A User's Guide to QUANTEC*.

ANDREW JACKSON Memorial Sloan-Kettering Cancer Center

*QUantitative Analysis of Normal Tissue Effects in the Clinic

Purpose of QUANTEC

- Both AAPM and ASTRO recognized (\$\$):
- Need for a systematic overhaul of our understanding of normal tissue tolerances
- For use in clinical treatment planning and optimization

History of QUANTEC

- 2006 AAPM Science Council
 - Ellen Yorke and Rock Mackie
 - Steering Committee: Deasy, Bentzen, Yorke, Ten-Haken, Jackson, Marks, Eisbruch, Constine
- 2007 1st QUANTEC meeting in Madison Wisconsin

 Initial review of tolerances involving physicists, bio-statisticians and physicians.
- 2007-2009: Preparation of Papers

 Reviews and meta analysis of literature on normal tissue complications in 16 organs (~58 authors)
 5 Vision articles on future directions
- March 2010: Publication
 Special Issue of Red Journal (IJROBP <u>76</u> S3)

Structure of Organ Specific QUANTEC Articles

- 1) Significance of injury
- 2) Clinically relevant endpoints - Time course
 - Ambiguities
- 3) Volume definitions
 - $-\operatorname{Variations}$ in contouring practice
- 4) Review of literature on dose-volume dependence of endpoints
 - Level of evidence

Structure of Organ Specific QUANTEC Articles

- 5) Patient and other related risk factors
 E.g. diabetes, smoking, chemotherapy
- 6) Mathematical/Biological Models of the data
 Lyman, relative seriality, multivariate models
- 7) Special Situations
 - E.g. pediatirc patients, hypo-fractionation
- 8) Recommended Dose-Volume Limits
- 9) Future Studies -
 - Additional knowledge required to improve toxicity prediction
 - Endpoint scoring and data capture in future studies

2) Clinically Relevant Endpoints

- Clinical symptoms
- Time course of the complication

* Skwarchuk et al. IJROBP 47 103-113 2000

2) Clinically Relevant Endpoints

- · Studies use different endpoints
 - Grading schemes

Grade 2 in SWOG, but Grade 3 in PTOC

- Time for endpoint
- Different times
- Actuarial vs.non-actuarial
- Different grades
 - Grade 1: no clinical symptoms
 - Grade 2 : outpatient treatment
 - Grade 3 : requiring hospitalization

2) Clinically Relevant Endpoints

- Clinical endpoints less severe that in Emami
 - Data more plentiful for lower grades of injury
 - Larry will explore this point further
 - Ambiquity in diagnosis
- Objective and Functional Endpoints are available for some organs
 - Parotid: salivary flow vs xerostomia

3) Volume Definitions

Clinical vs anatomic definitions – Yellow: MSKCC's clinical definition of rectal wall

0.5 cm sup. and inf. of PTV
Cyan: anatomic definition of rectal wall
Anal verge to sigmoid colon

3) Volume Definitions

- Tubular Structures:
 - Inclusion of lumen, or wall only?
- Paired organs:
 - Kidney, lung, parotid glands– Ipsilateral vs total volume
- Incomplete Structures (e.g. cord):
 Use absolute volume DVH if length is not standard
- Inclusion of extra tissue (incapable of exhibiting complication):
 - Introduces noise
 - Weakens correlations with complications

3) Volume Definitions

• Organ size

 Cochlea: A very small structure only visible on CT with the correct bone window

Small size of the cochlea (~5mm thick) makes it difficult to define properly On relatively thick CT slices

- 4) Review of dose Volume data*
- Includes only peer reviewed studies
- Excludes data not yet published
- Emphasis placed on prospective data where available
 - *Separation not clean between this section and 6) Math/Biological Models

4) Review of Dose Volume Data

- Includes only peer reviewed studies
 - Excludes all data not published at the time of writing
 - Emphasis placed on prospective data where available
- Attempted synthesis of variety of dosevolume limits
 - Difficult to combine
 - Different DVH points are incompatible
 - Correlations: cannot find unique thresholds

4) Review of Dose Volume Data

5) Patient related and other risk factors

- In some cases, patient related factors may drastically change the risk of complication
 - Liver: Childs A vs Childs B & C
 - For Childs A Patients (good liver function) TD50 for RILD is ~ 40-46 Gy (mean dose)
 - For pts with Liver Girmosis, Hepatitis B virus TD50 for RILD may be ~ 23 Gy (mean dose)
 - Compare with Liver: Mets vs Primary tumor
 TD50 for RILD ↑ by ~ 5Gy (mean dose) for Mets

6) Mathematical/Biological Models

- Meta Analysis:
 - Compatible studies
 endpoints, volumes, dose, models
- Few organs passed all these criteria – Biological models: Lung, Rectum

Marks et al. IJROBP <u>73</u> S70-76 2010

7) Special Situations

- Most of the data comes from:
 - 3DCRT
 - Conventional fractionation
 - Adults
- Most of the data does not come from:
 - Hypofractionation
 - Pediatric patients
 - Combinations of Brachytherapy and EBRT
 - Retreatmer
 - IMRT?!

