Academia.eduAcademia.edu
TAXON 62 (4) • August 2013: 746–770 Swenson & al. • Chrysophylloideae in Oceania and SE Asia Towards a natural classification of Sapotaceae subfamily Chrysophylloideae in Oceania and Southeast Asia based on nuclear sequence data Ulf Swenson,1 Stephan Nylinder1 & Jérôme Munzinger2 1 Department of Phanerogamic Botany, Swedish Museum of Natural History, Box 50007, 104 05 Stockholm, Sweden 2 IRD, UMR AMAP, Montpellier, 34000 France Author of correspondence: Ulf Swenson, ulf.swenson@nrm.se Abstract Generic limits within subfamily Chrysophylloideae (Sapotaceae) from Oceania and Southeast Asia are reconciled based on a molecular phylogeny. We analysed sequences of nuclear ribosomal DNA (ETS, ITS) and the nuclear gene RPB2 with BEAST and parsimony jackknifing, using a sample of 168 terminals. Eight morphological characters were traced on a condensed majority­rule consensus tree to identify diagnostic character combinations for the genera. Accepted genera with character support are Magodendron, Pichonia, Planchonella, Pycnandra, Sersalisia, and Van-royena, while Beccariella and Niemeyera require amendment. Beccariella, a widely distributed group, is an illegitimate later homonym and we propose that the genus Pleioluma is resurrected in its place. The Australian genus Niemeyera is paraphyletic, but it is rendered monophy­ letic by reinstating Amorphospermum for N. antiloga. Beauvisagea, Blabeia, Fontbrunea, and Krausella are all segregates of Planchonella and rejected, while Wokoia is a later synonym of Pichonia. Planchonella baillonii, an endemic species of New Caledonia, is the sole member of an old lineage and firmly placed as the sister to a clade comprising the other congeners. Planchonella sandwicensis, a Hawaiian species, previously proposed to be a distinct genus, is a member of Planchonella. In the Pacific, P. tahitensis (including P. grayana) is a polymorphic species, widely distributed and adapted to a wide range of habitats. We provide a generic key (excluding Xantolis), diagnostic character combinations for all genera, and the necessary taxonomic combinations for Pichonia, Planchonella, Pleioluma, and Sersalisia to render each genus monophyletic. Keywords Amorphospermum; Australasia; Ericales; morphology; Pacific Ocean; phylogeny; Pleioluma; Sapotaceae Supplementary Material Aligned data matrix is available in the Supplementary Data section of the online version of this article (http://www.ingentaconnect.com/content/iapt/tax). Received: 21 Nov. 2012; revision received: 12 Mar. 2103; accepted: 3 July 2013. DOI: http://dx.doi.org/10.12705/624.11 INTRODUCTION Sapotaceae are an important component of the rainforests around the world. Its members are readily identified based on the presence of white latex, malpighiaceous trichomes, simple and entire leaves, and flowers in fascicles. Natural groups in the family have been difficult to circumscribe because of mor­ phological homoplasy. Various systems of classification rec­ ognizing anything from 53 to 122 genera have been proposed (Lam, 1939; Aubréville, 1964; Baehni, 1965; Pennington, 1991). Recent phylogenetic analyses using molecular data, often combined with morphological characters (Anderberg & Swenson, 2003; Smedmark & al., 2006), have identified three major lineages, which now are formally recognized as subfamilies Chrysophylloideae, Sapotoideae, and Sarcosper­ matoideae (Swenson & Anderberg, 2005). Chrysophylloideae are most diverse in South America and Australasia, Sapot­ oideae in Africa and Asia, while Sarcospermatoideae are re­ stricted to Asia. Many systematic and biogeographic problems remain unsolved within each subfamily, and this paper focuses on systematic issues in the Chrysophylloideae of Oceania and Southeast Asia. 746 All members of Chrysophylloideae in Australasia form a monophyletic group (Bartish & al., 2005; Swenson & Ander­ berg, 2005; Swenson & al., 2008b), and molecular dating sug­ gests emergence in the area by the Early Eocene, some 52 mil­ lion years ago (Ma), with subsequent radiation, range expansion and multiple dispersals to New Caledonia (Bartish & al., 2011). Phylogenetic analyses of the Australasian members (Bartish & al., 2005; Swenson & al., 2007a; Triono & al., 2007) sug­ gest that at least seven lineages can be delineated as genera, which prompted Swenson & al. (2007a) to recognize Magodendron Vink, Niemeyera F. Muell. and Pichonia Pierre, and to resurrect the Pouteria Aubl. segregates Beccariella Pierre, Planchonella Pierre, Sersalisia R. Br. and Van-royena Aubrév. (Fig. 1). However, the phylogenetic study by Swenson & al. (2007a) revealed several problems: (i) a large polytomy pre­ vented them from conclusive hypotheses about intergeneric relationships, (ii) Van-royena either grouped with the Australian species Niemeyera antiloga (F. Muell.) T.D. Penn. or collapsed into a polytomy, and (iii) generic limits remained unclear within an Australian–New Caledonian clade, the Niemeyera complex. Generic limits in the Niemeyera complex have been as­ sessed by phylogenetic analyses using nuclear (ETS, ITS) and Version of Record (identical to print version). TAXON 62 (4) • August 2013: 746–770 Swenson & al. • Chrysophylloideae in Oceania and SE Asia Fig. 1. Field images of members of subfamily Chrysophylloideae (Sapotaceae) growing in Oceania. A, Niemeyera chartacea; B, Niemeyera antiloga; C, Van-royena castanosperma; D, Pycnandra belepensis; E, Pichonia deplanchei; F, Sersalisia sericea; G, Planchonella baillonii; H, Planchonella ericiflora; I, Planchonella minutiflora; J, Planchonella tahitensis; K, Planchonella rufocostata; L, Beccariella sp. nov. — Photos: A, C, F by Hugh Nicholson (Australia); B by Glenn Leiper (Australia); D, I by Ulf Swenson (Sweden); E by Jean­Louis Ruiz (New Caledonia); G, H, K, L by Jérôme Munzinger (France); J by Jean­François Butaud (Tahiti). Version of Record (identical to print version). 747 TAXON 62 (4) • August 2013: 746–770 Swenson & al. • Chrysophylloideae in Oceania and SE Asia chloroplast (trnH-psbA, trnS-G) sequence data, as well as mor­ phology (Swenson & al., 2008a). The complex included seven genera in the classification by Aubréville (1964, 1967), a number that was decreased to three by Pennington (1991). Both authors recognized Leptostylis Benth., a genus distinguished by oppo­ site (rather than alternate) leaves and four sepals (not five or more). There are two strongly supported clades in the complex, one confined to Australia and another to New Caledonia, the lat­ ter with several subclades but with weak internal node support. Two morphological characters traditionally used for generic rec­ ognition in the Niemeyera complex are the anisomerous flower and the number of stamens inserted opposite each corolla lobe. Both characters are highly homoplastic and are not diagnostic even for small subclades (Swenson & al., 2008a). A generic framework based on a monophyletic criterion was proposed that allowed recognition of anywhere from one to five genera, a framework differing from the concept used by Aubréville or Pennington. Nonetheless, based on unpublished molecular data and the discovery of several new species, Swenson & Mun­ zinger (2009) found that a narrow generic concept was untenable and accepted Niemeyera for the species in Australia and Pycnandra Benth. for the lineage confined to New Caledonia. The New Caledonian subclades were relegated to subgeneric rank. However, it is still unclear if Leptostylis can be recognized at generic level or if it is better subsumed in Pycnandra. Beccariella and Planchonella are usually rainforest trees or shrubs in maquis vegetation. They are widely distributed in Oceania and Southeast Asia and have convoluted taxonomic histories (Swenson & Morat, 2008; Swenson & Tehler, 2009). As currently circumscribed, Beccariella includes some 20 spe­ cies and Planchonella about 60 species (Swenson & al., 2007a, b). Some outdated revisions are available for Malesia, but at that time the species were distributed among Planchonella (99 spp.; Van Royen, 1957), Krausella H.J. Lam (4 spp.; Herrmann­Erlee & Lam, 1957), and Pouteria (28 spp.; Herrmann­Erlee & Van Royen, 1957). Groups were so poorly delimited that the revision of Pouteria treated taxa that now are firmly placed in Beccariella, Pichonia, Planchonella, Pycnandra, and Sersalisia (Swen­ son & al., 2007a; Swenson & Munzinger, 2010a). Pouteria is a genus restricted to South America (Swenson & al., 2008b). There are no unique synapomorphies for either Beccariella or Planchonella, but they are distinguished based on character combinations. Common characters of both genera include flow­ ers with a corolla with staminodes, styles with stigmatic areas visible using a hand lens, seeds with foliaceous cotyledons, a radicle that extends below the cotyledon commissure, and an endosperm. Species of Beccariella are identified by areolate leaf venation (tertiaries or quaternaries), stamens inserted in the middle or near the base of the corolla tube, a fruit with usually one (or two) seed(s), and a linear and shorter seed scar that often is 50%–75% of the length of the seed. Species of Planchonella are recognized by the lack of areolate leaf venation, stamens that are inserted just below the tube orifice (with a few excep­ tions), a fruit having up to five seeds, and a long seed scar that often is linear and covers 90%–100% of the seed length. How­ ever, in contention with this, a search (accessed March 2013) in the online World Checklist at the Royal Botanical Garden, Kew 748 (http://apps.kew.org/wcsp/home.do) for taxa in these genera (and native to Southeast Asia and Oceania), revealed 17 species of Beccariella, 107 of Planchonella, and 28 of Pouteria, which we believe reflects an unnatural classification. Planchonella is the largest and most widely distributed ge­ nus of Chrysophylloideae in Oceania and Southeast Asia. It has a circum­Pacific distribution extending from southern China, Thailand, south to Australia and New Zealand, into the Pacific to include French Polynesia, Hawaii and back to Taiwan. New Caledonia is recognized as an important hotspot of biodiversity (Myers & al., 2000; Lowry & al., 2004) and includes almost 40 species of Planchonella (Munzinger & Swenson, 2009). Spe­ cies of this genus exhibit intriguing traits, such as a gynomo­ noecious sexual system (Méndez & Munzinger, 2010), as well as being successful colonizers of the Pacific islands (Bartish & al., 2005). One New Caledonian endemic species, P. baillonii (Zahlbr.) Dubard, is the sole member of a lineage that is sister to the entire genus (Swenson & al., 2007a; Triono & al., 2007). This sister position was maintained in a phylogenetic analysis using nine cpDNA and nrDNA loci (Swenson & al., 2008b), but the study only included seven species of Planchonella. It is pertinent to address the phylogenetic position of P. baillonii in a broader context because New Caledonia seems to have been submerged after rifting from Australia and therefore unavailable for colonization before 37 Ma (Grandcolas & al., 2008), but see Heads (2008) for an alternative view. Apart from the species in New Caledonia, few studies have addressed problems concerning the Planchonella species oc­ curring in the Pacific. Here we will address phylogenetic rela­ tionships among taxa found in Hawaii and French Polynesia. Planchonella sandwicensis (A. Gray) Pierre grows on all main islands of Hawaii. It is an extremely variable species that has inspired some scholars to recognize up to six different species (see Wagner & al., 1990). There are two widely different hy­ potheses on its relationships. Swenson & al. (2007a, b) found a close relationship to taxa in Fiji. In contrast, Triono & al. (2007) found it as the sister species to subfamily Chrysophylloideae, i.e., a possible member of Sapotoideae or Sarcospermatoideae. If the former is correct, the species is most probably derived from a common ancestor within the Pacific region, which col­ onized Hawaii from islands in the west, but if the latter is true, then the evolutionary lineage ought to be very old and its origin is more difficult to explain, since the closest relatives are pres­ ently found in continental Southeast Asia. However, the gener­ ated sequences by Triono & al. (2007) were never submitted to GenBank (http://www.ncbi.nlm.nih.gov/ last accessed March 2013), making them inaccessible for further testing. Two Pacific species of Planchonella, P. grayana H. St. John and P. tahitensis (Nadeaud) Pierre ex Dubard (Fig. 1J), are at odds with all other species of the genus by having stamens inserted near the base of the corolla tube, rather than below the tube orifice as is diagnostic for the genus (Swenson & al., 2007b). Planchonella grayana occurs from Vanuatu in the west to Tuamotu (French Polynesia) in the east, while P. tahitensis is restricted to the Society Islands. Distinct morphological forms have also been described from Tahiti (Fosberg, 1992) or are possibly novel species, for instance from Raiatea (Society Version of Record (identical to print version). TAXON 62 (4) • August 2013: 746–770 Swenson & al. • Chrysophylloideae in Oceania and SE Asia Islands). The phylogenetic positions of these species are of interest due to their odd floral morphology, taxonomic status, and conservation status. The native flora of the Society Islands, including P. tahitensis (Taputuari & Tchung, 2003; Pouteau & al., 2012), is under threat from the invasive alien Miconia calvescens DC. (Melastomataceae; Meyer & Florence, 1996). The present study aims to estimate phylogenetic relation­ ships within Chrysophylloideae in Oceania and Southeast Asia, excluding the distantly related Asian Xantolis Raf. (Anderberg & Swenson, 2003; Swenson & Anderberg, 2005), by using an extended taxon sample and nrDNA sequence data (ETS, ITS, RPB2), analysed using Bayesian inference and parsimony jackknifing. Our primary goals are to: (i) resolve the backbone polytomy; (ii) test the generic concept proposed by Swenson & al. (2007a); (iii) investigate the relationships of Van-royena and Niemeyera antiloga; (iv) optimize diagnostic morphologi­ cal characters on the phylogeny; (v) solve the specific questions pertinent to Planchonella in French Polynesia, P. baillonii in New Caledonia, and P. sandwicensis in Hawaii; and (vi) make nomenclatural changes as far as possible to obtain monophy­ letic genera. MATERIALS AND METHODS Nomenclature and taxon sampling. — We follow the sub­ family classification of Swenson & Anderberg (2005). The checklist of Sapotaceae (Govaerts & al., 2001) follows Pen­ nington’s (1991) generic classification and includes a full list of published names, but accepted names are continuously up­ dated online at the World Checklist of Selected Plant Families, Royal Botanical Garden, Kew (http://apps.kew.org/wcsp/home .do). This online resource follows the amended classification proposed by Swenson & al. (2007a), which we herein follow and aim to test. A total of 168 terminals were selected for this study, in­ cluding all type species of the genera recognized to date except for Leptostylis longiflora Benth. (probably conspecific with L. filipes Benth.) and Magodendron (Appendix 1) as well as the generi­types of two Pouteria segregates: Blabeia Baehni (rep­ resented by Planchonella endlicheri (Montrouz.) Guillaumin) and Fontbrunea Pierre (represented by Pouteria malaccensis (C.B. Clarke) Baehni). We also included two species of Krausella, one of Beauvisagea Pierre, represented by Pouteria maclayana (F. Muell.) Baehni (Govaerts & al., 2001), two unplaced species of Chrysophyllum L., and finally three species of Leptostylis (Aubréville, 1967). The remaining terminals are names to be found online at the World Checklist resource (accessed March 2013). A few taxa, however, are either novel or impossible to determine and are therefore indicated by quotation marks. The systematic problem of Planchonella sandwicensis is addressed using three accessions, two from Oahu and one from Kauai. The problem of French Polynesian Planchonella is approached with seven accessions collected in Wallis and Futuna (a French terri­ tory northeast of Fiji) and from several archipelagos of French Polynesia (Austral, Society, and Tuamotu Islands). Our sample includes all accepted species of Beccariella and Niemeyera, 80% of Pichonia and Sersalisia, 72% of Pycnandra, and 57% of Planchonella. In addition, nine accessions of Pouteria are included that are predicted to belong to one or the other clade. When an outgroup is selected it ought to be as closely related as possible, but not necessarily the sister group to the ingroup, and it need not necessarily include more than one taxon (Nixon & Carpenter, 1993). Xantolis and the Australa­ sian clade represent Chrysophylloideae in Southeast Asia and Oceania; the latter has been demonstrated monophyletic in all recent cladistic analyses using morphology and/or molecular evidence (Bartish & al., 2005, 2011; Swenson & Anderberg, 2005; Swenson & al., 2007a, 2008b). Xantolis is sister to the entire subfamily and strongly diverged from the Australasian taxa, and therefore not an appropriate outgroup. Genera that form the sister clade to the Australasian taxa are all from South America, a clade that possibly includes the African genus Aubregrinia Heine. We therefore selected two species of Ecclinusa Mart., a genus suggested to be one of the closest relatives to the Australasian taxa (Swenson & al., 2008b; Bartish & al., 2011). If any of the additional taxa included here were not to be member of this clade, they are expected to fall between the outgroup and the Australasian clade, not within it. Molecular data. — Selection of molecular markers to pro­ vide a sufficient number of informative characters needs con­ sideration. Different cpDNA regions vary in their relative utility to resolve relationships within angiosperm families (Shaw & al., 2005, 2007). Broad studies of Sapotaceae have used several cod­ ing and noncoding cpDNA and nrDNA regions with varying success. Of the cpDNA regions used for phylogenetic estimates (atpB-rbcL, ndhF, petN-psbM, psbM-trnD, psbB-psbH, rpl20rps12, trnC-petN, trnH-psbA, trnL-trnF, and trnS-trnG) the av­ erage number of informative substitutions is close to 3%, where trnS-trnG has 1% (Swenson & al., 2008a) and trnH-psbA has 6% informative sites (Swenson & al., 2008b). In contrast, the nrDNA loci ITS and ETS have proven to be much more useful with some 23%–54% informative characters (Bartish & al., 2005; Swenson & al., 2008b), which is why they were selected for this study. Plant material for DNA extraction was collected either as sil­ ica gel­dried leaf material or fragments removed from herbarium specimens. New sequences of ITS1 and ITS2 were obtained from 61 accessions, following the protocol for DNA extraction, ampli­ fication, and sequencing described by Bartish & al. (2005), and added to 106 previously published sequences. All primers are listed in Table 1. ETS sequences of 122 accessions were obtained by using two primers, 18S­ETS (Baldwin & Markos, 1998) and Sap­1 (Swenson & al., 2008a), following the touchdown PCR protocol: 95°C for 5 min, followed by 4 cycles of 95°C for 30 s, 57°C for 30 s, 72°C for 1 min 15 s, 4 cycles of 95°C for 30 s, 55°C for 30 s, 72°C for 1 min 15 s, and 32 cycles of 95°C for 30 s, 53°C for 30 s, 72°C 1 min 15 s followed by 72°C for 8 min. Both ITS and ETS may occur in multiple copies in a genome, which can indicate hybrid origin of a taxon (Poczai & Hyvönen, 2010). We carefully checked the sequences for double peaks in the proof reading procedure for the presence of multiple copies. Multiple copies of ETS were detected in eight Planchonella species, all from a clade confined to New Caledonia, i.e., Clade D3b identi­ fied by Swenson & al. (2007b). We decided to exclude these and Version of Record (identical to print version). 