Academia.eduAcademia.edu
Phylogeny and taxonomy of Ophiognomonia (Gnomoniaceae, Diaporthales), including twenty-five new species in this highly diverse genus Donald M. Walker, Lisa A. Castlebury, Amy Y. Rossman, Luis C. Mejía & James F. White Fungal Diversity An International Journal of Mycology ISSN 1560-2745 Fungal Diversity DOI 10.1007/s13225-012-0200-y 1 23 Your article is protected by copyright and all rights are held exclusively by Mushroom Research Foundation. This e-offprint is for personal use only and shall not be selfarchived in electronic repositories. If you wish to self-archive your work, please use the accepted author’s version for posting to your own website or your institution’s repository. You may further deposit the accepted author’s version on a funder’s repository at a funder’s request, provided it is not made publicly available until 12 months after publication. 1 23 Author's personal copy Fungal Diversity DOI 10.1007/s13225-012-0200-y Phylogeny and taxonomy of Ophiognomonia (Gnomoniaceae, Diaporthales), including twenty-five new species in this highly diverse genus Donald M. Walker & Lisa A. Castlebury & Amy Y. Rossman & Luis C. Mejía & James F. White Received: 4 May 2012 / Accepted: 26 July 2012 # Mushroom Research Foundation 2012 Abstract Species of Ophiognomonia are leaf-inhabiting endophytes, pathogens, and saprobes that infect plants in the families Betulaceae, Fagaceae, Juglandaceae, Lauraceae, Malvaceae, Platanaceae, Rosaceae, Salicaceae, and Sapindaceae. Based on extensive collecting, this speciesrich genus is now known to have a world wide distribution in primarily temperate areas, although some species are known from the subtropics. Analyses of DNA sequences from three markers including guanine nucleotide-binding protein subunit beta-like protein (MS204), translation elongation factor 1α (tef-1α), and the ITS region including ITS1, 5.8 S rDNA and ITS2 regions (ITS) were used to define phylogenetic species in Ophiognomonia. Host plant association correlated with these species. Twenty-five new species of Ophiognomonia and two new combinations are proposed with descriptions and illustrations. In addition, Electronic supplementary material The online version of this article (doi:10.1007/s13225-012-0200-y) contains supplementary material, which is available to authorized users. D. M. Walker (*) Department of Natural Sciences, The University of Findlay, Findlay, OH 45840, USA e-mail: walkerd@findlay.edu L. A. Castlebury : A. Y. Rossman Systematic Mycology & Microbiology Laboratory, USDA Agricultural Research Service, Beltsville, MD 20705, USA L. C. Mejía Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Republic of Panama J. F. White Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901, USA descriptions and illustrations are provided for 12 other species of Ophiognomonia. A key is provided to the 45 currently accepted species of Ophiognomonia. The disposition of additional names in Ophiognomonia is also discussed. Keywords Birch foliar pathogen . Butternut canker . GCPSR . Genealogical sorting index . Host associations . MS204 . Multilocus phylogeny . Walnut anthracnose and leaf blotch Introduction Fungi in the family Gnomoniaceae (Diaporthales, Sordariomycetes, Ascomycota) are associated with a diverse range of herbaceous plants, shrubs, and trees from over 330 host genera in North America and Europe (Farr, D.F. & Rossman, A.Y. Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved September 19, 2011, from http://nt.ars-grin.gov/fungaldatabases/) and function in the environment as endophytes, pathogens, and saprobes. Recently nine genera were recognized in a comprehensive monograph of the Gnomoniaceae (Sogonov et al. 2008). These nine genera were identified on the basis of a three-marker phylogeny based on the 5′ region of the large ribosomal subunit (nrLSU) and exons from the translation elongation factor 1-alpha (tef-1α) and RNA polymerase II (rpb2) genes. Mejía et al. (2011a) increased the number of gnomoniaceous genera to ten by describing the monotypic genus Occultocarpon, which occurs on Alnus nepalensis in China. Although the modern genera of Gnomoniaceae have been defined by DNA sequence data, other characters such as host association, presence/absence of stroma, and perithecial habit are also important (Sogonov et al. 2008). For example, Author's personal copy Fungal Diversity the genus Cryptosporella produces perithecia aggregated in stromata on twigs, whereas the perithecia of Gnomonia are solitary and erumpent on overwintered leaves. The purpose of this study is to document species diversity in the genus Ophiognomonia using multiple molecular markers. Ophiognomonia has a worldwide distribution, primarily in temperate forests, but with a few species that occur in subtropical regions, and is based on the type species O. melanostyla (DC. : Fr.) Berl. found on Tilia spp. in temperate forests in USA and Europe. Sogonov et al. (2008) recognized 17 species in the genus Ophiognomonia on host plants in the Betulaceae, Fagaceae, Juglandaceae, Lauraceae, Malvaceae, Platanaceae, Rosaceae, Salicaceae, and Sapindaceae. Historically, knowledge of geographic distribution and host association of species in this genus was limited, especially in Asia and South America. Kobayashi (1970) collected a single species, O. setacea as Gnomonia setacea on Quercus in Japan. Otani (1995) observed O. leptostyla on Juglans sp. and O. setacea on Castanea sp. and Quercus sp. from Japan. Reports and collections of Ophiognomonia from Europe and North America are more common than in Asia, but are still somewhat limited. For example, Barr (1978) accepted a single species, O. melanostyla on Tilia sp. from Europe and the United States. Monod (1983) described eight additional species distributed throughout Europe and North America. Species of Ophiognomonia cause diseases of economically important hardwood trees, including O. intermedia (Rehm) Sogonov with the asexual state Discula betulae (Westend.) Pennycook, which causes a foliar disease of birch and dieback of young shoots (Green 2004; Green and Castlebury 2007; Pennycook 2007). Walnut anthracnose and leaf blotch are caused by virulent strains of Ophiognomonia leptostyla in the eastern half of the United States, South America, Europe, and Asia (Neely and Black 1976; Berry 1981; Juhasova et al. 2006; Belisario et al. 2008). Disease epidemics caused by O. leptostyla are particularly destructive during the rainy and cool seasons in Iran, which is the third highest walnut producer in the world (Behdad 1991; Belisario et al. 2008; Salahi et al. 2009). Perhaps the most devastating member of the genus in North America is the asexually reproducing O. clavigignentijuglandacearum (Nair, Kostichka, & Kuntz) Broders & Boland, which causes butternut canker (Juglans cinerea L.) with past reports documenting 70–90 % tree decline in some areas (Anderson and LaMadeleine 1978; Broders and Boland 2011). Prior to Sogonov et al. (2008) considerable confusion existed about the generic concept of Ophiognomonia. Ophiognomonia melanostyla was originally described in the genus Sphaeria and then transferred to Cryptoderis, Gnomonia, and Gnomoniella before being designated as the type species of Ophiognomonia in 1899 (see Sogonov et al. 2008). Many species now in Ophiognomonia were scattered amongst various gnomoniaceous genera due to emphasis of differing morphological characters by different authors. For many years considerable importance was placed on the shape and septation of ascospores. For example, Monod (1983) included both O. rubi-idaei (M. Monod) Sogonov and O. trientensis (M. Monod) Sogonov in Gnomonia based on the short, ellipsoidal, one-septate ascospores. Barr (1978) emphasized placement of the perithecial neck thus recognizing Plagiostoma micromegala (Ellis & Everh.) M.E. Barr and Pleuroceras sassafras (Ellis & Everh.) M.E. Barr, now both included in Ophiognomonia (Sogonov et al. 2008). Within the Gnomoniaceae species are based on the phylogenetic analyses of molecular markers. Host association and morphological characters such as ascospore size and septation can also be useful for species identification. Recent phylogenetic studies have shown that species of Gnomoniaceae often have a narrow host range associating with a single host genus or species (Mejía et al. 2008, 2011a, b, c; Sogonov et al. 2008; Walker et al. 2010). For example, in the genus Cryptosporella nine species are associated with a single host species or subspecies and seven fungal species occur on a single host genus (Mejía et al. 2011b). Mejía et al. (2011b) suggest that the genus Cryptosporella has undergone speciation within the geographic host ranges of Betulaceae, Fagaceae, and Salicaceae. Walker et al. (2010) used ascospore size, septation, and host association to supplement phylogenetic recognition of species in the genus Gnomoniopsis. Four species of Gnomoniopsis are specific to the host genus Rubus and ten additional species associate with nine other host genera in the Fagaceae, Onagraceae, and Rosaceae. Based on theory from Avise and Ball (1990), Taylor et al. (2000) coined genealogical concordance phylogenetic species recognition (GCPSR) as an approach for defining fungal species based on congruent gene trees. Seven genes in various combinations have been commonly used for GCPSR of fungi, specifically nuclear large and small ribosomal subunits, 5.8 S ribosomal RNA gene, subunits 1 and 2 of RNA polymerase II, tef-lα, and mitochondrial ATP synthase as well as the nuclear ribosomal internal transcribed spacer (ITS) regions 1 and 2 (e.g., Damm et al. 2007; Letcher et al. 2008; Mejía et al. 2011b; Raja et al. 2008; Spatafora et al. 2006; Walker et al. 2010). As fungal genomic data became available, additional molecular markers were added to the mycologist’s toolbox (Aguileta et al. 2008; Schmitt et al. 2009; Walker et al. 2012) but it can be difficult to evaluate species limits and the contribution and usefulness of the individual genes in a phylogenetic analysis. More recently the genealogical sorting index (gsi; Cummings et al. 2008) has been used to quantify exclusivity Author's personal copy Fungal Diversity of ancestry of monophyletic groups. Phylogenetic informativeness profiles incorporate nucleotide substitution rates over evolutionary time and can assist in marker selection for phylogenetic questions (Townsend 2007). Walker et al. (2012) applied phylogenetic informativeness (Townsend 2007; Townsend and Leuenberger 2011) to assess the usefulness of five molecular markers including β-tubulin, FG1093 (60 S ribosomal protein L37), ITS, MS204 (guanine nucleotide-binding protein subunit beta-like protein), and tef-1α, in resolving lower-level relationships in Ophiognomonia and determined that concatenation of ITS, MS204, and tef-1α accurately represent the topology of the combined five-marker dataset. DNA sequences from three ribosomal DNA and protein coding molecular markers, namely MS204, tef-1α, and ITS are used in this study to determine the species diversity of Ophiognomonia. Monophyletic species are evaluated using GCPSR and gsi in single and combined-marker genealogies. Twenty-five new species of Ophiognomonia and two new combinations are proposed with descriptions and illustrations. In addition, descriptions and illustrations are provided for the 12 combinations included without description in Sogonov et al. (2008). A key is provided to the 45 currently accepted species of Ophiognomonia. Methods Morphological observations Macroscopic and microscopic characters were observed and digital images captured as in Walker et al. (2010). Freshly collected specimens were isolated and grown in culture according to Walker et al. (2010). Freshly collected specimens determined as immature due to lack of ascospore germination in culture were placed in moist chambers. The moist chambers were airtight plastic boxes/bags with moist paper towels lining the bottom surface. They were placed at 4 °C in complete darkness and observed weekly for ascospore maturation and germination in culture. Cultures were deposited at the Centraalbureau voor Schimmelcultures (CBS) in the Netherlands (Table 1). DNA extraction, amplification, and sequencing Cultures were grown and genomic DNA extracted using the QIAGEN Puregene Core Kit A (QIAGEN Inc., Chatsworth, California) as in Walker et al. (2010). The markers ITS, MS204, and tef-1α were selected for analysis based on phylogenetic informativeness test results from Walker et al. (2012). ITS and tef-1α were amplified and sequenced according to Walker et al. (2010) with the addition of four gnomoniaceae-specific tef-1α primers designed in Walker et al. (2012). The marker MS204 was amplified and sequenced as in Walker et al. (2012). Sequence data analyses Raw sequences were edited and assembled into contigs with Sequencher 4.9 for Windows (Gene Codes Corp., Ann Arbor, Michigan). Eight alignments were prepared using the MAFFT v.6 web server (http://mafft.cbrc.jp/alignment/ server/) and curated with the Gblocks (Castresana 2000; Talavera and Castresana 2007) web server (http://molevol. cmima.csic.es/castresana/Gblocks_server.html). The alignment strategy for each marker was set at L-INS-i for nucleotide sequences in MAFFT v.6. Manual alignment modifications were performed before running Gblocks with the default parameters. Alignments one, two, and three correspond to the markers ITS, tef-1α, and MS204, respectively. Each alignment was composed of DNA sequences for 45 isolates, representing 43 species in Ophiognomonia and the outgroup taxa Ambarignomonia petiolorum and Discula destructiva in the Gnomoniaceae. The three individually aligned sequence markers were concatenated into a single file to form alignment four. Alignments 5–7 correspond to combined three-marker alignments for three independently supported clades of species within Ophiognomonia. Each marker was aligned individually as previously mentioned, then concatenated to form a single file for each of the three clades. Alignment five (clade one) consisted of 39 isolates, representing 15 species in Ophiognomonia, and the outgroup taxon O. longispora. Alignment six (clade two) consisted of 25 isolates, representing 11 species in Ophiognomonia, and the outgroup O. monticola. Alignment seven (clade three) consisted of 35 isolates, representing 15 species in Ophiognomonia, and the outgroup taxa O. gei-montani and O. leptostyla. Alignment eight consisted of ITS sequences from the same 25 isolates in alignment six, plus four additional ITS sequences representing two species of Ophiognomonia lacking a culture, for a total of 29 ITS sequences representing 13 species of Ophiognomonia and the outgroup O. monticola. Potential conflict among datasets was assessed by comparing the three individual gene trees across all alignments with a conditional comparison test using maximum parsimony bootstrap (MPBS) analyses with a cutoff value of ≥70 % for a supported clade (Mason-Gamer and Kellogg 1996; Kellogg et al. 1996; Johnson and Soltis 1998). Phylogenetic trees were inferred with maximum parsimony (MP), maximum likelihood (ML), and Bayesian analyses. In all analyses rooting was accomplished with the outgroup method (Nixon and Carpenter 1993) using results from this study and from Sogonov et al. (2008). For MP analyses each gene was analyzed individually and then together in a threemarker combined alignment using PAUP 4.0b10 (Swofford 2002) according to Walker et al. (2010). The University of Table 1 Specimens and cultures of Gnomoniaceae sequenced for this study CBS # Isolate Specimen ITS MS204 tef1-α Country Host Collector Ambarignomonia petiolorum Discula destructiva Ophiognomonia alni-cordatae Ophiognomonia alni-viridis Ophiognomonia alni-viridis Ophiognomonia alni-viridis Ophiognomonia alni-viridis Ophiognomonia apiospora CBS CBS CBS CBS CBS CBS CBS CBS 121227 109771 131353 782.79 783.79 131408 128358 131425 AR 4082 AR 2596 DMW 384.1 CBS 782.79 CBS 783.79 DMW 439.3 LCM 494 LCM 503.05 BPI BPI BPI NA NA BPI BPI BPI 844274 1107757 882233 EU254748.1* JQ414221 JQ414243 EU254864.1* EU254865.1* JQ414260 JF514848* JQ414286 JQ414056 JQ414053 JQ414091 JQ414064 JQ414065 JQ414108 JF319085* JQ414134 JQ414140 JQ414137 JQ414175 JQ414148 JQ414149 JQ414192 JF514826* JQ414218 USA USA Japan Switzerland Switzerland USA USA China Liquidambar styraciflua Cornus nuttallii Alnus cordata Alnus viridis Betula sp. Betula sp. Alnus sinuata Alnus nepalensis M.V. Sogonov S. Redlin D.M. Walker M. Monod M. Monod D.M. Walker L.C. Mejía L.C. Mejía Ophiognomonia apiospora Ophiognomonia asiatica Ophiognomonia asiatica Ophiognomonia asiatica Ophiognomonia asiatica Ophiognomonia balsamiferae Ophiognomonia bugabensis Ophiognomonia bugabensis Ophiognomonia clavigignentijuglandacearum Ophiognomonia clavigignentijuglandacearum Ophiognomonia clavigignentijuglandacearum Ophiognomonia cordicarpa Ophiognomonia gardiennetii Ophiognomonia gardiennetii Ophiognomonia gardiennetii CBS CBS CBS CBS CBS CBS NA CBS CBS 131426 131351 131345 131347 131424 121266 LCM 503.06 DMW 378.2 DMW 351.3 DMW 361.1 LCM 500.01 AR 4320 LCM 362 131399 LCM 368 121081 AR 3791 BPI BPI BPI BPI BPI BPI NA NA NA 879601 882231 882220 882225 879600 877606 JQ414287 JQ414241 JQ414233 JQ414236 JQ414285 EU254870.1* JQ414283 JQ414284 DQ323533.1* JQ414135 JQ414089 JQ414081 JQ414084 JQ414133 JF319077* JQ414131 JQ414132 JQ414054 JQ414219 JQ414173 JQ414165 JQ414168 JQ414217 JF514827* JQ414215 JQ414216 JQ414138 China Japan Japan Japan China Canada Panama Panama USA Alnus nepalensis Quercus serrata Quercus serrata Quercus aliena Quercus sp. Populus balsamifera Alnus acuminata Alnus acuminata Juglans cinerea L.C. Mejía D.M. Walker D.M. Walker D.M. Walker L.C. Mejía M.V. Sogonov L.C. Mejía L.C. Mejía M. Ostry JQ414222 JQ414061 JQ414145 USA Juglans cinerea S. Anagnostakis CBS CBS CBS CBS Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia gei gei-montani gunmensis hiawathae hiawathae ibarakiensis Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia ibarakiensis intermedia intermedia intermedia ischnostyla 882251 879541 879601 NA AR 4539 NA NA ATCC 36624 BPI 880702 EU255069.1* JQ414062 JQ414146 USA Juglans cinerea V.M.G. Nair 131342 131409 131417 131429 DMW DMW DMW DMW 344.2 442.1 469.3 513.1 BPI BPI BPI BPI 882217 882252 882262 882276 JQ414230 JQ414261 JQ414265 JQ414269 JQ414078 JQ414109 JQ414113 JQ414117 JQ414162 JQ414193 JQ414197 JQ414201 Japan USA USA USA Pterocarya rhoifolia Alnus serrulata Alnus serrulata Alnus serrulata D.M. D.M. D.M. D.M. CBS CBS CBS CBS CBS CBS 818.79 821.79 131401 131413 131416 131405 CBS 818.79 CBS 821.79 DMW 388.1 DMW 458.3 DMW 466.1 DMW 419.3 NA NA BPI BPI BPI BPI 882236 882256 882261 882247 EU254928.1* EU254871* JQ414246 JQ414263 JQ414264 JQ414257 NA JF319078* JQ414094 JQ414111 JQ414112 JQ414105 NA JF514828* JQ414178 JQ414195 JQ414196 JQ414189 Switzerland Switzerland Japan USA USA Japan Fragaria vesca Geum montanum Quercus serrata Betula lutea Betula lutea Alnus sp. M. Monod M. Monod D.M. Walker D.M. Walker D.M. Walker D.M. Walker CBS CBS CBS CBS CBS 131349 119197 131421 131418 121234 DMW 371.1 AR 4147 DMW 486.1 DMW 470.1 AR 4190 BPI BPI BPI BPI BPI 882227 880534 882267 882263 871054B JQ414238 EU254875.1* JQ414267 JQ414266 EU254897.1* JQ414086 JF319074* JQ414115 JQ414114 JQ414058 JQ414170 JF514825* JQ414199 JQ414198 JQ414142 Japan United Kingdom USA USA Switzerland Alnus sp. Betula alba Betula lutea Alnus serrulata Corylus avellana D.M. Walker S. Green D.M. Walker D.M. Walker M.V. Sogonov Author's personal copy Species Walker Walker Walker Walker Fungal Diversity Species Isolate Specimen ITS MS204 tef1-α Country Host Collector JQ414066 JQ414093 JQ414079 JQ414090 JQ414088 JQ414103 JQ414125 JQ414063 JQ414073 JQ414097 JQ414096 JQ414118 JQ414150 JQ414177 JQ414163 JQ414174 JQ414172 JQ414187 JQ414209 JQ414147 JQ414157 JQ414181 JQ414180 JQ414202 Switzerland Japan Japan Japan Japan Japan USA USA Japan Japan Japan France Carpinus betulus Prunus japonica Castanea crenata Castanea crenata Castanea crenata Castanea crenata Prunus sp. Juglans sp. Tilia maximowicziana Tilia maximowicziana Betula maximowicziana Tilia sp. M. Monod D.M. Walker D.M. Walker D.M. Walker D.M. Walker D.M. Walker D.M. Walker D. Farr D.M. Walker D.M. Walker D.M. Walker Y. Mourgues, M. Chovillon L.C. Mejía D.M. Walker D.M. Walker M.V. Sogonov D.M. Walker D.M. Walker D.M. Walker D.M. Walker Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia ischnostyla japonica kobayashii kobayashii kobayashii kobayashii lenticulispora leptostyla longispora longispora maximowiczianae melanostyla CBS CBS CBS CBS CBS CBS CBS CBS CBS CBS CBS CBS 838.79 131355 131343 131352 131350 131403 131363 110136 131337 131358 131357 131431 CBS 838.79 DMW 387.2 DMW 347.2 DMW 379.3 DMW 374.2 DMW 416.1 DMW 544 CBS 110136 DMW 325.4 DMW 394.3 DMW 392.1 DMW 533 NA BPI BPI BPI BPI BPI BPI NA BPI BPI BPI BPI 882210 882239 882238 882279 EU254891.1* JQ414245 JQ414231 JQ414242 JQ414240 JQ414255 JQ414277 DQ323535.1* JQ414225 JQ414249 JQ414248 JQ414270 Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia melanostyla michiganensis michiganensis michiganensis micromegala micromegala monticola monticola CBS CBS CBS CBS CBS CBS CBS CBS 128482 131412 131422 121252 131432 131433 131346 131361 LCM 389.01 DMW 454.3 DMW 492.1 AR 4295 DMW 535 DMW 536 DMW 357.3 DMW 405.3 BPI BPI BPI BPI BPI BPI BPI BPI 879257 882255 882268 877624 882280 882281 882222 882243 JF514849* JQ414262 JQ414268 EU254901.1* JQ414271 JQ414272 JQ414235 JQ414253 JF319084* JQ414110 JQ414116 JF319076* JQ414119 JQ414120 JQ414083 JQ414101 JF514830* JQ414194 JQ414200 JF514820* JQ414203 JQ414204 JQ414167 JQ414185 Germany USA USA USA USA USA Japan Japan Tilia heterophylla Betula papyrifera Alnus serrulata Betula lenta Carya sp. Carya sp. Carpinus sp. Carpinus sp. 882235 882218 882232 882229 882245 882287 Ophiognomonia multirostrata Ophiognomonia multirostrata Ophiognomonia multirostrata CBS 131348 DMW 364.3 CBS 131400 DMW 373.1 CBS 131406 DMW 423.1 BPI 882226 BPI 882228 BPI 882248 JQ414237 JQ414239 JQ414258 JQ414085 JQ414087 JQ414106 JQ414169 JQ414171 JQ414190 Japan Japan Japan Alnus firma Alnus firma Alnus firma Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia CBS CBS CBS CBS CBS CBS CBS CBS CBS CBS CBS CBS BPI BPI BPI NA BPI BPI BPI BPI BPI BPI NA BPI JQ414226 JQ414254 JQ414256 JQ414223 JQ414259 JQ414282 JQ414252 JQ414244 JQ414247 JQ414251 JF514845* EU254923.1* JQ414074 JQ414102 JQ414104 JQ414071 JQ414107 JQ414130 JQ414100 JQ414092 JQ414095 JQ414099 JF319080* JF319073* JQ414158 JQ414186 JQ414188 JQ414155 JQ414191 JQ414214 JQ414184 JQ414176 JQ414179 JQ414183 JF514832* JF514819* Japan Japan Japan Finland Japan USA Japan Japan Japan Japan Switzerland USA Alnus hirsuta var. sibirica Alnus hirsuta var. sibirica Alnus hirsuta Betula nana Prunus nipponica Ostrya