Academia.eduAcademia.edu
Studies in Mycology StudieS in Mycology 71: 1–210. available online at www.studiesinmycology.org A monograph of Allantonectria, Nectria, and Pleonectria (Nectriaceae, Hypocreales, Ascomycota) and their pycnidial, sporodochial, and synnematous anamorphs Yuuri Hirooka1,2*, Amy Y. Rossman2, Gary J. Samuels2, Christian Lechat3 and Priscila Chaverri1 Department of Plant Sciences and Landscape Architecture, 2112 Plant Sciences Building, University of Maryland, College Park, Maryland 20742, USA; 2United States Department of Agriculture, Agriculture Research Service, Systematic Mycology and Microbiology Laboratory, B-010A, 10300 Beltsville Ave., Beltsville, Maryland 20705, USA; 3 AscoFrance, 64 route de Chizé, F-79360, Villiers en Bois, France 1 *Correspondence: Yuuri Hirooka, YuuriHirooka@gmail.com Abstract: Although Nectria is the type genus of Nectriaceae (Hypocreales, Sordariomycetes, Pezizomycotina, Ascomycota), the systematics of the teleomorphic and anamorphic state of Nectria sensu Rossman has not been studied in detail. The objectives of this study are to 1) provide a phylogenetic overview to determine if species of Nectria with Gyrostroma, Tubercularia, and Zythiostroma anamorphs form a monophyletic group; 2) deine Nectria, segregate genera, and their species using morphologically informative characters of teleomorphic and anamorphic states; and 3) provide descriptions and illustrations of these genera and species. To accomplish these objectives, results of phylogenetic analyses of DNA sequence data from six loci (act, ITS, LSU, rpb1, tef1 and tub), were integrated with morphological characterisations of anamorphs and teleomorphs. Results from the phylogenetic analyses demonstrate that species previously regarded as the genus Nectria having Gyrostroma, Tubercularia, and Zythiostroma anamorphs belong in two major paraphyletic clades. The irst major clade regarded as the genus Pleonectria contains 26 species with ascoconidia produced by ascospores in asci, perithecial walls having bright yellow scurf, and immersed or supericial pycnidial anamorphs (Zythiostroma = Gyrostroma). A lineage basal to the Pleonectria clade includes Nectria miltina having very small, aseptate ascospores, and trichoderma-like conidiophores and occurring on monocotyledonous plants. These characteristics are unusual in Pleonectria, thus we recognise the monotypic genus Allantonectria with Allantonectria miltina. The second major clade comprises the genus Nectria sensu stricto including the type species, N. cinnabarina, and 28 additional species. Within the genus Nectria, four subclades exist. One subclade includes species with sporodochial anamorphs and another with synnematous anamorphs. The other two paraphyletic subclades include species that produce abundant stromata in which the large perithecia are immersed, large ascospores, and peculiar anamorphs that form pycnidia or sporodochia either on their natural substrate or in culture. In this study the evolution of species, morphology, and ecology of the three genera, Allantonectria, Nectria, and Pleonectria, are discussed based on the phylogenetic analyses. In addition, descriptions, illustrations, and keys for identiication are presented for the 56 species in Allantonectria, Nectria, and Pleonectria. Key words: act, Ascomycetes, Gyrostroma, ITS, LSU, molecular systematics, Nectriaceae, plant pathogen, rpb1, tef1, tub, Tubercularia, Zythiostroma. Taxonomic novelties: New species: Nectria argentinensis Hirooka, Rossman & P. Chaverri, Nectria berberidicola Hirooka, Lechat, Rossman, & P. Chaverri, Nectria himalayensis Hirooka, Rossman, & P. Chaverri, Nectria magnispora Hirooka, Rossman, & P. Chaverri, Nectria mariae Hirooka, Fournier, Lechat, Rossman, & P. Chaverri, Nectria pyriformis Hirooka, Rossman & P. Chaverri, Pleonectria boothii Hirooka, Rossman & Chaverri, Pleonectria clavatispora Hirooka, Rossman & P. Chaverri, Pleonectria ilicicola Hirooka, Rossman & P. Chaverri, Pleonectria okinawensis Hirooka, Rossman & P. Chaverri, Pleonectria pseudomissouriensis Hirooka, Rossman & P. Chaverri, Pleonectria quercicola Hirooka, Checa, Areual, Rossman & P. Chaverri, Pleonectria strobi Hirooka, Rossman & P. Chaverri. New combinations: Cosmospora proteae (Marinc., M.J. Wingf. & Crous) Hirooka, Rossman & P. Chaverri, Nectricladiella viticola (Berk. & M.A. Curtis) Hirooka, Rossman & P. Chaverri, Neocosmospora guarapiensis (Speg.) Hirooka, Samuels, Rossman & P. Chaverri, Neocosmospora rehmiana (Kirschstein) Hirooka, Samuels, Rossman & P. Chaverri, Pleonectria aquifolii (Fr.) Hirooka, Rossman & P. Chaverri, Pleonectria aurigera (Berk. & Rav.) Hirooka, Rossman & P. Chaverri, Pleonectria chlorinella (Cooke) Hirooka, Rossman & P. Chaverri, Pleonectria coryli (Fuckel) Hirooka, Rossman & P. Chaverri, Pleonectria cucurbitula (Tode : Fr.) Hirooka, Rossman & P. Chaverri, Pleonectria lonicerae (Seeler) Hirooka, Rossman & P. Chaverri, Pleonectria rosellinii (Carestia) Hirooka, Rossman & P. Chaverri, Pleonectria rubicarpa (Cooke) Hirooka, Rossman & P. Chaverri, Pleonectria sinopica (Fr. : Fr.) Hirooka, Rossman & P. Chaverri, Pleonectria sphaerospora (Ellis & Everh) Hirooka, Rossman & P. Chaverri, Pleonectria virens ( Harkn.) Hirooka, Rossman & P. Chaverri, Pleonectria zanthoxyli (Peck) Hirooka, Rossman & P. Chaverri. Published online: 21 February 2012; doi:10.3114/sim0001. INTRODUCTION Traditionally the genus Nectria (Ascomycota, Pezizomycotina, Sordariomycetes, Hypocreales, Nectriaceae) has been applied to species having light to bright coloured, soft-textured, supericial, uniloculate perithecia, unitunicate asci, and phialidic anamorphs. Recently, many species of Nectria sensu lato were placed in segregate genera in the Bionectriaceae and Nectriaceae (Rossman et al. 1999). In that study the genus Nectria was restricted to 28 species and is here regarded as Nectria sensu Rossman. Although a key to species was provided, these species were not described and illustrated nor were type and other specimens examined. Here we provide a detailed account of the species included in Nectria sensu Rossman and related species based on a multigene phylogeny of these species combined with an examination of type and additional herbarium specimens plus many fresh collections. Fries (1849) recognised the genus Nectria based on Hypocrea sect. Nectria. Subsequently, many species were described or classiied in Nectria and today these fungi are referred to as the nectrioid or nectria-like fungi. For many years the concept of Nectria was extremely broad; more than 1000 species have been described in Nectria sensu lato. Fries (1825, 1849) did not specify ascospore characteristics and included species with amerosporous, phragmosporous, and scolecosporous ascospores. Saccardo Copyright CBS-KNAW Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. You are free to share - to copy, distribute and transmit the work, under the following conditions: Attribution: You must attribute the work in the manner speciied by the author or licensor (but not in any way that suggests that they endorse you or your use of the work). Non-commercial: You may not use this work for commercial purposes. No derivative works: You may not alter, transform, or build upon this work. For any reuse or distribution, you must make clear to others the license terms of this work, which can be found at http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode. Any of the above conditions can be waived if you get permission from the copyright holder. Nothing in this license impairs or restricts the author’s moral rights. 1 Hirooka et al. (1878, 1883) emended the description of Nectria limiting it to species having 1-septate ascospores. Saccardo (1883) recognised a number of generic segregates from Nectria, often based on a single character such as ascospore septation. For example, species with medium length ascospores with more than one septum were placed in Calonectria and those with very long ascospores and multiple septa in Ophionectria. Seaver (1909) included 23 species of Nectria in North America and cited N. peziza as the type species. This lectotypiication is not considered legitimate because he was following the irst-species rule of the American Code of Botanical Nomenclature, a code that was never oficially recognised. The irst legitimate typiication of Nectria was made by Clements & Shear (1931) who designated N. cinnabarina as the lectotype. The genus Nectria 1849 was proposed for conservation with N. cinnabarina as the type over Ephedrosphaera Dumort. 1822 and Hydropisphaera Dumort. 1822 by Cannon & Hawksworth (1983) and this proposal was approved as listed in Greuter et al. (1994). In recent years, Nectria sensu lato has been segregated into a number of genera based on suites of characteristics such as perithecial wall structure and anamorphic states (Hirooka et al. 2010; Rossman et al. 1999) combined with LSU phylogenetics (Rehner & Samuels 1995). In Rossman et al. (1999), a number of new genera were described while others previously regarded as synonyms of Nectria were resurrected. For example, species of Nectria having cylindrocarpon-like anamorphs were placed in the genus Neonectria, which has now been subdivided into four genera (Chaverri et al. 2011). The genus Bionectria, type genus of the Bionectriaceae, was recognised by Rossman et al. (1999) for species with yellowish to orange perithecia and Clonostachys anamorphs. This genus was studied in detail by Schroers (2001) who recognised 44 holomorphic or anamorphic species. Ongoing studies of the genera in the Bionectriaceae and Nectriaceae using both morphological characteristics and molecular sequence data are revealing and conirm that characteristics of the teleomorphic and anamorphic states are important in deining both genera and species of nectria-like fungi (Rossman et al. 1999, Schoch et al. 2000, Luo & Zhuang 2010, Chaverri et al. 2011). An account of the British species of Nectria was provided by Booth (1959) who, following Weese (1919), recognised nine groups: Aquifolii group, Arenula group, Cinnabarina group, Coccinea group, Episphaeria group, Lasionectria group, Mammoidea group, Ochroleuca group, and Peziza group. These groups were based on stromatal development, characters of the ascomatal wall, anamorph, and host. Booth (1959) included three species in the Cinnabarina group: N. aurantiaca, N. cinnabarina, and N. ralfsii. When Rossman (1989) and Rossman et al. (1999) restricted Nectria sensu stricto to species considered congeneric with N. cinnabarina, they included N. aurantiaca and other species with a similar perithecial wall structure in Nectria sensu stricto. Nectria ralfsii is now regarded a species of Bionectria, B. ralfsii (Schroers 2001). The Aquifolii group included seven species, namely N. aquifolii, N. coryli, N. sinopica, Scoleconectria cucurbitula, Thyronectria balsamea, T. berolinensis, and T. lamyi, which were all regarded as species of Nectria by Rossman et al. (1999). The other Nectria groups deined by Booth (1959) are now recognised as different genera. The Coccinea group is Neonectria sensu stricto (Chaverri et al. 2011), the Episphaeria group is Cosmospora (Samuels et al. 1991, Rossman et al. 1999), the Lasionectria group is Nectriopsis or unknown (Sérusiaux et al. 1999), the Mammoidea group is Thelonectria (Chaverri et al. 2011), the Ochroleuca group is Bionectria (Schroers 2001), and the Peziza and Arenula groups are Hydropisphaera (Rossman et al. 1999). 2 The concept of the genus Nectria was restricted to species having a characteristic perithecial wall structure and speciic anamorphic states by Rossman (1989) who provided a synopsis and a key to the 28 species. Rossman et al. (1999) followed this treatment and, after examining and redescribing their type species, listed ten genera as synonyms of Nectria sensu stricto: Allantonectria, Aponectria, Chilonectria, Creonectria, Ephedrosphaera, Megalonectria, Pleonectria, Scoleconectria, Sphaerostilbe, and Stilbonectria. The genus Thyronectria was established by Saccardo (1875) for species with immersed ascomata and muriform ascospores similar to Thyridium and later monographed by Seeler (1940b) who did not examine the type specimen of the type species of Thyronectria, T. patavina. Following examination of this type specimen, Rossman et al. (1999) concluded that T. patavina was not a hypocrealean fungus based on the dark stroma and ascomatal walls and cellular, branching pseudoparaphyses. Many of the names described or placed in Thyronectria had been transferred to Nectria by Rossman et al. (1989). The genus Pleonectria was described by Saccardo (1876) for nectria-like fungi having muriform, primary ascospores that produce numerous, small ascoconidia in the asci. Seeler (1940b) regarded Pleonectria as a synonym of Thyronectria and transferred many Pleonectria names to that genus. The type species of Pleonectria is recognised as Nectria lamyi, a species placed in the Nectria cinnabarina-group (Booth 1959) and regarded as a member of the genus Nectria (Rossman 1989, Rossman et al. 1999). Species in Nectria sensu Rossman have subglobose perithecia on a well-developed stroma that are smooth to rough, change colour in 3 % potassium hydroxide (KOH) and lactic acid (LA), and have a perithecial wall > 25 µm diam, and have Gyrostroma, Tubercularia, or Zythiostroma anamorphs (Rossman et al. 1999). Anamorphs among the 28 species in Nectria sensu Rossman encompass varying conidiomatal characters, include 14 sporodochial or synnematal species (Tubercularia), two species producing immersed pycnidia (Gyrostroma), three species producing supericial pycnidia (Zythiostroma), and nine with no known anamorph. Seifert (1985) recognised the close relationship of the Tubercularia states of Nectria to the pycnidial ones, i.e. Gyrostroma and Zythiostroma, and suggested that these anamorphs be included in Tubercularia. He later demonstrated the morphological relationship among these teleomorphic and anamorphic states (Samuels & Seifert 1987, Seifert & Okada 1990). None of these anamorphic genera have been monographed although many species of Tubercularia were included in Seifert (1985). The genus Tubercularia was originally described by Tode (1790) for all sporodochial fungi; later the genus was restricted to fungi with black sporodochia (Fries 1832). Saccardo (1886) divided species of Tubercularia into four genera, i.e. Cephalosporium, Dendrodochium, Spicaria, and Tubercularia based on differences in substrate. His taxonomic concept was revised by Paoletti (1887) who, according to Seifert (1985), “recognised the acropleurogenously developing phialides of T. vulgaris as a valuable taxonomic character”. Petch (1940) revised the British records of Tubercularia. Considering the genus to encompass both sporodochial and synnematal species, Seifert (1985) provided an account of Tubercularia, with eight species including Tubercularia vulgaris with many synonyms. The genera Gyrostroma and Zythiostroma were described for species with pycnidial anamorphs. Gyrostroma was described by Naoumoff (1914) based on Gyrostroma sinuosum as the type species. The genus produces “immersed pycnidia; conidiophores allantonectria, nectria, and Pleonectria simple, 28–54 μm long, 1 μm wide; conidia cylindrical, hyaline, 0-septate, 4 × 1 μm” (Naoumoff 1914). Seeler (1940b) included two species, G. austroamericanum as the anamorph of Thyronectria austroamericana and G. missouriense as the anamorph of Thyronectria missouriensis. Zythiostroma was established in a key published by Höhnel (1923) but without designating a type species. Later Höhnel & Weese (1931) designated Z. mougeotii as the type species. Petch (1943) recognised the genus for species with “pycnidia subcortical, ostiolum erumpent, or exposed by abscission of the outer layers of the cortex, scattered, subglobose or conoid; conidia are oblong-oval, hyaline, 2.5–3.5 × 1 μm” and considered Nectria sinopica to be the teleomorph. Booth (1959) recognised Zythiostroma pinastri as the anamorph of Scoleconectria cucurbitula, a species that was redescribed and illustrated by Sutton (1980). Most morphological studies of Nectria did not include detailed anamorph and/or cultural characterisations with the exception of Nectria cinnabarina. Since the 18th century Tubercularia vulgaris, the anamorph of N. cinnabarina, was noted in detail including the morphological heterogeneity of conidia in culture (Mayr 1883, Brefeld 1891). Beck (1902) observed that conidia of this species in culture were much larger than normal and suggested that their size depended on the nutritional content of the media. To standardise cultural conditions, Jørgensen (1952) grew this species on a detached branch instead of artiicial media. He determined that the range of conidial size was variable but not useful in distinguishing taxa within specimens identiied as N. cinnabarina. Hirooka et al. (2011) observed hundreds of specimens of N. cinnabarina and 45 isolates on a low nutrient agar. Based on characteristics of these specimens and cultures combined with a multi-gene phylogeny, they determined that N. cinnabarina was a species complex. They recognised four species: N. asiatica, N. cinnabarina, N. nigrescens, and N. dematiosa with three subclades, based on colony growth rate, size, and shape of young and mature conidia, and geographic source. Within N. dematiosa the shape of the germ tube and molecular sequence data were used to distinguish the three subclades. Despite their economic importance and taxonomic issues surrounding Nectria, a detailed treatment of the genus using molecular and morphological approaches has not been completed. The objectives of this study are to: 1) provide a phylogenetic overview of species of Nectria sensu Rossman; 2) deine the species of Nectria and segregate genera using morphologically informative characters of the teleomorphic and anamorphic states; and 3) provide descriptions and illustrations of these genera and species. To accomplish these objectives, recently collected and herbarium specimens were examined to determine morphological characteristics. In addition, cultures were obtained from specimens and culture collections for use in developing a multi-locus phylogeny. Analyses were conducted using sequences obtained from a-actin (act), β-tubulin (tub), the internal transcribed spacer (ITS) and large subunit (LSU) of the nuclear ribosomal DNA, RNA polymerase II subunit one (rpb1), and translation elongation factor 1-a (tef1). These analyses combined with the results of the morphological observations are the basis for both generic and species deinitions. Descriptions and illustrations are provided to one species of Allantonectria, 29 species of Nectria, and 26 species of Pleonectria as well as keys for identiication of species on natural substrata and in culture using both teleomorphic and anamorphic characteristics. www.studiesinmycology.org MATERIALS AND METHODS Fieldwork and preservation of specimens Specimens were collected by the authors and collaborators in Australia, Costa Rica, France, Japan, New Zealand, USA (Maryland, Michigan, Pennsylvania and Utah), and Venezuela. In addition, many collaborators around the world kindly sent fresh materials. All plant substrata such as twigs, trunks, stems, leaves and fruits were targeted as hosts of Nectria. From each specimen a few fruiting bodies in good condition were removed and air-dried for later single ascospore isolation. The rest of the specimens were heat-dried, placed in silica gel, and kept in a low humidity room, for later accession in the herbarium. Specimens were deposited in the U.S. National Fungus Collection (BPI), Beltsville, Maryland, USA. Isolation and deposition of cultures from ield-collected specimens To obtain cultures from fresh material, a suspension in sterilised water was made from ascospores or conidia from a crushed fruiting body, streaked onto 2 % (w/v) water agar (WA) with streptomycin (streptomycin sulfate; Sigma Chemicals, St. Louis, Missouri, USA) or Difco™ cornmeal dextrose agar (CMD; Difco, Detroit, Michigan, USA, cornmeal agar + 2 % w/v dextrose) supplemented with antibiotic 0.2 % neomycin (neomycin trisulfate salt hydrate; Sigma Chemicals, St. Louis, Missouri, USA), and incubated at 25 °C. After 24 h, a single germinating ascospore or conidium was transferred directly to Difco™ potato dextrose agar (PDA) with a tungsten needle (Nissin EM Co., Tokyo, Japan) or a ine insect pin. Representative isolates were preserved at the CBS Fungal Biodiversity Centre (CBS, Utrecht, Netherlands), and/or Genebank, National Institute of Agrobiological Sciences (NIAS, Tsukuba, Ibaraki, Japan). Additional specimens and cultures Herbarium specimens including type specimens were obtained from various herbaria as listed in the Acknowledgements. Cultures were obtained from the CBS Fungal Biodiversity Center (Utrecht, The Netherlands), the National Institute of Agrobiological Sciences (NIAS, Tsukuba, Ibaraki, Japan), and the ATCC: The Global Bioresource Center (ATCC, Manassas, Virginia, USA). Morphological characterisation For morphological characterisation of the teleomorph and anamorph in the natural environment, the macromorphology of the fruiting bodies, i.e. perithecia, pycnidia, synnemata, sporodochia, and stromata was observed and described as follows: distribution of fruiting bodies on the host and their shape, colour, and reaction to 3 % w/v potassium hydroxide (KOH) and 100 % lactic acid (LA) using a stereoscope (Zeiss, STEMI SV11, Jena, Germany). To observe internal and microscopic characteristics of the perithecial wall and stroma, the fruiting bodies were sectioned by hand and rehydrated in water, KOH, and LA. Characteristics such as asci, ascospores, conidiophores, ascoconidia, and conidia were observed by rehydrating fruiting bodies in water, removing part of the centrum or conidial mass with a ine glass needle, and placing it onto a glass slide. To observe the surface of spores and morphology of conidiogenous cells and phialides, cotton blue was used as the 3 Species Isolate No. Herbarium No. Substrate/Host Country GenBank Accession No. act ITS LSU rpb1 tef1 tub Allantonectria miltina A.R. 4391, CBS 121121 BPI 878442 Leaves decaying, Agave americana Italy HM484514 a HM484547 a HM484572 a HM484587 a HM484524 a HM484609 a Calonectria acicola CBS 114813 PDD Phoenix canariensis New Zealand – GQ280547 a GQ280669 a – GQ267292 a DQ190591 a Calonectria asiatica CBS 112711 PDD Debris Thailand – GQ280551 GQ280673 – AY725702 a AY725613 Calonectria densa CBS 125249, CMW 31184 Soil Ecuador – GQ280645 GQ280767 – GQ267350 GQ267230 Corallomycetella sp. A.R. 4547, CBS 123826, C.L.L. 8064 BPI 881071 Bark French Guiana JF832440 JF832594 JF832679 JF832763 JF832517 JF832838 Cosmospora coccinea A.R. 2741, CBS 114050 BPI 802729 Inonotus nodulosus Germany GQ505967 a HM484537 a GQ505990 a GQ506020 a HM484515 a HM484589 a Cosmospora magnusiana A.R. 4453, CBS 129430 BPI 878454 Rhus typhina USA JF832441 JF832595 JF832680 JF832764 JF832593 JF832839 Cosmospora vilior CBS 126109, G.J.S. 90-217 BPI 744778 Xylaria sp. Venezuela JF832442 JF832596 JF832681 JF832765 JF832518 JF832840 Cosmospora viliuscula CBS 455.96, G.J.S. 96-6 BPI 744671 Xylaria sp. Puerto Rico GQ505966 a HM484855 a GQ506003 a GQ506032 a HM484851 a HM484876 a Cosmospora wegeliniana CBS 128986, G.J.S. 93-15 BPI 802567 Diatrypaceae France GQ505968 HM484856 a GQ506006 GQ506035 HM484849 a HM484878 a Cyanonectria cyanostoma CBS 101734, G.J.S. 98-127 BPI 748307 Buxaceae France GQ505961 a HM484558 a FJ474081 a GQ506017 a HM484535 a HM484611 a Emericellopsis glabra A.R. 3614, CBS 125295 BPI 871323 Soil Mexico GQ505969 HM484860 GQ505993 GQ506023 HM484843 HM484879 a Haematonectria illudens G.J.S. 85-67, ICMP 9708 PDD 50076 Bark New Zealand JF832443 JF832660 JF832762 JF832837 – JF832841 Hydropisphaera fungicola A.R. 4170, CBS 122304 BPI 878275 Ulocladium atrum, associated with Melampsora rust on decaying leaves of Populus trichocarpa USA GQ505970 a HM484863 a GQ505995 a GQ506025 a HM484845 a HM484877 a Lanatonectria locculenta CBS 126441, G.J.S. 01-66 Bark Ecuador JF832481 JF832656 JF832713 – JF832546 JF832913 Lanatonectria locculenta MAFF 241413 Bark Japan – JF832657 JF832714 – JF832547 JF832914 Leuconectria clusiae ATCC 22228 Soil USA – – AY489732 – – Nectria antarctica A.R. 2767, ATCC 204178, CBS 115033 BPI 746217 Dead stem of Berberis aquifolium USA HM484501 a HM484556 a HM484560 a HM484575 a HM484516 a HM484601 a Nectria asiatica MAFF 241439 BPI 879972 Bark of dead wood Japan HM484505 a HM484701 a HM484563 a – – HM484604 a TUA-TPP-h 105-2 a a a a a a AY489664 a a a a Nectria aurantiaca CBS 308.34 Ulmus sp. UK JF832482 JF832628 JF832682 JF832766 JF832519 JF832886 Nectria balansae MAFF 241419 BPI 881057, TUATPP-h 152 Bark of dead wood Japan JF832483 JF832651 JF832709 – JF832520 JF832906 Nectria balansae A.R. 4446, CBS 123351 BPI 878477 Coronilla sp. France GQ505977 a HM484552 a GQ505996 a GQ506026 a HM484525 a HM484607 a Nectria balansae CBS 124070 Twigs China JF832484 JF832652 JF832710 – JF832521 JF832907 Nectria balansae A.R. 4635, CBS 129349 Twigs China JF832485 JF832653 JF832711 JF832790 JF832522 JF832908 Nectria berberidicola A.R. 4662, C.L.L. 7199, CBS 128669 LIP YMNC083 Berberis vulgaris France JF832487 JF832662 JF832712 JF832767 JF832538 JF832887 Nectria cinnabaarina A.R. 4477, CBS 125165 BPI 879981 Dead twigs of Aesculus sp. France HM484503 a HM484548 a HM484562 a HM484577 a HM484527 a HM484606 a Nectria dematiosa Subclade A CBS 126570, G.J.S. 94-37 BPI 749337 Bark USA HM484502 a HM484557 a HM484561 a HM484576 a HM484534 a HM484603 a Hirooka et al. 4 Table 1. Isolates and accession numbers used in the phylogenetic analyses. Table 1. (Continued). www.studiesinmycology.org Species Isolate No. Herbarium No. Substrate/Host Country GenBank Accession No. act ITS LSU rpb1 tef1 tub Nectria dematiosa Subclade B A.R. 2699, CBS 125125 BPI 802212 Dead twigs of Acer macrophyllum Canada HM484612 a HM484676 a HM484717 a HM484757 a HM484645 a HM484797 a Nectria dematiosa Subclade C MAFF 241430 BPI 879985 Branches standing Japan HM484617 a HM484704 a HM484750 a HM484795 a HM484653 a HM484803 a Nectria magnispora CBS 129362, TPP-h122 TUA-TPP-h122 Twigs Japan JF832496 JF832663 JF832683 JF832786 JF832539 JF832896 Nectria magnispora CBS 129361, TPP-h141 TUA-TPP-h141 Twigs Japan JF832497 JF832664 JF832685 JF832787 JF832540 JF832897 Nectria magnispora MAFF 241418, TPP-h142 BPI 881044, TUATPP-h142 Twigs Japan JF832498 JF832665 JF832686 JF832788 JF832541 JF832898 Nectria mariae A.R. 4274, CBS 125294 BPI 881045 Buxus sempervirens France JF832499 Nectria nigrescens A.R. 4211, CBS 125148 BPI 871083 Dead twigs of dicotyledonous tree USA HM484618 Nectria nigrescens A.R. 4271, CBS 128988 Elaeagnus angustifolia USA JF832488 JF832630 JF832687 JF832768 – JF832888 Nectria nigrescens A.R. 4270, CBS 128983 Elaeagnus angustifolia USA JF832490 JF832633 JF832692 JF832769 – JF832889 Nectria nigrescens A.R. 4268 Elaeagnus angustifolia USA JF832493 JF832634 JF832688 JF832771 – JF832890 Nectria nigrescens A.R. 4266, CBS 129808 Ulmus pumila USA JF832495 JF832632 JF832690 JF832773 – JF832894 Nectria nigrescens A.R. 4267, CBS 129426 Gleditsia triacanthos var. inermis USA JF832491 JF832636 JF832693 JF832772 – JF832891 Nectria nigrescens A.R. 4272, CBS 128987 Ulmus pulmila USA JF832489 JF832635 JF832691 JF832770 – JF832892 Nectria nigrescens A.R. 4269, CBS 128982 Gleditsia triacanthos var. inermis USA JF832494 JF832631 JF832694 JF832774 – JF832893 Nectria nigrescens A.R. 4306, CBS 128984 BPI 878879 Tilia sp. USA JF832492 JF832637 JF832689 JF832775 – JF832895 Nectria polythalama A.R. 4586, CBS 128672 BPI 879097, PC 961 Twigs New Zealand – JF832638 JF832695 JF832776 JF832523 JF832900 Nectria polythalama A.R. 4579, CBS 129240 BPI 879111, PC 975 Dead log of Disoxylon? sp. New Zealand – – JF832707 JF832779 JF832525 – Nectria polythalama A.R. 4575, CBS 128671 BPI 879115, PC 979 Corynocarpus laevigatus New Zealand – JF832666 JF832708 JF832778 JF832526 – Nectria polythalama ICMP 2505 PDD 26407 Eucalyptus icifolia New Zealand JF832500 JF832641 JF832696 JF832777 JF832524 JF832901 Nectria pseudocinnabarina CBS 129366, G.J.S. 09-1359 BPI 881037 Dead wood Venezuela JF832501 JF832642 JF832697 – JF832533 – Nectria pseudocinnabarina CBS 129364, G.J.S. 09-1356 BPI 881035 Dead wood Venezuela JF832504 JF832644 JF832698 – JF832534 – Nectria pseudocinnabarina CBS 129365, G.J.S. 09-1358 BPI 881036 Dead wood Venezuela JF832503 JF832645 JF832700 – JF832536 JF832904 Nectria pseudocinnabarina A.R. 4548, CBS 128673 BPI 881034, C.L.L. 8299 Dead wood Martinique – JF832643 JF832716 – JF832537 – Nectria pseudocinnabarina A.R. 4567, CBS 123496, Y.H. 08-21 BPI 881033 Dead wood French Guiana JF832502 JF832646 JF832699 – JF832535 JF832905 Nectria pseudotrichia CBS 551.84 Bark Japan GQ505976 a HM484554 a GQ506000 a GQ506030 a HM484532 a HM484602 a Nectria pseudotrichia MAFF 241394 Twigs Japan JF832507 JF832639 JF832705 JF832785 JF832527 – HM484707 JF832684 a HM484720 JF832789 a HM484781 JF832542 a HM484672 JF832899 a HM484806 a 5 allantonectria, nectria, and Pleonectria BPI 881039 JF832629 a Species Isolate No. Herbarium No. Substrate/Host Country GenBank Accession No. act ITS LSU rpb1 tef1 tub Nectria pseudotrichia ICMP 2245 J.M. Dingley 6857 Theobroma cacao Papua New Guinea JF832508 JF832640 JF832701 JF832780 JF832532 – Nectria pseudotrichia MAFF 241452 BPI 881038 Bark Japan – JF832649 JF832706 JF832781 JF832531 JF832903 Nectria pseudotrichia CBS 652.83, C.T.R. 72-72 PDD 7908 Bark Venezuela JF832505 JF832648 JF832703 JF832782 JF832528 – Nectria pseudotrichia CBS 128670, Y.H. 10-04 BPI 881040 Acer sp. USA – JF832650 JF832704 JF832783 JF832529 – Nectria pseudotrichia G.J.S. 09-1329 BPI 881041 Dead wood Venezuela JF832506 JF832647 JF832702 JF832784 JF832530 JF832902 Nectria sordida CBS 125119, G.J.S. 86-117 NY Living woody vine French Guiana JF832486 HM484857 a HM484868 a HM484871 a HM484848 a HM484874 a Nectriopsis exigua CBS 126110, G.J.S. 98-32 BPI 748377 Myxomycete Puerto Rico GQ505979 HM484865 GQ505986 GQ506014 HM484852 HM484883 a Neocosmospora haematococca MP 4 ATCC 42366, NRRL 22277 Zanthoxylum sp. Japan – AF178401 a AF178370 a Neocosmospora haematococca MP 3 ATCC 44934, NRRL 22230 Morus sp. Japan – AF178420 AF178389 – – – Neocosmospora vasinfecta A.R. 3587, CBS 122565 BPI 871326 Soil South Africa – HM484864 a – – HM484842 a HM484881 a Ophionectria trichospora CBS 109876, G.J.S. 01-206 BPI 863854 Bark Cameroon – HM484867 a – – HM484847 a HM484886 a Pleonectria aquifolii CBS 307.34 BPI 550125 Ilex aquifolium UK JF832444 JF832597 JF832718 JF832548 JF832842 Pleonectria aurigera A.R. 3717, CBS 109874 BPI 841465 Twigs dead, Fraxinus excelsior France HM484511 Pleonectria austroamericana A.R. 3491, CBS 125134 BPI 746395, NCSU Gleditsia triacanthos USA JF832513 JF832654 JF832759 JF832834 JF832587 JF832881 Pleonectria austroamericana A.R. 3492, CBS 125135 NCSU Robinia pseudoacacia USA JF832514 JF832655 JF832760 JF832835 JF832588 JF832882 Pleonectria austroamericana A.R. 2808, CBS 126114 BPI 746395 Gleditsia triacanthos USA GQ505960 a HM484555 GQ505988 a GQ506016 a HM484520 a HM484597 a Pleonectria balsamea A.R. 2798, CBS 125132 BPI 746322 Abies fraseri USA JF832453 JF832598 JF832719 JF832800 JF832556 JF832846 Pleonectria balsamea CBS 129159, Y.H. 10-07b BPI 881047 Abies balsamea USA JF832456 JF832601 JF832721 JF832803 JF832557 – Pleonectria balsamea A.R. 3493, CBS 125136 NCSU Abies fraseri USA JF832455 JF832600 JF832727 JF832804 JF832559 JF832847 Pleonectria balsamea CBS 129160, Y.H. 10-08c BPI 881050 Abies balsamea USA JF832457 JF832667 JF832731 JF832807 JF832558 JF832851 Pleonectria balsamea A.R. 4568, CBS 129371, Y.H. 09-01 BPI 881046 Abies balsamea Canada – JF832609 – – – JF832852 Pleonectria balsamea CBS 129429, Y.H. 10-11f BPI 881048 Abies balsamea USA JF832458 JF832610 JF832730 JF832802 JF832562 JF832850 Pleonectria balsamea A.R. 3495, CBS 125137 NCSU Abies fraseri USA JF832454 JF832599 JF832729 JF832805 JF832561 JF832849 Pleonectria balsamea CBS 129340, Y.H. 10-13h BPI 881051 Abies balsamea USA JF832459 JF832669 JF832728 JF832806 – JF832853 Pleonectria balsamea CBS 129428, Y.H. 10-10e BPI 881049 Abies balsamea USA JF832460 JF832668 JF832732 JF832801 JF832560 JF832848 Pleonectria berolinensis A.R. 2776, CBS 126112 BPI 746346 Ribes rubrum Austria HM484510 a HM484543 a HM484568 a HM484583 a HM484517 a HM484594 a Pleonectria berolinensis A.R. 4618, CBS 128980 HB7896A Ribes nigrum Mongolia JF832479 JF832623 JF832750 JF832829 JF832584 JF832875 Pleonectria boothii A.R. 4481, CBS 128977 BPI 881052 Picea abies Slovakia JF832475 JF832617 JF832755 JF832796 JF832552 JF832871 Pleonectria coryli A.R. 4583, CBS 129358 BPI 881053, C.L.L. 651 Corylus avellana France JF832476 JF832672 JF832740 JF832797 JF832553 JF832872 a a HM484551 a a a HM484573 a a a – – JF832792 a HM484586 a a HM484521 – a HM484600 a Hirooka et al. 6 Table 1. (Continued). Table 1. (Continued). www.studiesinmycology.org Isolate No. Herbarium No. Substrate/Host Country GenBank Accession No. act ITS LSU rpb1 tef1 tub Pleonectria coryli A.R. 2777, CBS 115619 BPI 746347 Viburnum lantana Austria JF832477 JF832618 JF832741 JF832798 JF832554 JF832873 Pleonectria coryli A.R. 4561, CBS 129156, Y.H. 08-15 BPI 880697 Twigs of Rhus copallinum USA HM484509 a HM484539 a HM484566 a HM484581 a HM484536 a HM484596 a Pleonectria coryli A.R. 4566, CBS 129744, Y.H. 08-20 BPI 881054 Twigs of Celastrus orbiculatus USA JF832478 JF832619 JF832742 JF832799 JF832555 JF832874 Pleonectria cucurbitula CBS 301.75 Pinus nigra France JF832461 Pleonectria cucurbitula CBS 259.58 Pinus sylvestris Netherlands GQ505974 Pleonectria cucurbitula CBS 541.70 Dead twig in witch’s broom Netherlands JF832463 JF832602 JF832722 JF832809 JF832565 JF832856 Pleonectria cucurbitula A.R. 2778, CBS 125130 Pinus sylvestris Austria JF832464 JF832603 JF832723 JF832811 JF832564 JF832855 Pleonectria cucurbitula CBS 178.73 Pinus sylvestris Netherlands JF832462 JF832607 JF832733 JF832810 JF832566 JF832857 Pleonectria ilicicola A.R. 4108, CBS 125147 BPI 880698 Ilex aquifolium UK HM484506 a HM484538 a HM484565 a HM484579 a HM484522 a HM484590 a Pleonectria ilicicola (isolated from ascospore) A.R. 4497, CBS 125170 BPI 881055, C.L.L. 7159 Ilex aquifolium France JF832445 JF832625 JF832756 JF832793 JF832549 JF832843 Pleonectria ilicicola (isolated from conidium) A.R. 4498, CBS 125171 BPI 881055, C.L.L. 7159 Ilex aquifolium France JF832446 JF832626 JF832758 JF832794 JF832550 JF832844 Pleonectria ilicicola A.R. 4574, CBS 128978 BPI 879857, C.L.L. 7184 Ilex aquifolium France JF832447 JF832673 JF832757 JF832795 JF832551 JF832845 Pleonectria lamyi A.R. 2779, CBS 115034 BPI 746349 Berberis vulgaris Austria HM484507 a HM484544 a HM484569 a HM484582 a HM484518 a HM484593 a Pleonectria lamyi CBS 417.89 Berberis vulgaris Germany JF832516 – – JF832830 JF832580 – Pleonectria okinawensis CBS 129369, MAFF 241410, TPP-h92 BPI 881058, TUATPP-h92 Castanopsis sp. Japan JF832451 JF832674 JF832751 JF832827 JF832585 JF832878 Pleonectria okinawensis CBS 129745, TPP-h93 TUA-TPP-h93 Castanopsis sp. Japan JF832452 JF832675 JF832752 JF832828 JF832586 JF832879 Pleonectria pinicola A.R. 4608, CBS 128979 Taiwan – – JF832746 JF832821 JF832571 – Pleonectria pinicola MAFF 241458, TPP-h543 BPI 881061, TUATPP-h543 Pinus koraiensis Japan JF832469 JF832676 JF832748 JF832823 JF832572 JF832862 Pleonectria pinicola A.R. 4478, CBS 125166 BPI 881059 Pinus sylvestris Germany HM484508 a HM484540 a HM484567 a HM484580 a HM484528 a HM484591 a Pleonectria pinicola CBS 242.30 Pinus sylvestris Russia – JF832615 JF832747 JF832822 JF832573 JF832863 Pleonectria pinicola A.R. 4479, CBS 125167 BPI 881060 Pinus sylvestris Germany JF832470 JF832616 JF832749 JF832824 JF832574 JF832864 Pleonectria pyrrhochlora A.R. 2786, CBS 125131 BPI 746398 Acer campestre Austria HM484512 a HM484545 a HM484570 a HM484584 a HM484519 a HM484598 a Pleonectria quercicola A.R. 3805, CBS 128976 BPI 871328 Quercus ilex ssp. rotundifolia (as ssp. ballota) Spain JF832450 JF832624 JF832743 JF832831 JF832581 JF832880 Pleonectria rosellinii MAFF 241403 BPI 881063 Abies sachalinensis Japan – JF832670 JF832735 – JF832575 JF832865 Pleonectria rosellinii MAFF 241459, NITE 102242 BPI 881062 Dead twigs Japan JF832471 JF832611 JF832736 JF832816 JF832576 JF832866 Pleonectria rosellinii A.R. 3494, CBS 128975 BPI 747280 Abies fraseri USA JF832472 JF832612 JF832737 JF832817 – JF832868 Pleonectria rosellinii CBS 129427, Y.H. 10-14i BPI 881065 Abies balsamea USA JF832473 JF832613 JF832738 JF832819 JF832577 JF832869 BPI 746348 JF832621 a HM484541 JF832720 a GQ505998 JF832808 a GQ506028 JF832563 a HM484530 JF832854 a HM484592 a allantonectria, nectria, and Pleonectria 7 Species Species Isolate No. Herbarium No. Substrate/Host Country GenBank Accession No. act ITS LSU rpb1 tef1 tub Pleonectria rosellinii CBS 129162, Y.H. 10-12g BPI 881066 Abies balsamea USA JF832474 JF832614 JF832739 JF832820 JF832578 JF832870 Pleonectria rosellinii CBS 129161, Y.H. 10-09d BPI 881064 Abies balsamea USA – JF832671 – JF832818 JF832579 JF832867 Pleonectria sinopica A.R. 4669, CBS 128981 C.L.L. 9237 Hedera sp. France JF832448 JF832622 JF832744 JF832825 JF832582 JF832876 Pleonectria sinopica A.R. 4495, CBS 125169 BPI 881067, C.L.L. 7156 Hedera helix France JF832449 JF832620 JF832745 JF832826 JF832583 JF832877 Pleonectria sinopica CBS 462.83 CBS H-19479, CBS H-19485 Hedera helix Netherlands GQ505973 a HM484542 a GQ506001 a GQ506031 a HM484531 a HM484595 a Pleonectria strobi CBS 102036, G.J.S. 90-45 BPI 1107115 Pinus strobus USA JF832465 JF832604 JF832734 JF832812 JF832567 JF832858 Pleonectria strobi CBS 129363, G.J.S. 91-107 BPI 1112876 Pinus strobus USA JF832468 JF832608 JF832724 JF832815 JF832568 JF832860 Pleonectria strobi CBS 125107, C.T.R. 71-382 NY Pinus strobus USA JF832467 JF832605 JF832725 JF832813 JF832569 JF832861 Pleonectria strobi A.R. 1425, CBS 125122 NY Pinus strobus USA JF832466 JF832606 JF832726 JF832814 JF832570 JF832859 Pleonectria virens A.R. 4558, Y.H. 08-11 BPI 881068, C.L.L. 7181 Twigs France JF832509 JF832677 JF832754 JF832832 JF832589 JF832883 Pleonectria zanthoxyli CBS 129157, Y.H. 09-03 BPI 881069 Dead bark USA JF832510 JF832627 JF832753 JF832833 JF832590 JF832884 Pleonectria zanthoxyli A.R. 4616, CBS 124736 C.L.L. 7132 Crataegus sp. France JF832511 – – – JF832591 JF832885 Pleonectria zanthoxyli A.R. 4280, CBS 126113 BPI 878445 Crataegus sp. France HM484513 a HM484546 a HM484571 a HM484585 a HM484523 a HM484599 a Pseudonectria pachysandricola A.R. 4592, CBS 128674 BPI 879936 Pachysandra sp. USA JF832512 JF832658 JF832715 JF832791 JF832544 JF832909 Pseudonectria rousseliana A.R. 2716, CBS 114049 Buxus sempervirens Spain – – U17416 a AY489670 a – – Rodentomyces reticulatus A.R. 4677, DSM 23301, F. Doveri #8348, CBS 128675 Rodent dung Italy JF832480 JF832659 JF832717 – JF832543 JF832910 Rugonectria rugulosa CBS 129158, Y.H. 10-01 Thelonectria westlandica CBS 112464, G.J.S. 83-156 Verrucostoma freycinetiae MAFF 240100, TPP-h523 Viridispora alata A.R. 1770, CBS 125123 Viridispora diparietispora ATCC MYA 627 BPI 881070 BPI 878948 BPI 802202 Bark USA JF832515 JF832661 JF832761 JF832836 JF832545 JF832911 Dacrydium cupressinum New Zealand GQ505959 a HM484559 a GQ505987a GQ506015 a HM484533 a HM484610 a Freycinetia boninensis Japan GQ505984 a HM484866 a GQ506013 a GQ506018 a HM484853 a HM484885 a Bark Madeira GQ505985 a JF832678 GQ505989 a GQ506019 a JF832592 JF832912 Crataegus crus-galli USA – – AY489735 AY489668 – – a a A.R.: Amy Y. Rossman, USDA-ARS MD USA; ATCC: American Type Culture Collection, Manassas, VA, USA; BPI: U.S. National Fungus Collections USDA-ARS MD USA; CBS: Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands; C.L.L.: Christian Lechat, Ascofrance, Villiers en Bois, France.; CMW: represents cultures in the culture collection of the Forestry and Agricultural Biotechnology Institute (FABI), Pretoria, South Africa; C.T.R.: Clark T. Rogerson, The New York Botanical Garden, NY, USA; G.J.S.: Gary J. Samuels, USDA-ARS MD USA; ICMP: ICMP culture collection, Auckland, New Zealand; MAFF: MAFF Genebank, National Institute of Agrobiological Sciences, Ibaraki, Japan; NITE: NBRC, National Institute of Technology and Evaluation, Chiba, Japan; NCSU: The Mycological Herbarium, North Carolina State University, NC, USA; NY: William and Lynda Steere Herbarium, The New York Botanical Garden, NY, USA; PC: Herbier Cryptogamique, Départment de Systématique et Évolution, Muséum National d’Histoire Naturelle, Paris, France; PDD: New Zealand Fungus Herbarium, Auckland, New Zealand; TUA-TPP-h: Yuuri Hirooka, Tropical Plant Protection Lab Herbarium, Tokyo University of Agriculture, Tokyo Japan; TPP-h: Yuuri Hirooka, Tropical Plant Protection Lab Culture Collection, Tokyo University of Agriculture, Tokyo Japan; Y.H.: Yuuri Hirooka, USDA-ARS MD USA. a Sequences obtained from GenBank Hirooka et al. 8 Table 1. (Continued). allantonectria, nectria, and Pleonectria mounting medium. Microscopic observations were made using a compound microscope (Zeiss, Axioskop 2 Plus, Jena, Germany). To determine colony characteristics such as colour and odour, isolates were grown on PDA in 9-cm plastic dishes at 25 C for 7 d in the dark. For the observation of sporulating structures, cultures were grown on a low nutrient agar (SNA; Nirenberg 1976). Cultures on SNA were incubated at 25 °C with alternating 12 h/12 h luorescent light/darkness for 2–3 wk to induce conidiogenesis. To observe cultural morphology, pieces of the colony were cut into squares (1.5 mm × 1.5 mm) and directly observed under the microscope. The species of nectria-like fungi studied here form two types of conidia, hereafter referred to as “young conidia” and “mature conidia.” Young conidia are those that develop after 1–2 d on SNA while mature conidia are generally 4–5 d old. To stimulate budding, mature conidia produced on SNA were suspended in distilled water and then streaked on SNA. After 24 h, budding mature conidia and germ tubes were produced. Images were captured with a Nikon DXM1200 digital camera. Composite images were made with Helicon Focus v. 4.21.5 Pro (Helicon Soft, www. heliconfocus.com). Colours are described using the terminology of Kornerup & Wanscher (1978). Growth trials Disks of 5 mm diam were cut from the edge of young colonies after 7 d at 25 °C in the dark and placed in the centre of PDA plates, then incubated at temperatures from 15 to 35 °C at 5 °C intervals in complete darkness. Diameters of the colonies on three plates for each isolate at each temperature were measured every day for 1 week. Two replicates of the trials were completed. Statistical analysis Measurements of continuous characters such as length and width were made using Scion Image software beta v. 4.0.2 (Scion Corporation, Frederick, Maryland, USA) and are based on up to 50 measurements for structures in each isolate/specimen. For morphological structures, descriptive statistics (minimum, mean, median, maximum and standard deviation) were computed; variation of morphological characters is displayed graphically using mean values and their corresponding 95 % conidence intervals. All computations were performed using Systat 10 (Systat Software, San José, California, USA). Only isolates for which all data are available were included in the analysis. Ranges are reported as mean values ± one standard deviation; the number of items measured is given in parentheses together with maximum and minimum. DNA extraction, PCR, and sequencing One hundred thirty cultures of Nectria sensu Rossman and various other Nectriaceae and Bionectriaceae were used for the phylogenetic analyses as listed in Table 1. All isolates were grown in Difco™ potato dextrose broth in 6 cm diam Petri plates for about 3 wk. Mycelial mats were harvested in a biological safety cabinet and dried with clean, absorbent paper towels. DNA was extracted with Ultra Clean™ Plant DNA Isolation Kit (MO BIO Laboratories Inc., Solana Beach, California, USA). Six loci were sequenced, namely a-actin (act) (Carbone & Kohn 1999), the internally transcribed spacer (ITS) (White et al. 1990), large subunit nuclear ribosomal DNA (LSU) (Vilgalys n.d.), www.studiesinmycology.org RNA polymerase II subunit one (rpb1) (Castlebury et al. 2004), translation elongation factor 1-a (tef1) (Carbone & Kohn 1999, Rehner 2001), and β-tubulin (tub) (O’Donnell & Cigelnik 1997). The primers and PCR protocols are listed in Table 2. PCR products were cleaned with ExoSAP-IT® (USB Corporation, Cleveland, Ohio, USA) following the manufacturer’s instructions. Clean PCR products were sequenced at the DNA Sequencing Facility (Center for Agricultural Biotechnology, University of Maryland, College Park, Maryland, USA) and at MCLAB (Molecular Cloning Laboratories, San Francisco, California, USA). Sequences were assembled and edited with Sequencher v. 4.9 (Gene Codes, Madison, Wisconsin, USA). Sequences are deposited in GenBank (Table 1). Phylogenetic analyses Sequences were aligned with MAFFT v. 6 (Katoh 2008) and the alignment was visually improved with Mesquite v. 2.6 (Maddison & Maddison 2009). Bayesian inference (BI), Maximum likelihood (ML), and Maximum Parsimony (MP) analyses were done with all sequences, irst each locus separately, then with the combined/ concatenated data sets. Gaps (insertion/deletions) were treated as missing data. Emericellopsis glabra, Hydropisphaera fungicola, Nectriopsis exigua, and Verrucostoma freycinetiae, representative members of the Bionectriaceae, were used as the outgroup for inferring intrageneric relationships. MP analyses were conducted with PAUP* v. b10 (Swofford 2002) with a heuristic search; starting trees were obtained by stepwise addition using a simple addition sequence. Bootstrap analysis was performed with 1000 replicates, and a 70 % majority rule consensus tree was constructed in PAUP*. JMODELTEST (Posada 2008) was used to calculate the models of nucleotide substitutions of each gene/partition for the ML and BI analyses. The number of substitution schemes was set to 11; base frequencies +F, rate variation +I and +G and the base tree for likelihood calculations were set to ML optimised. After the likelihood scores were calculated, the models were selected according to the Akaike information criterion (AIC) (Posada & Buckley 2004). After jMODELTEST was run, likelihood settings for the tree were set for each gene. For the ML and bootstrap analyses (BP), GARLI v. 0.96 (Zwickl 2006) was computed through the Grid computing (Cummings & Huskamp 2005) and The Lattice Project (Bazinet & Cummings 2009), which includes many clusters and desktops in one integrated network (Myers et al. 2008). In GARLI, the starting tree was made by stepwise-addition and the number of runs or search replicates was set to 50. 2000 ML BP replicates were completed in GARLI, with the starting tree chosen randomly. Bayesian analysis (BI) was done using MrBayes v. 3.1.2 (Huelsenbeck et al. 2001, 2002). In MrBayes, data were partitioned by locus and the parameters of the nucleotide substitution models for each partition were set as described (Table 2). For this analysis, two independent analyses of two parallel runs and four chains were carried out for 10 000 000 generations with MrBayes. Convergence of log likelihoods was assessed with Tracer v. 1.5 (Rambaut & Drummond 2007). Analyses were initiated from a random tree and trees sampled every 100th generation. The irst 20 % of the resulting trees were eliminated (= "burn in"). A consensus tree ("sumt" option) and posterior probabilities (PP) were calculated in MrBayes, which combines the results from both parallel runs. A reciprocal 70 % BP threshold was used to detect topological incongruence among genes/partitions (Mason-Gamer & Kellogg 1996, Reeb et al. 2004). 9 Hirooka et al. Table 2. Genes/loci used in the phylogenetic analyses for members of the genus Allantonectria, Nectria, and Pleonectria. Information on the primers, including bases pairs, PCR protocols, and models of nucleotide substitution are indicated. Locus Act ITS LSU Rpb1 Tef1 Tub Combined Included sites (# of excluded sites) 585 (197) 475 (331) 501 (414) 634 (219) 817 (457) 481 (354) 3493 Phylogenetically informative sites (%) 151 (26 %) 185 (39 %) 110 (22 %) 347 (55 %) 377 (46 %) 283 (59 %) 1453 (42 %) Uninformative polymorphic sites 29 52 27 47 34 21 210 Invariable sites 405 238 364 240 406 177 1830 Consistency Index 0.289 0.378 0.326 0.272 0.239 0.259 0.263 Homoplasy Index 0.711 0.767 0.674 0.728 0.761 0.741 0.737 Retention Index 0.787 0.622 0.821 0.769 0.737 0.753 0.748 Nucleotide substitution models SYM+I+G TIM1+I+G TIM3ef+I+G TIM2+I+G TIM3+I+G HKY+I+G Primers used (reference) Tact1, Tact2 ITS5, ITS4 LR5, LROR crpb1a, rpb1c tef1-728, tef11567 Btub-T1, Btub-T2 (Samuels et al. 2006) (White et al. 1990) (Vilgalys n.d.) (Castlebury et al. 2004) (Carbone & Kohn 1999, Rehner 2001) (O’Donnell & Cigelnik 1997) 65 °C, 30 s, 15× 53 °C, 1 min, 35× 53 °C, 1 min, 35× 50 °C, 2 min, 40× 66 °C, 55 s, 9× 55 °C, 30 s, 35× PCR protocol: Annealing temp. & cycles 48 °C, 30 s, 30× RESULTS Phylogenetic analyses In our six-loci phylogeny, most external branches show high Bayesian inference posterior probabilities (BI PP), Maximum Likelihood bootstrap (ML BP), and Maximum Parsimony bootstrap (MP BP) (Figs 1–3). Sequencing and alignment of the six loci for 130 isolates include 3493 base pairs of which 1453 bp (42 %) are phylogenetically informative, 1830 bp are invariable sites, and 210 bp are unique, non-informative, and polymorphic (Table 2). Ambiguously aligned and poly-T/A regions were excluded from the analyses especially in the ITS, tef1, and tub loci, which possess highly variable regions, i.e. introns. The BI and ML analyses of the combined six loci produced one tree (Fig. 3) with log likelihoods of −55689.665 and –55203.154, respectively (Table 2). The topologies of individual gene trees did not contradict each other at the species level. Among these trees, the act tree provided the best resolution with best ML BP support. The combined BI, ML, and MP analyses of six loci revealed two major clades (clades I and II) of Nectria sensu Rossman that are paraphyletic within the Nectriaceae represented by the 13 additional genera, Calonectria, Cosmospora, Corallomycetella, Cyanonectria, Lanatonectria, Leuconectria, Neocosmospora (= Haematonectria), Ophionectria, Pseudonectria, Rodentomyces, Rugonectria, Thelonectria and Viridispora (Fig. 1). Clade I is highly supported (BI PP 100 %, ML BP 99 %, MP BP 100 %) and includes species with perithecia having bright yellow scurf. These species constitute the genera Allantonectria and Pleonectria, both of which are recognised here as distinct genera. Allantonectria is represented by one isolate of the type and only species, A. miltina. The remaining isolates of clade I include species of the moderately supported Pleonectria clade with BI PP of 100 %, ML BP of 83 %, and MP BP of < 70 % (Figs 1, 2). The other clade includes all other members of the Nectriaceae with species having perithecia lacking bright yellow scurf. Clade II includes species placed in the genus Nectria in a sense even more restricted than that of Rossman et al. (1999). The Nectria 10 56 °C, 55 s, 35× clade has four main monophyletic groups (Clade II-1, II-2, II-3, and II-4). Among them, clades II-1, II-3, and II-4 are supported by high BI PP, ML BP, and MP BP values while clade II-2 is moderately supported by BI PP (100 %), ML BP (78 %), and MP BP (74 %) (Figs 1, 3). With the exception of N. antarctica, clades II-1 and II-2 are morphologically distinct in having red perithecia immersed in a stroma and this assemblage is referred to as the N. balansae group. Two species of this group occasionally produce sporodochia and immature pycnidia. Sister to clade II-2, Nectria antarctica produces concave sporodochia. Clade II-3 and II-4 are morphologically similar to Nectria sensu Rossman having supericial perithecia but lacking yellow scurf, and here we call this assemblage Nectria excluding the N. balansae group. Clade II-3 supported by 100 % BI PP, ML BP, and MP BP values includes species with synnematous anamorphs (Figs 1, 3). Clade II-4 includes Nectria species with sporodochial anamorphs and is supported by 100 % BI PP and ML BP, but 72 % MP BP (Figs 1, 3). Phylogenetic analyses: clade I Allantonectria and Pleonectria Based on the results of the phylogenetic analyses of DNA sequence data and observations of morphological characteristics of species of Nectria sensu Rossman, it was determined that these species represent three genera (Fig. 1). Clade I includes Allantonectria as well as species of the sister genus Pleonectria. The monotypic genus Allantonectria includes a single isolate of A. miltina (Figs 1, 2). This genus is considered distinct because the type and only species has small, non-septate, allantoid ascospores and is known to occur only on members of the Asparagaceae, both unusual characteristics for nectria-like fungi. The genus Pleonectria represented by clades I-1, I-2, I-3, and I-4 includes species with perithecia often covered with yellow scurf and variously septate ascospores that produce ascoconidia within the asci or soon after release. They generally occur on newly killed woody plants and tend to be host speciic. The nineteen species of Pleonectria constitute a weakly supported monophyletic clade (I-1) (Figs 1, 2). Within the Pleonectria clade the combined DNA allantonectria, nectria, and Pleonectria Fig. 1. Cladogram of combined act, tub, rpb1, ITS, LSU, and tef1 based on Bayesian analysis (−55689.665). Values at branches indicate Bayesian posterior probabilities (BI PP)/Maximum Likelihood bootstrap (ML BP)/Maximum parsimony bootstrap (MP BP). Only values for species clades are listed. Other branch support values > 70 % are indicated by thicker lines. sequence analyses showed signiicant support for most internal and external nodes. Pleonectria aurigera, a basal species in Pleonectria, was moderately supported with BI PP of 100 %, ML BP of 83 % and MP BP of < 70 %. Although phylogenetically this species might be placed in a separate genus, P. aurigera is www.studiesinmycology.org morphologically similar to other species of Pleonectria. Clade I-2 includes P. austroamericana, P. pyrrhochlora, P. virens, and P. zanthoxyli, all of which possess abundant bright yellow scurf on the perithecia, and is supported by BI PP (100 %), ML BP (97 %), and MP BP (96 %) values. Among these species, sequences of P. 11 Perithecia Fructifications Conidiophores or or Fig. 2. Cladogram of Clade І of the combined act, tub, rpb1, ITS, LSU, and tef1 based on Bayesian analysis with geography, host, and morphological characters. Hirooka et al. 12 Ascospores www.studiesinmycology.org Ascospores Perithecia Conidiophores allantonectria, nectria, and Pleonectria 13 Fig. 3. Cladogram of Clade ІІ of the combined act, tub, rpb1, ITS, LSU, and tef1 based on Bayesian analysis with geography, host, and morphological characters. Fructifications Hirooka et al. austroamericana form a distinct clade sister to P. pyrrhochlora, P. virens, and P. zanthoxyli (BI PP 1.00, ML BP 100 % and MP BP 100 %). The stromata of P. austroamericana possess supericial perithecia while stromata of the other species are immersed in the substratum. Sequences of P. zanthoxyli are divided into North American and European subclades. Clade I-3 supported by 100 % BI PP, ML BP, and MP BP values includes four species, P. aquifolii, P. boothii, P. coryli, and P. ilicicola, all of which have a perithecial wall with three regions around the apex. Terminal clade I-4 strongly supported by BI PP (100 %), ML BP (100 %) and MP BP (99 %) values in the Pleonectria clade is composed of species on conifers, speciically, P. balsamea, P. cucurbitula, P. pinicola, P. rosellinii, and P. strobi. Sequences of P. pinicola and P. rosellinii are divided into subclades supported by more than 70 % BI PP, ML BP, and MP BP values that are linked to geography. Subclades of P. pinicola include isolates from Asia and Europe and those of P. rosellinii from Asia and North America (Fig. 2). Phylogenetic analyses: clade II Nectria Clade II includes 14 species of Nectria mostly with sporodochial or synnematous tubercularia-like anamorphs that represent a subset of species within Nectria sensu Rossman. Clade II includes four clades (II-1, II-2, II-3, and II-4) that generally correlate with anamorph and teleomorph morphology (Figs 1, 3). In clade II, the two species of clade II-1, namely N. balansae and N. sordida, was supported by 100 % BI PP, ML BP and MP BP values. These species possess relatively unusual morphological characters distinct from the genus Nectria sensu Rossman; speciically, they have perithecia that are immersed in a welldeveloped stroma. Nectria balansae is further divided into two subclades supported by more than 70 % BI PP, ML BP and MP BP values, but these clades do not correlate with morphology, host speciicity, or geography (Fig. 3). The poorly supported clade II-2 (BI 100 % PP, ML BP 78 %, MP BP 74 %) includes two Nectria species, N. magnispora and N. mariae, which forms a wellsupported clade (BI 100 % PP, ML BP 100 %, MP BP 100 %) and are macromorphologically similar to N. balansae and N. sordida. These four species plus N. hoheriae and N. paraguayensis and the recently described N. eustromatica (Jaklitsch & Voglmayr 2011) constitute what we refer to as the N. balansae group. Within clade II-2 but basal to N. magnispora and N. mariae is N. antarctica having supericial perithecia. Clades II-3 and II-4 constitute the majority of species of Nectria excluding the N. balansae group. Species of the well-supported clade II-3 (100 % BI PP, ML BP, MP BP values) are distinct in having synnematous anamorphs, speciically N. polythalama, N. pseudocinnabarina, and N. pseudotrichia. Each of these species is supported by almost 100 % BI PP, ML BP, and MP BP values. Within N. pseudotrichia are four lineages that correlate with geography as previously reported (Hirooka et al. 2010). Within N. pseudocinnabarina, three isolates, G.J.S. 09-1356, G.J.S. 09-1358 and Y.H. 08-21, form a group, supported by more than 70 % BI PP, ML BP, and MP BP values, that is distinct from the other two isolates but no morphological heterogeneity or geographic differences were found (Fig. 3). Clade II-4 contains species of Nectria excluding the N. balansae group with sporodochial anamorphs. Five species and one species complex are included in this highly supported clade and each of the included species is supported by high BI PP, ML BP, and MP BP values. As previously reported, this clade includes all members 14 of the Nectria cinnabarina species complex recently recognised by Hirooka et al. (2011). Nectria nigrescens is moderately supported by BI PP (98 %), ML BP (93 %), and MP BP (89 %) as a species sister to N. asiatica in a strongly supported clade with BI PP (100 %), ML BP (100 %), and MP BP (99 %) values (Figs 1, 3). Morphological characterisation of Allantonectria, Nectria, and Pleonectria Allantonectria The stromata of Allantonectria are basal, well-developed, and pseudoparenchymatous similar to those of Pleonectria and Nectria excluding the N. balansae group (Fig. 4A–D). The size of the stromata (0.5–1.0 × 0.2–0.8 mm) of Allantonectria is smaller than those of the other genera and each bear up to 75 perithecia (Fig. 4A). The size of the stromata is relatively constant, pulvinate with a wide base, becoming convex, generally orange to sienna, turning blood-red in KOH. The tissue structure of the stromatal surface is textura angularis to t. globulosa. The perithecia are supericial and densely aggregated on the stromata. The perithecia are subglobose to primarily globose, bay to scarlet, with a slightly darker apex (Fig. 4B, C). The surface of the perithecia is often covered with bright yellow scurf or scales (Fig. 4C). The perithecial wall is 25–45 μm thick and consists of two regions. The outer region is 20–35 μm thick, intergrading with the stroma, and composed of cells that form textura globulosa to t. angularis (Figs 4D, 5A). The inner region is 7–13 μm thick, and composed of cells that form textura prismatica. The asci are narrowly clavate with a thin apex lacking a ring. The arrangement of the ascospores in the asci is biseriate above and uniseriate below. The size of the asci is relatively smaller than in the other genera (20–40 × 3–5 μm in Allantonectria) and correlates with ascospore size (Figs 4F–H, 5B). The ascospores are allantoid to short-cylindrical, rounded at both ends, non-septate, hyaline, and smooth (Figs 4I, 5C). Because only one species is known in Allantonectria and ascospore characteristics are not usually constant at the generic level, it is dificult to generalise about the ascospore characteristics. In the natural environment an anamorph for A. miltina is unknown. Although we sometimes observed sporodochia-like stromata, no conidiophores and conidia were present. Based on the morphology of the teleomorph and its phylogenetic position, the anamorph of Allantonectria is predicted to be pycnidial. The anamorph in culture produces trichodermalike conidiophores and rhizomorph-like strands (Fig. 6F–H, J, K). The growth on PDA at 25 °C after 7 d of A. miltina is relatively faster than in the other genera. The colour of the colonies is whitish yellow to whitish luteous in the centre and white at the margins and the odour is slightly fruity (Fig. 6A). Flask-shaped lateral phialidic pegs develop after 1–2 d and produce abundant conidiophores and conidia. The branching pattern of the conidiophores is similar to Trichoderma, being unbranched or branching in pairs but sometimes unilateral, consisting of a single conidiogenous cell near the tip of the conidiophore (Fig. 6E–I). The conidiogenous cells are cylindrical, enteroblastic monophialides, tapering or slightly lask-shaped toward the opening. Rhizomorph-like strands made up of a single hypha with a larger diameter than normal hyphae were observed on SNA. The strands form wide lateral phialidic pegs and conidiophores (Fig. 6L). Young conidia are formed from monophialides on aerial, submerged, or repent hyphae. Young conidia are ellipsoidal, oblong, to cylindrical, rounded at both ends, and non-septate (Fig. 6N, O). Mature swollen conidia are 0–1-septate, oblong or ellipsoidal with a strongly constricted centre, allantonectria, nectria, and Pleonectria hyaline, straight or slightly curved, rounded at both ends, not germinating or budding on media, and 6.1–16.9 × 2.6–4.9 μm (Fig. 6O, P). Pycnidia, chlamydospores, and perithecia are not produced on SNA or PDA. Nectria excluding the N. balansae group The stromatal morphology in species of Nectria is similar to that of Allantonectria and Pleonectria, although the size of the stromata varies greatly. For example, N. canadensis forms long stipitate stromata that resemble synnemata, and its perithecia are produced at the apex. The stromata are dificult to distinguish from synnemata at irst glance, but the anatomy of the long stipitate stroma consists of pseudoparenchymatous tissue that has never been observed in true synnemata. Nectria antarctica, N. novaezelandiae, and N. tucumanensis produce relatively large stromata. Species that produce sporodochia have larger stromata than those that form synnemata. The colour of the stroma is orange when young, then turning umber with age, and blood-red to purple in KOH. The shape of the stroma is pulvinate with a wide base, becoming convex, inally producing supericial perithecia. The stroma is formed of textura angularis to t. globulosa similar to that of Allantonectria and Pleonectria. The perithecia in species of Nectria excluding the N. balansae group are usually densely aggregated, rarely solitary, and supericial on the well-developed stroma. Only N. antarctica and N. tucumanensis have perithecia with their bases immersed in the stromata (Fig. 7A–C). The perithecia are red to umber becoming darker with age and having a slightly darker apex; the perithecia of N. neorehmiana are scarlet to dark scarlet, a distinctive characteristic of this species. The shape of the perithecia is subglobose to globose, although some have an acute apex. Most species have roughened perithecia, although the perithecia are warted in N. asiatica, N. berberidicola, N. cinnabarina, N. dematiosa, N. himalayensis, N. neorehmiana, N. nigrescens, N. polythalama, N. pseudocinnabarina, and N. pseudotrichia. This character varies according to the environment as well as perithecial age. The perithecial walls are 25–100 μm thick and may consist of two or three regions. Species with two regions have an outer region 30–85 μm thick that intergrades with the stroma. Cells of the outer region form textura globulosa or t. angularis. The inner region is 7–30 μm thick and the cells form textura prismatica. Six species of Nectria (N. cingulata, N. lateritia, N. polythalama, N. pseudadelphica, N. pseudocinnabarina, and N. pseudotrichia) have perithecia with walls composed of three regions. The outer region is 20–54 μm thick and forms textura globulosa or t. angularis. The middle region is 5–26 μm thick and forms textura globulosa illed with brown to red-brown pigmented droplets. The inner region is 7–24 μm thick, of elongated, thin-walled cells that form textura prismatica. The asci are cylindrical, narrowly clavate to clavate, and sometimes swollen in the middle, with a thin apex without a ring. The size of asci is somewhat variable. Nectria pyriformis has relatively small asci while N. antarctica, N. novaezelandiae, and N. tucumanensis have relatively large asci. The arrangement of ascospores in the asci is biseriate above and uniseriate below. The ascospores of species of Nectria excluding the N. balansae group are highly variable, sometimes even within species such as in N. antarctica and N. pseudotrichia. The shape of the ascospores is more or less conserved. The majority of the ascospores are ellipsoidal, oblong, to fusiform. However, N. pseudadelphica and N. tucumanensis produce allantoid ascospores rounded at both ends and N. pyriformis forms pyriform ascospores. Ascospore ornamentation is useful as a diagnostic character, with smooth, striate, and spinulose www.studiesinmycology.org ascospores produced in nine, six, and seven species, respectively. Ascospores are generally hyaline, but sometimes pigmented brown to dark brown when mature in N. polythalama and N. pseudotrichia. Ascospore septation is also an informative character. Nectria canadensis, N. lateritia, and N. neorehmiana consistently produce three-septate ascospores. Nectria novaezelandiae forms up to fourseptate ascospores. Muriform ascospores are observed in three species of Nectria excluding the N. balansae group, speciically N. antarctica, N. polythalama, and N. pseudotrichia. In the natural environment conidiomata in species of Nectria produce sporodochia or synnemata. Although these fructiications appear quite different, they are not indicative of major groups and are useful only at the species level. The stromata from which sporodochia arise are erumpent through the epidermis with sporodochia and perithecia developing at the same time. Sporodochia are generally solitary, occasionally caespitose. Colour of the stromata is generally orange to umber, except for N. asiatica and N. nigrescens, which often produce reddish brown stromata. The absence or presence of a stipe is variable and useful in identifying species of Nectria. The anamorph of N. canadensis possesses an extremely long stipe (500–8000 μm high, averaging > 2500 µm), which resembles a synnema but that are considered stalked sporodochia because of their cell structure. Sessile sporodochia were observed in the anamorph of N. argentinensis, N. berberidicola, and N. dematiosa. Unlike other Nectria anamorphs, N. antarctica produces concave as well as convex sporodochia (Figs 7I–N, 8D). The morphology of the stromata beneath the conidiophores is similar for these species. While most species have “...a small zone of textura porrecta at the top of the stipe…”, according to Seifert & Okada (1990), the anamorph of N. aurantiaca has “…about half of the stipe being textura porrecta…”. The conidiophores may be long or short verticillate. The long verticillate conidiophores are mixed with short verticillate conidiophores and are observed only in N. antarctica (Figs 7P–T, 8F). Short verticillate conidiophores were observed in three other species, i.e. N. argentinensis, N. berberidicola, and N. canadensis. The number of branches and conidiogenous cells in the short verticillate conidiophores is conserved. Short conidiophores are densely branched, generally with 1–4 branched, straight, slightly curved, and hyaline. Conidiogenous cells are enteroblastic, monophialidic, cylindrical, subulate, with the widest point in the middle, 15–37 μm long, 1.2–3 μm wide at base with inconspicuous collarettes. The acropleurogenous conidiophores mixed with short verticillate conidiophores may be short or long in the sporodochial anamorph. Short acropleurogenous conidiophores are 34–78 × 1.5 –3.3 μm, observed only in N. argentinensis, N. aurantiaca, and N. canadensis. The long, acropleurogenous conidiophores have been observed in six species, N. asiatica, N. berberidicola, N. cinnabarina, N. dematiosa, N. himalayensis, and N. nigrescens. Among these, N. asiatica, N. cinnabarina, N. dematiosa, N. himalayensis, and N. nigrescens do not possess short and long verticillate conidiophores. Long acropleurogenous conidiophores are more than 100 μm long. Acropleurogenously developing phialides are generally intercalary occurring below each septum, or rarely terminal. The size of intercalary phialides is highly conserved (2.5–10 µm long, 1.0–3.0 µm wide). In the natural environment conidia are generally ellipsoidal to cylindrical, straight or slightly curved, somewhat variable in size and always smooth. Nectria berberidicola and N. himalayensis have relatively large conidia (7.6–13.3 × 2.3–6.8 μm), while N. argentinensis has small conidia (3.4–4.6 × 1.8 –2.9 μm). Five species, N. asiatica, N. canadensis, N. cinnabarina, N. dematiosa, and N. nigrescens, possess moderately sized conidia (4.5–9.5 × 1.0 –3.6 μm). 15 Hirooka et al. All stromata from which synnemata arise are erumpent through the epidermis sometimes having perithecia in clusters. Synnemata may be solitary or aggregated. The synnemata are cylindricalcapitate, subulate-capitate, or claviform, and erect or nodding. They are unbranched or rarely up to 3-times branched at the base. The colour of the synnemata is generally lesh to ochraceous when fresh, red-brown at the base, turning blood-red in KOH, and fading upwards to almost black when old. However, N. neorehmiana possesses salmon- to lesh-coloured synnemata, a distinguishing morphological characteristic for this species. The size of synnemata is conserved (1000–3000 μm long and 100–400 μm wide at the base). The external structure of the stipe is morphologically different from the internal structure. The external cells are pigmented, golden brown at the base, becoming paler towards the apex, and react with KOH, turning umber. The internal cells are hyaline and do not react to KOH. The surface hyphae on the stipe are straight, curved, sinuous, or twisted and may vary within a species. The apical cell of the surface hyphae is subglobose and ornamented in N. australiensis. Nectria neorehmiana and N noackiana do not form surface hyphae on the synnematal stipe. The conidiophores of species of Nectria are generally elongated with one or two branches often mixed with long, sterile hyphae. Only N. neorehmiana lacks sterile hyphae. The sterile hyphae are acicular, straight, or curved, unbranched or dichotomously branched, and 65–163 × 1.5–5 μm. The conidiogenous cells can be enteroblastic, monophialidic, cylindrical, subulate, straight or curved. The conidiogenous cells do not vary greatly in size; they are 6–40 × 1.1–4.0 μm. The conidial mass is generally whitish yellow when fresh and sienna when dry except those of N. neorehmiana that are white to saffron when fresh and red to scarlet when dry. The conidia are obovate, ellipsoidal, or sometimes allantoid, smooth, hyaline, and generally 3.0–9.6 × 1.4–5.1 μm, except N. noackiana having larger conidia (12.3–18.7 × 5.8–8.3 μm). Species having sporodochial anamorphs in the natural environment often produce sporodochia on SNA and PDA in culture. Synnemata and perithecia were produced on SNA and PDA by some isolates of N. pseudocinnabarina. All species form abundant lateral phialidic pegs and verticillate conidiophores that develop on submerged, aerial, or repent hyphae after 7 d at 25 °C on PDA. The colonies of the four temperate species, N. asiatica, N. cinnabarina, N. dematiosa, and N. nigrescens, are 37–85 mm diam after 7 d at 25 °C on PDA. The possibly psychrophilic species, Nectria antarctica and N. berberidicola, are relatively slow growing, 11–27 mm diam. The three subtropical species, N. polythalama, N. pseudocinnabarina, and N. pseudotrichia attain 90 mm diam after 3 d. The colour of the colonies on PDA is generally whitish yellow to whitish luteous except for N. polythalama, N. pseudocinnabarina, and N. pseudotrichia, which are yellowish brown. The odour of most species on PDA is slightly fruity. The lateral phialidic pegs are produced after 2–3 d with abundant conidia. The phialidic pegs are ellipsoidal and slightly tapering toward the tip or laskshaped, 1.5–7.9 × 1.0–3.0 μm. The conidiophores produced after 3 d may be aerial or form sporodochia. The aerial conidiophores are unbranched, sometimes verticillate, 1–3-branched, becoming loosely to moderately densely branched. The sporodochial conidiophores are 2–3 branched, becoming densely branched with terminal whorls of 2–4. The conidiogenous cells are monophialidic, cylindrical, slightly tapering toward the tip. Young conidia produced on monophialides on aerial, submerged, or repent hyphae are ellipsoidal, oblong, to cylindrical, smooth, and hyaline, although those of N. polythalama, N. pseudocinnabaina, and N. pseudotrichia are subglobose to obovate, rarely ellipsoidal to fusiform. Young 16 conidia are generally 3.0–17.3 × 1.5–5.1 μm although those of N. asiatica are relatively large (averaging 10 μm long). Mature conidia after 2–3 d are ellipsoidal, oblong, cylindrical to allantoid, smooth except roughened in N. antarctica, hyaline, and 5.0–29.3 × 2.3–7.9 μm (Fig. 9L, M). Mature conidia of N. berberidicola, N. cinnabarina, and N. polythalama are constricted in the middle. Chlamydospores are globose, subglobose, or broadly ellipsoidal, 0(–1)-septate, although are rarely seen on SNA and PDA. Nectria balansae group The stromata of species in the N. balansae group are more or less conserved, 1.0–4.0 mm diam, 0.5–2.5 mm high and red, sienna, to umber, turning blood-red to purple in KOH except for N. eustromatica having black stromata. The stromata are pulvinate with a wide base, becoming convex when producing immersed perithecia and pycnidia or supericial sporodochia. The tissue of the stromata forms textura angularis. The perithecia are densely aggregated, rarely solitary, and immersed or semi-immersed in a stroma. Although the stroma may produce the teleomorph and anamorph at the same time, the morphology of the stroma remains the same. The colour of the perithecia is generally red to sienna, except in N. eustromatica in which the perithecia are black. The apical region is slightly darker, but the intensity of the colour depends on the age of the perithecia, i.e. older perithecia have a darker apical region. The immersed perithecia are subglobose to globose with a conspicuous, acute apex. Some specimens of N. hoheriae have inconspicuous ostioles because its stroma almost covers the ostiole.The surface of the perithecia where it emerges from the stroma is somewhat informative at the species level. Nectria balansae, N. eustromatica, N. mariae, N. paraguayensis, and N. sordida possess warted walls, while N. magnispora has a smooth wall. The perithecial wall of N. hoheriae is dificult to interpret because most perithecia are completely immersed in a stroma. The ascomatal wall at the stromatal margin in N. hoheriae is roughened. The perithecial wall or ascomatal wall at the stromatal edge is 51– 135 μm thick and consists of two regions. The perithecial wall of N. mariae is relatively thin (51–85 μm). The outer perithecial region of species in the N. balansae group is 41–117 μm thick, intergrading with the stroma, forming textura globulosa or t. angularis. The inner region is 13–35 μm thick, forming textura prismatica. The asci are narrowly clavate to clavate with a thin apex lacking a ring, larger than those in Allantonectria, Nectria except N. balansae, and Pleonectria. The ascospores in the asci are arranged biseriately above and uniseriately below. The ascospores are informative at the species level. The shape of the ascospores is more or less conserved. The ascospores range from ellipsoidal, fusiform, long oblong, to allantoid, hyaline, with the surface varying from smooth, roughened, to striate. Nectria balansae, N. paraguayensis, and N. sordida have striate ascospores. The other species have ascospores that are smooth to roughened, sometimes spinulose or verruculose. The ascospore size is relatively large compared to Allantonectria, Nectria except N. balansae group, and Pleonectria. They are 18.4–43 × 6.2–15.4 μm, with an average of more than 25 μm long. Ascospore size can be used to distinguish between N. eustromatica and N. mariae or between N. balansae and N. sordida. In the natural environment conidiomata in the N. balansae group may be sporodochial or pycnidial. Only two species have sporodochia, N. hoheriae and N. sordida, while one species is known to have pycnidia, N. magnispora. The stromata from which sporodochia arise are erumpent through the epidermis allantonectria, nectria, and Pleonectria with perithecia sometimes occurring simultaneously on the same stroma. The sporodochia are generally caespitose, orange to red, with no stipe. The hymenium arises directly from textura prismatica tissue elongating from textura angularis. The conidiophores have monochasial, monoverticillate, or biverticillate branching with compact or diffuse whorls. The conidiogenous cells are monophialidic, cylindrical, straight, or curved in terminal whorls of 2–4 with sterile hyphae, or lateral and terminal. The shape and surface of conidia are generally conserved, although the size of conidia can be used to distinguish between N. hoheriae and N. sordida. In N. magnispora the stroma from which pycnidia arise may also contain perithecia. The pycnidia are globose, immersed, eustromatic, and smooth. The very short, unbranched conidiogenous cells are enteroblastic and monophialidic. The conidia are subglobose to ellipsoidal, aseptate, and hyaline similar to other species of Nectria. The anamorph in culture of species in the N. balansae group exhibits considerable variability. Colony diameter of the two temperate species, N. magnispora and N. mariae, on PDA at 25 °C after 7 d is 7–32 mm diam. while the sub-tropical or tropical species, N. balansae and N. sordida, grow more quickly, reaching 45–85 mm diam. The colour of colonies is the same for all species ranging from whitish yellow to yellowish brown. The odour on PDA is slightly fruity (N. balansae), putrid (N. magnispora and N. sordida), or absent (N. mariae). The conidiophores that produce microconidia are short while those that produce macroconidia are long. Lateral phialidic pegs were never observed. The short conidiophores producing microconidia are usually unbranched or loosely branched, generally with 1(–3) branches. The morphology of the microconidia is conserved and thus not useful in distinguishing species. The microconidia are 5.0–13 × 1.6–5.4 μm, smooth, and hyaline, similar for all species. The long conidiophores producing macroconidia are monochasial, unbranched or loosely branched, generally with 1(–2) branches. The smooth, hyaline macroconidia of N. eustromatica and N. magnispora are ellipsoidal to long fusiform and curved while those of N. mariae and N. sordida are subglobose to ellipsoidal. Nectria eustromatica produces longer macroconidia (20–54 μm) than the other species (11.5–27.6 μm). Immature pycnidia are produced on SNA and PDA by some isolates of N. magnispora and N. sordida. Neither microconidia nor macroconidia are known for N. balansae. Perithecia are not produced on SNA or PDA. Chlamydospores are produced on SNA and PDA by N. balansae and N. magnispora. Swollen hyphae are often produced on SNA and PDA by N. balansae, N. magnispora, and N. mariae. Pleonectria The stromatal morphology in Pleonectria is similar to that of Allantonectria and Nectria. The size of the stroma of most species of Pleonectria is generally constant and smaller than in species of Nectria. Two exceptions are P. austroamericana and P. sphaerospora in which the stroma are large (1.0–7.0 mm diam, 0.5–2.5 mm tall) each bearing up to 200 perithecia. The colour of the stroma is variable depending on the extent of formation of bright yellow scurf. Most species of Pleonectria produce red to umber stromata, but the stromata of P. austroamericana, P. chlorinella, P. pyrrhochlora, P. virens, and P. zanthoxyli appear pale yellow to yellow or greenish yellow because of the abundant scurf. The reaction of the stromatal tissue to KOH is generally positive, slightly darker, but P. austroamericana, P. chlorinella, P. lonicerae, P. pyrrhochlora, P. sphaerospora, P. virens, and P. zanthoxyli have only a weak or no reaction because of the abundant scurf covering the stromata. The www.studiesinmycology.org tissue structure of the stromatal surface is pseudoparenchymatous producing textura angularis to t. globulosa. The perithecia of most species of Pleonectria are supericial, densely aggregated on the stromata. Perithecia of P. austroamericana, P. chlorinella, and P. sphaerospora are covered by abundant yellow scurf and appear immersed in a stroma. Perithecia of P. lonicerae, P. pyrrhochlora, P. virens, and P. zanthoxyli are also covered by abundant scurf as well as immersed in the substratum. The ostioles of perithecia are not conspicuously acute similar to Allantonectria and Nectria. Perithecia colour depends on the presence of bright yellow scurf or scales, although young perithecia generally lack scurf or scales. When mature, the perithecia are subglobose to globose, red to umber, becoming blood colour to dark purple in KOH, although P. austroamericana, P. chlorinella, P. lonicerae, P. pyrrhochlora, P. sphaerospora, P. virens, and P. zanthoxyli have a weak reaction or sometimes negative. Perithecia of P. austroamericana, P. chlorinella, P. pyrrhochlora, P. sphaerospora, P. virens, and P. zanthoxyli produce abundant scurf. Only P. lonicerae forms abundant scurf around the ascomatal apex. The surface of the perithecia is roughened. The perithecial wall is generally 20–70 μm thick and consists of two regions. An outer region 15–50 μm thick intergrades with the stroma and forms textura globulosa or t. angularis and the inner region 5–30 μm thick forms textura prismatica. Pleonectria aquifolii, P. boothii, P. coryli, and P. ilicicola possess three regions around the apex, thus the apex is relatively thick (65–80 μm diam). The asci are narrowly clavate to clavate. The ascal apex is thin with an indistinct ring. The arrangement of the ascospores in the asci is generally biseriate above and uniseriate below, but the asci of P. berolinensis and P. lonicerae are always uniseriate. The size of asci gradually increases because most species have ascospores that bud and produce ascoconidia inside the asci. The ascospores are highly diverse and thus have characteristics that are informative at the species level. The shape of ascospores varies greatly. Eighteen species, P. aquifolii, P. aurigera, P. balsamea, P. berolinensis, P. chlorinella, P. coryli, P. ilicicola, P. lamyi, P. lonicerae, P. missouriensis, P. okinawensis, P. pinicola, P. pseudomissouriensis, P. pyrrhochlora, P. rubicarpa, P. sinopica, P. virens, and P. zanthoxyli, have ascospores that are ellipsoidal to fusiform. Four species, P. cucurbitula, P. quercicola, P. rosellinii, and P. strobi, generally have iliform ascospores. Ascospores of Pleonectria austroamericana and P. sphaerospora are subglobose to ellipsoidal, while those of P. boothii are cylindrical to long-cylindrical. Only P. clavatispora produces clavate ascospores, a diagnostic characteristic. Pleonectria okinawensis and P. pseudomissouriensis have spinulose and striate ascospores, respectively. The ascospores of Pleonectria are mainly hyaline, although in some species such as P. aurigera, P. missouriensis, and P. okinawensis they become pale brown. Ascospore septation of Pleonectria is informative at the species level. Seven species, P. aquifolii, P. coryli, P. ilicicola, P. okinawensis, P. pseudomissouriensis, P. rubicarpa, and P. sinopica, have (0–)1-septate ascospores; ive species, P. aurigera, P. cucurbitula, P. quercicola, P. rosellinii, and P. strobi, have multiseptate ascospores; and fourteen species, P. austroamericana, P. balsamea, P. berolinensis, P. boothii, P. chlorinella, P. clavatispora, P. lamyi, P. lonicerae, P. missouriensis, P. pinicola, P. pyrrhochlora, P. sphaerospora, P. virens, and P. zanthoxyli, have muriform ascospores. The size of ascospores is also variable due to the different shapes. Part-ascospores are observed only in P. chlorinella. The conidiomata in Pleonectria are pycnidial, generally orange or red to umber. They may be supericial on the substratum, previously regarded as Gyrostroma, or immersed 17 Hirooka et al. as in Zythiostroma; however, these characteristics may overlap and this varies with species. All pycnidial stromata are erumpent through the epidermis; sometimes pycnidia and perithecia are formed simultaneously on the same stroma. Nine species, P. balsamea, P. boothii, P. cucurbitula, P. lamyi, P. missouriensis, P. okinawensis, P. pinicola, P. rosellinii, and P. strobi, form supericial pycnidia; two species, P. ilicicola and P. quercicola, form immersed pycnidia; and three species, P. austroamericana, P. sinopica, and P. sphaerospora, possess both morphologies. The pycnidia are generally aggregated or caespitose. The supericial pycnidia are generally orange, red to sienna, smooth to slightly roughened, rarely with bright yellow scurf. Most supericial pycnidia are subglobose, although they are discoidal in P. austroamericana, P. sphaerospora, P. missouriensis, and P. lamyi. The wall of supericial pycnidia is 15–55 μm thick and consists of two regions. The outer region is 6–25 μm thick, intergrading with the stroma, and forms textura globulosa or t. angularis. The inner region is 5–23 μm thick and forms textura prismatica. Immersed pycnidia are generally irregular in shape. Immersed pycnidia are multilocular in the stroma. The verticillate conidiophores of species of Pleonectria are highly conserved. The number of branches in the conidiophores is generally 1–3, but in P. missouriensis the number of branches is up to 5. The size of verticillate conidiophores is 5–30 μm long, 0.8–4.3 μm wide. The conidiogenous cells are enteroblastic and monophialidic. The intercalary phialides are abundant in all species except P. austroamericana, P. boothii, P. ilicicola, P. quercicola, P. pinicola, and P. sphaerospora. Each conidiophore bears 1–3 intercalary phialides, but P. okinawensis may bear up to seven. The size of the intercalary phialides is 4–6 μm long. Sterile hyphae intermixed with phialides were observed in P. austroamericana and P. pinicola. Although not seen in the natural environment, P. virens and P. zanthoxyli also form sterile hyphae in pycnidia produced in culture. The sterile hyphae can be acicular, straight, or curved, sometimes 1–3 branched. The morphology of the conidia does not vary greatly. The smooth conidia are generally ellipsoidal to allantoid similar to the ascoconidia, 1.7–6.6 × 0.4–2.6 μm. In culture the anamorphs of species of Pleonectria form lateral phialidic pegs and sometimes verticillate conidiophores when cultures are old. In general, lateral phialidic pegs develop on submerged, aerial or repent hyphae. The growth rate of colonies on PDA at 25 °C after 7 d varies somewhat. Eight species, P. balsamea, P. cucurbitula, P. pinicola, P. strobi, P. rosellinii, P. berolinensis, P. pyrrhochlora, and P. zanthoxyli grow relatively faster (average > 50 mm) than the others (average < 50 mm). The colony colour is mainly white to whitish yellow. The odour of most species on PDA is slightly fruity or putrid, although P. boothii does not produce any odour. The lateral phialidic pegs develop after 2–3 d and produce abundant conidia. The shape of the lateral phialidic pegs is somewhat variable, generally narrowly lask-shaped pegs, 1.5–6.8 × 1.0–4.2 μm, but in some species such as P. coryli, P. okinawensis, and P. sinopica only ellipsoidal pegs are produced tapering slightly toward the tip. Conidiophores are generally produced after 3 d, but two species, P. aurigera and P. rosellinii, do not form conidiophores in culture. Although the majority of species have simple aerial verticillate conidiophores, a few species, P. ilicicola, P. okinawensis, P. pyrrhochlora, P. quercicola, and P. sinopica, produce both aerial and sporodochial conidiophores, i.e. conidiophores aggregated to form a hymenium. The aerial conidiophores are unbranched, sometimes verticillate, 1–3-branched, becoming loosely to moderately densely branched. The size of the aerial conidiophores is 6.5–40.9 μm long and 1.0– 4.6 μm diam at the base. The conidiophores on the sporodochia 18 are densely branched, with terminal whorls of 2–5 phialidic conidiogenous cells. Sporodochial conidiophores are 10–44.7 μm long and 1.1–3.3 μm wide at the base. The conidiogenous cells are generally enteroblastic, monophialidic, cylindrical, and slightly tapering toward the tip. Only P. aquifolii forms polyphialides. The young conidia are formed from monophialides on aerial, submerged, or repent hyphae. Young conidia are smooth, hyaline, ellipsoidal, oblong, to long-cylindrical, and generally 2.3–7.9 × 0.9–2.7 μm. Mature conidia appear after 2–3 d; their shape varies with species. Mature conidia are smooth, hyaline, subglobose, ellipsoidal, oblong, long-cylindrical, to allantoid. Pleonectria berolinensis has allantoid to ellipsoidal mature conidia swollen at both ends and with a strongly constricted middle septum; P. lamyi has C-shape conidia. Pycnidia are produced on SNA and PDA by some isolates of P. austroamericana, P. balsamea, P. virens, and P. zanthoxyli while chlamydospores, 6–14 µm diam, are produced on SNA and PDA by some isolates of P. aquifolii, P. ilicicola, P. quercicola, and P. virens. Perithecia are not produced on SNA and PDA. DISCUSSION Generic concepts Historically, the genus Nectria has been the repository for all uniloculate, bright-coloured, perithecial fungi. Because this genus was broadly conceived, it included diverse anamorphs forming various types of conidiomata, although usually in culture only simple morphological structures were produced. The concept of the genus Nectria was restricted in a narrow sense by Rossman (1989) and Rossman et al. (1999). Species excluded from Nectria sensu Rossman were placed in various genera in the two families, Bionectriaceae and Nectriaceae. Recent studies with DNA sequence data have conirmed the relationships of nectria-like fungi, now segregated into genera such as Bionectria, Lasionectria, and Nectriopsis in the Bionectriaceae and Calonectria, Lanatonectria, and Neonectria in the Nectriaceae among others (Rehner & Samuels 1995, Rossman et al. 2001, O’Donnell 1993, Castlebury et al. 2004). This study was initiated to examine the species included in Nectria sensu Rossman having anamorphs placed in the three genera Gyrostroma, Tubercularia, and Zythiostroma. The relationship of species of Nectria to the three anamorph genera contradicted recent taxonomic studies of hypocrealean fungi in which the telemorph-anamorph connections and recognition of monophyletic groups suggested a one-to-one relationship of teleomorph to anamorph genera, the so-called “genus-for-genus” hypothesis (Rossman et al. 1999, Rossman 2000, Schroers 2001, Crous 2002, Chaverri et al. 2008, 2011, Luo & Zhuang 2010). Our phylogenetic tree revealed two major clades of species previously recognised in Nectria sensu Rossman (Fig. 1). One phenotypic difference between species in these clades is the presence or absence of bright yellow scurf on the perithecia. Initially it was thought that Nectria could be segregated into two genera, namely Nectria lacking scurf and Pleonectria producing yellow scurf (Hirooka et al. 2009). The name Pleonectria is the oldest generic name available for this group of nectria-like species having bright yellow scurf. However, at the base of the Pleonectria clade is an isolate representing an unusual nectria-like species, Allantonectria miltina, type and only species in the genus Allantonectria (Figs 1, 2). Although this species has bright yellow scurf on the allantonectria, nectria, and Pleonectria perithecia, the fungus is clearly distinguishable from the other species of Pleonectria based on teleomorphic and anamorphic morphology, cultural morphology, and host speciicity (Table 3). Thus, Allantonectria miltina is segregated from Pleonectria as a monotypic genus. Unlike Allantonectria and Pleonectria, the Nectria clade encompasses a great deal of morphological diversity. The genus can be divided into two groups, i.e. species of Nectria having supericial perithecia and species of the N. balansae group. The relatively large perithecia of species in the N. balansae group are nearly or completely immersed in the stroma and the ascospores are also generally larger than other species of Nectria. Species in the N. balansae group possess not only sporodochial but also pycnidial anamorphs in the natural environment and culture, although the pycnidia in the natural environment are rarely detected and the pycnidia in culture are immature (Table 3). In addition, their cultural characteristics are unique in producing two sizes of conidia and the conidiophores are monochasial as recently described by Jaklitsch & Voglmayr (2011). This distinctive morphology suggests potential recognition at the generic level. However, species in the Nectria balansae group are paraphyletic in two clades (II-1, II-2) (Figs 1, 3). The closest afinity of clade II-2 is with species of Nectria having synnematous anamorph clade (II-3), rather than to clade II1. Although we carefully observed the sexual and asexual states of the two clades, no signiicant morphological differences other than the macromorphology were found. Therefore, the N. balansae group cannot be recognised as a distinct genus. Clades II-3 and II-4 correlate with anamorph fructiication in the natural environment. Clade II-3 includes species with synnematous anamorphs while clade II-4 has species with sporodochial anamorphs (Figs 1, 3). Species concepts Three major concepts are currently used to deine species, namely Genealogical Concordance Phylogenetic Species Recognition (GCPSR) (Taylor et al. 2000), the Morphological Species Concept (MSC) (John & Maggs 1997), and the Phylogenetic Species Concept (PSC) (Cracraft 1983). These three species concepts were used by Hirooka et al. (2011) to deine four species in the Nectria cinnabairna species complex. In this study, we continue to combine these species concepts in deining species in Allantonectria, Nectria, and Pleonectria. In recent years the species of nectria-like fungi have increasingly been deined by combining morphological characteristics of the teleomorph with those of the anamorph representing the whole fungus or holomorph (Rossman et al. 1999, Rossman 2000, Schoch et al. 2000, Schroers 2001, Luo & Zhuang 2010). Teleomorphanamorph connections are sometimes equivocal especially when the connection is based on their co-occurrence on natural substrata. Before molecular tools existed, one of the most effective methods for determining teleomorph-anamorph connections was by comparing cultures grown from ascospores and conidia. This method is tedious and sometimes results in mistakes because two or three hypocrealean fungi often occur on the same branch or grow adjacent to each other (Samuels 1988, Rossman et al. 1999, Schroers 2001). One example involves P. coryli, a species that was mistakenly said to have a sporodochial anamorph (Samuels et al. 2006). By using molecular sequence analyses, we have clariied the taxonomic confusion in species of Allantonectria, Nectria, and Pleonectria and can hypothesise the teleomorph-anamorph relationship even if only one morph is known. As an example, the www.studiesinmycology.org anamorph of N. berolinensis has historically been considered to be sporodochial. Despite the examination of numerous specimens and cultures, no sporodochia were found. Our phylogenetic data suggest that the anamorph of this species is most likely pycnidial. The species concept that combines the three approaches results in the ability to predict teleomorph-anamorph connections and evolutionary relationships. Evaluation of morphological characters Stroma The stromata in species of Allantonectria, Nectria, and Pleonectria are well-developed on the plant substratum. The tissue of the stromata is generally pseudoparenchymatous consisting of cells that no longer appear hyphal-like. The stromata may range from 1–3 mm diam without a stipe, but some species such as N. canadensis, N. cinnabarina, and N. nigrescens have long stipitate sporodochia. The pseudoparenchymatous basal stroma is often continuous with the outer region of the ascomatal wall and is frequently associated with the anamorph. Species with sporodochia and pycnidia produce relatively large stromata on which perithecia are produced, often simultaneously. The teleomorph and anamorph relationship is easily recognised when the two states occur closely together. In general, the stromatal anatomy of Allantonectria, Nectria, and Pleonectria is the same in all species, i.e. well developed, pseudoparenchymatous, but the stromata vary in size, shape, presence or absence of scurf, and supericial or immersed in the substratum. Species of Nectria produce relatively abundant stromata compared to Pleonectria. Within the N. balansae group of N. balansae, N. eustromatica, N. hoheriae, N. magnispora, N. mariae, N. paraguayensis, and N. sordida, abundant stromata up to 2.5 mm high and 4 mm diam develop on the natural substratum. Unlike species of N. balansae group, most species of Allantonectria and Pleonectria produce only basal stromata, although P. austroamericana and P. sphaerospora produce large stromata up to 7 mm tall. In the natural environment perithecia of Allantonectria, Nectria, and Pleonectria are generally supericial on the stromata, although species in the N. balansae group are immersed in a welldeveloped stromata. Three species of Pleonectria, P. pyrrhochlora, P. virens, and P. zanthoxyli are covered with abundant bright yellow scurf and are immersed in the substratum. Although the majority of Pleonectria species form supericial perithecia, three species do not produce pycnidia on natural substratum but two of these species, P. virens and P. zanthoxyli, produce pycnidia in culture. Our phylogenetic tree suggests that these three species belong in the Pleonectria clade. Pleonectria austroamericana also possesses abundant yellow scurf and stromata that completely cover the ascomata (Figs 1, 2). As a result the ascomatal wall is dificult to discern, but, by observing the KOH reaction, one can distinguish the perithecial wall cells. Ascomata and ascomatal wall structure The ascomata of species of Allantonectria, Nectria, and Pleonectria are generally light- to bright-coloured, soft-textured, uniloculate perithecia that are bright yellow, yellowish green, orange, red or reddish brown becoming slightly darker in dried specimens. The ascomata react with KOH darkening to a blood-red colour or purple and turn yellow in lactic acid, although some species such as N. pyrrhochlora and N. zanthoxyli change only slightly or not at all. The ascomatal wall structure is often useful in deining species. The ascomatal wall generally consists of two to three regions of 19 Hirooka et al. cells with each region of three to ive cell layers. The outer region is usually composed of textura angularis to textura globulosa with walls that are uniformly, but sometimes irregularly, thickened. A middle region exists in a few species such as N. pseudocinnabarina and N. pseudotrichia. The cells of the middle region often contain brown to red-brown pigment droplets. The morphology of the inner region is highly conserved, almost always consisting of thin-walled, hyaline cells, elongated parallel to the centrum. The cells near the ascomatal surface are uniformly or sometimes irregularly thick-walled, but in some species the cells are irregularly thickened especially those species having bright yellow scurf or scales. Centrum characters, such as the absence or presence of the apical paraphyses and the periphyses lining the ostiole, are similar for all nectria-like fungi. The ostiolar canal is always periphysate in species of Allantonectria, Nectria, and Pleonectria.The structure of the perithecial wall has been emphasised as an informative character within the nectrialike fungi (Booth 1959, Samuels & Rossman 1979, Rossman et al. 1999). In this paper the majority of the species of Nectria having synnematous anamorphs, such as N. lateritia, N. polythalama, N. pseudocinnabarina, and N. pseudotrichia, have a perithecial wall consisting of three regions. Three of these species clustered as a monophyletic group in our phylogenetic tree (Figs 1, 3). Pleonectria clade I-3 with four species, P.aquifolii, P. boothii, P. coryli, and P. ilicicola, is united by the formation of perithecia with three regions around the apex (Figs 1, 2). The perithecial wall of Allantonectria miltina has two regions (Figs 4D, E, 5A). Asci and ascospores As for all species in the Hypocreales, the asci of Allantonectria, Nectria, and Pleonectria are unitunicate. Within these species a ring in the ascus apex was inconspicuous. Neither the apex nor any other part of the ascus or centrum reacts with iodine. Each ascus has eight ascospores that are generally arranged biseriately, rarely uniseriately. The ascal morphology in Allantonectria, Nectria, and Pleonectria is more or less conserved. In regard to ascal size, some species of Nectria such as those in N. balansae group have asci larger than other species, whereas those of Allantonectria are relatively small. The size of the asci correlates with the size of the ascospores. Species of Nectria have relatively large ascospores, while those of Allantonectria have small ascospores. The asci of species of Pleonectria become gradually swollen as ascoconidia develop inside the asci up to almost double the original size. Ascospores in Allantonectria, Nectria, and Pleonectria are variable in shape, size, and septation, and are useful in distinguishing these species (Table 3). Allantonectria miltina has non-septate, minute ascospores (Figs 4I, 5C). Ascospore morphology in Nectria and Pleonectria is highly diverse. Species of Nectria have variable septation ranging from 1-septate to multiple, transverse septation but generally do not have iliform or budding ascospores, although, in two specimens of N. canadensis, “ascoconidia-like spores” were observed (see the note under N. canadensis in this study). Most species of Nectria have ascospores that are ellipsoidal to fusiform with one to many transverse septae except N. antarctica, N. polythalama, and N. pseudotrichia with muriform ascospores. Most species of Pleonectria produce ascospores with budding ascoconidia inside or outside of the asci, a characteristic unique to Pleonectria. Septation in Pleonectria ranges from 1-, multiseptate, to muriform. The shape may be ellipsoidal, clavate, fusiform, long-iliform, or clavate. Ascospores of P. cucurbitula and P. strobi are very long and multiseptate. Surprisingly, ascospores of P. chlorinella can disarticulate in the asci forming part-ascospores, a 20 feature not previously reported for any other nectria-like fungus. Ascospore colour is generally hyaline to slightly golden-yellow. Ascospore ornamentation is variable, ranging from smooth to spinulose or striate. Ascospore and conidial morphology of fungi often correlates with ecological niche. For instance, Ingold (1975) speculated that convergent evolution has occurred in aquatic hyphomycetes, and later, his hypothesis was supported by molecular studies (Campbell et al. 2006, Shenoy et al. 2006). As another example, species of Geosmithia, Bionectriaceae, isolated from plants, have small ellipsoidal to cylindrical conidia (Pitt 1979), but species of Geosmithia associated with ambrosia beetles possess large, globose conidia with thickened walls. This might be symbiont-forced evolution because nutrient-rich protoplasts and indigestible cell walls can be helpful for dispersal by the fecal pellets of ambrosia beetles (Kolařík & Kirkendall 2010). From this evidence, one could speculate that the morphological variation of ascospores of Allantonectria, Nectria, and Pleonectria is linked to ecological niches. Ascospores that bud inside the asci may be a mechanism to ensure an increased numbers of propagules and thus better dispersal. Anamorphs on natural substrata Although emphasis in Allantonectria, Nectria, and Pleonectria has traditionally been placed on the teleomorphic state, anamorphs are commonly encountered in association with the teleomorph. The anamorphs in nature range from non-existent to immersed or supericial, and pycnidial, sporodochial, or synnematal. Conidia are usually aseptate and ellipsoidal to oblong. The characteristics of the anamorphic states of these fungi are useful in distinguishing species of Nectria from Pleonectria; an anamorph of Allantonectria is unknown in the natural environment (Table 3). Most species of Nectria possess tubercularia-like anamorphs that form sporodochia and synnemata. Within Nectria, sporodochia- and synnemata-forming species clearly clustered in distinct clades, thus these two types of conidiomata are phylogenetically informative mostly at the species level (Fig. 3). Some exceptions in Nectria are the anamorphs of N. antarctica and N. magnispora. Based on our observations, N. antarctica forms concave sporodochia (Figs 7N, 8D) and N. magnispora produces immersed pycnidia in the natural environment. The pycnidal state of N. magnispora developed on PDA, and SNA, although conidia were not produced. Anamorphs of Pleonectria form immersed or supericial pycnidia, but some species such as P. austroameriana and P. sphaerospora can form both immersed and supericial pycnidia at the same time. Species of Pleonectria on conifers produce only supericial pycnidia (Table 3). In contrast to ascospores, conidial morphology in the natural environment and in culture of Nectria and Pleonectria are surprisingly similar and highly conserved. In the natural environment, species of Nectria produce sporodochia or synnemata while species of Pleonectria form pycnidia. These fructiications facilitate dispersal of the small conidia (Fitt et al. 1989, Sérusiaux 1995, SchmidHempel 1998). We speculate that conidia of the synnematous anamorphs of Nectria may attach to insects when the insects move through the “miniature forest” of synnemata. Anamorphs in culture To date, cultural characteristics have not been stressed in systematic studies of Allantonectria, Nectria, and Pleonectria. A few mycologists have reported their morphological characteristics in culture (Booth 1959, Seifert 1985, Hirooka et al. 2011). Lateral allantonectria, nectria, and Pleonectria phialides referred to as primary conidiophores by Booth (1959) are generally abundant; these have a short base with a narrowly lask-shaped apical region. Many species produce verticillium-like conidiophores, referred to as secondary conidiophores by Booth (1959). As on natural substratum, conidia in culture may also be aseptate to rarely 1-septate and allantoid to ellipsoidal. The morphological heterogeneity of conidia in the Nectria cinnabarina species complex has been reported (Mayr 1883, Brefeld 1891, Beck 1902, Jørgensen 1952, Hirooka et al. 2011). In culture, the anamorph of Allantonectria varies from that of Nectria and Pleonectria. Allantonectria miltina in culture produces trichoderma-like conidiophores and rhizomorph-like strands each made up of a single hypha with a large diameter (Fig. 6F–M). Surprisingly, the cultural morphology of Nectria excluding the N. balansae group and Pleonectria are almost identical. The size of young conidia is somewhat useful for segregating the two genera, i.e. 3.0–23.0 × 1.5–5.0 μm in Nectria vs. 2.3–7.9 × 0.6– 2.7 μm in Pleonectria. Within Nectria, the N. balansae group has a unique morphology: microconidia are produced in verticillate conidiophores while macroconidia develop on conidiophores with monochasial branching. Monochasial branching conidiophores producing large macroconidia were never observed in any other nectria-like fungi. Evaluation of teleomorphs in the natural environment Our six-loci phylogenetic analysis demonstrates that Nectria sensu Rossman is paraphyletic within the Nectriaceae (Fig. 1). The major clade of Allantonectria and Pleonectria is distinct from the other major clade that includes the genus Nectria. This distinction had not previously been recognised because the perithecial morphology of Allantonectria, Nectria, and Pleonectria is highly conserved. The two major clades clearly correlate with absence or presence of bright yellow scurf on the perithecia. Species of Allantonectria and Pleonectria have a bright yellow scurf while such a scurf is absent in Nectria and other genera of the Nectriaceae. Some perithecia, especially young ones, do not always produce the yellow scurf. On the other hand the abundant yellow scurf of some species of Pleonectria, P. austroamericana, P. pyrrhochlora, P. sphaerospora, P. virens, and P. zanthoxyli, may obscure the perithecial wall or stroma when the scurf completely covers the perithecia; these species form a strongly supported monophyletic group. The most basal taxon, A. miltina, having scanty light yellow scurf, is sister to the Pleonectria clade (Figs 1, 2). The perithecial position of immersed or supericial is an easily recognised character. In this monograph, the position of perithecia appears to be a signiicant phenotypic character for identifying species. Species in the genus Nectria and those in the N. balansae group can be segregated by the perithecial position. Perithecia of species in Nectria are not immersed in the stroma whereas species in the N. balansae group are immersed or rarely semi-immersed in the stroma. Perithecia of N. antarctica and N. tucumanensis are rarely immersed at the base (Figs 7A–C) while other species of Nectria produce completely supericial perithecia. Our phylogenetic tree places N. antarctica in a basal position to Nectria in clade II-2 with two species of the N. balansae group (Figs 1, 3). The anamorph of N. antarctica in culture forms a typical tubercularia-like morphology that may be either convex or concave (Fig. 9). Within the clade that includes species having bright yellow scurf, four species of Pleonectria possess perithecia basally or completely www.studiesinmycology.org immersed in a stroma or substratum, P. austroamericana, P. pyrrhochlora, P. virens, and P. zanthoxyli; the sequenced taxa in this group compose clade I-2 (Figs 1, 2). Perithecial wall structure appears to be a somewhat signiicant phenotypic character. Among species of Pleonectria, four species have perithecia with walls that form three regions around the perithecial apex and these four species form a well-support clade I-3, P. aquifolii, P. boothii, P. coryli, and P. ilicicola (Figs 1, 2). This morphological characteristic was noted for P. aquifolii and P. coryli by Booth (1959). The three species of Nectria having a synnematous anamorph and forming clade II-3 have a perithecial wall composed of three regions (Figs 1, 3). However, Nectria australiensis and N. noackiana, both of which have asynnematous anamorphs, do not produce three perithecial wall regions. Because no sequence data of the two species were available in this study, we are not sure whether or not species having three perithecial regions are monophyletic. Historically, species of Nectria sensu lato have been segregated into genera based on ascospore morphology. In our study, we recognise that ascospore morphology is informative at the generic level only for Allantonectria (Table 3). The small, allantoid ascospores of A. miltina are not known for any other nectria-like fungi. Among species of Nectria and Pleonectria, ascospore morphology is not an information character except for the characteristic of producing ascoconidia as occurs in many species of Pleonectria. Many species of Nectria have one-septate ascospores as in most of the N. balansae group and those species having sporodochial anamorphs. Among the species of Nectria having synnematous anamorphs, N. polythalama and N. pseudotrichia have muriform ascospores as does N. antarctica, the phylogenetically anomalous member of the N. balansae group. Ascospore morphology in Pleonectria is highly variable, but this morphology does not correlate with phylogeny (Fig. 2). Many species of Pleonectria have muriform ascospores but a few are one-septate while others are multiseptate. Among those for which we have phylogenetic data, only ive species of Pleonectria have oneseptate ascospores. Two of these, P. aquifolii and P. ilicicola, occur only on Ilex aquifolii in Europe and form a well-supported clade while the other two, P. sinopica on Hedera in Europe and P. okinawensis on Castanopsis in Japan, also form a well-supported clade. Among the four species of Pleonectria having very long, multiseptate ascospores, two species, P. strobi and P. cucurbitula occurring on different subgenera of Pinus, form a well-supported clade while the other two species, P. rosellinii on Abies and P. quercicola on Quercus, are unrelated (Fig. 2). Evaluation of anamorphs in the natural environment Traditionally the classiication of anamorphic fungi was based on the type of fructiication, speciically acervuli, pycnidia, sporodochia, synnemata, or absent. This system was gradually rejected as artiicial. Early examples that demonstrated this include Mason (1937) who demonstrated that Heteropatella antirrhini produces both acevuli and pycnidia as asexual states. Similarly, Dube & Bilgrami (1965) determined that Pestalotia sp. could form both acervuli and pycnidia varying with the host species. Sutton (1973) mentioned that species having acervuli and sporodochia could have a close afinity based on his observation of the ontogeny of fructiications. The macroscopic fructiication is no longer considered important in the classiication of asexual fungi. When Sutton (1980) published the monograph of the coelomycetous fungi, he focused on conidiogenesis as a reliable morphological indication of relationships especially for fungi in culture. 