749 TAXON 62 (4) • August 2013: 746–770 Swenson & al. • Chrysophylloideae in Oceania and SE Asia reduced the clade to three species (P. glauca, P. lauracea, P. “Ile Yande”) in order to minimize problems related to concerted evolution or lineage sorting (Álvarez & Wendel, 2003). We sought to include an additional nuclear marker and se­ lected RPB2, which has proven to be useful for phylogenetic estimates on high as well as low systematic level (Oxelman & Bremer, 2000; Oxelman & al., 2004; Eggens & al., 2007). The RPB2 region for 161 accessions was amplified using the primers P6F and P7R (Denton & al., 1998), and several herein designed primers to obtain sequences around poly­T­regions, followed by the same PCR protocol described above. Purified products were sequenced using an ABI3130xl Automated DNA Sequencer (Applied Biosystems, Foster City, California, U.S.A.). Alignment, gap coding, and model testing. — Alignments were performed on each separate sequenced locus in MAFFT v.6.818b (Katoh & al., 2005) using the L­INS­i predefined pa­ rameter settings. Resulting matrices were imported into MES­ QUITE v.2.75 (Maddison & Maddison, 2011) and minor manual adjustments were made to the alignments. Following the method of Simmons & Ochoterena (2000), gaps for each locus were manually scored as binary characters (present/absent) in separate partitions, disregarding uninformative deletions or inserts. Each gene partition was tested for the best­fit substitution model using jModelTest v.0.1.1 (Posada, 2008) under the Bayesian informa­ tion criterion (BIC) (Schwartz 1978; Posada & Buckley, 2004) in order to minimize the number of substitution rate parameters. Binary data (gaps) were assigned a simple substitution model allowing unconstrained reversible gains/losses of characters. Phylogenetic analyses. — Phylogenetic relationships were estimated with Bayesian inference (Rannala & Yang, 1996; Yang & Rannala, 1997) and parsimony jackknifing (Farris & al., 1996). The aligned matrix was prepared in BEAUti v.1.6.2 (part of the BEAST package) as an output file for Bayesian in­ ference in BEAST v.1.6.2 (Drummond & Rambaut, 2007). Each locus was treated as a unique partition. Substitution models were set by manual modification of the rate parameters. This study used the BEAST package to primarily derive a tree topol­ ogy, not divergence time estimates under a molecular clock assumption. The molecular clock was therefore unconstrained and the root was fixed by using a normal prior with an arbitrary mean (100) and a narrow standard deviation (0.1). The Monte Carlo Markov chains (MCMC) were set to run five times, each for 100 million generations, to assure independent convergence on all parameters (ESS values > 200), sampling trees every 25,000 generations. Convergence and chain mixing were re­ viewed in Tracer v.1.5 (Rambaut & Drummond, 2009). A pro­ portion of the samples in each run were discarded as burn­in, and the posterior set of trees was summarized in TreeAnnotator v.1.6.2 (Drummond & Rambaut, 2007). The resulting tree was then visualized in FigTree v.1.3.1 (Rambaut, 2009). Jackknife analysis, implemented in PAUP* 4.0 (Swofford, 2002), was also performed on the dataset to retrieve parsimony support values. The settings were as follows: 1000 jackknife replicates with a single random addition sequence, TBR branch swapping, collapsing branches of zero length, steepest descent not in effect, and saving a maximum of 1000 trees in each replicate. The excluded fraction of characters in each replicate was set to 37%. Posterior probability (PP) and parsimony jackknife values (JK) below 0.8 and 50%, respectively, are not reported. We con­ sider PP values of 0.95 or more to be strong indicators of node support, whereas JK values of 50%–74% are weak, 75%–89% moderate, and 90%–100% are considered strong. Nodes that receive less than JK 50% and below PP 0.8 posterior support are collapsed in the phylogeny with one exception (the plausible position of Van-royena). Morphological data. — Morphology is highly homoplastic in Sapotaceae and unique generic synapomorphies are absent or very rare. Swenson & al. (2007a) proposed that character state combinations ought to be used for generic recognition. Table 1. List of primers used. DNA region Primer Sequence 5′–3′ ETS 18S­ETS ACT TAC ACA TGC ATG GCT TAA TCT Baldwin & Markos (1998) ETS Sap­1 CGT ACT TGA GCG TGT TGG TGT Swenson & al. (2008a) ITS 18SF GAA CCT TAT CGT TTA GAG GAA GG Rydin & al. (2004) ITS 26RN CCG CCA GAT TTT CAC GCT GGG C Rydin & al. (2004) RPB2 P6F TGG GGA ATG ATG TGT CCT GC Denton & al. (1998) RPB2 P7R CCC ATG GCT TGC TTC CCC AT Denton & al. (1998) RPB2 270F­Sap CCT AGT GTT ACC TTT TAC CCT GAT TG This study* RPB2 570F­Sap CAT GGC ATT CAA CTA CTG AAG AGT TG This study* RPB2 540R­Sap CAA CTC TTC AGT AGT TGA ATG CCA TG This study* RPB2 435F­Sap TAA TAT GTC AGC TTG TGG TGG AGA G This study* RPB2 435R­Sap CTC TCC ACC ACA AGC TGA CAT ATT A This study* RPB2 800F­Sap GCA TCT CTG TCC TCT TGA TTA CTT GAA TG This study* RPB2 800R­Sap CAT TCA AGT AAT CAA GAG GAC AGA GAT GC This study* RPB2 1020F­Sap GCT ACT TTG AAG CAC TTG CTA GAA TCT This study* RPB2 1020R­Sap AGA TTC TAG CAA GTG CTT CAA AGT AGC This study* *Primers designed by Bodil Cronholm, Swedish Museum of Natural History. 750 Reference Version of Record (identical to print version). TAXON 62 (4) • August 2013: 746–770 Swenson & al. • Chrysophylloideae in Oceania and SE Asia The morphological data used here have been gathered from earlier studies (Swenson & Anderberg, 2005; Swenson & al., 2007a, b, 2008a, b), revisions (Van Royen, 1957; Herrmann­Er­ lee & Lam, 1957; Herrmann­Erlee & Van Royen, 1957) and her­ barium material deposited at L, MO, NOU, P, PAP, and S. The morphological terminology follows Harris & Harris (1997). We used MacClade v.4.0 (Maddison & Maddison, 2000) to optimize the characters on the maximum clade credibility tree (MCC) obtained from the BEAST analysis. We then condensed the phylogeny, opting for genera to be in proportion to the number of the species, and traced eight characters of which seven have been identified as useful for diagnostic purposes (Swenson & al., 2007a). One character, pubescence on sepals, is used here for the first time. The condensed tree is designed to comprehensibly visualize the characters. Character 1. – Tertiary leaf venation has been used for diagnostic purposes with variable success (Van Royen, 1957; Pennington, 1991; Triono & al., 2007). A fine areolate vena­ tion, formed when higher orders of veins anastomose and form a closed reticulate pattern, easily observed with a hand lens (Swenson & Munzinger, 2009), is diagnostic for Beccariella, Pichonia, and Sersalisia (Swenson & al., 2007a). Character 2. – Malpighiaceous trichomes are usually present as an indument on sepals on inner, outer, or both sur­ faces, but can also be secondarily lost. Revisional work has demonstrated that the distribution of trichomes can indicate relationships. For example, sepals of Planchonella and Pycnandra are usually pubescent outside but glabrous inside (Swenson & al., 2007b; Swenson & Munzinger, 2009), while members of Pichonia usually have an indument on both sides of the sepals (Swenson & Munzinger, 2012). Thus, presence or absence of trichomes on the inner surface may be congruent with clades. Character 3. – The corolla of Sapotaceae is actinomor­ phic and partly sympetalous, comprising a tube and free co­ rolla lobes. Depending on the ratio between the length of the corolla tube and the lobes, and the corolla length versus the calyx length, the corolla can be cup­shaped, urn­shaped, nar­ rowly campanulate, or tubular. This character is in fact a com­ bination of different features and could be reductively coded for phylogenetic analyses, but it is also homoplastic (Swenson & Anderberg, 2005; Swenson & al., 2007a, 2008b). There is no doubt that flower types are frequently difficult to characterize, but we wanted to investigate their potential diagnostic value as a character. The calyx of a cup­shaped flower is usually less than 50% of the length of the corolla, the corolla tube is shorter than the lobes, and the lobes are spreading (Fig. 1A, D). The corolla of an urn­shaped flower usually has a tube and corolla lobes of equal length (or slightly shorter lobes), and the calyx often extends above the corolla tube orifice (Fig. 1I, J). A campanulate flower is similar to an urn­shaped and/or a tubular flower, but the corolla exerts slightly above the sepals and forms a small bell (Fig. 1L). Tubular flowers have a visible corolla tube, longer than the sepals and clearly longer than the corolla lobes (Fig. 1F–H). Character 4. – Stamens in Sapotaceae are inserted at dif­ ferent levels in the corolla tube. This character was important for Aubréville (1964) and less so for Pennington (1991), but has been found to be diagnostic for monophyletic groups (Swenson & al., 2007a). Hence, stamens are inserted in the tube orifice (Niemeyera, Pichonia, Pycnandra), just below the tube orifice (Planchonella), in the middle of the tube or near the corolla base (Beccariella). Character 5. – One entire style is always present in Sapot­ aceae, which may, however, differ at the apex. It has either vis­ ible, small, round stigmatic areas readily identified with a hand lens (Fig. 1F), a character suggested diagnostic for Beccariella, Planchonella, Sersalisia, and Van-royena (Swenson & al., 2007a). In contrast, if no stigmatic areas are visible (Fig. 1A), the style apex is termed simple as in Niemeyera, Pichonia, and Pycnandra (Pennington, 1991; Swenson & Anderberg, 2005). Characters 6–8. – A number of fruit characters show strong congruence and can be amalgamated to three features: (i) cotyle­ dons foliaceous, having a radicle extending below the cotyledon commissure, endosperm present; (ii) plano­convex cotyledons without a visible radicle, endosperm absent; and (iii) plano­con­ vex cotyledons with an exserted radicle, endosperm absent. RESULTS Data. — The complete matrix contains 2563 characters, of which 2486 are from aligned nuclear sequences and 77 are from three partitions of coded gaps (Table 2). ETS is repre­ sented by 403 nucleotides of which 198 (49.1%) are parsimony informative, ITS of 914 nucleotides of which 320 (35%) are parsimony informative, and RPB2 of 1169 nucleotides of which 151 (12.9%) are parsimony informative. The model test resulted in the selection of TrN + Γ for both ETS and ITS, and TPM1 + Γ for RPB2. Initial analyses revealed nested parameter ranges for ITS and ETS, and the two loci were therefore set to share the substitution model in order to decrease the total number of parameters. Tree topology. — Bayesian analysis and parsimony jackknifing of the molecular dataset recovered similar tree topologies. Taxa not formerly analysed in any phylogenetic Table 2. Characteristics of nuclear sequences in each of the data partitions (excluding the outgroup) Number of characters Data Aligned Constant Uninformative Informative Gaps ETS 403 114 91 198 (49.1%) 22 914 418 176 320 (35.0%) 42 RPB2 ITS 1169 483 535 151 (12.9%) 13 Total 2486 1015 802 668 (26.9%) 77 Version of Record (identical to print version). 751 TAXON 62 (4) • August 2013: 746–770 Swenson & al. • Chrysophylloideae in Oceania and SE Asia context are all recovered with maximum support within the previously identified Australasian clade. After collapsing nodes with support below the defined thresholds (0.8 PP, 50% JK), the tree topologies are close to identical (Fig. 2). Polytomies are mainly restricted to terminal positions in each genus. One deep node receives only moderate JK support (83%) and no Bayesian support. Similar to previous results, the placements of the Australian Van-royena and the New Guinean Magodendron are still uncertain, and no other taxon is identified as closely related to these genera which, in addition, have rather unusual diagnostic character combinations (Swenson & Anderberg, 2005; Swenson & al., 2007a). All species included in our analyses were dispersed across six distinct clades with strong Bayesian support and frequently with moderate or strong jackknife support. Each of these clades include one generic type (from top to bottom in Fig. 2): Beccariella sebertii (Pancher) Pierre, Sersalisia sericea (Aiton) R. Br., Pichonia balansana Pierre, Niemeyera prunifera (F. Muell.) F. Muell., Pycnandra benthamii Baill., and Planchonella obovata (R. Br.) Pierre. Embedded in these six clades are species of Chrysophyllum, Krausella, Leptostylis, Pouteria, and Planchonella (in Beccariella) and the genera can only be rendered monophyletic following taxonomic transfers. However, Niemeyera is not monophyletic in its present circumscription since N. antiloga is rendered sister to the two clades corresponding to Niemeyera and Pycnandra. Both genera are strongly supported, but subclades relegated to subgeneric rank in the latter genus (Swenson & Munzinger, 2009) are all recovered in a polytomy. All species of Leptostylis and the unplaced Chrysophyllum wagapense Guillaumin form a clade that is sister, with weak support, to Pycnandra subg. Sebertia (Pierre ex Engl.) Swenson & Munzinger (Swenson & Munzinger, 2010a). Planchonella is largely monophyletic with the exception of four species that are recovered in Beccariella with strong support. Again, P. baillonii is sister to the entire genus. The unplaced Chrysophyllum bakhuizenii P. Royen, the Pouteria segregate Krausella, and some species currently placed in Pouteria, are all embedded in Planchonella. Overall, the clades identified by Swenson & al. (2007b; Clades D1, D2, and D3), are all strongly supported in this phylogeny and mutual clade relationships find good support. Two widely distributed species in Southeast Asia, Pouteria maclayana and P. malaccensis, are sisters to Clades D1 and D2. All three accessions of P. sandwicensis from Hawaii group together within Planchonella, a group with close affinity to taxa from Fiji. All accessions of P. grayana and P. tahitensis, from Alofi and Futuna in the west to Tuamotu in the east, are found monophyletic with maximum support, but mutual molecular differences are small and acces­ sions are not reconciled to species or distribution. One clade circumscribes three accessions of P. linggensis (Burck) Pierre, one of P. chartacea (F. Muell. ex Benth.) H.J. Lam (Australia), and one of P. solida P. Royen (New Guinea), in which P. linggensis is polyphyletic. Optimization of morphology. — Figure 3 shows the eight morphological characters optimized on the majority­rule con­ sensus tree obtained from the BEAST analysis of nuclear se­ quences of Chrysophylloideae in Oceania and Southeast Asia. 752 They show all high congruence with the generic concept pro­ posed by Swenson & al. (2007a), but some characters still show a degree of homoplasy. This will be discussed below. DISCUSSION Overall resolution. — Our phylogenetic analyses based on nuclear sequence data yielded improved resolution and a better understanding of phylogenetic relationships within Chryso­ phylloideae (Bartish & al., 2005; Swenson & al., 2007a, b, 2008a; Triono & al., 2007). Exact affinities of Magodendron and Van-royena remain unclear and both genera, in principle, fall back to an unresolved polytomy. Nevertheless, our current analyses find no close relationship between Van-royena and Niemeyera antiloga, since the latter is strongly supported as the sister to Pycnandra and a narrowly defined Niemeyera (Fig. 2). The proposal that Chrysophyllum and Pouteria are not present in Australasia (Swenson & al., 2007a, 2008b; Swenson & Munzinger, 2009) finds strong phylogenetic support, because the included taxa are deeply embedded in different Austral­ asian groups. Instead, for this region, the genera Beccariella, Magodendron, Niemeyera, Pichonia, Planchonella, Pycnandra, Sersalisia, and Van-royena are reconfirmed, and no other important lineage of the subfamily is identified. Hence, mem­ bers currently placed in Chrysophyllum or Pouteria need to be transferred. Leptostylis needs to be relegated to subgeneric level within Pycnandra, and a revision is under preparation. However, two systematic problems remain to be solved: the polyphyly of Niemeyera and the unresolved nomenclatural problem concerning the name Beccariella (Swenson & Tehler, 2009; Brummitt, 2011b). The overall well­resolved phylogeny brings to light in­ teresting biogeographic perspectives, such as whether New Caledonia hosts a relict biota or was submerged about 37 Ma and later emergent (Grandcolas & al., 2008); and whether the Fijian flora is derived from immigrants from Asia, Australia, and/or New Caledonia (Keppel & al., 2009) or evolved in situ (Heads, 2006). A detailed biogeographic study of this Austral­ asian­Pacific group will be addressed elsewhere. Useful morphological characters. — Morphology has re­ peatedly been demonstrated to be homoplastic in Sapotaceae. Examples of traditionally used characters believed useful but shown to be homoplastic include the number of petals, the num­ ber of stamens opposite each corolla lobe, and the ratio between the length of the corolla tube and the corolla lobes (Swenson & al., 2007a, 2008a, b). Presence of staminodes in Sapotaceae is a plesiomorphic feature, which has been reduced several times in Chrysophylloideae (Swenson & Anderberg, 2005; Swenson & al., 2008b) and Sapotoideae (Smedmark & al., 2006), but can be diagnostic for less inclusive groups. Staminodes are pres­ ent in most Chrysophylloideae in the studied group, but have been reduced once, in the clade Niemeyera-Pycnandra. Hence, absence of staminodes is diagnostic for this clade. Another useful character to distinguish between genera is where the flowers are born. All genera, except Magodendron and Pycnandra, generally have axillary flowers, whereas the former is Version of Record (identical to print version). TAXON 62 (4) • August 2013: 746–770 Swenson & al. • Chrysophylloideae in Oceania and SE Asia cauliflorous and the latter is usually ramiflorous. Apart from morphology, geographic distribution is a very strong indicator of clade affinity, except in the widespread genera Beccariella, Planchonella, and Sersalisia. In the discussion below of the eight morphological characters used here, taxon names are ordered as they appear in Fig. 3 (not alphabetically). Areolate venation is present in all species of Beccariella, Sersalisia, Pichonia, and Magodendron, including all species of Planchonella and Pouteria that are recovered in these clades (Fig. 3A). In contrast, members of Van-royena, Niemeyera, Pycnandra and Planchonella