Academia.eduAcademia.edu
StuDIES IN MYCOLOGY 7: –9. 2007. doi:10.3114/sim.2007.7.01 Phylogenetic classiication of Cordyceps and the clavicipitaceous fungi Gi-Ho Sung1, Nigel L. Hywel-Jones2, Jae-Mo Sung3, J. Jennifer Luangsa-ard4, Bhushan Shrestha3 and Joseph W. Spatafora1 1 Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331–2902, U.S.A.; 2Mycology Laboratory, National Center for Genetic Engineering and Biotechnology, Science Park, Pathum Thani, Thailand; 3Department of Applied Biology and Entomopathogenic Fungal Culture Collection (EFCC), Kangwon National University, Chuncheon 200-701, Republic of Korea; 4Phylogenetics Laboratory, National Center for Genetic Engineering and Biotechnology, Science Park, Pathum Thani, Thailand. *Correspondence: Gi-Ho Sung, sungg@science.oregonstate.edu Abstract: Cordyceps, comprising over 400 species, was historically classiied in the Clavicipitaceae, based on cylindrical asci, thickened ascus apices and iliform ascospores, which often disarticulate into part-spores. Cordyceps was characterized by the production of welldeveloped often stipitate stromata and an ecology as a pathogen of arthropods and Elaphomyces with infrageneric classiications emphasizing arrangement of perithecia, ascospore morphology and host afiliation. To reine the classiication of Cordyceps and the Clavicipitaceae, the phylogenetic relationships of 162 taxa were estimated based on analyses consisting of ive to seven loci, including the nuclear ribosomal small and large subunits (nrSSU and nrLSU), the elongation factor 1α (tef1), the largest and the second largest subunits of RNA polymerase ІІ (rpb1 and rpb2), β-tubulin (tub), and mitochondrial ATP6 (atp6). Our results strongly support the existence of three clavicipitaceous clades and reject the monophyly of both Cordyceps and Clavicipitaceae. Most diagnostic characters used in current classiications of Cordyceps (e.g., arrangement of perithecia, ascospore fragmentation, etc.) were not supported as being phylogenetically informative; the characters that were most consistent with the phylogeny were texture, pigmentation and morphology of stromata. Therefore, we revise the taxonomy of Cordyceps and the Clavicipitaceae to be consistent with the multi-gene phylogeny. The family Cordycipitaceae is validated based on the type of Cordyceps, C. militaris, and includes most Cordyceps species that possess brightly coloured, leshy stromata. The new family Ophiocordycipitaceae is proposed based on Ophiocordyceps Petch, which we emend. The majority of species in this family produce darkly pigmented, tough to pliant stromata that often possess aperithecial apices. The new genus Elaphocordyceps is proposed for a subclade of the Ophiocordycipitaceae, which includes all species of Cordyceps that parasitize the fungal genus Elaphomyces and some closely related species that parasitize arthropods. The family Clavicipitaceae s. s. is emended and includes the core clade of grass symbionts (e.g., Balansia, Claviceps, Epichloë, etc.), and the entomopathogenic genus Hypocrella and relatives. In addition, the new genus Metacordyceps is proposed for Cordyceps species that are closely related to the grass symbionts in the Clavicipitaceae s. s. Metacordyceps includes teleomorphs linked to Metarhizium and other closely related anamorphs. Two new species are described, and lists of accepted names for species in Cordyceps, Elaphocordyceps, Metacordyceps and Ophiocordyceps are provided. Taxonomic novelties: New family: Ophiocordycipitaceae G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora. New genera: Elaphocordyceps G.H. Sung & Spatafora, Metacordyceps G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora. New species: Metacordyceps yongmunensis G.H. Sung, J.M. Sung & Spatafora; Ophiocordyceps communis Hywel-Jones & Samson. New combinations: Cordyceps confragosa (Mains) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, C. ninchukispora (C.H. Su & H.-H. Wang) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora; Elaphocordyceps capitata (Holmsk.) G.H. Sung, J.M. Sung & Spatafora, E. delicatistipitata (Kobayasi) G.H. Sung, J.M. Sung & Spatafora, E. fracta (Mains) G.H. Sung, J.M. Sung & Spatafora, E. inegoënsis (Kobayasi) G.H. Sung, J.M. Sung & Spatafora, E. intermedia (S. Imai) G.H. Sung, J.M. Sung & Spatafora, E. japonica (Lloyd) G.H. Sung, J.M. Sung & Spatafora, E. jezoënsis (S. Imai) G.H. Sung, J.M. Sung & Spatafora, E. longisegmentis (Ginns) G.H. Sung, J.M. Sung & Spatafora, E. minazukiensis (Kobayasi & Shimizu) G.H. Sung, J.M. Sung & Spatafora, E. miomoteana (Kobayasi & Shimizu) G.H. Sung, J.M. Sung & Spatafora, E. ophioglossoides (Ehrh.) G.H. Sung, J.M. Sung & Spatafora, E. paradoxa (Kobayasi) G.H. Sung, J.M. Sung & Spatafora, E. ramosa (Teng) G.H. Sung, J.M. Sung & Spatafora, E. rouxii (Cand.) G.H. Sung, J.M. Sung & Spatafora, E. subsessilis (Petch) G.H. Sung, J.M. Sung & Spatafora, E. szemaoënsis (M. Zang) G.H. Sung, J.M. Sung & Spatafora, E. tenuispora (Mains) G.H. Sung, J.M. Sung & Spatafora, E. toriharamontana (Kobayasi) G.H. Sung, J.M. Sung & Spatafora, E. valliformis (Mains) G.H. Sung, J.M. Sung & Spatafora, E. valvatistipitata (Kobayasi) G.H. Sung, J.M. Sung & Spatafora, E. virens (Kobayasi) G.H. Sung, J.M. Sung & Spatafora; infraspeciic: E. intermedia f. michinokuënsis (Kobayasi & Shimizu) G.H. Sung, J.M. Sung & Spatafora, E. ophioglossoides f. alba (Kobayasi & Shimizu ex Y.J. Yao) G.H. Sung, J.M. Sung & Spatafora, E. ophioglossoides f. cuboides (Kobayasi) G.H. Sung, J.M. Sung & Spatafora; Metacordyceps brittlebankisoides (Z.Y. Liu, Z.Q. Liang, Whalley, Y.J. Yao & A.Y. Liu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, M. campsosterni (W.M. Zhang & T. H. Li) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, M. chlamydosporia (H.C. Evans) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, M. liangshanensis (M. Zang, D. Liu & R. Hu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, M. taii (Z.Q. Liang & A.Y. Liu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora; Ophiocordyceps agriotidis (A. Kawam.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. ainictos (A. Möller) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. amazonica (Henn.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. aphodii (Mathieson) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. appendiculata (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. arachneicola (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. arbuscula (Teng) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. armeniaca (Berk. & M.A. Curtis) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. asyuënsis (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. aurantia (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. australis (Speg.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. barnesii (Thwaites) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. bicephala (Berk.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. bispora (Stiler) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. brunneipunctata (Hywel-Jones) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. cantharelloides (Samson & H.C. Evans) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. carabidicola (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. cicadicola (Teng) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. clavata (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. coccidiicola (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. coccigena (Tul. & C. Tul.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. cochlidiicola (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. corallomyces (A. Möller) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. crassispora (M. Zang, D. R. Yang & C.D. Li) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. crinalis (Ellis ex Lloyd) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. cucumispora (H.C. Evans & Samson) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. curculionum (Tul. & C. Tul.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. cusu (Pat.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. cylindrostromata (Z.Q. Liang, A.Y. Liu & M.H. Liu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. dayiensis (Z.Q. Liang) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. dermapterigena (Z.Q. Liang, A.Y. Liu & M.H. Liu) G.H. Sung, J.M. Sung, Hywel-Jones &  SuNG ET AL. Spatafora, O. dipterigena (Berk. & Broome) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. discoideicapitata (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. ditmarii (Quél.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. dovei (Rodway) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. elateridicola (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. elongata (Petch) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. elongatiperitheciata (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. elongatistromata (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. emeiensis (A.Y. Liu & Z.Q. Liang) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. engleriana (Henn.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. entomorrhiza (Dicks.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. evdogeorgiae (Koval) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. falcata (Berk.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. falcatoides (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. fasciculatistromata (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. ferruginosa (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. iliformis (Moureau) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. formicarum (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. forquignonii (Quél.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. furcicaudata (Z.Q. Liang, A.Y. Liu & M.H. Liu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. gansuënsis (K. Zhang, C. Wang & M. Yan) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. geniculata (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. gentilis (Ces.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. glaziovii (Henn.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. goniophora (Speg.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. gracilioides (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. gracilis (Grev.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. heteropoda (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. hiugensis (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. huberiana (Henn.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. humbertii (C.P. Robin) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. insignis (Cooke & Ravenel) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. irangiensis (Moureau) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. japonensis (Hara) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. jiangxiensis (Z.Q. Liang, A.Y. Liu & Y.C. Jiang) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. jinggangshanensis (Z.Q. Liang, A.Y. Liu & Y.C. Jiang) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. kangdingensis (M. Zang & Kinjo) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. kniphoioides (H.C. Evans & Samson) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. koningsbergeri (Penz. & Sacc.) G. H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. konnoana (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. lachnopoda (Penz. & Sacc.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. larvarum (Westwood) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. lloydii (H.S. Fawc.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. longissima (Kobayasi) G.H. Sung, J.M. Sung, HywelJones & Spatafora, O. lutea (Moureau) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. melolonthae (Tul. & C. Tul.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. michhganensis (Mains) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. minutissima (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. monticola (Mains) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. mrciensis (J.C. Jung, Z.Q.Liang, Soytong & K.D. Hyde) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. multiaxialis (M. Zang & Kinjo) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. myrmecophila (Ces.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. neovolkiana (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. nepalensis (M. Zang & Kinjo) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. nigra (Samson, H.C. Evans & Hoekstra) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. nigrella (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. nigripes (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. nutans (Pat.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. obtusa (Penz. & Sacc.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. octospora (M. Blackwell & Gilb) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. odonatae (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. osuzumontana (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. ouwensii (Höhn.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. owariensis (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. oxycephala (Penz. & Sacc.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. pentatomae (Koval) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. petchii (Mains) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. proliferans (Henn.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. pseudolloydii (H.C. Evans & Samson) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. pseudolongissima (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. purpureostromata (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. ravenelii (Berk. & M.A. Curtis) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. robertsii (Hook.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. rubiginosiperitheciata (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. rubripunctata (Moureau) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. ryogamiensis (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. salebrosa (Mains) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. scottiana (Olliff) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. selkirkii (Olliff) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. sichuanensis (Z.Q. Liang & B. Wang) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. sinensis (Berk.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. smithii (Mains) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. sobolifera (Hill ex Watson) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. sphecocephala (Klotzsch ex Berk.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. stipillata (Z.Q. Liang & A.Y. Liu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. stylophora (Berk. & Broome) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. sublavida (Mains) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. supericialis (Peck) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. takaoënsis (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. taylorii (Berk.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. thyrsoides (A. Möller) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. tricentri (Yasuda) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. uchiyamae (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. variabilis (Petch) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. voeltzkowii (Henn.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. volkiana (A. Möller) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. wuyishanensis (Z.Q. Liang, A.Y. Liu & J.Z. Huang) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. yakusimensis (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. zhangjiajiensis (Z.Q. Liang & A.Y. Liu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora; infraspeciic: O. amazonica var. neoamazonica (Kobayasi & Hara) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. cucumispora var. dolichoderi (H.C. Evans & Samson) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. kniphoioides var. dolichoderi (H.C. Evans & Samson) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. kniphoioides var. monacidis (H.C. Evans & Samson) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. kniphoioides var. ponerinarum (H.C. Evans & Samson) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. lloydii var. binata (H.C. Evans & Samson) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. melolonthae var. rickii (Lloyd) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. owariensis f. viridescens (uchiyama & udagawa) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. purpureostromata f. recurvata (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, O. supericialis f. crustacea (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, HywelJones & Spatafora; Pochonia parasitica (G.L. Barron) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora. Key words: Clavicipitaceae, Cordyceps, Cordycipitaceae, Elaphocordyceps, Metacordyceps, multigene phylogeny, Ophiocordyceps, Ophiocordycipitaceae. INTRODUCTION Cordyceps Fr. is the most diverse genus in the family Clavicipitaceae in terms of number of species and host range (Kobayasi 1941, 1982, Mains 1957, 1958). There are estimated to be more than 400 species (Mains 198, Kobayasi 1982, Stensrud et al. 200) although this is  expected to be an underestimation of the extant global diversity (Hawksworth & Rossman 1997). Its host range is broad, ranging from ten orders of arthropods to the trufle-like genus Elaphomyces, although most species are restricted to a single host species or a set of closely related host species (Kobayasi 1941, 1982, Mains 1957, 1958). The distribution is cosmopolitan, including PHYLOGENEtIC CLASSIFICAtION OF CORDyCEPS AND tHE CLAvICIPItACEOuS FuNGI all terrestrial regions except Antarctica, with the height of known species diversity occurring in subtropical and tropical regions, especially East and Southeast Asia (Kobayasi 1941, 1982, Samson et al. 1988). The genus is generally included in the family Clavicipitaceae, based on its cylindrical asci, thickened ascus apices, and iliform ascospores that often disarticulate into partspores (Mains 198, Kobayasi 1982, Rossman et al. 1999, Hywel-Jones 2002). Cordyceps is characterized and distinguished from other genera of the family by its production of supericial to completely immersed perithecia on stipitate and often clavate to capitate stromata and its ecology as a pathogen of arthropods and the fungal genus Elaphomyces (Kobayasi 1941, Mains 197, 198, Kobayasi & Shimizu 190, Rogerson 1970). Modern infrageneric classiications of Cordyceps have been based primarily on the taxonomic studies of Kobayasi (1941, 1982) and Mains (198) (but see Massee 189). Kobayasi (1941, 1982) recognized three subgenera (C. subg. Cordyceps, C. subg. Ophiocordyceps, and C. subg. Neocordyceps), emphasizing arrangement of perithecia and morphology of asci, ascospores and part-spores. Species of C. subg. Cordyceps (type C. militaris) were characterized by the production of either immersed or supericial perithecia produced at approximately right angles (ordinal) to the surface of the stroma and ascospores that disarticulate into part-spores at maturity. Cordyceps subg. Ophiocordyceps (Petch) Kobayasi (type C. blattae Petch) was distinguished by the production of whole ascospores that do not disarticulate into part-spores and, in some species, asci lacking pronounced apical hemispheric caps. Cordyceps subg. Neocordyceps Kobayasi (type C. sphecocephala (Klotzsch ex Berk.) Berk. & M.A. Curtis) was characterized by perithecia immersed at oblique angles in the clava region of the stroma and ascospores that disarticulate into partspores upon maturity. (198) expanded the infrageneric Mains classiication with a different emphasis on diagnostic characters and recognized two additional subgenera, C. subg. Racemella (Ces.) Sacc. and C. subg. Cryptocordyceps Mains. Cordyceps subg. Racemella (type C. memorabilis (Ces.) Sacc.) included species that produce supericial perithecia and asci with hemispheric to short cylindrical caps. Cordyceps subg. Cryptocordyceps (type C. ravenelii Berk. & M.A. Curtis) was diagnosed by the production of brown, partly immersed to supericial perithecia in a palisadelike layer at more or less right angles to the surface of the stroma. Kobayasi and Mains also differed in their treatments of C. subg. Ophiocordyceps and C. subg. Neocordyceps. In contrast to Kobayasi (1941), who essentially adopted the diagnosis of Petch (1931) but at the rank of subgenus, Mains (198) placed only C. blattae and C. peltata Wakef. in C. subg. Ophiocordyceps based on their lack of a thickened ascus apex, thus deemphasizing the importance of ascospore disarticulation at the subgeneric level. Furthermore, Mains (198) did not recognize C. subg. Neocordyceps, rather he included species with oblique perithecia in C. subg. Cordyceps sect. Cremastocarpon subsect. Entomogenae. Currently, the subgenera C. subg. Cordyceps, C. subg. Ophiocordyceps, and C. subg. Neocordyceps sensu Kobayasi (1941) have been arguably the most widely used infrageneric taxa of Cordyceps (Zang & Kinjo 1998, Artjariyasripong et al. 2001, Hywel-Jones 2002, Sung & Spatafora 2004, Stensrud et al. 200) with the relatively recent addition of C. subg. Bolacordyceps O.E. Erikss., which is characterized by the production of bola-ascospores (Eriksson 198). Although this ascospore form has been likened to the South American bola or the East Asian ninchuk (martial arts weapon), the overall form is best likened to that of a skipping rope. The two handles of the skipping rope are two terminal sets of four cells. The ‘rope’ is a slender hyphal thread, which appears to lack cytoplasm or, at most, has relic quantities. In addition to the morphological characters discussed above, host afiliation has played an important role in the classiication of Cordyceps (Massee 189, Kobayasi 1982). Cordyceps species that parasitize the trufle genus Elaphomyces have been recognized as a unique taxon. The genus Cordylia Fr. (1818) was once assigned for the mycogenous Cordyceps species (Massee 189) although it is a homonym of Cordylia Pers. 1807. Kobayasi (1941, 1982) also recognized the mycogenous Cordyceps species as taxonomic units (e.g., C. subg. Cordyceps sect. Cystocarpon subsect. Eucystocarpon ser. Mycogenae) and emphasized the utility of host afiliations in delimiting closely related species of arthropod pathogens. Mains (198) adopted Kobayasi’s treatment of the parasites of Elaphomyces, but questioned whether morphologically similar species on different insect hosts (e.g., C. irangiensis Moureau and C. sphecocephala attacking ants and wasps, respectively) are conspeciic. The applicability of hosts as a taxonomic character is complicated, however, due to the dificulty in identifying immature hosts (e.g., larvae and pupae) and insuficient host identiication for many herbarium collections. Several phylogenetic studies employing ribosomal DNA (Artjariyasripong et al. 2001, Sung et al. 2001, Stensrud et al. 200) have been conducted to test and reine the classiication of Cordyceps. Such studies were restricted by both limited taxon sampling and the inadequate resolution power of ribosomal DNA, resulting in limited conclusions regarding systematics of the genus. Recent phylogenetic studies (Spatafora et al. 2007, Sung et al. 2007) based on multiple independent loci provided a greater level of resolution and support, and revealed that neither Cordyceps nor the family Clavicipitaceae is monophyletic. Three monophyletic groups of the clavicipitaceous fungi were recognized, all of which include species of Cordyceps. These results reject the current infrafamilial classiication (Diehl 190) and indicate that the phylogenetic diversity of Cordyceps is representative of the entire family Clavicipitaceae (Spatafora et al. 2007, Sung et al. 2007). Therefore, a new classiication of Cordyceps and the Clavicipitaceae is necessary to relect the current hypotheses of phylogenetic relationships and to be predictive in nature. 7 SuNG ET AL. Here, we conducted the most extensive multigene phylogenetic analyses to provide a basis for the phylogenetic classiication of Cordyceps and the clavicipitaceous fungi. The main objectives of this study are to 1) reassess the morphological traits used in the current classiications of Cordyceps in the context of phylogeny, 2) investigate the taxonomic utility of the anamorphic forms in classiication of Cordyceps and better understand the teleomorph– anamorph connections, and 3) revise the classiication of Cordyceps and Clavicipitaceae to be consistent with phylogenetic relationships. MATERIALS AND METHODS Taxon and character sampling A total of 12 taxa were sampled from Clavicipitaceae and other families of Hypocreales with Glomerella cingulata (Stoneman) Spauld. & H. Schrenk (Glomerellaceae) and Verticillium dahliae Kleb. (Plectosphaerellaceae) included as outgroups (Table 1). DNA extractions from cultures or herbarium specimens were conducted using a FastDNA kit (Qbiogene) following the manufacturer’s instruction, with minor modiications. Polymerase chain and sequencing reactions were performed as previously described (Sung et al. 2007). DNA sequence data unique to this study were determined from ive genes, including the nuclear ribosomal small and large subunits (nrSSU and nrLSU), the elongation factor 1α (tef1), and the largest and second largest subunits of RNA polymerase ІІ (rpb1 and rpb2). These sequences were combined with data from 91 taxa, which were obtained from Sung et al. (2007). Information pertaining to voucher numbers concerning the sequences is provided in Table 1. Sequence alignment and phylogenetic analyses Sequences were edited using SeqEd 1.0.3 (Applied Biosystems Inc.) and contigs were assembled using CodonCode Aligner 1.4 (CodonCode Inc.). Sequences of each gene partition were initially aligned with Clustal W 1.64 (Thompson et al. 1994) and appended to an existing alignment (Sung et al. 2007). This initial alignment was manually edited as necessary in MacClade 4.0 (Maddison & Maddison 2000). All ive gene regions sampled in this study were concatenated into a single, combined data set (12-taxon -gene data set) with ambiguously aligned regions excluded from phylogenetic analyses. Sequences from two additional gene regions, β-tubulin (tub) and mitochondrial ATP6 (atp6), from Sung et al. (2007) were also combined with the 12-taxon -gene data set to generate a supermatrix of 12-taxon 7-gene data set. In order to detect incongruence among the ive individual gene regions sampled in this study, bootstrap proportions were used for each individual data set with the 107 taxa that was complete for all ive genes (Table 1). Bootstrap proportions (BP) were determined in a maximum-parsimony framework using the program PAUP* 4.0b10 (Swofford 2002). Only parsimony- 8 informative characters were used with the following search options: 100 replicates of random sequence addition, TBR branch swapping, and MulTrees OFF. The incongruence was assumed to be signiicant if two different relationships for the same set of taxa were both supported with greater than 70 % bootstrap proportions by different genes (Mason-Gamer & Kellogg 1996, Wiens 1998). Previous studies revealed that tub was double copy in some clavicipitaceous species (Spatafora et al. 2007), and Sung et al. (2007) also showed that while atp6 possessed conlicting data for a limited number of taxa, the conlict was localized and the locus simultaneously provided increased level of support for other nodes. Thus, although we focused our sampling and analyses of the ive aforementioned loci, we also conducted phylogenetic supermatrix analyses with tub and atp6 (12-taxon 7-gene) to detect any increased nodal support provided by those two loci. Maximum parsimony (MP) analyses were conducted on the 12-taxon -gene and the 12taxon 7-gene data set (Table 1, Fig. 3). All characters were equally weighted and unordered. MP analyses were performed using only parsimony-informative characters with the following settings: 100 replicates of random sequence addition, TBR branch swapping, and MulTrees ON. Phylogenetic conidence was assessed by nonparametric bootstrapping (Felsenstein 198). A total of 200 bootstrap replicates were used to calculate bootstrap proportions; bootstrapping used the same search options with ive replicates of random sequence addition per bootstrap replicate. Maximum likelihood (ML) analyses were performed with RAxML-VI-HPC v2.2. using a GTRCAT model of evolution with 2 rate categories (Stamatakis et al. 200). The model was separately applied to each of the eleven partitions, which consisted of nrSSU, nrLSU and the nine codon positions of three protein-coding genes (tef1, rpb1, and rpb2). Nodal support was assessed with nonparametric bootstrapping using 200 replicates. Bayesian Metropolis coupled Markov chain Monte Carlo (B-MCMCMC) analyses were performed on combined datasets using MrBayes 3.0b4 (Huelsenbeck & Ronquist 2001). In estimating the likelihood of each tree, we used the general time-reversible model, with invariant sites and gamma distribution (GTR+I+Γ) and employed the model separately for each partition. In an initial analysis, a B-MCMCMC analysis with ive million generations and four chains was conducted in order to test the convergence of log-likelihood. Trees were sampled every 100 generations, for a total of 50,000 trees. For a second analysis, ive independent Bayesian runs with two million generations and random starting trees were conducted to reconirm log-likelihood convergence and mixing of chains. In addition to the analyses with 12-taxon -gene data set, a series of analyses were conducted in MP, ML, and Bayesian frameworks with different taxon samplings (107- and 12-taxon -gene data sets) to address the potential topological effects of missing data. Previous phylogenetic and simulation studies demonstrated that the phylogenetic analyses are often not negatively PHYLOGENEtIC CLASSIFICAtION OF CORDyCEPS AND tHE CLAvICIPItACEOuS FuNGI affected if less than 0 % characters are missing for each taxon in the phylogenetic analyses (Wiens 2003, Phylippe et al. 2004). In this study, we assumed that the phylogenetic analysis is not confounded if the taxa were complete for at least three out of ive gene partitions. Therefore, ten taxa (Table 1) in the 162-taxon 5-gene data set that were complete for only two gene partitions were excluded to generate the 12-taxon -gene data set. A 107-taxon -gene data set that does not contain any missing data in gene partitions was also prepared to compare the phylogenetic relationships between 107-taxon and 152-taxon 5-gene analyses. MP, ML, and Bayesian analyses based on the 12-taxon -gene data set (Figs 1–2) showed that the C. sphecocephala clade is characterized by long-branch lengths relative to the rest of the clavicipitaceous fungi. To address the impact of the C. sphecocephala clade on the phylogenetic resolution, we excluded all members of the C. sphecocephala clade from the 12-taxon -gene data set and constructed a 147-taxon -gene data set. RESULTS Sequence alignment The combined 162-taxon 5-gene dataset consisted of 4927 base pairs of sequence data (nrSSU 1102 bp, nrLSU 94 bp, tef1 1020 bp, rpb1 803 bp, rpb2 1048 bp). As a result of excluding ambiguously aligned regions, the inal alignment comprised 4600 base pairs (nrSSU 1088 bp, nrLSU 77 bp, tef1 1020 bp, rpb1 77 bp, rpb2 1048 bp), 1882 of which were parsimonyinformative (nrSSU 233 bp, nrLSU 220 bp, tef1 4 bp, rpb1 382 bp, rpb2 81 bp). A total of 107 taxa were complete for all ive genes and the number of complete taxa for each gene was as follows: nrSSU 18 taxa, nrLSU 17 taxa, tef1 149 taxa, rpb1 143 taxa, rpb2 122 taxa (Table 1). Phylogenetic analyses The reciprocal comparisons of 70 % bootstrap trees from individual data sets of the 12-taxon -gene dataset did not reveal any signiicantly supported contradictory nodes (data not shown). These results were interpreted as indicating that no strong incongruence existed among the individual data sets that would be indicative of different phylogenetic gene histories (e.g., lineage sorting or horizontal gene transfer). As a result, all ive individual data sets were combined in simultaneous analyses. MP analyses of the 162-taxon 5-gene data set resulted in 156 equally parsimonious trees. These trees were 21,323 steps with a consistency index (CI) of 0.198 and a retention index (RI) of 0.131. One of 1 equally parsimonious trees is shown in Fig. 1. Nodes that collapse in the strict consensus tree are denoted with asterisks. ML analyses of the 12taxon -gene data set resulted in a tree with a loglikelihood (–ln) of 92019.9. In the Bayesian analyses, the ive-million generation analysis converged on the log-likelihood (harmonic mean = –ln 991.22) at approximately around 250,000 generations. The results from ive of two-million generation analyses also showed a convergence on the log-likelihood at approximately 20,000 generations and the topologies were identical. As a result, the 3,000 trees from the irst 300,000 generations were deleted from the ive million generation analysis to generate a 0 % majority-rule consensus tree. A 0 % majority consensus tree (Fig. 2) was generated from the  million generation analysis. Since the topology of ML analyses (tree not shown) was nearly identical to that of the Bayesian consensus tree of Fig. 2, the bootstrap proportions of ML analyses are provided above the corresponding nodes in Fig. 2. Previous studies have shown that in interpreting the supports of the phylogenetic estimates of relationships, the posterior probability tends to overestimate the phylogenetic conidence (Doaudy et al. 2003, Lutzoni et al. 2004, Reeb et al. 2004). As a result, the posterior probabilities were used as a supplementary indicator to bootstrap proportions. In this study, nodes were considered strongly supported when supported by both bootstrap proportions (BP ≥ 70 %) and posterior probabilities (PP ≥ 0.95) (Lutzoni et al. 2004). Phylogenetic relationships of the clavicipitaceous fungi All MP, ML, and Bayesian analyses of the ive-gene 12-taxon -gene data set recognized three wellsupported clades of clavicipitaceous fungi (Figs 1–2), designated here as Clavicipitaceae clades A, B, and C (Figs 1–2), following the convention of the previous phylogenetic studies (Spatafora et al. 2007, Sung et al. 2007). These clades were statistically well supported by the bootstrap proportions of the MP (MP-BP) and ML (ML-BP) analyses and posterior probabilities (PP) of the Bayesian analyses (clade A: MP-BP = 98 %, MLBP = 99 %, PP = 1.00; clade B: MP-BP = 93 %, ML-BP = 98 %, PP = 1.00; clade C: MP-BP = 100 %, ML-BP = 100 %, PP = 1.00). A sister-group relationship between clades A and B was also strongly supported (MP-BP = 72 %, ML-BP = 90 %, PP = 1.00). The monophyletic group of clade C and Hypocreaceae was moderately to strongly supported (MP-BP = 63 %, ML-BP = 92 %, PP = 1.00). Clavicipitaceae clade A comprised ive statistically well-supported subclades (Figs 1–2, 4). These were labelled in Figs 1, 2, and 4 as the C. taii clade (MPBP = 73 %, ML-BP = 78 %, PP = 1.00), the Claviceps clade (MP-BP = 95 %, ML-BP = 98 %, PP = 1.00), the Hypocrella clade (MP-BP = 99 %, ML-BP = 99 %, PP = 1.00), the Shimizuomyces clade (MP-BP = 100 %, MLBP = 100 %, PP = 1.00), and the Torrubiella luteorostrata clade (MP-BP = 100 %, ML-BP = 100 %, PP = 1.00). As indicated previously by Sung et al. (2007), internal relationships among these ive subclades were not strongly supported in MP and ML analyses (Figs 1–2, 4). Clavicipitaceae clade B consisted of ive major subclades designated as the C. gunnii, C. ophioglossoides, C. sphecocephala, C. unilateralis, and Pa. lilacinus clades (Figs 1–2, ). Nearly all of 9 SuNG ET AL. Glomerella cingulata Glomerella cingulata 100 100 88 10 Verticillium dahliae 100 Bionectria cf. aureofulva Bionectria ochroleuca 100 Hydropisphaera peziza 100 Bionectriaceae 84 Hydropisphaera erubescens 100 Roumegueriella rufula Roumegueriella rufula Ophionectria trichospora 94 Pseudonectria rousseliana 90 Cosmospora coccinea Nectriaceae Nectria cinnabarina 87 Leuconectria clusiae Viridispora diparietispora Verticillium incurvum 100 Hypomyces polyporinus Sphaerostilbella berkeleyana Hypocreaceae 100 Aphysiostroma stercorarium Hypocrea lutea Torrubiella wallacei Simplicillium lamellicola 100 100 100 Simplicillium obclavatum Simplicillium clade Simplicillium lanosoniveum Simplicillium lanosoniveum 98 Lecanicillium antillanum Lecanicillium aranearum Torrubiella ratticaudata 98 Engyodontium aranearum 100 Cordyceps cardinalis Cordyceps cardinalis Lecanicillium fusisporum Cordyceps clade Lecanicillium psalliotae 92 Lecanicillium psalliotae Lecanicillium dimorphum Isaria farinosa 99 Isaria farinosa Cordyceps tuberculata Lecanicillium attenuatum Clavicipitaceae clade C Torrubiella confragosa 98 100 Beauveria caledonica * Cordyceps scarabaeicola Cordyceps staphylinidicola 99 Cordyceps cf. takaomontana Isaria cf. farinosa 100 Isaria tenuipes 97 100 Cordyceps cf. ochraceostromata 100 Cordyceps sp. EFCC 2535 Cordyceps takaomontana 87 Cordyceps bifusispora 80 Cordyceps bifusispora 100 Microhilum oncoperae 100 100 Cordyceps kyusyuensis Cordyceps militaris Verticillium sp. CBS 102184 99 100 Cordyceps cf. pruinosa EFCC 5197 81 Cordyceps cf. pruinosa EFCC 5693 100 Mariannaea pruinosa 99Cordyceps cf. pruinosa EFCC 10627 98 Cordyceps cf. pruinosa EFCC 10684 92 Phytocordyceps ninchukispora Phytocordyceps ninchukispora 100 Aschersonia badia 99 Hypocrella schizostachyi Hypocrella clade 70 Aschersonia placenta Hypocrella sp. GJS 89604 100 Shimizuomyces paradoxus * Shimizuomyces clade Shimizuomyces paradoxus 100 Torrubiella luteorostrata T. luteorostrata clade Torrubiella luteorostrata Epichloë typhina 91 Claviceps paspali 100 Claviceps fusiformis 100 Claviceps purpurea 95 Claviceps purpurea 100 Claviceps clade Verticillium epiphytum 98 74 Verticillium epiphytum Myriogenospora atramentosa 100 Balansia pilulaeformis 100 100 Balansia epichloë Balansia henningsiana Paecilomyces marquandii * 100 Paecilomyces carneus Paecilomyces carneus Clavicipitaceae clade A 100 Cordyceps sp. EFCC 2131 Cordyceps sp. EFCC 2135 73 * Nomuraea rileyi 73 Metarhizium album 98 100 Cordyceps sp. NHJ 12118 93 Metarhizium flavoviride 100 Cordyceps sp. OSC 110996 * Metarhizium anisopliae C. taii clade 72 Cordyceps taii 100 Cordyceps liangshanensis Cordyceps liangshanensis Rotiferophthora angustispora * 100 Cordyceps chlamydosporia Pochonia chlamydosporia Tolypocladium parasiticum 100 Pochonia rubescens 100 Pochonia bulbillosa Pochonia gonioides PHYLOGENEtIC CLASSIFICAtION OF CORDyCEPS AND tHE CLAvICIPItACEOuS FuNGI Cordyceps sphecocephala Cordyceps tricentri Cordyceps nutans C. sphecocephala clade Hymenostilbe aurantiaca * 100 100 Cordyceps irangiensis Cordyceps irangiensis Nomuraea atypicola 99 Paecilomyces lilacinus P. lilacinus clade 100Paecilomyces lilacinus Paecilomyces lilacinus Cordyceps gunnii 97 Haptocillium zeosporum 100 C. gunnii clade 100 Haptocillium balanoides Haptocillium sinense 93 Cordyceps capitata Cordyceps longisegmentis 71 Cordyceps japonica Cordyceps fracta Cordyceps paradoxa C. ophioglossoides clade Cordyceps inegoensis Cordyceps jezoensis * Cordyceps ophioglossoides Clavicipitaceae clade B Cordyceps subsessilis 100 Cordyceps gracilis * Cordyceps gracilis 100 Cordyceps heteropoda 71 Cordyceps heteropoda Cordyceps melolonthae 100 Cordyceps variabilis * Cordyceps variabilis Cordyceps konnoana 96 Cordyceps konnoana * Cordyceps superficialis 99 100 Cordyceps nigrella Cordyceps ravenelii Cordyceps entomorrhiza Cordyceps elongata 100 Cordyceps rhizoidea * Cordyceps rhizoidea * 100 Cordyceps sp. NHJ 12581 Cordyceps sp. NHJ 12582 C. unilateralis clade * * 100 Cordyceps sp. OSC 110997 Cordyceps unilateralis 78 Cordyceps aphodii 100 Cordyceps brunneipunctata 96 Cordyceps sobolifera * Cordyceps longissima 96 Cordyceps yakusimensis Cordyceps agriotidis Cordyceps coccidiicola 100 Cordyceps cf. acicularis 93 Cordyceps cochlidiicola 100 Hirsutella sp. NHJ 12525 Hirsutella sp. NHJ 12527 86 Cordyceps robertsii Cordyceps sinensis 98 100 Cordyceps acicularis Cordyceps acicularis 100 Cordyceps stylophora Cordyceps stylophora 100 * 93 * * 100 Fig. 1. Continued. the subclades in clade B were strongly supported by bootstrap proportions and posterior probabilities (C. gunnii clade: MP-BP = 97 %, ML-BP = 100 %, PP = 1.00; C. ophioglossoides clade: MP-BP = 71 %, MLBP = 88 %, PP = 1.00; C. sphecocephala clade: MPBP = 100 %, ML-BP = 100 %, PP = 1.00, Pa. lilacinus clade: MP-BP = 64 %, ML-BP = 76 %, PP = 1.00). It should be noted, however, that the C. unilateralis subclade was not resolved in the MP analyses (Fig. 1). This lack of resolution was due to the instability of the C. sphecocephala clade, which is characterized by long-branch lengths relative to the rest of the clavicipitaceous fungi. Multiple placements of the C. sphecocephala subclade, ranging from a basal lineage of the Clavicipitaceae clade B to a terminal clade nested within the C. unilateralis subclade, were present among the most parsimonious trees (data not shown). Our ML and Bayesian results (Fig. 3) indicate that the C. sphecocephala subclade is either a sister- group of the C. unilateralis subclade (107-taxon -gene data set) or in the terminal group of the C. unilateralis subclade (152-taxon 5-gene data set). In MP, ML, and Bayesian analyses with a supermatrix of 12-taxon 7gene data set (Fig. 3), the C. sphecocephala subclade was placed as a terminal group of the C. unilateralis subclade with strong support (MP-BP = 89 %, ML-BP = 94 %, PP = 1.00) as seen in the previous analyses (Sung et al. 2007). In the light of long-branch attraction problems associated with the MP analyses (Fig. 1), we use the Bayesian tree (Fig. 2) to further discuss the relationships in clade B and we conclude that the C. sphecocephala subclade was best included as a member of the C. unilateralis subclade (Figs 2, ). In interpreting the C. unilateralis subclade in terms of statistical support, we used the bootstrap proportions and posterior probabilities (MP-BP = 88 %, ML-BP = 88 %, PP = 1.00) based on the results of 147-taxon 5gene data set (Fig. 3). Fig. 1 (Page 10/11). Phylogenetic relationships among 162 taxa in the Clavicipitaceae and other families in the Hypocreales. One of 1 equally parsimonious trees is shown based on maximum parsimony analyses with combined data set of ive genes (i.e., nrSSU, nrLSU, tef1, rpb1 & rpb2). Bootstrap proportions (MP-BP) of ≥ 70 % are provided above corresponding nodes and in a thicker line. Internodes that are collapsed in strict consensus tree are marked with an asterisk (*). 11 SuNG ET AL. 100 Bionectria cf. aureofulva Bionectria ochroleuca Hydropisphaera peziza 100 Bionectriaceae Hydropisphaera erubescens 85 100 Roumegueriella rufula 100 Roumegueriella rufula 100 Ophionectria trichospora Pseudonectria rousseliana 100 73 Cosmospora coccinea 100 Nectriaceae Nectria cinnabarina 100 97 Leuconectria clusiae Viridispora diparietispora 100 Verticillium incurvum 100 100 Aphysiostroma stercorarium 100 80 Hypocrea lutea Hypocreaceae 100 Hypomyces polyporinus 100 Sphaerostilbella berkeleyana 98 92 Simplicillium lamellicola 100 100 Simplicillium obclavatum 100 Simplicillium clade 100 100 Simplicillium lanosoniveum 100 100 Simplicillium lanosoniveum 100 Torrubiella wallacei 100 Engyodontium aranearum 91 Lecanicillium antillanum 100 Lecanicillium aranearum 100 Torrubiella ratticaudata 100 100 Cordyceps cardinalis 100 Cordyceps cardinalis 100 Lecanicillium dimorphum Lecanicillium psalliotae 100 Lecanicillium fusisporum 100 Cordyceps clade 92 100 99 Lecanicillium psalliotae 100 Isaria farinosa 99 Isaria farinosa 99 100 Cordyceps tuberculata 100 82 Lecanicillium attenuatum Torrubiella confragosa Clavicipitaceae clade C 100 98 Beauveria caledonica 100 100 Cordyceps scarabaeicola 100 Cordyceps staphylinidicola 98 Cordyceps cf. takaomontana Isaria cf. farinosa 100 100 Cordyceps cf. ochraceostromata 88 Isaria tenuipes 100 100 100 Cordyceps sp. EFCC 2535 100 100 100 Cordyceps takaomontana 76 100 Cordyceps bifusispora 100 100 Cordyceps bifusispora 88 Microhilum oncoperae 100 95 100 Cordyceps kyusyuensis 100 97 Cordyceps militaris 100 Verticillium sp. CBS 102184 100 98 100 Cordyceps cf. pruinosa EFCC 5197 100 100 100 Cordyceps cf. pruinosa EFCC 5693 96 Mariannaea pruinosa 100 99 Cordyceps cf. pruinosa NHJ 10627 100 96 Cordyceps cf. pruinosa NHJ 10684 100 100 100 Phytocordyceps ninchukispora 94 100100 Phytocordyceps ninchukispora 100 Shimizuomyces paradoxus Shimizuomyces clade 100 Shimizuomyces paradoxus Aschersonia badia 99 97 Hypocrella schizostachyi Hypocrella clade 96 100 90 Aschersonia placenta 100 99 Hypocrella sp. GJS 89104 100 100 Torrubiella luteorostrata 100 T. luteorostrata clade Torrubiella luteorostrata 100 Epichloë typhina 100 Claviceps paspali 100 100 96 Claviceps fusiformis 100 Claviceps purpurea 100 98 Claviceps purpurea 100 100 100 Verticillium epiphytum Claviceps clade Verticillium epiphytum 99 76 100 Myriogenospora atramentosa 100 100 100 Balansia pilulaeformis 86 100 100 Balansia epichloë 100 Balansia henningsiana 100 100 Pochonia bulbillosa Clavicipitaceae clade 100 100 Pochonia gonioides Pochonia rubescens 100 Tolypocladium parasiticum Rotiferophthora angustispora 84 78 100 Cordyceps chlamydosporia 100 Pochonia chlamydosporia 100 100 Nomuraea rileyi 98 Metarhizium album 99 100 Cordyceps sp. NHJ 12118 100 100 C. taii clade Metarhizium flavoviride 100 79100 Cordyceps taii 100 100 Cordyceps sp. OSC 110996 100 90 Metarhizium anisopliae Paecilomyces marquandii 100 100 Paecilomyces carneus Paecilomyces carneus 100 100 Cordyceps liangshanensis 100 Cordyceps liangshanensis 100 Cordyceps sp. EFCC 2131 100 Cordyceps sp. EFCC 2135 100 Outgroup 100 100 12 100 A PHYLOGENEtIC CLASSIFICAtION OF CORDyCEPS AND tHE CLAvICIPItACEOuS FuNGI Nomuraea atypicola Paecilomyces lilacinus P. lilacinus clade Paecilomyces lilacinus 100 100 Paecilomyces lilacinus 100 Cordyceps gunnii 100 Haptocillium zeosporum 100 C. gunnii clade 100 Haptocillium balanoides 100 Haptocillium sinense 97 99 Cordyceps capitata Cordyceps longisegmentis 88 100 Cordyceps japonica 98 100 Cordyceps fracta 100 C. ophioglossoides clade Cordyceps paradoxa Cordyceps jezoensis Cordyceps inegoensis Clavicipitaceae Cordyceps ophioglossoides Cordyceps subsessilis 100 Cordyceps variabilis Cordyceps variabilis 100 100 Cordyceps gracilis 98 70 100 Cordyceps gracilis 98 100 Cordyceps heteropoda Cordyceps heteropoda 100 Cordyceps melolonthae 100 Cordyceps konnoana 99 Cordyceps konnoana 100 C. unilateralis clade Cordyceps superficialis 100 100 100 Cordyceps nigrella 100 100 Cordyceps ravenelii 100 Cordyceps entomorrhiza 100 Cordyceps aphodii 100 100 Cordyceps brunneipunctata 99 Cordyceps sobolifera 100 100 Cordyceps longissima 100 Cordyceps yakusimensis 100 100 Cordyceps tricentri 100 Cordyceps nutans 100 Cordyceps sphecocephala Hymenostilbe aurantiaca 100 96 100 Cordyceps irangiensis 100 100 C. sphecocephala clade 100 Cordyceps irangiensis Cordyceps elongata 100 Cordyceps rhizoidea 100 Cordyceps rhizoidea 100 Cordyceps sp. NHJ 12581 100 Cordyceps sp. NHJ 12582 100 100 Cordyceps sp. OSC 110997 99 Cordyceps unilateralis 100 70 Cordyceps agriotidis Cordyceps coccidiicola 100 100 Hirsutella sp. NHJ 12525 96 C. unilateralis clade 100 Hirsutella sp. NHJ 12527 100 100 Cordyceps cf. acicularis 99 Cordyceps cochlidiicola 81 100 Cordyceps robertsii 100 Cordyceps sinensis 94 99 100 Cordyceps acicularis 100 0.1 substitutions/site Cordyceps acicularis 100 100 Cordyceps stylophora 100 Cordyceps stylophora 72 100 100 100 clade B Fig. 2. Continued. Clavicipitaceae clade C comprised two wellsupported subclades (Figs 1–2, 8). The Simplicillium subclade (MP-BP = 100 %, ML-BP = 100 %, PP = 1.00) consisted of isolates of the anamorph genus Simplicillium, most of which were isolated as parasites of other fungi. The Cordyceps subclade (MP-BP = 98 %, ML-BP = 100 %, PP = 1.00) included numerous species of Torrubiella and species of Cordyceps that produce pallid to brightly coloured stromata with ascospore morphologies ranging from whole ascospores to part-spores to bola-ascospores according to species. Importantly, the Clavicipitaceae clade C included C. militaris and represents the core Cordyceps clade. The remaining species, Torrubiella wallacei H.C. Evans, was also a member of the Cordyceps clade with strong support (ML-BP = 91 %, PP = 1.00) in ML and Bayesian analyses (Figs 2, 8), but could not be conidently assigned to either subclade in MP analyses (Fig. 1). DISCUSSION Phylogenetic implications on the systematics of the genus Cordyceps The present and previous phylogenetic analyses (Spatafora et al. 2007, Sung et al. 2007) have revealed that species in the Clavicipitaceae form three strongly supported monophyletic groups based on combined data sets of six or seven genes (the genes analyzed herein with and without atp6). Although more taxa were used in our study, these results were consistent with the previous studies, recognizing three monophyletic groups designated as Clavicipitaceae clades A–C (Figs 1–2). In addition, our results also support the paraphyly of the Clavicipitaceae as deined by the monophyly of Clavicipitaceae clade C and Hypocreaceae (Figs 1–2). Although the paraphyly of the Clavicipitaceae (clade C Fig. 2 (Page 12/13). Phylogenetic relationships among 162 taxa in the Clavicipitaceae and other families in the Hypocreales. A 0 % majority consensus tree is shown based on Bayesian analyses with combined data set of ive genes (i.e., nrSSU, nrLSU, tef1, rpb1 & rpb2). Outgroups (Glomerella cingulata and Verticillium dahliae) are not shown. Posterior probabilities (PP) of ≥ 0.95 are provided in percentage below corresponding nodes. Bootstrap proportions (ML-BP) are obtained in maximum likelihood analyses and shown above corresponding nodes for ≥ 70 %. Internodes that are supported with both bootstrap proportions (ML-BP ≥ 70 %) and posterior probabilities (PP ≥ 0.95) are considered strongly supported and drawn in a thicker line. 13 SuNG ET AL. + Hypocreaceae) was moderately supported (MP-BP = 63 %) in the 162-taxon 5-gene MP analyses (Fig. 1), it was strongly supported (ML-BP = 92 %, PP = 1.00) in the ML and Bayesian analyses (Fig. 2) and more robustly addressed in the previous MP analyses, which investigated localized conlicts among gene partitions and compared bootstrap proportions among alternative sampling strategies (Sung et al. 2007). The phylogenetic hypothesis presented here contradicts current infrafamilial classiication of the Clavicipitaceae. Diehl (190) proposed three subfamilies, Oomycetoideae, Clavicipitoideae, and Cordycipitoideae, based on the development of stromata, anamorphic characters and host afiliations. However, these three subfamilies do not coincide with the three clades of the Clavicipitaceae inferred in the present MP analyses 100 100 107-taxon 5-gene 100 100 100 89 100 100 83 99 100 147-taxon 5-gene 100 100 72 100 100 88 100 152-taxon 5-gene 98 100 100 100 96 100 100 162-taxon 5-gene 100 98 100 72 98 93 71 100 162-taxon 7-gene 100 98 70 96 96 70 89 100 Hypocreaceae Clavicipitaceae C Clavicipitaceae A C. sphecocephala clade C. gunnii clade P. lilacinus clade C. ophioglossoide clade C. unilateralis clade ML analyses 100 90 100 96 86 100 100 99 100 85 Hypocreaceae Clavicipitaceae C Clavicipitaceae A C. sphecocephala clade C. gunnii clade P. lilacinus clade C. ophioglossoide clade C. unilateralis clade 91 Hypocreaceae Clavicipitaceae C Clavicipitaceae A P. lilacinus clade C. gunnii clade C. ophioglossoide clade C. unilateralis clade C. sphecocephala clade C. unilateralis clade 100 100 Hypocreaceae Clavicipitaceae C Clavicipitaceae A C. gunnii clade P. lilacinus clade C. ophioglossoide clade C. unilateralis clade Hypocreaceae Clavicipitaceae C Clavicipitaceae A C. sphecocephala clade C. gunnii clade P. lilacinus clade C. ophioglossoide clade C. unilateralis clade analyses (Figs 1–2). Clavicipitaceae clade A includes members of all three subfamilies (e.g., Claviceps of Clavicipitoideae, Cordyceps of Cordycipitoideae, and Hypocrella of Oomycetoideae), whereas the remaining clades only comprise members of Cordycipitoideae (e.g., Cordyceps and Torrubiella). Importantly, all three major clades include members of Cordyceps, indicating that Cordyceps, like Clavicipitaceae, is not monophyletic (Figs 1–2). As a result, the three recognized well-supported clades (clades A–C) of the clavicipitaceous fungi represent a robust phylogenetic framework for the taxonomic revision of Cordyceps and the Clavicipitaceae. In the current infrageneric classiication of the genus, Cordyceps comprises four subgenera (C. subg. Bolacordyceps, C. subg. Cordyceps, C. subg. 100 100 100 91 100 72 74 100 100 88 100 100 100 92 100 76 79 99 100 100 100 92 100 99 100 90 72 98 88 100 100 72 100 100 100 84 98 88 94 100 Bayesian analyses 100 Hypocreaceae Clavicipitaceae C Clavicipitaceae A C. gunnii clade P. lilacinus clade C. ophioglossoide clade C. unilateralis clade C. sphecocephala clade 100 Hypocreaceae Clavicipitaceae C Clavicipitaceae A C. gunnii clade P. lilacinus clade C. ophioglossoide clade C. unilateralis clade 100 Hypocreaceae Clavicipitaceae C Clavicipitaceae A C. gunnii clade P. lilacinus clade C. ophioglossoide clade C. unilateralis clade C. sphecocephala clade C. unilateralis clade 100 Hypocreaceae Clavicipitaceae C Clavicipitaceae A C. gunnii clade P. lilacinus clade C. ophioglossoide clade C. unilateralis clade C. sphecocephala clade C. unilateralis clade 100 Hypocreaceae Clavicipitaceae C Clavicipitaceae A C. gunnii clade P. lilacinus clade C. ophioglossoide clade C. unilateralis clade C. sphecocephala clade C. unilateralis clade 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99 100 100 100 100 100 100 100 100 100 100 95 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 97 Hypocreaceae Clavicipitaceae C Clavicipitaceae A C. gunnii clade P. lilacinus clade C. ophioglossoide clade C. unilateralis clade C. sphecocephala clade Hypocreaceae Clavicipitaceae C Clavicipitaceae A C. gunnii clade P. lilacinus clade C. ophioglossoide clade C. unilateralis clade Hypocreaceae Clavicipitaceae C Clavicipitaceae A C. gunnii clade P. lilacinus clade C. ophioglossoide clade C. unilateralis clade C. sphecocephala clade C. unilateralis clade Hypocreaceae Clavicipitaceae C Clavicipitaceae A C. gunnii clade P. lilacinus clade C. ophioglossoide clade C. unilateralis clade C. sphecocephala clade C. unilateralis clade Hypocreaceae Clavicipitaceae C Clavicipitaceae A C. gunnii clade P. lilacinus clade C. ophioglossoide clade C. unilateralis clade C. sphecocephala clade C. unilateralis clade Fig. 3. Schematic diagrams of phylogenetic relationships from MP, ML, and Bayesian analyses that differ in character or taxon sampling. In addition to 162-taxon 5-gene and 7-gene data sets, 107-taxon and 152-taxon 5-gene data sets were generated with taxa complete for ive genes (i.e., nrSSU, nrLSU, tef1, rpb1 and rpb2) and at least three genes, respectively. To address the impact of C. sphecocephala clade to nodal support of C. unilateralis clade in Fig. 1, a 147-taxon -gene data set was constructed after members of C. sphecocephala clade were excluded. Bootstrap proportions (BP ≥ 70 %) or posterior probabilities (PP ≥ 0.95 in percentage) are shown above corresponding nodes and in a thicker line. 14 100 Shimizuomyces clade Hypocrella clade Shimizuomyces paradoxus Shimizuomyces paradoxus 99 Aschersonia badia 97 96 Hypocrella schizostachyi 100 90 Aschersonia placenta 100 99 Hypocrella sp. GJS 89104 100100 Torrubiella luteorostrata 100 Torrubiella luteorostrata 100 Epichloë typhina 100 Claviceps paspali 100 100 96 Claviceps fusiformis 100 100 98 Claviceps purpurea Claviceps purpurea 100 100 100 Verticillium epiphytum 99 76 Verticillium epiphytum 100 Myriogenospora atramentosa 100 100 100 86 Balansia pilulaeformis 100 100 Balansia epichloë 100 Balansia henningsiana 100 100 Pochonia bulbillosa 100 Pochonia gonioides 100 Pochonia rubescens 100 Tolypocladium parasiticum 84 Rotiferophthora angustispora 78 100 Cordyceps chlamydosporia (Pochonia) C. subg. Ophiocordyceps 100 100 Pochonia chlamydosporia 100 Nomuraea rileyi 98 Metarhizium album 100 100 99 Cordyceps sp. NHJ 12118 (Metarhizium) 100 Metarhizium flavoviride 100 79 100 100 Cordyceps taii 100 C. subg. Neocordyceps Cordyceps sp. OSC 110996 (Metarhizium) 100 Metarhizium anisopliae Paecilomyces marquandii 100 Paecilomyces carneus Paecilomyces carneus 100 100 Cordyceps liangshanensis C. subg. Cordyceps 100100 Cordyceps liangshanensis Cordyceps sp. EFCC 2131 100 Cordyceps sp. EFCC 2135 0.1 substitutions/site 100 T. luteorostrata clade C. taii clade 1 Fig. 4. Enlargement of Bayesian consensus tree in Fig. 2, showing Clavicipitaceae clade A, to emphasize relationships within the clade. Respective subgenera of Cordyceps species in current classiication are provided to the right of species. Known anamorphic genera of Cordyceps species are in parentheses. Tree description is the same as in Fig. 2. PHYLOGENEtIC CLASSIFICAtION OF CORDyCEPS AND tHE CLAvICIPItACEOuS FuNGI Clavicepsclade SuNG ET AL. Neocordyceps, and C. subg. Ophiocordyceps) based on ascospore morphology and arrangement of the perithecia in the stromata (Kobayasi 1941, 1982, Eriksson 198). However, most of these characters are not consistent with the new phylogenetic hypothesis and are not diagnostic of monophyletic taxa (e.g., subgenera and genera) (Figs 1–2). For example, Kobayasi (1941, 1982) emphasized ascospore morphology and the lack of ascospore disarticulation into part-spores to delimit C. subg. Ophiocordyceps from the other subgenera. Species with non-disarticulating ascospores, however, are included in all three major clades (C. acicularis Ravenel of clade B, C. cardinalis G.H. Sung & Spatafora of clade C, and Cordyceps sp. EFCC 2131 and 213 of clade A described below as Metacordyceps yongmunensis) (Figs 1–2), indicating that non-disarticulating ascospores are not phylogenetically informative at this level (Figs 1–2). Therefore, a reassessment of diagnostic characters, in the previous and current classiications of Cordyceps, is necessary for the three major clades to provide a basis for taxonomic revisions of Cordyceps and the Clavicipitaceae. Species in Clavicipitaceae clade A Clavicipitaceae clade A comprises ive well-supported subclades (Fig. 4). All known species of Cordyceps in the clade are included in the C. taii clade. Species of Cordyceps in the clade possess partially or completely immersed perithecia on clavate to cylindrical fertile parts of the stromata (Zang et al. 1982, Liang et al. 1991, Zare et al. 2001). They produce ascospores that either disarticulate or remain intact at maturity and include species that possess ordinal and obliquely embedded perithecia. In the current classiication, clade A includes species of Cordyceps that were formerly classiied in three subgenera of Cordyceps. Cordyceps liangshanensis M. Zang, D. Liu & R. Hu forms ordinal perithecia and possess disarticulating ascospores, consistent with C. subg. Cordyceps (Kobayasi 1982, Zang et al. 1982). Cordyceps chlamydosporia H.C. Evans possesses nondisarticulating ascospores, consistent with C. subg. Ophiocordyceps (Zare et al. 2001). Cordyceps taii Z.Q. Liang & A.Y. Liu, a known teleomorph species linked to the anamorph genus Metarhizium Sorokin, produces disarticulating ascospores and obliquely embedded perithecia in the stromata, a trait used to recognize C. subg. Neocordyceps (Liang et al. 1991). Importantly, Cordyceps sp. EFCC 2131 and 213 (described below as Metacordyceps yongmunensis) produce nondisarticulating ascospores and obliquely embedded perithecia in the stromata, characters inconsistent with any of the subgenera in the current classiication. These results suggest that ascospore morphology and arrangement of perithecia are not phylogenetically informative in recognizing either the C. taii clade, or higher clades of clavicipitaceous fungi. Rather, they are more useful at species level classiication. For example, our phylogenetic analyses revealed that C. taii is closely related to C. brittlebankisoides Z. Y. Liu, Z.Q. Liang, Whalley, Y.J. Yao & A.Y. Liu, the purported teleomorph of M. lavoviride (Huang et al. 200). Although these species