Academia.eduAcademia.edu
STUDIES available online at www.studiesinmycology.org IN MYCOLOGY 79: 187–219. Redefining Ceratocystis and allied genera Z.W. de Beer1*,3, T.A. Duong2,3, I. Barnes2, B.D. Wingfield2, and M.J. Wingfield1 1 Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria 0002, South Africa; 2Department of Genetics, Forestry and Agricultural Research Institute (FABI), University of Pretoria, Pretoria 0002, South Africa *Correspondence: Z.W. de Beer. wilhelm.debeer@fabi.up.ac.za 3 These authors contributed equally to this study. Studies in Mycology Abstract: The genus Ceratocystis was established in 1890 and accommodates many important fungi. These include serious plant pathogens, significant insect symbionts and agents of timber degradation that result in substantial economic losses. Virtually since its type was described from sweet potatoes, the taxonomy of Ceratocystis has been confused and vigorously debated. In recent years, particulary during the last two decades, it has become very obvious that this genus includes a wide diversity of very different fungi. These have been roughly lumped together due to their similar morphological structures that have clearly evolved through convergent evolution linked to an insect-associated ecology. As has been true for many other groups of fungi, the emergence of DNA-based sequence data and associated phylogenetic inferences, have made it possible to robustly support very distinct boundaries defined by morphological characters and ecological differences. In this study, DNA-sequence data for three carefully selected gene regions (60S, LSU, MCM7) were generated for 79 species residing in the aggregate genus Ceratocystis sensu lato and these data were subjected to rigorous phylogenetic analyses. The results made it possible to distinguish seven major groups for which generic names have been chosen and descriptions either provided or emended. The emended genera included Ceratocystis sensu stricto, Chalaropsis, Endoconidiophora, Thielaviopsis, and Ambrosiella, while two new genera, Davidsoniella and Huntiella, were described. In total, 30 new combinations have been made. This major revision of the generic boundaries in the Ceratocystidaceae will simplify future treatments and work with an important group of fungi including distantly related species illogically aggregated under a single name. Key words: Ceratocystidaceae, New combinations, Nomenclature, Multigene analyses, Taxonomy. Taxonomic novelties: New genera: Davidsoniella Z.W. de Beer, T.A. Duong & M.J. Wingf., Huntiella Z.W. de Beer, T.A. Duong & M.J. Wingf; New combinations: Chalaropsis ovoidea (Nag Raj & W.B. Kendr.) Z.W. de Beer, T.A. Duong & M.J. Wingf., Ch. populi (Kiffer & Delon) Z.W. de Beer, T.A. Duong & M.J. Wingf., Davidsoniella australis (J. Walker & Kile) Z.W. de Beer, T.A. Duong & M.J. Wingf., D. eucalypti (Z.Q. Yuan & Kile) Z.W. de Beer, T.A. Duong & M.J. Wingf., D. neocaledoniae (Kiffer & Delon) Z.W. de Beer, T.A. Duong & M.J. Wingf., D. virescens (R.W. Davidson) Z.W. de Beer, T.A. Duong & M.J. Wingf., Endoconidiophora douglasii (R.W. Davidson) Z.W. de Beer, T.A. Duong & M.J. Wingf., E. fujiensis (M.J. Wingf., Yamaoka & Marin) Z.W. de Beer, T.A. Duong & M.J. Wingf., E. laricicola (Redfern & Minter) Z.W. de Beer, T.A. Duong & M.J. Wingf., E. pinicola (T.C. Harr. & M.J. Wingf.) Z.W. de Beer, T.A. Duong & M.J. Wingf., E. polonica (Siemaszko) Z.W. de Beer, T.A. Duong & M.J. Wingf., E. resinifera (T.C. Harr. & M.J. Wingf.) Z.W. de Beer, T.A. Duong & M.J. Wingf., E. rufipennis (M.J. Wingf., T.C. Harr. & H. Solheim) Z.W. de Beer, T.A. Duong & M.J. Wingf., Huntiella bhutanensis (M. van Wyk, M.J. Wingf. & T. Kirisits) Z.W. de Beer, T.A. Duong & M.J. Wingf., H. ceramica (R.N. Heath & Jol. Roux) Z.W. de Beer, T.A. Duong & M.J. Wingf., H. chinaeucensis (S.F. Chen, M. van Wyk, M.J. Wingf. & X.D. Zhou) Z.W. de Beer, T.A. Duong & M.J. Wingf., H. cryptoformis (Mbenoun & Jol. Roux) Z.W. de Beer, T.A. Duong & M.J. Wingf., H. decipiens (Kamgan & Jol. Roux) Z.W. de Beer, T.A. Duong & M.J. Wingf., H. inquinans (Tarigan, M. van Wyk & M.J. Wingf.) Z.W. de Beer, T.A. Duong & M.J. Wingf., H. microbasis (Tarigan, M. van Wyk & M.J. Wingf) Z.W. de Beer, T.A. Duong & M.J. Wingf., H. moniliformis (Hedgc.) Z.W. de Beer, T.A. Duong & M.J. Wingf., H. moniliformopsis (Yuan & Mohammed) Z.W. de Beer, T.A. Duong & M.J. Wingf., H. oblonga (R.N. Heath & Jol. Roux) Z.W. de Beer, T.A. Duong & M.J. Wingf., H. omanensis (Al-Subhi, M.J. Wingf., M. van Wyk & Deadman), Z.W. de Beer, T.A. Duong & M.J. Wingf., H. salinaria (Kamgan & Jol. Roux) Z.W. de Beer, T.A. Duong & M.J. Wingf., H. savannae (Kamgan & Jol. Roux) Z.W. de Beer, T.A. Duong & M.J. Wingf., H. sublaevis (M. van Wyk & M.J. Wingf.) Z.W. de Beer, T.A. Duong & M.J. Wingf., H. sumatrana (Tarigan, M. van Wyk & M.J. Wingf.) Z.W. de Beer, T.A. Duong & M.J. Wingf., H. tribiliformis (M. van Wyk & M.J. Wingf.) Z.W. de Beer, T.A. Duong & M.J. Wingf., H. tyalla (Kamgan & Jol. Roux) Z.W. de Beer, T.A. Duong & M.J. Wingf., Thielaviopsis cerberus (Mbenoun, M.J. Wingf. & Jol. Roux) Z.W. de Beer, T.A. Duong & M.J. Wingf. Published online 7 November 2014; http://dx.doi.org/10.1016/j.simyco.2014.10.001. Hard copy: September 2014. INTRODUCTION Ceratocystis was established in 1890 to accommodate C. fimbriata, a pathogen causing black rot of sweet potatoes in the USA (Halsted 1890). The genus now includes many important fungi including important pathogens of plants and the causal agents of sap stain in timber that are symbiotic associates of insects (Fig. 1). These fungi have ascomata with round usually dark bases that are sometimes ornamented. These bases give rise to long necks terminating in ostiolar hyphae and from which ascospores exude in slimy masses (Fig. 2). All species have ascospores surrounded by sheaths, which can be hat-shaped, ellipsoidal or obovoid and that are either evenly or unevenly distributed around the spores (Fig. 3). The asexual states of most species in Ceratocystis are morphologically “chalara”- or “thielaviopsis”-like forms and characterised by simple, tubular conidiogenous cells. These cells, which are phialides, typically taper towards their apices and produce chains of rectangular conidia or in some cases dark barrel-shaped secondary conidia (Fig. 3). Some species produce simple, single-celled or more complex chlamydospores (Fig. 3) that facilitate a soil-borne life-style. Since the time of its first discovery, Ceratocystis has been beset by taxonomic complications and controversy. The first of these emerged with the description of Ophiostoma in 1919 (Sydow & Sydow 1919). It was set up to accommodate several Ceratostomella spp., with O. piliferum as type species and including Ceratostomella moniliformis. Not long thereafter, Melin & Nannfeldt (1934) disposed additional species in the genus, Peer review under responsibility of CBS-KNAW Fungal Biodiversity Centre. Copyright © 2014, CBS-KNAW Fungal Biodiversity Centre. Production and hosting by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/3.0/). 187 DE BEER ET AL. Fig. 1. Disease symptoms of plants infected with species of Ceratocystis s.l. A. Eucalyptus wilt in Uruguay caused by C. fimbriata s.l. B. Dying clove trees infected with C. polychroma in Sulawesi. C. Wilting shoots of Acacia mearnsii in South Africa infected with C. albifundus. D. Ceratocystis wilt of Acacia sp. caused by C. manginecans. E, F. Wilted shoots and damaged stems of Protea cynaroides in South Africa caused by C. albifundus. G. Resin exudation from the stem of A. mearnsii in South Africa caused by C. albifundus. H. Fungal mats of C. albifundus on Acacia exuvialis. I. Vascular streaking caused by C. manginecans after wounding. J. Fungal mats of C. albifundus on A. exuvialis. K. Staining of the wood of Acacia caused by C. albifundus. L. Streaking and stain of mango trees from infections by C. manginecans in Oman. M. Cross section through a Eucalyptus grandis stump showing streaking caused by C. fimbriata s.l. N. Sweet potato with black rot caused by C. fimbriata s. str. O. Rotted cacao pod infected with C. ethacetica (now T. ethacetica). P. Ascomata of C. polonica (now E. polonica) in the gallery of the bark beetle Ips typographus. 188 REDEFINING CERATOCYSTIS www.studiesinmycology.org AND ALLIED GENERA 189 DE BEER ET AL. including the type species of Ceratocystis, C. fimbriata. These studies and others (Bakshi 1951, Moreau 1952) resulted in a long-standing confusion between the two genera. This is largely because the genera have morphologically similar ascomata featuring globose bases and generally long necks from which ascospores exude in slimy masses (Upadhyay 1981). According to Malloch & Blackwell (1993) the basic construction of the ascomata may be the result of an adaptation to insect-associated niches and shows the convergent evolution of fruiting structures that facilitate insect-borne transport of spores to new environments (Malloch & Blackwell 1993). Interestingly, but adding to the confusion between them, species of both Ceratocystis and Ophiostoma have evanescent asci that are seldom seen. Ascospores were confused with conidia when the genera were first discovered. The fact that both genera include species with hatshaped ascospores re-inforced debate over their relationships for many years (Van Wyk et al. 1993). The taxonomic confusion between Ceratocystis and Ophiostoma was finally resolved once DNA sequence data became available to provide phylogenetic insights into their relatedness. Hausner et al. (1993a,b) and Spatafora & Blackwell (1994) provided the first phylogenetic trees showing that these genera are unrelated. A considerable body of evidence has contributed to the current understanding that Ophiostoma resides in the Ophiostomatales in the Sordariomycetidae and that Ceratocystis is accommodated in the Ceratocystidaceae (Microascales) in the Hypocreomycetidae (Reblova et al. 2011, De Beer et al. 2013a). Importantly, resolution of the taxonomic confusion regarding these genera has made it possible to study them independently and thus to better understand their similarities, but also their many very different ecologies (Seifert et al. 2013). Once Ceratocystis was clearly recognised as unrelated to Ophiostoma, an increasingly clear picture emerged of a genus that included species that were morphologically and ecologically very distinct from one another. These differences have been substantially amplified by the discovery of many new and often cryptic species, revealed through DNA-sequence comparisons (Wingfield et al. 1996, Witthuhn et al. 1998, Harrington & Wingfield 1998). For example, perhaps the two best-known species names within Ceratocystis, C. fimbriata and C. moniliformis, are now known to represent complexes of many different species (Van Wyk et al. 2013, Wingfield et al. 2013). Recognition of these complexes has made it possible to interpret their very clear differences. Wingfield et al. (2013) provided the first intensive, phylogenetically based reconsideration of the taxonomy of Ceratocystis. This study included all available sequence data up to 2006 when the study was completed, and it clearly exposed five very different taxonomic groups. These included the species of the C. fimbriata complex, the C. moniliformis complex, and the C. coerulescens complex, as well the Thielaviopsis and Ambrosiella complexes, known only by their asexual states. Importantly, species in these complexes could easily be separated by their morphological and ecological differences. The DNA sequence data used merely reaffirmed the circumscription of the groups. Wingfield et al. (2013) provided substantial evidence that species in Ceratocystis s. l. should be assigned to discrete genera. They argued that this would substantially reduce taxonomic confusion among these very different groups of fungi and importantly, also enhance understanding of their different ecologies. Wingfield et al. (2013) were not able to place all species of Ceratocystis s. l. in discrete complexes. Some, such as C. paradoxa, C. adiposa and C. fagacearum fell away from all clearly defined species groups. In retrospect, it appears that this problem stemmed from a lack of sampling and was resolved by the discovery of additional species that could define complexes based on these isolated phylogenetic branches. Such a pattern has become clearly evident from a recent study of a large collection of isolates that would previously have been identified as C. paradoxa (Mbenoun et al. 2014a). These isolates have now been shown to represent a number of very different but related species that are now recognised as comprising the C. paradoxa complex. It is, therefore, very likely that other complexes will emerge in Ceratocystis s. l., as new species are collected and treated in the future. Ceratocystis s. l., as it is currently defined includes many ecologically important fungi (Fig. 1). For example, most species in the C. fimbriata complex are important and in some cases devastating plant pathogens (Kile 1993, Wingfield et al. 2013). These include C. albifundus, a virulent pathogen of Acacia mearnsii in Africa (Roux & Wingfield 2013), C. cacaofunesta, a pathogen of cacao in South America (Engelbrecht et al. 2007), C. platani, an invasive alien pathogen of Platanus trees in Europe (Gibbs 1981, Ocasio-Morales et al. 2007), and C. manginecans that has devasted mango (Mangifera indica) and Acacia mangium trees in the Middle East and south-east Asia respectively (Van Wyk et al. 2007, Tarigan et al. 2011). Species in the C. coerulescens complex include associates of bark beetles (Coleoptera: Scolytinae) as well as important causal agents of sap-stain in timber (Seifert 1993, Wingfield et al. 1997). The Thielaviopsis complex includes plant pathogens, while the Ambrosiella complex comprise obligate associates of ambrosia beetles (Coleoptera: Scolytinae) (Batra 1967, Kile 1993). Species in the C. moniliformis complex are mostly wound-inhabiting saprobes or mild pathogens, often causing sap stain in timber (Hedgcock 1906, Seifert 1993). The members of the C. paradoxa complex are all pathogens of monocotyledonous plants, including pineapples and palms (Mitchell 1937, Alvarez et al. 2012, Mbenoun et al. 2014a). All available evidence shows that Ceratocystis s. l. represents a suite of morphologically, phylogenetically and ecologically different fungi. There is no reasonable argument for retaining them in a unitary genus, and indeed, doing so would result only in confusion arising from a diminished lack of appreciation of their dramatic differences. Placing them in discrete genera will enhance the perception of opportunities to understand these organisms and, where applicable, to manage or conserve them. It will provide an improved interpretive framework for analysing Fig. 2. Morphological features of the ascomata of species of Ceratocystis s.l. A, B. Ascomata of C. albifundus and C. fimbriata respectively, on woody substrates with masses of ascospores emerging from their necks. C–E. Ascomata showing different morphological features such as light-coloured bases of C. albifundus (CMW4059), pear-shaped ascomatal bases characteristic of C. pirilliformis (CMW6579), ornamented bases and divergent necks of C. cerberus (now T. cerberus) (CMW 36668). F, G. Apices of ascomata showing a range of forms of ostiolar hyphae such as long, divergent ostiolar hyphae of C. ethacetica (CMW 36671) (now T. ethacetica) and short, convergent ostiolar hyphae of C. inquinans (now H. inquinans) (CMW 21106). H, I. Hat-shaped ascospores being released from ostiolar hyphae in C. sumatrana (now H. sumatrana) (CMW 21113) and C. pirilliformis (CMW 6670). J. Bases of ascomata in the C. moniliformis s.l. complex (now Huntiella) with distinct plates at the bases of the ascomatal necks, and (K, L) spine-like ornamentations of H. microbasis (CMW 21117) and H. oblonga (CMW 23803) respectively. M. Digitate ornamentations on the ascomatal bases in species residing in C. paradoxa s.l. (now Thielaviopsis) (CMW 36642). 