Academia.eduAcademia.edu
American Journal of Botany 97(5): 856–873. 2010. PATTERNS AND CAUSES OF INCONGRUENCE BETWEEN PLASTID AND NUCLEAR SENECIONEAE (ASTERACEAE) PHYLOGENIES1 Pieter B. Pelser2,8, Aaron H. Kennedy3,4, Eric J. Tepe5, Jacob B. Shidler4, Bertil Nordenstam6, Joachim W. Kadereit7, and Linda E. Watson3 2University of Canterbury, School of Biological Sciences, Private Bag 4800, Christchurch 8140 New Zealand; 3Oklahoma State University, Department of Botany, 104 Life Science East, Stillwater, Oklahoma 74078 USA; 4Miami University, Department of Botany, 316 Pearson Hall, Oxford, Ohio 45056 USA; 5University of Cincinnati, Department of Biological Sciences, 614 Rieveschl Hall, Cincinnati, Ohio 45221 USA; 6Swedish Museum of Natural History, Department of Phanerogamic Botany, P.O. Box 50007 SE-104 05 Stockholm, Sweden; and 7Johannes Gutenberg-Universität Mainz, Institut für Spezielle Botanik und Botanischer Garten, 55099 Mainz Germany One of the longstanding questions in phylogenetic systematics is how to address incongruence among phylogenies obtained from multiple markers and how to determine the causes. This study presents a detailed analysis of incongruent patterns between plastid and ITS/ETS phylogenies of Tribe Senecioneae (Asteraceae). This approach revealed widespread and strongly supported incongruence, which complicates conclusions about evolutionary relationships at all taxonomic levels. The patterns of incongruence that were resolved suggest that incomplete lineage sorting (ILS) and/or ancient hybridization are the most likely explanations. These phenomena are, however, extremely difficult to distinguish because they may result in similar phylogenetic patterns. We present a novel approach to evaluate whether ILS can be excluded as an explanation for incongruent patterns. This coalescence-based method uses molecular dating estimates of the duration of the putative ILS events to determine if invoking ILS as an explanation for incongruence would require unrealistically high effective population sizes. For four of the incongruent patterns identified within the Senecioneae, this approach indicates that ILS cannot be invoked to explain the observed incongruence. Alternatively, these patterns are more realistically explained by ancient hybridization events. Key words: ancient hybridization; deep coalescence; ETS; incomplete lineage sorting; incongruence; ITS; molecular dating; plastid sequences. Since the onset of the use of DNA sequences for phylogeny reconstruction, molecular systematics has experienced a steady increase in the number of DNA regions used to resolve evolutionary relationships (Degnan and Rosenberg, 2009). This development has significantly contributed to our understanding of the evolutionary history of numerous lineages by clarifying relationships that were previously unresolved in studies using fewer markers and less data (e.g., Kuzoff and Gasser, 2000; Pryer et al., 2004; Panero and Funk, 2008). In addition, multigene studies have enabled a more detailed understanding of macroevolution by revealing congruence or incongruence be- tween phylogenies obtained from the analysis of different genes, genic regions, and genomes (Degnan and Rosenberg, 2009). Incongruence may, among others, indicate differences in the evolutionary histories of the DNA regions employed (i.e., gene tree–species tree discordance), which could result from hybridization or incomplete lineage sorting (ILS; Doyle, 1992; Maddison, 1997; Buckley et al., 2006; Liu and Pearl, 2007). ILS is the failure of ancestral polymorphisms to track speciation events accurately, which may result in incongruence between gene trees and species trees. Unfortunately, ILS can result in phylogenetic patterns similar to those observed for hybridization events (Doyle, 1992; Seelanan et al., 1997; Holder et al., 2001; Buckley et al., 2006; Holland et al., 2008; Joly et al., 2009). Therefore ILS and hybridization are often difficult to distinguish. Furthermore, in the absence of an effective methodology to distinguish between them (Joly et al., 2009), there are few empirical studies that present a detailed assessment of incongruent patterns and even fewer in which the specific causes for these patterns were studied (Wiens and Hollingsworth, 2000; Van der Niet and Linder, 2008; Morgan et al., 2009). There is therefore an urgent need for research that explores ways to examine incongruent patterns and to determine the causes (Buckley et al., 2006; Holland et al., 2008; Degnan and Rosenberg, 2009). In this paper, we aim to contribute to the development of new approaches to the study of incongruent phylogenetic patterns by documenting strongly supported topological incongruence in tribe Senecioneae (Asteraceae) and using a new approach to establish whether ILS can be excluded as an explanation for incongruent patterns. This coalescent-based method uses estimates of the 1 Manuscript received 21 September 2009; revision accepted 22 February 2010. The authors thank A. Aksoy, R. J. Bayer, R. Cairns-Wicks, P. Carillo Reyes, G. V. Cron, V. A. Funk, E. B. Knox, R. R. Kowal, A. Marticorena, J. L. Panero, T. Sultan Quedensley, T. F. Stuessy, and I. R. Thompson for providing DNA or tissue samples. They are grateful to the curators of B, BHCB, CANB, E, F, HYO, L, LPB, M, MEL, MJG, MO, MU, P, PRE, PREM, S, TENN, TEX, U, UC, US, WAG, WIS, WU, and XAL for permission to include their Senecioneae specimens in their studies. R. H. Ree kindly provided his python script for coding indels. H. P. Comes, J. H. Degnan, M. Fishbein, and A. Varsani are acknowledged for helpful discussions. P. C. Wood and the Miami University Center for Bioinformatics and Functional Genomics provided technical support. The authors greatly appreciate the time and efforts of two anonymous reviewers and their help to improve an earlier version of this manuscript. Funding for this project was provided by NSF grant DEB-0542238 to L.E.W. and P.B.P. 8 Author for correspondence (e-mail: pieter.pelser@canterbury.ac.nz) doi:10.3732/ajb.0900287 American Journal of Botany 97(5): 856–873, 2010; http://www.amjbot.org/ © 2010 Botanical Society of America 856 May 2010] Pelser et al.—Incongruence between Senecioneae phylogenies duration of putative ILS events to determine if invoking ILS as an explanation for incongruence would require unrealistically high effective population sizes. The Senecioneae are one of the largest tribes in the Asteraceae (ca. 3100 species and 155 genera) with an almost worldwide distribution, and it exhibits remarkable morphological and ecological diversity. Senecio is the largest genus in the tribe (ca. 1000 species) and is perceived as taxonomically difficult because of its size and extensive morphological diversity. In a recent study, ITS sequence data were used to reconstruct a phylogeny for the Senecioneae and to redefine a previously polyphyletic Senecio (Pelser et al., 2007). This study included 186 Senecio species and 114 of the 150 genera recognized by Nordenstam (2007). Because the molecular phylogeny placed several lineages outside of core Senecio, a new circumscription resulted with several taxa being transferred to other genera within the tribe and others to be described as new genera (Nordenstam et al., 2009c; unpublished data). Furthermore, seven genera (Aetheolaena, Cadiscus, Culcitium, Hasteola, Iocenes, Lasiocephalus, and Robinsonia) were deeply embedded within Senecio and thus, are being transferred into the genus to arrive at a monophyletic delimitation (Pelser et al., 2007; Nordenstam et al., 2009b; unpublished data). It is important to note that while this new delimitation of Senecio is largely based on an ITS phylogeny, the major clades are also supported by plastid sequence data composed of ndhF, the trnL intron, and the psbAtrnH, 5′ and 3′ trnK, and trnL-F intergenic spacers (Pelser et al., 2007). In addition, the plastid data augmented the utility and efficacy of the ITS for phylogeny reconstruction in the Senecioneae by supporting many of the resolved evolutionary relationships at the species, generic, and subtribal levels in the tribe. Furthermore, many patterns of relationships in the ITS Senecioneae phylogeny were corroborated by morphological, karyological, and/or biogeographic data and supported the taxonomic conclusions from previous Senecioneae studies (reviewed in Pelser et al., 2007; Nordenstam et al., 2009a). Although the plastid data provided additional support for the ITS phylogeny with overall congruence between the two topologies observed, some incongruence was present that prevented taxonomic conclusions for some lineages (Pelser et al., 2007). Because the plastid phylogeny was only based on a subset of the Senecioneae taxa that were sampled for the ITS analyses (73 vs. 614 species), it was not possible to sufficiently resolve these patterns for a detailed analysis of the extent and understanding of the underlying causes of the incongruence at the generic level. In the current study, we therefore have significantly increased the taxon and marker sampling for the plastid and nuclear data and conducted extensive phylogenetic analyses. The goals were (1) to identify strongly supported relationships that are incongruent between trees produced with different data sets and (2) to explore possible causes of the incongruence. MATERIALS AND METHODS Taxon and character sampling—The taxa selected for this study were chosen from the plastid and ITS phylogenies of Pelser et al. (2007) to represent the Senecioneae genera included in that study. In addition, 31 Senecioneae genera were added for which material was not previously available to us (Appendix S1; see Supplemental Data with the online version of this article) resulting in a sampling of approximately 94% of all Senecioneae genera. A total of 27 genera from 26 other Asteraceae tribes was included for outgroup comparisons (Appendix S1). DNA samples of representatives of the taxa not included in Pelser et al. (2007) were obtained from tissue samples taken with permission from 857 herbarium specimens at B, BHCB, F, L, MO, MU, P, S, TENN, TEX, UC, US, WAG, and XAL, or from field-collected leaf tissue preserved on silica gel. Phylogenetic analyses were performed with DNA sequences from eight regions: the ITS (ITS1, 5.8S, ITS2) and ETS of the nuclear genome, plus the ndhF gene, the trnL intron, and psbA-trnH, 5′ and 3′ trnK, and trnL-F intergenic spacers of the plastid genome. To root tribe Senecioneae in subfamily Asteroideae, partial sequences of the plastid rbcL gene were obtained for representatives of the major Senecioneae lineages and the other Asteraceae tribes, in addition to the above markers. However, the relationship among outgroups is not discussed since this is not a goal of this paper. DNA extraction, PCR amplification, and sequencing—Total genomic DNA was extracted using the Qiagen DNeasy Plant Mini Kit (Qiagen, Valencia, California, USA). PCR amplification of the ITS, ndhF, psbA-trnH, 5′ and 3′ trnK, trnL, and trnL-F regions followed Pelser et al. (2002, 2003, 2007) or minor modifications thereof. The ETS region was partially amplified with primer AST1 (Markos and Baldwin, 2001) or a modification of primer ETS2 (Bayer et al., 2002; 5′-CAA CTT CCA CCT GGC TTA CCT CC-3′) as forward primers and 18S-ETS (Baldwin and Markos, 1998) as the reverse primer. The rbcL gene was amplified in two parts using forward primers 1F and a modification of primer 636F (Fay et al., 1997; 5′-GCG TTG GAG AGA CCG TTT CT-3′), and reverse primers 1460R (Savolainen et al., 2000) and a modification of primer 724R (Fay et al., 1997; 5′-TCG CAT GTA CCC GCA GTA GC-3′). PCR products were purified with the Wizard SV Gel and PCR Clean-Up System (Promega, Madison, Wisconsin, USA). Cycle sequencing was carried out with the BigDye Terminator v.3.1 (Applied Biosystems, Foster City, California, USA) cycle sequencing kit. The fluorescently labeled samples were run on an ABI 3130xl or 3730 automated sequencer at the Center for Bioinformatics and Functional Genomics at Miami University (Oxford, Ohio, USA). The program Sequencher v.4.8 (Gene Codes, Ann Arbor, Michigan, USA) was used for trace file editing. DNA sequence alignment and phylogeny reconstruction—DNA sequences were aligned with the program CLUSTALX v.1.83 (Thompson et al., 1997) using the default penalty settings of the program. This alignment was edited using the program Se-Al v.2.0a11 (Rambaut, 1996) by excluding portions of sequences that could not be unambiguously aligned (mostly of ITS and ETS accessions of tribes distantly related to the Senecioneae) and replacing those with a missing data symbol. A Python script (Richard Ree, Field Museum, Chicago, Illinois, USA) was used to code indels as binary characters using the simple indel coding method of Simmons and Ochoterena (2000). For several species, sequences of multiple accessions were available (Appendix S1). In the first round of heuristic searches performed under maximum parsimony (MP, see below) for each of the DNA regions individually, all available sequences were included. When multiple accessions of the same species formed a clade, a consensus sequence was generated in which polymorphisms were coded as ambiguous nucleotide characters, and this consensus sequence was used for subsequent phylogenetic analyses (Pelser et al., 2007). This strategy was preferred over selecting one conspecific accession among those available to avoid subjective decisions in the process of selecting a single examplar and to be able to include all available data that potentially contribute to the phylogeny reconstruction. In addition, this approach allowed for the inclusion of longer sequence reads for taxa of which individual accessions only resulted in partial sequences. Comparisons to results of parsimony analyses did not reveal decreased resolution when multiple accessions per species were included, and analyses in which consensus sequences also were included placed these among the individual accessions of the same taxon. The MP phylogeny was reconstructed with the program TNT 1.0 (Goloboff et al., 2008) using the Driven Search option with the default settings for Sectorial Searches (RSS, CSS, and XSS), Ratchet, Tree Drifting, and Tree Fusing, 10 initial random addition sequences, terminating the search after finding minimum length trees five times. Bootstrap support (BS; Felsenstein, 1985) was calculated with Poisson independent reweighting using 1000 replicates. Bayesian inference (BI) analyses were performed using the program MrBayes 3.1.2 (Huelsenbeck and Ronquist, 2001) on the Redhawk Cluster at Miami University (EM64T Cluster with 128 dual nodes with 4 GB of memory and 150 GB of disk space per node). Prior to the BI analyses, the Akaike information criterion (AIC) in the program MrModeltest 2.2 (Nylander, 2004) was employed to select nucleotide substitution models for each of the DNA regions. These analyses selected the GTR+I+Γ model for each of the individual DNA regions and the combinations of DNA regions analyzed, which was therefore used in all BI analyses. Indel characters were included as “restriction type” data in the BI analyses. These analyses were performed using two independent simultaneous 858 American Journal of Botany runs. The Markov chain Monte Carlo analyses (MCMC; Geyer, 1991) were run with up to 40 chains per analysis, temperature settings ranging between 0.0001 and 0.2, and one tree per 1000 generations saved. BI analyses were run until the average deviation of split frequencies between both simultaneous analyses reached a value below 0.01. The burn-in values were determined empirically from the likelihood values. Trees were visualized using the program FigTree v.1.2.2 (Rambaut, 2009). Identification and localization of incongruence—The incongruence length difference test (ILD; Farris et al., 1995) is one of the most widely applied methods for assessing incongruence (Darlu and Lecointre, 2002; Hipp et al., 2004). Its use has, however, been criticized, because of a high false positive rate (Cunningham, 1997; Darlu and Lecointre, 2002; Hipp et al., 2004). Because alternative methods for testing incongruence (e.g., the Templeton [Templeton, 1983], Kishino–Hasegawa [Kishino and Hasegawa, 1989], and Shimodaira– Hasegawa [Shimodaira and Hasegawa, 1999] tests) may suffer from errors as well (Cunningham, 1997; Shimodaira and Hasegawa, 1999; Buckley et al., 2001; Shimodaira, 2002; Hipp et al., 2004), incongruence is probably best studied using a combination of methods (Hipp et al., 2004). In this study, we therefore explored patterns of phylogenetic incongruence using two approaches: the ILD test and an assessment of incongruent patterns that are supported by high BS or BI values. To reduce the chance of false positives and following the recommendations of Cunningham (1997), we considered only ILD P-values below 0.01 as evidence of significant incongruence. Strongly supported incongruence is here defined as incongruent patterns that are supported by BS values ≥80% and/or posterior probabilities (PP) ≥0.95 as well as ILD values of P < 0.01. The ILD tests were conducted in PAUP* with 500 to 10 000 replicates and 1 to 100 random addition sequences, depending on the size and complexity of the data sets analyzed. Invariant characters were removed from the data sets prior to performing ILD tests (Cunningham, 1997). This methodology revealed strong incongruence between trees obtained from the plastid and ITS/ETS data sets, but not among the plastid markers or between the ITS and ETS. Subsequent phylogenetic analyses were therefore focused on identifying lineages with strongly supported, but incongruent, topological placements in trees obtained from the plastid vs. the ITS/ETS data sets. Lineages with strongly supported, yet incongruent, phylogenetic placements in the plastid vs. ITS/ETS trees were identified using a novel two-step approach designed to examine complex patterns involving multiple incongruent lineages for which some also have internal incongruence. First, plastid and ITS/ETS trees were visually compared to identify the largest mutually exclusive lineages that form a clade in all or some consensus trees. In this way, lineages that are resolved as closely related in both plastid and ITS/ETS trees were identified. Among these lineages are clades that are retrieved in all trees (e.g., Tussilagininae s.s.; Figs. 1, 2), but also those lineages that form a clade in some, but not all, trees. The latter category of lineages were only included when their taxa are in close phylogenetic proximity (e.g., Lachanodes-S. thapsoides group; Figs. 1, 2). Although Senecio s.s. is not resolved as monophyletic in either the plastid or the ITS/ETS trees, support for its nonmonophyly is low (Figs. 1, 2), and it comprises a single clade in trees obtained from a combined plastid-ITS/ETS data set (not shown). Senecio s.s. was therefore also identified as one of the major lineages present in both plastid and ITS/ETS trees. Secondly, these identified major lineages were then examined for the presence of strongly supported internal incongruence by evaluating branch support values and then subjecting them to ILD tests that only included the taxa of the lineage under investigation. This method allowed for the identification of strongly incongruent accessions and subclades within each of these major lineages without the confounding effects of unrelated incongruence within or among other major lineages. In addition, branch support values and ILD tests were employed in a similar fashion to study the incongruence among the major lineages. Due to the large size of the data sets, one or two placeholder species were included in the latter round of ILD tests to eliminate the confounding effects of internal incongruence within the major lineages. After strongly incongruent lineages were identified, MP and BI analyses of a combined plastid-ITS/ETS data set were performed in which each taxon in a strongly incongruent lineage was included twice: once as a plastid-only accession (ITS/ETS characters coded as missing) and once as an ITS/ETS-only accession (plastid characters coded as missing; Pirie et al., 2008). This approach was used to resolve a generic level tree without the confounding effects of taxa with strongly supported incongruence between the plastid and ITS/ETS partitions and to examine their alternative phylogenetic placements relative to a backbone composed of lineages among which relationships are not strongly incongruent. Because BI analyses of this data set using various temperature settings and numbers of chains did not reach convergence (40 chains per run, [Vol. 97 temperature setting of 0.0001), a user-defined starting tree was supplied using the MP 50% majority rule consensus topology of the combined plastid-ITS/ ETS data set. Each chain was then initiated with a slightly perturbed version of this starting tree by setting the parameter nperts to 1. This approach resulted in convergence of the chains. ITS orthology/paralogy assessment—To determine if specimens possessed divergent ITS copies, potentially indicating that the incongruence is caused by inaccurate assessment of orthology, we cloned and sequenced the ITS region for accessions of strongly incongruent lineages. Because ITS trees were not strongly incongruent with ETS trees and both regions are adjacent, the ETS region was not cloned and sequenced. ITS PCR products were cloned using the TOPO TA Cloning Kit for Sequencing (Invitrogen, Carlsbad, California, USA). Between 5 and 10 clones per accession were PCR-amplified directly from plated culture with the manufacturer’s supplied M13 plasmid primers. PCR products were cycle sequenced with M13 plasmid primers. Sequencing and alignment followed the protocol outlined above. Long-branch attraction—Because long-branch attraction (Felsenstein, 1978) is a possible explanation for topological incongruence, MP and BI phylograms were visually inspected for the presence of exceptionally long branches associated with strongly incongruent lineages. A series of phylogenetic analyses was subsequently carried out in which accessions with long branches were individually excluded in turn. This was done to determine whether the exclusion of these accessions resulted in changes in topology, which could indicate the presence of long-branch attraction. Incomplete lineage sorting—Topological incongruence caused by hybridization and ILS can be difficult to distinguish, because both phenomena may result in similar topological patterns. Coalescent theory, however, predicts that ancestral polymorphisms are likely to coalesce within approximately 5Ne generations (Ne being the effective population size; Rosenberg, 2003; Degnan and Rosenberg, 2009) and that congruence between gene trees and species trees becomes highly probable. Information about generation times and estimates of the duration of an ILS event can therefore be used to calculate the minimum Ne that must be assumed to explain incongruence due to ILS. If these calculations result in Ne estimates that are much higher than observed in nature, then ILS can be excluded, and hybridization is favored as the likely explanation for the observed incongruence. To calculate Ne estimates, we estimated molecular dates using penalized likelihood analyses performed in the program r8s 1.71 (Sanderson, 2002, 2003) on the Redhawk Cluster at Miami University. Separate analyses were carried out for the plastid and the ITS/ETS data sets using the topologies and branch lengths obtained in the BI analyses. Some accessions were pruned from the input trees to meet the r8s requirement of nonzero branch lengths. Several calibration points outside and within the Senecioneae were used based on previous age estimates in Asteraceae (Wikström et al., 2001; Kim et al., 2005; Hershkovitz et al., 2006), fossil evidence (Graham, 1996), and inferred ages for islands or archipelagos with endemic Senecioneae taxa (Baker et al., 1967; McDougall and Schmincke, 1976; McDougall et al., 1981; Stuessy et al., 1984; Cronk, 1987; Ancochea et al., 1990; Geldmacher et al., 2000; Table 1). The smoothing parameters for the penalized likelihood analyses were determined using crossvalidation tests. In addition to estimating divergence dates using penalized likelihood, molecular dating studies were performed using a Bayesian approach with the program BEAUti/BEAST v.1.4.7 (Drummond and Rambaut, 2007) on the Redhawk Cluster at Miami University. To compare the dating results of the BEAST analyses to those estimated by r8s, we also used the input trees from the r8s analyses as the starting trees in BEAST, and their topology was fixed. The BEAST analyses were performed with the GTR+I+Γ model, the uncorrelated relaxed lognormal clock, and the Yule tree prior. The calibration points used in the r8s analysis were specified using uniform distributions with an upper and lower bound. Following the instructions in the BEAST manual, the weights of the operators for the treeModel were modified to improve the efficiency of the MCMC: the upDownOperator, uniformOperator on internalNodeHeights, narrowExchangeOperator, and subtreeSlideOperator were set at 115 and the wilsonBaldingOperator and the wideExchangeOperator were set at 23. Nine (plastid data) and 11 (ITS/ETS data) independent BEAST runs totaling 136 687 000 (plastid data) and 318 672 000 (ITS/ETS data) generations were carried out to ensure that all parameters had an effective sampling size greater than 200 (after a burnin of 10% was removed). Convergence was examined using the program Tracer v.1.4 (Rambaut and Drummond, 2007). Pelser et al.