wireless
 OCTOBER 198060 p

Floppy disc store

Tuner frequency meter

SAcoustically-small'speaker

. . . catch this bus with Farnell

and arrive economically at an efficient ATE workstation.
Comprehensive testing under low cost desk computer control. Manual systems too.

Front cover shows a single Rochelle salt piezo-electric crystal, as seen in polarized light. Photo hu Paul Brierley

IN OUR NEXT ISSUE
Unique pickup arm Constructional design in which horizontal and vertical pivots are displaced to increase arm radius and so reduce tracking distortion.

Amplifier-loudspeaker interface distortion examines intermodulation between the signal and a delayed, frequency transformed version generated by the loudspeaker and propagated in the feedback loop.

Designing inductors carrying d.c. Simple procedure allows different cores to be compared and the optimum one chosen for a particular design.

Current issue price 50 p, back issuet (if available) £1.00, at Retait and Trade Counter, Paris Garden, London SE1. Available on microfilm: please contact editor.
By post, current issue $86 p$, back By post, current issue 86 p, back
issues (if available) $£ 1.00$, order issues (if available) $£ 1.00$, order
and payments to Room CP34, Dorand payments to Room CP34
set House, London SE1 9LU.
set House, London SE1 9LU.
Editorial \& Advertising offices:
Editorial \& Advertising offices:
Dorset House, Stamford Street, London SE 1 9LU.
Telephones: Editorial 01-261 8620. Advertising 01-261 8339. Telegrams/Telex: Wiworld Bisnespres 25137 BISPRS G. Cables Ethaworld, London SE1.
Subscription rates: 1 year $£ 9.00$
UK and \$31 outside UK.
Student rates: 1 year, $£ 4.00$ UK Student rates: 1 year,
and $\$ 15.50$ outside UK
Distribution: 40 Bowling Green Distribution: 40 Bowling Green
Lane, London EC1R ONE. Lelephone 01-8373636.
Subscriptions: Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH Telephone 044459188 . Please notify a change of address.
USA mailing agents: Expediters of the Printed Word Ltd, 527 Madison Avenue, Suite 1217. New York, NY 10022. 2nd-class postage paid at New York.

- IPC Business Press Ltd, 1980 ISSN 00436062

wireless world

ELECTRONICS /TELEVISION / RADIO / AUDIO

OCTOBER 1980 Vol 86 No 1537

35 Personal hygiene or public health?

36 Radio tuner frequency counter
 by J. L. Linsley Hood

42 Tone filters for electronic organs
 by C. E. Pykett

46 Floppy disc system for the scientific computer
 by J. H. Adams

49 Letters to the editor
V.h.f. programme labelling tests Designing with microprocessors
Maxwell's equations revisited

52 Novatexts - Pulse control of analogue functions
 by F. Williams

54 The 'Twins' paradox of relativity

by Herbert Dingle

57 Audio gain controls
by Peter Baxandall

65 Ah acoustically small loudspeaker
by B. I. Harcourt
\qquad
68 News of the month
C.b. on 928 MHz

Postal monopoly
Satellite television

71 Designing with microprocessors

by D. Zissos and L. Valan

74 World of amateur radio

77 Satellite broadcasting in the eighties

by G. J. Phillips

82 The floating bridge

by R. M. Brady

The world overYou get the best service from Haltron

For high quality electronic valves, semiconductors and integrated circuits - and the speediest service specify Haltron. It's the first choice of Governments and many other users throughout the world. Haltron product quality and reliability are clearly confirmed. The product range is very, very wide. And Haltron export expertise will surely meet your requirements. Wherever you are ${ }_{\boldsymbol{r}}$ get the best service. From Haltron.

Hall Electric Limited.
Electron House,
Cray Avenue, St. Mary Cray.
Orpington. Kent BR5 30J.
Telephone: Orpington 27099
Telex: 896141

ELECTRONIC

120 BASIC RANGES

$A C V, 1 \& d B \quad: 50 \mu V / 500 \mathrm{~V}$ fsd, $50 \mathrm{pA} / 500 \mathrm{~mA}$ fsd, $-90 \mathrm{~dB} /+50 \mathrm{~dB}$ mid scale. Acc. $\pm 1.5 \%$ fsd above $500 \mu \mathrm{~V}$ \& 500 pA . Response $3 \mathrm{~Hz} / 200 \mathrm{kHz}$ above $500 \mu \mathrm{~V}$ and 500 nA . Input $R=100 \mathrm{M} \Omega$ on volts.
DC V, 1 \& NULL : $150 \mu \mathrm{~V} / 500 \mathrm{~V}$ fsd, $150 \mathrm{pA} / 500 \mathrm{~mA}$ fsd, polarity reversible. Acc. $\pm 1.5 \%$ fsd above $500 \mu \mathrm{~V}$ \& 500 pA . Input $R=100 \mathrm{M} \Omega$ on volts. 5 Null ranges have centre zero lin/log scale covering ± 4 decades.
RESISTANCE $0.2 \Omega / 10 \mathrm{G} \Omega$ in 7 ranges, polarity reversible. Low test voltage for solid state circuits.
LEAKAGE at $3 V$
VOLT DROP at 10 mA
Uses 3 V source with current ranges to test capacitors, diodes and resistance up to $100 \mathrm{G} \Omega$. Uses 10 mA source with voltage ranges to test diodes, LED's and resistance down to $10 \mathrm{~m} \Omega$.

30 OPTIONAL RANGES

RF VOLTS
HIGH VOLTS
HIGH CURRENT
TEMPERATURE
$0.5 \mathrm{~V} / 500 \mathrm{~V}$ fsd, $10 \mathrm{kHz} / 1 \mathrm{GHz}$, using RF Probe. Price $£ 30+$ VAT .
$1.5 \mathrm{kV} / 50 \mathrm{kV}$ fsd, AC/DC, using HV Probe. Price $£ 23+$ VAT.
$: \quad 1.5 \mathrm{~A} / 50 \mathrm{~A}$ fsd, $A C / D C$, using Current Shunt. Price $£ 20+$ VAT.
$-150^{\circ} \mathrm{C} /+500^{\circ} \mathrm{C}$ fsd in 7 ranges using Temperature Probe. Price $£ 49+$ VAT.

The instrument operates from a 9 volt battery, life 1000 hrs ., or, AC mains when optional Power Supply Unit is fitted.
Size is $240 \mathrm{~mm} \times 150 \mathrm{~mm} \times 80 \mathrm{~mm}$. Weight is 1.75 kg . Meter scale length is 140 mm . Leather case is available at $£ 20+$ VAT.

SCOPES
A range of Scopes in stock from 5 mHZ Single Trace to 50 mHZ Dualtrace. Mains and Battery/Mains portables. Many on demonstration.

SINGLE TRACE (uk cip etc E2.50)

Hm 307-3 $10 \mathrm{mHZ}, 5 \mathrm{mV}, 6 \times 7 \mathrm{~cm}$ display plus component test $\mathbf{£ 1 7 0 . 0 0}$ CO1303D $5 \mathrm{mHZ}, 10 \mathrm{mHZ}, 7 \times 7 \mathrm{~cm}$ display $£ 109.25$ Sc110
2.6 cm display 10 mptional case E 8.80 . Nicads 2.6 cm display Optional case $£ 8.80$. Nicads B0512A 10 mHZ 10 mV LRO512A $10 \mathrm{mHZ}, 10 \mathrm{mV}, 5^{\prime \prime}$ display (plus

CS1559A $10 \mathrm{mHZ}, 10 \mathrm{mV}, 5^{\prime \prime}$ display | $£ 198.50$ |
| :--- |

OPTIONAL PROBES (all models)
X1 £6.50, X 10 £8.50, $\times 100 £ 12.95, \times 1-\times 10 £ 10.95$

DUAL TRACE (UK c/p etc $£ 3.50$ CS1562A $10 \mathrm{mHZ}, 10 \mathrm{mV}, 5^{\prime \prime}$ displa Hm312-8 $20 \mathrm{mHZ}, 5 \mathrm{mV}, 8 \times 10 \mathrm{~cm}$ display CS1566A $20 \mathrm{mHZ}, 5 \mathrm{mV}, 5$ display crv/mains portable (Nicads pack f29.go) bat-Hm412-4 20mHZ, $5 \mathrm{mV}, 8 \times 10 \mathrm{~cm}$ display plus Sweep Delay
$\begin{array}{ll}\text { Sweep Delay } & \mathbf{£ 3 9 9 . 5 0} \\ \text { CS1577A } 30 \mathrm{mHZ}, 2 \mathrm{mV}, 5^{\prime \prime} & \text { display } \\ \mathbf{4 5 5 . 4 0}\end{array}$ CS1572 $30 \mathrm{mHZ}, 5 \mathrm{mV}, 5^{\prime \prime}$ display plus Video Delay
CS $183030 \mathrm{mHZ}, 2 \mathrm{mV}, 5^{\prime \prime}$ display plus sweep delay
Hm512-8 $50 \mathrm{mHZ}, 5 \mathrm{mV}, 10 \times 8 \mathrm{~cm}$ display, De-
lay Sweep
CS1572 $30 \mathrm{mHZ}, 5 \mathrm{mV}, 5^{\prime \prime}$ display plus video delay
LB0514 10 mHZ , $1 \mathrm{mV}(5 \mathrm{mV}$) 5' display (plus 2
FREE probes)
£244.95 £287.50 $£ 323.15$ 346.15 £472.65 £507.15 £667.00 £472.65 £294.00

GENERATORS

(UK c/p £1.75)

RF

SG402 100KHZ - 30 mHZ with AM modulation LSG16 100KHZ 1300 mHZ on Harmonics)
£64.40
£56.50
PULSE

AUDIO (All sine/square) AG202A $20 \mathrm{HZ}-200 \mathrm{KHZ} £ 65.55$ LAG26 $20 \mathrm{HZ}-200 \mathrm{KHZ}$ £69.00 AG203 $10 \mathrm{HZ}-1 \mathrm{mHZ}$ sine/square LAG120A $10 \mathrm{HZ}-1 \mathrm{mHZ} \quad £ 137.00$

LEVELL
(Battery Portables)
(' M^{\prime} with Meter)
152 SERIES 3HZ - 300KHZ Sine/ Square
200 SERIES $1 \mathrm{HZ}-1 \mathrm{mHZ}$ Sine/Square TG152D TG152DN TG152DM
TG200D TG200D TG200DM
TG200DMP
£92.00
£113.85
£124.20
£149.50
£155.25

STOCKISTS FOR TRIO. KAISE. HAMEG. CSC. OPTO ELECTRONICS. THANDAR. LEADER. LEVELL. LASCAR ETC.
Also
Mini Drills and Kits
Desolder Tools PL259/BNC Plugs
Sockets, Leads, etc.

HAND HELD iUk post etc. 85
TM352 $31 / 2$ Digit LCD plus 10 TM352 $31 / 2$ Digit LCD plus 10
ADC and Hfe checker ADC and Hfe checker
PDM $3531 / 2$ Digit 16 range LED no AC current ME502 $31 / 2$ Digit LED plus 10A LM2001 31/2 Digit LCD 2 amp ACDC 0.1% $620031 / 2$ Digit LCD 0.2A AC/DC Auto range 6220 As 6200 plus 10A AC/DC 6100 As 6200 plus Cont test/range hold $\begin{array}{lll}6110 \text { As } 6100 \text { plus } 10 \mathrm{~A} \text { AC/DC } & \begin{array}{l}£ 64.95 \\ £ 74.95\end{array}\end{array}$ $£ 55.95$ BENCH PORTABLES BENCH PORTABLES UK e/f E1.00)amp
LM100 3/2 Digit LCD AC/DC 2 E86.50

DM450 41/2 Digit LED 34 ranges
AC/DC 10 amp IDM series op
tions, Carry case $£ 8.80$, NI-
cads, $£ 7.95$, Mains adaptor
£4.00).

LOGIC PROBES/MONITORS

LP3 50MHz logic probe
 LM

 E55.95 LP1 10MHz logic. probe E 35.5 (P2 11/2MHz logic probe $\underset{\text { E19.95 }}{ }$Lagic monitor
E33.00. board kits and treadtoards.

FREOUENCY COUNTERS

Portable and Bench LCD and LED Counters up to 600 mHZ . Prices include batteries and leads.

HAND HELD IUK post ect 95p)
PFM200 20 HZ to 200 mHZ 8 Digit LED. $£ 54.50$ MAX50 100 HZ to 50 mHZ 6 Digit LED 661.00 MAX550 30 KHZ to 550 mHZ 6 Digit LED $£ 106.00$

BENCH PORTABLES fuk c/p q1.00
MAX100 \& Digit LED 5 HZ to $100 \mathrm{mHZ} \quad £ 89.00$ TF200 8 Digit LCD 10 HZ to 200 mHZ £166.75 7010A 9 Digit LED 10 HZ to $600 \mathrm{mHZ} \quad \mathrm{E} 175.00$

CLAMP METERS/

 INSULATION TESTERS (A4) multirange except K2303]

ELECTRONIC METERS

UK c/p $£ 1.50$
K200 38 range FET 10 m OHM input 20 Hz to 30 MHz multimeter $£ 99.95$ TM11 120 range multimeter 3 Hz to 200 KHz TM3A Multirange AC micro voltmeter $£ 149.50$ TM3B As TM3A larger size meter $\quad £ 166.75$

Stockists of electronic equipment, speakers/kits, PA equipment plus huge range of accessories UK carriage/packing as indicated Export - prices on request

FREE CATALOGUE!

The TBC 2080

For more information and demonstration please contact:

- MCROTIME INTERNATIONAL, INC., Rokin 9-15, Amsterdam, Netherlands • Tel. 020-23.07.34• Telex 16354 M I NL or the following dealers:
ARGENTINA: Kappa S.A.C.I.FI.A., Tucuman • AUSTRALASIA: Rank Industries Ltd., New South Wales • BELGiUM/FRANCE: Shintron Inc., Bruxelles • GERMANY: Fernseh System Gesellschaft, Munchen-Oberschleissheim • ITALY: Telav S.A.S., Milan-Rome - NETHERLANDS: Inter Electronics, B.V., Giesbeek • NIGERIA: Friden Tech. Company Ltd., Kano - SCANDINAVIA and FINLAND: Ercotron AB, Stockholm • SOUTH AFRICA: South African PhilipšLtd., Johannesburg • SPAIN: Moncaday Lorenzo S.A., Madrid • SWITZERLAND: DICSA, Yvonand • UNITED KINGDOM and IRELAND:Seltech Equipment Ltd., Maidenhead.
USA Headquarters:
- MICROTME INC., 1280 Blue Hills Avenue, Bloomfield, CT 06002 • Tel. (203) 242-4242• TWX 710-425-1165

© TRIO

 TEST

 TEST INSTRUMENTS

 INSTRUMENTS}

THE RANGE HAS INCREASED THE PRICES ARE DOWN

THE CS $183030 \mathrm{MHz}+$ Sweep Delay
The CS 1830 is a completely new 30 MHz dual trace oscilloscope employing a square format, internal graticle, PDA tube for accurate bright display. A new feature is the inclusion of calibrated sweep delay with a range of $1 \mu \mathrm{~S}-100 \mathrm{mS}$ and trace bright up to show the delay position. As you can see from close study of the photograph, the CS 1830 has all the facilities you could require in a high performance instrument but for more detail, simply ask us for a comprehensive leaflet.

Brief specification

Recfangular PDA tube $120 \times 96 \mathrm{~mm}$. P31 phosphor
Bandwidth DC -30 MHz
Overshoot less than 3\%
$\begin{array}{lll}\text { Band width } & & \text { Overshoot less than } 3 \% \\ \text { Sensitivity } & 5 \mathrm{mV} / \mathrm{cm}(30 \mathrm{MHz}) & \text { Sweep time } 200 \mathrm{nS} / \mathrm{cm}-0.5 \mathrm{~S} / \mathrm{cm} \\ & 2 \mathrm{mV} / \mathrm{cm}(20 \mathrm{MHz}) & \text { Linearity better than } 3 \%\end{array}$
Input R.C. $1 \mathrm{M} / 23 \mathrm{pF}(20 \mathrm{MHz})$ $\begin{array}{ll}\text { Input R.C. } 1 \mathrm{M} / 23 \mathrm{pF} & \text { Trig. bandwidth DC-30 M } \\ \text { Risetime } 11.7 \mathrm{nS} & \text { Sweep delay } 1 \mu \mathrm{~S}-100 \mathrm{~ms}\end{array}$

Linearity better than 3\%

CS1830 only $\mathbf{£ 4 5 5}+$ VAT includes 2 probes
THE C51572 30 MHz for the VTR Lab.
If you are in Video, you need the CS 1572
The CS1572 is a dual trace 30 MHz oscilloscope designed for the video tape recorder engineer. Video delayed sweep facilities are provided to allow magnification and analysis of any point in a single video frame together with separation of video odd and even fields. A truly unique tool for anyone concerned with video measurements as well as a top specification dual trace wide band oscilloscope for general lab use. The complete range of video facilities is too great to explain in a small advertisement so why not call us and ask for the full story on the CS 1572.

Brief Specification

As for CS1830 except that the sweep delay feature is replaced by comprehensive video sweep delay facilities which allow complete analysis of video wave forms and VTR alignment.
CS1572 only $\mathbf{£ 4 2 5}+$ VAT, includes 2 probes
THE CS 157730 MHz at $2 \mathrm{mV}+$ Signal Delay The most popular scope in the range.
The CS 1577 is, without doubt, our most popular oscilloscope and hundreds of satisfied users in all sections of the electronics industry will confirm this. The CS 1577 combines a wide bandwidth $D C-30 \mathrm{MHz}$ performance with extremely wide trigger bandwidth (DC-40 MHz) and 2 mV sensitivity over the full bandwidth
Fixed signal delay is provided by a helix delay line which allows viewing of the leading adges of fast pulses for accurate rise time measurement, and the 130 mm PDA tube gives a bright, stable trace even at the highest sweep speeds $(20 \mathrm{nS} / \mathrm{cm}$ using $\times 5$ expansion). Good triggering, even at low levels has always been an outstanding feature of Trio oscilloscopes and the CS 1577 demonstrates this to perfection. Triggering, as in the other 30 M Hz instruments can be from CH 1 or CH 2 or can be alternated with the beam switching so that input signals of differing frequency will provide stable displays. Truly an oscilloscope masterpiece. CS $1 \overline{5} 77$.
CS 1577 only $\mathbf{£ 4 1 0}+$ VAT, includes 2 probes.
THE CS1575, unique dual trace 4 function Audio Scope
The CS1575 is a unique tool for the audio engineer. It features the normal facility of dual tracie display with sensitivity to $1 \mathrm{mV} / \mathrm{cm}$ but not only can it display the input signal on two channels, it can simultaneously display the phase angle between them and measure the phase angle referenced to a zero phase calibration display. In addition to these unique features, you also have independent triggering from each channel to give stable displays even with widely differing input frequencies.

Absolutely indispensable to the professional audio engineer, the CS 1575 is now in use all over the world. See it in action or send for complete details.
CS1575 only $£ 235$ + VAT

AND TWO NEW ADDITIONS TO THE RANGE

DL705 MULTIMETER
FC756 500 MHz COUNTER

DC to 1000 V AC to 1000 V Ω to $20 \mathrm{~m} \Omega$ Ito. 2 A Semi Auto Ranging

$10 \mathrm{~Hz}-500 \mathrm{MHz}$
50 mV
Superb

$£ 225+$ VAT
For further details and ex stock delivery contact

LOWE

$\triangle \rightarrow$| CHESTERFIËLD ROAD, MATLOCK, DERBYS. |
| :--- |
| $0629-2430-T E L E X ~$ |

INTRODUCING THE EXCITING RANGE OF LCD MODULES FROM AMBIT

AMBIT MULTIFUNCTION LCD CLOCKS REQUIRE $1.5 \mathrm{v} @ 6 \mathrm{uA}$ TYP POWER.

5 selectable alarm outputs
10 min snooze
1 hour countdown timer
Optional 120 min timer
Optional low battery indicator

CM172. 0.5 inch LCD with built in backlight. $1-9 £ 12.45,10-99 £ 9.33,100-999 £ 7.85$.

6 time keeping functions :-
Month, Day, Date, Hours, Mins, Secs.
12/24 hour display option
24 hour alarm - direct drive to piezo buzzer.
0.25 inch LCD with built in backlight
7.5 mm thickness

CM161
1-9 £9.95, $10-99 £ 7.46,100-999 £ 6.35$.

Dual time facility
24 hour alarm with snooze
Stopwatch - mins \& secs to 24 mins max Counter - Displays up to 720 events

CM174. 0.5 inch LCD with built in backlight. $1-9 £ 12.45,10-99 £ 9.33,100-999 £ 7.85$.

200 mV full scale input Supply current typ 1 mA Accuracy $0.15 \% \pm 1$ count Temp drift typ 80ppm/C

- AMBIT DVM176 DIGITAL VOLTMETER MODULE

Combining latest techniques with high quality construction and appearance.

Checkout these features and prices with the competition!

True differential input \& reference
1pA typical input current
Decimal point selection with on
board EX-OR integrated circuit

Polycarbonate auto - zero capacitor
Polypropylene integrating capacitor
for minimal roll - over error

1-4 £18.26,5-24£16.20, 25-99£15.10, 100+ OA.
W $60 \mathrm{~mm}, \mathrm{H} 38 \mathrm{~mm}, \mathrm{D} 15 \mathrm{~mm}$.
Containing all the features of the famous ICL7106 within a small compact unit this module must surely represent the finest DV'M value on the market today

Exciting new addition to the Ambit LCD range -
Frequency display module FC177.
Direct frequency readout to 3999.9 KHz .
Frequency readout to 399.99 MHz with suitable
external prescaler
Built in IF offsets - 25 typical freqs selectable

0.4 inch LCD provides resolution to 100 Hz on MW, 1 KHz on SW, 10 KHz on FM .

Annunciators for band selected Built in backlight for night use $\mathrm{MHz} / \mathrm{KHz}$ annunciators Automatic decimal point selection

AMBIT FREQUENCY DISPLAYS \& MOUNTING BEZEI. LINITS

BEZ-10
Provides invisible front panel mounting for CM172/4 and DVM176.
C/W fixing hardware, clear window etc.

1-9 £22.75, 10-99 £20.15, 100-999 £1ヶ.65, 1k+ OA.
Matching prescaler PCB $-\mathrm{S} 177 \div 10 \mathrm{SW}, \div 100$ VHF $£ 11.751$ off
For further details of these modules contact John Mills (SAE with private enquiries)

SAE with all
enquiries.
Phone orders by ACCESS - but minimum $£ 5$ Callers welcome

STOP PRESS STOP PRESS STOP PRESS .. Available soon
$31 / 2$ \& 4 digit LCD display decoder modules. Built in backplane oscillator
Devices available for either MUX BCD inputs, or serial data inputs. (Both latched)
0.5 inch LCD with decimal point and special symbol annunciators
$3.5-6 v$ operation (MUX BCD version)
$3-15 v$ operation (Serial data input version) Backlight facility

Send now for full data when available
STOP PRESS - STOP PRESS - STOP PRESS

All prices exclude VAT
$1-49 £ 1.00,50=99 £ 0.90$,
100-499 £0.75,500+ OA.
Dimensiońs (mm)
CM161 $31 \times 19 \times 7.5$
CM172 $60 \times 30 \times 8.5$
CM174 $60 \times 38 \times 8.5$
FC177 $60 \times 38 \times 10$
BEZ10 $64 \times 34 \times 6$

Parts 1.3
Parts $1 \cdot 3$
AMBIT catalogues catalogues
60 p ea, or 60 p ea, or
f 1.60 the ± 1.60

PRE-AMP MODULE £63.50, BUILT $£ 92$
The most cost-effective pre-amplifier available. Itprovides a perfect match for any cartridge. moving coil or magnetic and also accepts auxiliary and 2- or 3-head tape machine with outstanding technical performance from an elegant circuit configuration. We also have separate mains supplies for the pre-amplifier in kit form and ready-built, and modules /hardware for moving coil head amps \star Coming soon, active cross-overs.

POWER AMPS: KITS FROM $£ 100.50$

BUILT £151.00

There are stereo and mono 'domestic' power amplifiers from 45 W to $200 \mathrm{~W} / 8$ ohms, ready built or in kit form. The kits use built and tested printed circuit boards and require only simple assembly and point-to-point wiring.
Exemplary specification includes t.h.d. less than $.01 \%$ at 1 kHz , slew rate greater than $30 \mathrm{~V} / \mu \mathrm{S}$, noise greater than 110 dB , fully protected against overload, unconditionally

45W channel: kit, P2, £100.50; built, 202D £151.00 $110 \mathrm{~W} /$ channel: kit, P4, $£ 126.00$; built, 204D $£ 185.00$

POWER AMP MODULES AND SUPPLIES

OE 1708, 1704, £31.96

 QE 1004, £20.69

M1504, 1508, £35.79 M2603, £50.28 M854, £26.00 M2308, £53.96

We offer a wide range of power amplifier modules to suit virtually any application with a performance that is unbeatable at the price. Using circuitry basically identical to our widely to 170 W 'module rating' for medium duty use and also in high dissipation formats using separate heatsinks for ultimate reliability at up to 260 W r.m.s. Matching power supplies using toroidal transformers (available separately up to 500VA!) are available

* EXCELLENT TRADE PRICES \star

We also build rack mounting power amplifiers, sub-assemblies and special modules to indridual specifications. Please telephone with your enquiry.

NEW DELUXE SPEAKER KITS

PRICES PER PAIR INC. BAFFLES
Have you wondered why the existing sources of speaker kits offer a bewildering choice of systems, particularly combinations of 200 mm bass unit and tweeter? Don't they know which ones are best? If so, why bother with the rest! Well we have sorted out these super kits so you can order in confidence, knowing you get our full endorsement of their performance and value. The kits incorporate professionally finished front baffles with the drive units already mounted so all the. fiddly work is done for you. All that is left to do is to make a simple
box. Crossover networks, foam and terminals are included. Systems 1 and 2 use a 200 mm box. Crossover networks, foam and terminals are included. Systems 1 and 2 use a 200 mm
bass and 25 mm dome tweeter from Son Audax. System 2 being a reflex design that we enthusiastically recommend. System 3 is a competitive 3 -way 1 B using Seas bass and mid with a Son Audax tweeter, cleverly incorporating a stand at the bottom of the enclosure, as does System 4, undoubtedly the best kit on the market, using a Volt 250 mm bass driver with a 250 mm ABR on the rear baffle (also supplied), a modified Peerless mid and Son Audax tweeter. We will also be retailing selected drive units at competitive prices, e.g. Son All our prices includ, $20 B 25 J 4 \mathbf{£ 1 3 . 5 0 ;} 25 \mathrm{~mm}$ tweete,
quote by return. All equipment can be wired for 110 V mains. Please send for a specific dollar bill for our full information and review reprints.

PLEASE NOTE THE ADDRESS OF
OUR NEW LARGER PREMISES:
8 ALBION STREET, LEICESTER Tel: (0533) 546198

Thermalloy dissipates heat not money.

First, take the Slip-Clip range of heat sinks (top three products). They save time, board space and costs need no mounting hardware, PC Board drilling or adhesive.

Simply clamp them to the device for maximum heat transfer. Slip-Clips are available for TO-202, TO-220,TO-126, Motorola case 90 and most other popular case styles.

The Timesaver Solderable range cut assembly time in half. They eliminate hand soldering of transistor leads and all work is done from one side of the board. An anti-rotation feature stops the device from turning during assembly.

Find out more about Thermalloy's time and money saving ranges.

MCP Electronics Ltd., Alperton, Wembley, Middx. Tel: 01-902 5941. WW - 019 FOR FURTHER DETAILS

$$
1.534 \times
$$

Keithley D.M.M. Test Equipment:

Quality. With machines like the 169 shown above. 31122 digits; $.25 \%$ accuracy. A nononsense five function D.M.M. at a no-nonsense price.

Choice. The Keithley range spans Pocket,
$31 / 2,41 / 2,51 / 2$ digit D.M.M.'s; many with I.E.E.E. options. So we can be sure of having exactly the right product for your own requirements. Built to a standard that very few people can equal.

Cost. And at a price even fewer can match.
From $£ 79$ + V.A.T., Keithley D.M.M. test equipment is backed by the resources of a specialist company with a formidable reputation. To find out more, just fill in the coupon, and get your free literature today.

KEITHLEY

Keithley Instruments Ltd
1 Boulton Road Reading Berkshire RG2 ONL Telephone (0734) 861287

PRIME

 EQUIPMENT instrument specialistsThe freshidea from Carston which brings you recent " State-of-the-Art' The freshidea fromets at competitive prices, with fast delivery Guarantee covering "Prime" instrume PHILIPS

HEWLETT PACKARD
8640 P Precision AM-FM Signal Generator 141 T Spectrum Analyzer - Mainframe 8552B Spectrum Analyzar - IF Section 8553 B Spectrum Analyzer - RF Section 8555A Spectrum Analyzer - - LF Section 8556A Spectrum Analy Display Logic Analyzer

PM 3212 Dual Trace $25 \mathrm{MHz} 2 \mathrm{mV} /$ Div Oscilloscope Timebase Dual Trace DC-25 MHz
3214
$£ 525$
£625

Acoustic/Vibration

BRUEL \& KJAER
1613 Octave filter set 31.5 Hz
2203 Precision sound level meter
2608 Measuring Amplifier. Hi pass
filter
4135 Microphone
4220 Pistonghone calibrator
ZR0020 integrator Converts 2203 \&
09 for vibration meas
ZRO001/2/4/5/6 Attenuators
4424 Noise Dose meter built in mic.
2215 Prec. Sound Level Meter A\&C
Oct. Fitter
2218 Integrating Sound Level Meter
A/LIN
4230 Sound Level Calibrator for
and $1 / 2^{\prime \prime}$ mics
CEL
112 LEQ meter digital readout
144 LEO Meter 72dB Dynarnic Range
Batt Optd
DAWE
1461. CV(M) Portable Viltration

Allalyser Kit

Accelerometers

BRUEL \& KJAER
4343S Uni-gain type. Gen Purpose
4338 S Uni-gain High sens med
frequency
NARDA
3044B-20 Dir. Coupler 3.7-8.2 GHz 17 dB

Attenuators

MARCON SANDERS
6593 VSWR Indicator. Batt/Mains

Bridges

CINTEL
277 Measures iron core inductances
$0.01 \mathrm{H} \cdot 1000 \mathrm{H}$ (with a Q value not
less than 2)

DAWE

210B Decade Capacitance box
0.1μ F- $1 \mathrm{mF} 0.1 \mu \mathrm{f}$ step
HEWLETT PACKARD
4342A ' Q ' Meter OLC complete

MARCON

TF1245 ' O ' meter. Freq. range 1 kHz 300 MHz using external osc
TF868A Universal Bridge
TFF1313A Universal LCR Bridge 0.1%
WAYNE KERR
B224 Wide range LCR Bridge B500 Log LCR Bridge
B601 RF LCR Bridge
(Detector and Oscillator not incl). B641. Measures L/C/R/G Accuracy of 0.1%
Q801. Y parameter test set. Plus
transistor adaptor unit

£ 3550

RACAL

$90815-520 \mathrm{MHz}$ Generator 130 dBm AM/FM
$£ 1975$ £1300 £1650 £4400 £1650 f2150 TEKTRONIX £2995 485 Dual Trace 350 MHz Oscilloscope T912 Dual Trace Storage Oscilloscoped DC-10 MHz 250 scilloscope Mainframe 7313 Storage . $4.9 \mathrm{~cm} / \mu \mathrm{s}$ whertial Phug-in. As new $\mathrm{DC}-1 \mathrm{MHz}$

7 A 22 Differential 12 month guarantee) 7A26 Dual Trace Plug-in. DC-150 MHz 5 mV -5V/Div. 17

Cable Test Equipment MARCONI
TF2333 Transmission Test set
HEWLETT PACKARD
Prices
measurements from $20 \mathrm{~Hz}-20 \mathrm{kHz}$.
$0.1 \mathrm{mV}-30 \mathrm{~V}$ input level

NEC

TTS 37 B Noise. level and VU
measurement. Sensitivity -80 dBm up to +20 dBm
STC
74216 A Noise Generator CCITT
74261A Psophometer CCITT
WANDEL u. GOLTERMANN
DLM 1 Send/receive systern for
measuring phase fitter random nois
and frequency shift on data
ransmission lines
LDS 2. $200 \mathrm{~Hz}=600 \mathrm{kHz}$ sender for
measuring group delay and
attenuation variations
-LDEF-2. Filters for DLM unit Counter Timers
HEWLETT PACKARD
$5300 \mathrm{~A} / 5303 \mathrm{BC} \cdot 520 \mathrm{MHz} 6$ digits
5300 A Display Module. 6 Digits.
3×10
5300 B Display Module. 8 Digits.
2×10^{8}
2×10^{8}
$5302 \mathrm{ADC}-50 \mathrm{MHz} .100 \mathrm{mV}$ sens.
Trme interval. Period. Ratio otalise
$303 \mathrm{BDC} 52 ; \mathrm{MHz}$ (Plug-on)
125 mV sens 50Ω
$5308 \mathrm{~A} 0-75 \mathrm{MHz}$. Universal Module $50 \mathrm{~m} V$ sens. $1 \mathrm{M} \Omega$
5267 A Trme Interval Plug in 10ns
$5345 \mathrm{DC}-500 \mathrm{MHz}$ Time Int. Ave.
Burst Tctal Ratio
10590A Adaptor converts 5245
Plug-ins to 5345
RACAL
835. DC- 15 MHz 6 digits

Time interval/Period/Ratio
$902410 \mathrm{~Hz}-600 \mathrm{MHz} 7+1$ digits
98356 Digit DC. 20 MHz 10 mV
9837 DC .80 MHz 6 digits
S.E. LABORATORIES

SM202 DC 150 MHz .8 Digits.
50 Mv A , B, C, input. Time Interval and Totalise
SYSTRON DONNER 60539 Digit $20 \mathrm{~Hz}-3 \mathrm{GHz}$ BCD O/P 6054 A/ 0411 Digit $20 \mathrm{kHz}-18 \mathrm{GHz}$ BCDO/P

HEWLETT PACKARD
331000005 Hz 5 MHz . Multi-Mode $10 \mathrm{~V} / 50 \Omega 2$ sine, square, tríangular

ELECTRONICS
F51A Multi-Mode + and offset: 0.0005 Hz to $10 \mathrm{MHz} 10 / 15 \mathrm{~V} / 50 \Omega$ F55A Multi-Mode. $0.0025 \mathrm{~Hz}-10$ MHz . 10V/50s2. Ext VGC Burst O/P up to 100 k bursts/sec

Prices
575

Logic Analysers
HEWLETT PACKARD
601L Logic state analyser
2 chann
1600A 16 channel 20 MHz clock
MAP A \& B store
60716 channel 20 MHz clock
(Display scope required)

TEKTRONIX

7D01F 16 channel up to 50 MHz clock MAP

Mains Monitors

1500

3250
250

COLE

1007 200-260V. 35-65 Hz
DATALAB
DL019 Power line interface for
transient recording
DL905 Digital Storage Unit DC-3
MHz 10 mV
DRANETZ
606 -3 Disturbance A nalyser Avg,
Sag/Surge
e transients
of 50 ns on AC or DC Lines

Modulation Meters

AIRMEC
$2101-300 \mathrm{MHz}$. AM/FM
$4093-1500 \mathrm{MHz}$. AM/FM
MARCONI
TF2300A 1.1000 MHz . AM/FM
Multimeters-
Analogue
AVO
MKIII AC/DC V.AC/DC Amps. OHMS
Oscilloscopes
ADVANCE
OS 1000 A DC- 20 MHz . dual trace $\quad 310$
3300 B Dual Trace DC-50 MHz
$5 \mathrm{mV} /$ div. Dual Timebase
COSSOR
3100 Dual Trace DC-40 MHz

DYNAMCO

7210. DC-15 MHz. Dual Trace 1 mV
sensitivity on CHI. Delayed
imebase
GOULD ADVANCE
OS 1000 B DC-20 MHz Dual Trace
X-Y TV Sync

HEWLETT PACKARD

1703A Storage 1000Div/ms.
DC- 35 MHz . Dual trace Mains/Ext
$1707 \mathrm{~B} / 020 \mathrm{DC} .75 \mathrm{MHz}$. Dual trace Dual Time Base
1707B/012 As 1707B/020 with
Internal Battery fitted
181 A Storage $1000 \mathrm{Div} / \mathrm{ms}$
DC- 100 MHz Main frame only
Prices
from E

182C
screen
MEDELEC
M-scope 4 channel DC. $100 \mathrm{kHz} \mathrm{U/V}$
PHILIPS
PM 3211 DC- 15 MHz Dual Trace 2 mV
PM3233 Dual Beam DC. 10 MHz
2mV/div.
40-10B Dual Trace DC-10 MHz
TEKTRONIX
475 Dual Trace DC- 200 MHz 2 mV
485 Dual Trace DC- $350 \mathrm{MHz} 50 \Omega$
$1 \mathrm{M} \Omega 250 \mathrm{MHz}$
556/1A1. True dual beam.
DC-50 MHz. Can display 2 separate signals at different sweep rates.
includes trolle
$545 \mathrm{~B} / 1 \mathrm{~A} 1$. DC -30 MHz . dual trace
Delayed timebase
$561 \mathrm{~A} / 3 \mathrm{~A} 6 / 3 B 1$. DC-10 MHz. Dual
Trace High persistence tube
Delayed Timebase
$585 \mathrm{~A} / 82$. DC -80 MHz . dual trace
10 mV sensitivity
$547 / 1 \mathrm{~A} 1$. DC-50 MHz. dual trace
DTB
547/1A4. DC-50 MHz. four trace
$7403 \mathrm{~N} \mathrm{DC}-60 \mathrm{MHz} 3$ Plug-in
Mainframe
7704 A DC- 200 MHz . CRT Readout.
Mainframe for 4 Plug-in
TELEQUIPMENT
D53A. DC-25 MHz. dual trace.
10 mV sensitivity with $\mathrm{C}-2$ plug-in
DC -15 MHz with JD plug-in
D63/V1/V3 DC-35 MHz. Depending on sensitivity. $50 \mu V$ or 1 mV
on sensitivity
Sensitivity
D34 Dual Trace DC- 15 MHz 2 mV
Mains/Batt $\quad 5 \mathrm{MHz}$
D 75 Dual Trace DC-50 MHz Dual
Oscilloscope Plug-ins
HEWLETT PACKARD
1804A DC-50 MHz Four channel
20 mV -10V/div.
825A Dual Timebase 50 ns - 1 s / div.
1805 A Dual Trace DC. 100 MHz 5 mV .
M $\Omega / 50 \Omega$

TEKTRONIX

Type R. Transistor R.T. tester. Pulse
rate 120 pulses $/ \mathrm{sec}$. R.T. Less than
$5 \mathrm{~m} \mu \mathrm{~S}$
Type G. Differential amplifier. 100:1
CMR DC -20 MHz .50 mV sensitivity
Plug-ins for 500 series
1 A 1 dual trace Plug-in DC -50 MHz
1 A 2 dual trace Plug-in DC -50 MHz
1 A 4 four trace Plug-in DC. 50 MHz
1A5 Differential Plug-in
2 Differential Plug-in
81 Adaptor Plug-in 1A Series to 580

Recent massive stock investment meansToday Carston Value makes even more sense

Power Meters

DYMAR
$2081 / 100$ True RMS. OC- 500 MHz . 30 mW - 100 W
HEWLETT PACKARD
$432 \mathrm{~A} 10 \mu \mathrm{~W}-10 \mathrm{~mW}, 10 \mathrm{MHz}-10 \mathrm{GHz}$ 478A Thermistor Mount for 432A $435 \mathrm{~A} .3 \mu \mathrm{~W}$ to $100 \mathrm{~mW} 5 \mathrm{MHz}-$ 18 GHz
8481AI Power Sensor for 435A
MARCONI SANDERS
$645010 \mathrm{MHz}-40 \mathrm{GHz}$ (Depending on Head)
$642010 \mathrm{MHz}-12.4 \mathrm{GHz} 10 \mathrm{mw}$
$642110 \mathrm{MHz}-18.4 \mathrm{GHz} 100 \mathrm{mw}$
$642210 \mathrm{MHz}-12.4 \mathrm{GHz} 1 \mathrm{mw}$

MARCONI

TF2512 DC-500 MHz 0.5-30w 50Ω TF $893 \mathrm{~A} 10 \mathrm{~Hz}-20 \mathrm{kHz} .20 \mu \mathrm{~W}$ - 10 W .
Power Supplies
ADVANCE
IVI 12 V DC to 240 V 50 Hz , 150 w
BRANDENBURG
475R $10-2100 \mathrm{~V} 5 \mathrm{~mA}$ DC Stab

FARNELL

30B 0-30V iA DC Stab
FLUKE
$41580 \pm 3100 \mathrm{~V} 30 \mathrm{~mA} 0.005 \%$ reg
Protected

TT

Power Lab. up to 30 V Dual Supply
1A. $0+15 \vee 2$
$0 \pm 7.5 \mathrm{~V} 4 \mathrm{~A}$
SMITHS
4701 5-7V o/p Power Pack
SORENSEN
OCR 300-2.5 0-300V 2.5A DC Stab
Pulse Generators
DB ELECTRONICS
150. I.C. pulse generator

EH RESEARCH
122. $1 \mathrm{KHz} 200 \mathrm{MHz} 5 \mathrm{~V} / 50 \Omega$ RT 12 ns
139 (L). $10 \mathrm{~Hz}-50 \mathrm{MHz} 10 \mathrm{~V} / 50 \Omega$
RT 5 ns
1221. Timing Unit 6 Channe
$0-10 \mathrm{MHz} 5 \mathrm{~V} / 50 \Omega \mathrm{RT} 8 \mathrm{~ns}$
G710. $5 \mathrm{~V} / 50 \Omega 30 \mathrm{~Hz} \cdot 50 \mathrm{MHz}$ RT 5 ns $132 \mathrm{AL} .50 \mathrm{~V} / 50 \Omega 5 \mathrm{~Hz}-3 \mathrm{MHz}$ RT 12 ns
HEWLETT PACKARD
$2144100 \mathrm{~V} / 50$?. Double pulse O / P
W $50 \mathrm{~ns}-10 \mathrm{~ms} .10 \mathrm{~Hz}-1 \mathrm{MHz}$. 15 ns RT MARCONI
F2025 $0.2 \mathrm{~Hz}-25 \mathrm{MHz} \pm 10 \mathrm{~V} / 50 \mathrm{~V}$ RT 7ns
PM5776 3V/50』. $1 \mathrm{~Hz}-100 \mathrm{Mz}$
Rise/fall Times less than lins.
Recorders and Signal
Conditioning Equipment AMPEX
PR2200 Instrumentation Recorder up to 16 channels. FM/DR. Record eplay all speeds. $1^{\prime \prime}$ tape FM/DR I.R.I.G. DC- 40 kHz FM. 100 Hz 300 kHz DR
BRUNO WOELKE
ME1028. Wow and flutter meter ME102C. Wow and flutter meter BRUEL \& KJAER
23058 Bench type. Mains operated log recording of $\mathrm{AC}: 2 \mathrm{~Hz}-200 \mathrm{kHz}$ and DC. 50 or 100 mm paper width.
2R0001 Linear Pat DC: $10-35 \mathrm{mV}$ R0002 Linear Pat DC: $10-110 \mathrm{~V}$ R0004 25 dB Potentiometer ZR0005 50 dB Potentiomete ZR0006 75 dB Potentiomete

BRYANS SOUTHERN
BRYANS SOUTHERN $29000 X-Y$
$10 \mathrm{~V} / \mathrm{cm}$ Recorder A4 0.25 mV - from $\begin{array}{r}\mathrm{E} \\ 525\end{array}$ SS314 4 16 speeds
BS316 6 channel 1 mV - 10 V 16 speeds
29300 X -Y Single pen $A 40.25 \mathrm{mV}$ $10 \mathrm{~V} / \mathrm{cm} 0.1 \mathrm{~s}-50 \mathrm{~s} / \mathrm{cm}$
HEWLETT PACKARD
680M. 5 inch. Stripchart Single Pen
5 mV - $120 \mathrm{VI} / \mathrm{P} 20 \mathrm{~cm} / \mathrm{min} 2.5 \mathrm{~cm} / \mathrm{Hr}$
7046 A Two pen A $30.25 \mathrm{mV}-5 \mathrm{~V} / \mathrm{cm}$
KUDELSKI
Nagra 4.2 LSP Professional Audio
Recorder (Batt optd)
NAGRA
PHILIPS
PM 8251 Single pen 10 in chart
RACAL
Store 4. Uses D/4 inch magnetic
ape. Will record 4 F.M. channels
Operates at 7 different speeds.
S E LABORATORIES
150/6151 12 channel UV
$250 \mathrm{~mm} / \mathrm{s}-25 \mathrm{~mm} / \mathrm{min} 6$ in chart
9946 Channel Pre-Amp $\pm 1 \% \pm 1 \mathrm{~V}$
o/p
600825 Channel $\mu \vee 8$ in $4 \mathrm{~m} / \mathrm{sec}$ to
$25 \mathrm{~mm} / \mathrm{min}$
SMITHS INDUSTRIES
RE541.20 Single Pen. 0.5 mV - 100 V
FSD. $3-60 \mathrm{~cm} / \mathrm{min}$ and hour
YOKOGAWA
3046. 10 inch Chart Single Pen. 0.5 $\mathrm{mV}-100 \mathrm{VI} / \mathrm{P} 2.60 \mathrm{~cm} / \mathrm{min}$ and $/ \mathrm{hr}$
3047. 2 Pen Version of 3046

Signal Sources and
Generators
375
1028 4.3.520 MHz Int/Ext FM/AM
10284.3 .520 M

DYMAR
$50 \quad 1525100 \mathrm{kHz} \cdot 184 \mathrm{MHz} \operatorname{Int} /$ Ex
AM/FM Batt/Mains
GOULD ADVANCE
SG70 $5 \mathrm{~Hz}-125 \mathrm{kHz} 600 \Omega \mathrm{Aw}$
HEWLETT PACKARD
$204 \mathrm{D} 5 \mathrm{~Hz}-1.2 \mathrm{MHz} .600 \Omega$. 80 dB att $0 / \mathrm{P} 5 \mathrm{~V}$ RMS
204D/001 As for 2040 (Battery
operated)
608E. $10-480 \mathrm{MHz}$ ĀM
$20 \mathrm{~B} 7-11 \mathrm{GHz} 50 \Omega \mathrm{FM} / \mathrm{PM} 1 \mathrm{mw}$ $8614 \mathrm{~A} 800 \mathrm{MHz}-2.4 \mathrm{GHz}+10 \mathrm{dBm}$ to - $127 \mathrm{dBm} 50 \Omega$ AM/FM 10 mw
MARCONI
TF144 H/4S HF Generato
$0 \mathrm{kHz}-72 \mathrm{MHz} \mathrm{AM}$
.1024 MH Deviation Mete
O24 Mz
F601/D1. $10-470 \mathrm{MHz}$ AM. FM
F995A/2. 1.5-220 MHz AM. FM
TF2171 Digital Synchroniser for
TF2015
TF2002/AS $10 \mathrm{kHz}-72 \mathrm{MHz}$ FM/AM $0.1-1 \mathrm{~V}$ o/p
TF2012 UHF, FM $400-520 \mathrm{MHz}$
$0.03 \mu \mathrm{~V}$. Counter o / p
RACAL
90815.520 MHz LED Display O/P -
$90130 \mathrm{dBmAM} / \mathrm{FM}$
ROHDE \& SCHWARZ
SWOB 111 0.5.1200 MHz 5052
SCHAFFNER
NSG101 Mains interference
Simulator. Superimposes Pulses on
mains for testing immunity of
equipment to interference. Pulse amplitude. $\pm 800 \mathrm{~V}$. Rise Tirme $0.25 \mu \mathrm{~s}$ Width 50 \& $200 \mu \mathrm{~s}$

NSG330 Ignition Interference Attachment
NSG2008 Mains Interference Simulator (Mainframe)
STC
4216 Noise Generator 20 Hz .4 kHz lat/CCITTWtg
TEXSCAN
$9900.10-300 \mathrm{MHz}$. Sweep generator with CRT display
TV Markers set of $5: 31.5,32.5,35$, 39.5 \& 41.5 MHz

Spectrum Analysers
HEWLETT PACKARD
8443A Tracking Gene/counter
$100 \mathrm{kHz}-110 \mathrm{MHz}$
3445A Automatic pre-selector
$10 \mathrm{MHz}-18 \mathrm{GHz}$
kHz Res
3588 For 180 Mainframe 100
$\mathrm{Hz}-1.5 \mathrm{GHz} 1 \mathrm{kHz}$-res
580A/001/002 Digital Storage
$5 \mathrm{~Hz}-50 \mathrm{kHz}$. X-Y o / p
NELSON ROSS
11. DC-20 kHz. 80dB dynamic
range. Dispersion: $100 \mathrm{~Hz}_{2}-6 \mathrm{kHz}$
222. DC- 100 kHz . Dynamic range

CRO's
TEKTRONIX
3L5. Plug-in unit fits into various
500 B series CRO's. $50 \mathrm{~Hz}-1 \mathrm{MHz}$
Greater than 60 dB dynamic range

HEWLETT PACKARD
6908 Mainframe. Int/Ext AM. Ext FM
g93B/ 1003 3-8.3 GHz. 5 mW . PIN
$6998 / 1000.1 .4 \mathrm{GHz} .6 \mathrm{~mW} .120 \mathrm{~mW}$
o 2 GHzl . PIN levelled. ' N '
connectors
TEXSCAN
900 Sweep Generator 10.30 MHz
CRT Display
VS60 Sweep Generator $5-100 \mathrm{MHz}$
ate 60 Hz
N40A Log Amplifier
T.V. Test Equipment

PHILIPS
PM5508B Pattern Generator 625
nes PAL. UK Systems
Voltmeters-Analogue
8 MkI
BOONTON
$92 \mathrm{AD} / 01 / 0910 \mathrm{kHz}-1.2 \mathrm{GHz} 1999$
FSD $10 \mu \mathrm{~V}$ Res
$92 \mathrm{C} 10 \mathrm{kHz}-1.2 \mathrm{GHz} 500 \mathrm{uV}-3 \mathrm{~V} .1 \%$ of FS

BRADLEY
T471C. AC/DC/sicurrent
multimeter and RF
HEWLETT PACKARD
400E Millivoltmeter 1 mV FSS
$10 \mathrm{~Hz}-10 \mathrm{MHz}$ B/W 1 mV FSS
427A. AC DC $/ \Omega$ multimeter
3406A. 10 kHz 1.2 GHz
8405A Vector Voltmeter
1.1000 MHz B/W
$3400 \mathrm{~A} 10 \mathrm{~Hz}-10 \mathrm{MHz} 1 \mathrm{mV}-300 \mathrm{~V}$
True RMS
KEITHLEY
610 C Electrometer DC imV-100V
Amps 10^{-14} Recorder o/p
LEVELL
TM3B $5 \mu \mathrm{~V}$ - $500 \mathrm{VAC} 1 \mathrm{~Hz}-3 \mathrm{MHz}+$
50 to 100 dB
LINSTEAD
M2B DC AC 10 Hz 500 kHz
MARCONI
TF2603. AC voltmeter to 15 GHz
PHILIPS
M2454B 1 mV 300 V .10 Hz 12 MH
2 in 19M 2 . DCO P
RACAL
3301 RMS Millivaltmeter
5 GHz with carry case
Voltmeters-Digital
ADVANCE
DMM 7A/01 1999 FSD
AC/DC/R/Current
FARNELL
DM1316. 1999 FSD AC DC 12
Current Temperalure

Prices

FLUKE
B000A 1999 FSD
AC/DC/OHMS/Current
HEWLETT PACKARD
34740A/34702A 9999
180
SOLARTRON
LM 1420.2. 2300 FSD DC only 0.05%
M1420.2BA. 2300 FSD AC
True RMS /DC
A200. 19999 FSD DC anly
A203.19999 FSD AC/DC/S2.
Sensitivity: $(1 \mu \vee \mathrm{DC}, 10 \mu \vee \mathrm{AC}$
$100 \mathrm{~m} \Omega$ resistance)
A205. 19999 FSD AC/DC/Sl
300
300
A243. 119999 FSD AC/DC/S2.
Sensitivity: $(1 \mu \vee D C, 10 \mu \vee \mathrm{AC}$
$10 \mathrm{~m} \Omega$ resistance)
2050.99999 Auto AC DC 10

Voltmeters Vector/Phase
DRANETZ
3058999 FSD Mainframe for PA
3001 module
HEWLETT PACKARD
3490 A 100000 FSD $1 \mu V-1000 \vee$ DC
0.01%
$10 \mu \mathrm{~V}-1000 \mathrm{~V}$ AC \& Ω

AS NEW -
 EX STOCK DELIVERY
 Oscilloscopes
 TEKTRONIX 465 DC- 100 MHz Dual Trace 5 mV -5V/Div $0.05 \mu \mathrm{~s}-0.5 \mathrm{~s} /$ Div Delayed T/B XY DC $4 \mathrm{MHz} \mathbf{£ 1 2 5 0}$
 TEKTRONIX 475 A DC. 250 MHz Dual Trace
 5 mV -5V/Div 0.01 s - 0 5s/Div Delayed $\mathrm{T} / \mathrm{BXY} \mathrm{DC} 3 \mathrm{MHz}$
 THESE INSTRUMENTS SOLD
 WITH ONE YEAR FULL GUARANTEE

SPECIALIST INSTRUMENTS

Gas Detection \& Analysis
AI INDUSTRIES
TCS Leakseeker. Thermal Conduct
det.
350
CROWCON
71P Gasalarm. Combustible gas
Water Quality
Measurement
YELLOW SPRINGS INST.
57 Dissolved Oxygen Meter
Airflow - Sampling
ROTHEROE \& MITCHELL
L2SK Personal Air Sampling Kit
195
Data Comms. 8 Cable
Test Equipment
MARCONI
TF2333 Transmission Test Set 30
$\mathrm{Hz}-550 \mathrm{kHz}$
685
WANDEL \&
GOLTERMANN

INSIST ON VERSATOWER

BY PROFESSIONALSFOR PROFESSIONALS

The VERSATOWER range of telescopic and tilt-over towers cover a range of 25 ft to 120 ft (7.5 M to 36M).

Designed for Wind Speeds from 85 mph to 117 mph conforming with CP3 Chapter V, part 11

Functional design, rugged construction and total versatility make it first choice for telecommunications.

Trailer mounted or static, the VERSATOWER solves those difficult problems of antenna support, access and ground level maintenance.

A programme of continuous product development has led to a range of over 50 models, all available at highly competitive prices. This coupled with our quality assurance scheme ensures that we maintain the leader position we enjoy today.

VERSATOWER

THE PROFESSIONALS' CHOICE

STRUMECH

PORTLLAND HOUSE, COPPICE SIDE BROWNHILLS, WEST MIDLANDS TEL: (05433) 432! TELEX: 335243 SEL

The New FM/AM 1000 swith SpectrumAnalyser-wecall it the SUPER-S
A portable communications service monitor from IFR, light enough to carry anywhere and good enough for most two-way radio system tests. The FM/AM 1000s can do the work of a spectrum analyser, oscilloscope, tone generator, deviation meter, modulation meter, signal generator, wattmeter, voltmeter, frequency error meter-and up to five service engineers who could be doing something else!
For further information contact Mike Taylor

IFR precision simulators
92811
Telex: 23734
FLDTEC G

Introducing the latest professional state-of-the-art 31/2-digit DMM - at really oldfashioned prices! From just an unbelievable $£ 39.95$ inc. VAT, plus $£ 1.15$ p\&p!

	6100	6110	6200	6220
RESOLUTION	ImV, $10 \mu \mathrm{~A}, 018$ on all models			
FULL AUTO RANGING	\cdots	\cdots	\cdots	-
RANGE HOLD	\cdots	-		
UNITS OF MEASUREMENT DISPLAYED	$\mathrm{mV}, \mathrm{V}, \mathrm{mA}$	$\mathrm{mV}, \mathrm{V}, \mathrm{mA}, \mathrm{A}$	$m \mathrm{~V}, \mathrm{~V}, \mathrm{~mA}$	mV.V. mA, A
FUNCTIONS DISPLAYED	Ω, K, , AUTO, BATT, AD, LO. - and AC			
MEASURES DC VOLTAGE TO:	1000 V	1000 v	1000 V	1000V
MEASURES AC VOLTAGE TO:	750 V	750 V	750 V	750 V
MEASURES AC/DC CURRENT TO:	200 mA	IOA	200 mA	10A
ZERO ADJUSTMENT	Zeros out minute test-lead resistances for precise measurements			
ACCURACY	0.5\%	0.5\%	0.8\%	0.8\%
LOW POWER OHM RANGES	For in-circuit resistance measurements on all models			
BUZZER - Continuity Test	\sim	\cdots		
BUZZER - Over Range Indicator	\cdots	\cdots		
COMPLETE WITH	Batteries, pair of Test Leads, Spare Fuse, One Year's Guarantee			
PRICE	ONLY 664.95	ONLY 674.95	ONLY 639.95	ONLY $£ 49.95$
plp	61.15	El.15	61.15	61.15

Why such a low, low price? Because the A/D converter and display are custom built! This is a genuine top-spec DMM. Check these features for unbeatable value - you won't find a hand-held DMM with these features at these prices again!

I believe you! Please send me the DMM/s as marked.

\qquad 6200 @ $£ 41.10$ each, inc. VAT, p\&p. Total price f \qquad —_6220@ $£ 51.10$ each, inc. VAT, p\&p. Total, price L | \square |
| :--- | $100 @$ E66.10 each, inc. VAT, p\&p. Total price $£$ \qquad ACCESS orders taken. Please write card no: and signature. ACCESS NO \qquad

 _ 6110@ $\mathbf{Z 7 6 . 1 0}$ each, inc. VAT, p\&p. Total price $£$ Name

Address

\qquad Total cash/cheque enclosed t Cheques payable to
Maclin-Zand Electronics Ltd., please.
Available exclusively from the company that gives you tomorrow's technology today. 38 Mount Pleasant, London WCIX OAP. Tel. 01-278 7369/01=837 165

Businesses have been built on our ferrites. Oursincluded.
 If you're a manufacturer, even the most in expensive

 components must be checked out - or they'll let your product down. And it's particularly true of ferrites. Apex are the sole UK agents for one of America's largest ferrite manufacturers, Fair-Rite. Apex use Fair-Rite products in their own manufacture of wound components and know how good they are.

The range covers most shapes from torroidal and pot cores to E cores, shield beads and baluns.

Full data is available on request.
The most useful kit in the business.
We've put together a kit of assorted ferrites
that contains a versatile selection of ferfite cores that will enable designers of RFI suppression devices and wideband transformers to optimise circuits and approximate final designs very quickly.

A comprehensive data kit is included that contains impedance vs frequency curves, attenuation curves and wideband transformer design data.

It costs just $£ 17.00$ plus VAT (cheque or company order).
It's really too good to miss

Apex. Big enough to look after you. Properly. Apex Inductive Devices, 27 Abbey Industrial Estate, Mount Pleasant, Alperton, Middx. Tel: 01-903 2944.

WW - 026 FOR FURTHER DETAILS

Use CRT displays in your systems or equipment? Then it's well worth getting to know the KGM resources. We can take both design and production problems onto our own experienced shoulders. Far better than struggling with complex video concepts yourself!
For a quick scan of KGM capability, look through our new colour folder --featuring some of the units we have produced for major customers. Some are based on our standard monitor range - but even these come with a choice of thick film modules or discrete components, for maximum 'tailor-made' flexibility. And today our tech nology extends to complete keyboard and micro-processor units. If vou're ready to talk monitors now, ring our Sales Applications Engineer. Or start with one of those folders.
KGM Electronics Limited
Clock Tower Road, Isleworth, Middlesex TW7 6DU. Tel: 01-568 0151. Telex: 934120

AND THERE'S MORE WHERE THIS CAME FROM

It's a long time since one of our adverts was presented in 'list' form - but simply because we do not try to squeeze this lot in every time doesn't mean that it's not available. Our new style price list (now some 40 pages long) includes all this and more, including quantity prices and a brief description. The kits, modules and specialized RF components - such as TOKO coils, filters etc. are covered in the general price list - so send now for a free copy (with an SAE please). Part 4 of the catalogue is due out now (incorporating a revised version of pt.1) LINEARICS.NUMERICLISTINGS

1200

LINEAR ICS. NUMERICLISTINGS				TLL Nand LSN		7443 N	1.15	74iS112	0.38
TBA120S	1.00	KB4413	1.95			7444 N	1.12	$74 \mathrm{LS113}$	$0-38$
L200	1.95	KB4417	1.80	7400 N	0.13	7445 N	0.94	$74 \mathrm{SS1} 14$	0.38
U2378	1.28	TDA4420	2.25	74.500	0.20	7446 N	0.94	74118 N	0.83
U2478	1.28	K84420B	1.09	7401 N	0.13	$74 \mathrm{LS47}$	0.89	74120 N	1.15
U2578	1.28	KB4423	2.30	74LS01	0.20	7448 N	0.56	74121 N	0.42
U2678	1.28	KB4424	1.65	7402 N	0.14	$74[548$	0.99	74122N	0.46
IM3014	0.67	KB4431	1.95	74.502	0.20	74 LS49	0.99	74123 N	0.73
LM301N	0.30	кB4432	1.95	7403 N	0.14	7451N	0.17	74 IS124	1.75
гм 30 в	0.96	K54433	1.52	74.503	0.20	74.551	0.24	74125 N	0.38
LM308N	0.65	KB4436	2.53	7404 N	0.14	7453 N	0.17	$74 \mathrm{LS125}$	0.44
LM339N	0.66	кв4437	1.75	74.504	0.24	7454 N	0.17	74126 N	0.57
LM348N	1.86	кв4438	2.22	7405 N	0.18	744554	0.24	$74 \mathrm{LS126}$	0.44
LF351N	0.38	K84441	1.35	74LS05	0.26	$74 \mathrm{LS55}$	0.24	74128 N	0.74
LF353N	0.76	KB4445	1.29	7406 N	0.28	7460 N	0.17	74132 N	0.73
LM374N	3.75	K84446	2.75	7407N	0.38	744563	1.24	7415132	0.78
LM380N-14	1.00	Kı4448	1.65	7408 N	0.17	7470 N	0.28	74LS136	0.40
LM380N-8	1.00	NE5044N	2.26	74 LS08	0.24	7472 N	0.28	7425138	0.60
LM381N	1.81	NE5532N	1.85	7409 N	0.17	7473 N	0.32	74141 N	0.56
ZN419CE	1.95	SD6000	3.75	74 LS09	0.24	744573	0.38	74142 N	2.65
NE544N	1.80	SL6270	2.03	7410 N	0.15	7474 N	0.27	74143 N	3.12
NE555N	0.30	SL6310	2.03	74.510	0.24	$74 \mathrm{LS74}$	0.28	74144 N	3.12
NE556N	0.50	SL6600	3.75	7411 N	0.20	7475 N	0.38	74LS145	0.97
NE560N	3.50	SL6640	2.75	74 LSIL	0.24	7476 N	0.37	74147 N	1.75
NE562N	4.05	SL6690	3.20	7412N	0.17	741576	0.38	74148 N	1.09
NE564N	4.29	SL6700	2.35	7413 N	0.30	74.5	0.38	74 LS 148	1.19
NE565N	1.00	ICL8038CC	4.50	7414 N	0.51	7480 N	0-48	74150 N	0.99
NE566N	1.60	MSL9362	1.75	74LS15	0.24	7481N	0.86	74151 N	0.55
NE570N	3.85	MSL9363	1.75	7416 N	0.30	7482 N	0.69	74 LS151	0.84
SL.624	3.28	HA11211	1.95	7417 N	0.30	7485 N	1.04	74153 N	0.64
TBA651	1.81	HA11223	2.15	7420 N	0.16	$74 \mathrm{LS85}$	0.99	74.5153	0.54
UA709HC	0.64	HA11225	1.45	74LS20	0.24	74 LS86	0.40	74154 N	0.96
UA709PC	0.36	HA12002	1.45	7421 N	0.29	7489 N	2.05	74155 N	0.54
UA710HC	0.65	HA12017	0.80	74.521	0.24	7490 N	0.33	74LS155	1.10
UA710PC	0.59	HA12402	1.95	7423 N	0.27	741590	0.90	74156 N	0.80
uA7410	0.66	HA12411	1.20	7425 N	0.27	7491 N	0.76	74157N	0.67
un7410n	0.27	HA12412	1.55	7427N	0.27	74 [S91	1.10	7445157	0.55
UA7470N	0.70	LFI3741	0.33	745227	0.44	7492 N	0.38	74 LS158	0.60
UA7480,	0.36	SN76660N	0.80	7428 N	0.35	74 LS92	0.78	74159 N	2.10
u4753	2.44			741528	0.32	7493 N	0.32	74160 N	0.82
uA758	2.35	FREQUENCY	Y DISPLAY	7430 N	0.17	$74 \mathrm{LS93}$	0.99	$74 \mathrm{LS160}$	1.30
TPABIOAS	1.09	\& SYNTHESI	ISERICS	74.530		7494 N		74161 N	0.92
T8A820M	0.75	-	-	7432 N	0.25	7495 N	0.65	7445161	0.78
TCR940E	1.80	SAA1056	3.75	74.532	0.24	$74 \mathrm{LS95}$	1.14	7445162	1.30
TLA1028	2.11	SAA1058	3.35	7437 N	0.40	7496 N	0.58	7416.3 N	0.92
TLCA1029	2.11	SAA1059	3.35	7438 N	0.33	74.596	1.20	74 LS163	0.78
TDP1054	1.45	11C90DC	14.00	745438	0.24	7497 N	1.85	74164 N	1.04
TDA1062	1.95	LN1232	19.00	7440 N	0.17	74 LS107	0.38	74 LS164	1.30
TLa1072	2.69	LN1 242	19.00	74.540	0.24	74109 N	0.63	7416515	1.05
TLA1074A	5.04	MSL2318	3.84	7441N	0.74	$74 \mathrm{LS109}$	0.70	7445165	1.04
TDA1083	1.95	MSM5523	11.30	7442 N	0.70	74110 N	0.54	74167 N	2.50
TDA1090	3.05	MSM5524	11.30	74 LS42	0.99	74111 N	68		
HAL137 HA1196	1.20 2.00	MSM5525	7.85						

70.00	balo
1.20	Bai2
0.87	IT1210
751.10	B820
0.75	B8105
0.78	B8109
1.65	MM12
3.50	B8212
2.10	KV121
1.35	Kv121
1.34	KV122
0.92	KV122
1.05	KV121
1.80	KV122
1:05	SWITC
1.80	PINDIO
1.05	Shott
0.99	1-162
1.10	B4182
1.10	${ }_{\text {BAP }}$
1.50	ba37
1.60	TTA10
0.93	SIGNA
1.08	
1.53	\& REC
0.52	1 N 14
1.20	1 N 400
0.95	1 N 400
0.49	1 N 40
0.49	0×91
0.43	AAll2
0.49	BRIDC
1.80	12/50
771.95	6A/20
1.30	

$\begin{array}{ll}\text { ITTI210 } & 0.30\end{array}$ BB204B 0.36 $\begin{array}{lll}\text { BB105B } & 0.36\end{array}$ $\begin{array}{lll}\text { BB109 } & 0.27\end{array}$ $\begin{array}{ll}\text { MMM125 } & 1.05 \\ \text { BB212 } \\ 1.95\end{array}$ KV1210 2.45 $\begin{array}{lll}\text { KV1211 } & 1.75 \\ \text { kV1226 } & 1.95\end{array}$ | KV1225 2.75 |
| :--- | :--- | KV1215 2.55

KV1225 2.75 PWINCHING SHOTTKY DIODES $\begin{array}{ll}\text { 1N6263 } & 0.62 \\ \mathrm{BA1} 82 & 0.19\end{array}$ $\begin{array}{ll}\text { BA182 } & 0.19 \\ \text { BA244 } & 0.17\end{array}$ $\begin{array}{ll}\text { BA. } 244 & 0.17 \\ \text { BA3 } & 0.35\end{array}$ $\begin{array}{ll}\text { BA379 } & 0.35 \\ \text { TOA1061 } & 0.95\end{array}$ SIGNAL DIODES RECTIFIERS 1N4148 0.06 | IN4148 | |
| :--- | :--- |
| IN4001 | 0.06 | $\begin{array}{ll}1 N 4001 & 0.06 \\ 0.07\end{array}$ $\begin{array}{lll}1 N 5402 & 0.15\end{array}$ $\begin{array}{ll}1 N 5402 & 0.15 \\ \text { OA91 } & 0.07\end{array}$ AAll2 0.25 BRIDGES: $\begin{array}{ll}12 / 50 V & 0.35 \\ 6 A / 200 V & 0.75\end{array}$ 74 TS393 1.40

\section*{| BC2 |
| :--- |
| BC2 |
| BC |
| BC |
| BC3 |
| |
| |
| |
| |}

STORS
DEVICE
0.08
0.08
0.08
0.08
0.08
0.08
0.10
0.11
5
0.07
6
0

CAPACITORS
All 5 mm or less spacing
CEKAMIC 50 v
$2 \mathrm{P}^{2}, 3 \mathrm{H3}, 4 \mathrm{P} 7,6 \mathrm{~PB}$
$2 \mathrm{P} 2,3 \mathrm{H}, 4 \mathrm{P} 7,6 \mathrm{P} 8$
$8 \mathrm{P} 2,10 \mathrm{P}, 15 \mathrm{P}, 18 \mathrm{P},$.

.0 .04 $22 \mathrm{~F}, 27 \mathrm{P}, 33 \mathrm{P}, 47 \mathrm{P}$

56P,68P, $82 \mathrm{P}, 100 \mathrm{P}$.
150P, 220P, 270P
$330 \mathrm{P}, 390 \mathrm{P}, 470 \mathrm{P}$.
330P, 390P, 470P . . 0.055
1NO,2N2,3N3,4N7. .0.06
10N (0.01uF)..
22N, $47 \mathrm{~N} . .$.
$100 \mathrm{~N}, 220 \mathrm{~N}$, MONOLITHIC CERAMIC FEEOTHRU
INO SOLDER IN. . . . 0.09
POLYESTER (SIEMENS)
10mm LEAD SPACING
$10 \mathrm{~N}, 22 \mathrm{~N}, 33 \mathrm{~N} .$.
$4 \mathrm{~N}, 68 \mathrm{~N}, 100 \mathrm{~N}$.
$220 \mathrm{~N}, 470 \mathrm{~N}$.
220N,
.0 .17
.0 .19
.0 .22
POLYESTER (GENERAL
10 mm LEAD SPACING
$10 \mathrm{~N}, 15 \mathrm{~N}, 2 \mathrm{~N}, 33 \mathrm{~N} . .0 .06$
$47 \mathrm{~N}, 68 \mathrm{~N}, 100 \mathrm{~N}00 .08$
220N..................11
20nman LEAD SPACING
220N, $330 \mathrm{~N}, 470 \mathrm{~N}$
MYLAR
5nim LEAD SPACING
$1 \mathrm{NO}, 10 \mathrm{~N}, 22 \mathrm{~N}, 33 \mathrm{~N}, .0$
1NO,10N, 22N, 33N, . 0.08
$100 \mathrm{~N}, \ldots0 .09$
20nmm LEAD SPACING
POLYSTYRENE
10P,15P, 18P, 22 P ,
27P,47P,56P,68P, 0.08
$100 \mathrm{P}, 180 \mathrm{P}, 220 \mathrm{P}$,
100P, 180P, 220P,
270P,330P,390P...0.09
470P,680P,820P...0.10
1N0,1N2,1N5,1N8,.,0.11 2N2,2N7,3N3,3N9..0.12
$4 N 7,5 N 6,6 N 8,10 \mathrm{~N} .00 .13$
TANTALIM BEAD CAPS 16v: 0.22,0.33, $0.68,1.0 \ldots0 .18$
$16 v: 2.2,4.7,10.0 .19$ 6v3: $22,47$.
$10 \mathrm{v}:$
12,

ALUMIN ELECTROLYTICS
RADIAL (VERT, MOUNT)
($\mathrm{uF} / \mathrm{vol}$ tage)
$1 / 63,2.2 / 50,4.7 / 35$
10/16,15/16,22/10
33/6.3......
22/16,33/10,
47/10............. 0.09
$10 / 63,22 / 50,33 / 50$,
$47 / 16,100 / 16 \ldots . .0 .10$ 47/63,100/25,220/16 470/6.3.
100/63,470/16.
$1000 / 10 .$. 1000/10,,. 0.18 $1000 / 16,470 / 63 \ldots .0 .23$
$1000 / 63,2200 / 16, .0 .30$ $1000 / 100 \ldots, \ldots .0 .88$
$10000 / 70, \ldots, ., 3.00$ AXIAL (HORTZ. MOUNT) $1 / 25,4.7 / 16,6.4 / 25$
$10 / 16 . . \ldots . . .0 .08$ $10 / 16 \ldots \ldots, \ldots, 0.0$
$4.7 / 63,22 / 10,22 / 16$ $33 / 16 \ldots, \ldots . .0 .09$
$47 / 25,100 / 16 . .0 .10$ 100/25...
$2200 / 16,1000 / 25.0 .36$
$1000 / 35,4700 / 16.0 .45$ $1000 / 35,4700 / 16.0 .45$
$1000 / 500 .58$

RESISTORS

$0.25 \mathrm{~W}, 58$ EL 2 CARBON lohm-10M......... 0.02
$0.25 W 1 \%$ EL2 METAL FILM

1. $10 h m-1 M$ HORIZ CARBON PRESETS 10mm TYPE
$100 \mathrm{ohns}-2 M 5$
HORIZ CERMET PRESETS

Before Gold Lion valves reach you they've been hit with a hammer!

True. With Hi-Fi enthusiasts demanding higher and higher standards of sound you can't afford poor quality valves. That's why every Gold Lion valve survives an awesome series of tests before it reaches your equipment including testing under amplifier conditions and being hit with a rubber hammer!

So we hand-build Gold Lion valves and use advanced pumping techniques to ensure top quality.

Gold Lion KT77's and KT88's cover 30-200 watts. If you would like to know more send for these Application Report Leaflets, you'll find them fascinating reading.
 ww - 045 FOR FURTHER DETAILS

No other cleaner has all these advantages:-

1. Only 100% pure, natural diamond grains are utilised
2. Blades are treated with hard chrome to reinforce the setting of the diamond grains, to obviate lossening or breakaway during use. This process also prevents clogging of the diamonded surface by residues resulting from use.
3. All diamonded blades are recifified to ensure an absolutely smooth surface by eliminating diamond grains which may rise above the surface. This eliminates all excessive scratching during use.
4. All diamond grains are rigidly calibrated to ensure a perfectly uniform grain size of either 200.300 or 400 .
5. The chrome gives a very weak co-efficient of friction and the rigidity of the nylon handie is calculated to permit proper utilisation and yet pliant enough to avoid undue pressures on highly delicate relays.

- Grain size 200 . thickness $55 / 100 \mathrm{~mm}$, both faces diamonded. For quick cleaning of industrial relays and switching equipment. etc
- Grain size 300 . thickness $55 / 100 \mathrm{~mm}$., both faces diamonded. For smaller equipments, like Eetephone relays, computer relays, etc.
- Grain size 400 , thickness $25 / 100 \mathrm{~mm}$., one face diamonded. For sensitive relays and tiny contacts. Two close contacts facing each other can be individually cleaned, because only one face of the spatula is abrasive.

Sole Distributors for the United Kingdom

 SPECIAL PRODUCTS (DISTRIBUTORS) LTD 81 Piccadilly, London W1V OHL. Phone: 01-629 9556 As supplied to the M.O.D.. U.K.A.E.A., C.E.G.B. British Rail and other Public Aurhorities: also major industrial and efectronic users throughourt the United Kingdom.

