondary winding.
The table is then reprinted with due allowance for the differing operating conditions. Should the anticipated primary voltage be excessive and lead to core saturation, this will be indicated to allow the requirements to be modified - or alternatively another transformer to be located in the station operational stores department (ie junk box).

Assumptions

In order to derive the characteristics from the physical and electrical measurements described, certain assumptions must be made. These, however, are based on standard design practice and in consequence may be assumed to be in agreement with the figures used in the original design of the transformer.
The first of these is that the transformer is designed for 50 Hz operation. Almost certainly all mains transformers of European origin meet this criterion, while most American transformers with a

Fig 3 Allowance for internal resistance of the winding and eddy losses

240 volt primary are also suitable for this frequency. Care has to be taken with American transformers with 110 volt primaries, for these are usually designed for domestic use on their 60 Hz mains.

Take care

Care should also be taken if the transformer originated in wartime airborne or shipborne equipment, for many of these were designed for 400 or 500 Hz operation and are not suitable for use on 50 Hz mains. Being ex-government, these are normally marked with both the output voltages and the frequency of operation. More modern high frequency transformers normally use a ferrite core and thus can be readily identified.
Signal transformers, such as valve audio output types, will give unexpected results, but these may still be applicable provided that the insulation is adequate for the voltages concerned.
The second assumption is that the design flux for the transformer is 0.55 Tesla (50,000 lines/square inch) while the flux level at core saturation is 0.825 Tesla (75,000 lines/square inch). It has also been assumed that the iron loss at design flux will be 0.75 watts/kg (0.34 watts/lb) and that the copper loss in the secondary windings at design flux will be 4\%.
The third assumption is that the load on the transformer will be resistive. If a
capacitively smoothed rectified output is required, then the surge current must be used to find the actual output voltages.
A 'rule of thumb' has been used in the calculation of the total load on the transformer. This is that the square root of the input power (volts \times amps) divided by 5.6 equals the area of the core in square inches.

The program

As may be expected, the early part of the program is devoted to the insertion of the static (lines 50 to 70) and ac (lines 80 to 260) measurements. Thereafter the program may be divided into 4 parts.

The first of these is devoted to estimating the internal construction, ie the turns ratio of the transformer. For this, it is first necessary to calculate the magnetising voltage. This may be thought to be the measured voltage across the primary winding. However, correction must be made to allow for the internal resistance of the winding (R1 in Figure 3), and as inductance effects cause the current and voltage to be out of phase, recourse must be made to vector arithmetic. This figure (Bo) is calculated in lines 270-310.
Since the secondary windings are not loaded in the test, the induced is equal to the measured voltage and in consequence the turns ratio for all secondary windings is equal to the voltage ratio
$\mathrm{Vn} / \mathrm{Bo}$ (lines 330 to 360).
The second part of the program is devoted to estimating the original design operating voltages and currents. Here the rule of thumb formula referred to previously, which derives the total input load of the transformer from the central core area, has been used. Knowing that 4\% of this will be dissipated in resistance, the design load on each secondary winding can be calculated (lines 390 to 410) and, from this, the design primary magnetising voltage (lines 420 to 450).
As the iron losses are almost entirely due to eddy currents, these have been represented by an additional secondary load Re (line 370).
From these derived figures it is now possible to calculate the primary current, vectorially add the voltage drop across the internal resistance of the primary winding (R1) to the magnetising current, and from this derive the design primary voltage, V1, at lines 460 and 470 and calculate the output voltages of the secondary windings (V2...Vn) at lines 480 to 500.
The third part of the program is concerned with estimating losses, this being a summation of those from all individual sources. At line 550 the input power is calculated by adding the power losses in the real and imaginary phases, while copper losses due to the resist-

10 REM TRANSFORMER ANALYSER
20 REM J.M.HOWELL JULY 1985
30 CLS
40 PRINT
50 PRINT "CORE CENTRE LEG WIDTH AND STACK HEIGHT (INCHES) ":
60 INPUT Dl, D2
60 INPUT D1, D2
70 IF Dl $<=0$ OR $2<=0$ OR D1*D2> 100 THEN GOTO 40
70 IF Dl
80 PRINT
80 PRINT
90 PRINT "HOW MANY WINDINGS (INC. PRIMARY)";
100 INPUT N
110 IF $\mathrm{N}<2$ OR $\mathrm{N}>12$ THEN GOTO 80
120 DIM $A(N), P(N), R(N), T(N), V(N)$
130 PRINT
140 PRINT "ENTER DC RESISTANCES(OHMS) AND MEASURED AC VOLTAGES"
150 PRINT
160 RESTORE
170 FOR $\mathrm{I}=0$ TO N
180 IF I<3 THEN' READ AS
180 IF IR3 TH
200 IF I> 1 THEN PRINT I-I;
210 PRINT TAB(30);" ";
220 INPUT R(I),V(I)
230 NEXT I
240 DATA "PRIMARY SERIES RESISTOR"
250 DATA "PRIMARY WINDING"
260 DATA "SECONDARY WINDING NUMBER
$270 \mathrm{BO}=\mathrm{V}(1)^{\wedge} 2-(\mathrm{V}(0) * R(1) / R(0))^{*} 2$
280 IF BO>0 THEN 310
290 PRINT "ERROR IN PRIMARY CIRCUIT DATA"
300 GOTO 130
$310 \mathrm{BO}=\mathrm{SQR}(\mathrm{BO})$
$320 \mathrm{X}=0$
330 FOR $I=2$ TO N
$340 \mathrm{~T}(\mathrm{I})=\mathrm{V}(\mathrm{I}) / \mathrm{BO}$
$350 \mathrm{X}=\mathrm{X}+\mathrm{T}(\mathrm{I}) \wedge 2 / R(I)$
360 NEXT I
$370 \mathrm{KE}=.00096 * \mathrm{X} / \mathrm{D} 2$
$380 \mathrm{~B}=28^{*} \mathrm{D} 1$ *D2/SQR(X)
390 FOR I=2 TO N
$400 \mathrm{~A}(\mathrm{I})=.04^{*} \mathrm{~B}^{\star} \mathrm{T}(\mathrm{I}) / \mathrm{R}(\mathrm{I})$
410 NEXT I
420 BSAT $=\mathrm{B}^{\star} 1.5$
$430 \mathrm{ALPHA}=\mathrm{B} 0 * \mathrm{R}(0) / \mathrm{V}(0) /(1-\mathrm{B} 0 / \mathrm{BSAT})$
$430 \mathrm{ALPHA}=B 0^{*} \mathrm{R}(0)$
$440 \mathrm{H}=3^{*} \mathrm{~B} / \mathrm{ALPHA}$
440 H=3* ${ }^{*} /$ ALPHA
450 IP= ${ }^{*}\left(.04^{*} \mathrm{X}+\mathrm{KE}\right)$
$460 \mathrm{~V}(1)=\operatorname{SQR}\left(\left(\mathrm{B}+\mathrm{R}(1)^{*} \mathrm{IP}\right)^{\wedge} 2+\left(\mathrm{H}^{\star} \mathrm{R}(1)\right)^{\wedge} 2\right)$
$470 \mathrm{~A}(1)=\mathrm{SQR}\left(\mathrm{H}^{\wedge} 2+\mathrm{IP} \mathrm{A}^{\wedge} 2\right)$
480 FOR $\mathrm{I}=2 \mathrm{TO} \mathrm{N}$
$490 \mathrm{~V}(\mathrm{I})=\mathrm{T}(\mathrm{I}) * \mathrm{~B}$

```
500 NEXT I
510 CLS
5 2 0 ~ P R I N T ~
530 PRINT "OPERATING CONDITIONS"
540 PRINT
550 PIN = (B+R(1)*IP)*IP + H^ 2*R(1)
560 РTOT=B^2*KE
570 FOR I=1 TO N
580 P(I)=A(I)^ 2*R(I)
590 PTOT=PTOT+P(I)
6 0 0 ~ N E X T ~ I ~ I
610 PRINT "WINDING";TAB(15);"VOLTAGE";TAB(30);"CURRENT"
620 PRINT "PRIMARY";TAB(15);V(1);TAB(30);A(1)
630 FOR I=2 TO N
640 PRINT "SEC.";I-1;TAB(15);V(I)-R(I)*A(I);TAB(30);A(I)
6 5 0 ~ N E X T ~ I ~ I ~
660 PRINT "IRON/COPPER LOSS WATTS % INPUT"
670 PRINT "IRON/COPPER LOSS WATTS % INPUT""
680 PRINT "PRIMARY ";TAB(20);P(1);TAB(30);100*P(1)/PIN
690 PRINT "IRON CORE ";TAB(20);B"2*KE;TAB(30);B^2*KE*100/PIN
700 FOR I=2 TO N
710 PRINT "SEC.";I-1;TAB(20);P(I);TAB(30);100*P(I)/PIN
7 2 0 ~ N E X T ~ I ~ I ~ I
730 PRINT "TOTAL ";TAB(20);PTOT;TAB(30);100*PTOT/PIN
7 4 0 ~ P R I N T ~
750 PRINT "ENTER DESIRED PRIMARY VOL'LAGE ";
760 INPUT V(l)
770 FOR I=2 TO N
780 PRINT "CURRENT DRAWN FROM SEC. ";I-1;TAB(31);
7 9 0 ~ I N P U T ~ A ( I ) ~
800 NEXT I
810 IF V(1)<.95*BSAT THEN 840
820 PRINT "CORE SATURATION IS ";V(1)/BSAT*IOO;" PERCENT"
830 GOTO 740
8 4 0 ~ X = 0 ~
8 5 0 ~ F O R ~ I = 2 ~ T O ~ N
860 X=X+T(I)*A(I)
870 NEXT I
880 lF X<.4*V(1)/R(1) THEN GOTO 910
890 PRINT "SECONDARY CURRENT TOO HIGH"
900 GOTO }74
910 H=0
910 H=0 I=1 TO 3
920 FOR I=1 TO 3
940 H=B/ALPHA/(1-B/BSAT)
950 NEXT I
960 IP = B* KE+X
970 GOTO 470
```

ances of the windings (which have been measured) are deduced using the familiar formula: $\mathrm{P}=1 \times \mathrm{R}$ (lines 570 to 600, 680, 710). Iron loss is derived from the equivalent load Re ($\mathrm{P}=\mathrm{B} / \mathrm{Re}$, lines 560,690).
The last of the four parts of the program effects a shift in operating conditions (defined in lines 750 to 800) and checks that the transformer core will not saturate (lines 810 to 830).
From the specified secondary loadings a value for the primary winding current may be derived (lines 840 to 870), while lines 880 to 900 ensure that this is a realistic load for the transformer. However, this value does not allow for iron losses, so it is necessary to make an estimation of primary current and from this deduce the magnetising voltage B and hence the iron loss.
The value for primary current is then adjusted and the process repeated three times at lines 910 to 950 in order to obtain an accurate value for B. It is then possible to calculate the actual secondary output voltages, primary current and losses.
The program then loops back to recalculate the operating conditions and losses using the same formulae as before. This will repeat until interrupted by the user in a manner suitable to the particular machine.

Interpreting resultis

Although this program has been prepared using sound design principles, when applied to transformers which are marked with their ratings surprising answers may result.
Typical of these is that military grade transformers may appear to be designed for considerably higher input voltage than marked on the terminal block. This is due to the fact that these are very

Core centre leg width and stack height (inches) ? 1.25 . 2.5

HOW MANY WINDINGS (INC. PRIMARY) ? 2
ENTER DC RESISTANCES(OHMS) AND MEASURED AC VOLTAGES

PRIMARY SERIES RESISTOR	$?$	30,15	
PRIMARY WINDING			
SECONDARY WINDING NUMBER	1	$?$	$3.5,241$

ENTER DESIRED PRIMARY VOLTAGE ?
Break in 760
conservatively rated, and although in theory the higher input voltage is possible, before using at higher ratings it is necessary to carefully examine the insulation between windings and core.

Many low cost consumer type transformers, especially surplus types, may seem overloaded when checked by this program. In such cases the user should ascertain that the power dissipation is not excessive. Reasonable limits for this are 20% in the case of a small transformer and 10% for a large one.

A final consideration is whether the power losses are acceptable. These result in a temperature rise in the transformer. The temperature rise of an operating transformer should not be permitted to exceed $50^{\circ} \mathrm{C}$, for beyond this degradation of the insulation may occur.
The temperature rise of a transformer may be roughly estimated from the formula: temperature rise $=($ power loss (watts))/(total area (sq inches)) $\times 80^{\circ} \mathrm{C}$.

Examples

We have included two worked examples for two reasons: firstly, they allow the user to be confident that the program has been accurately keyed into the computer, and secondly, they permit the user to gain a little experience with the program before using it 'in anger'.

The first example concerns a surplus transformer, sold without tag markings but described by the dealer as 'mains input, 40 V , 10 amps output'
The estimated design conditions suggest that it is suitable for 240 V mains input, but if operated at 10A rms output the power losses will be relatively high and the output voltage will drop to 38.75 volts, which suggests that the dealer was rather generous in his estimate of the rating of the transformer.

The second example is a transformer removed from a 1950s broadcast receiver. This has a centre-tapped HT secondary for use with a double diode rectifier and is considered as two separate windings, each feeding a half wave rectifier.

The estimated design conditions confirm that the transformer is suitable for mains voltage use and that the low voltage secondary is 6.3 volts. However the program assumes purely resistive loads, and in order to make a full analysis allowance must be made for the intermittent loading of the high voltage secondary windings during the mains cycle.

The desired output current is 80 mA provided by two rectifiers supplying 40 mA each. The surge current through a half-wave rectifier is approximately five times the mean output current, ie 0.2A. For convenience the mains cycle may be considered in three parts:

1. Rectifier on HT secondary 1 conducts (20\%).
2. Rectifier on HT secondary 2 conducts
core centre leg windth and stack height (inchesj? 1.1 HOW MANY WINDINGS (INC. PRIMARY) ? 4

ENTER DC RESISTANCES(OHMS) AND MEASURED AC VOLTAGES
PRIMARY SERIES RESISTOR PRIMARY WINDING
SECONDARY WINDING NUMBER 1 ? $50 ; 249$
GECONDARY WINDING NUMBER ? ? 207, 303 SECONDARY WINDING NUMBER $\begin{array}{lllll} & 2 & ? & 224 & 30\end{array}$
operating conditions

WINDING	VOLTAGE	CURRENT
PRIMARY	217.472	.157879
SEC. 1	245.126	.049341
SEC. 2	243.508	$4.52954 E-02$
SEC. 3	6.47197	1.07866
IRON/COPPER LOSS	WATTS	8 INPUT
PRIMARY	1.24629	3.736
IRON. CORE	.75264	2.25619
SEC. 1	.503948	1.51068
SEC. 2	.459574	1.37766
SEC. 3	.290878	.871964
TOTAL	.3 .25333	9.75251

operating conditions

WINDING	VOLTAGE	CURRENT
PRIMARY	240	.330983
SEC. 1	230.734	.2
SEC. 2	270.338	0
SEC. 3	6.56005	2.5
IRON/COPPER LOSS	WATTS	
PRIMARY	5.47749	6.95804
IRON CORE	.854903	1.08598
SEC. 1	8.28	10.5181
SEC. 2	0	0
SEC. 3	1.5625	1.98484
TOTAL	16.1749	20.5469

Enter desired primary voltage CURRENT DRAWN FROM SEC. CURRENT DRAWN FROM SEC. CURRENT DRAWN FROM SEC.

OPERATING CONDITIONS

operating conditions

WINDING	voltage		Current
PRIMARY	240		. 102277
SEC. 1	286.925		0
SEC. 2	285.031		0
SEC. 3	6.95059		2.5
IRON/COPPER	Loss	WATTS	\% INPUT
PRIMARY		. 523026	2.5623
IRON CORE		. 950362	4.65582
SEC. 1		\bigcirc	0
SEC. 2		0	0
SEC. 3		1.5625	7.65468
total		3.03589	14.8728

ENTER DESIRED PRIMARY VOLTAGE
Break in 760
in opposite half cycle to 1 (20\%).
3. Neither rectifier is conducting and the only load is the current drain on LT secondary 3 (60%).
With these conditions, the rms voltages seen by the conducting rectifiers (which will determine the smoothed dc voltage) have been calculated. The total power dissipation is the sum of the dissipation in each part of the mains cycle, ie $(16.17 \times(20 / 100))+(16.8 \times$ $(20 / 100))+(3.03 \times(60 / 100))=8.412 \mathrm{~W}$ 日道

The New ICOM HIF Flagship.

(.751A

ICOM are proud to launch their new flagship. The IC-751 was good, the new ICOM IC-751A is even better. With a general coverage receiver $100 \mathrm{KHz}-30 \mathrm{MHz}$ it is a full featured all-mode solid state transceiver that covers all the WARC bands. The IC-751 A has an excellent 105 db dynamic range and features pass band tuning, notch filter, adjustable AGC, noise blanker and RIT. A receiver pre-amp provides additional sensitivity when required. On C.W. the electronic keyer is standard and 40 w.p.m. at full break-in is possible. The FI 32 500 Hz C.W. filter is fitted as is sidetone on receive mode. On SSB the new FL80 2.4KHz high shape factor filter is fitted.

The high reliability transmitter, full 100% duty cycle designed for SSB, CW, AM, FM, RTTY and Amtor, with a high performance speech processor to enhance the IC-751A transmitters operation. With 32 memory channels and twin V.F.O.'s, scanning of frequencies and memory are possible from the transceiver or from the HM12 mic supplied.
The IC-751A is fully compatible with ICOM auto units such as the AT500 automatic antenna tuner and the IC-2KL linear amplifier. Options available: PS35 internal A.C. P.S.U., PS15 external A.C. P.S.U., EX310 voice synthesizer, SM8 and SM10 desk mics and various filter options.

袮 Titicom

New Retail Shop

x

We are pleased to announce that we have moved to a new larger retall shop. This will be managed by Andy G6MRI and is situated on the corner of Stanley Road and Kings Road, Herne Bay, Kent. Tel: (0227) 369464 Give it a visit for demonstrations and advice on anything to do with your shack. BCNU.
You can get what you want just by picking up the telephone. Our Mail Order department offers you free same day despatch whenever possible, instant credit, interest free H.P. Telephone Barclaycard and Access facility, 24 hr answerphone service.

WANT TOLEARN MORE?
 Telephone us free-of-charge on:

 HELPLINE 0800-521145.——— Mon-Fri 09.00-13.00 and 1400-17.30 ——

This is strictly a helpline for obtaining information about or ordering ICOM equipment. We regret this service cannot be used by dealers or for repair enquiries and parts orders. Thank you.

290 D is the state of the art 2 meter mobile, it has 5 memories and VFO's to store your favourite repeaters and priority channel to check your most important frequency automatically. Programmable offsets are included for odd repeater splits, tuning is 5 KHz or 1 KHz . The squelch on SSB silently scans for signals, while VFO's with equalising capability mark your signal frequency with the touch of a button. Other features include: RIT, 1 KHz or 100 Hz tuning/CW sidetone. AGC slow or fast in SSB and CW, Noise blanker to suppress pulse type noises on SSB/CW.

SMALL FIRES

IN
 JAM JARS!

Until recently the humble, antiquated valve was a much neglected beast. Recently, however, even the big boys are heavily into vacuum tubes (protection from the EMP, don't you know)

Roger Alban gives the low-down on those funny little light bulb thingies

TThe teaching of valve theory is no longer included in the syllabus for the Radio Amateurs Examination. However, the new amateur is likely to encounter new and secondhand equipment which contains valves, and to be confident in the use of the equipment he should have a reasonable understanding of the theory behind the operation of a valve. This article is intended to resolve the problem.

The Edison Effect

In 1883 the American scientist and inventor Thomas Alva Edison was experimenting with an electric filament lamp which contained a second filament. Apparently during these early days of the electric lamp the life of a filament was very short, and one way of extending the operational life was to insert a second filament into the glass envelope of the lamp to be used when the first filament had failed.

Thomas Edison discovered, Figure 1, that when the first filament was giving light, if he connected a battery and galvanometer between the first and second filament, a small current flowed through the galvanometer if the second filament was positive with respect to the
first. If the battery was reversed, so that the second filament was negative with respect to the first filament, no current flow took place. This was called the Edison Effect, and remained nothing more than a scientific curiosity for many years until an explanation was forthcoming from OW Richardson.
Early in the twentieth century Richardson, who was for a time Professor of Physics at Princeton University, carried out investigations of the emission of electrons from the surface of hot metals. He explained the Edison Effect by assuming that electrons evaporate from the hot filament in much the same way as vapour molecules leave a hot liquid such as water in the form of steam. But what is actually happening?
Richardson explained the Edison Effect by assuming that negatively charged electrons evaporate from the hot filament and eventually return to the filament.
However, if another piece of positively charged metal is introduced into the lamp's glass envelope then the negatively charged electrons will be attracted to the positively charged piece of metal (second filament), and electric current flow will take place.

Fig 1 Thomas Edison experiment

Fig 2 Electrons leaving the filament create a cloud around it called the space charge

Thermionic emission

Electron emission produced by raising the temperature of a material is called thermionic emission. With many metals the temperature necessary for electron emission to occur is so high that the material completely evaporates before the desired temperature is attained. Tungsten is a suitable metal, as a useful electron emission is produced at a temperature of $2,200^{\circ} \mathrm{C}$, which is well below the melting point of $3,300^{\circ} \mathrm{C}$.
However, if the material is surrounded by air at atmospheric temperature and pressure, the motion of the escaping electrons is restricted by collisions with the heavy air gas molecules. It is therefore essential to ensure that the emitting material is surrounded by either a vacuum or an inert gas at minimum pressure. Electrons will be freely emitted when the tungsten filament is brought to a state of incandescence by a small electrical current being passed through the filament to cause it to glow. The number of electrons released will increase with temperature.

Negatively charged

The electrons leaving the filament are negatively charged, Figure 2. As each electron leaves the filament it makes the filament take up a positive charge, producing an attractive force urging the electrons to return to the filament.
However, because each electron has an equal negative charge, there also exists a force of mutual repulsion between the electrons themselves. Many of the electrons are prevented from returning to the filament because of the repulsion of other electrons leaving the filament. These electrons also repel

Fig 3 Types of directly heated cathodes
other electrons which are attempting to leave the filament.
The net result is that on attaining the critical temperature the filament is quickly surrounded by a cloud of electrons setting up a region of negative charge known as the space charge. Stability is reached when the number of electrons leaving the filament is balanced by those returning to it.

The cathode

One of the most important factors on which the electron emission depends is the 'electron affinity' of the surface of the material. It is a measure of the work which an electron must do in order to escape from the surface. Another important factor is the surface temperature of the material. The higher the temperature the higher the electron activity, and consequently a larger number of electrons will escape to form the space charge. The material from which the electrons escape is called the cathode, and in valves this can take the form of two different types of construction, the directly heated and the indirectly heated cathode.
The directly heated cathode consists of a wire of platinum, nickel or tungsten upon which is deposited a coating of barium oxide or strontiüm oxide. These materials will readily emit electrons at a temperature of about $1,000^{\circ} \mathrm{C}$. Directly heated filaments may take the form of a letter I,V, or W, Figure 3a, to obtain the desired length and surface area. Spring suspension units are employed to keep the filament taut as it expands with heat, Figure $3 b$.
The indirectly heated cathode consists of a metal tube, Figure 4, usually of nickel, coated upon the outside with barium or strontium oxide. The heater filament is a tungsten wire loop placed inside the tube, the loop being coated with an insulating material such as aluminium oxide which is not affected by heat.

Large mass

The tungsten filament is heated by the passage of current, typically 0.3 amps at 6.3 volts. Owing to the relatively large mass of the cathode it takes an appreciable time to warm up, and there is a slight delay after switching on the heater wire before the electron emission commences.

Fig 4 Indirectly heated cathode

The anode

If a positively charged piece of metal is brought near to the cathode, Figure 5, some of the electrons will be attracted to this piece of metal (the anode), thus reducing the space charge and permitting further electrons to leave the cathode. As the positive anode potential is increased the space charge will be gradually reduced until all the electrons which are leaving the cathode are attracted to the anode.
Any further increase in anode voltage will have no further effect on the flow of electrons, and the valve is said to be at 'saturation'. A greater flow of electrons can only be obtained by raising the temperature or increasing the size of the cathode surface.

The diode valve

The phenomenon described above was first explained by J A Fleming in 1904 using the principle of thermionic emission in a radio detector valve called the diode. The diode valve comprises two electrodes, the cathode and the anode, enclosed within a glass envelope from which gas has been excluded. The reason for removing the air from within the glass envelope is to ensure the free passage of electrons between cathode and anode. The lack of air also prevents oxidisation of the filament and consequently extends its operational life.
The air is removed from the glass envelope by using an air pump during manufacture. Any remaining air is removed by burning a small amount of magnesium which sits within the gettering pan inside the glass envelope and is ignited by eddy current heating. The burnt magnesium leaves a mirror deposit on the inside of the glass envelope, and is a good indicator as to the amount of air
remaining inside the valve. If a large quantity of air should find its way inside the glass envelope then the deposit of magnesium will turn a milky colour.
The anode may be in the form of a flat plate, which gives the alternative American name for it, plate. It is usual for the anode to be of a cylindrical or oval shape surrounding the cathode.
With no voltage applied to the anode, the potential in the region of the heated cathode is due to the space charge. The potential gradient between cathode and anode may be represented by the graph of Figure 6a. When the anode is made positive, if the cathode is cold the potential will fall uniformly from anode to cathode.
With the cathode heated, the potential at any point is due to the sum of the positive anode charge and the negative space charge; the potential gradient between anode and cathode takes the form illustrated in Figure 6b. As the electrons move away from the cathode, with increasing distance the potential becomes increasingly negative until a distance $X \mathrm{~mm}$ from the cathode is reached.
In this region the electrons experience a force drawing them back towards the cathode, whilst at a greater distance from the cathode the electrons are attracted towards the anode on account of the positive potential.
As a result of the space charge, only those electrons which leave the cathode with sufficient initial velocity to travel beyond the region of the negative potential will reach the anode. All the other electrons will return to the cathode. It can be seen that the region of the space charge plays a vital role in the operation of the electronic valve.

