
 AUGUST 1983

Daisywheel typewriter interface Spectrum analysis on the cheap Did Morse get it right? Ultrasonics for robots

How to stop a travelling wave
Australia AS 2.70
Canada C\$ 3.25
Denmark DKR. 33.25 Germany DM. 7.00 Greece DRA. 190.00 Holland DFL. 8.50 |taly L 3700 New Zealand NZ\$ 3.00 Nerway NKR. 26.00 Singapore M\$5.50 Spain PTS 275.00 Switzerland FR. 7.00 U.S.A. \$ 3.75

The perr-20H

Red and green arcs of light represent crests and troughs of an electromagnetic wave brought to rest in the laboratory, as described by Professor Jennison on pages

36-38.

NEXT MONTH

During his work on crises control R. E. Young saw a connexion between shock caused by a mass of data too enormous and possibly suspect to comprehend and the 'shell' condition of hyperautism in the mentally handicapped. R. E. Y. describes how electronics is now being applied to help people escape from the shell by
communication.
Ian Wade's RTTY program runs on a basic Nascom 1 or 2 microcomputer and displays received text on a tv screen in lower-case letters, transmitted text in upper case

Exceeding its designers expectations, the 6809-based Forth computer can be used with disc drives requiring high data-transfer rates - including Sony's microdrive and 8in floppy-disc drives.

Current issue price 80p, back issues lif available) f1, at Retail and Trade Counter Units 1 \& 2 Bankside Industrial Centre. Hopton Street, London SE1. Available on microfilm; please contact Availab
editor.
By post, current issue $£ 1.23$, back issues (if available) $£ 1.80$, order and payments to EEP General Sales Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5ÁS Tel: 01-6618668.
Editorial Advertising offices: Quad rant House. The Quadrant, Sutton, Surrey SM2 5AS
Telophones: Editorial 01-661 3614. Advertising $01.661 \quad 3130$. See leader page. Telex: 892084 BISPRS G
Subscription rates: 1 year £14 UK and £17 outside UK
Student rates: 1 year $£ 9.35$ UK and ET1.70 outside UK.
Distribution: Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS Telephone 01-661 3248 .
Telephone 01-661 3248 . House Perry Subscriptions: Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH Telephone 04444 USA: $\$ 44$ surface mail, $\$ 03.80$ airma USA: \$44 surface mail, \$23.8
Subscriptions Office, 205 E.42nd Street. NY 10017
USA mailing agents: Expediters of the Printed Word Ltd, 527 Madison Avenue, Suite 1217, New York. NY 10022. 2nd class postage paid at New York.
(C) Business Press International Lid 1983 ISSN 00436062

ENGINEERING, NOT POLITICS

COMMUNICATIONS COMMENTARY

TYPEWRITER TO DAISYWHEEL PRINTER

AERIAL INEFFICIENCY AT SEA

LOUDSPEAKER MEASUREMENTS SIMPLIFIED

ELECTRIC CHARGE FROM A RADIO WAVE

LITERATURE RECEIVED

CIRCUIT IDEAS

SHORTCUTS IN CIRCUIT ANALYSIS

FORTH COMPUTER

300BAUD FULL-DUPLEX MODEM

LETTERS TO THE EDITOR

BOOKS RECEIVED

ULTRASONIC RANGING FOR ROBOTS
HOBBYIST'S SPECTRUM ANALYSER

DID MORSE GET IT RIGHT?

ELECTRONIC MAIL ORDER FOR ELECTRONICS

NEWS OF THE MONTH

ASSEMBLY LANGUAGE PROGRAMMING

TWO-METRE TRANSCEIVER

NEW PRODUCTS

Now Cherry offers you a cost-effective answer to prototype development, in application areas hitherto not possible with conventional keyboards.

The Protopad range of self-adhesive membrane panels offers you a wide choice, with keypad configurations of $4 \times 4,2 \times 4$ and 1×4 in single or double pad size, with or without LED windows.

Their modular design makes for easier layout and unwanted pads can be progressively cut away, without disturbing circuit continuity.

For improved operator keying, all pad areas are embossed and have a special finish to accept custom legends using dry transfers or water-based ink pen.

But most important of all, Protopads carry the Cherry name that assures you of no short-cuts in reliability and performance.
'Protopad design evaluation modules are available, ex-stock, from our distributors.'
Semicomps, telephone: (0535) 67921 Tennco, telephone: (0793) 485255

CHETRPY OD MEMBRANES
CHERRY ELECTRICAL PRODUCTS LIMITED, Coldharbour Lane, Harpenden, Herts AL5 4UN Telephone: 0582763100 Telex: 826012 CHERRY G
WW - 037 FOR FURTHER DETAILS

Miscellaneous Hardware for sale

Cabinets (6ft)	$£ 95$
Delta Data VDUs	$£ 50$
Centronics 101 Printers	$£ 40$
8K Micronova Memory	$£ 45$
D.G. Cassette Tape Drive	$£ 65$
Series 30 Diablo Drives	$£ 245$
Tally 2200 Printer	$£ 245$
Teletype ASR 33	$£ 15$
Olivetti TE 300	$£ 20$
Nova 800 Memory	P.0.A.

CaII ALASTAIR DODS 01-467 1985/8489
WW - 03I FOR FURTHER DETAILS

1.5 GHz UP-CONVERTER 260

works with any $240-350 \mathrm{MHz}$ generator
Designed for economic testing and
 calibration of 1.5 GHz communica tions equipment, the Model 260 is a linear heterodyne up-converter employing advanced techniques to generate a very clean signal in the $1440-1550 \mathrm{MHz}$ band from signal generator inputs 1200 MHz lower. It has zero insertion loss and allows the input signal generator controls to be used directly to set the output signal level and modulation conditions. Full accuracy and stability is ensured by phase-locking the internal 1200 MHz local oscillator to the signal generator frequency standard

Full details from:
Techtest Ltd, Street Court, Kingsland Leominster, Herefordshire HR' 90 A, England Telephone: KINGSLAND (056881) 744. Telex: 837264

6FT．PARABOLIC DISHES EROM，

6 ft ．dia．dishes，feed horns and electronics for use in 4 GHz satellite reception．GaAs Fet tran－ sistors，SMA connectors，P．T．F．E．，etc．available． Please send s．a．e．for full details and data sheets．

Harrison Bros．
Electronic Distributors
22 Milton Road，Westcliff－on－Sea，Essex SS0 7JX Tel．Southend（0702） 332338

WW－ 010 FOR FURTHER DETAILS

No other cleaner has all these advantages：－
．Only 100% Dure natural diamond grants are utlised．
2．Blades are treated with hard chrome to teinforce the setting of the damond grains．to obviate loosenung or breakaway during use this pro
diamonded sulface by residues resulting tiom use
3．All diamonded blades are recitified to ensure an absolutely smooth surface by eliminating ffiamond grains which may rise above the surface．This eliminates all excessive scratching during use
4．All slamond grains
5．The chrome gives a very weak co－eticient of friction and the rigidity of the nylon handie is calcula ated to permit pro
highly delicate relays
－Gian size 200 ihickness $55 / 100 \mathrm{~mm}$ both taces diamonded For quick clearing of ind istrial
relays and swicching equipment etc．
－Grain size 300 ：hickness $55 / 100 \mathrm{~mm}$ both faces diamonded．For smaller equipments like
retenhone relays computer retays erc
－Grain sire 400 ，thickness $25,100 \mathrm{~mm}$ ．one face diamonded．For sensitive relays and tiny contacts two close comractive

Sole Distributors for the United Kingdom

SPEC\｜AL PRODUCTS（DISTRIBUTORS）LTD 81 Piccadilly，London W1V OHL．Phone：01－629 9556 As supplied to the M．O．D．，U．K．A．EA．，C．E．G．B．Britizh Rail and other Public Authorities also majer industrial and electronic users throughout the United Kingdom． WW－ 024 FOR FURTHER DETAILS

ANALYSERS
Dranetz 606－3 Lime Disturba
Hewlett Packard Now
50044 Signature Analyser 54204 Digtial Signal Analyser 8407A18412A Network Anays Marconi MF2303 Mod Meter TF2337 Automatic Distortion Analyser
 AA501 opt 01 ．Distortion $10 \mathrm{~Hz}-100 \mathrm{KHz}$ DAS 9103 opt 0102 Logic Analyser OF1 Display Formatter For 7001 $\mathbf{£ 8 5 0 . 0 0}$ 308 Portable 8 Channel 20 MHz Data Analyser E2100．00

 jOKHz－220GHz
192P［opt 01， 2,3 Programenable Version 1401 A Spectrum Analyser $1-500 \mathrm{MHz} \underset{\text { E950．00 }}{ }$ IL5 Spectrum Analyser with op
 7 L12 Spectrum Analyser 100 K〕L13 Spectrum Analyser 1 KHz \rightarrow L14 Spectrum Analyser 10 KH E6000．00 E7500．00 E9450．00 $\because L 18$ Spectrum Analyser $15 \mathrm{GHz}-60 \mathrm{GHz}$ $\begin{array}{r}12502 \text { Tracking Generator（for } 7 \angle 12,138 \\ \mathbf{~} 3200.00 \\ \hline\end{array}$ TR503 Tracking Generator for $\stackrel{\text { series］}}{\text { EL4NSpectrum Analyser } 20 \mathrm{~Hz}}$ 00116 Channel 100 MHz Sa E3250．00 00 KHz £2350．00 £2450．00

OSCILLOSCOPES

rawlett Packard
1332A High Quality CRT Display ㄷ． $6 \times 11.9 \mathrm{~cm}$
1809 A 100 MHz 4 Channel Plug

1321 A Timebase Plug in

Philips

Tiktronix．
зktronix．
3J5 Portable 10 MHz E495． 3 35 Portable battery scope／DMM，ロT 335 Dual Trace 35 MHz Smal portable with 475100 MHz Portable $\quad £ 1,550.00$ 458 Dual Trace 100 MHz with Digtal
Storace［ 10 MHz ］Detay T＇Base E4950．00 485350 MHz Portable $\mathbf{E 4 ; 9 5 0 . 0 0}$ T922－01 15 MHz DT Scope Diff input 200C Tralley for 400 Series
5515.00 713 100MHz Storage Mainframe 7 7i03 100MHz Mainframe $\quad \mathbf{£ 1 8 5 0 . 0 0}$ $5 \angle 4150 \mathrm{MHz}$ Variabie Persistance Storage Mainframe E1600．00 $7-04 A$ Scope DC－200MHz Mainframe
E2500．00 7E 13 Storage Scope Mainframe DC 100 MHz £2600．00 $\mathrm{DC} \quad 100 \mathrm{MHz} \quad=\mathbf{4 5 0 0 . 0 0}$ 7834 Storage Scope Maintrame
$0 C-400 \mathrm{MHz}$
E7200．00 7814 Dual Beam 400 MHz Mar $8 j 4$ Waveform Processing DC－400MHz E9000．00 7934 opt $02.03500 \mathrm{MHz} \quad \mathbf{E 5 3 5 0 . 0 0}$

TEKTRONIX TM500

SERIES

AF501 Bandpass Fiter／Amplifier £400．00 AM501 Op Amp Gain 10．000 £300．00 AM502 Diff Amp Gain 1 － 100 K $\mathbf{E} 500.00$ DMSOEA True RM S 3 1／2 digit DMM DC503A 125MHzCounter E475．00 DC505A 225MHz Counter \quad E600．00 DC509 Counter／Timer 135 MHz £950．00 FG501 Function Generator 0.001 Hz － $\mathbf{E 3 7 5 . 0 0}$ 1 MHz E375．00 GM17 A unction Generator O．OE E450．00 FG502 Function Generator $01 \mathrm{~Hz}-19 \mathrm{MHz}$ FG503 Function Generator $1 \mathrm{~Hz}-3 \mathrm{MHz}$
PG50150MHzPuseGen ．．．．275．00 PG501 50 MHz Pulse Gen \quad E 320.00
PG502 250 MHz Pulse Gen \quad E1，450．00 PG505 Pulse Generator 1 Hz 100 KHz £450．00 PG507 Pulse Gen $50 \mathrm{MHz} \quad \mathbf{E 9 0 0 . 0 0}$ PG508 50MHz Pulse Gen ．£1，250．00 SC502 15 MHz Dual Trace Scope $\mathbf{£ 1 0 0 0 . 0 0}$ SC504 80 MHz Dual Trace Scope

E1250．00 S6503 Sinewave Generator 250 KHz TM515 Manframe［ 5 wide］E1，950．00

TEKTRONIX PLUG INS

We stock a complate range of Plugins for use with 7000 and 5000 series Mainframes．

MISCELLANEOUS

Brual EKjaer Datalabs $\quad \mathbf{5 5 0 . 0 0}$ $\begin{array}{ll}\text { DL901 Transient Recorder } & \text { £750．00 } \\ \text { DL905 Transient Recorder } & \text { £995．00 }\end{array}$ － Ferragraph

Fluke

£295．00
15 A Portable Calibrator DC／AC and
Resistance with DC Resolution 0 そ 1750.00
E2950．00 60A Meter Calibrator \quad £2950．00 845 AB Null Detector E610．00 $931 \mathrm{BDiff} V$＇Meter \quad E1，000．00 2020A－4－6 Printer E500．00 2020A－3－6 Printer $\quad 500.00$ Portable．Full Spec on Request $£ 8500.00$ Portable．Full Spec on Request £8500．00 Hewlett Packard．$£ 50000$ 3552A Trans Test Set．\quad £ 1，500．00
$5300 \mathrm{~B} / 5306 \mathrm{ADMM} /$ Counter． $\mathbf{£ 1 , 2 0 0 . 0 0}$ 5340 Counter $10 \mathrm{~Hz}-18 \mathrm{GHz}$ Q Digt £ 3750.00
$E 750.00$ 8350A883525A Sweeper Systern $\mathbf{\Sigma 9 , 5 0 0 . 0 0}$ 8403A Modulator Fitted With 87328 PiN MDDULATOR £1500．00 8745A S Parameter Test Set Fi 11604A Universal Arms 0．1－2GHz 59308A HP－IB Timing Generator £300．00 Marconi
1313A LCR Bridge $\quad \mathbf{7 7 5 . 0 0}$ TF2603 RFMillivaltmeter $\quad \mathbf{E 7 5 0 . 0 0}$ Racal
． 00 9301 A RF
$£ 495.00$

Tektronix

Milivaltmeter
risetime 06 Square Wave Generator 1 ns risetume 577／D1 Curve Tracer $£ \mathbf{£ 3 0 0 0 . 0 0}$ 651HRPAL Montor $\quad \mathbf{E 2 , 1 0 0 . 0 0}$ 832 Data Comms Tester $\quad £ 925.00$ 833 Data Comms Tester £1350．00
 $\begin{array}{ll}\text { 2901 Time－Mark Generator } & \mathbf{£ 2 9 5 . 0 0} \\ & \mathbf{1 9 5 . 0 0}\end{array}$ 2901 Time－Mark Generator £19

Electronic Brokers Ltd．，61／65 Kings Cross Road， LondonWC1X 9LN．Tel：01－2783461．Telex 298694
 Electronic Brokers

EuroCUBE 6502/6809 One small Eurocard-more computer than ever

EuroCUBE is just one, small $100 \times 160 \mathrm{~mm}$ Eurocard but it is an Industrial Computer of exceptional power and versatility.

The user has a choice of 6502 or 6809 microprocessors. Programs can be developed on a full CUBE development Eurorack or on any other microprocessor development system in a high level language such as Industrial BASIC or machine code.
EUROCUBE has four memory sockets whose function and position in memory is fully user selectable. For example, the first socket might contain a 4 KB operating system EPROM, the second a BBC BASIC interpreter in ROM, the third the user's BASIC program in whatever size EPROM is convenient, and the fourth might contain 8 KB of battery backed non-volatile CMOS RAM.

An on-board calendar clock is also supported by the battery, and provides the time of day to $1 / 10$ th second and the date correct for the whole century.
EUROCUBE communicates with the outside world through 20 digital lo channels, RS423/RS232 serial porn and the full CUBE/Acom data bus through which the entire CUBE/Acom range of video, disk, analog, solid state switches and other peripherals can be controiled.

£139

Exc. VAT. No charge for Operating System Software
Control Universal's new 150 page catalogue and techrical overview is now available free of charge. Use the reply service for your copy, or ring one of our engineering team to discuss your application.

Controlluiversal Ltd The Hardware House

Unit 2, Andersons Court,
Newnham Road, Cambridge CB3 9EZ Telephone (0223) 358757

NEW! ICOM ICH2 SYNTHESIZED FM HANDPORTABLE

The ICH2 is the first of a new breed of synthesized hand-held radio transceivers. Being synthesized, it requires no crystals to be set on to frequency. All that is required is to lift a recessed panel on the top of the set and cut the correct diodes to program the set to one or two channels. Duplex or simplex is obtained in the same way. This really is a boon to the busy dealer and convenient for the customer who wants those extra few sets "yesterday"
The ICH2 is very versatile, coming com-
 plete with a rechargeable ni-cad pack, small mains charger, rubber helical antenna, earphone and strong spring belt clip. Optional extras include: A speaker/ microphone, cigarette lighter plug 12 V charging lead, 12 V convertor to operate direct from the car supply, leather and leatherette cases, various different types of slide on/off battery packs both rechargeable and dry and a desk charger that fast charges some of the battery packs in 1 to $11 / 2$ hours. The battery packs slide on and off very easily, enabling a spare to be carried in your pocket and an exchange made in the field. Sizes are $6.5^{\prime \prime} \mathrm{H} \times 2.6^{\prime \prime} \mathrm{W} \times 1.4^{\prime \prime} \mathrm{D}$, weighing 1.1 lb . Power output is $1-3$ watts and covers a frequency range of $164.975-174.975 \mathrm{Mhz}$, duplex or simplex.
Retail price is 269 pounds each plus VAT. We are also looking for dealers for general distribution. More details from

Thanet Electronics CDICOM

143 Reculver Road, Herne Bay, Kent
Tel: 0227363859 . Telex 965179

WW - 032 FOR FURTHER DETAILS

ELECTRON GUNS TV TUBE COMPONENTS

If you are Rebuilding or Manufacturing TV Tubes - We are the leading suppliers of Electron Guns and TV Tube Components to the TV Tube Industry. We specialise in all aspects of Electron Mount Technology.
Technology. Line, Mono and Display Tubes along with Mount Parts, Bases, GetLine, Mono and Display Tubes along with Mount Parts, Bases, Get ters, Sealoffs, and allother associateditems Sorvice is available to all A Full Technical Back-up and Advisory Service is avallable to all customers Worldwide.
Please request our current catalogues and Data Information.

Telephone: (0789) 764852/764100. Telex: 312354 Grifem G

> HILOMAST SYSTEMS

PNEUMATIC TELESCOPIC MASTS

HILOMAST LIMITED
THE STREET HEYBRIDGE－MALDON ESSEX CM9 7NB ENGLAND Tel．MALDON（0621） 56480 TELEX NO． 995855

SPECIAL PURCHASE OF PDP11／34A PROCESSORS
11／34A CPU
MS1 1JP 64 KB MOS Memory DL11W Console Interface KY11LB Programmers Panel， M9312 Bootstrap
BA11L 5 1／4＂Chassis
ONLY E2，500

DEC PDP11／60

SYSTEMS special offer 11／60 Processor with 256 KB $2 \times$ RK06 Disk Drives＋control LA36 Console Rack Cabinet
OUR BARGAIN PRICE
£5250．00
All items
ex DEC－maintained site

PDP8A／RLO1 SYSTEMS

special purchase－immaculate
as new condition 8A400－BR
Processor complete with
KK8A CPU
MM8A8 16KW Core
KCBAA Programmers Panel
KM8AA Option module DKC8A Option module $2 \times$ RLO1 AK Disk Drive RL8A Controller
H967 4ft．cabinet
E4750．00
DEC LSI PROCESSORS
11／03LXKD11HA CPU， KEV11 EIS／FIS，BDV11AA Terminator／Bootstrap． BA11N 51／4 Chassis with Backplane and Power Supply No memory included．
NEW £1200

11／03NKD1 1QCPU．
KEV11 EIS／FIS，BDV11AA
Terminator／Bootstrap．BA11R 51／4＂Chassis with Backplane and Power Supply，MSV1 1DD 32KW MOS

NEW £1495

DEC DISK DRIVES
RKO7ED 28MB
£2，500 RKO7PD 28MB $\mathbf{E 2 , 5 0 0}$ RLO1A5MB $\varepsilon 995$ RMO2AD 67MB NEW

E6，250
RMO3AD 67MB NEW
£6，250
RM05AD 256MB NEW
£14，750
RM80 124MB $\mathbf{E 9 , 5 0 0}$ RPOGAB $176 \mathrm{MB} \quad £ 7,500$ R×11BD Dual Floppy £995
RX211BD Dual Floppy
£1，725

DEC PRINTERS

AND TERMINALS
LA34 DECwriter IV EIA
300 baud
$£ 425$
LA36 DECwriter II 20mA
$£ 295$
LA36 DECwriter II RS232
£325
LA180－PD DECprinter
［NEW］
$£ 495$
LS120 DECwriter III
EIA 1200 baud $\mathbf{£ 7 5 0}$
VT50 DECscope 20mA £199
VT50 DECscope RS232 £225
VT105 Graphics Terminal
$\Sigma 950$
VT131AB £995
VT132
£875

TEKTRONIX

DESKTOP COMPUTERS

Spacial Purchase of Ex－Demonstrator Stock

4051

High resolution Graphics and Alphanumerics．З2kB Memory Integral Cartridge Tape Drive £2，250 INCLUDING
OPTION 22 32KB MEMORY

4052

High performance stand－alone processor with 64KB Memory Integral Cartridge Tape Drive

£4，950 INCLUDING OPTION 24 64KB MEMORY
JOYSTICK 4952
［for 4050 series］sensitive cursor－control with $.1 \%$ accuracy and XY zero feature．£275
Other Tektronix graphics equipment currently available includes 4006－1，4010－1，4027，4014－1，4015－1，4016－1
606／606AV606B and 611
ADD 15\％VAT TO ALL PRICES
Electronic Brokers Ltd．， $61 / 65$ Kings Cross Road， London WCIX 9LN．Tel：01－2783461．Telex 298694 $1=-1$三
Electronic Brokers

者 르＝三

LINSLEY-HOOD 300 SERIES AMPLIFIERS

30 Watt Complete Kit 35 Watt Complete Kit
 45 Watt Complete Kit. MosFer O/P

Reprints of 30 Wart Article from 'Hi-Fi Ne
Reprints of MosFet Postscript to
'P.W. WINTON' TUNER AND AMPLIFIER

Snazry matching slimline uner and amplifier in beautiful Tuner covers LW, MW, SW, FM and TV soundl Digital frequency readout with clock and timer features. FM has 6 section front end and switchable bandwidth for exceptional fringe area per-tormance. Amplifier has Toroidai transformer. Mosfet outdut
stages, 50 watts per channel and got a cracking review in Practical Wireless
Iuner. Complete KIt. . $£ 163$
Amplifier. Complete KH
E163
FEED YOUR MICRO BYTES WITH OUR SOLENOID CONTROLLED CASSETTE

Front loading deck with full soliendid control of all functions Fitted 3 -digit memory counter and Hall ic Motion Sensor. Standard erase and stereo R/P Heads. Cheapest price ever tor Bl|
these features. Only E 38.90 plus VAT. Full tect nical specification these feat
included.

LINSLEY-HOOD 100 WATT POWER

 AMPLIFIER Tour Linsley-Hood Casserte Recorder 2. Kit includes all parts for
two power amplifiers with large heatsink area, huge power supply and speaker protection circuit. Total cost of all parts is £114.46 but our special introductory price for all parts bought

THIS MONTH'S SPECIAL OFFERS

DOLBY 'B' NOISE REDUCTION IC LM1011

Marvellous opportunity for home experimenters, build your own noise reduction system. Supplied complete with circuit showing typical application. Absolute knockout price only $£ 3.50$ for two. inc. VAT and post.

COMPLETE STEREO CASSETTE DECK

Brand new high quality top-loading Cassette Deck comolete with Record/Play electronics. Supplied with connection data and circuit diagram. Automatic chrome/ferric switching. Only needs 9v DC supply Total price only $£ 18.34$ inc. VAT and post.

COMPLETE STEREO TUNER MODULE

 Three band LW/MW/FM Stereo Tuner fully assembled on PCB $165 \times 85 \mathrm{~mm}$. Supplied with Ferrite rod aerial and band switch fully wired. Facility provided to drive funing meter and stereo LED. Only needs 12 v DC supply. FM sensitivity 2.5 suV . Price only £7. 99 inc. VAT and post.
SUPER SLIM FLOPPY DRIVE

Very latest low consumption $51 / 4$ in Disk Drives. Fit two in the space previously taken by onel Compatible with major stanfirted with disk interface. The 80 track drive can be made switchable to read 40 or 80
ing to higher

Please Note: New Phone Number: (0691) 652894
Personal callers are always very welcome but please note that we are closed all day Saturday

은

Do your tapes lack treble? A worn had could be the problem Fitting one of our replacement heads could restore performance
to better than newl Standard mountings make fitting easy and to better than newl Standard mountings make fitting easy and
our TC1 Test Cassette helps you set the azimuth spot-on. We are the actual imporers which means you get the benefit of lower
prices for prime parts. Compare us with other suppliers and seel The following is a list of our most popular heads, all are suitable HC20 Permalloy Sterco Head This is the st HC20 Permalloy Stereo Hoad. This is the standard head fitted as origa Hight Beta Parmalloy Head. A hard-wearing, higher per formance heed with metal capability,....................... 8.20 HS 16 Sendust Alloy Supar Head. The best head we can find.
Longer life than Permalloy, higher output than Ferrite, fantastic Longer life than Permalloy, higher output than Ferrite, fantastic
frequency response HO551 4-Track Head for auto-reverse or quadrophonic use. Ful specification record and playback head........................4.
Please consult our list for technical data on these and Please consult our list for technical data on these and othe
Special Purpose Heads.

STUART TAPE CIRCUITS

These circuits are just the thing for converting that old valve tape dack into a system is a full three head recorder with separate record and replay sections for simultaneous off tape monitoring. We also stock the heads. This kit is well engineered but
does not have the detailed instructions that we give with our mofe recent designs. We would not therefore recommend if to beginners. Reprints of the original three articles
45 p . Post frea. No VAT.

HART TRIPLE-PURPOSE TEST CASSETTE TC1
One inexpensive test cassente enables you to set up VU level.
head azimuth and tape speed Invaluable when fitting r:ew heads. Only E 3.80 plus VAT and 50 p postage.

Tape Head De-magnetiser. Handy size mains operated unit prevents build up of residual head magnetisation causing
on playback

CASSETTE MOTORS

Brand New Governed 12v DC Tape Orive Motor Type MMIAs used in SF925 and many pther decks 40 mm Dis $\times 35 \mathrm{~mm}$ Long. Shaft 10.5 mm long $\times 2 \mathrm{~mm}$ Dis. $6 \times 2.5 \mathrm{~mm}$ Mounting Holes on 26 mm PCD on shaft end face. Anti-clockwise rotation at rated speed of 2200 RPM . Free run current 25 mA . $\mathbf{~ 4 . 8 5}$ eech.

Full details of the entire range of HART products is contained in our illustrated lists.
Ask for your FREE copy NOW.
Enquiries for lists are also welcome from overseas but please let
us have three IRCs to cover the cost of surface post or 5 IRCs for is have three In a hurry? A telephone order with credit card number placed before 3 p .m. will be despatched THAT DAY!
inland
Orders up to $£ 10-50$ OVERSEAS
$\begin{array}{ll}\text { Orders } £ 10 \text { to } £ 49-£ 1 & \text { Postage at cost plus } £ 2 \\ \text { documentation and handing }\end{array}$

LEASE ADD VAT TO ALL PRICES

80 Column Conversion for PET/CBM

 Suitable for small screen PET with basic 4.Plug in PCB, no track cutting Gives all the features of an 8032. $£ 149$ + V.A.T., C.W.O. for turther details contact
Delph Electronics Ltd.
4 Deeping Road. Baston, Peterborough. PE6 9NP Tel: 07786535

IN VIEW OF The extremely rapid change taking PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTIties of components become redundant. we are CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, N. Finchley, London, N. 12.5 mins from Tally Ho corner Telephone 445 2713/0749

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAV'S INN ROAD, W.C. 1
Telex: 892301 HARTRO G
WW - 021 FOR FURTHER DETAILS

Sowter Transformers

With 40 years' experience in the design and manufacture of several hundred AUDIO FREQUENCY TRANSFORMERS OF EVERY TYPE YOU NAMEIT! WE MAKEIT! OUR RANGE INCLUDES
Microphone transformars (all typas), Microphone Splitter/Combiner transforMicrophono transformers and Output transformers, Direct Injection transformers for Guitars, Multi-Sacondary output transformars, Bridging transformers, Line transformers, Line transformers to G.P.O. Isolating Test Specification, Tapped impedance matching transformers, Gramophone Pickup transformers, Avoio Miong (ransformers for PCB mounting. Experimental transformers, Ultra low frequency transformers, Utra linear and other transformers for Transistor and Valve Amplifiers up to 500 watts, Inductive Loop Transtormers, Smoothing 100 volt line transformers (from a few wants up to 1,000 watts), 100 volt line frer to 100 vore to speakers, Speaker matching transformers (all powers), Column Loudspeake transformers up to 300 watts or more.
We can design for RECORDING QUALITY, STUDIO QUALITY, HI-FI QUALITY OR P.A. QUALITY. OUR PRICES ARE HIGHLY COMPETITIVE AND WE SUPPLY LARGE types are in stock and normal dispatch times are short and sensible. MIXING DESK MANUFACTURERS, RECORDING STUDIOS, HI-FI ENTHUSIASTS, BAND GROUPS. AND PUBLIC ADDRESS FIRMS. Export is a speciality and we
have overseas clients in the COMMONWEALTH, E.E.C., USA, MIDDLE EAST, etc. Send for our questionnaire which, when completed, enables us to post quotations by return.

D. A. Sowter Ltd.

Manufacturam and Dealenars
E. A. ScunGA LTD. (Entablahod 1941) : Rct. Mo. Enc land 303seo Tho Doet Yari. Cullinghom Rood, Dpapien IP1 23 b, Suffolk P.O. Box 38, pawich. 1 P1 $2=1$, EnPland Phone: Tolox 967703 c Sowtor

GET THE COMPL ETEPICTURE ATYOURNEWSAGENTDURINGJULY - ORDIRECT

\author{

- ORDER YOUR COPY NOW -
}
\star STLLL THE ONLY catalogue for THE COMPLETE RANGE OF COMPONENTS. BATTERIES, CRYSTAL FLITERS, RF POWER, MOSFET, TOKO COILS, CHOKES, ALPS PLOTTERS, SOLENOID CASSETTE MECHS ETC.

COMPONENTS FOR

ELECTRONICS, COMMUNICATIONS \& COMPUTING

* FRBT WTH

ON-LINE COMPUTER SHOPPING
\star FIRST FOR
innovation
-CATALOGUE-
\star FIRST FOR
value
\star FIRST FOR CHOICE

* FIRST FOR SERVICE

200 North Service Road, Brentwood, Essex CM14 4SG Tel: (C Consumer Sales/Enquiries) 0277-230909. Tel: (Industrial Sales/Enquiries) 0277-231616. TIx: 995194 AMBIT G. Data 24 hrs (RS232/300 baud) 0277-232628.

WW - 039 FOR FURTHER DETAILS

CX80 colour MATRIX PRINTER

New low price $\mathbf{£ 7 9 5}+$ V.A.T.

At last a low-cost Colour Matrix Printer for Text, Graphics, Histograms, Colour VDU Dumps, etc.

Colour printout is quickly assimilated, makes graphics more understandable and is an ideal medium for the presentation of complex data or concepts.

Compatible with most microprocessors, prints in 7 colours - sophisticated internal programme makes the CX80 easy to use.
Dot Addressable +15 user programmable characters, 96 ASCII and 64 graphics characters in rom. Centronics interface with RS232 and IEEE488 options. Apple II interface gives dot for dot colour dump. New viewdata interface prints out two pages side by side in full colour. See Prestel 200650.
The CX80 is a product of our own design and development laboratories. It represents a British breakthrough in colour printer technology. Colour brochure on request. OEM pricing available.

Portwood Industrial Estate, Church Gresley
Burton-on-Trent, Staffs DE11 9PT
Burton-on-Trent (0283) 215432. Telex: 377106

The new microprocessor controlled EP8000 Emulator Programmer will program and emulate all EPROMs up to 8 k $\times 8$ sizes, and can be extended to program other devices such as $16 \mathrm{k} \times 8$ EPROMs, Bipolar PROMs, single chip microprocessors with external modules.
Personality cards and hardware changes are not required as the machine configures itself for the different devices.
The EP4000 with $4 \mathrm{k} \times 8$ static RAM is still available with EPROM programming and emulation capacity up to $4 \mathrm{k} \times 8$ sizes.

EP8000 8k x 8 Emulator Programmer $£ 695+£ 12$ delivery BSC8 Buffered emulation cable - £49 SA27128 Programming adaptor - £69 SA25128 Programming adaptor - £69 EP4000 4k x 8 Emulator Programmer - £545 + £12 de-

features

- Software personality programming/emulation of all EPROMs up to $8 \mathrm{k} \times 8$ bytes including 2704, 2708, 2716(3), 2508, 2758A, 2758B, 2516, 2716, 2532, 2732, 2732A, 68732-0, 68732-1, 68766, 68764, 2564, 2764. Programs 25128, 27128 with adaptors.
- No personality cards/characterisers required.
* Use as stand alone programmer, slave programmer, or EPROM development system.
* Checks for misplaced and reversed insertion, and shorts on data lines.
- Memory mapped video output allows full use of powerful editing facilities.
- Built-in LED display for field use.
- Powerful editing facilities include: Block/Byte move, insert, delete, match, highlight, etc.
(Comprehensive input/output - RS232C serial port, parallel port, cassette, printer O/P, DMA.
- Extra $1 \mathrm{k} \times 8$ scratchpad RAM for block moving.
livery BSC4 Buffered emulation cable £39 BP4 (TEXAS) Bipolar PROM Module - £190 * Prinz video monitor - £99 UV141 EPROM Eraser with timer - $£ 78$ GP100A 80 column printer - £225 GR1 Centronics interface - £65

Unit E, Huxley Close, Newnham Industrial Estate, Plymouth PL7 4JN

Write or phone for more details

DISTRIBUTORS REQUIRED

GP Industrial Electronics Ltd.

EXPORT ENQUIRIES WELCOME

Unit E, Huxley Close, Newnham Industrial Estate, Plymouth PL7 4JN

TOROTDAS
The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated field and, thanks to I.L.P., PRICE.
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7 DAYS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty.
*Gold service available.
21 days manufacture for urgent deliveries.
*Orders despatched within 7 days of receipt for single or small quantity orders.
*5 year no quibble guarantee.

The benefits of ILP toroidal transtormers
ILP toroidal transtormers are orly halt the weight and height of their lammated equivalents and are avalable with 110 V 220 V or 240 V primaries coded as follows

For mail order please make your crossed cheques or postal
IMPORTANT. Regulation - All voltages quoled are FUtL LOAD. Please add regulalion tigure to secondary orders payable to ILP Electronics Ltd. Barclaycard/Access voltage to obtain of laad voltage.

Hitachi Oscilloscopes performance, reliability, value

New Models! immediate delivery!

and extra leatures in a new slimline ultra-lightweight format The range now extends to 13 models:

4 duat trace single timebase models 20 VH iz to $40 \backslash 1 \mathrm{~Hz}$ 2 dual trace sweep delay models 210 MHz and 35 VHz 2 dual timebase multi-trace models 60M1Hz and 1001N1iz 2 miniature field portable models, 20 MHz and $50 \mathrm{NH} / 2$ 3 storage models, one tube storage, two digital storage

Pricenstat at $\mathfrak{L}^{2} 9^{5}$ plas vat (model illustrated) including 2 proherand a 2-ycar waranty. We hold the range in sock for immediate delisery For colour brochure giving specificatorn and pricen ring (04801) 6.35710 . Keltech instruments, to High Street, Solihull. 11. Midlands, B91 3TB

SEMICO	NDUCTORS									

Payment by cheque with order

or accepted

Cottrell House 53-63 Wembley Hill Road. Wembley, Middlesex HA98BH. England

[^0]

WW - 047 FOR FURTHER DETAILS

Whamomer8

A range of telescopic towers in static and motile models from 7.5 to 36 metres with tilt-over facility enabling all maintenance to be at ground level.

Designed in accordance with CP3 Chepter V: patt 2: 1972 for a mirimum wind speed of 85 mph in conditions of maximum exposure and specified by protessionals wor d -wide where hostile env ronments demand the ultimate in design. quality and reliability,

Suiteble for mounting equipment in the ields of:
Cor munications Secarity surveilance - CCIV Meteorology
Environmental monitoring
Geozraphical survey
Defence range-finding
Mar ne \& aero navigation
Floo-llighting
Airport approach lighting
Furt eer details available on request.

Dasina

Strumech Engineering Limited,
Portland House, Coppice Side,
Brownhills, Walsall, West Midlands, WS8 7EX, England.
Telerhone: Brownhills (05433) 4321. Telex 335243 SEL G.
hi: performance hi: comperitive hi:

House of Instruments
Clitton Chambers, 62 High Street
Saffron Walden, Essex CB10 1EE
Telephone (0799) 24922 Telex 818750

TRiO

hi: comperitive hi:

Ask for FREE DATA

G3T 816 PQ W3:

WITHALOT OF MELP riom

PROFFSSIONAL II.FI THAT EVERY ENTHUSIAST

 Can handil...
Unicase

Over the years ILP has been aware of the need for a complete packaging system for it's products, it has now developed a unique system which meets all the requirements for ease of assembly, adaptability, ruggedness, modern styling and above all price.
Each Unicase kit contains all the hardware required down to the last nut and bolt to build a complete unit without the need for any special tools.
Because of ILP's modular approach, "open plan" construction is used and final assembly of the unit parts forms a compact aesthetic unit. By this method construction can be achieved in under two hours with little experience of electronic wiring and mechanical assembly.

Hi Fi Separates

UC1 PRE AMP UNIT: Incorporates the HY78 to provide a "no frills", low distortion, ($<0.01 \%$), stereo control unit, providing inputs for magnetic cartridge, tuner, and tape/ monitor tacilities. This unit provides the heart of the hifi system and can be used in conjunction with any of the UP Unicase series of power amps. For ultimate hum rejection the UC1 draws its power from the power amp unit. POWER AMPS: The UP series feature a clean line front panel incorporating on/off switch and concealed indicator. They are designed to compliment the style of the UC1 pre-amp. Performance for each unit which includes the appropriate power supply, is as specified on the facing page.

Power Slaves

Our power slaves, which have numerous uses i.e. instrument, discotheque, sound reinforcement, feature in addition to the hifi series, front panel input jack, level control, and a carrying handle. Providing the smallest, lowest cost, slave on the market in this format.

UNICASES					
HIFI Separates					Price inc. VAT
UC 1	Preatto				$£ 27.95$
LP1X	$30+30 W 4-8 \Omega$	Bipolar	Steren	HiF	£54.95
UP2X	$60 \mathrm{~W} / 4 \Omega$	Bipolar	Mono	HIFI	£54.95
UP3X	60W 8Ω	Bipolar	Mono	H, F	¢54.95
UP4X	120W/4	Bipolar	Mono	H.F.	£74.95
UP5X	120W 8Ω	Bipoa*	Mono	HIF	£7.1.95
UP6X	$60 \mathrm{~W} / 4-8 \Omega$	MOS	Mono	HiF.	¢64.95
UP7X	120W/4-8	MOS	Mono	$\mathrm{H}_{1} \mathrm{~F}_{1}$	£84.95
Power Slaves _._._ Sider					
USIX	$60 \mathrm{~W} / 4 \Omega$	Bipolat	Power	Slave	$£ 59.95$
US2 x	$120 \mathrm{~W} / 4 \Omega$	Bipolar	Power	Slave	£79.95
US3 X	60W 4-8	MOS	Power	Stave	$£ 69.96$
US4X	120N/ $4-8 \Omega$	MOS	Power	Slave	$\bigcirc 89.95$

TO ORDER USING OUR FREEPOST FACILITY
Fill in the coupon as shown, or write details on a separate sheet of paper quoting the name and date of this journal. By sending your order to our address as shown at the bottom of the page opposite, with FREEPOST cleariy shown on the envelope, you need not stamp it. We pay postage for you. Cheques and money orders must be crossed and made payable to I.L.P Electronics Lid. if sending cash, it must be by registered post. To pay C.O.D please add f 1 to TOTAL value of order.

PAYMENT MAY BE MADE BY ACCESS OR BARCLAYCARD IF REQUIRED

Get started in Fibre Optics

... with our new fibre optic experimental kit.

Features include:

■0-10Mbit/s (NRZ) guaranteed to 15 m with Polymer Cable (Can be extended by using a glass fibre)

- No tools required to terminate cable ■ Fully tested modules
- Complete with transmitter, receiver connectors and 5 m of Polymer Cable.
- Also a full range of components for glass systems available

Electroustic Ltd.

9 Step Terrace, Winchester, Hants Tel. 0962 60916. Telex: 877255

WW - 045 FOR FURTHER DETAILS

a

 PM COMPONENTS LTD \therefore VALVE \& COMPONENTS SPECIALISTS

SEMICONDUCTORS
INTEGRATED CIRCUITS

BD15
8016
8015

PHONE P. M. COMPONENTS LTD SELECTRON HOUSE, WROTHAMROAD 0474813225 3 LINES MEOPHAM GREEN, MEOPHAM, KENT DABOOY

A SELECTION FROM OUR
STOCK OF BRANDED VALVES

000

EAA91	0.69
EABC81	0.6
EAC91	2.5
EAF42	1.20
EAFB01	1.
EB34	

管

The SC61 waveform analyser from Sencore stands head and shoulders above any other oscilloscopes for speed, accuracy and versatility even from semiskilled operators - and we're prepared to come round and prove it.

For an on-site test and more information: Mike Dawson 01-897 6446.

Fieldtech Heathrow Limited Huntavia House 420 Bath Road Longford Middlesex UB7 OLL Telex: 23734 FLDTEC G

WW - 022 FOR FURTHER DETAILS

Out of this world for value!

Not our extra-terrestital
filend, but a versatle
bench power supply -

- the ET30/2

For a modest price It will provide you with: 2 outputs af 0 to 30 volts d.c. at 1 amp or 2 outputs of 0 to 15 volts d.c. af 2 amps or 0 to 30 volts d.c. at 2 amps or 0 to 60 volis d.c. of 1 amp or 0 to 15 volts d.c. at 4 amps .

Send for details now irom: FARNELL INSTRUMENTS LIMITED • WETHERBY • WEST YORKSHIRE LS22 4DH TELEPHONE (0937) 6. 56 - TELEX 557294 FARIST G|REGIONAL OFFICE TELEPHONE (05827) 66123/4 - TELEX 826307

Editor:
PHILIP DARRINGTON
01-661 3128

Deputy Editor:
GEOFFREY SHORTER, B.Sc.
01-661 8639
Technical Editor:
MARTIN ECCLES
01-661 8638

News Editor:
DAVID SCOBIE
01-661 8632

Drawing Office Manager:
ROGER GOODMAN
01-661 8690
Technical Illustrator:
BETTY PALMER

Advertisement Manager:
BOB NIBBS, A.C.I.I.
01-661 3130
BARBARA MILLER
01-661 8640

Northern Sales:
HARRY AIKEN
061-872 8861

Midland Sales:
BASIL McGOWAN
021-356 4838

Classified Manager:
BRIAN DURRANT
01-661 3106
IAN FAUX
01-661 3033
Production:
BRIAN BANNISTER
(Make-up and copy) 01-661 8648

Publishing Director
DAVID MONTGOMERY
01-661 3241

Engineering, not politics

Even in the pre-war days when Japanese industry was best known for its imitative tendencies, its imitations were often better products than the originals. Modern Japanese engineering demonstrates little need to take other nations' ideas and has made Japan an industrial giant.

In design and reliability, products from Japan have gained a formidable reputation for quality - to the extent that they now dominate world markets in several important groups of product. With the exception of those Western companies who refuse to be intimidated and who also possess reputations for high quality, European and American firms tend to see the reply to imports from the Far East in political, rather than in commercial and engineering terms. They require the Japanese to restrict their exports voluntarily and frequently ask politicians to apply pressure to that end.

An approach as negative as that to the imbalance of trade can surely not succeed over a long period. In reply to huge imports from Japan, the proper action is to redress the balance by exporting, not politicking. Admittedly, it is not easy to sell to the Japanese but, according to the Department of Trade, "formal barriers are disappearing and the desire of the Japanese to be self-supporting - the 'Buy Japanese' policy - is on the way out. Import tariffs on over 2000 products have now been reduced to a lower level than those of European countries or the US".
In common with any other manufacturers, the Japanese want the best products at the lowest price. If a UK exporter can supply well-designed products, either to fill a gap in Japanese production or to beat local efforts on quality or price, he will win orders.

An important point to watch is that the
customer must be given what he wants, not what the vendor thinks he ought to want. Time and time again, Western makers of, for example, audio equipment have introduced new models in enclosures which they thought were sensible and attractive, in spite of the fact established by the successful marketing of Japanese products that customers prefer satin chrome, coloured lights and masses of knobs and switches. Presentation is a matter of taste and who is to say that the customers are wrong?

This office recently received a note from a maker of illuminated switches, in which he claimed that his company has taken massive orders from Japan and is now going into Hong Kong. The customers say that the switches are visually attractive to them, they are reliable and are cheaper to buy than locally made types: there is therefore a ready sale for them in Japan.

British industry began the industrial revolution and was able to dominate world markets when it was possible to tell customers what they could have and why they should want it. In the words of Adam Smith: we "founded a great empire for the sole purpose of raising up a people of customers". Perhaps more of our industrial base would still be firm if our manufacturers had recognised a good deal earlier that the world has developed while they were not looking, and will not now buy equipment that is not designed and made with customers in mind.

George Moore said that "a man travels the world over in search of what he needs and returns home to find it". Perhaps we could reduce the number of homing customers by making sure they find what they need here, not what we feel they should need.

C.B. market collapse?

The Home Office tells me that fewer new CB licences were issued during the first quarter of 1983 than the number of licences that lapsed. At the end of April valid licences totalled 289,108 compared with 313,318 at the end of November 1982. The percentage of renewed licences seems to vary widely from month to month: 42% in October 1982; 72\% in November; and only 27%; in December. Fidelity Radio has claimed that its CB division lost $£ 700,000$ in the year to March 1983 and the firm has since disposed of the division "for a nominal sum", blaming "the collapse of the CB radio market"

The Japanese radio communications industry seems to be setting its sights on the para-military field with increasing emphasis on such products as v.h.f./u.h.f. manpack equipment providing digital encryption. European communications firms have long been worried at the prospect of a full-scale entry of Japan into defence electronics.

Antennas galore!

I have to confess that I did not attend ICAP 83 (Third International Conference on Antennas and Propagation, London, April 1983) but I have been making up for this omission by ploughing (or at least skimming) through the two thick volumes of papers (IEE Conference Publication 219). This is no lightweight matter: 193 papers filling 961 pages from authors whose names literally span A to Z (O. Aboul-Atta to Zi Shen Lui in volume 1 and I. Y. Ahmed to Z. W. Zhang in volume 2!). One really does wonder how many of the delegates managed, in four days, to absorb almost 200 papers - or indeed whether thereby they learned much that was of vital importance to them. These large international conferences, free from the constraints of "commercial" exhibitions do tend to take off into the stratosphere or, more appropriately in this case, the ionosphere. Radio propagation and aerials (to get back on the editorial wavelength of Wireless World) are both subjects that envelope themselves in an unusual degree of mythology and mysticism. I hasten to add that there are interesting and some thoroughly practical papers among the 193 but it could be argued that, since these come over clearly from the printed page, attendance was possibly not the optimum learning process. It is always said, of course, that the most interesting discussions at conferences are those that take place out in the bar rather than in the conference hall. Experience tends to support that view - although the more memorable conversations seldom seem to relate to conference topics!

The difficulty for the non-specialist reader (or delegate) is to decide what really
is new and what is not. ICAP 83 included some useful invited survey papers, though apparently prepared independently of the other contributions.
A. W. Rudge of ERA Technology Ltd in "Current trends in antenna technology and prospects for the next decade" highlights three major themes, the influence of environmental factors, the impact of v.l.s.i. electronics and the continuous search for improved characteristics. He aptly quotes Professor Mayes of the University of Illinois: "The popular conception in 1950 was that electromagnetics was a mature field and that it was improbable that any new discoveries remained to be made in the field of antennas. The development of frequency-independent antennas was certainly evidence to the contrary. Today similar sentiment seems to be prevalent. History shows it prudent to be sceptical." 193 papers suggests there must still be rich ore to be mined in these subjects.

Moral persuasion?

The BBC took the opportunity, as hosts of the 17th European DX Council Conference, to launch another strong attack on the 10% increase in "jamming" of h.f. broadcasts by the USSR since the Polish crisis of December 1981. Douglas Muggeridge, managing director of BBC External Broadcasting, protested "The h.f. bands are very congested. There is more broadcasting than they can contain satisfactorily. A conference is soon to be held, the first session in 1984, with the task of trying to plan and regularize this position. Its job is made extremely difficult, if not impossible, by the large amount of 'deliberate, harmful interference' - better known as 'jamming' - which is present within the shortwave bands.

Many people have not been aware of the extent to which this is a worldwide problem. Every country that broadcasts on h.f. and all who listen on h.f. are affected. Perhaps there may be a solution. If there is not, then it is difficult to see how any order can be brought out of the chaos that exists at certain times of the day".
The BBC apparently hopes that "moral persuasion", plus the fact that the USSR is anxious that its own transmissions should be well received throughout the world may prove a powerful argument to reduce jamming. Keith Edwards presented data showing co-channel and adjacent-channel jamming as monitored in Vienna and at Caversham that underline the extent of the current problem. This is particularly true on the 15,17 and 21 MHz broadcast bands, with between $70-80 \%$ of channels (preWARC 1979) affected from about 1200 to 1800 hours on 17 MHz , over 60% on all three bands around 1600 hours, etc. Other statistical data show the massive use made of the 6 MHz broadcast band. Although

WARC 1979 gave Western broadcasters much less additional spectrum than they sought, over 30 countries are already using the new frequencies despite the WARC agreement not to do so until after the 1984 86 planning conferences. There are also a number of countries using parts of the spectrum not allocated to broadcasting. China, for example, has quit out-of-band operation at 7.0 to 7.1 MHz but is now using many channels around 8.3 MHz !

A happier prospect arises from the use of satellite feeds. The BBC are using digital audio at 128kilobits (two adjacent $64 \mathrm{~kb} / \mathrm{s}$ speech channels) to distribute programmes via satellite to overseas relays; these links have uniform frequency response to 6 kHz , distortion around 1% or less and $\mathrm{s}: \mathrm{n}$ ratio of about 50 dB . One result is that the BBC may soon reduce longdistance h.f. coverage from the UK of areas better served from the relay bases of the BBC or the Foreign \& Commonwealth Office: Atlantic Relay on Ascension Island; Caribbean Relay (Antigua); East Mediterranean Relay (Cyprus); Far Eastern Relay (Singapore); Eastern Relay (Masira) and (later) a possible relay at Hong Kong, and an East African Relay in the Indian Ocean.

Stereo all ways

A new twist to the American a.m.-stereo fight between the four competing systems has been given by demonstrations at NAB of the prototype of a new Sansui multisystem a.m. stereo tuner, type TUS77AMX, that uses a Japanese-manufactured single-chip decoder handling signals in any of the four systems. A.m.-stereo in the USA has been delayed by the FCC "leave it to the market place" decision. By April 1983 there were 50 stations using the Harris system, around 30 -plus with Kahn, six using Motorola and three using Magnavox out of some 4600 commercial a.m. stations. However, retail price of the Sansui tuner is around $\$ 400$ and their car radio tuner around $\$ 50$. Even with multisystem decoding it will still be necessary for American broadcasters individually to make the difficult choice between the four systems.