Peace and quiet

The quietest sound the ear can hear moves the eardrum about $10^{-9} \mathrm{~cm}$, one tenth the diameter of a hydrogen molecule. Movement due to random thermal bombardment of the eardrum by air molecules is around this same level and largely accounts for this limit of sensitivity.*

But the distortion contribution from a QUAD 405. amplifier in normal use (say 85dBa) moves the eardrum less than this amount.

Perhaps sitting in a very quiet room at $-100^{\circ} \mathrm{C}$ and without the music we might nearly hear thembut "'tis bitter cold."

For further details on the full range of QUAD products write to:

The Acoustical Manufacturing Co. Ltd. Huntingdon, PE18 7DB. Tel: (0480) 52561.
*Sensitivity is never made more acute by the presence of other sounds.

QUAD

for the closest approach to the original sound
QUAD is a Registered Trade Mark

The finest amplification kits from Crimson Eletrick

$\star \star \star \star \star$ LATEST DEVELOPMENTS $\star \star \star \star$

CRIMSON ELEKTRIK Power amplifiers are the most sophisticated on the markef today. Yet now with the latest Issue 5 innovations THEY ARE EVEN BETTER! We. have included sonic improvements and developed a unique electronic protection circuit which obviates the need for output fuses. In fact, such fuses can seriously. conditions - even with non-faulty loads (due to thermal fatigue), they can be a time-consuming nuisance and even dangerous to replace, but more importantly they \longrightarrow are responsible for 'envelope distortion' i.e., dynamic compression of the signal, even fuses in the teedback loop suffer from the first two disadvantages, and the latter : to a lesser extent.

$\star \star \star$ BEST VALUE $\star \star \star \star$

CRIMSON have an enviable reputation for supplying the best value amplifier kits You can prove this to yourself by checking out the competition in the following crucial areas: \star professional grade phono sockets for ALL signal connections Silver/Gold plated switch contacts * Adequate heatsinking for full-rated output \star Available from stock \star Manufactured by a specialist company with a reputation tetive loudspeaker systems. Considering the advantages of CRIMSON Kits, why active loudspeaker sy
choose anything else?

* * * * \star SOUND ADVICE $\star \star \star \star$

Crimson Amplifiers are versatile and dependable. The new CP3000 will give up to 300 watts into 4 ohms at 0.03% THD and is the obvious choice for P.A. and Discos requiring the best performance. For Hi-fi we produce the ever-popular pre- and
power amp hardware kits which enable our advanced modules to be houses in power amp hardware kits which enable our advanced modules to be houses in attractive metalwork and include everything down to the last nut and bolt.
Our Pre-amplifier can be fitted with the moving coil module allowing it to be used with the latest M.C. cartridge (which can now be bought for as little as £30).

Write for details, specifications and full price list or send 50p, cheque / P.O. for our comprehensive ap plication/user's manual

Space precludes us from publishing all our products and prices, below are just a few examples:

* Power Amp Modules (single channel) CE 608 (60 WRMS/ 8 ohms)
CE 1708-(170 WRMS / 8 ohms)
CP 3000-(300 WRMS/4 ohms)
- $60+60$ watt stereo pre and power amplifier complete ki
* Stereo Moving Coil Pre-Pre Amplifier Module MC1
\star 3Way Active Crossover (single channel)

Don't forget, Crimson modules are available throughout the country from all branches of Marshalls and Mail Order from Badger Sound Services and, of course, Crimson Elektrik.
Prices include V.A.T. and post to anywhere in the U.K.

WW - 052 FOR FURTHER DETAILS
 Exporters of international rep OEM, rental users and 20 years. Direct suppliers for distributor enquiries welcomed. wholesalers. Overs for details: Write, ring or telex for details.

Edicron Ltd., Redan House, Redan Place, London W2 4SA Telephone:01-2214717 Telex:265531

In our bock you'll find the broadest range of power switching devices in planar construction plus extensive application notes. In short, an invaluable reference that no design engineer should be without.

TRW have established a reputation as a leader in the semiconductor field by continually developing new and better products.

TRW pioneered the power Schottky rectifier, bringing it from its initial role as an interesting laboratory project to a highly usable efficient low voltage rectifier.

Varactors represent another success story with the trade name Varicap © becoming virtually generic for these devices.

Make sure you send for this book that contains the fullest data on TRW's

high reliability products; both off-the-shelf or designed to customer's specifications

You'll find that supplying the components you need is well within our power.

TRW

POWER SEMICONDUCTORS

MCP Electronics Ltd.,
38 Rosemont Road, Alperton, Wembley, Middlesex Telephone: 01-902 5941. Telex: 923455.

HAMEE
 OSCILLOSCOPES

TOP PERFORMANCE, QUALITY AND VALUE

HM 307
$\varepsilon 149$ Single Trace DC-10MHz Plus Built-in Component Tester

HMH12 $\ldots4 .8$ Eso
Dut frace ECR201H2
Snvicm, सv, 40 MHz Trigger
plus Swicep Belay

TM5 2
458

$5 \mathrm{HV} / \mathrm{cm}, \mathrm{x}-\mathrm{Y}, 70 \mathrm{FH} \mathrm{H}$
Tigger Sweep Belevivflus Single
Stoc, Sweep Delay and Alter
Delay Troger

HM 812
£1,458
Dual Trace as per HM 512 plus Storage, Automatic Siorage and Variable Persistence

Prices U.K. List Ex. VAT

For
FULL DETAILS and
DISTRIBUTOR LIST
contact:

HAMEG LTD.
74-78 Collingdon St. Luton, Beds LU1 1RX Tel: (0582) 413174

AUDIO TEST

LFR5600 FREQUENCY RESPONSE

RECORDER

Designed to graphically record wow and flutter, drift,
voltage, temperature and frequency response of
Audio equipment.

* Frequency Range $20 \mathrm{~Hz}-30 \mathrm{KHz}$
* Variable chart speed
* Voltage range $0.1 \mathrm{~V}, 1 \mathrm{~V}, 10 \mathrm{~V}$.
* Sweep Oscillator
* Pilot Signal
* Metered, Swept frequency input/output voltage

SINCLAIR ELECTRONICS LTD
London Road, St. Ives, Huntingdon, Cambs. PE17 4HJ.
Telephone: St. Ives (0480) 64646. Telex: 32250
Sinclair Electronics Ltd. reserve the right to alter prices and specifications on Leader equipment without prior notice.

BMM LABORATORIES RESEARCH UNITS
UNIVERSITIES ETC. THE LASCAR RANGE OF MULTIMETERS IS NOW ALSO AVAILABLE IN KIT FORM, CONTAINING ALL PARTS NEEDED TO CONSTRUCT THESE SUPERBLY STYLED MULTIMETERS-EVENBATTERIESAND TEST LEADS. BOTH TYPES FEATURE FIVE FUNCTIONS (AC AND DC VOLTS, AC AND DC CURRENT RESISTANCE) WITH ABILITY TO CHECK DIODES. 0.5 " LCD DISPLAY WITH 'BATTERY LOW' WARNING. AUTO-POLARITY, AUTO-ZERO. FULL PROTECTION AGAINST
OVERLOADS AND TRANSIENTS, CAN WITHSTAND MAINS ON ANY RANGE. RUGGED ABS CASES AND A COMPREHENSIVE 1-YEAR WARRANTY.

The LMM200 has been featured as a project in the July 80 Practical Electronics. It is a compact handheld multimeter with a 0.5% basic accuracy and 15 different ranges. It measures AC/DC voltage from 0.1 mV to $500 \mathrm{~V}, \mathrm{AC} / \mathrm{DC}$ current from $0.1 \mu \mathrm{~A}$ to 2 Amps and resistance from 0.1Ω to $2 \mathrm{M} \Omega .200$ hours battery life.
The LMM 100 is suitable for field or bench use. It has a basic accuracy of 0.1% and 25 different ranges. It measures AC/DC voltage from 0.1 mV to $1 \mathrm{Kv}, \mathrm{AC} / \mathrm{DC}$ current from $0.1 \mu \mathrm{~A}$ to 2 Amps and resistance from 0.1Ω to $20 \mathrm{M} \Omega$. Battery life is over 2,000 hours. It also features a unique 'digital hold' facility and adjustable carrying handle.

We also offer a calibration service ($£ 5.00+$ VAT $=£ 5.75$) and a trouble-shooting and calibration service ($£ 7.50+$ VAT $=£ 8.62$).

To: Lascar Electronics, Unit 1, Thomasin Road, Basildon, Essex.
Please send me Data \square LMM 200 Kit $£ 39.04 \square$ LMM 100 Kit $£ 69.80 \square$ Assembled LMM 200 £ $47.09 \square$ Assembled LMM $100 £ 91.13 \square$

Name
Address
Tel. No.

lenclose cheque/P.O. value

Orders may be 'phoned quoting your Access or Barclaycard No. Maxckio
Official orders accepted
Official orders accepted.
Lin
WW - 081 FOR FURTHER DETAILS

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be inade to order.

Full Information from:

HARRIS ELECTRONICS (London)

138 GRAYS INN ROAD, W.C. 1 Phone: $01 / 837 / 7937$

WW - 010 FOR FURTHER DETAILS

AMATEUR RADIO RETAILERS ASSOCIATION

Secretary: Fred Hopewell, P.O. Box 36, Loughborough LE 11 DW Presenting the NINTH

AMATEUR RADIO AND ELECTRONICS EXHIBITION

at the
GRANBY HALLS, LEICESTER on 6th, 7th and 8th NOVEMBER, 1980

OPEN DAILY, 10 a.m. to 6 p.m.

£500 IN VOUCHER PRIZES TO BE WON'

puiưs fáábulous free draw prizes throughout The EXHIBITION!

DON'T MISS THIS EXCITING EVENT - BARGAINS GALORE, REFRESHMENTS, BAR AND ALL THE USUAL AMENITIES

ADMISSION: 75p. Concessionary Tickets 50p for Parties of 15 or over

NO ADVANCE TICKETS. ON RECEIPT OF YOUR REMITTANCE WITH ORDER, TICKETS WILL BE RESERVED FOR YOU TO PICK UP AT THE BOX OFFICE. IF YOU REQUIRE AN ACKNOWLEDGE MENT, PLEASE ENCLOSE A STAMPED-ADDRESSED ENVELOPE

BOOK THE DATES NOW FOR THE SHOW OF THE YEAR!

LOW COST
AUDIO SIGNAL GENERATORS
(Sine \& Square Waves) $10 \mathrm{~Hz}-100 \mathrm{kHz}$
Very low distortion ($\times 0015 \%$) £41.40 (or in kit form) £35.65 p. p. and ins. $£ 2$

Model 146

ALSO
Model AO113. Sine/Square. \uparrow volt into 6000 Dist $.02 \%$. $£ \mathbf{3 1 . 6 0}$ (Kit version £26.50) p.p. £1

TELERADIO ELECTRONICS

325 Fore Street, Edmonton, London N9 OPE
S.A.E. for leaflets . . . Closed all day Thursdays . . 01-807 3719

WW - 027 FOR FURTHER DETAILS

8050A $41 / 2$ Digit LCD DMM with true RMS on AC volts and current DC volts $200 \mathrm{mV}-1 \mathrm{KV}$, $10 \mu \mathrm{~V}$ resolution AC volts. 200 mV - 750 V , $10 \mu \mathrm{~V}$ resolution. DC/AC current $200 \mu \mathrm{~A}-2 \mathrm{~A}, 0.01 \mu \mathrm{~A}$ resolution resistance 200 2 -20M $\Omega, 0.01 \Omega$ resolution. Also reads d8 direct referenced to 16 stored impedances. Conductance ranges 2 mS and 200 nS . £199 mains model £239 mains battery. 8012 A $31 / 2$ Digit LCD DMM with true RMS on AC volts and current. DC volts $200 \mathrm{mV}-1 \mathrm{KV}, 100 \mu \mathrm{~V}$ resolution. AC volts $200 \mathrm{mV}-750 \mathrm{~V}$, $100 \mu \mathrm{~V}$ resolution. $\mathrm{DC} / \mathrm{AC}$ current $200 \mu \mathrm{~A}-2 \mathrm{~A}, 0.1 \mu \mathrm{~A}$ resolution. Resistance $200 \Omega-20 \mathrm{M} \Omega, 0.1 \Omega$ resolution Low resistance 2Ω and 208, $1 \mathrm{~m} \Omega$ resolution Conductance ranges $2 \mathrm{mS}-20 \mu \mathrm{~S}-200 \mathrm{nS}$
f199.00 mains model $£ 219.00$ mains battery. 8010A 31122 Digit LCD DMM Same spec as 8012A plus a 10Amp AC/DC current range but no low resistance range.
f159.00 mains model $\mathbf{£ 1 7 9 . 0 0}$ mains battery. 8024A $31 / 2$ Digit hand held LCD DMM with peak hold Level Detector and continuity tester. DC voits $200 \mathrm{mV}-1 \mathrm{KV}$, $100 \mu \mathrm{~V}$ resolution. $A C$ volts $200 \mathrm{mV}-750 \mathrm{~V}, 100 \mu \mathrm{~V}$ resolution. $\mathrm{DC} / \mathrm{AC}$ current $2 \mathrm{~mA}-2 \mathrm{~A}$, $1 \mu \mathrm{~A}$ resolution. Resistance $200 \Omega-20 \mathrm{M} \Omega, 0.1 \Omega$ resolution.
Conductance 200 nS . Peakhold of AC or DC volts and current. Level detector operates around +0.8 V reference. Audio tone on level and continuity. $\mathbf{£ 1 3 5 . 0 0}$ carrying case $£ 7.00$ extra.
$8020431 / 2$ Digit hand held LCD DMM. spec as per 8024A with extra conductance range of 2 mS but no peak hold, level or continuitv ranges. Complete with carrying case. £112.00
8022A $31 / 2$ Digit hand held LCD DMM. Spec as per 8020A but no conductance ranges and slight reduction on accuracy. Was £89.00 now reduced to $£ 75.00$ carrying case $£ 7.00$ extra.

Also available a range of accessories including current shunts, EHT probe, rf probe, Temperature probe and touch and hold probe. Full details on request. The warranty period on all items shown is 1 year other than the 8020A which is 2 years.

Electronic Brokers
 49-53 Pancras Road. London NW1 2QB
 Tel: 01-837 7781. Telex: 298694
 Prices do not include carriage or VATT

WW - 069 FOR FURTHER DETAILS

WW - 022 FOR FURTHER DETAILS

Cut costs and speed trouble shooting

with the

Huntron Tracker

This easy to use test instrument displays shorts, opens, and leakage in solid state components. Check diodes, unijunctions, bipolars, Darlingtons, J-FET's MOS FET's, LED's, electrolytics and IC's. . . IN CIRCUIT!
Test pure digital or analogue hybrid boards . . WITHOUT CIRCUIT POWER! Current limited to protect delic ate devices in the MOS-CMOS family.
Save $20 \ldots 30 \ldots 40 \ldots$ even 50% of trouble shooting time and recover your investment fast! Exclusive 12 months warranty, available fromSEE US AT TESTMEX
MTL Microtesting Limited 1.15 Butts Road, Alton, Hampshire Telephone: Alton (0420) 88022.

WW - 006 FOR FURTHER DETAILS

from $£ 2.80$ per 100
Wirewound Power Resistors (Ceramic). 5w-17w OR 5-39K from $£ 9.35100$.
Cable Sleeves and Markers from £1.31 1000 .
CI. Resistors. 1/8w-2w from £4.00 1000. Crimp Terminals. Elma Knobs and Oials,' Audible Warning Devices from £1.14 each. Catalogue available (state interests)

Cf. Resistors

 1/4W 5\%
£3.00 1000 (per value) + carr. and V.A.T. Following values only.
6E8 33E 100E 120 E 360 E 470E 560 E 2 K 42 K 74 K 7 5 K6 7 K 58 K 2 100K 120 K 150 K 220 K 300 K 390 K 820 K

PBRA LTD.

Golden Green, Tonbridge
Kent, TN11 OLH
Hopfield (073274) 345
Member Crystalate Group

WW - 090 FOR FURTHER DETAILS

NEW OFFER!!

MICROPHONE TRANSFORMERS

2×300 ohms input for 200 balanced microphone
47 K output-7:1 ratio.
Mumetal can with fixing bush and $6^{\prime \prime}$ flying leads.
Maximum input level 700 mv RMS (200 ohm). Response 10 Hz $20 \mathrm{KHz} \pm 1 / 2 \mathrm{db}$.
PRICE $£ 3.40$ inc. VAT.

DIRECT INJECT BOXES ...

Jack input XLR output isolate switch and level control. PRICE 1919 inc. VAT.

XLR CONNECTORS ...
High quantity connectors, most popular models at very low prices QUANTITY DISCOUNTS GIVEN.
TRADE AND EXPORT ENQUIRIES WELCOMED.
MWM Co.
159 Park Road, Kingston, Surrey KT2 6BX
$01-5499130$
Please add £1 postage

Increvelible mavality ncrefilile Periformance Increctible Prict!!

World-beating Oscilloscope Offers
Electronic Brokers 61-65 King's Cross Road London, WC1X 9LN
Tel: 01-278 3461 - Telex 298694 Prices do not include carriage or VAT.
WW - 070 FOR FURTHER DETAILS

The AIRAMCO Mikro IOOO -The Scottish Solution.

The Mikro 1000 is a Scottish built micro-computer which combines State of Art technology with simplicity and durability to give a powerful small business system at a very competitive price.
Driven by a 2.5 MHz or 4 MHz Z 80 processing unit constructed around Industry Standard S100 Bus, the Mikro 1000 is designed
 to provide the ease of expansion necessary in a modern growing business or industry - memory is expandable from 32 K to 256 K , with up to 4 Megabytes of on-line disk storage.
The integral VDU has an 80 cols. $x 24$ lines screen, and incorporates a green phosphor CRT, while the 117 key keyboard can be used remotely from the main body of the machine, and may be programmed for user functions such as word processing commands.
As well as supporting all CP/M based languages, the Mikro 1000 has a full range of business software, including Sales, Purchase and Nominal Ledger, Inventory Control, and Payroll, as well as Word Processing (which is available at even lower cost as a separate system on the Mikro 1000 WP).

For further information on either Mikro 1000 system, please contact:

Unit A2, Longford Avenue, Kilwinning Ind. Est., Kilwinning, Ayrshire, KA22 8NP.

Tel: 029457755
Telex: 779808

WW - 087 FOR FURTHER DETAILS

VeVOMTra'P ITSNEW TTSBRTISH AND... IT'SCHEAPER

Vero Systems have developed two new British made wire wrapping tools for the electronics industry The 'Hobby' is designed to offer the newcomer wire wrapping at a reasonable price. Complete with wire wrapping bit suitable for 30AWG wire and any mini-wrap terminal. Ideal for low volume users
The 'Verowrap' is fitted with a chuck which will accept any wrapping bits and sleeves, making it adaptable for different terminal sizes where 30AWG and 26AWG wire is in use
 a power unwrap facility operated VEROWRAP Hobly £29.50
 Telephone: (0703)440611 Telex: 477164

Use your scissors to keep informed.

Cut the coupon and subscribe to Electronic Components and Applications. Its 64 pages, contain in-depth articles like - Microprocessor applications \bullet TV and radio digital control - Electronic news gathering $\bullet 30 A X$-latest TV techniques - AC motor speed control, written by top specialists from Philips, Signetics and Mullard.

PRIME COMPONENTS LOW PRICES

Collopen U
930

तEW SPECIAL OFFER! 4K CMOS RAM (1K $\times 4$) 450 NS
ONLY £6.95! (8 for £45)
The TC 5514P from Toshiba, CMOS equivalent of the 2114 :

* Date Retention Vohage 2V
* 18 PIN Plastic Package
\# Three State Output
Toshiba's TC5514P (industry type 6514) is a fut static read write memory organised as 1024 words by 4 biti using CMOS technology,
Ultra low power dissipation means it can be used as battery-operated portsble memory system and also as a non-volatile memory with batter beck-up. Operates from a single 5 V powei supply with static operation, hence no reffesh period and a much simplified power
suply circuit design. Three state outiputs simplify memory expansion for minimum data retention voltage is 2 V , the battery back-1p

NEM STEREO! S-100 SOUND COMPUTER BOARD!

At last, an S-100 Board that unleashes the full power of iwo unbelievable General instrument AY-3-8910 NMOS Computer sound ICs.
Allows you, under total computer control, to generate an intinite number of special sound effects for games or any other program. KIT FEATURES

* Two GI Sound computer ICs (AY-3-8910)
- Four paratlel $1 / O$ ports on Board
* Uses on Board audio Amps
* On Board proto typing area
* All sockets, parts and hardware are inctuded
* PC Board is soidermasked. silk screened with gold contacts
* Easy, quick and fun to build. with full instructions

COMPLETE KIT
ONLY $£ 59.96$ includes 60 page deta Manual
ONLY $£ \mathbf{2 5 . 0 0}$ includes 60 page data Manual
BARE BOARD
SC.
SOFTWVARE
SCL is now available! Our Sound Command Language makes writing Sound Effects programs a SNAP! SCL asa includes routines for
Register-Examine-Modify, Memory-Examine-Modify and Ploy. Memory. SCL is available on CP/M compatible diskette or $2708 / 2716$. Register-Examing-Modify, Memoy-Examine-Modidy and Play. Memory SCL is available on CP / M compatible diskette
Diskette - $£ 19.95,2708-£ 14.95,2716-£ 24.95$. Doskette includes the source. EPROM'S are ORG at EOOH.

SE 01 Sound Effects
Kit NEVV BOOKS
Please order books by reference no and title, and add 50p post \& packing for each book ordered.
21168 Active Filter Cookbook $£ 10.95$ 21440 Aviation Electronics 3rd Ed. £6.75 21558 Audio IC Op Amp Applications 2nd 21524 The Cheap Video Cookbook $\mathbf{£ 4 . 5 0}$ 21398 CMOS Cookbook $£ 7.75$ 21539 periments $\mathbf{E 5 . 9 5}$ 21537 Design of Op Amp Circuits with 1545 The Design of Phased-Locked Loo Circuits with Experiments E6.75 21686 Design of VMOS Circuits with 21618 Electronic Telephone Projects $\mathrm{E} \% .95$ 21127 How to Read Schematic Diagrams

3rd Ed. 21613 How to Use Integrated Circuits | Logic Elements 3rd Ed. $\quad £ 4.50$ |
| :--- |
| 21527 IC Converter Cookbook |
| 10.50 | 21695 IC OpAmCookbook 2nd Ed $£ 1125$ 21416 ic Timer Cookbook \quad E8.50 21601 Instrumentation: Transducers and

21452 Learn Electronics Thru' Trou21694 LC Circuits $\mathbf{E 4 . 4 6}$ 21542 Logic and Memory Experiments Using TTL Integrated Circuits
Book 1 21543 Book 1 Using TTL Integrated Circuits $\overrightarrow{50}$ 8ook 2 $\mathbf{E 7 . 5 0}$ 21568 Linear 1C Pinciples, Experiments 21612 Oscilloscope Applications \& Experi21635 ments Electronics 2163599 Practical Electronics Projects
$\mathbf{E 3 . 7 5}$ 21599 Practical Low-Cost IC Projects 2nd 21557 Practical RF Communications Data for Engineers and Technicians $\mathbf{E 6 . 7 5}$
21482 Regulated Power Supplies 2nd Ed.
21419 Security Electronics 2nd Ed.
$£ 4.50$
55.25
21621 Solar Heating $\mathbf{£ 5 . 2 5}$
21103 Troubleshooting with the 21313 TV Typewriter Cookbook $\quad \mathbf{E 7 . 5 0}$ 21339 Video Security Systems 21521 Video Tape Recorders

 New from, National LM3"314. Drives 10 LED directly for making bar graphs, audio power

directly for making bar graphs, audio power
meters, analog meters. LED Oscilators, etc.
Units can be stacked for more LEDs. A super versatiee and truly remarkable IC.
Special price: Only £2.25
12 page data 25 p
display MV57164 £2.25

$120 \mathrm{H}_{2}$ Aut Timed Rese
120 Hz Rejection
Two Sound Patern
Long Range Operation
Visible or Infra-red Response
4-pin Dual In-line Clear Plastic Package
ONLY £7.601:
THE NEW GI
COMPUTER SOUND CHIP
The amazing AY-3-8810 is a fantasticaliy for use with any 8 abd mutic micro procerssor, Contains
3 tone channels, noise generator, 3 channels of 3 tone channels, noise generator, 3 chan nels of
amplitude controls. 16 -bit envelope period
control 2 parallel $1 / 0$. 30 . 4 converter plus control, 2 parallee I/O,30/A converters plus
much more. All in 40 pin DIP. Super easy io much more. All in 40 pin DIP. Supe
interface to the S 100 or other Busses.
Only $\mathrm{EB.50}+\mathrm{VAT}$. Only $£ 8.50+$ VAT, including FREE reprint of
BYTE 79 article! Also, add $£ 2.25$ for 60 pag BYYE 79 artic
data manual.
"Perhaps tho
Perhaps the next famous composer will no direct a 150 -piece orchestra but, rather, a trio of
microcomputers controlling a bank of $A Y-3$ -
8910 s." BYTE July 79 .

NEW FROM EXAR

The XR2266 Decoder/Sense \& Drive Chip ONLY £5.45! for toy cars that DRIVE LIKE REAL!
This versatile 18 -pin dual in-line IC combines both the decoder and the sense and drive functions to cut remote control car circuity by at least a factor of two
lights, indicators, speed control - all from the new XR2266 at only $\mathbf{£ 5 . 4 5}$
Ordering inlormation Untess otherwise stated. for orders under $£ 50$ add 50 p
p\&p. Add 15% VAT to total (no VAT on bocks). All devices are brand new, factory
p\&ip. Add 15% VAT to total (no VAT on books). Alldevices are brand new, factory
prime and fult spec and subject to prior sales and availability. Prices subject to
change without notice. Minimum telephone order using ACCESS is f10.
change without notice. Minimum telephone order using ACCESS is 110. .
ordering by post with ACESS. include name, address and card no. written
clearly. Please allow $4 / 6$ weeks
clearly. Please allow $4 / 6$ weeks dedryery on books.
WW - 012 FOR FURTHER DETAILS

RESOLUTION
100μ VDC. 1 mVAC
$10 \mu \mathrm{~A}$ AC/DC. 0.1 oHM
10 mA on 10A. AC/DC

OTHER FEATURES

 (ALL MODELS)Low power OHms Range
Zero Adjust key
Battery Warning
In circuit resistance test
Size $155 \times 85 \times 28 \mathrm{~mm} .250 \mathrm{~g}$.

6200	$£ 39.95$
6220	$£ 49.95$

ACCURACY
6100/6110
0.5\% DC Volts

1\% DC Current
${ }^{1.2 \%}$ AC Current
0.5\% Resistance

6200/6220

0.8\% DC Volts
1.3\% DC Current
1.4\% AC Current
0.8% Resistance

* All prices include batteries/leads and UK VAT (UK c/p 65p)
* Order By Post or Telephone with Barclay or Access.

OR CALL IN AND SEE FOR YOURSELF
Cubegate Limited OPEN 9-6 SIX DAYS A WEEK

301 EDGWARE ROAD, LONDON, W2 1BN
TELEPHONE 01.7243564 <

[^0]WOW/ FLUTTER driftmeter WM1A

Bang \& Olufsen wm 1 A is a combined wow /flutter meter and driftmeter suitable for testing all sonts of tape recorders, scientific equipment as well as domestic equipment.

A built-in frequency analyser makes it a handy and precise instrument for faultfinding.

$$
\begin{array}{ll}
\text { Oscillator } & 3.15 \mathrm{kHz} \text { crystal controlled } \\
\text { Driftmeter } & \pm 0.316 \%- \pm 3.16 \% \text { f.s.d. }
\end{array}
$$

Wow/flutter meter $\pm 0.0316 \%-3.16 \%$ f.s.d.
Freq. analyser $\quad 1 \mathrm{~Hz}-316 \mathrm{~Hz}$ in 5 ranges
Inputs $\quad 3 \mathrm{mV}-10 \mathrm{~V} / 47$ kohms or 30 mV 10V/470 kohms

Bang \& Olufsen electronic instruments are also power supplies, oscillators, milliohmmeters, voltmeters, and distortion meters.

Bang\&Olufsen

DK - 7600 Struer

UK agent: Danbridge (UK) Limited, Sherwood House, High Street Crowthorne, Berkshire RG117 AT Tel: (034 46) 2369 TLX: 847782

EXPERIMENTOR BREADBOARDS

No soldering modular breadboards, simply plug components in and out of letter number identified nickel-silver contact holes. Start small and simply snap-lock boards together to build a breadboard of any size.
All EXP Breadboards have two bus-bars as an integral part of the board, if you need more than 2 buses simply snap on 4 more bus-bars with the aid of an EXP 4B.
EXP $325 £ 1.60$ The ideal breadboard for 1 chip circuits. Accepts 8, 14, 16 and up to 22 pin ICs. Has 130 contact points including two 10 point bus-bars.

EXP $350 € 3.15$ Specially designed for working with up to 40 pin ICs perfect for 3 \& 14 pin ICs.
Has 270 contact points including

two 20 point bus-bars

EXP 300 £5.75 The

 most widely bought bread-board in the UK With 550 contact points, two 40 point
bus-bars. the EXP 300 will accept any size iC and up to 6×14 pin DIPS. Use this breadboard with Adventures in Microelectronics.
EXP 600 £6.30Most
MICROPROCESSOR projects in magazines and educational books are built on the EXP 600.

EXP 650 £3.60 Has $\mathbf{~}^{\prime \prime}$ centre
spacing so is perfect for MICROPROCESSOR applications

EXP $4 \mathrm{~B} \mathbf{£ 2 . 3 0 \text { Four }}$
more bus-bars in "snap-on" unit.

The above prices are exclusive of P\&P and 15% VAT

THE CSC 24 HOUR SERVICE TELEPHONE (0799) 21682

With your Access, American Express, Barclaycard number and your order will be in the post immediately
CONTINENTAL SPECIALTIES CORPORATON

C.S.C. (UK) LTD Dept. 7PP

Unit 1, Shire Hill Industrial Esțate,
Saffron Walden, Essex CB1 1 3AO.
Tel: Saffron Walden (0799) 21682 Telex: 817477

Available from selected stockists
 ELECTRONICS BY NUMBERS

No. 7 DIGITAL DICE
Roll the dice - the electronic way! The digital dice gives you an instant score randomly chosen from 1 to 6 , every time you press the button. No losing this under the table!
No. 8 QUIZ MASTER
Play your own 'Sale of the Century'! Up to four contestants pit their wits; the first one to get the answer lights up his 'win' light, and stops anybody else from having a go. No. 9 MOVING TARGET GAME Test your reactions! A moving 'line of light' travels along from left to right, over and over again. You've got to 'ire' at just the right moment to score a hit. Fun for all the family!
Want to get started on building exciting projects, but don't know how? Now using EXPERIMENTOR BREADBOARDS and following the instructions in our FREE 'Electronics By Numbers' leaflets, ANYBODY can build electronic projects, For example, take one of our earlier projects, a L.E.D. Bar Gıaph;

You will need; One EXP 300 or EXP 350 breadboard, 15 silicon diodes,
6 resistors, 6 Light Emitting Diodes.
Just look at the diagram, Select R1, plug it into the lettered and numbered holes on the EXPERIMENTOR BREADBOARD, do the same with all the other components, connect to the battery, and your project's finished. All you have to do is follow the large, clear layouts on the 'Electronics by Numbers' leaflets, and ANYBODY can build a perfect working project.

T Just clip the coupon
Give us your name and full postal address (in block capitass). Enclose cheque, postal order or credit card
number and expiry date, indicating in the appropriate number and expiry dare. box(est the breadboard(s) you require.

EXPERIMENTOR BREADBOARDS	CONTACT	IC CAPACITY 14 PIN DIP.	UNIT PRICEINC PGP \& 15% VAT	Oty req.
EXP 325	130	1	¢ 2.70	
EXP 360	270	3	¢ 4.48	
EXP 300	550	6	£ 7.76	
EXP 600			¢ 8.39	
EXP 650	270	use with 0.6 pitch Dip's Strip Bus-Bar	¢ 5.00	
EXP 4B	Four 40 Point Bus-Bars		¢ 3.50	

 \qquad
PROTO-BOARDS \qquad 630

Projects, 7, 8 and 9, simply take the coupon to your nearest CSC stockist, or send direct to us, and you will receive the latest 'ELECTRONICS BY NUMBERS' leaflet.
If you missed projects, 1, 2 and 3, or 4, 5 and 6 , please tick the appropriate box in the coupon.

PROTO-BOARDS

The ultimate in breadboards for the minimum of cost. Two easily assembled kits.

PB6 Kit, 630 contacts, four 5 -way binding posts accepts up to six 14-pin Dips.
PROTO-BOARD 6 KIT E9.20

.PB 100 Kit complete with 760 contacts accepts up to ten 14-pin Dips, with two binding posts and sturdy base. Large capacity with Kit economy.
PROTO-BOARD 100 KIT $£ 11.80$

Advertisement produced co-operatively b

EVERY PICTURE TELLSA STORY!

Last year, 70\% of all home video recorders bought or rented in Britain used theVHS format.

The evidence of its popularity is right in front of your eyes.

VHS offers superb picture and sound reproduction, combined with an unparalleled standard of reliability.

It's also the most compatible system - a fact which never fails to impress: Customers like the idea ofbeing able to swap tapes "withffriends who also own VHS machines. And they appreciate the bigger choice of prerecorded material available on VHS too.

When it comes to specifications, the real clincher is the number of top-name manufacturers and video companies who have put their names behind VHS. People like Akai, Ferguson, Hitachi, JVC, Panasonic and Sharp.

You'd do well to stock VHS. In fact wéd even go so far as to say that any dealer who doesn'tstock VHS isn't in the videó picture.

The World's No. 1

fii, Ferguson, Hitachi, JVC, Panasonic, Sharp.

HERE'S HOW TO TALK TO

 ALL OF THE PEOPLE ALL OF THE TIMEwith a communications system built up from the all-embracing, constantly expanding range of REDITRONICS EQUIPMENT
The latest additions to that range -

* A104K AUTOMATIC ANNOUNCER
with ENCODED SPOT CAPABILITY
for central recording on erasureproof spots, local recording on blank spots with spot omission switch facility, built-in chime. monitor loudspeaker and/or headphone, direct paging priority via associated mic.

REDIFFUSION REDITRONICS LTD.,
La Pouquelaye, St Helier, Jérsey. Channels Islands
Tel: Jersey (0534) 30321 Telex: 4192341
U.K. DEPOT: River View Road, Bitterne, Southampton, Hampshire, U.K.

Tel: Southampton (0703) 555566
with MAINS-DERIVED OR BATTERY-OPERATION CAPABILITY
for Versatility. with quad ($4 \times 40 \mathrm{~W}$). stereo $(2 \times 80 \mathrm{~W})$, or mono ($1 \times 160 \mathrm{~W}$) Mobility, with battery operation on $4 \times 12 \mathrm{~V}$ battery-pack Availability. with emergency standby operation (automatic switchoyer Availability. With emergency standby operation (automatic switchoyer control unit incorporating a battery charger).

When it comes to SOUND communications, REDITRONICS EQUIPMENT does MORE FOR LESS. REDITRONICS is the one name that says it all.
Send for details of any item, and our full brochure, of a range of equipment that can provide every integrated link in the chain of a tailor-made sound communications system.
and to meet growing demand-
0. usitune are appointed as Reditronics distributors for Greater London and the Home Counties.

Contact Musiturie Ltd., 388 Green Lanes, London N4 1 DW (Tel: 01-802 1163) for Reditronics systems-planning to your exact requirements.

OMB ELECTRONICS, RIVERSIDE, EYNSFORD, KENT DA4 OAE
Tel. Farningham (0322) 863567
Prices which are CWO and ex-VAT, are correct at the time of going to press and are subject to change without notice.

FROM OMB ELECTRONICS

WW - 076 FOR FURTHER DETAILS

1F/DG AMI				11
HDIMERTES				
The table below shows our standard range. Please contact us for your other requirements.				
Type	Input	Output Volt DC Max. current		
692	6	12	2 A	d
707		12	3 A	d
712	24	12	2 A	
744	24	12	5 A	b
7411	24	12	6 A	d
7413/24	24	12	8 A	bd
$7413 / 48$	48	12	3 A	${ }^{\text {bd }}$
7413	${ }^{48}$	${ }^{24}$	3 A	bd
7508	$12 / 24 / 48$	$12 / 24$	8 A	abd

$a=$ primary/secondary with galvanic separation.
$\mathrm{b}=$ stabilized output voltage.
$\mathrm{d}=$ switch mode.
DC/AC converter type 7804: Input 12V DC, output 220 V AC, $90 \mathrm{VA}, 120 \mathrm{~Hz}$

We also supply:

* power supply units from 220 V AC mains operation, with output voltages up to $42 \mathrm{~V} D C$ and load current from $50 \mathrm{~mA} D C$ to 10A DC.
* chargers for nickel cadmium and lead batteries.

Ask for our catalogue

masadt electronic

TIf. 032/11 200 Telex: 17516 1601 Fredrikstad NORWAY

fact: this condenser microphone sets a new standard of technical excellence.

The Shure SM81 cardioid condenser is a new breed of microphone. It is a truly high-performance studio instrument exceptionally well-suited to the critical requirements of professional recording, broadcast, motion picture recording, and highest quality sound reinforcement-and, in addition, is highly reliable for field use.

Shure engineers sought-and found -ingenious new solutions to common
problems which, up to now, have restricted the use of condenser microphones. Years of operational tests were conducted in an exceptionally broad range of studio applications and under a wide variety of field conditions.
As the following specifications indicate, the new SM81 offers unprecedented performance capability-making it a new standard in high quality professional condenser microphones.

SM81 puts it all together!

- WIDE RANGE, 20 Hz to 20 kHz FLAT FREQUENCY RESPONSE.
- PRECISE CARDIOID polar pattern, uniform with frequency and symmetrical about axis, to provide maximum rejection and minimum colouration of off-axis sounds
- EXCEPTIONALLY LOW (16 dBA) NOISE LEVEL
- 120 dB DYNAMIC RANGE.
- ULTRA-LOW DISTORTION (right up to the clipping point!) over the entire audio spectrum for a wide range of load impedances. MAXIMUM SPL BEFORE CLIPPING: $135 \mathrm{~dB} ; 145 \mathrm{~dB}$ with attenuator
- WIDE RANGE SIMPLEX POWERING includes DIN 45596 voltages of 12 and 48 Vdc.
- EXTREMELY LOW RF SUSCEPTIBILITY.
- SELECTABLE LOW FREQUENCY RESPONSE: Flat, 6 or 18 dB /octave rolloff.
- 10 dB CAPACITIVEATTENUATOR accessible without disassembly and lockable.

Outstanding Ruggedness

Conventional condenser microphones have gained the reputation of being high quality, but often at the expense of mechanical and environmental ruggedness. This no longer need be the case. The SM81 transducer and electronics housing is of heavy-wall steel constrmetion, and all internal components are rigidly supported. (Production line SM81's must be capable of withstanding at least six random drops from six feêt onto a hardwood floor without significant performance degradation or structural damage.) It is reliable over a temperature range of $-20^{\circ} \mathrm{F}$ to $165^{\circ} \mathrm{F}$ at relative humidities of 0 to 95% !

Send for a complete brochure on this remarkable new condenser microphorie!

SM81 Cardioid Condenser Microphone

(B)

Shure Electronićs Limited, Eccleston Road, Maidstone ME15 6AU-Telephone: Maidstone (0622) 59881

wireless world

Editor:

TOM IVALL, M.I.E.R.E.

Deputy Editor:

PHILIP DARRINGTON
Phone 01-261 8435
Technical Editor:
GEOFF SHORTER. B.Sc.
Phone 01-261 8443

Projects Editor:

MIKE SAGIN
-Phone: 01-261 8429

Communications Editor:

TED PARRATT, B.A.
Phone 01-261 8620

Drawing Office Manager:

ROGER GOODMAN

Technical Illustrator:
BETTY PALMER
Production \& Design: ALAN KERR

Advertisement Controller:

G. BENTON ROWELL

Advertisement Manager:

BOB NIBBS, A.C.I.I.
Phone 01-261 8622
DAVID DISLEY
Phone 01-261 8037

Classified Manager:
 BRIAN DURRANT

Phone 01-261 8508 or 01-261 8423
ANTHONY HADLEY
(Classified Advertisements)
Phone 01-261 8508
JOHN GIBBON (Make-up and copy)
Phone 01-261 8353
Publishing Director:
GORDON HENDERSON

Personal hygiene or public health?

The director of the CCIR, Richard Kirby,' made a good point recently when he said, in opening an IEE conference in London, that studies of spectrum utilization should be better recognized as a legitimate and challenging discipline of communication science (News, September issue). In spite of the fact that the welfare of peoples had "become intricately dependent on a great array of radio techniques and services" all sharing the common resource of the electromagnetic spectrum, only a few specialists were fully aware of "the precarious balance that is this matter of spectrum utilization and of its increasingly critical and complex character." This came well from the head of an international body. And the content of the IEE conference itself, on spectrum conservation, strongly reinforced his argument. No doubt from necessity rather than choice it had plenty of papers on particular techniques bandwidth efficiency, frequency re-use, station siting, reducing spurious emissions etc. - but not a single "overview" paper that tackled spectrum conservation as a general socio-economic requirement and analysed comparatively the 'different radio services' information handling needs. We had detailed results from specialists who are working away in separate compartments but not speaking to each other. Everyone is diligently practising personal hygiene in this field but nobody is concerned about public health.

The central fact that an "overview" paper would have brought out, of course, is that spectrum conservation is much more than the business of reducing frequency bandwidth to a minimum. Efficient use of the spectrum also depends on sharing frequencies in time or in geographic space - and also, less commonly, by different polarizations of wave propagation. This was at least implicit in the IEE conference. As one of our contributors, Leslie Berry, has pointed out, we should not be talking about spectrum ,
pure and simple but what he called "spectrum space" with the three dimensions of frequency bandwidth, time and physical space as area or volume (see "Measuring spectrum use", December 1978). And in his article Mr Berry proposed a measure for determining the efficiency with which radio systems use this quantity - a ratio of communications output to spectrum-space input. Some such quantity (cf. Shannon's formula for the maximum capacity of a
communications channel) should surely be the starting point for all studies in spectrum utilization.

How far should communication science go in pursuing fundamentals? It depends on what you understand by communication. Those of us who think that engineering should concern itself , with the human communicators as well as the hardware will claim that spectrum conservation should study both the demands and the real needs of the users of spectrum space. Any user who demands more space than he really needs is clearly planning to use the spectrum inefficiently. At present the goods are carved up arbitrarily and irrationally by authorities whose decisions are little more than passive responses to the demanders. He who shouts loudest gets most. Those with the loudest voices are the political and economic interests that determine the established order in any place. Because they benefit from maintaining the status quo these people do not want any other system of spectrum apportionment and least of all a system based on a rational assessment of human needs. They have a direct interest in continuing the .piecemeal, divisive approach to spectrum studies and keeping engineers and scientists where they belong. This is why there is so little money available, as Richard Kirby noted, to support the fundamental study of this resource - a natural resource which, an international commission has rightly claimed (News, May issue), should be more equitably shared as the common property of mankind.

Radio tuner frequency counter

Digital frequency display for a receiver or for general use

by J. L. Linsley Hood

Abstract

The addition of a numerical display of the tuned frequency can make a useful improvement to the ease of use of a radio receiver, especially in the case of broadcast reception on the short-wave bands, and a circuit is given for such a display designed for use with a Yaesu FRG 7 communications receiver. However, the circuit techniques employed for this purpose may be adapted with little difficulty to other applications ranging from I.f. frequency measurement to f.m. tuner station identification.

One of the most attractive of the facilities offered by digital circuit components is the simple numerical display of voltage or frequency, with a substantial reduction in the ambiguities in the reading of either of these variables.
A particular area where the numerical display of frequency is of substantial value is in the display of the tuned frequency of a short-wave radio receiver, since the crowding of transmitters in the broadcast bands demands a degree of adjacent channel selectivity which makes an analogue tuning dial very difficult to interpret. The instrument described below was intended for use in the display of the frequency of the second, tuned, i.f. in a Yaesu Musen FRG 7 communications receiver, but the design was deliberately chosen so that it could be used equally well in other frequency counter applications with appropriate small modifications to the arrangement of the circuit.
Since it is the belief of the author that there is a wide, and growing, divergence between the areas of understanding of those electronic engineers whose interests and experience lie in 'linear' or 'analogue' electronics, such as amplifiers and radio systems, and those whose experience is mainly confined to 'digital' circuitry, as in numerical display systems and microprocessors, it is thought that any description of digital circuitry which is accessible to the former will appear very ingenuous to the latter. Apologies are therefore offered in advance on this score, to those whom it may offend.

Circuit arrangement

The method employed in frequency counting is shown in the block diagram of Fig. 1, and consists basically of five
parts. The first of these is a circuit designed to define an accurately determined time interval, during which some form of 'gate' will be opened to allow the frequency to be measured to pass through to a counter. This interval generating circuit is almost invariably quartz crystal controlled, and usually consists of a crystal oscillator, followed by an appropriate number of frequency divider stages. The 'gate' can be one of a number of logic elements, but an And or a Nand is usually the most convenient.

Fig. 1. General arrangement of frequency meter.

Fig. 2. Crystal oscillator, with test point output.

The second necessary part is some form of signal conditioning circuit, which will convert the probably small amplitude sinusoidal input signal at a high impedance into a well-defined square wave of adequate amplitude to swing cleanly between the ' 0 ' and ' 1 ' levels of the logic and counter elements.
The third essential section of the counter is a suitable logic-sequence generator which will perform the operations of resetting the counter, either to zero or to some predetermined number, opening the gate, and operating the display at the conclusion of the counting operation.
The two remaining stages are the frequency counter chain, which will normally have an output in binary coded decimal (b.c.d.), and the display section, which can be a b.c.d.-to-sevensegment decoder, some form of latch or display gating, and a seven-segment, light-emitting-diode, vacuum-fluorescent or liquid-crystal numerical indicator.
By far the most cost-effective way of providing a numerical display of this type, is to use one of the many largescale integrated-circuit 'single chip' counters - available from Ferranti, National Semiconductor, Intersil, Oki and many other makers. The only drawback to this approach is that there is often very little scope for a change of intention once the integrated circuit has been acquired, and the choice of display, offset frequency, or operating range may be fairly circumscribed. Indeed, in using a single-i.c. frequency counter, there is little point in going to the trouble of building the counter for oneself, rather than buying a complete ready-built circuit, so long as the desired specification is available - but this necessarily precludes the possibility of a versatile unit.
For these, and other, reasons it was decided to put a frequency counter together from standard digital i.c. building blocks, while retaining as many options within the structure for other uses as appeared practicable.
For reasons of practical convenience, adaptability to supply voltages, and low power consumption within the counter circuitry, it was decided to use c.m.o.s. logic elements, of the $74 \mathrm{C} .$. series, which offer pin-for-pin interchangeability with the equivaleñ 74 ... (t.t.l.), $74 \mathrm{~S} . .$. and 74 LS ...

WIRELESS WORLD, OCTOBER 1980
transistor-transistor, Schottky, and low-power Schottiky 5V logic families. This would allow a subsequent increase in operating speed, if required, without the need for major redesign, by the simple replacement of some of the leading counter i.c.s and a reduction of the supply voltage.

Experience with the National Semiconductors 74C... c.m.o.s. logic elements, in the unbuffered types, has shown that at 12 V supply-line levels, an operating frequency in excess of 7 MHz can be assured, with 10 MHz being typical. Also, in common with other c.m.o.s. logic circuits, the very high input impedance of the gates allows various quasi-linear operating modes to be employed, which are very useful in signal level translation.

Crystal-controlled oscillator. The circuit of this is shown in Fig. 2, and employs a 1 MHz parallel-resonant, ATcut quartz crystal, of the type intended for use with a 30 pF load capacitance. The first element of the 74 C 04 hex. inverter is self biassed with a shunt 1 MO resistor, and a high-gain, phase inverted feedback signal is derived from the third of the series-connected stages.

A 1 nF capacitor from input to ground prevents spurious overtone modes. Two further stages act as buffers to the counter and test points respectively. The unused input is grounded to prevent uncontrolled action, a practice which should be observed, where appropriate, with all c.m.o.s. gates. A small, preferably ceramic, capacitor in the range 1 to 100 nF - is connected from the h.t. line to the ground line as close as convenient to the supply to the i.c. to prevent spurious triggering of these or other stages.

The output from this circuit is a clean square wave at 1 MHz frequency, and of about $0.8 \mathrm{~V}_{\mathrm{cc}}$ amplitude, peak to peak. Precise frequency adjustment may be made by alteration of the $3-30 \mathrm{pF}$ trimmer capacitor.

Divider chain. The circuit of this is shown in Fig. 3, and consists of a chain of four 74C90 decade counters. These i.c.s are internally organized as a divide-by-five and a divide-by-two counter, connected in such a manner that the output is taken from the divide-by-two stage, which has an equal mark-to-space ratio squarewave output. Since the input is fed by a 1 MHz signal, the output of the first i.c. in the divider chain, at pin 11 , is a 200 kHz signal. The crystal may be tuned to approximately 1 MHz by adjusting for zero beat note between this and the 200 kHz carrier from the Droitwich Radio 4 transmitter, or more accurately if a double-beam oscilloscope is available on which these two signals may be displayed simultaneously.

Signal conditioner. This circuit is shown in Fig. 4. The input stage is an f.e.t. amplifier with a gain of 6-10 in the range

Fig. 3. Divider chain provides 100 Hz for gate control.

Fig. 4. Unknown-frequency input amplifier and signal conditioner.

Fig. 5. Logic circuit to control gate and display.
$1-10 \mathrm{MHz}$, and capable of operating down to very low frequencies if the coupling capacitors are increased in value. Half of the six inverter stages of the 74 C 04 are used as a three-stage cascaded amplifier, with the input stage self-biassed to sit at a potential suitable for linear amplification.

Since the operation of this stage at high frequencies can be embarrassed by h.t.-line ripple being amplified by the cascaded stages, the input coupling capacitor is made small deliberately, and the h.t. supply to this i.c. is decoupled through a diode 'hook' and a large value electrolytic. The source of this problem is described later. The input sensitivity of the conditioner stage is better than 10 mV at up to 5 MHz .

Counter logic circuit. The design of this stage is of considerable importance in
the operation of the counter, and a number of variations of possible circuitry have been published, having varying degrees of complexity. The basic task is, however, a simple one. In order of required performance, an appropriate pulse must be provided to reset the counter, the gate must be opened to allow the signal to be routed to the counter, and after the count has been completed, the final count must be displayed; either by means of a pulse which turns on the display, or by a pulse which allows a 'latch' to transmit an input signal to its output, and then hold this signal until the next 'latch-enable' pulse is received.

In the particular application for which this unit was designed, that of displaying a $3-2 \mathrm{MHz}$ signal with a 100 Hz accuracy, a gate open time of 10 milliseconds was required. This was achieved by dividing the 100 Hz output
signal of the counter chain by two, using part of a 74C90, giving waveform C in Fig. 6, and this is used to control one input of a 3 -input Nand gate, as shown in the logic circuit diagram of Fig. 5.
A fundamental problem in all frequency counters is that posed by the statistical fluctuation of the count by ± 1 digit due to the random sampling of the count during the gate open period. This causes an irritating flicker in the display of the last digit. A partial solution to this problem, normally employed, is to sample less frequently, and usually a free-running, slow, multivibrator is used to limit the sample frequency to one which will minimize the flicker without making the counter too sluggish in its rate of response to a change in the frequency of the input signal. In the design shown in Fig. 5, this reduction in sampling rate is accomplished by using the divide-by-five output of the 74 C 90 to give a 10 Hz sample frequency, as shown in waveform D in Fig. 6. When combined with the signal input at H and the 10 ms pulse from C , the result is a negative-going count waveform train as shown at G, having a 10 ms duration but occurring only every 100 ms .
Since the counter i.c. chosen, a 74C192 (CD40192), requires a negativegoing reset pulse, which must occur before the count begins, two gates from a quadruple 2 -input Nor gate are used to combine waveforms B and C to give a
suitably timed 5 ms duration pulse, which is gated by another 3 -input Nand to give a negative-going 5 ms pulse at 100 ms intervals, as shown in waveform F. This is used to reset the 74 C 192 to a predetermined count number, in a binary-coded decimal form. This operation is described as 'load'.
Two options are available in the display of the count, which require different operating waveforms D and E. This choice is described later.

Counter chain. The circuit layout of the FRG 7 receiver is such that the first frequency changer is driven by a highfrequency oscillator, used in conjunction with a quartz crystal oscillator in a drift-cancelling mode, to give a 1 MHz bandwidth 1st i.f. signal, reduced by the second frequency changer to a $3.455 \mathrm{MHz}-2.455 \mathrm{MHz}$ bandwidth slab of signals, corresponding to a $0-1 \mathrm{MHz}$ increment above the 1 MHz interval to which the first oscillator is tuned.
'The task of the frequency counter is therefore to represent 3.455 MHz as ' 0 ' and 2.455 MHz as ' 1000 kHz ', which is accomplished by the use of a 74C192 synchronous up/down counter in the 'down' mode, with the initial count level of 455.0^{\prime} (the presumed 3rd i.f.) loaded into the counter by the load pulse. The loading table is given in Table 1, and the general organization of the counter chain is shown in Fig. 7. As can be seen, the choice of 'up' (from zero or any other chosen number) or 'down' count-

Fig. 6. Waveforms in logic circuit of Fig. 5.
Fig. 7. Part of four-stage down counter.

	A	B	c	D
0	L	L	L	L
1	H	L	L	L
2	L	H	L	L
3	H	H	L	L
4	L	L	H	L
5	H	L	H	L
6	L	H	H	L
7	H	H	H	L
8	L	L	L	H
9	H	L	L	H

Table 1. Preloading.
ing is made by the selection of either the pin 5 or the pin 4 inputs to this i.c. The unwanted input is taken to the positive ' V_{cc} ' rail.

- Any number of counter stages may be cascaded in this fashion but, in the example shown, four are used with the signal input being taken to the least significant digit counter - which, in this case, will display the 100 Hz number since the gating period is 10 milliseconds. Although a number of counts between 34,550 and 24,550 will be received during this period, the first digit is not of interest and is therefore not displayed. An input frequency of $3,455 \mathrm{kHz}$ will therefore be represented simply as ' 000.0 ' and $3,355 \mathrm{kHz}$ as ' 100.0 ', ascending to ' 999.9 ' as the input frequency decreases to 2.4551 MHz , which is the required condition.
Display. Two possible display modes are feasible, depending on whether leading-zero suppression is needed, based on the 74 C 48 b.c.d. to seven segment decoder - which permits leading zero suppression but not input latching - or the CD4511, which incorporates a latch but not leading-zero suppression. If both of these facilities are required, the 74C48 should be used with a separate quad or octal latch interposed between counter chain and decoders. An example of this using the 74C373 octal latch is shown in the Appendix.

The first of these two options is shown in the diagram of Fig. 8, using the 74 C 48 coupled to common-cathode 1.e.d. seven-segment displays, via 180 ohm, current-limiting resistors. The decimal point is permanently illuminated via a 1 k 2 resistor to the rail, at a position to the left of the least significant digit. Pin 4 on this i.c. performs the dual function of blanking input or leading zero suppression out-put, so that if pin 4 is always connected to the pin 5 of the next, less-significant digit, no leading zeros will be shown when the input pin 5 of the most significant digit is connected to the 0 V line. Connecting this to the positive line will allow leading zero indication.
If pin 4 on these i.cs is taken to the 0 V line, the display is suppressed, and this is used to prevent display during the count or reset periods by connecting these pins through small-signal silicon
diodes to the display pulse output E of the logic circuit. This causes the display to be illuminated at a 50 Hz frequency on a $1: 4$ duty cycle. Persistence of vision prevents visible flicker.

The major snag with this arrangement is that a mean current of some 50 mA for each seven-segment l.e.d. display is necessary for adequate daytime brightness, which means 200 mA in total for four digits. Since this current is pulsed on a $1: 4$ duty cycle, the peak display current can be 0.8 amps at a 50 Hz pulse frequency. This inevitably causes some h.t.-line ripple, and argues both the need for a separate power supply and some decoupling of sensitive portions of the circuit such as the signal conditioner stages, to prevent h.t.-lineborne interference with their operation. Nevertheless, with these precautions, this option is a satisfactory one.

As mentioned above, one of the inherent problems of any counter system is the inherent statistical uncertainty of the input count, which can cause a ± 1 digit flicker in reading. An amelioration of this problem which is possible with c.m.o.s. logic elements, because of their very high input impedance, is to put an RC input filter in the b.c.d. signal lines feeding the decoder, and this arrangement is shown in Fig. 8.* The only snag with this is that on changing frequency, the last digit (in this case the 100 Hz one) tends to lag behind the others in its response. Since this digit is the least significant one, this is only a small penalty.
*The use of analogue averaging techniques with digitally encoded signals poses a number of interesting intellectual problems, in deciding whether such a system would work at all, or, if it did, whether the results would be spurious or would lead to non-numerical characters, which is presumably why this technique is not known. However, having inwardly debated this point for some time, and having carried out a number of (admittedly simple) statistical analyses of the likely outcome of a 2 - or 3 -digit jitter, based on the b.c.d. encoding sequence shown in Table 1, the matter remained in doubt, and was resolved empirically by a parallel operation of a damped and an undamped input decoder stage.

What was found in this trial was that occasionally the 'damped average' was biassed in one direction or another, by comparison with the visual estimate of the digit jitter, and that, very occasionally, unexpected numbers. - i.e., more than one digit away from the central number - could appear briefly in the display. However, the visual comfort of a stable indication was thought, in this instance, to be of greater benefit than a possible ± 1 digit averaging error. No non-numerical digits have been seen.

Presumably, the result is predictable statistically if a Gaussian distribution is used to determined the weighting of the individual ' H 's and ' L ', and if the gate is assumed to behave in an ideal manner in which any input $>V_{c c} / 2$ is an ' H ' and any input $<V_{\mathrm{cc}} / 2$ is an ' L '.

Fig. 10. Counter in use with communications receiver.

Fig. 8. Two sections of count and display circuit.

Fig. 9. Decoder and display using CD4511 latched decoder i.c.

CD 4511 option. This type of b.c.d.-to-seven-segment decoder has a built-in latch circuit, which allows it to store the input b.c.d.-coded signal until such time as a refresh instruction is received.

The operation of this latch is such that no information can be transferred to the output while the input to pin 5 is high (i.e. at V_{cc} line level). In this condition, the decoded output refers only to the last instruction received on its inputs while pin 5 was low (i.e. at the 0 V line level). Since the output from pin 11 of the last 74C90 divider (D) is high during the whole of the reset (load) and count cycles, this waveform makes a convenient latch-enable signal, and causes the display to show only the number attained when the counter has finished counting.
Since this display is then continuous, there is no display flicker, with the important feature that the current demand from the decoder/display is nonpulsating. The value of the series resistors should be amended (to 680 ohms) to take account of this. The circuit connexions are shown in Fig. 9.

Use as FRG 7 frequency counter

The complete circuit, as used, is shown in the photographs of Figs. 10 and 11. In. view of the high sensitivity of the receiver - if properly aligned in accordance with the manufacturer's instructions, the background sensitivity threshold is below 0.1 microvolt - it is very necessary that the frequency counter should be well screened, and enclosed in a metal case. One of the Vero G range cases was used for the author's unit, with an internal mains transformer having an electrostatic screen, and with a coaxial socket input for the i.f. signal input.

A small modification is necessary to the receiver itself. This consists of a mains outlet cable, terminating in a suitable free socket, connected to the internal transformer primary - so that the display extinguishes when the receiver itself is switched off - and a coaxial socket outlet on the rear of the receiver, connected with a short length of low-capacitance coaxial cable to the second oscillator buffer output (test point TP 404).
Since it was anticipated that there would be some unwanted radiation from the counter, in spite of all precautions, an on/off switch was included on the counter unit. In the event, this was only receivable at the $25,27,28$ and 29 MHz frequencies, where it heterodyned with the small amount of stray radiation from the internal 1 MHz crystal within the FRG 7. By adjusting the frequency counter crystal tuning to give a zero beat on the 29 MHz harmonic, it can be brought into concordance with the internal crystal to better than a few Hertz in $1,000,000$. With this heterodyne removed, the total spurious radiation level on the prototype is so low that the

Fig. 11. Inside view of instrument.

Fig. 12. Power supply circuit.
additional on/off switch is only used to check that occasional whistles on the tuning scale are not due to the counter.
A suitable power supply unit is shown in Fig. 12.

Appendix

Other applications. As shown in Table 1, the counter can be preloaded to any desired frequency offset. This can be 0 , if inputs A, B, C and D are all taken to the 0 V rail, so that the frequency read is that of the input. In this case, it will be a straightforward frequency meter, and will normally be used in the count-up mode. (Pin 4 of the leading 74C 192 taken to the $+V_{c c}$ rail, with the input signal fed to pin 5.) If a sampling rate of 100 Hz will give adequate display accuracy, the circuit can be used as it stands. If, however, the circuit is to be used for an l.f. frequency counter, with the sample frequency reduced to, say, 1 Hz , by additional 74 C 90 s in the frequency divider chain of Fig. 3, the display flicker with the 74 C 48 decoder, used as shown, would be unacceptable.

Since leading zeros would normally require to be blanked (the least significant one never is, since it would cause the display to extinguish on a count of $0-$ so if leading zero blanking is used, pin 5 of the RH 74 C 48 must be connected to $+V_{\text {cc }}$) the CD4511 is unlikely to be suitable. A separate latch will then be necessary. A convenient
system is shown in Fig. 13, using the 74C373 octal latch. Since the latchenable signal with this is high, the switching waveform from D requires to be inverted. The remaining Nor gate of the 74 C 02 in Fig. 6 is used for this purpose.

The remaining useful application of this circuit is in the display of the tuned frequency of an f.m. tuner, in the range $86-108 \mathrm{MHz}$. Since the oscillator frequency of the f.m. tuner head will be above the tuned frequency by 10.7 MHz , the counter will be used in the count-up mode, with a preloaded number equivalent to the 9 's complement of 10.7 (89.2). If a 100 kHz indication accuracy is adequate, a 4 -digit counter will again be used, with the decimal point wired in ahead of the least significant digit.
Since leading-zero blanking will be needed, at least for the first digit, pin 5 on this 74 C 48 should be connected to the 0 V rail.

As mertioned earlier, the upper reliable frequency limit of the c.m.o.s. counters is about $7-8 \mathrm{MHz}$ on a 12 volt supply. The input frequency from the f.m. tuner oscillator will be well above this, and the most convenient way of solving this problem is by using an input divide-by-100 i.c., such as the RS 8629. This should be mounted with a transistor emitter-follower input, as close as practicable to the tuner head. The output frequency from this, in the range 1.187 MHz to 0.967 MHz , can then be

Fig. 13. Modification for use as low-frequency counter, using external latch.
taken to the counter by a screened cable. The count accuracy required will be 1 kHz , and will allow a sample period of 1 millisecond. One fewer 74C 90 in the divider chain of Fig. 3 will be required. Apart from the modified input signal interface, as shown in Fig. 14, this reduction in the length of the divider chain and the change in the count mode and offset of the 74 C 192 s , the circuit form of Fig. 10 is as required.

Fig. 14. Divide-by-100 prescaler for use with f.m. tuner.

Tone filters for electronic organs

Part 1: organ tone spectra and source waveforms

by C. E. Pykett, B.Sc., Ph.D.

Abstract

As the organ is a sustained-tone instrument, achieving a satisfactory imitation of the steady-state acoustic emission of organ pipes is of paramount importance. In this respect the design of the tone-forming filters is crucial, yet there is a curious absence of definitive material dealing with filter design. This is apparently reflected in the range of commercial instruments on the market: with few exceptions their "voicing" seems to be mainly empirical.

To derive a simple expression for the frequency response of a tone filter consider the basic organ system, representative of a wide range of electronic instruments, shown in Fig. 1. The waveforms are initially derived from a continuously running tone generator. Waveforms at various frequencies are selected by depressing keys, and envelope shaping may be applied at the instants of key attack and release to simulate the transient phenomena of organ pipes. (Whilst of considerable importance, transients are not further discussed here). The signals are passed through various tone forming filters depending on the stops or tone colours selected and the output from the filters is then finally amplified and fed to loudspeakers.
A tone filter may be thought of as an amplifier whose gain varies with frequency. The gain can therefore be explicitly written as a function of frequency, $G(f)$. Similarly, each harmonically rich waveform from the generators is equivalent to a large number of individual sine waves of different frequencies, each sine wave having a different amplitude. This waveform can also be written as a function of frequency. say $H(f)$. Therefore the output from the tone filter, $F(f)$. is the product of the input voltage and the gain just as with any amplifier

$$
F(f)=G(f) \cdot H(f)
$$

In general the tone filter will also modify the phase as well as the amplitude of each frequency component in the input signal. As the ear is insensitive to relative phase for present purposes, this does not matter, which
makes the design of tone filters much easier than it would otherwise be. It does mean, however, that the waveform emerging from the tone filter will not necessarily bear any resemblance to the waveform emitted by the organ pipe if both were to be viewed on an oscilloscope screen. It is only the frequency spectra that need to be matched as closely as possible.
If the frequency functions are expressed on a logarithmic amplitude scale then new functions are obtained that are related by addition rather than multiplication

$$
P(f)=Q(f)+R(f)
$$

Rearranging this equation gives the frequency response of the tone filter, $Q(f)$, in terms of the input spectrum from the tone generator, $R(f)$, and of the output spectrumP(f)

$$
Q(f)=P(f)-R(f)
$$

This simple equation shows that filter design involves three basic steps. First, the logarithmic spectrum of both the tone generator waveform and of the sound to be simulated must be available. Second. the frequency response of the required filter must be derived by subtracting one from the other. Third, the response so obtained has to be realised in hardware. Subsequent sections discuss each of these stages in detail.

Acoustic spectra of organ tones

 Before a filter can be designed to imitate the sound of a particular type of organ pipe the spectrum of that sound must be obtained. Following a careful search of the scientific and engineering literature extending back into the 1930s, it was discovered that very few systematic investigations into the acoustic spectra

Fig. 1. Basic electronic organ system considered in this article is the subtractive kind in which an harmonically rich waveform is filtered.
of organ tones have been reported. As this information is vital to the design of an imitative electronic instrument, three of the most useful references are appended here ${ }^{2,3,4}$. Boner's article (1938) describes one of the first attempts to use electronic techniques to analyse the sound of an organ pipe radiating in a free field (that is away from the reverberant conditions of an auditorium) by mounting organ pipes atop a 24 foot tower out of doors. From the three references quoted, spectra corresponding to the four main classes of organ tone can be extracted, viz flutes, diapasons, strings and reeds, and this goes some way toward providing a framework for the design of a wide range of filters. To augment this information I made recordings of organ sounds and analysed them. A large amount of information was obtained from a fourmanual instrument by Rushworth and Dreaper with some particularly fine solo stops.

Recordings were made of organ pipes in situ using omnidirectional capacitor microphones with a frequency response from below 20 Hz to about 20 kHz . Two microphones were used, feeding separate channels of a tape recorder with a frequency response from 35 Hz to $16 \mathrm{kHz}(\pm 2 \mathrm{~dB})$. The recordings were subsequently replayed monaurally into a high resolution spectrum analysis system with a dynamic range of 60 dB . The reason for using two microphones and then summing their outputs on replay was to reduce distortion of the spectrum through reflections from the surfaces in the auditorium. Because they set up standing waves, such reflections can result in a significant increase or decrease in the intensity of sound of a particular frequency at the microphone location. By using two microphones there is a reduced likelihood of an identical distorting effect occurring at both simultaneously. (A better method for averaging out the effects of reverberation would have been to use averaging in the frequency domain after phase information had been removed.) Recordings were made of four octavelyrelated samples from each stop on the organ, and the whole exercise has resulted in a library of some hundreds of pipe spectra.

The steady state emission of a pipe is periodic at its fundamental frequency. This is the lowest frequency present in the spectrum in most cases and it defines the musical pitch of the pipe. Because the emitted waveform is periodic, the only other frequencies present in the spectrum are harmonics or integer multiples of the fundamental; there is virtually no acoustic energy lying between adjacent harmonics. Certain pipes, however, possess a significant noise component due to random fluctuations of the air. In other cases the amplitudes and phases of each harmonic fluctuate randomly to a significant degree. Both of these effects produce energy that is not confined to the harmonic frequencies in the spectrum. However assume for simplicity that the spectrum of an organ pipe consists only of equally spaced lines at the fundamental and harmonic frequencies.

This structure is shown in Fig. 2, with examples of spectra corresponding to each of the four classes of tone. These have been normalized to the frequency of the fundamental so that the abscissae represent harmonic numbers (on a logarithmic frequency scale). All of these spectra contain a large number of harmonics, at least 15 , within the dynamic range of 60 dB . This is significant in that it clearly demon-

Table 1. Harmonic amplitudes of various pipe spectra in dB, corresponding to Fig. 2.

organ stop name

har. monic	claribel flute	open dia- pason	viol	corno- pean
1	60	60	55	60
2	29	46	56	58
3	30	45	57	55
4	18	35	60	54
5	19	29	48	53
6	11	21	49	49
7	10	26	46	47
8	5	18	43	42
9	5	19	47	37
10	4	12	42	33
11	4	14	40	27
12	3	8	34	25
13	3	5	32	16
14	2	2	28	15
15	2	1	27	10
16	-	0	26	7
17	-	-	25	9
18	-	-	23	6
19	-	-	22	-
20	-	-	22	-
21	-	-	18	-
22	-	-	20	-
23	-	-	19	-
24	-	-	15	-
25	-	-	20	-
26	-	-	11	-
27	-	-	14	-
28	-	-	13	-
29	-	-	-	-
30	-	-	-	-

HARMONIC NUMBER

HARMONIC NUMBER
strates that the flute is far from being a single sinewave as commonly stated. Nevertheless, as the amplitudes of the harmonics in this spectrum decrease rapidly with increasing harmonic number, it is possible to approximate to a reasonable flute tone using only a few harmonics. This is why additive sinewave instruments, which rarely have more than nine harmonics available, are able to provide good flutes whereas their performance at synthesizing almost any other type of tone leaves much to be desired. A glance at the remaining spectra in Fig. 2 shows why. For a subjectively satisfying imitation of these pipe tones, one should aim to embrace all harmonics within a dynamic range of about 60 dB . Therefore even the diapason requires about 15° harmonics and the other two spectra need more. Unless a very large number of harmonics is available in an additive instrument, the only cost-effective way to proceed is with the subtractive approach. (Whilst there are a very few additive instruments that have large numbers, perhaps in excess of one hundred, harmonics available for tonal synthesis, these are expensive experimental, developments using advanced microprocessor technology and as yet they are scarcely suitable for amateur construction.)
Returning briefly to the imitation of an organ flute stop of the sort illustrated by the spectrum in Fig. 2(a), this type of tone is in some ways the most difficult to simulate in spite of the apparent simplicity of the spectrum. Merely de-

Fig, 2. Large number of harmonics in organ pipe spectra means high cost for additive instruments.
signing a filter to produce the same. overall spectral features often produces a tone that seems somewhat dull and lifeless compared to the original, especially on A-B comparison using tape recordings. Ladner ${ }^{3}$ made the same point, and it seems that the role of the low-amplitude high-order harmonics is not well understood. Sumner ${ }^{1}$ reports that physical features such as the "chimney" in the flute stop of that name are responsible for subtle formant bands in the spectrum, though he does not give further details.

Passing on to the other sounds, where imitation is much easier than for flutes, consider the diapason. The spectrum shows that the amplitude of the harmonics gradually falls off with increasing harmonic number. The viol, on the other hand, has harmonics that increase in amplitude up to the fourth, whereafter they fall. This is the result of a viol pipe being of smaller scale (narrower) than a diapason pipe of the same length.
Finally the cornopean has a spectrum in which the harmonic energy falls with frequency though the fall is not in excess of 6 dB until harmonics beyond the fifth are encountered. The relative smoothness of this curve compared to the previous three in which more scatter is apparent seems to be characteristic of many reed tones.

The four examples of organ pipe spectra represent the four principal categories of organ tone, and there is no reason why essentially the same spectrum should not be used to design filters for several footages, thereby producing a diapason chorus or a reed chorus, etc. Together with other examples in the references cited, a reasonably broad base of data is available for the construction of filters.

Electrical waveforms

As well as the spectrum of the sound to be simulated, we also need that of the source waveform from which the tone

Table 2. Harmonic amplitudes of various waveforms in dB corresponding to Fig. 3.

harmonic	waveform		
	square	$\begin{aligned} & \hline 7: 1 \\ & \text { pulse } \end{aligned}$	saw tooth
1	60	60	60
2		59	54
3	50	58	50
4		56	48
5	46	54	46
6		50	45
7	43	43	43
8		.	42
9	41	41	41
10		46	40
11	39	47	39
12		47	38
13	38	46	38
14		42	37
15	37	37	37
16			36
17	35	36	35
18		40	35
19	35	42	35
20		42	34
21	34	41	34
22		38	33
23	33	33	33
. 24			33
25	32	33	32
26		37	32
27	32	39	32
28		39	31
29	31	38	31
30		36	31

(denotes the absence of a harmonic)

Fig. 3. Easy-keying pulse waveforms such as in (a) or (b) are defficient in harmonic content.
filters are fed. It would be a short and simple matter to present the spectra of commonly used waveforms at this point but several other practical aspects require discussion first.

Probably the easiest waveform to generate is a square wave. With the ready availability of top-octave synthesizers, dividers and envelope shapers in integrated circuit form a complete generating system of, say, 84 frequencies (seven octaves) can be contained on one card. Unfortunately the square wave is far from ideal for tone forming, except in a few cases, because it contains only the odd-numbered harmonics, whose amplitudes decrease at 6 dB per octave, Fig. 3(a). A square wave cannot therefore be used to derive any of the spectra shown in Fig. 2 as these contain even harmonics. It is, however, suitable for use where tones such as a stopped diapason or a clarinet are required, in whose spectra the odd harmonics are much more prominent than the even ones.
In a square wave multi-frequency generating system it is relatively simple to generate pulse waveforms of different mark-space ratios. These possess, in general, both even and odd harmonics and the spectrum of a pulse waveform with a 7:1 mark-space ratio has been discussed by Ryder ${ }^{5}$; this special case is of particular interest to those readers who may be building his organ. The spectrum, Fig. 3(b), shows that certain harmonics are missing. This effect is always obtained with pulse waveforms, including the square wave just discussed. This is merely a "pulse" waveform with a $1: 1$ mark-space ratio, where the nulls happen to coincide with the even harmonics. Whilst pulse waveforms again have the desirable advantages of simple generation and keying (envelope shaping) one possible problem concerns the low average energy of a waveform consisting of short pulses. This could give rise to noise difficulties at the output of the tone
filters which usually introduce considerable insertion loss.
The "classical" waveform that is often used when both odd and even harmonics are required is the sawtooth. This has a spectrum containing all harmonics, whose amplitudes decrease at 6 dB per octave as in Fig. 3(c). Unfortunately the sawtooth is not particularly economical to generate, and once generated it cannot be keyed by the simple non-linear envelope shapers commonly used for square or pulse waveforms without introducing distortion. One way to circumvent of pulse waveforms, and then combine them with appropriate weights so that a staircase waveform obtained. This is a good approximation to a sawtooth.

Another approach is to generate and key a single square wave and then convert it to a sawtooth using a discharger circuit of the type shown in Fig. 4. The square wave is first converted to a series of narrow pulses, for example by differentiation followed by rectification, which are then used to repeatedly discharge the capacitor C through the electronic switch S. Inbetween discharges the capacitor charges exponentially through R. A linear ramp is obtained if R is replaced by a constantcurrent source, though for musical purposes this would seldom be required. An exponential ramp produces little significant difference in the spectrum even at harmonics as high as the 30th. The source voltage V can be used to

Fig. 4. It is easier to generate and key a rectangular wave and then convert it to a sawtooth than to operate on the saw. tooth.