8) Recommended Dose Volume Limits

- Intended for clinical use in planning EBRT treatments,
 - but associated with warnings concerning extrapolation of results to new clinical situations
- Quality and limitations of the existing data prompted many caveats
 - In one case (Bladder), authors did not quote limits from published studies
 - Volumes unreliable, follow up inadequate
 - Relied instead on recommendations from an RTOG protocol

Summary	Table	of QUAN	VTEC
Dose-V	olume	Constrai	nts

- In the introductory article on use of NTCP models in the clinic
 - Marks et al. IJROBP 73 S10-19 2010
- Based on the recommended dose-volume limits given in each article (section 8)
 Intended for clinical guidance, but:

"Clinicians are strongly advised to refer to the individual articles to check the applicability of the

Infinites to the chinical situation at hallou Instance ye Velace ford data give down							
Organ	segmented	otherwise stand)	Endpoint	parameters	Rate (%)	doss/volume parameters	
Long	Whole organ	3D-CRT	Symptomatic preumonitis	$V29 \le 30\%$	-39	For combined lang. Gradual dose response	
	Whole organ Whole organ Whole organ	3D-CRT 3D-CRT 3D-CRT	Symptomatic preumonitis Symptomatic preumonitis Symptomatic preumonitis	Mean dose = 7 Mean dose = 13 Mean dose = 20	5 39 29	Excludes purposeful whole lung implication	
	Whole organ Whole organ	3D-CRT	Symptomatic programmatics Symptomatic programmatics	Mean dase = 24 Mean dase = 27	30 40		

9) Areas for Future Study

- Individual studies have relatively low numbers of clinical complications
 - Data pooling and meta analysis
 - Meta analysis requires comprehensive reporting
 - Atlases tools for meta-analysis

9) Areas for Future Study

- Clinical co-factors need to be explored
 - Effects of Chemotherapy
 - Multivariate models
 - Genetic factors
- Regional sensitivity (beyond the DVH)
 - Lung: is the upper lung less sensitive to radiation than the lower lung?
- Relationship between functional tests and clinical complications
 - Do functional tests predict complications?

10) Toxicity Scoring

- Hard to define good endpoints for normal tissue studies
 - Clinically significant (higher grades)
 - Sufficient statistics (lower grades)
 - Unambiguous
- Patient reported outcomes*
 - Observer reported outcomes underestimate patient reported outcomes
 - More data!
 - More specific
 - Separate individual complications
 - Better models
 *see e.g. Peeters et al. IJROBP64: 1151-1161, 2006

Conclusions

• QUANTEC is:

- Updating our clinical understanding of normal tissue tolerances
- Providing clinical guidelines where possible
- With appropriate caveats
- Defining areas of our ignorance
 recommend studies to remedy this
- Investigating future directions:
 - Reporting standards
 - Clinically relevant but specific endpoint definitions
 - Inter-institutional data synthesis (atlases or pooling)

Supplementary slides

Mean dose response of pneumonitis

(A. Jackson with L. Marks/S. Kong/J.Deasy/J.Bradley/M. Martel/S. Bentzen in Marks et al. UROBP <u>73</u>: S70-76, 2010)

- Patients treated for NSCLC
 - Data from 9 institutions, 10 separate studies
- 1,167 patients with 222 cases of pneumonitis
- ≥ Grade 3 RTOG ~ ≥ Grade 2 SWOG
 - (requiring steroids)
 - accepted ≥ grade 1 definition if few grade 1 cases

Mean dose response of pneumonitis

A.Jackson with L. Marks/S. Kong/J.Deasy/J.Bradley/M. Martel/S. Bentzen in Marks et al. JJROBP <u>73</u>: S70-76, 2010

- Reporting rate (and S.D.) of pneumonitis as function of mean dose to total lung
 - Numbers of pts w./w.o. pneumonitis
 - Bin locations on quartile plots
- Fit of logistic function [95% conf.]:
 - D50 = 30.75 [29.9 31.7] Gy
 - $-\gamma 50 = 0.907 [0.836 0.987]$
- Fit of Lyman D50 and m (mean dose: n = 1):
 - D50 = 31.4 [29.0-34.7] Gy
 - m = 0.45 [0.39-0.51]

A.Jackson with L. Marks/S. Kong/J.Deasy/J.Bradley/M. Martel/S. Bentzen in Marks et al. IJROBP 73: S70-76, 2010

