Academia.eduAcademia.edu
bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Phenotypic plasticity triggers rapid morphological convergence 1 2 3 José M. Gómez1,2*, Adela González-Megías2,3*, Eduardo Narbona4*, Luis Navarro5*, Francisco 4 Perfectti2,6*, Cristina Armas1* 5 6 7 1Estación Experimental de Zonas Áridas (EEZA-CSIC), Almería, Spain. 8 2Research 9 3Dpto. de Zoología, Universidad de Granada, Granada, Spain. 10 4Dpto. de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, 11 Spain. 12 5Dpto. de Biología Vegetal y Ciencias del Suelo, Universidad de Vigo, Vigo, Spain. 13 6Dpto. de Genética, Universidad de Granada, Granada, Spain. Unit Modeling Nature, Universidad de Granada, Granada, Spain. 14 15 *Corresponding author. Email: jmgreyes@eeza.csic. (J.M.G.); adelagm@ugr.es (A.G.); 16 enarfer@upo.es (E.N.); lnavarro@uvigo.es (L.N.); fperfect@ugr.es (F.P.); cris@eeza.csic.es 17 (C.A.) 18 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 19 Abstract 20 Phenotypic convergence, the independent evolution of similar traits, is ubiquitous in nature, 21 happening at all levels of biological organizations and in most kinds of living beings. Uncovering 22 its mechanisms remains a fundamental goal in biology. Evolutionary theory considers that 23 convergence emerges through independent genetic changes selected over long periods of time. 24 We show in this study that convergence can also arise through phenotypic plasticity. We illustrate 25 this idea by investigating how plasticity drives Moricandia arvensis, a mustard species displaying 26 within-individual polyphenism in flowers, across the morphological space of the entire 27 Brassicaceae family. By compiling the multidimensional floral phenotype, the phylogenetic 28 relationships, and the pollination niche of over 3000 Brassicaceae species, we demonstrated that 29 Moricandia arvensis exhibits a plastic-mediated within-individual floral disparity greater than that 30 found not only between species but also between higher taxonomical levels such as genera and 31 tribes. As a consequence of this divergence, M. arvensis moves outside the morphospace region 32 occupied by its ancestors and close relatives, crosses into a new region where it encounters a 33 different pollination niche and converges phenotypically with distant Brassicaceae lineages. Our 34 study suggests that, by inducing phenotypes that explore simultaneously different regions of the 35 morphological space, plasticity triggers rapid phenotypic convergence. 36 37 2 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 38 Introduction 39 40 Phenotypic convergence, the independent evolution of similar traits in different evolutionary 41 lineages, is ubiquitous in nature, happening at all levels of biological organizations and in most 42 kinds of living beings (1-3). Convergent evolution plays a fundamental role in how evolutionary 43 lineages occupy the morphological space (2, 4). The expansion of lineages across the 44 morphological space is a complex process resulting from the ecological opportunities emerging 45 when species enter into different regions of the ecospace and face new ecological niches (5, 6). 46 When this occurs, divergent selection on some phenotypes makes lineages to diversify 47 phenotypically, boosting morphological disparity, triggering a morphological radiation and 48 eventually filling the morphospace (7, 8). Because the ecological space saturate as lineages 49 diversify (9), unoccupied regions become rare in highly diversified lineages (10). Under these 50 circumstances, entering into a new region usually entails sharing it with other species exploiting 51 the same ecological niche (2, 10, 11). In this situation, independent lineages tend to evolve 52 similar phenotypes through convergent evolution (2, 4). In diversified lineages occupying a 53 saturated morphospace, divergent and convergent evolution are ineludibly connected (10, 12), 54 and both processes contribute significantly to shape the geometry of the morphospace 55 occupation (4, 11). 56 57 Uncovering the mechanisms triggering convergence remains a fundamental goal in biology. 58 Evolutionary theory shows that convergent phenotypes emerge from several genetic 59 mechanisms, such as independent mutations or gene reuse in different populations or species, 60 polymorphic alleles, parallel gene duplication, introgression or whole-genome duplications, that 61 are selected over long periods of time (13–15). Under these circumstances, the origin of 62 morphological convergence is mostly slow, occurring over evolutionary time and associated with 63 multiple events of speciation and cladogenesis (11). It is increasingly acknowledged, however, 64 that phenotypic plasticity might elicit the emergence of novel phenotypes with new adaptive 65 possibilities, which may be beneficial in some contexts (16, 17). Under these circumstances, 66 plasticity may behave as a facilitator for evolutionary novelty and diversity, shaping the patterns of 67 morphospace occupation (16, 18-21). In this study, we provide compelling evidence showing that 68 phenotypic plasticity also plays a prominent role in the emergence of convergent phenotypes. By 69 inducing the production of several phenotypes, plasticity may cause the species to explore 70 different regions of the morphospace almost simultaneously (18, 19). This opens the opportunity 71 for plastic species to diverge from their lineages and converge with the species already located in 72 other morphospace regions. We illustrate this idea by investigating how plasticity drives 73 Moricandia arvensis, a species exhibiting extreme polyphenism in flowers (18), across the 3 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 74 morphological space of the entire Brassicaceae family. Moricandia arvensis displays within- 75 individual floral plasticity, with flower morphs varying seasonally on the same individual (18). By 76 studying the multidimensional floral phenotypes, the phylogenetic relationships, and the 77 pollination niches of over 3000 Brassicaceae species, we demonstrate that phenotypic plasticity 78 makes the flowers of this mustard species to diverge from its ancestors and close relatives, to 79 cross into a new region of the ecospace, and to converge morphologically with distant 80 Brassicaceae lineages. This finding has great implications, suggesting that plasticity might not 81 only promote the evolution of novelties and morphological divergence (16, 17, 20, 21) but can 82 also provide an alternative explanation to the pervasiveness of convergence in nature. 83 84 85 Results 86 87 Plasticity-mediated floral disparity and divergence 88 Changes in temperature, radiation and water availability induce the production of different types 89 of flowers by the same M. arvensis individuals; large, cross-shaped lilac flowers in spring but 90 small, rounded, white flowers in summer (18). To quantify the magnitude of floral disparity 91 between these two phenotypes of M. arvensis, we first assessed floral disparity for the entire 92 mustard family. Brassicaceae is one of the largest angiosperm families, with almost 4000 species 93 grouped in 351 genera and 51 tribes (7, 22–24). We determined the magnitude and extent of 94 floral disparity among 3140 plant species (approx. 80% of the accepted species) belonging to 330 95 genera (94% of the genera) from the 51 tribes. Because we were interested in floral characters 96 mediating the interaction with pollinators, we recorded for each studied species a total of 31 traits 97 associated with pollination in Brassicaceae (Supplementary Data 1, Methods). We used the 98 resulting phenotypic matrix to generate a family-wide floral morphospace. We first run a principal 99 coordinate analysis (PCoA) to obtain a low-dimensional Euclidean representation of the 100 multidimensional phenotypic similarity existing among the Brassicaceae species (25). Because 101 the raw matrix was composed of quantitative, semi-quantitative and discrete variables, PCoA was 102 based on Gower dissimilarities (25). We optimized this initial Euclidean configuration by running a 103 non-metric multidimensional scaling (NMDS) algorithm with 5000 random starts (25). The 104 resulting morphospace (Figure 1a) was significantly correlated with the initial PCoA configuration 105 (r = 0.40, P < 0.0001, Mantel test) and was a good representation of the original relationship 106 among the species (R2 > 0.95, Stress = 0.2, Figure 1b). The distribution of the species across the 107 morphospace was significantly associated with different pollination traits (Figure S1; Table S1). 108 Species in the central region were mostly medium-sized plants bearing a moderate to high 109 number of small, polysymmetric white flowers with short corolla tubes, exposed nectaries and 4 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 110 visible sepals (Figure 1a, Figure S1). Species in the bottom right corner were small or prostrate, 111 bearing minute flowers, many time apetalous and with just 2 or 4 stamens, whereas species 112 located in the bottom left corner were medium-sized plants with asymmetric flowers arranged in 113 corymbous inflorescences. Plants with yellow flowers were located in the right region of the 114 morphospace. In contrast, large plants with strongly tetradynamous androceum and large, 115 veined, dissymmetrical to asymmetrical, pink to blue flowers with concealed nectaries, long 116 corolla tubes and bullseyes were located in the upper left region (Figure 1a, Figure S1). 117 Moricandia arvensis, when blooming in spring (Figure 1c), occupies this later peripheral region of 118 the morphospace, close to other Moricandia species (purple dots in Figure 1a). However, during 119 summertime, the individuals of M. arvensis are shorter and produce fewer, much smaller flowers 120 with white, unveined and rounded corollas with overlapped petals and green sepals that are 121 mostly arranged alone the floral stems (Figure 1d) (18). Due to this radical phenotypic change, 122 the summer phenotype of M. arvensis was located in a different, more central position of the floral 123 morphospace (Figure 1a), far away from the region occupied by the Moricandia species. As a 124 consequence of this jump, the morphological disparity between the spring and summer 125 phenotypes of M. arvensis, calculated as their distance in the morphospace (26), was very high 126 (0.264). In fact, it was much higher than the average pairwise disparities among all studied 127 Brassicaceae species (0.155 ± 0.090, mean ± s.e.m., 4,912,545 pairwise disparities) and almost 128 50% of the largest observed disparity (0.55) (Table S4). This outcome suggests that phenotypic 129 plasticity prompts M. arvensis to explore two distant regions of the Brassicaceae floral 130 morphospace simultaneously. 131 132 To know how intense is the plasticity-mediated M. arvensis disparity, we compared its value with 133 the disparity values observed at different taxonomic levels within Brassicaceae. At the lowest 134 level, discrete changes in pollination traits have been reported between individuals of the same 135 species. In some species, this intraspecific phenotypic change is stable, like the gender 136 polymorphism (27, 28) or the adaptive floral colour polymorphism exhibited as a response to the 137 selective pressures exerted by certain pollinators (29, 30). In other species, discrete phenotypic 138 changes, although affecting pollination traits, seem to be just the consequence of some singular 139 and often unstable mutations affecting floral colour (31), the production of cleistogamous flowers 140 (32) or changes in the expression of homeotic genes that modify the formation of the floral organs 141 (33, 34). We compiled information on the phenotypes of the different morphs in 34 polymorphic 142 species and calculated their values of intraspecific disparities (Figure 1a, Supplementary Data 2). 143 Although several polymorphic species showed considerable values of between-morph disparity, 144 they were significantly smaller than the disparity between spring and summer floral phenotypes of 145 M. arvensis (Z-score = 5.06, P < 0.0001, Figure 1e, Table S2). We subsequently tested at what 5 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 146 taxonomic level of Brassicaceae the disparity was equivalent to the plasticity-mediated disparity 147 observed in M. arvensis. For this, we calculated the floral disparity between pair of species 148 belonging to the genus Moricandia, the same genus, the same tribe, and different tribes 149 (Methods). The plasticity-mediated disparity of M. arvensis was significantly higher than the 150 disparity existing between the Moricandia species (0.057 ± 0.033, mean ± 1 s.e.m., Z-score = 151 6.27, P < 0.0001) and between the species belonging to the same genus (0.069 ± 0.055, Z-score 152 = 3.51, P < 0.0002). It was marginally different from the disparity existing between species of 153 different genera but the same tribes (0.150 ± 0.085, Z-score = 1.34, P = 0.089) and it was 154 statistically similar to the disparity occurring between species belonging to different tribes (0.167 ± 155 0.087, Z-score = 1.11, P = 0.133, Figure 1e). These findings suggest that phenotypic plasticity 156 allows M. arvensis individuals to jump in the morphospace longer distances than those granted 157 by some macroevolutionary processes. 158 159 We explored whether plasticity-mediated disparity may cause evolutionary divergence by 160 calculating the disparity of M. arvensis spring and summer phenotypes to their phylogenetic 161 ancestors. We retrieved 80 partial phylogenies from the literature and online repositories 162 (Methods), and assembled them into a supertree comprising 1876 taxa with information on their 163 floral phenotype. We then projected this supertree onto the morphospace to get a family-wide 164 phylomorphospace. We did not find evidence of phylogenetic constraints on morphospace 165 occupation since there was not significant phylogenetic signal for the position occupied by each 166 species (Multivariate Mantel test=0.005, P = 0.34). The family-wide phylomorphospace was very 167 tangled (Figure 2a), with 492,751 intersections among lineages, suggesting the presence of many 168 events of floral divergence and convergence in the evolution of Brassicaceae pollination traits 169 (11). To calculate the disparity of the M. arvensis floral phenotypes to their ancestor, because 170 these analyses are sensitive to the tree topology and the inferred branch lengths (26), we used 171 four independent, time-calibrated phylogenies that included this species (Methods). The results 172 were consistent across phylogenies (Figure 2b,c; Tables S3). The spring phenotype did not 173 significantly diverge neither from the most recent common ancestor (MRCA) of Moricandia (Z- 174 score = 0.36, P = 0.36) nor from its direct ancestor (Z-score = -1.24, P = 0.108). In contrast, the 175 summer phenotype of M. arvensis diverged significantly both from Moricandia MRCA (Z-score = 176 2.48, P = 0.007) and from its direct ancestor (Z-score = 1.77, P = 0.038). Hence, the summer 177 phenotype explores a region of the floral morphospace located out of its phylogenetic clade range 178 (Figure 2b). The ancestral disparity of the summer phenotype was even significantly higher than 179 the ancestral disparity of most other Brassicaceae species (Figure 2c). These findings suggest 180 that phenotypic plasticity causes the appearance of a novel phenotype that diverges radically 181 from its ancestors. 6 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 182 183 Plastic shifts in pollination niches 184 Evolutionary divergence is mostly associated with the occupation of new ecological niches (2, 5). 185 Shifts between pollination niches are an important factor driving diversification in angiosperms 186 (35), including Brassicaceae (36, 37). We investigated whether the plasticity-mediated jump of M. 187 arvensis across the floral morphospace implicated the exploration of new pollination niches. We 188 compiled a comprehensive database comprising 456,031 visits done by over 800 animal species 189 from 19 taxonomical orders, 276 families and 43 functional groups to 554 Brassicaceae species 190 of 39 tribes (Methods, Supplementary Data 3). Afterwards, we identified the pollination niches of 191 these Brassicaceae plants and determined the niche of each M. arvensis floral phenotype by 192 means of bipartite modularity, a complex network tool that identifies the set of plants interacting 193 with similar groups of pollinators (18). This analysis showed that the network was significantly 194 modular (Modularity = 0.385, P < 0.0001) and identified eight different pollination niches 195 associated with different groups of pollinators (Figure 3a) located in different regions of the 196 morphospace (Figure 3b, F = 44.4, P < 0.001, R2 = 0.39, Adonis test; Table S4). 197 198 Because different insects visited M. arvensis in spring and summer (Table S5), this plant species 199 shifted between pollination niches seasonally (Figure 3b). During spring, M. arvensis belonged to 200 a niche where most frequent pollinators were long-tongued bees, beeflies, and hawkmoths 201 (pollination niche 5 in Figure 3a) (18). This pollination niche was also shared by the other 202 Moricandia species (Figure 3c). In contrast, during summer M. arvensis belonged to a niche 203 dominated by short-tongued bees (pollination niche 3 in Figure 3a). This niche shift was 204 substantial. In fact, the overlap between the spring and summer pollinator niches of M. arvensis 205 (Czekanowski overlap index = 0.35) was significantly lower than the overlap between congeneric 206 species of Brassicaceae (0.57 ± 0.42, Z-score = -0.51, P = 0.003). This shift even entailed the 207 divergence from the ancestral niche of the Moricandia lineage (pollination niche 5 according to a 208 stochastic character mapping inference, Figure 3c). The within-individual floral plasticity allows M. 209 arvensis to exploit a pollination niche that differs markedly from that exploited by its closest 210 relatives and that have largely diverged from the ancestral niche. 211 212 Plasticity-mediated floral convergence 213 A common consequence of adaptation to the same niche is convergent evolution (1, 2, 4). We 214 explored the possibility of convergent evolution of M. arvensis with other Brassicaceae sharing 215 either the spring niche (pollination niche 5) or the summer niche (pollination niche 3). We first 216 checked for the occurrence of convergence among species belonging to these pollination niches. 217 Because these analyses are extremely sensitive to the inferred branch lengths, we explored 7 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 218 morphological convergence using three time-calibrated large (> 150 spp) phylogenies that 219 included M. arvensis (Methods). We tested for the occurrence of floral convergence between the 220 species belonging to each of those two pollination niches using three methods: the angle formed 221 by the phenotypic vectors connecting the position in the floral morphospace of each pair of 222 species with that of their most recent common ancestor (38), the difference in phenotypic 223 distances between convergent species and the maximum distances between all other lineages 224 (39), and the phenotypic similarity of the allegedly convergent species penalized by their 225 phylogenetic distance (Wheatsheaf index) (40). The three methods gave similar results, indicating 226 that floral convergence was frequent among the species belonging to any of the two studied 227 niches, irrespective of the method and the time-calibrated tree used (Table S6). These results 228 show that, despite the rampant generalization observed in the pollination system of Brassicaceae, 229 species interacting with similar pollinators converge phenotypically. 230 231 Once we determined the occurrence of convergence in these two pollination niches, we assessed 232 whether plasticity caused the evolution of morphological convergence in M. arvensis. To do so, 233 we first assessed the convergence region of Moricandia, the region that includes the lineages 234 converging morphologically to the Moricandia lineage. We found that this region included most 235 species of Moricandia, the spring phenotype of M. arvensis, and several clades belonging to 236 disparate tribes that interact with pollination niche 5, but excluded the summer phenotype of M. 237 arvensis (Figure 4, Table S7). Afterwards, we checked whether any of the two M. arvensis floral 238 phenotypes entered the region of the phylomorphospace defined by their pollination niches. We 239 used the C5 index, defined as the number of lineages that cross into the morphospace region of 240 interest from outside39. This index detected between two and six convergent events towards 241 pollination niche 5 depending on the phylogeny used (blue arrows in Figure 4a-c), but none was 242 associated with the spring phenotype of M. arvensis. In contrast, the C5 index consistently 243 detected that the summer phenotype of M. arvensis has converged with the species belonging to 244 the pollination niche 3 (red arrow in Figure 4d-f). Altogether, these analyses suggest that, 245 whereas the spring phenotype did not show any evidence of convergence, the summer 246 phenotype of M. arvensis has converged with other distant Brassicaceae exploiting the same 247 pollination niche. 248 249 250 Conclusions 251 252 Convergent selection exerted by efficient pollinators causes the evolution of similar suites of floral 253 traits in different plant species (41–44). Our study shows that plasticity can promote the rapid 8 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 254 convergent evolution of floral traits, providing an additional explanation about how pollination 255 syndromes may evolve. Under this idea, changes in floral traits precede shifts in pollinators, as 256 frequently observed in generalist systems (37, 45). This may explain why many pollination 257 systems are evolutionarily labile, undergoing frequent shifts and evolve multiple times within the 258 same lineages by diverse evolutionary pathways (35, 46). 