Academia.eduAcademia.edu
4 Antifungal Properties of Bioactive Compounds from Plants F. Castillo1, D. Hernández1, G. Gallegos1, R. Rodríguez2 and C. N. Aguilar2 1Universidad Autónoma Agraria Antonio Narro Autónoma de Coahuila México 2Universidad 1. Introduction Currently, the consequences derived from application of fungicides in traditional agricultural production systems for control of crop diseases have impacted negatively this activity. Fungicides application, where the indiscriminate use and application frequency high has led to problems and constraints in the control of these diseases by loss in efficiency, increased resistance to active ingredients, ecological damage and a serious negative impact on the human health. For this reason, it is had carryed out research to develop new products, methods and strategies for diseases control. The investigation and development of bio-based products is of great interest to subtract the negative effects generated by traditional agricultural production systems. The use and application of bioactive phytochemicals with antifungal properties represent an attractive and efficient alternative to inhibit the growth of several fungal pathogens. These bioactive compounds are naturally produced in the plants how secondary metabolites, the principal groups with antifungal activity were terpenes, tannins, flavonoids, essential oil, alkaloids, lecithin and polypeptides. These groups of compounds are important for the physiology of plants contributing properties confer resistance against microorganisms, other organisms and help preserve the integrity of the plant with continuous exposure to environmental stressors, such as ultraviolet radiation, high temperatures or dehydration. 2. Bioactive antifungal activity groups 2.1 General Plants have developed natural defense mechanisms to protect themselves long before the man played an active role in protecting them. It is known that plants synthesize a variety of groups of bioactive compounds in plant tissues as secondary metabolites that have antifungal activity to stop or inhibit the development of mycelia growth, inhibition of germination or reduce sporulation of fungal pathogens, each these groups presented variable mechanisms of action, for example, the toxicity of polyphenols in microorganisms is attributed to enzyme inhibition by oxidation of compounds. For essential oils is 82 Fungicides for Plant and Animal Diseases postulated that cause disruption of the membrane by the action of lipophilic compounds, the use or employment as formulations of these compounds is in the form of extracts. The process of extraction of secondary metabolites from plant extracts is variable, can be obtained as aqueous extracts or powders using different solvents used for many different compounds, depending on their polarity. It is considered that these compounds obtained from plants are biodegradable and safe for use as an alternative for disease control in a traditional production system (Sepulveda et al., 2003; Hernandez et al., 2007; Wilson et al., 1997; Bautista et al., 2002; Abou-Jawdah et al., 2002; Cowan, 1999). These substances known as secondary metabolites, secondary products, or natural products, have no generally recognized, direct roles in the processes of photosynthesis, respiration, solute transport, translocation, protein synthesis, nutrient assimilation, differentiation or metabolism processes as the formation of carbohydrates, proteins and lipids. That is, particular secondary metabolites are often found in only one plant species or related group of species, whereas primary metabolites are found throughout the plant kingdom. In function to classify to chemically groups the secondary metabolites can be divided into three groups: terpenes, phenolics and nitrogen- containing compounds. This classification is due by the interrelationship with primary metabolism Figure 1. Fig. 1. A simplified view of the major pathways of secondary metabolites biosynthesis and their interrelationship with primary metabolism (Taiz & Zeiger, 2002) 2.2 Polyphenols Plant phenolics are a chemically heterogeneous group of nearly 10,000 individual compounds: Some are soluble only in organic solvents, some are water-soluble carboxylic acids and glycosides and others are large, insoluble polymers. Present a structure of various Antifungal Properties of Bioactive Compounds from Plants 83 groups replaced by hydroxyl functions benzene and its derivatives are simple phenolic compounds called phenylpropanoids (Figure 2). Allowing them to be highly soluble organic substances in water and are present in extracts of leaves, bark, wood, fruits and galls of certain ferns, gymnosperms and angiosperms (Swain, 1979). These polyphenols are important for the physiology of plants to contribute to resistance to microorganisms, insects and herbivorous animals that can affect (Haslam, 1996), help to preserve the integrity of the plant with continuous exposure to environmental stressors, including radiation ultraviolet, relatively high temperatures and dehydration (Lira et al., 2007). These polyphenol antioxidants are therefore active in biological systems and probably the capacity or biological value explains its abundance in plant tissues (Meckes et al., 2004). Fig. 2. Outline of the biosynthesis of phenols from phenylalanine. The formation of many plant phenolics, including simple phenylpropanoids, coumarins, benzoic acid derivatives, lignans, anthocyanins, isoflavones, condensed tannins and other flavonoides, begins with phenylalanine (Taiz & Zeiger, 2002) 84 Fungicides for Plant and Animal Diseases 2.2.1 Hydrolysable tannins (HT) Are organic compounds, amorphous, taste astringent, weakly acidic, most soluble in water, only a few in organic solvents are yellow, red, or brown and are located in the cytoplasm and cell vacuole of plant tissues. Esters of glucose are partially or fully attached to different polyols such as ellagic acid, say, m-digallic, hexahydroxydiphenic acid or its derivatives (Figure 3). Obtained by hydrolysis with acids, bases and hydrolytic enzymes to break the glycosidic bond to liberate the sugar and phenolic compounds in it. (Gonzalez et al., 2009). Fig. 3. Hydrolysable tannins and some of its derivatives: A) gallotannins, B) ellagitannins. C) ellagic acid, D) hydroxyphenolic acid, E) gallic acid The hydrolysable tannins are divided into the following subgroups: The gallotannins, which by enzymatic hydrolysis give more sugar and gallic acid of phenolic compounds that comprise it (Figure 4) and ellagitannins, which give ellagic acid enzymatic hydrolysis more sugar or a derivative as hexahydrophenic acid (Figure 4). Fig. 4. Chemical structure of a gallotannins 85 Antifungal Properties of Bioactive Compounds from Plants 2.2.2 Condensed tannins (CT) Also called proanthocyanidins (PAS), are derived from the oxidation reaction that produces anthocyanidins (ACS) red in acid-alcohol solution (Figure 5). Are polymers of flavan 3-ol (catechin) and 3-4 flavan diol (leucoanthocyanidins) and have no sugar residues and their carbohydrate content is low or negligible. Are polymers of high molecular weight (1000 to 3000 Daltons), which gives them a relative immobility. Its complexity and easy to form bonds with proteins make them difficult to study. Condensed tannins include flavonoids, which in turn are subdivided into anthocyanidins and leucoanthocyanidins and catechin (Makkar et al., 2007; Taiz & Zeiger, 2002). Fig. 5. Condensed tannins or proanthocyanidins The substituents in the groups R1, R2 and R3, can have an effect on the reactivity of tannin (Figure 6). The group R2 is an OH radical can sometimes be esterified gallic acid (known as Gallo-catechin). For example an increase in the ratio prodelphynidins/procyanidins enhance the ability of condensed tannins to complex proteins. R1 OH OH H H R3 H OH H OH Class Proanthocyanidin Prodelphynidin Profisetinidin Prorobinetinidin Fig. 6. Structure of some condensed tannins Hydroxyl groups allow the formation of complexes with proteins, metal ions and other molecules such as polysaccharides. In general, polyphenols identified and grouped according to their basic result is a chain of six carbons (Table 1). 86 Fungicides for Plant and Animal Diseases Atoms number Basic carbon skeleton 6 C6 7 C6 - C1 Phenolic acids 8 C6 - C2 Acetofenons and fenilacetonics acids 9 C6 - C3 hidroxicinamics Acids, fenilpropanoids 10 C6 - C4 Naftoquinones 13 C6 - C1- C6 Xantones 14 C6 - C2- C6 Estilbens and anthraquinones 15 C6 - C3- C6 Flavonoids and isoflavonoids 18 (C6 - C3)2 Lignans and neolingnans 30 N Compounds Simple Phenols and Benzoquinones Biflavonoids (C6 - C3)n Lignins, Catecol Melanins and flavolans (C6)6 (C6-C3 - C6)n Table 1. Classification of phenolics compounds in carbons atoms to base number (Garcia, 2004) 2.3 Terpenes The terpenoids, constitute the largest class of secondary products, the diverse substances of this class are generally insoluble in water. The terpenes are biosynthesized from primary metabolites by at least two different routes, a route mevalonic acid, where three molecules of acetyl CoA is condensed step by step to form mevalonic acid. This six-carbon molecule is pirofosforilada and dehydrated to form isopentyl diphosphate and this is the basic unit of the terpenes active, the other route is called route metileritritol phosphate that functions in chloroplasts and other plastids. All terpenes are derived from the union of five-carbon elements that have the branched carbon skeleton of isopentane: The basic structural elements of terpenes are sometimes called isoprene units because terpenes can decompose at high temperatures to give isoprene: The terpenes or isoprenoids are classified by the number of five-carbon units they contain, example: Ten-carbon terpenes, which contain two C5 units, are called monoterpenes; 15carbon terpenes (three C5 units) are sesquiterpenes; and 20-carbon terpenes (four C5 units) are diterpenes. Larger terpenes include triterpenes (30 carbons), tetraterpenes (40 carbons) and polyterpenoids ([C5] n carbons, where n > 8) (Taiz and Zeiger, 2002). 87 Antifungal Properties of Bioactive Compounds from Plants 2.4 Nitrogenous compounds A large variety of plant secondary metabolites have nitrogen in their structure. Included in this category are such well-known anti-defenses as alkaloids, amines, cyanogenic glycosides, non-protein amino acids, glucosinolates, alkamides and peptides (Wink & Schimmer, 2010). Most nitrogenous secondary metabolites are biosynthesized from common amino acids. 2.5 Plants with antifungal properties It´s has studied the secondary metabolites present in various plant species, one to identify its presence, chemical structure and effect on the plant and on other organisms, so that the number of Identified Substances exceed to 100 000 at present (Wink and Schimmer, 2010) in table 2 shows a relationship of phenolic compounds in other organisms different to the plants with presence of these compounds. Phylum Bacteria Fungi Algae Lichens Bryophytes Ferns, conifers and flowering plants Structural patrons Phenols from polyketides and quinones (occasionally present) Simple phenols, phenylpropanoids, quinones (usually present) Oidados and brominated phenols, phloroglucinol derivatives from cell wall Anthraquinones, xanthones and depsidones Phenols in the cell wall, phenylpropanoids, stilbenes and some flavonoids Lignin in the cell wall and wide range of phenols of all kinds Table 2. Distribution of polyphenols compounds on different phylum’s in comparative to Plant phylum (Garcia, 2004, as cited in Harborne, 1990) The number of plant species containing one or more of the major groups of compounds with anti-fungal activity is very diverse (Glasby, 1991), in Table 3 lists some of the studied plant with antifungal effect. Specie Simmondsia chinensis Thymus zygis subsp. sylvestris, A. gypsicola and A. biebersteinii Larrea tridentata Compounds Identifying Glucosides Reference Abbassy et al., 2007 Carvacrol Gonçalves et al., 2010 Camphor , 1,8-cineole, piperitone , borneol and -terpineol, n-eicosane , n-heneicosane , n-tricosane, linoleic acid lignans, methyl-nordihydroguaiaretic acid and nordihydroguaiaretic acid Kordali et al., 2009 Vargas-Arispuro et al., 2005 88 Fungicides for Plant and Animal Diseases Specie Compounds Identifying Chenopodium quinoa triterpenoid saponins Aloe vera Crude extracts Drimys winteri Pimenta dioica essential oil Essential oils Catharanthus roseus 5-hydroxy flavones Reference Stuardo & Sn Martin, 2008 Jasso de Rodríguez et al., 2005 Monsálvez et al., 2010, Zabka et al., 2009. Roy & Chatterjee, 2010 Larrea tridentata, Flourensia cernua, Agave lechuguilla, Opuntia sp. and Yucca sp. Flourensia microphylla, Flourensia cernua and Flourensia retinophylla Salvia officinalis Carya illinoensis shells and Punica granatum Bulnesia sarmientoi Condensed and hidrolizables Tannins Castillo et al., 2010, Crude extracts Jasso de Rodríguez et al., 2007 essential oil Pinto et al., 2007 polyphenolic extracts Osorio et al., 2010 bulnesol, hanamyol Caesalpinia cacalaco gallic and tannic acids Clausena anisata essential oils 2-undecanone, 2-decanone and 2dodecanone Rodilla et al., 2011 Veloz-García et al., 2010 Osei-Safo et al., 2010 Ruta chalepensis Bucida buceras, Breonadia salicina, Harpephyllum caffrum, Olinia ventosa, Vangueria infausta and Xylotheca kraussiana Agapanthus africanus Reynoutria sachalinensis Laurus nobilis Asarum heterotropoides var. mandshuricum Rumex crispus Mejri et al., 2010 crude plant Mahlo et al., 2010 Crude extracts Tegegne et al., 2008 Pasini et al., 1997 1.8-cineole, linalool, terpineol acetate, methyl eugenol, linalyl acetate, eugenol, sabinene, -pinene, terpineol. methyleugenol, eucarvone, 5-allyl1,2,3-trimethoxybenzene and 3,7,7trimethylbicyclo(4.1.0)hept-3-ene chrysophanol, parietin and nepodin Corato et al., 2010 Dan et al., 2010 Choi et al., 2004; Gyung et al., 2004 89 Antifungal Properties of