To be continued

With regular features like:

DX DIARY: Don Field G3XTT with all the news of rare DX, contests and DXpeditions

$\boldsymbol{\psi}$ G3OSS TESTS: Angus McKenzie - the fairest, most comprehensive reviews available anywhere
MORE NEWS, MORE FEATURES, MORE FUN, MORE STYLE
Make sure of your copy by placing a regular order at your newsagents or by taking out a post free, inflation proof subscription, with early delivery to your door each month

Ray Marston takes a detailed look at voltage amplifying transistor circuits this month

Fig 1 The three basic transistor configurations

.n the last two editions of Data File we have given an introductory outline of the discrete bipolar transistor and its basic characteristics, a general roundup of popular applications configurations, and have also taken a detailed look at the common-collector transistor amplifier and its derivitives. In the present edition of 'The File' we continue the transistor theme by examining common-emitter and common-base 'voltage amplifier' circuits.
To refresh the reader's memory, Figures 1 and 2 show the circuits of the three basic transistor amplifier configurations that have already been discussed and detail the comparative performances of these three amplifiers. Note in particular that the commoncollector amplifier gives near-unity overall voltage gain but features a high input impedance and low output impedance. This circuit is thus used primarily as a unity-gain voltage follower and impedance converter.
The common-emitter and commonbase circuits, on the other hand, each provide substantial voltage gain, and are thus used primarily as voltage amplifier circuits. The common-base circuit gives near-unity current gain, and is used mainly in wideband or high frequency voltage amplifier applications. The com-mon-emitter circuit provides both voltage and current gain, and is thus of particular value as a high gain power amplifier.
The common-emitter amplifier (also known as the common-earth or grounded-emitter circuit) can be used in a wide variety of digital and analogue amplifier applications. Let's begin by looking at some 'digital' circuits.

Digital circuits

Figure3shows the practical circuit of a simple npn common-emitter digital amplifier, inverter or switch, in which the input signal is either at zero volts or at * substantial positive value. Here, wher, the input is at zero volts the transistor is fully cut off, and the output is thus at full positive supply rail voltage value.
When the input switches to a positive value greater than 600 mV (the nominal voltage needed to forward bias the baseemitter junction of the transistor), the

Fig 3 Digital inverter/switch (npn)
transistor turns on and causes a collector current to flow in R_{L}, thus pulling the output voltage towards zero. If the input voltage is sufficiently large the transistor is driven to saturation (ie, fully on), and the output voltage falls to a saturation value of only two or three hundred millivolts. Thus the output signal is an amplified and inverted version of the original input signal.

Satety resistor

In Figure 3, R_{b} acts mainly as a safety resistor that limits the base-drive current to a safe value; the input impedance of the circuit is slightly greater than the R_{b} value. It should be noted that R_{b} influences the rise and fall times of the output signal: the greater the R_{b} value, the worse these times are.

This snag can be overcome by shunting R_{b} with a 'speed-up' capacitor (typical value about 1 n0), as shown dotted in the diagram. In practice, R_{b} should have as low a value as possible consistent with safety and input impedance requirements, and should never be greater than $R_{\mathrm{L}} \times \mathrm{h}_{\mathrm{fe}}$.

Figure 4 shows a pnp version of the digital inverter/switch circuit. In this case the transistor is switched fully on when the input is at zero volts, and the output thus takes up a value roughly 200 mV less than the positive supply rail value. The transistor only turns off when the input rises to within less than 600 mV of the supply rail value, and under this condition the output falls to zero volts.
It should be noted that the sensitivity of the Figure 3 and Figure 4 circuits can be greatly increased by simply replacing Tr1 with a pair of transistors wired in the Darlington or Super-Alpha configuration. A very high gain non-inverting

	Commoncollector	Commonemitter	Commonbase
$z_{\text {in }}$	$\underset{\left(\approx \mathrm{h}_{\mathrm{fe}} \times \mathrm{R}_{\mathrm{L}}\right)}{\mathrm{High}}$	Medium $(\simeq 1 \mathrm{k} 0)$	$\begin{aligned} & \text { Low } \\ & (\approx 40 \mathrm{R}) \end{aligned}$
$Z_{\text {out }}$	Very low	$\approx R_{L}$	$\simeq \mathrm{R}_{\mathrm{L}}$
A_{v}	≈ 1	High	High
A_{1}	$\approx h_{\text {fe }}$	$\approx h_{\text {fe }}$	$\simeq 1$
Cut-off frequency	Medium	Low	High
Voltage phase shift	Zero	180°	Zero

Fig 2 Comparative performances of the three basic configurations

Fig 4 Digital inverter/switch (pnp)

Fig 5 Veryhigh-gain non-inverting digital amplifier/switch using npn transistors
digital amplifier/switch can be made by using a pair of transistors in either of the configurations shown in Figures 5 or 6.
The Figure 5 circuit, which uses a pair of npn transistors, operates as follows:
When the input signal is zero volts, Tr 1 is cut off and is thus effectively removed from the circuit. Under this condition, Tr2 is driven to saturation via R2, and the output signal has a value of a few hundred millivolts. When, on the other hand, the input signal is significantly greater than 600 mV , Tr1 is driven to saturation and pulis Tr2 base down to only 200 mV or so above zero. Under this condition, Tr2 is cut off, and the output is at full supply voltage value.
The Figure 6 circuit, which uses one npn and one pnp transistor, works in a slightly different manner from that described above. Here, when the input is at zero volts, Tr1 is cut off, so Tr2 is also cut off via R2-R3 and the output signal is

Fig 6 Alternative non-inverting digital amplifier/switch using an npn-pnp pair of transistors

Fig 9 Touch, water or steam-operated relay circuit
thus at zero volts. When the input signal is high (above 600 mV), on the other hand, Tr1 is driven on and derives most of its collector current from Tr2 base via R3, thus driving Tr2 to saturation. Under this condition, the output takes up a value 200 mV or so less than the positive supply rail value.
Finally, to complete this look at 'digital' common-emitter amplifier circuits, Figure 7 shows (in basic form) how a complementary pair of the Figure 6 circuits can be used to make a dc-motor direction-control network using a dual power supply.

Operation

The circuit operates as follows:
When SW1 is in the forward position, Tr 1 is driven on via R1 and Tr2 is driven on via R3 and Tr1, but Tr3 is cut off via R4 and Tr4 is cut off via R5 and R6. Thus, the 'live' side of the motor is connected (via Tr2) to the positive supply rail under this condition and the motor runs in a forward direction.
When SW1 is in the off position, Tr1 is cut off via R1 and Tr2 is cut off via R2-R3, and simultaneously Tr3 is cut off via R4 and Tr4 is cut off via R5-R6. The 'live' side of the motor is thus effectively open circuit under this condition, and the motor is inoperative.
Finally, when SW1 is in the reverse position, Tr3 is biased on via R4, and Tr4 is driven on via R6 and Tr3. Tr1, however, is cut off via R1 and Tr2 is cut off via R2-R3. Thus, the live side of the motor is connected (via Tr4) to the negative supply rail under this condition, and the motor runs in the reverse direction.
The basic digital círcuits of Figures 4 to 6 can be used to drive a variety of

Fig 7 dc-motor direction-control circuit

Fig 8 Simple relay-driving circuit

Fig 10 Ulitra-sensitive relay driver (needs an input of 700 mV at $40 \mu \mathrm{~A}$
resistive loads, including lamps and LED-resistor combinations etc, without modification. If they are used to drive inductive loads, such as relay coils etc, the circuits must be provided with simple diode protection networks, to limit inductive switch-off back-emfs to a safe value. Common-emitter amplifiers make far more sensitive relay drivers than do common-collector amplifier circuits (described last month), and Figures 8 to 10 show some practical examples of relay driving common-emitter circuits.

Figure 8 shows the circuit of a simple but versatile 1-transistor relay driver, which increases the relay's operating current sensitivity by a factor of about 200 (the nominal h_{fe} value of Tr1). Resistor R1 gives base drive protection, and can have a larger value than 1 kO if required.

The relay can be turned on either by applying a dc voltage greater than 700 mV to the input, or via switch SW1 (shown dotted). The basic Figure 8 circuit gives non-latching operation, but can be made self-latching by wiring a spare set of relay contacts (RLA/2) between the collector and emitter of Tr1, as shown dotted.

The current sensitivity of the Figure 8 circuit is limited by the current gain of Tr1: the sensitivity can be greatly increased (to a factor of about 20,000) by replacing Tr1 with a Darlingtonconnected pair of transistors. Figure 9 shows how this principle can be used to make a relay driving circuit that can be activated by placing a resistance of less than a couple of megohms across a pair of stainless metal probes. Water, steam

Fig 11 Simple npn common-emitter

Fig 12 Common-emitter amplifier with feedback biasing
and skin contacts have resistances below this value, so this simple little circuit can be used as a water, steam or touch-operated relay switch.
Finally, Figure 10 shows the circuit of another ultra-sensitive 2-transistor relay driver. This particular design needs an input of about 700 mV at $40 \mu \mathrm{~A}$ to activate the relay, and is based on the Figure 6 design. Resistor R2 is wired between the base and emitter of Tr1 to ensure that this transistor (and also Tr2) is fully cut off if the input terminals are open circuit.

Linear blasing circuits

A common-emitter circuit can be made to function as a linear ac amplifier by applying a dc bias current to its base, so that the collector takes up a quiescent value of roughly half-supply volts (to accommodate maximal undistorted output signal swings) and by then feeding the ac input signal to the base and taking

Fig 13 Amplifier with ac-decoupled feedback biasing

Fig 16 Unity-gain phase splitter

Fig 19 High-gain 2-stage amplifier
the ac output signal from the collector. Figure 11 shows a simple circuit of this type.

The first step in designing a circuit of the Figure 11 type is to decide on the value of load resistor R2. The lower this value, the higher will be the amplifier's upper cut-off signal frequency (due to the smaller shunting effects of stray output capacitance on the effective impedance of the load), but the higher will be the quiescent operating current of Try.

In the diagram, R2 has a compromise value of 5 k 6 , which gives an upper '3dB down' frequency of about 120 kHz and a quiescent current consumption of 1 mA from a 12 volt supply. To bias the output to half-supply volts, R1 must be given a value of $R 2 \times 2 h_{f e}$, and (assuming a nominal h_{fe} value of 200) this works out at about 2 M 2 in the example shown.

The matters of input impedance and voltage gain of the Figure 11 circuit are fairly easy to work out, and are both determined by the forward biased impedance of the internal base-emitter

Fig 14 Amplifier with voltage-divider biasing

Fig 17 Alternative fixed gain ($\times 10$) amplifier
junction of Tr1. This junction has an impedance of about $25 / I_{c}$, where I_{c} is the collector current value in $m A$, eg this impedance is 25 R at $1 \mathrm{~mA}, 12 \mathrm{R} 5$ at 2 mA , or 50 R at 0.5 mA . The input impedance into the transistor base equals this impedance multiplied by the h_{fe} value of Tr1. Thus, in Figure 11 the input impedance equals roughly 5 k 0 , shunted by R1.
The voltage gain of the Figure 11 circuit equals the R2 collector-load resistor value divided by the baseemitter junction impedance value and works out at about 46 dB , or $\times 200$. Note that, in theory, this gain figure also determines the maximum attainable upper 3 dB point of the frequency response, which equals F_{T} / A_{V}. The F_{T} of the 2 N 3904 is about 300 MHz , so the maximum attainable 3 dB point of the Figure 11 circuit (ignoring the effects of stray capacitance) is 1.5 MHz .

A weakness

A major weakness of the simple Figure 11 circuit is that its quiescent biasing point is highly dependent on the current gain (h_{fe}) of the individual transistor used. This problem can be overcome by modifying the circuit as shown in Figure 12. Here, biasing resistor R1 is wired in a dc feedback mode between the base and collector, and is given a value of $R 2 \times h_{f e}$. The 'feedback' action is such that any shift in the output biasing point (due to variations in h_{fe}, temperature or component values) automatically causes a counter-change in the base-current biasing level, thus tending to cancel the original shift.
The Figure 12 circuit provides the same values of bandwidth and voltage gain as the Figure 11 design, buthas a lower total

Fig 15 Fixed gain $(=\times 10)$ common-emitter amplifier

Fig 18 Wideband amplifier
value of input impedance. This is because the ac feedback action of Figure 12 causes the apparent impedance of R1 (which shunts the 5k0 base impedance of $\operatorname{Tr} 1$) to be reduced by a factor of $200\left(=A_{v}\right)$, thus giving a total input impedance of $2 k 7$. If desired, the shunting effects of the biasing network can be eliminated by using two feedback resistors and ac-decoupling them, as shown in Figure 13.

Finally, if the ultimate in biasing stability is required, this can be obtained by using the potential-divider biasing technique shown in Figure 14. Here, potential divider R1-R2 sets a quiescent voltage slightly greater than $\mathrm{V}+/ 3$ on the base of Tr1, and 'voltage follower' action causes 600 mV less than this to appear on Tr 1 emitter. Thus, $V+/ 3$ is developed across 5 k 6 emitter resistor R3, and (since the emitter and collector currents of Tr1 are almost identical) a similar voltage is dropped across R4, which also has a value of 5 k 6 , thus setting the collector at a quiescent value of $2 V+/ 3$. Note that the R3 emitter resistor is ac-decoupled via C1, enabling the circuit to give a voltage gain of 46 dB to ac signals.

Circult variations

Figures 15 to 18 show some simple but very useful variations of the basic Figure 12 and Figure 14 common-emitter designs. Figure 15 shows how the Figure 14 design can be modified to give a fixed voltage gain of about $\times 10$. These designs rely on the fact that the common-emitter voltage gain equals the collector load impedance value (R4) divided by the effective 'emitter' impedance value. In Figure 14, the effective emitter impedance is that of the internal base-emitter

Fig 20 Alternative high-gain 2-stage amplifier

Fig 21 Bootstrapped high-gain amplifier

Fig 22 Common-base amplifier

Fig 23 Simple differential amplifier or longtailed pair

Fig 24 Phase splitter
junction, and equals $25 R$ at 1 mA . This circuit thus gives a voltage gain of $\times 200$.
In Figure 15, on the other hand, resistor R3 is decoupled by series-connected C2-R5, and the emitter impedance (at ac signal frequencies) thus equals the internal junction value in series with the parallelled values of R3 and R5. This works out at roughly 560R, thus giving a final voltage gain of about $\times 10$. Alternative gain values can be obtained by altering the R5 value.

Figure 16 shows a simple variation of the above design. In this case R3 is not decoupled, its impedance thus equalling the R4 value, and the circuit gives unity voltage gain. Note, however, that this circuit provides two unity-gain output signals, with the emitter output in phase with the input and the collector signal in anti-phase. This circuit thus acts as a unity-gain phase splitter.

Figure 17 shows an alternative way of varying the circuit gain. This design is a variation of Figure 12: it still gives 46 dB of voltage gain between Tr1 base and collector but feedback biasing resistor R3 is ac-shunted by R2, thus giving the Figure 17 circuit a base impedance of about 500R. R1 is wired in series between the input signal and Tr1 base, and thus (in conjunction with the 500R base impedance) gives a signal attenuation action between the input and base. The overall voltage gain of the circuit thus works out at roughly $\times 10$, or R2/R1. Alternative gain values can be obtained by altering the values of either R1 or R2.
Finally, Figure 18 shows how the Figure 12 design can be modified to give a wideband performance by simply wiring a direct-coupled emitter follower stage (Tr2) between Try collector and the output terminal.
It was pointed out earlier that Figure 12 has a maximum potential bandwidth of 1.5 MHz but in practice the shunting effects on R2 of stray output capacitance reduce the actual bandwidth to about 120 kHz . By buffering the output via Tr2 these shunting effects are reduced and the bandwidth is extended to several hundred kHz .

High-gain circuits

A 1-transistor common-emitter amplifier circuit cannot give a voltage gain significantly greater than 46 dB when using a resistive collector load. If a voltage gain greater than 46 dB is needed, a multitransistor circuit must be used. Figures 19 to 21 show three useful high-gain 2-transistor voltage amplifier circuits.
The Figure 19 circuit acts like a directcoupled pair of common-emitter amplifiers, with the output of Tr1 feeding directly into the base of Tr2. It gives an overall voltage gain of 76 dB , or about $\times 6,150$, but has an upper -3 dB frequency point of only 35 kHz .
Note that feedback biasing resistor R4
is fed from Tr2's ac-decoupled emitter (which 'follows' the quiescent collector voltage of Tr1) rather than directly from Tr1 collector, and that the bias circuit is thus effectively ac-decoupled. Figure 20 shows an alternative version of the above design, using a pnp output stage; the performance of this circuit is the same as that of Figure 19.
The Figure 21 circuit uses a very different way of giving a high voltage gain (about 66 dB , or $\times 2000$). In this case Tr1 is wired as a common-emitter amplifier with a split collector load (R2-R3), and Tr2 is wired as a commoncollector amplifier or emitter follower, and feeds the ac output signal (derived from Try collector) back to the R2-R3 junction via C3, thus 'bootstrapping' the value of R3 (as described last month) so that R3 acts as a near-infinite impedance to ac signals and Tr1 gives a very high voltage gain. The bandwidth of this circuit extends up to about 32 kHz , but the design gives an input impedance of only 330R.

Other designs

To conclude this edition of Data File, Figures 22 to 24 show the basic circuits of some other types of linear voltage amplifier. Figure 22 shows an example of a common-base amplifier, which gives a good wideband response. This circuit is biased in the same way as Figure 14.
Note, however, that in Figure 22 the base is ac-decoupled via C1, and the input signal is applied to the emitter via C3. The circuit has a very low input impedance (equal to that of the forward biased internal base-emitter junction), gives the same voltage gain as the common-emitter amplifier (about 46 dB), and gives zero phase shift between input and output.

Figure 23 shows the circuit of a socalled 'differential' amplifier or longtailed pair. The two transistors share a common emitter resistor (the 'tail'), and the circuit bias point is adjusted via RV1 so that the two transistors pass identical collector currents (giving zero difference between the collector voltages) under quiescent conditions.
The two transistors interact via the emitter tail, and the circuit action is such that the output signals (available from either collector) are proportional to the difference (the differential voltage) between the two input signals. If identical signals are applied to the two inputs, the circuit will (ideally) give zero output.
Finally, Figure 24 shows how the above circuit can be modified for use as a phase splitter, which provides two anti-phase outputs from a single-ended input signal. In this case the base of Tr 1 is simply ac-grounded via C 1 and the input signal is applied to the base of Tr2.
In next month's edition of Data File we'll take a look at transistor oscillators and multivibrator circuits.

£1 BAKERS DOZEN PACKS
Price per pack is $£ 1.00$. Order 12 you may choose another free. Items marked (sh) are not new but guaranteed ok.
$5-13$ amp ning main function boxes
$5-13$ anp fing man spuy toxas

 White flush mounting

- in flex x line ssintichos with noons
-mans tarisformers with $5 V 1 A$ seconduries
- Extension spasker cosb
ultra transmities and 2 recsivers with cina

ona hoid fixing and pood length
$1-6$ digit counter $12 V$

- key switch with key
$98-1$ matre lengths colow-raded connocting wins

6V aperatois

mita sich arials with 181 M wwo coils
-Mullard trytirstor wigger modie

- assspred knobs I Samoles

-25 watt pots 8 oh
25 watt p pots 1000

30A pund mounting shysok

- Ihemsiostat for tridye 1000 watts
- intra red fire element 1000
- motorised subd
$-2 \frac{1}{2}$ hours deley switch (s.

- slifey typer wiume control

- axtra thin scrow dinvers for instrumams
- plastic boxes with widows, idasal for intorupted bear switch

- socret swinch kit with difits
sockot covers (protect inquisitivn litite fingers) for twin $13 A$

- 12 W trip proof roluy - idesil for ara iobs

- 13 A fusad nad switched ipur for arfica mounting or can be remowd fram bax

-5 amp 3 pin flush sockets brown

- themostals, spindily soting - adiustabic rampe

12V solenoids, small with plung

- mains frenstorners 3.5 V tord bulbs
7^{7} reel to raid tape spools

MULIARD UNILEX AMPUFIERS
We are probably the only firm in the country with these now in
stock. Although only four watts per channel, thes reproduction. We now offer the 4 Mullard modules - i.e. Main powver unit (EP9002) Pre amp module (EP9001) and two amplifier
modules (EP9000) all for $£ 6.00$ plus $£ 2$ postage. For prices of modules (EP9000) all for $£ 6.00$ plus $£ 2$ postage. Fo
modules bought separately see TWO POUNERS.

CAR STARTER/CHARGER KIT

Flat Battery! Don't worry you will start your car in a few minutes.
with this unit - 250 wart transformer 20 amp rectifiers, case and all with this unit - 250 watt transformer 20 amp rectifiers, case and all
parts with data $£ 16.50$ or without case $£ 15,00$ post paid.

Ex-Electricity Board.
Guarameed 12 month

VENNER TMME SWITCH

Mains operated with 20 amp switch,
one on and one off per 24 hrs. repeats daily automatically correcting for the expgthening or shorening day. An it for only $£ 2.95$ without case, metal case - $£ 2.95$, adaptor kit to convert this into added advantage of up to 12 onvoffs per 24hrs. This makes an ideal controller for
the immersion heater. Price of adaptor the immersi,

SOUND TO LIGHT UNT

Complete kit of parts for a three channel sound to light unit Complete kir of pars for a three channel sound to ight unit
contoring over aco waats of tighting. Use this at tome if you
wish but it is pienty rugged enough for disco work. The unit is wish but it is plenty fugged enough for disco work. The unit is
housed in an attractive two tone metal case and has controis for each channel, and a master onoff. The audio input and output and
by $1 / 4^{\prime \prime}$ sockets and three panel mounting fuse holders provide thyristor protection. A four pin plug and socket facilitate ease of connmes. Special price is $\mathbf{£ 1 4 . 9 5}$ in kit form.

FROZEN PIPES

Can be avoiced by winding our heating cable around them - 15 Hundreds of other uses as it is waterproof and very fiexible.
Resistance 60 ohms

25A ELECTRICAL PROGRAMMER

kettle boiling as you wake - switch on lights to
ward off intruders - have a watm house to ward of intruders - have a warm house to come
home to. You can do all these and more. By a famous maker with 25 amp on/off switch.
Independent 60 minute memory jogger. Independent 60 minute

THE AMSTRAD STEREO TUNER

 this ready assembled unit is the ideal tuner for a music centre oan amplifier, it can also be quickly made into a personal stereo radio - easy to carry about and which will give you superb reception.
Other uses are a "get you to sleep radio", you could even take it
with you to use in the lounge when the rest of the family want to view programmes in which you are not interested. You can listen
to some music instead. to some music istead
Some of the features are: long wave band $115-170 \mathrm{KHz}$, medium
wave band $525-1650 \mathrm{KHz}$, FM band $87-108 \mathrm{MHz}$, mono, stereo \& AFC switchable, fully assembled and fully aligned. Full wiring up data showing you how to connect to amplifier or headphones and
details of suitable FM aerial (note ferrite rod aerial is included for medium and long wave bands). All made up on very compact OOffered at a fraction of its cost
only $£ 4.95$

Piease add post $£ 1.50$ for 1 or 3 for $£ 20$ post paid
2.5 Kw KIT Still available: $£ 4.95+£ 1.50$ post
or have 3 for $£ 16$ post paid.