Mercurial thoughts

I do not know what the new Mercury communications network will do for British business - but it must already be helping our printers and typographers and illustrators. That is if the three very large and very glossy advertising brochures that have come my way are anything to go by. They proudly proclaim: "Mercury is the new force in communications . . . it exists to facilitate the dynamic interchange of ideas that are vital to your business . . . Mercury means communications. At the speed of thought". The global village, I am told, is

COMMENTARY

no longer a concept but a reality. Pages are filled with large colour pictures of eggs, a charming little chameleon, a chisel, a honeycomb and a small globe in the palm of a giant hand. All this represents "a new approach to communications for the ' 80 s and beyond".

Just the thing presumably for the businessman who has caught a chameleon, intends to put it inside an egg-shell after slicing the top off with his chisel, and is not afraid of being stung by bees. Or is my dynamic interchange of ideas failing me?

In brief

Costs of the NASA Space Telescope project may exceed $\$ 1000$-million instead of the original estimate of $\$ 435 \mathrm{~m}$ and is unlikely to be launched until 1986 or later . . . Launch of the second Tracking and Data Relay Satellite (TDRS) is being delayed in the hope that NASA can find out what went wrong with the first launch last March . . . A spate of fraud and cheating - "doctoring" and "massaging" data - in scientific research papers has led to Nicholas Wade of the New York Times claiming: "It is not just a matter of rotten apples in the barrel but something to do with the barrel itself" . . . the opportunities to cheat are becoming more frequent because of the readiness of laboratory chiefs to put their names to papers prepared by junior colleagues with little or no supervision".

Planning the bands

The problems of spectrum regulation are increasingly reflected inside the amateur bands. There have been some gains 7000 to about 7030 kHz or so is now refreshingly clear of Radio Beijing (Radio Peking) in the evenings and has become a far more usable piece of spectrum. The upper part of the world "exclusive" 7000 7100 kHz however, still includes broadcast "intruders" such as Radio Tirana on 7065 kHz .

But there is increasing unease within the amateur movement over the future of "voluntary band-planning".

For very many years mandatory subband allocations have been part of North American amateur licensing in the USA and Canada, to provide exclusive A1A (c.w.) segments and also in connection with American "incentive licensing" whereby higher "grades" are given access to additional segments of the bands.

Until the immediate post-war period no attempt was made to segment the fre-
quency bands available to British amateurs. In 1948 the RSGB set-úp a working party (I was a member) which, inter-alia, recommended a voluntary h.f. band-plan (our first effort was so unpopular that we promptly revised it). Basically this followed North American practice in locating exclusive AlA segments at the low-frequency ends of the bands, and later formed the basis of the IARU Region 1 recommendations. These also took into account the then still rare use of r.t.t.y., although neither IARU or RSGB are official regulatory bodies.

As the years have gone by the band-plan has been extended to v.h.f. and u.h.f. bands and covers more and more modes and special activities, offering protection to minority interests, such as "raynet" emergency services, beacons, space satel-, lites, "local" and "long-distance"' working, repeaters and dividing bands into simplex channels, etc.

The IARU decided that, in view of the limited (50 kHz) bandwidth, there should be no s.s.b. on the new 10.1 MHz band (for different reasons the Home Office has temporarily similarly restricted UK operation on 18 and 24 MHz). Where countries, such as South Africa, have declined to follow these recommendations, both IARU Region 1 Bureau and the RSGB officials have separately urged the South Africans to reconsider their decision. Being primarily a c.w. operator, I personally benefit from the new IARU recommendations, but nevertheless it does raise important matters of principle: are such organizations as the IARU justified in assuming a "regulatory" role that goes well beyond the original concepts of "voluntary bandplanning" without first providing greater "accountability" to those whose activities are being restricted? Individual amateurs have no direct control over IARU decisions, member societies have one vote per member, regardless of the size of the individual societies.

The 1983 IARU statistics show that there are now roughly 1.8 -million amateur radio operators world-wide, using 1.4 -million stations. Licensed members belonging to IARU member-societies are, however, under 450,000 , despite the fact that 22% of the countries make membership of their national society an obligatory condition of the licence. The RSGB is listed as having, as members, precisely 50% of the UK's 40,000 licensed amateurs, of whom the majority are v.h.f.-only operators. In such circumstances can "voluntary bandplanning'’ continue to work?

No r.m.s. power!

W. J. Omer, G3DOJ, who lectures in electrical and electronic engineering in higher education, is concerned to find that some 90% of his students believe that power in an a.c. circuit can correctly be
defined as an r.m.s. quality. The term r.m.s. watts has been creeping into the literature for the past 20 years - stemming largely from the audio field where it first came to be used to distinguish between "continuous average output" ratings and "music power" ratings (now tending to be replaced by "dynamic headroom") and the even less demanding peak envelope power rating.

Bill Omer has for some time been waging virtually a one-man crusade against 'r.m.s. power' which, since the definitions of r.m.s. voltage and current in an a.c. circuit are themselves derived from power, is a technical nonsense. He notes that 'r.m.s. power' has spread from the audio field to r.f. amplifiers and transmitter ratings in the editorial and advertising columns of many technical journals. When challenged some writers and firms have dismissed his objections as semantics while others insist that power is an r.m.s. quantity. To Bill Omer, r.m.s. watts is as ludicrous as 'average feet'.

A problem for the transmitter engineer is that "continuous wave" or c.w. has come to mean the AlA mode which is far from continuous. Nevertheless there do seem very good reasons for not using either r.m.s. watts or even watts (r.m.s.)!

Notes and news

Since June 1 the Home Office has imposed a 50 per cent increase in the annual amateur radio licence fee: from $£ 8$ to $£ 12$. This means that with RAE, Morse Test fees, training fees, travelling expenses, etc, it now costs around $£ 50$ or more to obtain a Class A transmitting licence issued for purposes of "self-training, inter-communication and technical investigations'". It seems regrettable that at a time when emphasis is being placed on the need to encourage expansion of "sun-rise industries" such high barriers are being erected, affecting particularly the younger enthusiasts, or those who may later be seeking employment in the still-expanding communications field.

There must be a diminishing number of people who can recall actually hearing Pip Eckersley announcing that they were listening to "Two Emma Toc (2 MT) Writtle testing". The historic callsign, converted to G2MT, was due to come on the air on July 2 and should be heard frequently later this year. The Home Office has re-allocated the callsign at the request of the recently formed "Marconi Radio Society", formed by enthusiasts at the Stanmore headquarters of Marconi Space and Defence Systems.

The RSGB has decided to hold future annual National Amateur Radio Exhibitions and Conventions at the National Exhibition Centre in Birmingham. The 1984 dates are April 28-29.

PAT HAWKER, G3VA

Typewriter to daisywheel printer

Abstract

With an Olivetti Praxis typewriter, this interface makes one of the cheapest word-processing printers around. It can be used with any microcomputer fitted with an RS232 or RS423 port.

A typewriter-printer offers a number of advantages over a conventional daisywheel printer with no keyboard. For example, headings can be added to its output and margins set from the keyboard without the requirement to send special control codes from the computer, although this can be done if required. When not in use as a printer the typewriter can still be used in the normal manner.

The typewriter chosen for conversion here is the Olivetti Praxis series compact typewriter which was one of the first electronic typewriters and is well proven. It is also used as the basis of a number of commercially available printers and has turned out to be an excellent choice for this application. It is available in two versions, the Praxis 30 and the Praxis 35 . Both feature interchangeable daisywheels, automatic correction of the last ten characters typed, and cartridge ribbon loading with a choice of correctable, carbon or fabric ribbons. The two models are almost identical but the 35 has a typehead position indicator and keyboard selection of 10,12 or 15 characters per inch. Type pitch on the Praxis 30 is preset in the factory by means of links on the circuit board.
Daisy-wheel printers are in general much slower than their dot-matrix or thermal counterparts and are intended for use where letter quality output is required. They are not ideal for day to day listing of programs because of their relatively low speed. The basic typewriter mechanism is capable of a maximum print speed of around 8 to 10 characters per second and so a standard baud rate of 75 was chosen for the computer-interface to give a print speed of 7.5 characters per second.

A special feature of the interface is the provision of an electronic paper sensor on the typewriter to halt the computer output when the paper has run out. This feature is seldom provided even on high cost printers but has been found to be invaluable when errors are made in estimating the length of text that can be printed on a page.

The typewriter keyboard circuit (Fig. 1) operates on a matrix scanning principle. Each of the matrix columns is pulsed low

[^1]
by Neil Duffy

in turn. When a key is pressed the appropriate pulse is fed on to a particular keyboard matrix row. The typewriter electronics uses the row and pulse timing information to determine which key has been pressed.
The interface (Fig. 2 and Fig. 3) consists of a circuit board powered from the typewriter 5 V power supply. Connection to the typewriter is made via a 40 -way ribbon cable. In the interface, data from the computer is received by a uart and decoded by eprom IC_{4}. The three least significant bits output from the eprom are fed to multiplexer IC_{6} which has its inputs connected to the keyboard columns and which selects the appropriate strobe pulse. The next three bits from the eprom route
the selected pulse via demultiplexer IC_{7} to the selected keyboard row. The seventh bit controls the typewriter shift function and the eighth triggers a circuit which signals back to the computer to halt data transmission until the typewriter has completed a carriage-return, line-feed operation.

Circuit operation

Incoming serial data is buffered by the RS232 receiver IC_{1} and fed to the uart IC_{2} which decodes the serial data and presents it in parallel form to the eprom IC_{4}. The clock to the uart is derived from a 2.4576 MHz crystal via the divider IC_{3}, configured for 75 baud operation and providing clock pulses to the uart at 16 times this rate. The uart must be set up to match the format of the incoming serial data from the computer. This is done by selecting links on the circuit board according to Table 1 .

Fig. 1. Typewriter keyboard matrix: columns are each pulsed low in turn and pressing a key connects a column to a row. For clarity, diagram shows lower-case characters only.

When a data word is received by the uart it generates a high-going data-ready signal which turns off Tr_{1} releasing the short circuit across C_{1} on the 555 timer IC_{5}. Capacitor C_{1} charges up towards 5 V and at the end of a time period of approximately 70 ms reaches the timer threshold voltage level. The output from the 555 goes low and resets the data-ready signal from the uart. Transistor Tr_{1} turns on, discharging C_{1} until the voltage on C_{1} falls below the timer trigger voltage. The 555 output then reverts to the high state. The data-ready signal from the uart is used to strobe data to the keyboard via IC_{9}.
The eprom is used to convert the incoming ASCII code from the computer into an output code suitable for energising the keyboard rows at the correct time. The contents of the eprom are shown in Table 2. The eprom is programmed to cause the typewriter to print spaces in place of ASCII codes for which the daisy-wheel has no corresponding symbol. ASCII codes from 0 to 32 are programmed to cause the typewriter to set and clear tabs, margins and so on.
During typewriter carriage-return/linefeed operations the data output from the computer must be halted by setting negative the clear-to-send (CTS) line on its RS232 port. This is done to prevent data loss caused by the typewriter buffer overflowing. When a carriage return signal is received from the computer, $\mathrm{IC}_{10 \mathrm{~b}}$

Fig. 2. Incoming serial data from the computer is converted by the interface into parallel data in a form suitable for connection to the keyboard matrix of the typewriter. IC is a section of an MC1489 line-receiver device.
latches with its \bar{Q} output low. The \bar{Q} output is reset to the high state when S_{1} on the interface is pressed or when the typewriter has completed a line-feed operation. This latter is detected by monitoring an existing limit switch on the line-feed mechanism.
For the handshake circuit to operate correctly, the typewriter must perform a carriage-return and then wait until the print head has returned to the left margin before performing a line-feed and thus operating the limit switch. If this is to happen the computer has to output a carriage-return and a line-feed symbol in the correct sequence. Because there is no convention for the sequence the interface has to allow for both possibilities. This is done by connecting a link on the interface board to select data either from locations 0 to 127 or from locations 128 to 255 on the eprom. The data in the first set of locations is identical to that in the second except that in the second set, incoming carriage-return commands cause the printer to carry out a line-feed operation and line-feeds cause it to carry out a carriage-return.

The paper sensor is a reflective opto-
switch device with built-in infra-red led. Resistors R_{1}, R_{3} and the sensitivity adjusting potentiometer \mathbf{R}_{2} are mounted on a small circuit board which is attached to the sensor mounting bracket. The paper-low signal from the sensor is fed back along the ribbon cable to the interface card.
Paper-low signals are inhibited by IC_{8} until the CR output from the eprom indicates that a carriage return has been received from the computer. If the paper is low, then at the end of the current print line $\mathrm{IC}_{10 \mathrm{a}}$ latches with its Q output low. Led ${ }_{1}$ lights and Tr_{2} is turned off sending the CTS line to the computer negative to prevent any further data transfer. $\mathrm{IC}_{10 \mathrm{a}}$ is restored to the high state by pressing S_{1} after feeding a fresh sheet of paper into the typewriter. If S_{1} is pressed when the paper low signal is still active then a further line of text will be printed. A -5 V supply for the collector resistor of Tr_{2} is provided by the negative-voltage generator IC_{11}. Note that the CTS signal taken from Tr_{2} collector is not a full-specificiation RS232 signal in terms of voltage swing but is perfectly adequate for the short cable likely to be required.

Construction

There is a shortage of space inside the typewriter casing so the interface was housed outside in a small metal box. It connects to the typewriter via a 40 -way

ribbon cable which passes through the gap between the typewriter top and bottom covers.
The prototype interface was constructed on a Eurocard circuit board using the Verowire interconnection technique. The 40 -way cable header which mates with the ribbon cable from the typewriter is mounted on the end of the interface board and protrudes through a slot cut in the side of the case. The cable header serves to locate one end of the board. The other end is attached to the case by two screwed spacers. A DIN socket attached to the case provides the RS232 connection to the computer and a flying lead from this socket mates with a connector on the circuit board.
A $22 \mu \mathrm{~F}$ tantalum bead capacitor decouples the power supply at the ribbon connector and $0.01 \mu \mathrm{~F}$ decoupling capacitors are fitted to the board, one

Fig. 3. Output from the computer is halted by this sensor circuit when the paper runs out. This feature is often not provided even on high-cost printers. $1 C_{8}$ is a 74LS132 abd ICg a 74LS03. A suitable opto-switch is type 307-913 from RS Components.
capacitor for every two i.cs. Remember when connecting wires both to the typewriter and to the interface that some of the i.cs are static-sensitive m.o.s. devices.

The photoelectric sensor is fitted onto a bracket mounted underneath the typewriter platen roller and views the paper through a hole cut in the paper guide (Fig. 6).

Commissioning the interface

With the interface disconnected from the typewriter, feed a sheet of paper into the typewriter and monitor the voltage at pin 1 of the connector at the end of the ribbon
cable. Adjust R_{2} until the voltage just falls to 0 V . Give the potentiometer a further turn in the same direction. The voltage should now rise to 5 V when the paper is removed.

Table 1: Links 1 and 4 in this table set up the uart for the expected serial data format. Link 5 selects appropriate data from the eprom for the expected carriage-return, line-feed sequence from the computer (see text).

Link Function	Low (OV)	High $(+5 \mathrm{~V})$	
1	character length	7 bits	8 bits
2	parity inhibit	enable	inhibit
3	even parity enable	odd	even
4	stop bit select	1 bit	2 bits
5	CR-LF sequence	LF-CR	CR-LF

Fig. 4. 40-way ribbon cable connects the interface to the underside of the typewriter main circuit board. Alternate wires in the ribbon are connected to +5 or to 0 V either at the interface end or the typewriter end. This helps to prevent crosstalk between the signal wires.

Fig. 5. Platen roller must be swung upwards to allow access for fitting the paper-out detector. Remove screw B on the right-hand roller support bracket. Swing plate C clear on the right-hand bracket and swing the platen roller assembly upwards, pivoting it about nut D.

Fig. 6.

Front view

A
Fig. 7. Opto-sensor mounted underneath the platen roller views the paper through a hole cut in the paper guide roller carrier (Fig. 6).

4 Fig. 8.

Attaching the paper sensor

The paper sensor is mounted on a bracket on the underside of the platen roller. A hole must be cut in the paper guide under the platen roller for the sensor to view the paper through. To cut the hole the guide must be removed from the typewriter. Remove from the rear of the platen roller the four springs which tension the paper guide and the paper bail bar. Next refer to Fig. 5 and pivot the whole platen roller assembly upwards. Remove the small spring which can now be seen on the underside of the assembly at the right hand end. Remove circlip E from the right hand bracket and pull the bar that was retained by the circlip out of the bracket. The bar can now be sprung to enable the paper guide to be removed. To avoid damaging the guide a hot soldering iron can be used to melt a hole in the plastic in the position shown in Fig. 6. The hole should be carefully trimmed with a file to ensure that there are no sharp edges that can snag the paper. The mounting bracket for the sensor is shown in Fig. 7 and is attached as shown in Fig. 8 to the left hand spring bar on the underside of the platen roller by a single screw.

Test the connections to the typewriter by shorting out rows and columns at the connector on the end of the ribbon. Check by referring to Fig. I that the typewriter prints the correct character.

The interface should next be connected to the computer RS232 port and powered up, preferably from an independent 5 V
supply. Press S_{1} to reset IC_{10}, ensure that the led goes out and the CTS line to the computer goes high. A short program loop should be written to send a continuous stream of characters to the interface. Do not forget that it will be necessary to configure the computer for the correct baud rate. The row outputs from the interface
should be monitored to ensure that the appropriate row is pulsed low (use an oscilloscope or else a led in series with a 390Ω resistor to +5 V). Check each row in turn by sending an appropriate character to select each one.
The interface should now be connected to the typewriter. Data should be sent by
the computer to test the entire character set.

The computer should be configured to output both carriage-return and line-feed characters whenever a new line is required. To check the sequence of the carriage-return and line-feed characters, position the print head at the right hand margin and send the typewriter a return signal from the computer. Check that the print head returns to the left margin before a line-feed takes place. If the line-feed occurs first, then link 5 should be changed (see Table 1). Led ${ }_{1}$ should flash during the carriagereturn period and computer output should be halted.

Finally check that the paper-out circuit is operating correctly by ensuring that the led lights and the CTS line goes low at the end of the line following a paper-out condition being detected.

Modifying the typewriter

To attach the ribbon cable to the typewriter it is necessary to remove the typewriter top cover and the keyboard assembly. The pivoting cover on top of the typewriter should first be removed by swinging it upward and springing one of its ends away from the retaining bar on to which it is clipped. The other end can then be unclipped and the cover removed. The knobs on either end of the platen roller should then be removed by unscrewing them.

Next the four top cover retaining screws should be removed from the underside of the typewriter and the top cover taken off. Undo the two retaining screws at either side of the keyboard and lift the keyboard assembly away, taking care in the process to unplug the cables from its underside. The cable connectors are easily distinguished so there is no need to mark them for later re-assembly. The keyboard assembly consists of two circuit boards folded together and held apart by three spacers. The three nuts that fasten the circuit board to the spacers should be removed and the keyboard assembly unfolded. The ribbon cable should now be soldered to the main circuit board as shown in Fig. 4 so that it emerges from between the two boards when they are folded together again. During re-assembly, take care to position the flexible ribbon to the print head so that it is not under tension when the head is at the extremes of its travel. It is necessary to cut away some projections on the inside of the top cover to prevent damage to the cable when the cover is refitted.

Praxis typewriters are available through Wilding Office Equipment and other Olivetti dealers at around $£ 260$ for the Praxis 30 and $£ 290$ for the Praxis 35. Programmed eproms are available from the author at 18 Carnoustie Gardens, Glenrothes, Fife KY6 $2 Q B$ for $£ 9.60$ each including postage and v.a.t. The other components can be obtained as a kit from Technomatic Lid.

Table 2: Eprom converts data received by the uart into a code to select the typewriter keyboard rows and columns via multiplexer and de-multiplexer. Table shows data and typewriter response to each incoming ASCII code. Data for eprom locations 80 to FF is identical to data in locations 00 to $7 F$ with the exception of location 84 with data 36 and location $8 D$ with data $B 7$.

Addr Data Char											
00	00		20	3E	Spc	40	44	@	60	46	E
01	00		21	3E	Spc	41	61	A	61	21	a
02	00		22	42		42	56	B	62	16	b
03	00		23	3E	Spc	43	7B	C	63	3B	c
04	00		24	3E	Sp	44	63	D	64	23	d
05	00		25	51	\%	45	5B	E	65	18	e
06	00		26	5E	\&	46	64	F	66	24	f
07	00		27	75		47	70	G	67	30	g
08	2E	B.Spc	28	74	$($	48	4 E	H	68	OE	h
09	07	Tab	29	73)	49	6C	I	69	2 C	i
OA	B7	Express	2 A	41	*	4A	4 D	J	6 A	OD	j
OB	00		2 B	69	+	4B	4 C	K	6B	OC	k
0 C	00		2C	13	,	4C	4 B	L	6 C	OB	1
OD	36	Return	2 D	32	-	4 D	54	M	6D	14	m
OE	00		2E	12	-	4E	55	N	6E	15	n
OF	00		2 F	43	1	4 F	6B	0	6F	$2 B$	0
10	00		30	33	0	50	6A	P	70	2A	p
11	00		31	01	1	51	59	Q	71	19	9
12	00		32	02	2	52	5 C	R	72	1 C	r
13	00		33	03	3	53	62	S	73	22	s
14	00		34	04	4	54	5 D	T	74	10	t
15	00		35	06	5	55	6D	U	75	2 D	u
16	00		36	05	6	56	7 C	V	76	3 C	,
17	00		37	1E	7	57	5A	W	77	1 A	w
18	17	Spc.	38	35	8	58	7A	X	7.8	3 A	x
19	0 F	M.Rel.	39	34	9	59	65	Y	79	25	y
1 A	1 F	M.Left	3A	4A	:	5A	79	Z	7A	39	z
1 B	27	M.Right	3B	OA	;	58	3 E	Spc	78	3 E	Spc
1 C	2 F	Tab set	3 C	3 E	Spc	5 C	3 E	Spc	7 C	3 E	SpC
10	3 F	Tab clr	3 D	29		5 D	3 E	Spc	7 D	3 E	Spc
IE	23	S.Lock	3 E	3 E	Spc	5 E	3 E	Spc	7E	3 E	SpC
IF	30	Repeat	3 F	72	?	5 F	45	-	7F	10	Del

Aerial inefficiency at sea

Innovation in marine aerials is badly needed: British thought in this area has been 'fossilized' for 50 years. But North Atlantic sea trials earlier this year of new Britishdesigned components have shown 'excellent results.' This is the third of John Wiseman's startling revelations on the state of marine aerials.

We at sea are not the only people who have been forced by an unfavourable environment, to operate low-frequency transmitters into aerials less efficient than the textbook optimum. The photograph on this page shows a trench transmitter of the First World War, operating on wavelengths between 500 and 2000 metres with an aerial only a metre above the ground, and a range of 3 or 4 km . With an aerial of specified 40 foot length and 15 foot height,

by J. J. Wiseman

range was up to 80 km . Even from this inadequate aerial, a useful service was still obtained, even more remarkable considering the primitive receivers of those days. Other 1914-18 War transmitters worked

Fig. 1. This l.f. trench transmitter operated into an aerial only a metre above ground, but others worked from aerials inside the trench. (20watt Mk 3 transmitter, 1917, has singlevalve tuned-anode oscillator, but a second valve could be switched in parallel for maximum power. HT supplied by 1,000-volt battery or induction coil.)

Fig. 2. Those whose experience of a storm at sea is a rough ride to Calais on a stabilized passenger ferry can have little idea of the force of a North Atlantic winter gale. (Photo: P. F. Barber, Scarborough)

Fig. 3. Top-loaded unipole aerial of Scandinavian origin. The stays add to the top capacitance, also to the leakage. Has little height. (Photographed at Eleusis, Greece, 1982)
into aerials actually inside the trench, below ground level, operating at 80 to 100 metres wavelength.

The efficiency of the 500 kHz marine aerial depends, as for any other other, on its height and dimensions; the special variable factor in the marine environment is leakage. A correspondent ($W W$ February 1983 issue) has pointed out that an aerial height of 0.1λ, at perhaps 40 or 50% efficiency is about the least we can hope to get away with, and at 500 kHz this corresponds to 60 metres, an impossible height. But according to a BBC Research Department report by H. Page, published in 1963: ". . . a capacitative top is often added to a low aerial with the object of increasing the radiation resistance. In this case, a large top changes the current distribution on the vertical portion of the aerial from linear to substantially constant, thus approximately quadrupling the radiation resistance . . ". This might lead to the

Fig. 4. Hard-to-find classic French all-wire sausage aerials with high top capacitance, well sited on available structures. ('Dumont d'Orville,' French flag, b.1977, 23910 g.r.t. photographed at Cr. Couronne, 1983.)

Fig. 5. This stubby mast accounts for 5% of aerial capacitance, 2% of its radiation, and 90% of its cost l It makes no economic or functional sense. Cargo cult design. ('lle de la Reunion,' French flag, b. 1969, 16671 g.r.t. photographed at Rouen, 1983.)
hope that, with a good capacitive top, one could work with an aerial only 15 metres high with useful efficiency. We will get some lift over ground-level figures because the base of the aerial is already well elevated by the hull of the ship. Figures 3 \& 4 show about the least and the most that can be done about 'rops' on an average ship. The bizarre arrangement in Fig 5 has all the correct ingredients, but has got them upside down: the money has been invested in the wrong end of the aerial. As weil as improving radiation resistance, the 'top' improves the L/C ratio, minimizing arcing. As manufacturers keep on supplying transmitters specified to match aerials of " 250 to 750 pF ", and shipyards tend to supply aerials toward the lower end of the 80 to 400 pF range, the 'top' can only help, avoiding tuning difficulties particularly at the low end of the 405 to 535 kHz band.

Fig. 6. Traditional British feedthrough setup, unchanged since the days of silent movies, photographed in 1983.

Fig. 7. Abbreviated version for a quick, cheap job on a 900 -ton supply vessel failed repeatedly at sea. (Australian flag, photographed in Tasmania, 1976.)

If the RC product is too small, charge put into the aerial each cycle may leak away almost as fast as it can be supplied (R is parallel leakage). Time between peaks is longer at lower frequencies. This is a further good reason for making C as large as possible. But what can be done about R ?

The standard British feedthrough insulator arrangement, unchanged since 1930, is at its best and at its worst in Figs 6 and 7. The strain insulators are also standard British issue. Their presence adds to

Fig. 9. Simple and effective conical skirts of common British telegraph pole insulators, in use for nearly a century, and only now recently adopted for marine use, Figs. 10 and 11.

Fig. 10. Tough German aerial strain insulator using skirt principle. Rated at 50 kV (dry) at 500 kHz .700 kg tensile load, mass 1.5 kg . (Dieckmann \& Klapper.)
leakage, and cancels any useful effect the bells might have. In earlier times the trunking (Fig 6) would have been made of oiled teak, and could have contributed to the overall insulation. These days it is soggy plywood, even steel.
British thought in this area has been fossilized for 50 years; there has been reluctance to innovate or to produce any aerial hardware requiring much manufacturing. Books like " 101 Things a Boy Can Make" have a lot to answer for. The ends of this kind of feedthrough insulator are sometimes unglazed and porous, absorbing water, and usually sealed with cork washers. A British firm makes a sol-vent-based silicone preparation which causes water on the surface of a ceramic insulator to collect in small drops, preventing formation of a conductive film. It requires oven curing. I have never seen it used at sea; it could be useful. The old 'bitumastic strap' insulator, a yard-long
tough rubber thong, worked on this principle, although it might have fried at 17 MHz !

A German-made feedthrough trunk, based on a tough glass-fibre tube, is up to three metres long (Fig 8); polyester stays are available to brace it. There is minimal shunt capacitance, small surface area, and a long way indeed to leak or arc. It is rated at 30 kV at 500 kHz . A neat arrangement: beats soggy plywood, and probably doesn't cost much more.

The insulator shown in Fig 9, with its deep skirt, has been on British telegraph poles for nearly 100 years - simple and effective. Only recently has a German firm adapted the principle to insulators for marine use, Fig 10. The same idea is seen again on the base of a Russian mast aerial in Fig 11. Why has it taken so long?

The feedthrough insulator of Fig 12, with metal jacket and metal rain cone, was photographed on the British cruiser, HMS Belfast. If the Navy had advanced ideas, they did not seem to get passed on to the merchant fleet.

But British ingenuity, neglected as it may be, is still very much alive and well, and living in Britain.

Recently patented, British developed feedthrough and aerial link insulators (Figs $13 \& 14$) with protective mantles of elegant design have undergone testing by a national h.v. laboratory and sea trials in the North Atlantic in winter with excellent results, see Fig 15. The shrouding domes are made of transparent high impact plastics. The feedthrough unit is held to the bulkhead by non-metallic nylon bolts, and a stream of air blown into the inner dome to prevent penetration by moisture, warmed as well if necessary to prevent icing. The link insulator unit has a vaned, wind-driven rotating outer dome, running on non-metallic rollers. Water entering is thrown out through small holes in the rotating part. With salt-water spray directed into the gap between inner and outer domes for 30 minutes in laboratory tests, flashover occured at 57 kV . An unprotected insulator under similar conditions began to spark over at 11 kV .

In North Atlantic sea trials, carried out on a British tanker from late January to early April, one aerial retained its British 'standard' brass bell fitted feedthrough, the other being supplied with the domed shrouding mantle assembly. The day-today log kept shows typically an equal 4A up either aerial in dry weather, but 'tuning impossible' with the standard aerial in bad weather, while the modified aerial was still drawing a good 2.8 A , from the same 100 watt transmitter at 500 kHz . Later, link insulators with protective mantles were added to that aerial, with further improvement in results. While the standard aerial drew only 0.5 , the modified aerial took 3.9A. What more can man do? Perhaps combine the best features of several of the systems described, no more.

MN

Fig. 11. Base of Russian mast showing three deep-skirted rain cones on the central glass-fibre pole. (Photographed at Rouen, 1983.)

Fig. 13. Recently-developed British feedthrough assembly with dual-domed protective mantle. Moisture is expelled from domes by air blower. (By P. F. Barber, Scarborough.)

Fig. 15. Sea trials with one feedthrough protected, the other traditional. In later trials protected link insulators added.

Fig. 14. British invented link/strain insulator assembly with protective shrouding. Winddriven rotating outer dome expels water by centrifugal action. (P. F. Barber, Scarborough.)

Fig. 12. Metal-jacketed naval feedthrough insulator on HMS Belfast, World War 2 cruiser, now museum. Plumbing suggests it might have been air blown.

In bad weather at 380 miles, on 500 kHz , US coastguard gave (typically) OSA1 from traditional side, QSA4 from protected side, same transmitter. Had the usual shunting strain insulator been present traditional side would have fared even worse. (P. F. Barber, Scarborough.)

Loudspeaker

measurements

simplified

Acoustic measurement techniques designed to avoid the vagaries of personal prejudice and room acoustics normally require a calibrated microphone. Using the principle of reciprocity three transducers can be calibrated with reasonable accuracy and no specialized equipment

The design of loudspeaker cabinets may be reduced to the analysis of an equivalent electrical circuit ${ }^{1}$. In principle it should be within the capabilities of an electronics engineer to devise his own speakers for special applications, or simply as a less expensive and/or better quality option to commercial offerings. Problems arise however when attempting to confirm the performance of the finished product. A subjective listening test may be adequate in some circumstances, but the vagaries of personal prejudice and room acoustics can affect the results, and it is difficult to determine the cause of a fault should the speaker not sound satisfactory.
The subject of acoustic measurements has been discussed previously in Wireless World. Hiscocks ${ }^{2}$ described a gated toneburst method of eliminating the effects of reverberation and echoes, and Grubb ${ }^{3}$ showed how a fast Fourier transform spectrum analyser might be used to achieve the same end. But before such sophisticated signal processing can be applied the acoustic field must be measured. This implies the use of a microphone of known sensitivity and response, probably not available to the home constructor. An application of the principle of reciprocity is described in this article which leads to the absolute calibration of three transducers by means of purely electrical observations.
The three transducers required are a transmitter, a receiver and a reversible device. Most forms of acoustic transducer in general use are reversible, and the method is admirably suited to the calibration of a microphone and a pair of loudspeakers.
The reciprocity theorem states that in a passive linear four-pole network the ratio of excitation to response is constant when the positions of excitation and response are interchanged. But more particularly, the two open-circuit transfer admittances are equal.

by Peter F. Dobbins

Two reversible electroacoustic transducers coupled to the same medium and accessible only through the two pairs of electrical terminals form a four-pole network. A general proof of the validity of the law has not been given for this case, to my knowledge, but it has been proven for special cases. Furthermore, in practice it is easy to check that a particular network is reciprocal, as described, and for this reason the validity is assumed. It is further assumed that the principle applies to individual transducers. Consider Fig. 1(a), which shows a current i_{1} flowing into terminals $1 \& 2$ of a network causing an opencircuit voltage e_{1} to appear across terminals $3 \& 4$. In (b) the connections are reversed, and an input current i_{2} at terminals $3 \& 4$ causes an open-circuit output voltage e_{2} at terminals $1 \& 2$. Reciprocity may be stated as

$$
\begin{equation*}
i_{1} / e_{1}=i_{2} / e_{2} . \tag{1}
\end{equation*}
$$

In a transducer terminals $3 \& 4$ may be regarded as a point in the acoustic medium
(a)

(b)

$i_{1} / e_{1}=i_{2} / e_{2}$
Flg. 1. Four-port network is reciprocal if its transfer admittance is the same in both directions.
at a distance r from the device. Network (a) represents a transmitter or loudspeaker. An input current i produces a sound pressure p at the output. Network (b) represents a receiver or microphone and an acoustic source of strength Q at the input produces an open-circuit voltage e_{o} at the output terminals. Equation 1 may then be written:

$$
\begin{equation*}
\mathrm{i} / \mathrm{p}=\mathrm{Q} / \mathrm{e}_{\mathrm{o}} . \tag{2}
\end{equation*}
$$

For those unfamiliar with acoustic terminology, the rate of flow in the medium from source is

$$
\mathrm{Q}(\mathrm{t})=\int_{\mathrm{A}} \mathrm{u}(\mathrm{t}) \cdot \mathrm{dA}
$$

where A is the area of the vibrating surface and $u(t)$ is the velocity of that surface. Generally, for simple harmonic motion

$$
Q(t)=Q e^{j \omega t}
$$

where Q is the strength of the source. At low frequencies a loudspeaker cone may be regarded as a rigid piston, and the source strength is simply the effective area multiplied by the cone velocity. The acoustic pressure p at a distance r from this source is inversely proportional to r, if spherical spreading is assumed, and related to Q by the equation

$$
p(t)=\frac{j \rho c k}{4 \pi r} Q e^{j(\omega t-k r)} D(r, \theta, \phi)
$$

ρ is the density of the medium, c is the sound speed, $k=\omega / \mathrm{c}$ is the wave number or spatial frequency, and D is a function describing the directivity of the source with arguments r, θ, ϕ in spherical co-ordinates. For this discussion directivity is neglected, as once the sensitivity has been found in the straight-ahead direction it is a simple matter to rotate the source and measure the relative response in other directions and so determine the beam pattern. Phase angle may be retained in these calculations but is generally neglected because of expe-
rimental difficulties encountered in accurately determining both the distance between transducers and the sound speed in the medium, so only the amplitude is considered here. Thus D is set equal to one, and the exponential time dependence may be dropped:

$$
\begin{equation*}
\mathrm{p}=\frac{\rho \mathrm{ck}}{4 \pi \mathrm{r}} \mathrm{Q} \tag{3}
\end{equation*}
$$

where p and Q are r.m.s. amplitudes. Both spherical radiation and free-field conditions are implicit in equation 3, and the consequences of these assumptions will be discussed when the practical application of this theory is considered.

The free-field voltage sensitivity m of a transducer used as a microphone is the ratio of the open-circuit voltage output e_{o} to the free-field sound pressure p :

$$
\begin{equation*}
\mathrm{m}=\mathrm{e}_{\mathrm{o}} / \mathrm{p} \tag{4}
\end{equation*}
$$

The transmitting voltage (or current) response, $s_{v}\left(s_{i}\right)$, of a transducer used as a speaker is the ratio of the sound pressure at unit distance from the transducer to the voltage applied across (or the signal current flowing into) the electrical input terminals:

$$
\begin{equation*}
\mathrm{s}_{\mathrm{v}}=\mathrm{p} / \mathrm{v} \text { or } \mathrm{s}_{\mathrm{i}}=\mathrm{p} / \mathrm{i} \tag{5}
\end{equation*}
$$

Combining equations $3 \& 4$:

$$
\begin{equation*}
\mathrm{m}=\frac{4 \pi \mathrm{re}}{\mathrm{o}} \mathrm{~g} . \tag{6}
\end{equation*}
$$

From equation 5 and the reciprocity relationship (equation 2):

$$
\mathrm{Q}=\mathrm{e}_{0} / \mathrm{s}_{\mathrm{i}} .
$$

Thus, substituting for Q in equation 6,

$$
\begin{equation*}
\mathrm{m}=\frac{4 \pi \mathrm{rs}_{\mathrm{i}}}{\rho \mathrm{ck}} \tag{7}
\end{equation*}
$$

Noting that s is defined for unit distance (i.e. $r=1$), and that k may be expressed in terms of frequency, $k=2 \pi f / c$, equation 7 becomes

$$
\begin{equation*}
\frac{m}{s_{i}}=\mathrm{J}=\frac{2}{\rho f} \tag{8}
\end{equation*}
$$

where J is the reciprocity parameter or acoustical transfer admittance for spherical radiation. By modifying the form of equation 3 , reciprocity parameters may be derived for other conditions, such as plane waves, and examples will be found in reference 5. Equation 8 is derived from MKS units and if other systems are used a conversion constant must be included. A note on units used in acoustics is given in the Appendix.

As engineers prefer everything in logarithmic form so that they can add and subtract rather than multiply and divide, equation 8 may be re-written

$$
S=M+20 \log f+201 \log \rho / 2-20 \log |Z|
$$

where $S=20 \log _{v}(\mathrm{~dB}$ relative to $1 \mathrm{~Pa} / \mathrm{V}$ at $1 \mathrm{~m}), \mathrm{M}=20 \log \mathrm{~m}(\mathrm{~dB}$ re $1 \mathrm{~V} / \mathrm{Pa}$), and $|\mathrm{Z}|$ is the input impedance of the transducer (only the magnitude is needed as only the magnitudes of M and S are to be found).

Finally, taking the density of air as $1.2 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$, a new reciprocity factor K is defined by

$$
\begin{equation*}
S=M-K \tag{9}
\end{equation*}
$$

with $\mathrm{K}=20 \log |\mathrm{Z}|-20 \log f+4.4$.

Fig. 2. Schematic three transducer reciprocity calibration. Drive voltage $e_{C B}$ is applied to transducer C, which transmits to transducer B, at a distance $d_{C B}$, giving an output voltage $v_{C B}$. Test is repeated with C transmitting to A and B transmitting to A.

Three transducer method

The practical application of reciprocity in acoustic calibration requires three linear transducers, of which at least one is reversible, and also that measurements be carried out under free-field conditions and in the far field of each transducer. These conditions must be met if results are to have any meaning, and some simple checks are described in the section on measurement techniques.

The three transducers required are a microphone A, a reversible device B and a speaker C. The terms microphone and speaker refer only to the usage of the transducer for these tests, and the term transducer is taken to mean any device that converts acoustic energy to electrical energy or vice versa. A transducer is reversible if the conversion operates in both directions, and this is true of almost any device that contains no active components, obvious examples being the ordinary moving coil loudspeaker and dynamic microphone.

Both transmit and receive sensitivities may be obtained for all three transducers under test by full use of reciprocity. Three sets of measurements are done:
speaker to reversible device
speaker to microphone
reversible device to microphone
The sequence is shown schematically in Fig. 2. Assuming spherical spreading, the relationship between drive voltage and received voltage for a test between transmitter I and receiver J is

$$
\mathrm{e}_{\mathrm{IJ}}=\frac{\mathrm{v}_{\mathrm{IJ}} \mathrm{~m}_{\mathrm{I}} \mathrm{~s}_{\mathrm{J}}}{\mathrm{~d}_{\mathrm{IJ}}}
$$

or in logarithmic form and with some rearrangemen:

$$
\begin{equation*}
\mathrm{A}_{\mathrm{IJ}}=\mathrm{D}_{\mathrm{IJ}}-\mathrm{S}_{\mathrm{I}}-\mathrm{M}_{\mathrm{J}} \tag{11}
\end{equation*}
$$

where $A_{I J}=20 \log \left(\mathrm{v}_{\mathrm{IJ}} / \mathrm{e}_{\mathrm{IJ}}\right)$ is attenuation and $\mathrm{D}_{\mathrm{IJ}}=20 \operatorname{logd}_{\mathrm{IJ}}$ is spreading loss. The relationship between M and S for one transducer is given by equation 9 as S_{I} -$=\mathrm{M}_{\mathrm{I}}-\mathrm{K}_{\mathrm{I}}$, where K is the reciprocity term from equation 10 .

The three sets of measurements give

$$
\begin{align*}
& \mathrm{A}_{\mathrm{CB}}=\mathrm{D}_{\mathrm{CB}}-\mathrm{S}_{\mathrm{C}}-\mathrm{M}_{\mathrm{B}} \tag{12}\\
& \mathrm{~A}_{\mathrm{CA}}=\mathrm{D}_{\mathrm{CA}}-\mathrm{S}_{\mathrm{C}}-\mathrm{M}_{\mathrm{A}} \tag{13}\\
& \mathrm{~A}_{\mathrm{BA}}=\mathrm{D}_{\mathrm{BA}}-\mathrm{S}_{\mathrm{B}}-\mathrm{M}_{\mathrm{A}} \tag{14}
\end{align*}
$$

Combining the first two by eliminating S_{C} gives

$$
\mathrm{M}_{\mathrm{A}}=\mathrm{D}_{\mathrm{CA}}-\mathrm{D}_{\mathrm{CB}}+\mathrm{A}_{\mathrm{Cb}}-\mathrm{A}_{\mathrm{CA}}+\mathrm{M}_{\mathrm{B}}
$$

But $M_{B}=S_{B}+K_{B}$ and substituting for S_{B} from the third equation leads to

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{A}}=1 / 2\left(\mathrm{D}_{\mathrm{CA}}-\mathrm{D}_{\mathrm{CB}}+\mathrm{D}_{\mathrm{BA}}+\mathrm{A}_{\mathrm{CB}}-\right. \\
& \mathrm{A}_{\mathrm{CA}}-\mathrm{A}_{\mathrm{BA}}+\mathrm{K}_{\mathrm{B}}
\end{aligned}
$$

The receive sensitivity of the microphone has now been found in terms of distances and electrical quantities by use of the reciprocity factor. The rest is plain sailing. Using equations 13 \& 14

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{C}}=\mathrm{D}_{\mathrm{CA}}-\mathrm{A}_{\mathrm{CA}}-\mathrm{M}_{\mathrm{A}} \text { and } \\
& \mathrm{S}_{\mathrm{B}}=\mathrm{D}_{\mathrm{BA}}-\mathrm{M}_{\mathrm{A}}-\mathrm{A}_{\mathrm{BA}}
\end{aligned}
$$

and by reciprocity:

$$
\mathrm{M}_{\mathrm{B}}=\mathrm{S}_{\mathrm{B}}+\mathrm{K}_{\mathrm{B}}
$$

The transmit sensitivity of the speaker and both transmit and receive sensitivities of the reversible device are now known. The speaker and microphone may not be reciprocal. For instance, an electret microphone usually has a built-in preamplifier so is obviously not reversible, and as the terminals of the transducer are not directly accessible the impedance cannot be calculated. However, if either or both of these transducers are reversible the remaining sensitivities are easily found:

$$
\begin{aligned}
& S_{A}=M_{A}-K_{A} \\
& M_{C}=S_{C}+K_{C} .
\end{aligned}
$$

These last six equations give absolute calibrations for each of the transducers, obtained without a reference transducer. The measurements and calculations must be repeated at each frequency of interest, and at first glance the process may seem tedious. But the amount of experimental work is no greater than carrying out three separate frequency response procedures using a standard transducer, while the calculations are simple arithmetic and easily programmed for a computer or calculator. If practicable, some easing of the workload can be achieved by making distances and drive voltages constant for all tests.

Measurement techniques

Before the calibration procedure can begin the impedance of each transducer must be found as a function of frequency so that the reciprocity factor can be calculated. If a bridge is not available the simple circuit of Fig. 3 generally provides satisfactory results. To keep errors low, R should be a low resistance ($\mathrm{R}<|\mathrm{Z}| / 100$) if the transducer is a high impedance device, and the impedance obtained from $|\mathrm{Z}| \approx \mathrm{V}_{1} \mathrm{R} / \mathrm{V}_{2}$. If the transducer is a low impedance device then R should be a high resistance ($R>100|Z|$) and the impedance obtained from $|Z| \approx V_{3} R /\left(V_{1}-V_{3}\right)$.

Most transducers have very low electromechanical coupling coefficients so no special precautions need be taken, provided the active face is not pointing directly at a nearby reflecting surface. Some devices such as piezoelectric tweeters are very efficient, and any obstacle within several wavelengths may affect the measured impedance. A sensible procedure is to suspend the transducer in mid-

Fig. 3. In the absence of a bridge the input impedance of a transducer may be determined by measuring the voltage drop across a series resistor.
air, allowing it to swing freely. If the impedance does not appear to change as the device moves then all is well. Transducers such as tweeters, whilst not requiring a cabinet for their operation, should be mounted as they will be in service, because the presence of baffle will affect both impedance and sensitivity at frequencies where the device is small compared with the wavelength.
The basic measurement set-up is shown in Fig. 4. The hardware need not be sophisticated, but before discussing the instrumentation the acoustic environment and the necessary conditions must be considered.

Measurements should be made in the far-field of the transducers, which means that the projector is assumed to be a point source from which spherical waves spread, and the receiver is assumed sufficiently small that the wavefront may be considered plane over the transducer face. As both have finite size there must be sufficient distance between them before the assumption can be considered valid. For a working rule the minimum distance should be $\mathrm{a}^{2} \mathrm{f} / \mathrm{c}$ or 5 a , whichever is the greater, where a is the maximum dimension of the larger transducer and c is the sound speed. In air, $\mathrm{c}=343 \mathrm{~ms}^{-1}$. The size should include the housing, not just the active face of the transducer, as any discontinuity can act as a secondary source.

The free-field condition is generally the most difficult to deal with, and essentially means that the sound waves must be free to radiate spherically with no disturbance by boundaries or obstacles within the field of interest. In principle the receiving transducer should not distort the wavefront, but there is little that can be done to ensure this, given a particular device. There are a number of ways to tackle the free-field problem:
1 - measure in an anechoic chamber
2 - measure out of doors
3 - use pulse techniques
4 - measure in a room and correct for reverberation by calculation or signal processing
5 - measure in a room and ignore room effects.
The effect of reverberation is to introduce ripples into the measured frequency response. If the ultimate in precision is not required it is generally possible to estimate the mean level, and (5) may prove satisfactory. An anechoic chamber is not usually available, so weather permitting, (2) may be the best compromise. Solution (4) usually requires specialized instrumentation or vast computing power, but an interesting discussion of a typical tech-
nique is given in reference 6. The pulse method (3), is described in detail in references 2 and 3 , but the principle is summarized here.

In an enclosed environment signals travel from transmitter to receiver by paths other than the direct one. Because sound travels fairly slowly in air it is possible to transmit short tonebursts and measure the received signal before reflections reach the receiver, Fig. 5. It is usual to use a gating and sampling system to achieve this result, but careful oscilloscope observation can result in accuracies better the 0.5 dB . If a gated signal generator is not available, a simple fet switch can be constructed, as described in reference 2.

Maximum pulse length is determined by the difference between direct and first reflected path length. The minimum pulse length is determined either by the risetime (and therefore the bandwidth) of the transducers or by the time constant of the detector. As frequency becomes lower a longer pulse is needed to encompass a sufficient number of cycles, and the method becomes unuseable when the wavelength approaches the differences between direct and reflected path lengths. In averagesized rooms this is typically around 500 Hz . The maximum pulse repetition rate is determined by the time it takes for reflections to decay to negligible amplitude. These times may be calculated, but are easily set empirically by direct observation of the signals.

Free-field and far-field conditions are easily checked by confirming compliance with equation 3. If the transmitter is driven at constant frequency, constant voltage, and the receiver output voltage measured as a function of distance, this voltage is then inversely proportional to distance.

The total transmission chain should be linear, with no saturation effects. It is not generally appreciated that the acoustic medium itself may become non-linear at high pressure amplitudes, especially at high frequencies or when the transmission path is constricted as in a horn. Testing for proportionality between transmitter drive voltage and receiver output will check for both linearity and an adequate signal-tonoise ratio.

Fig. 4. Minimum instrumentation is a signal generator and suitable power amplifier, a frequency counter and a means of monitoring the transmitter drive level and receiver output voltage.

Peter Dobbins began his career as a technician apprentice with BAC, Hurn, obtaining a City \& Guilds qualification in aeronautical radio and instrumentation at day release and evening classes. His first professaional contact with acoustics was at Ultra Electronics, Greenford, where he worked on the development of transducer arrays for sonobuoys. He joined BAe at Weymouth (formerly Sperry Gyroscope) in 1976 to work in electronics design, but transferred to the underwater technology department in 1981. Since then he has gained an honours degree in applied mathematics from the Open University, and has recently been elected a member of the Institute of Acoustics. In 1982 he became a founder member of a specialist transducer group at BAe, and is now a senior engineer working on underwater acoustic transducer and array design, with interests in longrange propagation and non-linear generation of low frequency sound.

Reciprocity must also be confirmed. It is not possible to check that the individual transducers are reciprocal without direct measurements on the acoustic field, but it is possible to test the combined transmitter/receiver chain, simply by measuring the transfer admittance in both directions. With two transducers in their final measurement positions drive one, noting the input current i_{1} and measure the output voltage e_{1} from the other. Reverse the connections and measure the new input current, i_{2}, and output voltage, e_{2}. This should be repeated at a number of frequencies over the range of interest. If $i_{1} / e_{1}=i_{2} / e_{2}$ at each frequency, then both transducers may be regarded as reciprocal.

Making the calibration measurements is straightforward. It is assumed that continuous rather than pulsed signals are being used and that some suitable location has been found, perhaps out of doors, enabling free-field and far-field conditions to be met. Typically the transducers under test will be two loudspeaker drivers and a microphone, one of the speakers being used as the reversible device, taking care to distinguish between the two speakers.
The first job is to select the frequencies to be used, and common practice is to have third-octave steps, the sequence being 1 ,
$1.25,1.6,2,2.5,3.15,4,5,6.3,8,10$ etc. This is not essential, the point being to keep to the same frequencies for each set of measurements.
The speaker and reversible device should be positioned, pointing directly towards one another, at the appropriate freefield distance and as high above the ground as possible to reduce the effect of reflections. The distance between the transducers should be measured. Measure from the diaphragm, if exposed, otherwise from the plane of the baffle or front of the mounting structure.

Instrumentation is set up as in Fig. 4, using the speaker as transmitter and reversible device as receiver in the first test. There are no special requirements of the signal generator and three-digit accuracy is adequate for the frequency counter. The power amplifier could be one channel of a hi-fi unit, and to get the best signal-tonoise ratio the drive level should be as high as possible, subject to linearity, transducer power handling and complaints from neighbours.

One point about the detector. The theory described here applies specifically to open-circuit output voltage, so the detector input impedance must be much greater than the output impedance of the transducer or results will be meaningless. It is not necessary to have seperate instruments to measure transmit and receive voltages, but it does make the work less complicated.

Once the equipment is operating satisfactorily the drive voltage and received voltage must be noted at each frequency of interest. This procedure is then repeated with the speaker as transmitter and microphone as receiver, and finally with the reversible device as transmitter and microphone as receiver. The required sensitivities can then be calculated from equations.