SOUND PRODUCTION IN THE PIPE ORGAN

Organ pipes emit sound when compressed air at a low pressure enters via a valve controlled from a keyboard. Various mechanical, electromechanical or pneumatic contrivances are used to control the valves. Each stop on an organ controls a whole rank of pipes, and has to be "on" before that rank will sound from the keyboard. In each rank there are as many pipes as notes on the keyboard (with a few important exceptions). Therefore even a very small organ will contain several hundred pipes, and a large one many thousands. It is this multiplicity of individually adjusted tone sources that gives the pipe organ its extraordinary richness of sound. (The origin of the term "stop" to denote a particular rank of pipes is of considerable antiquity, and is thought to derive from the great organs of the Gothic period which were. originally built with no means of isolating one set of pipes from another. Not surprisingly, such means were soon introduced so that certain sections of the instrument could be "stopped" from sounding!)

Pipes fall into two categories known as flue pipes and reed pipes. Flue pipes are constructed in much the same way as a recorder or tin whistle in that the incoming wind is formed into a narrow sheet which then encounters a lip fashioned in the wall of the pipe. An oscillatory motion is imparted to the wind sheet whose frequency is controlled by the air column in the remainder of the pipe, acting as a close-coupled resonator. Thus the musical pitch is controlled by the length of the pipe. (This highly compressed description tends to hide the complexity of the physics of the flue pipe, a subject that cannot be adequately treated here). The tone quality of the sound is determined
by the distribution of the energy in the frequency spectrum and for flue pipes this is to a large extent controlled by the relative proportion of length to breadth. This parameter is termed the scale of a pipe, and it gets numerically smaller as a pipe of constant length gets narrower. The smaller the scale, the greater the proportion of higher harmonics in the sound. You might think that the scale should remain constant across a rank of pipes if the tone quality is to remain constant. This is true, but in practice the scale is varied in a systematic manner so that the volume especially toward the top end can remain subjectively the same.

Another factor controlling the timbre of the pipes is whether they are open or closed at the top. An open pipe encourages the formation of harmonics, whereas a stopped one has a sound that is dominated by the odd harmonics only.

Flue pipes are generally made of wood or metal and can have a variety of cross sectional shapes. They are used to generate three of the traditional types of organ tone (flutes, diapasons and strings) and the front pipes in an organ case often form part of a diapason rank. The physical difference in tonal structure between these types of tone is discussed later.

Reed pipes form the fourth type of organ tone and generate sound by means of a metal tongue (the reed) alternatively opening and closing an aperture that communicates with the rest of the pipe. Again, this is a closelycoupled generator-resonator system whose detailed physics is even more obscure than those of the flue pipe. An important factor however is that the shape of the resonator tube controls the timbre to a large extent. Pipes that are
flared reinforce all harmonics to a greater or lesser degree, whereas cylindrical bores emphasize only the odd harmonics. The names of reed stops, often fanciful, imply that they are attempting to imitate orchestral instruments such as the oboe, clarinet or trumpet. This imitation is usually in name only since the tone of organ reeds is unique and part of the tradition of organ building.

Perhaps the most artistic and subtle part of organ building resides in the hands of the voicer, who tunes and adjusts the tone quality and volume of each pipe individually, a process which is the result of centuries of skill and craftsmanship. By basing the design of tone filters on the harmonic structure of actual pipes one attempts to endow the electronic instrument with some of the artistic virtues of the real one.

The relationship between the fundamental frequency of a pipe and its length has resulted in widespread use of the "footage" nomenclature to indicate pitch. An eight foot stop, for example, means that the frequency of the note two octaves below middle C (usually the lowest note on the keyboard in a church organ) is the same as that which would be produced by an open pipe as used on a piano. Stops of 16 foot pitch therefore sound an octave below this, and a four foot pitch an octave above, etc. The ability to control many ranks of pipes at once from one keyboard, or a variety of tone colours and pitches depending on the stops selected, contrinutes to the tonal variety and brilliant ensemble that is characteristic of a first rate pipe organ.
A complete account of the physical and aesthetic design principles of the organ can be found in the book by the late Professor Sumner. ${ }^{1}$
achieve envelope shaping during key attack and release.
Several filters are discussed in the next article, all designed assuming the availability of a sawtooth wave to feed them with. This has been chosen for the following reasons:
. Its spectral structure is simple. Harmonic amplitudes decrease monotonically with increasing frequency rather than in the oscillatory fashion of a pulse spectrum. This results in a filter frequency response that is also much simpler than if a pulse waveform had been used. This is important because of the comparative ease with which an electrical implementation of the filter can be built.
*: A square wave has already been rejected as being unsuitable for all but a few special tones (though in these cases it is essential).

- Sawtooth and square waves are available in the author's instrument. This meant that a subjective mudgment could be made as to the effectiveness of a filter design and in particular it was possible to make A-B comparisons of the electronically generated sounds against tape recor-; dings of the originals.

References

1. Sumner, W.L., The Organ, Macdonald (London).
2. Boner. C. P.. Acoustic spectra of organ pipes, JASA. July 1938.
3. Ladner, A.W., Analysis and synthesis of musical sounds, Elec. Eng, October 1949.
4. Fletcher, H., et al. Quality of organ tones. JASA, March 1963.
5. Ryder, A.D.. Electronic organ tone system. Wireless World, March 1979.

Marconi Fellowship

The Marconi International Fellowship maintains the motto "to commission creative work in science, technology and humanism," and recognises such work with an annual award of $\$ 25,000$. The general criteria for eligibility include the importance of the candidate's contributions to communications, science or technology, and the degree to which the candidate's life exemplifies commitment to applying communications science or technology to bettering the human condition. For information of the award, write to Dr. Walter. Orr Roberts, Marconi International Fellowship Council, Aspen Institute for Humanistic Studies, 1229 Uni'versity Avenue, Boulder, Colorado 803302 USA.

Floppy disc system for the scientific computer - 1

8 in disc stores 400 K bytes

by J. H. Adams, B.Sc. M.Sc.

Storage of data in small computer systems is often accomplished by a 300-baud cassette tape recording.
With a transfer rate of only $\mathbf{2 K}$-bytes per minute, this method makes locating and transferring long strings of data a rather slow process. The introduction, through the users' club ${ }^{1}$, of a more advanced operating system for the computer ${ }^{2}$, and the availability of memory expansion kits, has made a faster store very desirable. To solve this problem the author has developed a store based on an 8 in flexible (floppy) disc, which can accommodate 400K-bytes: of data and transfer 0.5K-bytes per second.
Recordings on disc are made by converting the data bytes into a serial stream of 1 s and 0 s at a rate of 250,000 bits per second, i.e. one bit every $4 \mu \mathrm{~s}$, truncating the is down to about $0.5 \mu \mathrm{~s}$ pulses and then interleaving a regular stream of $0.5 \mu \mathrm{~s}$ pulses from the system clock as shown in Fig. 1. These pulses are used to reverse the current in the recording head and, hence, the sign of the flux recorded onto the disc. Con-: verting the parallel input data to a stream of pulses is most easily achieved by one of the controller i.cs which are, in essence, dedicated microprocessors combined with programmed logic arrays to feed control information between the controller, the disc-drive electronics and the computer. Recordings are made on concentric rings, or tracks, 77 on an 8in disc, and a drive unit with two motors rotates the disc and steps the combined record/read/erase
head from track to track. Optical devices provide signals which indicate when the head is over the outermost track 0 and, using a small hole punched in the disc, an index pulse to indicate when the disc starts each revolution.
The electronics in the drive unit convert t.t.1. levels to switching currents in the head and vice versa, operate the stepping motor and provide erasing signals. Other functions may include door locking, motor-on indication, adjustment of recording current on inner tracks, separation of data, disabling the write operation on write-protected discs, and loading the head against the disc on read operations. This drive unit contains most of these features, although separation of data is achieved in the controller i.c.

Recording format

At 360 r.p.m. it is possible to record over 5000 bytes of data on each track of the disk. To allow the controller to identify recorded clock pulses from serial data pulses from the disc, the start of the decoding process is triggered by the index pulse, and the recording begins with a standard code which the controller can recognise and synchronize with. This code is often produced by repetitive recording of the byte 00 , i.e. the clock pulses are recorded with no interleaved data pulses. The next task for the controller is recognition of the start of the first byte in the data stream. As all possible data bytes may start the stream, no single byte can be reserved for this purpose. Instead, a data byte with a few of the clock pulses missing is

Fig. 1. Interleaved data and clock pulses.
used and is known as a mark byte. Normal bytes can be thought of as data bytes interleaved with the clock byte FF, i.e. all eight pulses. A typical mark byte is data byte FC, interleaved by the clock byte C7. After this index mark, about 5000 bytes of data follow and the recording runs to the start of the next index pulse with a final code of bytes, usually 00 s or FFs. The total number of code bytes is determined by the accuracy of the clock and drive motor.

Sectored tracks

If data transfers, which match the above, are all that is required of the disc, it is an efficient way of using the system in terms of bytes stored per disc. Usually, however, transfers are of variable length and, as it is not directly possible to access part of the way through a track, there is a limit of one recording per track, no matter how short the data block. To improve the potential disc capacity, each track is split into sectors which each require start and stop codes and identification marks. This leaves less space for data, but normally provides the most efficient mode. Such a format, now widely in use, is the IBM 3740 which fits 26 data sectors into each track, with 128 data bytes in each sector as illustrated in table 1.
In the present format, sectors consist of an identifying block followed by the data. Six 00s synchronize the clock/ data separator, an address mark (data FE, clock C7) indicates the boundaries, of the bytes, and, as previously ex: plained, track and sector numbers are given. This is followed by ạ CRC, which is a two-byte cyclic recognition code used by the controller to check for errors when reading information. The sector then has a short code, immediately followed by six more 00 s , a data mark (data FB, clock C7), the 128 bytes of data, a two byte CRC for the data, and a final code. Each track has 26 of these sectors end to end, prefixed by a large block of $00 \mathrm{~s}_{3}$ an index mark (data FC, clock C7), and trailed to the end of the track by a code. The copious supply of synchronizing bytes and CRC codes can, with suitable software in the computer, produce a very reliable system.

Formatting all of this information onto the disc is a complicated operation,

IBM 3740 sector

6 bytes 00	Ident mark	Track no.	00	Sector no.	00	CRC 2 bytes	17 bytes 00	Data mark	Data 128 bytes	CRC 2 bytes	27 bytes FF
Ident field								Data field			

IBM 3740 track

40 bytes FF	6 bytes 00	Index mark	26 bytes FF	26 sectors	approx. 240 bytes FF

Table 1. Formatted disc arrangement.

and most discs are supplied formatted with dummy data (usually byte E5). Such discs are marked 128 bytes per sector or per record, soft sectored. The last mentioned term means that the start of the sectors is indicated by software recorded onto the disc, as opposed to permanent hard sectoring, achieved by punching index holes in the disc for each sector (sometimes called 33 hole media for this reason). One disadvantage of soft sectoring is that, if formatting information gets magnetically corrupted, the sectors affected become useless. For this reason, even unused discs should be treated with care. Fortunately, if this should happen, the controller can re-format tracks to this and a number of other formats.

Computer-controller interface

To the computer, the controller looks like four input and four output ports. However, to address the controller, the computer only needs to supply one line each from IC_{2} and IC_{3}, (the computer's input and output-port decoders) along with address lines A_{3} and A_{4} as shown in Fig. 2. Because neither of the address lines go to the decoding i.cs, they take no part in decoding the 8 -bit port addresses which the Z80 sends along the bottom eight address lines during I/O instructions. Therefore, I/O commands such as $\mathrm{IN}(05), \mathrm{IN}(0 \mathrm{D}), \mathrm{IN}(15)$ and IN(1D) will activate the same line from IC_{2}, the bottom three bits of each number being the same, 101 , but each provides a different combination on A_{3} and A_{4}. By connecting the IN line to the controller's $\overline{\mathrm{RE}}$ (read enable) input, and the two address lines to the A_{0} and A_{1} inputs, all four controller registers may be read by the computer. In a similar fashion, one line from IC_{3} drives the $\overline{W E}$ (write enable) line of the controller, which allows the computer to write information into any of the registers. For details of these see Table 2.
As well as the data bus into and out of the device, and the four control lines described above, there are two lines from the controller to the computer. One indicates that, either through natural completion or through a failure, the controller has finished an operation and wants servicing, INTRQ, the other,
$\overline{\mathrm{DRQ}}$, indicates that the controller desires a data transfer either to or from it. This information is present in the status register but, because of the high rates of data transfer taking place, these lines must be used to enter the Z 80 , through the interrupt line, in preference to the much slower polling of the status register. The Z80 can therefore keep up with the steady demand for, or supply of data between it and the controller. For
this reason, part of the interface consists of a simple but effective interrupt controller.

Controller disc-drive interface

Lines from the controller to the drive comprise step and direction signals for the head-position motor, data and gating signals for the write operation,

Fig. 2. Floppy-disc controller/formatter.

A3	A4	Register	Addre ssed as	Remarks
0	0	Status	IN A.(05)	Read on INTRQ, checked for CRC error and record not found bits during Read, Write and Seek.
		Command	OUT (AO). A Receives commands from the computer.	
0	1	Track	IN A,(OD) OUT (A8),A	This register normally contains the current head position, 00 to 4 C . It is reset to 00 on completion of the Restore command.
1	0	Sector	IN A, (15) OUT (BO),A	This register holds the desired sector number for use during Read and W rite operations
1	1	Data	IN A,(1D) OUT (B8),A	Used during Read and Write operations as the source and destination of data bytes. During Seeks, it holds the desired track number, towards which the head and the track-register step.

Table 2. Register structure of the floppy-disc controller. Note that these details refer to the controller in this interface. More details are given in the data sheet ${ }^{3}$.
and a head loading signal. In the opposite direction, the drive provides data in the form of interleaved clock and data pulses, the index pulse and signals to indicate that the head is over track zero, the disc drive is ready for use, and whether the disc is writeprotected. Some drives provide a headloaded signal, or can load the head onto the disc in the 10 ms delay provided internally by the controller. As this drive does not, a monostable is used to provide a delay signal which is triggered by the outgoing headload line. To improve noise immunity when transferring signals to and from the electromechanical drive, the lines at both ends are pulled high via low value resistors, and high-current sinking buffers are used to drive signals to and fro.

Interrupt controller

Interrupts allow external hardware to divert the microprocessor temporarily from its stream of instructions, and accept instructions from, or more usually, to call a block of instructions which deal with the hardware's needs. In the computer, the INT line to the Z80 is driven by the MM57109 which only requires the Z 80 to read (for Mk I and II systems) or transfer (for Mk III), data between the two. This is a fairly simple procedure and the interrupt mode is chosen, which causes a call to the address 0038 where, in the earlier two systems, there is a short routine to read the data. In the Mk III, there is a re-enable of the interrupt and return so that the interrupt line makes the $\mathbf{Z 8 0}$ pause until the MM57109 is ready for a data transfer. With the disc, faster and more complex responses are required because either of the two interrupting lines can become active separately or simultaneously and, depending upon the operation in hand, different responses may be required. To provide the extra flexibility without sacrificing
speed, Mode 2 intefrupts must be possible, and this is carried out by the interrupt controller in Fig. 3.
In Mode 2, after the Z 80 has completed its existing operation, it responds to the interrupt by asking the interrupting device to supply an 8 -bit byte onto the data lines which it uses, in conjunction with the previously loaded I reg. ister, to form the address of the first of two consecutive memory locations where it will find the starting address of a subroutine to be executed. With these
two locations in the r/w.m., the disc operating system can make alterations to their contents and so alter the Z 80 's response to, in particular, a $\overline{\mathrm{DRQ}}$ interrupt to cope with read, write and verify operations which are at the heart of a disc system.
The circuit uses a 74 LS 147 priority encoderto generate a 4-bit code derived from the highest priority active input line. This code forms bits 1 to 4 of the byte which, when both M1 and IORQ are active low, (a combination which only occurs during the 280 interrupt acknowledge sequence) is gated onto the data lines. Direct connection to the Z80 is necessary because, during the interrupt response, both $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ are inactive and the bus transceiver isolates the $Z 80$ from the main data bus.
The connection from the MM57109 to the INT pin of the $\mathbf{Z 8 0}$ must be broken and re-routed through one of the unused inputs to the interrupt controller. As the 57109 is now driving a low-power Schottky device, the pull-down resistor on this line must be changed to $10 \mathrm{k} \Omega$ connected to the -5 V supply.
Part 2 will describe the controller circuit ánd software.

References

1. Users' club, contact Mr P. L. Probetts, 50 Cromwell Road, Wimbledon, London SW19 8LZ.
2. Mk III manitor, contact the author at 5 The Close, Radlett, Hertfordshire WD7 8HA (Radlett 5723).
3. Data sheet, Western Digital FD 1771, Mar 77.

Fig. 3. Interrupt controller.

"CRANKY" VIEWS

In May's detters Mr Williamson made two statements. Firstly he said that the millibel is rubbish, and secondly he said that a magazine of Wireless World's stature should not provide a platform for cranky views.
In respect of the former he may be right but in respect of the latter he is definitely not. Let us see what J. S. Mill has to say:
"To refuse a hearing to an opinion because they are certain that it is false is to assume that their certainty is the same as absolute certainty. All silencing of discussion is an assumption of infallibility. Though the silenced opinion be an error, it may, and very commonly does, contain a portion of truth; and since the prevailing opinion on any subject is rarely or never the whole truth it is only by the collision of adverse opinions that the remainder of the truth has any chance of being supplied.
Even if the received opinion be the whole truth, unless it is contested it will be held in the manner of a prejudice, with little comprehension of its rational grounds.
If there are any persons who contest a received opinion let us thank them for it. In an imperfect state of the human mind the interests of truth require a diversity of opinion."
(On Liberty, abridged)
And let W. E. Weyl end the subject with a flourish:
"To every shade of thought, religious, scientific, political, economic, and social; to every craze, fad, dogma, heresy, and inspiration; there should be accorded a forum, a soap-box, a ton of type, and, subject to a subsequent responsibility for utterances, full liberty of speech and print."
(The New Democracy, 1912)
Long live cranky views.
S. Frost

Edinburgh

VHF PROGRAMME LABELLING TESTS

I would be obliged if you could draw your readers' attention to the fact that the BBC are conducting experimental transmissions on their Radio 4 broadcasts from the Wrotham transmitter which can give rise to apparent interference when receiving stereo transmissions with some types of receiver, as the BBC seem to be keeping quiet about it.

Having experienced interference for the past few months which only affected Radio 4 and then only when a stereo broadcast was being received, which interference vanished when I disabled the stereo decoder, I rang the BBC's Engineering Information Department and was told that this trouble was caused by adjacent channel interference from a continental station, that I should fit an attenuator, and that there was definitely nothing wrong with their transmitted signal. I subsequently found out, quite by chance, that they are in fact making experimental transmissions from Wrotham, and on speaking to their Research Department was told that these were known to affect certain receivers, of which mine (an Alba UA800) was one. The noise on my receiver is somewhat like that of a distant diesel engine ticking over, which is
quite noticeable during quiet passages in music or speech.
On ringing the BBC's Engineering Information Department a week or so later I was again told that my trouble was due to a foreign station. Only after I said that I knew that they were making experimental broadcasts which were affecting my receiver was the existence of these broadcasts admitted, and I was told that they would shortly be extended to Radio 2, as their Research Department had not had any complaints. Personally I cannot see how their Research Department could receive complaints when there has been apparently no publicity about these broadcasts, and it would appear that anyone making enquiries about interference is told that a foreign station is to blame, this despite the fact that the BBC's Research Department appear to know that problems will be experienced with certain receivers.

Some of my colleagues have reported noticing similar background noise with their receivers (various Philips and Ferguson models), but had attributed it to outside interference. It does not in any case make itself apparent very often due to the scarcity of stereo programmes on Radio 4. I would ask anyone who has noticed this effect and who has thought or been told that it is interference to contact the BBC

I must say that I am somewhat puzzled by the BBC's approach. Although they have usually been quite open in the past about experimental transmissions, and requested feedback from the listeners, it seems that in this case feedback has been blocked for reasons best known to themselves.
R. Camp

Romford
Essex

The BBC replies:

May I fill in the background to the points in Mr Camp's letter?
As has been publicised in Wireless World and elsewhere, the BBC is investigating proposals for inclusion of data signals in radio broadcasts. If a suitable system can be established it could offer a number of facilities of considerable benefit to the listening public, including channel and programme identification; automatic receiver tuning and switch-on as pre-selected in advance by the listener; automatic receiver search for the type of programme desired (e.g. light music, news); and visual display at the receiver of simple text such as channel and programme title; clock time and news headlines.

Compatibility with existing receivers is clearly an important factor. BBC Research Department has carried out labboratory tests on a range of domestic receivers and these tests have been supplemented by broadcast trials wherein data signals on a 57 k Hz subcarrier have been included in Radio 4 v.h.f. transmissions from Wrotham.

The results of these broadcast trials have been assessed by means of questionnaires issued to selected listeners, including receiver manufacturers' representatives. The trials have not been generally publicised since to do so would inevitably mean that many unrelated interference or other diffi-
culties would be ascribed to the data signals and the trials largely vitiated.
Although the trials were unpublicised it would have been quite wrong for us to have wished to deny their existence or to give misleading advice to listeners complaining of interference. I very much regret that this happened to Mr Camp and freely apologise to him. In fact there was no intentional coverup, simply human failure in that Engineering Information Department engineers answering enquiries were insufficiently alerted to the possibility of interference from this source: that this was so is my responsibility and their suggestion of interference from other stations was reasonable since this is a common problem at this time of year.

The desirability of a system of data signalling on a subcarrier in v.h.f. transmissions has been recognised for some time in many countries. The international (CCIR) Recommendation for f.m. stereophonic broadcasting allows for the use of a 57 kHz subcarrier in this way and receiver designs should be capable of handling signals according to this Recommendation: such a subcarrier is widely used in other countries. Some receivers, including Mr Camp's, are not so designed and some other older receivers may suffer some degree of interference unless their stereo multiplex decoders are very carefully aligned.
In September we shall assess very carefully the results of the current trials and Mr Camp's report on his experience will represent useful additional information in this context. We shall wish to be sure that no difficulty will be caused to receivers which are designed with the CCIR recommendation in mind, and to assess the degree of any problems experienced with older receivers. D. P. Leggatt

Head of Engineering Information
BBC, London WI

MAXWELL'S EQUATIONS REVISITED

As mentioned in the May correspondence columns, we received a large number of letters commenting on Ivor Catt's article in the March issue. Our original intention was to present collectively the main points of all these letters. After discussions between the author and some of the correspondents, however, we finally decided to print one letter which was considered by an independent referee to be fairly representative. (This referee is a senior engineer in a large computer firm.) The letter chosen is followed by a direct reply and some general remarks by the author.
Regarding Mr Catt's làtest article, "Maxwell's equations revisited" in the March issue, I feel that he should be relieved of some of his pseudo-mathematical delusions. For example, what exactly does he mean by the equation
$\frac{\partial h}{\partial x} \cdot \frac{d x}{d t}=\frac{\partial h}{\partial t}$
One criticism is that $\mathrm{d} x / \mathrm{d} t$ can only be used to represent the velocity of the train if x represents the x -co-ordinate of a fixed point
on it. Mr Catt originally introduced x and t as independent variables to define a point in space-time, so $\mathrm{d} x / \mathrm{dt}$ is a meaningless quantity.

Also, if Mr Catt had really performed a "careful analysis" he would have had great difficulty in deriving equation (1) in the first place, as anyone with even elementary knowledge of partial differential calculus could tell him. Equation (2)
$\frac{\partial H}{\partial x} \cdot \frac{\mathrm{~d} x}{\mathrm{~d} t}=-\frac{\partial H}{\partial t}$
falls into the same category of fallacies. Small wonder it never appears in the textbooks!
Mr Catt then goes on to say that "almost anything" is a solution to the equations
$\frac{\partial E}{\partial x}=-\frac{\partial B}{\partial t}$
$\frac{\partial H}{\partial x}=-\frac{\partial D}{\partial t}$
This, to put it mildly, is a slight exaggeration of the facts. It is a fact that a sinewave, or a number of sinewaves, is the solution of the equations given the correct boundary conditions. Mr Catt's train is also a solution of the equations but since it obeys a different set of boundary conditions it does not appear as a sinewave. More rigorously, the train profile can be considered as a Fourier series comprising an infinite number of sinewaves with different frequencies and amplitudes, and possibly also some exponential terms.
Having demonstrated the non-existence of any justification for the "theoretical" part of the article, I would like to ask the author if he has any justification for the abuse he proceeds to hurl at mathematicians in general. Mathematics is a tool for the scientist or engineer to enable him to concisely describe physical phenomena. Insight, or a "feel" for the phenomena, is built into the equations and a competent engineer should be able to "look inside" the equations and visualise what they represent. Visualisation of abstract concepts is more difficult but simply because mathematics is used as an aid in describing them does not make the theory "ludicrous and false".
Waveguides, antennae and the like are designed using Maxwell's equations, not by hit-and-miss methods, and behave as predicted by the mathematics. Electromagnetic theory is mathematical by its very nature and if Mr Catt abandons the mathematics he will be left with very little of any practical use.

R. C. Hayes

University of Liverpool
The author replies:
Equation (1) relates three things:
(a) the slope of a surface,
(b) its forward velocity,
(c) the rate of rise of the surface.

If the slope is 1 in 4 , the forward velocity 10 metres per second, then the rate of rise of the surface is $2 \frac{1}{2}$ metres per second. This kind of

relationship is the stuff of which science and engineering is composed of. I think Mr Hayes knows full well what (1) means, since he has studied A-level mechanics.
Equation (2) says that if an unchanging TEM wave moves forward at the speed of light, the gradient of H with forward distance is related to the gradient of H with time. If it is a fallacy, then what is the correct formula?

Or are we not allowed to relate $\partial H / \partial x$ to $\partial \mathrm{H} / \mathrm{at}$ for a TEM wave?
Let Mr Hayes tell mechanical engineers to convert their trains into a Fourier array of sinewaves, and see how they react! Thank God mechanical engineers are too practical to be sucked into the kind of quagmire that permeates electromagnetic theory! I do not want to travel in a train with some exponential terms designed into or out of it! Would Mr Hayes recommend that the passengers be positioned so as to minimize their harmonic content?
Waveguides, antennae and the like are emphatically not designed using Maxwell's equations, any more than a tribal dance wins the battle that follows.

My successful pioneering attempts to interconnect high speed (1 ns) logic in Motorola in 1964 forced me to abandon all the maths that had grown like weeds to choke electromagnetic theory. A logic step is emphatically not a Fourier array of sinewaves, and you will run into all sorts of nonsense if you kid yourself that it is. Also, you can only successfully decouple the 5 -volt supply to sub-nanosecond logic because it is untrue that capacitors have stray series inductance. The regular abandonment; at vast cost, of high speed logic systems during development will only cease if we can infiltrate some common sense into electromagnetic theory, and it stops serving merely as a favourite stamping ground for physically ignorant, fancy maths obscurantists. We must take the blarney out of electromagnetic theory.

The author also makes the following general remarks on the whole of the correspondence: : All twenty-two correspondents ignored the physics and concentrated on the mathematics. It seemed that whether Maxwell's equations mapped meaningfully and usefully onto reality mattered not. All that mattered was that the maths should be internally correct, or at least respected. An engineer like myself, who has sometimes worked as if through a blizzard of irrelevant, convoluted maths, takes the opposite view.

Some of the replies thought the minus sign should be there; some said it should not be. None noticed or contradicted my point, that the minus sign had no physical significance. (In fact it is an outgrowth of partial differentiation. Full differentiation has no minus sign, being a completely different operation from partial differentiation, in which the sign appears regardless of the nature of that which is being differentiated).
Always at a point on a surface in a three dimensional graph, the three slopes are related by
$\cdot \frac{\partial z}{\partial x} \cdot \frac{\partial y}{\partial z}, \frac{\partial x}{\partial y}=-1$
The minus sign has nothing to do with electromagnetic theory. This contrasts with
$\frac{\mathrm{d} x}{\mathrm{~d} y} \cdot \frac{\mathrm{~d} y}{\mathrm{~d} z} \cdot \frac{\mathrm{~d} z}{\mathrm{~d} x}=+1$
which is always true of the gradients of lines in two-dimensional graphs.
I. Catt

IEEE 488 BUS
Mr Ellesfen's article in the June/July issue on the IEEE 488 bus standard is timely, but bitter experience convinces me that he has
over-simplified things a little. The IEEE, IEC, GPIB and HP-IB systems are not all identical. Try interconnecting a 'strict' IEEE instrument (e.g. a Fluke 8502 d.v.m.) to a European GPIB bus instrument - 10 and behold, the plugs are different. In fact Mr Ellesfen's Fig. 3 may show a typical GPIB rear panel but those aren't IEEE connectors. I do wish you engineers could agree on these things - it would make life a lot easier for us mere mortals! John Hennessy
Department of Physics
University of Sheffield

IMPEDANCE MISMATCHING

The article "Impedance Mismatching" by Dr Lidgey in the March issue calls attention to an often overlooked point, because students fail to read the whole definition of equivalence in networks. For instance, one source says: ${ }^{1}$
"If one network can be substituted for another without change in the currents and voltages at the ports, the two networks are externally indistinguishable and are said to be equivalent at the ports. Nothing need be known of the internal network configuration."

An equivalent network is not identical internally but has only identical values of external voltages and currents at the terminals. Thus comes our practice of substitution of "black boxes" to replace whole complex networks.

It is desirable to point out, as is done in the article, that power systems are not matched in impedance as 50 per cent efficiency rather raises the generation costs! But in communications where microwatts of power are very expensive, it is desirable to get out all we can, and so we match.

J. D. Ryder
 Ocala

Florida, USA

Reference

1. J. D. Ryder, Introduction to Circuit Analysis p.175. Prentice-Hall, Englewood Cliffs, NJ 1973.

DESIGNING WITH MICROPROCESSORS

I would be grateful if you would allow me to draw attention to an error in Fig. 3 of "Designing with microprocessors" by Zissos and Valan in the May issue. The 8228 status latech shown would not produce the signals shown, since it decodes the status information placed on the data bus during the status pulse, $\overline{\text { STSTB, }}$, which is absent from the diagram. The outputs from the 8228 are much more akin to other processors, and comprise MEMR, $\overline{\text { MEMW, }} \overline{\text { I/OR, }} \overline{\text { I/OW }}$, and INTA.

The diagram as shown would be correct if the status latch was a simple eight-bit latch clocked by the STSTB line.

P. B. Hodgson

Grantham
Lincs
The authors' reply: We thank Mr Hodgson for pointing out the omission of the STSTB strobe pulse in Fig. 3. This was intentional, for the sake of clarity.
D. Zissos and L. Valan

DESIGNING WITH MICROPROCESSORS

In their current series of articles "Designing with microprocessors" Zissos and Valan opened in the May issue with some remarks with which I profoundly disagree. They may be right, or I may be right; but either way, the questions involved are of such fundamental importance that I think both sides of the question need to be put.
To summarize, the authors put forward two views: that inefficient, machineindependent approaches are no longer justified, and that an understanding of the functioning of microprocessors is needed by their users. Let us look at this second point first.
It is obviously an advantage to understand how something works if you want to use it. It may also be more satisfying to know, but that is not the point. The question is, can a designer of something which incorporates a microprocessor do a better job if he understands how microprocessors work? I am sure that the answer is that he will probably use the microprocessor more effectively, but not by any means that he can produce a better design overall.

The problem is that designers are already overloaded with things that they ought to understand. Adding in the understanding of microprocessors is not a simple plus: it almost certainly means forgoing the attempt to understand something else.

Take the case where a microprocessorbased device is used as a circuit component - say an 'intelligent' filter which can discriminate between signal and noise far better than any array of passive components. The things that a designer could usefully come to understand better are how that filter itself works, or what its effect on the circuit as a whole will be. Understanding the filter may open up new opportunities, or avoid mistakes. Understanding the effects on the circuit will involve seeing the effects of a fixed, rather than frequency-dependent, delay, and may likewise open up opportunities or avoid mistakes. If the designer has time to take both on board, all well and good. More likely, though, something has got to go. Which? Well, the suppliers of the microbased filter can tell him the salient features of the device as a whole. But who can tell him the salient features of its impact on the circuit he is designing? Nobody. He must sort that out himself.
The situation gets even more acute where a micro is used as a systems component, say as part of office equipment. There the range of aspects that a designer needs to understand gets very wide indeed - including marketability, the psychology of the operator, safety legislation, and so on. The poor designer can hardly keep his head above water. Let's not load him even more.

What the designer needs to know is what micros can do, not how they do it. One day I really must learn how transistors work (I grew up on valves). Even so, I seem to be able to use transistors, because I can find documentation which tells me what the result is.

I am not objecting to the inclusion of articles describing how micros work - I, like most readers of Wireless World I suspect, am a person who likes to know how things work. But those articles should not contain the implication that such knowledge is the best way to approach their use.

That argument pales into insignificance beside the one of machine independence. It
took the 'big computer' world a decade or two to learn the lesson of machine independence. Now the microprocessor world seems determined to repeat the mistakes, against an economic basis that is far less tolerant of such mistakes.
Several years ago a fair size mainframe might cost $£ 1,000,000$. The application programs which used the machine probably cost somewhat less, but not much less. Originally they were written to suit the characteristics of the machine. Provided that no major growth required intermediate change, replacement might be needed in, say, seven years. Then there was good news and bad news. The good news was that the replacement cost less (despite inflation) than the predecessor. The bad news was that modifying the software would cost far more, and would be such a major undertaking that the resources would not be available to make the change. Thus we see people buying ICL 2900 s, which are something like a hundred times as fast as some machines they replace, but running programs slower than their predecessors, because the old programs have to be run, and when a 2900 pretends that it is an older machine it is very inefficient indeed.
This is actually rather a favourable example! As the 2900 is a replacement for earlier ICL machines, and as it is a major cost item, the incentive and the money to provide the software for it to pretend to be an earlier machine have been there. In other cases users have been left in a real mess.
How do micros compare? For a start, the cost of programs typically far outweighs the cost of the device itself: So replacing the hardware is almost trivial in cost terms. But if the software is tied to the hardware the resultant software change cost can be crippling. Microprocessors are only cheap if they are cheap to use; if the way in which they are used brings crippling costs, they are extraordinarily expensive.
The situation is made worse by the rate of change in microprocessors. With the mainframe instanced above, the effective life was the life of the machinery. When micros are used in products, so that it is the product manufacturer who develops the software, the life is from the time he starts buying one version to the time that that version is superseded. Currently that timescale appears to be about nine months.
Put it another way. If you develop a prototype of a product incorporating microprocessors, the chances are that by the time you go into production that particular version will be obsolete. Later, when an assembly fails in service and requires replacement, the production chip originally incorporated will no longer be available. If the software is linked to a particular chip, you've got problems, and pretty severe ones. Among them is the fact that the people who designed the original software (which will no longer work on the latest version of the micro) might no longer be around, so that the new designers have to start from scratch. By the time that they have finished their work, a new version of the micro will already be on its way.

The large computer users have already learnt that there are considerable risks associated with machine dependent designs. The factors which have forced them to start using inefficient approaches to avoid being trapped are far more potent in the micro world. Far better endure the $50 \%, 100 \%$ or, even 200% overhead of machine-independent software than be trapped in a short time by the $10,000 \%$ overhead instanced above.
What it comes down to is this. If you want
to use a microprocessor as an educational toy, then learn how it works, and write programs which exercise the individual capabilities of different chips. It is a fascinating pastime. But if you want micros as a serious tool, think again. If you have got some time to spare, use it on thinking how the tool can help you, how it will affect the system where you use it. And whatever happens, try to avoid getting so tied up with a particular version (which will probably be obsolescent by the time it comes on the market) that very shortly you will find yourself occupied full time in just keeping things working.
R. M. O'Connor

St Albans
Herts

The authors reply:

We must disagree with Mr O'Connor's contention that a better overall design cannot be produced by the understanding of how microprocessors work, as will be demonstrated in later articles. This understanding can be gained by first-year Computer Science or Electrical Engineering undergraduates in two to three 50 minute lectures
Because of the methodology available today it is unnecessary for a designer to feel overloaded. Much of the stress experienced is normally caused by lack of knowledge of the idiosyncrasies of v.l.s.i. chips. Although this lack of knowledge may be tolerated in users, it should not be acceptable in doers.

The analogy drawn with computers of a few years ago is invalid, because we now have step-by-step procedures for designing and implementing digital systems that did not exist then.
A closer look at the 'new' microprocessors shows no fundamental changes in the basic structure, and therefore they can be easily accommodated in systematically designed systems. The figure of $10,000 \%$ overhead is simply unrealistic or a result of a bad design. D. Zissos and L. Valan

TV SETS FOR THE HARD OF HEARING

My hearing is poor and over the years I have found that I can best listen to the radio or television via a pair of headphones. Radio is, of course, no problem. But when I wished to purchase a television set with an outlet for 'phones I was just met with blank stares!
I am retired, and was in no hurry, so I went around all the television retailers in my area just to see what there was. The young assistants just did not want to know. Apart from one helpful dealer the only other trader willing to help was a stockist of exclusively Japanese products. The Japanese tv sets mostly had outlets fitted as standard for tape recording the sound, and for headphones. On some, inserting the headphone plug cut out the loudspeaker, on others there was a choice of cutting out or not cutting out the loudspeaker.

I bought one! What would you do? A circuit diagram was included and looking at it I concluded that the additional cost of fitting the outlets would be around $£ 5$.

About ten per cent of the population have hearing problems, while five per cent have serious hearing problems requiring some form of assistance. On this basis it seems to me that someone is missing out on sales. Fred Holloway
Essex League of the Hard of Hearing Rayleigh, Essex

Pulse control of analogue functions

by Peter Williams, Ph.D. Paisley College of Technology

Any other device interposed between one integrator and the next, having a controlled transfer function, will vary the frequency of the oscillator/filter. Analogue multipliers are designed to have an output proportional to the product of a pair of inputs. Interposing a pair of such multipliers with one input of each fed from a control voltage results in linear control of the frequency. The multiplier is being used for the restricted function of a gain-controlled amplifier, other forms of which may be substituted. Only two-quadrant operation is required as the control voltage is unipolar. Variable transconductance circuits can also be used. In some cases the output is in the form of a current and the following drive resistor may be omitted. Overall stability may be affected by the additional lags introduced by the multipliers though with standard operational amplifiers, the dominant lags caused by internal compensating capacitors are likely to affect the response first.

A completely different approach is possible if the nature of the integrator is reconsidered. The voltage across the capacitor depends on the total charge and not on the manner in which that charge is acquired. This suggests that the current may be allowed to flow in short controlled bursts provided that the switching rate is high enough to minimize the ripple voltage that is inevitably superposed on the output. This is essentially pulse-width modulation, and n is replaced by τ / T, where τ is the pulse duration and T the pulse period. In the first configuration an analogue switch is assumed to be repetitively closed at a frequency of $1 / T$ with τ being varied to control the mean current over the cycle. Typically, for an osciliator frequency f then $1 / T>1$ Of would be preferable for minimum ripple. As analogue switches operating up to the MHz region are readily available this places littie constraint on the usable signal frequencies. As before any number of sections can be used with the switches drive in synchronism from a common generator - the last consisting typically of a fixed frequency astable driving a variable period monostable.

The accuracy and resolution obtainable in the previous methods are restricted by the analogue sections of the circuit. Purely digital methods are possible for the control section which can increase the resolution without limit. One method is shown in which two interlinked counters are used to determine τ and T each as multiples of the period of a clock generator. The ratio τ / T is thus independent of any timing circuitry, being the ratio of two integers either one of which may be preset or controlled by an external digital control word. The T counter sets the flip flop and starts the τ counter. At the end of the τ counter duration, e.g. counting down to zero from the previously loaded control word, the flip flop is reset until the start of the next period. In this particular case the switch is closed for counts and open for $T-\tau$ counts, and any number of switches can in principle be driven from the given flip-flop.

As an illustration of the range of possibilities, consider the circuit shown, with a binary comparator driven from a $2^{\text {r }}$ binary counter. The output of the comparator is high until the counter output matches the control word N applied to the comparator. For the rest of the time the comparator output is driven low. Hence any switch activated by the counter will be on for $N / 2^{n}$ of the time and the circuit would be capable of controlling a filter or oscillator such that $f \propto$ N. A restriction on this and the previous form is the difficulty of filtering the switching waveform if the switching frequency becomes too low. It is desirable that $f_{\text {clock }} / 2^{n} \gg f$. Any other switching circuit that can close a switch for a controlled fraction of the time can be employed, and the method has been employed as a precision voltage divider for measurement applications.

One particular class of digital circuits seems particularly appropriate to this application -binary-rate multipliers and dividers. In the former a digital control word N directly sets the number of pulses that are transmitted during a complete cycle of operation of 2^{n} input pulses. Moreover these circuits can be combined to give output pulse rates that are complex functions of the input control numbers if required. Because the on and off states are distributed throughout the cycle the filtering problem is a little less severe, though they are not randomly distributed. The main advantage of these circuits is that no additional comparator or decoding action is required and the output can be applied directly to an analogue switch or switches. CMOS logic is the obvious family to use since analogue switches are readily available that are compatible with the b.r.ms. The restricted supply voltage range (typically $\pm 7.5 \mathrm{~V}$) restricts the associated analogue circuitry to the same value.

THEORY

- The first method strictly belongs to the previous section in that the analogue multiplier produces a continuous variation in the scaling factor by applying a control voltage to one of the inputs

$$
\text { i.e. } \frac{i}{v}=n G
$$

where n represents the control voltage on the Y input. The Y input may however receive a discontinuous voltage switching between zero and some maximum value but with a variable mark-space ratio: Provided the switching frequency is high the mean value of n is controlled by that mark-space ratio.

- If discontinuous control is adopted the analogue-multiplier can be omitted with the voltage applied to the integrator through a switch. Let the switch be closed for a time τ out of a period T.

$$
\begin{gathered}
\text { Mean } \frac{i}{V}=\frac{\tau}{T} \cdot G=n G \\
\text { for } n=\frac{\tau}{T}<1
\end{gathered}
$$

The ripple voltage across the capacitor is minimized for $T \ll 1 / f_{L}$ where $f_{0}=\omega_{\mathrm{L}} / 2 \pi$. is the lowest sinusoidal frequency to be controlled and $f_{1} \infty_{\tau}^{o}$.

- The second counter, a down-counter, is loaded with a control word when the first counter fills and sets the flip-flop. Until the second counter empties the switch is held closed for a time τ proportional to the control word. For the remaining time until the first counter fills the switch remains open because of the resetting action on the flip-flop by the second-counter

Mark/space ratio is \qquad

A related method compares the output of a single 2^{n} counter with a control word N in a binary comparator such that the output is high for $N / 2^{n}$ of the time. This is again available to control the on-off ratio of a set of switches.

- For the bit-rate multiplier the internal logic causes an output pulse rate

$$
\propto \frac{\text { control word }}{2^{n}}
$$

or mark-space ratio
$N:\left(2^{n}-N\right)$.

EXAMPLES

1. A two-integrator loop has the resistors switched into and out of conduction periodically - the period of the switching waveform is T and the conduction-time per switching cycle is τ. Given R is $100 \mathrm{k} \Omega$ and C 10 nF , calculate the frequency of oscillation for $\tau=\mathrm{T}$ and $\tau=$ $0.1 T$ assuming that that frequency $f_{0} \ll 1 / T$ i.e. that the ripple superimposed by the switching frequency on the sinusoidal oscillation is small.

The effective value of each conductance is $G^{\prime}=\frac{G \tau}{T}$

$$
\text { i.e. } R^{\prime}=\frac{T}{T G}=\frac{T R}{T}
$$

Therefore following the previous analysis, and assuming a unity gain inverter,

$$
\begin{aligned}
& \omega_{0}=\frac{1}{C R^{\prime}}=\frac{\tau}{T C R} \\
& \text { i.e. } \omega_{0}^{\prime}=\frac{\tau}{T^{\prime}} \cdot \omega_{0} \\
& \text { For } \tau=T \quad f=\frac{1}{2 \pi \cdot 10 \cdot 10^{-9} \cdot 10^{5}} \\
& \therefore f=159 \mathrm{~Hz} \\
& \text { For } \tau=0.1 \mathrm{~T} \quad f^{\prime}=0.1 \mathrm{f}=15.9 \mathrm{~Hz}
\end{aligned}
$$

2. In the previous question a switching frequency of 1.59 kHz is used. 'Estimate the peak ripple as a fraction of the sinusoidal amplitude.
(i) $\tau=\mathrm{T}$ the switch is closed permanently and there is no ripple due to the switching. If τ is finite but very close to T, then the switch is off for very brief periods and the capacitor voltages remain constant for that brief interval.
(ii) $\tau=0.1 \mathrm{~T}$: the effect is that of a rectangular wave at a frequency of 10 kHz with an amplitude equal to the value of the slowly changing output of the previous integrator i.e. the output $V \sin \theta$ of one is applied discontinuously to the second whose output approximates to $-V \cos \theta$. Hence the max. ripple on the output of the second occurs when $\sin \theta=$ 1 i.e. when the second integrator output is passing through zero. Note that $V \sin \theta$ itself contains a small ripple but this error is ignored. The peak ripple is thus

$$
\frac{V}{R} \cdot \frac{\tau}{C}=V \tau \omega_{0}
$$

' or expressed as a fraction of the peak output, $V_{\tau} \omega_{0} / V=0.1 \cdot \omega_{0} \top$

$$
\text { But } T=\frac{1}{10^{4}} \mathrm{~s}
$$

$$
\omega_{0}=10^{3} \mathrm{rad} / \mathrm{s}
$$

$\frac{\text { peak ripple }}{\text { sinusoidal amplitude }} \approx 0.01 \equiv 1 \%$

The "'twins"' paradox of relativity

"What is long overdue is a general summing up of the whole matter, so that the source of the scandal can be located and removed without futile polemic.

by the late Herbert Dingle

In Nature, volume 269, page 284 (22 September 1977) I put a question to Dr Tom Wilkie concerning an of ten advanced suggestion he had repeated for disposing of the twin paradox of relativity. He did not reply, but added a note stating that he would be writing me "privately" on the matter. It was, of course, entirely proper that misunderstandings should be removed before the reply appeared, but although after considerable correspondence this seems to have been achieved, Dr Wilkie has not accepted my invitation to him now to publish his reply. It does not accord with recognised scientific practice that questions considered worthy of publication should remain without published answer, and it therefore become my duty to comment publicly myself on the implications of this incident.

But far more is involved here than the incident itself. The so-called "twin paradox" has been the centre of more or less continuous controversy for more than half a century, and still remains unsettled. Because of its peculiar - I believe unique - character it is no exaggeration, but a considered temperate statement, to call this a scandal, for reasons which I shall show, and what is long overdue is a general summing-up of the whole matter so that the source of the scandal may be located and removed without further futile polemic. This is attempted here and the uniqueness of the problem in scientific discussions made clear, but first it is desirable, notwithstanding its familiarity, to state what the "paradox" is in its simplest form. For brevity and clarity a particular extreme example that given in my letter in Nature of 31 August 1973 - is chosen. There is no disagreement about the legitimacy and typicality of this example, and therefore no begging of the question in selecting it.

Peter and Paul are twins, of whom Paul travels at birth with uniform velocity v to a distant planet stationary with respect to the Earth, and immediately returns at the same ve.ocity having aged by three days, to find his Earthbound twin, Peter, 30 years old. In the general case, any two identical forms of standard clock may be substituted for the twins, and if t is "Peter's" age when "Paul" returns, "Paul's" age at that event is $t \sqrt{1-v^{2} / c^{2} \text {, }}$ where c is the velocity of light. It is
evident that in this example v must be very slightly less than c.

Now the peculiar nature of this "paradox" lies in the fact that this has never been observed in any form: the result is wholly a deduction from a theory. In all the traditional controversies or paradoxes of science - the Ptolemaic and Copernican theories of celestial motions, the wave or particle nature of light, etc. - the problem has arisen from observations, and what has called for decision has been the correct theory for explaining them. Here the reverse is the case. The dispute is not
> 'Failure to agree on the implications of our own constructed and accepted theories is not excusable. This is what makes the endless persistence of this controversy a scandal."

about what theory best explains the observations (which do not exist), but about what observation - equal or unequal ages of the twins on reunion - is required by an independently accepted theory. And indeed there is an allied peculiarity in that if the observation were made, its result, whatever it might be, would still leave the problem unsolved: the question would still remain, what is wrong with the deduction from the theory of the opposite result? The problem, therefore, lies within the theory itself. Failure to understand the course of nature is excusable and observation of nature might be expected to bring enlightenment: failure to agree on the implications of our own constructed and accepted theories is not excusable. That is what makes the endless persistence of this controversy a scandal.

Let us assume that the theory is true, and give the net results of the arguments for its requirement of symmetrical and asymmetrical ageing, respectively. The first can be stated very simply. The relativity theories, both special and general, require that it is equally true to regard Paul as moving with respect to a stationary Peter and planet, and Peter and planet as moving with respect to a stationary Paul. Therefore if, as the theories also require, the moving twin ages more slowly than

Herbert Dingle 2 August 1890 - 4 September 1978

Herbert Dingle was a distinguished scientist and philosopher who was Professor of History and Philosophy of Science at University College, London, from 1946 to 1955 . Before that he was Professor of Natural Philosophy at Imperial College, from which he had graduated in 1918 . His numerous scientific distinctions included the presidency of the Royal Astronomical Society (1951-53) and of the British Society for the History of Science (1955-57); he wrote several well-known books and an enormous number of scientific papers.

The early part of Professor Dingle's scientific career was a period of intense interest in relativity, and he became an expert on the subject. Although an admirer of the theory, he was sceptical about the well-known clock paradox or twin paradox, and did not agree with its generallyaccepted resolution. After à prom minent but inconclusive debate on the paradox, during the 1950 s, he became convinced that the special theory, though mathematically impeccable, was physically impossible, and he spent much of his time and energy during the last 20 years of his life trying to persuade the scientific world that the theory was untenable. His criticisms of the theory, and his Socratic ability to ask questions that nobody else could answer; were not always well received; I have suggested elsewhere (Canadian Electrical Engineering Journal, April 1980) that his thesis has not been satisfactorily answered.

The accompanying paper is Professor Dingle's final summing-up of his views on the twin paradox. He sent me the manuscript a few months before his death, in the hope that I would be able to have it published, and I commend it to scientists in the hope that they will give it the serious attention that it deserves.

I am grateful to Mrs Pamelā Dingle for giving her permission for this paper to be published, and to Wireless World for publishing it lan McCausland
University of Toronto
the stationary one, a difference of ages on reunion would require Peter and Paul each to be the older at that event. This is impossible, so asymmetrical ageing cannot occur, and it is up to those who claim that it can to discover their error. (Though not among them I once thought I had done this ${ }^{1}$, but later found that my argument failed, though not for the reasons alleged by my critics at the time ${ }^{2}$. That left me with no alternative to rejection of the theory. However, we are for the present regarding it as true.)
The arguments for asymmetrical ageing - by far the most favoured: alternative - are legion but only one calls for serious attention, namely that given first by Einstein himself ${ }^{3}$ and supported by Born ${ }^{4}$, Tolman ${ }^{5}$, Pauli ${ }^{6}$, among others, and elaborated in detail by Moller ${ }^{7}$ and Born \& Biem ${ }^{8}$. No other has a weight of authority behind it comparable with this, or indeed when examined carries any conviction at all, while, granting the validity of the theories, every step in this argument is irresistible. I shall therefore consider it alone.
The essence of this argument is that, indeed, during the main part of the whole journey - that at constant velocity in both directions - the moving twin, whether he be regarded as Paul or Peter must be held to age more slowly than the stationary one, but if Paul is regarded as stationary, then the field of force* must be assumed to exist every-i where during the period of reversal of motion to keep Paul at rest, despite the impulse given him by the working of the engine of his vehicle, and also to bring Peter back to him although no such impulse is given to Peter. The effect of this force-field is to make Peter, during the period of reversal of motion, gain so much in age, and Paul to lose so much, as to far outweigh Paul's more rapid ageing during the uniform motions, and ultimately to give the same ages of the twins on reunion as those following from the assumption that Paul, and not Peter, is the one who moves. The calculation in this last case is simple. No force-field is required, since the engine suffices to reverse Paul's motion and Peter does not move, so Peter's gain during the periods of uniform motion is the sole effect. (Incidentally, when Peter moves similar force-fields are needed to accelerate him initially from rest to velocity v and to bring him to rest again at the end, and at these events Peter and Paul are virtually at the same place, and the general theory requires that in such circumstances the difference in the effects on ageing is negligible.)
Now let us apply this to our example. If Paul is the traveller he ages by 1.5 days during each of his outward and return journeys and by a negligible
*It is called a gravitational field, but this is misleading because it must be granted properties not found in natural gravitational fields.

Why not discuss relativity?

After the accompanying article by Herbert Dingle had been submitted for publication, there appeared an article in New Scientist ${ }^{1}$, by Paul Davies, bearing the title "Why pick on Einstein?". This article defends relativity from its critics by presenting some of the evidence that is claimed to support the theory. As the only critic mentioned by name is Herbert Dingle, who is not able to answer back, I am briefly replying on his behalf. Because Professor Dingle has already presented the arguments in question himself, I shall not re-state them, but merely indicate the general nature of the arguments and cite appropriate references. I think the fact that Professor Davies does not even mention these arguments is evidence that they have not received enough attention from the scientific community.
Professor Davies mentions the Michelson-Morley experiment, stating that it consisted of comparing the times that light pulses travelling in perpendicular directions took to cross the same distance. But, as Dingle pointed out on various occasions ${ }^{2,3,4}$, the experiment did not involve a direct measurement of time; the time comparison has been inferred from interference patterns. Of the possible interpretations of the experiment, one is that Newton's laws of motion are wrong, another is that Maxwell's electromagnetic theory is wrong; the usual interpretation of the experiment, in which the time difference is deduced using Maxwell's theory, eliminates in advance the interpretation that that theory is wrong. This illegitimate elimination of one of the possible interpretations of the experiment rules out that experiment as evidence in support of the special theory.
Dingle has also pointed out ${ }^{3,4}$ that, in experiments that involve elementary particles moving at very high speeds, the speeds of the particles are not measured directly but are inferred from certain observations by a process that involves the use of Maxwell's. electromagnetic theory; this fact also rules out experiments of this kind as evidence in support of special relativity.
Professor Dingle ${ }^{4}$ has also questioned observations of double stars as evidence supporting the special theory. Although one of his hypotheses - that light travels at constant velocity with respect to its own source, however the source may move - may seem rather difficult to accept, it is surely no more difficult to accept than some of the other phenomena that many physicists appear to believe in. The hypothesis is based on a suggestion already made by Faraday, and if it were true it would also, according to Moon and Spencer ${ }^{5}$, allow clocks to be synchronised regardless of their state of motion. Dingle has also suggested that more attention should be devoted to the work of Ritz, whom he mentions in his article and whose work has recently been discussed by Waldron ${ }^{6}$.
Furthermore, according to Dingle ${ }^{4}$, all the experimental evidence that is taken to support the special theory could with equal validity be taken to support Lorentz's quite different theory if Eins-
tein's special theory had never been conceived. In another New Scientist article, Roxburgh ${ }^{7}$ appeared to agree with this when he stated that Einstein's thoery and Lorentz's were "observationally indistinguishable."
In his book Space and time in the modern universe, Professor Davies ${ }^{8}$ makes the following statement in connection with two clock-carrying observers in uniform relative motion "It is not that each observer merely sees the other clock running slow, it actually is running slow - a real physical effect." [Emphasis in the original]. This statement seems to me to provide strong, support for Dingle's claim that, if there are two clocks in uniform relative motion, the special theory requires each clock to run (not merely seem to run) faster than the other.
The heading of the New Scientist article ${ }^{1}$ uses the term "scientific malcontents" to refer to those who attack relativity. If being a relativist entails acceptance of all the mutuallycontradictory arguments (some of which I have recently documented ${ }^{9}$) that have been published in defending special relativity against the criticism of Herbert Dingle, then I prefer to be a scientific malcontent, and I accept that designation with pride. I think every scientist should be a malcontent; after all, what is the value of trying to contribute new knowledge unless one is dissatisfied with the present state of knowledge?
I could write at length about my encounters with what Davies calls the "special provision" that most editors of science journals make for coping with papers of the type he describes, but this is not the time or the place. In any case, Dingle has described his own experiences so eloquently ${ }^{4}$ that it is scarcely necessary to augment his description, but it is noteworthy that a supporter of relativity has now stated openly that most editors of scientific journals do make such special provision; it is not merely a figment of the critics' imaginations. Others who have encountered the "special provision" may tend to agree with me in thinking that the question in the heading of the New Scientist article should be amended to read: Why is criticism of relativity so resented?

Ian McCausland

References

1 Davies, P. Why pick on Einstein? New Scientist, vol. 87, 7 August 1980, pp.463-5.
2 Dingle, H. A Re-examination of the Michelson-Morley Experiment. Vistas in Astronomy, vol.9, 1967, pp.97-100.
3 Ref. 2 of the accompanying article
4 Dingle, H. Science at the Crossroads. Martin Brian \& O'Keeffe, 1972.
5 Moon, P., and Spencer, D. E. On the establishment of a universal time. Philosophy of Science, vol.23, 1956, pp.216-29.
6 Waldron, R. A. The Electrodynamics of Ritz. Speculations in Science and Technology, vol.2, August 1979, pp.259-71.
7 Roxburgh, I. Is special relativity right or wrong? New Scientist, vol.55, 28 September 1972, p. 602.
8 Davies, P.C.W. Space and time in the modern universe. Cambridge University Press, 1977, p. 39.
9 McCausland, I. Science on the defensive. Canadian Electrical Engineering Journal, vol.5, April 1980, pp.3\&4.
amount during the three periods of acceleration, while Peter ages regularly by 30 years during the complete process: hence, when they meet again, Peter's age is 30 years and Paul's three days. On the other hand, if Peter is the traveller he ages by 1.5 days during each of his outward and return journeys, and by almost 30 years during the change from recession to approach with respect to Paul, while the stationary Paul ages by 15 years during Peter's outward journey, changes during Peter's reversal to a state nearly 15 years before birth, and then ages by 15 years during Peter's return, somehow getting born shortly before Peter arrives. Consequently, when they meet, Peter's age is 30 years and Paul's three days - exactly as in the former case.

We can hardly suppose that Einstein, Born and the others believed that these processes were both actual occurrances, the one entitled to claim reality depending on our preference in choosing to whom to assign the motion, nor did they. What they supposed was that the only observable events in the whole process were the separation of Peter and Paul at the beginning and their reunion at the end. Everything that happened in between was regarded as being beyond possibility of observation and therefore demanding compatibility only with theory, not with experience, with which it had nothing to do. This is obviously so important that it is necessary to confirm it by quoting Einstein's own words (in translation), all that needs explanation being that the clock U_{1} is Peter and U_{2} Paul and that "the right and left hand columns" give the descriptions of the process, as I have described them, when Peter and Paul, respectively, are regarded as moving. Einstein writes ${ }^{3}$:
"You must bear in mind that exactly the same process is described in the right and in the left hand columns, but the description on the left refers to the coordinate system K while that on the right refers to K^{\prime}. According to both descriptions, at the end of the process the clock U_{2} is retarded by a definite amount compared with U_{1}. With reference to K^{\prime} this is explained as follows: it is true that during the stages 2 and 4 , the clock U_{1}, moving with velocity v, works more slowly than U_{2}, which is at rest. But this retardation is over-compensated by the quicker working of U_{1} during stage 3 . For, according to the general theory of relativity, the clock works the faster the higher the gravitational potential at the place where it is situated, and during stage $3 \mathrm{U}_{1}$ is indeed situated in a region of higher gravitational potential than U_{2}. Calculation shows that the consequent advancement amounts to exactly twice as much as the retardation during stages 2 and 4. This completely clears up the paradox."
What Einstein means here by "the same process" is, of course, everything that is observable, while "the description", which differs in the two cases, is wholly a mental construction. The first is unique, for it must be the one thing
that would actually occur; the last owes allegiance only to theory, not observation, and can vary within the limits allowed by the theory.
But it is clear, beyond possibility of question, that Einstein's "descriptions" relate to what is observable, and cannot therefore both be permissible; and furthermore, as the credentials of both are exactly the same, it is impossible to decide which must be rejected. Paul could be accompanied by a nurse, of such an age as to become 30 years younger without losing her power of intelligent observation, and she would report on return whether it was a baby or a teenage boy who arrived at the planet, and whether or not a baby was born during the return journey, even if she were unable to confirm the antenatal age of the being whom the planet left. The question I asked Dr Wilkie was, in effect, whether what the nurse would observe would admit of both of Einstein's "descriptions", or whether a
> ". . . Mathematical consistency, though a necessary condition, is not a sufficient one for the truth of a physical theory."

theory that required it to do so must be abandoned. I am not surprised at his reluctance to commit himself to a choice; nevertheless, it is imperative that scientists shall make a choice if the ethical demands of science are not to be jettisoned.
What is the net result of all this? As I have said, it throws no light at all on what would happen if the experiment were made, for it is an analysis, not of a physical process that has never occurred, but of the requirements of a theory that purports to accord with physical processes, and I think it shows beyond doubt that the special relativity theory at least must be wrong. If the motion can be ascribed equally rightly to either twin, it cannot make them age at different rates; if it makes them age at different rates, there must be an absolute standard of rest to provide a criterion for distinguishing the faster from the slower developer. The special relativity theory requires different rates of ageing to result from motion which belongs no more to one twin than to the other: that is impossible.
It is impossible to exaggerate the importance of this result, for this theory is, by common consent, "taken for granted" in Max Born's words, in all modern atomic research, and it determines the course of practically all current developments in physical science, theoretical and experimental, whether concerned with the laboratory or with the universe. To continue to use the theory without discrimination, therefore, is not only to follow a false trail in the investigation of nature, but also to
risk physical disaster on the unforeseeable scale, modern atomic experiments being what they are. It should therefore be a point of honour with those on whose authority atomic research is now being conducted to acknowledge at once the untenability of the theory, and to take without delay the necessary steps to discover where the theory falls.

That does not necessarily mean complete abandoning of its use, but it does demand the determination of the limits of its usefulness. It has already proved its effectiveness in many respects, and this has been mistaken by physicists for evidence of its truth. What the many successes of the Lorentz transformation equations have shown is that those equations are an effectual corrective of the imperfect classical electromagnetic equations within a limited range of experience. But it is now clear that the interpretation of those equations as constituting a basis for a new kinematics, displacing that of Galileo and Newton, which is the essence of the special relativity theory, leads inevitably to impossibilities and therefore cannot be true. Either there is an absolute standard of rest - call it the ether as with Maxwell, or the universe as with Mach, or absolute space as with Newton, or what you will - or else all motion, including that with the speed of light, is relative, as with Ritz. It remains to be determined, by a valid experimental determination of the true relation of the velocity of light to that of its source, which of these alternatives is the true one. In the meantime, the fiction of "space-time" as an objective element of nature, and the associated pseudo-concepts such as "time-dilation", that violate "saving common sense", should be discharged from physics and philosophy, and the fact realised that mathematical consistency, though a necessary condition, is not a sufficient one for the truth of a physical theory. Only thus can the scandal of more than half a century of confusion about the meaning of our own creations be ended.

References

1. Dingle, H., Proc. Phys. Soc. Lond., vol. A69, 1956, p. 925.
2. See my introduction to Duration and Simultaneity, Bobbs-Merrill, New York, 1965. (English translation by L. Jacobson of Duree et Sultaneite by H. Bergson.)
3. Einstein, A., Naturwissenschaften, vol. 6, 1918, p. 697.
4. Born, M., Einstein's Theory of Relativity. Dover Publications, New York, 1962, p. 355 .
5. Tolman, R. O., Relativity, Thermodynamics and Cosmology. Clarendon Press, Oxford, 1934, p. 194.
6. Pauli, W., Theory of Relativity. Pergamon, London, 1958, p. 152.
7. Moller, C., Theory of Relativity. Clarendon Press, Oxford, 1955, p. 258.
8. Born, M., and Biem, W., Proc. Kon. Ned. Akad. v. Weten (Amsterdam), vol. B61, 1958, pp.110-20.

Audio gain controls

A survey of the methods used to achieve acceptable control of gain in audio amplifiers.

by Peter Baxandall B.Sc. (Eng.), F.I.E.E., F.I.E.R.E., M.A.E.S., F.B.K.S.T.S.

The design of gain controls is by no means as simple as it might appear. Peter Baxandall examines the difficulties in design and comments on many circuits which have appeared over the years, from very simple types in which compromises must be accepted, to those used in high-performance equipment.

An ideal audio amplifier with variable gain would have the following characteristics:
(i) noise output voltage $=$ (source Johnson noise voltage) \times (gain)
(ii) ability to deliver its full output voltage even at very low gain settings, which may be less than unity. The amplifier is therefore capable of handling very large input voltages at the lowest gain settings.
The simplest way to achieve (i) is that shown in Fig. 1(a), but this simple tech-

Fig. 1. Two small gain controls which do not fulfil both main requirements. Circuit (a) gives low noise, but will overload at low gain settings, while (b) introduces additional noise.
nique obviously fails lamentably with regard to (ii), for the maximum input voltage that can be handled without overloading is the same at all settings. The arrangement of Fig. l(b), on the other hand, achieves (ii) perfectly, but fails with regard to (i).

By using sufficiently subtle gaincontrol systems, it is possible to satisfy (i) and (ii) concurrently and almost perfectly, but the simple and widely used arrangement shown in Fig. 2 provides a compromise solution which is very satisfactory for many practical purposes.

An ideal amplifier would give a variation of output noise voltage with

Fig. 2. This arrangement combines circuits of Fig. $1(a)$ and (b) to give compromise performance.
gain setting as shown by the full-line graph in Fig. 3, whereas the Fig. 2 scheme gives a characteristic as depicted by the broken line. Below a certain setting of P, the noise level from amplifier A at the output of \mathbf{P} becomes less than the noise level of amplifier B referred to its input, so that the noise of amplifier B becomes the dominant contribution, establishing the level of the broken-line "plateau".
Now there is obviously no practical advantage in achieving an output noise level which is a long way below audibility at very low gain settings, so that a characteristic of the broken-line type is normally perfectly satisfactory, provided the level of the horizontal plateau is low enough. For a given overall maximum gain requirement, the product of the voltage gains of amplifiers A and B in Fig. 2 is fixed, but there is a choice with regard to the apportionment of this gain between the two amplifiers. The higher the gain of A is made, the lower is the position of the Fig. 3 plateau, but there is the disadvantage that the maximum signal input that can be handled without overloading amplifier A is reduced.

In domestic audio control units, the

Fig. 3. Dotted line shows gain variation given by circuit of Fig. 2, where residual noise from amplifier B is predominant at fow gain settings.

Fig. 2 arrangement is usually used. A suitable choice for the gain of amplifier B is normally such that full output level is delivered to the following power amplifier for an output level from the pot. slider of about 100 mV r.m.s. If the wideband noise of amplifier B, with P set to zero, is equivalent to a noise input voltage to B of $0.5 \mu \mathrm{~V} \mathrm{rms}$, which is fairly readily achievable, the zero-volumesetting noise output from B will then be 106 dB below the full signal output level. (It may be added, however, that if the gain of B is made high enough to cope with the least sensitive of power amplifiers, which may require an input level of several volts, then the signal level at the pot. slider for full power output when used with a very-highsensitivity power amplifier, will be much less than 100 mV rms , and a figure much less than the 106 dB mentioned above will then apply. Thus, for versatile use, it is desirable to provide a preset gain adjustment within amplifier B, or in the form of a simple passive attenuator after this amplifier.)

A closer approximation to concurrently satisfying conditions (i) and (ii) at the beginning of the article may be obtained, on the same principle as in Fig. 2, by employing three amplifiers with ganged gain-control pots. between them, but in general it is much better, instead, to employ schemes in which variable negative feedback provides much of the gain variation.

Variable-feedback gain control offers advantages both with regard to achievable performance (noise and signalhandling) and often with regard to economy of circuit design. Variable feedback alone cannot normally reduce the gain to zero; for 100% voltage feedback reduces the gain to unity rather than zero. Thus, it is usual to combine feedback variation with passive gain control, sometimes using a ganged pot. and sometimes using the parts of the track either side of the slider, in an ordinary single pot., to perform these functions. There are many possible schemes, of which some have been known for thirty years or more.
One of the simplest schemes is that shown in Fig. 4. The pot. resistance can be made quite low; e.g. $1 \mathrm{k} \Omega$, since it is driven by the op. amp., not the signal source. This results in a good noise performance at all settings. Disadvantages of the circuit are:
(a) the minimum gain is unity, not zero, and
(b) a floating signal source is required.

Disadvantage (b) is of little consequence when an input transformer is used, and (a) may be overcome by taking the signal output from the pot. slider. The latter change, of course, sacrifices the virtue of very low output impedance possessed by the Fig. 4 version.

Fig. 4. Simple feedback gain control.
In assessing the pros and cons of various circuits, it is very helpful to appreciate the relationships between the circuits in the most vivid possible way, rather than relying purely on formal analysis. Very often the differences between circuits are much smaller than they appear to be, involving merely the choice of earthing point and/or the way of drawing the circuit diagram, rather than differences of more fundamental significance. Sometimes, in redrawing circuits employing op. amps. to facilitate better understanding of them, it is helpful to replace the op. amp. symbols by ordinary single-transistor symbols - an unfamiliar-looking circuit may then suddenly be recognised as an old friend! At other times, replacing a detailed transistor circuit by the op. amp. equivalent may reveal its true nature in the best way.

Fig. 5. Single transistor equivalent to Fig. 4, neglecting d.c. conditions.
Rearrangement in (b) shows circuit to be easily recognizable.

On replacing the op. amp. in Fig. 4 by a transistor, the circuit of Fig. 5(a) is obtained. Though the collector would in practice be taken to a positive supply line, it is here shown as earthed, for in the present context we are concerned only with a.c. aspects and it is best to omit irrelevant details.

Shifting the earthing point to the emitter of the transistor, but making no other changes, leads to Fig. 5(b), which ios a simple common-emitter amplifying stage with adjustable feedback.

If the output in the Fig. 4 circuit is taken from the pot. slider instead of from the point shown, then the circuit, redrawn with a transistor in place of the op. amp., is as in Fig. 6(a). Merely shifting the earthing point to the pot. slider then yields the circuit of Fig. 6(b). It is now evident that moving the slider to the right has two separate effects - it increases the amount of resistance in the emitter lead, thereby increasing the amount of negative feedback, and it reduces the collector load resistance. Both these effects contribute to reducing the gain, which becomes zero with the slider fully to the right.

(b)

Fig. 6. Fig. 4. Circuit with output taken from pot slider and rearranged at (b) to show dual function - varying emitter resistance and varying feedback.

Employing just a single transistor, as in Fig. 6(b), will give a noise performance which is inferior to that achieveable with more elaborate arrangements. This is largely because the resistance inserted in the emitter lead is itself a generator of Johnson noise, which is effectively added in series with that generated in the internal resistance of the signal source. The transistor d.c. operating current must be chosen in relation to the source impedance, for good noise performance, and it will then be found that to obtain a substantial reduction of gain by inserting emitter resistance, the amount of resistance needed will give considerable degradation of the noise figure.

The above noise difficulty may be

Fig. 7. Fig. 6(b) using an op. amp.
solved by replacing the single transistor by a suitable pair or triple, having a much higher mutual conductance than the single transistor but whose input stage operates at a similarly low current. The increased mutual conductance and output current permit the resistance values associated with the gain-control pot. to be made much lower, with a correspondingly reduced effect on the noise performance at low gain settings. The well-known configurations for pairs and triples as used in audio class ' B ' output stages may be adapted to the present application, but an interesting alternative is that shown in Fig. 7. Here the supply connexions to the op. amp. are used as the equivalent of the transistor collector in the Fig. 6(b) circuit - a way of using an op. amp. which perhaps deserves to be more widely borne in mind.
Assuming infinite mutual conductance, the voltage gain of the Fig. 6(b) idealized circuit is simply $k /(1-k)$, Expressing this in decibels gives the graph of Fig. 8(a). The Fig. 8(b) graph is a measured one for the circuit of Fig. 7.
With the idealized circuit of Fig. 6(b), unity gain occurs when the pot. is set for $k=0.5$, and the curve is quite symmetrical about this centre point. With the Fig. 7 circuit, however, the curve is not symmetrical about the unity-gain point. This is because the right-hand part of the pot. is shunted by the parallel value of the two $1 \mathrm{k} \Omega$ resistors going to the supply lines.

Another very simple feedback gaincontrol circuit is shown in Fig. 9. With high forward gain in the op. amp. itself, this circuit gives a gain, between the input and output terminal pairs shown, accurately equal to $k /(1-k)$. (This formula, as for the Fig. 6(b) case, may be prefixed by a minus sign if it is desired to allow for the fact that phase inversion occurs.)
The Fig. 9 circuit, unlike those previously discussed, has the feature that the current in the gain-control resistance chain is supplied by the signal source. This makes it impossible to achieve a good noise figure over a wide range of gain adjustment, no matter how the resistance values are chosen in relation to the signal-source impedance. That this must be so can best be understood as follows. Negative feedback as such never has any effect on the signal-

Fig. 8. Gain variation of Fig. 6(b) circuit is at (a). Measured performance of equivalent op. amp. circuit of Fig. 7 is shown at (b).

Fig. 9. Feedback gain-control circuit, which has disadvantage of source-fed resistor chain, giving poor noise figure over wide range.
to-noise ratio, at a given frequency, of an amplifier circuit to which it is applied, though the resistors introduced for the purpose of providing the feedback may do so. Thus the output signal-to-noise ratio of the Fig. 9 circuit is the same as that of the circuit shown in Fig. 10. If R is made low, say equal to the internal resistance of the signal source, it will degrade the signal-tonoise ratio at the source terminals*, whereas if R is made much higher, a

[^1]

Fig. 10. Circuit of Fig. 9 gives same noise performance as circuit shown here.
large amount of resistance is introduced into the op. amp. input circuit at intermediate slider settings, with correspondingly large Johnson noise and maybe noise from the op. amp. equivalent current-noise generator.
Comparing Fig. 10 with Fig. 1 (b) might suggest that the Fig. 9 circuit is no better than that of Fig. 1(b) as regards noise performance. This is not so, however, for to effect a given number of decibels reduction of gain below maximum, the slider in Fig. 9 has to be moved a smaller fraction of the way from the signal-source end of R than is necessary for the same gain reduction in the Fig. 1(b) circuit. The noise performance of Fig. 9 is better than that of Fig. l(b), but is nevertheless not very good.
Another feature of the Fig. 9 circuit which makes it undesirable for some applications is that the loading of the signal source varies with the pot. setting. If the signal source has a complex internal impedance, the overall frequency response will vary with the gain setting.
This undesirable characteristic of the Fig. 9 circuit may, to a large extent, be' overcome by inserting an emitterfollower (or op. amp. follower) between the signal-source and the left-hand end of the resistance chain. With a $50 \mathrm{k} \Omega$ signal-source, for example, R could be made about $5 \mathrm{k} \Omega$, giving reduced Johnson noise from R but nevertheless subjecting the signal-source to negligible loading.