190 REDEFINING CERATOCYSTIS AND ALLIED GENERA Fig. 3. Sexual and asexual spores in Ceratocystis s.l. A–D. A range of ascospore shapes all with hyaline sheaths and including those that are fusoid [e.g. C. eucalypti (now D. eucalypti), photo from Kile et al. 1996], hat-shaped (e.g. C. fimbriata, CMW 15049), oblong (e.g. C. paradoxa, now T. paradoxa, CMW 36642) and obovoid (e.g. C. laricicola, now E. laricicola, CMW 20928). E–H. Simple tubular conidiophores commonly tapering to their apicies, and found in most species of Ceratocystis s.l. E. Flasked-shaped phialidic conidiophores of T. paradoxa (CMW 36642) releasing obovoid secondary conidia. F. Phialide releasing cylindrical conidia of C. pirilliformis (CMW 6670). G. Chlamydospore of T. basicola (CMW 7068) and H. C. pirilliformis (CMW 6670). I–L. Darkly pigmented, thick-walled aleurioconidia of (I) T. paradoxa (CMW 36642), (J) T. euricoi (CMW 28537), (K) T. punctulata (CMW 26389) and (L) T. ethacetica (CMW 36671). M, N. Cylindrical and barrel-shaped conidia of C. pirilliformis (CMW 6670). O. Oblong secondary conidia of T. ethacetica (CMW 36671). P. Secondary conidia of T. punctulata (CMW 26389). www.studiesinmycology.org 191 DE BEER ET AL. the ecological differences among the species, such as differences in pathogenicity and insect associations, particularly when complete genome sequences become available for these fungi, as they have recently done for C. fimbriata s. str., C. moniliformis s. str. and C. manginecans (Wilken et al. 2013, Van der Nest et al. 2014). Revising Ceratocystis s. l. and providing genera to accommodate the well-defined groups in this aggregate genus must be done in conformity with the principles of the new International Code for algae, fungi and plants (Melbourne Code) adopted at the 18th International Botanical Congress (McNeill et al. 2012). Importantly, this must reflect the One Fungus One Name (1F1N) principles that originally emerged from the Amsterdam Declaration (Hawksworth et al. 2011 ) and subsequent discussions (Hawksworth 2011, Norvell 2011, Wingfield et al. 2012). In this regard, De Beer et al. (2013b) listed six genus names as possible synonyms of Ceratocystis s. l. One of these names belongs to a sexual genus Endoconidiophora, originally described for E. coerulescens (Münch 1907). The five other names were all considered to denote asexual genera under the dual nomenclature system: they included Thielaviopsis (Went 1893, type species T. ethacetica), Chalaropsis (Peyronel 1916, type species Ch. thielavioides), Hughesiella (Batista & Vital 1956, type species Hu. euricoi), Ambrosiella (Von Arx & Hennebert 1965, type species A. xylebori), and Phialophoropsis (Batra 1967, type species Ph. trypodendri). These names are available for new generic circumscriptions accommodating groups currently residing in Ceratocystis s. l. The major aim of this study was to revise the generic boundaries for species currently accommodated in Ceratocystis s. l. This task involved obtaining material from as many species as possible and applying 1F1N principles. Generating the full genome sequences for 19 species including representatives of all the phylogenetic groups in Ceratocystis s. l. provided the opportunity to screen multiple gene regions to address genuslevel questions. In addition, gene regions from the AFTOL project (Lutzoni et al. 2004, Hibbett et al. 2007), the ITS barcoding initiative (Schoch et al. 2012), as well as additional barcoding genes from an ongoing project at CBS (Stielow et al. 2014) were used to design Microascales-specific primers and to select the most appropriate gene regions to clearly resolve generic boundaries for Ceratocystis s. l. freeze-dried in 2 mL Eppendorf tubes. The freeze-dried mycelium was submerged in liquid nitrogen, followed by pulverising the mycelium with a pipette tip. About 10 mg of mycelial “powder” was used for DNA extraction using PrepMan Ultra Sample Preparation reagent (Applied Biosystems, Foster City, California) as described in Duong et al. (2012). Selection of gene regions and primers MATERIALS AND METHODS Ten different gene regions [the nuclear ribosomal DNA large subunit (LSU), the nuclear ribosomal DNA small subunit (SSU), nuclear ribosomal DNA internal transcribed spacer regions (ITS), the 60S ribosomal protein RPL10 (60S), beta-tubulin (BT), translation elongation factor 1-alpha (EF1), translation elongation factor 3-alpha (EF3), mini-chromosome maintenance complex component 7 (MCM7), the RNA polymerase II largest subunit (RPB1), and the RNA polymerase II second largest subunit (RPB2)] were extracted from 19 Ceratocystis draft genome sequences that included species from all the major clades. The genome sequences, of which three have been published (Wilken et al. 2013, Van der Nest et al. 2014), are available at the Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria. Phylogenetic analyses were conducted with all ten gene regions (data not shown). LSU, 60S, and MCM7 were selected as candidate genes for further investigation including all the isolates in the study, based on their level of support at the basal nodes, the ease of amplification and sequencing, and the popularity of their use in studies of other fungal lineages. The ITS region has been widely used in phylogenetic studies to distinguish between species in Ceratocystis. However, due to the recent discovery of multiple ITS forms in certain species of Ceratocystis (Al Adawi et al. 2013, Naidoo et al. 2013), and the fact that gene regions were chosen that were slightly more conserved to resolve the genus level questions, the ITS was intentionally not used in the present study. Primers LR0R and LR5 (Vilgalys & Hester, 1990) were used in PCR amplification and sequencing of LSU. Primers Algr52_412-433_f1 and Algr52_1102_1084_r1 (Stielow et al. 2014) were used for PCR amplification and sequencing of 60S. Based on the sequences obtained from genomes, new primers Cer-MCM7F (ACICGIGTITCIGAYGTNAAGCC) and Cer-MCM7R (TTRGCAACACCAGGRTCACCCAT) were designed and used in PCR amplification and sequencing of MCM7. Cultures PCR and sequencing All cultures used in this study were obtained from the Culture Collection of the Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, South Africa (CMW) and Centraalbureau voor Schimmelcultures, Utrecht, the Netherlands (CBS). Single spore or single hyphal-tip cultures were prepared and maintained on 2 % Malt Extract Agar (MEA). A list of isolates used in this study is presented in Table 1. All PCR reactions were done in a total volume of 25 μL. The reaction mixture consisted of 2.5 μL of 10X PCR reaction buffer, 2.5 mM MgCl2, 200 μM of each dNTP, 0.2 μM of each of the forward and reverse primers for LSU (1 μM of each primer in case of degenerate primers for 60S and MCM7), 1 U FastStart Taq DNA Polymerase (Roche) and 2 μL of genomic DNA solution. The PCR thermal conditions included an initial denaturation at 96 °C for 5 min, followed by 35 cycles of 95 °C for 30 sec, 55 °C for 30 s, and 72 °C for 60 s, and ended with a final extension at 72 °C for 8 min. The annealing temperature was set at 55 °C for all gene regions and all isolates at first. In some cases where the PCR failed or non-specific amplification was observed, we experimented with different annealing DNA extraction Single spore/single hyphal-tip cultures were inoculated in YM broth (2 % malt extract, 0.2 % yeast extract) and incubated at 25 °C with shaking for 2–5 d. Mycelium was harvested and 192 Table 1. Isolates used in the phylogenetic analyses in this study. www.studiesinmycology.org Previous name New name Ambrosiella beaveri Ambrosiella beaveri A. ferruginea A. ferruginea A. hartigii A. hartigii Country USA Host/substrate Collector; collection year Herbarium Specimen1 Culture collection number(s)1 ex-paratype GenBank accession numbers2 60S LSU MCM7 KM495492 KM495315 KM495405 Vitus rotundifolia D. Six; 2005 Germany Fagus sylvatica G. Zimmerman; 1971 – CMW 25522; CBS 460.82 not type KM495493 KM495316 KM495406 Germany Acer sp. – ; 1970 – CMW 25525; CBS 403.82 not type KM495494 KM495317 – – CMW 26179; CBS 121753; DLS 1624 Strain status A. xylebori A. xylebori Ivory Coast Coffea canephora L. Brader; 1961 – CMW 25531; CBS 110.61 ex-isotype KM495495 KM495318 KM495407 Ceratocystis acaciivora Ceratocystis acaciivora Indonesia Acacia mangium M. Tarigan; 2005 PREM 59884 CMW 22563 ex-holotype KM495496 KM495319 KM495408 C. adiposa C. adiposa Japan Saccharum officiarum T. Miyake; 1934 – CMW 2573; CBS 136.34 not type KM495497 KM495320 KM495409 C. albifundus C. albifundus South Africa Acacia mearnsii J. Roux; 1997 – CMW 4068; CBS 128992 not type KM495498 KM495321 KM495410 C. atrox Australia Eucalyptus grandis M.J. Wingfield; 2005 PREM 59012 CMW 19385; CBS 120518 ex-holotype KM495499 KM495322 KM495411 Huntiella bhutanensis Bhutan Picea spinulosa T. Kirisits & D.B. Chhetri; 2001 PREM 57804 CMW 8217; CBS 114289 ex-holotype KM495500 KM495323 KM495412 C. cacaofunesta C. cacaofunesta Ecuador Theobromae cacao T.C. Harrington; 2000 BPI 843731 CMW 14803; CBS 115163; C 1695 original collection KM495501 KM495324 KM495413 C. caryae C. caryae USA Carya ovata J.A. Johnson; 2001 – CMW 14808; CBS 115168; C 1827 original collection KM495502 KM495325 KM495414 C. cerberus Thielaviopsis cerberus Cameroon Elaeis guineensis M. Mbenoun & J. Roux; 2010 PREM 60770 CMW 36668; CBS 130765 ex-holotype KM495503 KM495326 KM495415 C. chinaeucensis H. chinaeucensis China Eucalyptus grandis x E. urophylla M.J. Wingfield & S.F. Chen; 2006 PREM 60735 CMW 24658; CBS 127185 ex-holotype KM495504 KM495327 KM495416 C. coerulescens Endoconidiophora coerulescens Germany Picea abies T. Rohde; 1937 – CMW 26365; CBS 140.37; MUCL 9511; C 313; C 695 not type KM495506 KM495329 KM495418 C. colombiana C. colombiana Colombia Coffea arabica M. Marin; 2000 PREM 59434 CMW 5751; CBS 121792 ex-holotype KM495507 KM495330 KM495419 C. corymbiicola C. corymbiicola Australia Eucalyptus pilularis G. Kamgan Nkuekam; 2008 PREM 60433 CMW 29349; CBS 127216 ex-paratype KM495508 KM495331 KM495420 C. curvata Ecuador Eucalyptus deglupta M.J. Wingfield; 2004 PREM 60154 CMW 22432 ex-paratype KM495509 KM495332 KM495421 H. decipiens South Africa Eucalyptus saligna G. Kamgan Nkuekam & J. Roux; 2008 PREM 60560 CMW 30855; CBS 129736 ex-holotype KM495510 KM495333 KM495422 C. diversiconidia C. diversiconidia Ecuador Terminalia ivorensis M.J. Wingfield; 2004 PREM 60160 CMW 22445; CBS 123013 ex-holotype KM495511 KM495334 KM495423 C. douglasii E. douglasii USA Pseudotsuga taxifolia R.W. Davidson; 1951 BPI 595613 = FP 70703 CMW 26367; CBS 556.97 ex-holotype KM495512 KM495335 KM495424 C. ecuadoriana C. ecuadoriana Ecuador Eucalyptus deglupta M.J. Wingfield; 2004 PREM 60155 CMW 22092; CBS 124020 ex-holotype KM495513 KM495336 KM495425 C. ethacetica T. ethacetica Malaysia Ananas comosus A. Johnson; 1952 PREM 60961 CMW 37775; IMI 50560; MUCL 2170 ex-epitype KM495514 KM495337 KM495426 193 (continued on next page) AND ALLIED GENERA C. curvata C. decipiens REDEFINING CERATOCYSTIS C. atrox C. bhutanensis DE Previous name New name Country Host/substrate Herbarium Specimen1 Culture collection number(s)1 Strain status GenBank accession numbers2 60S LSU MCM7 C. eucalypti Davidsoniella eucalypti Australia Eucalyptus sieberi M.J. Dudzinski; 1989 DAR 70205 CMW 3254; C 639 ex-holotype KM495515 KM495338 KM495427 C. eucalypticola C. eucalypticola South Africa Eucalyptus sp. M. van Wyk & J. Roux; 2002 PREM 60168 CMW 11536; CBS 124016 ex-holotype KM495516 KM495339 KM495428 C. fagacearum C. fagacearum USA Quercus rubra S. Seegmuller; 1991 – CMW 2656; C463 not type KM495518 KM495341 KM495430 C. ficicola C. ficicola Japan Ficus carica Y. Kajitani; 1990 NIAES 20600 CMW 38543; MAFF 625119 ex-holotype KM495519 KM495342 KM495431 C. fimbriata C. fimbriata USA Ipomoea batatas C.F. Andrus; 1937 – CMW 15049; CBS 141.37 not type KM495520 KM495343 KM495432 C. fimbriatomima C. fimbriatomima Venezuela Eucalyptus hybrid M.J. Wingfield; 2006 PREM 59439 CMW 24174; CBS 121786 ex-holotype KM495521 KM495344 KM495433 C. fujiensis E. fujiensis Japan Larix kaempferi M.J. Wingfield & Y. Yamaoka; 1997 PREM 57513 CMW 1955; CBS 100208; JCM 9810 ex-holotype KM495522 KM495345 KM495434 C. harringtonii (= C. populicola) C. harringtonii Netherlands Populus hybrid J. Gremmen; 1978 – CMW 14789; CBS 119.78; C 995 original collection KM495523 KM495346 KM495435 C. inquinans H. inquinans Indonesia Acacia mangium M. Tarigan; 2005 PREM 59866 CMW 21106; CBS 124388 ex-holotype KM495524 KM495347 KM495436 C. laricicola E. laricicola UK Larix decidua D. Redfern; 1983 – CMW 20928; CBS 100207; C 181; Redfern 56-10 ex-paratype KM495525 KM495348 KM495437 C. larium C. larium Indonesia Styrax benzoin M.J. Wingfield; 2007 PREM 60193 CMW 25434; CBS 122512 ex-holotype KM495526 KM495349 – C. major C. adiposa Netherlands Air F.H. van Beyma; 1934 – CMW 3189; CBS 138.34; ATCC 11932; MUCL 9518 ex-holotype KM495527 KM495350 KM495438 C. mangicola C. mangicola Brazil Mangifera indica C.J. Rosetto; 2008 PREM 60185 CMW 28908; CBS 127210 ex-paratype KM495528 KM495351 KM495439 C. manginecans C. manginecans Oman Prosopis cineraria A. Al Adawi; 2005 – CMW 17570; CBS 138185 not type KM495529 KM495352 KM495440 C. mangivora C. mangivora Brazil Mangifera indica C.J. Rosetto; 2001 PREM 60570 CMW 27305; CBS 128702 ex-holotype KM495530 KM495353 KM495441 C. microbasis H. microbasis Indonesia Acacia mangium M. Tarigan; 2005 PREM 59872 CMW 21117 ex-holotype KM495531 KM495354 KM495442 C. moniliformis H. moniliformis South Africa Eucalyptus grandis M. van Wyk; 2002 – CMW 10134; CBS 118127 not type KM495532 KM495355 KM495443 C. moniliformopsis H. moniliformopsis Australia Eucalyptus obliqua Z.Q. Yuan; 2001 DAR 74608 CMW 9986; CBS 109441 ex-holotype KM495533 KM495356 KM495444 C. musarum T. musarum New Zealand Musa sp. T.W. Canter-Visscher; – PREM 60962 CMW 1546; C 907 ex-epitype KM495534 KM495357 KM495445 C. neglecta C. neglecta Colombia Eucalyptus grandis C. Rodas & J. Roux; 2004 PREM 59616 CMW 17808; CBS 121789 ex-holotype KM495535 KM495358 KM495446 C. oblonga H. oblonga South Africa Acacia mearnsii R.N. Heath; 2006 PREM 59792 CMW 23803; CBS 122291 ex-holotype KM495536 KM495359 KM495447 C. obpyriformis C. obpyriformis South Africa Acacia mearnsii R.N. Heath; 2006 PREM 59796 CMW 23808; CBS 122511 ex-holotype KM495537 KM495360 KM495448 C. omanensis H. omanensis Oman Mangifera indica A. Al Adawi & M. Deadman; 2003 – CMW 11056; CBS 118113 original collection KM495538 KM495361 KM495449 C. papillata C. papillata Colombia Citrus x Tangelo hybrid B. Castro; 2001 PREM 59438 CMW 8856; CBS 121793 ex-holotype KM495539 KM495362 KM495450 (continued on next page) ET AL. Collector; collection year BEER 194 Table 1. (Continued) Table 1. (Continued) www.studiesinmycology.org Previous name New name Country Host/substrate Collector; collection year Herbarium Specimen1 Culture collection number(s)1 Strain status GenBank accession numbers2 60S LSU MCM7 C. paradoxa T. paradoxa Cameroon Theobromae cacao M. Mbenoun & J. Roux; 2010 PREM 60766 CMW 36689; CBS 130761 ex-epitype KM495540 KM495363 KM495451 C. pinicola E. pinicola UK Pinus sylvestris J. Gibbs; 1988 DAOM 225447 CMW 29499; CBS 100199; C 488; DAOM 225447 ex-holotype KM495541 KM495364 KM495452 C. pirilliformis C. pirilliformis Australia Eucalyptus nitens M.J. Wingfield; 2000 PREM 57323 CMW 6579; CBS 118128 ex-holotype KM495542 KM495365 KM495453 C. platani C. platani USA Platanus occidentalis T.C. Harrington; 1998 – CMW 14802; CBS 115162; C 1317 original collection KM495543 KM495366 KM495454 C. polonica E. polonica Norway Picea abies H. Solheim; 1990 DAOM 225451 CMW 20930; CBS 100205; C791 ex-neotype KM495544 KM495367 KM495455 C. polychroma C. polychroma Indonesia Syzygium aromaticum E.C.Y. Liew; 2002 PREM 57818 CMW 11424; CBS 115778 ex-holotype KM495545 KM495368 KM495456 South Africa Acacia mearnsii R.N. Heath; 2006 PREM 59788 CMW 23809; CBS 122289 ex-holotype KM495546 KM495369 KM495457 T. punctulata USA Phoenix dactylifera D.E. Bliss; – BPI 596268 CMW 1032; CBS 114.47; MUCL 9526 ex-holotype KM495548 KM495371 KM495459 C. resinifera E. resinifera Norway Picea abies H. Solheim; 1986 DAOM 225449 CMW 20931; CBS 100202; C 662 ex-holotype KM495549 KM495372 KM495460 C. rufipennis E. rufipennis Canada Picea engelmannii H. Solheim; 1992 – CMW 11661 original collection KM495550 KM495373 – C. salinaria H. salinaria South Africa Eucalyptus maculata G. Kamgan Nkuekam; 2007 PREM 60557 CMW 25911; CBS 129733 ex-holotype KM495551 KM495374 KM495461 C. savannae H. savannae South Africa Acacia nigrescens G. Kamgan Nkuekam & J. Roux; 2005 PREM 59423 CMW 17300; CBS 121151 ex-holotype KM495552 KM495375 KM495462 C. smalleyi C. smalleyi USA Carya cordiformis E. Smalley; 1993 BPI 843722 CMW 14800; CBS 114724; C 684 ex-holotype KM495553 KM495376 KM495463 C. sublaevis H. sublaevis Ecuador Terminalia ivorensis M.J. Wingfield; 2004 PREM 60163 CMW 22449; CBS 122517 ex-paratype KM495554 KM495377 KM495464 C. sumatrana H. sumatrana Indonesia Acacia mangium M. Tarigan; 2005 PREM 59868 CMW 21109; CBS 124011 ex-paratype KM495555 KM495378 KM495465 C. tanganyicensis C. tanganyicensis Tanzania Acacia mearnsii R.N. Heath & J. Roux; 2004 – CMW 15999; CBS 122294 ex-paratype KM495556 KM495379 KM495466 C. thulamelensis C. thulamelensis South Africa Colophospermum mopane M. Mbenoun & J. Roux; 2010 PREM 60828 CMW 35972; CBS 131284 ex-holotype KM495557 KM495380 KM495467 C. tribiliformis H. tribiliformis Indonesia Pinus merkusii M.J. Wingfield; 1996 PREM 57827 CMW 13013; CBS 115866 ex-holotype KM495558 KM495381 KM495468 C. tsitsikammensis C. tsitsikammensis South Africa Rapanea melanophloeos G. Kamgan Nkuekam; 2005 PREM 59424 CMW 14276; CBS 121018 ex-holotype KM495559 KM495382 KM495469 C. tyalla H. tyalla Australia Eucalyptus dunnii G. Kamgan Nkuekam & A.J. Carnegie; 2008 – CMW 28932; CBS 128703 ex-holotype KM495560 KM495383 KM495470 C. variospora C. variospora USA Quercus alba J.A. Johnson; 2001 BPI 843737 CMW 20935; CBS 114715; C 1843 ex-paratype KM495561 KM495384 KM495471 C. virescens D. virescens USA Acer saccharum D. Houston; 1987 – CMW 17339; CBS 130772; C 261 not type KM495562 KM495385 KM495472 (continued on next page) 195 AND ALLIED GENERA C. polyconidia REDEFINING CERATOCYSTIS C. polyconidia C. radicicola DE Previous name New name Country Host/substrate Herbarium Specimen1 Culture collection number(s)1 Strain status GenBank accession numbers2 60S LSU MCM7 C. zambeziensis C. zambeziensis South Africa Acacia nigrescens M. Mbenoun & J. Roux; 2010 PREM 60826 CMW 35963; CBS 131282 ex-paratype KM495563 KM495386 KM495473 Chalaropsis sp. 1 Chalaropsis sp. 1 Belgium Populus sp. R. Veldeman; 1975 – CMW 22737; CBS 180.75 not type KM495580 KM495403 KM495490 Chalaropsis sp. 1 Chalaropsis sp. 1 USA Ulmus sp. R.W. Davidson; 1939 – CMW 22738; CBS 130.39; C 1378; MUCL 9540; RWD E-1 not type KM495581 KM495404 KM495491 Graphium fabiforme Graphium fabiforme Madagascar Dead Adansonia rubrostipa J. Roux & M.J. Wingfield; 2007 PREM 60310 CMW 30626; CBS 124921 ex-holotype KM495564 KM495387 KM495474 G. fimbriisporum G. fimbriisporum France Ips typographus gallery, in stump of Picea abies M. Morelet; 1992 PFN 1494 CMW 5605; CBS 870.95; MPFN 281-8 ex-holotype KM495565 KM495388 KM495475 G. laricis G. laricis Austria Synnemata occuring in galleries of the bark beetle Ips cembrae T. Kirisits & P. Baier; 1995 DAOM 229757 CMW 5601; CBS 116194; DAOM 229757; IFFF ICL/MEA/13 ex-holotype KM495566 KM495389 KM495476 G. pseudormiticum G. pseudormiticum South Africa Pinus sp. M.J. Wingfield; 1984 PREM 51539 CMW 503 ex-holotype KM495567 KM495390 KM495477 Huntiella chlamydoformis nom. prov. H. chlamydoformis nom. prov. Cameroon Theobromae cacao M. Mbenoun & J. Roux; 2009 PREM 60837 CMW 36932; CBS 131674 ex-holotype KM495505 KM495328 KM495417 H. pycnanthi nom. prov. H. pycnanthi nom. prov. Cameroon Theobromae cacao M. Mbenoun; 2009 PREM 60835 CMW 36916; CBS 131672 ex-holotype KM495547 KM495370 KM495458 Knoxdaviesia capensis Knoxdaviesia capensis South Africa Protea longifolia M.J. Wingfield; 1984 – CMW 997; CBS 120015 not type KM495568 KM495391 KM495478 K. cecropiae K. cecropiae Costa Rica Cecropia angustifolia L. Kirkendall & J. Hulcr; 2005 PRM 858080 CMW 22991; CCF 3565 ex-holotype KM495569 KM495392 KM495479 K. proteae