always lack areolate venation, and instead have visible tertiary leaf venation, in agreement with the findings of Triono & al. (2007). The sepals of most Chrysophylloideae taxa are pubescent on the outer surface, except when the indument is secondarily lost, but presence or absence of indument on the inner surface seems to contain strong phylogenetic information (Fig. 3B). In Beccariella and Van-royena, trichomes are always present on the sepals’ inner surface, often covering the entire area and forming a tomentose or even woolly indument. Sepal indument is homoplastic in Sersalisia and Pichonia, and the sepals of P. balansana, P. deplanchei (Baill.) Swenson & Munzinger, and P. lecomtei (Guillaumin) T.D. Penn. are glabrous inside. However, if an indument is present on the inner surface, the trichomes are usually concentrated in the upper part of the se­ pals (Swenson & Munzinger, 2012). Sepals of all other genera are glabrous inside, except in some species scattered in the Planchonella phylogeny (P. australis (R. Br.) Pierre, P. chartacea, and P. cyclopensis P. Royen), in which the density of indument varies, often even between sepals in the same flower. Classification of floral types is partly subjective and some­ times difficult according to the definition above. Nevertheless, the corolla can be termed narrowly campanulate in Beccariella, Van-royena, and some Sersalisia (Fig. 3C). A cup­shaped co­ rolla with spreading lobes is characteristic for Pichonia, Magodendron, Niemeyera, and Pycnandra, and in the two latter the corolla lobes are frequently revolute (Fig. 1A, D). The type of corolla in Planchonella is generally urn­shaped, where the calyx is more or less as long as, or slightly longer than, the corolla tube (Fig. 1I, J). Urn­shaped flowers never have spread­ ing or revolute corolla lobes comparable to the cup­shaped flower. Exceptions to the urn­shaped flower in Planchonella are found in P. baillonii, P. ericiflora Munzinger & Swenson and P. myrsinoides (Benth.) S.T. Blake ex Francis, species that are scattered across the genus and have tubular flowers with a well­exposed corolla tube (Fig. 1G, H). Stamens are inserted opposite the corolla lobes in Sapot­ aceae, and it has been controversial whether the insertion point within the corolla tube carries any phylogenetic information. Both Aubréville (1967) and Van Royen (1957) used the character, as opposed to Pennington (1991) who could not find significant correlation between the insertion point of stamens and other characters, perhaps because his circumscription of Pouteria was an unnatural amalgamation of different lineages, which obscured character correlations. However, the phylogenetic study by Swenson & al. (2007a) found strong correlation between stamen insertion and monophyletic groups. Our analysis agrees with these previous findings, but, again, there are exceptions (Fig. 3D). All species of Beccariella (and Van-royena) have sta­ mens inserted either in the middle or near the base of the tube. Swenson & al. (2007a) reported that the species from Australia have stamens inserted near the base whereas those from New Caledonia have the stamens inserted in the middle of the corolla tube. In fact, this statement needs amendment, since there are species of Beccariella in Australia, New Caledonia, and New Guinea that have stamens inserted either near the base or in the middle of the corolla tube. However, it is still valid that no species of Beccariella have stamens inserted in or just below the tube or­ ifice, character states that are restricted to the other genera under study. Stamen insertion in Van-royena has been reported as basal (Herrmann­Erlee & Lam, 1957; Aubréville, 1963; Swenson & al., 2007a), but the point of insertion is at or just above the middle of the corolla tube, while the filament is attached to the tube and run down to the base. In Sersalisia and Pycnandra the character varies, and exceptions in Pycnandra are P. atrofusca Swenson & Munzinger, P. benthamii, P. carinocostata Vink, P. fastuosa (Baill.) Vink and P. kaalaensis Aubrév., species that represent three subgenera and have stamens inserted just below the tube orifice. Leptostylis filipes, which will be transferred to Pycnandra, has tubular flowers and stamens inserted in the middle of the corolla tube. Pichonia, Magodendron, and Niemeyera have stamens inserted in the tube orifice. Finally, all except for some species of Planchonella have stamens inserted just below the tube orifice. Stamens in P. aneityensis (Guillaumin) H.J. Lam ex P. Royen are inserted in the middle of the corolla tube, and in P. grayana and P. tahitensis the stamens are inserted at the corolla base, a unique position within the genus. These three taxa are all found in the same clade of Pacific species. Styles with several stigmatic areas at the apex, easy to iden­ tify with a hand lens, was suggested as an important character to differentiate Beccariella, Van-royena, Sersalisia, Magodendron, and Planchonella from the simple style without such clearly visible stigmatic areas in Pichonia, Niemeyera, and Pycnandra (Swenson & al., 2007a). We found no deviation from this pattern in the sampled species and suggest that this character does con­ tain strong phylogenetic signal, useful in character combination for circumscribing groups, as well as in the field (Fig. 3E). The distribution of foliaceous or plano­convex cotyledons, absence or presence of an exserted radicle, and absence or presence of an endosperm, are clearly correlated among mem­ bers of the study group, and are reported in a single figure (Fig. 3F). Three combinations of the characters are known: (i) seeds of Beccariella and Planchonella have foliaceous coty­ ledons, an exserted radicle and an endosperm, (ii) Magodendron has plano­convex cotyledons, an exserted radicle and non­endospermous seeds, and (iii) all other genera have seeds with plano­convex cotyledons, an included radicle and no en­ dosperm. The character combination for Magodendron is rare in Chrysophylloideae, only found in Chromolucuma Ducke and Pradosia Liais (Swenson & Anderberg, 2005), and in some species of Pouteria (South America) and Synsepalum (A. DC.) Daniell (Africa) sensu Pennington (1991). In summary, despite a high degree of morphological homo­ plasy in Chrysophylloideae, the characters here overlaid in Version of Record (identical to print version). 753 1 97 1 99 1 100 1 100 0.96 1 59 .97 64 1 1 85 1 91 0.96 64 1 100 1 1 62 1 100 1 98 0.72 1 100 1 100 0.95 61 0.95 0.9 1 100 1 84 1 52 1 100 83 1 84 0.92 73 1 100 1 100 0.8 1 86 1 98 1 100 1 100 1 85 1 76 0.9 72 1 95 0.88 61 1 100 0.96 64 1 100 0.99 1 87 1 0.97 100 73 1 0.97 100 0.86 1 100 1 100 0.96 1 51 100 0.93 61 1 78 0.98 60 1 76 1 100 1 87 1 100 1 100 1 97 0.8 0.92 59 1 92 1 84 1 64 1 88 0.98 85 1 67 1 100 1 95 D2 63 1 100 1 76 0.97 52 1 66 1 100 1 100 1 90 1 86 1 1 1 99 D1 0.99 64 0.86 64 1 74 1 100 1 99 1 100 0.85 1 63 1 100 Current classification Beccariella Chrysophyllum Krausella Leptostylis Niemeyera Magodendron Pichonia Planchonella Pycnandra Pouteria Sersalisia Van-royena 0.82 1 88 1 95 D3 0.8 1 90 1 100 1 100 1 100 1 .92 1 73 1 100 1 68 1 100 1 99 0.8 1 97 1 0.81 1 100 1 100 .87 1 96 0.95 0.8 58 1 100 1 100 1 100 0.96 67 1 100 1 99 1 1 100 100 Planchonella moluccana Beccariella macrocarpa Beccariella papyracea Beccariella singuliflora Beccariella xerocarpa Beccariella brownlessiana Beccariella queenslandica Beccariella “acutifolia” Beccariella longipetiolata M2264 Beccariella longipetiolata M2911 Beccariella baueri Beccariella rubicunda Beccariella Munzinger2581 Planchonella firma Pouteria wandae Pouteria gillisonii Planchonella lamprophylla Planchonella ledermannii Pouteria richardii Beccariella Takeuchi25691 Beccariella sebertii Beccariella vieillardii Beccariella novocaledonica Beccariella lucens Beccariella lasiantha Beccariella crebrifolia Beccariella “belepensis” Beccariella brevipedicellata Beccariella balansana Van-royena castanosperma Sersalisia sessiliflora Sersalisia sericea Pouteria luzoniensis Pichonia occidentalis Pichonia deplanchei Pichonia lecomtei Pichonia daenikeri Pichonia balansana Pichonia grandiflora Pichonia balansae Pichonia dubia S918 Pichonia dubia M3065 Magodendron mennyae Niemeyera antiloga Niemeyera whitei Niemeyera Ford2429 Niemeyera prunifera Niemeyera chartacea Pycnandra canaliculata Pycnandra acuminata Chrysophyllum wagapense Leptostylis filipes Leptostylis grandifolia Leptostylis goroensis Pycnandra ouaiemensis Pycnandra comptonii Pycnandra blaffartii Pycnandra controversa Pycnandra vieillardii Pycnandra griseosepala Pycnandra neocaledonica Pycnandra kaalaensis Pycnandra decandra Pycnandra belepensis Pycnandra bracteolata Pycnandra glabella Pycnandra sessilifolia Pycnandra francii Pycnandra schmidii Pycnandra pubiflora Pycnandra caeruleilatex Pycnandra sessiliflora Pycnandra sarlinii Pycnandra deplanchei Pycnandra fastuosa Pycnandra carinocostata Pycnandra viridiflora Pycnandra blanchonii Pycnandra gordoniifolia Pycnandra paucinervia Pycnandra atrofusca Pycnandra benthamii Pycnandra glaberrima Pycnandra balansae Pycnandra cylindricarpa Pycnandra linearifolia Planchonella baillonii Pouteria malaccensis Pouteria maclayana Planchonella linggensis Vanuatu Planchonella chartacea Australia Planchonella linggensis Futuna Planchonella solida New Guinea Planchonella linggensis New Guinea Planchonella xylocarpa Planchonella xylocarpa Pouteria stellibacca Planchonella maingayi Planchonella sphaerocarpa Planchonella arnhemica Planchonella pohlmaniana Planchonella asterocarpon Planchonella membranacea Planchonella dothioensis Planchonella thiensis Planchonella laetervirens Planchonella mandjeliana Planchonella cauliflora Planchonella luteocostata Planchonella amieuana Planchonella endlicheri Planchonella ericiflora Planchonella Pillon150 Planchonella kaalaensis Planchonella koumaciensis Planchonella Munzinger6150 Planchonella minutiflora Planchonella pronyensis Planchonella rufocostata Planchonella saligna Planchonella crassinervia Planchonella roseoloba Planchonella skottsbergii Planchonella kuebiniensis Planchonella howeana Planchonella myrsinifolia Planchonella cotinifolia Planchonella eerwah Planchonella costata Planchonella australis Planchonella myrsinoides Planchonella euphlebia Planchonella Ile Yande Planchonella lauracea Planchonella glauca Chrysophyllum bakhuizenii Planchonella clemensii Planchonella obovata Planchonella mindanaensis Planchonella Munzinger6514 Fiji Planchonella vitiensis Fiji Planchonella aneityensis Vanuatu Planchonella tahitensis Raiatea Planchonella grayana Tuamotu Planchonella tahitensis Tahiti Planchonella grayana Alofi Planchonella grayana Futuna Planchonella grayana Australs P. grayana var. florencei Tahiti Pouteria pullenii Pouteria Armstrong316 Planchonella Munzinger6490 Planchonella smithii Planchonella umbonata Planchonella sandwicensis K119 Planchonella sandwicensis Okamoto Planchonella sandwicensis M3227 Planchonella cyclopensis P1365 Planchonella anteridifera Planchonella thyrsoidea Planchonella cyclopensis T25495 Planchonella dulcitan Planchonella torricellensis Futuna Planchonella torricellensis Alofi Krausella patentinervia Krausella polyneura B Sepals inner surface Van-royena Sersalisia Van-royena Sersalisia Pichonia Pichonia Magodendron Niemeyera antiloga Magodendron Niemeyera antiloga Niemeyera Niemeyera Pycnandra Pycnandra Planchonella Planchonella not areolate areolate D Stamens inserted Van-royena Sersalisia Van-royena Sersalisia Pichonia Pichonia Magodendron Niemeyera antiloga Magodendron Niemeyera antiloga Niemeyera Niemeyera Pycnandra Pycnandra Planchonella Planchonella cup-shaped urn-shaped narrowly campanulate tubular F Seed characters Van-royena Sersalisia in tube orifice just below tube orifice in middle of the tube near the base Beccariella Beccariella E Style pubescent glabrous Beccariella Beccariella C Flowers Beccariella Beccariella A Higher leaf venation Van-royena Sersalisia Pichonia Pichonia Magodendron Niemeyera antiloga Magodendron Niemeyera antiloga Niemeyera Niemeyera Pycnandra Pycnandra Planchonella Planchonella with stigmatic areas simple cotyledons foliaceous, radicle exserted and endosperm present cotyledons plano-convex, radicle included and endosperm absent cotyledons plano-convex, radicle exserted and endosperm absent Fig. 3. Eight morphological characters of diagnostic value mapped on a condensed generic phylogeny of Chrysophylloideae (Sapotaceae) present in Oceania and Southeast Asia. Three seed characters are mapped in F. Black lines represent an equivocal state. Embedded triangles or lines in different colours represent taxa with homoplasious characters (see text). ◄ Fig. 2. Maximum clade credibility tree obtained from the BEAST analysis of nuclear sequences of Chrysophylloideae (Sapotaceae) from Ocea­ nia and Southeast Asia. Currently accepted names are colour­coded according to the legend. Posterior probabilities (PP; above) and parsimony jackknifing values (JK; below) are found along the branches. Nodes with support below PP 0.8 and JK 50 are collapsed, except for the estimated relationship of Van-royena. Three subclades (D1–D3) within Planchonella, identified by Swenson & al. (2007b), are marked with arrows. The outgroup Ecclinusa is pruned from the figure. TAXON 62 (4) • August 2013: 746–770 Swenson & al. • Chrysophylloideae in Oceania and SE Asia the condensed phylogeny show high or full congruence with the identified groups. We believe that we have now arrived at a stage where unique character combinations can be used to identify natural groups within Chrysophylloideae present in Oceania and Southeast Asia. Resurrection of Amorphospermum. — Niemeyera and Amorphospermum F. Muell. were originally described with one species each, N. prunifera and A. antilogum F. Muell. (Mueller, 1870), hence, these species are the two generi­types. The genera were described as close relatives, Niemeyera being distinguished by its berry­like fruit and thin seed coat (testa) in contrast to Amorphospermum with its drupe­like fruit and thick seed coat. Both genera were later united with Chrysophyllum (Vink, 1958), but Aubréville (1964) resurrected them in his system of classification, accepting two species in each genus. By contrast, Pennington (1991) accepted Niemeyera but not Amorphospermum, and considered the seed coat differences to be merely of specific importance. In fact, Niemeyera sensu Pennington was an unnatural assemblage of Australian species (now in Niemeyera) and seven taxa from New Caledonia (now Pycnandra; Swenson & Munzinger, 2009, 2010a, c). Niemeyera antiloga, a species confined to the rainforest of Queensland, was unsatisfactorily accommodated in Niemeyera, because phylogenetic analyses of nuclear sequences grouped it with Van-royena, in conflict with combined morphological and molecular data, which grouped it with other species of Niemeyera (Swenson & al., 2007a). The current phylogenetic study lends strong support to N. antiloga being the sister species of Niemeyera plus Pycnandra. Our study demonstrates that the cir­ cle is now closed and we are back to the generic notion Mueller (1870) suggested over 140 years ago. Therefore, we propose that Amorphospermum is resurrected, presently as a monotypic genus. Apart from seed coat differences, Amorphospermum is readily distinguished based on leaf characters. The texture is never translucent, the upper surface is glossy green while the lower is paler with a persistent indument, and the tertiary ve­ nation is parallel (Fig. 1B). Species of Niemeyera have leaves of similar colour on both surfaces, are usually glabrescent below, and have horizontal or oblique tertiary leaf venation (Fig. 1A). Other floral and fruiting characters of Amorphospermum and Niemeyera share many similarities. Resurrection of Pleioluma. — Beccariella is strongly sup­ ported as an independent lineage with maximum Bayesian and jackknife support. This relationship is fully congruent with ear­ lier findings (Bartish & al., 2005; Swenson & al., 2007a), and Clade C of Triono & al. (2007). The position within the Australa­ sian Chrysophylloideae is unambiguous but its sister relationship receives only moderate jackknife support. The clade, however, is readily identified with a character combination of (i) leaves with areolate venation, (ii) sepals that are pubescent on both surfaces, (iii) presence of staminodes, (iv) stamens inserted in the middle of the corolla tube or near the base, (v) style with stigmatic areas, and (vi) seeds with foliaceous cotyledons, exserted radicle, and endosperm (Fig. 3). The genus currently contains about twenty species and another seven species (Planchonella firma (Miq.) Dubard, P. lamprophylla (K. Krause) H.J. Lam, P. ledermannii (K. Krause) H.J. Lam, P. moluccana (Burck) H.J. Lam, Pouteria 756 gillsonii Vink, P. richardii (F. Muell.) Baehni, P. wandae Vink) are here recovered in this clade and need to be transferred to it, but the name Beccariella is a later homonym and cannot be used (Swenson & Tehler, 2009; Brummitt, 2011b). When Pierre (1890) described Beccariella in Sapotaceae he was probably unaware of the fact that the name was already occupied for a fungal genus from Borneo. Hence, Beccariella Pierre became a later homonym and illegitimate already at pub­ lication. Subsequent classification systems like Herrmann­Erlee & Lam (1957), Van Royen (1957), Baehni (1965), and Pennington (1991) have not used Beccariella or identified the assemblage as a natural group. In contrast, Aubréville (1962) resurrected the genus and designated B. sebertii (included in this study) as the generic type, and since then the name has been used in New Caledonia (Aubréville, 1964, 1967), but not in Australia or New Guinea. Swenson & Tehler (2009) addressed this nomenclatural problem and suggested conserving Beccariella Pierre (Sapota­ ceae) against the rarely used name Beccariella Ces. (Podoscy­ phaceae), a proposal the Nomenclatural Committee for Vascular Plants was unable to agree upon (Brummitt, 2011b). Thus, spe­ cies belonging to Beccariella (or that clade) are currently left in limbo and need to be accommodated under a valid name. Several of the proposed Sapotaceae genera (Albertisiella Pierre ex Aubrév., Bureavella Pierre, Iteiluma Baill., Peuceluma Baill., Pyriluma Aubrév.) in Australasia are polyphyletic or embedded in Planchonella (Swenson & al., 2007a, b). Some generic names are still in synonymy with Pouteria (Penning­ ton, 1991; Govaerts & al., 2001) and could be used instead of Beccariella if the generic type is demonstrated to be a member of this clade. However, three generi­types are here recovered in Planchonella and cannot be used: Beauvisagea that is united with Pouteria maclayana (Govaerts & al., 2001), Fontbrunea represented by Pouteria malaccensis, and Blabeia represented by Planchonella endlicheri (Fig. 2). Three generic names re­ main to be explored: Krausella, Pleioluma, and Wokoia Baehni. The genus Krausella was described by Lam (1932) and believed to include four to six species from New Guinea, but much of the studied material was incomplete or even sterile (Herrmann­Erlee & Lam, 1957). The generic type K. polyneura (K. Krause) H.J. Lam is currently classified as Pouteria multinervis