259 260 Morphological convergence is universally acknowledged to be the result of several genetic 261 mechanisms, such as independent mutations in different populations or species, polymorphic 262 genes or introgression (13). We provide in this study compelling evidence suggesting that 263 morphological convergence may also arise as a consequence of phenotypic plasticity. The role of 264 plasticity as a mechanism favouring quick responses of organisms to novel and rapidly changing 265 environments is already beyond doubt (17, 21, 47, 48). Its evolutionary consequences are more 266 debated though (20, 21, 49, 50). The ‘plasticity-led evolution’ hypothesis states that selection 267 acting on a plastic lineage may either boost its environmental sensitivity and trigger the origin of 268 polyphenisms or alternatively may promote the loss of plasticity and the canalization of the new 269 phenotype through genetic assimilation (21, 49). The related ‘flexible stem’ hypothesis of adaptive 270 radiation suggests that when a plastic lineage repeatedly colonizes similar niches, the multiple 271 phenotypes fixed by genetic assimilation could converge among them giving rise to a collection of 272 phylogenetically related convergent morphs (16, 50, 51). Our comprehensive study complements 273 these hypotheses by suggesting that plasticity-mediated convergence may even evolve without 274 the existence of basal flexible lineages. Rather, it can occur when plasticity evolving in otherwise 275 non-plastic lineages promotes the colonization of a niche previously occupied by unrelated 276 species. Under these circumstances, contrary to what it is predicted by the previous hypotheses, 277 plasticity-mediated convergence is not circumscribed to phylogenetic-related species arising from 278 a common stem lineage. This overlooked role of phenotypic plasticity may contribute to explain 279 the ubiquity of morphological convergence in nature. 280 281 282 Materials and Methods 283 284 Floral traits. We recorded from the literature 31 floral traits in 3140 Brassicaceae plant species 285 belonging to 330 genera and 51 tribes (Supplementary Data 1). All these traits have been proven 286 to be important for the interaction with pollinators (Table S8). These traits were: (1) Plant height; 287 (2) Flower display size; (3) Inflorescence architecture; (4) Presence of apetalous flowers; (5) 288 Number of symmetry axes of the corolla; (6) Orientation of dominant symmetry axis of the corolla; 289 (7) Corolla with overlapped petals; (8) Corolla with multilobed petals; (9) Corolla with visible 9 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 290 sepals; (10) Petal length; (11) Sepal length; (12) Asymmetric petals; (13) Petal limb length; (14) 291 Length of long stamens; (15) Length of short stamens; (16) Stamen dimorphism; (17) 292 Tetradynamous condition; (18) Visible anthers; (19) Exserted stamens; (20) Number of stamens; 293 (21) Concealed nectaries; (22) Petal carotenoids; (23) Petal anthocyanins; (24) Presence of 294 bullseyes; (25) Presence of veins in the petals; (26) Coloured sepals; (27) Relative attractiveness 295 of petals versus sepals; (28) Petal hue; (29) Petal colour as b CIELAB; (30) Sepal hue; (31) Sepal 296 colour as b CIELAB. A detailed definition and description of these traits and their states is 297 provided in Key Resource Table 1, whereas the original references used to determine the states 298 of each trait per plant species is provided in Supplementary Data 1. 299 300 Family-wide floral morphospace. Using the original multidimensional trait-species matrix, we 301 built a floral morphospace. For this, we reduced the high-dimensional matrix of floral traits to a 302 two-dimensional space using an ordination technique (25). Because the set of floral traits 303 included in this study were quantitative, semi-quantitative and qualitative, we used ordination 304 techniques based on dissimilarity values. For this, we first constructed a pairwise square distance 305 matrix of length equal to the number of Brassicaceae species included in the analysis (n = 3140). 306 We used the Gower distance, the number of mismatched traits over the number of shared traits. 307 This dissimilarity index is preferable to the raw Euclidean distance when there are discrete and 308 continuous traits co-occurring in the same dataset (52). 309 We reduced the dimensionality of this phenotypic matrix by projecting it in a two-dimensional 310 space. For this, to ensure an accurate description of the distribution of the species in the 311 morphospace, we first run a principal coordinate analysis (PCoA), a technique providing a 312 Euclidean representation of a set of objects whose relationship is measured by any dissimilarity 313 index. We corrected for negative eigenvalues using the Cailliez procedure (25). Afterwards, we 314 used this metric configuration as the initial configuration to run a non-metric multidimensional 315 scaling (NMDS) algorithm (25), a method that will further optimise the sample distribution so as 316 more variation in species composition is represented by fewer ordination axes. Unlike methods 317 that attempt to maximise the variance or correspondence between objects in an ordination, 318 NMDS attempts to represent, as closely as possible, the pairwise dissimilarity between objects in 319 a low-dimensional space. NMDS is a rank-based approach, where the original distance data is 320 substituted with ranks, preserving the ordering relationships among species (25). Objects that are 321 ordinated closer to one another are likely to be more similar than those further apart (53). This 322 method is more robust than distance-based methods when the original matrix includes variables 323 of contrasting nature. However, NMDS is an iterative algorithm that can fail to find the optimal 324 solution. We decreased the potential effect of falling in local optima by running the analysis with 325 5000 random starts and iterating each run 1 x 106 times (54). The NMDS was run using a 10 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 326 monotone regression minimizing the Kruskal's stress-1 (55, 56), and compared each solution 327 using Procrustes analysis, retaining that with the lowest residual. Because many species did not 328 share trait states, a condition complicating ordination, we used stepacross dissimilarities, a 329 function that replaces dissimilarities with shortest paths stepping across intermediate sites while 330 regarding dissimilarities above a threshold as missing data (57). Furthermore, we used weak tie 331 treatment, allowing equal observed dissimilarities to have different fitted values. The scores of the 332 species in the final ordination configuration were obtained using weighted averaging. We checked 333 if the reduction in dimensionality maintained the between-species relationship by checking the 334 stress of the resulting ordination and finding goodness of fit measure for points in nonmetric 335 multidimensional scaling (54). Both PCoA and NMDS ordinations were done using the R package 336 vegan (58) and ecodist (59). It is important to note that, although the transfer function from 337 observed dissimilarities to ordination distances is non-metric, the resulting NMDS configuration is 338 Euclidean and rotation-invariant (60). 339 340 Morphological Disparity. Because we were interested in describing the position of the species 341 in the floral morphospace, we calculated the morphological disparity using indices related to the 342 distance between elements (26, 61). We first determined the absolute position of each of the 343 Brassicaceae species in the morphospace by calculated their Euclidean distance with the overall 344 centroid of the morphospace (61). The disparity between the spring and summer phenotype of M. 345 arvensis was also calculated as their Euclidean distance in the floral morphospace. We then 346 calculated the pairwise disparities between all species included in our analysis, between the 347 different morphs of the polymorphic species considered here (Supplementary Data 2), between 348 the species of the genus Moricandia, between species of the same genus, between species of 349 different genera but same tribe and between species of different tribes. These disparity values 350 were calculated using the function dispRity of the R package dispRity using the command 351 centroid (62). We checked whether the disparity between spring and summer M. arvensis 352 phenotypes was significantly different from the disparities of each of these sets of species using 353 Z-score tests. 354 355 Family-wide phylogeny. We retrieved 80 phylogenetic trees from the literature and from the 356 online repositories TreeBase (Table S9). All trees were downloaded in nexus format. The 357 taxonomy of the species included in each tree was checked and updated using the species 358 checklist with accepted names provided by Brassibase (https://brassibase.cos.uni-heidelberg.de/) 359 (7, 23, 63). All trees were converted to TreeMan format (64) and concatenated into a single 360 TreeMen file that was then converted into a multiPhylo class. Afterward, we estimated a 361 supertree from this set of trees. Because trees did not share the same taxa, we used the Matrix 11 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 362 representation parsimony method (65). To make this supertree more accurate, it was re- 363 constructed using as backbone phylogeny the tree provided by Walden et al. (7). We removed 364 from the supertree those species without information on floral phenotype, resulting in a tree with 365 1876 taxa. Because the original trees used to assemble this supertree where very 366 heterogeneous, this supertree was not dated. We finally rooted the supertree using several 367 species belonging to the sister families Capparaceae and Cleomaceae (66). All phylogenetic 368 manipulations were performed using the R libraries treebase (67), ape (68), treeman (64), 369 phangorn (69) and phytools (70). 370 We tested whether the position of the Brassicaceae species in the morphospace was 371 associated with the phylogenetic relationship by assessing the phylogenetic signal of the 372 morphospace position. This analysis was performed by means of a multivariate Mantel test, using 373 the pairwise disparity (the Euclidean distance between species in the family-wide morphospace) 374 as a morphological distance and the patristic distances between pairs of tips of the supertree as 375 the phylogenetic distance (71). The correlation method used was Pearson and the statistical 376 significance was found after bootstrapping 999 times the analysis (25). The test was done using 377 the R libraries vegan (58) and ecodist (59). 378 379 Family-wide phylomorphospace. We reconstructed a family-wide phylomorphospace by 380 projecting the phylogenetic relationships provided by the supertree into the floral morphospace. 381 The ancestral character estimation of morphospace coordinate values for each internal tree node 382 was done using maximum likelihood. For this, we used the function fastAnc in phytools. This 383 function performs fast estimations of the ML ancestral states for continuous traits by re-rooting 384 the tree at all internal nodes and computing the contrasts state at the root each time (70). 385 We counted the number of intersections between lineages as a measurement of the 386 disorder of the phylomorphospace and evidence of the mode of evolution of the phenotypes (11). 387 For this, we used R codes provided in Ref 11. We compared the observed number of crossings 388 with those expected under several modes of evolution. For this, we counted the number of 389 intersections in 10 simulated sets of species with floral phenotypes following Brownian Motion, 390 Ornstein Uhlenbeck and Early Burst modes of evolution. All simulations were done using as 391 backbone tree the family-wide supertree and considering 1875 species, and by means of the 392 command mvSIM in mvMORPH (72). 393 394 Morphological divergence of the plastic phenotypes. Divergence in floral phenotype was 395 estimated by calculating the disparity of Moricandia arvensis and the rest of Brassicaceae 396 species from their ancestors. We first determined the floral phenotype of the Most Recent 397 Common Ancestor (MRCA) using the projection of a recent time-calibrated phylogeny made for 12 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 398 the genus Moricandia (73) into the above-described phylomorphospace. We used this phylogeny 399 because it is the only one including all the species of the genus. Once we inferred the coordinates 400 of the MRCA in the morphospace, we calculated the disparity of all the Moricandia species and 401 the two plastic phenotypes of M. arvensis to it. Afterwards, we calculated the divergence of the 402 two plastic phenotypes from the direct ancestor of M. arvensis. This analysis was done for the 403 family-wide supertree and for any of the four time-calibrated phylogenies included in our dataset 404 that had Moricandia species (73-76). In addition, we calculated the divergence from the direct 405 ancestors of the rest of Brassicaceae species included in these four phylogenies and in the rest 406 of the time-calibrated trees included in our dataset (Table S9). All floral divergences were 407 calculated using the command ancestral.dist of the function dispRity in the R package dispRity 408 (62). 409 410 Pollinator Database. We have compiled a massive database including 21,212 records 411 comprising 455,014 visits done by over 800 animal species from 19 taxonomical orders, 276 412 families and 43 functional groups to 554 Brassicaceae species belonging to 39 tribes 413 (Supplementary Data 3). Information is coming from literature, personal observation, online 414 repositories and personal communication of several colleagues. The source of information is 415 indicated in the database (Supplementary Data 3, Table S10). In those species studied by us 416 (coded as UNIGEN data origin in the Supplementary Data 3), we conducted flower visitor counts 417 in 1-16 populations per plant species. We visited the populations during the blooming peak, 418 always at the same phenological stage and between 11:00 am and 5:00 pm. In these visits, we 419 recorded the insects visiting the flowers for two hours without differentiating between individual 420 plants. Insects were identified in the field, and some specimens were captured for further 421 identification in the laboratory. We only recorded those insects contacting anthers or stigma and 422 doing legitimate visits at least during part of their foraging at flowers. We did not record those 423 insects only eating petals or thieving nectar without doing any legitimate visit. The information 424 obtained from the literature and online repositories (coded as LITERATURE data origin in the 425 Supplementary Data 3) includes records done during ecological studies, taxonomical studies and 426 naturalistic studies. The reference of every record is included in the dataset. The plant species 427 included in our network do not coexist, implying that this is a clade-oriented network rather than 428 an ecological network (77). 429 430 Spatial distribution of pollinator groups. We tested the autocorrelation across the 431 morphospace in the abundance of the functional groups using a multivariate Mantel test. The 432 correlation method used was Pearson, and the statistical significance was found after 433 bootstrapping 999 times the analysis (25). The test was done using the R libraries vegan (58). 13 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 434 435 Pollination niches. In plant species interacting with a diverse assemblage of pollinators, like 436 those included in this study, many pollinator species interact with the flowers in a similar manner, 437 have similar effectiveness and exert similar selective pressures and are thus indistinguishable for 438 the plant (46, 78). These pollinators are thus grouped into functional groups, which are the 439 relevant interaction units in generalised systems (46, 78, 79). We thereby grouped all pollinators 440 visiting the Brassicaceae species using criteria of similarity in body length, proboscis length, 441 morphological match with the flower, foraging behaviour, and feeding habits (46, 78, 79). Table 442 S11 describes the 43 functional groups used in this study. Supplementary Data 4 shows the 443 species with an autogamous pollination system. 444 445 We determined the occurrence of different pollination niches in our studied populations and 446 seasons using bipartite modularity, a complex-network metric. Modularity has proven to be a 447 good proxy of interaction niches both in ecological networks, those included coexisting species or 448 population, as well as in clade-oriented network, those including species with information coming 449 from disparate and contrasting sources (77). We constructed a weighted bipartite network, 450 including pollinator data of four populations during the spring and summer flowering. In this 451 network, we pooled the data from the different individuals in a population and did not consider the 452 time difference involved in sampling across different species. We removed all plant species with 453 less than 20 visits. We subsequently determined the modularity level in this weighted bipartite 454 network by using the QuanBiMo algorithm (80). This method uses a Simulated Annealing Monte- 455 Carlo approach to find the best division of populations into modules. A maximum of 1010 MCMC 456 steps with a tolerance level = 10-10 was used in 100 iterations, retaining the iterations with the 457 highest likelihood value as the optimal modular configuration. We tested whether our network was 458 significantly more modular than random networks by running the same algorithm in 100 random 459 networks, with the same linkage density as the empirical one (81). Modularity significance was 460 tested for each iteration by comparing the empirical versus the random modularity indices using a 461 Z-score test (80). After testing the modularity of our network, we determined the number of 462 modules (82). We subsequently identified the pollinator functional groups defining each module 463 and the plant species ascribed to each module. Modularity analysis was performed using the R 464 package bipartite 2.0 (83). We quantified the niche overlap between all pair of Brassicaceae 465 species using the Czekanowski index of resource utilization, an index that measures the area of 466 intersection of the resource utilization histograms of each species pair (84). This index was 467 calculated using the function niche.overlap in the R package spaa (85). 468 14 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 469 Estimation of ancestral values of pollination niches. The ancestral states of the pollination 470 niche was inferred for the Moricandia lineage by simulate stochastic character mapping of 471 discrete traits with Bayesian posterior probability distribution (86, 87). Three models of character 472 evolution ("ER" - Equal Rates; “SYM” – symmetric; and “ARD” - All Rates Different) were first 473 evaluated using the fitDiscrete function of the R package Geiger (88). The best model was 474 selected using the Akaike Information Criterion (AIC) and used for stochastic character mapping. 475 The posterior distribution of the transition rate matrix was determined using a Markov chain 476 Monte Carlo (MCMC) simulation, and the stochastic mapping was simulated 100 times. 477 Stochastic character mapping was performed using the make.simmap function and a plot of 478 posterior probabilities were mapped using the describe.simmap function in R package ‘phytools 479 (70). 480 481 Morphological convergence. To explore morphological convergence, we reconstructed the 482 ancestral states of the species belonging to these two pollination niches and tested for each niche 483 whether the species were morphologically more similar to each other than expected by their 484 phylogenetic relationship (39, 40). We used three different approaches to detect morphological 485 convergence, one based on comparing phenotypic and phylogenetic distances (39) and the other 486 based on comparing the angles formed by two tested clades from their most recent common 487 ancestor with the expected angle according to null evolutionary models (38). Because all these 488 analyses are sensitive to the number of tips in the phylogeny and the inferred branch lengths, we 489 tested for the occurrence of morphological convergence using three independent, time-calibrated 490 phylogenies including more than 45 species (74-76). 491 Under the first approach, we calculated both distance- and frequency-based measures of 492 convergence (39). Distance-based measures (C1–C4) are calculated between two lineages 493 relative to their distance at the point in evolutionary history where the two lineages were 494 maximally dissimilar. C1 specifically measures the proportion of phenotypic distance closed by 495 evolution, ranging from 0 to 1 (where 1 indicates complete convergence). To calculate C1, 496 ancestral states are reconstructed (via a Brownian motion model of evolution) for two or more 497 putatively convergent lineages, back to their most recent common ancestor. The maximum 498 phenotypic distance between any pair of ancestors (Dmax) is calculated, and compared with the 499 phenotypic distance between the current putatively convergent taxa (Dtip). The greater the 500 difference between Dmax and Dtip, the higher the index. C2 is the raw value of the difference 501 between the maximum and extant distance between the two lineages. C3 is C2 scaled by the 502 total evolution (sum of squared ancestor-to-descendant changes) between the two lineages. C4 503 is C2 scaled by the total evolution in the whole clade. These four measures quantify incomplete 504 convergence in multidimensional space. Finally, C5, the frequency-based measure, quantifies 15 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 505 and reports the number of convergent events where lineages evolve into a specific region of 506 morphospace (crossing it from outside). C5 sums the number of times through the evolution of a 507 clade that lineages evolve into a given region of phenotypic space. C5 is the number of focal taxa 508 that reside within a limited but convergent region of a phylomorphospace (the phylogenetic 509 connections between taxa represented graphically in a plot of morphological space). The 510 significance of C1–C5 was found by running 1000 simulations for each comparison using 511 Brownian-Motion on a variance–covariance matrix based on data-derived parameters, with 512 convergence measures for each simulation calculated to determine if the observed C value is 513 greater than expected by chance. A priori focal groups forming the basis of convergence tests 514 were the same niche categorizations used in OUwie analyses. These analyses were performed 515 using the R package convevol (89). 