virginiana Castanea crenata Castanea crenata Castanea crenata Castanea crenata Prunus padus Carya tomentosa naganoensis naganoensis naganoensis nana nipponicae ostryae-virginianae otanii otanii otanii otanii padicola pseudoclavulata 131338 131362 131404 883.79 131407 131398 131402 131354 131356 131360 845.79 121236 DMW 331.2 DMW 410.1 DMW 418.3 CBS 883.79 DMW 424.1 LCM 155.01 DMW 401.3 DMW 385.1 DMW 390.1 DMW 397.1 CBS 845.79 AR 4059 882211 882244 882246 882249 879596 882242 882234 882237 882241 844280 D.M. Walker D.M. Walker D.M. Walker D.M. Walker D.M. Walker D.M. Walker M. Monod D.M. Walker L.C. Mejía D.M. Walker D.M. Walker D.M. Walker D.M. Walker M. Monod M.V. Sogonov Author's personal copy CBS # Fungal Diversity Table 1 (continued) Table 1 (continued) Species Isolate Specimen DMW 538 DMW 551 AR 4120 CBS 842.79 DMW 396.3 DMW 350.2 DMW 117.1 CBS 850.79 CBS 851.79 DMW 108.2 DMW 543 NA BPI BPI BPI NA BPI BPI BPI NA NA BPI BPI BPI NA NA AR 4284 DMW 541 DMW 542 AR 4193 CBS 859.79 DMW 291.1 DMW 310.1 DMW 333.2 AR 4000 DMW 336.3 BPI BPI BPI BPI BPI BPI NA BPI BPI BPI BPI BPI Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia pseudoclavulata pseudoclavulata pseudoischnostyla pseudoischnostyla pterocaryae pterocaryae quercus-gambellii rosae rosae rosae rosae rubi-idaei CBS CBS CBS CBS CBS CBS CBS CBS CBS CBS CBS NA Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia rubi-idaei rubi-idaei sassafras sassafras sassafras setacea setacea setacea setacea setacea sogonovii sogonovii NA NA CBS CBS CBS CBS CBS CBS CBS CBS CBS CBS 131434 131367 121228 842.79 131359 131344 131397 850.79 851.79 128442 131365 121243 131435 131366 121230 859.79 128352 128354 131339 121914 131340 ITS MS204 tef1-α Country Host Collector JQ414273 JQ414280 EU254919.1* EU254892.1* 882240 JQ414250 882219 JQ414232 882202 JQ414224 EU254929.1* EU254930.1* 882201 JF514851* 882286 JQ414276 877559B EU254939.1* JQ414121 JQ414128 JQ414057 JQ414067 JQ414098 JQ414080 JQ414072 JQ414068 JQ414069 JF319081* JQ414124 NA JQ414205 JQ414212 JQ414141 JQ414151 JQ414182 JQ414164 JQ414156 JQ414152 JQ414153 JF514824* JQ414208 NA USA USA Russia Switzerland Japan Japan USA Switzerland Finland USA France Canada Carya sp. Carya sp. Betula pubescens Alnus incana Pterocarya rhoifolia Pterocarya rhoifolia Quercus kellogii Rubus sp. Comarum palustre Fragaria vesca Rubus sp. Rubus sp. D.M. Walker D.M. Walker M.V. Sogonov M. Monod D.M. Walker D.M. Walker D.M. Walker M. Monod M. Monod D.M. Walker A. Gardiennet M.V. Sogonov 877637 877638 877639 882284 882285 877646 EU254937.1* EU254938.1* EU254941.1* JQ414274 JQ414275 EU254955.1* AY818958.1* JF514846* JF514847* JQ414227 EU199190.1* JQ414228 NA NA JF319075* JQ414122 JQ414123 JQ414059 JQ414070 JF319082* JF319035* JQ414075 JQ414055 JQ414076 NA NA JF514829* JQ414206 JQ414207 JQ414143 JQ414154 JF514822* JF514823* JQ414159 JQ414139 JQ414160 Switzerland Canada USA USA USA USA Switzerland USA USA Japan Russia Japan Rubus ideaus Rubus spectabilis Sassafras albidum Sassafras albidum Sassafras albidum Castanea dentata Quercus sp. Quercus palustris Quercus sp. Quercus acutissima Quercus mongolica Quercus mongolica M.V. Sogonov M.V. Sogonov M.V. Sogonov C.M. Milensky D.M. Walker M.V. Sogonov M. Monod D.M. Walker D.M. Walker D.M. Walker L. Vasilyeva Quercus serrata Quercus mongolica var. grosseserrata Alnus sp. Alnus acuminata Alnus acuminata Juglans nigra Juglans nigra Juglans sp. 882283 882290 877616 882205 882208 882212 872323 882213 CBS 131341 DMW 337.1 CBS 131661 DMW 353.1 BPI 882214 BPI 882221 JQ414229 JQ414234 JQ414077 JQ414082 JQ414161 JQ414166 Japan Japan Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia CBS CBS CBS CBS CBS CBS BPI BPI BPI BPI BPI BPI JQ414281 JQ414278 JQ414288 EU254977.1* JF514850* JQ414279 JQ414129 JQ414126 JQ414136 JQ414060 JF319083* JQ414127 JQ414213 JQ414210 JQ414220 JQ414144 JF514831* JQ414211 USA Argentina Argentina USA USA USA trientensis tucumanensis tucumanensis vasiljevae vasiljevae vasiljevae 131604 131364 131368 121253 128353 131436 DMW 554 DMW 549 LCM 622.01 AR 4298 DMW 303.3 DMW 550 882638 882288 879565 877671 882206 882289 D.M. Walker D.M. Walker D.M. Walker D.M. Walker A.Y. Rossman L.C. Mejía M.V. Sogonov M.V. Sogonov D.M. Walker AR Dr. Amy Rossman, third author; BPI U.S. National Fungus Collections, USDA, ARS, Beltsville, MD; CBS Centraalbureau voor Schimmelcultures, Utrecht, the Netherlands; DMW Donald M. Walker, first author; NA not available; * DNA sequence from an alternative study Fungal Diversity Ophiognomonia sogonovii Ophiognomonia sogonovii Author's personal copy CBS # Author's personal copy Fungal Diversity Oslo Bioportal (http://www.bioportal.uio.no/) and The Lattice Project (http://boinc.umiacs.umd.edu) web servers were used for performing partitioned ML and Bayesian analyses with the programs GARLI v2.0 (Zwickl 2006) and MrBayes 3.1.2 (Huelsenbeck and Ronquist 2001; Ronquist and Huelsenbeck 2003) respectively, with implementation of parameters from Walker et al. (2012). In order to reach convergence, the Bayesian analyses of alignments four and eight were run for 20,000,000 generations. Phylogenetic species recognition was based on three methods, specifically the genealogical sorting index (gsi; Cummings et al. 2008), genealogical concordance phylogenetic species recognition (GCPSR; Talyor et al. 2000), and genealogical nondiscordance (Dettman et al. 2003). The gsi is a standardized method to determine exclusive ancestry of predefined groups in a tree. It is based on a 0 to 1 continuum with 00lack of genealogical divergence from other groups and 10monophyly. The gsi statistic can be used to test hypothesized species lineages measured by coalescent patterns in gene trees against the null hypothesis of no divergence (Cummings et al. 2008). Alignments 5–7 (clades 1–3) were independently tested with gsi using 100 trees randomly selected from the GARLI maximum likelihood bootstrap (MLBS) tree distribution with 10,000 permutations to determine statistical significance (P-value≤0.05) using the gsi web server (http://www.genealogicalsorting.org/index.php). All 100 gsi measurements from the MLBS tree distribution were pooled to calculate an ensemble gsiT statistic for each marker. The gsiT statistic is a summary measurement of genealogical exclusivity for a species lineage across the MLBS tree distribution for a given marker. The results from the conditional comparison tests were used for GCPSR and genealogical nondiscordance. Twenty-nine species were evaluated. Since these methods use comparisons of clades consisting of multiple isolates to represent a phylogenetic species, 16 species represented by a single isolate were excluded from the analyses. Results Phylogenetic analyses After manual adjustment and curation in Gblocks, alignment one (ITS) consisted of 410 (73 %) of the original 556 position dataset with 321 constant, 38 non-parsimony informative, and 51 parsimony informative sites; alignment two (tef-1α) consisted of 531 (38 %) of the original 1,364 position dataset with 392 constant, 39 non-parsimony informative, and 100 parsimony informative sites; and alignment three (MS204) consisted of 810 (65 %) of the original 1,244 position dataset with 494 constant, 85 non-parsimony informative, and 231 parsimony informative. The combined three-marker alignment consisted of 1,751 of the available 3,164 positions (55 %) with 1,207 constant, 162 nonparsimony informative, and 382 parsimony informative sites. A maximum parsimony (MP) heuristic search of the three marker alignment produced 12 equally parsimonious trees with a length of 1,596 steps (CI00.490, RI00.617, RC00.302, HI00.510). Only ITS sequences were available for Ophiognomonia gei and O. rubi-idaei. Therefore these species were not included in the combined alignment but were included in alignment eight. Alignment eight (ITS) consisted of 455 (83 %) of the original 545 position dataset with 385 constant, 17 non-parsimony informative, and 53 parsimony informative sites. A maximum parsimony (MP) heuristic search produced a single most parsimonious tree with a length of 107 steps (CI 00.832, RI00.933, RC0 0.776, HI00.168). Hereafter, alignments four and eight will be referred to as the “combined alignment” and “ITS alignment” respectively. Based on the results of the combined alignment, three additional datasets containing taxa corresponding to the three identified major clades were prepared to more fully investigate variation in these clades because many potentially informative sites were discarded due to ambiguous alignment in the all-taxa combined alignment. Alignment five (clade one) consisted of 2,189 (79 %) of the original 2,783 position dataset with 1,684 constant, 125 nonparsimony informative, and 380 parsimony informative sites. A maximum parsimony (MP) heuristic search produced eight equally parsimonious trees with a length of 829 steps (CI00.765, RI00.898, RC00.687, HI00.235). Alignment six (clade two) consisted of 2,126 (72 %) of the original 2,940 position dataset with 1,617 constant, 85 non-parsimony informative, and 424 parsimony informative sites. A maximum parsimony (MP) heuristic search produced two equally parsimonious trees with a length of 855 steps (CI 00.756, RI 00.879, RC 00.664, HI 00.244). Alignment seven (clade three) consisted of 2,096 (72 %) of the original 2,925 position dataset with 1,538 constant, 166 non-parsimony informative, and 392 parsimony informative sites. A maximum parsimony (MP) heuristic search produced 30 equally parsimonious trees with a length of 1,104 steps (CI00.655, RI00.770, RC00.504, HI00.345). Hereafter, alignments 5–7 will be referred to as clades one, two, and three, respectively. The conditional comparison test showed conflict independently between tef-1α vs. ITS and MS204 single-marker trees for placement of a single species, Ophiognomonia lenticulispora, which was represented by the single isolate CBS 131363. The single-marker alignments were reduced to one isolate representing each species and analyzed to eliminate taxon sampling as a possible reason for any observed incongruence. The same minor conflict remained independently between tef-1α vs. ITS and MS204. Author's personal copy Fungal Diversity Nucleotide substitution models were determined individually for each marker in all eight alignments (Supplementary Table 1). The ML analysis in GARLI v2.0 for the combined analysis resulted in one tree with a -lnL 10931.08 (Fig. 1); clade one resulted in one tree with a -lnL 7963.63 (Fig. 2); clade two resulted in one tree with a -lnL 7605.96 (Fig. 3); clade three resulted in one tree with a -lnL 8916.31 (Fig. 4); alignment of ITS sequences corresponding to clade two resulted in one tree with a -lnL 1888.25 (Fig. 5). The ML analyses of the combined alignment and clades 1–3 resolves all included species of Ophiognomonia (Figs. 1, 2, 3, and 4). Three major clades (100 % PP, ML, MP) were supported. Clade one consists of 15 species that occur on the host families Betulaceae, Fagaceae, and Rosaceae (Fig. 2). Within clade one, a group of closely related species including O. asiatica, O. kobayashii, O. otanii, O. setacea, and O. sogonovii occur on Quercus spp. and Castanea spp. within the Fagaceae (100 % PP, 91 % ML, < 70 % MP). Clade two consists of 11 species of Ophiognomonia occurring on the host families Juglandaceae, Lauraceae, Rosaceae, and Malvaceae (Fig. 3). One group within clade two (100 % PP, ML, 99 % MP) containing O. cordicarpa, O. longispora, O. melanostyla, and O. sassafras shares elongated filiform ascospores (Figs. 11, 24, 40, 44), a character not observed among the remaining species of Ophiognomonia. Another group (99 % PP, 94 % ML, 86 % MP) within clade two consisting of O. nipponicae, O. padicola, and O. rosae occurs only on hosts in the Rosaceae. Also within clade two, the species O. micromegala, O. pseudoclavulata, and O. vasiljevae form a supported group (100 % PP, 99 % ML, 97 % MP) that occurs on hosts in the Juglandaceae, except for O. lenticulispora, which was collected on Prunus sp. (Fig. 3). Clade three contains 15 species of Ophiognomonia on the host families Betulaceae, Juglandaceae, and Salicaceae. One group of eight species is supported (100 % PP, 98 % ML, 92 % MP) within clade three, including O. alni-viridis, O. bugabensis, O. ibarakiensis, O. intermedia, O. maximowiczianae, O. multirostrata, O. nana, and O. tucumanensis, which occur on Alnus spp. and Betula spp. GCPSR and gsi analyses Twenty-nine of the 45 species of Ophiognomonia were tested using the three criteria for GCPSR defined in the methods and were confirmed as distinct evolutionary lineages. The remaining 16 species were represented by a single isolate and could not be subjected to these analyses. Using GCPSR, MS204 supported all 29 species tested (Table 2). Analysis of tef-1α resulted in strong support for 27 species, excluding O. hiawathae and O. michiganensis. Only 18 of 29 species were supported in the ITS gene tree using GCPSR. Genealogical nondiscordance was not observed in any of the 29 species of Ophiognomonia. In addition, all species were strongly supported in 2/3 or 3/3 marker genealogies, except for O. hiawathae and O. michiganensis, which were strongly supported by MS204. The gsi results for each marker differed, but were in general agreement with GCPSR of species (Table 2). The gsiT range of values for MS204 was 0.5727–1.0 with 27 of 29 species≥0.7504. This marker exhibits the highest degree of exclusive ancestry among species for the combination of MLBS trees tested. The gsiT range of values for tef-1α was 0.4782–1.0, with 26 of 29 species≥0.7346 (Table 2). The gsiT for O. hiawathae was not significant indicating incomplete lineage sorting in the tef-1α marker for this species. The tree distribution representing the genealogical history of the ITS region indicated high exclusive ancestry for most but not all species of Ophiognomonia. The ITS region showed a diverse range of gsiT values (Table 2; 0.1551–1.0). The gsi results for the ITS region were as follows: five species had statistically significant gsiT <0.5, 21 species with gsiT > 0.5 and three species with non-statistically significant gsiT values. ITS sequences representing Ophiognomonia rubi-idaei show a high statistically significant gsiT value (0.8194) suggesting that this species is a distinct evolutionary lineage. Discussion Taxonomy The genus Ophiognomonia is a highly diverse group of fungi with economically significant pathogens of shade, lumber, and nut-producing trees (Anderson and LaMadeleine 1978; Behdad 1991; Belisario et al. 2008; Berry 1981; Broders and Boland 2011; Green 2004; Green and Castlebury 2007; Juhasova et al. 2006; Neely and Black 1976; Pennycook 2007; Salahi et al. 2009). In this study, descriptions and illustrations for 27 new combinations and species and 12 previously recognized species are provided as well as a key to all species of Ophiognomonia. Monod (1983) characterized the genus Ophiognomonia as having elongated filiform ascospores with 1–3 septations. Of the eight species recognized by Monod (1983) in Ophiognomonia, O. padicola, and O. sassafras are confirmed in this genus with molecular data by Sogonov et al. (2008). Many of the species recognized here as members of Ophiognomonia were placed in the genus Gnomonia by Monod (1983). He characterized species in the genus Gnomonia as having asci with 8, rarely 2, 4, or 20–30, ascospores each with a median to slightly submedian septum and appendages. Although included in the genus Author's personal copy Fungal Diversity Fig. 1 ML phylogenetic analysis (ML score0-lnL 10931.08) of ITS, MS204, and tef-1α sequences of 43 species in Ophiognomonia and two outgroup taxa within the Gnomoniaceae. Bayesian posterior probabilities≥95 % are displayed above each branch. GARLI ML bootstrap values ≥70 % are displayed to the bottom left and MP bootstrap values≥70 % to the bottom right of each branch. Taxa in bold are new combinations or new species Gnomonia by Monod (1983), the following species were accepted by Sogonov et al. (2008) and confirmed herein as members of the genus Ophiognomonia: O. alni-viridis, O. gei-montani, O. intermedia, O. leptostyla, O. rosae, O. rubiidaei, O. setacea, and O. trientensis. In addition O. micromegala was placed in the genus Plagiostoma based on the presence of lateral perithecial necks and O. nana in the genus Gnomoniella based on aseptate ascospores by Monod (1983). A culture (BRIP 29308a) of O. elasticae (Koords.) M. Monod was obtained, sequenced, and determined to fall outside of the Gnomoniaceae, in the Basidiomycota. The remaining species of Ophiognomonia recognized by Monod (1983), specifically O. capillaris, O. langii, and O. lapponica, could not be obtained for this study. Barr’s (1978) generic concepts of Gnomonia, Gnomoniella, Ophiognomonia, and Plagiostoma were accepted by Monod (1983), however, the species in each genus differ. She recognized only the type species of Ophiognomonia, O. melanostyla. Within the genus Ophiognomonia most morphological characters such as shape and size of perithecia and perithecial necks and ascospore length, width, and septation have limited use for identification of species of Ophiognomonia. The most common morphological characteristic in Ophiognomonia occurring in 28 of 45 species is fusiform ascospores that are approximately 10–20×2–4 μm with a Author's personal copy Fungal Diversity Fig. 2 ML phylogenetic analysis (ML score0-lnL 7963.63) of ITS, MS204, and tef-1α sequences of 15 species in Ophiognomonia (Clade one) and one outgroup taxon within Ophiognomonia. Bayesian posterior probabilities≥95 % are displayed above each branch. GARLI ML bootstrap values ≥70 % are displayed to the bottom left and MP bootstrap values≥70 % are displayed to the bottom right of each branch. Taxa in bold are new combinations or new species median septum. A distinct submedian septum was observed in ascospores of O. alni-cordatae, O. apiospora, O. geimontani, and O. otanii (Figs. 6, 8, 14, 35). Aseptate ascospores were documented only in O. nana (Fig. 32). Ophiognomonia cordicarpa, O. longispora, O. melanostyla, and O. sassafras forming a phylogenetically distinct group were the only species with filiform ascospores (Figs. 11, 24, 26, 42). Ascospore appendages were observed in O. balsamiferae, O. gei, O. hiawathae, O. intermedia, O. ischnostyla, O. longispora, O. melanostyla, O. michiganensis, O. nipponicae, O. pseudoclavulata, O. pseudoischnostyla, and O. setacea. Uncommonly large ascospores (40×7 μm) for Ophiognomonia were observed in O. micromegala (Fig. 28). Among the species of Ophiognomonia, only O. lenticulispora and O. pseudoclavulata have oval to ellipsoidal ascospores (Fig. 22, 36). Multiple-necked perithecia were occasionally observed in O. michiganensis and O. multirostrata, a phenomenon often occurring in culture, but rarely in nature for species of Gnomoniopsis and Ophiognomonia (Fig. 27, 30; Sogonov et al. 2008; Walker et al. 2010). Ophiognomonia apiospora has an unusually thick perithecial cell wall for this genus that becomes distinctly concave upon drying (Fig. 8). No single, distinct, morphological characteristic allows recognition of individual species in the phylogenetically diverse genus Ophiognomonia. Author's personal copy Fungal Diversity Fig. 3 ML phylogenetic analysis (ML score0-lnL 7605.96) of ITS, MS204, and tef-1α sequences of 11 species in Ophiognomonia (Clade two) and one outgroup taxon all within Ophiognomonia. Bayesian posterior probabilities≥95 % are displayed above each branch. GARLI ML bootstrap values ≥70 % are displayed to the bottom left and MP bootstrap values ≥70 % are displayed to the bottom right of each branch. Taxa in bold are new combinations or new species Geographic distribution al. (2011a) expanded the biogeographic range of the Gnomoniaceae by describing the monotypic genus Occultocarpon and several new species of Plagiostoma from the Yunnan province of China. This study presents the first report of the genus Ophiognomonia from China. Kobayashi (1970) documented a single species of Ophiognomonia, O. setacea, in Japan, and that report is confirmed here. On a two-week trip to Japan, 16 new species were collected and are described here. These results suggest that gnomoniaceous fungi are plentiful throughout temperate regions. Barr (1978) documented the North American distribution of gnomoniaceous species as far north as British Columbia, Canada. The northernmost range of Ophiognomonia is expanded here to Finland where O. rosae was collected; the southernmost distribution is extended to Central America (Panama) where O. bugabensis was collected and to South America (Argentina) for O. tucumanensis. Sogonov et al. (2008) documented several genera in the Gnomoniaceae including Ophiognomonia occurring in Russia. Mejía et Author's personal copy Fungal Diversity Fig. 4 ML phylogenetic analysis (ML score0-lnL 8916.31) of ITS, MS204, and tef-1α sequences of 15 species in Ophiognomonia (Clade three) and two outgroup taxa all within Ophiognomonia. Bayesian posterior probabilities≥95 % are displayed above each branch. GARLI ML bootstrap values ≥70 % are displayed to the bottom left and MP bootstrap values ≥70 % are displayed to the bottom right of each branch. Taxa in bold are new combinations or new species The biogeographic structure represented in the phylogeny of Ophiognomonia indicates allopatric speciation as a driving force for several endemic species in this group. Multiple species have limited geographic distribution to regions such as Japan/China, Europe/North America, or Central/South America. Ophiognomonia setacea is the only exception, exhibiting a global distribution without geographic constraints. For example, 14 species are endemic in Japan, two in Central and South America, 13 in North America, and four in Europe suggesting that these species are genetically and, in many cases, geographically isolated from other species of Ophiognomonia. It is unclear to what extent these taxa are truly endemic or are present but undocumented in other locations. Author's personal copy Fungal Diversity Fig. 5 ML phylogenetic analysis (ML score0-lnL 1888.25) of ITS sequences of 11 species in Ophiognomonia (Clade two) and one outgroup taxon all within Ophiognomonia. Bayesian posterior probabilities≥95 % are displayed above each branch. GARLI ML bootstrap values ≥70 % are displayed to the bottom left and MP bootstrap values≥70 % are displayed to the bottom right of each branch. Taxa in bold are new combinations or new species Host associations Europe and the U.S. However, one species, O. michiganensis, was associated with genera in the Betulaceae and Rosaceae similar to host/fungus associations for Apiognomonia errabunda, which causes anthracnose disease of shade trees in 10 different plant families (Sogonov et al. 2007). The genus