T.D. Penn. (see Pennington, 1991: 202). After receiving permission from Kew Gardens, we removed a leaf fragment from the type collection of K. polyneura and amplified most of ITS and ETS (unsuccessful with RPB2), as well as all three markers for K. patentinervia (K. Krause) Erlee. These two species are embedded within Planchonella, sister to P. torricellensis (K. Schum.) H.J. Lam (Fig. 2). In fact, the sequences of K. polyneura and K. patentinervia are identical. We are confident that both species are members of Planchonella and not Beccariella (or any other genus) since, in addition, the leaf venation is not areolate, the sepals are glabrous inside, stami­ nodes are present, stamens are inserted below the tube orifice, and the styles possess stigmatic areas. Thus, Krausella is here united with Planchonella. Pouteria rhopalocarpa P. Royen was described from New Guinea, but its status as a new genus was in doubt because of a 3­merous flower, staminodes, and a peculiar fruit (Van Version of Record (identical to print version). TAXON 62 (4) • August 2013: 746–770 Swenson & al. • Chrysophylloideae in Oceania and SE Asia Royen, 1959). In any event, Baehni (1964) described Wokoia and suggested a close relationship to the Malagasy genus Tsebona Capuron, a member of tribe Omphalocarpeae sensu Pennington (1991), which is polyphyletic and subsumed in Chrysophylloideae (Swenson & Anderberg, 2005). However, from the morphological description (Van Royen, 1959; Vink, 2002) and the generic framework here proposed, this species is clearly a member of Pichonia. The leaf venation is areolate, sepals are glabrous on the inside at the base but tomentose on the upper part, flowers have staminodes, anthers are inserted in the tube orifice, styles are simple without clear stigmatic areas, and the seeds have plano­convex cotyledons, an included radicle and lack endosperm. We therefore unite Wokoia with Pichonia, which has nomenclatural priority. The remaining option to accommodate the species of Beccariella is the genus Pleioluma (Baehni, 1965). Pleioluma, first described as a section of Sersalisia (Baillon, 1891b) and later transferred to a section of Sideroxylon L. (Engler, 1897), was based on Sideroxylon crebrifolium (Baill.) Engl. and has never been used in any classification. In fact, Baehni (1965) simultane­ ously transferred this species to Pouteria (p. 59) and in the same publication (p. 150) accepted it at generic level as Pleioluma with uncertain relationship. Regardless of this confusion (his publication appeared after he had deceased), we demonstrate that Sideroxylon (Beccariella) crebrifolium is deeply nested in the clade called Beccariella and we suggest, in accordance with Article 11.3 of McNeill & al. (2012), that Pleioluma is used for this genus since it is the earliest legitimate name available. In­ deed, it is an appropriate name since “pleio­” is of Greek origin and means “more”, whereas “luma” (of unclear origin) means “cavity”, and could likely refer to the areolate leaf venation. Problems in Planchonella. — Planchonella is strongly supported as a monophyletic group. The genus can be charac­ terized by non­areolate leaf venation, sepals that are generally tomentulose on the outer surface but glabrous inside, flowers with staminodes and stamens inserted just below the tube ori­ fice, a style with stigmatic areas, and seeds that have foliaceous cotyledons, an exserted radicle and an endosperm. Exceptions to this character combination are few. Swenson & al. (2007b) accepted sixty species in Planchonella and another six taxa are here recovered within the genus. Based on the above diagnostic character combination and available herbarium material, it is safe to transfer several species that have not been available for molecular analysis (see below). Hence, Planchonella contains approximately 110 known species, of which some are still to be described, especially from New Caledonia. Planchonella baillonii with its tubular, rather than urn­ shaped, flowers is again found as sister to the rest of the genus with strong to moderate support (PP 1; JK 88). We believe the species represents an old evolutionary lineage, the sole extant member confined to New Caledonia. Planchonella baillonii is also the type species of Iteiluma, a name rejected in favour of Planchonella (Swenson & Morat, 2008; Brummitt, 2011a), but considering its phylogenetic position it is possible to recog­ nize a monotypic genus. However, we reject this solution since P. baillonii possesses the entire set of characters diagnostic for Planchonella. Chrysophyllum bakhuizenii was described from New Guinea by Van Royen (in Vink, 1958) as a close relative of C. gordoniifolium S. Moore (now in Pycnandra) from New Caledonia, because of similar morphology and alleged lack of staminodes. However, examination of one bud of the original material reveals presence of staminodes and the remaining morphology falls within the concept of Planchonella. In addi­ tion our analyses clearly recover it within the genus. Planchonella sandwicensis is distributed across all main islands of Hawaii forming the north­eastern outpost of the ge­ neric distribution in the Pacific. Triono & al. (2007) used two accessions that were recovered as sisters, and found sister to the entire subfamily Chrysophylloideae, casting doubt on whether this species is a member of Planchonella or even the subfamily. They further proposed that P. sandwicensis should be sepa­ rated and recognized on generic level. Our analysis of three accessions from Kauai and Oahu found maximum support of monophyly and the species is retained inside Planchonella, with close affinity to taxa from Fiji, i.e., P. smithii (P. Royen) A.C. Sm. and P. umbonata (P. Royen) A.C. Sm. This result is consistent with earlier findings using nrDNA and morphology (Swenson & al., 2007a, b). The only reasonable explanation for Triono & al. (2007) reporting a relationship outside the subfamily is that they possibly sequenced material of Sideroxylon polynesicum (Hillebr.) Smedmark & Anderb., a species that is somewhat sim­ ilar in leaf venation, but belongs to Sapotoideae, not Chrysophyl­ loideae (Smedmark & al., 2006; Smedmark & Anderberg, 2007). Scattered over the Pacific islands is a polymorphic complex of Planchonella that has puzzled earlier botanists. Lam (1942) accepted two varieties of Planchonella costata (Endl.) Pierre, a classification that Van Royen (1957) amended and extended to include another two varieties. Smith (1981) in his Flora of Fiji accounted for nine species of Planchonella, in which he treated all former varieties as separate species (P. grayana, P. smithii, P. umbonata) and relegated P. costata to be restricted to New Zealand and Norfolk Island. The present sample includes six accessions from Fiji (P. membranacea H.J. Lam, P. smithii, P. umbonata, P. vitiensis Gillespie, P. “Munzinger 6490”, and P. “Munzinger 6514”), as well as P. costata from New Zealand and seven accessions of P. grayana and P. tahitensis gathered from Futuna in the west to French Polynesia in the east (but not from Fiji). All of these taxa, except for P. grayana and P. tahitensis, are scattered throughout the Planchonella phylogeny and their closest relatives are usually from another area. Hence, Smith’s (1981) species concept is easy to reconcile with the molecular phylogeny. The two species Planchonella grayana and P. tahitensis have caused confusion as to whether one, two, or several taxa should be recognized (Grant & al., 1974; Smith, 1981; J.­F. Butaud, pers. comm.). In Fiji, P. grayana occurs from the coast to about 400 m altitude and usually forms trees 6–14 m tall, but can be stunted to no more than one meter tall if growing on exposed sites (Smith, 1981). In French Polynesia, P. tahitensis occurs as a small tree or up to 20 m tall, from sea level to 700 m altitude in Raiatea and Tahiti, on calcareous or various volcanic soils, often in me­ sic to wet forests (Butaud & al., 2011; Pouteau & al., 2012). All seven accessions analysed here are recovered in a single, strongly Version of Record (identical to print version). 757 TAXON 62 (4) • August 2013: 746–770 Swenson & al. • Chrysophylloideae in Oceania and SE Asia supported clade, with some support for internal resolution, and all have a unique triple­T­insertion in the ITS sequence (positions 788–790). The clades, however, are incongruent with species or area (archipelago) of origin. No qualitative morphological characters differ between the suspected taxa. Both differ from all congeners in that the stamens are inserted near the base of the corolla tube (not below the tube orifice). The small greenish (Fig. 1J) or somewhat whitish flowers are bisexual or female, which possibly renders the species gynomonoecious, a sexual system found in Planchonella (Méndez & Munzinger, 2010). Variable characters are restricted to the size of the foliage and the fruit. For example, leaves of the sample from Futuna are elliptic and large (16–25 × 7–10 cm) in comparison to narrowly elliptic and small (7–11 × 2–3 cm) in the closely related sample from Tahiti (P. grayana var. florencei Fosberg). Hence, we are confident that this is one variable, widely distributed species, adapted to different soils, humidity and altitudes, but we do not exclude the possibility that a subspecies concept could be appli­ cable. In any event, the correct name to be used is P. tahitensis. Planchonella linggensis is a widely distributed species in Malesia and many islands in the Pacific. It grows in fairly different habitats, such as low altitudinal forests on calcareous soil in Alofi (Wallis and Futuna) and moist rainforests at about 800 m altitude on ultramafic substrate in New Guinea. Previous phylogenetic analyses have rendered this species paraphyletic, possibly conspecific with P. chartacea, and it has been sug­ gested to form a complex of similar species with unclear spe­ cies limits (Swenson & al., 2007a, b). Here, we included three accessions of P. linggensis, one each from Futuna, New Guinea and Vanuatu. All accessions group together with maximum support but are intermingled with P. chartacea and P. solida (Fig. 2, Clade D2). A cursory inspection of the accessions used reveals morphological similarities but also differences, such as presence or absence of indument on different organs. A molecular study of a wider sample from different areas, soil types and altitudes, together with a close examination of the morphology, ought to reveal species limits within this clade. Unplaced taxa. — Our present findings make significant progress towards an understanding of the natural groups within subfamily Chrysophylloideae in Oceania and Southeast Asia, but there are several unplaced taxa that are still unavailable for molecular analysis and are of special interest. We acknowledge that some of these problems may remain unresolved because the plants are known from few old collections, often treated with poison such as mercuric chloride. Because of large­scale deforestation, the relationships among these taxa may never be known. Here, we mention three examples. Boerlagella spectabilis (Miq.) H.J. Lam, the generic type of the family Boerlagellaceae (Lam, 1925), is still an enigmatic taxon. It was originally described from only one leaf and its vein characters, accompanied by a discussion of the axillary, 5­celled fruit with one seed that has an exserted radicle. This is frag­ mented information, but Dubard (1912), as well as Pennington (1991), associated the species with Planchonella (or Pouteria sect. Oligotheca (A. DC.) Baehni). Despite the incomplete ma­ terial, these characters are in full agreement with the character combination of Planchonella. Our careful inspection of the 758 available leaf and fruit (type material) reveals the absence of areolate venation and an overall venation pattern that is similar to P. torricellensis, a species we predict it is closely related to. One species from New Guinea, currently classified as Planchonella kaernbachiana (Engl.) H.J. Lam, has a charac­ ter combination that is a mixture between Pichonia (sepals pubescent inside, stamens in the tube orifice and simple style) and Planchonella (non­areolate venation, foliaceous cotyledons and an endosperm). It is unclear if this taxon is simply another example of the homoplasy typical in Sapotaceae, a taxon of mixed collections, or if it represents yet another evolutionary lineage in the area. Pouteria celebica Erlee from Sulawesi (Celebes), collected in rainforest at 800 m altitude, is known only from incomplete type material (floral buds). The overall morphology is very similar to the frequently cultivated Neotropical P. multiflora (A. DC.) Eyma. However, the latter has four sepals (Pennington, 1990) rather than five as in P. celebica (Herrmann­Erlee & Van Royen, 1957). Future research will tell if this species represents an early introduction or an extreme case of parallel evolution. Towards a natural classification. — The present analyses reconcile earlier findings (Bartish & al., 2005; Swenson & An­ derberg, 2005; Swenson & al., 2007a) and strengthen the conclu­ sion that there are nine lineages of Chrysophylloideae in Oceania and Southeast Asia (ten with Xantolis) that warrant formal rec­ ognition. Below, we provide a key to the genera using fertile and leaf material. In addition, each recognized genus is enumerated with its synonyms, diagnostic character combination, number of recognized species, distribution, and necessary combinations that render each genus monophyletic. Homotypic and heterotypic synonyms are cited for genera, but only the basionym and ho­ motypic synonyms are cited for species in order to save space. Type citations follow the text on the label, including geographic coordinates if given, or the original description if the type mate­ rial has not been viewed (n.v.). For more complete nomenclature, see Govaerts & al. (2001) and the World Checklist at the Royal Botanical Gardens, Kew (http://apps.kew.org/wcsp/home.do). Ongoing revisional work in Australia appears in Flora of Australia, but the volume of Sapotaceae is currently unpublished (L. Jessup, pers. comm.). Typification of Australian species, if needed, will appear in this Flora. Typification of Pleioluma species in New Caledonia will appear in an upcoming revision we aim to publish in a near future. A summary of the proposed classification, including new combinations, is shown in Fig. 4. Key to the genera of Chrysophylloideae in Southeast Asia and Oceania (excluding Xantolis) 1. Staminodes absent ............................................ 2 1. Staminodes present ........................................... 4 2. Flowers usually along the branches; cotyledons red (or pinkish); New Caledonia ....................... Pycnandra 2. Flowers axillary; cotyledons white; Australia ........... 3 3. Leaves below pubescent, not translucent; leaf venation brochidodromous ...................... Amorphospermum 3. Leaves below glabrous or glabrescent (except for veins), ± translucent; leaf venation eucamptodromous .. Niemeyera Version of Record (identical to print version). TAXON 62 (4) • August 2013: 746–770 Swenson & al. • Chrysophylloideae in Oceania and SE Asia Pleioluma moluccana Pleioluma macrocarpa Pleioluma papyracea Pleioluma singuliflora Pleioluma xerocarpa Pleioluma brownlessiana Pleioluma queenslandica “Pleioluma acutifolia” Pleioluma longipetiolata M2264 Pleioluma longipetiolata M2911 Pleioluma baueri Pleioluma rubicunda Pleioluma Munzinger2581 Pleioluma firma Pleioluma wandae Pleioluma gillisonii Pleioluma lamprophylla Pleioluma ledermannii Pleioluma laurifolia Pleioluma Takeuchi25691 Pleioluma sebertii Pleioluma vieillardii Pleioluma novocaledonica Pleioluma lucens Pleioluma lasiantha Pleioluma crebrifolia “Pleioluma belepensis” Pleioluma balansana Pleioluma balansana Van-royena castanosperma Sersalisia sessiliflora Sersalisia sericea Sersalisia luzoniensis Pichonia occidentalis Pichonia deplanchei Pichonia lecomtei Pichonia daenikeri Pichonia balansana Pichonia grandiflora Pichonia balansae Pichonia dubia S918 Pichonia dubia M3065 Magodendron mennyae Amorphospermum antilogum Niemeyera whitei Niemeyera Ford2429 Niemeyera prunifera Niemeyera chartacea Pycnandra canaliculata Pycnandra acuminata “Pycnandra wagapensis” “Pycnandra filipes” “Pycnandra grandifolia” “Pycnandra goroensis” Pycnandra ouaiemensis Pycnandra comptonii Pycnandra blaffartii Pycnandra controversa Pycnandra vieillardii Pycnandra griseosepala Pycnandra neocaledonica Pycnandra kaalaensis Pycnandra decandra Pycnandra belepensis Pycnandra bracteolata Pycnandra glabella Pycnandra sessilifolia Pycnandra francii Pycnandra schmidii Pycnandra pubiflora Pycnandra caeruleilatex Pycnandra sessiliflora Pycnandra sarlinii Pycnandra deplanchei Pycnandra fastuosa Pycnandra carinocostata Pycnandra viridiflora Pycnandra blanchonii Pycnandra gordoniifolia Pycnandra paucinervia Pycnandra atrofusca Pycnandra benthamii Pycnandra glaberrima Pycnandra balansae Pycnandra cylindricarpa Pycnandra linearifolia A B C D E F F Planchonella Planchonella baillonii Planchonella malaccensis Planchonella maclayana Planchonella linggensis Vanuatu Planchonella chartacea Australia Planchonella linggensis Futuna Planchonella garcinioides New Guinea Planchonella linggensis New Guinea Planchonella xylocarpa Planchonella xylocarpa Planchonella stellibacca Planchonella maingayi Planchonella sphaerocarpa Planchonella arnhemica Planchonella pohlmaniana Planchonella asterocarpon Planchonella membranacea Planchonella dothioensis Planchonella thiensis Planchonella laetervirens Planchonella mandjeliana Planchonella cauliflora Planchonella luteocostata Planchonella amieuana Planchonella endlicheri Planchonella ericiflora Planchonella Pillon150 Planchonella kaalaensis Planchonella koumaciensis Planchonella Munzinger6150 Planchonella minutiflora Planchonella pronyensis Planchonella rufocostata Planchonella saligna Planchonella crassinervia Planchonella roseoloba Planchonella skottsbergii Planchonella kuebiniensis Planchonella howeana Planchonella myrsinifolia Planchonella cotinifolia Planchonella eerwah Planchonella costata Planchonella australis Planchonella myrsinoides Planchonella euphlebia Planchonella Ile Yande Planchonella lauracea Planchonella glauca Planchonella lamii Planchonella clemensii Planchonella obovata Planchonella mindanaensis Planchonella Munzinger6514 Fiji Planchonella vitiensis Fiji Planchonella aneityensis Vanuatu Planchonella tahitensis Raiatea Planchonella tahitensis Tuamotu Planchonella tahitensis Tahiti Planchonella tahitensis Alofi Planchonella tahitensis Futuna Planchonella tahitensis Australs Planchonella tahitensis Tahiti Planchonella pullenii Planchonella Armstrong316 Planchonella Munzinger6490 Planchonella smithii Planchonella umbonata Planchonella sandwicensis K119 Planchonella sandwicensis Okamoto Planchonella sandwicensis M3227 Planchonella cyclopensis P1365 Planchonella anteridifera Planchonella thyrsoidea Planchonella cyclopensis T25495 Planchonella dulcitan Planchonella torricellensis Futuna Planchonella torricellensis Alofi Planchonella forbesii Planchonella polyneura Fig. 4. Summary of proposed classification and necessary combinations of Oceanian and Southeast Asian Chrysophylloideae (Sapotaceae) based on BEAST and jackknife analyses of nrDNA sequences. Accepted genera are (A) Pleioluma, (B) Sersalisia, (C) Pichonia, (D) Niemeyera, (E) Pycnandra, (F) Planchonella, and the small genera Amorphospermum, Magodendron and Van-royena. Types of generic names are indicated in bold. Recently discovered species appear with collector and number, whereas species under revision and are not yet published appear in quota­ tion marks. Version of Record (identical to print version). 