Academia.eduAcademia.edu
Boll. Mus. Ist. Biol. Univ. Genova, 77, 2015 1 –——————————————————————————————————– MACROFUNGI IN THE HISTORICAL “HANBURY” BOTANICAL GARDENS (LIGURIA, NW ITALY): A PRELIMINARY CHECK-LIST ELIA AMBROSIO1*, MAURO GIORGIO MARIOTTI2,3,4, ELENA ZAPPA2,3, STEFANO FERRARI3, MIRCA ZOTTI1 1 Laboratory of Mycology, Department of Earth, Environment and Life Science (DISTAV), University of Genoa, Corso Europa 26, 16136 Genova, Italy. 2 Polo Botanico Hanbury, University of Genoa, Corso Dogali, 1 M, I 16136 Genova, Italy. 3 Hanbury Botanical Gardens, Corso Montecarlo, 43 La Mortola, 18039 Ventimiglia (IM), Italy. 4 Department of Earth, Environment and Life Science (DISTAV), University of Genoa, Corso Europa 26, 16136 Genova, Italy *Correspondence to: elia.ambrosio@edu.unige.it/elly1006@hotmail.it ABSTRACT This paper presents the results of the study on the mycoflora of a botanical garden located in Liguria (NW Italy). Mycological investigations were performed to list the presence of both epigeous and hypogeous macrofungal species in the historical Hanbury Botanical Gardens. The results show that several interesting and uncommon species, especially among hypogeous fungi, occur in the site. Ectomycorrhizal species and soil saprotrophs were more numerous than woody decaying and parasite fungi. This site, declared a Regional Protected Area and a Site of Community Importance for its high plant biodiversity, also constitutes an interesting area from a mycological perspective. Due to the importance of fungi in terrestrial ecosystems functioning and their potential interactions with plants, further studies should be planned in order to increase knowledge on the fungal components that can are present in botanical gardens. KEY WORDS Fungi; check-list; historic gardens; conservation. Boll. Mus. Ist. Biol. Univ. Genova, 77, 2015 2 –——————————————————————————————————– INTRODUCTION Botanical gardens are known for being “an institution holding documented collections of living plants for the purposes of scientific research, conservation, display and education” (BGCI, 1987). Hosting a large collection of plants, derived from different geographical areas around the world, botanical gardens are recognized as having a key role in global plant conservation (Hulme, 2011). It has been estimated that within the current 2.500 existing botanical gardens there are almost 10.000 living plants, many of which are threatened or are already extinct in the world (see www.bgci.org; Oldfield, 2010). International agreements that deal with biodiversity conservation, such as the Convention on Biological Diversity (CBD, 1992) and the Global Strategy for Plant Conservation (GSPC, 2002), remark on the importance of botanical gardens for ex situ conservation actions in the gardens. Focusing on the biodiversity of botanical gardens, very little or no information is available on other organisms, beyond plants, that might be present. Plants for instance, engage in intimate relationships with fungi forming a symbiotic association in which both partners are likely to benefit. One of the most important symbiosis type is called “mycorrhizae” where fungi live on (“ectomycorrhizae”) and in (“endomycorrhizae”) the plant roots. In this case both the plant and the fungus depend on this relationship to develop and survive (Mueller, 2004; Deacon, 2006). It is estimated that as many as 90% of all plants depend on mycorrhizae to survive and this symbiosis type probably enabled plants to colonize land around 450 million years ago (Amaranthus, 1999; Tedersoo et al., 2010). A large number of fungi are adapted to grow as parasites on plants, obtaining some or all of the nutrients from the living tissues of their host. Parasitic fungi affect both wild and cultivated plants, sometimes causing extensive damage that can be very costly for the Boll. Mus. Ist. Biol. Univ. Genova, 77, 2015 3 –——————————————————————————————————– agricultural and horticultural industries. Some of these fungi include rusts, smuts and moulds, but can also include macrofungi (Kirk at al., 2008) like the forestry pests belonging to Armillaria (Fr.) Staude genus (Deacon, 2006). The importance of fungi for a plants survival and benefits that fungi bring, make essential to know more about the mycobiota (Kirk et al., 2008) of an habitat. Fungi play a crucial role in terrestrial ecosystems (e.g. nutrients cycles, nutrients transport, decomposition) and they establish important symbiotic (mutualistic or pathogenic) interactions with plants. Actually, to the best of our knowledge, no information is available on the macrofungal component associated with botanical gardens. This lack of knowledge encouraged us to carry out mycological surveys in a historical botanical garden located in Liguria (North-west Italy), with the aim of listing the macrofungal species. In the past, this Ligurian site has been studied once before by Professor O. Penzig (Penzig, 1884) on the presence of fungal species. MATERIALS AND METHODS Study area The historical “Hanbury” Botanical Gardens (GBH; Fig. 1) are located in Liguria (NW Italy) on the promontory of “Capo Mortola”, in the province of Imperia, a few kilometers from the boundary between Italy and France. These gardens were founded in 1867 when Sir Thomas Hanbury bought the ancient “Palazzo Orengo” and the adjacent piece of land in order to transform them into an acclimatization garden of exotic plants (Campodonico, 2010; Profumo, 2010). The gardens cover over 19 hectares, of which about half of this surface is cultivated with plants from different areas with subtropical or warm-temperate climates; whereas, the other half is characterized by semi-natural Mediterranean vegetation, with the presence of Pinus Boll. Mus. Ist. Biol. Univ. Genova, 77, 2015 4 –——————————————————————————————————– halepensis Mill. woods and other habitats, such as the Mediterranean maquis (dominated by Quercus ilex L.) in the surrounding area. Figure 1. Hanbury Botanical Gardens. Photos by http://www.giardinihanbury.com/. GBH do not contain gardens full of borders and neat flower beds. In this site plants live “freely” and bloom, giving fruit and then produce fertile seed, thus completing the biological cycle that they have in nature. GBH currently host a collection of approximately 3500 taxa including ornamental, fruit trees and medicinal herbs. In some zones, plants were gathered together on the basis of their phytogeographic or ecological or aesthetic peculiarities, such as: the Japanese garden, the Australian forest, the collection of roses, the succulent plants, the garden of perfumes, the palms, the agaves, the aloes, the acacias, the cypress Boll. Mus. Ist. Biol. Univ. Genova, 77, 2015 5 –——————————————————————————————————– avenue, the citrus orchards, the exotic fruit, the olive avenue and the giardinetti (some pictures are shown in Figures 2 and 3). Figure 2: Hanbury Botanical Gardens pictures. Photos by http://www.giardinihanbury.com/ and by E. Zappa. Boll. Mus. Ist. Biol. Univ. Genova, 77, 2015 6 –——————————————————————————————————– Figure 3: Hanbury Botanical Gardens pictures. Photos by http://www.giardinihanbury.com/ and by E. Zappa. Boll. Mus. Ist. Biol. Univ. Genova, 77, 2015 7 –——————————————————————————————————– Due to the presence of a high number of flowering plants and the abundance and diversity of the plant species, in addition to the coexistence of different habitat types, the gardens and the immediate surroundings (including the sea-bed in front), were declared a Regional Protected Area in March 2000. A few years later Capo Mortola was declared a Site of Community Importance (SCI) under the Directive 92/43. The area enjoys a Temperate Mediterranean climate with a hot, dry summer (Rivas-Martinez, 2008). January is the coldest month (average temperature 9.2°C, average minimum temperatures 6.2°C) and the minimum temperature rarely falls below zero; August is the hottest month: the average maximum temperature is 27.9°C. It rains mostly in autumn, October is the wettest month with an average of 130 mm. The average annual rainfall is about 791.3 mm (data 