Alnus is the most common host plant for species of Ophiognomonia. Thirteen species in clades one and three (Figs. 2, 4) are associated with Alnus spp. Ophiognomonia balsamiferae on Populus spp. is the only species of Ophiognomonia that occurs on the Salicaceae and thus may represent a host jump to a novel host family. Despite extensive collecting on salicaceous hosts, no additional species of Phylogenetic analyses of variable molecular markers are the primary means of species delimitation in Ophiognomonia. This genus has a diverse host range occurring on plants in the families Betulaceae, Fagaceae, Juglandaceae, Lauraceae, Malvaceae, Platanaceae, Rosaceae, Salicaceae, and Sapindaceae. Most species of Ophiognomonia show preference to a single host genus or several genera from the same host family. For example, O. monticola was collected on Carpinus sp. (Betulaceae) from Japan and O. rosae on Fragaria vesca, Rosa sp., and Rubus sp. (Rosaceae) from Author's personal copy Fungal Diversity Table 2 Phylogenetic species recognition Genealogical sorting index GSI GCPSR Clade # Species Combined ITS gsiT MS204 gsiT tef-1a gsiT Combined gsiT ITS n 0 ≥ 70% MS204 tef-1a n 0 ≥ 70% n 0 ≥ 70% n 0 ≥ 70% 1 O. setacea O. sogonovii O. asiatica O. kobayashii O. otanii O. michiganensis O. hiawathae O. pseudoischnostyla O. ischnostyla O. monticola 0.8835* 0.9338* 0.4692* 0.3853* 0.9237* 0.2717* 0.1321 0.1411 0.1207 0.917* 1.0* 0.9972* 0.9972* 0.9837* 0.9945* 1.0* 1.0* 1.0* 1.0* 1.0* 0.9911* 0.9972* 0.9848* 1.0* 1.0* 0.6815* 0.2174 0.7346* 1.0* 1.0* 1.0* 1.0* 1.0* 0.9972* 0.9918* 1.0* 1.0* 1.0* 1.0* 1.0* NS x NS NS x NS NS NS NS x x x x x x x x x x x x x x x x NS NS x x x x x x x x x x x x x 2 O. sassafras O. melanostyla O. longispora O. rosae O. pseudoclavulata O. micromegala O. vasiljevae O. rubi-idaei O. alni-viridis O. multirostrata O. bugabensis O. intermedia O. tucumanensis O. ibarakiensis O clavigignentijuglandacearum O. gardiennetii O. pterocaryae O. apiospora O naganoensis 0.9934* 0.8323* 0.9547* 1.0* 0.6309* 0.9321* 0.9927* 0.8194* 0.2083* 0.6435* 0.8609* 0.1551* 0.6406* 0.8449* 0.9079* 0.5727* 0.7504* 0.9895* 1.0* 0.640* 1.0* 0.9963* NA 0.9846* 0.9893* 0.9845* 0.8186* 0.9948* 0.9896* 1.0* 1.0* 0.9191* 0.9226* 0.9914* 1.0* 0.4782* 0.9818* NA 0.9890* 0.9893* 0.9742* 0.9415* 1.0* 0.9948* 1.0* 0.9963* 0.9739* 1.0* 0.9942* 1.0* 0.9947* 1.0* NA 0.9972* 0.9858* 0.9793* 0.9858* 1.0* 1.0* 1.0* x x x x x x x x NS NS x NS NS x x x x x x x x x NA x x x x x x x x x x x x x x NA x x x x x x x x x x x x x x NA x x x x x x x 0.9929* 0.9244* 0.9587* 0.9858* 1.0* 1.0* 0.9948* 0.9964* 1.0* 1.0* 0.9845* 1.0* 0.9964* 1.0* 0.9948* 0.9964* x x x x x x x x x x x x x x x x 3 The Clade # correlates with Figs. 2, 3, and 4; The GSI statistic is based on a 0 to 1 continuum, with 0 0 lack of genealogical divergence from other groups and 1 0 monophyly; * 0 statistical significant P-value ≤ 0.05; x 0 parsimony bootstrap support ≥ 70%; NS 0 parsimony bootstrap support < 70% Ophiognomonia were discovered in this family. Multiple species including O. clavigignenti-juglandacearum, O. leptostyla, O. micromegala, O. pseudoclavulata, and O. vasiljevae occur on plants in the Juglandaceae in addition to O. cordicarpa and O. pterocaryae, the first records of the Gnomoniaceae on the host genus Pterocarya in the Juglandaceae. Several patterns of host plant association at the family rank were observed throughout the phylogeny of Ophiognomonia. A group of closely related species including O. asiatica, O. kobayashii, O. otanii, and O. sogonovii are specific to Quercus spp. and Castanea spp. within the Fagaceae (Fig. 2). In addition, a group including O. nipponicae, O. padicola, and O. rosae occur only on hosts in the Rosaceae (Fig. 3). Similarly a distribution of fungal species on only one host family was observed for other genera in the Gnomoniaceae. Mejía et al. (2011c) discovered 11 species of Plagiostoma associated with the Salicaceae while Walker et al. (2010) found similar host/fungus relationships in the genus Gnomoniopsis. Sogonov et al. (2008) observed similar relationships for species of Gnomonia associating with a single host genus or species within the Coryloideae. A clade consisting of eight species of Ophiognomonia, including O. alniviridis, O. bugabensis, O. ibarakiensis, O. intermedia, O. maximowiczianae, O. multirostrata, O. nana, and O. tucumanensis are host specific to Alnus spp. and Betula spp. (Fig. 4). The genus Cryptosporella exhibits similar host/fungus Author's personal copy Fungal Diversity Fig. 6 Ophiognomonia alni-cordatae. a–f. Holotype BPI 882233. Scale bars of perithecia0100 μm. Scale bars of asci and ascospores010 μm associations on Alnus/Betula (Mejía et al. 2008, 2011b). These examples suggest close host/fungus associations and possible host specificity or coevolution within the Gnomoniaceae. Phylogeny of Ophiognomonia The criteria used here for GCPSR proved useful for species recognition in the Gnomoniaceae. Similar criteria for GCPSR have been used in the model organisms Aspergillus spp. (Pringle et al. 2005), Neurospora (Dettman et al. 2003), and Fusarium spp. (O’Donnell et al. 2004; Sarver et al. 2011). For example, in Pringle et al. (2005) a distinct evolutionary lineage was recognized if the majority of single-marker genealogies were congruent. Two criteria were considered important for GCPSR in Dettman et al. (2003). A clade must be present in (1) the majority of single-marker genealogies or (2) strongly supported with a single-marker and lack genealogical nondiscordance in any other locus genealogy. These GCPSR concepts were expanded here by including the genealogical sorting index (gsi) to determine exclusive genetic ancestry (Cummings et al. 2008). The gsi provided a tree-based measure for identification of reciprocally monophyletic species clades (Cummings et al. 2008). For example, the genealogies constructed for O. multirostrata, O. setacea, and O. tucumanensis using ITS, lack support under GCPSR. However, gsi of the ITS tree distribution indicate near exclusive ancestry (Table 2; gsiT 0 0.6435*/0.8835*/0.6406* respectively). The gsi measure can also be used to confirm and quantify the lack of genealogical structure indicated by GCPSR for a species clade at a given locus. For example, in the ITS region, O. alni-viridis, O. asiatica, O. kobayashii, and O. intermedia are not supported under GCPSR, which is confirmed and quantified by low gsiT values (Table 2). An explanation for the previously mentioned example is that time to evolve reciprocal monophyly is longer than time since initial genetic isolation (Tajima 1983; Hudson and Coyne 2002; Rosenberg and Harrison 2003). Ophiognomonia hiawathae and O. michiganensis were the least supported species in single-marker genealogies under the GCSPSR criteria used here (Table 2). However, both the gsiT and GCPSR analyses for the combined dataset detected distinct genealogical structure for these species. Cummings et al. (2008) observed similar results using the gsiT statistic to evaluate singlemarker genealogies of field crickets (Grylllus spp.; dataset from Broughton and Harrison 2003). When analyzing the combined marker dataset for field crickets, genealogical structure at the species level became apparent (Cummings et al. 2008). Resolving various taxonomic ranks of phylogenetic relationships requires markers with signal at different levels of divergence or different rates of evolution (Hillis and Dixon Author's personal copy Fungal Diversity 1991; Townsend 2007). The markers ITS, MS204, and tef1α were selected for this study based on evidence from Walker et al. (2012), which assessed various combinations of five markers using phylogenetic informativeness tests (Townsend 2007) and determined this combination of three markers to fully recover the five-marker topology with equivalent or higher support for branches. The markers MS204 and tef-1α performed exceptionally well in nearly all cases under the criteria for GCPSR (Table 2). The ITS region (ITS1, 5.8 S rDNA and ITS2) performed poorly, most likely due to the low rate of evolution in this marker (Walker et al. 2012). Three clade-specific alignments (Figs. 2, 3, and 4) were necessary to make accurate decisions of homologous intron regions in ITS, MS204, and tef-1α. Exclusion of unnecessary positions after alignment across the entire genus caused a great loss of phylogenetic signal and did not support the true molecular diversity in each species clade. In addition, hidden phylogenetic signal in single-marker analyses often becomes apparent in concatenated analyses (Sullivan 1996). Several species not supported in individual marker analyses were strongly supported by the combined three-marker analysis under the criteria proposed here for GCPSR (Table 2). Similar results were indicated by Wild and Maddison (2008), who determined the necessity of multiple-marker concatenation for reconstructing the beetle tree of life. Conclusion This study is an account of the 45 currently known species of Ophiognomonia including 25 species new to science. Developing phylogenetic concepts for species recognition in an economically significant group of fungi that lack distinct morphological characters provide the basis for future studies of Gnomoniaceae and other non-model organisms. Knowledge of the species of Ophiognomonia has interesting ecological implications given their association and pathogenic potential on important shade, lumber, and nut-producing trees. Accurate species definition is essential for developing effective measures and quarantine policies to control the diseases they cause and spread of these plant pathogens. Additional collection of this highly diverse group will likely lead to the discovery of many new species in diverse habitats worldwide and associations with known and novel host plants. ≡ Gnomoniella subgenus Ophiognomonia Sacc., Syll. Fung. 1: 419. 1882. Perithecia solitary, aggregated up to three, or in loose clusters, without stroma, epiphyllous and hypophyllous on overwintered leaf blades or on overwintered petioles, rachises, stems, or fruits of woody or herbaceous plants. Perithecia dark brown to glossy black, rarely cream, globose to subglobose, immersed or partially erumpent, occasionally causing host tissue to swell and break. Neck central, lateral, or marginal, straight, curved, or sinuous, long to short. Asci fusiform to oval or filiform, apical ring often conspicuous, eight ascospores per ascus arranged uni-, bi-, and multiseriate or parallel, occasionally intertwined. Ascospores two-celled, rarely one-celled, oval, fusiform, or filiform, ends blunt to rounded, with or without appendages. Hosts: On Betulaceae, Fagaceae, Juglandaceae, Lauraceae, Malvaceae, Platanaceae, Rosaceae, Salicaceae, and Sapindaceae. Ophiognomonia alni-cordatae D.M. Walker, sp. nov. Figure 6a–f. MycoBank: MB 564079 Etymology: alni-cordatae refers to the host on which the holotype was collected. Holotypus: JAPAN, NAGANO: Ueda-shi, Sugadaira, Kakuma River Trail, on overwintered leaves of Alnus cordata, 14 April 2010, D.M. Walker (BPI 882233, culture DMW 384.10CBS 131353). Perithecia immersed, occasionally causing host tissue to swell, on leaf petioles and veins, epiphyllous or hypophyllous, solitary or aggregated up to two, glossy black, globose to subglobose, (134–)177–234 μm high×228–294 μm diam (mean0182×261, S.D. 49.7, 46.7, n103, n202). Necks central to marginal, mostly straight or curved to sinuous, occasionally swollen at tip, (180–)189–394(–438) μm long (mean0263, S.D. 69.8, n018). Asci fusiform with rounded or papillate apex and acute or long tapering stipe, apical ring conspicuous, (43–)45–50(–52) × (13–)16–21(–22) μm (mean048×18, S.D. 3.6, 2.6, n108, n2011), with ascospores arranged irregularly uni- to multiseriate. Ascospores fusiform, ends rounded, straight to slightly curved, oneseptate, distinct submedian septum, slight constriction at septum, (21–)22–24(–25)×(4–)5–6(–7) μm (mean022.6× 5.5, S.D. 1.2, 0.7, n1027, n2025). Taxonomy Ophiognomonia (Sacc.) Sacc., Syll. Fung. 14: 613. 1899. Lectotype designated by Höhnel (1919): Ophiognomonia melanostyla (DC.: Fr.) Berl. Habitat: On dead leaves of Alnus cordata (Loisel.) Duby (Betulaceae). Distribution: Japan (Nagano prefecture). Author's personal copy Fungal Diversity Notes: Ophiognomonia alni-cordatae is one of 17 species known from Japan, and one of four occuring on Alnus from this country. A distinct submedian septum was only observed in ascospores of four species including, O. alnicordatae, O. apiospora, O. gei-montani, and O. otanii. Ophiognomonia alni-viridis (Podlahova & Svrček) Sogonov, Stud. Mycol. 62: 55. 2008. Figure 7a–j. Basionym: Gnomonia alni-viridis Podlahova & Svrček, Česká Mycol. 24: 129. 1970. MycoBank: MB 512215 Perithecia immersed, occasionally causing host tissue to swell, on leaf blades, veins, and petioles, hypophyllous and epiphyllous, solitary or aggregated up to two, glossy Fig. 7 Opiognomonia alni-viridis. a, e, i. BPI 879541; b–d, f–h, j. BPI 879541. Scale bars of perithecia0100 μm. Scale bars of asci and ascospores010 μm Author's personal copy Fungal Diversity black, subglobose, (135–)136–301(–311) μm high×(187–) 197–363(–432) μm diam (mean0235×296, S.D. 59.5, 65.6, n1015, n2015). Necks central, straight, curved, or slightly sinuous, (331–)641–1,620(–1,653) μm long (mean01,069, S.D. 371.1, n020). Asci ellipsoid to fusiform with papillate or rounded apex, stipe acute or long tapering, apical ring conspicuous, (28–)29–43(–50)×(8–)9–18(–19) μm (mean0 34×15, S.D. 4.6, 2.5, n1030, n2028), ascospores arranged parallel or irregularly uniseriate to multiseriate. Ascospores fusiform with rounded ends, straight to slightly curved, oneseptate, median to indistinctly sub- or supramedian, slightly constricted at septum, each cell with 0–2 distinct and several small guttules, (11–)12–16(–17)×2–3 μm (mean014×3, S.D. 1.6, 0.5, n1030, n2030). Habitat: On overwintered leaves of Alnus rhombifolia Nutt., A. serrulata (Aiton) Willd., A. sinuata Rydb., A. viridis (Chaix) D.C., Betula papyrifera Marshall, and overwintered fruits of A. viridis (Betulaceae). Distribution: Canada (British Columbia), Europe (Czech Republic, Switzerland), and United States (CA, MI, NY, WA). Materials examined: CANADA, BRITISH COLUMBIA: 15 km south of Princeton, near Indian Reserve #3, on overwintered leaves of Betula papyrifera, 13 May 2006, M.V. Sogonov (BPI 877600, GenBank EU 254869); CZECH REPUBLIC: on overwintered fruits of Alnus viridis, 14 July 1969, coll. R. Podlahová, det. Svrček (PRM 685743, HOLOTYPE of Gnomonia alni-viridis, PRM); SWITZERLAND: Valais, vicinity of Martigny, on overwintered leaves of Alnus viridis, 21 May 2005, M. Monod (BPI 877585A, GenBank EU 254866). UNITED STATES, CALIFORNIA: Shasta County, Shasta, Trinity National Park, Ellery Creek, on Alnus rhombifolia, 19 May 2008, L.C. Mejía, det. D.M. Walker (BPI 879529, culture LCM 459.01); MICHIGAN: Houghton County, boat dock near FJ McClain Campground, on overwintered leaves of Betula sp., 31 May 2010, D.M. Walker (BPI 882251, culture DMW 439.3 0CBS 131408); NEW YORK: Franklin County, Adirondack high peaks region, Adirondack Loj, trail head, on overwintered leaves of Betula papyrifera, 9 June 2007, L.C. Mejía, det. D.M. Walker (BPI 881497, cultures LCM 158.01, LCM 158.02); NEW YORK: White Face Mountain, 4,000 ft elevation, on Alnus serrulata, 12 June 2007, L.C. Mejía, det. D.M. Walker (BPI 881512, cultures LCM 164.01, LCM 164.02); WASHINGTON: King County, Mount Baker-Snoqualmie National Forest, Snoqualmie ranger district, near exit 42 on highway US 90, on overwintered leaves of Alnus viridis, 16 May 2006, M.V. Sogonov (BPI 877595, GenBank EU 254867); WASHINGTON: Clallam County, Olympic National Park, Heart O’ the Hills Campground, on Alnus sinuata, May 2008, L.C. Mejía, det. D.M. Walker (BPI 879541, culture LCM 4940CBS 128358). Notes: Ophiognomonia alni-viridis is one of four species that occur on both Alnus spp. and Betula spp. in the Betulaceae. This species has relatively long perithecial necks compared to many other species in Ophiognomonia. Ophiognomonia apiospora L.C. Mejía & D.M. Walker, sp. nov. Figure 8a–g. MycoBank: MB 564080 Etymology: apiospora refers to the distinct submedian location of the ascospore septum. Holotypus: CHINA, YUNNAN PROVINCE: Kunming, Kunming Institute of Botany, botanical garden, on overwintered leaves of Alnus nepalensis, 12 July 2008, L.C. Mejía, det. D.M. Walker (BPI 879601, ex-type cultures LCM 503.050CBS 131425, LCM 503.060CBS 131426). Perithecia immersed, occasionally causing host tissue to swell, concave from base when dry, thick cell walls, on leaf petioles and veins, hypophyllous and epiphyllous, solitary or aggregated up to three, glossy black, subglobose, (289–)336– 423(–482) μm high × (671–)677–724(–840) μm diam (mean0375×717, S.D. 76.6, 72.5, n105, n205). Necks central, elongated, straight to curved, (1,478–)1,525–2,671(– 3,074) μm long (mean02,208, S.D. 579.2, n08). Asci ellipsoid to fusiform, apex papillate or rounded, stipe acute, apical ring conspicuous, (42–)45–50(–60)×18–20 μm (mean049× 20, S.D. 6.9, 2.8, n105, n202), ascospores arranged uniseriate to irregularly multiseriate. Ascospores fusiform, rounded ends, straight to slightly curved, one-septate, submedian, distinctly constricted at septum, each cell with 0–5 large guttules, (24–)25–28(–29)×4–5 μm (mean026×4, S.D. 1.3, 0.2, n10 30, n2028). Habitat: On overwintered leaf blades, petioles, and veins of Alnus nepalensis D. Don (Betulaceae). Distribution: China (Yunnan Province). Notes: This is the only species of Ophiognomonia with an unusually thick perithecial cell wall. In addition, O. apiospora has the longest perithecial necks in the genus Ophiognomonia. This species has a distinct submedian septum that was also observed in ascospores of O. alni-cordatae, O. gei-montani, and O. otanii. This is only species of Ophiognomonia known to occur in China on the genus Alnus. Ophiognomonia asiatica D.M. Walker & L.C. Mejía, sp. nov. Figure 9a–g. Author's personal copy Fungal Diversity Fig. 8 Ophiognomonia apiospora. a–g. Holotype BPI 879601. Scale bars of perithecia0100 μm. Scale bars of asci and ascospores010 μm MycoBank: MB 564081 Etymology: asiatica refers to the location where the holotype was collected. Holotypus: JAPAN, IBARAKI: Tsukuba City, National Museum, on overwintered leaves of Quercus serrata, 2 April 2010, D.M. Walker (BPI 882231, ex-type culture DMW378.20CBS 131351). Fig. 9 Ophiognomonia asiatica. a–c. BPI 882225; d–g. Holotype BPI 882231. Scale bars of perithecia0100 μm. Scale bars of asci and ascospores010 μm Author's personal copy Fungal Diversity Perithecia immersed, occasionally causing host tissue to swell and rupture, on leaf petioles, veins, and blades, solitary or aggregated up to three, glossy black, subglobose, (143–) 154–263(–292) μm high×(239–)256–413(–514) μm diam (mean0212×345, S.D. 58, 91, n108, n208). Necks central, straight, curved, or sometimes sinuous, (438–)518–1,176(– 1,225) μm long (mean0738, S.D. 178.7, n023). Asci fusiform to ellipsoid, apex papillate, stipe long tapering, apical ring large, 3 μm diam, conspicuous, (24–)25–40(–41)×(10–) 11–16(–17) μm (mean031×14, S.D. 5.6, 1.8, n1030, n20 25), ascospores arranged irregularly uniseriate, multiseriate, or parallel. Ascospores fusiform with rounded ends, straight to slightly curved, one-septate, median or indistinctly supramedian, not constricted or slightly constricted at septum, each cell with 0–2 distinct guttules, (11–)12–15(–16)×2–3 μm (mean014×2, S.D. 1.6, 0.4, n1030, n2030). Habitat: On overwintered leaves of Quercus aliena Blume, Quercus dentata Thunb., and Q. serrata Murray (Fagaceae). Distribution: China (Kunming) and Japan (Ibaraki prefecture). Materials examined: CHINA, KUNMING: Kunming Botanical Garden, on overwintered leaves of Quercus dentata, 11 July 2008, L.C. Mejía (BPI 879600, LCM 500.010 CBS 131424). JAPAN, IBARAKI: Ushiku, Ushiku Nature Reserve, on overwintered leaves of Quercus serrata, 9 April 2010, D.M. Walker (BPI 882220, cultures DMW 351.30 CBS 131345, DMW 351.2); IBARAKI: Ushiku, Ushiku Nature Reserve, on overwintered leaves of Quercus aliena, 9 April 2010, D.M. Walker (BPI 882225, culture DMW361.10CBS 131347). Notes: This is the only species of Ophiognomonia known from both China and Japan on the genus Quercus. It is one of four species of Ophiognomonia known to occur exclusively on Quercus. A group of closely related species including O. asiatica, O. kobayashii, O. otanii, and O. sogonovii are specific to Quercus spp. and Castanea spp. within the Fagaceae (Fig. 2). Ophiognomonia balsamiferae Sogonov, Stud. Mycol. 62: 51. 2008. MycoBank: MB 512180 Habitat: On overwintered petioles of Populus balsamifera L. (Salicaceae). Distribution: Canada (British Columbia). Notes: This is the only species of Ophiognomonia known to occur on Populus in the Salicaceae. Ascospore appendages were observed in O. balsamiferae, O. gei, O. hiawathae, O. intermedia, O. ischnostyla, O. longispora, O. melanostyla, O. michiganensis, O. nipponicae, O. pseudoclavulata, O. pseudoischnostyla, and O. setacea. For a detailed description of this species, see Sogonov et al. (2008). Ophiognomonia bugabensis L.C. Mejía & D.M. Walker, sp. nov. Figure 10a–g. MycoBank: MB 564082 Etymology: bugabaensis refers to the district of Bugaba in Panama where the holotype was collected. Holotypus: PANAMA, CHIRIQUI: District of Bugaba, Las Nubes, Parque Internacional La Amistad, main trail close to the gamewarden house in the entrance of the park, at 2225 masl on dead leaves of Alnus acuminata, 27 December 2006, L.C. Mejía, det. D.M. Walker (BPI 879256). Perithecia immersed, on leaf blades and veins, hypophyllous, solitary to aggregated up to two, glossy black, subglobose, (178–)247–282(–303) μm high×(252–)275–474(–497) μm diam (mean0255×387, S.D. 48, 102, n105, n206). Necks central or marginal, straight, curved, or sinuous, (340–)349–559(–667) μm long (mean0461, S.D. 110, n0 11). Asci obovoid to oval, apex rounded, stipe acute to rounded, (40–)43–55(–57)×(23–)25–26(–27) μm (mean048×25, S.D. 7.7, 1.8, n105, n205), ascospores arranged irregularly uniseriate to multiseriate. Ascospores broadly fusiform, ends rounded, straight to slightly curved, one-septate, supramedian, slightly constricted at septum, (17–)18–19(–20)×(4–)5–6 μm (mean018×5, S.D. 0.9, 0.6, n1030, n2017). Habitat: On dead leaves or as an endophyte of Alnus acuminata Kunth (Betulaceae). Distribution: Panama (Chiriqui). Materials examined: PANAMA, CHIRIQUI: District of Bugaba, Las Nubes, Parque Internacional La Amistad, isolated as an endophyte from a twig of of Alnus acuminata, 22 December 2004, L.C. Mejía, det. D.M. Walker (culture LCM 362); CHIRIQUI: District of Bugaba, Las Nubes, Parque Internacional La Amistad, isolated as an endophyte from leaf of Alnus acuminata, 22 December 2004, L.C. Mejía, det. D.M. Walker (LCM 3680CBS 131399). Notes: When compared to other species, O. bugabensis was isolated in high frequency as an endophyte of leaves and twigs of Alnus acuminata in Panama. This species was also collected on dead leaves of Alnus acuminata in Panama. This host plant occurs in montane cloud forest from Mexico to the Andes. Only O. bugabensis and O. tucumanensis are Author's personal copy Fungal Diversity Fig. 10 Ophiognomonia bugabensis. a–g. Holotype BPI 879256. Scale bars of perithecia0100 μm. Scale bars of asci and ascospores010 μm known to occur on Alnus acuminata. These two species can be distinguished by geographic location; also O. bugabensis has larger ascospores and shorter perithecial necks than O. tucumanensis. Interestingly, O. bugabensis was found at the same time of year when perithecia of another species of Gnomoniaceae, Cryptosporella amistadensis, is commonly found in the same geographic area. Ophiognomonia clavigignenti-juglandacearum (Nair, Kostichka, & Kuntz) Broders & Boland, Fung. Biol. 115: 5. 