MSRCC, Yorke et al. UROBP <u>62</u> 2005: 672-682, from Fig 4a) ⊘RTOG grade 3, 6
 Dakhinish, Hernando et al. UROBP <u>61</u> 2001: 650-659, from Table 4 ⊘CTC grade 1, 6 months)
 Michigan, Kong et al. UROBP <u>62</u> 2006: 1075-1086, from Table 4 ⊘CTC grade 1, 6 months)
 Michigan, Kong et al. UROBP <u>62</u> 2006: 1799-1407, from Fig 3a) (25WOG grade 2, 6 months) – bits location and time from authors.
 Michigan, Kong et al. UROBP <u>62</u> 2006: 1799-1407, from Fig 3a) (25WOG grade 2, 6 months) – bits location patients)
 Michigan, Marque at UROBP <u>62</u> 2007, 149-78, from Fig 3a) (25WOG grade 2, 4 0)
 Wil, Hope et al. UROBP <u>62</u> 2016; 171-121, from Fig 3a) (05WOG grade 2, 2 no fine limit) with his locations from authors, increased by 11% to –account for inhomogeneity corrections.
 Michigan, Martel et al. UROBP <u>22</u> 1994; 575-581, from Table 1 (25WOG grade 2, - a o into limit) with mean dose calculated from ethical by 11% to –account for inhomogeneity corrections.
 Michigan, Martel et al. UROBP <u>22</u> 1994; 575-581, from Fig 3 (25WOG grade 2, - 0 monther inhomogeneity corrections).
 Michigan, Martel et al. UROBP <u>25</u> 1994; 575-583, from Fig 3 (25WOG grade 2, - 0 monther inhomogeneity corrections).
 Michigan, Martel et al. UROBP <u>25</u> 1994; 575-583, from Fig 3 (25WOG grade 2, - 0 monther inclusions construction to the company.
 Michigan, Rancati et al. BitOBP <u>25</u> 2002; 2003; 275-283, from Fig 3 (25WOG grade 2, - 0 from rather company.
 Michigan and the company.
 Michigan and the company.
 Michigan and the solution company distribution company entients).
 Migan, Rancati et al. BitOBP <u>25</u> 2002; 2003; 275-283, from Table 5 (26TOG grade 3, - 0 monther inclusion company.
 Michigan and the company.
 Michigan and the company.
 Michigan and the solution company entintension and the company.
 Michigan and and the

Rectal dose volume limits

Jackson/Deasy/Gay/Michalski/Tucker in Michalski et al. JROBP 73: S123-129, 2010

- Published limits having sig. correlation with ≥ grade 2 rectal bleeding
- Color coded to indicate prescription dose
 - Blue = 66-70 Gy
- Red = 83 Gy (LQ equivalent dose in 2 Gy fr)
- Thickness of line indicates overall complication rate in study

Rectal lyman model fits

- 5 published studies fitting LKB model to rectal complication data
 - includes Tucker, RTOG 94-06 IJROBP – E pub July 2010 (also ASTRO 2007, IJROBP)
- Forrest plot of "n" values (n=1/a)
 - 1 S.D. indicated
- Meta analysis:
- value of "n" = 0.09 (95% conf: 0.04-0.17)

Jackson, end result (but not figures) included in Michalski et al IJROBP 73: S123-129 2010

Cheng J, Schultheiss T, Wong J. Impact of Drug Therapy, Radiation Dose and Dose Rate on Renal Toxicity following Bone Marrow Transplantation. *IJROBP* <u>71</u>: 1436-1443, 2008.

Late Hearing Loss (A. Jackson, N. Bandare, W. Mendenhall)

- · Hearing loss tests from 3 studies as function of mean cochlea dose
 - (post-treatment vs pre-treatment)
- Differences in way endpoint is defined - Ispi- relative to contra-lateral hearing loss vs hearing
- Dose reconstruction
 - 1 study, doses reconstructed with surrogate CT scans
 - 1 study, ipsi- doses relative to contra-lateral

Necessity of combining data sets

- · Number of complications in any given treatment series is usually low

 - No statistical power to determine model parameters
- Dose-volume exposures correlated in individual series
 - Introduces phony correlations with complications
 - Insufficient range of dose-volume combinations to determine model parameters

Problems in synthesizing data

- Endpoint definitions:

 - Rectal bleeding or incontinence vs grade 2 RTOG toxicity
 - Different comps. have different dose-volume effects

Problems in synthesizing data

- Variety of dose volume limits proposed
 These cannot be combined
- · Variety of models may be fit
 - Responses cannot be combined
 - gEUD responses with different "a" values cannot be combined

Problems in synthesizing data

- Standard of reporting is <u>POOR</u>
 - Lack of basic statistics (numbers not stated!)
 - Schultheiss 1994: "The information in this report would be of greater clinical use if some indication had been provided of the total number of patients from which the myelopathy cases were drawn"
 - Locations of bins in e.g. quartile plots not given
 - Model parameters (and errors) not be stated

In other words:

- Report the numbers of patients with complications and the number treated
 - Elementary statistics increase clinical utility
- Be comprehensive
 - Report as much about the data as possible