K. proteae South Africa Protea repens flower infested with insects L.J. Strauss; 1985 PREM 48924 CMW 738; CBS 486.88 ex-holotype KM495570 KM495393 KM495480 K. serotectus K. serotectus South Africa Grow on insect (Cossonus sp.) found in Euphorbia ingens J.A. van der Linde & J. Roux; 2009 PREM 60566 CMW 36767; CBS 129738 ex-holotype KM495571 KM495394 KM495481 K. ubusi K. ubusi South Africa Insect tunnels in Euphorbia tetragona J. Roux; 2010 PREM 60568 CMW 36769; CBS 129742 ex-holotype KM495572 KM495395 KM495482 Thielaviopsis australis D. australis Australia Nothofagus cunninghamii M. Hall; 2001 – CMW 2333 not type KM495573 KM495396 KM495483 T. basicola T. basicola Netherlands Lathyrus odoratus G.A. van Arkel; – – CMW 7068; CBS 413.52 not type KM495574 KM495397 KM495484 T. ceramica H. ceramica Malawi Eucalyptus grandis R.N. Heath & J. Roux; 2004 PREM 59808 CMW 15245; CBS 122299; CMW 15251 ex-holotype KM495575 KM495398 KM495485 T. euricoi T. euricoi Brazil Air E.A.F. da Matta; 1956 URM 640 CMW 28537; CBS 893.70; MUCL 1887; UAMH 1382 ex-holotype KM495517 KM495340 KM495429 T. neocaledoniae D. neocaledoniae New Caledonia Coffea robusta R. Dadant; 1948 – CMW 3270; CBS 149.83; C 694 ex-holotype KM495576 KM495399 KM495486 (continued on next page) ET AL. Collector; collection year BEER 196 Table 1. (Continued) www.studiesinmycology.org 1 ATCC: American Type Culture Collection, Virginia, U.S.A.; BPI: US National Fungus Collections, Systematic Botany and Mycology Laboratory, Maryland, U.S.A.; C: Culture collection of T.C. Harrington, Iowa State University, U.S.A.; CBS: Culture collection of the CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands; CCF: Culture Collection of Fungi, Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic; CMW: Culture collection Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa; DAOM: Plant Research Institute, Department of Agriculture (Mycology), Ottawa, Canada; DAR: New South Wales, Plant Pathology Herbarium, Australia; DLS: Culture collection of D. Six, University of Montana, U.S.A.; FP: Rocky Mountain Forest & Range Experimental Station Herbarium, Fort Collins, Colorado, U.S.A.; IFFF: Culture collection of the Institute of Forest Entomology, Forest Pathology and Forest Protection (IFFF), University of Natural Resources and Applied Life Sciences, Vienna (BOKU), Vienna, Austria; IMI: International Mycological Institute, CABI-Bioscience, Egham, Bakeham Lane, United Kingdom; JCM: Japan Collection of Microorganism, RIKEN BioResource Center, Japan; MAFF: Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki, Japan; MPFN: Culture collection at the Laboratoire de Pathologie Forestiere, INRA, Centre de Recherches de Nancy, 54280 Champenoux, France; MUCL: Universite Catholique de Louvain, Louvain-la-Neuve, Belgium; NIAES: National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, 305-8604, Japan; PREM: National Collection of Fungi, Pretoria, South Africa; PRM: Corda Herbarium, Prague, Czech Republic; Redfern: Culture Collection of D.B. Redfern, Forestry Commission, Northern Research Station, Roslin, Midlothian, UK; RWD: Culture collection of R.W. Davidson, Department of Forest and Wood Sciences, Colorado State University, Fort Collins, Colorado; UAMH: University of Alberta Microfungus Collection and Herbarium, Edmonton, Alberta, Canada; URM: Father Camille Torrend Herbarium-URM (previously University of Recife Herbarium), Department of Mycology, Universidade Federal de Pernambuco, Recife, Brazil. 2 60S: partial 60S ribosomal protein RPL10 gene; LSU: partial nuclear ribosomal DNA large subunit (28S); MCM7: partial mini-chromosome maintenance complex component 7 gene. KM495488 KM495489 KM495401 KM495402 KM495578 KM495579 – – Quercus petraea Lupinus albus Ch. ovoidea Ch. thielavioides T. ovoidea T. Thielavioides Germany Italy H. Kleinhempel; 1987 R. Ciferri; 1937 CMW 22732; CBS 136.88 CMW 22736; CBS 148.37; MUCL 6235 not type not type KM495487 KM495400 KM495577 – Firewood Chalaropsis ovoidea T. ovoidea Netherlands W. Gams; 1976 CMW 22733; CBS 354.76; C 1375 not type MCM7 LSU 60S Herbarium Specimen1 Collector; collection year Host/substrate Country New name Previous name Table 1. (Continued) Culture collection number(s)1 Strain status GenBank accession numbers2 REDEFINING CERATOCYSTIS AND ALLIED GENERA temperatures (between 52 °C and 60 °C) until successful amplification was obtained. Direct sequencing of PCR products was done using BigDye® Terminator v. 3.1 Cycle Sequencing kit (Applied Biosystems) with a 1/16 reaction and at 55 °C annealing temperature for all primers. Sequencing PCR products were precipitated using the sodium acetate and ethanol precipitation protocol, followed by fragment separation using an ABI PRISM® 3100 Genetic Analyzer (Applied Biosystems). Phylogenetic analyses Sequences from different gene regions were aligned using an online version of MAFFT v. 7 (Katoh & Standley 2013). The three gene regions (LSU, 60S and MCM7) were combined and analysed as a single dataset. Each of the gene regions was also analysed separately and results were compared with those of the combined analyses. Maximum parsimony (MP) analyses were performed in MEGA6 (Tamura et al. 2013) with 1000 bootstrap replications. The subtree-pruning-regrafting (SPR) algorithm was selected, and alignment gaps and missing data included. Maximum likelihood (ML) analyses were done using raxmlGUI (Silvestro & Michalak 2012) with the GTR+G+I substitution model selected. Ten parallel runs with four threads and 1000 bootstrap replications were conducted. Bayesian inference (BI) analyses were performed using MrBayes v. 3.2 (Ronquist et al. 2012) employing the GTR+G+I substitution model. Ten parallel runs, each with four chains, were conducted. Trees were sampled at every 100th generation for 5 M generations. After sampling, 25 % of trees were discarded as a burn-in phase and posterior probabilities were calculated from all the remaining trees. Morphology Morphological descriptions from the protologues of all species treated in this study were carefully considered when genera were redefined. Based on these species descriptions, the most common characters of all species in a genus were selected and incorporated in the emended and new genus descriptions. Over time, different authors often used different terminology describing similar characters. We aligned the generic descriptions of the different genera with each other using similar terminology. RESULTS Maximum likelihood, BI and MP trees obtained from analyses of the individual gene regions (Figs 4–6) and the combined datasets (Fig. 7) of the LSU, 60S and MCM7 sequences, consistently resulted in nine well-supported major lineages. Although trees derived from individual datasets had different topologies (Figs 4–6), they were not significantly incongruent with the trees obtained from the combined analyses (Fig. 7). This was indicated by the fact that most major lineages found in the combined analyses were present in trees resulting from individual datasets. Only few exceptions were observed in the cases of 60S and LSU datasets. In one exceptional case, the 60S dataset (Fig. 5) showed Lineage 6 as split into two clades. In another case, the LSU tree (Fig. 4) depicted lineage 5 as not being monophyletic, although isolates belonging to this lineage still grouped relatively 197 DE BEER ET AL. Fig. 4. Bayesian phylogram derived from analyses of the aligned LSU dataset containing 898 characters, of which 164 were parsimony informative. Thick branches represent BI posterior probabilities 95 %. Bootstrap support values 70 % are indicated at nodes as MP/ML. * = no bootstrap support or bootstrap support values <70 %. 198 REDEFINING CERATOCYSTIS AND ALLIED GENERA Fig. 5. RAxML phylogram derived from analyses of the aligned 60S dataset containing 711 characters, of which 258 were parsimony informative. Thick branches represent BI posterior probabilities 95 %. Bootstrap support values 70 % are indicated at nodes as MP/ML. * = no bootstrap support or bootstrap support values <70 %. www.studiesinmycology.org 199 DE BEER ET AL. Fig. 6. Bayesian phylogram derived from analyses of MCM7 dataset containing 628 characters, of which 313 were parsimony informative. Thick branches represent BI posterior probabilities 95 %. Bootstrap support values 70 % are indicated at nodes as MP/ML. * = no bootstrap support or bootstrap support values <70 %. 200 REDEFINING CERATOCYSTIS AND ALLIED GENERA Fig. 7. Bayesian phylogram derived from analyses of the concatenated dataset (60S, LSU and MCM7) containing 2 237 characters, of which 735 were parsimony informative. Thick branches represent BI posterior probabilities 95 %. Bootstrap support values 70 % are indicated at nodes as MP/ML. * = no bootstrap support or bootstrap support values <70 %. www.studiesinmycology.org 201 DE BEER ET AL. close to each other. Neither of these placements, however, was supported by phylogenetic statistics. Among the three gene regions used, MCM7 proved to be the most informative and resulted in trees with topologies similar to those obtained from the combined dataset. The first of the nine lineages (Figs 4–7), representing the largest number of species, included C. fimbriata (type species of Ceratocystis) and 31 other species previously included in the C. fimbriata complex. The second lineage included CMW 22736, representing T. thielavioides (type species for Chalaropsis), T. ovoidea, and two isolates from the USA and Belgium, previously described as T. thielavioides, but clearly distinct from CMW 22736. These two isolates are thus referred to as Chalaropsis sp. 1. The third lineage included C. coerulescens, type species for Endoconidiophora, and seven species previously considered part of the C. coerulescens complex. Isolates representing C. virescens, C. eucalypti, T. australis and T. neocaledoniae represented the fourth lineage, which did not include a type species of a previously described genus. Lineage 5 was previously referred to as the C. paradoxa complex, and included C. ethacetica (type species of Thielaviopsis), C. euricoi, C. musarum, C. radicicola and the recently described species, C. cerberus. The sixth lineage was the second largest and included C. moniliformis s. str. and 17 other species, but contained no type species representing a previously described genus. Two new species that are currently being described (Mbenoun et al., unpubl. data) grouped in this lineage, and were labelled according to provisional species names provided by M. Mbenoun (unpublished), namely Huntiella chlamydospora nom. prov. and H. pycnanthi nom. prov. Isolates of Ambrosiella xylebori (type species for Ambrosiella), A. hartigii and A. beaveri formed a distinct lineage. The last two lineages comprised Knoxdaviesia and Graphium species used as outgroups in all analyses. Five of the 79 species in Ceratocystis s. l. were not accommodated in any of the nine major lineages discussed above (Figs 4–7). Ceratocystis adiposa and C. major had identical sequences in ITS (data not shown), LSU and 60S, and formed a distinct clade that was most closely related to lineage 7 (representing Ambrosiella). Ceratocystis fagacearum and A. ferruginea, although significantly different from each other, formed a clade of their own separating them from other Ceratocystis and Ambrosiella lineages. The fifth species, T. basicola, formed a unique lineage distinct from, but related to species in lineage 2 as its closest relatives. GENERIC DESCRIPTIONS AND NOMENCLATOR Phylogenetic data generated in this study revealed seven wellsupported lineages in Ceratocystis s. l. The distinction between these lineages is also supported by morphological and ecological data for the species in these groups. These lineages are, therefore, treated as distinct genera. Five of the lineages incorporate the type species of earlier described genera, and we thus emend the descriptions of Ambrosiella, Ceratocystis s. str., Chalaropsis, Endoconidiophora, and Thielaviopsis, based on the types and other species accommodated in the lineages. Two lineages for which existing names are not available are treated as novel genera, described here as Davidsoniella and Huntiella. Where necessary, new combinations are provided for the names 202 of species in these genera. Species previously treated in Ceratocystis, but excluded from the newly defined genera in the Ceratocystidaceae (Tables 2 and 3), invalidly described species (Table 4), and homonyms from kingdoms other than the Fungi (Table 5), are not treated in the nomenclator, but listed in the tables as indicated. Ambrosiella Brader ex Arx & Hennebert, Mycopath. Mycol. Appl. 25: 314. 1965. ?= Phialophoropsis L.R. Batra, Mycologia 59: 1008. 1967. (type species Ph. trypodendri). Type species: Ambrosiella xylebori Brader ex Arx & Hennebert, Mycopath. Mycol. Appl. 25: 314. 1965. Sexual state not known. Conidiophores phialidic, single to aggregated in sporodochia, hyaline, unbranched or sparingly branched, one-celled to septate. Conidia formed in chains or as terminal aleurioconidia. Notes: We followed the emended generic description for Ambrosiella by Harrington et al. (2010), who restricted the genus to those species belonging to the Microascales. DNA sequence data is not available for A. trypodendri, type species of Phialophoropsis, which means the synonymy of the latter genus with Ambrosiella cannot be confirmed for the present. All known Ambrosiella species are associates of ambrosia beetles. Ambrosiella beaveri Six, Z.W. de Beer & W.D. Stone, Antonie van Leeuwenhoek 96: 23. 2009. Note: Sexual state unknown. Ambrosiella hartigii L.R. Batra, Mycologia 59: 998. 1967. Note: Sexual state unknown. Ambrosiella roeperii T.C. Harr. & McNew, Mycologia 106: 841. 2014. Notes: Sexual state unknown. Sequences of this newly described species were not included in our analyses, but Harrington et al. (2014b) clearly showed that this species groups within Ambrosiella. Ambrosiella trypodendri (L.R. Batra) T.C. Harr., Mycotaxon 111: 355. 2010 Basionym: Phialophoropsis trypodendri L.R. Batra, Mycologia 59: 1008. 1967. Notes: Sexual state unknown. Ambrosiella trypodendri is the type species of Phialophoropsis (Batra 1967). No cultures are available for this species. However, Harrington et al. (2010) argued that it is morphologically similar to Ambrosiella and provided a new combination for it. Seifert has examined the type, and made a drawing from it that was used to represent this species in The Genera of Hyphomycetes (Seifert et al. 2011). Ambrosiella xylebori Brader ex Arx & Hennebert, Mycopath. Mycol. Appl. 25: 314. 1965. REDEFINING CERATOCYSTIS AND ALLIED GENERA Table 2. Species previously treated in Ceratocystis, but now excluded from the genus because they were shown to belong to other genera. More details on each species are presented by De Beer et al. (2013b). Name in Ceratocystis Current name Basionym C. abiocarpa R.W. Davidson Grosmannia abiocarpa (R.W. Davidson) Zipfel, Z.W. de Beer & M.J. Wingf. Ceratocystis abiocarpa R.W. Davidson C. adjuncti R.W. Davidson Ophiostoma adjuncti (R.W. Davidson) Harrington Ceratocystis adjuncti R.W. Davidson C. albida (Math.-K€a€arik) J. Hunt synonym of Ophiostoma stenoceras (Robak) Nannf. Ophiostoma albidum Math.-K€a€arik C. allantospora H.D. Griffin Ophiostoma allantosporum (Griffin) M. Villarreal Ceratocystis allantospora H.D. Griffin C. ambrosia Bakshi Ophiostoma ambrosium (Bakshi) Hausner, J. Reid & Klassen Ceratocystis ambrosia Bakshi C. angusticollis Wright & H.D. Griffin Ophiostoma angusticollis (Wright & Griffin) M. Villarreal Ceratocystis angusticollis Wright & H.D. Griffin C. araucariae Butin Ophiostoma araucariae (Butin) de Hoog & Scheffer Ceratocystis araucariae Butin C. arborea Olchow. & J. Reid Ophiostoma arborea (Olchow. & J. Reid) Yamaoka & M.J. Wingf. Ceratocystis arborea Olchow. & J. Reid C. aurea (R.C. Rob. & R.W. Davidson) H.P. Upadhyay Grosmannia aurea (R.C. Rob. & R.W. Davidson) Zipfel, Z.W. de Beer & M.J. Wingf. Europhium aureum R.C. Rob. & R.W. Davidson C. bacillospora Butin & G. Zimm. Ophiostoma bacillosporum (Butin & G. Zimm.) de Hoog & Scheffer Ceratocystis bacillospora Butin & G. Zimm. C. bicolor (R.W. Davidson & Wells) R.W. Davidson Ophiostoma bicolor R.W. Davidson & D.E. Wells Ophiostoma bicolor R.W. Davidson & D.E. Wells C. brunnea R.W. Davidson Ophiostoma brunneum (R.W. Davidson) Hausner & J. Reid Ceratocystis brunnea R.W. Davidson C. brunneo-ciliata (Math.-K€a€arik) J. Hunt Ophiostoma brunneo-ciliatum Math.-K€a€arik Ophiostoma brunneo-ciliatum Math.