2010. Basionym: Sirococcus clavigignenti-juglandacearum Nair, Kostichka, & Kuntz, Mycologia 71: 643. 1979. Habitat: Causing butternut canker of Juglans ailantifolia Carriére var. cordiformis (Makino) Rehder, J. cinerea L., and J. nigra L. Distribution: Canada (New Brunswick, Ontario, Quebec) and United States (AK, CT, IN, MI, MN, MO, NC, NH, NY, OH, TN, VT, WI). Notes: This species causes the devastating butternut canker disease in North America. It is known to occur only in the asexual state. For a detailed description of this species, see Broders and Boland (2010). Ophiognomonia cordicarpa D.M. Walker, sp. nov. Figure 11a–h. MycoBank: MB 564083 Etymology: cordicarpa refers to the heart-shaped perithecia of this species. Holotypus: JAPAN, NAGANO: Ueda-shi, Sugadaira, waterfall at the Sugadaira Montane Research Center, on overwintered leaves of Pterocarya rhoifolia, 13 April 2010, D.M. Walker (BPI 882217, ex-type culture DMW 344.20 CBS 131342). Perithecia immersed, occasionally causing host tissue to swell, on leaf blades and veins, solitary, glossy black, cordate to subglobose, 223–268 μm high×357–474 μm diam (mean0252×400, S.D. 25.4, 64.1, n103, n203). Necks central, lateral, or marginal, straight, curved, or sinuous, (672–)1,093–1,111(–1,117) μm long (mean 0 998, S.D. 217.7, n04). Asci narrowly fusiform, apex bluntly rounded, stipe acute or bluntly rounded, apical ring conspicuous, (69–)77–85(–92)×(7–)9–11(–13) μm (mean082×10, S.D. 7.2, 1.9, n107, n207), ascospores arranged parallel to intertwined. Ascospores filiform with bluntly rounded ends, curved to sinuous, oneseptate, supramedian, not constricted at septum, with many small guttules, (55–)56–77(–78) × 1–2 μm (mean064×1, S.D. 7.8, 0.4, n1026, n2020). Habitat: On overwintered leaves of Pterocarya rhoifolia Siebold & Zucc. (Juglandaceae). Distribution: Japan (Nagano prefecture). Author's personal copy Fungal Diversity Fig. 11 Ophiognomonia cordicarpa. a–h. Holotype BPI 882217. Scale bars of perithecia0100 μm. Scale bars of asci and ascospores010 μm Notes: Ophiognomonia cordicarpa is one of 17 species known from Japan, and one of two known to occur on Pterocarya (Juglandaceae). Several other species are known to occur on Carya and Juglans (Juglandaceae) including the pathogens O. leptostyla and O. clavigignentijuglandacearum. Ophiognomonia cordicarpa has long filiform ascospores, whereas O. pterocaryae has much shorter fusiform ascospores. The distinctive heart-shaped ascomata of this species is unusual for perithecia in Ophiognomonia. The species O. cordicarpa, O. longispora, O. melanostyla, and O. sassafras share elongated filiform ascospores and form a clade of closely related species (Fig. 3). subglobose, (178–)180–243(–253) μm high×(238–)248– 309(–351) μm diam (mean0214×283, S.D. 29.9, 34, n10 9, n209). Necks central, marginal, or lateral, straight to curved, (356–)364–686(–697) μm long (mean0487, S.D. 131, n015). Asci ellipsoid to fusiform, apex rounded to papillate, stipe acute to short tapering, (21–)24–34(–37)× (11–)12–15(–16) μm (mean028×13, S.D. 3.4, 1.5, n1021, n2021), ascospores arranged uniseriate to irregularly multiseriate. Ascospores fusiform with rounded ends, straight to slightly curved, one-septate, median to indistinctly sub- or supramedian, slightly to not constricted at septum, each cell with 0–2 distinct and several small guttules, (9–)10–12(–13)× 2–3 μm (mean011×3, S.D. 0.9, 0.3, n1030, n2030). Ophiognomonia gardiennetii D.M. Walker, sp. nov. Figure 12a–g. Habitat: On overwintered leaves of Alnus serrulata Willd. (Betulaceae). MycoBank: MB 564084 Distribution: United States (MI). Etymology: gardiennetii refers to Alain Gardiennet to honor his contribution as a collector of many specimens of the Gnomoniaceae. Materials examined: UNITED STATES, MICHIGAN: Houghton County, FJ McClain State Park, on overwintered leaves of Alnus serrulata, 30 May 2010, D.M. Walker (BPI 882252, culture DMW 442.10CBS 131409); MICHIGAN: Marquette County, hiking trail along Peshekee river, on overwintered leaves of Alnus serrulata, 30 May 2010, D.M. Walker (BPI 882276, culture DMW 513.10CBS 131429). Holotypus: UNITED STATES, MICHIGAN: Mackinac County, Brevort campground, on overwintered leaves of Alnus serrulata, 27 May 2010, D.M. Walker (BPI 882262, ex-type culture DMW 469.30CBS 131417). Perithecia immersed to partially erumpent, occasionally causing host tissue to swell, on leaf blades, petioles, and veins, hypophyllous and epiphyllous, solitary, glossy black, Notes: Only O. gardiennetii and O. trientensis are known to occur exclusively on Alnus from the U.S. Morphologically these species are very similar and can only be distinguished Author's personal copy Fungal Diversity Fig. 12 Ophiognomonia gardiennetii. a. BPI 882252; b–g. BPI 882276. Scale bars of perithecia0100 μm. Scale bars of asci and ascospores010 μm by DNA sequence data. In addition, they form a clade of closely related species with the butternut pathogen O. clavigignenti-juglandacearum (Fig. 4). Ophiognomonia gei (Pat. & Doass.) D.M. Walker, comb. nov. Figure 13a–g. Basionym: Gnomonia gei Pat. & Doass., in Patouillard, Tabl. analyt. Fung. France (Paris) 5: 214. 1886. MycoBank: MB 564085 Perithecia immersed, causing host tissue to swell, bases visible under thin layer of host tissue, on herbaceous stems, leaves, or petioles, hypophyllous, solitary, glossy black, subglobose, 196–244 μm high×325–400 μm diam (mean0220×363, S.D. 34, 53, n102, n202). Necks central, long, straight to curved, (1,248–)1,451–1,784 μm long (mean01,494, S.D. 270, n03). Asci pyriform to clavate, apex rounded, stipe curved tapering, 24–36 × 4–6 μm (mean035×5, S.D. 8.5, 1.4, n102, n202), ascospores arranged uniseriate. Ascospores fusiform, ends rounded, straight to slightly curved, one-septate, median to submedian, not constricted or slightly constricted at septum, each cell with several small guttules, with appendages at each end subulate to whip-shaped or absent, (15–)16–18(–19)×2 μm (mean017×2, S.D. 1.1, 0.0, n1011, n2010). Habitat: On overwintered leaves Fragaria vesca L. and Geum pyrenaicum Mill. (Rosaceae). Distribution: Europe (France). Fig. 13 Ophiognomonia gei. a–c. Lectotype Patouillard 5304. Scale bars of asci and ascospores010 μm Author's personal copy Fungal Diversity Materials examined: FRANCE: Geum pyrenaicum, 26 June 1885, J.E. Doassans & N. Patouillard 5304 (LECTOTYPE of Gnomonia gei designated here, FH). Notes: Ophiognomonia gei based on Gnomonia gei was originally collected in France on Geum pyrenaicum. Monod (1983) collected and isolated what he considered to be Gnomonia gei from Switzerland on Fragaria vesca. His description is in agreement with measurements taken from original material collected by Doassans and Patouillard in 1885 (FH 5304). Monod’s specimen (Monod 3010culture CBS 818.79) was not available from LAU, however, the isolate was used here as a molecular representative of O. gei. This species is one of two that occur on Geum, and one of nine that occur on the host family Rosaceae. Of these species O. gei, O. nipponicae, O. padicola, O. rosae, O. rubi-idaei form a clade according to ITS sequence data (Fig. 5). Ascospore appendages were only observed in O. balsamiferae, O. gei, O. hiawathae, O. intermedia, O. ischnostyla, O. longispora, O. melanostyla, O. michiganensis, O. nipponicae, O. pseudoclavulata, O. pseudoischnostyla, and O. setacea. Ophiognomonia gei-montani (Ranoj.) Sogonov, Stud. Mycol. 62: 58. 2008. Figure 14a–f. Basionym: Gnomonia gei-montani Ranoj., Ann. Mycol. 8: 362. 1910. MycoBank: MB 512183 Perithecia immersed, on leaf blades, petioles, and veins, causing swelling and rupture of host tissue, hypophyllous, solitary, glossy black, subglobose, (245–)315–331(–345) μm high×(300–)341–363(–383) μm diam (mean0309× 347, S.D. 44.4, 35.6, n104, n204). Necks marginal, straight to curved, (289–)301–472(–530) μm long (mean0368, S.D. 84, n09). Asci ellipsoid to fusiform, apex rounded, stipe tapering, apical ring not conspicuous, (39–)48–50(–56)× 12–17 μm (mean051×15, S.D. 4.2, 3.5, n103, n202), ascospores arranged irregularly uni- or biseriate. Ascospores fusiform, rounded ends, straight to slightly curved, oneseptate, distinctly submedian, slightly to not constricted at septum, lacking guttules, (11–)13–14(–15)×(2–)3–4 μm (mean014×3, S.D. 0.6, 0.3, n1021, n2018). Habitat: On overwintered leaves of Geum bulgaricum Panc., G. coccineum Sm., G. montanum L., and G. rhodopeum Stoj. & Stef. (Rosaceae). Distribution: Europe (Serbia, Switzerland). Materials examined: SERBIA: on dead leaves of Geum montanum, 1910, N. Ranojević (S-F190027 HOLOTYPE of Gnomonia gei-montani); SWITZERLAND: Salvan, La Tendraz, 1,600 m, on dead leaves of Geum montanum, 28 May 2005, M. Monod (BPI 877589, GenBank EU 254872). Notes: This species is one of two that occur on Geum, and one of nine that occur on the host family Rosaceae. A Fig. 14 Ophiognomonia gei-montani. a–c. BPI 877589; d–f. Holotype F 190027. Scale bars of perithecia0100 μm. Scale bars of asci and ascospores010 μm Author's personal copy Fungal Diversity distinct submedian septum was only observed in ascospores of four species including O. alni-cordatae, O. apiospora, O. gei-montani, and O. otanii. Habitat: On overwintered leaves of Quercus serrata Murray (Fagaceae). Distribution: Japan (Gunma prefecture). Ophiognomonia gunmensis D.M. Walker, sp. nov. Figure 15a–g. MycoBank: MB 564086 Etymology: gunmensis refers to the Japanese prefecture where the holotype of this species was collected. Holotypus: JAPAN, GUNMA: Azuma, Azuma Nature Park, on overwintered leaves of Quercus serrata, 12 April 2010, D.M. Walker (BPI 882236, ex-type culture DMW 388.10 CBS 131401). Perithecia immersed, on leaf blades and veins, epiphyllous or hypophyllous, solitary or up to two, glossy black, globose to subglobose, (108–)146–191(–220) μm high× (143–)146–244(–246) μm diam (mean 0167 × 205, S.D. 37.1, 44.4, n107, n208). Necks central, short, straight, (230–)363–370(–390) μm long (mean0365, S.D. 52.1, n0 8). Asci fusiform to ellipsoid, apex rounded, stipe acute, apical ring conspicuous, (26–)27–32(–42)×(8–)9–14(–15) μm (mean030×12, S.D. 4.1, 2.2, n1013, n2013), ascospores arranged parallel or irregularly uniseriate to multiseriate. Ascospores fusiform, ends rounded, straight to slightly curved, one-septate, median to indistinctly supramedian, (14–)15–17(–18) × 2 μm (mean 017 × 2, S.D. 0.9, 0.6, n1030, n2012). Notes: Ophiognomonia gunmensis is one of 17 species from Japan, and one of four species known to occur specifically on Quercus. The perithecial necks are short relative to other species on Quercus. Ophiognomonia hiawathae D.M. Walker, sp. nov. Figure 16a–g. MycoBank: MB 564087 Etymology: hiawathae refers to the national park where this species was collected, which was named to honor the Native American leader of the Onondaga tribe, Hiawatha. Holotypus: UNITED STATES, MICHIGAN: Mackinac County, Brevort campground, on overwintered leaves of Betula lutea, 27 May 2010, D.M. Walker (BPI 882261, ex-type culture DMW 466.10CBS 131416). Perithecia immersed, occasionally causing host tissue to swell and rupture, on leaf blades and veins, solitary, glossy black, subglobose (183–)190–255(–261) μm high×(196–) 200–261(–321) μm diam (mean0218×246, S.D. 33, 46, n106, n206). Necks central, straight to curved, (332–) 368–696(–961) μm long (mean0569, S.D. 179, n011). Fig. 15 Ophiognomonia gunmensis. a–g. Holotype BPI 882236. Scale bars of perithecia0100 μm. Scale bars of asci and ascospores010 μm Author's personal copy Fungal Diversity Fig. 16 Ophiognomonia hiawathae. a, g. BPI 882256; b–f. Holotype BPI 882261. Scale bars of perithecia0100 μm. Scale bars of asci and ascospores010 μm Asci fusiform to ellipsoid, apex papillate or rounded, stipe acute or tapering, apical ring conspicuous, (23–)24–33(– 34)×(15–)16–19(–20) μm (mean028×18, S.D. 2.7, 1.4, n10 22, n2026), ascospores arranged parallel or irregularly uniseriate. Ascospores fusiform, ends rounded, straight to slightly curved, one-septate, median to indistinctly sub- or supramedian, slightly to not constricted at septum with appendages subulate, whip-shaped, or absent, (12–)13–15(–16)×2–3(–4) μm (mean014×3, S.D. 0.9, 0.6, n1030, n2028). Habitat: On overwintered leaves of Betula lutea Michx. (Betulaceae). Distribution: United States (MI). Materials examined: UNITED STATES, MICHIGAN: Schoolcraft County, Manistique, Hiawatha National Forest, Indian lake campground, on overwintered leaves of Betula lutea, 28 May 2010, D.M. Walker (BPI 882256, culture DMW 458.30CBS 131413). Notes: This species is similar to O. michiganensis, however, O. hiawathae has larger ascospores. Ophiognomonia hiawathae is one of four species of Ophiognomonia known to occur on Betula in the U.S. Ascospore appendages were only observed in O. balsamiferae, O. gei, O. hiawathae, O. intermedia, O. ischnostyla, O. longispora, O. melanostyla, O. michiganensis, O. nipponicae, O. pseudoclavulata, O. pseudoischnostyla, and O. setacea. Ophiognomonia ibarakiensis D.M. Walker, sp. nov. Figure 17a–h. MycoBank: MB 564088 Etymology: ibarakiensis refers to the Japanese prefecture where the holotype was collected. Holotypus: JAPAN, IBARAKI: Hirasawa, rice fields at the foot of Mt. Tsukuba, on overwintered leaves of Alnus sp., 8 April 2010, D.M. Walker (BPI 882247, culture DMW 419.30CBS 131405). Perithecia immersed, occasionally causing host tissue to swell and rupture, on leaf blades, petioles, and veins, solitary or aggregated up to three, glossy black, globose, (154–)171– 186(–187) μm high × (161–)178–186(–187) μm diam (mean0176×178, S.D. 13.7, 12, n105, n204). Necks central to marginal, mostly straight or curved, tips occasionally hamate, (71–)153–545(–546) μm long (mean0335, S.D. 118.7, n024). Asci fusiform to ellipsoid, apex rounded, stipe acute to short tapering, (23–)25–44(–50)×(10–)11–17(–19) μm (mean032×14, S.D. 8.7, 2.6, n1012, n2012), ascospores arranged irregularly bi- to multiseriate. Ascospores ellipsoidal to oval, rounded ends, straight to slightly curved, oneseptate, median to indistinctly sub- or supramedian, not constricted at septum, (10–)11–12×3–4 μm (mean011×4, S.D. 0.6, 0.6, n1030, n2030). Habitat: On overwintered leaves of Alnus sp. (Betulaceae). Author's personal copy Fungal Diversity Fig. 17 Ophiognomonia ibarakiensis. a–d, f, h. Holotype BPI 882247; e, g. BPI 882227. Scale bars of perithecia0100 μm. Scale bars of asci and ascospores010 μm Distribution: Japan (Ibaraki prefecture). Materials examined: JAPAN, IBARAKI: Hirasawa, rice fields at the foot of Mt. Tsukuba, on overwintered leaves of Alnus sp., 8 April 2010, D.M. Walker (BPI 882227, culture DMW 371.10CBS 131349). Notes: Ophiognomonia ibarakiensis is one of 17 species known from Japan, and one of four occuring on Alnus from this country. This species has slightly smaller ascospores than O. naganoensis and the ascospores overlap in size with O. multirostrata, which both occur on Alnus from Japan. Ophiognomonia intermedia (Rehm) Sogonov, Stud. Mycol. 62: 58. 2008. Figure 18a–g. Basionym: Gnomonia intermedia Rehm, Ann. Mycol. 6: 489. 1908. 0Discula betulina (Westend.) Arx, Verh. K. Akad. Wet., tweede sect. 51(3): 64. 1957. 0Gloeosporidium betulinum (Westend.) Höhn., Sber. Akad. Wiss. Wien, Math.-naturw. Kl., Abt. 1 125(1–2): 95. 1916. 0Gloeosporium betulinum Westend., Pl. crypt. exsicc. 19–20(nos 901–1000): no. 978. 1857. MycoBank: MB 512185 Perithecia immersed, occasionally causing host tissue to swell and rupture, on leaf blades and veins, epiphyllous or hypophyllous, solitary or in loose clusters, glossy black, globose to subglobose, (191–)207–250(–268) μm high× (195–)217–279(–331) μm diam (mean 0228 × 261, S.D. 25.9, 46, n1 08, n2 08). Necks central, mostly straight, sometimes curved, (408–)464–1,047(–1,050) μm long (mean0678, S.D. 191, n018). Asci fusiform to ellipsoid, apex papillate or rounded, apical ring not conspicuous, stipe acute to long tapering, (19–)20–41(–48)×(10–)11–16(–17) μm (mean026.2×13.1, S.D. 8.7, 2.4, n1018, n2018), ascospores arranged parallel or irregularly uniseriate. Ascospores ellipsoid to fusiform with rounded ends, straight to slightly curved, one-septate, median to indistinctly sub- or supramedian, slightly to not constricted at septum with appendages at each end short, blunt, subulate or absent, (11–)12–14(–15)× 2–3 μm (mean013×2, S.D. 0.8, 0.6, n1030, n2030). Habitat: On overwintered leaves of Alnus serrulata Willd., Betula lutea Michx., B. nana L., B. nigra L., B. papyrifera Marshall, B. pedula Roth, and B. pubescens Ehrh. (Betulaceae). Distribution: Canada (British Columbia), Europe (Germany, Scotland), Russia (Tver’ and Novgorod provinces), and United States (MD, MI). Materials examined: CANADA, BRITISH COLUMBIA: Agassiz, 15 km NE from Agassiz, route 7, on overwintered Author's personal copy Fungal Diversity Fig. 18 Ophiognomonia intermedia. a–b, g–i. Lectotype Rehm 1794; c–d. BPI 882266; e–f. BPI 882267. Scale bars of perithecia0100 μm. Scale bars of asci and ascospores010 μm leaves of Betula papyrifera, 13 May 2005, M.V. Sogonov (BPI 877599, GenBank EU 254884); BRITISH COLUMBIA: Burnaby, Burnaby Lake Regional Park, on overwintered leaves of Betula papyrifera, 12 May 2006, M.V. Sogonov (BPI 877602, GenBank EU 254886). GERMANY: Betula sp., 1908, Rehm (Rehm Ascomyceten 1794, BPI-bound, LECTOTYPE of Gnomonia intermedia designated here); SCOTLAND: Blair Atholl Estates, Betula pendula, 23 March 2005, S. Green (BPI 880534, EPITYPE of Gnomonia intermedia designated here, ex-epitype culture AR 4147 0CBS 119188). RUSSIA, NOVGOROD PROVINCE: Kholm district, Rdeysky Natural Reserve, vicinity of the village Fryunino, on overwintered leaves of Betula nana, 11 June 2005, M.V. Sogonov (BPI 877496, GenBank EU 254881); NOVGOROD PROVINCE: Naberezhnaya reki Lovat’ str., on overwintered leaves of Betula pendula, 23 August 2004, M.V. Sogonov (BPI 877498, GenBank EU 254878); TVER’ PROVINCE: Toropets district, v. Kosilovo, on overwintered leaves of Betula pendula, 5 June 2005, M.V. Sogonov (BPI 877488B, GenBank EU 254887). UNITED STATES, MARYLAND: Prince George’s County, Beltsville, Little Paint Branch Park, on overwintered leaves of Betula nigra, 17 March 2005, M.V. Sogonov (BPI 877597, GenBank EU 254879); MARYLAND: Prince George’s County, Beltsville, Little Paint Branch Park, on overwintered leaves of Betula nigra, 11 April 2005, M.V. Sogonov (BPI 877598, GenBank EU 254880); MICHIGAN: Mackinac County, Cut River Bridge, on overwintered leaves of Alnus serrulata, 25 May 2010, D.M. Walker (BPI 882263, culture DMW 470.10CBS 131418); MICHIGAN: Sanilac County, roadside south of Forestville, on overwintered leaves of Betula papyrifera, 27 May 2010, D.M. Walker (BPI 882266, culture DMW 482.2); MICHIGAN: Mackinac County, Brevort campground, on overwintered leaves of Betula lutea, 28 May 2010, D.M. Walker (BPI 882267, culture DMW 486.10CBS 131421). Notes: Ophiognomonia intermedia causes a foliar disease and dieback of young birch shoots (Green 2004). The anamorph/teleomorph connection between Discula betulae (Westend.) Pennycook and O. intermedia was documented by Green and Castlebury (2007). Ascospore appendages were observed in this species and O. balsamiferae, O. gei, O. hiawathae, O. ischnostyla, O. longispora, O. melanostyla, O. michiganensis, O. nipponicae, O. pseudoclavulata, O. pseudoischnostyla, and O. setacea. Ophiognomonia ischnostyla (Desm.) Sogonov, Stud. Mycol. 62: 59. 2008. Figure 19a–j. Basionym: Sphaeria ischnostyla Desm., Annals Sci. nat., Bot., sér. 3 11: 357. 1849. ≡ Gnomonia ischnostyla (Desm.) Auersw. in Gonn. & Rabenh., Mycol. Europ. 5/6: 2. 