As already mentioned, the Fig. 9 circuit as it stands produces the gaincontrol characteristic shown in Fig. 8 (a), which is symmetrical about the unity-gain point. Over a range of about 30 dB , and using an ordinary linear pot., the scale shape obtained approximates fairly reasonably to the desirable one having uniformly-spaced decibel divisions, though for many applications a gain of more than unity would be preferred at the centre of this control range. The modification shown in Fig. 11 provides an increased gain at the point of inflexion of the control characteristic, but has the weakness that the gain cannot be reduced right down to zero. Provided R_{a} and R_{b} are made much lower in value than the pot. resistance, however, the minimum gain may be made sufficiently low for many purposes.
If a stud type pot. is used, and assuming there is complete freedom in the choice of its law and total resistance
value, the Fig. 11 modificiation gives no advantage, the required performance being obtainable with better economy of components by adopting the Fig. 9 arrangement.
The circuit of Fig. 12 possesses a combination of several good features. It employs only one op. amp., has a high input impedance, the feedback network can be of low resistance for good noise performance; and the values of R_{a} and R_{b} can be chosen, in relation to R, to make the point of inflexion in the control characteristic occur at a gain of much greater than unity, as sometimes desired.

Analysis shows that the gain of the Fig. 12 circuit is given by:
$\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{R+\frac{R_{\mathrm{b}}}{1-k}}{R+\frac{R_{\mathrm{a}}}{k}}$.
or $\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{k}{l-k} \times \frac{R(1-k)+R_{b}}{R_{\mathrm{k}}+R_{\mathrm{a}}}$
Thus, if R_{a} and R_{b} are each much greater than R, the gain is approximately proportional simply to $k /(l-k)$, and is approximately equal to $R_{\mathrm{b}} / R_{\mathrm{a}}$ when $k=0.5$. Thus the control characteristic is fairly closely as in Fig. 8 (a) but shifted upwards. For lower values of R_{a} and/or R_{b} the characteristic is of modified form, covering a smaller number of decibels with reasonable linearity:

The curve shown in Fig. 13 is the result of a measurement using the Fig. 12 circuit with the following values:

$$
R=1 \mathrm{k} \Omega R_{\mathrm{a}}=330 \Omega R_{\mathrm{b}}=3.3 \mathrm{k} \Omega
$$

Comparison of this curve with Fig. 8(a) shows that it gives a poorer

Fig. 11. Variation of Fig. 9, giving increased gain at halfway position of slider.

Fig. 12. Circuit featuring only one amplifier, high input impedance, low-resistance feedback chain for low noise and flexibility in choice of inflexion point.
approximation to the ideal linear shape for values of k above about 0.2 . (The ideal curve would not, of course, remain linear down to $k=0$, for this would make it impossible to fade a programme down to zero volume. For most audio purposes, the ideal characteristic would cover about 40 dB linearly, curving down to "minus infinity dB" below about $k=0.2$.)

Another circuit combining feedback and passive gain variation by means of a single linear pot. is shown in Fig. 14.

Fig. 13. Curve of circuit in Fig. 12.

This, in essence, is the circuit used by the BBC in their OBA9 outside broadcast amplifier, published in 1952. The gain is given by:-
$\frac{v_{\text {out }}}{V_{\text {in }}}=\frac{k R+R_{\mathrm{a}}}{R_{\mathrm{a}}} \times \frac{R_{\mathrm{b}}}{(1-k) R+R_{\mathrm{b}}}$
or $\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1+k R / R_{\mathrm{a}}}{1+(1-k) R / R_{\mathrm{b}}}$
The Fig. 14 circuit cannot give zero voltage gain, the gain with $k=0$ and

Fig. 14. Circuit providing feedback and passive control in one pot.

Fig. 15. Full-line curve shows calculated performance of Fig. 14 for two values of R_{b}.

Fig. 16. BBC OBA8 circuit of 1939, with peak programme meter.

100% negative feedback being $R_{\mathrm{b}} /(R+$ R_{b}). Though not an ideal feature, the minimum gain in the BBC design is nearly 90 dB below the maximum gain, and is stated to be "effectively nil in normal conditions of use" ${ }^{2}$.

The full-line curve in Fig. 15 is a calculated result for the Fig. 14 circuit, using the values $R=100 \mathrm{k} \Omega, R_{\mathrm{a}}=330 \Omega$ and $R_{\mathrm{b}}=3.3 \mathrm{k} \Omega$. For the broken-line curve, R_{b} was changed to $10 \mathrm{k} \Omega$. (The values in the BBC design were $R=1 \mathrm{M} \Omega$, $R_{\mathrm{a}}=390 \Omega$ and $R_{\mathrm{b}}=100 \mathrm{k} \Omega$.)

Figure 15 shows that with an ordinary, linear $100 \mathrm{k} \Omega$ pot. in the Fig. 14 circuit, a control law not departing by more than 2 dB from the ideal linear decibel scaling is obtained over an approximately 40 dB range. In the BBC design ${ }^{2}$, a stud type of $1 \mathrm{M} \Omega$ pot. was used, giving 38 steps of 2 dB each and two larger steps at the low-gain end. Of course, if the luxury of stud pots. is allowed, any of the circuits here discussed may be given whatever control law is desired.
Though there is much to be said on grounds of economy, especially in stereo systems, for using a single pot. section to vary the feedback and effect passive attenuation, the use of ganged stud type pots. to perform these operations separately gives the designer greater freedom of choice in optimizing the design in all its aspects. This technique was used in the BBC OBA8 outside broadcast amplifier, designed well over forty years ago ${ }^{1}$. Starting at the maximum-gain setting, anticlockwise rotation of the knob first simply applied increasing negative feedback to the first stage, by raising the effective value of the feedback resistance in the cathode circuit. When this purely local feedback had been increased sufficiently to give a gain reduction of 16 dB , further rotation of the knob maintained this first-stage feedback constant but proceeded to insert increasing passive attenuation between the first stage and the second (output) stage. In this way the twovalve amplifier was made capable of delivering full output level to line, at low distortion (abour 1\%) for peak microphone input levels extending over a range of 56 dB . (It is evident that the designers of this amplifier and the associated units gave high priority to keeping the number of valves used down to the absolute minimum necessary number. This is understandable enough, bearing in mind that the $\mathrm{AC} / \mathrm{SP} 3$ television pentodes used were physically large and consumed four watts of heater power each. Now that high-gain devices are very small and cheap, and consume relatively tiny amounts of power, the designers of today are justified in adopting a very different outlook, often exploiting the plentifulness of gain to eliminate, or reduce the size of, transformers and also to achieve lower distortion levels in equipment of very much smaller size. Now that it has become fairly easy and cheap to obtain very low distortion

Fig. 17, BBC OBA9 circuit, designed in 1952.

Fig. 18. Author's design of 1961.

Fig. 19. Circuit by McWhorter of 1966.
levels, there is little argument for doing otherwise, whereas when the OBA8 was designed, lower distortion would have meant more valves, higher power consumption and shorter operating time on standby batteries. The designers were therefore justified in making the distortion just comfortably low enough, but no less, though they were doubtless
quite capable at that time of achieving much lower distortion levels had this been thought desirable. In most circumstances of use, it is doubtful whether the subjective quality of the OBA8 could be distinguished from that of the best modern equipment. The weakest feature of the design is that the secondary of the input transformer,
which stepped up to the exceptionally high impedance of $300 \mathrm{k} \Omega$, is shunted by a $300 \mathrm{k} \Omega$ resistor, thus sacrificing, in simple theory, 3 dB of potentiallyavailable signal-to-noise ratio. This point does not appear to have been appreciated at the time.)

Figures 16-19 show four practical amplifiers which use a combination of feedback and passive gain control. The McWhorter design ${ }^{4}$ of Fig. 19 employs the basic circuit of Fig. 12, which has also re-surfaced recently in a Philips tape recorder ${ }^{8}$.

My own circuit ${ }^{3}$ of Fig. 18 is the same in broad principle, but unlike Fig. 12 has the negative feedback and the signal output taken from different electrodes of the output stage. This permits injection of the feedback voltage in series with the transformer secondary, thus obviating the introduction of local emitter feedback in the input stage, Though this circuit was in regular and very successful use for some years, a weak point in its design ultimately became evident, but only after hard service had caused the pot. slider to make erratic contact with the track. Unfortunately, if the slider fails to earth the track, there is a signal path straight through the track from the output collector to the input base. This is positive feedback and is of greater magnitude than the negative feedback from the output emitter. Violent oscillation therefore occurs during moments of poor slider contact, with accompanying very loud noises from the loudspeaker! The other circuits described do not have this weakness - a'point worth bearing in mind.
To be continued

References

1. Barrett, A. E., Mayo, C. G. and Ellis, H. D. McD. "New Equipment for Outside Broadcasts." World Radio July 21, 1939, pp. 12-13 and July 28, 1939, pp. 10-11.
2. Berry, S. D., "New Equipment for Outside Broadcasts", The BBC Quarterly, Vol. VII, No. 2, pp. 120-128. (Summer 1952).
3. Baxandall, P. J., "Low Distortion Amplifiers - Part 2", B.S.R.A. Journal, Vol. 6, No. 11, pp. 246-256. (Nov. 1961).
4. McWhorter, M. M. and Warner, G. S., "A Low-Noise Transistor Microphone Amplifier", IEEE Trans. on Audio \& Electroacoüstics, Vol. AU-14, No. 1, pp. 27-31. (March 1966).

A Users Guide to Copyrighi, by Michael F. Flint, is intended to make clearer the subject. of copyright "to enable people whose jobs or even hobbies - cover any copyright field, to acquire a general understanding". It is, thowever, only a reference book, and does not cover all the more complex legal aspects which may arise when dealing with this intricate subject. The book is laid out in a manner which will enable its reader to obtain the relevant piece of information quickly, and each chapter is sub-divided into well defined sections, each with a reference number and a bold sub-heading. Part 1 , the first 14 chapters, is a general explanation of the copyright law, whilst the second part gives a more specified description of copyright in practice, with chapters directed at publishers and printers, advertising agencies, the music industry etc. The book is published by Butterworth Law Publishers Ltd, 88 Kingsway, London WC2B 6AB, and its price is $£ 8.50$ in limpback form.

Microcomputers are responsible for a great number of paperbacks, mainly from the USA, and the pace of publication does not appear to be slackening. Three such books have reached this office recently, among others too numerous to mention, each slanted in a different way.

The first is by a British author, Robin Bradbeer, and is entitled The Personal Computer Book, published by Input Two-Nine at £5.25 and distributed by MCB Publication, 198/200 Keighley Road, Bradford, West Yorks. BD9 4JQ. This one assumes no knowledge of computers - not even enough to know what computers will do - and, accordingly, the first two chapters are extremely basic. The rest of the book is an attractively written explanation of the more important aspects of computing techniques and of computers, a very useful feature being a survey of equipment currently on the market. Several appendices provide information which is quite difficult to find elsewhere in one place, such as bus standards, addresses of clubs, manufacturers and publications.

The second book, by E. A. Parr, is published by Bernard Babani (Publishing) Ltd., The Grampions, Shepherds Bush Road, London, W6 7NF at $£ 1.75$. This one is entitled A Microprocessor Primer, and approaches the subject by way of a hypothetical device, the DIM-1, so that the author can explain general features of microprocessors without being constrained by any particular design. Having gone through this process, he then sets out to study the Z-80. This is a small book (75 pages) but within its scope achieves its purpose.

Thirdly, there is Introduction to Microcomputers for the Ham Shack, by Harry L. Helms, Jr., published by Howard Sams and distributed by Prentice-Hall International, 66 Wood Lane End, Hemel Hempstead, Herts HPZ 4RG at £3.20. Also a small book, this is concerned with the application of micros to amateur radio. Three chapters are allocated
to the basics of micro operation and programming, after which two chapters describe present and future operations using micros to send and receive Morse, to convert slow-scan tv to fast-scan for ordinary viewing, to store frequencies, in digital modulation, and in several other roles.

Early Radio Wave Detectors, by V. J. Phillips, gives a comprehensive account of various radio wave detectors used before the advent of the crystal and thermionic valve. Among the types described are spark-gap, electrolytic, magnetic, thin-film and capiliary detectors, as well as tickers, tone wheels, heterodynes and coherers, the type of detector which makes use of "a phenomenon which occurs in a poor electrical contact, the sort of contact which the engineers of today would call a 'dry joint' ".
Among the items described under the heading "Miscellaneous detectors," are the 'physiological' receiver, which made use of the electrical sensitivity of a frog's leg to displace a pointer on the smoked surface of a rotating drum, and the use of a human brain as a coherer, the description of which is supplemented by a photograph for which an advisory note is given for the benefit of "readers of delicate sensibilities". Be forwarned, however, the note appears at the bottom of the page, and the photo at the top!
The last chapter, entitled "And so to the modern era," covers the early crystal and thermionic valve type detectors and how they were used - an appropriate finale to an interesting and well-illustrated book. The publishers are Peter Peregrinus Ltd, Marketing Dept, Station House, Hitchin, Hertfordshire SG5 1RJ, and the price of the book in hardback form is $£ 16$.

Digital Techniques and Systems, by D. G. Green, is intended as a first course book for students with a basic knowledge of electronics and telecommunication transmission techniques, but the combined coverage of basic techniques used in modern digital circuits, and elementary principles of data communication, laid out in a logical sequence, make it useful for anyone wishing to gain insight into this field.

Chapter 1 gives a concise introductory description of a few of the uses of modern digital applications to which he may put the knowedge that he is about to learn. The second and third chapters cover the operation of electronic gates of all kinds and the remainder of the book, which includes chapters on digital modulation, data-links and pulse code modulation, is devoted to the subject of data transmission over telephone lines.
Worked examples are included in the text, and each chapter concludes with exercises, some of the questions of which have been taken from past C and G examination papers. Multiple-choice questions are also provided at the end of the book, which is priced at £4.95 and published by Pitman Books Ltd, 39 Parker St, London WC2B 5PB.

* Model C Miniature - 15 Watts Price $\mathrm{f4} 20 *$ Model $C X-17$ Watis Price $£ 4.40$ * Model X25-25 Watts Price $\mathrm{f4} 40$
*ST. 3 Stand to fit all irons Price f1.60 * Model S.K. 1 Kit contans a 15 Watt minature ron with 2 spare bits, a coil of soldec, a heat sink and a booklet "How to Solder" Price f6.25 * Model S K. 3 Kit contains Model CX 230 iron - 17 Watts with the S.T. 3 Stand Price $\mathrm{f6.00}$ * Model S.K. 4 Kit contains Modet $\times 25 / 240$ iron -25 Watts with the S. T. 3 Stand Price f 6.00 .

Model TCSUI. Temperature controlled soldering stations, now made from the toughest of tough plastics; have anti-static earthing connections to protect your MOS devices. They come with either the miniature CTC or the XTC low voltage \{24V) iron. Included also is a range of 3 slzes of bits, 2 m anti-static cable, jack. crocodile clip. separate sponge tray. Zero voltage switching to prevent spikes or arcing: no magnetic fields. Temperatures can be set between 65° and $420^{\circ} \mathrm{C}$. Current leakage is neghigible. Price $f 38.00$

Stocked by many wholesalers and retailers or direct from us
W.W. 10

NEW R.F. MILLIVOLTMETER

The TM8 is a new autoranging analogue true r.m.s. millivoltmeter with a specified operating range of 10 kHz to 1 GHz and useful indications up to 1.5 GHz . It measures r.f. voltage from 1 mV to 3 V (or 300 V using the $100: 1$ precision divider) and also has a logarithmic range which spans four decades-useful in setting-up tuned circuits.

Careful consideration of the circuit design resulted in the use of CMOS low power IC's thus the whole unit only uses five watts of power and has minimal temperature drift as well as high reliability

The meter is provided with damping so that fast changes in amplitude of the signal can be filtered out without either registering on the meter or on the pen recorder output. This output socket gives a 0 to 1 V output for zero to full scale reading on the meter.

Like most Farnell r.f. test gear, the TM8 is b.c.d.
programmable and will soon be 'busable' using the Farnell Omnibus IEEE488 interface.
A final touch of refinement to the design is the -'hold-reading' switch on the probe which will, as its name suggests, hold the reading that appears in the meter to within 1% for at least 3 minutes.

The TM8 is supplied complete with probe (integral with input lead) probe to b.n.c. adapter, 'T' connector and 100:1 high impedance divider.

Leaflet available.

An acoustically small loudspeaker

Unusual design gives low colouration and good off-axis response

by R. I. Harcourt B.Sc., M.I.E.E.

This design for an active-crossover loudspeaker system is based on acoustic principles which are well established, and on psycho-acoustic criteria which are subjective in nature. As with all designs, trade-offs are possible. The acoustically small loudspeaker is designed to reduce colourations of the sound, below the limit of audibility where possible. This can be done at the expense of bass distortion, though since $\mathbf{4 0 \%}$ second harmonic distortion is inaudible at $80 \mathbf{~ H z}^{1}$, it is not considered important. In addition, a novel fourth-order, bandpass sub-woofer is described using an acousto-electronic crossover and feedback Q correction.
even ideal drive units are at a disadvantage in a wooden cuboid. The shape, size, materials and construction of an enclosure all have audible effects on the response. The great advantage of home construction is that one is freed from many of these constraints, and this advantage is exploited in the design. A $\mathrm{mid} /$ high frequencyenclosure is made of modelling clay which does not require firing. Thus, the shape and materials of the enclosure are optimized.

Cavity resonance

Distortions in musical sounds take several forms, and the total harmonic distortion is often quoted. More recently, it has been found that this measurement does not correspond well
with how a unit sounds: indeed, sometimes a valve amplifier with a high t.h.d. is preferred to a transistor design. It has become clear that steady-state measurements do not give a good indication of performance, and other measurements have been used. With pickup cartridges and loudspeakers, there is a large variation between units sometimes expressed as "detail" or "dynamics", perhaps due to the presence or absence of masking effects of one sound upon another. More complex effects have been found, which are time-dependent, such as the 1 millisecond forward inhibition of a sound upon a following one, and the 30-120 millisecond backward inhibition of a sound upon a preceding one ${ }^{4}$. These

The basic aims of the design were low colouration and a uniform off-axis frequency response. A flat on-axis frequency response is the accepted criterion, but the off-axis response often compromised in commercial designs - determines the stereo imaging qualities. Colouration and off-axis response depend upon both the drive unit and its enclosure, particularly in the mid-range, where the ear is most sensitive: it is between $1-4 \mathrm{kHz}$ that most of the image is found. To avoid compromising this part of the spectrum, the Jordan 50 mm aluminium-coned unit was used for its small size, low colouration, and good transient response - this was the only drive unit found for which the impulse response is published. It must be emphasized that it was not designed as a mid-range unit, and is specified to 22 kHz : the booklet advocates using the unit, together with a bass driver, to form a two-way system ${ }^{3}$. However, to the author's and a colleague's ears, an improvement was obtained with the use of a dome tweeter above 4 kHz , making a three-way system. Whichever way the unit is used, there are no crossovers in the critical range 500 Hz to 4 kHz to detract from the imaging quality by giving rise to an uneven polar response around the crossover frequency ${ }^{2}$.
The design of a loudspeaker is often influenced by the ease, or otherwise, of its manufacture. For example, it is rare to find other than a cuboid of wooden construction used for the enclosure. But

could be stimulated by delayed resonances in transducers, which often have time-constants within these ranges. With this in mind, and the author having a particular dislike of the sound of delayed resonances, the design for the acoustically small loudspeaker sets out to minimize them.
The cavity resonances of an enclosure constitute an inharmonic series given by the solution to the wave equation for rectangular (or other) boundary conditions. The cuboid has resonances at
$f_{n x, n y, n z}=\frac{c}{2} \sqrt{\left(n_{\mathrm{x}} / x\right)^{2}+\left(n_{\mathrm{y}} / \mathrm{y}\right)^{2}+\left(n_{\mathrm{z}} / z\right)^{2}}$
where c is the velocity of sound, n_{x}, n_{y}, n_{z} are integers chosen separately and x, y, z are the dimensions. These resonances can be heard because they present a widely varying acoustic load to the rear of the diaphragm and thus affect its motion. At high frequencies they can be damped using acoustic filling material, but this is not true at lower frequencies, nor necessarily for small enclosures; for both frequency and thickness of material affect the absorption. An acoustically small loudspeaker is of such a size that the lowest, and therefore all, the cavity resonances are outside the passband, and the loudspeaker is used below these frequencies. This applies, then, to a bass unit. Choosing $n_{x}=1, n_{y}=0, n_{z}=0$ gives the lowest resonance at

$$
f=c / 2 d
$$

where d is the largest dimension of the enclosure, and this is the onedimensional half-wave standing wave.

Panel resonance

Many loudspeakers have a "boxy" sound while reproducing male speech. The box can produce sounds in various ways, one of which is given above. Another way is by the panels of the box vibrating. It has been found ${ }^{5}$ that at certain resonant frequencies, the output of the box is within a decibel or so of that of the loudspeaker. As an experiment, some enclosures were made after Linkwitz z^{2}, constructed of 6 mm plywood with a 10 mm internal layer of roofpatching tar. The transmission of the cabinet side-panel was measured by placing two such units together, fed by sine-waves of equal amplitude but opposite phase, so as to null the sound from the loudspeaker. The microphone was placed 1 cm from the side-panel so that the near-field response was measured. The results are shown in Fig 1. After correcting for the relative emitting area of the panel and allowing for two panels, the output from the box at 150 Hz was found to be about 8 dB below that from the drive unit. Since the Q was measured to be 5 , the box will continue to produce the sound after the drive unit has finished, which constitutes a delayed resonance. In this case the 40 dB decay time will be $Q / 0.7 f=48 \mathrm{~ms}$.

Fig. 1. Near-field transmission of cabinet side compared with that from $B 110$.

Fig. 2. Cavity and panel resonances for varying maximum dimension.

A panel has a series of resonant frequencies, the lowest one of which is at

$$
f=\frac{B t}{2 \pi a^{2}} \sqrt{\frac{E}{\rho\left(1-\mu^{2}\right)}}
$$

where t is the panel thickness, a its dimension (for a square panel), E the Young's modulus of the material, ρ the density and μ the Poisson's ratio. B varies according to the construction, and is higher for a clamped panel than a freely supported one. For loudspeaker enclosures, B is taken as 8 . An acoustically small loudspeaker can be made so that the lowest, and therefore all, the panel resonances are above the frequency of operation. The two resonance functions mentioned are plotted in Fig 2. From this can be determined the maximum dimension of an enclosure for it to be acoustically small. It can also be appreciated that most loudspeakers are acoustically large. The graph of the lowest cavity resonance
coincides with a criterion for determining the maximum frequency at which to operate a drive unit to ensure wide dispersion, and the maximum enclosure width.

The sound emitted by an enclosure depends upon its dimension and the degree of its motion. For a circular piston, the emitted sound pressure level increases by 12 dB for a doubling of its diameter, which implies that as a box is made smaller, so the sound radiated from it decreases. However, the internal pressure within the box increases as the volume is decreased, so that the deflecting force on the panel increases. This is compensated by a decrease in the actual deflection with reducing dimension, according to a square law. The combined effect of all this is a decrease of about 6 dB in the emitted sound with a halving of the dimension. All the above factors represent a confluence of ideas. pointing to acoustic size as being an important parameter. It is therefore no coincidence that listening tests have
revealed a preference for small loudspeakers, provided that these are also well designed in other respects.
The panel transmission loss below the first resonance depends on the stiffness of the material used, not its mass or damping properties. The bass enclosure is best constructed of a thick material of high Young' Modulus. In this respect plywood is better than chipboard and hardwood better than plywood. Glass would seem to be an ideal material, for it has a Young's modulus 75 times that of chipboard, and an enclosure can be fabricated in the same way as an aquarium, using silicone rubber as an adhesive. This is a subject for further work.

Clay enclosure

Diffraction round an enclosure has been found ${ }^{6,2}$ to have a bearing on the frequency response and stereo imaging qualities of an enclosure, and Fig. 3 shows the frequency response of differently shaped enclosures, other things being equal. The sphere was found to give the smoothest response of the shapes tested, since there are no discontinuities in the surface to give rise to frequency-dependent effects. A novel enclosure is made as close to a sphere as practicable, and consists of a short vertical cylinder with domed top, as shown in Fig. 4. The shape is achieved by using modelling clay, which has a high density and large internal losses - it is acoustically "dead". The clay used is sold under the trade name of "Das", and does not require firing. It is not possible to include the bass unit in this enclosure, so only the mid/high-frequency unit or units are placed in it, and it is stacked on top of the bass enclosure. Because of the rounded shape, advantages are obtained in suppressing cavity resonances. The top-to-bottom, onedimensional standing wave which normally occurs in a pipe is suppressed by

(a) Sphere
(b) Cuboid with slant foces
(c) Vertical cylinder

Fig. 3. Frequency response of four different cabinet shapes.

Fig. 4. Author's prototype. Clay enclosure on top contains mid and high-frequency units, while wooden bass enclosure is for B110. Single sub-woofer is not shown.
the domed top, and similarly the axial one-dimensional standing waves are suppressed by the cylindrical walls. This leaves the two-dimensional waves, and the lowest is calculated to occur at 1.4 kHz , where the damping material used has a high absorption.

Bass enclosure

The simplest way of making an acoustically small bass enclosure is to make it physically small, and for operation up to 500 Hz the lowest resonance is placed higher, at 1 kHz , where the response is 20 dB down. This, combined with the high absorption of the filling material and the internal losses of the enclosure material, will give only very small amounts of unwanted sound. The maximum dimension for the bass enclosure is found from Fig. 2 and is 16 cm . The volume of a 16 cm cube is 4 litres, and it is clear that this will give insufficient bass extension. A cube is to be avoided, since resonances coincide to give a higher Q, and the bass enclosure
is best made with dimensions in the ratio 2.3:1.6:1, this being the ratio used for designing listening rooms. The maximum volume is around 1.1 litres, which is too small, and so a modification is called for. A 5in bass unit requires an enclosure dimension of 15 cm on the front panel, and so the box is made square at 16 cm : the other dimension is determined by the volume obtained from the design profedure for bass loading. The volume is divided internally by a partition placed to brace the magnet against the back panel, which also suppresses the offending double resonance caused by the square dimension.
An acoustically small loudspeaker does not have to be physically small, and this is achieved by a scheme of internal partitions, in which each subvolume is acoustically small, but is connected to the adjacent one by a low resistance path. The partitions simultaneously brace the panels, effectively sub-dividing them into smaller ones which are acoustically small. The smallest dimension of the box is the width to ensure wide dispersion, and this is equal to or slightly greater than that required to house the drive unit.

Sub-woofer

The bass extension in this design is obtained by a novel sub-woofer, the aim being to achieve economy in space and expense. A 12in bass guitar speaker is capable of producing high levels of bass below 100 Hz , and is inexpensive. However, it has a rather high resonant frequency, which was utilized by placing it in an acoustically small enclosure and using it below resonance, with a second-order filter, to give the required amount of bass boost. The closed-box enclosure acts like a second-order high pass filter, and the flat part of the response above resonance is made to fall off at 12 dB / octave using the filter. The portion of the response below resonance which was falling off at an ultimate slope of 12 dB /octave is made flat with the same filter. The falling part of the new response is tailored to form half of a $12 \mathrm{~dB} /$ octave crossover, the other half being the natural fall-off of the bass enclosure
continued on page 73

Fig. 5. Frequency response of system plotted using one-third octave pink noise signals.

NIEWS ORF TYTIE MOMNTME

928 MHz proposed for UK's Open Channel

Concern about interference seems to be the main reason why the Home Office is proposing "just above 928 MHz " as a frequency for Britain's citizens' band service. The thinking behind this choice is published in a Green Paper discussion document entitled "Open Channel" - which is what the Government intends to call the UK service to disssociate it from the bad reputation of c.b. operation on 27 MHz in some countries. By placing the service in this part of the u.h.f. band they would put it above all the television channels used in Britain and also above most of the communication and other systems - notably those of the police, the fire brigades and aircraft landing systems where interference could have serious consequences. Because of likely interference they have rejected the National Electronics Council's proposal for a band somewhere between 100 MHz and 500 MHz (August 1978 issue, p.38). Having looked particularly closely in this region at suggested bands in the neighbourhood of 225 MHz and 450 MHz , the Home Office remarks in the Green Paper that here the interference "could be so severe and intractable as to lead to the dropping of certain television channels. This could not be contemplated in the context of European television planning, quite apart from the effect on the broadcasting authorities".

The choice of the particular figure of 928 MHz , above which the Open Channel would be placed, is determined by several factors. First, several other countries, including the USA, Canada and some in Western Europe, are also considering setting up personal radio services in this part of the spectrum, notably in the new 900 MHz mobile radio band $(862-960 \mathrm{MHz}$ in Region 1) which was allocated by international agreement at the WARC in Geneva last year (February 1980 issue, p. 48). International standardisation would be a good thing, particularly to give manufacturers opportunities for economies of scale and larger markets in the design, production and sale of equipment Secondly, in this respect, "just above 928 $\mathrm{MHz}^{\prime \prime}$ would avoid the ISM (Industrial, Scientific, Medical) band of 902 MHz to 928 MHz which is designated for use in ITU Region 2 (the Americas). Thirdly, there are the constraints of other, fixed communication services in this u.h.f. area which help to determine the figure of 928 MHz . But the most important factor in fixing it is the possibility of image interference in television charinel 68 resulting from frequencies immediately below 928 MHz . The Green Paper in fact envisages a band 1 MHz wide containing a maximum of 40 channels, each of 25 kHz . This implies the possibility of frequency modulation, although the document does not say this directly. The Home Office's Radio Regulatory Department sees the question of choice of modulation as a commercial rather than a technical matter

The proposal for a frequency of 928 MHz
raises the question of the likely range of Open Channel transceivers because of the relatively high absorption of r.f. energy by obstructions in this part of the spectrum. Of course, the Government doesn't want longdistance transmission in any case, and they consider a range of about 15 km is enough. The Green Paper says that the frequency selected must enable this desired range of 15 km "to be achieved in most environments without excessive transmitter power, thus minimising local interference, enabling frequency channels to be re-used and at the same time avoiding long range interference". After quoting some earlier studies of propagation at 900 MHz and the ranges achieved, the document goes on to mention a limited series of tests done by the Home Office themselves in and near London to obtain additional data in this part of the spectrum: "From these tests it was estimated that with 25 W e.r.p., a sensitive receiver and with aerial heights of 4 and 1.5 m , the range in urban and suburban environments would be from 3 to 10 km and that in open, flat country with no trees it might approach 20 km .'
To revert to the question of interference with other services, the Green Paper analyses what could happen with an Open Channel band near three different frequencies $225 \mathrm{MHz}, 450 \mathrm{MHz}$ and 900 MHz . Around 225 MHz , the third harmonic of the transmitter "would come within the range 669675 MHz and reception of television channels $45(662-670 \mathrm{MHz})$ and $46(670-678 \mathrm{MHz})$ would be potentially affected." Up to 1.1 million television sets could be affected here by transmissions from equipment mounted in vehicles or from portable transceivers with integrated aerials. Below 450 MHz , television reception of channels $64,65,66$ and 67 would get interference from the second harmonic of the transmissions. Up to 1.7 million tv sets could be affected. Above 450 MHz , the problem "is one of spurious responses in television receivers tuned to channels 23 and 24 . It is estimated that 2.6 million installations receive a television field strength which is less than that necessary to protect them from the transmissions of fixed Open Channel equipment." At 900 MHz , and up to 928 MHz , Open Channel frequencies in this region "would potentially affect the reception of television channels 59-68 inclusive . . :" and it is estimated that ". . . up to 1.8 million tv installations receive a lower field strength from main stations than would be necessary to protect them from nearby Open Channel transmitters." Here, and in the band above 450 MHz , the interference could be dealt with by filtering "but the scale of the possible problem is daunting."
On the question of regulatory control of Open Channel, the discussion paper says that the Government proposes "to combine the simplest possible licensing system with a limited technical control." The licensing system "would be flexible, simply author-
ising a named user, or a person acting with his permission, or a person to whom he had hired equipment, to use Open Channel.' Licences would be renewed annually "and unlicensed transmissions would constitute, as now, an offence under the Wireless Telegraphy Act." Revoking licences would be a way of applying sanctions, short of prosecution, against deliberate illegal use. The licence fee would be set to pay for the administration of the service.

For technical control, only minimum standards for equipment would be set, and the Government's responsibility to users would be "confined to ensuring that a certain standard of service can be obtained rather than ensuring that it is obtained." There would be no formal specification system as with p.m.r. equipment. Regulations under the Wireless Telegraphy Act could set out technical requirements - on modulation, power, frequency stability, spurious radiation etc. which equipment manufacturers would have to meet. These regulations "could make manufacturers liable to certify their products as conforming to those requirements; the onus would then be on the user to ensure that he used only certified equipment." In general the Green Paper makes it clear that the Government sees its responsibility as creating the technical conditions for a reasonable service but not in coping with abuses.

Reactions to the Government's proposal have been mixed. The UK radio amateurs, for example, are quite pleased (for reasons explained in World of Amateur Radio this issue). So are those who concur with the Government's view of citizens' band as basically an amusement or hobby (Mr Timothy Raison, the minister concerned at the Home Office, has remarked that "it will be fun for people"). They see no reason to strive particularly to make life easy for manufacturers, dealers and users in what will be essentially a luxury trade. The equipment manufacturers, however, are predictably not at all happy with the proposal of 928 MHz . They think there will be insufficient demand to make the design and production of sets for this frequency profitable. American experience suggests that the transceivers may cost about 20% more than comparable p.m.r. equipment for, say, the 200 MHz band. The president of the Citizens' Band Association pressure group, James Bryant, has described the Green Paper as just another delaying tactic by the Government, and Walter Stevenson, of Air Call Ltd, has commented that many potential operators will now just go ahead on the illegal 27 MHz band.

The Government is, of course, inviting such comments on its discussion paper and has asked all concerned to send in their views not later than 30th November, 1980 to the Radio Regulatory Department, Home Office, Waterloo Bridge House, Waterloo Road, London SEl 8UA.

Government begins erosion of Post Office monopoly

Referring to "a transitional period of three years," Sir Keith Joseph announced on July 21 that British Telecom's monopoly would be limited by government changes in the way terminal equipment is used as well as in the supply of services to third parties.
The new provisions, for which legislation will be introduced in the next parliamentary session, are expected to make it easier for privately supplied equipment to be connected to the Post Office network, assuming that the equipment meets the required technical standards. Similarly, more freedom will be extended to people who wish to use British Telecom's circuits to offer services to third parties which are not currently provided by the company, data processing facilites, for example.
In announcing these changes, Sir Keith also mentioned the possibility of "allowing the private sector to provide telecommunications transmission services such as satellite business systems." He said that he expected the main changes to lead to a significant growth in information, data transmission, educational and entertainment services provided over telephone circuits and to the emergence of new business. He said that he would be commissioning an independent economic assessment of the implications of allowing complete liberalisation for what are commonly referred to as "value added" network services. These include database services providing archives, advertising and entertainment services, electronic office facilities such as word processors, verbal message services, etc. as well as facilities for the interconnection of normally incompatible apparatus such as computers, facsimile machines and word processors. Monitoring and security alarm services also fall under this heading.

The first telephone and associated wiring
connected to the main network will remain the responsibility of British Telecom, as will the maintenance of private branch ex: changes (PABX) and associated wiring.

In theory, this should make available to the user a wider variety of equipment and sources and Sir Keith said that he is looking forward to seeing at an early stage approved extension telephones on sale in the shops, as well as greater competition in the installation and wiring of currently approved apparatus on business premises.

A spokesman of the Post Office Engineering Union, responding to the an'nouncement, said that the changes would allow private operators to "cream off" the more profitable side of the business, leaving British Telecom to deal with the less profitable but necessary sector.

At the same time, Sir William Barlow, the Post Office chairman said that consumers' bills were likely to rise as a result of the changes.

IEC nuclear reactor standard published

The 70th standard produced by the International Electrotechnical Commission was issued late in July, and deals with periodic tests and monitoring of the protection systems of nuclear reactors. This standard, IEC publication 671, lays down principles for testing protection systems during both normal power operation and shutdown. Among details such as short interval or continuous surveillance checks the standard also considers the effect of test equipment failure on the reliability of reactor protection. The full publication can be obtained from the International Electrotechnical Commission, Central Office, Geneva, Switzerland, price 39 Swiss francs.

Pergamon Press makes first

data deal with Russia

An investment of f 10 million a year for the next ten years as part of a deal to provide western customers access (in English) to literature in Russian scientific and technical data stores, has been announced by Robert Maxwell, chairman of Pergamon Press.
The agreement made with Viniti, the Soviet Institute of Scientific and Technical Information, and Vaap (Soviet copywright) also includes the joint development of computerised information services. The guardian reports that these services would be immediately available on computer terminals. through the Infoline service, which was acquired recently by Pergamon and the agreement also includes the supply by the Russians of all documents in microfiche form.

The English language service is expected to begin in the first quarter of 1981 and will include material on information retrieval systems and the environment, with mathematics, energy and engineering following in 1982.

Phone charges up

Price increase proposals have recently been put by British Telecom, the telecommunications part of the Post Office, to the government and the Post Office Users National Council. The increases, which are expected to take effect from November 1, include a 0.5 p increase in the telephone call unit fee to 4 p accompanied by a reduction of time in the inland cheap rate period, although the IDD (International Direct Dialling) cheap rate will be extended to 8 a.m. Foreign affairs will clearly be easier to arrange! Telephone rental charge increases to $£ 16.75$ per quarter for a business line and $£ 12$ per quarter for a residential line. Installation and extension charges will also rise. Further details can be obtained from British Telecom, Public Relations Department, 23 Howland St, London WIP 6HQ.

Data logger keeps an eye on the dairy

Two projects to determine economic use of energy are being run simultaneously at the Seale-Hayne College dairy unit in Newton Abbot, Devon, using a multi-channel data logging system, the Microdata M1600L.

One is aimed at energy conservation in the farm's milking parlour and associated dairy and involves a comprehensive study of energy input and consumption, while the other looks at the development of a solar energy system for use in the farm, this being linked to a study of dairy water requirements. More than 50 parameters are being monitored at regular intervals over several years involving the interfacing of a variety of transducers, both analogue and digital, with the data logger. This is achieved by the use of a separate plug-in signal conditioning module for each channel.

Where checking of fluid flow is concerned, turbine-type sensors deliver a pulse output with frequency proportional to flow rate and although this is an analogue signal, the data logger handles it digitally, with signal conditioning modules operating as tachometers to provide the pulse rate in digital form.
Recorded data is subsequently fed into the Plymouth Polytechnic Computer for analysis.

Government set to introduce cheap-rate engineering authority

The formation of a new body to govern the engineering profession, probably a $20-\mathrm{man}$ committee with chartered status, is expected to be announced by Industry Secretary Sir Keith Joseph as we go to press. The new authority is likely to be only a small affair compared with the powerful engineering authority (which was to be directly responsible to government) envisaged by the Finniston Report of April 1980. This amounts to a compromise which could save the government about $£ 8$ million, reports the Sunday Times, and would also dispose of the present system of self-regulation by the institutions, through the CEI.
It is thought that the government will appoint members after recommendations made by engineering employers, unions and the institutions, with an initial expenditure level of $£ 1$ million to $£ 2$ million to get the new
independent body started
Most of the savings will be effected by "tapping into" the current Engineers' Registration Board and accreditation will probably depend at first upon the goodwill of existing institutions, once members reach the standards agreed by the new authority.

An alternative form could be a chartered body created by the Fellowship of Engineering (set up by the CEI in 1976), which would imply that membership would be decided entirely by the profession although the most likely authority is the former, partly because so many of the DOI's respondents to offer their views on the Finniston Report suggested that the impetus of an independent body was vital. This type of authority is also supported by the IEE (70,000 members) and the Engineering Employers Federation,

First small-dish digital video transmissions by satellite

Successful transmission of digital video colour tv signals through a European space satellite using small-dish terminals at both ends of the link, has been achieved by the IBA at Crawley Court, Winchester, reports Pat Hawker
Digital signals were passed through the 120 MHz transponder on the OTS satellite launched in May 1978 and the experiment was carried out with the co-operation of British Telecom and the European EUTELSAT organisation. The test signals, using the IBA-developed experimental $60 \mathrm{Mbit} / \mathrm{s}$ encoder/decoder, were both sent and received at Crawley Court using the 14 GHz 2.5 metre dish "up-link" terminal (at about 1.5 kW transmitter power) and the 3 metre dish receiving aerial.

During preliminary tests using pseudorandom digital signals, error rates of the order of only one in 10 million bits were recorded. During transmission of 625 -line

Despite one or two humorous suggestions as a caption to this picture, including
"off-resonance draught detector in action" and "an obses sive approach to stereo speaker positioning", the gentleman is in fact a fully-equipped boardroom "bug" detector. The equipment is the Scanlock Mark VB and the makers, Audiotel International, claim that its sensitivity and frequency coverage 1100 to 1800 MHz) make it possible to détect a bug automatically in less than a second
colour tv pictures through the system no degradations, other than those introduced by the encoder/decoder system, were observed.

The techniques used here are for experimental purposes only and are not being proposed as an international standard, but the work has shown that digital video could provide useful advantages for news gathering and national and international links through satellites.

Landsat working again

NASA's five-year-old Landsat spacecraft is now back in service after a six month retirement caused by a malfunction preventing correct orientation in its orbit. The spacecraft developed problems on Nov. 51979 when the yaw attitude flywheel, part of the mechanism which kept it pointed towards earth ceased functioning, probably due to a lubrication breakdown.

University technicians get
 12\%, lecturers 17%

The standing commission's report on pay comparability, published at the end of July, recommends a salary increase of about 12% for university technicians, while university lecturers are expected to be awarded 17%, although the Association of university Teachers had originally made a provisional agreement for 19.6% with the university authorities.

The commission recommended that an additional lump sum should be paid to technicians, varying from $£ 46$ to $£ 140$ according to grade and the increases are back-dated to April 1980. The basic minimum salary for a trainee technician is now $£ 2,367$ (at age 16) gwith the grade 1A technicians minimum at $£ 3,288$. Grade 8 represents the maximum at £9,045.
Under the 17% settlement, minimum lecturers' salary will be $£ 5,505$ with the maximum at $£ 11,572$, rates effective from October 1980.

Professors' average pay will go up from $£ 14,148$ to $£ 16,765$. An additional cost of living figure is to be added to lecturers' and professors' salaries after talks with the government in September.

Seeing and hearing things at Decca

London Print and Design, a relatively unknown company based in Northington Street, has bought the old Decca record manufacturing plant, lock, stock, and barrel. The plant, which is located at New Malden, Surrey, was taken over by Racal earlier this year (see Wireless World, April 1980) and immediately offered for sale again.
Speculation about who would eventually make a move to acquire the high technology disc business has been running high since the non-manufacturing part was sold to the German company Polygram.
Rumour has it that LPD will use the plant, through the co-operation of key technical staff from Decca, to press videodiscs in
partnership with companies interested in the home video entertainment field. LPD has been advertising the sale as well as asking companies interested in the pressing equip. ment to approach them. The plant has an annual production capacity of 14 million discs, although there is a chance that the central matrix unit could be retained at New Malden, with up to four "satellite" pressing plants operating at other sites, each producing about $31 / 2$ million discs annually.
For some reason best known to itself, LPD chooses not to reveal the nature of its current business, but informed guesses point to links with printing, designing and maybe some more pressing business in the near future.

Japanese satellite completes global telex link

An arrangement made recently between British Telecom and the Japanese telephone authority makes it possible for telephone and telex users in the UK to reach ships in the Indian Ocean, using the satellite earth station at Yamaguchi, south-west of Hiroshima.
This amounts to an extension of the Marisat system which already provides satellite links for ships in the Atlantic and Pacific and is the final link required to provide global coverage. The main advantage of the system, set against normal radiotelephone messages, is that calls are free of fading and distortion. About 320 ships throughout the world are now equip-
ped to use the Marisat system.
To make a satellite telex call, British users should follow the dial/key procedure for making international calls to places outside Europe and North Africa. The keying codes to use are 581 for ships in the Atlantic and 582 for those in the Pacific. The caller then keys the ship's seven-digit call number, followed by a plus sign.

To make a satellite telephone call, British customers should dial 100 and ask the local exchange operator for Freefone 2187, the International service at Faraday Exchange, London. Callers should give the name of the ship it is wished to contact, its location and the vessel's satellite call number.

Designing with microprocessors

5 - Test-and-skip systems

by D. Zissos and Laurelle Valan
Department of Computer Science, University of Calgary, Canada

This and the following article describe step-by-step procedures for the design and implementation of microprocessor-based systems using the test-and-skip mode. In the second article the design steps will be illustrated by means of a fully worked out example.

In the previous article we explained the nature of the synchronization problem, which results from the fact that the microprocessor operation cannot be slowed down to the speed of slow peripherals by reducing the frequency of its clock. Two solutions, which do not involve adjusting the clock frequency, were outlined. One uses software and the other hardware. In the first case, the microprocessor executes a programming loop, during which the status of the peripheral is read and tested. If the peripheral is found to be busy, the process is repeated, that is the microprocessor skips execution of the next instruction. The test-and-skip process is repeated until the peripheral becomes ready, at which point the microprocessor exits the software wait loop. In the

Fig. 1. (a) Microprocessor/peripheral links during execution of an ilo instruction. (b) Microprocessor signals during execution of an i/o instruction.
second solution hardware is used to put the microprocessor chip into an idling (wait) state while the peripheral is responding. When in the wait state all microprocessor activities are suspended without turning of the clock. Microprocessor-based systems using this method are referred to as wait/go and will be discussed in detail in a later article.

1/O instructions

Before we describe the philosophy and steps we use to design and implement test-and-skip, and indeed all types of microprocessor-based systems, it will be useful, particularly in the case of the inexperienced reader, to recall the step-by-step execution of i / o instructions, which was described in detail in an earlier article.
Briefly what happens is this. The op code is fetched from memory and copied into the instruction register (i.r.) during cycle M1. Next, the i/o address is fetched from memory and copied into

addressing register r. The $1 / \%$ instruction is executed by connecting within the m.p.u. chip the address bus to the addressing register and the data bus to the accumulator, as shown in Fig. 1. In addition, the timing and control unit generates on specified pins of the m.p.u. chip either a read or write pulse, denoted by In and Out, depending on whether data is to be copied from the peripheral into the accumulator, or vice versa - see Fig. l(b). The presence of an allotted address signal and an i/o pulse at the input of an interface causes it to activate the peripheral. In other words the input to an interface in a microprocessor-based system consists of software-generated electrical pulses.

In practice the relative timing of i / o pulses, addresses and data vary from microprocessor to microprocessor. However, in our design procedures it is not necessary to consider such signals until the implementation stage:

Design philosophy

The design philosophy adopted is one that allows the inexperienced user to produce sound and reliable systems simply, while at the same time providing the specialist with the tools to improve his technique in dealing with more sophisticated assemblies. As in the case of logic circuits, elegance of design is not sought but can be achieved.

In developing our design philosophy, we considered the following as important.
System reliability. All systems must function correctly,

Fig. 2. Chart showing the successive steps in the design process.

Fig. 3. Configuration of a basic test-and-skip system.

Fig. 5. Left-shift through carry.

Circuit maintainability. The systems should be easy to maintain.
Design effort. This must be minimal to allow for greater creavity.
Documentation. This should be concise and to the point. Symbols and diagrams are preferable to verbal statements; they are more readily understood by non-English speaking persons and are likely to prove more attractive to the export market.
Design steps. These must be easy to apply. In our case no specialist knowledge is necessary.
Modifications. The systems should be easily modifiable to meet new conditions as they arise.

Design steps

Our design process is accomplished in five steps, listed below. See also Fig. 2.
Step 1: aim of the design. The system specification is expressed in the designer's terms. This step is introduced to ensure that the system requirements are interpreted correctly by the system designer.
This stage is critical for successful co-operation between the system designer and the user. Failure at this stage is usually the cause of system misoperation which then produces the need for subsequent design modifications.
Step 2: device characteristics. In this step the designer studies the terminal characteristics of the devices to be used. Any consideration of purely internal characteristics should be avoided.
Step 3: system design. In step 3 the designer specifies the system characteristics in general terms by means of a block diagram and a system flow chart.

Fig. 6. Terminal characteristics of action/status devices. Signal a mieans that a O to 1 signal transition on the action terminal activates the device. No activation is possible when signal $r=0$. Signal r indicates the availability $(r=1$) or unavailability ($r=0$) of the device.

whether it is ready or not), and to activate the peripheral at the correct time, that is when i / o instruction with address Aq in our case is being executed.

Peripheral status information is made available to the program through an input port. If the ready/unready state of the peripheral is indicated by the ' 0 ' and ' 1 ' values of signal r in Fig. 3, to determine whether the peripheral is ready or not, the programmer proceeds in the following manner. He executes an IN instruction with address Ap. Execution of this instruction copies the signals $r_{x x} x x_{x} x x$ in Fig. 3 into the accumulator. If $r=0$ the process is repeated, otherwise the next (i/o) instruction is executed, which allows the microprocessor to communicate with the peripheral, as shown in Fig. 4. The programmer has several options to determine the value of r. We shall describe two such options. He can AND the contents of the accumulator ($r \times x x x x x x x$) with 10000000 (80 in hex), which modifies them to $r 0000000$. If $r=0$ the zero flag is set, otherwise it is reset. Alternatively, he can shift the accumulator left through the carry flip-flop, as shown in Fig. 5, which shifts the value of r into the carry flip-flop.

If we assume that our peripheral is an action/status device, that is a device whose terminal characteristics are shown in Fig. 6, the hardware implementation of a test-and-skip system is shown in Fig 7. Action/status devices are described in Appendix 1 of "System Design with Microprocessors", Academic Press, 1978.

In the next article we shall demonstrate design steps by means of a PRINT problem. This problem, which will also be implemented using the wait/go, interrupt, d.m.a. and d.d.t. modes, has been chosen, first because a printing operation can be readily visualized and secondly, the character printer used can be assumed to have been in existence in the 1940s, that is well before the era of computers and microprocessors.

WW index for 1979

The index for Volume 85 (1979) of Wireless World is now available, from the General Sales Department, IPC Electrical-Electronic Press Ltd, Room CP34, Dorset House, Stamford Street, London SE1 9LU, price 75p including postage. Cheques should be made payable to IPC Business Press Ltd.

We apologize for the unusually long delay in the production of this index. This was due to a combination of editorial staff problems andmore general industrial disputes.

An acoustically

 small loudspeakercontinued from page 67
containing the 5in unit. In this fashion, a two-way, second-order crossover is obtained for the price of a single-stage filter, and considerable bass extension with an inexpensive unit. The success of this design is best judged by the observation that, when placed in a corner, 102dB SPL peaks were measured while playing a recording of cannon shots during the " 1812 " overture, without any ${ }_{i}$ sign of stress. Naturally there is a price to be paid, and that is increased harmonic distortion. This could not be heard during music, but sine-waves or pink noise showed it up, and the result was that the source of sound could be located, which is not generally true for such low frequencies. Frequencies below 100 Hz were found to occur infrequently during most music, but bass guitar, bass drum, and organ enthusiasts may prefer some other solution below 100 Hz . That due to Linkwitz 2 is an alternative.

The on-axis response of the units was measured above 300 Hz in situ using third-octave pink noise. That below 300 Hz was measured by taking the nearfield response of each unit to eliminate the effects of the room. The results are shown in Fig. 5. The off-axis response was measured above 300 Hz in situ, rotating the loudspeaker. Curves are shown for 30 and 60 degrees horizontally off-axis, and show that an integration has been achieved between drive units, and that there are no large steps in the off-axis response to cause shifting or diffuse stereo imaging.
Design and construction will be described next month.

'References

1. Moir, J., "Doppler distortion in Loudspeakers", Wireless World p65 April 1974.
2. Linkwitz, S., "Loudspeaker System Design". Wireless World May/June 1978.
3. Jordàn, E. J., "The Jordan Manual", from the author.
4. Von Bekesy, G., "Auditory Backward Inhibition in Concert Halls", J. Audio Eng. Soc. p780 27 No 10 Oct 1979.
5. Barlow, D. A., "Sound Output of Loudspeaker Cabinet Walls", Proc. Audio Eng. Soc. 50th convention, London, March 1975.
6. Olsen, H. F., "Direct Radiator Loudspeaker Enclosures", J. Audio Eng. Soc. 17, No. 1, pp22-29 1969.

IN OUR NEXT ISSUE

Unique pickup arm

By displacing the horizontal and vertical pivots of an arm from each other it becomes possible to increase the radius of the arc in which the pickup travels across the record and so reduce tracking distortion. This article describes a practical design for home construction.

Amplifier-
 loudspeaker interface distortion

Matti Otala examines distortion caused by intermodulation between the signal and a delayed, frequency transformed version generated by the loudspeaker and propagated in the feedback loop.
Measurements on four power amplifier circuits are discussed

Designing inductors
 carrying d.c.

It's difficult to select initially a core for a winding that is carrying d.c. A simple procedure allows different cores to be compared and the optimum one chosen for a particular inductor design.

Voice synthesiser

The "Wooden Fender" group of amateurs in and around Colchester, Essex including a number at the University of Essex - have built and installed what is thought to be the first computergenerated voice synthesiser on a local u.h.f. repeater, GB3CE, located in the Colne Estuary and using channel RB14 (output on 433.350 MHz). According to Ian Dilworth, G3WRT, the computer has initially been programmed to synthesise the call-sign and "QRA locator" (ALO5E); in addition the repeater announces frequency and channel number. The basic system, however, has been designed to provide a voice output of the strength and frequency check of the incoming signals, although this has not yet been implemented.
The value of v.h.f. repeaters to provide relatively long ranges in conjunction with simple hand-held transceivers is being proved by experiments that have been carried out by the Canadian Department of Communications during recent years in a remote arctic area 500 km north of Fort Chimo, Quebec. There an experimental system for "trail and remote camp radio" has been under test to enable an Inuit hunting community to keep in touch with their village by means of a speciallydeveloped battery-operated h.f./v.h.f. repeater installed on Diana Island, 280 metres above sea level and from the community village at Koartac. The Department acknowledges that the system uses technology drawn from North American amateur use of v.h.f./f.m. "autopatch" repeaters (shared hilltop facilities with automatic, mobile toneaccess to the public switched telephone network). The economic existence of many arctic communities depends on hunting, fishing and berry-picking requiring villagers to spend long periods away from their homes, on the trail or in remote camps.

Repeater abuse

In the UK and USA, unfortunately, the use of amateur v.h.f. repeaters continues to be the subject of controversy and abuse. Paul Essery, G3KFE, in a strongly-worded editorial in Shortwave Magazine writes provocatively "The outcome of the inept plan to quadruple the number of London repeaters can now be seen this appeasement of the deliberate interferers (of all kinds) has merely played into their hands and produced four times the abuse and misuse of these relays. The time is now well overdue for firm action to be taken, for the good of amateur radio ... If the Home Office is unable or unwilling (as seems to be the case) to make a concentrated effort to find, close-down and
prosecute the offenders, then the RSGB - which holds the licences for these repeaters - has no choice but simply to close down the repeaters."
Not everyone will agree with this analysis but it is a fact that, in the USA, the owners of repeater licences are increasingly complaining that they are being held responsible by the FCC for the content of the communications, including the profanities and jamming, going through their repeaters. Under American regulations, both the repeater owner and the station originating a message are responsible for the content of any communications transmitted through the repeater. The real miscreant is clearly more difficult than the owner to identify and trace. The FCC, it has made clear, has no intention of relaxing regulations in this area.

Open Channel

While the general question of the recent Home Office discussion document on "Open Channel" is not a matter for WoAR, the reaction of radio amateurs, as such, seems generally favourable. It is of course recognised that it will not be easy for industry to provide low-cost, rugged base, mobile and handheld transceivers at the unexpectedly high frequency of 928 MHz . Few existing inexpensive u.h.f. power transistors or varactor multipliers could provide 5 watts output, though it is possible that some use could be made of superregenerative receiver techniques and s.a.w. (surface acoustic wave) u.h.f. oscillators.
928 MHz meets the RSGB request that Open Channel should not be placed close to an amateur band; it is conveniently almost exactly mid-way between the 432 and 1300 MHz bands. Amateur experience on these bands shows that 928 MHz is not necessarily a short-range "line of sight" band, particularly during conditions of anomalous propagation or from hill-top sites.
There remains the danger that Home Office efforts to reduce illegal activity on 27 MHz could result in more "piracy" in the amateur bands, particularly 28 MHz . In the USA, despite the availability of the 40 channels around 27 MHz , there is already increasing intrusion into the low-frequency (c.w.) end of the 28 MHz amateur band. Similarly despite efforts by the FCC to stamp out the use of high-power "linears" by c.b. operators (including forbidding the sale of any linears covering the 28 MHz band) there are still c.b. operators using 2 kW p.e.p. s.s.b. equipment.
The Home Office makes the valid point that "if an individual wishes to use sophisticated equipment to communicate over long ranges and make
international contacts, he should become a licensed radio amateur by taking the appropriate radio examination." The introduction of "multiplechoice" questions in the Radio Amateurs' Examination since 1979, and the consequently higher "pass rate," has removed the argument that amateur radio is open only to those experienced in taking written examinations. But it is to be hoped that the Home Office will consider the possibility of introducing some form of "novice" licence.
The fact that the Home Office is not proposing to allocate "call-signs" for Open Channel should also prevent its becoming a "shamateur" band and so help keep it as a useful and welcome facility for the general public, while not ruling out its use for "fun" purposes.

Amateurs in hospital

Fred Judd, G2BCX, points out that provided permission is obtained in advance, there is usually no objection to the use of amateur radio equipment in British hospitals. Permission needs to be obtained from the Unit Administrator and/or the District Works Officer of the hospital concerned and tests should always be made to ensure there are no electromagnetic compatibility (e.m.c.) problems with sensitive hospital equipment.

In brief

Fee for the Morse test in the UK has gone up from $£ 6$ to $£ 8$. . . Danish amateurs now have permission to use 1720 1740 kHz and $1830-1850 \mathrm{kHz}, 10$ watts c.w. . . '"Rusty" Russell, G5WP, of Guildford, one of the only two British amateurs ever to have won the BERU Commonwealth Contest and a consistent "dx" operator on 3.5 MHz , has died

Australian amateur licences rose in 1979 from 10,587 to 12,596 , of which 6,126 are "full" licences, 3,273 "limited" and 3197 "novice" . . . RSGB reports show that the number of RAE courses being run this season at local adult education centres is about 50 including many towns not listed last month Amersham, Birmingham (2), Borehamwood, Brentwood, Burgess Hill, Bury, Canterbury, Chester, Chingford (2), Cove, Crawley, Derby, Dudley, Exeter, Grafton, Harrow, Hemel Hempstead, Highbury, Huddersfield, Knottingley, Nottingham, Paddington, Southampton (2); Stockton-on-Tees, Stretford, Turnford, Wakefield and Walsall ... Forthcoming events include Welsh Amateur Radio Convention at Blackwood, Gwent on September 28 and the British Amateur Television Club Convention at Post House Hotel, Leicester on October 5 (from 11 a.m.).

PAT HAWKER, G3VA

Bach-Simpson Quality test equipment now available at new LOWER PRICES!

4
 Bach-Simpson
 Bach-Simpson (UK) Limited,

Trenant Estate, Wadebridge, Cornwall PL27 6HD Tel: (020881) 2031 Telex: 45451
HI-FI DRIVE UNITS

PA GROUP \& DISCO UNITS

Audax HD 12.9D25 Audax HD11P25EBC	$\begin{aligned} & £ 8.25 \\ & £ 7.50 \end{aligned}$
Audax HD20B25H4	£14.95
Audax HD 13 B 34 H	£12.95
Audax HD24S45C	£21.95
Baker Superb	£25.00
Castle Super 8 RS /DD	$E 14.95$
Chartwell CEA205 pairs-onl	pairs-only $£ 61.25$
Coles 4001	£7.65
Coles 3000	¢7.65
Celestion HF1 300 II	E10.95
Celestion HF2000	E10.95
Dalesford ABR 10"	£10.25
Dalesford D30/110	£11.25
Dalesford D50/153	£12.25
Dalesford D50 / 200	£12.25
Dalesford D70/250	£25.50
Dalesford D100/310*	£35.75
Dalesford D10 tweeter	£8.45
Decca London Horn	£61.95
Decca CO/1000/8	£10.25
Elac 6NC204 61/2"	67.50
Elac 8NC298 ${ }^{\prime \prime}$	$E 7.95$
EMI type 350, $13^{\prime \prime} \times 8^{\prime \prime}$, 4 ohm	', 4 ohm $£ 9.45$
EMI 14A/770, $14^{\prime \prime} \times 9^{\prime \prime} .8$ ohm	". 8 ohm £19.50
Isophon KK8/8	£8.15
Isophon KK 10/8	¢8.45
Jordan Watts Module	£24.95
Jordan Watts HF kit	£10.50
Jordan 50mm unit	E24.50
Jordan CB crossover $£ 24$	£24.50 pair
Jordan Mono crossover E24	¢24.50 pair
Kef T27	¢9.45
Kef B110	£12.25
Kefl B200	£13.50
Kef B139	$£ 27.75$
Kef DN13	£6.75
Kef DN12	$£ 9.40$
Kef DN22 pair	pair £42.00
Lowther PM6	£59.00
Lowther PM6 Mk I	£62.00
Lowther PM 7	$£ 94.50$
Peerless KO10DT	£10.95
Peeriess DT 10HFC	£10.50
Peeriess KO40MRF	£13.60
Radford BD25 Mk III	E36.95
Radford MD9	£14.85
Radford MD6	£25.50
Radford FN8/FN831	E22.50
Richard Allan CG8T	¢13.50
Richard Allan CG 1 2T Super	er £29.50
Richard Allan HP8B	£20.75
Richard Allan LP8B	¢14.50
Richard Allan HP 12 B	£33.50
Richard Allan DT20	$\underline{8.95}$
Richard Allan DT30	£10.75
SEAS H 107	£8.95
Shackman Electrostatic with polar.	ith polar. network
\& crossover . £130.00.	£130.00 pair
Tannoy DC296 10, £	£107.35
Tannoy DC316 12"' E	£148.50
Tannoy DC386 15") £	£178.90

Celestion G12 / 50TC Celestion G $12 / 80 \mathrm{CE}$ Celestion G12 / 80TC Celestion G12/125CE Celestion G15/100CE Celestion G15/100TC Celestion G 18 / 200 Celestion HF1300 Celestion HF2000 Celestion Powercell $12 / 1$ Celestion Powercell 15/2 Celestion MH 1000 Fane Classic $4512^{\prime \prime}$ Fane Classic $5512^{\prime \prime}$ Fane Classic $8012^{\prime \prime}$ Fane Classic $8515^{\prime \prime}$ Fane Classic $15015^{\prime \prime}$ Fane Classic 125 18" Fane Classic 175 18" $^{\prime \prime}$ Fane Guitar 80L 12" Fane Guitar 8OB/212" Fane Disco $10012^{\prime \prime}$ Fane PA85 $12^{\prime \prime}$ Fane Bass $1001^{\prime \prime}$ Fane Crescendo 12E Fane Crescendo 15E Fane Crescendo 18E Fane Colossus 15E Fane Colossus 18E Fane J44 Fane J104 Fane J73 Fane HPX1/HPX2 Fane HPX 3 A Fane HPX3B Goodmans 8PA Goodmans PP12 Goodmans DI12 Goodmans GR12 Goodmans 18P Goodmans Hifax 50HX McKenzie C1280GP McKenzie C1280TC McKenzie C 1280 bass McKenzie GP15 McKenzie TC15v McKenzie C15 bass Motorola Piezo horn $3^{11 / 2 " c}$ Motorola Piezo $2^{\prime \prime} \times 6^{\prime \prime}$ Richard Ailan HD8T Richard Allan HD10T Richard Allan HD12T Richard Allan HD 15 Richard Allan HD 15 P Richard Allan Atlas $15^{\prime \prime}$ Richard Allan Atias $18^{\prime \prime}$

£ 19.50 E24.50 $£ 24.50$
$£ 23.75$ $£ 42.00$ $£ 37.95$ £38.50 £64.75
$£ 12.50$
$£ 12.50$
$£ 6600$
£66.00
$£ 21.75$
$£ 13.95$
$£ 13.95$
$\mathbf{£ 1 5 . 5 0}$
£15.50
£19.75
$£ 19.75$
$E 26.00$
$\begin{array}{r}£ 26.00 \\ £ 37.95 \\ \\ \hline 43.95\end{array}$
$£ 43.95$
£26.25
£27.25
£26.25
£28.75
£28.75
$£ 28.75$
$£ 26.25$
$£ 39.00$
E 29.00
$\mathbf{E 5 7 . 5 0}$
£74.50
$\mathbf{£ 9 4 . 7 5}$
$\mathbf{£ 9 9 . 9 5}$
$£ 99.95$
$£ 107.00$
£107.00
E6.90,
£15.95
$£ 10.90$
$£ 3.45$
£5.60
$£ 4.55$
$£ 5.05$
$\mathbf{£ 2} 50$
(Rogers)
$\mathbf{1 4 6}$
As above but including felt panels
Hi Fi Answers Monitor (Rogers) £5 carriage Hi Fi News State of the Art (Atkinson)
$£ 185.00$
Hi Fi News Miniline (Atkinson)
£49.00 $+£ 3$ carriage Hi fi For Pleasure Compact Monitor (Colloms) \quad Popular Hi Fi Mini Mis.00 $+£ 5$ carriage Popular Hi Fi Mini Monitor (Colloms) $£ 74.00$ Popular Hi Fi Round Sound (Stephens)
including complete cabinet kit
$£ 71.00$ Popular Hi Fi Jordan System
£ $96.00+£ 3$ carriage Practical Hi Fi and Audio BSC3 (Rogers) Practical Hi Fi and Audio Monitor (Giles) Practical Hi Fi and Autio $\mathbf{£ 1 8 0 . 0 0}$ (Giles)
£120.00 Hi Fi News Tabor (Jones) with J 4 bass units Hi Fi News Tabor (Jones) with H4 bass units Wireless World Transmission $£ 70.00$ (Bailey) Word Transmission Line KEF (Bailey)
Wireless World Transmission Line RAD. FORD (Bailey') $£ 179.00$ Everyday Electronics EE 70 (Stephens) Everyday Electronics $\begin{array}{r}\text { EE20 (Stephens) } \\ £ 29.50+£ 3 \text { car }\end{array}$

SMART BADGES FREE WITH ABOVE KITS GO GIVE THAT PROFESSIONAL TOUCH
TO YOUR DIY SPEAKERSII

REPRINTS/CONSTRUCTION DETAILS OF ABOVE DESIGNS 10pEACH CARRIAGE \& INSURANCE TWEETERS/CROSSOVERS 50p each
SPEAKERS $4^{\prime \prime}$ to $61^{\prime \prime} 2^{\prime \prime} 80 p$ each SPEAKERS $4^{\prime \prime}$ to $61^{\prime \prime} \mathbf{2}^{\prime \prime} \quad 80 p$ each $9^{\prime \prime} \times 8^{\prime \prime}$, E1.95 each 15
SPEAKER KITS £2.95 each £ 1.85 each $£ 3.95$ pair URIGN ${ }^{23 .}$ unless otherwise stated
ALL PRICES CORRECT AT 1.2 .80

Prices per pair
Carriage $£ 3.95$ pair

Dalestord System 1	£54.00
Dalesford System 2	£57.00
Dalesford System 3	£104.00
Dalesford System 4	£110.00
Daiesford System 5	£142.00
Dalesford System 6	£95.00
Goodmans DIN 204 ohm (special offer)	
KEF Reference 104aB kit	
£133.00	£5 carriage
F Cantata kit £213.50 +	£5 carriage
LS3 Micro Monitor kit	
£71.00	e
Lowther PM6 kit	£116.00
Lowther PM6 Mk I kit	£122.00
Lowther PM 7 kit	£195.00
Peerless 1070	£157.00
Peerless 1120	£169.90
Peerless 2050	£59.95
Peerless 2060	£79.95
Radford Studio 90 kit	£181.00
Radford Studio 270 kit	£309.00
Radford Monitor 180 kit	£243.00
Radford Studio 360 kit	£450.00
RAM 50 kit (makes RAM 100)	£76.25
Richard Allan Tango Twin kit	¢55.50
Richard Allan Maramba kit	¢77.50
Richard Allan Charisma kit	£111.00
Richard Allan Super Triple kit	£102.50
Richard Allan Super Saraband II	£159.95
Richard Allan RA8 kit	£62.75
Richard Allan RA82 kit	E98.75
Richard Allan RA82L kit	¢108.00
SEAS 223	£42.50
SEAS 253	¢67.00
SEAS 403	¢79.95
SEAS 603	£134.95
Wharfedale Denton XP2 kit	£31.45
Wharfedale Shelton XP2 kit	£40.40
Wharfedale Linton XP2 kit	£56.20
Wharfedale Glendale XP2 kit	£69.00

WILMSLOW AUDIO BA1 sub bass amplifier/ crossover kit $£ 37.95+£ 1$ carriage

EVERYTHING IN STOCK FPR CONSTRUCTOR
BAF, LONG FIBRE WOOL. FOAM, CROSSOVERS, FELT PANELS, COMPONENS, ETC. FARGE SE
(Send 22 p in stamps for grille fabric samples)

ALL PRICES INCLUDE VAT @ 15\%

Send 50p for 1980 56-page catalogue 'Choosing a Speaker'

7) SWIFT
 OFWLMSLOW
 The firm for $\mathrm{Hi}-\mathrm{Fi}$

5 Swan Street,
Wilmslow,|Cheshire.

Tel: 0625529599 FOR MAIL ORDER \& EXPORT OF DRIVE UNITS, KITS, ETC.

Tel: 0625526213 (SWIFT OF WILMSLOW) FOR HI-FI \& COM PLETE SPEAKER SYSTEMS.

\square

Lightning service on telephoned credit card orders
 Wilistom $A[0] 0$ The firm for Speakers

Swan Works, Bank Square,
Wilmslow, Cheshire.

Satellite broadcasting in the eighties

A report on technical progress in Europe

by G. J. Phillips, M.A., Ph.D., B.Sc , BBC Research Department

Abstract

This article outlines the framework set by the 1977 ITU plan for satellite broadcasting in Regions 1 and 3 and reviews the work that has been done so far to implement it. After showing the coverage areas for different countries in Europe the author discusses the life expectancy and costs of broadcasting satellites, considers the design of domestic receiving equipment and aerials and, in a second article, will report on the current plans for building satellites by the European Space Agency and other groups.

We are in the decade of a new method of transmitting broadcast programmes television and sound - into the home. The transmitter is placed in an orbit above the equator at a height of $36,000 \mathrm{~km}$ so that it moves round at the same rate that the Earth spins on its axis; it can thus remain at a fixed point in the sky. Doubts on the one hand and over-optimism on the other hand existed in the early seventies. Now, however, three points seem to be established; experiments have proved it works as expected; costs can be assessed and appear acceptable and, finally, it is increasingly appreciated that (whatever other methods of distribution such as optical-fibre cable may ultimately prevail in the nineties or beyond) it is a method of distribution that comes closer to the ideal concept of broadcasting than any other method. There is surely an elegant simplicity in a transmitter of about 100 watts being able to provide a television programme to any home within a moderatly-sized country provided there is access to a simple receiving system in line-of-sight from the satellite.

The ITU plan for 12 GHz

A broadcasting satellite conference held in Geneva in 1977 agreed a plan for ITU Region 1 (Europe/USSR/Africa) and Region 3 (Asia/Australasia), in which orbit positions and frequencies were assigned to prescribed beams covering each country (or sub-division of a large country). This plan will not only ensure the orderly development of satellite broadcasting itself, but will also help to
avoid mutual interference problems with other services using the same frequency band, notably terrestrial microwave links. With a few exceptions, every country in Europe and Africa was assigned five frequency channels within the 11.7 to 12.5 GHz range. Polarisation (circular, clockwise or anticlockwise) was also specified. Each channel is suitable for a frequency-modulated television signal within a 27 MHz bandwidth; the actual channel spacing was about 19.2 MHz , giving 40 channels in all, but possible adjacent-channel as well as co-channel interference was allowed for in the plan. A regional conference to conduct a similar assignment plan for Region 2 (Americas) is due to take place in 1983.
In the 1977 plan a power was also specified for each transmission. This was derived on the basis of providing a power flux density of at least $-103 \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2}\right)$, sufficient for good reception with an individual 0.9 m
diameter antenna, for 99% of the time in the worst month*. Fig. 1 gives the areas of coverage to this standard for the UK and Ireland. Fig. 2 gives some examples of coverage on the same basis for four other cases: France, Luxembourg, Monaco and the large beam that was allowed on certain channels to cover the four Nordic countries as a group. These figures assume ideal pointing of the satellite antenna; it is seen the coverage areas allow some latitude for pointing error (0.1° maximum is assumed). Considerable overlaps occur: for example, the French beam covers southern England, Switzerland and northern Italy.
One can also indicate over what area
*Power flux density figures can be converted into the more familiar field strength figures by subtracting them from 146. The result is then in dB relative to 1 microvolt per metre. Thus $-103 \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2}\right)=43 \mathrm{~dB}(\mu \mathrm{~V} / \mathrm{m})=$ $140 \mu \mathrm{~V} / \mathrm{m}$. - Ed.

Table 1: Channel assignments and orbit positions for countries of Western and Southern Europe

Notes

1. 0.6 degree beam except channel 23 which covers mainland Italy. 2. Covers Iceland, Azores and part of Greenland. Channels 27 and 35 registered under Denmark. 3. Same transmission channels also beamed to Azores (common programme). 4. Eight channels in a wide-beam covering Nordic countries; assigned to Finland $(22,26)$. Sweden $(30,40)$. Denmark $(24,36)$ and Norway $(28,32) .5$. Same transmission channels also beamed to Canary Islands (common programme).

Fig. 1. Examples of coverage areas for individual reception in the UK and Ireland. Flux density is $-103 d B\left(W / m^{2}\right)$.

Fig. 2. Coverage areas for individual reception in W. Germany, France, Luxembourg, Monaco and the Nordic countries. Flux density is $-103 d B\left(W / \mathrm{m}^{2}\right)$.
a satisfactory signal can be received with a somewhat larger receiving antenna. For convenience we can take the $-111 \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2}\right)$ flux density limit corresponding to the level indicated at the 1977 conference for reasonably noisefree community reception; this is illustrated in Figs. 3 and 4 for the same countries. In some areas this coverage may not extend to the limits shown because interference from other satellites, while planned to be negligible for individual reception within the country to which the transmissions are aimed, may be slightly disturbing near the limit shown for community reception.
A summary of the allocations for all countries in Western Europe is given in Table 1. Where possible, a definite request by a country to have the same orbit position as another country was met in the plan; this facilitates individual reception of transmissions of two or more neighbouring countries in border areas, where there may be common interests, cultures or language.

In order to bring out the factors which affect the ease of reception in any country of transmissions other than those intended for that country, the table distinguishes groups of channels according to polarisation and whether they are in the upper or lower half of the 11.7 to 12.5 GHz band. This is discussed later.

Satellite life and costs

Transmitters in the sky are no new thing. We have employed geostationary satellites for more than a decade to relay telephone traffic and television signals between continents. The powers of the transmitters on a satellite for this purpose are generally below 20 watts; they also beam their signals over large areas. As a result a very large receiving antenna is needed on the ground (e.g. a 30 m diameter reflector to receive 4 GHz signals) in such point-to-point links.
For broadcasting the available transmitter power is concentrated by beaming over the limited coverage areas, typically with a bandwidth of one degree for many European countries. A power of the order of $100-200$ watts is then sufficient for individual reception with an antenna diameter of 0.9 m .
The experiments in Canada and USA since 1976, with the CTS (Hermes satellite), have come closest to this concept and successfully demonstrated television reception with small terminals. The satellite employs a 200 W repeater at 12 GHz and the beam is about 2.5 degrees wide.
Two important points govern the costs of satellite systems. First, the reliability should be as high as that from current terrestrial services. Secondly, the satellite should remain accurately in its allocated position so that individual receiving antennae set up in fixed positions, pointing to the satellite, will remain effective. Because of orbit-
perturbing forces, station-keeping requires fairly frequent correction by gas jets on the satellite, and the quantity of fuel to operate these is the critical factor which governs the life of a satellite. A seven-year life is typical if a reasonable allocation of payload be-
tween the fuel and other essential items is made. Thus a reliable service requires a spare satellite in orbit and a third ready to be launched at any time, so the cost of making and launching a single satellite is not sufficient investment to provide a service for 10 or 20 years.