21 Genera Species Anamorph in natural Geography environment Teleomorph in natural environment Perithecial position Ascospore shape Ascospore septation Fructiication (shape and position) Host Allantonectria A. miltina Supericial Allantoid Aseptate Unknown Central America, Europe, North America Monocots, especially Agavaceae Nectria N. antarctica Supericial or rarely immersed only at the base Usually ellipsoidal Muriform Sporodochia (convex or concave) North America, South America Dead woody substrata N. argentinensis Supericial Long-ellipsoidal to fusiform 1-septate Sporodochia (sessile) South America Dead woody substrata N. asiatica Supericial Ellipsoidal to fusiform (0–)1-septate Sporodochia (short stipitate) Asia Dead woody substrata N. aurantiaca Supericial Ellipsoidal 1-septate Sporodochia (long stipitate) Europe Dead woody substrata N. australiensis Supericial Ellipsoidal to rarely fusiform 1-septate Synnemata Oceania Hoheria populum N. balansae Nearly or completely immersed Ellipsoidal, fusiform to long oblong (0–)1-septate Unknown Asia, Europe, South America Dead woody substrata N. berberidicola Supericial Ellipsoidal to fusiform 1-septate Sporodochia (sessile) Europe Berberis vulgaris N. canadensis Supericial Ellipsoidal to longellipsoidal (1–)3-septate Sporodochia (extremely long stipitate) North America Ulmus tree N. cingulata Supericial Ellipsoidal to fusiform 1-septate Unknown South America Dead woody substrata N. cinnabarina Supericial Ellipsoidal to fusiform (0–)1(–2)-septate Sporodochia (long stipitate) Europe, North America Dead woody substrata N. dematiosa Supericial Ellipsoidal to fusiform (0–)1(–2)-septate Sporodochia (short stipitate) Asia, Europe, North America Dead woody substrata N. eustromatica Completely immersed Allantoid to bean-shaped 1-septate Unknown Europe Hippocrepis (Coronilla) emerus N. himalayensis Supericial Ellipsoidal to fusiform 1-septate Sporodochia (short stipitate) Asia Dead woody substrata N. hoheriae Completely immersed Ellipsoidal to long oblong (0–)1(–3)-septate Sporodochia (sessile) Oceania Plagianthus regius N. lateritia Supericial Ellipsoidal to cylindrical 3-septate Synnemata Asia, Central America, South America Manihot utilissima N. magnispora Nearly or completely immersed Ellipsoidal to long oblong (0–)1(–2)-septate Pycnidia (immersed) Asia Dead woody substrata N. mariae Nearly or completely immersed Ellipsoidal to fusiform (0-)1-septate Unknown Europe Buxus sempervirens N. neorehmiana Supericial Fusiform (1–)3-septate Synnemata South America Dead woody substrata Hirooka et al. 22 Table 3. Morphology, geography and host identity of Allantonectria, Nectria and Pleonectria. Table 3. (Continued). www.studiesinmycology.org Genera Nectria Pleonectria Species Teleomorph in natural environment Anamorph in natural Geography environment Host Perithecial position Ascospore shape Ascospore septation Fructiication (shape and position) N. nigrescens Supericial Ellipsoidal to fusiform (0–)1(–3)-septate Sporodochia (short to long stipitate) Europe, North America Dead woody substrata N. noackiana Supericial Ellipsoidal to fusiform 1-septate Synnemata South America Bark of unknown liana N. novaezelandiae Supericial Long-ellipsoidal to cylindrical (1–)3(–4)-septate Unknown Oseania Discaria toumatou N. paraguayensis Nearly or completely immersed Ellipsoidal, fusiform to long oblong 1-septate Unknown South America Cedrela brasiliensis, scale insects, lichen and possibly Patellina amoena N. polythalama Supericial Ellipsoidal to fusiform Muriform Synnemata Oceania Dead woody substrata N. pseudadelphica Supericial Fusiform to allantoid (0–)1(–3)-septate Unknown South America Dead woody substrata N. pseudocinnabarina Supericial ellipsoidal to fusiform 1-septate Synnemata Central America, South America Dead woody substrata N. pseudotrichia Supericial ellipsoidal to fusiform Muriform Synnemata Asia, Africa, Europe, Oceania, North America, Central America, South America Dead woody substrata N. pyriformis Supericial Obovoid or pyriform 1-septate Unknown Asia Capparis sepiaria N. sordida Nearly or completely immersed Ellipsoidal, fusiform to long oblong (0–)1(–2)-septate Sporodochia (sessile) South America Dead woody substrata N. tucumanensis Supericial or rarely immersed only at the base Cylindrical to allantoid 1(–3)-septate Unknown South America Dead woody substrata Supericial Ellipsoidal to fusiform (0–)1-septate Unknown Europe Ilex aquifolium Supericial Ellipsoidal, longellipsoidal to allantoid (3–6)7-septate Unknown Europe, North America Dead woody substrata, especially Oleaceae P. austroamericana Supericial or immersed Subglobose to ellipsoidal Muriform Pycnidia (immersed and supericial) North America, South America Dead woody substrata, especially Fabaceae P. balsamea Supericial Ellipsoidal, fusiform to long-fusiform Muriform Pycnidia (supericial) North America Abies (Conifer) P. berolinensis Supericial Ellipsoidal, fusiform to cylindrical Muriform Unknown Asia, Europe, North America Ribes P. boothii Supericial Long-fusiform, cylindrical to long-cylindrical Muriform Pycnidia (supericial) Europe Picea abies (Conifer) P. chlorinella Supericial Fusiform Muriform Unknown North America Dead woody substrata 23 P. clavatispora Supericial Clavate Muriform Unknown North America Ribes P. coryli Supericial Narrowly fusiform to cylindrical 1-septate Unknown Europe, North America Dead woody substrata allantonectria, nectria, and Pleonectria P. aquifolii P. aurigera Genera Pleonectria Species Anamorph in natural Geography environment Teleomorph in natural environment Host Perithecial position Ascospore shape Ascospore septation Fructiication (shape and position) P. cucurbitula Supericial Long-iliform 15–39-septate Pycnidia (supericial) Europe, North America Pinus, subgenus Pinus (Conifer) P. ilicicola Supericial Ellipsoidal (0–)1-septate Pycnidia (immersed) Europe Ilex aquifolium P. lamyi Supericial Ellipsoidal to fusiform Muriform Pycnidia (supericial) Asia, Europe, North America Berberis P. lonicerae Nearly or completely immersed Ellipsoidal to fusiform Muriform Unknown North America Lonicera involucrata P. missouriensis Supericial Ellipsoidal to cylindrical Muriform Pycnidia (supericial) North America Carya alba P. okinawensis Supericial Ellipsoidal to rarely fusiform 1-septate Pycnidia (supericial) Asia Castanopsis sp. P. pinicola Supericial Fusiform to long-fusiform Muriform Pycnidia (supericial) Asia, Europe, North America Pinus (conifer) P. pseudomissouriensis Supericial Ellipsoidal to fusiform 1-septate Unknown South America Dead woody substrata P. pyrrhochlora Nearly or completely immersed Ellipsoidal, rarely subglobose Muriform Unknown Europe Acer campestre P. quercicola Supericial Filiform 8–15-septate Pycnidia (immersed) Europe Quercus ilex ssp. rotundifolia P. rosellinii Supericial Long-iliform 8–31-septate Pycnidia (supericial) Asia, Europe, North America Abies (conifer) P. rubicarpa Supericial Ellipsoidal to fusiform 1-septate Unknown Europe, North America, Central America Dead woody substrata P. sinopica Supericial Ellipsoidal to fusiform 1-septate Pycnidia (immersed and supericial) Europe Hedera P. sphaerospora Supericial or immersed Subglobose to ellipsoidal Muriform Pycnidia (immersed and supericial) North America Dead woody substrata P. strobi Supericial Long-iliform 12–44-septate Pycnidia (supericial) Europe, Norh America Pinus subgenus Strobus (conifer) P. virens Supericial or sometimes immersed at base Ellipsoidal to rarely fusiform Muriform Presumably pycnidia Europe, North America Dead woody substrata P. zanthoxyli Almost immersed Narrowly ellipsoidal to allantoid Muriform Presumably pycnidia Europe, North America, South America Dead woody substrata Hirooka et al. 24 Table 3. (Continued). allantonectria, nectria, and Pleonectria Seifert (1985) and Seifert & Okada (1990) suggested that the anamorphs of Nectria sensu Rossman et al. (1999) should be placed in only one genus, namely Tubercularia, based on careful anatomical observation of fructiications. The anamorphs of Nectria sensu Rossman included those with sporodochia, synnemata, and pycnidia because of the continuum of morphological characters. In this study, we found that the pycnidial anamorphs of Pleonectria in clade I-1 showed phylogenetic distance from the sporodochial and synnematous anamorphs of Nectria in clade II (Fig. 1). Within Pleonectria, the position of pycnidia such as immersed or supericial seems to be correlated with host identity (Table 3). Subglobose, supericial pycnidia develop in species on conifer trees as in clade I-4 and P. boothii on Picea abies in clade I-3. Other species of Pleonectria on hardwood trees and woody shrubs produce immersed or discoidal, supericial pycnidia that are often lattened and immersed at the base. The only exception is P. okinawensis on Castanopsis sp. in Japan that produces navicular, supericial pycnidia (Fig. 2). For some species such as N. canadensis and N. cinnabarina, both of which can produce long stipitate sporodochia, it is dificult to determine whether the anamorphic fructiications are synnematous or sporodochial. To distinguish the two fructiications, Seifert (1985) clariied that a synnema is “a stipitate Hyphomycete conidioma in which, when sporulation begins, the stipe, in longitudinal section, is seen to be composed of undifferentiated hyphae, either in textura porrecta, t. intricata, or rarely, in a t. prismatica; conidiophores or conidiogenous cells arise from the hyphae of the synnemata”. In this study species forming synnemata form clade II-3 while those producing sporodochia form clade II-4 (Fig. 3). In addition the synnematous clade II-3 and sporodochial clade II-4 are also linked to absence or presence of sterile hyphae and acropleurogenous conidiophores. Sterile hyphae mixed with phialides but without acropleurogenous conidiophores were only observed in the synnematal anamorphs of species in clade II-3, while the sporodochial anamorphs and acropleurogenous conidiophores of species in clade II-4 did not produce sterile hyphae. Correlated with their phylogenetic relationship, the anamorphs of N. pseudocinnabarina and N. pseudotrichia were completely identical in the natural environment as well as culture. An additional member of clade II-3, N. polythalama differs in having conidia larger than those of N. pseudocinnabarina and N. pseudotrichia. Based on the anatomy of the synnemata, four species, N. australiensis, N. lateritia, N. neorehmiana, and N. noackiana appear to be morphologically related to the synnematous clade II-3 although cultures are lacking. Among species having a sporodochial anamorph, the length of the stipe does not appear to have phylogenetic importance (Fig. 3). For instance, N. cinnabarina with long, stipitate sporodochia falls phylogenetically between N. berberidicola and N. dematiosa, both of which form sessile or short stipitate sporodochia. Further, N. berberidicola in culture forms long stipitate sporodochia on SNA although we observed only sessile sporodochia on natural substratum. Unlike the other members of clade II, all members of the sporodochial clade II-4 produce acropleurogenous conidiophores (Fig. 3). Most species of Nectria produce complexly verticillate conidiophores, however, species in the N. cinnabarina species complex, N. asiatica, N. cinnabarina, N. dematiosa, and N. nigrescens, produce only acropleurogenous conidiophores (Hirooka et al. 2011). A comparision between pycnidia and synnemata was presented by Seifert (1985) and Okada & Tubaki (1986). They speculated that the cupulate synnemata-like fructiication was a www.studiesinmycology.org transitional form between synnemata and pycnidia according to previous studies of fungi such as Chaetomella, Cornucopiella, Endocalyx, Morrisographium, and Tubercularia. Brubacher et al. (1984) discussed the stalked fructiications with a pycnidioid cavity of Crucellisporiopsis prolongatum. In our study, this hypothesis was considered by comparing the anamorph of P. okinawensis, the other species of Pleonectria, and the synnematous anamorph of Nectria. Pleonectria okinawensis forms naviculate pycnidia that macroscopically resemble synnemata, especially when the apex produces a conidial mass that is extruded from the cavity. In our phylogenetic tree, P. okinawaensis clustered with other species of Pleonectria having pycnidial anamorphs while species of Nectria having true synnematous anamorphs are only distantly related (Figs 1–3). Although the anamorph fructiication is generally an informative character in hypocrealean fungi, some contradictions exist. For example, Hypocrella hirsuta produces both a synnematous hirsutella-like and pycnidial anamorph on the surface of the stroma while the other species of Hypocrella produce only a pycnidial anamorph (Chaverri et al. 2008). In this study, only species of Pleonectria produce pycnidia with the exception of the rudimentary pycnidia of the N. balansae group. Seven related species of Nectria produce synnemata while other species produce sessile or stalked sporodochia. When Sphaerostilbe aurantiaca, a nomenclatural synonym of N. aurantiaca, was described by Tulasne & Tulasne (1861), Stilbum aurantiacum was irst determined to be the synnematous anamorph of S. aurantiaca. Our phylogenetic results suggest that Nectria aurantiaca is basal to a sporodochial clade, not to a synnematous clade (Figs 1, 3). This phylogenetic result was anticipated by some mycologists, i.e. Booth 1959, Samuels & Seifert 1987, Seifert & Okada 1990, although they called the anamorph a synnema. In cultures of N. aurantiaca CBS 236.29 and CBS 308.34, both of which were also examined in this study, Booth (1959) found not only synnemata but also sporodochia. Samuels & Seifert (1987) and Seifert & Okada (1990) illustrated the anatomy of the stipe of N. aurantiaca with the lower half of the stipe being textura porrecta and the upper half of textura globulosa or t. angularis, thus revealing the combined sporodochial and synnematal characters of this anamorph. Although the anatomical characteristics of the anamorph of N. aurantiaca could not be examined because of the poor condition of the type specimen, we determined that the fructiication of N. aurantiaca should be consider sporodochial based on our molecular data and past reports. We suggest that sporodochia should be deined as composed of textura globulosa or t. angularis while synnemata of textura porrecta. This example also suggests that species having sporodochia and synnemata may show a close afinity. The textura porrecta of N. aurantiaca is produced above an extensive basal stroma (Fig. 3) similar to the sporodochial anamorph of other species of Nectria.Our phylogenetic trees show that species having pycnidial anamorphs, Allantonectria and Pleonectria, are only distantly related to species having sporodochial and synnematous anamorphs, Nectria (Fig. 1). Species in the N. balansae group produce not only sporodochial but rarely pycnidial anamorphs although the pycnidia in the natural environment were observed for only one species (N. magnispora) and no mature pycnidia of N. magnispora and N. sordida were found in culture. Surprisingly, N. antarctica, phylogenetically sister to N. magnispora, produced concave sporodochia and immature, immersed pycnidia developing on the stroma between perithecia even though the teleomorph and cultural characters of N. antarctica are morphologically typical of Nectria (Fig. 7N, O). This suggests 25 Hirooka et al. that the concave sporodochia of N. antarctica may be an ancestral character of the pycnidial anamorphs of the N. balansae group. This is similar to Cosmospora with Fusarium anamorphs that generally produces sporodochial anamorphs, yet Cosmospora kurdica has a pycnidial anamorph (Samuels & Seifert 1987, Rossman et al. 1999). Evaluation of anamorphs in culture As is the case with many ascomycetous genera, teleomorphic characters of hypocrealean fungi are conserved while variation among genera and species can be observed in the anamorph. Anamorph characters in culture were found to be more diverse than characters in the natural environment as exempliied for the Neocosmospora haematococca-Fusarium solani species complex (O’Donnell 2000, Covert et al. 2007), Gibberella-Fusarium (Kvas et al. 2009) and Hypocrea-Trichoderma (Chaverri & Samuels 2003). Unlike the examples above, the cultural characters of Nectria and Pleonectria are somewhat similar even though these genera are paraphyletic and exhibit considerable morphological differences in their teleomorphs. However, some differences exist. The size of conidia in culture are diagnostic for distinguishing these genera, > 5 μm long in Nectria vs. < 5 μm long in Pleonectria. In culture, species in the Nectria balansae group produce two sizes of conidia while Allantonectria, most species of Nectria, and Pleonectria produce only one kind of conidia. Based on the basal position of the N. balansae group in clades II-1 and II-2, the production of different kinds of conidia may be considered an ancestral character (Fig. 3). Morphologically, both the holomorph in the natural environment as well as cultures of species in the N. balansae group show considerable differences from Allantonectria, other species of Nectria, and Pleonectria (Table 3). These morphological characters suggest that the N. balansae group might be recognised as a distinct genus. However, our molecular data show serious discrepancies between the phenotypic and genotypic characters of the N. balansae group (Figs 1, 3). Based on our phylogenetic tree, species of the N. balansae group are paraphyletic, i.e. clade II-1 and II-2, and, surprisingly, clade II-2, N. mariae and N. magnispora, is basal to clade II-3, species of Nectria having synnematous anamorphs. Nectria magnispora rarely formed pycnidia in the natural environment. Jaklitsch & Voglmayr (2011), who described N. eustromatica, a species morphologically similar to N. mariae, suggested that N. pseudotrichia was sister to N. eustromatica based on their four locus phylogeny. They described the yellowish fruiting body produced on oatmeal-agar (OA) after 42 d as a "sporodochium" (ig.1q), but it seems likely that this ‘sporodochium’ is actually a cluster of immature pycnidia; similar clusters of immature pycnidia of N. magnispora and N. mariae were often observed on PDA. Although clade II-1 diverged from clades II-2, II-3, and II-4, species of Nectria have retained many plesiomorphic characters of clade II-1. No major morphological differences were found between clade II-1 and II-2 except for the anomalous N. antartica (Fig. 3). Host speciicity and substrata Species of the three genera monographed in this study have varying degrees of host speciicity (Table 3). The host of Allantonectria miltina is limited to ive genera of the woody, ibrous members of the Asparagaceae, previously regarded as the Agavaceae. Three of these host genera, Agave, Furcrarea, and Yucca, are now placed in the Agavoideae while two, Dasylirion and Nolinia, belong in the 26 Nolinoideae. Many more genera having ibrous plants are assigned to the Asparagaceae worldwide (Fishbein et al. 2010), thus, it is expected that additional hosts will be discovered. Based on past reports and our study, most species of Nectria appear to have a broad range of woody plant hosts although some species are only found from unknown woody hosts (Table 3). Nectria cinnabarina and the related species N. asiatica, N. dematiosa, and N. nigrescens as well as N. polythalama and N. pseudotrichia occur on a range of hardwood trees and woody shrubs. Only N. aurantiaca may be limited to Ulmaceae. In addition to occurring on the genus Ulmus, Seifert (1985) reported this species on the genus Planera in the Ulmaceae. Nectria australiensis on Hoheria and N. berberidicola on Berberis occur on only one host genus. Nectria paraguayensis is unique in occurring not only on plants, but also on scale insects, lichens, and other fungi; this species may have stronger saprophytic activity than the other Nectria species. Eight species of Nectria are known only from the type specimen, and thus it cannot be determined if they are host speciic. In contrast to Nectria, most species of Pleonectria appear to be host speciic (Table 3). Five species of Pleonectria are each speciic to one genus or group of conifers and form the monophyletic clade I-4, with the exception of P. boothii on Picea abies (Fig. 2). Previously only P. cucurbitula and P. balsamea were known from conifers (Rossman et al. 1999). Among the species on the host genus Pinus, Pleonectria cucurbitula is limited to subg. Pinus while P. strobi is limited to subg. Strobus. Pleonectria boothii does not fall into the conifer clade (clade I-4), rather it appears sister to P. coryli. Pleonectria aquifolii and P. ilicicola are speciic to Ilex aquifolium and P. sinopica to Hedera helix, common plants in the Europe. Three species are restricted to a single host genus, namely P. berolinensis and P. clavatispora on Ribes, P. lamyi on Berberis, and P. pyrrochlora on Acer. Two species are known predominantly on one host genus but with a few specimens from other hosts, namely P. virens primarily known from Rhus and P. zanthoxyli on Zanthoxylum. A few species tend to occur on hosts in speciic plant families, namely P. aurigera on Oleaceae and P. austroamericana on Fabaceae. Similar to Nectria, a few species of Pleonectria occur on a range of woody hosts; P. coryli is known from 14 unrelated, woody dicotyledonous plant genera and P. chlorinella and P. rubicarpa occur on unrelated hosts. A number of species are known only from the type specimen. Species of Nectria and Pleonectria occur primarily on living or decaying plant material, especially bark, while Allantonectria miltina is known from the woody ibers within the leaves of the host. Most species of Nectria and Pleonectria are produced on well-developed stromata that are often erumpent through the bark of recently killed woody substrata. Some species appear to function as endophytes residing harmlessly in the healthy plant but sporulating profusely following the death of the host (Rossman 1989, Rossman et al. 1999). The anamorph of Nectria cinnabarina was reported as an endophyte of the Chinese southern yew (Taxus mairei) (Wang et al. 2000). Based on past reports Hirooka et al. (2011) suggested that N. cinnabarina might exist as an endophyte in the bark that sporulates when the substratum dies (Jørgensen 1952, Bedker & Blanchette 1984, Yasuda & Izawa 2007). Geographical distribution The genus Allantonectria represented by A. miltina is distributed in temperate to subtropical regions where the host plants occur (Table 3). allantonectria, nectria, and Pleonectria Species of Nectria are common in the temperate, sub-tropical, or tropical regions of the world, with some species apparently endemic such as N. argentinensis and N. canadensis. The type species of Nectria, N. cinnabarina, is found only in temperate regions, while N. lateritia, N. pseudocinnabarina, and N. pseudotrichia, are encountered in tropical and subtropical regions (Rossman 1989, Rossman et al. 1999). Reports of N. cinnabarina have been misleading because this species is now recognised as a complex with four species, three of which have limited distribution. For example Nectria asiatica, segregated within the N. cinnabarina species complex by Hirooka et al. (2011), has been collected only from Asia. Clades in N. pseudotrichia show four lineages that correlate with continental origin (Hirooka et al. 2010). The broadly conceived N. pseudotrichia is here determined to consist of two species, one of which, N. polythalama, is conined to New Zealand. Nectria antarctica, N. aurantiaca, and N. berberidicola, have been collected from high elevations or cold latitudes. These species are relatively slower growing (< 40 mm after 7 d at 25 °C) than other species of Nectria and suggest that they are psychrophilic. Although we were not able to study the cultural morphology and phylogenetic position of N. himalayensis, the fungus may also be psychrophilic because it was found at high elevations. This evidence suggests that most species of Nectria are more widespread in temperate or colder regions than in tropical or subtropical ones. The geographical distribution of the N. balansae group is similar to that of other species of Nectria. Nectria sordida is known only from tropical regions (Argentina, French Guiana) and N. paraguayensis from Brazil, but the other four species were collected from temperate regions. Nectria magnispora from Japan and N. hoheriae from New Zealand appear to be endemic. Nectria mariae and N. eustromatica were collected from Europe and share morphological similarities such as warted perithecia and shape of ascospores and microconidia but differ in colour of perithecia and size of ascospores and macro-conidia. Most species of Pleonectria are known from temperate regions especially North America and Europe although a few species have been collected during the winter in subtropical regions. Some species are known only from North America, P. balsamea, P. chlorinella, P. clavatispora, P. lonicerae, P. missouriensis, and P. sphaerospora, while others are known only from Europe, P. aquifolii, P. boothii, P. ilicicola, P. quercicola, P. pyrrhochlora, and P. sinopica. A few species appear to be pan-temperate known from Asia as well as Europe and North America, P. berolinensis, P. lamyi, P. pinicola, and P. rosellini. In these cases the specimens from Asia are from mountainous, temperate regions such as the Kaghan Valley of Pakistan or Nagano Prefecture of Japan. Although P. okinawensis in Japan and P. pseudomissouriensis in Argentina were found from subtropical areas, they were collected in winter, January in Japan and July in Argentina, when the temperature is relatively cold. Pleonectria austroamericana, P. pseudomissouriensis, and P. zanthoxyli are the only species of Pleonectria known from the southern hemisphere. Because most species of Pleonectria occur on speciic host plants, their geographical distribution depends on the distribution of the host. Economic and ecological importance Although most species of Allantonectria, Nectria, and Pleonectria appear to be saprophytic, some species are reported as symbionts, i.e. endophytes, while a few are known to cause diseases of hardwood trees. Aggregations of ascomata of Nectria are often found erumpent through the bark of recently killed woody substrata www.studiesinmycology.org suggesting that the fungus was already present in the tissue when the host was killed. Our explanation for simple conidia is that usually these species function as endophytic fungi in which the simple conidia serve as spermatia and/or are dispersed by insects or water. Species of the Nectria cinnabarina species complex and N. pseudotrichia occur on a wide range of woody shrubs and trees in many families including the Arecaceae and Pinaceae; they are occasionally reported on herbaceous hosts (Farr & Rossman 2010). Nectria cinnabarina causes a disease known as "coral spot Nectria canker" because of the conspicuous erumpent pink sporodochia (Sinclair & Lyon 2005). Trees and woody plants growing in plantations and nurseries or those damaged by frost or other causes appear to be especially susceptible. The pathogenicity of this fungus was proven by host inoculation studies (Bedker & Blanchette 1984, Yasuda & Izawa 2007). Although Nectria nigrescens as Tubercularia ulmea is widely recognised as a facultative parasite of stressed trees, shrubs, and woody vines (Farr et al. 1989, Sengpiel 1977), this species is also known to cause stem canker disease of Siberian elm (Ulmus pumila) in North Dakota (Carter 1947) and, more recently, to inlict considerable damage to Siberian elm, Russian-olive (Elaeagnus angustifolia), and honey-locust (Gleditsia triacanthos) tree plantings in North Dakota (Sengpiel 1977, Walla & Stack 1988). During 1971 to early 1975 the damage to Siberian elm and Russian olive inlicted by this fungus cost the state of North Dakota $1.4 million in highway planting losses (Sengpiel 1977). Although Samuels & Dumont (1982) suggested that N. pseudotrichia colonises freshly cut wood, this species occasionally functions as a plant pathogen in tropical areas. Pathogenicity of N. pseudotrichia on Pyrus pirifolia in Brazil was conirmed by Becker (2003); likewise, Akinsanmi & Drenth (2006) reported that this species produced a canker disease on macadamia (Macadamia integrifolia and M. tetraphylla) in Australia based on artiicial inoculation tests. Thus, members of the Nectria cinnabarina species complex and N. pseudotrichia must be considered to be facultative parasites. Pleonectria austroamericana causes cankers on honey locust (Gleditsia triacanthos) in the midwestern United States. This species was irst identiied causing cankers on honey locust on Nantucket Island, Massachusetts (Seeler 1940a). To date, the disease has been found in Alabama, Colorado, Kansas, Mississippi, Massachusetts, Oklahoma, and Tennessee (Seeler 1940a, Crandall 1942, Hudler & Oshima 1976, Crowe et al. 1982, Conway & Morrison 1983). To protect trees from the threat of this disease, Jacobi & Rifle (1989) screened honey locust cultivars for resistance to P. austroamericana. Pleonectria austroamericana also appears to function as a facultative parasite (Crandall 1942, Jacobi & Rifle 1989). Contradictions between phenotypic and genotypic characters, and the way forward Phenotypic and genotypic characters are generally used to classify organisms at all taxonomic levels. As mentioned above, our six loci phylogeny showed contradictions between phenotypic and genotypic characters of the N. balansae group at the generic level. Although the multilocus phylogeny often conirms the recognition of fungal taxa, it still represents very little of the fungal genome. It could be assumed that the morphological characteristics of the N. balansae group that we consider critical, speciically perithecia immersed in a well-developed 27 Hirooka et al. stroma, were not transcribed in the portion of the genome sequenced in this study. It would be possible to determine the “true” relationships among these fungi, for example, those having perithecia immersed in a well-developed stroma, using genome sequencing analysis, i.e. phylogenomics. To resolve the contradictions between phenotypic and genotypic characters, these four approaches could be applied. The irst is to seek novel aspects of the biology and/or biochemistry as new taxonomical criteria. For instance, secondary metabolite proiles have been used to deine species within fungal groups, such as Alternaria, Aspergillus, Penicillium, and Pestalotiopsis, (Andersen et al. 2008, Houbraken et al. 2011, Maharachchikumbura et al. 2011, Samson et al. 2011). This approach generally is used to evaluate inter- and intraspeciic level relationships. A second approach is increased taxon sampling especially of alternative morphs. In our monograph, relatively few specimens and isolates of species in the N. balansae group were available. Additional specimens and isolates would provide increased taxonomic data and possibly resolve the conlict. The third approach is increased development of advanced algorithisms for phylogenetic analyses. It is nessesary to apply the most appropriate analyses. The last is to search for additional genes suitable for phylogenetic reconstruction. As an example, Andrew et al. (2009) discovered that an expanded multilocus phylogeny did not resolve morphological species with the small-spored Alternaria species complex. Ideally, gene regions that code for critical morphological characters in a speciic group should be sequenced although discovering these gene regions is often dificult. Overall, a polyphasic taxonomic approach combining a thorough morphological study of abundant material with advanced phylogenetic analysis of the ideal genes would hopefully reveal the “true” fungal relationships among species in the N. balansae group. GENERA AND SPECIES DESCRIPTIONS ALLANTONECTRIA Earle in Greene, Plantae Bakerianae 2: 11. 1901. Anamorph: trichoderma-like Type species: Allantonectria miltina (Mont.) Weese, in Höhnel & Weese, Ann. Mycol. 8: 464. 1910. Teleomorph on natural substrata: Mycelium not visible around ascomata or on host. Stromata erumpent through epidermis, orange to sienna, KOH+ blood-red, LA+ yellow, pseudoparenchymatous, cells forming textura angularis to t. globulosa, intergrading with ascomatal wall. Ascomata supericial on well-developed stromata, scattered to aggregated, subglobose to globose, about 250 μm high × 200 μm diam, rarely slightly cupulate upon drying, sometimes with a depressed apical region, bay to scarlet, apical region slightly darker, KOH+ blood-red, LA+ yellow, sometimes surface scurfy or scaly, slightly orange. Ascomatal wall about 40 μm thick, of two regions. Asci narrowly clavate with inconspicuous ring at apex, 8-spored, ascospores biseriate above, uniseriate below. Ascospores allantoid to short-cylindrical with rounded corners, straight to slightly curved, non-septate, hyaline, smooth. Anamorph in culture: Colony surface cottony with aerial mycelium, whitish yellow to whitish luteous. Sporulation on SNA from lateral phialidic pegs abundant, enteroblastic, monophialidic, lask-shaped, 28 about 5 μm long, 2 μm wide at base. Conidiophores abundantly formed, unbranched, sometimes trichoderma-like, 1(–2)-branched, becoming loosely branched. Conidiogenous cells enteroblastic, monophialidic, cylindrical, tapering toward tip or slightly laskshaped. Rhizomorph-like strands each of a single hypha with large diameter produce lateral phialidic pegs and normal hyphae. Lateral phialidic pegs on rhizomorph-like strands formed abundantly, enteroblastic, monophialidic, cylindrical, tapering toward tip. Young conidia formed from monophialides on aerial, submerged, or repent hyphae, formed abundantly on slimy heads, ellipsoidal, oblong, to cylindrical, hyaline, smooth, straight or slightly curved, rounded at both ends, non-septate. Mature conidia swollen, 0–1-septate, oblong or ellipsoidal with strongly constricted centre, hyaline, straight or slightly curved, rounded at both ends. Habitat: On leaf of members of monocots, especially Asparagaceae (previously known as the Agavaceae) Distribution: Europe, Central America, North America Notes: Allantonectria based on Allantonectria miltina was described by Earle in Greene (1901) based on its unique ascospores. Rossman et al. (1999) reassigned this species to the genus Nectria. Our molecular data and cultural morphology show that this species is distinct from other nectria-like fungi (Figs 1, 2, 6). Unlike species of Nectria sensu stricto and Pleonectria, Allantonectria occurs on monocots. Based on this evidence, Allantonectria is herein revived as a monotypic genus. Allantonectria miltina (Mont.) Weese in Höhnel & Weese, Ann. Mycol. 8: 464. 1910. Figs 4–6. Basionym: Sphaeria militina Mont. in Durieu, Expl. Sci. Algérie, Bot. I, 1: 477. 1848 [1849]. ≡ Nectria miltina (Mont.) Mont., Syll. Gen. Sp. crypt. 225. 1856. ≡ Nectriella miltina (Mont.) Sacc., Michelia 1: 278. 1878. = Allantonectria yuccae Earle in Greene, Plantae Bakerianae 2: 11. 1901. = Nectriella bacillispora Traverso & Spessa, Bol. Soc. Broteriana 25: 172. 1910. Anamorph: trichoderma-like morphology Teleomorph on natural substrata: Mycelium not visible around ascomata or on host. Stromata erumpent through epidermis, up to 1.0 mm high and 0.8 mm diam, orange to sienna, KOH+ blood-red, LA+ yellow, pseudoparenchymatous, cells forming textura angularis to t. globulosa, intergrading with ascomatal wall. Ascomata supericial on well-developed stromata, scattered to aggregated in groups of 5–75, subglobose to globose, 145–245 μm high × 140– 205 μm diam, rarely slightly cupulate upon drying, sometimes with only a depressed apical region, bay to scarlet, apical region slightly darker, KOH+ blood-red, LA+ yellow, sometimes surface scurfy or scaly, slightly orange. Ascomatal surface cells forming textura globulosa or t. angularis, sometimes including bright yellow scurf, 8–13 μm diam, walls pigmented, uniformly about 1.5 μm thick. Ascomatal wall 25–45 μm thick, of two regions: outer region 20–35 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, about 1.5 μm thick; inner region 7–13 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Asci narrowly clavate, 20–40 × 3–5 μm, with inconspicuous ring at apex, 8-spored, ascospores biseriate above, uniseriate below. Ascospores allantoid to short-cylindrical, rounded at both ends, straight to slightly curved, (3.4–)4.3-5.9(–7.6) × 1.3– 1.9(–2.5) μm (n = 124), aseptate, hyaline, smooth. allantonectria, nectria, and Pleonectria Fig. 4A–I. Allantonectria miltina on natural substrata (teleomorph). A–C. Perithecia on natural substrata; D. Median section of perithecia; E. Median section of perithecial wall; F–H. Asci; I. Ascospores. Scale bars: A = 2 mm; B = 1 mm; C = 500 µm; D = 200 µm; E, F = 50 µm; G–I = 10 µm. Anamorph in culture: After 7 d at 25 °C, colonies 60–67 mm (average 65 mm) diam. Colony surface cottony with aerial mycelium, whitish yellow to whitish luteous; aerial mycelium developed, rarely small, whitish luteous, sporodochial conidial masses produced after 2 wk; reverse whitish yellow to whitish luteous in centre and white at margin. Odour on PDA slightly fruity. Sporulation on SNA from lateral phialidic pegs abundant, enteroblastic, monophialidic, laskshaped, 4.2–9.8 μm long, 1.6–3.2 μm wide at base. Conidiophores abundantly formed, trichoderma-like, unbranched, or branched tending to be paired but also commonly unilateral, consisting of a single cell near tip of conidiophores, 7.6–34.6 μm long, 2.1–5.4 μm wide at base. Conidiogenous cells enteroblastic, monophialidic, cylindrical, tapering toward tip or slightly lask-shaped, 5.0–11.1 μm long, 1.4–4.5 μm wide at base. Unusually differentiated single www.studiesinmycology.org hypha of large diameter (6.8–12.4 μm) producing lateral phialidic pegs and thin hyphae. Lateral phialidic pegs on wide hyphae abundantly formed, enteroblastic, monophialidic, cylindrical, tapering toward tip, 2.2–3.4 μm long, 3.0–5.3 μm wide at base. Young conidia formed from monophialides on aerial, submerged, or repent hyphae, formed abundantly on slimy heads, ellipsoidal, oblong to cylindrical, hyaline, smooth, straight or slightly curved, rounded at both ends, non-septate, (2.8–)3.4–4.4(–5.3) × (1.1–) 1.5–2.3(–2.6) μm (n = 50). Mature conidia swollen, 0–1-septate, oblong or ellipsoidal with strongly constricted centre, hyaline, straight or slightly curved, rounded at both ends, not germinating and budding on media, (6.1–)6.6–11.8(–16.9) × (2.6–)3.0–4.2(– 4.9) μm (n = 50). Pycnidia, chlamydospores, and ascomata not produced in culture. 29 Hirooka et al. Fig. 5A–C. Allantonectria miltina on natural substrata (teleomorph). A. Median section of mature perithecium; B. Ascus; C. Ascospores. Scale bars: A = 100 µm; B, C = 10 µm. Habitat: On ibrous to woody leaves of monocotyledonous plans, especially Asparagaceae (previously known as Agavaceae): Agave americana, A. neomexicana, Agave sp., Dasylirion, Furcraea gigantea, Nolina sp., Yucca glauca, Y. harrimaniae, Yucca sp. Distribution: Europe (Croatia, France, Greece, Italy, Montenegro, Portugal, Spain), North America (Mexico, USA), Central America (Panama). Holotype of Allantonectria miltina: Algeria, On Agave americana, 1847, Bommes, FH ex Herb. PC. Additional type specimens examined: Type of Allantonectria yuccae: USA, Colorado, Hermosa, on Yucca, Mar. 1899, C.F. Baker, Holotype BPI 630106; Topotype BPI 630105, BPI 630107. Type of Nectriella bacillispora: Portugal, Coimbera, Horto botanico Conimbricensi, on leaves of Furcraea gigantean, Nov. 1906, A. Möller, Holotype PAD. Additional specimens and isolates examined: Croatia as Yugoslavia, Istrien, in Abbazia, on leaves of Agave americana, 25 Apr. 1912, O. Jaap, Otto Jaap, Fungi selecti exsiccati No 561, BPI-bound exsiccati, BPI 552606. France, Cannes, on leaves of Agave sp., Duby?, Rabenhorst, Herb. Mycologicum Ed. 2. No. 631, BPI-bound exsiccati. Greece, Korfu, on leaves of Agave americana, Apr. 1912, Rechinger, Rehm Ascomyceten No. 1962b as Nectriella miltina, BPI 629387; Neapoli, on leaves of Agave sp., Rabenhorst, Fungi europaei et extraeuropaei No. 1828, BPI-bound exsiccati. Italy, Arco-Merano, S. Tirol, on leaves of Agave americana, 1911, Dietrich-Kalkhoff, BPI 630124; Calambrone (PI), sand dunes, on decaying leaves of Agave americana, 12 Feb. 2006, G. Cacialli, culture CBS 121121 = A.R. 4391, BPI 878442; Rome, Villa Pamphili, on leaves of Agave americana, Mar. 1902, BPI 629375; Rome, Villa Pamphili, on leaves of Agave americana, Mar. 1902, BPI 629473. Mexico, Intercepted Nogales Arizona #77179, on leaves of Agave sp., 26 Nov. 1957, D.E. Noel & F.A. Allen, BPI 630109. Montenegro (as Yugoslavia), Ulcinj (Dulcigno), on leaves of Agave americana, 20 Apr. 1903, F. Bubák, Vestergren, Micromycetes rariores selecti No 829, BPI-bound exsiccati, BPI 629332, BPI 629414. Panama, Chriqui Prov., Llanos del Volcan. alt. 1250-1300 m, on leaves of Yucca sp., 14 Jul. 1935, G.W. Martin, BPI 630108. Spain, Trinidad (Seville), on leaves of Agave americana, 06 Mar. 1913, Gonzalez-Fragoso, BPI 629420. USA, Arizona, Santa Rita Mtns., 22 Oct. 1914, O.F. Cook, BPI 630120; California, Camp Kearney, San Diego Co., on leaves of Yucca sp., Apr. 1935, O.A. Plunkett, BPI 630110; Colorado, Denver, E. Bethel, BPI 630111, 630119; Durango. Fort Lewis College Campus, on dead leaves of Yucca harrimaniae, 12 Oct. 1993, A.W. Ramaley, BPI 745134; La Plata Co., Cactus Ridge, on leaves of Yucca sp., 10 Feb. 1992, A.W. Ramaley, BPI 1113191; Leyden, on leaves of Yucca glauca, 05 Feb. 1910, E. Bethel, BPI 747157; Nebraska, Valentine, on leaves of Yucca sp., 23 Feb. 1898, C.L. Shear, BPI 630104; New Mexico, Lincoln Co. US Hwy 380, mile 59.25, Valley of Fires, on dead leaves of Nolina sp., 23 May 1993, A.W. Ramaley, BPI 745136; Pecos Co. Roadside, US Hwy 385, mile 490, on dead leaves of Dasylirion sp., 22 May 1993, A.W. Ramaley, BPI 745135; Texas, Culberson Co., Guadalupe 30 Mountains National Park, along trail to Smith Springs, on dead leaves of Agave neomexicana, 11 Oct. 2002, A.W. Ramaley, BPI 842101; on Yucca glauca, 11 Oct. 1913, C.L Shear, BPI 630114; on stems of Yucca glauca, E. Bethel, BPI 630115; on dead leaves of Yucca glauca, 28 Mar. 1910, E. Bethel, BPI 630122; on dead leaves of Yucca glauca, 28 Mar. 1910, E. Bethel, BPI 630123; Jan. 1910, E. Bethel, BPI 630117, BPI 630118; on Yucca glauca, 05 Feb. 1910, E. Bethel, BPI 630112; on Yucca glauca, 02 May 1910, E. Bethel, BPI 630113; on Yucca glauca, E. Bethel, BPI 630121; Mesa Verde. alt. 2400 m, on leaves of Yucca harrimaniae, 06 Jul. 1907, F.E. Clements & E.S. Clements, BPI 630116. Notes: In this study, we recognise Allantonectria as a monotypic genus because the type species is morphologically and phylogenetically unusual among the nectria-like fungi (Figs 1, 2, 4–6). Previously Höhnel & Weese (1910) and Rossman et al. (1999) had reassigned this species to the genus Nectria. Based on our phylogenetic tree, A. militina is distinct although it shows some afinity for species of Pleonectria (Figs 1, 2).A morphological correlation exists among species having bright yellow scurf on the ascomata as in Allantonectria and Pleonectria. Unlike all other species of nectria-like fungi, A. miltina has very small, non-septate ascospores and is known only on monocotyledonous hosts. The anamorph of A. militina is also unusual morphologically in having trichoderma-like conidiophores (Fig. 6F–H). However, A. militina is not closely related to the genus Trichoderma and its teleomorph, Hypocrea, based on phylogenetic data and morphological characters of its sexual state. Although appearing trichoderma-like, the conidiophores of A. miltina are analogous to the long, laskshaped, lateral phialidic pegs typical of Nectria and Pleonectria anamorphs. In our phylogenetic tree, the species most closely related to A. miltina is Pleonectria aurigera, a species not morphologically similar to A. miltina. Moreover, P. aurigera occurs primarily on members of the dicotyledonous family Oleaceae, unlike A. miltina that occurs on monocotyledonous plants in the Asparagaceae. Allantonectria miltina and P. aurigera are separated at a basal point in our phylogeny suggesting that they have evolved independently (Figs 1, 2). No anamorph of A. militina has been observed in the natural environment. However, BPI 629414 shows abundant stromatal tissue emerging through the epidermis suggesting that, if this is the anamorph of A. militina, it is sporodochial. However, based on the relationship of A. militina to Pleonectria, the anamorph would be expected to be pycnidial. allantonectria, nectria, and Pleonectria Fig. 6A–P. Anamorph of Allantonectria miltina in culture. A. Cultures after 7 d at 25 °C on PDA; B. Abundant conidiophores and conidial mass produced on the SNA surface; C, D. Conidiophores and conidial mass on SNA; E. Lateral phialidic pegs on SNA; F–I. Trichoderma-like conidiophores and conidia on SNA; J–M. Rhizomorph-like hyphae on SNA; N. Conidia on SNA; O, P. Mature conidia and young conidia on SNA. Scale bars: A = 30 mm; B, J, K = 50 µm; C–I, L–P = 20 µm. www.studiesinmycology.org 31 Hirooka et al. The holotype of Nectriella bacillispora preserved in PAD includes only a few ascomata, thus we did not destroy any of them to observe ascospores. However, based on its host and macroscopic morphology, this name appears to be correctly synonymised with A. miltina. NECTRIA (Fr.) Fr., Summa Veg. Scand. 2: 387. 1849. Basionym: Hypocrea Fr. sect. Nectria Fr., Syst. Orb. Veg. p. 105. 1825. Lectotype designated by Clements & Shear (1931): N. cinnabarina (Tode : Fr.) Fr. (≡ Sphaeria cinnabarina Tode : Fr.). = Ephedrophaera Dumort., Commentat. Bot. p. 90. 1822. Lectotype designated by Cannon & Hawksworth (1983): Sphaeria decolorans Pers., a synonym of Nectria cinnabarina (Tode : Fr.) Fr. = Sphaerostilbe Tul. & C. Tul., Sel. Fung. Carpol. 1: 130. 1861. Lectotype designated by Seaver (1909): S. aurantiaca Tul. & C. Tul., recognised as Nectria aurantiaca (Tul. & C. Tul.) Jacz. = Megalonectria Speg., Anales Soc. Ci. Argent. 12: 211. 1881. Type: M. pseudotrichia (Berk. & M.A. Curtis) Speg., recognised as Nectria pseudotrichia Berk. & M.A. Curtis. = Stilbonectria P. Karst., Hedwigia 28: 194. 1889. Type: S. lateritia P. Karst., recognised as Nectria lateritia (P. Karst.) Rossman. = Creonectria Seaver, Mycologia 1: 183. 1909. Type: C. purpurea (L.) Seaver (≡ Tremella purpurea L. 1753), a synonym of Nectria cinnabarina (Tode : Fr.) Fr. Anamorph: Tubercularia Tode : Fr., Tode, Fungi Mecklenb. sel. 1: 18. 1790 : Fries, Syst. Mycol. 1: 41. 1821. Type species: Nectria cinnabarina (Tode : Fr.) Fr., Summa Veg. Scand. 2:388, 1849. Teleomorph on natural substrata (Nectria excluding the N. balansae group): Mycelium rarely visible around ascomata and on host. Stromata erumpent through epidermis, KOH+ dark red, LA+ yellow, pseudoparenchymatous, cells forming textura angularis to t. prismatica. Ascomata supericial on well-developed stromata, solitary or caespitose, subglobose to globose, about 350 μm high × 300 μm diam, generally red to bay, sometimes cupulate upon drying, apical region darker, KOH+ dark red, LA+ yellow, surface smooth to warted. Ascomatal surface cells forming textura globulosa or t. angularis, with walls pigmented ca. 1.5 μm thick. Ascomatal wall ca. 40–60 μm thick, of two regions. Asci unitunicate, cylindrical to narrowly clavate, with inconspicuous ring at apex, 8-spored, ascospores biseriate above, uniseriate below. Ascospores ellipsoidal, oblong, fusiform, pyriform or allantoid, rounded at both ends, smooth or spinulose, hyaline, up to 4 septate, sometimes muriform. Teleomorph on natural substrata (N. balansae group): Mycelium not visible around ascomata or on host. Stromata erumpent through epidermis, up to 2.5 mm high and 4.0 mm diam, generally red to sienna, KOH+ blood red, LA+ yellow, pseudoparenchymatous, cells forming textura angularis, intergrading with ascomatal wall. Ascomata nearly or completely immersed in erumpent stroma, aggregated in groups, red, subglobose to globose, about 500 μm high × 500 μm diam, not collapsing when dry, apical region slightly darker, KOH+ dark purple, LA+ yellow, warted wall. Ascomatal surface cells at edge of stroma forming textura globulosa or t. angularis. Ascomatal wall of two regions. Asci clavate, with inconspicuous ring at apex, 8-spored, mainly biseriate, rarely uniseriate. Ascospores ellipsoidal, to long fusiform oblong, straight to rarely slightly curved, 18.4–43 × 6.2–15.4 μm, (0–)1(–3)-septate, hyaline. Anamorph on natural substrata (Nectria except N. balansae group): Sporodochial and/or synnematous. Stromata of sporodochia erumpent through epidermis, mainly pale yellow to orange, 32 rarely reddish brown. Sporodochia supericial on well-developed stromata, smooth, cerebriform or tuberculate, scattered, solitary or gregarious, sessile to long stipitate, discoid or cylindrical-capitate, up to 8000 μm high including stipe, whitish yellow to orange, sometimes darker red. Stipe white to whitish red, rarely darker red, solitary or gregarious; stipe cells almost textura angularis, continuous with stroma, usually with wider cells in centre. Hymenium arising directly from textura prismatica, elongating from t. angularis. Conidiophores verticillate, if present, branching twice or three times, then developing acropleurogenously, hyaline. Conidiogenous cells enteroblastic, monophialidic, straight to slightly curved, cylindrical, subulate with widest point in middle to base. Acropleurogenous conidiophores monoverticillate or rarely biverticillate, then developing acropleurogenously for up to 10 levels, straight, curved. Acropleurogenously developing phialides intercalary, occurring below each septum, rarely terminal. Conidia hyaline, narrowly ellipsoidal to cylindrical, straight or slightly curved, non-septate, smooth-walled. Synnemata usually erumpent through epidermis, solitary or gregarious, emerging from ascomatal cluster or independently, crowded to caespitose, cylindrical-capitate, subulate-capitate, or claviform, erect or nodding, unbranched or rarely branched at base, sometimes distinctly hispid at base, medium, red-brown at base, turning blood-red in KOH, fading upwards to almost black in age, up to 3000 μm high, up to 400 μm wide. Hyphae on stipe external hyphae golden brown at base, becoming pale brown towards apex. Ornamental cells, if present, cylindrical to clavate, straight, curved, sinuous, or twisted, arising laterally at more or less right angles, distributed evenly over surface of synnemata or concentrated near base or apex, usually unbranched but occasionally dichotomously branched, aseptate or with up to 3-septae. Conidiophores with phialides or long sterile hyphae, branching monoverticillate or biverticillate, whorls compact or diffuse. Conidiogenous cells enteroblastic, monophialidic, cylindrical to subulate, straight or curved. Sterile hyphae, if present, mixed with phialides, acicular, straight, or usually curved, unbranched or dichotomously branched, septate, arising from hyphae, often in groups of 1–4 from conidiophores together with phialides. Conidia hyaline, ellipsoidal, obovate, sometimes allantoid, non-septate, smooth-walled. Anamorph on natural substrata (N. balansae group): Sporodochial and/or pycnidial. Stromata erumpent through epidermis, orange to red. Sporodochial fructiication supericial on well-developed stromata, cottony, scattered, caespitose, rarely solitary, astipitate, sessile, up to 640 μm high, 1300 μm wide, white. Hymenium arising directly from textura prismatica elongating from textura angularis, up to 140 µm long, 4.5 µm wide, not curved at margin. Conidiophores monochasial branching. Conidiogenous cells monophialidic, cylindrical, straight or curved in terminal whorls of 2–4 together with sterile hyphae, collarette not conspicuous. Conidia hyaline, subglobose to ellipsoidal, straight, non-septate, smooth-walled. Stromata of pycnidia developing in stroma with ascomata, orange to umber. Pycnidia globose, immersed, eustromatic. Conidiogenous cells enteroblastic, monophialidic, oblong phialides, with an indistinct collarette. Conidia similar to ascoconidia, subglobose to ellipsoidal, 0-septate, hyaline. Anamorph in culture (Nectria excluding N. balansae group): Colony surface radial, sometimes wavy, slightly cottony with aerial mycelium, white, whitish luteous, whitish saffron to yellowish brown. Sporulation on SNA from lateral phialidic pegs common, up to 7.9 allantonectria, nectria, and Pleonectria μm long, up to 3.0 μm wide near aperture. Aerial conidiophores abundantly formed, unbranched, sometimes verticillate, 1–3 branched, becoming loosely to moderately densely branched. Conidiogenous cells enteroblastic, monophialidic, cylindrical, slightly tapering toward tip or narrowly lask-shaped with widest point in middle. Young conidia formed from monophialides on submerged or aerial hyphae, formed abundantly on slimy heads or sporodochia, ellipsoidal, oblong, fusiform to cylindrical, hyaline, smooth, straight or slightly curved, rounded at both end, nonseptate. Mature conidia swollen, mostly 0-, rarely 1-septate, ellipsoidal, oblong, cylindrical to allantoid sometimes with strongly constricted centre, hyaline, smooth, straight or slightly curved, rounded at both ends, sometimes germinating and budding on media. Chlamydospores rarely present. Anamorph in culture (N. balansae group): Colony surface cottony with aerial mycelium, whitish yellow to yellowish brown. Conidiophores of two types on SNA. Short conidiophores producing microconidia, usually unbranched or loosely branched. Conidiogenous cells longcylindrical to subulate, straight to slightly curved, enteroblastic, monophialidic. Microconidia hyaline, ellipsoidal to fusiform, rarely curved, non-septate. Long conidiophores producing macroconidia, monochasial branching, unbranched or loosely branched. Conidiogenous cells long-cylindrical, straight to slightly curved, enteroblastic, monophialidic. Macroconidia hyaline, subglobose to ellipsoidal, curved, non-septate, thick-walled cells. Chlamydospores or swollen hyphae present. Habitat: On hardwood trees and woody shrubs. Distribution: Temperate to tropical regions. Notes: Based on the lack of bright yellowish scurf on the ascomata, the genus Nectria is easily distinguished from Allantonectria and Pleonectria. Within Nectria two morphologically different groups are recognised, namely, Nectria and the N. balansae group. Most species of Nectria excluding the N. balansae group have individual, supericial ascomata aggregated on a well-developed stroma, ascospores usually less than 25 μm long, and macroconidia absent in culture, while those in the N. balansae group have ascomata immersed in a reddish stroma, ascospores usually more than 25 μm, and macroconidia produced in culture. In addition, in the N. balansae group anamorphs in the natural environment produce pycnidia as well as sporodochia and the macroconidia develop from monochasial branches. Although the two groups are morphologically distinct, our phylogenetic analyses suggest that the N. balansae group is paraphyletic within the genus Nectria (Figs 1, 3). Thus, species in the N. balansae group are included in Nectria. With the upcoming changes in the rules governing the nomenclature of fungi (Miller et al. 2011, Norvell 2011), the generic name Tubercularia 1790 has priority over Nectria 1849 and should be used. However, it seems likely that Nectria will be successfully proposed for conservation over Tubercularia based on its nearly ubiquitous usage over the past two hundred years and the signiicant number of name changes that would be required if Nectria were not conserved. Nectria antarctica (Speg.) Rossman, Mem. New York Bot. Gard. 49: 257. 1989. Figs 7–9. Basionym: Pleonectria antarctica Speg., Bol. Acad. Nac. Ci. 11: 236. 1888. ≡ Thyronectria antarctica (Speg.) Seeler, J. Arnold Arbor. 21: 437. 1940. www.studiesinmycology.org = Pleonectria vagans Speg., Bol. Acad. Nac. Ci. 11: 236. 1888. Anamorph: sporodochial, tubercularia-like Teleomorph on natural substrata: Mycelium not visible around ascomata or on host. Stromata erumpent through epidermis, up to 3 mm high and 3 mm diam, bay, KOH+ dark red, LA+ yellow, pseudoparenchymatous, cells forming textura angularis, intergrading with ascomatal wall. Ascomata supericial or rarely immersed only at base on well-developed stromata, aggregated in groups of 14–42, subglobose to globose, 315–548 μm high × 270–520 μm diam, not collapsing when dry, sometimes with only a depressed apical region, red to sienna, KOH+ dark red, LA+ yellow, surface rough. Ascomatal surface cells forming textura globulosa or t. angularis, 5–17 μm diam, with pigmented ca. 1.5 μm thick walls. Ascomatal wall 50–100 μm thick, of two regions: outer region 30–85 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, about 1.5 μm thick; inner region 10–30 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Asci clavate, sometimes broadly clavate, increasing in size as ascospores mature, 95–125 × 15–25 μm, with inconspicuous ring at apex, 8-spored, biseriate above, uniseriate below. Ascospores ellipsoidal to short-cylindrical, straight to slightly curved, muriform, with 5–8 transverse septa and 1–2 longitudinal septum, not constricted at each septum, (19.4–) 23.0–30.4(–35.1) × (6.8–)8.1–10.9(–13.6) μm (n = 100), hyaline, becoming slightly pale brown, smooth-walled. Anamorph on natural substrata: Stromata erumpent through epidermis, red to bay. Sporodochial conidiomata without stipe, convex or concave on well-developed stromata, smooth, cerebriform or tuberculate, scattered, solitary, astipitate, sessile, patellate, discoid or cylindrical-capitate, up to 100–1300 μm high, 550–1000 μm wide, white, whitish yellow to orange. Stipe absent. Hymenium arising directly from textura prismatica elongating from textura angularis, up to 55 µm long, of cells 2.5–6 µm wide, not curved at margin. Conidiophores dimorphic, short and long. Short conidiophores densely branched, generally with 1–4 branched, straight, slightly curved, hyaline. Conidiogenous cells enteroblastic, monophialidic, cylindrical and subulate with widest point in middle to base, 15–34 μm long, 1.2–2.7 μm wide at base, collarette not conspicuous. Long conidiophores mixed with short conidiophores, monochasial branching, usually curved, loosely branched, generally with 1–2(–3)-branched, septate, 66–170 × 1.9–2.4 μm, arising from hyphae often in groups of 1–3 from conidiophores together with short conidiophores. Conidia hyaline, narrowly long ellipsoidal to cylindrical, straight or slightly curved, non-septate, (5.1–)5.7–6.9(– 7.8) × (1.8–)2.3–2.9(–3.3) μm (n = 94). Anamorph in culture: After 7 d at 25 °C, colonies 22–27 mm (average 24 mm) diam. Colony surface sometimes cottony with aerial mycelium, white to whitish yellow; aerial mycelium developed, sometimes small white to whitish yellow sporodochial conidial masses produced after 2 wk; reverse white to slightly whitish yellow. Odour on PDA slightly putrid. Sporulation on SNA from lateral phialidic pegs somewhat rare, enteroblastic, monophialidic, ellipsoidal tapering toward tip, 3.1–6.6 μm long, 1.8–2.9 μm wide at base. Conidiophores abundantly formed, unbranched, sometimes verticillate, 1(–3)-branched, becoming loosely to moderately densely branched, 12.5–45.6 μm long, 1.5–4.0 μm wide at base. Conidiogenous cells enteroblastic, monophialidic, cylindrical and slightly tapering toward tip or narrowly lask-shaped with widest point in middle or base, 6.1–22.3 μm long, 1.4–2.8 μm wide at base. 33 Hirooka et al. Fig. 7A–U. Nectria antarctica on natural substrata (A–H teleomorph, I–M teleomorph and anamorph, N–U anamorph). A–C. Perithecia on natural substrata; D, E. Median section of perithecia; F. Median section of perithecial wall; G. Ascus; H. Ascospores; I, J. Concave sporodochia and perithecia on natural substrata; K, L. Convex sporodochia and perithecia on natural substrata; M. Median section of convex sporodochium and perithecium; N. Median section of convave sporodochia (black arrows); O. Median section of immature, immersed pycnidia-like conidiomata (black arrows); P–R. Long and short conidiophores on natural substrata; S. long conidiophore on natural substrata; T. Short conidiophores on natural substrata; U. Conidia on natural substrata. Scale bars: A, I–L = 1 mm; B, C, M = 500 µm; D, E = 200 µm; F, G, N, O = 50 µm; H = 10 µm, P–U = 20 µm. 34 allantonectria, nectria, and Pleonectria Fig. 8A–F. Nectria antarctica on natural substrata (A–C teleomorph, D–F anamorph). A. Median section of mature perithecium; B. Ascus; C. Ascospores; D. Median section of convex and concave sporodochia; E. Conidia; F. Long and short conidiophores. Scale bars: A, D = 200 µm; B, C, E, F = 10 µm. Young conidia formed from monophialides on aerial, submerged, or repent hyphae, formed abundantly in slimy heads, ellipsoidal, oblong to cylindrical, hyaline, smooth, straight or slightly curved, rounded at both ends, non-septate, (4.4–)5.4–6.8(–8.0) × (2.0–) 2.5–3.1(–3.5) μm (n = 50). Mature conidia swollen, 0–1-septate, oblong, ellipsoidal to allantoid with sometimes strongly constricted centre, hyaline, rough, straight or slightly curved, rounded at both ends, germinating and budding on media, (8.3–)9.0–13.4(–19.0) × (3.0–)3.7–4.7(–5.3) μm (n = 50). Chlamydospores and ascomata not produced in culture. Habitat: On dead woody stems of dicotyledonous plants, known from Berberis aquifolium, B. ilicifolia, Berberis sp., also reported by Seeler (1940b) on Drimys winteri, Fagus betuloides., F. antarctica, and Maytenus magellanica. Distribution: North America (USA), South America (Chile). Holotype of Nectria antarctica: Chile, Tierra del Fuego, Isla de los Estados, on Berberis ilicifolia, Mar. 1882, C. Spegazzini, Holotype LPS 1638, Isotype FH 80857 microscope slide only. Additional type specimen examined: Holotype of Pleonectria vagans: Chile, Tierra del Fuego, Ushuaia, 1882, C. Spegazzini, Holotype LPS 1639. Additional specimens and isolates examined: Chile, Punta Arenas, on stems of Berberis sp., Feb. 1906, R. Thaxter, FH 301307; Punta Arenas, on stems of Berberis sp., Feb.-Mar.? 1906, R. Thaxter, FH 301308; Punta Arenas, on stems of Berberis sp., Mar. 1906, R. Thaxter, FH 301309; Punta Arenas, on stems of Berberis sp., Feb. 1906, R. Thaxter, FH 301310; Punta Arenas, on stems of Berberis sp., Mar. 1906, R. Thaxter, FH 301311, FH 80855 microscope slide only, FH 80856 microscope www.studiesinmycology.org slide only. USA, Oregon, Corvallis, residential garden, on dead stems of Berberis aquifolium, 30 Mar. 1971, A.Y. Rossman, BPI 1107421 as Nectria missouriensis; Washington, King Co., Seattle, Washington Memorial Park, on dead stem of Mahonia (Berberis) aquifolium, 29 Jul. 1998, W. Jaklitsch WJ 1180, culture CBS 115033 = A.R. 2767, BPI 746217. Notes: Pleonectria antarctica and Pleonectria vagans were described by Spegazzini (1888) who illustrated subtle differences in ascospore morphology. Pleonectria vagans possesses ascospores that are acute at both ends and slightly larger than those of P. antarctica. In examining the type specimens, these morphological heterogeneities were observed. However, we agree with Seeler (1940b) who concluded that these species are conspeciic. We retain P. vagans as a synonym of N. antarctica despite these morphological differences. A similar species with muriform ascospores, Nectria pseudotrichia, has wide morphological variability in ascospore size even though the isolates are monomorphic and determined to be monophyletic. Nectria antarctica is morphologically similar to N. pseudotrichia in having muriform ascospores. However, N. antarctica with ascomatal wall with two regions and ascospores with unconstricted septae differs from N. pseudotrichia having ascomatal walls with three regions and ascospores with constricted septae. The anamorph of N. antarctica in culture is also morphologically similar to the anamorph of N. pseudotrichia, but the growth rate of colonies after 7 d at 25 °C on PDA was different, speciically 10–40 mm in N. antarctica and more than 80 mm in N. pseudotrichia. Nectria antarctica in culture is almost identical with that of N. berberidicola but the surface of mature conidia of N. antarctica are roughened while those of N. berberidicola are smooth. 35 Hirooka et al. Fig. 9A–M. Anamorph of Nectria antarctica in culture. A. Cultures after 7 d at 25 °C on PDA; B, C. Abundant conidiophores and conidial mass produced on the SNA surface; D, E. Conidiophores and conidial mass on SNA; F. Lateral phialidic pegs, conidiophores and conidia on SNA; G–J. Conidiophores and conidia on SNA; K. Young conidia on SNA; L, M. Mature conidia on SNA. Scale bars: A = 30 mm; B = 1 mm; C = 20 µm; D–M = 10 µm. Seeler (1940b) mentioned a specimen collected by R. Thaxter (Thaxter no. 5308 = FH 301311) with a “naked cushion”, and he expected that the cushion may prove to be the remains of a tuberculate conidial phase. On the cushion of the specimen that Seeler (1940b) observed, we could ind conidiophores and conidia that are described here. The sporodochial anamorph possess a unique morphology because some of them are concave sporodochia although anamorph of N. antarctica in culture showed the typical tubercularia-like morphology (Fig. 7N). In addition, immature, immersed pycnidia-like conidiomata were occasionally observed (Fig. 7O). The presence of concave sporodochia and 36 immersed pycnidia-like conidiomata correlate with our molecular data. In our phylogenetic tree Nectria antarctica is sister to Nectria magnispora that forms a pycnidial anamorph (Figs 1, 3). Nectria argentinensis Hirooka, Rossman & P. Chaverri, sp. nov. Mycobank MB519698. Figs 10, 11. Anamorph: sporodochial, tubercularia-like. Holotype: Argentina, Misiones, Piray Mini, on twigs, 12 Sep. 1978, Wright, del Busto, Holotype NY ex BAFC 24.477 previously identiied as Nectria sp., associated with Rugonectria rugulosa. allantonectria, nectria, and Pleonectria Fig. 10A–P. Nectria argentinensis on natural substrata (A–H teleomorph, I–P anamorph). A. Perithecia of N. argentinensis (black arrow) and Rugonectria rugulosa (white arrow) on natural substrata; B. Perithecia on natural substrata; C. Perithecia and sporodochium (arrow) on natural substrata; D. Median section of perithecium; E. Median section of perithecial wall; F. Ascus; G. Ascospores in surface view; H. Ascospores in optical section; I, J. Astipitate sporodochia on natural substrata; K. Median section of astipitate sporodochium; L. Short acropleurogenous conidiophores on natural substrata; M–O. Verticillate conidiophores on natural substrata; P. Conidia on natural substrata. Scale bars: A–C, K = 500 µm; D, N, O = 50 µm; E, F = 20 µm; G, H, L, M, P = 5 µm; I, J = 1 mm; K = 200 µm. Etymology: argentine + -ensis; indicates the area from which this species is known. www.studiesinmycology.org Teleomorph on natural substrata: Mycelium not visible around ascomata or on host. Stromata up to 0.5 mm high and 1.5 mm diam, erumpent through epidermis, sienna to bay, sometimes 37 Hirooka et al. Fig. 11A–F. Nectria argentinensis on natural substrata (A–C teleomorph, D–F anamorph). A. Median section of mature perithecium; B. Ascus; C. Ascospores; D. Median section of astipitate sporodochium; E. Conidia; F. Short acropleurogenous and verticillate conidiophores. Scale bars: A, D = 100 µm; B, C, E, F = 10 µm. B 400 300 200 100 Nectria N ti argentinensis Rugonectria R ti rugulosa High Diameter width of perithecial w walls (μm) Size of perithecia (μm) A 80 70 60 50 40 30 20 Nectria argentinensis Rugonectria rugulosa Fig. 12A–B. Graphs of 95 % conidence intervals of high and diameter ratios of perithecia in Nectria argentinensis and Rugonectria rugulosa on the holotype specimen of N. argentinensis. B. Graphs of 95 % conidence intervals of width ratios of perithecial wall in Nectria argentinensis and Rugonectria rugulosa on the holotype specimen of N. argentinensis. darker red, KOH+ dark red, LA+ yellow, pseudoparenchymatous; cells forming textura prismatica to t. angularis, intergrading with ascomatal wall. Ascomata supericial on well-developed stromata, solitary or caespitose, up to 6 on stroma, rarely clustered around base of sporodochia, subglobose to globose, 190–250 μm high × 200–270 μm diam, red to bay, sometimes cupulate upon drying, 38 non-papillate, apical region slightly darker, KOH+ dark red, LA+ yellow, surface with smooth to slightly rough. Ascomatal surface cells forming textura globulosa to t. angularis, ca. 1.5 μm thick walls. Ascomatal wall 25–50 μm thick, of two regions: outer region 25–37 μm thick, intergrading with stroma, cells forming textura globulosa to t. angularis, walls pigmented, about 1.0 μm thick; inner region allantonectria, nectria, and Pleonectria 8–18 μm thick, of elongated, thin-walled, hyaline cells, forming textura prismatica. Asci unitunicate, (50.9–)57.9–75.5(–79.3) × (4.8–)5.2–6.4(–7.3) μm (n = 50), cylindrical to narrowly clavate, with an inconspicuous ring at apex, 8-spored, ascospores biseriate above, uniseriate below. Ascospores long-ellipsoidal to fusiform, straight or slightly curved, hyaline, 1-septate, (11.0–)13.2–16.4(– 19.9) × (4.8–)5.2–6.4(–7.3) μm (n = 50), striate. Anamorph on natural substrata: Stromata erumpent through epidermis, orange to umber. Sporodochial conidiomata without stipe, supericial on well-developed stromata, smooth to rough, scattered, solitary, rarely caespitose, astipitate, sessile, discoid, up to 150–500 μm high, 250–800 μm wide, peach to orange, sometimes sienna. Stipe absent. Hymenium arising directly from textura prismatica elongating from textura angularis, up to 60 µm long, cells 2.0–5.0 µm wide, not curved at margin. Conidiophores with phialides or acropleurogenous conidiophores, branching verticillate, 1(–3)-branched, whorls compact or diffuse. Conidiogenous cells enteroblastic, monophialidic, cylindrical to subulate, straight or curved, 12–22 μm long, 1.8–3.0 μm wide, without collarettes or not conspicuous. Short acropleurogenous conidiophores mixed with phialides, acicular, straight or usually curved, unbranched or dichotomously branched, then developing acropleurogenously for 1–2 levels, septate, 34–68 × 1.5–3.3 μm, arising from hyphae in whorls, or more often in groups of conidiophores together with phialides. Acropleurogenously developing phialides intercalary, occurring below each septum, rarely terminal; intercalary phialides monophialidic, 2.3–7.1 µm long, 1.4–2.2 µm wide at base; terminal cells monophialidic, often sterile, without collarettes. Conidia hyaline, ellipsoidal, straight or slightly curved, non-septate, (3.4–) 3.8–4.6(–4.9) × (1.8–)1.9–2.5(–2.9) μm (n = 50). Habitat: On dead twigs. Distribution: South America (Argentina, known only from the type collection). Notes: Nectria argentinensis is a previously undescribed species placed in the genus Nectria based on the absence of scurf on the ascomata and a sporodochial anamorph. The holotype specimen of N. argentinensis was in NY as Nectria sp. This species occurs on the same twigs with Rugonectria rugulosa (Figs 10A, 12). Although N. argentinensis is similar to R. rugulosa in having similar-sized, striate ascospores, N. argentinensis has a narrow ascomatal wall, longellipsoidal to fusiform ascospores, and a Tubercularia anamorph (Fig. 11A, B). Molecular data are not available for this species. The critical morphology of acropleurogenous conidiophores on the anamorph were hard to ind because of the poor condition of the sporodochia on this specimen; the conidiophores are comparatively short in this species. Nectria argentinensis is somewhat similar to N. pseudocinnabarina in having striate ascospores that average less than 20 μm long. The ascomatal wall of N. argentinensis is composed of two regions while that of N. pseudocinnabarina has three regions. In addition, the anamorph of N. pseudocinnabarina forms synnemata. Nectria asiatica Hirooka, Rossman & P. Chaverri, Stud. Mycol. 68: 35-56. 2011. Figs 13–15. Anamorph: tubercularia vulgaris-like. Teleomorph on natural substrata: Mycelium not visible around ascomata or on host. Stromata up to 1.0 mm high and 3 mm diam, www.studiesinmycology.org erumpent through epidermis, whitish yellow to bay, sometimes darker red, KOH+ dark red, LA+ yellow, pseudoparenchymatous; cells forming textura angularis to t. prismatica with cells oriented more or less vertically; cells 3–15 μm diam with walls 1–1.5 μm thick, intergrading with ascomatal wall. Ascomata supericial on well-developed stromata, solitary or caespitose, up to 20 on stroma, rarely clustered around base of stipitate sporodochia, subglobose to globose, 285–400 μm high × 250–380 μm diam (n = 39), red to reddish brown, sometimes cupulate upon drying, non-papillate, apical region darker, KOH+ dark red, LA+ yellow, surface with rough or concolourous warts, but sometimes smooth. Ascomatal surface cells forming textura globulosa to t. angularis, with pigmented walls ca. 1.5 μm thick. Ascomatal wall ca. 40–70 μm thick, of two regions: outer region ca. 30–50 μm thick, intergrading with stroma, cells forming textura globulosa to t. angularis, walls pigmented, about 1.5 μm thick; inner region about 10–18 μm thick, of elongated, thin-walled, hyaline cells, forming textura prismatica. Asci unitunicate, (74–)89–101(–117) × (8.5–)10.0–12.5(–14.0) μm (n = 89), cylindrical to narrowly clavate, with an inconspicuous ring at apex, 8-spored, ascospores biseriate above, uniseriate below. Ascospores ellipsoidal to fusiform, straight, rarely slightly curved, hyaline, (0–)1-septate, (10.5–)14.5–17.5(–19.0) × (3.0–)3.5–5.0(– 6.0) μm (n = 251), smooth-walled. Anamorph on natural substrata: Stromata erumpent through epidermis, orange to red. Sporodochial conidiomata with stipe, supericial on well-developed stromata, smooth or cerebriform, scattered, solitary, or 2–4 gregarious, stipitate, pustular, discoid or cylindrical-capitate, up to 250–800 μm high including stipe, 300–2000 μm diam, chestnut to black, sometimes whitish yellow to orange. Stipe chestnut to black, sometimes dark green, up to 440–610 μm wide; stipe cells almost textura angularis, continuous with stroma, usually with wider cells in centre. Hymenium arising directly from textura prismatica, elongating from textura angularis, up to 110 µm long, of cells 2.0–7.0 µm wide, without curved margin. Acropleurogenous conidiophores monoverticillate or rarely biverticillate, then developing acropleurogenously for 3–6 levels, strongly coiled, hyaline, rarely slightly pale green. Acropleurogenously developing phialides intercalary, occurring below each septum, rarely terminal; intercalary phialides monophialidic, up to 3.5–7.5 µm long, 1.5–2.5 µm wide; terminal cells monophialidic, sometimes sterile, without collarettes. Conidia hyaline, narrowly long ellipsoidal to cylindrical, straight or slightly curved, non-septate, (4.5–)5.5–7.5(–9.5) × (1.0–)2.0–2.5(– 3.0) μm (n = 258), smooth-walled. Anamorph in culture: Optimum temperature for growth on PDA 25 °C, maximum temperature 30 °C; after 7 d at 25 °C colonies 40–75 mm diam (average 51 mm). Colony surface on PDA radiating sometimes wavy, slightly cottony with aerial mycelium, white to whitish saffron; aerial mycelium developing in a few isolates (CBS 125151, MAFF 241448); after 3 wk abundant white to whitish yellow sporodochial conidial masses produced; reverse white to slightly whitish yellow. Odour on PDA slightly fruity. Sporulation on SNA from lateral phialidic pegs on submerged or aerial hyphae, enteroblastic, monophialidic, ellipsoidal tapering toward tip, 3.0–5.0 μm long, 1.5–2.5 μm wide at base. Aerial conidiophores developing abundantly on aerial hyphae, unbranched, sometimes verticillate, 1–3 branched, becoming loosely to moderately densely branched, 6.0–25.5 μm long, 2.0–5.0 μm wide at base. Conidiogenous cells monophialidic, cylindrical, slightly tapering toward tip or narrowly lask-shaped with widest point in middle 7.5– 22.5 μm long, 2.0–3.0 μm wide at base. Young conidia developing from monophialides on submerged or aerial hyphae, produced abundantly 39 Hirooka et al. Fig. 13A–Q. Nectria asiatica on natural substrata (A teleomorph and anamorph, B–F teleomorph, G–Q anamorph). A. Perithecia (black arrow) and sporodochia (white arrow) on natural substrata; B. Perithecia on natural substrata; C. Median section of perithecium; D. Median section of perithecial wall; E. Ascus; F. Ascospores; G, H. Short stipitate sporodochium on natural substrata; I–K. Median section of short stipitate sporodochia; L. Hymenium on natural substrata; M–P. Acropleurogenous conidiophores on natural substrata; Q. Conidia on natural substrata. Scale bars: A = 1 mm; B, C, G–K = 300 µm; D, L–Q = 50 µm; E, F = 20 µm. 40 allantonectria, nectria, and Pleonectria Fig. 14A–F. Nectria asiatica on natural substrata (A–C teleomorph, D–F anamorph). A. Median section of mature perithecium; B. Ascus; C. Ascospores; D. Median section of astipitate sporodochium; E. Conidia; F. Acropleurogenous conidiophores. Scale bars: A, D = 200 µm; B, C, D, F = 10 µm. Fig. 15A–K. Anamorph of Nectria asiatica in culture. A. Cultures after 7 d at 25 °C on PDA; B. Abundant aerial conidiophores and conidial mass produced on the SNA surface; C–E. Lateral phialidic pegs on SNA; F, G. Conidiophores and conidia on SNA; H. Young conidia on SNA; I. Young conidia and mature conidia on SNA; J. Budding mature conidia on SNA; K. Budding and germinating mature conidia (arrow) that were streaked onto SNA. Scale bars: A = 30 mm; B = 500 µm; C–K = 10 µm. www.studiesinmycology.org 41 Hirooka et al. Fig. 16A–C. Nectria aurantiaca on natural substrata (A–C anamorph). A–C. Long sporodochia on natural substrata. Scale bars: A–C = 500 µm. on slimy heads, non-septate, ellipsoidal, oblong to cylindrical, hyaline, smooth, straight or slightly curved, rounded at both ends, (4.0–)6.0– 12.0(–23.0) × (1.5–)2.0–3.0(–5.0) μm (n = 210). Mature conidia swollen, mostly 0-, rarely 1-septate, ellipsoidal, oblong or allantoid, rarely ellipsoidal with slightly constricted centre, smooth, straight or slightly curved, rounded at both ends, germinating or budding mature conidia (7.0–)11.5–17.5(–25.5) × (3.0–)3.5–4.5(–6.0) μm (n = 168). Chlamydospores and ascomata not produced in culture. Habitat: On dead woody substrata, Acer sp., Betula lutea, Prunus sp., Sorbus commixta, and Zelkova serrata. Distribution: Asia (China, Japan). Holotype of Nectria asiatica: Japan, Kanagawa Prefecture, Ashigarakami-gun, on dead wood, Oct., Y. Hirooka, Holotype BPI 879972, ex-holotype culture MAFF 241439. Additional specimens and isolate examined, see Hirooka et al. (2011). Note: Nectria asiatica was described by Hirooka et al. (2011). Nectria aurantiaca (Tul. & C. Tul.) Jacz., Opredelitel Gribov, t. 1, p. 215. 1913. Figs 16, 17. Basionym: Sphaerostilbe aurantiaca Tul. & C. Tul., Select. Fung. Carpol. 1: 131. 1861. Anamorph: Tubercularia aurantiaca (Bab.) Seifert, Stud. Mycol. 27: 106. 1985. Basionym: Stilbum aurantiacum Bab. in Berkeley & Broome, Ann. Mag. Nat. Hist, Ser. 1, 6: 432. 1841. ≡ Botryonipha aurantiaca (Bab.) O. Kuntze, Rev. Gen. Pl. 2: 845. 1891. ≡ Stilbella aurantiaca (Bab.) Lindau, Rabenhorst’s Kryptog.-Fl. 1, Pilze 9: 298. 1910. = Ditiola tubercularioides Lib., Herb. Cryptog. Arden. No. 470. ≡ Cilicipodium tubercularioides (Lib.) Sacc., Fungi italici autogr. delin. t. 755. 1881. = Dendrostilbella moravica Petrak, Ann. Mycol. 22: 65. 1924. Teleomorph on natural substrata: See Booth (1959), Seifert (1985) and Samuels & Brayford (1994). 42 Anamorph on natural substrata: See Seifert (1985), Samuels & Seifert (1987) (illustration, igs 3.33), and Seifert & Okada (1990) (only illustration,ig. 2c). Anamorph in culture: After 7 d at 25 °C, colonies 18–30 mm (average 25 mm) diam. Colony surface sometimes cottony with aerial mycelium, white to whitish yellow; aerial mycelium sometimes with small white to whitish yellow sporodochial conidial masses produced after 3 wk; reverse white to slightly whitish yellow. Odour on PDA slightly fruity. Sporulation on SNA from lateral phialidic pegs somewhat rare, enteroblastic, monophialidic, ellipsoidal tapering toward tip, 4.5–7.6 μm long, 1.3–2.2 μm wide at base. Conidiophores sparsely formed, unbranched, sometimes verticillate, 1–3 branched, becoming loosely to moderately densely branched, 17.3–52.8 μm long, 1.6–2.5 μm wide at base. Conidiogenous cells enteroblastic, monophialidic, cylindrical, slightly tapering toward tip or narrowly lask-shaped with widest point in middle, 12.9–16.8 μm long, 1.7–2.5 μm wide at base. Young conidia formed from monophialides on aerial, submerged, or repent hyphae, formed abundantly on slimy heads, ellipsoidal, oblong to fusiform, hyaline, smooth, straight or slightly curved rounded at both ends, non-septate, (6.0–)7.3–9.1(–10.0) × (2.2–) 2.7–3.5(–4.3) μm (n = 100). Mature conidia swollen, 0–1-septate, oblong, ellipsoidal to cylindrical sometimes strongly constricted at centre, hyaline, smooth, straight or slightly curved, rounded at both ends, (10.3–)10.8–16.6(–18.5) × (2.0–)2.6–4.4(–4.6) μm (n = 50). Chlamydospores terminal or intercalary in hyphae, globose to subglobose, sometimes ellipsoidal, smooth, hyaline, 5.5–10.5 μm. Ascomata and long stipitate sporodochia not produced. Habitat: On dead twigs of species of Ulmaceae (Ulmus campestris and Ulmus sp.), also reported by Seifert (1985) on Planera sp. (Ulmaceae). Distribution: Europe (Czech Republic, France, UK). Lectotype of Nectria aurantiaca designated by Seifert (1985). “In Ulmi ramis, Chartres, 7bre, 1854”, Lectotype PC. allantonectria, nectria, and Pleonectria Fig. 17A–L. Nectria aurantiaca in culture. A. Cultures after 7 d at 25 °C on PDA; B. Conidiophores and conidial mass produced on the SNA surface; C. Lateral phialidic peg on SNA; D–I. Conidiophores and conidia on SNA; J. Young conidia on SNA; K. Mature conidia on SNA; L. Chlamydospores on SNA. Scale bars: A = 30 mm; B = 500 µm; C = 5 µm; D–L = 10 µm. Additional type specimens examined: Type of Dendrostilbella moravica: Czech Republic (as Czechoslovakia), Southern Moravia, Thozatrule, on branches of Ulmus sp. or Acer campestre, Jul. 1923, J. Hruby, Holotype W 20389. Type of Ditiola tubercularioides: France, “Herb. Cryptog. Arden. No. 470.”, Holotype Probably in PC but not available. Type of Stilbum aurantiacum designated by Seifert in 1985: Unknown, on branches of Ulmus sp., Neotype K 163333. Additional specimens and isolates examined: UK, England, Bristol, on Ulmus campestris, CBS 236.29; England, Gloucestershire, on decaying twig of Ulmus sp., 23 Sep. 1934, C.G.C. Chesters, CBS 308.34. Notes: Seifert (1985), Samuels & Seifert (1987), and Seifert & Okada (1990) described and/or illustrated Tubercularia aurantiaca and determined that the upper portion of the stipe of T. aurantiaca is composed of textura porrecta while the lower half is textura globulosa or t. angularis. The acropleurogenous conidiophores in T. aurantiaca are reminiscent of the characteristics of sporodochial Tubercularia and www.studiesinmycology.org this relationship was conirmed by our molecular data (Figs 1, 3). The cultures of N. aurantiaca CBS 236.29 and CBS 308.34 were extremely slow growing as also observed by Booth (1959) and produced few conidia and conidiophores after 2 wk at 25 °C. He also conirmed that the anamorph of N. aurantiaca is sporodochial in culture. According to Saccardo (1886) and Seifert (1985), Ditiola tubercularioides is a taxonomic synonym of T. aurantiaca. The type specimen from PC of D. tubercularioides was not available, thus this synonymy could not be conirmed. This synonymy is based on Seifert (1985) who examined this type specimen. Nectria australiensis Seifert, Stud. Mycol. 27: 109. 1985. Figs 18, 19. Anamorph: Tubercularia australiensis Seifert, Stud. Mycol. 27: 109. 1985. 