Results

Repeated and careful reciprocity measurements can result in a sensitivity accuracy of 0.5 dB or better, but real life acoustics is not that exact. The transducers themselves are not particularly stable. Their sensitivity will certainly vary with temperature. More importantly, the radiation resistance is proportional to the density of the air and the speed of sound, both of which can change with temperature pressure and humidity. This change will be reflected in the input impedance, and

Fig. 5. In suppressing echoes by pulse technique, the transmitted pulse is short enough to allow the received signal to be measured before the arrival of reflections.
with an efficient transducer the impedance term in equation 10 might vary by $\pm 0.5 \mathrm{~dB}$ over the normal range of meteorological conditions. Additionally, density is included directly in the reciprocity relationship. The density of air can vary from less than 1.0 to over $1.3 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$, which represents an uncertainty in equation 10 of over $\pm 1 \mathrm{~dB}$.
Another potential source of error, neglected in the theory, is absorption. Generally the dissipation of acoustic energy in air due to mechanisms such as molecular relaxation and viscous losses is low enough to be ignored. At high audio frequencies, however, and under conditions of high relative humidity the attenuation due to absorption may be as high as 1.0 dB per metre.

These, and many other imponderables, mean that an accuracy of better than 1 or 2 dB cannot be guaranteed in uncontrolled conditions. This, however, is more than adequate for most domestic applications, where the main requirement is to ensure that the frequency response of a transducer is essentially flat, and that there are no unwanted resonances. It is unlikely that these results can be bettered with a calibrated microphone under similar conditions.

References

1. Leo L. Beranek. (1954 'Acoustics' Ch. 7, 8, 9. McGraw-Hill.
2. P. D. Hiscocks, Measuring transducer directivity Wireless World, vol.84, 1978. No. 1512, pp. 61-66.
3. R. N. Grubb. Non-echoic acoustic measurement with theHP 3582A, Wireless World, vol.86, 1980. No. 1531, pp. 45-49.
4. L. D. Luker and A. L. Van Buren, Phase calibration of hydrophones, \mathcal{F}. Acoust. Soc. Am., vol.70, 1981. No. 2, pp. 516-9.
5. W. R. MacLean, Absolute measurement of sound without a primary standard, 7. Acoust. Soc. Am., vol.12, 1940, pp. 140-6.
6. R. B. Randall and J. Hee, Cepstrum analysis. Wireless World, vol.88, 1982. No. 1553, pp. $77-80$, No. 1554, pp. 88-90 and No. 1556, pp. 78-80.

Appendix: units

Rationalized MKS units have been used throughout this article, which is something of a novelty in acoustic circles. In underwater acoustics MKS is in general use, but the Navy sticks by the traditional fathoms, knots, kiloyards, millibars and so on. Hi-fi people seem happy to use a similar mixture, with an annoying habit of quoting sound levels in decibels without stating a reference pressure, and who knows what terms like Noy, Sone and NEF mean, as used by environmental noise and architectural acoustics people.

Conversions between imperial, c.g.s. and MKS units are straightforward, but take care over whether to add or subtract when dealing with decibels. One worth remembering is
1 yard $=0.9144 \mathrm{~m}=-0.8 \mathrm{~dB}$ relative to 1 m .

It is customary to specify air at a temperature of $20^{\circ} \mathrm{C}$ and at standard atmospheric pressure in defining standards of acoustic intensity, impedance, pressure, and so on. Under these conditions the density of air is $1.21 \mathrm{kgm}^{-3}$ and the speed of sound is $343 \mathrm{~ms}^{-1}$, giving for the standard characteristic impedance of air $\rho c=415$ rayls. Unless other conditions of temperature and pressure are known to exist in a particular situation, the above values should be used for the solution of problems.

The commonly used reference standard of intensity for airborne sound is 10^{-12} watt m^{-2}, which is approximately the intensity of a 1 kHz pure tone that is barely audible to normal human ears. This corresponds to an effective (root mean square) pressure of

$$
\mathrm{p}=\sqrt{\overline{\mathrm{I}} \mathrm{c}}=\sqrt{415 \times 10^{-12}}=2 \times 10^{-5} \mathrm{Nm}_{-2}
$$

The diagram gives the relationships between the most commonly used reference pressures. Although calculations are made much easier by keeping to MKS units

Reference pressure levels in common use and the relationships between them.
throughout the results may be expressed in any convenient units A simple example demonstrates its use. A typical speaker sensitivity would be

$$
\begin{aligned}
\mathrm{S} & =110 \mathrm{~dB} \text { re } 1 \mathrm{~Pa} / \mathrm{V} \text { at } 1 \mathrm{~m} \\
& =110-26=84 \mathrm{~dB} \text { re } 2 \times 10^{-5} \mathrm{Nm}^{-2} / \mathrm{V} \\
& =110-100=10 \mathrm{~dB} \text { re } 1 \mathrm{bar} / \mathrm{V} \text { at } 1 \mathrm{~m} \\
& =110-120=-10 \mathrm{~dB} \text { re } 1 \mathrm{~Pa} / \mathrm{V} \text { at } 1 \mathrm{~m} .
\end{aligned}
$$

A more complicated conversion might be as follows. A loudspeaker manufacturer states that the sensitivity of one of his products is

96 dB at 1 yard for 0.6 W input.
Experience suggests that the reference pressure is probably $2 \times 10^{-5} \mathrm{Nm}^{-2}$. If the impedance is nominally 8Ω an input power of 0.6 W requires a drive of 2.2 V .
$20 \log 2.2=6.9 \mathrm{~dB}$ relative to 1 V .
The sensitivity is thus
$\mathrm{S}=96-6.9=89.1 \mathrm{~dB}$ rel. 2×10^{-5} $\mathrm{Nm}^{-2} / \mathrm{V}$ at 1 yard.
Subtract 0.8 dB to refer to 1 m
$\mathrm{S}=89.1-0.8=88.3 \mathrm{~dB}$ rel. 2×10^{-5}
$\mathrm{Nm}^{-2} / \mathrm{V}$ at 1 m .
And subtract 94 dB to refer to 1 Pa
$\mathrm{S}=88.3-94=-5.7 \mathrm{~dB}$ rel. $1 \mathrm{~Pa} / \mathrm{V}$ at 1 m .
NON

How to make electric charge from a radio

 wave
Abstract

A wave in free space can be persuaded to enter a transmission line where its velocity may be reduced whilst still conserving its field pattern. If the transmission line is formed into a closed circle it may be spun at the same angular velocity as that of the wave to produce an electrostatic field in the laboratory, just as from a charged surface, but the primary energy is entirely in the wave field. Which then is the more fundamental, charge or field - do we really need two criminals where one may suffice?

In recent years there have been a number of controversial articles in Wireless World questioning the very basis of the principles which are fundamental to wireless and wired communication. One is often tempted to comment in the letter columns but it is entertaining to sit back and witness battles which, too frequently, are replays of conflicts that one has fought on similar battlegrounds in days gone by. I will not enter directly into the controversies, although it may be clear in which direction my sympathies lie, but I will present a little conundrum and show how a partial solution has been demonstrated with simple apparatus that can be constructed at home by many readers of Wireless World.

What is electric charge? What is it made of and why does it have, and appear to behave as the source of, an associated electric field, whatever that may be? If you do not like the concept of an electric field, but prefer to live in my old friend Sandy Scott Murray's particulate world, substitute for the field a horrific flow of virtual photons, whatever they may be. The answer that charge is simply an excess or deficit of electrons, is not sufficiently fundamental. What is the nature of the charge on a single electron? Even if the electronic charge is made of miniscule sub-particles which defy discovery the same question remains: what is charge, is it a special sort of green cheese which acts as the source of an electric field? Its only purpose seems to be to support the field, or complex of virtual photons, and couple it to matter, but after all it is a very old concept that predates Friday's work on fields. At the present time we appear to have two separate unknown criminals who travel hand-in-hand, the electric charge and the electric field. Can we not form a model which causes the two criminals to coalesce and thereby remove at least one of the unknowns?

Start by considering an imaginary expe-

by R. C. Jennison

riment using some of the radiation that has been around since the time of the 'big bang'. The 3 K radiation which pervades our part of the universe is thought to be the dying remnant of immaculately conceived radiation which cannot be associated with the radiation from particulate matter. We can pick up some of this radiation on a millimetre-wave antenna and pop it down a transmission line in which the velocity of propagation of the disturbance depends on the dielectric properties of the line. In principle the dielectric constant can be as high as we wish so that the disturbance moves at a leisurely pace. (Wave velocity in a transmission line is given by the reciprocal of the square root of the product of the inductance and capacitance per unit length, which is

$$
c^{\prime}=(\mathbf{L C})^{-1 / 2}=(\mu \epsilon)^{-1 / 2}=c /\left(\mu_{\mathrm{r}} \epsilon_{\mathrm{r}}\right)^{1 / 2},
$$

the same as for an electromagnetic wave in the medium when no conductors are present). Coil the line around so that the circumference is precisely one wavelength in the line, Fig. l(a). We now have to work very quickly but remember that we are discussing an imaginary experiment at this stage! Chop a section out of the line which carries exactly one wavelength and couple the input of the section immediately to the output of the same section, (b). We now have one wavelength trapped in a continuous transmission line of one wavelength circumference. The radiation will quickly decay but we can at least imagine a transmission line with very low losses so that the wave circulates for a tinite time.

You may not care for the idea of changing the connection so quickly, so if you wish to be a little more practical, substitute the arrangement in Fig. 2 where two isolators are used to achieve the same result.

Now take stock of the situation. We have a single loop of transmission line which originally contained no energy other than that associated with its rest mass but which now contains an additional packet of pure electromagnetic energy whose origin can be traced right back to the start of our present universe, about $15,000,000,000$ years ago. This energy, in the good oldfashioned concepts of wireless, is in the form of an electromagnetic wave comprising a sinusoidal pattern of electric and magnetic fields which are together in phase and are travelling around the loop at the languid velocity c^{\prime}. The fields are not coming directly from the electrons in the conductors of the transmission line but these electrons mirror the passage of the wave as they are influenced by the induction from the waves whose origin we have traced. The frequency at which the wave circulates around the loop is the same as that of the original received signal, say 300 GHz in round figures, whereas the wavelength is reduced by the effect of the dielectric to only a tiny fraction of its original length.

We are now ready to perform the final trick. Take the little loop containing the wave and spin it, about an axis through its centre, in the opposite direction to that in which the wave is travelling, increasing the speed of rotation until it is rotating anticlockwise at exactly the same angular speed as the wave is rotating clockwise. The trapped wave is now precisely at rest in the laboratory although the transmission line is spinning round at high speed. It is in fact spinning at $-c^{\prime}$, very much less than the free space velocity of light c, so that from the point of view of the mechanics the principle is demonstrable, as indeed we shall shortly see.
If we now examine the space in close proximity to the little loop we find a static electric field. It is not a standing wave but a truly stationary, unvarying field, the intensity of which is a maximum in one

Fig. 1. A wireless wave from the original 'big bang' radiation is picked up on a folded dipole and fed into a 300 ohm transmission line, as shown (a). In principle, the coiled section may be removed and connected full circle whilst the wave is still in the line (b).
direction (say +) in one part of the line, a maximum in the other direction (say -) diametrically opposite and a minimum at the two quadrant points in between. Remember that this is the field that we originally trapped from space and the electrons in the wires are simply slaves to its influence. Relative to the centre of the disc, it is in fact a static dipole field for the particular configuration of the experiment in which both conductors are in the plane of the disc, one of slightly smaller radius than the other. Relative to the laboratory as a whole the vectors are continuous in the upper and lower halves.
Returning to the fundamental point raised at the beginning of this article, we have produced a static field but where are the charges which provide the source of that field? There are none; the electrical energy is the original wave energy and the electronic charges in the conductors are simply catalytic. We have essentially produced a 'charge' from the electromagnetic wave, for one cannot differentiate between the static field that we have produced and another that could be set up by a suitable distribution of 'real' electric charges on a stationary ring in the laboratory.

Practical demonstration

It may well be that you consider that all the above is a lot of academic guesswork and that nothing like it could be achieved in practice. To prove the point I constructed two demonstration systems. One of these uses inexpensive and readily available electronic components and can be built quite easily at home. To this end the frequency is scaled down to the sub-audio range but the apparatus could still, in principle, contain a wave from the virgin past. The apparatus and its implications have been discussed in 7 ournal of P hysics- A vol. 15, 1982, pp.405-8.

To achieve exceptionally slow velocities of propagation in a transmission line it is usual to increase the permeability and permittivity μ_{r} and ϵ_{r} or equivalently to increase the capacitance and inductance per unit length by the use of 'lumped' circuits, in which discrete large values of L
and C are cascaded to form a continuous line of discrete sections. The physical principles in such a line remain the same electromagnetic principles as those in a continuous distributed line which for an equivalent propagation velocity would require impractical values of permittivity and permeability. Phenomenologically, the set of lumped circuits in the apparatus to be described form a dense medium, whereas at low frequencies the molecules in a 'continuous' dielectric behave, on a microscopic scale, as separate systems below resonance.
The arrangement uses a lumped-circuit transmission line in which there are 32 sections giving a total delay of 120 ms . The inductors are small 1:1:1 transistor coupling transformers (RS Components) with their windings connected in series to increase the inductance. The capacitors are $1 \mu \mathrm{~F}$ polycarbonate types from the same supplier. There is a small loss of the order of 1 dB in each section of the line and smal linear repeater amplifiers are included in the circuit to compensate for this loss. These repeater amplifiers consist of an f.e.t. input stage feeding a bipolar output stage and the gain is set to compensate for the loss in the adjoining section of line. The complete line is looped on itself in a geometrically circular configuration as in Fig. 3.
Energizing the linear repeater amplifiers in the completely closed circular loop causes an oscillation to build up in which a sinusoidal wave with a period of approximately 120 ms propagates around the system in a clockwise direction. A slight roll-off in the response of the system, together with the maintenance of just sufficient gain to compensate for the losses, ensures that the waveform remains sinusoidal for long periods. The continuity of the cycling sinusoidal wave places the system in the general category of phaselocked particles ${ }^{\star}$, the particular mode corresponding to one complete wavelength around an annular system. It is possible to inject a signal into the system to initiate the circulation of the wave but one cannot differentiate such a wave from that resulting from self-oscillation, and the lastmentioned serves equally well to demonstrate the phenomenon under discussion.

The whole system is arranged mechanically in a well-balanced configuration on a strong laminated plastics disc, and power to the repeaters is supplied from two small 9 volt batteries strapped symmetrically behind the disc. At the centre of the disc there is a hub which is firmly attached to a small variable speed electric motor.

Upon energizing the repeater amplifiers, a travelling wave moves round the system in a clockwise direction and the travelling field may be sampled at take-off points associated with each of the capacitors. The

* Jennison, R. C. and Drinkwater, A. J. \mathcal{I}. Phys. A. vol. 10 1977. pp. 167-79. Jennison, R. C. F. Phys. A. vol. 11 1978, pp. 1525-33. 7 . Phys. A. vol 131980 pp. 2247-50. Second Oxford Quantum Gravity Conference (London: OUP) pp. 657-69. J. Phys. A. vol. 15 1982, pp 405-8. Wireless World vol. 85 1979, June pp. 42 7.

32 elements give a sufficiently close approximation to a continuous line and a reasonably pure sinusoidal wave may be detected passing each of these points. An alternative display system consists of a set of red light-emitting diodes, each of which glows on the passage of the positive crests of the wave, and a set of green light-emitting diodes, each of which glows on the passage of the negative troughs. When at rest the disc then exhibits a circle of rapidly flickering red and green lights corresponding to the circular rotation of the wave system at about 8 Hz .

The disc is now spun in an anticlockwise sense at such an angular frequency that it is precisely equal and opposite to that of the wave. At this velocity, the wave, whilst still travelling relative to the disc, becomes stationary in the laboratory. The resulting potentials may be sampled to confirm the stationary state of the field system, but the most vivid demonstration of its state is given by the light-emitting diodes which form two stationary arcs, as shown on the front cover, one of positive (red) and the other of negative (green) potential relative to the centre. With careful adjustment of the speed of rotation, this static dipole electric field may be maintained indefinitely in the laboratory.
It should be stressed that the effect is truly that of a static field and neither a rapidly reversing field, as in standing wave systems, nor a stroboscopic artefact. The crests and troughs of the travelling wave are truly brought to rest in the laboratory and indeed it is possible to reverse the original direction of propagation, without reflection, by increasing the rotational speed of the motor.

An interesting conceptual problem then arises with regard to the magnetic field of the wave. The particular apparatus described here is not designed in such a way that the magnetic field may be sampled and there can be two schools of thought on whether or not it is also stationary. One argument is that as the charges are not moving in the laboratory there ought to be no magnetic component. The other argument is that as the travelling wave has a magnetic field in phase with the electric field this magnetic field should appear stationary when the electric field is ren-

Fig. 2. More practical arrangement for putting the wave into the circular line.

Fig. 3. Artificial delay line whose construction is described in the text in which a wave runs in the clockwise direction. Rotation of the system in an anticlockwise direction at the same angular frequency as that of the wave produces a static field. Red and green light-emitting diodes, connected at the points marked + and ; indicate the stationary wave, as on the cover photograph.
dered stationary. It appears that the first argument is fallacious for it ignores the motion of the system relative to the wave and there is also no known mechanism whereby the Maxwellian property of the wave system should break down even when the velocity, relative to the observer, is reduced to zero.

This demonstration is crude but very enlightening. We have got rid of one of the criminals who were travelling hand-inhand at the beginning of this article. Nature probably has a much better way of achieving the same thing by so convoluting the electromagnetic field in the unique mechanism of electron-positron pair pro-

Professor Roger C. Jennison, B.Sc, Ph.D, C.Eng., FIEE, FIP, FRAS, PPIE, FRSA, was born in Grimsby and studied engineering in Hull before volunteering for aircrew in 1942.
Demobilized in 1947, he decided to start again and read physics at Manchester University, graduating with an Honours degree in 1950 and a Ph.D. in radio astronomy in 1954. In this period he deduced that the Cygnus A radio 'star' was double, invented 'closure phase' and a number of other techniques and was successively lecturer in radio astronomy, then senior lecturer in radio astronomy, and later in physics. In 1959 he turned his attention to medium-wave radio astronomy and cosmic dust research. He developed the first foil detectors and with experiments on rockets and the Ariel Il satellite he showed that there was no danger to space travel from the cosmic dust which had previously been thought to be a severe hazard. In the early 1960s he became interested in problems of gravitation and rotation and was also elected President of the

Institution of Electronics. In 1965 he accepted the chair of physical electronics at Canterbury where he founded the Electronics Laboratories and recently added a chair of radio astronomy to his titles. He has maintained an interest in trying to understand fundamentals and has contributed an alternative explanation of inertia and quantization among his 90 published works.
duction that a perfect system is formed which has all the stable and wonderful properties of an electron and merits the concept of charge which is now fully ingrained in our conception of the properties of matter.
Having formed a static field from a travelling electromagnetic wave I am quite content, contrary to other views expressed in Wireless World, that if I hurl it around on a string it will give rise to freely propagating electromagnetic waves at the frequency of rotation, the energy coming from my muscles as I whirl the string. If, however, you ask me what these electromagnetic fields are then I must confess, along with Feynman, that I have not the faintest idea. It is a pity that some of the classical apparatus has disappeared from modern teaching. It is my belief that every budding researcher should be given a gold leaf electroscope to contemplate for a few minutes every day. Ultimately someone may' really explain the phenomenon which keeps the leaves apart.

MN

Over 40 different types of coaxial cables for data transmission, radio and microwave trequency transmission and communications are listed in a brochure from Greenpar Connectors, PO Box 15, Harlow, Essex, CM20 2ER.

WW401.

A tutorial manual describes the generation of graphics using Regis (remote graphics instruction set) for use with the VT125 terminal. The VT125 Regis Primer consists of 11 chapters in 130 pages and provides a full description of each command or function with worked examples and illustrations. 16 from Rapid Terminals, Denmark Street, High Wycombe, Bucks HPII 2ER.

WW402
'Magnetic materials and components' is a folder containing information on the Arnold ranges of Mo-permalloy powder magnetic cores, and other iron powder cores, tape-wound cores, and other magnetic materials. Walmore, who issued the folder as well as stocking other manufacturers' magnetic materials, also manufacture ferrite toroidal cores for use in switching power supplied. Walmore Electronics Ltd, 11 Betterton Street, London WC2H 9BS. WW403

The Toolrange catalogue in its latest 1983/84 edition is even bigger than its predecessors, listing tools, tool kits and tool boxes as well as a range of test instruments and other production aids. Anything from tweezers to power drills. Toolrange Ltd, Upton Road, Reading, Berks RG3 1BR.

WW404
SATN and TK!SATN, two publications from Software Arts, are for users of Visicalc and TK!Solver data processing packages. Available from Software Arts Products Corp, 27 Mica Lane, Wellesley, MA 02181, USA. WW405

Photomultiplier tubes (with high efficiency arc rubidium-caesium types), according to literature from Thorn EMI Electron Tubes Ltd, Bury Street, Ruislip, Middlesex HA4 7TA. The new tubes are plug-in replacements for the older ones in the Thorn EMI range.

WW406

Direct reading cable reflectometer

This circuit measures the length of a cable by comparing the delay of a reflection of a rising edge sent down the cable with a standard time interval.
A $20 \mu \mathrm{~s} 2 \mathrm{~V}$ square wave is driven into the cable from 75Ω and a fast dual comparator

NE521 and nand gate give 0 output during the period that the waveform is between $1 / 2$ and $11 / 2 \mathrm{~V}$. During negative half-cycles the comparator is gated off to prevent falling edges on an open circuit triggering it. The resulting waveform is amplified and clipped, filtered to leave only average d.c., and applied to a digital panel meter. Zero cable length gives approximately IV d.c.;

1000 m gives approx. 2 V , thus $1 \mathrm{mV}=1 \mathrm{~m}$ $=10 \mathrm{~ns}$. Open/short circuit indication is given by latching the output of the comparator with the higher ($11 / 2 \mathrm{~V}$) threshold just before the falling edge of the drive waveform.
J. Andrew Suter

Thames TV Ltd
London

Predictable relay oscillator

A single relay connected to interrupt its own supply simply behaves like a buzzer. And the same is true for a pair of relays connected so that each cuts the supply to the other when energized. So the usual oscillator employed by British Telecom uses three relays, as described by Atkinson (Telephony II, page 304). The relays are arranged in a ring, so that each when energized cuts the supply of its predecessor. Also each coil has a resistor connected in parallel, to delay release. When power is applied to the ring there is a short and unpredictable struggle, followed by regular cyclic oscillation.

A predictable two relay oscillator is shown below. Contact positions are drawn for S open (Except for $B_{2}-$ sorry).

This arrangement cannot act like a buzzer, because of the toggle action. Thus relay A cannot cancel its instruction to relay B at once, but instead its changeover contact must move right across its gap. Output can be taken from a further contact. Frequency is $3-10 \mathrm{~Hz}$, depending on obvious factors.
A relay oscillator will usually be started by the contact S when output is required, so start-up is of interest. The version illustrated has entirely predictable start-up, and saves a relay. It has functioned cheerfully for 20 years in a private telephone exchange.
M. McLoughlin

Haberdashers' Aske's School
Elstree

Opto-coupled trigger for electronic ignition

This circuit is designed to improve the triggering performance of capacitordischarge ignition systems using thyristors as the discharge element. This is accomplished using an opto-thyristor which, while providing an enhanced drive to the discharge s.c.r., requires a reduced drive from the points circuit. This circuit has been tested with both the Marston (Jan 1970) and Cooper (March 1982) circuits described in Wireless World.

One of the problems in ignition design is that of the gate sensitivity of the discharge thyristor; if it is high the circuit can be triggered by transients and the s.c.r. is more costly. If it is low, large RC values are needed in the differentiator circuit, which may upset timing at high revs.

This circuit avoids these problems by the use of an opto-s.c.r. obtainable from RS as 308-001 or the GE H11C4/Monsanto MCS2-400. It is a 6-pin d.i.l. package.

A 100 mA gate-sensitivity s.c.r. is used with a $2.2 \mathrm{k} \Omega$ resistor mounted directly from gate to cathode. When the opto-s.c.r. is triggered current flows via the 220Ω resistor until the conventional s.c.r. fires. The opto-s.c.r. then self commutates, effectively giving d.c. gating. Components C_{1} and R_{3} are chosen to give best suppression of transients over a wide temperature range. Reducing R_{3} would reduce the sensitivity of the opto-s.c.r. but would in-

Economical monitor conversion

Many recent teletext colour tvs can be used as RGB-input monitors as this interface for a BBC computer and a tv set using the TDA3560 series colour-decoder i.cs shows. Synchronization signals from the computer operate a miniature four-pole relay to switch RGB signals to data inputs of the TDA3561 and route computer sync. signals to line and field timebases. The p-$\mathrm{n}-\mathrm{p}$ transistor forces the TDA3561 data/video control terminal to the data state and might be used to disable the i.f./detector i.c. to prevent video breakthrough. RGB outputs of this computer are not standard video levels and require attenuation; long connecting leads should be avoided since synchronization output is t.t.l.

Teletext decoders are often fed by the composite-video signal sent to the tv timebases and it is worth ensuring that the decoder also receives computer synchronization signals at its video input. With some makes of receiver, switching to teletext mode will remove interlace flicker on the computer display. Check that the receiver chassis is mains isolated before making the modification.
Richard Norwood
London SE25

crease the light drive required for operation at low temperatures. If the unit is to be potted C_{1} should be increased in value to cope with the increased coupled $\mathrm{dV} / \mathrm{dt}$ due to the μ_{r} of the potting compound. The drive circuit is basically that used by Cooper with revised differentiator values
and a diode in inverse parallel to the l.e.d. in the opto-s.c.r. The circuit has been in operation for several months and has shown no sign of false triggering.
P. J. Dinning

Burnopfield
Newcastle upon Tyne

Non-volatile ram module

A non-volatile ram module can be constructed using a low-power static chip and a few additional components. The basic requirement for non-volatility is to maintain the static ram in a standby mode when it is removed from the external circuit or when the external power supply is switched off. The stand-by mode is achieved by maintaining about 3 to 5 volts on the supply pins of the ram and by holding the chip enable line, $\overline{\mathrm{CE}}$, within a few millivolts of the positive rail. The low-power static rams, such as the HM6116LP-4, draw only $4 \mu \mathrm{~A}$ in a standby mode. Thus small mercury cells may be used as a 'power' supply that will last, theoretically, for years. It is important that the stand by cells do not drain down to the external circuit when the external supply is switched off. It is also important that no voltage exists between any two pins of the non-volatile ram module when unpowered.

The circuit shown achieves all these requirements. Three 1.4 V mercury cells (type MP675H, or similar) maintain a potential of about 4 V on the chip in the absence of external power. The OA47 diode, in series with the cells, protects them from the external supply. All other pins of the chip (except GND) are maintained at the positive supply rail potential through $47 \mathrm{k} \Omega$ resistors. To isolate the mod-

ule from external circuitry when the external supply is switched off, a transistor switch is placed in the GND line. The presence of an external supply turns the transistor 'on' and its absence turns it 'off'. The OA47 diode in series with the transistor prevents the mercury cells from discharging through R1 and the transistor's base-collector diode.
N.B.: The $6116,2 \mathrm{~K}$ by 8 bit, low-power static rams come in many guises; some lower power than others. The following information may be of some help:

HM6116P-3 150 ns access time, 180 mW active, $100 \mu \mathrm{~W}$ stand-by
HM6116P-4 200 ns access time, 180 mW active, $100 \mu \mathrm{~W}$ stand-by
HM6116LP-3 150 ns access time, 160 mW active, $20 \mu \mathrm{~W}$ stand-by
HM6116LP-4 200 ns access time, 160 mW active, $20 \mu \mathrm{~W}$ stand-by
These are pin-equivalent to the 2716 eprom.
A. J. Ewins

North Harrow
Middlesex

Format 1: two dots

Omit components withın chained area and tink pins 9 and 11

on LM3914

Two-signal bargraph

Here is a circuit which enables two signals to be displayed on one driver/display. Suitable drivers are type LM3914,5,6 which provide linear, logarithmic or VU response. The simplest arrangement is to use a do: mode display and mulitplex the two input signals at high speed. Two leds are thus lit and represent each of the input signals. A stereo VU meter can therefore be configured with one display. The multiplexer uses two sections of a 4066 analogue switch and three inverter gates to form a clock oscillator. The remaining gates of the 4066 can be used to give an alternative display format by switching the display driver between dot and bar modes in synchronism with the input multiplexer. One input signal is then represented as a bar and the other as a dot. Clearest indication is obtained when the dot amplitude exceeds that of the bar. This arrangement was used to provide simultaneous display of peak and r.m.s. values of an audio signal.
Richard Golding
Shrewsbury
Salop

Shortcuts in analysis

Next time you need to determine the voltage or current in a circuit, one of these shortcuts may save you time. Calculations are saved and the possibility of making an error is reduced.

Several simple but powerful network analysis shortcuts can be easily applied to reduce circuit calculations. These include voltage and current dividers, Thévenin and Norton equivalent circuits and the superposition principle. Quite often, they are overlooked, and circuit problems are solved using more tedious methods. This article reviews network analysis shortcuts and gives you an opportunity to check your understanding with a short quiz.

Voltages and current dividers

Perhaps the simplest shortcut is based on the voltage and current divider effect. The voltage divider effect allows one to calculate the voltage or IR drop across any resistor in a series circuit without first finding the current. For example, the IR drops across R_{1} in Fig. 1, is obtained using the expression

$$
\frac{\mathrm{V}_{\mathrm{IN}} \mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}},
$$

and equals two volts. In general, the voltage across any series resistor is obtained by multiplying the source or input voltage times the resistor of interest and then dividing by the total series resistance of the circuit.
In many circuit applications, resistors are connected in parallel to form current dividers as shown in Fig. 2. The current divider principle allows one to quickly determine the current in each branch. The formula is analogous to the voltage divider with one important difference: the reciprocal of each resistor is used. For example, in Fig. 2(a), the branch current through R_{1} is found using the formula

$$
\mathrm{I}_{\mathbf{1}}=\frac{\mathrm{I}}{\mathrm{~T}} \times \frac{1}{\mathrm{R}_{1}},
$$

The particular case involving just two parallel branches occurs frequently as shown in Fig. 2(b). Resulting expressions are

$$
\mathrm{I}_{1}=\frac{\mathrm{I}_{\mathrm{T}} \times \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \quad \text { and } \quad \mathrm{I}_{2}=\frac{\mathrm{I}_{\mathrm{T}} \times \mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}}
$$

For these special cases, each branch current is found by multiplying the opposite branch resistor times the total current and then dividing by the sum of the branch resistors. In Fig. 2(b), $\mathrm{I}_{1}=3 \mathrm{~mA}$, using the above shortcut. When using the current

[^2]
by Wesley A. Vincent

divider principle, there is no need to find the voltage across the resistor before branch currents are found. Calculations are saved, and the possibility of making an error is reduced.

Thévenin and Norton theorems

Frequently in circuit analysis, we are interested in determining how the voltage varies at two terminals. In the amplifier' circuit, for example, the effect of changing the load resistor may be required. Thévenin's theorem reduces circuits using resistors, capacitors and inductors, along with voltage or current sources to a simple series circuit. To illustrate the theorem, the circuit in Fig. 3 is used as an example. To find the Thévenin voltage, denoted V_{TH}, first open the terminals $\mathrm{a}-\mathrm{b}$ for the network on the right and then calculate the open circuit voltage without R_{L} connected. For this circuit, V_{TH}, is found using the voltage divider

$$
\frac{\mathrm{V}_{\mathrm{IN}} \times \mathrm{R}_{3}}{\mathrm{R}_{1}+\mathrm{R}_{3}} \text { or } 3 \mathrm{~V} .
$$

Note that, with the terminals a-b open, no current exists in R_{2}, so it has no effect in determining the Thévenin voltage. The Thévenin equivalent resistance, $R_{T H}$, is determined by calculating the equivalent resistance seen looking into the terminals

Fig. 1. Voltage divider consists of a voltage source and series resistors. (Positive current notation is used in this article.)

Fig. 2. Current dividers formed with parallel branch resistors.

Fig. 3. Making use of the Thévenin theorem; both circuits have the same responses at the output terminals a-b.

Fig. 4. Finding the Norton circuit from the Thévenin circuit.
a-b with the voltage source shorted. For the circuit shown, R_{TH} is the parallel combination of R_{1} and R_{3} in series with R_{2} and equals $2.5 \mathrm{k} \Omega$. If current sources are present in a circuit, they are opened (removed) when finding \mathbf{R}_{TH}. For the Thévenin equivalent circuit in Fig. 3, it's easy now to calculate the output voltage across the terminals $\mathrm{a}-\mathrm{b}$ as R_{L} varies. All that's needed is application of the oltage divider principle as discussed in the last section. More complex circuits are reduced in a similar manner, even though V_{TH} and R_{TH} may be more difficult to determine. But it's easier than the alternative of solving simultaneous loop equations for each different value of R_{L}.
Another useful circuit theorem, called the Norton theorem, results in the "dual" of the Thévenin circuit and is shown in Fig. 4. The Norton current source, denoted I_{N}, is the current through the terminals $a-b$ if they were shorted. The equivalent resistance, R_{N}, is the resistance seen looking into the terminals a-b with any voltage sources shorted or current sources removed from the circuit. The Norton equivalent circuit is particularly useful for determining the current through different load resistors connected to the output terminals.

Superposition principle

One of the most powerful circuit analysis tools is the concept of superposition. This principle applies to circuits containing more than one voltage or current source and allows the total response from a circuit to be found as the sum of each source acting alone.

Fig. 5. Using superposition to find the dc bias on the gate of a j-fet amplifier. Original circuit (a), determining the effect of $V_{s S}(b)$, and determining the effect of $V_{D}(c)$.

Fig. 6. Using superposition with a current and valtage source. Original circuit (a), circuit with current source open (b), and circuit with voltage source shorted (c).

The usefulness of superposition is demonstrated by finding the d.c. bias on the gate terminal of the j-fet amplifier in Fig. 5(a). (Only leakage current exists through the gate terminal of the j-fet, and its effects will be considered negligible in the calculations.) The effect of each source acting alone is determined from the circuits shown in (b) and (c). The responses from each circuit are added together to give a gate voltage of 4 V for the circuit in (a). The gate voltage can be found almost by inspection using this technique. It's important to note that, except for the source under consideration, other voltage sources in the circuit are shorted and current sources are opened.

Figure 6 illustrates the use of superposition, along with voltage and current dividers, when a current source is present. In (b), the current source is first removed, and the output across terminals $a-b$ is found. Here, the voltage divider principle is used with R_{1} and the parallel combination of R_{2} and R_{L}. In (c), the voltage source is shorted, and the current divider principle is applied to find the output voltage. Once the output voltage for the circuits in (b) and (c) are determined, their results are added to give the output voltage for the original circuit in (a). For the circuit shown, the voltage across the terminals $\mathrm{a}-\mathrm{b}$ is 5 V .

Capacitors and inductors

All of the circuits in this article contained only resistors. But all the shortcuts discussed apply to circuits containing capacitors and inductors as well. Instead of resistance, reactance is used and impedance replaces combinations of resistors and resistance.

VNO

Test yourself

As a test of your understanding of the principles discussed, try your hand at the quir below, Then turn to page 57 to determine yout score.

Question 1. What is the voltage across R_{2} in Fig. 1, using the voltage divider principle?
Quastion 2 . What is the voltage across R_{3} in fig. 17
Question 3. For the circuit shown in Fig 2(b), haw much current exists through f_{2} ?
Question 4. What is the IR drop across $\mathbf{f}_{\mathbf{1}}$ in Fig. 2(b)?
Question 5. If $\mathrm{R}_{2}=1 \mathrm{k}$ instead of $2 \mathrm{k} \Omega$ in Fig. 3, what is the value of the Thevenin voltage $V_{T H}$?
Quastion 6. If $\mathrm{R}_{2}=1 \mathrm{k}$ instead of $2 \mathrm{k} \Omega$ in Fig, 3, what is the value of the Thévenin resistance P_{TH} ?
Question 7. What is the Norton equivalent current, IN. for the circuit below?

Question 8. What is the Norton equivafent resistance, R_{N}, for this same circuit? Question 9. Using the superposition principle, what is the IR drop across the $2 \mathrm{k} \Omega$ resistor in the circuit below?

Qusstion 10. If the polarity of the 4 V source is reversed, what is the IR drop across the 2 k 1 resistor?

Forth computer

Construction tips for the 6809-based Forth computer - part four.

Most of the prototype version of this computer was constructed on one wire-wrap board. The number of signal buses rendered anything other than a multilayer printed circuit board an impractical solution without splitting the circuit into sections. Splitting the circuit was rejected to eliminate buffers associated with long cable runs. Wire wrapping provides connections at least as good as solder joints through cold welding between the wire and edges of the pin.

All main memory, refresh circuit, microprocessor rom and interface i.cs are mounted on the main 229 by 178 mm board, as are the video-display processor and memory. The analogue video gate and RS232 driver are built on two 16-pin dip headers. User-port hardware and the discdrive interface between the floppy-disc controller and the drive are housed on a second wire-wrap board. There are many connections on the board so a powered wrapping tool, a stripping tool and different coloured wires for different functions are useful. Copper-clad board was used for the power supply, which should be constructed before the main processor board.

Dynamic ram takes little static current but substantial pulses, reaching toward

Brian Woodroffe works in research and development at Hewlett Packard.

by B. Woodroffe

80 mA per device over a few nanoseconds on some clock edges. Although the rams work within a 10% voltage tolerance, for reliable operation substantial local decoupling must be included in the +12 and -5 V rails to overcome power-line inductance; each ram has a $0.1 \mu \mathrm{~F}$ ceramic capacitor on both supplies. Further $10 \mu \mathrm{~F}$ bulk decoupling capacitors were used, one be-

Voltage transients at the 4116 dynamic rams showing from top to bottom the E clock signal and $+12 \mathrm{~V},+5 \mathrm{~V}$ and -5 V supply lines with a 200ns/div timebase.
tween each four devices. Decoupling capacitors for the 5 V rail were used throughout the design at the rate of one 100 nF component for each six i.cs. As with the RAS/ CAS/WE damping resistors, the design seems robust since the ram was initially built and worked without decoupling (see photograph).

This is a large project and all construction errors were found to be the result of either miswiring or plugging in the i.c.s wrongly. Dynamic rams I currently use got very hot when I plugged them in back-to-front. Construction should start with a minimum system, i.e. c.p.u., p.i.a., eproms and a 16 K ram. At switch on, the lamp connected to the p.i.a. B-port D_{0} line will go on then off. The state of this lamp then monitors the state of i / o data on the line. Ram-select lamps will stay off. V.d.u. hardware is self-contained so an idea of its performance can be seen on a tv screen without involving the main processor as the video i.c. generates its own characters.

Connection of the parity circuit to HALT should only be made after the ram circuits are known to work, i.e. when the system ready message can be displayed consistently. Should the RS232 connection fail to work, the most likely cause, especially if a signal at the a.c.i.a. output can be seen on resetting, is that data lines on pins two and three are crossed. Another problem could be that the RS232 terminal

Main-board components			Integrated circuits				
Resistors			11 $12-110$	1	14	LS280 4116	parity checker
Value	Qty	Function	$12-110$ 21	9 1	16	1116 13242	see note address multiplexer
10k	8	pull-up, FIRQ, IRQ, NMI, VFOE, RESET, video and RS232 output	22-210	9	16	4116	see note.
			31,67	2	20	LS245	bi-directional buffer
10k	2	pull-out parity, video ram, 9-resistor sil packs	32-310	9	16	4116	see note
100	1	dot-clock	41,44	2	14	LSO4	hex inverter
500	1	dot-clock trimmer	42,47	2	14	LSOO	quad 2 -input NAND
20 k	1	monostable timing, 5\%	43,72	2	12	LS02	quad 2-input NOR
400	4	pull-up, led	45	1	16	LS112	dual JK bistable multivibrator
33		damping, RAS, CAS, R/W	46,53	2	16	LS161	sync. binary counter
75	1	video output	47,48	2	14	LS37	quad 2-input NAND clock driver
150	1	video output	51	1	40	M6809A	microprocessor, 1.5 MHz
1k	5	video and RS232 output	52	1	16	LS139	dual 2-to-4 decoder
2.3k	5 1	video output	53	1	14	LS122	monostable multivibrator
4.7 k	1	video output	54	1	40	WD1793	floppy-disc drive controller
2k	1	video output	55	1	40	M6821	p.i.a.
$\begin{aligned} & 2 k \\ & 2 k \end{aligned}$	1	video output, trimmer	62,63	2	24	12732	4 K by eprom, $\mathrm{T}_{\text {acc }}=450 \mathrm{~ns}$
5.1k	2	RS232 output	56	1	16	LS175	quad D bistable
			66	1	16	LS157	quad 2-to-1 line multiplexer
			71	1	24	M6850	a.c.i.a.
			73	1	14	LS86	quad 2-input ex-OR gate
			74	1	14	LS132	quad 2-input Nand, schmitt
Capacitors			75	1	28	EF96364	video display controller
Value Oty	Y F	Function	76	1	20	LS240	octal 3-state inverter
100 $\mu 2$		+5 V decoupling, 25 V	818	1	14	LSOO	quad 2-input NAND
$20 \mu \quad 2$		+12V decoupling and reset, 25V	83	1	14	LS04	quad 2 -input NOR
$10 \mu \quad 8$		-5 V and +12 V decoupling, 25 V	84	1	16	LS161	sync. binary counter
100n 57		$-5,+5$ and +12 V decoupling	85	1	24	12716	2 K by 8 eprom, $\mathrm{T}_{\text {acc }}=450 \mathrm{~ns}$
20p 2		crystal decoupling, 10\%	86	1	20	LS273	octal D bistable
51p 1		dot clock, 5\%	95	1	16	LS165	8-bit serial shift reg.
20p 1		monostable timing, 5\%	See not	e for	theri.	location	

Other components

2N2222 5 video, RS232 output transistors
1N4150 2 video, RS232 output diodes
2N2907 1 RS232 output transistor
L.e.ds 4 parity checking, high-efficiency red
6.00 MHz crystal
1.008 MHz crystal

DIP headers for video and RS232 output
25-pin D-type connector for RS232 output
Single-pole two-way switch for display-page select
Three, 16 -way insulation-displacement connectors
Vero 07-0130A wire-wrap board
Wire-wrap pins (1 packet), wire, tool, un-wrap tool and wire stripper. Wire-wrap sockets:

Pins	Quantity
14	14
16	39
18	4
20	4
24	4
28	2
40	3

Notes

Memory circuit was designed using Mostek MK4116-3 data sheet and most critical timing specification was $T_{\text {acc }}=135 \mathrm{~ns}$ (column-address strobe). Positions $\mathrm{IC}_{57,82,92}$ are 16-pin dil for plugs a,b and c respectively. Positions $I C_{91,93}$ are also 16-pin dil for RS232 and video signals. Resistors are 10% and capacitors are $+80 /-20 \%$ except where tolerances are given.

Disc interface

Type	Qty	Pins
LS244	1	20
'38	2	14
LS123	1	16
LS161	1	16
LS163	1	16
LS74	1	14
LS14	1	14
LS04	1	14
K1160	1	14
LS138	2	16

Comments

 octal buffestandard t.t.l. quad NAND, o.c. dual monostable multivibrator 4-bit binary counter 4 -bit binary counter dual D bistable multivibrator hex inverter, schmitt hex inverter 8 MHz oscillator (Motorola) 3 -to-8 line decoder

Other components

Wire-wrap socket, 14 pin (4 off)
Wire-wrap socket, 16 pin (10 off)
Wire-wrap socket, 20 pin
Wire-wrap board 176 by 110 mm ,
e.g. Vero 02-0120H

34-way insulation-displacement connector
34-way insulation-displacement cable to drive
Disc drive, e.g. Teac FD50A (up to 4)
Drive power connector (AMP1-480424-0)
Pins for above connector (AMP60617-1,
60619-1, 4 off)
Decoupling capacitors, 100n (6 off)
Decoupling capacitor, 100μ
Input resistors, 333 (4 off)
Input resistors, 220 (4 off)
Timing resistors, 30 k (2 off)
Timing capacitor, $2 \mu 10 \mathrm{~V}$
Timing capacitor, $33 \mu 10 \mathrm{~V}$

Alternative oscillator components

Hex inverter, LS04
Resistor, 464 (2 off)
Capacitor, 20p
Crystal, 8 MHz

Wire-wrapped disc interface board bottom, and the disc-drive main circuit board.
takes too much current from the -5 V supply, an indication being that the rams persistently give parity errors on power up which disappear when the RS232 terminal is disconnected. Forth response OK is preceded by the stack depth.

The problem of driving capacitive loads
with 1.s.t.t.l. outputs showed up as undershoot in signals passing from the interface board to the controller. Although the prototype worked with the undershoot, it was cured by taking an inverted version of the required signal back to the main board and inverting it
there with a spare l.s.t.t.l. gate. Capaci tance of the insulation-displacement connection between the two boards was avoided in this way. Spare connections on the inter-board connector should be grounded and ground should be placed near active signals, e.g. clocks, disc data.

Although for 8 K of memory one gets a compiler and operating system and programming and execution unit there is still much to be done. I think that games are one of the best ways to learn about computers for the definition of a problem to be solved is often as difficult as solving the problem. Forth is particularly suited to games programs - the Byte game contest was won by a game written in Forth ${ }^{10}$.

Reference

10. A. Saunton-Angus, Cosmic conquest, Byte, Dec. 1982, p. 124

Further reading

C. H. Ting, Systems Guide to Fig-Forth, Mountain View Press.
Forth Dimensions, Forth Interest Group, PO Box 1105, San Carlos, CA94070 (house magazine for members).

Brian Woodroffe has found a way of speeding up disc operations and data-transfer rates so that faster units such as the Sony Microdrive and 8in drives can be used with the Forth computer. Descriptions will follow.

Power supply

MC3405	op-amp/comparator, alternative 158 op-amp and 193 comparator
LM7812	$12 \mathrm{~V}, 1 \mathrm{~A}$ regulator
2N2222	$\mathrm{n}-\mathrm{p}-\mathrm{n}$ (4 off)
2N2907	$\mathrm{p}-\mathrm{n}-\mathrm{p}$ (2 off)
2N4036	$\mathrm{p}-\mathrm{n}-\mathrm{p}$ (2 off)
2N6476	$\mathrm{p}-\mathrm{n}$-p (2 off)
2N4443	s.c.r.
1 N437	ref. diode, alternative $1 \mathrm{N960B} 9 \mathrm{~V}$ zener
1 N 4371	zener, 2.7 V
1N4372	zener, 3V, alternative 2.7V
1 N751	zener, 5.1V
1 N963	zener, 12 V
MR852	fast recovery diode
MDA970-2	bridge rectifier, 4A 30 V switching diode, pref
1N4150	diode, alternative 30 V switching diode, pref. Schottky
HLMP-1300	high-efficiency red led, 2.2 V drop

Capacitors

1 n	10%
470 n	(2 off)
10	

100n (2 off)
$22 \mu \quad 10 \mathrm{~V}$ tantalum
$22 \mu \quad 20 \mathrm{~V}$
12 V low equivalent series resistance, e.g. Sprague 672D046 or Dubilier UPC1052
40 V , alternatively 4 m

Transformer is a 15 V r.m.s. 2 A type and should be protected by a 500 mA slow fuse. A mounting kit is required for the 2N6476, a cooling tab for the T05 transistor, and the toroid is an Arnold A-930157-2 with 35 turns of $21 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. (not $19 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. as on the drawing). The toroid is available from Waimore Electronics Ltd, 11 Betterton Street, Drury Lane, London WC2H 9BS

0.13	1 W	Transformer is a 15 V r.m.s. 2 A
100	(2 off)	type and should be protected by
133	0.25 W	a 500 mA slow fuse. A mounting
680	0.25W	kit is required for the 2N6476, a
1k	0.25 W (6 off)	cooling tab for the T05
1.5k		transistor, and the toroid is an
1.96k		Arnold A-930157-2 with 35 turns
3.16 k	(2 off)	of $21 \mathrm{~s} . \mathrm{W} . g$. (not $19 \mathrm{~s} . \mathrm{W} . \mathrm{g}$. as on
10k	(6 off)	available from Walmore
28.7k		Electronics Ltd, 11 Betterton
750 ${ }^{\text {ch }}$		Street, Drury Lane, London
50k	preset pot.	WC2H 9BS.

Resistors

300baud full-duplex modem

Direct-coupled modem described in the July issue has a separate circuit board for the auto-answer protocol required by CCITT

This unit provides the interface between the telephone line and the equipment and is suitable for both private wire circuits and the public switched network. It also provides the necessary isolation of dangerous voltages and the transmission of the required signals together with the autoanswer protocol required by British Telecom in accordance with CCITT recommendation V25. The isolation is achieved in two ways: the ringing current is isolated by a discrete-component optocoupler D_{2} and Tr_{1} and both the a.c. signal isolation and d.c. terminating conditions are achieved by a reed relay and isolating hybrid transformer (which will carry a primary current of up to 120 mA d.c. without causing transmission loss to the signal path).
Operation is as follows. The ringing current is detected by D_{2} and Tr_{1}, and causes C_{1} to be charged via Tr_{1} and R_{2}

by Des Richards

until the voltage across C_{1} reaches the threshold potential of the unijunction Tr_{2}. This conducts, discharging C_{1} and causing the collector voltage to fall from 12 V to about 0.7 V . This negative-going transition changes the state of the two monostables $\mathrm{IC}_{1 \mathrm{a}}$ and $\mathrm{IC}_{1 \mathrm{~b}}$. The first has a time constant of approximately 30 seconds and the second a time constant of 2.15 ± 0.35 seconds. The output of IC_{1} drives Tr_{3} to operate the reed relay RL_{1} and answer the incoming call by placing a d.c. loop (T_{1} primary) across the line terminals.

Simultaneously with the call being answered $\mathrm{IC}_{1 \mathrm{~b}}$ triggers and operates RL_{2}, which places a 600Ω termination on the
equipment side of the hold transformer. This gives the silent period of 1.8 to 2.5 seconds as required by V25. When $\mathrm{IC}_{1 \mathrm{~b}}$ returns to its stable state the negativegoing output triggers $\mathrm{IC}_{2 \mathrm{a}}$ which has a time

constant of within 3.3 ± 0.7. This operates RL_{3} to switch the secondary of the transformer to the output of the 2100 Hz oscillator, to feed tone at -12 dB to line. This is another requirement of V25, to disable any echo suppression equipment as used on the telephone trunk and international circuits. When $\mathrm{IC}_{2 \mathrm{a}}$ returns to its stable state it triggers $\mathrm{IC}_{2 \mathrm{~b}}$ to switch RL_{2} and give another silent period of $75 \pm 20 \mathrm{~ms}$. This completes the autoanswering protocol and the secondary of the transformer is fed via RL_{2} and RL_{3} to the modem board.

The 2100 Hz oscillator is a standard

Wein-bridge circuit with a thermistor to stabilize its amplitude. The output level of the oscillator to line should be less than -10 dB and is normally set at -12 dB .

Power supply

The mains input is fully isolated from the d.c. outputs and protected by a 100 mA anti-surge fuse, in the author's circuit. Regulated to give outpurs at +12 and -12 volts, there are no adjustments necessary and the voltages should be as specified ± 0.5 volts. The supply is capable of supplying a total of 25 VA and can power a number of modems. A straightforward cir-
cuit and board layout are obtainable from the editorial office.

Construction

The complete modem was designed to be housed in two four-inch, 3U high rack modules, one being the power supply and the other containing the auto answer unit and the modem. The power supply p.c.b. mounts on the side of the module and all the components, except mains transformer are mounted on this board.

A modified rear plate has been made to enable the mains input to be made by a separate connector to the d.c. outputs. An

IEC 3-pin connector is used for the mains supply and a 24 -way connector for the d.c. supplies. The mains socket and fuseholder should be fully shrouded and all wiring to the board and 24 -way connector sleeved at both ends.
The modem unit is built in the second module with two p.c.bs mounted on either side of the unit. The holding transformer is mounted on the base plate between the boards. Connections in and out of the unit are made by a 24 -way edge connector at the rear of the module.
Assembly of both boards should not present any problems especially as the
components mount directly on the boards, with the exception of the l.e.ds which are wired to the front panel.