—Incongruence between Senecioneae phylogenies May 2010] Table 1. Calibration points for r8s and BEAST molecular dating analyses. Calibration point Root (fixed) Age constraint Age estimates from used (Myr) literature (Myr) 35 33–36.5 MRCA of Cichorioideae and Asteroideae Anthemideae 24–38 24–38 MRCA of Helianthus and Tagetes 13–19 Late Oligocene (fossil pollen) 13–19 MRCA of Senecio and Blennosperma Lachanodesa 16–19 16–19 Pladaroxylona Pericallis auritaa Pericallisa Bethencourtiaa ≥23 ≤14.5 ≤14.5 ≤14.3 ≤14.3 ≤11.6 Lordhoweaa ≤6.9 Robinsoniaa ≤4.2 Robinsonia masafueraea aIsland bOldest ≤2.4 14.5 (age of St. Helena) 14.5 (age of St. Helena) 14.3 (age of Porto Santo) 14.3 (age of Porto Santob) References Wikström et al., 2001; Kim et al., 2005; Hershkovitz et al., 2006 Wikström et al., 2001; Kim et al., 2005; Hershkovitz et al., 2006 Graham, 1996 Wikström et al., 2001; Kim et al., 2005; Hershkovitz et al., 2006 Kim et al., 2005; Hershkovitz et al., 2006 Baker et al., 1967; Cronk, 1987 Baker et al., 1967; Cronk, 1987 Geldmacher et al., 2000 McDougall and Schmincke, 1976; Geldmacher et al., 2000 Ancochea et al., 1990 11.6 (age of Tenerifeb) 6.9 McDougall et al., 1981 (age of Lord Howe Island) 4.2 Stuessy et al., 1984 (age Juan Fernández Islands) 2.4 Stuessy et al., 1984 (age of Masafuera) or archipelago endemics. island in distribution area. After obtaining age estimates of divergences, we calculated the duration of each putative ILS event as follows. First, the estimated time of onset of an ILS event was determined from both the plastid and ITS/ETS BEAST chronograms. Although the plastid and ITS/ETS BEAST chronograms resulted in different age estimates for the onset of ILS events, we assume that these estimates are of the same speciation event in the species tree. To approximate the age of each speciation event that marks the start of an ILS event, we used the overlap in the 95% highest posterior density (HPD) intervals of the plastid and ITS/ETS chronograms. For a few of the strongly incongruent lineages, r8s estimates of the onset of putative ILD events were slightly outside the ranges obtained from BEAST. In these cases, the ranges of the assumed time interval of the ILS onset calculated from the BEAST chronograms were extended with the r8s ages. Secondly, the ages of the most recent common ancestor (MRCA) of each strongly incongruent lineage and its nonincongruent sister group were recorded from the plastid and ITS/ETS chronograms. These age estimates signify the end of a putative ILS event in 859 either data set. Again, the 95% HPD intervals of the BEAST analyses were used to account for some uncertainty in the data, and these age estimate ranges were extended with the r8s results when the r8s estimates fell outside of the ranges calculated with BEAST. Finally, the ranges of age estimates for the onset and the end of the putative ILS event were used to calculate its minimum and maximum duration. Using these estimates of putative ILS durations and information about generation times in the Senecioneae, the effective population sizes needed to explain incongruent patterns invoking ILS were calculated. Most Senecioneae species flower in their first or second year, and generation times of one or two years are characteristic for most lineages. To test for robustness of our conclusions to violations of this assumption, effective population sizes were also calculated using generation times of 5 and 10 yr. Senecioneae populations typically range between several dozen to a few thousand individuals (e.g., Widén and Andersson, 1993; Comes and Abbott, 1998; MüllerSchärer and Fischer, 2001). Ne values of 20 000 (plastid data) and 40 000 (ITS/ETS data) were therefore selected as conservative estimates of maximum population sizes. These coalescent calculations were carried out for each of the strongly incongruent lineages, but were also performed for scenarios in which the conflicting phylogenetic positions of multiple taxa were assumed to be nonindependent (i.e., a single ILS event resulting in incongruent positions of multiple lineages). Because species-level sampling within Senecio was limited (48/~1000 species) and accurate estimates of the duration of putative ILS events could not be obtained, these calculations were not performed for Senecio species. RESULTS Identification and localization of incongruence— Although an ILD test comparing all five plastid markers resulted in P = 0.005, the consensus trees obtained from the individual markers did not reveal well-supported (BS values ≥ 80% and/or PP ≥ 0.95) incongruence. Sequence data from all plastid markers were therefore combined into a single data set, which was used for all subsequent analyses. The ITS and ETS trees (not presented) were mostly congruent, and incongruent clades were not well-supported. Further analyses were carried out with a combined ITS/ETS data set, even though an ILD test resulted in P = 0.004. The results of the MP and BI analyses of the combined plastid data and the combined ITS/ETS data sets are summarized in Table 2 and presented in Figs. 1 and 2. The ILD test for the plastid vs. the ITS/ETS data sets indicated significant incongruence (P = 0.004), and a visual comparison of their topologies and branch support values revealed well-supported incongruence (Figs. 1, 2). Therefore, further studies of incongruence within Senecioneae were confined to examining the strongly conflicting topologies of the plastid vs. the ITS/ETS data sets. Discussion in this paper is limited to relationships within the Senecioneae only and does not include outgroup relationships. Although all analyses of plastid and ITS/ETS data resolved the core of Senecioneae (excluding Doronicum and Abrotanella) as monophyletic (Figs. 1, 2; BS 100%, PP 0.99 and 1.00) and supported Capelio as sister to the well-supported clade composed of the remaining genera forming the Senecioneae Table 2. Character information and clade support data. In the combined plastid-ITS/ETS data set strongly incongruent taxa were included as separate plastid and ITS/ETS accessions (see text). Data set Plastid ITS/ETS Combined plastid-ITS/ETS No. of clades with No. of characters Gap characters Variable characters Informative characters ≥50% BS ≥80% BS PP ≥0.5 PP ≥0.95 12494 3303 15797 1293 914 207 3253 (26.0%) 1605 (48.6%) 4861 (30.7%) 1406 (11.3%) 1096 (33.2%) 2505 (15.9%) 125 (55.1%) 116 (50.5%) 158 (56.8%) 87 (38.3%) 76 (33.0%) 100 (36.0%) 194 (85.5%) 195 (84.8%) 248 (89.2%) 132 (58.2%) 127 (55.2%) 180 (64.7%) 860 American Journal of Botany [Vol. 97 Fig. 1. Bayesian inference (BI) topology from the plastid data set. Bayesian consensus percentages (posterior probabilities × 100) are placed above branches, bootstrap support above 50% below branches. Branch color indicates congruence with ITS/ETS BI tree (Fig. 2): green: congruent; yellow: clade absent in ITS/ETS BI tree, but not contradicted; orange: clade incongruent, but not with posterior probabilities ≥0.95 in both trees; red: incongruent with posterior probabilities ≥0.95 in both trees. May 2010] Pelser et al.—Incongruence between Senecioneae phylogenies 861 Clade 1 " i ,, c' 00 セ M '"" 55- Clada2 00 $ '"セ@ セ@ $ Fig. 2. Bayesian inference (BI) topology from ITS/ETS data set. Bayesian consensus percentages (posterior probabilities × 100) are placed above branches, bootstrap support above 50% below branches. Branch color indicates congruence with plastid BI tree (Fig. 1): green: congruent; yellow: clade absent in plastid BI tree, but not contradicted; orange: clade incongruent, but not with posterior probabilities ≥0.95 in both trees; red: incongruent with posterior probabilities ≥0.95 in both trees. 862 American Journal of Botany (BS 100%, PP 0.99 and 1.00), relationships among many of the other taxa are obscured by complex patterns of topological incongruence. Among the 29 major lineages of Senecioneae that were identified (Table 3), only two exhibit strongly supported internal incongruence: the New World 1 group and Senecio (Table 3). Within New World 1 group, incongruence is located in clade 3 (Figs. 1, 2) in which Lomanthus and the CaxamarcaPseudogynoxys clade take incongruent positions (Table 3). An ILD test of the data set that was solely composed of the accessions of clade 3 indicated significant incongruence between the plastid and ITS/ETS data (P = 0.001). This conflict is not significant (P = 0.256) if Lomanthus is excluded, but remains statistically significant if only the Caxamarca-Pseudogynoxys clade is excluded (P = 0.001). Similarly, in a series of MP and BI analyses of a data set in which only the accessions of clade 3 were included, incongruence supported with high BS and PP values only disappeared when Lomanthus was excluded (not shown). Within Senecio, S. flavus, S. cadiscus, S. pinnatifolius, S. hispidissimus, S. psilocarpus, and S. squarrosus are placed in strongly supported incongruent positions (Table 3; P = 0.001). Removing all six taxa from the data sets resulted in trees without high BS and PP values for incongruent patterns (not shown) and an insignificant ILD value (P = 0.06). When any five of these six species were excluded, ILD tests indicated significant incongruence (P = 0.001–0.007), and incongruent patterns were supported with high support values (not shown). In addition to documenting strongly supported internal incongruence for two of the 29 major Senecioneae lineages, 13 others exhibit well-supported incongruence with regard to their phylogenetic positions relative to the 16 remaining lineages among which well-supported incongruence was not identified (Table 4). These 13 incongruent lineages are Caputia, New World 2 group, Jacobaea, Lordhowea, gynuroids, Lamprocephalus-Oresbia clade, Phaneroglossa, Cineraria, Steirodiscus, Packera, Emilia-Bethencourtia group, Senecio otites, and Io. An ILD test in which placeholders for each of the 29 major Senecioneae lineages were included indicated significant incongruence between the plastid and ITS/ETS data (Table 5: test 1; P = 0.001). Excluding the placeholders for the 13 lineages that have well-supported incongruent phylogenetic positions still resulted in significant incongruence among the remaining lineages (Table 5: test 2; P = 0.006). Only when Othonninae (i.e., Othonna) was also excluded, an ILD test did not indicate significant incongruence (Table 5: test 3; P = 0.052). Adding placeholders for each of the incongruent major lineages individually to the nonsignificant incongruent data set of test 3 introduced significant incongruence for all of these groups (Table 5: tests 4–13) except for the Emilia-Bethencourtia group, Senecio otites, and Io (tests 14–16). Although adding all three of these placeholders (test 17), the Emilia-Bethencourtia group and Senecio otites (test 18), or Senecio otites and Io (test 19), resulted in significant incongruence (Table 5), incongruence was insignificant (P = 0.013) in an ILD test in which the EmiliaBethencourtia group and Io were added to the insignificantly incongruent selection of placeholder species used in test 3 (test 20). Inspection of the BS and PP values in trees obtained from the data sets used in ILD tests 1–20 generally confirmed these findings (not shown). In summary, after exploring incongruence within and among the major Senecioneae lineages and following the cri- [Vol. 97 teria outlined in the Materials and Methods, we identified the following taxa and lineages as having strongly incongruent placements: Caputia, Cineraria, Steirodiscus, Phaneroglossa, the Lamprocephalus-Oresbia clade, Lordhowea, the gynuroids, Jacobaea, Packera, Senecio otites, Lomanthus, the New World 2 group, S. flavus, S. hispidissimus, S. psilocarpus, S. squarrosus, S. cadiscus, and S. pinnatifolius. The MP and BI analyses of the combined plastid-ITS/ETS data set in which the strongly incongruent lineages were included as separate plastid and ITS/ETS accessions resulted in trees that generally have slightly higher support than the individual plastid and ITS/ETS consensus trees (Fig. 3; Table 2). There are only a few topological differences between the MP 50% majority rule consensus tree (not shown) and the BI phylogeny (Fig. 3), and all of these differences are weakly supported. The phylogenetic positions of the plastid and ITS/ETS accessions of the strongly incongruent lineages in the combined plastid-ITS/ETS trees (Fig. 3) correspond well to those in the separate plastid and ITS/ETS trees (Figs. 1, 2). ITS orthology/paralogy assessment— Cloned ITS sequences selected from 18 strongly incongruent Senecioneae lineages (Appendix S1) revealed a relatively high level of polymorphism. Most specimens had between 3 and 24 (0.4–3.2%) polymorphic nucleotide positions; however, the cloned sequences from Oresbia had higher levels (7.8%) with 59 polymorphic nucleotide positions. Despite this high level of polymorphism, sequences of the ITS clones obtained from the same specimen always formed well-supported clades in MP analyses (results not shown) and with the directly sequenced ITS PCR products. Long-branch attraction— Visual inspection of the plastid and ITS/ETS trees revealed several species in the Tussilagininae s.s. clade with relatively long branches: Blennosperma, Crocidium, Ischnea, Robinsonecio, and the Arnoglossum-Barkleyanthus-Yermo clade (Appendix S2). Although the relationships among Blennosperma, Crocidium, and Ischnea and between these and other genera in the Tussilagininae s.s. clade are not affected by well-supported incongruence, the relationship between Robinsonecio and the Arnoglossum-Barkleyanthus-Yermo clade shows incongruence that is well supported in the BI trees. In contrast to being more distantly related in the ITS/ETS phylogenies (Fig. 2), plastid data place Robinsonecio sister to the Arnoglossum-Barkleyanthus-Yermo clade (Fig. 1). Reciprocal exclusion of Robinsonecio and the ArnoglossumBarkleyanthus-Yermo clade (results not shown) in both the ITS/ ETS and plastid data sets, however, does not change the relationships in clade 4. Within Senecioninae, Emilia, Jacobaea, and Packera have branches that are much longer than other genera in this subtribe (Appendix S2). These three genera form a clade in the ITS/ETS MP trees (not shown); however, Packera is placed more distant to the other two genera in the ITS/ETS BI trees (Fig. 2). Reciprocal exclusion of two of these three genera from MP analyses (results not presented) resulted in the phylogenetic positions of Emilia and Jacobaea remaining unchanged when the two other genera were excluded (resp. Jacobaea and Packera, and Emilia and Packera). Emilia and Jacobaea were therefore not affected by long-branch attraction, but when both are excluded, Packera occupies a different position in the ITS/ETS trees. Because the results of the BI analyses of the ITS/ETS data agree with the plastid trees in indicating a close relationship between the New Identification of the major Senecioneae lineages and analyses of the incongruent patterns within them. Placeholders of the major groups were selected to study incongruent phylogenetic patterns between them (see Table 5). Forms clade in ITS/ETS trees 1. Tussilagininae s.s. Y Y 2. New World 1 groupc N Y 3. Quadridentates Y Y 4. Seneciod N N Plastid trees (Fig. 1) Arnoglossum-Barkleyanthus-Yermo clade sister to Robinsonecio and Psacaliopsis (BS <50%, PP 0.98) Robinsonecio sister to the ArnoglossumBarkleyanthus-Yermo clade (BS 54%, PP 1.00) Roldana sister to Digitacalia, Telanthophora, Nelsonianthus, Pittocaulon, and Villasenoria (BS 71%, PP 1.00) Lomanthus sister to a clade formed by Charadranaetes, Jessea, and Talamancalia (BS 97%, PP 1.00) Caxamarca and Pseudogynoxys sister to Dorobaea and Garcibarrigoa (BS 55%, PP 1.00) Caucasalia, Dolichorrhiza, and Iranecio form a clade (BS 91%, PP 1.00) Senecio flavus is deeply nested within the core of Senecio s.s. and a member of a clade composed of S. nevadensis, S. viscosus, and clade 6 (BS 89%, PP 1.00) S. cadiscus and S. pinnatifolius are not most closely related to S. nevadensis, S. viscosus, and clade 6, which instead are more closely related to other Senecio species and form clade 7 with these (BS 96%, PP 1.00) S. hispidissimus, S. psilocarpus, and S. squarrosus are members of clade 7 (BS 96%, PP 1.00) S. triodon sister to S. gayanus and S. lastarrianus (BS 100%, PP 1.00) Senecio lineatus sister to S. hollandii (BS 100%, PP 1.00) and Bethencourtia sister to Emilia (BS 77%, PP 1.00) ITS/ETS trees (Fig. 2) Arnoglossum-Barkleyanthus-Yermo clade sister to Pippenalia-Psacalium clade (BS 75%, PP 1.00) Psacaliopsis sister to Robinsonecio (BS 60%, PP 0.96) Roldana sister to the ArnoglossumBarkleyanthus-Yermo clade, Pippenalia, and Psacalium (BS <50%, PP 0.99) Lomanthus sister to a clade composed of Misbrookea, Werneria, and Xenophyllum (BS <50%, PP 0.97) Caxamarca and Pseudogynoxys sister to the Charadranaetes-Jessea-Tamancalia clade (BS 77%, PP 0.97) Dolichorrhiza, Iranecio, and Pojarkovia form a clade (BS <50%, PP 1.00) Senecio flavus is placed basal to the core of Senecio s.s. (BS 100%, PP 1.00) Support for internal conflict BS PP ILD test (P) Placeholder taxa N Y 0.114 Tephroseris Y Y 0.001 Caxamarca N Y 0.022 Caucasalia Y Y 0.001 S. viscosus N Y 0.026 - Y Y 0.015 Emilia S. cadiscus and S. pinnatifolius are most closely related to S. nevadensis, S. viscosus, and members of Clade 6 (BS 99%, PP 1.00) S. hispidissimus, S. psilocarpus, and S. squarrosus sister to S. ilicifolius and S. vestitus (BS 91%, PP 1.00) S. triodon sister to S. fistulosus, S. gayanus, S. jarae, and S. lastarrianus (BS 54%, PP 0.98) Senecio lineatus sister to Bethencourtia (MP: 93%) or is unresolved on a clade with Bethencourtia and Jacobaea (BI: PP 0.97) Y Y 5. Emilia-Bethencourtia group Y N 6. Senecio segregates 7. New World 2 group 8. Brachyglottidinae 9. Othonninae 10. Bolandia-MesogrammaStilpnogyne clade 11. Gynuroids 12. Synotoids 13. Madagascan group 14. Lachanodes-Senecio thapsoides group 15. Caputia Y Y Y Y Y N N Y Y Y N N N N N N N N N N 0.9998 0.255 0.709 1 1 S. deltoideus Dendrophorbium Centropappus Othonna Bolandia Y Y N N Y N Y Y N N N N N N N N 0.97 0.157 1 1 Kleinia Dauresia, Mikaniopsis Faujasia Arrhenechthites Y Y n.a. n.a. n.a. Y Y n.a. Y Y n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. Caputia medleywoodii (ined.) Lamprocephalus Crassocephalum Capelio 16. Lamprocephalus-Oresbia clade 17. Crassocephalum-Erechtites clade 18. Capelio 863 Clade 5 within Senecio (Figs. 1, 2) Pelser et al.—Incongruence between Senecioneae phylogenies Plastid trees Major Senecioneae groupa Conflicting relationships within groupb May 2010] Table 3. American Journal of Botany Notes: BS = incongruent clades supported with maximum parsimony bootstrap support ≥80% in plastid and ITS/ETS trees; PP = incongruent clades supported with Bayesian inference posterior probabilities ≥0.95 in plastid and ITS/ETS trees; groups in boldface indicate strong internal incongruence according to the criteria used in this study (incongruent patterns supported by bootstrap values ≥80% and/or PP ≥0.95 and ILD values of P < 0.01). aSpecies/generic composition outlined in Figs. 1 and 2. bOnly shown for groups in which incongruent relationships were supported with either MP bootstrap support ≥80% or BI posterior probabilities ≥0.95 cInternal incongruence for the phylogenetic position of Lomanthus. dInternal incongruence for the phylogenetic positions of Senecio flavus, S. hispidissimus, S. psilocarpus, S. squarrosus, S. cadiscus, and S. pinnatifolius. Chersodoma Cineraria Dendrosenecio Io Jacobaea Lordhowea Pericallis Phaneroglossa Steirodiscus Senecio otites Packera n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 19. Chersodoma 20. Cineraria 21. Dendrosenecio 22. Io 23. Jacobaea 24. Lordhowea 25. Pericallis 26. Phaneroglossa 27. Steirodiscus 28. Senecio otites 29. Packera n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. ILD test (P) BS PP ITS/ETS trees (Fig. 2) Plastid trees (Fig. 1) ITS/ETS trees Plastid trees Major Senecioneae groupa Table 3. Continued. Forms clade in Conflicting relationships within groupb Support for internal conflict Placeholder taxa 864 [Vol. 97 World 2 group and Packera, Packera may very well be a member of the New World 2 group. Incomplete lineage sorting— Molecular dating analyses using r8s yielded age estimates that were often older than ages retrieved with BEAST (Figs. 4 and 5) and sometimes outside the 95% HPD interval of the BEAST estimates (Appendix S3). The 95% HPD intervals of the plastid and ITS/ETS analyses were often overlapping. Estimates of the duration of putative ILS events obtained with r8s are within or slightly outside the ranges suggested by BEAST. Using these estimates and assuming generation times of 1, 2, 5, and 10 yr, coalescent analyses indicate that for four of the 10 strongly incongruent lineages that were examined (Caputia, the Lamprocephalus-Oresbia clade, the New World 2 generic group and Packera, and Jacobaea) effective population sizes must be assumed that are higher than the selected thresholds of Ne = 20 000 (plastid data) and 40 000 (ITS/ETS data) to explain their incongruent phylogenetic positions by ILS (Table 6). If multiple strongly incongruent phylogenetic positions of lineages are assumed to be the result of single ILS events, even higher effective population sizes of ancestral lineages are required (not shown). DISCUSSION Topological incongruence— One of the longstanding and increasingly prominent questions of phylogenetic systematics is how to address incongruence between phylogenies obtained from multiple data sets and how to determine its cause (e.g., Sullivan, 1996; Wiens and Hollingsworth, 2000; Rokas et al., 2003; Holland et al., 2008; Degnan and Rosenberg, 2009). Incongruence between phylogenetic trees inferred using different molecular markers may result from biological phenomena as well as analytical artifacts. Among the potential causes are undetected paralogous sequences in one or more data sets (Doyle, 1992; Álvarez and Wendel, 2003); however, topological incongruence may also be found when different genomes or portions of individual genomes may have different evolutionary histories (e.g., due to hybridization or ILS; Doyle, 1992; Maddison, 1997; Buckley et al., 2006; Liu and Pearl, 2007). Phylogeny reconstruction methods may also introduce error via longbranch attraction (Graybeal, 1998; Wiens and Hollingsworth, 2000), which can be particularly problematic in data sets with a relatively sparse taxon sampling and composed of highly divergent sequences. In addition, incongruence may result from errors in phylogeny reconstruction due to low numbers of informative characters (sampling error; Huson and Bryant, 2006). Bootstrap values and posterior probabilities are often used as measures of sampling error (Huson and Bryant, 2006). The presence of well-supported (BS values ≥ 80% and/or PP ≥ 0.95) incongruent patterns in the Senecioneae therefore suggests that these patterns are not due to sampling error. Due to the multicopy nature of ribosomal DNA, differences among ITS, ETS, and plastid trees may be due to incorrect ITS/ ETS homology assessments, confounding interpretations essentially through undetected paralogous copies (Álvarez and Wendel, 2003). Cloning of ITS PCR products of incongruent taxa or representatives of incongruent lineages indeed revealed base-pair differences among ITS copies within individual samples. Parsimony analyses in which both directly sequenced PCR products and sequences of ITS clones were included (results May 2010] Table 4. 865 Well-supported (BS ≥ 80% and/or PP ≥ 0.95) incongruent patterns among genera and major Senecioneae generic assemblages. Lineage Caputia New World 2 group Jacobaea Packera Lordhowea Gynuroids Lamprocephalus-Oresbia clade Phaneroglossa Cineraria Steirodiscus Emilia-Bethencourtia group Senecio otites Io Pelser et al.