516 The second approach to measure convergence was based on comparing the angles 517 formed by two tested clades from their most recent common ancestor with the expected angle 518 according to null evolutionary models (38). Under the “state case”, search.conv computes the 519 mean angle over all possible combinations of species pairs using one species per state. Each 520 individual angle is divided by the patristic distance between the species. Significance is assessed 521 by contrasting this value with a family of 1,000 random angles obtained by shuffling the state 522 across the species (38). These analyses were performed using the R package RRphylo (90). 523 The third approach to measure convergence used the Wheatleaf metric (40). This index 524 generates phenotypic (Euclidean) distances from any number of traits across species and 525 penalizes them by phylogenetic distance before investigating similarity (in order to weight close 526 phenotypic similarity higher for distantly related species). It uses an a priori designation of 527 convergent species, which are defined as species belonging to a niche for which the traits are 528 hypothesized to converge. The method then calculates a ratio of the mean (penalized) distances 529 between all species to the mean (penalized) distances between allegedly convergent species. 530 The index detects if convergent species diverge more in phenotypic space from the non- 531 convergent species and show a tighter clustering to each other (40). The significance of this index 532 was found by comparing the empirical values of the index with a distribution of simulated indices 533 obtained running 5000 bootstrap simulations. These analyses were performed using the R 534 package windex (91). 535 536 537 Acknowledgments 538 Authors thank Raquel Sánchez, Angel Caravantes, Isabel Sánchez Almazo, María José 539 Jorquera, and Iván Rodríguez Arós for helping us during several phases of the study. We also 540 thank all contributors to the pollinator database (Table S10) for kindly sending us unpublished 16 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 541 information on Brassicaceae floral visitors. This research is supported by grants from the Spanish 542 Ministry of Science, Innovation and Universities (CGL2015-63827-P, CGL2017-86626-C2-1-P, 543 CGL2017-86626-C2-2-P, UNGR15-CE-3315), Junta de Andalucía (P18-FR-3641, IE19_238 544 EEZA CSIC), LIFE18 GIE/IT/000755, and Xunta de Galicia (CITACA), including EU FEDER 545 funds. This is a contribution to the Research Unit Modeling Nature, funded by the Consejería de 546 Economía, Conocimiento, Empresas y Universidad, and European Regional Development Fund 547 (ERDF), reference SOMM17/6109/UGR. 548 549 Competing interests 550 The authors declare no competing interests. 551 552 553 References 554 1. G. R. McGhee, Convergent Evolution: Limited Forms Most Beautiful. MIT Press, Cambridge 555 556 557 558 559 560 561 562 563 (2011). ISBN:9780262016421 2. J. B. Losos, Convergence, adaptation, and constraint. Evolution 65, 1827–1840 (2011). doi:10.1111/j.1558-5646.2011.01289.x 3. S. C. Morris, Life's solution: Inevitable Humans in a Lonely Universe. Cambridge University Press, Cambridge (2003). ISBN:9780521603256 4. T. Pearce, Convergence and parallelism in evolution: a Neo-Gouldian account. Br. J. Philos. Sci. 63, 429–448 (2011). doi:10.1093/bjps/axr046 5. D. Schluter, The Ecology of Adaptive Radiation. Oxford Univ. Press, Oxford, U.K. (2000) ISBN:9780198505228 564 6. P. Nosil, Ecological Speciation. Oxford Univ. Press, Oxford, U.K. (2012) ISBN:9780199587100 565 7. N. Walden, D. A. German, E. M. Wolf, M. Kiefer, P. Rigault, X. C. Huang, C. Kiefer, R. 566 Schmickl, A. Franzke, B. Neuffer, K. Mummenhoff, Nested whole-genome duplications 567 coincide with diversification and high morphological disparity in Brassicaceae. Nature Comm. 568 11, 3795 (2020). doi:10.1038/s41467-020-17605-7 569 8. M. Simões, L. Breitkreuz, M. Alvarado, S. Baca, J. C. Cooper, L. Heins, K. Herzog, B. S. 570 Lieberman, The evolving theory of evolutionary radiations. Trends Ecol. Evol. 31, 27–34 571 (2016). doi:10.1016/j.tree.2015.10.007 572 573 574 575 9. M. R., Pie, J. S. Weitz, A null model of morphospace occupation. Am. Nat. 166, E1–E13 (2005). doi:10.1086/430727 10.K. O. Winemiller, D. B. Fitzgerald, L. M. Bower, E. R. Pianka, Functional traits, convergent evolution, and periodic tables of niches. Ecol. Lett. 18, 737–751 (2015). doi:10.1111/ele.12462 17 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 576 11.C. T. Stayton, Are our phylomorphospace plots so terribly tangled? An investigation of 577 disorder in data simulated under adaptive and nonadaptive models. Curr. Zool. 66, 565–574 578 (2020). doi:10.1093/cz/zoaa045 579 12.A. L. Pigot, C. Sheard, E. T. Miller, T. P. Bregman, B. G. Freeman, U. Roll, N. Seddon, C. H. 580 Trisos, B. C. Weeks, J. A. Tobias, Macroevolutionary convergence connects morphological 581 form to ecological function in birds. Nature Ecol. Evol. 4, 230–239 (2020). 582 doi:10.1038/s41559-019-1070-4 583 584 585 13.D. L. Stern, The genetic causes of convergent evolution. Nat. Rev. Genet. 14, 751–764 (2013). doi:10.1038/nrg3483 14.E. B. Rosenblum, C. E. Parent, E. E. Brandt, The molecular basis of phenotypic convergence. 586 Annu. Rev. Ecol. Evol. Syst. 45, 203–226 (2014). doi:10.1146/annurev-ecolsys-120213- 587 091851 588 589 590 591 592 593 594 15.P. A. Christin, D. M. Weinreich, G. Besnard, Causes and evolutionary significance of genetic convergence. Trends Genet. 26, 400–405 (2010). doi:10.1016/j.tig.2010.06.005 16.M. J. West-Eberhard, Developmental Plasticity and Evolution. Oxford Univ. Press, New York, (2003). ISBN: 9780195122343 17.S. Sultan, Organism and Environment: Ecological development, Niche construction, and Adaption. Oxford Univ. Press, New York, (2015). ISBN:9780199587063 18.J. M. Gómez, F. Perfectti, C. Armas, E. Narbona, A. González-Megías, L. Navarro, L. DeSoto, 595 R. Torices, Within-individual phenotypic plasticity in flowers fosters pollination niche shift. 596 Nature Comm. 11, 4019 (2020). doi:10.1038/s41467-020-17875-1 597 19.V. Susoy, E. J. Ragsdale, N. Kanzaki, R. J. Sommer, Rapid diversification associated with a 598 macroevolutionary pulse of developmental plasticity, eLife 4, e05463 (2015). 599 doi:10.7554/eLife.05463 600 601 602 603 604 605 606 20.N. A. Levis, D. W. Pfennig, Evaluating ‘plasticity-first ’evolution in nature: key criteria and empirical approaches. Trends Ecol. Evol. 31, 563–574 (2016). doi:10.1016/j.tree.2016.03.012 21.R. J. Sommer, Phenotypic plasticity: from theory and genetics to current and future challenges. Genetics 215, 1–13 (2020). doi:10.1534/genetics.120.303163 22.M. A. Koch, D. A. German, M. Kiefer, A. Franzke, Database taxonomics as key to modern plant biology. Trends Plant Sci. 23, 4–6 (2018). doi:10.1016/j.tplants.2017.10.005 23.M. Kiefer, R. Schmickl, D. A. German, T. Mandáková, M. A. Lysak, I. A. Al-Shehbaz, A. 607 Franzke, K. Mummenhoff, A. Stamatakis, M.A. Koch, BrassiBase: introduction to a novel 608 knowledge database on Brassicaceae evolution. Plant Cell Physiol. 55, e3–e3 (2014). 609 doi:10.1093/pcp/pct158 610 611 24.The Plant List Version 1.1. Published on the Internet (accessed 1st January 2021). http://www.theplantlist.org/1.1/browse/A/Brassicaceae/ (2013). 18 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 612 25.P. Legendre, L. Legendre, Numerical Ecology. Elsevier, Oxford (2012). ISBN:9780080523170 613 26.T. Guillerme, N. Cooper, S. L. Brusatte, K. E. Davis, A. L. Jackson, S. Gerber, A. Goswami, K. 614 Healy, M. J. Hopkins, M. E. Jones, G. T. Lloyd, Disparities in the analysis of morphological 615 disparity. Biol. Lett. 16, 20200199 (2020). doi:10.1098/rsbl.2020.0199 616 27.M. Méndez, J. M. Gómez, Phenotypic gender in Hormathophylla spinosa (Brassicaceae), a 617 perfect hermaphrodite with tetradynamous flowers, is variable. Plant Syst. Evol. 262, 225–23 618 (2006). doi:10.1007/s00606-006-0462-5 619 28. V. L. Soza, V. Le Huynh, V. S. Di Stilio, Pattern and process in the evolution of the sole 620 dioecious member of Brassicaceae. EvoDevo 5, 42 (2014). doi:10.1186/2041-9139-5-42 621 29.E. Narbona, H. Wang, P. L. Ortiz, M. Arista, E. Imbert, Flower colour polymorphism in the 622 Mediterranean Basin: occurrence, maintenance and implications for speciation. Plant Biol. 20, 623 8–20 (2018). doi:10.1111/plb.12575. 624 30.C. A. Dick, J. Buenrostro, T. Butler, M. L, Carlson, D. J. Kliebenstein, J. B. Whittall, Arctic 625 mustard flower color polymorphism controlled by petal-specific downregulation at the threshold 626 of the anthocyanin biosynthetic pathway. PLoS One 6, e18230 (2011). 627 doi:10.1371/journal.pone.0018230 628 31.B. Zhang, C. Liu, Y. Wang, X. Yao, F. Wang, J. Wu, G. J. King, K. Liu, Disruption of a 629 carotenoid cleavage dioxygenase 4 gene converts flower colour from white to yellow in 630 Brassica species. New Phytol. 206, 1513–1526 (2015). doi:10.1111/nph.13335 631 32.S. Faisal, Y. Guo, S. Zang, B. Cao, G. Qu, S. Hu, Morphological and genetic analysis of a 632 cleistogamous mutant in rapeseed (Brassica napus L.). Genet. Resour. Crop Evol. 65, 397– 633 403 (2018). doi:10.1007/s10722-017-0598-x 634 635 33.G. Theissen, Homeosis of the angiosperm flower: studies on three candidate cases of saltational evolution. Palaeodiversity 3, 131–139 (2010). 636 34.M. V. Byzova, J. Franken, M. G. Aarts, J. de Almeida-Engler, G. Engler, C. Mariani, M. M. V. 637 L. Campagne, G. C. Angenent, Arabidopsis STERILE APETALA, a multifunctional gene 638 regulating inflorescence, flower, and ovule development. Genes Dev. 13, 1002–1014 (1999). 639 doi:10.1101/gad.13.8.1002. 640 35.T. Van der Niet, S. D. Johnson, Phylogenetic evidence for pollinator-driven diversification of 641 angiosperms. Trends Ecol. Evol. 27, 353–361 (2012). doi:10.1016/j.tree.2012.02.002 642 36.A. Franzke, M. A. Lysak, I. A. Al-Shehbaz, M. A. Koch, K. Mummenhoff, Cabbage family 643 affairs: the evolutionary history of Brassicaceae. Trends Plant Sci. 16, 108–116 (2011). 644 doi:10.1016/j.tplants.2010.11.005 645 646 37.J. M. Gómez, F. Perfectti, J. Lorite, The role of pollinators in floral diversification in a clade of generalist flowers. Evolution 69, 863–878 (2015). doi:10.1111/evo.12632 19 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 647 38.S. Castiglione, C. Serio, D. Tamagnini, M. Melchionna, A. Mondanaro, M. Di Febbraro, A. 648 Profico, P. Piras, F. Barattolo, P. Raia, A new, fast method to search for morphological 649 convergence with shape data. PloS One 14: e0226949 (2019). 650 doi:10.1371/journal.pone.0226949 651 39.C. T. Stayton, The definition, recognition, and interpretation of convergent evolution, and two 652 new measures for quantifying and assessing the significance of convergence. Evolution 69, 653 2140–2153 (2015). doi:10.1111/evo.12729 654 40.K. Arbuckle, C. M. Bennett, M. P. Speed, A simple measure of the strength of convergent 655 evolution. Methods Ecol. Evol. 5, 685–693 (2014). doi:10.1111/2041-210X.12195 656 41.K. Faegri, L. Van Der Pijl, Principles of Pollination Ecology. Elsevier, Oxford (1980). 657 658 659 660 ISBN:9780080164212 42.A. S. Dellinger, Pollination syndromes in the 21st century: where do we stand and where may we go?. New Phytol. 228, 1193–1213 (2020). doi:10.1111/nph.16793 43.R. D. Phillips, R. Peakall, T. van der Niet, S. D. Johnson, Niche perspectives on plant– 661 pollinator interactions. Trends Plant Sci. 25, 779–793 (2020). 662 doi:10.1016/j.tplants.2020.03.009. 663 44.C. A. Wessinger, L. C. Hileman, Parallelism in flower evolution and development. Annu. Rev. 664 Ecol. Evol. Syst. 51, 387–408 (2020). doi:10.1146/annurev-ecolsys-011720-124511 665 45.J. D. Thomson, P. Wilson, Explaining evolutionary shifts between bee and hummingbird 666 pollination: convergence, divergence, and directionality. Int. J. Plant Sci. 169, 23–38 (2008). 667 doi:10.1086/523361 668 46.J. M. Gómez, F. Perfectti, M. Abdelaziz, J. Lorite, A. J. Muñoz Pajares, J. Valverde, Evolution 669 of pollination niches in a generalist plant clade. New Phytol. 205, 440–453 (2015). 670 doi:10.1111/nph.13016 671 47.E. C. Snell-Rood, M. E. Kobiela, K. L. Sikkink, A. M. Shepherd, Mechanisms of plastic rescue 672 in novel environments. Annu. Rev. Ecol. Evol. Syst. 49, 331–354 (2018). doi:10.1146/annurev- 673 ecolsys-110617-062622 674 48.R. J. Fox, J. M. Donelson, C. Schunter, T. Ravasi, J. D. Gaitán-Espitia, Beyond buying time: 675 the role of plasticity in phenotypic adaptation to rapid environmental change. Phil. Trans. R. 676 Soc. B 374, 20180174 (2019). doi:10.1098/rstb.2018.0174 677 49.N. A. Levis, D. W. Pfennig, Plasticity-led evolution: evaluating the key prediction of frequency- 678 dependent adaptation. Proc. Biol. Sci. 286, 20182754 (2019). doi:10.1098/rspb.2018.2754 679 50.M. R. Warner, L. Qiu, M. J. Holmes, A. S. Mikheyev, T. A. Linksvayer, Convergent eusocial 680 evolution is based on a shared reproductive groundplan plus lineage-specific plastic genes. 681 Nature Comm. 10, 1–11 (2019). doi:10.1038/s41467-019-10546-w 20 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 682 683 684 685 686 51.R. F. Schneider, A. Meyer, How plasticity, genetic assimilation and cryptic genetic variation may contribute to adaptive radiations. Mol. Ecol. 26, 330–350 (2017). doi:10.1111/mec.13880 52.T. Guillerme, N. Cooper, Time for a rethink: time sub sampling methods in disparity through time analyses. Palaeontology 61, 481–493 (2018). doi:10.1111/pala.12364 53.P. Legendre, D. Borcard, P. R. Peres-Neto, Analyzing beta diversity: Partitioning the spatial 687 variation of community composition data. Ecol. Monogr. 75, 435–450 (2005). doi:10.1890/05- 688 0549 689 690 691 692 693 694 54.P. Mair, I. Borg, Rusch T. Goodness-of-fit assessment in multidimensional scaling and unfolding. Multivar. Behav. Res. 51, 772–789 (2016). doi:10.1080/00273171.2016.1235966. 55.J. B. Kruskal, Multidimensional scaling by optimizing goodness-of-fit to a nonmetric hypothesis. Psychometrika 29, 1–28 (1964). 56.J. B. Kruskal, Nonmetric multidimensional scaling: a numerical method. Psychometrika 29, 115–129 (1964). 695 57.G. De'ath, Extended dissimilarity: a method of robust estimation of ecological distances from 696 high beta diversity data. Plant Ecol. 144, 191–199 (1999). doi:10.1023/A:1009763730207 697 58.J. Oksanen, F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’hara, G. L. 698 Simpson, P. Solymos, M. H. H. Stevens, H. Wagner, 2013 Package ‘vegan’. Community 699 ecology package, version 2, 1–295 https://cran.r-project.org, 700 https://github.com/vegandevs/vegan (2019) 701 702 703 704 705 59.S. C. Goslee, Urban, D. L The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22, 1–19 (2007). doi:10.18637/jss.v022.i07 60.J. Oksanen, Vegan: an introduction to ordination. URL http://cran. r-project. org/web/packages/vegan/vignettes/introvegan.pdf (2020). 61.T. Guillerme, M. N. Puttick, A. E. Marcy, V. Weisbecker, Shifting spaces: Which disparity or 706 dissimilarity measurement best summarize occupancy in multidimensional spaces?. Ecol. 707 Evol. 10, 7261–7275 (2020). doi:10.1002/ece3.6452 708 709 710 62.T. Guillerme, dispRity: a modular R package for measuring disparity. Methods Ecol. Evol. 9, 1755–1763 (2018). doi:10.1111/2041-210X.13022 63.M. A. Koch, M. Kiefer, D.A. German, I.A. Al-Shehbaz, A. Franzke, K. Mummenhoff, R. 711 Schmickl, BrassiBase: Tools and biological resources to study characters and traits in the 712 Brassicaceae — version 1.1. Taxon 61, 1001–1009 (2012). doi:10.1002/tax.615007 713 64.D. J., Bennett, M. D., Sutton, S. T. Turvey, Treeman: an R package for efficient and intuitive 714 manipulation of phylogenetic trees. BMC Res. Notes 10, 30 (2017). doi:10.1186/s13104-016- 715 2340-8 716 717 65.M. A. Ragan, Phylogenetic inference based on matrix representation of trees. Mol. Phylogenetics Evol. 1, 53–58 (1992). doi:10.1016/1055-7903(92)90035-F 21 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 718 719 66.S. Bayat, M. E. Schranz, E. H. Roalson, J. C. Hall, Lessons from Cleomaceae, the sister of crucifers. Trends Plant Sci. 23, 808–821 (2018). doi:10.1016/j.tplants.2018.06.010. 720 67.C. Boettiger, D. Temple Lang, Treebase: an R package for discovery, access and 721 manipulation of online phylogenies. Methods Ecol. Evol. 3, 1060–1066 (2012). 722 doi:10.1111/j.2041-210X.2012.00247.x 723 68.E., Paradis, K. Schliep, ape 5.0: an environment for modern phylogenetics and evolutionary 724 analyses in R. Bioinformatics 35, 526–528 (2019). doi:10.1093/bioinformatics/bty633 725 69.K. Schliep, phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011). 726 727 728 doi:10.1093/bioinformatics/btq706 70.L. J. Revell, phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012). doi:10.1111/j.2041-210X.2011.00169.x 729 71.O. J. Hardy, S. Pavoine, Assessing phylogenetic signal with measurement error: a comparison 730 of Mantel tests, Blomberg et al.'s K, and phylogenetic distograms. Evolution 66, 2614–2621 731 (2012). doi:10.1111/j.1558-5646.2012.01623.x 732 72.J. Clavel, G. Escarguel, G. Merceron, mvMORPH: an R package for fitting multivariate 733 evolutionary models to morphometric data. Methods Ecol. Evol. 6, 1311–1319 (2015). 734 doi:10.1111/2041-210X.12420 735 73.F. Perfectti, J. M. Gómez, A. González-Megías, M. Abdelaziz, J. Lorite, Molecular phylogeny 736 and evolutionary history of Moricandia DC (Brassicaceae). PeerJ 5, e3964 (2017). 737 doi:10.7717/peerj.3964 738 739 740 74.S. A. Smith, J. W. Brown, Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018). doi:10.1002/ajb2.1019 75.M. L. Gaynor, J. Ng, R. G. Laport, Phylogenetic structure of plant communities: are polyploids 741 distantly related to co-occurring diploids?. Frontiers Ecol. Evol. 6, 52 (2018). 742 doi:10.3389/fevo.2018.00052 743 76.X.-C. Huang, D. A. German, M. A. Koch, Temporal patterns of diversification in Brassicaceae 744 demonstrate decoupling of rate shifts and mesopolyploidization events. Ann. Bot. 125, 29–47 745 (2019). doi:10.1093/aob/mcz123 746 77.J. M. Gómez, M. Verdú, F. Perfectti, Ecological interactions are evolutionarily conserved 747 across the entire tree of life. Nature 465, 918–921 (2010). doi:10.1038/nature09113 748 78.C. B. Fenster, W. S. Armbruster, P. Wilson, M. R. Dudash, J. D. Thomson, Pollination 749 syndromes and floral specialization. Annu. Rev. Ecol. Evol. Syst. 35, 375–403 (2004). 750 doi:10.1146/annurev.ecolsys.34.011802.132347 751 79.J. M. Gómez, R. Torices, J. Lorite, C. P. Klingenberg, F. Perfectti, The role of pollinators in the 752 evolution of corolla shape variation, disparity and integration in a highly diversified plant family 753 with a conserved floral bauplan. Ann. Bot. 117, 889–904 (2016). doi:10.1093/aob/mcv194 22 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 80.C. F. Dormann, R. Strauss, A method for detecting modules in quantitative bipartite networks. Methods Ecol. Evol. 5, 90–98 (2014). doi:10.1111/2041-210X.12139 81.R. Guimerà, L. A. N. Amaral, Functional cartography of complex metabolic networks. Nature 433, 895–900 (2005). doi:10.1038/nature03288 82.M. E. J. Newman, Analysis of weighted networks. Phys. Rev. E70, 056131 (2004). doi:10.1103/PhysRevE.70.056131 83.C. F. Dormann, B. Gruber, J. Fründ, Introducing the bipartite package: Analysing ecological networks. R News 8, 8–11 (2008). 84.P. Feinsinger, E. E. Spears, R. W. Poole, A simple measure of niche breadth. Ecology 62, 27– 32 (1981). doi:10.2307/1936664 85.J. Zhang, M. J. Zhang, Package ‘spaa’. R package version 1. https://CRAN.Rproject.org/package=spaa (2013). 86.J. P. Huelsenbeck, R., Nielsen, J. P. Bollback, Stochastic mapping of morphological characters. Syst. Biol. 52, 131–158 (2003). doi:10.1080/10635150390192780 87.J. P. Bollback, SIMMAP: stochastic character mapping of discrete traits on phylogenies. BMC Bioinformatics 7, 88 (2006). doi:10.1186/1471-2105-7-88 88.L. J. Harmon, J. T. Weir, C. D. Brock, R. E. Glor, W. Challenger, GEIGER: investigating evolutionary radiations. Bioinformatics 24, 129–131 (2008). doi:10.1093/bioinformatics/btm538 89.C. T. Stayton, Convevol: quantifies and assesses the significance of convergent evolution. R package version 1.0. See http:// cran.r-project.org/ web/packages/convevol/index.html (2018). 