The infra-red diode and phototransistor are glued together with epoxy resin and painted black. This method gives greater pin spacing on the p.c.b. on the ringdetect circuit than would be achieved by using a d.i.l. opto-isolator, and thus meets BT specifications for p.c.b. spacing within protection barriers. Again, all connections to the p.c.b., switch and rear connector should be sleeved to prevent accidental bridging of the protection barriers created by the opto-coupler and the isolating
transformer
The transformer should be 600 ohm impedance type with $1+1: 1$ turns ratio.

The Reticon switched-capacitor filter shown in the fuly circuit can be obtained from Reticon's UK agent EGEG Instruments, at 34 Market Place, Wokingham, Berks RG11 2PP (tel. 0734788666) for £8.50. A complete kit of parts including transformer and printed circuit boards is being organised by the author - send a stamped and addressed envelope for details to 18 Tulsa Close, Berryhill, Stoke-on-Trent ST2 9PT.

AERIALS AT SEA

It is hard to understand the logic of Mr Benyons' statement (Letters, WW, May, 1983) that it is "unfair" to look at Soviet ships' aerials because these ships are "under military control". I would like to point out that: - By no means all Soviet bloc ships have "good" aerials. As General Booth said to the Salvation Army band, "why should the devil have all the best tunes?", so why should the "red peril" have all the best aerials?
The experience of the Falklands war shows that British ships are also under "strict military control". Even Mr Ben yon would wish them the best possible radio communications capability.

Could it be that the USSR has better trained engineers than we have, not subject to the dollar veto of penny-pinching shipowners, nor rubberstamp government supervision?

Mr Benyon correctly perceives that short aerials lack much radiation resistance, but I don't see his 20 foot vaulting pole aerial as being any "great leap forward", for the following reasons.

All existing marine transmitters, at 500 kHz , rely on the aerial to provide the tank circuit capacitance. The helical whip has none.

Only low driving-point impedance will confer any benefit. As well as altering all transmitters, it would be necessary to provide feeders and matching coils, introducing more losses than gains. Marine transmitters, unlike their broadcast counterparts, are free from this extra paraphenalia at present.
ARRL "antenna book" points out that a vertical helical wound aerial of quarter wave electrical equivalence, should be a minimum of 0.05 wavelength long. At 600 metres, that comes to 30 metres, so nothing is gained in the area of the height problem. The same book also relates that 'some helical antennas have acted as Tesla coils with high power transmitters and have actually caught fire at the high impedance end"!

Back to the drawing board, Mr Benyon.

John Wiseman

Hawthorn
Victoria, Australia

ELECTROMAGNETIC DOPPLER

In the answer to Mr D. Hall (June letters) I suggest that he studies the following picture.

It represents a boat on a lake. Waves are being generated and are propagating across the lake at constant velocity. The point of interest is that there is no way of telling whether the boat is stationary or is moving, the reason being that the wavelength is the only observable parameter and that is unaffected by the velocity of the boat.

The frequency is the number of waves passing the boat in unit time. Clearly the faster the boat moves in the same direction as the waves the less waves will overtake it in unit time. If there are two boats travelling across the lake at different velocities they will experience different frequencies and if we call the velocity of propa-

gation C then the formula is:

$$
\begin{equation*}
\frac{f_{1}}{f_{2}}=\frac{c-v_{1}}{c-v_{2}} \tag{1}
\end{equation*}
$$

This is a general formula for any two observers, observing the same wave. If one of the observers is also coincident with the source he may be conventionally described as the source. The wavelength which the source would have produced if it had not been moving is a nonexistent parameter, because the source is moving and at no time does that wavelength appear even to the observer at the source. Not only is the propagation velocity constant, but so is the wavelength. The difference in frequency is due purely to the fact that the velocities of the two observers relative to the waves are different. I claim that this model for water also holds for sound waves and therefore cannot be the same for e.m. waves without violating the constantvelocity postulate of relativity.

Mr Hall suggests that the e.m. Doppler equation is only an approximation and should more accurately be as equation 1 . This cannot be so because the second order terms such as $v_{2}\left(v_{2}-v_{1}\right) / c^{2}$ cannot be expressed purely in terms of the relative velocity ($v_{2}-v_{1}$). If accurate measurement did in fact detect such a term it would also have detected other drift. The relativistic Doppler equation is supposed to be accurate even when v is very close to c and the term it contains is $(c-v) / c$.
Mr Hall's point about photons, waves and interference I accept. I'll go away and think about it.
J. Kennaugh
Callington

Callington
Cornwall

DIGITAL TAPE CLOCK

The following alternative method for producing the 'forward' and 'reverse' inputs to the counter/display section may be of interest.
The two optical sensors are both mounted on the 'length-of-tape' timing disc, with a quartercycle 'phase' difference between them, as simply shown in Fig.1. If these sensors' outputs are fed, suitably buffered, into the circuit of Fig.2, a 90 Hz version of the forward and reverse signals results. This can easily be counted down with 2 more 74192s.
Also I am unable to understand the buffering circuitry for the 'length-of-tape' opto-coupler. I would use a circuit like that of Fig.3., with positive feedback for jitter-free operation.
M. S. Farmiloe

Camberwell
London

A HERETIC'S GUIDE TO MODERN PHYSICS

Tut, tut, Mr Coleman of July! A photon of visible light has a wavelength?

If it did not bounce back and forth between and amongst its neighbours it would simply keep going in a straight line without a wavelength. But then, a photon, being a packet of energy carried by a bouncing building block doesn't bounce at all, does it? The building blocks merely play "pass the parcel", and the parcel moves linearly if spewed out of a laser, otherwise it is split up providing the so-called square-law effect which is part of an expansion of a spherical surface.
As I said in my letter of July, it takes one particle an impossible amount of work to make a wave. A wave is an integrated effect of a lot of moving particles. It is hoped that there is not some mental mix-up here with spin velocity, which determines the amount of energy within the particle and thus its relativistic mass, and thus in turn the gravitational gradient in the immediate environment of the particle?
I doubt very much indeed whether an individual photon can remove even a conduction electron from a metal, at least not in these parts: its spin velocity would have to be so high that catastrophe was being approached, somewhere near the boundary of the universe perhaps? Of course it takes a wave, an integration of a lot of bouncing building blocks, and therein lies the strength of wave mechanics which sadly explain nothing more than the cause of an effect at the subjective level of apparency, delightfully demonstrative of a shallow and superficial analysis.

Until the specialists of this world come to realise and thus accept that the absolutes are really asymptotes, modern science will remain stuck in its glorious mud. I have in mind absolute zero, absolute resistance, the speed of light, and the basic building block. The asymptotes can not be reached because a multiple lamination of short Planck's constants gets there first.

Space, of course, is purely reactive, there being no friction within chaos: only genuine fully-fledged masses can demonstrate friction at work, in their interactions so demonstrating the decay therefrom. Space, like any other reactive device, is an energy-store out of which mass condenses.

How I wish that the specialists of this world would stop their silly arguments and learn!
James A. MacHarg
Wooler
Northumbria

I continue to read with interest Dr Scott Murray's series on modern physics. However, I must take issue with what I regard as a fallacious argument in the 7th part.

He points out that it is possible, after the event, to determine the position and momentum of an electron "to any accuracy we please". He then goes on to assert that our ability to do this indicates that the electron's behaviour was determinate, and that it must have obeyed the law of causality. Hence, the Copenhagen doctrine is false.

Later, though, he admits that he is unable to prove that the law of causality is obeyed throughout inanimate nature, although there is no evidence against that assertion. Herein lies the flaw, for we can only determine the past properties of the electron if the law of causality has been obeyed. That is, we deduce where the electron was and what it was doing by knowing where it has been subsequently and what interactions it has undergone. If causality did not apply, then we would still be faced with the indeterminacy of instantaneous observation, so an argument that assumes causality cannot be used to refute any doctrine to the contrary.

Almost 30 years ago I was taught by my professor of physics that causality was the underlying assumption in the study of physics. This meant that, given a knowledge of the causal relationships governing inanimate matter, it would be possible to predict the future from a knowledge of the present, which was the goal of the Victorian physicist. The indeterminacy principle, we were told, strikes not at causality but at our knowledge of the present. If that is uncertain, our predictions must change from certainties to probabilities. Perhaps I move in the wrong circles, but I have not met anyone who seriously contested that interpretation. I have to admit that much of my working life has been spent among engineers.

R. T. Lamb

British Telecom

Milton Keynes

Dr Scott-Murray's articles on a heretic's guide to modern physics have clearly shown that the Copenhagen philosophies and mathematical theories of statistical wave mechanics have left scientists without a fundamental theory of matter.
Probably the most glaring error made by the Copenhagen School is their deduction that superfluid helium is a special type of quantum
liquid, to which they have devoted many papers and given many names: Liquid Helium II, Landau's two-fluid liquid, Bose-Einstein Condensate.

The common sense approach of Faraday, Newton, and Galileo, recommended by Dr Scott-Murray, easily deduces that superfluid is a powder. It is a fluid like table salt and pepper but it is not a fluid like vinegar, which is a liquid. Scientific studies of all the properties of superfluid helium show that every experiment demonstrates that superfluid helium is the solid phase of helium in the physical form of a very fine transparent amorphous powder which is only $3^{\circ} \mathrm{C}$ below its boiling point; hence it is a rapidly subliming powder.

Because university students have to accept without question the beliefs of the Copenhagen statisticians, they have to believe that this powder is a form of magic liquid with antigravity properties. They are all baffled because it doesn't behave like other liquids.
Throughout my career in science I have used the wave concept of light and the particle concept for an electron. I can explain the photoelectric effect without resorting to a photon particle concept and I can explain the behaviour of an electron in an electron microscope without resorting to a wave concept for an electron. Hence I agree with Dr Scott-Murray's statement "All the indications explored in this series support the view that the Copenhagen myths, although undoubtedly propounded by their originators in complete sincerity, constitute one of the biggest hoaxes of self-delusion of the twentieth century".
When I left Cambridge (with a first-class science degree) in 1949 I was a firm believer in the photon, wave mechanics and quantum liquid, but thirty years of scientific experiment and study has shown to me that photons, phonons and rotons are myths and superfluid helium is, as one would expect by common sense, solid helium in the form of a very fine powder. When this powder melts at 2.2 K it absorbs latent heat (the λ effect) and becomes normal liquid helium which boils at 4.2 K .
P. Holland

Egremont, Cumbria.

Now that Dr Scott Murray's series of articles on physics has ended, I hope that you will continue to have a physics section in Wirless World. If so, why not name it, "Frontier Physics". There are no doubt others like myself who buy your journal not for its electronics but solely to enjoy reading those controversial physics articles and, of course, the Letters section in which wayward physicists express their ideas can certainly stimulate one's own thoughts.

It is a pity that physics has become dogmatic. Some years ago I proved that Special Relativity was mathematically and physically wrong, but I couldn't convince others. However, I did discover that there was a 'closed loop' acting in physics.

The closed loop is an argument. It consists of a main theme, which cannot be disputed, and which begins and ends any discussion. For example, the closed loop of Special Relativity can be used to prove that time dilates as follows:

1. Special Relativity is true (main theme)
2. Its equations show that time dilates.
3. Its equations cannot be wrong.
4. Therefore time must dilate.
5. Special Relativity is true. (main theme).

In a scientific journal recently, the closed loop is used to show that the cost of accepting com-
mon time (Newtonian time) would be too high a price to pay in physics. The closed loop is as follows:

> 1. Special Relativity is true. (main theme).
2. Inserting common time into Special Relativity's equations gives a daft answer for the speed of light.
3. This daft answer means that either Special Relativity's equations are wrong or that common time is wrong.
4. Special Relativity's equations cannot be wrong.
5. Hence, common time must be wrong.
6. Special Relativity is true. (main theme).

In the past, the closed loop has been used to give a satisfactory answer to the late H . Dingle's challenging question, "Of two uniformlymoving clocks, A and B, which ticks the faster?" The closed loop gives the well-known answer.

1. Special Relativity is true. (main theme).
2. Moving A ticks slower than stationary B.
3. But stationary B can be regarded as moving and moving A can be regarded as stationary (by the principle of relativity).
4. So A ticks slower than B and B slower than A !
5. Either commonsense is wrong or Special Relativity is.
6. Special Relativity cannot be wrong.
7. Therefore commonsense is wrong.
8. Special Relativity is true. (main theme). It can be seen that the closed loop is an invincible argument. Of course, the above examples seem obviously silly because they are presented in skeletal form. When the closed loop is clothed with advanced maths, though, its use is by no means obvious; you must look carefully for it!
A. H. Winterflood

Muswell Hill
London

DESIGN COMPETITION

Although I applaud your initiative in setting a competition for electronic devices to assist the disabled, I fear that many potentially suitable devices will not be entered. This is because they may originally have been designed for other purposes, where their commercial value is such that publication of their design is precluded. It would be useful if your journal could also act as a clearing house for information on the existence of these devices.

In many cases, I imagine that the designers of these devices would be prepared to spend some of their own time in adapting them to the needs of disabled people, but cannot reveal how they work.
As an example, Hydraulics Research Ltd has collaborated with the Weed Research Organisation on the development of a low-cost "plant sensor". At present the devices exist in two forms:
(i) is a linear readout instrument which can be used to indicate the relative health of plants, their degrees of maturity, or the proportion of a field of view which contains plants. It can, for example, indicate on an analogue meter the degree of wear on a grass playing field.
(ii) is a switch which energises a load when it sees a plant. This is intended for incorporation into a "robot" crop sprayer, when the load would be the coil of a solenoid valve in the line to a spraying nozzle.

The designs originate from the need to make
simple measurements of crop cover during a project which was intended to evaluate the protection which leaf canopy provides from soil erosion by heavy rainfall, and version (ii) is a natural extension of the resulting design into a commercial application.
Both versions will shortly be available from Churchill Controls Ltd of Headley Road East, Woodley, Reading.
One of my colleagues has commented that modified versions of these devices might be very useful to blind or partially sighted people. Such applications would be outside our experience, but we would be pleased to discuss them with anyone who could provide a specification for what is needed, or would like to incorporate one of these sensors in a design of their own.

D. K. Fryer

Hydraulics Research

Wallingford
Oxfordshire

I was interested to see that one reader has come up with the idea of informing blind persons the contents of cans and packages without opening them. No further information was given.
I should like to suggest (if this is not the method used) that it would be a simple matter to 'read' the bar codes that are appearing increasingly on modern packaging by means of a light reader: decoding the information and removing extraneous information normally used in stock control; and presenting the edited information to the blind person by means of a voice synthesizer through a private earpiece.
Being completely without technological training I would nevertheless suggest that in this day of the Chip it would not be beyond the realm of possibility to produce a fairly lightweight pack which could be worn like a handbag over the shoulder and weigh about the same.
Once the technique had been perfected there is no reason why bar-code labels could not be used in other circumstances to aid the blind to read. We already see these codes on the edges of supermarket shelves and on packaging. Why not make complete sentences and print books in the same manner. Naturally a monotonous Dalek 'voice' would never replace the enjoyment of silent reading as Braille offers but this would be ideal for official pamphlets for the blind, direction signs and other informatory instructions.
J. Devereaux

Wordsley
West Midlands

WAVES IN SPACE

Ivor Catt (March, 1983) says "the voltage is half of what one would expect". The curious point to me is on what he bases his expectations. If the charged line is regarded as a voltage source of impedance Z_{0} (the characteristic impedance) connected to another impedance Z_{0} through the switches, as in the accompanying sketch, then the voltage is exactly what one would expect. The finite duration of the pulse stems from the fact that the charged line is an energy storage device (electrostatic field) and not a source of e.m.f. which implies energy conversion. It is worth adding that the impedance technique also enables one to predict occurrences when the Z_{0} of the long line is not equal to that of the charged line.

As to the claimed paradox that "electromagnetic energy promptly rushes away from the path suddenly made available", if Mr Catt will
examine Poynting's vector in the charged line after the switches are closed, he will find that the electromagnetic energy moves only into the long line, that is, from left to right.
It is possible to regard the condition of the charged line as the result of interference between two waves travelling in opposite directions, just as one can treat a straight line as the arc of a circle of infinite radius. There are times when they are useful models of reality. The real paradox of the article is the question of where Mr Catt (and, for that matter, Wireless World) have been all this time. To my knowledge, the Royal Air Force used this approach to transmission lines as pulse generators in 1959, and I have no doubt that the technique goes back much further in time.
R. T. Lamb

British Telecom
Milton Keynes

I refer to Mr Catt's article in the March 1983 issue.
In a letter, I could not hope to reproduce the great body of scientific and engineering knowledge that has amply demonstrated the non-relativistic interpretation of Maxwell's Equations or of Einstein's treatment using special relativity. If the theory is so seriously flawed it is surprising that we can design and build antennas and microwave devices. Nevertheless, I cannot let Mr Catt's analysis of te pulse generator go unchallenged, especially as it is so easy to demolish his arguments.
Firstly, if a piece of charged coax. really has equal and opposite waves running in each direction why are they not attenuated by the losses in the line? After all in one second each of his waves would have travelled nearly 2,000 miles in lossy coax.
Secondly, if I connect an antenna to a piece of coax. I can still charge up the line. Why do not these waves of which he speaks radiate into space? Or, at least, the high-frequency components of the pulse to which the antenna will be matched.
The conventional solution to his 'exotic' problem can be found by solving the transmission line equations for a cable under the stated starting conditions (see reference). As this is rather tedious and since Mr Catt seems to prefer hand waving to mathematics I will at least demonstrate where the 2 m pulse length comes from.
When the extra length of line is connected to the 1 m line, charge starts to move down the new line charging the distributed capacitance of the line through its distributed inductance as it goes. (Maxwell's equations applied to circuits show us that capacitors connected together share their charge). This leaves a void which the $10 \mathrm{~V}(1 \mathrm{~m})$ line fills. The void propagates towards the open end of 1 m line at the speed of the line. The charge close to the open end of the line will be liberated at a time equivalent to 1 m of line and will take Im to propagate to the other end,

Reference: Brown and Glazier: Signal Analysis pp. 345-349.
explaining the 2 m length of the pulse.
The pleasing aspect of the above argument is that we do not have to destroy a century of succesful electro-magnetic theory to produce it. If Mr Catt has so much more insight into electro-magnetic theory than the rest of us it is surprising that he has not produced any new microwave devices that demonstrate his superior understanding.
Timothy C. Webb
Columbia, MD
USA
I was not too sure whether I should be amused or startled by Ivor Catt's article on "Waves in Space" in which he postulated the existence of electromagnetic energy in a static electric filled, when I reminded myself that the date was Ist April. It had never occurred to me, even remotely, that a magnetic field could be directly caused to exist by the presence of an electric field. However, being sympathetic to the idea that all things appear to be possible in this day and age, I allowed my mind to be bent a little further and read on.
The production of a voltage pulse in a transmission line which is half the amplitude and twice the length of that existing statically in piece of coaxial cable, can form the basis of a number of interesting experiments. For example, Mr Catt's travelling pulse can be converted back into a static charge again if his coaxial cable is terminated into an open circuit but with a pair of switches I metre from the end as shown in Fig. 1. When the switch at B is closed and the resulting pulse eventually reaches D, it will of course, be reflected (double back on itself); however, if switch C , is opened at the instant the leading edge meets the trailing edge, no great drama ensues but we are left with a metre piece of statically charged coaxial cable as before. It is also interesting to consider what happens if point D is terminated into a short circuit. This time, the pulse will be converted into one of twice the current at zero voltage and the leading and trailing edges will be locked together and oscillate back and forth converting the pulse between a current at zero voltage and a voltage at zero current until this activity decays due to losses.
However, perhaps it would be more interesting to consider what would happen if this final 1 metre of coaxial cable is made superconducting and instead of isolating switches at C, a short circuiting switch is provided as shown in Fig. 2. If the switch at C is closed at the instant the leading and trailing edges meet, electrons at zero voltage, will continue to flow around the 1 metre coaxial circuit as a direct current. It would, perhaps, be better to say that current drifts around, because depending on the construction of the coax., it could take hours for any single electron to work its way around the circuit. It should, of course, be remembered,

Fig. 1.

Fig. 2.
that as no voltage is present, the density of the electrons in the closed circuit is the same as that in the remainder of the uncharged transmission line.

Unless someone comes along and throws into doubt that an electric field exists between adjacent electrons and protons it is easy to demonstrate that in the above circuit condition, countless billions of electric fields exist alongside the magnetic field caused by the current although no measurable voltage exists. Similarly in the case of the purely electrostatic condition, the same large number of magnetic fields exist due to the rotating and spinning electrons. However, I doubt somehow whether this has anything to do with the way the charged section of coaxial cable propagates a pulse whose length is twice that of the charged section. And I must confess, that the prospect of opposing magnetic fields oscillating back and forth along the cable as Mr Catt suggests, appears to be even less likely.

Surely, the answer to his paradox is simply that on closing the switch at B, the electrons that flow out of the negatively charged conductor and those that flow into the positive conductor of the cable not only cause a wave front of current and voltages to be transmitted along the line but also back into the charged section itself And since the energy has to be shared between both fronts, the voltage will be halved. The discharging current flowing into the charged section will set up a magnetic field, which, on collapsing, will produce an equal pulse of voltage and current to follow on the heels of the pulse which has already departed from he originally charged section.
R. J. Hodges

Bath
Avon

ORBITING ELECTRONS

A puzzling feature of the atomic model which depicts the positively charged nucleus of the atom surrounded by negatively charged particles (or electrons), is that the orbiting electrons do not radiate away energy in the form of electromagnetic waves, and so spiral into the nucleus. This follows from the fact that electrons, when accelerated, generate e.m. waves, by means of which the energy given to the electrons to accelerate them is carried away by the wave, and since the electrons orbiting the atomic nucleus are said to be accelerating towards the nucleus, with the value of the acceleration being v^{2} / r where v is the velocity of the electron in orbit, and r the radius of the orbit, they should radiate e.m. waves.

I would suggest that the reason they do not, is that it is not sufficient merely for the electron to be accelerating - but energy needs to be given to the electron from outside the system (if we regard the electron in its orbit as a closed system of constant energy), in order to raise its enemy level. This system then behaves in such a way as to oppose the input of energy, ie. to lower its energy level and return to its original state. This it does by means of the e.m. waves travelling at the velocity c, via the lines of force which radiate out from the electron.

A change under "inertial" conditions (ie. at rest, or moving with uniform velocity), possesses a constant amount of energy, hence, no e.m. waves are emitted from it. The electron will only gain energy when an external impressed force acts on it in which case a human observer located on the electron would be able to detect
this force, and measure it.
If we consider an electron in orbit around the atomic nucleus, and we replace the electrostatic force which keeps it in orbit with a gravitational one of the same strength, then a human observer, since he would be accelerating at the same rate as the electron, would not be able to detect any force acting on the electron, or anywhere in its vicinity, thus, he would conclude that the electron was under inertial conditions, and would not see any e.m. waves emitted, indeed, if he did see such a phenomenon, he would be unable to account for it. In order for such a system to radiate energy in the form of e.m. waves, I would suggest that it would be sufficient for the electron to collide with some other particle e.g. a photon or another electron. Then, a force could be detected by the observer on the electron, and he would conclude that energy had been given to the electron, and e.m. waves would be radiated, whether or not this raised the level of the system as a whole.
P. R. Griffiths,

Retford,
Notts.

THE NEW BUREAUCRACY

I could write at length to refute D. W. Scott's extraordinary assertion in March, 1983 Letters, that "None of us (programmers) likes the von Neumann architecture - we spend our lives trying to circumvent it." Those experienced in the art know this to be false.

I shall limit myself to a simple test of loyalty for Scott and other programmers who might want to bite the (von Neumann) hand that feeds them.

As an accredited MAPCON consultant, the government pays up to $\{3,000$ of my consultancy fees provided my recommendations to my client are that the system he installs contain a von Neumann machine. Please would Scott and other forward-looking programmers write to Wireless World to the effect that MAPCON should remove the following paragraph from page 9 of their book entitled "Guidelines for Feasibility Study Grants, March, 1982."
"Note that the use of the word "microelectronics" implies electronic large-scale integrated circuits (LSI) of at least the complexity of microprocessors. Applications which solely use medium and small scale integrated circuits (MSI and SSI) do not fall within the scope of MAPCON."
This quote relates neatly to my first paragraph on page 48, Wireless World, December, 1982
Ivor Catt
St Albans
Hertfordshire

MIXED LOGIC

On page 29 of the July issue, M. B. Butler writes
"A new symbol is introduced to indicate application of a convention: the 'flag' or polarity indicator."
This is not a new symbol. The second most commonly used standard for drawing logic diagrams, the IEEE's ASA Y32.14-1962, says on page 8
"4.4.1 A small, open, right triangle at the point where a signal joins a logic symbol
indicates that the line's 1 -state (activating) with respect to that logic symbol is the less positive potential (current)."
The competing, and much better, symbol is the small circle. The de facto standard for logic diagrams, US MIL-STD-806B, 26 Feb. 1962, used in 80% of logic diagrams today, says on page 4
"5.3.1 A small circle at the input to any element . . . indicates that the relatively low
(L) input signal activates the function. Conversely, the absence of a small circue indicates that the relatively high (H) input signal activates the function.
"5.3.2 A small circle at the symbol output indicates that the output terminal of the activated function is relatively low (L). This small circle shall never be drawn by itself on a diagram."
On page 32, Butler writes
". . . an oblique 'slash' is placed across any line over which a logical not operation has occurred."
Butler should withdraw this proposal, because it contradicts MIL-STD-806B, page 8, and elsewhere, which defines the oblique slash as indicating multiple lines. This has gained a degree of acceptance in the industry.
The main thrust of Butler's article is to introduce the good philosophical approach outlined in Tony Cassera's article, WW November, 1980. It is a pity that neither writer gave credit to S. U.S.MIL-STD-806B for originating it.

My approach to this important and neglected subject is contained in the chapter "Choice of type of logic symbols" in my book Digital Electronic Design Vol. 2, pub. C.A.M. Publishing, 1979.
(Perhaps I should repeat that in my opinion U.S. MIL-STD-806B is the best, and that I am willing to supply copies at cost.)
Ivor Catt
St. Albans
Hertfordshire

WOODPECKER

In June 1983 issue of $W W$, Pat Hawker described the "woodpecker" as following "the m.u.f. up and down the h.f. band". Rather than the m.u.f., I would have thought that it follows, more precisely, the optimum traffic frequency.

No doubt I will be corrected if I am wrong.

P. Thompson

Southport
Lancashire

ORGAN INTERFACE

We have been asked to point out that a recording system for pipe organs with electric actions, similar in principle to that described in these articles, has been marketed by Christie Music Transmission Systems Limited, Colchester, since 1979. This orginally used a 32 K byte ram and tape back-up but is now available with 64 K memory and disc back-up, giving uninterrupted solid-state recording or playback for about 20 minutes (depending upon the complexity of the music).

A full length item can be saved or loaded from disc in 3 seconds, and a short item using less than 9 Kbytes , requiring only one track of the disc, is dealt with in half a second. Provision is made for listing items to give a recital of several hours duration.

Developments in Teletext (IBA Technical Review No. 20): Independent Broadcasting Authority, Crawley Court, Winchester, Hampshire SO21 2QA. Teletext users who have noticed the mysterious pages of apparent rubbish lurking here and there in the Ceefax and Oracle services will be aware that development of the UK Teletext system still continues. This collection of articles describes some of the advanced techniques now in use and some that are still to come. Subjects covered include the preparation of subtitles for deaf viewers; alpha-geometric coding methods for transmitting high-definition graphics; and techniques for redefining the character set to give alternative alphabets.

Guide to amateur radio: 19th edition, by Pat Hawker G3VA. 154pages. Radio Society of Great Britain, Alma House, Cranborne Road, Potters Bar, Hertfordshire EN6 3JW. Price £2.75, by post £3.44, paperback. This new edition has been expanded to include some of the latest developments in the world of amateur radio, rules and regulations as well as techniques and equipment. An excellent guide for the newcomer.
VHF/UHF Manual: fourth edition, edited by G. R. Jessop, G6JP. Radio Society of Great Britain. 528 pages. Price $£ 8.50$, by post $£ 10.31$ worldwide, hard backs. This handbook provides practical information and a full range of constructional designs for amateur bands from 30 MHz to the microwave region. The new edition has been revised extensively - notably the chapters on propagation and space communications, which should be of interest even to black-box operators.
Teleprinter Handbook: second edition, edited by A. G. Hobbs, E. W. Yeomanson and A. C. Gee. Radio Society of Great Britain. 368 pages. Price $£ 12$, by post £13.84, hardback. Conversing by teleprinter might be thought a rather unsociable method of communicating, but it has its enthusiasts. What is surprising about this book in view of the advanced techniques being used in other areas of amateur radio is that it confines itself almost exclusively to the care and operation of electromechanical equipment. It might be supposed that the newcomer to data communications would want to make use of his home computer. But apart from a nine-page chapter describing the construction (using standard t.t.1.) of a v.d.u. for radio-teleprinter use, there is nothing about AMTOR or packet -switching or indeed about computers or computer techniques at all.

Nothing Local about it: London's Local
Radio by Local Radio Workshop. 213 pages
Marion Boyars Publishers and Comedia, $£ 3.95$ paper cover.
BBC Radiophonic Workshop by Desmond Briscoe \& Roy Curtis-Bramwell. 175 pages, BBC $£ 7.75$ paper cover.

Introduction to Video by D. K. Matthewson, 175 pages. Bernard Babani $£ 1.95$ paper cover. Tomorrows Television Today by Michael J. Stone 118 pages. M. Stone $£ 9.85+65$ p p\&p paper cover.
Television Engineers Pocket Book by Malcolm Burrell \& S. 314 pages. Newnes $£ 7.95$ paper cover.
Tower's International Digital IC Selector by T. D. Towers. 246 pages. Foulsham $£ 9.95$ paper cover.
Interface Projects for the Apple 11 by Richard C. Hallgren. 170 pages. Prentice Hall

International $£ 10.35$ paper cover.
Radio Antennas by Stephen Gibson. 165 pages.
Prentice Hall International $£ 11.85$ paper cover
Medical Effects of Nuclear War by British
Medical Association. 188 pages. Wiley £4.50, \$8.95.
Digital PLL Frequency Synthesizers (Theory and Design) by Ulrich L. Rohde. 494 pages. Prentice Hall International £44.95 hard cover. Local Telecommunications by J. M Griffiths. 265 pages. Peter Peregrinus 119.
Broadcasting and Society 1918-1939 by Mark
Pegg. 293 pages. Croom Helm Ltd $£ 14.95$ hard cover.
Bond Graphs for Modelling Engineering Systems by Alan Blundell. 151 pages. Wiley £16.50 hard cover.
Transistor Circuit Techniques by G. J
Ritchie. 168 pages. $£ 10.95$ hard cover.
RF Circuit Design by Chris Bowick. 176 pages. Prentice Hall International $£ 17.20$ paper cover.
Microchips with Everything by Paul Sieghart.
150 pages. Comedia $£ 3.50$ paper cover.
CBasic Users Guide by Adam Osbourne, Gordon Eubanks, Martin McNiff, 212 pages.
McGraw-Hill £11.95 paper back.
Confidential Frequency List by Oliver P.
Ferrell. 224 pages. Gilfer Associates Inc (PO
Box 239, 52 Park Avenue, Park Ridge,
NJ07656, USA) $\$ 14$ paper cover
The World Wired Up by Brian Murphy. 154 pages. Comedia $£ 3.50$ paper cover
What's this Channel Four? by Simon Blanchard and David Morley. 186 pages. Comedia $£ 3.50$ paper cover.
Annual Report and Handbook 1983 by BBC. 240 pages. BBC $£ 4.50$ paper cover.
Television \& Radio 1983 by IBA. 224 pages. Independent Broadcasting Authority $£ 3.50$ paper cover.
Handbook of Antenna Design by A. W Rudge, K. Milne, A. D. Olver, P. Knight. 945 pages. Peter Peregrinus hard cover.
Power of Speech (History of STC) by Peter Young. 221 pages. George Allen \& Unwin £9.95.
Fiction Stranger than Truth by N. Rudakov. 175 pages. N. Rudakov (PO Box 723, Geelong, Vic 3220, Australia) $\$ 10$ paper cover.

Popular Circuits

Electronics Projects
Digital Circuits
Communication Circuits
and Special Circuits (Ready Reference series) by J. Markus. 161-216 pages. McGraw-Hill £9.50 each paper covers.
Electronics: A Course Book for Students by G. H. Olsen. 425 pages. Newnes $£ 17.50$ hard cover.
Practical Electronic Building Blocks - 2 by R. A. Penfold. 94 pages. Babani $£ 1.95$ paper cover. Computer Programs for Electronic Analysis \& Design by Dimitri S. Bugnolo. 261 pages.
Prentice Hall $£ 15.25$ paper cover.

Microcomputer Experimentation with the Synertex SYM-1 by Lance A. Leventhal. 500 pages. Prentice Hall $£ 19.75$ paper cover.
Basic \& Pascal in Parallel by S. J. Wainwright.
60 pages. Babani $£ 1.50$ paper cover.
ZX Spectrum User's Handbook by R. J.
Simpson \& T. J. Terrell. 199 pages. Newnes £6.95 paper cover.
STD Bus Interfacing by Christopher A. Titus, Johnathan A. Titus \& David G. Larsen. 286 pages. Prentice Hall 11.15 paper cover.
Interfacing to Microprocessor \&
Microcomputers by Owen Bishop. 147 pages. Newnes, £4.95 paper cover.
ZX8000 Handbook by Martin L. Moore. 390 pages. Prentice Hall $£ 11.95$ paper cover.
Basic Handbook second edition, by David A.
Lien. 480 pages. Compusoft $\$ 19.95$ paper cover.
Assembly Language by Randy Hyde. Prentice
Hall $£ 16.95$ paper cover.
Introduction to Electronic Speech Synthesis by Neil Sclater. 134 pages. Prentice Hall £7.60 paper cover.
Electronically Speaking: Computer Speech
Generation by John P. Cater. 230 pages.
Prentice Hall 12.70 paper cover.
Z-80 Microprocessor Advanced Interfacing with Applications in Data Communications by J. C. Nichols, E. A. Nichols \& K. R. Musson. 347 pages. Prentice Hall $£ 16.95$ paper cover. Microprocessors and Microelectronics by Ian Williamson. 171 pages. Cambridge Learning £6.50 paper cover.
6502 Assembly Language Subroutines, by
Lance A. Levanthal \& Winthrop Saville. 550 pages. McGraw-Hill. $£ 10.50$ paper cover.
Interface Projects for the TRS-80 by Richard C. Hallgrer:. 152 pages. Prentice Hall. £11 paper cover.
Practical Interfacing Techniques for
Microprocessor Systems by James W. Coffron
\& William E. Long, 401 pages. Prentice Hall £25.15 hard cover.
TRS-80 Model III Assembly Language by Hubert S. Howe 344 pages. Prentice Hall £14.40 paper cover
Radiation safety of laser products, BS4803
parts 1-3. British Standards Institution. $13+16$
+30 pages. Members $£ 33$ paper cover.
European Electronic Component Distributor
Directory by Mackintosh Consultants. 464 pages. Benn Electronics Publications £37.50 paper cover.
New Technology and Industrial Change by Ian Benson and John Lloyd. Kogan Page £4.95 paper cover.
Newton's Error by A. H. Winterflood. 72 pages. From H. K. Lewis \& co, 136 Gower Street, London WC1E 66S £3 paper cover.
Transient Analysis Aided by Network Theorems by Harry E. Stockman. 176 pages. Sercolab (PO Box 78, Arlington, Mass. 02174, USA) $\$ 13.30$ (abroad $+10 \%$) soft cover.
Telegraphy on Stamps by W. C. L. Gorton. 16 pages. Picton (Citadel Works, Bath Road, Chippenham, Wilts) 95 pence paper cover. Art of Programming the 16 K ZX81 by M . James \& S. M. Gee. 125 pages. Babani $£ 2.50$ paper cover.
Computer-Assisted Home Energy
Management by Paul E. Field. 182 pages. Sams $\$ 15.95$ paper cover.
Learning IBM Basic by David A. Lien. 425 pages. Compusoft $\$ 19.95$ paper cover. Art of Programming the ZX Spectrum by M. James. 138 pages. Babani $£ 2.50$ paper cover. Literature Received this month appears on pages 38 © 73.

Ultrasonic ranging for robots

Simple ultrasonic transmitters and receivers with microprocessor control can give a robot the capability of determining the distance of objects near to it, even in a noisy environment.

Ultrasonic transducers provide highly directional characteristics which permit the construction of a ranging system that operates on principles similar to those of radar.

The underlying principle is simply to measure the time interval between the transmitting and receceiving of ultrasonic pulses. I have used momentary bursts with a fundamental frequency of 40 kHz . The velocity varies with temperature, pressure etc, and the greatest accuracy can only be obtained if these factors are taken into account. However over the comparatively short range of the system it is doubtful that any normal variations of these factors will significantly affect the measurement.

The time interval between the transmitted and reflected pulse is a linear function of the distance. If we call the velocity of sound V, and the target range r then the timing interval $\delta \mathrm{t}$ is $2 \mathrm{r} / \mathrm{V}$. Thus the accuracy of the measurement depends chiefly on the accuracy of the time measurement. We need now to examine how this can be interpreted by the robot's computer into useful sensory information. Most robots incorporate a microcomputer to convert incoming data, from sensors, and from instructions in the control program, into responsive actions. The

by H. W. Gleaves

complex relationship between input data and output action is determined by the software of the control unit.
Hardware. A block diagram of the sensing unit is shown below. The ultrasonic transmitter is a simple c-mos squarewave oscillator which may be adjusted a few kHz each side of the chosen frequency of 40 kHz . The squarewave output is fed through a c-mos analogue transmission gate and transmitted in short bursts. The receiver is a combination of op-amps designed to amplify and filter the very weak received signals. The overall gain of the receiver is over 80 dB . The amplified signal is fed to a comparator which switches very rapidly between 5 V and 0 V on the receipt of a signal. This output is used to interrupt the robot's computer. I decided to compromise between hardware and software by using the computer to count the time delay. Other parameers such as pulse width and p.r.f. were chosen to suit the application and may be varied for different ranges, etc.

Only two connections were needed

Block diagram of the ultrasonic frequency ranging system.

"My main interest is in designing robot systems. At present lam working on a machine using two microprocessors and ultrasonic ranging. I believe that robot software will need to be considerably different from normal computer software, since unlike a computer a robot has very poorly defined data entering its system.
"Because of the employment difficulty, I took A-level mathematics and physics at night school. From there l entered Old Swan technical college to finally receive a diploma in telecommunications."
between the ranging sensor and the computer. I used an Acorn system 1 microcomputer which has proved to be excellent. It is physically small, of two vertically stacked boards with the upper one having a hexadecimal keyboard for programming. Only one bit of an 8 -bit port was used to pulse the transmitter on for a period determined by the software. The output from the receiver is connected to the microcomputer's interrupt request, IRQ, terminal and will interrupt the processor whenever sounds containing a 40 kHz component are detected. The IRQ on the 6502 microprocessor used in the Acorn system 1 may be ignored or acted upon, the choice being under software control, depending on whether the 'interrupt disable bit' in the 6502 status register is set or clear. The software is designed so that while the transmitter is active, the interrupt is disabled and as soon as the transmitter has stopped, the interrupt is enabled. At the moment when the interrupt is enabled, a special test register is cleared and an 8 -bit register starts counting. As long as the test register remains clear, the counter continues to increment. When an interrupt signal is received the test register is set to FF_{16} and

the count stops. The processor returns to the main program but the count register contains a number proportional to the distance measured.

The effect of noise. Ideally only one measurement is required as described above, but in any normal environment there are inevitably extra noises that could trigger false readings. I have given a full explanation of the mathematical method used to determine the probability of noise affecting readings in the appendix. It is sufficient to say here that if a number of measurements are taken, then a certain proportion of them will give the same reading while noise will add random readings. So if a number of readings are compared, those that have the same reading most often will indicate the true distance while the other readings may be ignored. For example, I set up the transducers some 150 mm away from a fixed object. With no ambient noise, 32 measurements were all the same. I then repeated the experiment while jangling a bunch of keys about 100 mm away from the transducers. There was a wide diversity of measurements but the most common value, occurring seven times, was the correct value, identical to that in the first experiment, while the remaining values were random, with no value occurring more than three times.
Software. A machine-code program is uses the range measurement technique discussed. Two versions are included for two processors; the 6502 and the Z80. I have called them 'Mode' as they calculate the mode of the acquired data. Users of other processors may be able to compile

Flowchart for FDA (frequency distribution analysis). R_{1} and R_{2} are two range values in the range table. $R i$ and R_{2}^{\prime} are the frequency of occurrence in the table of R_{1} and R_{2}.
similar programs by referring to the flowcharts. 'Mode' on the 6502 can process a block of data up to 255 bytes length. The program will determine the value that occurs most frequently and place this in a specific location in memory (address 0020) with the frequency stored at address 0022 . If all the values in the table are different, a value of 01 is placed in the 'Error' address, 0024.

The first value is taken from the top of the table. The number of times the same value occurs in the table is counted. This count is then compared with the next count derived in the same way and the value corresponding to the greater is stored. The process is repeated to the end of the table. If, during the process two counts are the same, then Error is set to 01 if subsequently another count is greater, then Error is reset to 00 .

The program for the Z 80 is very similar. It can process a block of data longer than 255 bytes if necessary, provided that no single value occurs more than 255 times.
NVT (number of values in a table) subroutine. This subroutine accepts an 8bit number that has previously been stored at address 002 E and then determines how often it appears in the table of values stored in ram. The count is stored in 002F. Other important addresses are 020 E which contains the value of the length of the table $(+1)$, so if the table contains 32 values the
number 21_{16} is stored; 0208 and 0209 contain the 2 -byte base address of the table (in low-byte/high-byte order). In my system, the table started at 0300 and ended at 0320 so addresses 0208 and 0209 contained 00 and 03 respectively

0200	LDA*ロ0	A9	00
0202	STAZ 2F	85	$2 F$
0204	TAX	AA	
0205	LDAZ 2E	As	2 E
0207	CMPX 0300	DD	00
020A	BEQ 06	F®	06
020C	INX	E8	
020 D	CPX*21	E®	21
020F	BNE F6	D®	F6
0211	RTS	60	
- 0212	INCZ 2F	E6	2 F
0214	JMP 020C	4 C	0 C

FDA (frequency distribution analysis) subroutine. This analyses the data obtained by the range sampling process, and then gives the true value for the range of the object in the robot's path. It works by internally examining the frequency distribution of the data and determining the range value that occurs most often, i.e., it is finding the peak of the histogram of the data. The program uses the NVT subroutine explained above, and also makes use of the 6502 X and Y registers. After calling this subroutine (JSR 0217), the value that occurs most often is found in address 0034 . This is the measured range and may be used to direct the robot or for any other purpose. The start address of the table must be the same as that used in the NVT routine and it is important that the table is the same length or gross errors will occur. Address 0243 contains the length of the table +1 , as in the NVT routine.

0217	LDA*00	A9	00
0219	STAZ 2F	85	2F
021 B	TAX	AA	
021 C	LDA, X 0300	B0	0003
021 F	STAZ 30	85	30
0221	STAZ 2E	85	2E
0223	TXA	8A	
0224	TAY	AB	
0225	JSR (NVT)	20	0082
0228	LDAZ 2F	A5	2F
022A	STAZ 32	85	32
022 C	TYA	98	
022 D	TAX	AA	
022E	INX	E日	
022F	LDA, X 0300	B0	00
0232	STAZ 31	85	31
0234	STAZ 2E	85	2E
0236	TXA	BA	
0237	TAY	AB	
0238	JSR (NVT)	20	0002

0238	LDAZ 2F	A5 2	2 F
023D	STAZ 33	85	33
0235	TYA	98	
0240	TAX	AA	
0241	INX	E8	
0242	CPX*21	E0	21
0244	BEQ 1A	F0 1	1 A
0246	LDAZ 32	A5 3	32
0248	CMPZ 33	C5	33
024A	BCC 07	90	07
024 C	LDAZ 30	A5 3	30
024 E	STAZ 34	85	34
0250	JMP 02 2F	4C	2F 02
0253	LDAZ 31	AS 3	31

0255	StAZ 34	8534
0257	StAZ 30	8530
0259	LDAZ 33	A5 33
0258	STAZ 32	8532
025 D	JMP 02 2F	4 C 2 F
0260	RTS	60

Appendix

Noise is of course, by definition, random. The probability that a noise will occur during a range measurement can be calculated. Supposing we have a number n which can take the value of 1 or 0 depending on whether noise is present. Then if the duration of a noise pulse is d_{m} separated by a period t_{m} then

$$
d_{m}=\frac{1}{n} \sum_{j=1}^{n} d_{i} \text { and } t_{m}=\frac{1}{n_{i}} \sum_{i=1}^{n} t_{i}
$$

FLOWCHART FOR Z80'MODE'

Assembler and machine code program for Mode with the 6502.

where d_{j} is the individual noise duration and t_{i} the individual time between pulses. We can see that if a noise pulse occurs once between the times t_{a} and t_{b} it could have occurred a total of b times equal to $\left(\mathrm{d}_{\mathrm{m}}+\mathrm{t}_{\mathrm{m}}\right) / \mathrm{d}_{\mathrm{m}}$. The probability that noise will occur at any one time is the inverse of b, i.e. $\quad d_{m} /\left(d_{m}+t_{m}\right)$. The longer we extend the listening period, the more likely we are to get a noise pulse $(\rightarrow 1)$. So the probability that our range measurement is true will tend towards 1-b. There are no controllable

Non-industrial robots

People are designing robots to solve specific problems in areas where immediate financial benefit is likely. But areas where financial gain appears unlikely at present, are not being researched very enthusiastically. It is in this area that amateurs can be of great help, by designing and discussing their own robot projects and experiments. Robots made for personal scientific interest and curiosity are bound to be more far-reaching in scope than so-called robots built merely as an economical answer to a tricky engineering problem. The author would like to hear from readers who are pursuing the subject of robodynamics from a hobbyist viewpoint, in an attempt to make some real progress in a field which might be called "non-industrial robots". Readers interested in forming a non-industrial robot group can make contact at the following address:

> H. W. Gleaves
> 20 Hartington Road
> Liverpool 8, L8 0SG
parameters because noise is random. However there is a way to overcome this and introduce control into the range measurement. If the maximum range of the measuring system is 1 m , then the time taken to take a measurement is 6.06 ms . We are using an 8 -bit counter to measure the distance so we can measure in 255 incremerts of distance. If the measured distance is 255 then we call this an over-range reading and ignore it,for safety. So if the true distance is R , the time taken to make the measurement is $6.06 \mathrm{R} / 254$. The chance that a noise pulse is received in this period is $1 / R$ and if we combine this with the probability of a noise pulse being detected at any time $1 / \mathrm{b}$ we get $1 / b R=d_{m} / R\left(d_{m}+t_{m}\right)$. If we call this P for probability and then if we make two such measurements then the probability that there will be a noise pulse detected during both periods becomes P^{2} and if we make a large number of measurements then the probability that if I is the number of measurements that are identical, then the probability that these are due to noise, P_{I} is equal to P^{1}. I is the number of identical range values and is partly controllable depending on the number of measurements taken. If P_{I} is the probability that I identical values are due to noise, the probability that these readings are in fact the true range measurements is therefore $1-\mathrm{P}^{\mathrm{I}}$, or $1-\left(d_{m} / R\left(d_{m}+t_{m}\right)\right)^{1}$. The effectiveness of the system thus depends chiefly on the number of readings taken, but it may also be possible for the computer software to determine the values of d_{m} and t_{m}, i.e. the duration and spacing of noise pulses and then optimise the number of readings taken. This could vary with different environments. A further refinement could be for the robot to move the sensor a specific distance, take another set of readings, and then confirm the first set by comparison, taking into account the offset caused by the movement.

Test yourself in circuit analysis
Here are the answers to Wes Vincent's circuit analysis quiz on page 43.

1. 4 V
2. 6 V
3. 7 mA
4. 21 V
5. 3 V
6. $1.5 \mathrm{k} \Omega$
7. 5 mA
8. $1 \mathrm{k} \Omega$
9. 2.8 V

Count the number you answered correctly and compare below.
10
Congratulations! You pass as an expert
8-10
6-8
4-6 Below average. Review the
Average concepts presented in the article.
<4 Well below average. Review this article at a later date and try the quiz then.
An electronics engineer at Delco
Electronics division of General Motors,
Kokomo, Indiana, Wes Vincent designs integrated circuits for automotive electronics. He is typical of Wireless World readers in enjoying electronics as a hobby, and says he wrote the article "to help the hobbyist, technican and practising engineer to sharpen their skills with respect to circuit analysis"

John Wiseman

John Wiseman, born 1931, Melbourne, must be an expert on South America: he's spent years "wandering about" Argentina, Brazil, Chile, El Salvador Guatemala, Honduras, Mexico and Uraguay, supporting himself by translating pieces for the Australian press from Allendes Chile. As a freelance radio officer based in London on foreign-flag shipping the offer of a very cheap sea passage to Buenos Aires proved irresistible. It was boredom of working as a radio operator off the Australian coast that had previously led him to change course and take up teaching, fleeing to Europe when he'd saved enough money.

Back in the antipodes in the midseventies, a "very bad experience in a storm" in the Bass Strait - between Tasmania and the maintand concentrated his interest in aerial design. And taking up aerial matters with the radio surveys ministry found him up against a "never wrong" bureaucracy. "So l bought a camera" he explains, " and started to photograph some of the atrocities such bureaucrats have given their approval to". This resulted in articles in Safety at Sea, Nautical Review as well as Wireless World (see "Transmitting aerials of modern merchant ships" September issue, "Practical problems with aerials at sea" March issue with subsequent letters, and "Aerial inefficiency at sea", page 29 this issue). 1983: Further time in the UK, he tells us, "has been vetoed by the Home Office".

Hobbyist's spectrum analyser

Television tuner module and oscilloscope form the basis of this useful and versatile piece of test-gear

Home experimenters occasionally have a chance to lift their activities to a new and previously unattainable level. The catalyst here is the voltage-controlled variable capacitance diode television tuner and the piece of equipment is the spectrum analyser. This article looks at these tuners and their power supply requirements in some detail and shows how to take the first steps toward a practical 'backyard equivalent' of the expensive all-singing all-dancing commercial spectrum analysers. This project is one where results can be obtained almost from the beginning and where each stage can provide the facilities for building and checking the next. The final result should be limited only by the patience, care and enthusiasm of the constructor.
But first of all, what is a spectrum analyser and what can it do? Essentially it shows an instant picture of the position and the strength of every signal in a selec-

by Roy Hartkopf

ted frequency band. It shows what radio and television stations are on the air, their strength and frequency. It instantly detects spurious or harmonic radiation from the oscillator you built or from a transmitter. It can help to trace and identify electrical noise and interference, and it can make the building and alignment of filters and

Fig. 1. Power and control-voltage supplies for the tuner module. Tuner is swept across its range by a waveform derived from the timebase of an oscilloscope; after rectification its i.f. output is applied to the vertical deflection input. Network at the collector of T_{1} provides correction for the non-linearity of the tuner's tuning characteristic.
high frequency amplifiers a matter of minutes instead of days.
The principle on which the spectrum analyser works is simple. By applying a sawtooth waveform, preferably taken from the oscilloscope itself, to both the oscilloscope deflection circuits and the tuner we cause the tuner to sweep over part or the whole of its range in synchronism with the spot moving across the oscilloscope screen. At the same time a rectified output from the tuner is applied to the vertical amplifier of the oscilloscope causing a vertical spike to appear at any frequency where there is a signal. Since the height of this spike is proportional to the strength of the signal we have a picture or panorama of all the activity in this frequency band.

One cannot work entirely without tools and the major requirement in this case is an oscilloscope. The simplest home-made one will do because although we may be

viewing frequencies of hundreds of megahertz the oscilloscope is coping only with rectified a.c. and the sweep should be as slow as possible. About 25 sweeps per second will be fast enough to avoid too much flicker.