1869. MycoBank: MB 512185 Perithecia immersed, occasionally causing host tissue to swell, on leaf petioles and veins, hypophyllous to Author's personal copy Fungal Diversity Fig. 19 Ophiognomonia ischnostyla. a–b, d. Lectotype Desmazieres, Pl. crypt. France 2084; c. BPI 871054B. Scale bars of perithecia0100 μm. Scale bars of asci and ascospores010 μm epiphyllous, solitary or aggregated up to two, glossy black, globose to subglobose (137–)139–162(–166) μm high× (179–)200–212(–257) μm diam (mean 0150 × 210, S.D. 13.2, 28.8, n105, n205). Necks central to marginal, mostly straight or curved to sinuous, occasionally swollen at the tip (350–)351–583(–590) μm long (mean0480, S.D. 83.7, n0 11). Asci fusiform, apex rounded, acute or long tapering stipe, apical ring conspicuous (30–)34–42(–46)×10–17 μm (mean038 ×14, S.D. 7.3, 4.9, n104, n202), ascospores arranged parallel or irregularly uniseriate, fusiform, ends rounded, straight to slightly curved, one-septate, median to indistinctly sub- or supramedian, slight constriction at septum, appendages subulate to whip-shaped or absent (14–) 15–17(–18)×2–3 μm (mean016×2, S.D. 1.4, 0.3, n1030, n2017). Habitat: On overwintered leaves of Carpinus betulus L. and Corylus avellana L. (Betulaceae). San Salvatore, on leaves of Corylus avellana, 28 May 2005, M.V. Sogonov (BPI 871054B, culture CBS 121234). Notes: This species is morphologically similar to O. pseudoischnostyla, however, O. ischnostyla occurs on Carpinus spp. and Corylus spp., whereas O. pseudoischnostyla occurs on Alnus spp. and Betula spp. These two species both occur in Europe. Ascospore appendages were observed in O. ischnostyla and O. balsamiferae, O. gei, O. hiawathae, O. intermedia, O. longispora, O. melanostyla, O. michiganensis, O. nipponicae, O. pseudoclavulata, O. pseudoischnostyla, and O. setacea. For a more detailed discussion on the taxonomy of this species, see Sogonov et al. (2008). Ophiognomonia japonica D.M. Walker, sp. nov. Figure 20a–f. MycoBank: MB 564089 Distribution: Europe (France, Switzerland) and Russia (Novogorod Province). Materials examined: FRANCE: Carpinus betulus, 1849, Desmazieres (Pl. Crypt. France 2084, BPI-bound, LECTOTYPE of Sphaeria ischnostyla designated here); RUSSIA, NOVOGOROD PROVINCE: Kholm district, Arboretum (Dendropark), near tree #560, on overwintered leaves of Corylus avellana, June 2005, M.V. Sogonov (BPI 877514B, EU 254899); SWITZERLAND: Ticino, Monte Etymology: japonica refers to the host plant from which the holotype was collected. Holotypus: JAPAN, GUNMA: Kawarayu, Kawarayu Trail, on overwintered leaves of Prunus japonica, 12 April 2010, D.M. Walker (BPI 882235, ex-type culture DMW 387.20 CBS 131355). Perithecia immersed, occasionally causing host tissue to swell and rupture, on leaf petioles and veins, solitary, glossy Author's personal copy Fungal Diversity Fig. 20 Ophiognomonia japonica. a–f. Holotype BPI 882235. Scale bars of perithecia0100 μm. Scale bars of asci and ascospores010 μm black, subglobose 175–222 μm high×(275–)325–340(–369) μm diam (mean0206×327, S.D. 27, 39.3, n103, n204). Necks central to marginal, mostly straight or slightly curved, (437–)462–613(–619) μm long (mean0540, S.D. 74.9, n0 10). Asci fusiform to ellipsoid, apex papillate or rounded, stipe acute, tapering, or rarely whip-shaped, apical ring conspicuous, (20–)22–23(–25)×14–15 μm (mean023×14, S.D. 2, 0.5, n1011, n2010), ascospores arranged parallel or uniseriate. Ascospores fusiform with rounded ends, straight to slightly curved, one-septate, median to indistinctly supramedian, not constricted at septum, (12–)13–16(–17)×2–3 μm (mean0 14×2, S.D. 0.9, 0.2, n1030, n2019). Habitat: On overwintered leaves of Prunus japonica Thunb. (Rosaceae). Distribution: Japan (Gunma prefecture). Notes: Ophiognomonia japonica is one of 17 species known from Japan and one of two occuring on Prunus from that country. This species has shorter perithecial necks and smaller ascospores than O. nipponicae, which also occurs on Prunus in Japan. April 2010, D.M. Walker (BPI 882232, ex-type culture DMW 379.30CBS 131352). Perithecia immersed, on leaf blades and veins, solitary, glossy black, globose to subglobose, (122–)127–169(–228) μm high×(124–)127–212(–217) μm diam (mean0151× 170, S.D. 31.1, 36.9, n1010, n2010). Necks central, mostly straight, sometimes curved, (329–)400–645(–699) μm long (mean0493, S.D. 114.4, n015). Asci fusiform to ellipsoid, apex papillate or rounded, stipe tapering, apical ring conspicuous, (20–)21–30(–31)×(10–)11–16(–17) μm (mean0 26×14, S.D. 3.3, 1.8, n1030, n2030), ascospores arranged uniseriate or parallel, rarely multiseriate. Ascospores fusiform with rounded ends, straight to slightly curved, oneseptate, median to indistinctly supramedian, slightly constricted at septum, each cell with one large and one small guttule, (11–)12–13(–14)×2–3 μm (mean013×2, S.D. 0.9, 0.3, n1030, n2030). Habitat: On overwintered leaves of Castanea crenata Siebold & Zucc. (Fagaceae). Distribution: Japan (Ibaraki prefecture). Etymology: kobayashii was named after Takao Kobayashi to honor his contributions to the taxonomy of the Diaporthales of Japan. Materials examined: JAPAN, IBARAKI: Tsukuba City, Mt. Tsukuba, shrine trail, on overwintered leaves of Castanea crenata, 8 April 2010, D.M. Walker (BPI 882245, culture DMW 416.1 0CBS 131403); IBARAKI: Tsukuba City, Natural Forest, on overwintered leaves of Castanea crenata, 4 April 2010, D.M. Walker (BPI 882229, culture DMW374.20 CBS 131350); IBARAKI: Ushiku, Ushiku Nature Reserve, on overwintered leaves of Castanea crenata, 9 April 2010, D.M. Walker (BPI 882218, culture DMW347.20CBS 131343). Holotypus: JAPAN, IBARAKI: Tsukuba City, Natural Forest, on overwintered leaves of Castanea crenata, 4 Notes: Ophiognomonia kobayashii is one of 17 species known from Japan and one of three occuring on Castanea Ophiognomonia kobayashii D.M. Walker, sp. nov. Figure 21a–i. MycoBank: MB 564090 Author's personal copy Fungal Diversity Fig. 21 Ophiognomonia kobayashii. a, c, i. BPI 882245; b, g–h. BPI 882229; d, e. Holotype BPI 882232; f. BPI 882218. Scale bars of perithecia0 100 μm. Scale bars of asci and ascospores010 μm in that country. A group of closely related species including O. asiatica, O. kobayashii, O. otanii, and O. sogonovii are specific to Quercus spp. and Castanea spp. within the Fagaceae (Fig. 2). to not constricted at septum, one cell slightly larger than the other, each cell with several small guttules, (7–)8–9×3 μm (mean08×3, S.D. 0.6, 0.0, n1030, n2022). Habitat: On overwintered leaves of Prunus sp. (Rosaceae). Ophiognomonia lenticulispora D.M. Walker, sp. nov. Figure 22a–f. MycoBank: MB 564091 Etymology: lenticulispora refers to the lens shaped ascospores of this species. Holotypus: UNITED STATES, MARYLAND: Prince George’s County, Beltsville Agricultural Research Center, on overwintered leaves of Prunus sp., 25 April 2011, D.M. Walker (BPI 882287, ex-type culture DMW 5440CBS 131363). Perithecia immersed, on leaf blades and veins, hypophyllous, solitary or loosely aggregated, glossy black, globose to subglobose, (189–)190–197(–204) μm high×(231–)235– 263(–271) μm diam (mean0195×250, S.D. 7, 20, n104, n2 04). Necks central to marginal, straight to slightly curved, (317–)323–327(–372) μm long (mean0335, S.D. 25.2, n04). Asci ellipsoid to fusiform, apex rounded, stipe tapering, apical ring conspicuous, (28–)30–37(–39)×(12–) 13–15(–17) μm (mean035×14, S.D. 3.5, 1.3, n1011, n20 10), ascospores arranged irregularly uniseriate to biseriate. Ascospores oval to ellipsoid, rounded ends, straight, oneseptate, median to indistinctly sub- or supramedian, slightly Distribution: United States (MD). Notes: Perithecia for this species only appeared on overwintered leaves after 2 weeks of incubation in a moist chamber at 4 °C in complete darkness. Only O. lenticulispora and O. pseudoclavulata have oval to ellipsoid ascospores in Ophiognomonia. These species can be distinguished from each other by ascospore shape, size, and presence/absence of appendages. Ophignomonia lenticulispora is one of two species of Ophiognomonia known to occur on Prunus in the U.S. Ophiognomonia leptostyla (Fr.) Sogonov, Stud. Mycol. 62: 62. 2008. Figure 23a–n. Basionym: Sphaeria leptostyla Fr., Syst. Mycol. 2: 517. 1823. ≡ Gnomonia leptostyla (Fr.) Ces & De Not., Comment. Soc. Crittog. Ital. 1(4): 232. 1863. MycoBank: MB 512187 Teleomorph: Perithecia immersed, on leaf blades, petioles, and veins, causing host tissue to swell and rupture, hypophyllous, solitary or aggregated up to three, glossy black, Author's personal copy Fungal Diversity Fig. 22 Ophiognomonia lenticulispora. a–f. Holotype BPI 882287. Scale bars of perithecia0100 μm. Scale bars of asci and ascospores010 μm subglobose, 175–252(–302) μm high×247–295(–309) μm diam (mean0243×284, S.D. 64, 32.5, n103, n203). Necks central, straight to curved, (240–)254–551(–601) μm long (mean0406, S.D. 150.3, n07). Asci ellipsoid to fusiform, apex rounded, stipe short, tapering, apical ring conspicuous, (28–)29–30(–33) × (12–)15–16(–17) μm (mean 030 × 15, S.D. 2, 1.8, n108, n208), ascospores arranged irregularly uniseriate or parallel. Ascospores fusiform with rounded ends, straight to slightly curved, one-septate, median to indistinctly supramedian, not constricted at septum, each cell with several small guttules, (13–)14–15 × 2 μm (mean014×2, S.D. 0.6, 0.0, n1027, n2023). Anamorph: Macroconidia lunate, reniform, or straight, basal cell bluntly rounded, apical cell with acute end, one-septate, median to indistinctly sub- or supramedian, distinctly constricted at septum, basal cell equal or larger than distal cell, hilum sometimes conspicuous, (22–)23–32(–35)×(6–)7–8 (–9) μm (mean 028 × 7, S.D. 3.6, 1, n1 014, n2 016). Microconidia fusiform, ends rounded, aseptate, hilum sometimes conspicuous, (6–)9–12(–13)×2–3(–4) μm (mean0 11×3, S.D. 2.7, 0.7, n107, n207). Habitat: On living and overwintered leaves of Juglans nigra L., Juglans regia L., and Juglans sp. L. (Juglandaceae) causing leaf blotch. Distribution: Canada (Ontario), Europe (Austria, Bulgaria, Germany, Poland, Russia, Switzerland), Iran, and United States (AL, DE, IA, IL, MA, MD, NY, PA, VA, WV). Materials examined: BULGARIA: Sofia region, Zapaden Park, on overwintered leaves of Juglans regia, 5 June 2005, D. Stoykov (BPI 878231). UNITED STATES, PENNSYLVANIA: Centre County, State College, on symptomatic leaves of Juglans regia, 29 September 1919, L.O. Overholts (BPI 870007); WEST VIRGINIA: Monongalia County, Morgantown, on symptomatic leaves of Juglans nigra, 12 September 1928, W.A. Archer (BPI 611485). Notes: Ophiognomonia leptostyla is the cause of the virulent disease called walnut anthracnose or walnut leaf blotch, which is prevalent in the Midwestern and Eastern United States (Neely and Black 1976; Berry 1981; Juhasova et al. 2006). This species has a broad geographic distribution in Europe, the Middle East, and North America. This is one of three species that occur on Juglans. Several other species are known to occur on Carya and Juglans in the Juglandaceae including the pathogen O. clavigignentijuglandacearum. Ophiognomonia longispora D.M. Walker, sp. nov. Figure 24a–j. MycoBank: MB 564093 Etymology: longispora refers to the long ascospores of this species. Holotypus: JAPAN, NAGANO: Ueda-shi, Sugadaira, arboretum at the Sugadaira Montane Research Center, on Author's personal copy Fungal Diversity Fig. 23 Ophiognomonia leptostyla. a–f. BPI 878231; g, i–j, l, n. BPI 611485; h, k, m. BPI 870007. Scale bars of perithecia and disease leasions0 100 μm. Scale bars of all asci, ascospores, macro, and micro conidia010 μm overwintered leaves of Tilia maximowicziana, 13 April 2010, D.M. Walker (BPI 882239, ex-type culture DMW 394.30CBS 131358). Perithecia immersed, occasionally causing host tissue to swell and rupture, on leaf blades and veins, epiphyllous or hypophyllous, solitary or aggregated up to two, glossy black, subglobose, (175–)177–256(–261) μm high×(218–) 262–378(–380) μm diam (mean0216×308, S.D. 40.6, 71.3, n106, n205). Necks central to marginal, straight, curved, or slightly sinuous, (305–)399–1,058(–1,090) μm long (mean0795, S.D. 235, n017). Asci narrowly fusiform, apex acute to rounded, stipe acute, (49–)51–60(–62)×(5–)6–9(– 10) μm (mean055×7, S.D. 4, 1.5, n1011, n2010), ascospores arranged parallel. Ascospores narrowly clavate, filiform or sinuous, rounded ends, straight to curved, oneseptate, supramedian, basal cell narrower than distal cell, Author's personal copy Fungal Diversity Fig. 24 Ophiognomonia longispora. b, d, g, i. BPI 882210; a, c, e–f, h, j. Holotype BPI 882239. Scale bars of perithecia0100 μm. Scale bars of asci and ascospores010 μm with several small guttules, (33–)34–43(–44) × 1–2 μm (mean038×1, S.D. 3.2, 0.4, n1030, n2028) and appendages at each end subulate to whip-shaped. Habitat: On overwintered leaves of Tilia maximowicziana Shiras. (Malvaceae). Distribution: Japan (Nagano prefecture). Materials examined: JAPAN, NAGANO: Ueda-shi, Sugadaira, Arboretum at the Sugadaira Montane Research Center, on overwintered leaves of Tilia maximowicziana, 13 April 2010, D.M. Walker (BPI 882210, culture DMW 325.40CBS 131337). Notes: Ophiognomonia longispora is one of 17 species known from Japan. In addition, this species is one of two Author's personal copy Fungal Diversity that occur on Tilia and the only species on this host genus from Japan. The species O. cordicarpa, O. longispora, O. melanostyla, and O. sassafras share elongated filiform ascospores. These species form a closely related clade (Fig. 3). Ascospore appendages were only observed in O. balsamiferae, O. gei, O. hiawathae, O. intermedia, O. ischnostyla, O. longispora, O. melanostyla, O. michiganensis, O. nipponicae, O. pseudoclavulata, O. pseudoischnostyla, and O. setacea. Ophiognomonia maximowiczianae D.M. Walker, sp. nov. Figure 25a–e. apex papillate or rounded, stipe acute or tapering, (23–)24– 31(–33)×(11–)12–14(–15) μm (mean028×13, S.D. 2.9, 1.1, n1 019, n2 015), ascospores arranged irregularly uniseriate to multiseriate. Ascospores fusiform, rounded ends, straight to slightly curved, one-septate, median to indistinctly sub- or supramedian, not constricted at septum, (9–)10–11(–12)×2 μm (mean011×2, S.D. 0.6, 0.0, n1030, n2030). Habitat: On overwintered leaves of Betula maximowicziana Regel (Betulaceae). Distribution: Japan (Nagano prefecture). MycoBank: MB 564094 Etymology: maximowiczianae refers to the plant host epithet from which the holotype was collected. Holotypus: JAPAN, NAGANO: Ueda-shi, Sugadaira, Arboretum at Sugadaira Montane Research Center, on overwintered leaves of Betula maximowicziana, 13 April 2010, D.M. Walker (BPI 882238, ex-type culture DMW 392.10 CBS 131357). Perithecia immersed, occasionally causing host tissue to swell and rupture, on leaf blades and veins, solitary, glossy black, subglobose, 188–253 μm high×207–287 μm diam (mean0221×247, S.D. 46, 56.6, n102, n202). Necks central, straight to curved, (517–)658–868(–1,010) μm long (mean0763, S.D. 218.8, n04). Asci fusiform to ellipsoid, Notes: Ophiognomonia maximowiczianae is one of 17 species known from Japan, and the only species known to occur on Betula from that country. Ophiognomonia melanostyla (DC.: Fr.) Berl., Icon. Fung. 2: 146. 1899. Figure 26a–h. Basionym: Sphaeria melanostyla DC.: Fr., Fl. Franç. 5/6: 129. 1815: Syst. Mycol. 2: 517. 1823. ≡ Gnomonia melanostyla (DC.: Fr.) Auersw. in Gonn. & Rabenh., Mycol. Europ. 5/6: 28. 1869. ≡ Gnomoniella melanostyla (DC.: Fr.) Sacc., Syll. Fung. 1: 419. 1882. ≡ Cryptoderis melanostyla (DC.: Fr.) G. Winter, Rabenhorst’s Kryptogamen Flora I, Abt. 2: 592. 1887. Fig. 25 Ophiognomonia maximowiczianae. a–e. Holotype BPI 882238. Scale bars of perithecia 0100 μm. Scale bars of asci and ascospores010 μm Author's personal copy Fungal Diversity Fig. 26 Ophiognomonia melanostyla. a–c, f. Epitype BPI 882279; d, g–h. BPI 879257; e. BPI 882278. Scale bars of perithecia0100 μm. Scale bars of asci and ascospores010 μm Habitat: On overwintered leaves of Tilia americana L., T. cordata Mill., T. heterophylla Vent., and Tilia sp. L. (Malvaceae). Distribution: Europe (Austria, Bulgaria, Czech Republic, France, Germany, Switzerland, Ukraine), Canada (Ontario), and United States (NY, PA). Materials examined: FRANCE: Veronnes, on leaves of Tilia sp., 18 March 2011, A. Gardiennet (BPI 882278, culture DMW 5220CBS 131430); FRANCE: Le Mazeldan, Barre des Cevenes, on leaves of Tilia sp., Y. Mourgues & M. Chovillon (BPI 882279, EPITYPE designated here, exepitype culture DMW 5330CBS 131431); GERMANY: Frankfurt, Langen, on leaves of Tilia heterophylla, 2008, L.C. Mejía (BPI 879257, culture LCM 389.01 0CBS 128482); SWITZERLAND: Vaud, Lausanne, Parc Bourge, on Tilia cordata, 28 May 2005, M.V. Sogonov (BPI 877611, GenBank EU 254913); SWITZERLAND: Vaud, St. Cergue, on Tilia cordata, 20 May 2005, M.V. Sogonov (BPI 877610, GenBank EU 254911). UNITED STATES, NEW YORK: Sullivan County, Roscoe vicinity, area around Campbell Inn, on Tilia americana, July 2005, M.V. Sogonov (BPI 877608, GenBank EU 254912). Notes: This is the type species of Ophiognomonia. For a detailed description of this species, see Sogonov et al. (2008). The species O. cordicarpa, O. longispora, O. melanostyla, and O. sassafras share elongated filiform ascospores and form a clade of closely related species (Fig. 3). Ascospore appendages were observed for this species as well as in O. balsamiferae, O. gei, O. hiawathae, O. intermedia, O. ischnostyla, O. longispora, O. michiganensis, O. nipponicae, O. pseudoclavulata, O. pseudoischnostyla, and O. setacea. Ophiognomonia michiganensis D.M. Walker, sp. nov. Figure 27a–l. MycoBank: MB 564095 Etymology: michiganensis refers to the state where the holotype was collected. Holotypus: UNITED STATES, MICHIGAN: Houghton County, FJ McClain State Park, on overwintered leaves of Betula papyrifera, 30 April 2010, D.M. Walker (BPI 882255, ex-type culture DMW 454.30CBS 131412). Perithecia immersed, occasionally causing host tissue to swell and rupture, on leaf blades and veins, solitary, glossy black, globose to subglobose (141–)188–265(–287) μm high×(178–)214–341(–405) μm diam (mean0227 ×269, S.D. 34.5, 56.4, n1016, n2016). Occasionally two necks per base, necks central, straight or slightly curved, (228–) 285–771(–879) μm long (mean0501, S.D. 191, n020). Asci fusiform to ellipsoid, apex papillate or rounded, stipe tapering or occasionally acute to papillate, apical ring Author's personal copy Fungal Diversity Fig. 27 Ophiognomonia michiganensis. a–b. BPI 882268; c–d, f, h. BPI 882273; e, l. BPI 882271; i, k, g. BPI 882268; j. BPI 882259. Scale bars of perithecia0100 μm. Scale bars of asci and ascospores010 μm conspicuous (20–)23–34(–38) × (8–)11–17(–18) μm (mean027×14, S.D. 4, 2, n1030, n2030), ascospores arranged parallel, irregularly uniseriate, or multiseriate. Ascospores fusiform with rounded ends, straight to slightly curved, one-septate, median to indistinctly submedian or distinctly submedian when on Prunus sp., slightly to not constricted at septum, (9–)10–14(–15)×2–3 μm (mean0 12×2, S.D. 1.8, 0.4, n1030, n2030). Appendages subulate to whip-shaped or absent. Habitat: On overwintered leaves of Alnus serrulata Willd., Alnus sp. Mill., Betula alleghaniensis Britton, B. lutea Michx., B. papyrifera Marshall, Betula sp., Carpinus americana Michx (Betulaceae), and Prunus sp. L. (Rosaceae). Distribution: United States (MI, NC, NY). Materials examined: UNITED STATES, MICHIGAN: Mackinac County, Brevort campground, on overwintered leaves of Betula sp., 28 May 2010, D.M. Walker (BPI 882273, culture DMW 508.30CBS 131428); MICHIGAN: Mackinac County, Brevort campground, on overwintered leaves of Betula papyrifera, 27 May 2010, D.M. Walker (BPI 882254, culture DMW 451.2 0CBS 131411); MICHIGAN: Mackinac County, Brevort campground, on overwintered leaves of Prunus sp., 27 May 2010, D.M. Walker (BPI 882271, culture DMW 505.30CBS 131427); MICHIGAN: Mackinac County, Cut River Bridge, on overwintered leaves of Betula papyrifera, 28 May 2010, D.M. Walker (BPI 882259, culture DMW 464.1); MICHIGAN: Schoolcraft County, Manistique, Indian campground, on overwintered leaves of Alnus serrulata, 28 May 2010, D.M. Walker (BPI 882269, culture DMW 494.2 0CBS 131423); MICHIGAN: Schoolcraft County, Manistique, Indian campground, on overwintered leaves of Betula lutea, 28 May 2010, D.M. Walker (BPI 882260, culture DMW 465.20CBS 131415); MICHIGAN: Roscommon County, Marl Lake, on overwintered leaves of Betula papyrifera, Author's personal copy Fungal Diversity 27 May 2010, D.M. Walker (BPI 882258, culture DMW 461.20CBS 131414); MICHIGAN: Alger County, Miners Falls, on overwintered leaves of Betula lutea, 31 May 2010, D.M. Walker (BPI 882253, culture DMW447.1 0CBS 131410); MICHIGAN: Sanilac County, roadside park south of Forestville, on overwintered leaves of Alnus sp., 27 May 2010, D.M. Walker (BPI 882264, culture DMW 475.10 CBS 131419); MICHIGAN: Alger County, Sable Falls, on overwintered leaves of Alnus serrulata, 29 May 2010, D.M. Walker (BPI 882268, culture DMW492.10CBS 131422); MICHIGAN: Alger County, Sable Falls, on overwintered leaves of Betula papyrifera, 29 May 2010, D.M. Walker (BPI 882265, culture DMW478.10CBS 131420); NEW YORK: Franklin County, Adirondack High Peaks Region, Marcy Dam, on leaves of Betula alleghaniensis, 9 June 2007, L.C. Mejía (BPI 881487, culture LCM 161); NORTH CAROLINA: Haywood County, Great Smoky Mountains National Park, Cataloochee, beginning of the trail, on overwintered leaves of Betula lenta, 23 May 2006, M.V. Sogonov (BPI 877624); NORTH CAROLINA: Haywood County, Great Smoky Mountains National Park, Cataloochee, beginning of the trail, on overwintered leaves of Carpinus americana, 23 May 2006, M.V. Sogonov (BPI 877467B, culture CBS 121908). Notes: This species is very common in the Eastern and Midwestern U.S. on several genera in the Betulaceae. Ophiognomonia setacea and O. michiganensis are the only species of Ophiognomonia that occur on more than one plant family or order. Ascospore appendages were observed in O. michiganensis as well as O. balsamiferae, O. gei, O. hiawathae, O. intermedia, O. ischnostyla, O. longispora, O. melanostyla, O. nipponicae, O. pseudoclavulata, O. pseudoischnostyla, and O. setacea. Multiple-necked perithecia were occasionally observed in O. michiganensis and O. multirostrata, a phenomenon often occurring in culture, but rarely in nature for species of Gnomoniopsis (Walker et al. 2010) and Ophiognomonia. Ophiognomonia micromegala (Ellis & Everh.) Sogonov, Stud. Mycol. 62: 63. 2008. Figure 28a–j. Basionym: Diaporthe micromegala Ellis & Everh., Proc. Acad. nat. Sci. Philad. 45: 449. 1894. ≡ Plagiostoma micromegalum (Ellis & Everh.) M.E. Barr, Mycol. Mem. 7: 112. 