CORDLESS TELEPHONES

TI'S FOR YOU-OU" even if you are in the bath, its an infinite approval or come and try one here. BT approved.
SOCKETS PLUGS ETC for BT phones
Master socket (has surge arrestor - ringing condenser etc) and take
B. T. plug . B.T. plug
Extension socket

Dual adaptors (2 from one socket)
Cord terminating with B.T. plug 3 metr
Kit for converting oid entry terminal box to new B.T. master socket, complete with 4 core cable, cable clips an 2BT extension sockets

J \& N BULL ELECTRICAL 128 PORTLAND ROAD, HOVE, BRIGHTON, SUSSEX BN3 59L

MAIL ORDER TERMS: Cash, P.O. or cheque with order. Orders

 inder $£ 20$ add $£ 1$ service charge. Monthly account orders accepterom schoois and public companies. Access a 8 /card orders accepted day or night. Haywards Heath (0444) 454563. Bulk
orders: phone for

 Clan Ellior sumpled

WO POUNDERS*
$2 P 1-24$ hour times switch with $2 \mathrm{on} / \mathrm{offs}$, an ideal hesting proyrammer precision with mercury switch and

Verisble and raversible 8-12v psu for model control
-24 voit pses with sepasate channois for stereo mada for Mullerd UNHLEX Amplifiers

PEESTEL
2P8 - Mains motor with pass box and
suitable for further spoed control
2PG - Tirse and set switch. Bexed, plass fronted and with knobs. Controls ip to 15 amps. Idsai to probrim tlactric haters
and assy to remove to convert to lowar voltages for higher earrents -Power emp moduia Mudiard Unillex EPSC00 (note sterco pro-mip module Uniisx 9001 is 60216
2P12-Disk or Tepe precision mator - has bslencead fotor and is rewarsithe 230 W
merip switch steys on for thr or 1 br depending on satting of greb 2 P 14 - Mury St
2 215 -mort Stop kit - when thrown omits piencing squawk
2 P17-2 rew pr minute mains driven motar with gese box, ideal to operate mirrox bell
2P18-Liguid/gas shut off valve mains solenoid operated
2P19-Disco switch-motor drives 6 or more 10 amp chan
chenge over micre switches $2 \mathrm{P} 20-20$ motres extension lead, 2 corr - ididaal most Bisch and Daccer garden
2P21-10 watt amplifier, Mullard module referenca 1173
2P22 - Motor driven switch 20 spes on or off effer puash
2P24 -Clockwork operated 12 hour switch $15 A 250 \mathrm{w}$ wh clutch
2P28-Counter raspettablo mains operested 3 digit
2P27-Goodmans Spasker 8 inch round Bohm 12 watt
2P28-Dill Pump - alwars useftul couples to any nake partablit drili
2P29
$2 P 29-24$ position Yaxiey switch contacts rated $5 \mathrm{~A}-\mathrm{i}$ spindio
$2 \mathrm{P} 31-4$ metres 38 way interconneting wire assy to strip
2 2P32 - Hot Wirt amp moter - $4 \frac{1}{2}$ round surfice mounting - odd but working and definitidy a bit of history ${ }^{2}$. 2 2P34-Solenciod Air Valve mains operated
2P35-Bettery charper kit comprising mains transtormer, full wow rectifier and
meter, suitabie for charging bv or $12 v$ metar, suitable for chasting bvor $12 v$
2P38-200 R.P.M. Geared Mains Motor 1" stack quite powertut, definitoly larpe enough to drive a rotating zerial or a tumblum for polishing stones etc. ${ }^{2 P 41}$-Liquid crystal digplay, 8 digit 13 mm bleck on silver.
 by G.E.C. Parfect order (nuust be coilected by appointmant as 12 th loma)
 2 P46-Our famous drill control kit complets and with preperred cass.
2P47-Joy switch kit complate as prowioushy sold.
2 P48-Talephtona ringing unit raducas mains to 50 volts and changes froquancy $2 P 49$ - Fire Alsm traek hise give niftr ringing tone.
2P51 - Sterro Headphorna smplifies, with per cmo
${ }_{2}^{2 P 54-2 \frac{1}{2} \text { kw. blow hanater section of coal or log offect fre, this is a shest mate }}$ assembly which hadds the elements, the moter with fan, and the lamp
holders snd bits wtich give the flickering fleme offort. Collect or add f 3 to cover plap
 both min
2P82-1 pair Gooomans 15 ohm speakers for Uriliox

rasottabis trips $4.5 A$ mains
2P87 - 1 12v-0-12v 2 amp mains transformer
2P69-1 250v-0-250v 80 mA \& 86.3 V 5 A meins trensform
1 F.in. trepe motor two speed snd reversiblif
$115 y$ Mat 5 hin mot
-1 poctest artio component approx
-18 hour timer, plugg into 13A socker
-1 sudax twooter partner to 5 P28 speaker
-1 instrument box with koy size $12^{* *} \times 4 \frac{1}{2}^{n}$ wide 8^{*} doep
Of meLE VB100 instrument panal in a mo wh wh wxires, it is the hear of mamy viawdigta systams including the Prastel unit we recamty stocked. recaive this, now, unused end complate axceal for 7 of the pleng in i.C's.
£5 POUNDERS*
12 volt submersible pump complete with a tap which when brought over the basin switches on the
Sound to light kit complete in case suitable for up to 750 watts. Silent sentinel ultra sonic transmitter and receive kit, complate. Dial indicator, measuras accurately down to .01 mm . "Joth
Worker.
250 watt isolating transformer to make your service bench affe, has vottage adj. taps, also as it has a 115 V tapping it can be used to safoly operate American or other 115 V equipmen
which is often only insulated to 115 V . Please add E 3 postage in
you can't coltect as this is a heavy itam.
6. 12 V alarm bell with heavy $6^{\prime \prime}$ gong, suitable for outside protected from direct rainfall. Ex GPO but in perfect order and guaranteed.
Tape punch and matching tape reader, not new but believed in perfect working order if not so we would fepeir or replace within
$i 2$ months. Please add $£ 2.50$ postage. Sensitive voltmeter relay, this consists of a $4 \frac{1}{2} \frac{1}{4}^{\prime 2}$ dia moving co
meter with electronics (we will supply cct. dig.) over $£ 120$ each they are new and still in maker's boxes.
9. Box of 25 fluorescent tubes 40 wart daylight or warm whit postage.
Box of 2518^{*} fluorescent tubes essorted colours, please collect or add $£ 2$ postage
24×8 ft $85-120$ watt warm white tubes. Ideal plant growing Colfect or send open cheque to cover carriage.
Equipment cooling fan - minin snail type mains operated stream of air - ex computer. Collect or add $£ 21$ post
Uniselector 360 degrees rosation, 5 poles, 50 ways, 50 V coil
Washing machine water pump, main motor driven so suitable for many applications.
Control panel case, conventional design with hinged front and $15^{*} \times 10^{0} \times 5 \frac{1}{2}^{1^{*}}$ wall mounting. Two kits:
receivers.

Do you recall the article on aerial design I had published in the April 1985 issue of Radio \& Electronics World? You do? Great! That saves me talking to myself. Well, now that you've cut up your mum's bread board to make the wooden blocks I wrote about, I'll give you something to do with them. I'm going to describe a small 2 m quad that you can build using the wooden blocks and a few other bits and pieces. It will only cost a couple of pounds to build, an amount I'm sure all of you can afford.

The nuts and bolts of the matter

To build the quad you will need:
Five of the aforementioned wooden blocks, drilled.
A wooden broom handle (straight, please unless you're interested in moon bounce).
Twenty 16 in lengths of $1 / 4$ in dowel.
A small reel of 26 swg enamelled copper wire.
A strip of 5 amp rated connector block (we need one double and four single units, remove the metal innards of the four singles.)
A small tin of weather varnish plus a brush.
Five wood screws to lock blocks to boom Twenty panel pins and four press tacks. A woodeh pole to mount the antenna, long enough to clear the elements. A clamp to affix the pole to the boom. Co-ax cable as required.
Got all that? If not, off you go to Woolies and get it. I'll have none of that 'I didn't know' business in this project.
The antenna, simple to construct, is small, light and, if you so desire, portable.

Construction details

Firstly give all the parts to be used in the project, including the connectors, a good coat of varnish. This will protect them from the elements, and gives the wood a nice shine to boot. When that's done, and the wool from your sleeve removed from the varnish, allow the bits to dry.

To obtain the correct spacing for the elements, measure and mark the boom from what will be the reflector end. First make a mark for the centre of the reflector's block, then from that mark measure the following: 16, 29, 37 and 45 inches.

Fig 1 Setting up the boom

CAN YOU 'EAR ME, MOOTHER? J M Stevenson presents α 5 -element quad for 2 m on the cheap

Thus the space between the reflector and the driven element will be 16 inches; between the driven element and the first director 13 inches; between the first and second director 8 inches; and between the third and fourth director also 8 inches.

If your pencil broke during that operation, don't worry, you won't be needing it again.

Next cut the 26swg wire to the following lengths:
Reflector length - 87 inches
Driven element length - 83 inches
Director lengths - 77 inches.
When the wire is cut, scrape the coating from the ends of the wires: about $1 / 4$ inch is needed. This allows continuity when the wire ends are screwed down in the connector block.
The arms for the quad are 16 inch lengths of $1 / 4$ inch dowel, and you will need to make 20 such arms.

Getting it together

Making the elements isn't a difficult
job, as you will see. Firstly, lay a wooden block flat on the workbench and push four dowel rods into the holes drilled in the quad configuration. Use the four press pins to temporarily position the wire on the arms, making sure that all sides are equal. When this has been done to your satisfaction, drill a small hole in each arm at those points and thread the 26swg wire through. Scrape the coating from the ends of the wire, and join it together using a single connector.

Be gentle

When the elements are built, gently pull each arm away from the centre to make the wire taut, and secure the arm with a panel pin through the block. Don't overdo the pulling, otherwise you may bend the dowel rods.
Now the elements are built, they can be slid onto their marks on the boom. When satisfied that all is correct, secure the blocks with the wood screws.

Figure 4 shows how to position the coax cable on the driven element. The

Fig 2 Joining the element wire
antenna is fed at a point approximately 1 inch along from the lower left-hand dowel rod, when looking through the reflector. Note that the co-ax cable comes into the block from the top. Tape the cable along the arm and down, in a fairly loose loop, to the support pole where it is again secured. This eliminates any stress on the arm itself, and prevents one tripping over loose co-ax.

Mounting the quad on the rotator

A length of ali tube can be joined to the support pole, to address the rotator. Remember the support pole must be made of wood or plastic. It has been my experience with this type of quad that they don't like metal poles passing between their elements ... say no more!
The antenna shouldn't need to be tuned as the SWR is quite flat, not above 1.4:1. Moving the feed point slightly either way will affect the SWR reading, if adjustment is needed.
This is a good project for those among us who do not have a lot of QRK to throw around. It is cheap to make, simple to construct and it works well. When I first built this antenna, I set it up in my shack tied to an old music stand (helps with the harmonics!) and pointed its nose in the direction of Dover, seventy odd miles
from my location in Brentwood.
With 1 watt I opened the Dover repeater, and had a nice QSO with a fellow amateur who was out walking his dog. I don't think it had passed the RAE (I didn't like to ask), but its master gave me a Q5 report, which pleased me.When one considers I couldn't even hear Dover with the bought Yagi I was using at the time, this seems most acceptable.

Once the quad was up on the rotator, it
got me into Germany, France, Holland and the Netherlands on SSB, and into Birmingham on FM, among other places. It has proved its worth time and time again.
Remember it can break down and be packed away in the car boot, which makes it a handy implement for the average camper. The only complaint 1 have is that I can't pack it away in the saddle bag of my push-bike!

BEW

Fig 5 Driven element feed point

047460521

INTEGRATED CIRCUITS

 -MEMICOONDUCTORS

\section*{| STK437 | $\mathbf{7 . 9 5}$ |
| :--- | ---: |
| STK439 | 7.95 |
| STK461 | 11.50 |}

NEW BRANDED CATHODE RAY TUBES

A1865/20		$0^{014.173 G R}$	55.00	M19.103W	55.00
AW3611	25.00	D14.181GG/98	65.00 55.0	M23.10GH	S5.00
CME822W	19.00	D14-191GM	33.00	M23.112GV	555.00
CME1428GH	25.00	D14-18 GM 50	39.00	M23-112GW	53.00
CME1423W	45.00	O14-182GH	39.00	M23-112KA	55.00
CME1523W	39.00	D14-2008E	89.00	M23-112LD	35.00
CME1431GH	30.00	D14-200GA50	85.00	M24-120GM	
CME14316H		Di4-200GM	75.00	M24.120	59.00
	39.00	O14-2i0GH	75.00	M 24 + 20	9.00
	4.00	014-270GH/50	75.00	M 24.121 GH	.
CME2325W	45	D14-310W	110.00	M28-12	.
CME3128W	4.0	D14-320GH	85.00	M28-13LC	00
CME3132GH	4.80	D14-340GH	45.00	M28.13L	.
CME3155W	4.	D14-340kA	45.00	M2-136	
CRE14	25.00	-6,-00G	65.00	M28-131GR	53.00
CV429	99.	-16-100GH/6	8.85	M28-133GH	35.00
CV1450	35.	-16-100GH/6	85.00	M31-101GH	35.00
526	19.		6.00	M31.822GR	55.00
CV2185		D19150G	65.00	M31-1826V	33.00
	19.00	${ }^{021-10 G H}$	6.500	M31-184W	65.00
CV2193		${ }^{\text {D }}$ B 36	355.00	M33-184GH	65.00
CV519	${ }^{85.00}$	${ }^{\text {D }}$ 87 36	55.00	M31-184831	85.00
CV5320 CVX 389	${ }_{55}^{85.00}$	DG75	55.00	H	55.00
D9.10GM		DG732	45.00	M31-190GR	35.00
D10.210GH	45.00	$\mathrm{OH}^{\text {H }}$ 91	35.00	M31-190	
D $10.210 \mathrm{GH688}$	\$5.00	$\mathrm{OH}^{\text {P7,91 }}$	45.00	M31-191	55.00
D10.230GH	35.00	${ }_{\text {DP7 }} 6$	${ }_{3550}^{35.00}$	M31-220W	50.00
D10-230GM	35.00	ON1378	35.00	M31-270GY	65.00 6500
${ }^{\text {D13-30GH }}$	55.00 4.50	${ }^{\text {F16-101GM }}$	75.00	M31-2716 W	55.00
		F16-101LD	75.00	M31-271W	65.00
Di3-4/GH/26	6.500	${ }^{\text {F2l-130GR }}$	75.00	M38-941 ${ }^{\text {W }}$	
	55.00	F31-10GM	75.00	M36.170LG	5.00
D13-51GM/26	${ }^{35.00}$	F31-10GR	75.00		c5.00 050
013-4506H/01	535	F31-10LC	75.00	M33-120WA	5.00
${ }_{0} 133600 \mathrm{CM}^{26}$	55.00	F31-1220	${ }_{75.00}$	M38-121GHR	65.00
${ }^{\text {D13-6 }} 10 \mathrm{GH}$	50.00	${ }_{\text {F31-13GR }}$	75.00	${ }_{\text {M }}$	${ }_{65.00}^{55.00}$
D 13611 GH $013-611 \mathrm{M}$	59.00	F31-13LD	75.00	M38-140 LA	. 0
013.630 GH	59.00	${ }_{\text {F41-123LC }}$	$\begin{array}{r}75.00 \\ 185.00 \\ \hline\end{array}$	M $38-1 / 42 L A$	65.00
O14-150GH	75.00	F41-141LG	185.	M38-344P39	.00
014-150GM	75.00	${ }_{4}{ }_{4}$	185:00	M40-120W	59.00
Dit-172G/84	59.00	M7-120W		M43-12LG/01	${ }^{65} 5.00$
D14-172GV	55.00	M 14.100 LC	${ }_{45.00}$	M44-1202C	65.00
14-173GH	55.00	M17-151GVR	175.00	M 50	S5500
D14-1736M	53.00	M7-151GR	175.00	M50-120\% ${ }^{\text {P }}$	65.0

P.M. COMPONENTS LTD SELECTRON HOUSE SPRINGHEAD ENTERPRISE PARK, SPRINGHEAD ROAD
 CRAVESEND, KENT DA11 8HD
 TELEX
 VISA 966371 TOS PM
 A SELECTION FROM OUR

If your bidet's bubbling over, you'll want to know before it starts dripping into your cornflakes Terry Pinnell has the answer

Domestic disasters are mercifully few and far between in our household. One was that time the ceiling fell in. Well, not the entire ceiling, one corner of it, but by the time we had paid for replastering and repainting, I recall regarding it as definitely worthy of the 'disaster' label.
The cause was distinctly out of proportion to the effect. A simple matter of water seeping through the sealing around the edge of a bath and through the other kind of ceiling down below. Anyway, repairs complete, my mind turned to future avoidance. Ideally I wanted a more helpful warning of trouble than the appearance of another ominous stain.

At last, a real motive to make an electronic water sensor!
The first step was to do a little research and dig up some suitable designs from the available literature. Altogether I
found 13 circuits, 6 from books and 7 from old magazines. These fell into two reasonably distinct categories, as follows.

Rain or water alarms

These typically detected water present in substantial volume. Applications included a bath reaching a certain level, rain falling on an outdoor strip of Veroboard, an overflowing washing machine, a flooded bilge in a boat, and so on.
With one exception, all ten of the circuits in this category were based on the principle shown as a block diagram in Figure 1.
In the presence of water or any other liquid which conducts adequately, the sensor, usually just a pair of wires or other suitable probes, passes sufficient current to bias a transistor into the 'on' state, or enable a CMOS or TTL gate,

Fig 1 Block diagram of typical water alarm

Fig 2 The experimental ac circuit
thereby activating an oscillator circuit. This drives a suitable loudspeaker, typically of around 64 to 80 ohms.
Variations on this theme were mainly in the type of oscillator circuit, the most popular being the complementary astable, using one npn and one pnp transistor. Some circuits activated a relay rather than an audio oscillator, allowing bells, buzzers or lights to become the output signal.

An exception

The exception I mentioned was interesting because it was the only one which acknowledged a possible snag with the usual type of circuit. This is the tendency for probes using direct current to become corroded over a longish period. This circuit therefore used ac instead, which its author claimed drastically reduced corrosion due to the electrolytic effect.
It employed a 4093, which I did not have in my stock of CMOS ICs, so I redesigned it for the more popular 4011 or 4001, so that I could experiment a little with it. The circuit is shown in Figure 2.
As you see I have only shown the first part of the circuit, ie up to the point at which an output is produced which can be used to activate either a simple low power oscillator or a relay as before.

Operation is straightforward. The first two gates, IC1a and IC1b, are used as inverters (ie their inputs are connected directly together) and with R1, R2 and C1 form a simple oscillator. The frequency of this did not appear at all critical; I used components at hand and these gave about 3 kHz . This, our ac signal, is passed via an isolating capacitor to one 'side' of the sensor, eg one of two wires immersed in the container or whatever.

If there is a sufficiently conductive path due to the presence of liquid, this signal is passed on to the next circuit element, a doubler/rectifier. This produces a dc signal from the ac one. So if the amplitude of the ac signal passing through is large enough, a high voltage (ie close to the 9 V supply) will be passed on to the next element, a Schmitt trigger.

Briefly, all this does is produce a snapaction' effect, so that as soon as the dc voltage at its input (the left-hand side of R4) reaches a certain level, say 4 or 5 V , its output (pin 10 of IC1) will suddenly change from 0 V to 9 V . This high output of the Schmitt can then be used in precisely the same way as before to activate an audio oscillator or relay, etc.

Moisture detectors

The three examples of these were all concerned with testing indoor or outdoor soil conditions. This category was potentially of most interest for my own application, as I wanted to spring into action when things got damp, not wet.

However, none of them at firstsight did all that I wanted. This prompted me to list
the functions \mid required in my own design:
Battery operated - bathroom!
Negligible quiescent current consumption - so that 1 could forget about changing the battery for a year or so.
No action required - ie able to leave it switched on. I expected this to be easy to achieve if consumption was negligible. Note that this doesn't mean that an on/off switch was unnecessary, because it still needs switching off after the alarm has sounded.
Audible alarm - should be loud enough to be heard downstairs in reasonably quiet conditions (which I assumed would occur for a few seconds or so at some time before the battery ran out).
Reliable switching - one characteristic of most of the circuits I had seen was their inability to deal properly with the 'intermediate' condition I wanted, when the bathroom floor was neither flooded nor bone dry. What I did not want was for it to switch on and off irritatingly when conditions were in this half and half stage, but to give a nice positive indication at the first sign of damp. Clearly a case for a Schmitt trigger.
Simple and cheap - these usually go together (although common exceptions are specialised easy to use ICs, which tend to be pricey).

A happy state

The circuit evolved to meet my requirements is shown in Figure 3. When a happy state of dryness prevails under the bath, the resistance across the sensor is very high, ie many megohms, and as the sensor and R1 are arranged as a potential divider across the 9 V supply, the input voltage at the left of R2 is close to zero.
IC1a and IC1b are two gates of a 4011 CMOS IC arranged as a Schmitt trigger.
Any Schmitt trigger has the important characteristic that its output changes abruptly from low to high when its input increases above a certain voltage,

Fig 3 Final circuit of the damp detector
usually called the upper trip level. The output changes abruptly back to low again if the input voltage is reduced below a lower trip level.
The key point is that this lower trip level is lower than the upper trip level, so that if the circuit swings high at, say, 6 volts input, it will only swing low again if the input voltage goes below, say, 5 V . This difference, 1 V in this imaginary example, is called hysteresis.
It is a kind of backlash effect, and in our damp detector ensures that if the input voltage gradually increases from close to zero up to the trigger point, ie up to the upper trip level, due to the insidious leakage of water round the edge of the bath, then the alarm will go on and stay on until someone does something about it, rather than go on and off intermittently as it dries out a little then gets damper and so on.

Schmitts can be made out of discrete transistors (bipolar or FETs), TTL logic ICs, 555 timer ICs or 741 op amps. In my damp detector the specification for negligible quiescent current consumption prompted me to choose CMOS.

The hysteresis, H , of a simple CMOS Schmitt trigger is very easy to calculate:
$H=V_{\text {supply }} \times R_{\text {input }} \div R_{\text {feedback }}$

In our circuit $\mathrm{R}_{\text {input }}$ is 1 M and $\mathrm{R}_{\text {feedback }}$ is 12 M , so
$\mathrm{H}=9 \times 1 \div 12=0.75 \mathrm{~V}$
The upper and lower trip levels would then be evenly spaced above and below the gate transition voltage which is roughly half the supply voltage.
In the specific case of our damp detector we could therefore expect the output of the Schmitt to swing high when the input was approximately $4.5+0.4$, ie 4.9 V , and to swing low again if the input goes below $4.5-0.4$, ie 4.1V.

Some variation

Actually the transition voltages of individual IC chips varies a bit, depending on manufacturing tolerances etc, so don't expect a precise correspondence of theory and practice.
When testing the finished circuit the actual values I measured were as follows:
Upper trip level $=5.74 \mathrm{~V}$
Lower trip level $=4.77 \mathrm{~V}$
So the actual hysteresis was a little higher than the .75 V calculated (but I recently measured the actual supply voltage of the PP9 battery, which has been installed for nearly two years, as 9.5 V , and my 12 M resistor proves to be 11.85 M .

Feeding these values into the formula above yields a result of .8 V hysteresis, which is a bit closer).
Incidentally, remember to use a high impedance meter (10 M or more) when taking such voltage readings, as the results will otherwise be misleading.
To test the circuit before entrusting it to its lonely vigil in the bathroom, kitchen, garage or wherever, you can simply use a high value potentiometer in place of the final sensor. I used a 1.5 M pot, and by carefully increasing it measured the two 'trip points' as:
Upper trip point $=650 \mathrm{k}$ (output goes high and alarm sounds).
Lower trip point $=1 \mathrm{M}$ (output goes low and alarm stops)
Remember to remove at least one side of the test pot to measure its resistance after detecting the switch of output.
The Schmitt output is used to enable or disable (ie to start or stop) the oscillator,

Fig 4 Schmitt trigger operation

Fig 5 Sensor wiring
made out of the other two gates of our 4011 chip.

CMOS gated oscillator

If you look back at Figure 2, the CMOS oscillator there was a simple, ungated version; when power was applied it oscillated. In Figure 3, on the other hand, pin 8 is used as the enabling pin. When this is low, the oscillator is inactive; when pin 8 is high, however, oscillation occurs. Its frequency is determined by the values of R4, R5 and C1, and in my damp detector was about 1 kHz , chosen after experiment.
When inactive it is of course important that the oscillator output from pin 11 is low. If it was high then a dc current would flow through the speaker, as Tr1 would be on.

One other difference between this CMOS oscillator and that in Figure 2 is that pin 13 goes to $V+$. Actually this is immaterial; I could equally well have connected pins 12 and 13 together... I seem to recall wiring it like this out of curiosity.

Output stage

It probably seems generous to call the five remaining components a 'stage', but logically that is what they constitute. Trt is switched on and off by the CMOS oscillator output, via the potential divider R6 and R7, which provides additional current limiting as well as ensuring that Tr1 goes fully off when pin 11 is low, thus achieving our design aim of a negligible standby current.
Tr1 drives the speaker, which has a
sufficiently high resistance to limit the collector current through the transistor to its permissible level (when Tr1 is on most of $V+$ appears across the speaker, so the maximum current at those times would be about $9 \div 75$, around 120 mA).
D1 protects Tr1 against high switching voltages induced in the speaker windings. I've seen many circuits which do not include this feature, so 1 remain uncertain just how necessary it really is; better safe than sorry, anyway, and a 1N4148 or similar costs next to nothing.
There is nothing critical about any of these components and you could cheerfully use any reasonably similar values you may have to hand. If you want to try alow impedance speaker, however, say an 8 ohm miniature, then you should use a small power transistor for Tr1, with an adequate current and power dissipation rating (you may then find that it gets insufficient base current through R6, so experimenting may be necessary).

Construction

I used a small piece of 0.1 inch Veroboard in constructing the damp detector. The finer details of construction will depend on the size and shape of your choice of case and speaker. You may even want to use a smaller battery if space is critical.

Use a holder for IC1, and insert the chip last to minimise the risk of damage. I use a holder for all ICs now, so that on those regrettably frequent occasions that my projects don't work (here speaks an honest man! - Ed), I can easily swap the chips without the misery of desoldering.

The case I used was a little unusual, being a piece of plastic drain-pipe with press-fit ends. I bought quite a length of this from a local DIY shop, together with a dozen end pieces, and used it on several projects. At the time it was pretty economical, but l'm not sure about current prices. The end pieces are the constraining factor, because although insignificant at the ends of a 20 foot length of guttering,they start to look pricey on an 8 inch case.
A really nice feature of this Marley section is that it is a perfect fit for PP9 batteries, as you can see from the photograph on the previous page.
Although the word 'sensor' is used in the circuit diagram, in practice of course there can be any number of them wired in parallel. I used five. Four were placed at various strategic points under the bath, and the other was a last minute decision to build in a couple of wires to the underside of the case, so that obvious 'local' flooding would not be overlooked.
A couple of my sensors were just lengths of bare wire laid close together on top of the plasterboard. The others were pieces of Veroboard a few inches square, with alternate rows wired together. These were placed copper side down in spots likely to get the first of any future leaks.
Two wires lead from each sensor, one being connected in common at a convenient point under the enclosed bath. All five resulting wires were then connected inside the case, together with the pair from the in-built probe, and taken to the Veroboard, as shown in Figure 5.
The reason for keeping one of each of the pair of wires separate until they are all eventually connected inside the unit itself was so that the resistance of each one could be measured conveniently, without having to take the side panel off the bath, in the event of the alarm being triggered. This has proved useful in practice, because short of an out and out flood it is by no means always clear where the damp spot is. A quick check with the ohmmeter soon narrows it down.