The other major item is the television tuner itself. It must of course have voltage controlled tuning and preferably cover both the v.h.f. and u.h.f. television bands. The most useful bands are from about $100-$ 220 MHz and $450-850 \mathrm{MHz}$. The tuner mentioned in this article is a Philips ELC2060 but any other type could equally well be used.
Once the printed circuit board is made the assembly of the components should be done in stages, beginning with the power supplies. The 12 volt positive and negative supplies are quite standard and since the current required from the negative supply is likely to be very low - even allowing for future additions - only one $1000 \mu \mathrm{~F}$ capacitor was used for smoothing. The third supply is used for the voltage-variable capacitor tuning and consists of a tripler circuit which generates about 50 V . The voltage used for tuning must be extremely stable: a voltage change of about 25 V tunes the u.h.f. section over 400 MHz , a rate of 16 MHz per volt; so a jitter of even 1 mV will cause a frequency jitter of 16 kHz . There are integrated-circuit voltage stabilizers specially made for television tuners and a typical one is the TAA550, a twolead device in a TO-18 case. The positive lead is connected to the case so be careful about shorts when using a heat sink. With a small clip-on heat sink the device will carry about 6 mA comfortably and drop about 32 V . It is the stability, not the voltage, which is critical. To prevent any possibility of the TAA550 dropping out of regulation it is wise to allow for a minimum current of a couple of milliamps to be flowing through it at all times. This leaves about 4 mA as the maximum which

Basic instrument can be enhanced by additions such as heterodyne mixers and filters to provide additional frequency ranges, switched input attenuators, logarithmic amplifier to give a wide-range calibrated display, and switched handpass filters to select an appropriate if. bandwidth.

Simple comb generator

The comb generator gets its name from the fact that the pattern it produces on a spectrum anaiyser tesembles an ordinary hair comb with iss prongs pointing vertically upward. Because these 'pıongs' are harmonic multiples of the fundamental irequency it follows that the frequency difference between each one and the next must be exactly the same, the same as the fundamental frequency of the oscillator. So if they are evenly spaced across the screen we can be certain the sweep is linear (except for possible variations between the spikes, so the more spikes within reason the better). If we know the fundamental frequency we can ge: a quict indication of the total range of the sweep and if we also know the frequency of any individual spike we can use the comb as a "frequency suler" to measure any other signal.

Electrically the comb generator is just an oscillator. But where normally we try to get a clean signal and suppress the harmonics here we try to produce as many as possible. We make a high pass filter by feeding the output through two or three (or more) small capacitors is series with inductors. Choose a convenient frequency for the oscillator (e.g. $10,20,25$ or 50 MHz) and fiddle both the capacitors and inductors while watching the result on the screen.

can be drawn by transistor Tr_{1}, so the load resistor should be at least $8 \mathrm{k} \Omega$. On the small plug-in bcard we can temporarily set one of the trimmers (the one which has a wire link in series rather than a zener diode) to $8 \mathrm{k} \Omega$ and, without soldering in any of the zener dodes, plug the board into its place.

The range-setting resistors R_{3} and R_{4} have to be adjusted and it is necessary to substitute two trimmers to determine the finel values. Use two 100 k pots, set them about mid-range and solder them to inchlong tails of wire which can be soldered inlo the holes for the resistors. Any tran-

4 Fig. 2. Output from a typical comb generator as seen on the home-made spectrum analyser. Uneven spacing between the 'prongs' is corrected by adjustments described in the text; height difference is unimportant. Bumps at the bases of the spikes may indicate tuner overloading.

Fig. 3. Same comb as in Fig. 2, but after correction for linearity. Note improvement in spacing between the spikes on the righthand side. Display covers 100 to 200 MHz with 10 MHz spacing.

sistor which will stand the 32 V rail will do for Tr_{1} but select one for a very low gain (50 or even less). A high-gain transistor can make subsequent adjustments impossibly critical.

Apart from the power transformer the only components external to the board are the v.h.f.-u.h.f. switch (if required) and $R_{2} . R_{2}$ is a critical component because it controls the centre position of the sweep. A good quality 10 -turn pot should be used; or if that is too expensive or hard to get use a ten turn trimmer, the kind used in presetting push-button television tuners. Otherwise the control will be too sensitive. R_{2} sets the voltage applied to the noninverting input of the op-amp; and the circuit is adjusted so that, with the slider of R_{5} grounded, R_{2} can vary the tuner voltage through the full range from 0 to 30 V . This is achieved by adjusting the trimmers which temporarily replace R_{3} and R_{4} while measuring the voltage on the collector of

Tr_{1}. Remember to set the a.g.c. trimmer R_{1} to give about 2.5 V to the tuner a.g.c. pin (or pins as the case may be). Finally make up a rectifying circuit with a couple of signal diodes and a 10052 resistor as shown in Fig. 1 and connect it between the tuner output and the oscilloscope probe. Having connected the sawtooth waveform driving the oscilloscope to R_{5}, set the sweep to a very low speed (about one sweep every five seconds), put the voltmeter on the collector of Tr_{1} and adjust R_{5}, the shift control R_{2}, and if necessary, everything else, until the tuner control voltage is sweeping through the full 30 V . Then increase the sweep frequency enough to give a readable trace and put a signal within the frequency range into the tuner. One or more spikes on the trace should show that the first stage of your spectrum

The same linearity correction should be effective on more than one band. This shows a u.h.f. display from 500 to 850 MHz with 50 MHz spacing.

If the oscilloscope sweep speed is too fast, as it is here, the tuner frequency may still be dropping when the next sweep begins. This can arise because voltage-controlled tuning circuits usually incorporate some capacitance for stability, for example, C_{x} in Fig. 1.
analyser is working.
The next job is to make a comb generator (see box 00). When this is connected to the tuner the display should resemble that shown in Fig. 2. The main purpose of the comb generator is to help in optimising the linearity of the sweep. Note how in Fig. 2 the spikes are crowded together at the left and spread out at the right. This indicates that the same control voltage change causes more tuning shift at the beginning of the sweep than the same change causes at the finish. To put this right, zener diodes are fitted to the small plug-in board to modify the load resistance for Tr_{1}. As the voltage across the load increases the diodes will successively conduct, reducing the load resistance and compensating for the increased frequency-to-voltage sensitivity.

Now that we have a picture to work to, we can easily make the whole system linear. Remove the small plug-in board, readjust the trimmer from $8 \mathrm{k} \Omega$ to about $15 \mathrm{k} \Omega$ and wire in the first zener. Use a 15 V type for a first try, and set the trimmer in series with it to the maximum $50 \mathrm{k} \Omega$? and replace the board. Now fiddle the load trimmer and R_{5}, and if necessary R_{2} and the rest, until the display is similar to what it was before. Use R_{2} to make sure there are no harmonics off the right hand side of the screen. Now close up the spacing until a centimetre or so on each side of the
screen is clear and reduce the resistance of the trimmers in series with the 15 V zener diode. If the value of the zener is correct then all the harmonic spikes except the last two on the right should move to the left. If either of the last two moves the zener voltage is too low. Try one of, say, 18 V . It three or more of the right hand spikes do not move, the voltage is too high. When you get the voltage correct, adjust the trimmer until the third spike from the right has exactly the same spacing as the first two. With any luck the fourth may also now be correct.
Continue in exactly the same wav with another zener diode, selecting one which shifts only the spikes not already spaced correctly, until the display is simular to that shown in Fig. 3. If you are very unlucky and the tuner has both v.h.f. and u.h.f. ranges you may have to use a second plugin board for the other range; but in every case experienced so far (several tuners have been tried) the same compensation settings are adequate for both ranges. The more zeners and trimmers used, the more accurate the correction; but three are usually enough, at least for a first attempt. As a final check, make sure that with all zeners conducting the load current is about 4 mA . If it is more and the regulation is dropping out then increase the level at R_{5} and tr again.

The basic spectrum analyser is now complete, although it still has a number of limitations. It is uncalibrated, it is not very sensitie, it has a restricted frequency range and the i.f. bandwidth is too broad for some applications. But by progressive additions such as switched bandpass i.f. filters, a logarithmic amplifier to improve the sensitivity and the range, heterodyne mixers to extend the frequency range and a calibrated variable sweep the final result could be limited only by the patience and enthusiasm of the constructor.

The ELC2060 tuner is available for $£ 8.63$ including inland postage and v.a.t. from Sendz Components, 63 Bishopsteignton, Shoeburyness, Essex SS3 8AF. MNW

Did Morse get it right? A statistical background to the code

> Morse speed in words-per-minute presupposes a defined mean word. A value for this can be derived from an analysis of Samuel Morse's own data. Recent trials support the original work for English but not for French or German. Certain aspects might even have surprised the great man himself.

Morse code must be reasonably familiar to most readers of Wireless World but some of the finer points of its structure and certain practical difficulties in its application might not be immediately obvious to the non-specialist. In particular, there is an inherent uncertainty in relating transmission rate to the more traditional measure of words per minute. The last-mentioned introduces the concept of a standard word length which must be statistically derived from an analysis of plain language text, and the results may differ significantly between one language and another. This article looks at present-day practices and relates these to statistical data available for English and five other European languages. The need for such a reappraisal can be justified by the increasing use of automatic keyers, practice code generators and the like, which, with their capability for greater precision in code formation, has led to a general desire to define transmission speed more closely and more uniformly than has been the custom in the past.

Statistical beginnings

By the early 1830s Samuel Morse had become fully aware of the potential that a variable code would offer in arranging shorter combinations of signals to be allocated to the more frequent letters of the alphabet and it is recorded ${ }^{1}$ that a visit to a local newspaper printing room enabled him to deduce from the number of type pieces held for each letter of the alphabet the relative frequency of use. From this information, Morse devised combinations of short and long signals specifically designed to maintain the product of character length and frequency at a more constant level than would otherwise be the case, and thereby to produce the shortest messages overall. Morse's original code (not quite the same as that in use today, see Appendix) together with the letter frequency table he compiled are given in Reference 1.

For the immediate task of providing a basis for calculation, it is necessary to state here the parameters of the mark-space structure as follows. The dot length (period) can be regarded as the basic element and the dash is given a length equal to three dots. The spaces between the elements within one character are equivalent to one dot and the spaces between characters are given three dots duration. Words
are separated by seven dot elements. For brevity, the term bit is used synonymously with dot element making the dot rate equal to half the bit rate (baud or bit per second).
The length of a morse character can be expressed in terms of the number of dot elements or bits it contains: for example, the letter A (dot dash) can be said to comprise five bits. However, as one character cannot follow another without inserting a space of some kind, it is preferable to in-

by A. S. Chester
 M.I.E.E., G3CCB

clude the standard inter-character space (three bits) as part of the letter itself bringing the letter A to eight bits alphabet shows a range from four to 16 with a mean value of 11.23 bits. The full range of bit counts is given in the Appendix.

Random code

When letters are selected at random they appear, by definition, at uniform relative frequency and a mean five-letter word in code is equal to five times the mean letter plus four bits to make up the remainder of the word space. Taking a rounded value for the mean letter as 11.2 bits, the mean word comes to $5 \times 11.2+4=60$ bits. Code speed in words per minute is then numerically equal to the bit rate or twice the dot rate. Figure characters also can usually be regarded as random in their occurrence and a similar analysis to that for letters gives the mean character length as 17 bits from which the mean five-figure group (including word space) comes to $5 \times$ $17+4=89$ bits. Speed in word $/ \mathrm{min}$ can then be shown to be equal to $1.35 \times$ dot rate.

English language

The fact that plain text does not make use of all letters of the alphabet with uniform frequency presents the major difficulty in setting a value for the mean (plain language) word. It is safe to say, however, that the figure is bound to be significantly less than the value for the random case, otherwise there would be no benefit to be gained from the use of a variable length
code and, in fact, the ratio of the two figures can be regarded as a measure of achievement in optimizing the design.
Before going on to report the results of trials it must be conceded straight away that a standard word for a plain language does seem to have established itself already: a scrutiny of published material shows a concensus for a nominal standard of 50 bits (including word space) and the word 'Paris' is sometimes quoted as representing this value. Frequently the information is given directly in terms of word/min and dot rate as, for example, word $/ \mathrm{min}=$ $2.4 \times$ dot rate $(1 \mathrm{word} / \mathrm{min}=50$ to 60 baud). Seldom is the reader provided with any basis for the figures quoted and variations do appear from time to time not only in the literature but in the observed calibration of automatic keyers and practice tapes.

It was against this background that I felt the need to satisfy myself that any standard being quoted, and in particular the 50 bit word, had a reasonably sound statistical basis for its application and had not established itself merely by common usage. At the same time, it had to be admitted that,

Crossword - by N. Darwood

Using the digits 1 to 8 each row and each column adds up to eight. The first clue, and its consequencies for the top row, is given. No entry need be guessed. Solution next issue.
even if a 'better' result were to be found, there might still be a case for retaining a round figure such as 50 bits in the interests of easy standardization, providing the figure did not depart too far from reality.

To derive a standard word for plain language it is necessary to combine the bit count for each letter with its relative frequency of occurrence to obtain a measure of the overall effectiveness of the letter in a long run of text. Relative letter frequencies must, of course, be estimated by statistical trial and in the first instance I selected three quite different sources of available data.

The first was the original frequency table ${ }^{1}$ compiled by Samuel Morse around 1830 and reproduced in ref. 1. The second was taken from a work ${ }^{2}$ on cryptography by H. F. Gains first published in the late 1930s, which not only provided two sets of data by different analysts (Meaker and Ohaver) on English but data on five other European languages as well. The third was obtained during correspondence following publication of an article ${ }^{3}$ by a beginner operator describing his attempts to relate the dot rate on his automatic keyer to the amateur radio morse test at $12 \mathrm{word} / \mathrm{min}$. It was not in the least way possible to foretell what the outcome of the exercise might be, but in the event the results proved to be so gratifying that I undertook a count of letter frequencies myself to provide extra data for analysis. The method used for this exercise and the results obtained are given at the appendix.

Given suitable data on letter frequencies, the procedure to determine the length of the standard word was the same for all sources of material. For all letters designated r_{1} to r_{n} the product of bit count x_{r} and frequency f_{r} gave a table of values from which an overall mean letter size could be calculated. In the usual notation, the mean value x is

$$
\bar{x}=\frac{1}{N} \sum_{r=1}^{n} x_{r} f_{r}
$$

where N is the size of the sample. Defining the mean word as comprising five mean letters plus four extra bits to make up the word space, a value for the standard word was calculated. The results of the exercise using letter frequency data from the five sources listed are given in Table 1. The total dispersion of the mean over the five results is gratifyingly small considering the wide differences in source and sample size. A global mean value for the mean word comes to 49.4 bits and is unchanged (to three significant figures) when the data points are restricted to the middle three values.

Other languages

In addition to two sets of data on English, reference 2 provides letter frequency tables for five other European languages. The exercise to find a value for the standard word was extended to include these languages and the results obtained are given in Table 2. Data for French, Italian and Spanish were compiled from a count made by the author, but the origins of data for

German and Portuguese are said to uncertain.

The results show significantly low values of the mean word for French and German relative to the other language trials, including English. This seems likely to be due to the fact that the frequency table for German shows zero count for letters J, Y, Q, and Z (all long symbols in morse) while the count for letter E (the shortest symbol) was the highest encountered over all languages. The relatively low value for French cannot be so easily explained with zero count for K and W (letters of around average size in morse) but a fairly high count for E. Spanish and Portuguese, producing equal results, are the only two languages in the six tested to show a mean word exceeding 50 bits.

The standard word

Kesults tor English show a value for the mean word estimated over five trials as 49.4 bits with an overall dispersion of +0.4 to -0.3 bit . There can be little doubt therefore that a standard word of 50 bits will meet all normal requirements for the measurement of morse speed in English. Of the five other languages, Italian, Spanish and Portuguese all show values for the
mean word within $\pm 1 \%$ of 50 bits which value can be accepted as the standard for these languages also, albeit on the basis of smaller samples.

Table 1. Results of five independent trials to determine the mean word for English.

	Sample size	Mean word
		(bits)
Morse	106,400	49.8
Gains (Meaker)	10,000	49.5
Gains (Ohaver)	10,000	49.3
Chester	10,000	49.3
Wood	1,798	49.1

French and German deviate much more from the 50 bit standard at -4.8% and -7.4%, respectively, and it may be worth considering whether any additional trials should be undertaken on these languages to verify the low values obtained from the published data used.
Given a standard word length of 50 bits, the word Paris is often used to represent this value. Whether it is really necessary to quote an actual example of a 50 bit word is debatable but there must be other internationally recognisable words of this length

Morse symbols and bit content including inter-character space together with frequency count. Taken from the Sunday Times of 18 July 1982 using a wide range of material by different writers. But specialist subjects were avoided, as were passages containing undue repetition of proper names and

Letter	Morse symbol	Bit conten	Relative frequency
A	=	8	8.25
B	- - -	12	1.78
C	- - -	14	3.14
D	- -	10	3.38
E	-	4	12.77
F	-- - -	12	2.38
G		12	2.04
H	- - - -	10	5.06
1	- -	6	7.03
\checkmark	-	16	0.19
K	-	12	0.58
L		12	4.30
M		10	2.29
N		8	7.02
0		14	7.13
P	- - -	14	2.03
0		16	0.14
R		10	6.30
S	- - -	8	7.06
T		6	9.17
U	- -	10	2.83
v	- - - -	12	1.20
W		12	1.80
X	- $=$	14	0.28
Y		16	1.76
Z	- $=-$	14	0.09

from which to choose. It was during a search through a list of suitable candidates for an alternative to Paris that I stumbled on the fact that the word Morse is one of precisely 50 bits (including word space) and, being more than relevant to the

Table 2. Results of trials to determine the mean word for the five European languages given.

Language	Origin	Sample size	Mean word (bits)
German	Uncertain	Not given	46.3
French	Gains	10,000	47.6
Italian	Gains	10,000	49.7
Spanish	Gains	10,000	50.4
Portuguese	Uncertain Not given	50.4	

subject in hand, could hardly be bettered as an international standard.

Morse practice and test criteria

Traditionally, morse speed for plain language transmission is estimated by marking off groups of five letters in a passage of text (ignoring word spaces) and then sending the passage normally arranged in groups of five and the counting of 'words' is then straightforward. It is common practice to send code at a rate some 20% lower than that for plain language with the intention of presenting the same overall degree of difficulty to the operators. Whether this practice is entirely justified is arguable but a quantitative measure of one aspect of the problem is given in the following paragraphs.

Table 3. Standard words for three categories of morse against corresponding wpm/dot rate (dot rate in dots per second = half a bit rate).

	Plain	Code	Figures
Standard word (bits)	50	60	89
Ratio wpm/dot rate	2.40	2.00	1.35

Given a standard word length for each of the three categories of morse, it is simple to find the corresponding ratio of transmission speed in word $/ \mathrm{min}$ to dot/s. Table 3 gives standard word lengths derived from the data produced in this article with the required ratio. The dot rate for plain language can be adjusted down if necessary by 1% since the mean word length for English estimated by trial has been found to be about this much short of 50 bits. For certain other languages, the dot rate could be much greater in error; see the results for these in Table 2.

When using automatic keyers, the dot rate can readily be set to a level corresponding to the required word speed. In such cases, it may be useful to remember a few equivalents such as 24 word $/ \mathrm{min}$ in plain language corresponds to $10 \mathrm{dot} / \mathrm{s}$. It is also interesting that this same dot rate will produce a speed in code of 20 word/ \min and on this basis a combined morse test in plain and code would have to be sent at word speeds in the ratio $24 / 20$ to represent the same 'pace' to the operator. The method, however, would not take into account the difference in letter predictabil-
ity between the two categories of text and it could be argued that if plain text in the operator's own language is easier to copy than random code at the same dot rate, then the word-speed ratio between the two should be increased to redress the balance. Unfortunately, this aspect is difficult to quantify and seems to depend on the individual operator's training and experience.
An exercise which started out to test the validity of the 50 bit standard word has shown the figure to agree with the result of statistical trials to within about $\pm 1 \%$ for English and three other European languages. But unfortunately, the standard doesn't seem to fit the German or French languages as well as the others and users in these countries may wish to consider whether conformance to a round-figure standard is more important than precise alignment with the result of one statistical trial. More generally, and especially for non-European languages, the problem of the standard word can be avoided altogether by the universal adoption of dot rate as the only reliable measure of the 'pace' of transmitted morse.

References

1. C. Cherry, On Human Communication, p.35. Wiley, New York; Chapman \& Hall, London.
2. H. F. Gains, Cryptanalysis, appendix. Dover Publications. 1956 New York.
3. I. T. Wood, The true measurement of morse speed, Short Wave Magazine, vol. 39, February 1982.
wivi

Electronic mail-order for electronics

Items from the large component catalogue issued by STC Electronic Services can now be ordered electronically. A new service called Estelle allows direct access to the company's mainframe computer at Harlow for any customer equipped with a suitable modem and a computer or v.d.u. having an RS232 port. Estelle (a somewhat tortured acronym standing for Electronic Services telephone link for order entry) claims to be the first system of its kind introduced by a major components distributor. Users can obtain up-to-the-minute information about product availability and pricing and may place orders straight away or else browse through catalogue items. A menu system enables them to find their eay about. The service is aimed not only at business and industrial customers: the company is keen also to attract the hobby-

ist, who can gain access with a home computer linked to a low-cost acoustic modem and pay for goods by typing in a creditcard number.
Services similar to Estelle, although perhaps less comprehensive in scope, are available from two retailers already well known to the hobbyist - Ambit International and Maplin Electronics. Ambit's Rewtel is predominantly an information service. It allows customers to make rapid searches of the company's database by typing in keywords; and the system responds by sending any pages containing those keywords in their heading. There is also an electronic bulletin board which allows customers to leave messages for the company or for other users. Component ordering and the several other facilities on Rewtel are available only to subscribers, who pay a fee of $£ 10$ per year.
The service launched by Maplin, called Cashtel (standing for computer-aided shopping by telephone), is available to Maplin's existing mail-order customers. To make a purchase the user enters the appropriate code numbers from the company's catalogue. Cashtel also allows users to check on stock levels and to follow the progress of their previous orders. Like the other systems it has features designed to ensure confidentiality and to protect
against misuse. Later on there is to be a bulletin board for private or public messages and an information service for various home computer user-groups: pages for Atari computer owners are already available. One attraction for potential Cashtel users is a modem offered by Maplin in kit form for less than $£ 40$: the modem conforms to the 300 baud CCITT standard and is transformer-coupled to the telephone line.
The telephone number for Cashtel is $0702-552941$; and for Rewtel (300-baud Datel 200 service) the number is 0277232628. Estelle is available on three numbers - 0279-443511 (300baud Datel 200 service); 0279-441188 (1200baud Datel 600 service); and 0279-441222 (1200baud Datel 1200 service).
Another company, Display Electronics of Thornton Heath, Surrey, though not a component retailer in the ordinary sense, can claim to have been the first in this field with its 300 baud Distel service. This allows customers to search the company's large stock of computer and electronic goods and to order by credit card. Distel can be accessed 24 hours a day on 01-683 1133.

For further information, code WW500 (Estelle), WW501 (Rewtel), WW502 (Cashtel), WW503 (Distel).

Liquid crystals add colour to monochrome c.r.t.

A solution to the problem of producing colour display devices with a high enough resolution for measuring instruments and computer displays has been developed by Tektronix in the form of a monochrome c.r.t. with a two-colour liquid crystal switch. This is not the first display of its kind, but the developer claims to have solved the problem of colour-switch speed. Tektronix manufacture their own tubes and the liquid crystal switch is described as 'proprietary' but Fred Rose, information officer of Tektronix UK, could not tell us in plain terms whether or not his company manufactures the device. "We have tried to clear up one or two ambiguities" he said, "but Tektronix are not prepared to release any more details. The display is ready to be used and I speculate that we could see it incorporated in one of our products within the next twelve months."

The display has the same resolution as current monochrome tubes and does not suffer from convergence problems. A high contrast ratio is claimed, as is ruggedness through the absence of a shadow mask and complex gun, but Tektronix are not so clear about the price of such a display and will only say that it is "potentially low cost." Phosphor coating on the tube is plain with two separate emission peaks that are typically, but not limited to, red

and green. In any field, information written on the screen appears in the colour selected by the electronic switch. Each colour is repeated at 60 Hz , requiring the two-field system to run at 120 Hz . This field-sequential system provides all possible mixtures of the two primary colours emitted by the phosphor and research is continuing to extend the concept to three fields to produce the full colour spectrum.

Colour displays for measuring instruments and computers with the resolution of current monochrome instrument tubes could appear within the next twelve months. Tektronix have developed a system combining a fast liquid-crystal filter and monochrome c.r.t. to provide a high resolution display producing all colours between rea and green on a fieldsequential basis. Research into producing a three-colour version continues.

Heatless laser etching

A new phenomenon has been discovered which allows organic polymers and biological materials to be etched by laser without heating. Called ablative photodecomposition by its IBM discoverer R Srinivasan, the phenomenon could be used to directly etch images in photolithographic i.c. fabrication, which would greatly simplify the production process by eliminating the image development stage using photosensitive layers and chemical solvents. In the medical field, the phenomenon could mean precise laser surgery,

since cuts are determined solely by the geometry of the beam and, because heat produced is negligible, charring associated with laser surgery is eliminated.
Using far-ultraviolet lasers, Srinivasan found that an intensity threshold exists above which "numerous small molecules are suddenly ejected from the irradiated area of the materia!". High intensity is not directly responsible for the etching effect. Srinivasan believes that absorbed radiation probably breaks chemical bonds between atoms in the organic material producing

smaller molecules that vaporize at relatively low temperatures. These smaller molecules carry away excess energy from the laser pulse - hence the term ablative.

Pulses of 12 ns at 1 Hz or higher from a 193 nm argon-fluoride excimer laser were used in Srinivasan's experiments. Other experiments using this type of laser have shown that ultraviolet radiation may be the key to submicron lithography.

Heatless laser etching could be used to directly etch images, left, in photolithographic i.c. fabrication, eliminating the usual image development stage using photosensitive layers and chemical solvents. This scanning-electron micrograph shows a commercial plastic film with 54m-wide lines etched using a phenomenon known as ablative photodecomposition. With biological and polymer materials, a far-ultraviolet laser above a certain intensity threshold causes excess energy to be carried away in ejected molecules and the material remains cold.

Potential for heatless laser etching in medical applications, right, is illustrated by these cuts in cartilage tissue. Heating and charring caused by commonly used visible and infrared lasers, left, is not apparent in the $250 \mu \mathrm{~m}$-wide channel on the right which was cut using a far-ultraviolet laser and the ablative photodecomposition
phenomenon. Geometry of the cut is determined solely by the beam geometry.

Erasable optical disc

Using an enhancement to existing recordplayback optical storage systems, Matsushita has developed the world's first optical disc that can be erased and rerecorded. Sensitivity of the disc is high enough to allow broadcast pictures to be recorded in real time, its capacity is one gigabyte and it can be erased and recorded over one million times which makes it suitable for both video and computer storage applications. This would seem to make both perpendicular magnetic recording (see February News) and metal-powder tape obsolete but it is too early to compare such factors as cost-per-bit of storage, portability of media and manufacturing costs. Matsushita do not indicate that their development is ready to be manufactured.

The erasable disc, part of a $\$ 600 \mathrm{~m}$ research and development project, has a tellurium suboxide layer the same as used in existing optical-disc record/playback systems. Heating this layer results in it changing its reflective properties (see March News). But by adding metals such as germanium, indium and lead to the suboxide layer and using two separate laser beams, the change in reflectivity caused by changing the layer from a crystalline to
 record process the high-reflectivity crystalline phase is converted to a low-reflectivity amorphous state; during erasure, the opposite occurs. Two semiconductor lasers are used - a $0.83 \mu \mathrm{~m} 8 \mathrm{~mW}$ device for recording and playback and a $0.78 \mu \mathrm{~m}$ 10 mW type for erasure - with a common optical system.

An erasable optical storage disc for video images and data developed by Matsushita uses two separate lasers for recording and erasing through a common optical system. The one gigabyte disc can record broadcast pictures in real time and be erased over one million times but when the disc might be available is not yet certain.

Submillimetre-wave telescope

Work has begun in Hawaii on the world's largest telescope capable of operating at wavelengths shorter than 1 mm . Due to be completed in 1986, the telescope will help explain the formation of new stars, the nature of quasars and the evolution of galaxies. "Chemists", say the Science and Education Research Council, "will have the opportunity to study complex molecules in space which may provide the key to life itself."
SERC, who are building the telescope in conjunction with the Netherlands Organization for the Advancement of Pure Science, says requirements are pushing microwave technology beyond the limits of current applications. Detectors using ele-
ments as small as $1 \mu \mathrm{~m}^{2}$ and cooled to a few degrees above absolute zero have been developed to solve a main problem of viewing at submillimetre wavelengths - that of the receiver sensitivity. Engineering and installation of the telescope is being carried out at SERC's Rutherford Appleton Laboratory by a team working in collaboration with universities and observatories in the UK and Netherlands including the Mullard Radio Astronomy Observatory at Cambridge University and the council's Royal Observatory in Edinburgh.
Tolerance of the 15 m -diameter paraboloid form will be within $50 \mu m$ - including distortions due to gravity when the antenna is turned.

Ariane launches new satellites

A much needed boost for Europe's satel-lite-launching project came on 16 June with the near perfect launch of Ariane L6 in Guiana. Had the rocket failed - representing the third failure of six attempts orders said to be worth about $£ 300 \mathrm{~m}$ could have been lost and the future of Europe's independent means of launching satellites put into serious doubt. Ariane's payload consisted of Europe's first communications satellite ECS-1 and the German Amsat Phase 3B
ECS is a continuation of the OTS formula to provide trunk telecommunication between countries belonging to CEPT (European conference of posts and telecommunications), especially telephony and data transmission. Its other purpose is to provide colour television relays with sound and multiple commentary channels. Designed for a lifetime of seven years, ECS has a payload that includes twelve 20W, $11-\mathrm{to}-14 \mathrm{GHz}$ repeaters and six antennae.
The other satellite launched from Ariane L6 is the Amsat III-B, called Oscar 10 when fully operational. This satellite for amateur radio is designed to serve as an educational aid - to establish back-up communications networks over long periods covering most of the Earth using simple and inexpensive components, to study multi-uer transponders and fre-quency-division multiple-access, to assess
the effectiveness of a highly eccentric orbit, and to demonstrate the practicability of using an onboard microcomputer for managing and monitoring the satellite's operation.
The telecommunications module consists of four main transponders, the first one (L1) with an uplink frequency of 435.175 MHz downlink of 145.828 MHz : Transponder L2, uplink 435.165 MHz downlink 145.838 MHz : Transponder H1 uplink 435.025 MHz , and downlink 145.978 MHz : Transponder H2 uplink 435.030 MHz , downlink 145.973 MHz . There is also an Amsat net and calling frequency with an uplink of 435.040 MHz and a downlink of 145.936 MHz . The general beacon is transmitted at 145.810 MHz and an engineering beacon at 145.987. At the time of writing the satellite has yet to be fully oriented toward the sun - battery charging is low and so the beacons are only being activated for short periods. The satellite has an expected life of three years.
Ariane L7, 8 and 9 launchers have been assigned to Intelsat V satellites F7, F8 and F9 and are scheduled for launch on 26 August, 4 November 1983 and January 1984 respectively.

Satellite news trial

To give "a valuable early indication of benefits from using satellites on a commercial scale in the future", BT are to carry out a three month trial distributing news and information by satellite starting in July. In the trial, Europe's first, Exchange Telegraph Co (Extel) will send speech and data from BT's Fleet building in London to its nine regional offices in the UK via European test satellite OTS. Working experience of locating and using small satellite aerials for businesses in urban areas will also be gained from the trial. Receiveonly dish antennas of one or 1.8 m diameter will be used at the regional offices.

Microphone on a chip

Using its recently developed zinc-oxide thin-film deposition technique, Honeywell has produced a microphone with microelectronics on a single silicon substrate, which is said to give better performance, sensitivity and reliability than current ceramic microphones at a fraction of the cost. Compared with ceramic devices which lose sensitivity at around 20 Hz , the integrated zinc-oxide device operates at frequencies down to 0.1 Hz . Honeywell say their 6.5 by 6.5 mm 'mike-on-a-chip' can detect $1 \mu \mathrm{bar}$, at which pressure the signal-to-noise ratio is $5: 1$, and that it is smaller and lighter than its ceramic counterpart measuring typically 6.5 by 12.5 mm excluding electronics and leads.

Zinc-oxide thin-film techniques used produce a substance with characteristics
similar to those of piezoelectric crystals but compatible with standard i.c. fabrication processes. Like piezoelectric ceramic materials, zinc-oxide produces thermallyinduced voltage fluctuations but the manufacturer claims to have eliminated this effect by. using concentric electrodes. Existing semiconductor processes and equipment are used to fabricate the sensors which presumably accounts for their low cost.

Data-base for telecomms

Abstracts and references to articles from more than 250 international periodicals, congress proceedings and reports are contained in a data base for the telecommunications industry recently brought on line by a Dutch company, Samsom Data Systemen bv. Including some 100000 bibliographic references dating from 1976, the data base also contains information on 250000 products, 7000 systems and 18000 companies. The service is conveyed through the Euronet, Tymnet, Telenet, Teleglobe, Datapak and normal telephone channels. Search languages used are Com-mon-Command Language, CCL, which was developed for the Commission of European Communities, and the IBM-related Storage Information Retrieval System known as Stairs.

In June, Russian satellite monitors received mayday signals from a radio distress beacon and an air/sea search was carried out. The beacon was later found in the wardrobe of a man living in Erskine near Glasgow.

Two new data banks covering electronic satellite equipment produced in Europe, Sateldata, and information on spacecraft components, Spacecomps, have been opened by European Space Agency Information Retrieval Service. These banks are produced by ESA Research and Technology Centre in the Netherlands and by ESA-IRS. Computers holding the information are based in Italy and liked to all major national/international data tranmission networks and ESANET.

In brief. . .

During June, the Radio Regulatory Department was transferred from the Home Office to the Department of Trade and Industry but the Broadcasting Department and Directorate of Telecommunications stay with the Home Office. The Radio Regulatory Department is responsible for band planning and general policy on the use of the UK radio spectrum, civil radio licensing, representation of the UK in international frequency negotiations and liaison with foreign administrations. RRD also has general responsibility for the Wireless Telegraphy Acts, including their enforcement, and control of interference.

Corrections

Precision analogue voltmeter in W. J. Hornsby's design, June 1983, the junction of D_{7} and D_{8} should be linked to $\mathrm{R}_{17}, \mathrm{R}_{18}$ and IC_{3} by a $0.47 \mu \mathrm{~F}$ capacitor (C_{7}) and not by a direct connection as shown in Fig. 1. Also omitted from Fig. 1 was a $68 \mu \mathrm{~F}$ capacitor (C_{10}) across the positive supply. Both components are shown correctly on the printed circuit layout. In the resistance measuring unit (July issue), R_{21} (180S2) should be a fixed-value resistor.
Autoranging frequency meter. In the article by F. P. Caracausi on page 36 (March issue), or second line of the centre column, for MCP read MST. On page 37, line 13 should read "from the timing module" not the counting module. Line 4 under the subheading "Timing," MCE goes low, not high. Line eight under "timing," MCE also goes low if . . . In the caption under Dr Caracausi's picture, he works at the Cassa Centrale di Risparmio and not as printed. In Fig. 1, the pin marked 17 on the display should be 7. Fig. 2, the pin marked 5 on the IC_{12} should be 15, and finally in Fig. 6, the inputs marked DP on the counting module should have the same designation as the inputs from the scaling circuit to which they are connected.

Mixed logic. M. B. Butler tells is he made two errors in his July article (page 28 et seq.) - in Fig. 18 the flag or polarity indicator was missed off the 7427 gate, and also off the first output marked A in Fig. 27. But to come clean we also made a few. In Fig. 8, negate the C symbols in both output functions; and Fig. 9 refers to the third point in the summary, not the fourth (delete 'below'). In Fig. 15 case (vi), transpose the A and B columns, and in Fig. 16 make the bottom output of the voltage table H , not L Insert the symbol 1 in the lower three alternative rectangles of Fig. 17, and finally note that IC_{31} in Fig . 28 is an or-gate, not a nandgate.

Assembly language programming

To avoid extra processing time, microprocessors manipulate negative numbers in twos complement signed binary form. In this fifth article, converting such numbers, branching and bit manipulation conclude the section on microprocessor instructions for the 6805.

In twos complement conversion, positive numbers are represented as before but negative numbers are a ones complement with one added. For minus five,

| +5 | 00000101 |
| :--- | :--- | :--- |
| ones complement | 11111010 |
| twos complement | 11111011 |

Adding plus eight and minus five becomes

+8	00001000	
-5	1111	1011
binary sum	(1)	0000
0011		

and the binary sum of plus three is now correct.
The branch instruction expects to find a twos complement value in the immediate byte which it adds to the program counter and execution proceeds from the new address. When assembling, the assembler (or you if you are programming by hand) must calculate this value and insert it in the object code. Assembled, and with the addresses filled in, the example discussed last month,

where xx is the twos complement offset. One calculates the offset by subtracting the branch address of the instruction following the branch (035) from the branch destination address (032)
\$032
00110010
$\$ 035$
(1) 00110101
result
11111101

In hexadecimal, the result is FD; (1) is an imaginary borrowed number. During execution, the two bytes of the branch instruction enter the c.p.u. from program memory and the program counter is incremented. The program counter will now contain 35 (hex.). If the branch condition is met, the program counter and offset byte are added together

$\$ 035$	000	0011	0101
$\$ F D$	(111)	1111	1101
result	$\$ 032$	(1)	000
00011	0010		

by R. F. Coates

\qquad

As the offset has fewer bits than the program counter, the sign bit is extended into the remaining three bits.

Twos complements may seem complicated but they make the most efficient use of the microprocessor and result in fast execution. Computer assemblers calculate the offset automatically and there are easier ways of determining the offset when working by hand. Using the previous example count in hexadecimal past each byte of the op-code starting from the address of the instruction following the branch until the destination address is reached. When going backwards count 00 is followed by FF then FE, etc, as in the example

Offset	Op-code	
$\$ 00$	83	
$\$ F F$	xx	
$\$ F E$	26	
$\$ F D$	$4 A$	(destination address)

This method is quick in practice but it is easy to make mistakes with long branches. To solve this problem, a branch calculator program is included in the Picotutor (and Nanocomp) monitor. With Picotutor*, press the be key and S will be displayed to request a three-digit starting address for the branch. This is the address of the branch instruction and not the instruction following it. When 033 from the example is entered d is displayed, indicating a request for the destination address, 032 , and entering this will display the twos complement offset required, FD.

A branch can only go forward 127byte or back 128 - if you try to branch further the error message will be displayed. Should you wish to branch conditionally, further than this, there are two means. One way is to use a second, or more,

[^3]branch instruction to hop to the desired location

> BEQ LABEL1

LABEL1 BRA LABEL2

LABEL2

A second method is to use a combination of the complement of the branch instruction required and a jump. Extended jumps will allow the program to jump anywhere in memory
BNE BYPASS
JMP \quad LABEL
(next instruction)

BYPASS

LABEL

When the branch-not-equal-to-zero (BNE) condition is true, the program branches past the jump and executes the next instruction, in effect just continuing the sequence. If the condition is not met, JMP is executed and the program can jump anywhere in the memory. Combining BNE and JMP amounts to a jump-if-equal-tozero instruction.

To summarize, when assembling by hand leave blanks in the object code where a branch offset is required, assemble the program and fill in the addresses then use the branch calculator program to help fill in the offsets.

Branch instruction range. There are 17 branch instruction for the 6805, excluding bit-test-and-branch described in the next section. They all require two bytes, the opcode and the eight-bit offset. None of them affect the condition-code register; only one addressing mode applies, which is relative.
Branch always, BRA, is an unconditional branch, that is, a branch will always occur when this instruction is encountered
Branch never, BRN, a branch instruction which never causes a branch, has the dubious function of performing a two-byte no-operation which takes the same time as two NOP instructions. Its only value is with the cmos 6805 where it only requires
three cycles to execute so timing delays can be set to a resolution of one cycle instead of two.
Branch to subroutine, BSR, unconditionally branches to a subroutine and is the same as BRA except that the return address is stored on the stack.

Branch if lower or same, BLS, causes a branch when either C or Z bits in the condition-code register are set. If a comparison (subtraction) is performed prior to this instruction and the numbers are the same, the Z bit will be set. When the number in the accumulator or index register is less than the number being subtracted from it, a borrow value occurs and the C bit is set, i.e.

CPX \#\$12
 BLS LABEL

will cause a branch if the index register contains 12 or less.
Branch if higher, BHI , is the complement of BLS, causing a branch if both C and Z bits are clear,
Branch if interrupt pin low, BIL, allows the interrupt input to be used as an extra input line if the interrupt mask is set, when the instruction causes a branch if the interrupt signal is logical 0 .
Branch if interrupt pin high, BIH, causes a branch if the signal at the interrupt input is logical 1.

Remaining branch instructions cause a branch depending on the condition of just one of the condition-code register bits. The half-carry bit is set as a result of a carry from bit three to bit four in the accumulator with instructions ADD or ADC , and is used in decimal arithmetic described later.
BCC Branch if carry clear, which may also be referred to as branch if higher or same, BHS.
BCS Branch if carry set, which may also be referred to as branch if lower, BLO.
BNE Branch if not equal to zero, i.e. when the Z bit is clear.
BEQ Branch if equal to zero, i.e. when the Z bit is set.
BHCC Branch if half carry clear.
BHCS Branch if half carry set.
BPL Branch if plus, i.e. if N bit is clear.
BMI Branch if minus, i.e. if N bit is set.
BMC Branch if interrupt mask, bit I, is clear.
BMS Branch if interrupt mask is set.

Bit manipulation

The final section of the instruction set covers bit-manipulation instructions for the 6805 . Although the Z 80 has similar instructions, 6800,6802 and 6809 type microprocessors do not. Bit-manipulation instructions fall into two categories - bit set/clear and bit-test and branch. They are intended for manipulating i/o port data for setting or clearing a single output port line which may for instance drive a relay, or for
testing the status of an input line which may be connected to say a switch causing a branch depending on its state. As these instructions are intended for i / o control only direct addressing is allowed, which means that they can only be used to operate on addresses in the range 00 to FF .
Bit set/clear. Any bit in any byte in address locations between 00 and FF may be set to a one or cleared to zero using these instructions. They are two-byte instructions consisting of the op-code and a direct address and their mnemonics are BSET and BCLR. Two arguments are required in the operand field, the number of the bit to be operated on, between zero and seven, and the direct address of the byte which contains the bit. BSET $3, \$ 32$ will cause bit 3 of address location 32 to be set.

When assembling, the bit number modifies the bit-set instruction op-code and 32 goes into the second byte of the instruction. From the instruction-set table ($W W$ April 1983, page 64) the op-code is calculated using $10+2 \mathrm{n}$ where n is the bit number (working in hexadecimal). For bit three, n is three which gives $10+6$ so the assembled version of the above instruction is

$$
1632 \text { BSET } 3, \$ 32
$$

and it can be tried out using this example

040	$3 F 32$	CLR	$\$ 32$
042	1632	BSET	$3, \$ 32$
044	83	SWI	

When the program finishes, check the contents of address location 32 using the memory-open key (mo); it should hold eight because the address was cleared before bit three was set.
bit number
76543210
contents of location
3200001000
Bit test and branch. Instructions BRCLR and BRSET cause a branch when the specified bit in a byte in address range 00 to FF is clear or set respectively. These are three byte instructions. The first two bytes are the op-code modified by the bit number and the direct address of the byte, as with bit set/clear. Byte three holds the twos complement branch offset. Three arguments are required in the operand field, the bit number, the direct address and the branch label/address, e.g.
040 0E00FD LOOP BRSET $7, \$ 00$, LOOP
043 203B BRA $\$ 80$
Op-codes for bit-manipulation instructions

Op-code	Mnemonic	Op-code	Mnemonic
00	BRSET 0	10	BSET 0
01	BRCLR 0	11	BCLR 0
02	BRSET 1	12	BSET 1
03	BRCLR 1	13	BCLR 1
04	BRSET 2	14	BSET 2
05	BRCLR 2	15	BCLR 2
06	BRSET 3	16	BSET 3
07	BRCLR 3	17	BCLR 3
08	BRSET 4	18	BSET 4
09	BRCLR 4	19	BCLR 4
OA	BRSET 5	1 A	BSET 5
OB	BRCLR 5	1 B	BCLR 5
OC	BRSET 6	1 C	BSET 6
OD	BRCLR 6	1 D	BCLR 6
OE	BRSET 7	1 E	BSET7
OF	BRCLR 7	1F	BCLR 7

The op-code for BRSET is 2 n and in this case n is seven which gives a hexadecimal result of 0E. Provided that bit seven of address 00 is set to one, this program branches to the label loop, i.e. back to the start of the same instruction, and repeatedly executes the same instruction until the branch condition is not met.
Address 00 is the eight-bit i / o port on the 68705 . In Picotutor, this port is connected to the eight-way dual-in-line switch with bit seven connected to the left-most switch. At switch on this port is automatically set as eight input lines and if the switch for bit seven is open a pull-up resistor in the processor makes this bit appear as a 1 (set) when address 00 is read. When the switch is closed, the associated processor input pin is connected to 0 V so bit seven appears as a 0 (clear) when address 00 is read.
If the program is run with the switch open, the branch-if-bit-set instruction is repeatedly executed and the display blanks as the monitor program is no longer operating it. With the switch closed the branch-if-bit-set condition is no longer true as bit seven is clear so the loop is broken and the next instruction executed. This also causes a branch, but to the monitor re-entry point so the Picotutor dash prompt is displayed.

Branch offsets may be calculated on the Picotutor even though the function was designed for two-byte numbers and not three. For three-byte bit-test-and-branch instructions the result from the calculator must be decremented by one, as in the following key sequence

Key	Display
bc	S
040	d
040	FE

where the offset minus one is FD. Having to calculate op-codes for bit manipulation instructions can be tiresome; the table lists all combinations of these instructions and equivalent op-codes.
Programming techniques are the subject of the next article.

In brief. . .

Paisley College are to receive a $£ 63,000$ grant from the Science and Engineering Research Council for research into ferriteloaded microwave i.cs operating at frequencies between 20 and 100 GHz . Several i.cs have already been built by research student David Sillers who will "spend some time at Philips and BT research laboratories, who are both collaborating in this work."
Four carrots for the Berlin International Audio and Video Fair 1983, 2 to 11 September - the world's smallest studioquality u.h.f. pocket transmitter from Senheiser, a professional mobile video recorder from Grundig for teaching, research work, information services and advertising, Hitachi's VHS recorder giving 8 h of uninterrupted film from a standard 4h tape and Sony's Beta camera/recorder weighing 2.5 kg and giving three recording hours from a standard cassette.

Two-metre transceiver

Besides helping one understand operation of the transceiver, this description of software which completes the multi-mode transceiver design - will aid software modification.

Transceiver software consists of a main control program which calls various subroutines in sequence, as shown in flowchart form in the March issue, page 39. Conveniently, this technique allows certain routines to be bypassed by simply removing reference to them from the control program. Removing a subroutine during program development was simply a matter of taking out three or four bytes in the main control program, which is useful if one is not sure where a program error lies.
Repeater subroutine. When the main program calls repeater mode, the repeater subroutine sets the peripheral interface adapter A-port for data input and sets the controls-enable signal, pin 36 of IC_{804}, to

Eprom starts at 1800 hexadecimal and software breaks down into these main routines. Erase and up/down routines were covered in the April issue

by T. Forrester, G8GIW

one. Machine code for setting the p.i.a. Aport for input and activating controls-enable is located between addresses 188 B and 1995. This code, used each time controls are tested, stores the status of the controls in the accumulator. If bit zero is clear, repeater mode is bypassed but if bit zero is set the processor tests for receive by looking at bit one of the p.i.a. A-port. A 'one' on this line tells the program that the transmitter is to receive and that no shift is required so repeater mode is left.

Bit zero being at 'one' indicates that transmitting and a negative 600 kHz shift (JSR NVE) are required. On return from the negative-shift subroutine, JSR NVE, the program loops, testing bit one of the Aport until a 'one' is detected to indicate that receiving is required. At this point the program jumps to the positive-shifting subroutine, JSR PVE, adds 600 kHz then leaves the repeater subroutine.
Software detects whether the transceiver is set for transmit or receive by addressing IC_{803} (see March issue, page 41) which passes the status of press-to-talk, up-frequency, down-frequency, squelch-open and power-on controls. Machine code between locations 1880 and 188A enables IC_{803} through pin 33 of the processor and loads the buffered switch signals into the accumulator. This code is used every time the status of up/down, transmit/receive squelch and power-on controls is required. Repeater routine is between memory location 1831 and 1844.
Reverse repeater subroutine. This subroutine is more complex than the previous one because the receiver is operating at 600 kHz below its original frequency in repeater mode, so when reverse repeater mode is entered the frequency has to be restored to its original value. While receiving in reverse repeater mode, the subroutine has to call all the routines normally needed for simplex mode, including tuning up/down, scan and erase, to allow the band to be tuned.
On entering the reverse repeater routine, software tests for transmit or receive. If receive is detected, the program jumps to the negative-shift subroutine, JSR NVE, used in repeater mode to subtract 600 kHz . Detection of a transmit condition causes the program to jump to the simplex routine, JSR SIMP, and loop so long as the transmit condition exists; this disables the rest of the controls. Simplex routine is

located between 1879 and 187 F and uses the subroutine between 1880 and 188A to test the p.t.t. line. When the transceiver is set up to receive and has just shifted -600 kHz , another loop is entered to test for receive and reverse repeater mode (see flow chart).
Scan subroutine. On entering this subroutine from the main program, the first operation tests to see if scan has been selected and if not, returns to the main programme. When scan mode is selected the software looks at the squelch status signal entering pin 6 of IC_{803}; squelch open, i.e. signal present, is represented by a one on the line. If a signal is present the test routine is carried out to see whether the next frequency to be monitored is to be skipped over or not. If the frequency is to be skipped, the synthesizer is moved to the next channel and control is passed back to the scan routine.

Now the program again checks for the presence of a signal and if it is still there, 12 is loaded into the accumulator and then stored in the first temporary location (TEMP1) at address 002 F . The value 12 loaded into temporary-location one determines how long the transceiver monitors each channel, and is gradually decremented. Delay value 12 , currently held in location 195B may be changed to increase or decrease the delay as desired.

Pressing the skip button while monitoring a frequency in scan mode results in the

repeater and skip modes which do not operate in the memory mode. Memory subroutine is best dealt with by breaking it down into units each providing a function.

Unit one is a memory scan, which takes frequency data from memory-frequency ram locations between 1D and 32 in sequence. Two bytes are used for each frequency - one byte controls the 100 Hz steps while the other controls the voltage-
frequency being included in the skip lookup table by means of the frequency-add subroutine, FADD. Next time the synthesizer stops at this frequency the test subroutine will cause it to be bypassed. Not pressing the skip button while monitoring a frequency causes the program to jump to a delay loop (JSR WT2) after temporary location TEMP1 is decremented. Delay loop WT2, located between 1913 and 1936, decrements ram location 0015 from 00 FF to zero and is carried out 15 times.
While in the WT2 loop, the program monitors the power line and on detection of the set being switched off causes 8 E to be loaded into ram location 0014: this operation puts the processor in its stop mode. After leaving the WT2 delay loop the program tests whether scan mode is still required and if so tests the temporary location at 002 F for zero. When the TEMP1 test for zero is true, program jumps to the scan-up subroutine, JSR SCNU, located between 1980 and 19A2. Scan-up routine increments the synthesizer in scan mode and sets top and bottom frequency limits for scan mode. Location 1991 currently holds E4 to set the highest frequency of a scan to 145.9999 MHz . An increase of one unit represents an increase in the top frequency of 10 kHz . Similarly location 1995 holds 1 C representing the lowest frequency of 144 MHz .

With present hardware the maximum and minimum frequencies are 146.270 and 143.700 MHz . To widen these limits, wiring of $\mathrm{IC}_{800,801}$ shown on page 39 of the March issue would have to be modified.
Memory subroutine. This subroutine is the most complex, encompassing all of the other subroutines except those for reverse
ج

Scan-up subroutine (JSR SCNU)

controlled crystal oscillator in 100 Hz steps up to 9.9 kHz . If a particular memory frequency is in use the set will wait for a period determined by the number of time that the outine at 191D is called using code between 1A94 and 1AA2. The current program calls the routine at 191D four times.