43 Hirooka et al. Fig. 18A–S. Nectria australiensis on natural substrata (A teleomorph and anamorph, B–I teleomorph, J–S anamorph). A. Perithecia (black arrow) and synnema (white arrow) on natural substrata; B, C. Perithecia on natural substrata; D. Median section of perithecia; E. Median section of perithecial wall; F, G. Asci; H. Ascospores in surface view; I. Ascospores in optical section; J, K. Synnemata on natural substrata; L, M. Ornamental hyphae on stipe; N. Sterile hyphae and conidiophores on natural substrata; O. Sterile hyphae on natural substrata; P–R. Conidiophores on natural substrata; S. Conidia on natural substrata. Scale bars: A = 1 mm; B, C, J, K = 500 µm; D = 300 µm; E–G, L–R = 40 µm; H, I, S = 10 µm. Teleomorph on natural substrata: Mycelium not visible around ascomata or on host. Stromata erumpent through epidermis, up to 1.0 mm high and 1.5 mm diam, red to umber, KOH+ dark purple, LA+ yellow, pseudoparenchymatous, cells forming textura angularis, intergrading with ascomatal wall. Ascomata supericial on welldeveloped stromata, scattered to aggregated in groups of 5–35, subglobose to globose, 200–330 μm high × 200–325 μm diam, slightly cupulate upon drying, sometimes with only a depressed apical 44 region, red to umber, apical region slightly darker, KOH+ dark purple, LA+ yellow, smooth to roughened. Ascomatal surface cells forming textura globulosa or t. angularis, 4–16 μm diam, with pigmented, uniformly ca. 1.5 μm thickened walls. Ascomatal wall 43–63 μm thick, of two regions: outer region 28–49 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, about 1.5 μm thick; inner region 8–16 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Asci narrowly clavate, 92– allantonectria, nectria, and Pleonectria Fig. 19A–F. Nectria australiensis on natural substrata (A–C teleomorph, D–F anamorph). A. Median section of mature perithecium; B. Asci; C. Ascospores; D. Median section of synnema; E. Conidia; F. Sterile hyphae and conidiophores. Scale bars: A, D = 200 µm; B, C, E, F = 10 µm. 140 × 7–14 μm, with inconspicuous ring at apex, 8-spored, usually uniseriate, rarely biseriate above, uniseriate below. Ascospores ellipsoidal to rarely fusiform, straight, (10.9–)12.0–14.4(–16.4) × (4.6–)5.2–6.6(–8.0) μm (n = 90), 1-septate, hyaline to yellowishbrown, weakly spinulose. conidiophores together with phialides. Conidial masses globose, hemisphaerical or more or less discoid, white to saffron when fresh, drying reddish black, 300–500 μm diam. Conidia hyaline, ellipsoidal to fusiform, rarely obovate, straight, non-septate, (5.8–)6.7–8.1(–9.6) × (3.3–) 3.7–4.5(–5.1) μm, (n = 60), smooth-walled. Anamorph on natural substrata: Synnemata usually erumpent through epidermis, solitary, rarely gregarious, emerging from ascomatal cluster or independently, caespitose, cylindrical-capitate, subulate-capitate, or claviform, erect or nodding, unbranched, slender to medium stature, distinctly hispid at base to mid-level of stalk, some young synnemata smooth to granular, leshy gelatinous when fresh, red-brown at base, turning blood-red in KOH, almost black in age, 800–1000 μm high including stipe, 250–350 μm wide at base. Hyphae on stipe pigmented golden brown at base, becoming less pigmented towards apex, KOH+, 6–10 μm wide; internal hyphae hyaline, KOH–, 4–7 μm wide. Ornamental hyphae on stipe cylindrical, straight or curved, rarely sinuous or twisted, arising laterally at more or less right angles, distributed evenly over surface of synnemata or concentrated near base in some collections, or near apex in others, 6–13 μm long, 1.4–2.5 μm wide, usually unbranched but occasionally dichotomously branched, aseptate or with up to 2-septae, septa thin or up to 1 μm thick, terminal hyphae clavate to subglobose, 6–13 μm wide, cell walls 1.5–2 μm thick. Conidiophores with long sterile hyphae, branching monoverticillate or biverticillate, whorls compact or diffuse, metulae, if present, 36–65 × 2.0–3.5 μm. Conidiogenous cells enteroblastic, monophialidic, cylindrical to subulate, straight or curved, 15–32 × 1.6–3.1 μm, collarette not conspicuous. Sterile hyphae mixed with phialides, acicular, curved, rarely straight, unbranched or dichotomously branched, septate, 84–145 × 1.6 –3.7 μm, arising from hyphae in whorls, or more often in groups of Habitat: On bark of Hoheria populnea (Malvaceae). www.studiesinmycology.org Distribution: Oceania (Australia, New Zealand). Holotype of Nectria australiensis: Australia, Queensland, Brisbane, on bark, F.M. Bailey, No. 157, ex herb. Broome ex herb. F. Currey, Holotype K 163335, designated in Seifert, 1985, p. 109. Additional specimens and isolates examined: Australia, Queensland, Brisbane, on bark, ex herb. Broome ex herb. F. Currey, K 163334, possibly Isotype. New Zealand, Auckland, on Hoheria populnea, 4 Jun 1983, A. Rossman, G. Samuels, T. Matsushima, BPI 1105494. Notes: Nectria australiensis has been collected only from Oceania. This species resembles with Nectria noackiana in having spinulose ascospores. However, these species differ in ascospore size, i.e. 10.9–16.4 × 4.6–8.0 μm in N. australiensis and 18.5–30.0 × 7.0–11.0 μm in N. noackiana, and distribution, i.e. Oceania for N. australiensis and South America for N. noackiana. Currently, seven species of the genus Nectria having synnematal anamorphs are known, namely N. aurantiaca, N. australiensis, N. neorehmiana, N. noackiana, N. polythalama, N. pseudocinnabarina, and N. pseudotrichia. Among them the anamorph of N. australiensis is easily recognised by the clavate to subglobose ends of the synnematal hyphae. The specimen K 163334 is possibly an isotype of N. australiensis because most of associated data are the same 45 Hirooka et al. Fig. 20A–N. Nectria balansae on natural substrata (A–M teleomorph, N. specimen packet of Nectria balansae Holotype: LPS 1574). A–D. Perithecia on natural substrata; E. Median section of perithecium; F. Median section of perithecium in LA; G. Median section of perithecium in KOH; H. Median section of perithecial apex; I. Median section of perithecial wall; J, K. Asci; L. Ascospores in surface view; M. Ascospores in optical section; N. Specimen packet of Nectria balansae Holotype: LPS 1574. Scale bars: A = 5 mm; B–D = 500 µm; E–G = 100 µm; H–K = 50 µm; L, M = 20 µm. as the holotype, and the specimen came from the herb. Broome. However, we did not ind the collector name, collecting date, and 46 specimen number on the packet of K 163334; thus, we did not include this specimen as a type. allantonectria, nectria, and Pleonectria Fig. 21A–C. Nectria balansae on natural substrata (A–C teleomorph). A. Median section of mature perithecia; B. Ascus; C. Ascospores. Scale bars: A = 200 µm; B, C = 10 µm. Fig. 22A–D. Anamorph of Nectria balansae in culture. A. Cultures after 7 d at 25 °C on PDA; B. Swollen hyphae on SNA; C, D. Chlamydospores on SNA. Scale bars: A = 3 mm; B–D = 10 µm. Nectria balansae Speg., Anales Mus. Nac. Hist. Nat. Buenos Aires 19: 36. 1885. Figs 20–22. = Nectria sinensis Teng, Sinensia, Shanghai 4: 272. 1934. Anamorph: not seen on natural substratum; not sporulating in culture. Teleomorph on natural substrata: Mycelium not visible around ascomata or on host. Stromata erumpent through epidermis, up to 3.0 mm high and 3.5 mm diam, red to sienna, KOH+ blood red, LA+ yellow, pseudoparenchymatous, cells forming textura angularis, intergrading with ascomatal wall. Ascomata nearly or completely immersed in erumpent, aggregated in groups of 3–28, red, subglobose to globose, 318–520 μm high × 326–587 μm diam, not collapsing when dry, apical region slightly darker, KOH+ dark purple, LA+ yellow, wall warted. Ascomatal surface cells at edge of stroma forming textura globulosa or t. angularis, 5–17 μm diam, with pigmented, uniformly ca. 2.5 μm thickened walls; ascomatal warts apricot to red, 45–75 µm high, larger in upper part of ascomata or around ostiole. Ascomatal wall at edge of stroma 68–103 μm thick, of two regions: outer region 55–75 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, about 2.0 μm thick; inner region 21–30 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Asci clavate, 97–132 × 20–27 μm, with inconspicuous ring at apex, 8-spored, mainly biseriate www.studiesinmycology.org above, uniseriate below. Ascospores ellipsoidal, fusiform to long oblong, straight to rarely slightly curved, (19.0–)23.7–29.9(–32.6) × (6.2–)8.3–11.1(–13.0) μm (n = 90), (0–)1-septate, hyaline to slightly yellowish-brown, inely striate. Anamorph in culture: After 7 d at 25 °C, colonies 45–85 mm (average 65 mm) diam. Colony surface cottony with aerial mycelium whitish yellow; aerial mycelium restricted to centre; reverse whitish yellow to yellow in centre and white at margin. Odour on PDA slightly fruity. Conidiophores and conidia absent. Chlamydospores intercalary in hyphae, golobose to subglobose, sometimes ellipsoidal, smooth, hyaline, 10–17 µm. Swollen hyphae abundantly formed, intercalary in normal hyphae, smooth, hyaline, of 2–8 cells, 37–140 μm long, 5–11 μm wide. Habitat: On dead or living woody bark of twigs or branches, known from Coronilla sp. (Fabaceae). Distribution: Asia (China, India, Japan), Europe (France), South America (Brazil, Paraguay). Holotype of Nectria balansae: Paraguay, Guarapí, on bark, Jun. 1883, B. Balansa, No. 3873, Holotype LPS 1574, Isotype BPI 802555 microscope slide only. 47 Hirooka et al. Additional type specimens examined: Type of Nectria sinensis: China, Foochow, Fukien, Teng’s Garden, on twigs, 8 Nov. 1933, S.C. Teng, No. 1899, Lectotype designated herein, BPI 551019; Anhwei, Chiu-Hua-Shan, on twigs, 18 Sep. 1933, S.C. Teng, No. 358, Paratype BPI 551021; Anhwei, Chiu-Hua-Shan, on twigs, 18 Sep. 1933, S.C. Teng, No. 359, Paratype BPI 553091. Additional specimens and isolates examined: Brazil, no additional data, BPI 1109082; J. Rick, BPI 715458. China, Hainan, China Yen–Hsien, on twigs, 18 Jun. 1934, S.Q. Deng, BPI 553092; Hainan, Yen–Hsien, on twigs, 18 Jun. 1934, S.Q. Deng, BPI 553092; Hainan, Ledong County, Jianfengling, on twig, 9 Dec. 2000, W.Y. Zhuang, X.M. Zhang, Z.H. Yu, culture CBS 129349 = A.R. 4635; Hainan, Ledong County, Jianfengling, on twig, 9 Dec. 2000, W.Y. Zhuang, X.M. Zhang, Z.H. Yu, culture CBS 124070; Kwangsi, Yangso, on twigs, 28 Mar. 1938, S.C. Teng, BPI 550739, BPI 550742; Kwangsi, Yangso, on twigs, 23 Mar. 1938, S.C. Teng, BPI 551018; on twigs, 6 Jun. 1934, S.Q. Deng, BPI 551015. France, Villiers en Bois, on Coronilla sp., 2 Jul. 2007, C. Lechat CLL 7123, BPI 878477, culture CBS 123351 = A.R. 4446; Villiers en Bois (79), Virollet, on Coronilla sp., 15 Jul 2010, C. Lechat CLL 10009, BPI 881080. India, Glen, Simla, Himachal Pradesh, 26 Jul. 1971, J.S. Dargan, BPI 550144 as Nectria aurantiaca. Japan, Tokyo, Minato-ku, Akisinomiya Tei, on bark, 11 Jul. 2003, S. Inaba, BPI 881057 = TUA-TPP-h152, culture MAFF 241419. Notes: Nectria balansae was redescribed and illustrated by Samuels & Brayford (1994). This fungus is morphologically similar to N. sordida that has been considered a taxonomic synonym of N. balansae especially in having striate ascospores (Fig. 20L). However, the two species have subtle differences including the number of septae and size of the ascospores and absence/presence of a pycnidial anarmoph in culture. Our molecular phylogeny also suggests that, although closely related, these species are distinct (Figs 1, 3). Nectria sinensis, a synonym of N. balansae, was collected in China and described by Teng (1934). Unfortunately, the holotype specimen was destroyed during the Second Sino-Japanese War. We designate here a duplicate type specimen at BPI as lectotype. Nectria berberidicola Hirooka, Lechat, Rossman & P. Chaverri, sp. nov. MycoBank MB519699. Figs 23–25. Holotype: France, Hautes-Alpes (05), commune of Saint André d’Embrun, hameau des Jourcins, western side of the Mont Orel, 1040 m., N44 °35’59.3’’, E006 °33’03.1’’, on Berberis vulgaris, 22 Dec. 2008, Y. Mourgues, comm. C. Lechat CLL 7199, Holotype LIP YMNC083; ex-holotype culture A.R. 4662 = CIRM 1207 = CBS 128669. Etymology: berberidi + -cola; indicates the host, Berberis, of this fungus. Anamorph: sporodochial, tubercularia-like Teleomorph on natural substrata: Ascomata and pycnidia sometimes formed on same or discrete stroma. Mycelium not visible around ascomata or on host. Stromata erumpent through epidermis, up to 1.5 mm high and 2.5 mm diam, red to umber, KOH+ purple, LA+ yellow, pseudoparenchymatous, cells forming textura angularis, intergrading with ascomatal wall. Ascomata supericial, aggregated in groups of 4–32, sienna to umber, subglobose to globose, 337–447 μm high × 298–388 μm diam, rarely cupulate when dry, apical region darker, KOH+ dark purple, LA+ yellow, warted wall. Ascomatal surface cells forming textura globulosa or t. angularis, 6–14 μm diam, with pigmented, uniformly ca. 2.0 μm thickened walls; ascomatal warts orange to red, 36–52 µm high. Ascomatal wall 44–71 μm thick, of two regions: outer region 37–55 μm thick, intergrading with stroma, 48 cells forming textura globulosa or t. angularis, walls pigmented, about 2.0 μm thick; inner region 10–28 μm thick, of elongate, thinwalled, hyaline cells, forming textura prismatica. Asci clavate, 80–97 × 11–15 μm, with inconspicuous ring at apex, 8-spored, mainly uniseriate to partly biseriate. Ascospores ellipsoidal to fusiform, rounded at both ends, straight to slightly curved, (13.3–) 15.9–19.5(–24.7) × (3.9–)5.3–6.6(–7.6) μm (n = 50), 1-septate, hyaline, inely spinulose. Anamorph on natural substrata: Stromata erumpent through epidermis, red. Sporodochial conidiomata without stipe, supericial on well-developed stromata, smooth, cerebriform or tuberculate, scattered, solitary, astipitate, sessile, pustular, discoid or cylindricalcapitate, up to 100–400 μm high, 250–400 μm wide, white, whitish yellow to orange. Stipe absent. Hymenium arising directly from textura prismatica elongating from textura angularis, up to 60 µm long, cells 2.0–5.5 µm wide, not curved at margin. Conidiophores monoverticillate or sometimes biverticillate, then developing acropleurogenously for 2–4 levels, straight, curved hyaline. Conidiogenous cells enteroblastic, monophialidic, cylindrical to subulate, straight or curved, 15–37 μm long, 1.5–2.3 μm wide, collarette not conspicuous. Acropleurogenous conidiophores mixed with phialides, acicular, usually curved, unbranched or dichotomously branched, then developing acropleurogenously for 2–4 levels, septate, 128–178 × 2.5–4.4 μm, arising from hyphae in whorls, or more often in groups of conidiophores together with phialides. Acropleurogenously developing phialides intercalary occurring below each septum, or rarely terminal; intercalary phialides monophialidic, 2.5–5.5 µm long, 1.5–2.5 µm wide at base; terminal cells monophialidic, sometimes sterile, no collarettes, 4.5–12 µm long, 2.0–2.5 µm wide at base. Conidia hyaline, narrowly long ellipsoidal to cylindrical, straight or slightly curved, non-septate, (7.6–)8.5–10.3(–11.8) × (2.3–)2.6–3.4(–3.9) μm (n = 50). Anamorph in culture: After 7 d at 25 °C, colonies 11–15 mm (average 13 mm) diam. Colony surface sometimes slightly cottony with aerial mycelium, white to whitish yellow; aerial mycelium developed; reverse white to slightly whitish yellow. Odour on PDA slightly fruity. Sporodochia long stipitate, orange, two developed in culture. Sporulation on SNA from lateral phialidic pegs abundant, ellipsoidal and slightly tapering toward tip or lask-shaped, 2.5–5.0 μm long, 1.7–2.7 μm wide at base. Conidiophores occasionally developing on aerial hyphae, unbranched, sometimes verticillate, 1-2-branched, becoming loosely to moderately densely branched, 13.2–47 μm long, 2.1–3.4 μm wide at base. Conidiogenous cells, monophialidic, cylindrical and slightly tapering toward tip, 10.8– 19.5 μm long, 2.3–3.6 μm wide at base. Young conidia formed by monophialides on submerged, aerial hyphae or repent, formed abundantly on slimy heads, non-septate, ellipsoidal, oblong to cylindrical, hyaline, smooth, straight or slightly curved, rounded at both ends, (4.8–)5.6–7.4(–8.2) × (1.9–)2.2–3.0(–3.3) μm (n = 50). Mature conidia swollen, 0–1-septate, oblong to cylindrical with sometimes constricted centre, hyaline, smooth, straight or slightly curved, rounded at both ends, (10.4–)12.6–14.1(–18.3) × (2.4–) 2.9–3.8(–4.2) μm (n = 50). Chlamydospores intercalary in hyphae, golobose to subglobose, sometimes ellipsoidal, smooth, hyaline, 5.7–13.5 μm. Ascomata not produced in culture. Habitat: On Berberis vulgaris (Berberidaceae). Distribution: Europe (France). allantonectria, nectria, and Pleonectria Fig. 23A–T. Nectria berberidicola on natural substrata (A–I teleomorph, J–T anamorph). A, B. Perithecia on natural substrata; C, D. Median section of perithecia; E. Median section of perithecial apex; F. Median section of perithecial wall; G. Ascus; H, I. Ascospores in surface view; J, K. Sporodochia on natural substrata; L, M. Median section of sporodochia; N–Q. Acropleurogenous conidiophores and verticillate conidiophores on natural substrata; R. Verticillate conidiophores on natural substrata; S. Acropleurogenously developing phialides on natural substrata; T. Conidia on natural substrata. Scale bars: A = 1 mm; B, C, J, K = 300 µm; D, L = 100 µm; E–G, M, N, O = 50 µm; H, I = 10 µm; P–T = 20 µm. www.studiesinmycology.org 49 Hirooka et al. Fig. 24A–F. Nectria berberidicola on natural substrata (A–C teleomorph, D–F anamorph). A. Median section of mature perithecium; B. Ascus; C. Ascospores; D. Median section of astipitate sporodochium; E. Conidia; F. Acropleurogenous conidiophores and verticillate conidiophores. Scale bars: A, D = 100 µm; B, C, E, F = 10 µm. Additional specimens and isolates examined: France, Jourcin (05), on Berberis vulgaris, 22 Dec. 2008, Y. Mourgues, LIP = C.L.L. 644 = BPI 881032; culture A.R. 4582 = CBS 131746. Notes: Nectria berberidicola is similar to Nectria himalayensis, however, N. berberidicola possesses narrower ascospores (3.9– 7.6 µm vs. 7.3–10.6 µm), smaller conidia in nature (7.6–11.8 × 2.3–3.9 μm vs. 9.4–13.3 × 3.8–6.8 μm), and astipitate sporodochial anamorph, which are short stipitate in N. himalayensis, and was collected only from France while N. himalayensis is known only from the Himalayas. In terms of morphological characters in culture, N. berberidicola is almost identical with N. antaractica. However, the surface of mature conidia is smooth in N. berberidicola while roughened in N. antarctica, and N. antarctica produces abundant lateral phialidic pegs. In our phylogenetic tree, N. berberidicola groups with N. aurantiaca and N. cinnabarina, both of which possess long stipitate sporodochia (Figs 1, 3). Surprisingly, N. berberidicola in culture forms long stipitate sporodochia on SNA although we observed only sessile sporodochia of N. berberidicola on natural substratum (Figs 23J, K, 24D, 25P). These three species, N. aurantiaca, N. berberidicola, and N. himalyensis, were collected from relatively high elevations or cold latitudes. The colony growth rate of N. aurantiaca and N. berberidicola on PDA at 25 °C is slow. These three species are morphologically similar to the Nectria cinnabarina species complex known from low elevations in temperate regions. Among these species only N. aurantiaca, N. berberidicola, and N. himalayensis appear to be adapted to high elevations or cold latitudes. Nectria canadensis Ellis & Everh., Bull. Torrey Bot. Club 11: 74. 1884. Figs 26, 27. 50 ≡ Calonectria canadensis (Ellis & Everh.) Berl. & Voglino, Syll. Fung. Addit. 1–4: 212. 1886. ≡ Scoleconectria canadensis (Ellis & Everh.) Seaver, Mycologia 1: 199. 1909. Anamorph: Tubercularia grayana (Sacc. & Ellis) Seifert, Stud. Mycol. 27: 112. 1885. ≡ Ciliciopodium grayanum Sacc. & Ellis, Michelia 2: 581. 1882. = Dendrostilbella ulmi Dearness, Mycologia 16: 175. 1924. Teleomorph on natural substrata: Mycelium not visible around ascomata or on host. Stromata erumpent through epidermis, up to 8.0 mm high and 1.5 mm diam, sienna, KOH+ dark purple, LA+ yellow, pseudoparenchymatous, cells forming textura angularis or t. globulosa, intergrading with ascomatal wall. Ascomata supericial on stroma, well-developed stipe of anamorph, or around base, aggregated in groups of 5–20, subglobose to globose, 300–425 μm high × 300–350 μm diam, cupulate when dry, sometimes with only a depressed apical region, red to bay, apical region slightly darker, KOH+ dark purple, LA+ yellow, smooth to rough. Ascomatal surface cells forming textura globulosa or t. angularis, 4–10 μm diam, with pigmented, uniformly ca. 1.5 μm thickened walls. Ascomatal wall 35–60 μm thick, of two regions: outer region 25–40 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, about 1.5 μm thick; inner region 10–20 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Asci clavate, 60–100 × 15–23 μm, with inconspicuous ring at apex, 8-spored, mainly biseriate. Ascospores ellipsoidal to long-ellipsoidal, straight to slightly curved, with broadly rounded ends, (18.6–)19.6–22.6(–24.8) × (5.5–)8.0–9.0(–10.0) μm (n = 50), (1–)3-septate, sometimes slightly constricted at middle or all septae, hyaline, straight or curved, smooth. Two specimens (BPI 631953 and BPI 631954) producing ascoconidia-like structures outside asci. allantonectria, nectria, and Pleonectria Fig. 25A–P. Anamorph of Nectria berberidicola in culture. A. Cultures after 7 d at 25 °C on PDA; B–D. Lateral phialidic pegs and conidia on SNA; E–L. Conidiophores on SNA; M. Young conidia on SNA; N. Mature conidia on SNA; O. Chlamydospores on SNA; P. Long stipitate sporodochia on SNA. Scale bars: A = 30 mm; B–O = 10 µm; P = 500 µm. Anamorph on natural substrata: Stromata erumpent through epidermis, red to sienna. Sporodochial conidiomata developing on stroma having long stipe, smooth or cerebriform, scattered, solitary, or 2–6 gregarious, unbranched, erumpent through epidermis, www.studiesinmycology.org 500–8000 μm tall (averaging > 2500 µm), 500–1500 μm diam at base, lower part of stipe scarlet to bay, KOH+ dark purple, stipe becoming pale toward apex. Stipe wall of two regions: outer region 100–530 μm thick, cells forming textura globulosa or t. prismatica, 51 Hirooka et al. Fig. 26A–Q. Nectria canadensis on natural substrata (A–C teleomorph and anamorph, D–I teleomorph, J–Q. anamorph). A–C. Perithecia and long stipitate sporodochia on natural substrata; D. Perithecia on natural substrata; E. Median section of perithecium; F. Median section of perithecial wall; G. Asci; H. Ascospores; I. Budding ascospore; J. Median section of long stipitate sporodochia; K. Median section of hymenium; L. Median section of long stipitate sporodochial wall and immature perithecium (arrow); M. Abundant conidiophores on natural substrata; N. Verticillate conidiophores on natural substrata; O, P. Short acropleurogenous conidiophores (black arrows) and verticillate conidiophores on natural substrata; Q. Conidia on natural substrata. Scale bars: A, D, J = 1 mm; B, C = 3 mm; E, K = 300 µm; F, L, M = 50 µm; G, H, I, N–P = 20 µm; Q = 10 µm. 52 allantonectria, nectria, and Pleonectria Fig. 27A–F. Nectria canadensis on natural substrata (A–C teleomorph, D–F anamorph). A. Median section of mature perithecium; B. Ascus; C. Ascospores; D. Median section of long stipitate sporodochia; E. Conidia; F. Short acropleurogenous and verticillate conidiophores. Scale bars: A, D = 200 µm; B, C, E, F = 10 µm. walls hyaline, about 0.5 μm thick; inner region 150–1000 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica or t. epidermoidea. Middle of stipe sometimes hollow. Hymenium arising directly from textura prismatica, elongating from textura angularis, up to 86 µm long, of cells 2.0–6.0 µm wide, without curved margin. Conidiophores verticillate, branching twice or three times, 30–75 μm long, 1.5–4.0 μm wide, then developing acropleurogenously for 1–3 levels, curved, hyaline. Conidiogenous cells enteroblastic, monophialidic, cylindrical to subulate, straight to slightly curved, cylindrical and subulate with widest point in middle to base, 15–35 × 1.5–3 μm. Conidiophores with phialides or shirt acropleurogenous conidiophores, branching verticillate, 1–3 branched, whorls compact or diffuse, 30–75 μm long, 1.5–4.0 μm wide. Conidiogenous cells enteroblastic, monophialidic, subulate, straight or curved, 13–35 μm long, 1.5–2.5 μm wide, collarette not conspicuous. Short acropleurogenous conidiophores mixed with phialides, acicular, curved, unbranched or dichotomously branched, then developing acropleurogenously for 1–3 levels septate, 44–78 × 1.7–3.0 μm, arising in groups of conidiophores together with phialides. Acropleurogenously developing phialides intercalary, occurring below each septum, rarely terminal; intercalary phialides monophialidic, up to 3.0–5.5 µm long, 1.5–2.5 µm wide; terminal cells monophialidic, sometimes sterile, without collarette. Conidia hyaline, ellipsoidal, sometimes slightly curved, non-septate, (5.1–) 5.9–7.5(–8.6) × (2.1–)2.5–3.3(–3.6) μm (n = 50), smooth-walled. Habitat: On bark of dead Ulmus americana and Ulmus sp. (Ulmaceae). Distribution: North America (Canada, USA). www.studiesinmycology.org Neotype of Nectria canadensis designated by Rossman (1983): Canada, Ontario, Ottawa, on limb bark, 28 Sep. 1883, J.M. Macoun, No. 225, Neotype NY 00927908. Holotype of Tubercularia grayana: USA, Michigan, on dead limb, Oct. 1881, J.B. Gray, Holotype NY 00936856. Additional type specimens examined: T ype of Dendrostilbella ulmi: USA, New York, Washington Co., Vaughns, on limbs of Ulmus americana, 26 Jun. 1916, S.H. Bernham, Holotype DAOM. Additional specimens and isolates examined: USA, New York, Clyde, Sep. 1887, O.F. Cook, BPI 1107514; New York, Clyde, Sep. 1887, O.F. Cook, BPI 1107515; Vermont, Middleburg, Swamp, 26 Mar. 1896, A.B. Langlois, BPI 631950: Canada, Ontario, London, Jan. 1892, J. Dearness, BPI 550747; Ontario, London, Aug. 1893, J. Dearness, BPI 550747; Ontario, London, Aug. 1893, J. Dearness, BPI 631951; Ontario, London, on Ulmus sp., Aug. 1893, J. Dearness, BPI 631952; Ontario, London, on Ulmus sp., May 1893, J. Dearness, BPI 631953; Ontario, London, on Ulmus sp., May 1893, J. Dearness, BPI 631954; Ontario, London, on Ulmus sp., May 1893, J. Dearness, BPI 631955; Ontario, London, on Ulmus sp., Aug. 1893, J. Dearness, BPI 631956; Ontario, London, on bark fragments, Dec. 1889, J. Dearness, NY 00927909; Ontario, London, on bark fragments, Dec. 1889, J. Dearness, NY 00927910; Ontario, London, Des. 1889, J. Dearness, Ellis & Everhart, North American Fungi. No. 2547, BPI-bound exsiccati. Notes: Nectria canadensis has been collected only on Ulmus in Canada and the United States. At irst glance, the morphology of this species is reminiscent of the genus Corallomycetella in the Nectriaceae that also produces ascomata around the stipe of the synnematal anamorph. However, these fungi are easily distinguished by differences in ascomatal wall anatomy. Within the genus Nectria, N. canadensis resembles N. neorehmiana in having smooth, three-septate ascospores, but these species differ in ascomatal colour, red to bay in N. canadensis and scarlet to dark scarlet in N. neorehmiana, and ascospore size, 18.6–24.8 53 Hirooka et al. Fig. 28A–G. Nectria cingulata on natural substrata. A, B. Perithecia on natural substrata; C. Median section of perithecia; D. Median section of perithecial wall; E, F. Asci; G. Ascospores. Scale bars: A = 1 mm; B = 500 µm; C= 100 µm; D = 50 µm; E–G = 20 µm. × 5.5–10.0 μm in N. canadensis and 30.2–39.1 × 6.0–9.3 μm in N. neorehmiana. In addition, the anamorph of N. canadenisis forms long stipitate sporodochia while N. neorehmiana forms synnemata. Nectria canadensis was irst described by Ellis & Everhart (1884) and re-described by Rossman (1983) and Seifert (1985). According to their descriptions, N. canadensis possesses “ascoconidia” outside the asci as often seen in species of Pleonectria. However, N. canadensis has a Tubercularia anamorph and no yellowish green scurf on the ascomata, both of which are critical evidence of the genus Pleonectria. In this study of numerous specimens including types, ascoconidia were not observed in asci. In two specimens of N. canadensis (BPI 631953 and BPI 631954), a few budding ascospores and “ascoconidia-like spores” were observed in association with germinating ascospores (Fig. 26I). In another species of Nectria, N. pseudotrichia, germinating ascospores in culture often bud producing conidia. This suggests that in overmature ascomata after the asci have broken down ascospores occasionally bud and produce conidia within the fruiting bodies. Acropleurogenous conidiophores are only observed in sporodochial tubercularia-like anamorphs, but not in synnematous tubercularia-like anamorphs. The anamorph of N. canadensis has short acropleurogenous conidiophores although it appears to be synnematous (Figs 26A, B, O, P, 27F). This acropleurogenous characteristic indicates that the synnematous-like anamorph of this species is actually an extremely long stipitate sporodochia. In addition, the surface of a synnematous structure is not prosenchymatous as generally found in synnematous Tubercularia anamorphs (Figs 26J–L, 27D). Thus, the anamorph of N. 54 canadensis is considered a sporodochia with an extremely long stipe. This hypothesis is also evidenced by the fact that ascomata are often produced on the middle or near the top of the stipe (Figs 26B, C, L, 27D). Nectria cingulata Starbäck, Bih. Kongl. Svenska Vetensk.Akad. Handl. 25: 26, 1899. Figs 28, 29. Anamorph: unknown. Teleomorph on natural substrata: Mycelium not visible around ascomata or on host. Stromata erumpent through epidermis, up to 1.5 mm high and 3.0 mm diam, dark scarlet, KOH+ blood colour, LA+ yellow, pseudoparenchymatous, cells forming textura angularis, intergrading with ascomatal wall. Ascomata supericial on well-developed stromata, aggregated in groups of 7–26, subglobose to globose, 300–380 μm high × 280–360 μm diam, scarlet to sienna, slightly cupulate upon drying, apical region slightly darker, KOH+ dark red, LA+ yellow, smooth to roughened. Ascomatal surface cells forming textura globulosa or t. angularis, 5–13 μm diam, with pigmented, uniformly ca. 1.5 μm thickened walls. Ascomatal wall 40–60 μm thick, of three regions: outer region 35–45 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, about 1.5 μm thick; middle region 10–20 μm thick, cells forming textura globulosa to t. prismatica, containing scarlet to bay, pigmented droplets, walls pigmented to gold, about 1.5 μm thick; inner region 10–20 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Asci clavate, 70–120 × 11–20 μm, with inconspicuous ring at apex, 8-spored, ascospores biseriate. allantonectria, nectria, and Pleonectria Fig. 29A–C. Nectria cingulata on natural substrata (A–C teleomorph). A. Median section of mature perithecium; B. Ascus; C. Ascospores. Scale bars: A = 200 µm; B, C = 10 µm. Ascospores ellipsoidal to fusiform, straight to rarely slightly curved, (15.6–)16.8–19.6(–22.3) × (5.9–)6.3–8.5(–9.7) μm (n = 50), 1-septate, hyaline, striate. Habitat: On bark of Cedrela brasiliensis (Meliaceae). Distribution: South America (Brazil). Lectotype of Nectria cingulata designated herein: Brazil, Rio Grande do Sul, on bark, 21 Oct. 1892, C.A.M. Lindman, Lectotype S F46419, Isolectotypes S F10115, S F10116. Additional specimen examined: Brazil, Bono Principio, Muninipio, Montenegro, on Cedrela brasiliensis, 1928, J. Rick, BPI 631889 as Hypocreopsis moriformis. Notes: Nectria cingulata is one of the most difficult species to identify within the nectria-like fungi because its anamorph in the natural environment and in culture is not known, and the morphology of the asci and ascospores looks like the genus Neonectria at first appearance (Fig. 28A). However, this species is included in Nectria sensu stricto based on the cupulate ascomata when dry and ascomatal wall composed of three regions (Figs B, C), both of which characters are reminiscent of the genus Nectria as exemplified by N. pseudocinnabarina and N. pseudotrichia. Nectria cingulata may produce a synnematous anamorph because all Nectria species possessing ascomatal walls with three regions produce a synnematous anamorph. Because Starbäck (1899) did not designate a holotype, we lectotypify this name with F 46419 preserved in S; the other duplicate specimens at S (F 10115 & F 10116) are considered isolectotypes. Nectria cinnabarina (Tode : Fr.) Fr., Summa Veg. Scand. 2:388. 1849. Figs 30–32. Basionym: Sphaeria cinnabarina Tode : Fr., Tode, Fungi Mecklenb. sel. 2: 9. 1791 : Fries, Syst. Mycol. 2: 412. 1823. ≡ Cucurbitaria cinnabarina (Tode : Fr.) Grev., Scot. Crypt. Fl. 3: 135. 1825. = Sphaeria tremelloides Weigel, Obs. Bot. p. 46. 1772. = Sphaeria decolorans Pers. : Fr., Persoon, Neues Magazin für Botanik, Rőmer 1: 83, 1794 : Fries, Syst. Mycol. 2: 412. 1823. = Sphaeria celastri Fr., Elenchus Fungorum 2: 81. 1827. = Nectria russellii Berk. & M.A. Curtis, in Berkeley, Grevillea 4: 45. 1875. = Nectria offuscata Berk. & M.A. Curtis, in Berkeley, Grevillea 4: 45. 1875. www.studiesinmycology.org Anamorph: Tubercularia vulgaris Tode : Fr., Tode, Fungi Mecklenb. sel. 1:18. 1790 : Fries, Syst. Mycol. 3:464. 1832. Teleomorph on natural substrata: Mycelium rarely visible around ascomata and on host. Stromata up to 2.0 mm high and 5 mm diam, erumpent through epidermis, whitish yellow to bay, KOH+ dark red, LA+ yellow, pseudoparenchymatous, cells forming textura angularis to t. prismatica with cells oriented more or less vertically; cells 5–20 μm diam, with walls 1–2 μm thick, intergrading with ascomatal wall. Ascomata supericial on well-developed stromata, solitary or caespitose, up to 25 on stroma, sometimes clustered around base of stipitate sporodochia, subglobose to globose, 275–400 μm high × 250–370 μm diam (n = 55), red to reddish brown, sometimes cupulate upon drying, non-papillate, apical region darker, KOH+ dark red, LA+ yellow, surface roughened with concolourous warts, but sometimes smooth. Ascomatal surface cells forming textura globulosa or t. angularis, with walls pigmented ca. 1.5 μm thick. Ascomatal wall ca. 40–60 μm thick, of two regions: outer region ca. 35–55 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, ca. 1.5 μm thick; inner region ca. 15–20 μm thick, of elongated, thin-walled, hyaline cells, forming textura prismatica. Asci unitunicate, (81–)85–96(–105) × (7.5–)8.0–9.5(–11.0) μm (n = 129), cylindrical to narrowly clavate, with inconspicuous ring at apex, 8-spored, ascospores biseriate above, uniseriate below. Ascospores ellipsoidal to fusiform, straight, sometimes slightly curved, hyaline, (0–)1(–2)-septate, (11.5–)14.0– 17.5(–21.5) × (3.0–)4.0–5.5(–7.0) μm (n = 558), smooth-walled. Anamorph on natural substrata: Stromata erumpent through epidermis, pale yellow to orange, rarely reddish brown. Sporodochial conidiomata with stipe, supericial on well-developed stromata, smooth, cerebriform or tuberculate, scattered, solitary or 2–4 gregarious, stipitate, pustular, discoid or cylindrical-capitate, up to 700–1600 μm high including stipe, 300–2500 μm wide, white, whitish yellow to orange, sometimes darker red. Stipe white to whitish red, rarely darker red, up to 250–600 μm wide, solitary or 2–6 gregarious; stipe cells almost textura angularis, continuous with stroma, usually with wider cells in centre. Hymenium arising directly from textura prismatica, elongating from textura angularis, up to 150 µm long, of cells 2.5–5 µm wide; in stipitate forms marginal cells arranged in a palisade as described above for surface of stroma; curved margin, up to 100 µm long, of parallel hyphae 1.5–2.5 µm 55 Hirooka et al. Fig. 30A–Q. Nectria cinnabarina on natural substrata (A, C, H, I teleomorph and anamorph, B, D–G teleomorph, J–Q anamorph). A, H, I. Perithecia (black arrows) and long stipitate sporodochia (white arrows) on natural substrata; B. Perithecia on natural substrata; C. Median section of perithecium (black arrow) and sporodochium (white arrow); D. Median section of perithecium E. Median section of perithecial wall; F. Ascus; G. Ascospores; J. Long stipitate sporodochium; K, L. Median section of long stipitate sporodochia; M, N. Acropleurogenous conidiophores on natural substrata; O, P. Acropleurogenously developing phialides on natural substrata; Q. Conidia on natural substrata. Scale bars: A–C, H, I = 500 µm; D = 100 µm; E, F = 50 µm; G, M–P = 20 µm; J–L = 1 mm; Q = 10 µm. 56 allantonectria, nectria, and Pleonectria Fig. 31A–F. Nectria cinnabarina on natural substrata (A–C teleomorph, D–F anamorph). A. Median section of mature perithecium; B. Ascus; C. Ascospores; D. Median section of long stipitate sporodochium; E. Conidia; F. Acropleurogenous conidiophores. Scale bars: A, D = 200 µm; B–F = 10 µm. wide. Acropleurogenous conidiophores monoverticillate or rarely biverticillate, then developing acropleurogenously for 3–10 levels, straight, curved. Acropleurogenously developing phialides intercalary, occurring below each septum, or rarely terminal; intercalary phialides monophialidic, up to 3–9 µm long, 1.5–2 µm wide; terminal cells monophialidic, sometimes sterile, without collarettes. Conidia hyaline, narrowly long ellipsoidal to cylindrical, straight or slightly curved, non-septate, (4.0–)5.2–7.0(–8.5) × (1.3–)1.9–2.7(–3.4) μm (n = 355), smooth-walled. Anamorph in culture: Optimum temperature for growth on PDA 25 °C, maximum temperature 30 °C. After 7 d at 25 °C, colonies 60– 85 mm (average 73 mm) diam. Colony surface radial, sometimes wavy, slightly cottony with aerial mycelium, white to whitish saffron; aerial mycelium developing, in some isolates (A.R. 4327, A.R. 4337, A.R. 4338, A.R. 4341, A.R. 4477) abundant, white to whitish yellow sporodochial conidial masses produced after 2 wk; reverse white to slightly whitish yellow. Odour on PDA slightly fruity. Sporulation common on SNA from lateral phialidic pegs, enteroblastic, monophialidic, ellipsoidal tapering toward tip, 1.5– 4.5 μm long, 1.0–1.5 μm wide near aperture. Aerial conidiophores abundantly formed, unbranched, sometimes verticillate, 1–3 branched, becoming loosely to moderately densely branched, 5.5–38.0 μm long, 2.0–3.5 μm wide at base. Conidiogenous cells enteroblastic, monophialidic, cylindrical and slightly tapering toward tip or narrowly lask-shaped with widest point in middle, 5–22 μm long, 2.0–3.2 μm wide at base. Young conidia formed from monophialides on submerged or aerial hyphae, abundant on slimy heads or sporodochia, ellipsoidal, oblong to cylindrical, hyaline, smooth, straight or slightly curved, rounded at both ends, nonseptate, (3.0–)5.5–9.0(–15.0) × (1.5–)2.0–3.0(–3.5) μm (n = 764), smooth-walled. Mature conidia swollen, mostly 0-, rarely 1-septate, ellipsoidal, oblong, allantoid or ellipsoidal with strongly constricted centre, hyaline, smooth, straight or slightly curved, rounded at both www.studiesinmycology.org ends, germinating and budding in culture, (5.5–)10.5–17.0(–27.0) × (3.0–)4.0–5.0(–7.0) μm (n = 668). Chlamydospores rarely present, globose, subglobose, broadly ellipsoidal, 0(–1)-septate, solitary or chains, 8.5–12 μm diam. Ascomata not produced in culture. Habitat: On dead woody substrata including Acer campestre, A. platanoides, A. pseudoplatanus, A. saccharum, Acer sp., Aesculus sp., Celastris scandens, Fagus sp., Gleditsia sp., Populus tremula, Sorbus aria, Spiraea trilobata, Tilia sp., and Ulmus x hollandica. Distribution: Europe (Austria, Denmark, France, Germany, Ireland, Netherlands, Poland, UK, Ukraine), North America (Canada, USA). Lectotype of Nectria cinnabarina designated by Hirooka et al. (2011): Lectotype Figures 68a-e in the copy of Tode HJ (1791). Fungi Mecklenburgenses selecti. 2:9 associated with BPI. Epitype of Nectria cinnabarina designated by Hirooka et al. (2011): France, Villiers en Bois, on dead twigs of Aesculus sp., Feb. 13, 2008, C. Lechat C.L.L. 7152, Epitype BPI 879981, ex-epitype culture CBS 125165 = A.R. 4477. Additional type specimens examined: The type specimen of Sphaeria tremelloides exists at K but could not be examined. This name is retained as a synonym of N. cinnabarina. Lectotype material of Sphaeria decolorans was examined but this lacked the anamorphic structures needed to identify species within the Nectria cinnabarina species complex. This name is retained as a synonym of N. cinnabarina. Lectotype of Sphaeria decolorans designated in Hirooka et al. (2011): Country unknown: on branch of Acer platanoides, ex Herb. Persoon, BPI 799523. Additional Persoon material examined: Country unknown: on bark of Ribes rubrum, Mougeot, ex Herb. Persoon, BPI 799524. Type specimen of Sphaeria celastri: USA, Philadelphia, on dead branch of Celastrus scandens L., possibly L.D. Schweinitz, Holotype Schweinitz Syn. PH 1421. Type of Nectria russellii: USA, Massachusetts, Jan. 1856, J.L. Russell, Holotype FH 284394. Type of Nectria offuscata: USA, South Carolina, on Hibiscus syriacus L., Lectotype, Michener Collection 32, Sheet 12, BPI. 57 Hirooka et al. Fig. 32A–M. Anamorph of Nectria cinnabarina in culture. A. Cultures after 7 d at 25 °C on PDA; B. Aerial conidiophores and conidial mass produced on the SNA surface; C, D. Lateral phialidic pegs and conidia on SNA; E–H. Conidiophores and conidia on SNA; I. Young conidia on SNA; J. Mature conidia on SNA; K–M. Budding mature conidia on SNA. Scale bars: A = 30 mm; B = 500 µm; C–M = 20 µm. For additional specimens and isolate examined, see Hirooka et al. (2011). Note: Nectria cinnabarina was described in detail by Hirooka et al. (2011). 58 Nectria dematiosa (Schwein.) Berk., Grevillea, 4: 16, 1875. Figs 33–35. Basionym: Sphaeria dematiosa Schwein., Trans. Amer. Philos. Soc. II, 4: 205, 1832. ≡ Cucurbitaria dematiosa (Schwein.) Kuntze, Revisio Generum Plantarum 3: 461, 1898. allantonectria, nectria, and Pleonectria = Nectria sambuci Ellis & Everh., Proc. Acad. Nat. Sci. Philadelphia 1890: 246, 1891. = Nectria cinnabarina subsp. amygdalina P. Karst., Rev. Mycol. 37: 205, 1889. ≡ Nectria amygdalina (P. Karst.) Mussat in Saccardo, Syll. Fung. 15: 225, 1901.] Anamorph: tubercularia vulgaris-like. Teleomorph on natural substrata: Mycelium not visible around ascomata and on host. Stromata up to 0.3 mm high and 2 mm diam, erumpent through epidermis, orange to bay, sometimes darker red, KOH+ dark red, LA+ yellow, pseudoparenchymatous, cells forming textura angularis to t. prismatica with cells oriented more or less vertically; cells 3–10 μm diam, with 1–1.5 μm thick walls, intergrading with ascomatal wall. Ascomata supericial on well-developed, erumpent stroma, solitary or caespitose, up to 20 on a stroma, rarely clustered around sessile sporodochia, subglobose to globose, 260– 380 μm high × 220–380 μm diam (n = 40), red to reddish brown, sometimes cupulate upon drying, non-papillate, apical region darker, KOH+ dark red, LA+ yellow, surface roughened or with concolourous warts, but sometimes smooth. Ascomatal surface cells forming textura globulosa or t. angularis, with walls pigmented, ca. 1.5 μm thick. Ascomatal wall ca. 35–60 μm thick, of two regions: outer region ca. 25–40 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, ca. 1.5 μm thick; inner region ca. 10–20 μm thick, of elongated, thin-walled, hyaline cells, forming textura prismatica. Asci unitunicate, (64–) 77–91 (–108) × (6.3–) 9.4–11.0 (–12.0) μm (n = 68), cylindrical to narrowly clavate, with an inconspicuous ring at apex, 8-spored, ascospores biseriate above, uniseriate below. Ascospores ellipsoidal to fusiform, sometimes long fusiform, straight or slightly curved, hyaline, smoothwalled, (0–)1(–2)-septate, (12.6–)15.2–17.2(–22.2) × (3.2–)4.3– 5.7(–6.4) μm (n = 150). Subclade A (12.6–)13.9–16.9(–18.5) × (3.4–) 3.9–4.9(–5.3) μm (n = 30); subclade B (13.6–)14.7–17.9 (–20.5) × (3.8–)4.7–5.7(–6.4) μm (n = 60); subclade C (12.6–)14.3–18.9(– 22.2) × (3.2–)4.3–5.7(–6.2) μm (n = 60). Anamorph on natural substrata: Stromata erumpent through epidermis, orange to red. Sporodochial conidiomata without stipe, supericial on well-developed stromata, smooth, cerebriform or tuberculate, scattered, solitary, rarely caespitose, astipitate, sessile, pustular, discoid or cylindrical-capitate, up to 200–700 μm high, 250– 1000 μm wide, white, whitish yellow to orange, sometimes brown. Hymenium arising directly from textura prismatica elongating from textura angularis, up to 90 µm long, of cells 2.0–7.5 µm wide, not curved at margin. Acropleurogenous conidiophores monoverticillate or sometimes biverticillate, then developing acropleurogenously for 3–6 levels, straight, curved hyaline. Acropleurogenously developing phialides intercalary occurring below each septae, or rarely terminal; intercalary phialides monophialidic, 2.5–8.5 µm long, 1.3–2.4 µm wide at base; terminal cells monophialidic, sometimes sterile, no collarettes, 10.5–15 µm long, 2.3–2.8 µm wide at base. Conidia hyaline, narrowly long ellipsoidal to cylindrical, straight or slightly curved, non-septate, (4.5–)5.7–7.1(–8.8) × (1.7–)2.2–2.8(–3.1) μm (n = 60). Subclade A (4.5–)5.5–7.1(–8.8) × (2.0–)2.2–2.6(–2.9) μm (n = 30), subclade B (5.2–)5.8–7.0(–7.8) × (1.7–)2.3–2.9(–3.1) μm (n = 30), subclade C none present. Anamorph in culture: Optimum temperature for growth on PDA 20 °C, colonies 37–67 mm (average 45 mm) diam at 25 °C after 7 d, maximum temperature 30 °C. Colony surface on PDA, radial, sometimes wavy, slightly cottony with aerial mycelium, white www.studiesinmycology.org to whitish saffron; aerial mycelium developing in a few isolates (CBS 125127, CBS 126570), white to whitish yellow sporodochial conidial masses produced after 2 wk; reverse white to slightly whitish yellow. Odour slightly fruity. Sporulation on SNA from lateral phialidic pegs on submerged or aerial hyphae common, enteroblastic, monophialidic, ellipsoidal tapering toward tip, 2.5–4.5 μm long, 1.5–3.0 μm wide at base. Aerial conidiophores occasionally developing on aerial hyphae, unbranched, sometimes verticillate, 1-2-branched, becoming loosely to moderately densely branched, 6.0–34 μm long, 2.1–4.5 μm wide at base. Conidiogenous cells monophialidic, cylindrical and slightly tapering toward tip or narrowly lask-shaped with widest point in middle, 8–26 μm long, 2.5–3.5 μm wide at base. Young conidia formed by monophialides on submerged or aerial hyphae, formed abundantly on slimy heads, non-septate, ellipsoidal, oblong to cylindrical, hyaline, smooth, straight or slightly curved, rounded at both ends, (4.1–)6.0–10.6(–17.3) × (1.6–)2.4–3.4(–5.1) μm (n = 496). Subclade A (4.6–)5.9–10.1(–14.0) × (1.6–)2.3–3.1(–4.0) μm (n = 200); subclade B (4.1–)6.0–10.6(–16.8) × (1.6–)2.4–3.6(–5.1) μm (n = 213); subclade C (5.0–)6.5–11.5(–17.3) × (2.2–)2.6–3.4(–4.0) μm (n = 83). Mature conidia swollen, mostly 0-, rarely 1-septate, smooth, ellipsoidal, oblong or allantoid, straight or slightly curved and round at both ends, germinating, never budding secondary conidia on media, (7.1–)10.0–17.4(–29.3) × (2.8–)3.8–5.6(–7.9) μm (n = 429). Subclade A (8.2–)10.7–19.1(–27.8) × (2.9–)3.6– 5.0(–6.1) μm (n = 136); subclade B (7.1–)9.7–16.7(–29.3) × (3.5–) 4.3–6.1(–7.9) μm (n = 211); subclade C (8.0–)10.7–15.9(–23.2) × (2.8–)3.3–4.7(–5.6) μm (n = 82). Chlamydospores and ascomata not produced in culture. Habitat: On dead woody substrata including Acer macrophyllum Pursh, A. pseudoplatanus, Acer sp., Morus sp., Prunus tenella, Ribes sp., Rosa sp., Sambucus nigra ssp. canadensis, and Weigela coraeensis. Distribution: Asia (China, Japan), Europe (Finland, Poland), Oceania (New Zealand), North America (Canada, USA). Lectotype of Nectria dematiosa designated in Hirooka et al. (2011): USA, Pennsylvania, on Morus sp., Bethlehem, Schweinitz, Lectotype BPI 799536, Isolectotype BPI 799535 anamorph only. The two isotype specimens of S. dematiosa have sessile sporodochia; on BPI 799536 ascospores up to 2-septate were observed. This specimen has only 4 or 5 ascomata and a few sessile sporodochia. Epitype of Nectria dematiosa designated in Hirooka et al. (2011): USA, North Carolina, Highlands, Macon Co. Highlands Biological Station, Lake Ravenel, on bark, 31 Aug. 1994, G.J. Samuels, H.-J. Schroers, Epitype BPI 749337, ex-epitype culture CBS 126570 = G.J.S. 94-37. Additional type specimens examined: Type of Nectria sambuci: USA, Nebraska, Lincoln, on Sambucus nigra L. ssp. canadensis (L.) R. Bolli, Aug. 1888, H.J. Webber, Holotype NY 00927949. Type of Nectria cinnabarina subsp. amygdalina: Finland, Mustiala, on dead branch of Amygdalus nana, now considered to be Prunus tenella Batsch., 28 May 1889, P.A. Karsten , Holotype H 6009374. For additional specimens and isolates examined, see Hirooka et al. (2011). Notes: This species was described and illustrated by Hirooka et al. (2011). 59 Hirooka et al. Fig. 33A–P. Nectria dematiosa on natural substrata (A–C, E–J teleomorph, D teleomorph and anamorph, K–P anamorph). A–C. Perithecia on natural substrata; D. Perithecia (black arrow) and astipitate sporodochium (white arrow) on natural substrata; E. Median section of perithecium; F. Median section of perithecial wall; G. Apex of ascus; H Asci; I, J. Ascospores; K, L. Astipitate sporodochia; M. Median section of astipitate sporodochium; N, O. Acropleurogenous conidiophores and acropleurogenously developing phialides on natural substrata; P. Conidia on natural substrata. Scale bars: A = 1 mm; B–D, K–M = 500 µm; E = 100 µm; F = 50 µm; G–J, N–P = 20 µm. 60 allantonectria, nectria, and Pleonectria Fig. 34A–F. Nectria dematiosa on natural substrata (A–C teleomorph, D–F anamorph). A. Median section of mature perithecium; B. Ascus; C. Ascospores; D. Median section of astipitate sporodochium; E. Conidia; F. Acropleurogenous conidiophores. Scale bars: A, D = 200 µm; B, C, E, F = 10 µm. Nectria eustromatica Jaklitsch & Voglmayr, Mycologia 103: 209. 2011. For a description of the teleomorph on natural substratum and anamorph in culture, see Jaklitsch & Voglmayr (2011). Habitat: On recently dead, standing branches and trunks; known from Hippocrepis emerus (Fabaceae). Distribution: Europe (Croatia, Italy ide Jaklitsch and Voglmayr, 2011). Holotype of Nectria eustromatica (not seen): Croatia, Primorskogoranska, Opatija, Mošcenička Draga, village area, on dead twigs of twigs of Hippocrepis emerus, soc. Cucurbitaria coronillae, 29 Mar. 2007, W. Jaklitsch, H. Voglmayr, Holotype WU 30194, exholotype culture CBS 121896. Notes: Nectria eustromatica was described by Jaklitsch & Voglmayr (2011). Nectria eustromatica is morphologically similar to N. magnispora and N. mariae in having ascomata immersed in a stroma but N. eustromatica has dark ascomata and longer macroconidia in culture. Nectria magnispora produces pycnidia in the natural environment and culture, thus one might expect the same type of anamorph for N. eustromatica. In comparing sequences of N. eustromatica with our sequences of Nectria, ITS, LSU, and tef1 of N. eustromatica showed the highest homology with N. magnispora (ITS 97 %, LSU 99 %, and tef1 94 %). Nectria himalayensis Hirooka, Rossman & P. Chaverri, sp. nov. MycoBank MB519700. Figs 36, 37. www.studiesinmycology.org Holotype of Nectria himalayensis: India, Himalayan Mountains, near Mussoorie, Uttarakhand?, 6000–6500 m, on twigs, 14 Aug. 1934, R.R. Stewart, Holotype NY. Etymology: himalay + -ensis; indicates the geographic origin of this fungus. Anamorph: sporodochial, tubercularia-like. Teleomorph on natural substrata: Mycelium not visible around ascomata or on host. Stromata erumpent through epidermis, up to 1.5 mm high and 3.0 mm diam, red to umber, KOH+ purple, LA+ yellow, pseudoparenchymatous, cells forming textura angularis, intergrading with ascomatal wall. Ascomata supericial, aggregated in groups of 2–50, sienna to umber, subglobose to globose, 340–430 μm high × 290–420 μm diam, rarely cupulate when dry, apical region darker, KOH+ dark purple, LA+ yellow, warted wall. Ascomatal surface cells forming textura globulosa or t. angularis, 6–16 μm diam, with pigmented, uniformly ca. 2.0 μm thickened walls; ascomatal warts orange to red, 40–60 µm high. Ascomatal wall 50–90 μm thick, of two regions: outer region 35–60 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, about 2.0 μm thick; inner region 15–25 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Asci clavate, 90–122 × 12–17 μm, with inconspicuous ring at apex, 8-spored, mainly uniseriate to partly biseriate. Ascospores ellipsoidal to fusiform with rounded ends, straight, (16.0–)18.7–21.7(–22.7) × (7.3–)7.9–9.5(–10.6) μm (n = 50), 1-septate, hyaline, inely spinulose. Anamorph on natural substrata: Stromata erumpent through epidermis, reddish orange to red. Sporodochial conidiomata with short stipe, supericial on well-developed stromata, smooth, 61 Hirooka et al. Fig. 35A–P. Anamorph of Nectria dematiosa in culture. A. Cultures after 7 d at 25 °C on PDA; B. Aerial conidiophores and conidial mass produced on the SNA surface; C. D. Lateral phialidic pegs and conidia on SNA; E, F. Conidiophores and conidia on SNA; G. Densely blanched aerial conidiophores on SNA; H. Mature conidia and young conidia of N. dematiosa subclade A. I. Mature conidia and young conidia of N. dematiosa subclade B. J. Mature conidia and young conidia of N. dematiosa subclade C. K. Germinating mature conidia (arrows) of N. dematiosa subclade A on SNA. L. Germinating mature conidia (arrows) of N. dematiosa aubclade B on SNA. M. Germinating mature conidia (arrow) of N. dematiosa subclade C on SNA. N. Germinating mature conidia of N. dematiosa subclade A that were streaked onto SNA. O. Germinating mature conidia of N. dematiosa subclade B that were streaked onto SNA. P. Germinating mature conidia of N. dematiosa subclade C that were streaked onto SNA. Scale bars: A = 3 mm; B = 30 µm; C–P = 15 µm. cerebriform or tuberculate, scattered, solitary, or 2–3 gregarious, discoid or cylindrical-capitate, up to 200–500 μm high including stipe, 100–400 μm diam, white to whitish yellow; stipe orange, sometimes red, up to 340–530 μm wide; stipe cells almost 62 textura angularis, continuous with stroma, usually with wider cells in centre. Hymenium arising directly from textura prismatica, elongating from textura angularis, up to 40 µm long, of cells 2.0–7.0 µm wide, without curved margin. Acropleurogenous allantonectria, nectria, and Pleonectria Fig. 36A–P. Nectria himalayensis on natural substrata (A, B teleomorph and anamorph, C–I teleomorph, J–P anamorph). A, B. Perithecia (black arrows) and short stipitate sporodochium (white arrows) on natural substrata; C. Perithecia on natural substrata; D. Median section of perithecium; E. Median section of perithecial apex; F. Median section of perithecial wall; G. Asci; H. Ascospores in surface view; I. Ascospores in optical section; J. Short stipitate sporodochia on natural substrata; K. Median section of short stipitate sporodochium on natural substrata; L–N. Acropleurogenous conidiophores on natural substrata; O. Acropleurogenously developing phialides on natural substrata; P. Conidia on natural substrata. Scale bars: A–C, J = 500 µm; D–F, K = 100 µm; G = 50 µm; H, I, L–P = 20 µm. conidiophores monoverticillate or biverticillate, then developing acropleurogenously for 1–3 levels, sometimes coiled, hyaline, rarely slightly pale green. Acropleurogenously developing phialides intercalary, occurring below each septum, rarely terminal; intercalary phialides monophialidic, up to 2.5–12 µm long, 1.5–2.5 µm wide; terminal cells rarely produced, monophialidic, sometimes www.studiesinmycology.org sterile, without collarette. Conidia hyaline, narrowly long ellipsoidal to cylindrical, straight or slightly curved, non-septate, (9.4–)10.7– 12.5(–13.3) × (3.8–)4.3–5.3(–6.8) μm (n = 50), smooth-walled. Habitat: On twigs. 63 Hirooka et al. Fig. 37A–F. Nectria himalayensis on natural substrata (A–C teleomorph, D–F anamorph). A. Median section of mature perithecium; B. Ascus; C. Ascospores; D. Median section of short stipitate sporodochium; E. Conidia; F. Acropleurogenous conidiophores. Scale bars: A, D = 100 µm; B, C, E, F = 10 µm. Distribution: Asia (India, Himalayan Mountains, known only from the type collection). Notes: Nectria himalayensis had been preserved in NY as Nectria sp. Although we could not observe the anamorph in culture nor obtain molecular data, we are describing this specimen as a new species based on its sexual state morphology and unusual geographic distribution. Although morphologically similar to Nectria berberidicola collected from high elevations in France, these species differs in ascospore and conidial width in nature as well as the presence or absence of a stipe in the sporodochial anamorph (see the note under N. berberidicola). Nectria himalayensis is also morphologically similar to the Nectria cinnabarina species complex. Nectria cinnabarina has smooth ascospores and intercalary phialides up to 9 μm long, while ascospores of N. himalayensis are inely spinulose and the intercalary phialides are up to 12 μm long (Figs 36H, 37C). Nectria hoheriae Dingley, Mem. New York Bot. Gard. 49: 208. 1989. Figs 38, 39. Anamorph: Tubercularia hoheriae (J.D. Atk.) Dingley, Mem. New York Bot. Gard. 49: 208. 1989 . ≡ Myxosporium hoheriae J.D. Atk., New Zealand J. Sci. Technol. A22: 120. 1940. Teleomorph on natural substrata: Ascomata and sporodochia rarely form on same or discrete stroma. Stromata erumpent through epidermis, up to 1.0 mm high and 4.0 mm diam, red to sienna, KOH+ blood red, LA+ yellow, pseudoparenchymatous, cells forming textura angularis, intergrading with ascomatal wall. Ascomata completely immersed in stroma, aggregated in groups of 3–31, red to sienna, subglobose to globose, 324–483 μm high × 326–539 μm diam, not collapsing when dry, apical region slightly darker, KOH+ dark purple, LA+ yellow, roughened. Ascomatal 64 surface cells at edge of stroma forming textura globulosa or t. angularis, 7–13 μm diam, with pigmented, uniformly ca. 2.5 μm thickened walls. Ascomatal wall at edge of stroma 81–104 μm thick, of two regions: outer region 55–75 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, about 2.0 μm thick; inner region 14–34 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Asci clavate, 81–104 × 17–22 μm, with inconspicuous ring at apex, 8-spored, biseriate. Ascospores ellipsoidal to long oblong, straight to rarely slightly curved, (20.0–)23.9–30.3(–37.3) × (6.8–) 8.7–11.3(–12.3) μm (n = 50), (0–)1(–3)-septate, hyaline to slightly yellowish-brown, smooth to rough, inely spinulose. Anamorph on natural substrata: Stromata erumpent through epidermis, orange to red. Sporodochial conidiomata without stipe, supericial on well-developed stromata, powdery, scattered, caespitose, rarely solitary, astipitate, sessile, up to 200–640 μm high, 250–1200 μm wide, white. Hymenium arising directly from textura prismatica, elongating from textura angularis, up to 150 µm long, of cells 2.0–5.5 µm wide, not curved at margin. Conidiophores with phialides or long sterile hyphae, monochasial branching, monoverticillate or biverticilate, whorls compact or diffuse, if present, metulae 37–118 × 2.2–4.4 μm. Conidiogenous cells monophialidic, cylindrical, straight or curved in terminal whorls of 2–4, with sterile hyphae, or lateral and terminal, 14–23 × 1.9–3.6 μm, collarette not conspicuous. Sterile hyphae mixed with phialides, acicular, straight or usually curved, unbranched or dichotomously branched, septate, 193–242 × 3.1–4.3 μm, arising from hyphae often in groups of 1–3 from conidiophores together with phialides. Conidia hyaline, ellipsoidal to oblong, sometimes slightly curved, non-septate, (15.7–)18.4–22.6(–26.1) × (5.6–)7.1–8.9(–9.6) μm, (n = 50), smooth-walled. Habitat: On bark of Plagianthus regius (Malvaceae). allantonectria, nectria, and Pleonectria Fig. 38A–P. Nectria hoheriae on natural substrata (A–L teleomorph, M–P anamorph). A–C. Perithecia on natural substrata; D. Median section of perithecia; E. Median section of perithecial wall at edge of stroma; F. Median section of stroma; G Ascus; H–L. Ascospores; M. Sporodochia on natural substrata; N, O. Conidiophores, long sterile hyphae and conidia on natural substrata; P. Conidia on natural substrata. Scale bars: A = 5 mm; B, C, M = 1 mm; D–F = 100 µm; G, N = 50 µm; H–L, O, P = 10 µm. www.studiesinmycology.org 65 Hirooka et al. Fig. 39A–F. Nectria hoheriae on natural substrata (A–C teleomorph, D–F anamorph). A. Median section of mature perithecia; B. Ascus; C. Ascospores; D. Median section of Sporodochium; E. Conidia; F. Conidiophores. Scale bars: A, D = 200 µm; B¸C, E, F = 20 µm. Distribution: Oceania (New Zealand). Basionym: Stilbonectria lateritia P. Karst., Hedwigia 28: 194. 1889. Holotype of Nectria hoheriae: New Zealand, Mid Canterbury, Banks Peninsula, on bark of Plagianthus regius, 07 Apr. 1958, J.M. Dingley, Holotype PDD 21879, includes anamorph. Anamorph: synnematous, tubercularia-like. Lectotype of Myxosporium hoheriae designated herein: An illustration in the original paper of Mycosporium hoheriae, Lectotype Atkinson 1940, p 119A Fig. 3. Additional specimens and isolates examined: New Zealand, Waiheke Island, near house of Peter Johnston, on recently cut log, 08 Mar. 2009, P. Chaverri, P. Johnston, BPI 879118 = PC 982; Waiheke Island, near house of Peter Johnston, on recently cut log, 08 Mar. 2009, P. Chaverri, P. Johnston, BPI 879119 = PC 983. Notes: Morphologically N. hoheriae resemble N. eustromatica and N. magnispora in having ascomata immersed or covered by a stroma and spinulose ascospores that are greater than 25 μm long. These species differ from each other in characteristics of the ascomatal surface and size and septation of ascospores. According to Dingley (1989), Myxosporium hoheriae based on PDD 1236 is the anamorph of N. hoheriae, but the protologue of M. hoheriae (Atkinson 1940) does not mention any type specimen. Fortunately the protologue includes a beautiful illustration, which is herein designated as lectotype (Atkinson 1940, p. 119A, Fig. 3). Nectria hoheriae exhibits the diversity of sporodochial, pycnidial, and synnematous anamorphs observed in nectria-like fungi. The anamorph of N. hoheriae produces sporodochia with sterile hyphae as commonly found on synnematal anamorphs (Figs 38N, O, 39F). Moreover, N. magnispora, which is morphologically similar to N. hoheriae, forms pycnidia on SNA. Nectria lateritia (P. Karst.) Rossman, Mycol. Pap. 150: 22. 1983. Figs 40, 41. 66 = Calonectria erythrina Syd. & P. Syd., Ann. Mycol. 10: 81. 1912. ≡ Nectria erythrina (Syd. & P. Syd.) Rossman, Mycotaxon 8: 508. 1979. Teleomorph on natural substrata: Stromata erumpent through epidermis, up to 1.0 mm high and 2.0 mm diam, sienna to umber, KOH+ dark purple, LA+ yellow, pseudoparenchymatous, cells forming textura angularis, intergrading with ascomatal wall. Ascomata supericial on well-developed stromata, scattered to aggregated in groups of 4–42, subglobose to turbinate, 260–380 μm high × 275–380 μm diam, with short, pointed papilla, cupulate upon drying, sometimes with only a depressed apical region, scarlet to bay, apical region darker, KOH+ dark purple, LA+ yellow, smooth to roughened. Ascomatal surface cells forming textura globulosa or t. angularis, 3–10 μm diam, with pigmented, uniformly ca. 1.5 μm thickened walls. Ascomatal wall 40–70 μm thick, of three regions: outer region 20–35 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, about 1.5 μm thick; middle region 5–20 μm thick, cells forming textura globulosa, with brown to red-brown globules, walls amber about 0.5 μm thick; inner region 7–15 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Asci clavate, 50–75 × 8–14 μm, with inconspicuous ring at apex, 8-spored, mainly biseriate. Ascospores ellipsoidal to cylindrical, rarely slightly curved, with broadly rounded ends, (14.3–)16.2–19.0(–20.8) × (3.9–)4.6–5.8(–6.4) μm (n = 150), (1–)3-septate, hyaline, slightly striate. Anamorph on natural substrata (doubtful): Synnemata usually erumpent through epidermis, solitary, rarely gregarious, emerging from ascomatal cluster or individually, caespitose, cylindricalcapitate, subulate-capitate, or claviform, erect or nodding, unbranched, rarely branched, medium to slender stature, hispid at base to mid-level some young synnemata smooth to granular, red- allantonectria, nectria, and Pleonectria Fig. 40A–Q. Nectria lateritia on natural substrata (A–F teleomorph, G–O anamorph, P, Q packet and specimen of Calonectria erythrina K 163338). A, B. Perithecia on natural substrata; C. Median section of perithecium; D. Median section of perithecial wall; E. Ascus; F. Ascospores in surface view; G, H. Synnemata on natural substrata; I, J. Ornamental hyphae on stipe; K, L. Sterile hyphae on natural substrata; M, N. Conidiophores on natural substrata; O. Conidia on natural substrata; P, Q. Packet and specimen of Calonectria erythrina K 163338. Scale bars: A, B, G, H = 500 µm; C = 100 µm; D, K, L = 50 µm; E, I, J = 20 µm; F, M–O = 10 µm. www.studiesinmycology.org 67 Hirooka et al. Fig. 41A–F. Nectria lateritia on natural substrata (A–C teleomorph, D–F anamorph). A. Median section of mature perithecium; B. Ascus; C. Ascospores; D. Median section of synnema; E. Conidia; F. Sterile hyphae and conidiophores. Scale bars: A, D = 200 µm; B–F = 10 µm. brown at base, stalk becoming pale toward apex, turning blood-red in KOH, almost black in age, 700–1500 μm high including stipe, 150–300 μm wide at base. Hyphae on stipe externally pigmented golden brown at base, becoming less pigmented towards apex, KOH+, 5–10 μm wide; internal hyphae hyaline, KOH–, 4–7 μm wide. Ornamental hyphae on stipe cylindrical, straight or curved, sinuous or rarely twisted, arising laterally at more or less right angles, distributed evenly over surface of synnemata or concentrated near base in some collections, or near apex in others, 5–10 μm long, 1.3– 2.1 μm wide, usually unbranched but occasionally dichotomously branched, aseptate or with up to 2-septae, septa thin or up to 1 μm thick, terminal hyphae with bluntly rounded tips, 4–7 μm wide, cell walls 1.5–2 μm thick. Conidiophores with long sterile hyphae, branching monoverticillate or biverticillate, whorls compact or diffuse, if present, metulae 37–59 × 2.0–3.5 μm. Conidiogenous cells enteroblastic, monophialidic, cylindrical to subulate, straight or curved, 10–25 × 1.3–2.1 μm, collarette not conspicuous. Sterile hyphae mixed with phialides, acicular, straight or usually curved, unbranched or dichotomously branched, septate, 77–163 × 1.5 –3.5 μm, arising from hyphae in whorls, or more often in groups of conidiophores together with phialides. Conidial mass globose, hemisphaerical, or more or less discoid, white to saffron when fresh, drying reddish black, 250–500 μm diam. Conidia hyaline, ellipsoidal, obovate or oblong-ellipsoidal, sometimes slightly curved, non-septate, (3.9–)4.6–5.8(–7.1) × (2.1–)2.4–3.2(–3.7) μm (n = 85), smooth-walled. Habitat: On bark and dead wood of dicotyledonous trees including Manihot utilissima (Euphorbiaceae). 68 Distribution: Asia (China, Malaysia), South America (Brazil, Venezuela). Holotype of Stilbonectria lateritia: Brazil, Minas, Lafayette, on bark of frondose trees, E. Wainio, No. 1952, Holotype H 7003454. Additional type specimens examined: Type of Calonectria erythrina: Malaysia (SüdÖst Borneo), Hayoep, Urwald, on dead and dead wood, 8 Jun. 1908, H. Winkler 2338, Lectotype designated by Rossman (1983) GZU, Isolectotypes K 163338, FH. Additional specimens and isolates examined: China, Yen-Hsien, Hainan, on bark, 16 Jun. 1934, S.Q. Deng, BPI 552479. Venezuela, Amazonas, Dpto. Rio Negro, Cerro de la Neblina, along Rio Mawarinuma, just outside Cañon Grande, vic. Neblina base camp, 00 °50’N, 66 °10’W, elev. ca. 140 m, on bark of recently dead tree, May 1984, G.J. Samuels, NY, culture G.J.S. 84-423 now contaminated. Notes: Nectria lateritia was described and illustrated by Rossman (1983) and Samuels & Brayford (1994). This species is similar to Nectria pseudocinnabarina and N. pseudotrichia in structure of ascomatal wall, synnematous anamorph, and occurrence in tropical and sub-tropical regions. However, N. lateritia clearly differs from these species in having 3-septate, striate ascospores (Figs 40F, 41C). According to previous papers (Samuels & Brayford 1994, Rossman et al. 1999), the anamorph of N. lateritia was listed as T. cf. lateritia. Seifert (1985) carefully observed and discussed the anamorphs of N. lateritia and N. pseudotrichia. He found a few depauperate synnemata on specimens of N. lateritia, but could not distinguish them morphologically from T. lateritia, the anamorph of N. pseudotrichia. He concluded that the concept of T. lateritia included both the anamorph of N. pseudotrichia and N. lateritia. allantonectria, nectria, and Pleonectria Another possible explanation for the presumed similarity of the anamorph of N. lateritia to that of N. pseudotrichia is that the anamorph of N. pseudotrichia was mistaken for that of N. lateritia. In the isolectotype of Calonectria erythrina at K, both N.lateritia and N. pseudotrichia with its anamorph were present. Portions of this specimen included ascomata of N. lateritia without synnemata while other portions contained N. pseudotrichia with the synnemata of T. lateritia (Fig. 40P, Q). Seifert (1985) mentioned that according to G.J. Samuels (pers. comm.) these species are culturally distinct. Unfortunately, the culture of N. lateritia (G.J.S. 84-423) is no longer available. Etymology: magni + -spora; indicates the large size of the ascospores. reverse whitish yellow to yellow in centre and white at margin. Odour on PDA slightly putrid. On SNA, conidiophores of two types: short conidiophores producing microconidia, usually unbranched or loosely branched, generally with 1(–3)-branched, 27–86 μm long, 2.5–3.8 μm wide; conidiogenous cells long-cylindrical, straight to slightly curved, enteroblastic, monophialidic, 13–26 × 1.3–3.0 μm; microconidia hyaline, ellipsoidal to long fusiform, slightly curved, non-septate, 5.0–9.0(–13.3) × (1.6–)2.0–2.6(–3.1) μm (n = 50). Long conidiophores producing macroconidia, monochasial branching, unbranched or loosely branched, generally with 1–2-branched, 65– 157 μm long, 1.9–3.7 μm wide; conidiogenous cells long-cylindrical, straight to slightly curved, enteroblastic, monophialidic, 20–42 × 2.2–4.0 μm; macroconidia hyaline, ellipsoidal to long fusiform, curved, non-septate, thickened wall cells, (11.5–)14.1–23.1(–27.6) × (4.2–)4.9–7.7(–9.8) μm (n = 50). Chlamydospores or swollen hyphae present. Chlamydospores intercalary in hyphae or rarely terminal, golobose to subglobose, sometimes ellipsoidal, smooth, hyaline, 15–20 µm. Swollen hyphae abundantly formed, intercalary in nomal hyphae, smooth, hyaline, producing 2–8 cells, 37–140 μm long, 5–12 μm wide. Immature pycnidia formed on SNA and PDA (MAFF 241418). Anamorph: pycnidial in the natural environment. Habitat: On dead woody substrata. Teleomorph on natural substrata: Mycelium not visible around ascomata or on host. Stromata erumpent through epidermis, up to 2.5 mm high and 3.0 mm diam, red to sienna, KOH+ blood red, LA+ yellow, pseudoparenchymatous, cells forming textura angularis, intergrading with ascomatal wall. Ascomata nearly or completely immersed in stroma, aggregated in groups of 2–5, red, subglobose to globose, 410–700 μm high × 230–1350 μm diam, not collapsing when dry, apical region darker, KOH+ dark purple, LA+ yellow, smooth wall. Ascomatal surface cells at edge of stroma forming textura globulosa or t. angularis, 6–15 μm diam, with pigmented, uniformly ca. 2.5 μm thickened walls. Ascomatal wall at edge of stroma 78–130 μm thick, of two regions: outer region 71–117.5 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, about 2.5 μm thick; inner region 17–27 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Asci clavate, 98–137 × 15–20 μm, with inconspicuous ring at apex, 8-spored, biseriate. Ascospores ellipsoidal to long oblong, straight to rarely slightly curved, 0-septate, (20.4–)25.8– 32.0(–35.3) × (7.9–)9.5–13.3(–14.7) μm (n = 30), 1-septate, (22.3–) 26.9–35.1(–40.2) × (8.2–)10.8–14.6(–15.2) μm (n = 30), 2-septate, (28.0–)33.8–38.1(–42.5) × (10.4–)12.5–14.6(–15.4) μm (n = 30), (0–)1(–2)-septate, hyaline to slightly yellowish-brown, smooth to roughened, inely spinulose. Distribution: Asia (Japan). Nectria magnispora Hirooka, Rossman & P. Chaverri, sp. nov. MycoBank MB519701. Figs 42–44. Holotype: Japan, Kanagawa Prefecture, Odawara-shi, Iryuda, on bark of fallen twigs, 12 Jul. 2003, Y. Hirooka, Holotype BPI 881044, ex-holotype culture MAFF 241418 = TPP-h142. Anamorph on natural substrata: Stromata developing in stroma with ascomata, orange to umber. Pycnidia globose, immersed, eustromatic, smooth, 360–460 µm diam, wall 20–36 µm thick, angular cells ca. 10 µm diam. Conidiogenous cells enteroblastic, monophialidic, oblong phialides 3–7 μm long, 1–1.5 μm wide at base, with an indistinct collarette. Conidia similar to ascoconidia, subglobose to ellipsoidal, 0-septate, (2.3–)2.5–3.5(–4.1) × (1.2–) 1.6–2.7(–4.0) μm (n = 30), hyaline. Sporodochia not observed. Anamorph in culture: After 7 d at 25 °C, colonies 25–32 mm (average 28 mm) diam. Colony surface cottony with aerial mycelium salmon to lesh; aerial mycelium restricted to centre, often small yellow sporodochial conidial masses produced after one wk; www.studiesinmycology.org Additional specimens and isolates examined: Japan, Kanagawa Prefecture, Odawara–shi, Iryuda, on bark of fallen twigs, 12 Jul. 2003, Y. Hirooka, TUA TPP-h141, culture TPP-h141 = CBS 129361; Tokyo, Meguro–ku, on bark of fallen twigs, 10 May 2003, Y. Hirooka, TUA TPP-h122, culture TPP-h122 = CBS CBS 129362. Notes: Nectria magnispora has been collected only in the temperate regions of Japan. Within the genus Nectria, N. magnispora is similar to N. eustromatica, N. hoheriae, and N. mariae in having roughened ascospores (Figs 42H, I, 43C). However, the ascomata of N. magnispora are smooth while those of N. eustromatica, N. hoheriae, and N. mariae are slightly roughened to warty (Figs 42A–F, 43A). The immersed pycnidial anamorph of N. magnispora is dificult to locate on specimens from the natural environment. These were observed only one time in sections of the sexual state (Figs 42K, 43D). The ex-holotype culture, MAFF 241418, produced supericial pycnidia on SNA and PDA (Fig. 44P). Nectria mariae Hirooka, Fournier, Lechat, Rossman & P. Chaverri, sp. nov. MycoBank MB519702. Figs 45–47. Holotype: France, Ariège, Seix, state forest, Bois de Mirabat, chemin de Mounétou (760 m) to the ruined castel of Mirabat, (1270 m), on dead bark of Buxus sempervirens, 16 Nov. 2005, M. Caster, Holotype BPI 881045 = C.L.L.7124 = C.L.L. 7187, ex-holotype culture CBS 125294 = A.R. 4274. Etymology: mari + -ae; the irst name of the collector Marie Casters. Anamorph: unknown in the natural environment. Teleomorph on natural substrata: Mycelium not visible around ascomata or on host. Stromata erumpent through epidermis, up to 2.5 mm high and 2.5 mm diam, red to umber, KOH+ blood red, LA+ yellow, pseudoparenchymatous, cells forming textura 69 Hirooka et al. Fig. 42A–M. Nectria magnispora on natural substrata (A–J teleomorph, K–M anamorph). A–C. Perithecia on natural substrata; D. Median section of perithecium; E. Median section of perithecial apex; F. Median section of perithecial wall; G. Ascus; H–J. Ascospores; K. Median section of pycnidium on natural substrata; L. Conidiophores on natural substrata; M. Conidia on natural substrata. Scale bars: A = 5 mm; B, C = 1 mm; D–F, K = 100 µm; G–J = 30 µm; L, M = 10 µm. 70 allantonectria, nectria, and Pleonectria Fig. 43A–E. Nectria magnispora on natural substrata (A–C teleomorph, D, E anamorph). A. Median section of mature perithecia; B. Ascus; C. Ascospores; D. Median section of pycnidium; E. Conidia. Scale bars: A, D = 200 µm; B, C, E = 20 µm; , F = 10 µm. angularis, intergrading with ascomatal wall. Ascomata nearly or occasionally completely immersed in stroma, aggregated in groups of 2–18, red to sienna, subglobose to globose, 323–491 μm high × 326–462 μm diam, not collapsing when dry, apical region darker, KOH+ dark purple, LA+ yellow, surface with concolourous warts up to 70 μm high. Ascomatal surface cells at edge of stroma forming textura globulosa or t. angularis, 6–14 μm diam, with pigmented, uniformly ca. 2.0 μm thickened walls. Ascomatal wall at edge of stroma 51–85 μm thick, of two regions: outer region 41–71 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, about 2.0 μm thick; inner region 13–21 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Asci narrowly clavate to clavate, 114–145 × 18–23 μm, with inconspicuous ring at apex, 8-spored, biseriate. Ascospores ellipsoidal to fusiform with rounded ends, straight to rarely slightly curved, (0–)1 septate, (18.4–)20.8–30.6(–37.4) × (7.6–)8.1–11.7(– 13.6) μm (n = 50), hyaline, smooth to roughened, inely spinulose. Anamorph in culture: After 7 d at 25 °C, colonies 7–10 mm (average 8 mm) diam. Colony surface cottony with aerial mycelium saffron to whitish yellow; aerial mycelium restricted to centre, small whitish yellow sporodochial conidial masses produced after 1 wk; reverse saffron to whitish yellow in centre and white at margin. Odour on PDA absent. On SNA, conidiophores of two types: short conidiophores producing microconidia, 1–2-branched, becoming loosely to moderately densely branched, generally with 1–4 branches, 23–71 μm long, 1.5–4.0 μm wide; conidiogenous cells long-cylindrical, www.studiesinmycology.org straight to slightly curved, enteroblastic, monophialidic, 9.8–26 × 1.1–2.8 μm; microconidia hyaline, ellipsoidal, oblong to long fusiform, rarely slightly curved, non-septate, (5.7–)7.7–10.3(–12.4) × (2.4–)3.3–4.5(–5.4) μm (n = 50); long conidiophores producing macroconidia, monochasial branching, unbranched or loosely branched, generally 1(–2)-branched, 36–98 μm long, 2.5–4.1 μm wide; conidiogenous cells long-cylindrical, straight to slightly curved, enteroblastic, monophialidic, 17–40 × 2.2–3.8 μm; macroconidia hyaline, subglobose to ellipsoidal, non-septate, thickened wall cells, (14.7–)16.3–20.3(–22.3) × (8.5–)9.4–11.4(–13.5) μm (n = 50). Chlamydospores or swollen hyphae rarely present. Chlamydospores intercalary in hyphae or rarely terminal, globose to subglobose, sometimes ellipsoidal, smooth, hyaline, 12–18 µm. Swollen hyphae rarely formed, intercalary in nomal hyphae, smooth, hyaline, producing 2–4 cells, 26–79 μm long, 5–6 μm wide. Habitat: On recently dead standing branches or trunks of Buxus sempervirens (Buxaceae). Distribution: Europe (France, Spain). Additional specimens examined: Spain, Huesca, Fuente del Paco, ca. 1400 m, on dead twigs of Buxus sempervirens in an Abies forest, 10 Oct. 2010, J. Fournier JF 10149, LIP. Notes: Nectria mariae is almost identical with N. eustromatica described by Jaklitsch & Voglmayr (2011) both having immersed ascomata in stromata, warted ascomatal walls, and spinulose 71 Hirooka et al. Fig. 44A–P. Anamorph of Nectria magnispora in culture. A. Cultures after 7 d at 25 °C on PDA; B, C. Abundant conidial mass on SNA; D–G. Short conidiophores producing microconidia on SNA; H. Microconidia on SNA; I–L. Long conidiophores producing macroconidia on SNA; M. Macroconidia on SNA; N. Chlamydospores on SNA; O. Swollen hyphae on SNA; P. Pycnidium on SNA. Scale bars: A = 3 mm; B, C, P = 100 µm; D–O = 20 µm. 72 allantonectria, nectria, and Pleonectria Fig. 45A–I. Nectria mariae on natural substrata (teleomorph). A, B. Perithecia on natural substrata; C. Section of fresh mature perithecia on natural substrata; D, E. Median section of perithecia; F. Median section of perithecial wall; G. Ascus; H. Ascospores; I. Ascospore in surface view. Scale bars: A–C = 1 mm; D–F = 100 µm; G, H = 30 µm; I = 10 µm. Fig. 46A–C. Nectria mariae on natural substrata (A–C teleomorph). A. Median section of mature perithecia; B. Ascus; C. Ascospores. Scale bars: A = 200 µm; B, C = 20 µm. www.studiesinmycology.org 73 Hirooka et al. Fig. 47A–N. Anamorph of Nectria mariae in culture. A. Cultures after 7 d at 25 °C on PDA; B, C. Conidial mass on SNA; D. Short conidiogenous cell producing microconidia on SNA; E–G. Short conidiophores producing microconidia on SNA; H. Long conidiogenous cell producing macroconidia on SNA; I–L. Long conidiophores producing macroconidia on SNA; M. Microconidia on SNA; N. Microconidia and macroconidia on SNA. Scale bars: A = 3 mm; B, C = 100 µm; D–N = 30 µm. 74 allantonectria, nectria, and Pleonectria ascospores, producing micro- and macroconidia in culture, and known only in Europe. However, N. mariae has red ascomata while those of N. eustromatica are dark red. In addition, N. mariae has smaller ascospores and macroconidia when compared with those of N. eustromatica having ascospores 24–43 × 8–15 μm and macroconidia 20–54 × 8.7–14.8 μm on MEA and OA (Jaklitsch & Voglmayr 2011). Closely related to N. mariae, Nectria magnispora produces a pycnidial anamorph in the natural environment and culture. Although we carefully observed the specimen and culture of N. mariae, no pynicida were found. Nectria neorehmiana Rossman, Mycol. Pap. 150: 23. 1983. Figs 48, 49. Anamorph: synnematous, tubercularia-like. Teleomorph on natural substrata: Mycelium not visible around ascomata or on host. Stromata erumpent through epidermis, up to 1.0 mm high and 2.0 mm diam, dark scarlet, KOH+ blood colour, LA+ yellow, pseudoparenchymatous, cells forming textura angularis, intergrading with ascomatal wall. Ascomata supericial on well-developed stromata, aggregated in groups of 5–20, subglobose to globose, 250–320 μm high × 220–290 μm diam, scarlet to dark scarlet, collapsing laterally when dry, apical region darker, KOH+ blood colour, LA+ yellow, papilla pointed, 20–40 μm high, surface with large, concolourous warts up to 30–50 μm high. Ascomatal surface cells forming textura globulosa or t. angularis, 6–10 μm diam, with pigmented, uniformly ca. 1.5 μm thickened walls. Ascomatal wall 35–45 μm thick, of two regions: outer region 20–35 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, about 1.5 μm thick; inner region 10–20 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Asci clavate, 70–140 × 17–25 μm, with inconspicuous ring at apex, 8-spored, ascospores biseriate above, uniseriate below. Ascospores fusiform with narrowly rounded ends, straight to slightly curved, (30.2–)31.5–36.7(–39.1) × (6.0–)6.8– 8.4(–9.3) μm (n = 30), (1–)3-septate, hyaline, smooth. Holotype of Nectria neorehmiana designated by Rossman (1983): Ecuador, Prov. Tungurahua, Hacienda San Antonio, Los Banos, on rotting branches, Jan. 1938, H. Sydow, Holotype BPI 552615, Isotype designated by Rossman (1983), NY, M. Notes: Nectria neorehmiana was described and illustrated by Rossman (1983) without its anamorph. In our reexamination, we discovered the anamorph on the holotype specimen. The unusual synnematous tubercularia-like anamorph includes a salmon to lesh stalk and red to scarlet conidial masses (Fig. 48F). The formation of warted ascomata, collapsing laterally when dry, and 3-septate ascospores of this species are characteristic of the genus Albonectria, Nectriaceae, especially A. albosuccinea and A. rigidiuscula (Figs 48A–C, E, 49A, C). However, it differs from Albonectria by the scarlet to dark scarlet ascomata and its tubercularia-like anamorph. Nectria neorehmiana is readily distinguished from all other species of Nectria by the scarlet to dark scarlet, warted ascomata. We did not observe the sterile hyphae that are consistently present in the synnematal tubercularia-like anamorphic states of other species of Nectria; only one synnemata of N. neorehmiana was observed microscopically of the three or four synnemata on the type specimen (Fig. 48G, H). Nectria nigrescens Cooke, Grevillea 7: 50. 1878. Figs 50– 52. = Nectria cinnabarina forma dendroidea Fuckel, Fungi rhenani 2657. 1874. ≡ Nectria cinnabarina var. dendroidea (Fuckel) Wollenw., Angew. Bot. 8: 186. 1926. = Nectria cinnabarina var. minor Wollenw., Angew. Bot. 8: 185. 1926. = Nectria meliae Earle, Bull. Torrey Bot. Club 25: 364. 1898. = Nectria fuscopurpurea Wakef., Kew Bull., p. 232. 1918. Anamorph: Tubercularia ulmea J.C. Carter, Phytopathology 37: 246. 1947. Habitat: On bark. Teleomorph on natural substrata: Mycelium rarely visible around ascomata and on host. Stromata up to 2.0 mm high and 4 mm diam, erumpent through epidermis, whitish yellow to bay, sometimes darker red, KOH+ dark red, LA+ yellow, pseudoparenchymatous, cells forming textura angularis to t. prismatica with cells oriented more or less vertically; cells 4–17 μm diam, with 1–1.5 μm thick walls, intergrading with ascomatal wall. Ascomata supericial on well-developed stromata, solitary or caespitose, up to 20 on an erumpent stroma, rarely clustered around base of stipitate sporodochia, subglobose to globose, 265–420 μm high × 236– 410 μm diam (n = 38), red to reddish brown, sometimes cupulate upon drying, non-papillate, apical region darker, KOH+ dark red, LA+ yellow, surface roughened or with concolourous warts, but sometimes smooth. Ascomatal surface cells forming textura globulosa or t. angularis, with walls pigmented, ca. 1.5 μm thick. Ascomatal wall ca. 40–65 μm thick, of two regions: outer region about 25–45 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, ca. 1.5 μm thick; inner region ca. 7–18 μm thick, of elongated, thin-walled, hyaline cells, forming textura prismatica. Asci unitunicate, (62–) 70–98(–113) × (6.5–)7.5–10.0(–11.5) μm (n = 63), cylindrical to narrowly clavate, with an inconspicuous ring at apex, 8-spored, ascospores biseriate above, uniseriate below. Ascospores ellipsoidal to fusiform, straight, sometimes slightly curved, hyaline, (0–)1(–3)-septate, (10.5–)13.5–18.0(–22.0) × (2.5–)3.5–5.5(–8.0) μm (n = 320), smooth-walled. Distribution: South America (Ecuador, known only from the type collection). Anamorph on natural substrata: Stromata erumpent through epidermis, pale yellow to orange, rarely reddish brown. Anamorph on natural substrata: Synnemata usually erumpent through epidermis, solitary, rarely gregarious, emerging from ascomatal cluster or independently, caespitose, cylindrical-capitate, subulatecapitate, or claviform, erect or nodding, unbranched, medium to slender stature, hispid at base to mid region, some young synnemata smooth to granular, salmon to lesh at base, stalk becoming paler toward apex, KOH–, 1000–1500 μm high including stipe, 200– 300 μm wide at base. Hyphae on stipe external hyphae slightly pigmented whitish salmon at base, becoming less pigmentied toward apex, KOH–, 4–9 μm wide; internal hyphae hyaline, KOH–, 4–6 μm wide. Conidiophores with phialides, branching monoverticillate or biverticillate, whorls compact or diffuse. Conidiogenous cells enteroblastic, monophialidic, cylindrical to subulate, straight or curved in terminal whorls of 3 together, or lateral, 6–27 × 1.5–2.5 μm, collarette not conspicuous. Sterile hyphae absent. Conidial masses globose, hemisphaerical, or more or less discoid, white to saffron when fresh, drying red to scarlet, 300–500 μm diam. Conidia hyaline, ellipsoidal, sometimes slightly curved, non-septate, (5.0–)5.6–7.0(– 8.4) × (2.3–)2.7–3.5(–3.8) μm (n = 50), smooth-walled. www.studiesinmycology.org 75 Hirooka et al. Fig. 48A–M. Nectria neorehmiana on natural substrata (A–E teleomorph, F teleomorph and anamorph. G–M. anamorph). A. Perithecia on natural substrata; B. Median section of perithecium; C. Median section of perithecial wall; D. Asci; E. Ascospores; F. Perithecium (black arrow) and synnemata (white arrows) on natural substrata; G. Synnema on natural substrata; H. Surface of stalk; I–L. Conidiophores on natural substrata; M. Conidia on natural substrata. Scale bars: A, F, G = 500 µm; B–D, H = 50 µm; E, I–L = 20 µm; M = 10 µm. 76 allantonectria, nectria, and Pleonectria Fig. 49A–F. Nectria neorehmiana on natural substrata (A–C teleomorph, D–F anamorph). A. Median section of mature perithecium; B. Ascus; C. Ascospores; D. Median section of synnema; E. Conidia; F. Conidiophores. Scale bars: A, D = 100 µm; B, C, E, F = 20 µm. Sporodochial conidiomata with stipe, supericial on well-developed stromata, smooth, cerebriform or tuberculate, scattered, solitary, or 2–4 gregarious, stipitate, pustulate, discoid or cylindrical-capitate, up to 250–1700 μm high, 300–1700 μm wide, white, whitish yellow to orange, sometimes brown, red or dark red; stipe white to whitish red, rarely dark red, up to 340–640 μm wide; stipe cells almost textura angularis, continuous with stroma, usually with wider cells in centre. Hymenium arising directly from textura prismatica elongating from textura angularis, up to 120 µm long, of cells 2.5– 6.0 µm wide, curved margin, up to 150 µm long, of parallel hyphae, 1.5–2.5 µm wide. Acropleurogenous conidiophores monoverticillate or rarely biverticillate, then developing acropleurogenously for 3–7 levels, straight, curved to coiled. Acropleurogenously developing phialides intercalary, occurring below each septum, rarely terminal; intercalary phialides monophialidic, 3.0–5.0 µm long, 1.0–2.0 µm wide; terminal cells monophialidic, sometimes sterile, without collarette. Conidia hyaline, narrowly long ellipsoidal to cylindrical, straight or slightly curved, (4.7–)5.5–6.9(–8.4) × (1.6–)2.1–2.7(– 3.0) μm (n = 343), non-septate. Anamorph in culture: Optimum temperature for growth on PDA 25 °C, maximum temperature 35 °C, after 7 d colonies 70–85 mm (average 80 mm) diam. Colony surface on PDA, radial, sometimes wavy, slightly cottony with aerial mycelium, white to whitish saffron; aerial mycelium developing only in CBS 125148, white to whitish yellow, sporodochial conidial masses produced after 2 wk; reverse white to slightly whitish yellow. Odour on PDA slightly fruity. Sporulation on SNA from lateral phialidic pegs on submerged or aerial hyphae common, enteroblastic, monophialidic, ellipsoidal tapering toward tip, 2.4–5.3 μm long, 1–1.9 μm wide near aperture. Aerial conidiophores abundantly developed on aerial hyphae, www.studiesinmycology.org unbranched, sometimes verticillate, 1–2-branched, becoming loosely to moderately densely branched, 5.5–21.5 μm long, 2.0–3.0 μm wide at base. Conidiogenous cells monophialidic, cylindrical, slightly tapering toward tip or narrowly lask-shaped with widest point in middle, 9.5–17.0 μm long, 1.5–2.0 μm wide at base. Young conidia formed on monophialides on submerged or aerial hyphae, forming abundantly on slimy heads, non-septate, ellipsoidal, oblong to cylindrical, hyaline, smooth, straight or slightly curved with rounded ends, (3.0–)4.0–7.0(–14.5) × (1.5–)2.0–2.5(–3.5) μm (n = 250). Mature conidia swollen, mostly 0-, rarely 1-septate, ellipsoidal, oblong or allantoid, rarely ellipsoidal with slightly constricted centre, hyaline, smooth, straight or slightly curved and rounded at both ends, germinating or budding secondary conidia, (5.0–)7.6–14.6(– 24.3) × (2.3–)3.5–4.9(–6.6) μm (n = 180). Chlamydospores rare, globose, subglobose, broadly ellipsoidal, 0(–1)-septate, solitary or chains, 8.0–13.0 μm wide. Ascomata not produced in culture. Habitat: On dead woody substrata including Acer sp., Betula lutea, Celtis occidentalis, Elaeagnus angustifolia, Fagus sylvatica, Gleditsia triacanthos var. inermis, Tilia sp., Ulmus pumila. Distribution: Europe (France, Germany, UK), North America (Canada, USA). Holotype of Nectria nigrescens: USA, South Carolina, on Gleditsia sp., S.C. Aiken, Holotype K 165219, Ravenel, American Fungi 2380a. Epitype of Nectria nigrescens designated by Hirooka et al. (2011): USA, North Carolina, Haywood Co., Great Smoky Mountains National Park, Purchase Knob, Cataloochees Divide Trail, alt. 5000 77 Hirooka et al. Fig. 50A–T. Nectria nigrescens on natural substrata (A teleomorph and anamorph, B–F teleomorph, G–T anamorph). A. Perithecia (black arrows) and astipitate sporodochia (white arrows) on natural substrata; B. Perithecia on natural substrata; C. Median section of perithecia; D. Median section of perithecial wall; E. Ascus; F. Ascospores; G–K. Long and short stipitate sporodochia; L. Median section of long stipitate sporodochium; M. Edge of long stipitate sporodochium; N. Median section of short stipitate sporodochium; O. Edge of short stipitate sporodochium; P–S. Acropleurogenous conidiophores and acropleurogenously developing phialides on natural substrata; T. Conidia on natural substrata. Scale bars: A, G–I = 1 mm; B, J–O = 500 µm; C = 100 µm; D, E, P = 50 µm; F, T = 10 µm; Q–S = 20 µm. 78 allantonectria, nectria, and Pleonectria Fig. 51A–F. Nectria nigrescens on natural substrata (A–C teleomorph, D–F anamorph). A. Median section of mature perithecium; B. Ascus; C. Ascospores; D. Median section of short and long stipitate sporodochia; E. Conidia; F. Acropleurogenous conidiophores. Scale bars: A, D = 100 µm; B, C, E, F = 10 µm. ft, 35 °35’9.9’’N 83 °4’25.5’’W, on dead twig of dictyledonous tree, 7 Sep. 2005, A.Y. Rossman, Epitype BPI 871083, ex-epitype culture CBS 125148 = A.R. 4211. Holotype of Tubercularia ulmea: USA, Illinois, Iroquois County, Onarga, on Ulmus pumila L., 16 Aug. 1939, J.C. Carter, Holotype ILLS 29559. Additional type specimens examined: Type of Nectria cinnabarina f. dendroidea: Germany, Fungi Rehnani 2657, FH. Type of Nectria fuscopurpurea: UK, Wisbech, on dead branch of Prunus domestica L., 1917, J.C.F. Fryer or A.D. Cotton, Holotype K 98615. Type of Nectria meliae: USA, Alabama, on Melia sp., 1 Dec. 1896, C.F. Baker, Neotype designated in Hirooka et al. (2011), BPI 552588. For additional specimens and isolates examined, see Hirooka et al. (2011). USA, Illinois, Cache River State Natural Area (Smith Foray), on dead twigs, Sep. 2009, D. Minnis, BPI 881081; North Dakota, North Dakota State University, on Ulmus pumila (only anamorph), culture CBS 129808 = A.R. 4266 = R 1550; North Dakota, North Dakota State University, on Gleditsia triacanthos var. inermis, only anamorph, culture A.R. 4267 = R 1551; North Dakota, Sweet Briar Lake, on Elaeagnus angustifolia, only anamorph, culture A.R. 4268 = R 1552; North Dakota, Bismarck, Kirkwood Mall, on Gleditsia triacanthos var. inermis only anamorph, culture CBS 128982 = A.R. 4269 = R 1553; North Dakota, Bismarck, River Road, on Elaeagnus angustifolia, only anamorph, culture CBS 128983 = A.R. 4270 = R 1555; North Dakota, Bismarck, River Road, on Elaeagnus angustifolia, only anamorph, culture CBS 128988 = A.R. 4271 = R 1556; North Dakota, North Dakota State University, on Ulmus pumila, only anamorph, culture CBS 128987 = A.R. 4272 = R 1557; North Dakota, North Dakota State University, on Gleditsia triacanthos var. inermis, only anamorph, culture A.R. 4273 = R 1558; North Dakota, Cass Co., Fargo, on Tilia sp., 22 Apr. 2006, Hansen, only anamorph, BPI 878879; culture CBS 128984 = A.R. 4306. www.studiesinmycology.org Notes: Nectria nigrescens was recently redescribed by Hirooka et al. (2011). Here the anamorph of N. nigrescens is newly determined as Tubercularia ulmea based on morphological and phylogenetic evidence (Figs 1, 3). Tubercularia ulmea was described by Carter (1947) as a pathogen causing stem canker disease of Siberian elm (Ulmus pumila); the dark-coloured sporodochia were considered a critical morphological characteristic of T. ulmea. Hirooka et al. (2011) discovered that Nectria asiatica and N. nigrescens also have dark-coloured sporodochia. Based on other morphological characteristics in the natural environment as well as in culture, the anamorph of N. nigrescens is considered the same as T. ulmea as conirmed by molecular data. Nectria noackiana Syd. & P. Syd., Ann. Mycol. 5: 358. 1907. Figs 53, 54. Anamorph: synnematous, tubercularia-like. Teleomorph on natural substrata: Stromata erumpent through epidermis, up to 1.0 mm high and 2.5 mm diam, dark scarlet, KOH+ blood colour, LA+ yellow, pseudoparenchymatous, cells forming textura angularis, intergrading with ascomatal wall. Ascomata supericial on well-developed stromata, aggregated in groups of 5–20, subglobose to globose, 250–350 μm high × 250–390 μm diam, scarlet to sienna, cupulate upon drying, apical region slightly darker, KOH+ dark red, LA+ yellow, smooth to rough. Ascomatal surface cells forming textura globulosa or t. angularis, 6–19 μm diam, with pigmented, uniformly ca. 79 Hirooka et al. Fig. 52A–Q. Anamorph of Nectria nigrescens in culture. A. Cultures after 7 d at 25 °C on PDA; B. Aerial conidiophores and conidial mass produced on the SNA surface; C–F. Lateral phialidic pegs and conidia on SNA; G–I. Conidiophores and conidia on SNA; J. Young conidia on SNA; K. Young and mature conidiaon SNA; L, M. Budding mature conidia on SNA; N–Q. Germinating mature conidia that were streaked onto SNA. Scale bars: A = 3 mm; B = 500 µm; C, D, N = 30 µm; E–M, O–Q = 10 µm. 80 allantonectria, nectria, and Pleonectria Fig. 53A–O. Nectria noackiana on natural substrata (A, B teleomorph and anamorph. C–G teleomorph, H–O anamorph). A, B. Perithecia (black arrows) and synnemata (white arrows) on natural substrata; C. Perithecia on natural substrata; D. Median section of perithecia; E. Median section of perithecial wall; F. Ascus; G. Ascospores; H. Synnema on natural substrata; I. Surface of stalk; J–L. Sterile hyphae and conidiophores on natural substrata; M. Conidiophores on natural substrata; N. Conidiogenous cells on natural substrata; O. Conidia on natural substrata. Scale bars: A–C, H = 500 µm; D = 100 µm; E, F, I–L = 50 µm; G, M = 20 µm; N, O. = 10 µm. www.studiesinmycology.org 81 Hirooka et al. Fig. 54A–F. Nectria noackiana on natural substrata (A–C teleomorph, D–F anamorph). A. Median section of mature perithecium; B. Ascus; C. Ascospores; D. Median section of synnema; E. Conidia; F. Sterile hyphae and conidiophores. Scale bars: A, D = 200 µm; B, C, E, F = 20 µm. 1.5 μm thickened walls. Ascomatal wall 40–60 μm thick, of two regions: outer region 20–45 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, about 1.5 μm thick; inner region 10–20 μm thick, of elongated, thin-walled, hyaline cells, forming textura prismatica. Asci clavate, 70–105 × 13–20 μm, with inconspicuous ring at apex, 8-spored, ascospores biseriate above, uniseriate below. Ascospores ellipsoidal to fusiform, straight to rarely, slightly curved, (18.5–)20.0–25.4(–30.0) × (7.0–)8.0–9.0(–11.0) μm (n = 210), 1-septate, hyaline, spinulose. Anamorph on natural substrata: Synnemata usually erumpent through epidermis, solitary, rarely gregarious, emerging from ascomatal cluster or individually, caespitose, cylindrical-capitate, subulate-capitate, or claviform, not erect or nodding, unbranched, rarely branched, medium to slender stature, smooth, dark red at base, stalk becoming pale toward apex, turning dark purple in KOH, fading upward to almost black in age, 600–1500 μm high including stipe, 100–250 μm wide at base. Hyphae on stipe external hyphae pigmented golden brown at base and becoming paler towards apex, KOH+, 5–9 μm wide; internal hyphae hyaline, KOH–, 5–8 μm wide. Ornamental hyphae on stipe absent. Conidiophores with long sterile hyphae, branching monoverticillate or biverticillate, whorls compact or diffuse, if present, metulae 10–45 × 2–4 μm. Conidiogenous cells enteroblastic, monophialidic, cylindrical to subulate, straight or curved, 10–35 × 2–4 μm, collarette not conspicuous. Sterile hyphae mixed with phialides, acicular, straight or usually curved, unbranched or dichotomously branched, septate, 100–150 × 3.5–5 μm, arising from hyphae in whorls, or more often in groups of conidiophores together with phialides. Conidial masses subglobose, hemisphaerical or more or less discoid, blood colour, 200–400 μm diam. Conidia hyaline, ellipsoidal to fusiform tapering 82 to both ends, sometimes striate, non-septate, (12.3–)13.6–16.8(– 18.7) × (5.8–)6.5–7.9(–8.3) μm (n = 60), smooth-walled. Habitat: On bark of unknown liana. Distribution: South America (Brazil, known only from the type collection). Lectotype of Nectria noackiana designated herein: Brazil, Araraquara, Prov. São Paulo, “auf Lianenrinde”, Aug. 1898, F. Noack, Lectotype Rehm, Ascomycetes, No. 1744, BPI-bound exsiccati, Isolectotypes BPI 552617, S F 46420, S F 46421, S F 10233, S F 46422. Notes: Based on the spinulose ascospores and Tubercularia anamorph, Nectria noackiana is morphologically similar to N. australiensis. However, N. noackiana has larger ascospores, 18.5–30.0 × 7.0–11.0 μm, while those of N. australiensis are 11.0–16.3 × 4.5–8.0 μm. In addition conidia of N. noackiana in the natural environment are 12.3–18.7 × 5.8–8.3 μm while those of N. australiensis are 4.5–8 × 1.5–2.5 μm. Other differences include the smooth surface of the synnematal stalk in N. noackiana and occurrence in South America. Nectria australiensis has hairs on the surface of the synnematal stalk and is known only from Oceania. In our observations of the synnemata of N. noackiana, we did not ind ornamental hyphae on the stipe (Figs 53I, 54D). In the protologue of N. noackiana (Sydow & Sydow 1907), a type specimen is mentioned that apparently was divided and sent to several herbaria as Rehm’s exsiccatae. The specimen in the BPI bound exsiccati no. 1744 is herein designated as lectotype and the other portions of the type specimen are considered isolectotypes. allantonectria, nectria, and Pleonectria Fig. 55A–H. Nectria novaezelandiae on natural substrata (A–H teleomorph). A, B. Perithecia on natural substrata; C. Median section of perithecium; D. Median section of perithecial wall; E. Ascus; F. Ascospore in surface view; G, H. Ascospores in optical section. Scale bars: A = 5 mm; B = 1 mm; C = 100 µm; D, E = 20 µm; F–H = 10 µm. Nectria novaezelandiae (Dingley) Rossman, Mycotaxon 8: 531. 1979 (as "novaezealandica"). Figs 55, 56. Basionym: Calonectria novaezelandiae Dingley, Trans. & Proc. Roy, Soc. New Zealand 79: 404. 