1978. MycoBank: MB 512188 Perithecia immersed, occasionally causing host tissue to swell, on leaf rachises and veins, solitary or aggregated 2–3, glossy black, globose to subglobose, (209–)227–379(–399) μm high×(351–)388–478(–491) μm diam (mean0311×440, S.D. 59.1, 57.4, n1013, n2013). Necks central to marginal, straight to curved, (223–)227–537(–624) μm long (mean0 384, S.D. 121.8, n017). Asci fusiform, apex rounded, stipe short tapered or rounded, apical ring conspicuous, (51–)61– 70×(16–)18–20 μm (mean061×18, S.D. 9.5, 2, n103, n20 3), ascospores arranged irregularly parallel or multiseriate. Ascospores fusiform to broadly fusiform with bluntly rounded ends, straight to slightly curved, one-septate, median to indistinctly sub- or supramedian, slightly to distinctly constricted at septum, each cell with many large and small distinct guttules, (26–)27–50(–53) × (3–)4–11(–12) μm (mean 0 40×7, S.D. 8.8, 3.5, n1030, n2030). Habitat: On overwintered leaves and rachises of Carya sp. Nutt. (Juglandaceae). Distribution: United States (MD). Materials examined: UNITED STATES: Carya sp., 21 August 1893, A. Commons (Commons 2309, ISOTYPE of Diaporthe micromegala, NY); MARYLAND: Prince George’s County, Beltsville Agricultural Reseach Center, on overwintered leaves and rachises of Carya sp., 21 April 2011, D.M. Walker (BPI 882280, EPITYPE designated here, ex-epitype culture DMW 5350CBS 131432); MARYLAND: Prince George’s County, Beltsville Agricultural Research Center, on overwintered leaves and rachises of Carya sp., 21 April 2011, D.M. Walker (BPI 882281, culture DMW 5360 CBS 131433). Notes: Ophiognomonia micromegala has large fusiform ascospores unlike the narrowly fusiform ascospores of O. melanostyla. Ophiognomonia micromegala is one of seven species that occur on plants in the Juglandaceae, and one of two that occur on Carya in the U.S. Ophiognomonia monticola D.M. Walker, sp. nov. Figure 29a–g. MycoBank: MB 564096 Etymology: monticola refers to Mt. Tsukuba where the holotype was collected. Holotypus: JAPAN, IBARAKI: Tsukuba City, west side of Mt. Tsukuba, on overwintered leaves of Carpinus sp., 5 April 2010, D.M. Walker (BPI 882222, ex-type culture DMW 357.30CBS 131346). Perithecia immersed, occasionally causing host tissue to swell, on leaf blades, petioles, and veins, solitary or aggregated up to two, glossy black, globose, subglobose, or ellipsoidal, (88–)109–123(–146) μm high×(110–)154–232 (–247) μm diam (mean0121×184, S.D. 23.4, 56.3, n105, Author's personal copy Fungal Diversity Fig. 28 Ophiognomonia micromegala. a–b, d–g. BPI 877612; c. BPI 877614; h– j. Isotype Ellis and Everhart 2309. Scale bars of perithecia0 100 μm. Scale bars of asci and ascospores010 μm Fig. 29 Ophiognomonia monticola. a–g. BPI 882243. Scale bars of perithecia0100 μm. Scale bars of asci and ascospores010 μm Author's personal copy Fungal Diversity n205). Necks central to marginal, straight, curved, or sinuate, (385–)390–595(–665) μm long (mean 0481, S.D. 81.5, n 016). Asci fusiform to ellipsoid, apex rounded, stipe acute or long tapering, apical ring conspicuous, (19–)20–22(–25)×(15–)16–17 μm (mean022× 16, S.D. 2.4, 0.9, n1012, n2012), ascospores arranged parallel or irregularly uniseriate. Ascospores fusiform with rounded ends, straight to slightly curved, oneseptate, median to indistinctly sub- or supramedian, slightly constricted at septum, (12–)13–14 × 2–3 μm (mean013×2, S.D. 0.6, 0.4, n1030, n2016). Habitat: On overwintered leaves of Carpinus sp. L. (Betulaceae). small guttules, (11–)12–14(–15)×2–3 μm (mean013×3, S.D. 1.1, 0.5, n1030, n2015). Habitat: On overwintered leaves of Alnus firma Siebold & Zucc. (Betulaceae). Distribution: Japan (Ibaraki prefecture). Materials examined: JAPAN, IBARAKI: Ushiku, Ushiku Nature Reserve, on overwintered leaves of Alnus firma, 9 April 2010, D.M. Walker (BPI 882228, culture DMW 373.10CBS 131400); IBARAKI: Ushiku, Ushiku Nature Reserve, on overwintered leaves of Alnus firma, 9 April 2010, D.M. Walker (BPI 882248, culture DMW423.1 0 CBS 131406). Distribution: Japan (Ibaraki prefecture). Notes: Ophiognomonia monticola is one of 17 species known from Japan. It is one of three species worldwide known to occur on Carpinus, and the only species to occur on this genus in Japan. Notes: Ophiognomonia multirostrata is one of 17 species known from Japan, and one of four occurring on Alnus from that country. Multiple-necked perithecia were occasionally observed in O. michiganensis and O. multirostrata, a phenomenon often occurring in culture, but rarely in nature for species of Ophiognomonia. Ophiognomonia multirostrata has slightly smaller ascospores than O. naganoensis and ascospores that overlap in size with O. ibarakiensis, which also occurs on Alnus from Japan. Ophiognomonia multirostrata D.M. Walker, sp. nov. Figure 30a–g. Ophiognomonia naganoensis D.M. Walker, sp. nov. Figure 31a–f. MycoBank: MB 564097 MycoBank: MB 564098 Etymology: multirostrata refers to the multiple necks on perithecia of this species. Etymology: naganoensis refers to the Japanese prefecture where the holotype was collected. Holotypus: JAPAN, IBARAKI: Tsukuba City, Tsukuba Botanical Garden, on overwintered leaves of Alnus firma, 6 April 2010, D.M. Walker (BPI 882226, ex-type culture DMW 364.30CBS 131348). Perithecia immersed, occasionally causing host tissue to swell and rupture, on leaf blades, petioles, and veins, hypophyllus and epiphyllous, solitary, glossy black, subglobose, (143–)228–260(–285) μm high×(195–)299–408(–501) μm diam (mean0232×358, S.D. 54, 103, n105, n206). Necks central, straight, curved, sinuous or up to six necks per base, (752–)789–1,066(–1,203) μm long (mean0920, S.D. 114, n018). Asci ellipsoid or fusiform, apex rounded, stipe acute to long tapering, (25–)26–39(–44)×(14–)15–17(–18) μm (mean032×16, S.D. 3.9, 1.3, n1030, n2026), ascospores arranged uniseriate to irregularly multiseriate. Ascospores fusiform, ends rounded, straight to slightly curved, oneseptate, median to indistinctly sub- or supramedian, not constricted at septum, each cell with 0–2 distinct and several Holotypus: JAPAN, NAGANO: Ueda-shi, Sugadaira, waterfall at the Sugadaira Montane Research Center, on overwintered leaves of Alnus hirsuta, 13 April 2010, D.M. Walker (BPI 882246, ex-type culture DMW 418.30CBS 131404). Perithecia immersed, occasionally causing host tissue to swell and rupture, on leaf blades and veins, hypophyllous and epiphyllous, solitary to aggregated up to two, glossy black, subglobose, (351–)372–386(–391) μm high×(432–) 456–523(–565) μm diam (mean0376×494, S.D. 18.8, 61, n104, n204). Necks central, straight, curved, or sinuous, (434–)491–913(–917) μm long (mean0683, S.D. 127.5, n0 17). Asci ellipsoid to fusiform, apex rounded, stipe acute, rounded, or long tapering, apical ring conspicuous, (32–) 33–47(–48)×(8–)9–20(–21) μm (mean038×16, S.D. 5.5, 4.5, n1030, n2030), ascospores arranged uniseriate to irregularly multiseriate. Ascospores fusiform, rounded ends, straight to slightly curved, one-septate, median to Materials examined: JAPAN, IBARAKI: Tsukuba City, west side of Mt. Tsukuba, on overwintered leaves of Carpinus sp., 5 April 2010, D.M. Walker (BPI 882243, culture DMW 405.30CBS 131361). Author's personal copy Fungal Diversity Fig. 30 Ophiognomonia multirostrata. d–f. BPI 882248; b–c. Holotype BPI 882226; a, g. BPI 882228. Scale bars of perithecia0100 μm. Scale bars of asci and ascospores010 μm indistinctly sub- or supramedian, slightly constricted at septum, each cell with 0–2 distinct guttules and several small guttules, (18–)19–20(–21)×3–4 μm (mean019×4, S.D. 0.8, 0.5, n1030, n2015). Habitat: On overwintered leaves of Alnus hirsuta Turcz. and A. hirsuta Turcz. f. sibirica (Spach) H. Ohba (Betulaceae). leaves of Alnus hirsuta var. sibirica, 13 April 2010, D.M. Walker (BPI 882211, culture DMW 331.20CBS 131338). Notes: Ophiognomonia naganoensis is one of 17 species known from Japan, and one of four occurring on Alnus from that country. This species has slightly larger ascospores than O. multirostrata and O. ibarakiensis, which also occur on Alnus in Japan. Distribution: Japan (Nagano prefecture). Materials examined: JAPAN, NAGANO: Ueda-shi, Sugadaira, waterfall at the Sugadaira Montane Research Center, on overwintered leaves of Alnus hirsuta var. sibirica, 6 April 2010, D.M. Walker (BPI 882244, culture DMW 410.10CBS 131362); NAGANO: Ueda-shi, Sugadaira, waterfall at the Sugadaira Montane Research Center, on overwintered Ophiognomonia nana (Rehm) Sogonov, Stud. Mycol. 62: 63. 2008. Figure 32a–f. Basionym: Gnomoniella nana Rehm, Hedwigia 42: 349. 1903. MycoBank: MB 512189 Author's personal copy Fungal Diversity Fig. 31 Ophiognomonia naganoensis. a–b. Holotype BPI 882246; c, e–f. BPI 882244; d. BPI 882211. Scale bars of perithecia0100 μm. Scale bars of asci and ascospores010 μm Perithecia immersed to partially erumpent, causing host tissue to swell, on leaf blades and veins, epiphyllous and hypophyllous, solitary, glossy black, subglobose, 287 μm high×347 μm diam (n101, n201). Necks central, straight to curved, 808–841 μm long (mean0824, S.D. 23, n02). Asci obovoid to pyriform, apex papillate, stipe acute to long tapering, apical ring conspicuous, (42–)45–49(–60)×(21–) 25–26(–27) μm (mean048×25, S.D. 7, 2.5, n105, n205), ascospores arranged irregularly multiseriate. Ascospores lenticular with acute to rounded ends, single celled, non- Fig. 32 Ophiognomonia nana. a–f. Lectotype Rehm Ascomyceten 1522. Scale bars of perithecia0100 μm. Scale bars of asci and ascospores010 μm Author's personal copy Fungal Diversity septate, lacking guttules, (12–)13–15(–16) × 6–7 μm (mean014×6, S.D. 1, 0.5, n1030, n2023). Habitat: On leaves of Betula nana L. (Betulaceae). Distribution: Europe (Germany). Materials examined: GERMANY: Oberbayern, Bernried, on leaves of Betula nana, May 1903, Rehm (Rehm Ascomyceten 1522, LECTOTYPE of Gnomoniella nana designated here, FH). Prunus from that country. This species has longer perithecial necks and larger ascospores than O. japonica, which also occurs on Prunus in Japan. Ascospore appendages were observed in O. balsamiferae, O. gei, O. hiawathae, O. intermedia, O. ischnostyla, O. longispora, O. melanostyla, O. michiganensis, O. nipponicae, O. pseudoclavulata, O. pseudoischnostyla, and O. setacea. Ophiognomonia ostryae-virginianae D.M. Walker & L.C. Mejía, sp. nov. Figure 34a–f. MycoBank: MB 564100 Notes: This is the only species of Ophiognomonia with single celled, non-septate ascospores. Seven species of Ophiognomonia including O. nana occur on the genus Betula having a global temperate distribution. Ophiognomonia nipponicae D.M. Walker, sp. nov. Figure 33a–i. MycoBank: MB 564099 Etymology: nipponicae refers to the host plant epithet on which the holotype was collected. Holotypus: JAPAN, IBARAKI: Tsukuba City, hiking trail around Mt. Tsukuba shrine, on overwintered leaves of Prunus nipponica, 6 April 2010, D.M. Walker (BPI 882249, ex-type culture DMW 424.10CBS 131407). Perithecia immersed, on leaf blades and veins, solitary or in dense clusters, glossy black, globose to subglobose, (201–)244–298(–316) μm high×(–227)261–306 (–422) μm diam (mean0265×302, S.D. 45.4, 73.8, n10 5, n205). Necks central to marginal, curved, sinuous, or straight, (965–)968–1,385(–1,403) μm long (mean 0 1,153, S.D. 126.7, n015). Asci fusiform to ellipsoid, apex papillate or rounded, stipe tapering, (34–)35–46(–48)× (13–)14–15(–16) μm (mean038×15, S.D. 3.8, 0.8, n10 22, n2021), ascospores arranged parallel or irregularly uniseriate. Ascospores fusiform with rounded ends, straight to slightly curved, one-septate, median to indistinctly sub- or supramedian, not constricted at septum, with appendages short, corniform to subulate or absent, (15–)16–17(–18) × 2 μm (mean 017 × 2, S.D. 3.2, 0.0, n1030, n2023). Etymology: ostryae-virginianae refers to the host Ostrya virginiana from which the holotype was collected. Holotypus: UNITED STATES, NEW YORK: Tompkins County, Ithaca, Buttermilk Falls State Park, on overwintered leaves of Ostrya virginiana, 7 June 2007, L.C. Mejía, det. D.M. Walker (BPI 879596, ex-type culture LCM 155.010 CBS 131398). Perithecia immersed, occasionally causing host tissue to swell, on leaf blades and veins, hypophyllous and epiphyllous, solitary, glossy black, globose to subglobose, (136–)146–166(–179) μm high×(164–)166–168(– 200) μm diam (mean0157×175, S.D. 19, 17, n1 04, n204). Necks central, straight to curved, (236–)325– 432(–438) μm long (mean0361, S.D. 74, n07). Asci ellipsoid to fusiform, apex papillate or rounded, stipe acute, rounded or tapering, apical ring conspicuous, (26–)27–40(–43) ×(13–)14–16(–17) μm (mean 032 × 15, S.D. 5.3, 1, n1017, n2017), ascospores arranged parallel to irregularly uniseriate. Ascospores fusiform with rounded ends, straight to slightly curved, one-septate, median, slightly to not constricted at septum, each cell with 0–2 distinct and several small guttules, (13–)14–15 (–16)×2–3 μm (mean014×2, S.D. 0.8, 0.5, n1029, n2021). Habitat: On overwintered leaves of Ostrya virginiana K. Koch (Betulaceae). Distribution: United States (NY). Notes: This is the only species known to occur on Ostrya in the Betulaceae and may represent a novel host shift to this genus. Habitat: On overwinterd leaves of Prunus nipponica Matsum. (Rosaceae). Ophiognomonia otanii D.M. Walker, sp. nov. Figure 35a–h. Distribution: Japan (Ibaraki prefecture). MycoBank: MB 564101 Notes: Ophiognomonia nipponicae is one of 17 species known from Japan, and one of two species occuring on Etymology: otanii was named after Yoshio Otani to honor his contribution to the taxonomy of the Diaporthales of Japan. Author's personal copy Fungal Diversity Fig. 33 Ophiognomonia nipponicae. a–i. Holotype BPI 882249. Scale bars of perithecia0100 μm. Scale bars of asci and ascospores010 μm Holotypus: JAPAN, NAGANO: Ueda-shi, Sugadaira, Kakuma River Trail, on overwintered leaves of Castanea crenata, 14 April 2010, D.M. Walker (BPI 882234, ex-type culture DMW385.10CBS 131354). Author's personal copy Fungal Diversity Fig. 34 Ophiognomonia ostryae-virginianae. a–f. Holotype BPI 879596. Scale bars of perithecia 0100 μm. Scale bars of asci and ascospores010 μm Perithecia immersed, occasionally causing host tissue to swell and rupture, on leaf petioles, veins, and blades, solitary or aggregated up to two, glossy black, subglobose, (165–)175–323(–330) high × (220–)226–387(–406) μm diam (mean 0242 × 310, S.D. 54, 62, n1 011, n2 011). Necks central to marginal, straight to curved, (482–)508– 1,032(–1,174) μm long (mean0746, S.D. 171.6, n030). Asci fusiform to ellipsoid, apex papillate or rounded, stipe tapering or occasionally papillate to rounded, apical ring conspicuous (24–)25–33(–34) × (13–)14–16(–17) μm Fig. 35 Ophiognomonia otanii. a–b. Holotype BPI 882234; e–f, h. BPI 882237; c–d, g. BPI 882241. Scale bars of perithecia0100 μm. Scale bars of asci and ascospores010 μm Author's personal copy Fungal Diversity (mean028×16, S.D. 2.6, 1.1, n1026, n2027), ascospores arranged parallel or irregularly uniseriate. Ascospores fusiform with rounded ends, mostly straight, rarely slightly curved, one-septate, indistinctly submedian, not constricted at septum, each cell with 0–2 distinct and several small guttules, 14–15(–16) × 2–3 μm (mean 015 × 2, S.D. 0.7, 0.4, n1030, n2030). Habitat: On overwintered leaves of Castanea crenata Siebold & Zucc. (Fagaceae). Distribution: Japan (Gunma, Ibaraki, and Nagano prefectures). Materials examined: JAPAN, GUNMA: Azuma, Azuma Forest Park, on overwintered leaves of Castanea crenata, 12 April 2010, D.M. Walker (BPI 882237, culture DMW 390.10 CBS 131356); IBARAKI: Ushiku Nature Reserve, on overwintered leaves of Castanea crenata, 9 April 2010, D.M. Walker (BPI 882242, culture DMW 401.30CBS 131402); NAGANO: Ueda-shi, Sugadaira, Kakuma River Trail, on overwintered leaves of Castanea crenata, 14 April 2010, D.M. Walker (BPI 882241, culture DMW 397.10CBS 131360). Notes: Ophiognomonia otanii is one of 17 species known from Japan and one of three occuring on Castanea in that country. A distinct submedian septum was observed in ascospores of four species including O. alni-cordatae, O. apiospora, O. gei-montani, and O. otanii. A group of closely related species including O. asiatica, O. kobayashii, O. otanii, and O. sogonovii are specific to Quercus spp. and Castanea spp. within the Fagaceae (Fig. 2). Habitat: On overwintered leaves of Carya sp. Nutt. Carya tomentosa (Lam.) Nutt. (Juglandaceae). Distribution: United States (DC, IL, IN, MD, NC, NJ, PA, TN, VA). Materials examined: UNITED STATES, MARYLAND: Frederick and Carroll Counties, Patapsco State Park, on overwintered leaves of Carya sp., 11 April 2011, D.M. Walker (BPI 882283, culture DMW 5380CBS 131434); MARYLAND: Prince George’s County, Beltsville Agricultural Research Center, on overwintered leaves of Carya sp., 28 April 2011, D.M. Walker (BPI 882290, culture DMW 5510CBS 131367); PENNSYLVANIA: Kennett Square County, vicinity of Philadelphia, near Phillips mushroom farm, Carya tomentosa, 17 April 2004, M.V. Sogonov (HOLOTYPE, BPI 844280, extype culture AR40590CBS 121236). Notes: Ophiognomonia lenticulispora and O. pseudoclavulata are the only species of Ophiognomonia with oval to ellipsoid ascospores. In addition, ascospore appendages were observed in O. balsamiferae, O. gei, O. hiawathae, O. intermedia, O. ischnostyla, O. longispora, O. melanostyla, O. michiganensis, O. nipponicae, O. pseudoclavulata, O. pseudoischnostyla, and O. setacea. For a detailed description of this species, see Sogonov et al. (2008). Ophiognomonia pseudoischnostyla, D.M. Walker, sp. nov. Figure 37a–f. Mycobank: MB 564102 Ophiognomonia padicola (Lib.) M. Monod, Beih. Sydowia 9: 158. 1983. Etymology: pseudoischnostyla refers to the resemblance to O. ischnostyla. Basionym: Sphaeria padicola Lib., Plant. Cryptog. Arduenn. Cent. 2: 149. 1832. ≡ Gnomonia padicola (Lib.) Kleb., Z. Pflkrankh. 18: 137. 1908. 0Ophiognomonia padi Jaap, Verh. bot. Ver. Prov. Brandenburg 47: 87. 1905 fide Monod 1983. Holotypus: RUSSIA, TVER’ PROVINCE: Toropets district, vicinity of v. Bubonitsy, biological research station Chisty Les, on leaves of Betula verrucosa, 31 August 2004, M.V. Sogonov (BPI 877616, ex-type culture CBS 121228). Perithecia immersed, occasionally causing host tissue to swell, on leaf petioles and veins, hypophyllous to epiphyllous, solitary or aggregated up to two, glossy black, globose to subglobose, (205–)222–272(–316) μm high×(227–)280– 397(–537) μm diam (mean0248×335, S.D. 38, 96, n108, n208). Necks central to marginal, mostly straight or curved to sinuous, occasionally swollen at the tip, (509–)557–890(–902) μm long (mean0684, S.D. 117.8, n015). Asci fusiform, apex rounded, acute stipe, apical ring conspicuous, (33–)34–47(–48)×(14–)16–17 μm (mean0 40×16, S.D. 6.3, 1.1, n108, n208), ascospores arranged parallel or irregularly uniseriate, fusiform, ends rounded, straight to slightly curved, one-septate, median to indistinctly Habitat: On overwintered leaves of Prunus padus L. (Rosaceae). Distribution: Europe (Germany, Switzerland). Notes: This is the only species of Ophiognomonia known to occur on Prunus from Europe. For a detailed description of this species, see Monod (1983). Ophiognomonia pseudoclavulata Sogonov, Stud. Mycol. 62: 51. 2008. Figure 36a–g. Author's personal copy Fungal Diversity Fig. 36 Ophiognomonia pseudoclavulata. a–b, e, g. BPI 882283; c–d, f. BPI 882290. Scale bars of perithecia0100 μm. Scale bars of asci and ascospores010 μm sub- or supramedian, slight constriction at septum, appendages subulate to whip-shaped or absent, (13–)14–19(–20)× 2–3 μm (mean017×2, S.D. 2.1, 0.5, n1030, n2028). Habitat: On overwintered leaves of Alnus glutinosa (L.) Gaertn., A. incana (L.) Moench, and Betula pubescens Ehrh. (Betulaceae). Fig. 37 Ophiognomonia pseudoischnostyla. a, c–d, f. BPI 877617; b, e. BPI 877619. Scale bars of perithecia0100 μm. Scale bars of asci and ascospores010 μm Author's personal copy Fungal Diversity Distribution: Europe (Switzerland) and Russia (Novogorod and Tver’ provinces). Habitat: On overwintered leaves of Pterocarya rhoifolia Siebold & Zucc. (Juglandaceae). Materials examined: RUSSIA, NOVOGOROD PROVINCE: Kholm district, Rdeysky Natural Reserve, vicinity of village Fryunino, on overwintered leaves of Alnus glutinosa, 11 June 2005, M.V. Sogonov (BPI 877619, GenBank EU 294900); TVER’ PROVINCE: Toropets district, v. Kosilovo, on overwintered leaves of Alnus glutinosa, 5 June 2005, M.V. Sogonov (BPI 877617, EU 254907); TVER’ PROVINCE: Toropets district, vicinity of v. Bubonitsy, biological research station Chisty Les, leaves of Alnus glutinosa, 14 June 2005, M.V. Sogonov (BPI 877618, GenBank EU 254908). SWITZERLAND: Wallis, Mörel, on overwintered leaves of Alnus incana, 28 May 2005, M.V. Sogonov (BPI 877620, GenBank EU 254898). Distribution: Japan (Nagano prefecture). Notes: This species is morphologically similar to O. ischnostyla, however, O. ischnostyla occurs on Carpinus spp. and Corylus spp., whereas O. pseudoischnostyla occurs on Alnus spp. and Betula spp. Ascospore appendages were observed in this species and O. balsamiferae, O. gei, O. hiawathae, O. intermedia, O. ischnostyla, O. longispora, O. melanostyla, O. michiganensis, O. nipponicae, O. pseudoclavulata, and O. setacea. Ophiognomonia pterocaryae D.M. Walker, sp. nov. Figure 38a–f. MycoBank: MB 564103 Etymology: pterocaryae refers to the host genus on which the holotype was collected. Holotypus: JAPAN, NAGANO: Ueda-shi, Sugadaira, Kakuma River Trail, on overwintered leaves of Pterocarya rhoifolia, 14 April 2010, D.M. Walker (BPI 882240, ex-type culture DMW 396.30CBS 131359). Perithecia immersed to erumpent, occasionally causing host tissue to swell, on leaf blades, veins, petioles, and rachises, hypophyllous, solitary, loosely aggregated, or clusters up to three, glossy black, subglobose, (206–)212– 312(–313) μm high × (287–)307–423(–424) μm diam (mean0274×353, S.D. 41.6, 49.7, n109, n209). Necks central, marginal, or lateral, straight to curved, (351–)400– 646(–726) μm long (mean0533, S.D. 107.5, n013). Asci clavate to fusiform, apex rounded to papillate, stipe acute to long tapering, (38–)39–59(–68) × (15–)16–17(–18) μm (mean047×17, S.D. 8.5, 1.1, n1016, n2016), ascospores arranged uniseriate to irregularly multiseriate. Ascospores fusiform with rounded ends, straight to slightly curved, oneseptate, median to indistinctly sub- or supramedian, not constricted at septum, (14–)15–18(–19)×3–4 μm (mean0 17×3, S.D. 1.1, 0.3, n1030, n2027). Materials examined: JAPAN, NAGANO: Ueda-shi, Sugadaira, Kakuma River Trail, on overwintered leaves of Pterocarya rhoifolia, 14 April 2010, D.M. Walker (BPI 882219, culture DMW 350.20CBS 131344). Notes: Ophiognomonia pterocaryae is one of 17 species known from Japan, and one of two known to occur on Pterocarya from that country. Of the species on Pterocarya, O. cordicarpa has long filiform ascospores, whereas O. pterocaryae has much shorter fusiform ascospores. Several other species are known to occur on Carya and Juglans in the Juglandaceae, including the pathogens O. leptostyla and O. clavigignenti-juglandacearum. Ophiognomonia quercus-gambellii (M. Monod) D.M. Walker, comb. nov. Figure 39a–h. Basionym: Gnomonia quercus-gambellii M. Monod, Beih. Sydowia 9: 98. 1983. MycoBank: MB 564104 Perithecia immersed, causing host tissue to swell, rupture, and expose bases, on leaf blades and veins, hypophyllous, solitary, glossy black, globose to subglobose, (142–)163–209(–229) μm high×(157–)178–255(–268) μm diam (mean0192×221, S.D. 29, 36, n1010, n2010). Necks central, rarely two necks per base, upright, straight to curved or sinuous, tips often swollen, (229–)331–439(–480) μm long (mean0310, S.D. 85, n013). Asci fusiform to obovoid with rounded apex and stipe, apical ring sometimes conspicuous, (29–)30–44(–46)× (10–)11–15(–16) μm (mean038×12, S.D. 4.7, 1.8, n1021, n2021), ascospores arranged obliquely uniseriate to irregularly multiseriate. Ascospores fusiform with rounded ends, straight to slightly curved, one-septate, median to submedian or supramedian, not constricted or slightly constricted at septum, each cell with several small guttules, (11–)12–14(–15) × (2–)3–4 μm (mean 013 × 3, S.D. 0.9, 0.6, n1030, n2030). Habitat: On overwintered leaves of Quercus gambellii Liebm. and Q. kelloggii Newberry (Fagaceae). Distribution: United States (AZ, OR). Materials examined: UNITED STATES, ARIZONA: Coconino County, North Rim of the Grand Canyon, leaves Author's personal copy Fungal Diversity Fig. 38 Ophiognomonia pterocaryae. a–c, e. BPI 882219; d, f. Holotype BPI 882240. Scale bars of perithecia0100 μm. Scale bars of asci and ascospores010 μm of Quercus gambellii, 18 August 1973, M.E. Barr (Barr 6095 collected as Gnomonia fasciculata, HOLOTYPE of Gnomonia quercus-gambellii, NY); OREGON: Jackson County, McGregor and Casey Park, on overwintered leaves of Quercus kelloggii, 20 May 2010, D.M. Walker (BPI 882202, EPITYPE designated here, ex-epitype culture DMW 117.10CBS 131397). Notes: Ophiognomonia quercus-gambellii, based on Gnomonia quercus-gambellii, was originally collected by M.E. Barr in Fig. 39 Ophiognomonia quercus-gambellii. a, c, d. Epitype BPI 882202; b, e–h. Holotype Barr 6095. Scale bars of perithecia0100 μm. Scale bars of asci and ascospores010 μm Author's personal copy Fungal Diversity 12–15(–16) μm (mean034×13, S.D. 3.3, 1.3, n1025, n20 29), ascospores arranged irregularly multiseriate or parallel. Ascospores narrowly fusiform to fusiform, straight to slightly curved, one-septate, median to indistinctly sub- or supramedian, slightly constricted at septum, each cell with 0–2 distinct guttules, (13–)14–20(–21)×(1–)2–3 μm (mean016× 2, S.D. 2.4, 0.6, n1030, n2030). Arizona, U.S.A. who identified this specimen as Gnomonia fasciculata Fuckel (Barr 1978). A specimen was collected and culture obtained (BPI 882202 0CBS 131397) on Quercus kellogii from Oregon, U.S.A. that is morphologically identical to the type specimen of G. quercus-gambellii (Barr 6095). The Oregon specimen is designated as the epitype. Both O. quercus-gambellii and G. fasciculata occur on Quercus spp. Ophiognomonia quercus-gambellii is one of four species of Ophiognomonia known to occur exclusively on Quercus. Habitat: On overwintered leaves of Fragaria vesca L., Rosa sp. L., and Rubus sp. L. (Rosaceae). Ophiognomonia rosae (Fuckel) Kirschst., Annls mycol. 