Unit two looks at the channel switch and compares it with the last position of the switch stored in ram location 001A (CHNO 001A). If the two are the same nothing happens but a difference between the two causes the stored channel number to be updated. The processor then loads the index register with the content of the memory location corresponding to the channel-switch position using a subroutine called MORT located between 1B07 and 1B16. Data for the synthesizer and voltage-controlled oscillator is then loaded into the processor and sent to the synthesizer using a data-output routine, abbre-
viated DOP. Locations 1B71 to 1BE2 hold the data-output routine, which besides controlling the synthesizer converts binary

$\pm 600 \mathrm{kHz}$ subroutines

to condensed multiplexed b.c.d. to drive the display. Every time the frequency is changed in any mode, the data-output subroutine is used.
Unit three takes the frequency in use before memory mode was entered and places it in the memory locations pointed to by the channel switch then the program jumps back to unit two to send the data to the synthesizer. Unit four allows repeater mode to be used while in memory mode and provides the way out of memory mode, restoring the original operating frequency. When the program is in memory mode, the original operating frequency is stored in ram locations 0012 and 0013 for synthesizer and voltage-controlled oscillator data respectively.
$\pm 600 \mathrm{kHz}$ subroutines. Postive shift, PVE and negative-shift, NVE routines reside in locations 18AB to 18B5 and 18A1 to 18A7 respectively and add or subtract

Specification

Frequency coverage Frequency steps Frequency display	144 to 146 MHz 100 Hz or 25 kHz	Power	16.5W f.m. and 14.0W p.e.p.
			s.s.b. with
	7-digit l.e.d. with	Spurious outputs Harmonics	13.8 V supply
			-70 dB at 16.5 W
Tuning method	up/down buttons on microphone		-45 dB at 288 MHz -50 dB at 432 MHz
	or channel	Carrier	
	switch	suppression	50 dB (s.s.b)
	(select memory	Squelch threshold	$0.1 \mu \mathrm{~V}$ (s.s.b. and
Memory	9 memories programmed by push button may be scanned with six second hold		f.m.)
		Bandwidths	2.4 kHz s.s.b.
			12.5 kHz f.m.
		Sensitivity	$0.26 \mu \vee$ p.d. for
			$0.13 \mathrm{u} \vee \mathrm{p} . \mathrm{d}$.
Scanning	scan memory channels or scan		for 12 dB s/n ra
	band (144 to	Receiver image	
	146 MHz) with	resporise	$-76 \mathrm{~dB}$
	provision to skip	Third-order	
	up to 40	intercept point	
	channels	(receiver)	-1dBm
Modes	l.s.b., u.s.b., f.m. simplex, repeater and reverse repeater	Size	205 by 250 b
			65 mm
		Antenna impedance	50, nominal

600 kHz from synthesizer data stored in 0010. Hexadecimal value 3 C is the equivalent of 600 kHz in this case. Both of these routines use the data-output routine, DOP, to modify the synthesizer and display.

Four lesser routines remain. The first, located between 18B6 and 18CD, takes the frequency down in 25 kHz steps and the second between 18CE and 18E7 takes the frequency up in 25 kHz steps. Two similar routines causing 100 Hz steps up and down
are in locations 18 E 8 to 18 FA and 18 FB to 180 D respectively. These routines may be modified to make the set operate with any channel spacing. Readers considering modifying the software will find the Motorola MC146805E2L microprocessor applications manual helpful.

Photocopies of p.c.b. track diagram and component positions can be obtained by sending a large s.a.e. to Wireless World Transceiver, Room L303, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Programmed eproms at $£ 8$ and software listing at $£ 1.50$ including UK postage and vat are available from T. Forrester, 125 Seven Way, Bletchley, Bucks.

Modules

1 Receiver converter, 144 MHz to 9 MHz November 1982. pp.35-38
2 Transmit converter, 9 MHz to 144 MHz December 1982. pp.61-63
3 Transmit power amplifier and power regulators -December 1982 pp.61-63 January 1983 pp. 42-45
4 Discriminator, squelch, noise blanker, a.f. power amp January 1983 pp. 42-45
5 Synthesizer logic January/February 1983 pp.42-45
6 Synthesizer voltage-controlled oscillator, power change over February 1983 pp. 38-41
79 MHz s.s.b. transceiver, 9 MHz f.m. exciter February 1983 pp. 38-41
8 Microprocessor control and interfaces March 1983 pp. 39-42
9 Frequency-display driver March 1983 pp. 39-42
$10 \mathrm{1750Hz}$ tone-burst and receive a.f. pre-amp April 1983 pp.69-71

MNN

TTTERATMTRE REGEIVITB

A comprehensive 64-page catalogue of radio-frequency interference filters for mains power and other uses has been published. It lists 120 filters from a plug-and-socket model to keep noise out of home computers or hi-fi to a 800 A power filter or a 32 -line filter for data transmission which can handle $9.6 \mathrm{Kbit} / \mathrm{s}$. Belling Lee Intech Ltd, 240 Great Cambridge Road, Enfield EN1 3QW.

WW407
The first issuc of the Electronics for Peace Journal reports on the first national conference of the Electronics for Peace movement and includes articles on the reliabikoty of digitallycontrolled weapons, the dangers of Ada, the computer language designed for use by the US Department of Defence, which could be errorprone. On the positive, and peaceful, side there is an article on information networks at the domestic level. Membership of Electronics for Peace, including a free subscription to the Journal, is $£ 5$ ($£ 3$ for the unwaged) to Steve Holmes, 151 Courthouse Road, Maidenhead, Berks SL6 6 HY .

WW408
Stepping motors and suitable drives and some useful design features explained in a four-page brochure Evershed and Vignoles Lld, Acton Lane, London W4 5HJ

WW409
Television and audio spare parts, especially for the Rank Bush Murphy equipment forms the core of the Mastercare catalogue, which also has service aids and tools, instrument and test
equipment and various accessories and other components. Mastercare Components, 653 London Road, High Wycombe, Bucks HPll 1PH.

WW410
Microwave products including ferrite devices, valves, noise generators, noise standards and power units are fully illustrated in a product guide. There are precise descriptions of five different types of waveguide circulators/isolators, together with information on transitions $/ \mathrm{i}-$ soducers, and a design service. Nore Microwave Ltd, 36 Towerfield Road, Shoeburyness, SS3 9SH.
Training schemes for schools, college and apprentice use are described fully in a booklet from Taran. Blackboard-sized breadboards illustrate circuits which can be built and demonstrated to a class or group. Students can get hands-on experience of circuits from the very simple to advanced studies in microwaves, digital electronics, control and automation, and communications. Taran International Ltd, Raynham Road, Bishop's Stortford, Herts CM23 5PG.

WW412
A 'bucget range' of toroidal transformers with dual secondary windings rated at 9 to 240 V and single 110,220 or 240 V primaries, or a double 120 V primary are available off-the-shelf from the manufacturers who have also published a leaflet describing them. Cotwold Electronics Ltd, Kingville Road, Kingsditch Trading Estate, Cheltenham, Glos GL51 9NX. WW413
The Bi-Pack semiconductor catalogue costs $£ 1$ (including postage) but does include some useful information such as pin-outs for a number of devices. Despite the title, there are a number of other components and tools, test gear, audio
modules and data books. Bi-Pack Semiconductors, PO Box 6,6A High Street, Ware, Herts SGI2 9AG.

WW414
The Zehntel p.c.b.-handling robot can identify boards and can position them at an automatic test station or a repair bench to within 0.5 mm . Motion is six axes is claimed to be unique. Details in a brochure from Zehntel Lid, 62 Tanners Drive, Blakelands, Milton Keynes MK145BP

WW415
A folder-full of 34 different sections make up the Verospeed catalogue which offers over 5,000 components from 120 manufacturers. New sections are cable accessories, data books, computer accessories and opto-electronics. Verospeed, Stanstead Road, Boyatt Wood, Eastleigh, Hants SO5 4ZY

WW416
Automated design and production facilities are available to designers of electronic equipment. These and the test facilities, all claimed to be at highly competitive prices, are described in a brochure from Tasbian Ltd, 2 Burrington Way, Plymaouth, Devon PL5 3LS.

WW417
The preliminary product brief for the Zilog Z800 family of microprocessor units specifies 8/16-bit devices with many added instructions including signed and unsigned multiplying and division, on-chip counter/timers, two versions also have on-chip u.a.r.t. and direct memory access channels. All versions include paged memory management to address 512 Kbytes while two of them can cope with 16 Mbytes. Also from Zilog is a user's manual for the Z8000 floating-point emulation package. Zilog (UK) Ltd, 43 Moorbridge Road, Maidenhead, Berks SL6 8PL.

WW418

Audio oscillator with ultra-low distortion

Less than 0.0005% distortion is claimed for the Bang \& Olufsen TG8 audio oscillator. Intended for circuit testing, test-gear calibration, and production-line product testing, its typical distortion is 0.00015% (harmonic) over the audio range 20 Hz to 20 kHz . The instrument is also a signal generator for 1 Hz to 100 kHz and has a wide range of facilities. Voltage output is from 3 mV to 10 V checked against a built-in voltmeter. David Bisset Ltd, 52 Luton Lane, Redbourne, Herts AL3 7PY.
WW301

Autodial modem

Any computer that uses the S-100 bus can be fitted with the Modem100 which provides a complete autodial viewdata modem and display driver on a single card. It gives full colour display output.
The card includes an 8749 microprocessor, on-board ram and rom and a calendar clock which allows for timed autodialling Modem-100 costs $£ 695$ but a cheaper ($£ 495$) alternative is Prattle (Programmable receive and transmit telephone line equipment) built around a Z80 processor, with rom and ram programs modem buffering, autodial and answering etc, using single byte commands. Prattle also interfaces with the S 100 bus. High Technology Electronics Ltd, 303 Portswood Road, Southampton SO2 1LD. WW302

Multi-counter

A dual-channel facility on the Norma D3655 counter enables frequency ratios and time intervals to be measured. The measuring periods of $10 \mathrm{~ms}, 1 \mathrm{~ms}, 1 \mathrm{~s}$ and 10 s allow frequency measurement up to 120 MHz and event counting in the range 10 Hz to 10 MHz . A self-test facility checks on the internal

oscillator. D3655 is available with an IEEE 488 or an IEC 655 interface and so can be linked in with a data processing system. Cropico Ltd, Hampton Road, Croydon, Surrey CR9 2RU. WW303

Controlled soldering

A temperature range of 216 to $426^{\circ} \mathrm{C}$ may be regulated to within $5^{\circ} \mathrm{C}$ using a slim, lightweight, micro-tipped soldering iron along with the Ungar 9000 control unit that incorporates a led bar-graph temperature display and the ability to calibrate it at the work station. Model 9000 has a fast heat-up time and temperature recovery and the iron is supplied with a variety of interchangeable, iron-clad, chrome plated tips. HB Electronics Ltd, Lever Street, Bolton, Lancs. WW304

Speech synthesized to order

Inflexion, tone and clarity of synthetic speech can be easily adjusted when using the TI Portable Speech Lab, according to the distributors. Phrases for industrial control, alarm systems, measuring equipment, remote

monitoring, aids for the handicapped and childrens' games can be recorded and then edited to change pitch, emphasis or other parameters, and the edited version then programmed into an eprom for use in a product. The package can also be used in an 'immediate' mode, being used as a peripheral processor to a host computer which can store the speech produced. Each stored phrase can be up to 10 seconds in length with sampling rates of 8 or 10 kHz . The distributors are also offering a message programming service using the Speech Lab. VSI
Microsystems, Roydonbury Industrial Park, Horsecroft Road, Harlow, Essex CM19 5BY. HW305

High-speed rectifiers

For use as output rectifiers and flywheel diodes in high frequency Fr.w.m. and switching regulator applications, the RUR series of low-cost epitaxial silicon rectifiers offer high reverse voltage capability. Several advantages are

claimed for the diodes including low spikes, low electromagnetic interference requiring little or no RC damping, and low dissipation when compared with Schottky devices. The RUR-810 series are single rectifiers while the RURD810 are double i.cs with a common cathode. Rated for a forward current of 8 A with a maximum forward voltage drop of 0.89 V , the maximum reverse voltage is 200 V . Voltage ratings vary for different diodes in the series from 100 to 200 V r.m.s. Reverse recovery time is less than 35ns. VSI Electronics (UK) Ltd, Roydonbury Industrial Park,

Horsecroft Road, Harlow, Essex CM19 5BY.

WW306

Very nice dear, but what's it for?

A company with a problem is Regisbrook of Reading who have samples of a very sensitive humidity sensor - so sensitive, they say, that it will detect the moisture in exhaled breath at a distance of 0.6 m . It is battery powered and pocket sized with an adjustable mounting bracket. The sensing grid consists of interleaved gold filaments on a ceramic substrate. There is an integral alarm bleeper which is not triggered if the gold elements are shorted together. The alarm stops when the sensing grid is wiped dry

The problem is: what can be done with it? A first prize of champagne, with ten runners up to get the sensor itself, for the best suggestions, serious or imaginative, which should be sent to Regisbrook Ltd, Studio House, 215 Kings Road, Reading, Berks RGI 4LS. WW307

Infrared emitters

Two gallium-aluminium arsenide i.r. diodes emit radiant flux at a wavelength of 880 nm . They are designed to have better coupling efficiency with silicon photodiodes and to be particularly suitable for use in pulsed applications. Output in pulsed operation is 100 mW , and for continuous operation 10 mW . The C86038E has a glass lens to produce a narrow beam, while the C86038E/F has a flat glass window and no lens. The devices may be used in high-speed sorting and counting, intrusion alarms, edge indicators, collision protection, optical coupling and isolation, data transmission and in photoelectric smoke detection. RCA Solid State, Lincoln Way, Windmill Road, Sunbury on Thames, Middlesex TW 16 7HW.
WW308

Accelerometer withstands 10000 g

A miniature transducer for the measurement of acceleration vibration and shock, the EGAX125 weighs less than half a gram. The active semiconductor strain gauge bridge gives a full scale output of 250 mV . Built-in overrange stops and damping provide the ability to cope with high g. Static and dynamic measurement is available in various ranges from 5 to 5000 g , with a temperature range of -5 to $120^{\circ} \mathrm{C}$. Its ability to operate at 10000 g overrange makes it suitable for automotive

crash and barrier testing, rocket launching and monitoring, vibration testing and control, and basic laboratory experiments. Entran Ltd, 8 The Mall,
London W5 2PJ.
WW309

Driver for stepper motors

Specifically designed to drive small to medium-sized permanent magnet stepper motors, the UCN4202A i.c. uses a full-step double pulse driver that optimizes the efficiency of the motor torque. Input/output circuitry is t.t.1.
compatible and a minimum of external components are needed, to provide 600 mA outputs suitable for 15 V motors. Higher current ratings or bipolar operation is possible by using the device to drive power transistors or other motor drivers. Semiconductor Specialists (UK) Lid, 159 High Street, Yiewsley, West Drayton, Middlesex UB7
7XB.
WW310

Switchmode kit

To demonstrate the capabilities of their m.o.s. power transistors and pulse-width modulators, Siliconix have brought out a 38 -piece kit which assembles into a dc-to-dc converter able to output $5 \mathrm{~V}, 10 \mathrm{~A}$ from a 24 V input. Operating at a frequency of 400 kHz , the completed circuit is claimed to have better than 1% accuracy in regulation and less than 60 mV output ripple. In addition to demonstrating the operation of such a circuit, the kit also shows its small size and low cost measuring 80 by 110 mm and weighing 140 g . £29.95 from Siliconix Ltd, Morriston, Swansea SA6 6NE WW311

Game of logic

A board game that teaches Boolean algebra, digital logic, the Karaugh map and Venn diagrams is based on a game invented by Lewis Carroll.

The beginners' pack, while said to be fun to play, teaches the elements of the workings of computers, hence the title of the game Computer. Additional packs increase the number of 'memory bits' and variables up to a 'professional' level. Computer is made in cut-out cardboard. Beginners' pack is $£ 1$ from N Darwood Ltd, Halfacre, Stroud, Petersfield, Hants.
WW312

Connections verified

W'hen a p.c.b. has been wirewrapped there follows a tedious system of checking the interconnections to make sure that all is correct before populating the board with expensive i.cs. A way of overcoming this is to use

interconnect verifiers which are made in d.i.l. i.c. packages and incorporate arrays of l.e.ds with one to indicate the status of each pin, from eight to 48 . By grounding one pin all the l.e.ds on one node are lit; incorrect connections will also be lit and points not connected, which should be, are not lit. Dim displays would indicate poor connections. This technique would not be suitable for mass production where a test rig would be set up, but offers a low-cost alternative for board development and for small batches. Track Equipment Corporation, P() Box 3181, Nashua, New Hampshire 03061, USA
WW 313

If you would like more information on any of the items foatured here, enter the appropriate WW reference numbers) on the mauve replypaid card bound in this issue. Overseas cards requife a stamp

Local processor

The problem of waiting for mainframe computer time for computation can be overcome by the use of the AP500 array processor from Analogic. The unit incorporates the MC68000 16/32bit processor and uses 32 -bit floating point arithmetic. This gives it a very high speed: the manufacturers quote its ability to invert a 100 by 100 matrix in 649 ms . Using a technique of distributed control of memory, input/output and arithmetic, the central processing section can run high-level language or assembly language programs. 128 K bytes of program memory are available in the basic version, expandable up to 256 K . Data memory provided is 16 K by 32 -bits which can be expanded to 912 K 32 -bit words.

The processor may be used for radar data processing, seismic research, body-scan tomography, nuclear magnetic resonance spectroscopy, image processing, speech analysis, and testing and control procedures. It need only interrupt the host computer if a certain pattern is detected among the incoming data or when a report has been compiled.

Interfaces enable it to be used as a peripheral device, as a coprocessor, or to be linked through a local-area network. For many applications it could be used as a stand-alone computer. Analogic Ltd, The Centre, 68 High Street, Weybridge, Surrey.

WW314

Eprom programmer

A microprocessor-controlled eprom emulator/programmer has been designed to work with all popular m.o.s. eproms. The EP8000 includes all the necessary 'personality' differences between the various eproms in software and the instrument adapts itself automatically for emulating or programming a specific device. It provides a video output so that the user can examine the contents, which may also be displayed a line-at-a-time on the eight-character led display built in. Serial and/or parallel i/o buses are provided. Data can be loaded from a preprogrammed rom, through the serial or parallel ports or from an audio cassette. GP Industrial Electronics Ltd, Unit E, Huxley Close, Newnham Industrial Estate Plymouth PL7 4)N.
WW315

Modular computers with BBC Basic

A series of microcomputer modules constitute the Cube range which,

WW314

despite their title, are not cube shaped but built on Eurocards. Intended for industrial and control applications, the core of the system is Eurocube, a 2 MHz single card microcomputer based around a 6502 or a 6809 processor. Included on the board are four memory sockets which can hold, for example, an operating system, a Basic or other language interpreter in rom, and ram which can retain its contents with the help of a backup battery mounted on the board and which can also maintain an on board calendar clock. The computer cards plug into a rack
which can also accommodate a wide range of input/output control modules and interfaces, including black and white or colour video output, cassette and disc controllers, keyboard inputs, and additional memory
Control Universal have an agreernent with Acorn Computers to use their firmware including the BBC Basic interpreter. This means that a control computer incorporating BBC Basic can be put together at a lower cost than buying the Acorn/BBC computer. To get all the facilities of the BBC it would indeed cost more using this
modular approach, but for industrial use it is probable that many of those facilities are not needed, as all extensions are compatible with each other, and with the Acorn BBC micro.

An extension board called Beebex which plugs into the 1 MHz -bus port on the BBC has slots for many of the Cube range of modules. Up to 1 Mbyte of memory may be added with battery back-up to provide what the makers call a 'silicon disc'. Control Universal Ltd, Unit 2, Andersons Court, Newnham Road, Cambridge CB3 9EZ. (This address may be temporary as the company is looking for more area to expand into.)
WW 316

Daisywheel Interface

Those who are unable or unwilling to tackle the RS232C interface for an Olivetti Praxis typewriter, featured on page 24 , might be interested in another already built Designed with the Acorn/BBC computer in mind, it is suitable for any computer with an RS232C/423 outlet operating at 300 Baud. Full handshake and busy signalling is incorporated and the printing speed is 10 to 12 characters $/ \mathrm{s}$. The slim unit may be unobtrusively fitted to the side of the machine and there is no interference with normal operation as a typewriter. Inclusive price with easy-to-follow fitting instructions is $£ 69$, from Timtom Micro, 9 Ilton Road, Penylan, WW317

Logical design

Developed at Brunel University and implemented by the same designers at Cirrus Computers, Hilo-2 features gate-level and function-level logic design simulation and timing verification It is a high-speed universal logic design simulator and is a powerful tool for integrated circuit design, according to GenRad who market it. Tests may be simulated and validated and all functions modelled by using the menu-driven interface. The system runs on 32 bit virtual memory computers. Reduction in i.c. design and development time is claimed for Hilo-2 which may be used in conjunction with the GenRad v.l.s.i. test system. Included in the software is hazard spike analysis, 'worst case' modelling, interactive design analysis and hierarchical simulation for managing the complexity of a design.
Implementations are available for Vax 780, Vax 730 and other computers. GenRad Ltd, Norreys Drive, Maidenhead, Berks WW318

Your own customised Communications Monitor

The vast range of available options allows you to customise the FM/AM 500 Micro Monitor to suit your specific needs. and weighing in at just 16 lbs your 'field-tests can now be precisely that!
For a practical demonstration to prove our point contact:
Mike Dawson on 01-897 6446.

Fieldtech Heathrow Limited Huntavia House 420 Bath Road Longford Middlesex UB7 OLL Telex: 23734 FLDTEC G

Heathrow Professional quality electronic components, brand new and fully guaranteed. Mail
order by return of post. Cash/Cheque/POs or Banker's Draft with order, payable to order by return of post. Cash/Cheque/POs or Bankers Draft wilh onder, payabisties Hemmings Electronics Ltd. enquiry welcome. P. © P. add $45 p$ to all orders under $£ 10$. Telephone your Access orders, using our 24-hr. Ansaphone service. Please send SAE
for full price list. No VAT on export orders or books.

(Continuous RMS

	PCon
PFA 100	50
PFA 200	100
PFA 500	250
PFA HV	200
Key features:	
RELIABLE	
LINEAR	
FAST	
QUIET	
BRIDGEABLE	
STABLE	
LOW COST	

$50 \mathrm{~W}-150 \mathrm{~W}$	$4 \Omega, 8 \Omega$	$£ 20.65$
$100 \mathrm{~W}-300 \mathrm{~W}$	$4 \Omega, 8 \Omega$	$£ 27.35$
$250 \mathrm{~W}-600 \mathrm{~W}$	$2 \Omega, 4 \Omega, 8 \Omega$	$£ 42.00$
$200 \mathrm{~W}-300 \mathrm{~W}$	$4 \Omega, 8 \Omega, 16 \Omega$	$\mathbf{£ 3 6 . 0 4}$

Powerfet freedom from thermal runaway and secondary breakdown
TID zero, $\mid M / T H D<0.01 \%$ full power (mid-band THD down to 0.0015%
Slew rate $>30 \mathrm{~V} / \mu \mathrm{S}(45 \mathrm{~V} / \mu \mathrm{S}$ typical)
Signal to noise ratio 120 dB
Without extra circuitry
Unconditionally
10 watts to 20 watts per f, depending on model and quantity
As they stand these modules suit most P.A. and industrial applications and satisfy all foreseeable audiophile requirements. (The HV is aimed at digital audio Where aspects of performance fail to meet specific requirements (e.g. in speed or power) low-cost customising is often a possibility. Alternatively entirely new boards can be produced
ALSO-
PAN 20 -Ultra-low-noise/distortion, mono preamp board, $£ 7.61$
PAX 2/24-2-way active crossover board (24dB/octave) plus regulators, $£ 9.70$ THE HEAT EXCHANGER-New, super-efficient heatsink; handles 300 W or 1.2 kW when blown; 7in. $\times 4$ in. $\times 21 / 4 \mathrm{in}$., $\mathbf{£ 7 . 5 0}$

This is just a fraction of the new products available from Pantechnic check us out!

Prices exclude V.A.T.
Carriage 75p
PANTECHNIC (Dept. WW8)

17A WOOLTON STREET
IVERPOOL L25 5NH
Tel: 051-428 8485

01-452 1500 Tbehnonatic Lid 01-450 6597

BBC Micro Computer System

 OFFICIAL DEALERPlease phone for availability

BUSINESS, EDUCATION AND FUN SOFTWARE IN STOCK-

FLOPPY DISC INTERFACE
 incl. 1.2 Operating System £95 \& £20 installation

BBC FLOPPY DISC DRIVES

Single Drive $514^{\prime \prime}{ }^{\prime \prime} 100 \mathrm{~K} £ 230+£ 6$ carr. Double Drive $51 / 4^{\prime \prime}$ 800K $£ 699+£ 8$ carr.
BBC COMPATIBLE 51/4" DISC DRIVES
These drives are supplied in BBC matching colour cases.
SINGLE DRIVES: 100K £150; 200K £215*; 400K £265
SINGLE DRIVES: with PSU 100K $£ 185$; $200 \mathrm{~K} £ 260 * ; 400 \mathrm{~K}$ £330
DUAL DRIVES: with PSU $200 \mathrm{~K} £ 355$; $400 \mathrm{~K} £ 475$ "; 800 K £595
"These drives are provided with a switch between 40 and 80 tracks.
DRIVE CABLES: SINGLE £8, DUAL £12.
DISC MANUAL \& FORMATTING DISKETTE $£ 17.50$
[hone or send for our Braleatidat

CASSETTE RECORDER

SANYO Data Recorder DR101
A superior quality data recorder with dedicated computer output and monitoring facility on both record and play
$£ 39.50+£ 1.50$ carr.
SLIMLINE Cassette Recorder complete with counter and remote control $£ 24.50+£ 1.50$ carr $£ 0.50$ each. $£ 4.50$ for $10+£$ Cassette lead $£ 3.50$.

NEC PC 8023 BE - C 100CPS, 80 cols Logic Seeking, Bi directional,
Forward and Reverse Line Feed,
Proportional Spacing, Auto Underline, Hi-Res and Block Graphics, Greek Char Set. Only $\mathbf{£ 3 4 5} \mathbf{+} \mathbf{£ 8}$ carr.

MONITORS

MICROVITEC 143114 in Colour Monitor $£ 249+£ 8$ carr MICROVITEC 203120 in Colour Monitor $£ 319+£ 8$ car KAGA 12 in RGB Monitor $£ 255+£ 8$ carr
Lead for KAGA/SANYO RGB $£ 10$
SANYO HI RES GREEN MONITOR $£ 99+£ 6$ carr SANYO HI RES RGB MONITOR $£ 445+£ 8$ carr.

BBC BOOKS ${ }_{\text {Ino Vat plip } £ 11}$
Basic on BBC $\mathbf{5} 5.95$
30 House Basic $£ 5.95$
Programming the BBC Micro $\mathbf{£ 6 . 5 0}$
BBC Micro An Expert Guide $£ 6.95$
Assy Lang Prog. for BBC £8.95 6502 Machine Codes for Beginners $\mathbf{£ 6 . 9 5}$

RUGBY ATOMIC CLOCK

This 280 micro controlled clock/calendar receives coded time data from NPL Rugby. The clock never needs to be reset. The facilities include 8 indepenmelody or alternatively these can be used for melody or alternatively these can be used for recording of up to 240 lap times without interrupting the count. Expansion facilities provided.

See July/August ' 82 ET l for details. Built and tested $£ 145+£ 2$ p\&p.

MICROTIMER

6502 Based Programmable clock timer with * 224 switching times/week cycle * 24-hour 7-day timer

* 4 independent switch outputs directly interfacing to thyristor/triacs
- 6 digit 7 seg. display to indicate real time. ON/OFF and Reset times
* Output to drive day of week switch and status LEDs.
Full details on request. Price for kit $\mathbf{£ 5 7}$

DISC DRIVES FOR THE FORTH COMPUTER

51/4" Teac FD55 Slim Line Mechanisms
FD55A 40 track SSDD 250kbytes unformatted
Bare: $£ 135$; Cased: $£ 155$
$2 \times$ FD55A 40 track SSDD 500kbytes unformatted
Cased \times psu $£ 350$ FD55E 80 track SSDD 500kbytes unformatted

Bare: £180; Cased: £205
$2 \times$ FD55E 80 track SSDD 1 Mbyte unformatted
Cased + psu £475 51/4" Mitsubishi M4853 Slim Line mechanism 80 track
DSDD 1 Mbyte unformatted Bare: $£ 225$; Cased: $£ 245$ $2 \times$ M4853 2 Mbytes

Cased + psu £590 Single drive cable $\mathbf{£ 8}$; Dual Drive cable $\mathbf{£ 1 2}$
Other parts for FORTH COMPUTER available send SAE for details

NEW COMPREHENSIVE CATALOGUE AVAILABLE PLEASE SEND FOR PRICE LIST

PRINTERS

SEIKOSHA GP 100A 80 cols 30 CPS Full ASCII and Graphics $10^{\prime \prime}$ wide pape Now only $£ 180+£ 6$ carr. GP250A £235 +£8 carr.

EPSON RX80 and FX80 RX80100CPS 80 col Tractor Feed $£ 298$ FX80 160CPS 80 col F \& T Feed $£ \mathbf{3 8 9}$ MX100 F/T3 £425 (Carr./printer $\mathbf{£ 8}$)

Full specifi-
cation on request

Parallel Printer lead for BBC/Atom to most printers $\mathbf{£ 1 3 . 5 0}$ Variety of interfaces, ribbons in stock 2000 fan fold sheets $91 / 2^{\prime \prime} \times 11^{\prime \prime} £ 13.50+£ 3$ p\&p

CONNECTOR SYSTEMS

JUMPER LEADS

AMPHENOL CONNECTORS

36 -way plug Centronics Parallel Solder $\mathbf{£ 5 . 2 5}$ IDC $£ 4.95$ 36-way socket Centronics Paralle Solder $£ 5.50$ IDC $£ 5.20$ 24-way plug IEEE Solder £5
24 -way socket IEEE Solder $£ 5$

RIBBON CABLE

(Grey/meter)	
10 way	40p
16.way	60p
20.way	85p
26-way	120p
34-way	${ }^{160} \mathrm{p}$
40 -way	180p
50-way	200p
64-way	280p

RS 232 JUMPERS

RS	EURO CONNECTORS		
	Din 41617	Plug	
E10.00	21-way	${ }_{1700}^{160 p}$	170p
${ }^{2} 9.50$	DIN 41612		
c9.50	2×32-way St. Pin	2200	p
	${ }^{2 \times 32}$ way Ang Pi	275p	${ }^{3200}$
	${ }_{3 \times 32 \text {-way Ang. Pin }}$	${ }_{375}$	350p
	TEST CL	IPS	
+1509	14pin 275p		

EDGE CONNECTORS		
	0.1"	$0156{ }^{\prime \prime}$
2×18-way		140p
2×22-way	190p	240p
2×23-way	175p	
2×25-way	225p	2200
2×28-way	190p	
1×43-way	${ }^{2500}$	-
2×43-way	365 p	
1×77-way	600p	
5100 Conn		600p

SOFTY II INTELLIGENT PROGRAMMER

The complete microprocessor development system for Engineers and Hobbyists. You can develop programs, debug, verity and commit to ful editing facilities permit bytes, blocks of bytes changed, deleted or inserted and memory contents can be observed on ordinary TV. Accepts most $+5 v$ Eproms Softy II complete with PSU, TV Lead and Romulator lead $£ 169$

UV ERASERS

UV1B up to 6 Eproms $£ 47.50$ UV1T with Timer £60 UV140 up to 14 Eproms £61.50
UV141 with Timer $£ 78$ (Carr £2/eraser) All erasers are fitted with mains switches and safety in-
terlocks.

'WIRELESS WORLD PROJECTS

Semiconductors inc Cs. Transistors Displays, Connectors and Sockets for most projects are stocked by us

SPECIAL OFFER	
2532	350 p
2732	350 p
$2764-25$	$\mathbf{4 5 0 p}$
$27128-25$	$\mathrm{f25}$
$4164-2$	$\mathbf{4 5 0 p}$
$6116 \mathrm{P}-150 \mathrm{NS}$	$\mathbf{3 5 0 p}$

Anglia Industrial Auctions

Specialist Auctioneers to the Radio and Electronic Industry

5 STATION ROAD, LITTLEPORT, CAMBS CB6 10E
 Telephone: ELY (0353) 860185 AUCTION SALES

OF OVER 700 LOTS

Including: Electronic and electrical equipment, components, test gear, radio telephones, laboratory equipment, valves, transistors, scrap and general works effects.

Forthcoming sales to be held on the following dates:
August 10th, 1983, September 14th, 1983
October 19th, 1983, November 23rd, 1983, January 11th, 1984
February 15th, 1984, March 21st, 1984, April 25th, 1984
May 30th, 1984, July 4th, 1984
Catalogues available 10 days prior to sale, price 60 p.inc. p.\&p. or for each sale for a year $£ 5$ (10 sales) Entry forms on application.

Large stocks of electronic components, test gear, radio telephones, transistors, etc, are offered for sale on tender. Please apply for forms

WW - 053 FOR FURTHER DETAILS

TEST
 EQUIPMENT

Marconi TF144H Signal Generator 195
Solartron CD 174050 MHz Scope. £295
Tektronix 453A 60MHz Scope. $£ 450$
Tek. 191 Constant Amp. Sig. Gen. 100MHz.............................. 115
Tek. 184 Time Mark Generator.. 125
Tek. 106 Fast Rise Pulse Generator..................................... 595
Tek. 2901 Pulse Generator .. 105
Tek. 067-0502 Standard Amp Calibrator 595
Tek. 465B + DM44 DVM with handbooks, Temp. Probe and
Accessory Pouch - as new .. 1,800
Telequipment D83 50MHz Scope .£395
Racal 9514100 MHz Counter IEEE

Telequipment D54 10MHz Dual Channel .. 150
Avometers from. .f50

Uncased 19in. B \& W X-Y Monitors, require 30-0-30v. supply -new quantities available; made by Electrohome of Canada .£25
Ribbon Cable, 14-way, 100 metres.....................................£25
10-way, 100 metres.
.£20
Carriage and V.A.T. extra
TIMEBASE
94 ALFRISTON GARDENS SHOLING, SOUTHAMPTON SO2 8FU TELEPHONE: 431323 (0703) Callers welcome
Access/Barclaycard : Telephone your order

WW - 015 FOR FURTHER DETAILS

Audio Measuring Instruments, Audio Amplifiers, Loudspeakers and Loudspeaker Components for the professional and enthusiast
RADFORD AUDIO LTD.
10 BEACH ROAD WESTON-S-MARE, AVON BS23 2AU

TEL. 0934416033

U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

MINI-MULTI TESTER NEW
De luxe pocket size precision moving

- 4000 o.p.v. Battery included.

11 instant ranges measure: $\quad \mathbf{~} 7.50$
DC volts $5.25,250,500$. AC volts $10,50,500,1000$. Post 65 p Resistance 0 to 600 K ohms. De Luxe Range Doubler Model $£ 19.50$ 50,000 o.p.v. $7 \times 5 \times 2 \mathrm{in}$.
43 Ranges, $1,000 \mathrm{~V}, \mathrm{AC}-\mathrm{DC}, 20 \mathrm{meg}, \mathrm{et} \mathrm{E}$

PANEL METERS

$50 \mu a, 100 \mu a_{r} \quad 500 \mu a, 1 \mathrm{ma}$ $5 \mathrm{ma}, 50 \mathrm{ma}, 100 \mathrm{ma}, 500 \mathrm{ma}$, $\begin{array}{ll}\text { amp, } 2 & \text { amp, } 25 \\ 21 / 4 \times 2 \times 11 / 4 . & \text { volt, VU } \\ \text { Stereo }\end{array}$
 $31 / 4 \times 15 / 4 \times 1 \mathrm{in}$. 84.50 Post 50 p

RCS SOUND TO LIGHT CONTROL BOX

Complete ready to use with cabinet size $9 \times 3 \times 5 \mathrm{in}$. E 27
3 channel, 1000 Natt each. For home or disco OR KIT OF PARTS $£ 19.50$
Light Boxes, red, yellow, blue, green. £15. Post $£ 2$ Disco bulbs 100 watt, blue, green, yellow, red, amber screw or bayonet $£ 2$ each. Post $£ 1.50$ per six.
"FUZZ" lights, red, blue, green, amber, 240 V . $£ 23$. Post $£ 1$ 200 Watt Rear Reflecting White Light Bulbs. Ideal for Disco Lights Edison Screw. 6 for £4, or 12 for
£1.50. Suitable panel mounting holders 85 p.
RCS "MINOR" 10 watt AMPLIFIER KIT £14 This kit is suitable for record players, guitars, tape playback, elec:ronic instruments or small PA systems. Two versions available: Mono, £14; Stereo. $\mathbf{f 2 0}$. 10W per channel; size $91 / 2 \times 3 \times 2 \mathrm{in}$. SAE details.

RCS STEREO PRE-AMP KIT. All parts to build this
pre-amp. Inputs for high, medium or low imp $£ \mathbf{5 0}$ per channel, with volume control and PC Board Post 65p
Can be ganged to make multi-way stereo mixers

MAINS TRANSFORMERS

OPUS COMPACT

SPEAKERS £22 pair Post £2

TEAK VENEERED CABINET
$11 \times 81 / 2 \times 7 \mathrm{ir}, 15$ watts
ohm, 8 ohm or 16 ohm OPUS TWO $15 \times 10^{1 / 2} \times 73 / 4$ in 25 watt 2 -way sys:em $£ 39$ pair. Post $£ 3$

NEW baker Star sound
high power full range quality loudspeakers. British made Ideal for Hi-Fi, music P.A. or discotheques. These loudspeakers are recommended where high power handling

MODEL	INCHES	OHMS	Watrs	TYPE	PRICE	POST
MAJOR	12	4-8-16	30	HI-FI	[16	
SUPERB	12	8-16	30	Hi-FI	E26	¢2
auditorium	12	8 -16	45	Hi-FI	$\underline{524}$	¢2
AUDITORIUM	15	8-16	60	HI-FI	f37	$\underline{\square}$
GRDUP 45	12	4-8-16	45	PA	f16	52
DG 75	12	4-8-16	75	PA	$\underline{120}$	f2
GROUP 100	12	8-16	100	Guiter	E26	¢2
OISCO 100	12	8-16	100	Disco	E26	$\underline{62}$
GROUP 100	15	8 -16	100	Guitar	635	f2
DISCO 100	15	8-16	100	Disco	635	E2

BAKER AMPLIFIERS BRITISH MADE

NEW PA150 MICROPHONE PA AMPURER E12
4 channel 8 inputs, dual impedance, $50 \mathrm{~K}-600$ ohm 4 channel mixing, volume, treble, bass. Presence controls, Master
control, echo send return socket. Slave sockets. Post £3.
BAKER 150 Watt AMPLIFIER 4 Inputs $£ 99$ For Discotheque, Vocal, Public Address. Three speaker outlets for 4,8 or 16 ohms. Four high gain inputs, $20 \mathrm{mv}, 50 \mathrm{~K}$ ohm.
Individual volume controls "Four channel" mixing. 150 watts 8 Individual volume controls "Four channel mixing. 150 watts 8
ohms R.M.S. Music Power. Slave output 500 M.V. 25 K .0 hm . Response $25 \mathrm{~Hz}-20 \mathrm{kHz} \pm 3 \mathrm{~dB}$. Integral Hi-FI preamp separate Bass \& Treble. Size - $16^{\prime \prime} \times 8^{\prime \prime} \times 5 / 2^{\prime}$; $W_{1}-141 \mathrm{~b}$: Master volume control. British made. 12 months' guarantee. 240v A.C. mains or 120 V to order. All transistor and solid state. Post $f 2$. 100 Voht Line Model E114. MONO SLAVE ETO.
wat Mono f125. Post f4 Complete Disco 150W. Twin console + amplifier + mike and hedphones + twin speakers. $£ 330.300$ watt version $£ 399$. Carriage e 30 .
ELECTRONIC ECHO CHAMBER £85. Post $£ 2$ BBD Delay System $30 \mathrm{~m} / \mathrm{sec}$ to $200 \mathrm{~m} / \mathrm{sec}$. Variable echo and direct sounds. Maintenance free. 240V AC.
DISCO GRAPHIC MIXER EQUALISER £108. Post E2 Channel stereo, 5 band graphic, red + green
display, headphone monitor. All slide controls. PA CABINET SPEAKERS, Complete. 8 ohm 60 watt $17 \times 15 \times 9 \mathrm{in}$. £25. Post £4. 4 or 8 or 16 ohm 75 watt
$23 \times 15 \times 11 \mathrm{in}$. $£ 50$. Carr. $£ 10$. 90 watt $32 \times 15 \times 11$ in. $£ 63$. 120 watt £77. Carr. £12. WATERPROOF $£ 23$ Wlus 100 volt line £32. Post £2. Battery only Pertable PA Amplifier 10w complate mike and speaker, OK for meetings, crowd control, stalls, fetes, traders, R.C.S. 100 watt R.M.S.

VALVE AMPLIFIER
4 Channel mixing. Master
treble, bass and volume controls. 5 Speaker outlets,
syits $4,8,16$ ohm. Disco
group Wits Valve AMPLIFIER
3 mixer inputs, 4-8-16 ohm, 100 volt line, 5 controls, 2 mic inputs plus 1 input switchable for mic, phono,
3 volume controls, 7 valves. $f 69$. Post $£ 3$.

FAMOUS LOUDSPEAKERS

 'SPECIAL PRICES| MAKE | MODEL | SIZE | WATTS | OHMS | PRICE | P0\% ${ }^{\text {T }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WHARFEDALE | TWEETEA | 4 in | 30 | 8 | ¢7.50 | 1 |
| GOODMANS | TWEETEA | 31/2in | 25 | 8 | f4 | $f 1$ |
| AUDAX | TWEETER | 4 in | 30 | 8 | f8.50 | $f 1$ |
| AUDAX | MID-RANGE | 4 in | 50 | 8 | £7.50 | 1 |
| SEAS | mid-range | $41 / \mathrm{in}$ | 100 | 8 | £12.50 | f1 |
| AUDAX | WOOFER | 51/2 | 25 | 8 | f10 | 11 |
| g00dmans | HIFAX | 71/2×41/4 | 100 | 4/1/16 | $\underline{27}$ | 22 |
| G00DMANS | WOOFER | Bin | 25 | 4/4 | £7.50 | $\underline{1}$ |
| gOODMANS | HB | 8 in | 50 | 8 | 512.50 | 1 |
| WHARFEDALE | WOOFER | 8 in | 30 | 8 | f9. 50 | 7 |
| CELESTION | DISCO/GROUP | 10in | 50 | $8 / 16$ | | 2 |
| G00DMANS | HPG/GMOUP | 12 in | 120 | 215 | fix 59 | 0 |
| G000 Mans | GR12/GRDUP | 12 in | 90 | \%15 | 127.50 | 4 |
| G00DMANS | HPD/DISCD | 12in | 120 | 815 | E29.50 | 12 |
| g000mans | HP/BASS | 15 in | 250 | 5 | f0i | 6 |
| GOODMANS | HPD/BASS | 18in | 230 | 1 | 40 | 4 |

SPEAKER COVERING MATERIALS. Samples Large S.A.E.
B.A. LOUDSPEKER CABNET WADDING Igin wide Jip
MOTOROLA PIEZO ELECTEUC HORN TWEETER, 33 kin , square Eis
 3 -way $950 \mathrm{cps} / 3000 \mathrm{cps} .40$ watt rating. £4. 60 watt $\mathrm{E6}$. 100 W ts. LOUDSPEAKER BARGAINS. Please enquire, many others. 4 ohm. $5 \mathrm{in}, 7 \times 4 \mathrm{in}, £ 2.50 ; 61 / \mathrm{in}, 8 \times 5 \mathrm{in}, \mathrm{f}^{2} ; 8 \mathrm{in}, \mathfrak{E 3} .50 .61 / \mathrm{in} 20 \mathrm{~W} .57 .50$.
 $8 \times 5 \mathrm{in}$. E3; 8 in, f4,50; 10 in , 55 ; $12 \mathrm{in}, \mathrm{E5}$. 8 in 25 W E6.50

EMI 13½x8in. LOUDSPEAKERS

Model 450A, 10 watts R.M.S. with moving
coil tweeter and two-way crossover;' 3 ohm
or 8 ohm. "Final Clearance';
SUITABLE BOOKSHELF CABINET

5 E 1.10 DP $£ 130$ Edge Pot 5 K SP 45 p .

POTENTIOMETERS Carbon Track
$\mathrm{mf}, 2 \mathrm{mf}, 4 \mathrm{mf} 8 \mathrm{mf}, 10 \mathrm{mf}, 16 \mathrm{mf}, 25 \mathrm{mf}, 30 \mathrm{mf}, 50 \mathrm{mf}, 100$ mf , 250 mf . All 15 volts. $22 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 25 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 47$ $\mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 2 \mathrm{CO} \mathrm{mf} / 10 \mathrm{v} / 16 \mathrm{v} ; 220 \mathrm{mf} / 4 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} ; 330$ $\mathrm{mf} / 4 \mathrm{v} / 10 \mathrm{v} ; 500 \mathrm{mf} / 6 \mathrm{v} ; 680 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 1000 \mathrm{mf} / 2.5 \mathrm{v} / 4 \mathrm{v} / 10 \mathrm{v}$ $1500 \mathrm{mf} / 10 \mathrm{v} ; 2600 \mathrm{mf} / 6 \mathrm{~V} / 10 \mathrm{~V} ; 3300 \mathrm{mf} / 6 \mathrm{~V} ; 4700 \mathrm{mt} / 4 \mathrm{v}$ $500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p} .1200 \mathrm{mF} 76 \mathrm{~V} 80 \mathrm{p}$
$2000 \mathrm{mF} 30 \mathrm{~V} 42 \mathrm{p} ; 40 \mathrm{~V} 60 \mathrm{p} ; 100 \mathrm{~V}$ £1.40; 1500 mF 100 V £1.20. $2000 \mathrm{mF} 30 \mathrm{~V} 42 \mathrm{p} ; 40 \mathrm{~V} 60 \mathrm{p} ; 100 \mathrm{~V}$ £1.40; 1500 mF 100 V £
$2200 \mathrm{mF} 63 \mathrm{~V} 90 \mathrm{p} .2500 \mathrm{mF} 50 \mathrm{~V} 70 \mathrm{p} ; 3000 \mathrm{mF} 50 \mathrm{~V} 65 \mathrm{p}$: $4700 \mathrm{mF} 30 \mathrm{v} 75 \mathrm{p} ; 40 \mathrm{v} £ 1 ; 63 \mathrm{v} £ 1.80$.
NON POLARISED CAPACITORS - REVERSIBLE
$1 \mathrm{mF} 250 \mathrm{~V} 25 \mathrm{p} ; 1.5 \mathrm{mF} 100 \mathrm{~V} 25 \mathrm{p} ; 2.2 \mathrm{mF} 250 \mathrm{~V} 30 \mathrm{p} ; 3.3 \mathrm{mF}$ IGH VOLTAGE ELECTRO YTICS
$2 / 500 \mathrm{~V} \quad 45 \mathrm{p} \quad 32+32+16 / 350 \mathrm{~V}$
$\begin{array}{lllll}2 / 500 \mathrm{~V} & 45 \mathrm{p} & 32+32+16 / 350 \mathrm{~V} & 90 \mathrm{p} & 8+16 / 450 \mathrm{~V} \\ 8 / 450 \mathrm{~V} & 45 \mathrm{p} & 100+100 / 275 \mathrm{~V} & 65 \mathrm{p} & 16+16 / 350 \mathrm{~V}\end{array}$
$\begin{array}{lllll}16 / 350 \mathrm{~V} & 45 \mathrm{p} & 100+100 / 275 \mathrm{~V} & 65 \mathrm{p} & 16+16 / 350 \mathrm{~V}\end{array}$
$\begin{array}{rlllr}16 / 350 V & \text { 45p } & 150+200 / 275 \mathrm{~V} & 70 \mathrm{p} & 32+32 / 350 \mathrm{~V} \\ 32 / 500 \mathrm{~V} & \mathbf{8 5 p} \\ 32 / 350 \mathrm{~V} & 32+32+32 / 325 \mathrm{~V} & 75 \mathrm{p} & 32+32 / 500 \mathrm{~V} & \mathbf{f 2} \\ 50+50+50 / 350 \mathrm{~V} 95 \mathrm{p} & 50+50 / 300 \mathrm{~V} & 50 \mathrm{p}\end{array}$
$\begin{array}{lllll}32 / 350 \mathrm{~V} 50 \mathrm{p} & 50+50+50 / 350 \mathrm{~V} 95 \mathrm{p} & 50+50 / 300 \mathrm{~V} & 50 \mathrm{p} \\ 50 / 450 \mathrm{~V} & 95 \mathrm{p} & 8+8 / 500 \mathrm{~V} & \mathrm{E} & 80+40 / 500 \mathrm{~V} \\ £ 2.20\end{array}$
$001, .002, .003, .005, .01, .02, .03, .05 \mathrm{mfd} 400 \mathrm{~V} 10 \mathrm{p}$.
1 MF 400 V 14 p .600 V 15 p .1000 V 25 p .
$22 \mathrm{MF} 350 \mathrm{~V} 12 \mathrm{p}, 600 \mathrm{~V} 20 \mathrm{p} .1000 \mathrm{~V} 30 \mathrm{p} .1750 \mathrm{~V} 60 \mathrm{p}$.47MF 150 V 10 p .400 V 25 p .630 V 30 p . 1000 V 60 p. TRIMMERS 30pF, 50 pF , 10 p . 100 pF , 150 pF 20 p .500
MICROSWITCH SINGLE POLE CHANGEOVER 40p. MICAROSWITCH SINGLS $365+365+25+25 \mathrm{pF}$ E 2 .
GEARED TWIN GANGS $365+365+25+25 \mathrm{pF}$ e 2 .
VERNIER DRIVE DIALS, $36 \mathrm{~mm} £ 2.50,50 \mathrm{~mm} £ 3$
SLOW MOTION DRIVE 6:1 $£ 1.50$. Reverse Vernier drive 90p.
TRANSISTOR TWIN GANG. Japanese Replacement $£ 1$ SOLID DIELECTRIC 100pf $£ 1.50$
HEATING ELEMENTS, WAFER THIN (Semi Flexible) Size $11 \times 9 \times 1 / \mathrm{in}$. Operating voltage $240 \mathrm{~V}, 250 \mathrm{~W}$ approx. Heaters, Propagation, etc. Must be clamped between two sheets of metal or ceramic, etc.
ONLY 60p EACH (FOUR FOR £2) POST 50p.

2 WAYS TO RECOVERY

ACT AT ONCE - DELAY IS FATAL

GET IT - READ IT - PRACTISE 1.4
BE READY TO SAVE A LIFE. SOMEONE MIGHT SAVE YOURS.

Display the ELECTRICAL REVIEW shock first aid chart ($356 \times 508 \mathrm{~mm}$) supplied in thousands to destinations world-wide. Recent deliveries include consignments to companies in Papua New Guinea, Dubai, United Arab Emirates, The Philippines, apart from UK commercial and industrial, educational, Central Government, Local Authorities' orders.

Carry the ELECTRICAL REVIEW pocket-size shock card ($92 \times 126 \mathrm{~mm}$) designed to help safety and training officers, medical and welfare personnel; all who might find themselves called to save a life. Always pocket your card; there's a useful two-year calendar on the back.

ACT AT ONCE—DELAY IS FATAL!

To Electrical-Electronic Press
General Sales Department
Room 205
Quadrant House
Sutton SM2 5AS
Surrey
England
Company Registered Number: 151537 (ENGLAND) Registered Office: Quadrant House, The Quadrant Sutton, Surrey SM2 5AS

Please send...., copy/copies as indicated
Pocket Card @ 70p each inc VAT Paper Chart@ $£ 1.00$ each post free Card Chart@£2.00 each post free
Plastic Chart @ $£ 3.00$ each post free
Discounts: $100+$ copies 10%

$$
500+\text { copies } 15 \%
$$

(Overseas surface and air mail rates supplied on application.)

P.\&R. COMPUTER SHOP

IBM GOLFBALL PRINTERS from £70 EACH + V.A.T.