-K€a€arik C. brunneocrinita E.F. Wright & Cain Graphilbum brunneocrinitum (E.F. Wright & Cain) Z.W. de Beer & M.J. Wingf. Ceratocystis brunneocrinita E.F. Wright & Cain C. cainii Olchow. & J. Reid Grosmannia cainii (Olchow. & J. Reid) Zipfel, Z.W. de Beer & M.J. Wingf. Ceratocystis cainii Olchow. & J. Reid C. californica DeVay, R.W. Davidson & Moller Ophiostoma californicum (DeVay, R.W. Davidson & Moller) Hausner, J. Reid & Klassen Ceratocystis californica DeVay, R.W. Davidson & Moller C. cana (Münch) Moreau Ophiostoma canum (Münch) Syd. Ceratostomella cana Münch C. capitata H.D. Griffin synonym of Ophiostoma tenellum (R.W. Davidson) M. Villarreal Ceratocystis capitata H.D. Griffin C. castaneae (Vanin & Solovjev) C. Moreau Ophiostoma castaneae (Vanin & Solovjev) Nannf. Ceratostomella castaneae Vanin & Solovjev C. catoniana (Goid.) C. Moreau Ophiostoma catonianum (Goid.) Goid. Ceratostomella catoniana Goid. C. clavata (Math.) Hunt Ophiostoma clavatum Math. Ophiostoma clavatum Math. C. clavigera (R.C. Rob. & R.W. Davidson) H.P. Upadhyay Grosmannia clavigera (R.C. Rob. & R.W. Davidson) Zipfel, Z.W. de Beer & M.J. Wingf. Europhium clavigerum R.C. Rob. & R.W. Davidson C. columnaris Olchow. & J. Reid Ophiostoma columnare (Olchow. & J. Reid) Seifert & G. Okada Ceratocystis columnaris Olchow. & J. Reid C. concentrica Olchow. & J. Reid Ceratocystiopsis concentrica (Olchow. & J. Reid) H.P. Upadhyay Ceratocystis concentrica Olchow. & J. Reid C. conicicollis Olchow. & J. Reid Ceratocystiopsis conicicollis (Olchow. & J. Reid) H.P. Upadhyay Ceratocystis conicicollis Olchow. & J. Reid C. coronata Olchow. & J. Reid Ophiostoma coronatum (Olchow. & J. Reid) M. Villarreal Ceratocystis coronata Olchow. & J. Reid C. crassivaginata H.D. Griffin Grosmannia crassivaginata (H.D. Griffin) Zipfel, Z.W. de Beer & M.J. Wingf. C. crenulata Olchow. & J. Reid Ophiostoma crenulatum (Olchow. & J. Reid) Hausner & Ceratocystis crenulata Olchow. & J. Reid J. Reid C. curvicollis Olchow. & J. Reid Graphilbum curvicolle (Olchow. & J. Reid) Z.W. de Beer & M.J. Wingf. Ceratocystis curvicollis Olchow. & J. Reid C. davidsonii Olchow. & J. Reid Grosmannia davidsonii (Olchow. & J. Reid) Zipfel, Z.W. de Beer & M.J. Wingf. Ceratocystis davidsonii Olchow. & J. Reid C. denticulata R.W. Davidson Ophiostoma denticulatum (R.W. Davidson) Z.W. de Beer & M.J. Wingf. Ceratocystis denticulata R.W. Davidson C. distorta R.W. Davidson Ophiostoma distortum (R.W. Davidson) de Hoog & Scheffer Ceratocystis distorta R.W. Davidson Ceratocystis crassivaginata H.D. Griffin (continued on next page) www.studiesinmycology.org 203 DE BEER ET AL. Table 2. (Continued). Name in Ceratocystis Current name Basionym C. dolominuta H.D. Griffin synonym of Ceratocystiopsis minuta (Siemaszko) H.P. Upadhyay & W.B. Kendr. Ceratocystis dolominuta H.D. Griffin C. dryocoetidis W.B. Kendr. & Molnar Grosmannia dryocoetidis (W.B. Kendr. & Molnar) Zipfel, Z.W. de Beer & M.J. Wingf. Ceratocystis dryocoetidis W.B. Kendr. & Molnar C. epigloea Guerrero Ophiostoma epigloeum (Guerrero) de Hoog Ceratocystis epigloea Guerrero C. eucastaneae R.W. Davidson synonym of Ophiostoma stenoceras (Robak) Nannf. Ceratocystis eucastaneae R.W. Davidson C. europhioides E.F. Wright & Cain Grosmannia europhioides (E.F. Wright & Cain) Zipfel, Z.W. de Beer & M.J. Wingf. Ceratocystis europhioides E.F. Wright & Cain C. fagi (W. Loos) C. Moreau synonym of Ophiostoma quercus (Georgev.) Nannf. Ceratostomella fagi W. Loos C. falcata E.F. Wright & Cain Cornuvesica falcata (E.F. Wright & Cain) C.D. Viljoen, M.J. Wingf. & K. Jacobs Ceratocystis falcata E.F. Wright & Cain C. fasciata Olchow. & J. Reid Ophiostoma fasciatum (Olchow. & J. Reid) Hausner, J. Reid & Klassen Ceratocystis fasciata Olchow. & J. Reid C. fimicola (Marchal) H.P. Upadhyay Sphaeronaemella fimicola Marchal Sphaeronaemella fimicola Marchal C. floccosa (Math.) J. Hunt Ophiostoma floccosum Math. Ophiostoma floccosum Math. C. francke-grosmanniae R.W. Davidson Grosmannia francke-grosmanniae (R.W. Davidson) Zipfel, Z.W. de Beer & M.J. Wingf. Ceratocystis francke-grosmanniae R.W. Davidson C. fraxinopennsylvanica T.E. Hinds Togninia fraxinopennsylvanica (T.E. Hinds) Hausner, Eyjolfsdottir & J. Reid Ceratocystis fraxinopennsylvanica T.E. Hinds C. galeiformis Bakshi Grosmannia galeiformis (B.K. Bakshi) Zipfel, Z.W. de Beer & M.J. Wingf. Ceratocystis galeiformis Bakshi C. gossypina R.W. Davidson Ophiostoma gossypinum (R.W. Davidson) J. Taylor Ceratocystis gossypina R.W. Davidson C. gossypina var. robusta R.W. Davidson synonym of Ophiostoma stenoceras (Robak) Nannf. Ceratocystis gossypina var. robusta R.W. Davidson C. grandifoliae R.W. Davidson Grosmannia grandifoliae (R.W. Davidson) Zipfel, Z.W. de Beer & M.J. Wingf. Ceratocystis grandifoliae R.W. Davidson C. helvellae (P. Karst.) H.P. Upadhyay Sphaeronaemella helvellae (P. Karst.) P. Karst. Sphaeria helvellae P. Karst. C. horanszkyi Toth Sphaeronaemella horanszkyi (Toth) Toth Ceratocystis horanszkyi Toth C. huntii R.C. Rob. Grosmannia huntii (R.C. Rob.) Zipfel, Z.W. de Beer & M.J. Wingf. Ceratocystis huntii R.C. Rob. C. hyalothecium R.W. Davidson Ophiostoma hyalothecium (R.W. Davidson) Hausner, J. Reid & Klassen Ceratocystis hyalothecium R.W. Davidson C. introcitrina Olchow. & J. Reid Ophiostoma introcitrinum (Olchow. & J. Reid) Hausner, J. Reid & Klassen Ceratocystis introcitrina Olchow. & J. Reid C. ips (Rumbold) C. Moreau Ophiostoma ips (Rumbold) Nannf. Ceratostomella ips Rumbold C. leptographioides (R.W. Davidson) J. Hunt Grosmannia leptographioides (R.W. Davidson) Zipfel, Z.W. de Beer & M.J. Wingf. Ceratostomella leptographioides R.W. Davidson C. leucocarpa R.W. Davidson Ophiostoma leucocarpum (R.W. Davidson) Z.W. de Beer & M.J. Wingf. Ceratocystis leucocarpa R.W. Davidson C. longirostellata Bakshi Ophiostoma longirostellatum (Bakshi) Arx & E. Müll. Ceratocystis longirostellata Bakshi C. longispora Olchow. & J. Reid Ceratocystiopsis longispora (Olchow. & J. Reid) H.P. Upadhyay Ceratocystis longispora Olchow. & J. Reid C. macrospora Aoshima [nom. inval., Art. 29.1, 36.1] synonym of Grosmannia laricis (K. van der Westh., Yamaoka & M.J. Wingf.) Zipfel, Z.W. de Beer & M.J. Wingf. Ceratocystis macrospora Aoshima [nom. inval., Art. 29.1, 36.1] C. megalobrunnea R.W. Davidson & Toole Ophiostoma megalobrunneum (R.W. Davidson & Toole) Ceratocystis megalobrunnea R.W. Davidson & Toole de Hoog & Scheffer C. microspora (Arx) R.W. Davidson Ophiostoma microsporum Arx Ophiostoma microsporum Arx C. minima Olchow. & J. Reid Ceratocystiopsis minima (Olchow. & J. Reid) H.P. Upadhyay Ceratocystis minima Olchow. & J. Reid C. minor (Hedgc.) J. Hunt Ophiostoma minus (Hedgc.) Syd. Ceratostomella minor Hedgc. C. minuta (Siemaszko) J. Hunt Ceratocystiopsis minuta (Siemaszko) H.P. Upadhyay & W.B. Kendr. Ophiostoma minutum Siemaszko C. minuta-bicolor R.W. Davidson Ceratocystiopsis minuta-bicolor (R.W. Davidson) H.P. Upadhyay & W.B. Kendr. Ceratocystis minuta-bicolor R.W. Davidson C. montia (Rumbold) J. Hunt Ophiostoma montium (Rumbold) Arx Ceratostomella montium Rumbold (continued on next page) 204 REDEFINING CERATOCYSTIS AND ALLIED GENERA Table 2. (Continued). Name in Ceratocystis Current name Basionym C. multiannulata (Hedgc. & R.W. Davidson) J. Hunt Ophiostoma multiannulatum (Hedgc. & R.W. Davidson) Hendrix Ceratostomella multiannulata Hedgc. & R.W. Davidson C. narcissi (Limber) J. Hunt Ophiostoma narcissi Limber Ophiostoma narcissi Limber C. nigra R.W. Davidson Graphilbum nigrum (R.W. Davidson), Z.W. de Beer & M.J. Wingf. Ceratocystis nigra R.W. Davidson C. nigrocarpa R.W. Davidson Ophiostoma nigricarpum (R.W. Davidson) de Hoog Ceratocystis nigrocarpa R.W. Davidson C. nothofagi Butin Ophiostoma nothofagi (Butin) Rulamort Ceratocystis nothofagi Butin C. novae-zelandiae Hutchison & J. Reid synonym of Ophiostoma pluriannulatum (Hedgc.) Syd. Ceratocystis novae-zelandiae Hutchison & J. Reid C. obscura (R.W. Davidson) J. Hunt Leptographium obscurum (R.W. Davidson) Z.W. de Beer & M.J. Wingf. Ceratostomella obscura R.W. Davidson C. ochracea H.D. Griffin Ceratocystiopsis ochracea (H.D. Griffin) H.P. Upadhyay Ceratocystis ochracea H.D. Griffin C. olivacea (Math.) J. Hunt Grosmannia olivacea (Math.) Zipfel, Z.W. de Beer & M.J. Ophiostoma olivaceum Math. Wingf. C. olivaceapini R.W. Davidson Grosmannia olivaceapini (R.W. Davidson) Z.W. de Beer, Linnakoski & M.J. Wingf. Ceratocystis olivaceapini R.W. Davidson C. ossiformis Olchow. & J. Reid synonym of Ophiostoma columnare (Olchow. & J. Reid) Seifert & G. Okada Ceratocystis ossiformis Olchow. & J. Reid C. pallida H.D. Griffin synonym of Ceratocystiopsis minuta-bicolor (R.W. Davidson) H.P. Upadhyay & W.B. Kendr. Ceratocystis pallida H.D. Griffin C. pallidobrunnea Olchow. & J. Reid Ceratocystiopsis pallidobrunnea (Olchow. & J. Reid) H.P. Upadhyay Ceratocystis pallidobrunnea Olchow. & J. Reid C. parva Olchow. & J. Reid Ceratocystiopsis parva (Olchow. & J. Reid) Zipfel, Z.W. de Beer & M.J. Wingf. Ceratocystis parva Olchow. & J. Reid C. penicillata (Grosmann) C. Moreau Grosmannia penicillata (Grosmann) Goid. Ceratostomella penicillata Grosmann C. perfecta R.W. Davidson Ophiostoma perfectum (R.W. Davidson) de Hoog Ceratocystis perfecta R.W. Davidson C. perparvispora J. Hunt synonym of Ophiostoma microsporum Arx Ceratocystis perparvispora J. Hunt C. piceae (Münch) Bakshi Ophiostoma piceae (Münch) Syd. Ceratostomella piceae Münch C. piceiperda (Rumbold) C. Moreau Grosmannia piceiperda (Rumbold) Goid. Ceratostomella piceiperda Rumbold C. pilifera (Fr.) C. Moreau Ophiostoma piliferum (Fr. : Fr.) Syd. Sphaeria pilifera Fr. C. pini (Münch) C. Moreau synonym of Ophiostoma minus (Hedgc.) Syd. Ceratostomella pini Münch C. pluriannulata (Hedgc.) C. Moreau Ophiostoma pluriannulatum (Hedgc.) Syd. Ceratostomella pluriannulata Hedgc. C. polygrapha Aoshima [nom. inval., Art. 29.1, 36.1] synonym of Grosmannia aoshimae (Ohtaka, Masuya & Yamaoka) Masuya & Yamaoka Ceratocystis polygrapha Aoshima [nom. inval., Art. 29.1, 36.1] C. ponderosae T.E. Hinds & R.W. Davidson synonym of Ophiostoma stenoceras (Robak) Nannf. Ceratocystis ponderosae T.E. Hinds & R.W. Davidson C. populicola Olchow. & J. Reid Ophiostoma populicola (Olchow. & J. Reid) Z.W. de Beer, Seifert, M.J. Wingf. Ceratocystis populicola Olchow. & J. Reid C. populina T.E. Hinds & R.W. Davidson Ophiostoma populinum (T.E. Hinds & R.W. Davidson) de Ceratocystis populina T.E. Hinds & R.W. Davidson Hoog & Scheffer C. prolifera Kowalski & Butin Ophiostoma proliferum (Kowalski & Butin) Rulamort Ceratocystis prolifera Kowalski & Butin C. pseudoeurophioides Olchow. & J. Reid Grosmannia pseudoeurophioides (Olchow. & J. Reid) Zipfel, Z.W. de Beer & M.J. Wingf. Ceratocystis pseudoeurophioides Olchow. & J. Reid C. pseudominor Olchow. & J. Reid Ophiostoma pseudominus (Olchow. & J. Reid) Hausner, J. Reid & Klassen Ceratocystis pseudominor Olchow. & J. Reid C. pseudonigra Olchow. & J. Reid Ophiostoma pseudonigrum (Olchow. & J. Reid) Hausner Ceratocystis pseudonigra Olchow. & J. Reid & J. Reid C. pseudotsugae (Rumbold) C. Moreau Ophiostoma pseudotsugae (Rumbold) Arx Ceratostomella pseudotsugae Rumbold C. querci (Georgev.) C. Moreau Ophiostoma quercus (Georgev.) Nannf. Ceratostomella quercus Georgev. C. retusi R.W. Davidson & T.E. Hinds Ophiostoma retusum (R.W. Davidson & T.E. Hinds) Hausner, J. Reid & Klassen Ceratocystis retusi R.W. Davidson & T.E. Hinds C. roboris (Georgescu & Teodoru) Potl. synonym of Ophiostoma quercus (Georgev.) Nannf. Ophiostoma roboris Georgescu & Teodoru C. robusta (R.C. Rob. & R.W. Davidson) H.P. Upadhyay Grosmannia robusta (R.C. Rob. & R.W. Davidson) Zipfel, Z.W. de Beer & M.J. Wingf. Europhium robustum R.C. Rob. & R.W. Davidson C. rostrocoronata R.W. Davidson & Eslyn Ophiostoma rostrocoronatum (R.W. Davidson & Eslyn) de Hoog & Scheffer Ceratocystis rostrocoronata R.W. Davidson & Eslyn (continued on next page) www.studiesinmycology.org 205 DE BEER ET AL. Table 2. (Continued). Name in Ceratocystis Current name Basionym C. rostrocylindrica (R.W. Davidson) J. Hunt Leptographium rostrocylindricum (R.W. Davidson) Z.W. de Beer & M.J. Wingf. Ceratostomella rostrocylindrica R.W. Davidson C. sagmatospora E.F. Wright & Cain Grosmannia sagmatospora (E.F. Wright & Cain) Zipfel, Z.W. de Beer & M.J. Wingf. Ceratocystis sagmatospora E.F. Wright & Cain C. serpens (Goid.) C. Moreau Grosmannia serpens Goid. Grosmannia serpens Goid. C. shikotsuensis Aoshima [nom. inval., Art. 29.1, synonym of Grosmannia europhioides (E.F. Wright & 36.1] Cain) Zipfel, Z.W. de Beer & M.J. Wingf. Ceratocystis shikotsuensis Aoshima [nom. inval., Art. 29.1, 36.1] C. sparsa R.W. Davidson Graphilbum sparsum H.P. Upadhyay & W.B. Kendr. Ceratocystis sparsa R.W. Davidson C. spinifera Olchow. & J. Reid synonym of Ophiostoma fasciatum (Olchow. & J. Reid) Hausner, J. Reid & Klassen Ceratocystis spinifera Olchow. & J. Reid C. spinulosa H.D. Griffin Ceratocystiopsis spinulosa (H.D. Griffin) H.P. Upadhyay Ceratocystis spinulosa H.D. Griffin C. stenoceras (Robak) C. Moreau Ophiostoma stenoceras (Robak) Nannf. Ceratostomella stenoceras Robak C. tenella R.W. Davidson Ophiostoma tenellum (R.W. Davidson) M. Villarreal Ceratocystis tenella R.W. Davidson C. tetropii (Math.) J. Hunt Ophiostoma tetropii Math. Ceratocystis tetropii (Math.) J. Hunt C. torticiliata Olchow. & J. Reid Ophiostoma torticiliata (Olchow. & J. Reid) Seifert & G. Okada Ceratocystis torticiliata Olchow. & J. Reid C. torulosa Butin & G. Zimm. Ophiostoma torulosum (Butin & G. Zimm.) Hausner, J. Reid & Klassen Ceratocystis torulosa Butin & G. Zimm. C. tremulo-aurea R.W. Davidson & T.E. Hinds Ophiostoma tremulo-aureum (R.W. Davidson & T.E. Hinds) de Hoog & Scheffer Ceratocystis tremulo-aurea R.W. Davidson & T.E. Hinds C. triangulospora (Butin) H.P. Upadhyay Ophiostoma triangulosporum Butin Ophiostoma triangulosporum Butin C. truncicola (R.W. Davidson) H.D. Griffin Grosmannia truncicola (R.W. Davidson) Z.W. de Beer & Ophiostoma truncicola R.W. Davidson M.J. Wingf. C. tubicollis Olchow. & J. Reid Graphilbum tubicolle (Olchow. & J. Reid) Z.W. de Beer & Ceratocystis tubicollis Olchow. & J. Reid M.J. Wingf. C. ulmi (Buisman) C. Moreau Ophiostoma ulmi (Buisman) Nannf. Ceratostomella ulmi Buisman C. valachicum (Georgescu, Teodoru & Badea) Potl. Ophiostoma valachicum Georgescu, Teodoru & Badea Ophiostoma valachicum Georgescu, Teodoru & Badea C. vesca R.W. Davidson Grosmannia vesca (R.W. Davidson) Zipfel, Z.W. de Beer & M.J. Wingf. Grosmannia wageneri (Goheen & F.W. Cobb) Zipfel, Z.W. de Beer & M.J. Wingf. Ceratocystis vesca R.W. Davidson C. wageneri Goheen & F.W. Cobb Descriptions: Von Arx & Hennebert (1965: 312–315, fig. 2); Batra (1967: 990–992, figs 14–19). Notes: Sexual state unknown. The genus and species were invalidly described by Brader (1964) (Art. 40.1), but Von Arx & Hennebert (1965) redescribed and validated both. Ceratocystis Ellis & Halst., In: Halsted, New Jersey Agric. Coll. Exp. Sta. Bull. 76: 14. 1890. ?= Rostrella Zimm., Meded. Lands Plantentuin, Batavia 37: 24. 1900. (nom. illegit., Art. 53.1, later homonym for Rostrella Fabre, Ann. Sci. Nat., Bot. 6, 9: 66. 1879) (type species Ro. coffeae). = Ceratocystis Ellis & Halst. section Ceratocystis pro parte, In: Upadhyay, Monogr. Ceratocystis & Ceratocystiopsis: 32. 1981. Ceratocystis wageneri Goheen & F.W. Cobb shaped. Secondary conidiophores flaring or wide-mouthed. Primary conidia cylindrical, hyaline. Secondary conidia barrel to subglobose shaped, hyaline to light brown. Aleurioconidia globose, ovoid to pyriform, singly or in chains, pale-brown to brown. Notes: The most characteristic features of this genus are the ascomatal bases lacking distinct ornamentations and hat-shaped ascospores. The possibility that Ro. coffeae might not be a synonym of C. fimbriata is discussed under the latter species, below. However, even if the two species are distinct, the species from coffee would probably still group in Ceratocystis s. str., which means Rostrella will remain a synonym of Ceratocystis. Type species: Ceratocystis fimbriata Ellis & Halst., New Jersey Agric. Coll. Exp. Sta. Bull. 76: 14. 1890. Ceratocystis acaciivora Tarigan & M. van Wyk, S. Afr. J. Bot. 77: 301. 2011. Emended generic diagnosis. Ascomatal bases globose, brown to black, unornamented or with undifferentiated ornamental hyphae. Ascomatal necks long, tapering to apex, straight, dark-brown to black, hyaline at apex. Ostiolar hyphae divergent, non-septate, tapered, light brown to hyaline. Asci dehiscent. Ascospores one-celled, hat-shaped, hyaline, accumulating in cream-coloured masses at tips of necks. Primary conidiophores phialidic, flask- Ceratocystis albifundus M.J. Wingf., De Beer & M.J. Morris, Syst. Appl. Microbiol. 19: 196. 1996. (as “albofundus”). 206 Ceratocystis atrox M. van Wyk & M.J. Wingf., Australas. Pl. Pathol. 36: 411. 2007. REDEFINING CERATOCYSTIS AND ALLIED GENERA Table 3. Species previously treated in Ceratocystis s.l. but that can be excluded from the current generic concepts based on morphology. However, the correct generic placement of these species remains uncertain and in need of confirmation with DNA sequences. More details on each species are presented by De Beer et al. (2013b). Name in Ceratocystis Basionym Probable ordinal, generic placement C. acericola H.D. Griffin Ceratocystis acericola H.D. Griffin Ophiostomatales, Ophiostoma s.l. or Leptographium s.l. C. acoma (V.V. Miller & Cernzow) C. Moreau Ceratostomella acoma V.V. Miller & Cernzow Ophiostomatales, Ophiostoma s. str. C. aequivaginata Olchow. & J. Reid Ceratocystis aequivaginata Olchow. & J. Reid Ophiostomatales, Leptographium s.l. C. alba DeVay, R.W. Davidson & W.J. Moller Ceratocystis alba DeVay, R.W. Davidson & W.J. Moller Peripheral to Ophiostomatales C. autographa Bakshi Ceratocystis autographa Bakshi Sordariomycetidae, incertae sedis C. brevicollis R.W. Davidson Ceratocystis brevicollis R.W. Davidson Ophiostomatales, Ophiostoma s.l. or Leptographium s.l. C. buxi (Borissov) C. Moreau Ceratostomella buxi Borissov Sordariomycetidae, incertae sedis, Ceratostomella C. comata (V.V. Miller & Cernzow) C. Moreau Ceratostomella comata V.V. Miller & Cernzow Ophiostomatales, Leptographium s.l. C. deltoideospora Olchow. & J. Reid Ceratocystis deltoideospora Olchow. & J. Reid Ophiostomatales, Raffaelea C. grandicarpa Kowalski & Butin Ceratocystis grandicarpa Kowalski & Butin Ophiostomatales, genus uncertain C. imperfecta (V.V. Miller & Cernzow) C. Moreau Ceratostomella imperfecta V.V. Miller & Cernzow Ophiostomatales, Leptographium s.l. C. magnifica H.D. Griffin Ceratocystis magnifica H.D. Griffin Ophiostomatales, Ophiostoma s.l. C. merolinensis (Georgev.) C. Moreau Ceratostomella merolinensis Georgev. Sordariomycetidae, incertae sedis, Ceratostomella C. microcarpa (P. Karst.) C. Moreau Ceratostomella microcarpa P. Karst. Sordariomycetidae, incertae sedis, Ceratostomella C. seticollis R.W. Davidson Ceratocystis seticollis R.W. Davidson Ophiostomatales, genus uncertain C. stenospora H.D. Griffin Ceratocystis stenospora H.D. Griffin Ophiostomatales, Ophiostoma s.l. or Leptographium s.l. C. trinacriformis (A.K. Parker) H.P. Upadhyay C. valdiviana Butin Europhium trinacriforme A.K. Parker Ophiostomatales, Ophiostoma s.l. or Leptographium s.l. Ophiostomatales, Leptographium s.l. Ceratocystis valdiviana Butin Ceratocystis cacaofunesta Engelbr. & T.C. Harr., Mycologia 97: 64. 2005. Ceratocystis caryae J.A. Johnson & T.C. Harr., Mycologia 97: 1086. 2005. Note: In earlier studies this species was treated as residing in the Latin American “cacao” population of C. fimbriata (Baker Engelbrecht et al. 2003). Ceratocystis colombiana M. van Wyk & M.J. Wingf., Fungal Diveristy 40: 111. 