—Incongruence between Senecioneae phylogenies Plastid trees ITS/ETS trees Sister to the synotoids (BS 95%, PP 1.00) Nested among core members of clade 1 (BS 100%, PP 0.92), not among core members of clade 2 (BS 95%, PP 1.00) Nested among core members of clade 1 (BS 100%, PP 0.92), not among core members of clade 2 (BS 95%, PP 1.00) Nested among core members of clade 1 (BS 100%, PP 0.92), not among core members of clade 2 (BS 95%, PP 1.00) Nested among core members of clade 1 (BS 100%, PP 0.92), not among core members of clade 2 (BS 95%, PP 1.00). Sister to Phaneroglossa (BS 98%, PP 1.00) Nested among core members of clade 1 (BS 100%, PP 0.92), not among core members of clade 2 (BS 95%, PP 1.00) Nested among core members of clade 1 (BS 100%, PP 0.92), not among core members of clade 2 (BS 95%, PP 1.00). Sister to the Gynuroids, Jacobaea, Packera, the New World 2 group and the core groups of Clade 1 nested between them (BS 100%, PP 0.92) Nested among core members of clade 1 (BS 100%, PP 0.92), not among core members of clade 2 (BS 95%, PP 1.00) Core member of clade 2. Not placed in the clade composed of Dendrosenecio, the Quadridentates, New World 1 group, the Madagascan group, Io, the Emilia-Bethencourtia group, the Senecio segregates group, Pericallis, the Bolandia-MesogrammaStilpnogyne clade, and Senecio otites (BS 95%, PP 1.00) Core member of clade 2. Not placed in the clade composed of Dendrosenecio, the Quadridentates, New World 1 group, the Madagascan group, Io, the EmiliaBethencourtia group, the Senecio segregates group, Pericallis, the Bolandia-Mesogramma-Stilpnogyne clade, and Senecio otites (BS 95%, PP 1.00) Core member of clade 2. Sister to Pericallis, the New World 1 group, Senecio otites, Io, and the Madagascan group (BS <50%, PP 1.00) Core member of clade 2. Sister to the New World 1 group (BS 99%, PP 1.00) Core member of clade 2. Forms a clade with the Madagascan group (BS 70%, PP 0.99) not shown), however, showed that all cloned sequences of a taxon consistently form one clade including the directly sequenced ITS products of the same taxon. Similarly, for species and genera for which ITS sequences obtained from different specimens or species were included in our data sets, these different accessions were always resolved as each other’s closest relatives. Unless copies of greater divergence have been lost or remained undiscovered (a possibility that cannot be confirmed nor excluded), it is unlikely that paralogy is the cause of the widespread ITS/ETS vs. plastid incongruence found in the Senecioneae. Long-branch attraction (Felsenstein, 1978) is another possible explanation for the topological incongruence observed. Reciprocal exclusion of accessions with long branches in MP and BI analyses showed that only the phylogenetic position of Packera in the ITS/ETS MP trees appears to be affected by long-branch attraction. Our results indicate that this is caused by the long branches of Emilia and Jacobaea. Long-branch attraction, however, does not explain the plastid vs. ITS/ETS incongruence regarding the position of Packera, which persists when Emilia and Jacobaea are excluded from the MP analyses (not shown). Although more detailed, tree-wide analyses aimed at identifying branches that may be susceptible to long-branch Sister to the Brachyglottidinae (BS 100%, PP 1.00) Nested among core members of clade 2, except Dendrosenecio (BS 97%, PP 1.00) Nested among core members of clade 2, except Dendrosenecio (BS 97%, PP 1.00) Nested among core members of clade 2, except Dendrosenecio (BS 97%, PP 1.00) Nested among core members of clade 2, except Dendrosenecio (BS 97%, PP 1.00). Sister to the Gynuroids, Jacobaea, Packera, the New World 2 group and the core groups of clade 2 in which they are nested (BS 97%, PP 1.00) Nested among core members of clade 2, except Dendrosenecio (BS 97%, PP 1.00) Sister to Dendrosenecio (core member of clade 2) and Phaneroglossa (BS 99%, PP 1.00) Most closely related to Dendrosenecio (core member of clade 2) and the Lamprocephalus-Oresbia clade (BS 99%, PP 1.00) Forms a clade with, among others, New World 1 group, the Madagascan group, Io, the Emilia-Bethencourtia group, the Senecio segregates group, Pericallis, the Bolandia-Mesogramma-Stilpnogyne clade, and Senecio otites (BS 100%, PP 1.00) Forms a clade with, among others, New World 1 group, the Madagascan group, Io, the Emilia-Bethencourtia group, the Senecio segregates group, Pericallis, the Bolandia-Mesogramma-Stilpnogyne clade, and Senecio otites (BS 100%, PP 1.00) Core member of clade 2. Sister to species of the Senecio segregates group of which S. deltoideus, S. scandens, and S. saxatilis form a clade with Emilia (BS <50%, PP 1.00) Core member of clade 2. Sister to Pericallis and the New World 2 group (BS <50%, PP 0.95) Core member of clade 2. Does not form a clade with the Madagascan group, which instead is sister to the New World 1 group (BS <50%, PP 1.00) attraction have not been performed (e.g., Huelsenbeck, 1997; Wiens and Hollingsworth, 2000; Johnson et al., 2008), visual comparisons of MP and BI trees (the latter claimed to be less susceptible to long-branch attraction; e.g., Bergsten, 2005) did not reveal well-supported incongruence related to strongly supported incongruent patterns between plastid and ITS/ETS trees. Hybridization and ILS are important biological explanations for incongruence between data sets and are often difficult to distinguish from each other (Doyle, 1992; Seelanan et al., 1997; Holder et al., 2001; Buckley et al., 2006; Holland et al., 2008; Joly et al., 2009). The detection of hybrids can for instance be obscured by backcrossing, introgression, extinction of parental species, and secondary hybridization (Doyle, 1992). Hybridization events may also be difficult to recognize when they result in homoploid hybrids, are ancient, or were followed by speciation or dispersal in combination with extinction in the parental distribution area. Hybridization has been demonstrated within many Senecioneae genera (e.g., Bedfordia, Blennosperma, Brachyglottis, Cineraria, Crassocephalum, Dendrosenecio, Dolichoglottis, Emilia, Euryops, Farfugium, Hubertia, Jacobaea, Jessea, Ligularia, Packera, Petasites, Senecio, Traversia; Nordenstam, 1963, 1968, 1978, 1996; Ornduff, 1964; American Journal of Botany 866 [Vol. 97 Table 5. Incongruence length difference (ILD) tests performed to study incongruent patterns among placeholders of the major Senecioneae groups (see Table 3). ILD test Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10 Test 11 Test 12 Test 13 Test 14 Test 15 Test 16 Test 17 Test 18 Test 19 Test 20 Accessions included Placeholders of all major groups Placeholders of all major groups, except for those in well-supported incongruent phylogenetic positions (BS ≥80% and/or PP ≥0.95; Caputia, the New World 2 group, Jacobaea, Lordhowea, gynuroids, LamprocephalusOresbia clade, Phaneroglossa, Cineraria, Steirodiscus, Emilia-Bethencourtia group, Senecio otites, Io, and Packera) Placeholders of test 2 minus placeholder of Othonninae Placeholders of test 3 plus placeholder of Caputia Placeholders of test 3 plus placeholder of New World 2 group Placeholders of test 3 plus Jacobaea Placeholders of test 3 plus Lordhowea Placeholders of test 3 plus placeholder of the Gynuroids Placeholders of test 3 plus placeholder of the Lamprocephalus-Oresbia clade Placeholders of test 3 plus Phaneroglossa Placeholders of test 3 plus Cineraria Placeholders of test 3 plus Steirodiscus Placeholders of test 3 plus Packera Placeholders of test 3 plus placeholder of the Emilia-Bethencourtia group Placeholders of test 3 plus Senecio otites Placeholders of test 3 plus Io Placeholders of test 3 plus placeholder of the Emilia-Bethencourtia group, Io, and Senecio otites Placeholders of test 3 plus placeholder of the Emilia-Bethencourtia group and Senecio otites Placeholders of test 3 plus Io and Senecio otites Placeholders of test 3 plus Io and placeholder of the Emilia-Bethencourtia group Chapman and Jones, 1971; Drury, 1973; Olorode and Olorunfemi, 1973; Jeffrey, 1986; Yamaguchi and Yahara, 1989; Beck et al., 1992; Lowe and Abbott, 2000; Kirk et al., 2004; Kadereit et al., 2006; Cron et al., 2008; Pan et al., 2008; Vanijajiva and Kadereit, 2009) and is therefore a likely hypothesis for explaining incongruence between plastid and ITS/ETS phylogenies. ILS is especially likely when species rapidly radiate and population sizes are large (Maddison, 1997). Because of the stochastic nature of the coalescence process, ILS may yield gene trees with random patterns of relationships among taxa (Buckley et al., 2006), which may result in gene tree–species tree incongruence. Among other methods, gene tree parsimony (Page and Charleston, 1997) or Bayesian hierarchical model approaches based on coalescent theory (Liu and Pearl, 2007) can be used to reconstruct species trees from gene trees that are incongruent due to lineage sorting. However, these approaches do not account for hybridization (Liu and Pearl, 2007), which can result in similar phylogenetic patterns (Buckley et al., 2006). Using coalescent-based approaches, we can distinguish ILS from hybridization by testing whether patterns of incongruence are random (ILS) or nonrandom (hybridization; Buckley et al., 2006). These studies, however, require more than two unlinked genomic data sets to distinguish between both hypotheses (Buckley et al., 2006). Because our Senecioneae data were composed of only two unlinked data sets (ITS/ETS region and the plastid markers), this approach could not be used to test whether patterns of incongruence in the Senecioneae are random or not. Instead, we used the assumption that ancestral polymorphisms coalesce within approximately 5Ne generations (Rosenberg, 2003; Degnan and Rosenberg, 2009) to assess whether ILS may be regarded as a plausible explanation for the observed incongruence. This approach requires information about generation times and the duration of the ILS events that could be invoked to explain incongruent patterns, as well as effective population sizes in the Senecioneae. Because of the relatively ILD test results (P) 0.001 0.006 0.052 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.084 0.024 0.020 0.001 0.001 0.006 0.013 ancient nature of many of the historical events resulting in the incongruence and the diversity and enormity of the tribe, making assumptions about effective population sizes and generation times of ancestral lineages is somewhat precarious. Furthermore, calculations of the duration of putative ILS events rest on our molecular dating analyses, which resulted in large 95% HPD intervals of age estimates and substantial differences between the dating results of the BEAST and r8s analyses and between estimates obtained from plastid and ITS/ETS sequences. We therefore used a conservative approach in estimating these parameters. Coalescence calculations were performed with generation times of 1 and 2 yr, which are assumed to be typical for most Senecioneae species. In some species, however, longer generation times are expected, particularly in species with a tree-like (e.g., Aequatorium, Brachyglottis , Dendrosenecio, Lachanodes , Nordenstamia, Pladaroxylon) or succulent (e.g., Curio, Kleinia , Othonna) habit or those forming seed banks (e.g., Euryops annuus, Jacobaea vulgaris). Calculations were therefore also carried out for generation times of 5 and 10 yr. Senecioneae populations are generally small, with individuals countable in dozens or hundreds, or containing up to 5000 plants (e.g., Wid é n and Andersson, 1993 ; Comes and Abbott, 1998 ; Golden, 1999 ; Panero et al., 1999 ; M ü llerSch ä rer and Fischer, 2001 ). More rarely, larger populations are observed, which may comprise several hundreds of thousands of plants (e.g., Euryops annuus ). Although few estimates of N e of plant populations based on genetic data have been published ( Siol et al., 2007 ), N e/ N ( N being the census number of reproductive individuals) ratios of approximately 5–10% have been suggested as typical (Siol et al., 2007). The selected values of Ne = 40 000 for the ITS/ETS data and N e = 20 000 for the plastid data (due to the 1/2 reduction in effective population size necessary for the plastid markers relative to the nuclear markers in hermaphroditic individuals) are therefore conservative estimates of Pelser et al.—Incongruence between Senecioneae phylogenies May 2010] a.nolla emarginata i r=:;==================Abrot ,-_',\'0!0\,---.-,C ァZセ@ セZイsァMetoj@ 867 Capello C81adonica ChersodomB jodopappa 100 51 セ」Z。ヲエ[イG、ャ@ ,------11<1------1 セEヲ。@ セイ」・ョウ@ セ@ セ@ Cenlropappus brunonis 0' Brachyglottis repanda 8=. Tra versia baccharoides Q.: セEエN。LZッイウ@ セ@ russI/ago farfa(B Homogyne alpms ri!iH'()(J"-- 78 Endocellion sibiricum Patasites a/bus .r-=,......,L- Lepidospartum burgessij iOijh O<1_ _ _ { セヲZィ[cゥ。@ Cacaliopsis nardosmia Rainierastricta Rugelia nudicaulis Tephroseris infegrifolia ,-;;;;;---t o....- Nemosenecio nikoensis Sinosenecio euosmus セZG[fオゥャ・@ Ugu/aria slenocephala セコZ@ co til セョ[Z。@ ParBsene cio adenosty/oides a. Sinacalia langutica LMJZヲAゥo」[ ァ[zセエZ@ (1) Ischnea e/achoglossa Aequatorium 8slerotrichum _-""'_....r-,-,----- セGZァヲN[ozオゥ、・ョイッウ@ セ@ Nordenstamia kingii Paracalia jungioides Senecio szyszylowiczii LMセcZ セ[ァエL「Aヲッャゥオウ@ Pippenalia delphinifolia Psacalium cirsiifolium 8arkleyanlhus salicifolius Arnoglossum alriplicifolium Yenno xanthocepha/us , o., - - - - Roidana suffulta Nelsonianthus tapianus Telanthophora grandifolis Digitacalia jalrophoides Pittocaulon praecox Villasenoria orcuttii Gymnodiscus capillans riH, o LM|ャゥGN r *"____」[ェセ] セM ッ セZM Ig Q セエ[ZEァzウ@ セ Zセ ・ ZNセゥ[ッ、ャHョ・I@ Caputla scaposa (lned.) Dauresia alliariifolia セイァZAヲゥ。ュ@ plastidplastid cゥセウ。ュー・ャ@ セイZョOAオ[ウャ、@ カッャオ セヲAイZL セ ゥャウ@ 100 !D Z セWZ。sウu、@ セ@ Dendrosenecio kilimanjari ,--------,!i1;-------f:,---Phaneroglossa bolusii Lamprocepha/us montanus Oresbia heterocarpa G_ゥQ セ]Zloイ、ィw・。@ fnsufarls n:1 Adenosty'/es a.'pina Senecio meusefll plastid Klein/a nerllfol/a plastid Gynura formosana plastid Sofanecio biafrae plastid 97 is: MlkaniopSlS clematoldes セッNウOヲーGAjZ・@ L-.)g---t-ij--c: 86 ITS-ETS ITS-ETS セ。 ヲセZAts@ (1) a S. (1) Ul 99 ,-=-;;1':'-- セZエ[イ。ョiゥウ Ia =i セ@ Cf) セ@ セA セZゥ@ s [セG YR GMH] セZuGHァN[@ セᆪイゥE[l : 1-_ _ _-""'00' -_ _MエゥWC」Z セsMet@ Stilpnogyne bel/idioides Senecio laino/ius セZ@ セ[Z@ Senecio triQueter セZ[@ セZヲエ[オウ@ Senecio scandens セ@ Iセ@ セ@ W セ@ ::J セ@ セZ・[s]ゥイAQ、@ o セ@ «) g_ ::J i· セ@ o· I Q. セ@ Jセ⦅ 0) "0 Zセ[EQA。iエャ、@ セZ@ セ@ セ@ セ@ g < "0 zセ[ッGZA、@ Graphlstylfs d/chroa セ@ セ@ plastid Zemisia discolor plastid Jacmala Incana plastid Herodotla haft/ens /s plastid Elfmaniopappus mlkanfoldes Nesampe/os lucens plastid Elekmania picardae plastid Mattie/dis triplin etVis plastid Ignurbia constanzae Leonls trlneurus plastid Senecio vestilus Senecioilicifolius Senecio h/spld/sslmvs Senecio psilocarpus Senecio squarrO$u$ Senecio e/egans セ@ "0 plastid plastid , - - - -fi\li-----j'ocf"-- '" 0 ッセ @ .., ゥ 、@ zセゥZAX。sエ、@ 79 (J) group) ITS-ETS Z セᆬ ⦅ iセets@ セ[WZ@ r- ffi::J :::!'. Senecio adamant/nus plastid .-.. !!2 セゥョァェZ・HGQj[オヲ。@ =§: セ@ .e S;Q.g. , - - - - - セZ」・ョzイLェ。ーゥ、@ Jacobaea vulgaris ヲMB 00 1 ァ・セZイ セZQイキウ@ セセ セ@ Dollchorrhiza caucasica lraneclo canensis Senecio meuselii Curio row/eyanus I Lachanodes arborea Pladaroxylon leucadendron Senecio Ihapsoides Arrhenechthiles mixta Dendrocacalia crepidifo/ia Jacobsea vulgaris plastid 70 (3 ITS-ETS ITS-ETS ITS-ETS ITS-ETS 0 Iii ウ ーイセZ、@ 1 (1) セ@ ᄋ セZAts@ Oresbia heterocarpa pl9SUd Crassocephalum crepidioides Erechtites valerianifolius 5 " Q) (j) iセ@ Synotis nagensium LMゥセ⦅」Zイj[A GNB JG セ GM」Z@ ,-____---'8"8'_____--t_ ヲAZL・[ァ」セQオGョ ::J Hertls pal/ens .. ____ LMN :::T 91 ,-----=----LMセGサ]@ ITS·ETS ITS·ETS ITS-ETS セ Z セ Z セZ@ セイZ 89 A セZ[ヲウエャ、@ Senecio gramineus ,----"''---t"i!:f"""L- セZ@ セZエゥ@ セZG[ッA@ Senecio gregom Senecio prenanthoides SenecIo hlsp/dlsslmus Senecio ca dfscus Senecio viscosus pinnatifolius Senecio nevadensis Senecio flavus plastid セイM[Z]@ ;II lセM plastid ITS·ETS ITS-ETS Senecio セZ@ セゥZ[ウ@ セZ@ セWOZヲョイウッ@ ,----'-"----c: セZ@ セZゥ[ウs@ Senecio flaccidus Senecio mafretianus Senecio polyga/oides r-;:==== LMイセG[N]Z@ Senecio oerstedianus Senecio roseus Senecio integeffimus Senecio suaveolens Senecio ctenophyllus Senecio a/gens Senecio pnanzi Senecio boyacensis Senecio culcitioides Senecio hypsobates Senecio superandinus Senecio involucratus Senecio palens Robinsonia gracilis Robinsonia evenia Robinsonia masafuerae セ」ゥ ᄋ セゥヲ[ウ@ Senecio hieracium Senecio amicoides Senecio fislu/osus Senecio jarae Senecio lriodon セZ@ _。セZョオウ@ Fig. 3. Bayesian inference (BI) topology from the combined plastid-ITS/ETS data set in which each strongly incongruent taxon (in bold) is included twice: once as a plastid-only accession (ITS/ETS sequences coded as missing data) and once as an ITS/ETS-only accession (plastid sequences coded as missing data). Bayesian consensus percentages (posterior probabilities × 100) are placed above branches, bootstrap support above 50% below branches. Relationships between the outgroup species are not shown. American Journal of Botany 868 H Gerbera Cirsium Cichorium Lactuca Erato Vernonia Corymbium Calendula Inula iL H- '-- Lordhowea insularis Ph aneroglossa bolusii Lamprocephalus montanus Oresbia !Jctcf!3carpa Senecio llicifo/IUS Crassocepha/um crepidioides De/airea odorata Senecio meuselii Kleinia neriifoJia Gynura formosana Solanecio biafrae Pladaroxy/0n. /eucadendron Arrhenechlhlles m.ixta - -- bO・ーィ。イゥセュオ@ CoreopsIs Neurolaena Helenium 1 - ---l L - -l - ,-- [Vol. 97 セイQ。@ Ba la Chaenactis Eupatorium Perityle Madia Galinsoga Helianthus Doronicum Helichrysu'!' Symphyotnchum セ@ H Z <1> "セ@ セイ。」ャオウ@ - セ@ L- r-- '--t- r-セ@ r-- n r-- ['--- セ@ r L 1'--1..i Paragynoxys neodfmdroides Plppenalia df7'phimfolia セ@ Yermo xanthocephalus Roldana suffulta 「Wpイヲエセ。ッ[OZゥ@ I PI. tocaulon ーイ。・」L_セ@ Villasenoria orcuttll セ@ 15 ァZセヲ{jエ。・Gi@ (Ined.) lI t: .... I t-...r r-- \ '[ セ@ r-- . denoslyles alpma PojarkovlC! pOjari!0vae Cauca.salla parvlflora /raneclo canensis Senec(o pinifolius Senec!o If/que.ler SenecIo laMo/lUs Senecio saxalilis Senecio deltoideus Senecio scandens Perit;:al(is murrayi Fau1.as/.a squamosa FaujaS/oPSIS flexuosa rS ヲ「オセGャェ[ョ・sゥ@ セ@ セ@ 10 Caputia sC8.PC!.sa.(ined.) Dauresia a/ltamfolta ?;;.notis nage(lsium umbertaca!la sp. r- '-- , Uセァゥッ「エI[イャO@ Papuacalia .dindOndl Brachyglottls repanda a」イゥウッョセ@ cymosa Bedfordla arborescens c .....-H '--- ャ ゥヲセi[Gs@ Q セᆬ[ゥヲU@ .... セ@ セ@ l セ・ZG[ゥエLウ@ Sinosenecio euosmus セZィュゥL[jァャ・@ fJlaneilesis palmata ILL;. lr- ' - i- g "0 Pelasites a/bus Lepidospartum burgessii Te(ra.dymia filifolia Ramlera stn'cta Ruge/ia nl!dicaulis Ca.cailopsis nardosmia LUina ィケーッャ・オ」セ@ Crocidium multlcaule B/ennosperma nanum iウイ[セョ・。@ f!lachoglossa Mmcacalla makmeana ['--- I tセ@ r-- <0 セアLQッ_ョ」オュ@ H セ@ a: Abrotapella emarginata CapellO caled,?nlca eセ・LZヲG[iイー。@ I セ@ Eriothrix.IYCioRodi9ides Parafa.ujasla fontmalis SenecIo IinealUs Bethf'ncourtia palmensis rC :::c::: セ@ y セ@ Il: -- Talamanca/ia boquetensis Garcibarrigo.a telembina Dorobaea plmpinellik?lia Caxamarca sanchezlI セ@ セャュゥキZ・@ セ@ Lopho aena coriifolia '-- -35 30 25 20 Fig. 4. 15 - - - -- - -10 ___________1 o mya Plastid BEAST chronogram. Strongly incongruent taxa and groups of taxa in boldface. maximum effective population sizes. To accommodate for uncertainty in the calculations of the duration of ILS events, the coalescent analyses were performed with both minimum and maximum durations using the 95% HPD intervals of the BEAST estimates extended with the occasional outliers from the r8s analyses. Although ILS could not be eliminated as a possible explanation for the incongruent phylogenetic positions for six of the 10 strongly incongruent lineages that were examined, our coalescent analyses were able to demonstrate that ILS cannot be invoked to explain incongruence regarding the relationships of Caputia, the Lamprocephalus-Oresbia clade, the New World 2 Pelser et al.—Incongruence between Senecioneae phylogenies May 2010] 869 セ@ >- i セ@ Gerbera rD C?ryml;>ium Clchonum o-..-H Lactuca Erato Vernonia Anacycfus Colu/a f-- Synotis nagcnsium Cissampe/opsis volubilis Mikaniopsis clematoides Senecio flavus - Cirsium セZィゥヲf。ェj[ッ、・ウ@ セ@ H Symphyotrichum セ@ Doronicum - Helichrysum L.... H Calendula Tegeles Madia Eupatorium -I'--C[ == '-- f- Perityle POlymnia Helenium セ@ Neuro/aena Bahia セ@ Nセ@ Chaanactis Galinsoga Coreopsis , Helianthus nula L r4 "- セ@ セ@ 1== r- I - - セ ""4: t== 1c:: L セ@ '-- r-- , , , , , 35 30 25 20 15 セ@ H セ@ セ@ セ@ j--c f-c +-- セ@ セ@ f-- セ@ F F Centropappus brunonis Chersodoma jodopappa Ligularia stenocephala iイMセ@ Tephroseris integrifolia Nemosenecio nikoensis Sinosenecio euosmus Farlu}liuf!' japonicum Synellesls palmata Gremanthodium humile Miricacalia makineana Parasenecio adenostyloides Sinacalia langulica Tussi/ago tarfara Petasiles albus Endocellion sibiricum Homogyne alpina epidosparlum burgessii セZァ@ セエZ]@ == L- L Cacaliopsis nardosmia Rainiera stricta Rugelia nudicau/is Crocidium multicaule Blennosperma nanum schnea elachoglossa Paragynoxys neodendroides Aequatorium asterotrichum Gynoxys soukupii Nordenslamia kingii Paracalia jungioides Senecio szyszylowiczii Psaca/iopsis purpusH Robinsonecio gerberifolius Ne/sonianthus tapianus tセO。ョエィッーイ@ grandifolia Digitacalia jatrophoides P!tlocaul0f) ーイ。・」セ@ VIIlasenona orcuttll Roldana suffulta Pippenalia delphinifolia Psaca/ium cirsiito/ium Barkleyanlhus salicifolius Amoglossum atriplicifolium Yermo xanlhocepha/us - , セZzゥ@ セZァ@ -IE l@tセZ、k[Oゥ。@ セォiゥZ@ Senecio hypsobales Senecio superandinus Senecio involucralus Senecio patens Robinsonia gracilis Robinsonia evenia Robinsonia masafuerae Robinsonia berleroi Senecio acanthifolius Senecio hieracium Senecio amicoides Senecio triodon Senecio lastarrianus Senecio fistulosus Senecio jarae Oauresia alliariifolia Phaneroglossa bolusii Oendrosenecio kilimanjari L amprocephalus montanus Oresbia heterocarpa Austrosynotis reclirama Humberlacalia sp. L ordhowea insufaris Adenostyles alpina Caucasalia parviflora ranecio cariensis Oolichoffhiza caucasica セ@ セ@fcc ' r- セ[LッZヲ・Gャオカ。@ \ - rc セ@ セ@ I-- r 1-1 t hセ[ヲ。Eョァoイゥ@ L Euryops pectinatus Gymnodiscus capillaris Othonna capensis l...---f 14 - - - - - - - - - -, , , 10 セ@ Papuacalia dindondl Bedfordia arborescens 1-- r - Traversia baecharoides k l== c: Abrotanella emarginata Capelio celedonica Caputia medley-wood;; (ined.) Caput/a seaposa (Ined.) Dolichoglottis IY81/i1 Ha8Siia pulvinaris Brachyglottis repanda Urostemon kirkii Acrisione cymosa --.... I - - r-- --q f-- Blepharispermum -LH セ@ Lachanodes arborea Pladaroxy/on leucadendron Oendrocacalia crepidifolia Senecio thapsoides Senecio vestitus Senecio ilicifofius Senecio squarrosus Senecio hlspidissimus Senecio psilocarpus Senecio gregorii Senecio prenanthoides Senecio lauricola Senecio gramineus Senecio nemorensis Senecio elegans Senecio viscosus Senecio cadiscus Senecio nevadensis Senecio pinnatifolius Senecio oreophyton Senecio flaccidus Senecio mairetianus Senecio niveo-aureus Senecio brasiliensis Senecio chi/ensis Senecio polygaloides Senecio roseus Senecio suaveolens Senecio oerstedianus Senecio ctenophyllus セ@ 0- Omya K --Ii セ ] Delairea odorata Senecio meuselii Gynura Formosana Kleinia neriifolia Solanecio biafrae Stefrodfscus capillaceus Cineraria abyssinica Mesogramma apiifolium o/andia peduncu/osa tilpnogyne bellidioides $ enecio ho/landii $ enecio letifolius $ enecio retrorsus $ enecio triqueter $ enecio lineatus Bethencourlia palmensis J acobaea vulgaris Emilia coccinea $ enecio saxatilis $ enecio delloideus $ enecio scandens o ambondrombeensis Huberlia riperia aujasia squamosa aujasiopsis flexuosa riothrix Iycopodioides arafaujasia fontinalis Monticalia arbutifo/ia abrerielle oppositicOrdia entacalia arborea Monticalia abietina crobicaria ilicifolia L omanthus fosbergll enophyl/um poposum Misbrookea strigosissima Wemeria caespitosa 0 orobaea pimpincllifolia Garcibarrigoa telembina Caxamarca sanchezii seudogynoxys haenkei alamancalia boquelensis haradranaetes durandii essea mullivenia Monticalia apiculata Senecio otites Graphistylis dichroa H oehnephytum trlxoldes rbelaezaster ellsworthii I Gl '§ C aa: f/I , セ@ セ@ ヲM fC{ セ セ@ウ@ If-- k セク@ f- I-- セ@ - 1' - - セ セ@ f- 5 r- jLc セ@ r- セ@ セ@ Fig. 5. , , 15 10 ヲM セ@ I-- GMセ@ Zセァ。Gヲウj@ Pericallis aurita セ@ bomanii ericallis murray; _ $ enecio stigophlebius Zセ@ ィセBZョゥ@ Packera eurycephala /.nurbia constanzae L eonis trineurus E セlイM H ZイセWj。@ cセヲエZ@ Mattfeldia triplinervis zemisia discolor セァ@ , Ekmaniopappus mikanioides Nesampelos lucens H erreranthus rivalis A ntillanthus almironcillo S hafera platyphylla Lundinia plumbea 0 IdFeltia polyphlebia I-c:: , ITS/ETS BEAST chronogram. Strongly incongruent taxa and groups of taxa in boldface. Omya Iセ@ セ@ Z 6: /D g "0 American Journal of Botany 870 [Vol. 97 Table 6. Results of the coalescent analyses in which effective population (Ne) sizes were calculated for a selection of the strongly incongruent lineages assuming that the incongruent patterns were caused by incomplete lineage sorting (ILS). Coalescence was assumed to occur within 5Ne generations, and calculations were performed for generation times of 1, 2, 5, and 10 yr. Estimates of the duration of putative ILS events were calculated with BEAST and r8s (Figs. 4, 5). Ne (×1000) for assumed generation times Strongly incongruent lineage Data set Duration of putative ILS (Myr) 1 yr 2 yr 5 yr 10 yr Caputia Plastid ITS/ETS Plastid ITS/ETS Plastid ITS/ETS Plastid ITS/ETS Plastid ITS/ETS Plastid ITS/ETS Plastid ITS/ETS Plastid ITS/ETS Plastid ITS/ETS Plastid ITS/ETS 2.26–11.97 3.73–14.28 4.22–9.3 1.7–8.23 0–5.41 6.67–11.43 0–5.41 5.98–13.13 1.03–6.97 5.95–13.62 4.7–9.79 2.84–7.77 8.08–13.38 5.29–12.41 0–3.45 0.06–8.37 1.66–5.64 0–1.39 1.05–6.3 0–2.98 452–2394 746–2856 844–1860 340–1646 up to 1082 1334–2286 up to 1082 1196–2626 206–1394 1190–2724 940–1958 568–1554 1616–2676 1058–1482 up to 690 12–1647 332–1128 up to 278 210–1260 up to 596 226–1197 373–1428 422–930 170 to 823 up to 541 667–1143 up to 541 598–1313 103–697 595–1362 470–979 284–777 808–1338 529–1241 up to 345 6–837 166–564 up to 139 105–630 up to 298 90.4–478.8 149.2–571.2 168.8–372 68–329.2 up to 216.4 266.8–457.2 up to 216.4 239.2–525.2 41.2–278.8 238–544.8 188–391.6 113.6–310.8 323.2–535.2 211.6–496.4 up to 138 2.4–334.8 66.4–225.6 up to 55.6 42–252 up to 119.2 45.2–239.4 74.6–285.6 84.4–186 34–164.6 up to 108.2 133.4–228.6 up to 108.2 119.6–262.6 20.6–139.4 119–272.4 94–195.8 56.8–155.4 161.6–267.6 105.8–148.2 up to 69.0 1.2–164.7 33.2–112.8 up to 27.8 21.0–126.0 up to 59.6 Gynuroids Lordhowea Phaneroglossa Lamprocephalus and Oresbia New World 2 group and Packera Jacobaea Cineraria and Steirodiscus Lomanthus Senecio otites generic group and Packera, and Jacobaea (Table 6). To result in the incongruent patterns, ILS events must have continued for at least 1.03 (Lamprocephalus-Oresbia clade) to 5.29 (Jacobaea) Myr with effective population sizes never falling below 20 600 (Lamprocephalus-Oresbia clade) to 105 800 (Jacobaea) individuals. This is extremely improbable considering the present day population sizes of Senecioneae species and the likely occurrence of bottlenecks relative to speciation events throughout the evolutionary history of these lineages. For these four lineages, ancient hybridization is a much more likely explanation, although additional morphological, karyological, and molecular studies will need to be performed to identify direct evidence for hybrid origins. Conclusions— This study reveals new insights into the evolutionary history of Senecioneae by demonstrating strongly supported incongruence between plastid and ITS/ETS phylogenies. This incongruence is found at various taxonomic levels and affects the phylogenetic positions of six Senecio species, nine genera (Caputia, Cineraria, Steirodiscus, Phaneroglossa, Lordhowea, Jacobaea, Packera, Senecio otites, and Lomanthus), and three generic assemblages (the LamprocephalusOresbia clade, the gynuroids, and the New World 2 group). Although the emphasis of this study has been on understanding the incongruence between plastid and ITS/ETS trees, it is important to note that our analyses also support many phylogenetic patterns that are congruent or that are only weakly incongruent in the Senecioneae. In fact, the plastid data confirms many of the taxonomic and phylogenetic conclusions that were drawn from the ITS/ETS trees presented in this study and the ITS trees in Pelser et al. (2007). For example, except for Caputia, the subtribal delimitation of Senecioneae identified with ITS sequences (Pelser et al., 2007) remains largely unaffected by the incongruence, well-supported generic-level incongruence was not found within subtribes Brachyglottidinae, Tussilagininae s.s., and Othonninae, and plastid data provided additional support for the new delimitation of Senecio proposed by Pelser et al. (2007). Therefore, the congruent patterns found in this comprehensive study of the large tribe Senecioneae provide a framework (Fig. 3) for future research focused on the incongruent phylogenetic positions of its lineages. In addition to a better understanding of the patterns of phylogenetic incongruence and the taxa involved, our studies also provided information about the potential causes of topological incongruence in the Senecioneae. The dense generic-level sampling used in our analyses, the lack of evidence for ITS/ETS paralogy issues, and the paucity of long-branch attraction associated with the incongruent taxa suggest that ILS and/or hybridization are the most likely causes of the plastid vs. ITS/ETS incongruence. Using a novel approach based on coalescenttheory, we were able to show that ILS is unlikely to be responsible for four of the 10 strongly incongruent patterns that were observed. Our study therefore indicates that this approach may be a valuable tool for testing whether ILS can be invoked as an explanation of phylogenetic incongruence. LITERATURE CITED Álvarez, I., and J. F. Wendel. 