Bioactive Compounds from Plants Specie Astronium fraxinifolium, Inga marginata, Malva sylvestris, Matayba elaeagnoides, Miconia argyrophylla, Myrcia fallax, Ocimum gratissimum, Origanum vulgare, Rollinia emarginata, Siparuna arianeae, Styrax pohlii, Tabebuia serratifolia and Trichilia pallid Piper longum Datura metel Calotropis procera, Nerium oleander, Eugenia jambolana, Citrullus colocynthis, Ambrosia maritima, Acacia nilotica and Ocimum basilicum and fruit extracts of C. colocynthis, C. procera and E. jambolana Robinia pseudoacacia Cassia sp Reynoutria sachalinensis Compounds Identifying Crude extracts Eugenol, piperine, piperlongumine and piperettine) Enzymes, peroxidase, ǃ-1,3-glucanase and chitinase Crude extracts Crude extracts cassia oil Crude extracts Aegle marmelos Allium sativum -pinene, allo-aromadendrene, germacrene-D, n-octane, -selinene and -selinene. Menthone, n-octane, caryophyllene, -pinene, lauric acid and -pinene -pinene, caryophyllene oxide, thujene, bornylene, totarol, caryophyllene, -3-carene, 2- -pinene and -humulene. essential oil essential oil Bystropogon plumosus essential oil Citrus aurantium Cryptomeria japonica Cymbopogonflexuosus Cymbopogon martini essential oil essential oil essential oil essential oil Hypericum perfoliatum and Hypericum tomentosum Metasequoia glyptostroboides Reference Andrade et al., 2010 Lee et al., 2001 Devaiah et al., 2009 Abdel-Monaim et al., 2011 Zhang et al., 2008 Feng et al., 2008 KonstantinidouDoltsinis and Schmit, 1998 Hosni et al., 2008 Bajpai et al., 2007 Pattnaik et al., 1996 Pyun and Shin 2006 Economou & Nahrstedt, 1991 Pattnaik et al., 1996 Cheng et al., 2005 Pattnaik et al., 1996 Pattnaik et al., 1996 90 Specie Eucalyptus citriodora Melaleuca alternifolia Mentha piperita Pelargonium graveolens Pimpinella anisum Piper angustifolium Salvia officinalis Salvia sclarea Tagetes patula Thymbra capitata Thymus pulegioides Lavandula angustifolia Dictamnus dasycarpus Heliotropium bursiferum Ficus septic Glycosmis cyanocarpa Olea europaea Cochlospermum tinctorium Eupatorium riparium Apium graveolens Wedelia biflora Scutellaria spp Croton sonderianus Fungicides for Plant and Animal Diseases Compounds Identifying essential oil essential oil essential oil essential oil essential oil essential oil essential oil essential oil essential oil essential oil essential oil essential oil Dictamnine 9-Angeloylretronecine, Heliotrine, Lasiocarpine, Supinine Antofine, Ficuseptine Illukumbin B, Methylillukumbin B, Methylillukumbin A, NMethylsinharine, Sinharine Hexanal, E-2-Hexanal, E-2-Heptanal, Nonanal and E-2-Octenal Cochloxanthin, Dihydrocochloxanthin Methylripariochromene A Angelicin, Bergapten, Columbianetin, Xanthotoxin 3´_-Formyl-2´_,4´_,6´_trihydroxydihydrochalcone Clerodin, Jodrellin A, Jodrellin B Hardwickic acid, 3,4Secotrachylobanoic acid Reference Pattnaik et al., 1996 Nenoff et al., 1996 Pattnaik et al., 1996 Pattnaik et al., (1996 Kosalec et al., (2005 Tirillini et al., 1996 Hili et al., 1997 Pitarokili et al., 2002 Romagnoli et al., 2005 Salgueiro et al., 2004 Pinto et al., 2006 D’Auria et al., 2005 Zhao et al., 1998 Marquina et al., 1989 Baumgartner et al., 1990 Greger et al., 1992, 1993 Battinelli et al., 2006 Diallo et al., 1991 Bandara et al., 1992 Afek et al., 1995 Miles et al., 1991 Cole et al., 1991 McChesney & Clark, 1991 Gomphrena martiana and Gomphrena boliviana 5-Hydoxy-3-methoxy-6,7methylenedioxyflavone Pomilio et al., (1992 H. nitens 3,5,6,7,8-Pentamethoxyflavone, 3,5,6,7-Tetramethoxyflavone, 5,6,7,8Tetramethoxyflavone, Dimethylchrysin, Trimethylgalangin Tomas-Barberan et al., 1988 H. odoratissimum 3-O-Methylquercetin Van Puyvelde et al., 1989 Wedelia biflora Podophyllum hexandrum veratrylidenehydrazide, 3,3′-di-O-methylquercetin, 2,7-dihydroxy-3(3t'-methoxy-4′hydroxy)-5-methoxyisoflavone and 3′,7-di-O-methylquercetin 4′-Odemethyldehydropodophyllotoxin and picropodophyllone Miles et al., 1993 Rahman et al., 1995 91 Antifungal Properties of Bioactive Compounds from Plants Specie Piper angustifolium Cistus incanus subsp. creticus Bystropogon plumosus, B. origanifolius var. palmensis, B. wildpretii, B. maderensis and B. canariensis var. smithianus Zingiber officinale Coleonema pulchellum P. argentatum × P. tomentosa Bidens cernua Garcinia mangostana Thymus pulegioides Compounds Identifying Camphene Reference Tirillini et al., 1996 Geraniol Chinou et al., 1994 Pulegone Economou & Nahrstedt, 1991; Gingerenone A Precolpuchol 8-oxo-Argentone, 8-oxo-15-norArgentone, 15-Hydroxyargentone, Argentone and 15-nor-Argentone Cernuol BR-xanthone A, Garcinone D, Gartanin, Mangostin, -Mangostin (E)-3-Chloro-4-stilbenol, (E)-3,5Dimethoxy-4- stilbenol, (E)-3,5Dimethoxystilbene, (E)-3-Methoxy-4stilbenol, (Z)-4-Methoxy-3-stilbenol, (E)-5-Methoxy-3-stilbenol, (E)-4Stilbenol, (E)-3-Stilbenol, (Z)-3Stilbenol, (E)-3,4-Stilbenediol, (E)-3,5Stilbenediol Geraniol, Linalool, 1,8-Cineole, Citral Isolimonene, Isopulegol, Carvone 5,7-Dihydroxy-4-hydroxyisoflavan, 6,7-Dihydroxy-4_-methoxyisoflavan, 5,7-Dihydroxy-4_-methoxyisoflavan, Biochanin A Carvacrol, p-Cymene and Terpinene 8-Acetylheterophyllisine, Panicutin, Vilmorrianone Clausenal Harman, Harmine, Norharman Calycodendron milnei Isopsychotridine E, Hodgkinsine A, Quadrigemine C, Quadrigemine H, Psychotridine E, Vatine, Vatine A, Vatamine, Vatamidine, Endo et al., 1990 Brader et al., 1997 Maatooq et al., 1996 Smirnov et al., 1998 Gopalakrishnan et al., 1997 Schultz et al., 1992 Pattnaik et al., 1997 Naigre et al., 1996 Weidenborner et al., 1990 Pinto et al., 2006 Rahman et al., 1997 Chakraborty et al., 1995 Quetin-Leclercq et al., 1995 Saad et al., 1995 92 Fungicides for Plant and Animal Diseases Specie Compounds Identifying Dehatrine, Actinodaphnine, Anhydroushinsunine, Methoiodide, N-Methylactinodaphnine Anonaine Lanuginosine, Lysicamine Berberine Alkaloids 3-Methoxysampangine Steroidal alkaloids Reference Tsai et al., 1989 Tsai et al., 1989; Simeon et al., 1990 Simeon et al., 1990 Okunade et al., 1994 Liu et al., 1990 Fewell & Roddick, 1993 Lee et al., 1999 ǂ-Chaconine, ǂ-Solanine Polygodial Table 3. Chemical compounds identified with antifungal properties derived from species plants 2.6 Effect of compounds in inhibiting mycelia fungi The most compounds have varied effects on the development of mycelia growth of fungi and the effect on sporulation rate and inhibition of germination ranging from a fungistatic effect to complete inhibition. The answer depends on the arrest of compounds derived from extracts of the species and to inhibit fungus. Table 4 shows the sensitivity of plant pathogen fungi to bioactive coumponds from plants. Plant Specie Achillea gypsicola and A. biebersteinii Agapanthus africanus Aloe vera Asarum heterotropoides var. mandshuricum Plant pathogen Fusarium equiseti and F. graminearum Pythium ultimum, F. oxysporum, Alternaria alternata, Mycosphaerella pinodes and Ascochyta Rhizoctonia solani, F. oxysporum and Colletotrichum coccodes Alternaria humicola, Colletotrichum