Conclusions

The damp detector has been in place for about four years now and has probably been activated in anger about three times during that period, ie excluding spillages from the wash basin or direct hits from the shower. On each of those three occasions close examination indicated worn sealant, precisely the original cause, and it was promptly renewed (usually by my wife, I have to admit; my only attempt proved messy to say the least). So I think it can be claimed to have justified its existence.
Very recently it gave its first false alarm, ultimately traced to a probe becoming a bit corroded. The next model will be an ac version!
[REW

Hitachi Oscilloscopes provide the quality and performance that you'd expect from such a famous name, with a newly-extended 14 model range that represents the best value for money available anywhere.
V-212/222 20 MHz Dual Trace $\quad V-650 \quad 60 \mathrm{MHz}$ Dual Timebase V-223 20 MHz Sweep Delay \quad V-1050 100 MHz Quad Trace (ill (illustrated)
V. $209 \quad 20 \mathrm{MHz}$ Mini-Portable

V-422 40 MHz Dual Trace
V-423 40 MHz Sweep Delay V-1070 100 MHz Four Channel V- $1100 \quad 100 \mathrm{MHz}$ DMM/Counter V-I34 10 MHz Tube Storage VC-6015, 10 MHz Digital Storage

Prices start at $£ 299$ plus vat (20 MHz dual trace) including a 2 yr . warranty. We hold the range in stock for immediate delivery.
For colour brochure giving specifications and prices ring (0480) 63570 Thurlby-Reltech, 46 High Street, Solihull, W.Midlands, B91 3TB.

AUDIO MODULES

For all PA discos, hi-fi \& musical applications
*Rugged and reliable * Exceptional audio performance * Full installation data supplied * Immediate despatch * Complete range of match PSU's, pre-amps, protection and bridging modules also available (SAE for lists) *

TYPE	OUTPUT	KIT	BUILT
BI-POLAR	$50-100 \mathrm{~W}$	$£ 8.75$	$£ 10.95$
BI-POLAR	$100-200 \mathrm{~W}$	$£ 10.95$	$£ 14.95$
BI-POLAR	$200-300 \mathrm{~W}$	$£ 19.75$	$£ 24.50$
MOS-FET	$100-150 \mathrm{~W}$	N/A	$£ 19.95$
MOS-FET	$200-300 \mathrm{~W}$	N/A	$£ 32.95$
MOS-FET	$275-475 \mathrm{~W}$	N/A	$£ 54.50$

Prices include VAT. Add $£ 1.75$ P\&P.
RAK, Rosewood House, Bridge Road, Downham Market, Norfolk, PE38 0AE (0366)-382614

The

 Suiply Company

Carbon Film resistors $1 / 4 \mathrm{~W} 5 \%$ E24 series 0.51 R to 10MO (except 7M5) .. $1 p$
$\ldots 7$ 100 off per value -75 p, even hundreds per value totalling 1000 . £7.00 Metal Film resistors $1 / 4 \mathrm{~W}$ 10R to 1 MO 5\% E12 series - $2 \mathrm{p}, 1 \%$ E24 series ... $\ldots . .3 p$ Mixed metal/carbon film resistors $1 / 2 \mathrm{~W}$ E24 series 1RO to 10 MO $11 / 2 p$ 1 watt mixed metal/Carbon Film 5% E12 series 10 RO to 10 Megohms $5 p$ Miniature polyester capacitors $\mathbf{2 5 0 V}$ working for vertical mounting 01, 015, 022, 033, 047, 0684 p. 015 p. 015 . 022 pp. $0.33 \& 0.47$.

Mylar (polyester) capacitors 100 V working E12 series vertical mounting 1000p to 8200 p - 3p. 01 to $068 \mathrm{mfd}-4$ p. 0.15 p. 0.12 \& 0.15 .

Subminiature ceramic plate capacitors 100 V wkg vertical mountings. E12 series
$2 \% 1.8$ pf to 47 pf - 3p. $2 \% 56$ pf to 330 pf - 4p. 10\% 390p - 4700p 4 p

Polystyrene capacitors $\mathbf{6 3 V}$ working E12 series long axial wires

10 pf to $820 \mathrm{pf}-3 \mathrm{p} .1000 \mathrm{pf}$ to $10,000 \mathrm{pf}-4 \mathrm{p} .12,000 \mathrm{pf}$ \qquad
741 Op Amp - 20p. 555 Timer
cmos 4001-20p. 4011 -22p. 4017
DIODES (piv/amps)
75/25mA 1N4148 2p. 800/1A 1N40066p. 400/3A 1N5404 14p. 115/15mA OA91..........6p 100/1A 1N4002 4p. 1000/1A 1N40077p. 60/1.5A S1M1 5p. 100/1A bridge.................. 25 p 400/1A 1N4004 5p. 1250/1A BY127 10p. 30/45m A OA90 6p. 30/15A OA47.... Zener diodes E24 series 3 V 3 to $33 \mathrm{~V} 400 \mathrm{~mW}-8 \mathrm{p}$. 1 watt. \qquad . $.8 p$
$12 p$ LED's 3 \& 5 mm Red 10 p . Green, Yellow 14 p . Grommets $3 \mathrm{~mm}-1 / 2 \mathrm{p}, 5 \mathrm{~mm}$.. 12 p LED's $3 \& 5 \mathrm{~mm}$ Red 10p. Green, Yellow 14 p . Grommets $3 \mathrm{~mm}-1 / 2 \mathrm{p}, 5 \mathrm{~mm}$............ 2 p
20 mm fuses 100 mA to 5 A Q/blow 5 p . A/surge 8 p . Holders pc or chassis......... 5 p High speed pc drills $0.8,1.0,1.3,1.5,2.0 \mathrm{~m}-22 \mathrm{p}$. Machines 12 V dc HELPING HANDS 6 ball joints and 2 croc clips to hold awkward jobs AA/HP7 Nicad rechargeable cells $£ 1.50$ pair. Universal charger unit $£ 6.50$ Glass reed switches wih single pole make contacts -8p. Magnets .. 12 p RAnges of aluminium \& tantalum electrolytic caps at competitive prices. All prices are inclusive of VAT. Postage 15p (free over £5). Lists Free.

THE CR SUPPLY CO
 127 Chesterfield Rd, Sheffield S8 ORN

Return posting

OHITELECHONICS

'VISIT SCOTLAND'S NEWEST COMPONENTS SHOP'.

We stock a wide range of general electronic components, send now for our 21 page catalogue price $20 p+12 p$ p\&p or call at the shop Mon-Sat 9.00am6.00pm at:

Tel: 031-6672611 Edingburgh, EH16 5DX

프 FIELD ELECTRIC MTD
 3 SHENLEY RD, BOREHAM WOOD, HERTS WD6 1AA Tel: 01-953 6009

OFFICIAL ORDERS/OVERSEAS ENOUIRIES WELCOME/TELEPHONE ORDERS ACCEPTED. OPEN5 DAYS 9AM/5PM. PLEASE RING FORC/PDETALS NOT SHOWN. ALL PRICESINC 15% VAT

January was, in general, an inactive month for DX-TV, a fact reflected by the log reports. Like most months during the winter there were one or two highlights, the most notable being a sporadic-E opening on the 22 nd . It started during the afternoon and sustained signals were reported as lasting for well over an hour.
Reception was from the south-east, with test transmissions from Yugoslavia on channel E3 and cartoons from Italy on channel IA. Signals were also present on channels R1 and R2 from 1545, but unfortunately programmes were in progress, making station identification virtually impossible. The most likely source was Hungary, from the high power transmitters at Budapest and Pecs.
The Quadrantids meteor shower produced intense activity during the month on Band I frequencies. The best days were the 3rd and 4th. Unfortunately, most 'pings' were of programmes with very few test cards or identification captions. However, not all reception via meteor shower was of short duration. Some activity lasted for twenty seconds or more, creating the effect of messy and patchy sporadic-E propagation.
Reception via enhanced tropospheric conditions was virtually non-existent for most of the month. It would appear that a couple of French stations did penetrate as far north as Leeds on the 9th!

DX-TV log for January

The following rather sparse log shows reception conditions noted by the authors in Derby. It seems typical of most other enthusiasts' results elsewhere in the UK.
2/1/86: CST (Czechoslovakia) on channel R1 with the 'EZO' electronically generated test pattern bearing the 'RS-KH' identification and an unidentified transmission on R1 consisting of a female announcer.
3/1/86: Frantic áctivity via meteor shower but only on programmes. 4/1/86: Further meteor shower activity but, again, only programmes were noted, making positive station identification difficult.
7/1/86: Unidentified feature film noted on channel R1 via short duration meteor shower activity.
10/1/86: Danmarks Radio (DR-Denmark) on channel E3 from the Fyn transmitter showing the PM5534 test card and the identification 'DR DANMARK'. CST on R2 with the 'RS-KH' test card.
12/1/86: SR-1 (Sweden) on channel E2 radiating the 'TV1 SVERIGE' PM5534 test card. Unidentified programme noted on channel R2.
13/1/86: Unidentified caption on channels E3 and E4 consisting of a figure or head in the centre of the screen with two fairly wide dark stripes either side. This could have been some form of opening caption. Did anyone else see this? 19/1/86: Unidentified cartoon received at 0954 on channels E2 and E3.
22/1/86: Unidentified female announcer (not from TSS-Russia) on R1 and R2. The signal faded before the appearance of an

DX.TV RECEPTION REPORTS

Compiled by Keith Hamer and Garry Smith
identification caption or programme credits. JRT (Yugoslavia) on E3 with no less than three test cards. RAI (Italy) on IA with cartoons, including Popeye. JRT on E4 showing a 'Studio Zagreb' caption. This was followed by Sportski Program which featured a basketball match.

Watch those test cards

The start of the 1986 sporadic-E season is only a few weeks away. A close watch on any test card identification should be maintained, as it may provide a clue as to the transmitter of origin. Unfortunately some countries carry a national identification. For example, Sweden radiates the 'TV1 SVERIGE' inscription on their PM5534 test card from all transmitters in Band I, thus making it practically impossible to ascertain the exact source of reception.
The Yugoslavian reception noted on January 22nd provided a good example of how useful regional identifications can be. The first JRT test card to be received bore the inscription 'JRT BGRD' in the lower black rectangle of the PM5544. This indicated that the studios at Beograd (Belgrade) were responsible for its origination. The nearest channel E3 transmitter to Beograd is Kapaonik with an ERP of 50 kW . A co-channel test card appeared carrying the identification 'RTV LJNA'. This later switched to 'RTV' at the top and 'LJUBBLJANA' at the bottom. The nearest E3 outlet to Ljubljana is at Kum in the far north of the country. Its ERP is also 50 kW .
Possibly the best form of identification is used by NRK in Norway. The name of the actual transmitter is normally included on the PM5534 and thus provides positive identification. It reminds us of the good old days in the UK when the ITA, as it was then called, included details of the transmitter site at the bottom of test card ' D ' during the mid-sixties.

Reception reports

Andy Webster of Billinge, near Wigan, telephoned to say that January had been the bleakest month for TV DX. The reason is quite simple; his aerials came down during severe gales earlier in the year. Andy reported that the $11 / 2$ in diameter mast carrying the aerials had snapped just above the rotator, bringing the whole lot down onto the roof. His Band I beam was clamped approximately
six inches above the rotator, with the Band III and UHF arrays above this. We feel that the Band I clamp would have been in a better position immediately above the rotator. This may have helped to prevent sway in the beam from exerting strain on the mast. We have adopted this idea on several systems, so far without any problems.

Lunchtime loggings

Several lunchtime test cards have been logged by Simon Hamer of New Radnor in Powys during the month. The Telefunken TO5 monoscopic test card appeared from Austria on channel E2a on the 5th. This particular monochrome test card has been used for many years and carries the identification 'ORF FS1'. The FuBK test pattern from the West German channel E2 transmitter at Grünten was resolved on the 9th. This outlet radiates programmes from the BR service.
An interesting pattern from the south on channel E2 was logged by Simon on the 12th. It was a chessboard pattern, similar to the one used by TVE in Spain. This pattern hasn't been seen very much in recent times. Perhaps the colour bar pattern generator had packed in!
Iain Menzies of Aberdeen also saw lots of DX via meteor shower on the 3rd. The following day, while playing with his tuner, he heard a very strong vision buzz on the French L3 channel in Band I at 1350GMT.
Auroral activity was present on the 6th (an aurora was in evidence 27 days earlier) resulting in signals from Norway on channels E2 and E3, and Russia on R2. The 11th proved interesting, with performing bears on push bikes at 1630 on R1 and R2. The programme is thought to have originated in Hungary.
Norway on E2 and Russia on R1 were logged via sporadic-E on the 21st at 1950, while on the 22nd lain noted programmes from RAI-Italy on channel IA with a carrier frequency of 53.745 MHz . Presumably he was using a scanner to be aware of this offset.
Rijn Muntjewerff of Beemster in the Netherlands has forwarded his impressive log which covers the tropospheric opening noted last October. The entries seem endless, with many Russian Band III and UHF transmissions. One of the recently opened Danish local stations came through on channel E54, fortunately on test card. Rijn's sporadic-E

NEW 'multi-4 FROM LABGEAR - This UHF Wideband Amplifier is designed to serve directly up to 4 UHF Television sets with a four times (12dB) increase in signal strength on each of it's four outtets, with a low noise figure of only 1.8 dB . This unit is fully weatherproof and may be instalied outside at the masthead or inside the home, it is line powered up the coaxial cable and comes complete with a separate power supply unit which can be located near to any convenient power point indoors. The 'MULTI-4' incorporates by means of a spring link, the facility of through-line powering for the fitting of an additional masthead amplifier if required.
'NEW LABGEAR 'MULTI-4' Fourway UHF Wideband Masthead Distribution Amplifier. One input, four outputs @ 12dB Gain; Noise figure only 1.8dB. Fited in weatherproofing housing, complete with separate Power Supply Unit E29.95 WEW UNISON 'offset' Aerial Rotator, complete with latest type of Control Consol, features continuous indication of beam heading, uses 3 core cableE39.95 SB100 Alignment/support Bearing. Allows greater head loads, fitted above rotator.

COMING SOON - Mutti-Standard $15^{" 1}$ screen PAUSECAM colour TV, covering System B/G (for Europe), System I (for UK) and System L (for France), latest design, Infra-red remote control, all for around $£ 300$
AERUAL TECHNIOUES provide a complete and comprehensive consultancy service for ALL TV/FM reception queries/problems, for local, fringe and DXing. We can offer an attractively priced 11 GHz Satelitite System for the reception of ECS 1, INTELSAT V and other Satellites, separate leaflets are available on request (SAE please).

AERIAL TECHNIOUES IS UNIOUE -
OUR HIGH QUALTY CATALOGUE COSTS ONLY G5p.
Why not send for your copy today - please include an SAE with all enquiries. All prices inclusive of VAT and carriage

Delivery $7-10$ day
ACCESS \& VISA Mail and Telephone orders welcome

RADIO \& ELECTRONICS WORLD BACK ISSUES

TO: Back Issues Department - Radio \& Electronics World Sovereign House - Brentwood • Essex • CM14 4SE

NAME
ADDRESS

POSTCODE

PLEASE SUPPLY: (state month and year of issue/s required) NOTE Jan \& Feb '82 and Dec '83 issues not available
at $£ 1.10$ each

PAYMENT ENCLOSED:

Cheques should be made payable to Radio \& Electronics World. Overseas payment by International Money Order or credit card.
CREDIT CARD PAYMENT: $\square \square \square \square$
\square
SIGNATURE
\square

PHOTO FHE PHOTO FLE PHOTO

Test card radiated by one of the regional TV services in Denmark on channel E54

Opening caption transmitted by the TV service in Egypt

An unusual test card used by Italian pirate station L'Antenna

PM5544 test card from Yugoslavia showing the use of regional ident from Ljubljana

FUBK test card used by the 2nd network in Czechoslovakia (CST-2) with 'ODK 2' ident

Identification caption radiated by the new Danish TV service, 'Kanal 2'
successes during January include Russia on R1 and R2, Norway on E2 and E3, Spain (2nd network on channel E2) and RTP-Portugal from the channel E3 outlet at Lousa.

Finally, Brian Cole G1DXC would like to know if there is a supplier of tuners with an IF of 10.7 MHz covering the Eastern-bloc OIRT FM radio band which operates roughly between 63 MHz and 73 MHz . If anyone can help, please write to Brian at 32 Catherton, Stirchley, Telford, Shropshire TF3 1YT, or to the authors via Radio and Electronics World.

Halian pirate mystery solved

Kevin Jackson of Leeds has forwarded details of the new Italian private/pirate station which appeared on many DXers' screens during the latter part of the 1985 sporadic-E season. It is called 'Radio Tele Uno' and it is located at Tarvisio on the border with Austria, near Udine. The station operates on channel IA but, at the moment, the ERP is not known.

It is interesting to note that the other private station 'Nord Center Television', shares this channel in the same area of Italy. The test card used by Radio Tele Uno is very similar to that radiated by the relatively new Danish service, Aarhus Lokal TV.

How to become a DXer - part 2

Last month we gave details about sporadic-E propagation in relation to DXTV reception. Although this is possibly the most interesting form of TV DX, the easiest method is via enhanced tropospheric conditions. Provided that the enthusiast is not too interested about receiving sound channels, a domestic UHF TV can be used. Transmissions via this mode of propagation are often available from countries such as Belgium, West Germany and the Netherlands. Occasionally signals at UHF from further afield may be seen.
The troposphere extends to about 7,500 metres above the surface of the Earth. Slow moving areas of high pressure can affect television reception at irregular intervals. This type of weather pattern, often referred to as 'anticyclonic', produces clear blue skies by day and clear but cold nights. The Earth warms up during the day due to the lack of cloud cover but at night the accumulated heat is allowed to escape quickly. This heating and cooling process inevitably leads to inversions of temperature. The troposphere then acts as a waveguide, directing TV signals of above approximately 60 MHz back to the Earth.

This type of propagation has the advantage that signals tend to suffer less from rapid fading and phase distortion. The opposite is generally the case with sporadic-E propagation.

For enthusiasts wishing to experiment with tropospheric reception, we recom-
mend that they tune into the BBC weather forecasts in order to keep a check on the Atlantic chart for the appearance of high pressure systems. During intense trop openings it is quite likely that the local TV programmes will suffer from co-channel interference, thus alerting the prospective DXer to possible signals from the Continent.

Aerials for Band I TV

For initial experiments with SpE propagation, a dipole with each element cut to fifty inches will suffice. This roughly corresponds to the centre of the band. The dipole is best mounted horizontally, since most transmissions encountered are horizontally polarised.
Where possible the dipole should be erected externally. The height isn't too important since signals propagated in this way arrive at an angle. Some method of rotation is desirable for maximum signal pick-up, but a second or even third dipole could be installed with simple switching arrangements to select the most productive aerial.

The more serious enthusiast generally progresses to the luxury of a beam in order to receive the weaker signals. A second benefit is improved discrimination between co-channel transmissions arriving from different directions. 3 or 4 -element wideband arrays are popular. For a more ambitious system a wideband array plus a couple of single channel aerials for channels E3 and E4, for instance, can be employed.

Aerial availability

Protel, of 295 Ballards Lane, London N12, carry a wide range of aerials suitable for DX reception. Their Band I range consists of fixed dipoles which they will supply cut to any required channel. A 4 -element wideband array is available which will suit the needs of the more ambitious DXer. There is also a 4-element channelised design.
The aerials in stock are cut to channel E4, although Protel will construct systems for other Band 1 channels at no extra cost. For tropospheric reception at UHF, various wideband or grouped arrays are available. For trop DXing in Band III they can supply their own 5-element wideband design or the popular 13-element wideband Triax array.
Complete satellite TVRO systems, which include a multi-standard receiver, can be supplied with dish sizes from 1.2 m upwards for really hardened telly addicts! Full details of all these receiving systems plus details about masts, brackets and accessories, can be obtained from Steve Stilwell on (01) 445 4441.

Multiband TV receivers

Various receivers (mainly colour) are now available within the UK without too
many problems. However this was not the case a few years ago when enthusiasts had to go to great lengths to obtain multiband equipment.
The French TV company Thomson can supply a 10 -inch colour TV/monitor, model TF2502PI. It caters for Bands I/III and UHF. PAL or SECAM colour transmissions can be resolved and the set will operate in Western Europe on systems B, G and $I(5.5 \mathrm{MHz}$ and 6.0 MHz intercarrier sound systems). It does not cover the Eastern European systems D and K (6.5 MHz sound), although it will display the picture.
The TF2502PI will receive French system L transmissions and the different standards can be memorised on any of the programme selectors.
A brochure is available from the following UK distributor: Heron Electronics Limited, 1st Floor, Lawford House, 429 Harrow Road, London W10 4RE. Tel: (01) 9684488.

Service information

Netherlands: The FuBK electronic test card is once again in use by NOS from three transmitters. The test card is radiated prior to the normal test transmission opening time of 0900 local time, and identifications include 'LOPIK', 'GOES' and 'MARKELO'. The latter outlet only broadcasts the FuBK via NOS-1 on channel E7.
It is anticipated that some low power transmitters will come into service for Dutch army personnel stationed in West Germany. An NOS-2 test card has been received on channel E41 from the general direction of West Germany.
Belgium and West Germany: The Belgian BRT transmitter at Bensberg in West Germany is now using channel E25. Previously BRT programmes for Belgian army personnel were on channel E39, but regional transmissions from the WDR-3 outlet at Düsseldorf now occupy this channel.
Belgium: The BRT (Flemish language service) and RTBF (French language service) UHF transmitters at Wavre have been taken out of use on a permanent basis. The reasons are high operational costs and the extensive cable TV systems in the country.
West Germany: New identifications are in use with the FuBK test card radiated by the first network of Norddeutscher Rundfunk (NDR-1). The details are as follows: Hamburg - NDR-1 HAMBURG; Schleswig Holstein - NDR-1 KIEL; all other NDR regions - NDR-1 HANNOVER.

NDR's third network (NDR-3) is also using a new identification on the FuBK test card. It is radiated daily from all third network stations. The inscription is 'NDR-3 HMBG' and originates from Hamburg. A digital clock is incorporated.
The above information was kindly supplied by Gösta van der Linden of Rotterdam, Netherlands.

This article is being written in what is described as the coldest February since 1947-all I can say is that I hope the snow has thawed by the time it appears in print!
Sometimes a cold, bright spell gives us an opening on $V H F$ and UHF, but this year there has not even been that to cheer us up. Never mind: I have received a tidy bunch of letters - and promises of more. First, however, I will just mention that the chairman of the Swiss ATV club USAT, Fritz HB9RWD, came to London recently on a rapidly arranged visit. I had the pleasure of meeting him and presenting him with some BATC publications. We spent an interesting afternoon and evening discussing ATV operations in our two countries and agreed on the need to co-operate through the European ATV Working Group.
An interesting point is that in Switzerland ATV is officially banned on 70 cm . Banned not by the licensing authorities, but by USKA, the national radio society! They have interpreted literally the IARU 'Brighton' recommendation that 'ATV should move to higher frequencies'. This recommendation was, unfortunately, one of the worst ever made, since the word 'should' is capable of two interpretations, namely 'must' or 'ought to'.
As a result there has been more than one interpretation of the words, and the Swiss have taken the more restrictive one, officially that is. There are, however, twenty-five ATV stations on 70 cm . On 24 cm there is just one, HB9RWD, but six or seven are also constructing and should be on the air soon. They all use the French (F3YX) FM system, so in future it should be worth keeping an eye open in the Swiss direction on 1255 MHz .

70 centimetres

Firstly, I have received a letter all the way from Italy, from Stefano Malaspine I6MQS in Fermo. He says that ATV activity is rather low, just himself and I6CEY, although in Milan there are many more stations. He uses a Microwave Modules transmitter and receiver and has built a Wood and Douglas pattern generator. To compensate for the lack of ATV activity Stefano is into weather satellites and has built a VHF receiver and scan converter. All this works very well and has been a source of great satisfaction.
News is still coming in about the lift last October. For Ron G6GHP in Westgate on Sea (Kent), 13 October was not an unlucky day - he managed to make a P4 contact with John G4HMG in Devon. He also made some good 24 cm contacts which l'll cover next. No more 70 cm news, so on to higher things.

24 centimetres

On G6GHP's log for 13 October is G3DFL in Warley, who was on 1249MHz; Ron sent to him on 1275. Later, on the 17th he had a hook-up with John G3OGX in Essex. John has just one watt at his disposal but managed to put in a P4 picture in Westgate. This cross-water path is now worked regularly.

ON THE AIR

Andy Emmerson G8PTH puts you in the picture

In January Ron was successful in working a number of Dutch stations on 24 cm . On 27 September he got a P5 report from PE1HLR (after a P5 link-up on 70 cm) and on the 30th he worked PE1AAQ and PE1HZR. Both stations were AM, which meant they had to slope detect Ron's signals, but despite this he had P5 reports from 'AAQ and P3 from 'HZR. Both stations were received P5 in AM at Westgate and Ron managed to work them both again on 30 September.
Another kind of 24 cm test has been going on in Northamptonshire recently. Charlie Suckling G3WDG, well known for his moonbounce and other 23 cm SSB activity, has lately equipped for satellite TV using equipment with an IF of 950 1450 MHz . He hit on the excellent idea of trying a 23 cm receiving aerial connected to the tunable IF downconverter, and asked me to send him some colour and sound signals. I am pleased to say this was a total success. Colour vision and audio signals on 1255 MHz were received on 9 February with 10 to 11 carrier to noise margin, despite the slightly unusual receive set-up.

Repeater news

Some repeater news now. GB3UD, near Stoke-on-Trent, is in operation as a manned relay station. Output is just 200 mW , and the best DX report to date is G5KS, who is receiving it at P3 strength. It is hoped to raise the power to 6 W .

Another machine operating as a beacon and manned relay is Durham, although it is on a temporary site. It uses a pre-production DC-to-Light transmitter generating 2 watts. As soon as the licence is received the repeater will swing into full action. There are also whispers abroad that the Bath repeater may enter service during March.

I have received a nice long letter on smart-looking Bristol FM TV Group paper. It comes from Shaun O'Sullivan G8VPG, who also enclosed a call-up letter addressed to the FM fraternity in and around Bristol. They are very keen to build aTV repeater (FM only) for Bristol and are actively generating local support. Roger Worth G4ZQF and Shaun act as chairman/treasurer and secretary/ chief engineer respectively.