2003. Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution 29: 417–434. Ancochea, E., J. Fuster, E. Ibarrola, A. Cendrero, J. Coello, F. Hernan, J. M. Cantagrel, and C. Jamond. 1990. Volcanic evolution of the island of Tenerife (Canary Islands) in the light of new K-Ar data. Journal of Volcanology and Geothermal Research 44: 231–249. Baker, I., N. H. Gale, and J. Simons. 1967. Geochronology of the St. Helena Volcanoes. Nature 215: 1451–1456. Baldwin, B. G., and S. Markos. 1998. Phylogenetic utility of the external transcribed spacer (ETS) of 18S-26S rDNA: Congruence of ETS and ITS trees of Calycadenia (Compositae). Molecular Phylogenetics and Evolution 10: 449–463. Bayer, R. J., D. G. Greber, and N. H. Bagnall. 2002. Phylogeny of Australian Gnaphalieae (Asteraceae) based on chloroplast and nuclear May 2010] Pelser et al.—Incongruence between Senecioneae phylogenies sequences, the trnL intron, trnL/trnF intergenic spacer, matK, and ETS. Systematic Botany 27: 801–814. Beck, E., R. Scheibe, I. Schlutter, and W. Sauer. 1992. Senecio × saundersii Sauer and Beck (Asteraceae), an intermediate hybrid between S. keniodendron and S. keniensis of Mt. Kenya. Phyton-Annales Rei Botanicae 32: 9–38. Bergsten, J. 2005. A review of long-branch attraction. Cladistics 21: 163–193. Buckley, T. R., M. Cordeiro, D. C. Marshall, and C. Simon. 2006. Differentiating between hypotheses of lineage sorting and introgression in New Zealand alpine cicadas (Maoricicada Dugdale). Systematic Biology 55: 411–425. Buckley, T. R., C. Simon, H. Shimodaira, and G. K. Chambers. 2001. Evaluating hypotheses on the origin and evolution of the New Zealand alpine cicadas (Maoricicada) using multiple-comparison tests of tree topology. Molecular Biology and Evolution 18: 223–234. Chapman, G., and S. Jones. 1971. Hybridization between Senecio smallii and S. tomentosus (Compositae) on the granitic flatrocks of the southeastern United States. Brittonia 23: 209–216. Comes, H. P., and R. J. Abbott. 1998. The relative importance of historical events and gene flow on the population structure of a Mediterranean ragwort, Senecio gallicus (Asteraceae). Evolution 52: 355–367. Cron, G. V., K. Balkwill, and E. B. Knox. 2008. Phylogenetic evidence for the generic circumscription of Cineraria L. (AsteraceaeSenecioneae). Taxon 57: 779–798. Cronk, Q. C. B. 1987. The history of endemic flora of St. Helena: A relictual series. New Phytologist 105: 509–520. Cunningham, C. W. 1997. Can three incongruence tests predict when data should be combined? Molecular Biology and Evolution 14: 733–740. Darlu, P., and G. Lecointre. 2002. When does the incongruence length difference test fail? Molecular Biology and Evolution 19: 432–437. Degnan, J. H., and N. A. Rosenberg. 2009. Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends in Ecology & Evolution 24: 332–340. Doyle, J. J. 1992. Gene trees and species trees: Molecular systematics as one-character taxonomy. Systematic Botany 17: 144–163. Drummond, A., and A. Rambaut. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 214. Drury, D. G. 1973. Annotated key to the New Zealand shrubby Senecioneae-Compositae and their wild and garden hybrids. New Zealand Journal of Botany 11: 731–784. Farris, S. J., M. Källersjö, A. G. Kluge, and C. Bult. 1995. Testing significance of incongruence. Cladistics 10: 315–319. Fay, M. F., S. M. Swensen, and M. W. Chase. 1997. Taxonomic affinities of Medusagyne oppositifolia (Medusagynaceae). Kew Bulletin 52: 111–120. Felsenstein, J. 1978. Cases in which parsimony or compatibility methods will be positively misleading. Systematic Zoology 27: 401–410. Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783–791. Geldmacher, J., P. van den Boogaard, K. Hoernle, and H.-U. Schmincke. 2000. The 40Ar/39Ar age dating of the Madeira Archipelago and hotspot track (eastern North Atlantic). Geochemistry Geophysics Geosystems 1: 1008. Geyer, C. J. 1991. Markov chain Monte Carlo maximum likelihood. In E. M. Keramidas [ed.], Computing science and statistics: Proceedings of the 23rd symposium on the interface, 156–163. Interface Foundation of North America, Fairfax Station, Virginia, USA. Golden, J. L. 1999. Chloroplast DNA diversity in Packera (Asteraceae): A phylogeographic study of the Packera contermina and three related species from southwestern Alberta based on chloroplast DNA variation. M.Sc. thesis, University of Lethbridge, Lethbridge, Alberta, Canada. Goloboff, P. A., S. J. Farris, and K. C. Nixon. 2008. TNT, a free program for phylogenetic analysis. Cladistics 24: 774–786. Graham, A. 1996. A contribution to the geologic history of the Compositae. In D. J. N. Hind and H. J. Beentje [eds.], Compositae: 871 Systematics. Proceedings of the International Compositae Conference, Kew, 1994, vol. 1, 123–140. Royal Botanic Gardens, Kew, UK. Graybeal, A. 1998. Is it better to add taxa or characters to a difficult phylogenetic problem? Systematic Biology 47: 9–17. Hershkovitz, M. A., M. T. K. Arroyo, C. Bell, and L. F. Hinojosa. 2006. Phylogeny of Chaetanthera (Asteraceae: Mutisieae) reveals both ancient and recent origins of the high elevation lineages. Molecular Phylogenetics and Evolution 41: 594–605. Hipp, A. L., J. C. Hall, and K. J. Sytsma. 2004. Congruence versus phylogenetic accuracy: Revisiting the incongruence length difference test. Systematic Biology 53: 81–89. Holder, M. T., J. A. Anderson, and A. K. Holloway. 2001. Difficulties in detecting hybridization. Systematic Biology 50: 978–982. Holland, B., S. Benthin, P. Lockhart, V. Moulton, and K. Huber. 2008. Using supernetworks to distinguish hybridization from lineage-sorting. BMC Evolutionary Biology 8: 202. Huelsenbeck, J. P. 1997. Is the Felsenstein zone a fly trap? Systematic Biology 46: 69–74. Huelsenbeck, J. P., and F. Ronquist. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755. Huson, D. H., and D. Bryant. 2006. Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23: 254–267. Jeffrey, C. 1986. Notes on Compositae. IV. The Senecioneae in east tropical Africa. Kew Bulletin 41: 873–943. Johnson, L. A., L. M. Chan, T. L. Weese, L. D. Busby, and S. McMurry. 2008. Nuclear and cpDNA sequences combined provide strong inference of higher phylogenetic relationships in the phlox family (Polemoniaceae). Molecular Phylogenetics and Evolution 48: 997–1012. Joly, S., P. A. McLenachan, and P. J. Lockhart. 2009. A statistical approach for distinguishing hybridization and incomplete lineage sorting. American Naturalist 174: E54–E70. Kadereit, J. W., S. Uribe-Convers, E. Westberg, and H. P. Comes. 2006. Reciprocal hybridization at different times between Senecio flavus and Senecio glaucus gave rise to two polyploid species in north Africa and south-west Asia. New Phytologist 169: 431–441. Kim, K.-J., K.-S. Choi, and R. K. Jansen. 2005. Two chloroplast DNA inversions originated simultaneously during the early evolution of the sunflower family (Asteraceae). Molecular Biology and Evolution 22: 1783–1792. Kirk, H., M. Macel, P. G. L. Klinkhamer, and K. Vrieling. 2004. Natural hybridization between Senecio jacobaea and Senecio aquaticus: Molecular and chemical evidence. Molecular Ecology 13: 2267–2274. Kishino, H., and M. Hasegawa. 1989. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. Journal of Molecular Evolution 29: 170–179. Kuzoff, R. K., and C. S. Gasser. 2000. Recent progress in reconstructing angiosperm phylogeny. Trends in Plant Science 5: 330–336. Liu, L., and D. K. Pearl. 2007. Species trees from gene trees: Reconstructing Bayesian posterior distributions of a species phylogeny using estimated gene tree distributions. Systematic Biology 56: 504–514. Lowe, A. J., and R. J. Abbott. 2000. Routes of origin of two recently evolved hybrid taxa: Senecio vulgaris var. hibernicus and York radiate groundsel (Asteraceae). American Journal of Botany 87: 1159–1167. Maddison, W. P. 1997. Gene trees in species trees. Systematic Biology 46: 523–536. Markos, S., and B. G. Baldwin. 2001. Higher-level relationships and major lineages of Lessingia (Compositae, Astereae) based on nuclear rDNA internal and external transcribed spacer (ITS and ETS) sequences. Systematic Botany 26: 168–183. McDougall, I., B. J. J. Embleton, and D. B. Stone. 1981. Origin and evolution of Lord Howe Island, Southwest Pacific Ocean. Journal of the Geological Society of Australia 28: 155–176. McDougall, I., and H. Schmincke. 1976. Geochronology of Gran Canaria, Canary Islands: Age of shield building volcanism and other magmatic phases. Bulletin of Volcanology 40: 57–77. 872 American Journal of Botany Morgan, D. R., R.-L. Korn, and S. L. Mugleston. 2009. Insights into reticulate evolution in Machaerantherinae (Asteraceae: Astereae): 5S ribosomal RNA spacer variation, estimating support for incongruence, and constructing reticulate phylogenies. American Journal of Botany 96: 920–932. Müller-Schärer, H., and M. Fischer. 2001. Genetic structure of the annual weed Senecio vulgaris in relation to habitat type and population size. Molecular Ecology 10: 17–28. Nordenstam, B. 1963. Hybrids of Euryops in Kirstenbosch. Journal of the Botanical Society of South Africa 49: 15–16. Nordenstam, B. 1968. The genus Euryops. Part I. Taxonomy. Opera Botanica 20: 1–409. Nordenstam, B. 1978. Taxonomic studies in the tribe Senecioneae (Compositae). Opera Botanica 44: 1–83. Nordenstam, B. 1996. Jessea gunillae B. Nord. (Compositae: Senecioneae), a new species from Costa Rica. Botanische Jahrbücher 118: 147–152. Nordenstam, B. 2007. Tribe Senecioneae Cass. In K. Kubitzki [ed.], The families and genera of vascular plants; J. W. Kadereit and C. Jeffrey [eds.], vol. VIII, Flowering plants: Eudicots, Asterales, 208– 241. Springer, Berlin, Germany. Nordenstam, B., P. B. Pelser, J. W. Kadereit, and L. E. Watson. 2009a. Tribe Senecioneae. In V. A. Funk, A. Susanna, T. F. Stuessy, and R. J. Bayer [eds.], Systematics, evolution, and biogeography of the Compositae, 503–525. International Association for Plant Taxonomy, Vienna, Austria. Nordenstam, B., P. B. Pelser, and L. E. Watson. 2009b. The South African aquatic genus Cadiscus (Compositae-Senecioneae) sunk in Senecio. Compositae Newsletter 47: 28–32. Nordenstam, B., P. B. Pelser, and L. E. Watson. 2009c. Lomanthus, a new genus of the Compositae-Senecioneae from Ecuador, Peru, Bolivia and Argentina. Compositae Newsletter 47: 33–40. Nylander, J. A. A. 2004. MrModeltest 2. Computer program and documentation distributed by the author, website http://www.abc. se/~nylander. Olorode, O., and A. E. Olorunfemi. 1973. The hybrid origin of Emilia praetermissa (Senecioneae: Compositae). Annals of Botany 37: 185–191. Ornduff, R. 1964. Biosystematics of Blennosperma (Compositae). Brittonia 16: 289–295. Page, R. D. M., and M. A. Charleston. 1997. From gene to organismal phylogeny: Reconciled trees and the gene tree/species tree problem. Molecular Phylogenetics and Evolution 7: 231–240. Pan, Y., S. Shi, X. Gong, and C. Kuroda. 2008. A natural hybrid between Ligularia paradoxa and L. duciformis (Asteraceae, Senecioneae) from Yunnan, China. Annals of the Missouri Botanical Garden 95: 487–494. Panero, J. L., J. Francisco-Ortega, R. K. Jansen, and A. SantosGuerra. 1999. Molecular evidence for multiple origins of woodiness and a New World biogeographic connection of the Macaronesian island endemic Pericallis (Asteraceae: Senecioneae). Proceedings of the National Academy of Sciences, USA 96: 13886–13891. Panero, J. L., and V. A. Funk. 2008. The value of sampling anomalous taxa in phylogenetic studies: Major clades of the Asteraceae revealed. Molecular Phylogenetics and Evolution 47: 757–782. Pelser, P. B., B. Gravendeel, and R. Van Der Meijden. 2002. Tackling speciose genera: Species composition and phylogenetic position of Senecio sect. Jacobaea (Asteraceae) based on plastid and nrDNA sequences. American Journal of Botany 89: 929–939. Pelser, P. B., B. Gravendeel, and R. van der Meijden. 2003. Phylogeny reconstruction in the gap between too little and too much divergence: The closest relatives of Senecio jacobaea (Asteraceae) according to DNA sequences and AFLPs. Molecular Phylogenetics and Evolution 29: 613–628. Pelser, P. B., B. Nordenstam, J. W. Kadereit, and L. E. Watson. 2007. An ITS phylogeny of Tribe Senecioneae (Asteraceae) and a new delimitation of Senecio L. Taxon 56: 1077–1104. Pirie, M. D., A. M. Humphreys, C. Galley, N. P. Barker, G. A. Verboom, D. Orlovich, S. J. Draffin, et al. 2008. A novel supermatrix approach improves resolution of phylogenetic relation- [Vol. 97 ships in a comprehensive sample of danthonioid grasses. Molecular Phylogenetics and Evolution 48: 1106–1119. Pryer, K. M., E. Schuettpelz, P. G. Wolf, H. Schneider, A. R. Smith, and R. Cranfill. 2004. Phylogeny and evolution of ferns (monilophytes) with a focus on the early leptosporangiate divergences. American Journal of Botany 91: 1582–1598. Rambaut, A. 1996. Se-Al: Sequence Alignment Editor. Computer program and documentation distributed by the author, website http://tree. bio.ed.ac.uk/software/. Rambaut, A. 2009. FigTree v1.2.2. Computer program and documentation distributed by the author, website http://tree.bio.ed.ac.uk/ software/. Rambaut, A., and A. J. Drummond. 2007. Tracer v1.4. Computer program and documentation distributed by the authors, website http:// beast.bio.ed.ac.uk/Tracer. Rokas, A., B. Williams, L., N. King, and S. B. Carroll. 2003. Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425: 798. Rosenberg, N. A. 2003. The shapes of neutral gene genealogies in two species: Probabilities of monophyly, paraphyly, and polyphyly in a coalescent model. Evolution 57: 1465–1477. Sanderson, M. J. 2002. Estimating absolute rates of molecular evolution and divergence times: A penalized likelihood approach. Molecular Biology and Evolution 19: 101–109. Sanderson, M. J. 2003. r8s: Inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19: 301–302. Savolainen, V., M. W. Chase, S. B. Hoot, C. M. Morton, D. E. Soltis, and C. Bayer. 2000. Phylogenetics of flowering plants based on combined analysis of plastid atpB and rbcL gene sequences. Systematic Biology 49: 306–362. Seelanan, T., A. Schnabel, and J. F. Wendel. 1997. Congruence and consensus in the cotton tribe (Malvaceae). Systematic Botany 22: 259–290. Shimodaira, H. 2002. An approximately unbiased test of phylogenetic tree selection. Systematic Biology 51: 492–508. Shimodaira, H., and M. Hasegawa. 1999. Multiple comparisons of loglikelihoods with applications to phylogenetic inference. Molecular Biology and Evolution 16: 1114–1116. Simmons, M. P., and H. Ochoterena. 2000. Gaps as characters in sequence-based phylogenetic analyses. Systematic Biology 49: 369–381. Siol, M., I. Bonnin, I. Olivieri, J. M. Prosperi, and J. Ronfort. 2007. Effective population size associated with self-fertilization: Lessons from temporal changes in allele frequencies in the selfing annual Medicago truncatula. Journal of Evolutionary Biology 20: 2349–2360. Stuessy, T. F., K. A. Foland, J. F. Sutter, R. W. Sanders, and M. Silva O. 1984. Botanical and geological significance of potassiumargon dates from the Juan Fernández Islands. Science 225: 49–51. Sullivan, J. 1996. Combining data with different distributions of among-site rate variation. Systematic Biology 45: 375–380. Templeton, A. R. 1983. Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and the apes. Evolution 37: 221–244. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25: 4876–4882. van der Niet, T., and H. P. Linder. 2008. Dealing with incongruence in the quest for the species tree: A case study from the orchid genus Satyrium. Molecular Phylogenetics and Evolution 47: 154–174. Vanijajiva, O., and J. W. Kadereit. 2009. Morphological and molecular evidence for interspecific hybridisation in the introduced African genus Crassocephalum (Asteraceae: Senecioneae) in Asia. Systematics and Biodiversity 7: 269–276. Widén, B., and S. Andersson. 1993. Quantitative genetics of life-history and morphology in a rare plant, Senecio integrifolius. Heredity 70: 503–514. May 2010] Pelser et al.—Incongruence between Senecioneae phylogenies Wiens, J. J., and B. D. Hollingsworth. 2000. War of the iguanas: Conflicting molecular and morphological phylogenies and longbranch attraction in iguanid lizards. Systematic Biology 49: 143–159. Wikström. N., V. Savolainen, and M. W. Chase. 2001. Evolution of the angiosperms: Calibrating the family tree. Proceedings of the Royal Society of London, B, Biological Sciences 268: 2211–2220. 873 Yamaguchi , H. , and T. Yahara . 1989 . Analysis on pollen flow in a hybridizing population between Farfugium hiberniflorum and F. japonicum (Asteraceae: Senecioneae): Derivation of an empirical formula describing frequency of hybridization as a function of interspecific plant distance. Plant Species Biology 4 : 101 – 106 . PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 1 PELSER, PIETER B., AARON H. KENNEDY, ERIC J. TEPE, JACOB B. SHIDLER, BERTIL NORDENSTAM, JOACHIM W. KADEREIT, AND LINDA E. WATSON. 2010. Patterns and causes of incongruence between plastid and nuclear Senecioneae (Asteraceae) phylogenies. American Journal of Botany 97(5): 856-873. Appendix S1. Sequences of multiple accessions. 3’trnK. Abrotanella emarginata (Gaudich.) Cass., EF537909; Acrisione cymosa (J.Rémy) B.Nord., Lammers, Rodriques & Baeza 6447 (MU), GU817416; Adenostyles alpina (L.) Bluff & Fingerh., Schwerdtfeger 12251 (B), GU817417; Aequatorium asterotrichum B.Nord., Asplund 18263 (S), GU817418; Anacyclus valentinus L., Tepe 1186 & Moreno-Paez (MU), GU817419; Antillanthus almironcillo (M.Gómez) B.Nord., El-Ghazaby et al. 23.608 (S), GU817420; Arbelaezaster ellsworthii (Cuatrec.) Cuatrec., Kilip & Smith 19413 (US), GU817421; Arnoglossum atriplicifolium (L.) H.Rob., EF537911; Arrhenechthites mixta (A.Rich.) Belcher, EF537912; Austrosynotis rectirama (Baker) C.Jeffrey, LaCroix 4001 (WAG), GU817423; Bahia dissecta (Gray) Britton, Tuhy 3868 (MU), GU817424; Barkleyanthus salicifolius (Kunth) H.Rob. & Brettell, Genelle & Fleming 861 (B), GU817425; Barnadesia sp., Hunziker & Gamerro 12561 (MU), GU817426; Bedfordia arborescens Hochr., Greuter 21319 (B), GU817427; Bethencourtia palmensis (Nees) Choisy, Nordenstam 9326 (S), GU817428; Blennosperma nanum S.F.Blake, AF460029; Blepharispermum zanguebaricum Oliv. & Hiern., Medley 570 (MU), GU817429; Bolandia pedunculosa (DC.) Cron, Cron & Goodman 681 (J), GU817430; Brachyglottis repanda J.R.Forst. & G.Forst., Schwerdtfeger 17407 (B), GU817431; Cabreriella oppositicordia (Cuatrec.) Cuatrec., Romero-Castañeda 7428 (US), GU817432; Cacaliopsis nardosmia (A.Gray) A.Gray, PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 2 Ertter 6502 (UC), GU817433; Calendula arvensis L., Watson 95-13C (MU), GU817435; Capelio caledonica B.Nord., Nordenstam 9644 (S), GU817436; Caucasalia parviflora (M.Bieb.) B.Nord., EF537913; Caxamarca sanchezii M.O.Dillon & Sagást., Sagástegui et al. 15548 (F), GU817437; Centropappus brunonis Hook.f., Wapstra MW2 (MEL), GU817438; Chaenactis douglasii (Hook.) Hook. & Arn., Vincent 8582 (MU), GU817439; Charadranaetes durandii (Klatt) Janovec & H.Rob., Gomez P. 2242 (S), GU817440; Chersodoma jodopappa (Sch.Bip.) Cabr., EF537914; Cichorium intybus L., Tepe 1673 (MU), GU817441; Cineraria abyssinica Sch.Bip. ex A.Rich., AF460028; Cirsium discolor (Muhl.) Spreng., Tepe 1670 (MU), GU817442; Cissampelopsis volubilis (Blume) Miq., Carvalho 3175 (MU), GU817443; Coreopsis sp., Vincent 13226 (MU), GU817444; Corymbium enerve Markötter, Trinder-Smith 124 (US), GU817445; Cotula coronopifolia L., Watson & Panero 94-26 (MU), GU817446; Crassocephalum crepidioides (Benth.) S.Moore, AF459991; Cremanthodium humile Maxim., EF537915; Crocidium multicaule Hook., Bartholomew 5749 (MO), GU817447; Curio rowleyanus (H.Jacobsen) P.V.Heath, AF460002; Dauresia alliariifolia (O.Hoffm.) B.Nord & Pelser, Müller & Tilson 907 (M), GU817448; Delairea odorata Lem., Tepe 2180, Pelser & Marticorena (MU), GU817449; Dendrophorbium bomanii (R.E.Fr.) C.Jeffrey, EF537917; Dendrosenecio kilimanjari (Mildbr.) E.B.Knox ssp. cottonii (Hutch. & G.Taylor) E.B.Knox, AF460027; Digitacalia jatrophoides (Kunth) Pippen, Panero 2330 & Salinas (TEX), GU817450; Dolichoglottis lyallii (Hook.f.) B.Nord., Strid 22172 (MO), GU817451; Dolichorrhiza caucasica (M.Bieb.) Galushko, Schneeweiss 44 (WU), GU817452; Dorobaea pimpinellifolia (Kunth) B.Nord., Tepe 1467 (MU), GU817453; Doronicum pardalianches L., EF537918; Ekmaniopappus PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 3 mikanioides (Urb. & Ekman) Borhidi, Nordenstam & Lundin 500 (S), GU817454; Elekmania picardae (Krug & Urb.) B.Nord., EF537919; Emilia coccinea (Sims) G.Don., AF460026; Endocellion sibiricum (J.F.Gmel.) J.Toman, Schönswetter & Tribsch T480 (WU), GU817455; Erato polymnoides DC., Tepe 1456 (MU), GU817456; Erechtites valerianifolius (Link ex Spreng.) Less. ex DC., EF537920; Eupatorium serotinum Michx., Tepe 1667 (MU), GU817457; Euryops pectinatus (L.) Cass., AF460025; Farfugium japonicum (L.) Kitam., Wu 1439 (MO), GU817458; Faujasia squamosa (Bory) C.Jeffrey, Nordenstam 9210 (S), GU817459; Faujasiopsis flexuosa (Lam.) C.Jeffrey ssp. bourbonensis C.Jeffrey, Nordenstam 9202 (S), GU817460; Galinsoga quadriradiata Cav., Vincent 13227 (MU), GU817461; Garcibarrigoa telembina (Cuatrec.) Cuatrec., Holm-Nielsen et al. 6211 (S), GU817462; Gerbera sp., Vincent 13223 (MU), GU817463; Graphistylis dichroa (Bong.) D.J.N.Hind, Silva 140 & Zelma (S), GU817464; Gymnodiscus capillaris (L.f.) Less., Coppejans EC1116 (U), GU817465; Cron & Goodman 650 (J), GU817466; Gynoxys soukupii Cuatrec., AF459989; Gynura divaricata (L.) DC. ssp. formosana (Kitam.) F.G.Davies, AF459988; Helenium autumnale L., Tepe 1664 (MU), GU817467; Helianthus tuberosus L., Tepe 1672 (MU), GU817468; Helichrysum stoechas DC., Tepe 1092 (MU), GU817469; Herodotia haitiensis Urb. & Ekman, EF537922; Herreranthus rivalis (Greenm.) B.Nord., Nordenstam s.n. (2/12/2007) (S), GU817470; Hertia pallens (DC.) Kuntze, Koekemoer & Funk 1963 (US), GU817471; Hoehnephytum trixoides (Gard.) Cabr., Carmo 131 (BHCB), GU817472; Homogyne alpina (L.) Cass., Uhink 98-56 (MJG), GU817473; Hubertia riparia (DC.) C.Jeffrey, Labat, Phillipson & Lowry II 2022 (WAG), GU817474; Humbertacalia sp., Phillipson et al. 5641 (P), GU817475; PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 4 Inula viscosa (L.) Aiton, Tepe 1142 (MU), GU817476; Io ambondrombeensis (Humbert) B.Nord., Malcomber et al. s.n. (P), GU817477; Iranecio cariensis (Boiss.) C.Jeffrey, Budak 1724, Aksoy & Hamazaoǧlu (Yozgat Türkiye Florası Herbaryumu), GU817478; Ischnea elachoglossa F.Muell., Beaman 12129 (MO), GU817479; Jacmaia incana (Sw.) B.Nord., Nordenstam 7914 (S), GU817480; Jacobaea vulgaris Gaertn., AF460007; AY156987; Jessea multivenia (Benth.) H.Rob. & Cuatrec., Nordenstam 9161 (S), GU817481; Kleinia neriifolia Haw., AF460024; Lachanodes arborea (Roxb.) B.Nord., Cairns-Wicks s.n., GU817482; Lactuca canadensis L., Vincent 13128 (MU), GU817483; Lamprocephalus montanus B.Nord., Nordenstam 9542 (S), GU817484; Leonis trineurus (Griseb.) B.Nord., Smith & al. 3238 (S), GU817485; Lepidospartum burgessii B.L.Turner, EF537925; Ligularia stenocephala (Maxim.) Matsum. & Koidz., AF460023; Lomanthus fosbergii (Cuatrec.) B. Nord. & Pelser, Øllgaard et al. 90697 (AAU), GU817561; Lopholaena coriifolia (Sond.) Phillips & C.A.Sm., Van der Westhuizen & Liamé s.n. (PREM), GU817486; Lordhowea insularis (Benth.) B.Nord., AF459987; Luina hypoleuca Benth., Greuter 17706 (B), GU817487; Lundinia plumbea (Griseb.) B.Nord., Zanoni 45816 (JBSD), GU817488; Madia sp., Vincent 12912 (MU), GU817489; Mesogramma apiifolium DC., Giess 16074 (M), GU817490; Mikaniopsis clematoides (Sch.Bip. ex A.Rich.) Milne-Redh., De Wilde & De Wilde-Duyfjes 9006 (B), GU817491; Monticalia apiculata (Sch.Bip. ex Wedd.) C.Jeffrey, Alston 6935 (S), GU817492; Monticalia arbutifolia (Kunth.) C.Jeffrey, EF537926; Nelsonianthus tapianus (B.L.Turner) C.Jeffrey, Pérez & Kendizabal 457 (XAL), GU817493; Nemosenecio nikoensis (Miq.) B.Nord., Koyama 4079 (L), GU817494; Nesampelos lucens (Poir. in Lam.) B.Nord., EF537927; Neurolaena lobata (L.) R.Br., Acevedo PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 5 9316 (US), GU817495; Nordenstamia kingii (H.Rob. & Cuatrec.) B.Nord., Ståhl 5572A (S), GU817496; Oldfeltia polyphlebia (Griseb.) B.Nord. & Lundin, EF537929; Oresbia heterocarpa Cron & B.Nord., Nordenstam 9628 (S), GU817497; Othonna capensis Bailey, AF460022; Packera eurycephala (Torr. & A.Gray) W.A.Weber & Á.Löve, EF537930; Papuacalia dindondl (P.Royen) Veldkamp, EF537931; Paracalia