2010. Table 4. Species described invalidly in Ceratocystis, but for which validation is possible. More details on each species are presented by De Beer et al. (2013b). Name in Ceratocystis Basionym Reason for invalidity 2 Ceratocystis antennaroidospora Roldan Art. 40.1 2 C. antennaroidospora Roldan Ceratocystis asteroides Roldan Art. 40.1 1 Ceratocystis chinensis G.H. Zhao Art. 40.1, 40.6 2 Ceratocystis heveae G.H. Zhao Art. 40.6 2 Ceratocystis jezoensis Aoshima Art. 29.1 & 36.1 1 Ophiostoma kubanicum Sczerbin-Parfenenko Art. 36.1 1 Ceratocystis minor (Hedgc.) J. Hunt var. barrasii J.J. Taylor Art. 40.1 2 Ceratocystis pidoplichikovii Milko Thielaviopsis wallemiiformis Dominik & Ihnat. Art. 40.1 Art. 40.1 C. asteroides Roldan C. chinensis G.H. Zhao C. heveae G.H. Zhao C. jezoensis Aoshima C. kubanica (Sczerbin-Parfenenko) Potlajchuk C. minor (Hedgc.) J. Hunt var. barrasii J.J. Taylor C. pidoplichikovii Milko Thielaviopsis wallemiiformis Dominik & Ihnat. 2 1 2 Species that most likely belong in the Ophiostomatales and to be excluded from Ceratocystis s.l. upon validation. Species that have thielaviopsis-like asexual states and probably belong to genera in the Ceratocystidaceae. www.studiesinmycology.org 207 DE BEER ET AL. Table 5. Species names from the invertebrate fossil genus, Ceratocystis Jaekel (Echinodermata, Stylophora). Although the application of these names to fungal species are permissible because they are dictated by a different nomenclatural Code, their use should preferably be avoided (De Beer et al. 2013a). Species Ceratocystis perneri Jaekel Ceratocystis prosthiakida Rahman, Zamora & Geyer Ceratocystis spinosa Ubaghs Ceratocystis vizcainoi Ubaghs Ceratocystis corymbiicola Kamgan & Jol. Roux, Antonie van Leeuwenhoek 101: 237. 2012. Ceratocystis curvata M. van Wyk & M.J. Wingf., Fungal Diversity 46: 122. 2011. Ceratocystis diversiconidia M. van Wyk & M.J. Wingf., Fungal Diversity 46: 125. 2011. Ceratocystis ecuadoriana M. van Wyk & M.J. Wingf., Fungal Diversity 46: 122. 2011. Ceratocystis eucalypticola M. van Wyk & M.J. Wingf., IMA Fungus 3: 54. 2012. Ceratocystis ficicola Kajitani & Masuya, Mycoscience 52: 351. 2011. Ceratocystis fimbriata Ellis & Halst., New Jersey Agric. Coll. Exp. Sta. Bull. 76: 14. 1890. ≡ Sphaeronaema fimbriatum (Ellis & Halst.) Sacc., Syll. Fung. 10: 125. 1892. ≡ Ceratostomella fimbriata (Ellis & Halst.) Elliott, Phytopathology 13: 56. 1923. ≡ Ophiostoma fimbriatum (Ellis & Halst.) Nannf., Svenska Skogsv.Fören. Tidskr. 32: 408. 1934. ≡ Endoconidiophora fimbriata (Ellis & Halst.) R.W. Davidson, J. Agric. Res. 50: 800. 1935. ?= Rostrella coffeae Zimm., Meded. Lands Plantentuin, Batavia 37: 32. 1900. ≡ Ophiostoma coffeae (Zimm.) Arx, Antonie van Leeuwenhoek 18: 210. 1952. ≡ Ceratocystis moniliformis f. coffeae (Zimm.) C. Moreau, Bull. Sci. Minist. France Outre-Mer 5: 424. 1954. Descriptions: Davidson (1935: 799–800); Hunt (1956: 11–16); Webster & Butler (1967: 1459–1463, pl. I-VI); Griffin (1968: 703); Morgan-Jones (1967a, figs A–G); Olchowecki & Reid (1974: 1699, pl. XIII, fig. 258); Matsushima (1975: 169, pl. 382, 383); Nag Raj & Kendrick (1975: 118, 141, fig. 45); Upadhyay (1981: 44, figs 69–72); Potlajczuk & Schekunova (1985: 150); Engelbrecht & Harrington (2005: 63–64). Notes: The original description of Ceratocystis fimbriata was from sweet potato in the USA. Analyses of DNA sequences have shown that the fungus treated as C. fimbriata in various studies and from various countries and host plants, represent a species complex that includes many different cryptic species (Van Wyk 208 et al. 2013). The name C. fimbriata should be restricted to the fungus from sweet potato and to other isolates belonging to the same phylogenetic species. Pontis (1951) listed Rostella coffeae as a synonym of C. fimbriata, but mentioned biological differences between isolates from the coffee tree and sweet potato. Several recent studies, based on DNA sequence comparisons for multiple gene regions, have distinguished host-specific and geographically-separated populations, including populations from coffee, in the C. fimbriata species complex (Harrington 2000, Barnes et al. 2001, 2003, Baker Engelbrecht et al. 2003, Marin et al. 2003, Engelbrecht et al. 2004, Steimel et al. 2004, Johnson et al. 2005). Van Wyk et al. (2010) described two of these host-specific groups from coffee in Colombia as new species, but did not consider the possibility that one of them might represent R. coffeae, probably because the latter was originally described from coffee in Java (Indonesia). For the present we treat R. coffeae as a synonym of C. fimbriata until future studies with fresh isolates from coffee in Java provide further insights into this question. Ceratocystis fimbriatomima M. van Wyk & M.J. Wingf., Fungal Diversity 34: 180. 2009. Ceratocystis harringtonii Z.W. de Beer & M.J. Wingf., CBS Biodiversity Series 12: 291. 2013. ≡ Ceratocystis populicola J.A. Johnson & T.C. Harr., Mycologia 97: 1084. 2005. (nom. illegit., Art 53.1). Notes: Johnson et al. (2005) described this species validly, but the name was a later homonym for Ceratocystis populicola Olchow. & J. Reid (= Ophiostoma populicola) and thus illegitimate. De Beer et al. (2013b) provided a new, legitimate name. Ceratocystis larium M. van Wyk & M.J. Wingf., Persoonia 22: 80. 2009. Ceratocystis mangicola M. van Wyk & M.J. Wingf., Mycotaxon 117: 395. 2011. Ceratocystis manginecans M. van Wyk, Al Adawi & M.J. Wingf., Fungal Diversity 27: 224. 2007. Ceratocystis mangivora M. van Wyk & M.J. Wingf., Mycotaxon 117: 397. 2011. Ceratocystis neglecta M. van Wyk, Jol. Roux & C. Rodas, Fungal Diversity 28: 80. 2008. Ceratocystis obpyriformis R.N. Heath & Jol. Roux, Fungal Diversity 34: 57. 2009. Ceratocystis papillata M. van Wyk & M.J. Wingf., Fungal Diveristy 40: 112. 2010. Ceratocystis pirilliformis I. Barnes & M. J. Wingf., Mycologia 95: 867. 2003. = Ceratocystis zombamontana R.N. Heath & Jol. Roux, Fungal Diversity 34: 53. 2009. Note: Kamgan Nkuekam et al. (2012) showed C. zombamontana to be a synonym of C. pirilliformis based on DNA sequence data. REDEFINING CERATOCYSTIS Ceratocystis platani (Walter) Engelbr. & T.C. Harr., Mycologia 97: 65. 2005. Basionym: Endoconidiophora fimbriata f. platani Walter, Phytopathology 42: 236. 1952. Note: This species was considered to represent a population of C. fimbriata from sycamore (Platanus) (Santini & Capretti 2000, Barnes et al. 2001, Baker Engelbrecht et al. 2003, Engelbrecht et al. 2004, Thorpe et al. 2005), until Engelbrecht & Harrington (2005) elevated it to species level. Ceratocystis polychroma M. van Wyk, M.J. Wingf. & E.C.Y. Liew, Stud. Mycol. 50, 278. 2004. Ceratocystis polyconidia R.N. Heath & Jol. Roux, Fungal Diversity 34: 53. 2009. Ceratocystis smalleyi J.A. Johnson & T.C. Harr., Mycologia 97: 1088. 2005. AND ALLIED GENERA hyaline, subhyaline or pale brown. Conidia unicellular, cylindrical with rounded or truncate ends, hyaline to light brown, singly or in chains. Aleurioconidia unicellular, globose, ellipsoidal, ovoid, or pyriform with truncate ends, solitary and terminal on sympodially branching conidiophores, pale brown to brown. Note: The morphological characters of Chalaropsis species are indistinguishable from those of the asexual states of Ceratocystis s. str. Chalaropsis ovoidea (Nag Raj & W.B. Kendr.) Z.W. de Beer, T.A. Duong & M.J. Wingf., comb. nov. MycoBank MB810308. Basionym: Chalara ovoidea Nag Raj & W.B. Kendr., Monogr. Chalara: 127. 1975. ≡ Thielaviopsis ovoidea (Nag Raj & W.B. Kendr.) A.E. Paulin, T.C. Harr. & McNew, Mycologia 94: 70. 2002. Description: Nag Raj & Kendrick (1975: 116, 127–128, figs 43B). Ceratocystis tanganyicensis R.N. Heath & Jol. Roux, Fungal Diversity 34: 56. 2009. Notes: Two isolates of this species were included in our analyses, none of which represented the type. Epitypification of this name is needed. Ceratocystis thulamelensis M. Mbenoun & Jol. Roux, Mycol. Progress 13: 234. 2014. Chalaropsis populi (Kiffer & Delon) Z.W. de Beer, T.A. Duong & M.J. Wingf. comb. nov. Ceratocystis tsitsikammensis Kamgan & Jol. Roux, Fungal Diversity 29: 50. 2008. Ceratocystis variospora (R.W. Davidson) C. Moreau, Rev. Mycol. (Paris) Suppl. Col. 17: 22. 1952. emend. J.A. Johnson & T.C. Harr., Mycologia 97: 1083. 2005. Basionym: Endoconidiophora variospora R.W. Davidson, Mycologia 36: 303. 1944. ≡ Ophiostoma variosporum (R.W. Davidson) Arx, Antonie van Leeuwenhoek 18: 212. 1952. ≡ Ceratocystis moniliformis f. variospora C. Moreau, Rev. Mycol. (Paris) Suppl. Col. 17: 23. 1952. (nom. inval., Art. 39.1). Descriptions: Hunt (1956: 16–18); Johnson et al. (2005: 1082–1084, figs 8–16). Notes: Ceratocystis variospora was invalidly reduced to a forma of C. moniliformis by Moreau (1952). Webster & Butler (1967), Upadhyay (1981), and Seifert et al. (1993) all treated C. variospora as synonym of C. fimbriata. Johnson et al. (2005) re-instated it as a distinct species in the C. fimbriata complex based on phylogenetic analyses. Ceratocystis zambeziensis M. Mbenoun & Jol. Roux, Mycol. Progress 13: 235. 2014. Chalaropsis Peyronel, Le Staz. Sper. agric. 49: 595. 1916. Type species: Chalaropsis thielavioides Peyronel, Le Staz. Sper. agric. 49: 58. 1916. Emended generic diagnosis. Sexual state not observed. Conidiophores arise laterally from vegetative hyphae. Conidiogenous cells phialidic, cylindrical, tapering toward apex, www.studiesinmycology.org Basionym: Chalara populi Kiffer & Delon, Mycotaxon 18: 171. 1983. (as “Veldeman ex”). ≡ Thielaviopsis populi (Kiffer & Delon) A.E. Paulin, T.C. Harr. & McNew, Mycologia 94: 70. 2002. = Chalaropsis populi Veldeman, Meded. Fac. Landbouwwetensch. Rijksuniv. Gent 36: 1001. 1971. (nom. inval., Art. 39.1, 40.1). Description: Kiffer & Delon (1983: 171–172, figs 1–2). Notes: Veldeman (1971) did not provide a formal diagnosis in the description of this species. Kiffer & Delon (1983) studied the original material and validated the name. No isolates representing Chalaropsis populi were available for the present study, but sequence data from previous studies confirm its placement in this genus (Wingfield et al. 2013). Chalaropsis sp. 1 Note: Two isolates included in this study that had been labelled as T. thielavioides in the CBS collection, emerged as repesenting an undescribed species in this genus, distinct from Chalaropsis thielavioides. Chalaropsis thielavioides Peyronel, Le Staz. Sper. agric. 49: 58. 1916. ≡ Chalara thielavioides (Peyronel) Nag Raj & W.B. Kendr., Monogr. Chalara: 136. 1975. ≡ Thielaviopsis thielavioides (Peyronel) A.E. Paulin, T.C. Harr. & McNew, Mycologia 94: 70. 2002. = Chalaropsis thielavioides Peyronel var. ramosissima Sugiyama, J. Fac. Sci. Univ. Tokyo 10: 33. 1968. Description: Nag Raj & Kendrick (1975: 117, 136–137, fig. 44). Note: Nag Raj & Kendrick (1975) considered Ch. thielavioides var. ramosissima a synonym of Ch. thielavioides. 209 DE BEER ET AL. Davidsoniella Z.W. de Beer, T.A. Duong & M.J. Wingf., gen. nov. MycoBank MB810235. Etymology: Named after Ross Wallace Davidson who described at least 41 ophiostomatoid species during his career at the USDA. These included Ceratocystis virescens, the type species for this new genus. Type species: Davidsoniella virescens (R.W. Davidson) Z.W. de Beer, T.A. Duong & M.J. Wingf. Ascomatal bases globose, light brown to dark brown to black, ornamental hyphae, simple, septate, stiff. Ascomatal necks long, dark brown at base to light brown at apex. Ostiolar hyphae divergent to straight, non-septate, smooth, light brown to hyaline. Asci dehiscent. Ascospores one-celled, elongate, narrow fusiform to spindle shaped, slightly curved, with thick, hyaline sheath. Conidiophores arise laterally from vegetative hyphae. Conidiogenous cells phialidic, cylindrical, hyaline. Conidia unicellular, cylindrical with flattened ends, barrel-shaped, hyaline, borne in chains of varying length. Aleurioconidia not present. Note: The most distinctive features of this genus are elongated, spindle-shaped and sheathed ascospores that are substantially longer than those of Endoconidiophora spp. Davidsoniella australis (J. Walker & Kile) Z.W. de Beer, T.A. Duong & M.J. Wingf., comb. nov. MycoBank MB810241. Basionym: Chalara australis J. Walker & Kile, Austral. J. Bot. 35: 7. 1987. (non Chalara australis McKenzie, Mycotaxon 46: 291 (1993), nom. illegit.). ≡ Thielaviopsis australis (J. Walker & Kile) A.E. Paulin, T.C. Harr. & McNew, Mycologia 94: 69. 2002. Note: Sexual state unknown. Davidsoniella eucalypti (Z.Q. Yuan & Kile) Z.W. de Beer, T.A. Duong & M.J. Wingf., comb. nov. MycoBank MB810309. Basionym: Ceratocystis eucalypti Z.Q. Yuan & Kile, Mycol. Res. 100: 573. 1996. ≡ Chalara eucalypti Z.Q. Yuan & Kile, Mycol. Res. 100: 573. 1996. ≡ Thielaviopsis eucalypti (Z.Q. Yuan & Kile) A.E. Paulin, T.C. Harr. & McNew, Mycologia 94: 69. 2002. Davidsoniella neocaledoniae (Kiffer & Delon) Z.W. de Beer, T.A. Duong & M.J. Wingf., comb. nov. MycoBank MB810310. Basionym: Chalara neocaledoniae Dadant ex Kiffer & Delon, Mycotaxon 18: 166. 1983. ≡ Thielaviopsis neocaledoniae (Kiffer & Delon) A.E. Paulin, T.C. Harr. & McNew, Mycologia 94: 70. 2002. = Thielaviopsis neocaledoniae Dadant, Rev. Gen. Bot. 57: 176. 1950. (nom. inval., Art. 39.1). Description: Kiffer & Delon (1983: 166–170, figs 1–2). Notes: Sexual state unknown. Dadant (1950) did not provide a Latin diagnosis and also failed to designate a type specimen, making the species name invalid. Kiffer & Delon (1983) obtained the original isolate of Dadant and validated the name. 210 Davidsoniella virescens (R.W. Davidson) Z.W. de Beer, T.A. Duong & M.J. Wingf., comb. nov. MycoBank MB810311. Basionym: Endoconidiophora virescens R.W. Davidson, Mycologia 36: 301. 1944. ≡ Ceratocystis virescens (R.W. Davidson) C. Moreau, Rev. Mycol. (Paris) Suppl. Col. 17: 22. 1952. ≡ Ophiostoma virescens (R.W. Davidson) Arx, Antonie van Leeuwenhoek 18: 212. 1952. Description: Samuels (1993: 16, figs 1A–B). Notes: Hunt (1956), Olchowecki & Reid (1974), and Upadhyay (1981) treated C. virescens as a synonym of C. coerulescens, but Nag Raj & Kendrick (1975), Gibbs (1993), Kile (1993), and Seifert et al. (1993), considered the two species distinct. Witthuhn et al. (1998) confirmed the separateness of the species. Endoconidiophora Münch, Naturw. Z. Forst- u. Landw. 5: 564. 1907. = Ceratocystis Ellis & Halst. section Endoconidiophora (Münch) H.P. Upadhyay pro parte, In: Upadhyay, Monogr. Ceratocystis & Ceratocystiopsis: 64. 1981. Type species: Endoconidiophora coerulescens Münch, Naturw. Z. Forst- u. Landw. 5: 564. 1907. Emended generic diagnosis. Ascomatal bases globose to ovoid, dark brown, with distinct basal spines. Ascomatal necks long, tapering towards apex, dark brown to black. Ostiolar hyphae divergent, non-septate, hyaline. Asci dehiscent. Ascospores onecelled, elongate to slightly curved with round ends, oblong cylindrical, surrounded by dinstinct translucent sheath. Conidiophores tubular, rectangular, cylindrical, sometimes slightly flared collarette. Conidiogenous cells phialidic, oblong cylindrical. Conidia unicellular, rectangular with two attachment points, hyaline, in chains. Aleurioconidia not present. Note: The most distinctive features of this genus are the long spines on the ascomatal bases and the sheathed ascospores (see Harrington & Wingfield 1998) Endoconidiophora coerulescens Münch, Naturw. Z. Land. Forstw. 5: 564. 1907. ≡ Ceratocystis coerulescens (Münch) Bakshi, Trans. Br. Mycol. Soc. 33: 114. 1950. emend. T.C. Harr. & M.J. Wingf., Canad. J. Bot. 76: 1448. 1998. ≡ Ophiostoma coerulescens (Münch) Nannf., Svenska Skogsv.-Fören. Tidskr. 32: 408. 1934. ?= Chalara ungeri Sacc., Syll. Fung. 4: 336. 1886. ≡ Thielaviopsis ungeri (Sacc.) A.E. Paulin, T.C. Harr. & McNew, Mycologia 94: 70. 2002. Descriptions: Lagerberg et al. (1927: 196–203, figs 22–26); Davidson (1935: 798–799); Siemaszko (1939: 20–22, pl. I, figs 9–13); Bakshi (1951: 2–5); Hunt (1956: 17, 21–23); Griffin (1968: 700–701); Nag Raj & Kendrick (1975: 94, 138–139, fig. 32B); Upadhyay (1981: 65, figs 191–196); Potlajczuk & Schekunova (1985: 149–150); Harrington & Wingfield (1998: 1448–1449). Notes: Harrington & Wingfield (1998) designated a neotype for C. coerulescens, while Nag Raj & Kendrick (1975) did the same REDEFINING CERATOCYSTIS for Ca. ungeri. Nag Raj & Kendrick (1975) and Paulin-Mahady et al. (2002) accepted the suggestion by Münch (1907) that Ca. ungeri represented the asexual state of C. coerulescens. In the absence of an ex-type culture representing Ca. ungeri, the synonymy can neither be confirmed nor rejected. Witthuhn et al. (1998) showed that isolates identified as C. coerulescens formed three distinct clades based on ITS data. These were later described as C. coerulescens sensu stricto, C. pinicola, and C. resinifera (Harrington & Wingfield 1998). Endoconidiophora douglasii (R.W. Davidson) Z.W. de Beer, T.A. Duong & M.J. Wingf., comb. nov. MycoBank MB810312. Basionym: Endoconidiophora coerulescens f. douglasii R.W. Davidson, Mycologia 45: 584. 1953. ≡ Ceratocystis douglasii (R.W. Davidson) M.J. Wingf. & T.C. Harr., Canad. J. Bot. 75: 832. 1997 Notes: Upadhyay (1981) considered Endoconidiophora coerulescens f. douglasii a synonym of C. coerulescens. Wingfield et al. (1997) distinguished C. coerulescens from C. douglasii and elevated the latter to species level. Endoconidiophora fujiensis (M.J. Wingf., Yamaoka & Marin) Z.W. de Beer, T.A. Duong & M.J. Wingf., comb. nov. MycoBank MB810313. Basionym: Ceratocystis fujiensis M.J. Wingf., Yamaoka & Marin, Mycol. Res. 109: 1142. 2005. Endoconidiophora laricicola (Redfern & Minter) Z.W. de Beer, T.A. Duong & M.J. Wingf., comb. nov. MycoBank MB810314. Basionym: Ceratocystis laricicola Redfern & Minter, Pl. Pathol. 36: 468. 1987. Descriptions: Harrington & Wingfield (1998: 1453, 1456); Yamaoka et al. (1998: 369–371, figs 6–10); Marin et al. (2005: 1142, 1144). Note: Witthuhn et al. (2000) and Harrington et al. (2002) distinguished C. laricicola from the morphologically similar C. polonica based on differences in bark beetle associates, conifer hosts and molecular data. Endoconidiophora pinicola (T.C. Harr. & M.J. Wingf.) Z.W. de Beer, T.A. Duong & M.J. Wingf., comb. nov. MycoBank MB810315. Basionym: Ceratocystis pinicola T.C. Harr. & M.J. Wingf., Canad. J. Bot. 76: 1452. 