gloeosporioides, Rhizoctonia solani, Phytophthora cactorum and Fusarium solani Fungicidal activity concentrations References Kordali et al., 2009 Tegegne et al., 2008 105 μl L−1 Jasso de Rodríguez et al., 2005 <0.42 μg mL−1 Dan et al., 2010 93 Antifungal Properties of Bioactive Compounds from Plants Plant Specie Plant pathogen Astronium fraxinifolium, Inga marginata, Malva sylvestris, Matayba elaeagnoides, Miconia argyrophylla, Myrcia Colletotrichum fallax, Ocimum gratissimum, Origanum lindemuthianum vulgare, Rollinia emarginata, Siparuna arianeae, Styrax pohlii, Tabebuia serratifolia and Trichilia pallida Aspergillus niger, Bucida buceras, Aspergillus parasiticus, Breonadia salicina, Colletotricum Harpephyllum caffrum, gloeosporioides, Olinia ventosa, Penicillium janthinellum, Vangueria infausta and Penicillium expansum, Trichoderma harzianum Xylotheca kraussiana and Fusarium oxysporum Pythium sp., Colletotrichum truncatum, Colletotrichum coccodes, Carya illinoensis shells Alternaria alternata, and Punica granatum Fusarium verticillioides, Fusarium solani, Fusarium sambucinum and Rhizoctonia solani Cassia sp. Chenopodium quinoa Drimys winteri Flourensia microphylla, Flourensia cernua and Flourensia retinophylla Larrea tridentata, Flourensia cernua, Agave lechuguilla, Opuntia sp. and Yucca sp., Fungicidal activity concentrations References inhibition of conidial germination Andrade et al., 2010 0.02-0.08 mg mL−1 Mahlo et al., 2010 0.2 mgL−1 Osorio et al., 2010 Alternaria alternate 500 μl L−1 Feng et al., 2008 Botrytis cinerea 5 mg saponins ml−1, 100% of conidial germination inhibition Stuardo et al., 2008 Gaeumannomyces graminis var tritici Alternaria sp., Rhizoctonia solani and Fusarium oxysporum Rhizoctonia solani 932- 30.37mg L−1 10 to 1500μl L−1 2000 ppm of totals polyphenols Monsálvez et al., 2010, Jasso de Rodríguez et al., 2007 Castillo et al., 2010, 94 Fungicides for Plant and Animal Diseases Plant Specie Larrea tridentata Laurus nobilis Metasequoia glyptostroboides Piper longum Plant pathogen Aspergillus flavus and Aspergillus parasiticus Botrytis cinerea, Monilinia laxa and Penicillium digitatum Fusarium oxysporum, Fusarium solani, Sclerotonia sclerotiorum, Rhizoctonia solani, Colletotricum capsici, Botrytis cinerea and Phytophthora capsici, Pyricularia oryzae, Rhizoctonia solani, Botrytis cineria, Phytophthora infestans, Puccinia recondite and Erysiphe graminis Fungicidal activity concentrations 300-500 μg mL−1 of NDGA Rumex crispus Salvia officinalis Thymus zygis subsp. sylvestris Cryptomeria japonica Melaleuca alternifolia Pimpinella anisum Piper angustifolium Vargas-Arispuro et al., 2005 1, 2 and 3 mg mL−1 Corato et al.,, 2010 Inhibition range of 49–70% and minimum inhibitory concentration ranging from 500 to 1000 μg mL−1. Bajpai et al., 2007 1mg mL−1 Lee et al., 2001 Pasini et al., 1997; KonstantinidouDoltsinis & Schmit, 1998 Sphaerotheca pannosa var. Reynoutria sachalinensis rosae Robinia pseudoacacia References Sphaerotheca fuliginea, 80 mg mL−1 Zhang et al., 2008 Blumeria graminis f. sp. hordei Penicillium, Aspergillus, Cladosporium and Fusarium 30 μg mL−1 Choi et al., 2004 0.63 μl ml−1 Pinto et al., 2007 0.08- 0.16 μL mL−1 Gonçalves et al., 2010 MIC(50) values of 65, 80, 80 and 110 mg mL−1 Cheng et al., 2005 500–6000 Nenoff et al., 1996 MIC to 1.5 and 9.0% (V/V). Kosalec et al., 2005 10–100 Tirillini et al., 1996 Aspergillus strains Rhizoctonia solani, Collectotrichum gloeosporioides, Fusarium solani and Ganoderma australe Candida albicans and Candida sp. Trichophyton rubrum, T. mentagrophytes, Microsporum canis and M. gypseum Candida albicans, Cryptococcus neoformans, Aspergillus flavus, Aspergillus fumigatus, 95 Antifungal Properties of Bioactive Compounds from Plants Plant Specie Plant pathogen Salvia officinalis Torulopsis utilis, Schizosaccharomyces pombe, Candida albicans and Saccharomyces cerevisiae Salvia sclarea Soil-borne pathogens Tagetes patula Thymbra capitata Thymus pulegioides Lavandula angustifolia 3-Methoxysampangine Fungicidal activity concentrations References Hili et al., 1997 EC50: 493–584 μL L−1 Penicillium digitatum and 1.25–10.0 μL Botrytis cinerea mL−1 Candida sp., Aspergillus 0.08–0.32 μL sp mL−1 Candida, Aspergillus and 0.16–0.64 μL dermatophyte species mL−1 Pitarokili et al., 2002 Romagnoli et al., 2005 Salgueiro et al., 2004 Candida albicans D’Auria et al., 2005 0.69% Candida albicans, Aspergillus fumigatus and 0.2–3.1 Cryptococcus neoformans Pinto et al., 2006 Liu et al., 1990 Steroidal alkaloids Ascobolus crenulatus, Alternaria brassicicola, ǂ-Chaconine Phoma medicaginis and Rhizoctonia solani Ascobolus crenulatus, Alternaria brassicicola, ǂ-Solanine Phoma medicaginis and Rhizoctonia solani Cladosporium Dictamnus dasycarpus cucumerinum Tricophyton mentagrophytes, Olea europaea Microsporum canis and Candida spp Colletotrichum Eupatorium riparium gloeosporioides Rhizoctonia solani; Wedelia biflora Pythium ultimum; Fusarium oxysporum f. Scutellaria spp sp. lycopersici and Verticillium tricorpus Rhizoctonia solani; Wedelia biflora Pythium ultimum; Epidermophyton Podophyllum hexandrum floccosum, Curvularia lunata, Nigrospora oryzae, 60–100 μM Fewell & Roddick 1993 80–100 μM Fewell & Roddick 1993 25 Zhao et al., 1998 1.9 -250 Battinelli et al., 2006 Bandara et al., 1992 Miles et al., 1991 Cole et al., 1991 Miles et al., 1993 Rahman et al., 1995 96 Fungicides for Plant and Animal Diseases Plant Specie Plant pathogen Fungicidal activity concentrations References Microsporum canis, Allescheria boydii and Pleurotus ostreatus, Drechslera rostrata Candida albicans, Aspergillus flavus, Aspergillus fumigatus 1.0–5.0 mM; 0.016–0.13% of oil; Tirillini et al., 1996 Cistus incanus subsp. creticus Candida albicans 125–375 Chinou et al., 1996 Thymus pulegioides Candida, Aspergillus 1.25–20.0 μL mL−1 Pinto et al., 2006 Zingiber officinale Pyricularia oryzae 10.0 ppm Endo et al., 1990 Coleonema pulchellum Cladosporium herbarum Piper angustifolium Parthenium argentatum × P. tomentosa Garcinia mangostana Brader et al., 1997 mL−1 Aspergillus fumigatus and 0.25 mg A. niger 1.0 mg mL−1 Fusarium oxysporum vasinfectum, Alternaria tenuis and Drechslera oryzae Aspergillus repens; A. amstelodami; A. chevalieri; A. flavus; A. petrakii; Coriolus versicolor, Gloeophyllum trabeum 8-140 and Poria placenta Aspergillus niger Maatooq et al., 1996 Gopalakrishnan et al., 1997 Weidenb¨orner et al., 1990a, b Schultz et al., 1992 0.78–100 μL mL−1 Naigre et al., 1996 Candida albicans, Trichophyton mentagrophytes, T. ruburum, Penicillium 0.78–100.0 marneffei, Aspergillus fumigatus, A. flavus, P. chrysogenum, C. lipolytica and C. tropicalis Lee et al., 1999 Cymbopogonflexuosus 0.16–11.6 Pattnaik et al., 1996 Cymbopogon martini 0.5–8.3 Pattnaik et al., 1996 Eucalyptus citriodora 0.16–10.0 Pattnaik et al., 1996 Bidens cernua 5.0–200 Smirnov et al., 1998 Gomphrena martiana and G. boliviana 75 Pomilio et al., 1992 97 Antifungal Properties of Bioactive Compounds from Plants Plant Specie Plant pathogen Fungicidal activity concentrations Helichrysum nitens 1- 20 μg Allium sativum 64 References Tomas-Barberan et al., 1988 Pyun and Shin 2006 Psidium acutangulum Miles et al., 1993 Croton sonderianus McChesney & Clark, 1991 Bystropogon plumosus, B. origanifolius var. palmensis, B. wildpretii, B. maderensis and B. canariensis var. Smithianus 0.4–85.0% of oil Economou & Nahrstedt, 1991; Kalodera et al., 1994 Mentha piperita 0.27–10.0 Pattnaik et al., 1996 Pelargonium graveolens Pattnaik et al., 1996 Table 4. Bioactive compounds from plants on fungal species. 