INTERFACE FOR IBM GOLFBALL $£ 40+$ V.A.T
*BRAND-NEW LA36 DEC WRITERS - SALE $£ 200$ EACH + V.A.T. CENTRONIC 779 PRINTERS - f325 + V.A.T
CENTRONIC 781 PRINTER-£350 + V.A.T.
POWER UNITS, 5 -VOLT 6-AMP-E20 EACH
FANS, PCBS, KEYBOARDS AND LOTS MORE
8 -INCH IBM FLOPPY DISC DRIVES.
COME AND LOOK AROUND
SALCOTT MILL, GOLDHANGER ROAD HEYBRIDGE, MALDON, ESSEX PHONE MALDON (0621) 57440

The lightweight mast with 101 applications

The smoothly operated QTM Mast comes fitted with handpump or can be vehicle mounted with 'Power Pack' for extension and retraction. Available in a range of heights up to 15 metres, the QTM mast can provide the ideal answer or

- Mobile Radio Telephone
- Environmental - gas
- Police Mobite HO (UHF) sampling collector
- Field Telecommunications
- High level photography
- Meteorology
- Floodlighting
- And a host of other uses
- Anemometer and Wind Measuremen

CLARK MASTS

Find out more about the QTM series by writing or phoning

CLARK MASTS LTO IW. W.)
Evergreen House, Ringwood Road Binstead, Isle of Wight England PO33 3PA
Tel: Isle of Wight (0983) 63691
Telex 86686

EUROPE

GENK TECHNICAL PRODUCTS N.V.IW.W. Woudstraat 21, 3600 Genk Belgium
Telefoon 011-380831
Telex 39354 Genant

LOGIC ANAIYSERS

Thandär's comprehensive range of professional specification instruments now includes 8 and 16 channel logic analysers to expand you test capabilities. Both analysers feature DC to 20 MHz sampling rates, synchronous or asynchronous clocking and 15 ns glitch capture in latchmode. There is also a powerful compound trigger delay by event and/or clock (two level triggering on TA2160), selectable in latch mode. There is aiso a powerful compound trigger delay by event and/or clock two level triggering on TA2160), selectab threshold. Both have a composite video output to drive an external display or video printer and offer disassembler options for common microprocessors. Accessories are available for serial data capture and hard copy record printout.
TA2080 (8 CHANNEL) Full system information always shown in display; 8 bit data and reference memories,
both 252 bytes deep; 23 bit triggering (8 data bits, 15 trigger bits); Timing display shows all 252 byes of the
8 data channels in timing diagram format with $\times 2, \times 4, \times 8$ expansions available; State display shows 24 sequential byes in either binary plus ASCII or hex plus octal plus ASCII; Automatic or manual compare between recording and reference memories for equality or inequality.
TA2160 (16 CHANNEL) 16 bit data and reference memories, 252 samples deep; Both data and reference memories configurable as 16 bit $\times 252$ samples, 8 bit $\times 504$ samples, or 2×8 bit $\times 252$ samples; 34 bit triggering (16 data, 12 trigger and 6 qualifiers); Independent clocks and clock qualifiers in 2×8 bit modes; Sample or latch assignable on a per pod basis; Timing display shows 252 bytes of any 8 channels in timing riagram format with $\times 2, \times 4$, $\times 8$ expansions available; State display shows 16 with $\times 2, \times 4$, $\times 8$ expansions available; State display shows 16 memory can be displayed in either binary, hex, octal, decimal, ASCII, or EBCDIC; Automatic or manual compare between any part of any two memories for equality or inequality; TTL or part of any two memories for equality or inequality; TTL or permits dumping and loading of reference memories and all system parameters.

Send for our complete catalogue and price list. Thandar Electronics Ltd, London Road, St. Ives, Huntingdon, Cambridgeshire, PE174HJ. Telephone (0480) 64646. Telex 32250.

WW - 041 FOR FURTHER DETAILS

CONCEDTO9 Microcomputers

British designed microcomputer systems that bring together the processing power of the 6809 Microprocessor with the renowned FLEX operating system. The cost-effective solution to software development.
CONCEPT 09 Microsystem
Low cost compact design
MC6809 Microprocessor
Dual 5.25 Disc Drives
56k Dynamic Ram
Seria! Console Port
Centronics Printer Port
24 Lines Parallel 11/0
Powerful EPROM Monitor
Flex Operating System
$£ 995$

295

Languages:
Basic 'C'
Pascal BCPL
Fortran PL9
Forth
Assemblers etc.:
6809 assembler
6800 cross-assembler 6805 cross-assembler 6502 cross-assembler Z80 cross-assembler 68000 cross-assembler 6502 simulator 6805 simulator 6800 translator 6502 translator 6809 debug Labelling disassembler

Applications:
Word Processors Spelling Checker Mail Merge
Dynacalc
Data Base Management

CONCEPT 09 Workstation

High performance, three processor design MC6809 Main Processor. Full Cursor Control Dual 5.25 Disc Drives. 56k Dynamic Ram Serial RS232 Port - Centronics Printer Port Intelligent Detached Keyboard (6802) Intelligent VDU Controller (6809) $40 / 80$ by 24 Character Display Programmable Character Attributes Up to four selectable character sets Dumb Terminal Emulation Non-reflective Display FLEX Disc Operating System
£1850

Micro Concepts

 C
CRICKLEWOOD ELECTRONICS LTD 40 Cricklewood Broadway, London NW2 3ET. Tal. 014520161 T|x. 914977.

${ }_{3}^{5430}$	$\begin{aligned} & 5.95 \\ & \text { } 48 \mathrm{p} \\ & 53 \mathrm{p} \end{aligned}$	IODES		$\begin{aligned} & 504(400) 40_{p} \\ & 5081800155 p \end{aligned}$	
		1 1N34A	${ }^{30} p^{\text {p }}$		
M 3802	3.99	1N821	${ }^{70 p}$	6 amp type	
M 1900	290	in823	92 D	Squa	BA
M 190	310	IN914	4 p	PW01 1900 50p	
MJ1000	250	IN916	68	PW02 2000178 p	
001	3.00	1 N 4001	4p	PW04 1400: 85p	
M. 189	3.60	iNa00?	4\%	PW06 1600:90p	
M J 2500	219	in4003	$5{ }^{5}$		
2501	2.25	iN4003	51/8	25 amp ivpe	
295	100	in4005	${ }^{60}$	Metal clad with	
M 13000	219	IN4006	6\%p	hole	
Y $\quad 33001$	${ }_{2}^{225}$	1 1N4009	200	K01 1001	8
MJ15004	4.85	IN4150	${ }^{180}$		
MJ15015	245	1 N 444 B	${ }^{22 p}$	K061800) 3.40	
MJ15016	3.34	ins400	${ }^{12} 9$		
MJE340	53p	1N5401	${ }^{13 p}$		
MJE350	1.50	IN5402	14pp		
M J L 2955	99p	ins403	18p	R Red	
M M JE3055	69p			cer	

If you can buy it cheaper we'll refund the difference:

This month's offer is another winner - a consignment of 14" R.G.B. colour monitors manufactured by J.V.C. - at prices never seen before in the U.K. Suitable for use with BBC Micro,

Lynx, Oric, Apple II, Apple III and IBM etc.
It's safe to put a cheque in the post today. Because, if you find someone who's cheaper, we'll refund the difference.

RGB MEDIUM RES £199.00

Resolution, 370×235. Pixels
Display, 80 characters $\times 25$ lines. Slot Pitch. 63 mm . Input, Video - RGB Analogue with TTL input.
SYNC - Separate SYNC on RGB. Features, On/Off switch with pilot light. Brightness control.
Power $220 / 240 \mathrm{~V} 50 / 60 \mathrm{HZ}$.

RGB HIGH RES $£ 299.00$

Resolution, 580×235 Pixels.
Display, 80 characters $\times 25$ lines. Slot pitch .41 mm .
Input, Video - RGB Analogue with TLL input
SYNC - Separate SYNC ONRGB.
Features, On/Off switch with pilot light.
Brightness control. Power, $220 / 240 \mathrm{~V} 50 / 60 \mathrm{HZ}$
IBM COMPATIBLE $£ 349.00$
Spec as above with IBM Interface.

TEAC DISC DRIVES

TEAC 55F - $514^{\prime \prime}$ D/S 80 track. Formatted single density 400 K Double density 800 K . only $£ 229.00$
Case to hold two drives with power supply and blanking plate
only $£ 39.95$
Ribbon lead to connect one drive to BBC. $\quad \mathbf{£ 1 2 . 0 0}$
Dual Ribbon lead \quad £15.00
Power lead to connect one drive to BBC.
$\uparrow 5.00$
ideal for use with BBC Micro. Full warranty. Low
power consumption. Slimline latest technology. Switchable 40/80 track.

CANON DISC DRIVES

MDD $61065^{1 / 4^{\prime \prime}}$ S/S 40 track. Formatted single density 100K. Double density 200K. £129.95
Case to hold single drive.
59.95

Leads as with TEAC DRIVES

THE ORGANIZER DESK

At last a desk designed for the personal user. Full size desk. Suitable for all leading micros. On castors. Teak finish. DEALER ENQUIRIES INVITED. only \&49.50

DOGFIGHT

If you have a BBC 32 K with any O.S. become a flying ace with our wonderful new game Dogfight, An exciting 2 player game with 8 levels of difficulty only $£ 8.65$

12" GREEN SCREEN MONITOR

One year warranty, ex stock delivery, 18 MHZ , Phono
connector. Limited quantity. \quad only $£ 69.95$

Lead to connect to BBC

NASHUA FLOPPY DISCS

Minis

S'S S/D
SISDID
D/SD/D
£ 16.95 for 10

S/S 80 Track $£ 24.95$ for 10
DIS 80 Track $£ 26.95$ for 10
With full 5 year warranty. All mini discs have hub rings and a FREE plastic library case.

8" DISC DRIVES SHUGART COMPATIBLE

FD514 S/S Dual density. Formatted 600K Byte only $£ 149.00$ FD650 D/S Dual density. Formatted 1.2M Byte only £199.50 Pertec 90 day warranty
Case to hold 2 drives - complete with power supply and fan.
only $£ 99.95$

VIEW DATA TERMINALS

Prestel, Built in modem. G.P.O. approved, slimline design.
only £199.00

- Our price pledge only applies to the JVC monitor

To order: Add carriage at the following rates:Discs 85 p. Other goods $£ 7.00$. Add VAT at 15% to total and send your order to:
ロPUS SUPPLIES
158, Camberwell Road, London SE5 OEE Tel: 01-701-8668 (3 lines) 01-703-6155/6/7

Government and educational orders welcome.

PROVED IN SERVICE THROUGHOUT THEWORLD EDDYSTONE MODEL 1837/2
 LOW COST, HIGH STABILITY COMMUNICATIONS RECEIVER 100kHz to 30MHz

* Capable of operation under the most stringent conditions of service, professional and military
* Manual tuning plus accurate digital frequency readout and high stability working with Eddystone patent digital lock
* Complies fully with MPT Specifications 1201, and 1204 CEPT Draft Recommendations and DEF 133/L2
* Provides inexpensive teleprinter terminal when fitted with Model 1529 FSK Unit

Details on request

Eddystone Radio Limited

Member of Marconi Communication Systems Limited
Alvechurch Road, Birmingham B31 3PP, England
Telephone: 021-475 2231 Telex: 337081

WW - 064 FOR FURTHER DETAILS

WW - 043 FOR FURTHER DETAILS

Bird Electronic

THRULINE® Wattmeters TERMALINE $®$ loads

and accessories from stock

Aspen Electronics Limited
The exclusive UK representative for Bird Electronic 2/3 Kildare Close, Eastcote Ruislip, MiddlesexHA4 9UR Telephone: 01-868 1188 Telex: 8812727

WW - 029 FOR FURTHER DETAILS

FUSES, WIREWOUND RESISTORS

British-made by Beswick
Stock items available at 30\% extra discount Also Carbon film resistors (Asian) stock items available at 50% extra discount Send or phone for stock lists

Our regular lines always available:
Audible Warning Devices (single sample price including vat and postage shown in brackets)
Banshees ($£ 23$), Cybertones ($£ 11$), Solotones ($£ 4$), Bleeptones ($£ 7$), Minib leeps (£8), Multimounts (£3.50)
Markers SSleeves - pvc, silicone rubber, neoprene, etc., printed or plain Elma range of Collet knobs, dials, etc
Crimp terminals. R.f. Chokes (Greendale)
Pcb self-adhesive guides, 18.5 mm wide \times any length
Write, call or phone (0732) 851345
NOVAPRODUCTS (APB Ltd)
Crystalate Works, Golden Green, Tonbridge, Kent TN11 0내
Member Crystalate Group
[o obtain further details of any of he coded items mentioned in the :ditorial or advertisement pages If this issue, please complete one or more of the attached cards sntering the reference number(s). Your enquiries will be passed on to he manufacturers concerned and you can expect to hear from them lirect in due course. Cards posted from abroad require a stamp. These service cards are valid for six months from the date of publication.
Please use capital letters

If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you: their address is shown below.

OVERSEAS SUBSCRIPTION AGENTS

Australia: Gordon 8 Gotch (Australasia) Lid.
380 Lonsdala Stieet. Melbourne 3000 , Victoria
 Messageries de lá Presse. 1 Rue de la Petite-ILE Brussels 7
 Avenue West, Toronto 195 Onterio

Cyprus: General Press Agency Lidd 131 Pro4528, Nicosia
 Bladdistribution, Hovedvagtsgade 8 . Dk. 1103 Kobenhavn

FInland: Raurakirja OY Koivuvaarankuja 2, 01640 Vantaa 64, Finlend.

Japan: Western Publicaions Distribution Agency 170 Nishi-Okubo 4-chome, Shinjuku-Ku. Tokyo 160

Lebanon : Levant Distributors Co., P.O. Box 1181 Makdesi Street, Halim Hanna Bldg, Beirut

Malaysia: Times Malaysia: Times Distributors Sdn. Bhd 390 kim Seng Roa Singapore 9, Malaysia

Malta: W. H. Smith Continental Lid. 18 a Scots Street, Valleta

New Zealand : Gordon \& Goteh (Now Zeaiend) Lid Gotch (Naw Zealand)
102 Adelaide Road. Wellington 2

Nigerla : Daily Times of Nigeria Ltd, 3 Kakawa Street, P.O. Box 139. Lagos
Norway: A/S Narvesens Kioskompani, Bentrand Narvesens vei 2, Oslo 6
ortugal : Livaria
Bortrands.a. i.
Apartado 37, Amadora
outh Africa: Central Nows Agency Lid, P.O. Box 1033, Johannesburg
paln: Comerciel Atheneum s.a. Contejo de Ciento, 130-136 Barcelon 16
wreden: Wennegren Wiliams A B. Fack S-104 25 Stockhoim 30
witzerland: Naville 8 Cie SA, Rue Levriar 5-7, H-1211 Geneve 1 Shmidt Agence 4002 Basle
U.S.A.: John Barios, usiness Press International 205 East 42nd Street, New York, N.Y. 10017

Postage will be paid by Licensee

Do not affix Postage Stamps if posted in Gt Britain, Channel Islands, N Ireland or the Isle of Man

BUSINESS REPLY SERVICE

Licence No CY258
WIRELESS WORLD
Reader Enquiry Service
Oakfield House
Perrymount Road
Haywards Heath
Sussex RH16 3DH

Enquiry Service for Professiona WIRELESS WORLD Wireless World, August 1983 WW 8368 Readers

Wireless World: Subscription Order Form

To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to :

Subscription Manager, Business Press International Ltd, Oakfield House, Perrymouth Road Haywards Heath, Sussex RH16 3DH United Kingdom

Enquiry Service for Professional Readers only.

WIRELESS WORLD Wireless World, August 1983 WW 8368

BUSINESS REPLY SERVICE Licence No CY258

WIRELESS WORLD

Postage will be paid by Licensee

Do not affix Postage Stamps if posted in Gt Britain, Channel Islands, N Ireland or the Isle of Man

Reader Enquiry Service
Oakfield House Perrymount Road
Haywards Heath
Sussex RH16 3DH

Wireless World Subscription Order Form

Wireless World, August 1983 WW 8368

UK subscription rates
1 year: £14.00
Overseas 1 year: $£ 17.00$

Please enter my subscription to Wireless World for 1 year

I enclose remittance value
made payable to

USA \& Canada subscription rates
1 year: \$44.00

BUSINESS PRESS INTERNATIONAL Ltd.

Name
Address
BUSINESS PRESS INTERNATIONAL Ltd.

Adress

OVERSEAS ADVERTISEMENT AGENTS

Hungary Ms. Edit Bajusz, Hungexpo Advertising Agency, Budapest XIV, Varosliget - Telephone : 225008 -
Telex: Budapest 22-4525 INTFOIRE

Italy Sig. C. Epis Etas-Kompass, S.p.a. Servizio Estero, Via Mantegna 6, 20154 Milan - Telephone 347051 Telex: 37342 Kompass

Japan Mr. Inatsuki, Trade Media - IBPA
(Japan), B212 Azabu Heights, 1-5-10
Roppongi, Minato-Ku, Tokyo 106 -
Telephone : (03) 585-0581

United States of America Ray Barnes,
*Business Press International 205 East 42 nd Street,
New York, NY 10017 - Telephone:
(212) 6895961 -Telex: 421710

Jack Farley Jnr., The Farley Co.,
Suite 1548, 35 East Wacker Drive,
Chicago, Illinois 60601 - Telephone
(312) 63074

Victor A Jauch,
Elmatex International,
P.O. Box 34607 ,

Los Angeles Calif. 90034 U.S.A.
Telephone: (213) 8218581
Telex: 18-1059.
Jack Mentel, The Farley Co., Suite 605,
Ranna Building, Cleveland, Ohio 4415
Telephone: (216) 6211919
Ray Rickles, Ray Rickles \& Co.,
P.O. Box 2008. Miami Beach, Florida

33140 - Telephone : (305) 5327301 Jim Parks, Ray Rickles \& Co.,
3116 Maple Drive N.E., Atlanta, Georgia 30305. Telephone: (404) 2377432

Mike Loughlin, Business Press Internationa 15055 Memorials, Ste 119, Houston, Texas 77079 - Telephone: (713) 7838673

Canada Colin H. MacCulloch, International Advertising Consultants Ltd. 915 Carlton Tower, 2 Carlton Street, Toronto 2 - Telephone (416) 3642269

[^4]

WW - 030 FOR FURTHER DETAILS

RADIOCDDE CLOCKS
 SOLVE PROBLEMS

ATOMIC TIME, FREQUENCY AND SYNCHRONISATION EQUIPMENT

NEW PHASE-MODULATION SYSTEMS

Until recently, atomic time and date information was only available on v.l.f. transmissions using amplitude modulation. The RCC 8000AM series of equipment uses these transmissions to offer high noise immunity and high accuracy, particularly at very long range
The new RCC 8000PM series of equipment uses, for the first time, phase modulated tranmissions with massive radiated powers of up to 2 MegaWatts to offer long range, excellent noise immunity and no scheduied maintenance periods

NEW PRODUCTS

The AM and PM series of Radiocode Clock equipment has been further expanded to include seven new models (from top) 8000 S - combined clock, frequency standard and optional stopclock. Internal standby power supply - with dual rate constant current charger. Time-event log - prints hours, minutes, seconds, milliseconds and day of year, on receipt of a log pulse. Speaking clock - time announcement or audio recording. Slave controller - total control of single-standard master/slave systems ie one pulse/sec. Dual standard slave controller - total control of two different and independent slave systems, ie. one pulse/sec and one pulse/half min. Slave distribution amplifier - maximum flexibility for the largest master/slave installations requiring dual standard operation, multiple circuits and complete master/slave backup

NEW OPTIONS

A continuously expanding range of fully integrated software and hardware
is available for both series of Radiocode Clock equipment. Standard op-
tions now include:

- IRIG B precision serial o/p
- RS232/V24 1 mS resolution
- General purpose parallel o/p
- FSK record/replay system
- Time code generators
- Keypad entry of alarm times

Intelligent slave systems

Keypad entry of time/date Standard frequency outputs Stopclock operation Calibrated systems for increased accuracy
Radiocode Clocks Ltd*
Unit 19, Parkengue, Kernick Road Industrial Estate
Penryn, Falmouth. Cornwall. Tel: Falmouth (0326; 76007

MARK 1983 WITH GAPS IN CIRCUIT FILES WELL-PLUGGED

WIRELESS WORLD CIRCARDS last year benefited many 'new generation' readers who bought at 1976 bargain prices + 10\% discount for 10 sets! Most sets are still available although companion volumes CIRCUIT DESIGNS 1, 2 and 3 are out of print (CIRCARDS sets 1 to 30).

The Offer stands,

 so order now your sets of $127 \times 204 \mathrm{~mm}$ cards in plastic wallets. These unique circuit cards normally contain
descriptions and

 performance data of 10 tested circuits, together with ideas for modifying them to suit special needs.1 Basic Active filters 2 Switching Circuits, comparators and Schmitts (But these gaps cannot be filled) * 6 Constant current circuits 7 Power amplifiers 8 Astable circuits 9 Optoelectronics 10 Micro power circuits 11 Basic logic gates 12 Wideband amplifiers 13 Alarm circuits 14 Digital Counters 15 Pulse modulators 16 Current differencing amplifiers - signal processing 17 Current differencing amplifiers - signal generation 18 Current differencing amplifiers - measurement and detection 19 Monostable circuits 20 Transistor pairs 21 Voltage-to-frequency converters 22 Amplitude modulation and detection 23 Reference circuits 24 Voltage regulators 25 RC oscillators - 126 RC oscillators - 227 Linear cmos-1 28 Linear cmos-2 29 Analogue multipliers $30 \mathrm{Rms} /$ /og/power laws 31 Digital multipliers 32 Transistor arrays 33 Differential and bridge amplifiers 34 Analogue gate applications - 135 Analogue gate applications -2 .
*Photocopies only: 3 Waveform generators 4A.C. measurement 5 Audio circuits @ £3.20 each set.

To Electrical-Electronic Press
General Sales Department
Room 108
Quadrant House
Sutton
Surrey SM2 5AS

[^5]Please send me the following sets of

Circards
£2 each,
$£ 18$ for 10 post free.
Remittance enclosed
payable
to BUSINESS PRESS INTERNATIONAL LIMITED
Name (Please print)
Address (Please print)

Suparior quality Procision Made NEW POWER RiEOSTATS

New ceramic construction, heavy duty brush
assembly, continuously rated
25 WATH $5 / 10 / 25 / 50 / 100 / 150 / 2$ 25 WAT $5 / 10 / 25 / 50 / 100 / 150 / 250 / 300 / 500 / 1 \mathrm{~K}$
$1.5 \mathrm{~K} \cap \mathrm{Em} .10+330$ P 50 WATT 250 N £5.50 + 50 p p\&p ($\mathbf{~ 6 . 9 0 ~ i n c . ~ V A T) ~}$ 100 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{kJI} / 1.5 \mathrm{k} \Omega 1 / 2.5 \mathrm{k} 1 / 3.5 \mathrm{k} \Omega$ $57.25+75 p$ p 8 p ($\mathbf{5 9 . 2 0 \mathrm { inc } \text { VA }) ~}$ Black Silver Skirted Knob callbrated in N
Ideal for boove Rheostats 30 p es. + VAT SOLID STATE E.H.T. UNIT input 230 V A.C. Fully 150 ated . Approx. 15 KV . Bult-4n 10 sec Timer
Easily moaified for 20 sec . 30 sec to continuous operation Size Easily moaified for 20 sec . 30 sec to continuous op
$155 \times 85 \times 50 \mathrm{~mm}$. Frice $£ 5+75 \mathrm{p}$ p\&p. (Total Inc VAT $\mathbf{6 . 6 1})$
240 V A.C. SOLENOID VALVE
 METERS (New) - 90 mm DIAMETER AC Amp. Type 62T2:0 ${ }^{1}{ }^{14,0-5 A}$
AC Volt. $0-300 \mathrm{~V}$ O-150V DC Amp. Type $65 \mathrm{C} 50-5 \mathrm{~A}, 0.10 \mathrm{~A}, 0.50 \mathrm{~A}, 0.100 \mathrm{~A}$ DC Volt 30 V All types

ULTRA VIOLET BLACK LIGHT
FLUORESCENT TUBES
4 ft 40 watt $\mathrm{f8} .70$ inc. VAT $£ 10.00$ (callers only)
2420 watts f .20 . Post $£ 125$ ($\mathrm{E8} .57$ inc. VAT \&
2 0 \& 1 !
(For use in standard bi pin fittings)
12 in 8 watt $£ 3.00$. +45 ($£ 3.97$ inc VAT $p \& \%$ p
in 6 watt $£ 2.50$. $45 p$ ($£ 3.39$ inc VAT p\&p)

 ($\mathbf{6} .96$ inc VAT OB \&
BLACK LIGHT BULBS
Self-ballasted Mercury U.V 175 W Bulbs Avallable for either B.C or ES fitting Price $£ 11.79$ incl p8p and VAT
$400 W$ UV LAMP AND BALLAST complete $£ 38.00$ post $£ 350$ (£47.73 inc

Quiet smooth-running COOLING or EXTRACTOR
FAN. Size: $43 / 4 \times 43 / 4 \times 1 / 2$. Supplied for 240 V A . operation. Price $£ 4.75+£ 1$ p\&o fotal incl VAT E6.62).

VORTEX BLOWER \& SUCTION UNIT Powerful mult-stage dynamically balanced, totally enclosed. $9^{\prime \prime}$ dia
Rotators. 3.500 rpm . $11 / 2.11 . \mathrm{I}$. Inlet and outlet 110 A A.C P Pice $\mathbf{~} \mathbf{2 0 . 0 0}$ Suitable transiormer for 240 V A.C $£ 5.00+£ 3.00$ p\&p (total incl. VA
$£ 32.20$)

VAAIGBLE VOLTAGE TRANSFORMERS

INPUT 230/240V a.c. 50/60	UTPUT
200 W 1 amp inc. a.c. voltage	£15.00
$05 \mathrm{KVA}(2,2$ amp MAX)	E195.00
2 KVA [10 amp MAX	E41.00
$3 \mathrm{KVA}(15 \mathrm{amp}$ MAX:	¢49.00
5 KVA (25 amp MAX:	E79.00
10 KVA (50 a amp MAX)	£174.00
$15 \mathrm{KVA} 175 \mathrm{amp} \mathrm{MAX)}$	¢270.0

3-PHASE VARIABLE VOLTAGE TRANSFORMERS
Dual nput $240-240 \mathrm{~V}$ or 380.415 V Star connected
3 KVA 5 amp per phase max 6 KVA 10 am? per phase max $\quad £ 113.40$

Comprehensive range of L.T., AUTO (110-240V) ISOLATION TRANSFORMERS available for im mediate delivery. Leaflet on request.

EPROM ERASURE KIT

Why waste money? Build your own EPROM ERASURE ior a frac
tion of the price of a made un unit Complere kit of parts !ess case tion of the price of a made-up unit Complere kit of parts tess case
to nclude $12^{\circ} 8$ watt 2537 Angst Tube Ballast unit, pal- of b, pin teads. Nean indicator safety microswitch, on/off switch and cirLESS CASE Price: $\mathbf{f 1 3 . 6 0 : 7 5 p ~ p \& p ~ (T o t a l ~ I n c l ~ V A T ~ £ 1 G ~ 5 0) ~}$ Warning: Tube used in this clircuit is highly dangerous to the eves
Unit MuST be fited in suitable case

FROM STOCK AT PRICES THAT DEFY COMPETITIDN!

AC GEARED MOTORS DC MDTORS MICROSWITCHES RELAY'S REED SWITCHES SOLENOIDS A.C. or D.C PROGRAMME TIMERS
C.F. BLOWERS AC CAPACITORS STROBE KITS FLASHTUBES CONTACTOZS SYNCHRONOUS MOTORS

Phone in your enquiries

GEARED MOTORS
5 ppm 240 V A C Mf. by Carter. $£ 6.05 \mathrm{f} 1 \mathrm{p} 8 \mathrm{p} p$ (E8. 11 inc . VAT)
 $240 V$ A.C. $£ 10.75+£ 1.50 \mathrm{p} \& \mathrm{p}$ (total inc.
71 rpm WYNSCALE motor approx 10 lb inch.

CROWN 42 rpm $110 / 230 \mathrm{~V}$ AC. 50 Hz 100 lb .in ápprox. reversible geared Moror Price $£ 18.15$. $£ 250$ p\&p (total incl VAT £23.75) 38.3 rpm GEARED MOTOR. Torque 351 b in reverstble 115 V AC inc. stant capactior Price £ 11.55 , E2 p\& \& trotal incl VAT $£ 15.58$). N.M.S.
Cuitable TRANSORMER 230 V A.C operation. Price £4.50. Sutable TRANSFORMER $230 V$ A.C operation. Price $\mathbf{£ 4 . 5 0}$ - 50 p p 8 p
Itotal inc| VAT $\mathbf{~} 5.75$)

INDUSTRIAL STROBE KIT

Ideal tor industrial and Educational purboses Pioduces high intensity
flash variable from approx 1 to 70 f p. s Price less case $£ 27$. $\mathrm{f} 2 \mathrm{p} \& \mathrm{ip}$ lalal incl VAT $£ 3336$)

HY-LYGHT Mk V. Designed for Disco, Theatrical uses, etc
 £16.68) Foolscap SAE for further detalls including Super Hy Lvght Suitable case and reffector for ether of above kits, price. $\mathbf{£ 1 2 . 5 0}$
p\&p (total incl. VAT $£ \mathbf{£ 1 6 . 6 8)}$

COMPRESSOR

BLOWER/VACUUM PUMP

3 phase A C motor $220 / 250 \mathrm{~V}$ or $380 / 440 \mathrm{~V}$. $425 \mathrm{rpm},{ }^{1} 8 \mathrm{~h}$ p cont Direc coupled to William Aldday Alcosa carbon vane
$09 \mathrm{ctm} 8 \mathrm{hg} \mathrm{E} \mathbf{£ 2}-£ 4$ p\& p total mal VAT $£ 29.90$)
INSULATION TESTERS NEW

SANGAMO WESTON TIME SWITCH

Type $\mathbf{S 2 5 1} 200 / 250 \mathrm{AC} 2$ on $/ 2$ off every 24 hours. 20 amps contacts with
override switch Diameter $4^{\prime \prime} \times 3^{\prime \prime}$, price $£ 9.50+£ 1.50$ p\& 8 p if 12.65 inc

Also avalable Sangamo Weston 60 amp and AEG 80 amp . Phone for
details
Type $\mathbf{S 2}$

Type $\mathbf{S 3 8 8}$. As above. plus 36 hours spring reserve. Less perspex cover

Price 1

N.M.S. Now Manufacturers' Surplus
R\&iT.
Reconditioned and Tested.

Personal callers only. Open Saturdays 9 Little Newport Street London WC2H 7JJ
Tel: 01-437 0576
WW-035 FOR FURTHER DETAIL.S

LOW GOGT RFOFFGBIONAL TEGT INETRUNENTE

Modem Kit Only $£ 39.95$

```
\(\star\) CCITT standard
\(\star 300\) baud full duplex
* Direct connection -- greatly reduces data loss associated with acoustic couplers
* Powered from phone lines therefore no power supply required
* Opto coupled data in and data out for intrinsically safe operatior.
Build it you־self for \(£ 39.95\) including VAT and postage (note case not inc uded).
Racom Ltd., Dept. B
81 Cholmeley Road, Reading, Berks RG1 3LY Tel: 073467027
Only £39.95
                                    Tel:073467027
```


ELECTRONIC SOFTWARE linear circuit analysis

An all-machine code program for the rapid analysis of linear electronic circuits that may contain active and/or passive components. Capacity 20 nodes, 40 passive components, 10 active sources. Components may be R, L, C, tianstormer, transmission line, transistor, FET, Op-amp, etc. Handles complex source and load impedances and complex active sources. Simple rapid component or parameter value changes. Draws graphs with LOG/LIN/DB scales as required. Hardcopy of all results.
For PET/CBM 3000/4000/8000 series ONLY. State model, tape, disc. Price $£ 120$ inclusive (no V.A.T.)
The following programs are written in Basic and are available for CBM/BBC/Apple.
Price $£ 40$ each inclusive (no V.A.T.). State model, disc or tape.
VHF/UHF AMPLIFIER DESIGN: S parameters, stripline or discrete
TRANSISTOR PARAMETER CONVERSIONS: S, h, z to y, any configuration DESIGN OF ACTIVE FILTERS: Butterworth, Chebychev, any no. of poles DESIGN OF LOSSLESS MATCHING NETWORKS: Complex to resistive

Full details on request
S. J. BRANSON, 111 PARK ROAD, PETERBOROUGH - Tel: 073367604 WW-063 FOR FURTHER DETAILS

SAMSONS
9-10 Chapel Street, Marylebone London NW1 5DN
21-23 Bell Street, London, NW1
01-262 5125 \& 01-723 7851

MUFFIN FANS
240 V 4 an
$41 / 2 \times 4^{1 / 2 \times 1 / 8} 1 / 55.75$
inc. $V A T+$ postage.
 inc. VAI + postage
Radiospares pice

No 1 tapped 2-3-4-5-6.7-8-9-10-11-12-13-14 15v 8A £10. No 2 12v 8A $£ 7.50$. No 3 tappend 13-12-10-8v81/2A f9. No 4 Sec $6.3 v 246.3 v 2 \mathrm{~A}$ and $32.0-32 \mathrm{v} 280 \mathrm{~m} / \mathrm{a}$ £4.75. No 5 Sec 37 v $1.5 \mathrm{~A}, 15 \mathrm{v} 1 / 2 \mathrm{~A}, 9 \mathrm{v} 50 \mathrm{~m} / \mathrm{a}$ £3.95. No 6 Sec 14 v $2 \mathrm{~A} £ 3.95$. No $7 \mathrm{Sec} 27.5-0-27.5 \mathrm{v} 1.2 \mathrm{~A}$ and 7-5-3$7 v 750 \mathrm{~m} / \mathrm{a}$ € $£ .50$. All prices include postame and VAT.					
ніААСH 9" BLACK B WHITE MONTTOAS Faniastic Valual These monitors have been used but are all tested and in working order. Approx. 15 meg bandwidth, 75 ohm video input, surtable for most micros Eis + ES cyry inc. VAT MURAY ONLYAFENLETII					
HENGSTLER Low voltage resettable counters, 52 ohms 6 12v DC 6 digit. Compact size. Only E3. 25 inc VAT and carr					
PARMEKOLT TRANSFORMERS Open frame type. Top penel connections. all primaries 220-240v. No. 1 Sec tapped $12-18-32 v 2 \mathrm{~A}$ (dc) and 12-10$32 \mathrm{v} 1 / 2 \mathrm{~A}$ (dc). No. 2 Sec tapped 12-18-32v. A (dc) and 12-18.32 $1 / 4 \mathrm{~A}$ (dc) $\mathbf{£ 5} 50$. No. 3 Sxc tapped 12-18-32v $1 / 2 \mathrm{~A}$ and $12-18-32 \mathrm{v} 100 \mathrm{~m} / \mathrm{B}$ (dc) E4. No. 4 Sec tapped 12-18-32v 1/4A (c) and $12-18-32 \mathrm{v} 50 \mathrm{~m} / \mathrm{a}$ (dc) $\mathbf{E 2} .75$. No. 5 Sec 3 v $100 \mathrm{~m} / \mathrm{a}$ (dc) and $32 \mathrm{v} 25 \mathrm{~m} / \mathrm{a}$ (dc) $£ 2.75$. No 6 Sec tapped 24v $2 A$ (dc) 82.75 . No. 7 Sec $1^{17} v$ 1A (dc) \&2. All prices include postage and vat.					
PARMEKO HT TRANSFORMERS Pri 220-240v Sec $500-0-500 \mathrm{v} 120 \mathrm{~m} / \mathrm{A} 6.3 \mathrm{v} 5 \mathrm{~A}$, and VAT.					
PARMEKO TRANSISTOA TESTERS Leakage. Gain s/c-o/c readings shown on 2 m . panel meter. Full instructions. 68.50 inc. postage and VAT					
$8 \mathrm{~m} / \mathrm{h} 15 \mathrm{~A}$ 'C' core type $\mathbf{5 8} .96 .4 .8 \mathrm{~m} / \mathrm{h} 10 \mathrm{~A}$ open frame type $85.50 .2+2 \mathrm{~m} / \mathrm{h}$ 12A open Es.s. $100 \mathrm{~m} / \mathrm{h}$ 2A frame type potted type $\mathbf{E 5} . \%$. $130 \mathrm{~m} / \mathrm{h} 1.15 \mathrm{~A}$ £ $\mathbf{Z} .75$. All prices include postage and VAT					
ELECTROLYTR CAPACTTOAS 3600MFD 150 V DC WKG $£ 2.50,6800 \mathrm{MFD} 160 \mathrm{~V}$ DC WKG $£ 2.50,12000$ MFO 50V DC WKG 12. 5000 MFO 75 V DC WKG $£ 1.50,6500$ MFO EON DC WKG E1.50, 100000 MFD 10v DC WKG $\mathbb{E 2}$, 3300 MFO 40V' DC WKG, three for $£ 3,22000$ MFD 10 V DC, five for $£ 250,2200 \mathrm{MFO} 63 \mathrm{~V}$ IDC WKG, five for $£ 2.50$, HT types $32+32 \mathrm{MFD}$ 450 V DC WKG £1.25, $32+32$ MFO 350v DC WKG $£ 1$. All orices include postage and VAL.					
AC					
0.75	1500 v 400 v	1.0			
2.7	${ }^{3600}$	${ }_{61.75}$			

WW - 061 FOR FURTHER DETALLS

ELEGTROVALDE

FOR THE LARGEST RANGE OF WORLDFAMOUS SIEMENS COMPONENTS IN THE U.K. INCLUDING 'SIPMOS' MOSFET POWER TRANSISTORS FROM 0.75 to 125 WATTS

Type	Case	\checkmark	A	W	PRICE
Buz 10	TO22	50	'12	45	¢4.78
Buz 10A	TO 22	50	12	45	£4.78
Buz 15	TO3	50	45	125	£18.70
Buz 20	TO220	100	12	45	66.25
Buz 23	TO3	100	10	62.5	¢ $£ 8.82$
Buz 24	TO3	100	32	125	£16.20
Buz 30	TO220	200	6.5	0.75	¢5.68
Buz 32	TO220	200	8.8	62.5	£8.11
Buz 33	TO3	200	7.2	78	¢8.11
Buz 35	TO3	200	9.9	78	£10.52
Buz 36	TO3	200	22	125	± 23.60
Buz 41A	TO220	500	4.3	62.5	¢7.77
Buz 43	TO3	500	2.8	78	$£ 8.11$ $¢ 11.57$
Buz 44A	TO3	500	4.8	78	£11.57 £ 18.18
Buz 45	TO3	500	9.6	100	£18.18 £9.32
Buz 46	TO3	500	4.2	${ }_{88}^{78}$	¢9.32 £23.30
Buz 48	TO238	500	7.3	83.3	£23.30
Buz 50A	TO220	1000	2.3 4.6	75 125	¢10.42
Buz 54A	TO3	1000 400	4.6 5.5	62.5	E20.45
Buz 60 Buz 64	TO220	400	5.5 11.5	100	¢22.69
Buz 64 Buz 80	TO220	800	2.6	75	69.78
Buz 80A	TO220	800	3	75	£16.23
Buz 83	TO3	800	2.9	78	£14.58
Buz 83A	TO3	800	3.4	78	£15.29
Buz 84	TO3	800	5.3	125	E26.45
Buz 84A	TO3	800	6	125	E23.58

SUMMER PRICE LIST - FREE

Write, phone or call for latest EV price list packed with thousands of items. $1 . \mathrm{C}_{\mathrm{s}}$, semiconductors, components, boxes, meters, tools, etc. at BETTER PRIC
CHOICE AND BETTER SERVICE from a capacitor to a computer

ELECTROVALUE LTD.

Head Office, Mail Order and Shop: 28 St Judes Rosd, Englefield Green, Egham Surrey TW20 0HB. Egham (STD 0784: London 87) 33803: Telex 264475. North personal shoppers only. 680 Burnage Lane, Burnage, Manchester M19 1NA (061-432 4945). Please mention Wireless World when ordering or writing
EV Computing Shop, 700 Burnage Lane, Manchester (061-431 4866).

PRECISIONDUAL AXIS CONTROL STICK

Suitable for use with Computers, Robotics, Machine Tools Widely used by Government departments and industry

SUPER SMOOTH PRECISE ACTION. SEPARATE FINE TRIM ADJUSTMENT ACCURATE CENTRING : LONG-LIFE MOULDED NYLON PARTS
Available in kit form - easily assembled. Standard version

- Carbon track pots. 1 off £8.50, P\&P 75p. De luxe versionConductive plastic film pots. 1 off $£ 12.80$, P\&P 75p. Send SAE for full details of sticks and servos suitable for Robotics. OEM and trade enquiries invited, Barclaycard and Access accepted.

SKYLEADER, AIRPORT HOUSE, PURLEY WAY CROYDON, SURREY CRO 0XZ. 01-686 6688

COTDUMAR WARH:OUSA
 THE'ALADDIN'S' CAVE OF' COMPUTER AID ELLECTRONIC EQURMEETY

HARD DISK DRIVES

Fully refurbished Diablo/DRE Series 30
disk drive for DEC RKOS, NOVA, TEXAS et
front load 5550.00 - Top load $£ 295.00$
PSU type ME3029 for 2 drives $£ 125.00$
DRE $44 \mathrm{~A} 4000 \mathrm{~A} / \mathrm{B} 10 \mathrm{mb} 5+5$ all

5 AMP MAINS FLTTERS

Cure those unnerving hang ups and data glitches
caused by mains interference. Matchbox size-Up to 5 amp $240 \vee$ load. As recommended by the
letter. Suppression Devices SDSA 55.95 .

DISTMEC

The UK's FIRST free of charge, 24 hr . public access data base. Get information on 1000's of stock items and order via your computer and credit card. On line now, 300 baud. CCITT tones, full duplex, fully interactive. DON'T MISS THOSE BARGNINS CALL NOW, IT SFRE 7 dage per $01-6831133$ paras

COMPUTER 'CAB'

cabinet
 cabinet with integral switched

 mode PSU, Mains tiltering, and twin fan cooling.Originally made for the famous DEC PDP8 computer Originally made for the famous DEC PDP8 computer
system costing thousands of pounds. Made to run 24 system costing thousands of pounds. Made to run 24
hours per day the PSU is fully screened and will delive hours per day the PSU is fully screened and will deliver a
massive $+5 v D C$ at 17 amps, $+15 v D C$ at 1 amp and -15 massive $+5 v \mathrm{DC}$ at $17 \mathrm{amps},+15 v \mathrm{DC}$ at 1 amp and -1
DC at 5 amps . The complete unit is fully enclosed with DC at 5 amps. The complete unit is fully enclosed with
removable top lid, filtering, trip switch, 'Power' and 'Run removable top lid, filtering, trip switch, Power and Run
LEDs mounted on Alifront panel, rear cable entries. etc LEDs mounted on All tront panel, rear cable entries. elc etc. Units are in good but used condition - supplied for Give your system that professional finish for only
Useable area $16^{\prime \prime} w 10.5^{\prime \prime} h 11.5^{\prime \prime} d$.
Also avallable LESS PSU, with FANS etc. Internal di

COOLTIG FANS

Keeo your hot parts COOL and RELAABLE
with our range of BRAND NEW professional

Miniature 240 vocuipment tan complete with fingerguard 99.95.
GOULB JB 3 AA Dim $3^{\prime \prime} \times 3^{\prime \prime} \times 2.5$. Compact

 Hr life Measures only $62 \times 62 \times 22 \mathrm{~mm}$
Current
Cost E32.
OUOR PRICE ONLY E12.95 complote with data.

SUPER DEAL? NO - SUPER STEAL!!

The FABULOUS 25 CPS TEC Starwriter
Daisy wheel printer at a fraction of its original cost. BRAND NE Made to the very highest
spect te TEC Staruriter FP1500-25 features a
heavy duty die cast
chassis and DOBEO ype
Print mectanism giving
suberb reaistration and Superb registration
print quality Microprocessor electronics
offer full DiABLO/OUME command compatability
Mand other features includd
 internal butter, standard RS232 sedirilintetace with handshake Supplied absolully Ben D NEW with 90 daye guarantee and FREE daisy wheel
and dust cover Order NOW or contact sales oftice tor more informaticn

DATA MODEMS

Join the Communications revolution wi Made to range of EX TELECOM data moded to operate
most stringent spec and designed
for for 24 hrs per day. Units are made to the
CCITT tone spec. With RS232 $/ 0$ levels via a 25 way 'D' skt. Units are sold in a tested
and working condition with data Permission may be required for connection to PO lines MODEM 13A compact. async, same size as telephone base. UD to 300 baud, full dupt
over 2 wires but call mode only E75.00 over 2 wires, but call mode only E 75.00
MODEM 2B/C Fully fledged up to 300 baud async, ANSWER \& CALL modes, auto answer, auto switching, ideal networks etc.
connection to comms line. $£ 85.00$
MODEM 20-1 Compact unit for use with PRESTEL or full duplex 2 wire link 75 baud
Iransmit - 1200 baud receive. Auto answer transmit
£130.00
MODEM 20-2 same as $20-1$ but 75 baud MODEM $20-3 \mathrm{Made}$ for data rates up baud in full duplex mode over 4 wire circuit or half duplex mode over 2 wires. $£ 130.00$ Carriage. 13 A £ 4.50 . $2 \mathrm{~B} / \mathrm{C} \& 20$ £ 8.50 . DATA PUMP MODEM compact unit upto
1200 baud full duplex over 4 wires or half duplex over 2 wires. BELL specification with
data ifo via RS232 25 way D socket. remote
test etc 240 voperation. Supplied complete with data $£ 65.00$ carr. $£ 4.50$. For more information or details of other types
of ex. stock modems contact sates office.

SPECIAL MODEM OFFER

EX TELECOM. Direct connect. 2 wire, European standard, 75/1200 baud data modems. Normally prized at $£ 140.00$, we have a limited quantity of guaranteed
working, but cosmetically defective (ie scratches and scuffs on panels etc.) units working, but cosmetically defective (ie scratches and scutfs on panels etc.) und at a super low price ol only $\mathbf{£ 9 . 9 5 \text { . Modems are made to the highest stand }}$ and conform to the CCITT tone spec. Ideal for MICRONET, PRESTEL or and conform to the CCITT tone spec. Ideal for MICR RSN 232 data i/o via 25 way D skt With data
MODEM 2A Early version of modem 2B/C 300 baud full duplex. send-r
auto answer. RS232 i. o. With data but untested. End of line clea
Only $£ 35.00$ Supplied complete with data. Carriage \& Ins. $£ 9.50$

8" WINCHESTER price SLASHH

S100 Bus 19 Mb . Subsystem. A cancelled order and change of policy by a major British disk drive manufacturer enables us to offer you 'last year's model' at a plug in and 'eady to go SUPER LOW PRICE. Our own custom controller pugs direct into the S 100 bus and will control 2 disk drives, offering a total storage of OVER 36 Mbs! and at data transfer rates in excess $7 \mathrm{Mb} / \mathrm{sec}$ seeing is believing!! Supplied complete with user configurable BIOS etc Save a fortune, Limited quantity only. 310019 Mb . Disk drive $£ 499.00$ PSU Unit $\quad £ 165.00$ CD1100 controller \& BIOS $\in 352.00$ PSU extension cable $E 9.95$ Full tech Manual $E \geq 20.00$ £20.00
$\begin{array}{ll}\text { Special SUBSYSTEM prices. } & \times 3100 \text { disk }+ \text { PSU }+ \text { Controller } \\ \mathbf{E 1 2 9 5 . 0 0}\end{array}$此

RECHARGEABLE NICADS

 SAFT VR2C $1.2 v$ 'C' size nicads. 18 cells in ex equipment pack Good condition - easily split to singl$£ 9.50+£ 1.90$ post and packing.

VIDEO MONITORS

12" CASED. Made by the British KGM Designed for continuous use as a data display station, unit is totally housed in an OFF, BRIGHTNESS and CONTRAST
\qquad
\qquad reliability of this unit with features such as internal transformer isolated regulated supply, all components mounted libre glass PCB boards - which hinge ou ease of service, many internal controls for
linearity etc. The monitor accepts standar linearity etc. The monitor accepts standard
75 ohm composite video signal via SO239 75 ohm composite video signal via SO239
socket on rear panel. Bandwidth of the unit socket on rear panel. Bandwidth of the
is estimated around 20 Mhz and will display is estimated around 20 Mhz and with display Units are secondhand and may have scree burns However where burns exist they are on y apparent when monitor is switched Although unguaranteed all monisions approx. $14^{\prime \prime}$ high $\times 14^{\prime \prime}$ wide by $11^{\prime \prime}$ deep Supplied complete with circuit. 240 vo
operation. OWLY $£ 5.00$ PIUS $£ 9.50$ CARR. 24" CASED Again made by the KGM with a similar spec as the $12^{\prime \prime}$ monito
Originally used for large screen data display. Very compact unit in lightweight alloy case dim. 19 H H . 17 emponite video input make an ideal unit for schools. clubs
shops etc. Supplied in a used but working

14" COLOUR superb chassis monitor mad by a subsidiary of the HITACHI Co. Inputs
are TTL RGB with separate sync. and will plug direct into the BBC micro etc.
Exceptional bandwidth with good 80 col definition. Brand new and guaranteed. Complete with full data \& circuit $240 \vee \mathrm{AC}$ working. Dim. $14^{\prime \prime} \times 13^{\prime \prime} \times 13^{\prime \prime}$
owLY£ 99.00 PLUS $£ 9.50$ CARR.

SEMICONDUCTOR

 'GRAB BAGS'Mixed Semis amazing value contents triacs include transistors, digital, linear, I.C. 's tria
diodes, bridge recs., etc. etc. All devices guaranteed brand new full spec. with facturer's markings, full
$50+£ 2.95100+£ 5.15$.
TLL 74 Series A gigantic purchase of an "across the board" range of 74 mixed
I.C.s enables us to offer $100+$ min "mostly TTL" grab bags at a price which or three chips in the bag would nnormally cost to buy. Fully guaranteed all I.C's full
spec $100+£ 6.90200+£ 12.30300+£ 19.50$

CALLING DEC USERS
 Brand new and boxed

RSX 11 M 3.2 Documentation kits, fill 3 feet of your bookshelf! Under half price
only 180.00 carr. $£ 6.50$ vat on manuals DEC MSV11-DD $32 \mathrm{k} \times 16$ bit RAM $£ 195.00$ DEC MSV11-DD $32 k \times 16$ bit RAM \& I 99
We are always keen to buy all types of

ATL PRICPS PLUS VAT

[^6]WW - 065 FOR FURTHER DETAILS

Appointments

Advertisements accepted up to 12 noon Tuesday, August 2nd, for September issue, subject to space available.

DISPLAYED APPOINTMENTS VACANT: $£ 17$ per single col. centimetre (min. 3 cm).

 LINE advertisements (run on): $£ 3.50$ per line, minimum $£ 25$ (prepayable). BOX NUMBERS: $£ 5$ extra. (Replies should be addressed to the Box Number in the advertisement, c/o Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS). PHONE: IAN FAUX, 01-661 3033 (DIRECT LINE)Cheques and Postal Orders pavable to BUSINESS PRESS INTERNATIONAL LTD. and crossed.

Metropolitan Police Office

Telecommunication Officer

The Command and Control Computer System provides the Metropolitan Police with a message switching system and is used for the efficient handing of emergency calls and the use of Police resources

The successful candidate will control and co-ordinate the activities of the shift computer and network operation personnel: control and direct the operations shift support officer with particular regard to recovery and back-up procedures and services to the Force Training School at Hendon correlate system performance data and prepare computer systems performance reports, including recommendacion for action to improve system performance.