1952. Anamorph: unknown. Teleomorph on natural substrata: Mycelium not visible around ascomata or on host. Stromata erumpent through epidermis, up to 1.5 mm high and 2.0 mm diam, orange to red, KOH+ blood colour, LA+ yellow, pseudoparenchymatous, cells forming textura angularis, intergrading with ascomatal wall. Ascomata supericial on well-developed stromata, aggregated in groups of 5–25, subglobose to globose, 350–510 μm high × 350–520 μm diam, red to scarlet, not cupulate when dry, apical region darker, KOH+ dark red, LA+ yellow, smooth to slightly roughened. Ascomatal surface cells forming textura globulosa or t. angularis, 6–19 μm diam, with pigmented, uniformly ca. 1.5 μm thickened walls. Ascomatal wall 50–97 μm thick, of two regions: outer region 42–66 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, about 1.5 μm thick; inner region 12–26 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Asci clavate, 69–92 × 14–18 μm, with inconspicuous ring at apex, 8-spored, ascospores biseriate above, uniseriate below. Ascospores long-ellipsoidal to cylindrical, straight to slightly curved, with rounded ends, (1–)3(–4)-septate, (17.3–) 9.3–22.1(– 23.9) × (6.3–)6.7–8.1(–8.9) μm (n = 50), hyaline, smooth, inally spinulose. www.studiesinmycology.org Habitat: On bark of Discaria toumatou (Rhamnaceae). Distribution: Oceania (New Zealand, known only from the type collection). Holotype of Calonectria novaezelandiae: New Zealand, Canterbury, the Hermitage, Hooker Valley, Discaria toumatou, 21 Feb. 1947, J.M. Dingley, Holotype PDD 10426. Notes: Nectria novaezelandiae is known only from the holotype specimen collected in New Zealand. Some morphological characters of N. novaezelandiae such as the irmly attached ascomata that do not become cupulate upon drying are similar to species of Neonectria. However, three septate ascospores of N. novaezelandiae are unknown in species of Neonectria (Figs 55F–H, 56C). On the other hand, a number of species of Nectria have phragmosporous ascospores such as Nectria canadensis, N. lateritia, and N. neorehmiana. Although the anamorph in the natural environment and in culture was not observed nor do we have molecular data for this species, we include N. novaezelandiae in the genus Nectria based on the ascomatal structure and three septate ascospores. Nectria paraguayensis Speg., Anales Mus. Nac. Hist. Nat. Buenos Aires 19: 38. 1885. Figs 57, 58. Basionym: Endothia paraguayensis (Speg.) Höhn., Sitzungsber. Kais. Akad. Wiss. Wien. Math. - Naturwiss. Cl., 1 Abt., 121: 380. 1912. 83 Hirooka et al. Fig. 56A–C. Nectria novaezelandiae on natural substrata (A–C teleomorph). A. Median section of mature perithecium; B. Ascus; C. Ascospores. Scale bars: A = 200 µm; B, C = 20 µm. = Nectria cinnabarina var. guaranitica Speg., Bol. Acad. Nac. Cienc. Cordóba 23: 474. 1885. = Hypocreopsis moriformis Starbäck, Bih. Koningl. Svenska Vet.–Akad. Handl. 25 (III1): 35. 1899. ≡ Nectria moriformis (Starbäck) Theiss., Ann. Mycol. 9: 51. 1911. Anamorph: unknown. Teleomorph on natural substrata: Mycelium not visible around ascomata or on host. Stromata erumpent through epidermis, up to 1.0 mm high and 4.0 mm diam, red to sienna, KOH+ blood red, LA+ yellow, pseudoparenchymatous, cells forming textura angularis, intergrading with ascomatal wall. Ascomata nearly or completely immersed in erumpent stroma, aggregated in groups of 5–59, red, subglobose to globose, 298–397 μm high × 296–436 μm diam, not collapsing when dry, apical region darker, KOH+ dark purple, LA+ yellow, smooth to slightly roughened wall. Ascomatal surface cells at edge of stroma forming textura globulosa or t. angularis, 4–14 μm diam, with pigmented, uniformly ca. 2.0 μm thickened walls. Ascomatal wall at edge of stroma 40–72 μm thick, of two regions: outer region 17–52 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, about 2.0 μm thick; inner region 15–30 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Asci clavate, 53–94 × 8–14 μm, with inconspicuous ring at apex, 8-spored, biseriate. Ascospores ellipsoidal, fusiform to long oblong, straight to rarely slightly curved, (13.4–)15.6–18.4(–22.2) × (4.5–)5.6–7.2(–8.1) μm (n = 195), 1-septate, hyaline, striate. Habitat: On bark of Cedrela brasiliensis, scale insects, lichens, and possibly Patellina amoena. Distribution: South America (Argentina, Brazil, Paraguay). Holotype of Nectria paraguayensis: Brazil, Paraguarí, on wood, June 1882, Balansa 3420, Holotype LPS 1605. Additional type specimens examined: Type of Nectria cinnabarina var. guaranitica: Paraguay, Villa Morra, on twigs, 1892, Holotype LPS 1577. Type of Hypocreopsis moriformis: Brazil, Ijul, Rio Grande do Sul, on trunks, 29 Mar. 1903, G.O. Malme, Holotype S, Imae Regnellian Fungi No 305, Isotype K, Vestergren, Micromycetes rariores selecti 820, BPI 631888. 84 Additional specimens and isolates examined: Argentina, Buenos Aires, Montes Veloz, on Celtis tala, 25 Oct. 1936, J.C. Lindquist, LPS 35261. Brazil, Nova Petropolis, on bark, Jun. 1923, J. Rick, BPI 631885; Sao Leopoldo, on frondose wood, 1905, J. Rick, BPI 631887; Serra Azul, Rio Grande Du Sol, on wood, 1923, J. Rick, BPI 631886; on wood, 1927, J. Rick, BPI 737549; ex Herb. Theissen, Rick, Fungi austro-americana 196, Shear Types and Rarities, BPI 798078 as Hypocreopsis moriformis. Notes: Nectria paraguayensis has been collected only from South America. Because the aggregated ascomata are semi-immersed or immersed in a stroma, this fungus belongs to N. balansae group although no anamorph in the natural environment or culture was observed (Figs 57A–E, 58A). Within the N. balansae group, N. paraguayensis resembles N. balansae and N. sordida in having striate ascospores; the ascospore size of N. paraguayensis is smaller than those two species. Nectria paraguayensis is also similar to N. cingulata in having small, striate ascospores and occurring in South America (Figs 57H, I, 58C). The ascomata of N. cingulata are supericial and the ascomatal walls are composed of three regions. Samuels & Brayford (1994) included Hypocreopsis moriformis as a taxonomic synonym of N. paraguayensis. The original description of H. moriformis documented the presence of sporodochia described as Patellina amoena (Starbäck 1899). Samuels & Brayford (1994) presumed that P. amoena was the anamorph of H. moriformis because Nectria cinnabarina var. guaranitica, another taxonomic synonym of N. paraguayensis, was also observed with P. amoena. In our observation of the type specimen, no conidiophores or conidia were observed because of the poor condition and limited samples of P. amoena. Among the specimens of N. paraguayensis we observed, ascomata of BPI 631887, BPI 737549, and BPI 798078 were associated with scale insects while ascomata of BPI 631886 were associated with lichens. It seems likely that N. paraguayensis exists as a saprobe that associates with various substrata. Nectria polythalama Berk., Hooker’s Flora Novae-Zelandiae 2: 203. 1855. Figs 59–61. Basionym: Calonectria polythalama (Berk.) Sacc., Michelia 1: 308. 1878. = Sphaerostilbe nigrescens Kalchbr. & Cooke, Grevillea 9: 15. 1880. ≡ Megalonectria nigrescens (Kalchbr. & Cooke) Sacc., Syll. Fung. 2: 561. 1883. allantonectria, nectria, and Pleonectria Fig. 57A–N. Nectria paraguayensis on natural substrata (A–I teleomorph, J, K teleomorph and Patellina amoena, L–N. Patellina amoena). A–C. Perithecia on natural substrata; D, E. Median section of perithecia; F. Median section of perithecial wall; G. Ascus; H. Ascospore in surface view; I. Ascospores in optical section; J, K. teleomorph and Patellina amoena on natural substrata (white arrows); L. Patellina amoena on natural substrata (white arrows); M. Median section of apothecium of Patellina amoena; N. Median section of apothecial wall of Patellina amoena. Scale bars: A = 5 mm; B, C, J–L = 1 µm; D, E, M = 100 µm; F, N = 50 µm; G–I = 20 µm. www.studiesinmycology.org 85 Hirooka et al. Fig. 58A–C. Nectria paraguayensis on natural substrata (A–C teleomorph). A. Median section of mature perithecium; B. Ascus; C. Ascospores. Scale bars: A = 200 µm; B, C = 10 µm. Anamorph: synnematous, tubercularia-like. Teleomorph on natural substrata: Mycelium not visible around ascomata and on host. Stromata up to 1.5 mm high and 2.0 mm diam, erumpent through epidermis, whitish orange to bay, KOH+ dark red, LA+ yellow, pseudoparenchymatous, cells forming textura angularis to t. prismatica, intergrading with ascomatal wall. Ascomata supericial on well-developed stromata, solitary or caespitose, up to 18 on stroma, often associated with synnemata of anamorph, globose, 300–435 μm high × 290–345 μm diam, red to reddish brown, sometimes cupulate upon dry, papillate, apical region darker, KOH+ dark red, LA+ yellow, surface roughened with concolourous warts. Ascomatal surface cells forming textura globulosa or t. angularis, with walls pigmented 1.5 μm thick. Ascomatal wall 42–62 μm thick, of three regions: outer region 25–35 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, ca. 1.5 μm thick; middle region 10–15 μm thick, cells forming textura globulosa including brown to red-brown pigment droplets; inner region 15–20 μm thick, of elongated, thin-walled, hyaline cells, intergrading with stroma, forming textura prismatica. Asci unitunicate, 70–96 × 15.7–17.9 μm, clavate with inconspicuous ring at apex, 8-spored, ascospores biseriate above, uniseriate below. Ascospores muriform, with 5–8 transverse septate and 1–2 longitudinal septate, often constricted at each septum, ellipsoidal to fusiform, hyaline, brown to dark brown when mature, straight, sometimes slightly curved, (17.9–)21.8– 29.0(–35.4) × (6.1–)7.3–10.1(–12.3) μm, (n = 60), smooth-walled. Anamorph on natural substrata: Synnemata usually erumpent through epidermis, solitary to gregarious, emerging from ascomatal cluster or independently, crowded to caespitose, cylindrical-capitate, subulate-capitate, or claviform, erect or nodding, unbranched or rarely up to 4 branched at base, medium to slender stature, distinctly hispid at base to mid level, some young synnemata smooth to granular, soft-textured when fresh, red-brown at base, becoming darker to black with age, turning blood-red in KOH, 1500–3000 μm high including stipe, 120–400 μm wide. Hyphae on stipe external hyphae pigmented golden brown at base and becoming less pigmented towards apex, KOH+, 5–9 μm wide; internal hyphae hyaline, KOH–, 4–7 μm wide. Ornamental hyphae on stipe cylindrical, straight, curved, sinuous or twisted, arising laterally at more or less right angles, distributed evenly over surface of synnemata or concentrated near 86 base in some collections, or near apex in others, 5–20 × 2.0–3.0 μm, usually unbranched, occasionally dichotomously branched, or with lateral branches; aseptate or with up to 3 septae, septa thin or up to 1 μm thick, terminal hyphae with bluntly rounded tips, 5–8 μm wide, cell walls 1.5–2 μm thick. Conidiophores with long sterile hyphae, branching monoverticillate or biverticillate, whorls compact or diffuse, if present, metulae 20–70 × 1.7–3.0 μm. Conidiogenous cells enteroblastic, monophialidic, cylindrical to subulate, straight or curved in terminal whorls of 2–5 together with sterile hyphae or lateral and terminal, 13–22 × 1.5–2.0 μm, collarette not conspicuous. Sterile hyphae mixed with phialides, acicular, straight or usually curved, unbranched or dichotomously branched, septate, 73–118 × 2.0–2.7 μm, arising from hyphae often in groups of 1–3 from conidiophores together with phialides. Conidial masses globose, hemisphaerical or more or less discoid, dark purple when fresh, drying purplish black, 100–300 μm wide. Conidia hyaline, ellipsoidal, obovate or oblong, sometimes slightly curved, non-septate, (4.5–)5.9–7.5(–9.2) × (2.5–)3.0–3.8(–4.9) μm, (n = 129), smooth-walled. Anamorph in culture: Optimum temperature for growth on PDA 25 °C. After 3 d at 25 °C, colonies 29–33 mm (average 32 mm) diam. Colony surface cottony with aerial mycelium, pink to orange, sometimes yellowish brown; aerial mycelium slightly developed, white to whitish yellow; sporodochial conidial masses abundantly produced after 1 wk; reverse orange to yellowish brown. Odour on PDA slightly fruity. Sporulation on SNA from lateral phialidic pegs common, enteroblastic, monophialidic, ellipsoidal tapering toward tip, 2.5–8.5 μm long, 1.0–2.5 μm wide near aperture. Aerial conidiophores usually verticillate, 1–3 branched, becoming loosely to moderately densely branched, 15.3–35.0 μm long, 2.0–3.5 μm wide at base. Aerial conidiogenous cells monophialidic, cylindrical and slightly tapering toward tip 8.4–12.3 μm long, 1.7–2.2 μm wide at base. Sporodochial conidiophores, 2–3 branched, becoming densely branched, then terminal whorls of 2–4 together, 27.6–45.2 μm long, 2.0–3.6 μm wide at base. Sporodochial conidiogenous cells monophialidic, cylindrical and slightly tapering toward tip or narrowly lask-shaped with widest point in middle, 9.9–14.2 μm long, 2.0–2.8 μm wide at base. Young conidia developing from monophialides on submerged or aerial hyphae, produced abundantly on slimy heads, non-septate, subglobose to obovate, rarely ellipsoidal to fusiform, hyaline, smooth, straight or slightly curved, rounded at both ends, (4.9–)5.3–6.5(–7.7) × (2.2–)2.7–3.7(–4.0) μm (n = 150). Mature allantonectria, nectria, and Pleonectria Fig. 59A–R. Nectria polythalama on natural substrata (A, B, H teleomorph and anamorph, C–G teleomorph, I–R anamorph). A, B, H. Perithecia and synnemata on natural substrata; C. Median section of perithecium; D. Median section of perithecial wall; E. Ascus; F. Ascospore in optical section; G. Ascospores in surface view; I, J. Synnemata on natural substrata; K, L. Ornamental hyphae on stipe; M–O. Sterile hyphae and conidiophores on natural substrata; P, Q. Conidiophores on natural substrata; R. Conidia on natural substrata. Scale bars: A = 5 mm; B, H–J = 1 mm; C, K = 100 µm; D, E, L = 50 µm; F, G, Q, R = 10 µm; M–P = 20 µm. conidia swollen, mostly 0-, rarely 1-septate, oblong or allantoidal, smooth, straight or slightly curved, swollen at both ends, (7.0–)11.5– www.studiesinmycology.org 17.5(–25.5) × (3.0–)3.5–4.5(–6.0) μm (n = 124). Chlamydospores, sporodochia, and perthecia not produced on SNA. 87 Hirooka et al. Fig. 60A–F. Nectria polythalama on natural substrata (A–C teleomorph, D–F anamorph). A. Median section of mature perithecium; B. Ascus; C. Ascospores; D. Median section of synnema; E. Conidia; F. Sterile hyphae and conidiophores. Scale bars: A, D = 200 µm; B, C, E, F = 20 µ Distribution: Oceania (New Zealand). Habitat: On dead woody substrata including Corynocarpus laevigatus, Disoxylon? sp., and Eucalyptus icifolia. Holotype of Nectria polythalama. New Zealand, Middle Island, on bark, Holotype K (M) 163342. Epitype of Nectria polythalama designated herein: New Zealand, North Island, Warkworth, Wenderholm Regional Park, on dead log, 09 Mar. 2009, P. Chaverri, A.Y. Rossman, P. Johnston, Epitype BPI 879111= PC 975, ex-epitype culture: CBS 129240 = A.R. 4579. Additional type specimens examined: Type specimen of Sphaerostilbe nigrescens: New Zealand, Wellington, on dead, J. Kirk, K (M) 165364. Additional specimens and isolates examined: New Zealand, North Island, Auckland, on Eucalyptus icifolia, May 1968, J.M. Dingley, PDD 26407, culture ICMP 2505; North Island, Waitakere City, Auckland, Waitakere Ranges, on bark, 4 Jun. 1983, A.Y. Rossman, G.J. Sameuls, T. Matsushima, BPI 1105486; North Island, Auckland, Domain Park, on Corynocarpus laevigatus, 09 Mar. 2009, P. Chaverri, A.Y. Rossman, P. Johnston, BPI 879115 = PC 979, culture A.R. 4575 = CBS 128671; North Island, Auckland, Domain Park, on decaying twigs, 09 Mar. 2009, P. Chaverri, A.Y. Rossman, P. Johnston, BPI 879097 = P.C. 961, culture CBS 128672 = A.R. 4586. Notes: Nectria polythalama is known only from New Zealand. This fungus was irst observed by Darwin when he explored New Zealand almost two hundred years ago. The type specimen was sent to Berkeley by Darwin, and Berkeley (1855) described this species. Saccardo (1878) transferred N. polythalama to Calonectria. Seifert (1985) synonymised N. polythalama under the older epithet of N. pseudotrichia. Although somewhat similar especially in 88 having muriform ascospores, N. polythalama is distinct from N. pseudotrichia. The lectotype specimen of N. polythalma has smooth ascospores unlike the spinulose ascospores of N. pseudotrichia (Figs 59F, 60C). Characteristics of the asexual state are also useful in distinguishing these species. In the natural environment, the anamorph of N. polythalama produces dark purple conidial masses at the synnematal apex and the conidia of N. polythalama are larger than those of N. pseudotrichia (Figs 59A, B, H, I, R, 60E). In culture, conidia of N. polythalama are swollen at both ends unlike those of N. pseudotrhicia. The optimum temperate for growth of N. polythalama on PDA is 25 °C while that for N. pseudotrichia is between 25 to 30 °C or 30 °C. Based on our phylogenetic analysis N. polythalama is clearly distinct from N. pseudotrichia with each species forming highly supported branches (Hirooka et al. 2010) (Figs 1, 3). Because the lectotype of N. polythalama lacks abundant ascomata and synnemata, we epitypiied N. polythalama with BPI 879111, a specimen collected recently in New Zealand that has many mature ascomata and anamorphic structures as well as a living culture. Nectria pseudadelphica Rehm, Hedwigia 31: 303. 1892. Figs 62, 63. ≡ Cucurbitaria pseudadelphica (Rehm) Kuntze, Revis. gen. pl. (Leipzig) 3: 461. 1898. Anamorph: unknown. Teleomorph on natural substrata: Mycelium not visible around ascomata and on host. Stromata erumpent through epidermis, up to 1.5 mm high and 2.0 mm diam, dark scarlet, KOH+ blood colour, LA+ yellow, pseudoparenchymatous, cells forming allantonectria, nectria, and Pleonectria Fig. 61A–L. Anamorph of Nectria polythalama in culture. A. Cultures after 7 d at 25 °C on PDA; B. Lateral phialidic pegs and conidial mass on SNA; C. Lateral phialidic pegs and conidia on SNA; D–G. Conidiophores and conidia on SNA; H. Young conidia on SNA; I. Mature conidiaon SNA; J. Budding (black arrow) and germinating (white arrow) mature conidia on SNA; K, L. Germinating mature conidia that were streaked onto SNA. Scale bars: A = 3 mm; B = 100 µm; C–L = 10 µm. textura angularis, intergrading with ascomatal wall. Ascomata supericial on well-developed stromata, aggregated in groups of 3–15, subglobose to globose, 270–390 μm high × 250–390 μm diam, scarlet to sienna, not cupulate upon drying, apical region slightly darker, KOH+ dark red, LA+ yellow, smooth to roughened. Ascomatal surface cells forming textura globulosa or t. angularis, 5–14 μm diam, with pigmented, uniformly ca. 1.5 μm thickened walls. Ascomatal wall 50–70 μm thick, of three regions: outer region 30–45 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, about 1.5 μm thick; middle region ca. 7–18 μm thick, cells forming textura globulosa containing brown to red-brown pigment droplets; inner region 10– 15 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Asci clavate, 90–140 × 7–15 μm, with inconspicuous ring at apex, 8-spored, ascospores biseriate. Ascospores fusiform to allantoid, straight to curved, (25.1–)26.8–31.4(–36.7) × (7.5–) 8.7–11.1(–13.2) μm (n = 60), (0–)1(–3)-septate, hyaline, smooth to weakly spinulose. www.studiesinmycology.org Habitat: On dead branches. Distribution: South America (Ecuador). Lectotype of Nectria pseudadelphica designated herein: Ecuador, Pichincha, Cotocollas, on wood, 24 Feb. 1892, N.G. Lagerheim, Lectotype NY 01013167, Isolectotypes NY 01013168, S F10211, S F10213. Additional specimens and isolates examined: Ecuador, Chimborazo, alt. 3500 m, on dead of twig, 26 Jan. 1994, J.N. Hedger ex IMI 361831, BPI 737865, BPI 802791. Notes: Nectria pseudadelphica is a dificult species to identify within the genus Nectria because its anamorph has not been observed nor does a living culture exist to determine its phylogenetic position. Further, this species is similar to species of Neonectria in having irmly attached ascomata in natural substrata that do not become cupulate upon drying (Fig. 62A, B). This species 89 Hirooka et al. Fig. 62A–I. Nectria pseudadelphica on natural substrata (teleomorph). A, B. Perithecia on natural substrata; C. Median section of perithecium; D. Median section of perithecial wall; E. Ascus; F. Apex of asci; G. Ascospores; H. Ascospore in surface view; I. Ascospore in optical section. Scale bars: A = 500 µm; B, C = 100 µm; D, E = 50 µm; F, G = 30 µm; H, I = 10 µm. Fig. 63A–C. Nectria pseudadelphica on natural substrata (A–C teleomorph). A. Median section of mature perithecium; B. Ascus; C. Ascospores. Scale bars: A = 200 µm; B, C = 20 µm. is included in Nectria for two reasons. First, up to three septate ascospores as occurring in N. pseudadelphica have never been observed in species of Neonectria (Figs 62G, 63C). Second, the middle region of the ascomatal wall includes dark brown pigment droplets as observed only in species of Nectria such as N. lateritia, N. pseudocinnabarina, and N. pseudotrichia (Figs 62D, 63A). For these reasons, this species is retained in the genus Nectria. Nectria 90 pseudadelphica may produce a synnematous anamoph because all species of Nectria having an ascomatal wall of three regions also produce a synnematous anamorph, thus one suspects that N. pseudadelphica will have a similar anamorph. In this study, we designate the lectotype of N. pseudadelphica as NY 01013167, and the other specimens of this collection are isolectotypes. allantonectria, nectria, and Pleonectria Nectria pseudocinnabarina Rossman, Mem. New York Bot. Gard. 49: 260. 1989. Figs 64–66. Anamorph: tubercularia lateritia-like. Teleomorph on natural substrata: Mycelium not visible around ascomata and on host. Stromata erumpent through epidermis, up to 1.0 mm high and 1.0 mm diam, sienna, KOH+ dark purple, LA+ yellow, pseudoparenchymatous, cells forming textura angularis, intergrading with ascomatal wall. Ascomata supericial on stroma, scattered to sometimes aggregated in groups of up to 10, subglobose to globose, 200–360 μm high × 170–300 μm diam, deeply cupulate upon drying, sometimes with only a depressed apical region, bay to scarlet, apical region slightly darker, KOH+ dark purple, LA+ yellow, slightly rugose with concolourous warts. Ascomatal surface cells forming textura globulosa or t. angularis, 4–11 μm diam, with pigmented, uniformly ca. 1.5 μm thickened walls. Ascomatal wall 40–65 μm thick, of three regions: outer region 20–34 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, about 1.5 μm thick; middle region 7–15 μm thick, cells forming textura globulosa, containing brown to red-brown pigment droplets, walls pigmented to gold, about 1.5 μm thick; inner region 8–15 μm thick, of elongate, thin–walled, hyaline cells, forming textura prismatica. Asci broadly cylindrical to narrowly clavate, 47–89 × 8–15 μm, with inconspicuous ring at apex, 8-spored, ascospores usually biseriate. Ascospores ellipsoidal to fusiform, sometimes slightly curved, (8.0–) 9.8–13.8(–16.3) × (3.1–)3.7–5.3(–6.0) μm (n = 100), 1-septate, hyaline, striate. Anamorph on natural substrata: Synnemata usually erumpent through epidermis, solitary to gregarious, emerging from ascomatal cluster or independently, caespitose, cylindrical-capitate, subulatecapitate, or claviform, erect or nodding, unbranched or rarely up to 2 branched at base, medium to slender stature, distinctly hispid at base to mid-level, some young synnemata smooth to granular, red-brown at base, slightly turning blood-red in KOH, 700–1500 μm high including stipe, 100–200 μm wide. Hyphae on stipe external hyphae pigmented golden brown at base, becoming less pigmentied towards apex, KOH+, 1.5–3.0 μm wide; internal hyphae hyaline, KOH–, 1.5–2.5 μm wide. Ornamental hyphae on stipe cylindrical, straight, curved, sinuous or twisted, arising laterally at more or less right angles, distributed evenly over surface of synnemata, concentrated near base or near apex, 5–15 μm long, 3–4 μm wide, usually unbranched, occasionally dichotomously branched or with lateral branches; aseptate or with up to 2-septae, septa thin or up to 1 μm thick, terminal hyphae with bluntly rounded tips, 4–8 μm wide, cell walls 1.5–2 μm thick. Conidiophores with long sterile hyphae, branching monoverticillate or biverticillate, whorls compact or diffuse, if present, metulae 18–30 × 2.2–3.2 μm. Conidiogenous cells enteroblastic, monophialidic, cylindrical to subulate, straight or curved at apex, 6–12 × 1.3–2.1 μm, collarette not conspicuous. Sterile hyphae mixed with phialides, usually curved, acicular or straight, unbranched or dichotomously branched, septate, 83–121 × 2.1–3.0 μm, in groups of conidiophores together with phialides, less commonly arising from hyphae in whorls. Conidial masses globose, hemisphaerical or more or less discoid, reddish white when fresh, drying reddish brown, 350–600 μm wide. Conidia hyaline, ellipsoidal, obovate or oblong, sometimes slightly curved, non-septate, (3.0–)4.0–5.6(–6.4) × (2.2–)2.4–3.0(–3.2) μm (n = 50), smooth-walled. www.studiesinmycology.org Anamorph in culture: Optimum temperature for growth on PDA 25 °C. After 3 d at 30 °C, colonies 20–35 mm (average 27 mm) diam. Colony surface cottony with aerial mycelium saffron to ochreous, rarely pale green; aerial mycelium whitish yellow to saffron; sporodochial conidial masses abundantly produced after 3–4 wk; reverse orange to yellowish brown, rarely pale green. Odour on PDA slightly fruity. Sporulation on SNA from lateral phialidic pegs common, enteroblastic, monophialidic, ellipsoidal tapering toward tip, 2.9–7.9 μm long, 1.7–2.8 μm wide near aperture. Aerial conidiophores usually verticillate, 1–3 branched, becoming loosely to moderately densely branched, 15–31 μm long, 2.2–6.2 μm wide at base. Sporodochial conidiophores 2–3 branched, becoming densely branched, then terminal whorls of 2–4 together, 15–37 μm long, 2.6–9.9 μm wide at base. Conidiogenous cells enteroblastic, monophialidic, cylindrical, slightly tapering toward tip, 6.2–24.5 μm long, 1.4–3.7 μm wide at base. Young conidia developing from monophialides on submerged, aerial hyphae, or repent hyphae, produced abundantly on slimy heads, non-septate, subglobose to obovate, rarely ellipsoidal to fusiform, hyaline, smooth, straight or slightly curved, rounded at both ends, (3.3–)4.2–6.0(–8.2) × (1.7–)2.4–3.4(–4.0) μm (n = 100). Mature conidia mostly 0-, rarely 1-septate, oblong to allantoidal, smooth, straight or slightly curved, rounded at both ends, (8.6–)10.3–13.5(–14.8) × (3.2–)3.5–4.3(–4.9) μm (n = 124). Chlamydospores not produced in culture. Synnemata (G.J.S. 09–1358 & G.J.S. 09–1359) and perthecia (A.R. 4548 = CBS 128673) produced on SNA. Habitat: On bark of dicotyledonous trees. Distribution: Caribbean (Cuba, Guadeloupe, Martinique), South America (Brazil, French Guiana, Venezuela). Holotype of Nectria pseudocinnabarina: Venezuela, Territorio Federal Amazonas, San Carlos de Rio Negro along road to airport, on twigs, 24 Jan. 1985, A.Y. Rossman, Holotype BPI 552864, Isotypes BPI 552862, BPI 552863, BPI 552865. Additional specimens and isolates examined: Brazil, Callert forest and adjacent cerrado, ca. 3 Km S. of São Joãda Alianga, near Riacho, ca. 850m. elev., on dead twig, 15 Mar. 1971, H.S. Irwin, R.M. Harley, G.L. Smith, NY. Cuba, Sancti Spiritus. alt. 100 m, 20 °50’N, 80 °00’W, above El Cubana, on branch, 01 Jul. 1993, S.M. Huhndorf, BPI 802674, culture G.J.S. 93–17. French Guiana, Saül, Boucle des Gros Arbres, on newly killed woody branch, 03 May 2008, C. Lechat, BPI 881033, culture CBS 123496 = A.R. 4567 = Y.H. 08-21. Guadeloupe, Marie Galante, Ravine Pour Biere, on bark, 18 Feb. 1993, G.J. Samuels, BPI 802443; Terre de Bos, on bark, Jan. 1994, J. Vivant, BPI 802477. Martinique, Robert, Bois Pothau, on bark, 24 Aug. 2008, C. Lechat C.L.L. 8299, BPI 881034, culture A.R. 4548 = CBS 128673. Venezuela, Edo. Aragua, Henry Pittier National Park. alt. 1200–1300 m, ca. 10 °21’N,67 °41’W, Rancho Grande Biological Station, Toma Trail to water source, on tree dead bark, 03 Dec. 1990, G.J. Samuels, B. Hein, S.M. Huhndorf, BPI 802837; La Gran Sabana, on dead bark, 29 Jun. 2009, Y. Hirooka, C. Salgado, BPI 881035, culture CBS 129364 = G.J.S. 09-1356; La Gran Sabana, on dead bark, 29 Jun. 2009, Y. Hirooka, C. Salgado, BPI 881036, culture CBS 129365 = G.J.S. 09-1358; La Gran Sabana, on dead bark, 29 Jun. 2009, Y. Hirooka, C. Salgado, BPI 881037, culture CBS 129366 = G.J.S. 09-1359. Notes: Nectria pseudocinnabarina was described by Rossman (1989) and re-assessed by Samuels & Brayford (1994). Our description of N. pseudocinnabarina agrees well with their descriptions, except in the observation of three regions of the ascomatal wall (Figs 64D–F, 65A). A similar ascomatal wall structure was observed in N. lateritia, N. pseudadelphica, and N. pseudotrichia, all known only from tropical regions. The middle region generally includes reddish brown pigment droplets. This peculiar morphology may protect the centrum contents from high 91 Hirooka et al. Fig. 64A–Q. Nectria pseudocinnabarina on natural substrata (A, I teleomorph and anamorph, B–H teleomorph, J–Q anamorph). A, I. Perithecia and synnemata on natural substrata; B, C. Perithecia on natural substrata; D. Median section of perithecia; E, F. Median section of perithecial walls; G. Ascus; H. Ascospores; J, K. Synnemata on natural substrata; L. Ornamental hyphae on stipe; M. Abundant conidiophores on natural substrata; N, O. Sterile hyphae and conidiophores on natural substrata; P. Conidiophores on natural substrata; Q. Conidia on natural substrata. Scale bars: A–C, I = 1 mm; D, J, K = 300 µm; E–G, M, N = 50 µm; H, L, O–Q = 10 µm. temperature conditions. Ascospore differences clearly distinguish these four species. 92 Although we observed the anamorph numerous times in the natural environment as well as in culture, the anamorph of N. allantonectria, nectria, and Pleonectria Fig. 65A–F. Nectria pseudocinnabarina on natural substrata (A–C teleomorph, D–F anamorph). A. Median section of mature perithecium; B. Ascus; C. Ascospores; D. Median section of synnema; E. Conidia; F. Sterile hyphae and conidiophores. Scale bars: A, D = 200 µm; B, C, E, F = 10 µm. pseudocinnabarina is morphologically identical with the anamorph of N. pseudotrichia, including the 95 % conidence intervals of conidia of length to width ratios (data not shown). In Venezuela, both N. pseudocinnabarina and N. pseudotrichia were observed at the same location but never on the same substratum. Based on our molecular data, these two species are closely related but distinct, with isolates of each species forming highly supported clades (Figs 1, 3). This species pair demonstrates that some species in Nectria exhibit morphological differences only in their teleomorphic rather than anamorphic states. Nectria pseudotrichia Berk. & M.A. Curtis, J. Acad. Nat. Sci. Philadelphia 2, 2: 289. 1853. Figs 67–70. ≡ Sphaerostilbe pseudotrichia (Berk. & M.A. Curtis) Berk. & Broome, J. Linn. Soc. 14: 114. 1875. ≡ Calonectria pseudotrichia (Berk. & M.A. Curtis) Sacc., Michelia 1: 208. 1878. ≡ Megalonectria pseudotrichia (Berk. & M.A. Curtis) Speg., An. Soc. Cient. Argent. 2: 16. 1881. ≡ Pleonectria pseudotrichia (Berk. & M.A. Curtis) Wollenw., Angew. Bot. 8: 195. 1921. ≡ Thyronectria pseudotrichia (Berk. & M.A. Curtis) Seeler, J. Arnold Arbor. 21: 438. 1940. = Sphaerostillbe cinnabarina Tul. & C. Tul., Sel. Fung. Carpol. 1: 129 1861. = Sphaerostillbe lateritia Berk. & M.A. Curtis, J. Linn. Soc., Bot. 10: 377. 1869. = Sphaerostillbe incerta Ces., Atti Accad. Sci. Fis. Mat., Napoli 8:14. 1879. = Pleonectria megalospora Speg., An. Soc. Cient. Argent. 12: 216. 1881. = Megalonectria caespitosa Speg., Bol. Acad. Nac. Cienc. Cordoba 11: 538. 1889. = Pleonectria caespitosa (Speg.) Wollenw., Angew. Bot. 8: 195. 1926. = Megalonectria verrucosa A. Moller, Phycom. Ascom. Bras. p. 298. 1901. = Megalonectria polytrichia (Schwein.) Speg. var. australiensis Henn., Hedwigia 42: 79. 1903. = Megalonectria madagascariensis Henn. in Voeltzkow, Reise in Ostafrika 3: 29. 1908. www.studiesinmycology.org = Megalonectria yerbae Speg., An. Mus. Nac. Hist. Nat. Buenos Aires 17: 129. 1908. = Pleonectria riograndensis Theissen, Broteria, Ser. Bot. 9: 143. 1910. = Pleonectria heveana Sacc., Boll. Orto Bot., Napoli 24: 13. 1918. Anamorph: Tubercularia lateritia (Berk.) Seifert, Stud. Mycol. 27: 119. 1985. Synonymy based on Seifert (1985). ≡ Stilbum lateritium Berk., J. Bot., London 2: 642. 1843. ≡ Botryonipha lateritia (Berk.) O. Kuntze, Rev. Gen. Pl. 2: 845. 1891. ≡ Stilbella lateritia (Berk.) Bres., Ann. Mycol. 9: 276. 1911. = Stillbum caespitosum Welw. & Curr., Trans. Linn. Soc. Lond. 26: 291. 1867. ≡ Ciliciopodium caespitosum (Welw. & Curr.) Sacc., Syll. Fung. 4: 577. 1886. = Stilbum inconspicuum Curr., Trans. Linn. Soc. Lond., Ser. 2 (Bot.) 1: 129. 1874. [= Stilbum kurzianum Cooke, Grevillea 16:71. 1888, unnecessary name change for S. inconspicuum] = Crinula aurantiocinnabarina Speg., An. Soc. Cient. Argent. 9: 167. 1880. ≡ Stilbum aurantiocinnabarinum (Speg.) Speg., An. Soc. Cient. Argent. 13: 30. 1882. ≡ Calocera aurantiocinnabarina (Speg.) Sacc., Syll. Fung. 6: 734. 1888. ≡ Botryonipha aurantiocinnabarina (Speg.) O. Kuntze, Rev. Gen. Pl. 2: 845. 1891. = Sphaerostilbe rosea Kalchbr., Grevillea 9: 26. 1880. ≡ Stilbella rosea (Kalchbr.) Weese, Sitzungsber. Kaiserl. Akad. Wiss. 128: 44. 1919. = Stilbum kalchbrenneri Sacc., Syll. Fung. 4: 570. 1886. = Stilbum aurantiocinnabarinum var. fuscipes Speg., An. Soc. Cient. Argent. 13: 30. 1882. [= Stilbum physaroides Speg., Bol. Acad. Nac. Cienc. Cordoba 11: 615. 1889, non Kalchbr. 1882]. = Stilbum spegazzinianum Sacc., Syll. Fung. 10: 682. 1892. = Stilbum fuscocinnabarinum Speg., Bol. Acad. Nac. Cienc. Cordoba 11: 616. 1889. = Stilbum javanicum Henn., Hedwigia 32: 227. 1893. = Stilbum proliferum Marchal, Bull. Soc. Belge. Microsc. 20: 267. 1894. = Stilbum camerunense Henn., Bot. Jahrb. Syst. 22: 81. 1895. [= Stilbum nanum Massee, Kew Bull. 1898: 112, non (Ehrenb.) Sprengel 1827.]. = Stilbum fructigenum Penz. & Sacc., Malpighia 15: 250. 1901. 93 Hirooka et al. Fig. 66A–O. Anamorph of Nectria pseudocinnabarina in culture. A. Cultures after 7 d at 25 °C on PDA; B. Conidial mass on SNA surface; C–E. Lateral phialidic pegs and conidia on SNA; F–K. Conidiophores and conidia on SNA; L. Young conidia on SNA; M. Mature conidia on SNA; N. Perithecia on SNA; O. Synnema on SNA. Scale bars: A = 3 mm; B, N, O = 500 µm; C = 50 µm; D–J, L, M = 20 µm; K = 10 µm. = Stilbella rubescens Sydow, Bull. Herb. Boisser 1901: 85. 1901. ≡ Stilbella rubescens (Sydow) Sacc., Syll. Fung. 16: 1082. 1901. = Stilbella heveae Zimm., in Henn., Hedwigia 41: 148. 1902. ≡ Stilbum heveae (Zimm.) Sacc. & D. Sacc., Syll. Fung. 18: 631 1906. = Stilbella theae Ch. Bernard, Bull. Dep. Agric. Indes Neerl. 11: 25. 1907. ≡ Stilbum theae (Ch. Bernard) Sacc. & Trotter, Syll. Fung. 22: 1437. 1913. 94 = Ciliciopodium costaricense Speg., Bol. Acad. Nac. Cienc. Cordoba 23: 591. 1919. [= Ciliciopodium costaricense Speg., An. Mus. Nac. Hist. Nat. Buenos Aires 31: 442. 1992, non (Welw. & Curr.) Sacc., 1886]. = Stilbum minutulum Penz. & Sacc., Malpighia 15: 250. 1902. = Polycephalum subaurantiacum Peck, Bull. New York St. Mus. 167: 46. 1912. allantonectria, nectria, and Pleonectria Fig. 67A–W. Nectria pseudotrichia on natural substrata (A–C teleomorph and anamorph, D–N teleomorph, O–W anamorph). A–C. Perithecia and synnemata on natural substrata; D–F. Perithecia on natural substrata; G. Median section of perithecia; H. Median section of perithecial apex; I. Median section of perithecial wall; J. Ascus; K, M. Ascospore in surface view; L N. Ascospores in optical section; O–Q. Synnemata on natural substrata; R, S. Ornamental hyphae on stipe; T, U. Sterile hyphae and conidiophores on natural substrata; V. Conidiophores on natural substrata; W. Conidia on natural substrata. Scale bars: A = 5 mm; B, C, O–Q = 1 mm; D–F = 500 µm; G = 100 µm; H–J, R–U = 50 µm; K–N, V, W = 10 µm. www.studiesinmycology.org 95 Hirooka et al. Fig. 68A–C. Nectria pseudotrichia in culture (teleomorph). A. Budding ascospores streaked onto SNA; B, C. Budding and germinating ascospores streaked onto SNA.Scale bars: A–C = 30 µm. Fig. 69A–F. Nectria pseudotrichia on natural substrata (A–C teleomorph, D–F anamorph). A. Median section of mature perithecium; B. Ascus; C. Ascospores; D. Median section of synnema; E. Conidia; F. Sterile hyphae and conidiophores. Scale bars: A, D = 200 µm; B, C, E, F = 10 µm. Teleomorph on natural substrata: Ascomata and synnemata sometimes formed on same or discrete stroma. Mycelium not visible around ascomata and on host. Stromata up to 1.5 mm high and 2.5 mm diam, erumpent through epidermis, whitish orange to bay, KOH+ dark red, LA+ yellow, pseudoparenchymatous, cells forming textura angularis to t. prismatica with cells oriented more or less vertically; cells 5–15 μm diam, with walls 1–2 μm thick, intergrading with ascomatal wall. Ascomata supericial on welldeveloped stromata, solitary or caespitose, up to 18 on stroma, often associated with synnemata of anamorph, globose, 333–548 μm high × 296–534 μm diam, red, sometimes cupulate upon drying, papillate, apical region darker, KOH+ dark red, LA+ yellow, 96 surface smooth or sometimes roughened with concolourous warts. Ascomatal surface cells forming textura globulosa or t. angularis, with walls pigmented 1.5 μm thick. Ascomatal wall 36–70 μm thick, of three regions: outer region 23–54 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, ca. 1.5 μm thick; middle region 6–23 μm thick, cells forming textura globulosa containing brown to red-brown pigment droplets, wall pigmented ca. 0.5 μm thick; inner region 9–24 μm thick, of elongated, thin-walled, hyaline cells, intergrading with stroma, forming textura prismatica. Asci unitunicate, 65–125 × 13–32 μm, clavate with inconspicuous ring at apex, 8-spored, ascospores biseriate above, uniseriate below. Ascospores allantonectria, nectria, and Pleonectria Fig. 70A–Q. Anamorph of Nectria pseudotrichia in culture. A. Cultures after 7 d at 25 °C on PDA; B. Abundant conidiophores and conidial mass produced on the SNA surface; C–E. Lateral phialidic pegs and conidia on SNA; F–M. Conidiophores and conidia on SNA; N. Young conidia on SNA; O. Young conidia and mature conidia on SNA; P, Q. Germinating mature conidia that were streaked onto SNA. Scale bars: A = 3 mm; B = 50 µm; C–Q = 20 µm. muriform, with 5–8 transverse septa and 1-2 longitudinal septum, often constricted at each septum, ellipsoidal to fusiform, hyaline, brown to dark brown when mature, straight, sometimes slightly curved, (14.8–)21.0–28.8(–41.3) × (4.6–)7.5–11.4(–15.0) μm, (n = 645), inally spinulos. www.studiesinmycology.org Anamorph on natural substrata: Synnemata usually erumpent through epidermis, solitary or gregarious, emerging from ascomatal cluster or independently, crowded to caespitose, cylindrical-capitate, subulate-capitate, or claviform, erect or nodding, unbranched or rarely up to 3 branched at base, medium to slender, distinctly hispid at base to mid-level, young synnemata smooth to granular, soft97 Hirooka et al. textured when fresh, red-brown at base, turning blood-red in KOH, toward base becoming almost black with age, 1038–2700 μm high including stipe, 93–384 μm wide. Hyphae on stipe external hyphae pigmented golden brown at base, becoming less pigmentied toward apex, KOH+, 4–9 μm wide; internal hyphae hyaline, KOH–, 4–8 μm wide. Ornamental cells cylindrical, straight, curved, sinuous or twisted, arising laterally at more or less right angles, distributed evenly over surface of synnemata or concentrated near base or apex, 7–16 μm long, 1.5–2.5 μm wide, usually unbranched but occasionally dichotomously branched, aseptate or with up to 3-septate, septa thin or up to 1 μm thick, terminal hyphae with bluntly rounded tips, 4–9 μm wide, cell walls 1.8–2.3 μm thick. Conidiophores with long sterile hyphae, branching monoverticillate or biverticillate, whorls compact or diffuse, if present, metulae 15– 80 × 1.8–1.9 μm. Conidiogeonus cells enteroblastic, monophialidic, cylindrical to subulate, straight or curved in terminal whorls of 2–5 together with sterile hyphae or lateral and terminal, 18–40 × 1.1–2.8 μm, collarette not conspicuous. Sterile hyphae mixed with phialides, acicular, straight, or usually curved, unbranched or dichotomously branched, septate, 65–128 × 1.9–3.3 μm, arising from hyphae often in groups of 1–3 from conidiophores together with phialides. Conidial masses globose, hemisphaerical or more or less discoid, whitish yellow when fresh, drying sienna, 120–350 μm wide. Conidia hyaline, ellipsoidal, obovate or oblong, sometimes slightly curved, non-septate, (3.1–)4.3–5.9(–7.0) × (1.4–)2.5–3.3(– 4.6) μm, (n = 618), smooth-walled. Anamorph in culture: Optimum temperature for growth on PDA 30 °C. After 3 d at 25 °C, colonies 37–48 mm (average 43 mm) diam. Colony surface cottony with aerial mycelium orange, sometimes yellowish brown; aerial mycelium white to whitish yellow; sporodochial conidial masses abundantly produced after 1 wk; reverse orange to yellowish brown. Odour on PDA slightly fruity. Sporulation on SNA from lateral phialidic pegs common, enteroblastic, monophialidic, ellipsoidal tapering toward tip, 2.7– 6.3 μm long, 1.0–2.3 μm wide near aperture. Aerial conidiophores usually verticillate, 1–3 branched, becoming loosely to moderately densely branched, 13.9–34.7 μm long, 1.2–3.5 μm wide at base. Aerial conidiogenous cells enteroblastic, monophialidic, cylindrical, slightly tapering toward tip, 4.7–12.2 μm long, 1.1–2.7 μm wide at base. Sporodochial conidiophores, 2–4 branched, becoming densely branched, then terminal whorls of 2–4 together, 25.8–34.4 μm long, 2.6–4.3 μm wide at base. Sporodochial conidiogenous cells monophialidic, cylindrical, slightly tapering toward tip or narrowly lask-shaped with widest point in middle, 6.5–14.4 μm long, 0.7–3.1 μm wide at base. Young conidia developing from monophialides on submerged or aerial hyphae, produced abundantly on slimy heads, non-septate, subglobose to obovate, rarely ellipsoidal to fusiform, hyaline, smooth, straight or slightly curved, rounded at both ends, (3.7–)4.4–6.0(–7.3) × (1.5–)2.4–3.2(–3.9) μm (n = 294). Mature conidia swollen, mostly 0-, rarely 1-septate, oblong or allantoid, smooth, straight or slightly curved, rounded at both ends, (6.0–) 8.7–13.7(–21.0) × (2.3–)2.5–4.2(–5.7) μm (n = 189). Habitat: On dead woody plants; known from Acacia sp., Acer sp., Albizia julibrissin, Bixa orellana, Cajanus indicus, Carya glabra, Carya sp., Cedrela toona, Citrus × sinensis, Cordia macrophylla?, Cordia myxa, Corynocarpus laevigatus, Cryptostegia sp., Disoxylon sp., Erythrina indica, Ficus sp., Gliricidia sepium, Guarea guidonia, Grevillea robusta, Hevea brasiliensis, Hydrangea sp., Hymenostegia afzelii, Indigofera stachyodes?, Inga sp., Jussiaea peruviana, Ludwigia peruviana, Leucaena leucocephala, 98 Litchi chinensis, Mallotus sp., Manihot esculenta, Mucuna sp., Persea americana, Pinus caribaea, Rosa sp., Schinus myrtifolia?, Stryphnodendron excelsum?, Theobroma cacao L., and Vitex sp. Distribution: Africa (Cameroon, Gabon, Ghana, Tanzania, Uganda), Asia (China, India, Indonesia, Japan, Malaysia, Papua New Guinea, Philippines, Sri Lanka, Taiwan, Thailand), Caribbean and Central America (Costa Rica, Cuba, Dominica, El Salvador, Guatemala, Jamaica, Panama, Puerto Rico), North America (Mexico, USA), Oceania (Australia), South America (Argentina, Bolivia, Brazil, Colombia, Ecuador, French Guiana, Guyana, Paraguay, Peru, Surinam, Venezuela). Lectotype of Nectria pseudotrichia designated by Seeler (1940b): Surinam, on bark, Lectotype PH 00060330, Herb. Schweinitz, Isolectotypes K, BPI-bound Michener collection, vol 32, sheet 14. Epitype of Nectria pseudotrichia designated here: Venezuela, La Gran Sabana, Bolivar, on dead wood, 26 Jun. 2009, Y. Hirooka, C. Salgado, BPI 881072 = Y.H. 09-43, ex-epitype culture CBS 129368 = G.J.S. 09-1240. Additional specimens examined. Argentina, Misiones, Garuhape, Rosada Frente A La Casa, on woody substrate, 01 Feb. 1962, J.E. Wright, C.E Gomez., B.E. Del, BPI 552867; Tucuman, Tierra de San Javier, Auta Muerte, on woody substrate, Jan. 1950, R. Singer, BPI 552886; Tucuman, Yarten Der Impobules Mjsul Tille, on Schinus myrtifolia, Sep. 1949, R. Singer, BPI 552957. Australia, North Queensland, Ingham, on Litchi chinensis, Mar. 1994, B. Summerell, BPI 737840. Bolivia, near Warner, Santa Cruz, on Persea americana, Feb. 1954, F.H. Bell, BPI 552954. Brazil, Timor, on woody substrate, 1910-1913, M. Ferreira, J. Tavares, BPI 552871. Cameroon, Reserve Faunal de Dja, Ca 400 m W of the river Dja, ECOFAC camp, in highly disturbed forest, clay soil, alt. 630 m. 3 °23’N 12 °44’E, on recently dead tree, 10 Jul. 2001, G.J. Samuels, A. Guinwith, D. Begoude, P. Togo, BPI 863827; Reserve Faunal de Dja, Ca 400 m W of the river Dja, ECOFAC camp, in highly disturbed forest, clay soil, alt. 630 m, 3 °23’N 12 °44’E, on recently dead tree, 10 Jul. 2001, G.J. Samuels, A. Guinwith, D. Begoude, P. Togo, BPI 863831; Reserve du Dja, In forest 2 h walk S of the main route toward Bournville, 6 km E of Dja River, alt. 600 m. 3 °17’N 12 °47’E, on bark, 14 Jul. 2001, G.J. Samuels, A. Guinwith, D. Begoude, P. Togo, BPI 863844; SW Region, vic Mundemba, Korup National Park, Smithsonian Plot East-West Trail from Chimpanzee Camp, N 05 °04’, E008 °51’, elev 166 m to N05 °03’, E 08 °51’, elev 129 m, on Hymenostegia afzelii, 06 Dec. 2008, G.J. Samuels, K. Ivors, M. mbenoun, V. Mfegue, S. Moses, BPI 881079; culture G.J.S. 08-224 = CBS 131751. China, Menghua, Yunnan, on Hydrangea sp., 19 Sep. 1933, Y. Tsiang, BPI 552943; Menghua, Yunnan on Hydrangea sp., 19 Sep. 1933, Y. Tsiang, BPI 552944; Szemao, Yunnan, on Mallotus sp., 26 Nov. 1933, Y. Tsiang, BPI 552949; Szemao, Yunnan, on Mallotus sp., 26 Nov. 1933, Y. Tsiang, BPI 552950; Szemao, Yunnan, on Mucuna sp., 26 Nov. 1933, Y. Tsiang, BPI 552952; Szemao, Yunnan, on Mucuna sp., 26 Nov. 1933, Y. Tsiang, BPI 552953; Ling-Shui, Hainan, on woody substrate, 21 Apr. 1934, S.Q. Deng, BPI 552883; Yen-Hsien, Hainan, on woody substrate, 15 Jun. 1934, S.Q. Deng, BPI 552884; Yen-Hsien, Hainan, on woody substrate, 28 Jun. 1934, S.Q. Deng, BPI 552887; Pao-Hua-Shan, Kiangsu, on woody substrate, 29 Jul. 1933, S.Q. Deng, BPI 552888; Tan-Hsien, Hainan, on woody substrate, 29 Sep. 1934, S.Q. Deng, BPI 552889; Ling-Shui, Hainan, on woody substrate, 15 Sep. 1934, S.Q. Deng, BPI 552890; Yen-Hsien, Hainan, on woody substrate, 07 Jun. 1934, S.Q. Deng, BPI 552891; Yen-Hsien, Hainan, on woody substrate, 16 Jun. 1934, S.Q. Deng, BPI 552892; Yen-Hsien, Hainan, on woody substrate, 16 Jun. 1934, S.Q. Deng, BPI 552893; Ling-Shui, Hainan, on woody substrate, 12 Sep. 1934, S.Q. Deng, BPI 552895; Ling-Shui, Hainan, on woody substrate, 12 Sep. 1934, S.Q. Deng, BPI 552896; Yen-Hsien, Hainan, on woody substrate, 16 Jun. 1934, S.Q. Deng, BPI 552916. Colombia, Est. Central La Esperanza, Cundinamarca, on Inga sp., Jul. 1937, R. Obregon, BPI 552946; La Vega, on Manihot utilissima, 27 Nov. 1932, F.R. Barrios, BPI 552951; Antioquia, between Yarumal and Medellin, elev. 2700 m, on woody substrate, 20 Jul. 1942, J. Cuatrecasas, BPI 552882; Hacienda Cincinnati, on woody substrate, 10 Aug. 1935, G.W. Martin, BPI 552885. Costa Rica, Guanacaste Conservation Area, Pitilla, on newly killed wood, 13 Jun. 1995, A.Y. Rossman, BPI 746074; Heredia, Sarapiqui, Estacion Biologica La Selva, on Stryphnodendron excelsum, M. Arguedas, BPI 748186. Cuba, Soledad, on Cryptostegia sp., 16 Nov. 1924, Weir, BPI 552937. Dominica, near Springield, on Bixa orellana, Jun. 1970, A.Y. Rossman, BPI 552918; 7 miles NE of Roseau, on Bixa orellana, 20 Jun. 1970, A.Y. Rossman, BPI 552920. Ecuador, Prov. Carchi, Paramo El Angel, old road from El Angel to Tulcan, “Voladero”, alt. 3500-4000 m, on woody substrate, 10 Apr. 1987-11 Apr. allantonectria, nectria, and Pleonectria 1987, R.E. Halling, BPI 747148. El Salvador, on Rosa sp., Jul. 1957, R.C. Rose, BPI 552956; Zapotitan, on woody substrate, 25 Jan. 1944, F.L. Wellman, BPI 552913. French Guiana, Cayenne, Montagne Cacao, Piste Coralie. 70 km. E. of, on dead log, 14 Feb. 1988, A.Y. Rossman, C. Feuillet, BPI 1104491; Cayenne, Remire. 52 °18’W, 4 °52’N, Trail to Vidal, old farm, secondary forest, 15 km. from Cayenne, on dead stick, 12 Feb. 1988, A.Y. Rossman, C. Feuillet, BPI 1107220; Saint Laurent, Piste de Paul Isnard, alt. 10 m, 54 °0’W, 5 °26’N, on Wood, 17 Nov. 1986, A.Y. Rossman, C. Feuillet, L. Skog, BPI 1107221; Piste Balate, alt. 20 m, 54 °3’W, 5 °23’N, 12 km from Saint Laurent, on dead log of Melastomaceae, 19 Nov. 1986, A.Y. Rossman, C. Feuillet, L. Skog, BPI 1107310; Cayenne, Montagne Cacao, Piste Coralie. 70 km east of Cayenne, on woody substrate, 14 Feb. 1988, A.Y. Rossman, C. Feuillet, BPI 552868. Gabon, Estuaire Prov., Komo Mondah Dept., Mondah forest, ca. 20 km north from Libreville, 0.58433 °N, 9.38507 °E, on bark, 8 May 2009, K. Põldmaa, BPI 881078 = TU 112174, culture TFC 201238 = G.J.S. 09-1355. Ghana as Gold Coast Colony, Bunsu, on Hevea brasiliensis, 17 Jun. 1949, S.J. Hughes, BPI 552942. Guatemala, Dept. Alta Verapaz, along Rio Polochic, above Tamahu, alt. ca. 1200 m, on Bixa orellana, 10 Apr. 1941, P.C. Standley, BPI 552919; Tenadores, on Citrus sinensis, 25 Dec. 1916, W.A. Kellerman, BPI 552934; Coban, elev. 5000 ft, on woody substrate, 07 Jan. 1937, J.H. Faull, BPI 552894. Guyana, Bartica, on woody substrate, 15 Dec. 1923, D.H. Linder, BPI 552914. India, Amtala, 24-Parganas, West Bengal, on Erythrina indica, 18 Aug. 1968, A. Kar, BPI 552938; Darjeeling, West Bengal, on Indigofera stachyodes, 24 Jun. 1968, A. Kar, BPI 552945. Indonesia, Java, Botanical Garten zu Buitenzorg, on Stilbella cinnabarina, 1907-1908, F. Hohnel, BPI 552958; Timor, on woody substrate, Ferreira, BPI 552874; Sumatra, on woody substrate, 1926, Boedijn, BPI 552898. Jamaica, Chesterville Youth Dev, Camp, Newcastle, on Bixa orellana, 08 Jan. 1971, A.Y. Rossman, BPI 552921; Portland Parish, between Woodcutter’s Gap and Silver Hill Gap, alt. 1500 m., on Eugenia jambos, 09 Jan. 1971, A.Y. Rossman, BPI 552922; Clydesdale Forest Camp and Rest House. alt. 3500 ft, on Pinus caribaea, 08 Jan. 1971, A.Y. Rossman, BPI 552955. Japan, Tokyo, Ogasawara-mura, Hahajima, Tamagawa Dam, on bark of dead wood, Jun. 2005, Y. Hirooka, BPI 881038; culture MAFF 241452; Tokyo, Hachijo Island, Yoshimi, on twigs, Jun. 2001, Y Hirooka, BPI 881039; culture MAFF 241394; Kagoshima Prefecture, Yakushima, Oko Falls near Kurio, on bark and wood, 19 May 1983, R.J. Bandoni, culture CBS 551.84; Malaysia, Kuala Lumpur, on woody substrate, 14 Jun. 1928, J.R. Weir, BPI 552872; Kuala Lumpur, Selangor, F.m.s., on woody substrate, 14 Jun. 1928, J.R. Weir, BPI 552897. Mexico, Jalapa, Veracruz, on woody substrate, 02 Aug. 1945, A.J. Sharp, BPI 552910A, B. Panama, Barro Colorado Island, along Wheeler Trail, on woody substrate, 04 Aug. 1925, C.W. Dodge, BPI 552869; Prov. Chiriqui, Casita Alta above Boquete, alt 2000-2200 m, on woody substrate, 01 Aug. 1952, G.W. Martin, A.L. Welden, BPI 552909A; Prov. Chiriqui, Casita Alta above Boquete, alt 2000-2200 m, on woody substrate, 01 Aug. 1952, G.W. Martin, A.L. Welden, BPI 552909B. Papua New Guinea, Keravat on Theobroma cacao, Mar. 1968, P.J. Brook, PDD 26409 = J.M. Dingley 6857, culture ICMP 2245. Paraguay, Conchas, on woody substrate, 01 May 1881, BPI 552899; San Pedeo, on woody substrate, 02 Jul. 1907, F. Guar, BPI 552904. Peru, Province of Loreto, primary forest, 3 °37’14.90”S, 72 °14’48.33”W, on decaying log, 15 May 2010, R. Gazis, BPI 881082. Philippines, Los Banos, on Cordia myxa, 02 Oct. 1920, A. abesimio, BPI 552936; Mt. Maquiling, on Gliricidia sepium, 01 Oct. 1920, S. Babao, BPI 552940; Mt. Maquiling, on Leucaena glauca, 03 Oct. 1920, A. Rocafort, BPI 552948; on woody substrate, H.A. Lee, BPI 1107627; Lamao, Bataan Province, Luzon, on woody substrate, Feb. 1920, H.A. Lee, BPI 552877; Palo, Leyte, on woody substrate, Jan. 1906, A.D.E. Elmer, BPI 552879; Palo, Leyte, on woody substrate, Jan. 1906, BPI 552880; Province of Rizal, Luzon, on woody substrate, Jan. 1906, F.W. Foxworthy, BPI 552881; Mt. Maquiling, on Vitex sp., 24 Sep. 1920, P. Sison, BPI 552959. Puerto Rico, El Toro Trail, El Yungue National Forest, on Guarea guidonia (possibly), 20 Feb. 2009, D.J. Lodge, BPI 881075 = PR-6567, culture A.R. 4577 = CBS 131750; Luquillo Mountains, Bisley Watershed 3, Vogt wood addition plot. 18 °19’0’’N 65 °0’0’’W, on branch, 08 May 1995, S.M. Huhndorf, D.J. Lodge, BPI 745419; Caribbean National Forest, Luquillo Mountains, Rio Grande, trail to El Toro from Rt 186., alt. 650-750 m, on recently dead shrub, 24 Feb. 1996, G.J. Samuels, H.-J. Schroers, D.J. Lodge, BPI 745544; Espinosa, on Cajanus indicus, 27 Mar. 1916, J.A. Stevenson, BPI 552923; Pueblo Viejo, on Cajanus indicus, 24 Mar. 1916, J.A. Stevenson, BPI 552924; Pueblo Viejo, on woody substrate, 24 Mar. 1916, J.A. Stevenson, BPI 552875; Espinosa, on Cajanus indicus, 27 Mar. 1916, J.A. Stevenson, BPI 552925, 552926, 552927, 552929; Maricao, 3 km on Mesas road to Mayaguez, on Cajanus indicus, 30 Apr. 1922, C.E. Chardon, BPI 552928; Mayaguez, La Jagua, on Cordia macrophylla, 27 Feb. 1916, H.H. Whetzel, E.W. Olive, BPI 552930, 552935; Rio Piedras, on woody substrate, 04 Jul. 1916, J.A. Stevenson, BPI 552870; Rio Piedras, on woody substrate, 04 Dec. 1915, J.A. Stevenson, BPI 552876; Pueblo Viejo, on woody substrate, 24 Mar. 1916, J.A. Stevenson, BPI 552900; College Finca, Mayaguez, on woody substrate, 14 Jul. 1920, C.E. Chardon, BPI 552901; Rio Piedras, on woody substrate, 04 Jul. 1916, Stevenson, BPI 552902; N. Slope of Luquillo Mts., on woody substrate, 08 Mar. 1899, A.A. Heller, BPI 552903; Narayeto, on woody substrate, 26 Nov., B. Fink 1915, BPI 552905; Maricao, on woody substrate, 23 Mar. 1916, H.H. Whetzel, E.W. Olive, BPI 552906; Rio Piedras, on woody substrate, 04 Dec. 1915, J.A. Stevenson, BPI 552908; Rio www.studiesinmycology.org Piedras, on woody substrate, 09 Apr. 1917, J.A. Stevenson, BPI 552911; Rio Piedras, on woody substrate, 04 Jul. 1916, J.A. Stevenson, BPI 552912. Sri Lanka, Central Province, on bark, Nov. 1867, Berkeley?, K (M) 163336 as Nectria fenestrata. Taiwan, Taroko Park, on newly killed wood, Oct. 2009, A.Y. Rossman, BPI 879862, culture CBS 129367 = A.R. 4667; Taipei County, Mudan, Diaoshan Historical Trail, on bark, 2 Nov. 2003, J.-R. Guu 92110201, comm. Yu-ming Ju, BPI 881076, culture A.R. 4606; Taipei County, Wanlee, Linnshih Historical Trail, on bark. 14 Jan. 2005, J.-R. Guu 94011505, comm. Yu-ming Ju, BPI 881077, culture A.R. 4607 = CBS 131749. Tanzania, Amani, Usambara, on Cedrela toona, Oct. 1912, M. Grote, BPI 552933. Thailand, Saraburi Province, Khao Yai National Park, trail to Jed Khot Waterfall., alt. 100 m, on bark of recently dead tree, 28 Jul. 1997, G.J. Samuels, P. Chaverri, K. Põldmaa, Somsak, BPI 745604; Saraburi Province, Khao Yai National Park, vicinity of park headquarters., alt. 700 m, on twig, dead, 30 Jul. 1997, G.J. Samuels, P. Chaverri, K. Põldmaa, Somsak, BPI 745626; Nakorn Nayok Province, Khao Yai National Park, Phakrajai., alt. 650 m, on bark, 06 Aug. 1997, G.J. Samuels, P. Chaverri, K. Põldmaa, P. Lutthisuvigneon, BPI 745845; Nakhorn Nayok Provinc, Khao Yai National Park, W of Park Headquarters from point where Mo Sing To and Nong Pak Chi trails separate to ridge leading to Nong Pak Chi, mainly in forest and dry ridge, alt. 775-800 m, 14 °26’N 101 °22’E, on bark of recently fallen branch, 07 Sep. 2001, G.J. Samuels, BPI 863815; Prachinburi Province, Khao Yai National Park. In primary forest between 14 °28’N 101 °12’E elev. 800 m and Bun Phai, 14 °29’N 101 °22’E, elev. 760 m, on bark of recently dead tree, 18 Aug. 2001, G.J. Samuels, R. Nasit, BPI 863901; Petburi Province, Kaen Krachan National Park. Pa La-U waterfall in disturbed forest, alt. 105 m, 12 °32’N 99 °28’E, on wood decorticated, 22 Aug. 2001, G.J. Samuels, M. Reblova, R. Nasit, BPI 863930; Saraburi Province, Khao Yai National Park, trail to Jed Khot Waterfall., alt. 100 m, on Acacia sp., 28 Jul. 1997, G.J. Samuels, P. Chaverri, K. Põldmaa, Somsak, BPI 745617. Uganda, Font, Kipayo, Kyagwe, 4000 Feet, on woody substrate, May 1915, R.A. Dummer, BPI 552873. USA, Florida. Jacksonville, on Albizia julibrissin, 19 Apr. 1970, A.S. Rhoads, BPI 552917; Florida, Lloyd, on Carya sp., Jun. 1925, R.E. Nolen, BPI 552931; Florida, Gainesville, on Ficus sp., 12 Sep. 1928, West, Archer, Jenkins, BPI 552939; Florida, Avon Park, on Grevillea robusta, 31 Mar. 1937, C.L. Shear, BPI 552941; Florida, Highlands Hammock, on Jussiaea peruviana, 05 Feb. 1937, C.L. Shear, BPI 552947; Florida, Highlands Hammock, on Acer sp., 29 Dec. 2009, Y. Hirooka, BPI 881040, culture CBS 128670 = Y.H. 10-04; Nebraska, Lincoln, in greenhouse, on woody substrate, 05 Dec. 1896, C.E. Bessey, BPI 552878; Tennessee, Knoxville, on woody substrate, 02 Sep. 1942, A.J. Sharp, BPI 552907. Venezuela, Sierra Nevada National Park, Coromoto, La Mucuy, Merida. alt. 2300 m, 08 °36’N, 71 °02’W, above Tabay, on dead bark of tree, 09 Nov. 1990, G.J Samuels, B. Hein, S. M. Huhndorf, T. Iturriaga, G. Rodriguez, M. Hererra, BPI 1109908; Edo Miranda, El Avila, on bark, 2 Jul. 1972, G.J. Samuels, PDD 7908, culture CBS 652.83; Edo, Miranda, Parque Nacional Guatopo, Trail between Agua Blanca and La Cruceta, alt. 500-600 m, 10 °3’N 66 °26’W, on recently dead tree, 27 Nov. 1990 or 30 Nov. 1990, G.J. Samuels, B. Hein, S.M. Huhndorf, BPI 744830; Edo, Trujillo, Parque Nacional Guaramacal, ca. 10 km SW of Batatal, La Defensa, Campamiento Granja Bocono, in disturbed vegetation along river, alt. 2000 m, 9 °19’N 70 °9’W, on bark, 20 Nov. 1990, G.J. Samuels, B. Hein, S.M. Huhndorf, BPI 744930; La Gran Sabana, Bolivar, on dead bark of tree, 29 Jun. 2009, T. Iturriaga, Y. Hirooka, C. Salgado, BPI 881041, culture G.J.S. 09-1329; La Gran Sabana, Bolivar, on dead wood, 28 Jun. 2009, Y. Hirooka, C. Salgado, BPI 881073 = Y.H. 09-105, culture G.J.S. 09-1346; La Gran Sabana, on dead wood, 29 Jun. 2009, Y. Hirooka, C. Salgado, BPI 881074 = Y.H. 09-154, culture CBS 129359 = G.J.S. 09-1362. Notes: Nectria pseudotrichia is a one of the common tropical fungi in the genus Nectria and is distinguished in this genus by having muriform ascospores and a synnematous anamorph. In the protologue of N. pseudotrichia, Berkeley & Curitis (1853) referred to the basionym as Sphaeria pseudotrichia Schw. However, Seifert (1985) concluded that Schweinitz never published S. pseudotrichia, thus the name should not be attributed to Schweinitz, as had been done for much of the last century. Tulasne & Tulasne (1861) established the genus Sphaerostilbe with ive species each having synnematous anamorphs and ‘pyrenomycetous asci’ in nectrialike fungi. Following their generic concept, Berkeley & Broome (1875) transferred N. pseudotrichia to Sphaerostilbe pseudotrichia (Berk. & M.A. Curitis) Berk. & Broome. Later, Saccardo (1878) transferred N. pseudotrichia to the genus Calonectria. According to Saccardo (1883), Calonectria included nectria-like fungi having two or more septate ascospores. The monotypic genus Megalonectria with M. pseudotrichia was proposed by Spegazzini (1881) based on the combination of muriform ascospores and synnematous anamorph. Wollenweber (1926) accepted the genus Pleonectria for nectria-like 99 Hirooka et al. Fig. 71A–I. Nectria pyriformis on natural substrata (teleomorph). A, B. Perithecia on natural substrata; C, D. Median section of perithecia; E. Median section of perithecial apex; F. Median section of perithecial wall; G. Median section of stroma; H. Asci; I. Ascospores. Scale bars: A, B = 1 mm; C–E = 100 µm; F, G = 50 µm; H, I = 10 µm. Fig. 72A–C. Nectria pyriformis on natural substrata (A–C teleomorph). A. Median section of mature perithecium; B. Ascus; C. Ascospores. Scale bars: A = 100 µm; B, C = 10 µm. 100 allantonectria, nectria, and Pleonectria fungi having muriform ascospores such as Pleonectria pseudotrichia, but Seeler (1940b) regarded the genus Pleonectria as a synonym of Thyronectria and transferred many Pleonectria names to that genus. Recent mycologists based their concept of genera of nectria-like fungi on ascomatal wall structure and characteristics of both of the sexual and asexual state (Rossman et al. 1999). Rossman (1989) and Rossman et al. (1999) accepted Booth’s concept of groups within the nectria-like fungi recognising those groups at the generic level. They regarded this species under its original name Nectria pseudotrichia. The Tubercularia lateritia, anamorph of N. pseudotrichia, is recognised by the colouration of the synnemata, pink to orange conidial masses, distinctive thick-walled ornamenting cells on the stipe, hispid surface of the stipes, and long curved sterile hyphae in the capitulum (Figs 67A–C, O–S, 69D). Tubercularia lateritia is often observed with its teleomorph. Seifert (1985) determined the correct name for the anamorph to be Tubercularia lateritia based on Stilbum lateritium, and listed the numerous synonyms. Based on Seifert (1985) and the specimens examined for this study, it appears that T. lateritia is more common than its teleomorph. Nectria pseudotrichia is well known as a saprobe in tropical and warm temperate regions. Samuels & Dumont (1982) suggested that this species is a frequent coloniser of freshly cut wood. Becker (2003) conirmed pathogenisity of N. pseudotrichia on Pyrus pirifolia Nakai in Brazil. Thus, this fungus might also be a facultative parasite similar to its temperate counterpart, N. cinnabarina (Hirooka et al. 2011). Our phylogenetic results based on a multiple-locus analysis of 65 isolates from throughout the world support the monophyly of N. pseudotrichia with a second distinct clade from New Zealand. The New Zealand strains are herein recognised as Nectria polythalama, a name previously considered a synonym of N. pseudotrichia. Within Nectria pseudotrichia, six subclades exist that are strongly correlated with geography but these cannot be distinguished morphologically (Hirooka et al. 2010). Because Berkeley & Curtis (1853) described N. pseudotrichia without a type specimen, Seeler (1940b) and Seifert (1985) typiied this name using specimens preserved in PH and K, respectively. The typiication of Seeler (1940b) has priority over Seifert (1985), thus the specimen in PH is considered the lectotype. In this study, we designated BPI 881041 as the epitype specimen and associated living culture; it was collected from Venezuela, close to the original collecting locality of Surinam. Nectria pyriformis Hirooka, Rossman & P. Chaverri, sp. nov. MycoBank MB519703. Figs 71, 72. Holotype: India, Rohtak, on dead branches of Capparis sepiaria, 13 Oct. 1942, Holotype NY No. 610. Etymology: pyriform + -is; indicates the shape of its ascospores. Anamorph: unknown. Teleomorph on natural substrata: Mycelium not visible around ascomata and on host. Stromata erumpent through epidermis, up to 1.5 mm high and 1.5 mm diam, umber to bay, KOH+ dark red, LA+ yellow, pseudoparenchymatous, cells forming textura angularis, intergrading with ascomatal wall. Ascomata supericial on welldeveloped stromata, solitary to aggregated in groups of 3–24, textura globulosa or t. angularis, 170–241 μm high × 195–270 μm diam, scarlet to bay, cupulate when dry, apical region slightly darker, www.studiesinmycology.org KOH+ blood colour, LA+ yellow, smooth to roughened. Ascomatal surface cells forming textura globulosa or t. angularis, 5–14 μm diam, with pigmented ca. 1.5 μm thick walls. Ascomatal wall 26–52 μm thick, of two regions: outer region 20–37 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, about 1.0 μm thick; inner region 9–17 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Asci cylindrical to clavate, 40–57 × 7–11 μm, with inconspicuous ring at apex, (4, 6) 8-spored, ascospores uniseriate or biseriate above. Ascospores obovoid or pyriform, rarely turbinate, hyaline, unequally 1-septate, rarely septum submedian, (5.5–)6.2–8.4(–9.0) × (3.5–)3.8–5.0(–5.8) μm (n = 50), smooth-walled. Habitat: On dead branches of Capparis sepiaria (Capparaceae). Distribution: Asia (India, known only from the type collection). Notes: Nectria pyriformis is described as a new species even though it is known only from the holotype specimen because this species possesses an extremely peculiar shape of ascospores that have never been observed in Nectria or nectria-like fungi (Figs 71I, 72C). Although placed in the genus Nectria, N. pyriformis may be a species of Pleonectria; however, the critical morphological characteristics of Pleonectria such as yellowish green scurf on the ascomata, budding ascospores, and pycnidial anamorph are lacking. Nectria sordida Speg., Anales Mus. Nac. Hist. Nat. Buenos Aires 6: 289. 1899. Figs 73–75. = Nectria catalinensis Lima in Lima, Forchiassin & Ranalli, Nova Hedwigia 46: 150. 1988. Anamorph: irregularly sporodochial in the natural environment. Teleomorph on natural substrata: Mycelium not visible around ascomata or on host. Stromata erumpent through epidermis, up to 1.0 mm high and 3.5 mm diam, red to sienna, KOH+ blood red, LA+ yellow, pseudoparenchymatous, cells forming textura angularis, intergrading with ascomatal wall. Ascomata nearly or completely immersed in erumpent stroma, aggregated in groups of 3–35, red, subglobose to globose, 350–525 μm high × 330–585 μm diam, not collapsing when dry, apical region slightly darker, KOH+ dark purple, LA+ yellow, warted wall. Ascomatal surface cells at edge of stroma forming textura globulosa or t. angularis, 7–17 μm diam, with pigmented, uniformly ca. 2.5 μm thickened walls; ascomatal warts apricot to red, 40–80 µm high, larger in upper part of ascomata or around ostiole. Ascomatal wall at edge of stroma 70–135 μm thick, of two regions: outer region 55–95 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, about 2.0 μm thick; inner region 15–35 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Asci clavate, 97–155 × 20–30 μm, with inconspicuous ring at apex, 8-spored, mainly biseriate, rarely uniseriate. Ascospores ellipsoidal, fusiform to long oblong, straight to rarely slightly curved, (25.0–)26.6–32.0(–35.3) × (10.5–)11.5–13.5(–15.6) μm (n = 90), (0–)1(–2)-septate, hyaline to slightly yellowish-brown, inely striate. Anamorph on natural substrata: Stromata erumpent through epidermis, orange to red. Sporodochial conidiomata, supericial on well-developed stromata, cottony, scattered, caespitose, rarely solitary, astipitate, sessile, up to 180–640 μm high, 220–1300 μm wide, white. Hymenium arising directly from textura prismatica elongating from textura angularis, up to 140 µm long, 2.0–4.5 µm 101 Hirooka et al. Fig. 73A–M. Nectria sordida on natural substrata (A–G teleomorph, H packet of Nectria sordida Holotype: LPS 1619, I–M anamorph). A, B. Perithecia on natural substrata; C. Section of perithecium on natural substrata; D. Median section of perithecial wall; E. Ascus; F, G. Ascospores; H. Packet of Nectria sordida Holotype: LPS 1619; I, J. Sporodochia on natural substrata; K. Median section of sporodochium (white arrow); L. Hyphae of sporodochia; M. Conidia on natural substrata. Scale bars: A, B, I, J = 1 mm; C, D, K–M = 100 µm; E = 30 µm; F, G = 10 µm. wide, not curved at margin. Conidiophores monochasial branching, 32–85 × 2.0–3.1 μm. Conidiogenous cells monophialidic, cylindrical, straight or curved, 15–22 × 1.5–2.6 μm, collarette not conspicuous. Conidia hyaline, subglobose to ellipsoidal, straight, non-septate, (12.2–)13.3–15.3(–17.0) × (6.5–)7.3–8.5(–9.5) μm, (n = 50), smooth-walled. 102 Anamorph in culture: After 7 d at 25 °C, colonies 70–80 mm (average 78 mm) diam. Colony surface cottony with aerial mycelium whitish yellow to whitish brown; aerial mycelium restricted to centre, small yellow sporodochial conidial masses produced after 2 wk; reverse whitish yellow to yellowish brown in centre and white at margin. Odour on PDA slightly putrid. Conidiophores of two types on SNA. allantonectria, nectria, and Pleonectria Fig. 74A–F. Nectria sordida on natural substrata (A–C teleomorph, D–F anamorph). A. Median section of mature perithecia; B. Ascus; C. Ascospores; D. Median section of sporodochium; E. Conidia; F. Conidiophores. Scale bars: A = 200 µm; B–E = 20 µm. Short conidiophores producing microconidia, usually unbranched or loosely branched, generally with 1(–3)-branched, 18–47 μm long, 2.6–3.6 μm wide; conidiogenous cells long-cylindrical to subulate, straight to slightly curved, enteroblastic, monophialidic, 9.5–14.5 × 2.3–3.6 μm; microconidia hyaline, ellipsoidal to fusiform, rarely curved, non-septate, (5.1–)6.4–9.0(–9.1) × (2.4–)2.9–3.9(– 4.6) μm (n = 50). Long conidiophores producing macroconidia, monochasial branching, unbranched or loosely branched, generally 1–2-branched, 40–69 μm long, 3.1–4.6 μm wide; conidiogenous cells long-cylindrical, straight to slightly curved, enteroblastic, monophialidic, 8.8–23.4 × 1.8–4.1 μm; macroconidia hyaline, subglobose to ellipsoidal, curved, non-septate, thickened wall cells, (16.6–)18.4–22.6(–24.6) × (6.9–)9.2–12.0(–14.1) μm (n = 50). Chlamydospores or swollen hyphae present. Chlamydospores intercalary in hyphae or rarely terminal, globose to subglobose, sometimes ellipsoidal, smooth, hyaline, 12–17 µm. Swollen hyphae abundantly formed, intercalary in normal hyphae, smooth, hyaline, 2–9 cells, 26–128 μm long, 5–11 μm wide. Immature pycnidia (G.J.S. 86-117) formed on SNA. Ascomata absent. Habitat: On dead and living woody vine or roots (Cedrela brasiliensis, Celtis tala, Gleditsia triacanthos). Distribution: South America (Argentina, Brazil, French Guiana). Holotype of Nectria sordida: Argentina, La Plata, Los Talas, on Celtis tala, Mar. 1890, C. Spegazzini, Holotype LPS 1619. Additional type specimens examined: Type of Nectria catalinensis: Argentina, Buenos Aires, Llavallol, Sta. Catalina, on dead bark of Gleditsia triacanthos, Apr. 1983, C.E. Lima, Lectotype illustration at BPI designated here, Lima et al. (1988) Nova Hedwigia 46: 149-156, igs 1–12. www.studiesinmycology.org Additional specimens and isolates examined: Brazil, Bono Principio, Muninipio, Montenegro, on Cedrela brasiliensis, 1928, Rick, BPI 631890 as Hypocreopsis moriformis. French Guiana, on living woody vine, G.J. Samuels 3257, NY, culture CBS 125119 = G.J.S. 86-117 as Nectria balansae. Notes: Nectria sordida was described by Spegazzini (1899) as having ascospores 30–35 × 12–14 μm. Supericially similar he also described N. balansae (Spegazzini 1885) with ascospores 22–30 × 8–10 μm. Samuels & Brayford (1994) observed both holotype specimens preserved in LPS and suggested that N. sordida was a synonym of N. balansae. However, in this study the two holotype specimens were determined to be statistically different in ascospore size. Ascospores of N. sordida are (25.0–)26.6–32.0(– 35.3) × (10.5–)11.5–13.5(–15.6) μm while those of N. balansae are slightly smaller, (19.0–)23.7–29.9(–32.6) × (6.2–)8.3–11.1(–13.0) μm. Further we noticed that N. sordida occasionally produces two septate ascospores (Figs 73G, 74C). Thus, these two species are considered distinct. Nectria catalinensis was collected in Argentina (Lima et al. 1988), where the type of N. sordida was also collected. Lima et al. (1988) compared morphological differences between N. sordida and N. catalinensis and determined that these two species were distinct based on subtle size differences in the ascospores. In our morphological examination, the ascospores of these species are identical, although we only observed an authentic specimen of N. catalinensis from BAFC because the type specimen of N. catalinensis is missing (see below). According to Lima et al. (1988) the pycnidial anamorph of N. catalinensis was observed in culture with micro- and macroconidia around the pycnidia. The French Guiana specimen (NY, culture G.J.S. 86-117) identiied as N. sordida also produced a pycnidial anamorph in culture; thus we determined that N. catalinensis should be synonymised under N. 103 Hirooka et al. Fig. 75A–M. Anamorph of Nectria sordida in culture. A. Cultures after 7 d at 25 °C on PDA; B-D. Immature pycnidia on SNA; E, F. Short conidiophores producing microconidia on SNA; G–K. Long conidiophores producing macroconidia on SNA; L. Microconidia on SNA; M. Micro- and macroconidia on SNA. Scale bars: A = 3 mm; B–D = 100 µm; E–M = 20 µm. sordid. Because the holotype specimen of N. catalinensis (BAFC 30698) has been lost, we typiied this name using the illustration of 104 the original paper as a lectotype (Lima et al. (1988) Nova Hedwigia 46 149–156, igs 1–12). allantonectria, nectria, and Pleonectria On the French Guiana specimen preserved in NY, we found sporodochia around the ascomata (Figs 73K, 74D), although the isolate of this specimen produced immature pycnidia on SNA (Fig. 75B–D). Apparently N. sordida produces both pycnidial and sporodochial anamorphs. This phenomenon was also noted in N. catalinensis according to Lima et al. (1988) who observed mature pycnidia in culture with micro- and macroconidia around the pycnidia. We made a number of sections to conirm pycnidial production in the French Guianan specimen, but no pycnidia were observed. The phenotypicially similar Nectria magnispora produces pycnidia in nature and culture. Nectria tucumanensis Speg., Anales Mus. Nac. Hist. Nat. Buenos Aires 12: 407. 1885. Figs 76, 77. ≡ Creonectria tucumanensis (Speg.) Chardón & Toro, J. Dept. Agric. Proto Rico 14: 242. 1930. Anamorph: unknown. Teleomorph on natural substrata: Stromata erumpent through epidermis, up to 1.0 mm high and 2.5 mm diam, red to sienna, KOH+ blood red, LA+ yellow, pseudoparenchymatous, cells forming textura angularis, intergrading with ascomatal wall. Ascomata supericial on well-developed stroma or immersed at base, aggregated in groups of 3–17, sienna to red, subglobose to globose, 400–590 μm high × 350–585 μm diam, not collapsing when dry, apical region slightly darker, KOH+ dark purple, LA+ yellow, wall warted. Ascomatal surface cells forming textura globulosa to t. angularis, 9–22 μm diam, with pigmented, uniformly ca. 3 μm thickened walls; ascomatal warts apricot to red, 11–43 µm high, largest in middle to upper part of ascomata. Ascomatal wall 56–89 μm thick, of two regions: outer region 42–75 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, about 3 μm thick; inner region 13–20 μm thick, of elongated, thin-walled, hyaline cells, forming textura prismatica. Asci clavate, 93–122 × 26–35 μm, with inconspicuous ring at apex, 8-spored, ascospores mainly biseriate. Ascospores cylindrical to allantoid, curved, (28.8–)31.8–38.0(–41.6) × (9.5–) 10.8–13.2(–14.6) μm (n = 50), 1(–3)-septate, hyaline to slightly yellowish-brown, striate. Habitat: On twigs of Albizia carbonaria (as A. malacocarpa) ide Chardon & Toro (1930) and Annona cherimola. Distribution: Central America (Costa Rica ide Rowlee, 1924), South America (Argentina, Colombia ide Chardon & Toro, 1930). Holotype of Nectria tucumanensis. Argentina, Tucumá, on dead twigs of Annona cherimola, 14 Apr. 1906, Holotype LPS 1564. Notes: At irst glance, Nectria tucumanensis is similar to N. antarctica in having large perithecia and ascospores. However, the 1–3-septate ascospores of N. tucumanensis are clearly different from the muriform ascospores of N. antarctica (Figs 76H–M, 77C). Only the holotype specimen at LPS exists. PLEONECTRIA Sacc., Mycotheca Ven. no. 688. 1876. Type species: Pleonectria lamyi (Desm.) Sacc. (≡ Sphaeria lamyi Desm.) = Chilonectria Sacc., Michelia 1: 279. 1878. Lectotype designated by Clements & Shear (1931): C. cucurbitula (Tode : Fr.) Sacc. (≡ Sphaeria cucurbitula Tode : Fr.), here recognised as Pleonectria cucurbitula (Tode : Fr.) Fr. = Nectria subgenus Aponectria Sacc., Michelia 1: 296. 1878. Type: A. inaurata www.studiesinmycology.org (Berk. & Broome) Sacc. (≡ Nectria inaurata Berk. & Broome), here recognised as Pleonectria aquifolii (Fr.) Berk. ≡ Aponectria (Sacc.) Sacc., Syll. Fung. 2: 516. 1883. = Scoleconectria Seaver, Mycologia 1: 197. 1909. Type: S. scoleconectria (Brefeld & Tavel) Seaver (≡ Ophionectria scolecospora Brefeld & Tavel 1891), here recognised as Pleonectria cucurbitula (Tode : Fr.) Fr. Anamorph: Zythiostroma Höhn., Mykol. Untersuch. Ber. 1: 335. 1923. Type: Z. mougeotii (Fr.) Höhn. (≡ Sphaeria mougeotii Fr.), here considered the anamorph of Pleonectria sinopica (Fr. : Fr.) Hirooka, Rossman & P. Chaverri. Teleomorph on natural substrata: Ascomata and pycnidia rarely formed on same or discrete stroma. Mycelium not visible around ascomata and on host. Stromata erumpent through epidermis, up to 2.5 mm high and 7.0 mm diam, bay, KOH+ dark red, LA+ yellow, pseudoparenchymatous, cells forming textura angularis, intergrading with ascomatal wall. Ascomata supericial on welldeveloped stromata, aggregated in groups of up to 200, subglobose to globose, cupulate when dry, generally red to umber, apical region nearly black, KOH+ slightly purple, LA+ yellow, surface scurfy or scaly, yellowish green. Ascomatal surface cells forming textura globulosa or t. angularis. Ascomatal wall generally 20–70 μm thick, of two regions, but sometimes three regions around the apex. Asci widely clavate, increasing in size as ascospores mature, with inconspicuous ring at apex, 8-spored, ascospores mainly biseriate. Ascospores ellipsoidal, fusiform, long-cylindrical to iliform, hyaline, (0–)1-septate, multiseptate to muriform, smooth or striate, budding to produce hyaline, thin-walled, bacillar ascoconidia, that ill inside or outside of the asci. Anamorph on natural substrata: Stromata erumpent through epidermis or developing in stroma with ascomata, orange to bay. Pycnidia solitary or aggregated in groups, supericial on stroma or immersed, subglobose to irregularly discoidal, orange to red, cerebriformis or cupulate upon drying, KOH+ slightly darker, LA+ slightly yellow. Pycnidial wall up to 55 μm thick, of two regions. Conidiophores densely branched, generally verticillately 1–3 branched. Conidiogenous cells cylindrical to subulate, straight to slightly curved, enteroblastic, monophialidic. Intercalary phialides generally observed, bearing 1–3 terminal phialides, up to 6 μm long, similar to short acropleurogenous conidiophores. Sterile hyphae sometimes present. Conidia hyaline, ellipsoidal to oblong, sometimes slightly curved, non-septate. Anamorph in culture: Colony surface cottony with aerial mycelium, whitish to whitish yellow. Sporulation on SNA from lateral phialidic pegs abundant, basically up to 6 μm long, monophialidic. Conidiophores unbranched, sometimes verticillate, 1(–3)-branched, becoming loosely, but sometimes densely branched and becoming sporodochial. Conidiogenous cells enteroblastic, monophialidic, cylindrical, slightly tapering toward tip. Young conidia formed from monophialides on aerial, submerged, or repent hyphae, formed abundantly on slimy heads or sporodochia, ellipsoidal, oblong to long-cylindrical, hyaline, straight or slightly curved, rounded at both end, non-septate, smooth-walled. Mature conidia swollen, 0(–1)-septate, subglobose, ellipsoidal, oblong, long-cylindrical to allantoid, sometimes C- or dumbbell-shaped, hyaline, smooth. Habitat: On dead and living woody plants. Distribution: Asia, Caribbean, Central America, Europe, North America, South America. 105 Hirooka et al. Fig. 76A–M. Nectria tucumanensis on natural substrata (teleomorph). A–C. Perithecia on natural substrata; D. Median section of perithecium; E. Median section of perithecial apex; F. Median section of perithecial wall; G. Ascus; H, J, L. Ascospores in surface view; I, K, M. Ascospores in optical section. Scale bars: A = 1 mm; B, C = 500 µm; D = 100 µm; E–G = 50 µm; H–M = 10 µm. Notes: The genus Pleonectria is characterised by having ascomata with bright yellow scurf, ascospores that bud to produce ascoconidia inside or outside of the asci, and/or a pycnidial anamorph. Not all species have these three characteristics. For example, although P. austroamericana, P. ilicicola, P. missouriensis, and P. sinopica did not produce ascoconidia, they have bright yellow scurf on the ascomata and a pycnidial anamorph. Our phylogenetic inference shows that most species of Pleonectria are limited to one host genus or even one subgenus. The name Pleonectria was retrieved from synonymy with Nectria because it is the oldest name for these segregate species. Rossman et al. (1999) list both Gyrostroma and Zythiostroma as the anamorph of pycnidial species of Nectria. Only Zythiostroma is 106 retained as the name for the supericial pycnidial states of species of Pleonectria. The holotype specimen of the type of Gyrostroma, G. sinuosum, was examined and determined not to be a hypocrealean fungus. Pleonectria aquifolii (Fr.) Hirooka, Rossman & P. Chaverri, comb. nov. MycoBank MB519704. Figs 78–80. Basionym: Sphaeria aquifolii Fr., Elench. Fung. 2: 82. 1828. ≡ Nectria aquifolii (Fr.) Berk., Outl Brit. Fungol., p. 393. 1860. = Nectria inaurata Berk. & Broome, Ann. Mag. Nat. Hist., Ser. 2, 8: 467. 1854. ≡ Aponectria inaurata (Berk. & Broome) Sacc., Michelia 1: 296. 1878. = Nectria aquifolii (Fr.) Berk. var. appendiculata Feltgen, Vorstud. Pilzl. Luxemb. 3: 305. 1903. allantonectria, nectria, and Pleonectria Fig. 77A–C. Nectria tucumanensis on natural substrata (A–C teleomorph). A. Median section of mature perithecium; B. Ascus; C. Ascospores. Scale bars: A = 200 µm; B, C = 30 µm. Anamorph: zythiostroma-like. Teleomorph on natural substrata: Mycelium not visible around ascomata or on host. Stromata erumpent through epidermis, up to 3.0 mm high and 1.5 mm diam, bay, KOH+ dark red, LA+ yellow, pseudoparenchymatous, cells forming textura angularis, intergrading with ascomatal wall. Ascomata supericial on welldeveloped stromata, aggregated in groups of 3–46, subglobose to globose, 207–481 μm high × 197–464 μm diam, slightly cupulate upon drying, sometimes with only a depressed apical region, bay to scarlet, apical region slightly darker, KOH+ dark red, LA+ yellow, often surface scurfy, bright yellow to yellowish green. Ascomatal surface cells forming textura globulosa or t. angularis sometimes including bright yellow scurf, 5–13 μm diam, with pigmented, irregularly ca. 1.5–2.0 μm thickened walls. Ascomatal wall 37–65.6 μm thick, around apex to about 75 μm thick, of two regions, around apex of three regions: outer region 17–42 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, about 1.5 μm thick; middle region produced around apex, 6–15 μm thick, cells forming textura globulosa, 4–8 μm diam, walls pigmented, about 1.0 μm thick; inner region 10–33 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Asci clavate, increasing in size as ascospores mature, 60–115 × 6–12.5 μm, with inconspicuous ring at apex, 8-spored, ascospores biseriate above, uniseriate below. Ascospores ellipsoidal to fusiform, sometimes rounded at both ends, straight, hyaline, (0–)1-septate, (8–)8.9–11.1(–12.8) × (3.2–)4–5.4(–6.5) μm (n = 217), smooth, budding to produce hyaline, thin-walled, bacillar ascoconidia, (2.7–) 3.5–5.1(–7.2) × (1.0–)1.5–2.3(3.2) μm (n = 281), that ill asci. Anamorph in culture: After 7 d at 25 °C, colonies 34–37 mm (average 35 mm) diam. Colony surface slightly cottony with aerial mycelium, white to whitish yellow; aerial mycelium sparse, small white to whitish yellow sporodochial conidial masses produced after 3 wk; reverse white to slightly whitish yellow. Odour on PDA slightly putrid. Sporulation on SNA from lateral phialidic pegs somewhat rare, ellipsoidal and slightly tapering toward tip, monophialidic, rarely polyphialidic, 1.5– 3.3 μm long, 1.1–2.2 μm wide at base. Conidiophores rarely formed, unbranched, sometimes verticillate, 1–2(–3)-branched, becoming loosely to moderately densely branched, 6.7–24.1 μm long, 1.5–3.0 μm wide at base. Conidiogenous cells enteroblastic, monophialidic, rarely polyphialidic, cylindrical, slightly tapering toward tip or narrowly www.studiesinmycology.org lask-shaped with widest point in middle, 6.0–11.3 μm long, 1.7–3.0 μm wide at base. Young conidia formed from monophialides on aerial, submerged, or repent hyphae, formed abundantly on slimy heads or sporodochia, oblong to long cylindrical, hyaline, smooth, straight or slightly curved, rounded at both ends, non-septate, (3.1–) 3.7–5.0(–6.6) × (1.1–)1.4–2.1(–2.3) μm (n = 56), smooth-walled. Mature conidia swollen, 0-septate, ellipsoidal or oblong, hyaline, smooth, straight or slightly curved, rounded at both ends, rarely budding on media, (5.6–)6.7–9.3(–12.9) × (1.7–)2.1–2.9(–3.7) μm (n = 60). Chlamydospores intercalary, globose to subglobose, very rare, smooth, 6–13 µm. Ascomata and pycnidia not produced in culture. Habitat: On dead bark or twigs of Ilex aquifolium (Aquifoliaceae). Distribution: Europe (France, Germany, UK). Neotype of Pleonectria aquifolii designated herein: UK, Surrey, Ranmore Common Latitude, on twig of Ilex aquifolium, 16 Sep. 1934, E.W. Mason, Neotype BPI 550125, ex-neotype culture CBS 307.34. Additional type specimens examined: Type of Nectria inaurata: UK, Dover, Shooter’s Hill, on dead twigs of holly F. Currey, Holotype K 163332 ex herb. Broome ex herb. F. Currey. Type of Nectria aquifolii var. appendiculata: Luxembourg, Kockelscheuer, on twigs of Ilex aquifolium, Apr. 1902, Lectotype designated herein as illustration on packet LUX 042143. Additional specimens and isolates examined: France, on branch of Ilex aquifolium, summer, Mougeot & Nestler, Stirpes cryptogamicae, No. 879, BPI-bound exsiccati as Sphaeria aquifolii; summer, M. A. Libert PL. Crypt. Arduenna Fasc. as Nectria aquifolii, BPI 550123. Germany, Schleswig, Holstein, Sachsenwald, on Ilex aquifolium, 10 Apr. 1904, O. Jaap, Jaap, Fungi Selecti 53, BPI–bound exsiccati; Bottrop, Westphalen, on Ilex aquifolium, 12 Oct. 1923, H. Rupprecht, BPI 550126; Westfalen, on Ilex aquifolium, 21 Oct. 1923, H. Rupprecht, BPI 550128; Kr. Siegen, Hoher Wald Bai Burgholdinghausen, on Ilex aquifolium, 13 Apr. 1936, C.A. Ludwig, BPI 552407; Kölnischer wald bei Bottrop, on Ilex aquifolium, 21 Oct. 1923, H. Rupprecht, Sydow, Mycotheca Germanica 2138, BPI-bound exsiccati. UK, on Ilex aquifolium, C.E. Broome, Rabenhorst, Fungi europaei 46, BPI-bound exsiccati; Sphaeriacei Britannici Chas. B. Plowright, 1873, as Nectria inaurata, BPI 552405. Notes: Pleonectria aquifolii is presently restricted to one host and has been collected only in Europe. Although we have not observed the asexual state in the natural environment, this species produces typical anamorphic characteristics of Pleonectria in culture as do species closely related to P. aquifolii. Morphologically, Pleonectria aquifolii is almost identical with P. sinopica in shape of ascomata and ascospores. However, P. aquifolii produces budding ascospores and occurs on Ilex aquifolium while P. sinopica does not produce 107 Hirooka et al. Fig. 78A–J. Pleonectria aquifolii on natural substrata (A–I teleomorph, J. Packet of Nectria aquifolii var. appendiculata Lectotype: LUX 042143). A, B. Perithecia on natural substrata; C. Median section of perithecia on natural substrata; D. Median section of perithecial apex (black arrow); E. Median section of perithecial wall; F, G. Asci; H, I. Ascospores; J. Packet of Nectria aquifolii var. appendiculata Lectotype: LUX 042143. Scale bars: A, B = 1 mm; C = 100 µm; D, E = 50 µm; F, G = 20 µm; H, I = 10 µm. Fig. 79A–C. Pleonectria aquifolii on natural substrata (A–C teleomorph). A. Median section of mature perithecium; B. Ascus; C. Ascospores and ascocoidia. Scale bars: A = 100 µm; B, C = 10 µm. 108 allantonectria, nectria, and Pleonectria Fig. 80A–N. Anamorph of Pleonectria aquifolii in culture. A. Cultures after 7 d at 25 °C on PDA; B, C. Conidial mass on SNA; D–G. Lateral phialidic pegs and young conidia on SNA; H, I. Polyphialidic lateral phialidic pegs (black arrows) and young conidia on SNA; J. Conidiophores on SNA; K. Young conidia on SNA; L. Mature conidia on SNA; M. Budding mature conidia on SNA; N. Chlamydospore on SNA. Scale bars: A = 3 mm; B = 100 µm; C–E = 20 µm; F–N = 10 µm. budding ascospores and occurs on Hedera helix (Figs 78H, I, 79C). On SNA, P. aquifolii does not produce lask-shaped lateral phialidic pegs, but P. sinopica does (Fig. 80F). The ascomatal apex of P. aquifolii forms three regions as seen here and documented by Booth (1959) (Fig. 78D). This characteristic may be hard to ind because the middle region may be narrow in some www.studiesinmycology.org specimens especially in immature ascomata. Within Pleonectria a similar wall structure in the ascomatal apex also is found in P. boothii, P. coryli, and P. ilicicola. These four species clustered together in one monophyletic group supported by high BI PP, ML BP and MP BP suggesting that the structure of the ascomatal wall is an informative characteristic in Pleonectria (Fig. 2). 109 Hirooka et al. Fig. 81A–J. Pleonectria aurigera on natural substrata (teleomorph). A–D. Perithecia on natural substrata; E. Median section of perithecia on natural substrata; F. Median section of perithecial wall; G, H. Asci; I. Apex of ascus; J. Ascospores. Scale bars: A–D =500 µm; E, F = 100 µm; G = 20 µm; H–J = 10 µm. Pleonectria aquifolii was irst described by Fries (1828) as Sphaeria aquifolii. Although we communicated with B and UPS, both of which preserve Fries specimens, we could not ind the type specimen of this name. Thus, we neotypify N. aquifolii with BPI 550125. The holotype specimen of N. aquifolii var. appendiculata (LUX 042143) was not useful because no ascomata remain. We recognise this name as a synonym of P. aquifolii because the holotype specimen includes an image on its packet as illustrated in Fig. 78J. Thus, Nectria aquifolii var. appendiculata is lectotypiied with the Feltgen’s illustration on the holotype packet. Pleonectria aurigera (Berk. & Rav.) Hirooka, Rossman & P.Chaverri, comb. nov. MycoBank MB519705. Figs 81–83. Basionym: Nectria aurigera Berk. & Rav., Grevillea 4: 46. 1875. ≡ Calonectria aurigera (Berk. & Rav.) Sacc., Michelia 1: 308. 1878. Anamorph: zythiostroma-like. Teleomorph on natural substrata: Mycelium not visible around ascomata or on host. Stromata erumpent through epidermis, up to 1.5 mm high and 2.0 mm diam, sienna to umber, KOH+ dark purple, LA+ yellow, pseudoparenchymatous, cells forming textura 110 angularis, intergrading with ascomatal wall. Ascomata supericial on well-developed stromata, scattered to aggregated in groups of 4–22, subglobose to globose, 205–305 μm high × 215–280 μm diam, cupulate upon drying, sometimes with only depressed apical region, bay to scarlet, apical region slightly darker, KOH+ dark purple, LA+ yellow, smooth to roughened, sometimes surface scurfy, bright yellow to yellowish green. Ascomatal surface cells forming textura globulosa or t. angularis sometimes including bright yellow scurf, 3–7 μm diam, with pigmented, irregularly ca. 1.5 μm thickened walls. Ascomatal wall 35–50 μm thick, of two regions: outer region 20–35 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, about 1.5 μm thick; inner region 10–20 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Asci clavate, 55–90 × 10–20 μm, with inconspicuous ring at apex, 8-spored, biseriate above, uniseriate below. Ascospores ellipsoidal, oblong to allantoid, curved, with broadly rounded ends, (14.9–)17.0–20.8(–24.7) × (4.4–)5.0–6.4(–7.3) μm (n = 150), (3–6)7-septate, hyaline to slightly yellowish-brown, smooth. allantonectria, nectria, and Pleonectria Fig. 82A–C. Pleonectria aurigera on natural substrata (A–C teleomorph). A. Median section of mature perithecium; B. Ascus; C. Ascospores. Scale bars: A = 100 µm; B, C = 20 µm. Anamorph in culture: After 7 d at 25 °C, colonies 22–25 mm (average 24 mm) diam. Colony surface slightly cottony with aerial mycelium, white to whitish yellow; aerial mycelium sometimes forming small white to whitish yellow sporodochial conidial masses after 3 wk; reverse white to whitish yellow. Odour on PDA slightly putrid. Sporulation on SNA from lateral phialidic pegs abundant, narrowly or widely lask-shaped, rarely strongly curved, 1.5–6.5 μm long, 1.1–2.5 μm wide at base. Sporodochial lateral phialidic pegs abundant, subglobose or ovate, 2.5–4.5 μm long, 2.1–3.5 μm wide at base. Aerial conidiophores and sporodochial conidiophores not produced in culture. Young conidia formed from monophialides on aerial, submerged, or repent hyphae, formed abundantly on slimy heads or sporodochia, oblong to long-cylindrical, hyaline, smooth, straight or slightly curved, rounded at both ends, non-septate, (2.7–)3.2–4.2(–4.7) × (1.1–)1.3–1.7(–2.1) μm (n = 50), smoothwalled. Mature conidia swollen, 0-septate, long-cylindrical, hyaline, smooth, slightly curved, rounded at both ends, (7.2–)8.7–11.3(– 12.7) × (1.3–)1.6–2.2(–2.9) μm (n = 50). Chlamydospores, pycnidia and ascomata not produced in culture. Habitat: On bark dead deciduous trees, especially Oleaceae (Chionanthus virginicus, Fraxinus americana, F. excelsior, F. nigra., Fraxinus sp., Jasminum mesnyi, J. primulinum, Ligustrum japonicum, L. lucidum, Ligustrum sp.) and Liquidambar sp.?. Distribution: Europe (France), North America (USA). Lectotype of Pleonectria aurigera designated herein: USA, South Carolina, on bark of Fraxinus sp., Ravenel 1830, Lectotype BPI 550167, Isolectotypes BPI 550168, BPI 550169, FH, slide at IMI based on Rossman (1983). Additional specimens and isolates examined: France, on dead twigs of Fraxinus excelsior, Jun 2001, C. Lechat, BPI 841465, culture CBS 109874 = A.R. 3717, USA, Alabama, Tuskegee, on Fraxinus americana, 17 Aug. 1935, G.W. Carver, BPI 550170; Alabama, Tuskegee, on Fraxinus nigra, 28 Nov. 1935, G.W. Carver, BPI 550164; Alabama, Tuskegee, on Jasminum mesnyi, 1 Jan. 1936, G.W. Carver, BPI 550165A, BPI 550165B; Alabama, Tuskegee, on Jasminum primulinum, 15 Feb. 1936, G.W. Carver, BPI 550163; Alabama, Tuskegee, on Ligustrum japonicum, 4 Jan. 1936, G.W. Carver, BPI 550160; Alabama, Tuskegee, on Ligustrum lucidum, 12 Jan. 1936, G.W. Carver, BPI 550161; Alabama, Tuskegee, on Ligustrum sp., 17 Aug. 1935, G.W. Carver, BPI 550162; Alabama, on Liquidambar sp., Peters, K 163340 ex herb. Berkeley 6082 as Thyronectria pseudotrichia; Delaware, Wilmington, on Chionanthus virginicus, Feb. 5? 1890, NY; New Jersey, Newield, on Chionanthus www.studiesinmycology.org virginicus, Ellis, North American Fungi, 79, BPI 632090; New Jersey, Vineland, on Chionanthus virginicus, 12 Nov. 1876, J.B. Ellis, BPI 550158; on Chionanthus virginicus, Nov. 1876, J.B. Ellis, BPI 550159; South Carolina, Charleston, on Fraxinus sp., 29 Oct. 1923, C.L. Shear, BPI 550166B; South Carolina, on Fraxinus sp., H.W. Ravenel, K 163341 ex herb. Berkeley 1549 as Thyronectria pseudotrichia. Notes: Within Pleonectria, P. aurigera can be easily identiied by its multiseptate ascospores (Figs 81J, 82C). In culture, this species is distinguished from the other anamorphs of Pleonectria in lacking conidiophores typical of Pleonectria. Pleonectria aurigera was described and illustrated by Rossman (1983 as Nectria aurigera) who reported that, on the label of his North American Fungi 79, J.B. Ellis noted that Sphaeropsis diatrypea Cooke & Ellis (Botryosphaeriaceae, Botryosphaeriales, Dothideomycetes) could be the "stylosporous state", i.e. the anamorph of P. aurigera. Although we could not ind the anamorph of the fungus in the natural environment, we suspect that the anamorph of this fungus is zythiostroma-like for two reasons. First, in culture P. aurigera produces abundant lateral phialidic pegs, which are typical anamorphic characteristics of Pleonectria (Fig. 83B–K). Second, based on our phylogeny, P. aurigera is basal in the Pleonectria clade (Figs 1, 2). Rossman (1983) listed Ravenel 1830 as an isotype preserved in FH and mentioned that the holotype is presumably in K; however, we could not ind the holotype there. Therefore, BPI 550167, another specimen of Ravenel 1830, is herein designated the lectotype. Pleonectria austroamericana Speg., Anales Mus. Nac. Hist. Nat. Buenos Aires 10: 22. 1880. Figs 84–86. ≡ Nectria austroamericana (Speg.) Rossman, Mem. New York Bot. Gard. 29: 257. 1989. ≡ Thyronectria austroamericana (Speg.) Seeler, J. Arnold Arbor. 21: 405. 1940. = Pleonectria denigrata G. Winter, Bull. Torrey Bot. Club 10: 49. 1883. ≡ Thyronectria denigrata (G. Winter) Seaver, Mycologia 1: 204. 1909. = Pleonectria guaranitica Speg., Anales Mus. Nac. Hist. Nat. Buenos Aires 19: 44. 1885. = Pleonectria nigropapillata Starbäck, Ark. Bot. 2: 13. 1904. Anamorph: zythiostroma-like. ≡ Gyrostroma austroamericanum Seeler, J. Arnold Arbor. 21: 447. 1940. Teleomorph on natural substrata: Ascomata and pycnidia generally formed on same or discrete stroma. Mycelium not visible around ascomata or on host. Stromata erumpent through epidermis, up to 111 Hirooka et al. Fig. 83A–M. Anamorph of Pleonectria aurigera in culture. A. Cultures after 7 d at 25 °C on PDA; B. Conidial mass on SNA; C–H. Lateral phialidic pegs and young conidia on SNA; I–K. Sporodochial lateral phialidic pegs and young conidia on SNA; L. Young conidia on SNA; M. Young and mature conidia on SNA. Scale bars: A = 3 mm; B = 100 µm; C–F, I–M = 10 µm; G, H = 5 µm. 2.5 mm high and 7.0 mm diam, bright yellow to umber, KOH+ slightly darker or sometimes negative, LA+ slightly yellow or sometimes negative, pseudoparenchymatous, cells forming textura prismatica to t. globulosa, intergrading with ascomatal wall. Ascomata supericial or immersed on well-developed stromata, aggregated in groups of 5–200, subglobose to globose, 240–400 μm high × 220–370 μm diam, yellowish brown or reddish grey with dark often black, shining apical region, not collapsing or rarely cupulate when dry, KOH+ slightly darker, LA+ slightly yellow, smooth to slightly roughened. Ascomatal surface cells forming textura globulosa or t. angularis sometimes including bright yellow scurf, 3–9 μm diam, with pigmented, irregularly ca. 1.0 μm thickened walls. Ascomatal wall 40–65 μm thick, around apex to about 100 μm thick, fully covered by bright yellow to umber scurf, of two regions: outer region 25–40 μm thick, not intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, about 1.5 μm thick; inner region 10–20 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Asci narrowly clavate, 60–100 × 7–17 μm, with inconspicuous ring at apex, 8-spored, ascospores, uniseriate or rarely biseriate above. Ascospores subglobose to 112 ellipsoidal, muriform, with 1–2(–3) transverse septa and usually 1 longitudinal septum or 2 angular septae, (9.7–)10.0–12.6(–14.8) × (4.8–)6.0–7.6(–10.2) μm (n = 400), hyaline to pale greenish yellow, smooth. Anamorph on natural substrata: Stromata erumpent through epidermis or developing in stroma with ascomata, orange to umber. Pycnidia dimorphic, supericial and immersed in stroma Supericial pycnidia multilocular, eustromatic, aggregated in groups of 3–9, 200–450 mm μm, 200–520 mm diam, yellowish brown or reddish grey, KOH+ slightly darker, LA+ slightly yellow. Supericial pycnidial wall 15–25 μm thick, of two regions: outer region 10–20 μm thick, intergrading with stroma, cells forming textura globulosa, walls pigmented, about 1.5 μm thick; inner region 5–10 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Immersed pycnidia multilocular, eustromatic, embedded in a chink between ascomata or pycnidia at bases, solitary or aggregated in groups of 3-5, irregular multiple chambers with shared walls, 75–173 μm high × 63–177 μm diam, KOH+ darker, LA+ yellow. Immersed pycnidial wall 6–16 μm thick, allantonectria, nectria, and Pleonectria Fig. 84A–Q. Pleonectria austroamericana on natural substrata (A–E teleomorph and anamorph, F–I teleomorph, J–Q anamorph). A–D. Perithecia and immersed pycnidia on natural substrata; E. Median section of perithecia (black arrows) and pycnidia (white arrows) on natural substrata; F, G. Median section of perithecial wall (black regions) and abundant yellow scurf (white regions); H. Asci; I. Ascospores; J. Supericial pycnidia on natural substrata; K, L. Median section of supericial pycnidia; M–O, Sterile hyphae and conidiophores on natural substrata; P. Conidiophores and intercalary phialides (black arrow) on natural substrata; Q. Conidia on natural substrata. Scale bars: A–D, J =1 mm; E, K, L = 100 µm; F–H, M–O = 50 µm; I, P, Q = 20 µm. of 1–2 region, cells forming textura prismatica, about 1.0 μm thick, elongate, thin-walled, hyaline cells. Conidiophores loosely to densely branched, generally 1–4 branched, 18–35 μm long, www.studiesinmycology.org 1.5–2.5 μm wide. Conidiogenous cells cylindrical to subulate, straight to slightly curved, enteroblastic, monophialidic, 10–30 × 1.3–2.0 μm. Intercalary phialides sometimes observed, bearing 113 Hirooka et al. Fig. 85A–E. Pleonectria austroamericana on natural substrata (A teleomorph and anamorph, B, C teleomorph, D, E anamorph). A. Median section of mature perithecium and pycnidia; B. Ascus; C. Ascospores; D. Conidia; E. Sterile hypha and conidiophores. Scale bars: A = 200 µm; B–E = 10 µm. one terminal phialides, up to 4 μm long. Sterile hyphae mixed with phialides, acicular, straight or usually curved, unbranched, sometimes 1–3 branched, septate, 55–140 μm long, 1.0–2.0 μm wide. Conidia hyaline, ellipsoidal, obovate or oblong-ellipsoidal, sometimes slightly curved, non-septate, (1.7–)2.3–3.1(–3.6) × (1.0–)1.3–1.9(–2.5) μm (n = 350). Anamorph in culture: After 7 d at 25 °C, colonies 30–50 mm (average 36 mm) diam. Colony surface sometimes wavy, cottony with aerial mycelium, whitish yellow to yellow; aerial mycelium developed, restricted to centre, rarely small yellow sporodochial conidial masses produced after 3 wk; reverse whitish yellow to yellow in centre and white at margin. Odour on PDA slightly fruity. Sporulation on SNA from lateral phialidic pegs not abundant, ellipsoidal, slightly tapering toward tip or rarely narrowly lask-shaped, 2.0–4.0 μm long, 1.4–2.0 μm wide at base. Conidiophores abundantly formed, unbranched, sometimes verticillate, 1(–2)-branched, becoming loosely to moderately densely branched, 9.1–21.9 μm long, 1.3–2.7 μm wide at base. Conidiogenous cells enteroblastic, monophialidic, cylindrical, slightly tapering toward tip or narrowly lask-shaped, 3.5–7.7 μm long, 1.4–2.7 μm wide at base. Young conidia formed from monophialides on aerial, submerged, or repent hyphae, formed abundantly on slimy heads, ellipsoidal, oblong to cylindrical, hyaline, smooth, straight or slightly curved, rounded at both ends, non-septate, (2.3–)2.9–3.5(–4.6) × (1.1–) 1.3–1.7(–1.9) μm (n = 50). Mature conidia swollen, 0–1-septate, oblong or ellipsoidal, hyaline, straight or slightly curved, rounded at both ends, not germinating and budding on media, (4.0–)4.4–6.0(–7.0) × (2.1–)2.4–3.2(–3.5) μm (n = 50). Pycnidia produced in PDA after 1–2 month (CBS 126114). Chlamydospores and ascomata not produced in culture. 