1979-2014). The soil of Capo Mortola is formed by the decomposition of nummulitic limestone of the Lower Eocene period. It is heavy and clayed, in summer it becomes hard and cracks into deep fissures. In the higher part of the garden a small travertine deposit forms a sandy soil (Berger, 1912). Data collection Mycological investigations were performed during the period for favorable sporomata (Kirk et al., 2008) growth (April-June and September-November, 2009-2010 and 2012-2013), with a frequency of observation of once or twice time(s) per month. Quali- and quantitative sporomata analysis was focused on both epigeous and hypogeous macrofungal species. During the field surveys, notes on morphological characters and ecology of the fresh specimens (along with photographic documentation of sporomata), and chemical reactions (i.e. 10% KOH) on the surface and context of sporomata, were performed for the species identification. Boll. Mus. Ist. Biol. Univ. Genova, 77, 2015 8 –——————————————————————————————————– Unidentified specimens were retained and later identified in laboratory. Microscopic analyses were carried out on “free hand sections”, generally observed in pure water or in 3% KOH or in 0.1% ammoniacal Congo Red. When necessary, more specific reagents (i.e. Melzer reagent, Cresyl blue) were used for the identification of microscopical structures were used. For taxonomical identification, specific European literature was consulted (e.g. Bidaud et al., 1991-1999, 1997, 200-2004, 2005- 2008, 2009-2010, 2012; Breitenbach & Kränzlin, 1995, 2000; Basso, 1999; Robich, 2003; Neville & Poumarat, 2004; Muñoz, 2005; Parra, 2008; Antonín & Noordeloos, 2010). Systematic classification followed Hibbett et al. (2007) and Kirk et al. (2008). Nomenclature and author abbreviations were used in accordance with CABI (www.indexfungorum.org), CBS (www.cbs.knaw.nl) and IMA (www.mycobank.org). All the identified macrofungal species were inserted into a specific database called A.L.C.E. – “Advanced Liguria Check-list of Ectomycorrhizal and other fungi” in order to map their presence on regional (Liguria) and national (Italy) territory. Data analysis The recorded taxa were gathered according to the higher systematic ranks: Division, Order, and Family and the identified macrofungal species were split into functional groups as done by Tedersoo et al. (2010), based on their primary mode of nutrition: ectomycorrhizal (ECM), soil (humus or litter) saprotrophs (SHL), wood saprotrophs (SW), and parasitic (P) species. In addition, with reference to national (Onofri et al., 2005; Boccardo et al., 2008) and regional macrofungal check-lists (Zotti & Orsino, 2001; Zotti, et al., 2008; Zotti, et al. 2010; Ambrosio, et al., 2014), a value of geographic distribution was given for each species. Accordingly, all taxa were split in four classes: widespread (w) - species Boll. Mus. Ist. Biol. Univ. Genova, 77, 2015 9 –——————————————————————————————————– recorded in more than 65% of Italian territory; common (c) - species recorded in 40-65%; not common (nc) - species recorded in 20-40%; rare (r) - species recorded in less than 20% of Italian territory. RESULTS Altogether 39 species, out of which 9 Ascomycota, 29 Basidiomycota and 1 Glomeromycota, were recorded. The observed species belong to 9 different Orders, 23 Families and 32 Genera. The complete list of species is detailed in Table 1. Furthermore, some pictures are shown in Figures 4-6. Figure 4. A) Clavaria fragilis; B) Hygrocybe acutoconica; C) Pluteus salicinus; D) Pluteus romellii. Photos by E. Ambrosio. At the Order level, the majority of species belong to Agaricales and Pezizales; whereas Tricholomataceae, Tuberaceae and Pluteaceae were the most numerous group at the Family rank. Genea, Lepista, Pluteus, Stereum and Tuber were the richest Genera in species number. Boll. Mus. Ist. Biol. Univ. Genova, 77, 2015 10 –——————————————————————————————————– Table 1. List of the recorded species. For each taxon, the following data are given: authors names, higher systematic rank (Division, Order