759 TAXON 62 (4) • August 2013: 746–770 Swenson & al. • Chrysophylloideae in Oceania and SE Asia 4. 4. 5. 5. 6. Tertiary or quaternary leaf venation areolate ............ 5 Tertiary or quaternary leaf venation never areolate ..... 8 Flowers born on trunk ...................... Magodendron Flowers axillary ............................................... 6 Stamens inserted in lower half of corolla tube; foliaceous cotyledons .......................................... Pleioluma 6. Stamens inserted in or just below corolla tube orifice; cot­ yledons plano­convex ........................................ 7 7. Flowers cup­shaped; style simple ................ Pichonia 7. Flowers narrowly campanulate or tubular; style with sev­ eral stigmatic areas ................................ Sersalisia 8. Stamens inserted just below corolla tube orifice; foliaceous cotyledons ...................................... Planchonella 8. Stamens inserted near middle of corolla tube; plano­convex cotyledons ........................................ Van-royena Amorphospermum F. Muell., Fragm. 7: 112. 1870 – Type: Amorphospermum antilogum F. Muell., Fragm. 7: 113. 1870 ≡ Lucuma amorphosperma F.M. Bailey, Queensl. Fl. 3: 955. 1900, nom. illeg. ≡ Sersalisia antiloga (F. Muell.) Domin in Biblioth. Bot. 89: 508. 1928 ≡ Chrysophyllum antilogum (F. Muell.) Vink in Blumea 9: 65. 1958 ≡ Niemeyera antiloga (F. Muell.) T.D. Penn., Gen. Sapotac.: 235. 1991 – Lectotype (designated by Vink, 1958): Australie, Queensland, Thozet s.n., 1870 (MEL n.v.; isolectotype, P!). Diagnostic character combination. – Leaves pubescent below, not translucent; tertiary leaf venation parallel, higher venation non­areolate; sepals glabrous inside; flowers axillary, cup­shaped; stamens inserted in corolla tube orifice; stami­ nodes absent; style simple; cotyledons plano­convex, white; radicle included in cotyledons; endosperm absent. A single species in forests of eastern Australia, from New South Wales to Papua New Guinea. There seems to exist an­ other, as yet undescribed species (L. Jessup, pers. comm.). Magodendron Vink in Nova Guinea, n.s., 8: 124. 1957 – Type: Magodendron venefici (C.T. White & W.D. Francis) Vink in Nova Guinea, n.s., 8: 125. 1957 ≡ Achradotypus venefici C.T. White & W.D. Francis in Proc. Roy. Soc. Queensland 38: 254. 1927. Diagnostic character combination. – Leaf venation areo­ late; sepals glabrous inside; flowers born on trunk, cup­shaped; stamens inserted in corolla tube orifice; staminodes present, irregularly incised; style with stigmatic areas; cotyledons plano­convex with a radicle extending below cotyledon com­ missure; endosperm absent. Two species confined to New Guinea (Vink, 1995). Niemeyera F. Muell., Fragm. 7: 114. 1870, nom. cons., Taxon 9: 78. 1960 – Type: Niemeyera prunifera (F. Muell.) F. Muell., ≡ Chrysophyllum pruniferum F. Muell., Fragm. 6: 26. 1867. Diagnostic character combination. – Leaves glabrous or glabrescent below, usually translucent; tertiary leaf venation oblique, non­areolate; sepals glabrous inside; flowers axillary, cup­shaped; stamens inserted in corolla tube orifice; stami­ nodes absent; style simple; cotyledons plano­convex, white; radicle included in cotyledons; endosperm absent. 760 Three described species and one undescribed species (L. Jessup, pers. comm.), all confined to Australia. No modern treatment is available, but will appear in Flora of Australia. Pichonia Pierre, Not. Bot.: 22. 1890 ≡ Epiluma Baill., Hist. Pl. 11: 287. 1891, nom. illeg. (superfl.) – Type: Pichonia balansana Pierre, Not. Bot.: 23. 1890 (≡ Epiluma pyriformis Baill., nom. illeg. (superfl.)). = Rhamnoluma Baill., Hist. Pl. 11: 287. 1891 – Type: Rhamnoluma novocaledonica (Engl.) Baill., Hist. Pl. 11: 288. 1891 ≡ Lucuma novocaledonica Engl. in Bot. Jahrb. Syst. 12: 516. 1890. = Wokoia Baehni in Arch. Sci. 17: 78. 1964 – Type: Wokoia rhopalocarpa (P. Royen) Baehni ≡ Pouteria rhopalocarpa P. Royen in Nova Guinea, n.s., 10: 134. 1959. = Arnanthus Baehni in Arch. Sci. 17: 78. 1964 – Type: Arnanthus balansae (Baill.) Baehni ≡ Chrysophyllum balansae Baill. in Bull. Mens. Soc. Linn. Paris 2: 901. 1891, nom. illeg. Diagnostic character combination. – Tertiary leaf vena­ tion laxly reticulate, higher venation areolate; sepals usually pubescent inside in upper part or sometimes glabrous; flow­ ers usually axillary, cup­shaped; stamens inserted in corolla tube orifice; staminodes present, generally entire; style sim­ ple; cotyledons plano­convex, radicle included in cotyledons; endosperm absent. Twelve known species, of which seven are endemic to New Caledonia (Swenson & Munzinger, 2012) and five to New Guinea, one reaching as far east as the Solomon Islands. Pichonia hochreutineri (H.J. Lam) Swenson, comb. nov. ≡ Planchonella hochreutineri H.J. Lam in Boissiera 7: 92. 1943 ≡ Pouteria hochreutineri (H.J. Lam) H.J. Lam in Blumea 5: 337. 1943 – Holotype: New Guinea, Boridi, ca. 1400 ft alt., 9.IX.1935, C.E. Carr 13023 (L!; isotypes BM!, K!, SING!). Distribution: New Guinea. Pichonia rhopalocarpa (P. Royen) Swenson, comb. nov. ≡ Pouteria rhopalocarpa P. Royen in Nova Guinea, n.s., 10: 134. 1959 ≡ Wokoia rhopalocarpa (P. Royen) Baehni in Arch. Sci 17: 78. 1964 – Holotype: West New Guinea, Manokwari District, Oransbari, alt. 50 m, 11.X.1955, R.P. Mangold 51 (L!; isotype MAN n.v.). Distribution: New Guinea. Planchonella Pierre, Not. Bot.: 34. 1890, nom. cons., Taxon 57: 1013. 2008 – Type: Planchonella obovata (R. Br.) Pierre, Not. Bot.: 36. 1890 ≡ Sersalisia obovata R. Br., Prodr.: 529. 1810. = Iteiluma Baill. in Bull. Mens. Soc. Linn. Paris 2: 892. 1890, nom. rej., Taxon 57: 1013. 2008 – Type: Iteiluma baillonii (Zahlbr.) Baill., Hist. Pl. 11: 286. 1891 ≡ Lucuma baillonii Zahlbr. in Oesterr. Bot. Z. 39: 287. 1889 ≡ Poissonella Pierre, Not. Bot.: 29. 1890. = Peuceluma Baill. in Bull. Mens. Soc. Linn. Paris 2: 895. 1890, nom. rej., Taxon 57: 1013. 2008 – Type: Peuceluma pinifolia Baill. Version of Record (identical to print version). TAXON 62 (4) • August 2013: 746–770 Swenson & al. • Chrysophylloideae in Oceania and SE Asia = Beauvisagea Pierre, Not. Bot.: 15. 1890 – Type: Beauvisagea pomifera Zippel ex Baill., Hist. Pl. 11: 288. 1891. = Bureavella Pierre, Not. Bot.: 16. 1890 – Type: Bureavella maclayana (F. Muell.) Pierre ≡ Bassia maclayana F. Muell., Vict. Chem. & Druggist 7 (Apr.): 93. 1885. = Fontbrunea Pierre, Not. Bot.: 31. 1890 – Type: Fontbrunea malaccensis (C.B. Clarke) Pierre, Not. Bot.: 32. 1890 ≡ Sideroxylon malaccense C.B. Clarke in Hooker, Fl. Brit. India 3: 537. 1882. = Krausella H.J. Lam in Nova Guinea 14: 566. 1932 – Type: Krausella polyneura (K. Krause) H.J. Lam in Nova Guinea 14: 567. 1932 ≡ Sideroxylon polyneurum K. Krause in Bot. Jahrb. Syst. 58: 475. 1923. = Albertisiella Pierre ex Aubrév. in Adansonia, n.s., 4: 42. 1964 – Type: Albertisiella novoguineensis (Vink) Aubrév. ≡ Chrysophyllum novoguineense Vink in Blumea 9: 67. 1958. = Blabeia Baehni in Arch. Sci. 17: 77. 1964 – Type: Blabeia endlicheri (Montrouz.) Baehni ≡ Sapota endlicheri Montrouz. in Mém. Acad. Roy. Sci. Lyon, Sect. Sci. 10: 228. 1860. = Pyriluma Aubrév., Fl. Nouv.­Caléd. 1: 83. 1967 – Type: Pyriluma sphaerocarpa (Baill.) Aubrév., Fl. Nouv.­Caléd. 1: 84. 1967 ≡ Sideroxylon sphaerocarpa Baill. in Bull. Mens. Soc. Linn. Paris 2: 891. 1890. Diagnostic character combination. – Tertiary leaf vena­ tion usually reticulate or oblique, higher venation non­areolate; sepals glabrous inside or rarely pubescent to varying degree; flowers usually axillary, urn­shaped or rarely tubular; stamens inserted just below corolla tube orifice, rarely in middle of tube or near base; staminodes present, usually entire; style with stigmatic areas; cotyledons foliaceous with a radicle extending below cotyledon commissure; endosperm present. Planchonella is the largest genus of Chrysophylloideae in the Old World with approximately 110 known species. Several species in New Caledonia and the west Pacific Islands remain to be described (or resurrected). Planchonella is distributed from Thailand and southern China in the north, through Male­ sia, Australia, New Caledonia, and on to the Pacific Islands, reaching French Polynesia and Hawaii. The highest diversity is in New Caledonia (ca. 40 spp.), followed by New Guinea (ca. 30 spp.), and Australia (12 spp.). No modern revision is available, but see Aubréville (1967) for New Caledonia and Swenson & al. (2007b) for an amended generic description. Note. – Planchonella is conserved against Iteiluma and Peuceluma (Swenson & Morat, 2008; Brummitt, 2011a). How­ ever, Pierre (1890) described Planchonella, Beauvisagea, Bureavella, and Fontbrunea in the same publication, i.e., four competing names with equal priority. Swenson & al. (2007a) found Bureavella to be embedded in Planchonella and chose the latter over the former. Since no choice has been made between Planchonella, Beauvisagea, and Fontbrunea, we choose, in ac­ cordance with Article 11.5 in McNeill & al. (2012), Planchonella over Beauvisagea and Fontbrunea, as the latter two have never (or very rarely) been used, and therefore the choice requires fewer new combinations, retaining nomenclatural stability. Planchonella forbesii (S. Moore) H.J. Lam in Bull. Jard. Bot. Buitenzorg, ser. 3, 7: 217. 1925 ≡ Sideroxylon forbesii S. Moore in J. Bot. 61(Suppl.): 30. Jun 1923 ≡ Pouteria forbesii (S. Moore) Baehni in Candollea 9: 408. 1942 ≡ Krausella forbesii (S. Moore) H.J. Lam in Boissiera 7: 92. 1943 – Holotype: New Guinea, Sogeri Region, Mt. Wori­ Wori, alt. 5000 ft, 1885–6, H.O. Forbes 756 (MEL n.v.; isotypes E!, FI n.v, L!, K!). = Sideroxylon patentinervium K. Krause in Bot. Jahrb. Syst. 58: 474. Nov 1923 ≡ Krausella patentinervia (K. Krause) Erlee in Blumea 8: 448. 1957 – Lectotype (designated by Herr­ mann­Erlee & Lam, 1957): Kaiser­Wilhelmsland [New Guinea], Kani Geberges, 1000 m alt., 31 October 1907, R. Schlechter 16746 (P!). Distribution: New Guinea. Note. – We used an accession determined as Krausella patentinervia. A careful examination of the types and additional material reveals that the leaf characters used by Herrman­Erlee & Lam (1957) to distinguish the above species are overlapping and the two are better conceived as conspecific, but different from the generic type K. polyneura. The name Sideroxylon forbesii was published a few months before S. patentinervium and has priority. We mention this here in order to avoid an unnecessary combination. Planchonella garcinioides (K. Krause) Swenson, comb. nov. ≡ Sideroxylon garcinioides K. Krause in Bot. Jahrb. Syst. 58: 477. 1923 ≡ Lucuma garcinioides (K. Krause) H.J. Lam in Nova Guinea 14: 568. 1932 ≡ Pouteria garcinioides (K. Krause) Baehni in Candollea 9: 338. 1942 – Lectotype (designated by Vink, 2002): Neu Guinea, Sepik­Gebiet, im Alluvial­wald am Sepik, beim Lager Malu, alt. 20–40 m, I.1913, Ledermann 10728 (L!) (holotype B †). = Planchonella solida P. Royen in Blumea 8: 404, 433. 1957 – Holotype: New Guinea, Yalu, near Lae, 5.III.1950, D. Fryar 3344 (SING!; isotypes L!, LAE n.v.). Distribution: New Guinea. Note. – Herrmann­Erlee & Van Royen (1957), in their re­ vision of Pouteria, repeated the original Latin description of Pouteria garcinioides since no material was available and the type in Berlin was destroyed during World War II. Simultane­ ously, Van Royen (1957) described Planchonella solida, but Wim Vink (Leiden) united these two species in an unpublished record. We have used an accession of P. solida, but this species should be united with Sideroxylon garcinioides, a name that has priority but needs to be combined with Planchonella. Planchonella lamii P. Royen in Blumea 8: 398, 432. 1957 – Holotype: Amboina, near Sirimau, 450 m alt., 11.II.1930, NIFS bb 14283 (L!). = Chrysophyllum bakhuizenii P. Royen in Blumea 9: 74. 1958 – Holotype: New Guinea, Alola, alt. 2000 m, C.E. Carr 14159 (L!; isotype BM n.v.). Distribution: Maluku Islands, New Guinea. Note. – We sequenced an accession determined as Chrysophyllum bakhuizenii, but an examination of the available mate­ rial of this species and Planchonella lamii shows that they are conspecific and should be united. Version of Record (identical to print version). 761 TAXON 62 (4) • August 2013: 746–770 Swenson & al. • Chrysophylloideae in Oceania and SE Asia Planchonella maclayana (F. Muell.) Swenson, comb. nov. ≡ Bassia maclayana F. Muell. in Vict. Chem. & Druggist 7 (Apr.): 93. 1885 ≡ Illipe maclayana (F. Muell.) F. Muell., Descr. Notes Papuan Pl. 2(6): 12. 1885 ≡ Bureavella maclayana (F. Muell.) Pierre, Not. Bot.: 16. 1890 ≡ Lucuma maclayana (F. Muell.) H.J. Lam in Bull. Jard. Bot. Buiten­ zorg, ser. 3, 7: 22. 1925 ≡ Pouteria maclayana (F. Muell.) Baehni in Candollea 9: 307. 1942 – Type: New Guinea, Miklouho­Maclay (MEL!, P!). Distribution: Widespread in Malesia, Solomon Islands. Note. – Lectotypifying this species is here avoided since the type material in the Melbourne and Paris herbaria are of seed fragments only. Ongoing revisional work for the Flora of Australia may identify additional material that is in better condition. Planchonella macrantha (Merr.) Swenson, comb. nov. ≡ Sideroxylon macranthum Merr. in Publ. Bur. Sci. Gov. Lab. 35: 56. 1906 (“1905”) ≡ Lucuma macrantha (Merr.) H.J. Lam in Bull. Jard. Bot. Buitenzorg, ser. 3, 7: 225. 1925 ≡ Pouteria macrantha (Merr.) Baehni in Candol­ lea 9: 328. 1942 ≡ Bureavella macrantha (Merr.) Aubrév. in Adansonia, n.s., 3: 331. 1963 – Holotype: Philippines, Luzon, Province Bataan, Lamoa River, Mt. Mariveles, March 1905, T.E. Borden 21736 (= Forestry Bureau 2741) (PNH †; isotypes BO!, K!, SING!, US!). Distribution: Philippines to Maluku. Planchonella malaccensis (C.B. Clarke) Swenson, comb. nov. ≡ Sideroxylon malaccense C.B. Clarke in Hooker, Fl. Brit. India 3: 537. 1882 ≡ Fontbrunea malaccensis (C.B. Clarke) Pierre, Not. Bot.: 31. 1890 ≡ Lucuma malaccensis (C.B. Clarke) Dubard in Ann. Mus. Colon. Marseille, sér. 2, 10: 19. 1912 ≡ Pouteria malaccensis (C.B. Clarke) Baehni in Candollea 9: 302. 1942 ≡ Xantolis malaccensis (C.B. Clarke) Baehni in Boissiera 11: 23. 1965 – Holotype: Malaya, 1871, A.C. Maingay 994 (SING!; isotypes K!, L!, P!). Widely distributed: Thailand, Malay Peninsula, Sumatra, Sulawesi, Borneo and New Guinea. Planchonella menait (Vink) Swenson, comb. nov. ≡ Pouteria menait Vink in Blumea 47: 131. 2002 – Holotype: Papua New Guinea, East Sepik Province, Hunstein Range (Mt. Samsai), at the site “Camp 3” on slopes above the main streamcourse, 450 m alt., 04°29′ S, 142°41′ E, 19.VII.1990, W. Takeuchi 6276 (L!; isotype L!). Distribution: New Guinea. Planchonella orkor (Vink) Swenson, comb. nov. ≡ Pouteria orkor Vink in Blumea 47: 134. 2002 – Holotype: New Guinea, Saidor Subdistrict, Naho­Rawa, Budemu, 4150 ft alt., 24.X.1964, C.D. Sayers NGF 21329 (L!; isotypes BM!, LAE n.v.). Distribution: New Guinea. Planchonella paucinervia (Erlee) Swenson, comb. nov. ≡ Pouteria paucinervia Erlee in Blumea 8: 503. 1957 – Holotype: Indonesia, Sumatra, Riouw District, Indragiri, Moeata 762 Pedjanki, 11.IV.1939, P. Buwalda 6503 (L!; isotypes A n.v., BO n.v., PNH!, SING!). Distribution: Malay Peninsula, Sumatra. Planchonella polyneura (K. Krause) Swenson, comb. nov. ≡ Sideroxylon polyneurum K. Krause in Bot. Jahrb. Syst. 58: 475. 1923 ≡ Krausella polyneura (K. Krause) H.J. Lam in Nova Guinea 14: 567. 1932 ≡ Pouteria multinervis T.D. Penn., Gen. Sapotac.: 202. 1991 – Lectotype (designated by Her­ rmann­Erlee & Lam, 1957): Deutsch­Neuguinea, Sepikge­ biet, Ledermann 9054 (K!; isolectotype SING!). Distribution: New Guinea. Planchonella pullenii (Vink) Swenson, comb. nov. ≡ Pouteria pullenii Vink in Blumea 47: 98. 2002 – Holotype: New Guinea, Milne Bay District, Baniara Subdistrict, south of Opanabu village, 149°43′ E, 10°01′ S, 600–700 m alt., 16.VII.1969, A. Kanis 1243 (L!; isotypes A n.v., BRI n.v., CANB n.v., CHR n.v., K n.v., LAE n.v.). Distribution: New Guinea. Planchonella ridsdalei (Vink) Swenson, comb. nov. ≡ Pouteria ridsdalei Vink in Blumea 47: 136. 2002 – Holotype: Philippines, Mindoro, Mt. Halcon area near Paitan, Dulan­ gan Range, 13°12′ N, 121°12′ E, 8.V.1986, C.E. Ridsdale 1695 (L!; isotype K!). Distribution: Philippines. Planchonella stellibacca (J.F. Maxwell) Swenson, comb. nov. ≡ Pouteria stellibacca J.F. Maxwell in Nat. Hist. Bull Siam Soc. 50: 90. 2002 – Holotype: Thailand, Nakhon Nayok Province, Muang District, Khao Yai National Park, 14°24.5′ N, 101°23′ E, Klong Sai area, 760 m alt., 8.III.2001, P. Charoenchai 1024 (CMU n.v.; isotypes A n.v., BHF n.v., CAS n.v., L!). Distribution: Borneo, Thailand. Planchonella villamilii (Merr.) Swenson, comb. nov. ≡ Sideroxylon villamilii Merr. in Philipp. J. Sci., C 10: 59. 1915 ≡ Pouteria villamilii (Merr.) Baehni in Candollea 9: 318. 1942 ≡ Bureavella villamilii (Merr.) Aubrév. in Adansonia, n.s., 3: 331. 1963 – Holotype: Philippines, Luzon, Prov­ ince of Laguna, VI.1913, A. Villamil, Forest Bureau 19762 (PNH, not found; isotype US!). Distribution: Philippines. Planchonella whitmorei (Vink) Swenson, comb. nov. ≡ Pouteria whitmorei Vink in Blumea 47: 142. 2002 – Holotype: Solomon Islands, south Vella Lavella Island, Oula River area, 14.VIII.1968, C. Kotali & al. BSIP 11182 (L!). Distribution: Solomon Islands. Pleioluma (Baill.) Baehni in Boissiera 11: 150. 1965 ≡ Sersalisia sect. Pleioluma Baill., Hist. Pl. 11: 280. Sep–Oct 1891 – Type: Pleioluma crebrifolia (Baill.) Swenson & Munzinger ≡ Lucuma crebrifolia Baill. in Bull. Mens. Soc. Linn. Paris 2: 897. 1891. Version of Record (identical to print version). TAXON 62 (4) • August 2013: 746–770 Swenson & al. • Chrysophylloideae in Oceania and SE Asia = Beccariella Pierre, Not. Bot.: 30. 1890, nom. illeg., non Beccariella Ces. in Atti. Reale Accad. Sci. Fis. 8: 9. 1879 – Type: Beccariella sebertii (Pancher) Pierre ≡ Chrysophyllum sebertii Pancher in Sebert & Pancher, Not. Bois Nouv. Caléd.: 194. 1874. Diagnostic character combination. – Leaf venation areo­ late; sepals pubescent inside; flowers usually axillary, narrowly campanulate; stamens inserted in middle or at base of corolla tube; staminodes present, usually entire; style with stigmatic areas; cotyledons foliaceous with a radicle extending below cotyledon commissure; endosperm present. About 30 species are here attributed to Pleioluma, but sev­ eral species are to be described from New Caledonia and New Guinea. The highest diversity is in New Guinea (14 spp.) and New Caledonia (13 spp.), extending to Malesia and Southeast Asia. The only available treatment, then under Beccariella, is in the Flora of New Caledonia by Aubréville (1967). Pleioluma azou (P. Royen) Swenson & Munzinger, comb. nov. ≡ Planchonella azou P. Royen in Blumea 8: 308, 428. 1957 ≡ Beccariella azou (P. Royen) Aubrév. in Adansonia, n.s., 2: 193. 