37 (1/2): 129. 1939. Figure 40a–h. Distribution: Europe (Finland, France, Switzerland) and United States (OR). Basionym: Gnomonia rosae Fuckel, Jb. nassau. Ver. Naturk. 23–24: 122. 1870. ≡ Gnomoniella rosae (Fuckel) Sacc., Syll. Fung. 1: 416. 1882. Materials examined: FRANCE: Veronnes, leaves of Rubus sp., April 2011, A. Gardiennet (BPI 882286, EPITYPE designated here, ex-epitype culture DMW 5430CBS 131365); SWITZERLAND: Rosa sp., 1870, Fuckel, (Fuckel Fungi Rhenani 1790, LECTOTYPE of Sphaeria rosae designated here, FH). UNITED STATES, OREGON: Jackson County, Prospect, River Bridge campground, Upper Rouge River trailhead, on overwintered leaves of Fragaria vesca, D.M. Walker (BPI 882201, culture DMW 108.20CBS 128442). MycoBank: MB 276702 Perithecia immersed, occasionally causing host tissue to swell, on leaf blades and veins, hypophyllous, solitary, glossy black, subglobose, (249–)296–312(–336) μm high× (247–)300–389(–442) μm diam (mean0298×338, S.D. 32, 77, n105, n205). Necks central, straight to curved, (245–) 430–1,451(–1,784) μm long (mean0611, S.D. 223.1, n0 10). Asci fusiform, apex papillate or rounded, stipe long tapering, apical ring conspicuous, (26–)29–38(–40)×(11–) Notes: This species is one of nine that occur on hosts in the Rosaceae, and one of eight that occur on multiple genera in this host family. Ophiognomonia rosae has long perithecial necks relative to many other species of Ophiognomonia. Fig. 40 Ophiognomonia rosae. a–c. h. Holotype Fuckel Fungi Rehnani 1790; d–g. Epitype BPI 882286. Scale bars of perithecia0100 μm. Scale bars of asci and ascospores010 μm Author's personal copy Fungal Diversity Ophiognomonia rubi-idaei (M. Monod) Sogonov, Stud. Mycol. 62: 64. 2008. Figure 41a–g. Basionym: Gnomonia rubi-idaei M. Monod, Beih. Sydowia 9: 106. 1983. MycoBank: MB 512190 Perithecia immersed, occasionally causing host tissue to swell, on leaf blades and veins, hypophyllous, solitary, glossy black, subglobose, (325–)373–520(–521) μm high×(447–)483–686 (–719) μm diam (mean0430×588, S.D. 77, 105, n107, n20 7). Necks central to lateral, straight to curved, (835–)883– 1,973(–2,054) μm long (mean01,460, S.D. 521, n06). Asci fusiform, narrow, apex rounded or papillate, stipe long tapering, apical ring conspicuous, (27–)28–48(–49)×(7–)8–14(– 17) μm (mean038×10, S.D. 7.1, 2.6, n1024, n2021), ascospores arranged regularly to irregularly parallel or multiseriate. Ascospores narrowly fusiform with rounded ends, straight to slightly curved, one-septate, median to submedian, not constricted at septum, (12–)13–16(–17)×2 μm (mean015× 2, S.D. 1.1, 0, n1030, n2025). sp., 13 May 2006, M.V. Sogonov (BPI 877559B, GenBank EU 254939); BRITISH COLUMBIA: Victoria Island, Route 14, on overwintered leaves of Rubus spectabilis, 10 May 2006, M.V. Sogonov (BPI 877638, GenBank EU 254938). SWITZERLAND: on overwintered leaves of Rubus idaeus, 21 May 2005, M.V. Sogonov (BPI 877637, GenBank EU 254937). Notes: This species is one of nine that occur on hosts in the Rosaceae, and the only species of Ophiognomonia known to occur exclusively on Rubus. This species has the second longest perithecial neck length. Only O. apiospora has a longer perithecial neck in the genus Ophiognomonia. Ophiognomonia sassafras (Ellis & Everh.) M. Monod, Beih. Sydowia 9: 157. 1983. Figure 42a–j. Basionym: Gnomonia sassafras Ellis & Everh., Bull. Torrey bot. Club 10(7): 98. 1883. ≡ Pleuroceras sassafras (Ellis & Everh.) M.E. Barr, Mycol. Mem. 7: 122. 1978. MycoBank: MB 108295 Habitat: On overwintered leaves of Rubus idaeus L., Rubus sp. L., and R. spectabilis Pursh. (Rosaceae). Distribution: Canada (British Columbia) and Europe (Switzerland). Materials examined: CANADA, BRITISH COLUMBIA: Manning Provincial Park, on overwintered leaves of Rubus Perithecia immersed, occasionally causing host tissue to swell and rupture, on leaf blades and veins, hypophyllous or epiphyllous, solitary or loosely grouped, glossy black, globose to subglobose, (216–)217–278(–290) μm high× (279–)287–333(–345) μm diam (mean0249×279, S.D. 26, 90.8, n1011, n2012). Necks central to marginal, straight to slightly sinuous, (520–)543–950(–1,058) μm long (mean0 Fig. 41 Ophiognomonia rubi-idaei. a, f. BPI 877559B; b–c, e, g. BPI 877638; d. BPI 877637;. Scale bars of perithecia0100 μm. Scale bars of asci and ascospores010 μm Author's personal copy Fungal Diversity Fig. 42 Ophiognomonia sassafras. a–c, i. Holotype Ellis and Everhart 1684; d–e, g–h. BPI 882282; f, j. Epitype BPI 882285. Scale bars of perithecia0100 μm. Scale bars of asci and ascospores010 μm 776, S.D. 147, n022). Asci narrowly fusiform, apex rounded, stipe rounded or tapering, apical ring conspicuous, (59–) 62–68(–70)×(4–)5–7 μm (mean066×6, S.D. 3.2, 1.2, n10 11, n2 011), ascospores arranged obliquely parallel. Ascospores clavately filiform to sinuous, rounded ends, one-septate, supramedian, not constricted at septum, basal cell narrower than distal cell, several small guttules, (42–) 43–48(–52)×1–2 μm (mean044×2, S.D. 8.6, 0.5, n1030, n2030). Habitat: On overwintered leaves of Sassafras albidum (Nutt.) Nees and S. officinale Siebold (Lauraceae). Distribution: United States (MD, OH, WV). Materials examined: UNITED STATES, MARYLAND: Prince George’s County, Beltsville Agricultural Research Center, on overwintered leaves of Sassafras albidum, 25 April 2010, D.M. Walker (BPI 882282, culture DMW 537); MARYLAND: Prince George’s County, Beltsville Agricultural Research Center, on overwintered leaves of Sassafras albidum, 25 April 2010, D.M. Walker (BPI 882285, EPITYPE designated here, ex-epitype culture DMW 5420CBS 131366); OHIO: Fairfield County, fallen leaves of Sassafras officinale, May 1883, Kellerman (NY 00921946, HOLOTYPE of Gnomonia sassafras); WEST VIRGINIA: Pendleton County, Franklin, on overwintered leaves of Sassafras albidum, 2 April 2010, coll. C.M. Milensky, det. D.M. Walker (BPI 882284, culture DMW 5410CBS 131435). Author's personal copy Fungal Diversity Notes: Ophiognomonia sassafras is the only species of Gnomoniaceae known to occur on Sassafras in the Lauraceae and may represent a shift to a novel host family. The species O. cordicarpa, O. longispora, O. melanostyla, and O. sassafras share elongated filiform ascospores and form a clade of closely related species (Fig. 3). Ophiognomonia setacea (Pers.: Fr.) Sogonov, Stud. Mycol. 62: 64. 2008. Figure 43a–f. Basionym: Sphaeria setacea Pers.: Fr., Syn. Method. Fung. 62. 1801 : Syst. Mycol. 2: 517. 1823. ≡ Gnomonia setacea (Pers.: Fr.) Ces. & De Not., Comment. Soc. Crittog. Ital. 1: 232. 1863. Habitat: On overwintered leaves of Acer sp., Castanea dentata L., Castanea sp., Corylus sp., Fagus sp., Platanus sp., Quercus acutissima Carruth., Q. alba L., Q. bicolor Willd., Q. cerris L., Q. macrocarpa Michx, Q. montana Willd., Q. palustris Münchh., Q. phellos L., Q. pubescens Willd., Q. robur L., and Quercus sp. (Betulaceae, Fagaceae, Platanaceae, Sapindaceae). acutissima, 5 April 2010, D.M. Walker (BPI 882212, culture DMW 333.20CBS 131339); IBARAKI: Ushiku, Ushiku nature reserve, on overwintered leaves of Quercus acutissima, 9 April 2010, D.M. Walker (BPI 882223, culture DMW 358.4). UNITED STATES, MICHIGAN: Sanilac County, Lakeport campground, on overwintered leaves of Quercus sp., 27 May 2010, D.M. Walker (BPI 882275, culture DMW 510.1); NEW JERSEY: Middlesex County, New Brunswick, Kilmer reserve, on overwintered leaves of Quercus palustris, 24 April 2009, D.M. Walker (BPI 882204, culture DMW 289.1); Notes: This is the only globally distributed species found in most temperate parts of the world. Ophiognomonia setacea and O. michiganensis are the only species of Ophiognomonia that occur on several different host plant families or orders. For a detailed description of this species, see Sogonov et al. (2008). Ophiognomonia sogonovii D.M. Walker, sp. nov. Figure 44a–i. MycoBank: MB 564105 Distribution: Canada (Ontario), Europe (Austria, Bulgaria, Germany, Italy, Montenegro, Sweden, Switzerland), Japan (Ibaraki prefecture), and United States (LA, MD, MI, NJ, NY, OH, PA, TN, VA, WV). Etymology: sogonovii was named after Mikhail Sogonov to honor his contribution to the taxonomy of the Gnomoniaceae. Materials examined: JAPAN, IBARAKI: Tsukuba City, Botanical Garden, on overwintered leaves of Quercus Holotypus: JAPAN, IBARAKI: Tsukuba City, West side of Mt. Tsukuba, on overwintered leaves of Quercus serrata, 5 Fig. 43 Ophiognomonia setacea. a, d. BPI 882275; b. BPI 882204; c, e, f. BPI 882223. Scale bars of perithecia0100 μm. Scale bars of asci and ascospores010 μm Author's personal copy Fungal Diversity Fig. 44 Ophiognomonia sogonovii. a–e. BPI 882213; f–i. BPI 882221. Scale bars of perithecia0100 μm. Scale bars of asci and ascospores010 μm April 2010, D.M. Walker (BPI 882214, ex-type culture DMW 337.10CBS 131341). Perithecia immersed, on leaf petioles, veins, and blades, solitary or aggregated up to two, glossy black, subglobose, (166–)188–294(–335) μm high×(204–)243–397(–498) μm diam (mean0224×322, S.D. 50.7, 81.2, n1012, n2011). Necks central to marginal, mostly straight or slightly curved, (513–)543–949(–1,172) μm long (mean0724, S.D. 184.5, n013). Asci fusiform to ellipsoid, apex papillate or rounded, stipe tapering, apical ring large, conspicuous (22–)23–38(–39)× (11–)12–19(–20) μm (mean032×15, S.D. 4.4, 2.4, n1028, n2028), ascospores arranged irregularly uniseriate or multiseriate. Ascospores fusiform with rounded ends, straight to slightly curved, one-septate, distinctly submedian or supramedian, not constricted or slightly constricted at septum, each cell with 0–2 distinct or several small guttules, (12–)13–16(–17)×(2–)3– 4 μm (mean014×3, S.D. 1.4, 0.6, n1030, n2030). Habitat: On overwintered leaves of Quercus mongolica Fisch. ex Turcz., Q. mongolica Fisch. ex Turcz., var. grosseserrata (Blume) Rehder & E.H. Wilson, and Q. serrata Murray (Fagaceae). 882213, cultures DMW 336.1, DMW336.30CBS 131340); NAGANO: Ueda-shi, Sugadaira, Arboretum at Sugadaira Montane Research Center, on overwintered leaves of Quercus mongolica var. grosseserrata, 13 April 2010, D.M. Walker (BPI 882221, culture DMW 353.10CBS 131661). RUSSIA, PRIMORSKY TERRITORY: Russky Island, on dead leaves of Quercus mongolica, 25 May 2003, L.N. Vasilyeva (BPI 872323, culture CBS 121914). Notes: This is one of four species of Ophiognomonia known to occur exclusively on Quercus. A group of closely related species including O. asiatica, O. kobayashii, O. otanii, and O. sogonovii are specific to Quercus spp. and Castanea spp. within the Fagaceae (Fig. 2). Ophiognomonia trientensis (M. Monod) Sogonov, Stud. Mycol. 62: 64. 2008. Figure 45a–g. Basionym: Gnomonia trientensis M. Monod, Beih. Sydowia 9: 90. 1983. MycoBank: MB 512192 Distribution: Japan (Ibaraki and Nagano prefectures) and Russia (Primorsky Territory). Materials examined: JAPAN, IBARAKI: Tsukuba City, West side of Mt. Tsukuba, on overwintered leaves of Quercus mongolica, 5 April 2010, D.M. Walker (BPI Perithecia immersed, occasionally causing host tissue to swell, on leaf blades and veins, hypophyllous and epiphyllous, solitary or aggregated up to two, glossy black to cream, subglobose, (134–)136–255(–264) μm high×(203–)213– 364(–386) μm diam (mean0198×288, S.D. 62, 71.3, n10 Author's personal copy Fungal Diversity Fig. 45 Ophiognomonia trientensis. a, c. BPI 877673; b, d–g. BPI 877672. Scale bars of perithecia0100 μm. Scale bars of asci and ascospores010 μm 6, n2 08). Necks central, straight, curved, or contorted, (302–)326–1,019(–1,073) μm long (mean0597, S.D. 236, n 021). Asci ellipsoid to fusiform, apex rounded, stipe rounded to acute, (33–)35–41(–44) × (7–)8–10(–11) μm (mean037×9, S.D. 3.9, 1.4, n108, n208), ascospores irregularly uniseriate, biseriate, overlapping. Ascospores oval to broadly fusiform with rounded ends, straight, one-septate, median to sub- or supramedian, not constricted at septum, each cell with two large and several small guttules, 9–10×3–4 μm (mean010×3, S.D. 0.5, 0.3, n1025, n2020). Alnus viridis, 16 May 2006, M.V. Sogonov (BPI 877674, GenBank EU 254985). Notes: Only O. gardiennetii and O. trientensis are known to occur exclusively on Alnus from the U.S. Morphologically these species are very similar and can only be distinguished by DNA sequence data. In addition, they form a clade of closely related species with the butternut pathogen O. clavigignenti-juglandacearum (Fig. 4). Ophiognomonia tucumanensis L.C. Mejía & D.M. Walker, sp. nov. Figure 46a–g. Habitat: On overwintered leaves of Alnus tenuifolia Nutt. and A. viridis (Chaix) DC. (Betulaceae). MycoBank: MB 564106 Distribution: Canada (British Columbia), Europe (Switzerland), and United States (WA). Etymology: tucumanensis refers to the province of Tucuman where the holotype was collected. Materials examined: CANADA, BRITISH COLUMBIA: Hope, on overwintered leaves of Alnus tenuifolia, 13 May 2006, M.V. Sogonov (BPI 877672, GenBank EU 254986); BRITISH COLUMBIA: Manning Provincial Park, Engineers Trail, on overwintered leaves of Alnus viridis, 13 May 2006, M.V. Sogonov (BPI 877673, GenBank EU 254987). UNITED STATES, ALASKA: Kenai Peninsula County, In between Augustine Island, Shaw Island, and Kamishak Bay, on overwintered leaves of Alnus sp., 21 June 2011, D.M. Walker (BPI 882638, DMW 554 0CBS 131604); WASHINGTON: King County, Mount Baker-Snoqualmie National Forest, Snoqualmie Ranger District, near exit 42 on highway US 90, on overwintered but still attached leaves of Holotypus: ARGENTINA, TUCUMAN: on dead leaves of Alnus acuminata, 20 April 2011, A.Y. Rossman, det. D.M. Walker (BPI 882288, ex-type culture DMW 549 0CBS 131364). Perithecia immersed to erumpent, causing host tissue to swell, on leaf blades, veins, and petioles, hypophyllous and epiphyllous, solitary or loosely aggregated up to four, glossy black, globose to subglobose, (198–)203– 277(–285) μm high × (191–)202–296(–320) μm diam (mean 0238 × 257, S.D. 28.2, 40.3, n1 010, n2 010). Necks central to marginal, straight, curved, or slightly sinuous, neck base occasionally disc shaped, (298–)436– 1,056(–1,059) μm long (mean0756, S.D. 213, n024). Asci ellipsoid to fusiform with rounded apex, stipe acute Author's personal copy Fungal Diversity Fig. 46 Ophiognomonia tucumanensis. a–d, f. Holotype BPI 882288; e, g. BPI 879565. Scale bars of perithecia0100 μm. Scale bars of asci and ascospores010 μm or short tapering, apical ring sometimes conspicuous, (21–)22–29(–32) × (11–)12–16(–17) μm (mean 025 × 14, S.D. 2.6, 1.4, n1026, n2025), ascospores arranged irregularly uniseriate to multiseriate. Ascospores fusiform with rounded ends, straight to slightly curved, oneseptate, median to indistinctly sub- or supramedian, slightly to not constricted at septum, each cell with 0–2 large and several small guttules, (9–)10–12(–13)×2–3(– 4) μm (mean012×3, S.D. 1.2, 0.4, n1030, n2030). bugabensis has larger ascospores and shorter perithecial necks than O. tucumanensis. Ophiognomonia vasiljevae Sogonov, Stud. Mycol. 62: 53. 2008. Habitat: On overwintered leaves of Juglans nigra L. and Juglans sp. L. (Juglandaceae). Distribution: United States (MD, TN, VA). Habitat: On dead leaves of Alnus acuminata Kunth (Betulaceae). Distribution: Argentina (Tucuman). Materials examined: ARGENTINA, TUCUMAN: Villa Nougues, dead leaves of Alnus acuminata, 16 November 2008, L.C. Mejía, det. D.M. Walker (BPI 879565, culture LCM 622.010CBS 131368). Notes: Ophiognomonia tucumanensis is the only species of Gnomoniaceae known from South America on Alnus acuminata. This plant host occurs in montane cloud forests from Mexico to the Andes. Ophiognomonia tucumanensis represents the southernmost distribution of the Gnomoniaceae. Only O. bugabensis and O. tucumanensis are known to occur on Alnus acuminata. These species can be distinguished by geographic location. In addition, O. Materials examined: UNITED STATES, MARYLAND: Frederick and Carroll Counties, Patapsco State Park, on overwintered leaves of Juglans sp., 11 April 2011, D.M. Walker (BPI 882289, culture DMW 5500CBS 131436); TENNESSEE: Blount County, Great Smoky Mountains National Park, along loop near Methodist Church, on leaves of Juglans nigra, 24 May 2006, M.V. Sogonov (HOLOTYPE, BPI 877671, ex-type culture CBS 121253); VIRGINIA: Fairfax County, Burke, Zion Rd. and Guinea Rd., on leaves of Juglans nigra, 1 June 2009, M.V. Sogonov (BPI 882206, culture DMW 303.30CBS 128353). Notes: This is one of three species that occur on Juglans. Several other species are known to occur on Carya and Juglans in the Juglandaceae including the pathogens O. leptostyla and O. clavigignenti-juglandacearum. For a detailed description of this species, see Sogonov et al. (2008). Author's personal copy Fungal Diversity Synoptic key to species in Ophiognomonia Perithecia 1. Average Height 100–200 200–300 300–400 400–500 μm . . μm . . μm . . μm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 12, 14, 16, 18, 19, 26, 31, 34, 37, . . . . . . . 2, 4, 6, 8, 9, 10, 13, 15, 17, 20, 21, 22, 23, 24, 27, 29, 30, 32, 35, 36, 38, 40, 42, 44, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 5, 11, 25, 28, 45, ...................................................................... 43 41 33 39 2. Average Diameter 100–200 200–300 300–400 400–500 500–600 600–700 700–800 μm . . μm . . μm . . μm . . μm . . μm . . μm . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. . . . . . . . . . . . . . . .. .. .. .. .. .. .. . . . . . . . . . . . . . . .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14, 18, 26, 31 . . . . . . . . . . . . . . . . . . .1, 2, 9, 12, 13, 15, 16, 19, 20, 22, 24, 34, 37, 40, 43, 44 . . . . . . . . . . . . . . . . . . 4, 6, 10, 11, 17, 21, 23, 27, 29, 30, 32, 35, 36, 38, 42, 41 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5, 8, 25, 28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39, 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ...........................................................3 100–200 μm . . . . 200–300 μm . . . . 300–400 μm . . . . 400–500 μm . . . . 500–600 μm . . . . 600–700 μm . . . . 700–800 μm . . . . 800–900 μm . . . . 900–1,000 μm . . 1,000–1,100 μm . 1,100–1,200 μm . 1,400–1,500 μm . 2,200–2,300 μm . .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . Perithecial Neck 1. Average Length . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . 34 ..................1 11, 12, 13, 19, 25, 31, 37 . . . . . 6, 9, 16, 18, 20, 26 . . . . . . 13, 17, 24, 36, 43 . . . 15, 28, 35, 38, 45, 41 . 4, 21, 22, 32, 40, 42, 44 . . . . . . . . . . . . . . . . . 29 . . . . . . . . . . .5, 8, 27, 33 . . . . . . . . . . . . . . . 2, 23 . . . . . . . . . . . . . . . . . 30 . . . . . . . . . . . . . . 10, 39 ..................3 Ascospores 1. Shape filiform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8, 21, 23, 40, 33 fusiform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 2, 3, 4, 5, 9, 10, 11, 12, 13, 15, 16, 17, 18, 20, 22, 24, 26, 27, 28, 30, 31, 32, 35, 36, 37, 38, 39, 42, 44, 45, 41 broadly fusiform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 25, 43 broadly ellipsoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 oval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14, 19 lenticular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2. Septation aseptate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 one-septate . . . . . . . . . . . . . . . . . . . 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 33, 41 Author's personal copy Fungal Diversity 3. Location of Septation submedian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 3, 10, 11, 24, 32, 42 median . . . 2, 4, 5, 14, 15, 16, 17, 18, 19, 20, 22, 25, 26, 27, 28, 30, 31, 34, 35, 36, 37, 38, 39, 43, 44, 45, 33, 41 supramedian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 8, 9, 12, 13, 21, 23, 40, 42 4. Appendages present . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5, 10, 13, 15, 16, 21, 23, 24, 30, 34, 35, 41 absent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1, 2, 3, 4, 6, 8, 9, 11, 12, 14, 17, 18, 19, 20, 22, 25, 26, 27, 28, 29, 31, 32, 36, 37, 38, 39, 40, 42, 43, 44, 45, 33 5. Average Length 5–10 μm . 10–15 μm. 15–20 μm. 20–25 μm. 25–30 μm. 35–40 μm. 45–50 μm. 60–65 μm. . . . . . . . . .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19, 34, 43 . . . . . . . . . . . . . . . . . . 2, 4, 9, 11, 13, 14, 15, 17, 18, 20, 22, 24, 26, 27, 29, 31, 37, 44, 41 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5, 6, 10, 12, 16, 30, 32, 35, 36, 38, 39, 42, 45 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 28 ...................................................................3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21, 23, 25, 40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ...................................................................8 6. Average Width 0–1 1–2 2–3 3–4 4–5 5–6 6–7 μm μm μm μm μm μm μm .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8, 21, 23, 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10, 30, 39, 40, 41 . . . . . . . . . . . . 2, 4, 5, 9, 11, 12, 13, 15, 16, 17, 18, 19, 20, 22, 24, 26, 27, 31, 32, 34, 35, 38, 44, 45 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 14, 28, 36, 37, 42, 43 ..........................................................................6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Host Plant Alnus acuminata . . . . . . Alnus cordata . . . . . . . . Alnus firma. . . . . . . . . . Alnus nepalensis . . . . . . Alnus serrulata . . . . . . . Alnus spp. . . . . . . . . . . Betula lutea . . . . . . . . . Betula maximowicziana . Betula nana . . . . . . . . . Betula pubescens. . . . . . Betula spp. . . . . . . . . . Carpinus americana . . . Carpinus betulus . . . . . . Carpinus spp. . . . . . . . Carya spp. . . . . . . . . . . Castanea crenata . . . . . Castanea spp. . . . . . . . Corylus avellana . . . . . . Fragaria vesca . . . . . . . Geum pyrenaicum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 44 .................1 . . . . . . . . . . . . . . . . 