2.7 Commercial use of natural fungicides Currently, the commercial use of natural fungicides on the market is low, the 5th Annual Meeting of the biological control industry (Loison, 2010) reports a total of 55 biological fungicides registered in the U.S. market and in the EU the registered biopesticides are much fewer: 21 fungicides for be used in Pome fruit, vines and tomato (Table 5). Commercial name BC 1000 TM Active Ingradient Bioflavonoid of Seed extracts and orange pulp Company Plant pathogen Chemie S.A. Botritys cinérea Bio save TM Seed extracts and orange pulp Bioland SA Ascochyta, Pullullaria, Fusarium, Cercospora, Botrytis, Septoria, Alternaria, Stemphylium, Rhizoctonia, Peronospora, Pythium, Penicilium, Sigatoka, Aspergillus. Agrispon TM Plant and mineral extacts. Agric. Sci Dallas Cercospora beticola Sincocin TM Plant extracts Agric. Sci Dallas Cercospora beticola 98 Commercial name Fungicides for Plant and Animal Diseases Active Ingradient Timorex Gold Plant extracts of Melalueca alternifolia Evergreen TM Plant extracts Gloves Off TM Thymol, Carvacrol Garden Fungicide Rosemary, thyme and clove oil Pongamia and Tulsi oil, Recines communis TM Eco Safe TM Gloss TM Natural Alkaloids Company Plant pathogen Stockton Group Mycosphaerella fijiensis Aashab bio industries Organozoid and Such Trichophyton mentagrophytes EcoSmart S. K. Bio Extracts & Applications Root rot, Dammping off, Steam rot, leaf spot S. K. Bio Extracts & Applications fungal diseases in all field crops, vegetables and horticultural crops Table 5. Some commercial product in the market with active ingredients from plants 3. Conclusions The plant extracts applied in as crude state or as a fraction affect the development of fungal colonies to inhibit partially and totally in laboratory tests at low concentrations of bioactive compounds, besides affecting the incedencia and severity when applied as a treatment to increase the shelf life of products with excellent results. However, more research is needed to determine its effect on molecular changes, morphological and biochemical these compounds cause the pathogen and host. 4. References Abbassy, M.A., Abdelgaleil, S.A.M., Belal, A.S.H. & Abdel, R.M.A.A. (2007). Insecticidal, antifeedant and antifungal activities of two glucosides isolated from the seeds of Simmondsia chinensis, Industrial Crops and Products, Vol. 26, No. 3, (Octuber, 2007), pp. (345-350), ISSN: 0926-6690 Abdel-Monaim, M.F., Abo-Elyousr, K.A.M. & Morsy, K.M.. (2011). Effectiveness of plant extracts on suppression of damping-off and wilt diseases of lupine (Lupinus termis Forsik). Crop Protection, Vol. 30, No. 2, (Febrary 2011), pp. (185-191), ISSN: 02612194 Abou-Jawdah, Y., Sobh, H. & Salameh A. (2002) Antymicotic activities of selected plant flora, growing wild in Lebanon, against phytopathogenic fungi, Journal of Agricultural and Food Chemistry, Vol. 50, No. 11, (May 2002), pp. (3208-3213), ISSN: 0021-8561 Afek, U., Carmeli, S. & Aharoni, N. (1995) Columbianetin, a phytoalexin associated with celery resistance to pathogens during storage, Phytochemistry, Vol. 39, No. 6, (Augost, 1995), pp. (1347–1350), ISSN: 0031-9422 Antifungal Properties of Bioactive Compounds from Plants 99 Andrade, P.J.M., Aparecida, S.E. & Ferreira. O. D. (2010). Use of plant extracts in the control of common bean anthracnose. Crop Protection, Vol. 29, No. 8, (Augost, 2010), pp. (838-842), ISSN: 0261-2194 Bajpai, V.K., Rahman, A. & Kang, S.Ch. 2007. Chemical composition and anti-fungal properties of the essential oil and crude extracts of Metasequoia glyptostroboides Miki ex Hu, Industrial Crops and Products, Vol. 26, No. 1, (January, 2007), pp. (28-35), ISSN: 0926-6690 Bandara, B.M., Hewage, C.M., Karunaratne, V., Wannigama, C.P. & Adikaram, N.K. (1992). An antifungal chromene from Eupatorium riparium, Phytochemistry, Vol. 31, No. 6, (June, 1992), pp. (1983–1985), ISSN: 0031-9422 Battinelli, L., Daniele, C., Cristiani, M., Bisignano, G., Saija, A. & Mazzanti, G. (2006). In vitro antifungal and anti-elastase activity of some aliphatic aldehydes from Oleaeuropaea L. fruit. Phytomedicine, Vol. 13, No. 8, (September, 2006), pp. (558–563), ISSN: 09447113 Baumgartner, B., Erdelmeier, C.A., Wright, A.D., Ralli, T. & Sticher, O. (1990) An antimicrobial alkaloid from Ficus septica. Phytochemistry, Vol. 29, No. 10, (Octuber, 1990), pp. (3327–3330), ISSN: 0031-9422 Bautista, S.L., Barrera, N.L., Bravo, L.K. & Bermúdez, T. (2002). Antifungal activity of leaf and stem extracts from various plant species on the incidente of Colletotrichum gloeosporioides of papaya and mango fruits after storage, Rev. Mex. Fitopatol. Vol. 20, No. 1, (June, 2002), pp. (8-12), ISSN: 0185- 3309 Brader, G., Bacher, M., Hofer, O. & Greger, H. (1997) Prenylated phenylpropenes from Coleonema pulchellum with antimicrobial activity. Phytochemistry, Vol. 45, No. 6, (Jul, 1997), pp. (1207–1212), ISSN: 0031-9422 Castillo, F., Hernández, D., Gallegos, G., Méndez, M., Rodríguez, R., Reyes A. &. Aguilar, C.N. (2010). In vitro antifungal activity of plant extracts obtained with alternative organic solvents against Rhizoctonia solani Kühn, Industrial Crops and Products, Vol. 32, No. 3, (June 2010), pp. (324–328), ISSN 0926-6690 Chakraborty, A., Saba, C., Podder, G., Chowdhury, B.K. and Bhattacharyya, P. (1995) Carbazole alkaloid with antimicrobial activity from Clausena heptaphylla. Phytochemistry, Vol. 38, No. 3, (Febrary, 1995), pp. (787–789), ISSN: 0031-9422 Cheng, S.S., Lin, H.Y. & Chang, S.T. (2005). Chemical composition and antifungal activity of essential oils from different tissue of Japanese Cedar (Cryptomeria japonica), Journal of Agricultural and Food Chemistry, , Vol. 53, No. 3, (February, 2005), pp. (614–9), ISSN: 0021-8561 Chinou, I., Demetzos, C., Harvala, C., Roussakis, C. & Verbist, J.F. (1994). Cytotoxic and antibacterial labdane-type diterpenes from the aerial parts of Cistus incanus subsp. creticus, Planta Medica, Vol. 60, No. 1, (Febrary, 1994), pp. (34–6), ISSN: 0032-0943 Choi, G.J., Lee, S.W., Jang, K.S., Kim, J.S., Cho, K.Y. & Kim, J.Ch. (2004). Effects of chrysophanol, parietin, and nepodin of Rumex crispus on barley and cucumber powdery mildews, Crop Protection, Vol. 23, No. 12, (December. 