114 Habitat: On newly killed and weakened Fabaceae (Acacia sp., Albizia julibrissin, Cerasus sp., Gleditsia japonica, Gleditsia sp., Gleditsia triacanthos, Gleditsia triacanthos var. inermis, Mimosa sp., Robinia sp., Robinia pseudoacacia). Distribution: North America (USA), South America (Argentina, Brazil, Paraguay). Holotype of Pleonectria austroamericana: Argentina, Palermo, Buenos Airos, on peeling old bark of Acacia sp., Mar. 1880, C. Spegazzini, Holotype LPS 960. Additional type specimens examined: Type of Pleonectria denigrata: USA, Kentucky, Lexington, on dead twigs of Gleditsia triacanthos, Jun. 1882, W.A. Kellermann, Lectotype designated herein, Rabenhorst, Fungi europaei, No. 2948, BPI 550196; Isolectotype Rabenhorst, Fungi europaei, No. 2948, BPI-bound exsiccati, F 84471 (S), BPI 550179, Ellis, North American fungi, No. 1334, BPI-bound exsiccati. Type of Pleonectria guaranitica: Brazil, Guarapi (possibly Guarapari), on bark of decaying logs, 2 Aug. 1881, Balansa, Holotype LPS 1624. Type of Pleonectria nigropapillata: Paraguay, San Antonio prope Asuncion, on bark, 20 Jul. 1893, C. Lindman, Lectotype designated herein, F 6220 (S), Isolectotypes F 6221 (S); F 61157 (S). Additional specimens and isolates examined: Argentina, Palermo, Buenos Airos, on bark chip, NY 01013428. USA, Delaware, Wilmington, on Gleditsia triacanthos, Oct. 1889, A. Commons, BPI 550180; Iowa, Woodbine, on Gleditsia triacanthos, 23 Nov. 1909, C.J. Humphrey, C.W. Edgerton, BPI 550200; Iowa, Woodbine, on Gleditsia triacanthos, 23 Nov. 1909, C.J. Hurnphrey, BPI 632517; Kansas, Strong City, on Gleditsia triacanthos, 7 Nov. 1910, G.G. Hedgcock, BPI 550188; Kentucky, Lexington, on Gleditsia sp., 20 Jun. 1882, BPI 550178; Louisiana, Pointe A La Hache, on Gleditsia sp., 11 Nov. 1886, A.B. Langlois, BPI 550192; Louisiana, Monroe, 22 Feb. 1914, C.L. Shear, BPI 550675 as Nectria berolinensis;Louisiana, Sterlington, on Gleditsia triacanthos, 2 Oct. 1934, C.L. Shear, BPI 550203; Missouri, Palmyra, on Gleditsia triacanthos, 11 May 1936, J.R. Hansbrough, BPI 550187; Nebraska, Hastings, on Gleditsia triacanthos, 24 May 1910, J.M. Bates, BPI 550193; Nebraska, Lincoln, on Gleditsia sp., 19 Feb. 1899, L.J. Sheldon, BPI 550190; Nebraska, Hastings, on Gleditsia triacanthos, 24 May 1910, J.M. Bates, BPI 550194; North Carolina, New Bern, on Albizia julibrissin, 23 Jun. 1938, G.G. Hedgecock, BPI allantonectria, nectria, and Pleonectria Fig. 86A–K. Anamorph of Pleonectria austroamericana in culture. A. Cultures after 7 d at 25 °C on PDA; B–D. Lateral phialidic pegs and young conidia on SNA; E–G. Conidiophores and young conidia on SNA; H, I. Young and mature conidia on SNA; J, K. Pycnidia on SNA. Scale bars: A = 3 mm; B–I = 10 µm; J = 1 mm; K = 300 µm. 550184; North Carolina, Wake Co., on Robinia pseudoacacia, Jun. 2000, L. Grand, Vernia, NCSU, culture CBS 125135 = A.R. 3492; Kentucky. Lexington, on Gleditsia triacanthos, Jun. 1892, L. Kellerman, BPI 550197; Kansas, Rooks Co., on Gleditsia triacanthos, May 1899, E. Bartholomew, BPI 550198; Massachusetts, Nantucket, on Gleditsia triacanthos, 25 Des. 1936, E.V. Seeler, BPI 550199; Missouri, Palmyra, on Gleditsia triacanthos, 11 May 1936, J.R. Hansbrough, BPI 550202; New Jersey, Somerset Co., Manville. Near, on trunk of Gleditsia triacanthos var. inermis, 30 Sep. 2000, G. Bills, BPI 748478; Georgia, Athens, on Mimosa sp., 1 Apr. 1942, G. Thompson, W.R. Jackson, BPI 550174; Indiana, Union County, on Robinia sp., 26 Oct. 1918, Fink, BPI 550183; Kansas, Manhattan, Nov. 1884, W.A. Kellerman, BPI 550171; Nebraska, Nov. 1899, L. Chambers, J.L. Sheldon, BPI 550172; Nebraska, Lincoln, 17 Oct. 1929, Lieneman, BPI 550173; Indiana, Union County, 10 Oct. 1918, F. Bruce, BPI 550173; Georgia, Athens, on Albizia julibrissin, 5 Aug. 1943, G.H. Hepting, BPI 632496A; Georgia, Athens, on Albizia julibrissin, 5 Aug. 1943, G.H. Hepting, BPI 632496B; Virginia, Stratford, on Gleditsia triacanthos, 30 Sep. 1947, C.D. Winn, BPI 632521; Kansas, Columbus, on Gleditsia triacanthos, 26 May 1941, R.W. Davidson, BPI 632522; North Carolina, Randolph Co., Asheboro. N.C. Zoo, on Gleditsia triacanthos, 19 Aug. 1999, L.F. Grand, BPI 746395, culture CBS 126114 = A.R. 2808 = A.R. 2809; New Jersey, Oldwick, Hunterdon Co. Fox Hill road, near, on dead trunk of Gleditsia triacanthos, 10 Dec. 1994, G. Bills, BPI 802825; Nebraska, Lincoln, East of Asylum Woods, on Gleditsia triacanthos, 17 Oct. 1929, C. Lieneman, BPI 859030; Nebraska, on Gleditsia triacanthos, 24 May 1910, J.M. Bates, BPI 632056; Massachusetts, Nantucket Island, on trunk of large dead Gleditsia triacanthos, 25 Oct. 1936, E.V. Seeler Jr., BPI 876728; www.studiesinmycology.org Massachusetts. Nantucket Co., on Gleditsia triacanthos, 17 Oct. 1936, E.V. Seeler Jr., BPI 877224; New Jersey, Wilmington, Delaware, on Gleditsia triacanthos, Oct. 1889, A. Commons, Ellis & Everhart, North American Fungi. No 2372, BPI-bound exsiccati; Nebraska, Hastings, on Gleditsia triacanthos, 24 May 1910, J.M. Bates, Bartholomew, Fungi Columbiani. No 3248, BPI-bound exsiccati; North Carolina, Randolph County, Asheboro, N.C. Zoo, on Gleditsia triacanthos, 19 Aug. 1999, L. Grand, NCSU = BPI 746395, culture CBS 125134 = A.R. 3491; South Carolina, Clemson College, on Gleditsia triacanthos, 12 Oct. 1926, D.B. Rosenkrans, BPI 550201; West Virginia, Morgantown, on Gleditsia triacanthos, 1 Apr. 1909, L.J. Sheldon, BPI 550195. Unknown, on Cerasus sp., S.E.J., BPI 550185; on Gleditsia japonica, Sep. 1938, E.V. Seeler Jr., BPI 550186; on Gleditsia sp., 23 Aug. 1901, BPI 550175; on Gleditsia sp., 23 Aug. 1901, BPI 550176; on Gleditsia sp., 23 Aug. 1901, BPI 550177; on Gleditsia sp., 23 Aug. 1901, BPI 550181; on Gleditsia sp., 06 Des. 1896, BPI 550189; on Gleditsia sp., 29 Feb. 1904, BPI 550191; on Albizia julibrissin, 20 Apr. 1942, BPI 632523; on Albizia julibrissin, 15 Apr. 1942, Crandall?, BPI 632519. Notes: Pleonectria austroamericana is most often restricted to Fabaceae and has been collected in North and South America only. This species is a plant pathogenic fungus causing honey locust canker disease in the midwestern United States (Seeler 1939, 1940a, 1940b). Pleonectria austroamericana is the subject of 115 Hirooka et al. several studies of ontogeny (Subramanian & Bhat 1985), taxonomy (Bedker & Wingield 1983), and biology and pathogenicity (Crowe et al. 1982, Roth 1982, Jacobi 1984, Rifle & Peterson 1986), because of its peculiar morphological characters. This species has a unique morphology in the genus Pleonectria as well as nectria-like fungi. Hundreds of ascomata are aggregated and the ascomatal walls are fully covered by abundant bright yellow to umber scurf (Figs 84F, G, 85A). Based on our phylogenetic tree, this species clusters in a clade nearest to P. pyrrhochlora, P. virens, and P. zanthoxyli, all of which possess ascomata covered by abundant bright yellow to yellowish green scurf (Figs 1, 2). The anamorph of P. austroamericana shares pycnidial characters with P. sphaerospora, but they differ in the presence/ absence of sterile hyphae mixed with phialides and size and shape of conidia. In culture, P. austroamericana produces relatively small mature conidia, < 5 μm long, similar to only two species in Pleonectria, P. austroamericana and P. aurigera, but the anamorph of P. austroamericana is distinguishable from P. aurigera in the shape of the lateral phialidic pegs, rarely narrowly lask-shaped in P. austroamericana and widely lask-shaped in P. aurigera (Fig. 86B, C). According to original description of Pleonectria denigrata (Winter 1883), the holotype of this fungus is Kellermann No. 9. We observed several exsiccati of this fungus preserved in BPI and S; however, Kellermann No. 9 was not found on any packets; thus, Rabenhorst-Winter, Fungi europaei, No. 2948 (BPI-bound exsiccati) with abundant ascomata and pycnidia is designated the lectotype herein. In the original description of Pleonectria nigropapillata, a synonym of P. austroamericana, a single type specimen was not mentioned. Because F 6220 (S) has more ascomata than the other type specimens (F 6221 & F 61157), we designate a lectoype with F 6220 herein and the other specimens (F 6221 & F 61157) are considered isolectotypes. Pleonectria balsamea (Cooke & Peck) Vassilyeva, Plantae non Vasc., Fungi et Bryopsidae, Orientis Extremi Rossica, Fungi, Pyrenomycetidae et Loculoascomycetidae 4: 167. 1998. Figs 87–89. Basionym: Nectria balsamea Cooke & Peck, in Cooke, Grevillea 12: 81. 1884. ≡ Calonectria balsamea (Cooke & Peck) Sacc., Syll. Fung. 9: 986. 1891. ≡ Thyronectria balsamea (Cooke & Peck) Seeler, J. Arnold Arbor. 21: 442. 1940. ≡ Scoleconectria balsamea (Cooke & Peck) Seaver, Mycologia 1: 200. 1909. = Pleonectria calonectrioides Wollenw., Z. Parasitenk. (Berlin) 3: 493. 1931. Anamorph: zythiostroma-like. Teleomorph on natural substrata: Ascomata and pycnidia sometimes formed on same or discrete stroma. Mycelium not visible around ascomata or on host. Stromata erumpent through epidermis, up to 1.0 mm high and 1.5 mm diam, orange to sienna, KOH+ dark purple, LA+ yellow, pseudoparenchymatous, cells forming textura angularis, intergrading with ascomatal wall. Ascomata supericial on well-developed stromata, scattered to aggregated in groups of 3–34, subglobose to globose, 162–338 μm high × 200–382 μm diam, red to bay, cupulate upon drying, sometimes with only a depressed apical region, apical region slightly darker, KOH+ purple, LA+ yellow, surface usually scurfy bright yellow or yellowish green. Ascomatal surface cells forming textura globulosa or t. angularis sometimes including bright yellow scurf, 3–13 μm diam, with pigmented, uniformly or rarely irregularly ca. 1.5 μm thickened 116 walls. Ascomatal wall 38–57 μm thick, of two regions: outer region 21–44 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, about 1.5 μm thick; inner region 8–18 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Asci narrowly clavate, increasing in size as ascospores mature, 58–139 × 6.7–17.5 μm, with inconspicuous ring at apex, 8-spored, mainly biseriate. Ascospores ellipsoidal, fusiform to long-fusiform, cylindrical, muriform, with 5–9 transverse septa and one longitudinal septum, hyaline, (16.0–)19.7–23.9(– 28.6) × (3.0–)4.0–5.6(–6.8) μm (n = 167), smooth, budding to produce hyaline, thin-walled, tapering apex, slightly curved, bacillar ascoconidia, (1.3–)2.2–3.4(–4.7) × (0.9–)1.2–2.0(–3.2) μm (n = 206), that ill asci. Anamorph on natural substrata: Stromata erumpent through epidermis, orange to red. Pycnidia solitary or aggregated in groups of 3–15, supericial on stroma or rarely immersed at base, subglobose, smooth to slightly rough, cerebriformis or cupulate upon drying, 108–288 μm, 160–413 μm diam, red to umber, KOH+ slightly darker, LA+ slightly yellow. Pycnidial wall 17–41 μm thick, of two regions: outer region 8–12 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, about 1.5 μm thick; inner region 14–23 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Conidiophores densely branched, generally with 1–4 branched, 11–40 μm long, 1.1–3.2 μm wide. Conidiogenous cells cylindrical to subulate, straight to slightly curved, enteroblastic, monophialidic, 8–15 × 1.0–2.5 μm. Intercalary phialides generally observed, bearing 1–3 terminal phialides, up to 6 μm long, similar to short acropleurogenous conidiophores. Sterile hyphae absent. Conidia hyaline, ellipsoidal to oblong, sometimes slightly curved, nonseptate, (1.4–)2.5–3.9(–5.0) × (0.9–)1.2–2.0(–2.6) μm (n = 150). Anamorph in culture: After 7 d at 25 °C, colonies 50–78 mm (average 67 mm) diam. Colony surface cottony with aerial mycelium, whitish to whitish saffron; aerial mycelium usually developed, often small white sporodochial conidial masses produced after 2 wk; reverse white to slightly whitish yellow. Odour on PDA slightly putrid. Sporulation on SNA from lateral phialidic pegs abundant, ellipsoidal and slightly tapering toward tip or lask-shaped, 2.5–6.5 μm long, 1.1–4.2 μm wide at base, monophialidic. Conidiophores sometimes formed, unbranched, sometimes verticillate, 1(–2)-branched, becoming loosely to moderately densely branched, 9.2–28.4 μm long, 1.2–3.2 μm wide at base. Conidiogenous cells enteroblastic, monophialidic, cylindrical and slightly tapering toward tip or narrowly lask-shaped, 2.2–8.8 μm long, 1.4–3.0 μm wide at base. Young conidia formed from monophialides on aerial, submerged, or repent hyphae, formed abundantly on slimy heads or sporodochia, ellipsoidal, oblong, hyaline, straight or slightly curved , rounded at both ends, non-septate, (3.4–)3.9–5.1(–6.4) × (1.2–)1.5–1.9(–2.5) μm (n = 150), smooth-walled. Mature conidia swollen, 0-septate, subglobose to ellipsoidal, hyaline, smooth, striate, rounded at both ends, (6.1–)6.4–7.2(–9.0) × (2.2–)2.5–3.3(–3.4) μm (n = 150). Pycnidia produced in PDA after 1–2 months (A.R. 4568, A.R. 3493, MAFF 241458, A.R. 3495). Ascomata and chlamydospores not produced in SNA and PDA. Habitat: On bark and twigs of Abies balsamea and A. fraseri (Pinaceae). Distribution: North America (Canada, USA). allantonectria, nectria, and Pleonectria Fig. 87A–S. Pleonectria balsamea on natural substrata (A, B teleomorph and anamorph, C–J teleomorph, K–S anamorph). A. B. Perithecia (black arrows) and pycnidia (white arrows) on natural substrata; C, D. Perithecia on natural substrata; E. Median section of perithecium on natural substrata; F. Median section of perithecial wall; G, H. Asci; I, J. Ascospores; K, L. Supericial pycnidia on natural substrata; M. Median section of supericial pycnidia; N. Median section of supericial pycnidial wall; O–R. Conidiophores and intercalary phialides (black arrow) on natural substrata; S. Conidia on natural substrata. Scale bars: A =1 mm; B–D, K, L = 500 µm; E, M = 100 µm; F–H, N, O = 50 µm; I, J, P, Q = 20 µm; R, S = 10 µm. www.studiesinmycology.org 117 Hirooka et al. Fig. 88A–F. Pleonectria balsamea on natural substrata (A–C teleomorph, D–F anamorph). A. Median section of mature perithecium; B. Ascus; C. Ascospores; D. Median section of mature Pycnidium; E. Conidia; F. Conidiophores. Scale bars: A, D = 100 µm; B, C = 20 µm; E, F = 10 µm. Lectotype of Pleonectria balsamea designated herein: USA, New York, North Elba, on dead branches of Abies balsamea, Aug. 1872, C.H. Peck, Lectotype NYS 417, Isolectotype NYS 418. Additional type specimens examined: Type of Pleonectria calonectrioides: Canada, Ontario, Clarksons Island, Lake Temagami, on Abies balsamea, 21 Jun. 1928, J.H. Faull, Neotype designated herein, BPI 632630. Additional specimens and isolates examined: Canada, Ontario, Holland River Marsh, York Co., on Abies balsame, 06 May 1936, D.H. Linder, BPI 1107510; Ontario, Oakland, on Abies balsame, May 1915, J. Dearness, BPI 1107512; Ontario, on Abies balsame, 15 Jul. 1922, J.H. Faull, BPI 550209; Ontario, Stittsville, 13 Lucas Lane, 45 11.9 N 75 58.8 W, on Abies balsamea, 01 Feb. 2009, K.A. Seifert, BPI 881046, culture CBS 129371 = A.R. 4568 = Y.H. 09-01; Ontario, Guelph., on Abies balsamea, 15 Sep. 1930, J.H. Faull, BPI 632629 as Ophionectria scolecospora; Ontario, Bear Island, Lake Temagami, on Abies balsamea, 25 Jul. 1920, J.H. Faull, BPI 632631 as Ophionectria scolecospora; Ontario, Bear Island, Lake Temagami, on Abies balsamea, Aug. 1928, J.H. Faull, BPI 632632 as Ophionectria scolecospora; Quebec, Duchesnay, vicinity of Forest Rangers’ Schoo, on Abies balsamae, 26 Aug. 1938, J.A. Stevenson, BPI 1107509; Quebec, Dorothee Ste., Ile Jesus, on Abies balsamea, 26 Aug. 1941, R.F. Cain, BPI 632758 as Scoleconectria cucurbitula. USA, Maine, Westbrook, on Abies balsamea, Jun. 1897, P.L. Ricker, BPI 551623 as Nectria cucurbitula; Michigan, Michigamme, Van Riper State Park, River Trail, 46º 31’ 802” N, 88º 00’ 028” W, elev. 277 m, on Abies balsamea, 30 May 2010, Y. Hirooka, D. Walker, BPI 881047, culture CBS 129159 = Y.H. 10-07b; Michigan, Grand Marais, Grand Marais Truck Trail, 46º 40’ 621” N, 85º 45’ 605” W, elev. 177 m, on Abies balsamea, 29 May 2010, Y. Hirooka, D. Walker, BPI 881048, culture CBS 129429 = Y.H. 10-11f; Michigan, Grand Marais, Grand Sable Lake, 46º 40’ 025” N, 86º 00’ 776” W, elev. 220 m, on Abies balsamea, 29 May 2010, Y. Hirooka, D. Walker, BPI 881049, culture CBS 129428 = Y.H. 10-10e; Michigan, Houghton, Jasberg St., 47º 08’ 341” N, 88º 37’ 331” W, elev. 191 m, on Abies balsamea, 31 May 2010, Y. Hirooka, D. Walker, BPI 881050, culture CBS 129160 = Y.H. 10-08c; Michigan, Grand Marais, Au Sable Point Trail, 46º 38’ 283” N, 86º 06’ 675” W, elev. 242 m, on Abies balsamea, 30 May 2010, Y. Hirooka, D. Walker, BPI 881051, culture CBS 129340 = Y.H. 10-13h; New York, Saranac Inn, on Abies balsame, 03 Jun. 1910, P. Spaulding, BPI 550135; New Hampshire. Coos Co., Cherry Mountain. near Twin Mountain, on Abies balsame, 19 Jun. 1932, BPI 550136; North Carolina, Alleghany Co., Sparta. ca. 8 miles W, on Abies fraseri, 04 Aug. 1995, L.F. Grand, BPI 746321; North Carolina, Wautaga Co., Boone. Christmas tree plantation owned by Bob Flanagan, on Abies fraseri, 29 Jun. 1999, L.F. Grand, BPI 746322, culture CBS 118 125132 = A.R. 2798; North Carolina, Wautaga Co., Boone. Christmas tree plantation owned by Bob Flanagan, on Abies fraseri, 29 Jun. 1999, L.F. Grand, BPI 746323; North Carolina, Watauga Co., Phytophthora study plot #93, on Abies fraseri, 07 Jun. 2000, L.F. Grand, BPI 747277; North Carolina, Avery Co., on Abies fraseri, 06 Jun. 2000, L.F. Grand, BPI 747278; North Carolina, Jackson Co., Phytophthora survey ield #87 off SR 1129, Big Ridge Rd., on Abies fraseri, 13 Jun. 2000, L.F. Grand, BPI 747279; North Carolina, Avery Co., Phytophthora survey ield, Pitts plantation, on Abies fraseri, 06 Jun. 2000, L.F. Grand, BPI 747281; North Carolina, Avery Co., on Abies fraseri, 06 Jun. 2000, L.F. Grand, BPI 747282; North Carolina, Avery Co. Phytophthora survey plot #85, on Abies fraseri, 08 Jun. 2000, L.F. Grand, BPI 747283; North Carolina, Avery Co. Phytophthora survey plot #82, on Abies fraseri, 08 Jun. 2000, L.F. Grand, BPI 747284; North Carolina, Avery Co., Phytophthora survey plot along N. Toe River, on Abies fraseri, 06 Jun. 2000, L.F. Grand, BPI 747285; Maine, Piscataquis Co., Medford township, on Bark, 28 Aug. 1905, W.A. Murrill, NY no. 1842; North Carolina, Haywoos Co., ¼ mile SW of Richland Balsam overlook, on Abies fraseri, 30 Jun. 2000, L.F. Grand, NCSU, culture CBS 125137 = A.R. 3495; North Carilina, Haywood Co., ¼ mile SW of Richland Balsam overlook (Blue Ridfe Parkway), on Abies fraseri, 30 Jun. 2000, L. Grand, Vernia, NCSU, culture CBS 125136 = A.R. 3493; New York, North Creek, on Abies balsamea, 15 Aug. 1919, C.L. Shear, BPI 632633 as Ophionectria scolecospora; New York, North Ellis, Essex Co., on Abies balsamea, C. Peck, BPI 629752. Unknown: on Abies balsamea, ex Herbarium of W. H. Seaman, BPI 1108889 as Nectria balsamea. Notes: Pleonectria balsamea is characterised by bright yellow or yellowish green scurfy ascomatal wall, muriform ascospores budding within the asci, Zythiostroma anamorph, and occurrence on only one host, Abies. Our phylogenetic tree demonstrates that the broad concept of Nectria balsamea includes two species that correlate with host plants (Fig. 2). Based on our morphological examination, we recognise that these two species are distinguishable by ascospore size, absence or presence of sterile hyphae in pycnidia, growth trial on PDA at 25 °C for 7 d, and host genus. The lectotype of Pleonectria balsamea as typiied herein was collected on Abies balsamea; thus the fungus on Abies is recognised as true P. balsamea. The pycnidial anamorph of P. balsamea in the natural environment is morphologically identical with the anamorph of allantonectria, nectria, and Pleonectria Fig. 89A–Q. Anamorph of Pleonectria balsamea in culture. A. Cultures after 7 d at 25 °C on PDA; B, C. Lateral phialidic pegs and conidial mass on SNA; D–I. Lateral phialidic pegs on SNA; J–N. Conidiophores and conidia on SNA; O. Young conidia on SNA; P. Budding mature conidia on SNA; Q. Pycnidia on SNA. Scale bars: A = 3 mm; B = 50 µm; C–G = 30 µm; H–P = 10 µm; Q = 200 µm. P. rosellinii, also on Abies. However, the teleomorph of these two species is clearly distinct based on shape and septation of ascospores. The ascospores are muriform and ellipsoidal to www.studiesinmycology.org fusiform in P. balsamea while those of P. rosellinii are long-iliform and multiseptate. Further, our phylogenetic tree showed that the two species were related but distinct based on their BI PP, ML BP, 119 Hirooka et al. and MP BP values (Figs 1, 2). Because of similar morphological characters of pycnidia and occurrence on the same host (Abies), specimens of both species may have been placed in the same packet. On our collecting trip in Michigan, United States, from May 25 to June 2, 2010, P. balsamea and P. rosellinii were common and often collected at the same place. In culture, we could distinguish these species using subtle morphological characters such as size and shape of mature conidia. The conidia are subglobose to ellipsoidal, (6.1–)6.4–7.2(–9.0) × (2.2–)2.5–3.3(–3.4) μm in P. balsamea but oblong to long-cylindrical, rarely allantoid, slightly or strongly curved, (6.4–)6.9–9.3(–10.0) × (1.9–)2.1–2.9(–3.1) μm in P. rosellinii. In addition the lateral phialidic pegs are lask-shaped in P. balsamea but not lask-shaped in P. rosellinii. Pleonectria calonectrioides, a taxonomic synonym of P. balsamea, was not examined here because the type specimen at B was destroyed during the 1943 ire. According to the original observations of P. calonectrioides, the species is conspeciic with P. balsamea based on size of ascospores and host identify. Based on the description, P. calonectrioides is neotypiied by BPI 632630, a specimen collected on the same host and almost the same locality as the original type. As mentioned above, the NYS 417 collected by Peck (Cooke 1884) is designated herein as lectotype of P. balsamea. Pleonectria berolinensis Sacc., Michelia 1: 123. 1878. Figs 90–92. ≡ Nectria berolinensis (Sacc.) Cooke, Grevillea 12: 107. 1884. ≡ Thyronectria berolinensis (Sacc.) Seaver, Mycologia 1: 205. 1909. = Nectria fenestrata Berk. & M.A. Curtis, in Cooke, Grevillea 12: 81. 1884. ≡ Pleonectria fenestrata (Berk. & M.A. Curtis) Berl. & Voglino, Syll. Fung. Addit. 1–4: 216. 1886. Anamorph: zythiostroma-like. Teleomorph on natural substrata: Mycelium not visible around ascomata and on host. Stromata erumpent through epidermis, up to 3.0 mm high and 3.0 mm diam, red to bay, KOH+ dark red, LA+ yellow, pseudoparenchymatous, cells forming textura angularis, intergrading with ascomatal wall. Ascomata supericial on welldeveloped stromata, aggregated in groups of 5–85, subglobose to globose, 250–375 μm high × 200–340 μm diam, cupulate upon drying, often with only a depressed apical region, bay to scarlet, apical region slightly darker, KOH+ dark red, LA+ yellow, smooth to slightly rough, sometimes surface scurfy. Ascomatal surface cells forming textura globulosa or t. angularis sometimes including bright yellow scurf, 3–12 μm diam, with pigmented, sometimes irregularly ca. 1.5 μm thick walls. Ascomatal wall 30–65 μm thick, of two regions: outer region 20–40 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, about 1.5 μm thick; inner region 8–20 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Asci narrowly clavate, 70–140 × 8–18 μm (n = 642), with inconspicuous ring at apex, 8-spored, ascospores mainly uniseriate. Ascospores narrowly ellipsoidal, fusiform to cylindrical, straight, hyaline, muriform, with 4–7 transverse septa and usually one longitudinal septum, (14.4–) 15.7–19.3(–23.3) × (5.0–)6.5–8.1(–10.1) μm (n = 1502), smooth, slightly curved, a few specimens budding to produce hyaline, thin-walled, tapering apex, slightly curved, bacillar ascoconidia, (2.1–)2.9–4.1(–5.1) × (1.2–)1.4–2.1(–2.5) μm (n = 100), produced outside of asci (BPI 550671 & BPI 550691). Anamorph in culture: After 7 d at 25 °C, colonies 72–85 mm (average 76 mm) diam. Colony surface cottony with aerial mycelium, 120 whitish orange to yellow; aerial mycelium developed, rarely small yellow sporodochial conidial masses produced after 2 wk; reverse whitish yellow. Odour on PDA slightly putrid. Sporulation on SNA from lateral phialidic pegs abundant, ellipsoid and slightly tapering toward tip or lask-shaped, 1.6–4.8 μm long, 1.1–2.6 μm wide at base, monophialidic. Conidiophores unbranched, 7.1–23.4 μm long, 2.3–3.7 μm wide at base. Intercalary phialides rarely observed, bearing 1 terminal phialides, up to 4 μm long. Conidiogenous cells enteroblastic, monophialidic, cylindrical and slightly tapering toward tip or narrowly lask-shaped with widest point in middle, 5.6–11.1 μm long, 1.8–3.0 μm wide at base. Young conidia formed from monophialides on aerial, submerged, or repent hyphae, formed abundantly on slimy heads or sporodochia, oblong to long cylindrical, hyaline, straight or slightly curved, rounded at both ends, non-septate, (3.8–)4.5–6.5(–7.9) × (1.1–)1.6–2.2(–2.7) μm (n = 87), smooth-walled. Mature conidia swollen, (0-)1(-2)-septate, ellipsoidal, oblong, allantoid or ellipsoidal with strongly constricted centre, swollen at both ends, hyaline, smooth, straight or slightly curved, rounded at both ends, occasionally budding, (8.8–)10.2– 14.2(–19.9) × (2.2–)3.3–4.7(–5.5) μm (n = 162). Chlamydospores, pycnidia and ascomata not produced in culture. Habitat: On dead bark or twigs of Ribes including Ribes aureum, R. loridum, R. longilorum, R. nigrum., R. oxyacanthoides, R. rotundifolium, R. rubrum, and R. vulgare (Grossulariaceae). Distribution: Asia (Mongolia), Europe (Austria, Bosnia, Czech Republic, Finland, Germany, Italy, Latvia, Poland), North America (Canada, USA). Holotype of Pleonectria berolinensis: Germany, Berlin Botanical Garden, on dead branch of Ribis aureum, P. Magnus, Holotype PAD. Epitype of Pleonectria berolinensis: Austria, St. Margareten im Rosental, Karnten, in the village, mapping grid square 9452/4, on standing branches of Ribes rubrum, 25 Oct. 1998, W. Jaklitsch WJ 1248, Epitype BPI 746346, ex-epitype culture CBS 126112 = A.R. 2776. Additional type specimens examined: Type of Nectria fenestrata: Canada, Saskatchewan, on bark, 1886, Poe, Lectotype designated herein, FH 258957; Isolectotype FH 81118 microscope slide only. Additional specimens and isolates examined. Austria, Grinzing–Wier, on Ribes rubrum, Oct. 1929, J. Weese, BPI 550732. Bosnia, Sarajevo, Garden, on Ribes rubrum, 28 Oct. 1918, F. Petrak, BPI 550730; Stanisbon Garden, on Ribes rubrum, 24 Jan. 1918, F. Petrak, BPI 550727. Canada, Newfoundland, Labrador, on Ribes, A.C. Waghorne, BPI 550671 as Nectria berolinensis; Newfoundland, Labrador, on Ribes sp., 15 Sep. 1894, A.C. Waghorne, ex Missouri Botanical Gardent 17755, BPI 550683 as Nectria berolinensis; Ontario, Holland River Marsh, York County, on Ribes loridum, 6 May 1936, G.D. Darker, BPI 550712; Ontario, New Durham, Brant Co., on Ribes nigrum, 28 Mar. 1932, R.F. Cain, BPI 550713; Ontario, Nashville, York Co., on Ribes nigrum, 6 Nov. 1954, R.F. Cain, BPI 550715; Ontario, New Durham, Brant Co., on Ribes sp., 28 Mar. 1932, H.S. Jackson, BPI 550687; Ontario, Maple, York County, on Ribes sp., 24 Aug. 1941, G.D. Darker, BPI 550697; Ontario, Brant Co., New Durham, on Ribes sp., 28 Mar. 1932, R.F. Cain, BPI 859321. Czech Republic, Velvary, on Ribes aureum, 20 Mar. 1900, J.E. Kabat, BPI 550702; Bohemia, Turnov, tree nursery, on Ribes aureum, 16 Apr. 1915, J.E. Kabat, BPI 550703; Bohemia, on Ribes rubrum, 27 Mar. 1904, F. Bubak, BPI 550718; on Ribes rubrum, May 1907, F. Bubak, BPI 550719; Bohemia, on Ribes rubrum, Apr. 1904, F. Bubak (BPI 550720); Moravia, West-Beskiden, in a garden near Roznau, on Ribes rubrum, May 1922, F. Petrak, BPI 550734. Europe, on Ribes sp., Rabenhorst, Fungi europaei No. 264, BPI-bound exsiccati. Finland, Fennia, Mustiala, on Ribes rubrum, Apr. 1887, P.A. Karsten, BPI 550729. Italy, Vallombrosa, on Ribes rubrum, autumn, 1892, Briosi & Cavara, Funghi Parassiti. No 216, BPI-bound exsiccati. Germany, Ziebigk to Dessau, on Ribes rubrum, Apr. 1913, R. Staritz (BPI 550721); Brandenburg, Sophienstadt bei Ruhlsdorf, Kreis Nieder–Barnim, on Ribes rubrum, 5 Aug. 1920, H. Sydow, BPI 550726; allantonectria, nectria, and Pleonectria Fig. 90A–N. Pleonectria berolinensis on natural substrata (A–L teleomorph, M. Specimen of BPI 550721, N. Specimen of BPI 550726). A–D. Perithecia on natural substrata; E. Median section of perithecia on natural substrata; F. Median section of perithecial wall; G, H. Asci; I. Ascospores; J, K. Budding ascospores; L. Ascoconidia; M. Perithecia of P. berolinensis (top) and sporodochia of N. cinnabarina (bottom) included in BPI 550721; N. Perithecia of P. berolinensis (top) and sporodochia of N. cinnabarina (bottom) included in BPI 550726. Scale bars: A–D = 500 µm; E = 100 µm; F–H = 50 µm; I–L = 10 µm; M, N = 10 mm. Sternberg, on Ribes rubrum, Mar. 1930, J. Piskor, BPI 550731; Munchen, Sendling, on Ribes nigrum, Oct. 1891, Schnabl, Allescher & Schnabl, Fungi bavarici. No 152A, BPIbound exsiccati; Munchen, Sendling, on Ribes rubrum, Oct. 1891, Schnabl, Allescher & Schnabl, Fungi bavarici. No 152B, BPI-bound exsiccati; Brandenburg, Baumschulen zu Tamsel, on Ribes aureum, 12 Feb. 1909, P. Vogel, Sydow, Mycotheca germanica. www.studiesinmycology.org No. 896, BPI-bound exsiccati; Brandenburg, Baumschulen zu Tamsel, on Ribes aureum, 12 Feb. 1909, P. Vogel, Sydow, Mycotheca germanica. No. 896, PAD; Brandenburg, Baumschulen zu Tamsel, on Ribes rubrum, Apr. 1887, O. Karsten, Rabenhorst, Winter Fungi europaei. No. 3650, BPI-bound exsiccati; Brandenburg, Tábor in ramis mortuisl, on Ribes rubrum, Apr. 1904, F. Bubak, Vestergren, 121 Hirooka et al. Fig. 91A–C. Pleonectria berolinensis on natural substrata (A–C teleomorph). A. Median section of mature perithecium; B. Ascus; C. Ascospores and ascoconidia. Scale bars: A = 100 µm; B, C = 10 µm. Micromycetes rariores selecti. No. 925, BPI-bound exsiccati; München, Sendling, on Ribes nigrum (a), Ribes rubrum (b), Oct. 1891, Schnabl, Allescher & Schnabl, Fungi bavarici. No. 152, PAD. Latvia, Prov. Latgale, Vidsmuiza, on Ribes rubrum, 1984, K. Starcs, BPI 550733; on Ribes rubrum, 2 Dec. 1909, P. Vogel, BPI 632062. Mongolia, on Ribes nigrum, 2005, C. Lechat, HB7896A, culture CBS 128980 = A.R. 4618. Poland, Brandenburg, Baumschulen Zu Dabroszyn (Tamsel, Brandenburg), on Ribes aureum, 2 Dec. 1909, P. Vogel, BPI 550701. USA, California, Dana, Shasta Co., on Ribes aureum, 19 Aug. 1932, L.N. Goodding, BPI 1107321; California, Pinehurst, on Ribes sp., 20 Apr. 1918, E. Vethel, BPI 550678; Connecticut, Bethany, on Ribes nigrum, 10 Oct. 1916, G.P. Clinton, BPI 550714; Kansas, Stockton, on Ribes aureum, 21 Mar. 1899, E. Bartholomew, BPI 550704; Kansas, Rooks Co., on Ribes aureum, 21 Mar. 1899, E. Bartholomew, BPI 550705; Kansas, Rooks Co., on Ribes aureum, 21 Mar. 1899, E. Bartholomew, BPI 550707; Illinois, Evanston, on Ribes nigrum, 13 Mar. 1930, C.B. Stiler, BPI 550716; Michigan, Grand Rapids, on Ribes sp., 2 Aug. 1911, C.L. Shear, BPI 550684; Michigan, Lawton, on Ribes sp., 1 Apr. 1910, C.L. Shear, BPI 550686; Montana, Sheridan, on Ribes sp., L.A. Fitch, BPI 550688; Iowa, Decorah, on Ribes sp., May 1892, E.W.D. Holway, BPI 550689; Montana, Sand Coulee, on Ribes rotundifolium, 6 Dec. 1888, F.W. Anderson, BPI 550717; Montana, Armstead, on Grossularia setosa? (Ribes oxyacanthoides L.), 31 Aug. 1919, Stillurger, BPI 550673; Michigan, Agr. College, on Ribes rubrum, 31 May 1907, C.L. Shear, BPI 550722; New Jersey, Moorstown, on Ribes sp., 19 Sep. 1915, N.E. Stevens, BPI 550679; New York, North of Highland, on Ribes sp., 16 May 1921, N.E. Stevens, BPI 550680; North Dakota, Nyland Grove, Lamoure Co., on Ribes loridum, 4 May 1913, Brenckle, BPI 550709; North Dakota, Nyland Grove, Lamoure Co., on Ribes loridum, 4 May 1913, Brenckle, BPI 550710; North Dakota, Nyland Grove, Lamoure Co., on Ribes loridum, 4 May 1913, Brenckle, BPI 550711; North Dakota, Kulm, on Ribes rubrum, Jul. 1909, J.F. Brenckle, BPI 550724; North Dakota, Kulm, on Ribes rubrum, Oct. 1909, J.F. Brenckle, BPI 550725; North Dakota, Kulm, on Ribes rubrum, Jul. 1909, J.F. Brenckle, BPI 550728; Vermont, Bellows Falls, on Ribes sp., 21 Aug. 1917, A.A. Haliday, BPI 550681; Washington, Colfax, Whitman Co., on Ribes sp., 12 Dec. 1984, R. Scott, BPI 550676; Wisconsin, Madison, on Ribes rubrum, 18 May, J.B. Ellis, BPI 550723; Iowa, Decorah, on Ribes sp., May 1892, E.W.D. Holway, BPI 550690; Montana, Sheridan, on Ribes sp., L.A. Fitch, BPI 550691; New York, Ithaca, Cornell Univ., on Ribes sp., 27 May 1902, T. Charles, BPI 550682; New York, Ithaca, on Ribes sp., 29 May 1904, H.H. Whetzel, BPI 550692; Massachusetts, Peabody, on Ribes sp., W.G. Farlow, BPI 550693; New North Dakota, Fargo, on Ribes sp., 1908, F.J. Seaver, BPI 550694; Montana, Missoula, on Ribes sp., 17 Jul. 1917, J.R. Weir, BPI 550695; New Hampshire, Mt. Wash., on Ribes sp., Jul. 1927, C.L. Shear, BPI 550697; New York, Catskills, on Ribes sp., 11 May 1921, N.E. Stevens, BPI 550698; Montana, Boulder, on Ribes sp., 14 Sep. 1917, F.S. Wolpert, BPI 550699; Colorado, Woodmen, on Ribes sp., 11 Oct. 1912, C.L. Shear, BPI 550700A; Colorado, Woodmen, on Ribes sp., 11 Oct. 1912, C.L. Shear, BPI 550700B; Michigan, Douglas, on Ribes vulgare, 2 Aug. 1911, C.L. Shear, BPI 550735; Connecticut, E. Granby, on Ribes vulgare, 8 Apr. 1928, P. Spaulding, BPI 550736; Colorado, Antonito, on Ribes vulgare, 22 May 1917, B. Hedgcock, BPI 550737; New York, H.P. Sartwell, BPI 550677; Kansas, Stockton, 21 Mar. 1899, E. Bartholomew, BPI 632057; Colorado, Fort Garland. alt. 2400 m, on Ribes longilorum, 23 Jun. 1907, F.E. Clements, E.S. Clements, BPI 632058; North Dakota, Kulm, on Ribes rubrum, 1909, J.F. Brenckle, BPI 632060; Michigan, Douglas, on Ribes sp., 1 Aug. 1911, C.L. Shear, BPI 632052; Utah, on Ribes sp., 8 May 1914, B.J. O’gara, BPI 632053; North Dakota, Fargo, on Ribes sp., 1908, F.J.S., BPI 867299; Michigan, on Ribes vulgare, 20 Jul. 1911, L.A. Hawkins, BPI 632054; Colorado, Grand Messa Mtn., 122 11 Jun. 1935, R.W. Davidson, BPI 632520; North Dakota, Kulm, on Ribes rubrum, Oct. 1909, J.F. Brenckle, BPI 859028; Connecticut, Norfolk, on dead twigs of Ribes sp., Jul. 1916, E.M.S., BPI 632493; Pennsylvania, Centre Co., State College, on Ribes sp., 22 Apr. 1932, W.L. White, BPI 859029; Pennsylvania, Centre Co., State College, on Ribes sp., 22 Apr. 1932, W.L. White, BPI 867357; Pennsylvania, Centre Co., State College., 401 W. Beaver Ave., on Ribes sp., 15 Aug. 1915, C.R. Orton, BPI 867358; Montana, Helena, on Ribes rotundifolium, 8 Oct. 1888, F.D.K., BPI 867359; Massachusetts, Peabody, on Ribes sp., W.G. Farlow., Ellis, North American Fungi. No. 470, BPI-bound exsiccati; Iowa, Decorah, on Ribes sp., May 1892, E.W.D. Holway, Ellis & Everhart, Fungi Columbiani. No. 619, BPI-bound exsiccati; South Dakota, Tecoma Park, on Ribes loridum, Apr. 1894, Grifiths, Grifiths, West American Fungi 195, BPI-bound exsiccati = BPI 796714; North Dakota, on Ribes rubrum, Jul. 1909, Kulm, J. F. Brenckle, Fungi Dakotenses 125, PAD; North Dakota, Nyland Grove, Lamoure County, on Ribes loridum, 4 May 1913, J. F. Brenckle, Fungi Dakotenses 239, PAD; on Ribes rubrum, Oct. 1909, J.F. Brenckle, J. F. Brenckle No. 261, PAD; Vermont, Middlebury, on dead branches of cultivated currant, 23 Aug. 1901, Herbarium A.B. Langlois, BPI 55067 Notes: Pleonectria berolinensis is one of most common species of the genus Pleonectria easily recognised by its uniseriate asci and muriform ascospores (Figs 90G–K, 91B, C). In the natural environment, this species produces ascospores that bud outside the asci as does Pleonectria okinawensis (Figs 90J, K, 91C). However, P. berolinensis has muriform ascospores that are more than 15 μm long, while P. okinawensis has 1-septate ascospores that are less than 15 μm long. In culture, the anamorph of P. berolinensis is similar to P. lamyi in the size of the mature conidia, however, the shape of mature conidia of P. berolinensis are ellipsoidal, strongly constricted, while those of P. lamyi are cylindrical or C-shaped (Fig. 92L–N). In addition, P. berolinensis occurs on Ribes, and P. lamyi occurs on Berberis. Historically, the anamorph of P. berolinensis had been placed in the genus Tubercularia because this species was often collected with a tubercularia-like fungus, sometimes on the same substrate. Booth (1959) mentioned a ‘nomen confusum’ between P. berolinensis and Nectria ribis Nießl that also bears a tubercularialike anamorph. This ‘nomen confusum’ arose due to the short original protologue, imprecise designation of type specimens for these names, and confusion about the host and the teleomorphanamorph relationship. Pleonectria berolinensis and N. ribis both occur on Ribes. In this study, we observed exsiccati specimens of P. berolinensis (Rabenhorst, Fungi europaei. No 264; Winter Fungi europaei. No 3650) at BPI, but these did not include the Tubercularia anamorph. We have also observed additional specimens identiied allantonectria, nectria, and Pleonectria Fig. 92A–O. Anamorph of Pleonectria berolinensis in culture. A. Cultures after 7 d at 25 °C on PDA; B–E. Lateral phialidic pegs and conidial mass on SNA; F–I. Lateral phialidic pegs on SNA; J. Conidiophores on SNA; K. Young conidia on SNA; L. Mature conidia on SNA; M, N. Budding mature conidia on SNA; O. Germinating mature conidia on SNA. Scale bars: A = 3 mm; B = 100 µm; C, D, F, G, K–M, O = 30 µm; E, H–J, N. = 10 µm. as Nectria ribis and P. berolinensis from BPI, NY, and PAD. A few specimens included pieces with P. berolinensis with other pieces of a tubercularia-like anamorph in the same packet. However, these two fungi have never been observed on the same branch (see Fig. 90M, N). In specimens of N. ribis, a few P. berolinensis were observed but most specimens labelled N. ribis were reidentiied as N. cinnbarina or N. dematiosa (Hirooka et al. 2011). Our phylogenetic inference suggests that P. berolinensis belongs in Pleonectria with species having pycnidial anamorphs (Figs 1, 2). Two specimens (BPI 550671 & BPI 550691) have budding ascospores typical of the genus Pleonectria (Figs 90J, K, 91C). Although N. ribis was considered a synonym of P. berolinensis by Rossman et al. (1999), the type specimen of Sphaeria ribis suggests that this name is of uncertain status (Hirooka et al. 2011), but not a synonym of P. berolinensis. Booth (1959) noted that the terminal cells of conidiophores of “the sporodochial anamorph of www.studiesinmycology.org P. berolinensis” were roughened; however, Seifert (1985) was not able to observe this characteristic. In our study, the sporodochial anamorphs observed on specimens of P. berolinensis appear to belong to N. cinnbarina or N. dematiosa. Based on cultures that do not appear tubercularia-like, the anamorph of P. berolinesis most likely has a zythiostroma-like anamorph (Fig. 92). The name Dendrodochium berolinense was not published in Wollenweber (1931), although this name was erroneously listed by Seeler (1940b) as the anamorph of P. berolinensis, and is thus a nomen nudem. Although the protologue of P. berolinensis states that this species occurs in Sri Lanka as Ceylon, no specimens from this locality were located even though the protologue lists such a specimen. It seems unlikely that this temperate species occurs in that country. 123 Hirooka et al. Pleonectria boothii Hirooka, Rossman & P. Chaverri, sp. nov. MycoBank MB519706. Figs 93–95. Holotype of Pleonectria boothii. Slovakia, High Tatra Mountains, Podbanke, on dead twigs of Picea abies, A. Kunca, Holotype BPI 881052; ex-holotype culture CBS 128977 = A.R. 4481. Etymology: booth + -ii: in reference to Dr Colin Booth in honor of his work on the genus Nectria. Anamorph: zythiostroma-like. Teleomorph on natural substrata: Ascomata and pycnidia sometimes formed on same or discrete stroma. Mycelium not visible around ascomata or on host. Stromata erumpent through epidermis, up to 1.0 mm high and 1.5 mm diam, orange to sienna, KOH+ dark purple, LA+ yellow, pseudoparenchymatous, cells forming textura angularis, intergrading with ascomatal wall. Ascomata supericial on well-developed stromata, scattered to aggregated in groups of 3–20, subglobose to globose, 280–410 μm high × 308–363 μm diam, red to umber, cupulate upon drying, sometimes with only a depressed apical region, apical region slightly darker, KOH+ purple, LA+ yellow, surface sometimes bright yellow to yellowish green scurfy. Ascomatal surface cells forming textura globulosa or t. angularis sometimes including bright yellow scurf, 4–11 μm diam, with pigmented, uniformly or irregularly, ca. 1.5 μm thickened walls. Ascomatal wall 27–67 μm thick, around apex to about 70 μm thick, of two regions, around apex with three regions: outer region 14–37 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, 5–10 μm diam, walls pigmented, about 1.0 μm thick; middle region produced around apex 7–19 μm thick, cells forming textura globulosa, 5–7 μm diam, walls pigmented, about 1.0 μm thick; inner region 10–15 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Asci narrowly clavate, increasing in size as ascospores mature, 72–104 × 8–11 μm, with inconspicuous ring at apex, 8-spored. Ascospores long-fusiform, cylindrical to long-cylindrical, muriform, with 7–25 transverse septa and usually one longitudinal septum, hyaline, (15.6–)20.3– 29.7(–36.0) × (2.8–)3.2–4.2(–4.6) μm (n = 50), smooth, budding to produce hyaline, thin-walled, tapering apex, slightly curved, bacillar ascoconidia, (1.9–)2.8–3.6(–4.1) × (0.6–)0.9–1.7(–2.0) μm (n = 50), that ill asci. Anamorph on natural substrata: Stromata erumpent through epidermis or developing with ascomata, orange to red. Pycnidia solitary or aggregated in groups of 3–10, supericial on stroma or rarely immersed at base, subglobose, smooth to slightly rough, cerebriformis upon drying, bay to umber, 248–444 μm, 144–294 μm diam, KOH+ slightly darker, LA+ slightly yellow. Pycnidial wall 17–30 μm thick, of two regions: outer region 11–19 μm thick, intergrading with stroma, cells forming textura globulosa, walls pigmented, about 1.0 μm thick; inner region 5–11 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Conidiophores densely branched, generally 1–3-branched, 19– 30 μm long, 0.8–1.3 μm wide. Conidiogenous cells cylindrical to subulate, straight to slightly curved, enteroblastic, monophialidic, 7.3–10.0 × 1.2–1.6 μm. Intercalary phialides generally observed, bearing 1(–3) terminal phialides, up to 4 μm long, similar to short, acropleurogenous conidiophores. Sterile hyphae absent. Conidia hyaline, oblong to allantoid, curved, non-septate, (1.9–)2.4–3.0(– 3.2) × (0.6–)0.8–1.0(–1.2) μm (n = 150). 124 Anamorph in culture: After 7 d at 25 °C, colonies 7–8 mm (average 7.4 mm) diam. Colony surface cottony with aerial mycelium, saffron to whitish yellow; aerial mycelium rarely developed, usually small white to whitish yellow sporodochial conidial masses produced after 3 wk; reverse withish yellow. Odour on PDA absent. Sporulation on SNA from lateral phialidic pegs abundant, enteroblastic, monophialidic, ellipsoidal, tapering toward tip or rarely narrowly lask-shaped, 2.0–3.0 μm long, 0.7–1.1 μm wide at base. Conidiophores unbranched, sometimes 1(–2)-branched, becoming loosely to moderately densely branched, 16–24 μm long, 1.7–3.0 μm wide at base. Conidiogenous cells monophialidic, enteroblastic, cylindrical, slightly tapering toward tip or narrowly lask-shaped with widest point in middle, 3.6–10.0 μm long, 1.1–1.9 μm wide at base. Young conidia formed from monophialides on aerial, submerged, or repent hyphae, formed abundantly on slimy heads or sporodochia, oblong to cylindrical, hyaline, straight or slightly curved, rounded at both ends, non-septate, (3.1–)3.6–4.8(–5.5) × (0.9–)1.0–1.6(–2.1) μm (n = 50), smooth-walled. Mature conidia swollen, 0-septate, long-cylindrical to allantoid, hyaline, smooth, sometimes curved, rounded at both ends, (7.5–)8.9–10.9(–12.3) × (1.3–)1.5–1.9(– 2.0) μm (n = 50). Chlamydospores, pycnidia, and ascomata not produced in culture. Habitat: On dead branch of dead twigs of Picea abies (Pinaceae). Distribution: Europe (Slovakia, known only from the type collection). Notes: Observing the muriform ascospores of Pleonectria boothii may be dificult because the longitudinal septatum is obscure and sometimes absent especially when the ascospores are immature. However, using cotton blue, the longitudinal septum becomes visible (Fig. 93G–K). Among species of Pleonectria, P. boothii resembles P. balsamea and P. pinicola in the muriform ascospores with budding ascoconidia in the asci. Host speciicity and width of ascospores are useful characteristics to distinguish these species. The anamorphic states of P. boothii, P. balsamea, and P. pinicola in nature and culture have only subtle differences between them. Based on our phylogenetic tree, most species of Pleonectria on conifers group into one large monophyletic clade (clade І-4). Surprisingly, P. boothii does not fall into that clade although the fungus was collected on Picea. Pleonectria coryli shows the closest afinity to P. boothii (Figs 1, 2). The ascospores of P. boothii are muriform while those of P. coryli are 2-septate. The two species both have ascomata with walls of three regions around the apex as also observed in P. aquifolii and P. ilicicola (Figs 93D, 94A). Booth (1959) was the irst to describe and illustrate the three regions of the ascomatal wall around the apex of P. aquifolii and P. coryli. Because he discovered this important diagnostic characteristic, we name this species in honor of Dr C. Booth for his careful observations. Pleonectria chlorinella (Cooke) Hirooka, Rossman & P. Chaverri, comb. nov. MycoBank MB519707. Figs 96, 97. Basionym: Nectria chlorinella Cooke, Grevillea 11: 108. 1883. ≡ Calonectria chlorinella (Cooke) Sacc., Syll. Fung. 2: 543. 1883. ≡ Thyronectria chlorinella (Cooke) Seeler, J. Arnold Arbor. 21: 444. 1940. Anamorph: unknown. Teleomorph on natural substrata: Mycelium not visible around ascomata and on host. Stromata formed on epidermal region of outer bark, 0.2 mm high and 0.6 mm diam, cells forming textura intericata to t. angularis, KOH- and LA-, intergrading with allantonectria, nectria, and Pleonectria Fig. 93A–S. Pleonectria boothii on natural substrata (A–K teleomorph, L, M teleomorph and anamorph, N–S anamorph). A, B. Perithecia on natural substrata; C. Median section of perithecia on natural substrata; D. Median section of perithecial apex of three regions (black arrow); E. Ascus having budding ascospores; F. Ascus having unbudding ascospores; G–K. Budding ascospores; L. Perithecium (black arrow) and pycnidia (white arrow) on natural substrata; M. Median section of perithecium (black arrow) and pycnidium (white arrow) on natural substrata; N. Median section of pycnidial wall; O–R. Conidiophores on natural substrata; S. Conidia on natural substrata. Scale bars: A, B, L = 500 µm; C, M = 100 µm; D–F, N–P = 50 µm; G–K, Q–S = 10 µm. ascomatal wall. Ascomata scattered to aggregated in groups of 2–15, supericial, subglobose to pyriform, 280–360 μm high × 255–320 μm diam, not collapsing when dry, sienna, often fully covered with whitish yellow, bright yellow to yellowish green scurf, with a slightly darkened papilla, KOH+ slightly dark red, LA+ slightly yellow. Ascomatal surface cells forming textura globulosa www.studiesinmycology.org or t. angularis sometimes including bright yellow scurf, 4–11 μm diam, with pigmented, irregularly, ca. 1.5 μm thick walls. Ascomatal wall 40–50 μm thick, often fully covered by bright yellow scurf, of two regions: outer region 22–34 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls slightly pigmented, about 1.5 μm thick; inner region 9–13 μm thick, of 125 Hirooka et al. Fig. 94A–F. Pleonectria boothii on natural substrata (A–C teleomorph, D–F anamorph). A. Median section of mature perithecium; B. Ascus; C. Ascospores and ascoconidia; D. Median section of mature Pycnidium; E. Conidia; F. Conidiophores. Scale bars: A, D = 100 µm; B, C, E, F = 10 µm. Fig. 95A–I. Anamorph of Pleonectria boothii in culture. A. Cultures after 7 d at 25 °C on PDA; B. Lateral phialidic pegs and conidial mass on SNA; C–E. Lateral phialidic pegs on SNA; F, G. Conidiophores on SNA; H. Young conidia on SNA; I. Young and mature conidia on SNA. Scale bars: A = 3 mm; B, C, G = 50 µm; D–F = 5 µm; H, I = 10 µm. 126 allantonectria, nectria, and Pleonectria Fig. 96A–M. Pleonectria chlorinella on natural substrata (teleomorph). A–D. Perithecia on natural substrata; E. Median section of perithecium on natural substrata; F. Median section of perithecial apex; G. Median section of perithecial wall; H. Ascus having unbudding ascospores; I. Ascus having budding ascospores; J–M. Budding part–ascospores. Scale bars: A–D = 500 µm; E = 100 µm; F, G = 50 µm; H, I = 20 µm; J–M = 10 µm. elongate, thin-walled, hyaline cells, forming textura prismatica. Asci clavate, increasing in size as ascospores mature, 70–105 × 10– 25 μm, with inconspicuous ring at apex, 4–8-spored, ascospores mainly biseriate. Ascospores muriform, with 3–4 transverse septa, usually 1 longitudinal septum, hyaline, fusiform, constricted at each septum, (19.9–)20.0–27.4(–30.8) × (6.2–)6.7–8.7(–10.0) mm (n = 30), disarticulating in asci. Part-ascospores subglobose to ellipsoidal, hyaline, (7.7–)8.7–12.1(–13.4) × (5.0–)6.4–8.4(–9.0) μm (n = 30), smooth, muriform, with 1(–2) transverse septa, usually 1 longitudinal septum, constricted at each septum, budding to produce hyaline, thin-walled, bacillar ascoconidia (2.1–)2.5–3.3(– 3.5) × (1.4–)1.6–2.2(–2.6) μm (n = 30), illing asci. www.studiesinmycology.org Habitat: On dead wood (Platanus occidentalis, Ulmus americana, Ulmus sp.). Distribution: North America (USA). Lectotype of Nectria chlorinella designated herein: USA, South, Carolina, Seaboard, on bark of Ulmus americana, Apr. 1881, M.C. Cooke, Lectotype Ravenel, Fungi Americani, No.736, BPI-bound exsiccati; Isolectotype BPI 631964, NY 01041525, NY 01041526, NY 01041527. Additional specimens and isolates examined: USA, Alabama, Montgomery, on bark, Sep. 1916, R.P. Burke, BPI 632607 as Nectria pyrrhochlora; Tennessee, on Platanus occidentalis, 17 Mar. 1927, Hesler, NY. 127 Hirooka et al. Fig. 97A–D. Pleonectria chlorinella on natural substrata (A–D teleomorph). A. Median section of mature perithecium; B. Ascus; C. Ascospores; D. Part–ascospores and ascoconidia. Scale bars: A = 100 µm; B–D = 20 µm. Notes: This species was re-described and re-illustrated by Seeler (1940b as Thyronectria chlorinella) and Samuels et al. (2006 as Nectria chlorinella). It is placed in Pleonectria based on the ascospores that bud to produce ascoconidia in the asci and the whitish to yellowish green scurf on the ascomatal wall, both of which are critical morphological characteristics of Pleonectria. This species can be easily identiied by the disarticulating ascospores that are unknown in other species of Pleonectria and nectria-like fungi (Figs 96J–M, 97D). The abundant bright yellow scurf on the ascomata also occurs in P. austroamericana, P. virens, and P. zanthoxyli that constitute a monophyletic clade within Pleonectria in our phylogenetic tree (Figs 1, 2). Based on the characteristics that suggest placement in Pleonectria, we predict that Pleonectria chlorinella has a pycnidial anamorph in the natural environment. In the protologue of Nectria chlorinella (Cooke 1883), no single type specimen is mentioned. Thus, we lectotypify this name with Ravenel, Fungi Americani, No.736, BPI-bound exsiccati; a second specimen of this number (BPI 631964) is an isolectotype. surface cells forming textura globulosa or t. angularis including bright yellow scurf, 4–13 μm diam, with pigmented, irregularly, ca. 1.5 μm thick walls. Ascomatal wall 35–65 μm thick, around apex up to about 80 μm thick, of two regions: outer region 26–48 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, about 1.5 μm thick; inner region 9–21 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Asci clavate, increasing in size as ascospores mature, 72–141 × 9–17 μm, with inconspicuous ring at apex, 8-spored, ascospores mainly biseriate above, uniseriate below. Ascospores clavate, hyaline, muriform with 6–14 transverse septa, usually 1 longitudinal septum, (15.8–)17.7–22.7(–36.4) × (4.3–)4.8–6.2(– 7.0) μm (n = 55), smooth, budding to produce hyaline, thin-walled, bacillar ascoconidia, (2.2–)2.5–3.5(–4.2) × (1.0–)1.3–2.1(–2.5) μm (n = 50), that ill asci. Pleonectria clavatispora Hirooka, Rossman & P. Chaverri, sp. nov. MycoBank MB519708. Figs 98, 99. Distribution: North America (USA). Holotype of Pleonectria clavatispora: USA, California, Big Dalton Canon, E. Los Angeles County, on Ribes speciosum, 2 Jan. 1935, O.A. Plunkett, Holotype BPI 552452 as Nectria lamyi, Isotype BPI 552453 as Nectria lamyi). Etymology: Clavati + -spora; indicates the shape of its asocpsores. Anamorph: unknown. Teleomorph on natural substrata: Mycelium not visible around ascomata and on host. Stromata erumpent through epidermis, 2.0 mm high and 2.0 mm diam, bay, KOH+ dark red, LA+ yellow, pseudoparenchymatous, cells forming textura angularis, intergrading with ascomatal wall. Ascomata supericial on welldeveloped stromata, basically aggregated in groups of 2–55, subglobose to globose, 260–480 μm high × 250–440 μm diam, cupulate upon drying, sometimes with a depressed apical region, red to bay, apical region nearly black, KOH+ purple, LA+ yellow, sometimes outer surface scurfy, yellowish green. Ascomatal 128 Habitat: On dead twigs of Ribes including R. indecorum and R. speciosum (Grossulariaceae). Additional specimen examined: USA, California, Eagle Canon, Corona, on Ribes indecorum, 26 Jan. 1939, H.S. Fawcett, C.L. Shear, BPI 550708 as Nectria sp. Notes: Specimens of this fungus were originally preserved and identiied as N. berolinensis or N. lamyi in BPI. These specimens have clavate ascospores, an unusal characteristic in Pleonectria (Figs 98G, H, 99C). The greenish yellow scurf on the ascomata and budding ascospores are typical morphological characteristics of Pleonectria. Pleonectria clavatispora is known only on the dead wood of Ribes. Pleonectria coryli (Fuckel) Hirooka, Rossman & P. Chaverri, comb. nov. MycoBank MB519709. Figs 100–102. Basionym: Nectria coryli Fuckel, Fung. Rhen. Exs., suppl. 1, no. 1582. 1865. ≡ Chilonectria coryli (Fuckel) Ellis & Everh., N. Amer. Pyrenomyc. p.117. 1892. ≡ Creonectria coryli (Fuckel) Seaver, Mycologia 1: 186. 1909. = Coelosphaeria acervata P. Karst., Meddeland. Soc. Fauna Fl. Fenn. 5: 56. 1879. = Nectria coryli f. salicis Rehm, Ascomyceten Exsicc. No. 680. 1882. Anamorph: zythiostroma-like. allantonectria, nectria, and Pleonectria Fig. 98A–H. Pleonectria clavatispora on natural substrata (teleomorph). A, B. Perithecia on natural substrata; C. Median section of perithecia on natural substrata; D. Median section of perithecial wall; E. Ascus having unbudding ascospores; F. Ascus having budding ascospores; G. Ascospore; H. Budding ascospore and ascoconidia. Scale bars: A = 3 mm; B = 500 µm; C = 200 µm; D–F = 50 µm; G, H = 5 µm. Fig. 99A–C. Pleonectria clavatispora on natural substrata (A–C teleomorph). A. Median section of mature perithecium; B. Ascus; C. Ascospores and ascoconidia. Scale bars: A = 100 µm; B, C = 20 µm. Teleomorph on natural substrata: Mycelium not visible around ascomata and on host. Stromata erumpent through epidermis, 3.0 mm high and 3.0 mm diam, bay, KOH+ dark red, LA+ yellow, pseudoparenchymatous, cells forming textura angularis, intergrading with ascomatal wall. Ascomata supericial on well-developed stromata, aggregated in groups of 5–60, subglobose to globose, 150–435 μm high × 150–380 μm diam, cupulate upon drying, sometimes with a depressed apical region, scarlet to bay, apical region slightly darker, www.studiesinmycology.org KOH+ dark red, LA+ yellow, smooth, rarely surface yellow to yellowish green scurfy, sometimes scaly when dry. Ascomatal surface cells forming textura globulosa or t. angularis sometimes including bright yellow scurf, 3–15 μm diam, with pigmented, sometimes irregularly, ca. 1.5 μm thick walls. Ascomatal wall 25–70 μm thick, around apex up to about 80 μm thick, of two regions, around apex with three regions: outer region 15–35 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, about 1.0 μm thick; 129 Hirooka et al. Fig. 100A–N. Pleonectria coryli on natural substrata (teleomorph). A–E. Perithecia on natural substrata; F. Median section of perithecia on natural substrata; G. Median section of perithecial apex; H. Median section of stroma; I. Ascus having unbudding ascospores; J–L. Asci having budding ascospores; M, N. Budding ascospores and ascoconidia. Scale bars: A–E. = 1 mm; F = 200 µm; G, H, K, L = 50 µm; I, J, M, N = 10 µm. middle region produced around apex, 10–15 μm thick, cells forming textura globulosa, 5–10 μm diam, walls pigmented, about 1.0 μm thick; inner region 10–20 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Asci clavate, increasing in size as ascospores mature, 40–115 × 5–15 μm, with inconspicuous ring at apex, 8-spored, ascospores mainly biseriate. Ascospores narrowly fusiform to cylindrical, straight, hyaline, 1-septate, (8.3–)10.2–12.8(– 15.3) × (2.2–)2.8–4(–5.3) μm (n = 347), smooth, budding to produce hyaline, thin-walled, bacillar ascoconidia, (2.2–)3.5–5.1(–10.8) × (1.1–)1.7–2.5(–3.7) μm (n = 528), that ill asci. 130 Anamorph in culture: After 7 d at 25 °C, colonies 21–44 mm (average 36 mm) diam. Colony surface slightly cottony with aerial mycelium, whitish yellow, with sparse aerial mycelium; reverse white to slightly whitish yellow. Odour on PDA slightly fruity. Sporulation on SNA from lateral phialidic pegs abundant, ellipsoidal, slightly tapering toward tip or lask-shaped, 1.7–4.7 μm long, 1.0–2.2 μm wide at base, monophialidic. Conidiophores rarely formed, unbranched, 7.3–15.2 μm long, 1.5–2.6 μm wide at base. Conidiogenous cells monophialidic, enteroblastic, cylindrical, slightly tapering toward tip, 4.2–9.0 μm long, 1.5–2.5 μm wide at base. Young conidia formed allantonectria, nectria, and Pleonectria Fig. 101A–C. Pleonectria coryli on natural substrata (A–C teleomorph). A. Median section of mature perithecium; B. Ascus; C. Ascospores. Scale bars: A = 100 µm; B, C = 10 µm. on monophialides on aerial, submerged, or repent hyphae, formed abundantly on slimy heads or sporodochia, oblong to long cylindrical or allantoid, hyaline, smooth, straight or often curved, rounded at both ends, non-septate, (3.1–)4.0–5.4(–6.0) × (1.0–)1.4–1.8(–2.0) μm (n = 50), smooth-walled. Mature conidia swollen, non-septate, ellipsoidal or oblong, hyaline, smooth, straight or curved, rounded at both ends, germinating (H.Y. 08-20), budding on media (CBS 114603), (6.0–)8.6–10.6(–12.9) × (1.6–)2.0–3.0(–3.4) μm (n = 30). Chlamydospores, ascomata and pycnidia not produced in culture. Habitat: On dead bark or twigs of deciduous trees (Acer spicatum, Alnus sp., Betula alba, Celastrus orbiculatus, Corylus avellana, Diospyros virginiana, Fraxinus americana, Lalis baprea?, Ligustrum vulgare, Liriodendron tulipifera, Liriodendron sp., Populus sp., Prunus maritima, Prunus spinosa, Pyrus communis, Rhus copallinum, R. glabra, R. typhina, Salix aurita, S. caprea, Salix sp., Viburnum dentatum, V. lantana., Viburnum sp.). Distribution: Europe (Austria, Belgium, Czech Republic, Finland, France, Germany, Sweden), North America (Canada, USA). Lectotype of Nectria coryli designated herein: Germany, on twigs of Corylus avellana, Lectotype Fuckel, Fungi Rhenani Exsiccati 1582, FH. Additional type specimens examined: Type of Coelosphaeria acervata: Finland, Tammela, Mustiala, 7 Apr. 1866, P.A. Karsten, Lectotype designated herein, H 6011373). Type of Nectria coryli f. salicis: Germany, Sachsen, on Salix caprea, Feb. 1877, Krieger, Lectotype designated herein, S F 84579S; Isolectotype S F 84581). Additional specimens and isolates examined: Austria, St. Margareten im Rosental, Karnten, on the edge of the little forest Stariwald, mapping grid square 9452/4, alt. 600 m, on Viburnum lantana, 26 Oct. 1998, W.M. Jaklitsch WJ 1262, BPI 746347, culture CBS 115619 = A.R. 2777). Belgium, Brussels, on Salix sp., 17 Jan. 1923, A.J. Watson, BPI 551421. Canada, Ontario, Bear Island, Lake Temagami, on Rhus typhina, 20 Aug. 1935, J.R. Hansbrough, BPI 551411. Czech Republic, Bohemia, on Prunus spinosa, 1 Oct. 1918, Petrak, BPI 551411; France, Rimbaud (79) Forêt de Chizé, on Corylus avellana, C. Lechat CLL 651, BPI 881053, culture CBS 129358 = A.R. 4583. Germany: Koenigstein, on Betula alba, 7 Aug. 1885, W. Krieger, BPI 551411; Prov. Brandenburg, on Corylus avellana, 22 Mar. 1910, O. Jaap, BPI 550397; Olpe Kr., Rhode, on Corylus avellana, 30 Apr. 1921, C.A. Ludwig, BPI 551412; Olpe Kr., Rhode, on Corylus avellana, 30 Apr. 1921, C.A. Ludwig, BPI 551413; Koenigstein, on Salix aurita, Jun. 1894, W. Krieger, BPI 551422; Hamburg, im Diekmoor Bei Langenhorn, on Salix aurita, 28 May 1908, O. Jaap, BPI 551427; Siegen Kr., on Salix caprea, 23 Jan. 1938, C.A. Ludwig, BPI 551423; Siegen Kr., www.studiesinmycology.org on Salix caprea, 1938, C.A. Ludwig, BPI 551424; Prencow, Kiepr, 17 Jun. 1896, K. Andr., BPI 551405; München, Isarauen, on Ligustrum vulgare, Nov. 1889, Schnabl., Allescher & Schnabl, Fungi bavarici, No. 65, BPI-bound exsiccati; Königstein, nicht häuig, on Salix aurita, Jun. 1894, W. Krieger., Krieger, Fungi saxonici, No. 1067, BPI-bound exsiccati; Königstein, selken, on Betula alba, Aug. 1885, W. Krieger., Krieger, Fungi saxonici, No. 125, BPI-bound exsiccati); Hamburg, im Diekmoor bei Langenhorn, on Salix aurita, May 1908, O. Jaap, Jaap, Fungi selecti exsiccati, No. 316, BPI-bound exsiccati; Landsberg, Foret Marwitz, on Salix caprea, Jul. 1886, P. Sydow, Sydow, Mycotheca Marchica, No. 1151, BPI-bound exsiccati. Germany, Windscheim, on Corylus avellana, Apr. 1874, Rehm, Rehm, Ascomyceten, No. 231, BPI-bound exsiccati. Sweden, Fries, Scler. Suec. No. 183, BPI-bound exsiccati. USA, Alaska, Kodiak, on Salix sp. 27 Aug. 1838, D.V. Baxter, BPI 551420; Maryland, Takoma Park, 14 Dec. 1902, C.L. Shear, BPI 550404; Connecticut, Stamford, on Diospyros virginiana, 10 Apr. 1946, F.A. Bartlett, R.P. Marshall, BPI 551414; Connecticut, East Granby, on Fraxinus americana, 15 Nov. 1936, H.G. Eno, BPI 551415; Maryland, Takoma Park, on Liriodendron sp., May 1916, C.L. Shear, BPI 550401; Maryland, on Pyrus communis, 29 Aug. 1893, C.L. Shear, det. A.J. Watson, BPI 551418 as N. coryli; Maryland, Beltsville, on Rhus copallinum, 30 Sep. 2008, Y. Hirooka, A. Minnis, A.Y. Rossman, BPI 880697, culture CBS 129156 =A.R. 4561 = Y.H. 08-15; Maryland, Beltsville, on Celastrus orbiculatus, 31 Oct. 2008, Y. Hirooka, A. Minnis, BPI 881054, culture CBS 129744 = A.R. 4566 = Y.H. 0820; North Carolina, Bent Creek, Asheville, on Liriodendron tulipifera, 3 Jun. 1935, G.H. Hepting, BPI 551416; Oregon, Wallowa Lake, on Populus sp. 20 Aug. 1899, C.L. Shear, BPI 551417; New York, MCLEAN, 02 Jun.1919 - 07 Jun. 1919, E.W. Olive, F.J. Seaver, A.H.W. Povah, H.H. Whetzel, L.R. Hesler, H.M. Fitzpatrick, et al., BPI 551406; New York, McLean Swamps, 02 Jun.1919 - 07 Jun. 1919, E.W. Olive, F.J. Seaver, A.H.W. Povah, H.H. Whetzel, L.R. Hesler, H.M. Fitzpatrick, et al., BPI 551407; New York, Westbury, Nassau Co., Long Island, 25 Jun. 1915, H. Metcalf, BPI 630474; Maryland, Prince Georges Co., Beltsville Agricultural Research Center, east side, on dead branches of Viburnum dentatum, 13 May 2003, A.Y. Rossman, BPI 863587; Virginia, Falls Church, on Viburnum sp., Apr. 1936, C.L. Shear, BPI 551425; New York, Rockland Co., Harriman State Park, 24 Sep. 1966, C.T. Rogerson, NY, culture C.T.R. 66-82; New York, Bronx county the New York Botanical Garden, 19 Nov. 1977, C.T. Rogerson, NY, culture C.T.R. 77-352; New Jerssey, Newield, on Prunus maritima, May, 1881, J.B. Ellis, BPI 551651 as Nectria cucurbitula; New Jersey, Newield, on Alnus sp. (Alder sp.), 25 Dec. 1874, J.B. Ellis, BPI 631984 as Nectria cucurbitula; Vermont, Chittendon, on Acer spicatum, 26 Jul. 1935, H.G. Eno, BPI 550395; Virginia, Airmont, on Viburnum sp., 19 Jul. 1903, C.L. Shear, BPI 551426; on dead branches, BPI 631976 = Ellis North American Fungi 159 as Calonectria cucurbitula. Notes: Pleonectria coryli is recognised by the narrowly fusiform to cylindrical ascospores budding within the asci (Figs 100I–N, 101B, C). Based on the numerous specimens examined this species is known from many host plants. Previously it had been reported on only two host genera: Corylus and Salix. In culture, P. coryli is morphologically similar to P. okinawensis and P. sinopica in the shape of the lateral phialidic pegs. However, P. coryli does not produce branched conidiophores while P. okinawensis and P. 131 Hirooka et al. Fig. 102A–L. Anamorph of Pleonectria coryli in culture. A. Cultures after 7 d at 25 °C on PDA; B. Conidial mass on SNA surface; C–H. Lateral phialidic pegs and conidia on SNA; I. Conidiophores on SNA; J. Young conidia on SNA; K. Budding (black arrow) and germinating mature conidia on SNA; L. Germinating mature conidia on SNA. Scale bars: A = 3 mm; B = 50 µm; C–F = 5 µm; G–L = 10 µm. sinopica produce abundant branched conidiophores (Fig. 102). Also P. okinawensis is known on Castanopsis while P. sinopica is reported on Hedera. Samuels et al. (2006) described the anamorph of P. coryli in the natural environment based on BPI 551408. Although this specimen included ascomata of P. coryli and yellowish sporodochia, these were never observed on the same branch. We hypothesise that Pleonectria coryli produces pycnidia in the natural environment as found in most species of Pleonectria. Thus, we assume that the sporodochia in BPI 551408 are not the anamorph of P. coryli. Pleonectria cucurbitula (Tode: Fr.) Hirooka, Rossman & P. Chaverri, comb. nov. MycoBank MB519710. Figs 103–105. 132 Basionym: Sphaeria cucurbitula Tode : Fr., Tode, Fungi Mecklenb. sel. 2: 38. 1791 : Fries, Syst. Mycol. 2: 415. 1823. ≡ Nectria cucurbitula (Tode : Fr.) Fr., Summa Veg. Scand. 2: 388. 1849. ≡ Scoleconectria cucurbitula (Tode : Fr.) C. Booth, Mycol. Pap. 73: 15. 1959. = Nectria cylindrospora Sollm., Bot. Zeitung (Berlin) 22: 265. 1864. ≡ Ophionectria cylindrospora (Sollm.) Berl. & Voglino, Syll. Fung. Addit. 1-4: 217. 1886. = Ophionectria scolecospora Bref. & Tav., in Brefeld, Unters. Gesamtgeb. Mykol. 10: 178. 1891. ≡ Scoleconectria scolecospora (Bref. & Tav.) Seaver, Mycologia 1: 198. 1909. Anamorph: Zythiostroma pinastri (P. Karst.) Höhn. ex Weese, Mitt. Bot. Lab. Techn. Hochsch. Wien 8: 90. 1931. ≡ Zythia pinastri P. Karst., Rev. Mycol. (Toulouse) 7: 106. 1885. allantonectria, nectria, and Pleonectria Teleomorph on natural substrata: Ascomata and pycnidia sometimes formed on same or discrete stroma. Mycelium not visible around ascomata or on host. Stromata erumpent through epidermis, 1.0 mm high and 1.5 mm diam, orange to sienna, KOH+ dark purple, LA+ yellow, pseudoparenchymatous, cells forming textura angularis, intergrading with ascomatal wall. Ascomata supericial on well-developed stromata, scattered to aggregated in groups of 3–24, subglobose to globose, 242–333 μm high × 281–370 μm diam, red to umber, cupulate upon drying, sometimes with a depressed apical region, apical region slightly darker, KOH+ purple, LA+ yellow, surface usually bright yellow to yellowish green scurfy. Ascomatal surface cells forming textura globulosa or t. angularis sometimes including bright yellow scurf, 4–11 μm diam, with pigmented, uniformly or irregularly, ca. 1.5 μm thickened walls. Ascomatal wall 30–66 μm thick, of two regions: outer region 22–47 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, about 1.5 μm thick; inner region 7–15 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Asci narrowly clavate, increasing in size as ascospores mature, 71–99 × 9–10 μm, with inconspicuous ring at apex, 8-spored. Ascospores long-iliform, 15–39 septate, hyaline, (32.9–)43.2–64.8(–74.7) × (2.3–)2.7–3.5(–3.7) μm (n = 100), smooth, budding to produce hyaline, thin-walled, tapering apex, slightly curved, bacillar ascoconidia, (1.9–)2.8–3.8(–4.5) × (0.8–)1.1–1.7(–2.1) μm (n = 150), that ill asci. Anamorph on natural substrata: Stromata erumpent through epidermis or developing with ascomata, orange to red. Pycnidia solitary or aggregated in groups of 3–17, supericial on stroma or rarely immersed at base, subglobose, smooth to slightly rough, cerebriform upon drying, 183–471 μm, 133–544 μm diam, red to bay, KOH+ slightly darker, LA+ slightly yellow. Pycnidial wall 21–43 μm thick, of two regions: outer region 12–25 μm thick, intergrading with stroma, cells forming textura globulosa, walls pigmented, about 1.0 μm thick; inner region 8–15 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Conidiophores densely branched, generally with 1–3 branched, 18–34 μm long, 1.2–2.5 μm wide. Conidiogenous cells cylindrical to subulate, straight to slightly curved, enteroblastic, monophialidic, 6–11 × 0.5–1.5 μm. Intercalary phialides generally observed, bearing (1–)3 terminal phialides, up to 6 μm long, similar to short acropleurogenous conidiophores. Sterile hyphae absent. Conidia hyaline, ellipsoidal to oblong, sometimes slightly curved, non-septate, (2.2–)2.6–3.4(– 4.3) × (0.7–)0.8–1.2(–1.9) μm (n = 150). Anamorph in culture: After 7 d at 25 °C, colonies 50–83 mm (average 71 mm) diam. Colony surface cottony with aerial mycelium, whitish brown (A.R. 2778) or whitish yellow (CBS 178.73, CBS 259.58, CBS 301.75, CBS 541.70); aerial mycelium usually developed (A.R. 2778), often small white to whitish yellow sporodochial conidial masses produced after 3 wk; reverse whitish brown (CBS 178.73, CBS 259.58, CBS 301.75, CBS 541.70) or white to slightly whitish yellow (A.R. 2778). Odour on PDA slightly fruity. Sporulation on SNA from lateral phialidic pegs abundant, enteroblastic, monophialidic, ellipsoidal, tapering toward tip, 2.3–5.0 μm long, 1.1–2.1 μm wide at base. Conidiophores unbranched, sometimes 1(–2)-branched, becoming loosely to moderately densely branched, 7.8–25.3 μm long, 1.0–2.9 μm wide at base. Conidiogenous cells monophialidic, enteroblastic, cylindrical, slightly tapering toward tip or narrowly lask-shaped with widest point in middle, 5.1–12.7 μm long, 1.2– 2.1 μm wide at base. Young conidia formed from monophialides on aerial, submerged, or repent hyphae, formed abundantly on www.studiesinmycology.org slimy heads or sporodochia, ellipsoidal to oblong, hyaline, straight or slightly curved, rounded at both ends, non-septate, (2.6–)3.4– 4.6(–5.5) × (0.9–)1.1–1.7(–2.0) μm (n = 476), smooth-walled. Mature conidia swollen, 0-septate, oblong with slightly swollen at both ends or sometimes long-cylindrical, hyaline, smooth, slightly curved, rounded at both ends, (7.3–)8.7–11.7(–14.8) × (1.1–)1.6– 2.1(–2.5) μm (n = 238). Chlamydospores, pycnidia and ascomata not produced in culture. Habitat: On bark or twigs of Pinus subgenus Pinus (Pinaceae). Distribution: Europe (Austria, France, Germany, Netherlands, Sweden), North America (USA). Lectotype of Sphaeria cucurbitula designated herein: Sweden, Lectotype designated herein, Figures 110a-f in the copy of Tode (1791). Fungi Mecklenburgenses selecti. 2: 38 associated with BPI. Epitype of Pleonectria cucurbitula designated herein: Austria, St. Margareten im Rosental, Karnten, on the edge of the little forest Stariwald, mapping grid square 9452/4, alt. 600 m, on Pinus sylvestris, 26 Oct. 1998, W. Jaklitsch WJ 1263, Epitype BPI 746348, ex-epitype culture CBS 125130 = A.R. 2778. Additional specimens and isolates examined: France, Lozère, on Pinus nigra, 1974, M. Morelet, culture CBS 301.75. Germany, Triglitz in der Prignitz, on Pinus sylvestris, Mar. 1910, Jaap, BPI 632552; Tabor, on Pinus sylvestris, 17 Nov. 1907, F. Bubak, BPI 632654;Triglitz in the Prignitz, on Pinus sylvestris, Mar. 1910, O. Jaap, BPI 632771; Brandenburg Prov., Triglitz in der Prignitz, on Pinus sylvestris, 27 Mar. 1904, O. Jaap, BPI 632659; Mecklenburg-Vorpommern, Laase bei Köslin in Pommern, on Pinus sylvestris, 28 Aug, Ruhland, S - F 49442. Netherlands, Baarn, Groeneveld, on Pinus sylvestris, Nov. 1972, W. Gams, culture CBS 178.73; Valkenswaard, Malpie, Mar. 1970, J. Gremmen, culture CBS 541.70; Wageningen, De Dorschkamp, on Pinus sylvestris, Jun. 1958, J. Gremmen, culture CBS 259.58. USA, Wisconsin, Goodman, Marinette Co., on Pinus banksiana, 03 Jun. 1944, R.H. Gruenhagen, BPI 629741; Wisconsin, Windsor Dam, Nicolet National Forest, Vilas Co., on Pinus resinosa, 25 Oct. 1951, J.R. Hansbrough, BPI 629742; West Virginia, Fayette Co., on Pinus virginiana, 05 May 1897, L.W. Nuttall, BPI 629747; West Virginia, Fayette Co., on Pinus virginiana, 05 May 1897, L.W. Nuttall, BPI 6297482; New York, Tompkins Co., Treman State Park, Finger Lakes Trail, on Pinus resinosa, 23 Feb. 1980, A.Y. Rossman, BPI 1104743; Maryland, Takoma Park, on Pinus virginiana, 09 Mar. 1902, A.J. Watson, BPI 551650; New York, Cattaraugus Co., Camp Allegany, Allegany State Park, on Pinus sylvestris, 28 Sep. 1996, G. Bills, BPI 746483; Michigan, Pigeon River State Forest, on Pinus banksiana, 09 Aug. 1934, J.R. Hansbrough, BPI 632641; Michigan, Alpena State Forest, on Pinus banksiana, 06 Aug. 1934, J.R. Hansbrough, BPI 632642; Idaho, Wallace, on Pinus contorta, Sep. 1915, J.R. Weir, BPI 632643; Connecticut, Windsor, on Pinus nigra, 19 May 1934, H.G. Eno, BPI 632645; Massachusetts, Petersham, on Pinus ponderosa, 10 Aug. 1928, J.R. Hansbroug, BPI 632647; California,Santa Clara Co. Stanford University, on Pinus radiata, 12 Oct. 1901, C.F. Baker, BPI 632648; Vermont, Bennington, on Pinus resinosa, 08 Jul. 1937, J.R. Hansbrough, BPI 632649; New York, Canadice Lake, Canadice, on Pinus resinosa, 06 Aug. 1935, J.R. Hansbrough, BPI 632650; New York, Salamanca, on Pinus resinosa, 11 Jul. 1937, J.R. Hansbrough, BPI 632651; Maryland, Beltsville, on Pinus rigida, 09 Apr. 1950, F. Petrak, BPI 1112063; Pennsylvania, Stone Valley, Hunt Co., on Pinus rigida, 15 Nov. 1927, L.O. Overholts, BPI 632652; Pennsylvania, Bedford, on Pinus rigida, 19 May 1936, J.R. Hansbrough, BPI 632653; Rhode Island, Greene, on Pinus sylvestris, 10 Apr. 1936, J.R. Hansbrough, BPI 632690; Vermont. Sharon, Downer State Forest, on Pinus sylvestris, 04 Jun 1935, H.G. Eno, BPI 632691; New Hampshire, Tamworth, on Pinus sylvestris, 21 Aug. 1940, J.R. Hansbrough, BPI 632692; Vermont, Sharon, Downer State Forest, on Pinus sylvestris, 04 Jun. 1935, H.G. Eno, J.R. Hansbrough, BPI 632693; New Hampshire, Bartlett, on Pinus sylvestris, 09 Jun. 1933, H.G. Eno, J.R. Hansbrough, BPI 632694; Connecticut, Windsor, on Pinus sylvestris, 19 May 1934, H.G. Eno, BPI 632695; Maryland, Oxon Run, on Pinus virginiana, 21 Oct. 1924, W.W. Diehl, BPI 632550; Virginia, Radnor Heights, on Pinus virginiana, 17 Mar. 1936, C.L. Shear, BPI 632696; Pennsylvania, Stone Creek, on Pinus virginiana, 24 Nov. 1927, L.O. Overholts, P. Spaulding, BPI 632697; Michigan, Alpena, alt. 1000 ft., on Pinus banksiana, 06 Aug. 1934, J.R. Hansbrough, BPI 632554; Michigan, Alpena, on Pinus banksiana, 06 Aug. 1934, J.R. Hansbrough, BPI 632778; Nebraska, Halsey, on Pinus banksiana, 12 Aug. 1925, E. Bethel, BPI 632779; Connecticut, Windsor, on Pinus nigra, 19 May 133 Hirooka et al. Fig. 103A–S. Pleonectria cucurbitula on natural substrata (A–J teleomorph, K–S anamorph). A–D. Perithecia on natural substrata; E. Median section of perithecium on natural substrata; F. Median section of perithecial wall; G, H. Ascus having budding ascospores; I. Unbudding ascospore; J. Budding ascospore; K. Pycnidia on bark; L. Pycnidia on leaf; M. Median section of pycnidium on natural substrata; N. Median section of pycnidial wall; O–R. Conidiophores on natural substrata; S. Conidia on natural substrata. Scale bars: A, B = 1 mm; C, D, K, L = 500 µm; E, M = 100 µm; F–H, N = 50 µm; I, J, O–S = 10 µm. 134 allantonectria, nectria, and Pleonectria Fig. 104A–F. Pleonectria cucurbitula on natural substrata (A–C teleomorph, D–F anamorph). A. Median section of mature perithecium; B. Ascus; C. Ascospores and ascoconidia; D. Median section of mature pycnidium; E. Conidia; F. Conidiophores. Scale bars: A, D = 100 µm; B, C = 20 µm; E, F = 10 µm. 1934, H.G. Eno, BPI 632781; Connecticut, Windsor, on Pinus nigra var. austriaca, 19 May 1934, H.G. Eno, BPI 632782; New Hampshire, North Conway, on Pinus nigra, 20 Aug. 1935, J.D. Diller, BPI 632783; California, Santa Clara Co., Pinus ponderosa, 22 Oct. 1937, Hahn, Wagener, BPI 632556; Pennsylvania, Greenwood Furnace, on Pinus ponderosa, 18 Oct. 1919, L.O. Overholts, BPI 632646; Nebraska, Halsey, on Pinus ponderosa, 12 Aug. 1925, E. Bethel, BPI 632784; Pennsylvania, Greenwood Furnace, on Pinus ponderosa, 18 Oct. 1919, L.O. Overholts, BPI 859499; Pennsylvania, Greenwood Furnace, on Pinus ponderosa, 25 May 1925, BPI 867616; Pennsylvania, Greenwood Furnace, on Pinus ponderosa, 18 Oct. 1919, L.O. Overholts, BPI 867617; Pennsylvania, Greenwood Furnace, on Pinus pungens, 26 Nov. 1927, L.O. Overholts, P.S. Spaulding, BPI 859488; Pennsylvania, Greenwood Furnace, on Pinus pungens, 26 Nov. 1927, L.O. Overholts, P.S. Spalding, BPI 867615; California, Alameda Co., on Pinus radiata, 20 Oct. 1937, Hahn, A.W. Dimock, BPI 632785; New York, Canadice, on Pinus resinosa, 06 Aug. 1935, J.R. Hansbrough, BPI 632558; Michigan, Watersmeet, on Pinus resinosa, 06 Nov. 1936, C.L. Bennett Jr., BPI 632567; Connecticut, Woodbridge, on Pinus resinosa, 22 Nov. 1935, J.R. Hansbrough, BPI 632786; New York, Olive, on Pinus resinosa, 11 Aug. 1935, J.R. Hansbrough, BPI 632787; Pennsylvania, Bedford, on Pinus rigida, 19 May 1936, J.R. Hansbrough, BPI 632788; Pennsylvania, Huntingdon Co., Stone Valley, on Pinus rigida, 15 Nov. 1927, L.O. Overholts, BPI 859494; Pennsylvania, Huntingdon Co., Stone Valley, on Pinus rigida, 15 Nov. 1927, L.O. Overholts, BPI 867618; Vermont, Sharon, alt. 1400 ft., on Pinus sylvestris, 04 Jun. 1935, H.G. Eno, BPI 632821; New York, Saranac Lake, Essex Co., on Pinus sylvestris, 07 Sep. 1932, J.R. Hansbrough, BPI 632822; New York, Olive, on Pinus sylvestris, 11 Aug. 1935, J.R. Hansbrough, BPI 632823; Connecticut, Windsor, on Pinus sylvestris, 19 May 1934, H.G. Eno, BPI 632824; New Hampshire, Bartlett, on Pinus sylvestris, 09 Jun. 1933, J.R. Hansbrough, BPI 632825; Connecticut, Windsor, alt. 100 ft., on Pinus sylvestris, 19 May 1934, H.G. Eno, BPI 632826; Pennsylvania, Huntingdon Co., Stone Valley, on Pinus sylvestris, 29 Oct. 1921, L.O. Overholts, BPI 859493; Pennsylvania, Allegheny Co., Allison Park, on Pinus sylvestris, 06 Oct. 1921, L.O. Overholts, BPI 859495; Pennsylvania, Allegheny Co., Allison Park, on Pinus sylvestris, 06 Oct. 1921, L.O. Overholts, BPI 859496; Pennsylvania, Allegheny Co., Allison Park, on Pinus sylvestris, 06 Oct. 1921, L.O. Overholts, BPI 867609; Newield, N. J., on Pinus rigida, May 1885, E.W.D. Holway, Ellis & Everhart, North American Fungi, No 1551, BPI-bound exsiccati; on Pinus rigida, 12 Oct. 1901, C.F. Baker, C. F. Baker, Paciic Slope Fungi, No 68, BPI-bound exsiccati. www.studiesinmycology.org Notes: Pleonectria cucurbitula occurs on bark or rarely needles of Pinus subgenus Pinus and is characterised by longfusiform, multiseptate ascospores budding within the asci. Pleonectria cucurbitula is similar to P. rosellinii in having long iliform, multiseptate ascospores that bud within the asci, and a zythiostroma-like anamorph. Pleonectria cucurbitula differs from P. rosellinii in ascomatal surface, which is scurfy in P. cucurbitula and warty in P. rosellinii, and in the host with P. cucurbitula on Pinus subg. Pinus and P. rosellinii on Abies (Figs 103C–F, 104A). In our phylogenetic study, isolates of “N. cucurbitula” on Pinus are assigned to two different species, P. cucurbitula and P. strobi, that are congruent with the two host subgenera Pinus and Strobus (Strauss & Doerksen 1990; Wang & Szmidt 1993; reviewed in Price et al. 1998). Phylogenetically the two species group together with high BP and BB values within a group of ive species all of which occur on conifers. Although the two species are morphologically almost identical, they can be distinguished by the shorter ascospores of P. strobi and anamorph characteristics in culture. When Tode (1791) described Sphaeria cucurbitula, the basionym of Pleonectria cucurbitula, he included two varieties, S. cucurbitula var. lavescens and S. cucurbitula var. nigrescens, neither of which was designated as the type variety. Because Fries (1823) synonymised S. cucurbitula var. nigrescens with Sphaeria cupularis Pers., now considered Nitschkia cupularis (Pers.) P. Karst., S. cucurbitula var. lavescens is regarded as the type variety of S. cucurbitula. Although Tode (1791) did not mention the host of S. cucurbitula var. lavescens, it seems like that this species occurs on Pinus subgenus Pinus because hosts in this subgenus especially P. sylvestris are common in Europe. Because Tode’s specimens 135 Hirooka et al. Fig. 105A–M. Anamorph of Pleonectria cucurbitula in culture. A, B. Cultures after 7 d at 25 °C on PDA; C. Conidial mass on SNA; D, E. Lateral phialidic pegs and conidial mass on SNA; F–H. Lateral phialidic pegs and conidia on SNA; I–K. Conidiophores and conidia on SNA; L. Young and mature conidia on SNA; M. Budding mature conidia (black arrows) on SNA. Scale bars: A, B = 3 mm; C = 100 µm; D–M = 10 µm. were destroyed (Kirk et al. 2008), the original illustrations at BPI, speciically igs 110a–f in Tode (1791), are designated here as the lectotype. We also designate an epitype of S. cucurbitula as BPI 746348 with ex-epitype culture CBS 125130 collected in Europe. According to Rossman et al. (1999) and our study, two teleomorph names (Nectria cylindrospora and Ophionectria scolecospora) and one anamorph name (Zythia pinastri) are taxonomic synonyms of P. cucurbitula. Nectria cylindrospora and Ophionectria scolecospora were described based on a specimen collected on Pinus sylvestris (subgenus Pinus). Unfortunately, the type specimens of Nectria cylindrospora, Ophionectria scolecospora, and Zythia pinastri could not be located at B, S, or UPS. They may have been destroyed. Because the protologues of these names did not include any illustrations, we retain them as unveriied taxonomic synonyms of P. cucurbitula. Although Rossman et al. (1999) regarded Nectria rosellinii as a synonym of N. cucurbitula, this species occurs on Abies and is here regarded as a distinct species, P. rosellinii. 136 Pleonectria ilicicola Hirooka, Rossman & P. Chaverri, sp. nov. MycoBank MB519711. Figs 106–108. Holotype of Pleonectria ilicicola: France, Forêt de L’Hermitain, on twig of Ilex aquifolium, 8 Mar. 2008, C. Lechat CLL 7159, Holotype BPI 881055; ex–holotype culture CBS 125170 = A.R. 4497 (CBS 125171 = A.R. 4498 isolated from conidium). Etymology: ilici + -cola; indicates the host plant. Anamorph: zythiostroma-like. Teleomorph on natural substrata: Ascomata and pycnidia rarely formed on same or discrete stroma. Mycelium not visible around ascomata or on host. Stromata erumpent through epidermis, 2.0 mm high and 3.0 mm diam, bay, KOH+ dark red, LA+ yellow, pseudoparenchymatous, cells forming textura angularis, allantonectria, nectria, and Pleonectria Fig. 106A–O. Pleonectria ilicicola on natural substrata (A–G teleomorph, H teleomorph and anamorph, I–O anamorph). A–C. Perithecia on natural substrata; D. Median section of perithecia on natural substrata; E. Median section of perithecial apex of three regions (black arrow); F. Asci; G. Ascospores; H. Perithecia and immersed pycnidia on natural substrata (white arrow); I–K. Median section of immersed pycnidia (white arrows) on natural substrata; L–N. Conidiophores on natural substrata; O. Conidia on natural substrata. Scale bars: A–C, H = 500 µm; D, I–K = 100 µm; E, L, M = 50 µm; F, G, N, O = 20 µm. intergrading with ascomatal wall. Ascomata supericial on welldeveloped stromata, aggregated in groups of 3–30, subglobose to globose, 247–414 μm high × 180–392 μm diam, slightly cupulate upon drying, sometimes with only a depressed apical region, bay www.studiesinmycology.org to scarlet, apical region slightly darker, KOH+ dark red, LA+ yellow, surface often scurfy, yellow to yellowish green, sometimes scaly. Ascomatal surface cells forming textura globulosa or t. angularis sometimes including bright yellow scurf, 3–13 μm diam, with 137 Hirooka et al. Fig. 107A–F. Pleonectria ilicicola on natural substrata (A–C teleomorph, D–F anamorph). A. Median section of mature perithecium; B. Asci; C. Ascospores; D. Median section of immersed pycnidia; E. Conidia; F. Conidiophores. Scale bars: A, D = 100 µm; B, C, E, F = 10 µm. pigmented, irregularly, 1.5–2.0 μm thick walls. Ascomatal wall 37–68 μm thick, around apex to about 65 μm thick, of two regions, around apex to three regions: outer region 16–45 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, about 1.5 μm thick; middle region produced around apex, 9-17 μm thick, cells forming textura globulosa, 4-7 μm diam, walls pigmented, about 1.0 μm thick; inner region 9–20 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Asci clavate, 54–115 × 6.2–12.3 μm, with inconspicuous ring at apex, 8-spored, ascospores mainly biseriate. Ascospores ellipsoidal with slightly constricted centre, straight, hyaline, (0–)1-septate, (8.9–) 10.8–13.4(–15.4) × (4.1–)5.4–6.8(–7.5) μm (n = 100), smooth, not budding in asci. Anamorph on natural substrata: Stromata smooth or sometimes cerebriform, erumpent through epidermis, orange to umber. Pycnidia immersed between ascomata or in stroma, irregular subglobose, eustromatic, sienna, solitary or aggregated in groups of 3-9, 35–210 μm high × 40–260 μm diam, KOH+ darker, LA+ yellow. Pycnidial wall 5–15 μm thick, of one region intergrading with stroma, cells forming textura prismatica, about 1.0 μm thick, elongate, thin-walled, hyaline cells. Conidiophores densely branched, generally with 1–2-branched, 15–25 μm long, 1.4–2.6 μm wide. Conidiogenous cells cylindrical to subulate, straight to slightly curved, enteroblastic, monophialidic, 5–14 × 1.0–2.5 μm. Intercalary phialides bearing 1–2 terminal phialides, up to 5 μm long, similar to short acropleurogenous conidiophores. Sterile hyphae absent. Conidia hyaline, ellipsoidal, or oblong, sometimes slightly curved, non-septate, (2.3–)3.0–4.0(–4.6) × (0.9–)1.2–1.8(– 2.4) μm (n = 50). 138 Anamorph in culture: After 7 d at 25 °C, colonies 23–35 mm (average 29 mm) diam. Colony surface slightly cottony with aerial mycelium, whitish yellow to yellow; aerial mycelium developed, small white to whitish yellow sporodochial conidial masses produced after 3 wk; reverse white to whitish yellow. Odour on PDA slightly putrid. Sporulation on SNA from lateral phialidic pegs rare, ellipsoidal, slightly tapering toward tip, 1.9–4.5 μm long, 1.2–2.5 μm wide at base, monophialidic. Conidiophores unbranched, sometimes 1–2-branched, becoming loosely to moderately densely branched, 6.5–15.7 μm long, 1.5–2.5 μm wide at base. Sporodochial conidiophores sometimes formed, densely branched, 10–30 μm long, 1.5–3.0 μm wide at base. Conidiogenous cells monophialidic, enteroblastic, cylindrical, slightly tapering toward tip or narrowly lask-shaped with widest point in middle, 4.0–17.5 μm long, 1.0–3.0 μm wide at base. Young conidia formed from monophialides on aerial, submerged, or repent hyphae, formed abundantly on slimy heads or sporodochia, oblong to long cylindrical, hyaline, smooth, straight or slightly curved, rounded at both ends, non-septate, (4.0–)4.5–5.1(–7.2) × (1.0–)1.3–1.9(–2.3) μm (n = 60), smoothwalled. Mature conidia swollen, 0-septate, ellipsoidal or oblong, hyaline, smooth, straight or slightly curved, rounded at both ends, rarely budding, (5.4–)6.6–9.6(–12.5) × (2.1–)2.3–3.1(–3.3) μm (n = 56). Chlamydospores intercalary, globose to subglobose, rare, smooth, 7–14 µm. Ascomata and pycnidia not produced in culture. Habitat: On dead bark or twigs of Ilex aquifolium (Aquifoliaceae). Distribution: Europe (France, UK). allantonectria, nectria, and Pleonectria Fig. 108A–N. Anamorph of Pleonectria ilicicola in culture. A. Cultures after 7 d at 25 °C on PDA; B. Conidial mass on SNA; C. Lateral phialidic pegs and conidial mass on SNA; D. Conidiophores and conidial mass on SNA; E. Lateral phialidic pegs and young conidia on SNA; F–K. Conidiophores and conidia on SNA; L. Young conidia on SNA; M. Budding mature conidia (black arrow) on SNA; N. Chlamydospore on SNA. Scale bars: A = 3 mm; B = 50 µm; C–N = 20 µm. Additional specimens and isolates examined: France, Forêt de I’Hermitain, on dead twigs of Ilex aquifolium, 20 Feb. 2008, C. Lechat, BPI 881056, culture CBS 125168 = A.R. 4494; Foret de L’Hermitain, on bark of Ilex aquifolium, 2 Feb. 2009, C. Lechat CLL 7184, BPI 879857, culture CBS 128978 = A.R. 4574. UK, Burnham Beeches, Slough, Buckinghamshire, on Ilex aquifolium, 15 Sep. 2004, W.J. Jaklitsch WJ 2720, BPI 880698, culture CBS 125147 = A.R. 4108. Notes: Pleonectria ilicicola resembles P. aquifolii, however, P. ilicicola differs in having ascospores that are ellipsoidal to fusiform with a slightly constricted centre, not budding in the asci, and a www.studiesinmycology.org monophialidic anamorph on SNA (Figs 106G, 107C, 108E–K). Our phylogenetic study also suggests that P. ilicicola is closely related to P. aquifolii but is distinct with strong statistical support (BI PP 100 %, ML BP 100 %, MP BP 100 %) (Figs 1, 2). Pleonectria ilicicola is also similar to P. sinopica in ascomatal characteristics and size of ascospores. However, P. sinopica has ascospores that do not bud to produce ascoconidia and occurs on the genus Hedera. Based on our phylogenetic data P. ilicicola is only distantly related to P. sinopica (Figs 1, 2). 139 Hirooka et al. The zythiostroma-like (pycnidial) anamorph of P. ilicicola has been found only on BPI 881055, the holotype of this fungus. This relationship was conirmed by molecular data; CBS 125170 isolated from ascospores had identical sequences to CBS 125171 isolated from conidia. Pleonectria lamyi (Desm.) Sacc., Mycotheca Ven. No. 688. 1876. Figs 109–111. Basionym: Sphaeria lamyi Desm., Pl. Crypt. France, no. 839. 1836. ≡ Nectria lamyi (Desm.) De Not., Sfer. Ital., 1: 13. 1863. ≡ Thyronectria lamyi (Desm.) Seeler, J. Arnold Arbor. 21: 449. 1940. Anamorph: zythiostroma-like. Teleomorph on natural substrata: Ascomata and pycnidia rarely formed on same or discrete stroma. Mycelium not visible around ascomata and on host. Stromata erumpent through epidermis, 2.5 mm high and 2.5 mm diam, bay, KOH+ dark red, LA+ yellow, pseudoparenchymatous, cells forming textura angularis, intergrading with ascomatal wall. Ascomata supericial on welldeveloped stromata, aggregated in groups of 5–55, subglobose to globose, 245–450 μm high × 230–455 μm diam, not cupulate when dry, rarely with only a depressed apical region, bay to scarlet, apical region nearly black, KOH+ slightly purple, LA+ yellow, sometimes surface scurfy or scaly, yellowish green. Ascomatal surface cells forming textura globulosa or t. angularis sometimes including bright yellow scurf, 2–15 μm diam, with pigmented, irregularly, ca. 1.5 μm thick walls. Ascomatal wall 30–80 μm thick, around apex to about 100 μm thick, of two regions: outer region 25–50 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, about 1.5 μm thick; inner region 9–20 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Asci widely clavate, increasing in size as ascospores mature, 70–145 × 10–40 μm, with inconspicuous ring at apex, 8-spored, ascospores mainly biseriate. Ascospores ellipsoidal to fusiform, hyaline, constricted at septae, muriform, with 5–8 transverse septa, 1(–2) longitudinal septum, (14.5–18.9–26.1(– 32.2) × (5–)5.2–8(–10.8) μm (n = 391), smooth, budding to produce hyaline, thin-walled, bacillar ascoconidia, (1.5–)3.0–4.2(–6.3) × (0.7–)1.0–1.8(–2.2) μm (n = 393), that ill asci. Anamorph on natural substrata: Stromata erumpent through epidermis or developing in stroma with ascomata, orange to bay. Pycnidia solitary or aggregated in groups of 3–8, supericial on stroma or rarely immersed at base, irregularly discoidal, smooth to slightly roughened, cerebriformis or cupulate upon drying, 91–244 μm high, 193–446 μm diam, bay to umber, KOH+ slightly darker, LA+ slightly yellow. Pycnidial wall 35–55 μm thick, of two regions: outer region 10–18 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, about 1.5 μm thick; inner region 14–35 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Conidiophores densely branched, generally with 1–3 branched, 22–44 μm long, 2.2–4.3 μm wide. Conidiogenous cells cylindrical to subulate, straight to slightly curved, enteroblastic, monophialidic, 9.6–14.1 × 1.2–2.1 μm. Intercalary phialides generally observed, bearing 1–3 terminal phialides, up to 6 μm long, similar to short acropleurogenous conidiophores. Sterile hyphae absent. Conidia hyaline, ellipsoidal to oblong, sometimes slightly curved, non-septate, (3.3–)3.4–4.0(– 4.2) × (1.0–)1.1–1.3(–1.5) μm (n = 50). Anamorph in culture: After 7 d at 25 °C, colonies 35–45 mm (average 41 mm) diam. Colony surface cottony with aerial mycelium, whitish 140 to whitish saffron; aerial mycelium usually developed, often small, white sporodochial conidial masses produced after 3 wk; reverse white to slightly whitish yellow. Odour on PDA slightly pungent. Sporulation on SNA from lateral phialidic pegs abundant, 1.5–5.3 μm long, 1.1–2.2 μm wide at base, monophialidic. Conidiophores sometimes formed, unbranched, sometimes verticillate, 1(–3)-branched, becoming loosely to densely branched, 16.9– 23.5 μm long, 2.0–3.5 μm wide at base. Conidiogenous cells enteroblastic, monophialidic, cylindrical, slightly tapering toward tip, 4.6–9.8 μm long, 1.1–2.3 μm wide at base. Young conidia formed from monophialides on aerial, submerged, or repent hyphae, formed abundantly on slimy heads or sporodochia, ellipsoidal, oblong to cylindrical, hyaline, straight or slightly curved, rounded at both ends, non-septate, (2.8–)3.7–5.2(–6.6) × (1.0–)1.3–2.1(–2.3) μm (n = 50), smooth-walled. Mature conidia swollen, 0-septate, long cylindrical, sometimes C-shape, hyaline, smooth, sometimes strongly curved, rounded at both ends, (7.8–)9.6–12.8(–14.3) × (1.4–)1.8–2.6(–3.1) μm (n = 50). Ascomata, pycnidia, and chlamydospores not produced in SNA and PDA. Habitat: On dead bark or twigs of Berberis vulgaris and Berberis sp. (Berberidaceae). Distribution: Asia (Pakistan), Europe (Austria, France, Germany, Hungary, Italy, Sweden, Ukraine), North America (Canada). Lectotype of Pleonectria lamyi designated by Seeler (1940b): France, Limoges, on dead branches of Berberis sp., Lectotype Desmazières, Plantes Cryptogames France No839., FH – not examined in this study; Isolectotype listed by Rossman et al. (1999), BPI – bound exsiccati examined. Additional specimens and isolates examined: Austria, St. Margareten im Rosental, Karnten, on the edge of the little forest Stariwald, mapping grid square 9452/4, alt. 600 m, on Berberis vulgaris, 26 Oct. 1998, W. Jaklitsch WJ 1264, BPI 746349, culture CBS 115034 = A.R. 2779; Kalvarienberg, on Berberis vulgaris, 29 Jun. 1936, J. Weese, J. Weese, Eumycetes selecti exsiccati. No 752, BPI-bound exsiccati. Canada, Ontario, Wilcox Lake, on Berberis vulgaris, 29 May 1933, R.F. Cain, BPI 552463; Ontario, near Wilcox Lake, S. Aurora, on Berberis vulgaris, 22 Apr. 1934, H.S. Jackson, BPI 552465; Ontario, near Wilcox Lake, on Berberis vulgaris, 01 May 1932, H.S. Jackson, BPI 552467. Germany, Coburg, Aug. 1864, A. Sollman, Rabenhorst, Fungi europaei. No 752, BPI-bound exsiccati; Velvary, on Berberis vulgaris, 14 Apr. 1900, J.E. Kabat, BPI 552460; Kalvarienberg Bei Gumpoldskirchen, Nieder–Osterreich, on Berberis vulgaris, 29 Jun. 1936, J. Weese, BPI 552464; Chiemgauer Alpen, Kaitelalm, on dead twigs of Berberis vulgaris, 20 Jul. 1989, H. Schmid, culture CBS 417.89. Hungary, Muhltal Prope Pozsony, on Berberis vulgaris, J. Baumler, BPI 552462; Com. Pozsony, Muhltal Prope Pozsony, on Berberis vulgaris, J. Baumler, BPI 552448. Italy, Montello (Treviso), on Berberis vulgaris, Aug. 1903, BPI 552446; Montello, on Berberis vulgaris, Aug. 1903, BPI 552461 as Nectria lamyi; Venetia, Susigana, on Berberis vulgaris, 1876, C. Spegazzini, BPI 552447; Venetia, Susigana, in ramulis emortuis Beridis Vulgaris Lin. Hieme, on Berberis vulgaris,1876, C. Spegazzini, F. De Thuemen, Mycotheca Universalis. No 765, BPI-bound exsiccati; Trento, Tebnario, on Berberis vulgaris, Feb. 1923, Roup, BPI 552456 as Nectria lamyi. Pakistan, Kaghan Valley, Shogran. West Pakistan, on Berberis sp., 27 Jul. 1956, S. Ahmad, BPI 552469; Naran, West Pakistan, on Berberis sp., 12 Aug. 1968, BPI 552470; Naran, Nathia Gali, on Berberis sp., 22 Aug. 1968, BPI 552471. Sweden, ad Tursleo prope Upsala, on Berberis vulgaris, 23 May 1895, A.G. Eliasson, BPI 552459; Upsaliam, on Berberis vulgaris, 10 Nov. 1889, L. Romell, BPI 552451; ad Upsaliam, on Berberis vulgaris, 10 Nov. 1876, L. Romell, L. Romell, Fungi exsiccati præsertim scandinavici. No 80, BPI-bound exsiccati. Ukraine, Prov, Cernigov, prope Borzna, on Berberis sp., 22 Mar. 1912, G. Newodowski, BPI 552454; Czernigow, Borzna, on Berberis vulgaris, 22 Mar. 1912, G. Newodowski, BPI 552466. Note: Pleonectria lamyi has only been collected on Berberis. Morphologically this species is similar to P. balsamea and P. pinicola in having oblong to fusiform ascospores that produce ascoconidia in the asci and a pycnidial anamorph. However, the allantonectria, nectria, and Pleonectria Fig. 109A–R. Pleonectria lamyi on natural substrata (A–K teleomorph, L teleomorph and anamorph, M–R anamorph). A–C. Perithecia on natural substrata; D. Median section of perithecium on natural substrata; E, F. Median section of perithecial walls; G–I. Ascus having budding ascospores; J, K. Budding ascospores; L. Perithecia (black arrows) and pycnidia (white arrows) on natural substrata; M. Pycnidia on natural substrata; N. Median section of pycnidium on natural substrata; O–Q. Conidiophores on natural substrata; R. Conidia on natural substrata. Scale bars: A, B, L = 1 mm; C, M = 500 µm; D–F, N = 100 µm; G–J, O = 50 µm; K, P–R = 10 µm. ascospores of P. lamyi are > 5 μm wide while ascospores are < 5 μm wide in P. balsamea and P. pinicola. In terms of their anamorph in the natural environment, the pycnidia in P. lamyi are irregularly discoidal whereas the pycnidia of P. balsamea and P. pinicola are www.studiesinmycology.org subglobose (Figs 109L–M, 110D). In culture, the anamorph of P. lamyi is easily distinguished from other Pleonectria species based on that C-shaped, mature conidia (Fig. 111M). 141 Hirooka et al. Fig. 110A–F. Pleonectria lamyi on natural substrata (A–C teleomorph, D–F anamorph). A. Median section of mature perithecium; B. Ascus; C. Ascospores and ascoconidia; D. Median section of mature Pycnidium; E. Conidia; F. Conidiophores. Scale bars: A, D = 100 µm;B, C = 20 µm; E, F = 10 µm. Pleonectria lonicerae (Seeler) Hirooka, Rossman & P. Chaverri, comb. nov. MycoBank MB519712. Figs 112, 113. Habitat: On dead branches of Lonicera involucrata (Caprifoliaceae). Basionym: Thyronectria lonicerae Seeler, J. Arnold Arbor. 21: 450. 1940. Holotype of Pleonectria lonicerae: USA, Colorado, Clear Creek County, Empire, on Lonicera involucrata, 22 May 1897, E. Bethel, Holotype FH 00258958. Anamorph: unknown Notes: Pleonectria lonicerae was irst described by Seeler (1940b) as Thyronectria lonicerae with a new combination as Nectria lonicerae made by Rossman (1989). Pleonectria lonicerae is unusual in having ascomata that are sienna in colour, a rare characteristic in nectria-like, although occurring in Nectria neorehmiana, Pleonectria austroamericana, and P. sphaerospora (Fig. 112A–C). This species is included in Pleonectria based on the scurf around the ascomatal apex; this scurf forms a distinct layer on the ascomatal surface (Figs 112E, F, 113A). Although appearing rust to chestnut macroscopically, in section this layer appears orange. Pleonectria lonicerae is similar to P. pyrrhochlora, P. virens, and P. xanthoxyli in having immersed ascomata. These three species, however, have a red to umber apex, not protuberances around ascomatal apex, and occur on Acer, Rhus, or Zanthoxylum, while P. lonicerae has a rust to chestnut ascomatal apex, protuberances around ascomatal apex, and occurs on Lonicera involucrata. ≡ Nectria lonicerae (Seeler) Rossman, Mem. New York Bot. Gard. 49: 260. 