Fig. 3. Coverage area for reception on a larger antenna (1.8 to 2.Om diameter), for countries given in Figs. 1 and 2. Flux density is $-111 d B\left(W / m^{2}\right)$.

For example, for 10 years' reliable service, allowance must be made for the provision and launching of five satellites. So if the cost of a satellite giving transmissions on four channels is $£ 12$, million, with a similar cost for launching, some $£ 120$ million is required over 10 years. ${ }^{1}$ Nevertheless the cost of £3 million per annum per channel is actually less than total engineering cost to the broadcasters of providing a national service at u.h.f. by terrestrial transmitters. Of course, an overall national picture, taking into account the receiver cost; would show a somewhat greater total cost for a satellite system. National decisions to implement satellite broadcasting will have to take into account total costs but, if broadcasters' costs are not prohibitive, it is reasonable to expect that continuing development in receiver technology will provide receivers at a price acceptable to a steadily increasing proportion of the public.

The receiving anterina

For terrestrial television we are used to aerials which range from little more than the proverbial wet string near transmitters to large Yagis at the fringe which usually need mounting high up to get good signals.

Receiving antennae for domestic reception of satellite broadcasting signals, however, are uniformly sized because everyone will get a flux within the narrow limits of -100 to $-103 \mathrm{~dB}\left(\mathrm{~W} / \mathrm{m}^{2}\right)$ according to the standard mentioned earlier. Also, the 12 GHz signals are such that a clear line-of-sight is usually essential, but with the angles of arrival of satellite signals for the UK, as shown in Fig. 4, almost everyone can find somewhere on their premises that meets the requirements. This has in fact already been confirmed ${ }^{2}$ by asking the occupiers of several hundred homes to observe shadows when the sun was shining at 3 p.m. British Summer Time in mid-October this being a time when the sun has the same position in the sky for the UK as the assigned satellite position. The limited sample suggested that suitable sites for antennae could be found in 99.5% of cases. Furthermore in many, but not all, cases the most suitable site is low on the side of the house or on the ground rather than at roof level.

The requirement of a 0.9 m diameter antenna is not a precise one. It depends on receiver noise performance, the available signal flux and the importance attached to a low-noise signal. As a guide, with the suggested antenna size, 8 dB noise figure gives 14 dB carrier-tonoise and a slightly noisy picture when the flux is just-103dB(W/m2). Manufacturers' developments now suggest that noise figures of 5 dB with a mixer first stage. or 4 dB with a f.e.t. amplifier, will be obtainable at modest cost. Some allowance for pointing error and reduced antenna efficiency should
be borne in mind when considering the likely performance of domestic equipment over a period of several years.

In order to exploit extensive frequency re-use in the 1977 plan, advantage was taken of the directivity of receiving antennae, corresponding to a 2 degree beamwidth (at $-3 d B$) for a 0.9 m dish. Antennae lined up on one satellite position have a poor response to signals from neighbouring positions. The plan used 6 degree spacing between adjacent allocated orbit positions, and at 6,12 and 18 degrees respectively the antenna responses are assumed to be 20 , 28 and 33 dB below the maximum. Furthermore it is assumed that in the direction of maximum response (i.e. for the same orbit position) the response to a signal with a polarisation opposite to that of the wanted signal is 20 dB down. It is thus clear that an antenna, when set up for one orbit position, cannot be used by the viewer to receive from another. Receiver requirements are considered next, but clearly where a viewer in the UK wishes to receive transmissions planned for France or vice-versa, a first essential is either to have two antennae, or one that can be rocked between two carefully set-up aiming positions. Possibly, if there is a demand, some neater arrangement such as a single reflector with two feeds will be designed.

Domestic receivers

The ITU plan, as seen from Table 1, calls for a tuning range of 400 MHz to receive

Fig. 4. Angle of elevation of UK satellite at $31^{*} W$.
all channels of any one country, although it can be foreseen that, when several countries have begun using most of their channels, there will be some demand for means of receiving over the full 800 MHz band. Considering the basic 400 MHz receiving system first,

UK's change of heart on satellites

In 1976 we reported that Britain's broadcasters were showing very little interest in the prospect of satellite broadcasting. Their general attitude seemed to be that the UK already had good coverage from terrestrial broadcasting and consequently there was little need for this new type of service. Since then they have shown a distinct change of heart. The BBC for example has stated that it proposes to take up two of the five satellite broadcasting channels allotted to the UK (see table in Dr Phillips's article), one for subscription television and the other carrying "'the best programmes from BBCi and BBC2." Thames Television's director of sales has publicly discussed the interest of the tv programme companies. The IBA, though somewhat less positive, have said that if a national decision is made to establish satellite broadcasting in the UK they would not stand aside

The reasons for this volte-face are. largely commercial. First there is the fear of losing British audiences and advertising revenue to competition from Continental satellite broadcasters - notably from those countries whose satellite coverage areas "overspill" onto the UK. Secondly, programme companies in Britain see opportunities
to get revenue from advertisements broadcast into European countries by this means. In addition British space and electronics manufacturers see profitable markets in supplying the actual satellites and their associated ground equipment, and in seeking such business they are officially encouraged by the Department of Industry.

In response to all this the Home Secretary, who is of course responsible for the regulation of broadcasting in the UK, said in March that he had decided to launch a study of the implications of setting up a satellite broadcasting service by about 1985 which would be the earliest practicable date - or by about 1990. The Home Office is now conducting this study, which covers technical, financial and resource matters, in consultation with the BBC. IBA, Dol, other government departments and organizations which might have a direct interest. It takes account of the Government's plans for the fourth television network. The results of the study, which will present the various options and their implications as a basis for making a decision on satellite broadcasting, are expected to be published at about the end of this year. - WW staff.
it might well be as outlined in Fig. 5. A down-converter to $900-1300 \mathrm{MHz}$ is placed on, or adjacent to, the aerial and employs a fixed-tuned oscillator, and avoids a microwave down-lead (which would be either lossy or expensive) but leaves the actual tuning in the room set. Secondly, terrestrial television must continue to be catered for since, in the foreseeable future, this would continue as the most practical system for television networks giving regional or local programme variations. Thirdly, an f.m./a.m. converter is not featured. Rather, the early appearance of sets with dual tuners (i.e. a.m./f.m. television receivers) is to be encouraged if the benefit from the picture quality with direct f.m. demodulation is to be obtained. (A f.m./a.m. unit demodulating and remodulating for feeding a conventional television receiver would have three intermediate frequencies with a change to base-band, i.e. a quadruple superhet; this could be prone to interference and suffer a.m. system distortion.)

The basic set-up in the home of the future could well expand somewhat from this modest start as Fig. 6 shows. The system now extends the distribution of the $900-1300 \mathrm{MHz}$ signals to more than one room. The one containing áudio/radio equipment now uses an a.m: television receiver with a video input facility, and a separate f.m.-tovideo tuner so that interplay with the video cassette and television set is possible. The possibility of a digital sound multiplex in place of television on one of the satellite channels has also been anticipated. The assumption in this example is that the digital sound signal
would be approximately within the normal video bandwidth and would frequency-modulate the transmission in the same way as for television.

A receiver for the international viewer can be considered with reference to Table 1. Here the situation may vary. Certain pairs of countries (UK and Ireland, France and Belgium, West Germany and Austria, for example) need no more than the basic receiver to see each other's programmes. In other cases the neighbour might have the other half of the 800 MHz band, different polarisation, or both. A receiver to tune over 800 MHz would be very convenient but could be difficult to design on the basis of a fixed oscillator and extending the range of the first intermediate frequency to $900-1700 \mathrm{MHz}$. I would suggest a simple alternative: if the basic 400 MHz units have a wide market and therefore reasonable cost, two such units could be attached to the antenna with two down-leads, each carrying $900-1300 \mathrm{MHz}$, one for each half of the band. The receiver would have two input sockets and a two-way selector switch.
To change polarisation, a remotelycontrolled switched-polarisation feed could be fitted at the antenna. However, with more than one television set in the home, this solution could frustrate independent choice of viewing. An alternative would be an 'orthogonal feed' from which the left- and righthanded polarisations could be simultaneously connected to two basic first frequency-changers, again using two down-leads. Elaborating further, some 19° West satellite viewers in favourable locations might want to receive most or all of the eight European national services. They would require four 400 MHz units and four down-leads in order to cover both polarisations over an 800 MHz bandwidth.

To complete the picture on the receiver design the u.h.f. tuner must be considered. This will select channels within the first i.f. range and the conventional approach would be to have a second, tunable, frequency-changer and a final i.f. in the region of 125 MHz . Image rejection would be necessary in this tuner. A surface-acoustic-wave filter could be a good choice for the i.f. filter in front of the f.m. discriminator which has to operate with a 27 MHz

Fig. 5. Simple system with an a.m. / f.m. room television receiver unit.

Fig. 6. Possible developments for unit video and unit aidio in the home.
bandwidth with low group-delay distortion. A less conventional approach, under study in France, is a phase-locked-loop f.m. demodulator which can operate directly on the required signal in the $900-1300 \mathrm{MHz}$ band and provide a video output directly.

The method of transmitting the television sound component in satellite broadcasting is under active study by the European Broadcasting Union. Although the starting point in 1977 was to consider a f.m. subcarrier compatible with the terrestrial system (e.g. a 6 MHz subcarrier in the case of television Standard I, as used in the UK), serious consideration is being given to alternatives for enhancing the sytem to provide a pair of channels for stereo or second language. Digital modulation for the sound signal, which could give better quality and higher signal-to-noise ratio than is possible with analogue systems, is also being considered.

Feeder links (up links)

The system envisaged for a broadcasting satellite system is that a signal modulated to exactly the same standard as the downcoming transmission should be sent up to the satellite. This allows the satellite to be designed as a frequency-translating relay. The detailed assignments, or even the choice of the frequency band, for the up-links or feeder links were not dealt with at the 1977 conference because priority was given to attaining an agreed down-link plan. Studies having established that a bandwidth at least as great as the down-link broadcasting band would be essential, the 1979 World Administrative Radio Conference was able to allocate for world-wide use the band 17.3 to 18.1 GHz for feeder links to broadcasting satellites transmitting in the 12 GHz band. In limited geographical areas, alternative frequencies have also been allocated for feeder link use, if required, including the 10.7 to 11.7 GHz band in the European area.

Although interim arrangements can easily be made at early stages when the band is relatively uncrowded, it is agreed that a detailed assignment plan for feeder links should be made and the expectation in the case of Regions 1 and 3 is that the frequency channelling and assignments could, as a starting point, be a carbon copy of the down-link plan translated from $11.7-12.5 \mathrm{GHz}$ to $17.3-$ 18.1 GHz . One advantage would be a constant frequency change of 5.6 GHz for all transponders, which would lead to some economies in design. If changes or adjustments had to be made to the assigned frequencies, they could be made without enormous repercussions (as would be the case in attempting to change the closely interwoven downlink plan). This is because up-link antennae at Earth stations are expected to be so directional that the choice of frequencies for transmissions aimed at one satellite would have little effect on the choice for transmissions aimed at other orbital positions. The main task is to agree on a series of mini-plans, each acceptable to a group of countries assigned to one orbit position, but with an overall check on the effect on other orbit positions. An ITU conference to be held in 1983 for planning down-links in Region 2 will also be asked to consider detailed feeder link planning for the same region. It is not yet decided whether the conference needed for feeder link assignments in Regions 1 and 3 will take place at the same time or later.

To be continued

References

1. Terzani. C. Economic survey of satellite broadcasting and comparison with terrestrial systems. European Space Agency Proceedings ESA/SP 125 (Dublin. 1977, Symposium on Direct Satellite Broadcasting). p. 73.
2. Harvey, R. V. Satellite broadcasting: results of a preliminary coverage survey in the UK. BBC Engineering Research Report 1979/18.

The floating bridge - 2

Unconventional amplifier circuits for 15 and 200 watts

by R. M. Brady, BA

As well as giving practical circuits and test results, this article describes a general plan for A_{1} and for A_{2} which makes full use of the unique way in which these circuits may be simplified. In particular by using an i.c. which is able to control A_{1} without loss of performance, and by exploiting the fact that A_{2} need be made only to poor performance specifications. It also takes a further, more quantitative, step in distortion analysis. The unconventional approach to these circuits, was outlined in the first part of this article, September issue.
A design for A_{1} which uses a B-type feedback loop with the simplest earthing system is shown in Fig. 11, and although the following analysis is based on this circuit, it applies equally well to A-type bridges, and to circuits incorporating a change-of-origin device. P_{1} is a high voltage-gain i.c., and $E F_{1}$ is what would conventionally be called an emitter follower, containing the power transistors. C and D are points which are kept at a constant potential with respect to earth by C_{1} and C_{2}, and they act as power supply points for $\mathrm{P}_{1}{ }^{*}$. Impedances $\mathrm{Z}_{1}, \mathrm{Z}_{2}, \mathrm{Z}_{3}$ and Z_{4} are part of the feedback loops of the circuit.
Closer inspection of the circuit shows that $E F_{1}$ is arranged in an A-type feedback loop, and its complex voltage gain is $\mathrm{Z}_{4} / \mathrm{Z}_{3}$ (not unity, so that "emitter follower" is probably a misleading name for this part of the amplifier). It is this ability to extract voltage gain from EP_{1} which makes this circuit uniquely suited to be controlled by an i.c. - it may be arranged that the voltage gain demanded of the i.c. is around unity, so that a high bandwidth may be obtained.
If G is the gain of the i.c., and if Z_{3} and Z_{4} are small enough that the gain of the emitter follower approximates to $\mathrm{Z}_{4} / \mathrm{Z}_{3}$, then the open-loop gain of the whole amplifier becomes

$$
\frac{G Z_{4} Z_{1}}{Z_{3}\left(Z_{2}+Z_{1}\right)}
$$

In the actual circuits. described later, $Z_{3} / Z_{4}=: Z_{1} /\left(Z_{1}+Z_{2}\right)$, so that this expression reduces to $\mathrm{G}^{* *}$. The 741

[^2]
amplifier is used and as this is frequency compensated the whole amplifier is stable. Fig. 12 shows the loop gain of the 741 amplifier as a function of frequency.

To quantify the coupling between A_{2} and A_{1}, imagine that A_{2} produces a distortion signal of V volts. At low frequencies this couples into A_{1}, largely via the extra current $2 V / R_{1}$ which is injected into point x through R_{1} and R_{2} ($R_{1}=R_{2}$). If the impedance of the emitter follower (V_{1} / I_{1}) in Fig. 11 is Z, and the loop gain of P_{1} is G, then this current results in a distortion voltage across $y-x$ of

$$
\frac{2 V Z\left(Z_{1}+Z_{2}\right)}{R_{1} G Z}
$$

Fig. 11. Circuit for amplifier \bar{A}_{1}, based on version $B . Z_{1}, Z_{2}$ and R_{3} are part of the feedback loop of Fig. 5 with $Z_{1} \equiv R, C_{4}$ $Z_{2} \equiv R_{z^{\prime}} R_{3} \equiv R_{5} \cdot E F$, is arranged in an A-type feedback loop with voltage gain Z_{4} / Z_{3} so only low voltage swings are needed in the operational amplifier P_{r}.

Taking typical values of $Z=0.1 \mathrm{ohm},\left(Z_{2}\right.$ $\left.+Z_{1}\right) / Z_{1}=30$, and $R_{1}=220 \mathrm{ohm}$ the distortion coupling is around $3 / G$ percent at low frequencies. Inspection of Fig. 12 shows that this coupling is hardly worth considering. At high frequencies, the value of $\left(Z_{2}+Z_{1} / Z_{1}\right.$ falls, to some extent counteracting the fall in gain of the i.c., and also the distortion produced by A_{2} diminishes because of the low response cut-off of this amplifier.
Cheapness and simplicity are the main criteria for the design of A_{2}. Figs 13 \& 14 show two alternative designs for this amplifier, the first being suited to low-power applications where supply voltage is accurately controlled for example where a car battery is used, and the second being a little more complicated but far more robust.

In Fig. $13 \mathrm{C}_{1}, \mathrm{R}_{1}, \mathrm{C}_{2}$ and R_{2} are the same components as those shown in Fig. 11 Resistors R_{3} and R_{4} are set so

[^3]

Fig. 13. Simple design for A_{2} - cutting all corners because distortion in this amolifier does not affect the output. So that $y=-x$. Gain should be about -1 and is $Z_{5} / R_{,}=$ Z_{6} / R_{2} At high frequencies, the gain must fall and so a capacitor is included in each of Z_{5} and Z_{6}. Components C_{1}, C_{2}, R, and R_{2} are needed for A_{1} also and so serve a double purpose.

Fig. 14. High power design for A_{2}. This is a more conventional design, with gain Z_{5} / R_{2}.

that in the quiescent state Tr_{1} and Tr_{2} are only just turned on (one of R_{3} and R_{4} may be a preset if desired). As x rises with respect to point A, C_{1} and C_{2} pull C and D up with it, thus switching off Tr_{1} and switching on Tr_{2}, so that y falls. The gain of A_{2} is $(y-A) /(x-A)$ and is a little less than Z_{6} / R_{2}; it is arranged to fall off at around 5 to 10 kHz where full power output is not required from A_{1}.
Fig. 14 shows an emitter follower version which is controlled by Tr_{1} so that the gain is Z_{5} / R_{2}. To prevent large distortion at low signal levels due to effects at the crossover point, R_{3} is included.

A large open-loop gain is made possible by low values of Z_{5} and R_{2}, so that $T r_{1}$ and R_{3} are capable of helping substantially at the crossover point.
Fig. 15 shows this circuit with current protection incorporated. When Tr_{1} and Tr_{3} are conducting, a voltage is showed across R_{7} which is proportional to the current flowing. When this voltage becomes about $0.6 \mathrm{~V} \mathrm{D}_{3}$ and D_{2} conduct, preventing large currents from passing through Tr_{3}; a similar mechanism around D_{1} and D_{4} protects the $\mathrm{Tr}_{2}-\mathrm{Tr}_{4}$ pair. If desired, more accurate control may be obtained by inserting a $\mathrm{p}-\mathrm{n}-\mathrm{p}$ silicon transistor in place of D_{2} and D_{3}, with its emitter to the + supply, its collector to the base of Tr_{1} and its base to the emitter of Tr_{1}; and a second in a similar configuration around Tr_{2}.

12 volt 15 watt amplifier

A circuit for a type-B bridge amplifier which is suitable for operation using a 12 volt power supply is given in Fig. 16. Comparing this with Fig. 11 components R_{1} and C_{1}, R_{3} and $C_{2}, R_{4}{ }^{*}$, and R_{5} and C_{3} are represented by $\mathrm{Z}_{1}, \mathrm{Z}_{2}, \mathrm{Z}_{3}$ and Z_{4} in the block diagram representation. Transistors 2 to 5 are represented by EF_{1}, and $\mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{R}_{9}$ and R_{10} have their counterparts in $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{R}_{1}$ and R_{2}. Capacitors 6 \& 7 are represented in Fig. 13 by Z_{5} and Z_{6}. The circuit shown differs from the plan in that Z_{5} and Z_{6} are largely reactive, so that at low frequencies the gain of A_{2} is dictated mostly by the current gain of Tr_{6} and Tr_{7}. Notice P_{1} is being operated with a low supply voltage, so that a potentiometer is needed to control the

* In series with the output impedance of Pl which is
about 75 ohms.

Fig. 15. High power design for A_{2} with current protection. This protects both amplifiers A_{1}, and A_{2}, but it is easier to put current protection into A_{2} as quality output is not required from this amplifier. Current must pass through R_{7} - if too much passes D_{2} and D_{3} conduct switching off the drive, or through R_{8} when D_{4} and D_{1} conduct it too much passes.

Fig. 16. 12-volt version of the floating bridge gives 12 watts output, distortion-free, into 4 ohms; more power is available if a lower impedance loudspeaker is used. High quality amplifier A_{1} comprises a 741 i.c. driving the "emitter follower" stage Tr_{2} and $T_{r_{3}}$ gain R_{3} / R_{r}. Low-quality amplifier A_{2} is based around $T r_{6}$ and T_{7}. Potentiometer is adjusted until the output voltage y is half way between the supply rail voltages in the quiescent state. If a supply voltage other than 12 volts is used R_{13} and R_{14} may need adjustment.
quiescent value of y accurately. Components R_{15} and C_{8} are included to by-pass inductive loads.
A computer analysis of the response of this amplifier is shown in Fig. 17 in which G is the signal gain, stretching across the whole audio bandwidth. It is dangerous to attempt to restrict this response because the loop gain L is already falling at 6 dB per octave and so any interference would almost certainly result in instability. Also on this graph is the calculated A_{2} rejection factor, which does not fall below 55 dB hence distortion induced in the output by A_{2} is negligible. The distortion to be expected of this amplifier at medium signal levels is discussed in the appendix. The performance to be expected of the amplifier at high and very low signal levels is not very different from that discussed here.
Fig. 18 shows a change of origin suitable for this amplifier; in the circuit tested it was mounted on the same board as the main amplifier, though this is not necessary. Point F is suitable for use as a power supply point for a preamp, though this may need slight modification if the pre-amp takes significant current. If a positive earth is to be used, the change of origin may be modified by changing Tr_{101} and Tr_{102} for similar p-n-p devices e.g. BC212, point C for point D , and +12 V supply for -12 V supply, so that the input signal is now compared to the + rail.

Fig. 17. Predicted performance of the amplifier, showing open-loop and closed-loop gain of A_{1}, and rejection factor of A_{1}, to distortion in A_{2}. Rejection factor is very high, showing that A_{2} can indeed be of very poor quality without affecting output.

Before switching on for the first time, set the preset resistor to its maximum resistance, and set the potentiometer to the middle of its resistance range. When power has been switched on, adjust the pot so that $x=Y=V / 2$ where V is the power supply voltage. Now insert an ammeter in the power rail, and adjust the preset until the current begins to increase rapidly as it is turned, and then adjust back a little. The amplifier is now ready for operation.

If the change of origin is to be mounted on a separate board, use the following screening system. Connect the screen of the coaxial lead from pre-amp to main amplifier to point x at the amplifier end only; leave the other end flying. (If convenient provide a track in the pre-amp to which the screen may be physically mounted). This cable is at x potential, so keep it well away from the sensitive components of the pre-amp.

Fig. 19. Response of the 12 volt version
to a $3 k H z$ square wave input. Upper trace
Fig. 19. Response of the 12 volt version
to a 3 kHz square wave input. Upper trace shows the 30 kHz cutoff due to C_{2} in Fig. 15. Lower trace is the output of the poor. quality amplifier. A_{2} showing cutoff at about 5 kHz . Note that the output, $y-x$, is
decoupled from the A_{2} output, y.

Fig. 18. Practical circuit for a "change of origin" for the 12 volt amplifier allows earth to be connected to the negative power rail. If a positive earth is required, use BC212 for Tr_{101} and Tr_{102} and replace point C by point D. so that a "mirror image" may be built.

Fig. 20. Quiescent current through the 12 volt version of the floating bridge as a function of supply voltage. If a supply other than 12 volts is used, or if the transistors are liable to become hot, resistors R_{13} and R_{14} which control the quiescent current through A_{2} should be altered accordingly.

Fig. 21. Signal response of the A_{2} amplifier as a function of frequency.

Performance of this amplifier under test is very much as predicted. Fig. 19 is an oscilloscope photograph of the output of the amplifier with a 3 kHz square wave input, a 16 -ohm resistive load, and an accurately controlled 12 volt power supply. Top trace is y-x or the output across the load, and below is a trace of y, or the A_{2} output. The integrating times of these traces correspond to 20 kHz for $y-x$, and 5 kHz for y. Crossover distortion is clearly seen in the lower trace (crossover occurs when y-x goes through zero, not when y does so), but this does not show up in the upper. The high A_{2} rejection factor is strikingly seen in this photograph, for the output remains horizontal after A_{1} has got over the transient, even though A_{2} 's long integrating time constant causes y to be changing at a great rate at this time.
Fig. 20 shows the quiescent current taken by the amplifier as a function of supply voltage. Below 10.5 volts the i.c. becomes unstable and low frequency oscillation sets in, whereas above 13.5 volts A_{2} begins to take an unacceptable current. (This may of course be changed by altering the value of the resistors connected between base and emitter of Tr_{6} and Tr_{7}. The i.c. is capable of operating with up to 30 volt supply.)
The measured frequency response of the amplifier is shown in Fig. 21. Cut-off at the high frequency end of the range is didctated mostly by the characteristics of the change of origin device, and these are fairly "safe" if changed.

40 Volt 200 Watt amplifier

A 40 -volt amplifier design is suitable for high power applications, and is capable of driving an eight-ohm load at 100 watts or four-ohm load at 200 watts, with high fidelity performance. The circuit for A_{1} is shown in Fig. 22 and the feedback loops are identical with those in the 12 volt amplifier. The design of A_{2} in Fig. 23 follows the plan of Fig. 15. The value of R_{3} determines the power supply voltage which the amplifier will be able to use: the quiescent value of y is approximately $190 / R_{3}$ volts below the positive power rail, and if this is about half supply voltage then all is well. The change of origin used is identical with that for the 12 -volt circuit, excepting that Tr_{102} is replaced by a higher voltage BC147 transistor; and that R_{104} is increased to $27 \mathrm{k} \Omega$.
The distortion analysis given in the appendix is valid for this amplifier also Though finer control of the crossover region may be had because of the emitter resistors. Tr_{4} is now included in possible sources of crossover distortion.

Fig. 24 is an oscilloscope photograph of the response of this amplifier to a 3 kHz square wave input. Hideous crossover distortion in the lower trace does not couple into the signal across the load. A further point to notice is that the y signal is more accurately controlled, being very closely one half of the $y-x$ signal.

4Fig. 24. Response of the 40 volt version to 3 kHz square wave input. Upper trace is the output, $y-x$, and appears to be distortion-free despite the very bad crossover distortion in the output y of amplifier A_{2} llower trace). trace). power supply for the 40 volt amplifier. Values shown are for 100 watt version; alternative values in brackets are for 200 watt use.

Appendix: distortion analysis

Distortion produced by A_{2} and induced in A_{1} may be neglected, and the internal feedback in P_{1} is large enough that distortion of D G/3P volts peak is neglected. The main source of nonlinearity is the $E F_{1}$ system, see Fig. 11. With a sine wave input at low frequency, V_{1} will look typically like:

This may be regarded as the sine wave plus an extra:

which is the voltage required to drive
the $E F_{1}$ if Z_{4} is removed. Its major Fourier harmonic is the third, and this has a peak magnitude of a little less than D/3. This component is the dominant source of distortion in the amplifier. If P is the voltage gain of P_{1} and G is the amplifier gain, then a third harmonic distortion of $D G / 3 P$ volts peak is produced at the output. The value D depends on the adjustment of the preset resistor in Fig. 16 but will be typically 0.1 volt. The resulting harmonic distortion for a pure sine wave and an output of 5 volts peak is:

New computer products

The fourth Microcomputer show, which this year moved to the Wembley Conference Centre, attracted 52 exhibitors and increased the attendance by 500 to 8,500 over three days. Although the show specializes in small business systems and personal computers, James Scott Electronic Developments reported a sale of v.d.us, worth around $£^{1 / 2}$ million, to a German client. Comart were demonstrating a North Star Horizon hard-disk system which provides 18 M bytes, expandable to 72 M bytes, of storage on a 14 in Winchester disk/drive. The Byte shop, now a subsidiary of Comart, announced a Prestel board which uses their own software to create Prestel compatible colour displays that can be stored, edited and transmitted.

A new serial printer from Mannesmann Tally features a print mechanism and print head which are claimed to offer a double life of 200 million characters. The printer, type MT1602, looks like the T1602 but offers improved performance. A microprocessor selects the shortest print path and accelerates the head across blank spaces to provide a printing speed of about 160 c.p.s.

Micro byte's new "stereo S100 sound computer board" is an interesting add-on for the hobbyist. This card uses two AY-3-8910 sound i.cs which accommodate three tone channels, three amplitude controls, a noise generator, a 16-bit envelope period control, two parallel I/O. ports and three d-to-a converters. The card is supplied in kit form with four parallel I/O ports, two amplifiers and a prototyping area. A 60 page manual supplements the card, and Basic and assembly language programming examples are provided.

A single-board computer kit was also announced by Micro byte, who expect deliveries to start in September. The board comprises a Z 80 operating under $\mathrm{CP} / \mathrm{M}, 64 \mathrm{~K}$ of r.a.m., one floppydisk controller, serial and parallel ports, and a 24×80 v.d.u. Very little literature was available at the show, but the advertised price of $£ 395+$ v.a.t. makes it worth investigating.

BMG Microsystems, a wholly British computer company, has developed a production management system, based on their MS5000 microcomputer, for scheduling and cost control.

BMG say that the system provides small and medium sized engineering companies with a versatile tool that is easy to use and does not require computer expertise. The standard system uses an 8in floppy-disk and a single v.d.u., but this can be expanded to include several v.d.us and up to 20 M bytes of exchangeable disk storage. The makers are currently working on the implementation of a 16-bit processor and larger disk capacities.

Miniature power resistors

Wirewound resistors of small physical size, yet with good surge capabilities and power ratings up to 3 W at $20^{\circ} \mathrm{C}$, are introduced by Erg Components. With features such as an all welded construction for good reliability, a black silicone resin coating and a temperature coefficient of typically

60 p.p.m. $/{ }^{\circ} \mathrm{C}$ for values above 1Ω; the Erg 74ER series is said to fill in a gap between metal-oxide and vitreous enamel w.w. type resistors. Their performance complies to BSE 9114 N 001 , and they measure 11.8 mm long with a diameter of 5.25 mm . Resistance values down to 30 milliohm are available. Erg Industrial Corporation Ltd, Luton Rd, Dunstable, Bedfordshire LU5 4LJ.

WW301

Btu meter

A portable infrared sensing device, the Thermoflow, which enables the measurement of heat losses and gains without actual contact, is now available from Unity Power Systems. A large digital display gives a direct readout in $\mathrm{Btu} / \mathrm{ft}^{2} \mathrm{~h}$ when the unit is pointed at the source, making it a

simple matter to determine heat flow over a certain period of time. Two modes of operation, selected by means of a trigger switch, enable either the checking of heat losses from steam, pipes, walls, windows etc, or the checking of heat loading from such items as lighting units and electronic appliances. Features are battery operation, automatic ambient temperature compensation and an 8-14 micron filter which eliminates potential errors due to water vapour, carbon dioxide, sky radiance and reflected sunlight. The instrument is supplied complete with carrying case, weighs about lkg and costs in the region of $£ 600$. Unity Power Systems, Pembroke House, 44 Wellesly Rd, Croydon, Surrey CR9 2BU.

WW302

Eurocard boards

Extensions to Vero Electronics Ltd's Eurocard range have been made to include fully pierced Veroboards. which are available with or without maximum copper colander ground planes. Positions are provided for linking directly to board or pins from connectors, and either soldering or wire-wrapping techniques can be used for wiring. Grid reference numbers are silk-screened onto
the component side for the convenience of the user, and their size makes them compatible with subracks to DIN 41494, IEC 297 and SC 48D specifications. Also introduced are single-height, square-pad boards with maximum copper colander ground planes. These boards have been designed primarily to accommo. date wire-wrap sockets. With holes accurately positioned on a 2.54 mm matrix, they will accept any size of integrated circuit. Vero Electronics Ltd. Industrial Estate, Chandlers Ford, Eastleigh, Hampshire SO5 3ZR.

WW303

Digital storage oscilloscope

Storage of waveforms in a digital memory of 8 -bit $\times 1024$-word capacity is the main feature of the MS-1650 oscilloscope from Trio, which, when used as an ordinary oscilloscope, has a frequency bandwidth of zero to 10 MHz , and an input sensitivity of $10 \mathrm{mV} / \mathrm{div}$. Maximum write speed is $1 \mu \mathrm{~s} /$ word, and analogue input signals may be sampled at any time, converted into 8 -bit digital signals by an a.-to-d. converter, and then stored temporarily in the memory. The stored signal may be displayed immediately on the oscilloscope screen, or used to drive a pen recorder via the memory output. Ability to store the signal generated prior to the trigger pulse, facilitates the storage and display of one-shot, transient and repeated signals, and simultaneous display of stored and real-time waveforms, which may also be overlapped, enables comparisons to be made. Retention of the memory data when the power is removed, is possible by means of an optional NiCad battery for which space is provided inside

the cabinet. The MS-1650 incorporates a $118 \times 98 \mathrm{~mm}$ c.r.t., weighs only 9 kg , measures $284 \times 138 \times 400 \mathrm{~mm}$, and costs $£ 1440$ with a two year guarantee. House of Instruments, $34 / 36$ High St, Saffron Walden, Essex CB10 1EP.
WW304

Multi-turn encoders

Tracking absolute encoders with resolutions of up to 1 part in 500000 , and a choice of 10,64 or 100 turns for full-scale count, have been introduced to the UK by Techmation Ltd. These units, manufactured by Computer Conversions Ltd, convert any shaft input to 5 or 6 digit b.c.d. or 19 bits of binary information, corresponding directly to the shaft angle, with an error of less than ± 1 part in 10^{5}. Output data is continuously available, accurate up to input rates of 10^{4} degrees/second, and in addition, readout units are available with either 4,5 or 6 digit, 0.5 in high displays, and have t.t.1.compatible data, busy and inhibit outputs for interfacing with a computer. Resetting of the zero point to any value is possible via an offset adjuster, and any output scale factor can be provided (such as pounds, feet, etc.). Rack or panel mounting versions exist, either with an internal power supply or without, in which case external supplies of $\pm 15 \mathrm{~V}$ and +5 V d.c. are required. Other specifications. include 0 to $70^{\circ} \mathrm{C}$ (or -55 to $+85^{\circ} \mathrm{C}$) operating temperature range and a maximum transducer/readout-unit cable length of 1000 ft . Techmation Ltd, 58 Edgware Way, Edgware, Middlesex HA8 8JP. WW305

Matrix panel

ASCII compatibility enables the new version of the Argus gas plasma display panel, from Perdix Components Ltd, to be used as a direct replacement for a c.r.t. It can accept ASCII data in one of three ways, 20 mA Loop, RS232-C or differential t.t.l., and among
the standard commands to which it can respond are "carriage return", "line feed", "form feed" and "shift out" (cursor home) Cursor addressing can be carried out by using device control channels one and three. Standard panels are manufactured in a variety of forms, from a single line of 40 characters, to a 480 character (40×12) message panel, all having 120° viewing angles in both planes and 5×7 dot characters. Operation at data rates from 150 to 19200 baud is possible. Other features of the new Argus display, which is expected to be of particular use in applications where weight, size and power-consumption are critical factors, are its highbrightness and dead background, optimum line-to-line spacing, and a flicker-free display during updating, made possible by the use of superior data organization. Perdix Components Ltd, 98 Crofton Park Rd, London SE4

WW306

Capacitive sensor

Angular displacement can be measured directly using the Cl1K capacitive sensor from Jackson Brothers (London) Ltd. Error in linearity is less than 1% f.s. of the 100 pF devices, which have a differential arrangement consisting of two sets of statorvanes, and one set of rotor-vanes, enabling their use in bridge circuits for improved accuracy and cancellation of the effects of environmental changes. The standard unit costs around $£ 10$ with electrical characteristics such as an insulation resistance of $10^{9} \Omega, 500 \mathrm{~V}$ d.c. breakdown voltage, 50 p.p.m. $/{ }^{\circ} \mathrm{C}$ temperature coefficient and a Q of 1000. Continuous rotation can easily be translated, with minimal step inaccuracies, into a triangular waveform, which has a pitch corresponding to 180° of angular movement. A virtually unlimited life is claimed for the C 11 K , the only points subject to wear under normal conditions being the constant-contact wiper and the low-torque bearings. Maximum
operating torque is less than $1 / 20 \mathrm{z}$-in and the sensor, with vanes made from silver-plated brass, measures 1.3 cu .in without shaft and solder-lugs. Its drive shaft protrudes from both ends, one end having a plain diameter of $1 / 8 \mathrm{in}$, the other stepped, with diameters of $1 / 8 \mathrm{in}$ and $1 / 16 \mathrm{in}$, and mounting into transducer heads, linear/rotational translator units etc., is possible via two thread bushes, with one inch

centres, in each ceramic endplate. Jackson Brothers (London) Ltd, Kingsway, Waddon, Croydon, Surrey CR9 4DG.

WW307

Microprocessor tutor

Developed with the aid of the Newcastle Science and Technology Education Centre, this desk-top unit, called the Microprocessor Tutor (MPT), is manufactured by Welwyn Electric Ltd, and has been designed to teach the uses and applications of the microprocessor simply and cheaply in schools, colleges and universities. It is claimed that the MPT has already been tested in more than fifty educational establishments. Program instructions and data are entered in the form of 8 -bit words by means of eight switches with " 0 " and " 1 " positions, the program and data entry being indicated by a row of eight l.e.d.s, and the instruction set is intentionally limited to load,
store, add, substract, and, complement, branch (always), branch (if accum $=0$) and halt, for reasons of simplicity. A 'step' button allows programs to be run, one instruction at a time, with the l.e.d.s displaying the current data or the address at each step. Among the operations which can be demonstrated using the MPT, are the entering, storing and recalling of digital data, the addressing of memory locations and stepping from one instruction to another automatically. For practical demonstrations, a "traffic lights" simulator is provided along with instructions for writing programs to control their speed of operation, and program modifications to enable the delay time of the lights to be automatically changed as "traffic" builds up. Also included is a small d.c. motor for use in conjunction with motor-speed control programs. Welwyn Electric Ltd, Bedlington, Northumberland NE22 7AA.

WW308

Wire-wrap kits

UK-manufactured kits, each comprising base board, precision screw-machined socket terminals, 96 -way DIN connector(s), ejector keys, solder clips and a pin insertion/extraction tool, are made by Cavac Systems Ltd, and offered in single, double or triple Eurocard and maximum I/O double Eurocard styles. They feature maximum-power and ground-plane areas and are developed for use in prototype and pre-production applications. An alternative version can be supplied with a selection of discrete i.c. sockets instead of loose socket/terminals. A full data sheet, detailing the component parts and giving ordering information, can be obtained from Cavac on request. Cavac Systems Ltd, Unit 15, Suttons Park Avenue, Suttons Industrial Estate, Early, Reading RG6 1 AZ.
WW309

図
 ameron
 INDUSTRIAL MUSCLE

Model
 M600

\star POWER RESPONSE DC $-20 \mathrm{KHz} \pm 1 \mathrm{~dB}$.
\star OUTPUT POWER IN EXCESS OF 1.5 kW INTO 2.75 Ohm LOAD (CONTINUOUS R.M.S.).

* D.C. OUTPUT 20 AMPS AT 100 VOLTS OR 2KVa.
» HARMONIC DISTORTION LESS THAN 0.05\% DC-20KHz AT 1 kW INTO 6 OHMS
\star PLUG-IN MODULES: CONSTANT VOLTAGE/CURRENT, PRECISION OSCILLATORS \star UNIPOLAR•AND BIPOLAR DIGITAL INTERFACES, FUNCTION GENERATORS, AND MANY OTHERS.
\star OUTPUT MATCHING TRANSFORMERS AVAILABLE TO MATCH VIRTUALLY ANY LOAD
\star FULL OPEN AND SHORT CIRCUIT PROTECTION GUARANTEED STABLE INTO ANY LOAD.
\star TWO UNITS MAY BE CONNECTED TO PROVIDE UP TO 4 kW .
\star INTERLOCK CAPABILITY FOR UP TO EIGHT UNITS.
\star 3-YEAR PARTS AND LABOUR WARRANTY
For full details on all Amcron Products write or phone Chris Flack

" NEVER KNEW COLOUR VIDEO COULD COST SO LITTLE"

Don't be put off by what you may have heard - or imagined - about the cost of colour video.

Talk to Bell \& Howell or one of our Video Centres and get the current facts.

The fact,for example, that a portable.JVC colour camera costs little more than an ordinary black-and-white camera.

And the further fact that by adding a JVC VHS you have a complete colour recording system for as little as $£ 1,300$ plus VAT. For playback, a standard TV receiver is all you need.

At these prices every user can benefit from colour. Training will be easier to understand; publicity more compelling; management communications more interesting; rôle-playing more effective. After all, we live in a coloured world.

PUSH-BUTTON FEATURES

Don't think for one minute that the low price has been achieved at the expense of useful features. Among other things the camera has an iris control which automatically adjusts lens aperture to match lighting conditions; a 6:1 power or manual zoom, giving close-ups as close as 50 mm ; TL indicators which automatically show exposure level, auto-white balance, operating mode and power level.

BETTER STILL

Or, if you feel inclined to make even fuller use of the camera's capabilities, couple it to a JVC $3 / 4$-inch U-format recorder.

The picture will be improved. You'll have another
sound track to use for foreign-language commentaries or question-and-answer training routines.

On $3 / 4$-inch, moreover, you'll be in the right format to edit and duplicate - or add in library material. And still

the cost of the system needn't exceed $£ 2,700$ plus VAT: Alternatively, at very attractive rates, it can be leased.

SEE FIRST, THEN DECIDE

You can, of course, spend more. At any Bell \& Howell Video Centre you'll see more expensive cameras, video recorders and electronic editing equipment that wouldn't be out of place in a national network.

But do you need them?
Let the Video Centre, or Bell \& Howell, help you decide.
Whatever your decision, two things are certain.
One, colour video now costs a lot less than it used to (as well as being highly dependable and very easy to use).

Two, every unit in the system you choose qualifies for the Supershield warranty, unique to Bell \& Howell.

Under Supershield, all adjustments, repairs and replacements (except for tubes and tapes) are free for two years after purchase. Ańd if a job can't be done on the spot we also provide free transport anywhere in mainland Great Britain to and from a fully equipped Supershield video workshop.

Convert to (or start with) colour. With JVC video equipment. And the Bell \& Howell Supershield guarantee.

Let Bell \& Howell show you the answer:

[^4]WW 7/10
JVC CAMERAS. JVC RECORDERS. JVC STUDIO EQUIPMENT. JVC MONTORS ELECTROHOME MONITORS. FUIVIDEO TAPES.

8K ON BOARD MEMORY!

5K RAM, 3 K ROM or 4 K RAM, 4K ROM (fink select able): Kit supplied with 3 K RAM, 3 K ROM. System expandable for up to 32 K memory.

2 KEYBOARDS!

56 Key alphanumeric keyboard for entering high level language plus 16 key Hex pad for easy entry of machin code.

GRAPHICS:

64 character graphics option - includes transistor symbols! Only $£ 18.20$ extra!.

MEMORY MAPPED

High resolution VOU circuitry using discrete TTL for extra flexibility. Has its own 2K memory to give 32 lines for 64 characters.

KANSAS CITY
Low error rate tape interface.

PSI COMP 80 280 Based powerful scientific computer. Design as published in WIRELESS WORLD

2 MICROPROCESSORS

280 the powerful CPU with 158 instruction including all 78 of the 8080, controls the MM57109 number cruncher. Functions include,,+- , 7 , squares, roots, logs exponentials, log functians, inverses, etc. Range $10-99$ to $9 \times 19-99$ ro 8 figures plus 2 exponent digits.
EFFICIENT OPERATION
Why waste valuable memory on sub routines for numeric processing? The number cruncher handles everything internally!

RESIDENT BASIC

With extended mathematical capability. Only 2 K memory used but more powerful than most 8K Basics!

1 K MONITOR Resident in EPROM

SINGLE BOARD DESIGN
Even keyboards and power supply circuiEven keyboards and power supply circui-
try on the superb quality double-sided
plated through-hole PCB .

COMPLETE KIT
NOW ONLY
5225 +VATI

Cabinet size $19.0^{\prime \prime} \times 15.7^{\prime \prime} \times 3.3^{\prime \prime}$
Television not included in price

The kit for this outstandingly practical design by John Adams published in a series of articles in Wireless World really is complete!

Included in the PSI COMP 80 scientific computer kit is a professionally finished cabinet. fibre-glass double sided, plated-through-hole printed circuit board, 2 keyboards PCB mounted for ease of construction, iC sockets, high reliability metal oxide resistors, power supply using custom designed toroidal transformer, 2 K Basic and 1 K monitor in EPROMS and, of course, wire, nuts, bolts, etc.

KIT ALSO AVAILABLE AS SEPARATE PACKS

For those customers who wish to spread their purchase or build a personatised system the kit is available as separate packs e.g. PCB $\left(16^{\prime \prime} \times 12.5^{\prime \prime}\right) £ 43.20$. Pair of keyboards $£ 34.80$. Firmware in EPROMS £30.00. Toroidal transtormer and power'supply components $£ 17.60$. Cabinet (very rugged, made from stee) really beautifully finished) $£ 26.50$. P.S. Will greatly enhance àny other single board computer including OHIO SUPERBOARD for which it can be readily modified. Other packs listed in our FREE CATALOGUE.

PSI COMP 80 Memory Expansion System

Expansion up to 32 K all inside the computer's own cabinet
By carefully thought-out engineering a mother board with buffers and its own power supply (powered by the computer's transformer) enables up to cabinet. Connections to the mother board from the main board expansion socket is made via a ribbon cable.
Mother Board: Fibre glass double sided plated through hole PCB $8.7^{\prime \prime} \times 3.0^{\prime \prime}$ set of all components including all brackets, fixing pars and
8K Static
RAM board

Fibre glass double sided plated through hole* PCB $5.6^{\prime \prime} \times 4.8^{\prime \prime}$......................... 12.50 | Set of componens |
| :--- |
| socket but excluding RAMs $\ldots, ~$ |
| 11.20 | 2114 L RAM (16 required) $£ 4.50$ Complete set of board, components, 16 RAMS ${ }^{\circ}$

$8 \mathrm{8K}$
ROM board
Fibre glass double $56^{\prime \prime} \times 48^{\prime \prime}$, Set of components including ic sockets, plug and sockt but excluding ROMs $\quad 10.70$ 2708 ROM (8 required) $£ 6.00$ Complete set of board, components, 8 ROMs.

ETI VOCODER

COMPLETE KIT only $£ 195$ +VAT

Being published in Electronics Today International

Penel size $19.0^{\prime \prime} \times 5.25^{\prime \prime}$. Depth $12.2^{\prime \prime}$

14 CHANNELS!
NOISE GENERATOR!
SLEW RATE CONTROL!

2 OSCILLATORS! voiced / unvoiced detector! LED PPM METERS!

Kit includes FREE foot control and test oscillator!
Like all our kits, the ETI VOCODER really is complete - fully finished moteiwork, professíional quality components (ell reaistors 2% motal oxide), nuts, botts, otc. - oven a 13 A plug!

MANY MORE KITS
ON PAGES 93, 95

Value Added Tax not included in prices

PRICE STABILITY: Order with confidence! irrespective of any price changes we will honour all prices in this advertisement until October 31st, 1980, if this month's advertisement is mentioned with your order. Errors and VAT rate change excluded.
EXPORT ORDERS: No VAT. Postage charged at actual cōst plus $£ 1$ handling and docurnentation.
U.K. ORDERS: Subject to 15% surcharge for VAT. NO charge is made for carriage. Or current rate if changed.
SECURICOR DELIVERY: For this optional service (U.K. mainland only) add $£ 2.50$ (VAT inclusive) per kit.
SALES COUNTER: If you prefer to collect your computer from the factory. Call at Sales Counter. Open 9 a.m. 12 noon. 1-4.30 p.m. MondayThursday.

Mulimgierso what excellence:

certainly less than you think. By incorporating a custom made LSI chip, these fully auto-ranging
$3 \frac{1}{2}$ digit multimeters are available at prices from

SK-6110 (illustrated)

$£ 67.17$
 + VAT

SK-6220
£45.43

Supplied complete with batteries, tes leads, spare fuse and instruction manual

SK-6110 and SK-6220Full auto-ranging on both voltage and resistance
Current measurement up to 10A DC and AC
Unit and range automatically displayed
Auto polarity and auto zero
Only 5 mW dissipation-200 hours continuous use
Zero adjust key to correct for test leads on low value measurements
\square High impact ABS case
\square
Low battery indication

SK-6110

\square Audible continuity test function
\square
Range hold function
\square Audible over-range indication

WEST HYDE

West Hyde Developments Limited,
Unit 9, Park Street Industrial Estate, Aylesbury, Bucks. HP20 1ET. Telephorie: Aylesbury (0926) 20441/5:

RED YELLOW or GREEN

$1+.08$.11
$100+.069$.10

.11	$1+$.02
.10	$100+$.016
.09	$1000+$.013

$1000+.058 \quad .09 \mathrm{I}^{1000+} \quad .013$

Please add $£ 1.50$ handling charge and 15% V.A.T.
We also stock transistors, diodes, TTL, CMOS, capacitors, instrument cases, switches, connectors etc. Free tradé catalogue available. All enquiries welcome.

Fiarrison Bros.

Electronic Distributors

22 Milton Road, Westcliff-on-Sea Essex SSO 7JX England
Tel. Southend-on-Sea (0702) 32338

WW-011 FOR FURTHER DETAILS

NEW PRICES ON MEMORIES

STRUTTS prices down again

2114-300ns $1 \mathrm{~K} \times 4$ SRAM	2.97	$50+$ 2.48	$100+$
$4116-200 \mathrm{~ns} 16 \mathrm{~K} \times 1$ DRAM	2.97	2.48	2.15
$2708-450 \mathrm{~ns} 1 \mathrm{~K} \times 8$ EPROM	4.39	4.00	3.70
2516 -sv $2 \mathrm{~K} \times 8$ EPROM	9.99	8.62	7.47
2532-450ns $4 \mathrm{~K} \times 8$ EPROM			
	$29.9028 .40 \quad 24.70$		
Carter ASCII Keyboard			39.50
AY-5-1013 UART			£2.60
Please add 50p Postage and 1	15\% V	T to all	rders.

STRUTT LTD.

(ELECTRONIC COMPONENTS DISTRIBUTORS)
3C Barley Market Street
Tavistock, Devon PL 19 0JF
Tel، Tavistock 0822-5439/5548
Telex 45263

TRANSCENDENT DPX

DIGITALLY CONTROLLED, TOUCH SENSITIVE, POLYPHONIC, MULTI-VOICE SYNTHESIZER
Another superb design by synthesizer expert Tim Orr — published in Electronics Today International
The Transcendent DPX is a really versatile new 5 octave keyboard instrument. There are two audio outputs which can be used simultaneously. On the first there is a beautiful harpsichord or reed sound - fully polyphonic, i.e. you can play chords with as many notes as you like. On the second output there is a wide range of different voices, still fully polyphonic. It can be a traightorward piano or a honky tonk piano or even a mixture of the twol Alternatively you can play strings over the whole range of the keyboard or brass over the whole range of the俍 sounds - just like an acoustic piano. The digitally controlled multiplexed system makes practical touch sensitivity with the complex dynamics law necessary for a high degree of realism. There is a master volume and tone controf, a separate controffor the brass sounds and also a vibrato circuit with variable depth control together with a variable delay control so that the vibrato comes in only after waiting a short time after the note is struck for even more realistic strong sounds

Cabinet size $36.3^{\prime \prime} \times 15.0^{\prime \prime} \times 5.0^{\prime \prime}$ (rear) $3.3^{\prime \prime}$ (front)

COMPLETE KIT ONLY £299 +vat

To add interest to the sounds and make them more natural there is a chorus/ensemble unit which is a complex phasing system using CCD (charge coupled device) analogue delay lines. The overall effect of this is simitar to that of several acoustic instruments playing the same piece of music. The ensemble circuitry can be switched in with either strong or mild effects. As the system is based on digital circuitry digital data can be easily taken to and from a computer (for storing and playing back accompaniments with or without pitch or key change, computer composing etc., etc.)
Although the DPX is an advanced design using a very large amount of circuitry, much of it very sophisticated, the kit is mechanically extremely simple with excellent access to all the circuit boards which interconnect with multiway connectors, just four of which are removed to separate the keyboard circuitry and the panel circuitry from the main circuitry in the cabinet. The kit includes fülly finished metalwork, solid teak cabinet, professional quality components (all resistors 2% metal oxidè), nuts, bolts, etc., even a $13 A$ plug!

POWERTRAN
MANY MORE KITS ON PAGE 95. MORE KITS AND ORDERING INFORMATION ON PAGE 93.

TRANSCENDENT 2000 swlik baapo swruhssrer

LIVE PERFORMANCE SYNTHESIZER DESIGNED GY CONSULTANT TIM ORR (FORMERLY SYNTHESIZER DESIGNER FOR EMS LIMITED) AND FEATURED AS A CONSTRUCTIONAL ARTICLE IN ELECTRONICS TODAY INTERNATIONAL.

The TRANSCENDENT 2OOO'is a 3 octave instrument transposable 2 octaves up or down giving an effective 7 octave range. There is portamento, pitch bending. a VCO with shape and pitch modulation, a VCF with both low and high pass outputs and a separate dynamic sweep control, a noice generator and an ADSR envelope shaper. There is also a slow osciliator, a new pitch detector, ADSR repeat, sample and hold, and special circuitry with precision components to ensure tuning stability amongst its many features.
The kit includes fully finished metalwork, fully assembled solid teak cabinet. filter sweep pedal, professional quality components (all resistors either 2% metal oxide or $\%$ metal film and it realy is There is even a 13 A plug in the kit - you need buy absolutely no more parts before plugging in and making great music! Virtually alt the components are on the one professional quality fibreglass PCB printed with component locations. Ali the controls mount directly on the main board, all connections to the board are made with connector plugs and construction is so simple it can be buit easily in a few evenings by almost anyone capable of neat soldering! When finished you wil possess a synthesizer comparable in performance and quality with ready-built units selling for many times the price

COMPLETE KIT ONLY $£ 168.50$ + VAT!

Comprehensive handbook supplied with all complete kits! This fully describes construction and tells you how to set up your synthesize with nothing more elaborate than a multi-meter and a pair of ears!

s? How to get Mourhands on a signial success.

320 pages worth of the latest \& best

 signal processing components.Write to Pascall for this new M80 catalogue which covers the complete Merrimac range of signal processing components and integrated networks from DC to 4 GHz . It also provides reliability data in the form of MTBF calculations for each product area.

Merrimac is one of the World's most technically advanced companies specialising in low frequency lumped element components and integrated networks; microwave stripline components, subsystems, high power ferrite isolators and circulators.

So write to Pascall today for your copy of the M80 on your company's notepaper (or phone if you prefer) indicating your area of interest - we guarantee you'll find it one of the best.

Merrimac
Now there is one in signal processing

[^5]WW - 094 FOR FURTHER DETAILS

\section*{Happy Memories
 | $4116200 n s$ | $£ 3.75$ | $4116150 n s$ | $£ 5.50$ |
| :--- | :--- | :--- | ---: |
| $2114200 n s$ | $£ 3.45$ | $2114450 n s$ | $£ 2.95$ |
| $2708450 n s$ | $£ 4.95$ | 27165 volt | $£ 10.95$ |}

MEMOREX mini discs soft sectored - with FREE library case $£ \mathbf{1 9 . 9 5}$ per ten.

WE'VE MOVED!!

All prices include VAT 30p postage on orders below $£ 10$

Access \& Barclaycard
All orders to:
Dept. WW
HAPPY MEMORIES
Gladestry
Kington
Herefordshire HR5 3NY
Tel. (054422́) 618

It's easy to complain about advertisements.

A.S.A. Ltd.. Brook House. Torrington Place. London WCIE 7 HN .

MPA 200100 WATT (rms into 8Ω) MIXER/AMPLIFIER

Featured as a constructional article in ETI, the MPA 200 is an exceptionally low priced - but protessionaliy finished - general purpose high power amplotier. It features an adaptable input mixer which accepts a wide range of sources such as a microphone, guitar, etc. There are wide range tone controls and a master volume control. Mechanically the MPA 200 is simplicity itself with minimal wiring needed making construction very straightforward.
The kit includes fully finished metalwork, fibreglass PCBs, controls, wire, etc. - complete down to the last nut and bolt.

COMPLETE KIT ONLY $£ 49.90$ + VAT!

MATCHES THE CHROMATHEQUE 5000 PERFECTLY!

CHROMATHEQUE 5000
 5 CHANNEL LIGHTING EFFECTS SYSTEM

[^6]COMPLETE KIT ONLY $£ 49.50$ + VAT!

POWEFTRTAN

Panel size $19.0^{\prime \prime} \times 3.5^{\prime \prime}$. Depth 7.3'

SYNTHESIZER KITS ON PAGE 93. MORE KITS AND ORDERING INFORMATION ON PAGE 91.

DE LUXE EASY TO BUILD LINSLEY HOOD 75W STEREO AMPLIFIER £99.30 + VAT

His easy to bund version of our world-wide acclaimed 75 W amplifier kit based upon construction delightfully strai with gold plated contacts resulting in minimal wiring and Record Review and features include rumble filter variable scratch filter, versatile tone controls and tape monitoring while distortion is less than 0.01%.

$\mathbf{T} 20$ + 20 20W STEREO AMPLIFIER £33. 10 + VAT
This kit, based upon a design published in Practical Wireless, uses a single printed circuir board and offers at very low cost, ease of construction and all the normal facilities found on quality amplifiers. A 30 watt version of this kit $(T 30+30)$ is also available for Above 2 kits are supplied with fully finished metalwork, ready assembled high quality teak veneer cabinet, cable, nuts. bolts, etc. and full instructions - in fact everything!

BLACK

MUSIC EFFECTS DEVICE - AS FEATURED IN ELECTRONICS TODAY INTERNATIONAL!
The BLACK HOLE designed by Tim Orr, is a powerful new musical effects device for processing both natural and electronic instruments, offering genuine VIBRATO (pitch modulation) and a CHORUS mude which gives a "spacey" reel to the sound achieved by delaying the input signal and mixing it back with the original. Notches (HOLES). introduced in the frequency response, move up and down as the time delay is modulated by the chorus sweep generator, An optional double chorus mode allows exciting antiphase effects to be added. The device is floor standing with foot switch controls, LED effect selection indicators, has variable sensitivity, has high signal/ noise ratio obtained by an audio compander and is mains powered - no batteries to changel Like all our kits everything is provided including a highly superior, rugged steel, beautifully finished enclosure.
COMPLETE KIT ONLY $\mathbf{E} 49,80$
+VAT (single delay line system)
De Luxe version (dual delay line system) also available for $£ \mathbf{5 9 . 8 0}+$ VAT
Cabinet size $10.0^{\prime \prime} \times 8.5^{\prime \prime} \times 2.5^{\prime \prime \prime}$ (rear) $1.8^{\prime \prime}$ (front)

Simply ahead...

POWER AMPLIFIERS

ILP Power Amplifiers are

 encapsulated within heatsinks designed to meet total heat dissipation needs. They are rugged and made to last a lifetime. Advanced circuitry ensures their suitability for use with the finest loudspeakers, pickups, tuners, etc. using digital or analogue sound sources

Model	Output Power R.M.S.	Distortion Typical at 1 KHz	Minimum Signal/ Noise Ratio	Power Supply Voltage	Size in mm	Weight in gms	$\begin{aligned} & \text { Price + } \\ & \text { V.A.T. } \end{aligned}$
HY30	$\begin{aligned} & 15 \mathrm{~W} \\ & \text { into } 8 \Omega \end{aligned}$	0.02\%	100 dB	$-20-0-20$	$105 \times 50 \times 25$	155	$\begin{array}{r} \mathbf{£ 6 . 3 4} \\ +95 n \end{array}$
HY50	$\begin{aligned} & 30 \mathrm{~W} \\ & \text { into } 8 \Omega \end{aligned}$	0.02\%	100 dB	-25-0. +25	$105 \times 50 \times 25$	155	$\begin{aligned} & £ 7.24 \\ & +£ 109 \\ & \hline \end{aligned}$
HY120	$\begin{aligned} & 60 \mathrm{~W} \\ & \text { into } 8 \Omega \end{aligned}$	0.01\%	100 dB	$-35-0-+35$	$114 \times 50 \times 85$	575	$\begin{array}{r} £ 15.20 \\ +£ 228 \end{array}$
HY200	$\begin{aligned} & 120 \mathrm{~W} \\ & \text { into } 8 \Omega \end{aligned}$	0.01\%	100 dB	-45-0.+45	$114 \times 50 \times 85$	575	$\left.\begin{array}{c} £ 18.44 \\ +£ 2.77 \end{array}\right]$
HY400	$\begin{aligned} & 240 \mathrm{~W} \\ & \text { into } 4 \Omega \end{aligned}$	0.01\%	100 dB	-45-0.+45	$114 \times 100 \times 85$	1.15 Kg	$\begin{aligned} & \mathbf{£ 2 7 . 6 8} \\ & +£ 415 \\ & \hline \end{aligned}$

Load impedance - all models $4 \Omega-\infty$
Input sensitivity - all models 500 mV
Input impedance - all models $100 \mathrm{~K} \Omega$
Frequency response-all models $10 \mathrm{~Hz}-45 \mathrm{KHz}-3 \mathrm{~dB}$

POWER SUPPLY UNITS

ILP Power Supply Units with transformers made in our own factory are designed specifically for use with ILP power amplifiers and apart from PSU 30 and 36 which are smaller PSUs - all the other ILP's own manufactured toroidal transformers are used which are half the size and weight of laminated equivalents. They are also more efficient and have greatly reduced fields of radiation.

PSU $30 \pm 15 \mathrm{~V}$ at 100 mA to drive up to $12 \times$ HY 6 or 6 $\times \mathrm{HY} 66$
$\mathbf{£ 4 . 5 0}+\mathrm{£} 0.68$ VAT THE FOLLOWING WILL ALSO DR̃IVE ILP PRE - AMPS PSU 36 for 1 or 2 HY 30 's
$£ 8.10+£ 1.22$ VAT
The following include toroidal transformers
PSU 50 for 1 or 2 HY50's $£ 9.75+£ 1.46$ VAT
PSU 60 for 1 HY $120 \quad \mathbf{~} 9.75+£ 1.46$ VAT
PSU 70 for 1 or 2 HY $120 \mathrm{~s} \quad £ 13.61+£ 2.04$ VAT
PSU 90 for 1 HY200 £13.61 + £2.04 VAT
PSU 1801 HY 400 or $2 \times$ HY200
$£ 23.02+£ 3.45$ VAT

AVAILABLE ALSO FROM WATFORD ELECTRONICS, MARSHALLS AND CERTAIN OTHER SELECTED STOCKISTS.

THE LEADING EXHIBITION OF COMPUTERS, PERIPHERALS AND SYSTEMS

will be in the Grand Hall OLYMPIA, LONDON November 4, 5 \& 6, 1980

CAN YOU AFFORDTO MISS
 COMPUTER EXHIBITION?

TRADE ONLY - NO SCHOOL PARTIES - NO ADMITTANCE UNDER 16 ENTRANCE £2

[^7]

Westminster London SWI November 26-30 1980 It's all at Breadboard '80
This is the exhibition for the electronics enthusiast. From November 26-30 there is only one place in the universe for the electronics enthusiast to be - Breadboard '80, at the Royal Horticultural Hall in London. The majority of leading companies will be exhibiting, including all the top monthly magazines in the field. There will be demonstrations on most stands and many feature special offers that are EXCLUSIVE to Breadboard!
All aspècts of this fascinating field are catered for, from CB to home computing, so whether you want to buy a soldering iron or a synthesiser - or just keep up to date with your hobby - don't miss Breadboard '80.

HERE IT IS! THE B HAND-H Consider the following features: 6 resistance ranges from 200 ohm-20 ohms 8 current ranges from $2 \mathrm{~mA}-2 \mathrm{~A}$ AC/DC 10 voltage ranges from 200 $\mathrm{mv}-1000 \mathrm{v}$ DC-200 mc-750V AC Pocket size - weighing only 370 gms . Full overload protection - will withstand 6kv spikes Rugged construction - virtually indestructable Meets tough military specs drop proot In line, pushbutton operation for single-handed useage Incorporates low power cmos chip for low power consumption	BRAND NEW 8022A ELD DMM	DIGITAL MULTIMETERS BRAND NEW FROM FLUKEII! NOW AVAILABLE THE 8024A HAND HELD DMM This model incorporates all the features of the 8020A but in addition has: A peak hold switch which can be used in $A C$ or $D C$ for volts and current functions. Audible continuity testing and level detection for sensing logic levels. A temperature (${ }^{\circ} \mathrm{C}$) range for use with a thermocouple. $£ 135$ Carriage and Insurance $£ 3$ The following accensoriss are in thock now	8010A AND 8012A BENCH MODEL D.M.M.s The 8010 A is a general purpose, bench/portable digital multimeter with more functions and features than ever offered for such a low price. Its companion, the 8012A, has identical characteristics except that it has two additional fow resistance ranges. 20 and 20Ω to replace the 8010 A 's 10 ampere current range. The 8010A and 8012A feature: 10 voltage ranges from 200 mv - $1000 \mathrm{v} \mathrm{dc} .200 \mathrm{mv}-75 \mathrm{vac}$. 3 conductance ranges from 2 mS .200 nS 6 resistance ranges from $200 \Omega \cdot 20 \mathrm{~m} \Omega$ - the 8012 A has wo additional resistance ranges 2Ω and 208. sanges 10A AC and 10A DC. ranges from $200 \mu \mathrm{~A}-2 \mathrm{~A} A C / 0 \mathrm{C}$ - the 8010A has two additional current 8010A£159 8012A £199 Carriage and Insurance 53 ae 80, OA is also available with two rechargeable Nicad size C batteries installed in optioñ:	
All this plus a 2 -year full guarantee For only $£ 75$ + vat Carriago and Insurance £3	SOFT CARRYING CASE E. 7 extra		LOW CO MULTI-F Autoranging in both frequ	AUTORANGING TION COUNTER L 1900A eriod measurement modes
Even more sophisticated the Fluk Identical in most respects to the 80 conductance range from $2 \mathrm{~ms}-200 \mathrm{nS}$. Price Carriage and in A handsome soft carrying case	ke 8020A 022A but in addition incorporates a S. £112 insurance $£ 3.00$ se is included (this model only)		- High sensitivity -25 mV , typ Sox digit LED display with overriow Optional Alta internal batterv pach Autoreset on all gate times, al Four manually selected gate Even: counting to 10^{6} events Srgnal input conditioning with Rucged moulded case with co Optional parallel data output Optaonal parailel dala outputy Traditional high Fluke quality Self check	15 mV zero suppression, automatic annunciation and ding 4 hours continuous operation tion switches providing resolution to 0.1 Hz overfiow indicator hable 1 MHz low pass firter and attenuator ent tilting/carrying handle ecimal point and annunciation £195 Carriage and Insurance £ $\mathbf{@}^{\prime}$
	TMK500 Multitester 30,000 OPV Asturdy and reliabie insrument. Has internal AC volts 0 to $2.5,10$. ${ }_{1000}^{25} 100,250.500$. DC volis. 0 to 0.25 .1 .25 .10 .25 .100 $250,1000 . \mathrm{DC}$ current: 0 to 50 ua. $5 \mathrm{ma}, 50$ Reisita mp Recibuls -20 to +56 K .6 meg .60 meg , Shart test: Internal buzzer. Size: $160 \times 110 \times 55 \mathrm{~mm}$ £20.50. P.8P. 75p	PLEASE ADD 15% VAT TO ALL ORDERS EXCEPT WHERE ITEMS MARKED "VAT INCLUDED." CALLERS WELCOME We are open 9 a.m.- 6 p.m Monday-Saturday We carry a very large selection of electronic components and electro-mechanical items Spactal quotzaons on quantities	ARY STUD SWITCH SEY 30-way, 2 bank, pole. Contacts 1 amp $A C / D C .005 \Omega$ res. $A C / D C .0050$ res. before break. Stop inadjustable allowing for ssired arc of travel. Ideal strument and model $\times 2 \%^{\prime \prime}$ deep plus $1 \%^{\prime \prime}$ dia. spindle E3. 25 PGP 50p	BENDIX MAGNETIC CLUTCH

S-2020TA STEREO TUNER / AMPLIFIER KIT
 NEW HIGH PERFORMANGE TUNER
 A high-quality push-button FM Varicap Stereo Tuner with pilot cancel decoder combined with a 24W r.m.s. per channel Stereo Amplifier, using Bifet op. amps.

Brief Spec. Amplifier Low field Torodal transformer, Mag. input. Tape In/Out facility (for noise reduction unit, etc.) THD less than 0.1% at 20 W into 8 ohms. High Slew Rate. Low noise op. amps used throughout Power on/off FET transient protection. All sockets, fuses, etc., are PC mounted for ease of assembly. Tuner section uses UM 1181 FET module requiring no RF alignment, ceramic IF, INTERSTATION MUTE, ano phase-locked IC pilot cancel, stereo decoder, LED tuning and stereo indicators. Tuning range $88-108 \mathrm{MHz} 30 \mathrm{~dB}$ mono $\mathrm{S} / \mathrm{N} @ 0.7 \mu \mathrm{~V}$. THD 0.3%

NELSON-JONES

Mk. 2 STEREO FM

 TUNER KITA very high performance tuner with dual gate MOSFET RF and Mixer ready built front end, triple gang varicap tuning, linear phase I.F. and 3 state MPX decoder.

PRICE: $£ 74.95$ + VAT
PR: VAT

NRDC-AMBISONIC

 UHJSURROUND SOUND DECODER

The first ever kit specially produced by Integrex for this British NRDC backed surround sound system which is the result of 7 years research by the A
The unit is designed to decode not only UHJ but virtually all other 'quadrophonic' systems (Not CD4), including the new BBC HJ. 10 input selections. Complete with mains power supply, wooden cabinet, panel, knobs, etc
Complete with mains power supply, wooden cabinet, panel, knobs, etc.

S5050A STEREO AMP

Very high

performance kit
50 watts rms-channel 0.015% THD. S $/ \mathrm{N} 90 \mathrm{~dB}$, Mags $/ \mathrm{n} 80 \mathrm{~dB}$. Output device
rating 360 wer channel.
Tone cancel switch. 2 tape monitor switches. Metal case - comprehensive
heatsinks
$£ 69.95$ + vat

(Also available our $20 \mathrm{w} / \mathrm{ch}$ BIFET S2020 Amp)

INTRUDER 1 Mk. 2 RADAR ALARM

With Home Office Type approval
The original "Wireless World" published Intruder 1 has been re-designed by Integrex to incorporate several new features, along with improved performance. The kit is even easier to build. The internal audible alarm.turns off after approximately 40 seconds and the unit re-arms. 240 V ac mains or 12 V battery operated. Disguised as a hard-backed book. Detection range up to 45 feet. Internal mains rated voltage free contacts for external bells etc.
Complete kit $£ \mathbf{5 2 . 5 0}$ plus VAT, or ready built and tested $\mathbf{£ 6 4 . 5 0}$ plus VAT

Wireless World Dolby noise reducer

Trademark of Dolby Laboratories Inc.

Complete Kit PRICE: $\mathbf{£ 4 9 . 9 5}$ + VAT (3 head model available)

Typical performance
Noise reduction better than 9 dB weighted. harmonic content)
Harmonic distortion 0.1% at Dolby level typically 0.05% over most of band, rising to a maximum of 0:12\%
Signal-to-noise ratio: $75 \mathrm{~dB}(20 \mathrm{~Hz}$ to 20 kHz , signal at Dolby level) at Monitor output

Dynamic range $>90 \mathrm{~dB}$
30 mV sensitivity

Also available ready built and tested
Calibration tapes are available for open-reel use and for cassette (specify which)
Single channel plug-in Dolby (iii) PROCESSOR BOARDS ($92 \times 87 \mathrm{~mm}$) with gold plated contacts and all components

Price $\mathbf{6 6 7 . 6 0}+$ VAT
Price $£ 2.75$ + VAT
Price $\mathbf{£ 1 0 . 5 0}+\mathrm{VAT}$

U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

POTENTIOMETERS Carbon Track

$5 \mathrm{k} \Omega$ to $2 \mathrm{M} \Omega$. LOG or LIN. L/S 50p. DP 90p. Stereo L/S £1.10.
EMI $131 / 2 \times 8 \mathrm{in}$. LOUDSPEAKERS
With tweeter and
8 ohm .15 watts

$£ 9.95$
 £10.95

SUITABLE BOOKSHELF CABINET $\mathbf{6 9 . 5 0}$.
Bass woofer, EMI
15 ohm. 20 watt.
.
1 $\mathbf{0 . 9 5}$
Post 99p

THE 'INSTANT"' BULK TAPE ERASER

Suitabie for cassettes, and all sizes of tape
reels. AC mains $200 / 250 \mathrm{~V}$. Hand held size with switch and lead.
Wil a also demagnetise small tools $£ 7.50$
RELAYS. $12 V$ DC 95p. 6 VDC 85p
${ }_{\text {BLANK }} 1,40 ; 10 \times 7$ INIUM CHASSIS. $6 \times 4-95 p ; 8 \times 6-$
 ALUMINIUM PANELS. $6 \times 4-24 p ; 8 \times 6-38 p$. 425 . $14 \times 3-40 \mathrm{p} ; 10 \times 7-54 \mathrm{p} \cdot 12 \times 8 \mathrm{p}, 8 \times 12 \times 5$; $6 \times 6-70 p ; 14 \times 9-94 p ; 12 \times 12-\varepsilon 1 ; 16 \times 10-41$ PLASTICANDALIBOXES IN STOCK. MANY SIZES ALUMINIUM BOXES. $4 \times 4 \times 11 / 2 £ 1,4 \times 2 \times 2$ © $13 \times 2 \times 1$
 7×3 £2.50. $12 \times 5 \times 3 £ 2.30 .12 \times 8 \times 33$.
BRIDGE RECTIFIER 200 V PIV 4 amp € $1.50 .8 \mathrm{amp} £ 2.50$ TOGGLE SWITCHES SP 30p. DPST 40p. DPDT 50p PICK-UP CARTRIDGES ACOS. GP91 £2.00. GP94 £2.50 SONOTONE 9TAHC Diamond $£ 3.75$. V100 Magnetic $£ 6.50$ RESIGH STABILITY. $1 / 2 \mathrm{~W} 2 \% 10$ ohms to 1 mp; 2 W 10p. Ditto 5%. Preferred values, 10 ohms to 10 meg . 3 p .

$£ 6.50$

MINI-MULTI TESTER

coil instrument, jewelled bearings 2000 o.p.v. Battery included 11 instant ranges measure: DC volts 10,50,250,1000
AC volts $10,50,250$
. DC amps $0-100 \mathrm{~mA}$.
Continuity and resis
ohms in two ranges.
instruction book showing and to measure capacity and inductance.

J.V.C. BELT DRIVE STEREO DECK

Detachable head, adjustable counter balance weight, hydraulic

 damped cueing platform, automatic pick-up arm return, 2 speeds,33 and 45 rpm , suppression circuit to start stop switch, 240 V AC motor, dynamic pendulous bias compensator. Teak veneered motor, dynamic pendulous bias compensator. Teak veneered
base, 19 in. $x 141 / 2$ in $£ 9$. Plastic cover $£ 6$, post $E 2$. Recommended stereo magnetic cartridge $£ 650$ extra

RCS SOUND TO LIGHT KIT Mk. 2
 Easy to build. Full instructions supplied. Cabinet $€ 4.50$ extra. Will operate from 200 MV to 100 watt signal. Lights, Edison Screw. 6 for $£ 4$, or 12 for $\mathbf{£ 7 . 5 0}$. Post 50 p.
'MINOR" 10 watt AMPLIFIER KIT £ 12.50 This kit is suitable for record players, guitars, tape playback, available: Mono, £12.50; Stereo, £20. Post 45p. Specification 10 W per channel; input 100 mV ; size $91 / 2 \times 3 \times 2 \mathrm{in}$. approx. SAE. Input can be modified to suplied. AC mains powered.