2004), pp. (12151221), ISSN: 0261-2194 Cole, M.D., Bridge, P.D., Dellar, J.E., Fellows, L.E., Cornish, M.C. & Anderson, J.C. (1991) Antifungal activity of neo-clerodane diterpenoids from Scutellaria, Phytochemistry, Vol. 30, No. 4, (March, 1991), pp. (1125–1127), ISSN: 0031-9422 100 Fungicides for Plant and Animal Diseases Corato, U., Maccioni, O., Trupo, M., & Di Sanzo G. (2010). Use of essential oil of Laurus nobilis obtained by means of a supercritical carbon dioxide technique against post harvest spoilage fungi, Crop Protection, Vol. 29, No. 2, (Febrary, 2010), pp. (142-147), ISSN: 0261-2194 Cowan, M. M. (1999). Plant products as antimicrobial agents, Clinical Microbiology Review, Vol. 12, No. 4, (October 1999), pp. (564-582), ISSN: 1098-6618 D’Auria, F.D., Tecca, M., Strippoli, V., Salvatore, G., Battinelli, L. & Mazzanti, G. (2005) Antifungal activity of Lavandula angustifolia essential oil against Candida albicans yeast and mycelial form, Med. Mycol., Vol. 43, No. 5, (Augost, 2005), pp. (391–396), ISSN: 1369-3786 Dan, Y., Hai-Yan, L., Wei-Wei, G. & Shi-Lin, Ch. (2010). Activities of essential oils from Asarum heterotropoides var. mandshuricum against five phytopathogens, Crop Protection, Vol. 29, No. 3, (March, 2010), pp. (295-299), ISSN: 0261-2194 Devaiah, S.P., Mahadevappa, G.H. & Shetty, H.S. (2009). Induction of systemic resistance in pearl millet (Pennisetum glaucum) against downy mildew (Sclerospora graminicola) by Datura metel extract, Crop Protection, Vol. 28, No. 9, (September, 2009), pp. (783-791), ISSN: 0261-2194 Diallo, B., Vanhaelen-Fastre, R. & Vanhaelen, M. (1991) Antimicrobial activity of two apocarotenoids isolated from Cochlospermum tinctorium rhizome, Fitoterapia, Vol. 62, No. 2, pp. (144–145), ISSN: 0367-326X Economou, D. & Nahrstedt, A. (1991) Chemical, physiological and toxicological aspects of the essential oil of some species of the genus Bystropogon, Planta Medica, Vol. 57, No. 4, pp. (347–51), ISSN: 0032-0943 Endo, K., Kanno, E. & Oshima, Y. (1990) Structures of antifungal diarylheptenones, gingerenones A, B, C and isogingerenone B, isolated from the rhizome of Zingiberofficinale, Phytochemistry, Vol. 29, No. 3, pp. (797–799), ISSN: 0031-9422 Feng, W., Zheng, X., Chen, J. & Yang, Y. (2008). Combination of cassia oil with magnesium sulphate for control of postharvest storage rots of cherry tomatoes, Crop Protection, Vol. 27, No. 1, (January, 2008), pp. (112-117), ISSN: 0261-2194 Fewell, A.M. & Roddick, J.G. (1993). Interactive antifungal activity of the glycoalkaloids, asolanine and _-chaconine, Phytochemistry, Vol. 33, No. 2, (May, 1993), pp. (323– 328), ISSN: 0031-9422 García, D.E. (2004). Los metabolitos secundarios de las especies vegetales, Pastos y Forrajes, Vol. 27, No. 1, (), pp. (1-12), ISSN: ISSN 0864-0394 Glasby, J.S. (1991). Dictionary of Plants Secondary Metabolites Containing, Taylor & Francis (Eds) e-Library, 2005. 1644 p. ISBN 0-203-48987-X Master e-book. Gonçalves, M.J., Cruz, M.T., Cavaleiro, C., Lopes, M.C. & Salgueiro, L. (2010). Chemical, antifungal and cytotoxic evaluation of the essential oil of Thymus zygis subsp. sylvestris, Industrial Crops and Products, Vol. 32, No. 1, (July, 2010), pp. (70-75), ISSN: 0926-6690 González G E, Rodríguez H R & Aguilar G C N. (2009). Biodegradación de Taninos. Cienciacierta, 17. www.postgradoeinvestigacion.uadec.mx/CienciaCierta/CC17/cc17taninos.html Gopalakrishnan, G., Banumathi, B. & Suresh, G. (1997) Evaluation of the antifungal activity of natural xanthones from Garcinia mangostana and their synthetic derivatives, Antifungal Properties of Bioactive Compounds from Plants 101 Journal of Natutal Products, Vol. 60, No. 5, (Mayo, 1997), pp. (519–524), ISSN: 01633864 Greger, H., Hofer, O., K¨ahlig, H. & Wurz, G. (1992). Sulfur-containing cinnamides with antifungal activity from Glycosmis cyanocarpa, Tetrahedron, Vol. 48, No. 7, pp. (1209– 1218), ISSN: 0040-4020 Greger, H., Zechner, G., Hadacek, F. & Wurz, G. (1993). Sulphur-containing amides from Glycosmis species with different antifungal activity, Phytochemistry, Vol. 34, No. , (), pp. (175–9), ISSN: 0031-9422 Gyung, J. Ch., Seon-Woo L., Kyoung S. J., Jin-Seog K., Kwang Y. Ch. & Jin-Cheol K. (2004). Effects of chrysophanol, parietin, and nepodin of Rumex crispus on barley and cucumber powdery mildews, Crop Protection, Vol. 23, No. 12, (December, 2004), pp. (1215-1221), ISSN: 0261-2194 Haslam, E. (1996). Natural polyphenols (vegetable tannins) as drugs: possible modes of action, Journal of Natural Products, Vol. 59, No. 2, (Febrero, 1996), pp. (205-215), ISSN: 0163-3864 Hernández, L. A. N., Bautista, B. S. & Velázquez del valle, M. G. (2007). Prospectiva de extractos vegetales para controlar enfermedades postcosecha hortofrutícolas, Rev. Fitotecnia Mex. Vol. 30, No. 2, (Abril-Junio, 2007), pp. (119-123), ISSN: 0185-3309 Hili, P., Evans, C.S. & Veness, R.G. (1997). Antimicrobial action of essential oils: the effect of dimethylsulphoxide on the activity of cinnamon oil, Letters in Applied Microbiology, Vol. 24, No. 4, (April, 1997), pp. (269–75), ISSN: 0266-8254 Hosni, K., Msaâda, K., Ben Taârit, M., Ouchikh, O., Kallel, M. & Marzouk, B. (2008). Essential oil composition of Hypericum perfoliatum L. and Hypericum tomentosum L. growing wild in Tunisia, Industrial Crops and Products, Vol. 27, No. 3, (May, 2008), pp. (308-314), ISSN: 0926-6690 Jasso de Rodríguez D., Hernández-Castillo D., Angulo-Sánchez J.L., Rodríguez-García R., Villarreal Quintanilla J.A. & Lira-Saldivar R.H. (2007). Antifungal acvtivity in vitro of Flourensia spp. extracts on Alternaria sp., Rhizoctonia solani, and Fusarium oxysporum, Industrial Crops and Products, Vol. 25, No. 2, (Febrary, 2007), pp. (111116), ISSN 0926-6690 Jasso de Rodríguez D., Hernández-Castillo D., Rodríguez-García R. & Angulo-Sánchez J. L. (2005). Antifungal activity in vitro of Aloe vera pulp and liquid fraction against plant pathogenic fungi, Industrial Crops and Products, Vol. 21, No. 1, (January, 2005), pp. ( 81-87), ISSN: ISSN 0926-6690 Konstantinidou-Doltsinis, S. & Schmit, S. (1998). Impact of treatment with plant extracts from Reynoutria sachalinensis (F. Schmidt) Nakai on intensity of powdery mildew severity and yield in cucumber under high disease pressure, Crop Protection, Vol. 17, No. 8, (November, 1998), pp. (649-656), ISSN: 0261-2194 Kordali S., Cakir A, Aytas A. T, Mete E, Akcin A, Aydin T, & Kilic, H. (2009). Antifungal and herbicidal properties of essential oils and n-hexane extracts of Achillea gypsicola Hub-Mor. and Achillea biebersteinii Afan. (Asteraceae), Industrial Crops and Products, Vol. 29, No. 2-3, (March 2009), pp. (562-570), ISSN: 0926-6690 Kosalec, I., Pepeljnjak, S. & Kustrak, D. (2005). Antifungal activity of fluid extract and essential oil from anise fruits (Pimpinella anisum L., Apiaceae), Acta Pharmaceutica, Vol. 55, No. 4, (December, 2005), pp. (377–85), ISSN: 1330-0075 102 Fungicides for Plant and Animal Diseases Lee, S.E., Park, B.S., Kim, M.K., Choi, W.S., Kim, H.T., Cho, K.Y., Lee, S.G. & Lee, H.S. (2001). Fungicidal activity of pipernonaline, a piperidine alkaloid derived from long pepper, Piper longum L., against phytopathogenic fungi, Crop Protection, Vol. 20, No. 6, (July, 2001), pp. (523-528), ISSN: 0261-2194 Lee, S.H., Lee, J.R.L., Lunde, C.S. & Kubo, I. (1999). In vitro antifungal susceptibilities of Candida albicans and other fungal pathogens to polygodial, a sesquiterpene dialdehyde., Planta Medica, Vol. 65, No. 3, (April), pp. (204–208), ISSN: 0032-0943 Lira, S.R.H., Hernández, S.M., Chavéz, B.C., Hernández, C.F.D. & Cuellar, V.E. (2007). Biopesticides and biological control. CIQA, Monterrey, México. Pp 13-29. ISBN 968844.054-X Mexico Liu, S., Oguntimein, B.O., Hufford, C.D. and Clark, A.M. (1990). 