1962 – Holotype: Nouvelle­Calédonie, Port Boisé, zone maritime, X.1903, Cribs 1424 (P!; isotype L!). Distribution: New Caledonia. Pleioluma balansana (Pierre ex Baill.) Swenson & Munzinger, comb. nov. ≡ Sideroxylon balansanum Pierre ex Baill. in Bull. Mens. Soc. Linn. Paris 2: 889. 1890 ≡ Planchonella balansana (Pierre ex Baill.) Pierre ex Dubard in Ann. Mus. Colon. Marseille, sér. 2, 10: 46. 1912 ≡ Pouteria balansana (Pierre ex Baill.) Baehni in Candollea 9: 317. 1942 ≡ Beccariella balansana (Pierre ex Baill.) Aubrév. in Adansonia, n.s., 2: 193. 1962 – Lectotype (designated by Van Royen, 1957): Nouvelle Calédonie, 11.IV.1869, Balansa 1327a (P!). Distribution: New Caledonia. Beccariella brevipedicellata sensu Aubréville (1967), a later described taxon, is possibly conspecific with P. balansana but is not put into synonymy here; instead we await future results. Pleioluma baueri (Montrouz.) Swenson & Munzinger, comb. nov. ≡ Sapota baueri Montrouz. in Mem. Acad. Roy. Sci. Lyon, Sect. Sci. 10: 229. 1860 ≡ Planchonella baueri (Mon­ trouz.) Dubard in Ann. Mus. Colon. Marseille, sér. 2, 10: 53. 1912 ≡ Pouteria baueri (Montrouz.) Baehni in Candollea 9: 329. 1942 ≡ Beccariella baueri (Montrouz.) Aubrév. in Adan­ sonia, n.s., 2: 193. 1962 – Holotype: Nouvelle­Calédonie, Ile Art, Montrouzier 133 (P; isotype G). Distribution: New Caledonia. Pleioluma brownlessiana (F. Muell.) Swenson & Munzinger, comb. nov. ≡ Achras brownlessiana F. Muell., Fragm. 7: 111. 1870 ≡ Sideroxylon brownlessianum (F. Muell.) F. Muell., Syst. Census Austral. Pl.: 92. 1882 ≡ Sersalisia brownlessiana (F. Muell.) Domin in Biblioth. Bot. 89: 508. 1928 ≡ Pouteria brownlessiana (F. Muell.) Baehni in Candollea 9: 318. 1942 ≡ Planchonella brownlessiana (F. Muell.) P. Royen in Blumea 8: 343. 1957 ≡ Beccariella brownlessiana (F. Muell.) Swenson & al. in Cladistics 23: 221. 2007 – Type: Australia, Queensland, Rockingham Bay, Dallachy s.n. (MEL!). Distribution: Australia. Pleioluma crebrifolia (Baill.) Swenson & Munzinger, comb. nov. ≡ Lucuma crebrifolia Baill. in Bull. Mens. Soc. Linn. Paris 2: 897. 1891 ≡ Sideroxylon crebrifolium (Baill.) Engl. in Engler & Prantl, Nat. Pflanzenfam., Nachtr. 1: 277. 1897 ≡ Planchonella crebrifolia (Baill.) Pierre ex Dubard in Ann. Mus. Colon. Marseille, sér. 2, 10: 53. 1912 ≡ Beccariella crebrifolia (Baill.) Aubrév. in Adansonia, n.s., 2: 193. 1962 ≡ Pouteria crebrifolia (Baill.) Baehni in Boissiera 11: 59. 1965 – Lectotype (designated here): Nouvelle Calédo­ nie, Collines éruptives entre Canala et Couaoua, IV.1871, Balansa 3154 (P00282377!; isolectotypes P00282375!, P00282376!, P00282378!). Distribution: New Caledonia. Note. – Baillon (1891a) described Lucuma crebrifolia based on three collections, viz. Vieillard 191, Vieillard 2906, and Balansa 3154, all deposited in P. Later that year, Baillon (1891b) described section Pleioluma of the genus Sersalisia, referring to his earlier work, but did not assign any type collection. Lucuma crebrifolia remained untypified until Aubréville (1967) stated, in his Flora of New Caledonia, “Holotype: Balansa 3154 (P)”. Effectively, according to Article 9.9 (McNeill & al., 2012), Aubréville implicitly made a lectotypification. However, there are four different specimens of equal priority of Balansa 3154 in Paris, none being annotated as holo­ or lectotype. Hence, in accordance with Article 9.17 (McNeill & al., 2012), one well­preserved and fertile specimen of Balansa 3154 is here designated as lectotype. Pleioluma densinervia (K. Krause) Swenson, comb. nov. ≡ Sideroxylon densinervium K. Krause in Bot. Jahrb. Syst. 58: 476. 1923 ≡ Planchonella densinervia (K. Krause) H.J. Lam in Nova Guinea 14: 562. 1932 ≡ Pouteria densinervia (K. Krause) Baehni in Candollea 9: 342. 1942 – Lectotype (designated by Van Royen, 1957): Neuguinea, Sepikgebiet, 1912/13, Ledermann 12698 (L!; isolectotypes BM!, K!). Distribution: New Guinea. Pleioluma dies-reginae (P. Royen) Swenson, comb. nov. ≡ Planchonella dies-reginae P. Royen in Blumea 8: 352, 431. 1957 ≡ Pouteria dies-reginae (P. Royen) Vink in Blumea 47: 103. 2002 – Holotype: New Guinea, 4 km SW of Bern­ hard Camp, Idenburg River, III.1939, L.J. Brass & C. Versteegh 13150 (L!; isotype A n.v.). Distribution: New Guinea. Pleioluma firma (Miq.) Swenson, comb. nov. ≡ Chrysophyllum firmum Miq., Fl. Ned. Ind., Eerste Bijv.: 579. 1861 ≡ Sideroxylon firmum (Miq.) Pierre ex Burck in Ann. Jard. Bot. Buitenzorg 5: 17. 1885 ≡ Beccariella firma (Miq.) Pierre, Not. Bot.: 30. 1890 ≡ Planchonella firma (Miq.) Dubard in Ann. Mus. Colon. Marseille, sér. 2, 10: 59. 1912 ≡ Pouteria firma (Miq.) Baehni in Candollea 9: 284. 1942 – Holotype: Teysmann s.n. (BO n.v.). Version of Record (identical to print version). 763 TAXON 62 (4) • August 2013: 746–770 Swenson & al. • Chrysophylloideae in Oceania and SE Asia Distribution: Widespread, from Thailand via Malesia to Solomon Islands. Pleioluma foxworthyi (Elmer) Swenson, comb. nov. ≡ Sideroxylon foxworthyi Elmer in Leafl. Philipp. Bot. 5: 1836. 1913 ≡ Planchonella foxworthyi (Elmer) H.J. Lam in Proc. Pacific Sci. Congr. 6(4): 678. 1940 – Lectotype (designated here): Philippine Islands, Island of Palawan, Puerto Princesa, Mt. Pulgar, III.1911, Elmer 12824 (P00648085!; isolectotypes E!, FI n.v., G!, L!, NSW n.v., P!, US!, Z!) (holotype PNH †). Distribution: Philippines. Pleioluma gillisonii (Vink) Swenson, comb. nov. ≡ Pouteria gillisonii Vink in Blumea 47: 104. 2002 – Holotype: Papua New Guinea, Morobe Province, Morobe Subprov­ ince, Waiu Bay, 7°30′ S, 147°15′ E, 300 m alt., 14.VIII.1968, Gillison & Kairo NGF 25627 (L!; isotypes A n.v., BRI n.v., CANB n.v., CHR n.v., LAE n.v.). Distribution: New Guinea. Pleioluma krausei (H.J. Lam) Swenson, comb. nov. ≡ Sideroxylon spathulatum K. Krause in Bot. Jahrb. Syst. 58: 474. 1923, nom. illeg., non Hillebr., Fl. Hawaiian Isl.: 277. 1888 ≡ Planchonella krausei H.J. Lam in Nova Guinea 14: 561. 1932 ≡ Pouteria krausei (H.J. Lam) Baehni in Candollea 9: 322. 1942 – Lectotype (designated by Van Royen, 1957): Nieuw Guinea, Kaiser Wilhelmsland, Gomadjiji, ca. 450 m alt., 23.VIII.1909, R. Schlechter 19915 (L!; isolectotypes BR!, P!). Distribution: New Guinea. Pleioluma lamprophylla (K. Krause) Swenson, comb. nov. ≡ Sideroxylon lamprophyllum K. Krause in Bot. Jahrb. Syst. 58: 481. 1923 ≡ Planchonella lamprophylla (K. Krause) H.J. Lam in Nova Guinea 14: 564. 1932 ≡ Pouteria lamprophylla (K. Krause) Baehni in Candollea 9: 333. 1942 – Lectotype (designated by Van Royen, 1957): Neu­Guinea, Sepik­Gebeit, 1912–1913, Ledermann 10318 (L!; isolecto­ type K!). Distribution: New Guinea. Pleioluma lanatifolia (P. Royen) Swenson, comb. nov. ≡ Planchonella lanatifolia P. Royen in Blumea 8: 306, 428. 1957 ≡ Pouteria lanatifolia (P. Royen) Vink in Blumea 47: 107. 2002 – Holotype: Dutch New Guinea, Angi, Arfak Mts., 2200 m alt., 9.IV.1940, R. Kanehira & S. Hatusima 13891 (A!). Distribution: New Guinea. Pleioluma lasiantha (Baill.) Swenson & Munzinger, comb. nov. ≡ Sideroxylon lasianthum Baill. in Bull. Mens. Soc. Linn. Paris 2: 887. 1890 ≡ Planchonella lasiantha (Baill.) Dubard in Ann. Mus. Colon. Marseille, sér. 2, 10: 58. 1912 ≡ Pouteria lasiantha (Baill.) Baehni in Candollea 9: 324. 1942 ≡ Beccariella lasiantha (Baill.) Aubrév., Fl. Nouv.­ Caléd. 1: 114. 1967 – Holotype: Nouvelle­Calédonie, Mont Mi, 25.III.1869, Balansa 1322 (P!; isotype L!). Distribution: New Caledonia. 764 Pleioluma laurifolia (A. Rich.) Swenson, comb. nov. ≡ Sersalisia laurifolia A. Rich. in Dumont d’Urville, Voy. Astrolabe 2: 84. 1834 ≡ Achras laurifolia (A. Rich.) F. Muell. ex Benth., Fl. Austral. 4: 282. 1868 ≡ Sideroxylon richardii F. Muell., Syst. Census Austral. Pl.: 92. 1882 ≡ Sideroxylon laurifolium (A. Rich.) Engl. in Bot. Jahrb. Syst. 12: 517. 1890, nom. illeg. ≡ Planchonella laurifolia (A. Rich.) Pierre, Not. Bot.: 36. 1890 ≡ Pouteria richardii (F. Muell.) Baehni in Candollea 9: 287. 1942≡ Beccariella laurifolia (A. Rich.) Aubrév. in Adansonia, n.s., 2: 193. 1962 – Syn­ types: Voyage de l’Astrolabe 6 (E!, P!). Distribution: Australia. Pleioluma ledermannii (K. Krause) Swenson, comb. nov. ≡ Sideroxylon ledermannii K. Krause in Bot. Jahrb. Syst. 58: 475. 1923 ≡ Planchonella ledermannii (K. Krause) H.J. Lam in Nova Guinea 14: 561. 1932 ≡ Pouteria ledermannii (K. Krause) Baehni in Candollea 9: 341. 1942 – Neotype (designated by Van Royen, 1957): Neu­Guinea, Kaiser Wilhelmsland, Sepik Region, Ledermann 6956 (K!; isoneotype E!) (original type, Ledermann 12248, B †). Distribution: New Guinea. Pleioluma longipetiolata (Aubrév.) Swenson & Munzinger, comb. nov. ≡ Beccariella longipetiolata Aubrév., Fl. Nouv.­Caléd. 1: 121. 1967 – Holotype: Nouvelle­Calédonie, Prony, XI.1914, I. Franc 1885 (P!; isotype P!). Distribution: New Caledonia. Pleioluma lucens (P. Royen) Swenson & Munzinger, comb. nov. ≡ Planchonella lucens P. Royen in Blumea 8: 429. 1957 ≡ Pouteria royenii Baehni in Boissiera 11: 55. 1965 ≡ Beccariella lucens (P. Royen) Aubrév. in Adansonia, n.s., 2: 193. 1962 – Holotype: Nouvelle­Calédonie, 19.X.1909, Mr. & Mrs. Le Rat 763 (P!; isotype L!). Distribution: New Caledonia. Pleioluma macrocarpa (P. Royen) Swenson, comb. nov. ≡ Planchonella macrocarpa P. Royen in Blumea 8: 320, 429. 1957 ≡ Pouteria pearsoniorum Jessup in Austrobaileya 6: 163. 2001 ≡ Beccariella macrocarpa (P. Royen) Swenson & al. in Cladistics 23: 221. 2007 – Holotype: Australia, Queensland, Cook District, Kaban, Pearson Brothers s.n. (BRI!; isotype BRI!). Distribution: Australia. Pleioluma macropoda (H.J. Lam) Swenson, comb. nov. ≡ Planchonella macropoda H.J. Lam in Nova Guinea 14: 563. 1932 ≡ Pouteria macropoda (H.J. Lam) Baehni in Candollea 9: 410. 1942 – Neotype (designated by Van Royen, 1957): New Guinea, Alola, 6000 ft alt., 5.XII.1935, C.E. Carr 13631 (L!; isoneotypes BM!, K!, SING!). Distributed: Sulawesi to New Guinea. Pleioluma moluccana (Burck) Swenson, comb. nov. ≡ Sideroxylon moluccanum Burck in Ann. Jard. Bot. Buitenzorg 5: 19. 1885 ≡ Beccariella moluccana (Burck) Pierre, Not. Bot.: Version of Record (identical to print version). TAXON 62 (4) • August 2013: 746–770 Swenson & al. • Chrysophylloideae in Oceania and SE Asia 30. 1890 ≡ Planchonella moluccana (Burck) H.J. Lam in Bull. Jard. Bot. Buitenzorg, ser. 3, 7: 200. 1925 ≡ Pouteria moluccana (Burck) Baehni in Candollea 9: 327. 1942 – Holo­ type: Archipel. Ind., Teysmann 7819 (BO n.v.; isotype L!). Distribution: Widespread, from Java to New Guinea. Pleioluma monticola (K. Krause) Swenson, comb. nov. ≡ Sideroxylon monticolum K. Krause in Bot. Jahrb. Syst. 58: 481. 1923 ≡ Planchonella monticola (K. Krause) H.J. Lam in Nova Guinea 14: 561. 1932 ≡ Pouteria monticola (K. Krause) H.J. Lam in Blumea 5: 337. 1943 – Neotype (designated by Van Royen, 1957): New Guinea, Uniri River, 2200 m alt., 18.I.1936, C.E. Carr 15189 (L!; isoneotypes BM!, SING!). Distribution: New Guinea. Pleioluma novocaledonica (Dubard) Swenson & Munzinger, comb. nov. ≡ Planchonella novocaledonica Dubard in Notul. Syst. (Paris) 2: 84. 1911 ≡ Sideroxylon novocaledonicum (Dubard) Baehni in Candollea 9: 428. 1942, nom. illeg. ≡ Beccariella novocaledonica (Dubard) Aubrév. in Adansonia, n.s., 2: 193. 1962 ≡ Pouteria egassia Baehni in Boissiera 11: 60. 1965 – Holotype: Nouvelle­Calédonie, Petit 130 (P!; isotypes G!, L!). Distribution: New Caledonia. Pleioluma papyracea (P. Royen) Swenson, comb. nov. ≡ Planchonella papyracea P. Royen in Blumea 8: 431. 1957 ≡ Beccariella papyracea (P. Royen) Aubrév. in Adansonia, n.s., 3: 335. 1963 ≡ Pouteria papyracea (P. Royen) Baehni in Bois­ siera 11: 59. 1965 – Holotype: Australia, Queensland, Cook District, ca. 30 km NE of Atherton, Krauss 102 (BRI n.v.). Distribution: Australia. Pleioluma queenslandica (P. Royen) Swenson, comb. nov. ≡ Planchonella queenslandica P. Royen in Blumea 8: 341, 430. 1957 ≡ Beccariella queenslandica (P. Royen) Aubrév. in Adansonia, n.s., 3: 335. 1963 ≡ Pouteria queenslandica (P. Royen) Jessup in Austrobaileya 6: 161. 2001 – Holo­ type: Australia, Queensland, Eungella Mts, 31.III.1937, H.H. Haines 136Q (K!). Distribution: Australia. Pleioluma rigidifolia (K. Krause) Swenson, comb. nov. ≡ Sideroxylon rigidifolium K. Krause in Bot. Jahrb. Syst. 58: 474. 1923 ≡ Planchonella rigidifolia (K. Krause) H.J. Lam in Nova Guinea 14: 560. 1932 ≡ Pouteria rigidifolia (K. Krause) Baehni in Candollea 9: 319. 1942 – Lectotype (designated here): New Guinea, Torricelli Mts., 800 m alt., 22.IX.1909, R. Schlechter 20322 (P00648143!; isolectotypes P00648141!, P00648142!) (holotype B †). Distribution: New Guinea. Pleioluma rubicunda (Pierre ex Baill.) Swenson & Munzinger, comb. nov. ≡ Lucuma rubicunda Pierre ex Baill. in Bull. Mens. Soc. Linn. Paris 2: 883. 1890 ≡ Beccariella rubicunda (Pierre ex Baill.) Pierre, Not. Bot.: 30. 1890 ≡ Planchonella rubicunda (Pierre ex Baill.) Dubard in Ann. Mus. Colon. Marseille, sér. 2, 9: 287. 1911 ≡ Pouteria rubicunda (Pierre ex Baill.) Baehni in Candollea 9: 31. 1942 – Holo­ type: Nouvelle Calédonie, forêt situées au sud de Canala, vers 900 m alt., 20.XI.1869, Balansa 1825 (P00282282!; isotypes P00282281!, P00282283!). Distribution: New Caledonia. Pleioluma sebertii (Pancher) Swenson & Munzinger, comb. nov. ≡ Chrysophyllum sebertii Pancher in Sebert & Pancher, Not. Bois Nouv. Caléd.: 194. 1874 ≡ Beccariella sebertii (Pancher) Pierre, Not. Bot. 1: 30. 1890 ≡ Planchonella sebertii (Pancher) Dubard in Ann. Mus. Colon. Marseille, sér. 2, 10: 58. 1912 ≡ Pouteria sebertii (Pancher) Baehni in Candollea 9: 297. 1942 – Type: Nouvelle Calédonie, Sébert & Fournier 49 (P!). Distribution: New Caledonia. Pleioluma singuliflora (C.T. White & W.D. Francis) Swen­ son, comb. nov. ≡ Sideroxylon singuliflorum C.T. White & W.D. Francis in Proc. Roy. Soc. Queensland 37: 161. 1926 (“1925”) ≡ Pouteria singuliflora (C.T. White & W.D. Francis) Baehni in Candollea 9: 316. 1942 ≡ Planchonella singuliflora (C.T. White & W.D. Francis) P. Royen in Blumea 8: 345. 1957 ≡ Beccariella singuliflora (C.T. White & W.D. Francis) Swenson & al. in Cladis­ tics 23: 221. 2007 – Syntypes: Australia, Bellenden Ker, near summit of Central Peak, North Queensland, south of Cairns, I.1923, C.T. White s.n. (BRI!, K!). Distribution: Australia. Pleioluma vieillardii (Baill.) Swenson & Munzinger, comb. nov. ≡ Sideroxylon vieillardii Baill. in Bull. Mens. Soc. Linn. Paris 2: 886. 1890 ≡ Planchonella vieillardii (Baill.) Dubard in Ann. Mus. Colon. Marseille, sér. 2, 10: 58. 1912 ≡ Pouteria vieillardii (Baill.) Baehni in Candollea 9: 414. 1942 ≡ Beccariella vieillardii (Baill.) Swenson & al. in Cladistics 23: 221. 2007 – Holotype: Nouvelle Calédonie, Gatope, 1861–67, Vieillard 2889 (P!; isotypes K!, L!). Distribution: New Caledonia. Pleioluma wandae (Vink) Swenson, comb. nov. ≡ Pouteria wandae Vink in Blumea 47: 118. 2002 – Holotype: Indonesia, Irian Jaya, surroundings of Ayawasi, 01°14′ S, 132°12′ E, ca. 450 m alt., 16.I.1996, W. Ave 4163 (L!; iso­ types BO n.v., CANB n.v., MAN n.v.). Distribution: New Guinea. Pleioluma xerocarpa (F. Muell. ex Benth.) Swenson, comb. nov. ≡ Achras xerocarpa F. Muell. ex Benth., Fl. Austral. 4: 281. 1868 ≡ Sideroxylon xerocarpum (F. Muell. ex Benth.) Benth. & Hook f. ex F. Muell., Syst. Census Austral. Pl. 1: 91. 1882 ≡ Planchonella xerocarpa (F. Muell. ex Benth.) H.J. Lam, Bull. Jard. Bot. Buitenzorg, ser. 3, 7: 218. 1925 ≡ Sersalisia xerocarpa (F. Muell. ex Benth.) Domin, Bib­ lioth. Bot. 89: 508. 1928 ≡ Pouteria xerocarpa (F. Muell. ex Benth.) Baehni in Boissiera 11: 58. 1965 ≡ Beccariella xerocarpa (F. Muell. ex Benth.) Aubrév. in Adansonia, Version of Record (identical to print version). 765 TAXON 62 (4) • August 2013: 746–770 Swenson & al. • Chrysophylloideae in Oceania and SE Asia n.s., 3: 335. 1963 – Syntypes: Australia, Rockingham Bay, Dallachy s.n. (BRI!, K!, L!, MEL!, P!). Distribution: Australia. Pycnandra Benth. in Bentham & Hooker, Gen. Pl. 2: 658. 1876 – Type: Pycnandra benthamii Baill., Hist. Pl. 11: 299. 1891. = Leptostylis Benth. in Bentham & Hooker, Gen. Pl. 2: 659. 1876 – Type (designated by Vink in Nova Guinea, n.s., 8: 87. 1957): Leptostylis longiflora Benth. = Achradotypus Baill. in Bull. Mens. Soc. Linn. Paris 2: 881. 1890 – Type: Achradotypus vieillardii Baill. = Trouettia Pierre ex Baill. in Bull. Mens. Soc. Linn. Paris 2: 945. 3 Jun 1891 – Type: Trouettia leptoclada Pierre ex Baill. in Bull. Mens. Soc. Linn. Paris 2: 945. 1891. = Chorioluma Baill., Hist. Pl. 11: 287. Sep–Oct 1891 – Type: Chorioluma coriacea (Baill.) Baill. ≡ Sideroxylon coriaceum Baill. in Bull. Mens. Soc. Linn. Paris 2: 892. 1890. = Ochrothallus Pierre ex Baill., Hist. Pl. 11: 298. Sep–Oct 1891 – Type: Ochrothallus sessilifolius (Pancher & Sebert) Pierre ex Baill. ≡ Chrysophyllum sessilifolium Pancher & Sebert in Sebert & Pancher, Not. Bois Nouv. Caléd.: 195. 1874. = Sebertia Pierre ex Engl., Nat. Pflanzenfam., Nachtr. 4(1): 280. 1897 – Type: Sebertia acuminata (Baill.) Engl. ≡ Sersalisia acuminata Baill. in Bull. Mens. Soc. Linn. Paris 2: 945. 1891. = Tropalanthe S. Moore in J. Linn Soc., Bot. 45: 354. 1921 – Type: Tropalanthe comptonii S. Moore. = Corbassona Aubrév., Fl. Nouv.­Caléd. 1: 72. 1967 – Type: Corbassona deplanchei (Baill.) Aubrév. ≡ Chrysophyllum deplanchei Baill. in Bull. Mens. Soc. Linn. Paris 2: 899. 1891. Diagnostic character combination. – Higher leaf venation non­areolate; sepals glabrous inside; flowers usually born along branches, cup­shaped (rarely tubular); stamens usually inserted in corolla tube orifice (rarely below); staminodes absent; style simple; cotyledons plano­convex, red or rarely pinkish, radicle included in cotyledons; endosperm absent. Some 55 recognized species with another 10 waiting to be described, all restricted to New Caledonia. Current classification accepts four subgenera (Swenson & Munzinger, 2009, 2010a, b, c), and a fifth based on Leptostylis Benth. is under revision. Most species are restricted to either ultramafic or none­ultramafic substrates, and a few to calcareous soils, which means many species are threatened to the point of extinction due to habitat destruction from mining, logging and deliberately set fires. Sersalisia R. Br., Prodr.: 529. 1810 – Type: Sersalisia sericea (Aiton) R. Br. ≡ Sideroxylon sericeum Aiton, Hort. Kew. 1: 262. 1789. Diagnostic character combination. – Higher leaf venation areolate; sepals pubescent or glabrous inside; flowers axillary, narrowly campanulate or tubular; stamens inserted in or just below corolla tube orifice; staminodes present, entire; style with stigmatic areas; cotyledons plano­convex, radicle included in cotyledons; endosperm absent. Four to six species, depending on the future status of some undescribed taxa and the relationships of the Australian spe­ cies Pouteria unmackiana (F.M. Bailey) Erlee, which is still 766 not analysed but probably belongs to this genus. One widely distributed species, S. luzoniensis. Sersalisia luzoniensis (Merr.) Swenson, comb. nov. ≡ Sideroxylon luzoniense Merr. in Philipp. J. Sci. 1(Suppl.): 222. 1906 ≡ Lucuma luzoniensis (Merr.) H.J. Lam in Bull. Jard. Bot. Buitenzorg, ser. 3, 7: 227. 1925 ≡ Pouteria luzoniensis (Merr.) Baehni in Candollea 9: 365. 1942 ≡ Fontbrunea luzoniensis (Merr.) Aubrév. in Adansonia, n.s., 3: 333. 