90.P. Raia, S. Castiglione, C. Serio, A. Mondanaro, M. Melchionna, M. Di Febbraro, RRphylo: 775 Phylogenetic ridge regression methods for comparative studies. Methods Ecol. Evol. 9, 974- 776 983 (2019). doi:10.1111/2041-210X.12954 777 778 91.K., Arbuckle, A. Minter, Windex: Analyzing convergent evolution using the Wheatsheaf index in R. Evol. Bioinformatics 11, EBO-S20968 (2015). doi:10.4137/EBO.S20968 779 23 b oRx v p ep n do h ps do o g 10 1101 2021 05 25 445642 h s ve s on pos ed May 26 2021 The copy gh ho de o h s p ep n wh ch was no ce ed by pee ev ew s he au ho unde who has g an ed b oRx v a cense o d sp ay he p ep n n pe pe u y s made ava ab e unde aCC BY 4 0 n e na ona cense 780 781 782 Figures b d Hesperis varolii Micran tha mul ticaulis Matthiola anchoniifolia Matthiola iranica Farsetia longisiliqua Matthiola valesiaca Matthiola macranica Farsetia linearis Matthiola fruticulosa Eruca vesicaria Matthiola flavida Enarthrocarpus arcuatus Matthiola chenopodiifolia 0.2 Hesperis syriaca Matthiola chorassanica Hesperis tristis Brassi ca incana Mach aerop horus matthioloides Conrin gia grandiflora Matthiola glutinosa Eruca pinnatifida Chorispora iberica Brassi ca drepanensis Hesperis balansae Dithyrea californica Matthiola shiraziana Lyroca rpa coulteri Erysi mum men ziesii Bra ssica olerace a Bra ssica macroca rpa Eutrema baimashanicum Biscu tella cichoriifolia Brassi ca trich ocarpa Hesperis pendula Coincya longirost ra Carin avalva glauca Matthiola arabica Farsetia assa dii Erysimum polatschekii Leavenworthia stylosa Hesperis stellata Bra ssica bivoniana Erysimum macrop etalum Brassi ca montana Eutrema renifolium Coincya rich eri Hesperis scabrida Hesperis breviscapa Coincya monensis.cheiran thos Hesperis kuerschneri Coincya transtagana Brassica raimondoi Mathewsia foliosa Brassi ca bourgeaui Degenia velebitica Mathewsia peruvi ana Erysimum f rancisca num Conrin gia austria ca Erysi mum p erof ski anum Erysimum ca pitatum Erysi mum d agest anicum Arabis kaynakiae Brassi ca napus Erysi mum p seudocheiri Erysi mum co ncinnum Leavenworthia texana Matthiola fragans Mathewsia linearif olia Erysimum o sse ticum Mathewsia densifolia Draba hammenii Erysi mum b aicalense Hesperis campicarpa Farsetia heliophila Erysimum su ffrutescens Erysimum ghiesbreghtii Erysi mum n ervosu m Erysimum croce um Erysi mum g abrie lianae Erysi mum i bericu m Erysimum co llinum Leavenworthia a urea Hesperis candida Chorispora macropoda Alysso ides utricu laria Bra ssi ca villosa Coincya rupestris Erysimum roseum Conringia planisiliqua Bra ssi ca tinei Erysimum w itmanni Leavenworthia crassa Farsetia jacquemontii Erysimum ko tuchovii Mathewsia collina Erysi mum mun zurie nse Erysimum hezarense Hesperis novakii Diplotaxis antoniensi s Coincya monensis.orop hila Erysimum b onannianum Erysimum a penninum Erysimum a ren icola Erysi mum met lesicsi i Erysi mum o ccidentale Erysimum p ignattii Diplotaxis hirta Mathewsia auriculata Atacama nivea Enarthrocarpus pterocarpus Leavenworthia torulosa 0.1 Matthiola bucharica Hesperis tosyaensis Bra ssi ca maurorum Hesperis hamzaoglui Hesperis buschiana Matthiola integrifolia Matthiola kralikii Eruca foleyi Hesperis bottae Hesperis pisidica Aethionema lepidioides Erysimum semperflorens Erysimum funiculosum Erysimum cyaneum Leiospora beketovii Hesperis thyrsoidea Moricandia spinosa Orychophragmus zhongtiaoshanus Marcus-kochia lacera Eremophyton chevallieri Moricandia nitens Matthiola capiomontana Leiospora bellidifolia Brassica hilarionis Erysimum pseudopurpureum Arabis aubrietoides Erysimum lilacinum Erysimum purpureum Hesperis trullata Leiospora eriocalyx Parrya minjanensis Parrya arctica Hesperis hedgei Douepia tortuosa Orychophragmus taibaiensis Clausia trichosepala Chorispora purpurascens Orychophragmus longisiliquus Parrya nauruaq Cardamine gouldii Moricandia sinaica Foleyola billotii Cardamine raphanifolia Erysimum bastetanum Chorispora bungeana Orychophragmus violaceus Clausia aprica Hesperis sibirica Marcus-kochia triloba Cardamine dentata Malcolmia maritima Brachypus suffruticosus.kermanshahensis Erysimum linifolium Lunaria rediviva Parolinia plastypetala Cardamine constancei Erysimum cazorlense Hesperis pycnotricha Farsetia longistyla Heliophila rimicola Heliophila filicaulis Parolinia filifolia Brachypus suffruticosus.suffruticosa Parolinia glabriuscula Lunaria annua Brachypus suffruticosus.khoshyelaqensis Horwoodia dicksonia Parrya khorasanica Erysimum bicolor Hesperis kitiana Parolinia inrtermedia Erysimum popovii Henophyton zygarrhenum Moricandia foetida Arabis blepharophylla Marcus-kochia arenaria Boechera formosa Cardamine pachystigma Maresia doumetiana Menonvillea cuneata Boechera pulchra Cardamine picta Cakile maritima Arabis mollis.mollis Cardamine concatenata Heliophila scandens Cardamine montenegrina Boechera fernaldiana Boechera Boechera californica arcuata Dontostemon senilis Cardamine maxima Arabis mollis.graellsiiformis Noccaea al-atahanii Boechera hoffmannii Dontostemon dentatuscrassifolius Dontostemon Cardaminepratensis rivularis Cardamine Hesperidanthus barnebyi Arabidospsis cebennensis Arabis josiae Maresia pygmaea Hesperidanthus argillaceus Goldbachia sabulosa Cardamine angulata Arabis rosea Eigia longistyla Heliophila esterhuyseniae Cakile constricta Arabidopsisdelavayi cebennensis Dontostemon Megacarpaea perennis Heliophila cedarbergensis Lunaria telekiana Aubrieta libanotica Maresia malcolmioides Phoenicaulis cheiranthoides Arabis verna Aethionema elongatum Cardamine purpurea Aethionema semnanensis Aubrieta erubescens Heliophila alpina Aethionema cordatum Aubrieta parviflora Aubrieta ekimii AethionemaAethionema thomasianum schistosum Notothlaspi rosulatum -0.1 Heliophila digitata Heliophila africana Heliophila arenaria Heliophila coronopifolia Iberis nazarita Heliophila adpressa Crambe hedgei Iberis attica Iberis peyerimhofjii Cardamine pseudotrifoliolata Crambe sventenii Crambe feuilleei Crambe strigosa Crambe laevigata Crambe schugnana Crambe edentula Arabis stenocarpa Crambe microcarpa Crambe tamadabensis Crambe steveniana Crambe koktebelica Crambe fruticosa Crambe scoparia Crambe juncea Crambe pinnatifida Crambe armena Crambe scaberrima Crambe orientalis Crambe grossheimii Crambe Crambe gomeraealutacea Noccaea bulbosa Heliophila amplexicaulis Iberis ciliata.contracta Iberis ciliata.welwitschii Iberis runemarkii Chamira circaeoides Phravenia viereckii Alyssu m w ulfenianum Isa tis afghanica Alyssu m mou radicum Pa ysonia lyrat a Drab a matthioloidesPh ysariaPhysa engelmannii ria alpina Draba rosi tae Diplotaxis tenuifolia Barba rea vulgaris Diplotaxis muralis Diplotaxis tenuisiliqua Isatis apennina Meniocus st ylaris Brassi ca procu mbens Isa tis takhtajanii Meniocus huetii Bra ssi ca souliei Diplotaxis assurge ns Isa tis raimondoi Alyssu m n ive um Physa ria ria pinetorum Physa riapruinosa ovalifolia Physa pendula Physa Physa ria carin ata Payso nia auricu lata Payso nia lescu rii Al yssu m p ersicu m ria obco rdata Alyssu mDraba lepidoto-ste llatum sagast eguii Physa Au rin ia petraea Physa rollinsi i Ph ysaria rect ipes Physa riariaintermedia Physa ria oregona Physa ria kingii Physa occi dentalis m rep Bu ensnias orie ntalis Physa riariasaximontana Draba Alyssu japonica Physa ria ludoviciana Physa calcicola Physa ria argyrae a Physa riaria densiflora Diplotaxis siifolia Drab a pulvinata Physa ria douglasii ria parvul a Physa ria Physa arenosa Physa ria Physa ria angustifolia cordiformis Physa graci lis Drab a bifurcat aria Brassi ca jordanoffii Physa ria calderi Physa Physa ria macroca ria garre rpa ttii ria gooddingii Payso nia densipila Diplotaxis catholica Draba litamo Physa Physa ria arizo fremon tii Ph ysaria nica Ph ysariaPhysa hemiphysaria Neslia apiculata Drab a xyl opoda humilis Physa ria lata Physa riariareediana Ph ysaria prost rata Au rinia sinuata Physa ria Physa Phria ysaria ria nelsonii gordonii Physa hitchco ckii Di plotaxis brevi si liqua Physa ria condensata Physa ria lindheimeri Physa ria scrot iformi s Drab a aureo la Physa ria ria klausii arcti ca navajoensis Draba pseudocheiran thoidesPh ysariaPhysa Eruca strum i fniense Phiaysa incrassa taria Aurin leucadea DrabDraba a rit acu vana ysa ria lesicii aurea Draba kassi Alyssui m Ph amasi anum Physa ria parvif lora Physa ria obdeltata Physa ria recu rvat a Physa ria pachyphylla Physa Physa riaria cocurvip ngestaes Physa ria pycn antha Draba wurdackii Drab a aizoides Draba aleutica Drab a funcki ana globosa PhPhysa ysariariapulvinata Odontarrhena mughlaei Draba ruaxes Eruca strum a byssi nicum Di plotaxis virgata Drab a ochrop etala Alyssu m ca lyco carpum Kremerie lla cordyl Alyssuocarpus m pse udomouradicum Al yssu m mue lleri bulbotrich um Alyssu m trich ocarpum Isatis aucheri Alyssu m misi rdalianum Eru castrum ca rdamin oides Guirao a arven sis Drab a pamplonensis ria chambersii Draba pennell-ha zeniiPhysaPhysa riariagrahamii Ph ysa bellii Ph ysaria multiceps Physa montana Physa olia Drab a funcki i riaria Physa riaintegrif fendleri pulcherri ma Diplotaxis harra Draba Physa ria erio carpa Draba sch ultzei Erysimum i ncanum ria cinerea PhysaPhysa ria floribunda Drab a co cuyanaPhysa ria newberryi Eruca strum vi rgatum Alyssu m hezarmasjedense Eru cast rum ca narie nse Aurin ia saxa tilis Physa ria didymoca rpa Brassi ca somalensis Physa ria dornii Physa ria brassi coides Alyssu m p raecox Eruca strum p alustre Bra ssi ca deflexa Iberis grossi Iberis aurosica.aurosica Iberis aurosica.nana Heliophila affinis Iberis linifolia Pennellia boliviensis Heliophila macowaniana Pennellia patens Mostacillastrum g raci elae Exhalimolobos hispidulus Ianhedgea minutiflora Isa tis djurdjurae Isa tis tinctoria Alyssu m mon tanum Biscutella incana Brassi ca tournefortii Odontarrh ena obovata Cardamin e basicola Peltaria alliacea Ionopsidium albiflorum Cardamin e rese difolia Geococcu s pusillus Cruci himalaya bursif olia Ara bis pumil a Arabis lycia Isa tis erzurumica Isatis co chlearis Isatis ca ndolleana Isa tis kozlowskyi Isa tis kotschyana Isatis stenophylla Isatis cappadocica Isa tis platyloba Isa tis florib unda Clypeola erio carpa Clypeola elegans Clypeola ci liata Clypeola raddeana Clypeola dichotoma Lepidium co ronopus Cardamine bilobata Lepidium mon tanum Lepidium juvencum Lepidium nitidum Lepidium se ditiosum Lepidiumcucaneiforme pitatum Lepidium Lepidium amissu m Lepidium crassu m yotum Lepidium Lepidium dict a cutidens LepidiumLepidium ca stellanum oxyca rpum Heliophila roggeveldensis Cardamine Berteroa obliqua Cardamine papilla a tasarif olia Berte roa mut abilitis Chlorocrambe hastata Clypeola jonthlaspi At hysa nus pusillus Menkea sphaerocarpa Lepidium p hlebopetalum Cardamine pa ucijuga Ionopsidium abulense Microt hlaspi sylvarum-ce dri Noccaea minima Heliophila ephemera Exh alimol obos weddellii Ba llantinia antipoda Lepidotrich um uechtrit zi anum Cardamin e corymb osa Bra yopsis gamosepala Asch erson Asche iodoxa rsonmandoniana iodoxa pilosa Brayopsis Brayo psisdiapensi colombioides ana Didesmus bipinnatus Didesmus aegyptius Microt hlaspi mediterraneo-orie ntale Draba werffii Crambegigantea santosii Crambe Lepidium gramin ifolium Lepidium virgi nicum Heliophila varia bilis Lepidium desva uxi i Lepidium f lexicaule Sphaeroca rdamum n esliiforme Phyllolepidum ocarpum Microt cycl hlaspi perfoliatum Ionopsidium prolongoi Nocca ea densiflora Heliophila goldblattii Pe nnellia yalaensis Pen nellia brach yca rpa Didymophysa aucheri Erophila tenerri na Lepidium boelcke i Lepidium ki rkii Carda mine cubita Prin glea antiscorbu tica Lepidium ginninderrense Pennellia lasiocalycina Coronopus didymus Iren epharsus tryph erus Iberis odorata Menkea australis Iberis saxatilis.magnesiana Carda ria draba Lepidium bonarie nse Lepidium d ensiflorum Heliophila cornuta Onuris alismatifolia Iberis carica Iberis spruneri Pennellia longifolia Isatis violascens Coronopus lepidioides Coronopus violaceus Sp haeroca rdamum macrum Sphaeroca rdamum st ellatum Lepidium l eptopetalum Nocca ea violasce ns Iberis fontqueri Onuris hatcheriana Onuris papillosa Onuris spegazziniana Coron opus squamatus Lepidium galapagoensis Bra yopsis chacasensis Onuris graminifolia Callothlaspi lilacinum Conrin gia clavata Delpinophytum p atagonicu m Lepidium su bulatum Lepidium lasi ocarpum Lepidium latipes Lepidium oblongum LepidiumLepidium ramosi ssi stmum rict um Lepidium rud erale Lepidium Lepidiumapetalum payso nii Lepidium so rdidum Lepidium pereg rinum Microt hlaspi erra ticum Frie drich karlmeye ria umbellata Crambe pritzelii Crambeaspera tataria Crambe Noccaea stilosa Heliophila acuminata Iberis arbuscula Isa tis spectabilis Isa tis bitilisica Isa tis undulata Isa tis spatella Isa tis frig ida Isatis callifera Isa tis nummularia Isatis karja ginii Isatis besse ri Isa tis Isatis lockman niana arenaria Isatis brach yca rpa Idahoa scapigera Irenepharsus phasmat odes Crambe hispanica Iberis spathulata Iberis simplex Iberis bernardiana Isatis pinnatiloba Isa tis sivasica Isatis amani Isatis armena Al yssu m f lexicaule Diplotaxis vimin ea Lepidium p anniforme Lepidium corda tum Lepidium ca lyco trich um Lepidium glastifolium HeliophilaHeliophila co rnellsbergia patens Heliophila diffusa Kot sch yella cilici ca Lepidium ca mpestre Ero Ero phila phila min verna ima Lepidium st ron gylophyllum Cardamine trich ocarpa Ionopsidium sa vianum Cochlearia sco ticaArab is eriki i Cardamin e caesiella Pennellia microsperma Iberis linifolia.pruitii Iberis pinnata Isatis prae cox Isa tis vermi a Alyssu m baumgartn eria num m vo urinonense Meniocus Alyssu blepharoca rpus Alyssu m lyca onicum Biscu tella va lentina Boechera duchesnensis Cardamine polemonioides Arab idella glaucesce ns Cardamine penduliflora Crambe cordifolia Lachnoloma lehmannii Boechera lasiocarpa Boechera pratincola Boechera atrorubens Boechera Boechera davidsonii cusickii Boechera breweri Arabis ionocalyx Arabis Arabis bijuga stelleri Boechera consanguinea Boechera glaucovalvula Boechera gracilipes Boechera porphyrea Boechera shockleyi Boechera acutina Boechera lyallii Cakile maritima Crambe maritima Boechera goodrichii Boechera Boechera drepanoloba divaricarpa Boechera fendleri Boechera inyoensis Boechera pallidifolia Boechera perennans pauciflora Boechera puberula Boechera rubicundula rollinsiorum rigidissima Boechera serpenticola Boechera texana Arabis brachycarpa Dontostemon pinnatifidus Dontostemon pinnatifidus linearifolius pinnatifidus Heliophilaintegrifolius hurkana Dontostemon Heliophila katbergensis Boechera gracilenta Boechera tularensis Cakileretrofracta geniculata Heliophila elongata Boechera calderi Boechera harrisonii Cithareloma lehmannii Arabis flagellosa Boechera howellii Boechera falcifructa falcatoria Dontostemon micranthusBoechera Fourraea alpina Cardamine tenera Arabis turrita Cardamine calthifolia Arabis serrata Cardamine douglassii Arabis pterosperma Cardamine dissectaBoechera Boechera horizontalis hastatula Boechera elkoensis Boechera peirsonii Boechera pinetorum Boechera covilleiCakile lanceolata Boechera cascadensis Menonvillea scapigera Arabis furcata Arabis carduchorum Arabis eschscholtziana Boechera lemmonii Arabis deflexa Galitzkya spathul ata Dontostemon glandulosus Boechera fructicosa Boechera gunnisoniana Boechera languida Boechera Boechera pendulocarpa paupercula pendulina Boechera platysperma Boechera schistacea Aplanodes doidgeana Eutrema robustum Heliophila nubigena Cardamine cordifolia Heliophila monospermaDryopetalon Boechera multijuga nevadensis Cardamine purpurascens Cardamine trifida Cardamine Cardamine yezoensis auriculatum Boechera glareosa Boechera suffrutescens Arabis georgiana Boechera paddoensis Boechera dispar Physaria pallida Mostacillastrum sagittatum CardamineBoechera gracilis Boechera Boechera Boechera microphylla oxylobula macounii ophira Boechera pinzliae pusilla saximontana Boechera shevockii Boechera tiehmii villosa Aplanod es sisymbrio ides cobrensis Cardamin e prorep ens Goldbachia ikonnikovii Arabis erecta Nasturtium gambe llii Eutrema scapiflorum Boechera depauperata Cardamine fragariifolia Cardamine microzyga Boech era holboellii Boeche ra polyantha Boechera bodiensis Boes chera grah amii Goldbachia verrucosa Chaunanthus torulosu Mosta cillastrum pcran urpusii Cardamine anemonoides Carda mine uliginosa Carda mine wiedemanniana Card amin equebecensis sca posa Boe chera dallii Arabi sra soyeri Arabis elgonensis Dendroarabis fruticulosa Boeche Boechera perstellata Farsetia occidentalis Neuontobotrys mendocina Card amine californica Berteroa physocarpa Draba sanctae-martae Ara bis nuttallii Aethionema syriacum Arabis androsacea Boech era lignifera Cardamine schinziana Boechera spatifolia Mostacillastrum st enophyllum Aethionema sabzevaricum Ara bis grae llsiiformis Acirostrum alaschanicum Neuontobotrys polyphylla Cardamine ovata Mostacillastrum subauricu Cardamin elatum tuberosa Cardamine lilacina Aethionema froedinii Menonvillea spathulata Aethionema anatolicum Crucihimalaya wallichii Cardamine appendiculata Arabis doumetii Boechera stricta Crucihimalaya stricta Aethionema virgatum Draba bruniifolia pubens DrabaMostacill hederif olia sagittata Cardamine tenuirost ris eburniflora astHalimolobos rumArabis sul bsca ndens Physa ria Noccaea aghrica Aethionema umbellatum Alyssu mAlyssu u mbellatum Cardamine tangutorum planisiliqua Draba oreadum eptocarpum Crucihimalaya mollissima himalaica Neuontobotrys frutescens Mostac illastrum Arabis malysso st apfiiides Aethionema transhyrcanum Lepidium j aredii Crucihimalaya Alyssu m Heliophila macrosperma Nerisyrenia camporum Arabis glabra Heliophila schulzii Most acillastrum co m mmune Crucihimalaya axilaris Aubrieta vulcanica Pach ycladon fasci ariu Arabis conringioides Arabis sudetica Eutrema verticillatum echera constancei AraBo bis amplexicaulis Braya fengii Borodinia perstellata Arabis nipponica Arabis pubescens Nasturtium microphyllum turgida Murbe ellarum sousae Chrysoch amel a velutina Drab a jorulOdontarrhena lensis Most acicki llast ca rolinense Odontarrhena troodi Carda lyrat a Odontarrhena cilicica Meniocu s heterotrich us Most acillast rum o rbimine gnya num Alyssu m st rig osum Carda mine rocki Cardamine rost rata i Alyssu m turkest anicu m Lepidium si laifolium CardamineEutrema bulbosadeltoideum Cardamine mine simplex hygrophila Isatis st ylophora Odontarrhena sch irwanica Bi vonaea lutea Carda Aethionema carneum Alyssu m pogonocarpu m Mostacillastrum ve ntanense Goldbachia laevigata Eu trema e paucifolia Eutpseudocordifolium rema Cardamin wasabi Draba rosu laris Odontarrhena carica Cardamine Crucihimalaya tianqingiae Cardamin e cordata Lepidium n anum lasiocarpa multiflora Menonvillea norde nskjoeldii Cardamin efalcata blaisdellii Ara bis cruci setosa Carda mine vulgaris Meno nvillea cicatrico sa Cardamine Heliophila latisiliqua Crypt osp ora Araperuvi bis sadina Cremol Eutrema grandiflorum Draba polyt rich a obus suffrut icosus Most rum dphila ianthoides Cardamine balnearia Iva acillast nia cremno Alyssu m moza ffaria nii Drab ana Aethionema stylosum Odontarrhena giosnana Hemicrambe frut iculosa Neuontobotrys choiquens e Drab aagilliesii Menonvillea marti corenae Cardamine microphylla Arabis watsonii Draba acaulis Braya thorild-wulffii Eut rema co rdifolium Descurainia depressa Draba dubia Odontarrhena huber-morat hii Braya glabella BorodMost iniaaci misso uriensis Drab a aspera Noccaea nepalensis llast rum sa ltaensis Carda mine fulcrat a Aethionema spicatum Cardamine pattersonii Murbecki ella boryi Harmsi odoxa puberula Lobularia canarie nsis Brayafernaldii linearis Nerisyrenia mexicana Aethionema stenopterum Most acillastrum h unzikeri Alyssu m dasyca rpum Eutrema minutissimum Braya Braya qingshuiheensis Camelina neglecta Cardamine africana Carda mine armoracioides Neotorularia dentata Cardamine jamesonii Cardamine gunnii Morettia canescens Aethionema erinaceum Physa ria mcvau ghiana Halimol obos Arabis hirsuta Drabdiffusus a hitchcockii Draba thlaspiformis Carda mine bellidifolia Arabidopsis neglecta Ara bis paniculata Heliophila refracta Cardamin e amara Aethionema cephalanthum Cardamine speciosa Nast urtium africa numjuressi Cardamine tanaka e Ara bis Heliophila eximia Aethionema saxatile Braya pilosa Cardamin e amarif ormi sa jaegeri Aethionema munzurense Drab Cardamine bodinieri Notoceras bicorne Drab amine hiim Mostacillastrum Alyssu m simpl ex Cardamin e leucantha niigatensi s e geraniifoliava seyi Arab idopsi ssmit lyrat aCardamin Alyssu thymops Aethionema speciosum Murbe ckiCarda ella pinnatifida Arabis cretica lojanensis Boe chera collinsii Cardamin e thomson longipedicellata Draba Drabcappadocica a harad jianii Alyssu m ce phalotes Cardamine Drab Braya iia borealis Nerisyrenia linearifolia Cardamin eiseptatum araki ana Alyssu m desertorum Draba ararat ica Drab a himach alensis Draba bagmatiensis odoxa blennodioides Alyssu m szo vitsianum Armo raci a rust PegHarmsi aeophyton angust Arabidopsis croatica Carda mine varia bilis Eut rema sherriffii Draba falconeri Drab a sunhangiana Odontarrh ena hausskn echtii Drab a arcti caicana Aethionema sintenisii Cardamine franchetiana Cardamine macroca rpa Eutrema fontanum Cardamin e torrentis Murbecki ella zanonii Cardamine granulifera Cardamine pulchella Dipoma Draba arabisans Eut rema yungshunensis Eut rema tenue Heliophila polygaloides Mostacillast rum w eberba ueri Cusi ckiella douglasii Carda mine eremit a iberid eum Eutrema integrif olium trema violifolium EutEu rema yunnanense Eudema rupestris Draba incana Crucihimalaya kneuckeri Eutrema schulzii Nocci dium hastulatum Dictyophragmus Boechera pygmaea Eut rema lowndesi i versico Noccaea lorpunensis Eutrema himal aicum Draba arcto gena Cardamin eboyacana cheotaiyienii Cardamine latior Draba Aethionema arabicum Cardamine caroides Noccaea flagellifera Neuontobotrys grayana Drab a ramosi ssima Most acillastrum morri sonii Cardamin e repens Bo echera rep anda Drab a alshehbazii Harmsi odoxa brevi pes Braya tibetica Arab idella eremig ena Arabis erubescens Carda mine altigena Eutrema platypetalum Heliophila pendula Draba praealta Masmen ia rosu laris Arab idopsis pedemontana Moret tia kilianii Cardamin ellera Cardamin eacillastrum delavayi Bornmue cappadocica Cardamine circae oides Cusicki ella quadrico st ata Draba glabella Draba schusteri Aethionema fimbriatum Most a meghinoi Cardamin epanatohea calcico la Hilliella hui Draba ides Draba dolomitica Lyco carpus fugax Nocca eaalysso thlaspidioides Cardamine trif Eu trema heterop hyllum Aethionema maraschicum Eut rema wuchengyii Draba chamisso nisoliolata Arabis caucasica Noccaea arcti ca Arabvenusta isBoechera ciliata Noccaea Boechera eva dens Boech era rectissi ma williamsii Draba barcla yana Cardamine Anelsonia elegantulaeurycarpa Cuphonotus humist ratus Draba tomentosa Eutrema bouffordii Noccaea yunnanensis Aethionema heterocarpum Phlebolobium macl ovianum Drabaludlowiana magellanica Draba Cardamin e robust Crucihimalaya tibetica Nerisyrenia hypercorax Carda mine linearil oba a Drab aclematitis inexpectata Cardamine Cardamin eCardamin digitata Bengt-jonsellia laurentii Cal lothlaspi camli kense Cochlearia aanglica eNocca fargesi Heliophila macra eaeana macran Carda mine hydroco tyloides Litwinowia tenuissima Menonvillea chilensis Braya longii Cochlearia tatrae Leiocarpaea cochleario ides Cardamin brew eri tha Heliophila promontorii