3- methoxysampangine, a novel antifungal copyrine alkaloid from Cleistopholis patens, Antimicrobial Agents and Chemotherapy, Vol. 34, No. 4, (April, 1990), pp. (529–533), ISSN: 0066-4804 Loison, M. (2010). The plant protection corner, in: A growing industry, various business models, New Ag Internacional magazine, (Febrary 2010). www.newaginternational.com/current/plantprotection201011.pdf Maatooq, G.T., Stumpf, D.K., Hoffmann, J.J., Hutter, L.K. and Timmermann, B.N. (1996) Antifungal eudesmanoids from Parthenium argentatum x P. tomentosa. Phytochemistry, Vol. 41, No. 2, (Febrary, 1996), pp. (519–524), ISSN: 0031-9422 Mahlo, S.M., McGaw, L.J. & Eloff, J.N. (2010). Antifungal activity of leaf extracts from South African trees against plant pathogens, Crop Protection, Vol. 29, No. 12, (December, 2010), pp. (1529-1533), ISSN: 0261-2194 Makkar, H P S, Siddhuraju, P & Becker, K. (2007). Plant secondary metabolites, Human press Inc, pp. 130, ISSN: 1-58829-993-7, USA. Marquina, G., Laguna, A., Franco, P., Fernandez, L., Perez, R. & Valiente, O. (1989). Antimicrobial activity of pyrrolizidine alkaloids from Heliotropium bursiferum, Pharmazie, Vol. 44, No. 12, (December, 1989), pp. (870–871), ISSN: 0031-7144 McChesney, J.D. & Clark, A.M. (1991). Antimicrobial diterpenes of Croton sonderianus, hardwickic and 3,4-secotrachylobanoic acids, Journal of Natural Products., Vol. 54, No. 6, (November, 1991), pp. (1625–1633), ISSN: 0163-3864 Meckes, M, Rivera, A.D., Nava, V. & Jimenez, A. (2004). Activity of some Mexican medicinal plant extracts on carrageenan-induced rat paw edema, Phytomedicine, Vol. 11, No. 5, (July, 2004), pp. (446-451), ISSN: 0944-7113 Mejri, J., Abderrabba, M. & Mejri, M. (2010). Chemical composition of the essential oil of Ruta chalepensis L: Influence of drying, hydro-distillation duration and plant parts, Industrial Crops and Products, Vol. 32, No. 3, (November, 2010), pp. (671-673), ISSN: 0926-6690 Miles, D.H., Chittawong, V., Hedin, P.A. & Kokpol, U. (1993). Potential agrochemicals from leaves of Wedelia biflora, Phytochemistry, Vol. 32, No. 6, (April, 1993), pp. (1427– 1429), ISSN: 0031-9422 Miles, D.H., de Medeiros, J.M., Chittawong, V., Hedin, P.A., Swithenbank, C. & Lidert, Z. (1991). 3´_-Formyl-2´_,4´_,6´_-trihydroxydihydrochalcone from Psidium acutangulum, Phytochemistry, Vol. 30, No. 4, (Mayo, 1991), pp. (1131–1132), ISSN: 0031-9422 Monsálvez, M., Zapata, N., Vargas, M., Berti, M., Bittner, M., & Hernández, V. (2010). Antifungal effects of n-hexane extract and essential oil of Drimys winteri bark Antifungal Properties of Bioactive Compounds from Plants 103 against Take-All disease, Industrial Crops and Products, Vol. 31, No. 2, (March), pp. (239-244), ISSN: 0926-6690 Naigre, R., Kalck, P., Roques, C., Roux, I. & Michel, G. (1996). Comparison of antimicrobial properties of monoterpenes and their carbonylated products, Planta Medica., Vol. 62, No. 3, (June, 1996), pp. (275–277), ISSN: 0032-0943 Nenoff, P., Haustein, U.F. & Brandt, W. (1996). Antifungal activity of the essential oil of Melaleuca alternifolia (tea tree oil) against pathogenic fungi in vitro, Skin Pharmacology, Vol. 9, No. 6, (June, 1996), pp. (388–394), ISSN: 1011-0283 Okunade, A.L., Hufford, C.D., Richardson, M.D., Peterson, I.R. & Clark, A.M. (1994). Antimicrobial properties of alkaloids from Xanthorhiza simplicissima, Journal Pharmaceutical Scinces, Vol. 83, No. 3, (March, 1994), pp. (404–6), ISSN: 0022-3549 Osei-Safo, D., Addae-Mensah, I., Garneau, F.X. & Kossi, K. H. (2010). A comparative study of the antimicrobiaa activity of the leaf essential oils of chemo-varieties of Clausena anisata (Willd.) Hook. f. ex Benth, Industrial Crops and Products, Vol. 32, No. 3, (November. 2010), pp. (634-638), ISSN: 0926-6690 Osorio E, Flores M, Hernández D, Ventura J, Rodríguez R, & Cristóbal N. Aguilar. (2010). Biological efficiency of polyphenolic extracts from pecan nuts shell (Carya illinoensis), pomegranate husk (Punica granatum) and creosote bush leaves (Larrea tridentata Cov.) against plant pathogenic fungi, Industrial Crops and Products, Vol. 31, No. 1, (January, 2010), pp. (153-157), ISSN: 0926-6690 Pasini, C., D'Aquila. F., Curir, P. & Lodovica, G. M. (1997). Effectiveness of antifungal compounds against rose powdery mildew (Sphaerotheca pannosa var. rosae) in glasshouses, Crop Protection, Vol. 16, No. 6, (May, 1997), pp. (251-256), ISSN: 02612194 Pattnaik, S., Subramanyam, V.R. & Kole, C.R. (1996). Antibacterial and antifungal activity of ten essential oils in vitro, Microbios, Vol. 86, No. 349, pp. (237–46), ISSN: 0026-2633 Pattnaik, S., Subramanyam, V.R., Bapaji, M. & Kole, C.R. (1997). Antibacterial and antifungal activity of aromatic constituents of essential oils, Microbios, Vol. 89, No. 358, pp. (39–46), ISSN: 0026-2633 Pinto, E., Pina-Vaz, C., Salgueiro, L., Goncalves, M.J., Costa-de-Oliveira, S., Cavaleiro, C., Palmeira, A., Rodrigues, A. & Martinez-de-Oliveira, J. (2006). Antifungal activity of the essential oil of Thymus pulegioides on Candida, Aspargillus and dermatophyte species, Journal of Medical Microbiology, Vol. 55, No. 10, (Octuber, 2006), pp. (1367– 73), ISSN: 0022-2615 Pinto, E., Ribeiro, S.L., Cavaleiro, C., Palmeira, A. & Gonçalves, M.J. (2007). In vitro susceptibility of some species of yeasts and filamentous fungi to essential oils of Salvia officinalis, Industrial Crops and Products, Vol. 26, No. 2, (August, 2007), pp. (135-141), ISSN: 0926-6690 Pitarokili, D., Couladis, M., Petsikos-Panayotarou, N. & Tzakou, O. (2002). Composition and antifungal activity on soil-borne pathogens of the essential oil of Salvia sclarea from Greece, Journal of Agricultural and Food Chemistry, Vol. 50, No. 23, (November, 2002), pp. (6688–6691), ISSN: 0021-8561 Pomilio, A.B., Buschi, C.A., Tomes, C.N. & Viale, A.A. (1992). Antimicrobial constituents of Gomphrena martiana and Gomphrena boliviana, Journal of Ethnopharmacology, Vol. 36, No. 2, (April, 1992), pp. (155–161), ISSN: 0378-8741 104 Fungicides for Plant and Animal Diseases Pyun, M.S. & Shin, S. (2006). Antifungal effects of the volatile oils from Allium plants against Trichophyton species and synergism of the oils with ketoconazole, Phytomedicine, Vol. 13, No. 6, (june, 2006), pp. (394–400), ISSN: 0944-7113 Quetin-Leclercq, J., Favel, A., Balansard, G., Regli, P. & Angenot, L. (1995). Screening for in vitro antifungal activities of some indole alkaloids, Planta Medica, Vol. 61, No. 5, (October, 