Their intention is for a fairly simple repeater (initially), without all the bells and whistles such as teletext pages but with good RF engineering. ATV activity in Bristol is running at a high level now, with several newcomers joining the scene. Besides the usual Wednesday and Sunday local TV nets activity is often seen on other nights. Certainly a call on 144.750 will usually produce a response.

Bottom end

Roger G4ZQF, Chris G8GLQ and Shaun G8VPG carry out most of their exchanges on 24 cm FM towards the bottom end of the band. Shaun and Roger are both fully equipped with Wood and Douglas gear, complete with pre/deemphasis and subcarrier audio. They both use 23 -element Tonna antennas.
Chris G8GLQ has mainly home-brew gear, including a 2C39 amplifier. He also has a corner reflector antenna. Len G8UUE is receive only at present but is building Allan Latham's transmitter. He has a Sandpiper helical antenna. Pete GODRX is equipped with Wood and Douglas gear. Viv G1IXE and Ivor GIIXF are active viewers with Wood and Douglas equipment and a JVL 48 -element loop yagi. They are awaiting the DC-to-Light transmitter.
Shaun is starting to dabble with 10 GHz but has not had time to progress much. He and Roger have found that on 24 cm the addition of Wood and Douglas's pre/de-emphasis modules have produced a staggering improvement in picture quality. Over their obstructed 14 km path reports have gone from P2 to P3.5 to P4, with additional improvement in picture stability. So these modules are highly recommended, even if sound is still a bit scratchy (some more development work to be done!).
Another welcome letter has come from Andy Goy G4HJD in the city of Kingston upon Hull. After a great summer fun contest using BCD's call, G6CCV, they decided to carry out some more 1255 MHz FM tests. The equipment was working but there was no-one to work during the contest! Andy had more luck in his summer holidays when he worked three of the Worthing stations on 1255 MHz on their home ground.

Andy's transmitter is constructed using Wood and Douglas modules and G8KOE's design of audio modules. His receiver is the Fortop TVC1300 and BATC FM demodulator. Andy has had some problems with the intercarrier sound but a circuit by Martin G8KOE cured the problem. He also had problems of interaction between sound and vision, but the November CQ-TV video strip should solve this. The tunable sound demodulator is already built and works well.
Getting out and about he and Nick G8PSE have been operating /P from a field six miles from Andy's QTH. Picture quality was P5 but colour eluded them. Dave G4WCD has also assisted in these tests. They are hoping to attract more people up to 24 cm and intend to apply for a repeater next year. In the mean time they will take portable ATV systems to some public special events.

SSTV

Finally the slower scanners - and writers. Once again, despite promises to the contrary, the only letter is from Richard G3WW. What an idle lot you slowscanners are! But back to the plot.
Firstly, commiserations to Grant Dixon, who suffered a fall in his shack
while looking up some data for another amateur! He should be well by the time you read this, so here's hoping all is now to rights.

G3WW tells me he is still receiving phone calls asking him to compare the Wraase SC-1 with the Robot 1200 C in terms of their operation. The answer is that they are compatible for black and white but not for colour. The most recent enquiry was from EA5FIN on 20 metres, who proceeded to give Richard a lengthy lecture on the 1200's capabilities - based on the literature alone.
A new station worked was 15 HHE on 20 metres using a Commodore 64: he wanted a QSL card direct just to show his friends who said it wasn't possible.
A local 144.5 FM net has sprung up using BBCs and Spectrums. It comprises G6YQJ (Littleport, Cambridgeshire), GOBDD (Ramsey St Mary, Cambridgeshire), G1ACB (Brinkley, Suffolk), G6OHM (Wimblington, Cambridgeshire), G4VYG (Tofts, Cambridgeshire), G4UVU (Newmarket, Suffolk), G8XOC (Stoke Ferry, Norfolk), G1MIA (Southery, Norfolk), G1ACO (Wretton, Norfolk), and G1EMW (Wareham, Norfolk). They are known as the 'Fenland Net' and aim to meet at 1930 on Monday evenings (to give night shift workers a chance before they
disappear to work), although most of these operators seem to be on nightly.
Richard is making two-way contacts to EU and the USA (when 20 metres is open) in black and white and colour using the SC-1 and the 1200C. The Ferguson Movie Star TV is working well as a colour monitor 'after $12+$ has been taken off IFs'. G3WW suggests that SSTV might liven up 29.6 MHz FM.

Moving house

Never think of moving house after 43 years; Richard is in the process of doing just this and the preparation is ghastly even though the house is not yet sold. Discards from the junkbox will apparently fill several dustbins!
Finally, a couple of SSTV snippets. G4VYG (mentioned above) has made a very good job of a G3WCY transmit and receive converter and has also made a 24 second single-frame colour adapter. G3CDK has made an excellent 1200 C tape of the shuttle flight in colour.
That's it for now. We could do with a few more letters for the next round-up, so don't keep all the news to yourselves. Drop me a line at 71 Falcutt Way, Northampton NN2 8PH or leave a 3 minute message on the answering machine: (0604) 844130.

ANALOGUE METERS

LEVELL AC MICROVOLTMETERS TM3A/B £159/179 16 ranges $15 \mu \mathrm{Vfs} / 500 \mathrm{Vfs}$, accuracy $1 \%+1 \% \mathrm{fs}+1 \mu \mathrm{~V}$. $-20 \mathrm{~dB} /+6 \mathrm{~dB}$ scale. $\pm 3 \mathrm{~dB} 1 \mathrm{~Hz}-3 \mathrm{MHz} .150 \mathrm{mVfs}$ output. TM3A: 83 mm scale TM38: 123 mm scale and LF filter.

LEVELL BROADBAND VOLTMETERS TM6A/BE249/279 16 LF ranges as TM3A/B +8 HF ranges $1 \mathrm{mV} \mathrm{fs} / 3 \mathrm{~V} f \mathrm{~s}$, accuracy $4 \%+1 \%$ fs at $30 \mathrm{MHz} . \pm 3 \mathrm{~dB} 300 \mathrm{kHz}-400 \mathrm{MHz}$.

LEVELL DC MICROVOLTMETER TM8

 £135 28 linear ranges $\pm 3 \mu \mathrm{~V} / \pm 300 \mathrm{~V}$ and $\pm 3 \mathrm{pA} / \pm 300 \mathrm{nA}$ plus 2 log ranges for nulling. Output $\pm 300 \mathrm{mV}$ at fs.LEVELL MULTTTESTER TM11
$£ 179$
$50 \mu \mathrm{~V} / 500 \mathrm{~V} f \mathrm{~s}$ ac, $50 \mathrm{pA} / 500 \mathrm{mAfs}$ ac, $1.50 \mu \mathrm{~V} / 500 \mathrm{~V} f \mathrm{~s} \mathrm{dc}$. $150 \mathrm{pA} / 500 \mathrm{mAfs}$ dc, 0.2Ω to $100 \mathrm{G} \Omega$, lin $/ \log$ null. Diode/LED test. Optional RF, HV and Temperature.

LEVELL TRAN8ISTOR TESTER TM12
£199
Transistor, diode and zener leakage to 0.5 nA at $2 \mathrm{~V}-150 \mathrm{~V}$. Breakdown to 100 V at $10 \mathrm{MA}, 100 \mu \mathrm{~A}, 1 \mathrm{~mA}$. Gain at $1 \mu \mathrm{~A}-100 \mathrm{~mA}$. $V_{\text {sat }}$ and V be at $1 \mathrm{~mA}-100 \mathrm{~mA}$.

LEVELL INSULATION TESTER TM14
$£ 220$ Log scale covers 6 decades $10 \mathrm{M} \Omega$-10T Ω at $250 \mathrm{~V}, 500 \mathrm{~V}$, $750 \mathrm{~V}, 1 \mathrm{kV} ; 1 \mathrm{M} \cdot 1 \mathrm{~T} \Omega$ at $25 \mathrm{~V} \cdot 100 \mathrm{~V} ; 100 \mathrm{k}-100 \mathrm{G} \Omega$ at $2.5 \mathrm{~V}-10 \mathrm{~V} ; 10 \mathrm{k}-10 \mathrm{G} \Omega$ at 1 V . Current $100 \mathrm{pA}-100 \mu \mathrm{~A}$.

DIGITAL METERS

LEVELL DIGITAL THERMOMETER DTIK
$-120^{\circ} \mathrm{C} /+820^{\circ} \mathrm{C}$, acc $0.2 \% \pm 1^{\circ} \mathrm{C}$. 3 digit 8.5 mm LCD. A standard Type K thermocouple socket is fitted. Bead couple is supplied. Battery life $>3000 \mathrm{hrs}$.

LEVELL DIGITAL CAPACITANCE METER 7705
$£ 49$
$0.1 \mathrm{pF}-2000 \mathrm{HF}$, acc 0.5%. $31 / 2$ digit 12.7 mm LCD.
THURLBY DIGITAL CAPACITANCE METER CM200 £89 1 pF to $2500 \mu \mathrm{~F}$, acc $0.2 \%, 41 / 2$ digit 9 mm LCD Fast settling. 3 readings per second, Mains/battery.

HC DHITAL MULTIMETERS HC5040/6040T £37/39 $31 / 2$ digit 12.7 mm LCD. Up to $1 \mathrm{kVdc}, 750 \mathrm{Vac}$, $10 \mathrm{~A}, 20 \mathrm{M} \Omega$. Resolution $100 \mu \mathrm{~V}, 100 \mathrm{nA}, 10 \mathrm{~m} \Omega$ (5040T: $100 \mathrm{~m} \Omega$). Buzzer. dcV 0.25%. Battery life 2000trs. 5040T: has a TR test.
THURLBY DMM: 1503/1503HA/1504 £ 169/185/199 $43 / 2$ digit 9 mm LCD. Up to $1.2 \mathrm{kVdc}, 750 \mathrm{Vac}, 10 \mathrm{~A}, 32 \mathrm{M} \Omega$, 4 MHz . Resoln. $10 \mu \mathrm{~V}, 10 \mathrm{nA}, 10 \mathrm{~m} \Omega$. Mains/battery. 1503: dcV 0.05\%. 1503HA: 0.03\%. 1504: True ms ac.

THURLBY INTELLIGENT MULTIMETER 1905a £ 349 $51 / 2$ digit 13 mm LED. Up to $1.1 \mathrm{kVdc}, 750 \mathrm{Vac}, 5 \mathrm{~A}, 21 \mathrm{M} \Omega$. Resoln. $1 \mu \mathrm{~V}, 1 \mathrm{nA}, 1 \mathrm{~m} \Omega$. dcV 0.015%. Computing and storage functions. RS232/AEEE interface options.

COUNTERS \& OSCILLATORS

COUNTERS MET 100/600/1000/1500 £99/128/175/199 8 digit $0.5^{\prime \prime}$ LED. 5 Hz up to $100 / 600 / 1000 / 1500 \mathrm{MHz}$. Resolves 0.1 Hz . Sensitivity 5 mV up to 10 MHz . Low pass filter. Mains/rechargeable battery powered.

LEVELL FUNCTION GENERATORS TG302/3 £138/238 $0.02 \mathrm{~Hz}-2 \mathrm{MHz}$ in 7 ranges. Sine, square, thiangle, pulse and ramp 20 mV to 20 Vpp from 50Ω. DC offset $0 / \pm 10 \mathrm{~V}$. TL output. TO303 also has a CMOS output and 6 digit 10 MHz counter with INT/EXT switch.

LEVELL RC OSCILLATORS TG1520/DM

E99/125艮z 300 kHz . 5 ranges, acc $2 \%+0.1 \mathrm{~Hz}$ up to 100 KHz . 3% at 300 kHz . Sine or square $<200 \mathrm{NV}$ to 2.5 V ms . Distn. $<0.2 \% 50 \mathrm{~Hz}-50 \mathrm{kHz}$. TG152DM has an output meter

LEVELL RC OSCILLATORS TG2000/DMP £139/175 $1 \mathrm{~Hz}-1 \mathrm{MHz}$. 12 ranges, acc $1.5 \%+0.01 \mathrm{~Hz}$ to $100 \mathrm{kHz}, 2 \%$ at 1 MHz . Sine or square outputs $<200 \mathrm{\mu V}-7 \mathrm{~V} m \mathrm{~ms}$. Distortion $<0.05 \% \quad 50 \mathrm{~Hz}-15 \mathrm{kHz}$. Sync output >1V TG200DMP has output meter and fine frequency control.

LEVELL DECADE OSCILLATOR TG66A

£330
$0.2 \mathrm{~Hz}-1.22 \mathrm{MHz}, 5$ ranges. 4 digits, acc 0.3% $6 \mathrm{~Hz}-100 \mathrm{kHz}$. Sine output $<30 \mathrm{H}-5 \mathrm{~V}$ rms. $-2 \mathrm{~dB} /+4 \mathrm{~dB}$ and V scales. Distn. $<0.15 \% 15 \mathrm{~Hz} \cdot 150 \mathrm{kHz}$. Mains/battery.

LEVELL for INSTRUMENTS

LEVELL DECADE BOXES

C410 : 10 pF to $111,110 \mathrm{pF}$, acc $1 \% \pm 2 \mathrm{pF}$. £49 R401/410: 4 decs. 1Ω or 10Ω steps, acc 1%, $2.5 \mathrm{~W} £ 49$ R001/610: 6 decs. 1Ω or 10Ω steps, acc $1 \%, 2.5 \mathrm{~W}$ £63 R6018 : 6 decades. 1Ω steps, acc $0.3 \%, 2.5 \mathrm{~W} £ 75$ R701 : 7 decades. 1Ω steps, acc $1 \%, 2.5 \mathrm{~W} \quad £ 72$

BENCH POWER SUPPLIES

THURLBY SINGLES PL154/310/320 £159/125/155 $0.5^{\prime \prime}$ LED digit meters, acc 0.1%, resoln. $10 \mathrm{mV}, 1 \mathrm{~mA}$. $<0.01 \%$ change for 50% load change. Remote sense. 154: 0-15V 0-4A: 310: 0-30V 0-1A. 320: 0-30V 0-2A.
THURLBY DUALS PL3100MD/3200MD £289/339 Two 0-30V 0-1A (2A on 320) with isolated, series tracking, series or parallel modes of operation.

THURLBY TRHLES PL310K/320K
£278/345
$310 \mathrm{~K}: 0-30 \mathrm{~V}$ at $0-1 \mathrm{~A}, 0-30 \mathrm{~V}$ at $1 / 2 \mathrm{~A} \& 4 \mathrm{~V}-6 \mathrm{~V}$ at $31 / 2 \mathrm{~A}$
$320 \mathrm{~K}: 0-30 \mathrm{~V}$ at $0-2 \mathrm{~A}, 0-30 \mathrm{~V}$ at 1 A \& $4 \mathrm{~V}-6 \mathrm{~V}$ at 7 A .

OSCILIOSCOPES

CROTECH SINGLE TRACE 2OMHz 3031/36 £195/216 2 mV -10V/div. $40 \mathrm{~ns}-0.2 \mathrm{~s} / \mathrm{div}$. Cal 0.2 V . Component test. 3031: CRT $1.5 \mathrm{kV} 5 \times 7 \mathrm{~cm}$. 3036: CRT $1.8 \mathrm{kV} 8 \times 10 \mathrm{~cm}$.

CROTECH DUAL TRACE 20MHz (2 mV) 3132 £285 $2 \mathrm{mV}-10 \mathrm{~V} / \mathrm{cm}$. Ch $1 \pm \mathrm{Ch} 2$. X-Y mode. Cal 0.2 V 1 kHz sq. $40 \mathrm{~ns}-0.2 \mathrm{~s} / \mathrm{cm}$. Auto, normal or TV trig. Component comparator. DC outputs. Z input. CRT 2 kV $8 \times 10 \mathrm{~cm}$.

CROTECH DUAL 3OMHz ($\odot 5 \mathrm{mV}$) 3337/39 [426/670 $5 \mathrm{mV}-50 \mathrm{~V} / \mathrm{cm}$. Ch1 $\pm \mathrm{Ch} 2$. Signal delay. $X-Y$ mode. $40 \mathrm{~ns}-1 \mathrm{~s} / \mathrm{cm}$. Auto, normal or single shot trigger. Cal 0.2 V 1 kHz square. Z input. CRT $10 \mathrm{kV} 8 \times 10 \mathrm{~cm}$. 3339: VDU mode. Component tester. DC outputs.

HAMEG DUAL TRACE 2OMHz (© 2 mV) HM 203-5 £270 $2 \mathrm{mV}-20 \mathrm{~V} / \mathrm{cm}$. Ch $2 \pm \mathrm{Ch} 1 . \mathrm{X}-\mathrm{Y}$. Cal $0.2 \mathrm{~V} / 2 \mathrm{~V} 1 \mathrm{kHz}$ sq. $20 \mathrm{~ns}-0.2 \mathrm{~s} / \mathrm{cm}$. Auto, normal or TV trig. Component test. CRT $2 \mathrm{kV} 8 \times 10 \mathrm{~cm}$. Long decay CRT $\mathbf{E} 25$ extra.

HAMEG DUAL TRACE 2OMHz (05mV) HM204-2 £385 $1 \mathrm{mV}-50 \mathrm{~V} / \mathrm{cm}$. Ch $2 \pm \mathrm{Ch} 1$. Sig delay. X-Y mode. Y out. $10 \mathrm{~ns}-1.25 \mathrm{~s} / \mathrm{cm}$. Sweep delay $100 \mathrm{~ns}-1 \mathrm{~s}$. Cal $0.2 \mathrm{~V} / 2 \mathrm{~V} 1 \mathrm{kHz} / 1 \mathrm{MHz}$. Z input. Comp. test .CRT 2 kV $8 \times 10 \mathrm{~cm}$.

HAMEG DUAL TRACE GOMHz ($\$ 5 \mathrm{mV}$) HM605 $\mathbf{f 5 1 5}$ $1 \mathrm{mV}-50 \mathrm{~V} / \mathrm{cm}$. Ch $2 \pm \mathrm{Ch} 1$. Sig delay. X-Y mode. Y out. $5 \mathrm{~ns}-2.5 \mathrm{~s} / \mathrm{cm}$. Sweep delay $100 \mathrm{~ns}-1 \mathrm{~s}$. Cat $0.2 \mathrm{~V} / 2 \mathrm{~V}$ $1 \mathrm{kHz} / 1 \mathrm{MHz}$. Z input, Comp. test. CRT $14 \mathrm{kV} 8 \times 10 \mathrm{~cm}$.

HAMEG DIGITAL STORAGE 2OMHZ HM2O8 £1300
$1 \mathrm{mV}-50 \mathrm{~V} / \mathrm{cm}$. Ch $2 \pm \mathrm{Ch} 1$. Single shot and $X-Y$ modes. $20 \mathrm{~ns}-0.25 \mathrm{~s} / \mathrm{cm}$. 20 MHz sampling. Two 2 K memories. Plotter output $0.1 \mathrm{~V} / \mathrm{cm}, 10 \mathrm{~s} / \mathrm{cm}$. CRT $14 \mathrm{kV} 8 \times 10 \mathrm{~cm}$.

HITACH BATTERY DUAL 2OMHz ($¢ 5 \mathrm{mV}$) V209 £680 1 mV - $12 \mathrm{~V} /$ div. Ch1 $\pm \mathrm{Ch} 2$. $X-Y$ mode. Cal 0.5 V 1 kHz . $50 \mathrm{~ns}-0.5 \mathrm{~s} / \mathrm{cm}$. Auto, normal or TV trig. Internal rechargeable batt. or mains. CRT $1.5 \mathrm{kV} 5 \times 6.3 \mathrm{~mm}$.

HITACHI DUAL 2OMHz V212/222/223 £299/395/450 $1 \mathrm{mV}-12 \mathrm{~V} / \mathrm{cm} .20 \mathrm{MHz}$ at 5 mV . Ch $1 \pm \mathrm{Ch} 2$. $X-Y$. Ch1 output. $100 \mathrm{Ns}-0.5 \mathrm{~s} / \mathrm{cm}$. Auto, nommal or TV trigger. Cal 0.5 V 1 kHz square. Z input. CRT $2 \mathrm{kV} 8 \times 10 \mathrm{~cm}$. V222: Plus DC offset and altemate magnify function. V223: As V222 plus sweep delay $1 \mu \mathrm{~s}$ - 100 ms .

HITACHI DUAL 4OMHz (@5mV) V422/23 £580/650 As $V 222 \mathrm{~N} 223$ but $40 \mathrm{MHz}, 20 \mathrm{~ns} / \mathrm{cm}$ and 12 kV on CRT.

HITACHI TRIPLE GOMHZ (PEmV) VB50F E780 Ch1/Ch2: $1 \mathrm{mV}-12 \mathrm{~V} / \mathrm{cm}$. Trigger Ch3: $0.2 \mathrm{~V} / \mathrm{cm}$. Ch1 output. Dual time bases $5 \mathrm{~ns}-0.5 \mathrm{~s} / \mathrm{cm}$ and $5 \mathrm{~ns}-50 \mathrm{~ms} / \mathrm{cm}$. Signal and sweep delay. CRT $10 \mathrm{kV} 8 \times 10 \mathrm{~cm}$.
HITACHI QUAD 100MHz (05mV) V1050F £1095 Ch1/Ch2: $0.5 \mathrm{mV}-12 \mathrm{~V} / \mathrm{cm}$. Trigger Ch3/Ch4: $0.2 \mathrm{~V} / \mathrm{cm}$. Dual time bases $2 \mathrm{~ns}-0.5 \mathrm{~s} / \mathrm{cm}$ and $2 \mathrm{~ns}-50 \mathrm{~ms} / \mathrm{cm}$. Signal and sweep delay. CRT $20 \mathrm{k} \vee 8 \times 10 \mathrm{~cm}$.

HTACHI QUAD 100MHz V1070/1100A £ 1580/2390 Ch1/Ch2: $1 \mathrm{mV}-12 \mathrm{~V} / \mathrm{cm}$. CH3/Ch4: $0.1 \mathrm{~V}-0.5 \mathrm{~V} / \mathrm{cm}$. Dual time bases $2 \mathrm{~ns}-0.5 \mathrm{~s} / \mathrm{cm}$ and $2 \mathrm{~ns}-50 \mathrm{~ms} / \mathrm{cm}$. Digital display of set values. CRT $18 \mathrm{kV} 8 \times 10 \mathrm{~cm}$. V1100A: Digital display of ACV, DCV, írequency.

HITACHI DHITAL STORAGE 1OMHz VC6015 £1350 $5 \mathrm{mV}-12 \mathrm{~V} / \mathrm{cm}$. Ch $1 \pm \mathrm{Ch} 2$. Single shot and $X-Y$ modes. $100 \mathrm{~ns}-0.5 \mathrm{~s} / \mathrm{cm}$. 1 MHz sampling. Two 1 K memories. Piotter output $1 \mathrm{~V} / \mathrm{cm}, 5-10 \mathrm{~s} / \mathrm{cm}$. CRT $2 \mathrm{kV} 8 \times 10 \mathrm{~cm}$.
HITACHI DKITAL STORAGE 40 MHZ VC0041 £3850 $1 \mathrm{mV}-12 \mathrm{~V} / \mathrm{cm}$. Ch $1 \pm \mathrm{Ch} 2$. Single shot and $X \cdot Y$ modes. $20 \mathrm{~ns}-0.5 \mathrm{~s} / \mathrm{cm}$. 40 MHz sampling. Two 4 K memories. Plotter output $1 \mathrm{~V} / \mathrm{cm}, 2-103 / \mathrm{cm}$. CRT $12 \mathrm{kV} 8 \times 10 \mathrm{~cm}$.

THURLBY 8 CHANNEL MULTIPLEXER OM368 £179 Increases any oscilloscope to 8 channeis. Choice of trigger from any channel. Response $D C-35 \mathrm{MHz}$.

LOGIC ANALYSERS

THURLBY LOGIC ANALY8ER8 LA160A/B E395/495 16 data channels. Clock $D C-10 \mathrm{MHz}(20 \mathrm{MHz}$ for 8). Binary, octal, decimai, or hex. formats. 2 K word acquisition memory. Non volatile ref. memory.

1f nothing else, this winter has seen one of the most varied DX seasons for many years. On the MW band conditions have ranged from the excellent to the downright appalling!
On one hand some excellent DX from North and South America as well as the Far East was reported at the end of November '85 and around January 20th '86. In contrast, radio conditions took a steep downturn (at lest for those of us listening to the bands below 30 MHz) around the start of February.
In fact, one of the strongest geomagnetic storms since 1976 struck on February 8th, disrupting world-wide communications. This storm, which lasted approximately 24 hours, was the result of a series of powerful solar flares observed in the previous week. During such a storm a surge of high energy particles from the sun enters the Earth's magnetic field, leading to a concentration of intense ionisation in the polar regions. This led to the aurora that was reported to be visible in much of Britain, much further south than is usually the case. Geomagnetic storms disrupt power distribution, satellite and long distance cable communications, and sky wave radio communications.
The UK-based MW DXer will have noticed a complete absence of DX for about 10 days, so if at the time you suspected a faulty receiver or aerial now you know what was really going on.

Long waves

Although not really medium wave, the long wave band ($150 \mathrm{kHz}-290 \mathrm{kHz}$) is often lumped together with the former under the term medium frequencies. Two things have prompted this item about this rather neglected band. Firstly, in the April issue of R\&EW there was an article by Richard Marris describing a loop antenna specially for the LW band, and secondly a number of significant frequency changes have recently taken place.
The 1979 World Administrative Radio Conference (WARC) decided that the arrangement of channels in the LF band should be standardised along the same lines as those on MF; that is all channels should be harmonic multiples of 9 kHz . It was decided that the first five LF
channels (currently 155, 164, 173, 182 and 191) would move on $1 / 2 / 86$ to $153,162,171$, 180 and 189 kHz . The next five channels are due to shift on $1 / 2 / 88$ and the last five on $1 / 2 / 90$.
So far Deutschlandfunk has moved to 153. France Inter remains on 163.84, Moscow home service has gone to 171, Stimme der DDR is now on 177 (ex 179), Europe No 1 is on 183 (ex 185), and Sweden is now on 189 kHz .