Odontarrh ena gehamensis Draba ishkomania Cardamine diphylla Metashangrilaia forrestii Abd ra aprica Noccaea andersoniiArabidopsis arenosa Carda mine engleria na Be ngt-jo nse llia tsarat ananae Ara bis umezewana Arabis olympi ca Bornmue glabresce Carda mine yunnanensis Cremol obus rhomboideus Drabllera a palanderia nans Aethionema monospermum Aethionema capitatum Ammosperma cinerea Neotorularia brevipes Arabidopsis petraea Cardamineauricul magni fica Drab a bracke gei Arabis pycnocarpa Goldbachia pendula Physaria purpurea Nocca ea birol mutlui Cardamine ata Arab isnrid nova Arab is montbret iana Drab akomarovi murra yi i Ara bidopsis icola Cardamin e aren Berte roa orbiculata Draba Cardamine pensyl vanica Cuphonotus andraeanus Noccaea aptera Arab Drabpennellii a lact ea is kawasaki ana Noccaea rotundifolia Alliaria petiolata Aethionema rhodopaeum glechomif Cardamin eolia lihengiana Lepidium perfoliatum Cardamine scutata Draba oreibata eathera jaubertii Pa rlaNocca toria cakiloidea And rzeiowski Cardamine a cardamin ifolia Cardamine micran Drab a howellii Arabidopsis suecica Carda mine flexu osa Heldreichia bupleurifolia.rotundifolia Cardamine griffithii Draba dedeana Noccaea annua Nevada holmgren ii Nocca ea grif fithiana Chrysoch amela noeana Heliophila trifurca Ara bis drabiformi s Nocca Drab a mulliganii Eu nomia iberid ea Cardamine changbaiana parvif lora Christolea crassifolia Cardamine umbellata Drabea a subnivalis Ivania juncalensis Draba steyermarkii Cardamin euaria alpina ArabBo isrodinia aucheri Crambella Draba depressa Cochlearia aest Draba soratensis Drab a Carda siliquosa Arabidopsis halleri teretifolia canadensis Draba argentifolia Draba porsil dii Drab a sa kuraii mine nipponica Cardamine papuana Menonvillea comberi Aethionema eumomioides Cardamin ea stenoloba rodinia laevi gata DrabBo lapaziana Helioebract philaeata laciniata BoCarda rodinia burkii Dilophia Ammosperma variabile Cuprella homalocarpa mine plumie riDraba Cardamine jonselliana Aethionema demirizii Alyssu m margi natum Eu trema halophilum Eutrema salsugineum Carda mine parvifoblongata lora Noccaea ochroleuca Noccaea occitanica Arabis alanyensis Cardamine keysser i Chrysoch amela elliptica Pa chycladon stellatum Cochlearia pyren aica Pet rorave nia eseptata Menonvillea rigida rema nepalense Noccaea vesicaria Heliophila namaquensis Carda mine occidentalisEutDrab Heliophila dregeana Aethionema papillosum a monoensis Neotorularia contortuplicata Draba kluanei Lepidium serratum Cardamine obliqua Nasturtium officinale Hemilophia franchetii Heliophila rigidiuscula Ara bismagaliesbergensis patens Bornmue llera angustifolia rema japonicu m Dimorphocarpa candicans Heliophila Iberis umbellata Catolobus pendulus Heliophila tulbaghensis ExhaEut limolobos arabioides Borod inia serotina Aethionema glaucinum Moret tia parvifloraDrab a norveg ica Ara bis bellidifolia Lepidium b arnebyanum Hormathophylla spinosa Noccaea cochlearioidea Ionopsidium g lastifolium Lepidium b ipinnatum Eutrema edwardsii Parodiodoxa chionophila Cochlearia borzae ana Noccaea magellanica nubigena Nocca ea microst ylaDrab a cinerea dentata Ara bis auricu lata Bo rodinia Heliop hila obibensi s Eudema Heliophila brassicifolia Oreophyton falcatum Arab is allionii Pach yphrag ma macrop hyllum Heliophila gariepina Menonvillea virens Draba violacea Mostacillast rum f erreyrae Draba nivalis Drab a funiculosa Draba lonchoca rpa Cochlearia danica Cochlearia officinalis Notothlaspi australe Heliophila clarkii Cardamin e rupicola Ionopsidium aragonense Maresia nana Drab a mie heorum Farsetia burtonae Drab a ucuncha Aethionema membranaceum Aethionema lycium Drab a crypt antha Cochlearia polonica Drab a hookeri Crambe kotschyana Helio phila suborbi cularis Hormathophylla baetica Cardamine flaccida Heliophila tricuspidata californica Draba subcapitata Dilophia salsa Bornmue llera kiyakii ocarpa DrabDimorph a burkarti ana pinnatifida Drab ast rum a lpestre Heliophila seselifolia Arcyosperma primulifolium Drab a si kkimensis Ca melina stiefelhagenii Lepidostemon gouldii Hormathophylla reve rcho nii Aphragmus serpens Cardamin e chenopodiifolia Graellsia chitral ensis Asp eruginoides axillaris Ihsanalshehbazia granatensis Carda mine rot undifolia Heldreichia bupleurifoli Heldreichia ba.bourgaei upleurif olia Heliophila glaucaHeliophila ramosissima Alyssu m paphlagonicum Capsella granstdflora Neurotropis orbiculata Drab a winterbottomii Draba cana Grae llsia ylosa longicaulis Ionopsidium acaule DimorphHormathophylla ocarpa membran aceae Lepidium brach yotum Aethionema saxatile.creticum Pachymitus cardaminoides Cardamin e flagellifera Anast atica hieroch untica Exha limolobos palmeri Exh alimolobos polyspermus Menonvillea frigida Graellsia Cardamin e bonariensis Neotorul aria torul osa Hollermayera valdiviana Exha limolobos parryi Cardamin eisfahan jejuna Graellsia olia Mostacillastrum h aitiense Mostaci llast rumintegrif p ect inifolium Lepidium jujuyanum Hilliella Mancoa ve nturii lich uanensis Eutrema hookeri Hemilophia pulchella Draba ussu rie nsis Braya rosea Aethionema diastrophis Chilocardamum p atagonicum Lepidium fHeliophila remon tiijaegeri Halimolobos Cardamin epapilliferum mexi cana Heliophila suavissima Grae llsia hissarica Lepidium Lepidium spinosum Graellsia Graellsia saxifrag longistyla ifoliaastyla Grae llsia graellsi ifolia Heliophila minor Arabis arabiformis Hornungia Draba alpina subamplexi caulis HilliellaHilliella sinuata sinuata sinuata Dimorphocarpa wislizeni Drab a subalpina Cardamin Noccaea fendleri Chilocardamum oqianwuensis nurid ifolium Heliophila volki i tryssaocculta Cardamine innovans Cardaemine Draba confertifolia Heliophila pseudoexi mia Cardamine astoniae Lepidium CardaLepidostemon mine chilensis Hilliella rup Chilocardamum caparadoxa st ellanosii Clypeola lappacea Boicola tsch antzevia ka ratavica rosusch larislech teri Braya humilis Cardamine margi nata Cardamine oligosperma Hi lliella Crambe arborea Baimashania pulvinata Capsella thraci Cardamine franklinensis Carda mine krue sseca lii Heliophila bise Draba stylosa Noccaea nevadensis Lepidium friata erga nense Aethionema subulatum Heliophila xylopoda Notothlaspi viretum Cardamine impatiens Manco a Lepidium lacerum Noccaea brevistyla Graellsia davisiana Capsella Capsella bursap asthispida ntalis oris Heliophila brachycarpa Hi lliella yi xianensi s orie Mancoa foliosa libyca Neurotropis platycarpa Cakile arabica Hormathophylla purpurea Draba lance olata Hilliella rivuLobularia lorum Aethionema saxatile.ovalifolium Drab a juvenilis Eunomia oppositifolia alepense Lepidium ppelianum Lepidium astwoodiae Pe nnellia lech leri Hormathophylla spinosa Euhunanensis trema each botsch antzevii Alyssum tetrastemon Cremol obusHilliella bolivianus Heliophila collina Drab lasi a parvif sekiyana Draba lora Draba ophylla Noccaea brachypetala Cardamine uniflora Draba turczan inowii Drab a fladnizensis Drab aDraba lichiangensis Murica ria postrat a ladyginii Heliophila deserticola Eut rema altaicum Draba glomerat a Cardamine bisetosa laegaardii Coch learia sessi lifolia d avisii Draba splendens Menonvillea zuloagaensi Draba s Lepidium Cardaminmeye e tenuifolia Lepidium nii Heliophila remotiflora Aphragmus minutus Carda mine holmgren ii beckii Neuontobotrys l anata Lepidium Lepidium heterophyllum Aphragmus oxycarpus Abdra brach yca rpa Petrocallis pyrenaica Ara bidopsis thaliana Lepidium huberi Heliophila cinerea Aethionema huber-morathii CremolCremol obus su bscachilensis ndens Lepidium thurberi Cardamin e hirsut a obus Cardamine chelidonia Draba breweri Drab a handelii Pach ycl adon cheesemanii Cardamine trifolia Menkea crassa Draba ca jamarcen sis Menonvillea patagonica Draba macleanii Sphaeroca rda mum fruticul osum Eru cast rum l eucanthum Cochlearia groe nlandica Drab a ellipsoidea mine debilis Draba yukonensis ladakianus Menonvillea famatinensis DrabAphragmus aCarda kitadakensi s rot undum Heliophila pectinata Lepidium Menonvillea minima Sp haeroca rdamum co mpressu m Cochlearia trid actylites Drab pycnophylla Draba hemsleyan a Drab a atucumanensis Aphragmus hobsonii Cardamine microt hrix s alysso ides Draba picke ringii Lepidium Hilliella shuangpaiensis Murbeckie lla huetii Carda mineMancoa moirensi Draba ecuadoriana chlearia mica cea Pen Co nellia parvifbract lora eata Eut rema Drabananum longiciliata Drab a loayza na Heldreichia Cardamine subcarnosa Draba sco pulorum atalayi Heliophila pusilla Draba hallii Sphae roca rdamum ramosum Lepidium i ntegrif olium Eudema incurva Hilliella fumario ides Draba se rice a Sphae roca rdamum macr opetalum Noccaea stenoptera Callothlaspi cariense Lithodraba mendocinensis Lepidium flexuosum Lepidium olerace um Sphaeroca rdamum divar icatum Manco a laeviis s w erff ii Cardamin e chlorin a Drabella mural Lepidium Draba doerfleri Braya alpina karamanicum Eruca strum rif anum Aethionema Ara bis tanakana Heliophila linearis Baimashania wangii Aphragmus obscurus Pa ysonia stonensis Payso nia perfo rata Ara bis se rpyllifolia Arabis caerulea Heliophila tabularis Ara bis surcul osa Cardamine alticola Megadenia pygmaea Cardamine pancicii Lepidium e ckl onii Hornu ngia procu mbens Braya parvia Aimara rollinsii Carda mineLepidium coron ata Engleroch aris dentata Aphragmus bouffordii Heliophila crit hmif olia Lepidium mossi Lepidium myri pinnatum ocarpu Hormathophyl la lapeyrou siana m Lepidium n aufragorum Dactylocardamum polyspermum Heliophila leptophylla Ara bis scabra Eucl idium syria cum Lepidium foliosum Cardamin e alalata Arabis alpina Drab a quearaensis Heliophila bulbostyla Lepidium sa tivum Lepidium t enuicaule Ionopsidiu m megalospermum Berte roa incana Heliophila crassistyla Heliophila linoides Drab a orie ntalis Cardamin e glacialis Draba spruce ana Cardamine volckmannii Athysanus unilateral is Drab a disco idea Hormathophyl cadevalliana Cardamine guatemalensis Christ olea niyaLepidium ensis laostleri Eng leroch aris anca shensis Noccaea sintenisii Drab a altaica Dryopetalon byei Heliophila arenosa Aethionema retsina Exh alimol obos pazense Heliophila lactea Noccaea Noccaea valerianoides Cardamine hupingshanensis Lepidium turczan inowii Heliophila carnosa caerulescens Didymophysa fedtsch enkoana Ara bis marga rit ae Pa chycladon exile Aphragmus ohbanus Eng leroch aris blanca-leoniae Kerne ra boissieri Drab a punoensis Heliophila elata Ladakiella klimesii Exha limolobos burkarti i Descu rainia canoensis Dryopetalon palmeri Draba inquisiviana Arabis parvula Lepidium aegrum Odontarrhena st ipitata Drab a stylaris Lepidium o abtusatum Lepidium oblitum Lepidium cu zco ensis Atela nthera perpu silla Lepidium ustrin um pilosulum Capsella Microl rubellaepidium Iren epharsus magicus Kernera saxatilis Noccaea tatianae Lepidium b anksii Heliophila meye ri Crambe filiformis Eud ema peruvi ana Coronopus navasii Aphragmus eschscholtzianum Heliophila minima Brayo psis alpaminae Ast a sch affneri Menonvillea litoral is Aphragmus pygmaeus Heliophila pubesce Cardamin e glauca Lepidiumnslimenophylax Lepidium cren atum Lepidium ca espitosu m Lepidium p etrophilum Ch ilocardamum Lepidium h owei-in sulae Lepidiuml ongistylum st ylatum Lepidium Lepidium aucheri Exh alimolobos berla ndieri obtusum Heliophila subulata Lepidium pumil um Crambe kralikii Noccaea papillosa Lepidium hirtu mpinnatifidum Lepidium Draba obova ta Lepidium rig idum Noccaea sylvia Calepina irregularis Lepidium ve si cariu m Lepidium latifolium Lepidium villarsii Carda mine longii Peltariopsis planisiliqua Dryopetalon membranifolium Heliophila descurva Cardamin e lacu stris Lobularia marit ima Kotsch yellamaka stenoca Lepidium l yratrpa um Lepidium teanum Dryopetalon breedlovei Drab a mongolica Crambe grandiflora Lepidium ca rdamines Lepidium alashanicum Dryopetalon paysonii Mostacillastrum gracile Dryopetalon crenatum Lepidium ca rti lagineum Diptychocarpus strictus Aubrieta deltoidea 0.0 Arabis mcdonaldiana Cardamine acris Cardamine macrophylla Cardamine angustata BrachypusArabis suffruticosus.tabriziana aculeolata Cardamine nuttallii Boechera johnstonii Boechera lincolnensis Boechera subpinnatifida Parryodes axilliflora Cardamine violacea Boechera parishii Heliophila maraisiana koehleri Boechera fecunda Boechera sparsiflora Boechera xylopoda Cardamine loxostemonoides Cardamine quinquefolia Alyssu m neglectum Drab a remot iflora Bra ssica frut icu losa OtocarpusDraba virgatus Draba cheiranthoides Draba bhutanica cholaensis Boechera rollei Cardamine luxurians Cakile edentula Hesperidanthus jaegeri Erysimum baeticum Heliophila cuneata Marcus-kochia ramosissima Aubrieta glabrescens Aubrieta sicula Diplotaxis acris Eru cast rum n asturtiifolium Al yssu m n ezaketiae Alyssu m doerfl eri Brassi ca nigra Drab a cret ica Barba rea trich opoda Phlegmat ospermum co chlearin um Arabis collina Marcus-kochia parviflora Malcolmia orsiniana Hesperidanthus linearifolius Iodanthus pinnatifidus Aubrieta intermedia Aubrieta italica Aubrieta scardica thessala Aubrieta scyria Aubrieta alshehbazii Aubrieta pirinica Aubrieta Aubrieta macrostyla olympica Aubrieta Aubrieta canescens croatica cilicica Aubrieta anamasica Aubrieta gracilis Aethionema armenum Aethionema coridifolium Diplotaxi s siettiana Physa ria geyeri Physa ria alpestris Physa ria lepidota Alyssu m b ornmue lleri Barbarea grayi Camel ina alyssu m Cardamin e grae ca Erucaria hispanica Erysimum pallasii Diplotaxis griffithii Arabis oregana Cardamine heptaphylla Erucaria ollivieri Aubrieta bulgarica Aubrieta pinardii Aubrieta columnae Aethionema grandiflorum Megacarpa ea polyandra Barbarea taiwaniana Diplotaxi s berth autii Barba rea vernaBarba rea hongii Megaca rpaea bifida Heliophila scoparia Barba rea strict a Oct oceras Nasturtiopsis lehmannianum integrif olia Alyssu m rho danense Alyssu m harpu ticu m Biscutella variegata Alyssu m orop hilum Hugueninia tanacetifolia Bra ssica elongata Odontarrhena masmen aea Isa tis huber-morat hii Isatis const rict a Alyssu m macroca lyxDrab a daviesiaePhysa ria filiformis Eru castrum e latum Alyssu m cu neifolium Isatis busch iana Alyssu m propinquum Camel ina laxa Isatis quadria lata Alyssu Neslia panicu lata Alyssu m hirsut umm st rib rnyi MeniocuBiscu s aureus coronopifolia Altella yssu m ka ynakiae Isatis st ocksi i Al yssu m co rningii Draba carnosu la Isatis davisiana Alyssu m su lphureu m Erysi mum ch eiranthoides Odontarrhena condensata Isa tis lusitanica Draba yungayensis Drab a helleriana Draba crassa Alyssu m f oliosum Alyssu m caespitosum Draba maguirei tella atlantica Biscu tellaBiscu frutescens Draba arau quensi s Isa tis harsukh ii Drab a pterosp erma Draba amplexicaulis Drab a spectabilis Nast urtiopsis coron opifolia Biscu tella marin ae Draba jucu Odontarrh ena trap eziformis Drabnda a polyphylla Ba rbarea bract eosa Chorisp ora tashkorga nica Petrorave nia frie sii Biscutella Biscumaestratensis tella Bisculaevigata tella laxa ena roberti ana Drab a surcul osa Drab a weberi Odontarrh Draba pachyt hyrsa Isatis co stata Biscu tella rot gesii Draba venezuelana Engleroch aris cuzco ensis Meniocus meniocoides Isatis emargi nata Draba abajoensis DrabaDrab chionophila Drab aalpina heilii Draba Drab pilosa Draba se sharsmi rpentina thii Drab apetrophila asprella Drab a lemmonii Al yssu m ca cumin um aaasco tteriis Draba incerta Draba Camelina hispidaDrab a pect inipila Draba virid Drab atrinervis burkei Drab ventosa Drab siammonsi i Drab aaaffghanica Drab aDrab aubrie toides Descurai nia kochii Alyssu m aizoides Drab a streptobrach ia Draba argyrea Isatis mul ticaulis obtusifolia Alyssu m a rmenum Biscu tella tellaOdontarrhena glacialis chondrogyna Drab a standleyi Draba beltranii Biscu calduchii Alyssu m Odontarrhena pirin icum Drab a cycl omorph a Drab sobolifera Drab aa aurea Drab aaexunguiculata Biscu tella marit ima Drab a senilis Lepidost emon glarico la Isatis min ima Drab arid a Isa tis glauca Drab a ramul osa Drab a pedicellata Drab aNeuontobotrys densifolia Draba globosa Isatis brevi pes Isatis gymno carpa Draba gramin ea ca manaensis Petrorave nia werdermannii matangensis Eruca st rum b revi rost re DrabDraba a aretioides a graya Descu rainia pinnata DrabDrab a brach yst ylna is Arab idella trise ct a Odontarrhena akamasi discolorca Alyssu m co ntemptum Drab a stenoloba Odontarrhena Drabpedunculosus a calci cola Drab a canoensis Lepidost emon Draba albertina Odontarrhena strid ii Isatis glast ifolia Alshehbazia hauthalii Drab a mogollonica Camelina microca rpa Alyssu m f astigiatum Draba novolympica Odontarrhena erio phylla Draba alajica Alyssu m l oiseleurii Draba Draba pusilla paucifruct a Odontarrhena pateri Alyssu m diffusum.ca labricu m Biscu tella lyrat a Draba corrugata Odontarrhena florib unda Draba payso nii Drab a tibetica Biscu tella Drab a streptoca rpa Biscu tella pseudolyrat a microca rpa Descu rainia sophia Draba si birica Draba oreodoxa Isatis ornitorhyn chus Odontarrhena tortuva osa .tortu osa Borea aptera Biscu tella semperviren s Odontarrhena const ellata Drab a ko ngboiana Odontarrh ena alpestris Draba extensa Biscu tella fontqueri Odontarrhena pteroca rpa Odontarrhena mural is Odontarrhena sza rabiaca Alyssu m diffusum.garga nicum Odontarrhena tortu osa.heterophylla Isa tis demirizi ana Alyssu m granatense Draba zionensis Odontarrhena Odontarrhena berto arge ntea lonii arbuscu la DrabaDraba malpighiacea Odontarrhena sa marif era Odontarrhena syria ca Draba sp haeroca rpadraboides Draba yunnanensis Draba Drab a ast erophora Alyssu m diffusum.diffusum Descu rainia antarcti ca Draba grandis Ara bidella nast Alyssu m rosse tii urtium Drab a humil lima Biscu tella turolensi alcaerodiifolia rriaes Draba santaquinensis Odontarrhena corsica Draba osa elata Descurainia Biscu tella Drab acorymb cachemirica Alyssu m sp runeri Alyssu m xa nthocarpu m Draba ogilviensi si Drab aDraba linearif olia Odontarrhena peltariovirgata idea.virgatiformis a cruci Odontarrhena subspinosa Bra ya Drab sch arnh orstiata Biscu tella ebusitana setosa Drab aDraba Odontarrhena Alyssu m maza ndaranicum Drab astenocarpa cusicki i Drab aDrab longisquamosa Al yssu m l enense a trich ocarpa Descurainia nuttallii Alyssu m nevadense Draba involucrat a Drab a oligosperma idella procu mbens Biscu tella Biscuneustria tella molcalis Alyssu mArab atlanticum Draba macb eathiana Camelina rumel ica Odontarrh enachalcidica deci piens a nuda Drab a Drab melanopus Drab maco unii Biscu tella atrop urpurea Odontarrhena peltario idea.peltarioidea Odontarrhena Drab aensis erio poda Descu rai nia paradisa Glastaria glastifolia Drab aacuzco Drab a olgae Biscu tella baetica Draba cemil eae Drab a nemorosa Odontarrhena anatolica Drab a rectifruct Odontarrhena cyp rica Odontarrhena lesbiaca Alyssu m min utum Drab a huetii Conrin gia persica Alyssu m g adorense Drab a barth olomewii Drab a pauciflora Cuprella antiatlantica Draba za ngbeiensis Odontarrhena oxicarpa Alyssu m a ertvi nense Cremol obus peruvi anus Drab a oxyca rpa Biscu tella intermedia Drab a microp etalaMyagrum p erfoliatum Drab a hispida Drab a rig ida Meniocus linifoius Al yssu m macrop odum Drab a st enopetala Odontarrh enaserpyl pinifolia Odontarrhena lifolia Menkea vi llosula Odontarrhena smol ika na Draba cantabria e Descu rainia virle tii AlAlyssu yssu mmsmyrn aeum f ulvesce ns Descu rai nia sophioides Odontarrhena cassi aii Odontarrhena dubertret Draba oreades Odontarrh ena fallacina Hemicrambe socotrana Menkea lutea Draba thylocarpa Odontarrhena mural e Arab idella filifolia Odontarrhena fragillima Alyssu m p lusca nesce ns Biscu tella ambigua Alyssu m erosu lum Alyssu m aust rodalmat icum Camelina sativa Clypeola cycl odontea Odontarrh ena filiformi s Odontarrh ena orbelica Most acillastrum a ndinum Odontarrhena albiflora Al yssu m gmelinii Eun omia caespitosa Drab a graci llima Alyssu m st rict um Odontarrhena borzae ana Diplotaxis ides Drabaeruco korshi nskyi Alyssu m t ortu osum Ochtodium aegyptiacum Odontarrhena davisiana Odontarrh ena nebrodensis Draba sierra e Lepidostemon everest ianus Descu rainia Alyssu m aurantiacum Odontarrhena morave nsis Bi scu myri tella ophylla prealpina Nast urtium florid anum Neuontobotrys ulzii Odontarrhena sibirica Odontarrh ena rigida Drabsch a saxosa Descu rainia adenophora Descu rainia torulosa Phlegmatospermum rich ardsi i Drab a sphaeroides Alyssu m scu tigerum Descu rainia Descu longepedicellata Descurainia incisa rai nia impatiens Odontarrhena callichroa Hormathophylla cochleata Neuontobotrys i ntrica tissi ma Descu rainia st reptocarpa Odontarrh ena dudleyi Biscu tella brevi caulis Lepidium patrin oides Alyssu m min us Alyssu m flahaultianum Draba elegans Descu rainia pimpinellifolia Descu rainia st rict a Drab a subumbellata Camel ina anomala Descu rainia incana Odontarrhena cren ulata Descu rainia pumil folia a Descu rainia breviobtusa siliqua Lepidium tiehmii Olimarabidopsis Alyssu m lanceolatum Draba Drabacrassi lutesce ns Descu rainia ca lifornica Draba hispanica Olimarab idopsis cabulica Descu kenheilii Descu rairainia nia nelsonii Lepidium flavum Mostacillastrum oleraceum Cardamine bulbifera aridanae Parolinia Parolinia schizogynoides Orychophragmus diffusus Malcolmia africana Cardamine granulosa Cardamine nepalensis Fortuynia bungei Dontostemon elegans Megacarpaea megalocarpa Chorispora sabulosa Parrya golostebelnaya Crambe wildpretii Eruca setulosa Orychophragmus ziguiensis Chorispora greigii Erucaria crassifolia Boechera yorkii Parrya pazijae Neuontobotrys l inearif olia Neuontobotrys e lloanensis Drab a nylamensis Diplotaxis ollivieri Diplotaxis ilorcit ana Drab a cryop hila ina Barbarea Barba rea anfract auricu uosa lata Brassi ca oxyrrh Barba rea rup icola Draba cuatreca Erysi mum visasiana rgatum Malcolmia chia Chorispora tenella Eremobium aegyptiacum Marcus-kochia patula Hesperis cilicica Blennodia canescens Heliophila pinnata Diplotaxis glauca Eru cast rum g allicum Arabis modesta Dontostemon hispidus Erucaria erucarioides Parrya fruticulosa Parrya pulvinata Parrya schugnana m Brassi ca junce a Alyssu m argyrop hyllum Physa ria acu tifolia Menonvillea purpurea Draba lindenii Neuontobotrys b erningeri Menonvillea linearis ka melinii g raecum ErysimumErysimum se Erysimum rpentinicum Erysimum nconspicuum Erysi mummse iipkae Erysi mum mon golicu Erysi mum b enthamii Erysi mum pcaonticu chemiricu Erysimum m m Erysi mum