1989. Teleomorph on natural substrata: Stromata immersed in substrate, 1.0 mm high and 3.5 mm diam, cells forming pseudoparenchymatous, saffron to sienna, KOH– and LA–, prosenchymatous, cells forming textura intricata. Ascomata nearly or completely immersed, aggregated in groups of 2–15, subglobose to pyriform, 290–450 μm high × 300–460 μm diam, not collapsing when dry, rarely with a depressed apical region, sienna, apical region rust to chestnut, slightly KOH+ slightly dark red, LA+ slightly yellow, surface smooth to rarely with scurf that varies to saffron, with protuberances around ascomatal apex. Ascomatal surface cells forming textura globulosa, 3–9 μm diam, with walls pigmented ca. 1.0 μm thick. Ascomatal wall 34–40 μm thick, of two regions: outer region 14–25 μm thick, intergrading with stroma, cells forming textura globuosa, walls pigmented, about 1.0 μm thick; inner region10–15 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Asci clavate, 105–157 × 9–14 μm, with inconspicuous ring at apex, 8-spored, ascospores uniseriate. Ascospores hyaline, ellipsoidal to fusiform, tapering slightly toward both ends, straight or slightly curved, usually with (5–)7(–8) distinct transverse septa, sparsely muriform, rarely with one or two discontinuous divisions, (16.8–) 18.2–21.4(–23.6) × (6.2–)6.7–8.1(–8.9) μm (n = 50), smooth. Distribution: North America (USA, known only from the type collection). 142 Pleonectria missouriensis (Ellis & Everh.) Sacc., Syll. Fung. 9: 990. 1891. Figs 114, 115. Basionym: Nectria missouriensis Ellis & Everh., J. Mycol. 4: 57. 1888. ≡ Paranectria missouriensis (Ellis & Everh.) Rabenhorst, in Winter, Fungi europaei no. 3748. 1891. ≡ Thyronectria missouriensis (Ellis & Everh.) Seaver, Mycologia 1: 205. 1909. Anamorph: zythiostroma-like. ≡ Gyrostroma missouriense Seeler, J. Arnold Arnold Arbor. 21: 441. 1940. allantonectria, nectria, and Pleonectria Fig. 111A–M. Anamorph of Pleonectria lamyi in culture. A. Cultures after 7 d at 25 °C on PDA; B. Conidial mass on SNA surface; C–E. Lateral phialidic pegs and conidial mass on SNA; F–I. Lateral phialidic pegs and conidia on SNA; J, K. Conidiophores on SNA; L, M. Young and mature conidia on SNA. Scale bars: A = 3 mm; B = 50 µm; C, E, L, M = 20 µm; D, F–K = 10 µm. Teleomorph on natural substrata: Ascomata and pycnidia sometimes formed on same or discrete stroma. Mycelium not visible around ascomata and on host. Stromata erumpent through epidermis, 1.5 mm high and 2.0 mm diam, bay, KOH+ dark red, LA+ yellow, pseudoparenchymatous, cells forming textura angularis, intergrading with ascomatal wall. Ascomata supericial on welldeveloped stromata, aggregated in groups of 3–10, subglobose to globose, 350–450 μm high × 350–450 μm diam, not collapsing when dry, red to bay, apical region darker, KOH+ dark red, LA+ yellow, surface scaly furfuraceous, olive yellow or yellow-green. Ascomatal surface cells forming textura globulosa or t. angularis sometimes including bright yellow scurf, 5–10 μm diam, with pigmented, irregularly, ca. 1.5 μm thick walls. Ascomatal wall 35–50 μm thick, of two regions: outer region 27–40 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, about 1.5 μm thick; inner region 7–15 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Asci broadly clavate, 90–140 × 20–30 μm, with inconspicuous ring www.studiesinmycology.org at apex, 8-spored, biseriate above, uniseriate below. Ascospores of two types: microascospores ellipsoidal to short-cylindrical with rounded ends, straight to slightly curved, muriform, with 5–8 transverse septa, 1–2 longitudinal septum, (20.9–)25.0–30.0(– 32.5) × (8.2–)9.5–11.9(–13.1) μm (n = 50), hyaline, smooth. Macroascospores cylindrical with slightly rounded corners, curved, muriform, with 6–9 transverse septa, 1–2 longitudinal septum, (37.1–)39.1–46.7(–49.4) × (10.1–)10.4–12.2(–13.1) μm (n = 30), hyaline, becoming pale brown, smooth. Anamorph on natural substrata: Stromata erumpent through epidermis or developing in stroma with ascomata, orange to bay. Pycnidia solitary or aggregated in groups of 3–7, supericial on stroma or rarely immersed at base, irregulary subglobose, smooth to slightly roughened, cerebriformis or cupulate upon drying, 100– 250 μm high, 100–200 μm diam, bay to umber, KOH+ slightly darker, LA+ slightly yellow. Pycnidial wall 15–30 μm thick, of two regions: outer region 10–20 μm thick, intergrading with stroma, cells forming 143 Hirooka et al. Fig. 112A–K. Pleonectria lonicerae on natural substrata (teleomorph). A–C. Perithecia on natural substrata; D, E. Median section of perithecia on natural substrata; F. Median section of perithecial apex (black arrow); G. Median section of perithecial wall; H. Median section of perithecium at base; I. Apex of asci; J. Ascus; K. Ascospores. Scale bars: A = 1 mm; B–D = 500 µm; E–H = 100 µm. Fig. 113A–C. Pleonectria lonicerae on natural substrata (A–C teleomorph). A. Median section of mature perithecium; B. Ascus; C. Ascospores. Scale bars: A = 100 µm; B, C = 20 µm 144 allantonectria, nectria, and Pleonectria Fig. 114A–P. Pleonectria missouriensis on natural substrata (A, B, H, I teleomorph and anamorph, C–G teleomorph, J–P anamorph). A, B, H, I. Perithecia (black arrows) and pycnidia (white arrows) on natural substrata; C. Perithecia on natural substrata; D. Median section of perithecia on natural substrata; E. Median section of perithecial wall; F. Ascus; G. Micro- (black arrow) and macro-ascospores (white arrow); J. Pycnidia on natural substrata; K. Median section of pycnidium on natural substrata; L–O. Conidiophores on natural substrata; P. Conidia on natural substrata. Scale bars: A, B = 1 mm; C, H–J = 500 µm; D, K = 100 µm; E, F = 50 µm; G, L–P = 20 µm. textura globulosa or t. angularis, walls pigmented, about 1.5 μm thick; inner region 5–10 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Conidiophores densely branched, generally with (1–)3(–5)-branched, 17–49 μm long, 1.5–2.7 μm wide. Conidiogenous cells cylindrical to subulate, straight to slightly curved, enteroblastic, monophialidic, 10.2–13.2 × 1.3–2.0 μm. Intercalary phialides observed, bearing 1–3(–5) terminal phialides, www.studiesinmycology.org up to 6 μm, similar to acropleurogenous conidiophores. Sterile hyphae absent. Conidia hyaline, oblong-ellipsoidal to allantoid, sometimes slightly curved, non-septate, (1.9–)2.4–3.6(–4.8) × 0.5–0.8(–1.2) μm (n = 50). Habitat: On dead branches of Carya tomentosa as C. alba (Juglandaceae). 145 Hirooka et al. Fig. 115A–G. Pleonectria missouriensis on natural substrata (A–D teleomorph, E–G anamorph). A. Median section of mature perithecium; B. Ascus; C. Microascospores; D. Macroascospores; E. Median section of mature Pycnidium; F. Conidia; G. Conidiophores. Scale bars: A, E = 100 µm; B–D = 20 µm; F, G = 10 µm. Distribution: North America (USA). Lectotype of Pleonectria missouriensis designated herein: USA, Missouri, Concordia, on dead branches of Carya alba, Mar. 1888, C.H. Demetrio, Lectotype NY ID 00927928; Isolectotype NY 00927928, NY “specimen 1”, NY “specimen 2”. Additional specimen examined: USA, Indiana, Scottsburg, on Carya glabra, J.R. Weir, BPI 552932 as Megalonectria pseudotrichia; Oregon, Corvallis, residential garden, on dead twigs, 30 Mar. 1971, A.Y. Rossman, BPI 632606. Unknown, possibly Louisiana: on woody substrate, BPI 552915 as Thyronectria pseudotrichia. Notes: At irst glance, Pleonectria missouriensis resembles P. pseudomissouriensis in the morphology of the ascomata and asci. However, this species with muriform ascospores can be readily distinguished from P. pseudomissouriensis having one-septate ascospores (Figs 114G, 115C, D). In Pleonectria, this is the only species having two different sizes of ascospores; this characteristic distinguishes P. missouriensis from other species of Pleonectria as well as other nectria-like fungi (Figs 114G, 115C, D). The anamorph of P. missouriensis forms pycnidia in the natural environment that are similar to the anamorph of P. lamyi in having supericial, irregularly discoidal pycnidia; the shape of the conidia and host distinguish these species. Pleospores missouriensis has oblong-ellipsoidal to allantoid conidia and occurs on Carya while P. lamyi has ellipsoidal to oblong conidia and occurs on Berberis (Figs 114P, 115F). Pleonectria okinawensis Hirooka, Rossman & P. Chaverri, sp. nov. MycoBank MB519714. Figs 116–118. 146 Holotype of Pleonectria okinawensis. Japan, Okinawa Pref. Ishikawa-shi, Ireibaru, Okinawa Island, on dead twigs of Castanopsis sp., 20 Jan. 2003, Y. Hirooka, Holotype BPI 881058, ex-holotype culture MAFF 241410 = TPP-h92. Etymology: okinaw + -ensis; indicates collection place. Anamorph: zythiostroma-like. Teleomorph on natural substrata: Ascomata and pycnidia sometimes formed on same or discrete stroma. Mycelium not visible around ascomata and on host. Stromata erumpent through epidermis, 1.5 mm high and 1.5 mm diam, sienna to bay, KOH+ dark red, LA+ yellow, pseudoparenchymatous, cells forming textura angularis, intergrading with ascomatal wall. Ascomata supericial on well-developed stromata, solitary to aggregated in groups of 2–10, subglobose to globose, 240–350 μm high × 240–380 μm diam, red to bay, cupulate when dry, apical region slightly darker, KOH+ blood colour, LA+ yellow, smooth to roughened. Ascomatal surface cells forming textura globulosa or t. angularis, 6–14 μm diam, with pigmented ca. 1.5 μm thick walls. Ascomatal wall 40–60 μm thick, of two regions: outer region 27–50 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, about 1.5 μm thick; inner region 7–13 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Asci clavate, 55–70 × 8–12.5 μm, with inconspicuous ring at apex, 8-spored, ascospores biseriate above, uniseriate below. Ascospores ellipsoidal to rarely fusiform, straight, hyaline to pale greenish brown, 1-septate, (8.7–)9.8–12.4(–13.5) × (3.7–)4.6– allantonectria, nectria, and Pleonectria Fig. 116A–Q. Pleonectria okinawensis on natural substrata (A–E teleomorph and anamorph, F–J teleomorph, K–Q anamorph). A–D. Perithecia and navicular pycnidia (white arrows) on natural substrata; E. Median section of perithecium and navicular pycnidium on natural substrata; F. Median section of perithecial wall; G. Ascus; H, I. Ascospores; J. Budding ascospores (black arrow); K. Navicular pycnidia on natural substrata; L Median section of navicular pycnidium on natural substrata; M–P. Conidiophores on natural substrata; Q. Conidia on natural substrata. Scale bars: B = 5 mm; C, K = 500 µm; D, E, L = 100 µm; F, M. = 50 µm; G = 20 µm; H–J, N–Q = 10 µm. 6.0(–6.8) μm (n = 100), smooth to spinulose, budding to produce hyaline, thin-walled, bacillar ascoconidia, (2.2–)2.4–3.2(–3.6) × (0.6–)0.8–1.4(–1.7) μm (n = 100) μm, hyaline, forming outside asci. Anamorph on natural substrata: Stromata erumpent through epidermis or developing in stroma with ascomata, sienna to www.studiesinmycology.org bay. Pycnidia solitary or aggregated in groups of 3–7, supericial on stroma,fusiform to navicular, smooth to slightly roughened, collapsing laterally or not collapsing when dry, 190–564 μm high, 122–276 μm diam, sienna to bay, KOH+ slightly darker, LA+ slightly yellow. Pycnidial wall 22–30 μm thick, of two regions: outer region 13–24 μm thick, intergrading with stroma, cells forming textura 147 Hirooka et al. Fig. 117A–F. Pleonectria okinawensis on natural substrata (A–C teleomorph, D–F anamorph). A. Median section of mature perithecium; B. Ascus; C. Ascospores and ascoconidia; D. Median section of mature Pycnidium; E. Conidia; F. Conidiophores. Scale bars: A, D = 100 µm; B, C, E, F = 10 µm. globulosa or t. angularis, walls pigmented, about 1.5 μm thick; inner region 8–18 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Conidiophores densely branched, generally with 1–4 branched, 18–33 μm long, 1.1–2.8 μm wide. Conidiogenous cells cylindrical to subulate, straight to slightly curved, enteroblastic, monophialidic, 6–10 × 1.0–1.7 μm. Intercalary phialides observed, bearing 1– 3(–7) terminal phialides, up to 4 μm long, similar to short acropleurogenous conidiophores. Sterile hyphae absent. Conidia hyaline, ellipsoidal, oblong to allantoid, sometimes curved, nonseptate, (2.5–)2.7–3.3(–3.9) × (0.7–)0.8–1.2(–1.4) μm (n = 50). hyaline, smooth, straight or slightly curved, rounded at both ends, non-septate, (3.2–)3.6–4.8(–5.6) × (1.3–)1.6–2.2(–2.6) μm (n = 50). Mature conidia swollen, non-septate, ellipsoidal fusiform or allantoid, hyaline, smooth, slightly or sometimes strongly curved, rounded at both ends, (5.1–) 7.1–10.1(–11.5) × (1.8–)2.0–2.8(–3.3) μm (n = 50). Cylindrical to navicular pycnidia produced on SNA and PDA (MAFF 241410). Chlamydospores and ascomata not produced in culture. Anamorph in culture: After 7 d at 25 °C, colonies 23–45 mm (average 29 mm) diam. Colony surface slightly cottony with aerial mycelium, white to whitish yellow; aerial mycelium developed, small white to whitish yellow sporodochial conidial masses produced after 3 wk; reverse whitish yellow. Odour on PDA slightly fruity. Sporulation on SNA from lateral phialidic pegs somewhat rare, ellipsoidal, slightly tapering toward tip or lask-shaped, 2.3–4.6 μm long, 1.5–2.1 μm wide at base, enteroblastic, monophialidic. Aerial conidiophores unbranched, sometimes 1–2 branched, becoming loosely to moderately densely branched, 11.5–32.2 μm long, 2.3–3.2 μm wide at base. Aerial conidiogenous cells monophialidic, enteroblastic, cylindrical, slightly tapering toward tip with widest point in middle, 9.5–11.9 μm long, 1.4–3.0 μm wide at base. Sporodochial conidiophores sometimes formed, densely branched, 23.3–44.7 μm long, 1.6–3.3 μm wide at base. Sporodochial conidiogenous cells monophialidic, enteroblastic, cylindrical, slightly tapering toward tip or narrowly lask-shaped with widest point in middle, 7.6– 12.7 μm long, 1.7–2.9 μm wide at base. Young conidia formed from monophialides on aerial, submerged, or repent hyphae, formed abundantly on slimy heads or sporodochia, ellipsoidal to fusiform, Distribution: Asia (Japan). 148 Habitat: On dead twigs of Castanopsis sp. (Fagaceae). Additional specimens and isolates examined: Japan, Okinawa Pref., Ishikawa-shi, Ireibaru (Okinawa Island), On Castanopsis sp., 20 Jan. 2003, Y. Hirooka, TUATPP-h93, culture TPP-h93. Notes: Pleonectria okinawensis was found on Okinawa Island in the south part of Japan. This species is included in the genus Pleonectria despite the lack of yellow-green scurf on the ascomata (Fig. 116C–F). The budding ascospores, pycnidial anamorph, and phyologenetic tree provide strong evidence for placement in Pleonectria. Pleonectria aquifolii and P. sinopica are morphologically similar to P. okinawensis in the natural environment. Only P. okinawensis produces spinulose ascospores and occurs on Castanopsis sp. (Figs 116I, 117C). The cylindrical to navicular pycnidia of P. okinawensis are unusual; most species of Pleonectria produce subglobose to irregular discoidal pycnidia (Figs 116C–E, K, L, 117D). In culture, the anamorph of P. okinawensis resembles that of P. sinopica in producing mature conidia more than 5 μm long and sporodochial conidiophores; however, P. okinawensis produces usually straight young conidia while those of P. sinopica allantonectria, nectria, and Pleonectria Fig. 118A–Q. Anamorph of Pleonectria okinawensis in culture. A. Cultures after 7 d at 25 °C on PDA; B. Conidial mass on SNA; C. Lateral phialidic pegs and conidial mass on SNA; D. Conidiophores and conidial mass on SNA; E, F. Lateral phialidic pegs and conidia on SNA; G, H. Conidiophores on SNA; I–K. Sporodochial conidiophores on SNA; L. Young conidia on SNA; M. Young and mature conidia on SNA; N, O. Pycnidia on SNA; P. Basal part of pycnidium on SNA; Q. Pycnidial wall on SNA. Scale bars: A = 3 mm; B, I = 50 µm; C, D, F–H, J, Q = 20 µm; E, K–M = 10 µm; N–P = 200 µm. www.studiesinmycology.org 149 Hirooka et al. Fig. 119A–U. Pleonectria pinicola on natural substrata (A–C, E–K teleomorph, D teleomorph and anamorph, L–U anamorph). A–C. Perithecia on natural substrata; D. Perithecia and pycnidia (white arrow) on natural substrata; E. Median section of perithecium on natural substrata; F. Median section of perithecial wall; G. Asci; H–K. Budding ascospores; L. Pycnidia on natural substrata; M. Median section of pycnidia on natural substrata; N. Median section of pycnidial wall on natural substrata; O–Q. Conidiophores and sterile hyphae on natural substrata; R–T. Conidiophores on natural substrata. U. Conidia on natural substrata. Scale bars: A = 5 mm; B–D = 500 µm; E, L, M = 100 µm; F, N–Q 50 µm; G–K, R = 20 µm; S–U = 10 µm. 150 allantonectria, nectria, and Pleonectria Fig. 120A–F. Pleonectria pinicola on natural substrata (A–C teleomorph, D–F anamorph). A. Median section of mature perithecium; B. Ascus; C. Ascospores and ascoconidia; D. Median section of mature pycnidium; E. Conidia; F. Conidiophores and sterile hyphae. Scale bars: A, D = 100 µm; B, C, E, F = 20 µm. are sometimes strongly curved (Fig. 118L). The pycnidial anamorph of P. okinawensis was induced to form on SNA after one month. Initially, the pycnidia in culture were morphologically similar to synnemata (Fig. 118N). However, based on the anatomical morphology of the fruiting bodies, the synnematous fruiting bodies are pycnidia that have walls composed of textura globulosa or t. globulosa and bear conidia internally (Fig. 118O–Q). The relationship of P. okinawensis to other species is dificult to determine based on gross morphology. Pleonectria sinopica, the species most closely related to P. okinawensis in our phylogeny, does not produce cylindrical to navicular pycnidia although the morphology of the teleomorph in the natural environment and anamorph in culture are almost identical (Figs 1, 2). Pleonectria pinicola Kirschst., Abh. Bot. Ver. Prov. Brandenburg 48: 59. 1906. Figs 119–121. ≡ Ophionectria cylindrospora (Sollm.) Berl. & Voglino var. tetraspora Weese, Centralbl. Bakteriol., Abt. 2, 42: 601. 1914. Anamorph: zythiostroma-like. Teleomorph on natural substrata: Stromata and pycnidia sometimes formed on same or discrete stroma. Mycelium not visible around ascomata or on host. Stromata erumpent through epidermis, 1.0 mm high and 1.5 mm diam, bay to umber, KOH+ dark red, LA+ yellow, pseudoparenchymatous, cells forming textura angularis, intergrading with ascomatal wall. Ascomata supericial on well-developed stromata, scattered to aggregated in groups of 2–22, subglobose to globose, 250–410 μm high × 213–385 μm diam, cupulate upon drying, sometimes with only a depressed apical region, scarlet to bay, apical region slightly www.studiesinmycology.org darker, KOH+ slightly purple, LA+ yellow, sometimes surface bright yellow to yellowish green scurfy or scaly. Ascomatal surface cells forming textura globulosa or t. angularis sometimes including bright yellow scurf, 3–9 μm diam, with pigmented, irregularly ca. 1.5 μm thick walls. Ascomatal wall 31–60 μm thick, of two regions: outer region 27–44 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, about 1.5 μm thick; inner region10–15 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Asci narrowly clavate, increasing in size as ascospores mature, 64–107 × 7–12 μm, with inconspicuous ring at apex, 8-spored, mainly biseriate. Ascospores fusiform to long-fusiform, muriform, with 5–15 transverse septa and one longitudinal septum, hyaline, (14.2–)18.1–28.3(–46.4) × (3.2–)4.3–5.3(–6.9) μm (n = 82), smooth, budding to produce hyaline, thin-walled, tapering apex, slightly curved, bacillar ascoconidia, (1.8–)2.8–3.8(–4.7) × (0.8–) 1.2–1.6(–1.9) μm (n = 150), that ill asci. Anamorph on natural substrata: Stromata erumpent through epidermis, orange to red. Pycnidia solitary or aggregated in groups of 3–15, supericial on stroma or rarely immersed at base, subglobose, smooth to slightly roughened, cerebriformis or slightly cupulate upon drying, 126–254 μm high, 145–365 μm diam, red to bay, KOH+ slightly darker, LA+ slightly yellow. Pycnidial wall 19–38 μm thick, of two regions: outer region 10–14 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, about 1.5 μm thick; inner region 10–21 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Conidiophores densely branched, generally with 1–3 branched, 15–30 μm long, 1.7–2.3 μm wide. Conidiogenous cells cylindrical 151 Hirooka et al. Fig. 121A–L. Anamorph of Pleonectria pinicola in culture. A. Cultures after 7 d at 25 °C on PDA; B. Conidial mass on SNA surface; C. Lateral phialidic pegs and conidial mass on SNA; D–F. Lateral phialidic pegs and conidia on SNA; G. Conidiophores and conidial mass on SNA; H–J. Conidiophores on SNA; K. Young and mature conidia on SNA; L. Budding mature conidia (black arrows) on SNA. Scale bars: A = 3 mm; B = 50 µm; C–E, G = 20 µm; F, H–L. = 10 µm. to long-cylindrical, slightly tapering toward tip, straight to slightly curved, enteroblastic, monophialidic, 8–16 × 1.2–2.4 μm. Intercalary phialides generally observed, bearing 1–2 terminal phialides, up to 5 μm long, similar to short acropleurogenous conidiophores. Sterile hyphae mixed in with phialides, acicular, straight or curved, usually unbranched, sometimes 1–3 branched, septate, 65–95 μm long, 0.7–2.1 μm wide. Conidia hyaline, ellipsoidal to oblong, sometimes slightly curved, non-septate, (2.1–)2.6–3.4(–3.9) × (0.9–)1.0–1.4(– 1.6) μm (n = 100). Anamorph in culture: After 7 d at 25 °C, colonies 45–70 mm (average 57 mm) diam. Colony surface cottony with aerial mycelium, whitish 152 greenish to greenish yellow; aerial mycelium developed, rarely small greenish yellow sporodochial conidial masses produced after 2–3 wk; reverse greenish yellow to hazel in centre and greenish yellow at margin. Odour on PDA slightly putrid. Sporulation on SNA from lateral phialidic pegs abundant, ellipsoidal, slightly tapering toward tip or lask-shaped, 1.9–6.8 μm long, 1.1–3.7 μm wide at base, monophialidic enteroblastic. Conidiophores sometimes formed, unbranched, sometimes verticillate, 1(–2)-branched, becoming loosely to moderately densely branched, 9.5–22.0 μm long, 1.2–4.2 μm wide at base. Conidiogenous cells enteroblastic, monophialidic, cylindrical, slightly tapering toward tip or lask-shaped, 3.5–11.0 μm long, 1.1–3.1 μm wide at base. Young conidia formed from allantonectria, nectria, and Pleonectria monophialides on aerial, submerged, or repent hyphae, formed abundantly on slimy heads, ellipsoidal to oblong, hyaline, straight or slightly curved, rounded at both endscurved, rounded at both ends, non-septate, (2.8–)3.7–4.9(–5.9) × (1.0–) 1.4–2.0(–2.6) μm (n = 150), smooth-walled. Mature conidia swollen, 0-septate, oblong, slightly swollen at both ends, hyaline, smooth, straight or curved, rounded at both ends, (5.5–)6.8–11.0(–13.2) × (1.7–)1.9– 2.7(–3.1) μm (n = 50). Ascomata, pycnidia, and chlamydospores not produced in SNA and PDA. Habitat: On bark or twigs of Pinus spp. Including Pinus excelsa, Pinus koraiensis, Pinus strobus, Pinus sylvestris, and Pinus sp. (Pinaceae). Distribution: Asia (Japan, Pakistan, Taiwan), Europe (Germany, Russia), North America (USA). Holotype of Pleonectria pinicola and O. cylindrospora: Germany, Rathenower Stadtforst, on Pinus sylvestris, 11 Dec. 1904, W. Kirschstein, Holotype B 70 0021601. These two names are based on the same specimen. Additional specimens and isolates examined: Germany, Thuringia, south of Freestate, Sonneberg (MTB 5632), on dead branches of Pinus sylvestris, 02 Feb. 2008, I. Wagner, BPI 881059, culture CBS 125166 = A.R. 4478; Thuringia, south of Freestate, Sonneberg (MTB 5632), on dead branches of Pinus sylvestris, 02 Feb. 2008, I. Wagner, BPI 881060, culture CBS 125167 = A.R. 4479. Japan, Nagano Pref., Ueda city, Sugadaira, on dead branches of Pinus koraiensis, Sep. 2006, Y. Hirooka, BPI 881061 = TUA-TPP-h543, culture MAFF 241458 = TPP-h543. Pakistan, Loon Bagla, Muzaffarabad, on dead branches of Pinus excelsa, 26 Jul. 1963 C. Booth, BPI 632600 as Thyronectria balsamea; Loon Bagla, Muzaffarabad, on dead branches of Pinus excelsa, 26 Jul. 1963 C. Booth, BPI 632601 as Thyronectria balsamea. Russia, Siberia, Tara District, on Pinus sylvestris, K. Murashkinsky, culture CBS 242.30. Taiwan, Taichung, Pilushi, Heping, on twig of Pinus taiwanensis, 24 May 2005, Jia-Ron Guu, comm. Yu-ming Ju 94052402, BCRC 34289 = CBS 128979 = A.R. 4608. USA, New Hampshire. Waterville, on Pinus strobus, 21 Jul. 1932, J.R. Hansbrough, BPI 632796 as Scoleconectria scolecospora; New Hampshire. Jackson, on Pinus strobus, 14 May 1929, P. Spaulding, BPI 632677 as Scoleconectria scolecospora; Indiana, Hennysville, on Pinus strobus, 20 Feb. 1936, R.M. Lindgren, BPI 632572 as Scoleconectria scolecospora; Maine, Kittery Point, on Pinus strobus, 23 Apr. 1934, G.G. Hahn, BPI 629745 as Chilonectria cucurbitula; Maryland, Takoma Park, on Pinus sp., 01 Apr. 1900, C.L. Shear, BPI 629739 as Chilonectria cucurbitula. Notes: Pleonectria pinicola collected on Pinus sylvestris was described by Kirschstein (1906) and was synonymised with Nectria balsamea by Booth (1959). Our phylogenetic data show that there are two species in the N. balsamea clade that correlate with host identity: Abies and Pinus (Figs 1, 2). Pleonectria pinicola is the correct name for the species on Pinus. In the natural environment, the morphology of P. pinicola is similar to that of P. balsamea, but the size and number of transverse septa in the ascospores varies. In P. pinicola the ascospores are 14.2–46.4 × 3.2–6.9 μm with 5–15 transverse septa while in P. balsamea the ascospores are 16.0 –28.6 × 3.0–6.8 μm with 5–9 transverse septa. The anamorph of P. pinicola in the natural environment has long, sterile hyphae extending from the hymenium and abundant conidiophores (Figs 119O–Q, 120F). It is easily distinguished from P. balsamea that lacks such distinctive sterile hyphae. According to the protologue Ophionectria cylindrospora var. tetraspora was described based on the same type specimen as P. pinicola, thus O. cylindrospora var. tetraspora is a nomenclatural synonym of P. pinicola. Although many specimens preserved in B were destroyed during World War II, the holotype of P. pinicola survived and we observed this specimen. Although the specimen was in poor condition, typical morphology of P. pinicola was observed. www.studiesinmycology.org A number of specimens identiied as “Nectria balsamea” were examined on hosts such as Abies, Picea, Pinus, Thuja, and Tsuga. Our detailed morphological and molecular results suggest that these represent three different species, P. balsamea on Abies, P. boothii on Picea, and P. pinicola on Pinus, each one on a different conifer host genus. Because of limited number of specimens, the identity of those on Thuja and Tsuga could not be determined. Pleonectria pseudomissouriensis Hirooka, Rossman & P. Chaverri, sp. nov. MycoBank MB519715. Figs 122, 123. Holotype of Pleonectria pseudomissouriensis: Argentina, Urundel, Salta, 400 m elevation, on dead twigs, 13 Jul. 1946, Digilio-Grassi, Holotype NY. Etymology: pseudo + -missouriensis; indicates the similarity of this species to Pleonectria missouriensis. Anamorph: unknown. Teleomorph on natural substrata: Mycelium not visible around ascomata and on host. Stromata erumpent through epidermis, 1.5 mm high and 2.0 mm diam, sienna to bay, KOH+ dark red, LA+ yellow, pseudoparenchymatous, cells forming textura angularis, intergrading with ascomatal wall. Ascomata supericial on well-developed stromata, solitary to aggregated in groups of 3–21, subglobose to globose, 410– 460 μm high × 400–430 μm diam, orange to umber, cupulate when dry, apical region darker, KOH+ blood colour, LA+ yellow, roughened, surface scurfy to small scaly, whitish yellow to bright yellow. Ascomatal surface cells forming textura globulosa or t. angularis sometimes including bright yellow scurf, 5–16 μm diam, with pigmented, irregularly ca. 2.0 μm thick walls. Ascomatal wall 50–74 μm thick, of two regions: outer region 36–55 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, about 1.5 μm thick; inner region 13–20 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Asci clavate, 68–103 × 10–16 μm, with inconspicuous ring at apex, 8-spored, ascospores biseriate above, uniseriate below. Ascospores ellipsoidal to fusiform, straight, hyaline, 1-septate, (13.0–)13.9–16.7(–18.5) × (4.6–)5.3–6.7(–7.3) μm (n = 50), striate Habitat: On dead twigs. Distribution: South America (Argentina, known only from the type collection). Notes: Pleonectria pseudomissouriensis is described as a new species, although only the holotype specimen is known. This species is characterised by a scurfy to scaly ascomatal wall characteristic of the genus Pleonectria (Figs 122B–E, 123A). Pleonectria pseudomissouriensis is readily differentiated from the other species of Pleonectria by the striate ascospores (Figs 122G, H, 123C). Pleonectria pseudomissouriensis is morphologically similar to P. missouriensis. However, P. missouriensis has two types of muriform ascospores i.e. microascospores and macroascospores. Pleonectria pyrrhochlora (Auersw.) G. Winter, Rabenh. Krypt.-Fl. Ed. 2, 1(2), II. Abt.: Ascomyc.: Gymnoasceen p. 108. 1884. Figs 124–126. Basionym: Nectria pyrrhochlora Auersw., in Rabenh., Hedwigia 8: 88. 1869. 153 Hirooka et al. Fig. 122A–H. Pleonectria pseudomissouriensis on natural substrata (teleomorph). A–C. Perithecia on natural substrata; D. Median section of perithecium on natural substrata; E. Median section of perithecial wall on natural substrata; F. Ascus; G. Ascospores in surface view; H. Ascospores in optical section. Scale bars: A = 3 mm; B, C = 500 µm; D, E = 100 µm; F = 20 µm; G, H = 10 µm. Fig. 123A–C. Pleonectria pseudomissouriensis on natural substrata (A–C teleomorph). A. Median section of mature perithecium; B. Ascus; C. Ascospores. Scale bars: A = 100 µm; B, C = 10 µm. ≡ Calonectria pyrrhochlora (Auersw.) Sacc., Michelia 1: 251. 1878. ≡ Tyronectria pyrrhochlora (Auersw.) Sacc., Michelia 1: 325. 1878. ≡ Pleonectria pyrrhochlora (Auersw.) G. Winter, Rabenh. Krypt.-Fl. Ed. 2, 1(2), II. Abt.: Ascomyc.: Gymnoasceen p. 108. 1884. Anamorph: zythiostroma-like. Teleomorph on natural substrata: Stromata immersed in epidermis, 1.5 mm high and 3 mm diam, cells forming pseudoparenchymatous, bright yellow to greenish yellow, KOH–, LA–. Ascomata nearly or completely immersed, scattered to aggregated in groups of 3–21, subglobose to globose, 230–450 μm high × 180–380 μm diam, 154 amber to greenish yellow, apical region slightly darker, KOH–, LA–. Ascomatal surface cells forming textura globuosa to t. angularis sometimes including bright yellow scurf, 3–10 μm diam, with pigmented, irregularly ca. 1.0 μm thick walls. Ascomatal wall 30–60 μm thick, of two regions: outer region 20–40 μm thick, intergrading with stroma, cells forming textura globuosa to t. angularis, walls slightly pigmented, about 1.0 μm thick; inner region 10–20 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Asci clavate, 70–110 × 15–30 μm, with inconspicuous ring at apex, 8-spored, ascospores biseriate. Ascospores hyaline to pale allantonectria, nectria, and Pleonectria Fig. 124A–J. Pleonectria pyrrhochlora on natural substrata (teleomorph). A–E. Perithecia on natural substrata; F. Median section of perithecia on natural substrata; G. Median section of perithecial wall on natural substrata; H. Median section of perithecia at base on natural substrata; I. Ascus; J. Ascospores. Scale bars: A = 5 mm; B–E = 1 mm; F = 100 µm; G, H = 50 µm; I, J = 20 µm. Fig. 125A–C. Pleonectria pyrrhochlora on natural substrata (A–C teleomorph). A. Median section of mature perithecium; B. Ascus; C. Ascospores. Scale bars: A = 100 µm; B, C = 20 µm. www.studiesinmycology.org 155 Hirooka et al. Fig. 126A–J. Anamorph of Pleonectria pyrrhochlora in culture. A. Cultures after 7 d at 25 °C on PDA; B. Conidial mass on SNA surface; C–E. Lateral phialidic pegs and conidia on SNA; F–H. Conidiophores and conidial mass on SNA; I. Young conidia on SNA; J. Mature conidia on SNA. Scale bars: A = 3 mm; B = 50 µm; C–G, I, J = 10 µm; H = 20 µm. greenish yellow, ellipsoidal, rarely subglobose, muriform, with 5–7 transverse septa and usually two longitudinal septum, (15.4–) 16.9–20.5(–23.3) × (7.8–)8.7–11.1(–12.3) μm (n = 90), smooth. Anamorph in culture: After 7 d at 25 °C, colonies 68–75 mm (average 71 mm) diam. Colony surface cottony with aerial mycelium, white to whitish yellow to greenish yellow; aerial mycelium developed, rarely small yellow sporodochial conidial masses produced after 2 wk; reverse whitish yellow in centre and white at margin. Odour on PDA slightly fruity. Sporulation on SNA from lateral phialidic pegs abundant, enteroblastic, monophialidic, ellipsoidal, slightly tapering toward tip or lask-shaped, 1.5–3.8 μm long, 1.3–1.6 μm wide at base. Aerial conidiophores unbranched, sometimes 1–2 branched, becoming loosely to moderately densely branched, 13.5–33.7 μm long, 1.6–2.2 μm wide at base. Aerial conidiogenous cells monophialidic, enteroblastic, cylindrical, slightly tapering toward tip or narrowly lask-shaped with widest point in middle, 8.5–14.3 μm long, 1.5–2.7 μm wide at base. Sporodochial conidiophores sometimes formed, densely branched, 21.6–30.6 μm long, 1.1–1.8 μm wide at base. Sporodochial conidiogenous cells monophialidic, 156 enteroblastic, cylindrical, slightly tapering toward tip, 7.6–13.8 μm long, 0.7–1.3 μm wide at base. Young conidia formed from monophialides on aerial, submerged, or repent hyphae, formed abundantly on slimy heads or sporodochia, ellipsoidal, fusiform to allantoid, hyaline, smooth, curved, rounded at both ends, nonseptate, (2.4–)2.7–3.5(–3.8) × (0.6–)0.7–0.9(–1.2) μm (n = 50). Mature conidia swollen, 0-septate, ellipsoidal to oblong, irregularly swollen at both ends or clavate, hyaline, smooth, slightly or sometimes strongly curved, rounded at both ends, (5.4–)6.3–7.5(– 8.2) × (1.4–)1.8–2.4(–2.8) μm (n = 50). Pycnidia, chlamydospores, and ascomata not produced in culture. Habitat: On dead branchs of Acer campestre (Aceraceae). Distribution: Europe (Austria, Czech Republic, Germany). Lectotype of Pleonectria pyrrhochlora designated by Seeler (1940b): Germany, Arnstad, on Acer campestre, Fleischhack, Rabenhorst, Fungi europaei. No 1234, Lectotype FH; isolectotype S F6222, S F6223, BPI-bound exsiccati. allantonectria, nectria, and Pleonectria Additional specimens and isolates examined: Austria, Wien, Cobenzl, near Himmelstrasse, on dead branches of Acer campestre, 24 Apr. 1999, W.M. Jaklitsch WJ 1306, BPI 746398, culture CBS 125131 = A.R. 2786. Czech Republic (as Czechoslovakia), Prencow, Kotling, on dead branches of Acer campestre, 14 Mar. 1902, A. Kmet, BPI 553008; Prencow, Kotling, on dead branches of Acer campestre, 14 Mar. 1897, A. Kmet, BPI 553007. Notes: Pleonectria pyrrhochlora, P. virens, and P. zanthoxyli have ascomata immersed in bright yellow, yellowish green or olive-green stroma and the substrate appear almost identical to each other. Pleonectria pyrrhochlora is distinguished from the other species by the ascospores averaging > 9 μm wide ascospores and mostly two longitudinal septa (Figs 124J, 125C). In addition, P. pyrrhochlora occurs only on Acer campestre. In culture, the anamorph of P. pyrrhochlora is similar to that of P. virens and P. zanthoxyli but produces shorter mature conidia than the other two species. Although a pycnidial anamorph was not observed in culture, the two most closely related species, P. virens and P. zanthoxyli, produce pycnidia in culture. Seeler (1940b) designated a lectotype preserved in FH for this name because Rabenhorst (1869) did not mention a speciic type specimen. In this study, three additional isolectotype specimens were located and examined. Pleonectria quercicola Hirooka, Checa, Arenal & P. Chaverri, sp. nov. MycoBank MB519713. Figs 127–129. Holotype of Pleonectria quercicola. Spain, Madrid, Colmenarejo, on dead branch of Quercus ilex ssp. rotundifolia (as ssp. ballota), 25 Mar. 2001, F. Prieto, comm. J. Checa, Holotype BPI 871328, Isotype AH 30502, culture CBS 128976 = A.R. 3805. Etymology: quer + -icola; indicates the unusual occurrence on oak (Quercus). Anamorph: zythiostroma-like. Teleomorph on natural substrata: Ascomata and pycnidia generally formed on same stroma. Mycelium not visible around ascomata or on host. Stromata erumpent through epidermis, 1.0 mm high and 1.0 mm diam, rust to chestnut, KOH+ dark purple, LA+ yellow, pseudoparenchymatous, cells forming textura angularis, intergrading with ascomatal wall. Ascomata superficial on well-developed stromata, scattered to aggregated in groups of 3–9, subglobose to globose, 262–379 μm high × 270–373 μm diam, sienna to chestnut, cupulate upon drying, sometimes with a depressed apical region, apical region slightly darker, surface slightly scaly yellowish red. Ascomatal surface cells forming textura globulosa or t. angularis sometimes including bright yellow scurf, 5–11 μm diam, with pigmented, irregularly ca. 1.5 μm thickened walls. Ascomatal wall 40–70 μm thick, of two regions: outer region 40–55 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, about 1.5 μm thick; inner region 12–20 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Asci narrowly clavate, increasing in size as ascospores mature, 86–130 × 12–17 μm, with inconspicuous ring at apex, 8-spored. Ascospores filiform, 8–15 septate, hyaline, (26.7–) 31.6–44.0(–48.6) × (1.3–)2.3–3.9(–4.7) μm (n = 30), smooth, budding to produce hyaline, thin-walled, slightly curved, bacillar ascoconidia, (3.7–)4.1–5.1(–5.4) × (0.9–)1.2–1.6(–1.9) μm (n = 50), that fill asci. www.studiesinmycology.org Anamorph on natural substrata: Stromata shared with ascomata, sienna to chestnut. Pycnidia solitary or aggregated in groups of 3–6, immersed in stroma, eustromatic, irregulary subglobose, sienna to chestnut, 63–144 μm high, 41–190 μm diam, KOH+ slightly darker, LA+ slightly yellow. Pycnidial wall 12–23 μm thick, of one region intergrading with stroma, cells forming textura prismatica, about 1.0 μm thick, elongate, thin-walled, hyaline cells. Conidiophores densely branched, generally with 1(–3)-branched, 14–23 μm long, 1.1–2.2 μm wide. Conidiogenous cells cylindrical to subulate, straight to slightly curved, enteroblastic, monophialidic, 7.0–9.7 × 0.8–1.3 μm. Intercalary phialides observed, bearing 1(–2) terminal phialides, up to 4 μm long, similar to short acropleurogenous conidiophores. Sterile hyphae absent. Conidia hyaline, oblong to sub-allantoid, curved, non-septate, (2.8–)3.5–5.0(–5.4) × (1.0–) 1.1–1.3(–1.6) μm (n = 30). Anamorph in culture: After 7 d at 25 °C, colonies 10–15 mm (average 13.5 mm) diam. Colony surface cottony with aerial mycelium, whitish brown; aerial mycelium usually developed, often small white to whitish yellow sporodochial conidial masses produced after 3 wk; reverse whitish brown. Odour on PDA slightly fruity. Sporulation on SNA from lateral phialidic pegs somewhat rare, 3.1–6.6 μm long, 1.8–2.7 μm wide at base, ellipsoidal, slightly tapering toward tip, monophialidic. Conidiophores abundant, unbranched, sometimes 1–2 branched, becoming loosely to moderately densely branched, 10.5–36.6 μm long, 1.8–4.6 μm wide at base. Sporodochial conidiophores sometimes formed, densely branched, 19.7–44.6 μm long, 1.7–2.7 μm wide at base. Conidiogenous cells monophialidic, enteroblastic, cylindrical, slightly tapering toward tip or narrowly lask-shaped with widest point in middle, 5.3–10.0 μm long, 1.3–3.0 μm wide at base. Young conidia formed from phialides on aerial, submerged, or repent hyphae, formed abundantly on slimy heads or sporodochia, oblong to allantoid, rounded at both ends, hyaline, smooth, curved non-septate, (3.6–)4.3–5.7(–6.6) × (1.0–)1.3–1.9(–2.5) μm (n = 50), smooth-walled. Mature conidia swollen, 0-septate, ellipsoidal to oblong, hyaline, smooth, straight or slightly curved, rounded at both ends, (5.4–)5.5–7.4(–8.4) × (2.6–)2.8–3.2(–3.5) μm (n = 50). Chlamydospores intercalary or terminal, globose to subglobose, rare, smooth, 7–10 µm. Ascomata and pycnidia not produced in culture. Habitat: On dead branch of Quercus ilex ssp. Rotundifolia (Fagaceae). Distribution: Europe (Spain, known only from the type collection). Notes: Pleonectria quercicola resembles P. cucurbitula, P. rosellinii, and P. strobi in having budding, iliform ascospores; the ascospore length of P. quercicola is shorter than for the three similar species (Figs 127H–J, 128C). In addition, P. quercicola occurs on Quercus while the other three species occur on Pinaceae (P. rosellinii on Abies, P. cucurbitula on Pinus subgenus Pinus, and P. strobi on Pinus subgenus Strobus). Pleonectria quercicola is the irst species having iliform ascospores budding to produce ascoconidia in the asci that does not occur conifers. The anamorphic states of these four species vary morphologically. Our molecular data conirm that these four species are distinct from each other (Figs 1, 2). Pleonectria rosellinii (Carestia) Hirooka, Rossman & P. Chaverri, comb. nov. MycoBank MB519716. Figs 130–132. Basionym: Nectria rosellinii Carestia, in Rabenh., Fung. Europ. Exs. No. 923. 1866 157 Hirooka et al. Fig. 127A–O. Pleonectria quercicola on natural substrata (A, B, E–J teleomorph, C, D teleomorph and anamorph, K–O anamorph). A, B. Perithecia on natural substrata; C, D. Median section of perithecia (black arrows) and immersed pycnidia (white arrows) on natural substrata; E. Median section of perithecia on natural substrata; F. Median section of perithecial wall; G. Asci; H–J. Budding ascospores; K. Median section of immersed pycnidia (white arrows) on natural substrata; L–N. Conidiophores on natural substrata; O. Conidia on natural substrata. Scale bars: A = 5 mm; B = 500 µm; C–E = 100 µm; F, G, K = 50 µm; H–J, N, O = 10 µm; L, M = 20 µm. Anamorph: zythiostroma-like. 158 Teleomorph on natural substrata: Ascomata and pycnidia often formed on same or discrete stroma. Mycelium not visible around allantonectria, nectria, and Pleonectria Fig. 128A–E. Pleonectria quercicola on natural substrata (A teleomorph and anamorph, B, C teleomorph, D, E anamorph). A. Median section of mature perithecium and pycnidium; B. Ascus; C. Ascospores and ascoconidia; D. Conidia; E. Conidiophores. Scale bars: A = 100 µm; B, C = 20 µm; D, F = 10 µm. ascomata or on host. Stromata erumpent through epidermis, up to 1.0 mm high and 2.0 mm diam, orange to sienna, KOH+ dark purple, LA+ yellow, pseudoparenchymatous, cells forming textura angularis, intergrading with ascomatal wall. Ascomata supericial on well-developed stromata, scattered to aggregated in groups of 3–48, subglobose to globose, 215–350 μm high × 200–315 μm diam, red to bay, cupulate upon drying, sometimes with only a depressed apical region, apical region slightly darker, KOH+ purple, LA+ yellow, surface usually bright yellow or yellow-green scaly. Ascomatal surface cells forming textura globulosa or t. angularis sometimes including bright yellow scurf, 3–10 μm diam, with pigmented, uniformly to irregularly ca. 1.5 μm thickened walls. Ascomatal wall 32–50 μm thick, of two regions: outer region 17–39 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, about 1.5 μm thick; inner region 6–19 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Asci narrowly clavate, increasing in size as ascospores mature, 49–104 × 6–13 μm, with inconspicuous ring at apex, 8-spored. Ascospores long-iliform, 8–31 septate, hyaline, (22.4–)29.5–45.1(–60.2) × (1.6–)2.0–3.2(–3.9) μm (n = 61), smooth, budding to produce hyaline, thin-walled, tapering apex, slightly curved, bacillar ascoconidia, (19–)2.6–3.6(–4.5) × (0.9–) 1.2–2.0(–3.0) μm (n = 126), that ill asci. Anamorph on natural substrata: Stromata erumpent through epidermis or developing in stroma with ascomata, orange to red. Pycnidia solitary or aggregated in groups of 3–8, supericial on stroma or rarely immersed at base, subglobose, smooth to slightly roughened, cerebriform upon drying, 150–264 μm, 190–335 μm diam, scarlet to bay, KOH+ slightly darker, LA+ slightly yellow. Pycnidial wall 23–34 μm thick, of two regions: outer region 10–20 www.studiesinmycology.org μm thick, intergrading with stroma, cells forming textura globulosa, walls pigmented, about 1.5 μm thick; inner region 15–20 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Conidiophores densely branched, generally 1–4 branched, 11–33 μm long, 1.0–2.9 μm wide. Conidiogenous cells cylindrical to subulate, straight to slightly curved, enteroblastic, monophialidic, 7–13 × 1.0–2.3 μm. Intercalary phialides bearing (1–)3 terminal phialides, up to 6 μm long, similar to short acropleurogenous conidiophores. Sterile hyphae absent. Conidia hyaline, ellipsoidal to oblong, sometimes slightly curved, non-septate, (2.8–)3.4–4.2(– 5.1) × (1.1–)1.3–1.7(–2.0) μm (n = 102). Anamorph in culture: After 7 d at 25 °C, colonies 50–75 mm (average 73 mm) diam. Colony surface cottony with aerial mycelium, whitish brown (MAFF 241403, and 241459) or whitish yellow (A.R. 3494); aerial mycelium usually developed, often small white to whitish yellow sporodochial conidial masses produced after 3 wk; reverse whitish brown (MAFF 241403, and 241459) or white to slightly whitish yellow (A.R. 3494). Odour on PDA slightly fruity. Sporulation on SNA from lateral phialidic pegs abundant, ellipsoidal, slightly tapering toward tip, 1.9–4.3 μm long, 1.4–1.9 μm wide at base, monophialidic. Conidiophores absent. Young conidia formed from monophialides on aerial, submerged, or repent hyphae, formed abundantly on slimy heads or sporodochia, oblong, hyaline, straight or slightly curved, rounded at both ends, non-septate, (3.2–)4.1–5.1(–6.9) × (1.2–) 1.6–2.2(–2.6) μm (n = 50), smooth-walled. Mature conidia swollen, 0-septate, oblong to long-cylindrical, rarely allantoid, hyaline, smooth, slightly or strongly curved, rounded at both ends, (6.4–)6.9–9.3(– 10.0) × (1.9–)2.1–2.9(–3.1) μm (n = 50). Chlamydospores, pycnidia, and ascomata not produced in culture. 159 Hirooka et al. Fig. 129A–J. Anamorph of Pleonectria quercicola in culture. A. Cultures after 7 d at 25 °C on PDA; B. Conidial mass on SNA surface; C. Lateral phialidic pegs and conidial mass on SNA; D. Lateral phialidic pegs and conidia on SNA; E. Lateral phialidic pegs, conidiophores and conidia on SNA; F–H. Conidiophores and conidia on SNA; I. Young and mature conidia (black arrow) on SNA; J. Chlamydospores on SNA. Scale bars: A = 3 mm; B = 50 µm; C–F, I = 10 µm; G, H, J = 20 µm. Habitat: On dead bark or twigs of Abies spp. including Abies alba, A. balsamea, A. concolor, A. fraseri, A. lasiocarpa, A. pectinata, and A. sachalinensis (Pinaceae). Distribution: Asia (Japan), Europe (France, Germany, Italy), North America (Canada, USA). Lectotype of Nectria rosellinii designated herein: Italy, Riva, On Abies pectinata, 1864, Carestia, Lectotype Rabenhorst, Fungi europaei No. 923, BPI-bound exsiccati, Isolectotype S F49443. Additional specimens and isolates examined: Canada, Ontario, Bear Island, Lake Temagami, Timagami Forest Reserve, on dead twigs of Abies balsamea, 14 Aug. 1930, H.S. Jackson, BPI 1107511 as Nectria balsamea; Ontario, Oakland, on dead twigs of Abies balsamea, 03–14 May 1915, J. Dearness, BPI 632759 as Scoleconectria cucurbitula; British Columbia, Revelstoke, on dead twigs of Abies lasiocarpa, 28 Sep. 1931, J.R. Hansbrough, BPI 632762 as Scoleconectria 160 cucurbitula; British Columbia, Revelstoke, on dead twigs of Abies lasiocarpa, 12 Sep. 1931, J.L. Mielke, BPI 632763 as Scoleconectria cucurbitula; Ontario, Bear Island, Lake Temagami, on dead twigs of Abies balsamea, 20 Aug. 1935, L.O. Overholts, BPI 859484 as Scoleconectria scolecospora; Ontario, Bear Island, Lake Temagami, on dead twigs of Abies balsamea, 13 Aug. 1930, L.O. Overholts, BPI 867614 as Scoleconectria balsamea. France, Colmars les Alpes, on dead branches of Abies alba, 6 Jun. 2010, C. Lechat CLL 10012 = A.R. 4700 = CBS 131747, BPI 881710. Germany, Sugenheim in Franken, Sep. 1865, S F7063. Japan, Hyogo Pref., Kobe city, Rokko Mountains, on Abies sachalinensis, 26 Sep. 2002, Y. Hirooka, BPI 881063, culture MAFF 241403; Nagano Pref., Ueda city, Sugadaira, on dead twigs, 26 Sep. 2006, Y. Hirooka, BPI 881062, culture MAFF 241459 = NITE 102242. USA, North Carolina, Jackson Co., Blue Ridge Parkway below Spruce Ridge. near milepost 450 (about 449.5), alt. ca. 5500 ft, on Abies fraseri, 15 Jun. 2000, L.F. Grand, BPI 747280 as Nectria balsamea, culture CBS 128975 = A.R. 3494; Virginia, Hawksbill Mt., Shenandoah Nat. Park, on dead twigs of Abies fraseri, 31 Oct. 1933, C.L. Shear, BPI 551628 as Nectria cucurbitula; Minnesota, Vermilion Lake, on dead twigs of Abies sp., 22 Jul. 1886, BPI 629730 as Chilonectria cucurbitula; Minnesota, Vermilion Lake Lat. 48d, on dead twigs of Abies sp., 22 Jul. 1886, J.C. Arthur, L.H. Bailey Jr., E.W.D. Holway, BPI 629731 as Chilonectria cucurbitula; Michigan, Michigamme, Van Riper State Park, River Trail, 46º 31’ 802” N, 88º 00’ 028” W, elev. 277 m, on Abies balsamea, allantonectria, nectria, and Pleonectria Fig. 130A–S. Pleonectria rosellinii on natural substrata (A teleomorph and anamorph, B–J teleomorph, K–S anamorph). A. Perithecia (black arrow) and pycnidia (white arrow) on natural substrata; B–D. Perithecia on natural substrata; E, F. Median section of perithecia on natural substrata; G. Median section of perithecial wall; H. Ascus having budding ascospores; I. Unbudding ascospores; J. Budding ascospores; K, L. Pycnidia on natural substrata; M. Median section of pycnidium on natural substrata, N. Median section of pycnidial wall; O–R. Conidiophores on natural substrata; S. conidia on natural substrata. Scale bars: A–D, K, L = 500 µm; E, F, M = 100 µm; G, H, N = 50 µm; I, J, O, P = 20 µm; Q–S = 10 µm. www.studiesinmycology.org 161 Hirooka et al. Fig. 131A–F. Pleonectria rosellinii on natural substrata (A–C teleomorph, D–F anamorph). A. Median section of mature perithecium; B. Ascus; C. Ascospores and ascoconidia; D. Median section of mature Pycnidium; E. Conidia; F. Conidiophores. Scale bars: A, D = 100 µm; B, C = 20 µm; E, F = 10 µm. 30 May 2010, Y. Hirooka, D. Walker, BPI 881064, culture CBS 129161 = Y.H. 10-09d; Michigan, Grand Marais, Au Sable Point Trail, 46º 38’ 283” N, 86º 06’ 675” W, elev. 242 m, on Abies balsamea, 29 May 2010, Y. Hirooka, D. Walker, BPI 881065; culture CBS 129427 = Y.H. 10-14i; Michigan, Grand Marais, Grand Marais Truck Trail, 46º 40’ 621” N, 85º 45’ 605” W, elev. 177 m, on Abies balsamea, 29 May 2010, Y. Hirooka, D. Walker, BPI 881066, culture CBS 129162 = Y.H. 10-12g; Colorado, Grand Mesa Mtn., on dead twigs of Abies lasiocarpa, 13 Jun. 1930, R.W. Davidson, BPI 632638 as Scoleconectria scolecospora; Michigan, Upper Falls, Tahquamenon Falls State Park, Luce Co. near, on dead twigs of Abies sp., 25 Jul. 1962, C.T. Rogerson, BPI 632756 as Scoleconectria cucurbitula; New York, Warrensburg, Warren Co. Pack Experimental Forest, on dead of Abies balsamea, 09 Sep. 1978, A.Y. Rossman, BPI 632757 as Scoleconectria cucurbitula; New Mexico. Santa Fe National Forest, on Abies concolor, 21 Sep. 1937, T.R. Moberg, BPI 632760 as Scoleconectria cucurbitula; New Mexico. Sandia Mtns, on Abies concolor, 15 Sep. 1937, Gill, S. Andrews, BPI 632761 as Scoleconectria cucurbitula; New Hampshire, Marlow, on Abies balsamea, 18 Jun. 1935, H.G. Eno, BPI 632776 as Scoleconectria scolecospora; North Carolina, Wake Co., Falls Lake Dam, on Abies fraseri, Dec. 2002, L.F. Grand, BPI 842130 as Nectria cucurbitula; Pennsylvania, Centre Co., Bear Meadows, on Abies balsamea, 08 Apr. 1922, L.O. Overholts, BPI 859492 as Scoleconectria scolecospora; Pennsylvania, Centre Co., Bear Meadows, on Abies balsamea, 08 Apr. 1922, L.O. Overholts, BPI 867613 as Scoleconectria balsamea. morphological differences. These species are supported by high BI PP, ML BP, and MP BP values (Figs 1, 2). Among these species, P. rosellinii with a scaly ascomatal surface and relatively short ascospores differs from P. cucurbitula and P. strobi (Figs 130A– J, 131A, C). Although the anamorph in the natural environment for P. cucurbitula, P. rosellinii, and P. strobi does not reveal any morphological differences, the shape of mature conidia on SNA are distinct (Fig. 132K, L). In the culture of P. rosellinii, we observed only lateral phialidic pegs, not the typical conidiophores that P. cucurbitula and P. balsamea generally produce (Fig. 132). To lectotypify P. rosellinii, we selected the specimen at BPI of Rabenhorst, Fungi europaei No. 923. One isolectotype specimen at S was also observed. Notes: Pleonectria rosellinii occurs only on Abies. Specimens of this species had been identiied as Nectria cucurbitula, now a synonym of Pleonectria cucurbitula, based on the iliform ascospores with budding ascoconidia in the asci and occurrence on conifers. The six-loci phylogeny demonstrated that, within what has been known as Nectria cucurbitula, three species, P. cucurbitula, P. rosellinii, and P. strobi, can be distinguished based on host and subtle Anamorph: unknown. 162 Pleonectria rubicarpa (Cooke) Hirooka, Rossman & P. Chaverri, comb. nov. MycoBank MB519717. Figs 133, 134. Basionym: Nectria rubicarpa Cooke, Grevillea 7: 50. 1878. ≡ Creonectria rubicarpa (Cooke) Seaver, Mycologia 1: 187. 1909. Teleomorph on natural substrata: Mycelium not visible around ascomata or on host. Stromata erumpent through epidermis, up to 0.5 mm high and 2.0 mm diam, scarlet to red, KOH+ dark red, LA+ yellow, pseudoparenchymatous, cells forming textura globulosa or t. angularis, intergrading with ascomatal wall. Ascomata supericial allantonectria, nectria, and Pleonectria Fig. 132A–L. Anamorph of Pleonectria rosellinii in culture. A, B. Cultures after 7 d at 25 °C on PDA; C. Conidial mass on SNA surface; D, E. Lateral phialidic pegs and conidial mass on SNA; F–J. Lateral phialidic pegs and conidia on SNA; K, L. Young and mature conidia on SNA. Scale bars: A, B = 3 mm; C = 50 µm; D–F, K, L = 10 µm; G–J = 5 µm. on developed stroma, scattered to aggregated in groups of 4–16, subglobose to globose, 200–270 μm high × 210–270 μm diam, cupulate upon drying, sometimes with only a depressed apical region, scarlet to red, apical region slightly darker, non-papillate, KOH+ dark purple, LA+ yellow, roughened, sometimes surface scurfy, yellowish green. Ascomatal surface cells forming textura globulosa or t. angularis sometimes including bright yellow scurf, 3–7 μm diam, with pigmented irregularly ca. 2.0 μm thickened walls. Ascomatal wall 30–45 μm thick, of two regions: outer region 20–35 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, about 1.5 μm thick; inner region 10– 15 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Asci clavate, 55–85 × 7–10 μm, with inconspicuous ring at apex, 8-spored, ascospores biseriate above, uniseriate below. Ascospores ellipsoidal to fusiform, slightly curved, with rounded ends, (8.9–)10.2–12.2(–13.6) × (3.3–)4.1–4.9(–5.7) μm (n = 90), hyaline to slightly yellowish-brown, smooth, 1-septate, with median septum. Habitat: On bark dead deciduous trees of Citrus sp., Gelsemium sempervirens, Gelsemium sp., and Ilex verticillata. www.studiesinmycology.org Distribution: Caribbean (Puerto Rico), Europe (UK), North America (USA). Lectotype of Nectria rubicarpa designated herein: USA, South Carolina, Aiken, on Gelsemium sp., possibly G. sempervirens, H.W. Ravenel, Lectotype Ravenel, Fungi Americani Exsiccati No. 341, BPI-bound exsiccati, Isolectotype NY). Additional specimens and isolates examined: UK, Lyndhurst, on Ilex sp., 7 Jul. 1912, A.J. Watson, BPI 553023. Puerto Rico, Mayagüez, on bark of dead Citrus, 14 Jul. 1920, C.E. Chardon, NY. USA, Alabama, Auburn, Lee County, on Gelsemium sp., 15 Feb. 1896, F.S. Earle, BPI 553071; Alabama, Auburn, Lee County, on Gelsemium sempervirens, 15 Feb. 1896, F.S. Earle, BPI 553073; New Jersey, Newield, on Ilex verticillata, Mar. 1897, J.B. Ellis, BPI 553074. Notes: Pleonectria rubicarpa was recently redescribed by Samuels et al. (2006). This species is morphologically similar to N. cinnabarina, type of the genus Nectria; however, the ascomata and ascospores of P. rubicarpa are smaller than those of N. cinnabarina. The scurfy ascomata of P. rubicarpa are characteristic of the genus Pleonectria (Figs 133C–G, 134A). Among the species of Pleonectria, P. rubicarpa is similar to P. ilicicola; these species 163 Hirooka et al. Fig. 133A–J. Pleonectria rubicarpa on natural substrata (teleomorph). A–C. Perithecia on natural substrata; D. Median section of perithecia on natural substrata; E–G. Median section of perithecial wall on natural substrata; H, I. Asci; J. Ascospores. Scale bars: A = 5 mm; B, C = 500 µm; D–F = 100 µm; G, H, I = 20 µm; J = 10 µm. Fig. 134A–C. Pleonectria rubicarpa on natural substrata (A–C teleomorph). A. Median section of mature perithecium; B. Ascus; C. Ascospores. Scale bars: A = 100 µm; B, C = 10 µm. 164 allantonectria, nectria, and Pleonectria can be distinguished by differences in the shape and width of the ascospores and the host. to sub-allantoid, curved, non-septate, (4.2–)5.1–6.1(–6.6) × (1.1–) 1.3–1.7(–2.0) μm (n = 33). Pleonectria sinopica (Fr. : Fr.) Hirooka, Rossman & P. Chaverri, comb. nov. MycoBank MB519718. Figs 135–137. Anamorph in culture: After 7 d at 25 °C, colonies 22–40 mm (average 31 mm) diam. Colony surface cottony with aerial mycelium, whitish yellow; aerial mycelium usually developed, often small white to whitish yellow sporodochial conidial masses produced after 3 wk; reverse whitish yellow. Odour on PDA slightly fruity. Sporulation on SNA from lateral phialidic pegs abundant, ellipsoidal, slightly tapering toward tip or lask-shaped, 3.6–6.2 μm long, 1.0–2.5 μm wide at base, enteroblastic, monophialidic. Conidiophores unbranched, sometimes 1–2-branched, becoming loosely to moderately densely branched, 9.9–25.3 μm long, 1.5–2.9 μm wide at base. Sporodochial conidiophores dimorphic, short and long. Short sporodochial conidiophores densely branched, up to 12.7–28.6 μm long, 1.7–2.7 μm wide at base. Long sporodochial conidiophores densely branched, up to 35.4–43.3 μm long, 2.7–3.2 μm wide at base. Conidiogenous cells monophialidic, enteroblastic, cylindrical, slightly tapering toward tip or narrowly lask-shaped with widest point in middle, 4.8–8.3 μm long, 0.7–1.7 μm wide at base. Young conidia formed from phialides on aerial, submerged, or repent hyphae, formed abundantly on slimy heads or sporodochia, oblong to allantoid, rounded at both ends, hyaline, smooth, sometimes strongly curved, non-septate, (3.4–)4.1–5.3(–6.2) × (1.0–)1.4–2.2(–2.6) μm (n = 100), smooth-walled. Mature conidia swollen, 0-septate, oblong, cylindrical to allantoid, hyaline, smooth, slightly curved, rounded at both ends, (5.2–)6.0–11.0(–13.4) × (1.1–)1.4–2.6(–3.1) μm (n = 50). Chlamydospores, pycnidia, and ascomata not produced in culture. Basionym: Sphaeria sinopica Fr. : Fr., Elench. Fung. 2: 81. 1828. ≡ Nectria sinopica (Fr. : Fr.) Fr., Summa Veg. Scand. 2: 388. 1849. Anamorph: Zythiostroma mougeotii (Fr. : Fr.) Höhn., Mitt. Bot. Tech. Hochsch. Wien 8: 88. 1931. ≡ Sphaeria mougeotii Fr. : Fr., Elench. Fung. 2: 100. 1828. ≡ Zythia mougeotii (Fr. : Fr.) Jacz., Nouv. Mém. Soc. Imp. Naturalistes, Moscou. 15: 367. 1898. ≡ Sphaeronaemella mougeotii (Fr. : Fr.) Sacc., Syll. Fung. 3: 617. 1884. Teleomorph on natural substrata: Mycelium not visible around ascomata or on host. Stromata erumpent through epidermis, up to 1.5 mm high and 3.0 mm diam, bay, KOH+ dark red, LA+ yellow, pseudoparenchymatous, cells forming textura angularis, intergrading with ascomatal wall. Ascomata supericial on welldeveloped stromata, aggregated in groups of 3–42, subglobose to globose, 176–480 μm high × 143–462 μm diam (n = 163), slightly cupulate upon drying, with only a depressed apical region, bay to scarlet, apical region slightly darker, KOH+ dark red, LA+ yellow, sometimes surface scurfy, concolourous, slightly rugose when dry. Ascomatal surface cells forming textura angularis sometimes including bright yellow scurf, 3–17 μm diam, with pigmented, irregularly ca. 1.5 μm thick walls. Ascomatal wall 38–63 μm thick, of two regions: outer region 23–53 μm thick, intergrading with stroma, cells forming textura angularis, walls pigmented, about 1.5 μm thick; inner region 7–21 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Asci narrowly clavate, 45–107 × 6–14 μm, with inconspicuous ring at apex, 8-spored, ascospores uniseriate or sometimes biseriate. Ascospores ellipsoidal to fusiform with slightly constricted centre, straight, hyaline, 1-septate, (8.1–) 10.5–12.7(–14.6) × (3.7–)4.9–6.5(–8.1) μm (n = 300), smooth. Anamorph on natural substrata: Stromata erumpent through epidermis or developing in stroma with ascomata, orange to red. Pycnidia dimorphic. supericial or immersed in stroma. Supericial pycnidia solitary or aggregated in groups of 3–5, supericial or immersed in stroma, subglobose to irregulary subglobose, smooth to slightly roughened, cerebriforme when dry, 79–261 μm, 92–310 μm diam, scarlet to bay, KOH+ slightly darker, LA+ slightly yellow. Supericial pycnidial wall 12–35 μm thick, of two regions: outer region 6–14 μm thick, intergrading with stroma, cells forming textura globulosa, walls pigmented, about 1.5 μm thick; inner region 15–13 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Immersed pycnidia embedded between ascomata at base, solitary or aggregated in groups of 3–7, eustromatic, 110–193 μm high × 60–192 μm diam, KOH+ darker, LA+ yellow. Immersed pycnidial wall 6–20 μm thick, of one region intergrading with stroma, cells forming textura prismatica, about 1.0 μm thick, elongate, thin-walled, hyaline cells. Conidiophores densely branched, generally with 1–2 branched, 12–26 μm long, 1.5–2.3 μm wide. Conidiogenous cells cylindrical to subulate, straight to slightly curved, enteroblastic, monophialidic, 4.7–9.9 × 0.9–1.2 μm. Intercalary phialides bearing 1(–2) terminal phialides, up to 4 μm, similar to short acropleurogenous conidiophores. Sterile hyphae absent. Conidia of two types: microconidia produced from supericial pycnidia, hyaline, ellipsoidal to oblong, sometimes slightly curved, non-septate, (2.2–)2.7–3. (–4.1) × (0.7–)0.8–1.2(–1.4) μm (n = 50); macroconidia produced from immersed pycnidia, hyaline, oblong www.studiesinmycology.org Distribution: Europe (Austria, Czech Republic, France, Germany, Ireland, Italy, Netherlands, Switzerland, UK). Habitat: On dead bark and recently killed roots of Hedera helix and Hedera sp. (Araliaceae). Holotype of Pleonectria sinopica: possible Holotype at UPS as Sphaeria sinopica-not available for examination. Additional type specimens: Holotype of Sphaeria mougeotii: (Holotype unavailable from UPS). Additional specimens and isolates examined: Austria, Nassau, on Hedera helix, Fuckel, BPI 553101. Czech Republic (as Czechoslovakia), Trebon, on Hedera helix, 1890, Weidmann, BPI 5530107. France, Parc Chateau de Levc (71) Aude, on ?Buxus sp., Mar. 1993, J.F. Magni, BPI 744711; Sur les raciness et les sarments languissants du Lierre?, Desmazieres, Plant crypt. De France Fasc. 26, BPI–bound exsiccati; Foret de Chize, on Hedera helix, 28 Feb. 2008, C. Lechat CLL 7156, BPI 881067, culture CBS 125169 = A.R. 4495; Foret de Chize, on Hedera sp., 14 Dec. 2009, C. Lechat C.L.L. 9237, LIP, culture CBS 128981 = A.R. 4669; Forêt de Chamois, near Nogna, Buxus forest, on Hedera helix., 24 Sep. 1996, H.J. Schroers, CBS 100006 = H.J.S. 190; ad sarmenta Hederae apud nos, Dr Guépin circa Andegavum et am. Roussel Meloduni, Mougeot, Nestler et schimper, stirp. Crypt. Vogeso–Rhen. Fasc. 16 No. 1335, BPI–bound exsiccati. Germany, Bottrop, Westphalia, on Hedera helix, 21 Dec. 1922, H. Rupprecht, BPI 553098; Bottrop, Westphalia, on Hedera helix, 21 Dec. 1922, H. Rupprecht, Sydow, Myc. Germani 1930, BPI bound exsiccati; Prov. Brandenburg, on Hedera helix, 28 Dec. 1906, O. Jaap, BPI 551023; on Hedera helix, BPI 553099 ascomata no longer present; Westfalen, am Spechtsbach Im Kolnischen Wald Bei Bottrop, on Hedera helix, 21 Dec. 1922, H. Rupprecht, BPI 553104; Westfalen, am spechtsbach im Kölnischen wald bei Bottrop, on Hedera helix, 21 Dec. 1922, H. Rupprecht, BPI 553098; Brandenburg, Triglitz in der Prignitz, on Hedera helix, 28 Dec. 1906, O. Jaap, Jaap, Fungi selecti exsic. 216 1930, BPI–bound exsiccati; Brandenburg, Glindow bel Werder, on Hedera helix, May 1941, H. Sydow, BPI 1111765, only anamorph; Charlottsburg, Piklopgarten, on Hedera helix, Oct. 1887, H. Sydow, Sydow, Mycotheca Marchica 1837 BPI– bound exsiccati. Ireland, Maynooth, Co. Kildare, on Hedera helix, 25 May 1952, D.P. O’Connor, BPI 553096. Italy, Padova, on Hedera helix, Jan 1881, BPI 553103. Netherlands, Baarn, Groeneveld, on Hedera 165 Hirooka et al. Fig. 135A–Q. Pleonectria sinopica on natural substrata (A–H teleomorph, I–Q anamorph). A–C. Perithecia on natural substrata; D. Median section of perithecium on natural substrata; E. Median section of perithecial wall on natural substrata; F, G. Asci; H. Ascospores; I, J. Pycnidia on natural substrata; K. Median section of supericial pycnidia on natural substrata, L, M. Conidiophores of supericial pycnidia on natural substrata; N. conidia of supericial pycnidia, O. Median section of immersed pycnidium (white arrow) and perithecia (black arrow) in natural environment; P. Median section of immersed pycnidium in natural environment; Q. Conidia of immersed pycnidia. Scale bars: A–C = 500 µm; D, I–K, O = 100 µm; E, P = 50 µm; F, G = 20 µm; H, L–N, Q = 10 µm. 166 allantonectria, nectria, and Pleonectria Fig. 136A–H. Pleonectria sinopica on natural substrata (A teleomorph and anamorph, B, C teleomorph, D–H anamorph). A. Median section of mature perithecium and immersed pycnidium; B. Asci; C. Ascospores; D. Conidia of immersed pycnidia; E. Conidiophores of immersed pycnidia; F. Supericial pycnidia: G. Conidia of supericial pycnidia; H. Conidiophores of supericial pycnidia. Scale bars: A, F = 100 µm; B–E, G, H = 10 µm. helix, 12 May 1983, H.A. van der Aa, CBS H-19479, H-19485, culture CBS 462.83. Switzerland, on Hedera helix, Aug. 1878, G. Winter, BPI 551022; In silva “Sihlwald” prope Zürich (Helvetiae) raro, on Hedera helix, Aug. 1878, G. Winter, Kunze Fungi selecti 343, BPI– bound exsiccati. UK. England, Glenhell Wood, Pickering, Yorkshire, on Hedera helix, 17 Feb. 1957, W.G. Branlly, BPI 553097; Pickering, on Hedera helix, 18 Sep. 1930, Mason, BPI 553100; Anglia, Kings-Lynn, Norfolk, on Hedera helix, 1874, C.B. Plowright, BPI 553105; C.B. Plowright, Sphaeriacei Britannici 9, BPI 553093; Pickering, on Hedera helix, 18 Sep. 1930, C.L. Shear, BPI 553106; Pickering, Yorks, on Hedera sp., 17 Mar. 1956, W.G. Bramley, BPI 553094; Cooke, Fungi Brit. Ed. 2 477 BPI– bound exsiccati. Notes: Pleonectria sinopica occurs on Hedera helix in Europe. This species is almost identical with Pleonectria ilicicola on Ilex. They can be distinguished by host and subtle ascospore morphology. In addition, our phylogeny showed that the species are congeneric but only distantly related (Figs 1, 2). This is an example of convergent evolution within the genus Pleonectria. The pycnidial anamorph of P. sinopica, Zythiostroma mougeotii, is the type species of Zythiostroma and was redescribed by several www.studiesinmycology.org mycologists (Petch 1943, Booth 1959, Sutton 1980). However, pycnidia and ascomata on the same branch were observed on only one specimen (BPI 553098), although we examined more than 20 specimens of teleomorph and anamorph and made a number of sections for all specimens, some of which Booth (1959) also examined. Surprisingly, the pycnidia in BPI 553098 were completely immersed in the stroma with conidia longer than those produced in the supericial pycnidia on BPI 553099 with only an anamorph present (Figs 135O–Q, 136A, D, E). Among other species of Pleonectria, dimorphic conidia were never observed in the natural environment. However, large conidia in immersed stroma may be considered ‘mature conidia’ as observed on SNA. Immersed pycnidia may be the true anamorph of P. sinopica, while the supericial pycnidia are another Pleonectria species as occurs with Pleonectria berolinensis. We could not observe the holotype specimens of P. sinopica and Z. mougeotii because they are Fries’ specimens preserved in UPS. 167 Hirooka et al. Fig. 137A–N. Anamorph of Pleonectria sinopica in culture. A. Cultures after 7 d at 25 °C on PDA; B. Conidial mass on SNA; C. Lateral phialidic pegs and conidial mass on SNA; D–F. Lateral phialidic pegs and conidia on SNA; G, H. Conidiophores and conidia on SNA; I, J. Short sporodochial conidiophores on SNA; K. Long sporodochial conidiophores on SNA; L, M. Young conidia on SNA; N. Young and mature conidia on SNA. Scale bars: A = 3 mm; B = 50 µm; C, D = 20 µm; E–N = 10 µm. The name Zythiostroma was established in a key published by Höhnel (1923) but without designating a type species. Later 168 Höhnel & Weese (1931) designated Z. mougeotii as the type species. Since then, three mycologists (Petch 1943, Booth 1959, allantonectria, nectria, and Pleonectria Sutton 1980) discussed the taxonomic history of Zythiostroma. According to these authors, Sphaeronaema hederae is a synonym of Z. mougeotii but our macroscopic examination of the lectotype specimen of S. hederae at FH suggests that this specimen is not hypocrealean. Type specimen of Sphaeronaema hederae: Holotype Fuckel, Fungi Rhenani Exsiccati. No. 775, FH. long, 1.3–1.8 μm wide. Conidiogenous cells cylindrical to subulate, straight to slightly curved, enteroblastic, monophialidic, 6.9–10 × 0.8–1.5 μm. Intercalary phialides bearing one terminal phialide, up to 6 μm. Sterile hyphae absent. Conidia hyaline, ellipsoidal to allantoid, curved, non-septate, (2.4–)2.5–3.7(–5.4) × (0.4–)0.7–1.1(–1.2) μm (n = 50). Pleonectria sphaerospora (Ellis & Everh) Hirooka, Rossman & P. Chaverri, comb. nov. MycoBank MB519719. Figs 138, 139. Habitat: On dead barks or twigs (Fraxinus viridis?, Gleditsia triacanthos). ≡ Chilonectria crinigera Ellis & Everh., Proc. Acad. Nat. Sci. Philadelphia 1890: 246. 1891. ≡ Thyronectria sphaerospora (Ellis & Everh.) Seaver, Mycologia 1: 206. 1909. Lectotype of Nectria sphaerospora designated herein: USA, Nebraska, Lancaster Co. Lincoln, on bark of dead Fraxinus viridis?, 18 Nov. 1888, H.J. Webber, Lectotype NY 00883501, Isolectotype NY 00883502, E. Bartholomew, Fungi Columbiani no. 3248 in FH. Basionym: Nectria sphaerospora Ellis & Everh., in Bessey & Webber, Nebraska State Board Agric. Annual Rep. 1889: 53. 1890. Anamorph: zythiostroma-like. Teleomorph on natural substrata: Ascomata and pycnidia often formed on same or discrete stroma. Mycelium not visible around ascomata or on host. Stromata erumpent through epidermis, up to 2.0 mm high and 4.0 mm diam, sienna to umber, KOH+ slightly darker, LA+ slightly yellow, pseudoparenchymatous, cells forming textura globulosa or t. angularis, intergrading with ascomatal wall. Ascomata supericial or immersed at the base on well-developed stromata, aggregated in groups of 5–20, subglobose to globose, 200–300 μm high × 200–280 μm diam, yellowish brown or reddish grey with dark often black, shining apical region, not collapsing or rarely cupulate when dry, KOH+ slightly darker, LA+ slightly yellow, smooth to slightly roughened. Ascomatal surface cells forming textura globulosa or t. angularis sometimes including bright yellow scurf, 3–8 μm diam, with pigmented, uniformly or irregularly ca. 1.0 μm thickened walls. Ascomatal wall 30–45 μm thick, around apex up to about 70 μm thick, fully covered by bright yellow scurf, of two regions: outer region 25–35 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, about 1.0 μm thick; inner region 6–15 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Asci clavate, 51–77 × 7–15 μm, with inconspicuous ring at apex, 8-spored, ascospores, uniseriate or rarely biseriate above. Ascospores subglobose to ellipsoidal, muriform, with 1–2 transverse septa and usually 1 longitudinal septum, (5.1–)5.6–7.6(–9.4) × (4.0– 4.6–6.6(–8.6) μm (n = 50), hyaline, smooth, budding hyaline, 4–8 μm long, ilaments segmented, hyaline, thin-walled; bacillar ascoconidia, (2.8–)3.1– 4.1(–4.7) × (1.5–)1.8–2.4(–2.7) μm (n = 50), that ill asci. Anamorph on natural substrata: Stromata erumpent through epidermis or developing in stroma with ascomata, orange to umber. Pycnidia dimorphic. supericial and immersed in stroma. Supericial pycnidia aggregated in groups of 3–7, irregulary subglobose, 170– 300 μm, 90–240 μm diam, sienna to umber, KOH+ slightly darker, LA+ slightly yellow. Supericial pycnidial wall 14–23 μm thick, of two regions: outer region 7–18 μm thick, intergrading with stroma, cells forming textura globulosa, walls pigmented, about 1.0 μm thick; inner region 5–12 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Immersed pycnidia embedded between ascomata or pycnidia at bases, eustromatic, solitary or aggregated in groups of 3–5, irregular multiple chambers with shared walls, 115–190 μm high × 70–154 μm diam, KOH+ darker, LA+ yellow. Immersed pycnidial wall 6–18 μm thick, of 1–2 regions, cells forming textura prismatica, about 1.0 μm thick, elongate, thin-walled, hyaline cells. Conidiophores loosely to densely branched, generally with 1–4 branched, 16–25 μm www.studiesinmycology.org Distribution: North America (USA). Additional specimens and isolates examined: USA, Nebraska, Lincoln, on bark of dead Gleditsia triacanthos, Sep. 1889, H.J. Webber, BPI 629728 as Nectria austroamericana. Notes: Nectria sphaerospora, the basionym of Pleonectria sphaerospora, was described as a new species having ascospores surrounded by radiating ilaments. Based on our observations, the radiating ilaments are germ tubes developing from the gerinating ascospores with budding ascoconidia developing in the asci at the same time (Figs 138F–J, 139B, C). Seeler (1940b) examined type specimens of these fungi and decided that N. sphaerospora is a synonym of N. austroamericana based on the morphology and host. In his monograph, he did not stress the characteristic of germinating and budding ascospores. In our study, specimens of Nectria aquifolii are recognised as two species, Pleonectria aquifolii and P. ilicicola, based on the presence or absence of budding ascospores in the asci. The importance of this characteristic is supported by our cultural observations and molecular data. Therefore, we separate P. sphaerospora from P. austroamericana although no molecular data are available. According to Rossman (1989) and Rossman et al. (1999), Chilonectria crinigera is a taxonomic synonym of N. austroamericana, but this name was described based on the same type specimen as N. sphaerospora (H.J. Webber, specimen no. 18), thus C. crinigera is a nomenclatural synonym of P. sphaerospora. Pleonectria strobi Hirooka, Rossman & P. Chaverri, sp. nov. MycoBank MB519720. Figs 140–142. Holotype of Pleonectria strobi: USA, New York, Warren Co., Pack Forest, on Pinus strobus, 25 Sep. 1971, C.T. Rogerson, Holotype NY, ex-holotype culture CBS 125107 = C.T.R. 71-382 Etymology: strob + -i; refers to the subgenus of the known hosts. Anamorph: zythiostroma-like. Teleomorph on natural substrata: Ascomata and pycnidia sometimes formed on same or discrete stroma. Mycelium not visible around ascomata or on host. Stromata erumpent through epidermis, up to 1.0 mm high and 1.0 mm diam, orange to sienna, KOH+ dark purple, LA+ yellow, pseudoparenchymatous, cells forming textura angularis, intergrading with ascomatal wall. Ascomata supericial on well-developed stromata, scattered to aggregated in groups of 3–17, subglobose to globose, 174–302 μm high × 210–340 μm 169 Hirooka et al. Fig. 138A–P. Pleonectria sphaerospora on natural substrata (A–D teleomorph and anamorph, E–J teleomorph, K–P anamorph). A–C. Perithecia (black arrows) and pycnidia (white arrows) on natural substrata; D. Median section of perithecia (black arrow) and pycnidia (white arrow) on natural substrata; E. Median section of perithecial wall; F. Ascus having unbudding ascospores; G–I. Asci having budding ascospores; J. Ascospore; K. Pycnidia on natural substrata; L, M. Median section of pycnidia on natural substrata; N, O. Conidiophores on natural substrata; P. Conidia on natural substrata. Scale bars: A = 5 mm; B, C, K = 500 µm; D, L, M = 100 µm; E = 50 µm; F–I = 20 µm; J, N–P = 10 µm. diam, red to umber, cupulate upon drying, sometimes with only a depressed apical region, apical region slightly darker, KOH+ 170 purple, LA+ yellow, surface usually bright yellow to yellowish green scurfy. Ascomatal surface cells forming textura globulosa allantonectria, nectria, and Pleonectria Fig. 139A–F. Pleonectria sphaerospora on natural substrata (A–C teleomorph, D–F anamorph). A. Median section of mature perithecia; B. Ascus; C. Ascospores; D. Median section of mature Pycnidia; E. Conidia; F. Conidiophores. Scale bars: A, D = 100 µm; B, C, E, F = 10 µm. or t. angularis, sometimes including bright yellow scurf, 3–10 μm diam, with pigmented, uniformly or irregularly, ca. 1.5 μm thickened walls. Ascomatal wall 30–51 μm thick, of two regions: outer region 25–40 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, about 1.5 μm thick; inner region 7–15 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Asci narrowly clavate, increasing in size as ascospores mature, 45–112 × 8–12 μm, with inconspicuous ring at apex, 8-spored. Ascospores long-iliform, 12–44 septate, hyaline, (21.8–)32.9–52.1(–64.3) × (1.9–)2.2–3.2(–3.9) μm (n = 120), smooth, budding to produce hyaline, thin-walled, tapering apex, slightly curved, bacillar ascoconidia, (0.2–)2.3–3.5(–3.9) × (0.9–)1.1–1.9(–2.3) μm (n = 125), that ill asci. Anamorph on natural substrata: Stromata erumpent through epidermis or developing with ascomata, orange to red. Pycnidia solitary or aggregated in groups of 4–12, supericial on stroma or rarely immersed at base, subglobose, smooth to slightly roughened, cerebriform upon drying, 195–311 μm, 186–468 μm diam, scarlet to bay, KOH+ slightly darker, LA+ slightly yellow. Pycnidial wall 19–33 μm thick, of two regions: outer region 10–23 μm thick, intergrading with stroma, cells forming textura globulosa, walls pigmented, about 1.0 μm thick; inner region 8–14 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Conidiophores densely branched, generally with 1–3-branched, 12–27 μm long, 1.3–2.5 μm wide. Conidiogenous cells cylindrical to subulate, straight to slightly curved, enteroblastic, monophialidic, 8–12 × 1.0–2.0 μm. Intercalary phialides bearing (1–)3 terminal phialides, up to 5 μm long, similar to short acropleurogenous conidiophores. Sterile hyphae absent. Conidia hyaline, ellipsoidal to oblong, sometimes www.studiesinmycology.org slightly curved, non-septate, (1.9–)2.6–3.4(–3.8) × (1.1–)1.2–1.6(– 1.8) μm (n = 100). Anamorph in culture: After 7 d at 25 °C, colonies 70–85 mm (average 79 mm) diam. Colony surface cottony with aerial mycelium, whitish brown; aerial mycelium often sparse, white to whitish, yellow, sporodochial conidial masses produced after 3 wk; reverse whitish brown. Odour on PDA slightly putrid. Sporulation on SNA from lateral phialidic pegs abundant, enteroblastic, monophialidic, ellipsoidal, tapering toward tip or lask-shape, 2.2–4.0 μm long, 1.1–1.9 μm wide at base. Conidiophores unbranched, sometimes 1(–2)-branched, becoming loosely to moderately densely branched, 9.6–30.5 μm long, 1.5–2.3 μm wide at base. Conidiogenous cells monophialidic, enteroblastic, cylindrical, slightly tapering toward tip or narrowly lask-shaped with widest point in middle, 7.0–11.1 μm long, 1.4–2.1 μm wide at base. Young conidia formed from monophialides on aerial, submerged, or repent hyphae, formed abundantly on slimy heads or sporodochia, ellipsoidal to oblong, hyaline, straight or slightly curved, rounded at both ends, nonseptate, (3.5–)3.8–4.6(–5.1) × (1.1–)1.3–1.7(–2.0) μm (n = 118), smooth-walled. Mature conidia swollen, 0-septate, oblong with slightly swollen at both ends or sometimes long-cylindrical, hyaline, smooth, slightly curved, rounded at both ends, (7.1–)7.5–9.5(–12.5) × (1.3–)1.5–2.1(–2.4) μm (n = 50). Chlamydospores, pycnidia, and ascomata not produced in culture. Habitat: On bark or twigs of Pinus subgenus Strobus, primarily P. strobus, also known from P. lexilis and P. monticola. Distribution: Europe (Germany), North America (Canada, USA). 171 Hirooka et al. Fig. 140A–Q. Pleonectria strobi on natural substrata (A–C teleomorph and anamorph, D–I teleomorph, J–Q anamorph). A–C. Perithecia (black arrows) and pycnidia (white arrows) on natural substrata; D. Median section of perithecia on natural substrata; E. Median section of perithecial wall; F. Ascus having unbudding ascospores; G. Asci having budding ascospores; H. Budding ascospore; I. Unbudding ascospore; J. Pycnidia on natural substrata; K. Median section of pycnidium on natural substrata; L. Median section of pycnidial wall; M–P. Conidiophores on natural substrata; Q. Conidia on natural substrata. Scale bars: A–C, J = 500 µm; D, K = 100 µm; E, L = 50 µm; F, G = 20 µm; H, I, M–Q = 10 µm. Additional specimens and isolates examined: Canada, Ontario, St. Williams, Government Nursery, on Pinus strobus, Sep. 1918, E. J. Zavitz, BPI 632657 as Ophionectria scolecospora; Ontario, Bells Lake, N. Parry Sound, on Pinus strobus, 20 Sep.1934 -22 Sep. 1934?, H.S. Jackson, BPI 632683 as Ophionectria 172 scolecospora; Ontario, Komoka, on Pinus strobus, May 1915, J. Dearness, BPI 632794 as Ophionectria scolecospora; Ontario, Komoka, on Pinus strobus, May 1915, J. Dearness, BPI 632799 as Ophionectria scolecospora; Quebec, Old Chelsea, on Pinus strobus, 05 May 1935, I.L. Conners, BPI 632769 as Scoleconectria allantonectria, nectria, and Pleonectria Fig. 141A–F. Pleonectria strobi on natural substrata (A–C teleomorph, D–F anamorph). A. Median section of mature perithecium; B. Ascus; C. Ascospores and ascoconidia; D. Median section of mature pycnidium; E. Conidia; F. Conidiophores. Scale bars: A, D = 100 µm; B, C = 20 µm; E, F = 10 µm. cucurbitula. Germany, Dabroszyn (Tamsel, Brandenburg), on Pinus strobus, 05 Jan. 1913, F. Bubak, BPI 632658 as Ophionectria scolecospora. USA, Connecticut, Saltonstall, on Pinus strobus, 19 Nov. 1927, C.G. Riley, BPI 629743 as Chilonectria cucurbitula; New Jersey, Newield, on Pinus strobus, BPI 629744A as Chilonectria cucurbitula; New Jersey, Newield, on Pinus strobus, BPI 629744B as Chilonectria cucurbitula; New Jersey, Newield, on Pinus strobus, BPI 6299744A as Chilonectria cucurbitula; Connecticut, Saltonstall Lake, near Branford, New Haven Co. alt. 200 ft., on Pinus strobus, 27 Sep. 1931, J S. Boyce, BPI 1107505 as Nectria cucurbitula; Connecticut, near Middlebury, Whittemore Estate, on Pinus strobus, 05 Nov. 1930, J.S. Boyce, BPI 1107506 as Nectria cucurbitula; New York, Wilmington, on Pinus strobus, 23 Aug. 1929, P. Spaulding, BPI 632551 as Ophionectria scolecospora; North Carolina, Blue Valley, Macon Co. 35d00’n,83d15’w, off Clear Creek road, along Overlow Creek, on Pinus strobus, 16 Oct. 1990, Y. Doi, A.Y. Rossman, G.J. Samuels, BPI 1109346 as Scoleconectria cucurbitula; North Carolina, Macon Co. Ellicott Rock Trail, off Bull Pen road, alt. 3000 ft. 35 °1’N 83 °8’W, on Pinus strobus, 14 Oct. 1990, Y. Doi, A.Y. Rossman, G.J. Samuels, BPI 1109348 as Scoleconectria cucurbitula; Maryland, Beltsville, on Pinus strobus, May 1950, F. Petrak, BPI 1110626 as Scoleconectria cucurbitula; Virginia, Giles Co., Mt. Lake Biological Station. alt. 1170 m, 37 °22’N 80 °31’W, Little Spruce Bog, on Pinus strobus, 17 Sep. 1991, G.J. Samuels, BPI 1112876 as Scoleconectria cucurbitula, culture CBS 129363 = G.J.S. 91-107; New York, Alcove, on Pinus strobus, Feb. 1893, C.L. Shear, BPI 632766 as Scoleconectria cucurbitula; Massachusetts, Pepperell, on Pinus strobus, 08 Jun. 1926, L.B. Smith, BPI 632767 as Scoleconectria cucurbitula; North Carolina, Big Creek, Horse Cove, Macon Co., on Pinus strobus, 21 Oct. 1960, R.H. Petersen, C.T. Rogerson, BPI 632768 as Scoleconectria cucurbitula; North Carolina, Fowler Creek along state.rd. 1102, Macon Co. along Bull Pen Rd. (State Rd. 1100) by Pleasant Grove Baptist Church, E., on Pinus strobus, 15 Aug. 1978, A.Y. Rossman, L. Spielman, BPI 632770 as Scoleconectria cucurbitula; North Carolina, Macon Co. alt. 3000 ft., 35 °01’N, 83 °08’W, Ellicott Rock Trail, off Bull Pen road, on Pinus strobus (as Thuja sp.), 14 Oct. 1990, G.J. Samuels, Y. Doi, A.Y. Rossman, BPI 1107115 as Scoleconectria cucurbitula, culture CBS 102036 = G.J.S. 90-45; New York, Warrensburg, on Pinus lexilis, 18 Jun. 1946, J.R. Hansbrough, BPI 632549 as Ophionectria scolecospora; New York, Warrensburg, Pack Forest, on Pinus monticola, 18 Jun. 1946, J.R. Hansbrough, BPI 632644 as Ophionectria scolecospora; Maryland, Beltsville, on Pinus strobus, May 1950, F. Petrak, BPI 1112062 as Ophionectria scolecospora; Connecticut, Windsor, on Pinus strobus, 28 Apr. 1935, H.G. Eno, BPI 632547 as Ophionectria scolecospora; Vermont, Rutland, www.studiesinmycology.org on Pinus strobus, 12 Apr. 1938, L.W. Hodgkins, BPI 632548 as Ophionectria scolecospora; West Virginia, Morgantown, on Pinus strobus, 17 Mar. 1907, J.L. Sheldon, BPI 632655 as Scoleconectria scolecospora; West Virginia, Morgantown, on Pinus strobus, 21 Jul. 1907, J.L. Sheldon, BPI 632656 as Ophionectria scolecospora; Wisconsin, Madison, Dane Co., on Pinus strobus, 09 May 1951, H.C. Greene, BPI 629746 as Chilonectria cucurbitula; New York, Wilmington, on Pinus strobus, 10 May 1928, P. Spaulding, J.R. Hansbrough, BPI 632660 as Ophionectria scolecospora; Pennsylvania, Greenwood Furnace, on Pinus strobus, 26 Nov. 1927, L.O. Overholts, P. Spaulding, BPI 632661 as Ophionectria scolecospora; New York, Watson, on Pinus strobus, 09 Aug. 1945, J.R. Hansbrough, BPI 632662 as Ophionectria scolecospora; New Hampshire, Keene. Yale Forest, on Pinus strobus, 04 Sep. 1928, P. Spaulding, BPI 632663 as Ophionectria scolecospora; Connecticut, Bethany, on Pinus strobus, 02 Jun. 1933, J.R. Hansbrough, BPI 632664 as Ophionectria scolecospora; Ohio, Mt. Airy State Park, Cincinnati, on Pinus strobus, 04 May 1936, J.R. Hansbrough, BPI 632666 as Ophionectria scolecospora; Ohio, Mt. Airy State Park, Cincinnati, on Pinus strobus, 04 May 1936, J.R. Hansbrough, BPI 632667 as Ophionectria scolecospora; Michigan, East Lansing, on Pinus strobus, 03 Aug. 1934, J.R. Hansbrough, BPI 632668 as Ophionectria scolecospora; New Hampshire, Waterville, on Pinus strobus, 29 Jul. 1928, P. Spaulding, BPI 632669 as Ophionectria scolecospora; Vermont, Benson, on Pinus strobus, 27 Sep 1935, J.R. Hansbrough, BPI 632670 as Ophionectria scolecospora; New York, Hemlock Lake, Canadice, on Pinus strobus, 02 Aug. 1935, J.R. Hansbrough, BPI 632671 as Ophionectria scolecospora; New Hampshire, Winchester, on Pinus strobus, 11 Jun. 1940, P. Spaulding, BPI 632673 as Ophionectria scolecospora; Vermont, Reading, on Pinus strobus, 07 Jul. 1946, J.R. Hansbrough, BPI 632674 as Ophionectria scolecospora; Pennsylvania, Charter Oak, on Pinus strobus, 23 Nov. 1927, L.O. Overholts, P. Spaulding, BPI 632675 as Ophionectria scolecospora; New Hampshire, Thornton, on Pinus strobus, 26 Jun. 1931, H.G. Eno, BPI 632676 as Ophionectria scolecospora; Ohio, Gates Mill, on Pinus strobus, 29 Apr. 1936, J.R. Hansbrough, BPI 632678 as Ophionectria scolecospora; New York, Dannemora, Clinton Co., on Pinus strobus, 06 Sep. 1932, J.R. Hansbrough, BPI 632679 as Ophionectria scolecospora; New York, Hemlock Lake, Canadice, on Pinus strobus, 11 Sep. 1935, H.G. Eno, BPI 632680 as Ophionectria scolecospora; Vermont, Bridport, on Pinus strobus, 27 Sep. 1935, P. Spaulding, BPI 632681 as Ophionectria scolecospora; Pennsylvania, Charter Oak, on Pinus strobus, 26 Nov. 1927, L.O. Overholts, P. Spaulding, BPI 632682 as Ophionectria scolecospora; New York, Alder Creek, on Pinus strobus, 08 Aug. 1935, J.R. Hansbrough, BPI 632684 as 173 Hirooka et al. Fig. 142A–L. Anamorph of Pleonectria strobi in culture. A. Cultures after 7 d at 25 °C on PDA; B. Conidial mass on SNA surface; C, D. Lateral phialidic pegs and conidial mass on SNA; E, F. Lateral phialidic pegs and conidia on SNA; G–H. Conidiophores and conidia on SNA; I. Young conidia on SNA; J. Young and mature conidia on SNA; K. Germinating mature conidia on SNA; L. Budding mature conidia (black arrow) on SNA. Scale bars: A = 3 mm; B = 50 µm; C, E = 20 µm; D, F–L = 10 µm. Ophionectria scolecospora; New Hampshire, Marlow, Honey Brook State Forest, on Pinus strobus, 18 Jul. 1935, H.G. Eno, BPI 632685 as Ophionectria scolecospora; New York, Sandy Creek, on Pinus strobus, 12 Sep. 1935, P. Spaulding, BPI 632686 as Ophionectria scolecospora; Pennsylvania, Stone Creek, Huntingdon Co. near, on Pinus strobus, 19 Feb. 1933, L.O. Overholts, R.W. Davidson, BPI 632687 as Ophionectria scolecospora; North Carolina, Highlands, on Pinus strobus, 19 Aug. 1933, V.K. Charles, BPI 632688 as Ophionectria scolecospora; New York, Alcove, on Pinus strobus, Feb. 1892, C.L. Shear, BPI 632689 as Ophionectria scolecospora; Pennsylvania, State College, on Pinus strobus, 28 Oct. 1918, L.O. Overholts, BPI 632789 as Ophionectria scolecospora; Virginia, Shenandoah National Forest, Augusta Co., on Pinus strobus, 15 Sep., 1928, R.G. Pierce, BPI 632791 as Ophionectria scolecospora; Massachusetts, Hamilton, on Pinus lexilis, 19 Aug. 1932, J.R. Hansbrough, BPI 632780 as Scoleconectria scolecospora; Connecticut, Windsor. alt. 100 ft., on Pinus strobus, 28 Apr. 1935, H.G. Eno, BPI 632553 as Scoleconectria scolecospora; New York, Rhinecliff, on Pinus strobus, 12 Dec. 1931, E.P. Felt, BPI 632555 as Scoleconectria scolecospora; Pennsylvania, on Pinus strobus, 20 Sep. 1916, E.F. Pierce, BPI 632557 as Scoleconectria scolecospora; Rhode Island, Potowonut, on Pinus strobus, 07 Oct. 1931, G.G. Hahn, T.T. Ayers, BPI 632559 as Scoleconectria scolecospora; New York, Canadice, on Pinus 174 strobus, 02 Aug. 1935, J.R. Hansbrough, BPI 632560 as Scoleconectria scolecospora; West Virginia, on Pinus strobus, Sep. 1923, Korstien, BPI 632561 as Scoleconectria scolecospora; Vermont, Dummerston, on Pinus strobus, 10 May 1937, T.J. Grant, J.R. Hansbrough, BPI 632562 as Scoleconectria scolecospora; New York, Norwich, on Pinus strobus, 25 Apr. 1933, R.W. Davidson, BPI 632563 as Scoleconectria scolecospora; Maryland, Grantsville, on Pinus strobus (Cronartium ribicola?), 05 May 1944, R.G. Pierce, BPI 632564A as Scoleconectria scolecospora; Maryland, Grantsville. S, on Pinus strobus, 05 May 1944, R.G. Pierce , BPI 632564B as Scoleconectria scolecospora; Ohio, Wooster, on Pinus strobus, 23 Feb. 1917, D.C. Babcock, BPI 632565 as Scoleconectria scolecospora; Pennsylvania, Pine Grove, on Pinus strobus, 02 Feb. 1936, L.O. Overholts, BPI 632569 as Scoleconectria scolecospora; Ohio, Reynaldsburg, on Pinus strobus, Nov. 1945, R.U. Swingle, BPI 632570 as Scoleconectria scolecospora; Michigan, James Lake Camp, on Pinus strobus, May 1936, Toole, BPI 632571 as Scoleconectria scolecospora; Indiana, Hennysville, on Pinus strobus, 20 Feb. 1936, R.M. Lindgren, BPI 632572 as Scoleconectria scolecospora; North Carolina, Biltmore, Asheville, on Pinus strobus, Aug. 1936, G.H. Hepting, BPI 632573 as Scoleconectria scolecospora; Pennsylvania, Lancaster, on Pinus strobus, 20 Sep. 1916, G.F. Pierce, BPI 632574 as Scoleconectria scolecospora; Ohio, Wooster, on Pinus allantonectria, nectria, and Pleonectria strobus, 23 Feb. 1917, D.C. Babcock, BPI 632575 as Scoleconectria scolecospora; North Carolina, Newland, on Pinus strobus, 13 Aug. 1942, H.A. Whitman, BPI 632577 as Scoleconectria scolecospora; New York, Woodgate, on Pinus strobus, 15 Jun. 1927, J.R. Hansbrough, BPI 632777 as Scoleconectria scolecospora; New Hampshire, Waterville, on Pinus strobus, 21 Jul. 1932, J.R. Hansbrough, BPI 632796 as Scoleconectria scolecospora; New York, Upper Syranac Lake, on Pinus strobus, 08 Sep. 1932, J.R. Hansbrough, BPI 632797 as Scoleconectria scolecospora; New Hampshire, Littleton, on Pinus strobus, 23 Jul. 1932, J.R. Hansbrough, BPI 632798 as Scoleconectria scolecospora; Connecticut, Windsor, Loomis Forest, on Pinus strobus, 21 Jan. 1926, G.P. Clinton, BPI 632800 as Scoleconectria scolecospora; Connecticut, Woodbridge, Burnt Swamp, on Pinus strobus, G.P. Clinton, BPI 632801 as Scoleconectria scolecospora; New Hampshire, Keene, Gilsum Rd., on Pinus strobus, 04 Oct. 1927, G.P. Clinton, BPI 632802 as Scoleconectria scolecospora; New Hampshire, Wolfboro, on Pinus strobus, 31 Aug. 1932, J.R. Hansbrough, BPI 632803 as Scoleconectria scolecospora; New York, Wilmington, on Pinus strobus, 23 Aug. 1929, P. Spaulding, BPI 632804 as Scoleconectria scolecospora; Connecticut, Bethany, on Pinus strobus, 02 Jun. 1933, J.R. Hansbrough, BPI 632805 as Scoleconectria scolecospora; Minnesota, St. Croix River, on Pinus strobus, Jun, L.B. Ritter, BPI 632806 as Scoleconectria scolecospora; Maine, Bar Harbor, on Pinus strobus, 11 Jun. 1937, A.E. Brower, BPI 632807 as Scoleconectria scolecospora; Minnesota, Duluth, on Pinus strobus, 12 Jul. 1932, L.B. Ritter, BPI 632808 as Scoleconectria scolecospora; Maine, Bingham, on Pinus strobus, 05 May 1938, Hahn, C K. Goodling, BPI 632809 as Scoleconectria scolecospora; Rhode Island, Potowonut, on Pinus strobus, 04 Oct, 1931, T.T. Ayers, G.G. Hahn, BPI 632810 as Scoleconectria scolecospora; Rhode Island, Potowonut, on Pinus strobus, 21 Aug. 1930, T.T. Ayers, G.G. Hahn, BPI 632811 as Scoleconectria scolecospora; Massachusetts, on Pinus strobus, 11 Feb. 1936, L.W. Hodgkins, BPI 632812 as Scoleconectria scolecospora; North Carolina, Cove Creek, Smoky Mtn. National Park, on Pinus strobus, 13 Mar. 1947, H. Doyle, BPI 632813 as Scoleconectria scolecospora; Maine, Athens, on Pinus strobus, 04 May 1938, C.K. Goodling, BPI 632814 as Scoleconectria scolecospora; Maine, Millinocket, on Pinus strobus, 22 Jul. 1937, A.E. Brower, BPI 632815 as Scoleconectria scolecospora; Connecticut, Hamden, on Pinus strobus, 28 Oct. 1936, T.T. Ayers, BPI 632816 as Scoleconectria scolecospora; Connecticut, Storr, on Pinus strobus, 11 Jul. 1938, Hahn, Goodling, BPI 632817 as Scoleconectria scolecospora; New Hampshire, N. Conway, on Pinus strobus, H.H. York, BPI 632818 as Scoleconectria scolecospora; Pennsylvania, Mont Alto, on Pinus strobus, 02 Jan. 1937, J.C. Kase, BPI 632819 as Scoleconectria scolecospora; Michigan, Fife Lake, on Pinus strobus, 09 Jul. 1935, D.V. Baxter, BPI 632820 as Scoleconectria scolecospora; Pennsylvania, Centre Co., Pine Hall, on Pinus strobus, 22 Oct. 1944, L.O. Overholts, BPI 859483 as Scoleconectria scolecospora; Maine, Winthrop Co., on Pinus strobus, 21 May 1936, T.T. Ayers, BPI 859485 as Scoleconectria scolecospora; North Carolina, Highlands, on Pinus strobus, 17 Aug. 1933, L.O. Overholts, BPI 859486 as Scoleconectria scolecospora; Massachusetts, Amherst, on Pinus strobus, 23 Apr. 1934, T.T. Ayers, BPI 859487 as Scoleconectria scolecospora; Pennsylvania, Clarion Co., Cook Forest, on Pinus strobus, 19 May 1929, L.O. Overholts, BPI 859489 as Scoleconectria scolecospora; Pennsylvania, Huntingdon Co., Ross Run, on Pinus strobus, 01 Mar. 1931, L.O. Overholts, BPI 859491 as Scoleconectria scolecospora; New Hampshire, North Conway, on Pinus strobus, 03 May 1918, L.O. Overholts, BPI 859497 as Scoleconectria scolecospora; Pennsylvania, Huntingdon Co., Charter Oak, on Pinus strobus, 14 Jun. 1920, Overholts, BPI 859498 as Scoleconectria scolecospora; Pennsylvania, Greenwood Furnace, on Pinus strobus, 18 Oct. 1919, L.O. Overholts, BPI 859500 as Scoleconectria scolecospora; New Hampshire, Lisbon, on Pinus strobus, 06 May 1918, L.O. Overholts, BPI 859540 as Scoleconectria scolecospora; Pennsylvania, Centre Co., Barrens, State College, on Pinus strobus, 30 Oct. 1918, P.O’Donnell, BPI 859541 as Scoleconectria scolecospora; Pennsylvania, Huntingdon Co., Charter Oak, on Pinus strobus, 25 Apr. 1919, L.O. Overholts, M.F. Overholts, BPI 859542 as Scoleconectria scolecospora; Pennsylvania, Lamar, Forestry Camp, on Pinus strobus, 25 Jun. 1919, L.O. Overholts, BPI 859543 as Scoleconectria scolecospora; Pennsylvania, Huntingdon Co., Laurel Run, on Pinus strobus, 23 Mar. 1930, L.O. Overholts, BPI 862167 as Scoleconectria scolecospora; Pennsylvania, Huntingdon Co., Laurel Run, on Pinus strobus, 23 Mar. 1930, L.O. Overholts, BPI 862404 as Scoleconectria scolecospora; Pennsylvania, Cooksburg, on Pinus strobus, 13 Aug. 1929, L.O. Overholts, BPI 867620 as Scoleconectria scolecospora; Massachusetts, Mt. Toby, on Pinus strobus, 29 Nov. 1934, T.T. Ayers, BPI 867621 as Scoleconectria scolecospora; Pennsylvania, Lackawanna Co., Fleetville, on Pinus strobus, Jul. 1937, Richmond, BPI 867622a as Scoleconectria scolecospora; Pennsylvania, Huntingdon Co., Whipple Dam, on Pinus strobus, 10 Jul. 1939, W.L. White, BPI 867623 as Scoleconectria scolecospora; Pennsylvania, Ingleby, on Pinus strobus, 13 Jul. 1929, L.O. Overholts, BPI 867624 as Scoleconectria scolecospora; Pennsylvania, Huntingdon Co., Pennsylvania Furnace, on Pinus strobus, 06 Apr. 1923, C.R. Orton, BPI 867625 as Scoleconectria scolecospora; Pennsylvania, Huntingdon Co., Miller Plantation, on Pinus strobus, 11 Apr. 1928, L.O. Overholts, BPI 867626 as Scoleconectria scolecospora; Pennsylvania, Clarion Co., Cook Forest, on Pinus strobus, 19 May 1929, L.O. Overholts, BPI 867627 as Scoleconectria scolecospora; Pennsylvania, Greenwood Furnace, on Pinus strobus, www.studiesinmycology.org 29 Oct. 1921, L.O. Overholts, BPI 867628 as Scoleconectria scolecospora; Pennsylvania. Greenwood Furnace, on Pinus strobus, 18 Oct. 1919, L.O. Overholts, BPI 867629 as Scoleconectria scolecospora; Pennsylvania, Huntingdon Co., Charter Oak, on Pinus strobus, 14 Jun. 1920, Overholts, BPI 867630 as Scoleconectria scolecospora; Pennsylvania, Centre Co., State College, on Pinus strobus, 28 Oct. 1918, C.R. Orton, L.O. Overholts, BPI 867631 as Scoleconectria scolecospora; Pennsylvania, Allegheny Co., Allison Park, on Pinus strobus, 06 Oct. 1921, L.O. Overholts, BPI 867632 as Scoleconectria scolecospora; New York, near Ithaca, on Pinus strobus, 10 Jun. 1979, A.Y. Rossman, NY, culture CBS 125122 = A.R. 1425. Notes: Many specimens of Pleonectria strobi was previously identiied as Nectria cucurbitula, now a nomenclatural synonym of Pleonectria cucurbitula, based on the long-fusiform, multiseptate ascospores budding within the asci, pycnidial anamorph, and occurrence on conifers. In this study, we segregate P. strobi from P. cucurbitula by subtle morphology, phylogenetic data, and host. Our phylogenetic tree shows that P. cucurbitula and P. strobi are closely related but their separation is supported by high BI PP, ML BP, and MP BP values (Figs 1, 2). The morphology of the teleomorph and anamorph in the natural environment of these species is identical. However, by observing the shape of lateral phialidic pegs of the anamorph in culture, these species can be segregated. In P. strobi the lateral phialidic pegs are sometimes lask-shaped while in P. cucurbitula they are absent (Fig. 142F). Host is the easiest characteristic that distinguishes these two species. Interestingly P. strobi occurs only on species in Pinus subgenus Strobus while P. cucurbitula is found on species in Pinus subgenus Pinus (Strauss & Doerksen 1990; Wang & Szmidt 1993; reviewed in Price et al., 1998). For the holotype of P. strobi, we selected the NY specimen collected by Clark T. Rogerson because the specimen is in excellent condition with abundant ascomata and pycnidia and the culture obtained from that specimen is alive even though it was isolated almost 40 years ago. Although the host was originally said to be Pinus resinosa in subgenus Pinus, we were able to re-identify the host using several needles present in the packet as Pinus strobus. Pleonectria virens (Harkn.) Hirooka, Rossman & P. Chaverri, comb. nov. MycoBank MB519721. Figs 143–145. Basionym: Thyronectria virens Harkn., in Ellis & Everhart, North Amer. Pyrenomyc. p. 92. 