are similar to each other in macromorphology (e.g., greenish clavate stromata), they differ in the arrangement of the perithecia. C. brittlebankisoides possesses perithecia that are ordinally placed in the stromata, whereas C. taii has obliquely embedded perithecia. These results therefore suggest that arrangement of the perithecia in the stromata is useful in delimiting these closely related species in the C. taii clade (Fig. 4). Fig. 5. A–E. Representative species of Cordyceps and its allies in Clavicipitaceae clade A. F-K. Morphology of Cordyceps sp. (described here as Metacordyceps yongmunensis sp. nov. below). A. C. liangshanensis on lepidopteran larva, EFCC 142. B. Cordyceps sp. on lepidopteran pupa, EFCC 1228. C. Hypocrella schizostachyi on scale insect (Hemiptera). D. Shimizuomyces paradoxus on seed of plant (Smilax sieboldii: Smilacaceae). E. Metarhizium sp. on adult of cicada. F. Section of perithecium, EFCC 2131. G. Asci and fascicle, EFCC 2131. H. Asci showing prominent ascus cap, EFCC 2131. I. Asci showing ascus foot, EFCC 2131. J. Ascospores showing indistinct septation, EFCC 2131. K. Discharged intact ascospores on SDAY agar, EFCC 2131. Scale bars: A–E = 10 mm, F = 200 μm, G = 100 μm, H–J = 10 μm, K = 100 μm. 1 PHYLOGENEtIC CLASSIFICAtION OF CORDyCEPS AND tHE CLAvICIPItACEOuS FuNGI Species in Clavicipitaceae clade B Species of Cordyceps in Clavicipitaceae clade B possess disarticulating or non-disarticulating ascospores and produce supericial to completely immersed perithecia that are ordinally or obliquely inserted in the stromata. As with the Cordyceps species of clade A, this clade also includes members of the former C. subg. Cordyceps (e.g., C. ophioglossoides (Ehrh.) Link and C. variabilis Petch), C. subg. Ophiocordyceps (e.g., C. acicularis and C. unilateralis (Tul. & C. Tul.) Sacc.), and C. subg. Neocordyceps (e.g., C. nutans Pat. and C. sphecocephala). The majority of Cordyceps species in this clade produce wiry to pliant or ibrous stromata that typically are completely or partially darkly pigmented and parasitize subterranean or wood-inhabiting hosts, which are buried in soil or embedded in decaying wood. Exceptions to this morphology and ecology do exist, however; for example, C. melolonthae (Tul. & C. Tul.) Sacc. is pigmented bright yellow but stains darkly upon handling, and members of the C. sphecocephala clade parasitize adult insects. Clade B consists of ive subclades. All subclades include either species of Cordyceps or anamorphs with potential links to Cordyceps (e.g., Nomuraea atypicola (Yasuda) Samson linked to C. cylindrica Petch) (Fig. 6, Evans & Samson 1987). The well-resolved tree in the present study (Fig. ) provides the basis to characterize three of the ive subclades of clade B. Due to insuficient taxon sampling, it is not possible to characterize the members of the Cordyceps species in the C. gunnii and Pa. lilacinus subclades. In the light of this, we focus on the remaining three subclades that include suficient numbers of Cordyceps species. The C. ophioglossoides subclade primarily consists of Cordyceps species that parasitize species of the genus Elaphomyces (e.g., C. ophioglossoides and C. capitata (Holmsk.) Link) and the nymphs of cicadas (e.g., C. inegoënsis Kobayasi and C. paradoxa Kobayasi) buried in soil (Kobayasi 1939, Mains 197, Kobayasi & Shimizu 190, 193). Species in this subclade produce partially or completely immersed perithecia, in clavate to capitate fertile parts of stromata that are darkly pigmented with olivaceous tints (Kobayasi & Shimizu 190, 193). Because they produce disarticulating ascospores and ordinal perithecia, all known species of this clade are classiied in C. subg. Cordyceps. Cordyceps subsessilis Petch is unique to the C. ophioglossoides subclade (Fig. ). It produces perithecia on white or pallid reduced stromata, arising from a rhizomorph-like structure from scarabaeid beetle larvae (Hodge et al. 199). It is the only member of the subclade that parasitizes beetles embedded in decaying wood (Hodge et al. 1996). Therefore, C. subsessilis differs greatly in ecology and morphology of its stromata from most other taxa in the C. ophioglossoides clade, but it possesses several characters shared by its close relative, C. ophioglossoides (Kobayasi & Shimizu 190, Hodge et al. 199). Both species grow axenically on simple media, produce verticilliate anamorphs (C. subsessilis has a Tolypocladium anamorph, whereas C. ophioglossoides has verticillium-like conidiophores), possess nearly identical part-spore morphologies, and produce stromata that are connected to their hosts via rhizomorph-like structures. In contrast, C. capitata/C. longisegmentis have not successfully been grown in culture, they are attached directly to the host, and an anamorph is unknown. The C. ophioglossoides subclade (Fig. ) also includes parasites of subterranean cicada nymphs (e.g., C. inegoënsis and C. paradoxa), which are grouped with their close relatives (e.g., C. jezoënsis S. Imai and C. ophioglossoides) that parasitize subterranean trufles of Elaphomyces. Despite low support of inter-species relationships within the C. ophioglossoides subclade due to short branch lengths, C. paradoxa and C. inegoënsis are morphologically more similar to C. jezoënsis and C. ophioglossoides than to any other members of the clade. These taxa produce clavate fertile parts of the stromata rather than capitate stromata like other members of the clade (e.g., C. capitata and C. fracta Mains). Many of these species (e.g., C. jezoënsis and C. paradoxa) are also known to connect to their hosts via rhizomorph-like structures (Kobayasi & Shimizu 190, 193), supporting a close phylogenetic relationship. The C. unilateralis subclade includes the most morphologically diverse assemblages of Cordyceps species (Fig. ). Most of the species in the clade parasitize larval, pupal or nymph stages of arthropods (Kobayasi 1941, Mains 198). Species of this clade produce supericial to completely immersed perithecia on the stromata with morphologies ranging from capitate to clavate to iliform (Kobayasi 1941, Mains 1958). They typically possess tough, pliant, or ibrous stromata that are entirely or partially darkly pigmented, although some exceptions (e.g., C. melolonthae and C. variabilis) do exist, which produce brightly pigmented stromata (Mains 198). Many species in the clade (e.g., C. brunneipunctata Hywel-Jones, C. stylophora Berk. & Broome, and C. unilateralis) are also differentiated by aperithecial stromatal apices while the production of perithecia occurs in subterminal regions of the stroma. Similar to Cordyceps species in clade A, the C. unilateralis subclade includes species that produce disarticulating or non-disarticulating (intact) ascospores. For example, some species in the C. unilateralis subclade (e.g., C. sinensis (Berk.) Sacc. and C. unilateralis) were formerly classiied in C. subg. Ophiocordyceps. But these species are interspersed among other species (e.g., C. agriotidis A. Kawam. and C. robertsii (Hook.) Berk.) that are classiied in C. subg. Cordyceps. This indicates that, while ascospore morphology is useful in delimiting closely related Cordyceps species and uniting others in species complexes, it is not diagnostic of the C. unilateralis subclade itself (Fig. ). Most members of C. subg. Neocordyceps, as classically treated by Kobayasi (1941, 1982) and others (e.g., Artjariyasripong et al. 2001, Stensrud et al. 200), form a monophyletic group labelled as the C. sphecocephala subclade within the C. unilateralis group (Fig. 6). The majority of species in the C. sphecocephala subclade produce long, thin, pliant, brightly coloured (or dark marasmioid in a few species) stromata, 17 SuNG ET AL. 18 Fig. 6. Enlargement of Bayesian consensus tree in Fig. 2, showing Clavicipitaceae clade B, to emphasize relationships within the clade. Respective subgenera of Cordyceps species in current classiication are provided to the right or below of species. Known anamorphic genera of Cordyceps species are in parentheses. Numbers above corresponding nodes are bootstrap proportions of ML analyses (before the backslash) and posterior probabilities (after the backslash) from 147-taxon -gene data set in Fig. 3. Numbers below corresponding nodes are bootstrap proportions of ML analyses (before the backslash) and posterior probabilities (after the backslash) from 162-taxon 5-gene data set in Fig. 2. Bootstrap proportions of ≥ 70 % or posterior probabilities of ≥ 0.95 (in pergentage) are shown in corresponding nodes. Internodes in a thicker line are supported by the bootstrap proportions and posterior probabilities from either 147-taxon or 12-taxon -gene data sets. Numbers in a circle correspond to internode that is informative for placing the C. sphecocephala clade. PHYLOGENEtIC CLASSIFICAtION OF CORDyCEPS AND tHE CLAvICIPItACEOuS FuNGI Fig. 7. A–S. Representative species of Cordyceps and its allies in Clavicipitaceae clade B. T–X. Ascus and ascospore of Cordyceps species in this clade. A. C. ophioglossoides on trufle (Elaphomyces sp.: Eurotiomycetes). B. C. japonica on trufle (Elaphomyces muricatus: Eurotiomycetes), OSC 110991. C. C. subsessilis on scarabaeid beetle in decaying wood (Coleoptera), OSC 12881. D. C. gracilis on lepidopteran larva, EFCC 10121. E. C. heteropoda on nymph of cicada (Hemiptera), EFCC 1012. F. C. nigrella on coleopteran larva, EFCC 3438. G. C. sobolifera on nymph of cicada (Hemiptera), EFCC 778. H. C. longissima on nymph of cicada (Hemiptera), EFCC 87. I. C. unilateralis on ant (Hymenoptera). J. C. cochlidiicola on lepidopteran larva, EFCC 377. K. C. agriotidis on coleopteran larva, EFCC 274. L. C. sinensis on larva of Hepialus sp. (Lepidoptera), EFCC 3248. M. C. brunneipunctata on coleopteran larva. N. C. sphecocephala on wasp (Hymenoptera). O. C. nutans on stink bug (Hemiptera). P. C. tricentri on adult of Tricentrus sp. (Hemiptera), EFCC 1001; bar = 10 mm. Q. Hymenostilbe odonatae on adult of dragonly (Odonata), EFCC 12459; bar = 10 mm. R. Hirsutella sp. on wasp (Hymenoptera). S. Paecilomyces lilacinus. T. C. robertsii, ascus with disarticulating ascospores, MICH 2874. U. C. acicularis, ascus and nondisarticulating ascospores, OSC 110987. V. C. paludosa, non-disarticulating ascospores, MICH 143. W. C. variabilis, disarticulated part-spores in ascus, and X. Part-spores, OSC 128581. Scale bars: A–B = 10 mm, C = 1 mm, D–H = 10 mm, I = 5 mm, J–S = 10 mm, T–X = 10 μm. 19 SuNG ET AL. which terminate in clavate to elongated fertile parts, and possess ascospores that disarticulate into sixtyfour part-spores (Kobayasi 1941, 1982, Hywel-Jones 2002). Species in this clade produce perithecia, which are partially or completely immersed in the stromata at strongly oblique angles (Kobayasi 1941, 1982, Mains 1958, Hywel-Jones 1996). This clade is one of the best characterized by its morphology (obliquely embedded perithecia in a well-deined clava) and its ecology of parasitizing adult stages of insects. Species in Clavicipitaceae clade C Clavicipitaceae clade C includes C. militaris, the type species of the genus Cordyceps (Fig. 8). Most Cordyceps species in this clade are currently classiied in C. subg. Cordyceps (Kobayasi 1941, 1982). This clade also contains the members of the former C. subg. Ophiocordyceps and C. subg. Bolacordyceps, resulting in C. subg. Cordyceps being paraphyletic within clade C (Eriksson 1982, Hywel-Jones 1994, Sung & Spatafora 2004). Species of Cordyceps in this clade produce three ascospore types, including disarticulating ascospores (e.g., C. militaris), intact ascospores (e.g., C. cardinalis and C. pseudomilitaris Hywel-Jones & Sivichai), and bola-ascospores (e.g., C. bifusispora O.E. Erikss.). Of particular note, this clade includes Phytocordyceps ninchukispora C.H. Su & H.-H. Wang in the unispeciic genus Phytocordyceps C.H. Su & H.H. Wang. The genus Phytocordyceps was originally described based on bola-ascospores and its host afiliation as a pathogen of Beilschmiedia erythrophloia Hayata (Lauraceae) plant seeds (Su & Wang 198). Morphologically, this species is most similar to C. bifusispora in that it produces bola-ascospores typical of C. subg. Bolacordyceps. However, the phylogenetic analyses in this study reveal that species producing bolaascospores (e.g., C. bifusispora and P. ninchukispora) do not form a monophyletic group (Fig. 8). Rather, they are interspersed among other Cordyceps species possessing disarticulating ascospores, most notably C. militaris. Species of Cordyceps in clade C produce supericial to partially immersed perithecia on leshy stromata that are pallid to brightly pigmented. This is in contrast to Cordyceps species in clade B, which produce darkly pigmented, wiry to pliant or ibrous stromata. This suggests that pigmentation and texture of stromata may be phylogenetically informative at a higher level of classiication. It should be noted, however, that some Cordyceps species in clade C are morphologically similar to distantly related Cordyceps species (e.g., C. melolonthae and C. variabilis) in stromatal pigmentation. Although these characters are useful in recognizing Cordyceps species of clade C, the utility of these characters for any future infrageneric classiication is probably limited (Fig. 8). For example, C. militaris is macroscopically similar to C. cardinalis and C. pseudomilitaris. All three species produce orangish to red-coloured and leshy stromata; however, these species differ in ascospore and anamorph morphology (Sung & Spatafora 2004). Furthermore, C. militaris is 20 known as exhibiting considerable variability in stroma morphology (Sung & Spatafora 2004). Potentially conspeciic species, such as C. roseostromata Kobayasi & Shimizu and C. kyusyuënsis A. Kawam., differ in stroma morphology, but are closely related to C. militaris and possess identical ascospore and ascus morphologies (Fig. 8, Hywel-Jones 1994, Sung & Spatafora 2004). The variation in ascospore morphology of Clavicipitaceae clade C combined with old descriptions and unavailable type material complicates species identiication for many taxa, as is the case for much of Cordyceps. For example, this study reveals a close relationship between the anamorphic species, Mariannaea pruinosa Z.Q. Liang from China, C. cf. pruinosa from Korea and Thailand, and Phytocordyceps ninchukispora from Taiwan (Fig. 8). The teleomorph of M. pruinosa is C. pruinosa Petch, which was originally described as producing disarticulating ascospores and reddish orange stromata, parasitizing lepidopteran cocoons (Petch 1924, Kobayasi 1941, Liang 1991). Although the isolate of M. pruinosa was obtained from ascospores (Liang 1991), the morphology of the ascospores was not well characterized. The species was identiied primarily based on its host afiliation and macroscopic characters. In our study, C. cf. pruinosa EFCC 197 and N.H.J. 1027 were collected from the same host family (Lepidoptera, Limacodidae) in Korea and Thailand. They are also closely related and produce reddish orange stromata (Fig. 8) and bolaascospores and not the typical C. subg. Cordyceps part-spores. It should be noted, however, that Petch did not provide any drawings or images of ascospores and it is possible that the terminal cells of bola-ascospores could easily be interpreted as part-spores. Thus, at this time we use the name C. pruinosa for the Chinese, Korean and Thai collections and, if further attempts fail to locate type material for C. pruinosa, one of these may have to be designated a neotype. The C. pruinosa collections are closely related to and morphologically indistinguishable from P. ninchukispora with the exception of host afiliation, suggesting the possibility of host misidentiication in the original description of P. ninchukispora. Because the tree topology of the C. pruinosa/P. ninchukispora complex is indicative of greater phylogenetic species diversity, i.e., the Korean, Thai, and Taiwanese material may represent unique phylogenetic species (Fig. 8), we retain the use of both names until more detailed sampling and analyses have been conducted. Clavicipitaceae clade C not only includes members of Cordyceps but also species of the genus Torrubiella, which generally parasitize spiders and scale insects (Kobayasi & Shimizu 1982). The genus Torrubiella is morphologically characterized by the production of supericial perithecia on a mycelial subiculum that partially or completely surrounds the host (Kobayasi & Shimizu 1982, Humber & Rombach 1987). Species of Torrubiella also produce disarticulating (e.g., T. ratticaudata Humber & Rombach) and intact (e.g., T. wallacei) ascospores. Among species of Cordyceps, C. tuberculata (Lebert) Maire, a pathogen of adult 100 100 100 Simplicillium lamellicola Simplicillium obclavatum 100 Simplicillium lanosoniveum 100 Simplicillium lanosoniveum 100 Torrubiella wallacei (Simplicillium) Engyodontium aranearum 91 Lecanicillium antillanum 100 Lecanicillium aranearum 100 Torrubiella ratticaudata 100 Cordyceps cardinalis (Mariannaea or Clonostachys) 100 C. subg. Ophiocordyceps Cordyceps cardinalis (Mariannaea or Clonostachys) 100 100 Lecanicillium dimorphum Lecanicillium psalliotae 100 Lecanicillium fusisporum 100 100 Lecanicillium psalliotae Isaria farinosa 99 99 Isaria farinosa Cordyceps tuberculata (Akanthomyces) 100 100 82 Lecanicillium attenuatum Torrubiella confragosa (Lecanicillium) 98 100 Beauveria caledonica 100 100 Cordyceps scarabaeicola (Beauveria) 100 Cordyceps staphylinidicola (Beauveria) 98 Cordyceps cf. takaomontana Isaria cf. farinosa 100 C. subg. Cordyceps 100 Cordyceps cf. ochraceostromata 88 Isaria tenuipes 100 100 100 Cordyceps sp. EFCC 2535 100 100 Cordyceps takaomontana (Isaria) 100 Cordyceps bifusispora 76 100 C. subg. Bolacordyceps 100 100 Cordyceps bifusispora 88 100 Microhilum oncoperae 95 100 Cordyceps kyusyuensis C. subg. Cordyceps 100 97 Cordyceps militaris (Lecanicillium) 100 Verticillium sp. CBS 102184 100 98 100 Cordyceps cf. pruinosa EFCC 5197 100 100 Cordyceps cf. pruinosa EFCC 5693 100 Mariannaea pruinosa 100 99 Cordyceps cf. pruinosa NHJ 10627 C. subg. Bolacordyceps 96 100 Cordyceps cf. pruinosa NHJ 10684 100 94 100 0.1 substitutions/site Phytocordyceps ninchukispora 100 100 Phytocordyceps ninchukispora 100 100 Simplicillium clade 21 Fig. 8. Enlargement of Bayesian consensus tree in Fig. 2, showing Clavicipitaceae clade C, to emphasize relationships within the clade. Respective subgenera of Cordyceps species in previous classiication are provided to the right of the species. Known anamorphic genera of Cordyceps species are in parentheses. Tree description is the same as in Fig. 2. PHYLOGENEtIC CLASSIFICAtION OF CORDyCEPS AND tHE CLAvICIPItACEOuS FuNGI Cordyceps clade SuNG ET AL. Lepidoptera, has been considered an intermediate species between Torrubiella and Cordyceps (Humber & Rombach 1987, Kobayasi 1941, Mains 198). Phylogenetic analyses in this study indicate that the members of Torrubiella do not form a monophyletic group within clade C and are interspersed among species of Cordyceps. This suggests that the stipitate stromata of Cordyceps have been gained or lost several times during the evolution of these fungi. Currently, more than 0 species of Torrubiella have been described and the members of genus Torrubiella are clearly undersampled in this study (Kobayasi & Shimizu 1982). In summary, the characters of ascospore morphology and the arrangement of perithecia used in the current classiication of the genus Cordyceps are not congruent with the three higher clades inferred in these analyses. These characters are likely to prove useful, however, in lower level classiications, such as the delimitation of closely related species and species complexes. The characters most congruent with the three higher clades of clavicipitaceous fungi are texture, pigmentation and morphology of the stromata, but with exceptions. Although we have divided Cordyceps species into three major clades, it is dificult to characterize Cordyceps species within the Clavicipitaceae clade A due to the relatively few teleomorph species that are part of this clade (see key on p. 54). They tend to produce green to white stromata, often with lilac tints, but additional sampling is needed to more deinitively characterize the teleomorphs of these species. However, the majority of species within clades B and C are morphologically and/ or ecologically distinct (Figs 1–2). The majority of Cordyceps species in clade B are characterized by darkly pigmented, wiry, pliant or ibrous stromata. The dominant form of parasitism exhibited by these species is on subterranean or woodinhabiting hosts, buried in soil or embedded in decaying wood, such as larval and pupal stages of arthropods. In contrast, Cordyceps species of clade C have brightly pigmented and leshy stromata and parasitize their hosts in relatively more accessible environments, such as leaf litter, moss, or the uppermost soil layer. Exceptions to these morphological and ecological traits are found in some Cordyceps species in clade B. Cordyceps melolonthae, for example, produces brightly-coloured stromata, although it bruises dark upon handling and its hosts are the larvae of cockchafers or June beetles buried in soil (Mains 198). Cordyceps unilateralis parasitizes adult ants, but is darkly pigmented with a wiry stroma and subterminal production of perithecia, and members of the C. sphecocephala clade are at least partially brightly pigmented and are restricted to adult stages of insects. These indings suggest that the traits described above are not universally informative, but collectively useful in characterizing Cordyceps species within clade B. That is, there have been gains, losses, and diversiications of most if not all traits during the evolution of these fungi, but general trends in character state evolution are evident. 22 The taxonomic utility of anamorphic forms in classiication of Cordyceps The genus Cordyceps is characterized by a diverse assemblage of more than 2 anamorph genera (e.g., Beauveria vuill., Hirsutella Pat., Hymenostilbe Petch, Isaria Fr., Lecanicillium W. Gams & Zare, Metarhizium, and Tolypocladium W. Gams) (Kobayasi 1982, Samson et al. 1988, Gams & Zare 2003, Hodge 2003). The anamorph genera of Cordyceps are hyphomycetes with conidiogenous cells that are hyaline to brightly coloured and produce conidia in dry chains or slimy drops (Samson et al. 1988). Some anamorph genera (e.g., Hymenostilbe) are known as a useful diagnostic character in recognizing monophyletic groups of Cordyceps species (Artjariyasripong et al. 2001, Kobayasi 1941, 1982), while other anamorph morphologies and genera are placed in more than one clade of the Clavicipitaceae. Therefore, the distribution of anamorphic forms is discussed to evaluate their phylogenetic utility in characterizing the three clades of Cordyceps and Clavicipitaceae and to better understand teleomorph–anamorph connections. Anamorphs of Clavicipitaceae clade A Clavicipitaceae clade A includes isolates of the anamorph genera Aschersonia Mont., Metarhizium, Nomuraea Maublanc, Pochonia Bat. & O.M. Fonseca, Paecilomyces s. l., Rotiferophthora G.L. Barron, Tolypocladium W. Gams, and verticillium-like (Fig. 4). Nomuraea, Paecilomyces, and Tolypocladium are found in other clades of Clavicipitaceae (Figs 1–2). Signiicantly, Verticillium s. s. is known from the Plectosphaerellaceae, which is closely related with the Glomerellaceae in the Sordariomycetidae (Zare et al. 2007). Paecilomyces s. s. is in the Eurotiales (Eurotiomycetidae), but species of Paecilomyces s. l. are also present elsewhere in the Hypocreales (Luangsa-ard et al. 2004). In contrast, the anamorph genera Aschersonia, Metarhizium, Pochonia and Rotiferophthora are restricted to clade A (Figs 1–2). Anamorph taxa of the C. taii subclade include Nomuraea rileyi (Farl.) Samson, Paecilomyces carneus (Duché & R. Heim) A.H.S. Brown & G. Smith and Pa. marquandii (Massee) S. Hughes, Pochonia, Tolypocladium parasiticum, and Metarhizium (Fig. 4). The genera Nomuraea, Pochonia and Tolypocladium are not monophyletic, although Pochonia is restricted to clade A. Nomuraea rileyi and Metarhizium are entomogenous; Pa. carneus is a common soil fungus considered a weak insect pathogen, while Pa. marquandii, Pochonia and T. parasiticum are also common soil fungi and can be parasitic on nematodes. Metarhizium is the only monophyletic anamorph genus of clade A (Fig. 4). The conidiogenous cells in the genus Metarhizium are cylindrical to clavate without a neck and produced in candelabrum-like or palisadelike fashion (Rombach et al. 198, Driver et al. 2000, Evans 2003). The genus is most similar to Nomuraea and differs in the compact conidiophores that form a hymenial layer (Evans 2003). Nomuraea rileyi groups with species of Metarhizium, while N. atypicola (Yasuda) Samson belongs to the Pa. lilacinus clade PHYLOGENEtIC CLASSIFICAtION OF CORDyCEPS AND tHE CLAvICIPItACEOuS FuNGI in clade B. Interestingly, N. rileyi produces greenishcoloured conidia, as do species of Metarhizium in the C. taii subclade, while N. atypicola possesses lavendercoloured conidia similar to those of Pa. lilacinus (Coyle et al. 1990, Hywel-Jones & Sivichai 199, Evans 2003). Currently, three teleomorphic species of Metarhizium (C. brittlebankisoides, C. campsosterni, and C. taii) have been reported (Liang et al. 1991, Liu et al. 2001, Zhang et al. 2004). The species M. taii was described with its teleomorph species, C. taii (Liang et al. 1991) and recently synonymized with M. anisopliae var. majus (Huang et al. 200). Cordyceps brittlebankisoides was once also considered to have the anamorph M. anisopliae var. 0majus (Liu et al. 2001), but it is likened to M. lavoviride (Huang et al. 200). In general, Metarhizium species show extensive variation in size and colour of conidia (Driver et al. 2000, Evans 2003) and more intensive sampling of anamorphs and teleomorphs is needed for this group. The genus Tolypocladium is characterized by producing single or whorled (verticillate) conidiogenous cells (phialides), which are lask-shaped with enlarged bases that taper into a needle-like neck usually bent from the axis of the phialides (Gams 1971, Bissett 1983). The type of the genus Tolypocladium, T. inlatum W. Gams, is linked to the teleomorph C. subsessilis (Hodge et al. 199, Gams & Zare 2003). Tolypocladium inlatum is placed in clade B and is distantly related to T. parasiticum in the C. taii clade. Tolypocladium parasiticum was described from the rotifer host Adineta and described with underwater conidiation (Barron 1980). Morphologically, T. parasiticum differs from other species of Tolypocladium, as it is the only member of the genus that produces chlamydospores in vivo (Barron 1980) and in culture (Bissett 1983, Zare et al. 2001, Gams & Zare 2003). In a recent treatment of Verticillium sect. Prostrata W. Gams, the genus Pochonia was also reclassiied based on production of dictyochlamydospores or at least swollen hyphal cells (Gams & Zare 2001, Zare et al. 2001), supporting the close phylogenetic relationship of T. parasiticum and Pochonia species demonstrated in this study (Fig. 4). Hence, T. parasiticum is transferred to Pochonia below, rendering the remaining species in Tolypocladium monophyletic. Paecilomyces marquandii also produces infrequent chlamydospores in culture, as does the anamorph of Metacordyceps yongmunensis sp. nov. (discussed below). As suggested by Barron & Onions (19), the presence of chlamydospores can be a taxonomically informative character. The genus Aschersonia is a monophyletic lineage labelled as Hypocrella subclade (Fig. 4). The genus Aschersonia is characterized by its pycnidial or acervular conidiomata with hymenial phialides and its ecology of parasitizing only the nymphs of scale insects and whitelies (Petch 1921, Hywel-Jones & Evans 1993). The teleomorphs of Aschersonia have long been linked to the species of Hypocrella and more than 2 species have been reported (Petch 1921, Mains 1959). While this study does not focus on sampling of Hypocrella and Aschersonia, these indings corroborate that the unique morphology of Aschersonia is phylogenetically informative and diagnostic of a monophyletic group of clavicipitaceous fungi (Fig. 4). Anamorphs of Clavicipitaceae clade B Clavicipitaceae clade B includes several anamorph genera including Haptocillium W. Gams & Zare, Hirsutella, Hymenostilbe and Tolypocladium (Fig. ). Several of the anamorphic forms in the clade are phylogenetically informative. Hirsutella and Hymenostilbe occur dominantly in the C. unilateralis subclade. Hirsutella is characterized by its typical basallysubulate phialides, narrowing into one (usually) or more (occasionally) very slender needle-like necks, on synnemata or mononematous mycelium (Hodge 1998, Gams & Zare 2003). Hirsutella species normally produce a few (<) conidia in mucus and the phialides are not usually bent in their needle-like necks such as in the genus Tolypocladium, but also single conidia as in Hi. thompsonii F.E. Fisher. Not all Cordyceps species in the C. unilateralis subclade are connected to Hirsutella anamorphs. Some are connected to Paecilomyces s. l., Paraisaria Samson & B.L. Brady, and Syngliocladium Petch, whereas anamorphic forms are not known for many of the Cordyceps species, especially in the C. ravenelii subclade (e.g., C. heteropoda Kobayasi). However, most Cordyceps species in the rest of the C. unilateralis subclade have been linked to Hirsutella anamorphs (Fig. ). These results suggest that Hirsutella anamorphs are phylogenetically informative for at least part of the C. unilateralis subclade or possibly symplesiomorphic for the C. unilateralis subclade as a whole. The taxonomic utility of Hirsutella anamorphs is exempliied by the teleomorph–anamorph connection of the genus Cordycepioideus Stiler, a termite pathogen, which does not have typical ascospore and ascus morphologies of clavicipitaceous fungi (Blackwell & Gilbertson 1984, Suh et al. 1998). It possesses thickwalled multiseptate ellipsoid ascospores and its asci lack the thickened ascus tip characteristic of most clavicipitaceous fungi (Blackwell & Gilbertson 1984, Ochiel et al. 1997). The anamorph of Cordycepioideus bisporus Stiler is a synnematous Hirsutella that is either conspeciic