27 .................3 .................9 2, 14, 15, 24, 28, 35, 43 . . . . . . . . . . . . . . . . 13 . . . . . . . . . . . . . . . . 22 . . . . . . . . . . . . . . . . 29 . . . . . . . . . . . . . . . . 35 . . . . . . . . . . . . . 15, 24 . . . . . . . . . . . . . . . . 24 . . . . . . . . . . . . . . . . 16 . . . . . . . . . . . . . . . . 26 . . . . . . . . . . . . . . . . 25 . . . . . . . . . . . . . . . . 18 . . . . . . . . . . . . . . . . 41 . . . . . . . . . . . . . . . . 16 . . . . . . . . . . . . . 10, 38 . . . . . . . . . . . . . . . . 10 Author's personal copy Fungal Diversity Geum spp. . . . . . . . . . . . . . . . . . . . Juglans spp. . . . . . . . . . . . . . . . . . . Ostrya virginiana . . . . . . . . . . . . . . Populus balsamifera . . . . . . . . . . . . Prunus japonica . . . . . . . . . . . . . . . Prunus nipponica . . . . . . . . . . . . . . Prunus padus . . . . . . . . . . . . . . . . . Prunus sp. . . . . . . . . . . . . . . . . . . . Pterocarya rhoifolia . . . . . . . . . . . . Quercus serrata . . . . . . . . . . . . . . . Quercus spp. . . . . . . . . . . . . . . . . . Rosa sp. . . . . . . . . . . . . . . . . . . . . Rubus sp. . . . . . . . . . . . . . . . . . . . . Sassafras spp. . . . . . . . . . . . . . . . . Tilia spp. . . . . . . . . . . . . . . . . . . . . Tilia maximowicziana . . . . . . . . . . . Only Known In Anamorphic State . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . 11 . . . . . . 7, 20 . . . . . . . . 31 .........5 . . . . . . . . 17 . . . . . . . . 30 . . . . . . . . 33 . . . . . 19, 24 . . . . . . 8, 36 . . . . . . . . 12 .4, 37, 41, 42 . . . . . . . . 38 . . . . . 38, 39 . . . . . . . . 40 . . . . . . . . 23 . . . . . . . . 21 .........7 Geographic Distribution Argentina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Canada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2, 5, 7, 15, 20, 23, 39, 41, 43 China . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 4 Europe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2, 10, 11, 15, 16, 20, 23, 29, 33, 35, 38, 39, 41, 43 Iran . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Japan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 4, 8, 12, 14, 17, 18, 21, 22, 26, 27, 28, 30, 32, 36, 41, 42 Panama. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Russia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15, 16, 20, 35, 42 United States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2, 7, 9, 13, 15, 19, 20, 23, 24, 25, 31, 34, 37, 38, 40, 41, 43, 45 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. Ophiognomonia alni-cordatae Ophiognomonia alni-viridis Ophiognomonia apiospora Ophiognomonia asiatica Ophiognomonia balsamiferae Ophiognomonia bugabensis Ophiognomonia clavigignenti-juglandacearum Ophiognomonia cordicarpa Ophiognomonia gardiennetii Ophiognomonia gei Ophiognomonia gei-montani Ophiognomonia gunmensis Ophiognomonia hiawathae Ophiognomonia ibarakiensis Ophiognomonia intermedia Ophiognomonia ischnostyla Ophiognomonia japonica Ophiognomonia kobayashii Ophiognomonia lenticulispora Ophiognomonia leptostyla Ophiognomonia longispora Ophiognomonia maximowiczianae Ophiognomonia melanostyla 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia Ophiognomonia michiganensis micromegala monticola multirostrata naganoensis nana nipponicae ostryae-virginianae otanii padicola pseudoclavulata pseudoischnostyla pterocaryae quercus-gambellii rosae rubi-idaei sassafras setacea sogonovii trientensis tucumanensis vasiljevae Author's personal copy Fungal Diversity Excluded or doubtful names in Ophiognomonia: Ophiognomonia capillaris (Penz. & Sacc.) M. Monod, Beih. Sydowia 9: 160. 1983. Basionym: Linospora capillaris Penz. & Sacc., Malpighia 11: 409. 1904. 0 Linospora liquidambaris Teng, Sinensia 4: 384. 1934. Holotypus: JAVA: Tjibodas, on dead leaves of undetermined host (PAD-not examined). Also, reported from China on Liquidambar formosana by Teng (1934). Notes: Monod (1983) examined the type and second specimen of this taxon. Based on his description of ascomata with very long perithecial necks, 1,100–1,600 μm long, and elongated ascospores, 49–58×1–1.2 μm, it is possible that this species belongs in Ophiognomonia, however, it was not encountered during this study. The most well-known species of the Gnomoniaceae on Liquidambar is Ambarignomonia petiolorum, which has ascomata each with a thin, elongated perithecial neck surrounded by a white collar at the base and 9–15×1.5–2 μm, one-septate ascospores, quite unlike the description of O. capillaris (Sogonov et al. 2008). Ophiognomonia caulicola Hohn., Sber. Akad. Wiss. Wien, Math.-naturw. Kl., Abt. 1 117: 1213. 1908. Holotypus: AUSTRIA: bei Ybbsitz, on dead branch of Salvia glutinosa, April 1909, Strasser (FH-not examined). Notes: Monod (1983) examined the depauperate type specimen and provided a partial description of this species. This host is unusual for a member of the Gnomoniaceae and it seems doubtful that this species belongs in that family. It is known only from the type specimen. Ophiognomonia cryptica D. Wilson & M.E. Barr in Wilson, Barr & Faeth, Mycologia 89: 539. 1997. Holotypus: UNITED STATES, ARIZONA: Pinal Co., 100 km E of Phoenix, alt. 1,292 ft, isolated from leaves of Quercus emoryi, December 1994, D. Wilson (BPI 749237). Notes: This species was isolated as an endophyte of Quercus emoryi and produced ascomata in culture. The holotype specimen that consists of five dried cultures labeled with differing numbers was examined superficially. Based on the description, the ascomata have long beaks 400–1,400 μm and filiform ascospores 38–48 × 2–2.5 μm. These characteristics suggest that this species belongs in Ophiognomonia; however, no living material was encountered during this study. Attempts to obtain DNA and sequence data from the dried culture of the holotype specimen produced only that of contaminants. Ophiognomonia elasticae (Koord.) M. Monod, Beih. Sydowia 9: 157. 1983. Basionym: Linospora elasticae Koord., Botan. Untersuch. 193. 1907. Holotypus: JAVA: on leaves of Ficus elastica (not examined). Materials examined: PHILIPPINES: Province Laguna, near Los Banos, Mount Maquiling, on dead leaves of Ficus sp., June 1914, Baker, (Rehm Fungi Malayan 151, BPI 626855). Notes: This species was described from Java, later reported from the Philippines (Teodoro 1937), and recently noted as the dominant fungus isolated from fallen leaves of Ficus pleurocarpa in Australia (Paulus et al. 2007). Monod (1983) examined a non-type specimen and retained it in Ophiognomonia; however, we examined that same specimen and concluded that this species should be placed in the genus Ophiobolous (Walker 1980) because of the lack of an apical ring in the ascus and the multiseptate, filiform ascospores. Cultures of this species from Australia were sequenced but proved to be basidiomycetes. Ophiognomonia helvetica Rehm, Annls mycol. 5(6): 543. 1907. ≡ Pleuroceras helvetica (Rehm) Barr, Mycologia Memoir 7:121. 1978. Holotypus: SWITZERLAND: on dead leaves of Salix herbacea (S-not examined). Notes: Based on a specimen from northern Quebec, Barr (1978) placed this name in Pleuroceras stating that this is a “subarctic-subalpine species”. Monod (1983) examined the type specimen from a high elevation in Switzerland and agreed with this placement, thus we accept this species as P. helvetica. Ophiognomonia langii M. Monod, Sydowia Beih. 9: 156. 1983. Holotypus: NORWAY: Tromso, on dead leaves of Salix reticulate, 19 July 1977, M. Monod (Monod 373 LAU-not examined). Notes: Based on the description in Monod (1983), it seems likely that this arctic-alpine species belongs in Pleuroceras, related to P. helvetica mentioned above. This species has also been reported from Sweden (Eriksson 1992). Author's personal copy Fungal Diversity Ophiognomonia lapponica Vestergr., Bot. Notiser: 125. 1902. Holotypus: SWEDEN: Lapponia, Lulensis, Lulleketje, Randijaure, on leaves of Betula odorata, 19 June 1900, C. Skottsberg and T. Vestergren (Vestergren Micromycetes Rariores Selecti 408, BPI 626912). Notes: Based on an examination of the type specimen, this species could be accepted in the Gnomoniaceae in either Ophiognomonia or Pleuroceras. The basally immersed ascomata are relatively thick-walled, collapsing from the bottom when dry, each with a beak 200–300 × 60– 120 μm. The ascospores are very thin, 65–75 × 1.5– 2 μm, one-septate. No living material of this species was encountered. Ophiognomonia procumbens (Fuckel) Berl., Icon. Fung. 2: 146. 1900. Basionym: Linospora procumbens Fuckel, Jb. nassau. Ver. Naturk. 23–24: 124. 1870. Notes: Monod (1983) examined type material of L. procumbens and suggested that this name is a synonym of Pleuroceras pleurostylum (Auersw.) Barr. This species is known to occur only on Salix in Europe, thus the reports of O. procumbens in California on dead leaves of Quercus agrifolia (French, 1980) are erroneous. Ophiognomonia pseudoplatani (Tubeuf) D.K. Barrett & R.B. Pearce, Trans. Br. mycol. Soc. 76(2): 317. 1981. Basionym: Gnomonia pseudoplatani Tubeuf, Z. PflKrankh. 40: 364. 1930. ≡ Pleuroceras pseudoplatani (Tubeuf) M. Monod, Beih. Sydowia 9: 171. 1983. 0 Asteroma pseudoplatani Butin & Wulf, Sydowia 40: 39. 1987. Holotypus: GERMANY: on fallen leaves of Acer pseudoplatanus (not examined). Notes: Based on the description in Barrett and Pearce (1981), Pleuroceras pseudoplatani occurs in Europe and has ascospores 45–65 × 0.5 × 1.5 μm that resemble in shape but are longer than those of P. tenellum in North America having ascospores 20–36 × 1–2 μm. Ascospores of both species are elongate, slightly narrowing toward one septum with long appendages at each end (Barr 1978), characteristic of many species of Pleuroceras (Monod 1983). This species should be referred to as Pleuroceras pseudoplatani and causes a disease called giant leaf blotch of sycamore as described and illustrated by Barrett and Pearce (1981) and Butin and Wulf (1987). Ophiognomonia sacchari Speg., Revta Fac. Agron. Vet. Univ. nac. La Plata 2(19): 231. 1896. Holotypus: Argentina, Tucuman, on weakened leaves and sheath of Saccharum officinalis (LPS-not examined). Notes: Nothing except the type description and specimen is known about this name but it seems unlikely as a member of the Gnomoniaceae. Ophiognomonia umbelliferarum (M.E. Barr) Lar. N. Vassiljeva, Pyrenomycetes of the Russian Far East, 1. Gnomoniaceae (Vladivostok): 39 (1993). Basionym: Linocarpon umbelliferarum M.E. Barr, Can. J. Bot. 39: 320. 1961. ≡ Plagiosphaera umbelliferarum (M.E. Barr) M.E. Barr, Mycol. Mem. 7: 123. 1978. Holotypus: CANDA: Quebec, on dead stems of Heracleum lanatum, M.E. Barr (Barr 2198A-not examined). Notes: This species is known only from the type specimen. The description and illustration of this species by Barr (1961) show a refractive, globular cluster in the ascal apex characteristic of genera in the Sordariales such as Lasiosphaeria and Neolinocarpon, thus it is unrelated to Ophiognomonia. Walker (1980) considered this species to be similar to Plagiosphaera immersa (≡ Ophiobolus immersa), but could not distinguish them. A GenBank BLAST search of the ITS region (ITS1, 5.8 S rDNA and ITS2) of P. immersa, type of Plagiosphaera, suggests that this genus belongs outside of the Gnomoniaceae, rather it i s d i s t a n t l y re l at e d t o G a e u m a nn o m y c e s i n th e Magnaporthales (on Urtica dioica from Veronnes, France, culture BPI 883014, culture DMW 571 ). Acknowledgements This project was funded by the National Science Foundation Partnerships for Enhancing Expertise in Taxonomy (NSF 03–28364). Additional funding for field work by DMW was received through Rutgers University, New Brunswick, NJ, from the C. Reed Funk Student Award by the Department of Plant Biology and Pathology, also the Backus Award and Everett Lutrell Mentor Student Travel Award from the Mycological Society of America. DMW also thanks Jo Anne Crouch and Adam Bazinet for assistance with data analyses; Kentaro Hosaka, Shinobu Inoue, Takao Kobayashi, Tsuyoshi Hosoya, Yousuke Degawa for hosting a collecting trip to Japan and Yuuri Hirooka for coordinating the visit; Christian Feuillet and Drew Minnis for discussions about nomenclature; Ryan Vo and Tunesha Phipps for technical assistance; and Larissa Vasilyeva, Alain Gardiennet, Yannick Mourgues, Marc Chovillon, Jacques Fornier, and Mikhail Sogonov for collection of fresh specimens for examination. Author's personal copy Fungal Diversity References Aguileta G, Marthey S, Chiapello H, Lebrun M-H, Rodolphe F, Fournier E, Gendrault-Jacquemard A, Giraud T (2008) Assessing the performance of single-copy genes for recovering robust phylogenies. Syst Biol 57(4):613–627. doi:10.1080/10635150802306527 Anderson RL, LaMadeleine LA (1978) The distribution of butternut decline in the eastern United States. Forest Survey Report USDA Forest Service, p. 5 Avise JC, Ball RM Jr (1990) Principles of genealogical concordance in species concepts and biological taxonomy. In: Oxford surveys in evolutionary biology, vol 7. Oxford Univ. Press, Oxford Barr ME (1978) The diaporthales in North America with emphasis on Gnomonia and its segregates. Mycol Mem 7:1–232 Barrett DK, Pearce RB (1981) Giant leaf blotch disease of sycamore (Acer pseudoplatanus) in Britain. Trans Brit Mycol Soc 76:317–345 Behdad E (1991) Plant protection encyclopedia of Iran: pests, diseases, and weeds. Yad-boud Publisher, Isfahan Belisario A, Scotton M, Santori A, Onofri S (2008) Variability in the Italian population of Gnomonia leptostyla, homothallism and resistance of Juglans species to anthracnose. For Pathol 38 (2):129–145. doi:10.1111/j.1439-0329.2007.00540.x Berry FH (1981) Walnut anthracnose forest insect & disease leaflet 85. US Department of Agriculture, Forest Service, Northern Area State & Private Forestry, Broomall Broders KD, Boland GJ (2011) Reclassification of the butternut canker fungus, Sirococcus clavigignenti-juglandacearum, into the genus Ophiognomonia. Fungal Biol 115(1):70–79 Broughton RE, Harrison RG (2003) Nuclear gene genealogies reveal historical, demographic and selective factors associated with speciation in field crickets. Genetics 163(4):1389–1401 Butin H, Wulf A (1987) Asteroma pseudoplatani sp. nov., anamorph of Pleuroceras pseudoplatani (v. Tubeuf) Monod. Sydowia 40:38–41 Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17(4):540–552 Cummings MP, Neel MC, Shaw KL (2008) A genealogical approach to quantifying lineage divergenece. Evolution 62(9):2411–2422. doi:10.1111/j.1558-5646.2008.00442.x Damm U, Crous PW, Fourie PH (2007) Botryosphaeriaceae as potential pathogens of Prunus species in South Africa, with descriptions of Diplodia africana and Lasiodiplodia plurivora sp. nov. Mycologia 99(5):664–680. doi:10.3852/mycologia.99.5.664 Dettman JR, Jacobson DJ, Taylor JW (2003) A multilocus genealogical approach to phylogenetic species recognition in the model eukaryote Neurospora. Evolution 57(12):2703–2720. doi:10.1111/j.00143820.2003.tb01514.x Eriksson OE (1992) The non-lichenized pyrenomycetes of Sweden. Btjtryck, Lund, p 208 Green S (2004) Fungi associated with shoots of silver birch (Betula pendula) in Scotland. Mycol Res 108:1327–1336 Green S, Castlebury LA (2007) Connection of Gnomonia intermedia to Discula betulina and its relationship to other taxa in Gnomoniaceae. Mycol Res 111:62–69 Hillis DM, Dixon MT (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol 66(4):411–453 Hudson RR, Coyne JA (2002) Mathematical consequences of the genealogical species concept. Evolution 56(8):1557–1565. doi:10.1111/j.0014-3820.2002.tb01467.x Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755 Johnson LA, Soltis DE (1998) Assessing congruence: empirical examples from molecular data. In: Soltis DE, Soltis PS, Doyle JJ (eds) Molecular systematics of plants 2. Kluwer, U.S.A., pp 287–348 Juhasova G, Ivanova H, Spisak J (2006) Biology of fungus Gnomonia leptostyla in agro-ecological environments of Slovakia. Mikol Fitopatol 40:538–547 Kellogg EA, Appels R, Mason-Gamer RJ (1996) When genes tell different stories: the diploid genera of Triticeae (Graminae). Syst Bot 21:321–347 Kobayashi T (1970) Taxonomic studies of Japanese Diaporthaceae with special reference to their life-histories. Bulletin of the Government Forest Experiment Station 226:1–242 Letcher PM, Powell MJ, Viusent MC (2008) Rediscovery of an unusual chytridiaceous fungus new to the order Rhizophydiales. Mycologia 100(2):325–334. doi:10.3852/mycologia.100.2.325 Mason-Gamer RJ, Kellogg EA (1996) Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae. Syst Biol 45:524–545 Mejía LC, Castlebury LA, Rossman AY, Sogonov MV, White JF (2008) Phylogenetic placement and taxonomic review of the genus Cryptosporella and its synonyms Ophiovalsa and Winterella (Gnomoniaceae, Diaporthales). Mycol Res 112 (1):23–35 Mejía L, Rossman A, Castlebury L, Yang Z, White J (2011a) Occultocarpon, a new monotypic genus of Gnomoniaceae on Alnus nepalensis from China. Fungal Divers 52(1):99–105. doi:10.1007/s13225-011-0108-y Mejia LC, Rossman AY, Castlebury LA, White JF Jr (2011b) New species, phylogeny, host-associations, and geographic distribution of the genus Cryptosporella (Gnomoniaceae, Diaporthales). Mycologia 103:379–399. doi:10.3852/10-134 Mejía LC, Castlebury LA, Rossman AY, Sogonov MV, White JF (2011c) A systematic account of the genus Plagiostoma (Gnomoniaceae, Diaporthales) based on morphology, hostassociations, and a four-gene phylogeny. Stud Mycol 68(1):211– 235. doi:10.3114/sim.2011.68.10 Monod M (1983) Monographie taxonomique des Gnomoniaceae (Ascomycétes de l’ordre des Diaporthales I). Beihefte zur Sydowia 9:1–315 Neely D, Black WM (1976) Anthracnose of black walnuts in the Midwest. Plant Dis Rep 60:519–521 Nixon KC, Carpenter JM (1993) On outgroups. Cladistics 9:413–426 O’Donnell K, Ward TJ, Geiser DM, Corby Kistler H, Aoki T (2004) Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genet Biol 41(6):600–623 Otani Y (1995) Mycological Flora of Japan. Vol III Ascomycotina No 3 Sordariales, Diaporthales Tokyo, Yokendo LTD, p. 310 Paulus B, Gadek P, Hyde K (2007) Successional patterns of microfungi in fallen leaves of Ficus pleurocarpa (Moraceae) in an Australian tropical rain forest. Biotropica 38:42–51 Pennycook SR (2007) Discula betulae comb. nov., correct name for the anamorph of Gnomonia intermedia. Mycotaxon 101:361–364 Pringle A, Baker DM, Platt JL, Wares JP, Latgé JP, Taylor JW (2005) Cryptic Speciation in the Cosmopolitan and Clonal Human Pathogenic Fungus Aspergillus Fumigatus. Evolution 59 (9):1886–1899. doi:10.1111/j.0014-3820.2005.tb01059.x Raja HA, Miller AN, Shearer CA (2008) Freshwater ascomycetes: Aquapoterium pinicola, a new genus and species of Helotiales (Leotiomycetes) from Florida. Mycologia 100(1):141–148. doi:10.3852/mycologia.100.1.141 Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572– 1574. doi:10.1093/bioinformatics/btg180 Rosenberg NA, Harrison R (2003) The shapes of neutral gene genealogies in two species: probabilities of monophyly, paraphyly, and polyphyly in a coalescent model. Evolution 57(7):1465–1477. doi:10.1554/03-012 Author's personal copy Fungal Diversity Salahi S, Javan Nikkhah M, Jamshidi S (2009) Study on population structure of Gnomonia leptostyla, causal agent of walnut anthracnose in East Azarbaijan province, Iran. New Agric Sci J 3:53–68 Sarver BAJ, Ward TJ, Gale LR, Broz K, Corby Kistler H, Aoki T, Nicholson P, Carter J, O’Donnell K (2011) Novel Fusarium head blight pathogens from Nepal and Louisiana revealed by multilocus genealogical concordance. Fungal Genet Biol 48(12):1096–1107 Schmitt I, Crespo A, Divakar PK, Fankhauser JD, Herman-Sackett E, Kalb K, Nelsen MP, Nelson NA, Rivas-Plata E, Shimp AD, Widhelm T, Lumbsch HT (2009) New primers for promising single-copy genes in fungal phylogenetics and systematics. Persoonia 23:35–40 Sogonov MV, Castlebury LA, Rossman AY, White JF (2007) The type of species of Apiognomonia, Apiognomonia veneta, with its Discula anamorph is distinct from Apiognomonia errabunda. Mycol Res 111:693–709 Sogonov MV, Castlebury LA, Rossman AY, Mejía LC, White JF (2008) Leaf-inhabiting genera of the Gnomoniaceae, Diaporthales. Stud Mycol 62:1–77 Spatafora JW, Sung G-H, Johnson D, Hesse C, O’Rourke B, Serdani M, Spotts R, Lutzoni F, Hofstetter V, Miadlikowska J, Reeb V, Gueidan C, Fraker E, Lumbsch T, Lucking R, Schmitt I, Hosaka K, Aptroot A, Roux C, Miller AN, Geiser DM, Hafellner J, Hestmark G, Arnold AE, Budel B, Rauhut A, Hewitt D, Untereiner WA, Cole MS, Scheidegger C, Schultz M, Sipman H, Schoch CL (2006) A five-gene phylogeny of Pezizomycotina. Mycologia 98(6):1018–1028. doi:10.3852/mycologia.98.6.1018 Sullivan J (1996) Combining data with different distributions of among-site rate variation. Syst Biol 45(3):375–380. doi:10.1093/ sysbio/45.3.375 Swofford DL (2002) PAUP 4.0b10: phylogenetic analysis using parsimony. Sinauer Associates, USA Tajima F (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics 105:437–460 Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56(4):564–577. doi:10.1080/ 10635150701472164 Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31(1):21–32 Teodoro NG (1937) An enumeration of Philippine fungi. Techn Bull Dept Agric Comm Manila 4:1–585 Townsend JP (2007) Profiling phylogenetic informativeness. Syst Biol 56(2):222–231. doi:10.1080/10635150701311362 Townsend JP, Leuenberger C (2011) Taxon sampling and the optimal rates of evolution for phylogenetic inference. Syst Biol. doi:10.1093/ sysbio/syq097 von Höhnel F (1919) Mycologische fragmenta. Ann Mycol 17:114–133 Walker J (1980) Gaeumannomyces, Linocarpon, Ophiobolus and several other genera of scolecospored ascomycetes and Phialophora conidial states, with a note on hyphopodia. Mycotaxon 11:1–129 Walker DM, Castlebury LA, Rossman AY, Sogonov MV, White JF Jr (2010) Systematics of the genus Gnomoniopsis (Gnomoniaceae, Diaporthales) based on a three gene phylogeny, host associations, and morphology. Mycologia 102(6):1479–1496. doi:10.3852/ 10-002 Walker DM, Castlebury LA, Rossman AY, White JF Jr (2012) New molecular markers for fungal phylogenetics: two genes for species-level systematics in the Sordariomycetes (Ascomycota). Mol Phylogenet Evol 64:500–512 Wild AL, Maddison DR (2008) Evaluating nuclear protein-coding genes for phylogenetic utility in beetles. Mol Phylogenet and Evol 48(3):877–891 Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. dissertation, The University of Texas at Austin, USA