and Family), trophic group (tg) (ECM= ectomycorrhizal; SHL= soil decay (humus or litter); SW= wood decay; P= parasitic), and, range of geographic distribution (w= widespread; c= common; nc= not common; r= rarus) at national level. Habitat or growth substratum in GBH. Species are arranged in alphabetic order according to Orders, Families and Species names. Division Order Family Species Tg Basidiomycota Agaricales Amanitaceae Amanita ovoidea (Bull.) Link ECM w Basidiomycota Boletales Boletaceae Boletus subtomentosus( L.) ECM w Basidiomycota Polyporales Phanerochaetaceae SW nc Basidiomycota Phallales Phallaceae Byssomerulius corium (Pers.) Parmasto Clathrus ruber P. Micheli ex Pers. Habitat/Substratum in GBH Associated to broadleaf tree Associated to broadleaf tree Wood SHL w Soil/litter Basidiomycota Agaricales Clavariaceae Clavaria fragilis Holmsk. SHL w Soil/litter Basidiomycota Agaricales Psathyrellaceae SHL w Soil/litter Basidiomycota Hymenochaetales Hymenochaetaceae P c Basidiomycota Polyporales Ganodermataceae Coprinellus micaceus (Bull.) Vilgalys, Hopple & Jacq. Johnson Fuscoporia torulosa (Pers.) T. Wagner & M. Fisch. Ganoderma australe (Fr.) Pat. P c Basidiomycota Gomphales Gomphaceae Gautieria morchelliformis Vittad. ECM nc Wood of living tree Wood of living tree Hypogean Distribution Boll. Mus. Ist. Biol. Univ. Genova, 77, 2015 11 –——————————————————————————————————– Division Order Family Species Tg Ascomycota Pezizales Pyronemataceae Genea fragrans (Wallr.) Sacc. ECM nc Habitat/Substratum in GBH Hypogean Ascomycota Pezizales Pyronemataceae Genea verrucosa Vittad. ECM nc Hypogean Glomeromycota Glomerales Glomeraceae ECM nc Hypogean Basidiomycota Agaricales Omphalotaceae SHL c Bamboo forest Ascomycota Pezizales Helvellaceae Glomus microcarpum Tul. & C. Tul. Gymnopus aquosus (Bull.) Antonín & Noordel. Helvella acetabulum (L.) Quél. SHL c Bamboo forest Basidiomycota Agaricales Tricholomataceae SHL c Soil/litter Basidiomycota Agaricales Tricholomataceae SHL nc Soil/litter Basidiomycota Agaricales Cortinariaceae Hemimycena cucullata (Pers.) Singer Hygrocybe acutoconica (Clem.) Singer Inocybe splendens R. Heim ECM c Basidiomycota Agaricales Tricholomataceae Lepista nuda (Bull.) Cooke SHL w Associated to broadleaf tree in Holm-oak wood Soil/litter Basidiomycota Agaricales Tricholomataceae SHL c Soil/litter Basidiomycota Agaricales Mycenaceae Lepista sordida (Schumach.) Singer Mycena acicula (Schaeff.) P. Kumm. SHL nc Soil/litter Distribution Boll. Mus. Ist. Biol. Univ. Genova, 77, 2015 12 –——————————————————————————————————– Division Order Family Species Tg Basidiomycota Agaricales Psathyrellaceae SHL c Ascomycota Pezizales Pezizaceae Parasola plicatilis (Curtis) Redhead, Vilgalys & Hopple Peziza badia Pers. Habitat/Substratum in GBH Soil/litter ECM nc Bamboo forest Basidiomycota Polyporales Phanerochaetaceae SW nc Wood Basidiomycota Boletales Sclerodermataceae ECM nc Basidiomycota Agaricales Pluteaceae SW nc Associated to broadleaf tree Wood Basidiomycota Agaricales Pluteaceae Phanerochaete velutina (DC.) P. Karst. Pisolithus arhizus (Scop.) Rauschert Pluteus leoninus (Schaeff.) P. Kumm. Pluteus romellii (Britzelm.) Sacc. SW c Basidiomycota Agaricales Pluteaceae SW nc Basidiomycota Agaricales Psathyrellaceae SHL w Soil/litter Basidiomycota Gomphales Gomphaceae Pluteus salicinus (Pers.) P. Kumm. Psathyrella candolleana (Fr.) Maire Ramaria fumigata (Peck) Corner Australian forest/wood Wood ECM nc Ascomycota Pezizales Tuberaceae ECM nc Ascomycota Pezizales Pezizaceae Reddellomyces donkii (Malençon) Trappe, Castellano & Malajczuk Sarcosphaera coronaria (Jacq.) J. Schröt. Associated to broadleaf tree Hypogean ECM nc Distribution Associated to broadleaf tree Boll. Mus. Ist. Biol. Univ. Genova, 77, 2015 13 –——————————————————————————————————– Division Order Family Species Tg Distribution Basidiomycota Agaricales Schizophyllaceae Schizophyllum commune Fr. SW c Habitat/Substratum in GBH Wood Basidiomycota Russulales Stereaceae Stereum hirsutum (Willd.) Pers. SW c Wood Basidiomycota Russulales Stereaceae