1892. Anamorph: zythiostroma-like. Teleomorph on natural substrata: Mycelium not visible around ascomata or on host. Stromata immersed in substrate, up to 1.5 mm high and 2.5 mm diam, greenish yellow, KOH– and LA–, cells forming prosenchymatous. Ascomata semi-immersed in stroma or immersed only at base, aggregated in groups of 2–35, subglobose to globose, 270–410 μm high × 210–400 μm diam, not collapsing when dry, sometimes with only a depressed apical region, apical region slightly darker, KOH+ slightly purple, LA+ slightly yellow, covered by abundant yellowish green to dark green scurf. Ascomatal surface cells forming textura globulosa sometimes including bright yellow scurf, 3–10 μm diam, with pigmented, irregularly, ca. 1.0 μm thick walls. Ascomatal wall 20–70 μm thick, of two regions: outer region 20–50 μm thick, intergrading with stroma, cells forming textura globuosa to t. angularis, walls pigmented, about 1.5 μm thick; inner region 10–20 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Asci clavate, 55–80 × 10–20 μm, with inconspicuous ring at apex, 8-spored, ascospores biseriate. Ascospores hyaline, narrowly ellipsoidal to rarely fusiform, muriform, with 4–6 transverse septa and one longitudinal septum, (12.7–)15.9–20.3(–22.8) × (5.7–)6.4–8.2(–9.3) μm (n = 92), smooth. 175 Hirooka et al. Fig. 143A–J. Pleonectria virens on natural substrata (teleomorph). A–D. Perithecia on natural substrata; E. Median section of perithecia on natural substrata; F. Median section of perithecial apex; G, H. Median section of perithecial walls; I. Ascus; J. Ascospores. Scale bars: A–D = 1 mm; E, G = 100 µm; F, H = 30 µm; I, J = 20 µm. Anamorph in culture: After 7 d at 25 °C, colonies 9–17 mm (average 14 mm) diam. Colony surface cottony with aerial mycelium, white to whitish yellow; aerial mycelium sparse, yellow, sporodochial conidial masses produced after 3 wk; reverse whitish yellow in centre and white at margin. Odour on PDA slightly putrid. Sporulation on SNA from lateral phialidic pegs abundant, enteroblastic, monophialidic, ellipsoidal, slightly tapering toward tip or lask-shaped, 2.7–5.4 μm long, 1.3–3.0 μm wide at base. Conidiophores rarely formed, unbranched, sometimes verticillate, 1(–2)-branched, becoming loosely to moderately densely branched, 11.6–31.1 μm long, 1.2–1.8 μm wide at base. Conidiogenous cells enteroblastic, monophialidic, cylindrical, slightly tapering toward tip or narrowly lask-shaped, 4.5–12.6 μm long, 1.3–2.5 μm wide at base. Young 176 conidia formed from monophialides on aerial, submerged, or repent hyphae, formed abundantly on slimy heads, ellipsoidal, oblong, cylindrical to allantoid, hyaline, smooth, slightly curved, rounded at both endss, non-septate, (2.6–)3.3–4.3(–4.9) × (0.8–)1.0–1.4(–1.7) μm (n = 50). Mature conidia swollen, 0-septate, ellipsoidal to oblong with irregularly swollen at both ends or clavate, hyaline, smooth, straight or slightly curved, (6.7–)8.4–9.1(–10.4) × (2.1–)2.5–2.8(– 3.1) μm (n = 50). Pycnidia produced in PDA and SNA after 1–2 month (A.R. 4558). Chlamydospores in intercalary in hyphae, globose to subglobose, very rare, smooth, 7–10 µm. Ascomata not produced in culture. Distribution: Europe (France), North America (Canada, USA). allantonectria, nectria, and Pleonectria Fig. 144 A–C. Pleonectria virens on natural substrata (A–C teleomorph). A. Median section of mature perithecium; B. Ascus; C. Ascospores. Scale bars: A = 100 µm; B, C = 20 µm. Habitat: On dead woody substrata including Carya sp., Crataegus sp. Fraxinus sp., Ostrya virginiana, Rhus diversiloba, Rhus glabra, Rhus sp., Symphoricarpos occidentalis. Lectotype of Thyronectria virens designated by Seeler (1940b): USA, California, Sausalito, on Rhus diversiloba, H.W. Harkness, Ellis & Everhart, North American Fungi Second Series no. 1549 as Valsonectria virens, FH-not examined; isolectotypes examined: BPI 631193 and bound exsiccati. Additional specimens and isolates examined: Canada, Ontario, London, on Fraxinus sp, Feb. 1890, J. Dearness, BPI 631961 as Calonectria chlorinella; Ontario, London, on Fraxinus sp., Feb. 1890, J. Dearness, Ellis & Everhart, North American Fungi Second Series no. 2546, BPI-bound exsiccati. France, on dead twigs, Aug. 2008, A. Gardiennet, BPI 881068 = C.L.L. 7181 = A.R. 4558. USA, California, Sausalito, on Rhus diversiloba, BPI 553331; California, San Francisco, on Rhus diversiloba, Jun. 1881, H.W. Harkness, BPI 553301; Connecticut, New Haven, on Rhus glabra, R. Thaxter, BPI 553332 as Nectria zanthoxyli; Connecticut, New Haven, on Rhus glabra, Jan. 1927, J.F. Brenckle, Ellis & Everhart, North American Fungi Second Series no. 2751, NY; Massachusetts, Arlington Heights, on Rhus sp., 05 Sep. 1901, J.B. Rorer, BPI 553330 as Nectria zanthoxyli; Kansas, Smoky Hill, Geary, 07 Mar. 1936, T.E. Brooks, BPI 553004 as Nectria pyrrhochlora; Ohio, on Carya sp., A.P. Morgan, BPI 553009 as Nectria pyrrhochlora; Ohio, on Ostrya virginiana, 05 Mar. 1904, A.P. Morgan, BPI 552831 as Nectria pyrrhochlora; South Dakota, on Symphoricarpos occidentalis, Jan. 1927, J.F. Brenckle, NY. Notes: Rossman et al. (1999) treated Pleonectria virens (≡ Thyronectria virens) as a synonym of Pleonectria zanthoxyli. Based on our type studies of these fungi, we consider these two species to be distinct. Pleonectria virens has ascomata that are semi-immersed in stroma or immersed only at base and ascospores shorter than those of P. zanthoxyli, and generally occurs on Crataegus and Rhus (Figs 143A–D, 144A). In culture, P. virens resembles P. zanthoxyli, but the average colony growth rate after 7 d at 25 °C on PDA was 14 mm in P. virens and 67 mm in P. zanthoxyli. These differences are supported by our six-loci phylogeny (Figs 1, 2). Although the anamorph of P. virens in the natural environment was not observed, a pycnidial anamorph developed on PDA and SNA. The pycnidia possess long sterile hyphae mixed with phialides similar to those produced by P. austroamericana, P. pinicola, and P. zanthoxyli (Fig. 145M, N). These three species appear to be closely related based on morphological characteristics of the teleomorph as well as phylogenetic inference. www.studiesinmycology.org According to the protologue of T. virens, the author observed three specimens of this species from California, Connecticut, and Canada.The California and Connecticut specimens occurred on Rhus spp., while the host of the Canadian specimen is on Fraxinus sp. We designate BPI 553301 from California as the lectotype of T. virens. Pleonectria zanthoxyli (Peck) Hirooka, Rossman & P. Chaverri, comb. nov. (as ‘xanthoxyli’). MycoBank MB519722. Figs 146–148. Basionym: Valsa xanthoxyli Peck, Annual Rep. New York State Mus. 31: 49. 1879. ≡ Pseudovalsa xanthoxyli (Peck) Sacc., Syll. Fung. 2: 137. 1883 ≡ Fenestella xanthoxyli (Peck) Sacc., Syll. Fung. 2: 332. 1883 ≡ Thyronectria xanthoxyli (Peck) Ellis & Everh., North Amer. Pyrenomyc. p. 92. 1892 ≡ Nectria xanthoxyli (Peck) Rossman, Mem. New York Bot. Gard. 49: 264. 1989. Anamorph: zythiostroma-like. Teleomorph on natural substrata: Teleomorph on natural substrata: Mycelium not visible around ascomata or on host. Stromata immersed in substrate, up to 1.5 mm high and 2.5 mm diam, greenish yellow, KOH– and LA–, cells forming prosenchymatous. Ascomata immersed in stromata, scattered to aggregated in groups of 3–12, subglobose to globose, 200–400 μm high × 210–410 μm diam, constricted at black papilla, KOH– and LA–, covered by abundant yellowish green to dark green scurf. Ascomatal surface cells forming textura globulosa, sometimes including bright yellow scurf, 5–10 μm diam, with pigmented, irregularly ca. 1.0 μm thick walls. Ascomatal wall 20–40 μm thick, of two regions: outer region 10–30 μm thick, intergrading with stroma, cells forming textura globuosa to t. angularis, walls slightly pigmented, about 1.0 μm thick; inner region 5–10 μm thick, of elongate, thin-walled, hyaline cells, forming textura prismatica. Asci clavate, 60–85 × 15–20 μm, with inconspicuous ring at apex, 8-spored, ascospores biseriate above, uniseriate below, or sometimes uniseriate throughout. Ascospores hyaline, narrowly ellipsoidal to allantoid, muriform, with 5–7 transverse septa and one longitudinal septum, (17.8–)19.4– 23.6(–26.6) × (5.4–)7.0–8.8(–9.7) μm (n = 133), smooth. 177 Hirooka et al. Fig. 145A–P. Anamorph of Pleonectria virens in culture. A. Cultures after 7 d at 25 °C on PDA; B–D. Lateral phialidic pegs and conidia on SNA; E–H. Conidiophores and conidia on SNA; I. Young conidia on SNA; J. Mature conidia on SNA; K. Chlamydospores on SNA; L. Pycnidia on SNA; M, N. Conidiophores and sterile hyphae (black arrows) of pycnidia on SNA; O. Conidiophores of pycnidia on SNA; P. Conidia of pycnidia on SNA. Scale bars: A = 3 mm; B–K, O, P = 10 µm; L = 1 mm; M, N. = 50 µm. 178 allantonectria, nectria, and Pleonectria Fig. 146A–K. Pleonectria zanthoxyli on natural substrata (teleomorph). A–D. Perithecia on natural substrata; E, F. Median section of perithecia on natural substrata; G, H. Median section of perithecial walls; I, J. Asci; K. Ascospores. Scale bars: A = 5 mm; B = 1 mm; C, D = 500 µm; E, F = 100 µm; G–J = 50 µm; K = 20 µm. Fig. 147A–C. Pleonectria zanthoxyli on natural substrata (A–C teleomorph). A. Median section of mature perithecium; B. Ascus; C. Ascospores. Scale bars: A = 100 µm; B, C = 20 µm. www.studiesinmycology.org 179 Hirooka et al. Fig. 148A–P. Anamorph of Pleonectria zanthoxyli in culture. A. Cultures after 7 d at 25 °C on PDA; B. Conidial mass on SNA surface; C–E. Lateral phialidic pegs and conidia on SNA; F–I. Conidiophores and conidia on SNA; J. Young conidia on SNA; K. Mature conidia on SNA; L. Pycnidia on SNA; M. Conidiophores and sterile hyphae (black arrows) of pycnidia on SNA; N, O. Conidiophores of pycnidia on SNA; P. Conidia of pycnidia on SNA. Scale bars: A = 3 mm; B = 50 µm; C, F, M = 20 µm; D, E, G–K, N–P = 10 µm; L = 1 mm. 180 allantonectria, nectria, and Pleonectria Anamorph in culture: After 7 d at 25 °C, colonies 54–85 mm (average 67 mm) diam. Colony surface cottony with aerial mycelium, whitish yellow; aerial mycelium developed, rarely small, yellow, sporodochial conidial masses produced after 2 wk; reverse whitish yellow to slightly glaucous in centre and white at margin. Odour on PDA slightly fruity. Sporulation on SNA from lateral phialidic pegs abundant, enteroblastic, monophialidic, ellipsoidal, slightly tapering toward tip or lask-shaped, 2.7–6.5 μm long, 1.4–2.6 μm wide at base. Conidiophores rarely formed, unbranched, sometimes verticillate, 1(–2)-branched, becoming loosely to moderately densely branched, 9.6–40.9 μm long, 1.3–4.3 μm wide at base. Conidiogenous cells enteroblastic, monophialidic, cylindrical, slightly tapering toward tip or narrowly lask-shaped, 3.3–11.9 μm long, 1.1–3.1 μm wide at base. Young conidia formed from monophialides on aerial, submerged, or repent hyphae, formed abundantly on slimy heads, ellipsoidal, to cylindrical, rarely allantoid, hyaline, smooth, curved, rounded at both ends, non-septate, (3.5–)4.2–5.2(–6.4) × (1.1–)1.4–2.0(–2.5) μm (n = 150). Mature conidia swollen, 0-septate, ellipsoidal to oblong with irregularly swollen at both ends or clavate, hyaline, smooth, straight or slightly curved, (7.1–)8.0–10.0(–12.1) × (2.0–)2.3–3.1(–3.7) μm (n = 150). Pycnidia produced on SNA and PDA after 1–2 month (A.R. 4280). Chlamydospores and ascomata not produced in culture. Pleonectria zanthoxyli was described by Peck (1879) without reference to any type specimen. Seeler (1940b) designated a Peck specimen preserved in NYS as the type, but he did not note the specimen number. In our type study, two potential type specimens were located at NYS: NYS 3611 and NYS 3438. Thus, we designate NYS 3611 as lectotype with the second specimen at NYS 3438 as isolectotype. Habitat: On dead woody substrata including Crataegus sp., Peraphyllum ramosissimum, Zanthoxylum americanum, Zanthoxylum sp. Lectotype of Nectria proteae designated here: Lectotype Fig. 48 on p. 74 in Marincowitz et al. (2008), copy at BPI. Distribution: Europe (France), North America (Canada, USA), South America (Brazil). Lectotype of Valsa xanthoxyli designated herein: USA, New York, West Troy, on Zanthoxylum americanum, Oct. 1878, C.H. Peck, Lectotype NYS 3611, Isolectotype NYS 3438). Additional specimens and isolates examined: Brazil, on dead twigs, 1923, J. Rick, BPI 553328; Canada, Ontario, London, on Zanthoxylum americanum, J. Deamess, BPI 553329; Ontario, London, on Zanthoxylum americanum, Jun. 1892, J. Deamess, BPI 553334; on Zanthoxylum americanum, J. Deamess, BPI 553335; Ontario, London, on Zanthoxylum americanum, Jul. 1895, J. Deamess, BPI 553336; Ontario, London, on Zanthoxylum americanum, Jul. 1895, J. Deamess, NY. France, Puymardier 79360, on Crataegus sp., 24 Apr. 2006, C. Lechat CLL 658, BPI 878445, Culture CBS 126113 = A.R. 4280; Availles sur Chize, on Crataegus sp., C. Lechat C.L.L. 7132, LIP Culture CBS 124736 = A.R. 4616. USA, Maryland, Beltsville, on dead bark, 20 Apr. 2009, Y. Hirooka, BPI 881069, culture CBS 129157 = Y.H. 09-03 ; Michigan, Ann Arbor, on Zanthoxylum sp., Jan. 1922, L.H. Leonian, W.A. Archer, BPI 553333; Iowa, Cebar Falls, on Peraphyllum ramosissimum, 1918, J. Parish, NY; South Dakota, on Zanthoxylum americanum, 05 Jun. 1924, Brenckle, Stevens, NY; South Dakota, on Zanthoxylum americanum, Jul. 1927, Stevens, NY; New York, Albany Co., on Zanthoxylum americanum, 04 Nov. 1969, C.T. Rogerson, NY; New York, Albany Co., on Zanthoxylum americanum, 29 Nov. 1969, C.T. Rogerson, NY; Wisconsin, Sauk Co, Aldo Leopold Reserve, on Zanthoxylum sp., 30 Sep. 1988, S.M. Huhndorf, NY. Notes: Pleonectria zanthoxyli is a distinctive species in the genus Pleonectria; most ascomata are completely covered by yellowish green scurf and immersed in substrate (Figs 146B–H, 147A). Based on our phylogenetic analyses, this species falls in the genus Pleonectria (Figs 1, 2). Like P. zanthoxyli, P. pyrrhochlora and P. virens sometimes have ascomata immersed in substrate and muriform ascospores but P. zanthoxyli is distinctive in ascospore size and host. The anamorph of P. zanthoxyli in the natural environment was not observed in this study. After 3 wk in culture pycnidia occasionally developed that possess long sterile hyphae mixed with phialides (Fig. 148L, M). The anamorph of P. austroamericana, P. pinicola, and P. virens also has long sterile hyphae. www.studiesinmycology.org Excluded and Doubtful Species Cosmospora proteae (Marinc., M.J. Wingf. & Crous) Hirooka, Rossman & P. Chaverri, comb. nov. MycoBank MB519724. Basionym: Nectria proteae Marinc., M.J. Wingf. & Crous, in Marincowitz, Crous, Groenewald & Wingield, CBS Biodiversity Ser. (Utrecht) 7: 74. 2008. Anamorph: unknown. Habitat: On twig litter of Protea susannae (Proteaceae). Distribution: Africa (South Africa, known only from the type collection). Notes: The holotype specimen of Nectria proteae (PREM 59562 = S.L. 505) was examined and determined to lack any ascomata resembling Nectria; a number of diaporthalean fungi are present. Therefore, the illustration in the protologue is here designated as lectotype. No culture exists. According to the original description, this species is similar to Cosmopora having small ascomata (< 300 μm), thin ascomatal walls (< 37 μm), and small ascospores < 15 μm long. From our observation of the holotype specimen, we expect that ascomata of this fungus colonise diaporthalean fungi, typical of the genus Cosmospora. Using the keys in Samuels et al. (1991) and Rossman et al. (1999), this fungus is similar to Cosmospora meliopsicola in geography and size of ascospores; however, C. proteae has narrower, smooth ascospores. Based on this evidence, a new combination is made herein. Gyrostroma sinuosum Naumov, Bull. Soc. Mycol. Fr. 30: 386. 1914. Fig. 149. Habitat: On bark of Abies sibirica. Distribution: Europe (Russia, known only from the type collection). Holotype of Gyrostroma sinuosum: Russia, Perm Territory, on bark of Abies sibirica, 14 Sep. 1911, Holotype VIZR 123. Notes: In the original publication Gyrostroma sinuosum, type of the genus Gyrostroma, was listed at the beginning of section on nectria-like fungi suggesting a relationship with the Hypocreales and was included as the anamorph of nectria-like fungi by Seeler (1940b), Rossman (1989) and Rossman et al. (1999). Gyrostroma sinuosum is described as having sporodochial stroma, immersed ascomata, branching conidiophores, and non-septate conidia. Based on our examination of the holotype specimen, G. sinuosum is unlike any known hypocrealean species. It may perhaps be a member of the Diaporthales. 181 Hirooka et al. Fig. 149A–I. Gyrostroma sinuosum on natural substrata. A, B. Pycnidia on natural substrata; C, D. Median section of pycnidia on natural substrata; E. Tissue structure of stroma; F–H. Conidiophores and conidia; I. Conidia. Scale bars: A = 1 mm; B = 500 µm; C = 200 µm; D = 50 µm; E, F, I = 20 µm; G, H = 10 µm. Nectria jodinae Speg., Anales Mus. Nac. Hist. Nat. Buenos Aires 23: 74. 1912. Fig. 150. Nectria tropicalis Speg., Anales Mus. Nac. Hist. Nat. Buenos Aires 6: 290. 1898 [1899]. Fig. 151. Habitat: On twigs of Jodina rhombifolia (Cervantesiaceae). Habitat: On decaying branches of Tabebuia? sp. (Bignoniaceae). Distribution: South America (Argentina, known only from the type collection). Distribution: South America (Argentina, known only from the type collection). Holotype of Nectria jodinae: Argentina, Lã Plata, on twigs of Jodina rhombifolia, Sep. 1911, C. Spegazzini, Holotype LPS 1589, illustration on the packet of the holotype. Holotype of Nectria tropicalis: Argentina, Chaco, Colonia Resistencia, on decaying branches of Tabebuia sp., Jan. 1887, C. Spegazzini, Holotype LPS 1568. Notes: Although the holotype specimen of N. jodinae exists in LPS, its ascomata have been destroyed. Based on the original description, we were not able to conirm this name as a distinct species. On the packet of the holotype, there are drawings of the fungus apparently by Spegazzini. However, the drawings were also not enough to identify the fungus (Fig. 150). Notes: On the holotype specimen two types of ascomata were observed, namely Cosmospora (Fig. 151D–F) and Nectria (Fig. 151A). The ascomata of the Nectria are in extremely poor condition (Fig. 151A). According to the original description and illustration on the packet of the holotype (LPS 1568), this fungus has one-septate ascospores (14–16 × 5 μm) (Fig. 151B, C). The species that this meager evidence suggests most closely is N. cinnabarina, however, it is never found in tropical regions, thus this name remains of unknown status. 182 allantonectria, nectria, and Pleonectria Fig. 150A–D. Illustration of Nectria jodinae on the packet Holotype: LPS 1589. A. Illustration on the packet of Holotype: LPS 1589; B. Illustration of perithecia; C. Illustration of asci; D. Illustration of ascospores. Fig. 151A–F. Nectria tropicalis and Cosmospora sp. on natural substrata (A teleomorph of N. tropicalis, B, C illustration on the packet of Nectria tropicalis Holotype: LPS 1568, D-F teleomorph of Cosmospora sp.). A. Perithecium of N. tropicalis on natural substrata (black arrow); B. Packet of Nectria tropicalis (Holotype: LPS 1568); C. Illustration of large ascospores (black arrow) and small ascospores (white arrow) on the packet (Holotype: LPS 1568); D. Perithecia of Cosmospora sp. on natural substrata (white arrows); E. Asci of Cosmospora sp.; F. Ascospores of Cosmospora sp. Scale bars: A, D = 500 µm; E = 50 µm; F = 10 µm. Nectricladiella viticola (Berk. & M.A. Curtis) Hirooka, Rossman & P. Chaverri, comb. nov. MycoBank MB519726. Fig. 152. Basionym: Nectria viticola Berk. & M.A. Curtis, Grevillea 4: 45. 1875. = Nectricladiella camelliae (Shipton) Crous & C.L. Schoch, in Schoch, Crous, Wingield & Wingield, Stud. Mycol. 45: 54. 2000. ≡ Calonectria camelliae Shipton, Trans. Brit. Mycol. Soc. 72: 163. 1979. Anamorph: Cylindrocladiella microclindrica Crous & D. Victor, Stud. Mycol. 45: 54. 2000. www.studiesinmycology.org Lectotype of Nectria viticola designated herein: USA, Alabama, on branches of Vitis sp., Peters, No. 5225, Lectotype BPI 798407. Notes: Based on our study of the lectotype specimen, Nectria viticola agrees well with Nectricladiella camelliae in thickness of the ascomatal wall (15–26 μm thick), ascospore size (7.2–9.3 × 3.1–4.0 μm), and occurrence on bark (Shipton 1979, Samuels et al. 1991, Schoch et al. 2000). Based on this morphological evidence, we determined that this fungus provides an earlier name for N. camelliae, although the anamorph of C. microcylindrica was not found on the specimen of N. viticola, and this name is placed in the genus Nectricladiella. 183 Hirooka et al. Fig. 152A–C. Nectricladiella viticola on natural substrata (teleomorph). A. Perithecia on natural substrata; B. Ascus; C. Ascospores: A = 500 µm; B = 20 µm; C = 10 µm. Fig. 153A–K. Neocosmospora guarapiensis on natural substrata (A–H teleomorph, I teleomorph and anamorph, J, K. anamorph). A. Perithecia on natural substrata; B. Median section of perithecia on natural substrata; C. Median section of perithecial wall; D. Median section of perithecial apex; E. Median section of stroma; F, G. Asci; H. Ascospores; I. Perithecia and sporodochia on natural substrata; J. Conidiophores and macroconidia on natural substrata; K. Macroconidia on natural substrata. Scale bars: A, I = 500 µm; B = 200 µm; C–E, J, K = 50 µm; F–H = 20 µm. 184 allantonectria, nectria, and Pleonectria Fig. 154A–K. Neocosmospora rehmiana on natural substrata (A–J teleomorph, K illustration of Calonectria rehmiana Wollenweber 1916). A, B. Perithecia on natural substrata (white arrows); C, D. Median section of perithecia on natural substrata; E. Median section of perithecial wall; F. Median section of stroma; G, H. Asci; I. Apex of ascus; J. Ascospores; K. Illustration of Calonectria rehmiana (Wollenweber 1916): A, B = 500 µm; C–E = 50 µm; G-I = 20 µm; J = 10 µm. Neocosmospora guarapiensis (Speg.) Hirooka, Samuels, Rossman & P. Chaverri, comb. nov. MycoBank MB519723. Fig. 153. Basionym: Nectria guarapiensis Speg., Anales Mus. Nac. Hist. Nat. Buenos Aires 19: 37. 1885. Habitat: On bark. Distribution: Asia (China), South America (Brazil). www.studiesinmycology.org Holotype of Nectria guarapiensis: Brazil, Guarapí, on rotten wood, 1879, Balansa, No. 2758, Holotype LPS 1594. Additional specimens and isolates examined of Necosmospora guarapiensis: China, on bark, alt. ca. 1500 m, 03 Oct.1993, Y. Doi, BPI 802511; alt. ca. 1500 m, 03 Oct. 1993, Y. Doi, BPI 802512, culture G.J.S. 93-43; alt. ca. 1500 m, 03 Oct. 1993, Y. Doi, BPI 802513, culture G.J.S. 93-44 = CBS 131752; alt. ca. 1500 m, 03 Oct. 1993, Y. Doi, BPI 802516, culture G.J.S. 93-47. Brazil, Guarapi, Jan. 1879, Balansa, BPI 802557. 185 Hirooka et al. Notes: Nectria guarapiensis was redescribed by Samuels & Brayford (1994) who conirmed N. guarapiensis as a distinctive species. In our study, we found Fusarium cf. solani on the holotype specimen as well as subsequent collections that may be the anamorph of N. guarapiensis (Fig. 153I–K). In terms of its sexual state, this species is similar to Haematonectria haematococca, H. ipomoeae, and the teleomorph of Fusarium tucumaniae (Covert et al. 2007; Rossman et al. 1999), especially to H. ipomoeae in regard to ascospore size. Recently, Nalim et al. (2011) placed Haematonectria haematococca in Neocosmospora as Neocosmospora haematococca, thus Nectria guarapiensis is transferred to Neocosmospora. regions: outer region 29–40 μm thick, intergrading with stroma, cells forming textura globulosa or t. angularis, walls pigmented, about 1.5 μm thick; inner region 8–13 μm thick, of elongate, thinwalled, hyaline cells, forming textura prismatica. Asci narrowly clavate to clavate, 67–81 × 14–17 μm, with inconspicuous ring at apex, 8-spored, ascospores mainly biseriate. Ascospores fusiform to slightly clavate with narrowly rounded ends, slightly curved, (17.1–)20.0–26.0(–28.8) × (5.5–)5.6–7.2(–8.5) μm (n = 50), hyaline, smooth, (1–)3-septate. Neocosmospora rehmiana (Kirschst.) Hirooka, Samuels, Rossman & P. Chaverri, comb. nov. MycoBank MB519725. Fig. 154. Distribution: Europe (Germany, known only from the type collection) Habitat: On dead branches of Cornus sanguinea (Cornaceae). Anamorph: unknown (presumably fusarium-like). Lectotype of Nectria rehmiana designated by Rossman (1983): Germany, Hasellake bei Gross Behnitz, “auf einem durch Humulus lupulus zum Absterben gebrachten Stamme von Cornus sanguinea”, 23 Oct. 1905, W. Kirschstein, Lectotype S F86517, Isolectotype GZU inv.-Nr. 102–94, designated by Rossman (1983). Teleomorph on natural substrata: Mycelium not visible around ascomata or on host. Stromata erumpent through epidermis, up to 0.4 mm high and 1.0 mm diam, scarlet to red, KOH+ dark red, LA+ yellow, pseudoparenchymatous, cells forming textura prismatica to t. globulosa, intergrading with ascomatal wall. Ascomata supericial on developed stroma, scattered to aggregated in groups of 3–12, globose to broadly pyriform, 174–246 μm high × 168–220 μm diam, collapsed laterally or cupulate when dry, dark scarlet, apical region slightly darker, with ascomatal apex acute, KOH+ dark purple, LA+ yellow, coarsely warted 25–46 μm high. Ascomatal surface cells forming textura angularis, 5–14 μm diam, with uniformly pigmented walls ca. 1.5 μm thick. Ascomatal wall 28–48 μm thick, of two Notes: Neocosmospora rehmiana was irst described by Kirschstein (1906) as Calonectria rehmiana based on Saccardo (1883); later Rossman (1983) included this species in the genus Nectria. The lectotype designated by Rossman (1983) and isolectotype of this fungus are in poor condition. Based on only two ascomata from the isolectoype (GZU inv.-Nr. 102-94), we determined that the species should be placed in the genus Neocosmospora (= Haematonectria) because of the broadly pyriform ascomata and coarsely warted ascomatal walls (Fig. 154C–E). In addition, Wollenweber (1916) included drawings of conidia of Fusarium in his illustration of Calonectria rehmiana, although we did not ind Fusarium on the lectotype or isotype specimens (Fig. 154K). Basionym: Calonectria rehmiana Kirschst., Verhandl. Bot. Ver. Prov. Brandenburg 48: 59. 1906(1907). ≡ Nectria rehmiana (Kirschst.) Rossman, Mycol. Pap. 150: 24. 1983. KEY TO GENERA 1. On monocotyledonous plants; ascospores allantoid, non-septate; anamorph in culture with trichoderma-like conidiophores and rhizomorph-like strands; on Asparagaceae ..................................................................................................... Allantonectria (A. miltina) 1. On woody substrata; ascospores ellipsoidal to long-fusiform, 1- to multiseptate or muriform .................................................................. 2 2. Ascomata covered with bright yellow scurf; anamorph pycnidial (zythiostroma-like) in the natural environment; young conidia small, averaging < 5 μm long, in culture ............................................................................................................................................ Pleonectria 2. Ascomata not covered with bright yellow scurf; anamorph sporodochial or synnematous (tubercularia-like); young conidia or microconidia averaging > 5 μm long in culture ..................................................................................................................................................... Nectria KEY TO SPECIES NECTRIA based on teleomorph in the natural environment 1. Ascomata supericial on a stroma ..................................................................................... 2 (Nectria excluding the N. balansae group) 1. Ascomata nearly or completely immersed in well-developed stroma ................................................................... 22 (N. balansae group) 2. Ascospores multiseptate or muriform ........................................................................................................................................................ 3 2. Ascospores generally 1-septate ................................................................................................................................................................ 9 3. Ascospores muriform ................................................................................................................................................................................ 4 3. Ascospores multiseptate, generally 3-septate ........................................................................................................................................... 6 4. Ascomatal wall of two layers, 50–100 μm thick; ascospores not constricted at each septum, (19.4–)23.0–30.4(–35.1) × (6.8–)8.1–10.9 (–13.6) μm ............................................................................................................................................................................. N. antarctica 4. Ascomatal wall of three layers, 35–70 μm thick; ascospores often constricted at each septum ............................................................... 5 5. Ascospores smooth, (17.9–)21.8–29.0(–35.4) × (6.1–)7.3–10.1(–12.3) μm; known from New Zealand .......................... N. polythalama 5. Ascospores spinulose, (14.8–)21.0–28.8(–41.3) × (4.6–)7.5–11.4(–15.0) μm; tropical or subtropical regions ............... N. pseudotrichia 186 allantonectria, nectria, and Pleonectria 6. Ascospores striate or spinulose ................................................................................................................................................................ 7 6. Ascospores smooth ................................................................................................................................................................................... 8 7. Ascospores striate, (14.3–)16.2–19.0(–20.8) × (3.9–)4.6–5.8(–6.4) μm; tropical regions ......................................................... N. lateritia 7. Ascospores spinulose, (17.3–)19.3–22.1(–23.9) × (6.3–)6.7–8.1(–8.9) μm; known from New Zealand ...................... N. novaezelandiae 8. Ascospores ellipsoidal to long-ellipsoidal, slightly curved, with broadly rounded ends, (18.6–)19.6–22.6(–24.8) × (5.5–)8.0–9.0(–10.0) μm; known from North America .......................................................................................................................................... N. canadensis 8. Ascospores fusiform with narrowly rounded ends, (30.2–)31.5–36.7(–39.1) × (6.0–)6.8–8.4(–9.3) μm; known from Ecuador .......................................................................................................................................................................................... N. neorehmiana 9. Ascospores obovoid or pyriform, (5.5–)6.2–8.4(–9.0) × (3.5–)3.8–5.0(–5.8) μm .................................................................. N. pyriformis 9. Ascospores ellipsoidal, oblong, fusiform or allantoid ............................................................................................................................... 10 10. Ascospores striate ................................................................................................................................................................................... 11 10. Ascospores smooth or spinulose ............................................................................................................................................................ 15 11. Ascospores averaging > 20 μm long ....................................................................................................................................................... 12 11. Ascospores averaging < 20 μm long ....................................................................................................................................................... 13 12. Ascospores 1-septate, ellipsoidal, 18–30 × 6.5–9 μm ............................................................................. N. aurantiaca (see Seifert 1985) 12. Ascospores 1(–3) septate, cylindrical to allantoid, (28.8–)31.8–38.0(–41.6) × (9.5–)10.8–13.2(–14.6) μm ................... N. tucumanensis 13. Ascomatal wall of two layers, 25–50 μm thick; ascospores long-ellipsoidal to fusiform, (11.0–)13.2–16.4(–19.9) × (4.8–)5.2–6.4(–7.3) μm; known from Argentina ............................................................................................................................................... N. argentinensis 13. Ascomatal wall three layers, 40–65 μm thick; ascospores ellipsoidal to fusiform; anamorph synnematous ........................................... 14 14. Ascospores (15.6–)16.8–19.6(–22.3) × (5.9–)6.3–8.5(–9.7) μm; known from Brazil ............................................................. N. cingulata 14. Ascospores (8.0–)9.8–13.8(–16.3) × (3.1–)3.7–5.3(–6.0) μm; known from tropical regions ................................. N. pseudocinnabarina 15. Ascospores spinulose ............................................................................................................................................................................. 16 15. Ascospores smooth ................................................................................................................................................................................. 20 16. Known from alpine regions ...................................................................................................................................................................... 17 16. Known from temperate to subtropical regions ......................................................................................................................................... 18 17. Ascospores (3.9–)5.3–6.6(–7.6) μm wide; known from France (Hautes-alpes) ............................................................... N. berberidicola 17. Ascospores (7.3–)7.9–9.5(–10.6) μm wide; known from India (Himalayan mountains) ................................................... N. himalayensis 18. Ascospores fusiform to allantoid, (25.1–)26.8–31.4(–36.7) × (7.5–)8.7–11.1(–13.2) μm; known only from Ecuador ..................................................................................................................................................................................... N. pseudadelphica 18. Ascospores averaging < 25 μm long ....................................................................................................................................................... 19 19. Ascospores (10.9–)12.0–14.4(–16.4) × (4.6–)5.2–6.6(–8.0) μm; known from Oceania ................................................... N. australiensis 19. Ascospores (18.5–)20.0–25.4(–30.0) × (7.0–)8.0–9.0(–11.0) μm; known from Brazil ........................................................... N. noackiana 20. Ascospores up to 3-septate, 1-septate (91 %), 2-septate (5 %), 3-septate (4 %); known from Europe and North America ............................................................................................................................................................................................. N. nigrescens 20. Ascospores up to 1-, rarely 2-septate; known from Asia, Europe, and North America ............................................................................ 21 21. Ascospores up to 1-septate; known from Asia .......................................................................................................................... N. asiatica 21. Ascospores up to 1- or rarely 2-septate (3 %); known from Asia, Europe, and North America .............. N. cinnabarina or N. dematiosa 22. Ascospores striate .................................................................................................................................................................................... 23 22. Ascospores smooth to roughened, inely spinulose, or verruculose ....................................................................................................... 25 23. Ascomatal wall smooth to slightly roughened; ascospores (13.4–)15.6–18.4(–22.2) × (4.5–)5.6–7.2(–8.1) μm, 1-septate ....................................................................................................................................................................................... N. paraguayensis 23. Ascomatal wall warted; ascospores averaging > 20 μm long .................................................................................................................. 24 24. Ascospores (19.0–)23.7–29.9(–32.6) × (6.2–)8.3–11.1(–13.0) μm, (0–)1-septate .................................................................. N. balansae 24. Ascospores (25.0–)26.6–32.0(–35.3) × (10.5–)11.5–13.5(–15.6) μm, (0–)1(–2)-septate ......................................................... N. sordida 25. Ascomata less than 1 mm tall; ascospores ellipsoidal to fusiform, straight to rarely slightly curved, (20.0–)23.9–30.3(–37.3) × (6.8–) 8.7–11.3(–12.3) μm (0–)1(–3) septate; known from New Zealand .......................................................................................... N. hoheriae 25. Ascomata more than 1 mm tall; ascospores (0–)1(–2) septate; known from Japan and France ............................................................ 26 www.studiesinmycology.org 187 Hirooka et al. 26. Ascomata smooth; ascospores 20.4–42.5 × 7.9–15.4 μm, (0–)1(–2) septate; Japan ........................................................ N. magnispora 26. Ascomata warted; Europe ....................................................................................................................................................................... 27 27. Ascomata black; ascospores (24–)29–37(–43) × (8–)9–12(–15) μm, 1-septate; known from Croatia and Italy ..................................................................................................................................... N. eustromatica (see Jaklitsch & Voglmayr 2011) 27. Ascomata red to sienna; ascospores (18.4–)20.8–30.6(–37.4) × (7.6–)8.1–11.7(–13.6) μm, (0–)1-septate; known from France .................................................................................................................................................................................................... N. mariae NECTRIA based on anamorph in the natural environment 1. Anamorph sporodochial or synnematous(Tubercularia); conidiohpores branching monoverticillate or biverticillate ........................................................................................................................................... 2 (Nectria excluding the N. balansae group) 1. Anamorph sporodochial or pycnidial; conidiophores of sporodochia monochasial branching ............................. 16 (N. balansae group) 2. Long or short and convex or concave sporodochia ................................................................................................................................... 3 2. Synnematous .......................................................................................................................................................................................... 12 3. Sporodochia convex or concave; conidiophores branching not acropleurogenous ....................................... Anamorph of N. antarctica 3. Sporodochia only convex; conidiophores branching typically acropleurogenous ..................................................................................... 4 4. Sporodochia extremely long stipitate, 500-8000 µm high (averaging > 2500 µm) ..................................... Anamorph of N. canadensis 4. Sporodochia stipitate less than 2500 µm high, or sessile ......................................................................................................................... 5 5. Sporodochia long stipitate, 500-2500 µm high; conidia 8-26 × 4–9.5 μm, rarely 1-septate, oblong-ellipsoidal to cylindrical, sometimes with a truncate base; known from Europe ....................................................................... Anamorph of N. aurantiaca (see Seifert 1985) 5. Sporodochia stipitate or sessile, less than 2000 µm high; conidia nonseptate, averaging > 15 μm long ................................................. 6 6. Conidia averaging > 8 μm long; sporodochia less than 500 µm high, short stipitate; known from alpine regions .................................... 7 6. Conidia averaging < 8 μm long: sporodochia long or short stipitate .......................................................................................................... 8 7. Sporodochia less than 500 µm high, short stipitate; conidia 3.8–6.8 μm wide; known from the Himalayan mountains .................................................................................................................................................................. Anamorph of N. himalayensis 7. Sporodochia sessile; conidia 2.3–3.9 μm wide; known from France ........................................................ Anamorph of N. berberidicola 8. Conidia averaging < 5 μm long; sporodochia sessile; known from tropical region .................................. Anamorph of N. argentinensis 8. Conidia averaging > 5 μm long; sporodochia stipitate or sessile; known from temperate region .............................................................. 9 9. Sporodochia sessile ...................................................................................................................................... Anamorph of N. dematiosa 9. Sporodochia short to long stipitate .......................................................................................................................................................... 10 10. Sporodochia 700–1600 µm high, generally long stipitate, white, whitish yellow to orange; acropleurogenous conidiophores straight or curved; known from Europe or North America .................................................... Tubercularia vulgaris (Anamorph of N. cinnabarina) 10. Sporodochia short to long stipitate, becoming black when old; acropleurogenous sometimes conidiophores coiled; known from Asia, Europe, or North America ........................................................................................................................................................................ 11 11. Sporodochia short(65 %)to long stipitate(35 %), 250–1700 µm high; known from Europe and North America .................................................................................................................................. Tubercularia ulmea (Anamorph of N. nigrescens) 11. Sporodochia less than 800 µm high, short stipitate; known from Asia ............................................................... Anamorph of N. asiatica 12. Conidial mass blood colour, saffron, or dark purple ................................................................................................................................ 13 12. Conidial mass generally whitish yellow ................................................................................................................................................... 15 13. Conidia averaging > 10 μm long; conidial mass blood colour; known from Brazil ......................................... Anamorph of N. noackiana 13. Conidia averaging < 10 μm long; conidial mass saffron or dark purple; known from Ecuador or New Zealand ..................................... 14 14. Conidial mass saffron; conidia (5.0–)5.6–7.0(–8.4) × (2.3–)2.7–3.5(–3.8) μm; known from Ecuador ...... Anamorph of N. neorehmiana 14. Conidial mass dark purple; conidia (4.5–)5.9–7.5(–9.2) × (2.5–)3.0–3.8(–4.9) μm; known from New Zealand .................................................................................................................................................................... Anamorph of N. polythalama 15. Terminal hyphae of ornamenting cells on stipe clavate to subglobose; conidia (5.8–)6.7–8.1(–9.6) × (3.3–)3.7–4.5(–5.1) μm; known from Oceania ............................................................................................................................................. Anamorph of N. australiensis 15. Terminal hyphae of ornamenting cells on stipe bluntly rounded; conidia subglobose to ellipsoidal, 3.0–7.1 × 1.4–4.6 μm .................................................................................................. Anamorph of N. lateritia, N. pseudocinnabarina or N. pseudotrichia 188 allantonectria, nectria, and Pleonectria 16. Pycnidia immersed in well developed stroma; conidia subglobose to ellipsoidal, (2.3–)2.5–3.5(–4.1) × (1.2–)1.6–2.7(–4.0) μm .................................................................................................................................................................... Anamorph of N. magnispora 16. Sporodochia produced on well developed stroma .................................................................................................................................. 17 17. Conidia subglobose to ellipsoidal, straight, (12.2–)13.3–15.3(–17.0) × (6.5–)7.3–8.5(–9.5) μm ........................ Anamorph of N. sordida 17. Conidia ellipsoidal to oblong-ellipsoidal, sometimes slightly curved, (15.7–)18.4–22.6(–26.1) × (5.6–)7.1–8.9(–9.6) μm .......................................................................................................................................................................... Anamorph of N. hoheriae NECTRIA based on anamorph in culture 1. Conidiophores branching monoverticillate or biverticillate; mature conidia averaging < 15 μm long in culture ........................................................................................................................................... 2 (Nectria excluding the N. balansae group) 1. Conidiophores monochasial branching; macroconidia averaging > 15 μm long in culture ................................... 10 (N. balansae group) 2. Colony diameter on PDA < 40 mm after 7 d at 25 °C; conidiophores long, up to 50 μm .......................................................................... 3 2. Colony diameter on PDA > 40 mm after 7 d at 25 °C; conidiophores short, up to 30 μm ......................................................................... 5 3. 3. 4. 4. Young conidia ellipsoidal, oblong to fusiform, (6.0–)7.3–9.1(–10.0) × (2.2–)2.7–3.5(–4.3) μm ..................... Anamorph of N. aurantiaca Young conidia ellipsoidal, oblong to cylindrical, averaging < 7 μm long .................................................................................................... 4 Mature conidia rough; lateral phialidic pegs not abundant ............................................................................. Anamorph of N. antarctica Mature conidia smooth; lateral phialidic pegs abundant .......................................................................... Anamorph of N. berberidicola 5. Colony diameter on PDA > 80 mm after 7 d at 25 °C; mature conidia basically subglobose to obovate .................................................. 6 5. Colony diameter on PDA 40–80 mm after 7 d at 25 °C; mature conidia basically ellipsoidal to fusiform .................................................. 7 6. Mature conidia oblong or allantoid, swollen at both ends; optimal temperature 20 °C after 3 d on PDA; known from New Zealand .................................................................................................................................................................... Anamorph of N. polythalama 6. Mature conidia oblong or allantoid, rounded at both ends; optimal temperature 25 °C after 3 d on PDA ...................................................................................................................... Anamorph of N. pseudocinnabarina or N. pseudotrichia 7. Mature conidia not budding on SNA after 7 d; optimum temperature 20 °C on PDA ..................................... Anamorph of N. dematiosa 7. Mature conidia budding on SNA after 7 d; optimum temperature 25 °C on PDA ...................................................................................... 8 8. Mature conidia ellipsoidal, strongly constricted at centre, budding; known from Europe or North America ............................................................................................................................. Tubercularia vulgaris (Anamorph of N. cinnabarina) 8. Mature conidia ellipsoidal, straight, or slightly curved, rarely slightly constricted at centre, rarely budding; known from Asia, Europe or North America .................................................................................................................................................................................................. 9 9. Young conidia averaging 10 μm long; mature conidia averaging 15 μm long; known from Asia ........................ Anamorph of N. asiatica 9. Young conidia averaging 5 μm long; mature conidia averaging 10 μm long; known from Europe or North America .................................................................................................................................. Tubercularia ulmea (Anamorph of N. nigrescens) 10. Sterile hyphae; only chlamydospores or swollen hyphae present on SNA and PDA ...................................... Anamorph of N. balansae 10. Fertile hyphae .......................................................................................................................................................................................... 11 11. Macroconidia oblong, cylindrical or narrowly ellipsoidal, (20–)27–38(–54) × (8.7–)9.7–12.5(–14.8) μm (on MEA and OA, see Jaklitsch and Voglmayr 2011) ................................................................................................................................. Anamorph of N. eustromatica 11. Macroconidia averaging < 30 μm long .................................................................................................................................................... 12 12. Macroconidia ellipsoidal to long fusiform, curved, with thick-walled cells, (11.5–)14.1–23.1(–27.6) × (4.2–)4.9–7.7(–9.8) μm .................................................................................................................................................................... Anamorph of N. magnispora 12. Macroconidia subglobose to ellipsoidal, straight, averaging10 μm wide ................................................................................................. 13 13. Colony diameter on PDA 7–10 mm after 7 d at 25 °C; monochasial branching conidiophores 36–98 μm long; macroconidia (14.7–)16.3–20.3(–22.3) × (8.5–)9.4–11.4(–13.5) μm ................................................................... Anamorph of N. mariae 13. Colony diameter on PDA 70–80 mm after 7 d at 25 °C; monochasial branching conidiophores 40–69 μm long; macroconidia (16.6–)18.4–22.6(–24.6) × (6.9–)9.2–12.0(–14.1) μm ................................................................. Anamorph of N. sordida PLEONECTRIA key based on teleomorph in the natural environment 1. Ascospores not budding inside or outside the asci ................................................................................................................................... 2 1. Ascospores budding inside or outside the asci ....................................................................................................................................... 12 2. Ascospores 1- to multiseptate ................................................................................................................................................................... 3 www.studiesinmycology.org 189 Hirooka et al. 2. Ascospores muriform ................................................................................................................................................................................ 7 3. Ascospores (3–6)7-septate, ellipsoidal, oblong to allantoid, with broadly rounded ends, (14.9–)17.0–20.8(–24.7) × (4.4–)5.0–6.4(–7.3) μm; on bark dead deciduous trees, especially Oleaceae ......................................................................................................... P. aurigera 3. Ascospores 1-septate, smooth to striate ................................................................................................................................................... 4 4. Ascospores striate, ellipsoidal to fusiform, (13.0–)13.9–16.7(–18.5) × (4.6–)5.3–6.7(–7.3) μm; known from Argentina ........................................................................................................................................................................... P. pseudomissouriensis 4. Ascospores smooth ................................................................................................................................................................................... 5 5. Ascospores ellipsoidal to fusiform, not constricted at central septum, (8.9–)10.2–12.2(–13.6) × (3.3–)4.1–4.9(–5.7) μm; on deciduous trees ................................................................................................................................................................. P. rubicarpa 5. Ascospores ellipsoidal to fusiform, slightly constricted at central septum; on Hedera and Ilex ................................................................. 6 6. Ascospores ellipsoidal, slightly constricted at central septum, (8.9–)10.8–13.4(–15.4) × (4.1–)5.4–6.8(–7.5) μm; on Ilex ....... P. ilicicola 6. Ascospores ellipsoidal to fusiform with slightly constricted central septum; (8.1–)10.5–12.7(–14.6) × (3.7–)4.9–6.5(–8.1) μm; on Hedera ................................................................................................................................................................................. P. sinopica 7. Stromata not immersed in substrate; perithecia supericial or sometimes immersed at the base on well-developed stroma ................... 8 7. Stromata immersed in substrate; perithecia immersed in stromata or at base ......................................................................................... 9 8. Ascospores subglobose to ellipsoidal, muriform, (9.7–)10.0–12.6(–14.8) × (4.8–)6.0–7.6(–10.2) μm; on Fabaceae .................................................................................................................................................................................... P. austroamericana 8. Ascospores of two sizes: microascospores allantoid to short-cylindrical, (20.9–)25.0–30.0(–32.5) × (8.2–)9.5–11.9(–13.1) μm, macroascospores cylindrical (37.1–)39.1–46.7(–49.4) × (10.1–)10.4–12.2(–13.1) μm; on Carya .................................. P. missouriensis 9. Ascospores ellipsoidal, (15.4–)16.9–20.5(–23.3) × (7.8–)8.7–11.1(–12.3) μm; on Acer campestre ................................. P. pyrrhochlora 9. Ascospores narrowly ellipsoidal to long-fusiform, averaging < 9 μm wide .............................................................................................. 10 10. Ascomatal apex rust to chestnut colour, protuberances; on Lonicera ..................................................................................... P. lonicerae 10. Ascomatal apex red to umber, not protuberances; generally on Rhus or Zanthoxylum .......................................................................... 11 11. Ascomata immersed at the base; ascospores (12.7–)15.9–20.3(–22.8) μm long; generally on Rhus ......................................... P. virens 11. Ascomata almost immersed in stromata; ascospores (17.8–)19.4–23.6(–26.6) μm long; generally on Zanthoxylum .......... P. zanthoxyli 12. Ascospores not budding or only outside the asci .................................................................................................................................... 13 12. Ascospores budding inside the asci ........................................................................................................................................................ 14 13. Ascospores 1-septate, (8.7–)9.8–12.4(–13.5) × (3.7–)4.6–6.0(–6.8) μm; on Castanopsis .......................................................................... P. okinawensis 13. Ascospores muriform, (14.4–)15.7–19.3(–23.3) × (5.0–)6.5–8.1(–10.1) μm; on Ribes ..................................................... P. berolinensis 14. Ascospores 1-septate .............................................................................................................................................................................. 15 14. Ascospores multiseptate or muriform ...................................................................................................................................................... 16 15. Ascospores ellipsoidal to fusiform, (8–)8.9–11.1(–12.8) × (3.2–)4–5.4(–6.5) μm; on Ilex aquifolium ........................................ P. aquifolii 15. Ascospores narrowly fusiform to cylindrical, (8.3–)10.2–12.8(–15.3) × (2.2–)2.8–4(–5.3) μm; on deciduous trees ..................... P. coryli 16. Ascospores iliform, transversely multiseptate ........................................................................................................................................ 17 16. Ascospores muriform .............................................................................................................................................................................. 20 17. Ascospores 8–15 septate, hyaline, (26.7–)31.6–44.0(–48.6) × (1.3–)2.3–3.9(–4.7) μm; on Quercus ilex ssp. rotundifolia ............................................................................................................................................................................................... P. quercicola 17. Ascospores 8–44 septate, hyaline, 21.8–74.7 μm long; on conifers ....................................................................................................... 18 18. On Abies; ascomatal surface scaly; ascospores long-iliform, 8–31 septate, hyaline, (22.4–)29.5–45.1(–60.2) × (1.6–)2.0–3.2(–3.9) μm .................................................................................................................................................................................................. P. rosellinii 18. On Pinus; ascomatal surface generally scurfy ........................................................................................................................................ 19 19. On Pinus subgenus Pinus; ascospores long-iliform, 15–39 septate, hyaline, (32.9–)43.2–64.8(–74.7) × (2.3–)2.7–3.5(–3.7) μm .............................................................................................................................................................................................. P. cucurbitula 19. On Pinus subgenus Strobus; ascospores long-iliform, 12–44 septate, hyaline, (21.8–)32.9–52.1(–64.3) × (1.9–)2.2–3.2(–3.9) μm ....................................................................................................................................................................................................... P. strobi 190 allantonectria, nectria, and Pleonectria 20. Ascospores disarticulating; part-ascospores subglobose to ellipsoidal, (7.7–)8.7–12.1(–13.4) × (5.0–)6.4–8.4(–9.0) μm ............................................................................................................................................................................................... P. chlorinella 20. Ascospores not disarticulating ................................................................................................................................................................. 21 21. Ascospores subglobose to ellipsoidal, (5.1–)5.6–7.6(–9.4) × (4.0–)4.6–6.6(–8.6) μm .............................................................. P. sphaero 21. Ascospores clavate, oblong to fusiform, averaging > 10 μm long ........................................................................................................... 22 22. Ascospores clavate, (15.8–)17.7–22.7(–36.4) × (4.3–)4.8–6.2(–7.0) μm; on dead twigs of Ribes .................................... P. clavatispora 22. Ascospores oblong to long-fusiform ........................................................................................................................................................ 23 23. Ascospores ellipsoidal to fusiform, hyaline, (14.5–)18.9–26.1(–32.2) × (5–)5.2–8(–10.8) μm; on dead bark or twigs of Berberis ........................................................................................................................................................................................................ P. lamyi 23. Ascospores fusiform, cylindrical to long-fusiform, averaging < 5 μm wide; on conifers .......................................................................... 24 24. On Picea; perithecial apex of three regions; ascospores long-fusiform, cylindrical to long-cylindrical, (15.6–)20.3–29.7(–36.0) × (2.8–)3.2–4.2(–4.6) μm ..................................................................................................................... P. boothii 24. On Abies or Pinus; perithecial apex of two regions; ascospores averaging > 4.5 μm wide .................................................................... 25 25. On Abies; ascospores ellipsoidal to fusiform with 5–9 transverse septa and one longitudinal septum, (16.0–)19.7–23.9(–28.6) × (3.0–)4.0–5.6(–6.8) μm ................................................................................................................. P. balsamea 25. On Pinus; ascospores ellipsoidal to long-fusiform with 5–15 transverse septa and one longitudinal septum, (14.2–)18.1–28.3(–46.4) × (3.2–)4.3–5.3(–6.9) μm ................................................................................................................... P. pinicola PLEONECTRIA based on anamorph in the natural environment 1. Pycnidia navicular, supericial; known from Japan ..................................................................................... Anamorph of P. okinawensis 1. Pycnidia not navicular, supericial or immersed ........................................................................................................................................ 2 2. On conifer tree; pycnidia supericial, subglobose to discoidal ................................................................................................................... 3 2. On broad leaves tree; supericial or immersed pycnidia, irregularly discoidal ........................................................................................... 7 3. On Picea; sterile hyphae absent; conidia allantoid to oblong, (1.9–)2.4–3.0(–3.2) × (0.6–)0.8–1.0(–1.2) μm ..... Anamorph of P. boothii 3. On Abies or Pinus ...................................................................................................................................................................................... 4 4. On Abies .................................................................. Anamorph of P. balsamea or P. rosellinii (anamorphic traits are more supportive) 4. On Pinus .................................................................................................................................................................................................... 5 5. Sterile hyphae present; (2.1–)2.6–3.4(–3.9) × (0.9–)1.0–1.4(–1.6) μm .............................................................. Anamorph of P. pinicola 5. Sterile hyphae absent ................................................................................................................................................................................ 6 6. On Pinus subgenus Pinus; conidia (2.2–)2.6–3.4(–4.3) × (0.7–)0.8–1.2(–1.9) μm ....................................... Anamorph of P. cucurbitula 6. On Pinus subgenus Strobus; conidia (1.9–)2.6–3.4(–3.8) × (1.1–)1.2–1.6(–1.8) μm.............................................. Anamorph of P. strobi 7. Pycnidia supericial, irregularly discoidal; on Berberis or Carya ................................................................................................................ 8 7. Pycnidia immersed and supericial or only immersed ............................................................................................................................... 9 8. On Berberis; conidia ellipsoidal to oblong, (3.3–)3.4–4.0(–4.2) × (1.0–)1.1–1.3(–1.5) μm ..................................... Anamorph of P. lamyi 8. On Carya; conidia oblong-ellipsoidal to allantoid, (1.9–)2.4–3.6(–4.8)× 0.5–0.8(–1.2) μm ..................... Anamorph of P. missouriensis 9. Pycnidia immersed; on Ilex or Quercus ................................................................................................................................................... 10 9. Pycnidia immersed or supericial; on Hedera or Fabaceae ..................................................................................................................... 11 10. On Ilex; conidia hyaline, ellipsoidal, or oblong, (2.3–)3.0–4.0(–4.6) × (0.9–)1.2–1.8(–2.4) μm .......................... Anamorph of P. ilicicola 10. On Quercus; conidia hyaline, oblong to sub-allantoid, curved, nonseptate, (2.8–)3.5–5.0(–5.4) × (1.0–)1.1–1.3(–1.6) μm ........................................................................................................................................................................ Anamorph of P. quercicola 11. On Hedera; conidia of two types .. ..................................................................................................................... Anamorph of P. sinopica 11. On Fabaceae ........................................................................................................................................................................................... 12 12. Sterile hyphae present; conidia ellipsoidal, obovate or oblong-ellipsoidal, (1.7–)2.3–3.1(–3.6) × (1.0–)1.3–1.9(–2.5) μm ............................................................................................................................................................. Anamorph of P. austroamericana 12. Sterile hyphae absent; conidia ellipsoidal to allantoid, (2.4–)2.5–3.7(–5.4) × (0.4–)0.7–1.1(–1.2) μm .................................................................................................................................................................. Anamorph of P. sphaerospora www.studiesinmycology.org 191 Hirooka et al. PLEONECTRIA based on anamorph in culture 1. On conifers ................................................................................................................................................................................................ 2 1. On hardwood trees .................................................................................................................................................................................... 6 2. On Abes or Picea; conidiophores not abundant ........................................................................................................................................ 3 2. On Pinus; conidiophores abundant ........................................................................................................................................................... 5 3. On Picea; mature conidia long-cylindrical to allantoid, (7.5–)8.9–10.9(–12.3) × (1.3– 1.5–1.(–2.0) μm ...............Anamorph of P. boothii 3. On Abies; mature conidia averaging < 9.0 μm long .................................................................................................................................. 4 4. Mature conidia subglobose to ellipsoidal, (6.1–)6.4–7.2(–9.0) × (2.2–)2.5–3.3(–3.4) μm; lateral phialidic pegs ellipsoidal and slightly tapering toward tip or lask-shaped ................................................................................................................. Anamorph of P. balsamea 4. Mature conidia oblong to long-cylindrical, rarely allantoid, (6.4–)6.9–9.3(–10.0) × (1.9–)2.1–2.9(–3.1) μm; lateral phialidic pegs abundant, ellipsoidal, slightly tapering toward tip ............................................................................................................... Anamorph of P. rosellinii 5. Mature conidia oblong, slightly swollen at both ends, (5.5–)6.8–11.0(–13.2) × (1.7–)1.9–2.7(–3.1) μm; lateral phialidic pegs abundant, ellipsoidal and slightly tapering toward tip or lask-shaped . ............................................................................... Anamorph of P. pinicola 5. Mature conidia long-cylindrical .................................................................................................................................................................. 6 6. On Pinus subgenus Pinus; lateral phialidic pegs ellipsoidal tapering toward apex ...................................... Anamorph of P. cucurbitula 6. On Pinus subgenus Strobus; lateral phialidic pegs ellipsoidal, slightly tapering toward apex or lask-shaped ...... Anamorph of P. strobi 7. Mature conidia averaging > 10 μm long .................................................................................................................................................... 8 7. Mature conidia averaging < 10 μm long .................................................................................................................................................... 9 8. On Ribes; mature conidia swollen, ellipsoidal, oblong, allantoids, or ellipsoidal with strongly constricted centre, (0–)1(–2)-septate, (8.8)10.2–14.2(–19.9) × (2.2–)3.3–4.7(–5.5) μm ........................................................................................ Anamorph of P. berolinensis 8. On Berberis; mature conidia long cylindrical or C-shape, 0-septate, (7.8–)9.6–12.8(–14.3) × (1.4–)1.8–2.6(–3.1) μm ................................................................................................................................................................................ Anamorph of P. lamyi 9. Mature conidia 1-septate, oblong or ellipsoidal, (4.0–)4.4–6.0(–7.0) × (2.1–)2.4–3.2(–3.5) μm; lateral phialidic pegs not abundant, ellipsoidal, slightly tapering toward tip or rarely narrowly lask-shaped; On Fabaceae ....................... Anamorph of P. austroamericana 9. Mature conidia 0-septate ......................................................................................................................................................................... 10 10. Mature conidia irregularly swollen at both ends or clavate ...................................................................................................................... 11 10. Mature conidia not irregulary swollen at both ends or clavate ................................................................................................................ 13 11. Mature conidia (5.4–)6.3–7.5(–8.2) × (1.4–)1.8–2.4(–2.8) μm; on Acer .................................................... Anamorph of P. pyrrhochlora 11. Mature conidia averaging > 7 μm long .................................................................................................................................................... 12 12. Colony diameter on PDA average 14 mm after 7 d at 25 °C; mature conidia, (6.7–)8.4–9.1(–10.4) × (2.1–)2.5–2.8(–3.1) μm ............................................................................................................................................................................... Anamorph of P. virens 12. Colony diameter on PDA > average 67 mm after 7 d at 25 °C; mature conidia, (7.1–)8.0–10.0(–12.1) × (2.0–)2.3–3.1(–3.7) μm ........................................................................................................................................................................ Anamorph of P. zanthoxyli 13. Lateral phialidic pegs ellipsoidal, slightly tapering toward tip; on Quercus or Ilex ................................................................................... 14 13. Lateral phialidic pegs ellipsoidal, slightly tapering toward tip or rarely narrowly lask-shaped; not on Quercus or Ilex ........................... 16 14. On Quercus; mature conidia ellipsoidal to oblong, straight or slightly curved, (5.4–)5.5–7.4(–8.4) × (2.6–)2.8–3.2(–3.5) μm ........................................................................................................................................................................ Anamorph of P. quercicola 14. On Ilex ..................................................................................................................................................................................................... 15 15. Conidiogenous cells monophialidic or polyphialidic ........................................................................................... Anamorph of P. aquifolii 15. Conidiogenous cells monophialidic .................................................................................................................... Anamorph of P. ilicicola 16. Conidiophores rarely formed, unbranched, or not form ........................................................................................................................... 17 16. Conidiophores abundant, branched ........................................................................................................................................................ 18 17. Conidiophores not form; mature conidia long-cylindrical, (7.2–)8.7–11.3(–12.7) × (1.3–)1.6–2.2(–2.9) μm; lateral phialidic pegs abundant, narrowly or widely lask-shaped; mainly on Oleaceae ..................................................................... Anamorph of P. aurigera 17. Conidiophores rarely formed, unbranched; mature conidia ellipsoidal or oblong, (6.0–)8.6–10.6(–12.9) × (1.6–)2.0–3.0(–3.4) μm ................................................................................................................................................................................ Anamorph of P. coryli 192 allantonectria, nectria, and Pleonectria 18. On Castanopsis; mature conidia ellipsoidal fusiform or allantoid, (5.1–)7.1–10.1(–11.5) × (1.8–)2.0–2.8(–3.3) μm .................................................................................................................................................................... Anamorph of P. okinawensis 18. On Hedera; mature conidia cylindrical to allantoid, (5.2–)6.0–11.0(–13.4) × (1.1–)1.4–2.6(–3.1) μm ............... Anamorph of P. sinopica SYNOPTIC KEYS NECTRIA (Tubercularia anamorph) Teleomorph on natural substrata 1. Nectria antarctica 2. Nectria argentinensis 3. Nectria asiatica 4. Nectria aurantiaca 5. Nectria australiensis 6. Nectria balansae 7. Nectria berberidicola 8. Nectria canadensis 9. Nectria cingulata 10. Nectria cinnabarina 11. Nectria dematiosa 12. Nectria eustromatica 13. Nectria himalayensis 14. Nectria hoheriae 15. Nectria lateritia 16. Nectria magnispora 17. Nectria mariae 18. Nectria neorehmiana 19. Nectria nigrescens 20. Nectria noackiana 21. Nectria novaezelandiae 22. Nectria paraguayensis 23. Nectria polythalama 24. Nectria pseudadelphica 25. Nectria pseudocinnabarina 26. Nectria pseudotrichia 27. Nectria pyriformis 28. Nectria sordida 29. Nectria tucumanensis Stroma 1. Size (high) a. up to 0.5 mm ............................................................................................................................................................................. 2, 11 b. up to 1 mm .................................................................................................................................. 3, 5, 14, 15, 18, 20, 22, 25, 28, 29 c. up to 2 mm ...................................................................................................................... 7, 9, 10, 12, 13, 17, 19, 21, 23, 24, 26, 27 d. up to 3 mm ............................................................................................................................................................................ 1, 6, 16 e. up to 8 mm ...................................................................................................................................................................................... 8 f. no data ............................................................................................................................................................................................. 4 2. Size (diam) a. up to 1 mm .................................................................................................................................................................................... 25 b. up to 2 mm .............................................................................................................................. 2, 5, 8, 11, 12, 15, 18, 21, 23, 24, 27 c. up to 3 mm ...................................................................................................................................... 1, 3, 7, 9, 13, 16, 17, 20, 26, 29 d. up to 4 mm .............................................................................................................................................................. 6, 14, 19, 22, 28 e. up to 5 mm .................................................................................................................................................................................... 10 f. no data ............................................................................................................................................................................................. 4 Perithecia 1. Colour a. bay ............................................................................................................................................................................ 2, 8, 15, 25, 27 b. dark brown .................................................................................................................................................................................... 12 c. dark scarlet .................................................................................................................................................................................... 18 d. red ................................................................................................................. 1–3, 5, 6, 8, 10, 11, 14, 16, 17, 19, 21–23, 26, 28, 29 www.studiesinmycology.org 193 Hirooka et al. e. reddish brown ...................................................................................................................................................... 3, 4, 10, 11, 19, 23 f. scarlet ..................................................................................................................................................... 9, 15, 18, 20, 21, 24, 25, 27 g. sienna ............................................................................................................................................ 1, 7, 9, 13, 14, 16, 17, 20, 24, 29 h. umber .................................................................................................................................................................................... 5, 7, 13 2. Position in stroma a. immersed only at base .............................................................................................................................................................. 1, 29 b. nearly or completely immersed ................................................................................................................... 6, 12, 14, 16, 17, 22, 28 c. supericial ................................................................................................................................ 1–5, 7–11, 13, 15, 18–21, 23–27, 29 3. Surface a. rough ......................................................................................................................................... 1–3, 5, 8–12, 14, 15, 19–22, 24, 27 b. smooth ...................................................................................................................................... 2, 3, 5, 8–11, 15, 16, 19–22, 24, 27 c. warted ............................................................................................................................ 3, 4, 6, 7, 10–13, 17–19, 23, 25, 26, 28, 29 4. Number of perithecial wall layer a. 2 layers .................................................................................................................................................... 1–8, 10–14, 16–22, 27–29 b. 3 layers ..............................................................................................................................................................9 , 15, 23, 24, 25, 26 Ascospores 1. Shape a. allantoid ............................................................................................................................................................................. 12, 24, 29 b. bean-shaped ................................................................................................................................................................................. 12 c. cylindrical ........................................................................................................................................................................... 15, 21, 29 d. ellipsoidal ........................................................................................................................ 1, 3–11, 13–17, 19, 20, 22, 23, 25, 26, 28 e. fusiform ................................................................................................................................. 2, 3, 5–7, 9–11, 13, 17–20, 22–26, 28 f. long-ellipsoidal ....................................................................................................................................................................... 2, 8, 21 g. long-fusiform ................................................................................................................................................................................. 11 h. long-oblong ............................................................................................................................................................. 6, 14, 16, 22, 28 i. obovoid ........................................................................................................................................................................................... 27 j. pyriform .......................................................................................................................................................................................... 27 k. short-cylindrical ............................................................................................................................................................................... 1 2. Surface a. smooth ................................................................................................................................................ 1, 3, 8, 10, 11, 18, 19, 23, 27 b. spinulose ..................................................................................................................................... 5, 7, 13, 14, 16, 17, 20, 21, 24, 26 c. striate ..................................................................................................................................................... 2, 4, 6, 9, 15, 22, 25, 28, 29 d. verruculose .................................................................................................................................................................................... 12 3. Septation a. muriform .............................................................................................................................................................................. 1, 23, 26 b. up to 1-septate .............................................................................................................................. 2–7, 9, 12, 13, 17, 20, 22, 25, 27 c. up to 2-septate ............................................................................................................................................................ 10, 11, 16, 28 d. up to 3-septate ............................................................................................................................................ 8, 14, 15, 18, 19, 24, 29 e. up to 4-septate .............................................................................................................................................................................. 21 4. Average length a. < 10 μm ......................................................................................................................................................................................... 27 b. 10–20 μm .................................................................................................................................... 2, 3, 5, 7, 9–11, 13, 15, 19, 22, 25 c. 20–30 μm ............................................................................................................................ 1, 4, 6, 8, 14, 17, 20, 21, 23, 24, 26, 28 d. 30–40 μm .................................................................................................................................................................... 12, 16, 18, 29 5. Average width a. 2.5–5 μm ........................................................................................................................................................... 3, 10, 11, 19, 25, 27 b. 5–7.5 μm ........................................................................................................................................................... 2, 5, 7, 9, 15, 21, 22 c. 7.5–10 μm ..................................................................................................................................... 4, 6, 8, 13, 17, 18, 20, 23, 24, 26 d. 10–12.5 μm ................................................................................................................................................................... 1, 12, 14, 29 e. 12.5–15 μm ............................................................................................................................................................................. 16, 28 Geographical distribution 1. Africa a. Cameroon ..................................................................................................................................................................................... 26 b. Gabon ........................................................................................................................................................................................... 26 c. Ghana ............................................................................................................................................................................................ 26 d. Tanzania ........................................................................................................................................................................................ 26 e. Uganda .......................................................................................................................................................................................... 26 2. Asia a. China ......................................................................................................................................................................... 3, 6, 11, 15, 26 194 allantonectria, nectria, and Pleonectria b. India .............................................................................................................................................................................. 6, 13, 26, 27 c. Indonesia ....................................................................................................................................................................................... 26 d. Japan ........................................................................................................................................................................ 3, 6, 11, 16, 26 e. Malaysia .................................................................................................................................................................................. 15, 26 f. Papua New Guinea ........................................................................................................................................................................ 26 g. Philippines ..................................................................................................................................................................................... 26 h. Sri Lanka ....................................................................................................................................................................................... 26 i. Taiwan ............................................................................................................................................................................................ 26 j. Thailand .......................................................................................................................................................................................... 26 3. Caribbean and Central America a. Costa Rica ............................................................................................................................................................................... 26, 29 b. Cuba ........................................................................................................................................................................................ 25, 26 c. Dominica ....................................................................................................................................................................................... 26 d. El Salvador .................................................................................................................................................................................... 26 e. Guadeloupe ................................................................................................................................................................................... 25 f. Guatemala ...................................................................................................................................................................................... 26 g. Jamaica ......................................................................................................................................................................................... 26 h. Martinique ..................................................................................................................................................................................... 25 i. Panama .......................................................................................................................................................................................... 26 j. Puerto Rico ..................................................................................................................................................................................... 26 4. Europe a. Austria ........................................................................................................................................................................................... 10 b. Croatia ........................................................................................................................................................................................... 12 c. Czech Republic ............................................................................................................................................................................... 4 d. Denmark ........................................................................................................................................................................................ 10 e. Finland .......................................................................................................................................................................................... 11 f. France .................................................................................................................................................................... 4, 6, 7, 10, 17, 19 g. Germany ................................................................................................................................................................................. 10, 19 h. Ireland ........................................................................................................................................................................................... 10 i. Italy ................................................................................................................................................................................................. 12 j. Netherlands .................................................................................................................................................................................... 10 k. Poland ..................................................................................................................................................................................... 10, 11 l. Spain .............................................................................................................................................................................................. 17 m. UK ...................................................................................................................................................................................... 4, 10, 19 n. Ukraine .......................................................................................................................................................................................... 10 5. Oceania a. Australia .................................................................................................................................................................................... 5, 26 b. New Zealand ........................................................................................................................................................... 5, 11, 14, 21, 23 6. North America a. Canada .......................................................................................................................................................................... 8, 10, 11, 19 b. Mexico . .......................................................................................................................................................................................... 26 c. USA ..................................................................................................................................................................... 1, 8, 10, 11, 19, 26 7. South America a. Argentina ................................................................................................................................................................. 2, 22, 26, 28, 29 b. Bolivia ............................................................................................................................................................................................ 26 c. Brazil ....................................................................................................................................................... 6, 9, 15, 20, 22, 25, 26, 28 d. Chile ................................................................................................................................................................................................ 1 e. Colombia ................................................................................................................................................................................. 26, 29 f. Ecuador .............................................................................................................................................................................. 18, 24, 26 g. French Guiana .................................................................................................................................................................. 25, 26, 28 h. Guyana .......................................................................................................................................................................................... 26 i. Paraguay .............................................................................................................................................................................. 6, 22, 26 j. Peru ................................................................................................................................................................................................ 26 k. Surinam ......................................................................................................................................................................................... 26 l. Venezuela ........................................................................................................................................................................... 15, 25, 26 Anamorph on natural substrata 1. Anamorph of Nectria antarctica (sporodochial tubercularia-like) 2. Anamorph of Nectria argentinensis (tubercularia-like) 3. Anamorph of Nectria asiatica (tubercularia vulgaris-like) 4. Anamorph of Nectria aurantiaca (Tubercularia aurantiaca) www.studiesinmycology.org 195 Hirooka et al. 5. Tubercularia australiensis (anamorph of Nectria australiensis) 7. Anamorph of Nectria berberidicola (sporodochial tubercularia-like) 8. Tubercularia grayana (anamorph of Nectria canadensis) 10. Tubercularia vulgaris (anamorph of Nectria cinnabarina) 11. Anamorph of Nectria dematiosa (tubercularia vulgaris-like) 13. Anamorph of Nectria himalayensis (tubercularia-like) 14. Tubercularia hoheriae (Anamorph of Nectria hoheriae) 15. Anamorph of Nectria lateritia (possibly tubercularia-like) 16. Anamorph of Nectria magnispora (pycnidial on natural substrata) 18. Anamorph of Nectria neorehmiana (synnematous tubercularia-like) 19. Tubercularia ulmea (anamorph of Nectria nigrescens) 20. Anamorph of Nectria noackiana (synnematous tubercularia-like) 23. Anamorph of Nectria polythalama (synnematous tubercularia-like) 25. Anamorph of Nectria pseudocinnabarina (tubercularia lateritia-like) 26. Tubercularia lateritia (Anamorph of Nectria pseudotrichia) 28. Anamorph of Nectria sordida (irregularly sporodochial in the natural environment) Stroma 1. Shape of stroma a. pycnidia ......................................................................................................................................................................................... 16 b. sporodochia ..................................................................................................................................... 1–4, 7, 8, 10, 11, 13, 14, 19, 28 c. synnemata ................................................................................................................................................... 5, 15, 18, 20, 23, 25, 26 2. Height of stroma (sporodochial) a. up to 0.5 mm ............................................................................................................................................................................... 2, 7 b. up to 1 mm .......................................................................................................................................................... 3, 8, 11, 13, 14, 28 c. up to 2 mm ............................................................................................................................................................................ , 10, 19 d. up to 3 mm ...................................................................................................................................................................................... 4 3. Height of stroma (synnematal) a. up to 1 mm ...................................................................................................................................................................................... 5 b. up to 2 mm .................................................................................................................................................................. 15, 18, 20, 25 c. up to 3 mm .............................................................................................................................................................................. 