1998. Endoconidiophora polonica (Siemaszko) Z.W. de Beer, T.A. Duong & M.J. Wingf., comb. nov. MycoBank MB810316. Basionym: Ophiostoma polonicum Siemaszko, Planta Pol. 7: 32. 1939. ≡ Ceratocystis polonica (Siemaszko) C. Moreau, Rev. Mycol. (Paris) Suppl. Col. 17: 22. 1952. emend. T.C. Harr. & M.J. Wingf., Canad. J. Bot. 76(8): 1452. 1998. (as “polonicum”). Descriptions: Siemaszko (1939: 20, 32–33, pl. IV, figs 1–10); Mathiesen (1951: 208–210); Hunt (1956: 27); Solheim (1986: www.studiesinmycology.org AND ALLIED GENERA 205–206); Yamaoka et al. (1997: 1217–1219); Harrington & Wingfield (1998: 1452–1453, 1455); Marin et al. (2005: 1142, 1144). Notes: Siemaszko (1939) erroneously linked a leptographiumlike asexual state to O. polonicum. Upadhyay (1981) therefore treated the species as a synonym of O. penicillatum. However, Solheim (1986) and Harrington (1988) distinguished the two species. Visser et al. (1995) confirmed the placement of the species in Ceratocystis based on DNA sequence data. Harrington & Wingfield (1998) designated a neotype. Ceratocystis polonica was distinguished from the morphologically similar C. laricicola by Witthuhn et al. (2000) and Harrington et al. (2002), based primarily on differences in conifer hosts and bark beetle associates. Marin et al. (2009) showed that European and Japanese populations of C. polonica are genetically isolated and possibly in the process of speciation. Endoconidiophora resinifera (T.C. Harr. & M.J. Wingf.) Z.W. de Beer, T.A. Duong & M.J. Wingf., comb. nov. MycoBank MB810337. Basionym: Ceratocystis resinifera T.C. Harr. & M.J. Wingf., Canad. J. Bot. 76: 1449. 1998. Endoconidiophora rufipennis (M.J. Wingf., T.C. Harr. & H. Solheim) Z.W. de Beer, T.A. Duong & M.J. Wingf., comb. nov. MycoBank MB810317. Basionym: Ceratocystis rufipennis M.J. Wingf., T.C. Harr. & H. Solheim, Canad. J. Bot. 75: 828. 1997. (as “rufipenni”). Huntiella Z.W. de Beer, T.A. Duong & M.J. Wingf., gen. nov. MycoBank MB810236. Etymology: Named after the late John Hunt, author of the monograph of Ceratocystis that was published in 1956 (Hunt 1956) and in honour of the major contribution he made to the taxonomy of this group of fungi during his short career. Type species: Huntiella moniliformis (Hedgc.) Z.W. de Beer, T.A. Duong & M.J. Wingf. Ascomatal bases globose to pyriform, black, ornamented with dark brown to black, conical spines, occasionaly septate. Ascomatal necks long, tapering to apex, black, with a disk-like base. Ostiolar hyphae convergent to divergent, hyaline. Asci dehiscent. Ascospores one-celled, hat-shaped, hyaline. Primary conidiophores phialidic, long, septate, tapering to tip. Secondary conidiophores phialidic, short, septate. Primary conidia cylindrical, truncate ends, hyaline, in long chains. Secondary conidia barrel-shaped, hyaline to pale brown. Aleurioconidia not observed. Note: The most distinctive features of this genus are the conical spines on the ascomatal bases, the disk-like bases of the ascomatal necks, and the hat-shaped ascospores. Huntiella bhutanensis (M. van Wyk, M.J. Wingf. & T. Kirisits) Z.W. de Beer, T.A. Duong & M.J. Wingf., comb. nov. MycoBank MB810318. Basionym: Ceratocystis bhutanensis M. van Wyk, M.J. Wingf. & T. Kirisits, Stud. Mycol. 50: 373. 2004. 211 DE BEER ET AL. Note: This is an unusual taxon because it is the only species associated with a bark beetle, Ips smutzenhoferi, that infests Pinus wallichiana in Bhutan (Kirisits et al. 2013). Huntiella ceramica (R.N. Heath & Jol. Roux) Z.W. de Beer, T.A. Duong & M.J. Wingf., comb. nov. MycoBank MB810319. Basionym: Thielaviopsis ceramica R.N. Heath & Jol. Roux, Fungal Diversity 34: 60. Note: Sexual state unknown. Huntiella chinaeucensis (S.F. Chen, M. van Wyk, M.J. Wingf. & X.D. Zhou) Z.W. de Beer, T.A. Duong & M.J. Wingf., comb. nov. MycoBank MB810320. Basionym: Ceratocystis chinaeucensis S.F. Chen, M. van Wyk, M.J. Wingf. & X.D. Zhou, Fungal Diversity 58: 274. 2013. Huntiella cryptoformis (Mbenoun & Jol. Roux) Z.W. de Beer, T.A. Duong & M.J. Wingf., comb. nov. MycoBank MB810321. Basionym: Ceratocystis cryptoformis Mbenoun & Jol. Roux, Mycol. Progress 13: 232. 2014. Note: Although an isolate of this species was not included in the present study, DNA sequences generated by Mbenoun et al. (2014b) undoubtedly place this species in Huntiella. Huntiella decipiens (Kamgan & Jol. Roux) Z.W. de Beer, T.A. Duong & M.J. Wingf., comb. nov. MycoBank MB810322. Basionym: Ceratocystis decipiens Kamgan & Jol. Roux, Austral. Pl. Pathol. 42: 299. 2013. Huntiella inquinans (Tarigan, M. van Wyk & M.J. Wingf.) Z.W. de Beer, T.A. Duong & M.J. Wingf. comb. nov. MycoBank MB810323. Basionym: Ceratocystis inquinans Tarigan, M. van Wyk & M.J. Wingf., Mycoscience 51: 58. 2010. Huntiella microbasis (Tarigan, M. van Wyk & M.J. Wingf) Z.W. de Beer, T.A. Duong & M.J. Wingf., comb. nov. MycoBank MB810324. Basionym: Ceratocystis microbasis Tarigan, M. van Wyk & M.J. Wingf., Mycoscience 51: 61. 2010. Huntiella moniliformis (Hedgc.) Z.W. de Beer, T.A. Duong & M.J. Wingf. comb. nov. MycoBank MB810325. Basionym: Ceratostomella moniliformis Hedgc., Annual Rep. Missouri Bot. Gard.17: 78. 1906. ≡ Ophiostoma moniliforme (Hedgc.) Syd., In Sydow & Sydow, Ann. Mycol. 17: 43. 1919. ≡ Endoconidiophora moniliformis (Hedgc.) R.W. Davidson, J. Agric. Res. 50: 800. 1935. ≡ Ceratocystis moniliformis (Hedgc.) M. Moreau & Moreau, Rev. Mycol. (Paris) Suppl. Col. 17: 141. 1952. (nom. illegit., Art. 52.1). ≡ Ceratocystis moniliformis (Hedgc.) C. Moreau, Rev. Mycol. (Paris) Suppl. Col. 17: 22. 1952. = Endoconidiophora bunae Kitajima, Bull. Imp. Forest Exp. Sta. 35: 126. 1936. ≡ Ophiostoma bunae (Kitajima) Arx, Antonie van Leeuwenhoek 18: 211. 1952. (as “lunae”). 212 ≡ Ceratocystis bunae (Kitajima) C. Moreau, Rev. Mycol. (Paris) Suppl. Col. 17: 22. 1952. = Ceratocystis wilsonii Bakshi, Mycol. Pap. 35: 8. 1951. (as “wilsoni”). ≡ Ceratocystis moniliformis f. wilsonii C. Moreau, Rev. Mycol. (Paris) Suppl. Col. 17: 23. 1952. (as “wilsoni”; nom. inval., Art. 39.1). = Ophiostoma moniliforme f. davidsonii Luc, Rev. Mycol. (Paris) Suppl. Col. 17: 12. 1952. (nom. inval., Art. 39.1). = Ophiostoma moniliforme f. pycnanthi Luc, Rev. Mycol. (Paris) Suppl. Col. 17: 12. 1952. (nom. inval., Art. 39.1). = Ophiostoma moniliforme f. typica Luc, Rev. Mycol. (Paris) Suppl. Col. 17: 12. 1952. (nom. inval., Art. 24.3 & Art. 39.1). = Ophiostoma moniliforme f. theobromae Luc, Rev. Mycol. (Paris) Suppl. Col. 17: 13. 1952. (nom. inval., Art. 39.1). = Ceratocystis filiformis Roldan, Philipp. J. Sci. 91: 418. 1962. Descriptions: Hedgcock (1906: 78–80, pl. 3, fig. 5, pl. 5, figs 3–5); Davidson (1935: 799–800); Moreau & Moreau (1952, figs 1–4); Luc (1952: 12–15, figs 1–2); Hunt (1956: 13, 17–19); Morgan-Jones (1967b, figs A–H); Nag Raj & Kendrick (1975: 116, 141–142, fig. 43A); Upadhyay (1981: 51, figs 109–115); Maekawa et al. (1987: 8–10, figs 7–18); Kowalski & Butin (1989: 238–241). Notes: Four varieties were described invalidly for C. moniliformis by Luc (1952). Moreau (1952) then reduced two species, C. wilsonii and C. variospora (now considered a distinct species), to formae of C. moniliformis, and treated R. coffeae as a synonym (see notes above under C. fimbriata). Moreau & Moreau (1952) reduced O. moniliforme f. theobromae to synonymy with C. moniliformis, and Hunt (1956) did the same with E. bunae and C. wilsonii. Nag Raj & Kendrick (1975) and Upadhyay (1981) added C. filiformis to the synonyms of C. moniliformis. The accuracy of all these synonymies deserves to be carefully reconsidered based on DNA sequence data and fresh isolates obtained from similar hosts. Huntiella moniliformopsis (Yuan & Mohammed) Z.W. de Beer, T.A. Duong & M.J. Wingf., comb. nov. MycoBank MB810326. Basionym: Ceratocystis moniliformopsis Yuan & Mohammed, Austral. Syst. Bot. 15: 126. 2002. Huntiella oblonga (R.N. Heath & Jol. Roux) Z.W. de Beer, T.A. Duong & M.J. Wingf., comb. nov. MycoBank MB810328. Basionym: Ceratocystis oblonga R.N. Heath & Jol. Roux, Fungal Diversity 34: 59. 2009. Huntiella omanensis (Al-Subhi, M.J. Wingf., M. van Wyk & Deadman) Z.W. de Beer, T.A. Duong & M.J. Wingf., comb. nov. MycoBank MB810329. Basionym: Ceratocystis omanensis Al-Subhi, M.J. Wingf., M. van Wyk & Deadman, Mycol. Res. 110: 242. 2006. Huntiella salinaria (Kamgan & Jol. Roux) Z.W. de Beer, T.A. Duong & M.J. Wingf., comb. nov. MycoBank MB810330. Basionym: Ceratocystis salinaria Kamgan & Jol. Roux, Austral. Pl. Pathol. 42: 298. 2013. Huntiella savannae (Kamgan & Jol. Roux) Z.W. de Beer, T.A. Duong & M.J. Wingf., comb. nov. MycoBank MB810331. REDEFINING CERATOCYSTIS Basionym: Ceratocystis savannae Kamgan & Jol. Roux, Fungal Diversity 29: 52. 2008. AND ALLIED GENERA = Endoconidium fragrans Delacr., Bull. Soc. Mycol. France 9: 184. 1893. = Catenularia echinata Wakker, De ziekten van het suikerriet op Java, E.J. Brill, Leiden: 196. 1898. Huntiella sublaevis (M. van Wyk & M.J. Wingf.) Z.W. de Beer, T.A. Duong & M.J. Wingf., comb. nov. MycoBank MB810332. Descriptions: Mbenoun et al. (2014a). Basionym: Ceratocystis sublaevis M. van Wyk & M.J. Wingf., Fungal Diversity 46: 128. 2011. Note: The synonymy between T. ethacetica, Cat. echinata and E. fragrans is discussed by Mbenoun et al. (2014a). Huntiella sumatrana (Tarigan, M. van Wyk & M.J. Wingf.) Z.W. de Beer, T.A. Duong & M.J. Wingf., comb. nov. MycoBank MB810333. Thielaviopsis euricoi (Bat. & A.F. Vital) A.E. Paulin, T.C. Harr. & McNew, Mycologia 94: 70. 2002. Basionym: Hughesiella euricoi Bat. & A.F. Vital, Anais Soc. Biol. Pernambuco 14: 142. 1956. Basionym: Ceratocystis sumatrana Tarigan, M. van Wyk & M.J. Wingf., Mycoscience 51: 60. 2010. Huntiella tribiliformis (M. van Wyk & M.J. Wingf.) Z.W. de Beer, T.A. Duong & M.J. Wingf., comb. nov. MycoBank MB810334. Basionym: Ceratocystis tribiliformis M. van Wyk & M.J. Wingf., Fungal Diversity 21: 197. 2006. Huntiella tyalla (Kamgan & Jol. Roux) Z.W. de Beer, T.A. Duong & M.J. Wingf., comb. nov. MycoBank MB810335. Basionym: Ceratocystis tyalla Kamgan & Jol. Roux, Antonie van Leeuwenhoek 101: 233. 2012. Thielaviopsis Went, Meded. Proefstat. Suikerriet W. Java 5: 4. 1893. = Hughesiella Bat. & A.F. Vital, Anais Soc. Biol. Pernambuco 14: 141. 1956. (type species Hu. euricoi). Type species: Thielaviopsis ethacetica Went, Meded. Proefstat. Suikerriet W. Java 5: 4. 1893. Emended generic diagnosis. Ascomatal bases globose, light brown, display dark as result of aleurioconidia and distinctly digitate or stellate appendages. Ascomatal necks long, tapering to apex, dark grey. Ostiolar hyphae divergent, hyaline. Asci dehiscent. Ascospores aseptate, ellipsoidal, hyaline with sheath. Conidiophores lageniform, solitary, occasionaly aggregate in synnemata. Primary conidia aseptate, cylindrical, hyaline. Secondary conidia aseptate, cylindrical to oblong, hyaline becoming grey, thick walled. Aleurioconidia subglobose, oblong or ovoid, thick-walled, forms holoblastically, singly or in chains, grey-brown. ≡ Ceratocystis euricoi (Bat. & A.F. Vital) Mbenoun & Z.W. de Beer, Mycologia 106: 774. 2014. Descriptions: Mbenoun et al. (2014a). Notes: Sexual state unknown. Thielaviopsis euricoi is the type species of the genus Hughesiella, treated above as synonym of Thielaviopsis. Thielaviopsis musarum (R.S. Mitchell) Riedl, Sydowia 15: 249. 1962. Basionym: Thielaviopsis paradoxa (De Seynes) Höhn. var. musarum R.S. Mitchell, J. Council Sci. Industr. Res. Australia, 10: 130. 1937. (nom. inval., Art. 39.1). ≡ Ceratocystis musarum Riedl, Sydowia 15: 248. 1962. Descriptions: Mbenoun et al. (2014a). Note: The taxonomy of this species is discussed by Mbenoun et al. (2014a). Thielaviopsis paradoxa (De Seynes) Höhn., Hedwigia 43: 295. 1904. Basionym: Sporoschisma paradoxum De Seynes, Rech. Hist. Nat. Veg. Inf. 3: 30. 1886. ≡ Chalara paradoxa (De Seynes) Sacc., Syll. Fung. 10: 595. 1892. ≡ Ceratostomella paradoxa (De Seynes) Dade, Trans. Br. Mycol. Soc. 13: 191. 1928. ≡ Ophiostoma paradoxum (De Seynes) Nannf., Svenska Skogsv.Fören. Tidskr. 32: 408. 1934. ≡ Endoconidiophora paradoxa (De Seynes) R.W. Davidson, J. Agric. Res. 50: 802. 1935. ≡ Ceratocystis paradoxa (De Seynes) C. Moreau, Rev. Mycol. (Paris) Suppl. Col. 17: 22. 1952. = Stilbochalara dimorpha Ferd. & Winge, Bot. Tidsskr. 30: 220. 1910. Notes: The most distinctive features of this genus are the distinctly digitate or stellate appendages on the ascomatal bases. This is the only group where some species form synnemata in the asexual state. Thielaviopsis euricoi is the type species of the genus Hughesiella, which is thus a synonym of Thielaviopsis. Descriptions: Davidson (1935: 801–802); Hunt (1956: 13, 19–20); Morgan-Jones (1967c, figs A–G); Nag Raj & Kendrick (1975: 112, 114, 128–129, figs 41–42); Upadhyay (1981: 67, figs 197–204); Mbenoun et al. (2014a). Thielaviopsis cerberus (Mbenoun, M.J. Wingf. & Jol. Roux) Z.W. de Beer, T.A. Duong & M.J. Wingf., comb. nov. MycoBank MB810336. Basionym: Ceratocystis cerberus Mbenoun, M.J. Wingf. & Jol. Roux, Mycologia 106: 778. 2014. Notes: The synonymy of St. dimorpha with C. paradoxa was suggested by Mbenoun et al. (2014a). These authors also discussed and explained the treatment of the names and authorities of the previously considered sexual and asexual states, as suggested by Hawksworth et al. (2013). Thielaviopsis ethacetica Went, Meded. Proefstat. Suikerriet W. Java 5: 4. 1893. (as “ethaceticus”). Thielaviopsis punctulata (Hennebert) A.E. Paulin, T.C. Harr. & McNew, Mycologia 94: 70. 2001. Basionym: Chalaropsis punctulata Hennebert, Antonie van Leeuwenhoek 33: 334. 1967. ≡ Ceratocystis ethacetica (Went) Mbenoun & Z.W. de Beer, Mycologia 106: 772. 2014. www.studiesinmycology.org 213 DE BEER ET AL. = Ceratostomella radicicola Bliss, Mycologia 33: 468. 1941. ≡ Ophiostoma radicicolum (Bliss) Arx, Antonie van Leeuwenhoek 18: 211. 1952. ≡ Ceratocystis radicicola (Bliss) C. Moreau, Rev. Mycol. (Paris) Suppl. Col. 17: 22. 1952. Descriptions: Hunt (1956: 11, 17, 20); Nag Raj & Kendrick (1975: 106, 142, fig. 38); Upadhyay (1981: 69, figs 205–213); Mbenoun et al. (2014a). Notes: Paulin-Mahady et al. (2002) and Mbenoun et al. (2014a) confirmed the synonymy of T. punctulata and C. radicicola based on similar sequences. Based on the Melbourne Code (McNeill et al. 2012) the older epithet must take preference, implying that this species will in future be treated as T. punctulata, and not as the better known C. radicicola, unless conservation of the later name against the earlier is proposed and accepted. Ceratocystis incertae sedis Four species could not be consistently accommodated in any of the seven major clades for which genera have been provided. We believe that they represent discrete genera but we have not provided generic names for these lineages. With increased sampling and further study, additional species are likely to be found that will populate these clades. At that time, genera can be provided for them. For the present they have been retained in their existing genera. We also list C. erinaceus and C. norvegica here for which isolates could not be obtained, and for which the generic placements remains uncertain. Ceratocystis adiposa (Butler) C. Moreau, Rev. Mycol. (Paris) Suppl. Col. 17: 22. 1952. Basionym: Sphaeronema adiposum Butler, Mem. Dept. Agric. India, Bot. Ser. 1: 40. 1906. ≡ Ceratostomella adiposa (Butler) Sartoris, J. Agric. Res. 35: 585. 1927. ≡ Ophiostoma adiposum (Butler) Nannf., In Melin & Nannf., Svenska Skogsv.-Fören. Tidskr. 32: 408. 1934. ≡ Endoconidiophora adiposa (Butler) R.W. Davidson, J. Agric. Res. 50: 802. 1935. = Ceratostomella major J.F.H. Beyma, Zentrabl. Bakteriol., 2. Abt. 91: 348. 1935. ≡ Ophiostoma majus (J.F.H. Beyma) Goid., Boll. Staz. Patol. Veg. Roma 15: 158. 1935. ≡ Ceratocystis major (J.F.H. Beyma) C. Moreau, Rev. Mycol. (Paris) Suppl. Col. 17: 22. 1952. Descriptions: Sartoris (1927: 578–585, figs 1–4); Davidson (1935: 801–802); Hunt (1956: 10–13); Upadhyay (1981: 35, figs 26–30); Moreau (1952: 17–20, fig. 1); Nag Raj & Kendrick (1975: 104, 140, fig. 37). ≡ Trichocladium basicola (Berk. & Broome) J.W. Carmich., In: Carmichael et al., Genera of Hyphomycetes: 185. 1980. = Chalara elegans Nag Raj & W.B. Kendr., Monogr. Chalara: 111. 1975. Description: Nag Raj & Kendrick (1975: 108–113, figs 39–40 as Ca. elegans). Notes: Sexual state unknown. Delon & Kiffer (1978) synonymised T. basicola with Ca. elegans, at the time treated in Chalara (Nag Raj & Kendrick 1975). Paulin-Mahady et al. (2002) showed the species is best treated in Thielaviopsis, thus reversing the synonymy and bringing the name to its current state. Although our data have shown that T. basicola does not form part of Thielaviopsis as defined in the present study, the species is best treated in this genus until an epitype is designated that is linked to the holotype specimen. On that basis a final generic placement can be ascertained. Ceratocystis erinaceus Bohar, Acta Phytopathol. Entomol. Hung. 31: 215. 1996. Notes: In the original description of this species from oak in Hungary and the United Kingdom, Bohar (1996) stated that it is closely related, but distinct from C. virescens (now D. virescens). Apart from a similar host, the elongated, sheathed ascospores of D. erinaceus suggest a placement in Davidsoniella. However, no cultures were available and we prefer to consider its generic placement as uncertain until epitypification can be achieved. Ceratocystis fagacearum (Bretz) J. Hunt, Lloydia 19: 21. 1956. Basionym: Endoconidiophora fagacearum Bretz, Phytopathology 42: 437. 1952. = Chalara quercina Henry, Phytopathology 34: 631. 1944. ≡ Thielaviopsis quercina (Henry) A.E. Paulin, T.C. Harr. & McNew, Mycologia 94: 70. 