1963 – Lectotype (designated here): Philippines, Luzon, Prov­ ince of Rizal, I.1906, Foxworthy 127 (K!; isolectotype US!) (original type PNH †). Distribution: Widespread, from the Philippine Islands in the north, Borneo, Sulawesi, and New Guinea in the south. Van-royena Aubrév. in Adansonia, n.s., 3: 329. 1963 – Type: Van-royena castanosperma (C.T. White) Aubrév. ≡ Chrysophyllum castanospermum C.T. White. in Bot. Bull. Dept. Agric. Queensland 21: 12. 1919. Diagnostic character combination. – Tertiary leaf venation parallel and reticulate, non­areolate; sepals pubescent inside; flowers axillary, narrowly campanulate; stamens inserted near middle (or just above) of the corolla tube; staminodes present, entire; style with stigmatic areas; cotyledons plano­convex, radicle included in cotyledons; endosperm absent. A single species restricted to northeast Australia, poorly monographed, but Van Royen (1957) provided a treatment with an acceptable illustration. ACKNOWLEDGMENTS We are very grateful to Steve Wagstaff, two anonymous reviewers, and Gail Stride for constructive comments on this manuscript. Mats Thulin and Jens Klackenberg are thanked for fruitful discussions on nomenclature. Wayne Takeuchi, George Weiblen, and Timothy Whit­ field kindly provided fresh plant material from New Guinea, especially Wayne, who has sent material to Stockholm for a long period of time. Nellie Sugii, Doug Okamoto and Mary Merello are acknowledged for additional samples of Planchonella from Hawaii, and Peter Wilkie and Nura Abdul Karim who sent material from Singapore. Kate Armstrong kindly made one sequence available. Material from Vanuatu was col­ lected during the Santo 2006 expedition, funded, among others, by the Stavros Niarchos Foundation, the Total Foundation and the French Fonds Pacifique, and samples from Futuna were collected as part of an inventory of exotic species conducted for the Wallis and Futuna envi­ ronmental service. Marika Tuiwawa and the SUVA team are thanked for their help in the field and for getting the collecting permit in Fiji. Jacques Florence (Paris), Jean­Yves Meyer (Papeete), and Rava Tapu­ tuarai (Papeete) helped with various issues in Tahiti. The herbaria G, K, L, MO, NOU, P, PAP, and PNH provided access to their collections. Alison Moore, Rogier deKok, Felix Forest, and Laszlo Csiba (K) are all acknowledged, who made an exception by extracting DNA from a loose fragment of a type specimen. Laurence Jessup (Brisbane) and Gerard Thijsse (Leiden) helped with scanning images of type collections and various issues. Jean­François Butaud (Tahiti), Glenn Leiper (Australia), Hugh Nicholson (Australia), and Jean­Louis Ruiz (New Caledonia) are Version of Record (identical to print version). TAXON 62 (4) • August 2013: 746–770 Swenson & al. • Chrysophylloideae in Oceania and SE Asia thanked for their contribution of field images. We are indebted to Bodil Cronholm at the molecular laboratory, Swedish Museum of Natural History, who successfully designed primers for this study and was able to “fish­up” Krausella polyneura from a really messy aliquot! Funds to Ulf Swenson were provided from the Swedish Research Council and Regnells Gåvomedel (Royal Swedish Academy of Sciences). LITERATURE CITED Álvarez, I. & Wendel, J.F. 2003. Ribosomal ITS sequences and plant phylogenetic inference. Molec. Phylogen. Evol. 29: 417–434. http://dx.doi.org/10.1016/S1055­7903(03)00208­2 Anderberg, A.A. & Swenson, U. 2003. Evolutionary lineages in Sapotaceae (Ericales): A cladistic analysis based on ndhF sequence data. Int. J. Pl. Sci. 164: 763–773. http://dx.doi.org/10.1086/376818 Aubréville, A. 1962. Notes sur les Sapotacées de la Nouvelle Calédonie. Adansonia, sér. 2, 2: 172–199. Aubréville, A. 1963. Notes sur les Poutériées Océaniennes (Sapotacées). Adansonia, sér. 3, 3: 327–335. Aubréville, A. 1964. Les Sapotacées: Taxonomie et phytogéographie. Adansonia Mém. 1: 1–157. Aubréville, A. 1967. Flore de la Nouvelle-Calédonie et dépendances, vol. 1, Sapotacées. Paris: Muséum National d’Histoire Naturelle. Baehni, C. 1964. Genres nouveaux de Sapotacées. Arch. Sci. 17: 77–79. Baehni, C. 1965. Mémoire sur les Sapotacées III. Inventaire des genres. Boissiera 11: 1–262. Baillon, H. 1891a. Observations sur les Sapotacées de la Nouvelle­Calé­ donie (séance du 3 janvier). Bull. Mens. Soc. Linn. Paris 2: 897–904. Baillon, H. 1891b. Histoire des plantes, vol. 11. Paris: Librairie Hachette. Baldwin, B.G. & Markos, S. 1998. Phylogenetic utility of the external transcribed spacer (ETS) of 18S–26S rDNA: Congruence of ETS and ITS trees of Calycadenia (Compositae). Molec. Phylogen. Evol. 10: 449–463. http://dx.doi.org/10.1006/mpev.1998.0545 Bartish, I.V., Swenson, U., Munzinger, J. & Anderberg, A.A. 2005. Phylogenetic relationships among New Caledonian Sapotaceae (Ericales): Molecular evidence for generic polyphyly and repeated dispersal. Amer. J. Bot. 92: 667–673. http://dx.doi.org/10.3732/ajb.92.4.667 Bartish, I.V., Antonelli, A., Richardson, J.E. & Swenson, U. 2011. Vicariance or long­distance dispersal: Historical biogeography of the pantropical subfamily Chrysophylloideae (Sapotaceae). J. Biogeogr. 38: 177–190. http://dx.doi.org/10.1111/j.1365­2699.2010.02389.x Brummitt, R.K. 2011a. Report of the Nomenclature Committee for vascular plants: 62. Taxon 60: 226–232. Brummitt, R.K. 2011b. Report of the Nomenclature Committee for vascular plants: 63. Taxon 60: 1202–1210. Butaud, J.-F., Gérard, J. & Guibal, D. 2011. Guide des arbres de Polynésie française: Bois et utilisations. Pirae (Tahiti): Au vent des îles. Denton, A.L., McConaughy, B.L. & Hall, B.D. 1998. Usefulness of RNA polymeras II coding sequences for estimation of green plant phylogeny. Molec. Biol. Evol. 15: 1082–1085. http://dx.doi.org/10.1093/oxfordjournals.molbev.a026007 Drummond, A. & Rambaut, A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. B. M. C. Evol. Biol. 7: 214. http://dx.doi.org/10.1186/1471­2148­7­214 Dubard, M. 1912. Les Sapotacées du groupe des Sideroxylinées. Ann. Mus. Colon. Marseille, sér. 2, 10: 1–90. Eggens, F., Popp, M., Nepokroeff, M., Wagner, W.L. & Oxelman, B. 2007. The origin and number of introductions of the Hawaiian en­ demic Silene species (Caryophyllaceae). Amer. J. Bot. 94: 210–218. http://dx.doi.org/10.3732/ajb.94.2.210 Engler, A. 1897. Sapotaceae. Pp. 271–280 in: Engler, A. & Prantl, K. (eds.), Die natürlichen Pflanzenfamilien, Nachträge. Leipzig: Engelmann. Farris, J.S., Albert, V.A., Källersjö, M., Lipscomb, D. & Kluge, A.G. 1996. Parsimony jackknifing outperforms neighbour­joining. Cladistics 12: 99–124. http://dx.doi.org/10.1111/j.1096­0031.1996.tb00196.x Fosberg, F.R. 1992. Pacific Island plants – taxonomic and distributional notes. Micronesica 25: 175–199. Govaerts, R., Frodin, D.G. & Pennington, T.D. 2001. World checklist and bibliography of Sapotaceae. Kew: Royal Botanic Gardens. Grandcolas, P., Murienne, J., Robillard, T., Desutter-Grandcolas, L., Jourdan, H., Guilbert, E. & Deharveng, L. 2008. New Caledonia: A very old Darwinian island? Philos. Trans., Ser. B 363: 3309–3317. Grant, M.L., Fosberg, F.R. & Smith, H.M. 1974. Partial flora of the Society Islands: Ericaceae to Apocynaceae. Smithsonian Contr. Bot. 17: 1–85. http://dx.doi.org/10.5479/si.0081024X.17 Harris, G.J. & Harris, M.W. 1997. Plant identification terminology: An illustrated glossary, 1st ed., 5th printing. Spring Lake, Utah: Spring Lake Publishing. Heads, M. 2006. Seed plants of Fiji: An ecological analysis. Biol. J. Linn. Soc. 89: 407–431. http://dx.doi.org/10.1111/j.1095­8312.2006.00682.x Heads, M. 2008. Panbiogeography of New Caledonia, south­west Pacific: Basal angiosperms on basement terranes, ultramafic en­ demics inherited from volcanic island arcs and old taxa endemic to young islands. J. Biogeogr. 35: 2153–2175. http://dx.doi.org/10.1111/j.1365­2699.2008.01977.x Herrmann-Erlee, M.P.M. & Lam, H.J. 1957. Revision of the Sapot­ aceae of the Malaysian area in a wider side. VIII. Krausella H.J. Lam. Blumea 8: 446–451. Herrmann-Erlee, M.P.M. & Van Royen, P. 1957. Revision of the Sapotaceae of the Malaysian area in a wider sense. IX. Pouteria Aublet. Blumea 8: 452–509. Katoh, K., Kuma, K.-I., Toh, H. & Miyata, T. 2005. MAFFT ver­ sion 5: Improvement in accuracy of multiple sequence alignment. Nucl. Acids Res. 33: 511–518. http://dx.doi.org/10.1093/nar/gki198 Keppel, G., Lowe, A.J. & Possingham, H.P. 2009. Changing perspec­ tives on the biogeography of the tropical South Pacific: Influences of dispersal, vicariance and extinction. J. Biogeogr. 36: 1035–1054. http://dx.doi.org/10.1111/j.1365­2699.2009.02095.x Lam, H. J. 1925. The Sapotaceae, Sarcospermaceae and Boerlagellaceae of the Dutch East Indies and surrounding countries (Malay Peninsula and Philippine Islands). Bull. Jard. Bot. Buitenzorg, ser. 3, 7: 1–289. Lam, H. J. 1932. Enumeration of the Sapotaceae, thus far known from New Guinea. Nova Guinea 14: 549–570, pl. 94–129. Lam, H.J. 1939. On the system of the Sapotaceae, with some remarks on taxonomical methods. Recueil Trav. Bot. Neerl. 36: 509–525. Lam, H.J. 1942. A tentative list of wild Pacific Sapotaceae, except those from New Caledonia. Blumea 5: 1–46. Lowry, P.P., II, Munzinger, J., Bouchet, P., Géraux, H., Bauer, A., Langrand, O. & Mittermeier, R.A. 2004. New Caledonia. Pp. 193–197 in: Mittermeier, R.A., Robles Gil, P., Hoffmann, M., Pil­ grim, J., Brooks, T., Mittermeier, C.G., Lamoreux, J.L. & da Fon­ seca, G.A.B. (eds.), Hotspots revisited: Earth’s biologically richest and most threatened terrestrial ecoregions. Mexico City: CEMEX. Maddison, D.R. & Maddison, W.P. 2000. MacClade 4: Analysis of phy­ logeny and character evolution, version 4.0. Sunderland: Sinauer. Maddison, W.P. & Maddison, D.R. 2011. MESQUITE: A modular sys­ tem for evolutionary analysis, version 2.75. http://mesquiteproject .org (last accessed Apr. 2012). McNeill, J., Barrie, F.R., Buck, W.R., Demoulin, V., Greuter, W., Hawksworth, D.L., Herendeen, P.S., Knapp, S., Marhold, K., Prado, J., Prud’homme van Reine, W. F., Smith, G.F., Wiersema, J.H. & Turland, N.J. (eds.). 2012. International Code of Nomenclature for algae, fungi, and plants (Melbourne Code): Adopted by the Eighteenth International Botanical Congress Melbourne, Australia, July 2011. Regnum Vegetabile 154. Königstein: Koeltz. Version of Record (identical to print version). 767 TAXON 62 (4) • August 2013: 746–770 Swenson & al. • Chrysophylloideae in Oceania and SE Asia Méndez, M. & Munzinger, J. 2010. Planchonella, first record of gyno­ monoecy for the family Sapotaceae. Pl. Syst. Evol. 287: 65–73. http://dx.doi.org/10.1007/s00606­010­0290­5 Meyer, J.-Y. & Florence, J. 1996. Tahiti’s native flora endangered by the invasion of Miconia calvescens DC. (Melastomataceae). J. Biogeogr. 23: 775–781. http://dx.doi.org/10.1111/j.1365­2699.1996.tb00038.x Mueller, F. 1870. Fragmenta phytographiae Australiae, vol. 7. Mel­ bourne: Auctoritate Guberni Coloniae Victoriae. Munzinger, J. & Swenson, U. 2009. Three new species of Planchonella Pierre (Sapotaceae) with a dichotomous and an online key to the genus in New Caledonia. Adansonia, sér 3, 31: 175–189. Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B. & Kent, J. 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853–858. http://dx.doi.org/10.1038/35002501 Nixon, K.C. & Carpenter, J.M. 1993. On outgroups. Cladistics 9: 413–426. http://dx.doi.org/10.1111/j.1096­0031.1993.tb00234.x Oxelman, B. & Bremer, B. 2000. Discovery of paralogous nuclear gene sequences coding for the second­largest subunit of RNA polymeras II (RPB2) and their phylogenetic utility in Gentianales of the aste­ rids. Molec. Biol. Evol. 17: 1131–1145. http://dx.doi.org/10.1093/oxfordjournals.molbev.a026396 Oxelman, B., Yoshikawa, N., McConaughy, B.L., Luo, J., Denton, A.L. & Hall, B.D. 2004. RPB2 gene phylogeny in flowering plants, with particular emphasis on asterids. Molec. Phylogen. Evol. 32: 462–479. http://dx.doi.org/10.1016/j.ympev.2004.01.014 Pennington, T.D. 1990. Flora Neotropica Monograph 52: Sapotaceae. New York: New York Botanical Garden. Pennington, T.D. 1991. The genera of Sapotaceae. Kew: Royal Botanic Gardens. Pierre, L. 1890. Notes botaniques: Sapotacées. Paris: Librairie des sciences Paul Klincksieck. Poczai, P. & Hyvönen, J. 2010. Nuclear ribosomal spacer regions in plant phylogenetics: Problems and prospects. Molec. Biol. Rep. 37: 1897–1912. http://dx.doi.org/10.1007/s11033­009­9630­3 Posada, D. 2008. jModelTest: Phylogenetic model averaging. Molec. Biol. Evol. 25: 1253–1256. http://dx.doi.org/10.1093/molbev/msn083 Posada, D. & Buckley, T.R. 2004. Model selection and model averag­ ing in phylogenetics: Advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst. Biol. 53: 793–808. http://dx.doi.org/10.1080/10635150490522304 Pouteau, R., Meyer, J.-Y., Taputuarai, R. & Stoll, B. 2012. Support vector machines to map rare endangered native plants in Pacific islands forests. Ecol. Informatics 9: 37–46. http://dx.doi.org/10.1016/j.ecoinf.2012.03.003 Rambaut, A. 2009. FigTree, version 1.3.1. http://tree.bio.ed.ac.uk/soft ware/figtree/ (last accessed Apr. 2012). Rambaut, A. & Drummond, A.J. 2009. Tracer, version 1.5. http://tree .bio.ed.ac.uk/software/tracer/ (last accessed Apr. 2012). Rannala, B. & Yang, Z. 1996. Probability distribution of molecu­ lar evolutionary trees: A new method of phylogenetic inference. J. Molec. Evol. 43: 304–311. http://dx.doi.org/10.1007/BF02338839 Rydin, C., Pedersen, K.R. & Friis, E.M. 2004. On the evolutionary history of Ephedra: Cretaceous fossils and extant molecules. Proc. Natl. Acad. Sci. U.S.A. 101: 16571–16576. http://dx.doi.org/10.1073/pnas.0407588101 Schwartz, G.E. 1978. Estimating the dimension of a model. Ann. Statist. 6: 461–464. http://dx.doi.org/10.1214/aos/1176344136 Shaw, J., Lickey, E.B., Beck, J.T., Farmer, S.B., Liu, W., Miller, J., Siripun, K.C., Winder, C.T., Schilling, E.E. & Small, R.L. 2005. The tortoise and the hare II: Relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Amer. J. Bot. 92: 142–166. http://dx.doi.org/10.3732/ajb.92.1.142 Shaw, J., Lickey, E.B., Schilling, E.E. & Small, R.L. 2007. Compari­ son of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: The tortoise and the hare III. Amer. J. Bot. 94: 275–288. http://dx.doi.org/10.3732/ajb.94.3.275 768 Simmons, M.P. & Ochoterena, H. 2000. Gaps as characters in sequence­based phylogenetic analyses. Syst. Biol. 49: 369–381. http://dx.doi.org/10.1093/sysbio/49.2.369 Smedmark, J.E.E. & Anderberg, A.A. 2007. Boreotropical migration explains hybridization between geographically distant lineages in the pantropical clade Sideroxyleae (Sapotaceae). Amer. J. Bot. 94: 1491–1505. http://dx.doi.org/10.3732/ajb.94.9.1491 Smedmark, J.E.E., Swenson, U. & Anderberg, A.A. 2006. Accounting for variation of substitution rates through time in Bayesian phylog­ eny reconstruction of Sapotoideae (Sapotaceae). Molec. Phylogen. Evol. 39: 706–721. http://dx.doi.org/10.1016/j.ympev.2006.01.018 Smith, A.C. 1981. Flora vitiensis nova, vol. 2. Lawai (Hawaii): Pacific Tropical Botanical Garden. Swenson, U. & Anderberg, A.A. 2005. Phylogeny, character evolution, and classification of Sapotaceae (Ericales). Cladistics 21: 101–130. http://dx.doi.org/10.1111/j.1096­0031.2005.00056.x Swenson, U. & Morat, P. 2008. Proposal to conserve the name Planchonella nom. cons. against the additional names Iteiluma and Peuceluma (Sapotaceae). Taxon 57: 1013–1014. Swenson, U. & Munzinger, J. 2009. Revision of Pycnandra subge­ nus Pycnandra (Sapotaceae), a genus endemic to New Caledonia. Austral. Syst. Bot. 22: 437–465. http://dx.doi.org/10.1071/SB09029 Swenson, U. & Munzinger, J. 2010a. Revision of Pycnandra subge­ nus Sebertia (Sapotaceae) and a generic key to the family in New Caledonia. Adansonia, sér. 3, 32: 239–249. http://dx.doi.org/10.5252/a2010n2a5 Swenson, U. & Munzinger, J. 2010b. Revision of Pycnandra subge­ nus Achradotypus (Sapotaceae), with five new species from New Caledonia. Austral. Syst. Bot. 23: 185–216. http://dx.doi.org/10.1071/SB09049 Swenson, U. & Munzinger, J. 2010c. Taxonomic revision of Pycnandra subgenus Trouettia (Sapotaceae), with six new species from New Caledonia. Austral. Syst. Bot. 23: 333–370. http://dx.doi.org/10.1071/SB10025 Swenson, U. & Munzinger, J. 2012. Revision of Pichonia (Sapotaceae) in New Caledonia. Austral. Syst. Bot. 25: 31–48. http://dx.doi.org/10.1071/SB11027 Swenson, U. & Tehler, A. 2009. Proposal to conserve the name Beccariella Pierre (Sapotaceae, Magnoliphyta) against Beccariella Ces. (Podoscyphaceae, Basidiomycota). Taxon 58: 654. Swenson, U., Bartish, I.V. & Munzinger, J. 2007a. Phylogeny, diag­ nostic characters, and generic limitation of Australasian Chryso­ phylloideae (Sapotaceae, Ericales): Evidence from ITS sequence data and morphology. Cladistics 23: 201–228. http://dx.doi.org/10.1111/j.1096­0031.2006.00141.x Swenson, U., Munzinger, J. & Bartish, I.V. 2007b. Molecular phy­ logeny of Planchonella (Sapotaceae) and eight new species from New Caledonia. Taxon 56: 329–354. Swenson, U., Lowry, P.P., II, Munzinger, J., Rydin, C. & Bartish, I.V. 2008a. Phylogeny and generic limits in the Niemeyera complex of New Caledonian Sapotaceae: Evidence of multiple origins of the anisomerous flower. Molec. Phylogen. Evol. 49: 909–929. http://dx.doi.org/10.1016/j.ympev.2008.09.022 Swenson, U., Richardson, J.E. & Bartish, I.V. 2008b. Multi­gene phylogeny of the pantropical subfamily Chrysophylloideae (Sapot­ aceae): Evidence of generic polyphyly and extensive morphological homoplasy. Cladistics 24: 1006–1031. http://dx.doi.org/10.1111/j.1096­0031.2008.00235.x Swofford, D.L. 2002. PAUP*: Phylogenetic analysis using parsimony (*and other methods), version 4.0b10. Sunderland: Sinauer. Taputuarai, R. & Tchung, V. 2003. Etude préliminaire de la régénération de l’arbre endémique Planchonella tahitensis (Sapotacées) menacé par l’invasion de Miconia calvescens (Mélastomatacées) à Tahiti (Polynésie française). Montpellier: Université des Sciences et Techniques du Languedoc; Papeete: Délégation à la Recherche. http://jymeyer.over­blog.com/article­23555170.html (last accessed May 2012). Version of Record (identical to print version). TAXON 62 (4) • August 2013: 746–770 Swenson & al. • Chrysophylloideae in Oceania and SE Asia Triono, T., Brown, A.H.D., West, J.G. & Crisp, M.D. 2007. A phy­ logeny of Pouteria (Sapotaceae) from Malesia and Australasia. Austral. Syst. Bot. 20: 107–118. http://dx.doi.org/10.1071/SB06011 Van Royen, P. 1957. Revision of the Sapotaceae of the Malaysian area in a wider sense. VII. Planchonella Pierre. Blumea 8: 235–445. Van Royen, P. 1959. Revision of the Sapotaceae of the Malaysian area in a wider sense. Nova Guinea 10: 131–142. Vink, W. 1958. Revision of the Sapotaceae of the Malaysian area in a wider sense. XIII. Chrysophyllum L. Blumea 9: 21–74. Vink, W. 1995. Revision of Magodendron (Sapotaceae) with observa­ tions on floral development and morphology. Blumea 40: 91–107. Vink, W. 2002. Some Malesian species of Pouteria (Sapotaceae). Blumea 47: 95–147. Wagner, W.L., Herbst, D.R. & Sohmer, S.H. 1990. Manual of the flowering plants of Hawai‘i, vol. 2. Bernice P. Bishop Museum special publication 83. Honolulu: University of Hawaii Press. Yang, Z. & Rannala, B. 1997. Bayesian phylogenetic inference using DNA sequences: A Markov chain Monte Carlo method. Molec. Biol. Evol. 14: 717–724. http://dx.doi.org/10.1093/oxfordjournals.molbev.a025811 