Desirable

Although a loop aerial would be a desirable accessory for listening to LW, it is perfectly possible to get good reception from a portable radio using the directional properties of the internal ferrite rod aerial to optimise reception from a particular direction.
Well, what can you hear? In addition to the stations listed above, a selection of stations from Europe, the USSR and North Africa are easily heard. Outside this area the LW band is not generally used for broadcasting. As a guide to what you'll hear I've included Figure 1.
Signals on the LW band behave much like their counterparts on the MW band. During daylight hours propagation is via the ground wave, which is augmented by a sky wave signal at night. If you recall the item on MW propagation in this column last month you'll remember that the lower the frequency the greater the range of the ground wave signal. It is for this reason that the BBC can provide coverage of most of the UK with its 200 kHz Radio 4 service from just one transmitter.
In addition, propagation via the sky wave is subject to less fluctuation than for MW signals. Consequently it is possible to provide good reception over large areas throughout the day and night.
The principle drawbacks associated with LW broadcasting are two-fold. Firstly there is only a limited amount of radio spectrum available - in fact only 15 channels - which restricts the number of users, and secondly the long wavelengths involved ($1000-2000$ metres) require the use of either massive (and expensive) aerials or smaller, less efficient aerials and very powerful (and expensive) transmitters.
It's back to the medium waves for the
next item, which was prompted by a letter from John Cooper of Hull, who wrote seeking some advice regarding the interconnection of aerials and receivers.
John seemed to be having problems getting the best performance from an external aerial when used with a National Panasonic R2000 multiband portable fitted with an internal MW aerial. Often a portable radio will have such an internal ferrite rod aerial as well as a socket for an external aerial. The problems usually arise because the internal aerial is not disabled when the external one is connected and the two signals interact.
Theoretically, in these circumstances it would be possible to delve inside the radio and disable the internal aerial, but this would probably make reception even worse due to receiver overload, since the internal aerial is tuned to provide the front-end selectivity of the radio.
One possible solution is the use of an aerial tuning unit between the external aerial and the radio to provide a better match between the two. Another solution is to use an external MW loop aerial instead of a long wire and to use a technique known as inductive coupling to get the signal from the aerial into the radio.

Inductive coupling relies on the transformer prinicple whereby the windings of the loop aerial and the ferrite aerial form the primary and secondary of an aircored transformer. With a normal com-munications-type receiver some sort of electrical interconnection between loop

kHz

153 Deutschlandfunk, W Germany
162 France Inter, France (actually on 163.84 kHz)
171 Moscow Home Service, USSR
80 Stimme der DDR, E Germany (actually on 177 kHz)
\longleftarrow Europe No 1, W Germany (183 kHz) 189 Sweden
200 BBC Radio 4,UK
209 Deutschlandfunk, W Germany, RTM, Morocco
218 R Monte Carlo, Monaco
227 Warsaw 1, Poland
236 RTL, Luxembourg
245 Danmarks Radio, Denmark
254 RTA Algiers, Algeria, Finland
263 Home Service, USSR,
First Programme, Bulgaria
272 Czechoslovakia

- 281 Home Service, Minsk, USSR

Fig 1 Long wave band scan
and receiver is needed, but for inductive coupling to a portable radio there is no need for any cables or indeed for a loop amplifier. All that is required is a loop with its tuning capacitor to be located physically close to the ferrite rod of the portable radio (say $1-4$ feet) and for it to be tuned to the same frequency as the radio.

With the loop so positioned and tuned, a marked increase in signal strength should be noted. For optimium performance and to make best use of the directional property of the aerials both the loop and the ferrite rod aerial should be correctly orientated so that their directional nulls coincide (Figure 2). To null out interference, both the loop and the radio need to be rotated as a pair together.

DX File

This month we welcome a relative newcomer to the MW band, 14 year old Darrell Rostron from Rochdale, who reports an interesting selection of European DX using his Trio R600 plus wire antenna. Darrell received good early evening signals from R Caroline in the N Sea (963 kHz), Deutschlandfunk from Cologne $(1269 \mathrm{kHz}), \quad R$ Sweden International $(1179 \mathrm{kHz})$, Sud Radio

Fig 2 Plan view of loop and ferrite rod aerials

Andorra (819 kHz), Trans World R Monte Carlo (1467 kHz).
Another dial-twiddier to report this month is Paul Barton, who hails from Harrogate. Paul is a keen MW-DXer and in his letter he describes his home-made receiver which, together with a 75 -foot wire aerial, enabled him to hear the following mix of stations:
585 kHz Madrid, Spain at 2330
891 kHz RTA Algiers, Algeria, Arabic music at 2037
930 kHz CJYQ St Johns, NF, Canada, pop music at 2325
981 kHz RTA Algiers, Algeria, English
programme at 2030
981 kHz Athens, Greece, local pop music at 2050
1010kHz WINS New York, USA, news at 0010
1470kHz R Vibracion, Curapano. Venezuela, identification at 2400
1510 kHz WMRE Boston, MA, USA, adverts at 2335
Finally before I close l'd like to say thanks for all the correspondence last month, and if you have any suggestions, problems or DX listening tips feel free to drop me a line c/o R\&EW. So 73s till next month.

NOISE LIMITER
 This project from R A Penfold will reduce noise spikes on your SW Rx

PLUS ALL THE USUAL FEATURES!
On sale 8 May
To be sure of your copy, why not take out a subscription?

The Archer 780 SBC

The SDS ARCHER - The Z80 based single board computer chosen by professionals and OEM users.

* High quality double sided plated through PCB
» 4 Bytewide memory sockets - upto 64 k
* Power-fail and watchdog timer circuits
* 2 Serial ports with full flow control
* 4 Parallel ports with handshaking
* Bus expansion connector
\star CMOS battery back-up
\star Counter-timer chip
* 4 MHz . Z80A

OPTIONS:
\star SDS BASIC with ROMable autostarting user code * The powerful 8 k byte SDS DEBUG MONITOR * On board 120 / 240 volt MAINS POWER SUPPLY * Attractive INSTRUMENT CASE - see photo.

* $64 \mathrm{k} / 128 \mathrm{k}$ byte DYNAMIC RAM card
* 4 socket RAM - ROM EXPANSION card
* DISC INTERFACE card

Sherwood Data Systems Ltd
Sherwood House, The Avenue, Farnham Common, Slough SL2 3JX.Tel. 02814-5067

C M HOWES COMMUNICATIONS

EASY TO BUILD KITS BY MAIL ORDER

139 Highview, Vigo, Meopham,
Kent, DA13 OUT, England.
Fairseat (0732) 823129

Enjoy the pleasures of home brew equipment with a project from $C M$ HOWES COMMUNICAIONS All our kits have clear instructions, a fibre-glass circuit board that has the parts locations screen printed on it for easy, accurate assembly, plus all board mounted components. Whether you are an experienced operator planning to bulid a transverter or ORP transceiver, or a newcomer looking for a first receiver. we have interesting designs to suit. With our kits. you don thave to be an old hand at construction to enjoy the satisfaction of using home buitt equipment
Have you considered building yourself a small rig for portable and holiday use this summer?
HC220 and HC280 TRANSVERTERS - use your 2 M rig on 20 and 80M
The HOWES HC220 and HC280 offer an excellent alternative to an HF transceiver. At the present point in the sun spot cycle, is there any sense in spending a small fortune on a 9 band MF rig? The 2M SSB/CW rig and our transverters and ar a considerable saving in cost too
becomes much more practical with the combination of a compact 2 M rig, and a neat littl transverter tucked out of the way

Both the HC220 and HC280 offer a good 10W RF output from missmatch proof transistors. The 2 M drive level required is adjustable between 5 and 5 W , but it can be easily modified to accept 10W or so. The use of a high proportion of fixed value filter components keeps alignment simple. and the output spectrum clean. No fancy test equipment is needed to align your kit
On receive the balanced mixer offers both sensitivity. and a good dynamic range. The 10 element bandpass filtering which is used ahead of the mixer requires no alignment at all-simply wind the right number of turns on the torroids! If you are competent with a soldering iron. you should be able to build a HOWES transverter. The full. clear documentation and the componen lacations printed on the double sided, solder masked PCB make construction a pleasure

HC280 2 M in, 80 M out transverter kit: $£ 48.90$.

TRF3 SHORTWAVE BROADCAST RECEIVER.
Listen to the news, sport, music political comment from around the world on the new HOWES TAF 3 shortwave receiver. The design features switchable input impedance so that it can be used with iong or short antennas. and there is an input attenuator for strong signai conditions. Up to 2W of audio output are avallable but the low quiescent current consumption means that it can easily be battery powered, if you wish. Frequency coverage is 571012.8 MHz in three bands using a 50 pF tuning capacitor (available at $£ 1.50$) This simple TRF design may be firmly rooted in the silicon age, but the old thrill of far away stations heard on a home built set is still strong! Great fun to build and use - educational too!

HOW TRF3 kitels.
Assembled PCB module: E18.90
DeRx Direct Conversion Communications Receiver.
This simple. but very effective, single band recelver is available for 20.30 .40 .80 \& 160 M . Up to 1 W audio output, stable FET VFO. and amazingly good performance for a simple set How about using one with an MTX20 or CTX transmitter for a ORP holiday and portable station' Suitable tuning capacitors for all but the 160 M version are $£ 1.50$ each - you need two per receiver

MTX20 20M CW TRANSMITTER.
The HOWES MTX20 is a 20 M CW transmitter giving up to 10 W RF output. but this is adjustable. so you can turn it down to take part in the G-ORP Club's activities and awards. The design pays very careful attention to the quality of the output signal Full key click and RF output filtering are provided
The HOWES MTX2O is crystal controlled (one crystal provided). but you can wire up a tuning capactior available soon. The MTX20. like its kHz , which is very uselul. A matching VFO should b available soon. The MTX20. like its smaller cousins the CTX40 and CXT80, has the outpu transmitter. and one that we feel will become very poputar indeed MTX20 kit: $\mathbf{E 1 9 . 9 5}$. Assembled PCB modula: $\mathbf{C 2 6 . 9 5}$

Xm1 Crystal Calibrator with 8 op.

CTX40 (40M) or CTX80 (80M) ORP CW TX
CVF40 or CVF80 VFO CTX40 (40M) or CTX80 (80M) OR
CVF40 or CVF80 VFOs for CTX CVF40 or CVF80 VFOs for CTX
ST2 Side-tonePractice oscillator AP3 Automatic Speech Processor

Kit: $\mathbf{E 1 2 . 9 5}$. Kit: $\mathbf{c 1 2 . 9 5}$.
Kit:
Kit Kit: $\mathbf{2 8 . 3 0}$
Kit: $\mathbf{c 7 . 3 0}$
Kit: $\mathbf{~} 15.90$. Kit: £15.90.

Assembled PCB Module: $\mathbf{~} 21.30$ Assembled PCB Module: $£ 18.95$ Assembled PCB Module: $£ 14.90$ Assembled PCB Module: $£ 10.80$ Assembled PCB Module: $£ 21.40$ Assambied PCB Module: 121.40

If you would like further information on any item, simph If you would like further information on any item, simpty information on each kit, plus a goneral catalogue.

PLEASE ADD 80p P\&P to your total order valu 73 from Dave G4KOH Technical Manager Delivery normaliy within 7 days

Pride of place in this month's Latest Literature must go to the World Radio TV Handbook. This year is the 40th anniversary of this illustrious tome, and the 1986 edition has seen some changes in design aimed at making the book easier to use.
For those unfamiliar with the DXer's bible, WRTH provides details of the world's radio and TV broadcasters. Frequencies and times, contact addresses, languages and powers are all given, along with brief details of programming. In addition, broadcasts are listed by time, and long, medium and short wave stations are listed by frequency.
Further reference sections cover solar activity, most suitable bands, clubs for DXers, and so on, and there are excellent reviews of new equipment. Indeed, these reviews would be worth a book of their own, collated from past issues of WRTH.

Obviously, WRTH is essentially a series of lists, but don't think it is inherently unreadable as a result, and there is a wealth of general features to enjoy. It forms an invaluable source of info for the serious DXer and the novice alike.

WRTH is produced in Denmark by Billboard A G, and the official cover price is $\$ 19.95$ (ISBN 090228511 44). It is distributed in the UK by Pitman Publishing, 128 Long Acre, London WC2E 9AN. The agent for New Zealand is Arthur Cushen, 212 Earn Street, Invercargill, and for the USA and Canada is Watson Guptill, 1515 Broadway, New York NY10036. Rush out and order your copy now!
On the subject of guides and lists, the fourth edition of Dial-Search has just been published. This appears every two years, and is an A5 booklet of 46 pages designed as a quick reference guide for European listeners. Where WRTH could be regarded as an encyclopaedia to be referred to as required, DialSearch is a handy pocket book to be kept close at hand when listening in.
It contains such information as the broadcast band frequencies, a list of European medium and long wave stations likely to be heard

using a domestic receiver without special aerials, a list of British stations, English broadcasts, etc. Maps of Europe and the British Isles give details of transmitter sites and high ground, and for the musically inclined there is a brief list of regular classical and jazz transmissions.
Dial-Search (ISBN 09508575 2 1) costs $£ 3.30$ including postage in the UK, or $£ 3.50$ (or 15 IRCs) in Europe, from George Wilcox, 9 Thurrock Close, Eastbourne, East Sussex BN20 9NF. It is also available through bookshops.
From one handy reference book to another: the 16th edition of Newnes' Radio and Electronic Engineer's Pocket Book, by Keith Brindley. This contains an amazing amount of information considering its size, from abbreviations and formulae to aerial dimensions and UK radio stations.
Apparently, this edition has been 'completely revised, reset and redesigned in an easier-to-use format.' It will certainly prove immensely useful, and, even if it isn't fully comprehensive, it cannot be rivalled at the price ($£ 5.50$, ISBN 040800720 6). Newnes Technical Books are at 84-88 The Centre, Feltham, Middlesex TW13 4BH.
The next book we come to is a real gem for computerliterate short wave listeners and RTTY enthusiasts. George Sassoon's The Radio

Hacker's Code Book is a detailed introductory guide to the reception of radioteletype transmissions, especially those of nonamateur origins. These come from meteorological offices, international news agencies, embassies, oil rigs, even homesick Russian sailors!
Judging from its tone, this book is aimed at computer enthusiasts who seek new avenues to explore with their precious number crunchers. It is not primarily a book for radio amateurs who want to delve further into data transmission (it is worth noting that George Sassoon is evidently a radio amateur).
As a result, there is an obvious assumption that the reader has a certain degree of familiarity with a computer, and the basics of receiving RTTY are outlined for the uninitiated (and it is an excellent history of Baudot et al).

Sassoon takes the reader from setting up a station, through an outline of what RTTY is, to the hardware and software requirements. There are numerous Basic and $Z 80$ machine code listings, and a full description of a terminal unit (with circuits in the appendices).
With such basics established, we are introduced to the prospect of decoding encrypted transmissions. I must admit, the idea of cracking the codes of, for example,
the Soviet Navy appeals to me immensely (but then I always wanted to be James Bond). Sassoon describes various encrypting systems used and the elements of using a computer to decipher them. Perhaps of equal importance here is the admirable bibliography included at the end of the book, since the limited space in a book of 240 pages could not do justice to such an intricate topic.
Even if you're only mildly interested in RTTY, I believe you'll find The Radio Hackers Code Book fascinating. A word of warning, though: it is' a book to whet the appetite, so don't blame me if you get badly bitten by the codecracking bug.
It is published by Duckworth and Company Ltd, The Old Piano Factory, 43 Gloucester Crescent, London NW1 7DY. Tel: (01) 4853484. The price is $£ 6.95$ (ISBN 07156 2068 1).
More bits and bytes in the next publication, An Introduction to Computer Communications, by that prolific writer RA Penfold.
This book is exactly what it claims to be, an introduction, so don't regard it as a manual for use in serious applications: the reader is expected to be a curious home micro user, not a businessman thirsting for hi-tech.
The text is divided into three chapters, these being modems, local networks (strictly home micros), and radio communications. The principles of data transmission are covered first in a very competent manner, and then the intricacies of communicating via a modem are unravelled. The network section is brief as this area is somewhat limited for home micros, but some interesting possibilities are pointed out, and some useful general information is covered.

The radio communications chapter is similarly brief (after all, the whole book totals just 72 pages), and outlines RTTY, CW, AMTOR and packet systems. It is a chapter to awaken the computer user to the possibilities of radio communications, not a detailed and highly technical guide to this form of communication.

Datel UK

The new 126 -page DPM and calibrator catalogue from Datel provides information on the company's broad product range, together with an easy to follow guide to selection.
Also included is a comprehensive tutorial section on the fundamentals of DPM design and a glossary of terms.
The book is arranged in nine sections. Section 1 discusses the features and functions to be looked for in a DPM, and provides a tabulated quick selection guide. Section 2 comprises 50 pages of concise information on Datel's DPM product range, and includes details on several new families of instruments. This is followed by a 10 -page section on specialised panel instruments (bar meters and programmable counter-timers) and by a 7 -page section on voltage calibrators (hand-held, bench and panel-mounted).
A section on accessories
lists connectors, ac-to-dc power converters and newlydeveloped temperature sensors which are completely compatible with Datel instruments. Further sections provide product and panel cutout dimensions, circuit diagrams of typical DPM applications, functional pin-out descriptions and an explariation of the theory of DPM operation. Finally, there is a 3 -page glossary of terms.

Datel (UK) Ltd,
Belgrave House,
Basing View, Basingstoke,
Hants RG21 2YS.
Tel: (0256) 469085.

Aerial Techniques

Aerial Techniques' 1986 catalogue is now available. It comprises a representative cross-section of equipment available from the aerial industry and should fulfil most receiving needs.
However, if a customer is
unable to find a specific requirement in the catalogue he should contact Aerial Techniques, who have access to all major suppliers and manufacturers.
The catalogue is available, together with a separate price list, by return of post for 65p.

Aerial Techniques,
11 Kent Road,
Parkstone,
Poole,
Dorset BH12 2EH.
Tel: (0202) 738232.

Fulcrum

Fulcrum's latest product catalogue incorporates the S100/696 computer board products which the company supplies, including the VME, IBM, Apple computer board products and single PCBs which it has recently become the distributors of.
The catalogue details the specifications and price of every product and there is a
section on extra services and products which the company can supply.

Fulcrum (Europe) Ltd,
Valley House,
Purleigh,
Essex CM3 6QH.
Tel: (0621) 828763.

Papst

The Papst Motors' 1986 price list for Fan Products is now available.
Despite pressure from the German deutschmark against sterling, many items listed last year have been either reduced in price or held in check. In addition thirty-one new units have been added to the 1986 list.
Copies are available on request.

Papst Motors Ltd,
East Portway,
Andover,
Hampshire
SP10 3RT.
Tel: (0264) 53655.

AMATEUR RADIO \& ELECTRONICS HOBBY FAIR:

> TO BE HELD AT WEMBLEY CONFERENCE CENTRE SATURDAY 5TH \& SUNDAY 6TH JULY, '86 THE FIRST TWO DAY FAIR TO BE HELD IN THE SOUTH OF ENGLAND. A MAJOR NEW EVENT IN THE AMATEUR RADIO CALENDER.

OVER 200 RETAIL \& MANUFACTURERS STANDS PLUS LOTS MORE. SEE FUTURE PUBLICATIONS FOR MORE DETAILS.

> THE ORGANISERS ARE AMATEUR RADIO PROMOTIONS, WOODTHORPE HOUSE, CLAPGATE LANE, BIRMINGHAM B32 3BU TELEPHONE 021-421-5516

SHORT WAVE NEWS FOR DX LISTENERS

By Frank A Baldwin

All times in GMT, bold figures indicate the frequency in kHz

In this issue, the out of band Far Eastern station review continues by listing those currently operating between the limits 4500 to 4735 .

Xinjiang

On 4500 Xinjiang PBS (People's Broadcasting Station) operates at Urumqi, China. With a power of 50 kW it radiates programmes in the Home Service from 2300 to 0200 , from 0330 to 0730 and from 1030 to 1730 in Chinese. From 1800 to 1855 , from 1900 to 1955 and from 2000 to 2055 it relays the Radio Beijing Foreign Service in Russian which is, needless to say, jammed.
Nei Menggu PBS, Hohhot carries the Home Service in Mongolian from 2120 to 0600 and from 0800 to 1515, the power being $10 / 50 \mathrm{~kW}$ on 4525.This one, unlike that listed above, is seldom logged here in the UK, although the chance of a DX 'catch' always exists for the inveterate out of band searcher.

Clandestine

Next in ascending frequency order is the seldom heard clandestine Voice of the Revolutionary Party for Reunification, located in Haeju, North Korea on 4557. Except for an English transmission from 1400 to 1430 , it programmes in Korean from 2000 to 2230 , from 0300 to 0400 , from 1000 to 1400 and from 1500 to 1700 with a power of 100 kW .
Mainly intended for South Korean ears, the programmes are pro-communist in content, the policy favouring the reunification of Korea on communist terms. This clandestine identifies in Korean as Tongil Hyongmyongdang Moksoti Pangsongimnida.

China, Laos and Vietnam
 Another station rarely

 reported by European DXers is Radio Beijing on 4620. It operates with a power of 50/120kW presenting programmes in Korean from 1100to 1500 and in Russian from 1500 to an indeterminate signoff time. The entire transmissions are jammed, of course.
Super DX exists, if only one could \log it, on 4660 in the shape of Houa Phan in Laos. With a power of 1 kW it serves the local community from 2300 to 0100, from 0330 to 0530, from 1000 to 1155 and from 1255 to 1425. The frequency is likely to vary slightly on occasions.
Two rarely heard Vietnamese transmitters are those based at Son La and Gia Lai-Kon Tum. The former occupies the 4700 channel, the latter 4701. Both are apt to vary in frequency slightly. Son La is in operation from 2230 to 2300 and from 1140 to 1400. This schedule includes programmes in Montagnard from 1200 to 1300 and from 1330 to 1400, and in Vietnamese for the remainder of the time. The latter station features programmes in Vietnamese and other local languages and is on the air from 2300 to 2330, from 0300 to 0430 and from 1030 to 1400 . The powers are not known.

Burma

On 4725 may be found the oft reported BBS Rangoon. At. 50 kW , it is scheduled with local programmes from 1030 to 1455 (Saturday and Sunday until 1545) during January, February, May, June, September and October, and from 1030 to 1545 (Saturday and Sunday until 1445) during March, April, July, August, November and December.
For those addicted to tape recording, the local-style music is well worth taping - it is not every day that one can savour the sounds of clashing cymbals and sonorous gongs.

Identifying in Uigher

Adjusting the receiver to 4735 will almost certainly result in the signals of Xinjiang PBS, Urumqi, China being heard. Among other programmes it features the

Home Service in Uigher and identifies as Xinjiang Khalk Radiyo Istansisi.
It is scheduled on the air from 2300 to 0230 , from 0330 to 0730 and from 1030 to 1730 , this including relays of the Radio

Beijing Minority Language Service in Uigher from 1100 to 1126 and from 1330 to 1356. From 1900 to 1955 and from 2000 to 2055 it relays the Radio Beijing Foreign Service in Russian.

AROUND IHE DIAL

When seated comfortably at the receiver operating position, study this section, note the times herein, adjust the receiver to the frequencies specified, and listen. Hopefully you will receive similar results.

AFITCA
 Ascension Island

BBC Relay on 11820 at 1919, OMs and YLs with a discussion about the British economy during an English programme for South Africa, timed from 1800 to 2030.

Cameroon

Radio Garoua on 5010 at 0430, the National Anthem at sign-on followed by OM with the station identification in French and vernacular then readings from the Holy Quran. This 100 kW transmitter is on the air in vernaculars and French from 0425 to 0800 (Saturday and Sunday until 0700) and from 1645 to 2200. There is an English news bulletin from 0500 to 0505 and an English programme from 1830 to 1900 .

Egypt

Cairo on 9850 at 1950, YL with songs in the General Arabic Domestic Service which is on this channel from 1500 to 2345 .
Cairo on 12050 at 0917, OM and $Y L$ with a discussion in the General Arabic Programme for the Arabic world, scheduled from 0700 through to 2345 .

Gabon

Radio Japan (Gabon Relay) on 15210 at 1540, light orchestral music then OM with a talk about Japanese trees during an English transmission for

Europe and the Middle East, timed from 1500 up until 1600.

Ghana

Accra on 4915 at 0600 , OM with the station identification followed by a newscast mostly about local events and affairs. This is GBC1 at 10 kW radiating in vernaculars and English from 0545 to 0800 (Sunday until 2200) and from 1200 to 2200.

Mali

Bamako on 4835 at 1927, OM with a talk in vernacular. This one is on the air from 0600 (Sunday from 0700) to 0800, and from 1800 to 2400.

Mozambique

Maputo on 3335 at 0309, OM choir, then OM with announcements in Portuguese.
Radio Mozambique is scheduled from 0300 to 0530 and from 1500 to 2215 with a power of 10 kW in Portuguese and vernaculars. The frequency is variable. Maputo, formerly Lourenco Marques, is the seaport capital at the head of Delagoa Bay on the East African coast.

Nigeria

FRCN Kaduna on 4770 at 1950, OMs with a pop song in English, 4 'pips' time-check at 2000UTC then OM with the station identification and a newscast in English, mostly about local affairs.

Seychelles

FEBA (Far Eastern Broadcasting Association), Mahe on 11755 at 0443 , OM with a talk in the Arabic transmission beamed to Africa from 0345 to 0445 . Carrier off at 0446.

Togo

Togblekope on 5047 at 0532, congregation with hymns followed by OM with a sermon in vernacular. The Home Service in French and vernaculars is on this frequency from 0530 to 0803 and from 1703 to 0005 , but there is an English news bulletin at 2000. The power is 100 kW .

GZTIRAL AMERICA
 Antigua

BBC Relay on 11775 at 1110, OM with the news in English, OM with the identification at 1115 during the English presentation to Australasia and the Pacific Islands scheduled from 1100 to 1130.