with or closely related to Hi. thompsonii (Ochiel et al. 1997, Suh et al. 1998, Sung et al. 2001). Although Cordycepioideus bisporus differs greatly from other members of the C. unilateralis subclade in its teleomorphic characters, molecular data strongly support it as a member of the C. unilateralis subclade, a inding consistent with its Hirsutella anamorph. It should be noted that species of Cordyceps outside of clade B have been described with atypical Hirsutella anamorphs (e.g., C. pseudomilitaris), but upon further investigation were more accurately characterized in other anamorph genera (e.g., Simplicillium W. Gams & Zare). The C. unilateralis clade includes the members of the C. sphecocephala subclade, which possess a Hymenostilbe anamorph. The genus Hymenostilbe usually produces cylindrical to clavate conidiogenous cells, which are produced in a more or less dense 23 SuNG ET AL. palisade in synnemata (Samson et al. 1988). It is differentiated from closely related genera (e.g., Akanthomyces Lebert and Hirsutella) by its polyblastic conidiogenous cells, which holoblastically produce single conidia on short denticles or scars (Samson et al. 1988, Hywel-Jones 1996). The results from the present study indicate that Hymenostilbe anamorphs may be derived from within Hirsutella (Fig. 6). The close phylogenetic relationship between Hirsutella and Hymenostilbe anamorphs is exempliied by the morphologically intermediate synnematous Hirsutella/ Hymenostilbe species. For example, Hy. lecaniicola (Jaap) Mains, the anamorph of C. clavulata (Schwein.) Ellis & Everh. (Hodge 1998), was previously classiied in Hirsutella although it possesses extensively polyphialidic conidiogenous cells in a discontinuous layer (Mains 190, 198, Samson & Evans 197, Hodge 1998). In addition, some Hirsutella species (e.g., Hi. rubripunctata Samson, H.C. Evans & Hoekstra) produce only a single conidium without a mucous sheath on denticles of extensively polyphialidic conidiogenous cells. Therefore, the modes of asexual reproduction in Hirsutella and Hymenostilbe may overlap to some extent and additional work is necessary to address the relationships between the two genera (Hodge 1998, Gams & Zare 2003). In addition to the C. unilateralis subclade, the remaining three subclades contain Haptocillium, Tolypocladium and verticillium-like anamorphs. The genus Haptocillium was reclassiied from the former Verticillium sect. Prostrata primarily based on its adhesive conidia and its ability to parasitize free-living nematodes (Zare & Gams 2001b). This study shows that the genus is a monophyletic group in the C. gunnii subclade (Fig. ). However, the teleomorph–anamorph connection has not been established for any of the species in the clade or its close relative, C. gunnii, and thus its taxonomic utility remains unclear. The C. ophioglossoides and Pa. lilacinus subclades include anamorphic forms of Paecilomyces s. l., Nomu-raea, Tolypocladium, and verticillium-like, all of which are polyphyletic as previously discussed (Figs 1–2; Oborník et al. 2001, Luangsa-ard et al. 2004, 200). Several teleomorph–anamorph connections have been reported for Cordyceps species in the C. ophioglossoides and Pa. lilacinus subclades although their taxonomic utility is limited. Cordyceps subsessilis is known to be the teleomorph of Tolypocladium inlatum (Hodge et al. 199) and C. ophioglossoides produces a verticilliumlike anamorph (Gams 1971). In the Pa. lilacinus subclade, N. atypicola is linked to C. cylindrica (Evans & Samson 1987, Hywel-Jones & Sivichai 199). Anamorphs of Clavicipitaceae clade C The anamorph genera sampled that are members of clade C include Beauveria, Isaria, Lecanicillium, Microhilum H.Y. Yip & A.C. Rath, and Simplicillium. Species of Lecanicillium and Simplicillium were previously placed in Verticillium sect. Prostrata and recently reclassiied based on the phylogenetic studies of Sung et al. (2001) and Zare & Gams (2001a, b). The genus Lecanicillium is characterized by producing 24 slender aculeate phialides that are produced singly or in whorls and usually arise from prostrate aerial hyphae (Zare & Gams 2001a). Conidia are mostly produced at the tip of phialides and attached in heads or fascicles (Zare & Gams 2001a). The morphological delimitation of Simplicillium from Lecanicillium is dificult although the species of Simplicillium tend to produce phialides that more or less arise singly from prostrate aerial hyphae (Zare & Gams 2001a). This study shows again that the species of Lecanicillium form a paraphyletic group, as species of other well-delimited anamorphic genera (e.g., Beauveria, Engyodontium G.S. de Hoog, and Isaria) are interspersed among species of Lecanicillium (Fig. 8). Some Lecanicillium species are known to be anamorphic forms of Cordyceps and Torrubiella (Petch 1932, Evans & Samson 1982, Zare & Gams 2001a). For example, C. militaris produces a Lecanicillium anamorph in culture (Zare & Gams 2001a) and the anamorph of Torrubiella alba Petch is L. aranearum (Petch) Zare & W. Gams (Petch 1932). The type species of Lecanicillium is L. lecanii (Zimm.) Zare & W. Gams, which is connected to the teleomorph T. confragosa Mains, a pathogen of scale insects (Evans & Samson 1982), which we transfer here to Cordyceps. In addition to Lecanicillium anamorphs, other genera (e.g., Akanthomyces, Gibellula Cavara, Hirsutella, Paecilomyces (Isaria), and Simplicillium) have also been linked to Torrubiella (Kobayasi & Shimizu 1982, Samson et al. 1988, 1989, Zare & Gams 2001a). Clavicipitaceae clade C also includes the species of Isaria, the generic name of which has been conserved with I. farinosa (Holmsk.) Fr. as the type, for some of the clavicipitaceous Paecilomyces species (Gams et al. 200, Luangsa-ard et al. 2005). The genus Paecilomyces was a diverse genus, with molecular studies indicating its polyphyletic status (Oborník et al. 2001, Luangsa-ard et al. 2004, 2005). The type species, Pa. variotii Bainier, belongs to the order Eurotiales (Ascomycota) and is distantly related to the clavicipitaceous Paecilomyces species that were previously classiied in Paecilomyces sect. Isarioidea (Samson 1974, Luangsa-ard et al. 2004). The previous taxonomy of Paecilomyces was primarily based on the monographic study by Samson (1974), which included approximately 22 species in Paecilomyces sect. Isarioidea. In a recent molecular study, Luangsa-ard et al. (200) demonstrated that species in Paecilomyces sect. Isarioidea are subdivided into four monophyletic groups, three of which are statistically supported. As a result, eleven species of Paecilomyces sect. Isarioidea were reclassiied in Isaria (e.g., I. fumosorosea Wize, I. javanica (Frieder. & Bally) Samson & Hywel-Jones and I. tenuipes Peck) (Luangsa-ard et al. 2005). The present study indicates that the four isolates of Isaria do not form a monophyletic group in clade C, as they are interspersed among other anamorphic forms in the clade. Thus, the taxonomic utility of Isaria anamorph is limited to clade C, as seen with Lecanicillium and Simplicillium anamorphs. Furthermore, few connections have been made between teleomorphs of the Clavicipitaceae and species of Isaria. Kobayasi PHYLOGENEtIC CLASSIFICAtION OF CORDyCEPS AND tHE CLAvICIPItACEOuS FuNGI (1941) reported that the anamorph of C. takaomontana Yakush. & Kumaz. is Isaria japonica Yasuda, which Samson (1974) synonymized with Pa. tenuipes (= I. tenuipes). Isaria farinosa is the anamorph of C. memorabilis (Pacioni & Frizzi 1978), but was once mistakenly linked to C. militaris (Petch 1936). Isaria farinosa was also connected to two Torrubiella species, T. gonylepticida (A. Möller) Petch and T. pulvinata Mains. The anamorph of the latter was reported as Spicaria pulvinata Mains, and Petch described the conidial state of T. gonylepticida as Spicaria longipes Petch, two Spicaria species that Samson (1974) synonymized with Paecilomyces farinosus (= I. farinosa). Although T. gonylepticida was originally described in combination with Cordyceps, Petch (1937) transferred the species to its current combination and redescribed the species. Isaria farinosa has been reported to occur on six insect orders (Lepidoptera, Coleoptera, Hemiptera, Homoptera, Diptera, and Hymenoptera) and also on spiders (Araneae). The simplicity and plasticity in the morphology of most Isaria species make it dificult to set boundaries among and between sister-taxa and the search for better markers in species delimitation must be a goal for further studies. The closely related species, C. scarabaeicola Kobayasi and C. staphylinidicola Kobayasi & Shimizu produce Beauveria anamorphs (Fig. 8; Sung 199), and C. bassiana Z.Z. Li, C.R. Li, B. Huang & M.Z. Fan and C. brongniartii Shimazu are known as teleomorphs of B. bassiana (Bals.) vuill. and B. brongniartii (Sacc.) Petch, respectively (Shimazu et al. 1988, Li et al. 2001). The genus Beauveria is morphologically well-characterized by producing basally-inlated conidiogenous cells that sympodially produce conidia on divergent denticles (MacLeod 194, de Hoog 1972). Beauveria has a cosmopolitan distribution with quite a broad host range (Mugnai et al. 1989, Evans 2003, Rehner & Buckley 200). A recent molecular study (Rehner & Buckley 200) that included 87 isolates of ive Beauveria species (B. amorpha (Höhn.) Samson & H.C. Evans, B. bassiana, B. brongniartii, B. caledonica Bissett & Widden, and B. vermiconia de Hoog & v. Rao) demonstrated that the genus is monophyletic and one of the more phylogenetically-informative anamorphs of clade C. In fungal systematics, the naming of anamorphic forms is allowed for Phyla Ascomycota and Basidiomycota by Article 9 of the International Code of Botanical Nomenclature (McNeill et al. 200) and multiple names exist for the same organisms of teleomorphic and anamorphic taxa. Recently, molecular phylogenetics has played an important role in integrating teleomorphic and anamorphic forms in a uniied classiication system in the clavicipitaceous fungi (Reynolds & Taylor 1993, Sung et al. 2001, Luangsa-ard et al. 200). In such efforts, Verticillium sect. Prostrata and Paecilomyces sect. Isarioidea have recently been reclassiied into several anamorphic genera (e.g., Haptocillium, Isaria, Lecanicillium, Pochonia, Rotiferophthora, and Simplicillium) to be consistent with the current hypotheses of relationships (Zare & Gams 2001a, Zare et al. 2001, Luangsa-ard et al. 2005). The phylogeny presented here further improves our understanding of the teleomorph–anamorph connections in Cordyceps and implies that several anamorphic genera (e.g., Beauveria, Hirsutella, Hymenostilbe, and Metarhizium) are more restricted in their phylogenetic distribution and therefore phylogenetically informative in characterizing Cordyceps species (Figs 4, , 8). TAXONOMIC REVISION The present phylogenetic analyses reveal three strongly supported monophyletic groups (i.e., Clavicipitaceae clades A, B, and C) of clavicipitaceous fungi (Figs 1–2), a result consistent with studies involving fewer taxa (Spatafora et al. 2007, Sung et al. 2007). In reviewing the diagnostic characters used in previous classiication schemes, most characters are not consistent with the phylogeny presented here. Therefore, the phylogenetic relationships of Cordyceps and the related clavicipitaceous fungi provide the evidence for rejecting most of the previous classiications of Cordyceps and Clavicipitaceae (Kobayasi 1941, 1982, Diehl 190, Mains 198). Here, we propose a new phylogenetic classiication for Cordyceps and Clavicipitaceae as follows (Fig. 10). Clavicipitaceae Clade A Clavicipitaceae clade A is a well-supported monophyletic group that represents the Clavicipitaceae s. s. (MP-BP = 98 %, ML-BP = 99 %, PP = 1.00 in Figs 1–2, 10). The name Clavicipitaceae was irst used in 1901 by Earle for the former Hypocreaceae subfam. Clavicipiteae Lindau (Earle 1901). However, Earle (1901) used it without description and without reference to its basionym. The name was then invalidly used by subsequent workers, such as Nannfeldt (1932) and Diehl (190), until it was validated by Rogerson (1970) as conirmed by Eriksson & Hawksworth (1985). Although Clavicipitaceae is well characterized by cylindrical asci, thickened ascus apices, and iliform ascospores that tend to disarticulate at maturity as in the original description, we restrict the application of Clavicipitaceae s. s. to the members of Clavicipitaceae clade A because of the non-monophyly of Clavicipitaceae s. l. (Fig. 10). These indings suggest that the character states of cylindrical asci and iliform ascospores that disarticulate at maturity are plesiomorphic for the Clavicipitaceae s. l./Hypocreaceae clade. Importantly, the Hypocreaceae also possesses cylindrical asci and while its ascospores are subglobose to fusiform and easily distinguished from those of Clavicipitaceae s. l., they show a similarly high frequency of disarticulation (Rogerson 1970, Rossman et al. 1999). The family Clavicipitaceae s. s. includes the grass-associated genera Balansia Speg., Claviceps, Epichloë (Fr.) Tul. & C. Tul., and Myriogenospora G.F. Atk., which were classiied in Clavicipitaceae subfam. Clavicipitoideae sensu Diehl 190 (Fig. 10). Recent molecular studies show that Aciculosporium I. Miyake, Atkinsonella Diehl, Heteroëpichloë E. Tanaka, C. 2 SuNG ET AL. Fig. 9. A–M. Representative species of Cordyceps and its allies in Clavicipitaceae clade C. N–S. Perithecia, asci, and ascospores. A. C. militaris on lepidopteran pupa, EFCC 192. B. C. kyusyuënsis on lepidopteran larva, EFCC 1098. C. C. chichibuënsis on coleopteran pupa, EFCC 422. D. C. cf. ochraceostromata on lepidopteran larva, EFCC 1184. E. C. scarabaeicola on scarabaeid beetle (Coleoptera), EFCC 014. F. C. staphylinidicola on coleopteran larva, EFCC 783. G. C. bifusispora on lepidopteran pupa, EFCC 22. H. C. cf. pruinosa on lepidopteran pupa (Limacodidae), EFCC 117. I. C. cardinalis on lepidopteran larva, EFCC 12212. J. C. tuberculata on adult of moth (Lepidoptera), EFCC 207. K. Torrubiella sp. on spider (Arachnida), EFCC 10882. L. Beauveria sp. on adult of beetle (Coleoptera), EFCC 137. M. Isaria tenuipes on lepidopteran pupa, EFCC 1497. N. C. cardinalis, section of perithecia in stroma, OSC 9309. O. C. militaris, ascus with disarticulating ascospores, OSC 9323. P. C. cardinalis, ascus with nondisarticulating ascospores, OSC 9309. Q. C. cf. pruinosa, fusiform terminal parts of ascospores in ascus, EFCC 7481. R. C. militaris, multiseptated ascospores in ascus, OSC 9323. S. C. cf. pruinosa, thread-like structures connecting fusiform terminal parts of ascospores, EFCC 7481. Scale bars: A–M = 10 mm, N = 100 μm, O–S = 5 μm. 2 PHYLOGENEtIC CLASSIFICAtION OF CORDyCEPS AND tHE CLAvICIPItACEOuS FuNGI Tanaka, Gafur & Tsuda, Neoclaviceps J.F. White, Bills, S.C. Alderman & Spatafora, and Parepichloë J.F. White & P.V. Reddy are also members of this clade, thus supporting their classiication in the Clavicipitaceae s. s. (White & Reddy 1998, Sullivan et al. 2001, Tanaka et al. 2002). Clavicipitaceae s. s. also includes the plant-associated Shimizuomyces paradoxus Kobayasi, which occurs on seeds of Smilax (Smilacaceae). In addition to plant-associated fungi, Clavicipitaceae s. s. contains four arthropod-associated lineages. Three of the four arthropod-associated lineages are characterized as pathogens of scale insects, including Hypocrella (pathogens of scale insects and white lies; Hywel-Jones & Evans 1993, Hywel-Jones & Samuels 1998), Regiocrella P. Chaverri & K.T. Hodge (pathogen of scale insects; Chaverri et al. 200), and Torrubiella luteorostrata Zimm. (pathogen of scale insects; HywelJones 1993). The fourth lineage is described here as Metacordyceps; it comprises former species of Cordyceps and their related anamorphs and as a genus displays relatively broad arthropod host associations. ClaviCiPitaCEaE (Lindau) Earle ex Rogerson, Mycologia 2 : 900. 1970, emend. G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora Stromata or subiculum darkly or brightly coloured, leshy or tough. Perithecia supericial to completely immersed, ordinal or oblique in arrangement. Asci cylindrical with thickened ascus apex. Ascospores usually cylindrical and multiseptate, disarticulating into part-spores or non-disarticulating. Type: Claviceps Tul., Ann. Sci. Nat. Bot., Sér. 3, 20: 43. 183. Teleomorphic genera: Aciculosporium, Atkinsonella, Balansia, Claviceps, Epichloë, Heteroepichloë, Hypocrella, Metacordyceps gen. nov., Myriogenospora, Neoclaviceps, Parepichloë, Regiocrella, Shimizuomyces. Anamorphic genera: Aschersonia, Ephelis Fr., Metarhizium, Neotyphodium A.E. Glenn, C.W. Bacon & Hanlin, Nomuraea, paecilomyces-like, Pochonia, Sphacelia Lév., verticillium-like. MEtaCOrdyCEPs G.H. Sung, J.M. Sung, HywelJones & Spatafora, gen. nov. MycoBank MB04182. Stromata solitaria vel nonnulla aggregata, simplicia vel ramosa. Stipes carnosus vel tenax, albidus, viridi-luteus vel viridulus, cylindricus vel sursum dilatatus. Pars fertilis cylindrica vel clavata. Perithecia partim vel omnino in stromate immersa, perpendicularia vel oblique inserta. Asci cylindrici, apice inspissato. Ascosporae cylindricae, multiseptatae, in cellulas diffrangentes vel maturae integrae remanentes. Stromata solitary or several, simple or branched. Stipe leshy or tough, whitish, greenish yellow to greenish, cylindrical to enlarging in fertile part. Fertile part cylindrical to clavate. Perithecia partially or completely immersed in stromata, ordinal or oblique in arrangement. Asci cylindrical with thickened ascus apex. Ascospores cylindrical, multiseptate, disarticulating into part-spores or remaining intact at maturity. Type: Cordyceps taii Z.Q. Liang & A.Y. Liu Etymology: Greek meta = behind, a genus close to Cordyceps (and suggesting relationship to Metarhizium). Anamorphic genera: Metarhizium, paecilomyces-like, Pochonia. Nomuraea, Commentary: The genus Metacordyceps is proposed for species of Cordyceps s. l. in the Clavicipitaceae s. s. based on the phylogenetic placement of C. taii (Figs 1–2, 10). The genus is applied to the C. taii clade, which is strongly supported (MP-BP = 73 %, ML-BP = 78 %, PP = 1.00 in Figs 1–2, 10). Among the members of the clade, the best-known taxon is the anamorphic genus Metarhizium, because of its importance in biological control (Samson et al. 1988, Evans 2003). Currently, three species of Cordyceps (viz., C. brittlebankisoides, C. campsosterni, and C. taii) are known as teleomorphs of Metarhizium (Liang et al. 1991, Liu et al. 2001, Zhang et al. 2004). The genus name Metacordyceps is here used to emphasize that the clade includes the species of Cordyceps s. l. that produce Metarhizium anamorphs although other species of Cordyceps (e.g., C. chlamydosporia) in the clade are not connected to Metarhizium anamorphs. Metacordyceps yongmunensis G.H. Sung, J.M. Sung & Spatafora, sp. nov. MycoBank MB04183. Figs B, F-K, 11A-G. Anamorph: pochonia-like. Stromata nonnulla vel raro singula, clavata, simplicia vel saepius ramosa, in chrysalidibus Lepidopterarum. Pars fertilis alba vel dilute lutea, a stipite haud distincta. Perithecia sparsa vel dense aggregata, partim immersa, brunneo-lutea, dilute brunnea vel aurantiobrunnea, oblique inserta, fusiformia vel clavata, 0–800 × 40– 00 µm. Asci 8-spori, hyalini, cylindrici, 20–30 × –7 µm, apice conspicue inspissato. Ascosporae iliformes, hyalinae, inconspicue multiseptatae, haud fragmentatae, 180–34 × 1 µm. Anamorphe Pochoniae similis. Stromata several or rarely solitary, clavate, simple or more usually branched, on pupa of Lepidoptera. Fertile area white to pale yellow, not differentiated from stipe. Perithecia scattered or crowded, loosely immersed, brownish yellow, pale brown to orangish brown, oblique in arrangement, fusiform to clavate, 0–800 × 40–00 µm. Asci 8-spored, hyaline, cylindrical, 20– 30 × –7 µm, possessing a prominent apical cap. Ascospores iliform, hyaline, multiseptate with indistinct septation, not fragmenting into part-spores, 180–34 × 1 µm. Conidiophores erect, produced in prostrate aerial hyphae. Phialides hyaline, solitary, awl-shaped, 20–28 × 2–2.2 μm. Conidia hyaline, elliptical to oblong, in slimy heads, 2–3.5 × 1.5–2.4 μm. Chlamydospores present. Etymology: yongmunensis in reference to the known locality of the irst record of the species being Mt. Yongmun, Republic of Korea. 27 GenBank Accession Number Species Voucher Info. Host/Substratum nrssU nrlsU tef1 rpb1 rpb2 tub Aphysiostroma stercorarium ATCC 62321 T Cow dung AF4379 AF43792 AF43782 AY48933 EF49103 EF49132 AY489 Aschersonia badia BCC 810 Scale insect (Hemiptera) DQ2273 DQ1872 DQ22317 DQ2233 DQ22411 DQ22472 EF4899 Aschersonia placenta BCC 789 Scale insect (Hemiptera) EF49121 EF49074 EF490 EF4908 EF49104 EF49133 EF48998 Balansia epichloë A.E.G. 9-1a Poaceae EF48949 EF48743 EF4881 EF48908 Balansia henningsiana GAM 1112 Panicum sp. (Poaceae) AY4723 AY4727 AY48910 AY48943 DQ22413 DQ22474 AY4897 Balansia pilulaeformis A.E.G. 94-2 Poaceae AF4374 AF43788 DQ22319 DQ223 DQ22414 DQ2247 EF48999 Soil AF33970 AF33920 EF4907 EF4908 EF49134 EF49000 DQ82044 DQ82027 DQ82029 DQ82013 EF4913 EF49001 DQ2241 DQ2247 EF49002 1 T atp6 Beauveria caledonica ARSEF 27 Bionectria cf. aureofulva G.J.S. 71-328 Bionectria ochroleuca CBS 1140 Bark AY48984 AY48971 AY48911 Claviceps fusiformis ATCC 26019 Poaceae DQ2238 u17402 DQ22320 DQ223 Claviceps paspali ATCC 13892 Poaceae u32401 u4782 DQ22321 DQ2237 DQ2241 DQ22478 Claviceps purpurea GAM 1288 Dactylis glomerata (Poaceae) AF437 AF43789 AF43778 AY48948 DQ22417 DQ22479 Claviceps purpurea S.A. cp11 Poaceae EF49122 EF4907 EF4908 EF49087 EF4910 EF4913 Cordyceps acicularis OSC 110987 Coleopteran larva EF4890 EF4880 EF48744 EF4882 Cordyceps acicularis OSC 110988 Coleopteran larva EF4891 EF48804 EF4874 EF4883 Cordyceps cf. acicularis OSC 12880 Coleoptera DQ2243 DQ1877 DQ2232 DQ22371 DQ22423 DQ2248 EF49003 Cordyceps agriotidis ARSEF 92 Coleoptera DQ2240 DQ1874 DQ22322 DQ2238 DQ22418 DQ22480 EF49004 Cordyceps aphodii ARSEF 498 T Aphodius hewitti (Coleoptera) DQ2241 DQ187 DQ22323 DQ22419 DQ22481 EF4900 Cordyceps bifusispora EFCC 90 Lepidopteran pupa EF4892 EF4880 EF4874 EF4884 EF48909 Cordyceps bifusispora EFCC 820 Lepidopteran pupa EF4893 EF48807 EF48747 EF488 EF48910 Coleoptera DQ2242 DQ187 DQ22324 DQ2239 DQ22420 AUT DQ22477 Cordyceps brunneipunctata OSC 1287 Cordyceps capitata OSC 71233 Elaphomyces sp. (Eurotiomycetes) AY48989 AY489721 AY4891 AY48949 DQ22421 DQ22483 AY48981 Cordyceps cardinalis CBS 113411 T Lepidopteran larva AY184973 AY18492 DQ2232 DQ22370 DQ22422 DQ22484 EF4900 Cordyceps cardinalis CBS 113412 AUT Lepidopteran larva AY184974 AY18493 EF4909 EF49088 EF4910 EF49137 EF49007 Cordyceps chlamydosporia CBS 101244 AUT Egg of slug (Diplopoda) DQ2244 DQ1878 DQ22327 DQ22372 DQ22424 DQ2248 EF49008 Cordyceps coccidiicola Scale Insect (Hemiptera) AB03119 AB03119 Cordyceps cochlidiicola Lepidopteran pupa AB027331 AB027377 EF48808 EF48748 EF488 EF48809 EF48749 EF4887 Cordyceps elongata OSC 110989 Lepidopteran larva Cordyceps entomorrhiza KEW 3484 Coleopteran larva EF4894 EF48911 DQ22482 SuNG ET AL. 28 Table 1. Taxa used in molecular phylogenetic analyses. (AUT Authentic material, T ex-type culture). GenBank Accession Number Species Voucher Info. 1 Host/Substratum nrssU nrlsU tef1 rpb1 rpb2 tub atp6 Cordyceps fracta OSC 110990 Elaphomyces sp. (Eurotiomycetes) DQ224 DQ1879 DQ22328 DQ22373 DQ2242 DQ22487 EF49009 Cordyceps gracilis EFCC 3101 Lepidopteran larva EF489 EF48810 EF4870 EF4888 EF48913 Cordyceps gracilis EFCC 872 Lepidopteran larva EF489 EF48811 EF4871 EF4889 EF48912 Cordyceps gunnii OSC 7404 Lepidopteran larva AF33972 AF33922 AY4891 AY4890 DQ2242 DQ22488 AY48982 Cordyceps heteropoda EFCC 1012 Nymph of cicada (Hemiptera) EF4897 EF48812 EF4872 EF4880 EF48914 Cordyceps heteropoda OSC 10404 Nymph of cicada (Hemiptera) AY48990 AY489722 AY48917 AY4891 Nymph of cicada (Hemiptera) AB027322 AB02738 Ant (Hymenoptera) DQ224 DQ1870 DQ22329 DQ22374 DQ22427 DQ22489 Cordyceps inegoënsis OSC 12877 Cordyceps irangiensis OSC 12879 Ant (Hymenoptera) EF49123 EF4907 EF4900 EF49089 EF49107 EF49138 Cordyceps japonica OSC 110991 Elaphomyces sp. (Eurotiomycetes) DQ2247 DQ1871 DQ22330 DQ2237 DQ22428 DQ22490 Elaphomyces sp. (Eurotiomycetes) AB027320 AB0273 EF4882 EF4891 EF4873 EF4881 EF4891 EF4883 EF48917 Cordyceps jezoënsis Cordyceps konnoana EFCC 729 Coleopteran larva EF4898 Cordyceps konnoana EFCC 731 Coleopteran larva EF4899 Cordyceps kyusyuënsis EFCC 88 Lepidopteran pupa EF4890 EF48813 EF4874 Cordyceps liangshanensis EFCC 142 Lepidopteran pupa EF4892 EF4881 EF487 Cordyceps liangshanensis EFCC 123 Lepidopteran pupa EF4891 EF48814 EF487 Cordyceps longisegmentis OSC 110992 Elaphomyces sp. (Eurotiomycetes) EF4881 Cordyceps longissima EFCC 814 Nymph of cicada (Hemiptera) EF48817 Cordyceps melolonthae OSC 110993 Scarabaeid larva (Coleoptera) DQ2248 DQ1872 DQ22331 DQ2237 Cordyceps militaris OSC 9323 Lepidopteran pupa AY184977 AY1849 DQ22332 DQ22377 AY4732 Cordyceps nigrella EFCC 9247 Lepidopteran larva EF4893 EF48818 EF4878 EF488 EF48920 Cordyceps nutans OSC 110994 Stink bug (Hemiptera) DQ2249 DQ1873 DQ22333 DQ22378 Cordyceps cf. ochraceostromata ARSEF 91 Lepidoptera EF4894 EF48819 EF4879 EF4887 EF48921 Cordyceps ophioglossoides OSC 1040 Elaphomyces sp. (Eurotiomycetes) AY48991 AY489723 AY48918 AY4892 DQ22429 Nymph of cicada (Hemiptera) AB027323 AB02739 Cordyceps paradoxa EF48918 EF4884 EF4877 EF49010 EF48919 EF488 29 Cordyceps cf. pruinosa EFCC 197 limacodid pupa (Lepidoptera) EF489 EF48820 EF4870 EF4888 Cordyceps cf. pruinosa EFCC 93 limacodid pupa (Lepidoptera) EF489 EF48821 EF4872 EF4889 Cordyceps cf. pruinosa N.H.J. 1027 limacodid pupa (Lepidoptera) EF4897 EF48822 EF4873 EF48870 DQ22491 EF49011 DQ22492 EF49012 DQ22493 DQ22494 AY48983 PHYLOGENEtIC CLASSIFICAtION OF CORDyCEPS AND tHE CLAvICIPItACEOuS FuNGI Cordyceps irangiensis GenBank Accession Number Species Voucher Info. 1 Host/Substratum nrssU nrlsU tef1 rpb1 Cordyceps cf. pruinosa N.H.J. 1084 Limacodid pupa (Lepidoptera) EF4898 EF48823 EF4871 EF48871 Cordyceps ravenelii OSC 11099 Coleopteran larva DQ220 DQ1874 DQ22334 Cordyceps rhizoidea N.H.J. 1222 Termite (Isoptera) EF48970 EF4882 Cordyceps rhizoidea N.H.J. 1229 Termite (Isoptera) EF4899 Cordyceps robertsii KEW 27083 Lepidoptera Cordyceps scarabaeicola ARSEF 89 Scarabaeid adult (Coleoptera) Cordyceps sinensis EFCC 7287 Cordyceps sobolifera rpb2 tub DQ22379 DQ22430 DQ2249 EF4874 EF48873 EF48923 EF48824 EF487 EF48872 EF48922 EF4882 EF487 AF33974 AF33924 DQ2233 DQ22380 DQ22431 Lepidopteran pupa EF48971 EF48827 EF4877 EF48874 EF48924 KEW 78842 Nymph of cicada (Hemiptera) EF48972 EF48828 EF4887 EF4892 Cordyceps sphecocephala OSC 110998 Wasp (Hymenoptera) DQ221 DQ187 DQ2233 DQ22381 DQ22432 Cordyceps staphylinidicola ARSEF 718 Staphylinid pupa (Coleoptera) EF48981 EF4883 EF4877 EF48881 Cordyceps stylophora OSC 110999 Coleopteran larva EF48982 EF48837 EF48777 EF48882 EF48931 Cordyceps stylophora OSC 111000 Elaterid larva (Coleoptera) DQ222 DQ187 DQ22337 DQ22382 DQ22433 DQ22497 Cordyceps subsessilis OSC 7123 Scarabaeid larva (Coleoptera) EF49124 EF49077 EF49090 EF49108 EF49139 EF4901 Cordyceps supericialis MICH 323 Coleopteran larva EF48983 Cordyceps taii ARSEF 714 Lepidoptera AF4373 AF43787 DQ22498 EF4901 Lepidoptera AB04431 AB04437 Lepidoptera EF48984 EF48838 Spittlebug (Hemiptera) AB027330 AB02737 DQ22499 EF49017 DQ2200 EF49018 Cordyceps takaomontana Cordyceps cf. takaomontana N.H.J. 1223 Cordyceps tricentri EF49013 EF49014 EF48883 AF4377 DQ22383 DQ22434 EF48778 EF48884 EF48932 Cordyceps tuberculata OSC 111002 Lepidoptera DQ223 DQ1877 DQ22338 DQ22384 DQ2243 Cordyceps unilateralis OSC 12874 Ant (Hymenoptera) DQ224 DQ1878 DQ22339 DQ2238 DQ2243 Cordyceps variabilis ARSEF 3 Dipteran larva DQ22 DQ1879 DQ22340 DQ2238 DQ22437 Cordyceps variabilis OSC 111003 Dipteran larva EF4898 EF48839 EF48779 EF4888 EF48933 Nymph of cicada (Hemiptera) AB04432 AB04433 Cordyceps yakusimensis DQ2249 atp6 Cordyceps sp. EFCC 2131 Lepidopteran pupa EF48977 EF48833 EF48770 EF4887 Cordyceps sp. EFCC 213 Lepidopteran pupa EF48979 EF48834 EF4879 EF48877 Cordyceps sp. EFCC 23 Coleoptera EF48980 EF4883 EF48772 Cordyceps sp. N.H.J. 12118 Lepidoptera EF48978 EF48829 EF4878 Cordyceps sp. N.H.J. 1281 Termite (Isoptera) EF48973 EF48831 EF4877 EF48930 Cordyceps sp. N.H.J. 1282 Termite (Isoptera) EF4897 EF48830 EF48771 EF4892 EF48878 EF48927 SuNG ET AL. 30 Table 1. Continued. GenBank Accession Number Species Voucher Info. 1 Host/Substratum nrssU nrlsU tef1 rpb1 rpb2 Cordyceps sp. OSC 11099 Lepidoptera EF48974 EF48832 EF48773 EF48880 EF48928 Cordyceps sp. OSC 110997 Ant (Hymenoptera) EF4897 EF48774 EF48879 EF48929 Cosmospora coccinea CBS 11400 Inonotus nodulosus (Hymenomycetes) AY489702 AY489734 AY48929 AY4897 Engyodontium aranearum CBS 309.8 spider (Arachnida) AF3397 AF3392 DQ22341 tub atp6 DQ22438 DQ2201 AY4899 DQ22387 DQ22439 DQ2202 EF49019 Epichloë typhina ATCC 56429 Festuca rubra (Poaceae) u3240 u1739 AF43777 AY4893 DQ22440 DQ2203 AY48984 Glomerella cingulata CBS 11404 Fragaria sp. (Rosaceae) AF4372 AF4378 AF43773 AY4899 DQ22441 DQ2204 AY48990 Glomerella cingulata F.A.u. 13 Fragaria rp. (Rosaceae) u48427 u48428 AF43772 DQ8844 DQ884 EF49140 EF49020 Haptocillium balanoides CBS 20.82 Nematode AF33988 AF33939 DQ22342 DQ22388 DQ22442 DQ220 EF49021 T Haptocillium sinense CBS 7.9 Nematode AF33994 AF3394 DQ22343 DQ22389 DQ22443 DQ220 EF49022 Haptocillium zeosporum CBS 33.80 Nematode AF33989 AF33940 EF4902 EF49091 EF49109 EF49141 EF49023 Hirsutella sp. N.H.J. 122 Hemipteran adult EF4912 EF49078 EF4903 EF49092 EF49111 EF49142 EF49143 OSC 1287 Hemipteran adult EF4912 EF49079 EF4904 EF49093 EF49110 Hydropisphaera erubescens ATCC 36093 Cordyline banksii (Laxmanniaceae) AY4722 AY472 DQ22344 DQ22390 AY4731 DQ223 EF49024 Hydropisphaera peziza CBS 102038 On bark AY48998 AY489730 AY4892 AY4891 DQ22444 DQ2207 AY48991 Hymenostilbe aurantiaca OSC 12878 Ant (Hymenoptera) DQ22 DQ18770 DQ2234 DQ22391 DQ2244 DQ2208 Hypocrea lutea ATCC 208838 On decorticated conifer wood AF4378 AF43791 AF43781 AY4892 DQ2244 DQ2209 Hypocrella schizostachyi BCC 14123 Scale insect (Hemiptera) DQ227 DQ18771 DQ2234 DQ22392 DQ22447 DQ2210 EF4902 Hypocrella sp. G.J.S. 89-104 Scale insect (Hemiptera) u32409 u47832 DQ22347 DQ22393 DQ22448 DQ2211 EF4902 Hypomyces polyporinus ATCC 76479 Trametes versicolor (Hymenomycetes) AF43771 AF43793 AF43784 AY4893 Isaria cf. farinosa OSC 111004 Lepidopteran pupa EF4898 EF48840 EF48780 EF4888 Isaria farinosa OSC 11100 Lepidopteran pupa DQ228 DQ18772 DQ22348 DQ22394 Isaria farinosa OSC 11100 Lepidopteran pupa EF49127 EF49080 EF490 EF49094 EF49144 EF49027 Isaria tenuipes OSC 111007 Lepidopteran pupa DQ229 DQ18773 DQ22349 DQ2239 DQ22449 DQ2213 EF49029 Lecanicillium antillanum CBS 30.8 T Agaric (Hymenomycetes) AF3398 AF3393 DQ2230 DQ2239 DQ2240 DQ2214 EF49030 Lecanicillium aranearum CBS 72.73a Spider (Arachnida) AF3398 AF33937 EF48781 EF48887 EF48934 Lecanicillium attenuatum CBS 402.78 Leaf litter of Acer saccharum AF33914 AF339 EF48782 EF48888 EF4893 Lecanicillium dimorphum CBS 33.8 T Agaricus bisporus (Hymenomycetes) AF33908 AF3399 EF48784 EF48890 Lecanicillium fusisporum CBS 14.70 T Coltricia perennis (Hymenomycetes) AF33998 AF33949 EF48783 EF48889 Lecanicillium psalliotae CBS 101270 Soil EF49128 EF49081 EF490 EF4909 EF4914 EF49031 AY48992 AY48993 DQ2212 EF49113 EF49028 31 Lecanicillium psalliotae CBS 32.81 Soil AF33909 AF3390 EF4907 EF4909 EF49112 EF4914 EF49032 Leuconectria clusiae ATCC 22228 T Soil AY489700 AY489732 AY48927 AY4894 EF49114 EF49147 AY4899 Mariannaea pruinosa ARSEF 413 AUT Iragoides fasciata (Lepidoptera) AY184979 AY18498 DQ2231 DQ22397 DQ2241 DQ221 EF49033 Metarhizium album ARSEF 2082 Cofana spectra (Hemiptera) DQ220 DQ1877 DQ2232 DQ22398 DQ2242 DQ221 EF49034 PHYLOGENEtIC CLASSIFICAtION OF CORDyCEPS AND tHE CLAvICIPItACEOuS FuNGI Hirsutella sp. GenBank Accession Number Species Voucher Info. Host/Substratum nrssU nrlsU tef1 rpb1 rpb2 tub atp6 Metarhizium anisopliae ARSEF 314 Oryctes rhinoceros (Coleoptera) AF33979 AF33930 AF43774 DQ22399 DQ2243 DQ223 EF4903 Metarhizium lavoviride ARSEF 2037 T Nilaparvata lugens (Hemiptera) AF33980 AF33931 DQ2233 DQ22400 DQ2244 DQ2217 EF4903 Microhilum oncoperae AFSEF 438 AUT Oncopera intricate (Lepidoptera) AF33981 AF33932 EF4878 EF48891 EF4893 Myriogenospora atramentosa A.E.G. 9-32 Andropogon virginicus (Poaceae) AY489701 AY489733 AY48928 AY489 DQ224 DQ2218 Nectria cinnabarina CBS 1140 Betula sp. (Betulaceae) u32412 u00748 AF4378 AY489 DQ224 DQ2219 EF49037 Nomuraea `typicola CBS 744.73 Spider (Arachnida) EF48987 EF48841 EF4878 EF48892 Nomuraea rileyi CBS 80.71 Lepidoptera AY2420 AY2420 EF48787 EF48893 EF48937 Ophionectria trichospora CBS 10987 On liana AF437 AF43790 AF43779 AY4899 DQ2247 DQ2220 EF49039 Paecilomyces carneus CBS 239.32 T Sand dune EF48988 EF48843 EF48789 EF48894 EF48938 Paecilomyces carneus CBS 399.9 Soil EF48989 EF48842 EF48788 EF4889 EF48939 Paecilomyces cinus ARSEF 2181 Meloidogynesp. (Nematoda) AF33983 AF33934 EF48790 EF4889 Soil AY24189 AY24227 EF48792 EF48898 EF48941 Meloidogynesp. (Nematoda) AY24188 EF48844 EF48791 EF48897 EF48940 EF48942 T Paecilomyces lilacinus CBS 284.3 Paecilomyces lilacinus CBS 431.87 Paecilomyces marquandii CBS 182.27 T Phytocordyceps ninchukispora Phytocordyceps ninchukispora 1 Soil EF48990 EF4884 EF48793 EF48899 E.G.S. 38.1 AUT Beilschmiedia erythrophloia (Lauraceae) EF48991 EF4884 EF4879 EF48900 E.G.S. 38.1 AUT Beilschmiedia erythrophloia (Lauraceae) EF48992 EF48847 EF48794 EF48901 T Pochonia bulbillosa CBS 14.70 Root of Picea abies AF33991 AF33942 EF4879 EF48902 EF48943 Pochonia chlamydosporia CBS 04. T Nematode AF33993 AF33944 EF4909 EF49098 EF49120 EF49149 EF49040 Pochonia gonioides CBS 891.72 Nematode AF33999 AF3390 DQ2234 DQ22401 DQ2248 DQ2221 EF49041 Heterodera avenae (Nematoda) AF3391 AF339 EF48797 EF48903 EF48944 AY48998 T Pochonia rubescens CBS 44.88 Pseudonectria rousseliana CBS 114049 Buxus sempervirens (Buxaceae) AF4377 u1741 AF43780 AY48970 DQ2249 DQ2222 Rotiferophthora angustispora CBS 101437 Rotifer (Rotifera) AF33984 AF3393 AF4377 DQ22402 DQ2240 DQ2223 EF49042 Roumegueriella rufula CBS 34.8 Globodera rostochiensis (Nematoda) DQ221 DQ1877 DQ223 DQ22403 DQ2241 DQ2224 EF49043 Roumegueriella rufula G.J.S. 91-14 Globodera rostochiensis (Nematoda) EF49129 EF49082 EF49070 EF49099 EF4911 EF4910 EF49044 Shimizuomyces paradoxus EFCC 279 Smilax sieboldii (Smilacaceae) EF49131 EF49084 EF49071 EF49100 EF49117 EF4911 EF4904 Shimizuomyces paradoxus EFCC 4 Smilax sieboldii (Smilacaceae) EF49130 EF49083 EF49072 EF49101 EF49118 EF4912 EF4904 Simplicillium lamellicola CBS 11.2 T Agaricus bisporus (Hymenomycetes) AF33901 AF3392 DQ223 DQ22404 DQ2242 DQ222 EF49047 Simplicillium lanosoniveum CBS 10127 Hemileia vastatrix (Uredinales) AF33903 AF3394 DQ2237 DQ2240 DQ2243 DQ222 EF49048 Simplicillium lanosoniveum CBS 704.8 Hemileia vastatrix (Uredinales) AF33902 AF3393 DQ2238 DQ2240 DQ2244 DQ2227 EF49049 Simplicillium obclavatum CBS 311.74 T Air above sugarcane ield AF3397 AF33917 EF48798 Sphaerostilbella berkeleyana CBS 102308 Polypore (Hymenomycetes) AF43770 u007 AF43783 AY48971 DQ224 DQ2228 EF4900 SuNG ET AL. 32 Table 1. Continued. A.E.G., A. E. Glenn personal collection; ARSEF, USDA-ARS Collection of Entomopathogenic Fungal cultures, Ithaca, NY; ATCC, American Type Culture Collections, Manassas, VA; BCC, BIOTEC Culture Collection, Klong Luang, Thailand; CBS, Centraalbureau voor Schimmelcultures, Utrecht, the Netherlands; EFCC, Entomopathogenic Fungal Culture Collection, Chuncheon, Korea; F.A.U., F. A. Uecker personal collection; E.G.S., E, G. Simmons personal collection; GAM, Julian H. Miller Mycological Herbarium Athens, GA; G.J.S., G. J. Samuels personal collection; KEW, mycology collection of Royal Botanical Garden, KEW, Surrey, uK; MICH, university of Michigan Herbarium, Ann Arbor, MI; N.H.J., Nigel Hywel-Jones personal collection; OSC, Oregon State university Herbarium, Corvallis, OR; S.A., S. Alderman personal collection. DQ22471 AY4898 Crataegus crus-galli (Rosaceae) CBS 102797 Viridispora diparietispora AY489703 AY48973 AY48930 EF48948 EF48907 EF48803 AF3394 AF33913 Spider (Arachnida) CBS 102184 Verticillium sp. 1 EF490 DQ2234 EF4904 DQ22470 CBS 40.88 T Verticillium incurvum Ganoderma lipsiense (Hymenomycetes) AF33900 AF3391 DQ2232 DQ22410 DQ2233 EF4903 DQ2249 EF48947 EF48802 DQ2231 AF33947 AF33947 CBS 384.81 Verticillium epiphytum AF3399 Hemileia vastatrix (Uredinales) Hemileia vastatrix (Uredinales) CBS 14.1 T Verticillium epiphytum AF3399 DQ22409 DQ2232 AY48900 DQ2248 AY48973 DQ2231 EF49119 EF49102 EF49073 AY18497 AY489737 AY48970 ATCC 16535 Verticillium dahliae Lepidoptera Crataegus crus-galli (Rosaceae) CBS 101237 Torrubiella wallacei AY184978 AY48932 DQ2247 DQ22408 T AUT Spider (Arachnida) ARSEF 191 Torrubiella ratticaudata DQ222 DQ18777 DQ2230 EF4894 EF4890 EF48800 EF48849 Scale insect (Hemiptera) N.H.J. 121 Torrubiella luteorostrata EF48994 EF4890 EF48801 EF4880 Scale insect (Hemiptera) N.H.J. 11343 Torrubiella luteorostrata EF4899 DQ224 DQ22407 Coccus viridis (Hemiptera) CBS 101247 Torrubiella confragosa AF33904 AF339 DQ2239 EF4894 EF48904 EF48799 EF48848 Bdelloid rotifer (Rotifera) ARSEF 343 AUT Tolypocladium parasiticum EF48993 EF4913 DQ2230 EF4901 DQ2229 atp6 tub rpb2 GenBank Accession Number rpb1 tef1 nrlsU Host/Substratum Voucher Info. 1 Species nrssU EF4902 PHYLOGENEtIC CLASSIFICAtION OF CORDyCEPS AND tHE CLAvICIPItACEOuS FuNGI Known distribution: Republic of Korea. Specimens examined: Mt. Yongmun, Gyunggi Province, Republic of Korea: 13 June 1998, EFCC 2131 (holotype); 13 June 1998, EFCC 2134; 13 June 1998, EFCC 213; 30 June 1999, EFCC 3379; 30 June 1999, EFCC 3380; 29 Aug. 1999, EFCC 4342; 8 Aug. 1999, EFCC 4343; 8 June 2000, EFCC 491; 30 June 2004, EFCC 12287; 30 June 2004, EFCC 12288; 30 June 2004, EFCC 12291; 8 Aug. 2004, EFCC 12467. Mt. Chiak, Kangwon Province, Republic of Korea: 8 Aug. 2000, EFCC 70. Bukbang-myun, Kangwon Province, Republic of Korea: 21 June 2002, EFCC 8808. Living culture in EFCC. Commentary: Most specimens of M. yongmunensis possess several stromata (up to 10), on a large pupa of Lepidoptera deeply buried in soil (Fig. B). Stroma of the species is typically branched in a dichotomous way at its basal or upper regions (Fig. 5B). Perithecia are usually obliquely inserted in the stromata with a few exceptions that are ordinally arranged, i.e. at right angles to the surface of the stromata (Fig. B). While some perithecia are characterized by an acute narrowing of the perithecium at the ostiole, producing a narrow terminal end (Fig. F), others are not signiicantly narrowed (Fig. 11B). In the asci the ascospores are arranged parallel for their entire length and almost reach the ascus foot, suggesting that ascospores are of approximately the same length as the asci (Figs I, 11A). unlike the distinct septation of ascospores as seen in C. militaris (Fig. 9O), the septa of the ascospores are indistinct and discharged ascospores do not disarticulate into part-spores (Figs K, 11A). In the anamorph of M. yongmunensis, cultures derived from ascospores are moderately fast growing in SDAY (Sabouraud-dextrose-yeast extract agar) and the colonies reach 2–3 mm diam at 2 °C in 10 d. Colonies are slightly cottony without zonation and white with a green margin, remaining greenish brown at the reverse side of the cultures. Conidiophores are erect and produced in prostrate aerial hyphae. Phialides are solitary, not in whorls, broader at the base and tapering towards the end, measuring 20–28 × 2.0–2.2 μm (Fig. 11C). Conidia are in slimy heads (with usually 2 or 3 conidia) and ellipsoidal to oblong, measuring 2–3. × 1.–2.4 μm (Fig. 11C). In submerged areas of the cultures, chlamydospores are developed in chains or reduced to intercalary swollen structures (Figs 11E-G). The anamorph of M. yongmunensis is best classiied as pochonia-like because of its subulate phialides and production of chlamydospores, although verticilliumlike whorls of phialides were not observed (Zare et al. 2001). In Metacordyceps, M. yongmunensis is most similar to M. chlamydosporia (= C. chlamydosporia) in the shape of perithecia and its anamorph. Both species produce brownish perithecia that possess long terminal ends in white or pale yellow stromata (Zare et al. 2001). The anamorph of M. chlamydosporia is identical with the type of Pochonia. Thus the production of chlamydospores can be informative for recognizing some species of Metacordyceps. 33 SuNG ET AL. 34 PHYLOGENEtIC CLASSIFICAtION OF CORDyCEPS AND tHE CLAvICIPItACEOuS FuNGI Accepted names and new combinations for Metacordyceps The following taxa are accepted species of Metacordyceps based on their inclusion in molecular phylogenies presented herein1 (see Table 1) or morphological descriptions matching the characters described above2. The known anamorph connection is provided for the species of Metacordyceps. New combinations for anamorphs associated with Metacordyceps T. parasiticum is transferred to the genus Pochonia based on molecular phylogenies presented herein1. 1 Pochonia parasitica (G.L. Barron) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04189. ≡ Tolypocladium parasiticum G.L. Barron, Canad. J. Bot. 8: 439. 1980. 2 Metacordyceps brittlebankisoides (ZuoY. Liu, Z.Q. Liang, Whalley, Y.-J. Yao & A.Y. Liu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04184. ≡ Cordyceps brittlebankisoides ZuoY. Liu, Z.Q. Liang, Whalley, Y.-J. Yao & A.Y. Liu, J. Invert. Pathol. 78: 179. 2001. Anamorph: Metarhizium Metacordyceps campsosterni (W.M. Zhang & T.H. Li) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0418 2 ≡ Cordyceps campsosterni W.M. Zhang & T.H. Li, Fungal Diversity 17: 240. 2004. [as C. ‘campsosterna’]. Anamorph: Metarhizium 1 Metacordyceps chlamydosporia (H.C. Evans) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0418. ≡ Cordyceps chlamydosporia H.C. Evans, in Zare et al., Nova Hedwigia 73: 9. 2001. Anamorph: Pochonia chlamydosporia (Goddard) Zare & W. Gams 1 Metacordyceps liangshanensis (M. Zang, D. Liu & R. Hu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04187. ≡ Cordyceps liangshanensis M. Zang, D. Liu & R. Hu, Acta Bot. Yunnanica 4: 174. 1982. 1 Metacordyceps taii (Z.Q. Liang & A.Y. Liu) G.H. Sung, J.M. Sung, Hywel-Jones, Spatafora, comb. nov. MycoBank MB04188. ≡ Cordyceps taii Z.Q. Liang & A.Y. Liu, Acta Mycol. Sin. 10: 27. 1991. Anamorph: Metarhizium anisopliae var. anisopliae (Metschn.) Sorokin 1 Metacordyceps yongmunensis G.H. Sung, J.M. Sung, Spatafora, sp. nov., see p. 27. Anamorph: pochonia-like ClaviCiPitaCEaE Clade B Clavicipitaceae clade B is strongly supported (MP-BP = 93 %, ML-BP = 98 %, PP = 1.00 in Figs 1–2, 10) and the family Ophiocordycipitaceae is proposed for it with the type genus Ophiocordyceps Petch. Most species of the Ophiocordycipitaceae produce darkly pigmented stromata that are pliant to wiry, or ibrous to tough in texture. Ecologically, many species of the family are known as pathogens of subterranean or wood-inhabiting hosts, buried in soil or embedded in decaying wood. Notable exceptions do exist to these traits with brightly coloured species that may or may not attack adult stages of hosts and occur in exposed habitats. OPhiOCOrdyCiPitaCEaE G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, fam. nov. MycoBank MB04190. Stromata vel subiculum fusca vel raro laete colorata, tenacia, ibrosa vel lexibilia, raro carnosa, saepe ostiolis peritheciorum prominentibus, summa saepe peritheciis carentia. Perithecia supericialia vel omnino immersa, perpendicularia ad supericiem vel oblique inserta. Asci cylindrici, apice inspissato. Ascosporae cylindricae, multiseptatae, maturae in cellulas diffrangentes vel integrae remanentes. Stromata or subiculum darkly pigmented or rarely brightly coloured, tough, ibrous to pliant, rarely leshy, often with aperithecial apices or lateral pads. Perithecia supericial to completely immersed, ordinal or oblique in arrangement. Asci usually cylindrical with thickened ascus apex. Ascospores usually cylindrical, multiseptate, disarticulating into part-spores or nondisarticulating. Type: Ophiocordyceps Petch, Trans. Brit. Mycol. Soc. 1: 74. 1931. Teleomorphic genera: Elaphocordyceps, Ophiocordyceps Anamorphic genera: Haptocillium, Harposporium Lohde, Hirsutella, Hymenostilbe, paecilomyces-like, Paraisaria, Syngliocladium, Tolypocladium, verticilliumlike. Fig. 10 (Page 34). New classiication of Cordyceps and clavicipitaceous fungi based on Bayesian consensus tree in Fig. 2. Portions of Bionectriaceae and Nectriaceae are not shown. Tree description is the same as in Fig. 2. For internodes that are related with nomenclatural changes, bootstrap proportions of MP analyses (MP-BP) in Fig. 1 are shown above corresponding nodes before the backslash. Bootstrap proportions of ML analyses (ML-BP) and posterior probabilities (PP) in Fig. 2 are shown above internodes after backslash and below internodes, respectively. For the corresponding internode of Ophiocordyceps, bootstrap proportions (MP-BP & ML-BP) and posterior probabilities (PP) were obtained from analyses based on the 147-taxon 5-gene data set in Fig. 3. Portions of the tree in grey rectangular boxes indicate nomenclatural changes of Cordyceps. 3 SuNG ET AL. Fig. 11. A–B. Line drawings of morphology of Metacordyceps yongmunensis. C–G. Line drawings of pochonia-like anamorph of M. yongmunensis. A. Non-disarticulating ascospore and ascus. B. Oblique arrangement of perithecia in stroma. C. Conidia and phialides. D. Developing conidia germinated from ascospore. E. Chlamydospores submerged in SDAY agar. F. Developing chlamydospores submerged in SDAY agar. G. Intercalary swollen hyphae. Scale bars: A, C–G = 10 μm, B = 200 μm. ElaPhOCOrdyCEPs G.H. Sung & Spatafora, gen. nov. MycoBank MB04191. Stromata singula vel nonnulla aggregata, simplicia vel ramosa. Stipes ibrosus vel tenax, raro carnosus, obscure brunneus vel olivaceoviridulus, raro albidus, cylindricus vel sursum dilatatus. Stromata hospite insidentia vel rhizomorphis eo conjuncta. Pars fertilis clavata vel capitata, raro indistincta. Perithecia partim wel omnino in stromate immersa, perpendicularia ad supericiem. Asci cyindrici, apice inspissato. Ascosporae cylindricae, multiseptatae, maturae in cellulas diffrangentes. Anamorphe Verticillii similis vel absens. Stromata solitary to several, simple or branched. Stipe ibrous to tough, rarely leshy, dark brownish to greenish with olivaceous tint, rarely whitish, cylindrical to enlarging in the fertile part. Stroma connected directly to the host or indirectly through rhizomorph-like structures. Fertile part clavate to capitate, rarely undifferentiated. Perithecia partially or completely immersed in stromata, ordinal in arrangement. Asci cylindrical with thickened ascus apex. Ascospores cylindrical, multiseptate, disarticulating into part-spores. Type: Cordyceps ophioglossoides (Ehrh.) Link Etymology: Greek elaphe = deer, from the host fungus, Elaphomyces. 3 Commentary: The C. ophioglossoides clade is strongly supported (MP-BP = 71 %, ML-BP = 88 %, PP = 100 in Figs 1–2, 10) and includes species of Cordyceps s. l. that parasitize the trufle-like genus Elaphomyces and cicada nymphs (e.g., C. inegoënsis and C. paradoxa) and beetles (e.g., C. subsessilis) (Figs , 10). Currently, 22 species are anticipated to be included in the C. ophioglossoides clade, of which more than 18 species are known as parasites of Elaphomyces (Mains 1957, Kobayasi & Shimizu 1960, 1963). The host afiliation of Elaphomyces parasites has long been recognized as a diagnostic character in Cordyceps classiication (Massee 1895, Kobayasi 1941, 1982, Mains 1957, 1958). The oldest applicable genus name is Cordylia Fr. 1818 (Massee 189). However, it cannot be applied to the C. ophioglossoides clade because it is a homonym of Cordylia Pers. 1807 (Mains 198), which is also homonym of Cordyla Lour. 1790 (Leguminosae). Therefore, the genus Elaphocordyceps is proposed based on the phylogenetic placement of C. ophioglossoides and applied to the well-supported C. ophioglossoides clade. Although C. subsessilis is morphologically and ecologically distinct, the genus is well recognized by its dominant ecology as being pathogens of Elaphomyces and cicadas. The darkly pigmented, ibrous stromata with more or less PHYLOGENEtIC CLASSIFICAtION OF CORDyCEPS AND tHE CLAvICIPItACEOuS FuNGI olivaceous tint are also good diagnostic characters for recognizing the species of Elaphocordyceps. 1 Elaphocordyceps jezoënsis (S. Imai) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB04199. ≡ Cordyceps jezoënsis S. Imai, Trans. Sapporo Nat. Hist. Soc. 11: 33. 1929. Anamorphic genera: Tolypocladium, verticillium-like. Accepted names and new combinations for Elaphocordyceps The following taxa are accepted species of Elaphocordyceps based on their inclusion in molecular phylogenies presented herein1 (see Table 1) or morphological descriptions matching the characters described above2. Where known we provide anamorph connection for the species of Elaphocordyceps. 1 Elaphocordyceps longisegmentis (Ginns) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB04200. ≡ Cordyceps longisegmentis Ginns, Mycologia 80: 219. 1988. 2 Elaphocordyceps minazukiensis (Kobayasi & Shimizu) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB04201. ≡ Cordyceps minazukiensis Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 117. 1982. 1 Elaphocordyceps capitata (Holmsk.) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB04192. ≡ Sphaeria capitata Holmsk., Beata Ruris Otia Fungis Danicis 1: 38. 1790 : Fries, Syst. Mycol. 2: 324, 1823. ≡ Torrubia capitata (Holmsk. : Fr.) Tul. & C. Tul., Sel. Fung. Carpol. 3: 22. 18. ≡ Cordyceps capitata (Holmsk. : Fr.) Link., Handbuch zur Erkennung der nutzbarsten und am häuigsten vorkommenden Gewächse 3: 347. 1833. = Cordyceps canadensis Ellis & Everh., Bull. Torrey Bot. Club 2: 01. 1898. ≡ Cordyceps capitata var. canadensis (Ellis & Everh.) Lloyd, Mycol. Writ. : 09. 191. = Sphaeria agariciformis Bolt., Hist. Fung. Halifax, p. 130. 1789. ≡ Cordyceps agariciformis (Bolt.) Seaver, North Amer. Fl. 3: 33. 1910. = Cordyceps nigriceps Peck, Bull. Torrey Bot. Club 27: 21. 1900. 2 Elaphocordyceps miomoteana (Kobayasi & Shimizu) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB04202. ≡ Cordyceps miomoteana Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 118. 1982. 1 Elaphocordyceps ophioglossoides (Ehrh. : Fr.) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB04203. ≡ Sphaeria ophioglossoides Ehrh., in Pers., Comment de Fung. Clavaef. p. 12. 1797 : Fries, Syst. Mycol. 2: 324. 1823. ≡ Torrubia ophioglossoides (Ehrh. : Fr.) Tul., Sel. Fung. Carpol. 3: 20. 18. ≡ Cordyceps ophioglossoides (Ehrh. : Fr.) Link, Handbuck zur Erkennung der nutzbarsten und am häuigsten vorkommenden Gewächse 3: 347. 1833. Anamorph unknown, not growing in culture. 2 Elaphocordyceps delicatistipitata (Kobayasi) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB04193. ≡ Cordyceps delicatistipitata Kobayasi, Bull. Natn. Sci. Mus. Tokyo 5: 79. 1960 (as C. ‘delicatostipitata’). 1 Elaphocordyceps fracta (Mains) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB04194. Anamorph: verticillium-like 2 Elaphocordyceps ophioglossoides f. alba (Kobayasi & Shimizu ex Y.J. Yao) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB04204. ≡ Cordyceps ophioglossoides f. alba Kobayasi & Shimizu ex Y.J. Yao, in Yao, Li, Pegler & Spooner, Acta. Mycol. Sin. 14: 27. 199. ≡ Cordyceps fracta Mains, Bull. Torrey Bot. Club 84: 250. 197. 2 1 Elaphocordyceps inegoënsis (Kobayasi) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB0419. Elaphocordyceps ophioglossoides f. cuboides (Kobayasi) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB0420. ≡ Cordyceps ophioglossoides f. cuboides Kobayasi, Bull. Natn. Sci. Mus. Tokyo 5: 77. 1960. ≡ Cordyceps inegoënsis Kobayasi, Bull. Natn. Sci. Mus. Tokyo 6: 292. 1963. 1 2 Elaphocordyceps intermedia (S. Imai) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB0419. Elaphocordyceps paradoxa (Kobayasi) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB0420. ≡ Cordyceps paradoxa Kobayasi, Bull. Biogeogr. Soc. Japan 9: 1. 1939. ≡ Cordyceps intermedia S. Imai, Proc. Imp. Acad. Tokyo 10: 77. 1934. Elaphocordyceps ramosa (Teng) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB04207. 2 2 Elaphocordyceps intermedia f. michinokuënsis (Kobayasi & Shimizu) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB04197. ≡ Cordyceps intermedia f. michinokuënsis Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 116. 1982. ≡ Cordyceps ramosa Teng, Sinensia 7: 810. 1936. 2 Elaphocordyceps rouxii (Cand.) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB04208. ≡ Cordyceps rouxii Cand., Mycotaxon 4: 44. 197. 1 Elaphocordyceps japonica (Lloyd) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB04198. ≡ Cordyceps japonica Lloyd, Mycol. Writ. : 913. 1920. = Cordyceps umemurae S. Imai, Trans. Sapporo Nat. Hist. Soc. 11: 32. 1929 (as C. ‘umemurai’) . Elaphocordyceps subsessilis (Petch) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB04209. 1 37 SuNG ET AL. ≡ Cordyceps subsessilis Petch, Trans. Brit. Mycol. Soc. 21: 39. 1937. = Cordyceps facis Kobayasi & Shimizu, Trans. Mycol. Soc. Japan 23: 31. 1982. Anamorph: Tolypocladium inlatum W. Gams 2 Elaphocordyceps szemaoënsis (M. Zang) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB04210. ≡ Cordyceps szemaoënsis M. Zang, Acta Bot. Yunnanica 23: 29. 2001. 2 Elaphocordyceps tenuispora (Mains) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB04211. ≡ Cordyceps tenuispora Mains, Bull. Torrey Bot. Club 84: 247. 197. 2 Elaphocordyceps toriharamontana (Kobayasi) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB04212. ≡ Cordyceps toriharamontana Kobayasi, Bull. Natn. Sci. Mus. Tokyo 6: 305. 1963. 2 Elaphocordyceps valliformis (Mains) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB04213. ≡ Cordyceps valliformis Mains, Bull. Torrey Bot. Club 84: 20. 197. 2 Elaphocordyceps valvatistipitata (Kobayasi) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB04214. ≡ Cordyceps valvatistipitata Kobayasi, Bull. Natn. Sci. Mus. Tokyo 5: 81. 1960 (as C. volvatostipitata’). 2 Elaphocordyceps virens (Kobayasi) G.H. Sung, J.M. Sung & Spatafora, comb. nov. MycoBank MB0421 ≡ Cordyceps virens Kobayasi, J. Jap. Bot. 8: 222. 1983. OPhiOCOrdyCEPs Petch, Trans. Brit. Mycol. Soc. 1: 73. 1931 emend. G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora = Cordycepioideus Stiler, Mycologia 33: 83. 1941. Stromata or subiculum darkly pigmented or rarely brightly coloured, tough, ibrous, pliant to wiry, rarely leshy, often with aperithecial apices or lateral pads. Perithecia supericial to completely immersed, ordinal or oblique in arrangement. Asci hyaline, cylindrical, usually with thickened ascus apex, rarely fusoid to ellipsoid. Ascospores usually cylindrical, multiseptate, disarticulating into part-spores or non-disarticulating. Type: Cordyceps blattae Petch, Trans. Brit. Mycol. Soc. 1: 74. 1931. Anamorphic genera: Hirsutella, Paraisaria, Syngliocladium. Ophiocordyceps communis Hywel-Jones & Samson, sp. nov. MycoBank MB0421. Figs 12A–G. Anamorph: hirsutella/hymenostilbe-like. Stromata ex duabus (tribus) termitis adultis oriunda, mycelio albo circumdata, iliformia; 50–100 mm sub supericie stramenti oriunda, 300–600 μm lata, albido-grisea, 70–130 mm super stramentum emergentia, 600–1000 μm lata, cuius 30–40 mm pars inferior hyphis sterilibus dematiaceis (luteo-brunneis) tomentosa; pars superior, ca 90 mm longa, fertilis, levis, griseo-brunnea vel grisea, conidia in strato griseo ferens et perithecia dense aggregata. Perithecia supericialia, subterminalia, 285–675 × 195–390 μm. Asci apice conspicue inspissato, 8-spori, iliformes, 215–250 × 15 μm. Ascosporae integrae, crassitunicatae, dilute pigmentatae, (100–)120–150(–180) × 5–6 μm. Cellulae conidiogenae hymenium hyalinum formantes, cylindricae, 10–14 × 2.7–3.3 μm, unum (raro duos) denticulos fertiles apicales ferentes. Blastoconidia hyalina, amygdaliformia, 8–9 × 2.5–3 μm. Anamorphe Hirsutellae vel Hymenostilbe similis. Hymenostilbe, Commentary: The C. unilateralis clade is strongly supported (MP-BP = 88 %, ML-BP = 88 %, PP = 1.00 in Figs 3, 10) and includes the species of Ophiocordyceps (e.g., C. acicularis and C. unilateralis) (Petch 1931, 1933). The genus Ophiocordyceps was proposed 38 by Petch (1931, 1933) for species of Cordyceps that produce non-disarticulating ascospores. The genus was not accepted by subsequent workers who reclassiied the species of Ophiocordyceps as Cordyceps subg. Ophiocordyceps (Kobayasi 1941) or in multiple subgenera of Cordyceps (Mains 198). The type of Ophiocordyceps Petch is O. blattae (= C. blattae), but it was not available for this taxonomic treatment. According to the morphological description, it its in the present generic concept. Because O. unilateralis is a well-known species that was included in the original publication of Ophiocordyceps (Petch 1931) and because additional Ophiocordyceps species (e.g., O. acicularis) are members of this clade, we apply the name Ophiocordyceps based on the placement of O. unilateralis. The genus Ophiocordyceps includes the most morphologically diverse group of the species of Cordyceps s. l. including the members of C. subg. Neocordyceps (Figs , 10). For most of the species in Ophiocordyceps, the stromata are ibrous to tough or wiry to pliant in texture and darkly pigmented in at least some part of the stroma. The genus includes many species of Cordyceps s. l. that produce perithecia in subterminal regions of the stromata resulting in aperithecial apices. Of particular note, Ophiocordyceps is characterized by the dominant occurrence of Hirsutella and Hymenostilbe anamorphs (Fig. ). Although the genus Cordycepioideus possesses thickwalled multiseptate ellipsoid ascospores and its asci lack the thickened ascus tip of most clavicipitaceous fungi (Blackwell & Gilbertson 1984, Ochiel et al. 1997), this study indicates that the genus Cordycepioideus can be merged with Ophiocordyceps according to its placement in molecular analyses and because of the Hirsutella anamorph (Fig. 10, Ochiel et al. 1997, Suh et al. 1998). Hosts two (rarely three) adult termites surrounded by loose, coarse white mycelium. Stromata iliform, 50–100 mm below ground, 300–00 µm wide, whitish-grey; 70–130 mm emerging above leaf litter, 00–1000 µm wide; lower 30–40 mm of above-ground portion usually hirsute with sterile, dematiaceous (yellow-brown) hairs becoming smooth, silver-brown to grey along terminal PHYLOGENEtIC CLASSIFICAtION OF CORDyCEPS AND tHE CLAvICIPItACEOuS FuNGI fertile (anamorph) part of ca 90 mm. Perithecia supericial subterminal; emerging through grey anamorph, tightly packed around the stipe, 28–7 × 19–390 µm. Asci with stout cap, 8-spored, iliform, 215–250 × 15 µm. Ascospores whole, stout, lightly pigmented (100–)120– 10(–180) × – µm. Conidiogenous cells in a palisade, hyaline, cylindrical, 10–14 × 2.7–3.3 µm, solitary (rarely two), prominent, terminal denticle. Conidia hyaline, almond-shaped, 7–9 × 2.