jungioides (Hook. & Arn.) Cuatrec., King & Collins 9017 (UC), GU817498; Parafaujasia fontinalis (Cordem.) C.Jeffrey, Lorence 2602 (MO), GU817499; Paragynoxys neodendroides (Cuatrec.) Cuatrec., Cleef 9852a (U), GU817500; Parasenecio adenostyloides (Franch. et Sav. ex Maxim.) H.Koyama, AF459992; Pentacalia arborea (Kunth) H.Rob. & Cuatrec., Øllgaard & Balslev 8298 (U), GU817501; Pericallis murrayi (Bornm.) B.Nord., Royl 446 (B), GU817502; Perityle emoryi Torr., Atwood 26483 (MU), GU817503; Petasites albus (L.) Gaertn., Cubr 40398 (B), GU817504; Phaneroglossa bolusii (Oliv.) B.Nord., AF459984; Pippenalia delphinifolia (Rydb.) MacVaugh, Spellenberg & Bacon 11048 (TEX), GU817505; Pittocaulon praecox (Cav.) H.Rob. & Brettell, EF537932; Pladaroxylon leucadendron (G.Forst.) Hook.f., Cairns-Wicks s.n., GU817506; Pojarkovia pojarkovae (Schischk.) Greuter, Pelser cult. 191 (L), GU817507; Polymnia canadensis L., Tepe 1665 (MU), GU817508; Psacaliopsis purpusii (Greenm. ex Brandegee) H.Rob. & Brettell, Panero 2607, Davila & Tenorio (TEX), GU817509; Psacalium cirsiifolium (Zucc.) H.Rob. & Brettell, EF537928; Pseudogynoxys haenkei (DC.) Cabr., Molina R. 18431 (U), GU817510; Rainiera stricta (Greene) Greene, Dennis 2317 (U), GU817511; Robinsonecio gerberifolius (Sch.Bip. ex Hemsl.) T.M.Barkley & Janovec, Garcia P. 171 (MO), GU817512; Robinsonia berteroi (DC.) R.W.Sanders, Stuessy & Martic., PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 6 AF459982; R. evenia Phil., Stuessy et al. 11308 (CONC), GU817513; R. gracilis Decne., EF537933; Stuessy et al. 11282 (CONC), GU817514; Stuessy et al. 11312 (CONC), GU817515; R. masafuerae Skottsb., Stuessy et al. s.n. (CONC), GU817516; Roldana suffulta (Greenm.) H.Rob. & Brettell, Rzedowski 36569 (UC), GU817517; Rugelia nudicaulis Shuttlew. ex Chapm., Feist, Phillippe, Molano-Flores, Busemeyer & Carroll 714 (TENN), GU817518; Senecio acanthifolius Hombr. & Jacq., ex Decne., EF537923; S. adamantinus Bong., EF537934; S. algens Wedd., Beck 2879 (S), GU817519; S. arnicoides Hook. & Arn., Zöllner 3474 (L), GU817520; S. boyacensis (Cuatrec.) Cuatrec., Gonzalez 180 (S), GU817521; S. brasiliensis (Spreng.) Less., UEC 50.171 (UEC), GU817522; S. cadiscus B.Nord. & Pelser, Rourke 1118 (S), GU817434; S. chilensis Less., EF537936; S. ctenophyllus Phil., Zöllner 3959 (L), GU817524; S. culcitioides Wedd., Øllgaard & Balslev 8822 (U), GU817523; S. deltoideus Less., EF537937; S. elegans L., Cron & Goodman 687 (J), GU817525; S. fistulosus Poepp. ex Less., Beck & Liberman 9672 (S), GU817526; S. flaccidus Less. var. flaccidus, Jardin Thuret cult. s.n. (MJG), GU817527; S. flavus (Decne.) Sch.Bip., DQ208168; S. gayanus (Colla) Cabr., Rosas 2157 (INIA), GU817528; S. gramineus Harv., Hoener 2104 (WAG), GU817529; S. gregorii F.Muell., Albrecht 7091 (NT), GU817530; S. hemmendorffii Malme, EF537938; S. hieracium Remy, Baeza & Finot 3695 (CONC), GU817531; S. hispidissimus I.Thomps., Thompson 927 (MEL), GU817532; S. hypsobates Wedd., Øllgaard & Balslev 9863 (U), GU817533; S. ilicifolius Thunb., Cron & Goodman 686 (J), GU817534; S. integerrimus Nutt. var. exaltatus (Nutt.) Cronquist, Crockett 437 (MU), GU817535; S. involucratus (Kunth) DC., EF537910; S. jarae Phil., EF537939; S. lastarrianus Remy, Ricardi 3230 (B), PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 7 GU817536; S. mairetianus DC., EF537942; S. medley-woodii Hutch. (Caputia medleywoodii ined.), AF460005; S. meuselii Rauh, EF537943; S. nemorensis L., AF460004; S. nevadensis Boiss. & Reut., Vogt 4172 (B), GU817537; S. niveo-aureus Cuatrec., Cleef 6665 (S), GU817538; S. oerstedianus Benth. ex Oerst., Nordenstam 9160 (S), GU817539; S. oreophyton Remy, Beck 21589 (S), GU817540; S. patens (Kunth) DC., Zak & Jaramillo 3427 (L), GU817541; S. pflanzii (Perkins) Cuatrec., EF537916; S. pinifolius (L.) Lam., EF537945; S. pinnatifolius A.Rich. var. lanceolatus (Benth.) I.Thomps., Thompson 904 (MEL), GU817542; S. polygaloides Phil., Zöllner 5442 (L), GU817543; S. prenanthoides A.Rich., Thompson 915 (MEL), GU817544; S. psilocarpus R.O. Belcher & D.E. Albrecht, Thompson 937 (MEL), GU817545; S. roseus Sch.Bip., Garcia P. 250 (L), GU817546; S. scaposus DC. (Caputia scaposa ined.), AF460001; S. squarrosus A.Rich., Thompson 907 (MEL), GU817547; S. stigophlebius Baker, EF537946; S. suaveolens (L.) Ell., EF537921; S. superandinus Cuatrec., EF537924; S. szyszylowiczii Hiern., Sagastegui A. et al. 15797 (S), GU817548; S. tauricola V.A.Matthews, Budak 1735, Aksoy & Hamazaoǧlu (Yozgat Türkiye Florası Herbaryumu), GU817549; S. thapsoides DC., EF537948; S. triodon Phil. var. triodon, Luebert & Teillier 2266 (CONC), GU817550; S. vestitus P.J.Bergius, Greuter 21766 (B), GU817551; S. viscosus L., AF459996; Shafera platyphylla Greenm., Nordenstam s.n. (S), GU817552; Sinacalia tangutica (Maxim.) B.Nord., Lian et al 93-54 (MO), GU817553; Sinosenecio euosmus (Hand.-Mazz.) B.Nord., Bouford, Donoghue & Ree 27625 (MO), GU817554; Solanecio biafrae (Oliv. & Hiern) C.Jeffrey, Brunel 6220 (B), GU817555; Steirodiscus capillaceus (Thunb.) Less., Cron & Goodman 653 (J), GU817556; Stilpnogyne bellidioides DC., Goldblatt & Porter PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 8 11729 (MO), GU817557; Symphyotrichum novae-angliae (L.) G.L.Nesom, Tepe 1675 (MU), GU817422; Syneilesis palmata (Thunb.) Maxim., Hata s.n. (4-Aug-1979) (CHR), GU817558; Synotis nagensium (C.B.Clarke) C.Jeffrey & Y.L.Chen, AF459973; Tagetes sp., Vincent 13224 (MU), GU817559; Talamancalia boquetensis (Standl.) H.Rob. & Cuatrec., Wilbur 15397 (NY), GU817560; Telanthophora grandifolia (Less.) H.Rob. & Brettell, EF537949; Tephroseris integrifolia (L.) Holub ssp. aucheri (DC.) B.Nord., Budak 1688 & Hamazaoǧlu (Yozgat Türkiye Florası Herbaryumu), GU817562; Tetradymia filifolia Greene, EF537950; Tussilago farfara L., EF537951; Urostemon kirkii (Hook.f. ex Kirk) B.Nord., Cooper & Nickerson s.n. (US), GU817563; Vernonia altissima Nutt., Tepe 1668 (MU), GU817564; Villasenoria orcuttii (Greenm.) B.L.Clark, Robles 389 (XAL), GU817565; Werneria caespitosa Wedd., Funk 11324 (US), GU817566; Xenophyllum poposum (Phil.) V.A.Funk, Funk 11351 (US), GU817567; Yermo xanthocephalus Dorn, Anderson 13691 (MO), GU817568; Zemisia discolor (Sw.) B.Nord., Webster et al. 8420 (S), GU817569. 5’trnK. Abrotanella emarginata (Gaudich.) Cass., EF042141; AY929860; Acrisione cymosa (J.Rémy) B.Nord., Lammers, Rodriques & Baeza 6447 (MU), GU817582; Adenostyles alpina (L.) Bluff & Fingerh., Schwerdtfeger 12251 (B), GU817583; Aequatorium asterotrichum B.Nord., Asplund 18263 (S), GU817584; Anacyclus valentinus L., Tepe 1186 & Moreno-Paez (MU), GU817585; Antillanthus almironcillo (M.Gómez) B.Nord., El-Ghazaby et al. 23.608 (S), GU817586; Arbelaezaster ellsworthii (Cuatrec.) Cuatrec., Kilip & Smith 19413 (US), GU817587; Arnoglossum atriplicifolium (L.) H.Rob., EF042143; Arrhenechthites mixta (A.Rich.) Belcher, PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 9 EF042144; Austrosynotis rectirama (Baker) C.Jeffrey, LaCroix 4001 (WAG), GU817589; Bahia dissecta (Gray) Britton, Tuhy 3868 (MU), GU817590; Barkleyanthus salicifolius (Kunth) H.Rob. & Brettell, Genelle & Fleming 861 (B), GU817591; Barnadesia sp., Hunziker & Gamerro 12561 (MU), GU817592; Bedfordia arborescens Hochr., Greuter 21319 (B), GU817593; Bethencourtia palmensis (Nees) Choisy, Nordenstam 9326 (S), GU817594; Blennosperma nanum S.F.Blake, AF460089; Blepharispermum zanguebaricum Oliv. & Hiern., Medley 570 (MU), GU817595; Bolandia pedunculosa (DC.) Cron, Cron & Goodman 681 (J), GU817596; Brachyglottis repanda J.R.Forst. & G.Forst., AY554067; Cabreriella oppositicordia (Cuatrec.) Cuatrec., Romero-Castañeda 7428 (US), GU817597; Cacaliopsis nardosmia (A.Gray) A.Gray, Ertter 6502 (UC), GU817598; Calendula arvensis L., Watson 9513C (MU), GU817600; Capelio caledonica B.Nord., Nordenstam 9644 (S), GU817601; Caucasalia parviflora (M.Bieb.) B.Nord., EF042145; Caxamarca sanchezii M.O.Dillon & Sagást., Sagástegui et al. 15548 (F), GU817602; Centropappus brunonis Hook.f., AY554058; Chaenactis douglasii (Hook.) Hook. & Arn., Vincent 8582 (MU), GU817603; Charadranaetes durandii (Klatt) Janovec & H.Rob., Gomez P. 2242 (S), GU817604; Chersodoma jodopappa (Sch.Bip.) Cabr., EF042146; Cichorium intybus L., Tepe 1673 (MU), GU817605; Cineraria abyssinica Sch.Bip. ex A.Rich., AF460088; Cirsium discolor (Muhl.) Spreng., Tepe 1670 (MU), GU817606; Cissampelopsis volubilis (Blume) Miq., Carvalho 3175 (MU), GU817607; Coreopsis sp., Vincent 13226 (MU), GU817608; Corymbium enerve Markötter, Trinder-Smith 124 (US), GU817609; Cotula coronopifolia L., Watson & Panero 94-26 (MU), GU817610; AY554071; Crassocephalum crepidioides (Benth.) S.Moore, AF460050; Cremanthodium humile PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 10 Maxim., EF042147; Crocidium multicaule Hook., Bartholomew 5749 (MO), GU817611; AY929879; Curio rowleyanus (H.Jacobsen) P.V.Heath, AF460062; Dauresia alliariifolia (O.Hoffm.) B.Nord & Pelser, Müller & Tilson 907 (M), GU817612; Delairea odorata Lem., Tepe 2180, Pelser & Marticorena (MU), GU817613; Dendrophorbium bomanii (R.E.Fr.) C.Jeffrey, EF042149; Dendrosenecio kilimanjari (Mildbr.) E.B.Knox ssp. cottonii (Hutch. & G.Taylor) E.B.Knox, AF460087; Digitacalia jatrophoides (Kunth) Pippen, Panero 2330 & Salinas (TEX), GU817614; Dolichoglottis lyallii (Hook.f.) B.Nord., Strid 22172 (MO), GU817615; Dolichorrhiza caucasica (M.Bieb.) Galushko, Schneeweiss 44 (WU), GU817616; Dorobaea pimpinellifolia (Kunth) B.Nord., Tepe 1467 (MU), GU817617; Doronicum pardalianches L., Cubr 40487 (B), GU817618; Ekmaniopappus mikanioides (Urb. & Ekman) Borhidi, Nordenstam & Lundin 500 (S), GU817619; Elekmania picardae (Krug & Urb.) B.Nord., EF042150; Emilia coccinea (Sims) G.Don., AF460086; Endocellion sibiricum (J.F.Gmel.) J.Toman, Schönswetter & Tribsch T480 (WU), GU817620; Erato polymnoides DC., Tepe 1456 (MU), GU817621; Erechtites valerianifolius (Link ex Spreng.) Less. ex DC., EF042151; Eriothrix lycopodioides DC., Nordenstam 9208 (S), GU817622; Eupatorium serotinum Michx., Tepe 1667 (MU), GU817623; Euryops pectinatus (L.) Cass., AF460030; Farfugium japonicum (L.) Kitam., Wu 1439 (MO), GU817624; Faujasia squamosa (Bory) C.Jeffrey, Nordenstam 9210 (S), GU817625; Faujasiopsis flexuosa (Lam.) C.Jeffrey ssp. bourbonensis C.Jeffrey, Nordenstam 9202 (S), GU817626; Galinsoga quadriradiata Cav., Vincent 13227 (MU), GU817627; Garcibarrigoa telembina (Cuatrec.) Cuatrec., Holm-Nielsen et al. 6211 (S), GU817628; Gerbera sp., Vincent 13223 (MU), GU817629; PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 11 Graphistylis dichroa (Bong.) D.J.N.Hind, Silva 140 & Zelma (S), GU817630; Gymnodiscus capillaris (L.f.) Less., Coppejans EC1116 (U), GU817631; Cron & Goodman 650 (J), GU817632; Gynoxys soukupii Cuatrec., AF460048; Gynura divaricata (L.) DC. ssp. formosana (Kitam.) F.G.Davies, AF460047; Haastia pulvinaris Hook.f., AY554075; Helenium autumnale L., Tepe 1664 (MU), GU817633; Helianthus tuberosus L., Tepe 1672 (MU), GU817634; Helichrysum stoechas DC., Tepe 1092 (MU), GU817635; Herodotia haitiensis Urb. & Ekman, EF042153; Herreranthus rivalis (Greenm.) B.Nord., Nordenstam s.n. (2/12/2007) (S), GU817636; Hertia pallens (DC.) Kuntze, Koekemoer & Funk 1963 (US), GU817637; Hoehnephytum trixoides (Gard.) Cabr., Carmo 131 (BHCB), GU817638; Homogyne alpina (L.) Cass., Uhink 98-56 (MJG), GU817639; Hubertia riparia (DC.) C.Jeffrey, Labat, Phillipson & Lowry II 2022 (WAG), GU817640; Humbertacalia sp., Phillipson et al. 5641 (P), GU817641; Inula viscosa (L.) Aiton, Tepe 1142 (MU), GU817642; Io ambondrombeensis (Humbert) B.Nord., Malcomber et al. s.n. (P), GU817643; Iranecio cariensis (Boiss.) C.Jeffrey, Budak 1724, Aksoy & Hamazaoǧlu (Yozgat Türkiye Florası Herbaryumu), GU817644; Ischnea elachoglossa F.Muell., Beaman 12129 (MO), GU817645; Jacmaia incana (Sw.) B.Nord., Nordenstam 7914 (S), GU817646; Jacobaea vulgaris Gaertn., AF460068; AF548776; AY554084; Jessea multivenia (Benth.) H.Rob. & Cuatrec., Nordenstam 9161 (S), GU817647; Kleinia neriifolia Haw., AF460085; Lachanodes arborea (Roxb.) B.Nord., Cairns-Wicks s.n., GU817648; Lactuca canadensis L., Vincent 13128 (MU), GU817649; Lamprocephalus montanus B.Nord., Nordenstam 9542 (S), GU817650; Leonis trineurus (Griseb.) B.Nord., Smith & al. 3238 (S), GU817651; Lepidospartum burgessii B.L.Turner, EF042156; Ligularia PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 12 stenocephala (Maxim.) Matsum. & Koidz., AF460084; Lomanthus fosbergii (Cuatrec.) B. Nord. & Pelser, Øllgaard et al. 90697 (AAU), GU817729; Lopholaena coriifolia (Sond.) Phillips & C.A.Sm., Van der Westhuizen & Liamé; s.n. (PREM), GU817652; Lordhowea insularis (Benth.) B.Nord., AF460046; Luina hypoleuca Benth., Greuter 17706 (B), GU817653; Lundinia plumbea (Griseb.) B.Nord., Zanoni 45816 (JBSD), GU817654; Madia sp., Vincent 12912 (MU), GU817655; Mesogramma apiifolium DC., Giess 16074 (M), GU817656; Mikaniopsis clematoides (Sch.Bip. ex A.Rich.) Milne-Redh., Friis, Hounde & Jacobsen 499 (WAG), GU817657; Miricacalia makineana (Yatabe) Kitam., Kobayashi 33484 (HYO), GU817658; Misbrookea strigosissima (A.Gray) V.A.Funk, EF042157; Monticalia abietina (Willd. ex Wedd.) C.Jeffrey, Cleef 8411 (U), GU817659; Monticalia apiculata (Sch.Bip. ex Wedd.) C.Jeffrey, Alston 6935 (S), GU817660; Monticalia arbutifolia (Kunth.) C.Jeffrey, EF042158; Nelsonianthus tapianus (B.L.Turner) C.Jeffrey, Pérez & Kendizabal 457 (XAL), GU817661; Nemosenecio nikoensis (Miq.) B.Nord., Koyama 4079 (L), GU817662; Nesampelos lucens (Poir. in Lam.) B.Nord., EF042159; Neurolaena lobata (L.) R.Br., Acevedo 9316 (US), GU817663; Nordenstamia kingii (H.Rob. & Cuatrec.) B.Nord., Ståhl 5572A (S), GU817664; Oldfeltia polyphlebia (Griseb.) B.Nord. & Lundin, EF042161; Oresbia heterocarpa Cron & B.Nord., Nordenstam 9628 (S), GU817665; Othonna capensis Bailey, AF460083; Packera eurycephala (Torr. & A.Gray) W.A.Weber & Á.Löve, EF042162; Papuacalia dindondl (P.Royen) Veldkamp, EF042163; Paracalia jungioides (Hook. & Arn.) Cuatrec., King & Collins 9017 (UC), GU817666; Parafaujasia fontinalis (Cordem.) C.Jeffrey, Lorence 2602 (MO), GU817667; Paragynoxys neodendroides (Cuatrec.) Cuatrec., Cleef 9852a (U), PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 13 GU817668; Parasenecio adenostyloides (Franch. et Sav. ex Maxim.) H.Koyama, AF460051; Pentacalia arborea (Kunth) H.Rob. & Cuatrec., Øllgaard & Balslev 8298 (U), GU817669; Pericallis murrayi (Bornm.) B.Nord., EF042164; Perityle emoryi Torr., Atwood 26483 (MU), GU817670; Petasites albus (L.) Gaertn., OPTIMA Iter VIII 1084 (RNG), GU817671; Phaneroglossa bolusii (Oliv.) B.Nord., AF460042; Pippenalia delphinifolia (Rydb.) MacVaugh, Spellenberg & Bacon 11048 (TEX), GU817672; Pittocaulon praecox (Cav.) H.Rob. & Brettell, EF042165; Pladaroxylon leucadendron (G.Forst.) Hook.f., Cairns-Wicks s.n., GU817673; Pojarkovia pojarkovae (Schischk.) Greuter, Pelser cult. 191 (L), GU817674; Polymnia canadensis L., Tepe 1665 (MU), GU817675; Psacaliopsis purpusii (Greenm. ex Brandegee) H.Rob. & Brettell, Panero 2607, Davila & Tenorio (TEX), GU817676; Psacalium cirsiifolium (Zucc.) H.Rob. & Brettell, EF042160; Pseudogynoxys haenkei (DC.) Cabr., Molina R. 18431 (U), GU817677; Rainiera stricta (Greene) Greene, Dennis 2317 (U), GU817678; Robinsonecio gerberifolius (Sch.Bip. ex Hemsl.) T.M.Barkley & Janovec, Garcia P. 171 (MO), GU817679; Robinsonia berteroi (DC.) R.W.Sanders, Stuessy & Martic., AF460040; R. evenia Phil., Stuessy et al. 11308 (CONC), GU817680; R. gracilis Decne., EF042166; Stuessy et al. 11312 (CONC), GU817681; R. masafuerae Skottsb., Stuessy et al. s.n. (CONC), GU817682; Roldana suffulta (Greenm.) H.Rob. & Brettell, Rzedowski 36569 (UC), GU817683; Rugelia nudicaulis Shuttlew. ex Chapm., Feist, Phillippe, Molano-Flores, Busemeyer & Carroll 714 (TENN), GU817684; Scrobicaria ilicifolia (L.f.) B.Nord., Cleef, Garcia-B. & Jaramillo-M. 3528 (U), GU817719; Senecio acanthifolius Hombr. & Jacq., ex Decne., EF042154; S. adamantinus Bong., EF042167; S. algens Wedd., Beck 2879 (S), GU817685; S. arnicoides Hook. & Arn., PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 14 Zöllner 3474 (L), GU817686; S. boyacensis (Cuatrec.) Cuatrec., Gonzalez 180 (S), GU817687; S. brasiliensis (Spreng.) Less., UEC 50.171 (UEC), GU817688; S. cadiscus B.Nord. & Pelser, Rourke 1118 (S), GU817599; S. chilensis Less., EF042170; S. ctenophyllus Phil., Zöllner 3959 (L), GU817690; S. culcitioides Wedd., Øllgaard & Balslev 8822 (U), GU817689; S. deltoideus Less., EF042171; S. elegans L., Cron & Goodman 687 (J), GU817691; S. fistulosus Poepp. ex Less., Beck & Liberman 9672 (S), GU817692; S. flaccidus Less. var. flaccidus, Jardin Thuret cult. s.n. (MJG), GU817693; S. flavus (Decne.) Sch.Bip., EF042172; S. gayanus (Colla) Cabr., Rosas 2157 (INIA), GU817694; S. gramineus Harv., Hoener 2104 (WAG), GU817695; S. gregorii F.Muell., Albrecht 7091 (NT), GU817696; S. hemmendorffii Malme, EF042174; S. hieracium Remy, Baeza & Finot 3695 (CONC), GU817697; S. hispidissimus I.Thomps., Thompson 927 (MEL), GU817698; S. hollandii Compton, Germishuizen 6586 (WAG), GU817699; S. hypsobates Wedd., Øllgaard & Balslev 9863 (U), GU817700; S. ilicifolius Thunb., Cron & Goodman 686 (J), GU817701; S. integerrimus Nutt. var. exaltatus (Nutt.) Cronquist, Crockett 437 (MU), GU817702; S. involucratus (Kunth) DC., EF042142; S. jarae Phil., EF042175; S. lastarrianus Remy, Ricardi 3230 (B), GU817703; S. latifolius DC., EF042176; S. lineatus DC., AF460066; S. mairetianus DC., EF042178; S. medley-woodii Hutch. (Caputia medley-woodii ined.), AF460065; S. meuselii Rauh, EF042179; S. nemorensis L., AF460064; S. nevadensis Boiss. & Reut., Vogt 4172 (B), GU817704; S. niveo-aureus Cuatrec., Cleef 6665 (S), GU817705; S. oerstedianus Benth. ex Oerst., Nordenstam 9160 (S), GU817706; S. oreophyton Remy, Beck 21589 (S), GU817707; S. otites Kunze ex DC., EF042180; S. patens (Kunth) DC., Zak & Jaramillo 3427 (L), GU817708; S. pflanzii (Perkins) PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 15 Cuatrec., EF042148; S. pinifolius (L.) Lam., EF042181; S. pinnatifolius A.Rich. var. lanceolatus (Benth.) I.Thomps., Thompson 904 (MEL), GU817709; S. polygaloides Phil., Zöllner 5442 (L), GU817710; S. prenanthoides A.Rich., Thompson 915 (MEL), GU817711; S. psilocarpus R.O. Belcher & D.E. Albrecht, Thompson 937 (MEL), GU817712; S. retrorsus DC., EF042182; S. roseus Sch.Bip., Garcia P. 250 (L), GU817713; S. saxatilis Wall. ex DC., EF042183; S. scandens Buch.-Ham. ex D.Don, AF460061; S. scaposus DC. (Caputia scaposa ined.), AF460060; S. squarrosus A.Rich., Thompson 907 (MEL), GU817714; S. suaveolens (L.) Ell., EF042152; S. superandinus Cuatrec., EF042155; S. szyszylowiczii Hiern., Sagastegui A. et al. 15797 (S), GU817715; S. tauricola V.A.Matthews, Budak 1735, Aksoy & Hamazaoǧlu (Yozgat Türkiye Florası Herbaryumu), GU817716; S. thapsoides DC., EF042185; S. triodon Phil. var. triodon, Luebert & Teillier 2266 (CONC), GU817717; S. triqueter Less., EF042186; S. vestitus P.J.Bergius, Greuter 21766 (B), GU817718; S. viscosus L., AF460055; Shafera platyphylla Greenm., Nordenstam s.n. (S), GU817720; Sinacalia tangutica (Maxim.) B.Nord., Lian et al 93-54 (MO), GU817721; Sinosenecio euosmus (Hand.-Mazz.) B.Nord., Bouford, Donoghue & Ree 27625 (MO), GU817722; Solanecio biafrae (Oliv. & Hiern) C.Jeffrey, Brunel 6220 (B), GU817723; Steirodiscus capillaceus (Thunb.) Less., Cron & Goodman 653 (J), GU817724; Stilpnogyne bellidioides DC., Goldblatt & Porter 11729 (MO), GU817725; Symphyotrichum novaeangliae (L.) G.L.Nesom, Tepe 1675 (MU), GU817588; Syneilesis palmata (Thunb.) Maxim., Hata s.n. (4-Aug-1979) (CHR), GU817726; Synotis nagensium (C.B.Clarke) C.Jeffrey & Y.L.Chen, AF460031; Tagetes sp., Vincent 13224 (MU), GU817727; Talamancalia boquetensis (Standl.) H.Rob. & Cuatrec., Wilbur 15397 (NY), PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 16 GU817728; Telanthophora grandifolia (Less.) H.Rob. & Brettell, EF042187; Tephroseris integrifolia (L.) Holub ssp. aucheri (DC.) B.Nord., Budak 1688 & Hamazaoǧlu (Yozgat Türkiye Florası Herbaryumu), GU817730; Tetradymia filifolia Greene, EF042188; Traversia baccharoides Hook.f., AY554090; Tussilago farfara L., EF042189; Urostemon kirkii (Hook.f. ex Kirk) B.Nord., AY554065; Vernonia altissima Nutt., Tepe 1668 (MU), GU817731; Villasenoria orcuttii (Greenm.) B.L.Clark, Robles 389 (XAL), GU817732; Werneria caespitosa Wedd., Funk 11324 (US), GU817733; Xenophyllum poposum (Phil.) V.A.Funk, Funk 11351 (US), GU817734; Yermo xanthocephalus Dorn, Anderson 13691 (MO), GU817735; Zemisia discolor (Sw.) B.Nord., Webster et al. 8420 (S), GU817736. ndhF. Abrotanella emarginata (Gaudich.) Cass., AJ012679; Acrisione cymosa (J.Rémy) B.Nord., Lammers, Rodriques & Baeza 6447 (MU), GU817808; Adenostyles alpina (L.) Bluff & Fingerh., Schwerdtfeger 12251 (B), GU817826; Aequatorium asterotrichum B.Nord., Asplund 18263 (S), GU817827; Anacyclus valentinus L., Tepe 1186 & Moreno-Paez (MU), GU817828; Antillanthus almironcillo (M.Gómez) B.Nord., Ståhl, Cejas, Rova & Urquiola 1339 (MO), GU817829; Arbelaezaster ellsworthii (Cuatrec.) Cuatrec., Kilip & Smith 19413 (US), GU817830; Arnoglossum atriplicifolium (L.) H.Rob., EF537953; Arrhenechthites mixta (A.Rich.) Belcher, EF537954; Austrosynotis rectirama (Baker) C.Jeffrey, LaCroix 4001 (WAG), GU817831; Bahia dissecta (Gray) Britton, Tuhy 3868 (MU), GU817832; Barkleyanthus salicifolius (Kunth) H.Rob. & Brettell, Ramos Marchena 575 (B), GU817833; Barnadesia sp., Hunziker & Gamerro 12561 (MU), GU817789; Bedfordia PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 17 arborescens Hochr., Greuter 21319 (B), GU817834; Bethencourtia palmensis (Nees) Choisy, Nordenstam 9326 (S), GU817835; Blennosperma nanum S.F.Blake, L39433; Blepharispermum zanguebaricum Oliv. & Hiern., Medley 570 (MU), GU817809; L39456; Bolandia pedunculosa (DC.) Cron, Cron & Goodman 681 (J), GU817836; Brachyglottis repanda J.R.Forst. & G.Forst., Schwerdtfeger 17407 (B), GU817796; Cabreriella oppositicordia (Cuatrec.) Cuatrec., Romero-Castañeda 7428 (US), GU817810; Cacaliopsis nardosmia (A.Gray) A.Gray, Ertter 6502 (UC), GU817837; Calendula arvensis L., Watson 95-13C (MU), GU817838; Capelio caledonica B.Nord., Nordenstam 9644 (S), GU817839; Caucasalia parviflora (M.Bieb.) B.Nord., EF537955; Caxamarca sanchezii M.O.Dillon & Sagást., Sagástegui et al. 15548 (F), GU817840; Centropappus brunonis Hook.f., Wapstra MW2 (MEL), GU817841; Chaenactis douglasii (Hook.) Hook. & Arn., Vincent 8582 (MU), GU817842; Charadranaetes durandii (Klatt) Janovec & H.Rob., Gomez P. 2242 (S), GU817843; Chersodoma jodopappa (Sch.Bip.) Cabr., EF537956; Cichorium intybus L., Tepe 1673 (MU), GU817844; Cineraria abyssinica Sch.Bip. ex A.Rich., EF537957; Cirsium discolor (Muhl.) Spreng., Tepe 1670 (MU), GU817845; Cissampelopsis volubilis (Blume) Miq., Carvalho 3175 (MU), GU817846; Coreopsis sp., Vincent 13226 (MU), GU817847; Corymbium enerve Markötter, Trinder-Smith 124 (US), GU817848; Cotula coronopifolia L., Watson & Panero 94-26 (MU), GU817849; Crassocephalum crepidioides (Benth.) S.Moore, EF537958; Cremanthodium humile Maxim., EF537959; Cremanthodium humile Maxim., AY723234; Crocidium multicaule Hook., Bartholomew 5749 (MO), GU817805; Curio rowleyanus (H.Jacobsen) P.V.Heath, EF538008; Dauresia alliariifolia (O.Hoffm.) B.Nord & Pelser, Müller & Tilson 907 PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 18 (M), GU817850; Delairea odorata Lem., L39435; Dendrophorbium bomanii (R.E.Fr.) C.Jeffrey, EF537961; Dendrosenecio kilimanjari (Mildbr.) E.B.Knox ssp. cottonii (Hutch. & G.Taylor) E.B.Knox, Knox 50 (MICH), GU817851; Digitacalia jatrophoides (Kunth) Pippen, Panero 2330 & Salinas (TEX), GU817852; Dolichoglottis lyallii (Hook.f.) B.Nord., Strid 22172 (MO), GU817793; Dolichorrhiza caucasica (M.Bieb.) Galushko, Schneeweiss 44 (WU), GU817853; Dorobaea pimpinellifolia (Kunth) B.Nord., Tepe 1467 (MU), GU817854; Doronicum pardalianches L., EF537962; Ekmaniopappus mikanioides (Urb. & Ekman) Borhidi, Nordenstam & Lundin 500 (S), GU817817; Elekmania picardae (Krug & Urb.) B.Nord., EF537963; Emilia coccinea (Sims) G.Don., EF537964; Endocellion sibiricum (J.F.Gmel.) J.Toman, Schönswetter & Tribsch T480 (WU), GU817855; Erato polymnoides DC., Tepe 1456 (MU), GU817790; Erechtites valerianifolius (Link ex Spreng.) Less. ex DC., EF537965; Eriothrix lycopodioides DC., Nordenstam 9208 (S), GU817856; Eupatorium serotinum Michx., Tepe 1667 (MU), GU817857; Euryops pectinatus (L.) Cass., EF537966; Farfugium japonicum (L.) Kitam., AY723242; Faujasia squamosa (Bory) C.Jeffrey, Nordenstam 9210 (S), GU817858; Faujasiopsis flexuosa (Lam.) C.Jeffrey ssp. bourbonensis C.Jeffrey, Nordenstam 9202 (S), GU817859; Galinsoga quadriradiata Cav., Vincent 13227 (MU), GU817860; AF384727; Garcibarrigoa telembina (Cuatrec.) Cuatrec., Holm-Nielsen et al. 6211 (S), GU817861; Gerbera sp., Vincent 13223 (MU), GU817862; Graphistylis dichroa (Bong.) D.J.N.Hind, Silva 140 & Zelma (S), GU817863; Gymnodiscus capillaris (L.f.) Less., Coppejans EC1116 (U), GU817864; Gynoxys soukupii Cuatrec., EF537967; Gynura divaricata (L.) DC. ssp. formosana (Kitam.) F.G.Davies, Panero & Hsiao 6457 (TEX), PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 19 GU817865; Helenium autumnale L., Tepe 1664 (MU), GU817866; Helianthus tuberosus L., Tepe 1672 (MU), GU817867; Helichrysum stoechas DC., Tepe 1092 (MU), GU817868; Herodotia haitiensis Urb. & Ekman, EF537969; Herreranthus rivalis (Greenm.) B.Nord., Nordenstam s.n. (2/12/2007) (S), GU817869; Hertia pallens (DC.) Kuntze, Koekemoer & Funk 1963 (US), GU817870; Hoehnephytum trixoides (Gard.) Cabr., Carmo 131 (BHCB), GU817871; Homogyne alpina (L.) Cass., Uhink 98-56 (MJG), GU817811; Hubertia riparia (DC.) C.Jeffrey, Labat, Phillipson & Lowry II 2022 (WAG), GU817872; Humbertacalia sp., Phillipson et al. 5641 (P), GU817873; Inula viscosa (L.) Aiton, Tepe 1142 (MU), GU817874; Io ambondrombeensis (Humbert) B.Nord., Malcomber et al. 1380 (MO), GU817875; Iranecio cariensis (Boiss.) C.Jeffrey, Budak 1724, Aksoy & Hamazaoǧlu (Yozgat