Candidates must have TEC Higher or SCOTEC Higher Certificate in Electronics. Telecommunications or similar discipline: OR C\&G Full Technological Technicians Certificates PartsI. II and III in Telecommunications. OR HNC in Electrical/Electronic Engineering: OR an equivalent or higher acceptable qualification. All candidates must have had appropriate training and should normally have 10 years experience of computer operations and telecommunications. Knowledge of Sperry Univac 1100 series machines advanrageous. Senior ex-service personnel with TEC SCOTEC C\&G recognised exemptions will also be considered
Starting salary $£ 9340$ rising to $£ 10800$ In addition this post attracts $£ 1250$ Inner London Weighting. Promotion prospects
relocation assistance may be available
For further derails and an application form (to be returned by 12 August 1983) write to Civil Service Commission. Alencon Link. Basingstoke. Hants, RG21 IJB , or telephone Basingstoke (0256) 68551 (answering service operates outside office hours). Please quote ref: $\mathrm{T} / 6012$.

SEVERN TRENT WATER AUTHORITY
 Senior Communications Engineer

£9,033-£9,999 p.a.

Communications Engineer

£8,154-£9,033 p.a.

The Authority is currently installing a regional network of microwave radio links to connect principal offices throughout its area The network, which consists primarily of 1.5 GHz links, is used for both speech and data and is due for completion in August of this year
The successful candidates should be qualified to HND/HNC level in Electronics/Electrical and are required to maintain and enhance radio, multiplex and other ancillary and terminal equipment associated with the system. Experience in the installation, commissioning and main tenance of a broad variety of electronic and electrical equipment is necessary. Both post holders will be required to undertake certain emergency repair duties outside normal office hours
While the two posts are based in Finham on the southern outskirts of Coventry in the Avon Division both engineers will however, in the course of their duties, be required to travel extensively throughout the Authority's Region.
Application forms are available from the Personnel Office, Severn Trent Water Authority, Avon Division, Avon House, De-Montfort Way, Cannon Park, Coventry CV4 7EJ. Telephone: Coventry (0203)

416510.

Closing date for the return of application forms 3 August, 1983

Electronic Test Engineers/Technicians

Racal Radar Defence Systems part of the Racal Electronics Group is undergoing a period of rapid growth. To meet our increasing production demands. we need to recruit a number of Test Technicians and Test Engineers at the following. locations in Surrey New Malden, Chessington and Hersham, and at Leicester.

The Company manufactures a wide range of products aimed principally at the Defence Industry including radar early warning and guidance systems, military displays and ECM and ESM systems.

The Test Department is responsible for the test and diagnostic functions on a wide range of complex radar equipment using high quality manual and automatic test equipment.

Applicants should be educated to $\mathrm{HNC} / \mathrm{HTC}$ standard and have practical knowledge or experience of radar and/or microwave systems.

Conditions of employment are excellent including a competitive salary, five weeks holiday, and company pension and life assurance scheme.

Interested? Then phone me on: 01-3975281 or alternatively write with brief details of qualification experience and current salary to: Mr PN Willis.
Senior Personnel Officer.
Racal Radar Defence Systems L.td..
Davis Road, Chessington, Surrey

Racal's people are Racal's success

FIELD SERVICE ENGINEER

LKB Instruments Limited, the UK subsidiary of a major international scientific instrument company is further expanding its range of products for the diagnostic clinical chemistry market and as a result a vacancy exists for a Field Service Engineer within their Customer Service Department.

Applicants should have a sound knowledge of digital and amalogue electronics, and field service experience in clinical or medical instrumental diagnostics would be a distinct advantage.

The work involves the repair and maintenance of instrumentation situated mainly in Hospitals and University Laboratories. Preference will be given to applicants living in the London area.

Conditions of employment are excellent and in addition to a good basic salary and company car, the company has a profit-sharing scheme, BUPA particpation and four weeks' annual holiday

Contact Mrs. D. Duff, for Application Form
LKB INSTRUMENTS LIMITED
232 Addington Road, Selsdon
South Croydon, Surrey CR2 8YD
Tel: 01-6515313

RF SERVICE ENGINEER

We are responsible for all aspects of sales, service and warranty in Europe for the Plasma Therm range of RF generators, plasma processing equipment and inductively coupled plasma systems throughout UK, Europe and Scandinavia. The Plasma Therm product range is a market leader in its field and has an enviable track record of profitable growth and product innovation.
THE JOB. RF service engineer based in London to provide RF service and technical support throughout UK, Europe and Scandinavia. The candidate should be a self starter, willing and able to work on his own, and be able to trouble-shoot and solve problems in the field.
REMUNERATION. The right candidate will be offered an attractive financial packace to include a performance-related bonus scheme, pension and a company car.
Applications and cvs should be addressed to:

> Mr J. F. Stackhouse PLASMA THERM LTD.
> Kangley Bridge Road, Sydenham London SE26 5AR

Appointments

Abstract

Akal (UK) Limited, a leading name in theconsumer electronic market, specialising in hi-fi and video products, now have the following vacancies at their Heathrow headquarters:

VIDEOTECHNICIAN

As one of the leaders in the video market we are seeking a Video Technician, aged $25+$ who is a fully qualified, experienced Television Engineer. Applicants will have some experience of repairing video recorders as this opportunity is in our busy in-house Servicing Department
We work to high standards and need someone who will maintain them, as well as being self-motivated with the ability to handle technical queries both by telephone and letter

SENIOR AUDIO TECHNICIAN
 The successful candidate will be fully qualified with some years experience in the

 servicing and repair of high quality hi-4i equipment. This will suit someone who is looking for a more supervisory position where duties will include the control of a small workshop. answering technical queries and dealing with the public, in addition to normal servicing work.Communication skills both written and oral are necessary, as is the ability to cope with the pressure in this highly active department

AUDIO TECHNICIAN

Due to our ever increasing growth we now need another Audio Technician to join our servicing team. Applicants will be fully qualified and have some experience in the servicing and the repairing of high quality hi-fi equipment.

The above positions offer competitive, negotiable salaries on the basis of age and experience, an attractive benefits package and the opportunity of joining a Company that is progressive in its outlook
Men and women interested should write or telephone for an application form to (no agencies)

E.L.A.C.
 REQUIRE AN
 \section*{ACOUSTIC ENGINEER}

Electro Acoustic Industries Limited, a progressive and expanding Company, require an enthusiastic Engineer to assist in the development of loudspeakers for all purposes, covering a range from specialist telecomm. applications HiFi, M.O.D. Marine to 'In Car' entertainment. The successful candidate will be aged between 25 and 35 years and have had some practical experience in the design and application of test equipment. Experience in the use of Bruel \& Kjaer frequency measuring equipment is particularly relevant.

```
Write including a C.V. to
MR.R.N. WALTON
TECHNICAL DIRECTOR
ELECTRO ACOUSTIC INDUSTRIES LTD
STAMFORD WORKS
TOTTENHAM
N15 4QU
```


Having introduced an extended new product range, many of which are microprocessor based. Marconi Instruments has once again confirmed itself as Europe ${ }^{\prime}$ s leading manufacturer of sophisticated test and measurement systems. Our products are selling throughout the world and we are naturally developing further new and innovative designs.

Akey role in our organisation is that of our Luton based Service Division, where a group of Technicians satisfy a very wide range of customer needs in the repair and calibration of test equipment.

When you join our team you will quickly become individually responsible for work assignments involving many different kinds of propriety products.

prospects are excellent. The Division is part of a large company with its main Instrument Design/Manufacturing Base at St. Albans. a Microwave Plant at Stevenage and a further substantial Design Manufacturing Croup at Donibristle in Scotland. The Company is proud of its policy of promoting men and women from within, as future Salesmen. Managers and Engineers.
 alaries, which are dependent upon experience and ability are excellent and regular overtime is normally available. Progress for competent engineers and technicians can be rapid. Relocation assistance is available in approved cases. Special consideration is given to 'ex-forces' personnel.

Whatever your level of experience we would like to hear from you. Cut out the coupon and send it to John Prodger. Recruitment Manager. Marconi nstruments Limited. FREEPOST.
St. Albans AL. 4 0BR. Tel: (0727) 59292

Name
Age
Address

Tel. No
Years Experience Present Salars:

$\mathfrak{£ 6 . 0 0 0}$	$\mathfrak{£ 7 . 0 0 0}$	$\mathfrak{£ 8 . 0 0 0}$
\square	\square	\square
$\mathfrak{£ 7 . 0 0 0}$	$\mathfrak{£ 8 . 0 0 0}$	$\mathfrak{£} 9.000$

${ }^{\text {Over }}$
Qualifications

Present Job

Appointments

CHELSEA COLLEGE University of London

Applications are invited for the post of

TECHNICIAN GRADE 5

to join an Electronic/Development Workshop working with the departments of basic medical sciences. The work undertaken consists of the design, development and construction of analog and digital equipment for use in the life sciences. The successful applicant will have a good knowledge of electronics and an interest in or experience of the application of these techniques to solving biological prob lems.
Salary scale: $£ 6279$ - $£ 7332$ pa plus f1220 London Allowance.
Application forms from the Personnel Office, Chelsea College, 552 King's Road, London SWIO OUA. Closing date: 3rd August 1983

CHIEF ELECTRONICS

 TECHNICIANOARTFORD and GRAVESHAM HEALTH AUTHORITY based ot JOYCE GREEN HOSPITAL, DARTFORD, KENT

Qualifications - ONC. HNC preferred.

 Salary Scale - $£ 7.386$ to $£ 9,212$ Medical Physics Technician il This is a newly estab lished post offering an exceptional opportu nity for the establishment of a section responsible for the maintenancand bio-medical equipment
and bio-medical equipment
andidates, male or temale, should possess broad experience of electronics together with an understanding of the safety aspects of equipment.
In addition to a sound technical background applicants should possess the managerial qualities required to organise and supervise both subordinate staff and contracted work and be capable of developing and sustaining successful working relationships with all levels and disciplines of hospital staff For job description and application form write to: District Personnel Dept., Darenth ark Hospital, Dartiord, Kent IS FOR THIS POST APPLY.

T RE (2195)

RF ENGINEER

 TO CARE ABOUT A PRODUCT THAT CARES FOR THE USER
YORKSHIRE

Our client, Tunstall Telecom, designs and manufactures the UK's most used emergency communications system for the elderly or infirm.

The increasing demand for greater flexibility and mobility of use has created the need for a further RF Engineer.

The work will be on varied low power RF frequency projects and will involve significant theoretical and practical design.
You will work in co-operation with other areas of R \& D and part of the task will be to liaise with the Home Office.

The position will suit someone with proven design experience from a commercial background, a degree and most of all a mature approach to cost effective and 'producible' design work.

Apart from an excellent negotiable salary and benefits package (with relocation assistance where necessary) this is an opportunity to make a very personal 'stamp' on a product that will have a very beneficial effect on the elderly and infirm within the country.

To discuss this position in greater detail telephone or write to Paul Hecquet on Lewes (07916) 71271.

leeds western health authority THE GENERAL INFIRMARY AT LEEDS
 MEDICAL PHYSICS TECHIICIAN GRADE III or IV (Electronics)

Electronics Technician required in the Medical Physics Oepartment. Dutes of the post include the development, commissioning, testing, maincal and computing equipment The post becomes avallable on 1st November, 1983 Experience in electronics is essential and the appointment will be made in Grade III or IV depending on the qualifications and expertence the range $£ 6$) 32 to $£ 7926$ (Grade IH1 or $£ 5171$ to £6798 (Grade IV).
Application forms and iob descriptions are obtainable from The Personnel Officer, Leeds General Infirmary, Great George Street, Leeds LS1 3EX.
Closing date: 29th July, 1983.

LOGEX
 ELECTRONICS
 RECRUITMENT

Special:sts in Fieta \& Cus:omer Engineering appoint

 ments, all locations and disciplinesLogex House, Burleigh, Stroud
Gloucestershire GL5 2PW Gloucestershire GL5 2PW 0453883264 \& 01-290 0267 (24 hours)

[^7]
Electronic Engineers What you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around $£ 5000-£ 15000$
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

TJB ELECTROTECHNICAL PERSONNEL SERVICES,
12 Mount Ephraim.
Tunbridge Wells, Kent TN4 8AS.

Tel: 089: 39388

Appointments

Premier international electronics companies - very secure and expanding in London and the south of England - require professional senior staff including departmental heads). Relocation allowance up to $£ 3,000$

ELECTRONIC ENGINEERS

Electronic engineers required with degree - H.N.C. tech. cert. - O N.C. Almost any background required but software and hardware experience will bring salary of absolute minimum of $£ 6,500 \mathrm{p}$. a and could be up to $£ 11,000$ p.a.

ELECTRONIC DESIGN/DEVELOPMENT

Engineers required with experience of circuit or component design or development for microwave equipment or digital logic or computer peripherals or electronic packaging or film technology or telecommunications. Also above for updating in modern techniques. Salaries up to $£ 15,000$

SOFTWARE PROGRAMMERS \& ENGINEERS

Engineers or mathematicians required for development of commissioning and design proving programmes from assistant to team leader level. Salaries up to $£ 12,000$ p.a.

Please contact by telephone, or letter, to discuss companies and possibilities. Watford 49456 anytime.

ERWM ENGINEER

Rare opportunity to join the R\&D team at B\&W Loudspeakers in Sussex
The successful candidate will be involved with the design and development of both loudspeaker drive units and complete high-fidelity speaker systems, using our in-house computer and laser interferometer.

Applicants should be educated to at least HNC standard and preferably have experience of electronics and acoustics. A thorough understanding of the operation of a loudspeaker system is essential.

The salary is negotiable. Please apply in writing to Stephen Roe.

B\&W LOUDSPEAKERS LTD

Elm Grove Lane, Steyning, West Sussex Fullham Road, London SW3

Medical Physics Technician
 MPT2

required in the Physics and Radiotherapy Departments The appointed person will be responsible for the supervision of a pleasantly situated, well-equipped electronics workshop and the maintenance and service of an interesting variety of radiotherapy equipment. The Department has 3 cobalt treatment machines, 150 kv and 300 kv X -ray units, a Philips 10 mv linear accelerator and a simulator. Current developments include the installation of a Philips 5 mv linear accelerator and caesium Selectron unit.
Applicants should hold ONC, HNC or similar qualification in electrical engineering or (preferably) in electronics, and have relevant technical experience particularly with Philips linear accelerators. To be appointed on to the MPT2 scale applicants should have served at least 2 years as MPT3 or equivalent. Salary scale $£ 8,383-£ 10,209$ per annum.
Application form and job description available from the Personnel Department, Royal Marsden Hospital, at the above address. Tel: 01-352 8171 Ext. 446/447.

UNIVERSITYOF
-

SURREY

Department of Electronic and Electrical Engineering RESEARCH OFFICER for the "UOSAT Spacecraft project"

Applications are invited from engineers with proven experience in RF and/or dignta! techniques for the post of Research Otficer on the UOSAT spacecraft project
The work will involve the initiation implementation and operation of spacecraft ground support hardware/sottware and the design and fabrication of fulure spaceci aft systems
The UOSAT spacecraft built in the Department of Electronic \& Electrical Engineering at the University of Surrey supported by UK Industry (AMSAT-UK and the RSGB), and launched by NASA in October 1981, is controlled from a command station located within the Department The spacecraft currently supports a number of engneering. scientific. educational and amateur radio experiments and is expected to continue operating for several years.
The appointment will be for 12 months on Research and Analogous Scales up to a maximum of $£ 8530$ per annum.
Applications in the form of a curriculum vitae (3 copies) including the names and addresses of two reterees should be sent to the Deputy Secretary (Personnel). University of Surrey Guildiord. Surrey GU2 5 XH by 22 August 1983 quoting relerence 170 WW

CAMBRIDGE HEALTH AUTHORITY

Physics Department
Addenbrooke's Hospital, Hills Road, Cambridge

Medical Physics Technician Grade II
 (£7,386-£9,212)

An electronics technician is required to provide maintenance and support services to the CT Head Scanner at Addenbrooke's Hospital and to electro medical equipment in the Thoracic Surgical Unit, Papworth Hospital.
Applicants should hold an appropriate HNC or
equivalent qualification and have several years experience in the field of electronics (mini computer experience advantageous).
For further details contact Mr P. E. Ward, Principal Physics Technician, at the above address. Tel: (0223) 245151 ext. 471
Application form and job description from the Personnel Department ext. 7511

Appointments

Test Engineers/ Technicians here's a package worth looking into

 opment and manufacture of advanced communication equipment. the package offered by Marconi Communication Systems Limited warrants very close inspection indeed by Test Engineers and TechniciansWhen you're thinking about a move, you've got to be sure that both your career and lifestyle are going to benefit. And we believe we have a lot to offer on both accounts

Right now we are seeking men or women to join our Space and Microwave. Digital Communications and Defence Departments to work on a wide range of equipment including satellite and tropo systems. data modems. PCM and associated ATE such as Graduate

Of our reputation in advanced electonics there can be little doubt. Current projects, like Triffid, ICS3 and Modems for
Marconi
Communication Systems

British Telecomms new data distribution service are among the most advanced of their kind, designed to meet the needs of military and civil communications for a generation to come

In Cheimsford we re very conveniently located for London the Essex countryside and coast A modern town with good facilities and a variety of reasonably priced housing

Applicants should preferably be qualified to HNC in Flectronics although practical experience in a test or field services environment is equally important.

Vacancies cover a wide range of seniority and iesponsibllity with salaries between 55.000 - $£ 8.000$ p.a. Our information package will tell you more so telephone now for your copy or write with full C V io Gordon Short at Marconi Communication Systems Limited. New Street. Chelmsford. Essex. CM1 1PL. Tel Chelmsford (0245) 353221 extension 592

BORED ?

Then change your job!

1) Film-TV Equipment
installation and maintenance of spudio and V
equipment UK and abroad
2) Satellite Communications

VHF/RadioEngineer

Middle East

Our client, involved in several major projects overseas, require a Telecommanications Engineer immediatcly to advise and monitor an important harbour system. Emphasis is on VHF radio links, operational control and port salety services.

Candidates should be graduates in an appropriate discipline preferably with membership ol a prolessional inslitution, and have relevant experience in VHF radio ficld. In addition to professional background applicants must be skilled in liaison and consultancy practices, preferably gained overseas and be available for immediate interview and posting The post attracts an evecellent tax-free salary package of
C. 224.000 together with usual overscas benctits inctuding free furmished accommodation company car and medical cover Candidates. aged $30-+5$. must hold relevant degree to qualify for intervien

Please urite mitially with full career details to Contidential Reply Service Ref DSV 8760 Austin Knight Limited. London. WIA IDS

Applications are forwarded to the client concerned. therefore companies in which you are not interested should be listed in a covering letter to the Conlidential Reply Supervisor.

Austin
Knight Advertising

BOX NOs.

Box number replies should be addressed to

Box No

c/o Wireless World
Quadrant House
The Quadrant
Sutton, Surrey, SM2 5AS

(1) PIONEER

require

A SAFETY/TECHNICAL CO-ORDINATOR

Pioneer High Fidelity (GB) Limited is a very successful and expanding company in the electronic consumer industry. We market a wide range of Hi Fi, Car Audio and Video products.
A vacancy now exists in our Technical Department for a Safety/ Technical Co-ordinator at our new premises in Greenford, Middlesex.
The job entails the submission of new products to B.E.A.B. for approval, liasing with our factories in Japan and with the United Kingdom Safety Authorities and the writing of technical service bulletins for our dealers and authorised service centres.
The successful applicant should be fully conversant with BS-415 safety standards, applicable to domestic electrical equipment, and should have had at least two years' experience in this field.
$\mathrm{He} /$ she should be qualified to H.N.C. or equivalent standard in electronics and preferably with at least three years' experience in domestic HiFi and/or Video equipment. Some experience in technical writing is also essential.
Benefits include competitive salary, four weeks' holiday, subsidised restaurant, contributory pension scheme and private health cover.

For further information or an application form, please contact:
Mrs C. A. Burridge, Pioneer High Fidelity (GB) Limited
Field Way, Greenford, Middx. UB6 8UZ. Tel: 01-575 5757

ELECTRONICS ENGINEER

Rediffusion Music require an Electronics Engineer with a minimum of five years' experience in the professional audio field, covering real time and high speed magnetic tape duplicating systems.
The successful candidate will be involved with the design, development and technical back-up of studio and factory production equipment. Should be qualified to degree or HND level, and will be expected to have proven supervisory and communication skills.
For application form please contact:

Mrs Joanne Jarvis

Personnel Officer

Rediffusion Business Electronics Ltd.
Music Division
Cray Avenue
Orpington
Kent
Tel: Orpington 32121
(2193)

INNER LONDON EDUCATION AUTHORITY

Learning Resources Branch
Television Centre
Thackeray Road
Battersea SW8 3TB

ENGINEER - ELECTRONIC MAINTENANCE

Salary range: (ST2) $£ 7,035$ to $£ 7,974$ plus $£ 1,284$ London Weighting Allowance.
The ILEA's Television Centre produces a wide range of educational programmes on video and audio cassettes.
The Maintenance section numbers four persons and a vacancy has arisen for an engineer with a sound knowledge of the principles of colour television, and preferably a working experience of maintaining broadcast type TV equipment. Applicants must wish to specialise on the video side (cameras, vision mixers, telecine, etc.), and will receive appropriate training.
An engineering degree, TEC or other equivalent qualifications are desirable.
Application forms from the Education Officer (EO/Estab. 1B), Room 365 , The County Hall, London SE1 7PB. Please enclose a stamped and addressed foolscap envelope. Completed forms to be returned by May 4. 1983.

ILEA is an equal opportunities employer.

$\sqrt{-117}$

TELEVISION AUDIO MAINTENANCE LIMITED

TECHNICAL TRAINING OFFICER

Television Audio Maintenance (TAM) is an expanding national Division of the Telefusion Plc Group ($£ 80$ million turnover) providing a Video/TV/Audio after sales service to leading electrical retailers, all of whom are household names. This interesting and challenging new appointment will be of interest to engineers of City and Guilds Technician Education or equivalent who wish to broaden their experience across a wide range of modern merchandise and manufacturers. Applicants should preferably have had teaching or training experience.
The work involves conducting Central and Regional Courses, preparing material to be used by our national network of Local
Trainers, providing technical servicing advice to our 50
Service Departments and liaising with manufacturers. The position is based at Blackpool. Considerable travelling is involved.
Salary is negotiable. Company car plus other fringe benefits.
Reply with full details to:
Mr. R. M. Beaton, Group Personnel Manager,
Telefusion Plc, Telefusion House, Preston New Road, Blackpool, Lancs.

THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF ELECTRICAL AND COMMUNICATIONS ENGINEERING

PROFESSOR AND ASSOCIATE PROFESSOR (2 VACANCIES)

Applications are invited from suitably qualified candidates to fill the above posts. The Holder of the Chair of Electrical and Communications Engineering would be expected to assume leadership of the Department. The discipline of the Associate Professor would be chosen to complement that of the Professor.

The Department of Electrical and Communications Engineering has a current academic staff of 16, and a total student enrolment of 190. The Department is responsible for courses leading to a Bachelor's Degree with specialisation in either communication or power engineering, and to a Diploma or Graduate Diploma leading to a Master's Degree after further study, has recently been introduced. There is scope for developing related courses within the Department.
The applicants should have appropriate qualifications and extensive teaching and administrative experience in higher education, special expertise in some branch of electrical and communication engineering, and a recognition of some of the problems facing technological education in a developing country. He/she will be required to stimulate and pursue research and maintain and develop strong links with engineering employers and the profession.

The ianguage of instruction is English.

SALARY:	Professor Associate Professor (K1 $=\mathbf{5 0 . 7 5 9 1)}$	K22,840 K21.720

$$
\text { (K1 = } £ 0.7591 \text {) }
$$

K21,720

Intial contract period is for three years. Other benefits include gratuity of 24\% taxed at 2%, appointment and repatriation fares for the staff member and family after 18 months of service, settling-in and settling-out allowances, six weeks paid leave per year, education fares and assistance towards school fees, free housing. Salary continuation and medical schemes are available.

Detailed applications with curriculum vitae together with names and addresses of three referees and telephone contact should be received by: The Registrar, PNG University of Technology, Private Mail Bag, Lae, Papua Now Guinea by 31st August, 1983.
(2186)

SALFORD COLLEGE OF TECHNOLOGY DEPARTMENT OF ENGINEERING
 LECTURER IN ELECTRONICS
 (AUDIO/MUSIC RECORDING)

Lecturer required from 1 September, 1983, to assist in the development of new three year full-time Diploma course in Music Recording Technology
Candidates must have a degree in Electronics or Physics and should have practical experience of analogue and digital equipment. An ability and/or interest in music is essential
In addition to teaching on the Music Recording Technology course the successful candidate will be required to teach on other full-time and parttime day courses in Electronics and related studies.
Further details and application forms ito be returned as soon as possible) are available from the Principal, Salford College of Technology, Frederick Road, Salford M6 6PU. Tel: 061-736 6541

Classified

STUDIO 99 VIDEO

Required a further VIDEO
ENGINEER
for bench and field work
Duties involve the maintenance and installation of professional video equipment. A candidate should be familiar with three tube colour cameras, U-Matic format video recorders and associated equipment.
Whilst a technical qualification is desirable, a minimum of five years' experience is required. This is an interesting job requiring a high level of expertise and selfmotivation.
If you can match up to these expectations we would like to hear from you.
Company vehicle provided, salary commensurate with experience.

Please contact Mr Stone or Miss Whittick on 01-450 1313

TRANSMITTER/ STUDIO ENGINEERS

LONDON BASED

Up to $\mathbf{f 1 3 , 0 0 0}$
These positions require Engineers with a considerable experience in the design and installation of transmission and
studio equipment. FM, MW/SW up to 100 KW and TV up to 30 KW . The job entails overlooking an operation from the initial contract through to installation and as most of these are abroad, cand dates must be prepared to spend up to 50% of the vear outside the U.K. A working knowiedge of fench or Ger man would be an advantage

For an application form, please send your name and address to George Lowi,
Beechwood Appointments Register, 221 High Street, LONDON W3 9BY or telephone 01-992 8647 (24-hour answering service).
(2204)

Brectronoo

ELECTRONICS ENGINEER

committed to Third
World Development
to develop simple solar voltaic products and assist in establishing sima
manulacturing units in Botswana
Practical experience of design and con struction of electronic devices essential Two vear contracts incturting modes Two-vear contracts inchuding modest
living allowance and flights Regret no funding for dependants
Write for details

including short c.v. and s.a.e to volunt Service WWi 53 Regent Road. Leicester LE1 | LYI. |
| :--- |

TOWNLEY EMPORIUM Bargains for callers

ELECTRICAL, ELECTRONIC \& MECHANICAL COMPONENTS
\qquad Diodes. Thyristors Resistors Terminals: Switches: Relays: Screws ICs; Toals
Harehill Street off Bualey Road Todmorden, Llancs OL145. Y

Challenging Opportunities with Sony Broadcast Ltd.

We are one of the World's leaders in the professional broadcast industry with our international headquarters for Europe, the Middle East and Africa located in North Hampshire. Continued growth and success has resulted in the following exciting opportunities

Field Service Engineer

To be engaged in the service and repair of our extensive range of equipment including video cameras, VTR/VCR's, and editing control systems. A high level of self mot vation and initiative is required in order to successfully undertake customer visits throughout our marketing territory

Senior Quality Assurance Engineer

To join a small team responsible for the evaluation of product performance Responsibilities will include commissioning and assistance in product customisation. This will involve liaison with customers and the ability to effectively maintain this interface is essential

Applicants, aged 25 plus, should have a background in broadcast television equipment supported by a relevant electronics qualification
We offer a iirst class working environment in our prestigious engineering complex, together with an attractive salary and excellent conditions of employment. which include Company Pension/Life Assurance Schemes and private medical cover
If you are interested please write with cjetails of present salary and career to date to: David Parry, Assistant Personnel Officer, Sony Broadcast Limited. City Wall fiouse, Basing View, Basingstoke, Hampshire RG21 2 LA. Telephone Basingstoke (0256) 55011

Sony Broadcast Ltd.
City Wall House
Basing View. Basingstoke Hampshire RG21 2LA United Kingdom
Telephone (0256) 55011
(2182)

UNIVERSITY COLLEGE LONDON

Department of Phonetics \& Linguistics

RESEARCH ASSISTANT HEARING RESEARCH

PHYSICIST requred to work in the lield of electrocochlear stimufation in the
totally deat A new five yeat MRC funded post (starting July 1983) in an estiblished mult-disciplinary group with collaborating members in London UUnversity College London and Guy's Hospitall and Cambridge (Laboratory of
Experimental Psycholpgy). The Experimenta Psvchologyl the processiny, bucompanble materials practical prosthesis design and work with individual patients. Preparation for a higher degree is posstole. Salary f7.190- $£ 1,186$ London Allowance

Applications (no form) should be sent to Professor A. J. Fourcin. Department of Phonetics \& Linguistics, University Colege London. Wolfson House, 4 Stephenson Way, London NW1 2 HE

UNIVERSITY OF YORK

SENIOR TECHNICIAN Grade 5

(Salary scale $\mathbf{£ 6 2 7 9 - £ 7 3 3 2)}$

Department of Psychology

A vacancy exists for a post of Electronic/Computer Technician in the Department's electronic workshop. The work will primarily involve the construction and development of interface systems and the maintenance of mini- and micro-computers.

Applicants are expected to have appropriate technical qualifications. Experience with PDP-11 type computers and a knowledge of Macro 11 assembly language would be an advantage.

Applications should be sent, together with the names and addresses of two referees, to Mr . D. Rymer, Assistant Bursar, University of York, Heslington, York YO1 5DD to arrive not later than 31 July.
(2205)

ARTICLES FOR SALE

MARCONI UHF SIGNAL GENERATOR

f79/Cos 0 Corrector $£ 39$ Wow/Fitter Meter E75 BE Double Pulse Generator f49 Wayne Kerr Audio Analyser f45. Signal/Sweep Generators. Siemens Chan Recorder with Level Meter facility 449 VibraLion Analyser $£ 69$ Pye Megohmeter 200,000 M-ohm $£ 47$ Hivolt Linear Scale 30 KV EHT Meter $£ 32$ Micro-Indexing Tables with
electronic contiol contractors etc $£ 2957$. channel " "tape recordel six speeds $£ 98$ Valradro $50-60 \mathrm{c} / \mathrm{s}$ Static Converter $£ 39$ Swiss micro-lathe f45 Vortexion mexer 3ch - ppm $£ 45,4 \cdot \mathrm{ch}+$ cue lights f 49 Leevers. fich professional recorder 12v DC f95 recording tapes NAB $£ 4$ ea Mafconid Double Pulse Generator $\mathrm{f} / 5$ Hatfield Static Converter $50 \mathrm{c} / \mathrm{s}$ in, $290-550 \mathrm{c} / \mathrm{s}$ out, $\mathbf{f 7 5}$. Grubu Parsons Argon Analyser $£ 50$. Sultivan
Precision Decade Mica Condenser total lit Precision Decade Mica Condenser, total ! !it
f45.040-376236
$\mathbf{2 0 1 6}$

[^8]
The Papua New Guinea University of Technology Department of Electrical and Communications Engineering Lecturer

Applications are invited for the above position in the Department of Electrical and Communications Engineering.
Candidates should preferably have experience in teaching communica tions engineering subjects to degree level. An interest in HF and UHF amateur radio techniques or satellite communication would be preferred. A higher degree would be an advantage.
SALARY:- Lecturer K16,020-K17,870
($\mathrm{K} 1=£ 0.7591$)
Appointment level will depend upon qualifications and experience
Initial contract period is for approximately three years. Other benefits include a gratuity of 24% taxed at 2%, appointment and repatriation fares, leave fares for the staff member and family after 18 months of service, leave fares for the staff member and family after 8 months of service,
settling in and settling-out allowances, six weeks paid leave per year, settling in and settling-out allowances, six weeks paid eave per year,
education fares and assistance towards school fees. Free housing, salary protection plan and medical benefit schemes are available.
Detailed applications with curriculum vitae together with the names and addresses of three referees and telephone contact should be received by:
The Registrar, PNG University of Technology, Private Mail Bag, Lae Papua New Guinea by 31st August, 1983.

HIGHLAND HEALTH BOARD

DEPARTMENT OF MEDICAL PHYSICS AND BIO
ENGINEERING, RAIGMORE HOSPITAL, INVERNESS

SENIOR TECHNICIAN/ TECHNICIAN Electronics Section

A vacancy exists for a Senior Technician or Technician (MPT Grade III or IV). The work involves design, construction, repair and maintenance as well as clinical involvement.
Salary is: Grade III £6132-£7926
Grade IV £5171-£6798
National Health Service Conditions of Service.
A full job description and application form can be obtained from Area Personnel Officer, Highland Health Board, Reay House, 17 Old Edinburgh Road, Inverness.
For additional information contact Mr. A. R. Bowley, Deputy Director. Tel: Inverness (0463) 34151, Ext 276 or 277.

(2206)

[^9]

1000 INSTRUMENT HANDBOOKS FOR SALE

Large range of well-known manufacturers - H-P. Tek, Air

Send s.a.e. for price list. Martin Associates (Electronics) Limited, Parthia House, Beckhamton, Nr. Marlborough. Wilts SN8 1aJ
Mal

OPERATIONAL AMPLIFIER EXPERIMENTAL MANUAL
 by G. B. Clayton

DIGITAL ELECTRONIC CIRCUITS \& SYSTEMS
by N. M. Morris
ELECTRONIC MUSIC
CIRCUITS
by B. Klein
THE CATHODE-RAY
E15.00
OSCILLOSCOPE ANDITS USE
by G. N. Patchett $£ 5.50$
VIDEOTAPE RECORDING
by J. F. Robinson
DOMESTIC VIDEO CASSETTE RECORDERS
A SERVICING GUIDE
by S. Beeching
$£ 15.00$
MICRO COOKBOOK VOL 1:
FUNDAMENTALS
by D. Lancaster
AN INTRODUCTION TO
ANINTRODUCTIONT
MICROCOMPUTERS
by A. Osborne
$£ 10.50$
WORLD RADIO TV
HANDBOOK
by J. Frost
by J. Frost
1983 THE RADIO
AMATEUR'S H/B
by A.R.R.L.
\star ALL PRICES INCLUDE POSTAGE \star

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST

of British and American Technical Books

19-21 PRAED STREET
LONDON W2 1NP
Phone 01-402 9176
Closed Saturday 1 p.m.
Please allow 14 days for reply or delivery

INVERTERS

High-quality DC-AC; also "no break" (2ms) static switch, 19in. rack. Auto Charger.

COMPUTER POWER SYSTEMS
Interport Mains-Store Ltd.
P0B 51, London, W11 3BZ
Tel: 01-727 7042 or 0285 310916

24
COLUMN
PRINTER
ONLY
£69 EACH
(inclusive)

Standard 4-inch 30 mounting 9V AC or 5 V DC power supply; stan dard centronics interface or seria data; extends only 40 mm behind panel

For further details contact Benwick Electronics 9 Doddington Road, Benwick nr March Cambs, PE15 OUX Telephone: Benwick (035477) 471

3 COMPARTMENT ICI ULTRASONIC CLEANER

Laminar Clean Air Bench $£ 475$.
Unitek 2-127-05 Parallel Gap Welding Head, c/w P.S.U. \& Foot Pedal Unused - £450.
Phone: (067 23) 219

ENCAPSULATING EQUIPMENT FOR coils, transformers, components, degassing silicone rubber, resin, epoxy. Lost wax casting for brass, mers, components. Vacuum equipment, low cost, used and new. Also for CR'T regunning metallising. Research \& Development. Barratts, Mayo Road, Croydon CR0 2QP. 01-6849917. (9678)

Analogue integrated carcuit design on a single chip. Phone Four-D Linited on 0279-29246.

SURPLUS

Top prices paid for surplus, redundant and obsolete test equipment, factories cleared.
Also quantities of components. mmediate settlement. We will call anywhere in the United Kingdom

TIMEBASE

94 Alfriston Gardons
Sholling, Southampton S02 8FU Telephone: (0703) 431323
ANTIQUE RECEIVING
VALVES
Unused and boxed
In large quantity
Tsutom Yoshihara
C1-105, Deguchi-cho 34
Suita-shi, Osaka 564
JAPAN

LINSLEY HOOD DESIGNS
 75 W att and 100 W amps
 Audio Signal Generator
 75Watt amp p.c.b.
 $£ 2.30$
 p\&p $50 p$
 S.A.E. for leaflets
 TELERADIO ELECTRONICS 325 Fore Street, London N9 OPE

EX WD Radio equipment and test equipment Over 500 sets in stock from $£ 8$. Send 50 p for illustrated catalogue (including £1 voucher) Weirmead Lid. 129 St. Albans Road, Watford
Herts. Tel: Watford (0923) 49456 .

AATICLES WANTED

WANTED

Test equipment, receivers valves, transmitters, components, cable and electronic scrap, and quantity. Prompt service and cash. Member of A.R.R.A.

M \& B RADIO

86 Bishopsgate Street Leeds LS 1 4BB 053235649

WANTED

Redundant test equipment
receiving and transmitting equipment

- valves, plugs and sockets - synch-
Phone: Johns Radio 0274684007
84 Whitehall Road
East Birkenshaw
Bradford BD11 2ER

AVO Model 8
Test Meters.
Brand new with leather carrying case Ex-Government issue, needing slight electrical and mechanical adjust-
ments. $£ 45$ each
Burgess Lane \& Co. Ltd., Thornton Works, 1 A Thornton Avenue, London W4 1OE. 01-994 5752.

WANTED

Redundant/surplus electronic compocquipment. Telep
Prompt service and payment. J. B. PATTRICK

191/193 London Ro
Romford, Essex Romford 44473

QIJAD VALVE AMPIIFIERS. Garrard 301 \& "W'anted Luse" sall valve amplifiers repaired The Vintage Wireless Company, 64 Broad Street. Staple Hill, Bristol BSIf SNi . (0272) 565472

CAPACITY AVAILABLE

Printed Circuit Boards to your specification froni artwork through to finished board

248
QUICK DELIVERY COMPETITIVE PRICES

CROFTON $28:-$

Twickenharn Middlesex
TEL 01891 1923/1513 Telex 295093

PCB/ELECTRONIC ASSEMBLY

\star Circuit Design \& Developmen

\star Prototyping

* Pre-production Consultancy
* Full Production Capability
\star Component Sourcing \& Stocking * Complete Test Facilities

STAGECRAFT (ELECTRONICS) LTD 3 Churchifield Road Acton Central, W3 6 BH

SERVICES

CIRCOLEC
 THE COMPLETE ELECTRONIC SERVICE

Artwork, Circuit Design, PCB
Prototypes, Final Assembly
Quality workmanship by professionals at economic prices
Please telephone 01-646 5686 for advice or further details
Unit 4, Windmill Trading Estate
13911

FOR THE BEST PCB SERVICE AVAILABLE
 © Circuit Design \& Dev
 * Artwork Layout
 Work of the highest standard by experienced
 draughtsmen. No minimum charge
 \& Board Manufacture
 Prototype to semi-production, excellent rates,
 * Wiring \& Assembly
 EWiring st Asy PCB assembly. qualified staff.
 山illia!Tร P.C.B. Artworks FAST TURNROUND
 eftectuve specialist layour
 WILIA master artwork GRAYS LANE MORETON-IN-MARSH, GLOS. Telephone 0386840121 - to 9 p.m.

t Test
Full test facilities avallable
One or all services avail-
able, no order too small.
 ford (0245) 357935, or write
to HCR Electronics. The Industrial Unit, Parker Road,

dustrial Unit
Chelmsford.

PRINTED CIRCUIT BOARDS

Manufacturers from A/W or film, small or large quantitie

> MAYLAND PCB CO. LTD. Maytandsea
> Chelmsford, Essex CM3 6AB Tei. (0621) 741560

EPROM

PROGRAMMING

From list and/or existing EPROM for most 5 v N.MOS types. Charge $£ 2.50+12$ pence per 32
words manually entered. Erasing and EPROMS also avalable.

Bandlay Chipware
20 Boroughgat
Cumbria CA16 6AG
Tel: 093051027

TV PICTURE TUBES If you have int rat ing TUBES. If you have interest in setting up a TV tube rebuilding plant we offer our consultancy service backed by more than 30 year
-xperience. We will provide equipment new or experience. en will provide equipment new op
used. Layout and fullest quality training. We also wfer all component parts of every type for all tubes. Our service is worldwide and a ioint partisipation venture may be considered in some countries. Box No. 2095 .

PCBS \& PANEL LABELS to your require menis. Design - Prototypes - Proxduction. G N. Slee Custom Products, | Thurnscoe, Rotherham. Yorks SG3 0TP. Tele |
| :--- |
| Fhone 0709$) 89525$. |

SMALL BATCH PCBs, produced from your art work. also DIALS, PANELS, LABELS. Camera work undertaken. FASI TURNAROUND. De rails: Winston Promotions, 9 Hatton Place, Londo ECIN 8RU. Tel. 01-405 4127/0960.

CAPACITY AVAILABLE
 TW ELECTRONICS LTD
 THE PCB ASSEMBLERS
 More and more companies are investigating the advantages of using a profesional subcontractor. Such an undertak. ing requires certain assurances.
 TW are able to satisfy all of them quality, competitive pricing, firm delivey tomer.
 Assembled boards at 100% inspected before flow soldering and reinspected after automatic cropping and cleaning. Every batch of completed boards is issued with a signed certificate of confo mity and quality - our final assurance. For further details, contact us at our new works:
 Blenheim Industrial Park Bury 8t. Edmunds Suffolk IP33 3UT Telephone: 02843931 (1466)

PCB/ELECTRDNIC ASSEMBLY

to sample or drawing. Short or contin wous runs. Any quantity. 100\% inspected. Special rates for small companies or large quantuties. Fast turnaround and local deliveries if required.
AUTRONICS, 23 Regency Gardens Yardley Wood, Birmingham B14 4JS 021-4744638

PCB \& ELECTRONIC ASSEMBLY

- Assembly of all types of PCB

Cable Harness \& Chassis Wiring - Testing Facilities

- Design \& Development Service WEB LOGIC SYSTEMS LTD 15 High Street, Harpenden Herts. Tel.05827-62119

DESIGN SERVICES. Electronic design de velopment and production service available fo
digital and analogue instruments. RF digital and analogue instruments. RF Transmir ters and receivers, telemetery and con.ro Wolsey Ruad, Ashford, Middlesex. Phone M Falkner 53661.) Ashiord, Midulesex. Phone (834)

TURN YOUR SURPLUS Capacitur, tran sistors, etc, into cash Contact COLES-HAR DING \& Co., 103 South Brink, Wisbech, Cambs 0945-4188. Tmorunity to quote for complete come the opportunity to quote for complete fac
tory clearance.

UESIGN AND DEVELOPMENT, ANAL OGUE, DIGITAL, RF AND MICROWAVE design, mechanical desig and prototype Pmal design, mechanical design and prototypesmal Longshot Estate, Bracknell, Berks. Bracknell (0344) S2023.

BUSINESS OPPORTUNITIES

Established TECHNICAL PUBLICATIONS BUSINESS

For sale as a going concern

Engaged in compilation and production of manuals on semiconductor characteristics.
Well orpanised and partly automated. Can be operated by two persons ilit one is technically orientated) from any UK base.

Full details from
WW Box No 2185

COMPUTER APPRECIATION will shortly be moving to Oxford

Prior to our move we shall be selling by auction our entire stock on August 15th. Lots (many without reserve) will include: Complete systems (by DEC, Hewlett Packard, NCR, Texas Instruments); VDU Terminals (by Newbury Labs, Hazeltine and others); Hard and Floppy disc drives; DEC peripherals; Microscopes; Lasers; Printers (daisy wheel golfball and matrix) by DIABLO, TALLY, IBM; Mag tapes; NAGRA Sound Recorder; TEKTRONICS Model 335 oscilloscope; Word processors; paper tape equipment by FACIT, CLARY, TALLY; plotters, cardreaders, monitors, modems

Catalogues available (price $£ 1$ incl. postage) from:
Computer Appreciation, 86 High Street, Bletchingley, Redhill, Surrey RH1 4PA Tel: Godstone (0883) 843221
Lawrences, Norfolk House, High Street, Bletchingley, Surrey

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 94-103

	PAGE
PAGE	
Aero Electronics (AEL) Ltd.	
Ambit International	
Armon Electronics Ltd.	
Aspen Electronics Ltd.	
Audio Electronics (Cubegate) Ltd	
Avel Lindberg (Cotswold Electronics) 14	
Bamber, B. Electronics................................... 80	
Barrie Electronics Ltd. ... 91	
Branson, S. J ... 91	
Cherry Electrical Products................................. 2	
Clark Masts Ltd.. 83	
Clef Products (Electronics) Ltd	. 80
Colomor (Electronics Ltd.) 83	
Computer Appreciation 104	
Control Universal Lid. ..	
Eddystone Radio....................................... 88	
Electrical Review Shock Cards.............................. 83 Electronic Brokers Lid 3, 5	
Electroustic Ltd... 18	
Electrovalue Lid.	
Essex Electronics Centre	

OVERSEAS ADVERTISEMENT AGENTS
France \& Belgium: Norbert Hellin, 50 Rue de Chemin Veat,
F-9100, Boulogne, Paris.
Hungary: Ms Edit, Bajusz, Hungexpo Advertising Agency,
Budapest XIV, Varosliget.
Telephone: 225008 - Telex: Budapest 22-4525

Italy: Sig C. Epis, Etas-Kompass, S.p.a. - Servizio Estero,
Via Mantegna 6,20154 Milan.
Telephone: 347051 - Telex: 37342 Kompass.

Farnell Instruments Ltd.Cover ii, 20	Pantechnic .. 77
Ferranti Electronics Cover iv	PM Components18, 19
Fieldtech Heathrow Lid.20, 77	P\&R Computer Shop 83
G.P. Industrial Electronics Ltd...........................10, 11 Griftronic Emission Ltd.	
	Racom L.td. \qquad 91 Radford Audio Ltd \qquad
Harris Electronics (London) 7	Radio Component Specialists 81
Harrison Bros. Electronic Distributors 3	RST Valves .. 13
Hart Electronic Kits Lid. 6	
Hemmings Electronics and Microcomputers 77	
Henry's Computer Shop 18	
Hilomast Lid. ... 5	
H.W. International....................................C.Cover iii	Samsons (Electronics) 92
	Service Trading Co. Lid. 91
	Skyleader .. 92
	South Midland Communications Ltd. 2
Integrex Ltd. .. 8	Sowter, E. A. Lid. 7
ILP Electronics Lid.............................12, 16, 17	Special Products (Distributors) Ltd.
	Stewart of Reading \qquad 88
	Strumech Engineering Ltd Surrey Electronics Led. \qquad
Langrex Supplies Ltd.................................... 13	
Midwich Computer Co. Ltd.................................... 7 Micro Concept	Technomatic Ltd.78, 79
	Techtest Lid. ... 2
	Thandar Electronics Lid. 84
	Thanet Electronics Lid.................................... 4
	Thomas Business Systems 2
Northern Computer Fair. Nova Products (APB) Ltd. 88	Thurlby Electronics (Reltech) 12
	Timebase Ltd... 80
Opus Supplies ... 87	
Orion Scientific Products Ltd............................ 14	Wireless World Circards 90

Printed in Great Britain by QB Lid, Sheepen Place, Colchester, for the proprietors, Business Press International Lid, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. © Business Press International Led 1983. Wireless World can be obtained abroad from the following: AUSTRALIA and NEW ZEALAND: Gordon \& Gotch Ltd. INDIA: A. H. Wheeler \& Co. CANADA: The Wm. Dawson Subscription Services Lid; Gordon \& Gotch Lid. SoUTH AFRICA: Central News Agency Lid; William Dawson \& Son (SA) Ltd
UNITED STATES: Eastern News Distribution Inc., 14th Floor, 111 Eighth Avenue, New York, NY 10011

THE WORLD'S FIRST AND ONLY AUTOMATIC MICROPHONE SYSTEMFROM SHURE.

Whenever someone has something to say in public, it's often the microphone system that makes or breaks their speech.

Clicks. Pops. Crackles. Background noises and missed syllables. Just a handful of the hazzards that can turn a speaker's finest hour into a fiasco.

Which is why we'd like to introduce you to something completely new-the Shure AMS. Microphone, mixer and advanced logic technology, combined in a totally dedicated system.

In short-a sound revolution.

At the heart of the AMS are anglesensitive microphones. Speak into any one of them within its own 120° 'window of acceptance' and it turns on; change the surrounding audio conditions

If you're the sensitive type, check out the new ZN451 DVM.

Measuring microvolt signal levels is easy with the new ZN451 DVM IC. It's the first DVM that auto-zeroes external signal conditioning circuits to give full-scale readings as low as $\pm 1.999 \mathrm{mV}$ with no zero adjustment.

Two logic outputs are provided to control external analogue switches, allowing op-amps and other circuits to be put inside the auto-zero loop and have their offsets cancelled by the ZN 451 's digital auto-zero system.

Use the ZN451 with pressure transducers, thermocouples, strain gauges or any low output transducer.

To make it even easier there's the ZN451 Evaluation Kit, which contains everything* you need to make a 2 mVDVM , available from your Ferranti distributor price $£ 29.50$ inc. VAT.

Distributors:

Celdis, Reading, Tel: 0734585171 Farnell Electronic Comps., Leeds, Tel: 0532-636.311
Intel Electronics, Henlow,
Tel: 0462812505
STC Electronic Services, Harlow, Tel: 027926777
Midwich Computer Co., Bickinghall, Tel: 0379898751
Semicomps, Keighley, Tel: 053565191
Semicomps, Kelso, Tel: 057324366
Swift-Sasco, Crawley, Tel: 029328700
Ferranti Electronics Limited,
Fields New Road, Chadderton, Oldham OL9 8NP. England.
Tel: 061-624 0515 and 061-624 6661
Telex: 668038

[^0]: WW - 012 FOR FURTHER DETAILS

[^1]: Neil Duffy, M.Sc., M.I.E.E. is a lecturer in the department of electrical and electronic engineering of Heriot-Watt University, Edinburgh.

[^2]: Wesley Vincent is an electronics engineer in Bringhurst, Indiana.

[^3]: *Picotutor is an assembly-language programming aid described in Wireless World Dec. 1982 and Jan. 1983.

[^4]: *Also subscription agents

[^5]: Company Registered Number: 151537 (ENGLAND).
 Registered Office: Quadrant House, The Quadrant
 Sutton, Surrey SM2 5AS

[^6]: All prices quoted are for U.K. Mainland, paid cash with order in Pounds Stirling PLUSVAT. Minımum ordervalue E2.00, MinimumCredit $\mathbf{£ 2 0 . 0 0}$ Where post and packing not indicated please ADD $\mathbf{6 0 p}+$ VAT Warehouse open Mon-Fri 9.30 - 5.30. Sat. 10.15 - 5.30 .
 $01-6897702-01-68968007$ Telax 27924

[^7]: R\&D OPPORTUNITIES. Senior level vacan cies for Communications Hardware and Software Engineers, based in W'est Susscx. Competitive fusion Radio Svistems on 01-874 7281 . 1162

[^8]: BRIDGES, waveform/ransistor analysers. Cali brators, Standards Millivoltmeters Dynamome ers KW meters. Oscilloscopes. Recorders. Sig al generators - sweer, lou distortion. True RMS, audio. FM. deviation Tel. 040376236

 ChLIES PROJECTOR Lamps, soon eypes, list The Parade last Wituering. Sussex. Phone (O2t | 366.2023 |
 | :--- |
 | [49] |

[^9]: ARTICLES FOR SALE

 Waveguide, Flanges and Dishes. All standard sizes and alloys (new material only) from stock. Special sizes to order. Call Earth Stations,
 $01-2287876,22$ Howie Street, London $\$ W$, $\underset{4 A R}{01-228}$ 7876, 22 Howie Street, London $\underset{(2099)}{S W 11}$

 LAMPS AND CABLE. Large amount of lamp and cable for sale - all types and sizes, domestic on HITCHIN (0462) 733388 between $10 \mathrm{am}-7 \mathrm{pm}$.

 FREE PROTOTYPE of the finest quality with EVERY P'C.B. artwork designed by us CompeHalstead Designss Limited. Tel: Halstead 0787
 Hiter 477408.

 BATCH PRODUCTION wiring and assembly 19 b Sation Parade Ealing Common, London W5. Tel: 01 -992 8976 , Ealing Common, $\begin{aligned} & \text { London } \\ & \text { (169 }\end{aligned}$