–3 µm. Etymology: refers to the communal nature of the stromata, i.e. the fact that 00–1000 Cordyceps stromata can be found in a small area (20 × 20 metres). Type: Holotype: N.H.J. 1073, isotypes: N.H.J. 1074, N.H.J. 107, N.H.J. 107, N.H.J. 1077, all on termites; coll. R. Nasit; Khao Yai National Park, Gong Giao Nature Trail; 13 June 2000. Commentary: Most collections of O. communis were from Khao Yai National Park with the type locality (Gong Giao Nature Trail) regularly having epizootics containing (in any one season) several hundred stromata over a 20 × 20 metre area. A few other collections were from Khao Soi Dao Wildlife Sanctuary (N.H.J. 422 and N.H.J. 6452) and Sam Lan National Park (N.H.J. 6332). All collections of the species were from adult termites. Although surveys were made over an eighteen-year period from the far north of Thailand to the far south and from sea level to over 200 metres, O. communis is only known from these three sites in central Thailand below 800 metres elevation. In any year there appeared to be a single ‘lush’ with O. communis irst appearing at the start of the rainy season in May/June. The earliest collections were made in May (10 May 1994: N.H.J. 387, N.H.J. 381 and N.H.J. 383, Heo Sawat Waterfall; 23 May 1996; N.H.J. 6330, Gong Giao Nature Trail). In the irst 2–3 weeks after appearance, the stromata appeared slender and acicular with the lower part having a shiny silken appearance and the terminal part dull greyish. The terminal grey region consisted of a palisade of tightly packed conidiogenous cells with typically a stout elongate denticle, giving rise to a single conidium. This anamorph is intermediate between a typical Hirsutella (e.g., Hi. formicarum, Hi. citriformis, and Hi. saussurei) and a typical Hymenostilbe (e.g., Hy. dipterigena – closer to the latter) (Figs 12F–G). The palisade of crowded conidiogenous cells is indicative of Hymenostilbe rather than Hirsutella, where conidiogenous cells are sparse and mostly immature at any given time (Fig. 12F). The denticulate nature of the conidiogenous cell also is indicative of Hymenostilbe. However, in all specimens examined to date there is no evidence of multiple denticles (ive or more) usually associated with Hymenostilbe; only a few conidiogenous cells were seen with two denticles (Figs 12F–G). The anamorph of O. communis is closest to Hy. ventricosa Hywel-Jones (Hywel-Jones 1995). That species infects cockroaches and is found attached to the under side of leaves. As with the anamorph of O. communis, Hy. ventricosa produces conidiogenous cells with only a single terminal stout denticle. Conidia of Hy. ventricosa have a pronounced point and are not typical of the clavate shape usually associated with Hymenostilbe. Similarly, the conidia of the O. communis anamorph are also fattened naviculate, appearing similar to those of Hy. ventricosa but without the processed tip. The perithecia erupt through the dull greyish anamorph spike appearing irst as longitudinal splits in the palisade of conidiogenous cells at the base of the anamorph spike. Each develops as a supericial perithecium, but they become crowded and give the overall appearance of a brown subterminal fertile region (Kobayasi 1941; Figs 12A–B). The ascus shape and the form of the ascus cap comes close to Kobayasi’s Figs 12C–D (Kobayasi 1941) being typical of species in the C. unilateralis clade (with Hirsutella as an anamorph). Mature perithecia eject pigmented, whole ascospores (Fig. 12E) and often the ostiole becomes blocked with these half-emerged ascospores. Only a few species of Cordyceps sensu Kobayasi and Mains have been reported from termites. Currently accepted species include O. koningsbergeri (= C. koningsbergeri Penz. & Sacc.), which is known only from the type locality (Java, Indonesia) (Kobayasi 1941), and C. termitophila Kobayasi & Shimizu) which is known from Japan and Taiwan (Kobayasi & Shimizu 1976, 1978). Penzig & Saccardo (1904) found O. koningsbergeri to be similar to O. myrmecophila in that it had a terminal, globose head with immersed perithecia. In this feature alone it differs signiicantly from O. communis with its subterminal and supericial perithecia. However, as with O. communis, Penzig & Saccardo (1904) described whole ascospores of O. koningsbergeri, which were 10 × 1 µm compared with 120–10 × – µm for O. communis. Cordyceps termitophila differs from O. communis in having a ‘pale rosy-grey’ stroma, much smaller perithecia (280–320 × 17–190 µm for C. termitophila versus 28–7 × 19–390 µm for O. communis) and smaller ascospores (100–12 × 3 µm). Accepted names and new combinations for Ophiocordyceps The following taxa are accepted species of Ophiocordyceps based on their inclusion in molecular phylogenies presented herein1 or morphological descriptions matching the characters described above2. Where known, the anamorph connection is provided for the species of Ophiocordyceps. Ophiocordyceps acicularis (Ravenel) Petch, Trans. Brit. Mycol. Soc. 18: 0. 1933. 1 ≡ Cordyceps acicularis Ravenel, J. Linn. Soc. 1: 18. 187. = Cordyceps caroliniensis Berk. & Ravenel, Fungi Carolina 4: 29. 18. Anamorph: Hirsutella 1 Ophiocordyceps agriotidis (A. Kawam.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04217. 39 SuNG ET AL. ≡ Cordyceps agriotidis A. Kawam., Icon. Jap. Fungi 8: 837. 19. [as C. ‘agriota’] ≡ Cordyceps unilateralis var. australis Speg., Anales Soc. Ci. Argent. 12: 21. 1881. ≡ Cordyceps australis (Speg.) Speg., Syll. Fung. 2: 71. 1883. Anamorph: Hirsutella 2 Ophiocordyceps ainictos (A. Möller) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04218. ≡ Cordyceps ainictos A. Ascomyceten, p. 22. 1901. Möller, Phycomyceten u. Ophiocordyceps barnesii (Thwaites) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04230. 2 ≡ Cordyceps barnesii Thwaites, J. Linn. Soc. 14: 110. 1875. ≡ Torrubia barnesii (Thwaites) Ces., Atti Accad. Sci. Fis. Mat., Napoli 8: 14. 1879. Anamorph: Hirsutella 2 Ophiocordyceps amazonica (Henn.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04219. ≡ Cordyceps amazonica Henn., Hedwigia 43: 247. 1904. 2 Ophiocordyceps amazonica var. neoamazonica (Kobayasi & Hara) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04220. ≡ Cordyceps amazonica var. neoamazonica Kobayasi & Hara, J. Jap. Bot. 57: 17. 1982. 1 Ophiocordyceps aphodii (Mathieson) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04221. 2 Ophiocordyceps bicephala (Berk.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04231. ≡ Cordyceps bicephala Berk., J. Bot. (Hooker) 8: 278. 18. Ophiocordyceps bispora (Stiler) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04232. 2 ≡ Cordycepioideus bisporus Stiler, Mycologia 33: 85. 1941. Anamorph: Hirsutella Ophiocordyceps blattae (Petch) Petch, Trans. Brit. Mycol. Soc. 1: 74. 1931. 2 ≡ Cordyceps blattae Petch, Trans. Brit. Mycol. Soc. 10: 35. 1924. ≡ Cordyceps aphodii Mathieson, Trans. Brit. Mycol. Soc. 32: 134. 1949. Anamorph: Hirsutella 2 Ophiocordyceps appendiculata (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04222. 1 Ophiocordyceps brunneipunctata (Hywel-Jones) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04233. ≡ Cordyceps brunneipunctata Hywel-Jones, Mycol. Res. 99: 119. 199. [as C. ‘brunneapunctata’] ≡ Cordyceps appendiculata Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 9: 6. 1983. Anamorph: Hirsutella 2 2 Ophiocordyceps arachneicola (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04223. Ophiocordyceps caloceroides (Berk. & M.A. Curtis) Petch, Trans. Brit. Mycol. Soc. 18: 63. 1933. ≡ Cordyceps caloceroides Berk. & M.A. Curtis, J. Linn. Soc. 10: 37. 188. = Cordyceps wittii Henn., Bot. Jahrb. Syst. 23: 39. 1897. ≡ Cordyceps arachneicola Kobayasi, Sci. Rep. Tokyo Bunrika Daigaku, Sect. B, : 123. 1941. Ophiocordyceps arbuscula (Teng) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0422 2 2 Ophiocordyceps cantharelloides (Samson & H.C. Evans) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04234. ≡ Cordyceps cantharelloides Samson & H.C. Evans, Proc. Indian Acad. Sci., Pl. Sci. 94: 312. 1985. ≡ Cordyceps arbuscula Teng, Sinensia 7: 812. 1936. 2 Ophiocordyceps armeniaca (Berk. & M.A. Curtis) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0422. ≡ Cordyceps armeniaca Berk. & M.A. Curtis, J. Linn. Soc. 1: 18. 187. 2 Ophiocordyceps asyuënsis (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04227. ≡ Cordyceps asyuënsis Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 6: 138. 1980. 2 Ophiocordyceps carabidicola (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0423. ≡ Cordyceps carabidicola Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 6: 85. 1980. [as C. ‘carabidiicola’] Ophiocordyceps cicadicola (Teng) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0423. 2 ≡ Cordyceps cicadicola Teng, Sinensia 6: 191. 1935. 2 2 Ophiocordyceps aurantia (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04228. Ophiocordyceps clavata (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04237. ≡ Cordyceps clavata Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 6: 140. 1980. ≡ Cordyceps aurantia Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 6: 125. 1980. Ophiocordyceps clavulata (Schwein.) Petch, Trans. Brit. Mycol. Soc. 18: 3. 1933. 2 2 Ophiocordyceps australis (Speg.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04229. 40 ≡ Sphaeria clavulata Schwein., Trans. Amer. Philos. Soc. New Ser. 4, 188. 1832. PHYLOGENEtIC CLASSIFICAtION OF CORDyCEPS AND tHE CLAvICIPItACEOuS FuNGI ≡ Xylaria clavulata (Schwein.) Berk. & M. A. Curtis, J. Linn. Soc. 10: 380. 188. ≡ Torrubia clavulata (Schwein.) Peck, Ann. Rep. N. Y. State Mus. 28: 70. 187. ≡ Cordyceps clavulata (Schwein.) Ellis & Everh., North Amer. Pyrenom. p. 61. 1892. = Cordyceps pistillariiformis Berk. & Broome, Ann. Mag. Nat. Hist. Ser. 3, 7: 41. 181 [as C. ‘pistillariaeformis’]. ≡ Torrubia pistillariiformis (Berk. & Broome) Cooke, Handb. Brit. Fungi 2: 771. 1871. Anamorph: Hymenostilbe lecaniicola (Jaap) Mains 2 Ophiocordyceps crassispora (M. Zang, D.R. Yang & C.D. Li) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04242. ≡ Cordyceps crassispora M. Zang, D.R. Yang & C.D. Li, Mycotaxon 37: 8. 1990. 2 Ophiocordyceps crinalis (Ellis ex Lloyd) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04243. ≡ Cordyceps crinalis Ellis ex Lloyd, Mycol. Writ. : 912. 1920. 1 Ophiocordyceps coccidiicola (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04238. ≡ Cordyceps coccidiicola Kobayasi, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 4: 57. 1978. 2 Ophiocordyceps cucumispora (H.C. Evans & Samson) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04244. ≡ Cordyceps cucumispora H.C. Evans & Samson, Trans. Brit. Mycol. Soc. 79: 442. 1982. Ophiocordyceps coccigena (Tul. & C. Tul.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04239. 2 ≡ Torrubia coccigena Tul. & C. Tul., Sel. Fung. Carpol. 3: 19. 18. ≡ Cordyceps coccigena (Tul. & C. Tul.) Sacc., Michelia 1: 320. 1879. Anamorph: Hirsutella ovalispora H.C. Evans & Samson 2 Ophiocordyceps cucumispora var. dolichoderi (H.C. Evans & Samson) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0424. ≡ Cordyceps cucumispora var. dolichoderi H.C. Evans & Samson, Trans. Brit. Mycol. Soc. 79: 445. 1982. 2 Ophiocordyceps cochlidiicola (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04240. ≡ Cordyceps cochlidiicola Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 6: 128. 1980. Anamorph: Hirsutella ovalispora var. dolichoderi H.C. Evans & Samson Ophiocordyceps curculionum (Tul. & C. Tul.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0424. 2 1 Ophiocordyceps communis Hywel-Jones & Samson, sp. nov., see above. Anamorph: hirsutella/hymenostilbe-like 2 Ophiocordyceps corallomyces (A. Möller) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04241. ≡ Cordyceps corallomyces A. Möller, Phycomyceten u. Ascomyceten, p. 217. 1901. ≡ Torrubia curculionum Tul. & C. Tul., Sel. Fung. Carpol. 3: 20. 18. ≡ Cordyceps curculionum (Tul. & C. Tul.) Sacc., Michelia 1: 320. 1879. ≡ Cordyceps bicephala subsp. curculionum (Tul. & C. Tul.) Moureau, Mém. Inst. Roy. Colon. Belge 7: 0. 1949. Anamorph: Hymenostilbe Fig. 12. A–G. Morphology of Ophiocordyceps communis. A. Stromata, bar = 10 mm. B. Arrangement of perithecia. C. Ascus with ascospores. D. Ascus and ascus apex. E. Non-disarticulating ascospores. F. Conidiophores (Hymenostilbe/Hirsutella anamorph). G. Denticles of phialide (Hymenostilbe/Hirsutella anamorph). Scale bars: A, C–G = 10 µm, B = 00 µm. 41 SuNG ET AL. 2 Ophiocordyceps cylindrostromata (Z.Q. Liang, A.Y. Liu & M.H. Liu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04247. ≡ Cordyceps cylindrostromata Z.Q. Liang, A.Y. Liu & M.H. Liu, Fungal Diversity 14: 97. 2003. 2 Ophiocordyceps elongatiperitheciata (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0427. ≡ Cordyceps elongatiperitheciata Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 6: 126. 1980 (as C. ‘elongatoperitheciata’). 2 Ophiocordyceps dayiensis (Z.Q. Liang) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04248 ≡ Cordyceps dayiensis Z.Q. Liang, Fungal Diversity 12: 131. 2003. 2 Ophiocordyceps elongatistromata (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0428. ≡ Cordyceps elongatistromata Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 9: 12. 1983 (as C. ‘elongatostromata’). 2 Ophiocordyceps dermapterigena (Z.Q. Liang, A.Y. Liu & M.H. Liu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04249. ≡ Cordyceps dermapterigena Z.Q. Liang, A.Y. Liu & M.H. Liu, Fungal Diversity 14: 9. 2003 (as C. ‘dermapteoigena’). 2 Ophiocordyceps emeiensis (A.Y. Liu & Z.Q. Liang) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0429. ≡ Cordyceps emeiensis A.Y. Liu & Z.Q. Liang, Mycosystema 1: 139. 1997. 2 Ophiocordyceps dipterigena (Berk. & Broome) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0420. ≡ Cordyceps dipterigena Berk. & Broome, J. Linn. Soc. 14: 111. 187. = Cordyceps muscicola A. Möller, Phycomyceten u. Ascomyceten, p. 221. 1901. = Cordyceps surinamensis Henn., Hedwigia 41: 19 1902. = Cordyceps oumensis Höhn., Sitzungsber. Kaiserl. Akad. Wiss. Wien 118: 309. 1909. = Cordyceps ouwensii Höhn., Sitzungsber. Kaiserl. Akad. Wiss. Wien 118: 309. 1909. = Cordyceps thwaitesii Lloyd, Mycol. Writ. : 100. 1921. = Cordyceps opposita Syd., Bot. Jahrb. Syst. 7: 32. 1922. 2 Ophiocordyceps engleriana (Henn.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0420. ≡ Cordyceps engleriana Henn., Bot. Jahrb. Syst. 23: 38. 1897. Anamorph: Hymenostilbe 1 Ophiocordyceps entomorrhiza (Dicks.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0421. ≡ Sphaeria entomorrhiza Dicks., Plant. Crypt. Brit., Fasc. 1: 22. 178. ≡ Cordyceps entomorrhiza (Dicks.) Fr., Obs. Mycol. 2: 317. 1818. ≡ Torrubia entomorrhiza (Dicks.) Tul. & C. Tul, Sel. Fung. Carpol. 3: 13. 18. = Torrubia cinerea Tul. & C. Tul., Sel. Fung. Carpol. 3: 14. 1865. ≡ Cordyceps cinerea (Tul. & C. Tul.) Sacc., Michelia 1: 320. 1879. = Cordyceps carabi Quél., Comp. Rend. Assoc. Franç. Avancem. Sci. 2: 42. 1898. Anamorph: Hymenostilbe dipterigena Petch 2 Ophiocordyceps discoideicapitata (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0421. ≡ Cordyceps discoideicapitata Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 85. 1982 (as C. ‘discoideocapitata’). Anamorph: Hirsutella eleutheratorum (Nees) Petch 2 Ophiocordyceps ditmarii (Quél.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0422. ≡ Cordyceps ditmarii Quél., Bull. Soc. Bot. France 24: 330 1877. [as C. ditmari] Anamorph: Hymenostilbe 2 Ophiocordyceps evdogeorgiae (Koval) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0422. ≡ Cordyceps evdogeorgiae Koval, Bot. Mater. Otd. Sporov. Rast. 14: 10. 191. 2 Ophiocordyceps dovei (Rodway) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0423. ≡ Cordyceps dovei Rodway, Paper Proc. Roy. Soc. Tasmania for 1898–1899, p. 101. 1900. = Cordyceps aemonae Lloyd, Mycol. Notes 2: 932. 1920. 2 Ophiocordyceps falcata (Berk.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0423. ≡ Cordyceps falcata Berk., J. Bot. (Hooker) : 211. 184 [Decad. Fung. No. 479]. Anamorph: hirsutella-like 2 Ophiocordyceps elateridicola (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB042. ≡ Cordyceps elateridicola Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 9: 4. 1983. Ophiocordyceps elongata (Petch) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB042. 2 ≡ Cordyceps elongata Petch, Trans. Brit. Mycol. Soc. 21: 47. 1937. Anamorph: Hirsutella 42 Anamorph: Stilbella 2 Ophiocordyceps falcatoides (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0424. ≡ Cordyceps falcatoides Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 6: 91. 1980. 2 Ophiocordyceps fasciculatistromata (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB042. ≡ Cordyceps fasciculatistromata Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 83. 1982 (as C. ‘fasciculatostromata’). PHYLOGENEtIC CLASSIFICAtION OF CORDyCEPS AND tHE CLAvICIPItACEOuS FuNGI 2 Ophiocordyceps ferruginosa (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB042. ≡ Cordyceps ferruginosa Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 6: 139. 1980. Ophiocordyceps iliformis (Moureau) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0427. 2 Daigaku, Sect. B, : 140. 1941. Anamorph: paecilomyces-like 1 Ophiocordyceps gracilis (Grev.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04277. ≡ Xylaria gracilis Grev., Scot. Crypt. Fl. 2. t. 8. 1824. ≡ Cordyceps gracilis (Grev.) Durieu & Mont., Fl. Algérie Crypt. 1: 449. 184. = Cordyceps mawleyi Westwood, Gard. Chron. Ser. 3, 9: 3. 1891. ≡ Cordyceps iliformis Moureau, Mém. Inst. Roy. Colon. Belge 7: 14. 1949. Anamorph: Paraisaria dubia (Delacr.) Samson & B.L. Brady 2 Ophiocordyceps formicarum (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0428 ≡ Cordyceps formicarum Kobayasi, Bull. Biogeogr. Soc. Japan 9: 28. 1939. Ophiocordyceps gryllotalpae Petch, Trans. Brit. Mycol. Soc. 2: 2. 1941. 2 ≡ Cordyceps gryllotalpae Kobayasi, Sci. Rep. Tokyo Bunrika Daigaku : 70. 1942 [non Lloyd 1924]. ≡ Cordyceps koreana Kobayasi, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 7: 8. 1981. Anamorph: Hymenostilbe 2 Ophiocordyceps forquignonii (Quél.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0429. ≡ Cordyceps forquignonii Quél., 1th Suppl. Champ. Jura et vosges, p. . 1887. 1 Ophiocordyceps heteropoda (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04278. ≡ Cordyceps heteropoda Kobayasi, Bull. Biogeogr. Soc. Japan 9: 18. 1939. Anamorph: Hymenostilbe muscarium Petch 2 Ophiocordyceps furcicaudata (Z.Q. Liang, A.Y. Liu & M.H. Liu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04270. ≡ Cordyceps furcicaudata Z.Q. Liang, A.Y. Liu & M.H. Liu, Fungal Diversity 14: 9. 2003 (as C. ‘furcicaodata’). 2 Ophiocordyceps gansuënsis (K. Zhang, C. Wang & M. Yan) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04271. ≡ Cordyceps gansuënsis K. Zhang, C. Wang & M. Yan, Trans. Mycol. Soc. Japan 30: 295. 1989. 2 Ophiocordyceps hiugensis (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04279. ≡ Cordyceps hiugensis Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 9: 3. 1983. 2 Ophiocordyceps huberiana (Henn.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04280. ≡ Cordyceps huberiana Henn., Hedwigia 48: 10. 1909. Ophiocordyceps humbertii (C.P. Robin) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04281. 2 2 Ophiocordyceps geniculata (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04272. ≡ Cordyceps humbertii C.P. Robin, in Tul. & C. Tul., Sel. Fung. Carpol. 3: 18. 18 (as C. ‘humberti’). ≡ Cordyceps geniculata Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 6: 85. 1980. Anamorph: Hirsutella saussurei (Cooke) Speare 2 Ophiocordyceps gentilis (Ces.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04273. ≡ Torrubia gentilis Ces., Atti Accad. Sci. Fis. Mat., Napoli, 8: 14. 1879. ≡ Cordyceps gentilis (Ces.) Sacc., Syll. Fung. 2: 9. 1883. 2 Ophiocordyceps glaziovii (Henn.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04274. 2 Ophiocordyceps insignis (Cooke & Ravenel) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04282. ≡ Cordyceps insignis Cooke & Ravenel, Grevillea 12: 38. 1883. 1 Ophiocordyceps irangiensis (Moureau) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04283. ≡ Cordyceps irangiensis Moureau, Lejeunia, Mém. 1: 33. 191. ≡ Cordyceps glaziovii Henn., Naturw. Wochenschr. : 318. 189. Anamorph: Hymenostilbe 2 Ophiocordyceps goniophora (Speg.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0427. ≡ Cordyceps goniophora Speg., Bol. Acad. Nac. Ci. Córdoba 11: 307 1889. 2 Ophiocordyceps japonensis (Hara) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04284. ≡ Cordyceps japonensis Hara, Bot. Mag. Tokyo 28: 351. 1914. 2 Ophiocordyceps gracilioides (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0427. ≡ Cordyceps gracilioides Kobayasi, Sci. Rep. Tokyo Bunrika 2 Ophiocordyceps jiangxiensis (Z.Q. Liang, A.Y. Liu & Yong C. Jiang) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0428. 43 SuNG ET AL. ≡ Cordyceps jiangxiensis Z.Q. Liang, A.Y. Liu & Yong C. Jiang, Mycosystema 20: 30. 2001. 2 Ophiocordyceps jinggangshanensis (Z.Q. Liang, A.Y. Liu & Yong C. Jiang) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0428. ≡ Cordyceps lachnopoda Penz. & Sacc., Malpighia 11: 521. 1897. 2 Ophiocordyceps larvarum (Westwood) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04397. ≡ Sphaeria larvarum Westwood, Proc. Entomol. Soc. Lond. 2: . 183. ≡ Cordyceps larvarum (Westwood) Olliff, Gaz. New South Wales : 410. 189. = Cordyceps huegelii Corda, Icon. Fung. 4: 44. 1840. ≡ Cordyceps jinggangshanensis Z.Q. Liang, A.Y. Liu & Yong C. Jiang, Mycosystema 20: 307. 2001. 2 Ophiocordyceps kangdingensis (M. Zang & N. Kinjo) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04287. ≡ Cordyceps kangdingensis M. Zang & N. Kinjo, Mycotaxon : 221. 1998. 2 Ophiocordyceps lloydii (H.S. Fawc.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0429. ≡ Cordyceps lloydii H.S. Fawc., Ann. Mag. Nat. Hist., Ser. , 18: 317. 188. = Cordyceps sheeringii Massee, Ann. Bot. : 10. 1890. = Cordyceps subdiscoidea Henn., Hedwigia 41: 18. 1902. Ophiocordyceps kniphoioides (H.C. Evans & Samson) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04288. 2 ≡ Cordyceps kniphoioides H.C. Evans & Samson, Trans. Brit. Mycol. Soc. 79: 434. 1982. Anamorph: Hirsutella stilbelliformis H.C. Evans & Samson Ophiocordyceps kniphoioides var. dolichoderi (H.C. Evans & Samson) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04289. Anamorph: Hymenostilbe formicarum Petch 2 Ophiocordyceps lloydii var. binata (H.C. Evans & Samson) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04297. ≡ Cordyceps lloydii var. binata H.C. Evans & Samson, Trans. Brit. Mycol. Soc. 82: 133. 18: 31. 1984. 2 ≡ Cordyceps kniphoioides var. dolichoderi H.C. Evans & Samson, Trans. Brit. Mycol. Soc. 79: 437. 1982. 1 Ophiocordyceps longissima (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04298. ≡ Cordyceps longissima Kobayasi, Bull. Natn. Sci. Mus. Tokyo 6: 300. 1963. Anamorph: Hirsutella stilbelliformis var. dolichoderi H.C. Evans & Samson 2 Ophiocordyceps kniphoioides var. monacidis (H.C. Evans & Samson) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04290. 2 Ophiocordyceps lutea (Moureau) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04299. ≡ Cordyceps lutea Moureau, Mém. Inst. Roy. Colon. Belge 7: 41. 1949. ≡ Cordyceps kniphoioides var. monacidis H.C. Evans & Samson, Trans. Brit. Mycol. Soc. 79: 439. 1982. Anamorph: Hymenostilbe sulphurea Samson & H.C. Evans Anamorph: Hirsutella stilbelliformis var. monacidis H.C. Evans & Samson Ophiocordyceps macularis Mains, Proc. Amer. Philos. Soc. 74: 269. 1934. 2 Ophiocordyceps kniphoioides var. ponerinarum (H.C. Evans & Samson) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04291. 2 ≡ Cordyceps kniphoioides var. ponerinarum H.C. Evans & Samson, Trans. Brit. Mycol. Soc. 79: 441. 1982. Anamorph: Hirsutella stilbelliformis var. ponerinarum H.C. Evans & Samson Ophiocordyceps koningsbergeri (Penz. & Sacc.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04292. ≡ Cordyceps macularis (Mains) Mains, Pap. Michigan Acad. Sci. 2: 82. 1940. Ophiocordyceps melolonthae (Tul. & C. Tul.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04300. 1 ≡ Torrubia melolonthae Tul. & C. Tul., Sel. Fung. Carpol. 3: 12. 18. ≡ Cordyceps melolonthae (Tul. & C. Tul.) Sacc., Michelia 1: 320. 1879. 2 ≡ Cordyceps koningsbergeri Penz. & Sacc., Malpighia 11: 22. 1897. 2 Ophiocordyceps melolonthae var. rickii (Lloyd) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04301. ≡ Cordyceps rickii Lloyd, Mycol. Writ. : 914. 1920. ≡ Cordyceps melolonthae var. rickii (Lloyd) Mains, Mycologia 0: 198 198. 1 Ophiocordyceps konnoana (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04293. ≡ Cordyceps konnoana Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 6: 84. 1980. Ophiocordyceps lachnopoda (Penz. & Sacc.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0429. 2 44 2 Ophiocordyceps michiganensis (Mains) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04302. ≡ Cordyceps michiganensis Mains, Proc. Amer. Philos. Soc. 74: 2. 1934. PHYLOGENEtIC CLASSIFICAtION OF CORDyCEPS AND tHE CLAvICIPItACEOuS FuNGI 2 Ophiocordyceps minutissima (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04303. MB04313. ≡ Cordyceps nutans Pat., Bull. Soc. Mycol. France 3: 127. 1887. ≡ Cordyceps bicephala subsp. nutans (Pat.) Moureau, Mém. Inst. Roy. Colon. Belge 7: 47. 1949. ≡ Cordyceps minutissima Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 6: 77. 1980. Anamorph: Hymenostilbe nutans Samson & H.C. Evans 2 Ophiocordyceps monticola (Mains) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04304. ≡ Cordyceps monticola Mains, Mycologia 32: 310. 1940. 2 Ophiocordyceps mrciensis (Aung, J.C. Kang, Z.Q.Liang, Soytong & K.D. Hyde) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0430. ≡ Cordyceps mrciensis Aung, J.C. Kang, Z.Q.Liang, Soytong & K.D. Hyde, Mycotaxon 97: 23. 200. Ophiocordyceps obtusa (Penz. & Sacc.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04314. 2 ≡ Cordyceps obtusa Penz. & Sacc., Malpighia 11: 523. 1897. 2 Ophiocordyceps octospora (M. Blackwell & Gilb.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0431. ≡ Cordycepioideus octosporus M. Blackwell & Gilb., Mycologia 73: 38. 1981. 2 Ophiocordyceps multiaxialis (M. Zang & Kinjo) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0430. ≡ Cordyceps multiaxialis M. Zang & Kinjo, Mycotaxon : 224. 1998. Anamorph: Hirsutella 2 Ophiocordyceps odonatae (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0431. ≡ Cordyceps odonatae Kobayasi, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 7: . 1981. 2 Ophiocordyceps myrmecophila (Ces.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04307. ≡ Cordyceps myrmecophila Ces., Bot. Zeitung 4: 877. 184. ≡ Torrubia myrmecophila (Ces.) Tul. & C. Tul., Sel. Fung. Carpol. 3: 18. 18. Anamorph: Hymenostilbe Anamorph: Hymenostilbe odonatae Kobayasi 2 Ophiocordyceps osuzumontana (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04317. ≡ Cordyceps osuzumontana Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 6: 77. 1980. 2 Ophiocordyceps neovolkiana (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04308. ≡ Cordyceps neovolkiana Kobayasi, Sci. Rep. Tokyo Bunrika Daigaku, Sect. B, : 19. 1941. Anamorph: Hirsutella neo-volkiana Kobayasi 2 Ophiocordyceps owariensis (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04318. ≡ Cordyceps owariensis Kobayasi, Bull. Biogeogr. Soc. Japan 9: 1. 1939. 2 Ophiocordyceps nepalensis (M. Zang & Kinjo) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04309. ≡ Cordyceps nepalensis M. Zang & Kinjo, Mycotaxon : 224. 1998. 2 Ophiocordyceps owariensis f. viridescens (uchiyama & udagawa) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04319. ≡ Cordyceps owariensis f. viridescens uchiyama & udagawa, Mycoscience 43: 13. 2002. 2 Ophiocordyceps nigra (Samson, H.C. Evans & E.S. Hoekstra) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04310. ≡ Cordyceps nigra Samson, H.C. Evans & E.S. Hoekstra, Proc. K. Ned. Akad. Wet., Ser. C, Biol. Med. Sci. 85: 596. 1982. 1 Ophiocordyceps nigrella (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04311. ≡ Cordyceps nigrella Kobayasi & Shimizu, Icon. veg. Wasps and Plant Worms p. 145. 1983. ≡ Cordyceps nigra Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo 9(1): 13. 1983 [non Samson et al. 1982] 2 Ophiocordyceps nigripes (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04312. ≡ Cordyceps nigripes Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 116. 1982 (as C. ‘nigripoda’). Ophiocordyceps nutans (Pat.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank 1 Anamorph: Nomuraea owariensis uchiyama & udagawa Ophiocordyceps oxycephala (Penz. & Sacc.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04320. 2 ≡ Cordyceps oxycephala Penz. & Sacc., Malpighia 11: 521. 1897. ≡ Cordyceps sphecocephala f. oxycephala (Penz. & Sacc.) Kobayasi, Trans. Mycol. Soc. Japan 23: 361. 1982. Anamorph: Hymenostilbe 2 Ophiocordyceps paludosa Mains, Proc. Amer. Philos. Soc. 74: 269. 1934. ≡ Cordyceps paludosa (Mains) Mains, Pap. Michigan Acad. Sci. 2: 83. 1940. Anamorph: Polycephalomyces paludosus Mains 2 Ophiocordyceps pentatomae (Koval) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04321. 4 SuNG ET AL. ≡ Cordyceps pentatomae Koval, Nov. Sist. Niz. Rast. 1: 1. 194. (as C. ‘pentatomi’) nov. MycoBank MB04331. ≡ Cordyceps rubripunctata Moureau, Mém. Inst. Roy. Colon. Belge 7: 2. 1949. Anamorph: Hirsutella Anamorph: Hirsutella rubripunctata Samson, H.C. Evans & Hoekstra 2 Ophiocordyceps petchii (Mains) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04322. ≡ Cordyceps petchii Mains, Bull. Torrey Bot. Club 86: 47. 199. ≡ Cordyceps ramosa Petch, Trans. Brit. Mycol. Soc 21: 42. 1937 [non Teng 1936]. 2 Ophiocordyceps rubiginosiperitheciata (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04332. ≡ Cordyceps rubiginosiperitheciata Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 9: 14. 1983 (as C. ‘rubiginosoperitheciata’). 2 Ophiocordyceps proliferans (Henn.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04323. ≡ Cordyceps proliferans Henn., Hedwigia 43: 248. 1904. 2 Ophiocordyceps ryogamiensis (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04333. ≡ Cordyceps ryogamiensis Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 9: 4. 1983. 2 Ophiocordyceps pseudolloydii (H.C. Evans & Samson) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04324. ≡ Cordyceps pseudolloydii H.C. Evans & Samson, Trans. Brit. Mycol. Soc. 82: 133. 1984. 2 Ophiocordyceps salebrosa (Mains) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04334. ≡ Cordyceps salebrosa Mains, Mycologia 39: 41. 1947. 2 Ophiocordyceps pseudolongissima (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0432. ≡ Cordyceps pseudolongissima Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 119. 1982. 2 Ophiocordyceps purpureostromata (Kobayasi) ex G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0432. ≡ Cordyceps purpureostromata Kobayasi, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 6: 136. 1980. Type Shimizu No. 128, preserved in TNS; therefore the basionym was valid from the beginning. 2 Ophiocordyceps scottiana (Olliff) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0433. ≡ Cordyceps scottiana Olliff, Agric. Gaz. New South Wales : 407. 189. 2 Ophiocordyceps selkirkii (Olliff) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04338. ≡ Cordyceps selkirkii Olliff, Agric. Gaz. New South Wales : 411. 189. 2 2 Ophiocordyceps purpureostromata f. recurvata (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04327. Ophiocordyceps sichuanensis (Z.Q. Liang & B. Wang) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04339. ≡ Cordyceps sichuanensis Z.Q. Liang & B. Wang, Fungal Diversity 12: 129. 