2002. Descriptions: Hunt (1956: 21); Nag Raj & Kendrick (1975: 94, 131, fig. 32A); Upadhyay (1981: 66); Potlajczuk & Schekunova (1985: 150); Kolarík & Hulcr (2009). Notes: The asexual state of this causal agent of oak wilt was described first as Ca. quercina (Henry 1944), while the sexual state was later discovered and described as E. fagacearum (Bretz 1952). The isolate used in our study groups outside the major lineages, usually relatively close to, but still very distinct from, A. ferruginea. Because this isolate does not represent the type of either of these species, we have chosen to treat the species in Ceratocystis until typification can be resolved. Notes: Hunt (1956), Moreau (1952), Griffin (1968), Olchowecki & Reid (1974), and Nag Raj & Kendrick (1975), all treated C. major and C. adiposa as distinct. Upadhyay (1981) suggested the synonymy of C. major with C. adiposa. Identical SSU sequences for the two species by Hausner et al. (1993b) suggested that the synonymy is sound, and this was confirmed in the present study where the two species had identical sequences in ITS, LSU and 60S. Ambrosiella ferruginea L.R. Batra, Mycologia 59: 980. 1967. Thielaviopsis basicola (Berk. & Broome) Ferraris, Fl. Ital. Crypt., Fungi 1: 233. 1912. Basionym: Torula basicola Berk. & Broome, Ann. Mag. Nat. Hist. 5: 461. 1850. Notes: Sexual state unknown. In our analyses, this species did not group in Ambrosiella s. str., but relatively close to, but still very distinct from, C. fagacearum. Because the isolate used in 214 ≡ Monilia ferruginea Math.-K€a€arik, Meddel. Statens SkogsForskningsinst. 43: 57. 1953. (nom. illegit., Art. 53.1, non M. ferruginea Pers. 1822). Descriptions: Mathiesen-K€a€arik (1953: 53–57, figs 5–7); Batra (1967: 1000–1004, figs 30, 31, 40). REDEFINING CERATOCYSTIS our study does not represent the type for the species, it is best treated in Ambrosiella until typification can be achieved. Ceratocystis norvegica J. Reid & Hausner, Botany 88: 977. 2010. Notes: A culture for this species could not be obtained. The sequences generated by Reid et al. (2010) suggest that this species falls outside the C. coerulescens complex (now Endoconidiophora), in which it would otherwise fit based on morphology and its conifer host. An accurate generic placement will only be possible once a culture can be obtained from which the appropriate sequences can be generated. Until such time it is best treated in Ceratocystis s.l. DISCUSSION Ceratocystis s. str. as it is defined in the present study is typified by the well-known species C. fimbriata. The genus currently includes 32 species, all of which were included in the analyses making up this study. The genus includes many important plant pathogens of angiosperm trees, but also of root crops (Kile 1993, Engelbrecht & Harrington 2005, Van Wyk et al. 2013, Roux & Wingfield 2013). These fungi all have ascomata with smooth non-ornamented bases and hat-shaped ascospores; two morphological features that distinguish them from species now in the genera Thielaviopsis (previously C. paradoxa s.l.) and Huntiella (previously C. moniliformis s. l.). Both the latter genera have ornamented ascomatal bases, although the morphology of the ornamentations is different in the two genera. In some cases, species boundaries for Ceratocystis s. str. are very clear, for example in the cases of the tree pathogens C. platani, C. cacaofunesta, and C. albifundus (Wingfield et al. 1996, Engelbrecht & Harrington 2005). In others, distinction at the species level has been debated (Fourie et al. 2014, Harrington et al. 2014a). Problems have for example arisen where the ITS region has suggested the existence of species boundaries but where it is now recognised that there are often two or more ITS forms within a single isolate (Al Adawi et al. 2013, Naidoo et al. 2013, Harrington et al. 2014a). Revisions of these species boundaries are likely to emerge when additional tools, especially those taken from whole genome sequences (Wilken et al. 2013), become available to discriminate more clearly between species. Another problem, already recognised for this group, is that hybridisation has occurred between species (Engelbrecht & Harrington 2005), a factor that will also confuse the recognition of discrete taxa. What is clear, however, is that there are many species already known in this group and many more will likely be found in the future. The asexual genus Chalaropsis has been emended to accommodate three species that are found on woody substrates. Two of these three were included in the analyses, along with information from a fourth undescribed species discovered in a culture collection. None of these fungi are known to have any economic or critical important ecological significance. The genus Endoconidiophora was emended to accommodate an important group of eight species that occur mostly on conifers and many of which are symbionts of conifer-infesting bark beetles. These fungi have previously been referred to as “the Gymnosperm section” in the C. coerulescens s. l. group www.studiesinmycology.org AND ALLIED GENERA (Harrington 2009, Wingfield et al. 2013) and they include a number of important pathogenic species such as E. polonica, E. laricicola, E. laricis and E. rufipennis (Redfern et al. 1987, Christiansen & Solheim 1990, Solheim & Safranyik 1997, Yamaoka et al. 1998). Other species are mostly agents of sap stain in conifer timber. Unlike species in Ceratocystis s. s., Huntiella and Thielaviopsis as circumscribed here, these fungi have ascospores that are not hat-shaped but rather are obovoid, with distinct sheaths (Fig. 3). Ceratocystis norvegica, a species from conifers in Norway (Reid et al. 2010) that seems to fit the description of Endoconidiophora, but for which material was not available, should be considered in future treatments of this genus. Davidsoniella is described as a new genus to accommodate members of what has previously been referred to as “the Angiosperm section” of C. coerulescens s. l. (Harrington 2009, Wingfield et al. 2013). The group includes four species, of which two, D. virescens and D. eucalypti, have known sexual states. The fusiform ascospores with evenly distributed hyaline sheaths are similar to but distinct from those of species now accommodated in Endoconidiophora. The remaining two species (D. australis and D. neocaledoniae) are known only by their asexual morphs, with the “chalara- or thielaviopsis-like” morphology typical of all species in Ceratocystis s. l. other than Ambrosiella. Interestingly, three of these fungi (D. virescens, D. neocaledoniae and D. australis) are important tree pathogens (Hepting 1944, Dadant 1950, Kile & Walker 1987) while one (D. eucalypti) is not known to be a pathogen (Kile et al. 1996). Three species (D. eucalypti, D. neocaledoniae and D. australis) are known exclusively from Australasia, while D. virescens occurs in North America. One more species fits the description of Davidsoniella, namely C. erinaceus from oak in Europe (Bohar 1996). No sequence data exist for this species but it should be considered in future treatments of this genus. The emended asexual genus Thielaviopsis includes species previously placed in C. paradoxa s. l., some of which have known sexual states. Until recently all species in this group were aggregated in the single species, C. paradoxa, but Mbenoun et al. (2014b)’s sequencing and mating studies disclosed six species in what they referred to as the C. paradoxa complex. They showed that the type species of Thielaviopsis, T. ethacetica, though previously treated as anamorph of C. paradoxa (Nag Raj & Kendrick 1975), is a distinct species. In one species, T. euricoi, no sexual state has been observed, but the others all produce hat-shaped ascospores. The outstanding characteristic of this genus, however, is the presence of prominent, digitate appendages on the ascomatal bases (Fig. 2). Most of these fungi occur on monocotyledenous plants including palms, pineapple and banana and some are important plant pathogens (Mitchell 1937, Bliss 1941, Abdullah et al. 2009). Huntiella was established in this study to accommodate a well-recognised and large group of species that have previously been referred to as residing in C. moniliformis s. l. Nineteen species are recognised in Huntiella of which 18 were included in the analyses. Two of these species are in the process of being described (Mbenoun unpubl. data). Species of Huntiella have hat-shaped ascospore (Fig. 3) similar to those found in Ceratocystis s. str. but they have very distinct ascomata. The latter feature necks with basal plates that easily disconnect from the ascomatal bases, which are also ornamented with spines (Fig. 2). Huntiella spp. are very commonly encountered on tree 215 DE BEER ET AL. wounds and they are typically non-pathogenic (Roux et al. 2004, Tarigan et al. 2010, Van Wyk et al. 2011). The genus Ambrosiella is perhaps the most unusual in Ceratocystis s. l. The five species accommodated in this genus (three of which were included in the analyses) are all symbionts of wood-boring “ambrosia” beetles and they lack a known sexual state. They are the only species in Ceratocystis s. l. that do not have typical “chalara-like” conidiogenous cells. Instead they have tubular tapering conidiophores and rectangular conidia formed in chains. Four species in Ceratocystis s. l. did not reside in any of the six major phylogenetic clades arising from this study. These species included C. adiposa, C. fagacearum, Thielaviopsis basicola and Ambrosiella ferruginea. These clearly represent discrete genera, which as collections increase in the future, will most likely accommodate additional species. This would be the same situation that has arisen for other genera now recognised in Ceratocystis s. l. and that previously included very few obvious species. For the present, we have chosen not to provide generic descriptions for these species. We believe that they are likely to be more clearly defined in the future, particularly since three of the four require additional work to obtain living material that can be unambiguously reconciled with their typification. Three of these four fungi (C. fagacearum, C. adiposa and T. basicola) are well-recognised plant pathogens (Butler 1906, Yarwood 1981, Juzwik et al. 2008) and we recognise that name changes could cause some confusion. It will thus be important to make it clear in studies that these fungi are phylogenetically unrelated to the genera in which they are currently treated. Phylogenetic analyses based on three carefully selected gene regions in this study have provided robust data to be able to distinguish more effectively between a large number of important and very different fungi that have, for many years, been unfortunately lumped in a single genus. The improved resolution has emerged through intensive collecting initiatives in new areas and through the application of new technologies that have improved our ability to recognise cryptic taxa. As global collecting initiatives expand for fungi residing in the Ceratocystidaceae, the taxa accommodated in the genera established in this study will surely increase and the boundaries of the few remaining monotypic lineages will also be elucidated. The new and rapidly stabilising nomenclatural code for fungi (McNeill et al. 2012) underpins a natural classification and a single name for all fungal taxa. This is a major and positive change that will ultimately promote a more effective taxonomy for fungi and it will ensure easier relationships with important associated disciplines such as plant pathology (Hawksworth 2011, Wingfield et al. 2012). A one fungus one name scheme has already been presented for the so-called ophiostomatoid fungi including the Ceratocystidaceae (De Beer et al. 2013b). In the present study, we have followed this approach rigorously. As far as possible, available generic names, in all cases those associated with asexual morphs have been used. In two instances entirely new generic names have been established and these honour two important early pioneers of the taxonomy of the ophiostomatoid fungi. They are John Hunt who produced the first comprehensive monograph of Ceratocystis (Hunt 1956) and Ross W. Davidson who dedicated his career to collecting, identifying and describing species of ophiostomatoid fungi including several Ceratocystis spp. 216 ACKNOWLEDGEMENTS For invaluable assistance in various aspects of this work, we thank Rouxle Botha, Arista Fourie, Seonju Marincowitz, Michael Mbenoun, Kershnee Naidoo and Markus Wilken. Photos were kindly made available by Ali Al-Adawi, Ronald Heath, Thomas Kirisits, DongHyeon Lee, Michael Mbenoun, Jolanda Roux, Marthin Tarigan and Gilbert Kamgan Nkuekam. We are thankful to Benjamin Stielow and the Barcoding Consortium for allowing us access to unpublished primers to use in this paper. We also acknowledge the financial support of members of the Tree Protection Cooperative Programme (TPCP), the NRF/DST Centre of Excellence in Tree Health Biotechnology (CTHB), and the University of Pretoria. REFERENCES Abdullah S, Asensio L, Monfort E, et al. (2009). Incidence of the two date palm pathogens, Thielaviopsis paradoxa and T. punctulata in soil from date palm plantations in Elx, South-East Spain. Journal of Plant Protection Research 49: 276–279. Al Adawi AO, Barnes I, Khan IA, et al. (2013). Ceratocystis manginecans associated with a serious wilt disease of two native legume trees in Oman and Pakistan. Australasian Plant Pathology 42: 179–193. Alvarez E, Llano GA, Loke JB, et al. (2012). Characterization of Thielaviopsis paradoxa Isolates from Oil Palms in Colombia, Ecuador and Brazil. Journal of Phytopathology 160: 690–700. Baker Engelbrecht CJ, Harrington TC, Krauss U, et al. (2003). Genetic variability and host specialization in the Latin American clade of Ceratocystis fimbriata. Phytopathology 93: 1274–1284. Bakshi BK (1951). Studies on four species of Ceratocystis, with a discussion on fungi causing sap-stain in Britain. Mycological Papers 35: 1–16. Barnes I, Gaur A, Burgess T, et al. (2001). Microsatellite markers reflect intraspecific relationships between isolates of the vascular wilt pathogen. Ceratocystis fimbriata. Molecular Plant Pathology 2: 319–325. Barnes I, Roux J, Wingfield BD, et al. (2003). Ceratocystis pirilliformis, a new species from Eucalyptus nitens in Australia. Mycologia 95: 865–871. Batista AC, Vital AF (1956). Hughesiella – novo e curioso genero de fungos Dematiaceae. Anais da Sociedade de Biologia de Pernambuco 14: 141–144. Batra LR (1967). Ambrosia fungi: A taxonomic revision, and nutritional studies of some species. Mycologia 59: 976–1017. Bliss DE (1941). A new species of Ceratostomella on the date palm. Mycologia 33: 468–482. Bohar G (1996). Ceratocystis erinaceus: A new endophyte in the heartwood of oak. Acta Phytopathologica et Entomologica Hungarica 31: 213–218.  Brader L (1964). Etude de la relation entre le scolyte des rameaux du Cafeier, Xyleborus compactus Eichh. (X. morstatti Hag.) et sa plante-h^ote. Mededelingen van de Landbouwhogeschool, Wageningen, Nederland 64: 1–109. Bretz TW (1952). The ascigerous stage of the Oak wilt fungus. Phytopathology 42: 435–437. Butler EJ (1906). Fungus diseases of sugar-cane in Bengal. Memoirs of the Department of Agriculture in India. Botanical Series 1: 1–53. Christiansen E, Solheim H (1990). The bark beetle-associated blue-stain fungus Ophiostoma polonicum can kill various spruces and Douglas-fir. European Journal of Forest Pathology 20: 436–446. Dadant R (1950). Sur une nouvelle maladie du Coffea robusta en Nouvelle Caledonie. Revue Generale de Botanique 57: 1–11. Davidson RW (1935). Fungi causing stain in logs and lumber in the Southern States, including five new species. Journal of Agricultural Research 50: 789–807. De Beer ZW, Seifert KA, Wingfield MJ (2013a). The ophiostomatoid fungi: their dual position in the Sordariomycetes. In: The ophiostomatoid fungi: expanding frontiers (Seifert KA, De Beer ZW, Wingfield MJ, eds), CBS biodiversity series, vol. 12. CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands: 1–19. De Beer ZW, Seifert KA, Wingfield MJ (2013b). A nomenclator for ophiostomatoid genera and species in the Ophiostomatales and Microascales. In: The ophiostomatoid fungi: expanding frontiers (Seifert KA, De Beer ZW, Wingfield MJ, eds), CBS biodiversity series, vol. 12. CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands: 245–322. Delon R, Kiffer E (1978). Chalara elegans (Thielaviopsis basicola) et les especes voisines. 