Türkiye Florası Herbaryumu), GU817876; Ischnea elachoglossa F.Muell., Beaman 12129 (MO), GU817877; Jacmaia incana (Sw.) B.Nord., Nordenstam 7914 (S), GU817798; Jacobaea vulgaris Gaertn., EF537971; Jessea multivenia (Benth.) H.Rob. & Cuatrec., Nordenstam 9161 (S), GU817878; Kleinia neriifolia Haw., EF537972; Lachanodes arborea (Roxb.) B.Nord., Cairns-Wicks s.n., GU817879; Lactuca canadensis L., Vincent 13128 (MU), GU817880; Lamprocephalus montanus B.Nord., Nordenstam 9542 (S), GU817881; Leonis trineurus (Griseb.) B.Nord., Smith & al. 3238 (S), GU817882; Lepidospartum burgessii B.L.Turner, EF537974; Ligularia stenocephala (Maxim.) Matsum. & Koidz., EF537975; Lomanthus fosbergii (Cuatrec.) B. Nord. & Pelser, Øllgaard et al. 90697 (AAU), GU817935; Lopholaena coriifolia (Sond.) Phillips & C.A.Sm., L39434; Lordhowea insularis (Benth.) B.Nord., Trodd & Thorne 3703 (L), GU817799; Luina hypoleuca Benth., Greuter 17706 (B), GU817883; PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 20 Lundinia plumbea (Griseb.) B.Nord., Zanoni 45816 (JBSD), GU817806; Madia sp., Vincent 12912 (MU), GU817807; Mesogramma apiifolium DC., Giess 16074 (M), GU817792; Mikaniopsis clematoides (Sch.Bip. ex A.Rich.) Milne-Redh., De Wilde & De Wilde-Duyfjes 9006 (B), GU817884; Miricacalia makineana (Yatabe) Kitam., Kobayashi 33484 (HYO), GU817812; Misbrookea strigosissima (A.Gray) V.A.Funk, EF537976; Monticalia abietina (Willd. ex Wedd.) C.Jeffrey, Cleef 8411 (U), GU817885; Monticalia apiculata (Sch.Bip. ex Wedd.) C.Jeffrey, Alston 6935 (S), GU817886; Monticalia arbutifolia (Kunth.) C.Jeffrey, EF537977; Nemosenecio nikoensis (Miq.) B.Nord., Koyama 4079 (L), GU817887; Nesampelos lucens (Poir. in Lam.) B.Nord., EF537978; Neurolaena lobata (L.) R.Br., AF384754; Nordenstamia kingii (H.Rob. & Cuatrec.) B.Nord., Ståhl 5572A (S), GU817888; Oldfeltia polyphlebia (Griseb.) B.Nord. & Lundin, EF537980; Oresbia heterocarpa Cron & B.Nord., Nordenstam 9628 (S), GU817889; Othonna capensis Bailey, EF537981; Packera eurycephala (Torr. & A.Gray) W.A.Weber & Á.Löve, EF537982; Papuacalia dindondl (P.Royen) Veldkamp, EF537983; Parafaujasia fontinalis (Cordem.) C.Jeffrey, Lorence 2602 (MO), GU817890; Paragynoxys neodendroides (Cuatrec.) Cuatrec., Cleef 9852a (U), GU817813; Parasenecio adenostyloides (Franch. et Sav. ex Maxim.) H.Koyama, EF537984; Pentacalia arborea (Kunth) H.Rob. & Cuatrec., Øllgaard & Balslev 8298 (U), GU817891; Pericallis murrayi (Bornm.) B.Nord., EF537985; Perityle emoryi Torr., Atwood 26483 (MU), GU817892; Petasites albus (L.) Gaertn., Cubr 40398 (B), GU817893; OPTIMA Iter VIII 1084 (RNG), GU817819; Phaneroglossa bolusii (Oliv.) B.Nord., AF384765; Pippenalia delphinifolia (Rydb.) MacVaugh, Spellenberg & Bacon 11048 (TEX), GU817894; PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 21 Pittocaulon praecox (Cav.) H.Rob. & Brettell, EF537986; Pladaroxylon leucadendron (G.Forst.) Hook.f., Cairns-Wicks s.n., GU817895; Pojarkovia pojarkovae (Schischk.) Greuter, Pelser cult. 191 (L), GU817896; Polymnia canadensis L., Tepe 1665 (MU), GU817897; AF384769; Psacaliopsis purpusii (Greenm. ex Brandegee) H.Rob. & Brettell, Panero 2607, Davila & Tenorio (TEX), GU817898; Psacalium cirsiifolium (Zucc.) H.Rob. & Brettell, EF537979; Pseudogynoxys haenkei (DC.) Cabr., Molina R. 18431 (U), GU817899; Rainiera stricta (Greene) Greene, Dennis 2317 (U), GU817900; Robinsonecio gerberifolius (Sch.Bip. ex Hemsl.) T.M.Barkley & Janovec, Garcia P. 171 (MO), GU817901; Robinsonia berteroi (DC.) R.W.Sanders, Stuessy & Martic., EF537987; R. evenia Phil., Stuessy et al. 11308 (CONC), GU817902; R. gracilis Decne., EF537988; Stuessy et al. 11282 (CONC), GU817903; R. masafuerae Skottsb., Stuessy et al. s.n. (CONC), GU817818; Roldana suffulta (Greenm.) H.Rob. & Brettell, Rzedowski 36569 (UC), GU817800; Rugelia nudicaulis Shuttlew. ex Chapm., Feist, Phillippe, Molano-Flores, Busemeyer & Carroll 714 (TENN), GU817904; Scrobicaria ilicifolia (L.f.) B.Nord., Cleef, Garcia-B. & Jaramillo-M. 3528 (U), GU817814; Senecio acanthifolius Hombr. & Jacq., ex Decne., EF537970; S. adamantinus Bong., EF537989; S. algens Wedd., Beck 2879 (S), GU817905; S. arnicoides Hook. & Arn., Zöllner 3474 (L), GU817801; S. boyacensis (Cuatrec.) Cuatrec., Gonzalez 180 (S), GU817906; S. brasiliensis (Spreng.) Less., UEC 50.171 (UEC), GU817820; S. cadiscus B.Nord. & Pelser, Goldblatt & Manning 10690 (MO), GU817794; S. chilensis Less., EF537992; S. ctenophyllus Phil., Zöllner 3959 (L), GU817804; S. culcitioides Wedd., Øllgaard & Balslev 8822 (U), GU817907; S. deltoideus Less., EF537993; S. elegans L., Cron & Goodman 687 (J), GU817908; S. fistulosus Poepp. ex Less., Beck & Liberman PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 22 9672 (S), GU817909; S. flaccidus Less. var. flaccidus, Jardin Thuret cult. s.n. (MJG), GU817910; S. flavus (Decne.) Sch.Bip., EF537994; S. gayanus (Colla) Cabr., Rosas 2157 (INIA), GU817911; S. gramineus Harv., Hoener 2104 (WAG), GU817802; S. gregorii F.Muell., Albrecht 7091 (NT), GU817912; S. hemmendorffii Malme, EF537996; S. hieracium Remy, Baeza & Finot 3695 (CONC), GU817913; S. hispidissimus I.Thomps., Thompson 927 (MEL), GU817914; S. hollandii Compton, Germishuizen 6586 (WAG), GU817821; S. hypsobates Wedd., Øllgaard & Balslev 9863 (U), GU817822; S. ilicifolius Thunb., Cron & Goodman 686 (J), GU817915; S. integerrimus Nutt. var. exaltatus (Nutt.) Cronquist, Crockett 437 (MU), GU817916; S. involucratus (Kunth) DC., EF537952; S. jarae Phil., EF537997; S. lastarrianus Remy, Ricardi 3230 (B), GU817823; S. latifolius DC., EF537998; S. lineatus DC., EF537999; S. mairetianus DC., EF538001; S. medley-woodii Hutch. (Caputia medley-woodii ined.), EF538002; S. meuselii Rauh, EF538003; S. nemorensis L., EF538004; AY723209; S. nevadensis Boiss. & Reut., Vogt 4172 (B), GU817917; S. niveo-aureus Cuatrec., Cleef 6665 (S), GU817918; S. oerstedianus Benth. ex Oerst., Nordenstam 9160 (S), GU817919; S. oreophyton Remy, Beck 21589 (S), GU817920; S. otites Kunze ex DC., EF538005; S. patens (Kunth) DC., Zak & Jaramillo 3427 (L), GU817795; S. pflanzii (Perkins) Cuatrec., EF537960; S. pinifolius (L.) Lam., EF538006; S. pinnatifolius A.Rich. var. lanceolatus (Benth.) I.Thomps., Thompson 904 (MEL), GU817922; S. polygaloides Phil., Zöllner 5442 (L), GU817923; S. prenanthoides A.Rich., Thompson 915 (MEL), GU817924; S. psilocarpus R.O. Belcher & D.E. Albrecht, Thompson 937 (MEL), GU817925; S. retrorsus DC., EF538007; S. roseus Sch.Bip., Garcia P. 250 (L), GU817926; S. saxatilis Wall. ex DC., EF538009; S. PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 23 scandens Buch.-Ham. ex D.Don, EF538010; AY723214; S. scaposus DC. (Caputia scaposa ined.), EF538011; S. squarrosus A.Rich., Thompson 907 (MEL), GU817927; S. stigophlebius Baker, EF538012; S. suaveolens (L.) Ell., EF537968; S. superandinus Cuatrec., EF537973; S. szyszylowiczii Hiern., Sagastegui A. et al. 15797 (S), GU817928; S. tauricola V.A.Matthews, Budak 1735, Aksoy & Hamazaoǧlu (Yozgat Türkiye Florası Herbaryumu), GU817929; S. thapsoides DC., EF538014; S. triodon Phil. var. triodon, Luebert & Teillier 2266 (CONC), GU817930; S. triqueter Less., EF538015; S. vestitus P.J.Bergius, Greuter 21766 (B), GU817824; S. viscosus L., EF538016; Shafera platyphylla Greenm., Nordenstam s.n. (S), GU817921; Sinacalia tangutica (Maxim.) B.Nord., AY723243; Sinosenecio euosmus (Hand.-Mazz.) B.Nord., Bouford, Donoghue & Ree 27625 (MO), GU817788; Solanecio biafrae (Oliv. & Hiern) C.Jeffrey, Brunel 6220 (B), GU817931; Steirodiscus capillaceus (Thunb.) Less., Cron & Goodman 653 (J), GU817932; Stilpnogyne bellidioides DC., Goldblatt & Porter 11729 (MO), GU817933; Symphyotrichum novae-angliae (L.) G.L.Nesom, Tepe 1675 (MU), GU817797; Syneilesis palmata (Thunb.) Maxim., L39432; Synotis nagensium (C.B.Clarke) C.Jeffrey & Y.L.Chen, EF538018; Tagetes sp., Vincent 13224 (MU), GU817934; Talamancalia boquetensis (Standl.) H.Rob. & Cuatrec., Wilbur 15397 (NY), GU817816; Telanthophora grandifolia (Less.) H.Rob. & Brettell, EF538019; Tephroseris integrifolia (L.) Holub ssp. aucheri (DC.) B.Nord., Budak 1688 & Hamazaoǧlu (Yozgat Türkiye Florası Herbaryumu), GU817936; Tetradymia filifolia Greene, EF538020; Tussilago farfara L., AY723239; Urostemon kirkii (Hook.f. ex Kirk) B.Nord., Cooper & Nickerson s.n. (US), GU817791; Vernonia altissima Nutt., Tepe 1668 (MU), GU817937; Villasenoria orcuttii (Greenm.) PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 24 B.L.Clark, Robles 389 (XAL), GU817815; Werneria caespitosa Wedd., Funk 11324 (US), GU817825; Xenophyllum poposum (Phil.) V.A.Funk, Funk 11351 (US), GU817938; Yermo xanthocephalus Dorn, Anderson 13691 (MO), GU817939; Zemisia discolor (Sw.) B.Nord., Webster et al. 8420 (S), GU817803. psbA-trnH. Abrotanella emarginata (Gaudich.) Cass., EF538021; Acrisione cymosa (J.Rémy) B.Nord., Lammers, Rodriques & Baeza 6447 (MU), GU818329; Adenostyles alpina (L.) Bluff & Fingerh., Schwerdtfeger 12251 (B), GU818330; Aequatorium asterotrichum B.Nord., Asplund 18263 (S), GU818331; Anacyclus valentinus L., Tepe 1186 & Moreno-Paez (MU), GU818332; Antillanthus almironcillo (M.Gómez) B.Nord., El-Ghazaby et al. 23.608 (S), GU818333; Arbelaezaster ellsworthii (Cuatrec.) Cuatrec., Kilip & Smith 19413 (US), GU818334; Arnoglossum atriplicifolium (L.) H.Rob., EF538056; Arrhenechthites mixta (A.Rich.) Belcher, EF538062; Austrosynotis rectirama (Baker) C.Jeffrey, LaCroix 4001 (MO), GU818336; Bahia dissecta (Gray) Britton, Tuhy 3868 (MU), GU818337; Barkleyanthus salicifolius (Kunth) H.Rob. & Brettell, Genelle & Fleming 861 (B), GU818338; Barnadesia sp., Hunziker & Gamerro 12561 (MU), GU818339; Bedfordia arborescens Hochr., Greuter 21319 (B), GU818340; DQ131861; Bethencourtia palmensis (Nees) Choisy, Nordenstam 9326 (S), GU818341; Blennosperma nanum S.F.Blake, EF538023; DQ131853; Blepharispermum zanguebaricum Oliv. & Hiern., Medley 570 (MU), GU818342; Bolandia pedunculosa (DC.) Cron, Cron & Goodman 681 (J), GU818343; Brachyglottis repanda J.R.Forst. & G.Forst., Schwerdtfeger 17407 (B), GU818344; Cabreriella oppositicordia (Cuatrec.) Cuatrec., Romero-Castañeda 7428 (US), PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 25 GU818345; Cacaliopsis nardosmia (A.Gray) A.Gray, DQ131859; Calendula arvensis L., Watson 95-13C (MU), GU818348; Capelio caledonica B.Nord., Nordenstam 9644 (S), GU818349; Caucasalia parviflora (M.Bieb.) B.Nord., EF538024; Caxamarca sanchezii M.O.Dillon & Sagást., Sagástegui et al. 15548 (F), GU818350; Centropappus brunonis Hook.f., Wapstra MW2 (MEL), GU818351; Chaenactis douglasii (Hook.) Hook. & Arn., Vincent 8582 (MU), GU818352; Charadranaetes durandii (Klatt) Janovec & H.Rob., Gomez P. 2242 (S), GU818353; Chersodoma jodopappa (Sch.Bip.) Cabr., EF538025; Cichorium intybus L., Tepe 1673 (MU), GU818354; Cineraria abyssinica Sch.Bip. ex A.Rich., EF538026; Cirsium discolor (Muhl.) Spreng., Tepe 1670 (MU), GU818355; Cissampelopsis volubilis (Blume) Miq., Carvalho 3175 (MU), GU818356; Coreopsis sp., Vincent 13226 (MU), GU818357; Corymbium enerve Markötter, Trinder-Smith 124 (US), GU818358; Cotula coronopifolia L., Watson & Panero 94-26 (MU), GU818359; Crassocephalum crepidioides (Benth.) S.Moore, AY155640; Cremanthodium humile Maxim., EF538061; Crocidium multicaule Hook., Bartholomew 5749 (MO), GU818360; Curio rowleyanus (H.Jacobsen) P.V.Heath, EF538047; Dauresia alliariifolia (O.Hoffm.) B.Nord & Pelser, Müller & Tilson 907 (M), GU818361; Delairea odorata Lem., Tepe 2180, Pelser & Marticorena (MU), GU818362; Dendrocacalia crepidifolia (Nakai) Nakai, Kobayashi 190493 (MO), GU818363; Dendrophorbium bomanii (R.E.Fr.) C.Jeffrey, EF538028; Dendrosenecio kilimanjari (Mildbr.) E.B.Knox ssp. cottonii (Hutch. & G.Taylor) E.B.Knox, Knox 50 (MICH), GU818364; Digitacalia jatrophoides (Kunth) Pippen, Cruden 1086 (UC), GU818365; Dolichoglottis lyallii (Hook.f.) B.Nord., Strid 22172 (MO), GU818366; Dolichorrhiza caucasica (M.Bieb.) Galushko, Schneeweiss 44 (WU), GU818367; PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 26 Dorobaea pimpinellifolia (Kunth) B.Nord., Tepe 1467 (MU), GU818368; Doronicum pardalianches L., EF538088; Ekmaniopappus mikanioides (Urb. & Ekman) Borhidi, Zanoni et al. 33908 (JBSD), GU818369; Elekmania picardae (Krug & Urb.) B.Nord., EF538070; Emilia coccinea (Sims) G.Don., EF538029; Endocellion sibiricum (J.F.Gmel.) J.Toman, Schönswetter & Tribsch T480 (WU), GU818370; Erato polymnoides DC., Tepe 1456 (MU), GU818371; Erechtites valerianifolius (Link ex Spreng.) Less. ex DC., EF538030; Eriothrix lycopodioides DC., Nordenstam 9208 (S), GU818372; Eupatorium serotinum Michx., Tepe 1667 (MU), GU818373; Euryops pectinatus (L.) Cass., EF538031; Farfugium japonicum (L.) Kitam., Wu 1439 (MO), GU818374; Faujasia squamosa (Bory) C.Jeffrey, Nordenstam 9210 (S), GU818375; Faujasiopsis flexuosa (Lam.) C.Jeffrey ssp. bourbonensis C.Jeffrey, Nordenstam 9202 (S), GU818376; Galinsoga quadriradiata Cav., Vincent 13227 (MU), GU818377; Garcibarrigoa telembina (Cuatrec.) Cuatrec., Holm-Nielsen et al. 6211 (S), GU818378; Gerbera sp., Vincent 13223 (MU), GU818379; Graphistylis dichroa (Bong.) D.J.N.Hind, Silva 140 & Zelma (S), GU818380; Gymnodiscus capillaris (L.f.) Less., Coppejans EC1116 (U), GU818381; Nordenstam 9631 (S), GU818382; Cron & Goodman 650 (J), GU818383; Gynoxys soukupii Cuatrec., EF538051; Gynura divaricata (L.) DC. ssp. formosana (Kitam.) F.G.Davies, Panero & Hsiao 6457 (TEX), GU818384; Helenium autumnale L., Tepe 1664 (MU), GU818385; Helianthus tuberosus L., Tepe 1672 (MU), GU818386; Helichrysum stoechas DC., Tepe 1092 (MU), GU818387; Herodotia haitiensis Urb. & Ekman, EF538033; Herreranthus rivalis (Greenm.) B.Nord., Nordenstam s.n. (2/12/2007) (S), GU818388; Hertia pallens (DC.) Kuntze, Koekemoer & Funk 1963 (US), GU818389; Hoehnephytum trixoides PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 27 (Gard.) Cabr., Carmo 131 (BHCB), GU818390; Homogyne alpina (L.) Cass., Uhink 98-56 (MJG), GU818391; Hubertia riparia (DC.) C.Jeffrey, Labat, Phillipson & Lowry II 2022 (WAG), GU818392; Humbertacalia sp., Phillipson et al. 5641 (P), GU818393; Inula viscosa (L.) Aiton, Tepe 1142 (MU), GU818394; Io ambondrombeensis (Humbert) B.Nord., Malcomber et al. 1380 (MO), GU818395; Iranecio cariensis (Boiss.) C.Jeffrey, Budak 1724, Aksoy & Hamazaoǧlu (Yozgat Türkiye Florası Herbaryumu), GU818396; Ischnea elachoglossa F.Muell., Beaman 12129 (MO), GU818397; Jacmaia incana (Sw.) B.Nord., Nordenstam 7914 (S), GU818398; Jacobaea vulgaris Gaertn., AY155657; Jessea multivenia (Benth.) H.Rob. & Cuatrec., Nordenstam 9161 (S), GU818399; Kleinia neriifolia Haw., AY155642; Lachanodes arborea (Roxb.) B.Nord., Cairns-Wicks s.n., GU818400; Lactuca canadensis L., Vincent 13128 (MU), GU818401; Lamprocephalus montanus B.Nord., Nordenstam 9542 (S), GU818402; Leonis trineurus (Griseb.) B.Nord., Smith & al. 3238 (S), GU818403; Lepidospartum burgessii B.L.Turner, EF538053; Ligularia stenocephala (Maxim.) Matsum. & Koidz., EF538078; Lomanthus fosbergii (Cuatrec.) B. Nord. & Pelser, Øllgaard et al. 90697 (AAU), GU818480; Lopholaena coriifolia (Sond.) Phillips & C.A.Sm., Van der Westhuizen & Liamé; s.n. (PREM), GU818404; Lordhowea insularis (Benth.) B.Nord., Trodd & Thorne 3703 (L), GU818405; Luina hypoleuca Benth., Greuter 17706 (B), GU818406; DQ131858; Lundinia plumbea (Griseb.) B.Nord., Zanoni 45816 (JBSD), GU818407; Madia sp., Vincent 12912 (MU), GU818408; Mattfeldia triplinervis Urb., Ekman H7492 (S), GU818409; Mesogramma apiifolium DC., Giess 16074 (M), GU818410; Mikaniopsis clematoides (Sch.Bip. ex A.Rich.) Milne-Redh., De Wilde & De Wilde-Duyfjes 9006 PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 28 (B), GU818411; Misbrookea strigosissima (A.Gray) V.A.Funk, EF538036; Monticalia abietina (Willd. ex Wedd.) C.Jeffrey, Cleef 8411 (U), GU818412; Monticalia apiculata (Sch.Bip. ex Wedd.) C.Jeffrey, Alston 6935 (S), GU818413; Monticalia arbutifolia (Kunth.) C.Jeffrey, EF538037; Nelsonianthus tapianus (B.L.Turner) C.Jeffrey, Pérez & Kendizabal 457 (XAL), GU818414; Nemosenecio nikoensis (Miq.) B.Nord., Koyama 4079 (L), GU818415; Nesampelos lucens (Poir. in Lam.) B.Nord., EF538054; Neurolaena lobata (L.) R.Br., Acevedo 9316 (US), GU818416; Nordenstamia kingii (H.Rob. & Cuatrec.) B.Nord., Ståhl 5572A (S), GU818417; Oldfeltia polyphlebia (Griseb.) B.Nord. & Lundin, EF538058; Oresbia heterocarpa Cron & B.Nord., Nordenstam 9628 (S), GU818418; Othonna capensis Bailey, EF538039; Packera eurycephala (Torr. & A.Gray) W.A.Weber & Á.Löve, EF538040; Papuacalia dindondl (P.Royen) Veldkamp, EF538041; Paracalia jungioides (Hook. & Arn.) Cuatrec., King & Collins 9017 (UC), GU818419; Parafaujasia fontinalis (Cordem.) C.Jeffrey, Lorence 2602 (MO), GU818420; Parasenecio adenostyloides (Franch. et Sav. ex Maxim.) H.Koyama, EF538055; Pentacalia arborea (Kunth) H.Rob. & Cuatrec., Øllgaard & Balslev 8298 (U), GU818421; Pericallis murrayi (Bornm.) B.Nord., EF538060; Perityle emoryi Torr., Atwood 26483 (MU), GU818422; Petasites albus (L.) Gaertn., OPTIMA Iter VIII 1084 (RNG), GU818423; Phaneroglossa bolusii (Oliv.) B.Nord., EF538069; Pippenalia delphinifolia (Rydb.) MacVaugh, Spellenberg & Bacon 11048 (TEX), GU818424; Pittocaulon praecox (Cav.) H.Rob. & Brettell, EF538042; DQ131854; Pladaroxylon leucadendron (G.Forst.) Hook.f., Cairns-Wicks s.n., GU818425; Pojarkovia pojarkovae (Schischk.) Greuter, Pelser cult. 191 (L), GU818426; Polymnia canadensis L., Tepe 1665 (MU), GU818427; Psacaliopsis PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 29 purpusii (Greenm. ex Brandegee) H.Rob. & Brettell, Panero 2607, Davila & Tenorio (TEX), GU818428; Psacalium cirsiifolium (Zucc.) H.Rob. & Brettell, EF538038; Pseudogynoxys haenkei (DC.) Cabr., Molina R. 18431 (U), GU818429; Rainiera stricta (Greene) Greene, Dennis 2317 (U), GU818430; Robinsonecio gerberifolius (Sch.Bip. ex Hemsl.) T.M.Barkley & Janovec, Garcia P. 171 (MO), GU818431; Robinsonia berteroi (DC.) R.W.Sanders, Stuessy & Martic., EF538082; R. evenia Phil., Stuessy et al. 11308 (CONC), GU818432; R. gracilis Decne., EF538068; Stuessy et al. 11282 (CONC), GU818433; Stuessy et al. 11312 (CONC), GU818434; R. masafuerae Skottsb., Stuessy et al. s.n. (CONC), GU818435; Roldana suffulta (Greenm.) H.Rob. & Brettell, Rzedowski 36569 (UC), GU818436; Rugelia nudicaulis Shuttlew. ex Chapm., Feist, Phillippe, Molano-Flores, Busemeyer & Carroll 714 (TENN), GU818437; Scrobicaria ilicifolia (L.f.) B.Nord., Cleef, Garcia-B. & Jaramillo-M. 3528 (U), GU818470; Senecio acanthifolius Hombr. & Jacq., ex Decne., EF538034; S. adamantinus Bong., EF538059; S. algens Wedd., Beck 2879 (S), GU818438; S. arnicoides Hook. & Arn., Zöllner 3474 (L), GU818439; S. boyacensis (Cuatrec.) Cuatrec., Gonzalez 180 (S), GU818440; S. brasiliensis (Spreng.) Less., UEC 50.171 (UEC), GU818441; S. cadiscus B.Nord. & Pelser, Goldblatt & Manning 10690 (MO), GU818346; Rourke 1118 (S), GU818347; S. chilensis Less., EF538043; S. ctenophyllus Phil., Zöllner 3959 (L), GU818443; S. culcitioides Wedd., Øllgaard & Balslev 8822 (U), GU818442; S. deltoideus Less., EF538076; S. elegans L., Cron & Goodman 687 (J), GU818444; S. fistulosus Poepp. ex Less., Beck & Liberman 9672 (S), GU818445; S. flaccidus Less., DQ131873; S. flavus (Decne.) Sch.Bip., EF538087; S. gayanus (Colla) Cabr., Rosas 2157 (INIA), GU818446; S. gramineus Harv., Hoener 2104 (WAG), GU818447; S. PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 30 gregorii F.Muell., Albrecht 7091 (NT), GU818448; S. hemmendorffii Malme, EF538063; S. hieracium Remy, Baeza & Finot 3695 (CONC), GU818449; S. hispidissimus I.Thomps., Thompson 927 (MEL), GU818450; S. hollandii Compton, Germishuizen 6586 (WAG), GU818451; S. hypsobates Wedd., Øllgaard & Balslev 9863 (U), GU818452; S. ilicifolius Thunb., Cron & Goodman 686 (J), GU818453; S. integerrimus Nutt., DQ131871; S. involucratus (Kunth) DC., EF538022; S. jarae Phil., EF538044; S. lastarrianus Remy, Ricardi 3230 (B), GU818454; S. latifolius DC., EF538084; S. lineatus DC., EF538075; S. mairetianus DC., EF538045; S. medleywoodii Hutch. (Caputia medley-woodii ined.), EF538080; S. meuselii Rauh, EF538073; S. nemorensis L., EF538046; S. nevadensis Boiss. & Reut., Vogt 4172 (B), GU818455; S. niveo-aureus Cuatrec., Cleef 6665 (S), GU818456; S. oerstedianus Benth. ex Oerst., Nordenstam 9160 (S), GU818457; S. oreophyton Remy, Beck 21589 (S), GU818458; S. otites Kunze ex DC., EF538065; S. patens (Kunth) DC., Zak & Jaramillo 3427 (L), GU818459; S. pflanzii (Perkins) Cuatrec., EF538027; S. pinifolius (L.) Lam., EF538079; S. pinnatifolius A.Rich. var. lanceolatus (Benth.) I.Thomps., Thompson 904 (MEL), GU818460; S. polygaloides Phil., Zöllner 5442 (L), GU818461; S. prenanthoides A.Rich., Thompson 915 (MEL), GU818462; S. psilocarpus R.O. Belcher & D.E. Albrecht, Thompson 937 (MEL), GU818463; S. retrorsus DC., EF538077; S. roseus Sch.Bip., Garcia P. 250 (L), GU818464; S. saxatilis Wall. ex DC., EF538086; S. scandens Buch.-Ham. ex D.Don, EF538048; S. scaposus DC. (Caputia scaposa ined.), EF538049; S. squarrosus A.Rich., Thompson 907 (MEL), GU818465; S. stigophlebius Baker, EF538072; S. suaveolens (L.) Ell., EF538032; S. superandinus Cuatrec., EF538035; S. szyszylowiczii Hiern., Sagastegui A. et al. 15797 (S), GU818466; S. PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 31 tauricola V.A.Matthews, Budak 1735, Aksoy & Hamazaoǧlu (Yozgat Türkiye Florası Herbaryumu), GU818467; S. thapsoides DC., EF538085; S. triodon Phil. var. triodon, Luebert & Teillier 2266 (CONC), GU818468; S. triqueter Less., EF538074; S. vestitus P.J.Bergius, Greuter 21766 (B), GU818469; S. viscosus L., AY155666; Shafera platyphylla Greenm., Nordenstam s.n. (S), GU818471; Sinacalia tangutica (Maxim.) B.Nord., Lian et al 93-54 (MO), GU818472; Sinosenecio euosmus (Hand.-Mazz.) B.Nord., Bouford, Donoghue & Ree 27625 (MO), GU818473; Solanecio biafrae (Oliv. & Hiern) C.Jeffrey, Brunel 6220 (B), GU818474; Steirodiscus capillaceus (Thunb.) Less., Cron & Goodman 653 (J), GU818475; Stilpnogyne bellidioides DC., Goldblatt & Porter 11729 (MO), GU818476; Symphyotrichum novae-angliae (L.) G.L.Nesom, Tepe 1675 (MU), GU818335; Syneilesis palmata (Thunb.) Maxim., Hata s.n. (4-Aug-1979) (CHR), GU818477; Synotis nagensium (C.B.Clarke) C.Jeffrey & Y.L.Chen, EF538052; Tagetes sp., Vincent 13224 (MU), GU818478; Talamancalia boquetensis (Standl.) H.Rob. & Cuatrec., Wilbur 15397 (NY), GU818479; Telanthophora grandifolia (Less.) H.Rob. & Brettell, EF538050; Tephroseris integrifolia (L.) Holub ssp. aucheri (DC.) B.Nord., Budak 1688 & Hamazaoǧlu (Yozgat Türkiye Florası Herbaryumu), GU818481; Tetradymia filifolia Greene, EF538057; Tussilago farfara L., DQ131857; Urostemon kirkii (Hook.f. ex Kirk) B.Nord., Cooper & Nickerson s.n. (US), GU818482; Vernonia altissima Nutt., Tepe 1668 (MU), GU818483; Villasenoria orcuttii (Greenm.) B.L.Clark, Robles 389 (XAL), GU818484; Werneria caespitosa Wedd., Funk 11324 (US), GU818485; Xenophyllum poposum (Phil.) V.A.Funk, Funk 11351 (US), GU818486; Yermo xanthocephalus Dorn, Anderson 13691 (MO), GU818487; Zemisia discolor (Sw.) B.Nord., Webster et al. 8420 (S), GU818488. PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 32 rbcL. Anacyclus valentinus L., Tepe 1186 & Moreno-Paez (MU), GU817737; Arnoglossum atriplicifolium (L.) H.Rob., Vincent 3925 (MU), GU817738; Arrhenechthites mixta (A.Rich.) Belcher, Lawrence 1308 (S), GU817739; Bahia dissecta (Gray) Britton, Tuhy 3868 (MU), GU817741; Barnadesia caryophylla (Vell.) S.F.Blake, L13859; Calendula arvensis L., Watson 95-13C (MU), GU817742; Capelio caledonica B.Nord., Nordenstam 9644 (S), GU817743; Caucasalia parviflora (M.Bieb.) B.Nord., Schneeweiss, Tribsch, Staudinger & Schönswetter 8643 (WU), GU817744; Caxamarca sanchezii M.O.Dillon & Sagást., Sagástegui et al. 15548 (F), GU817745; Centropappus brunonis Hook.f., Wapstra MW2 (MEL), GU817746; Chaenactis douglasii (Hook.) Hook. & Arn., Vincent 8582 (MU), GU817747; Chersodoma jodopappa (Sch.Bip.) Cabr., Hensen 2617 (S), GU817748; Cirsium discolor (Muhl.) Spreng., Tepe 1670 (MU), GU817749; Coreopsis sp., Vincent 13226 (MU), GU817750; Corymbium enerve Markötter, Trinder-Smith 124 (US), GU817751; Cotula coronopifolia L., Watson & Panero 94-26 (MU), GU817752; Crassocephalum crepidioides (Benth.) S.Moore, Pelser cult. 354 (L), GU817753; Dauresia alliariifolia (O.Hoffm.) B.Nord & Pelser, Müller & Tilson 907 (M), GU817754; Dendrophorbium bomanii (R.E.Fr.) C.Jeffrey, Dematteis & Seijo 722 (U), GU817755; Dendrosenecio kilimanjari (Mildbr.) E.B.Knox ssp. cottonii (Hutch. & G.Taylor) E.B.Knox, Knox 50 (MICH), GU817756; Doronicum pardalianches L., Cubr 40487 (B), GU817757; Emilia coccinea (Sims) G.Don., Pelser cult. 126 (L), GU817758; Erato polymnoides DC., Tepe 1456 (MU), GU817759; Eupatorium serotinum Michx., Tepe 1667 (MU), GU817760; Faujasia squamosa (Bory) C.Jeffrey, Nordenstam 9210 (S), GU817761; Galinsoga PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 33 quadriradiata Cav., Vincent 13227 (MU), GU817762; Gerbera sp., Vincent 13223 (MU), GU817763; Gymnodiscus capillaris (L.f.) Less., AM234876; Helenium autumnale L., Tepe 1664 (MU), GU817764; Helianthus tuberosus L., Tepe 1672 (MU), GU817765; Helichrysum stoechas DC., Tepe 1092 (MU), GU817766; Homogyne alpina (L.) Cass., Uhink 98-56 (MJG), GU817767; Inula viscosa (L.) Aiton, Tepe 1142 (MU), GU817768; Jacobaea vulgaris Gaertn., Pelser cult. 6 (L), GU817769; Kleinia neriifolia Haw., Pelser cult. 216 (L), GU817770; Lactuca canadensis L., Vincent 13128 (MU), GU817771; Lamprocephalus montanus B.Nord., Nordenstam 9542 (S), GU817772; Lopholaena coriifolia (Sond.) Phillips & C.A.Sm., Van der Westhuizen & Liamé; s.n. (PREM), GU817773; Luina hypoleuca Benth., Greuter 17706 (B), GU817774; Madia sp., Vincent 12912 (MU), GU817775; Mikaniopsis clematoides (Sch.Bip. ex A.Rich.) Milne-Redh., Friis, Hounde & Jacobsen 499 (WAG), GU817776; Othonna capensis Bailey, Pelser cult. 106 (L), GU817777; Packera eurycephala (Torr. & A.Gray) W.A.Weber & Á.Löve, Vincent 8581 (MU), GU817778; Perityle emoryi Torr., Atwood 26483 (MU), GU817779; Phaneroglossa bolusii (Oliv.) B.Nord., Watson & Panero 94-62 (TEX), GU817780; Polymnia canadensis L., Tepe 1665 (MU), GU817781; Senecio deltoideus Less., Sloet S.A.105 (U), GU817782; S. medley-woodii Hutch. (Caputia medley-woodii ined.), Jeffrey Kew cult. 14 (K), GU817783; Steirodiscus capillaceus (Thunb.) Less., Cron & Goodman 653 (J), GU817784; Symphyotrichum novae-angliae (L.) G.L.Nesom, Tepe 1675 (MU), GU817740; Tagetes sp., Vincent 13224 (MU), GU817785; Tephroseris integrifolia (L.) Holub ssp. aucheri (DC.) B.Nord., Budak 1688 & Hamazaoǧlu (Yozgat Türkiye Florası Herbaryumu), GU817786; Vernonia altissima Nutt., Tepe 1668 (MU), GU817787. PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 34 trnL and trnL-F. Abrotanella emarginata (Gaudich.) Cass., EF538089; Acrisione cymosa (J.Rémy) B.Nord., Lammers, Rodriques & Baeza 6447 (MU), GU817965; Adenostyles alpina (L.) Bluff & Fingerh., Schwerdtfeger 12251 (B), GU817966; Aequatorium asterotrichum B.Nord., Asplund 18263 (S), GU817967; Anacyclus valentinus L., Tepe 1186 & Moreno-Paez (MU), GU817959; Antillanthus almironcillo (M.Gómez) B.Nord., El-Ghazaby et al. 23.608 (S), GU817968; Arbelaezaster ellsworthii (Cuatrec.) Cuatrec., Kilip & Smith 19413 (US), GU817969; Arnoglossum atriplicifolium (L.) H.Rob., EF538091; Arrhenechthites mixta (A.Rich.) Belcher, EF538092; Austrosynotis rectirama (Baker) C.Jeffrey, LaCroix 4001 (MO), GU817971; Bahia dissecta (Gray) Britton, Tuhy 3868 (MU), GU817954, GU817944; Barkleyanthus salicifolius (Kunth) H.Rob. & Brettell, Genelle & Fleming 861 (B), GU817972; Barnadesia sp., Hunziker & Gamerro 12561 (MU), GU817973; Bedfordia arborescens Hochr., Greuter 21319 (B), GU817974; AF452498; Bethencourtia palmensis (Nees) Choisy, Nordenstam 9326 (S), GU817975; Blennosperma nanum S.F.Blake, AF460174; EF028720; Blepharispermum zanguebaricum Oliv. & Hiern., Medley 570 (MU), GU817976; AY216147; Bolandia pedunculosa (DC.) Cron, AY952915; Brachyglottis repanda J.R.Forst. & G.Forst., Schwerdtfeger 17407 (B), GU817977; Cabreriella oppositicordia (Cuatrec.) Cuatrec., Romero-Castañeda 7428 (US), GU817978; Cacaliopsis nardosmia (A.Gray) A.Gray, Ertter 6502 (UC), GU817979; Calendula arvensis L., Watson 95-13C (MU), GU817981; Capelio caledonica B.Nord., Nordenstam 9644 (S), GU817982; Caucasalia parviflora (M.Bieb.) B.Nord., EF538093; Caxamarca sanchezii M.O.Dillon & Sagást., Sagástegui et al. PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 35 15548 (F), GU817983; Centropappus brunonis Hook.f., Wapstra MW2 (MEL), GU817984; Chaenactis douglasii (Hook.) Hook. & Arn., Vincent 8582 (MU), GU817985; Charadranaetes durandii (Klatt) Janovec & H.Rob., Gomez P. 2242 (S), GU817986; Chersodoma jodopappa (Sch.Bip.) Cabr., EF538094; Cichorium intybus L., Tepe 1673 (MU), GU817987; Cineraria abyssinica Sch.Bip. ex A.Rich., AF460173; EF028721; Cirsium discolor (Muhl.) Spreng., Tepe 1670 (MU), GU817988; Cissampelopsis volubilis (Blume) Miq., Carvalho 3175 (MU), GU817989; Coreopsis sp., Vincent 13226 (MU), GU817943, GU817953; Cotula coronopifolia L., Watson & Panero 94-26 (MU), GU817960; Crassocephalum crepidioides (Benth.) S.Moore, AF460138; EF028722; Cremanthodium humile Maxim., EF538095; AY723195; Crocidium multicaule Hook., Bartholomew 5749 (MO), GU817990; Curio rowleyanus (H.Jacobsen) P.V.Heath, AF460148; EF028731; Dauresia alliariifolia (O.Hoffm.) B.Nord & Pelser, Müller & Tilson 907 (M), GU817991; Delairea odorata Lem., Ertter 5766 (UC), GU817992; Dendrophorbium bomanii (R.E.Fr.) C.Jeffrey, EF538097; Dendrosenecio kilimanjari (Mildbr.) E.B.Knox ssp. cottonii (Hutch. & G.Taylor) E.B.Knox, AF460172; AY952923; Digitacalia jatrophoides (Kunth) Pippen, Cruden 1086 (UC), GU817993; Dolichoglottis lyallii (Hook.f.) B.Nord., Strid 22172 (MO), GU817994; Dolichorrhiza caucasica (M.Bieb.) Galushko, Schneeweiss 44 (WU), GU817995; Dorobaea pimpinellifolia (Kunth) B.Nord., Tepe 1467 (MU), GU817996; Doronicum pardalianches L., EF538098; AJ400125; Ekmaniopappus mikanioides (Urb. & Ekman) Borhidi, Zanoni et al. 33908 (JBSD), GU817997; Elekmania picardae (Krug & Urb.) B.Nord., EF538099; Emilia coccinea (Sims) G.Don., AF460171; EF028723; Endocellion sibiricum (J.F.Gmel.) J.Toman, Schönswetter & Tribsch T480 PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 36 (WU), GU817998; Erato polymnoides DC., Tepe 1456 (MU), GU817999; Erechtites valerianifolius (Link ex Spreng.) Less. ex DC., EF538100; Eriothrix lycopodioides DC., Nordenstam 9208 (S), GU818000; Eupatorium serotinum Michx., Tepe 1667 (MU), GU818001; Euryops pectinatus (L.) Cass., AF460170; EF028724; Farfugium japonicum (L.) Kitam., AF468163; AF468177; Faujasia squamosa (Bory) C.Jeffrey, Nordenstam 9210 (S), GU818002; Faujasiopsis flexuosa (Lam.) C.Jeffrey ssp. bourbonensis C.Jeffrey, Nordenstam 9202 (S), GU818003; Galinsoga quadriradiata Cav., Vincent 13227 (MU), GU817942, GU817956; Galinsoga quadriradiata Cav., AY216179; Garcibarrigoa telembina (Cuatrec.) Cuatrec., Holm-Nielsen et al. 6211 (S), GU817940, GU817951; Gerbera sp., Vincent 13223 (MU), GU817941; GU817955; Graphistylis dichroa (Bong.) D.J.N.Hind, Silva 140 & Zelma (S), GU818004; Gymnodiscus capillaris (L.f.) Less., Coppejans EC1116 (U), GU818005; Gynoxys soukupii Cuatrec., EF538101; Gynura divaricata (L.) DC. ssp. formosana (Kitam.) F.G.Davies, AF460136; Panero & Hsiao 6457 (TEX), GU818006; Helenium autumnale L., Tepe 1664 (MU), GU818007; Helianthus tuberosus L., Tepe 1672 (MU), GU818008; Helichrysum stoechas DC., Tepe 1092 (MU), GU818009; Herodotia haitiensis Urb. & Ekman, EF538103; Herreranthus rivalis (Greenm.) B.Nord., Nordenstam s.n. (2/12/2007) (S), GU818010; Hertia pallens (DC.) Kuntze, Koekemoer & Funk 1963 (US), GU818011; Hoehnephytum trixoides (Gard.) Cabr., Carmo 131 (BHCB), GU818012; Homogyne alpina (L.) Cass., Uhink 98-56 (MJG), GU818013; Hubertia riparia (DC.) C.Jeffrey, Labat, Phillipson & Lowry II 2022 (WAG), GU818014; Humbertacalia sp., Phillipson et al. 5641 (P), GU818015; Ignurbia constanzae (Urb.) B.Nord., Nordenstam & Lundin 560 (S), GU818016; Inula viscosa PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 37 (L.) Aiton, Tepe 1142 (MU), GU818017; Io ambondrombeensis (Humbert) B.Nord., Malcomber et al. s.n. (P), GU818019; Malcomber et al. 1380 (MO), GU818018; Iranecio cariensis (Boiss.) C.Jeffrey, Budak 1724, Aksoy & Hamazaoǧlu (Yozgat Türkiye Florası Herbaryumu), GU818020; Ischnea elachoglossa F.Muell., Beaman 12129 (MO), GU818021; Jacmaia incana (Sw.) B.Nord., Nordenstam 7914 (S), GU818022; Jacobaea vulgaris Gaertn., AF460153; EF028725; AY155621; Jessea multivenia (Benth.) H.Rob. & Cuatrec., Nordenstam 9161 (S), GU818023; Kleinia neriifolia Haw., AF460169; EF028726; Lachanodes arborea (Roxb.) B.Nord., CairnsWicks s.n., GU818024; Lactuca canadensis L., Vincent 13128 (MU), GU818025; Lamprocephalus montanus B.Nord., Nordenstam 9542 (S), GU818026; Leonis trineurus (Griseb.) B.Nord., Smith & al. 3238 (S), GU818027; Lepidospartum burgessii B.L.Turner, EF538106; Ligularia stenocephala (Maxim.) Matsum. & Koidz., AF460168; EF538107; Lomanthus fosbergii (Cuatrec.) B. Nord. & Pelser, Øllgaard et al. 90697 (AAU), GU818099; Lopholaena coriifolia (Sond.) Phillips & C.A.Sm., Van der Westhuizen & Liamé; s.n. (PREM), GU818028; Lordhowea insularis (Benth.) B.Nord., AF460135; Trodd & Thorne 3703 (L), GU818029; Luina hypoleuca Benth., Greuter 17706 (B), GU818030; Lundinia plumbea (Griseb.) B.Nord., Zanoni 45816 (JBSD), GU818031; Madia sp., Vincent 12912 (MU), GU818032; Mesogramma apiifolium DC., Giess 16074 (M), GU817948, GU817957; Mikaniopsis clematoides (Sch.Bip. ex A.Rich.) Milne-Redh., De Wilde & De Wilde-Duyfjes 9006 (B), GU818033; Miricacalia makineana (Yatabe) Kitam., Kobayashi 33484 (HYO), GU818034; Misbrookea strigosissima (A.Gray) V.A.Funk, EF538108; Monticalia abietina (Willd. ex Wedd.) C.Jeffrey, Cleef 8411 (U), GU818035; Monticalia apiculata PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 38 (Sch.Bip. ex Wedd.) C.Jeffrey, Alston 6935 (S), GU818036; Monticalia arbutifolia (Kunth.) C.Jeffrey, EF538109; Nelsonianthus tapianus (B.L.Turner) C.Jeffrey, Pérez & Kendizabal 457 (XAL), GU818037; Nemosenecio nikoensis (Miq.) B.Nord., Koyama 4079 (L), GU818038; Nesampelos lucens (Poir. in Lam.) B.Nord., EF538110; Neurolaena lobata (L.) R.Br., Acevedo 9316 (US), GU818039; AY216209; Nordenstamia kingii (H.Rob. & Cuatrec.) B.Nord., Ståhl 5572A (S), GU818040; Oldfeltia polyphlebia (Griseb.) B.Nord. & Lundin, EF538112; Oresbia heterocarpa Cron & B.Nord., Nordenstam 9628 (S), GU818041; AY952925; Othonna capensis Bailey, AF460167; EF028727; Packera eurycephala (Torr. & A.Gray) W.A.Weber & Á.Löve, EF538113; Papuacalia dindondl (P.Royen) Veldkamp, EF538114; Paracalia jungioides (Hook. & Arn.) Cuatrec., King & Collins 9017 (UC), GU818042; Parafaujasia fontinalis (Cordem.) C.Jeffrey, Lorence 2602 (MO), GU817949, GU817958; Paragynoxys neodendroides (Cuatrec.) Cuatrec., Cleef 9852a (U), GU818043; Parasenecio adenostyloides (Franch. et Sav. ex Maxim.) H.Koyama, AF460139; EF028728; Pentacalia arborea (Kunth) H.Rob. & Cuatrec., Øllgaard & Balslev 8298 (U), GU818044; Pericallis murrayi (Bornm.) B.Nord., EF538115; AY952922; Perityle emoryi Torr., Atwood 26483 (MU), GU818045; Petasites albus (L.) Gaertn., Cubr 40398 (B), GU818046; OPTIMA Iter VIII 1084 (RNG), GU818047; Phaneroglossa bolusii (Oliv.) B.Nord., AF460131; EF538116; AY216221; Pippenalia delphinifolia (Rydb.) MacVaugh, Spellenberg & Bacon 11048 (TEX), GU818048; Pittocaulon praecox (Cav.) H.Rob. & Brettell, EF538117; Pladaroxylon leucadendron (G.Forst.) Hook.f., Cairns-Wicks s.n., GU818049; Pojarkovia pojarkovae (Schischk.) Greuter, Pelser cult. 191 (L), GU818050; Polymnia canadensis L., Tepe 1665 (MU), PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 39 GU818051; AY216224; Psacaliopsis purpusii (Greenm. ex Brandegee) H.Rob. & Brettell, Panero 2607, Davila & Tenorio (TEX), GU818052; Psacalium cirsiifolium (Zucc.) H.Rob. & Brettell, EF538111; Pseudogynoxys haenkei (DC.) Cabr., Molina R. 18431 (U), GU818053; Rainiera stricta (Greene) Greene, Dennis 2317 (U), GU817952; Robinsonecio gerberifolius (Sch.Bip. ex Hemsl.) T.M.Barkley & Janovec, Garcia P. 171 (MO), GU818054; Robinsonia berteroi (DC.) R.W.Sanders, Stuessy & Martic., AF460129; EF538142; R. evenia Phil., Stuessy et al. 11308 (CONC), GU818055; R. gracilis Decne., EF538118; Stuessy et al. 11282 (CONC), GU817947, GU817962; Stuessy et al. 11312 (CONC), GU817946, GU817963; R. masafuerae Skottsb., Stuessy et al. s.n. (CONC), GU817945; GU817961; Roldana suffulta (Greenm.) H.Rob. & Brettell, Rzedowski 36569 (UC), GU818056; Rugelia nudicaulis Shuttlew. ex Chapm., Feist, Phillippe, Molano-Flores, Busemeyer & Carroll 714 (TENN), GU818057; Scrobicaria ilicifolia (L.f.) B.Nord., Cleef, Garcia-B. & Jaramillo-M. 3528 (U), GU818090; Senecio acanthifolius Hombr. & Jacq., ex Decne., EF538104; S. adamantinus Bong., EF538119; S. algens Wedd., Beck 2879 (S), GU818058; S. arnicoides Hook. & Arn., Zöllner 3474 (L), GU818059; S. boyacensis (Cuatrec.) Cuatrec., Gonzalez 180 (S), GU818060; S. brasiliensis (Spreng.) Less., UEC 50.171 (UEC), GU818061; S. cadiscus B.Nord. & Pelser, Rourke 1118 (S), GU817980; S. chilensis Less., EF538122; S. ctenophyllus Phil., Zöllner 3959 (L), GU818063; S. culcitioides Wedd., Øllgaard & Balslev 8822 (U), GU818062; S. deltoideus Less., AY952917; S. elegans L., Cron & Goodman 687 (J), GU818064; S. fistulosus Poepp. ex Less., Beck & Liberman 9672 (S), GU818065; S. flaccidus Less. var. flaccidus, Jardin Thuret cult. s.n. (MJG), GU818066; S. flavus (Decne.) Sch.Bip., DQ208176; EF028729; PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 40 S. gayanus (Colla) Cabr., Rosas 2157 (INIA), GU818067; S. gramineus Harv., Hoener 2104 (WAG), GU818068; S. gregorii F.Muell., Albrecht 7091 (NT), GU818069; S. hemmendorffii Malme, EF538124; S. hieracium Remy, Baeza & Finot 3695 (CONC), GU818070; S. hispidissimus I.Thomps., Thompson 927 (MEL), GU818071; S. hollandii Compton, Germishuizen 6586 (WAG), GU818072; S. hypsobates Wedd., Øllgaard & Balslev 9863 (U), GU818073; S. ilicifolius Thunb., Cron & Goodman 686 (J), GU818074; S. integerrimus Nutt. var. exaltatus (Nutt.) Cronquist, Crockett 437 (MU), GU818075; S. involucratus (Kunth) DC., EF538090; S. jarae Phil., EF538125; S. lastarrianus Remy, Ricardi 3230 (B), GU818076; S. latifolius DC., EF538126; S. lineatus DC., AF098852; AF100515; S. mairetianus DC., EF538128; S. medley-woodii Hutch. (Caputia medley-woodii ined.), AF460151; EF538129; S. meuselii Rauh, EF538130; S. nemorensis L., AF460150; EF028730; S. nevadensis Boiss. & Reut., Vogt 4172 (B), GU818077; S. niveo-aureus Cuatrec., Cleef 6665 (S), GU818078; S. oerstedianus Benth. ex Oerst., Nordenstam 9160 (S), GU817950; S. oreophyton Remy, Beck 21589 (S), GU818079; S. otites Kunze ex DC., EF538131; S. patens (Kunth) DC., Zak & Jaramillo 3427 (L), GU818080; S. pflanzii (Perkins) Cuatrec., EF538096; S. pinifolius (L.) Lam., EF538132; S. pinnatifolius A.Rich. var. lanceolatus (Benth.) I.Thomps., Thompson 904 (MEL), GU818081; S. polygaloides Phil., Zöllner 5442 (L), GU818082; S. prenanthoides A.Rich., Thompson 915 (MEL), GU818083; S. psilocarpus R.O. Belcher & D.E. Albrecht, Thompson 937 (MEL), GU818084; S. retrorsus DC., EF538133; S. roseus Sch.Bip., Garcia P. 250 (L), GU818085; S. saxatilis Wall. ex DC., EF538134; S. scandens Buch.-Ham. ex D.Don, AF460147; EF028732; S. scaposus DC. (Caputia scaposa ined.), AF460146; EF028733; S. PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 41 squarrosus A.Rich., Thompson 907 (MEL), GU817964; S. stigophlebius Baker, EF538135; S. suaveolens (L.) Ell., EF538102; S. superandinus Cuatrec., EF538105; S. szyszylowiczii Hiern., Sagastegui A. et al. 15797 (S), GU818086; S. tauricola V.A.Matthews, Budak 1735, Aksoy & Hamazaoǧlu (Yozgat Türkiye Florası Herbaryumu), GU818087; S. thapsoides DC., EF538137; S. triodon Phil. var. triodon, Luebert & Teillier 2266 (CONC), GU818088; S. triqueter Less., EF538138; S. vestitus P.J.Bergius, Greuter 21766 (B), GU818089; S. viscosus L., AF460142; EF028734; Shafera platyphylla Greenm., Nordenstam s.n. (S), GU818091; Sinacalia tangutica (Maxim.) B.Nord., AY176088; AY723199; Sinosenecio euosmus (Hand.-Mazz.) B.Nord., Bouford, Donoghue & Ree 27625 (MO), GU818092; Solanecio biafrae (Oliv. & Hiern) C.Jeffrey, Brunel 6220 (B), GU818093; Steirodiscus capillaceus (Thunb.) Less., Cron & Goodman 653 (J), GU818094; Stilpnogyne bellidioides DC., Goldblatt & Porter 11729 (MO), GU818095; Symphyotrichum novae-angliae (L.) G.L.Nesom, Tepe 1675 (MU), GU817970; Syneilesis palmata (Thunb.) Maxim., Hata s.n. (4-Aug-1979) (CHR), GU818096; Synotis nagensium (C.B.Clarke) C.Jeffrey & Y.L.Chen, AF460121; EF028735; Tagetes sp., Vincent 13224 (MU), GU818097; Talamancalia boquetensis (Standl.) H.Rob. & Cuatrec., Wilbur 15397 (NY), GU818098; Telanthophora grandifolia (Less.) H.Rob. & Brettell, EF538140; Tephroseris integrifolia (L.) Holub ssp. aucheri (DC.) B.Nord., Budak 1688 & Hamazaoǧlu (Yozgat Türkiye Florası Herbaryumu), GU818100; Tetradymia filifolia Greene, EF538141; Tussilago farfara L., AF468166; AJ400103; Urostemon kirkii (Hook.f. ex Kirk) B.Nord., Cooper & Nickerson s.n. (US), GU818101; Vernonia altissima Nutt., Tepe 1668 (MU), GU818102; Villasenoria orcuttii (Greenm.) B.L.Clark, Robles 389 PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 42 (XAL), GU818103; Werneria caespitosa Wedd., Funk 11324 (US), GU818104; Xenophyllum poposum (Phil.) V.A.Funk, Funk 11351 (US), GU818105; Yermo xanthocephalus Dorn, Anderson 13691 (MO), GU818106; Zemisia discolor (Sw.) B.Nord., Webster et al. 8420 (S), GU818107. ITS. Abrotanella emarginata (Gaudich.) Cass., EF538143; AY929883; Acrisione cymosa (J.Rémy) B.Nord., EF538144; Adenostyles alpina (L.) Bluff & Fingerh., EF538146; Aequatorium asterotrichum B.Nord., Asplund 18263 (S), GU818489; EF538147; Anacyclus valentinus L., Tepe 1186 & Moreno-Paez (MU), GU818490; Antillanthus almironcillo (M.Gómez) B.Nord., EF538153; Arbelaezaster ellsworthii (Cuatrec.) Cuatrec., Kilip & Smith 19413 (US), GU818491; Arnoglossum atriplicifolium (L.) H.Rob., EF538154; Arrhenechthites mixta (A.Rich.) Belcher, EF538156; Austrosynotis rectirama (Baker) C.Jeffrey, EF538157; Bahia dissecta (Gray) Britton, Tuhy 3868 (MU), GU818493; Barkleyanthus salicifolius (Kunth) H.Rob. & Brettell, Genelle & Fleming 861 (B), GU817578; AF161598; AF161648; Barnadesia caryophylla (Vell.) S.F.Blake, AY504686; Bedfordia arborescens Hochr., Greuter 21319 (B), GU818494; Bethencourtia palmensis (Nees) Choisy, EF538160; Blennosperma nanum S.F.Blake, AF459971; EF538158; AF161597; AF161647; Blepharispermum zanguebaricum Oliv. & Hiern., AF229259; AF229260; Bolandia pedunculosa (DC.) Cron, Cron & Goodman 681 (J), GU818495; AY953925; Brachyglottis repanda J.R.Forst. & G.Forst., AY554103; Cabreriella oppositicordia (Cuatrec.) Cuatrec., Romero-Castañeda 7428 (US), GU818496; Cacaliopsis nardosmia (A.Gray) A.Gray, Ertter 6502 (UC), GU818497; AF161599; AF161649; Calendula PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 43 arvensis L., Watson 95-13C (MU), GU818507; Capelio caledonica B.Nord., Nordenstam 9644 (S), GU818508; Caucasalia parviflora (M.Bieb.) B.Nord., EF538163; EF538162; Caxamarca sanchezii M.O.Dillon & Sagást., Sagástegui et al. 15548 (F), GU818509; Centropappus brunonis Hook.f., Wapstra MW2 (MEL), GU818510; AY554095; Chaenactis douglasii (Hook.) Hook. & Arn., Vincent 8582 (MU), GU818511; Charadranaetes durandii (Klatt) Janovec & H.Rob., EF538164; Chersodoma jodopappa (Sch.Bip.) Cabr., EF538167; Cineraria abyssinica Sch.Bip. ex A.Rich., AF459969; Pelser cult. 208 (L), GU818512- GU818521; Cirsium discolor (Muhl.) Spreng., AF443692; Cissampelopsis volubilis (Blume) Miq., EF538172; Coreopsis sp., Vincent 13226 (MU), GU818522-GU818531; Corymbium enerve Markötter, Trinder-Smith 124 (US), GU818532-GU818540; EF581385; Cotula coronopifolia L., AF422118; Crassocephalum crepidioides (Benth.) S.Moore, AF459968; EF538173; Cremanthodium humile Maxim., EF538175; AY723270; Crocidium multicaule Hook., Bartholomew 5749 (MO), GU818541; AY929902; Curio rowleyanus (H.Jacobsen) P.V.Heath, AF459933; DQ915888; Dauresia alliariifolia (O.Hoffm.) B.Nord & Pelser, AF457413; Delairea odorata Lem., Ertter 5766 (UC), GU817579; Tepe 2180, Pelser & Marticorena (MU), GU818542; Dendrocacalia crepidifolia (Nakai) Nakai, Kobayashi 190493 (MO), GU818543; AY723280; Dendrophorbium bomanii (R.E.Fr.) C.Jeffrey, EF538181; Dendrosenecio kilimanjari (Mildbr.) E.B.Knox, AF155963; AF155996; D. kilimanjari (Mildbr.) E.B.Knox ssp. cottonii (Hutch. & G.Taylor) E.B.Knox, AF459967; AY953933; Digitacalia jatrophoides (Kunth) Pippen, Panero 2330 & Salinas (TEX), GU818544; Cruden 1086 (UC), GU818545; Dolichoglottis lyallii (Hook.f.) B.Nord., Strid 22172 (MO), PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 44 GU818546; Dolichorrhiza caucasica (M.Bieb.) Galushko, Schneeweiss 44 (WU), GU818547; Dorobaea pimpinellifolia (Kunth) B.Nord., Tepe 1467 (MU), GU818548; AF155964; AF155997; Doronicum pardalianches L., EF538188; AJ400032; AJ400033; AJ400078; AJ400079; Ekmaniopappus mikanioides (Urb. & Ekman) Borhidi, EF538189; Zanoni et al. 33908 (JBSD), GU817577; Elekmania picardae (Krug & Urb.) B.Nord., EF538193; Emilia coccinea (Sims) G.Don., AF459966; EF538194; Endocellion sibiricum (J.F.Gmel.) J.Toman, EF538197; EF538198; Erechtites valerianifolius (Link ex Spreng.) Less. ex DC., EF538199; Eriothrix lycopodioides DC., EF538200; Eupatorium serotinum Michx., AB032050; DQ236176; Euryops pectinatus (L.) Cass., AF459964; AF155965; AF155998; Farfugium japonicum (L.) Kitam., Wu 1439 (MO), GU817572; AY176139; DQ272323; Faujasia squamosa (Bory) C.Jeffrey, EF538210; Faujasiopsis flexuosa (Lam.) C.Jeffrey ssp. bourbonensis C.Jeffrey, Nordenstam 9202 (S), GU818549; Galinsoga quadriradiata Cav., Vincent 13227 (MU), GU818550; Garcibarrigoa telembina (Cuatrec.) Cuatrec., EF538211; Gerbera sp., Vincent 13223 (MU), GU818551; Graphistylis dichroa (Bong.) D.J.N.Hind, EF538212; Gymnodiscus capillaris (L.f.) Less., EF538217; Esterhuysen 34744 (S), GU817575; Cron & Goodman 650 (J), GU818552; Gynoxys soukupii Cuatrec., AF459963; Gynura divaricata (L.) DC. ssp. formosana (Kitam.) F.G.Davies, AF155966; AF155999; Haastia pulvinaris Hook.f., AF422122; Helenium autumnale L., Tepe 1664 (MU), GU818553; Helianthus tuberosus L., AF047953; Helichrysum stoechas DC. ssp. stoechas, AY445193; Herodotia haitiensis Urb. & Ekman, EF538224; Herreranthus rivalis (Greenm.) B.Nord., Nordenstam s.n. (2/12/2007) (S), GU818554; Hertia pallens (DC.) Kuntze, EF538229; Hoehnephytum trixoides (Gard.) PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 45 Cabr., Carmo 131 (BHCB), GU818555; Homogyne alpina (L.) Cass., Uhink 98-56 (MJG), GU817576; EF538230; EF538231; Hubertia riparia (DC.) C.Jeffrey, Labat, Phillipson & Lowry II 2022 (WAG), GU818556; Humbertacalia sp., Phillipson et al. 5641 (P), GU818557; Ignurbia constanzae (Urb.) B.Nord., Nordenstam & Lundin 560 (S), GU817574; Inula viscosa (L.) Aiton, Tepe 1142 (MU), GU818558; Io ambondrombeensis (Humbert) B.Nord., Malcomber et al. s.n. (P), GU818560; Malcomber et al. 1380 (MO), GU818559; Iranecio cariensis (Boiss.) C.Jeffrey, Budak 1724, Aksoy & Hamazaoǧlu (Yozgat Türkiye Florası Herbaryumu), GU818561; Ischnea elachoglossa F.Muell., Beaman 12129 (MO), GU818562; Jacobaea vulgaris Gaertn., AF459941; Pelser cult. 6 (L), GU818563-GU818567; AY155610; AF161642; AF161692; AY554112; Jessea multivenia (Benth.) H.Rob. & Cuatrec., EF538246; Kleinia neriifolia Haw., AF459962; Pelser cult. 216 (L), GU818568-GU818573; DQ915868; Lachanodes arborea (Roxb.) B.Nord., Cairns-Wicks s.n., GU818574; Lactuca canadensis L., Vincent 13128 (MU), GU818575; Lamprocephalus montanus B.Nord., Nordenstam 9542 (S), GU818576; Leonis trineurus (Griseb.) B.Nord., EF538249; Smith & al. 3238 (S), GU818577-GU818583; Lepidospartum burgessii B.L.Turner, EF538250; Ligularia stenocephala (Maxim.) Matsum. & Koidz., AF459961; Lomanthus bangii (Rusby) B. Nord. & Pelser, Beck 3527 (S), GU818633GU818640; L. fosbergii (Cuatrec.) B. Nord. & Pelser, Øllgaard et al. 90697 (AAU), GU818723; Lopholaena coriifolia (Sond.) Phillips & C.A.Sm., EF538251; Lordhowea insularis (Benth.) B.Nord., Nordenstam 8615 (S), GU818584-GU818592; Luina hypoleuca Benth., Greuter 17706 (B), GU818593; AF161601; AF161651; Lundinia plumbea (Griseb.) B.Nord., EF538252; Madia sp., Vincent 12912 (MU), GU818594; PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 46 Mattfeldia triplinervis Urb., EF538253; Mesogramma apiifolium DC., AF457412; Mikaniopsis clematoides (Sch.Bip. ex A.Rich.) Milne-Redh., Friis, Hounde & Jacobsen 499 (WAG), GU817581; De Wilde & De Wilde-Duyfjes 9006 (B), GU818595; Miricacalia makineana (Yatabe) Kitam., Kobayashi 33484 (HYO), GU818596; AY723281; Misbrookea strigosissima (A.Gray) V.A.Funk, EF538254; Monticalia abietina (Willd. ex Wedd.) C.Jeffrey, EF538255; Monticalia apiculata (Sch.Bip. ex Wedd.) C.Jeffrey, EF538256; Monticalia arbutifolia (Kunth.) C.Jeffrey, EF538257; Nelsonianthus tapianus (B.L.Turner) C.Jeffrey, Pérez & Kendizabal 457 (XAL), GU817580; Nemosenecio nikoensis (Miq.) B.Nord., EF538264; EF538265; AY723279; Nesampelos lucens (Poir. in Lam.) B.Nord., EF538266; Neurolaena lobata (L.) R.Br., Acevedo 9316 (US), GU818597; Nordenstamia kingii (H.Rob. & Cuatrec.) B.Nord., EF538267; Oldfeltia polyphlebia (Griseb.) B.Nord. & Lundin, EF538271; Oresbia heterocarpa Cron & B.Nord., Nordenstam 9628 (S), GU818598-GU818607; AY953935; Othonna capensis Bailey, AF459960; DQ915865; Packera eurycephala (Torr. & A.Gray) W.A.Weber & Á.Löve, EF538276; Vincent 8581 (MU), GU818608GU818617; Papuacalia dindondl (P.Royen) Veldkamp, EF538279; Paracalia jungioides (Hook. & Arn.) Cuatrec., King & Collins 9017 (UC), GU818618; Parafaujasia fontinalis (Cordem.) C.Jeffrey, Lorence 2602 (MO), GU818619; Paragynoxys neodendroides (Cuatrec.) Cuatrec., EF538280; Parasenecio adenostyloides (Franch. et Sav. ex Maxim.) H.Koyama, AF459970; Pentacalia arborea (Kunth) H.Rob. & Cuatrec., EF538283; Pericallis aurita (L'Hér.) B.Nord., AF155974; AF155975; AF156007; AF156008; P. hansenii (G.Kunkel) Sunding, AF155979; AF156012; P. murrayi (Bornm.) B.Nord., EF538285; AF155983; PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 47 AF156016; AY953932; Perityle emoryi Torr., AF374868; Petasites albus (L.) Gaertn., Cubr 40398 (B), GU818620; OPTIMA Iter VIII 1084 (RNG), GU818621; Phaneroglossa bolusii (Oliv.) B.Nord., AF155991; AF156024; Watson & Panero 94-62 (TEX), GU818622-GU818626; Pippenalia delphinifolia (Rydb.) MacVaugh, Breedlove 59032 & Almeda (MO), GU817571; Spellenberg & Bacon 11048 (TEX), GU818627; Pittocaulon praecox (Cav.) H.Rob. & Brettell, AF161603; AF161653; Pladaroxylon leucadendron (G.Forst.) Hook.f., Cairns-Wicks s.n., GU818628; Pojarkovia pojarkovae (Schischk.) Greuter, EF538286; Polymnia canadensis L., AF465876; Psacaliopsis purpusii (Greenm. ex Brandegee) H.Rob. & Brettell, Panero 2607, Davila & Tenorio (TEX), GU818629; Psacalium cirsiifolium (Zucc.) H.Rob. & Brettell, EF538270; Pseudogynoxys haenkei (DC.) Cabr., EF538288; Rainiera stricta (Greene) Greene, EF538289; AF161605; AF161655; Robinsonecio gerberifolius (Sch.Bip. ex Hemsl.) T.M.Barkley & Janovec, Garcia P. 171 (MO), GU818630; AF161606; AF161656; Robinsonia berteroi (DC.) R.W.Sanders, Stuessy & Martic., AF459957; EF028712; EF028719; R. evenia Phil., EF028706; EF028707; EF028713; EF028714; R. gracilis Decne., EF538290; EF028709; EF028716; R. masafuerae Skottsb., EF028710; EF028717; Roldana suffulta (Greenm.) H.Rob. & Brettell, Rzedowski 36569 (UC), GU818631; Rugelia nudicaulis Shuttlew. ex Chapm., Feist, Phillippe, Molano-Flores, Busemeyer & Carroll 714 (TENN), GU818632; Scrobicaria ilicifolia (L.f.) B.Nord., EF538399; Senecio acanthifolius Hombr. & Jacq., ex Decne., EF538238; S. adamantinus Bong., EF538294; S. algens Wedd., EF538296; S. arnicoides Hook. & Arn., EF538298; S. boyacensis (Cuatrec.) Cuatrec., EF538176; S. brasiliensis (Spreng.) Less., UEC 50.171 (UEC), GU818641; AF457434; S. cadiscus B.Nord. & PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 48 Pelser, Goldblatt & Manning 10690 (MO), GU818498-GU818505; Rourke 1118 (S), GU818506; S. chilensis Less., EF538313; S. ctenophyllus Phil., EF538322; S. culcitioides Wedd., EF538312; S. deltoideus Less., EF538326; AY953927; S. elegans L., Cron & Goodman 687 (J), GU818642; S. fistulosus Poepp. ex Less., EF538335; S. flaccidus Less., AF161640; AF161690; S. flaccidus Less. var. flaccidus, EF538336; S. flavus (Decne.) Sch.Bip., Merxmüller & Giess 28206 (M), GU818643-GU818648; AF457414-AF457416; S. flavus (Decne.) Sch.Bip. ssp. flavus, AJ400782; S. gayanus (Colla) Cabr., Rosas 2157 (INIA), GU818649; S. gramineus Harv., Hoener 2104 (WAG), GU818650; S. gregorii F.Muell., Albrecht 7091 (NT), GU818651; S. hemmendorffii Malme, EF538346; S. hieracium Remy, Baeza & Finot 3695 (CONC), GU818652; S. hispidissimus I.Thomps., Thompson 927 (MEL), GU818653-GU818660; S. hollandii Compton, Germishuizen 6586 (WAG), GU818661; S. hypsobates Wedd., EF538348; S. ilicifolius Thunb., Cron & Goodman 686 (J), GU818662; S. integerrimus Nutt. var. exaltatus (Nutt.) Cronquist, EF538349; S. involucratus (Kunth) DC., EF538150; S. jarae Phil., EF538350; S. lastarrianus Remy, Ricardi 3230 (B), GU818663; S. latifolius DC., EF538354; S. lineatus DC., AF459939; S. mairetianus DC., EF538359; S. medley-woodii Hutch. (Caputia medley-woodii ined.), DQ915861; S. meuselii Rauh, DQ915899; S. nemorensis L., AF459937; S. nevadensis Boiss. & Reut., Vogt 4172 (B), GU818664; S. nevadensis Boiss. & Reut. ssp. malacitanus (Huter) Greuter, AJ400813; S. niveo-aureus Cuatrec., EF538178; S. oerstedianus Benth. ex Oerst., EF538362; S. oreophyton Remy, EF538393; S. otites Kunze ex DC., EF538363; Plowman 2627 (S), GU818665-GU818670; S. patens (Kunth) DC., EF538151; S. pflanzii (Perkins) Cuatrec., EF538179; S. pinifolius (L.) Lam., PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 49 EF538366; S. pinnatifolius A.Rich. var. lanceolatus (Benth.) I.Thomps., Thompson 904 (MEL), GU818671-GU818680; S. pinnatifolius A.Rich. var. maritimus (Ali) I.Thomps.,, U93203; S. polygaloides Phil., EF538367; S. prenanthoides A.Rich., Thompson 915 (MEL), GU818681; S. psilocarpus R.O. Belcher & D.E. Albrecht, Thompson 937 (MEL), GU818682-GU818692; S. retrorsus DC., EF538372; S. roseus Sch.Bip., EF538373; S. saxatilis Wall. ex DC., EF538376; S. scandens Buch.