2003. ≡ Cordyceps purpureostromata f. recurvata Kobayasi, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 6: 138. 1980. 1 1 Ophiocordyceps ravenelii (Berk. & M.A. Curtis) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04328. Ophiocordyceps sinensis (Berk.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04340. ≡ Sphaeria sinensis Berk., J. Bot. (Hooker) 2: 207. 1843. ≡ Cordyceps sinensis (Berk.) Sacc., Michelia 1: 320. 1879. ≡ Cordyceps ravenelii Berk. & M.A. Curtis, J. Linn. Soc. 1: 19. 187. Ophiocordyceps rhizoidea (Höhn.) Petch, Trans. Brit. Mycol. Soc. 1: 74. 1931. Anamorph: Hirsutella sinensis X.J. Liu, Y.L. Guo, Y.X. Yu & W. Zeng 1 ≡ Cordyceps rhizoidea Höhn., Sitzungsber. Kaiserl. Akad. Wiss. Wien 118: 307. 1909. Anamorph: Hirsutella 2 Ophiocordyceps smithii (Mains) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04341. ≡ Cordyceps smithii Mains, J. Elisha Mitchell Sci. Soc. : 127. 1939. 2 Ophiocordyceps ridleyi (Massee) Kobayasi, Bull. Biogeogr. Soc. Japan 9: 271. 1939. ≡ Cordyceps ridleyi Massee, Bull. Misc. Inform. Roy. Bot. Gard. Kew, p. 173. 1899. 1 Ophiocordyceps robertsii (Hook.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04329. ≡ Sphaeria robertsii Hook. Icon. Plant. 1 pl. 6. 1837. ≡ Cordyceps robertsii (Hook.) Berk., Fl. New Zealand 2: 202. 18. 2 Ophiocordyceps rubripunctata (Moureau) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. 4 1 Ophiocordyceps sobolifera (Hill ex Watson) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04342. ≡ Clavaria sobolifera Hill ex Watson, Philos. Trans. Roy. Soc. Lond. 3: 271. 173. ≡ Sphaeria sobolifera (Hill ex Watson) Berk., J. Bot. (Hooker) 2: 207. 1843. ≡ Torrubia sobolifera (Hill ex Watson) Tul. & C. Tul., Sel. Fung. Carpol. 3: 10. 18. ≡ Cordyceps sobolifera (Hill ex Watson) Berk. & Broome, J. Linn. Soc. 14: 110. 187. Anamorph: Beauveria sobolifera Z.Y. Liu, Z.Q. Liang, Whalley, A.Y. Liu & Y.J. Yao PHYLOGENEtIC CLASSIFICAtION OF CORDyCEPS AND tHE CLAvICIPItACEOuS FuNGI 1 Ophiocordyceps sphecocephala (Klotzsch ex Berk.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04343. ≡ Sphaeria sphecocephala Klotzsch ex Berk., J. Bot. (Hooker) 2: 20. 1843. ≡ Torrubia sphecocephala (Klotzsch ex Berk.) Tul. & C. Tul., Sel. Fung. Carpol. 3: 18. 18. ≡ Cordyceps sphecocephala (Klotzsch ex Berk.) Berk. & M.A. Curtis, in Berkeley, J. Linn. Soc., Bot. 10: 37. 188. MycoBank MB0431. ≡ Cordyceps thyrsoides A. Möller, Phycomyceten u. Ascomyceten, p. 221. 1901. 1 Ophiocordyceps tricentri (Yasuda) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0432. ≡ Cordyceps tricentri Yasuda, in Lloyd, Mycol. Writ. 4: 8. 191 (as C. ‘tricentrus’). = Cordyceps aphrophorae Yasuda, Bot. Mag. Tokyo 36: 51. 1922. Anamorph: Hymenostilbe 2 Ophiocordyceps stipillata (Z.Q. Liang & A.Y. Liu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04344. ≡ Cordyceps stipillata Z.Q. Liang & A.Y. Liu, Mycosystema 21: 11. 2002. 2 Ophiocordyceps uchiyamae (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0433. ≡ Cordyceps uchiyamae Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 6: 125. 1980. 1 Ophiocordyceps stylophora (Berk. & Broome) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0434. 1 Ophiocordyceps unilateralis (Tul. & C. Tul.) Petch, Trans. Brit. Mycol. Soc. 16: 74. 1931. ≡ Torrubia unilateralis Tul. & C. Tul., Sel. Fung. Carpol. 3: 18. 18. ≡ Cordyceps unilateralis (Tul. & C. Tul.) Sacc., Syll. Fung. 2: 70. 1883. = Torrubia formicivora Tul. & C. Tul., Sel. Fung. Carpol. 3: 18. 18. ≡ Cordyceps formicivora (Tul. & C. Tul.) J. Schröt., Krypt.Fl. Schlesien 3(2) 27. 1894. ≡ Cordyceps stylophora Berk. & Broome, J. Linn. Soc. 1: 18. 187. Anamorph: Hirsutella stylophora Mains Ophiocordyceps sublavida (Mains) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0434. 2 ≡ Cordyceps sublavida Mains, Bull. Torrey Bot. Club 86: 47. 199. ≡ Cordyceps albida Pat. & Gaillard, Bull. Soc. Mycol. France 7: 11. 1888 [non Berk. & M.A. Curtis ex Cooke 1884]. Anamorph: Hirsutella formicarum Petch 2 Ophicordyceps unilateralis var. clavata Kobayasi, Bull. Biogeogr. Soc. Japan 9: 272. 1939. ≡ Cordyceps unilateralis var. clavata (Kobayasi) Kobayasi, Sci. Rep. Tokyo Bunrika Daigaku, Sect. B, 5: 78. 1941. 2 Ophiocordyceps subunilateralis (Henn.) Kobayasi, Bull. Biogeogr. Soc. Japan 9: 271. 1939. ≡ Cordyceps subunilateralis Henn., Hedwigia 41: 18. 1902. Ophiocordyceps supericialis (Peck) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04347. 1 ≡ Torrubia supericialis Peck, Rep. N. Y. State Botanist 28: 70. 187. ≡ Cordyceps supericialis (Peck) Sacc., Syll. Fung. 2: 574. 1883. Ophiocordyceps supericialis f. crustacea (Kobayasi & Shimizu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04348. 2 ≡ Cordyceps supericialis f. crustacea Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 6: 82. 1980. 2 Ophiocordyceps takaoënsis (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB04349. ≡ Cordyceps sobolifera var. takaoënsis Kobayasi, Bull. Biogeogr. Soc. Japan 9: 1. 1939. ≡ Cordyceps takaoënsis (Kobayasi) Kobayasi, Sci. Rep. Tokyo Bunrika Daigaku, Sect. B, 5: 130. 1941. 2 Ophiocordyceps taylorii (Berk.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0430. ≡ Sphaeria taylorii Berk., J. Bot. (Hooker) 2: 209. 1843 (as S. ‘taylori’). ≡ Cordyceps taylorii (Berk.) Sacc., Michelia 1: 320. 1879. 2 Ophiocordyceps thyrsoides (A. Möller) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. Ophiocordyceps variabilis (Petch) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0434. 1 ≡ Cordyceps variabilis Petch, Trans. Brit. Mycol. Soc. 21: 42. 1937. = Cordyceps viperina Mains, Mycologia 29: 74. 1937. Anamorph: Syngliocladium 2 Ophiocordyceps voeltzkowii (Henn.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB043. ≡ Cordyceps voeltzkowii Henn., in voeltzkow, Reise Ostafrica 3: 29. 1908. 2 Ophiocordyceps volkiana (A. Möller) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB043. ≡ Cordyceps volkiana A. Ascomyceten, p. 233. 1901. Möller, Phycomyceten u. Anamorph: Hirsutella 2 Ophiocordyceps wuyishanensis (Z.Q. Liang, A.Y. Liu & J.Z. Huang) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0437. ≡ Cordyceps wuyishanensis Z.Q. Liang, A.Y. Liu & J.Z. Huang, Mycosystema 21: 12. 2002. Anamorph: paecilomyces-like 1 Ophiocordyceps yakusimensis (Kobayasi) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0438. ≡ Cordyceps yakusimensis Kobayasi, Bull. Natn. Sci. Mus. Tokyo 6: 302. 1963. 47 SuNG ET AL. 2 Ophiocordyceps zhangjiajiensis (Z.Q. Liang & A.Y. Liu) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0439. ≡ Cordyceps zhangjiajiensis Z.Q. Liang & A.Y. Liu, Mycosystema 21: 13. 2002. Anamorph: Hirsutella zhangjiajiensis Z.Q. Liang & A.Y. Liu ClaviCiPitaCEaE Clade C Clavicipitaceae clade C is a strongly supported group that includes the type species, C. militaris, of Cordyceps (MP-BP = 100 %, ML-BP = 100 %, PP = 1.00 in Figs 1–2). Because of the non-monophyly of Cordyceps, we reintroduce the preexisting family name Cordycipitaceae for Clavicipitaceae clade C. This family name was not validly published and it is validated herein based on the type genus Cordyceps. Most of the species in the family parasitize hosts in leaf litter, moss, or upper soil layers and produce supericial to partially immersed to completely immersed perithecia on a leshy stroma or subiculum that is pallid or brightly coloured. The family contains species of Cordyceps and Torrubiella (Figs 5, 7). The unispeciic genus Phytocordyceps is also recognized as a member of this family and transferred to Cordyceps (Fig. ). In addition, the recent molecular study shows that species of the genera Ascopolyporus A. Möller and Hyperdermium J. White, R. Sullivan, G. Bills & N. Hywel-Jones 2000 [non Link], both pathogens of scale insects, are also inferred to be members of the family (Sullivan et al. 2000, Bischoff et al. 200). COrdyCiPitaCEaE Kreisel 199 ex G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, fam. nov. MycoBank MB0430. Cordycipitaceae Kreisel, Grundz. Natürl. Syst. Pilze: 112. 199 [nom. inval., Art. 3]. Stromata vel subiculum pallida vel laete colorata, carnosa. Perithecia supericialia vel omnino immersa, perpendicularia ad supericiem. Asci cylindrici, apice inspissato. Ascosporae cylindricae, multiseptatae, maturae diffrangentes vel integrae remanentes. Stromata or subiculum pallid or brightly pigmented, leshy. Perithecia supericial to completely immersed, oriented at right angles to the surface of the stroma. Asci cylindrical with thickened ascus apex. Ascospores usually cylindrical, multiseptate, disarticulating into part-spores or remaining intact at maturity. Type: Cordyceps Fr. Teleomorphic genera: Ascopolyporus, Cordyceps, Hyperdermium, Torrubiella. Stromata or subiculum pallid or brightly pigmented, leshy. Perithecia supericial to completely immersed, ordinal in arrangement. Asci hyaline, cylindrical with thickened ascus apex. Ascospores hyaline, cylindrical, multiseptate, disarticulating into part-spores or nondisarticulating, rarely possessing a thread-like structure connecting the fusiform ends. Type: Cordyceps militaris (L. : Fr.) Fr., Observ. Mycol. 2(revis.): 317. 1818. Anamorphic genera: Beauveria, Isaria, Lecanicillium, mariannaea-like, Microhilum, Simplicillium. Commentary: Species of Cordyceps s. s. are characterized by possessing leshy stromata that are pallid or brightly coloured. Because species of Torrubiella are interspersed among Cordyceps species in the basal part of the Cordycipitaceae, its ultimate application to a monophyletic taxon within the Cordycipitaceae is not clear, however (Fig. 10). The genus Torrubiella was erected in 188 by Boudier with the type species T. aranicida Boud. (Kobayasi & Shimizu 1982). Our sampling included several species of Torrubiella that were interspersed amongst species of Cordycipitaceae, but we could not get hold of T. aranicida. Thus, Cordyceps s. s. is narrowly applied to the strongly supported clade (MP-BP = 98 %, MLBP = 98 %, PP = 1.00 in Figs 1–2, 10) that includes Cordyceps species closely related to C. militaris. Cordyceps species that are placed outside of the Cordyceps s. s. node, but within the Cordycipitaceae, are provisionally retained within Cordyceps s. l. Torrubiella species that are part of the Cordyceps s. s. are transferred accordingly. The full extent to which the names Cordyceps and Torrubiella will ultimately be applied awaits additional sampling of Torrubiella, especially that of T. aranicida with the possibility that Torrubiella will need to be synonymized with Cordyceps. Although Phytocordyceps is characterized by its possession of bola-ascospores, it is also synonymized with Cordyceps because of its phylogenetic placement (Figs 8, 10). Accepted names and new combinations for Cordyceps s. s. The following taxa are accepted species of Cordyceps s. s. based on their inclusion in molecular phylogenies presented herein1 (see Table 1) or morphological descriptions matching the characters described above2. Where known we provide the anamorph connection for the species of Cordyceps s. s. 2 Cordyceps ampullacea Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 112. 1982. Anamorphic genera: Beauveria, Engyodontium, Isaria, Lecanicillium, mariannaea-like, Microhilum, Simplicillium. 2 COrdyCEPs Fr., Observ. Mycol. 2 (revis.): 31. 2 1818 emend. G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora = Phytocordyceps C.H. Su & H.-H. Wang, Mycotaxon 2: 338. 198. 48 Cordyceps bassiana Z.Z. Li, C.R. Li, B. Huang & M.Z. Fan, Chinese Science Bulletin 4: 71. 2001. Anamorph: Beauveria bassiana (Bals.) vuill. Cordyceps belizensis Mains, Mycologia 32: 21. 1940. 1 Cordyceps bifusispora O.E. Erikss., Mycotaxon 1: 18. 1982. PHYLOGENEtIC CLASSIFICAtION OF CORDyCEPS AND tHE CLAvICIPItACEOuS FuNGI Anamorph: Septofusidium bifusisporum Z.Y. Liu, Z.Q. Liang & A.Y. Liu Cordyceps brongniartii Shimazu, Trans. Mycol. Soc. Japan 29: 328. 1988. Anamorph: Beauveria brongniartii (Sacc.) Petch 2 2 Cordyceps miryensis Henn., Hedwigia 43: 247. 1904. Cordyceps mitrata Pat., Bull. Soc. Mycol. France 14: 19. 1898. 2 Cordyceps nikkoënsis Kobayasi, Sci. Rep. Tokyo Bunrika Daigaku, Sect. B, : 134. 1941. 2 2 Cordyceps chichibuënsis Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 6: 87. 1980. 1 Cordyceps coccinea Penz. & Sacc., Malpighia 11: 24. 1897. 2 Cordyceps ninchukispora (C.H. Su & H.H. Wang) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0432. ≡ Phytocordyceps ninchukispora C.H. Su & H.-H. Wang, Mycotaxon 2: 338. 198. Cordyceps coccinea var. subochracea Penz. & Sacc., Malpighia 1: 231. 1901. 2 1 Cordyceps confragosa (Mains) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora, comb. nov. MycoBank MB0431. ≡ Torrubiella confragosa Mains, Mycologia 41: 30. 1949. Anamorph: Lecanicillium lecanii (Zimm.) Zare & W. Gams Cordyceps erotyli Petch, Trans. Brit. Mycol. Soc. 21: 40. 1937. 2 2 Cordyceps exasperata A.F. vital, Anais Soc. Biol. Pernambuco 14: 65. 1956. Cordyceps lavobrunnescens Henn., in Warburg, Monsunia 1: 14. 1900. Anamorph: acremonium-like 1 Cordyceps ochraceostromata Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 6: 132. 1980. 2 Cordyceps ogurasanensis Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 80. 1982. 2 Cordyceps oncoperae P.J. Wright, J. Invert. Pathol. 1: 211. 1994. Cordyceps polyarthra A. Möller, Phycomyceten u. Ascomyceten, p. 213. 1901. 2 = Cordyceps subpolyarthra Henn., Hedwigia 41: 11. 1902. = Cordyceps concurrens Lloyd, Mycol. Writ. 7: 1180. 1923. Anamorph: Isaria tenuipes Peck 2 2 Cordyceps formosana Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 7: 113. 1981. Cordyceps pruinosa Petch, Trans. Brit. Mycol. Soc. 10: 38. 1924. Anamorph: Mariannaea pruinosa Z.Q. Liang 1 2 2 Cordyceps gryllotalpae Lloyd, Mycol. Writ. : 913. 1920. Cordyceps rosea Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 112. 1982. 1 2 Cordyceps hepialidicola Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 9: 11. 1983. Cordyceps roseostromata Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 9: 10. 1983. 1 2 Cordyceps isarioides M.A. Curtis, Ann. Bot. 9: 3. 189. 2 Cordyceps kyusyuënsis A. Kawam., Icon. Jap. Fungi 8: 841. 19. Anamorph: Sporotrichum formosanum Kobayasi Cordyceps scarabaeicola Kobayasi, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 2: 137. 1976. Anamorph: Beauveria Cordyceps singeri Mains, Bull. Torrey Bot. Club 81: 499. 194. 2 Cordyceps locustiphila Henn., Hedwigia 43: 24. 1904. Cordyceps spegazzinii M.S. Torres, J.F. White & J.F. Bisch., Mycotaxon 94: 27. 200. Anamorph: Evlachovaea 1 1 2 2 Cordyceps militaris (L.: Fr.) Fr., Obs. Mycol. 2: 317. 1818. ≡ Clavaria militaris L., Sp. Plantarum, p. 1182. 1753. ≡ Hypoxylon militare (L.) Mérat, Nouv. Fl. Envir. Paris, p. 137. 1821. ≡ Xylaria militaris (L.) Gray, Nat. Arr. Brit. Pl. (London), p. 10. 1821. ≡ Sphaeria militaris (L. : Fr.) Fr., Syst. Mycol. 2: 32. 1823. ≡ Torrubia militaris (L. : Fr.) Tul. & C. Tul., Sel. Fung. Carpol. 3: . 18. Cordyceps staphylinidicola Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 88. 1982 [as C. ‘staphylinidaecola’] Anamorph: Beauveria 1 Cordyceps takaomontana Yakush. & Kumaz., Sci. Rep. Tokyo Bunrika Daigaku, Sect. B, 5: 108. 1941. Anamorph: Isaria tenuipes Peck Anamorph: Lecanicillium 2 Cordyceps tarapotensis Henn., Hedwigia 43: 24. 1904. 49 SuNG ET AL. 2 Cordyceps termitophila Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 4: 56. 1978. 2 Cordyceps truncata Moureau, Mém. Inst. Roy. Colon. Belge 7: 19. 1949. 1 Cordyceps tuberculata (Lebert) Maire, Bull. Soc. Hist. Nat. Afrique N. 8: 1. 1917. other molecular phylogenetic studies, or the assessment of their morphology and ecology was inconclusive. These species are provisionally retained within Cordyceps s. l. until further phylogenetic analyses are conducted to classify them in a phylogenetic system. Where known we provide the anamorph connection for the species of Cordyceps s. l. ≡ Acrophyton tuberculatum Lebert, in Sieb & Köll., Z. Wiss. Zool. 9: 448. 188. = Torrubia sphingum Tul. & C. Tul., Sel. Fung. Carpol. 3: 12. 18. ≡ Cordyceps sphingum (Tul. & C. Tul.) Berk. & M.A. Curtis, in Berkeley, J. Linn. Soc. 10: 37. 188. Cordyceps adpropinquans (Ces.) Sacc., Syll. Fung. 2: 78. 1883. Anamorph: Akanthomyces pistillariiformis (Pat.) Samson & H.C. Evans Cordyceps aerugineosclerotia Z.Q. Liang & A.Y. Liu, Mycosystema 1: 3. 1997 [as C. ‘æruginosclerota’]. Cordyceps tuberculata var. tuberculata [var. typica Kobayasi] f. moelleri (Henn.) Kobayasi, Sci. Rep. Tokyo Bunrika Daigaku, Sect. B, : 88. 1941. Cordyceps alba Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 114. 1982. 2 ≡ Cordyceps moelleri Henn., Hedwigia 3: 221. 1897. ≡ Torrubia adpropinquans Ces., Atti Accad. Sci. Fis. Mat., Napoli 8: 14. 1879. Cordyceps albida Berk. & M.A. Curtis ex Cooke, Grevillea 12: 78. 1884. 2 Cordyceps tuberculata var. terminalis Kobayasi [f. genuina Kobayasi], Sci. Rep. Tokyo Bunrika Daigaku, Sect. B, : 88. 1941. 2 Cordyceps tuberculata var. terminalis Kobayasi f. crista (A. Möller) Kobayasi, Sci. Rep. Tokyo Bunrika Daigaku, Sect. B, : 91. 1941. ≡ Cordyceps crista A. Möller, Phycomyceten u. Ascomyceten, p. 212. 1901. Cordyceps albocitrina Koval, Nov. Sist. Niz. Rast. 11: 209. 1974. Cordyceps alboperitheciata Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 84. 1982. Cordyceps alpicola Kobayasi, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 2: 138. 1976. 2 Cordyceps tuberculata var. terminalis Kobayasi f. cockerellii (Ellis & Everh.) Kobayasi, Sci. Rep. Tokyo Bunrika Daigaku, Sect. B, : 90. 1941. ≡ Ophionectria cockerellii Ellis & Everh., in Cockerell, J. Inst. Jamaica 1: 141. 1892. ≡ Cordyceps cockerellii (Ellis & Everh.) Ellis, in Seaver, North Am. Flora 3: 2. 1910. 2 Cordyceps typhuliformis Berk. & Cooke, in Cooke, Grevillea 12: 78. 1884 (as C. ‘typhulaeformis’). 2 Cordyceps washingtonensis Mains, Mycologia 39: 3. 1947. Clavicipitaceae incertae sedis The following teleomorph genera could not be conidently assigned in the new classiication because they were either not sampled as part of this study, were not sampled as part of other molecular phylogenetic studies, or the assessment of their morphology and ecology was inconclusive: Berkelella (Sacc.) Sacc., Cavimalum Yoshim. Doi, Dargan & K.S. Thind, Dussiella Pat., Epicrea Petr., Helminthascus Tranzschel, Konradia Racib., Moelleriella Bres., Mycomalus A. Möller, Neobarya Lowen, Neocordyceps Kobayasi, Podocrella Seaver, Romanoa Thirum., Sphaerocordyceps Kobayasi, and Stereocrea Syd. & P. Syd. Residual species of Cordyceps The following species of Cordyceps s. l. could not be conidently assigned in the new classiication because they were either not assigned in any of the proposed genera in this study, were not sampled as part of this or 0 Cordyceps annullata Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 91. 1982. Cordyceps arachnogena Kobayasi, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 2: 144. 1976. Cordyceps aspera Pat., J. Bot. (Paris) 7: 344. 1893. Cordyceps atewensis Samson, H.C. Evans & E.S. Hoekstra, Proc. K. Ned. Akad. Wet., Ser. C, Biol. Med. Sci. 8: 90. 1982. Cordyceps atrobrunnea Penz. & Sacc., Malpighia 11: 22. 1897. Cordyceps atropuncta Koval, Bot. Mater. Otd. Sporov. Rast. 14: 18. 191. Cordyceps atrovirens Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 4: 52. 1978. Cordyceps aurantiaca Lohwag, in Handel-Mazzetti, Symb. Sin. 2: 27. 1937. Cordyceps aurea Moureau, Mém. Inst. Roy. Colon. Belge 7: 21. 1949. Cordyceps barberi Giard ex Massee, Ann. Bot. 9: 18. 189. Cordyceps barnesii Thwaites, Fungi Ceylon, p. 110. 1873. PHYLOGENEtIC CLASSIFICAtION OF CORDyCEPS AND tHE CLAvICIPItACEOuS FuNGI Cordyceps baumanniana Henn., Bot. Jahrb. Syst. 23: 39. 1897. Cordyceps coronilla Höhn., Sitzungsber. Kaiserl. Akad. Wiss. Wien 118: 30. 1909. Cordyceps bicolor Pat., Mém. Acad. Malgache 6: 40. 1928. Cordyceps cotopaxiana Kobayasi, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 7: 126. 1981. Cordyceps bokyoënsis Kobayasi, J. Jap. Bot. 8: 221. 1983. Cordyceps craigii Lloyd, Mycol. Writ. 4: 27. 191. Cordyceps bombi Rick ex Lloyd, Mycol. Notes 2: 914. 1920. Cordyceps brasiliensis Henn., Hedwigia 3: 221. 1897. Cordyceps brittlebankii McLennan & Cookson, Proc. Roy. Soc. victoria 38: 74. 192. Cordyceps bulolensis Kobayasi, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 2: 142. 1976. Cordyceps cranstounii Olliff, Agric. Gazette New S. Wales : 408. 189. Cordyceps ctenocephala Syd., Bot. Jahrb. Syst. 7: 323. 1922. Cordyceps cuboidea Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 6: 131. 1980. Cordyceps cusu Pat., Bull. Soc. Mycol. France 11: 229. 189. Cordyceps caespitosoiliformis Henn., Hedwigia 41: 11. 1902. Cordyceps cylindrica Petch, Trans. Brit. Mycol. Soc. 21: 4. 1937. Anamorph: Nomuraea atypicola (Yasuda) Samson Cordyceps callidii Quél., Comp. Rend. Assoc. Franç. Avancem. Sci. 21. Suppl. p. 7. 1897. Cordyceps delectens Penz. & Sacc., Malpighia 11: 22. 1897. Cordyceps cardinalis G.H. Sung & Spatafora, Mycologia 9: 0. 2004. Anamorph: mariannaea/clonostachys-like Cordyceps dimeropoda Syd., Bot. Jahrb. Syst. 7: 324. 1922. Cordyceps carnata Moureau, Mém. Inst. Roy. Colon. Belge 7: 10. 1949. Cordyceps changpaishanensis Kobayasi, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 7: 12. 1981. Cordyceps doassansii Pat., Tab. Analyt. Fung., p. 213. 188. Cordyceps doiana Kobayasi, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 7: 124. 1981. Cordyceps chualasae Koval & Nazarova, Nov. Sist. Niz. Rast. : 11. 199. Cordyceps ergoticola Tanda & Kawat., J. Jap. Bot. 52: 19. 1977. Cordyceps chishuiensis Z.Q. Liang & A.Y. Liu, Mycosystema 21: 9. 2002. Cordyceps fasciculata Pat., Bull. Soc. Mycol. France 1: 20. 1899. Cordyceps cinnabarina Petch, Ann. Crypt. Exot. 6: 230. 1933. Cordyceps leischeri Penz. & Sacc., Malpighia 15: 230. 1901. Cordyceps citrea Penz. & Sacc., Malpighia 11: 523. 1897. Cordyceps fuliginosa Ces., Comment. Soc. Crittog. Ital., Genova 1 : 7. 181. Cordyceps clavicipiticola Tokugawa & S. Imai, Trans. Sapporo Nat. Hist. Soc. 14: 104. 193. Cordyceps furcata McLennan & Cookson, Proc. Roy. Soc. victoria 3: 17. 1923. Cordyceps clavicipitis Örtegren, Svensk Bot. Tidskr. 10: 7. 191. Cordyceps gemella Moureau, Lejeunia, Mém. 1: . 191. Cordyceps coccidiocapitata Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 91. 1982. Cordyceps geotrupis Teng, Sinensia 4: 293. 1934. Cordyceps coccidioperitheciata Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 79. 1982. Cordyceps consumpta G. Cunn., Trans. Proc. New Zealand Inst. 3: 377. 1921. Cordyceps gracillima Kobayasi, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 7: 126. 1981. Cordyceps grenadensis Mains, Bull. Torrey Bot. Club 81: 499. 194. 1 SuNG ET AL. Cordyceps grylli Teng, Sinensia 7: 811. 1936. Cordyceps joaquiensis Henn., Hedwigia 43: 248. 1904. Cordyceps guizhouensis Z.Y. Liu, Z.Q. Liang & A.Y. Liu, Mycosystema 1: 98. 1997. Cordyceps juruensis Henn., Hedwigia 43: 248. 1904. Cordyceps gunnii Berk., J. Bot., London 7: 77. 1848. Anamorph: paecilomyces-like Cordyceps kanzashiana Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 86. 1982. Cordyceps gunnii var. minor Z.Z. Li, C.R. Li, B. Huang, M.Z. Fan & M.W. Lee, Korean J. Mycol. 27: 232. 1999. Cordyceps khaoyaiensis Hywel-Jones, Mycol. Res. 98: 939. 1994. Anamorph: lecanicillium/simplicillium-like Cordyceps hauturu Dingley, Trans. Roy. Soc. New Zealand 81: 334. 193. Cordyceps kirkii G. Cunn., Trans. Brit. Mycol. Soc. 8: 7. 1922. Anamorph: Akanthomyces Cordyceps hawkesii Gray, in Cooke, Grevillea 19: 7. 1891. Cordyceps kobayasii Koval, Klavitipital’nye Griby SSSR (Kiev), p. 178. 1984. Cordyceps henleyae Massee, Ann. Bot. 8: 119. 1894. Cordyceps hesleri Mains, J. Elisha Mitchell Sci. Soc. : 12. 1939. Cordyceps kusanagiensis Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 9: 7. 1983. Cordyceps hillii Lloyd, Mycol. Notes : 101. 1921. Cordyceps lacroixii Har. & Pat., Bull. Trimestriel Soc. Mycol. France 20: 2. 1904. Cordyceps hirotaniana Kobayasi, J. Jap. Bot. 8: 177. 1983. Cordyceps langloisii Ellis & Everh., North Amer. Pyrenom. p. 62. 1892. Cordyceps hokkaidoënsis Kobayasi, Sci. Rep. Tokyo Bunrika Daigaku, Sect. B, : 91. 1941. Anamorph: Sporotrichum hokkaidoense Kobayasi Cordyceps larvicola Quél., Bull. Soc. Bot. France 2: 292. 1878. Cordyceps hormospora A. Möller, Phycomyceten u. Ascomyceten, p. 230. 1901. Cordyceps ignota Marchion., Physis, B. Aires 2: 17. 194. Cordyceps imagamiana Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 9: 1. 1983. Cordyceps incarnata A. Möller, Phycomyceten u. Ascomyceten, p. 228. 1901. Cordyceps inconspicua Moureau, Lejeunia, N.S. 14: 4. 192. Cordyceps indigotica Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 4: 53. 1978. Cordyceps interrupta Höhn., Sitzungsber. Kaiserl. Akad. Wiss. Wien 118: 303. 1909. Cordyceps iriomoteana Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 82. 1982. Cordyceps ithacensis Bałazy & Bujak., Mycotaxon 25: 11. 198. Cordyceps javensis Henn., Hedwigia 41: 142. 1902. Cordyceps lateritia Dingley, Trans. Roy. Soc. New Zealand 81: 337. 193. Cordyceps leucocephala Moureau, Lejeunia, N.S. 14: 7. 192. Cordyceps lignicola Massee, Bull. Misc. Inform. Roy. Bot. Gard. Kew p. 173. 1899. Cordyceps lilacina Moureau, Mém. Inst. Roy. Colon. Belge 7: 2. 1949. Cordyceps longdongensis A.Y. Liu & Z.Q. Liang, Mycosystema 1: 140. 1997. Cordyceps loushanensis Z.Q. Liang & A.Y. Liu, Mycosystema 1: 1. 1997. Cordyceps mantidicola Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 9: 12. 1983. Cordyceps manzhurica Koval, Bot. Mater. Otd. Sporov. Rast. 14: 11. 191. Cordyceps maolanensis Z.Y. Liu & Z.Q. Liang, Mycosystema 1: 4. 1997. Cordyceps martialis Speg., Bol. Acad. Nac. Ci. Córdoba 11: 30. 1889. = Cordyceps huntii Giard, Bull. Soc. Entomol. France 4: 171. 2 PHYLOGENEtIC CLASSIFICAtION OF CORDyCEPS AND tHE CLAvICIPItACEOuS FuNGI 189. = Cordyceps submilitaris Henn., Hedwigia 3: 222. 1897. = Cordyceps klenei Pat., Bull. Trimestriel Soc. Mycol. France 24: 11. 1908. Anamorph: cephalosporium-like Cordyceps maolanoides Z.Q. Liang, A.Y. Liu & J.Z. Huang, Mycosystema 21: 14. 2002. Cordyceps memorabilis (Ces.) Sacc., Michelia 1: 321. 1879. ≡ Racemella memorabilis Ces., Comment. Soc. Crittog. Ital. 1: . 181. Anamorph: Isaria farinosa (Holmsk.) Fr. Cordyceps menesteridis F. Muell. & Berk., Gard. Chron. 2: 791. 1878. Cordyceps michaelisii Henn., Hedwigia 41: 19. 1902. Cordyceps miniata Moureau, Lejeunia, Mém. 1: 22. 191. Cordyceps minuta Kobayasi, Bull. Natn. Sci. Mus. Tokyo 6: 294. 1963. Cordyceps muscae Henn., Bot. Jahrb. Syst. 2: 07. 1898. Cordyceps musicaudata Z.Q. Liang & A.Y. Liu, Acta Mycol. Sin. 1: 2. 199. Cordyceps myosuroides Henn., Hedwigia 41: 19. 1902. Cordyceps myrmecogena Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 4: 55. 1978. Cordyceps nakazawae A. Kawam., Icon. Jap. Fungi 8: 83. 19 (as C. ‘nakazawai’). Cordyceps nanatakiensis Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 9: 9. 1983. Cordyceps necator Pat. & Har., Bull. Trimestriel Soc. Mycol. France 28: 283. 1912. Cordyceps nelumboides Kobayasi & Shimizu, Kew Bull. 31: 7. 197. Cordyceps neogryllotalpae Kobayasi, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 2: 143. 1976. Cordyceps nipponica Kobayasi, Bull. Biogeogr. Soc. Japan 9: 11. 1939. Anamorph: Isaria nipponica Kobayasi Cordyceps obliqua Kobayasi, Sci. Rep. Tokyo Bunrika Daigaku, Sect. B, : 177. 1941. Cordyceps obliquiordinata Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 114. 1982. Cordyceps odyneri Quél., 14th Suppl. Champ. Jura et vosges, p. 10. 188. Cordyceps olivacea Rick, in Lloyd, Mycol. Writ. 7: 1118. 1922. Cordyceps olivaceovirescens Henn., Hedwigia 39: 78. 1900. Cordyceps olivascens Mains, Mycologia 39: 37. 1947. Cordyceps ootakiensis Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 9: 15. 1983. Cordyceps ovoideoperitheciata Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 83. 1982. Cordyceps pallidiolivacea Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 113. 1982. Cordyceps parvula Mains, Bull. Torrey Bot. Club 86: 4. 199. Cordyceps phymatospora C.R. Li, M.Z. Fan & Z.Z. Li, Mycosystema 21: 17. 2002. Cordyceps pilifera Kobayasi, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 7: 126. 1981. Cordyceps pittieri E. Bommer & M. Rousseau, Bull. Soc. Bot. Belg. 3: 10. 189. Cordyceps pluricapitata Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 87. 1982 (as C. ‘pleuricapitata’). Cordyceps podocreoides Höhn., Sitzungsber. Kaiserl. Akad. Wiss. Wien 118: 308. 1909. Cordyceps polycarpica Z.Q. Liang & A.Y. Liu, Acta Mycol. Sin. 1: 24. 199. Cordyceps polycephala Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 9: 1. 1983. Cordyceps proliica Kobayasi, Bull. Natn. Sci. Mus. Tokyo 6: 289. 1963. Cordyceps proliica f. terminalis Kobayasi, Bull. Natn. Sci. Mus. Tokyo 6: 292. 1963. Cordyceps novaezealandiae Dingley, Trans. Roy. Soc. New Zealand 81: 337. 193. Cordyceps pseudoatrovirens Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 111. 1982. Cordyceps novoguineënsis Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 2: 148. 1976. Cordyceps pseudoinsignis Moureau, Mém. Inst. Roy. Colon. Belge 7: 34. 1949. 3 SuNG ET AL. Cordyceps pseudomilitaris Hywel-Jones & Sivichai, Mycol. Res. 98: 940. 1994. Anamorph: lecanicillium/simplicillium-like Cordyceps pseudonelumboides Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 8: 80. 1982. Cordyceps puiggarii Speg., Bol. Acad. Nac. Ci. Córdoba 11: 304 1889. Cordyceps ramosipulvinata Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 9: 2. 1983 (as C. ‘ramosopulvinata’). Cordyceps ramosistipitata Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 9: 6. 1983 (as C. ‘ramosostipitata’). Cordyceps rhizomorpha A. Möller, Phycomyceten u. Ascomyceten, p. 231. 1901. Cordyceps riverae Pacioni, Giorn. Bot. Ital. 112: 395. 1978. Cordyceps subcorticicola Henn., Hedwigia 41: 11. 1902. Cordyceps sulfurea Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 9: 15. 1983. Cordyceps suoluoënsis Z.Q. Liang & A.Y. Liu, Mycosystema 21: 10. 2002. Cordyceps taishanensis B. Liu, P.G. Yuan & J.Z. Cao, Acta Mycol. Sin. 3: 192. 1984. Cordyceps thaxteri Mains, J. Elisha Mitchell Sci. Soc. : 120. 1939. Anamorph: Akanthomyces aranearum (Petch) Mains Cordyceps translucens Petch, Trans. Brit. Mycol. Soc. 10: 37. 