1995), pp. (475–7), ISSN: 0032-0943 Rahman, A.U., Ashraf, M., Choudhary, M.I., Rehman, H.U. & Kazmi, M.H. (1995). Antifungal aryltetralin lignans from leaves of Podophyllum hexandrum, Phytochemistry, Vol. 40, No. 2, (September, 1995), pp. (427–31), ISSN: 0031-9422 Rahman, A.U., Nasreen, A., Akhtar, F., Shekhani, S., Clardy, J., Parvez, M. & Choudhary, M.I. (1997). Antifungal diterpenoid alkaloids from Delphinium denudatum, Journal of Natural Products, Vol. 60, No. 5, (May, 1997), pp. (472–474), ISSN: 0163-3864 Rodilla, J.M., Silva, L.A., Martinez, N., Lorenzo, D., Davyt, D., Castillo, L., Giménez, C., Cabrera, R., González-Coloma, A., Zrostlíková, J. & Dellacassa, E. (2011). Advances in the identification and agrochemical importance of sesquiterpenoids from Bulnesia sarmientoi essential oil, Industrial Crops and Products, Vol. 33, No. 2, (March, 2011), pp. (497-503), ISSN: 0926-6690 Romagnoli, C., Bruni, R., Andreotti, E., Rai, M.K., Vicentini, C.B. & Mares, D. (2005). Chemical characterization and antifungal activity of essential oil of capitula from wild India Tagetes patula L, Protoplasma, Vol. 225, No. 1-2 , (April, 2005), pp. (57–65), ISSN: 0033-183X Roy, S. & Chatterjee, P. (2010). A non-toxic antifungal compound from the leaves of Catharanthus roseus characterized as 5-hydroxy flavone by UV spectroscopic analysis and evaluation of its antifungal property by agar-cup method, Industrial Crops and Products, Vol. 32, No. 3, (November, 2010), pp. (375-380), ISSN: 0926-6690 Saad, H.E., El-Sharkawy, S.H. & Shier, W.T. (1995). Biological activities of pyrrolidinoindoline alkaloids from Calycodendron milnei, Planta Medica, Vol. 61, No. 4, (August, 1995), pp. (313–6), ISSN: 0032-0943 Salgueiro, L.R., Pinto, E., Goncalves, M.J., Pina-Vaz, C., Cavaleiro, C. Rodrigues, A.G., Palmeira, A., Costa-de-Oliveira, S. and Martinez-de-Oliveira, J. (2004) Chemical composition and antifungal activity of the essential oil of Thymbra capitata, Planta Medica, Vol.70, No. 6, (June, 2004), pp. (572–575), ISSN: 0032-0943 Schultz, T.P., Boldin,W.D., Fisher, T.H., Nicholas, D.D., Murtrey, K.D. & Pobanz, K. (1992) Structure–fungicidal properties of some 3- and 4-hydroxylated stilbenes and bibenzyl analogues. Phytochemestry, Vol. 31, No. 11, (November, 1992), pp. (3801–6), ISSN: 0031-9422 Sepúlveda, J. G., Porta, D. H. & Rocha, S. M. (2003). La participación de los metabolitos secundarios en la defensa de las plantas, Rev. Mex. Fitopatol., Vol. 21, No. 3, (Diciembre, 2003), pp. (355-363), ISSN: 0185 3309 Simeon, S., Rios, J.L. and Villar, A. (1990) Antimicrobial activity of Annona cherimolia stem bark alkaloids. Pharmazie, Vol. 45, No. 6, (June, 1990), pp. (442–3), ISSN: 0031-7144 Smirnov, V.V., Bondarenko, A.S. & Prikhodko, V.A. (1998). Antimicrobial activity of sesquiterpene phenol from Bidens cernua, Fitoterapia, Vol. 69, No. 1, pp. (84–5), ISSN: 0367-326X Antifungal Properties of Bioactive Compounds from Plants 105 Stuardo M & San Martín R. 2008. Antifungal properties of quinoa Chenopodium quinoa Willd) alkali treated saponins against Botrytis cinerea, Industrial Crops and Products, Vol. 27, No. 3, (May, 2008), pp. (296-302), ISSN: 0926-6690 Swain T. (1979). Tannins and lignins. In Herbivores: their interactions with secondary plant metabolites (G.A. Rosenthal & D.H. Janzen, eds.). Academic Press, New York, pp. (657-682) Swain, T. (1979). Tannins and Lignins. In: Rosenthal, G. A., Janzen, D. H. (ed.) Herbivores, their interaction with secondary plant metabolites, Academic Press. New York, p. 657- 682), ISSN: Taiz, L & Zeiger, E. (2002). Plant physiology, Third edition. Sinauer Assoc. 690 p. ISSN: 87893-823-0, USA Tegegne, G., Pretorius, J.C. & Swart, W.J. (2008). Antifungal properties of Agapanthus africanus L. extracts against plant pathogens, Crop Protection, Vol. 27, No. 7, (July, 2008), pp. (1052-1060), ISSN: 0261-2194 Tirillini, B., Velaquez, E.R. & Pellegrino, R. (1996). Chemical composition and antimicrobial activity of essential oil of Piper angustifolium, Planta Medica, Vol. 62, No. 4, (Augost, 1996), pp. (372–3), ISSN: 0032-0943 Tomas-Barberan, F.A., Msonthi, J.D. & Hostettmann, K. (1988). Antifungal epicuticular methylated flavonoids from Helichrysum nitens. Phytochemistry, Vol. 27, No. 3, pp. (753–5), ISSN: 0031-9422 Tsai, I.L., Lion, Y.F. & Lu, S.T. (1989). Screening of isoquinoline alkaloids and their derivatives for antibacterial and antifungal activities, Kaohsiung Journal of Medical Sciences, Vol. 5, No. 3, (March, 1989), pp. (132–45), ISSN: 1607-551X Van Puyvelde, L.V., De Kimpe, N., Costa, J., Munyjabo,V., Nyirankuliza S., Hakizamungu, E. & Niceas Schamp. (1989). Isolation of Flavonoids and a Chalcone from Helichrysum odoratissimum and Synthesis of Helichrysetin, Journal of Natural Products, Vol. 52, No, 3, (May, 1989), pp. (629-633), ISSN: 1557-1676 Vargas-Arispuro, I., Reyes-Báez, R., Rivera-Castañeda, G., Martínez-Téllez, M.A. & RiveroEspeje, I. (2005). Antifungal lignans from the creosotebush (Larrea tridentata), Industrial Crops and Products, Vol. 22, No. 2, (September, 2005), pp. (101-107), ISSN: 0926-6690 Veloz-García, R., Marín-Martínez, R., Veloz-Rodríguez, R., Rodríguez-Guerra, R., TorresPacheco, I., González-Chavira, M.M., Anaya-López, J.L., Guevara-Olvera, L., Feregrino-Pérez, A.A., Loarca-Piña, G., & Guevara-González, R.G. (2010). Antimicrobial activities of cascalote (Caesalpinia cacalaco) phenolics-containing extract against fungus Colletotrichum lindemuthianum, Industrial Crops and Products, Vol. 31, No. 1, (January, 2010), pp. (134-138), ISSN: 0926-6690 Weidenborner, M., Hindorf, H., Jha, H.C. & Tsotsonos, P. (1990). Antifungal activity of flavonoids against storage fungi of the genus Aspergillus, Phytochemistry, Vol. 29, No. 4, (May, 1990), pp. (1103–1105), ISSN: 0031-9422 Wilson, C. L., Solar, J. M., Ghaouth, A. E. & Wisniewski, M. E. (1997). Rapid evaluation of plant extracts and essential oils for antifungal activity against Botrytis cinerea, Plant Disease, Vol. 81, No. 2, (Febrary, 1997), pp. (204-210), ISSN: 0191-2917 Wink, M & Schimmer, O. 2010. Annual Plant Reviews (2009) 39: 21–161: Biochemistry of Plant Secondary Metabolism. Second edition, A John Wiley & Sons, Ltd., Publication, 433 p. doi: 10.1002/9781444318876.ch2. 106 Fungicides for Plant and Animal Diseases Zabka, M., Pavela, R. & Slezakova, L. (2009). Antifungal effect of Pimenta dioica essential oil against dangerous pathogenic and toxinogenic fungi, Industrial Crops and Products, Vol. 30, No. 2, (September, 2009), pp. (250-253), ISSN: 0926-6690 Zhang, Z.Y., Dai G.H., Zhuge Y.Y. & Li Y.B. (2008). Protective effect of Robinia pseudoacacia Linn1 extracts against cucumber powdery mildew fungus, Sphaerotheca fuliginea, Crop Protection, 27, No. 6, (June, 2008), pp. (920-925), ISSN: 0261-2194 Zhao, W., Wolfender, J.L., Hostettmann, K., Xu, R. & Qin, G. (1998). Antifungal alkaloids and limonoid derivatives from Dictamnus daysycarpus, Phytochemistry, 47, No. 1, (January, 1998), pp. (7–11), ISSN: 0031-9422