23, 26 4. Structure of stroma a. prosenchymatous ........................................................................................................................................ 5, 15, 18, 20, 23, 25, 26 b. pseudoparenchymatous ............................................................................................................ 1–4, 7, 8, 10, 11, 13, 14, 16, 19, 28 c. pseudoparenchymatous and prosenchymatous .............................................................................................................................. 4 Acropleurogenous conidiophores 1. Existence of acropleurogenous conidiophores a. absent ..................................................................................................................................... 1, 4, 5, 14–16, 18, 20, 23, 25, 26, 28 b. present ........................................................................................................................................................ 2, 3, 7, 8, 10, 11, 13, 19 2. Number of acropleurogenously developing phialides a. less than 3 times ................................................................................................................................................................... 2, 8, 13 b. more than 3 times ..................................................................................................................................................... 3, 7, 10, 11, 19 Sterile hyphae mixed with phialides 1. Existence of sterile hyphae mixed with phialides a. absent ....................................................................................................................................... 1–4, 7, 8, 10, 11, 13, 16, 18, 19, 28 b. present ........................................................................................................................................................ 5, 14, 15, 20, 23, 25, 26 2. Average length a. < 100 μm ................................................................................................................................................................................. 23, 26 b. 100–150 μm .................................................................................................................................................................. 5, 15, 20, 25 c. > 150 μm ....................................................................................................................................................................................... 14 Monochasial branching conidiophores 1. Existence of monochasial branching conidiophores a. absent ............................................................................................................................ 2–5, 7, 8, 10–13, 15, 16, 18–20, 23, 25, 26 b. present ..................................................................................................................................................................................1, 14, 28 2. Length a. up to 100 μm ...................................................................................................................................................................................28 b. up to 200 μm ...............................................................................................................................................................................1, 14 196 allantonectria, nectria, and Pleonectria Conidia 1. Shape a. cylindrical .................................................................................................................................................... 1, 3, 4, 7, 10, 11, 13, 19 b. ellipsoidal ............................................................................................................................ 1–5, 7, 8, 14–16, 18, 20, 23, 25, 26, 28 c. fusiform ...................................................................................................................................................................................... 5, 20 d. long ellipsoidal ............................................................................................................................................................ 10, 11, 13, 19, e. oblong ............................................................................................................................................................... 4, 14, 15, 23, 25, 26 f. obovate .................................................................................................................................................................... 5, 15, 23, 25, 26 g. subglobose .............................................................................................................................................................................. 16, 28 2. Average length a. < 5 μm ................................................................................................................................................................................. 2, 16, 25 b. 5–10 μm ................................................................................................................................ 1, 3, 5, 7, 8, 10, 11, 15, 18, 19, 23, 26 c. 10–15 μm ................................................................................................................................................................................ 13, 28 d. 15–20 μm .................................................................................................................................................................................. 4, 20 e. 20–25 μm ...................................................................................................................................................................................... 14 3. Average width a. 2.0–3.0 μm ................................................................................................................................ 1, 2, 3, 8, 10, 11, 15, 16, 19, 25, 26 b. 3.0–4.0 μm .......................................................................................................................................................................... 7, 18, 23 c. 4.0–5.0 μm ................................................................................................................................................................................ 5, 13 d. 5.0–6.0 μm ...................................................................................................................................................................................... 4 e. > 6.0 μm ............................................................................................................................................................................ 14, 20, 28 Anamorph characters in culture 1. Anamorph of Nectria antarctica (sporodochial tubercularia-like) 3. Anamorph of Nectria asiatica (tubercularia vulgaris-like) 4. Anamorph of Nectria aurantiaca (Tubercularia aurantiaca) 6. Anamorph of Nectria balansae 7. Anamorph of Nectria berberidicola (sporodochial tubercularia-like) 10. Tubercularia vulgaris (anamorph of Nectria cinnabarina) 11. Anamorph of Nectria dematiosa (tubercularia vulgaris-like) 12. Anamorph of Nectria eustromatica 16. Anamorph of Nectria magnispora (pycnidial on natural substrata) 17. Anamorph of Nectria mariae 19. Tubercularia ulmea (anamorph of Nectria nigrescens) 23. Anamorph of Nectria polythalama (synnematous, tubercularia-like) 25. Anamorph of Nectria pseudocinnabarina (tubercularia lateritia-like) 26. Tubercularia lateritia (anamorph of Nectria pseudotrichia) 28. Anamorph of Nectria sordida (irregularly sporodochial in the natural environment) Colony 1. Colony diameter on PDA at 25 °C after 1 wk a. rapid (> 60 mm diam) .................................................................................................................................. 6, 10, 19, 23, 25, 26, 28 b. relatively rapid (40–60 mm diam) .............................................................................................................................................. 3, 11 c.moderate (20–40 mm diam) ................................................................................................................................................... 1, 4, 16 d. slow (< 20 mm diam) ........................................................................................................................................................... 7, 12, 17 2. Colour of colony a. dull yellow ...................................................................................................................................................................................... 12 b. lesh ............................................................................................................................................................................................... 16 c. ochreous ........................................................................................................................................................................................ 25 d. orange ..................................................................................................................................................................................... 23, 26 e. pink ................................................................................................................................................................................................ 23 f. saffron ...................................................................................................................................................................................... 17, 25 g. salmon ........................................................................................................................................................................................... 16 h. white .................................................................................................................................................................. 1, 3, 4, 7, 10, 11, 19 i. whitish brown .................................................................................................................................................................................. 28 j. whitish saffron ................................................................................................................................................................ 3, 10, 11, 19 k. whitish yellow .................................................................................................................................................... 1, 4, 6, 7, 12, 17, 28 l. yellowish brown ........................................................................................................................................................................ 23, 26 Lateral phialidic pegs 1. Existence of lateral phialidic pegs www.studiesinmycology.org 197 Hirooka et al. a. absent ..................................................................................................................................................................... 6, 12, 16, 17, 28 b. present ............................................................................................................................................ 1, 3, 4, 7, 10, 11, 19, 23, 25, 26 2. Shape a. ellipsoidal ........................................................................................................................................ 1, 3, 4, 7, 10, 11, 19, 23, 25, 26 b. lask-shaped .................................................................................................................................................................................... 7 3. Average length a.< 5 μm .................................................................................................................................................................... 1, 3, 7, 10, 11, 19 b. > 5 μm ........................................................................................................................................................................... 4, 23, 25, 26 Monochasial branching conidiophores 1. Existence of monochasial branching conidiophores a. absent ................................................................................................................................................. 3, 4, 7, 10, 11, 19, 23, 25, 26 b. present .................................................................................................................................................................... 1, 12, 16, 17, 28 2. Length a. up to 100 μm ........................................................................................................................................................................... 17, 28 b. up to 200 μm ............................................................................................................................................................................. 1, 16 c. no data .......................................................................................................................................................................................... 12 Young conidia 1. Existence of young conidia a. absent ..................................................................................................................................................................... 6, 12, 16, 17, 28 b. present ............................................................................................................................................ 1, 3, 4, 7, 10, 11, 19, 23, 25, 26 2. Shape a. cylindrical .............................................................................................................................................................. 1, 3, 7, 10, 11, 19 b. ellipsoidal ........................................................................................................................................ 1, 3, 4, 7, 10, 11, 19, 23, 25, 26 c. fusiform .......................................................................................................................................................................... 4, 23, 25, 26 d. oblong ............................................................................................................................................................... 1, 3, 4, 7, 10, 11, 19 e. obovate ............................................................................................................................................................................. 23, 25, 26 f. subglobose ......................................................................................................................................................................... 23, 25, 26 3. Average length a. 5–7.5 μm ............................................................................................................................................................. 1, 7, 19, 23, 25, 26 b. 7.5–10 μm ....................................................................................................................................................................... 3, 4, 10, 11 4. Average width a. 1.5–2.5 μm .................................................................................................................................................................................... 19 b. 2.5–3.5 μm ............................................................................................................................................ 1, 3, 4, 7, 10, 11, 23, 25, 26 Mature conidia 1. Existence of mature conidia a. absent ..................................................................................................................................................................... 6, 12, 16, 17, 28 b. present ............................................................................................................................................ 1, 3, 4, 7, 10, 11, 19, 23, 25, 26 2. Surface a. smooth ...................................................................................................................................................... 3, 4, 7, 10, 11, 19, 23, 25 b. rough ............................................................................................................................................................................................... 1 3. Shape a. allantoid ................................................................................................................................................... 1, 3, 10, 11, 19, 23, 25, 26 b. cylindrical .................................................................................................................................................................................... 4, 7 c. ellipsoidal ............................................................................................................................................................... 1, 3, 4, 10, 11, 19 d. oblong ............................................................................................................................................. 1, 3, 4, 7, 10, 11, 19, 23, 25, 26 4. Average length a. 10–12.5 μm ................................................................................................................................................................... 1, 19, 25, 26 b. 12.5–15.0 μm ........................................................................................................................................................ 3, 4, 7, 10, 11, 23 5. Average width a. 3.0–4.0 μm ...................................................................................................................................................................... 4, 7, 25, 26 b. 4.0–5.0 μm .......................................................................................................................................................... 1, 3, 10, 11, 19, 23 Microconidia 1. Existence of micro-conidia a. absent ............................................................................................................................................. 1, 3, 4, 7, 10, 11, 19, 23, 25, 26 b. present ........................................................................................................................................................................ 12, 16, 17, 28 c. unknown .......................................................................................................................................................................................... 6 198 allantonectria, nectria, and Pleonectria 2. Shape a. cylindrical ...................................................................................................................................................................................... 12 b. ellipsoidal .......................................................................................................................................................................... 16, 17, 28 c. fusiform .......................................................................................................................................................................................... 28 d. long-fusiform ........................................................................................................................................................................... 16, 17 e. oblong ..................................................................................................................................................................................... 12, 17 3. Average length a. < 7.5 μm ........................................................................................................................................................................................ 16 b. > 7.5 μm ............................................................................................................................................................................ 12, 17, 28 4. Average width a. 1.5–2.5 μm .................................................................................................................................................................................... 16 b. 2.5–3.5 μm .............................................................................................................................................................................. 12, 28 c. 3.5–4.0 μm .................................................................................................................................................................................... 17 Macroconidia 1. Existence of macro-conidia a. absent ............................................................................................................................................. 1, 3, 4, 7, 10, 11, 19, 23, 25, 26 b. present ........................................................................................................................................................................ 12, 16, 17, 28 c. unknown .......................................................................................................................................................................................... 6 2. Shape a. cylindrical ...................................................................................................................................................................................... 12 b. ellipsoidal .................................................................................................................................................................... 12, 16, 17, 28 c. long–fusiform ................................................................................................................................................................................. 16 d. oblong ........................................................................................................................................................................................... 12 e. subglobose .............................................................................................................................................................................. 17, 28 3. Average length a. 10–20 μm ................................................................................................................................................................................ 16, 17 b. 20–30 μm ...................................................................................................................................................................................... 28 c. 30–40 μm ...................................................................................................................................................................................... 12 4. Average width a. 5–10 μm ........................................................................................................................................................................................ 16 b. 10–15 μm .......................................................................................................................................................................... 12, 17, 28 Pleonectria Teleomorph on natural substrata 1. Pleonectria aquifoli 2. Pleonectria aurigera 3. Pleonectria austroamericana 4. Pleonectria balsamea 5. Pleonectria berolinensis 6. Pleonectria boothii 7. Pleonectria chlorinella 8. Pleonectria clavatispora 9. Pleonectria coryli 10. Pleonectria cucurbitula 11. Pleonectria ilicicola 12. Pleonectria lamyi 13. Pleonectria lonicerae 14. Pleonectria missouriensis 15. Pleonectria okinawensis 16. Pleonectria pinicola 17. Pleonectria pseudomissouriensis 18. Pleonectria pyrrhochlora 19. Pleonectria quercicola 20. Pleonectria rosellinii 21. Pleonectria rubicarpa 22. Pleonectria sinopica 23. Pleonectria sphaerospora 24. Pleonectria strobi 25. Pleonectria virens www.studiesinmycology.org 199 Hirooka et al. 26. Pleonectria zanthoxyli Stroma 1. Size (high) a. up to 1 mm b. up to 2 mm c. up to 3 mm 2. Size (diam) a. up to 1 mm b. up to 2 mm c. up to 3 mm d. up to 4 mm e. up to 7 mm .................................................................................................................................... 4, 6, 7, 10, 13, 16, 18–21, 24, 26 ........................................................................................................................................ 2, 8, 11, 14, 15, 17, 22, 23, 25 .................................................................................................................................................................... 1, 3, 5, 9, 12 .......................................................................................................................................................................... 7, 19, 24 ........................................................................................................................................ 1, 2, 4, 6, 8, 10, 14–17, 20, 21 .............................................................................................................................................. 5, 9, 11, 12, 18, 22, 25, 26 .............................................................................................................................................................................. 13, 23 ...................................................................................................................................................................................... 3 Perithecia 1. Position in stroma a. nearly or completely immersed in substrate ................................................................................................................ 13, 18, 25, 26 b. nearly immersed in stroma (developed yellow scurf) ............................................................................................................ 3, 7, 23 c. supericial .................................................................................................................................................. 1–6, 8–12, 14–17, 19–25 2. Surface a. scaly .......................................................................................................................................................... 11, 12, 14, 16, 17, 19, 20 b. scurfy ............................................................................................................................... 1, 2, 4–6, 8–11, 12, 13, 16, 17, 20–22, 24 c. smooth ........................................................................................................................................................................................... 15 d. smooth to rough, covered by aboundant scurf .................................................................................................... 3, 7, 18, 23, 25, 26 3. Colour a. bay .......................................................................................................................................... 1, 2, 4, 5, 8, 9, 11, 12, 14–16, 20, 22 b. chestnut ................................................................................................................................................................................... 13, 19 c. dark green ..................................................................................................................................................................................... 25 d. greenish yellow ................................................................................................................................................................. 18, 25, 26 e. orange ........................................................................................................................................................................................... 17 f. red ........................................................................................................................................................ 4, 6, 8, 10, 14, 15, 20, 21, 24 g. reddish grey .............................................................................................................................................................................. 3, 23 h. rust ................................................................................................................................................................................................ 13 i. scarlet ..................................................................................................................................................... 1, 2, 5, 9, 11, 12, 16, 21, 22 j. sienna ................................................................................................................................................................................... 7, 13, 19 k. umber ................................................................................................................................................................ 6, 10, 17, 18, 24, 26 l. yellowish brown .......................................................................................................................................................................... 3, 23 Ascospores 1. Shape a. allantoid ..................................................................................................................................................................................... 2, 26 b. clavate ............................................................................................................................................................................................. 8 c. cylindrical ....................................................................................................................................................................... 4, 5, 6, 9, 14 d. ellipsoidal ................................................................................................................................ 1, 2, 5, 11–15, 17, 18, 21, 22, 25, 26 e. iliform ............................................................................................................................................................................................ 19 f. fusiform .................................................................................................................................. 1, 4, 5, 7, 9, 12, 13, 15–17, 21, 22, 25 g. long cylindrical ................................................................................................................................................................................. 6 h. long iliform ........................................................................................................................................................................ 10, 20, 24 i. long fusiform ............................................................................................................................................................................... 4, 16 j. oblong ............................................................................................................................................................................................... 2 k. subglobose .......................................................................................................................................................................... 3, 18, 23 2. Septation a. 1-septate ....................................................................................................................................................... 1, 9, 11, 15, 17, 21, 22 b. multiseptate ............................................................................................................................................................. 2, 10, 19, 20, 24 c. muriform ............................................................................................................................................ 3–8, 12–14, 16, 18, 23, 25, 26 3. Surface a. smooth .................................................................................................................................................................... 1–14, 16, 18–26 b. spinulose ....................................................................................................................................................................................... 15 c. striate ............................................................................................................................................................................................. 17 4. Ascoconidia a. absent ................................................................................................................................... 2, 3, 11, 13, 14, 17, 18, 21, 22, 25, 26 200 allantonectria, nectria, and Pleonectria b. present inside asci ........................................................................................................................ 1, 4, 6–10, 12, 16, 19, 20, 23, 24 c. present outside asci only ........................................................................................................................................................... 5, 15 5. Existence of part–ascospores a. absent ............................................................................................................................................................................... 1–6, 8–26 b. present ............................................................................................................................................................................................ 7 6. Average length a. < 10 μm ......................................................................................................................................................................................... 23 b. 10–15 μm .................................................................................................................................................. 1, 3, 9, 11, 15, 17, 21, 22 c. 15–20 μm .............................................................................................................................................................. 2, 5, 8, 13, 18, 25 d. 20–25 μm .................................................................................................................................................................. 4, 7, 12, 16, 26 e. 25–30 μm ................................................................................................................................................. 6, 14 (microascospores) f. 30–35 μm ....................................................................................................................................................................................... 19 g. 35–40 μm ...................................................................................................................................................................................... 20 h. 40–45 μm .............................................................................................................................................. 14 (macroascospores), 24 i. > 45 μm .......................................................................................................................................................................................... 10 7. Average width a. < 2.5 μm .......................................................................................................................................................................................... 4 b. 2.5–5 μm ................................................................................................................................................... 1, 6, 9, 10, 16, 19–21, 24 c. 5–7.5 μm ................................................................................................................................... 2, 3, 5, 8, 11–13, 15, 17, 22, 23, 25 d. 7.5–10 μm ........................................................................................................................................................................... 7, 18, 26 e. 10–12.5 μm ......................................................................................................... 14 (microascospores), 14 (macroascospores) Geographical distribution 1. Asia a. Japan ................................................................................................................................................................................ 15, 16, 20 b. Mongolia .......................................................................................................................................................................................... 5 c. Pakistan ................................................................................................................................................................................... 12, 16 d. Taiwan ........................................................................................................................................................................................... 16 2. Caribbean a. Puerto Rico ................................................................................................................................................................................... 21 3. Europe a. Austria ................................................................................................................................................................. 5, 9, 10, 12, 18, 22 b. Belgium ........................................................................................................................................................................................... 9 c. Bosnia ............................................................................................................................................................................................. 5 d. Czech Republic ......................................................................................................................................................... 5, 9, 10, 18, 22 e. Finland ........................................................................................................................................................................................ 5, 9 f. France ........................................................................................................................................................ 1, 2, 9–12, 20, 22, 25, 26 g. Germany ....................................................................................................................................... 1, 5, 9, 10, 12, 16, 18, 20, 22, 24 h. Hungary ......................................................................................................................................................................................... 12 i. Ireland ............................................................................................................................................................................................ 22 j. Italy ................................................................................................................................................................................. 5, 12, 20, 22 k. Latvia ............................................................................................................................................................................................... 5 l. Netherlands .............................................................................................................................................................................. 10, 22 m. Poland ............................................................................................................................................................................................ 5 n. Russia ........................................................................................................................................................................................... 16 o. Slovakia ........................................................................................................................................................................................... 6 p. Spain ............................................................................................................................................................................................. 19 q. Sweden ............................................................................................................................................................................... 9, 10, 12 r. Switzerland ..................................................................................................................................................................................... 22 s. UK ................................................................................................................................................................................. 1, 11, 21, 22 t. Ukraine ........................................................................................................................................................................................... 12 4. North America a. Canada ...................................................................................................................................................... 4, 5, 9, 12, 20, 24, 25, 26 b. USA ......................................................................................................................................... 2–5, 7–10, 13, 14, 16, 20, 21, 23–26 5. South America a. Argentina ................................................................................................................................................................................... 3, 17 b. Brazil ......................................................................................................................................................................................... 3, 26 c. Paraguay ......................................................................................................................................................................................... 3 Anamorph on natural substrata 3. zythiostroma-like (Anamorph of Pleonectria austroamericana) www.studiesinmycology.org 201 Hirooka et al. 4. zythiostroma-like (Anamorph of Pleonectria balsamea) 6. zythiostroma-like (Anamorph of Pleonectria boothii) 10. Zythiostroma pinastri (Anamorph of Pleonectria cucurbitula) 11. zythiostroma-like (Anamorph of Pleonectria ilicicola) 12. zythiostroma-like (Anamorph of Pleonectria lamyi) 14. zythiostroma-like (Anamorph of Pleonectria missouriensis) 15. zythiostroma-like (Anamorph of Pleonectria okinawensis) 16. zythiostroma-like (Anamorph of Pleonectria pinicola) 19. zythiostroma-like (Anamorph of Pleonectria quercicola) 20. zythiostroma-like (Anamorph of Pleonectria rosellinii) 22. Zythiostroma mougeotii (Anamorph of Pleonectria sinopica) 23. zythiostroma-like (Anamorph of Pleonectria sphaerospora) 24. zythiostroma-like (Anamorph of Pleonectria strobi) Pycnidia 1. Colour a. bay ........................................................................................................................................................ 6, 10, 12, 14–16, 20, 22, 24 b. chestnut ......................................................................................................................................................................................... 19 c. red ....................................................................................................................................................................................... 4, 10, 16 d. reddish grey .................................................................................................................................................................................... 3 e. scarlet ................................................................................................................................................................................ 20, 22, 24 f. sienna ........................................................................................................................................................................... 11, 15, 19, 23 g. umber ........................................................................................................................................................................ 4, 6, 12, 14, 23 h. yellowish brown ............................................................................................................................................................................... 3 2. Position a. only immersed ......................................................................................................................................................................... 11, 19 b. only supericial ........................................................................................................................................ 4, 6, 10, 12, 14–16, 20, 24 c. immersed and supericial .................................................................................................................................................... 3, 22, 23 3. Shape of pycnidia a. irregulary discoidal ........................................................................................................................................................................ 12 b. irregulary subglobose ........................................................................................................................................ 3, 11, 14, 19, 22–24 c. navicular ........................................................................................................................................................................................ 15 d. subglobose ...................................................................................................................................................... 3, 4, 6, 10, 16, 20, 22 Conidiophores 1. Number of intercalary phialides on conidiophores a. up to 2 times ...................................................................................................................................................... 3, 11, 16, 19, 22, 23 b. up to 4 times ........................................................................................................................................................ 4, 6, 10, 12, 20, 24 c. up to 6 times .................................................................................................................................................................................. 14 d. up to 8 times .................................................................................................................................................................................. 15 2. Existence of sterile hyphae mixed with phialides a. absent ......................................................................................................................................... 4, 6, 10–12, 14, 15, 19, 20, 22–24 b. present ...................................................................................................................................................................................... 3, 16 Conidia 1. Shape a. allantoid ............................................................................................................................................................. 6, 14, 15, 19, 22, 23 b. ellipsoidal .......................................................................................................................................... 3, 4, 10–12, 15, 16, 20, 23, 24 c. oblong .......................................................................................................................................... 4, 6, 10–12, 15, 16, 19, 20, 22, 24 d. oblong–ellipsoid ........................................................................................................................................................................ 3, 14 e. obovate ........................................................................................................................................................................................... 3 2. Average length a. 2.0–3.0 mm ................................................................................................................................................................................. 3, 6 b. 3.0–4.0 mm ........................................................................................................... 4, 10, 11, 12, 14–16, 20, 22 (microconidia)–24 c. 4.0–5.0 mm ................................................................................................................................................................................... 19 d. 5.0–6.0 mm ........................................................................................................................................................ 22 (macroconidia) 3. Average width a. < 1.0 mm ............................................................................................................................................................................. 6, 14, 23 b. 1.0–2.0 mm ................................................................................................................................. 3, 4, 10–12, 15, 16, 19, 20, 22, 24 202 allantonectria, nectria, and Pleonectria Anamorph in culture 1. Anamorph of Pleonectria aquifoli 2. Anamorph of Pleonectria aurigera 3. zythiostroma-like (Anamorph of Pleonectria austroamericana) 4 zythiostroma-like (Anamorph of Pleonectria balsamea) 5. Anamorph of Pleonectria berolinensis 6. zythiostroma-like (Anamorph of Pleonectria boothii) 9. Anamorph of Pleonectria coryli 10. Zythiostroma pinastri (Anamorph of Pleonectria cucurbitula) 11. zythiostroma-like (Anamorph of Pleonectria ilicicola) 12. zythiostroma-like (Anamorph of Pleonectria lamyi) 15. zythiostroma-like (Anamorph of Pleonectria okinawensis) 16. zythiostroma-like (Anamorph of Pleonectria pinicola) 18. Anamorph of Pleonectria pyrrhochlora 19. zythiostroma-like (Anamorph of Pleonectria quercicola) 20. zythiostroma-like (Anamorph of Pleonectria rosellinii) 22. Zythiostroma mougeotii (Anamorph of Pleonectria sinopica) 24. zythiostroma-like (Anamorph of Pleonectria strobi) 25. Anamorph of Pleonectria virens 26. Anamorph of Pleonectria zanthoxyli Colony 1. Colony diameter on PDA at 25 °C after 1 wk a. rapid (> 60 mm diam) .................................................................................................................................... 4, 5, 10, 18, 20, 24, 26 b. relatively rapid (40–60 mm diam) ............................................................................................................................................ 12, 16 c. moderate (20–40 mm diam) .............................................................................................................................. 1, 2, 3, 9, 11, 15, 22 d. slow (< 20 mm diam) ........................................................................................................................................................... 6, 19, 25 2. Colour of colony a. greenish yellow ....................................................................................................................................................................... 16, 18 b. saffron ............................................................................................................................................................................................. 6 c. white ................................................................................................................................................................ 1, 2, 4, 12, 15, 19, 25 d. whitish brown .............................................................................................................................................................. 10, 19, 20, 24 e. whitish green ................................................................................................................................................................................. 16 f. whitish orange .................................................................................................................................................................................. 5 g. whitish saffron ........................................................................................................................................................................... 4, 12 h. whitish yellow ............................................................................................................................ 1–3, 6, 9–11, 15, 18, 20, 22, 25, 26 i. yellow ..................................................................................................................................................................................... 3, 5, 11 Lateral phialidic pegs 1. Existence of lateral phialidic pegs a. abundant ................................................................................................................................. 2–6, 9, 10, 12, 16, 18, 20, 22, 24–26 b. rare ............................................................................................................................................................................ 1, 3, 11, 15, 19 2. Shape a. ellipsoidal ................................................................................................................................ 1–6, 9–12, 15, 16, 18–20, 22, 24–26 b. lask-shaped .................................................................................................................................. 2–6, 9, 12, 15, 16, 18, 22, 25, 26 Conidiophores 1. Existence of conidiophores a. absent .........................................................................................................................................................................................2, 20 b. present ..................................................................................................................................1, 3–6, 9–12, 15, 16, 18, 19, 22, 24–26 Young conidia 1. Shape a. allantoid ............................................................................................................................................................... , 18, 19, 22, 25, 26 b. cylindrical .................................................................................................................................................................. 3, 6, 12, 25, 26 c. ellipsoidal ................................................................................................................................................. 3, 4, 10, 15, 16, 18, 24–26 d. fusiform ................................................................................................................................................................................... 15, 18 e. long cylindrical ............................................................................................................................................................... 1, 2, 5, 9, 11 f. oblong ............................................................................................................................................ 1–6, 9–12, 16, 19, 20, 22, 24, 25 2. Average length a. 3.0–4.0 μm .................................................................................................................................................................. 1, 2, 3, 18, 25 www.studiesinmycology.org 203 Hirooka et al. b. 4.0–5.0 μm .................................................................................................................................... 4, 6, 9–12, 15, 16, 20, 22, 24, 26 c. 5.0–6.0 μm ................................................................................................................................................................................ 5, 19 3. Average width a. < 1.0 μm ........................................................................................................................................................................................ 18 b. 1.0–2.0 μm .......................................................................................................................... 1–4, 6, 9–12, 15, 16, 19, 20, 22, 24–26 c. 2.0–3.0 μm ...................................................................................................................................................................................... 5 Mature conidia 1. Shape a. allantoid ..................................................................................................................................................................... 5, 6, 15, 20, 22 b. clavate ............................................................................................................................................................................... 18, 25, 26 c. C-shape ......................................................................................................................................................................................... 12 d. cylindrical ...................................................................................................................................................................................... 22 e. ellipsoidal ........................................................................................................................................ 1, 3, 5, 9, 11, 15, 18, 19, 25, 26 f. fusiform .......................................................................................................................................................................................... 15 g. long cylindrical ............................................................................................................................................... 2, 6, 10, 12, 16, 20, 24 h. oblong ................................................................................................................................... 1, 3, 5, 9, 10, 11, 16, 18-20, 22, 24-26 2. Septation a. 0-septate ....................................................................................................................... 1, 2, 4, 6, 10–12, 15, 16, 18–20, 22, 24–26 b. up to 1-septate ................................................................................................................................................................................ 3 c. up to 2-septate ................................................................................................................................................................................ 5 3. Average length a. 5.0–7.0 μm ...................................................................................................................................................................... 3, 4, 18, 19 b. 7.0–9.0 μm ...................................................................................................................................... 1, 11, 12, 15, 16, 20, 22, 24, 25 c. 9.0–11.0 μm ................................................................................................................................................................. 2, 6, 9, 10, 26 d. 11.0–13.0 μm .................................................................................................................................................................................. 5 4. Average width a. 1.0–2.0 μm ...................................................................................................................................................................... 2, 6, 10, 24 b. 2.0–3.0 μm .................................................................................................................... 1, 3, 4, 9, 11, 12, 15, 16, 18, 20, 22, 25, 26 c. 3.0–4.0 μm .................................................................................................................................................................................... 19 d. 3.0–4.0 μm ...................................................................................................................................................................................... 5 5. Existence of chlamydospores a. absent ............................................................................................................................... 2–6, 9, 10, 12, 15, 16, 18, 20, 22, 24, 26 b. present .......................................................................................................................................................................... 1, 11, 19, 25 6. Existence of pycnidia in culture a. absent ......................................................................................................................................... 1, 2, 5, 6, 9–12, 16, 18–20, 22, 24 b. present ...................................................................................................................................................................... 3, 4, 15, 25, 26 ACKNOWLEDGEMENTS We gratefully acknowledge the assistance of the curators and staffs of the herbaria from which specimens were generously loaned. These include: Botanischer Garten und Botanisches Museum Berlin (B); U.S. National Fungus Collection (BPI); Farlow Reference Library and Herbarium of Cryptogamic Botany (FH); Karl-FranzensUniversitaet, Austria (GZU); Illinois Natural History Survey, Champaign (ILLS); Herbario del Departamento de Botánica, Instituto Nacional de Biodiversided (IMB); Mycological Herbarium of Chinese Academy of Science (HMAS); Royal Botanic Gardens Kew (K); Herbarium of Kunming Institute of Botany, the Chinese Academy of Sciences (KUN); Instituto de Botánica Carlos Spegazzini (LPS); Musée National d’Histoire Naturelle de Luxembourg (LUX); William and Lynda Steere Herbarium, New York Botanical Garden (NY); Erbario Patavinum (PAD); Herbier Cryptogamique, Dépt. Systématique et Évolution. Muséum National ďHistoire Naturelle (PC); Landcare Research, Herbarium of Plant Disease Division, New Zealand (PDD); Department of Botany, Academy of Natural Sciences of Philadelphia (PH); ARCPlant Protection Research Institute, Pretoria (PREM); Herbarium of the Botany Department, Swedish Museum of National History (S); Museum of Evolution, Botany Section (Fytoteket), Uppsala University (UPS); Mycological Herbarium of the Mycology and Phytopathology Laboratory, All-Russian Institute of Plant Protection (VIZR); Herbarium, Department of Botany, Naturhistorisches Museum Wien (W). Our thanks go to Keith Seifert (Eastern Cereal and Oilseed Research Center, Agriculture & Agri-Food Canada, Canada) for sending Nectria specimens and numerous discussions and comments on the taxonomy of Nectria. We are indebted to the contributions of numerous collectors who submitted specimens or strains to herbaria and culture collections including Julia Checa (Universidad de Alcalá de Henares, Spain), Larry Grand (North Carolina State University, USA), Walter Jaklitsch (University of Vienna, Austria), Yu-ming Ju (Academia Sinica, Taiwan), Andrej Kunca (Forest Protection Service Center, Slovakia), Peter Johnston (Landcare Research, 204 New Zealand), Robert Stack (North Dakota State University, USA), Ingo Wagner (Germany), and Wen-ying Zhuang (Chinese Academy of Sciences, China). We greatly appreciate Teresita Iturriaga (Departamento Biología de Organismos, Universidad Simón Bolívar, Venezuela), Donald Walker (Department of Plant Biology & Pathology School of Environmental & Biological Science, Rutgers University, USA), Catalina Salgado, and Cesar Herrera (Plant Sciences and Landscape Architecture, University of Maryland, USA), each of whom contributed to our various collecting trips. Especially Teresita Ituririaga shared her collecting skill in Venezuela in 2009. In addition, when she stayed in Beltsville and shared an ofice with the irst author for 3 mo, she kindly communicated her mycological skills. Collecting with the irst author in Michigan in 2010, Donald Walker found good spots to collect fungi. We also acknowledge Tunesha Phipps (USDA-ARS, SMML, USA), who contributed to handling the specimens and cultures. We are indebted to Sato Toyozo, Takayuki Aoki and Keisuke Tomioka (NIAS Genebank, National Institute of Agrobiological Sciences, Japan), and Keiko T. Natsuaki (Department of International Agricultural Development, Tokyo University of Agriculture, Japan) for quickly depositing and sending Japanese cultures. We express sincere thanks to Andrew Minnis (USDA-ARS, SMML, USA), for providing nomenclatural advice. We would also like to thank all our colleagues at the USDA-ARS, SMML (USA) and PSLA, University of Maryland (USA) for their kindness. Finally the irst author especially thanks the Takao Kobayashi (Department of International Agricultural Development, Tokyo University of Agriculture, Japan) for giving him the chance to study the nectria-like fungi since the author was an undergraduate student. He also taught me how mycology is interesting and important for our lives. He very kindly offered his unlimited knowledge and experience and supervised and supported the irst author. This study was supported by the United States National Science Foundation (NSF) PEET grant DEB-0731510 ‘Monographic Studies in the Nectriaceae, Hypocreales: Nectria, Cosmospora, and Neonectria’ to University of Maryland (PIs: P. Chaverri, A.Y. Rossman, G.J. Samuels). allantonectria, nectria, and Pleonectria Appendix 1. Herbarium and isolate numbers used in illustrations. Species Fig No. Herbarium and isolate No. Allantonectria miltina Fig. 4 A–I Fig. 5 A–C Fig. 6 A–P Fig. 7 A–U A. BPI 629387; B. BPI 63012; C. BPI 878442; D, E. BPI 630120; F. BPI 630118; G–I. BPI 629387 A–C. BPI 630120 A–K. CBS 121121 A, B, D, F–I. LPS 1638 (Holotype); C, E. LPS 1639 (Holotype of Pleonectria vagans); J. FH 301310; K–U. FH 301308; M. FH 80856 A–C. LPS 1638 (Holotype); D–F. FH 301308 A–M. CBS 115033 A–P. NY ex BAFC 24.477 (Holotype) A–F. NY ex BAFC 24.477 (Holotype) A–B. NY ex BAFC 24.477 (Holotype) A, C–L, N–Q. BPI 879972 (Holotype); B, M. BPI 879980 A–F. BPI 879972 (Holotype) A–F, H–K. MAFF 241439 (ex-holotype); G. MAFF241399 A–C. W 20389 (Holotype of Dendrostilbella moravica) A–C, F–L. CBS 236.29; D, E. CBS 308.34 A, B, E–I, L–S. K 163335 (Holotype); C, D. BPI 1105494; J, K. K 163334 (possibly Isotype) A–F. K 163335 (Holotype) A, B. BPI 553092; C. BPI 551019 (Lectotype of Nectria sinensis); D–J, L–M. BPI 878477; K. BPI 553091 (Paratype of Nectria sinensis); N. LPS 1574 (Holotype) A–C. BPI 878477 A–D. CBS 129349 A–T. LIP YMNC083 (Holotype) A–F. LIP YMNC083 (Holotype) A–P. CBS 128669 (ex-holotype) A, P. BPI 1107514; B, J–O, Q. BPI 631955; C, D, F–H. BPI 631952; E. BPI 550747; I. BPI 631953 A–F. BPI 631952 A–G. S F46419 (Lectotype) A–C. S F46419 (Lectotype) A, C–I, BPI 1112880; B. BPI 878335; J. BPI 878313; K-Q. BPI 878310 A–C. BPI 879981 (Epitype); D–F. BPI 878313 A–M. CBS 125154 A. BPI 879984; B. BPI 802215; C, E–J. BPI 879985; D. BPI 802212; K–P. BPI 878308 A–F. BPI 749337 (Epitype) A–H, K, N. CBS 278.48; I, L, O. CBS 125125; J, M, P. MAFF 241416 A–P. NY (Holotype) A–F. NY (Holotype) A, C, F–P. PDD 21879 (Holotype); B, D, E. BPI 879118 A–F. PDD 21879 (Holotype) A, C–F. BPI 552479; B, H–Q. K 163338 (Isolectotype); G. BPI 552479 A. BPI 552479; B–F. K 163338 (Isolectotype) A–M. TUA TPP-h122 A–E. TUA TPP-h122 A–P. MAFF 241418 (ex-holotype) A–I. BPI 881045 (Holotype) A–C. BPI 881045 (Holotype) A–N. CBS 125294 (ex-holotype) A–M. BPI 552615 (Holotype) A–F. BPI 552615 (Holotype) A, C–F, H, P–T. BPI 878449; B. BPI 879986; G, L, M. BPI 871083 (Epitype); I–K, N, O. BPI 878879 A–F. BPI 871083 (Epitype) A–C, E-G, J, K. CBS 125148 (ex-epitype); D, H, I. CBS 125162; L-Q. CBS 125164 A–O. Rehm, Ascomycetes, No. 1744, BPI-bound exsiccat (Lectotype) A–F. Rehm, Ascomycetes, No. 1744, BPI-bound exsiccat (Lectotype) A–H. PDD 10426 (Holotype) A–C. PDD 10426 (Holotype) A, B, D–I. LPS 1605 (Holotype); C. BPI 631888 (Isotype of Hypocreopsis moriformis); J–N. BPI 631885 A–C. LPS 1605 (Holotype) A–G. K(M) 163342 (Holotype); H–R. BPI 879097 A–F. K(M) 163342 (Holotype) A–L. CBS 129240 (ex-epitype) Nectria antarctica Nectria argentinensis Nectria asiatica Nectria aurantiaca Nectria australiensis Nectria balansae Nectria berberidicola Nectria canadensis Nectria cingulata Nectria cinnabarina Nectria dematiosa Nectria himalayensis Nectria hoheriae Nectria lateritia Nectria magnispora Nectria mariae Nectria neorehmiana Nectria nigrescens Nectria noackiana Nectria novaezelandiae Nectria paraguayensis Nectria polythalama www.studiesinmycology.org Fig. 8 A–F Fig. 9 A–M Fig. 10 A–P. Fig. 11 A–F. Fig. 12 A–B. Fig. 13 A–Q Fig. 14 A–F Fig. 15 A–K Fig. 16 A–C Fig. 17 A–L Fig. 18 A–S Fig. 19 A–F Fig. 20 A–N Fig. 21 A–C Fig. 22 A–D Fig. 23 A–T Fig. 24 A–F Fig. 25 A–P Fig. 26 A–Q Fig. 27 A–F Fig. 28 A–G Fig. 29 A–C Fig. 30 A–Q Fig. 31 A–F Fig. 32 A–M Fig. 33 A–P Fig. 34 A–F Fig. 35 A–P Fig. 36 A–P Fig. 37 A–F Fig. 38 A–P Fig. 39 A–F Fig. 40 A–Q Fig. 41 A–F Fig. 42 A–M Fig. 43 A–E Fig. 44 A–P Fig. 45 A–I Fig. 46 A–C Fig. 47 A–N Fig. 48 A–M Fig. 49 A–F Fig. 50 A–T Fig. 51 A–F Fig. 52 A–Q Fig. 53 A–O Fig. 54 A–F Fig. 55 A–H Fig. 56 A–C Fig. 57 A–N Fig. 58 A–C Fig. 59 A–R Fig. 60 A–F Fig. 61 A–L 205 Hirooka et al. Nectria pseudadelphica Nectria pseudocinnabarina Nectria pseudotrichia Nectria pyriformis Nectria sordida Nectria tucumanensis Pleonectria aquifolii Fig. 62 A–I Fig. 63 A–C Fig. 64 A–Q Fig. 65 A–F Fig. 66 A–O Fig. 67 A–W Fig. 68 A–C Fig. 69 A–F Fig. 70 A–Q Fig. 71 A–I Fig. 72 A–C Fig. 73 A–M Fig. 74 A–F Fig. 75 A–M Fig. 76 A–M Fig. 77 A–C Fig. 78 A–J Pleonectria austroamericana Fig. 79 A–C Fig. 80 A–N Fig. 81 A–J Fig. 82 A–C Fig. 83 A–M Fig. 84 A–Q Pleonectria balsamea Fig. 85 A–E Fig. 86 A–K Fig. 87 A–S Pleonectria berolinensis Fig. 88 A–F Fig. 89 A–Q Fig. 90 A–N Pleonectria aurigera Pleonectria boothii Pleonectria chlorinella Pleonectria clavatispora Pleonectria coryli Pleonectria cucurbitula Pleonectria ilicicola Pleonectria lamyi Pleonectria lonicerae Pleonectria missouriensis 206 Fig. 91 A–C Fig. 92 A–O Fig. 93 A–S Fig. 94 A–F Fig. 95 A–I Fig. 96 A–M Fig. 97 A–D Fig. 98 A–H Fig. 99 A–C Fig. 100 A–N Fig. 101 A–C Fig. 102 A–L Fig. 103 A–S Fig. 104 A–F Fig. 105 A–M Fig. 106 A–O Fig. 107 A–F Fig. 108 A–N Fig. 109 A–R Fig. 110 A–F Fig. 111 A–M Fig. 112 A–K Fig. 113 A–C Fig. 114 A–P Fig. 115 A–G A. BPI 737865; B, D, E. NY 01013167 (Lectotype); C, F–I. BPI 802791 A–C. NY 01013167 (Lectotype) A, J, L, M-Q. BPI 802674; B. BPI 802443; C, D–H. BPI 881034; I, K. BPI 881037 A–F. BPI 881037 A–N. CBS 128673; O. CBS 129365 A–F, O–W. BPI 881041; G–J, M, N. BPI 881074; K. L. BPI 881078 A–C. BPI 881074 A–F. BPI 881041 A–Q. CBS 129368 (ex-epitype) A–I. NY No. 610 (Holotype) A–C. NY No. 610 (Holotype) A–G, I–M. NY G.J. Samuels 3257; H. LPS 1619 (Holotype) A–F. NY G.J. Samuels 3257 A–M. CBS 125119 A–M. LPS 1564 (Holotype) A–C. LPS 1564 (Holotype) A. BPI 552405; B. BPI 550128; C–I. BPI 552407; J. LUX 042143 (Lectotype of Nectria aquifolii var. appendiculata) A–C. BPI 550125 (Neotype) A–N. CBS 307.34 (ex-neotype) A, F–J. BPI 841465; B. BPI 550168 (Isolectotype) A–C. BPI 841465 A–M. CBS 109874 A, F–I. BPI 550180; B. BPI 802825; C. LPS 1624 (Holotype of Pleonectria guaranitica); D. BPI 746395; E. BPI 632056; J. BPI 550199; K, L. BPI 632519; M–Q. BPI 550174 A–E. BPI 632056 A–J. CBS 126114; K. CBS 125134 A. BPI 881046; B, E, F. NCSU; C. BPI 1108889; D. BPI 747282; G–J. BPI 746321; K, L. BPI 747285; M–S. BPI 747283 A–F. BPI 746322 A, C–Q. CBS 125132; B. CBS 129371 A. BPI 859321; B. BPI 1107321; C, E, F. BPI 859029; D. BPI 867359; G–I. BPI 550718; J–L. BPI 550691; M. BPI 550721; N. BPI 550726 A, B. BPI 746346 (Epitype); C. BPI 550691 A–E, G–O. CBS 126112 (ex-epitype); F. CBS 128980 A–S. BPI 881052 (Holotype) A–F. BPI 881052 (Holotype) A–I. CBS 128977 (ex-holotype) A, B, E-G. Hesler, NY; C. BPI 632607; D, H-M. Ravenel, Fungi Americani, No. 736, BPI-bound exsiccati (Lectotype) A–D. Hesler, NY A–H. BPI 552452 (Holotype) A–C. BPI 552452 (Holotype) A, F–N. BPI 881054; B. BPI 551427; C. Krieger, Fungi saxonici, No. 1067, BPI-bound exsiccati; D. H 6011373 (Lectotype of Coelosphaeria acervata); E. BPI 746347. A–C. BPI 881054 A, B, K. CBS 114603; C–J. CBS 129358; L. CBS 129744 A. F7047 (S); B. F7052 (S); C. BPI 632771; D-S. BPI 746348 (Epitype) A–F. BPI 746348 (Epitype) A. CBS 125130 (ex-epitype); B. CBS 541.70; C, D, F, H–J. CBS 178.73; E, K. CBS 301.75; G. CBS 178.73; L, M. CBS 259.58 A, C, D. BPI 880698; B. BPI 879857; E–G. BPI 881056; H–O. BPI 881055 (Holotype) A–F. BPI 881055 (Holotype) A–G. CBS 125147; H–N. CBS 125171 (ex-holotype) A. BPI 552463; B, D-F. BPI 552462; C, G–R. BPI 746349 A–F. BPI 746349 A–M. CBS 115034 A–K. FH 00258958 (Holotype) A–C. FH 00258958 (Holotype) A, B, H. NY “specimen 2” (Isolectotype); C–G, I–P. NY ID 00927928 (Lectotype) A–G. NY ID 00927928 (Lectotype) allantonectria, nectria, and Pleonectria Pleonectria okinawensis Pleonectria pinicola Pleonectria pseudomissouriensis Pleonectria pyrrhochlora Pleonectria quercicola Pleonectria rosellinii Pleonectria rubicarpa Pleonectria sinopica Pleonectria sphaerospora Pleonectria strobi Pleonectria virens Pleonectria zanthoxyli Gyrostroma sinuosum Nectria jodinae Nectria tropicalis Nectricladiella viticola Neocosmospora guarapiensis Neocosmospora rehmiana Fig. 116 A–Q Fig. 117 A–F Fig. 118 A–Q Fig. 119 A–U Fig. 120 A–F Fig. 121 A–L Fig. 122 A–H Fig. 123 A–C Fig. 124 A–J Fig. 125 A–C Fig. 126 A–J Fig. 127 A–O Fig. 128 A–E Fig. 129 A–J Fig. 130 A–S Fig. 131 A–F Fig. 132 A–L Fig. 133 A–J Fig. 134 A–C Fig. 135 A–Q Fig. 136 A–H Fig. 137 A–N Fig. 138 A–P Fig. 139 A–F Fig. 140 A–Q Fig. 141 A–F Fig. 142 A–L Fig. 143 A–J Fig. 144 A–C Fig. 145 A–P Fig. 146 A–K Fig. 147 A–C Fig. 148 A–P Fig. 149 A–I Fig. 150 A–D Fig. 151 A–F Fig. 152 A–C Fig. 153 A–K Fig. 154 A–K A–Q. BPI 881058 (Holotype) A–F. BPI 881058 (Holotype) A–Q. MAFF 241410 (ex-holotype) A, B, I–K. BPI 881060; C. BPI 629745; D–H, L–U. BPI 881061 A–F. BPI 881061 A, B, D, F–J, L. CBS 125167; C. CBS 125166; E. CBS 128979; K. MAFF 241458 A–H. NY (Holotype) A–C. NY (Holotype) A, B. BPI 553008; C. BPI 553007; D, G, H, J. Rabenhorst, Fungi europaei. No 1234, FH (Lectotype); E. S F6223 (Isolectotype); F. S F6222 (Isolectotype); I. BPI 746398 A–C. Rabenhorst, Fungi europaei. No 1234, FH (Lectotype) A–J. CBS 125131 A–O. BPI 871328 (Holotype) A–E. BPI 871328 (Holotype) A–J. CBS 128976 (ex-holotype) A. BPI 1107511; B. BPI 632756; C, D, H–J. BPI 881063; E–G. BPI 881062; K–S. BPI 747280 A–C. BPI 881062; D–F. BPI 747280 A, C–I, K. MAFF 241403; B. CBS 128975; J, L. MAFF 241459 A, B. BPI 553073; C. BPI 553071; D–J. NY (Isolectotype) A–C. NY (Isolectotype) A, D–H. BPI 881067; B. BPI 553103; C. BPI 553098; I–N. BPI 111765; O–Q. BPI 553098 A–H. BPI 881067 A, F–H. CBS 128981; B, C, J, K, M. CBS 125169; D, E, I, L, N. CBS 462.83 A–C, F–J. NY 00883502 (Isolectotype); D, E, L, M. NY 00883501 (Lectotype); K, N-P. BPI 629728. A–F. NY 00883502 (Isolectotype) A–C, M–Q. BPI 632663; D–I. BPI 632686; J–L. BPI 1112876 A–F. BPI 632663 A–L. CBS 129363 A. Ellis & Everhart, North American Fungi Second Series no. 2751, NY; B. Ellis & Everhart, North American Fungi Second Series no. 2546, BPI-bound exsiccati; C. BPI 553331; D. BPI 553004; E–J. BPI 881068 A–C. BPI 881068 A–P. A.R. 4558 A. BPI 553334; B. NY from Canada; C. NY from USA; D–K. BPI 553328 A–C. BPI 553328 A–K. CBS 124736; L–P. CBS 126113 A–I. VIZR 123 (Holotype) A–D. LPS 1589 (Holotype) A–F. LPS 1568 (Holotype) A–C. BPI 798407 (Lectotype) A–H. BPI 802512; I. BPI 802511; J, K. BPI 802516 A–J. GZU inv.-Nr. 102-94 (Isolectotype); K. Illustration of Calonectria rehmiana (Wollenweber 1916) A.R.: Amy Y. Rossman, USDA-ARS MD USA; BAFC: Universidad de Buenos Aires, Buenos Aires, Argentina; BPI: U.S. National Fungus Collections USDA-ARS MD USA; CBS: Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands; FH: Farlow Reference Library and Herbarium of Cryptogamic Botany, Harvard University, MA, USA; GZU: Karl-Franzens-Universitaet, Austria; H: Botanical Herbarium, Finnish Museum of Natural History, University of Helsinki, Wien, Austria; K: Royal Botanic Gardens, Kew, UK; LPS: Instituto de Botánica Carlos Spegazzini, Buenos Aires, Argentina; LUX: Musée National d’Histoire Naturelle de Luxembourg, Luxembourg; MAFF: MAFF Genebank, National Institute of Agrobiological Sciences, Ibaraki, Japan; NCSU: The Mycological Herbarium, North Carolina State University, NC, USA; NY: William and Lynda Steere Herbarium, The New York Botanical Garden, NY, USA; PDD: New Zealand Fungus Herbarium, Auckland, New Zealand; S: Herbarium of the Botany Department, Swedish Museum of National History, Stockholm, Sweden; TUA-TPP-h: Yuuri Hirooka, Tropical Plant Protection Lab Herbarium, Tokyo University of Agriculture, Tokyo Japan; VIZR: Mycological Herbarium of the Mycology and Phytopathology Laboratory, All-Russian Institute of Plant Protection, Pushkin, Russia; W: Herbarium, Department of Botany, Naturhistorisches Museum, Wien, Austria. www.studiesinmycology.org 207 Hirooka et al. REFERENCES Akinsanmi OA, Drenth A (2006). First report of Tubercularia lateritia as the causal agent of canker on macadamia. Australasian Plant Disease Notes 1: 49–51. Andersen B, Dongo A, Pryor BM (2008). Secondary metabolite proiling of Alternaria dauci, A. porri, A. solani, and A. tomatophila. Mycological Research 112: 241–250. Andrew M, Peever TL, Pryor BM (2009). An expanded multilocus phylongeny does not resolve morphological species within the small-spored Alternaria species complex. Mycologia 101: 95–109. Atkinson JD (1940). Die-back of Lacebarks caused by Myxosporium hoheriae. New Zealand Journal of Science and Technology 22A: 115–120. Bazinet AL, Cummings MP (2009). The Lattice Project: a Grid research and production environment combining multiple Grid computing models. In: Distributed & Grid Computing-Science Made Transparent for Everyone Principles, Applications and Supporting Communities (Weber W.H.W., ed.). Tectum Publishing House, Marburg: 2–13. Beck R (1902). Beiträge zur Morphologie und Biologie der forstlich wichtigen Nectria-Arten, insbes. Der Nectria cinnabarina (Tode) Fr. Tharander forstliches Jahrbuch 52: 161–206. Becker WF (2003). [Nectria pseudotrichia, as the causal agent of stem canker, occurring on Japanese pear in Brazil.] Fitopatologia Brasileira 28: 107. Bedker PJ, Blanchette RA (1984). Identiication and control of cankers caused by Nectria cinnabarina of honey locust. Journal of Arboriculture 10: 33–39. Bedker PJ, Wingield MJ (1983). A taxonomy of three canker-causing fungi of honey locust in the United States. Transactions of the British Mycological Society 81: 179–183. Berkeley MJ (1855). Nat. Ord. CII. Fungi. In: Joseph Dalton Hooker. The botany of the Antarctic voyage Vol. 2. Flora Novae-Zelandiae: 172–210. Berkeley MJ, Broome CE (1875). Fungi of Ceylon. Journal of the Linnean Society 14: 29–140. Berkeley MJ, Curtis MA (1853). Exotic fungi from the Schweinitzean herbarium, principally from Surinam. Journal of Academy of Natural Sciences of Philadelphia 2: 277–293. Booth C (1959). Studies of Pyrenomycetes: IV. Nectria (Part I). Mycological Papers 73: 1–115. Brefeld O (1891). Untersuchungen aus dem Gesammtgebiete der Mykologie. Heft 10: Ascomyceten II. Münster. Brubacher DC, Rawla GS, Shama R (1984). A new species of Crucellisporiopsis from India. Mycotaxon 21: 449–458. Campbell J, Shearer C, Marvanová L (2006). Evolutionary relationships among aquatic anamorphs and teleomorphs: Lemonniera, Margaritispora, and Goniopila. Mycological Research 110: 1025–1033. Cannon PF, Hawksworth DL (1983). (701) Proposal to conserve Nectria over Ephedrosphaera and Hydropisphaera (Fungi). Taxon 32: 476–477. Carbone I, Kohn LM (1999). A method for designing primer sets for speciation studies in ilamentous ascomycetes. Mycologia 91: 553–556. Carter JC (1947). Tubercularia canker and dieback of Siberian elm (Ulmus pumila L.). Phytopathology 37: 243–246. Castlebury LA, Rossman AY, Sung GH, Hyten AS, Spatafora JW (2004). Multigene phylogeny reveals new lineage for Stachybotrys chartarum, the indoor air fungus. Mycological Research 108: 864–872. Chardon CE, Toro RA (1930). Mycological explorations of Colombia. The Journal of the Department of Agriculture of Puerto Rico 14: 195–369. Chaverri P, Samuels GJ (2003). Hypocrea/Trichoderma (Ascomycota, Hypocreales, Hypocreaceae): Species with green ascospores. Studies in Mycology 48: 1–116. Chaverri P, Liu M, Hodge KT (2008). Neotropical Hypocrella (anamorph Aschersonia), Moelleriella, and Samuelsia. Studies in Mycology 60: 1–66. Chaverri P, Salgado C, Hirooka Y, Rossman AY, Samuels GJ (2011). Delimitation of Neonectria and Cylindrocarpon (Nectriaceae, Hypocreales, Ascomycota) and related genera with Cylindrocarpon-like anamorphs. Studies in Mycology 68: 57–78. Clements RE, Shear CL (1931). The Genera of Fungi, 2nd Edition. H.W. Wilson, New York. Conway KE, Morrison LS (1983). Diseases and decay fungi in windbreaks in Oklahoma. Plant Diseases 67: 289–291. Cooke MC (1883). North American fungi. Grevillea 11: 106–111. Cooke MC (1884). Notes on Hypocreaceae. Grevillea 12: 77–83. Covert SF, Aoki T, O’Donnell K, Starkey D, Holliday A, Geiser DM, Cheung F, Town C, Strom A, Juba J, Scandiani M, Yang XB (2007). Sexual reproduction in the soybean sudden death syndrome pathogen Fusarium tucumaniae. Fungal Genetics and Biology 44: 799–807. Cracraft J (1983). Species concepts and speciation analysis. Current Ornithology 1: 159–187. Crandall BS (1942). Thyronectria disease of honeylocust in the south. Plant Disease Reporter 26: 376. 208 Crous PW (2002). Taxonomy and pathology of Cylindrocladium (Calonectria) and allied genera. APS Press, St. Paul, MN, USA. Crowe F, Starkey D, Lengkeek V (1982). Honeylocust canker in Kansas caused by Thyronectria austro-americana. Plant Disease 66: 155–158. Cummings MP, Huskamp JC (2005). Grid computing. Educause Review 40: 116–117. Dingley JM (1989). Reappraisal of Microcera orthospora and Myxosporium hoheriae. Memoirs of the New York Botanical Garden 49: 206–209. Dube HC, Bilgrami KS (1965). Morphology of the fruting pustules in the genus Pestalotia. Mycopathologia 28: 305–311. Ellis JB, Everhart BM (1884). New North American Fungi. Bulletin of The Torrey Botanical Club 11: 73–75. Farr DF, Rossman AY (2010). Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved January 21, 2010, from http:// nt.ars-grin.gov/fungaldatabases/ Farr DF, Bills GF, Chamuris GP, Rossman AY (1989). Fungi on Plants and Plant Products in the United States. APS Press, St. Paul, MN, USA. Fishbein M, Kephart SR, Wilder M, Halpin KM, Datwyler SL (2010). Phylogeny of Camassia (Agavaceae) Inferred from Plastid rpl16 Intron and trnD-trnY-trnEtrnT Intergenic Spacer DNA Sequences: Implications for Species Delimitation. Systematic Botany 35: 77–85. Fitt BDL, McCartney HA, Walklate PJ (1989). The role of rain in dispersal of pathogen inoculum. Annual Review of Phytopathology 27: 241–270. Fries EM (1823). Systema mycologicum vol. 2, part 2. Greifswald. Fries EM (1825). Systema Orbis Vegetabilis Vol. 1, Typographia Academica, Lund. Fries EM (1828). Elenchus Fungorum Vol. 1, E. Mauritius, Greifswald. Fries EM (1832). Systema mycologicum vol. 3, part 2. Greifswald. Fries EM (1849). Summa vegetabilium Scandinaviae, Sectio posterior p. 259–572. Greene EL (1901). Fungi. Plantae Bakerianae 2: 1–42. Greuter W, Barrie FR, Burdet HM, Chaloner WG, DemoulinV, Hawksworth DL, Jørgensen PM, Nicolson DH, Silva PC, Trehane P, McNeill J (1994). International Code of Botanical Nomenclature (Tokyo Code) adopted by the Fifteenth International Botanical Congress, Yokohama, August-September, 1993. Regnum Vegetabile 131: 1–389. Hirooka Y, Rossman AY, Chaverri P (2009). Systematics of the genus Nectria based on six-gene phylogeny. Inoculum 60: 22. Hirooka Y, Rossman AY, Samuels GJ, Chaverri P (2010). Taxonomy and biogeography of Nectria pseudotrichia (Nectriaceae, Hypocreales, Sordariomycetes) based on a multiple-locus phylogeny. Inoculum 61: 55. Hirooka Y, Rossman AY, Chaverri P (2011). Morphological and phylogenetic revision of the Nectria cinnabarina species complex. Studies in Mycology 68: 35–56. Höhnel F (1923). System der Fungi Imperfecti Fuckel. Falck’s Mykologische Untersuchungen und Berichte 1: 301–369. Höhnel F, Weese J (1910). Zur Synonymie in der Gattung Nectria. Annales Mycologici 8: 464–468. Höhnel F, Weese J (1931). Mykologische Beitrage. 5. Mitteilungen aus dem Botanisches Institut der Technischen Hochschule in Wien 8: 81–97. Houbraken J, Lopez-Quintero CA, Frisvad JC, Boekhout T, Theelen B, FrancoMolano AE, Samson RA (2011). Penicillium araracuarense sp. nov., Penicillium elleniae sp. nov., Penicillium penarojense sp. nov., Penicillium vanderhammenii sp. nov. and Penicillium wotroi sp. nov., isolated from leaf litter. International Journal of Systematic and Evolutionary Microbiology 61: 1462–1475. Hudler GW, Oshima N (1976). The occurrence and distribution of Thyronectria austro-americana on honeylocust in Colorado. Plant Disease Reporter 60: 920–922. Huelsenbeck JP, Ronquist F, Nielsen ES, Bollback JP (2001). Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294: 2310–2314. Huelsenbeck JP, Larget B, Miller RE, Ronquist F (2002). Potential applications and pitfalls of Bayesian inference of phylogeny. Systematic Biology 51: 673–688. Ingold CT (1975). Guide to Aquatic Hyphomycetes. Scientiic Publication No. 30, Freshwater Biological Association, Ambleside. Jacobi WR (1984). Optimal conditions for in vitro growth, asexual spore release, and germination of Thyronectria austro-americanum. Phytopathology 74: 566–569. Jacobi WR, Rifle JW (1989). Effects of water stress on Thyronectria canker of honeylocust. Phytopathology 79: 1333–1337. Jaklitsch WM, Voglmayr H (2011). Nectria eustromatica sp. nov, an exceptional species with a hypocreaceous stroma. Mycologia 103: 209–218. John DM, Maggs CA (1997). Species problems in eukaryotic algae: a modern perspective. In: Species: The units of biodiversity. Claridge MF, Dawah HA, Wilson MR, eds. Chapman & Hall, London. Jørgensen HA (1952). Studies on Nectria cinnabarina hosts and variation. Den Konglige Veterinaer- og Landbohøjskoles Årsskrift Copenhagen 35: 57–120. Karsten P (1889). Fungi aliquot novi in Brasilia a Dre. Edw. Wainia anno 1885 lecti. Hedwigia 28: 190–195. Katoh T (2008). Recent developments in the MAFFT multiple sequence alignment program. Brieings in Bioinformatics 9: 286–298. allantonectria, nectria, and Pleonectria Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008). Ainsworth and Bisby’s dictionary of the Fungi, 10th ed. CAB International, 2283pp. Wallingford, UK. Kirschstein W (1906). Neue Märkische Ascomyceten. Verhandlungen des Botanischen Vereins der Provinz Brandenburg 48: 39–61. Kolařík M, Kirkendall LR (2010). Evidence for a new lineage of primary ambrosia fungi in Geosmithia Pitt (Ascomycota: Hypocreales). Fungal Biology 114: 676–689. Kornerup A, Wanscher JH (1978). Methuen Handbook of Colour. 3rd edn. Methuen, London. Kvas M, Marasas WFO, Wingield BD, Wingield MJ, Steenkamp ET (2009). Diversity and evolution of Fusarium species in the Gibberella fujikuroi complex. Fungal Diversity 34: 1–21. Lima CE, Forchiassin F, Ranalli ME (1988). Systematic and biological study of Hypocreales of Argentina. IV. Nectria catalinensis sp. nov. Nova Hedwigia 46: 149–156. Luo J, Zhuang W-Y (2010). Chaetopsinectria (Nectriaceae, Hypocreales), a new genus with Chaetopsina anamorph. Mycologia 102: 976–984. Maddison WP, Maddison DR (2009). Mesquite: a modular system for evolutionary analysis. Version 2.6 http://mesquiteproject.org. Maharachchikumbura SSN, Guo LD, Chukeatirote E, Bahkali AH, Hyde KD (2011). Pestalotiopsis-morphology, phylogeny, biochemistry and diversity. Fungal Diversity 50: 167–187. Marincowitz S, Crous PW, Groenewald JZ, Wingield MJ (2008). Microfungi occurring on Proteaceae in the fynbos. CBS Biodiversity Series 7: 1–166. Mason EW (1937). Annotated account of fungi received at the imperial mycological institute. List ІІ Fascicle 3. General Part, Mycological Papers 4: 71–79. Mason-Gamer RJ, Kellogg EA, (1996). Testing for phylogenetic conlict among molecular data sets in the tribe Triticeae (Gramineae). Systematic Biology 45: 524–545. Mayr H (1883). Ueber den Parasitismus von Nectria cinnabarina Fr. Untersuchungen aus dem forstbotanischen Institute zu München. 3: 1–16. Miller JS, Funk VA, Wagner WL, Barrie F, Hoch PC, Herendeen P. (2011). Outcomes of the 2011 Botanical Nomenclature Section at the XVII International Botanical Congress. PhytoKeys 5: 1–3. Myers DS, Bazinet AL, Cummings MP (2008). Expanding the reach of Grid computing: combining Globus- and BOINC-based systems. In: Grids for Bioinformatics and Computational Biology. (Talbi E-G, Zomaya A, ed.). John Wiley & Sons, New York: 71–85. Nalim FA, Samuels GJ, Wijesundera RL, Geiser DM (2011). New species from the Fusarium solani species complex derived from perithecia and soil in the Old World Tropics. Mycologia 103: 1302–1330. Naoumoff N (1914). Matériaux pour la lore mycologique de la Russie. Bulletin de la Société mycologique de France 30: 382–390. Nirenberg HI (1976). Untersuchungen über die Morphologische und biologische differenzierung in der Fusarium-Sektion Liseola. Mitteilungen aus der Biologischen Bundesanstalt für Land und Forstwirtschaft, Berlin-Dahlem 169: 1–117. Norvell LL (2011). Fungal nomenclature. 1. Melbourne approves a new Code. Mycotaxon 116: 481–490. O’Donnell K (1993). Fusarium and its near relatives. In: The Fungal Holomorph: Mitotic, Meiotic and Pleomorphic Speciation in Fungal Systematics (Reynolds DR, Taylor JW, eds.). CAB International, Wallingford, UK: 225–233. O’Donnell K, Cigelnik E (1997). Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular Phylogenetics and Evolution 7: 103–116. O’Donnell K (2000). Molecular phylogeny of the Nectria haematococca-Fusarium solani species complex. Mycologia 92: 919–938. Okada G, Tubaki K (1986). Conidiomatal structure of the stilbellaceous and allied fungi. Sydowia 39: 148–159. Paoletti G (1887). Revisione del genere Tubercularia. Atti della Societa venetotrentina di scienze naturali 11: 52–66. Peck CH (1879). Report of the Botanist. In: Thirty-First Annual Report on the New York State Museum of Natural History by the Regents of the University of the State of New York, pp. 19–60. Petch T (1940). Tubercularia. Transactions of the British Mycological Society 24: 33–58. Petch T (1943). British Nectrioideae and allied genera. Transactions of the British Mycological Society 26: 53–70. Pitt JI (1979). Geosmithia gen. nov. for Penicillium lavendulum and related species. Canadian Journal of Botany 37: 2021–2030. Posada D (2008). jModelTest:Phylogenetic Model Averaging Averaging. http:// darwin.uvigo.es/. Posada D, Buckley TR (2004). Model selection and model averaging in phylogenetics: advantages of the AIC and Bayesian approaches over likelihood ratio tests. Systematic Biology 53: 793–808. Price RA, Liston A, Strauss SH (1998). Phylogeny and systematics of Pinus. In: Ecology and Biogeography of Pinus (Richardson D.M., ed.). Cambridge University Press, UK: 49–68. www.studiesinmycology.org Rabenhorst L (1869). Fungi europaei exsiccati. Hedwigia 8: 87–90 Rambaut A, Drummond AJ (2007). Tracer. 1.4 ed: Available from the authors (http:// tree.bio.ed.ac.uk/software/tracer/). Reeb V, Lutzoni F, Roux C (2004). Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycotina, Fungi) with special emphasis on lichen-forming Acarosporaceae and evolution of polyspory. Molecular Phylogenetics and Evolution 32: 1036–1060. Rehner SA (2001). Primers for elongation factor 1-a (EF1-a). http://www.nacse.org/ yfaaberg/aftol/EF1primer.pdf. Rehner SA, Samuels GJ (1995). Molecular systematics of the Hypocreales: a teleomorph gene phylogeny and the status of their anamorphs. Canadian Journal of Botany 73: 816-823. Rifle JW, Peterson GW (1986). Thyronectria canker of honeylocust: Inluence of temperature and wound age on disease development. Phytopathology 76: 313-316. Roth D (1982). Thyronectria canker of honeylocust. Wyoming Agricultural Experiment Station Bulletin 776. Rossman AY (1983). The phragmosporous species of Nectria and related genera. Mycological Papers 150: 1–164. Rossman AY (1989). A synopsis of the Nectria cinnabarina group. Memoirs of the New York Botanical Garden 49: 253–255. Rossman AY (2000). Towards monophyletic genera in the holomorphic Hypocreales. Studies in Mycology 45: 27–34. Rossman AY, McKemy JM, Pardo-Schultheiss RA, Schroers HJ (2001). Molecular studies of the Bionectriaceae using large subunit rDNA sequences. Mycologia 93: 100–110. Rossman AY, Samuels GJ, Rogerson CT, Lowen R (1999). Genera of Bionectriaceae, Hypocreaceae and Nectriaceae (Hypocreales, Ascomycetes). Studies in Mycology 42: 1–248. Rowlee S (1924). A collection of Costa Rican fungi. Mycologia 16: 115–121. Saccardo PA (1875). Nova ascomycetum genera. Grevillea 4: 21–22. Saccardo PA (1876). Fungi Veneti novi vel critici. Nuovo giornale Botanico Italiano 8: 161–211. Saccardo PA (1878). Enumeratio Pyrenomycetum Hypocreaceorum hucusque cognitorum systemate carpologico dispositorum. Michelia 1: 277–325. Saccardo PA (1883). Sylloge fungorum. 2: 1–815. Padova. Saccardo PA (1886). Sylloge fungorum omnium hucusque cognitorum vol. IV. Padova. Samson RA, Varga J, Meijer M, Frisvad JC (2011). New taxa in Aspergillus section Usti. Studies in Mycology 69: 81–97. Samuels GJ (1988). Fungicolous, lichenicolous, and myxomyceticolous species of Hypocreopsis, Nectriopsis, Nectria, Peristomialis, and Trichonectria. Memoirs of the New York Botanical Garden 48: 1–78. Samuels GJ, Brayford D (1994). Species of Nectria (sensu lato) with red perithecia and striate ascospores. Sydowia 46: 75–161. Samuels GJ, Dodd S, Lu B-S, Petrini O, Schroers H-J, Druzhinina I-S (2006). The Trichoderma koningii aggregate species. Studies in Mycology 56: 67–133. Samuels GJ, Dumont KP (1982). The genus Nectria (Hypocreaceae) in Panama. Caldasia 13: 379–423. Samuels GJ, Rossman AY (1979). Conidia and classiication of the nectrioid fungus. In: The Whole Fungus: The Sexual-asexual Synthesis (Kendrick WB, ed.). National Museums of Canada, Ottawa, Canada: 167–182. Samuels GJ, Rossman AY, Chaverri P, Overton BE, Põldmaa K (2006). Hypocreales of the Southeastern United States: An Identiication Guide. CBS Biodiversity Series 4. Centraalbureau voor Schimmelcultures (CBS): Utrecht. 145 pp. Samuels GJ, Rossman AY, Lowen R, Rogerson CT (1991). A synopsis of Nectria subgen. Dialonectria. Mycological Papers 164: 1–48. Samuels GJ, Seifert KA (1987). Taxonomic implication of variation among Hypocrealean anamorphs. In: Pleiomorphic fungi: the diversity and its taxonomic implications (J. Sugiyama, ed.). Elsevier, New York: 29–56. Schmid-Hempel P (1998). Parasites in Social Insects. Princeton University Press. Schoch CL, Crous PW, Wingield MJ, Wingield BD (2000). Phylogeny of Calonectria and selected hypocrealean genera with cylindrical macroconidia. Studies in Mycology 45: 45–62. Schroers HJ (2001). A monograph of Bionectria (Ascomycota, Hypocreales, Bionectriaceae) and its Clonostachys anamorphs. Studies in Mycology 46: 1–214. Seaver FJ (1909). The Hypocreales of North America-I. Mycologia 1: 41–76. Seeler EV Jr (1939). Thyronectria denigrata (Winter) Seaver, the cause of disease in Gleditsia. Journal of the Arnold Arboretum 20: 114–115. Seeler EV Jr (1940a). Two diseases of Gleditsia caused by a species of Thyronectria. Journal of the Arnold Arboretum 21: 405–427. Seeler EV Jr (1940b). A monographic study of the genus Thyronectria. Journal of the Arnold Arboretum 21: 429–460. Seifert KA (1985). A monograph of Stilbella and some allied hyphomycetes. Studies in Mycology 27: 1–235. 209 Hirooka et al. Seifert KA, Okada G (1990). Taxonomic implications of fructiication anatomy in synnematous hyphomycetes. Studies in Mycology 32: 29–40. Sengpiel HW (1977). Tubercularia canker: a problem on highway plantings in North Dakota. Internal publication, North Dakota State Highway Department. Sérusiaux E (1995). Further new lichen species producing campylidia or complex conidiomata. Bibliotheca Lichenologica 58: 411–431. Sérusiaux E, Diederich P, Brand AM, Boom P (1999). New or interesting lichens and lichenicolous fungi from Belgium and Luxembourg. VIII. Lejeunia 162: 1–95. Shenoy BD, Jeewon R, Wu WP, Bhat DJ, Hyde KD (2006). Ribosomal and RPB2 DNA sequence analyses suggest that Sporidesmium and morphologically similar genera are polyphyletic. Mycological Research 110: 916–928. Shipton WA (1979). Caloneclria camelliae sp. nov., the perfect state of Cylindrocladium camelliae. Transactions of the British Mycological Society 72: 161–164. Sinclair WA, Lyon H (2005). Diseases of Trees and Shrubs, second ed. Cornell University Press, Ithaca. Spegazzini CL (1881). Fungi Argentini additis nonnullis brasiliensibus montevideensibusque. Pugillus quartus 4, Anales de la Sociedad Cientíica de Argentina 12: 208–227. Spegazzini CL (1885). Fungi Guaranitici-Pugillus I. Anales de la Sociedad Cientíica de Argentina 19: 241–265. Spegazzinii CL (1888). Fungi Fuegiana. Boletín de la Academia Nacional de Ciencias. Córdoba 11: 135–308. Spegazzinii CL (1899). Fungi argentini novi vel critici. Anales del Museo nacional de historia natural de Buenos Aires 6: 81–365. Starbäck K (1899). Ascomyceten der ersten regnellschen Expedition I. Bihang till kungliga Svenska Vetenskaps-Akademiens Handlingar 25: 1–68. Strauss SH, Doerksen AH (1990). Restriction fragment analysis of pine phylogeny. Evolution 44: 1081–1096. Subramanian CV, Bhat DJ (1985). Developmental morphology of Ascomycetes. XII: Thyronectria pseudotrichia. Cryptogamie Mycologie 5: 307–321. Sutton BC (1973). Coelomycetes. In: Ainsworth GC, Sparrow FK, Sussman AS, Editors, The fungi IVA, Academic Press, London, UK pp. 513–582. Sutton BC (1980). The Coelomycetes, fungi imperfecti with acervuli, pycnidia and stromata. Commonwealth Mycological Institute, Kew, UK. Swofford DL (2002). PAUP*. Phylogenetic analysis using parsimony(*and other methods), v. 4.10. Sinauer Associates, Sunderland. Sydow H, Sydow P (1907). Verzeichnis der von Herrn F. Noack in Brasillien gesammelten Pilze. Annales Mycologici 5: 348–363. 210 Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000). Phylogenetic species recognition and species concepts in fungi. Fungal Genetics and Biology 31: 21–32. Teng SC (1934). Notes on Hypocreales from China. Sinensia 4: 269–298. Tode HJ (1790). Fungi Mecklenburgenses selecti. Vol. 1: 1–47. Lüneburg. Tode HJ (1791). Fungi Mecklenburgenses selecti. Vol. 2: 1–64. Lüneburg. Tulasne LR, Tulasne C (1861). Selecta Fungorum Carpologia. Vol. 1, Imperial Press, Paris. Vilgalys R. n.d. Conserved primer sequences for PCR ampliication and sequencing from nuclear ribosomal RNA. http://www.biology.duke.edu/fungi/mycolab/ primers.htm Vilgalys Lab, Durham, NC. Walla JA, Stack RW (1988). Tubercularia canker of honey-locust in North Dakota. Plant Disease 72: 734. Wang J, Li G, Lu H, Zheng Z, Huang Y, Su W (2000). Taxol from Tubercularia sp. Strain TF5, an endophytic fungus of Taxus mairei. Federation of European Microbiological Societies Microbiology Letters 193: 249–253. Wang X-R, Szmidt AE (1993). Chloroplast DNA-based phylogeny of Asian Pinus species (Pinaceae). Plant Systematics and Evolution 188: 197–211. Weese J (1919). Beiträge zur Kenntnis der Hypocreaceen (II. Mitteilung). Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien Mathematisch-Naturwissenschaftliche Classe, Abt. 1, 128: 693–754. White TJ, Bruns T, Lee S, Taylor J (1990). Ampliication and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A Guide to Methods and Applications (Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds). Academic Press, San Diego, California, USA: 315–322. Winter G (1883). New North American fungi. Bulletin of the Torrey Botanical Club 10: 41–65. Wollenweber HW (1916–1935). Fusaria autographice delineata. Berlin: Selbstverlag, 1100 plates. Wollenweber HW (1926). Pyrenomyceten-studien. II. Angewandte Botanik 7: 168– 212. Wollenweber HW (1931). Fusarium-Monographie Fungi parasitici et saprophytici. Zeitschrift für Parasitenkunde 3: 269–516. Yasuda F, Izawa H (2007). The occurrence of coral spot of Japanese persimmon caused by Nectria cinnabarina (Tode : Fries) Fries. Journal of General Plant Pathology 73: 405–407. Zwickl DJ (2006). Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. dissertation. The University of Texas at Austin, Austin. TX.