1-Generalites et pathologie. Annales du Tabac 2: 159–186. REDEFINING CERATOCYSTIS Duong TA, De Beer ZW, Wingfield BD, et al. (2012). Phylogeny and taxonomy of species in the Grosmannia serpens complex. Mycologia 104: 715–732. Engelbrecht CJB, Harrington TC (2005). Intersterility, morphology and taxonomy of Ceratocystis fimbriata on sweet potato, cacao and sycamore. Mycologia 97: 57–69. Engelbrecht CJ, Harrington TC, Alfenas A (2007). Ceratocystis wilt of cacao — a disease of increasing importance. Phytopathology 97: 1648–1649. Engelbrecht CJB, Harrington TC, Steimel J, et al. (2004). Genetic variation in eastern North American and putatively introduced populations of Ceratocystis fimbriata f. platani. Molecular Ecology 13: 2995–3005. Fourie A, Wingfield MJ, Wingfield BD, et al. (2014). Molecular markers delimit cryptic species in the Ceratocystis fimbriata sensu lato complex. Mycological Progress: (in press). Gibbs JN (1981). European forestry and Ceratocystis species. EPPO Bulletin 11: 193–197. Gibbs JN (1993). The biology of ophiostomatoid fungi causing sapstain in trees and freshly cut logs. In: Ceratocystis and ophiostoma: taxonomy, ecology and pathogenicity (Wingfield MJ, Seifert KA, Webber J, eds). APS Press, St. Paul, Minnesota: 153–160. Griffin HD (1968). The genus Ceratocystis in Ontario. Canadian Journal of Botany 46: 689–718. Halsted BD (1890). Some fungous diseases of the sweet potato. Bulletin of the New Jersey Agricultural Experiment Station 76: 3–32. Harrington TC (1988). Leptographium species, their distributions, hosts and insect vectors. In: Leptographium root diseases on conifers (Harrington TC, Cobb FW, eds). APS Press, St. Paul, Minnesota: 1–40. Harrington TC (2000). Host specialization and speciation in the American wilt pathogen Ceratocystis fimbriata. Fitopatologia Brasileira 25: 262–263. Harrington TC (2009). The genus Ceratocystis. Where does the oak wilt fungus fit? In: Proceedings of the 2nd National Oak Wilt Symposium (Appel DN, Billings RF, eds). USDA Forest Service, Forest Health Protection, Austin, Texas: 1–16. Harrington TC, Aghayeva DN, Fraedrich SW (2010). New combinations in Raffaelea, Ambrosiella, and Hyalorhinocladiella, and four new species from the redbay ambrosia beetle, Xyleborus glabratus. Mycotaxon 111: 337–361. Harrington TC, Kazmi MR, Al-Sadi AM, et al. (2014a). Intraspecific and intragenomic variability of ITS rDNA sequences reveals taxonomic problems in Ceratocystis fimbriata sensu stricto. Mycologia 106: 224–242. Harrington TC, McNew D, Mayers C, et al. (2014b). Ambrosiella roeperi sp. nov. is the mycangial symbiont of the granulate ambrosia beetle, Xylosandrus crassiusculus. Mycologia 106: 835–845. Harrington TC, Pashenova NV, McNew DL, et al. (2002). Species delimitation and host specialization of Ceratocystis laricicola and C. polonica to larch and spruce. Plant Disease 86: 418–422. Harrington TC, Wingfield MJ (1998). The Ceratocystis species on conifers. Canadian Journal of Botany 76: 1446–1457. Hausner G, Reid J, Klassen GR (1993a). On the phylogeny of Ophiostoma, Ceratocystis s.s., and Microascus, and relationships within Ophiostoma based on partial ribosomal DNA sequences. Canadian Journal of Botany 71: 1249–1265. Hausner G, Reid J, Klassen GR (1993b). On the subdivision of Ceratocystis s.l., based on partial ribosomal DNA sequences. Canadian Journal of Botany 71: 52–63. Hawksworth DL (2011). A new dawn for the naming of fungi: impacts of decisions made in Melbourne in July 2011 on the future publication and regulation of fungal names. MycoKeys 1: 7–20. Hawksworth DL, Crous PW, Redhead SA, et al. (2011). The Amsterdam declaration on fungal nomenclature. IMA Fungus 2: 105–112. Hawksworth DL, McNeill J, De Beer ZW, et al. (2013). Names of fungal species with the same epithet applied to different morphs: how to treat them. IMA Fungus 4: 53–56. Hedgcock GG (1906). Studies upon some chromogenic fungi which discolor wood. Missouri Botanical Garden Annual Report 17: 59–114. Henry BW (1944). Chalara quercina n. sp., the cause of Oak wilt. Phytopathology 34: 631–635. Hepting G (1944). Sapstreak, a new killing disease of sugar maple. Phytopathology 34: 1069–1076. Hibbett DS, Binder M, Bischoff JF, et al. (2007). A higher-level phylogenetic classification of the Fungi. Mycological Research 111: 509–547. Hunt J (1956). Taxonomy of the genus Ceratocystis. Lloydia 19: 1–58. Johnson JA, Harrington TC, Engelbrecht CJB (2005). Phylogeny and taxonomy of the North American clade of the Ceratocystis fimbriata complex. Mycologia 97: 1067–1092. www.studiesinmycology.org AND ALLIED GENERA Juzwik J, Harrington TC, MacDonald WL, et al. (2008). The origin of Ceratocystis fagacearum, the oak wilt fungus. Annual Review of Phytopathology 46: 13–26. Kamgan Nkuekam G, Wingfield MJ, Mohammed C, et al. (2012). Ceratocystis species, including two new species associated with nitidulid beetles, on eucalypts in Australia. Antonie Van Leeuwenhoek 101: 217–241. Katoh K, Standley DM (2013). MAFFT Multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780. Kiffer E, Delon R (1983). Chalara elegans (Thielaviopsis basicola) and allied species. II – validation of two taxa. Mycotaxon 18: 165–174. Kile GA (1993). Plant diseases caused by species of Ceratocystis sensu stricto and Chalara. In: Ceratocystis and ophiostoma: taxonomy, ecology and pathogenicity (Wingfield MJ, Seifert KA, Webber J, eds). APS Press, St. Paul, Minnesota: 173–183. Kile GA, Harrington TC, Yuan ZQ, et al. (1996). Ceratocystis eucalypti sp. nov., a vascular stain fungus from eucalypts in Australia. Mycological Research 100: 571–579. Kile G, Walker J (1987). Chalara australis sp. nov. (Hyphomycetes), a vascular pathogen of Nothofagus cunninghamii (Fagaceae) in Australia and its relationship to other Chalara species. Australian Journal of Botany 35: 1–32. Kirisits T, Konrad H, Wingfield MJ, Chhetri DB (2013). Ophiostomatoid fungi associated with the Eastern Himalayan spruce bark beetle, Ips schmutzenhoferi, in Bhutan and their pathogenicity to Picea spinulosa and Pinus wallichiana. In: The ophiostomatoid fungi: expanding frontiers (Seifert KA, De Beer ZW, Wingfield MJ, eds), CBS biodiversity series, vol. 12. CBSKNAW Fungal Biodiversity Centre, Utrecht, The Netherlands: 99–112. Kolarík M, Hulcr J (2009). Mycobiota associated with the ambrosia beetle Scolytodes unipunctatus (Coleoptera: Curculionidae, Scolytinae). Mycological Research 113: 44–60. Kowalski T, Butin H (1989). Taxonomie bekannter und neuer Ceratocystis-Arten an Eiche (Quercus robur L). Journal of Phytopathology 124: 236–248. Lagerberg T, Lundberg G, Melin E (1927). Biological and practical researches into blueing in pine and spruce. Svenska Skogsvårdsföreningens Tidskrift 25: 145–272. Luc M (1952). Ophiostoma moniliforme (Hedge.) H. et P. Syd. et ses diverses formes. Revue de Mycologie 17: 10–16. Lutzoni F, Kauff F, Cox CJ, et al. (2004). Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. American Journal of Botany 91: 1446–1480. Maekawa N, Tsuneda A, Arita I (1987). Ceratocystis species occurring on the Lentinus edodes bedlogs. Reports of the Tottori Mycological Institute 25: 6–14. Malloch DW, Blackwell M (1993). Dispersal biology of the ophiostomatoid fungi. In: Ceratocystis and ophiostoma: taxonomy, ecology and pathogenicity (Wingfield MJ, Seifert KA, Webber J, eds). APS Press, St. Paul, Minnesota: 195–206. Marin M, Castro B, Gaitan A, et al. (2003). Relationships of Ceratocystis fimbriata isolates from Colombian coffee-growing regions based on molecular data and pathogenicity. Journal of Phytopathology 151: 395–405. Marin M, Preisig O, Wingfield BD, et al. (2005). Phenotypic and DNA sequence data comparisons reveal three discrete species in the Ceratocystis polonica species complex. Mycological Research 109: 1137–1148. Marin M, Preisig O, Wingfield BD, et al. (2009). Single sequence repeat markers reflect diversity and geographic barriers in Eurasian populations of the conifer pathogen Ceratocystis polonica. Forest Pathology 39: 249–265. Mathiesen A (1951). Einige neue Ophiostoma-Arten in Schweden. Svensk Botanisk Tidskrift 45: 203–232. Mathiesen-K€a€arik A (1953). Eine Übersicht über die gewöhnlichsten mit Borkenk€afern assoziierten Bl€auepilze in Schweden und einige für Schweden neue Bl€auepilze. Meddelanden från Statens Skogsforskningsinstitut 43: 1–74. Matsushima T (1975). Icones microfungorum a Matsushima lectorum. Matsushima, Kobe, Japan. Mbenoun M, De Beer ZW, Wingfield MJ, et al. (2014a). Reconsidering species boundaries in the Ceratocystis paradoxa complex, including a new species from oil palm and cacao in Cameroon. Mycologia 106: 757–784. Mbenoun M, Wingfield M, Begoude Boyogueno A, et al. (2014b). Molecular phylogenetic analyses reveal three new Ceratocystis species and provide evidence for geographic differentiation of the genus in Africa. Mycological Progress 13: 219–240. McNeill J, Barrie FR, Buck WR, et al. (2012). Regnum Vegetabile. International Code of Nomenclature for algae, fungi, and plants (Melbourne Code): vol. 154. Koeltz Scientific Books, Germany. 217 DE BEER ET AL. Melin E, Nannfeldt JA (1934). Researches into the blueing of ground wood-pulp. Svenska Skogsvårdsföreningens Tidskrift 32: 397–616. Mitchell RS (1937). Stem end rot of bananas with special reference to the physiological relationships of Thielaviopsis paradoxa (De Seyes) von Höhn. Journal of the Council for Scientific and Industrial Research Australia 10: 123–130. Moreau C (1952). Coexistence des formes Thielaviopsis et Graphium chez une souche de Ceratocystis major (van Beyma) nov. comb. Remarques sur les variations des Ceratocystis. Revue de Mycologie (Suppl. Colonial) 17: 17–25. Moreau F, Moreau M (1952). Sur le developpement du Ceratocystis moniliformis (Hedgcock) nov. comb. Revue de Mycologie 17: 141–153. Morgan-Jones G (1967a). Ceratocystis fimbriata. IMI Descriptions of Fungi and Bacteria 15. Sheet 141. Morgan-Jones G (1967b). Ceratocystis moniliformis. IMI Descriptions of Fungi and Bacteria 15. Sheet 142. Morgan-Jones G (1967c). Ceratocystis paradoxa. IMI Descriptions of Fungi and Bacteria 15. Sheet 143. Münch E (1907). Die Blauf€aule des Nadelhozes. I-II. Naturwissenschaftliche Zeitschrift für Forst- und Landwirtschaft 5: 531–573. Nag Raj TR, Kendrick B (1975). A monograph of Chalara and allied genera. Wilfrid Laurier University Press, Waterloo, Canada. Naidoo K, Steenkamp ET, Coetzee MPA, et al. (2013). Concerted evolution in the ribosomal RNA cistron. PLoS One 8: e59355. Norvell LL (2011). Fungal nomenclature. 1. Melbourne approves a new Code. Mycotaxon 116: 481–490. Ocasio-Morales RG, Tsopelas P, Harrington TC (2007). Origin of Ceratocystis platani on native Platanus orientalis in Greece and its impact on natural forests. Plant Disease 91: 901–904. Olchowecki A, Reid J (1974). Taxonomy of the genus Ceratocystis in Manitoba. Canadian Journal of Botany 52: 1675–1711. Paulin-Mahady AE, Harrington TC, McNew D (2002). Phylogenetic and taxonomic evaluation of Chalara, Chalaropsis, and Thielaviopsis anamorphs associated with Ceratocystis. Mycologia 94: 62–72. Peyronel B (1916). Una nuova malattia del lupino prodotta da Chalaropsis thielavioides Peyr. Le Stazioni Sperimentali Agrarie Italiane 49: 583–596. Pontis RE (1951). A canker disease of the coffee tree in Colombia and Venezuela. Phytopathology 41: 178–184. Potlajczuk VI, Schekunova EG (1985). De distributione specierum generic Ceratocystis Ell. et Halst. emend. Bakshi in URSS. Novosti Sistematiki nizsich rastieniy “Nauka” Akademia Nauk SSSR 22: 148–156. Reblova M, Gams W, Seifert KA (2011). Monilochaetes and allied genera of the Glomerellales, and a reconsideration of families in the Microascales. Studies in Mycology 68: 163–191. Redfern DB, Stoakley JT, Steele H, et al. (1987). Dieback and death of larch caused by Ceratocystis laricicola sp. nov. following attack by Ips cembrae. Plant Pathology 36: 467–480. Reid J, Iranpour M, Rudski SM, et al. (2010). A new conifer-inhabiting species of Ceratocystis from Norway. Botany 88: 971–983. Ronquist F, Teslenko M, van der Mark P, et al. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. Roux J, Van Wyk M, Hatting H, et al. (2004). Ceratocystis species infecting stem wounds on Eucalyptus grandis in South Africa. Plant Pathology 53: 414–421. Roux J, Wingfield MJ (2013). Ceratocystis species on the African continent, with particular reference to C. albifundus, and African species in the C. fimbriata sensu lato species complex. In: The ophiostomatoid fungi: expanding frontiers (Seifert KA, De Beer ZW, Wingfield MJ, eds), CBS biodiversity series, vol. 12. CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands: 131–138. Samuels GJ (1993). The case for distinguishing Ceratocystis and Ophiostoma. In: Ceratocystis and ophiostoma: taxonomy, ecology and pathogenicity (Wingfield MJ, Seifert KA, Webber J, eds). APS Press, St. Paul, Minnesota: 15–20. Santini A, Capretti P (2000). Analysis of the Italian population of Ceratocystis fimbriata f.sp. platani using RAPD and minisatellite markers. Plant Pathology 49: 461–467. Sartoris GB (1927). A cytological study of Ceratostomella adiposum (Butl.) comb. nov., the black-rot fangus of sugar-cane. Journal of Agricultural Research 35: 577–583. Schoch CL, Seifert KA, Huhndorf S, et al. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for 218 Fungi. Proceedings of the National Academy of Sciences of the United States of America 109: 6241–6246. Seifert KA (1993). Sapstain of commercial lumber by species of Ophiostoma and Ceratocystis. In: Ceratocystis and ophiostoma: taxonomy, ecology and pathogenicity (Wingfield MJ, Seifert KA, Webber J, eds). APS Press, St. Paul, Minnesota: 141–151. Seifert KA, De Beer ZW, Wingfield MJ (2013). The ophiostomatoid fungi: expanding frontiers. CBS biodiversity series: vol. 12. CBS-KNAW Biodiversity Centre, Utrecht, The Netherlands. Seifert KA, Morgan-Jones G, Gams W, et al. (2011). The genera of hyphomycetes. CBS biodiversity series: vol. 9. CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands. Seifert KA, Wingfield MJ, Kendrick WB (1993). A nomenclator for described species of Ceratocystis, Ophiostoma, Ceratocystiopsis, Ceratostomella and Sphaeronaemella. In: Ceratocystis and ophiostoma: taxonomy, ecology and pathogenicity (Wingfield MJ, Seifert KA, Webber J, eds). APS Press, St. Paul, Minnesota: 269–287. Siemaszko W (1939). Zespoly grzybow towarzyszących kornikom polskim. Planta Polonica 7: 1–54. Silvestro D, Michalak I (2012). raxmlGUI: a graphical front-end for RAxML. Organisms Diversity & Evolution 12: 335–337. Solheim H (1986). Species of Ophiostomataceae isolated from Picea abies infested by the bark beetle Ips typographus. Nordic Journal of Botany 6: 199–207. Solheim H, Safranyik L (1997). Pathogenicity to Sitka spruce of Ceratocystis rufipenni and Leptographium abietinum, blue-stain fungi associated with the spruce beetle. Canadian Journal of Forest Research 27: 1336–1341. Stielow JB, Vries de M, Dukik K, et al. (2014). One fungus, which genes? Benchmarking primers for potential secondary DNA barcodes. Persoonia 33: (in press). Spatafora JW, Blackwell M (1994). The polyphyletic origins of ophiostomatoid fungi. Mycological Research 98: 1–9. Steimel J, Engelbrecht CJB, Harrington TC (2004). Development and characterization of microsatellite markers for the fungus Ceratocystis fimbriata. Molecular Ecology Notes 4: 215–218. Sydow vH, Sydow P (1919). Mycologische Mitteilungen. Annales Mycologici 17: 33–47. Tamura K, Stecher G, Peterson D, et al. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729. Tarigan M, Roux J, Van Wyk M, et al. (2011). A new wilt and die-back disease of Acacia mangium associated with Ceratocystis manginecans and C. acaciivora sp. nov. in Indonesia. South African Journal of Botany 77: 292–304. Tarigan M, Van Wyk M, Roux J, et al. (2010). Three new Ceratocystis spp. in the Ceratocystis moniliformis complex from wounds on Acacia mangium and A. crassicarpa. Mycoscience 51: 53–67. Thorpe DJ, Harrington TC, Uchida JY (2005). Pathogenicity, internal transcribed spacer-rDNA variation, and human dispersal of Ceratocystis fimbriata on the family Araceae. Phytopathology 95: 316–323. Upadhyay HP (1981). A monograph of Ceratocystis and Ceratocystiopsis. University of Georgia Press, Athens, GA, USA. Van der Nest MA, Bihon W, De Vos L, et al. (2014). Draft genome sequences of Diplodia sapinea, Ceratocystis manginecans, and Ceratocystis moniliformis. IMA Fungus 5: 135–140. Van Wyk M, Al Adawi AO, Khan IA, et al. (2007). Ceratocystis manginecans sp. nov., causal agent of a destructive mango wilt disease in Oman and Pakistan. Fungal Diversity 27: 213–230. Van Wyk M, Wingfield BD, Marin M, et al. (2010). New Ceratocystis species infecting coffee, cacao, citrus and native trees in Colombia. Fungal Diversity 40: 103–117. Van Wyk M, Wingfield BD, Wingfield MJ (2011). Four new Ceratocystis spp. associated with wounds on Eucalyptus, Schizolobium and Terminalia trees in Ecuador. Fungal Diversity 46: 111–131. Van Wyk M, Wingfield BD, Wingfield MJ (2013). Ceratocystis species in the Ceratocystis fimbriata complex. In: The ophiostomatoid fungi: expanding frontiers (Seifert KA, De Beer ZW, Wingfield MJ, eds), CBS biodiversity series, vol. 12. CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands: 65–73. Van Wyk PWJ, Wingfield MJ, Van Wyk PS (1993). Ultrastructure of centrum and ascospore development in selected Ceratocystis and Ophiostoma species. In: Ceratocystis and ophiostoma: taxonomy, ecology and pathogenicity (Wingfield MJ, Seifert KA, Webber J, eds). APS Press, St. Paul, Minnesota: 195–206. REDEFINING CERATOCYSTIS Veldeman R (1971). ‘Chalaropsis sp.’ a new parasitic fungus on poplar, the cause of bark lesions. Mededelingen van de Facultiet Landbouwwetenschappen, Rijksuniversiteit Gent 36: 1001–1005. Vilgalys R, Hester M (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 4238–4246. Visser C, Wingfield MJ, Wingfield BD, et al. (1995). Ophiostoma polonicum is a species of Ceratocystis sensu stricto. Systematic and Applied Microbiology 18: 403–409. Von Arx JA, Hennebert GL (1965). Deux champignons ambrosia. Mycopathologia et Mycologia Applicata 25: 309–315. Webster RK, Butler EE (1967). A morphological and biological concept of the species Ceratocystis fimbriata. Canadian Journal of Botany 45: 1457–1468. Went FAFC (1893). De ananasziekte van het suikerriet. Mededeelingen van het Proefstation West-Java 5: 1–8. Wilken PM, Steenkamp ET, Wingfield MJ, et al. (2013). Draft nuclear genome sequence for the plant pathogen, Ceratocystis fimbriata. IMA Fungus 4: 357–358. Wingfield BD, Van Wyk M, Roos H, et al. (2013). Ceratocystis: emerging evidence for discrete generic boundaries. In: The ophiostomatoid fungi: expanding frontiers (Seifert KA, De Beer ZW, Wingfield MJ, eds), CBS biodiversity series, vol. 12. CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands: 57–64. www.studiesinmycology.org AND ALLIED GENERA Wingfield MJ, De Beer C, Visser C, et al. (1996). A new Ceratocystis species defined using morphological and ribosomal DNA sequence comparisons. Systematic and Applied Microbiology 19: 191–202. Wingfield MJ, De Beer ZW, Slippers B, et al. (2012). One fungus, one name promotes progressive plant pathology. Molecular Plant Pathology 13: 604–613. Wingfield MJ, Harrington TC, Solheim H (1997). Two species in the Ceratocystis coerulescens complex from conifers in western North America. Canadian Journal of Botany 75: 827–834. Witthuhn RC, Harrington TC, Steimel JP, et al. (2000). Comparison of isozymes, rDNA spacer regions and MAT-2 DNA sequences as phylogenetic characters in the analysis of the Ceratocystis coerulescens complex. Mycologia 92: 447–452. Witthuhn RC, Wingfield BD, Wingfield MJ, et al. (1998). Monophyly of the conifer species in the Ceratocystis coerulescens complex based on DNA sequence data. Mycologia 90: 96–101. Yamaoka Y, Wingfield MJ, Ohsawa M, et al. (1998). Ophiostomatoid fungi associated with Ips cembrae in Japan and their pathogenicity of Japanese larch. Mycoscience 39: 367–378. Yamaoka Y, Wingfield MJ, Takahashi I, et al. (1997). Ophiostomatoid fungi associated with the spruce bark beetle Ips typographus f. japonicus in Japan. Mycological Research 101: 1215–1227. Yarwood CE (1981). The occurrence of Chalara elegans. Mycologia 73: 524–530. 219