RC'S STEREO PRE-AMP KIT. All parts to build ${ }^{1}$ this pre-amp. control and PC Board $£ 2.95$
Can be ganged to make multi-way stereo mixers Post 35

GENERAL PURPOSE LOW VOLTAGE

 $£ 10.00$$£ 5.50$

$$
\begin{aligned}
& 8.60 \\
& 8.60 \\
& 8.60 \\
& 8.60
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{E 6 . 0 0} \\
& \varepsilon 6.00 \\
& ⿷ 9.50
\end{aligned}
$$

$3 \mathrm{amp} .6,8,10,12,16,18,20,24,30,36,40,48,60$$5 \mathrm{amp} 6.8,10,12,16.18,20,24,30,36,40,48,60$			¢12.50
			£1
12 V .100 mA	E1.30	$20 \mathrm{~V}, 40 \mathrm{~V}, 60 \mathrm{~V}, 1 \mathrm{mmp}$	c4.
12 V .750 mA	E1.75	$12 \mathrm{~V}, 3 \mathrm{amp}$	c3.
10.0.10V 2 amp	E3.00	$10 \mathrm{~V}, 30 \mathrm{~V}, 40 \mathrm{~V}, 2 \mathrm{am}$	${ }^{6} 3$
30 V .5 amp and 1		2 of 28 volt l mp	¢5.00
	£4.00	20V. 1 amp	€3.00
0.5. 8, 10, 16V, $1 / 2 \mathrm{amp}$	¢2.50	$20 \mathrm{v}-0-20 \mathrm{~V}, 1 \mathrm{mp}$	E3.
9 V .3 amp	E3.50	$9-0.9$ volt 50 ma	$\underline{11.50}$
$25.0-25 \mathrm{~V} 2 \mathrm{amp}$	E4.50	2 of 18 V .6 am	E11.00
30V, 1/2 amp ¢ 3.002 amp	£3.50	$12.0-12 \mathrm{~V}, 2 \mathrm{am}$	$E 3.50$
$6 \mathrm{~V} 1 / \mathrm{y}$ amp	£2.00	$9 \mathrm{~V} .1 / 4$	11.50
$15-0.15 \mathrm{~V} .2 \mathrm{mp}$	£3.75	$32.0 .32 \mathrm{~V}, 61 / 2 \mathrm{amp}$	£11.
AUTOTRANSFORMERS. 115 V to 240 V 150 W ¢8.00 500 W £10.00.			
TRANSFORMERS		CHARGER RECTIFIERS	
6.12 volt 3 amp	¢4.00	6.12 volt 2 amp	¢1.10
$6-12$ volt 4 amp	66.50	$6-12$ volt 4 amp	¢2.00

- 220 pail

ICS $1 \mathrm{mfd}, 2 \mathrm{mfd}, 4 \mathrm{mfd}, 8 \mathrm{mfd}, 10 \mathrm{mfd}, 16 \mathrm{mfd}, 25 \mathrm{mfd}, 30 \mathrm{mfd}, 50$ $\mathrm{mfd}, 100 \mathrm{mfd}, 250 \mathrm{mfd}$. All $15 \mathrm{vgts} .22 \mathrm{mfd} / 6 \mathrm{v} / 10 \mathrm{v}: 25$ $\mathrm{mfd} / 6 \mathrm{v} / 10 \mathrm{v} ; 47 \mathrm{mfd} / 10 \mathrm{v} ; 50 \mathrm{mfd} / 6 \mathrm{v} ; 68 \mathrm{mfd} / 6 \mathrm{v} / 10 \mathrm{v} /$
$16 \mathrm{v} / 25 \mathrm{v} ; 100 \mathrm{mfd} / 10 \mathrm{v} ; 150 \mathrm{mfd} / 6 \mathrm{v} / 10 \mathrm{v} ; 200 \mathrm{mfd} / 10 \mathrm{v} /$ $16 \mathrm{v}, 220 \mathrm{mfd} / 4 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} ; 330 \mathrm{mfd} / 4 \mathrm{v} / 1 \mathrm{ov} ; 500 \mathrm{mfd} / 6 \mathrm{v}$. $6 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} \cdot 2200 \mathrm{mfd} / 6 \mathrm{v} / 10 \mathrm{v}$; $3330 \mathrm{mfd} / 6 \mathrm{v}$; 1500 $\mathrm{mfd} / 6 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} ; 2200 \mathrm{mfd} / 6 \mathrm{v} / 10 \mathrm{v} ; 3330 \mathrm{mfd} / 6 \mathrm{v}$; $4700 \mathrm{mrd} / 4 \mathrm{v}$. ALL 10 p
$500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p}$.
2000 mF 6V 25p; $25 \mathrm{~V} 45 \mathrm{p} ; 50 \mathrm{~V} 50 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$.
$2500 \mathrm{mF} 50 \mathrm{~V} 70 \mathrm{p} ; 3000 \mathrm{mF} 50 \mathrm{~V} 65 \mathrm{p} ; 1200 \mathrm{mF} 76 \mathrm{~V} 80 \mathrm{p}$.
4500 mF 64 V £2. 4700 mF 63 V £ $1.20 .2700 \mathrm{mF} / 76 \mathrm{~V} £ 1$. $5000 \mathrm{mF} 35 \vee 85 p$.
HIGH VOLTAGE ELECTROLYTICS
$\begin{array}{llllll}8 / 350 \mathrm{~V} & 35 p & 8+8 / 500 \mathrm{~V} & 95 \mathrm{p} & 50+50 / 300 \mathrm{~V} & \mathbf{5 0 p}\end{array}$ $\begin{array}{llllll}6 / 350 \mathrm{~V} & 45 \mathrm{p} & 8+16 / 450 \mathrm{~V} & \mathbf{7 5 p} & 32+32 / 450 \mathrm{~V} & 90 \mathrm{p} \\ 32 / 500 \mathrm{~V} & \mathbf{7 5 p} & 16+16 / 450 \mathrm{~V} & \mathbf{7 5 p} & 100+100 / 275 \mathrm{~V} & 65 \mathrm{p}\end{array}$ $\begin{array}{lllll}32 / 500 V & \mathbf{7 5 p} & 16+16 / 450 \mathrm{~V} & \mathbf{7 5 p} & 100+100 / 275 \mathrm{~V} 65 p \\ \mathbf{5 0 / 5 0 0 V} & \mathrm{E} 1.20 & 32+32 / 350 \mathrm{~V} & \mathbf{5 0 p} & 150+200 / 275 \mathrm{~V}\end{array}$ $\begin{array}{llllll}8 / 800 \mathrm{~V} & £ 1.20 & 50+50 / 500 & \mathbf{1 1 . 8 0} & 220 / 450 \mathrm{~V} & \mathbf{9 5 p}\end{array}$

SHORT WAVE 100pf air spaced gangable tuner, 95p.
TRIMMERS $10 \mathrm{pF}, 30 \mathrm{pF}, 50 \mathrm{pF}, 5 \mathrm{p} .100 \mathrm{pF}, 150 \mathrm{pF}, 15 \mathrm{p}$.
CERAMIC, 1 pF to 0.01 mF , 5 p . Polystyrene 2 to $5000 \mathrm{pF}, 5 \mathrm{p}$. PAPER 350V-0.1 7p; 0.5 13p; $1 \mathrm{mF} 150 \mathrm{~V} 20 \mathrm{p} ; 2 \mathrm{mF} 150 \mathrm{~V}$ 20p; $500 \mathrm{~V}-0.001$ to $0.0512 \mathrm{p} ; 0.115 \mathrm{p} ; 0.2525 \mathrm{p} ; 0.4735 \mathrm{p}$. SUB-MIN MICRO SWITCH 25 CHAN GEOVER 20p. SUB-MIN MICRO SWITCH, 25p. Single pole change ove TVIN GANG, 385 pF £1; 500 pF £1; $365+365+25$ TRANSISTOR TWIN GANG. Japanese Ralacement 50 p NEON PANEL INDICATORS 250 V 30 p
ILLUMINATED ROCKER SWITCH. single pole. Red 65 p. WIRE-WOUND RESISTORS 5 watt 10 watt. 15 watt $15 p$ CASSETTE MOTOR. 6 volt $£ 1.00$
CASSETTE MECHANISM. Stereo heads with motor $\mathbf{£ 5 . 0 0}$
'BAKER LOUDSPEAKERS

SPECIA				Post $£ 1.50$ ea	
	SIZE	OHMS	POWER	TYPE	OUR
major	${ }_{12}{ }^{\text {inches }}$	4-8-16	${ }_{30}^{\text {WatTS }}$	HI-FI'	PRICE
DEELUXE MK II	12	8.16	15	H1-Fi	${ }_{\text {c14 }}$
SUPERB	12	8.16	30	HI-Fi	200
auditorium	12	$8-16$	45	H1-Fi	. 220
AUDItorium	15	8.16	60	H1-Fi	$\underline{29}$
GROUP 35	12	4-8.16	40	PA	E12
GROUP 45	12	4-8-16	45	PA	815
GROUP 50	12	4-8-16	60	PA	120
GROUP 75	12	4-8.16	75	PA	$\underline{22}$
GRRUP 100	12	$8-16$	100	PA	${ }^{226}$
GROUP 100	15	816	100	PA	229
DISCO 100	12	$8-16$	100	Disco	[26
DISCO 100	15	8.16	100	disco	12.9
BAKER					
50 WATT					
AMPLIF					

E69 Post $f 2.00$
Ideal for Halls/PA systems, Discos and Groups. Two inputs Mixer, Volume Controls, Master Bass. Treble and Gain Controls. 50 watts $\mathrm{r} . \mathrm{m} . \mathrm{s}$. Three loudspeaker outlets $4,8,16 \mathrm{ohms}$
BAKER 150 WÄTT MIXER / POWER AMPLIFIER
rofessional 4 inputs with
volume controls. Will mix
mics, decks, musical $\mathbf{8 8 9}$
Slave version available $£ 75$

FAMOUS LOUDSPEAKERS

 "SPECIAL PRICES'| MAKE | WODEL | SIZE | WATTS | OHIMS | OUR |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | POWER | | PRICE |
| SEAS | TWEETER | 4 in | 50 | 8 | £7.50 |
| goodmans | TWEETER | 31/2in | 25 | 8 | E4.00 |
| audak | TWEETER | 31/6n | 60 | 8 | £10.50 |
| SEAS | MID-RANGE | 4/n | 50 | 8 | E7.50 |
| SEAS | MID-RANGE | 5 m | 80 | 8 | ع10.50 |
| SEAS | MID-RANGE | 4/2in | 100 | 8 | $\underline{12.50}$ |
| gaddomans | FULL-RANGE | 5/2in | 15 | 8 | c6.50 |
| GEODMANS | FULL-PANGE | Bin | 20 | 8 | E5.50 |
| SEAS | WOOFER | 8 Sn | 30 | 8 | £14.00 |
| R.C.S. | GEEERAL | 10in | 20 | 8 | £8.50 |

BATTERY ELIMINATOR MAINS to 9 VOLT D.C.
Stabilised output, 9 volt $400 \mathrm{~m} . a$. Ready made in plastic case with screw terminals. Safety overload cut out. Size
$5 \times 31 / 4 \times 21 / 2$ in. Transformer Rectifier Unit insulated. Suitable Radios, Cassettes, models, $£ 4.50$ post 50p

ALUMINIUM HEAT SINKS. FINNED TYPE
Sizes $5^{\prime \prime} \times 4^{\prime \prime} \times 1^{\prime \prime} 95 p .61 / 2^{\prime \prime} \times 2^{\prime \prime} \times 21 / 4^{\prime \prime} 45 p$.
JACK PLUGS Stereo Plastic 30p; Metal 35p.
JACK SOCKETS. Mono Opan 20p; Closed 25 p.
JACK SOCKETS. Mono Open 20p; Closed 25p.
FREE SOCKETS - Cable end 30p.
2.5 mm and 3.5 mm JACK SOCKET
2.5 mm and 3.5 mm JACK PLUGS $15 p$. DIN TYPE CONNECTORS
Sockets 3-pin, 5-pin 10p. Free Sockets 3-pin, 5-pin 25p Plugs 3-pin 20p; 5-pin 25p.
PHONO PLUGS and SOCKETS ea. 10 p .
Free Socket for cable end ea. 15p.
Screened Phono Plugs ea. 15p.
TV CONVERGENCE POTS $15 p$
Values $=5,7,10 \quad 20 \quad 50 \quad 100$ pach

"VALVES" special offor mubject to being unvold $£ 1$ en. Pout Froe					
GAM6	$12 \mathrm{K7GT}$	PCFs 2	PL84	EQf80	EFP
6 KBG	35L6GT	PCF8 ${ }^{\text {c }}$	PY33	UF85	EM34
607 G	854	PCL82	PY80	ECCE4	EF36
$6 \mathrm{6V6G}$	UY41	PCL84	PY82	ECF80	EBC33
1207 GT	3524GT	PL81	PY83	ECL80	EY51
12 KBM	Pc¢84	PL82	E891	ECLB2	EYbi
$25 \times 5 \mathrm{G}$	Pccas	PL83	EBC81	EF41	EZ40

名路

Zaerix Electronics Limited

46 Westbourne Grove London，W2 5SF

399 instrument cases and boxes in 10 styles now available－more to follow．

INTERNEPCON

Stand 9126 Beige Hall in Brighton Centre．

Telex： 261306
Tel：01－7275641

Conquer the chip．
 Be it a career，hobby or interest，like it

 or not the Silicon Chip will revolutionise every human activity over the next ten years．Knowledge of its operation and its use is vital．Knowledge you can attain， through us，in simple，easy to understand stages．

Learn the technology of the future today in your own home．
MASTER ELECTRONCS Leans the pactrcan way BY SEEING AND DOING
－Building an oscilloscope．－Recognition of components
Understanding circuit diagrams．－Handling all types Solid State＇Chips＇
－Carry out over 40 experiments on basic circuits and on digital electronics．
－Testing and servicing of Radio．T．V．，Hi．Fi and all types of modern

computerised equipment．
 MASTER COMPUTERS

LEARN HOW TO REALLY UNDERSTAND COMPUTERS，HOW THEY WORK－THEIR＇LANGUAGE＇AND HOW TO DO PROGRAMS
－Complete Home Study library．－Special educational Min．
Computer supplied ready for use．Self Test program exercise．
－Services of skilled tutor available
MASTER THE REST
Radio Amateurs Licence．Logic／Digital techniques．
Examination courses（City \＆Guilds etc．）in electronics
－Semi－conductor technology
－Kits for Signal Generators－Digital Meters etc．

NEW VALVES
 BRANDED \＆
 INDIVIDUALLY BOXED －AVAILABLE FROM：

 PM COMPONENTS LTD． VALVE \＆COMPONENT SPECIALISTS CONINGSBY HOUSE WROTHAM ROAD，MEOPHAM KENT| 42134 | 9.20 | ECCB8 | 0.75 | E1921 9.50 | OCZ | 1.75 | P4 | VR1185／38 1.55 | ${ }^{9551} 1$ | 9.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 42179 | 9.20 | Eccal | 0.75 | 18222 | 00^{3} | 1.05 | Pr5cul 1.55 | V1150／30 | 15082 | 5 |
| 42293 | 8.30 | ECC189 | 0.90 | Eu80 8.05 | 003 | 1.55 | PYY00 0．69 | $\times 61.25003200$ | ${ }^{15083}$ | 4．50 |
| B758 | 32.20 | ессзо | 0.53 | ${ }^{\text {Emma }}$ | Om3 | 1.05 | P4801 0.69 | Y11080 29.90 | ${ }^{1554} 14$ | 33.65 |
| BIH^{17} | 74.75 | ECC887 | 1.50 | 태32 10.90 | OM5 | 1.75 | Q83－300 32.50 | ${ }^{2759} 110.35$ | 18 l | 7.00 |
| 03a | 21.85 | EcFsb | 0.75 | EMs1 1．94 | PCSg | 0.98 | 00N026 9.50 | 2803020.70 | 807 | 1.25 |
| 077 | 0.63 | ECtar | 0.69 | EN92 2．\％ | PL97 | 0.98 | quplos－10 2.85 | 2C1040 9，20 | 813 | 3.00 |
| 0 m 70 | 1.32 | ECH81 | 0.67 | EY51 0.92 | ${ }^{\text {pcces }}$ | 0.55 | OOV 133204 | 22.315413 .25 | ， | 5.00 |
| DM150 | 2.40 | ECHB3 | 0.90 | EY84 10.35 | PCC85 | 0.62 | 14.00 | 2021 1．05 | 866 | 2.85 |
| Drat／87 | 0.53 | ECYB4 | 1.10 | EY86／77 0.54 | Pccrs | 0.92 | coves－404 | ${ }^{2021114} 3.45$ | ${ }^{5670}$ | 4.50 |
| पY802 | 0.69 | Ecaso | 0.76 | E20090．55 | PCC89 | 0.92 | 16.00 | ${ }^{3} / 2 / 147 \mathrm{~J}$ J 8.65 | 5722 | 5.50 4.50 |
| E55L | 21.85 | E1482 | 0.67 | E281 0．54 | PCC189 | 0.92 | OPOD－40 | 3） 17708 | 5728 | 1.75 |
| EBACC | 5.45 | 183 | 1.30 | E290 1.10 | PCFEBO | 0.83 | 45．25 | 3／17e | 5727 | 3.45 |
| Emocr | 9.75 | ECL84 | 0.85 | 61／3711 23.00 | PCFE82 | 0.80 | 081200
 081209 | 4 CX 250 B 25.00 | 5749 | 3.45 |
| E89F | 7.20 | ECL85 | 0.85 | 6 ELD 13.25 | PCFE6 6 | 1.26 | 081209 1.75
 $\$ 1218$ 3.75 | 58／254 1717.25 | 5763 | 3.65 |
| EBICC | 4.50 | ECL86 | 0.85 | 6 615 7.45 | PLF2a0 | 1.72 | $\begin{array}{lll}\text { W31212 } & 3.5 \\ 0 \times 3\end{array}$ | 58／255 ${ }^{\text {c／}} 17.25$ | 5842 | 7.45 |
| EBIL | 6.50 | E537a | 3.45 | 6TIC 12．65 | PCF201 | 1.72 | OYO5－25 3.45
 $\mathbf{1}$ | ${ }^{5} 5464 \mathrm{Y}$ | 5879 | 4.50 |
| E02cc | 2.60 | EF39 | 2.30 | Sulis 13.50 | PCFFB01 | 1.05 | O13125 35.00 | 5R4WGY 2.15 | 5463 | 1.75 |
| EB3CC | 3.45 | EFto | 0.55 | 6xul ${ }^{\text {a }}$（0．25 | PCFtr82 | 0.76 | 174250 015000 | 5046 | 5965 | 3.45 |
| E83 | 3.45 | EF35 | 0.55 | 6×150 | ${ }^{\text {PCFFEOS }}$ | 1.75 | 0Y4400 70.00 | $5246 \quad 1.05$ | 5993 | 6.90 |
| EESC | 5.90 | EF56 | 0.50 | $6 Y 5011.44$ | Cta806 | 0.69 | pr－500 52.50 | ${ }_{6} 51561.4$ | 6005 | 5.45 |
| EB8C | 3.45 | EF89 | 0.75 | 67320.67 | ${ }^{1}$ | 1.00 | $161-125$
 8.00 | | 6057 | 3.15 |
| Esacc | 3.00 | EF91 | 1.40 | ${ }^{6733} \quad 2.13$ | ${ }_{\text {Pclib2 }}$ | 0．78 | ${ }_{861.2404} 13.50$ | $66.661 \quad 1.84$ | 6059 | 5.75 |
| Exil | 4.15 | ${ }_{\text {Ef94 }}$ | 0.75 | $\begin{array}{ll}6234 & 201 \\ 6737 & 2.13\end{array}$ | PCLB4 | 0.83 | 日63－250A 13.50 | 68576T 1．21 | 6060 | 1.38 |
| E95F | 5.5 | ${ }_{\text {Ef95 }}$ | 0.90 | KT61 $\quad 4.00$ | PCL185 | 0.80 | SAS361－34．50 | 6SM76T 1.05 | cos | ${ }^{3.65}$ |
| E130 | 14.95 | Eftib | 0.64 | KTES（USA） | PL186 | 0.86 | STV880 409.20 | 6V6GT 1.20 | ${ }_{6080}^{606}$ | 3.45 |
| Elace | 4.60 | Ef184 | 0.64 | 4.60 | PLLAOS | 0.65 | STY280／80 | ${ }^{12847} 1.05$ | 6146 | |
| E180F | 6.50 | Ehso | 0.75 | KT66［10） | P05id | ${ }^{3.28}$ | 25.45 | 12E1 ${ }^{12 S} 17.25$ | 6201 | 4.50 |
| E1PRCL | 5.15 | Exso | 0.75 | 11.50 | Praz20 | 1.30 | 712－1254 34.50 | ${ }_{25466}^{125176 T}$ | 6267 | 4.60 |
| E198CC | 3.40 | EL33 | 2.87 | K177 4.00 | P136 | 1.10 | T73．504 47.75 | ${ }_{3018}{ }^{2018618}$ | 6829 | ． 50 |
| Esiaf | 9.50 0.65 | ${ }_{\text {ELI34 }}^{\text {EL36 }}$ | 1.81 | KTB8（USM） | P1814 | 0.85 | ${ }_{179} 113000$ | 3 OFF 21.20 | 6870 | 13.25 |
| Etecko | 0.65 | ${ }_{\text {El3 }}$ | 4.60 | 6.90 | H184 | 0.75 | $125 \quad 0.78$ | 30FL14 1.70 | 7025 | 1.75 |
| E891 | 0.60 | EL31 | 1.25 | 13.80 | PL504 | 1.30 | 12280.78 | $30 \mathrm{PL} 14 \quad 1.20$ | 7032 | 8.50 |
| ECCE） | 0.63 | EL84 | 0.69 | me 140004.60 | P1508 | 1.70 | UCHB1 0.80 | 85．1． 6.20 | 7318 | 8.80 |
| ECCB2 | 0.63 | E196 | 1.10 | ME1402 $\quad 5.15$ | ${ }^{\text {P4．509 }}$ | 2.65 | velar 0.80 | 85021.45 | | |
| ECCB3 | 0.69 | Elso | 0.94 | $1788 \quad 10.25$ | ¢ 4519 | 3.00 | ${ }^{4184} 80.85$ | $9061 \quad 1.55$ | | S． 15 8.90 |
| ECC84 | 0.69 | EL95 | 0.94 | 012 0.90 | P1802 | 3.25 | Ur 563110.95 | 90066 9246 | ${ }_{7587}$ | 88.90 |
| ECCS5 | 0.69 | E1360 | D． 35 | $082 \quad 0.95$ | P881 | 0.62 | n．5631 14.95 | $92 \mathrm{AG} \quad \underbrace{9.00}$ | | |

> MANY OTHER TYPES AVAILABLĖ, INCLUDING SPECIAL QUALITY \& VINTAGE. PLEASE PHONE OR SEND LIST OF YOUR REQUIREMENTS

[^8] Prices subject to change without notice．

EXPORT\＆TRADE enquiries welcome．
Phone our sales desk
0474813225

TELEPRINTER TYPE 7B; Pageprinter 24v d.c. power supply. Speed 50 bauds per min. S/hand good cond. (no parts broken) $£ 28.75$. OR GPO MODEL, as above except spares available.
FRIDEN FLEXOWRITER with Perforator. 230 V a.c. Excellent cond. $£ 75$ ea. Carr. $£ 10$. RADAR ECHO BOX TS.488A X-band. £65. Carr. $£ 5$.
TS. 147 RADAR IEST SET Combination Sig. generator and frequency meter and power meter. Provides C.W. \& F.M. signals. 115 V a.c. $£ 225$, Carr. $£ 7$.
HEWLE PACKARD Sgnal Generator HP 28 . Freq. $10-400 \mathrm{MHz}$ C.W. \& A.M. Output 1 microvolt to $8 \mathrm{~V}, 50$. Mod. $400-1000 \mathrm{~Hz} .230 \mathrm{~V}$ a.c. $£ 225$. Carr, $£ 10$.
AUTO TRANSFORMER: $230 / 15 \mathrm{v} 50 \mathrm{c} / \mathrm{c}^{\prime \prime} 1000{ }^{\circ}$ wats. Mounted in strong steel case $5^{\circ \prime \prime}$ $\times 6^{1 / /^{\prime \prime}} \times 7^{\prime \prime}$. Bitumen impregnated. E17.25+ carriage.
TRANSISTORISED 3cm RADAR AMPLIFIER SWITC
$9 \times 4 \mathrm{~cm}$ ins with 3 cm RADAR AMPLIFERSWITCH: with 24 V waveguide witch, $9 \times 4 \mathrm{~cm}$ ins. With crystal CV. 2355 and spark gap VX. 1046 . $£ 17.25+$ £1 post.
INSULATION TEST SET 0 to 10 KV , negative earth, with Io 1 isation A INSULATION TEST SET 0 to 10 KV , negative earth, with Ionisation Amplifier, BC-221 FRECUENCY METER:
charts $£ 24.15$ + carr METER: $125-20,000 \mathrm{kc} / \mathrm{s}$ complete with original calibration ROTARY INVERTER TYPE PE-218E; Input $24-28 \mathrm{v}$. DC $80 \mathrm{amps}, 4,800 \mathrm{rpm}$. Output
 INVERTER 24 v . DC input 400 cycles 1pH 6600 r.p.m. 200v. peak. $\mathbf{\varepsilon 8 . 0 5}+\mathbb{£} 2$ post.
OXYGEN BOTHLE 1800 ob w.p. $£ 11.50$ + cart.
NOISE SOURCE UNIT with CV. 1881 noise source mount. Produces thermal poise 15.5dB 200/250v. AC E80.50.

MS33 HEADSET. Low imp. $55.35+75$ p post
PE 890D: £92 + carr. $£ 5$
SIEMENS POWER METER REL3U/84/Alb: $0-12 \mathrm{kmHz}$ lmw 500 mw 6 ranges. 0.17 dB 50 ohms. $\mathrm{Eq2}+\mathrm{carr}$
CV. 1596 CATHODE RAY TUBE: (09D, 09G), 4" screen, green electrostatic base B12B HT 1200 volts, heater 4 volts $£ 11.50$.
RADAR RECEIVING ANTENNA TYPE X443 Mk.D: Suitable for detecting signals on crystals. Transistorised amplifier and geared motor etc waveguide horns, associated VACUUM \& PRESSURE DEAL TEST EQUIPMENT: complete indicating 0.20 lbs p.s.i. $\mathbf{0}$-30lbs vacuum. With stand, hand pump, etc. $£ 34.50+$ carr.

BARGAIN MAPS
Large stocks of unused U.S.A.F. Surplus maps, weather charts, etc. including
ONC-E1 - U.K, in full and part N.W. Europe. Scale 1:1,000,000. JNC-9N - N. Europe, U.K., Scandinavia. Scale $1: 2,000,00$ JN-21N - Europe (Mediterranean). Scale $1: 2,000,000$. SIZE $58^{\prime \prime} \times 42^{\prime \prime}$ 'colour. Many others. Please send SA.E. for list.
Price each 75° (inc. P\&P) $25 \times$ Maps (either. same
$10 \times$ Maps (either same type OR assorted), $\mathbf{£ 1 0}+\mathbf{£ 1 . 6 0}$ P\&

All prices include YAT at 15\%
Carriage quotes given are for 50 -mile radius of Herts.

W. MILLS

The Maltings, Station Road Tel: Bishop's Stortford (0279) 725872

gA TEA	FAST PCB
RHYTOTDIA	PROTOTYPES

Sarie nay nesparci

ready anwork.

Up to $125 \mathrm{~mm} \times 100 \mathrm{~mm}-\mathbf{£ 1 8}+$ VAT per side etched only. drilling $\mathbf{£ 5}+$ VAT Up to $250 \mathrm{~mm} \times 200 \mathrm{~mm}=\mathbf{\Sigma 2 4}+$ VAT per side etched anly dilling $\mathbf{\varepsilon} 10+$ VAT Send your order with artwork cheque and instructions-orders reverved by 10 a m
guaranteed despatched first class same day etched only \{next day etched and drilled) or your guaranteed despatched first class same day erched
money refunded. subject to acceptance of artwork

AEBAUSTERFIELD-CLARK FESEARCH. Tel. 048448016 42 Blackhouse Road, Hudderstield HD2 1AR WW - 093 FOR FURTHER DETAILS

FREQUENCY COUNTERS-OFF/AIR RECEIVERS

20 models available including LED versions
RCS ELECTRONICS
WOLSEY ROAD
ASHFORD, MIDDX
Phone 53661

WW-059 FOR FURTHER DETAILS

Barrie Electronics Ltd.
 3 THÉ MINORIES, LONDON EC3N 1BJ TELEPHONE: 01-488 $3316 / 7 / 8$

mearest tuse sta
mearest tuse sta

SPECIAL AUTUMN OFFERS! 크르ㄷㅡㅡ준 Kits, Components \& Ready-Builts

Ready built decoder (based on W.W. design) built by Datafax. This decoder (with power supply) is housed in a Teak Veneered plywood cese measuring $22^{\prime \prime} \times 81 /{ }^{\prime \prime} \times 31 /{ }^{4}$ and uses thumbwheel switches to select the pages. It includes conceal/reveal and colour background facilities.

CTT1715 - now only $£ 135+$ VAT $=£ 155.25$
V.G.E. Professional Decoder and other W.W. versions also available

MITS and PCB's are available for the ULTRASONIC REMOTE CONTROL unit as described in recent issues of W.W. Kit includes "Board 5"', RX and TX PCBe, all components and instaliation instructions.

Price only $£ 67.92+$ V.A.T. + Post $=£ 78.80$ total New Facilities 'Board $\mathbf{3}^{\prime \prime}$ Kit for $\mathbf{£ 3 3 . 3 0}$
Catronics main kits contain all the
printed circuit boards and
complete decoder
A reprint of the series of articles is available at $£ 1.95+$ large 210 SAE (included free in complete kit).

Prices are for the Version with
TEXAS $\times 887$ INCLUDING VA

Also PLATED THROUGH hole PCB at additional cost of $£ 24.30$ FULL FAULT-FINDING AND REPAIR SERVICE A VA/LABLE COMPONENTS ALSO AVAILABLE SEPARATELY. SAE for price list.

GHARAOTER GENERATOR AND WEMORY I.C.S.
74S262N (X887) £12.95; 2102/2602, £1.11

COMPUTER APPRECIATION

6 High Street, Bletchingley, Redhil, Surrey RM1 4PA. Tel: Godstone (0883) 843221	
5 megabyte DISC DRIVES (RKO5 compatible), ODEC 300 Ipm PRINTER. All components this.systern except VT 52 and disc drives are brand new and dated 1980 . E8,500.00 DIABLO SERIES 30 DISC DRIVES. These are offered fully refurbished and may be viewed	
CKARD Model 98155 Desk Top Computer (incorporating Motorola 6800) is directly compatible with the DECRKO5 drive tor PDP/LSI 11 E650.00	
and one panstruments Model 980 A Minicomputer with $24 \mathrm{~K} \times 16$ MOS memory and various peripheral controllers and spares WANGCO Model T1 222 disc drive. With one fixed platter and one top loading cartridge. Combined capacity 5 megabytes	
ELETYPE Model ASR 33 with 20 mA current loop interface. 110 Baud, remote reader ntrol (which may be disabled by insertion of a jumper), paper tape reader/punch and stand (Other disc drives by PERTEC and IOMEC available, please enquire) SHUGART Model 5A 901 single density floppy disc drive $\mathbf{£ 1 5 0 . 0 0}$	
(when available)	
40 v operation, motor cut-out feature, reader single stop, stand and silencing cover. RS232	
TA DYNAMICS Model KSR 390. As above, but without tape reader and punch. PERTEC Model 431.1 Key to 9-track magtape encoder, 800 bpi. Portable unit . E150.00	
golfball I/O typewriter with twin $£ 295.00$ * V.A.T. and carriage extra all items	
	* Visitors welcome, but by appointment please * We are keen to bid competitively for all good used equipment

QunTz crivins A:
 AEL CRYSTALS LTD
 GATWICK HOUSE. HORLEY SURREY ENGLAND RH6 9 SU Telephone HOridy (O2934) 5353 Telex 87116 (Aerocon Horley)

o: Ge
ORDER FORM ford Street, London SE1 9LU
Please send me.............copy/copies of Hi Fi Year Book and Home Entertainment 1980 @ £4.25 a copy inclusive, remittance enclosed. Cheque/p.o. should.be made payable to IPC Business Press Ltd.
Name.
(please print)
Address.

for

This is an ideal low-cost controller for production, test and laboratory applications. It has a simple interface to the outside world - we can design special hardware if required programmed in BASIC or Assembler.

King Pin Computers

UNIT 38, WEDGWOOD WAY, STEVENAGE, HERTS.
TEL: (0438) 56049

hadio telephone equipment

PYE OLYMPIC M 201 high hand AM mult-channel sets complete bul
less loudspeakers and mikes. Few only
$£ 100$ each $+V A T$
 batteries PYE PFZ U8 T band deal for 70 cm These sets are in as new condition PYE PF2 U8 T band ideal for 70 cm These sets are in as new condition
Complete with mike battery and aerial + VAT EBO each + VAT
CYE U.H.F. PAGERS. PGIU Used condition less bateries fewonly PYE MF5AM MOTOFONES. Low band sets complete and in VAO COndition PYE POCKETPHONE. Base station F 450 complete less mike YE WESTMINSTER W15 AMD mid-band mult-channel sets only no Mike speaker cradle or leads ew only
$£ 150$ each + VAT PYE RTC Cantrolier units for remotely contralling \vee H F or $U H$ H fixed stations, radio telephones. overland lines $\quad £ 20$ each + VAT
PYE WESTMINSTER W15AM. High band and Sets complete and in good condition but are less speakers mikes Cradks. and $L T$ leans (sets on (y)
$£ 70$ each + VAI PYE BASE STATION F.27. LOW AND HIGH BAND. Few only PYE BASE STATION FBOAM. L.ow and high band with and without YE CAMBRI $\$ 220$ each + VAT PYE CAMBRIDGE AM 108 cbont mount) low band 12.5 KHz sets only PYE Control gear GOod condition

PYE U.H. F. LINK 4051. Base station $T X £ 15$ PX $£ 15$ erach + VAT | VAT sold as seen |
| :--- |
| 30AM spares Mod trans |
| 3.00 each | ains 1 spares Mod trans MFEPR1 PC1 PC 906 A controtlers $£ 1.00+$ VAT

 PYE F 30 FM low band Local contiol mint condition $\mathbf{E 4 0 0 . 0 0 + V A T}$ PYEAC 15 PV Mains power unit for W $15 A \mathrm{M}$ good condinion only E50.00 +VAT YE T150 High band FM ransmitrer $£ 250+V A T$
$£ 100+V A T$ $\begin{array}{ll}\text { PYE Fq60/470 H F F hase stations from } & \text { E150+VAT } \\ \text { PYE CAMBR1DGEAM } & \text { C150 }\end{array}$ PYE CAMBRIDGE AM 10 B high band boor mount sets complete less
$\xi 20$ each + VAT
 CARRIAGE ON R/T EQUIPMENT MOBILES E2.00 each B/S

IC AUDIO AMP P.C.B. nutpui 2 warls into 3 ohm speaker 12 VAT CC AUDIO AMP P.C. B. nutpui 2 walls into 3 ohm speaker 12 vols $\begin{aligned} & \text { DC supply Size approx } \\ & \text { complete with rircuits }\end{aligned}{ }^{2} \times 1^{1 / 4} \times{ }^{\prime \prime}$ "high with integral hear sinx NICAD CHARGER CONVERTER P.C.B. Tow power inverter) Size
 C B 5 or similar transistor which can be mounted direct on to 0.7 MHz x TAL FILTERS $1070165 \times$ TAIS for USB 15 notion min -40त8 ineeds 1069935 and

LOW PASS FILTERS Jow
 XTALS FOR TV SYNC. GEN. 20.25 KHz for 40.5 limes $\begin{gathered}\text { B } 7 \text { g glass lype } \\ \text { E2.00 }\end{gathered}$ TV OFF AIR RECEIVER KIT. Contains Mullard ELC 1043 , 05 ture Onit aerial socket l.F amp modtle. deticior modute and sound quad RED Leds (Min type) 5 for 70 + vat
WIRE WOUND RESISTORS 330 ohm 5 walt 5 vertical mounting NIRE WOUND RESISTORS 5K T Wait se vertira $1.50+$ VAT WIRE WOUND RESISTORS $2 R 710$ watt $10^{\prime \prime \prime}$ horizontal mounung CARBON FILM RESISTORS, w, wati $8^{\text {Now }}$ on banderler 18 ohrm allt SKELETON PRESETS, standard type $10 \mathrm{~K} \quad £ 5.00$ per $1,000+$ VAT GOULD POWER SUPPLY type MMG5-5 5 v at 5 A output 110 vand
240 O ac input, brand new
E 25 each + VAT REDWING REFRIGERATED MILK CABNET and dispensef lakes 3 GEC PORTABLE TV Fen LOpt avalable any sensible offers all brand new

TERMS OF BUSINESS: Cheques or P.O. with order, made payable to B. Bamber Electronics, or phone your Access or Barclaycard No. Please add 15% VAT on all goods advertised after adding postage as applicable CARRIAGE: Orders under $£ 5$ nett invoice add 75 p. Orders over. $£ 5$ but less than $£ 20$ add 50 p. Orders over $£ 20$ carriage paid. Callers welcome. Tues.-Sat. 9.30 a.m.-5.30 p.m.

B. BAMBER ELECTRONICS

DEPT. W.W., 5 STATION ROAD, LITTLEPORT, CAMBS CB6 1QE TEL: ELY (0353) 860185

ane Marshalls

We are old established specialist electronic component distributors carrying a very wide range of quality stock. We are franchised distributors for Arrow Hart switches; Mullard; National; Siemens; Texas; Thomson; CSF etc.

Send for our latest 60 page catalogue. Free to industrial customers: 65p post paid to private individuals.

New lines not yet in catalogue are new range Sinclair (Thandor) meters; Crimson Elektrik High Fi Modules; Rechargeable Nickel/ Cadmium Batteries; Send S.A.E. for details.
A. Marshall (London) Ltd., Kingsgate House,
Kingsgate Place,
London N.W. 6 4TA.
Industrial Sales: 01-328 1009
Mail Order: 01-624 8582
Retail Branches: London: Glasgow: Bristol

Whe new name in TinearI/Cs

Analog Systems, the fest growing linear I/C company of Arizona whose products are available from Pascall, offer a wide
range of high performance linear integrated circuits.

Audio Amplifiers and pre-amplifiers

- MA 700 Hi Voltage Op Amp $\pm 13 \mathrm{~V} / \mu \mathrm{S}$ slew rate for O / P swings to $\pm 40 \mathrm{~V}$
2 MHz GBW product, audio S/N ratio 140 dB

MA 60391-80391 equivalent to LM $391 \mathrm{~N}-60 / 80$

MQ 328 Voltage Variable Gain Block. 100 dB dynamic range, $2 \mathrm{MHz} \mathrm{B} / \mathrm{W}$ and $800 \mu \mathrm{~S}$ settling time

Send for full product listings of Analog Systems exciting
product range

MA 332 Audio Operational Amplifier 0.0002% THD, $4 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ input noise voltage, $\pm 20 \mathrm{~V} / \mu \mathrm{S}$ slew rate and 20 V $0 / \mathrm{P}$ swing into 600 ohms

§
 ANPLOG SYSTEMS

Pascall Electronics Limited, Hawke House, Green Street,

 Sunbury-on-Thames,Telephone: (09327) 87418 Telex: 8814536 Def Stan 05-31 / BS9000/CECC approved

TV TUBE REBUILDING

Faircrest tngıneering Ltd., manufacture a comprehensive range of equipment for processing all types of picture tubes, colour and mono. Standard or custom built units for established or new businesses. We export world-wide and have an excellent.spares service backed by a strong technical team
rull traıning courses are individually tailored to customers' requirements.

For.full details of our service contact Neil Jupp

FAIRCREST ENGINEERING LTD.

Willis Road, Croydon, CRँ०2XX 01-6841422, 01-6898741

WW - 028 FOR FURTHER DETAILS

SERVICE TRADING CO

FT3 NEON FLASH TUBE

High intensity multit turn high voltage, neon glow discharge (E2.01 inc. VAT) 3 for $\in 3$. P\&P 50 p ($£ 4.03,50$. P\&P 25 p WHY PAY MORE?
MULTI RANGE METERS Type MF15A. AC/DC volts $10,50,250,500$,
$1000 \mathrm{Ma} 0.5 \quad 0.100 .100$. Sensitivity 1000 Ma 2.5 ranges dimensions
2000 V 24
$133 \times 93 \times 46 \mathrm{~m}$ $133 \times 93 \times 46 \mathrm{~mm}$. Price $\mathrm{E7.00}$ dius 50 p

: SOLID STATE Ë.H.T. UNiT

Input 230 V A.C. Fully isolated output. 10 mm spark.
Approx. 15 kJ . Built-in 10 sec . Timer. Easily modified for 20 sec., 30 sec., to continuous operation. Designed for boiler ignition. Dozens of uses in the field of physics and electronics, e.9. supplying neon or argon tubes, etc.
E.H.T. starter for lasers, xenons, C.S.I. lamps, Van de E.r.art starter for lasers, xenons, C.S.I. lamps. Van de etc, etc.
Size: Lgth 155 mm . Wdth B5 mm . Ht 50 mm . Wt 530
gms. Price $£ 5.00+85 \mathrm{p}$ p. \& p. (Total incl. VAT

230 VOLT AC FAN ASSEMBLY

Powerful continuously rated AC motor
complete with 5 blade $61 / 2^{\prime \prime}$ or 4 blade 3" aluminium fan. New reduced price $£ 3.50$ A.E.G. CONTACTOR

Type LS6/L11. Coil 240V 50Hz, Contacts - 3 make 600 V 20 amp 1 break 600 V 20 amp . Price $\mathbf{£ 5 . 5 0}+50 \mathrm{p}$ P\&F
ARROW-HART MAINS CONTACTOR
Coil No. 130 A30
Coil 250 V or 500 V AC. Contacts, 3 make 50 amp up to
660 V AC 20 hp at 440 V 3 phase 50 Hz . Price $£ 7.75+\mathrm{P} \& P$ 660 V AC 20 hp at 440 V 3 phase 50 Hz . Pric
$£ 1.00$ (Total inc. VAT \& $\mathrm{f} \mathbf{£ 1 0 . 0 6 \text {). N.M.S. }} \mathrm{l}$
SMITH BLOWER
Type FFB. 1706 . Small quiet smooth running. 240 V AC operation. Output aperture $45 \times 40 \mathrm{~cm}$. Overall size ($\mathbf{E 5 . 7 5}$ incl. VAT \& P). N.M.S. Other types available SAE for

$24 V$ DC BLOWER UNIT

USA made 24 V DC 0.8 amp blower to operates well on 12 V Maximum housing dia 110 mm , depth inc motor 75 mm nozzle length 19 mm , dia 22 mm . deal for cooling mobile
 VAT \& P) N.M.S.
Airflow Development Ltd
CENTRIFUGAL BLOWER UNIT powered by G.E.C. $230 / 250 \mathrm{~V}, 2,850 \mathrm{rpm}$ motor producing approx 120 cfm . Aperture: $65 \times 90 \mathrm{~mm}$. Overall size $222 \times 225 \times 195 \mathrm{~mm}$ incl. starter capac. Price: $£ 16.00+$ P\&P £2.00 (total inc. VAT £20.70). N.M.S.

MINIATURE UNISELECTOR 12 V 11 way 4 bank (3 non-bridging,
1 homing) $\mathrm{E} 3.50 \mathrm{P} \mathrm{\& P} 35$ ($\mathbf{4} .43$ inc. VAT \& P).

Sub. Min. Honeywell Lever m / s type 3115 m
906 i . 10 for $£ 3.50$ post paid ($£ 4.37$ incl. VAT).
These $V 3$ types.
Button Type (Pye) 10 for $\mathbf{£ 3 . 0 0}$ ($\mathbf{£ 3 . 4 5}$ incl. VAT)
Short

Short Lever type. 16 a $\mathbf{£ 4 . 0 0}$ ($\mathbf{~} 4.60$ incl. VAT).
 $\mathbf{£ 4 . 0 0}$ (E4.60 incl. VAT

Roller Type (Bonnella). 10 for $£ 3.50$ ($£ 4.37$
HEAVY DUTY SOLENOID

Mfg by Magnetic Devices. 240 V intermittent operation. approx. 20lb. pul

 intermittent operation. approx. 20 lb . pulat 1.25 in Ex equip. Tested. Price $£ 5.50+$

12V DC SOLENOID

12 V DC heavy duty Solenoid 4 Kp pull. Easily removable from plate. Ali chassis containing $4 \times 24 \mathrm{~V}$ DC Push Solenoids ($11 / 2 \mathrm{lb}$ approx). 5 -fig Counter. 6 min photo cells.
Sub-min Microswitches etc. etc. Ex-equip London Transport Sub-min Microswitches etc, etc. Ex-equip London Transport
Printer. Price: $£ 9.00+£ 1.00$ p. \& p. (total incl. VAT Printer.
$\mathbf{E 1 1 . 5 0}$).
12 V DC SOLENOID
Approx. 1 lb pull. Price: $£ 1.40+\mathrm{P} \mathrm{\& P} 20 \mathrm{p}$ ($£ 1.84$ incl. VAT TYPE AG/TG
$18-24 \mathrm{~V}$ DC 70 ohm Coil Solenoid. Push or Puli Adjustable travel to $3 / 16$ in. Fitted with mounting brackets and spark 30 p P\&P ($\min 3 \mathrm{off}$) ($£ 3.10$ inc. VAT \& P)
Westool Series D6 Model A3, 24 V D. C. Price $£ 1.50+50 p$ P\&P ($£ 2.30$ incl. VAT). Westool Series D 4 Model A 24 V D.C Price $£ 1.00+30 \mathrm{p}$ P\&P ($£ 1.50$ incl. VA INSULATION TESTERS (NEW) Test to I.E.E. spec. Rugged metal con
struction, suitable for bench or field work constant speed clutch. Size L 8 in, W 4 in H 6 in , weight 61 b
500 VOLTS 50
500 VOLTS 500 meghohms $£ 49.00$ Post 80p ($\mathbf{5} 57.27$ inc. VAT \& P). Post 80p (E64.17 inc VAT \& $£ 55.00$ Post 80
YET ANOTHER OUTSTANDIÑG OFFER
New 1MFD 600 V Dubilier wire ended capacito $£ 1.50 \mathrm{P} \& \mathrm{P} 50 \mathrm{p}$ ($£ 2.30$ inc. VAT \& P)

VARIABLE VOLTAGE TRANSFORMERS
INPUT 230/240V a.c. 50/60 OUTPUT
VARIABLE 0-260V

00W 1 amp inc. a.c. voltmeter $\mathbf{E 1 4 . 5 0}$	
$0.5 \mathrm{KVA}(21 / 2 \mathrm{amp}$ MAX)	£18.00
1 KVA (5 amp MAX)	£24.00
2 KVA (10 amp MAX)	E39,00
$3 \mathrm{KVA}(15 \mathrm{amp}$ MAX)	± 47.00
5 KVA (25 amp MAX)	¢76.00
10 KVA (50 amp MAX)	£168.00
17 KVA (75 amp MAX)	£260.00

3-PHASE VARIABLE VOLTAGE

TRANSFORMERS

$3 \mathrm{KVA}(\max .15 \mathrm{amp})$
$6 \mathrm{KVA}(\max .30 \mathrm{amp})$$\cdots$.... £159.43 10 KVA (max. 50 amp) $€ 327.43$

LT TRANSFORMERS

$13-0-13 \mathrm{~V}$ at $1 \mathrm{amp} £ 2.50 \mathrm{P} \& \mathrm{P} 50 \mathrm{p}$ ($£ 3.45$ inc. VAT)
$0-4 \mathrm{~V} / 6 \mathrm{~V} / 24 \mathrm{~V} / 32 \mathrm{~V}$ at $12 \mathrm{amp} £ 20.35 \mathrm{P} \& \mathrm{P} £ 2.30$ (E26.05 inc VAT \& P)
$0.6 \mathrm{~V} / 12 \mathrm{~V}$ at $20 \mathrm{amp} £ 16.20 \mathrm{P} \& \mathrm{P} £ 1.00$ (inc. VAT $£ 19.78$)
 ($\mathbf{E} 15.53 \mathrm{inc}$ VAT \& P
$0-6 \mathrm{~V} / 12 \mathrm{~V}$ at $10 \mathrm{amp} £ 9.10 \mathrm{P} \& \mathrm{P} £ 1.50$ (inc. VAT £12.19) $0-6 \mathrm{~V} / 12 \mathrm{~V} / 17 \mathrm{~V} / 18 \mathrm{~V} / 20 \mathrm{~V}$ at $20 \mathrm{amp} £ 20.90 \mathrm{P} \& \mathrm{P} £ 2.00$ (£28.34 inc. VAT \& P)
E 15.35) Other typ

Other leaflet.

POWER RHEOSTATS

on, vitreous en-

 amel embedded winding, heavybrush assembly, continuously rated.
25 WATT 10, $25,100,150,250,500,1 \mathrm{k}, 1.5 \mathrm{k}$ ohm E2.80 Post 20 p (E3.45 inc VAT \& P). 50 WATT 250 ohm £2.90 Post 25p ($\mathbf{E 3 . 6 2}$ inc VAT \& P). 100 WATT $2.5 \mathrm{k} / 5 \mathrm{kohm} \in 6.90$ Post 35 p ($£ 8.34 \mathrm{inc}$. VAT \& P). Black Silver Skirted Knob calibrated in Nos $1-9,11 / 2$

dia brass bush. Ideal for above Rheostats 24p ea.

STROBE! STROBE! STROBE!

HY-LIGHT STROBE KIT Mk. IV

Latest type Xenon white light tube. Solid state timing and triggering circuit $230 / 240 \mathrm{~V}$ AC operation. Speed
adjustable 1.20 f.p.s. Designed for large rooms, halls adjustable 1.20 f.p.s. Designed for large rooms, halls etc. Light output greater than many (so called 4 Joule)
strobes. Price: $£ 22.00$ post $£ 1.50$ ($£ 27.03$ inc. VAT \& strobes. Price: $£ 22.00$ post $£ 1.50$ ($£ 27.03$ inc. VAT \&
P). Specially designed case and reflector for Hy .Light £9.00 Post £1.00 (£12.08 inc. VAT \& P) ULTRA VIOLET BLACK LIGHT
FLUORESCENT TUBES
[4 ft 40 watt $£ 8.70$ (callers only $£ 10.00$ inc. VAT). 2 ft $\mathbf{2 0}$ watts $£ 6.20$. Post 75 p ($\mathbf{£ 7 . 9 9}$ inc VAT \& P). (For use in standard bi-pin fittings.)
 6 in 4 watt $£ 2.25$ Post $35 p$ ($£ 2.99$ inc VAT \& P P)
 Also availabie for $\uparrow 2 \mathrm{~V}$ DC op $£ 4.50$ plus P\&P 35 p $(£ 5.58 \mathrm{inc}$ VAT \& P).
400 W UV

* 400W UV lamp and ballast complete $£ 38.00$ Post $£ 3$ * (£47.73 inc VAT \& P). 400 watt UV lamp only E14.00 $*$ Post £1.50 (E17.83 inc. VAT \& P).

REED SWITCHES

Size $28 \mathrm{~mm} \times 4 \mathrm{~mm}$ dia. Price: 10 for $\mathbf{£ 1 . 0 0 + P \& P 2 0 p}$ (total incl. VAT $£ 1.38$). 100 for $£ 8.00+P \& P 30 p$ (total inc VAT £9.55)
WIDE RANGE OF DISCO LIGHTING EQUIPMENT S.A.E. (Foolscap) for details.

XENON FLASH GUN TUBES
Range of Xenon tubes avajlable
from stock. S.A.E for full details.

RELAYS
 Wide range of $A C$ and $D C$ relays avalable from stock write in your enquiries

230/240V AC Relays:
Arrow $2 \mathrm{c} / 015 \mathrm{amp} £ 1.50$ ($£ 1.96$ inc. VAT \& P). T.E.C open type $3 \mathrm{c} / \mathrm{o} 10 \mathrm{amp} £ 1.10$ ($\mathbf{~} 1.50 \mathrm{inc}$. VAT \& P). $3 \mathrm{c} / \mathrm{o}$ sealed 11 pin base $£ 1.25$ P\&P $25 p$ ($£ 1.73$ incl. VAT)
KMK1 Relay. 230 V AC. $1 \mathrm{c} / \mathrm{o}$. Open type 10 amp contact. mf by "Keyswitch" 80p $+20 \mathrm{p} P \& P(\mathbf{E} 1.15$ inc. VAT). 5
 nc VAT \& P). 11 -pin $£ 1.35$ ($£ 1.78$ inc. VAT \& P) 24 V (Sealed $3 \mathrm{c} / 07 \mathrm{amp} 11$ pin $£ 1.38$ ($£ 1.78$ inc. VAT \& P) (amps $=$ contact rating) $P \& P$ on any relay $20 p$. Very special offer, $0-12 \mathrm{VDC}, 2$ make contacts, new TT3 for $\mathbf{£ 1 . 7 5}$ plus 25 p P\&P (inc VAT £2.30)
Diamond H heavy duty AC relay $230 / 240 \mathrm{VAC}$, two c / o contacts 25 amps res at $\mathbf{2 5 0 V}$ AC $\mathbf{£ 2 . 5 0}$ P\&P 50 p ($\mathbf{(1 3 . 4 5}$ nc. VAT + P\&P) Special base 50p.
HELLERMAN DEUTSCH. Hermetically sealed sub.-min
Relay. 12.24 V , D.C. 2 c/o 850 ohm coil 0.2 pitch P C Relay. 12.24 V . D.C. $2 \mathrm{c} / \mathrm{c} 850 \mathrm{ohm}$ coil 0.2 pitch. P.C.
mounting. L. $20 \mathrm{~mm} . \mathrm{W} .10 \mathrm{~mm}$. H. 12 mm . Fraction of mounting. L. 20 mm . W. 10 mm . H. 12 mm . Fraction
maker's price: $£ 2.50$ post paid ($\mathbf{2} .88$ incl. VAT). N.M. S .

METERS (Naw) - 90mm DIAMETER AC Amp. Type 62T2: 0-1A, 0-5A, 0-20A. AC 0-2A, 0-10A, 0-20A, 0-50A. DC Volt. 0-15V, $0-30 \mathrm{~V}$. All types $\mathrm{E3} .50$ ea plus P\&P 50 p ($£ 4.60$. O-50A DC, $0-100 \mathrm{~A}$ DC. Price $£ 5.00$ plus 50p P\&P ($\mathbf{i n} 5.94$ ine VAT)

24V D.C. Reversible Motor
Parvalux type SD 121.24 D.C. shunt wound Motor. 133rpm. 65tbs. in
Gearbox ratio $30-1$. Current 6.8 amp. Rating continuous. Will opera Gearbox ratio 30-1. Current 6.8 amp. Rating continuous. Will operate 150 mm . Shatt dia. 16 mm . Price $£ 16.00$ plus $\mathrm{p} \mathrm{\&} \mathrm{p} £ 2.00$, ($£ 20.70$ inc.

VAT). N.M.S.

60 ppm 1001 in in rating. Price as above
100 W Rhooste 1
100 rpm 110 V AC 115 lb . in. 50 Hz . 2.8 amp Single phase split capacitor. Immense power.
Totally enclosed. Length 250 mm . Dia. 135 mm . Spindle dia. 15.5 mm . length 145 mm . Tested
Price $£ 12.00+£ 1.50$ P\&P $(£ 15.53$ inc. VAT). A \& T S. Suitable Transformer for $230-240 \mathrm{~V}$ op. Price $\mathbf{c 8 . 0 0}+75 \mathrm{p}$ P\&P ($\mathbb{1} 10.05$ inc.
 Suitable Transtormer for $230-240 \mathrm{~V}$ AC. Price $£ 8.00$
$(\mathbb{E 1 0 . 3 5}$ inc. VAT). N.M S.
. 12 C . 12V DC type SD2 Shunt $1 / 30$ th ph continuously rated $4,000 \mathrm{rpm}$. Mf. PARVALUX. Price $£ 10.00+\mathrm{P} \& \mathrm{~F}$ 1 rom $230 / 240 \mathrm{~V}$. N. M.S.
T tpm $230 / 240 V$ AC SYNCHRONOUS GEARED Motor. Mf Motor. Mf. CROUZET. Either type $£ 3.90+30 \mathrm{p}$ P\&P ($(4.83$ inc. VAT). N.M.S.

24V DC GEARED MOTOR

$24 V$ DC $200 \mathrm{rpm} 10 \mathrm{lbs} / \mathrm{ins}$ continuously rated geared Motor mfg by either Parvalux or Carter. Easily removable microswitches, friction clutch, precision gearing, etc, etc, Ex-equipment London Transport Ticket Printer. Price:

ROTARY CARBON VANE VACUUM 8

 COMPRESSORDirect coupled to $1 / 3 \mathrm{~h} . \mathrm{R}$. $110 / 11$ 5VA.C. Motor 4.2 amp. 1380 rpm,
Motor manuf. by A.E.I. Pump by Wiilliams. Max. Vac. 25:" H.G. Max
 Suitable transi
VAT). N.M.S.

REDUCTION DRIVE GEARBOX

Ratio 72.1 input spindle $1 / 4 \times 1 / 2 \mathrm{in}$. Output spindle $3 / 8 \times 3$ in long. Overall size approx $120 \times 98 \times 68 \mathrm{~mm}$. All metal construction. Ex-equip tested. Price $£ 2.00+50 p$ P\&P ($\mathbf{E} 2.88$ inc VAT $\& P$).
AC Wkg TUBULAR CAPACITORS

'VENNER

200/250V AC 30 amp 2 on $/ 2$ off every 24 hrs at reserve and day omitting device. Built to highest Electricity Board Specification. Price $£ 9.50$. P\&P 75p (E11.79 inc. VAT). R\&T.
SANGAMO WESTON TIME SWITCH
Type S251 200/250 AC 2 on 2 off every 24 hours. 20 amps P\&P 50p ($\mathbf{~} \mathbf{1 0 . 3 5}$ inc. VAT \& P). Also available with solar

dia. K\&

PROGRAMME TIMERS

12 Cam Programmer Timers. 240v. A.C. op. Each Cam individually adjustable. Price $\mathbf{£ 7 . 5 0}$ plus 75 p p\&p. (E9.49 inc. V.A.T.). R\&T. Ditto, 6 adjustable 6 fixed cams. Price $\mathbf{£} 6.00$ plus $75 p$ p\&p (£7.76 inc. V.A.T.) R\&T MINIATURE PROGRAMMER
Crouzet 1 rpm 115 V AC Motor operating 2 roller microswitches (4 amp). Can be used on 240 V AC with either 0.25
mfd 250 V Condenser or 5.6 K wirewound resistor 7 watts (supplied). Price $\mathbf{£ 2 . 5 0}+50 \mathrm{p}$ P\&P ($\mathbf{£ 3 . 4 5}$ inc VAT $\& P$) N.M.S.
N.M.S. - New Manufacturers' Surplus
P.\&.T. - Reconditioned and Tested

All Mail Orders - Callers
Ample parking space
Showroom open Monday-Friday.

9 Little Newport Street London WC2H 7JJ Tel: 01-437 0576

have only half the weight and height of their laminated equivalents and are have only half the weificient. Our toroidals cost virtually the same as their now outdated laminated equivalents and hum is down to a negligible tenth of what it used to be. Supplied with rigid mounting kit with centre bolt, two neoprene and one steel washer. Available so far in a range of 37 sizes with more to come.

TYPE	VA	SECONDARY RMS VOLTS	SECOMDARY RMS CURRENT	DIA. x HT in mm	WEIGHT	PRICE
2X010	50	6+6	4.16	80×35	0.9	
2×011		$9+9$	2.77			EACH
2×012		12+12	2.08			¢541
2×013		$15+15$	1.66			L 4.40
2×014		18+18	1.38			+f1.10 PRP
2×015		$22+29$	1.13			+98p VAT
2X016		$25+25$	1.00			
3×010	80	6+6	6.64	90×30	1.0	
3×011		$9+9$	4.44			
3×012		$12+12$	3.33			
3×013		$15+15$	2.66			EACH
3×014		18+18	2.22			¢576
3×015		22+22;	1.81			L. 710
3×016		$25+25$	1.60			+f1.20 PEP
3×028		110	0.72			+ ¢1.04 Vat
3×029		220	0.36			
3×030		240	0.33			
4×010	120	$6+6$	10.00	90×40	1.2	
4×011		$9+9$	6.66			
4×012		$12+12$	5.00			
4×013		15+15	4.00			EACH
4×014		18+18	3.33			
4×015		$22+22$	2.72			
4×016		$25+25$	2.40			$+£ 1.30 \mathrm{P} \& \mathrm{P}$
4×028		110	1.09			+ 11.20 Vat
4X029		220	0.54			
4 $\times 030$		240	0.50			
5×016	160	25+25	3.20	110×40	1.8	EACH
5×017		$30+30$	2.66			
5×028		110	- 1.45			
5×029		220	0.72			$+\mathbf{f 1 . 4 0 P \& P}$
5×030		240	0.66			+£1.54 VAT
6×016	300	$25+25$	6.00	110×50	2.6	
6×017		$30+30$	5.00			EACH
${ }_{5 \times 018}$		35+35	4.28 3			
${ }_{6 \times 026}$		$40+40$	3.75			
6×025		$45+45$	3.33			+ f1.50 P\&P
${ }_{6} \times 1028$		110	2.72			+£2.07 VAT
6×029		220	1.36			
6×030		240	1.25			

CHOICE OF 3 PRIMARY INPUTS

I.L.P. Toroidal Transformers are available in choice of $110 \mathrm{~V}, 220 \mathrm{~V}, 240 \mathrm{~V}$, coded as follows: (Secondaries can be connected in series or parallel)
For 110 V Primary insert 0 in place of " X " in type number.
or 20 V Primary insert 1 in place of ' X ' in type number For 240 V Primary insert 2 in place of " X " in type number.
Example - 120VA $240 \mathrm{~V} 15+15 \mathrm{~V} .4 \mathrm{~A}=42013$.

* TYPES TO SPECIFICATION CAN BE SUPPLIED TO ORDER IN

QUANTIIY, AGENCIES IN CERTAIN COUNTRIES AVAILABLE
ENQUIRIES INVITED

FREEPOST facility.

We pay postage on U.K. enquiries and orders. Simply address envelope to FREEPOST T5 to address below. NO STAMP REQUIRED.

TO ORDER Enclose cheque/Postal Order/Money Order payable to LL.P. Electronics Ltd or quote your ACCESS or BARCLAYCARD account No. To pay C.O.D. add £l extra to TOTAL value of onder

TRANSFORMERS A division of I.L.P. ELECTRONICS LTD
FREEPOSTTS GRAHAM BELL HOUSEROPER CLOSE CANTERBURY CT2 7EP Phone (0227) 54778 Telex 965780

FACTORY CLEARANCE!

A. R. DAVIES HAVE APPROX. 25 TONNES OF BRAND NEW COMPUTER SPARES TO CLEAR AT RIDICULOUSLY LOW PRICES. CALL AT OUR CODICOTE WAREHOUSE OPEN TO THE PUBLIC FOR TWO DAYS ONLY!!

OCT. 4th AND OCT. 11 th, 9 a.m. to 5 p.m.

STOCKS INCLUDE

PCBs, Resistors, Capacitors, Transistors, Diodes, Thyristors, Triacs (up to 50 Amps), Chips of all sorts, Wire (single or multicore), Plugs, Sockets, Tape Heads, Card Readers, Tape Recorders, Switches, Toggle, Lever, Micro, etc.
Electric Motors, all sorts from 50p. 2,000 in stock. Multicore solder tin / copper wire and enamelled copper wire all gauges.

Transformers
Chokes
Relays
VDU
Keyboards
Fans
Blowers
from $£ 1$
Geared Motors from $£ 1.50$

Meters
 Clocks Hour Meters

Counters Stabilised Power Supply Units from 1-25 Amps to 0-5V £2.50 Vacuum Pumps, Compressors
from £1
from $£ 1$ from 50p from 50p rom 50p ps to

JUMBO BAGS OF MIXED COMPONENTS £5.00-100 ONLY!!

A. R. DAVIES (FACTORY CLEARANCE)

28 ST ALBANS ROAD, CODICOTE NR. OLD WELWYN, HERTS TEL: 0438832481
WW - 097 FOR FURTHER DETAILS

OHIO SCIENTIFIC Superboatrd 2. Ās Asembied
50 Hz model $£ 159.95+15 \%$ VAT, post tree
 Colourboard 2 (the new
2). $£ 205+15 \%$ VAT

- Speciel offer: If bought with Superboard o Colourboard these items are at the reduced price shown first. Also sold separately at the and power supply kit $£ 7.95$ ($£ 11$ 1). 4 K extra ram $£ 20($ (224$)$ Display expansion kit
$\times 100$
$\times 54$ characters approx., $£ 15(£ 20)$. - lines $\times 54$ characters approx., $£ 15$ ($£ 20$).
Case $£ 23$ ($£ 26$). Colour conversion board
fully assembled $£ 45$ ($£ 45$) - fully assembled $£ 45$ ($£ 45$). Cassette - recorder $£ 13$ ($£ 15$. Super Print 800 MST , simclainproducts. SINCLAIR PRODUCTS. New 10 MHz scope $£ 145$.
ptm200 $£ 51.95$, case $£ 2.07$, adaptor $£ 4.20$. ptm200 £51.95, case £2.07, adaptor $£ 4.20$. £6.88.pdm $35 £ 34.23$, adaptor $£ 4.20$, case $£ 2.07$. $\operatorname{dm} 350 £ 76.70$. dm450 £102.17, dm $235 £ 55.55$, rechargeable batts £8, adaptor £4.20, case $\mathbf{\text { c. }}$.
Enterprise prog. calculator + accessories $£ 19.85$. TG 105 £87. Bench frequency counter $£ 150$.
COMPUTER GAMES. Chess Champion $6 £ 48$. COMPUTER GAMES. Chess Champion $6 £ 49.95$. Chess Challenger 7 ¢75. New Sensory Chess
Challenger 8 £1b9. Atari Videocomputer $£ 129$, carridges $£ 14.35$.
COMPONEENTS. N 4148 0.9p. 1 N4002 3.1p.
741 18p. bc182, bc 184, bc 212, bc 1414 bc548

ع1.50. Dalo pen 84p. 40 sq ins pcb 45 p . Poly-

AUDIO CONNECTORS AUTUMN OFFERS

4. 5. and 6 pin versions and large selection Audio Adaptors available. Minimum order $£ 10$. Quantity discounts available.

> Trade Enquiries Welcome
> All prices subject to V.A.T. and Postage Call, write or phone

General Information:

Pocket dosimeters provide an accurate, reliabie and immediate method of measuring the integrated dose of radiation received by those exposed to ionising radiation. The dose may be read at any time and in any place, providing a source of light is available.

Principle:

The dosimeter is an ionisation chamber type using quartz fibre electroscope as the indicating element A microscope is used to project the image of the moving quartz fibre element on to a graticule scale. The quartz fibre is mounted on a wire electrode; which in turn is supported by a high quality insulator. When the instrument is charged, positive charges distribute themselves over the wire electrode and quartz fibr causing the fibre to bend away from the electill take une hbre will take up a posin. of charge on the system.
chamber is ionised negative ions will be attracted to the positively charged electrode thereby reducing its charge. The resulting fibre movement will be related directly to the quantity of radiation producing the ionisation. The fibre movement can thus be calibrated directly in roentgen units and the rate of movement of the fibre will be proportional to the joentgens received per unit time.

Construction:

The microscope, electroscope and ionisation chamber are housed in an outer skin which may be o brass or aluminium. At one end of the tubular case is fixed a charging assembly, and at ine older an eye-piece window. These wo assermetic seal Ea
slucent window so that the cap need not be removed for reading
Dosimeters meet vibration, drop, salt spray humidity, water immersion and temperature tests.

Features:

These units will read automatically the amount of radiation in the air

This instrument is only a little larger than a fountain pen

Clips on to your top pocket

- Weight less than 3 oz

Contains three lenses

Fully charged, tested and guaranteed. Refurbished by us

- British design and manufacture, rugged construction
- Manufacturer's list price of similar model is over $£ 25$
- Buy now whilst stocks available Delivery by return post

All unils are checked and tasted jus -prior to despatch by first-class, mail in proper protactivs packing.

VIEW
 THRU

LENS radiation and detactors.

TwO
FREE

Manufacturer's current list price similar model is over $\mathbf{£ 2}$

NEW FROM BARMECO

Introducing a new 3 -element H.F. Tribanda with proven performance and reliability
THE WORLD RANGER TRIBANDER

Designed, engineered and manufactured in the U.K. Use of high quality materials ensures high electrical stability under all weather conditions with exceptional mechanical rigidity and strength. All traps are high grade P.T.F.E. formers with insulated windings.

SPECIFICATION:

Frequency Impedance R.F. Power (max.)

VSWR (at resonance) Forward gain Front-to-back ratio Mast diameter Wind survival Turning radius Longest element Boom length Net weight
$10,15 \& 20$ metres
52 ohms
1 kW (AM)
2 kW (PEP)
Less than 2.0:1
Up to 8.0 dB
25 dB
31.75 mm to 41.30 mm

80 mph
$14^{\prime} .10^{\prime \prime}$
$26^{\prime} 0^{\prime \prime}$
$12^{\prime} 0^{\prime \prime}$
21 lbs .

Price: $£ 135.00$ complete with Balun, plus carriage @ $£ 3.50$. High quality 50 ohm coaxial cable available @ 50p per metre. Balun available separately@ $£ 12.50$ each. All items subject to current VAT

COMING SOON: A range of HF Monobanders and a 2 metre base station vertical

Orders to:
BARNET METAL \& CAR CO. LTD.
Tewin Road, Welwyn Garden City, Herts.
Telephone: Welwyn Garden 24327. Telex: 28125. Cable: BARMECO

There's a range of answers.

There's something every one of our scopes has in common. Great accuracy, tremendous reliability and keener pricing, plus free delivery on UK mainland

Take the new 4D-10B. The fully stabilised power supply gives 3\% accuracy. There's a full XY facility using CMOS IC'S for extra reliability, Z modulation for brightening or dimming the trace, 10 MHz scan at full bandwidth over the full screen area, trace locate and TV field trigger. At $£ 210.00^{*}$ it's astonishing value.

Or the 4D-25. A dual trace model with $\mathrm{DC}-25 \mathrm{MHz}$ bandwidth and $10 \mathrm{mV} / \mathrm{cm}$ sensitivity Signal delay allows you to trigger from and see the leading edge of any signal. Trigger level and slope are selected on one dual function control. 3\% accuracy and still only $£ 360.00^{*}$.

Plus the $4 S 6$ single beam 6 MHz bandwidth model with easy to use controls. 10 mV sensitivity and timebase range of 1 us to $100 \mathrm{~ms} / \mathrm{cm}$. Lightweight, compact and a very good price. $£ 144.00^{*}$.

Return the coupon for full details of the range that gives you a lot more scope.
*UK list price excluding VAT.

ROHDE \& SCHWARZ

TV Dermodulator. AMF, $55-90 \mathrm{MHz}$ Selective UHF V/Meter. Bands 4 \& 5 .
Selectomat Voltmeter USWV.
450 UHF Sig. Gen type SDR $0.3-1 \mathrm{GHz}$. $£ 750$. UHF Signal Generator SCH. $£ 175$.
XUD Decade Synthesizer \& Exciter. POLYSKOPS SWOB' I and 11 Modulator/Demodulator BN1 7950/2 UHF Sig. Gen. type SCR. 1-1.9GHz.

MARCONI

TF2360R TV Transmitter Sideband Analyser TM6936R UHF Converter for above TF1101 RC oscillators £65. TF 1041 B Valve Voltmeter $£ 65$. TF1152A/1. Power meter. $25 \mathrm{~W} .500 \mathrm{MHz}, \mathbf{E} 75$ TF1370A RC Oscillator £135. TF890A/1 RF Test Set. £395

U.H.F. SIGNAL GENERATORS

TF1066B / $2400-555 \mathrm{MHz}$. Deviation to 300 KHz .
TF1060/2 $450-1250 \mathrm{MHz}$
TF1058 1:6-4000MHz.

BECKMAN TURNS COUNTER DIALS

Miniature type (22 mm diam.). Counting up to 15 turn "Helipots." Brand new with mounting instructions. Only $\mathbf{£ 2} 50$ each.

KAY ELEMETRICS SONA-GRAPH

Sona-Graph model 7029 A. $5-16000 \mathrm{~Hz}$ Spectrum Analyser with type 6076C Plug-in unit. For the spectrogrphic Analysis of transient sounds such as speec, voice, doppler shifts, explosions etc. Supplied in excellent condition with handbooks.

AuVANCE CONSTANT VOLTAGE

 TRANSFORMERSInput 190-260V AC. Output constan 220 Volts. 250 W . £25. ($£ 2$ carriage)

LABORATORY OVENS. - Gallenkamp, 3 cu f. £145. Also Morgan Grundy 1 cu , ft. £55. 20-WAY JACK SOCKET STRIPS. 3 pole type with two normally closed contacts. $£ 2.50$ each (+25 ppp). Type 316 three pole plugs for above - 20p ea. (pp free)

P. F. RALFE ELECTRONICS

10 CHAPEL STREET, LONDON, NW1
TEL: 01-723 8753

AIRMEC 314 A Voltmeter. 300 mV (FSD) -300 V
LEVELL TG66A-1 Decade oscillator.
DERRITRON 1 KW Power Amplifier with control equipment for vibration testing etc.
HEWLETT-PACKARD 7123A pen recorder
HEWLETT-PACKARD tuned amp \& null detector
TF 2600 Voltmeter 1 mV - 300 V fsd
RADIOMETER Distortion Meter BKF6. £125.
EDDYSTONE VHF RECEIVERS AM /FM $70-90 \mathrm{MHz}$. £45

VACUUM/COMPRESSOR PUMPS

Bell \& Goslett type and Doeer. U.S.A. Models available in excellent condition at prices well below normal.

SOLARTRON LM 1420.2. DVM. 6 ranges to 1 KV. MUIRHEAD type K-134-A Wave Analyser. Portable. WAYNE KERR B521 Universal Bridge.
HEWLETT PACKARD 608C Signal generator. $10-480 \mathrm{MHz}$ WEINSHEL Power supply Modulator type MO3
BRUEL \& KJOER type 1504 Deviation Bridge
BRUEL \& KJOER Vibration equipment 1018
BRUEL \& KJOER Frequency analyser 2105

OSCILLOSCOPE SALE

SOLARTRON CD1400. D/Beam 15 MHz . £150.
SOLARTRON CD1740. D/Beam 50 MHz . E450.
ADVANCE OS250. D/Beam 10 MHz . £185. HEWLETT-PACKARD $1707 \mathrm{~A} .75 \mathrm{MHz} \mathbf{~} \mathbf{6 5 0}$
PHILIPS PM3226 D/B. 15 MHz . £325.
TELEQUIPMENT D53. D/Beam. £175.
TEKTRONIX $581 \mathrm{~A}, 545$ A \& B, $544,661,515 \mathrm{~A}$ SOLARTRON CD1220. £135. (+ VAT)
NOTICE. All the pre-owned equipment shown has been carefully tested in our workshop and reconditioned where necessary. It is sold in first-class operational condition and most items carry our three months guarantee. Caibration and cenificates can be arranged at cos
welcome. PLEASE ADD 15% KAT TO ALL PRICES.