-Ham. ex D.Don, AF459932; S. scaposus DC. (Caputia scaposa ined.), AF459931; Pelser cult. 332 (L), GU818693-GU818697; S. squarrosus A.Rich., Thompson 907 (MEL), GU818698-GU818704; S. stigophlebius Baker, EF538384; S. suaveolens (L.) Ell., EF538222; EF538223; S. superandinus Cuatrec., EF538248; S. szyszylowiczii Hiern., Sagastegui A. et al. 15797 (S), GU818705; S. tauricola V.A.Matthews, Budak 1735, Aksoy & Hamazaoǧlu (Yozgat Türkiye Florası Herbaryumu), GU817570; S. thapsoides DC., EF538388; Akeroyd 570 (RNG), GU818706; S. triodon Phil. var. triodon, Luebert & Teillier 2266 (CONC), GU818707; S. triqueter Less., EF538392; S. vestitus P.J.Bergius, Greuter 21766 (B), GU818708; S. viscosus L., AF459925; AF097539; AJ400808; Shafera platyphylla Greenm., Nordenstam s.n. (S), GU818709; Sinacalia tangutica (Maxim.) B.Nord., Lian et al 93-54 (MO), GU817573; AY176157; Sinosenecio euosmus (Hand.-Mazz.) B.Nord., Bouford, Donoghue & Ree 27625 (MO), GU818710; Solanecio biafrae (Oliv. & Hiern) C.Jeffrey, Brunel 6220 (B), GU818711; Steirodiscus capillaceus (Thunb.) Less., Cron & Goodman 653 (J), GU818712GU818720; Stilpnogyne bellidioides DC., Goldblatt & Porter 11729 (MO), GU818721; Symphyotrichum novae-angliae (L.) G.L.Nesom, Tepe 1675 (MU), GU818492; Syneilesis palmata (Thunb.) Maxim., EF538401; Synotis nagensium (C.B.Clarke) PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 50 C.Jeffrey & Y.L.Chen, AF459922; Tagetes sp., Vincent 13224 (MU), GU818722; Talamancalia boquetensis (Standl.) H.Rob. & Cuatrec., EF538403; Telanthophora grandifolia (Less.) H.Rob. & Brettell, EF538405; EF538406; Tephroseris integrifolia (L.) Holub ssp. aucheri (DC.) B.Nord., Budak 1688 & Hamazaoǧlu (Yozgat Türkiye Florası Herbaryumu), GU818724; Tetradymia filifolia Greene, EF538411; Traversia baccharoides Hook.f., AF422139; Tussilago farfara L., AY176167; Urostemon kirkii (Hook.f. ex Kirk) B.Nord., Cooper & Nickerson s.n. (US), GU818725; AY554101; Vernonia altissima Nutt., AY142949; Villasenoria orcuttii (Greenm.) B.L.Clark, Robles 389 (XAL), GU818726; Werneria caespitosa Wedd., EF538412; Xenophyllum poposum (Phil.) V.A.Funk, EF538415; Yermo xanthocephalus Dorn, Anderson 13691 (MO), GU818727; Zemisia discolor (Sw.) B.Nord., EF538416. ETS. Abrotanella emarginata (Gaudich.) Cass., Goodall & Wood 3352 (MU), GU818108; Acrisione cymosa (J.Rémy) B.Nord., Lammers, Rodriques & Baeza 6447 (MU), GU818109; Adenostyles alpina (L.) Bluff & Fingerh., Schwerdtfeger 12251 (B), GU818110; Aequatorium asterotrichum B.Nord., Asplund 18263 (S), GU818111; Anacyclus valentinus L., Tepe 1186 & Moreno-Paez (MU), GU818112; Antillanthus almironcillo (M.Gómez) B.Nord., El-Ghazaby et al. 23.608 (S), GU818113; Arbelaezaster ellsworthii (Cuatrec.) Cuatrec., Kilip & Smith 19413 (US), GU818114; Arnoglossum atriplicifolium (L.) H.Rob., Vincent 3925 (MU), GU818115; Arrhenechthites mixta (A.Rich.) Belcher, Lawrence 1308 (S), GU818116; Austrosynotis rectirama (Baker) C.Jeffrey, LaCroix 4001 (WAG), GU818118; Bahia dissecta (Gray) Britton, Tuhy 3868 (MU), GU818119; Barkleyanthus salicifolius PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 51 (Kunth) H.Rob. & Brettell, Genelle & Fleming 861 (B), GU818120; Bedfordia arborescens Hochr., Greuter 21319 (B), GU818121; Bethencourtia palmensis (Nees) Choisy, Nordenstam 9326 (S), GU818122; Blepharispermum zanguebaricum Oliv. & Hiern., Medley 570 (MU), GU818123; Bolandia pedunculosa (DC.) Cron, Cron & Goodman 681 (J), GU818124; Brachyglottis repanda J.R.Forst. & G.Forst., Schwerdtfeger 17407 (B), GU818125; Cabreriella oppositicordia (Cuatrec.) Cuatrec., Romero-Castañeda 7428 (US), GU818126; Cacaliopsis nardosmia (A.Gray) A.Gray, Ertter 6502 (UC), GU818127; Calendula arvensis L., Watson 95-13C (MU), GU818129; Capelio caledonica B.Nord., Nordenstam 9644 (S), GU818130; Caucasalia parviflora (M.Bieb.) B.Nord., Schneeweiss, Tribsch, Staudinger & Schönswetter 8643 (WU), GU818131; Caxamarca sanchezii M.O.Dillon & Sagást., Sagástegui et al. 15548 (F), GU818132; Centropappus brunonis Hook.f., Wapstra MW2 (MEL), GU818133; Chaenactis douglasii (Hook.) Hook. & Arn., Vincent 8582 (MU), GU818134; Charadranaetes durandii (Klatt) Janovec & H.Rob., Gomez P. 2242 (S), GU818135; Chersodoma jodopappa (Sch.Bip.) Cabr., Hensen 2617 (S), GU818136; Cichorium intybus L., Tepe 1673 (MU), GU818137; Cineraria abyssinica Sch.Bip. ex A.Rich., Pelser cult. 208 (L), GU818138; Cirsium discolor (Muhl.) Spreng., Tepe 1670 (MU), GU818139; Cissampelopsis volubilis (Blume) Miq., Carvalho 3175 (MU), GU818140; Coreopsis sp., Vincent 13226 (MU), GU818141; Corymbium enerve Markötter, Trinder-Smith 124 (US), GU818142; Cotula coronopifolia L., Watson & Panero 94-26 (MU), GU818143; Crassocephalum crepidioides (Benth.) S.Moore, Pelser cult. 354 (L), GU818144; Cremanthodium humile Maxim., Kürschner & Sonnentag 01-436 (B), GU818145; Crocidium multicaule Hook., Bartholomew 5749 (MO), GU818146; Curio PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 52 rowleyanus (H.Jacobsen) P.V.Heath, Pelser cult. 112 (L), GU818147; Dauresia alliariifolia (O.Hoffm.) B.Nord & Pelser, Müller & Tilson 907 (M), GU818148; Delairea odorata Lem., Tepe 2180, Pelser & Marticorena (MU), GU818149; Dendrophorbium bomanii (R.E.Fr.) C.Jeffrey, Dematteis & Seijo 722 (U), GU818150; Dendrosenecio kilimanjari (Mildbr.) E.B.Knox ssp. cottonii (Hutch. & G.Taylor) E.B.Knox, Knox 50 (MICH), GU818151; Digitacalia jatrophoides (Kunth) Pippen, Panero 2330 & Salinas (TEX), GU818152; Dolichoglottis lyallii (Hook.f.) B.Nord., Strid 22172 (MO), GU818153; Dolichorrhiza caucasica (M.Bieb.) Galushko, Schneeweiss 44 (WU), GU818154; Dorobaea pimpinellifolia (Kunth) B.Nord., Tepe 1467 (MU), GU818155; Doronicum pardalianches L., Cubr 40487 (B), GU818156; Ekmaniopappus mikanioides (Urb. & Ekman) Borhidi, Nordenstam & Lundin 500 (S), GU818157; Elekmania picardae (Krug & Urb.) B.Nord., Zanoni & García 46967 (S), GU818158; Emilia coccinea (Sims) G.Don., Pelser cult. 126 (L), GU818159; Endocellion sibiricum (J.F.Gmel.) J.Toman, Schönswetter & Tribsch T480 (WU), GU818160; Erato polymnoides DC., Tepe 1456 (MU), GU818161; Erechtites valerianifolius (Link ex Spreng.) Less. ex DC., De Lange 115 (CHR), GU818162; Eriothrix lycopodioides DC., Nordenstam 9208 (S), GU818163; Eupatorium serotinum Michx., Tepe 1667 (MU), GU818164; Euryops pectinatus (L.) Cass., Pelser cult. 222 (L), GU818165; Farfugium japonicum (L.) Kitam., Wu 1439 (MO), GU818166; Faujasia squamosa (Bory) C.Jeffrey, Nordenstam 9210 (S), GU818167; Faujasiopsis flexuosa (Lam.) C.Jeffrey ssp. bourbonensis C.Jeffrey, Nordenstam 9202 (S), GU818168; Galinsoga quadriradiata Cav., Vincent 13227 (MU), GU818169; Garcibarrigoa telembina (Cuatrec.) Cuatrec., Holm-Nielsen et al. 6211 (S), GU818170; PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 53 Gerbera sp., Vincent 13223 (MU), GU818171; Graphistylis dichroa (Bong.) D.J.N.Hind, Silva 140 & Zelma (S), GU818172; Gymnodiscus capillaris (L.f.) Less., Coppejans EC1116 (U), GU818173; Gynoxys soukupii Cuatrec., Hutchison & Wright 5352 (L), GU818174; Gynura divaricata (L.) DC. ssp. formosana (Kitam.) F.G.Davies, Panero & Hsiao 6457 (TEX), GU818175; Helenium autumnale L., Tepe 1664 (MU), GU818176; Helianthus tuberosus L., Tepe 1672 (MU), GU818177; Helichrysum stoechas DC., Tepe 1092 (MU), GU818178; Herodotia haitiensis Urb. & Ekman, Ekman H1651 (S), GU818179; Herreranthus rivalis (Greenm.) B.Nord., Nordenstam s.n. (2/12/2007) (S), GU818180; Hertia pallens (DC.) Kuntze, Koekemoer & Funk 1963 (US), GU818181; Hoehnephytum trixoides (Gard.) Cabr., Carmo 131 (BHCB), GU818182; Homogyne alpina (L.) Cass., Uhink 98-56 (MJG), GU818183; Hubertia riparia (DC.) C.Jeffrey, Labat, Phillipson & Lowry II 2022 (WAG), GU818184; Humbertacalia sp., Phillipson et al. 5641 (P), GU818185; Ignurbia constanzae (Urb.) B.Nord., Nordenstam & Lundin 560 (S), GU818186; Inula viscosa (L.) Aiton, Tepe 1142 (MU), GU818187; Io ambondrombeensis (Humbert) B.Nord., Malcomber et al. 1380 (MO), GU818188; Iranecio cariensis (Boiss.) C.Jeffrey, Budak 1724, Aksoy & Hamazaoǧlu (Yozgat Türkiye Florası Herbaryumu), GU818189; Jacobaea vulgaris Gaertn., Pelser cult. 6 (L), GU818190; Jessea multivenia (Benth.) H.Rob. & Cuatrec., Liesner & Judziewicz 14750 (MO), GU818191; Kleinia neriifolia Haw., Pelser cult. 216 (L), GU818192; Lachanodes arborea (Roxb.) B.Nord., Cairns-Wicks s.n., GU818193; Lactuca canadensis L., Vincent 13128 (MU), GU818194; Lamprocephalus montanus B.Nord., Nordenstam 9542 (S), GU818195; Leonis trineurus (Griseb.) B.Nord., Smith & al. 3238 (S), GU818196; Lepidospartum burgessii B.L.Turner, Worthington 12382 PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 54 (L), GU818197; Ligularia stenocephala (Maxim.) Matsum. & Koidz., Kowal 3092 (WIS), GU818198; Lomanthus fosbergii (Cuatrec.) B. Nord. & Pelser, Øllgaard et al. 90697 (AAU), GU818317; Lopholaena coriifolia (Sond.) Phillips & C.A.Sm., Van der Westhuizen & Liamé; s.n. (PREM), GU818199; Lordhowea insularis (Benth.) B.Nord., Trodd & Thorne 3703 (L), GU818200; Luina hypoleuca Benth., Greuter 17706 (B), GU818201; Lundinia plumbea (Griseb.) B.Nord., Zanoni 45816 (JBSD), GU818202; Madia sp., Vincent 12912 (MU), GU818203; Mesogramma apiifolium DC., Giess 16074 (M), GU818204; Mikaniopsis clematoides (Sch.Bip. ex A.Rich.) Milne-Redh., De Wilde & De Wilde-Duyfjes 9006 (B), GU818205; Miricacalia makineana (Yatabe) Kitam., Kobayashi 33484 (HYO), GU818206; Misbrookea strigosissima (A.Gray) V.A.Funk, Funk 11388 (US), GU818207; Monticalia abietina (Willd. ex Wedd.) C.Jeffrey, Cleef 8411 (U), GU818208; Monticalia apiculata (Sch.Bip. ex Wedd.) C.Jeffrey, Alston 6935 (S), GU818209; Monticalia arbutifolia (Kunth.) C.Jeffrey, Nordenstam 9436 (S), GU818210; Nelsonianthus tapianus (B.L.Turner) C.Jeffrey, Pérez & Kendizabal 457 (XAL), GU818211; Nemosenecio nikoensis (Miq.) B.Nord., Koyama 4079 (L), GU818212; Nesampelos lucens (Poir. in Lam.) B.Nord., Zanoni 45570 (JBSD), GU818213; Neurolaena lobata (L.) R.Br., Acevedo 9316 (US), GU818214; Nordenstamia kingii (H.Rob. & Cuatrec.) B.Nord., Ståhl 5572A (S), GU818215; Oldfeltia polyphlebia (Griseb.) B.Nord. & Lundin, Nordenstam & Lundin 340 (S), GU818216; Oresbia heterocarpa Cron & B.Nord., Nordenstam 9628 (S), GU818217; Othonna capensis Bailey, Pelser cult. 106 (L), GU818218; Packera eurycephala (Torr. & A.Gray) W.A.Weber & Á.Löve, Vincent 8581 (MU), GU818219; Papuacalia dindondl (P.Royen) Veldkamp, Johns 9249 (K), GU818220; PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 55 Paracalia jungioides (Hook. & Arn.) Cuatrec., King & Collins 9017 (UC), GU818221; Parafaujasia fontinalis (Cordem.) C.Jeffrey, Lorence 2602 (MO), GU818222; Paragynoxys neodendroides (Cuatrec.) Cuatrec., Cleef 9852a (U), GU818223; Parasenecio adenostyloides (Franch. et Sav. ex Maxim.) H.Koyama, Koyama 408 (L), GU818224; Pentacalia arborea (Kunth) H.Rob. & Cuatrec., Øllgaard & Balslev 8298 (U), GU818225; Pericallis murrayi (Bornm.) B.Nord., Royl 446 (B), GU818226; Perityle emoryi Torr., Atwood 26483 (MU), GU818227; Petasites albus (L.) Gaertn., Cubr 40398 (B), GU818228; Phaneroglossa bolusii (Oliv.) B.Nord., Watson & Panero 94-62 (TEX), GU818229; Pippenalia delphinifolia (Rydb.) MacVaugh, Breedlove 59032 & Almeda (MO), GU818230; Pittocaulon praecox (Cav.) H.Rob. & Brettell, GU818231; Pladaroxylon leucadendron (G.Forst.) Hook.f., Cairns-Wicks s.n., GU818232; Pojarkovia pojarkovae (Schischk.) Greuter, Pelser cult. 191 (L), GU818233; Polymnia canadensis L., Tepe 1665 (MU), GU818234; Psacaliopsis purpusii (Greenm. ex Brandegee) H.Rob. & Brettell, Panero 2607, Davila & Tenorio (TEX), GU818235; Psacalium cirsiifolium (Zucc.) H.Rob. & Brettell, Kowal 3053 (WIS), GU818236; Pseudogynoxys haenkei (DC.) Cabr., Molina R. 18431 (U), GU818237; Rainiera stricta (Greene) Greene, Dennis 2317 (U), GU818238; Robinsonecio gerberifolius (Sch.Bip. ex Hemsl.) T.M.Barkley & Janovec, Garcia P. 171 (MO), GU818239; Robinsonia berteroi (DC.) R.W.Sanders, Stuessy & Martic., Stuessy et al. 11238 (CONC), GU818240; R. evenia Phil., Stuessy et al. 11308 (CONC), GU818241; R. gracilis Decne., Stuessy, Crawford, Valdebenito & Landeros 6560 (B), GU818242; Stuessy et al. 11282 (CONC), GU818243; Stuessy et al. 11312 (CONC), GU818244; R. masafuerae Skottsb., Stuessy et al. s.n. (CONC), GU818245; Roldana PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 56 suffulta (Greenm.) H.Rob. & Brettell, Rzedowski 36569 (UC), GU818246; Rugelia nudicaulis Shuttlew. ex Chapm., Feist, Phillippe, Molano-Flores, Busemeyer & Carroll 714 (TENN), GU818247; Scrobicaria ilicifolia (L.f.) B.Nord., Cleef, Garcia-B. & Jaramillo-M. 3528 (U), GU818307; Senecio acanthifolius Hombr. & Jacq., ex Decne., Björnsäter s.n. (S), GU818248; S. algens Wedd., Beck 2879 (S), GU818249; S. arnicoides Hook. & Arn., Zöllner 3474 (L), GU818250; S. boyacensis (Cuatrec.) Cuatrec., Gonzalez 180 (S), GU818251; S. brasiliensis (Spreng.) Less., UEC 50.171 (UEC), GU818252; S. cadiscus B.Nord. & Pelser, Goldblatt & Manning 10690 (MO), GU818128; S. chilensis Less., Zöllner 2958 (L), GU818254; S. ctenophyllus Phil., Zöllner 3959 (L), GU818255; S. culcitioides Wedd., Øllgaard & Balslev 8822 (U), GU818253; S. deltoideus Less., Sloet S.A.105 (U), GU818256; S. elegans L., Cron & Goodman 687 (J), GU818257; S. fistulosus Poepp. ex Less., Beck & Liberman 9672 (S), GU818258; S. flaccidus Less. var. flaccidus, Jardin Thuret cult. s.n. (MJG), GU818259; S. flavus (Decne.) Sch.Bip., Merxmüller & Giess 28206 (M), GU818260; S. gayanus (Colla) Cabr., Rosas 2157 (INIA), GU818261; S. gramineus Harv., Hoener 2104 (WAG), GU818262; S. gregorii F.Muell., Albrecht 7091 (NT), GU818263; S. hemmendorffii Malme, Kummrow 3052 et al. (S), GU818264; S. hieracium Remy, Baeza & Finot 3695 (CONC), GU818265; S. hispidissimus I.Thomps., Thompson 927 (MEL), GU818266; S. hollandii Compton, Germishuizen 6586 (WAG), GU818267; S. hypsobates Wedd., Øllgaard & Balslev 9863 (U), GU818268; S. ilicifolius Thunb., Cron & Goodman 686 (J), GU818269; S. integerrimus Nutt. var. exaltatus (Nutt.) Cronquist, Crockett 437 (MU), GU818270; S. jarae Phil., Liberman L54 (S), GU818271; S. lastarrianus Remy, Ricardi 3230 (B), GU818272; S. latifolius DC., PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 57 Bayer SAF-01074, Chandler & Koekemoer (PRE), GU818273; S. lineatus DC., Bayer & Puttock SAF-96246 (CANB), GU818274; S. mairetianus DC., Garcia P. 151 (L), GU818275; S. medley-woodii Hutch. (Caputia medley-woodii ined.), Jeffrey Kew cult. 14 (K), GU818276; S. meuselii Rauh, Greissl s.n. (18-FEB-1988) (MJG), GU818277; S. nemorensis L., Pelser cult. 102 (L), GU818278; S. nevadensis Boiss. & Reut., Vogt 4172 (B), GU818279; S. niveo-aureus Cuatrec., Cleef 6665 (S), GU818280; S. oerstedianus Benth. ex Oerst., Nordenstam 9160 (S), GU818281; S. oreophyton Remy, Beck 21589 (S), GU818282; S. otites Kunze ex DC., Plowman 2627 (S), GU818283; S. patens (Kunth) DC., Zak & Jaramillo 3427 (L), GU818284; S. pflanzii (Perkins) Cuatrec., Beck 9094 (S), GU818285; S. pinifolius (L.) Lam., Coppejans EC810 (U), GU818286; S. pinnatifolius A.Rich. var. lanceolatus (Benth.) I.Thomps., Thompson 904 (MEL), GU818287; S. polygaloides Phil., Zöllner 5442 (L), GU818288; S. prenanthoides A.Rich., Thompson 915 (MEL), GU818289; S. psilocarpus R.O. Belcher & D.E. Albrecht, Thompson 937 (MEL), GU818290; S. retrorsus DC., Van Steenis 23961 (L), GU818291; S. roseus Sch.Bip., Garcia P. 250 (L), GU818292; S. saxatilis Wall. ex DC., Van Beusekom et al. 4253 (L), GU818293; S. scandens Buch.-Ham. ex D.Don, Pelser cult. 211 (L), GU818294; S. scaposus DC. (Caputia scaposa ined.), Pelser cult. 332 (L), GU818295; S. squarrosus A.Rich., Thompson 907 (MEL), GU818296; S. stigophlebius Baker, UEC 2.974 (UEC), GU818297; S. suaveolens (L.) Ell., Dister s.n. (27 Jul 2002) (MU), GU818298; S. superandinus Cuatrec., Hekker & Hekking 10.159a (U), GU818299; S. szyszylowiczii Hiern., Sagastegui A. et al. 15797 (S), GU818300; S. tauricola V.A.Matthews, Budak 1735, Aksoy & Hamazaoǧlu (Yozgat Türkiye Florası Herbaryumu), GU818301; S. thapsoides DC., Touw 21868 (L), PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 58 GU818302; S. triodon Phil. var. triodon, Luebert & Teillier 2266 (CONC), GU818303; S. triqueter Less., Robertson 293 & Burman (WAG), GU818304; S. vestitus P.J.Bergius, Greuter 21766 (B), GU818305; S. viscosus L., Pelser 300 (L), GU818306; Shafera platyphylla Greenm., Nordenstam s.n. (S), GU818308; Sinacalia tangutica (Maxim.) B.Nord., Lian et al 93-54 (MO), GU818309; Sinosenecio euosmus (Hand.Mazz.) B.Nord., Bouford, Donoghue & Ree 27625 (MO), GU818310; Solanecio biafrae (Oliv. & Hiern) C.Jeffrey, Brunel 6220 (B), GU818311; Steirodiscus capillaceus (Thunb.) Less., Cron & Goodman 653 (J), GU818312; Stilpnogyne bellidioides DC., Goldblatt & Porter 11729 (MO), GU818313; Symphyotrichum novae-angliae (L.) G.L.Nesom, Tepe 1675 (MU), GU818117; Syneilesis palmata (Thunb.) Maxim., Hata s.n. (4-Aug-1979) (CHR), GU818314; Synotis nagensium (C.B.Clarke) C.Jeffrey & Y.L.Chen, Sino-American Guizhou Botanical Expedition no. 1991 (L), GU818315; Talamancalia boquetensis (Standl.) H.Rob. & Cuatrec., Wilbur 15397 (NY), GU818316; Telanthophora grandifolia (Less.) H.Rob. & Brettell, Greissl cult. s.n. (25Jun-1988) (MJG), GU818318; Tephroseris integrifolia (L.) Holub ssp. aucheri (DC.) B.Nord., Budak 1688 & Hamazaoǧlu (Yozgat Türkiye Florası Herbaryumu), GU818319; Tetradymia filifolia Greene, Worthington 12360 (L), GU818320; Tussilago farfara L., Kennedy 225 (MU), GU818321; Urostemon kirkii (Hook.f. ex Kirk) B.Nord., Cooper & Nickerson s.n. (US), GU818322; Vernonia altissima Nutt., Tepe 1668 (MU), GU818323; Villasenoria orcuttii (Greenm.) B.L.Clark, Robles 389 (XAL), GU818324; Werneria caespitosa Wedd., Funk 11324 (US), GU818325; Xenophyllum poposum (Phil.) V.A.Funk, Funk 11351 (US), GU818326; Yermo xanthocephalus Dorn, PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S1 – Page 59 Anderson 13691 (MO), GU818327; Zemisia discolor (Sw.) B.Nord., Webster et al. 8420 (S), GU818328. PELSER ET AL. – American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S2 – Page 1 PELSER, PIETER B., AARON H. KENNEDY, ERIC J. TEPE, JACOB B. SHIDLER, BERTIL NORDENSTAM, JOACHIM W. KADEREIT, AND LINDA E. WATSON. 2010. Patterns and causes of incongruence between plastid and nuclear Senecioneae (Asteraceae) phylogenies. American Journal of Botany 97(5): 856-873. Appendix S2. Bayesian inference phylograms. A, plastid data; B, ITS/ETS data. A Crocidium Blennosperma Ischnea Robinsonecio Barkleyanthus Arnoglossum Yermo Emilia Jacobaea Packera B Crocidium Blennosperma Ischnea Robinsonecio Barkleyanthus Arnoglossum Yermo Jacobaea Emilia Packera PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S3 – Page 1 PELSER, PIETER B., AARON H. KENNEDY, ERIC J. TEPE, JACOB B. SHIDLER, BERTIL NORDENSTAM, JOACHIM W. KADEREIT, AND LINDA E. WATSON. 2010. Patterns and causes of incongruence between plastid and nuclear Senecioneae (Asteraceae) phylogenies. American Journal of Botany 97(5): 856-873. Appendix S3. Age estimates of clades present in plastid and ITS/ETS trees. R8s ITS/ETS BEAST ITS/ETS age R8s plastid BEAST plastid age (my; age (my) (my; 95% HPD interval) age (my) 95% HPD interval) mrca Abrotanella-Senecio 24.14 (19.15-)21.44(-23.66) 28.94 (23.77-)26.37(-29.25) mrca Adenostyles-Caucasalia 5.62 (2.32-)3.97(-5.75) 7.32 (1.63-)4.07(-6.87) mrca Anacyclus-Cotula 20.48 (6.85-)15.65(-23.4) 20.26 (8.22-)15.69(-21.26) mrca Antillanthus-Shafera 6.88 (1.5-)3.01(-4.68) 7.39 (0.25-)1.46(-3.03) mrca Arnoglossum-Yermo 1.17 (0.52-)1.43(-2.4) 1.21 (0.33-)1.12(-2.17) mrca Asteroideae 26.94 (23.71-)26.58(-29.33) 29.56 (26.21-)28.51(-30.75) mrca Barkleyanthus-Arnoglossum 4.76 (2.4-)3.77(-5.11) 5.74 (1.7-)3.21(-4.9) mrca Bedfordia-Centropappus 5.08 (0.75-)1.86(-3.16) 4.29 (0.19-)0.92(-1.86) mrca Blennosperma-Ischnea 6.07 (2.52-)4.76(-7.1) 9.58 (3.2-)5.97(-8.99) mrca Blepharispermum-Madia 24.43 (16.59-)19.74(-22.74) 24.52 (17.3-)21.04(-24.98) mrca Capelio-Senecio 21.71 (17.77-)19.51(-21.55) 25.42 (20.06-)22.91(-25.64) mrca Caputia 2.28 (0.4-)1.7(-3.42) 2.3 (0.23-)1.86(-4.23) mrca Caucasalia-Pojarkovia 4.94 (1.73-)3.17(-4.84) 5.97 (0.9-)2.79(-5.16) mrca Caxamarca-Pseudogynoxys 3.38 (0.91-)2.22(-3.45) 2.07 (0.24-)0.99(-1.86) mrca Chersodoma-Dolichoglottis 19.41 (16.36-)17.75(-19.22) 23.14 (17.91-)20.32(-22.83) mrca Cichorium-Vernonia 27.96 (18.83-)25.21(-30.35) 27.44 (15.06-)22.54(-30.2) 7.8 (1.26-)4.12(-7.69) 3.61 (0.54-)2(-3.81) mrca Corybium-Cichorium 30.41 (28.4-)31.38(-34.08) 32.7 (30.29-)32.47(-34.29) mrca Crocidium-Blennosperma 12.49 (6.48-)9.25(-11.85) 14.52 (6.93-)9.83(-12.82) mrca Dolichoglottis-Haastia 9.57 (3.14-)5.32(-7.93) 14.78 (1.78-)4.95(-9.76) mrca Erato-Vernonia 21.18 (9.15-)16.01(-22.53) 24.46 (8.63-)16.85(-24.78) mrca Eriothrix-Parafaujasia 8.87 (0.66-)2.36(-4.39) 6.54 (0.47-)1.79(-3.38) mrca Eupatorium-Perityle 13.85 (5.79-)9.58(-13.29) 14.47 (4.6-)8.92(-12.92) mrca Graphistylis-Dendrophorbium 11.26 (3.44-)5.73(-7.59) 4.91 (1.31-)2.57(-3.95) mrca Gymnodiscus-Othonna 10.45 (2.97-)6.19(-9.54) 14.53 (6.02-)9.62(-13.04) mrca Gynura-Kleinia 9.13 (2.52-)4.61(-6.7) 4.23 (1.48-)3.22(-5) mrca Herreranthus-Lundinia 8.29 (2.84-)4.35(-5.81) 7.39 (0.41-)1.62(-3.13) Node: mrca Cissampelopsis-Mikaniopsis PELSER ET AL. –American Journal of Botany 97(5): 856-873. 2010. – Data Supplement S3 – Page 2 mrca Hertia-Lopholaena 5.81 (1.09-)4.09(-7.6) 8.02 (2.2-)5.49(-8.63) mrca Hertia-Othonna 15.16 (7.84-)11.39(-14.43) 17.26 (11.2-)13.51(-15.79) mrca Kleinia-Delairea 10.77 (4.1-)6.45(-8.79) 9.36 (3.79-)5.81(-7.76) mrca Lactuca-Chichorium 19.21 (6.28-)14.46(-22.58) 16.66 (5.22-)11.97(-19.59) mrca Lamprocephalus-Oresbia 8.85 (0.78-)2.65(-5.05) 11.73 (2.18-)6.68(-10.85) mrca Lepidospartum-Rainiera 6.33 (3.47-)5.83(-8.82) 14.29 (3.41-)7.51(-11.93) mrca Lepidospartum-Tetradymia 2.06 (0.48-)1.94(-3.87) 4.05 (0.3-)2.15(-4.61) mrca Luina-Rugelia 5.57 (2.47-)4.7(-7.04) 11.01 (1.75-)4.36(-7.47) mrca Lundinia-Oldfeltia 3.93 (0.77-)1.99(-3.33) 4.83 (0.09-)0.82(-1.83) mrca Madia-Tagetes 17.35 (13.49-)15.99(-18.67) 18.16 (12.99-)15.21(-17.98) mrca Mesogramma-Stilpnogyne 7.73 (1.65-)3.79(-6.19) 7.86 (2.07-)5.38(-9.05) mrca Nemosenecio-Sinosenecio 4.12 (0.76-)2.16(-3.71) 1.88 (0.3-)1.45(-2.83) mrca Papuacalia-Acrisione 7.81 (2.05-)3.49(-5.14) 11.12 (1.41-)3.05(-5.05) mrca Paragynoxys-Nordenstamia 9.98 (3.56-)6.29(-9.55) 10.12 (1.84-)4.17(-6.62) mrca Paragynoxys-Psacaliopsis 14.94 (9.2-)11.48(-13.58) 14.71 (6.47-)9.15(-11.9) mrca Pentacalia arborea-Monticalia abietina 10.51 (2.89-)5.38(-7.77) 7.35 (0.26-)1.76(-3.69) mrca Pippenalia-Psacalium 3.49 (0.89-)2.84(-5.07) 5.61 (0.49-)2.73(-5.42) mrca Pittocaulon-Villasenoria 6.72 (1.91-)4.08(-6.41) 8.02 (0.86-)2.87(-4.84) mrca Rainiera-Rugelia 4.24 (1.09-)2.88(-4.78) 6.24 (0.4-)2.06(-4.06) mrca Robinsonecio-Pippenalia 11.79 (7.59-)9.5(-11.56) 12.26 (4.98-)7.2(-9.65) mrca Senecio acanthifolius-S. hieracium 3.61 (1.51-)2.52(-3.56) 2.77 (0.32-)1.57(-2.83) mrca Senecio brasiliensis-S. niveo-aureus 2.1 (1.03-)1.75(-2.54) 2.21 (1.12-)2.07(-3.1) mrca Senecio ctenophyllus-S. boyacensis 4.03 (2.77-)3.71(-4.55) 3.08 (0.62-)2.02(-3.54) mrca Senecio deltoideus-S. scandens 2.36 (0.25-)1.48(-3.07) 8.39 (0.68-)2.39(-4.37) mrca Senecio flaccidus-S. mairetianus 1.88 (0.66-)1.33(-2.09) 0.45 (0.04-)0.56(-1.25) mrca Senecio stigophlebius-S. adamantinus 10.02 (3.41-)5.32(-7.11) 4.03 (0.43-)1.56(-2.83) mrca Talamancalia-Jessea 3.71 (1.08-)2.47(-3.8) 2.18 (0.29-)1.17(-2.12) mrca Tephroseris-Nemosenecio 6.28 (1.7-)3.61(-5.63) 4.66 (1.4-)3.26(-5.49) mrca Tussilagininae s. str. 17.97 (12.97-)15(-17) 18.18 (11.85-)14.42(-17.06) mrca Tussilago-Homogyne 12.26 (3.27-)7.16(-11.22) 11.09 (2.02-)5.94(-10.34) mrca Xenophyllum-Jessea 10.75 (4.97-)6.26(-7.68) 9.17 (2.81-)4.2(-5.65) mrca Xenophyllum-Werneria 5.27 (1.96-)3.36(-4.84) 1.57 (0.52-)1.62(-2.8)