1924. Cordyceps trinidadensis Mains, Bull. Torrey Bot. Club 8: 4. 199. Cordyceps uleana Henn., Hedwigia 43: 248. 1904. Cordyceps rostrata Z.Q. Liang, A.Y. Liu, M.H. Liu, Fungal Diversity 14: 98. 2003. Cordyceps rubiginosostipitata Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 9: 3. 1983. Cordyceps rubra A. Möller, Phycomyceten Ascomyceten, p. 233. 1901. Anamorph:’Cephalosporium’ rubrum A. Möller u. Cordyceps rubricapitata Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 9: 9. 1983. Cordyceps rubrostromata Kobayasi, J. Jap. Bot. 8: 221. 1983. Cordyceps ryogamimontana Kobayasi, Bull. Natn. Sci. Mus. Tokyo 6: 303. 1963. Cordyceps sakishimensis Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 9: 6. 1983. Cordyceps sclerotium Kobayasi, Trans. Mycol. Soc. Japan 23: 31. 1982. Cordyceps shanxiensis B. Liu, F. Rong & H. Jin, J. Wuhan Bot. Res. 3: 23. 198. Cordyceps shimaensis Kobayasi, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 7: 10. 1981. Cordyceps shimizui Y.J. Yao, Acta Mycol. Sin. 14: 28. 199. Cordyceps sphaerocapitata Kobayasi, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 2: 143. 1976. Cordyceps stiphrodes Syd., Bot. Jahrb. Syst. 7: 324. 1922. 4 Cordyceps variegata Moureau, Mém. Inst. Roy. Colon. Belge 7: 30. 1949. Cordyceps velutipes Massee, Ann. Bot. 9: 21. 189. Cordyceps venezuelensis Mains, Mycologia 39: 43. 1947. Cordyceps vinosa Moureau, Lejeunia, Mém. 1: 28. 191. Cordyceps vorobjovii Koval & Nazarova, Nov. Sist. Niz. Rast. : 108. 199. Cordyceps wallaysii Westend., Bruxelles 7: 81. 189. Bull. Acad. Sci. Cordyceps yahagiana Kobayasi & Shimizu, Bull. Natn. Sci. Mus. Tokyo, Ser. B, 6: 88. 1980. KEy TO THE GENERA OF FUNGI FORMERLy CLASSIFIED IN COrdyCEPs This key is designed to emphasize the most conspicuous ield-, host-, and macroscopic characters available to the user for Cordyceps sensu Kobayasi and Mains. It is a key to the monophyletic genera described herein and is not a key to the species. As relatively few species occur on Elaphomyces and adult stages of Arthropoda, the key begins with these characters so as to expeditiously highlight or remove these taxa from consideration. Host is an exceedingly important character in most species descriptions of arthropod-pathogenic fungi. The host should be collected with the fungal specimen whenever possible, but this often proves problematic. The vast majority of arthropod-pathogenic fungi occur PHYLOGENEtIC CLASSIFICAtION OF CORDyCEPS AND tHE CLAvICIPItACEOuS FuNGI on immature stages (e.g., larvae, pupae) of arthropods. Therefore, if the host is lacking from a particular specimen or collection, we suggest the user to begin with couplet (6). The multigene phylogeny reveals that colour, texture, and shape of stromata are particularly phylogenetically informative, thus we place special emphasis on these characters where possible but emphasize that, as with most fungal taxa, exceptions are to be expected. To assist the user we briely deine some characters of stromatal texture and morphology that may not be intuitive: Fleshy – stromata that are composed of relatively loosely woven hyphae and are soft in texture (e.g., C. militaris). Wiry – iliform stromata that are somewhat brittle and stiff (e.g., O. unilateralis). Pliant – iliform stromata that are more pliable and rubbery to the touch; when fresh, they bend easily without breaking; typically slightly more robust than wiry (e.g., O. nutans). Fibrous – stromata that are composed of relatively tightly woven hyphae and are irm in texture, similar to the stipe of a mushroom (e.g., E. ophioglossoides, O. heteropoda). Subicular – production of perithecia on a net-like structure of mycelium, not on the developed stroma (e.g., C. tuberculata). Lateral pads – production of perithecia on a disc-like or cushion-like structure on a subterminal region of the stroma (e.g., O. variabilis, O. unilateralis). Aperithecial apices – production of perithecia in subterminal regions of the stroma, resulting in an apical region of the stroma lacking perithecia. (Note: The term sterile apices has also been used to describe this condition, but the apical regions of many stromata produce an anamorph and thus are not technically sterile.) Cordyceps s. s. consists almost entirely of pallid to brightly coloured species that produce soft leshy stromata (e.g., C. militaris). The majority of species attack larvae and pupae of Lepidoptera and Coleoptera in leaf litter, moss or upper soil layers. Numerous species that produce highly reduced stromata, loosely organized hyphae, or a subiculum on the host also occur in this genus (e.g. C. tuberculata), some of which were previously classiied in Torrubiella (e.g., T. confragosa). Elaphocordyceps includes all species that parasitize Elaphomyces and closely related species that attack nymphs of cicadas. The morphology of the Elaphomyces parasites and the cicada pathogens are remarkably similar and attest to the recent history of inter-kingdom host-jumps in a common subterranean environment (Nikoh & Fukatsu 2000). The exception to this genus is E. subsessilis, which macroscopically and ecologically is distinct from the rest of the species, but is well supported as being a member of the genus based on molecular data and micromorphology. Metacordyceps includes only a limited number of described species, of which all but one are only known from East Asia. The stromatal colour of fresh specimens ranges from white to lilac, purple or green, and the darker pigments are almost black in dried specimens. The texture of the stromata is ibrous and not leshy like Cordyceps s. s., and the hosts are almost always buried in soil. Ophiocordyceps is the largest genus of arthropodpathogenic fungi. Many species are darkly pigmented and occur on immature stages of hosts buried in soil or in decaying wood. Notable exceptions exist for both of these traits among species that attack adult stages of hosts, however. For example, O. unilateralis is common on adult ants and occurs on the under sides of leaves, and O. sphecocephala is common on adult wasps and is found in leaf litter. Stromatal morphology is diverse, ranging from iliform and wiry to clavate and ibrous, according to species, and many species produce their perithecia in nonterminal regions of the stroma, either distinctly supericial, or in broad irregular patches, or in lateral pads. 1. Host – Elaphomyces .........................................................................Elaphocordyceps (e.g., E. ophioglossoides) 1. Host – Arthropods ............................................................................................................................................... 2 2. Host – adult Arthropods ...................................................................................................................................... 3 2. Host – immature stage of Arthropods ............................................................................................................... .  3. Perithecia – colour: pallid, cream to white; arrangement: supericial on a subiculum or highly educed pallid stroma. Host – adult Lepidoptera ............................................... Cordyceps (e.g., C. tuberculata) 3. On adult Arthropods other than Lepidoptera (e.g., ant, wasp, weevil, dragonly, etc.) and stroma typically well-developed .......................................................................................................................... 4  SuNG ET AL. 4. Stroma – colour: yellow; texture: leshy; shape: stipitate, clavate. Perithecia – colour: like stroma; arrangement: partially immersed to pseudoimmersed at right angles to surface of stroma (ordinal). Host – typically on adult scarab beetles ........................................................Cordyceps (e.g., C. scarabaeicola) 4. Stroma – colour: brightly or darkly pigmented; texture: wiry or pliant, not leshy; shape: stipitate with or without pronounced fertile head region. Perithecia – arrangement: immersed at an oblique angle in fertile head region or more or less ordinal in subterminal lateral pads .................................................  . Stroma – colour: at least partly brightly coloured; texture: pliant; shape: stipitate with globose to elongated fertile head region. Perithecia – arrangement: usually completely immersed at oblique angles, often giving the surface of the fertile head region a slightly uneven appearance when mature. Host – typically on adult insects (ants, wasps, weevils, dragonlies, etc.) ........ Ophiocordyceps (e.g., O. nutans, O. sphecocephala) . Stroma – colour: darkly pigmented; texture: wiry; shape: iliform. Perithecia – colour: darkly pigmented like stroma or darker; arrangement: produced in subterminal region of stroma in lateral pad(s). Host – adult ants. ....................................................................................... Ophiocordyceps (e.g., O. unilateralis) . Stroma – colour: pallid to brightly coloured; texture: leshy to ibrous; shape: usually stipitate, clavate but stroma highly reduced or subicular in some species. Perithecia – colour: pallid to brightly coloured like stroma; arrangement: typically partially immersed to pseudoimmersed to supericial on clava or subiculum in some species............................................................................................... 7 . Stroma – colour: usually darkly pigmented tan to brown to olive or black, rarely white to lilac to purple; texture: wiry, pliant or ibrous; shape: stipitate, club-shaped, or iliform, rarely subicular. Perithecia – colour: typically pigmented like stroma or darker; arrangement: immersed to partially immersed to pseudoimmersed to supericial ....................................................................................................... 8 7. Stroma – colour: pallid, cream to white; texture: ibrous; shape: reduced to pad-like or cushion-like structure on surface of wood, connected to host buried in wood via rhizomorph-like structures. Perithecia – colour: like stroma; arrangement: immersed to partially immersed on pad-like stroma. Host – Scarabid beetle larvae buried in decaying wood .......................... Elaphocordyceps (e.g., E. subsessilis) 7. Stroma – colour: yellow to red to orange; texture: leshy; shape: usually stipitate clavate but subicular in some species. Perithecia – colour: like stroma; arrangement: ordinal, typically partially immersed to pseudoimmersed to supericial on clava or subiculum in some species. Host – typically on larvae or pupae of arthropods in relatively exposed environments, such as leaf litter, moss, or the uppermost soil layer .................Cordyceps (e.g., C. militaris, C. staphylinidicola) 8. Stroma – colour: olive to brown; texture: ibrous; shape: stipitate, fertile region terminal, distinctly capitate to clavate. Perithecia – colour: like that of stroma; arrangement: immersed. Host – cicada nymphs ................................................................................Elaphocordyceps (e.g., E. paradoxa) 8. Stroma – colour: tan to brown to black or lightly pigmented, white to lilac to purple, rarely brightly pigmented; texture: wiry, pliant, ibrous; shape: stipitate, capitate to clavate to iliform, rarely subicular. Perithecia – colour: similar to stroma when immersed, often darker when supericial; arrangement: immersed, pseudoimmersed or supericial .......................................................................................................... 9 9. Stroma – colour: white to lilac to purple to green, then appearing almost black when dry; texture: ibrous; shape: stipitate, typically with elongated clava. Perithecia – colour: like stroma; arrangement: immersed, ordinal or oblique. Host – typically buried in soil .......................................................Metacordyceps (e.g., M. taii) 9. Stroma – colour: olive to brown to black rarely brightly coloured; texture: wiry, pliant, or ibrous; shape: stipitate, club-shaped to clavate or iliform, rarely subiculate. Perithecia – colour: darkly pigmented like stroma or darker; arrangement: immersed, pseudoimmersed but tightly spaced, or supericial and widely spaced, produced in terminal clava or subterminal patches or lateral pads. Host – typically embedded in rotten wood or buried in soil ..............................................................................Ophiocordyceps (e.g., O. sinensis, O. acicularis, O. variabilis) ACKNOWLEDGEMENTS REFERENCES The authors wish to thank Dr Walter Gams for assistance with Latin diagnoses for new taxa and for providing editorial comments to early drafts of this manuscript. This research was supported by grants from the National Science Foundation (DEB-0129212 and DEB-02972 to J.W.S.), the Korea Science and Engineering Foundation (to JM Sung), and continuing support from Morakot Tanticharoen and BIOTEC (to N.H.J. and J.J.L.). Artjariyasripong S, Mitchell JL, Hywel-Jones NL, Jones EBG (2001). Relationships of the genus Cordyceps and related genera, based on parsimony and spectral analysis of partial 18S and 28S ribosomal gene sequences. Mycoscience 42: 03–17. Barron GL (1980). Fungal parasites of rotifers: a new Tolypocladium with underwater conidiation. Canadian Journal of Botany 58: 439–442.  PHYLOGENEtIC CLASSIFICAtION OF CORDyCEPS AND tHE CLAvICIPItACEOuS FuNGI Barron GL, Onions AHS (19). Verticillium chlamydosporium and its relationships to Diheterospora, Stemphyliopsis, and Paecilomyces. Canadian Journal of Botany 44: 81–89. Bischoff JF, Chaverri P, White JF Jr. (2005). Clariication of the host substrate of Ascopolyporus and description of Ascopolyporus philodendrus sp. nov. Mycologia 97: 710–717. Bissett J (1983). Notes on Tolypocladium and related genera. Canadian Journal of Botany 61: 1311–1329. Blackwell M, Gilbertson RL (1984). New information on Cordycepioideus bisporus and Cordycepioideus octosporus. Mycologia 76: 73–7. Chaverri P, Bischoff JF, Evans HC, Hodge KT (2006). Regiocrella, a new entomopathogenic genus with a pycnidial anamorph and its phylogenetic placement in the Clavicipitaceae. Mycologia 97(200): 122–1237. Coyle FA, Goloboff PA, Samson RA (1990). Actinopus trapdoor spiders (Araneae, Actinopodidae) killed by the fungus, Nomuraea atypicola (Deuteromycotina). Acta Zoologica Fennica 190: 89– 93. Diehl WW (190). Balansia and the Balansiae in America. Agric. Monogr. No. 4. uSDA, Washington. Doaudy CJ, Delsuc F, Boucher Y, Doolittle WF, Douzery EJP (2003). Comparison of the Bayesian and maximum likelihood bootstrap measures of phylogenetic reliability. Molecular Biology and Evolution 20: 248–24. Driver F, Milner RJ, Trueman JWH (2000). A taxonomic revision of Metarhizium based on a phylogenetic analysis of rDNA sequence data. Mycological Research 104: 134–10. Earle FS (1901). Collections of Alabama fungi. In: Plant life of Alabama (Mohr C, ed). Contr. u. S. Natl. Herb.: 10–23. Eriksson OE (1982). Cordyceps bifusispora spec. nov. Mycotaxon 15: 18–188. Eriksson OE (198). Notes on ascomycete systematics. Systema Ascomycetum 5: 113–174. Eriksson OE, Hawksworth DL (198). Outline of the Ascomycetes – 198. Systema Ascomycetum 4: 1–79. Evans HC (2003). use of clavicipitalean fungi for the biological control of arthropod pests. In: Clavicipitalean fungi: Evolutionary biology, Chemistry, Biocontrol and Cultural impacts (White, JF Jr., Bacon CW, Hywel-Jones NL, Spatafora JW, eds.). Marcel Dekker Inc., New York: 17–48. Evans HC, Samson RA (1982). Entomogenous fungi from the Galapagos islands. Canadian Journal of Botany 60: 232–2333. Evans HC. Samson RA (1987). Fungal pathogens of spiders. Mycologist 1: 12-19. Felsenstein J (1985). Conidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783–791. Gams W (1971). Cephalosporium-artige Schimmelpilze (Hyphomycetes). G. Fischer, Stuttgart. Gams W, Hodge KT, Samson RA, Korf RP, Seifert KA (2005). Proposal to conserve the name Isaria (anamorphic fungi) with a conserved type. Taxon 54: 37. Gams W, Zare R (2001). A revision of Verticillium sect. Prostrata. III. Generic classiication. Nova Hedwigia 72: 329–337. Gams W, Zare R (2003). A taxonomic review of the clavicipitaceous anamorphs parasitizing nematodes and other microinvertebrates. In: Clavicipitalean fungi: Evolutionary biology, Chemistry, Biocontrol and Cultural Impacts (White, JF Jr., Bacon CW, Hywel-Jones NL, Spatafora JW, eds.). Marcel Dekker Inc., New York: 17–73. Hawksworth DL, Rossman AY (1997). Where are all the undescribed fungi? Phytopathology 87: 888–891. Hodge KT (1998). Revisionary studies in Hirsutella (Anamorphic Hypocreales: Clavicipitaceae). PhD Thesis, Cornell University, Ithaca, New York. Hodge KT (2003). Clavicipitaceous anamorphs. In: Clavicipitalean fungi: Evolutionary biology, Chemistry, Biocontrol and Cultural Impacts (White, JF Jr., Bacon CW, Hywel-Jones NL, Spatafora JW, eds.). Marcel Dekker Inc., New York: 7–123. Hodge KT, Krasnoff SB, Humber RA (1996). Tolypocladium inlatum is the anamorph of Cordyceps subsessilis. Mycologia 88: 71– 719. Hoog GS de (1972). The genera Beauveria, Isaria, Tritirachium and Acrodontium gen. nov. Studies in Mycology 1: 1–44. Huang B, Li C, Humber RA, Hodge KT, Fan M, Li Z (2005). Molecular evidence for the taxonomic status of Metarhizium taii and its teleomorph, Cordyceps taii (Hypocreales, Clavicipitaceae). Mycotaxon 94: 137–147. Huelsenbeck JP, Ronquist F (2001). MrBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 74–7. Humber RA, Rombach MC (1987). Torrubiella ratticaudata sp. nov. (Pyrenomycetes: Clavicipitales) and other fungi from spiders on the Solomon Islands. Mycologia 79: 37–382. Hywel-Jones NL (1993). Torrubiella luteorostrata: a pathogen of scale insects and its association with Paecilomyces cinnamomeus, with a note on Torrubiella tenuis. Mycological Research 97: 112–1130. Hywel-Jones NL (1994). Cordyceps khaoyaiensis and C. pseudomilitaris, two new pathogens of lepidopteran larvae from Thailand. Mycological Research 98: 939–942. Hywel-Jones NL (199). Hymenostilbe ventricosa sp. nov., a pathogen of cockroaches in Thailand. Mycological Research 99: 1201–1204. Hywel-Jones NL (199). Cordyceps myrmecophila-like fungi infecting ants in the leaf litter of tropical forest in Thailand. Mycological Research 100: 13–19. Hywel-Jones NL (2002). Multiples of eight in Cordyceps ascospores. Mycological Research 106: 2–3. Hywel-Jones NL, Evans HC (1993). Taxonomy and ecology of Hypocrella discoidea and its anamorph, Aschersonia samoënsis. Mycological Research 97: 871–87. Hywel-Jones NL, Samuels GJ (1998). Three species of Hypocrella with large stromata pathogenic on scale insects. Mycologia 90: 3–4. Hywel–Jones NL, Sivichai S (199). Cordyceps cylindrica and its association with Nomuraea atypicola in Thailand. Mycological Research 99: 809–812. Kobayasi Y (1939). On the genus Cordyceps and its allies on cicadae from Japan. Bulletin of the Biogeographical Society of Japan 9: 14–17. Kobayasi Y (1941). The genus Cordyceps and its allies. Science Reports of the Tokyo Bunrika Daigaku, (Section B, no. 84) 5: 3–20. Kobayasi Y (1982). Keys to the taxa of the genera Cordyceps and Torrubiella. Transactions of the Mycological Society of Japan 23: 329–34. Kobayasi Y, Shimizu D (190). Monographic studies of Cordyceps 1. Group parasitic on Elaphomyces. Bulletin of the National Science Museum Tokyo 5: 9–8. Kobayasi Y, Shimizu D (193). Monographic studies of Cordyceps 2. Group parasitic on Cicadae. Bulletin of the National Science Museum Tokyo 6: 28–314. Kobayasi Y, Shimizu D (1976). The genus Cordyceps and its allies from New Guinea. Bulletin of the National Science Museum, Tokyo, Ser. B. 2: 133–11. Kobayasi Y, Shimizu D (1978). Cordyceps species from Japan. Bulletin of the National Science Museum, Tokyo, Ser. B. 4: 44– 2. Kobayasi Y, Shimizu D (1982). Monograph of the genus Torrubiella. Bulletin of the National Science Museum, Tokyo, Ser. B. 8: 43– 78. Li Z-Z, Li C-R, Huang B, Fan M-Z (2001). Discovery and demonstration of the teleomorph of Beauveria bassiana (Bals.) vuill., an important entomopathogenic fungus. Chinese Science Bulletin 9: 71–73. Liang Z-Q (1991). Determination and identiication of anamorph of Cordyceps pruinosa. Acta Mycologica Sinica 10: 72–80. Liang Z-Q, Liu A-Y, Liu J-L (1991). A new species of the genus Cordyceps and its Metarhizium anamorph. Acta Mycologica Sinica 10: 27–22. Liu Z-Y, Liang Z-Q, Whalley AJS, Yao Y-J, Liu A-Y (2001). Cordyceps brittlebankisoides, a new pathogen of grubs and its anamorph, Metarhizium anisopliae var. majus. Journal of Invertebrate Pathology 78: 178–182. Luangsa-ard JJ, Hywel-Jones NL, Manoch L, Samson RA (200). On the relationships of Paecilomyces sect. Isarioidea species. Mycological Research 109: 81–89. Luangsa-ard JJ, Hywel-Jones NL, Samson RA (2004). The polyphyletic nature of Paecilomyces sensu lato based on 18Sgenerated rDNA phylogeny. Mycologia 96: 773–780. Lutzoni F, Kauff F, Cox CJ, McLaughlin D, Celio G, Dentinger B, Padamsee M, Hibbett D, James TY, Baloch E, Grube M, Reeb v, Hofstetter v, Schoch C, Arnold AE, Miadlikowska J, Spatafora JW, Johnson D, Hambleton S, Crockett M, Shoemaker R, Sung 7 SuNG ET AL. G-H, Lucking R, Lumbsch T, O’Donnell K, Binder M, Diederich P, Ertz D, Gueidan C, Hansen K, Harris RC, Hosaka K, Lim Y-W, Matheny B, Nishida H, Pister D, Rogers J, Rossman A, Schmitt I, Sipman H, Stone J, Sugiyama J, Yahr R, vilgalys R (2004). Assembling the fungal tree of life: progress, classiication, and evolution of subcellular traits. American Journal of Botany 91: 144–1480. MacLeod DM (194). Investigations on the genera Beauveria vuill. and Tritirachium Limber. Canadian Journal of Botany 32: 818– 890. McNeill JF, Barrie F, Burdet HM, Demoulin v, Hawksworth DL, Marhold K, Nicolson DH, Prado J, Silva PC, Skog JE, Wiersema J, Turland NJ, eds (2006). International Code of Botanical Nomenclature (Vienna Code). Regnum Vegetabile 146. Koeltz Scientiic Books, Königstein. Maddison DR, Maddison WP (2000). MacClade 4: Analysis of phylogeny and character evolution. Sinauer Associates, Sunderland, Massachusetts. Mains EB (190). Entomogenous species of Akanthomyces, Hymenostilbe and Insecticola in North America. Mycologia 42: –89. Mains EB (197). Species of Cordyceps parasitic on Elaphomyces. Bulletin of the Torrey Botanical Club 84: 243–21. Mains EB (198). North American entomogenous species of Cordyceps. Mycologia 50: 19–222. Mains EB (199). North American species of Aschersonia parasitic on Aleyrodidae. Journal of Insect Pathology 1: 43–47. Mason-Gamer RJ, Kellogg EA (1996). Testing for phylogenetic conlict among molecular data sets in the tribe Triticeae (Gramineae). Systematic Biology 45: 24–4. Massee G (189). A revision of the genus Cordyceps. Annals of Botany 9: 1–44. Mugnai L, Bridge PD, Evans HC (1989). A chemotaxonomic evaluation of the genus Beauveria. Mycological Research 92: 199–209. Nannfeldt JA (1932). Studien über die Morphologie und Systematik der nicht-lichenisierten, inoperculaten Discomyceten. Nova Acta R. Societatis Scientiarum Upsaliensis, Ser. 6, 8: 1–38. Nikoh N, Fukatsu T (2000). Interkingdom host jumping underground: Phylogenetic analysis of entomopathogenic fungi of the genus Cordyceps. Molecular Biology and Evolution 17: 29–38. Oborník M, Jirku M, Dolezel D (2001). Phylogeny of mitosporic entomopathogenic fungi: Is the genus Paecilomyces polyphyletic? Canadian Journal of Microbiology 47: 813–819. Ochiel GS, Evans HC, Eilenberg J (1997). Cordycepioideus, a pathogen of termites in Kenya. Mycologist 11: 7–9 Pacioni G, Frizzi G (1978). Paecilomyces farinosus, the conidial state of Cordyceps memorabilis. Canadian Journal of Botany 56: 391–394. Penzig O, Saccardo PA (1904). Icones fungorum Javanicorum. Buchhandlung and Druckerei E.J. Brill, Leiden. Petch T (1921). Studies in entomogenous fungi. II. The genera of Hypocrella and Aschersonia. Annals of the Royal Botanic Garden Peradeniya 7: 17–278. Petch T (1924). Studies in entomogenous fungus. IV. Some Ceylon Cordyceps. Transactions of the British Mycological Soceity 10: 28–4. Petch T (1931). Notes on entomogenous fungi. Transactions of the British Mycological Society 16: –7. Petch T (1932). Notes on entomogenous fungi. Transactions of the British Mycological Society 16: 209–24. Petch T (1933). Notes on entomogenous fungi. Transactions of the British Mycological Society 18: 48–7. Petch T (1936). Cordyceps militaris and Isaria farinosa. Transactions of the British Mycological Society 20: 21–224. Petch T (1937). Notes on entomogenous fungi. Transactions of the British Mycological Society 21: 34–7. Philippe H, Snell EA, Bapteste E, Lopez P, Holland PWH, Casane D (2004). Phylogenomics of eukaryotes: impact of missing data on large alignments. Molecular Biology and Evolution 21: 1740– 172. Reeb V, Lutzoni F, Roux C (2004). Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycota, Fungi) with special emphasis on the lichen-forming Acarosporaceae and evolution of polyspory. Molecular Phylogenetics and Evolution 32: 103–100. 8 Rehner SA, Buckley E (200). A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversiication and links to Cordyceps teleomorphs. Mycologia 97: 84–98. Reynolds DR, Taylor JW (eds) (1993). The fungal holomorph: Mitotic, meiotic and pleomorphic speciation in fungal systematics. CAB International, Wallingford uK. Rogerson CT (1970). The hypocrealean fungi (Ascomycetes, Hypocreales). Mycologia 62: 8–910. Rombach MC, Humber RA, Roberts DW (198). Metarhizium lavoviride var. minus, var. nov., a pathogen of plant- and leafhoppers on rice in the Philippines and Solomon Islands. Mycotaxon 27: 87–92. Rossman AY, Samuels GJ, Rogers JS, Lowen R (1999). Genera of Bionectriaceae, Nectriaceae and Hypocreaceae (Hypocreales, Ascomycetes). Studies in Mycology 42: 1–248. Samson RA (1974). Paecilomyces and some allied hyphomycetes. Studies in Mycology 6:1–119. Samson RA, Evans HC (197). Notes on entomogenous fungi from Ghana III. The genus Hymenostilbe. Proceedings, Koninklijke Nederlandse Akademie van Wetenschappen C 78: 73–79. Samson RA, Evans HC, Latgé J-P (1988). Atlas of entomopathogenic fungi. Springer-verlag, Berlin, Heidelberg, New York. Samson RA, van Reenen-Hoekstra ES, Evans HC (1989). New species of Torrubiella (Ascomycotina: Clavicipitales) on insects from Ghana. Studies in Mycology 31: 123–132. Shimazu M, Mitsuhashi W, Hashimoto H (1988). Cordyceps brongniartii sp. nov., the teleomorph of Beauveria brongniartii. Transactions of the Mycological Society of Japan 29: 323–330. Spatafora JW, Sung G-H, Sung J-M, Hywel-Jones NL, White JF Jr. (2007). Phylogenetic evidence for an animal pathogen origin for ergot and the grass endophytes. Molecular Ecology 16: 1701– 1711. Stamatakis A, Ludwig T, Meier H (2005). RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21: 4–43. Stensrud Ø, Hywel-Jones NL, Schumacher T (2005). Towards a phylogenetic classiication of Cordyceps: ITS nrDNA sequence data conirm divergent lineages and paraphyly. Mycological Research 109: 41–. Su C-H, Wang H-H (198). Phytocordyceps, a new genus of the Clavicipitaceae. Mycotaxon 26: 337–344. Suh S-O, Spatafora JW, Ochiel GRS, Evans HC, Blackwell M (1998). Molecular phylogenetic study of a termite pathogen Cordycepioideus bisporus. Mycologia 90: 11–17. Sullivan RF, Bergen MS, Patel R, Bills GF, Alderman SC, Spatafora JW, White JF Jr. (2001). Neoclaviceps monostipa: features of an enigmatic clavicipitalean fungus and the phyletic status of the anamorphic genus Ephelis. Mycologia 93: 90–99. Sullivan RF, Bills GF, Hywel-Jones NL, White JF Jr. (2000). Hyperdermium: a new clavicipitalean genus for some tropical epibionts of dicotyledonous plants. Mycologia 92: 908–918. Sung G-H, Spatafora JW (2004). Cordyceps cardinalis sp. nov., a new species of Cordyceps with an east Asian-eastern North American distribution. Mycologia 96: 8–. Sung G-H, Spatafora JW, Zare R, Hodge KT, Gams W (2001). A revision of Verticillium sect. Prostrata. II. Phylogenetic analyses of SSu and LSu nuclear rDNA sequences from anamorphs and teleomorphs of the Clavicipitaceae. Nova Hedwigia 72: 311– 328. Sung G-H, Sung J-M, Hywel-Jones NL, Spatafora JW (2007). A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): Identiication of localized incongruence using a combinational bootstrap approach. Molecular Phylogenetics and Evolution, in press. Sung J-M (199). The insects-born fungus of Korea in color. Kyohak Publ. Co., Seoul. Swofford DL (2002). PAUP*: Phylogenetic analysis using parsimony (*and other methods), version 4. Sinauer Associates, Sunderland, Massachusetts. Tanaka E, Tanaka C, Gafur A, Tsuda M (2002). Heteroepichloë, gen. nov. (Clavicipitaceae; Ascomycotina) on bamboo plants in East Asia. Mycoscience 43: 87–93. Thompson JD, Higgins DG, Gibson TJ (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-speciic gap PHYLOGENEtIC CLASSIFICAtION OF CORDyCEPS AND tHE CLAvICIPItACEOuS FuNGI penalties and weight matrix choice. Nucleic Acids Research 22: 473–480. White JF Jr., Reddy PV (1998). Examination of structure and molecular phylogenetic relationships of some graminicolous symbionts in genera Epichloë and Parepichloë. Mycologia 90: 22–234. Wiens JJ (1998). Combining data sets with different phylogenetic histories. Systematic Biology 47: 8–81. Wiens JJ (2003). Missing data, incomplete taxa, and phylogenetic accuracy. Systematic Biology 52: 28–38. Zang M, Daoqing L, Ruoying H (1982). Notes concerning the subdivisions of Cordyceps and a new species from China. Acta Botanica yunnanica 4: 173–17. Zang M, Kinjo N (1998). Notes on the alpine Cordyceps of China and nearby nations. Mycotaxon 66: 21–229. Zare R, Gams W (2001a). A revision of Verticillium sect. Prostrata. IV. The genera Lecanicillium and Simplicillium gen. nov. Nova Hedwigia 73: 1–0. Zare R, Gams W (2001b). A revision of Verticillium sect. Prostrata. VI. The genus Haptocillium. Nova Hedwigia 73: 271–292. Zare R, Gams W, Evans HC (2001). A revision of Verticillium sect. Prostrata. V. The genus Pochonia, with notes on Rotiferophthora. Nova Hedwigia 73: 1–8. Zare R, Gams W, Starink-Willemse M, Summerbell RC (2007) Gibellulopsis, a suitable genus for Verticillium nigrescens, and Musicillium, a new genus for V. theobromae. Nova Hedwigia, in press. Zhang WM, Li TH, Chen YQ, Qu LH (2004). Cordyceps campsosterna, a new pathogen of Campsosternus auratus. Fungal Diversity 17: 239–242. 9