DC POWER SUPPLIES

APT 10459/8. 12-14V. @ 5 Amps. £25. (£2 ${ }_{\text {\& APT }}^{\text {p.p.) }} 10459 / 8$. 24 V . @ 5 Amps. £25. (£2 p.p.) $$ We can supply the above power supply at an
fixed voltage between 5 V and 36 V at 5 A . $£ 25$ fixed voltage between 5 V and 36 V at 5 A . $£ 25$. *Mullard Dual supplies. Brand new with hand book. Pos \& Neg 12V. at 1A and 0.4A respec tively. Dimensions $9 \times 4 \times 5$ ins. $\mathbf{£ 1 0 . 0 0}+(\mathrm{E}$,
p.p.) p.p.) $7 \times 5 \times 4$ ins. Following types available. 5 Volts @ 3A. £15. 13-17 Volts@ 2A. £15. 27-32 Volts @1A £15. Plus $£ 1.50$ each postage. All the above power supply units are 230 V . AC input and are stabilised and regulated and kused. All are fully tested before despatch and guaranteed in first-class order throughout. As with all our equipment there is a meney-back guarantee if not completely satisfied.
\star OTHERS IN STOCK. PLEASE RING *

MODULATION METERS

AIRMEC $2103-300 \mathrm{MHz}$. AM $/$ FM

RADIOMETER AFM / $13.5-320 \mathrm{MHz}$. AM /FM RACAL 409 3-600MHz. AM/FM.

ROTRON INSTRUMENT

 CODLING FANS
Supplied in excellent condition, fully tested
 $115 \mathrm{~V} .4 .5 \times 4.5 \times 1 . \mathbf{5}^{\prime \prime} £ 4.50$. 230 V . е5. 35 p.

CT212 BF Signal Generators. $85 \mathrm{KHz}-32 \mathrm{MHz}$.

BELL \& HOWELL MICROFICHE VIEWERS
 Type SR5. Screen size $9 \times 5^{\prime \prime}$. New condition. $£ 75$.

DIGITAL MULTI-METERS

DE FOREST ELECTRONICS TYPE MM200 DC.V.0-1KV. AC.V.0-700. DC.I.0-1A. AC.I.O 1A. Each in 4 ranges. Resistance 0-19.99 Mohms. 5 ranges. LED Display-1999 BRAND NEW. SPECIAL REDUCED PRICE OF

Our new improved performance model of the Linsley Hood Cassette Recorder incorporates our VFL 910 vertical front mechanism and circuit modifications to increase dynamic range. Board layouts have been altered and improved but retain the outstandingly successful mother and daughter arrangement used on our Linsley Hood
Cassette Recorder 1 .

This latest version has the following extra features. Uitra low wow-and-flutter of . 09% easily meets DIN Hi-fi spec. Deck controls latch in rewind modes and do not have to be held. Full Auto stop on all modes. Tape counter with memory rewind. Oil damped cassette door. Latching record bution for level setting. Dual concentric input level controls. Phone ouput. Microphone input facility if required. Record interlock prevents re-recording on altrol for thermal stability generating feedback servo drive motor with built-in speed design of the Linsley-Hood. All these desirable and useful features added to the excellen new kit comparable with built-up units of much higher cost than the used makes thi AT we ask for the complete kit

LINSLEY-HOOD 30 WATT AMPLIFIER

The very latest amplifier design to be published and in our opinion the best yet. The concept was to produce an amplifier that sounded as good as the authors 75 watt design but which was cheaper and simple to build for applications where the higher power is not needed. This new kit is designed to match the Linsley-Hood Cassette Recorder 2 and a tuner will be available later to make a comple stackable system. A very advanced who can solder has beents in a printed circuit board will find it great fun. Conventional wiring is at an irreducible minimum, only being needed to connect the mains transformer and pilot light. For an amplifier of this quality this kit represents incredible value for money.
All parts can be bought separately at a total cost of $£ 79.12$ but complete kits are available at a special introductory discount price of only $£ 78+$ VAT

STUART TAPE CIRCUITS

(For reel-to-reel decks)
These circuits-are just the thing for converting that old valve tape deck into a useful transistorised recorder. Total system is a full three head recorder with separate record and replay sections for simultaneous off tape monitoring. We also stock the heads. This kit is well engineered but does not have the detailed instructions that we give with our more recent designs. We would not therefore recommend it to beginners. Reprints of the original three articles 45 p. Post free. No VAT

CASSETTE HEADS

HS 15 SENDUST ALLOY SUPER HEAD. Stereo R/P. Longer life than Permalloy. Higher output than Ferrite. Fantastic frequency response. Complete with data 7.60 HC2O Stereo Permalloy R/P head for replacement uses in car players, etc. ... $\mathbf{4 . 2 5}$ HM 90 Stereo R/P head for METAL tape. Complete with data
H561 Special Erase Head for METAL tape
524 Standard Ferrita Erase Head
4-Track R/P Head. Standard Mounting
R484 $2 / 2$ (Double Mono) R/P Head. Std. Mtg.
CCE/8M 2/2 Erase. Std. Mitg. ...
All prices plus VAT

VFL 910. Vertical front loading Super Hi-fi deck, as used in our new Linsley-Hood Cassette Recorder 2. $\mathbf{£ 1 1 . 9 9}+$ VAT. Set of knobs $£ 1.46+$ VAT

Order up to $\mathrm{E} 10-50 \mathrm{p}$
Orders £10 to £49- $£ 1$ P\&P
Over $£ 50-£ 1.50$
Export Orders - Postage or shipping at cost plus $£ 2$ Documentation and Handling
Please send 9×4 SAE for lists giving fuller details and price breakdowns Instant easy ordering, telephone your requirements and credit card number to us on
Oswestry (0691) 2894

Personal callers are always welcome
but please note we are closed all day Saturday

Teephone enquiries for valves. transis

PRICES MAY VARY TELUROMETER MAA3 DISTANCE MEASURERS LOW RESISTANCE NEABPHONES TYPE CLB E1.50. 40p pasiap. VAT 15\%. hioh vacuum variable capacitors - ceramic envelopes - UC $1000 \mathrm{~A} / 20 / 150=$ VMMHC $\$ 00060-1000 \mu \mathrm{~F} .20 \mathrm{kv}-150 \mathrm{~A}$ RF max $=27 \mathrm{MHz}$ TEST SET FT2 for testing Transceivers A40, A41, A42 and CPRC26. UMIVERSAL. WIRELESS TRAINING SET No 1 Mk 2 YA 3316 to train 32 operators simultaneously on key and phone. Complete installation consists of 3 kirs packed in 3 special ransit cases. HARNE 53 " A " " "B" CONTROL UNITS "A" "R" " 11 " " ${ }^{\prime 12, " .}$ Microphones No 5, 6, 7 connectors, frames, carrier sets etc ORUM CABLE continuous connection YC 00433.
telurometer mana distance measurers LOW RESISTAMCE NEADPHONES TYPE CLB E1.50. 4Dp paslay. VAT 15\%. HIOK VACUUM VARIABLE CAPACITORS - cer amic envelopes - UC 1000A/20/150=VMMHC $\$ 00060-1000 \mu \mathrm{~F}, 20 \mathrm{kv}-150 \mathrm{~A}$ RF $\max =27 \mathrm{MHz}$ TEST \$ET FT2 for testing Transceivers A40, A41, A42 and CPRC26. UNIVEASAL. WIRELESS TRAINING SET No 1 Mk 2 Ya 3316 to train 32 operators simultaneously on key and phone. Complete installation consists of 3 kits packed in 3 special transit cases. HARNESS "A" 害 "Br' CONTROL UNIT5 "A" "R' " 11 " " $\$ 2$,". Microphones No 5. 6, 7 connectors, frames, carrier sets etc. ORUM CABLE continuous connection YC 00433.

INTEGRATED CIRCUITS

 $\begin{array}{llll}\text { SN5470F } & 0.46 & \text { SN74L85N } & 1.10 \mathrm{MC14511} \\ \text { SN54196, } & 1.20 & \text { SN7491AN } & 0.3281702 \mathrm{Al}\end{array}$ $\begin{array}{llll}\text { SN7407N } & 0.29 & \text { SN 74912N } & 0.3281702 \mathrm{AL} \\ \text { SN }\end{array}$ SN7408N . 0.16 OM74123N 0.36 MCM6810 $\begin{array}{lllll} \\ \text { SN7445P } & 0.65 & \text { SN15836N } & 0.36 & \text { MCM681 } \\ \text { O }\end{array}$
 36° AERIAL MASTS consisting of 6 sections $6^{\circ} 8^{\prime \prime} \times$
$21 / 4^{\prime \prime}$ dia. Complete with an accessories to erect and nstallard C11 Hith power instail 1000W Thigh power installation, 1000W. Technical details and prices available on request. For export only.
SPARES FOR A R88-O. Ask for list
POSTAGE: £1-£3 30p; £3-£5 40p; £5-£10 45p; £10-£15 60p; over £15 free.

Tel. 01-743 0899 Open Monday to Friday

9 a.m.-5.30 p.m.

SALE OF THE CENTURY at EMI Studios/Abbey Road OCTOBER 15th \& 16th

This once in a lifetime sale of used professional recording equipment - at realistic prices --includes:-Mixing consoles-multitrack recorders \mathcal{E} astering \mathcal{E} dubbing machines - monitoring,
duplication, test and ancillary equipment microphones, stands, noise reduction. disc cutting lathes, screens and studio sundries. and a Jumble Sale. Memorabilia includes:

* Studer J37 4-track used by

The Beatles on Sergeant Pepper * Limiter compressor used by the legendary Joe Meek on Teistar * Mellotron tape organ used by The Beatles with many of the original tapes Plus tapes, videocassettes and much much more. This will never happen againSO BE THERE!

Sale Time 10 a.m. to 9 p.m. Wednesday and Thursday.

More information from:
Jackson Music' Limited, The Studios. Rickmansworth. Hertfordshire. Tel: Rickmansworih 109237,72351 Telex: 262284 Ambsdr G

WW - 091 FOR FURTHER DETAILS

METALFILM RESISTORS 1\% Tolerance, $1 / 4$ Watt ONLY 3P EACH Minimum order £5 Minimum 5 pos pervalue 89 Values (E24)				
ORION SCIENTIFIC PRODUCTS LTD. 10 Wardour St., London W1				

Electronic Brokers No. 1 in Europe

 for Second User Test Equipment

 for Second User Test Equipment
 HAVE MOVED
 to extensive new premises

Widest range of state-of-the-art equipment in Europe Latest in-house calibration techniques Even greater cost effectiveness

Electronic Brokers Limited 61/65 Kings Cross Road London WCIX 9LN England Telephone 01-278 3461 Telex 298694 Elebro G Telegrams Selelectro London WCl

AC/DC Differential Voltmeter 883AB
HEWLETT PACKARD
Log Voltmeter/Amplifier 7563A
MARCONI INSTRUMENTS
A.C. Voltmeter 400EL

Valve Voltmeter TF 2600
Valve Voltmeter TF 2604
R.F. Millivoltmeter TF 2603 PHILIPS
A.C. Millivoltmeter PM2454B

ANALYSERS

BIOMATION

Logic Analyser 1650D
GENERAL RADIO
Vibration Analyser 1911A
HEWLETT PACKARD
Spectrum Analyser 141T c/w 855'zA \& 8554L
Logic Analyser 1600A
Logic Analyser 1600A £1350
Network Analyser System 8407A + 841 2A c/w
$8600 A+8601$ A Sweep Marker Generator
$100 \mathrm{KHz}-110 \mathrm{MHz}$ range.
Swept Amplitude Analyser 182T + 8755A
$15 \mathrm{MHz}-18 \mathrm{GHz}$.
BRIDGES
£3500

BOONTON

VHF 'Q' Meter 280AP
($210-610 \mathrm{MHz}$) £650 Inductance Bridge 63H $\quad £ 2750$ GENERAL RADIO
Immitance Bridge 1607A £750 ,LCR Bridge (0.05%) 1608A £ 1195 'MARCONI INSTRUMENTS Universal Bridge TF 1313 £325
'Q' meter TF1 $245 \mathrm{c} / \mathrm{w}$ TF 1246 and TF 1247

RHODE AND SCHWARZ

Inductance Meter LRT $£ 950$

Capacitance Meter KR
£475
KRT
£475
A.C. Testamatic A60
$£ 900$
Universal Bridge B221 (0.1\%)

D.V.M.SAND D.M.M.S
 \section*{DATRON}

$51 / 2$ digit D.V.M. 1051
$£ 995$

FLUKE

$31 / 2$ digit D.M.M. 8020A £99
5½ digit D.M.M. 8800A
$£ 599$
$51 / 2$ digit D.M.M. 8800A-01
$51 / 2$ digit D.V.M. 8300A
PHILIPS
Autoranging D.M.M. PM 2514 4 digit D.M.M. PM 2524
Autoranging D.M.M. PM 2527
SCHLUMBERGER
$51 / 2$ digit D.M.M. A243
Microprocessor D.M.M. 7065
As above with processor option
Microprocessor D.M.M. 7055
As above with processor option £1150

FREQUENCY COUNTERS

- ADVANCE

500 MHz Counter TC 15 \& TC 15 P1. £495
FLUKE
250 MHz Multifunction Counter $1911 \mathrm{~A}-01$
£325
500 MHz Multifunction Counter 1912A $\quad \mathbf{£ 3 9 5}$ 125 MHz Multifunction Counter 1925A £350

TEKTRONIX 465B PORTABLE OSCILLOSCOPE
100 MHz Dual Trace Delayed and
Mixed Sweep Trigger View supplied with all Standard Accessories +
1 YEAR WARRANTY OUR AMAZING PRICE

£1395

Tektronix July 1980
New List Price E 1528

HEWLETT PACKARD 34904 DMM
$51 / 2$ digit. $A C / D C$ volts. $1 \mu v$ resolution on $D C$. Autoranging. Variable display time. Resistance down to $1 \mathrm{~m} \Omega$
UNBELIEVABLY LOW PRICE

E375
Manufacturer's price
over:1500 30 day warranty

MARCONI INSTS. TF1370A R.C. OSCILLATOR
$10 \mathrm{HZ}-10 \mathrm{MHz}+s q$. wave to 100 KHz . 1 mV to 3.16 V at $75,100,130$, or 600 O

E= = 49/53 Pancras Road London NW12QB Tel:01~837 7781. Telex 298694

Unless otherwise stated all equipment offered in the Electronic Brokers advertisement is refurbished and in the case of Test Equipment also calibrated. Test equipment is guaranteed for 12 months; computer peripherals for $\mathbf{3}$ months.

410075 MHz Portable Dual Trace, Delayed Sweep. 30-day warranty

HEWLETT PACKARD

Only £450
75 MHz Dual Trace 1707A
£600
High Sensitivity Single Trace 130C £250 1707 B 75 MHz Portable Dual Trace, Delayed Sweep, 30-day warranty Only E650 MARCONI INSTRUMENTS
X-Y Display TF $2213 / 1 \mathrm{c} / \mathrm{w}$ Memory Unit TK 2214
£790

PHILIPS

£625
PM 3260 E 120MHz Portable Dual Trace, De-

layed Sweep.

1 Only £975

S.E.LABS

6 Channel Monitor SM 121
$£ 395$
TEKTRONIX
465100 MHz . Spec. similar to 465 B but no alternate sweep. £1195
35 MHz Dual Trace T 932 £550
W. Diff. Plug in £295

1 A6 Plug In
TELEQUIPMENT.
D75 50MHz Portable Dual Trace, Delayed Sweep.

2 Only £715

RECORDERS

BRYANS SOUTHERN.

4000012 channel UV Recorder plus 2 Off 40501 galvo amps. 6" chart width. Grid and timing lines. Superb condifion.
$£ 950$
PHILIPS
Single Channel Recorder PM:8110 £195 RACAL
Store 4 FM Tape Recorder, 4 tracks DC-20KHz, 7 speeds.
£1950

S.E. LABS.

300612 channel UV Recorder. 6" chart width. Grid and timing lines $£ 550$ 601250 channel UV Recorder $12^{\prime \prime}$ chart width. Servo paper drive up to $5 \mathrm{Mtr} / \mathrm{Sec}$. Two event markers, Trace identification

WATANABE
 1 Only. £1100
 6 Channel Chart Recorder MC $641 \quad £ 2250$
 YOKOGAWA
 Chart Recorder 3047
 £450

SIGNAL SOURCES

HEWLETT PACKARD

Variable Phase, Sine and Signal Generator 203A
Oscillator $10 \mathrm{~Hz}-10 \mathrm{MHz} 651 \mathrm{~B}$
£495
V.H.F. Oscillator 3200B
£400
Decade Oscillator 4204A
750
U.H.F. Signal Generator 612A

850
V.H.F. Signal Generator 608 F
$£ 850$
Phase Lock Synchroniser 8709A
475
RF Sweeper/Marker Generator 8600A + $8601 \mathrm{~A}, 100 \mathrm{KHz}-110 \mathrm{MHz} .5$ marker frequencies.
$£ 1500$

A.M. Signal Generator. TF801D/8S L.F. Oscillator TF $2102 / 1 \mathrm{M} 1$ U.H.F. Signal Generator TF1060/3 Two Tone Source TF 2005R 5R H.F. Generator TF 144H/4
$£ 550$
£195
G2006 E2600 £650 Carrier Frequency Level Test Set TF2002B AM / FM Signal Generator. 10 KHz 82 MHz .

1 Only £1200
TF2361 c/w TM9692 Video Sweep Generator $25 \mathrm{KHz}-30 \mathrm{MHz}$. Sweep rate 0.01 to 100 Hz . TV Field locks on 405-505-625 lines. £750 PHILIPS
Function Generator PM $5108 \quad £ 250$
Function Generator PM 5127 £395
Function Generator PM 5167

TELONIC

R.F. Sweeper $2003 \mathrm{c} / \mathrm{w} 3302,3331$
$3341,3351,3360,3370(1-300 \mathrm{MHz}) £ 1150$

MISCELLANEOUS

ADVANCE

Off Air Frequency Standard OFS 2B
AVO
Valve Tester VCM 163
BRADLEY
AC Calibrator 125 B .
DC Calibrator 126 B
156 Oscilloscope Calibrator.
BRUEL KJAER
Sound Level meter 2203 \& Microphone 4145
DATALABS
Power Line Disturbance Monitor DL019
FLUKE
DC Differential Voltmeter 895A
332A DC Voltage Calibrator 0.003%
tion Accuracy 1 PPm resolution.
tion Accuracy 0.1 PPm resolution.
GENERAL RADIO
Sound Level Meter 1933
Cassette Recorder 1935
Recording Sound and Vibration Analyser 1

HEWLETT PACKARD

DC Microvolt-ammeter 425A
AC /DC Differential Voltmeter 741 B
Vector Impedance Meter 4815 A
S Parameter Test Set. 8745A
Insulation Resistance Meter 4329A
MARCONI
M.F. Attenuator TF 2162
A.F. Power Meter TF 893A

Transmission Test Set TF 2332
Transmission Test Set TF 2333
P.C.M. Regenerator Test Set OA 2805A
P.C.M. Multiplex Tester TF 2807A

RHODE AND SCHWARZ
Stereocoder MSC
S.E.I.

Super 50 Selectest
SIEMENS
Carrier-Freq. L.M.S. D2021/W2021/G2021
$10 \mathrm{KHz}-25 \mathrm{MHz}$
£295 W2007 + D $2007,6 \mathrm{KHz}-18.6 \mathrm{MHz}$ Set $£ 750$
$£ 500$
£1700
TEKTRONIX $\quad \mathbf{~} 2007$ - $2007,6 \mathrm{~Hz}-18.6 \mathrm{MHz}$. $\mathbf{1 7 5 0}$
Pulse Generator $2101 \quad £ 420$
TM515 Main Frame c/w FG504 0.001 Hz 40 MHz function generator. 2 Off PS503A Triple Power Supplies. $£ 1250$
TM515 Main Frame c/w SC502 15 MHz
Oscilloscope. FG $5031.0 \mathrm{~Hz}-3 \mathrm{MHz}$ Function
Generator. DM502 31/2 digit DMM. DC503
100 MHz Counter. $\quad \mathrm{E} 1495$
TEXSCAN
Sweep Generator VS 40 £650
WANDEL \& GOLTERMAN £650
Andimat (2 MHz system) VAVETEK
Sweep Generator $135 \quad £ 275$
Programmable Phase Meter $755 \quad £ 550$
E150. POWVR SUPPLIES
ADVANCE
PMA47.0-15V@3A (Presetable). £37
PMA 50.0-15V @ 5A (Presetable).
PMA 53.0-15V@10A (Presetable). £65
MG5-605V@60A (Switching). £160
MG5-205V@20A (Switching). \quad £120
MG5-105V@10A (Switching). £95
MG24-1224V@12A (Switching). £130
MG24-524V@5A. (Switching). E95

Only 9 months old SP3 - 200A Infrared Spectrophotometer.
Pye Unicam. Ratio Recording Type. Still under warranty. Current List Price $£ 5150$.

> ONLY £3950

Also available 15 ton hydraulic Press with Safety
$£ 850$ Guard S.
£77 ONLY SMALL SELECTION OF OUR VAST STOCKS SHOWN HERE

12-MONTH WARRANTY

All Second User Test Equipment is fully guaranteed for 12 months unless otherwise stated.

MARCONI INSTRUMENTS

A.F. Oscillator TF $2000 \quad \mathbf{£ 3 2 5}$

A.F. Oscillator TF $2100 \quad £ 150$

ASR 33 Teletype
input/ Output termanal incorporating paperrape punch and reader 64 ASCIf upper zase character set, 170 baud aperation, even party keyboard,
tinterface iCl-tyoe keyboard E 50.00 , Bith tevel marking $\mathbf{5 2 5} .00$, remote reader control $\mathbf{E} 50.00$, reader slep $\mathbf{£ 2 0 . 0 0}$, Auto rodder $£ 25.00$, pedestal $£ 30.00$

PDP11/04 Processor
10 :h chassis $16 K W M O S$ OL $11 \mathrm{~W} K Y 11$ - BRANO NEW E4,500.00 (can bee entanced to 28 KW

DEC EQUIPMENT

DD11-CK 4-slot backplane (11/34)
£175.00
H775-CB Battery Back-up KA8E Positive $1 / 0$ (8 E) £525.00 KD8E Databreak (8E) £95.00 £145.00 KL8JA Asynchronous $1 / 0$ (8E) $\quad \mathbf{2 7 5 . 0 0}$ KL8E Asynchronous $1 / 0$ (8E) $\mathbf{£ 2 5 0 . 0 0}$ KP8E Power Fail (8E) LA 11 -PD 180 cps matrix printer $£ 1250.00$ M7850 Parity Controllers ... $£ 185.00$ MF11L 8KW Core including 9 -slot system unit £975.00 MM11LP 8KW Parity Core .. $\mathbf{£ 7 5 0 . 0 0}$ MM11YP 32 KW Core Memory $£ 1750.00$ MSV11C 16KW MOS Memary (LSI11) £495.00
MS11JP 16KW MOS Memory £895.00 PDP11/34 Processor, $101 / 2^{\prime \prime}$ Chassis, 128KW Mos, DL1 1W, KY11B£6950.00 PDP11/40 Processor with 32 KW parity core, KT11D Memory Management,
DL11 Interface 6ft. cabinet $£ 4950.00$ PR11 High Speed reader and control
£925.00
REV11 Bootstrap (LS|11)
$£ 75.00$ RK05F Add-on disk drive ... £2250.00 VT55-FB Graphics Terminal with integral hard copy £1350.00 PDP8E Series modules-large stocks of option modules, add-on core, CPU boards etc, all at reduced prices

CENTRONICS 101A

Heavy duty Matrix Printer with 64 ASCII upper case character set, 165 cps operation. 132 print positions with adjustable tractor fead, 7×9 dot matrix, parallet input. c750.00.

NEW ASCII KEYBOARDS NEW LOW PRICES

KB 771 Superb 71 -station ASCII Keyboard incorporating separate numeric / cursor control pad and instalied in custom-built steel enclosure with textured blue enamel finish. Ideal for the VDU builder. Case dimensions $171 / 4^{\prime \prime} \times 71 / 2^{\prime \prime} \times 356^{\prime \prime}$. Total weight 4 kg . PRICE £89.50
(mail order total £108.10)

Mail Order
Total KB756 56-station ASCII Keyboard mounted on P.C.B. P.C.B KB756MF As above, fitted with metal mounting frame for extra rigidity $\quad £ 49.50$ £58.65
$K B 710$ 10-key numeric pad, supplied with KB710 10 -key numeric pad, supplied with
connecting cable £8.00 $£ 9.78$ connecting cable . .
KB701 Plastic enclosure for KB 756 or KB701 Plastic enclosure for KB 756 or
KB756MF $£ 2.50$ £15.24 KB702 Steel enclosure for KB756 or KB 756 MF £18.00 £23.00 KB2376 Spare ROM Encoder£12.50 £15.24 KB15P Edge connector for KB756 or KB 756 MF £3.25 £4.31 DC-512 DC convertor to allow operation at 5 V only (plugs in to P.C.B.) £9.20 DB25S Mating connector for KB771
£4.25 £5.46 PERK 56-station ASCII Keyboard for PET Com plete with PET interface, built-in power supply and steel enclosure $£ 145.00 £ 172.50$ Discounts available for quantities

MISCELLANEDUS

BALL MIRATEL $9^{\prime \prime}$ Monitor with case including space for keyboard. Integral power supplies included. Requires separate horizontal and vertical video input $\mathbf{9 5 . 0 0}$ CLARE KEYBOARD SWITCHES. Special purchase of top quality Clare SF-type reed switches. BRAND NEW SURPLUS $\mathbf{£ 2 5 p}$ each DATA GENERAL model 1210 CPU with 4 K core $£ 795.00$
DIGITRONICS P135 paper tape punches 35 cps . Solenoid device with 27VDC coil . . $£ 95.00$ EMI MONITOR $15^{\prime \prime}$ dia. tube, integral power supplies. Accepts composite or separate vidfo input. BRAND NEW SURPLUS . . $\mathbf{£ 1 0 0 . 0 0}$
FACIT 4070 Paper Tape Punch ... £675.00
GE TERMINET 1200 RO Printer, 80 columns, tractor feed, upper/lower case ASCII, 20 mA Interface
£495.00
HAZELTINE THERMAL PRINTER 80-column 30 cps silent RO printer with parallel TTL input £395.00
SHUGART SA400 Mini-floppy disc driveBRAND NEW
£195.00
SHUGART SA800 8"' Floppy disc driveBRAND NEW
£395:00
TALLY 1602 MATRIX PRINTER Parallel Input Upper/Lower case. Tractor feed, as new
£995.00
TERMIPRINTER 7075 RO Impact Printer Upper/Lower case. Pin feed, RS232
£395:00
TEXAS 725 Portable Terminal with acoustic coupler
£625.00
TEXAS 733 ASR Terminal $\mathbf{1 3 7 5 . 0 0}$

ELECTRONIC BROKERSLTD

 VDU PRICESSTHATTERED
延1999

Hazeltine H-1000

The low, low priced teletypewriter-compatible video display terminal, offering your choice of transmission speeds up to 9600 baud as well as parity generation and checking.
Specification
SCREEN SIZE - $12^{\prime \prime}$ diagonal
SCREEN CAPACITY - 960 characters; 80 per line x 12 lines.
CHARACTERS -5×7 Dot Matrix; 625-line raster.
CHARACTER SET - 64 ASCII alphanumerics and symbols.
KEYBOARD - TTY format.
INDICATORS - Power On. Parity Error
PARITY - Parity error indicated by Parity Light and question mark (?) displayed in character position
TRANSMISSION - Asynchronous. Switchselectable for any two standard rates up to 9600 baud.
OPERATING MODĖS - Full / Half Duplex.
MEMORY - High Speed MOS refresh.
STANDARD INTERFACE - CCITT V-24 (EIA RS-232 B/C).
REFRESH RATE - 50 fields per second
When ordering please specify your choice of switch-selectable baud rates.

Standard: - Either A) 110/300 baud or B) $300 / 1200$ baud Optional: A combination of any 2 of the following transmission speeds can be provided at a surcharge of $£ 25.00$.
$75,110,150,200,300,600,900,1200$. 1800, 2400, 4800, 9600, (N.B.: 900/1800 not compatible with $110 / 200$ respectively).

Hazeltine H-2000

The world's largest-selling teletype writer-compatible video display terminal. The Hazeltine 2000 sets the standard in features, performance, reliability and value in an ever-expanding list of applications in Universities, Hospitals، Business, Finance and Government
Features include *Switch-selectable transmission rates to 9600 baud \star Three switch-selectable operating modes - full duplex, half-duplex or batch \star Direct cursor addressability \star Dual-intensity video \star Tabulation \star Powerful editing capability \star Remote \star Tabuiation \star Powerful editing capability \star Remote compatible $\begin{gathered}\text { Parity select } \# \text { Large screen capacity } \star \text {. }\end{gathered}$ Clear 5 \& 7 matrix character image \star Full remote command set \star Format capability \star Standard peripheral interfaces.

Specification

SCREEN - 12" diagonal. 1998 characters: 74 per line $\times 27$ lines.
CHARACTERS -5×7 Dot Matrix; 625 linès rạster CHARACTER SET - 64 alphanumerics and symbols. 32 ASCII control codes.
KEYBOARD - Detachable, solid state. TTY design. 10-key numeric cluster plus editing and cursor control keys
TRANSMISSION - Asychronous
Switch-selectable, for combinations of 5 standard rates, 110 to 9600 baud.
OPERATING MODES - Switch-selectable, full duplex, half-duplex or batch.
MEMORY TYPE - 2048×8 RAM
EDITING FEATURES - Full Cursor Controls plus Insert/Delete Character, insert/Delete Line, Clear Screen. Clear Foreground Data Only, Tab. STANDARD INTERFACE - CC ITT V- 24 (EIA STANDARD
REMOTE COMMANDS - Insert/delete Line, Clear Screen, Clear Foreground Data Only. Home Cursor, Address Cursor, Set Background intensity. Set Foreground Intensity, Carriage Return, Backspace. Ring Bell, Transmit, Print. AUXILIARY OUTPUT - Standard printer

Hazeltine MODULAR ONE

The Hazeltine Modular One terminal offers the full range of terminal performances - from simple teletypewriter compatibility to enhanced editing and polling capabilities.
The Modular one is supplied in two different versions. The BASIC MODEL provides the following features: $\star 1,920$ character display $(80 \times 24) \star 12$-inch bonded \star Incremental and absolute cursor positioning. \star Dual video intensity * 11 -key numeric pad \star Movable keyboard \star Choice of 8 transmission rates up to 9600 baud \star Communication interfaces: EIA RS-232 and current loop \star Choice of block or blinking underscore cursor \star Choice of white-on-black or black-on-white display representation.

Optional:

Lower Case
$£ 35.00$
Printer Port (parallel)
£70.00
Printer Port (serial)
EIA Data Cable
Remote Edit
Current Loop Interface
£70.00
£15.00
P.O.A

Synchronous Interface
External Baud \& Parity
Switch
Also available: EDIT MODEL
POLLING MODEL
P.OA
P.O.A
£695
P.O.A.
$=-=49 / 53$ Pancras Road London NW120B Tel: 01-837 7781. Telex 298694

Godeseesd Isctronios

P.O. BOX 23, 34 SEAFIELD ROAD, COPNOR, PORTSMOUTH HANTS; PO3 5BL

SOUND EFFECTS PCB, brand new, made for spaceman robot toy. Gives 5 spaceman sounds with flashing LEDs (speaker not supplied). Entertain the kids for only 85 p . FLUORESCENT RENECT guarentees E2.50 each ALARM CLOCK CHIP MM5316 digital alarm clock IC. With data £2.35 ea. GIANT LED CLOCK DISP LAY, non-multiplexed, common cathode display panel: With data. E3.95 each WRISTWATCH LED DISPLAY, tiny, bright displays for LED watches. Note display is housed in 'legless flatpack package and requires fairly fine soldering. Supplied with data $95 p$ each or 2 for $£ 1.50$. DIGITAL MULTIMETER CHIP 10 build an Auto-polarity, ${ }^{4} 1 / 2$ digin
multimeter (requires additional circuitry). With data sheet $£ 3.55$. B-DIGIT CALCULATO DISPLAY, common cathode, multiplexed, 0.1" digits With dara, 99p each. PLASTIC POLARIZiNG FILTER, $0.006^{\prime \prime}$ thick plastic film Any size cut from 1 square inch up to a maximum size of 19 inches $\times 250$ feet Oniy 3 p per square inch. SUP ER QUALITY JACK SOCKETS, gol excellent value, 2 tor $99 p$. LM555 TIMER I.C., suitable for most timer applications and is supplied with applications booklet. 25p each. CALCULATOR CHIP NORTEC A204, tour function and constanh. With data and diagram, BOp each. PUSH-BUTTON SWITCHES, with 1 n.o. contsc (momentary action). With red bution, 15p each. MINIATURE SLIDER SWITCHES, with 2 pois REJECT LED CALCULATORS, some reparable but excellent yslue for spares. Yields lots of parts, $£ 2.50$ ea. LIQUID CRYSTAL CLOCK DISPLAY, nice style display gives black digits on grey background, could also be used for freq. meter, dums, etc. With data EE. 25 . PROFESSIONAL
OUALITY, CONTROL KNOBS, rotary knobs, satin finish, black nyion knobs to fit standard $1 / 4 / 4 \mathrm{D}$ shaped shatts. Coloured snap-in caps also have position indicator line. Cap colours available black white grey. red, green, blue and yellow. Knob and coloured cap 20p (stave cap colour required Skirtad rotary knobss. As above but has "flared" nut cover around base of knob, 27p each. (State cap colour required). Slider conroi knobs fits 5 mm or 8 mm shat18. Available In black, white, grey,
red. green, blue and yellow, 14p each (state colour required). QUALITY REED SWITCHES, tiny but sensitive reed switches, ideal for burglar alarms, etc. Only 39p each. RECTANGULAR BAR MAGNETS, small but powerful. Purchased for use with above reed switches, $59 p$ each. REED RELAYS $12 v$ d.c. coil. One n.o. contact. Small anough for PCB mounting, 79p each. POWER
RELAYS $12 v$ d.c. coil. Two change-over contacts, each rated at 10 amps Contacts solid siver to high reliability. Only $\mathbf{£ 2 . 5 5}$ esch. Aelay bases for above relays are 35p each. TRANSISTOR RADIO IIF. TRANSFORMERB, all brand new. May include several types. Ten transformers tor
55p. NYLON CABLE TIES 25 for 35 p tios are $4^{\prime \prime}$ I ong. SHRINK TUBE available in 3 bore sizes. 55p. NYLON CABLE TIES 25 for 35p tites are $4^{\prime \prime}$ longl. SHRINK TUBE available in 3 bore sizes
Shrinks by approx. 50% when heated 2.4 mm bore 15p per metre 4.8 mm bore 16 p per merre Sirtiks by apero. 50% when heated. 2.4 mm bore 15 p per metre 4.8 mm bore 16 p per metre,
12.7 mm bore 23 p per metre. TEN UNTE STED LED DISPLAYS. Gambler? - try these. Ten 0.1^{\prime} common cathode displays for 99 p . You to test.

SÁtisfaction guaranted on all items or full cash refunded NEW CATALO GUE (NO. 8) NOW AVAILABLE-JUST SEND MEDIUM.SIZED S.A.E. POST AND PACKING PLEASE ADD 40p (OVERSEAS ORDERS ADD £1

Special Offer

 JUMPERLEADS14 \& 16 way:
Grey Cable with red trace
Single ended $40^{\prime \prime}$ long overall.
Double ended $4^{\prime \prime}$ \& $6^{\prime \prime}$ long between connectors
STYLES DOUBLE ENDED
(STATE YOUR PREFERENCE)
Ex stocik delluery £1.25 per cable wroment DISCOUNTS OFFERED FOR LARGE QUANTITIES F.C.Lane Electronics Ltd.

Slinfold Lodge, Horsham West Sussex RH13 7RN Tel: Slinfold 790661
Telex 87530
TYLE B
V.A.T. order Incluoling post and packino

Stand for President with

Bribe your way to the world's most powerful position - President of the United States - in this month's cynically realistic computer game. Also in October PRACTICAL COMPUTING:

- An interview with Neil McFarlane, MP, on the applications of microcomputing in education.
- Micros advise gardeners at Syon Park.
- How Winchester discs store a million words of text in a shoe box If you are one of the growing number of businessmen, teachers, engineers, scientists, and professional people with access to a microcomputer, you'll want to get the most out of it. PRACTICAL COMPUTING helps you to do just that with practical down-to-earth advice designed to enable you to make more effective use of your micro.
At your newsageńt or post this coupon now. To: Marketing Services Department, Room 626A, IPC Electrical Electronic Press Ltd, Dorset House, Stamford Street, London SE1 9LU. Please post me a copy of Practical Computing every month for a year. I enclose cheque/P.O. for £8 U.K./£14 overseas (incl.) payable to IPC Business Press L.td.

Name

Address..

A COWPIIER WVREHIISE Nown 9.30-5.30 SCOOP PRINTER PURCHASE SO LOW EVEN OUR COMPETITORS GASP!

 \section*{PROFESSIONAL EQUIPMENT AT HOBBYIST PRICES}

 \section*{PROFESSIONAL EQUIPMENT AT HOBBYIST PRICES}}

TELETYPE ASR33
 I/O TERMINALS
 ICL TERMIPRINTER 300 BAUD TERMINALS

$£ 325+$ CAR
$\mathfrak{f} \mathbf{2 3 5 + \text { CAR }}+$
Fully fledged industry standard ASR33 data terminal. Many features including: ASCII keyboard and printer for data 1/O, auto data detect circuitry, RS232 serial interface, 110 baud, 8 bit paper tape punch and ready for off line data preparation and ridiculously cheap and reliable data storage. Supplied in good condition and in working order Options: Floor stand $\mathbf{F 1 2 . 5 0}+\mathrm{VAT}$ Sound proof enclosure $\mathbf{F 2 5} .00$ + VAT

THE CHIPS ARE DOWN

MOSTEK, INTEL, NEC, MOTOROLA IC. PRICES SLASHED!
A massive purchase of brand new "state of the art" data processing equipment enables us to offer the following chips at never, and we mean never to be repeated prices.

8085A

256
256×8 Static Ram
8253C Programmable Interval Timer 8255A Programmable Peripheral Interface 8259A-8 Programmable Interrupt Control MC6850 $2 \mathrm{~K} \times 8$ Eprom $161 / 0$ Lines
MPCC Comms. Controller Static 650 ns Rams 8 for 256×8 Eprom
21021 K
256×4 Static Ram 450 ns

501L-1 $\quad 256 \times 4$ Static Ram 450 ns
And Remember All Chip Prices Inctude V.A.T.
al abowe l.Cs are brand new or removad from new unused socketed
P.C.B.'s. Eproms supplied washed.

All full spec. and guaranteed

SEMICONDUCTOR GRAB BAGS

Amazing value mixed samiconductors, include

 transistors, digital, linear I.C. 's, triacs, diodes, bridge recs. etc. etc. All devices guaranteed brand now, full $50+$ BAG £2.95 $100+$ BAGS £5. 15
MUFFIN FANS

Keep your equipment cool and Reliable with ous tested ex-equipment "Mulfin Fans" almost silent running and easily mounted. Availsble in
 65p DIMENSIONS 43" $\times 4^{3} \times$

ELECTRONIC
 COMPONENTS

\& EQUIPMENT

Due to our massive bulk purchasing programme which enables us to bring you the best possible bargains, we have thousands of I.C.'s. Transistors, Relays, Cap 's, P.C.B. s. Sub-assemblies, Switches, etc. etc. surplus to our requirements. Because w don't have sufficient stocks of any one item to include in our ads., we are packing all these items
into the "BARGAIN PARCEL OF A LIFETIME" into the "BARGAIN PARCEL OF A LIFETIME" Thousands of components at giveaway prices1
Guaranteed to be worth at least 3 times what yo pay plus we always include something from our ads. for unbeatable value!! Sold by weight
$2.5 \mathrm{k} \mathrm{ls} £ 4.75+\mathrm{pp} £ 1.25 \quad 5 \mathrm{k} \mathrm{ls} £ 6.75+\mathrm{pp} £ 1.8 \mathrm{f}$ $10 \mathrm{kls} £ 11.75+\mathrm{pp} £ 2.25 \quad 20 \mathrm{kls} £ 19.99+\mathrm{pp} £ 4.75$

[^9]BARGAINS GALORE! In our walk round Warehouse
NOW open Monday to Saturday 9.30-5.30

Dept. W.W. 6466 Malfort Rd., Thornton Heath, Croydon, Surrey. Tel: 01-689 7702 or 01-689 6800
Unless otherwise stated alf prices inclusive of VAT. Cash with order. Minimum order value $£ 2.00$. Prices and Postage quoted for UK only. Where post and packing not indicated please add 40 p per order. Bona Fide account orders minimum $£ 10.00$. Export and trade enquiries welcome. Orders despatched stame day where possible. Access and Barclaycard Visa welcome.

MAKE YOUR COMPUTER TALK!!! VIA DUR EX.GPO MODEM UNITS

Well, not exactly talk, but communicate over a standard dial-up G.P.O. line with any other modem. The modem unit $2 A$ is housed in an attractive fibre glass case measuring only $15^{\prime \prime} w x$ $13^{\prime \prime} d \times 5^{\prime \prime} h$, inside are the electronics and mains power supply which enable serial duplex data communication between terminal/computer etc. at any speed up to and in excess of 250 baud 300 at a push). Made to the most stringent, exacting specification for the G.P.O. These units eature Modular plug in P.C.B.'s, internal test points, Standard tone frequencies, Configureable to terminal or computer end. Auto unattended answer, RS232N24 interface on standard 25 way ' D ' socket, etc. etc., supplied complete with diags., at a fraction of
their original cost at only $\mathbf{5 5 5} .00+$ +4.50
CARR.

NOTE. Units believed working, but untested, unguaran teed. Permission may be required for corinection to G.P.O. lines.

EX STOCK SOFTY

SOFTWARE DEVELOPMENT SYSTEM, INVALUABLE TOOL FOR DESIGNERS HOBBYISTS ETC Enables "open heart surgery" on 2708, 2716, etc, Blows, Copies, Reads EPROMS or emulates EPROM/ROM INSITU whilst displaying contents off ROM/RAM on a domestic TV receiver. A host of other features. Write or phone for more details.
f 115 + VAT \& CARR You'll never regret buying a SOFTY!

Made under licence from the world famous GE Co The ICL Termiprinter is a small attractive unit with space available! Brief spec. as follows; RS232 serial interface, switchable baud rates 110,150 , $300,(30 \mathrm{cps})$. upper and lower case correspond ence type face, standard paper, atmost silent running, form feed, electronic tab settings, suited for
word processor applications plus many more features. Supplied in good condition and in working order. Limited quantity.

† RAMAND EPROMSTAR OFFERS *

2716 Single 5v rail EPROMS
2716 Three rail EPROMS
2708 EPROMS
£10.25
.f 8.50
.f 4.95
.£28.50

32K $\times 8$ DYNAMIC/STATIC RAM CARDS

A masterpiece of electronic engineering and our own advantageous buying enables us to bring you a complete memory system at a giveaway price. Originally made for a large processor the RAM card has many features, including on board refresh, internal parity generatiov supply rails and its effective STATIC capability make it useable with many CPU's. A fast cycle time of approximately 400 ns make this a snip at only $£ 90.00+£ 3$ p \& p. Supplied complete with circuits.

TRANSISTOR BARGAINS
TRANSTGHEAPER
well known manufacturers Transistors by guarantern manufacturers and fully guaranteed. No fall ouls. Comprehensive data on 1.C.'s 15 p per type.
2N4351 N crannel MOS FET
6 N 432 P channel MOS
60p each 1.00 per pair.
HIGH VOLTAGE NPN POWER
SWITCHING transistors BVcbo 600 BVceo 500 V BVebo 15 V 1 c 5 amps PC 125 watis HFE 60 Typ $\ddagger 2.5 \mathrm{mhz}$ deal invertors, etc. TO3 $£ 1.60$ each 4 for $£ 5.40$.
BF258 NPN 250 v @ 200ma 45p each 3 for $E 1.08$.
I. R. BSB01 2.5 amp 100 v bridge rec. P.C. mount long leads 35 p each 4 for N4998.
IN4998 4 amp 100 V P.C. mount diodes long leads 14 p each 10 for $£ 1.10$. M $309 K$
each 6 for 55.35
AGFAC10 computergrade cassentescomphetewith library cases 68 peach, 10 for 55.50 IN4004 SD4 1 amp 400v diodes 7p each 18 for $£ 1.00$
i.R. 12 amp BRIDGE RECS. 400 volt £1.25 each

POWEA OARLIHGTON SCOOP! MuIDOO NPW 50 v 90 w 8 amps 70395 p each 2 Nc 23 F NPN 80 V 100 W 10 amps 703 f 1.25 eac mu030 NPN GQv 150 w 16 amps 0.3 E 2.25 each

24300130 v 350 ma Tois 22 CR .' s each 6 for f 1.00 $2 \mathrm{MSO61} 50 \mathrm{v} 800 \mathrm{ma}$ T018 27p each 4 for F 1.00 2 mul 150 YA amps TD220 45 p each 10 tor F 4.00 C10501 400w 5 amps T0222255p each 10 lor $E 500$ G.E. 12 amp 800 v т0220AB $95 p$ each 10 tor 59.75 A.E.L 10 amp 400 v ready mounted on $21^{\circ} \times 2 \frac{1}{4}^{\circ}$ heatsink f 1.00 each 4 for f 3.15 LOW PROFILE IC. SOCKETS 8 .1.L. 10 peach 12 for 51.00
140.1 .14 peach 8 for 51.00
160.11. Gold Pataed mil. وrade 22 peach 6 lor fla 2201 L 27 p each 5 for 11.00 $2401.135 p$ each 37 or 51.00 A0.1. EOP ETHER COOOLES

T.0.555 pach for for f5.00

H30 WH2DFET
 each 8 tor f . 00
CA3028B DC. 120 MHZ diflerentialcascode amp f100 each 3 lor 82.50
CA 301120 MHZ wideband amp TO99 case 65 F each 2 lor fl .00
TMS33114
Dual
2.5 MHz ET .50 each 4 tor F 4.25

GE524 zero voltage switch. wriac SCR relay divee TO5 canf 110 each 7 for f .50
LM384 5 Watt audio I.C. El .50 each 10 for f 11.00 FPOO3725 4 NPN 50 v 500 ma transistors in 14 $\mathrm{D}: \mathrm{i} . \mathrm{p}$ pack 70_{0} each 2 for f 1.00

MAIL ORDER INFORMATION

SUPERVALUE P.C.B. SPECIAL

Another great buy. Board contents include 62 Digital I.C.'s all located in 14 pin D.I.L. sockets. Original cost over $£ 90$ our price only £4.95 + pp 65p
$5 v$ D.C. POWER SUPPLIES
Following the recent "SELL OUT" demand for our 5 v 3 amp P.S.U. we have managed to secure a large quantity of ex-computer systems P.S.U.'s with the following spec.; 240 or 110 v A.C. input. Outputs of 5 v @ 3-4 amps, $7.2 v @ 3$ amps and $6.5 v @ 1$
$7.2 v$
outputs are fully regulated and adjustable with variable current limiting on the 5 v supply. Unit is self contained on a P.C.B. measuring only $12^{\prime \prime} \times 5^{\prime \prime} \times 3^{\prime \prime}$ The 7.2 v output is ideal for feeding "on board" regulators or a further 3 amp LM323K regulator to give an effective 5 v @ 7 amp supply.
 Believed working but untested, unguaranteed.

KEYBOARDS

* LOW PRICE CHASSIS

A special builh purchase enables us to ofter the above heyboard at a lowest ever price. 49 coded keys encoded into a direct TIL compatibie 1 bit outpul. Features such as delayed strobe, 5 voit D.C. single rak MPU constructort' Supplied coonpleté with cornection diagram and ede

```
connector, al a secondhand
```

"no time to test"
$\square 20$
$00+$ P.P. £1. 60

SUPER CASEO VERSION Same as above spec. but housed in attractive two tone mourded iree standing case. Unit also includes an ail T : parallel to serial comertor (no details) etc.

$\mathbf{£ 2 7}^{\text {.50 }+\rho . \rho . ~} 61.85$

TOROIDAL TRANSFORMERS PR 200 pri. sec 15015 @ 2 amps dimensions $3 \times 2.54 .95 \cdot \rho \mathrm{p}$ 99p. TM 2 2i0vil10y pri. sec. 15015 日va dumensions 24 All voltuges massured off land.

Plugs, Sockets \& Connectors Cannon 'D' Range

Wavs	Plug
9	$£ 1.03$
15	$£ 1.17$
25	$£ 1.72$
37	$£ 2.35$
50	$£ 2.90$

Socket
f1. 26
f2.01
f2.58
E4.14
25 way ex-equip. plug or socket $£ 1.25$

$0.1^{\circ} \mathrm{DS}$ $0.1^{\circ} \mathrm{DS}$

$0.1{ }^{\circ} \mathrm{DS}$
$0.15{ }^{\prime \prime} \mathrm{DS}$
40 way
$\begin{array}{cc}0.15 " D S & 85 \text { way } \\ 0.156 \text { wh }^{\prime} & 36 \text { way }\end{array}$

62.45 53.99

All connectors eas/ly cut to size
All connectors easily cut to size
000 's of other connectors ex stock

LEAR SIEGLER model $\mathbf{3 1 0}$ Ballistic printer. Save $£ 400$. OUR PRICE ONLY $£ 950$ or make us an offer.
DECVT52, Used but clean $£ 850$
TERMINET 30 PRINTER WITH TWIN CASSETTE. 30 cps . Standard $232 . £ 700$ or offer. NEWBURY VOU with Keyboard Model 24-80 £350 or offer.
CIPHER VOU with separate Keyboard (No case). Printer, port; reverse video/flashing etc £375
CALCOMP 564 BARREL PRINTER. MUST GO, $\mathbf{\varepsilon 6 5 0} 0$.
CIL PLOTTER On STAND. Ex-Ministry VGC. $\mathbf{E 5 0}$.
FACIT 4001 READER with 2 spoolers 4015 . $£ 475$ the set. Please make an offer we can
FACept. PUNCH with 5107 CONTROLLER $£ 250$.
DICOM Disk Drive $8^{\prime \prime}$ ' Ex-Ministry Clean $£ 120$ each
TELETYPE PUNCH in Silent Case $£ 45$ each.
ARCTURUS A18D, 16 bit mini. With Data. Another gift $£ 425$.
COMPUTER AUTOMATION ALP HA 16 with TTL
quantity of paper tapes. And again a gift at $£ 380$
HEIETYPES ASR 33 with 10 No Interface. No data. HENCE $£ 475$.
£225 asch.
TWIN SHUGART Floppy Drives a $£ 450$ gift.
A FEW OLIVETTI PRINTERS \& KEYBOARD Type Te 300 still available - please enquire

STEPPING MOTORS 200 Steps - 20-0z/in, torque, $12 / 24$ volt input 4-wire. £12 each. P\&P £1.50				STEPPING MOTORS 200 Steps. 2002 /in. torque. 120 volt operating 3 -wire. £ 4 each. P\&P $£ 1.50$				
 MONSANT DISPLAY type MAN101A $0.3^{\prime \prime}$ £1 each. REGULATORS-all at 45 peach. MC7805; 7812; 7815; 7912. MC14961 70p. TIS 50 - 10p each. MC4016 - 25p each. 74100 N - 75p each Miniature 4.7K PRESET. 10 for 25p. 100 for $\mathbf{£ 2}$. 16 pin DIL Socket 10p. 14 pin SH Socket 8 p LED type TIL 209 Red with holder 10p each SLOTTED OPT SWITCH supplied with data - normaliy over £2. OUR PRICE 75p each. ROCKER SWITCHES 2 pole c/o - 15p each. Spring Action TERMINALS - normally over 30p ea. OUR PRICE 15p each. TOROIDAL TRANSFORMER $0-115 \mathrm{~V}-230 \mathrm{~V}$ Input; $13 \mathrm{w} 5 \mathrm{~V}-0-13.5 \mathrm{~V}$ rated 8 VA output $\mathbf{£ 1 . 7 0}$ each. P\&P 75p. Sub-min TRANSFORMER 0-120-240V Input. $12 \mathrm{~V}-0-12 \mathrm{~V}$ rated 4 VA . Output 75 p each. P\&P 50p. L.E.D.s Standard White 12p; Standard Yellow 15p; Smail White 8p.								

DIODES
 DIODES All new full spec. devices IN3063 BAX 13 1S44; $1 \mathrm{~N} 4148 ; 1 \mathrm{~N} 3470 ; 1 \mathrm{~N} 4151$. 100 off $\mathbf{E 1 . 5 0}-1.000$ off $\mathbf{£ 1 0}$.

BLUE THERMAL PAPER 430 ft roll $81 / 2^{\prime \prime}$ wide
£ 2 per roll $\mathrm{P} \& \mathrm{P} £ 1.75$

MUST CLEAR
 langi guantiry of

 all with information. British. Approx window $£ 2$ each. British. Approx.window $£ 3.50$ each. American Approx. window $£ 3.50$ each. American. Approx. $2^{\prime \prime}$
window $£ 4$ each. Special American version

709 DIL 14-PIN

OPERATIONAL

AMPLIFIERS
at 8 arch
100 off 25% discount

MINIATURE

KEYBOARD
Push contacts, marked 0-9 and A-F and 3
optional function keys. $£ 1.75$ each. P\& P $65 p$.

MAGNETOS

- Brand New, Boxed

Originally for Ministry aircraft, therefore
finest quality - very reliable
Ridiculous $£ 4.75$ eech

STEPPING MOTORS

North American Philifiss. 5 volit 3.3 Amp
Operation. 2 wrre PPS 0.200 revs per min operation. 2 wire PPS $0-200$ revs per min
$0-250$ used. Tested $£ 16$ eech. P\&P $£ 1.50$.

must clear

POLARAD SPECTRUM

 ANALYSERplug-ing 1 to 45 GHZ . E85 each

TRANSISTOR INVERTOR

115 V AC 1.7 Amp .nnut. Switching is at
20 Khz . Output windings from Pot Core. Can be erewound to suit own purpose or unit can
be broken fo hort be broken for host of components. Circuils supplied. $\mathbf{£ 1 . 2 5}$ each. P\&P $£ 2$.

CONVERT THIS UNIT TOA SUPER BATTERY CHARGER

Attractive green ministry quality case with

 removable top and bottom plates - heavy duty power switches - high powered resistors to control current - good quality centre mounted amp meter - strip of wing nut forminas or ro P\&P $£ 2$. Four Units $£ 12$. Carriage $£ 5$.
STEPPING MOTORS

6/12 position with additional where the rotor is coils. Device can be used as a tacho. Diagram supplied. Will actua
£1.50 each P\&P $75 p$ or 1.50 each P\&P 75p or 5 for $\mathbf{£ 5}$ P\&P

INFRA RED IMAGE CONVERTER type 9606 (CV 144)

$13 / 4$ diameter. Requires stngle low current y inditu
data
£12.50 each P\&P 75p
Infra Red Lamps also advertised

KEYBOARD PAD

Size $3 \times 21 / 2 \times 2^{\prime \prime}$ high with 12 Alma Reed Switches. Blue keys marked in green Oand a star with one blank. $£ 4$ each, P\&P $£ 1$, or 5 for $£ 15$ P\&P $£ 2$.

EDDYSTONE
 770R used tested
 £95 each RXS $730 / 10$ used tested $\mathbf{£ 7 7 . 5 0}$ each $94024 V$ invertor version. Special Government Quality vgc $£ 165$ each.

TANTALUM BEAD CAPACITORS, 4.7 Zu 25 V . 10 off ह1; 100 off $\mathrm{E7} .50$. 330 ul 6.3 V 15

TEXAS Low Profile 40Pin IC Sockets 45p an.
SMALL TRANSFORMER. 240 V input. Output 2 windings 12 V and 24 V 1 amp . $£ 2$ each. SO SIMPLE SO SAFE.
Fit a push button CIRCUIT BREAKER Small, compact, 3 ratings $0.8 ; 1.8$ and 10Amp. State which one when ordering. 75p each. AMP METER $21 / 2^{\prime \prime}$ dia. Scaled $0-60$. Basic 75 MV FSD. Complete with external 60 Amp
Shunt. $£ 2.50$ ea. P\&P $£ 150$.

LOUD HAILERS. Transistorised hand-held. no leads. Standard internal batteries supplied. Howl Switch $£ 20$ en. P\&P $£ 2$
INFRA RED QUARTZ LAMPS. 230 V 620 Watts. Size $1312^{\prime \prime} \times$ 1/a" dia. E1.50,
BRIDGE RECTIFIER. 2 Amp 50 paz .
PHOTODIODE DEETECTOR $4^{\prime \prime \prime}$ fiy leads. 25 pea .
spacing, ${ }^{15 p}$. ${ }^{\text {E.C. }}$ S.
IEC. Standard MAINS LEAD. Moulded (3 vertical
offset) 60 p on.
FANS. 115 F Wats. Size $31 / 4 \times 31 / 6 \times 1 / 2^{\prime \prime}$ BRAND NEW

DELAY LINE. 50 nanosecs. 3 connections - ground-nn-out Size 2
$\times 7 / 16 \times 5 / 16^{\prime \prime}$ New 25 p s.0.
Miniature MOTORS 12 V with
Miniature MOTORS 12 V with ge
Size $11 / 4 \times 1 / 4^{\prime \prime}$ dia New 30 p .

MOTOR 12 VOC with pulley and integral semiconductor. Speed Control. New $£ 1$ es.
LEDEX ROTARY 30
15 p En.
DIAMON H CONTROLS ROTARY SWITCh. Single pole
tO-way. Printed Circuit Mount. New 10p ea. 10-way. Printed Circuit Mount. New 10 p en.
PULSE TRANSFORMER. Sub min. Size
Secondary centre tapped. New 20p ae.
MOTOR by Inland Motor Corp. DC

ILTIPLIER. Two high voltage outputs and
focus ef ech.
DON'T TAKE CHANCES. Use the proper EHT CABLE, 10 p per
metrs or £7.50 per 100 matre/drum. P PSP $£ 2$.
PHOTOGRAPHIC LAMPS. Pearl 230 V 500 watt. Screw cap
 MYSTERY IC PACK. Some 40 pin-good mixture, ali new
devices 25 ICs for $£ 1$. P\& 50 . You find out what they are and we will buy the information from you.
VACUUM PUMPS - TRAPS, ETC. Send for list
DECOUPLING CAPACITORS
$0.05 \mathrm{mfd} .10 \mathrm{~V} .0 .01 \mathrm{mfd} .0047 \mathrm{mfd} .250 \mathrm{~V} .33 \mathrm{k}, 330 \mathrm{pt}$. All
E.H.T. Cappacitor 600 pf BKV 20 pach.

10 -way MuLT COLOUR RIBBON CABLE. New 40p per
maire. 10 matree for $£ 3$. maire. 10 matree for $\in 3$.
GEC UHF 4 bulton tuner $\mathbf{£ 1 . 5 0}$ atch.
CENTAUR $115 \mathrm{FANS} 41 / 2 \times 4 \times 11 / 2^{\prime \prime} £ 4.50$ ea.
CENTAUR $115 V$ FANS $41 / 2 \times 4 \times 11 / 2$
EXXUSED equpment. tested. 60 p pach
EX-USEED equpment, tested, $\mathbf{6 0 p}$ onch.
CONTACTORS. Heay Duty 2 NVOC 5 make $£ 1$ each
GEC UHF N.HF G-button tuner $£ 2$ eech.
DIGITAL 24-HOUR CLOCK with buit-in alarm as used in Braun
Ogital ciocks. Silent running, Large illuminated numerals. AC
Onains. Size $61 / \times 21 / 4 \times 21 / 4$ ONLY 83.75 gech

931A PHOTO MULTIPLIER in stainless steel contaner with
window and bult-in resistor network $\in Z 2$ ach. P\&P $£ 1$.

calbrated $50-200$ degree $C \in 2.50$ emch.
SOLIO STATE UHF TUNERS. 30 acs $£ 1$
SOLIO STATE UHF TUNERS, 30 acs. E 1 each.
BRANO REX bue wire wraps 30 metres tor $\mathbb{1}$. P\&P 25
BRANO REX blue wire wraps 30 metres tor $£ 1$. P $8 P 25 p$.
SLIDER CONTROL $500 K$ Log. Single track. Complete
Knob Length $3 Y^{\prime \prime}, 25 p$ each.
TRANSFORMERS
TAANSFORMERS

$\mathbf{~} \mathbf{\Sigma 1 . 5 0}$ ench. P\&PP $£ 1.1 .86 \mathrm{~A}$. Sizè $21 / 2 \times 2 \times 2^{\prime \prime}$ Good quality
$\mathbf{2 4 0 V}$ inpur Boc 12 V 0.92 A . Size $24 \times 2 \times 2^{\prime \prime}$ Good qual ty
$\mathbf{~} 1.50$ ench. PR, $£ 1$
E 1.50 ench. P\&P f 1.
$\mathbf{2 4 0 V}$ input 12 V 100 MA . SIzE $60 \times 40 \times 42 \mathrm{~mm} 50 \mathrm{p}$ ouch.

SEMICOMDUCTORE BN4005 - Бp: 1N4002 - 3p.

MINIMUM ORDER £3 VALUE OF GOODS. MINIMUM P\&P £1 - where P\&P not stated please use own discretion - excess refunded CARRIAGE ALL UNITS
£5 P\&P or CARRIAGE and VAT at 15% on total MUST BE ADDED TO ALL ORDERS.
CALLERS VERY WELCOME STRICTLY BETWEEN 9 am-1 pm and $2-5 p m$ Monday to Saturday inc
BARCLAYCARD (VISA) and ACCESS taken. Official orders welcome.

At 5p atch:
BC147, BC 157. BC158, BC237, BF 197, OA90, OA81, BC148B.
BA154, BA243. AA154. BA243
TIP31. TIP41A. 2N296; AF 139.2 2TX341.
BY127 10p. BF 181 20p; BO239 49p; BO241 40p; MA343AT 49p, BO228 50p; BO233 \& BO234 Comp fair 25W -80p per OFET509 ouch it 50p esch BF 256C 20p.
TV AMPLIFER TBA 120 20p each.

megr	ir				
7453	${ }_{5 p}$	$74 \mathrm{H51}$	${ }_{7}^{12 p}$	75325	${ }_{4 p} 1$
7451	5 p	74538	100		4 p
7402	12p	74502	120	MC4028	69p
7476	20p	74154	700	7417	14p
7495	35	$74 \mathrm{CO2}$	16p	7441	40p
74122	12 p	$74 \mathrm{CO4}$	18		50p
74 COO	17p	74 C 74	$18 p$	$74{ }^{7} 1$	24p

MOTOROLA DUAL in Line 6 pin Opto Coupler 30p each. Gold plate tester version 50p eche
EPRONS $2708 \mathbf{5 5 . 5 0}$ sach.
SMITHS encapsulated transistorised AUDIBLE WARNING DEVICES 4 V - 12 V . Can be driven from TTL. 65 p each.
ELECTROSTATIC VOLTMETERS. $75 \mathrm{KV} £ 8$ each. P \& E 1.50 ELECTROSTATIC VOLTMETERS. 7 .
Other ranges avalable, Please enquire.
TRIMMAERS. Sub min 0.25 to 1.25 pf, 1 to 4.5 pf , 7 to 45 pf . All at ep each.
HONEYWELL humidity coniroliers 50 p each
THYRISTOR TIMER Solid
THYRISTOR TIMER. Solid State. 15 secs adjustable (resert) in plastic relay case Standard 7 -pin base Series delay 50 pach.
MINIATURE PC MOUNT SLIOE SWITCH. Single pole 3 -way 10p each.
LARGE EX-MINISTRY SPEAKERS. OUTSIOE 15 ohm or Ohm. Tested $£ 25$ each or 5 for $£ 100$
TELEPHO Transformers and Capacitors avaibable. Please enquire.
 black or 9 rey £7.50. Oider style black $\mathbf{£ 2 . 5 0 \text { ench. Discoloured }}$
grey $706 \mathrm{E4}$ oa P\&P $\mathbf{E 1} 50$ per telephone. INSRT can be used as Microphone / Earpiece (Like used as insert in telephone but superior Cuality) Ex-M.n. Brand new wrapped 75 each, or 10 for E 6 .
OC SERVO MOTOR 110 V 2.5 Amp continuous. Double shatt Brand new. 4 wire 4 brush $\mathbf{E 2 5}$ em. Plus carrige.
PC Mourt POTS. Wire wound with knob 200 ohm 10 hm . 10 p CAPACITORS at 5 p ea -0.1 uf 400 V Small rec. biock PC Mount German. Clas: 3300pf: 220 nf 250 V . Capacitor 0.1 mid $250 \mathrm{VAC}-10 \mathrm{pos}$
4 D1GIT 7 SEGMENT per digit plus a figure one to the left plus a
centre minus stgn to the ieft of the figure one with decimal piaces centre minus stgn to the effi of the figure one with decimal places
between digits. Good brillance at 1.5 V . 15 connections $£ 2.50$

WW - 107 FOR FURTHER DETAILS

WW - 092 FOR FURTHER DETAILS

Technician today, RNArtificer tomorrow. SEVEN WEEKS AFTER JOINING THE ROYAL NAVY,YOUCOULD BE EARNING £7,200p.a.

Skilled technicians (TECDiploma, ONC or C \& G Tech II) play a vital role as artificers in today's Royal Navy.

A varied life
There's a wide variety of interesting jobs in ships, aircraft and submarines, on equipment in the forefront of technology, plus the bonus of overseas travel. And the Royal Navy is quite justly famed for its sporting prowess and recreational facilities.

Excellent pay

If you're 22 or over you'll usually be a Petty Officer after seven weeks' satisfactory initial training-and that means a guaranteed $£ 7,200$ a year.

Guaranteed promotion opportunity If you pass your Naval exams, there are guaranteed promotional opportunities.
If you would like to find out more ... You will have the opportunity of doing so in an informal and relaxed atmosphere at one of the hotels we are visiting all over the country. You can also see a private viewing of our new video film "Technician today, Artificer tomorrow".
Why not bring your wife or fiancée along, there are many advantages for them too if you choose a career in the Royal Navy.

For details of times and places, please ring:
BIRMINGHAM, Lieutenant Hutchins. Tel:021-6435552: Ext. 47
BRISTOL,Lieutenant Gilchrist. Tel:0272293718
DERBY,Lieutenant Worthington. Tel:0332 42691
GLASGOW, Lieutenant Kennedy. Tel:041-332 6896
LONDON, Lieutenant Drew. Tel;01-405 9951

ROYAL NAVY

TELEVISION SOUND IS GOOD!

Yes it's true - but you'll need to listen through a Minim Television Sound Tuner to be convinced. Music, wildlife, even the news suddenly comes to life when you can hear all the detail that you expect from High Fidelity equipment. Connect the Minim Television Sound Tuner to the amplifier or music centre or listen directly on headphones so as not to disturb others.

Further information will only cost you $12 p$ - stamp out poor televison sound!

Name
Address

Minim Audio Limited, Lent Rise Road, Burnham Slough SL1 7NY. Tel: Burnham 63724 MINIM AUDIO make a note of our name!

MARKING PENS

with fluorescent colour inks

A range of marking pens is availade \boldsymbol{m} ten colours for permanent and removable markings. The inks are highly fluorescent, electrically non-conductive and can be used for marking metal, plastic, fabric or through an oily film.

STANDARD PNEUMATIC MOTOR CO.

35 Stafford Road, Weston-super-Mare BS23 3BN

Tel: 0934834209 , Telex 449460

8050A $41 / 2$ Digit LCD DMM with true RMS on $A C$ volts and current DC volts $200 \mathrm{mV}-1 \mathrm{KV}$, $10 \mu \mathrm{~V}$ resolution AC volts. 200 mV - 750 V , $10 \mu \mathrm{~V}$ resolution. DC/AC current $200 \mu \mathrm{~A}-2 \mathrm{~A}, 0.0 \uparrow \mu \mathrm{~A}$ resolution resistance 200 2 -20M $\Omega, 0.01 \Omega$ resolution. Also reads dB direct referenced to 16 stored impedances. Conductance ranges 2 mS and 200 ns . £199 mains model £239 mains battery 8012A $31 / 2$ Digit LCD DMM with true RMS on AC volts and current. DC volts $200 \mathrm{mV}-1 \mathrm{KV}, 100 \mu \mathrm{~V}$ resolution. AC volts $200 \mathrm{mV}-750 \mathrm{~V}$, $100 \mu \mathrm{~V}$ resolution. DC/AC current $200 \mu \mathrm{~A}-2 \mathrm{~A}, 0.1 \mu \mathrm{~A}$ resolution. Resistance $200 \Omega-20 \mathrm{M} \Omega, 0.1 \Omega$ resolution Low resistance 2Ω and 20Ω, $1 \mathrm{~m} \Omega$ resolution Conductance ranges $2 \mathrm{mS}-20 \mu \mathrm{~S}-200 \mathrm{nS}$ E199.00 mains model $£ 219.00$ mains battery. 8010A $31 / 2$. Digit LCD DMM Same spec as 8012A plus a 10Amp $\mathrm{AC/DC}$ current range, but no low resistance range.
£159.00 mains model £179.00 mains battery. 8024A $31 / 2$ Digit hand held LCD DMM with peak hold Level Detector and continuity tester. DC volts $200 \mathrm{mV}-1 \mathrm{KV}$, $100 \mu \mathrm{~V}$ resolution.
AC volts $200 \mathrm{mV}-750 \mathrm{~V}, 100 \mu \mathrm{~V}$ resolution. $\mathrm{DC} / \mathrm{AC}$ current $2 \mathrm{~mA}-2 \mathrm{~A}$; $1 \mu \mathrm{~A}$ resolution. Resistance $200 \Omega-20 \mathrm{M} \Omega, 0.1 \Omega$ resolution. Conductance 200 nS . Peakhold of AC or DC volts and current. Level detector operates around +0.8 V reference. Audio tone on level and continuity. $£ 135.00$ carrying case $£ 7.00$ extra. 8020A $31 / 2$ Digit hand held LCD DMM. spec as per 8024 A with extra conductance range of 2 mS but no peak hold, level or continuity ranges. Complete with carrying case. $\mathbf{£ 1 1 2 . 0 0}$
8022A $31 / 2$ Digit hand held LCD DMM. Spec नs per 8020A but no conductance ranges and slight reduction on accuracy. Was $£ 89.00$ now reduced to $£ 75.00$ carrying case $£ 7.00$ extra.

Also available a range of accessories including current shunts, EHT probe, rf probe, Temperature probe and touch and hold probe. Full details on request. The, warranty period on all items shown is 1 year other than the 8020A

which is 2 years.
 Electronic Brokers

Roxburgh Suppressors Ltd.

If our standard range of suppressors

 isnt good enough for you, you know what you can do !!! Tell us. And well design one for you.Whatever your needs, R.F. suppression or ciruit protection, tell us your problems and we'll give you an answer.

You don't have tobe a suppressor expert. We are.
Call us Now.
Roxburgh Suppressors Ltd.
Eagle Road,
Rye, E.Sussex.
Phone. 079733725

ALL PRICES IN PENCE EA

mandibuanity mise

World-beating Oscilloscope Offers Electronic Brokers

61-65 King's Cross Road London, WC1X 9LN
Tel: 01-278 3461 - Telex 298694
Prices do not include carriage or VAT
WW - 070 FOR FURTHER DETAILS

Base 2
MODEL 800MS
free
INTERFACE CABLE
WORTH £25
veriditi 5\%" decs
VERBATIM $5 \% \%^{\prime \prime}$ DISCS $£ 1.85$ each (min. 10) + VAT STATIC RAM $21141-12 £ 3$ each + VAT $13+£ 2.50$ each + VAT

Compukit UK101

with up to 32k RAM expansion IMPACT PRINTER

- suitable for most Micros.

JUST LOOK AT THESE STANDARD FEATURES:
*RS-232, 20mA, IEEE 488 and Centronics $1 / 0$ * 15 Baud' rates to 9,600 * 100 Chrs. per second Bidirectional * 6 print densities 60, 72, 80, 96, 120 or 132 Chr/line * Self test switch * 96 Chrs ASC I/ Standard * Auxilliary User Defined Ch. set *Tractor and fast paper feed/graphics * 2k Buffer *Accepts 81/2" max. paper pressure feed and $91 / 2$ " max. paper tractor feed.
 free disc

N 9 Digit extended Basic

* Plugs straight into 8 k Compukit requires no hardware mods. (5v.5A required for 610) 610 Expansion (8k) ONLY $£ 159$ + VAT Disc Drive with DOS ONLY £285 + VAT

exatrov Stringy floppy

COMBINES ECONOMY OF CASSETTE WITH SPEED \& RELIABILITY OF DISC

16k loads in approx. 24 secs. - Wafers to

Stringy Floppy with 10 Wafers (Tapes) BUS EX. 2 for 1. Machine Lang. Monitor

Ohio Superboard II \& Challenger IP

*Ready Built *8k Microsoft in ROM, 6 digit floating point basic plus full features. 4k RAM - expandable to $32 k$
SUPERBOARD II (24×24 format) $£ 159+$ VAT SUPERBOARD II (48×32 format) $£ 199+$ VAT POWER SUPPLY 5v.3A. . . . £27 + VAT CASE $£ 29$ + VAT CHALLENGER 1 P $(24 \times 24$ format $) £ 219+$ VAT CHALLENGER 1P (48×32 format) $£ 259+$ VAT All 50 Hz (Superboard is used in Challenger)

SUPERBOARD II (24×24 format)	$£ 159+$ VAT
SUPERBOARD II (48×32 format)	£199 + VAT
POWER SUPPLY 5v.3A. .	£27 + VAT
CASE	£29 + VAT
CHALLENGER 1P (24×24 format)	$£ 219+V A T$
CHALLENGER 1 P (48×32 format) (Superboard is used in Challenger)	£259+VAT

11 Please add V.A.T. at 15%. Carriage extra, will ad vise at time of order. Official orders welcome. 61 NEWMARKET SQUARE, BASINGSTOKE, HAMPSHIRE. RG21 1HWD Telephone: Basingstake (0256) 56468 and 56417

WW - 111 FOR FURTHER DETAILS

Explorer/85

NOW AVAILABLE with $8^{\prime \prime}$ Floppy Disc System. An inexpensive 8085S Based S. 100 Computer system designed for maximum flexibility.

EXPLORER / 85 offers you real flexibility, you can build the exact systern you requre. EXPL.ORER/85 can be your Beginners system, OEM Controtler or IBM formatted $8^{\prime \prime}$ disc Business system. You don't buy more than you need. Prices start from $£ 91.75$.
HARDWARE: Mother board (A) $8085 \mathrm{cpu}, 8355$ ROM with powerful 2 K monitor system and $1 / 0$ ports, 8155 RAM- 10 with 256 bytes of scratch pad. Two S 100 pads, room for RAM, ROM. PROM. EPROM and 5100 expansion plus prototyping space. Level 'B' allows address decoding for onboard RAM \& EPROM.
address \& data bus drivers for Onboard expansion. Wait state generator.
SOFTWARE. Microsoft-90 in ROM or cassette or CP/M disc operating system which will suppori four $8^{\prime \prime}$ drives.
PACKAGE EXPLORER $/ \mathbf{B 5}$ is available in kit form or assembled complete or in separate levels to suit your requirements and pocket. Cabinets and other peripherals are aväilable

VIDEO KEYBOARD TERMINAL. Microprocessor controlled 1K RAM character generator, processor controlled cursor control and parallel ASC 11 /Baudot to serial conversion plus serial to video processing all crystal controlled. Upper and lower case keyboard. choice of 32 or 64 characters by 16 lines with select baud rate. RS232 or 20 ma loop
In kit form £ 114 or assembled $£ 139$.
8"DISC DRIVE SPECIFICATIONS * Control Data Corp professional drive *LSI controller * Write protect \#Single Gr double density $\#$ Data ca pacity: 401,016 bytes (SD) 802,032 bytes (DD) unformatted $\#$ Access time 25 ns (one track)
DISC CONTROLLER BOARD SPECIFICATIONS * Controls up to $48^{\prime \prime}$ drives * 1771 ALSI (SD) floppy disc controller $\#$ On board data separator (IBM compatible) $\star 2$ serial $1 / 0$ ports \star Autoboot to disc system Onboard !/O baud rate generator to 9600 baud \star Double-sided $P \mathrm{CC}$ board (glass epoxy) $\mathbf{£ 1 5} \overline{\boldsymbol{6}}$
DISC DRIVE CABINET/POWER SUPPLY UNIT * De Luxe steel cabinet for two $8^{\prime \prime}$ drives with individual power supply for maximum reliability and stability SAVE 10% on complete floppy system 1 drive $8^{\prime \prime}$ * Controller Board $\#$ Cabinet * Set of cables $£ 79$
$£ 582$
SOFTWARE *CP/M 1.4 £75. *CP/M 2.0 £99. *Microsoft extended Basic $£ 195$
Complete Business Software Package *includes CP/M2.0*Microsoft Basic $\#$ General Ledger $\#$ Accounts Complete Business Software Package includes C
Recervable $\#$ Accounts Payable $\#$ Payroll Package

64K 'JAWS' DYNAMIC RAM S 100 8D Intel 8202 Controller

Hidden refresh. Jow power consumption, latched data outputs, 4116 RAMS Onboard crystal, 8 k bank select, fully socketed designed for 8080 , 8085 and 280 16 K kit £149; W\&T £169; 32K kit £218; W\&T £238; 48 K kit £287; W\&T £307 64 K kit $£ \mathbf{3 4 6}$; W\& $\mathrm{T} £ \mathbf{3 7 6}$; 16 K expansion kits $\mathbf{£ 6 9}$

ELF11 RCA COSMIC 1802 cpu

Computer kits, basic board $£ 59.95$. Idea for Hobbyists * Education * Control applications and expands to full 64 K send for fully illustrated brochure.