Cuba

Radio Havana on 6165 at 2245, OM with comments on current affairs between recordings of Spanish pops during the English programme to Northern Europe, timed from 2200 to 2300 . Seven chimes at 2254 then YL with the station identification in English.

NORTH AMERICA
 Canada

Montreal on 11915 at 1538, $Y \mathrm{~L}$ with the station identification, OM with world news in the English programme for Eastern Europe, scheduled from 1538 to 1545.

USA

World Harvest Radio, Indiana on 7355 at 1040, OM with a religious talk in English during a programme for Europe timed from 0800 to 1100. Sign-off without the National Anthem at 1056 after announcing an address in South Bend, Indiana.

Eve SOUH AMTRICA

Argentina

Buenos Aires on 11710 at 2300, OM with the station identification and a newscast in Spanish during a programme in that language timed from 2200 to 0100, intended for South American listeners.

Dominican Republic

Radio Clarin, Santo Domingo on 11700 at 2139, YLs with some folk songs complete with a backing of guitars. Radio Clarin programmes in Spanish to Central America from 1100 to 0500.

PBC Karachi on 4815 at 1534, OM with a talk in vernacular during a Regional Service programme. With a power of 10 kW , this one is on the air from 0230 to 0600 and from 1200 to 1900.
Islamabad on 11995 at 1407, YL with a talk in Bengali to South and South-East Asia with many mentions of Pakistan. The schedule is from 1230 to 1445 .

SOUIH-EAST ASIA
 Philippines

FEBC (Far East Broadcasting Company) Manila on 11850 at 0950, OM with a religious talk and announcements in an English transmission for Australia, New Zealand and New Guinea, scheduled from 0700 to 1000
FEBC Manila on 11.890 at 1057, OM with a talk in the Chinese programme to Asia, timed from 1000 to 1100 . OM with the station identification in English at 1059, OM in vernacular and off at 1100.

Vietnam

Hanoi on 12020 at 1332, OM with a newscast mainly composed of local events with some Asian items at the commencement of the English transmission to Asia, scheduled from 1330 to 1400.

NFAR AND MIDDLE EAST
 Cyprus

BBC Relay, Limassol on 3990 at 0318, OM with a talk about the Turkish army in an English World Service programme timed from 0300 to 0330 on this channel.

Iraq

Baghdad on 11720 at 0518, OM with a song amid some Arabic music in the programme for the Middle East. This Arabic transmission starts at 0230 and ends at 1300 on this frequency.
Baghdad on 11750 at 0440 OM with the news in English followed by the station identification at 0445, the schedule being from 0300 to 0400 and directed to North America.

Lebanon

Radio Voice of Lebanon, Beirut on 6550 at 2235, light orchestral music Euro-style, YL with announcements in

Arabic. The schedule is from 0415 to 2120, mainly in Arabic with some programmes in French and a few five minute newscasts in English.

Oman

BBC Relay Masirah Island on 11955 at 0220 , OM with a talk all about the short waves in an English programme for Iran and South Asia, scheduled from 2330 to 0530.

Qatar

Doha on 9905 at 2100 , six 'pips', OM with the station identification and a newscast in the Arabic presentation to Africa, from 0245 to 0700.

NOW HEAR JHESE

Kalaallit Nunaata Radioa, Godthab, Greenland, on 3999 at 1022, OM in Icelandic then a 6 -note interval signal repeated at 1030. The Home Service is on the air from 1000 to 0300 weekdays and on Sunday from 1100 to 0205 with a power of 1 kW (dipole).
Choibalsan, Eastern Mongolia on 4995 at 1544, Chinese-style orchestral music, OM with a song just audible on peaks. This 12 kW transmitter carries the Home Service 1 from 2200 to 1600. This schedule includes slots of the Moscow Foreign Service in Mongolian daily, and in Russian and Chinese on Tuesday and Friday. The frequency can vary from 4994 to 4996.

Win NOW LOG THESE

For newcomers to the hobby, try for some of the Brazilians on the 25 metre (11650 to 12050) band.

Radio Nacional da Amazonia, Brasilia on 11780 at 2232, OM with a talk in Portuguese then OMs with local-style songs and guitars. Radio Guaiba, Porto Alegre on 11785 at 2225, OM with a newscast in Portuguese, OM with the station identification and a trumpet fanfare.

Radio Globo, Rio de Janeiro on 11805 at 0132, OM and YL with some commercials in Portuguese. Radio Brasil Central, Goiania on 11815 at 2150, OM with a talk in Portuguese with mentions of Brasilia, the capital. Radio Bandeirantes, Sao Paulo on 11925 at 0138, OM with pops in Portuguese.

Radio \& Electronics World -
The communications and electronics magazine

Don't take a chance on being able to get your copy

AVOID DISAPPOINTMENT
Place a regular order with your newsagent

Should you have any difficulties obtaining a copy, phone (0277) 219876 or write to Circulation Department, Radio \& Electronics World,
Sovereign House,
Brentwood, Essex CM14 4SE

NEWSAGENT ORDER FORM

| Please order a copy of Radio \& Electronics World for me every | | month
| NAME.
| ADDRESS.
| Newstrade distributors: Argus, 12-18 Paul Street, London EC2A 4JS. Tel: 012478233

ATTENTION ALL CIRCUIT DESIGNERS!! LOW COST ELECTRONHCS CAD IBM PC/XT, BBC MODEL B and SPECTRUM 48K

Analyser computes the AC Frequency Response of linear (analogue) circuits. Gain and Phase, Input Impedance, Output impedance and Group Delay (except Spectrum version) are
calculated over the frequency range required. The effects on performance of Modifications to calculated over the frequency fange required. The effects on pertormance of
Circuits containing Resistors, Capacitors. Inductors, Transformers, Bipolar and Field Effect Transistors and Operational Amplifiers can be simulated - up to 150 components (IBM version). ideai for the analysis of Active and Passive Filter Circuits. Audio Amplifiers, Loudspeaker Cross-Over Networks. Wide-Band Amplifiers, funed RF Amplifiers. Aerial Matching Networks TVIF and Chroma Fiiter Circuits, Linear integrated Circuits, etc, etc.
'Analyser' can greatly reduce or even eliminate the need to breadboard new designs. Used by Industrial R\&D Departments and Universities world-wide. Very Easy to Use. Prices from £20 ex VAT Access or American Express welcome.
For further details and example computation or for details on our New Draughting Program please write, phone or telex

NUMBER ONE SYSTEMS LIMITED
Dept REW, 9A Crown Street, St lves, Huntingdon, Cambs PE17 4EB, UK Tel: (0480) 61778 Telex: 32339

REG WARD \& CO LTD 1 Western Parade Axminster Devon EX13 5NY

Official Agents Yaesu. Trio, Icom, FDK
:Complete range stocked:
Full demonstration facilities: :Mail/Phone orders on all items: : Barclaycard, Access, Instant Credit: Ancillary equipment: Adonis, AKD, AOR, Benchor, BNOS, CAP.CO, Datong, Diawa, Drae, Hansen, Hinound, JIL, Kempro. Microwave Modules, Mutek, SEM Snare, TAU Tolcyo Hypower, Tono, Toyo, Welz, Wood \& Douglas Aerials by: G Whip, Hygain, Jaybean, Mini Products, Rexco, TET, Tonna

New complete range Wood \& Douglas Kits CD ICOM TAU Tuner SPC 3000

Cables, plugs, sockets, insulators, etc.
Opening hours: Tues-Sat 9.-5.30 (lunch 1-2)Closed Mondays
Tel: Axminster (0297) 34918

(a) $\\|^{\prime}$ - D	(-)
COMPONENT PACKS	* LOWEST PRICES \star SAME DAY DELIVERY IF YOU ARE WITHIN 20 MILES OF HERTFORD (MIN ORDER £50) * NEW PRICE LIST NOW AVAILABLE * TELEPHONE ORDERS WELCOME * OFFICIAL ORDERS WELCOME ADD 75p P\&P plus 15\% VAT (No Min Order)
EP1 300 Assorted Resistors Mixed Types80.95	
EP2 350 Carbon Film Resistors Pre-Formed..............................95	
EP3 200 Assorted Capacitors All Types0.95	
EP4 75 C280 Capacitors Mixed Values905	
EP6 1000 mfd 16 SV Axial Elect Caps (4 off)40	
EP7 20 Zener Diodes...0.40	
EP8 20 AssortedLEDS...90.95	DIGITAL CAPACITANCE METER Measures 1 pF to 1000 mfd Three Ranges pf, nF \& uF 5 Digit LED Display (EE DEC 85) KIT PRICE £33.50. Front Panel, Labelled and punched slots PRICE £3.50.
EP105 Red LEDS 3mm...30.30	
EP115 Yellow LEDS 3 mm ..30	
EP125 Amber LEDS Triangle 3mm $\mathbf{5 0 . 3 0}$	
EP165 Small Screwdrivers Plastic Handles0.40	
EP21 30 Metres PVC Multi-Strand Wire Mixed Colour.................90	Stereo reverb unit Delay Time 35 ms . Decay Time 2.5 to 3 Seconds Reverb Level Control (EE APRIL 86). KIT PRICE E22.50. Front Panel, Labelled with punched Slots PRICE 83.50.
EP22 40 Metres PVC Single-Strand Wire............................... $\mathbf{\Sigma 0 . 9 0}$	
EP26 Copper Clad Pack Mixture of Sizes etc..........................2.00	
EP30 50 BC177/8 Transistors (uncoded)95	
3 WARRIEN PLAGE, RAILWAY STRIE =T, HERT TOFD; TEL: HERTFORD 099254319]

On these pages we present details of interesting contacts from clubs and individuals. We would be happy to receive any similar items from readers

Anglo-Scottish Rally

Hoping to emulate last year's success, Kelso, Borders and Galashiels Amateur Radio Society is hosting the third Anglo-Scottish Rally in Kelso's Tait Hall on Sunday 4 May from 11am to 5 pm .
There will be talk-in on S22, a bring-and-buy, club and traders' stalls, raffles, a bar and hot and cold snacks. It is hoped that there will also be a Morse test room.
The entrance fee is $£ 1.00$, but accompanying nonlicensed YLs and XYLs can enter free of charge, as can junior ops.
For further information and details about accommodation contact André Saunders GM3VLB on (0573) 24664 or Bruce Cavers GM4UIB on (0573) 24654 any evening.

WA Sparks G8FBX

We were very sorry to hear of the death of Bill Sparks G8FBX, a regular contributor to our sister magazine Amateur Radio and co-author of the excellent CB conversion articles in R\&EW, November ' 84 and March ' 85 , on 6 January this year.

A keen SWL in his youth, Bill became an electro-chemist working for a number of years for Salford Electrical Instruments and latterly as a principal in several electro-plating
companies, until ill-health forced an early retirement.
He was a founder member of the Warrington and District Radio Society in late 1946, always taking a keen interest in club affairs and taking part in numerous field day and portable outings, being especially interested in VHF and UHF. He was also keen on home construction, and design, contributing related articles to this and other amateur radio journals.

He will be remembered by a large number of recently licensed amateurs who he successfully tutored in the south Lancashire and north Cheshire areas, visiting many clubs and individuals as an RAE instructor.

A member of the RSGB and Raynet, he will be sadly missed by all who were fortunate enough to know him. 73 Bill.

G2FCV

Vale Royal Award

The Vale Royal Award has been announced by the MidCheshire Amateur Radio Society, which is sponsoring the award with the Vale Royal District Council.

The objective of the award is to publicise the district of Vale Royal, in the heart of Cheshire, and to encourage radio amateur activity.

ERRATA

Readers should note the following errors and emissions published in S Dean's article, RTTY decoding using the Spectrum - Part II, in the March issue.
In the Basic part of the program, line 420 should read: 420 LET MSB=INT (ADD/256): LET LSB=ADD-256*MSB Line 660 should read:
660 PRINT: PRINT "ENTER NEW MESSAGE: -'\#' ENDS"
The curly brackets randomly placed in the listing should be the normal () type brackets. This was due to a peculiarity of the word processor used by the author at the time.

In the Transmit M/C routine the 9th line from the top should have a label:
AGAIN: 3A 085 C LD A, (5C08)
We apologise for any inconvenience caused by these errors, although most of them will not affect normal operation of the program.

The printing of the certificates has been financed by the council and any money left over after the costs of administering the award have been met will be distributed between the Radio Amateur Invalid and Blind Club (RAIBC) and Hebden Green Special School for Handicapped Children in Winsford, Cheshire.
There are two classes of award: class A for single band, multimode, and class B for multiband, multimode. To qualify for the award amateur stations must have achieved either of the following:

1. Worked nine stations who are situated in the district of Vale Royal or who are members of the Mid-Cheshire Amateur Radio Society, plus one Mid-Cheshire Amateur Radio Society station (G3ZTT, G8ZTT).
2. Worked both Mid-Cheshire Amateur Radio Society stations plus the Delamere Forest Microwave Activity Group station (G4ZTT) and the Vale Royal Contest Group station (G6ZTT).
Applications should be sent to Hans M Field, Awards Manager, Mid-Cheshire Amateur Radio Society, 6 Llandovery Close, Winsford, Cheshire CW7 1NA, together with an extract of their log showing the details of the contacts claimed, signed by themselves and one other licensed radio amateur to confirm that the extract is a true copy of the applicant's log. Also enclose a cheque or postal order, made payable to the Mid-Cheshire Amateur Radio Society, for the sum of £1.00 (sterling) or 5 IRCs for applicants outside the United

Kingdom, and an A4 sized sae (UK only).

For any further information about the Vale Royal Award contact Dr E J Loader G6HXU on Runcorn (0928) 513844 during the day or phone Northwich (0606) 75660 in the evening.

Mobile radio rally

The Mid-Ulster Amateur Radio Club is holding its annual mobile radio rally on Sunday 18 May in the grounds of Parkanaur House, which is situated approximately six miles from Dungannon on the main Ballygally Road.
The event starts at 12.00 noon. There will be the usual trade stands and a bring-andbuy stall as well as talk-in on S22 FM 144.550 MHz .
Monthly meetings of the Mid-Ulster Radio Club are held on the second Sunday of each month at 3.00 pm in the Guide Hall, Castle Hill, Gilford. There is usually a talk or demonstration of interest to radio amateurs and everybody is welcome. For details about either the rally or the meetings contact the club secretary, Sam White, tel: (0762) 22855.

Hobby fair

The Wembley Conference Centre in London will host the Amateur Radio and Electronics Hobby Fair on 5 and 6 July. This is apparently the first two-day fair of its type to be held in the south of England, and is a major new event on the rally calendar.
A wide variety of retailers and manufacturers will be present offering a range of goodies: RTTY, satellite TV and communications, micro-
waves, hobby components and amateur TV will all be included at the fair.
If you are interested in attending as an exhibitor, contact: Amateur Radio Promotions, Woodthorpe House, Clapgate Lane, Birmingham B32 $3 B U$.

Binstead ARS

The Binstead Amateur Radio Society meets every Wednesday at the Scout Headquarters, Drill Hall Lane, Binstead. Morse lessons and instructions on the RAE are given where required, and AMTOR and ATV are demonstrated on certain dates according to requirements.
The society has its own radio shack built into the Scout buildings and runs a variety of activities, including exercises with the Scout group.
The club also has its own award: The Binstead Amateur Radio Society Isle of Wight Award. To qualify for this you must meet the following
requirements: VHF - workten Isle of Wight stations which must include the GOBAR club station; HF-work five Isle ofWight stations, again including the GOBAR club call.
The award is printed in four colours and costs $£ 2.50$.
For further details contact: D F Barnes G4VJF, 2 Sherbourne Avenue, Binstead, Ryde, Isle of Wight PO3 PX.

Wireless revival

This popular annual mobile rally for radio amateurs is being held on Sunday 25 May at the Civil Service Sports Ground, Straight Road, Bucklesham, Ipswich, Suffolk.
With features such as traders, a car boot sale, an aerial testing range and a vintage radio display, plus non-radio stalls, a childrens' play area, a model flying display and other attractions, this rally provides a happy day out for the whole family. The admission price is 80 p .

Further details are available from: Jack Tootill G4IFF,

76 Fircroft Road, Ipswich IP1 6PX. Tel: (0473) 44047.

Southgate ARC

The Southgate Amateur Radio Club meets at 7.30 pm for an 8.00 pm start on the second Thursday of each month at the Holy Trinity Church Hall, Green Lanes, Winchmore Hill, London N21.

On 8 May there is a talk by Stan Wood, the Marconi Company historian.
For further details contact:

R F Sandy G4OBE, 12 Borden Avenue, Enfield, Middlesex EN1 $2 B Z$.

May Day microwave

There is a BATC contest day on 5 May. The May Day Microwave, 23 cm and 3 cm fast scan, takes place between 0001 and 2359 hours.

For entry forms, log sheets and information about contest rules send an sae to: Mike Wooding G6IQM, 3 Perkins Grove, Rugby CV21 4HU.

COMPETITION RESULTS

The winning limerick in our competition to win the new TT/9003 transistor tester from Repro Electronic Systems (featured in the February issue) is from R E Mackenzie of Herne Bay, Kent:

A radar technician one day
Of a magnetron got in the way
'Twas the radial scan
That spiralled the man To an 'ohm' in the Milky Way!
Congratulations, Mr Mackenzie. Your transistor tester is on its way! Well done everybody for your efforts, especially those of you who actually know what a limerick is (and it's amazing how many people don't....)

THE COMMUNICATIONS AND ELECTRONICS MAGAZINE

Regular well-informed columns on various aspects of amateur communication

- Up-to-date news on the latest technology
- Simple and useful constructional projects, plus clear explanations of the theory behind them
Delivery to your door by publication date each month 4nflation proof-price guaranteed for 12 months

On sale NOW at your newsagent and at equipment dealers

 readio \& ELECTRONICS WORLD SUBSCRIPTION ORDER FORMTo: Subscription Department - Radio \& Electronics World - 1 Clarendon Road - Croydon • Surrey • CRO 3SJ

Tel: 01-760 0409
NAME
ADDRESS \qquad

PLEASE SUPPLY: (tick box) for 12 issues, all rates include P \& P

FREE CLASSIFIED ADS

FAEE CLASSIFIED ADS CAN WORK FOR YOU
We are pleased to be able to offer readers the opportunity to sell your unwarited equipment or advertise your 'wants'

Simply complete the order form at the end of these ads, feel free to use an extra sheet of paper if there is not enough space on the order form. We witl accept ads not on our order form.

Send tu: Radio a Electronics World. Sovereign House, Brentwood, Essex CM14 4SE

deadune and conditions

Advertisements will be inserted in the first available issue on a first come first served basis. We reserve the right to edit and exclude any ad. Trade advertisements are not accepted.

FOR SALE

CBM C16 computer complete with PSU recorder, tapes and manual, new, £50: 30 in dish, WG feed with atten, £25. Collins tuner TN-140/ULR, $2.3-4.45 \mathrm{GHz}$ and mixer-amp CV-70/ULR, £30 the two. Microwave Associates multiplier ML1197, $3 \mathrm{~mW} \mathrm{o} / \mathrm{p}$ at $7380 \mathrm{MHz}, £ 10$. Jason Stereo tape link, type JTL, (valves), £10. No offers. Tel: Crudwell, Wils (06667) 7820

- Shimizu SS1055 9 band HF transceiver, 1.530 MHz crystalled 11m FM SSB. Hershman SWR power meter. Tokyo HC200 ATU. Scarab interface and tuner unit plus software Spectrum RTTY Shure base mic, Kenwood hand mic. Exchange for any 934 transceiver, prefer base unit but not essential. Also any 934 equipment, eg SWR meter antenna etc. Alan Vaughan, East Cornerfield, Slaley, Northumberland NE47 OBS. Tel: (043473) 554.
- Two 813 new valves, snip at $£ 32$. Holder, South Furzehill, Lynton, N Devon EX35 6LN.
RCA 813 transmitting tube, unused, £20 or near offer. Tel: Southampton 463044.
- Sharp pocket computer PC-1245 with instruction manual, new, £50. Howland West audio CIS550 stereo, mono headphones, new, $£ 10$. Packer $90-$ 200 MHz wavemeter WB-2, £15. AC Gee, 21 Romany Road, Oulton Broad, Lowestoft, Suffolk HR32 3PJ Tel: (0502) 65726.
- PCB for PW Meon 50 MHz trvt 10 m input, double sided drilled, $£ 1.50$. Wobbulator $7 \mathrm{MHz}-70 \mathrm{MHz}$, spare new valves, $£ 25$. MM TV upconverter $£ 17.2 \mathrm{~m}$ rack $T x$ 6ch mains PSU 12 watt o/p, £20. H/brew set of boards for CMH 80 m CW tcvr with CCT, £5. Ben G4BXD. Tel: (021) 5259772
- Model boat air/sea rescue launch, 35 in long complete with 3.46 cc water cooled diesel engine Unused, mint condition, needs radio control and servos but including 102 volt miniature lead acid rechargeable sealed batteries, £45.00. No offers, buyer collects. Mr C W Woodward, 4 Fallows Road, Sparkbrook, B'ham B11 1PQ
- 2000 clear LEDs 3 mm dia with mounting clips type no SLV14 (450 bead tantalum caps $47 \mu \mathrm{~F} 35 \mathrm{VW}$, 450 bead tantalum caps $33 \mu \mathrm{~F} 25 \mathrm{VW}, 450$ bead tantalum caps $10 \mu \mathrm{~F} 25 \mathrm{VW}, 450$ bead tantalum caps $10 \mu \mathrm{~F} 16 \mathrm{VW}$). All 100% top grade components. Offers invited. Please enclose SAE for reply. Mr C W Woodward, 4 Fallows Road, Sparkbrook, B'ham B11 1PQ.
- Datong AD370 MPU new, Datong DC144/28 unused. Discone 10 metre T with antenna. Also Slim Jim wavemeter, new, 4 watt PSU dc various SS mob antennas, large, all perfect. Bargains to early callers. Collect from QTH only. Bailey, 40 Weilington Way, Salisbury, Wilts SP2 9BX. Tel: (0722) 22646
- Microwave Modules 144/100-S linear amp, 10W in, 100 W out, E 95 . Drae 13.8 V 12 amp power supply unit, $£ 45$. Welz CH-20A coaxial switch, $£ 10$. All items vgc. Any offers? G4UWW, Colchester. Tel: (0206) 395720.

Hallicrafters Sky Chief, Osram Music Magnet, McMichael portable four, R109 military plus type $19 \mathrm{Mk} \mid \mathrm{II}$ tank radio, Ekco A21, Murphy D34, Bush AC71, Ekco A23. Marconi 262, Marconi 559, Vidor 351 plus part of Marconi V2. Also several other old radios mostly complete and approx 1000 valves of the thirties and forties, $£ 350$ the lot or swap SW transceiver in grod cond. Tel: (05694) 652.