Appendix 1. Voucher information in the following order: Taxon name with authority, country, collector(s), collector number, (herbarium abbreviation), and GenBank accessions (ETS, ITS, RPB2). Informal or unpublished names are given in quotation marks and sequences published here have the prefix HE or HF. BeccAriellA “acutifolia” Swenson & Munzinger, New Caledonia, Munzinger & al. 5759 (NOU, P, S), HE860126, HE860065, HE995703. B. balansana (Pierre) Aubrév., New Caledonia, Munzinger & al. 4196 (MO, NOU, P, S), HE860127, HE860066, HE995704. B. baueri (Montrouz.) Aubrév., New Caledonia, Munzinger 340 (NOU, P, S), HE860128, AY552113, HE995705. B. “belepensis” Swenson & Munzinger, New Caledonia, Swenson & al. 917 (MO, NOU, P, S), HE860129, HE860067, HE995706. B. brevipedicellata (P. Royen) Aubrév., New Caledonia, Dumontet, Poullain & Zongo 658 (NOU, P, S), HE860130, HE860068, HE995707. B. brownlessiana (F. Muell.) Swenson, Bartish & Munzinger, Australia, Bartish & Ford 17 (BRI, S), HE860131, DQ154063, HE995708. B. crebrifolia (Baill.) Aubrév., New Caledonia, Munzinger, Lowry & Létocart 2036 (NOU, P, S), HE860132, DQ154042, HE995597. B. lasiantha (Baill.) Aubrév., New Caledonia, Munzinger 2308 (NOU, P, S), HE860133, DQ154044, HE995598. B. longipetiolata Aubrév., New Caledonia, Munzinger & Létocart 2264 (NOU, P, S), HE860135, DQ154045, HE995709. B. longipetiolata Aubrév., New Caledonia, Munzinger, Pillon & Butin 2911 (NOU, P, S), HE860136, HE860070, HE995710. B. lucens (P. Royen) Aubrév., New Caledonia, Munzinger & Létocart 2310 (NOU, P, S), HE860137, HE860071, HE995711. B. macrocarpa (P. Royen) Swenson, Bartish & Munzinger, Australia, Bartish & Ford 24 (S), HE860138, DQ154073, HE995712. B. Munzinger2581, New Caledonia, Munzinger, Labat & Butin 2581 (NOU, P, S), HE860140, HE860073, HE995713. B. novocaledonica (Dubard) Aubrév., New Caledonia, Munzinger 2304 (MO, NOU, S), HE860141, HE860074, HE995714. B. papyracea (P. Royen) Aubrév., Australia, Bartish & Ford 20 (S), HE860142, DQ154046, HE995715. B. queenslandica (P. Royen) Aubrév., Aus­ tralia, Bartish & Jessup 8 (S), HE860143, DQ154043, HE995659. B. rubicunda (Pierre ex Baill.) Pierre, New Caledonia, Swenson, McPherson & Mouly 596 (NOU, P, S), HE860144, AY552160, HE995716. B. sebertii (Pancher) Pierre, New Caledonia, Munzinger, Pignal, Dagostini & Hopkins 1975 (S), HE860145, DQ154047, HE995717. B. singuliflora (C.T. White & W.D. Francis) Swenson, Bartish & Munzinger, Australia, Ford & Metcalfe 4547 (QRS, S), HE860146, DQ246699, HE995718. B. Takeuchi25691, New Guinea, Takeuchi 25691 (LAE, S), HE860147, HE860075, HE995599. B. vieillardii (Baill.) Swenson, Bartish & Munzinger, New Caledonia, Munzinger 2282 (S), HE860148, DQ154087, HE995719. B. xerocarpa (F. Muell. ex Benth.) Aubrév., Australia, Bartish & Ford 28 (BRI, S), HE860149, DQ154048, HE995683. chrySoPhylluM bakhuizenii P. Royen, New Guinea, Takeuchi 18997 (LAE, S), HE860150, HE860076, HE995600. c. wagapense Guillaumin, New Caledonia, Munzinger, D. & I. Létocart 5634 (MO, NOU, P, S), HE860151, HE860077, HE995601. eccliNuSA guianensis Eyma, South America, Brazil, Ducke Reserve 05–906 (K), HE860152, DQ246677, HE995661. e. ramiflora Mart., South America, Surinam, Irwing & al. 55081 (S), HE860153, DQ246678, HE995602. KrAuSellA patentinervia (K. Krause) Erlee, New Guinea, Armstrong 317 (E, S), HE860154, HE860078, HE995686. K. polyneura (K. Krause) H.J. Lam, Papua New Guinea, Ledermann 9054 (K), HF678108, HF912279, —. lePtoStyliS filipes Benth., New Cale­ donia, Webster & Hildreth 14665 (P), EU661382, AY552135, HE995603. l. goroensis Aubrév., New Caledonia, Munzinger 2288 (NOU, P, S), EU661383, DQ154052, HE995604. l. grandifolia Vink, New Caledonia, Munzinger & Oddi 2121 (MO, NOU, P, S), EU661384, DQ154053, HE995605. MAgodeNdroN mennyae Vink, New Guinea, Takeuchi, Ama & Siga 16570 (S), HE860155, AY552114, HE995685. NieMeyerA antiloga (F. Muell.) T.D. Penn., Australia, Bartish & Jessup 4 (S), HE860156, DQ154055, HE995662. N. chartacea (F.M.Bailey) C.T. White, Australia, Bartish & Jessup 5 (S), HE860157, DQ154057, HE995606. N. Ford2429, Australia, Andrew Ford 2429 (S), EU661389, EF025089, HE995607. N. prunifera (F. Muell.) F. Muell., Australia, Jessup 5238 (S), HE860158, DQ154058, HE995608. N. whitei (Aubrév.) L.W. Jessup, Australia, Floyd s.n. (S), EU661388, AY552137, HE995609. PichoNiA balansae (Baehni) Swenson & Munzinger, New Caledonia, Munzinger 975 (MO, NOU, P), HE860159, AY552102, HE995720. P. balansana Pierre, New Caledonia, Veillon 7990 (P), HE860160, AY552109, HE995610. P. daenikeri (Aubrév.) Swenson, Bartish & Munzinger, New Caledonia, Jaffré & Rigault 3038 (NOU, P), HE860161, AY552108, HE995690. P. deplanchei (Baill.) Swenson & Munzinger, New Caledonia, Veillon 377 (NOU, P), HE860162, AY552103, HE995699. P. dubia (Guillaumin) Swenson & Munzinger, New Caledonia, Grande Terre, Munzinger & Swenson 3065 (NOU, S), HE860163, HE860079, HE995721. P. dubia (Guillaumin) Swenson & Munz­ inger, New Caledonia, Ile Art, Swenson & al. 918 (NOU, P, S), HE860164, HE860080, HE995722. P. grandiflora Swenson & Munzinger, New Caledonia, Swenson & Munzinger 930 (NOU, P, S), HE860165, HE860081, HE995611. P. lecomtei (Guillaumin) T.D. Penn., New Caledonia, Munzinger & al. 2170 (MO, NOU, P, S), HE860166, DQ154061, HE995723. P. occidentalis (H.J. Lam) Aubrév., New Guinea, Takeuchi & Ama 22233 (LAE, S), HE860167, HE860082, HE995750. PlANchoNellA amieuana (Guillaumin) Aubrév., New Caledonia, Dumontet, Zongo & Maituku 510 (NOU, P, S), HE860168, EF025090, HE995612. P. aneityensis (Guillaumin) H.J. Lam ex P.Royen, Vanuatu, Munzinger, Lowry & Tuiwawa 3665 (NOU, P, S, SUVA), HE860169, HE860083, HE995724. P. anteridifera (C.T. White & W.D. Francis ex Lane­Poole) H.J. Lam, New Guinea, Takeuchi & Ama 17902 (LAE, S), HE860170, EF025109, HE995750. P. arnhemica (F. Muell. ex Benth.) P. Royen, Australia, Harwood 1170 (S), HE860171, AY552107, HE995663. P. asterocarpon (P. Royen) Swenson, Bartish & Munzinger, Australia, Bartish & Ford 25 (BRI, S), HE860172, DQ154078, HE995664. P. australis (R. Br.) Pierre, Australia, Floyd s.n. (S), HE860173, AY552148, HE995613. P. baillonii (Zahlbr.) Dubard, New Caledonia, Munzinger & Dagostini 2119 (MO, NOU, P, S), HE860174, HE860084, HE995725. P. cauliflora Munzinger & Swenson, New Caledonia, Munzinger & al. 3495 (K, MO, NOU, NSW, P, S), HE860175, HE860085, HE995666. P. chartacea (F. Muell. ex Benth.) H.J. Lam, Australia, Bartish & Jessup 1 (BRI, S), HE860176, HE862231, HE995665. P. clemensii (Lecomte) P. Royen, China, Hainan, How 73783 (S), HE860177, HE860086, HE995692. P. costata (Endl.) Pierre, New Zealand (cultivated in USA), Peter W. Fritsch 1770 (CAS), —, AF396230, —. P. costata (Endl.) Pierre, New Zealand (cultivated in Edinburgh), Robertson 9 (E), HE860178, —, HE995726. P. cotinifolia (A. DC.) Dubard, Australia, Bartish & Jessup 11 (BRI, S), HE860179, DQ154066, HE995701. P. crassinervia Dubard, New Caledonia, Munzinger 2275 (NOU, P, S), HE860180, DQ154067, HE995667. P. cyclopensis P. Royen, New Guinea, Polak 1365 (L), HE860181, HE860087, HE995693. P. cyclopensis P. Royen, New Guinea, Takeuchi, Ama & Gambia 25495 (LAE, S), HE860182, HE860088, HE995751. P. dothioensis (Aubrév.) Swenson, Bartish & Munzinger, New Caledonia, Munzinger 995 (MO, NOU, P, S), HE860183, AY552138, HE995668. P. duclitan (Blanco) Bakh.f., New Guinea, Fuentes & Fernando 37140 (L), HE860184, HE860089, —. P. eerwah (F.M. Bailey) P. Royen, Australia, Floyd s.n. (S), EU661400, AY552147, HE995669. P. endlicheri (Montrouz.) Guillaumin, New Caledonia, Munzinger, Lowry & Létocart 2038 (NOU, P, S), HE860185, DQ154068, HE995614. P. ericiflora Munzinger & Swenson, New Caledonia, Munzinger & al. 4197 (MO, NOU, P, S), HE860186, HE860090, HE995660. P. euphlebia (F. Muell.) Francis, Australia, Bartish & Ford 18 (BRI, MO, S), HE860187, DQ154069, HE995727. P. firma (Miq.) Dubard, New Guinea, Takeuchi, Ama & Jisaka 21437 (LAE, S), HE860188, HE860091, HE995615. P. glauca Swenson & Munzinger, New Caledonia, Swenson, McPherson & Mouly 625 (S), HE860189, AY552104, HE995728. P. grayana H.St.John, French Polynesia, Australs, Butaud 192 (PAP), HE860191, HE860092, HE995616. P. grayana var. florencei Fosberg, French Polynesia, Tahiti, Florence 3967 (BISH, PAP, S), —, HE860093, —. P. grayana H. St.John, French Polynesia, Tuamotus, Butaud & Lagouy 1173 (PAP), HE860193, HE860094, HE995617. P. grayana H. St.John, Wallis and Futuna, Alofi, Munzinger 5479 (NOU, P, S), HE860190, HE860095, HE995729. P. grayana H. St.John, Wallis and Futuna, Futuna, Munzinger, Meyer & Jourdan 5282 (P, S), HE860192, HE860096, HE995730. P. howeana (F. Muell.) Version of Record (identical to print version). 769 Swenson & al. • Chrysophylloideae in Oceania and SE Asia TAXON 62 (4) • August 2013: 746–770 Appendix 1. Continued. Pierre, Lord Howe Island, Le Cussan 1210 (BRI), HE860194, EF025094, HE995681. P. Ile Yande, New Caledonia, Swenson & Munzinger 715 (S), HE860195, EF025091, —. P. kaalaensis Aubrév., New Caledonia, Swenson & Munzinger 706 (S), HE860196, HE860097, HE995694. P. koumaciensis Aubrév., New Cale­ donia, Munzinger 2665 (NOU), HE860197, EF025095, HE995682. P. kuebiniensis Aubrév., New Caledonia, Munzinger & Létocart 2057 (S), HE860198, DQ154070, HE995670. P. laetevirens (Baill.) Pierre ex Dubard, New Caledonia, Munzinger, Pignal & Lowry 2001 (MO, NOU, P, S), HE860199, DQ154071, HE995618. P. lamprophylla (K. Krause) H.J. Lam, New Guinea, Takeuchi, Ama & Gambia 25573 (LAE, S), HE860200, HE860098, HE995619. P. lauracea (Baill.) Dubard, New Caledonia, McPherson & Munzinger 18070 (MO, S), HE860201, AY552145, HE995731. P. ledermannii (K. Krause) H.J. Lam, New Guinea, Takeuchi, Towati, Jisaka & Ama 17700 (LAE, S), HE860202, HE860099, HE995732. P. linggensis (Burck) Pierre, Wallis and Futuna, Futuna, Munzinger 5330 (NOU, P, S), HE860203, HE860100, HE995733. P. linggensis (Burck) Pierre, New Guinea, Takeuchi, Jisaka, Towati & Ama 21108 (LAE, S), HE860204, HE860101, HE995695. P. linggensis (Burck) Pierre, Vanuatu, Wheatley 271 (K), —, DQ154062, —. P. luteocostata Munzinger & Swenson, New Caledonia, Munzinger, Jaffré & Roumagnac 2375 (NOU, S), EU661401, EF025099, HE995755. P. maingayi (C.B. Clarke) P. Royen, Singapore, Wilkie & Gwee 507 (E), HE860205, HE860102, HE995620. P. mandjeliana Munzinger & Swenson, New Caledonia, Munzinger & Pillon 2861 (NOU, P, S), HE860206, EF025100, HE995680. P. membranacea H.J. Lam, Fiji, Smith 4609 (S), HE860207, DQ154074, HE995621. P. mindanaensis H.J. Lam, Philippines, Clemens 1015 (PNH), HE860208, HE860103, HE995622. P. minutiflora Munzinger & Swenson, New Caledonia, MacKee 16639 (NOU, P, S), HE860209, HE860104, HE995734. P. moluccana (Burck) H.J. Lam, New Guinea, Takeuchi, Ama & Gambia 25550 (S), HE860139, HE860072, HE995671. P. Munzinger 6150, New Caledonia, Munzinger 6150 (NOU), HE860210, HE860105, HE995735. P. Munzinger 6490, Fiji, Munzinger 6490 (NOU, SUVA), HE860211, HE860106, HE995736. P. Munzinger 6514, Fiji, Munzinger 6514 (NOU, SUVA), HE860212, HE860107, HE995737. P. myrsinifolia (F. Muell.) Swenson, Bartish & Munzinger, Australia, Floyd s.n. (S), HE860213, AY552143, HE995702. P. myrsinoides (Benth.) S.T. Blake ex Francis, Australia, McDonald 3365 (QRS, S), HE860214, EF025092, HE995738. P. obovata (R. Br.) Pierre, Taiwan, Chung & Anderberg 1166 (HAST, S), EU661402, DQ154076, HE995739. P. Pillon 150, New Caledonia, Pillon, Barrabé & Rigault 150 (NOU, P, S), HE860215, HE860108, HE995696. P. pohlmaniana (F. Muell.) Pierre ex Dubard, Australia, Bartish & Ford 22 (BRI, S), HE860216, DQ154079, HE995672. P. pronyensis Guillaumin, New Caledonia, Munzinger 2051 (NOU), HE860217, DQ154080, HE995623. P. roseoloba Munzinger & Swenson, New Caledonia, Munzinger 2311 (NOU, P, S), HE860218, DQ154090, HE995673. P. rufocostata Munzinger & Swenson, New Caledonia, Munzinger, Labat & Butin 2583 (NOU, S), HE860219, DQ154089, HE995684. P. saligna S. Moore, New Caledonia, Munzinger, Létocart & Gâteblé 2218 (NOU, P, S), HE860220, DQ154083, HE995624. P. sandwicensis (A. Gray) Pierre, Hawaii, Ohao, Koolan 119d (GB), HE860221, DQ154084, HE995740. P. sandwicensis (A. Gray) Pierre, Hawaii, Kauai, Merello, Bess & Johnson 3227 (MO, S), HE860222, HE860109, HE995741. P. sandwicensis (A. Gray) Pierre, Hawaii, Ohau, Doug Okamoto s.n. (S), HE860223, HE860110, HE995742. P. skottsbergii Guillaumin, New Caledonia, Munzinger, Gâteblé & Amice 2391 (NOU, P, S), HE860224, DQ154085, HE995674. P. smithii (P. Royen) A.C. Sm., Fiji, Munzinger 6495 (NOU, S, SUVA), HE860225, HE860111, HE995743. P. solida P. Royen, New Guinea, Takeuchi, Towati & Ama 17286 (LAE, S), HE860226, EF025104, HE995675. P. sphaerocarpa (Baill.) Dubard, New Caledonia, Tronchet, Munzinger & Oddi 389 (MO, P), EU661403, AY552139, HE995625. P. tahitensis (Nadeaud) Pierre ex Dubard, French Polynesia, Raiatea, Meyer & Taputuarai 3013 (NOU, PAP), HE860227, EF025108, HE995626. P. tahitensis (Nadeaud) Pierre ex Dubard, French Polynesia, Tahiti, Meyer & Taputuarai 3051 (PAP), HE860228, EF025105, HE995744. P. thiensis Aubrév., New Caledonia, Munzinger, Dagostini, Rigault & Kurpisz 2625 (S), HE860229, EF025106, HE995676. P. thyrsoidea C.T. White, New Guinea, Whitfeld PA-2E-0072 (LAE, MIN, S), HE860230, HE860112, HE995745. P. torricellensis (K. Schum.) H.J. Lam, Wallis and Futuna, Alofi, Munzinger 5473 (NOU, S), HE860231, HE860113, HE995746. P. torricellensis (K. Schum.) H.J. Lam, Wallis and Futuna, Futuna, Munzinger 5284 (NOU), HE860232, HE860114, HE995747. P. umbonata (P. Royen) A.C. Sm., Fiji, Smith 8298 (K), HE860233, DQ154086, HE995627. P. vitiensis Gillespie, Fiji, Smith 7700 (S), HE860234, DQ154088, HE995628. P. xylocarpa (C.T. White) Swenson, Bartish & Munzinger, Australia, Bartish & Ford 31 (BRI, S), HE860235, DQ154049, HE995629. P. xylocarpa (C.T. White) Swenson, Bartish & Munzinger, Papua New Guinea, Takeuchi, Towati & Ama 17284 (LAE, S), HE860236, EF025107, HE995677. PouteriA Armstrong316, New Guinea, Armstrong 316 (E), —, HE860115, —. P. gillisonii Vink, New Guinea, Takeuchi & Ama 19050B (LAE, S), HE860237, HE860116, HE995748. P. luzoniensis (Merr.) Baehni, New Guinea, Conn, Damas, Fazang, Paul & Kuria 5063 (L), HE860238, HE860117, HE995697. P. maclayana (F. Muell.) Baehni, Papua New Guinea, Regaldo & Katik 1102 (L), HE860239, HE860118, HE995698. P. malaccensis (C.B. Clarke) Baehni, Singapore, Swenson, Karim & Fadli 1017 (S, SING), HE860240, HE860119, HE995679. P. pullenii Vink, New Guinea, Takeuchi, Jisaka, Towati & Ama 21157 (LAE, S), —, HE860120, HE995630. P. richardii (F. Muell.) Baehni, Australia, Dixon & Leach 1032 (BRI, DNA, S), HE860134, HE860069, HE995749. P. stellibacca J.F. Maxwell, Thailand, Boonkongchart & Chongko 146 (L), HE860241, HE860121, HE995700. P. wandae Vink, New Guinea, Armstrong 305 (E, S), HE860242, HE860122, —. PycNANdrA acuminata (Pierre ex Baill.) Swenson & Munzinger, New Caledonia, Munzinger 1006 (MO, NOU, P), EU661430, AY552124, HE995631. P. atrofusca Swenson & Munzinger, New Caledonia, Munzinger & al. 2618 (NOU, P, S), EU661419, EU661443, HE995632. P. balansae (Baill.) Swenson & Munzinger, New Caledonia, Munzinger & al. 1451 (S), EU661387, AY552123, HE995754. P. belepensis Swenson & Munzinger, New Cale­ donia, Ile Art, Swenson, Munzinger & Barrabé 913 (S), HE860243, HE860123, HE995687. P. benthamii Baill., New Caledonia, Munzinger, Létocart & Gâteblé 2228 (NOU, P, S), EU661404, EU661436, HE995633. P. blaffartii Swenson & Munzinger, New Caledonia, Swenson, McPherson & Mouly 597 (NOU, S), EU661423, AY552127, HE995634. P. blanchonii (Aubrév.) Swenson & Munzinger, New Caledonia, Munzinger, Labat, Leveque & Mandaoué 2576 (S), EU661390, DQ154059, HE995635. P. bracteolata Swenson & Munzinger, New Caledonia, Munzinger, Pillon & Butin 2885 (NOU, P, S), EU661421, EU661445, HE995636. P. caeruleilatex Swenson & Munzinger, New Caledonia, Munzinger & al. 2622 (MO, NOU, P, S), EU661426, EU661448, HE995637. P. canaliculata Swenson & Munz­ inger, New Caledonia, Munzinger & al. 2067 (MO, NOU, P, S), EU661431, DQ154092, HE995638. P. carinocostata Vink, New Caledonia, McPherson & Munzinger 18091 (MO, NOU, P, S), EU661405, AY552132, HE995639. P. comptonii (S. Moore) Vink, New Caledonia, Lowry, McPherson & Le Borgne 5780A (MO, S), EU661407, AY552131, HE995640. P. controversa (Guillaumin) Vink, New Caledonia, Lowry, McPherson & Le Borgne 5787 (MO, S), EU661408, AY552126, HE995641. P. cylindricarpa Swenson & Munzinger, New Caledonia, Swenson, McPherson & Mouly 615 (MO, NOU, S), EU661429, AY552110, HE995757. P. decandra (Montrouz.) Vink, New Caledonia, Ile Art, Swenson, Munzinger & Barrabé 920 (S), HE860244, HE860124, HE995688. P. deplanchei (Baill.) Swenson & Munzinger, New Caledonia, Munzinger 978 (MO, NOU, P, S), EU661380, AY552120, HE995642. P. fastuosa (Baill.) Vink, New Caledonia, Munzinger & Swenson 2993 (NOU, S), EU661394, EU661434, HE995643. P. francii (Guillaumin & Dubard) Swenson & Munzinger, New Caledonia, Munzinger 965 (MO, NOU, P), EU661391, AY552117, HE995644. P. glabella Swenson & Munzinger, New Caledonia, Munzinger & al. 2615 (NOU, P, S), EU661418, EU661442, HE995645. P. glaberrima Swenson & Munzinger, New Caledonia, Munzinger & al. 1394 (MO, NOU, P, S), EU661399, AY552133, HE995646. P. gordoniifolia (S.Moore) Swenson & Munzinger, New Caledonia, Swenson & Munzinger 726a (BRI, MO, NOU, P, S), EU661392, EU661433, HE995647. P. griseosepala Vink, New Caledonia, Swenson, McPherson & Mouly 627 (MO, NOU, S), EU661414, AY552128, HE995648. P. kaalaensis Aubrév., New Caledonia, Munzinger & Labat 2599 (NOU, S), EU661415, EU661440, HE995756. P. linearifolia Swenson & Munzinger, New Caledonia, Munzinger & Blaffart 2786 (NOU, P, S), EU661427, EU661440, HE995753. P. neocaledonica (S.Moore) Vink, New Caledonia, Tronchet, Munzinger & Oddi 426 (MO, NOU, P, S), EU661416, AY552129, HE995649. P. ouaiemensis Swenson & Munzinger, New Caledonia, Munzinger, Lowry, Blaffart & Brown 3135 (NOU, S), EU661422, EU661446, HE995689. P. paucinervia Swenson & Munzinger, New Caledonia, Munzinger & al. 1438 (NOU, P, S), EU661424, AY552159, HE995650. P. pubiflora Swenson & Munzinger, New Cale­ donia, Munzinger & al. 2624 (NOU, P, S), EU661420, EU661444, HE995651. P. sarlinii (Aubrév.) Swenson & Munzinger, New Caledonia, Munzinger 1860 (NOU, P, S), EU661395, EU661435, HE995652. P. schmidii (Aubrév.) Swenson & Munzinger, New Caledonia, McPherson & Munzinger 18106 (MO, NOU, P, S), EU661396, AY552116, HE995653. P. sessiliflora Swenson & Munzinger, New Caledonia, Munzinger & McPherson 696 (BRI, MO, NOU, P, S), EU661398, AY552161, HE995691. P. sessilifolia (Pancher & Sebert) Swenson & Munzinger, New Caledonia, McPherson & Munzinger 18176 (MO, P), EU661397, AY552118, HE995654. P. vieillardii (Baill.) Vink, New Caledonia, Dumontet, Zongo & Maituku s.n. (S), EU661417, EU661441, HE995655. P. viridiflora Swenson & Munz­ inger, New Caledonia, Munzinger, McPherson & Tuiwawa 4195 (NOU, S), HE860245, HE860125, HE995656. SerSAliSiA sericea (Aiton) R. Br., Australia, Harwood 1172 (S), HE860246, AY552112, HE995657. S. sessiliflora (C.T. White) Aubrév., Australia, Bartish & Ford 33 (BRI, MO, P, S), HE860247, DQ154094, HE995678. VAN-royeNA castanosperma (C.T. White) Aubrév., Australia, Bartish & Ford 26 (S), HE860248, DQ154096, HE995658. 770 Version of Record (identical to print version).