NETRONICS TVM MONITOR

Designed for computers. closed circuit TV and Video Tape Recorders

* $9^{\prime \prime}$ black and white screen
* 10 Mhz band width
* Input impedance 75 ohms or high impedance
* Compact and lightweight (13 lbs)
* Solid state circuitry for maximum reliability and minimum power con-
- Stabilised
* Stabilised power circuit for stable trouble-free and sharp picture
- Metal cabiner 1.0102 Ov (P P)
* 240 v 50 hz
* Size $9^{\prime \prime} \times 9^{\prime \prime} \times 9^{1 / 2}$
* PRICE 999.50

\rightarrow

Memotronias

255 ARCHWAY ROAD, LONDON N. 6 TEL: 01-3483325

Appointments

Advertisements accepted up to 12 noon Monday, September 29, for November issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 12.00$ per single col. centimetre (min. 3 cm). LINE advertisements (run on): $£ 2.00$ per line, minimum three lines.
BOX NUMBERS: $£ 1$ extra. (Replies should be addressed to the Box Number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London SE1 9LU). PHONE: Anthony Hadley, 01-261 8508.
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

Electronics

 R\&D
Take your pick

 HF-VHF-UHFMicrowave Optics \& AcousticsA challenging and full career in Government Service.
Minimum qualification - HNC.
Starting salary up to $£ 6,737$ (under review). Please apply for an application form to the Recruitment Officer (Dept. WW9) H.M. Government Communications Centre, Hanslope Park, Milton Keynes MK19 7BH.

AMPEX

World leaders in Magnetic Recording, requires an

INSTRUMENTATION SERVICE ENGINEER

to join its customer support group in Reading
Key requirements are:

* Five years' experience of instrumentation electronics, preferably with some digital and some mechanical engineering content.
* Evidence of sound relevant educational achivement, preferably C \& G or HNC.
This appointment will appeal to Electronics Engineers in industry or development or soon after completing an HNC course or on leaving the Armed Forces. It involves travel (mostly in the UK) and gives scope for working independently.
Competitive salary plus car. Pension. Life Assurance and Permanent Health Schemes. Staff restaurant.
Ampex Great Britain Ltd., Acre Road, Reading RG2 OQR. Phone: 073485200.

CHIEF ENGINEER inderendent local radio station

Applications are invited for the position of Chief Engineer for a new I.L.R. Station based in the West of Scotland (mainland). The Appointment would take effect from January, 1981, and applicants should be suitably qualified individuals having an enthusiasm for Local Radio and practical experience in all aspects of Installation, Maintenance, and Technical Operation of Sound Broadcast Equipment to the I.B.A. Code of Practice Standard.

Salary would be by negotiation.
Please reply, by 31 st October, 1980, giving fullest career and qualification details to:

> Moorfoot Services
> "Argentine"; Whiting Bay Isle of Arran KA27 8PZ

Applicants for other Engineering Positions, to be engaged by May, 1981, are invited to respond to this advertisement.

Appointments

 benefits including:-
Medical Customer Engineer North\&Central London .

Hewlett-Packard is a highly successful instrumentation and computer company with manufacturing divisions and sales offices worldwide. We are still enjoying sustained growth and currently require an experienced Customer Engineer in our Medical Group.

Working in the north and central London area you will be expected to provide a speedy, efficient and economical on-site repair and maintenance service to customers.

We would particularly like to hear from young Engineers with HNC Electronics or equivalent. Experience in the medical products area and particularly in Customer Service would be advantageous. Since the job involves Customer Interface, candidates need to have good communication skills and a pleasant personality.

Full training will be given in the U.K., and abroad. An attractive salary is offered for this position in addition to a comprehensive range of

> * 2 Litre company car.
> * Twice yearly cash profit sharing. * Non-contributory pension plan.
> * Share purchase plan.
> * Christmas bonus.

For an application form, please ring Annabel Bayly on Wokingham 784774 or write to her at Personnel Department, Hewlett-Packard Limited, King Street Lane, Winnersh, Wokingham, Berkshire.

UNIVERSITY OF WARWICK

TELEVISION ENGINEERS

Vacancies exist for two experienced television engineers to share responsibility for the maintenance and repair of high quality equipment in use in the Audio-Visual Centre's two studios, as members of a team providing television production, off-air recording and sion production, offair facilities. Videotape playbation to HND/HNC or AdQualification to HND/HNC or Advanced C \& G is desirable and pre-
vious experience of similar work or vious experience of similar work or
domestic radio and TV servicing domestic radio and TV servicing
would be an advantage. Salary would be at an appropriate point on the Techinician Grade 4 scale: $£ 4,431$ $£ 5,097$ p.a., depending on age. qualifications and experience. Application should be made by letter quoting Ref. No. 2/2T/80/20 and should give full background details and the names of two referees, one of and the names of two referees, one of whom should preferably be the appli-
cant's current employer, to the Percant's current emplover, to the Per-
sonnel Office, University of Warwick, sonnel Office, University of Warwick,
Coventry CV4 7AL by 24 th September, 1980.
(652)

BRISTOL POLYTECHNIC DEPARTMENT OF ENGINEERING Applications are invited for the following posts:
 ELECTRONIC DEVELOPMENT TECHNICIAN GRADE T3/4 - Ref. No. T3382/54

ELECTRONICS MAINTENANCE TECHNICIAN
 GRADE T3/4 - Ref. No. T3371/40

SALARY SCALE for the above: £4581. Both of these posis ar situa
Both of these posts are situated in the Electronic Engineering Department and
their basic function is to assist in the development and maintenance in a wide range of novel equipment.

For further details and an application form, to be returned by 30 September 1980, please contact Personnel Office, Bristol Polytechnic, Coldharbour Lane. Frenchay, Bristol BS16 10 Y
Please quote appropriate Reference Numbers in all communications.

INSTRUMENTATION OR ELECTRONICS ENGINEERS

G. Cussons supply test equipment to education establishments and instruments for research on automotive engines. We urgently require two engineers to spearhead the future expansion of existing and new automotive instrumentation products. The first position will involve liaison with the sales department for the specification of exhaust gas analysis equipment to customers and the design and development of future enhanced models. The second vacancy will be concerned solely with the development of research instruments where a knowledge of 16 bit microprocessors and standard digital and analogue circuitry would be useful. As an alternative, experience in the testing of internal combustion engines or the application of commercial instruments would also be relevant in both positions.
Applicants should ideally have a degree in electronics, physics or mechanical engineering.
The salary will be negotiable 'in the range of $£ 5,600$ to $£ 8,000$ depending upon age, qualfications and experience
Ġenerous relocation assistance will be provided where necessary
Please reply to:

Dr. R. A. Haslett
 G. CUSSONS LTD.

102 Great Clowes Street, Manchester M7 9RH

THE UK's No. 1 ELECTRONICS AGENCY

Design, Dev. and Test to $£ 9,000$
Ask for Brian Cornwell
SALES to $£ 12,000$ plus car Ask for Ken Sykes

FIELD SERVICE to $£ 8,000$ plus car Ask for Maurice Wayne

We have vacancies in ALL AREAS of the UK
Telephone: 01-6375551 (3 lines)

Customer Engineers Electronics

Register now - and let us help you in your search for a suitable job.

Appointments

Abu Dhabi Marine Operating Company (adma-opco)

TELECOMMUNICATIONS ENGINEERS

\$21,000-26,000 p.a. (tax-free)

Reference:
OPS /80/S/R/24 (Offshore based)
OPS /80/S/R/27 (Abu Dhabi based)

We are a leading Oil Producing Company operating in offshore areas of Abu Dhabi, United Arab Emirates and producing 500,000 b/d with water injection techniques and gas gathering system.
We require two telecommunications Engineers to be based either in Abu Dhabi or offshore. He will direct and control all installations, maintenance and operation of telecommunications equipment in offshore areas. This includes MF radio beacons, HF, SSB networks, automatic dialling radio telephones, VHF and UHF aircraft stations, VHF ship stations, multi-channel microwave circuits with associated multiplex equipment, mobile VHF radios, small telephone exchanges and telephone distribution, etc.
He will have had a B.Sc. in Telecommunications Engineering or equivalent and has good command of English. He will also have had a minimum of five years' experience in repair of industrial radio related telecommunications equipment. Age range 27 to 45 years.
The climate in the area is hot and humid in summer, temperate in Autumn but moderate and pleasant during the rest of the year.
Abu Dhabi is a modern city with good shopping, communications and recreational facilities. Primary and secondary schools are available. The company provides fully-furnished married and bachelor air-conditioned'accommodation at nominal rent and air passage to home country with annual leave of 49 days.
Offshore, the company provides adequate recreational facilities and offers free messing and air-conditioned bachelor accommodation to a high standard with a very generous leave scheme (29) days on site followed by 27 days' leave with passage paid to home country .
In addition to attractive salaries, the company also extends financial assistance to school age direct dependants up to completion of secondary school.
Clear handwritten applications in ENGLISH, quoting the name of the publication where this advertisement was published and giving full details of their qualifications, training and experience as well as membership of professional associations and supported by copies of relevant testimonials, should be submitted separately to both the following addrésses:

Senior Personnel Officer (R)
 ADMA-OPCO
 P.O. Box 303
 Abu Dhabi
 United Arab Emirates

Department of Petroleum

P.O. Box 9

Abu Dhabi
United Arab Emirates

Appointments
 Challenging positions at home and abroad
 RADIO TECHNICIANS COMMUNICATIONS ENGINEERS

Plessey EAE design, install and maintain communications systems for the oil industry, at home and abroad.

Due to rapid and continuing expansion in our activities, we constantly require Radio Technicians, with experience of HF, MF, VHF and UHF, and Engineers (preferably qualified to HNC level or above) in the fields of Microwave, Multiplex and Tropospheric Scatter.
In the North Sea, earnings are in the range $£ 9,000$ to $£ 12,000$ p.a. Overseas earnings could be up to $£ 20,000$ - plus tax concessions and generous home leave.
The work is demanding, but rewarding, offering you the chance to use your skills and your initiative to the full.
The company is based in Great Yarmouth, with offices in Aberdeen and Lerwick but where relocation is necessary, we will give generous assistance with removal, legal and temporary accommodation expenses.
Please apply, with details of your career to date, to: Personnel Manager, Plessey EAE Limited, Dept WW, Offshore House, 284/285 Southtown Road, Gt. Yarmouth, Norfolk NR31 OJB Telephone 049358541

-
 PIESSA
 \square

 FORCLASSIFIED ADVERTISING RING

COLOUR VIDEO AND ELECTRONICS ENGINEERS

Varied work in small experienced team operating broadcast quality studios/copying service plus research and development

SENIOR VIDEO ENGINEER
 £6636-£7772 plus 1980 award To run development/maintenance sub-section, supporting video player network, broadcast colour recorders, E.N G units, etc.

ELECTRONIC ENGINEER
 £5268-£6381 plus 1980 award
 Digital and analogue skills for new equipment development and some maintenance work.

Forms and details from: Personnel Officer, Brighton Polytechnic, Moulsecoomb, Brighton BN2 4AT. Tel. (0273) 693655. Closing date: 10 October, 1980.
(684)

MANACEMENT \& EXECUTIVE SELECTION
 telephone 01-6379611

JUNIOR \& EXPERIENCED COMPUTER ENGINEERS

Join a successful, progressive company and reap the benefits. Engineers with 1-6 years computer maintenance experience are required in many UK regions. Salaries £7K - £12K + car. Interested?
Call Howard Wynne or Peter Gorton today!
Suite 201/6 Albany House
324 Regent Street London W1
MANACEWENT\&
(682) EXECUTIVESELECTION

```
THE PAPUA NEW GUINEA
UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF ELECTRICAL
    AND COMMUNICATION
        ENGINEERING
        SENIOR
        TECHNICAL
INSTRUCTORS 1/2
```

TELECOMMUNICA-
TIONS
Applicants should have practical ex-
perience in telecommunications, T.V.
or broadcast engineering, and teaching experience at technician or echnician/engineer level.
Salary: K12,810 or K 14, 660 (Kina 1 $=$ Stg. 0.6262)
The initial contract will be for 3 years. Other benefits include a gratuity of 24\% taxed at 2%, appointment repatriation and leaves fares for the staff member and family after 18 months of service, settling in and out llowance, six weeks paid leave per ear, education fares and assistance owards school fees, free housing Salary continuation and medical benefit schemes are available.
Detailed applications (two copies) with curriculum vitae, together with the names and addresses of three referees, should be received by the Registrar Papua New Guinea Univer sity of Technology, P.O. Box 793 Lae, Papua New Guinea by 15 October 1980. Applicants resident in the U.K. should also send one copy of application to the Association of Commonwealth Universities (Appts) 36 Gordon Square. London WCIH OPF.

OXFORD UNIVERSITY

DEPARTMENT OF ATMOSPHERIC PHYSICS

ELECTRONICS TECHNICIAN

A vacancy exists for an electronics technician (grade 5) to work on the construction, testing and maintenance of equipment used in the Department's space research programme The successtul applicant will become part ol a small, energetic group involved in developing scientific instruments and launching planets. Training will probes to the necessary, to young persons with suitable ackgrounds. The salary scale is currently £4776. 55777 p Applications, giving details of qualifications and experience, and the names of two referees, should be sent to Or. F. W. Taylor, Dept. of Atmospheric Physics, Clarendon Laboratory, Oxford OX1 3 PU .

DIGITAL EXPERIENCE?
FIELD, SUPPORT AND PRODUCTION. VACANCIES IN COMPUTERS, NC, COMMS, MEDICAL, VIDEO, ETC.
Fore free registration ring 01-464 7714 ext. 502

EECTRONICS RECRUITMENT SERVICE Theh ROAD. LOUGFTON, ESSEX
$01-502$ 1589/01-464 7714. EXT. 502

HF/VHF Radio

Substantial benefits

A highly successful company on the South Coast is seeking high calibre, commercially oriented, Graduate Electronic Engineers to form the nucleus of a new team involved in development work on an exciting new generation of tactical radio communications equipment.

The standards are high but then so are the rewards. In particular we are looking for the following men or women.

CHIEF ENGINEER

A position that combines technical expertise with considerable managerial skills, in leading and directing a team of Design Engineers working with the most sophisticated techniques in radio communications applying advanced integrated circuit technology. Candidates must be honours graduates with a number of years post graduate development experience.

TECHNOLOGY SPECIALIST

Reporting to the Chief Engineer you should be an Electronics graduate with a minimum of six years experience of circuit design with a wide ranging knowledge of modem semi-conductor and thick film IC's, preferably covering both RF and digital applications.

SYSTEMS CO-ORDINATOR

Co-ordinating and preparing lechnical proposals, specifications and tender bids for new development programmes, this position calls for considerable communication skills and commercial acumen. Applicants should be Electronics graduates with at least 10 years relevant experience.

Salaries of up to $£ 10,500$ and beyond are offered plus an excellent benefits package including BUPA membership and generous relocation assistance. Opportunities for further advancement are very good indeed. Telephone Rod Evans.

Harrison Cowley Executive Selection

35 Queen Square, Bristol BSI 4LU.Tel. 0272213151 (24 hr. answering service).

The Institut for Radio Astronomy in the Millimeter Wavelengths (IRAM) is interested in employing

RADIO FREQUENCY ENGINEERS
 (VC12/JC)
 and
 TECHNICIANS
 (VC13/JC)

to work at Grenoble (France) on intermediate frequency systems (up to 2 GHz) for fitter and correlator spectrometers.

Candidates with relevant experience should send a résumé by 30 September, 1980, to:

INSTITUT DE RADIO ASTRONOMIE MILLIMETRIQUE, (I.R.A.M.), Administration, B.P. 391, 38017 GRENOBLE CEDEX, Frnace.

LEEDS CITY COUNCIL

Loeds Polytechnic - School of Humanities \& Contemporary Studies

SENIOR TECHNICIAN (Ref. 150/2)

T3/4£4581-£5784 (plus technician qualification allowance).
Responsible for the care and operation of two psychology laboratories. Duties will include the design, construction, repair and maintenance of electronic and laboratory equipment
Ideally applicants might hold a City \& Guilds Technician Certificate in Electronics or equivalent qualification, atthough relevant practical experience is equally important, and design and general engineering abilities are desirable.

Application forms, quoting reference number, from the Administrative Services Officer, Leeds Polytechnic, Calverley Street, Leeds LS 1 ZHE.

Develop your Electronics experience

In atrainingrole

If you have sound up-to-date electronics engineering experience, plus an HNC or equivalent qualification and an ability to communicate what you know clearly and effectively, then a job as a Technical Instructor in our newly established Training School in
Borehamwood, Herts might well appeal to you.

We're a top name in the development and manufacture of highly advanced avionics equipment and we regard the training function as particularly important in preparing our personnel to face the challenges of this rapidly expanding technology in the 80 's.

As a member of our Training team
you'll be developing and preparing courses; giving instruction and demonstrating techniques to a wide range of staff from junior craft apprentices to professional engineers.

We can offer you a good salary, attractive benefits and first-class opportunities to develop your career in this highly progressive company.

Write with details of your background which need not necessarily include experience of training, to Chris Hill at Marconi Avionics Limited, Elstree Way, Borehamwood, Herts. Or telephone 01-207 3455 any time and we'll send you more information. Quote reference MA 80/47.

ELECTRONICS TECHNICIAN

Grade 5 or 6
required for the Department of Physiology to be responsible for the design and construction of prototype apparatus and the servicing of a wide range of electronic instruments for both research and teaching in the Medical Faculty. Good electronic background and qualifications (at least O.N.C. or equivalent) essential. Some experience in medical or biological field preferable though not essenrising to $£ 6357$ p a (inclusive) according to rising to $£ 6357$ p.a. (inclusive) according to
qualifications and experience with possibility of the higher grade 6 salary on scale £6258 p.a. rising to $£ 7323$ p.a. (inclusive) for suitable applicant possessing higher qualifications and experience. Five weeks' annual holiday. Contributory pension scheme, Apply in writing with full details to The Head Clerk, Ref: 221796 , King s College, London WC2R 2LS.
(675)

GLOOM RECESSION UNEMPLOYMENT

HOW DOES IT AFFECT THE AVERAGE ELECTRONIC ENGINEER?

Our placements show that your salaries are 30% higher than they were this time last year However, employers do pick and choose - it is definitely a buyer's market

CURRENT VACANCIES INCLUDE

SENIOR DESIGN ENGINEER to head up a small team in design consultancy Good degree, lots of microprocessor hardware/software experience. Knowledge of telecommunications an advantage. To $£ 11,000+$ car.
MICROWAVE ENGINEERS - always at a premium. Salaries up to $£ 12,000$ Greater London, South Coast, Berkshire.
DESIGN ENGINEERS. Good knowledge of computer architecture either DEC. IBM or Zilog who wish to work on data communications, pattern recognition and image processing. Surrey. To $£ 13.000$.
DESIGN ENGINEERS for real-time automotive control system. Very high technology - dynamic company. West Country to $£ 8,500$
YOUNG DESIGN DEVELOPMENTENGINEERS for a wide range of medical equipment. Software knowledge desirable Cambridgeshire. Good salaries. COMPUTER ENGINEERS - vacancies throughout U.K. in field service COMPUTER ENGINEERS - vacancies throughout U.K. in field service CMOS, LSI, THICK FILM, THIN FILM BI-POLAMIC DESIGNERS, CMOS, LSI, THICK FILM, THIN FILM Scotland, West Country and South Coast - to $£ 15,000$.
TEST ENGINEERS for wide range of data acquisition equipment includingdigital videoproducts, i.e. frame stores, synchronous standard converters and real time picture manipulators. Berkshire. Good salary.
COMMISSIONING/TEST ENGINEERS - data transmission equipment. Duties include testing, configuration of installation and fault finding on customer specials. Berkshire. Salary $£ 7,200$
COMPUTER ENGINEERS - vacancies throughout U.K. in field service COMPUTER ENGINEERS - vacancies throughout U.K. in

For further details, please telephone

SAUDI ARABIA

Major electronic and electromechanical companies require for their affiliated company in Saudi Arabia.

ENGINEERS AND TECHNICIANS

to maintain professional colour television-equipment
Candidates should have 5 to 12 years' experience in any or all of the following fields:

- TV Transmitters
- Studio Equipment (Cameras, Film Scanners etc.)
- Radio Links
- Audio Equipment

Competitive remuneration. Accommodation provided
Please send $\bar{C} . V$. to:
R. Zeenny, SAEMCO, 3rd Floor, 55 Piccadilly, London W1V 9AA, UK

BROADCAST ENGINEERS, $£ 16,000$ neg. Permanent positions overseas. Tax free salaries, first class accommodation and conditions. Apply: SPS EXECUTIVES (Ret 1726), Recruitment Consultanis, Delme Court, West Street, Farephone (0392) 235811/236857. (597

MARINE ELECTRONICS ENGINEER able to deal with all aspects of instiallation and repair within this wide range of equipment. Must live
in London. previous experience. Telesonic M.arine Ltd, $60 / 62$ Bruns. wick Centre, London WC1, 01.837 4106. (622
CHELSEA COLLEGE
University of London
DEPARTMENT OF ELECTRONICS
MICROPROCESSOR
TECHNICIAN
ENGINEER
GRADE 6
required for new Microprocessor Develop-
ment Unit providing a design and applica-
tions service to teaching and research.
Experience essential in both hardware and
softare.
Salary scale (to be reviewed 1st October
1980) £6258- $£ 7323$ p.a. inclusive
Generous holidays.
Further particulars and application form
from: Mr. M. E. Cane (MP6). Chelsea
College. Putton Place, London SW6 5PR.
(665)
MEDICAL
PHYSICS
TECHNICIAN III
(Clinical Measurement Department
Sulary: £5003 p.a.- £6344 p.a.
The duties include the servicing, construc-
tion and modification of a wide range of
medical electronic equipment and applicants
medical electronic equipment and applicants
will need experience of both analogue and
digital circuit design.
We would welcome informal visits to the
Department, and application form and job
description are available from Mrs. R
Sutton, Personnel Officer, The Middlesex
Hospital, Mortimer Street, London W1. Tel:
01.636 8333, ext. 7462
(662)

Nuffield Institute for Medical Research University of Oxford (on John Radcliffe Hospital site)

medical physics

 TECHNICIAN IVThe post involves assistance in the develop. ment, construction and maintenance of electronic equipment for medical research Applicants should have at least 2 years ${ }^{\circ}$ previous experience and possess either 2
passes at GCE A level in appropriate science subjects, or equivalent qualification, or a recognised trade apprenticeship

Salary range £3882-£5106.
Applications, stating age, qualifications and experience and giving the names and addresses of two referees, should be sent to: The Administrator, Nuffield Institute for Medical Research, Headley Way, Heading-
ton, Oxford 0×3 9DS.
(651)

TOP JOBS IN ELECTRONICS

Posts in Computers, Medical, Comms, etc. ONC to Ph.D. Free service.
Phone or write: BUREAUTECH, AGY, 46 SELVAGE LANE LONDON, NW7. 01-906 0251.

A hobbylike yours pays...

Are you an electronics enthusiast, living in the Herts area? Time to put your skill and knowledge to work for you! As a leading company in office equipment, mainly plain paper copiers and facsimile transceivers, we need more electronics engineer technicians to help with the repair, testing and maintenance of equipment.

And how...

* We have much to offer you Attractive working conditions. Large, light, clean and airy workshops, set in open spaces.
* Friendly atmosphere; you'll be part of a close-knit group.
* We're confident, profitable. We're offering secure work.
* Full training given - and of a kind that'll help your career.
* We're expanding too, with 8 new products under development. More job variety for you.
* Eamings including paid overtime - up to $£ 5,750$, reviewed again for January. Company benefits include LVs, free Private Patients Plan, 4 weeks annual holiday, company pension scheme.

Interested? Then phone me, Bill Stratton on 01-2072700. Or write to me with brief work details at: Dept 33 Kalle Infotec Ltd., Stirling Way; Barnet By-pass, Borehamwood, Hertfordshire.

Part of the international Hoechst organisation

ELECTRONIC OPPORTUNITIES £4,500-£15,000
 Microprocessors - Minicomputers -

Digital - Analogue - RF - Audio
Where does your skill and interest lie?

Design? Test? Production? Sales? Service? Systems? or perhaps Software?

* Our clients are drawn from all sectors of industry:

There are opportunities at all levels from Technician to Manager

* Most UK locations and some Overseas
* Make your first call count - Contact MIKE GERNAT on 076-384-676/7

ELECTRONIC COMPUTER AND MANAGEMENT APPOINTMENTS LTD
148-150 High St. Barkway Royston Herts SG8 8EG

Professional Careers in Electronics

All the others are measured by us...

At Marconi Instruments we ensure that the very best of innovative design is used on our range of communications test instruments and A.T.E. We have a number of interesting opportunities in our Design, Production and Service Departments and we can offer attractive salaries, productivity bonus, pension and sick pay schemes together with help over relocation. If you are interested to hear more, please fill in the following details:-

Return this coupon to John Prodger, Marconi Instruments Limited, FREEPOST. St. Albans, Herts, AL4 0BR. Tel: St Albans 59292
instruments

TECHNICIAN/ STUDIO ENGINEER

an established $\mathbf{W}_{\text {EST }} \mathbf{E}_{\text {ND }} \mathbf{A}$ udio $\mathbf{V}_{\text {ISUal prod- }}$

uction Company requires an energetic young person to take responsibility for all the technical aspects of its operations. The successful candidate will have an enthusiastic interest and knowledge of electronics and its applications. Duties will include operating and maintaining a small recording studio, working with producers to assemble AV soundtracks operating AV equipment in house and on road shows, and maintaining audio and projection equipment.

The successful candidate will have several years' experience in a similar or related field, with a broad based technical knowledge. Some in house training may be instigated if it is considered necessary to ensure that the successful applicant is fully equipped to cope with all aspects of the job. He/she will posses a current driving licence, and will be expected to become a key member of a small but highly motivated team providing a high level of client service.

Salary by negotiation plus bonus scheme. TELEPHONE 01-734 3733 FOR APPLICATION FORM
(668)

Imperial War Museum London

Audio Technician

£7115-£7915

The Department of Sound Records is a National Archive for sound recordings relating to war in the 20th century
This is an opportunity for an experienced technician to contribute to the work of the Department by taking charge of a modern professional Sound Suite incorporating Leevers-Rich E200 and Revox tape machines, disc reproducers, a Neve BCM 10/2 mixing desk and a wide range of ancillary equipment and facilities. Work will involve carrying out a wide range of transfer operations, some location recording, editing, control of public listing facilities and servicing and maintenance on all the Department's audio equipment.

Candidates should preferably have an ONC, C\&G, TEC/SCOTEC or equivalent qualification in Engineering or other relevant subject. They must have an aggregate of at least 8 years' recognised training (e.g. apprenticeships) and experience (which may include up to 3 years' relevant fuld-time study), and be experienced audio equipment technicians. Ex-Service personnel who have had suitable training and at least 7 years' appropriate service (as Staff Sergeant or equivalent) will also be considered.

Salary within the range $£ 7,115-£ 7,915$ according to experience. Non-contributory pension scheme.
For further details and an application form (to be returned by 6 November, 1980), write to Civil Service Commission, Alencon Link, Basingstoke, Hants. RG21 1 JB, or telephone Basingstoke (0256) 68551 (answering service operates outside office hours). Please quote Ref. $\mathrm{T} / 5434$.

Technicians in Communications

GCHO We are the Government

 Communications Headquarters, based at Cheltenham. Our interest is R \& D in all types of modern radio communications - HF to satellite - and their security.THE JOB All aspects of technician support to an unparalleled range of communications equipment, much of it at the forefront of current technology.
LOCATION Sites at Cheltenham in the very attractive Cotswolds and elsewhere in the UK; ofportunities for service abroad.
PAY Competitive rates, reviewed regularly. Relevant experience may count towards increased starting pay. Promotion prospects.
TRAINING We encourage you to acquire new skills and experience.
QUALIFICATIONS You should have a TEC Certificate in Telecommunications, or acceptable equivalent, plus practical experience. HOW TO APPLY For full details on this and information on our special scheme for those lacking practical experience, write now to Robby Robinson, Recruitment Office, GCHQ, Oakley, Priors Road, Cheltenham, Glos. GL52 5AJ. or ring 0242-21491 ext 2269.

ONE IN A MILLION?
 Among the million or so leaving school or university this year there is a chance that one - perhaps two - is destined to make a significant development in audio.
 That person's first decision might well be to join QUAD in Huntingdon At school, he or she will have realised that amplifier design is not just a matter of having a listen or a fiddle with standard circuits and their variations. Later will have come an adolescent stage of great discoveries. "Increase the rise time to eliminate TIM". "Regulate the power supply for better imaging"
 Following on from such childish things will have come an ability to distinguish between the characteristic impedance of the medium and the third row of the dress circle and between peak flux density and the rather gooey substance fed by spoon to small children. He or she will, nevertheless, be sufficiently down to earth to know that one newton is about the weight of the average apple.
 1 in 10^{6} ?
 Well, drop us a line anyway
 Mr. P. J. Walker
 THE ACOUSTICAL MANUFACTURING COMPANY LIMITED

30 St. Peters Road ${ }_{\mathbf{y}}$ Huntingdon, Cambs. PE18 7DB
(403)

Radio Communications Electronics Engineers and Software Designers

Mid-Sussex-S.W. London

Salaries up to $£ 8,000$

To join our expanding R\&D Laboratories covering a wide range of R.F. spectrum, from L.F. to V.H.F. Equipments include transmitters and receivers for marine- and land-based use, radio navaids and radio monitoring remote computer-controlled systems.
Electronics Engineers should have experience in transmitter or recéiver design, analogue or digital circuit design, microprocessor applications. Software Designers should be experienced Programmers with an interest in control, signal processing or navigational software.
Attractive salaries are complemented by excellent prospects and generous benefits
Contact: David Bird, Redifon Telecommunications Limited, Broomhill Road, Wandsworth, London, S.W.18. Phone: 01-874 7281 (reverse charges).

Electronics Technicians

Petty-Ray Geophysical Division of Geosource is one of the leading Companies in the field of oil exploration and due to our ever increasing workload require single personnel, in the age range $21-25$, who are looking for a varied and interesting career working overseas.
Youshould beeducated to HNC/ONC in Electronics orC\&GRadio and TV Technician level and on appointment you will be assigned to one of ourfield crews either in Africa or the Middle East for on the job training in the operation and
maintenance of digital seismic recording equipment. Candidates must be in possession of a current drivinglicence.
We offer a good starting salary which is paid NET, food and accommodation will be provided and restleaves are generous. If you would like to have more information about. these positions please write, giving brief career details, to:- The Personnel Officer, Petty-Ray Geophysical Division of Geosource, 3-5 The Grove, Slough, Berkshire SL1 1QG.

```
TESTERS TEST TECHNICIANS, TESTERS TEST TECHNICIANS, you're really worth in London working for a World iLeader in Radio \& Telecommunications. Phone Len Porter on 01-874 7281, or write: REDTFON TELECOMMUNICATIONS Ltd., Broomhill Road, Wandsworth, London, SW18.
```


ARTICLES FOR SALE

LAB CLEARANCE: Signal Generators; Bridges; Waveform, transistor analysers; calibrators; standards; miliivoltmeters: dynamometers; KW meters; oscilloscopes; recorders; Thermal, sweep. low distortion true RMS, audio Fll, deviation. Tel. 040-3762s6.

ENCAPSULATING, coils, transformers, components, degassing, siliwax casting for brass, bronze, silver, etc. Impregnating coils, transver, etc. Impregnating coils, trans-
formers, components. Vacuum equipment low cost, used and new. Also for CRT regunning met allising. Research \& Developmēnt. Barratts, Mayo Road, Croydon, CRO 2QP. 01-684 9917. (9678
CLEARANCE PARCELS: Transistors,
resistors, boards, hardware, 10lbs only £5.80! 1,000 Resistors £4.25, 500 Capacitors £3.75. BC 108, BC $171, \mathrm{BC} 204, \mathrm{BC} 230,2 \mathrm{~N} \quad 5061$, CV7497 Transistors, $10-70 \mathrm{p}, 100$. £5.80. $2 N$
S.a.e. lists: W V E
10 S.a.e. lists: W.V.E. (3). 15 High Street, Lydney, Glos.

Radio Communications Engineers

Are you really getting the best deal?

Our client is in the market for HF/VHF radio engineers who are at, or close to the top of their particular company's ladder. Men and women with foresight, flair and strong commercial awareness who know they can make a major contribution towards the advancement of communications technology.

The Company, which is based on the South Coast, is

BROADCASTING ENGINEERS Middle East £10-£18000 Tax Free

A major European telecommunications company is currently undertaking the construction, commissioning and operation of a comprehensive HF and MF broadcasting network based on multi-megawatt MF transmitters and HF or microwave programme and telecommunication links.

They require several grades of Broadcasting Engineers with qualifications ranging from ONC/C \& G to degree level for operations and maintenance work on a new station.

Experienced in radio engineering, broadcasting, manufacture and installation or HM Forces communication is necessary.

Benefits include 45 days leave, 4 return air fares (but you may come home every two months) life and accident cover, single furnished accommodation and short duration contracts if required.

Write enclosing your curriculum vitae quoting ref. FE1017 to: The Managing

Director:
 KTA

international recruitment
4-6 Oxford Street, Nottingham. Telephone: 060247634.
HE KITCHIN THOMPSON GROUPT (669)

ARTICLES FOR SALE

TO MANUFACTURERS, WHOLESALERS \&

 BULK BUYERS ONLYLarge quantities of Radio, T.V. and Electronic Compinents.
RESISTORS CARBON \& C/F $1 / 8,1 / 4,1 / 2,1 / 3.1$ Watt from 1 ohm to 10 meg
RESISTORS WIREWOUND. $1 \frac{1}{2}, 2,3,5,10,14,25$ Watt
CAPACITORS. Silver mica, Polystyrene, Polyester, Disc Ceramics, Metalamite, C280, etc.
Convergence Pots, Slider Pots, Electrolytic condensors. Can Types, Axial, Radial, etc
Transformers, chokes, hopts, tuners, speakers, cables, screened wires, connecting wires, screws, nuts, transistors, ICs, Diodes, etc., etc. All at Knockout prices. Come and pay us a visit. Telephone 4452713 , 4450749

BRÕADFIELDS \& MAYCODISPOSALS
21 Lodge Lane, N. Finchley, London, N.12. 5 mins, from Tally Ho Corner 99611

RACK MOUNTING CABINETS HIGHEST OUALITY 19"				
Ref	$\mathrm{Ht}^{\prime \prime}$	width"	Depth"	Price
PE	10	21	13	c10.00
$\underline{L 10}$	54	21	18	£20.00
π	64	25	26	E45.00
SL	71	25	26	¢50.00
ST	85	22	24	¢70.00
Racal cabinets for RA-17/117 E30.00 Uniframe, single E30.00				
Unitrame, double£40.00				
Over 60 types available from $12^{\prime \prime}$ to $90^{\prime \prime}$ high. Also twins, triples and consoles. Above are only a few types. Please send for full list.				

AUDIO AND INSTRUMENTATIONTAPE

 - RECORDER-REPRODUCERS * Ferrograph YD 2 track $1 / 4 / 4$ EMI RE-301 * Consolidated 38007 rrack $1 / 2^{41}$ * Plessey ID33 Digital Units. 7 track $1 /{ }^{\prime \prime}$ * Ampex fR-1100. 6 speeds. stereo $1 / a^{1 / 2}$ * Ampex FR600, 4 speeds, 7 track $1 / 2^{\prime \prime}$ - D.R.I. RC:I. 4 speeds. 4 tracks $1 / 9$

Prices of above $£ 70$ to $£ 500$
Aso Transport Decks only gvailable

cannot list - please send us your requirements. We can probably help - all enquiries answered.

All our remial equipmant te profeessional MOD quality

- Cars Flash testers $11 \ldots$.

Advance Signal
Bradiey CT 4718 VT Muiti Meters
Westrex Multi Cellular H.F. Lens Horns

- Racal MA 1350 A synthesisers

Racal MA 1350 A synthesisers
Plessey PR- 1556 filter Modulato

- Marconi HR-23 ISB Receivers
K.B. Discomatic Domestic Juke Boxe

SCA- 625 Mine Delectors in chests
Marconi TF/868 Universal Bridges
Hewlett Packard 400 H VIVM Meters
Hewlett Packard 211 A Sq. Wave Ger
Astrodata \& Ikor Meteorological Equi
lon Pump E.H.T. Power Supplies
Haynes D.W. 500W Cased Trans
Racal MA 1350 synthesisers
Tektronix 551 Scopes
Tektronix 555 Scopes
Teleonic VR2M Sweeps

- Hell Schriber RC-28
- Aerial Mutticouplers from

Hughes Memoscopess
Hf Receivers
Telefunken Surveillance Receiver
Helix Aerials $11^{\prime \prime}$ \& $18^{\prime \prime}$ and Reflectors
Textronix 543A Oscilloscopes
Textronix 545 A Oscilloscopes
Texronix 561 A Oscilloscopes

- Marconi TF 2200A Oscilloscopes
* Solatron 1016 Oscilloscopes £ 40.00
E. 60.00
.

On Mobile 80 (190.00 $6^{\prime \prime}$ closed. Mounted on 4 wheel drive Bedford Truck,
seff levelling, raised and lowered in 10 minutes tor servicing dish serials.

- Racal RA-17P Recerivers (new)
* Collins KWT 6 Trans mitter Recelvers

B \& K 2407 Electronic Voltmeter
Winston ""5" Band Spectrum Analysers
Airmec 352 Sweep Generators D
Advance Transistor Testers π - 1 S
Marconi TF 329 Magnification Meters
Marconi TF 801/D/1 AM Signal Generat
Ferranti 7.5 KVV Auto Voltage Regulators
Servomex 2 kw Auto regulators
125 ft . Lattice masts. $26^{\prime \prime}$ " sides

* 30h1. Lattice Masts. $15^{\prime \prime}$ sides
 Reporoders. 4 tracks $1 / 4 / 1$, 4 spent
 $\&$ I ransistorised
SE4/2B C.R.T.s

AVO CT 471A Elic.in 14.00 EMI R301 Tape hecorders Uniselete L Tape Recorders 4 Uft. Section 10 Bank 25 -way
* Multi-purpose Trollers with Jacks 19×17 Advance 3KVA CV Transformers
- Metal V.D.U Tables $30^{\prime \prime} \times 36^{\prime \prime}$ $£ 50.00$
$£ 29.00$
$\mathbf{8 3 . 5 0}$
圆
* Metal V.D.U Tables $30^{\prime \prime} \times 36^{\prime \prime} \times 30$

```
We have a quantity of Technical Manuals and
Perodicals of Electronic Equipment, not photostats.
Enquiries invited
```

* Data Eticiency Respoolers 240 v * Betling Lee 100 Amp interf
* Oscilloscope Trotleys from
* Racal MA 1978 pre-Selectors
* Raxk Mounting Operator Tables
* 75 t. Aluminium Lattice Masts, 20 in sides Raxal MA-175 L.S.B. Modulators (new) © E45.00 | * Racal RA 63 SSB Adaptors. new |
| :--- |
| | Hacal RA $29 B$ I.

Please add carriage and v.a.t. P. HARRIS

ORGANFORD, DORSET
BH16 6BR
(0202) 765051
(8981)

THE COMMISSIONERS OF NORTHERN LIGHTHOUSES REQUIRE
ASSISTANT RADIO ENGINEER
and

ASSISTANT ELECTRICAL ENGINEER

The posts are based in Edinburgh but entail some travelling throughout Scotland and the Isle of Man including offshore and distant islands.

Applicants, who should be under 35 years of age must be Chartered Engineers and corporate members of the Institution of Electrical Engineers, or Institution of Radio and Electronic Engineers or have passed examinations necessary for attaining such membership together with relevant experience.

The Assistant Radio Engineer will assist senior engineers and be involved in the acceptance, installation and maintenance of equipment including VHF links, radio beacons, radar beacons, remote control and monitoring and shipborne navigational aids

The Assistant Electrical Engineer will assist senior engineers with the design of control schemes and asociated equipment and the management of contracts from concept to final account.

Salary scale from $£ 7000$ per annum rising to $£ 8100$ by 5 annual increments with placing according to qualifications and experience. 4 weeks 2 days paid annual leave on commencement rising to 6 weeks by service related increments, plus 11 days Bank/ public Holiday. Sick pay and non-contributory pension scheme similar to Civil Service.

For application form and further particulars please write to the Personnel Officer, Northern Lighthouse Board, 84 George Street, Edinburgh EH2 3DA.

ARTICLES FOR SALE

LDAC PROBES

- High Performance Model 3300A for DTL, TTL or CMOS. 1 Meg. Input Impedance DC300 Khz . Protected against Reverse Polarity or Overvoltage. Complete with vinyl case and 16 -pin IC Clip. Full instructions £16 (£18.97 with VAT and Post). Also 3100A/ 3200A DC-10Mhz DLP50 DC-50MHz 10 Meg . Input Impedance. 10 nsec Detection. Audible waming against overvoltage or reversed connection.

Retail Stockist:
WATFORD ELECTRONICS LTD.
33 Cardiff Road Watford, Herts. (0923 37774)
Or direct from: J. H. Associates Ltd., The Maltings,

Sawbridgeworth, Herts. (0279732156)

Discounts for quantities
SAE for full data and prices (646)

DIGISCOPE DS2 LOGIC MONITORS

 £27.40. Leaflet: J. E. Sinclare \& Co, ${ }_{3 R E} 2$ Plumstead Common Road, ${ }_{6} 661$JASMINE Teletext decoder, perfect working order, f65. Wireless World Telextext decoder full facilities with key pad and case, $£ 86$. - Tel 01-250 0626 .
COMP-80 computer 3 K ROM. 5 k RAM Graphics and UHE modulator fitted, $£ 190$. - Tel Thurso 3652.

CLEARANCE SALE. Oscilloscopes signal generators, transformers and variable transformers, cables, adaptors and many other items. Everything has to be sold. Sale starts Monday, September 29, and finishes Saturday, October 11. Personal callers only. No list of goods as such. The stores are at rear of the premises 550 Kingston Road, London, SW20 8DR. Entrance from
 relephone 5432515
BUILD YOUR OWN LASERS. Full plans and instructions on how to construct three fully working lasers: Pulsed dye, Argon and the cost of a commercially prothe cost of a commercially proSend $£ 4.95$ plus 25 p P\&P to A. V. Services, 10 Agecroft. Road West, Servites,
Prestwich, Mgecroft. Road
Wanchester
M25
$8 R L$ Also Laser Scanning Systems. Send for literature.

WIRELESS WORLD, 1973 to date, seven missing. Offers. J. Pawson; 104 Mosside Drive, Blackburn, W. Lothian.
ELECTRONIC IGNITION. Tested, unboxed, otherwise complete, $£ 3.50$ plus P\&P. Storrington 4830, after 6.30 pm .

1659
FOR SALE: TEK 585A and manuals $f 375$ ono, type M, plug in and manual $£ 75$ ono, equipment in ful working order, trolley included if wanted. Tel: 061-434 4670, after 6pm.
TEST EQUIPMENT. Audio \& R.F Signal Generators Grip Dip and S.W.R. Meters. Transistor Testers Reg. P.S.U. Send S.a.e., stating re fore Street, London N9 0PE. (282)

AGricultural riesearch council LETCOMBE LABORATORY

ELECTRONICS ENGINEER

required to develop research apparatus generally in support of the Laboratory's programme in plant and soil science.
The main duties at present involve the design, development, and construction of microprocessor systems for analysing, calculating and tabulating measurements recorded automatically or manually in the field and for controlling field and laboratory experiments.
Appointment as Professional and Technology Officer Grade II. Salary Scale $£ 7,000$ to $£ 8,100$. Non-contributory superannuation.
Qualifications required: Degree or equivalent in appropriate field with at least five years' recognised study or professional experience

Apply to the Secretary, Agricultural Research Council Letcombe Laboratory, Wantage, Oxfordshire, OX12 9JT, for further details and application form. Closing date: September 30, 1980. Quote ref. 80/5.

ARTICLES FOR SALE

Regional or Nationwide representation required for

RADIO COMMUNICATIONS EQUIPMENT

Importers of high quality radio communications equipment wish to establish representation with companies already in the field to promote and sell a range of sound reinforcement equipment with internationally-known name.
se reply to
Box No. 408, Chairles Sell Advertising Ltd., 14 St. Cross Street, London ECINBFQ.

(671)

US GOVERNMENT ELECTRONIC
SURPLUS. BUY at fraction of original cost. All infó needed to receive notices of direct mail sales. Send $\mathrm{f4}$ for air delivery, to Talex International, PO Box 19346, Wash DC 20036, USA.

TEST EQUIPMENT. Well-established trading company seeks new cusWe are burt suppliers of used elec. We are bulk suppliers of used electronic test equipment to the trade, bridges, scopes, sweepers, counters, PSUS, Polyscops, DVMs, etc. Whole or part parcels available. Carriage and shipping can be arranged. State your requirements. Terms $\begin{array}{ll}\text { state } \\ \text { negotiable. } & \text { requirements. } \\ \text { Also } & \text { interested in }\end{array}$ purchasing parcels of anything electronic, radio, etc, speedy quotations, and immediate cash settlement. COOKE INTERNATIONAL SERVICES, Ramalla House, Ancton Lane, Middleton-on-Sea. Bognor Regis, Sussex PO22 6NJ. Tel: 024-369 2849 .

CCTV EQUIPMENT FOR SALE. Full colour PAL SPG vision mixer, posneg telecine proc-amp, clamp. Various dist amps, video monitors, Wave-form generators, etc, unused PAL Wave-form monitor and vector scope. Phone 0783-863612, evenings.

THINKING OF RENTING

 A TELEPHONE ANSWERING MACHINE? THEN STOP!Did you know that for the equivalent of just one year's rental you could actually buy one outright?

For details write to:
Javal Supplies Ltd. (Dept. 2C), 120 Alexandra Road, Burton-on Trent, Staffs DE16 OJB or telephone (0283) 47427 any time.

ELECTRONIC TESTING \& FAULT DIAGNOSIS

by G. C. Loveday Price: $\mathbf{£ 5 . 5 0}$ DIGITAL TECHNIQUES \& SYSTEMS by D. C. Green. Price: $£ 5.50$ ELECTRONICS FAULT DIAGNOSIS by I. R. Sinclair. Price: $£ 3.50$ ELECTRONIC DESIGNER'S H/B by K. Hemingway Price: $£ 13.50$ HANDBOOK OF ELEC. TRONICS CALCULATIONS FOR ENGINEERS \& TECHNICIANS by M. Kāufman, Price: $£ 14.70$ H/B OF MICROCIRCUIT DESIGN \& APPLICATION by D. F. Stout. Price: $£ 19.20$ UNDERSTANDING MICROPROCESSORS by Texas Inst. Price: $£ 4.00$ INTRODUCTION TO MICROCOMPUTER PROGRAMMING by P. C. Sanderson. Price: $£ 4.50$ THE COMPLETE MICRO. COMPUTER SYSTEMS H/B by E. L. Safford. Price: $£ 8.25$ TOWERS' INTERNATIONAL TRANSISTOR SELECTOR by T. D. Towers, 1980. Price: $£ 10.50$
All prices include postage'
THE MODERN BOOK CO.
Specialist in Scientific \& Technical Books
19-21 PRAED STREET LONDON W2 1 NP

[^10]Closed Sat. 1 p.m

Classified

ARTICLES FOR SALE

TELETEXT, TV SPARES \& TESY EQUIPWENr. TELE'IEXT. Latest inn' external unit kit incl. Mullard vecoder 6101 VML and infra-red remote control £̌58, $\mathbf{p / p} £ 2.50$ (fururer detanls on request). Also NiK1 external unit kit incl. T'exas XMlı decoder, special offer price £168, p / p £と.50. Both kits incl. UHr modulator, and plug into ov set aerial socket. SPECIAL OFFER 'EXAS XMII Decoder, new and tested, limited quantity at ${ }^{\frac{1}{2}}$ price, (565) p/p for T1.40. Stab. power supply (5V) for Teletext decoders,
p / p £1. Thorn design XM11 interp / p £1. Thorn design XM11 interface unit, 1.80 p/p 80 p . NEW SAW FILTER IF AMP PL sound $\&$ (complete $£ 28.50$, p / p £1, COLOUK VAR \& CROSS HA'TCH GENERATOR KIT (MK4) PAL, UHF aerial input type. 8 vertical colour bars, type. B-Y, grey scale, etc. P / B controls £35. Batt holders £1.50 or stab. mains power supply kit 14.80 , Deluxe case $£ 5.20$ or alum. case $£ 2.90$, p / p £1.40. Built \& tested in De-luxe case (battery) £58, p/p £1.50. CROSS HATCH KFT UHF aerial input type also gives peak white \& black levels, batt. op. £11, $p / p 45 p$. Add-on GREY SCALE KI' $£ 2.90$, p/p 35p. De-luxe case £5.20. UHF SIGNAL STRENGTH METER KIT £17.50. Alum. case $£ 1.80$. De-luxe case $55.20, \mathrm{p} / \mathrm{p}$ £1.40. CRT TEST \& REACTIVATOR KIT for colour \& mono £22.80, p/p £1.70. THORN 9000 Touch Tune Remote control receiver unit plus transmitter handset $£ 16, ~ p / p$ f1.40. THORN
9000 Fascia incl. channel select. 9000 Fascia incl. channel select. indicator, set controls, speaker, £5.80, p/p £1.60. TV. TRANSTD. Tested, $\begin{aligned} & \text { E6.80, } \mathrm{p} / \mathrm{p} \\ & \text { BUSH SURPLUS } 1 F \\ & \text { PANELS. A816 }\end{aligned}$ BUSH SURPLUS IF PANELS. A816
£1.80, TV312 (single I.C.) $55.2718 /$

 85p. BUSH Panel Z904, incl. LOPT, EHT stick. Focus, etc., 18 in or $22 \mathrm{in}, £ 15$. $\begin{array}{llll}\text { p/p } & \text { E1.60. BUSH } 161 & \text { series TB } \\ \text { D }\end{array}$ $\begin{array}{ll}\text { panel A634 } \\ \text { colour TV Thyristor Power } & £ 3.80, \text { pupply }\end{array}$ colour p / p £1.40. GEC 2010 series TB panel $£ 1, p / p 90 \mathrm{p}$. GEC 2040 CDA panel $£ 4.50, \mathrm{p} / \mathrm{p}$ £1.20. PHILIPS. G6 S/S conv: panel $£ 2.50, \mathrm{p} / \mathrm{p}$ £1.20. G8 Decoder panels for spares $£ 1.80$, p / p £1.20. G9 Signal panels for small spares $£ 3.80$, p / p £1.20. THORN 3500 Line TB panel $£ 5, \mathrm{p} / \mathrm{p}$ f1. 3000 ex-rental panels IF, VIDEO, DECODER, £5, $\mathrm{p} / \mathrm{p} £ 1.20$, $8000 / 8500$ TB salv/spares £4.80, p/p £1. 9000 Line TB (incl. LOPT) salv/spares £7.50, p/p £1.60. COLOUR SCAN COILS (Mullard or Plessey) £6, p/p
$£ 1.80$. Yoke $£ 2.50$ p/p $£ 1$. Blue Lat £1.80. Yoke $£ 2.50$ p/p 1 . Ban Coils $75 \mathrm{p}, \mathrm{p} / \mathrm{p}$ 35p. Mono Scan Coils
(Thorn. Philips. Pye) £2.80. p/p 1. Thorn. Philips. Pye) £2.80. p/p $£ 1$.
VARICAP UHF TUNERS. Mullard VARICAP E7.80. ELC1043/05 55.50 . G.I. U321
£7.80. ELC1043/05 50.50.
Salv. (asstd)
$£ 1.50, \mathrm{p} / \mathrm{p}$
45 p. £3.50. Salv. (asstd) £1.50, p/p 45 p .
Varicap UHF/VHF ELC2000S $£ 8.50$, Bush (dual) $57.50, \mathrm{p} / \mathrm{p} 70 \mathrm{p}$. TOUCH pos) $£ 4.50$, p/p 80 p . VARICAP CONpos) $£ 4.50, p / p 80 p$. VARICAP CON
TROL UNITS 3 pos. $£ 1.20,4$ pòs. £1.50, 5 pos. £1.80, ${ }^{6}$ pos. $£ 1.80,6$ pos. special offer $£ 1, \mathrm{p} / \mathrm{p} 45 \mathrm{p}$. UHF transtd. Tuners (rotary) incl. s / m
 available, details on request). D1.50 Delay Line £2.50, p/p 50 p . Large selection of LOPTS, Triplers. Mains Droppers, and other spares for popular makes of colour $\&$ mono receivers. PLEASE ADD 15% VAT TO ALL PRICES. - MANUR SUPPLIES, 172 WEST END LANE. WEST HAMPSTEAD, LONDON. N.W.6. SHOP PREMLSES. Tel. 01794 8751. Easily accessible W. Hampstead Jubilee Tube \& Brit. Rail N. London (Richmond-Broag St.) and St. Pancras-Bedford. Buse Thousands of additional items not Thousands of additional items not normally advertised avaly all week shop premises. Open dadly all week, MAIL ORDEE: 64 GOLDERS MANOR MAIL ORDER: 64 GOLIERS MAN PLEASE ADD 15% VAT to all prices.

CAPACDTY AVATLABLE

SMALL EATCH productions wiring assembly to sample or drawings Specialist in printed circuits as sembly Rock Electronics, 42 Bis hopsfield. Harlow, Essex 027933018 (9094

TRADE BUYERS

J.P.R. DISTRIBUTORS

New trade counter is now open. We stock: Carbon film resistors from $£ 3.50$ per 1000. Rotary pots from 10p. Pre sets from $2 p$. Single cables from $£ 5$ pe Km . BSR decks from $£ 8.50$. Also, Elec trolytic \& polyester capacitors, switches indicators, plugs \& sockets, semicon ductors, chassis speakers
microphones, mains cables, etc., etc. 49 WADESON STREET, LONDON E 2 9DP
Tel: 01-980 1028/1029
Phone or call for quote on any

TIME?

MSF CLOCK is ALWAYS CORRECT - never gains or loses. self setting at switeton. 8 digits show Oate. Hours. Minurgs and Sacomds, larger aipil hours and
Minutes for gasy OUCK-GLAMCE time. auto GMT/GST and leap vear, also parallel BCO output and audio and leap waich can be recorded with commentary to show time on playpack. receives Rughy time signals, 1000Xm range. ABSOLUTE TIME, £54.BO.
GOKHz RuGBY RECEIVER, as in MSF. Clock: saria data and audio outpuis. built-in antenna. £15.70.

Each fun-to-build kit includes all parts printed circuit, case, postage etc. mo

Cambridge Kits, 45 /WK), Old School Lane, Milton, Cambridge
(645)

ICAPACITY AVAILABLE

BATCH PRODUCTION wiring and assembly to sample or drawings. McDeane Electricals 19b Station Parade, Ealing Common, London W5. Tel. 01-992 8976.

ELECTRONIC DESIGN SERVICE Immediate capacity avallable for crork PiC artwork etc Small batch and prototype production welcome and prototype production welcome MAIDSTONE, Kent. 0622-677916.
(9667

PCB ARTWORK DESIGN SERVICE with component notation masters and assembly drawings, PADS Electrical Ltd, $01-850$ Eltham SE9.
Southwood Road, New Southwood Road, New Eltham $\underset{(7905}{\text { SE }}$

COMPARE our charges, quality and turnround for printed board artworks, assembly, test and protoSharon Halfhide on Chelmsford 357935 or write to H.C.R. Artwork 357935 or write to H.C.R. Artwork

EQUIPMENT WANTED

TO ALL MANUFAGTURERS and wholesaleas in the electronic RADIO AND TV FIELD
 BROADFIELDS \&
 MAYCO DISPOSALS

will pay you top prices for any large stocks of
surplus or redundant components which you may wish to clear. We will call anywhere in the United Kingdom

21 LODGE LANE
NORTH FINCHLEY, LONDON N 12 8,JG Telephone Nos. 01-445 0749/445 2713 After of fice hours 9587624

989 T2A1 8.4TTOTOM
 FAST PCB PROTOTYPES
 SARME DAV DESPATEH
 Prototype epoxy giass printed circuit boards up to $250 \mathrm{~mm} \times 200 \mathrm{~mm}$ from your camera ready artwork.
 Up to $125 \mathrm{~mm} \times 100 \mathrm{~mm}-\mathbf{£ 1 8}+$ VAT per side etched only, drilling $£ 5+$ VAT p to $250 \mathrm{~mm} \times 200 \mathrm{~mm}-\mathbf{£ 2 4}+$ VAT per side etched only. drilling $£ 10$ +VAT
 Send your order with artwork, cheque and instructions-orders received by 10 a.m guaranteed despatched first class same day etched only (next day etched and drillco) or youif money refunded, subject to acceptance of ariwork

at
 AUSTERFIELD-CLARK RESEARCH. Tel. 048448016 42 Blackhouse Road, Huddersfield HD2 1AR (625)
 WW - 093 FOR FURTHER DETAILS

PRINTED CIRCUIT MANUFACTURE.

 Very fast, reliable service. Lowest prices. Prototypes welcome. Inhouse photography. Phone 06474-573 for nstant quote or write to AKTRONICS Ltd., $42 / 44$ Ford Street, Moretonhampstead, Devon.(9857

Abstract

DESIGN SERVICE. Electronic De. slgn Development and Production Service available in Digital and Analogue Instruments, KF Transmitters and Recelvers for control of any function at any range, Tele metery, ideo Transmitters and Monitors, Motorsed Pan and Tit Heads etc. Suppliers to the industry for 16 years. Phone or write Mr. sey Road Ashford, Middlesex. Shone Ashford 53661 . Mider (8341

ARTICLES WANTED

WANTED: Recording equipment of all ages and varieties. (California, U.S.A.). Tel. (415) 232-7933. . (9814

STORAGE SPACE is expensive, why store redundant and obsolete equipment? For fast and efficient clearance of all test gear, power supplies, PC boards, components, etc., regardless of condition or quantities. Call 01-771 9413. (8209

SMALL BATCH PCB's produced from your artwork. Also DIALS. PANELS, LABELS. Camera work undertaken. FAST TURNAROURD. - Details: Winston Promotions, Tel. $01-405 \quad 4127 / 0960$. ECIN (8794

ELECTRONIC DESIGN SERVICES. MICROPROCESSOR HARDWARE and SOFTWARE design facilities have now been added to our established expertise and comprehensive test facilities previously available to you for ANALOGUE and COMMUNICATIONS designs. - For fastest results please phone Mr. Anderson, Andertronics Ltd, Ridgeway, Hog's Back, Seale (nr. Farnham), Surrey 02518-2639.
(275.)
P.C.B. PROTOTYPE and small batch production. Design layout assem. vice. Wye Valley Electronics 15 High St Lydney Glos Tel: 15 High St, Lydney, Glos. Tel: Dean

PRINTED CIRCUIT BOARDS. Single/ double sided from circuit diagrams to assembled and tested boards. Any intermediate stages at manufacture undertaken. Quick turnround on prototypes. Phone Maldon (0621) 741560 or write to Mayland Electronics, 4 The Drive, Maylandsea, Chelmsford, Essex CM3 6AB

CIRCOLEC

THE COMPLETE ELECTRONIC MANUFACTURING SERVICE
Let us realise all or any part of your project from prototypes to production, from artwork design and component sourcing, through assembly and test to final quality assurance, packing and delivery. We also provide a test, repair and modification service to suit your individual requirement.
For competitive prices and fast turnaround contact:
CIRCOLEC', 1 Franciscan Road, Tooting, S.W. 17
Telephone: 01-767 1233
(544)

TUBE REBUILDING PLANTS PROCESS, all TV tubes can be seen in operation. They can be installed internationally at the best price 554 Statford Boad, Birmingham B11 AAL.

DESIGN AND DEVELOPMENT. Analogue, digital, RF and microwave circuit and system design. Also PCB design, mechancal design and prototype/small batch production Unit Adenmore Limited, 103 Liscombe Bracknell Berks. Tel: Bracknell 52023. (656

FOR ELECTRONIC INSTRUMENT SERVICE ECTRONIC INSTRUMENT ORION TECHNICAL SERVICES LTD. ON ST ALBAN'S 51639 FOR DETAILS. ALBAN'S 51639 FOR
A.D.S. LTD. iAnalog \& Digital Specialists Ltd.), 199 a Dunstable Road, Luton, Beds LU1 1DD (Luton) 31732. Our highly qualified design team offers you a comprehensive prototype electronic design service. Why not write to us with your problem? We guarantee an imme diate response.

RADIO TELEPHONE SALES AND SERVICE. Used equipment includSERVICE. Used equipment includSalisbury ad Blandford Dóset Tel: (0258) , Blandford

EXPERIENCED COMMERCIAL ART ILLUSTRATION CONSULTANCY Speciatising in technical manuals
and pu'blications, instructional literature, diagrams and technical illustrating. A professional service for effective communicating. Bro chure available. Box WW 673. 673

CLASSIFIED ADVERTISEMENTS Use this Form for your Sales and Wants

To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, SEI 9LU PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

- Rate £2 PER LINE. Average six words per line. Minimum THREE lines.
- Name and address to be included in charge if used in advertisement.
- Box No. Allow two words plus $£ 1$
- Cheques etc., payable to "Wireless World" and cross " \& Co.

NAME...
ADDRESS \qquad
\qquad
\qquad
\square

Here's why you should buy an I.C.E. instead of just any multimeter

* Best Value for money.

*Used by professional engineers, D.I.Y. enthusiasts, hobbyists, service engineers.

* World-wide proven reliability.
* Low servicing costs.
* 20K/volt sensitivity and high accuracy.
* Large mirror scale meter.
* Fully protected against overload.
*Large range of inexpensive accessories.
* 12 month warranty, backed by a full after sales service at E.B. Sole U.K. Distributors Prices from $£ 16.60-£ 32.00+$ VAT Send for full colour leaflet and prices on whole range including accessories.

- E ELECTRONIC BROKERS LIMITED

49-53 Plancras Road, London NW1 $20 B$. Tel: 01-837 7781. Telex: 298694.

INDEX TO ADVERTISERS OCTOBER

Appointments Vacant Advertisements appear on pages 131-143

PAGE
PAGE
PAGE

Acoustical Mfg	17
A.E.L. Crystals	106
Ambit International	7,15
Antex	63
Apex	14
Airamco	26
Amateur Radio Assoc.	23
ASA	94
Aspen Electronics Ltd	32
Audio Elec	4,28
Austerfield Clark	
Bach-Simpson	75
Bamber, B. Electronics	107
Bang \& Olufsen	28
Barnet Metal	112
Barrie Electronics Ltd	105
Bell \& Howell	90
BIB Hi-Fi	Cover iv
Bi-Pak Semiconductors Ltd	99
Breadboard 80	101
British National Radio	104
Carston Electronics Ltd	10,11
Catronics	105
Chiltmead Ltd	124
Codespeed Elec	122
Colomor	116
Compec UK	
Computer Appreciation	106
Consumers Assoc.	Loose insert
Continental Specialities	29
Crimson Elektrik	18
Davies, A. R.	110
Display Electronics	123
Dondene	112
Edicron	18
Electronic Brokers Ltd	
.... 23, 25, 117, 118, 119, 12	127, 129, 144
Electro-Tech Comps Ltd	101
Eraser Int']	22
Faircrest Eng	108
Farnell Instruments Ltd	Readers card
Field Tech	12

OVERSEAS ADVERTISEMENT

AGENTS
France \& Belgium: Norbert Hellin, 50 Rue de Chemin Veat. F-9100, Boulogne, Paris
Hungary: Mrs Edit, Bajusz, Hungexpo Advertising Agency. Budapest XIV, Varosliget
Telephone: 225008 - Telex: Budapest 22-4525
Italy: Sig C. Epis. Etas.Kompass, S.p.a. - Servizio Estero. Via
Mantegna 6, 20154 Milan
Telephone: 347051 - Telex: 37342 Kompass.

GEC M-O-Valve	16
GMT Electronics	29
Guide to Broadcasting Stations	127
Hameg	20
Hall Electric Ltd.	
Happy Memories	94
Harris Electronics (London) Ltd	22
Harrison Brothers	92
Hart Electronics	115
Hi-Fi Y/Book	106
Hilomast Ltd.	
House of Instruments	
I.L.P. Electronics Ltd	96 \& 97
ILP Transformers Ltd	110
Integrex Ltd	102
Interface Comps	
Jackson Music	
Keithley Insts.	
Kelsey Acoustics	
KGM Electronics	
Kirkham Amplifier	
Langrex	
Lascar Electronics	
Levell Electronics Ltd	
Lowe Electronics Ltd	
Maclin-Zand Elec. Ltd	
Mascot Elec	
Maplin Electronic Supplies	Cover iii
Marshall, A. \& Sons (London) Ltd.	108
MCP Electronics	8,19
Microcircuits Ltd.	
Microtime	
Mills, W.	105
Milward, G. F.	110
Minim Audio	30
MTL Microtesting	
Mullard	
Multicore Solders Ltd.	iv
Mura Electronics	
MWM Co.	
Newtronics	

Guide to Broadcasting Stations 127
Hameg
Hall Electric Ltd.
Happy Memories
lectronics (London) Ltd
harrison Brothers
Hi-Fi Y/Book
Hilomast Ltd.
House of Instruments
I.L.P. Electronics Ltd

ILP Transformers Ltd
Interface Comps
110
110

Jackson Music 116
Keithley Insts.
Kelsey Acoustics
Kirkham Amplifier
Langrex
OMB Electronics
Orion 33
P.B.R.A. Ltd.

PM Components \cdot.................................... 25
Powertran Electronics $\quad 91,93,95$
Practical Computing 122
Quantum Electronics
Radio Components Specialists 103
Ralfe, P. F. 114
R.C.S. Electronics 105

Rediffusion Resitronics
Royal Navy
32
Roxborough .. 126
RST Valves 100

Sagin (Circuit Services) 108
Samsons (Electronics) Ltd. 114
Scopex Instruments Ltd. 113
Service Trading 109
Shure Electronics 34
Sinclair Radionics
Sonic Radionics
Sonic Sound Audio
Special Products Ltd. 107
Standard Pneumatic .. 127
Strumech Eng'g . 12
Strutt Electrical \& MSH Ltd. 92
Surrey Electronics Ltd. 108
Swanley Electronics Ltd.
110

Technomatic

Teleradio Elec.

Valradio Ltd. 16
Vero Speed
16
Vero Systems Litd.
VHS Committ
30, 31

Zaerix Elec 104

[^11][^12][^13]

Opens Tuesday 16th September, 1980

 Opening Hours 9.45 am to 5.30 pm Tuesday to Saturday (Closed Monday)
-

Stereo Cassette Tape Deck
Utilising the superb JVC deck made for Tandberg and a ready-made pre-aligned, tested and guaranteed module, this cassette deck has a superb sound and a high quality specification. We've got everything you need (except cabinet) including full instruction leaflet for only $£ 39.95$.
Order as XY36P (Cassette
Recorder Kit)

Space Invaders

Fight the space invaders, be a polaris captain or a spaceship commander. Full colour action on your own TV set and over 450 games to play.
Basic console with Combat cartridge (ACOOA) $£ 99.50+£ 2.50$ carriage All cartridges available including:

Space Invaders (AC26D)	¢29.95	Adventure (AC22Y)	£23.95
Indy 500(AC24B)	¢34.50	Skydiver (AC13P)	£16.95
Chess (8levels) (AC28F)	£34.50	Breakout (ACO5F)	£16.95
Golf (9holes) (AC18U)	£16.95	Slot Racers (AC19V)	£16.95
AirSea Battle (AC01B)	£16.95	Programming (AC27E)	$¢ 34.50$
Space War (ACO2C)	£16.95	Olympics (AC04E)	£16.95
Brain Games (AC16S)	£16.95	Street Racer (AC140)	£16.95
Outlaw(ACO3D)	£16.95	Keyboards per pair (AC	£11.95

Picture the ulimate in precision soldering.

When a solder medium for the microprocessor-based circuitry of the new Nikon EM camera was needed, a Multicore Oxide-Free SolderCream was chosen.

Multicore, the world's leading authority on solder and soldering, has developed its own unique method of producing solder powders so that they are practically oxidefree. This means that the resultant solder cream will melt and flow as cleanly and as

A typical ordinary cream revealing poor particle shape anddross.

Multicore Oxide-Free Solder Cream displaying clean, uniform giobules.
quickly as rosin-cored solder wire. Merely a faint residue of flux is left and any risk of solder globules being formed is minimised or even eliminated altogether.
'Where the Multicore Oxide-Free Solder Cream differs is in the physical characteristics of its particles. Ordinary creams contain atomised solder powder, with each particle covered with a layer of oxide. This has to be removed by the flux after heating but non-corrosive, rosin-based fluxes cannot do this effectively given the nature of the solder technique used. The particles in Multicore Oxide-Free Solder Cream, as the electron-microscope enlargement shown illustrates, are much cleaner and more uniform. The result: cleaner, quicker soldering.

Available in a wide range of alloys and flux combinations, with particle size, flux content and viscosity equally variable, there can be a Multicore Oxide-Free Solder Cream tailor-made to suit your requirements.

If, lihe Nikon, you need a solder medium that can be applied with a high degree of accuracy, either by syringe or silk screening, will give you a thoroughly reliable joint, and will fully comply with health and safety regulations*, you need to talk to Multicore about Oxide-Free Solder Creams.

To find out more, use the reader reply service, cut the coupon or contact us direct.
'Multicore Rosin-based Soldder Creams are sate to use provided certainprecautions are observed Details of these are available on request. Multicore Soiders Ltd. is a Registered Supplier of Solder Crearns on the U.K. Defence Contractors List and are typeapproved by the Ministry of Defence to DTD. 599A. Multicore Rosin-based Solder Crearms are approved on the Qualified Products List QQ-5-S71E of the US Defense Supply Agency.

The biggest name in solder worldwide

[^0]: From: Mr/Mrs./Miss
 (Block caps please)
 Please supply
 QTY..
 IWe enclose (inc. 65p post) Chq/PO Value.
 Or debit Barclay/Access No.

[^1]: *When a resistive source of internal resistance R is shunted by a load resistance equal to R, the signal voltage is halved, but the Johnson noise voltage is reduced by a factor of only 2 . The signal-to-Johnson-noise ratio is therefore worsened by 3 dB .

[^2]: *C is the "semi-stabilized" voltage point referred to in part 1 .
 ** The actual situatiuon is a more complicated, but this analysis is a good approximation.

[^3]: Robert Brady is researching in superconductivity at the Cavendish Laboratory, Cambridge.

[^4]: To Pieter Glas, Bel \& Howell A.V Ltd., Freepost. Wembley, Middlesex HA01BR.
 Please send me more information about video ecuipment and a list of your Video Centres. Name
 Organisation
 Address

[^5]: Pascall Electronics Limited
 Hawke House, Green Street,
 Sunbury-on-Thames,
 Middlesex TW16 6RA
 Telephọne: (09327) 87418 Telex: 8814536

[^6]: This versatile system featured as a constructional article in ELECTRONICS TODAY INTERNATIONAL has 5 frequency channels with individual level controls on each channel. Control of the hghts is comprehensive to say the least. You can run the unit as a straghtforward sound-to-light or have it strobe all the lights at a speed dependent upon music level or front panel contro or use the internal digital circuitry which produces some superb pandom and sequencing effects. Each channel handles up to 500W and as the kit is a single board design wiring is minimal and construction very straightforward.

 Kit includes fully finished metalwork, fibreglass PCB controls, wire, etc. - Complete right down to the last nut and bolt!

[^7]: Sponsored by "Computer Weekly," "Data Processing," "'Practical Computing" and "Systems International"' and with the support of "Electron", "Electronics Weekly" all members of IPC Business Press, the worlds largest publisher of specialist and

[^8]: Post \＆Package 50 p on all orders PRICES INCLUDE VAT

[^9]: SHUGART SA800 \star 8" Floppy Disk Drives
 as new $£ \mathbf{2 2 5 . 0 0}+$ VAT

[^10]: Phone 402-9176

[^11]: Japan: Mr. Inatsuki. Trade Media - IBPA (Japan), B. 212 Azabu Heights, 1-5-10 Roppongi. Minato-ku, Tokyo 106 Telephone: (03) 5850581.

 United States of America: Ray Barnes, IPC Business Press 205 East 42 nd Street. New York. NY 10017 - Telephone (212) 6895961 - Telex: 421710.

 Mr Jack Farley Jnr., The Farley Co., Suite 1584, 35 East Wacker Drive, Chicago, Hllinois 60601 - Telephone: (312) 6307
 Mr Victor A. Jauch, Elmatex International, P.O. Box 34607 Los Angeles, Calif. 90034. USA - Telephone (213) 821 8581 - Telex: 18-1059

[^12]: Mr Jack Mentel. The Farley Co., Suite 650,. Ranna Building Cleveland, Ohio 4415 - Telephơne: (216) 6211919 Mr Ray Rickles, Ray Rickles \& Co., P.O. Box 2028, Miami Beach, Florida 33140-Telephońe (305) 5327301 Mr Tim Parks, Ray Rickles \& Co., 3116 Maple Drive N.E Atlanta, Georgia 30305. Telephoné: (404) 2377432. Mike Loughlin, IPC Business Press, 15055, Memorial Ste 119 Houston Texas 77079 - Telephone (713) 7838673

 Canada: Mr Colin H. MacCulloch, international Advertising
 Canada: Mr Colin H. MacCulloch, international Advertising
 2- Telephone: (416) 3642269

 - Also subscription agents.

[^13]: Printed in Great Britain by QB Ltd., Sheepen Place, Colchester, and Published by the Proprietors IPC ELECTRICAL-ELECTRONIC PRESS LTD., DORSe House, Stamford Street, London, SE1 9LU, telephone 01-261 8000. Wireless World can be obtained abroad from the following: AUSTRALIA and NEW ZEALAND: Gordon \& Gotch Ltd. INDIA: A. H. Wheeier \& Co. CANADA: The Wm, Dawson Subscription Service Ltd, Gordon \& Gotch Ltd. SOUTH AFRICA: Central News Agency Ltd: William Dawson \& Sons (S.A.) Ltd.
 UNITED STATES: Eastern News Distribution Inc., 14 th floor, 111 Eighth Avenue, New York, N.Y. 10011 .