- 730/4 Eddystone receiver 5 band. Purchased reconditioned 1985, £80 cno. 1A Bridge Gardens, Farmborough, ilr Bath, Avon. Tel: Timsbury 70944, evenings
Valves: SAE for list. Also many odds and ends. Cossor scope type CR100 - offers? As new, good receiver. All letters replied to. Mr R E White, 29 Nunnery Street, Castle Hedingham, Essex.
- Realistic HF receiver DX $302,0 \mathrm{MHz}$ to 30 MHz Digital readout for sale, mint condition, boxed manual, £95, or exchange for Pro2002 scanner or similar scanner with airband, in same as new condition. Derek Walton, 'Dalairn', Seabank, Invergordon, Rosshire, Scotland. Tel: Invergordon 853333.
- Yaesu FR101 AM/FM, $6 \mathrm{~m}, 2 \mathrm{~m}$ with instruction manual, vgc, hardly used, £100. Yaesu FRG7 with FRT7700 instruction manual, vge, hardly used £100. Pye hi-fi sound project A8000, brand new boxed, $£ 40$. Pye hi-fi sound project. A8000 tuner amp, as new. £40. Mr J Hewitt, 15 Delamere Close, Mili Park Estate, Eastham, Wirral L62 9EH. Tel: (051) 3276588
- Gould Advance $31 / 2$-digit multimeters. One Beta type bench model 28 range LCD, 10A ac/dc, $£ 60$ One Gamma type bench model 28 range LCD 10A $\mathrm{ac} / \mathrm{dc}$, true rms mains power, $£ 130$. Feedback sine/square oscillator $\operatorname{SS} 060310 \mathrm{~Hz}-1 \mathrm{MHz}, £ 50$. Phone Kevin on (0693) 66545 or write 34 Monaghan Street, Newry, N Ireland.
Clearance: very large box of circuit boards containing hundreds of useful electronic components, eg transistors, diodes, transformers, multiturn pots, switches, resistors, capacitors, etc. Over 20 boards of at least 8 different types. Weight over 3 kg . Will post for just $£ 7.40$ inclusive. Also box of loose components, must be over 1,000 parts, mostly new, $£ 9.60$ post free. 100 new semiconductors. £3 post free. K Bailey, 40 Seymour Close, Selly Park, Birmingham B29 7JD. Tel: (021) 4723688.
- Levell AF sig gen TM150, as new, $£ 20.00$. IE 0-50V 0.6 A bench PSU vgc, boxed, $£ 10.00$. 5A variac, £15.00. Eddystone 770R Rx needs mains txmr and IF can, hence $£ 20.00$. Eddystone slow motion drives, £1.50 ea. Sharp FV1700 6 band gen coverage Rx, portable with BFO, AFC, sig meter, complete with mains PSU, $\mathrm{h} / \mathrm{phones}$ and manual, ideal SWL's Rx, £35.00. HP412A VVM with probe, £10.00. Field strength meter, $£ 2.00$. Professional 134 ft folded wire dipole $(1.5-30 \mathrm{MHz})$ with insulators, spacers, baluns, pulleys and lanyard, £18.00. SG Brown h/phones, $£ 5.00$. Matched new 813 s with holders, £20.00 pair QOVO3-20A, new with holder, $£ 8.00$. DG7-5 $21 / 2 \mathrm{in}$, CRT new with holder, $£ 8.807 \mathrm{~s}$ new, $£ 1.50 \mathrm{ea}$. G4FZG QTHr. Tel: (0242) 580329.
■ Colt 295, SWR power meter, two mobiles, twigs, 16 ft silver rod, co-ax. 25 W burner power pack, mag mount, co-ax, Binatone Long Ranger 12ch handheld, the lot, £130 ono. Tim, 1 Oaklands Cres, Builth, Wells, Powys LD2 3EN.
- Revox G36 and active multiplex filter. Ten spare valves, service manual, unused since 1980, £250. Logic probe model 340 , TTL, DTL, never been used, offers. Aiwa stereo cassette deck 5400 , service circuit, Dolby ' B ' unused last two years, $£ 55.00$. J M Bloodworth, 7 Calder Close, Maidenhead SL67RS Tel: (0628) 26316.
- Books and equipment from 1920s. Books covering design, application and servicing of radio and electronic equipment. Also electrical physics, maths, etc. Valves and equipment pre1950s. Test equipment and valve data manuals. Some ex-government. Offers invited. N Walker, 5 Acacia Drive, Maldon, Essex. Tel: Maldon (0621) 53878.
- Monitor, 19 inch 6 channel b\&w, £40. Monitor, 14 inch green screen, £35. Monitor, 11 inch green screen RS232, £35. Hallicrafters S27 VHF receiver £40. Hallicrafters S72 HF receiver, £40. Tel: Wokingham 782236.
- Heath OS-2 scope, £50. GD-1U grid-dip meter, $£ 30$. Heath RF signal gen $£ 30$. AV-3U ten range valve voltmeter, $£ 10$. All perfect order with hand books. Two 20 m lengths low-loss co-ax UR67, £6 each. Linear amp four PL519, 8 band, fully metered Self contained, $\mathbb{E} 135.4$ PL519 valves new
£24.50MHz linear, 50W two 807, £40. G30XV Earl, 1 Mayfield Drive, Daventry, Northants NN11 5QB. Tel: Daventry 702265
- Oscilloscope, Scopex 456, single beam, 6 MHz , with padded case, probes, manual and circuit diagram. Hardly used, $£ 180$ new - sell for $£ 65$. Also Leader LSG-17 RF signal generator, 100 kHz to $450 \mathrm{MHz}, £ 140$ new, sell for $£ 50$. Please ring John on Bredon 73180
- UHF $5 / 8+5 / 8$ new, $£ 17.2 \mathrm{mtr} 5 / 8$ new $£ 12$. Bases for both, $£ 7$ with cable. N-type plugs to suit UR67, $£ 2$. $930 \mathrm{MHz} 1 / 4+1 / 2$ collinear +3 dB, , 19 unused. ASP UHF mobile collinear $+3 \mathrm{~dB}, \varepsilon 12$, as new. PCB for 6 mtr trvt as PW meon, $£ 2$. Sound and speech units for Spectrum, £10. G4BXD. Tel: (021 525) 9772
* Gemscan 70 channel scanner AM-FM 60-180 $380-520 \mathrm{MHz} 12$ volt, 240 volt, £175. Fanon Courier 6 channel crystal hand-held scanner, high, low VHF and UHF Nicads, £50.00. G8RHU QTHr. Tel: Newhaven (0273) 516801
- Software for 48 K Spectrum. Filing program ideal for keeping stock of transistors, ICs etc. Also Morse Tutor program, will help you to learn Morse code quickly. Tape also includes a program to decode resistors' colour codes. All on one cassette tape. Send $£ 2.50$, which includes post and packing, to Mike Day, 39 Valnord Lane, St Peter Port, Guernsey, Channel Islands.
- Sony ICF 7600D, excellent condition, boxed with mains transformer, manual and carry case. A very portable comms receiver. Paul. Tel: (0604) 413131, Northampton after 6pm
- RTTY terminal unit BARTG ST5, machine or computer complete with dot matrix printer, includes box of paper for hard copy, £100. TV b/w camera type Ikegami CTC5000 with superb 25 mm 1:1.4 macro lens, can fill a TV with a postage stamp £100. All sold with free spare parts. GM3WIL. Tel: (0292) 79217
- Heathkit RG-1 general coverage receiver. BFO 1 MHz xtal marker, handbook, $£ 35$. Meters: $2^{33 / 4}$ in dia, $5 \mathrm{~mA}, 20 \mathrm{~mA}, 30 \mathrm{~mA}, 50 \mathrm{~mA}$, Weston, 1 mA USA $500 \mu \mathrm{~A}$. 2 in dia $1 \mathrm{~mA}, 25 \mathrm{~mA}, 30 \mathrm{~mA}, 50 \mathrm{~mA}$, $£ 3$ each. Class D wavemeter No1 Mk2, $1.9-8 \mathrm{MHz}$, plus Harmonics, xtal controlled $1000 \mathrm{kHz}, 100 \mathrm{kHz}$, VFO. Mains instructions, £12. Mains transformers. 300-0-$300,325-0-325 \mathrm{~V}, 250 \mathrm{~mA}$, another $275-0-275,300-0-$ $300 \mathrm{~V}, 250 \mathrm{~mA}$, Partridge, $£ 4$ each. Heavy collectors items: early AVO valve tester, about 1940, but meter box only with switching and 9 pin English input socket, circuit. Also AVO test bridge, about 1940, circuit, untested, offers. Ex-WD tank whip insulated base only, £3. Valves Y63 tuning indicator, $6 \mathrm{CH} 6,6 \mathrm{~V} 6,6 \mathrm{GM} 6,6 \mathrm{EW} 6,150 \mathrm{~B} 2$, , 22 each. LF choke gardners, $20 \mathrm{H}, 100 \mathrm{~mA}, £ 3$. Edwards, 32 Heldhaw Road, Bury St Edmunds, Suffolk IP327ES. Tel: (0284) 60984.
- RF preselector $1.8-10 \mathrm{MHz}$ (could be extended), mains. EF184, 2 in Japanese Vernier dial. $81 / 2 \times 7 \times$ 4ins. improves older receivers, $£ 6$. Valves, 6L6M, $6 \mathrm{~L} 7 \mathrm{M}, ~ £ 2.50$ each. One GEC KT66, offers. Solon iron, $230-250 \mathrm{~V}, 65 \mathrm{~W}$, medium, £3. FT101Z series AM unit, instructions, as new, £7. Headphones, communication, light, black colour, 300Ω, $£ 6$. Five AR88 fluted pointer knobs, £3. Ham-master speaker, 8Ω, noise filter: Adjustable bracket, $£ 6$. Edwards, 32 Heldhaw Road, Bury St Edmunds, Suffolk IP32 7ES. Tel: (0284) 60984
- PX4 triodes. 4 Osram, 1 Marconi. 2 are in manufacturers' original packing. Best offer secures. H Colborn, 6 Days Ground, Shrivenham, Swindon, Wilts SN6 8ET.
- Trio TS520, virtually unused since purchased new, £300. WW2 Pye PCR2 communications receiver, good working order. Pair matched Weston $0-5 \mathrm{amp}$ RF ammeters. 2 unused GEC KT88 valves. 2 unused Mullard PVO6/20 valves, offers. G3DOV QTHr. Tel: (0953) 882076, evenings.

Abstract

\section*{WANIED} - FC102 ATU, urgent in good cond. Tel: Johr G4USS Canterbury 731379. Good price paid, will collect. 20R2001 scanner, $£ 200$ offered. G8RHU QTHr, tel: Newhaven (0273) 516801. ■ Scopex 4S-6 needed by keen students. Ring Wyn, G8AWT on Isle of Wight 290188. - Pen pal: young man interested in electronics and CB who wants to holiday in Ireland in 1986 for mutual friendship and electronics - discussion. Patk O'Shea, Reahill, Caherciveen, Co Kerry, Ireland. - Barlow Wadiey receiver, XCR-30 Mk2. Good working order and condition. Edwards G3MBL. Tel: (0284) 60984, Bury St Edmunds, Suffolk. - Army wartime wireless set no WS19. Must be working order and complete with ancillary equipment. Will collect reasonable distance from Birmingham. C A Crabb G4HNH, 41 West Drive, Edgbaston, Birmingham B57RR. Tel: (021) 4723845. - Circuit diagrams or workshop manuals for Advance FM/AM signal generator type SG63F and Toshiba stereo music centre model SM2750. Tel: (0526) 20520.

Geiger-Müller tube types B 6 H , or B 12 H , or CV2886, or MX142, or MX124/01. F Rushworth, 'Chylan', Penwartha, Coverack, Helston, Cornwall. Tel: (0326) 280564. - Any Pye MF5 Motafones, prefer mid/high band but any considered. Spares for Motafones, crystals 37 MHz or 12 MHz for low band Motafones or any accessories for Motafones. Also wanted any cheap 2 metre receiver or transceiver for new SWL awaiting RAE results. I would also like to contact any Atari computer users with interests in amateur or CB radio. Phone me now! Ian G1LSK. Tel: Lincoln (0522) 46145. Racal low frequency adaptor for Racal RA17L, circuit and alignment instructions for Eddystone 670A, Racal preselector for Racal RA17L. Mr H

Lear, Flat 86, Block 205, Wensley Road, Reading, Berks.

- Desynn transmitter potentiometer sought for wind-vane project. There must be one somewhere! Stuart Gibbons, 77 Windlehurst Road, High Lane, Stockport SK6 8AE. Tel: (061) 4274317.
Trio R2000 in good condition. Complete with VC10 converter if possible. Tel: Rochdale 43117 after 6.00 pm .
- CPM, Z80, Microsoft Basic or BBC Basic software listing or on $3 \mathrm{in} / 5 \frac{1}{4} / \mathrm{in}$ disc 40 T DD for conversion to Einstein of RTTY, Amtor, CW weather Rx/Tx. Write first with details and price. Graeme, 6 Barby Lane, Rugby, Warks CV21 5QJ. - Solartron plug-in units wanted in vgc, CX1448 slow sweep and CX1444 delay sweep. Also boxed new valves 6X4, 6AQ5, 150C4, CV4003, EF184, EF86, ECC88, ECC81, ECF804, ECF82. Tel: (0521) 41681. - Unemployed SWL beginner requires cheap HF Rx. Pref something with PSU, ie R107, AR88 etc, or with separate one if you have one, ie R1155 or HRO etc. Must work OK, but tatty set is fine. Would like manual too if you have one, or a Xerox of one. Please write: A Hawkins, 111B Parker's Square, Southgate, Runcorn, Cheshire WA7 2SG.
- Practical Wireless, Radio Constructor, 1960 to 1980. good price paid. J Savage, 7 Weyhill Close Pk, North Swindon, Wilts.
- Gemini computer boards - want disc controller/Eprom boards. Will consider others like damaged/unworking memory boards. Also software - CP/M, Polydos, etc. 80 -bus magazines, manuals, also EWW SC84 boards/computer, also good Z80, Z8000, 68000 books, need old Motorola literature for 68/0, 6828/87, 6871 specs/applications. Does anyone have manuals - Honeywell VIP7385/6 terminal? Will answer all sensible letters/offers. Want old Wireless Worids! Dare Beersellaan, 136, B1620 Drogenbos, Belgium. Tel: (Brussels) 3778609 (expensive from UK!).
Good sig gen, AM, FM. Also LCR bridge, modern
scope 20 MHz etc, $100 \mathrm{pF}+100 \mathrm{pF}$ split stator capacitor, $1 / 2 \%$ resistors, MC meter 50μ A of similar manual for Philips VCR 2020. Mr R E White, 29 Nunnery Street, Castle Hedingham, Nr Halstead, Essex CO9 3ND.
- $117 Z 3$ rectifier valve for Zenith model 8G005TZ1. Swap or p/x Mitsubishi TX65 new portable hi-fi, cordless telephone, telescope, flashgun, darkroom exposure meter for Spectrum interface 1 and microdrive and/or other hardware. Will also swap something for non-working interface 1 or microdrive. Also wanted 2 m receiver for slow scan TV. Also I have a complete Sinclair XX80 with manual power supply to swap. R Mackay, Brochrobbie Brora, Sutherland, Scotland KW9 6NE. Tel: (0408) 21870 evenings please.
- Xtals. Glass encapsulated. 3.5 to 3.6 MHz HC 6 U holders. Peter Haylett, Vancouver House, Kimberley Road, Bacton on Sea, Norfolk NR12 OEN.
- Pye Labgear Compac 8 HF SSB $2-9 \mathrm{MHz}$. Fred Pilkington G3IAG, 24 High St, Cheveley, Newmarket. Suffolk CB8 9DQ. Tel; (0638) 730373.
- Piezo transducer approx 30 W pulsed at about 1MHz. Tel: Crudwell, Wilts (06667) 7820.
* Any information on how to improve the gain on my Codar CR70A receiver. Also can anyone provide help? I wish to receive RTTY using the above receiver and an Amstrad CPC 464 computer. Will refund postage. F Trainer, 69 Wingate Towers, Huyton, Merseyside L36 7YE.
\% SCR300 WW2 American back pack radio. Not necessary to be in working condition. Must have fairly good external bodywork. Mr West, 1 Farwell Road, Sidcup, Kent DA14 4LH. Tel: (302) 6750 evenings.
- Home-brew design wanted. Single sideband transceiver, or separate receiver/tranismitter. Any band considered. Solid state or solid state/valve. Genuine builder enquiry. Must be proven design. G Woodworth, 136 Wepre Park, Connah's Quay, Deeside, Clwyd CH5 4HW. Tel: (0244) 814697.

FRIE= CLASSIFIED AD ORDER FORM

Send to: Radio \& Electronics World Classified Ads Sovereign House • Brentwood Essex CM14 4SE
Classification: (tick appropriate box) If you want to insert ads under more than one classification use separate sheets for second and subsequent ads
For Sale .. \square Wanted
USE BLOCK CAPITALS (One word per box)
To avoid mistakes please write clearly and punctuate your ad

		T		-	I	T-	

USE SEPARATE SHEET FOR MORE WORDS
Ensure that you have included your name and address, and/or telephone number
CONDITIONS: Your ad will be published in the first available issue. We will not accept trade advertisements. We reserve the right to exclude any advertisement.

THE SCIENTIFIC WIRE COMPANY B11 Forest Road, London E17. Telephone 01 -531 1588				
ENAMELLED COPPER WIRE				
Sw0	1 fb	802	$40 z$	20x
8 to 34	3.63	2.09	1.10	0.88
35 to 39	3.82	2.31	1.27	0.93
40 to 43	6.00	3.20	2.25	1.51
44 to 47	8.67	5.80	3.49	2.75
48	15.96	9.58	6.38	369
SILVER PLATED COPPER WIRE				
14 to 30	9.09	5.20	2.93	1.97
TMNED COPPER				
14 to 30	3.97	2.41	139	0.94
Fluxcore Solder	5.90			
prices include P\&P VAT. Orders under $£ 2$ add 20 p . SAE for list of copper and resistance wire. Dealer enquiries welcome.				

AERIAL BOOSTERS B45 Aerial Booster treble the gain B45HG video beam from yourvideo recorder throughout the house. Price $£ 8.90+P \& P 50$ p.		
Electronic Mailorder 62 Bridge Street, Ramsbottom Lancs BLO 9AG		
\square	DIAL-AFREE LEAFLET (24hr) 070 882-3036	

PNP COMMUNICATIONS Test Equipment

Check your SSB power output and
tinearity with our two-tone test oscillator type T30

Kit £28.50 Built in watch-dog timer
(Requires dummy load and Oscilloscope) Send a large (A4) SAE for full Cat.
Please add VAT at the current rate Access Barclaycard (VISA) welcome 62 Lawes Avenue, Mewhaven East Sussex BN9 95B. Tel: (0273) 514465.

MAXI-Q

COILS AND CHOKES
PREVIOUSLY MADEBY DENCO SAE PRICE LIST 8 BRUNEL UNITS, BRUNEL ROAD, GORSE LANE IND ESTATE, CLACTON, ESSEX CO15 4LU.
TEL: (0255) 424152

YOU ARE CAPABLE

of great things. So is your 48 k Spectrum. So why not ncrease your knowledge and earning power? Our three programs on one cassette will teach and the keyboard to draw resistance graphs cind Use the keyboard to draw resistance graphs and transistor circuits to see volts and currents displayed. Hours of pleasure. Send for Analogue Electronics Groups 1-2-3 £9.50 complete including UK postage Yobec Technical Services Lid 54 Grand Ave, Lancing, W, Sussex BN15 9PZ

G4BMK RADIO SOFTWARE

Dragon/TRS80C. A wide range of high quality radio software, available on tape or ROM cartridge
RTTY Tape \&12. Marse Tutor £6.50 CW Transceive £10.75 ROM Cartridge for RTTY, ASCII, CW and AMTOR 859 CBM64-RTTY Tape E11, Disk ع14 CBM64-CW Tx/Rx Tape VIC20-RTTY
VIC20-RTTY Tape E10
All programs fy ROM $£ 16$
programs feature split-screen type-ahead operation State callsign (if any). SAE for details

2 Beacon Close, Seaford, Sussex BN25 $2 . J 2$ (0323) 893378

 This method of advertising is available in multiples of a single column centimetres (minimum 2 cms). Copy can be changed every month.
 RATES
 per single column centimetre
 1 insertion £9.65, $3-£ 9.15,6-£ 8.65,12-£ 7.75$.

WRITE OR PHONEFOR FRIE PRICELIST.

SERVICE SHEETS

For most Makes, Models and age of electronic equipmen Audio, Video, TV, Test, Amateur Radio, Vintage etc housands stocked
SAE Enquiries
MAURITRON TECHNICAL SERVICES
Dept REW, 8 Cherry Tree Road, Chinnor, Oxon OX9 4QY

FIBRE OPTICS

Best quality Mitsubishi Rayon 0.5 mm cut to length 25p per metre. Add 75p for postage, packing and data. JAR Microengineering Lid
63 Alexandra Street, Thurmaston
Leicester LE4 8FE. (O533) 696568

NEXT ISSUE ON SALE 8 MAY 1986

MORSE TUTOR

E4.00 on cassette. E8.00 on microdrive for Sinclaire Spectrum. 4 to 19 words per minute, variable spacing, variable groups of random letters, numbers or mixed; Random sentences, own message, single characters and variable pitch. Feedback on screen, printer, or speech (Currah Microspeech 48 K only) and repeat facility, 16 K and 48 K versions on one cassette 48 K only on microdrive.

WD SOFTWARE
HIIITop, St. Mary, Jersey, C.Islands Telephone (0534) 81392

XXX ADULT VIDEO CLUB
For the genuine adult films. Available only from ourselves. Ring

0924-471811 (24hrs)

For the intimate details or write ADULT VIDEO CLUB
P.O. Box 12, Batley, W. Yorks.

ETESON ELECTRONICS

158 Lower Green, Poulton-/e-Fylde, Blackpool Tel: (0253) 885107

Open: 9.30am-12.30, 1.30-5.30. Closed Wed \& Sun. Electronic Component Specialists.

A wide range of electronic components, IC's, capacitors, transistors, resistors, plugs and sockets etc.

INVERTORS

12 V DC to 230 v 50 cycle 200 watt $\mathbf{2 8 5}$, drive module less OP Transformer £28. Valves Horned Triodes $240 \mathrm{M} / \mathrm{c}$ £2, MH4 £2. Mikes 24 v Carbon Power type, no Amp required $\mathbf{5 5}$. MALDON TRANSFORMERS 134 London Road,
Kingston-upon-Thames
 Tel: 01-546 7534 E

CRYSTALS Made to order for any purpose and large stocks of standard frequencies for computers, modems, etc. Amateur CW (QRP) freqs £4.00 and CB conversion crystals at $£ 4.50$.
FILTERS Crystal, monolithic, mechanical and ceramic for all standard IF's. Special 10.695 MHz for big improvement to most CB rigs! at $£ 4.50$ each.
SAE FOR ALL LISTS. PRICES INCLUDE VAT AND POST

> GOLLEDGE ELECTRONICS G3EDW, Merriott, Somerset, TA16 5NS Tel: 046073718

RF DEVICES AT ROCK BOTTOM PRICES!

Nobody beats us!

Over 30,000 RF devices at low prices REPLACEMENT RF TRANSISTORS
MRF454 HF/SSB 80W £18.20
MFR450 HF/SSB 50W $£ 11.60$ MRF238 VHF/FM 25W £12.80 MRF475 HF/SSB 20W $£ 2.99$ 2SC1969 HF/SSB 18W £2.50 2SC2043/1307 HF 16W 2SC1947 VHF 3.5W $£ 2.00$

2SC1946A VHF 32W $£ 7.60$

REPLACEMENT RF POWER MODULES

M57704/SAU3 UHF 15W
$£ 36.00$
M57712/SAV7 VHF/FM 25W $£ 39.00$
M57713/SAV8 VHF/SSB 15W
M57716/SAU4 UHF/SSB 15W
M57719 VHF/PMR 15 W
M57727 VHF/SSB 38W $£ 39.00$ $£ 49.00$ £29.00

M57749/SAU11 934/FM 7W £45.00

Send £1.00 p\&p and SAE for full list All prices inc. VAT
Many Ic's and other types in stock

RAYCOM LTD
 DEPT RE 584 HAGLEY RD WEST QUINTON BIRMINGHAM B68 0BS

$0214218201-3$
TEX (24hr answer phone) ET

JAYCEE ELECTRONICS

JOHN GM30PW
20 Woodside Way, Glenrothes, Fife KY7 5DP
Tel: 0592756962
Open: Tues-Sat 9-5

Quality secondhand equipment in stock. Full range of TRIO goodies. Jaybeam - Microwave Modules - LAR.

ADVERTISERS INDEX

Aerial Techniques 47 Keytronics 18
Bi-Pak 39 Linkbrook 56
J Bull 37 Lovell 51
PM Components 40,41 Number One Systems 59
Display Electronics 14,15 Omni Electronics 45
East Cornwall 67
Brian Reed 21 45
Economic Devices 6,7
Edwardschild 56
Relteck
Riscomp 32,21
Elmwood Components 59
Scarab Systems 21
Sendz
Sendz 68 68
Field Electrical 45 Sherwood Data 54
C R Supply 45
Hart Electronic 20 Telecoms 24
C M Howes 54
Thanet 28,29 28,29
Reg Ward 59
Kemplant 50 R Withers 2

ADVERTISNG RATES \& INFORMATION

D Ded A A B A E			series rates for consecutive insertions		
depth $\mathrm{mm} \times$ width mm	ad space	1 issue	3 issues	6 issues	12 issues
$\begin{aligned} & 61 \times 90 \\ & 128 \times 90 \text { or } 61 \times 186 \\ & 128 \times 186 \text { or } 263 \times 90 \\ & 263 \times 186 \\ & 263 \times 394 \end{aligned}$	1/apage 1/4 page 1/2 page 1 page double page	$\begin{array}{r} £ 91.00 \\ £ 160.00 \\ £ 305.00 \\ £ 590.00 \\ £ 1140.00 \\ \hline \end{array}$	$\begin{array}{r} £ 86.00 \\ £ 150.00 \\ £ 290.00 \\ £ 560.00 \\ £ 1070.00 \\ \hline \end{array}$	$\begin{array}{r} £ 82.00 \\ £ 145.00 \\ £ 275.00 \\ £ 530.00 \\ £ 1020.00 \end{array}$	$£ 73.00$ $£ 125.00$ $£ 245.00$ $£ 475.00$ $£ 910.00$
COLOUR AD RTIES colour rates exclude cost of separations			series rates for consecutive insertions		
depth $\mathrm{mm} \times$ width mm	adi space	1 issue	3 issues	6 issues	12 issues
$\begin{aligned} & 128 \times 186 \text { or } 263 \times 90 \\ & 297 \times 210 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 / 2 \text { page } \\ & 1 \text { page } \\ & \hline \end{aligned}$	$\begin{aligned} & £ 420.00 \\ & £ 810.00 \end{aligned}$	$\begin{aligned} & £ 395.00 \\ & £ 760.00 \\ & \hline \end{aligned}$	$\begin{array}{r} £ 375.00 \\ £ 730.00 \end{array}$	$\begin{aligned} & £ 335.00 \\ & £ 650.00 \end{aligned}$
SPECIAL POSITIONS					
$\square \pm 40$ -		*Dates affected by public holidays			
issue colour \& mono proof ad		mono no proot and small ad mono artwork			on sale thu

CONDIITONS \& INFORMATION

If series rate contract is cancelled the advertiser will be liable to pay the unearned series discount already taker.
COPY
Except for County Guides copy may be changed monthly
No additional charges for typesetting or illustrations (except for colour separations).
For tlustrations just send photograph or artwork. Colour Ad rates do not include the cost of Colour Ad
separations

Printed -- PAYMENT

All single insertion ads are accepted on a pre payment basis only. unless an account is herd.
Accounits will be opened for series rate advertisers ubject to satisfactory credit references. Accounts are strictiy net and must be settled by publication date
FOR FURTHER INFORMATION CONTACT Radio \& Electronics World, Sovereign House. Brentwood, Essex CM14 4SE

Overs eas payments by international Money Order. Commission to approved advertising agencies is 10\%. CONDIIONS if advertising in both Radio \&
10% discount if
Electronics World and Amateur Radio. A voucher Electronics World and Amateur Colour advertisers copy wilibe sent to
only.
Ads accepted subject to our standayd conditions. available on request.

[^0]: Selectronic has now introduced a new 934 MHz hand-held transceiver, the MT370, which features 20 channels, 10 memory channels, full scan facility, a high performance RF output, good audio quality, a high capacity battery pack and a half-wave whip antenna. It is available for £459 including VAT.
 The company also has a new range of 934 MHz accessories.

 ## Selectronic,

 203 High Street,
 Canvey Island, Essex.
 Tel: (0268) 691481.

[^1]: BAL Components Ltd,
 Bermuda Road,
 Nuneaton,
 Warwickshire CV10 7QF.