macrost igma Menonvillea orbiculata Erysi mum marscha llianum Erysimum krynke nse mum myri Erysi mum Erysi p enyalaren se ophyl lum edebourii ErysiErysimum mum szol vitsianum Erysimum w owski elceviii Erysi mum red Erysi mum g ladiiferum Erysimum virossi tellinum Erysi mum cum Erysi mum sp etae Ca rdamine enneaphyllos AnchErysi onium elichrysif olium.e lichrysif olium mum cret icum Erysi mum ca llicarpu Erysi mum crassim ca ulemum Erysi mum f rohneri Erysi st rict um Erysimum ko m elzii Erysimum ca espitosu Erysimum n evadense Erysimum va ssi lczenkoi Diplotaxis kohlaanensis Erysi mum e lbruse nse Erysimum b laabadagense Erysimum azist anicum Erysi mum bsco nditum Erysimum p ersep olitanum Erysi mum aasianum Erysi mum h ajastanicum Physa ria crassi stigma Erysi mum anceps Menonvillea pinnatifida Erysisa mum babataghi Erysimum langense filifolia Erysimum rep andum b dicum adghisi Erysi mumErysimum sa markan Erysimum o lympi cum Menonvillea Erysi mum co Erysi mum ch azarju Erysimum ca arcta riurtimtum Erysi mum a ndrzej owski anum Erysi mum l leptophyllum Erysi mum onicum Erysimum uyca cran icum Erysi mum gelidum Erysimum si mum ntenisianum Menonvillea const itutionis Erysi so rgerae Erysi mum rau linii Erysimum ungaricu m Erysi mum Erysimum sth enophyllum t enellum Erysimum i nense Erysi mum cu spidatum Erysi mum styl d eflexum Erysi mum g ypsaceum Erysi mum crassi um Brassi ca cret ica Fibigia clypeata Microst igma brach yca rpum Payso nia lasiocarpa Anchonium elichrysif olium.vi llosum Erysimum rba baevii Erysi mum llunarioides eptostylum Acust onke Pa ysonia gran diflora Erysimum o leifolium Erysi mum lntale eptocarpum m Erysi mum hbulgaricu orizo Erysimum a znavourii Erysi mum uphrat icum Erysi mum suemicrost bstrig osum Erysi ylum Erysi mum ca ucasicum Erysi mum umum ncinatifolium Erysi mum d mum egenianum Erysi mum e ginense Erysi w ilcze kianum Erysi mum a rmeniacum Erysi mum roba ustum Erysimum ureum Hemilophia sessi folia Erysi mum vinense Erysi mum ranicum Erysi Erysi mum macrosp mum a dcumbens Physa ria pygmaea Chorisp ora sibirica Erysi peiermum ulchellum Erysimum schmum lagintweitianum Erysi mum e rosu m Erysi mum crep Erysi mum i dae Erysimum sca brum Erysimum bidifolium oissieri Erysimum iksa raqense Erysi mum aamum rtw Erysimum nchinellum abievii Erysimum Erysi mum e dinense iffusum Erysi boreale Erysimum ricu m Erysi mum grif fithii Diplotaxis pitardiana Erysimum a crot onum Barba rea orth oceras Neuontobotrys t arap acana Fibigia Fibigia macroca erio carpa rpa Erysimum rdicum Erysi mum gku oniocaulon Erysimum i sch nostylum Erysimum ca spicumMenonvillea macroca rpa Erysimum l eucanthemum Erysimum mut abile Draba humbertii crassi pes ErysiErysi mummum n asturti oides Barba rea potaninii lutea Erysimum a uchGalitzkya eria num Eruca strum rabicum Erysimum koa st kae Erysimum axiflorum h lakki aricu m ErysimumErysimum nErysi emrutdaghense mum g haznicum Erysimum f rig idum Erysimum a denocarpum Eruca strum st rig osum Menonvillea flexuosa Diplotaxis ibicensi s mum brevi stylum ErysiErysi mum hirschf Erysi mum sueldioides bulatum Erysimum h ieraci ifolium Erysi mum a fghanicum Bra ssica glabresce ns Hesperid anthus su ffrutesce Erysi mum gnsrif fithianum Eruca strum g riq uense Ba rbarea australis Erysi mum h uber-morat hii Barba rea integrif olia Draba farset ioides Erysimum maci lentum Erysimum homsonii Diplotaxis simplex Erysi mum st ocksit anum Barba reaDrab minor a bellardii Erysi mum si symbrio ides Ena rth roca rpus lyrat us Bra ssica gravi nae Brassi ca barrelieri Barba rea sicula Barba Barbarea reaplantaginea platyca rpa Crambe gordjaginii Parolinia ornata m Hirschfeldia incana Bra ssi ca balearica Alyssu m lepidotum Barba rea intermedia Bi scu tella auricu lata Cardamin e kitaibelii Erysi mum amuren se Erysimum e yanum tnense Erysi rusci nonense Physa ria mendocina Erysi mum mum ko tsch Erysi mum odorat um Erysimum e truscu m Erysimum f itzi iEru castrum va riu m Brassi ca repanda Erysi mum mum ca nesce ns Erysimum p achyca rpum Erysi mum a laicum Erysi meye ria num Erysimum q uadran gulum Hesperis turkmendaghensis Moricandia rytidocarpoides Erucaria cakiloidea Parrya glabra Cardamine calliphaea Microstigma deflexum Microstigma sajanense Hesperis theophrasti Erysimum lagascae Marcus-kochia littorea Heliophila juncea Aethionema thesiifolium Brassica loncholoma Hemilophia rockii Leiospora exscapa Leiospora pamirica Hesperis anatolica Parrya pinnatifida Hesperis matronalis Hesperis luristanica Hesperis aspera NMDS2 Erysimum limprichtii Malcolmia flexuosa Diceratella canescens Matthiola parviflora Hesperis ozcelikii Hesperis bicuspidata Parrya nudicaulis Erysi mum t eret ifolium Erysi mum w ardii Erysimum g omezca Fezia pteroca rpa mpoi Erysimum i nsu lare Diplotaxis va ria Erysimum a itchisonii Erysimum a ltaicum Brassi ca spinesce ns ca cret ica.laconica Brassi Neuontobotrys rob ust a Physa ria okanensis Leavenworthia uniflora Douepea arabica Petiniotia purpurascens Hesperis pseudoarmena Hesperis persica Di plotaxis su ndingii Erysi mum d amirli ense Cerat ocnemum rap ist roides Cordyl ocarpu tus Brassi scamurica cret ica.aegea Erysi mum si liculosum Physaria lateralis Matthiola torulosa Matthiola tricuspidata Matthiola daghestanica Diceratella flocossa Matthiola bolleana Parrya lancifolia Erysimum g eisl eri Brassi ca carin ata Bra ssi ca aucheri Erysimum senoneri Hesperis kotschyi Matthiola montana Matthiola stoddartii Matthiola perpusilla Moricandia suffruticosa Erysimum a sperum Erysimum f lavum Lutzia cret ica Erysi mum rho dium Erysimum mel icentae Erysi mum rha eticum Erysimum g orbeanum Diplotaxi s graci lis Diplotaxis vogelii Cardamine pentaphyllos Parrya rydbergii Matthiola pumilio Matthiola sinuata Hesperis armena Leavenworthia alabamica Blennodia pterosperma Leptaleum filifolium Hesperis steveniana Farsetia aegyptiaca Matthiola lunata Hesperis podocarpa Matthiola odoratissima Matthiola codringtonii Matthiola taurica obovata Matthiola tenera Matthiola tatarica Matthiola Moricandia moricandioides Matthiola trojana Matthiola caspica Hesperis schischkinii Eruca strum l ittoreu m Diplotaxis gorga densi s Mathewsia incana Leavenworthia exigua Malcolmia micrantha Matthiola maroccana Matthiola aspera Bra ssi ca tardarae Farset ia stylosa Erysi mum maj ellense Erysimum ca ndicum Hesperis dinarica Hesperis laciniata Matthiola livida Matthiola jurtina Matthiola perennis Biscu tella raphanifolia Bunias eruca go Bra ssica tyrrh ena Erysi mum f orrestii Erysimum rip haeanum Erysimum h mum andel-mazze ttii d uria ei Erysi mum aurantiacum ErysiErysi mum pseudorhaeticum Erysimum ron dae Erysimum cheiri Diceratella elliptica Parrya subsiliquosa Matthiola longipetala Moricandia arvensis Erysimum p erenne Erysimum llisparsum Erysimum co merxmu elleri syl vest re Erysimum mum a mmophilum ErysiErysi mum j ugicola Chorispora songarica Brassi ca baldensis Morettia philaeana Malcolmia graeca Coincya wrig htii Coincya monensis. nevadensis Erysimum b elvederense Erysimum med iohispanicum Brassica insularis Conrin gia orie ntalis Erysi mum p ycnophyllum Bra ssi ca rupestris Dithyrea maritima Matthiola ghorana Matthiola incana Lepidium si symbrio ides Lepidium pseudopapillosum Dryopetalon stenocarpum Lepidium alluaudii Phlegmatospermum eremaeum Iberis halophita Dryopetalon runcinatum Hymenolobus procu mbens Iberis procumbens Iberis saxatilis.longistyla Iberis amara Pennellia tricornuta Brayopsis calycina Iberis sempervirens Hornu ngia petraea Lepidium tran svaalense Microlepidium alatum Lepidium pseudohysso pifolium Lepidium pseudotasman icum Lepidium sa gittulatum Lepidium p seudoruderale Lepidium nesophilum Lepidium reko huense Lepidium boelcke anum Brayo psis monimocalyx Lepidium mon oplocoides Lepidium p apillosum Pennellia micrantha Lepidium so landri P Microt hlasp i natolicum Lepidium mue lleriferdi nandi -0.2 Lepidium oxyt rich um Lepidium hypenantion Lepidium o ligodontum Lepidium hysso pifolium Iberis semperflorens Iberis saxatilis.cinerea Iberis pectinata Asch erson iodoxa cach ensis Macropodium Macropodium pterospermum nivale Iberis gibraltarica Lepidium d epressu m ii Lepidium parod Lepidium basu ticum Lepidium ca pense Lepidium suluense Lepidium fasci culatum Lepidium asch erson ii Lepidium rah meri Lepidium p seudodidymum t andilense Lepidium pedersen iii Lepidium h ickenii Lepidium rhytauricu idocarpum Lepidium burkarti Lepidium africa num Lepidium graci Lepidium latum Lepidium j ohnstonii Lepidium argentinum Coronopus integrif olius Lepidium sa ntacruze nsisle Lepidium myri anthum Lepidium st ucke rtianum f ilisegmentum Lepidium sp icatum Lepidium rei ch ei IberisIberis carnosa.granatensis carnosa.carnosa Iberis saxatilis.saxatilis Clypeola aspera m M m -0.2 -0.1 0.0 0.1 m 0.2 NMDS1 783 784 Figure 1. Plasticity-mediated floral disparity. (A) Floral morphospace of the Brassicaceae, 785 showed as the projection of 31 traits recorded in 3140 species onto two NMDS axes. The position 786 of the spring and summer phenotypes of Moricandia arvensis is linked by a thick lilac dashed line. 787 We have also indicated the movements across this morphospace of several species changing 788 their phenotypes due to floral colour polymorphism (black lines), single mutations in floral colour 789 (blue lines), changes in breeding systems (orange lines), changes in gender expression (green 790 lines), homeotic mutations (brown lines), and plasticity (lilac lines). Numbers matching species 791 are as follow: 1-Lobularia maritima; 2-Raphanus raphanistrum; 3-Matthiola incana; 4-Mathiola 792 fruticulosa; 5-Erysimum cheiri; 6-Cakile maritima; 7-Matthiola lunata; 8- Marcus-kochia littorea; 9- 793 Hesperis matronalis; 10- Hesperis laciniata; 11-Parrya nudicalis; 12-Streptanthus glandulosus; 794 13- Eruca vesicaria; 14- Capsella bursa-pastoris; 15-Hormathophylla spinosa; 16- Brassica 795 napus; 17- Cardamine hirsuta; 18- Lepidium sisymbrioides; 19-Lepidium solandri; 20-Arabidopsis 796 thaliana; 21-Boechera stricta; 22-Leavenworthia stylosa; 23-Leavenworthia crassa; 24- 797 Pachycladon stellatum; 25- Pachycladon wallii; 26-Cardamine kokairensis; 27-Brassica rapa. (B) 798 Shepard plot showing the goodness of fit of the NMDS ordination. (C) Moricandia arvensis in 799 spring. (D) Moricandia arvensis in summer. (E) Magnitude of floral disparity between different 800 taxonomic levels of Brassicaceae species. The number above each boxplot shows the number of 801 disparities per level. We have compared this value with the disparity between spring and summer 24 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 802 phenotypes of M. arvensis (this comparison with boxplots in red is statistically significant at P < 803 0.05, in orange is marginally significant at P < 0.1, and in grey is non-significant). 804 805 25 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 806 807 808 Figure 2. Phylogenetic-mediated floral divergence. (A) Floral phylomorphospace using the 809 supertree that includes 1876 Brassicaceae species. (B) Phylomorphospace considering only the 810 eight Moricandia species, using the Perfectti et al.'s phylogeny (phylogeny # 1 in Table S8). (C) 811 Floral disparity to the nearest ancestor, according to the supertree and 18 time-calibrated 812 phylogenies (phylogeny codes in Table S8). We show the disparity between the two M. arvensis 813 phenotypes and their direct ancestor (spring: lilac dots; summer: white dots) in those phylogenies 26 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 814 that include Moricandia. We also show the disparities to their direct ancestors of those 815 Brassicaceae species included in time-calibrated phylogenies of more than 45 species. 816 817 27 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 818 a 1 2 3 Niches 4 5 b 6 7 8 NOCTURNAL MOTH AUTOGAMY LARGE WASP SPIDER LARVA GRASSHOPPER EARWIG LACEWING SNAKEFLY BIRD HONEYBEE SHORT-TONGUED LARGE BEE SHORT-TONGUED MEDIUM-SIZED BEE SHORT-TONGUED SMALL BEE SHORT-TONGUED EXTRA LARGE BEE SHORT-TONGUED EXTRA SMALL-BEE LARGE HOVERFLY SMALL HOVERFLY SMALL BEEFLY LARGE FLY SMALL FLY LONG-TONGUED FLY LARGE MOTH SMALL MOTH POLLEN WASP HAWKMOTH LARGE BEEFLY LONG-TONGUED LARGE BEE LONG-TONGUED MEDIUM-SIZED BEE LONG-TONGUED EXTRA LARGE BEE SMALL BEETLE LARGE BEETLE SMALL DIVING BEETLE BUG SMALL BUG APHID MITE SPRINGTAIL SMALL WASP THRIPS LARGE BUTTERFLY SMALL BUTTERFLY SMALL ANT LARGE ANT 1.0 0.2 0.0 0.1 0.0 -0.1 -0.2 -0.2 -0.1 0.0 0.1 0.2 c Rytidocarpus moricandioides Niches Main pollinators Niches Main pollinators Moricandia foetida 0.97 Moricandia rytidocarpoides 0.91 Moricandia moricandioides 1.00 0.97 Moricandia nitens 1.00 1 5 2 6 3 7 4 8 Moricandia suffruticosa 1.00 Moricandia spinosa 1.00 Moricandia arvensis Eruca foleyi 1.00 1.00 Eruca vesicaria Eruca pinnatifida 819 820 Figure 3. Plasticity-mediated changes in pollination niches. (A) Outcome of the modularity 821 analysis showing the number of pollination niches inferred, the among-niche differences in 822 relative frequency of each pollinator functional group, and the pollinator functional groups defining 823 the niches (n = 511 Brassicaceae species). (B) Morphospatial distribution of the eight pollination 824 niches detected in Brassicaceae. Insect silhouettes were drawn by Divulgare (www.divulgare.net) 825 under a Creative Commons license (http://creativecommons.org/licenses/by-nc-sa/3.0). (C) 826 Estimate of the ancestral pollination niche of the Moricandia lineage using a stochastic character 827 mapping inference analysis. The numbers underneath each ancestral node indicate the posterior 828 Bayesian probability of belonging to pollination niche 5. 829 830 28 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 831 832 833 Figure 4. Plasticity-mediated floral convergence. Convergent lineages crossing into the region 834 of the morphospace delimited by the pollination niche of the M. arvensis during spring (the shade 835 convex hull) according to (A) Smith & Brown's phylogeny, (B) Gaynor et al.'s phylogeny, and (C) 836 Huang et al.'s phylogeny (phylogenies 2-4, respectively, in Table S8). Convergent lineages 837 crossing into the region of the morphospace delimited by the pollination niche of the M. arvensis 838 during summer (the shade convex hull) according to (D) Smith & Brown's phylogeny, (E) Gaynor 839 et al.'s phylogeny, and (F) Huang et al.'s phylogeny. Red arrows indicate the plasticity-mediated 840 convergence, blue arrows the convergence events of the other lineages. The small purple area in 841 all panels is the region of the floral morphospace that includes the lineages that have converged 842 with the entire Moricandia clade according to each time-calibrated phylogeny. 843 844 29 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. SI FIGURES Figure S1. Association among the 31 pollination traits of 3140 Brassicaceae species. Trait vectors represent the Spearman correlations, with the length and direction indicating the relationship with composite NMDS axes. Petal length Petal carotenoids Sepal length 0.2 Long stamens length Short stamens length Petal colour CIELAB Tetradynamous condition Petal limb length 0.1 Concealed nectaries Number Plant of stamens height Relative petal attractiveness Stamen Bullseyes dimorphism Sepal colour CIELAB Petal veins Petal anthocyanins Flower display 0.0 Horizontal corolla Coloured sepals Overlapped petals Stamen exsertion Multilobed petals Inforescence architecture Number of symmetry axes Sepal hue Visible anthers -0.1 Asymmetric petals Visible sepals Petal hue -0.2 Apetalous flower -0.2 -0.1 0.0 0.1 0.2 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. SI TABLES Table S1. Fitting of the floral traits onto the NMDS vectors. Floral traits NMDS1 NMDS2 r2 P value 1 Plant height -0.20147 0.97949 0.1126 0.001 2 3 4 5 Flower display size Inflorescence architecture Presence of apetalous flowers Number of symmetry axes of the corolla 0.80044 0.94742 0.36770 0.66735 0.59942 -0.32001 -0.92994 -0.74474 0.0415 0.0641 0.1452 0.1121 0.001 0.001 0.001 0.001 6 7 8 9 10 Orientation of dominant symmetry axis of the corolla Corolla with overlapped petals Corolla with multilobed petals Corolla with visible sepals Petal length 0.98547 -0.98142 -0.45075 0.70871 -0.55200 0.16987 -0.19188 -0.89265 -0.7055 0.83385 0.2650 0.0685 0.0110 0.2729 0.6287 0.001 0.001 0.001 0.001 0.001 11 12 13 14 15 Sepal length Asymmetric petals Petal limb length Length of long stamen Longeth of short stamen -0.47963 -0.49289 -0.67904 -0.48773 -0.42415 0.87747 -0.87009 0.73410 0.87300 0.90559 0.5594 0.0604 0.4482 0.4915 0.4029 0.001 0.001 0.001 0.001 0.001 16 17 18 19 20 Herkogamy Herkogamy category Visible anthers Excerted stamens Number of stamens -0.78612 -0.62172 0.76256 0.29511 -0.28006 0.61808 0.78324 -0.64691 -0.95546 0.95998 0.1671 0.3864 0.1526 0.0033 0.1182 0.001 0.001 0.001 0.009 0.001 21 22 23 24 25 Concealed nectaries Petal carotenoids Petal anthocyanins Presence of bulleyes Presence of veins in the petals -0.72601 0.61077 -0.98947 -0.84653 -0.94487 0.68768 0.7918 0.14476 0.53235 0.32746 0.4101 0.7264 0.5757 0.2654 0.3343 0.001 0.001 0.001 0.001 0.001 26 27 28 29 Coloured sepal Relative attractiveness of petals versus sepals Petal hue Petal colour as b CIELAB 0.99357 -0.00049 0.60720 0.75326 -0.11318 0.99990 -0.79455 0.65772 0.0039 0.1001 0.2096 0.7232 0.002 0.001 0.001 0.001 0.61109 0.87412 -0.79156 0.48571 0.0791 0.5605 0.001 0.001 30 Sepal Hue 31 Sepal colour as b CIELAB bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Table S2. Disparity, calculated as the Euclidean distance in the family-wide floral morphospace, between each of the 38 morphs included in our dataset (see Supplementary Data 2 for details and references) and their respective wild types. Type of polymorphism Breeding system Breeding system Breeding system Breeding system Colour mutant Colour mutant Flower colour polymorphism Flower colour polymorphism Flower colour polymorphism Flower colour polymorphism Flower colour polymorphism Flower colour polymorphism Flower colour polymorphism Flower colour polymorphism Flower colour polymorphism Flower colour polymorphism Flower colour polymorphism Flower colour polymorphism Flower colour polymorphism Flower colour polymorphism Flower colour polymorphism Flower colour polymorphism Flower colour polymorphism Flower colour polymorphism Flower colour polymorphism Flower colour polymorphism Gender dimorphism Gender dimorphism Gender dimorphism Gender dimorphism Gender dimorphism Gender dimorphism Homeotic mutant Homeotic mutant Homeotic mutant Homeotic mutant Phenotypic plasticity Phenotypic plasticity Species Brassica napus Brassica rapa Cardamine kokairensis Leavenworthia crassa Brassica napus Moricandia arvensis Boechera stricta Boechera stricta Cakile maritima Eruca vesicaria Erysimum cheiri Erysimum cheiri Hesperis laciniata Hesperis matronalis Hormathophylla spinosa Leavenworthia stylosa Lobularia maritima Marcus-kochia littorea Matthiola fruticulosa Matthiola incana Matthiola lunata Parrya nudicaulis Raphanus raphanistrum Raphanus raphanistrum Raphanus raphanistrum Streptanthus glandulosus Hormathophylla spinosa Hormathophylla spinosa Lepidium sisymbrioides Lepidium solandri Pachycladon stellatum Pachycladon wallii Arabidopsis thaliana Arabidopsis thaliana Arabidopsis thaliana Capsella bursapastoris Cardamine hirsuta Cardamine hirsuta Morph cleistogamous mutant female sterility mutant cleistogamous mutant Outcrosser morph white mutant white mutant pink morph purple morph white morph white morph purple cultivar white cultivar white morph white morph white morph white morph deep purple cultivar light pink morph greenish morph white cultivar white morph white morph white morph yellow morph pink morph white morph female morph male morph female morph female morph female morph male morph AGAMOUS mutant APETALA1 mutant APETALA3 mutant Spe mutant plastic change in stamens number plastic change in petal number NMDS 0.035856865 0.133332180 0.111696867 0.015771684 0.173001555 0.149565069 0.060580070 0.054429426 0.016547552 0.082257145 0.073997237 0.026460490 0.069557518 0.094873544 0.101607789 0.066269050 0.090407642 0.019542946 0.008349920 0.138357728 0.079964493 0.115226060 0.082072459 0.032685632 0.082778860 0.014907493 0.035783402 0.025226337 0.067913758 0.065685257 0.014244744 0.059320935 0.001052532 0.119617731 0.102445400 0.051187659 0.010624208 0.060755859 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Table S3. Floral disparity of each species of Moricandia from the most recent common ancestor (MRCA) of the genus and from the direct ancestor of each species. Species Moricandia foetida Moricandia moricandioides Moricandia nitens Moricandia rytidocarpoides Moricandia sinaica Moricandia spinosa Moricandia suffruticosa Moricandia arvensis spring phenotype Moricandia arvensis summer phenotype Disparity to MRCA 0.039566021 0.059142993 0.041727403 0.025809374 0.027589330 0.019579372 0.063884437 0.080840848 0.195061288 Disparity to direct ancestor 0.13987379 0.03730920 0.07347209 0.10503623 0.10550411 0.20959717 0.20700167 0.02385532 0.28741584 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Table S4. Significance of the Mantel tests checking for spatial autocorrelation across the morphospace of the pollinator functional groups. Due to the small abundance of some pollinators, the original 43 functional groups have been pooled in 26 main functional groups. Functional Groups Ant Autogamy Bug Butterfly Hawkmoth Hoverfly Large beefly Large beetle Large fly Large wasp Long tongued fly Long tongued large bee Long tongued medium-sized bee Moth Nocturnal moth Other Pollen wasp Small beetle Small diving beetle Small fly Small wasp Short tongued large bee Short tongued medium-sized bee Short tongued small bee Short tongued extra small bee Thrips Mantel R 0.047 0.257 0.032 0.089 0.054 0.072 0.043 0.046 0.052 0.053 0.092 0.242 0.051 0.039 0.222 0.018 0.026 0.012 0.003 0.112 0.041 0.065 0.012 0.073 0.020 -0.014 p value 0.055 0.001 0.192 0.001 0.035 0.003 0.079 0.063 0.044 0.048 0.001 0.001 0.041 0.113 0.001 0.497 0.313 0.613 0.899 0.001 0.112 0.004 0.590 0.001 0.454 0.758 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Table S5. Diferences between the two Moricandia arvensis phenotypes in the visitation frequency (both in absolute number of insects and in proportion of visits) of every pollinator functional group. Fifteen censuses of 1 hr and two researchers per phenotype. Pollinator functional group Hawkmoth Honeybee Large beefly Large beetle spring phenotype summer phenotype spring phenotype (proportion) summer phenotype (proportion) 91 40 309 30 0 0 72 40 0.036 0.016 0.124 0.012 0.000 0.000 0.148 0.082 280 38 8 1131 226 66 0 7 5 0 0.112 0.015 0.003 0.453 0.090 0.135 0.000 0.014 0.010 0.000 Small beefly Small beetle Small butterfly Small diving beetle Small fly 6 21 11 25 12 0 8 0 12 0 0.002 0.008 0.004 0.010 0.005 0.000 0.016 0.000 0.025 0.000 Small hoverfly Small moth Short tongued large bee Short tongued medium-sized bee Short tongued small bee 49 2 89 36 78 37 7 3 0 207 0.020 0.001 0.036 0.014 0.031 0.076 0.014 0.006 0.000 0.424 Short tongued extra small bee Thrips 1 15 0 24 0.000 0.006 0.000 0.049 Large butterfly Large fly Large hoverfly Long tongued large bee Long tongued medium-sized bee bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Table S6. Outcome of the analyses to test the occurrence of floral convergence among plants from niches 3 and 5. Angle is the mean theta angle between all species belonging to the same niche. Angle/time is the angle divided by time distance. The significance of these angles has been found by comparing with a null model consisting in shuffling each niche 1,000 times across the tree tips and calculating a distribution of random angle. C1 measures the proportion of phenotypic distance closed by evolution, ranging from 0 to 1 (where 1 indicates complete convergence). C2 is the raw value of the difference between the maximum and extant distance between the lineages. C3 is C2 scaled by the total evolution (sum of squared ancestor-to-descendant changes) between the two lineages. C4 is C2 scaled by the total evolution in the whole clade. The significance of C1-C2, was evaluated by running 1000 simulations for each comparison using Brownian-Motion models. Wheatleaf is the ratio of the mean (penalized) distances between all species to the mean (penalized) distances between allegedly convergent species. Significance found by running 2000 bootstrapping simulations. In bold, significant values. Phylogenies Niche 3 Angle Angle/time C1 C2 C3 C4 Wheatleaf Niche 5 Angle Angle/time C1 C2 C3 C4 Wheatleaf Smith & Brown 2018 Value p Gaynor et al. 2018 Value p Huang et al. 2019 Value p 80.587 2.350 0.373 0.104 0.141 0.003 0.830 0.008 0.719 0.000 0.000 0.000 0.720 0.986 79.431 1.645 0.472 0.142 0.166 0.002 0.940 0.002 0.397 0.000 0.000 0.000 0.700 0.715 64.930 4.023 0.415 0.104 0.219 0.008 1.060 0.055 0.815 0.000 0.000 0.000 0.600 0.028 70.093 1.393 0.356 0.110 0.128 0.003 1.120 0.002 0.021 0.000 0.000 0.000 0.727 0.673 73.491 1.783 0.472 0.142 0.166 0.002 1.170 0.002 0.745 0.000 0.000 0.000 0.700 0.094 58.313 2.474 0.240 0.075 0.118 0.006 0.920 0.049 0.011 0.000 0.000 0.000 0.545 0.978 Table S7. Outcome of the analyses testing for morphological convergence between the Moricandia clade and the rest of clades included in each time-calibrated phylogeny. Clade size is the number of species within the Moricandia clade. θreal is the mean angle over all possible combinations of pairs of species taking one species per clade. θace is the mean angle between ancestral states between each pairs of clades. distmrca is the patristic distance (sum of brach length) between the most recent common ancestors of each pair of clade. We indicate the congervent clades and the pollination niches of each species included in the convergent clades. In red Moricandia clades including Moricandia arvensis spring phenotype. Tribes (E= Erysimeae, A= Anchonieae, C=Cardamineae, M=Malcolmieae, An=Anastaticeae). θreal/distmrca θace+θreal/ θace+θreal/ Convergent clades Tribe Moricandia Clade Clade θreal θace distmrca θreal/ p-value clade 2 size distmrca distmrca distmrca p-value Smith & Brown's phylogeny 253 347 7 15.200 4.420 124.236 0.122 0.058 0.158 0.012 Erysimum bicolor/ scoparium) E 254 347 5 19.035 5.389 129.718 0.147 0.058 0.188 0.016 Erysimum bicolor/ scoparium E 255 256 256 256 5,5 5,5 4 2 2 2 22.601 6.180 12.950 8.543 6.331 133.342 7.281 133.538 2.109 59.810 13.786 49.285 0.169 0.046 0.217 0.173 0.052 0.026 0.061 0.066 0.217 0.101 0.252 0.453 0.019 0.005 0.018 0.045 Erysimum bicolor/ scoparium Erysimum bicolor/ scoparium Matthiola clade Cardamine penthaphyllo/ pratensis E E A C 5,5 5,5 6,1 3,7 256 405 256 335 257 347 258 347 Gaynor et al.'s phylogeny 2 2 2 2 8.616 28.715 39.021 5.613 1.048 44.577 33.529 128.518 6.003 133.462 4.410 124.383 0.193 0.223 0.292 0.045 0.068 0.077 0.103 0.012 0.217 0.484 0.337 0.081 0.022 0.049 0.015 0.002 Malcolmia maritima— Marcus-kochia ramosissima Erysimum popovii/ bastetanum/ semperflorens Erysimum bicolor/ scoparium Erysimum bicolor/ scoparium M/An E E E 5,7 5,5,6 5,5 5,5 481 334 479 334 479 333 Huang et al.'s phylogeny 143 83 2 2 2 10.943 9.357 12.809 17.832 12.654 14.978 78.194 81.141 81.151 0.140 0.115 0.158 0.052 0.052 0.070 0.368 0.271 0.342 0.037 0.033 0.049 Erysimum bicolor/ scoparium Erysimum bicolor/ scoparium Erysimum lagascae/ rondae E E E 5,5 5,5 5,3 2 4.960 0.985 23.966 0.207 0.023 0.248 0.001 Erucaria clade B 3,5 2 2 2 2 2 7.094 6.651 9.229 11.634 9.383 0.554 40.317 1.876 12.691 12.437 22.049 18.008 23.466 24.281 24.007 0.322 0.369 0.393 0.479 0.391 0.041 0.046 0.066 0.074 0.076 0.347 2.608 0.473 1.002 0.909 0.002 0.170 0.003 0.026 0.029 Erucaria clade + Cakile clade Erucaria clade + Cakile clade + Eremophyton chevallieri Cakile clade Zilla clade Zilla clade + Foleyola billotii 143 143 143 143 143 347 347 316 375 Niche 82 81 84 86 85 B 3,3,3,5 B 3,3,3,5,5 B 3,3 B 5,5 B 3,5,5 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Table S8. Description of floral traits related to pollinator attraction used to generate the floral morphospace in Brassicaceae. Pollinators respond to the variability of numerous phenotypic traits of plants, and the magnitude of their response shapes the reproductive success of the plants. We estimated for each plant included in our data set the values of several important floral traits. 1) Plant height. Plant height has strong direct and indirect effects on plant fitness in many Brassicaceae. The assessment of plant height for a large number of plant species is not possible without accurate ecological studies. In addition, the information on plant size in general (and plant height in particular) appearing in the floristic catalogues is limited and most time very vague. For this reason, we decided to consider this variable as semiquantitative, with three levels: 0 = This group includes plants with a prostrate life habit. Plants belonging to this group are those with a cushion shape, displaying flowers located very close to the ground and that thereby can be accessed both by flying and crawling insects (ants, springtails, mites, etc.). 1 = This group includes plants of intermediate size. We included in this group those plants shorter than 50 cm. This threshold is appropriate because it teases apart medium-sized species from those species with a large size. Many pollinators have a specific flight pattern with changes in flight zones occurring around this threshold. Within this group, there are also subshrub species with stunted growth habit. 2 = This group includes plants of large size. We included in this group those plants taller than 50 cm. These are plants particularly big, usually log-lived and sometimes woody species. (2) Flower display size. The number of flowers produced per individual plant has strong direct and indirect effects on plant fitness in most Brassicaceae species. As occurring with plant height, the assessment of floral display size for a large number of plant species is not possible without accurate ecological studies. In addition, the information on flower number per individual appearing in the floristic catalogues is limited and most time very vague. For this reason, we decided to consider this variable as semi-quantitative, with three levels: 0 = This group includes species with few flowers per individual (pauciflorous), usually less than 50 flowers per individual. 1= This group includes species with medium number to many flowers per individuals, usually between 50 and 1000 flowers per individual. 2 = This group includes species mass-flowering species, usually with more than 1000 flowers per individual. (3) Inflorescence architecture. The configuration of flowers along the flowering stems and the inflorescence architecture have been shown to affect the attractiveness and foraging behaviour of pollinators in many angiosperm groups since long time. In Brassicaceae three main types of inflorescences can be distinguished: 0 = Inflorescences where flowers are arranged in solitary. In this species, flowers do not form a dense inflorescence but are solitary usually at the end of the flowering stems. bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 = Inflorescences where flowers are arranged in racemes. A simple inflorescence in which the main axis is indeterminate. This is the most frequent type of inflorescence in Brassicaceae. 2 = Inflorescences where flowers are arranged in corymbs. This is a special case of a panicle where flowers lie in a single plane. Panicles are determinate compound inflorescences in which branching does not occur from the axils of prophylls. (4) Presence of apetalous flowers. Several species from some Brassicaceae genera, especially Lepidium and Rorippa, and to a lesser extent Romanschulzia, Clypeola, Cardamine and other minor genera, produce flowers without petals. We classified this floral trait as presence (1) or absence (0) of apetalous flowers. (5) Number of symmetry axes of the corolla. Flower symmetry is an important trait in flowering plants. The Brassicaceae flower is defined as a cruciform, actinomorphic or radial flowers with many symmetry axes. However, it is widely acknowledged that some genera such as Iberis or Teesdalia produce monomorphic or actinomorphic flowers. The number of symmetry axes is even greater in some species. We have distinguished four groups based on number of symmetry axes: 0 = This group includes plants with flowers having no symmetry axis, like many species of Matthiola, some Hesperis, 1 = This group includes plants bearing flowers with one symmetry axis or actinomorphic flowers. In this group we included Iberis, Teesdalia, and several species of Noccaea, Thlaspi, etc. 2 = This group includes plants bearing flowers with two symmetry axes or dissymmetric flowers. This is probably the most abundant group, including most common species of Brassicaceae, like Erysimum, Brassica, Diplotaxis, etc. 4 = This group includes plants bearing flowers with four or more symmetry axes or polysymmetric flowers. This group, including common species of Brassicaceae, like Lepidium, some Erysimum, many Heliophila, many Sisymbrium, etc. (6) Orientation of dominant symmetry axis of the corolla. In Brassicaceae, most flowers orientate vertically. Thereby, we classified this floral trait as horizontally- (1) or vertically- (0) orientated flowers. (7) Corolla with overlapped petals. Much like flower symmetry, the presence of overlapped petals and rounded corollas affect fitness in several plant groups, including some Brassicaceae species by mediating the attractiveness of the flowers and the behaviour of pollinators. We classified this floral trait as corolla with overlapped petals (1) or with non-overlapped petals (0). (8) Corolla with multilobed petals. In Brassicaceae petal lobes is not widespread, although it is frequent in some clades such as Schizopetalon, Berteroa, Dryopetalon. We classified this floral trait as corolla with multilobed petals (1) or without them (0). (9) Corolla with visible sepals. Sepals play an important role in the pollination of many plant species. Some plant species, including Brassicaceae, have extended sepals that are visible from the top of the corolla. These visible petals may have important consequences on the behaviour of some pollinators, indirectly influencing the pollination success of the bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. flower. We scored this floral trait as corolla with visible sepals from the top of the corolla (1) or not (0). (10) Petal length. Different studies have found a significant association between the length of flower petals and the behaviour of pollinators, by increasing corolla size and attractiveness or the floral attraction surface. As a consequence, it has been frequently proven the occurrence of a significant effect of petal length and flower size on the efficiency of pollination. We included in the data set the length of the petal in mm of each plant species. For this, we retrieved from the literature the description of the petal length, and calculated the mean of the values appearing in that description. (11) Sepal length. In Brassicaceae the length of the sepals is positively correlated with the length of the corolla tube and the amount of nectar produced by the flowers. We included in the data set the length of the sepals in mm of each plant species. As in traits 10, we retrieved from the literature the description of the sepal length, and calculated the mean of the values appearing in that description. (12) Asymmetric petals. Brassicaceae is characterized for bearing four symmetric petals. However, some species exhibit corollas with asymmetric petals, a character considered a morphological novelty. Presence of asymmetric petals causes corollas to show zygomorphy. This character, by affecting in an extreme way the number of symmetry axes, have larges effects on pollinator preference, pollination efficiency and reproduction success. We scored this floral trait as corolla with asymmetric petals (1) or not (0). (13) Petal limb length. The limb of the petal is the showy part that directly attracts pollinators. We included in the data set the length of the petal limb in mm of each plant species. For this, we retrieved from the literature the description of the petal length, and calculated the mean of the values appearing in that description. (14) Length of long stamens. Brassicaceae has a tetradynamous androceum, with an outer whorl of two short stamens and an inner whorl of four long stamens. The length of the long stamens has been proven to affect pollinator visitation rate and effectiveness, having a strong effect on pollen removal and male fitness. We included in the data set the length of the long stamen in mm of each plant species as appearing in the literature. (15) Length of short stamens. Short stamens may function in outcrossing Brassicaceae to reduce pollen depletion with high rates of pollinator visitation. In self-compatible, short stamens may favour delayed autogamy. In addition, short stamens may also affect pollinator visitation rate and effectiveness, having potential effect on pollen removal and male. We included in the data set the length of the short stamen in mm of each plant species as appearing in the literature. (16) Stamen dimorphism. The difference in length between long and short stamens, hereinafter herkogamy, is related in Brassicaceae with pollinator attraction and evolution of selfing syndrome. We included this trait by estimating the length difference between long and short stamens from the data obtained in the literature. (17) Tetradynamous conditions. In addition, we classified all Brassicaceae included in our dataset as having an androecium with all stamens equally long (0), slightly tetradynamous (1), normal tetradynamous condition (2) and strong tetradynamous condition (3). We used the classification appearing in the floral and formal description of the species. bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. (18) Visible anthers. Most species of Brassicaceae have anthers visible from outside the corolla during anthesis, which ease the magnitude of pollen removal by flower visitors. However, species of some genera (Matthiola, Hesperis, Farsetia, etc.) have stamens well hidden within the corolla tube and imperceptible from outside, a trait that difficult shorttongued insects to collect pollen. We scored this floral trait as corolla with visible anthers (1) or not (0). (19) Exserted stamens. In some Brassicaceae the filaments are very long, causing stamens to be highly exserted. Stamens exsertion influences the behaviour and abundance of certain pollinators, shaping pollinator-mediated selection through male fitness. We scored this floral trait as non-exserted stamens (0) slightly exserted stamens (1) and strongly exserted stamens (2). (20) Number of stamens. The basic number of stamens per Brassicaceae flower is six. However, departure from this number is frequent in some lineages such as Lepidium or to a lesser extent Cardamine or Alyssum, where some species bear 2, 4 or 5 stamens. In addition, some species of the genus Megacarpea have flowers with 9 or more stamens. We included for each species in the dataset the number of stamens indicated in the literature. (21) Concealed nectaries. Some Brassicaceae species produce nectar that is concealed in the bottom of long corolla tubes, whereas other species bearing bowl-shaped flowers produce nectar that is freely exposed an easily accessible. This trait may have important consequences for the interaction with pollinators. We scored this floral trait as corolla with concealed nectaries (1) or not (0). (22) Petal carotenoids. Flower colour is a crucial visual cue used by pollinators to locate flowers. In the Brassicaceae, there are numerous studies highlighting the role of flower colour in pollinator attraction and plant reproduction. Petal colour is mainly determined by the presence of pigments; we thereby decided to include the presence or absence of floral pigments in our dataset. Yellow colour is produced in Brassicaceae by the accumulation of carotenoids. We scored this trait as the presence (1) or absence (0) of petal carotenoids. (23) Petal anthocyanins. In the Brassicaceae, species with pink, lilac, blue, purple, orange and red petals are caused by the accumulation of anthocyanins. We scored this floral trait as the presence of petal anthocyanins (1) or absence (0). (24) Presence of bullseyes. Some flowers have circular patterns in the centre of the corolla called bullseyes that is involved in the attraction of pollinators. Bullseyes may be visible to human vision or invisible due to its absorbance in the ultraviolet region of the light spectrum; we considered only the first ones as is the information provide in the consulted Floras. We scored this floral trait as corolla with (1) or without (0) bullseyes. (25) Presence of veins in the petals. In the Brassicaceae, some species may show petals with prominent veins having a different colour from the rest of the petals. The presence of coloured veins in the petals may function as nectar guides, providing visual orientation directing the pollinator to the central landing platform and the entrance to the flower. We scored this floral trait as petals with (1) or without (0) veins. (26) Coloured sepals. As commented in the trait 9, sepals may be involved in pollination attraction in many species. Colouring sepals by accumulating anthocyanins or carotenoids and may help flowers to differentiate from the green background. We scored this floral trait as coloured sepals (1) or green sepals (0). bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. (27) Relative attractiveness of petals versus sepals. In some species of the Brassicaceae, the sepals are bigger and more attractive than the petals. This occurs frequently in some genera such as Streptanthus, Roripa, Lepidium and Heliophila. We scored this floral trait as (1) when petals are more attractive than sepals or (0) in the opposite case. (28) Petal hue. Although measuring flower colour with spectrophotometric methods are recommended over methodologies based on human vision, obtaining reflectance data of more than 3000 species widely distributed around the world is virtually unfeasible. We designed a method that allows incorporating colour description in the Floras to generate categorical variables. We used a modification of colour identification with reference standards which are commonly used in comparative studies of flower colour and generates relatively good estimates of flower colour variation. First, we used a subset of 200 species that we have digital photos taken with the same camera and similar light conditions to prevent artificial colour modifications. The colour of petals was assigned to the closest matching Munsell colour chip; the same person performed these measures in order to avoid erroneous assignation due to inter-observer differences in colours perception. A total of 24 colour types were identified covering shades of blue (2.5P7/6, 10PB7/6), lilac-purple (7.5P8/4, 7.5P6/8, 7.5P6/10, 7.5P4/10, 5P6/8, 5P8/4, 5P5/10), pink (7.5RP8/4, 5RP6/10, 2.5RP5/10), yellow (5Y9/6; 5Y9/4, 5Y8.5/12), orange (5Y8/8, 2.5Y8/12, 2.5YR6/14), brown-bronze (10YR6/10, 5YR6/12, 10R5/8), green (2.5G5/5, 10GY6/8) and white (N9). We used spectral characteristics of Munsell colours to transform the categorical colour data to semi-quantitative measures of colour. Hue is one of the best colour descriptors for plant colourimetry; thus, we calculated hue values as the wavelength at peak reflectance. In order to accommodate the Brassicaceae petal colour information provided in the Floras to our 24 Munsell colour types, we generated ten colour categories. The hue of each new colour category was calculated as the mean of the hue values containing each category (i.e., among colour shades). In species with petal colour variation, including petal colour polymorphism, we scored the more common petal colour; if this information is not available, we assigned the colour derived of the presence of floral pigments (anthocyanins, carotenoids or both). The values of the ten hue categories are: 454.31 nm (blue), 503.55 nm (pink), 558.08 nm (lilac-purple), 572.46 nm (yellow), 575.43 nm (pale yellow), 579.38 nm (yellow-orange), 592.74 nm (orange), 589.44 nm (brown-bronze), 546.10 nm (green) and 611.37 nm (white). (29) Petal colour as b CIELAB. We also used a second parameter related to petal colour, the “ b*” parameter of the CIE 1976 L*a*b*. In this colour space, b* dimension represent values from -100 (blue colours) to 100 (yellow colours). This metrics is recommendable for the analysis of flower colour, particularly in groups of plant species containing petals with shades of yellow, as occurs in the Brassicaceae. b* values were obtained with the same methodology explained in the previous trait (28). The values of the ten b* categories are: -18.46 (blue), -4.77 (pink), -19.71 (lilac-purple), 45.03 (pale yellow), 80.1 (yellow), 80.45 (yellow-orange), 65.3 (orange), 52.02 (brown-bronze), 29.79 (green) and 0.00 (white). (30) Sepal hue. Sepals of Brassicaceae species are sometimes coloured, differing from the common green. As already mentioned above for traits 9, sepals play an important role in the pollination of many plant species. We used the same method and hue values detailed in the trait 28 to score the sepal colour as hue category. (31) Sepal colour as b CIELAB. For the same reasons mentioned above, we decided to include this trait because of the effect it can have on attracting pollinators. We used the same method and values detailed in the trait 29 to score the sepal colour as “b*” parameter of the CIE 1976 L*a*b*. bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Table S9. List of the phylogenies retrieved from the online repositories and from the literature to built up the Brassicaceae supertree. Within brackets appears the number of species included in the analysis of disparity Code Species Dated Rooted Focal taxa Phylogenies including Moricandia 1 15 [8] YES YES Moricandia 2 273 [255] YES YES 3 1508 [248] YES YES 4 195 [163] YES YES Brassiceae Time-calibrated phylogenies with more than 45 spp 5 84 [48] YES YES Euclideae 6 130 [124] YES YES 7 316 [208] YES YES 8 165 [109] YES YES Alysseae 9 46 [26] YES YES Anchonieae 10 265 [265] YES YES Arabidae 11 84 [77] YES YES Boechereae 12 160 [126] YES YES Cardamineae 13 57 [23] YES YES Chorisporeae 14 51 [28] YES YES Coluteocarpaeae 15 110 [89] YES YES Erysimeae 16 75 [55] YES YES Euclidieae 17 56 [53] YES YES Heliophileae 18 139 [94] YES YES Lepidieae 19 130 [117] YES YES Thelypodieae Time-calibrated phylogenies with less than 45 spp 20 10 YES YES Aethionemeae Reference Perfectti, F., Gómez, J. M., González-Megías, A., Abdelaziz, M., & Lorite, J. (2017). Molecular phylogeny and evolutionary history of Moricandia DC (Brassicaceae). PeerJ, 5, e3964. Smith, S. A., & Brown, J. W. (2018). Constructing a broadly inclusive seed plant phylogeny. American journal of botany, 105(3), 302-314 Gaynor, M. L., Ng, J., & Laport, R. G. (2018). Phylogenetic structure of plant communities: are polyploids distantly related to co-occurring diploids?. Frontiers in Ecology and Evolution, 6, 52. Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Chen, H., German, D. A., Al-Shehbaz, I. A., Yue, J., & Sun, H. (2020). Phylogeny of Euclidieae (Brassicaceae) based on plastome and nuclear ribosomal DNA data. Molecular Phylogenetics and Evolution, 153, 106940 Durka, W., & Michalski, S. G. (2012). Daphne: a dated phylogeny of a large European flora for phylogenetically informed ecological analyses: Ecological Archives E093-214. Ecology, 93(10), 2297-2297 Walden, N., German, D. A., Wolf, E. M., Kiefer, M., Rigault, P., Huang, X. C., Kiefer, C., Schmickl R., Franzke A., Neuffer B., Mummenhoff, K., & Koch, M.A. (2020). Nested wholegenome duplications coincide with diversification and high morphological disparity in Brassicaceae. Nature communications, 11(1), 1-12 Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 21 9 YES YES 22 30 YES YES 23 10 YES YES 24 5 YES YES 25 19 YES YES 26 6 YES YES 27 8 YES YES 28 27 YES YES 29 16 YES YES 30 8 YES YES 31 29 YES YES 32 13 YES YES 33 41 YES YES 34 17 YES YES 35 24 YES YES 36 25 YES YES 37 23 YES YES 38 11 YES YES 39 13 YES YES 40 6 YES YES 41 34 YES YES 42 5 YES YES 43 5 YES YES 44 8 YES YES events. Annals of Botany, 125(1), pp.29-47. Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Anastaticeae Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Aphragmeae Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Asteae Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Biscutelleae Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Buniadeae Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Calepineae Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Camelineae Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Cochlearieae Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Conringieae Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Cremolobeae Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Crucihimalayeae Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Descurainieae Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Dontostemoneae Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Eudemeae Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Eutremeae Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Halimolobeae Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Hesperideae Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Hillielleae Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Iberideae Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Isatideae Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Kernereae Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Malcolmieae Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Megacarpaeae Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Alyssopsideae bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 45 26 YES YES Microlepidieae 46 4 YES YES Notothlaspideae 47 5 YES YES Oreophytoneae 48 40 YES YES Physarieae 49 20 YES YES Schizopetaleae 50 23 YES YES Sisymbrieae 51 23 YES YES Smelowskieae 52 19 YES YES Thlaspideae 53 5 YES YES Turritideae 54 8 YES YES Yinshanieae Non-time calibrated phylogenies 55 115 NO YES 56 44 NO NO Erysimum 57 569 NO YES 58 115 NO NO 59 53 NO YES 60 60 NO YES 61 56 NO YES 62 186 NO YES 63 101 NO YES 64 27 NO NO Microthlaspi 65 22 NO YES Alysseae 66 53 NO YES 67 38 NO YES Thysanocarpus Descurainia Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Huang, X.C., German, D.A. and Koch, M.A., 2020. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Annals of Botany, 125(1), pp.29-47. Gómez, J. M., Torices, R., Lorite, J., Klingenberg, C. P., & Perfectti, F. (2016). The role of pollinators in the evolution of corolla shape variation, disparity and integration in a highly diversified plant family with a conserved floral bauplan. Annals of Botany, 117(5), 889904. Gómez, J. M., Perfectti, F., Abdelaziz, M., Lorite, J., Muñoz-Pajares, A. J., & Valverde, J. (2015). Evolution of pollination niches in a generalist plant clade. New Phytologist, 205(1), 440-453. Couvreur, T. L., Franzke, A., Al-Shehbaz, I. A., Bakker, F. T., Koch, M. A., & Mummenhoff, K. (2010). Molecular phylogenetics, temporal diversification, and principles of evolution in the mustard family (Brassicaceae). Molecular Biology and Evolution, 27(1), 55-71. Salariato, D. L., Manchego, M. A. C., Cano, A., & Al-Shehbaz, I. A. (2019). Phylogenetic placement of the Peruvian-endemic genus Machaerophorus (Brassicaceae) based on molecular data and implication for its systematics. Plant Systematics and Evolution, 305(1), 77-87. Guo, X., Liu, J., Hao, G., Zhang, L., Mao, K., Wang, X., ... & Koch, M. A. (2017). Plastome phylogeny and early diversification of Brassicaceae. BMC genomics, 18(1), 176. Alexander, P. J., Windham, M. D., Govindarajulu, R., Al-Shehbaz, I. A., & Bailey, C. D. (2010). Molecular phylogenetics and taxonomy of the genus Thysanocarpus (Brassicaceae). Systematic Botany, 35(3), 559-577. Huang, C.H., Sun, R., Hu, Y., Zeng, L., Zhang, N., Cai, L., Zhang, Q., Koch, M.A., Al-Shehbaz, I., Edger, P.P. and Pires, J.C., 2016. Resolution of Brassicaceae phylogeny using nuclear genes uncovers nested radiations and supports convergent morphological evolution. Molecular biology and evolution, 33(2), pp.394-412. Warwick, S. I., Mummenhoff, K., Sauder, C. A., Koch, M. A., & Al-Shehbaz, I. A. (2010). Closing the gaps: phylogenetic relationships in the Brassicaceae based on DNA sequence data of nuclear ribosomal ITS region. Plant Systematics and Evolution, 285(3-4), 209-232. Arias, T., Beilstein, M. A., Tang, M., McKain, M. R., & Pires, J. C. (2014). Diversification times among Brassica (Brassicaceae) crops suggest hybrid formation after 20 million years of divergence. American journal of botany, 101(1), 86-91. Ali, T., Schmuker, A., Runge, F., Solovyeva, I., Nigrelli, L., Paule, J., Buch, A.K., Xia, X., Ploch, S., Orren, O. and Kummer, V., 2016. Morphology, phylogeny, and taxonomy of Microthlaspi (Brassicaceae: Coluteocarpeae) and related genera. Taxon, 65(1), 79-98. Cecchi, L., Gabbrielli, R., Arnetoli, M., Gonnelli, C., Hasko, A., & Selvi, F. (2010). Evolutionary lineages of nickel hyperaccumulation and systematics in European Alysseae (Brassicaceae): evidence from nrDNA sequence data. Annals of Botany, 106(5), 751-767. Soza, V. L., & Di Stilio, V. S. (2014). Pattern and process in the evolution of the sole dioecious member of Brassicaceae. EvoDevo, 5(1), 42. Goodson, B. E., Rehman, S. K., & Jansen, R. K. (2011). Molecular systematics and bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 68 15 NO NO Thlaspi 69 70 101 NO 130 NO NO NO 71 72 103 NO 56 NO YES YES 73 74 223 NO 97 NO YES NO Vella 75 109 NO NO Vella 76 49 NO YES Pachycladon 77 189 NO YES 78 195 NO NO 79 598 NO YES 80 370 NO YES Brassiceae biogeography of Descurainia (Brassicaceae) based on nuclear ITS and non-coding chloroplast DNA. Systematic Botany, 36(4), 957-980. Koch, M., & Al-Shehbaz, I. A. (2004). Taxonomic and phylogenetic evaluation of the American. Systematic Botany, 29(2), 375-384. From TreeBase - d13 [R-package APE, Fri May 31 09:08:01 2019] Salariato, D. L., Manchego, M. A. C., Cano, A., & Al-Shehbaz, I. A. (2019). Phylogenetic placement of the Peruvian-endemic genus Machaerophorus (Brassicaceae) based on molecular data and implication for its systematics. Plant Systematics and Evolution, 305(1), 77-87. From TreeBase - T3061 [R-package APE, Thu Oct 15 18:34:08 2020] From TreeBase - Parrya [R-package APE, Thu Oct 15 19:34:09 2020] - Nikolov, L.A., Shushkov, P., Nevado, B., Gan, X., Al-Shehbaz, I.A., Filatov, D., Bailey, C.D. and Tsiantis, M., 2019. Resolving the backbone of the Brassicaceae phylogeny for investigating trait diversity. New Phytologist, 222(3), pp.1638-1651. From TreeBase - varios [R-package APE, Fri Oct 16 07:38:56 2020] Simon-Porcar, V. I., Perez-Collazos, E., & Catalan, P. (2015). Phylogeny and systematics of the western Mediterranean Vella pseudocytisus-V. aspera complex (Brassicaceae). Turkish Journal of Botany, 39(3), 472-486. Crespo, M.B., Lledó, M.D., Fay, M.F. and Chase, M.W., 2000. Subtribe Vellinae (Brassiceae, Brassicaceae): a combined analysis of ITS nrDNA sequences and morphological data. Annals of Botany, 86(1), pp.53-62. Joly, S., Heenan, P.B. and Lockhart, P.J., 2009. A Pleistocene inter-tribal allopolyploidization event precedes the species radiation of Pachycladon (Brassicaceae) in New Zealand. Molecular phylogenetics and evolution, 51(2), pp.365-372. German, D.A., Friesen, N., Neuffer, B., Al-Shehbaz, I.A. and Hurka, H., 2009. Contribution to ITS phylogeny of the Brassicaceae, with special reference to some Asian taxa. Plant Systematics and Evolution, 283(1-2), pp.33-56. BrassiBase ITS tree- https://brassibase.cos.uniheidelberg.de/?action=phlv&subaction=Brassiceae Bailey, C.D., Koch, M.A., Mayer, M., Mummenhoff, K., O'Kane Jr, S.L., Warwick, S.I., Windham, M.D. and Al-Shehbaz, I.A., 2006. Toward a global phylogeny of the Brassicaceae. Molecular biology and evolution, 23(11), pp.2142-2160. Friesen, N., Čalasan, A.Ž., Neuffer, B., German, D.A., Markov, M. and Hurka, H., 2020. Evolutionary history of the Eurasian steppe plant Schivereckia podolica (Brassicaceae) and its close relatives. Flora, p.151602. bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Table S10. List of ecologists kindly sharing unpublished information on Brassicaceae pollinators. The host institutions are those at the time of the contact with our team. Last Name Abdelaziz Aizen Aguado Alarcon Amat Arista Banza Barbir Bartomeus Bergerot Bommarco Bosch Bruinsma Burkle CaraDonna Cartar Castro Castro-Urgal Chacoff Conner Cuerda Dennis Ebeling Escudero Evans Fernández Ferrero Fründ Fultz Garbuzov García García-Camacho García García de Lucas Giménez Iriondo Junker Kuppler Lance Lara Lázaro Lorite Louadi Loureiro Lucas-Barbosa Majetic Marcos Medel Meindl Melen Méndez Menéndez First Name Mohamed Marcelo Luis Oscar Ruben Elena Montserrat Paula Jelena Ignasi Benjamin Riccardo Jordi Maaike Laura Paul Ralph Silvia Rocio Natacha Jeffrey David Roger L. H. Anne Adrián Darren Juande Victoria Jochen Jessica Mihail Begoña Raúl Yedra Sandra Luis José María Robert R. Jonas Richard Carlos Amparo Juan Kamel João Dani Cassey J. Maria Ángeles Rodrigo George Miranda Marcos Rosa Host institution University of Granada (Spain) Universidad Nacional del Comahue-CONICET (Argentina) Castilla y Leon Regional Goverment (Spain) University Arizona (USA) Real Jardín Botánico de Madrid (Spain) University of Seville (Spain) University of Hull (UK) ICA-CSIC (Spain) EBD-CSIC (Spain) University of Rennes (France) Swedish University of Agricultural Sciences (Sweden) CREAF-UAB (Spain) Leiden University (The Netherlands) Montana State University (USA) Northwestern University (USA) University of Calgary (Canada) University of Coimbra (Portugal) IMEDEA-CSIC (Spain) Universidad Nacional del Comahue-CONICET (Argentina) Michigan State University (USA) Junta de Andalucía (Spain) Staffordshire University (UK) University of Jena (Germany) Universidad Rey Juan Carlos (Spain) University of Hull (UK) Greenpeace (Spain) University of León (Spain) Georg-August-Universität (Germany) Idaho State University (USA) University Sussex (UK) IPE-CSIC (Spain) Universidad Rey Juan Carlos (Spain) CIDE (University of New Brunswick) Junta de Andalucía (Spain) Universidad Rey Juan Carlos (Spain) Universidad Rey Juan Carlos (Spain) University of Salzburg (Austria) ULM University (Germany) Northern Arizona University (USA) Universidad Rey Juan Carlos (Spain) IMEDEA-CSIC (Spain) University of Granada (Spain) University Frères Mentouri Konstantine (Algeria) University of Coimbra (Portugal) Wageningen University (The Netherlands) Saint Mary´s College Indiana (USA) Universidad de Alicante (Spain) University of Santiago de Chile (Chile) Binghamton University (USA) University of California-Santa Cruz (USA) Universidad Rey Juan Carlos (Spain) University of Lancaster (UK) bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Milla Morales Morente Muñoz-Pajares Norfolk Norton O’Malley Ojeda Pelayo Petanidou Razanajatovo Roberts Santamaría Schlinkert Schrader Schupp Simaika Simanonok Stang Stanley Stout Strauss Torices Traveset Tscharntke Tur Valido Valverde Vargas Warzecha Whittall Winfree Wonneck Zink Rubén Carolina Javier A. Jesus Olivia Nicholas Rachel Fernando Roxibel Theodora Mialy S.P.M. Silvia Hella Julian Eugene W. John P. Michael P. Martina Dara A. Jane Sharon Rubén Anna Teja Cristina Alfredo Javier Pablo Daniela Justen Rachael Mark Lindsay Universidad Rey Juan Carlos (Spain) Universidad Nacional del Comahue-CONICET (Argentina) Universidad Rey Juan Carlos (Spain) University of Coimbra (Portugal) University of Nottingham (UK) Washington State University (USA) San Jose State University (USA) University of Cádiz (Spain) Universidad de las Andes (Venezuela) University of the Aegean (Greece) University Konstanz (Germany) University of Reading (UK) Universidad Rey Juan Carlos (Spain) University Goettingen (Germany) University Goettingen (Germany) Utah State University (USA) Stellenbosch University (South Africa) MSU- Northern Prairie Wildlife Research Center (USA) University of Leiden (The Netherlands) Trinity College Dublin (Ireland) Trinity College Dublin (Ireland) University of California at Davis (USA) University Lausanne (Switzerland) IMEDEA-CSIC (Spain) University of Göttingen (Germany) IMEDEA-CSIC (Spain) IPNA-CSIC (Spain) EBD-CSIC (Spain) Real Jardín Botánico de Madrid (Spain) Goethe University (Germany) Santa Clara University (USA) Rutgers University (USA) University of Calgary (Canada) University of Calgary (Canada) Table S11. Brief description of the functional groups of the insects visiting the flowers of the studied species. Functional Group Body length Resource Behavioural notes 1 Long-tongued extralarge bees ≥ 15 mm Nectar + Pollen Partially introducing the head in the flower Legitimate Hymenoptera Anthophoridae, Apidae 2 Long-tongued large bees 10-15 mm Nectar + Pollen Partially introducing the head in the flower Legitimate Hymenoptera Anthophoridae 3 Long-tongued mediumsized bees < 10 mm Nectar + Pollen Partially introducing the head in the flower Legitimate Hymenoptera Anthophoridae 4 Honeybees 6-12 mm Nectar + Pollen Introducing the whole head in the flower Legitimate Hymenoptera Apidae (Apis spp.) 5 Short-tongued extralarge bees ≥ 15 mm Nectar + Pollen Introducing the head in the flower Legitimate Hymenoptera Apidae 6 Short-tongued large bees > 10 mm Pollen + Nectar Introducing the whole head in the flower Legitimate Hymenoptera Halictidae, Megachilidae, Colletidae Andrenidae 7 Short-tongued medium-sized bees 5 – 10 mm Pollen + Nectar Introducing the whole head in the flower Legitimate Hymenoptera Halictidae, Colletidae, Andrenidae , Apidae Xylocopinae, Apidae Nomidinae 8 Short-tongued small bees 2 – 5 mm Pollen + Nectar They access the nectar legitimately or from between Illegitimate + Hymenoptera the sepals Legitimate Halictidae, Colletidae, Andrenidae , Apidae Xylocopinae, Apidae Nomidinae 9 Short-tongued extrasmall bees < 2 mm Nectar + Pollen They access the nectar legitimately or from between the sepals Legitimate + Hymenoptera Illegitimate Halictidae, Colletidae 10 Large ants > 2 mm Nectar They can introduce the whole body in the flower to reach the nectar Legitimate + Hymenoptera Illegitimate Formicidae 11 Small ants < 2 mm Nectar Mostly sipping nectar from between sepals Illegitimate + Hymenoptera Legitimate Formicidae 12 Large pollen wasps Variable Pollen Partially introducing the head in the flower Legitimate Hymenoptera Massarinae 13 Large nectar-collecting wasps > 7mm Nectar Partially introducing the head in the flower Legitimate Hymenoptera Vespidae 14 Small nectar-collecting wasps Usually < 3mm Nectar Mostly sipping nectar from between sepals 15 Hovering long-tongued Variable Nectar + Hovering while nectaring and collecting some pollen Type of visits Order Illegitimate + Hymenoptera Legitimate Legitimate Diptera Examples Chalcidoidea, Ichneumonoidea Bombyliidae (Bombylius) flies Pollen 16 Non-hovering long tongued flies Variable Nectar Nectaring without hovering; long buccal apparatus Legitimate Diptera Bombyliidae, Tachinidae, Nemestrinidae, 17 Large hoverflies >5 mm Pollen Collect pollen without entering the flower Legitimate Diptera Syrphidae (Eristalini) 18 Small hoverflies < 5 mm Pollen + Nectar Collect pollen without entering the flower and sometimes sip nectar from between the sepals Legitimate + Diptera Illegitimate Syrphidae 19 Large flies >5 mm Nectar + Pollen Collect pollen without entering the flower and nectar Legitimate + Diptera Illegitimate Muscidae, Calliphoridae, Tabanidae, Scatophagidae, Anthomyiidae 20 Small flies < 5 mm Nectar + Pollen Mostly sipping nectar Illegitimate + Diptera Legitimate Muscidae, Anthomyiidae, Micetophyliidae, Drosophilidae, Stratiomyidae 21 Long tongued small flies < 5 mm Nectar Sipping nectar Illegitimate + Diptera Legitimate Bibionidae, Empididae 22 Large beetles > 7 mm Mostly Pollen Consuming not only pollen, also anthers, petals, and other floral parts Legitimate + Coleoptera Illegitimate Cetonidae, Lagridae, Mylabridae, Allecuninae 23 Small beetles < 7 mm Pollen + Nectar Consuming pollen during legitimate visits and also robbing nectar from the bottom part of the flowers Legitimate + Coleoptera Illegitimate Melyridae (Malachidae, Dasytidae), Cleridae, Oedemeridae, Elateridae, Bruchidae, Buprestidae, Chrysomelidae 24 Small diving beetles <3 mm Nectar + Pollen Entering completely into the flower, crawling down the corolla for nectar 25 Large Butterflies ≥ 20 mm Nectar 26 Small Butterflies < 20 mm 27 Hawkmoths 28 Legitimate Coleoptera Nitidulidae, Dermestidae, Phalacridae Feeding on nectar both from inside the flower and between the sepals Legitimate Lepidoptera Nymphalidae, ,Papilionidae, Pieridae Nectar Feeding on nectar both from inside the flower and between the sepals Legitimate Lepidoptera Lycaenidae, Pieridae, Hesperidae > 7 mm Nectar Hovering to sip nectar Legitimate Lepidoptera Sphingidae Large moths > 3mm Nectar Sipping nectar while landed onto the corolla Legitimate Lepidoptera Crambidae, Noctuidae 29 Small moths < 3mm Nectar Sipping nectar without entering the flower 30 Nocturnal moths variable Nectar Sipping nectar while landed onto the corolla or by hovering; Visiting the flowers at night Illegitimate + Lepidoptera Legitimate Legitimate Lepidoptera Adelidae, Plutellidae Noctuidae 31 Bugs variable Nectar Sipping nectar without entering the flower. Also acting as sapsuckers in vegetative tissues Legitimate + Hemiptera Illegitimate 32 Thrips < 3 mm Pollen Feeding from inside the flowers Legitimate Thysanoptera 33 Grasshoppers variable Pollen + Floral parts Mostly nymphs Legitimate Orthoptera 34 Aphids < 2 mm Nectar Mostly winged individuals Legitimate Hemiptera 35 Earwig > 15 mm Pollen Legitimate + Dermaptera Illegitimate 36 Lacewing > 15 mm Pollen + Nectar Legitimate + Neuroptera Illegitimate 37 Snakeflies > 8 mm Pollen + Nectar Legitimate + Raphidioptera Illegitimate 38 Birds >>> 15 mm Nectar Legitimate 39 Springtails < 2 mm Nectar Legitimate + Illegitimate 40 Mites < 2 mm Nectar Legitimate + Illegitimate 41 Spiders < 2 mm Unknown Illegitimate 42 Larvae variable Unknown Illegitimate 43 Others variable Unknown Illegitimate Passeriformes Lygaeidae, Pentatomidae Aphidoidea Chrysopidae bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445642; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.