SW c Wood Basidiomycota Agaricales Tricholomataceae ECM c Basidiomycota Agaricales Inocybaceae Stereum ochraceoflavum (Schwein.) Sacc. Tricholoma terreum (Schaeff.) P. Kumm. Tubaria furfuracea (Pers.) Gillet SHL c Associated to broadleaf tree Soil/litter Ascomycota Pezizales Tuberaceae Tuber aestivum Vittad. ECM c Hypogean Ascomycota Pezizales Tuberaceae Tuber brumale Vittad. ECM nc Hypogean Ascomycota Pezizales Tuberaceae Tuber excavatum Vittad. ECM nc Hypogean Boll. Mus. Ist. Biol. Univ. Genova, 77, 2015 14 –——————————————————————————————————– Regarding the ecological point of view, all the identified species were split into functional groups, as follows: 16 ectomycorrhizal species (ECM), 13 soil saprotrophs (SHL), 2 parasitic (P) species and 8 wood decaying (SW) fungi. Figure 5. A) Pisolithus tinctorius; B) Gautieria morchelliformis; C) Clathrus ruber; D) Stereum hirsutum. Photos by E. Ambrosio and M. Zotti. With the reference to national and regional macrofungal checklists, a value of geographic distribution was given to each species. Accordingly, the highest percentage of species found corresponds to widespread and common species, such as: Amanita ovoidea, Boletus subtomentosus, Byssomerulius corium, Clathrus ruber, Lepista nuda, Phanerochaete velutina and Psathyrella candolleana. Boll. Mus. Ist. Biol. Univ. Genova, 77, 2015 15 –——————————————————————————————————– It is worth noting the presence of the infrequent species Clavaria fragilis, Hemimycena cucullata, Hygrocybe acutoconica, Pisolithus tinctorius, and Pluteus salicinus. Figure 6. A) Helvella acetabulum; B) Sarcosphaera coronaria; C) Tuber excavatum; D) Tuber brumale. Photos by E. Ambrosio and M. Zotti. Moreover, the numerous records of hypogeous species should be emphasized, such as Gautieria morchelliformis, Genea fragrans, G. verrucosa, Glomus microcarpum, Reddellomyces donkii, Tuber brumale, and T. excavatum. Finally, two parasitic species, Fuscoporia torulosa and Ganoderma australe, were collected. DISCUSSION The results obtained by the present study contribute to a greater knowledge of the macrofungal species diversity in the Hanbury Botanical Gardens. Considering the results achieved by Penzig (1884), only three macrofungal species were recorded in GBH in the past (see Boll. Mus. Ist. Biol. Univ. Genova, 77, 2015 16 –——————————————————————————————————– Tab. 2), such as: Agaricus (Marasmius) androsaceus, Agaricus (Amanita) leiocephalus, and, Cyphella alboviolascens. The great majority of the listed species by Penzig (Tab. 2) referred to microfungal species and plant pathogens. Hence, our results represent the first full macrofungal check-list of GBH. Table 2: List of the recorded fungal species by O. Penzig (1884). Species list Current name Agaricus (Amanita) leiocephalus DC. Agaricus (Marasmius) androsaceus L.Fr. var hygrometricus Alternaria brassicae Sacc. Alternaria tenuis Nees Antennaria elaeophila Mont. Amanita leiocephala (DC.) Pers. Ascochyta folliculorum n. sp. Ascochyta passiflorae n. sp. Ascochyta tweediana n. sp. Ascochyta ventricosa n. sp. Asteroma reticulatum DC. Chev. Capnodium footii Harv. ex Berk. & Desm. Cercospora capparidis (Corda) Sacc. Coniosporium arundinis Sacc. Cyphella alboviolascens (Alb. & Schwein.) P. Karst. Dendrodochium clavipes n. sp. Diplodia acaciae n. sp. Diplodia acicola Sacc. f. araucariae Diplodia minuscula n. sp. Diplodia passiflorae n. sp. Gymnopus androsaceus Maggiora & Trassinelli (L.) Della Alternaria brassicae (Berk.) Sacc. Alternaria alternata (Fr.) Keissl. Antennariella elaeophila (Mont.) Bat. & Cif. Ascochyta folliculorum Penz. & Sacc. Ascochyta passiflorae Penz. & Sacc. Ascochyta tweediana Penz. & Sacc. Ascochyta ventricosa Penz. & Sacc. Guignardia reticulata (DC.) Aa Dennisiella babingtonii (Berk.) Bat. & Cif. Cercospora capparis Sacc. Apiospora montagnei Sacc. Lachnella alboviolascens (Alb. & Schwein.) Fr. Dendrodochium clavipes Penz. & Sacc. Diplodia acaciae Penz. & Sacc. Diplodia acicola var. araucariae Penz. Microdiplodia minuscula (Penz. & Sacc.) Allesch. Diplodia passiflorae Penz. & Sacc. Boll. Mus. Ist. Biol. Univ. Genova, 77, 2015 17 –——————————————————————————————————– Species list Current name Diplodia phyllodiorum n. sp. Microdiplodia phyllodiorum (Penz. & Sacc.) Tassi Diplodia pinnarum Pass. Gloeosporium pseudophoma Penz. & Sacc. Gloeosporium hians Penz. & Sacc. Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. Gloniella hakeae Penz. & Sacc. Graphiola phoenicis (Moug. ex Fr.) Poit. Macrosporium trichellum (Arcang. & Sacc.) Arcang. & Sacc. Arthrinium phaeospermum (Corda) M.B. Ellis Myrothecium roridum Tode Podosphaera fuliginea (Schltdl.) U. Braun & S. Takam. Plasmopara viticola (Berk. & M.A. Curtis) Berl. & De Toni Pestalotiopsis funerea (Desm.) Steyaert Diplodia pinnarum Passer. Gloeosporella pseudo-phoma n. sp. Gloeosporium hians n. sp. Gloeosporium intermedium Sacc. Gloeosporium patella n. sp. Gloniella hakeae n. sp. Graphiola phoenicus Poit. Macrosporium trichellum Arc. et Sacc. Melanconium sphaerospermum Lk. Myrothecium roridum Tode Oidium erysiphoides Fr. Peronospora viticola Berk. et Desm. Pestalotia funerea Desm. f. araucariae Pestalotia lignicola Cooke Phoma acaciae n. sp. Phoma acicola (Moug. & Lév.) Sacc. Phoma atomospora n. sp. Phoma brevipes n. sp. Phoma hardenbergiae n. sp. Phoma millepunctata n. sp. Phoma mucipara n. sp. Phoma olea (DC.) Sacc. Phoma passiflorea n. sp. Phyllosticta tweediana n. sp. Pleospora calida n. sp. Pestalotia lignicola Cooke Phoma acaciae Penz. & Sacc. Sydowia polyspora (Bref. & Tavel) E. Müll. Phoma atomospora Penz. & Sacc. Dothiorella brevipes (Penz. & Sacc.) Petr. & Syd. Phoma hardenbergiae Penz. & Sacc. Phoma millepunctata Penz. & Sacc. Phoma mucipara Penz. & Sacc. Coleophoma oleae (DC.) Petr. & Syd. Macrophoma passiflorae McAlpine Phyllosticta tweediana Penz. & Sacc. Pleospora calida Penz. & Sacc. Boll. Mus. Ist. Biol. Univ. Genova, 77, 2015 18 –——————————————————————————————————– Species list Current name Pleospora herbarum (Pers.) Rabenh. Pleospora media Niessl Septoria mortolensis n. sp. Septoria oxyspora n. sp. Septoria petiolina n. sp. Sphaeropsis dracaenarum n. sp. Pleospora herbarum (Pers.) Rabenh. Pleospora penicillus Fuckel Septoria mortolensis Penz. & Sacc. Pseudoseptoria donacis (Pass.) B. Sutton Septoria petiolina Penz. & Sacc. Aplosporella dracaenarum (Penz. & Sacc.) Petr. Teichospora commutata Sacc. Chaetoplea inverecunda (De Not.) Checa Teichospora commutata Sacc. Teichospora inverecunda (De Not.) Sacc. Vermicularia eryngii (Corda) Vermicularia eryngii (Corda) Fuckel FuckelFuck. Vermicularia trichella Fr. Colletotrichum trichellum (Fr.) Duke Zignoella hanburiana n. sp. Zignoëlla hanburiana Penz. & Sacc. Note: the acronym “n. sp.” refers to “new species”. Despite the fact that the surveys were performed in a limited time period, interesting taxa were recorded in this site. A worthy note is the recording of very interesting and uncommon hypogeous species within Ascomycota, such as: Genea fragrans, G. verrucosa, Reddellomyces donki, Tuber aestivum, T. brumale, and T. excavatum. According to their distribution at regional scale (Zotti et al., 2010), these species are well developed in Liguria, especially in the province of Imperia (IM). More precisely, both Glomus microcarpum and Gautieria morchelliformis were recorded in Liguria only in the area of Ventimiglia (IM province) (Zotti et al., 2010). Some aphyllophoraceous species were also found, such as: Byssomerulius corium, Phanerochaete velutina and Stereum ochraceoflavum (see Tab. 1). Within the Aphyllophorales s.l. group, corticiod fungi were often overlooked in previous Ligurian mycological studies (Zotti & Orsino, 2001; Zotti et al., 2008) and scarcely investigated (and listed) at national level (Onofri et al., 2005). Hence, Boll. Mus. Ist. Biol. Univ. Genova, 77, 2015 19 –——————————————————————————————————– these records allow us to increase the knowledge on their presence and distribution in the Italian territory (Bernicchia & Gorjón, 2010; Ambrosio et al., 2014) With reference to national macrofungal check-list (Onofri et al. 2005) and report (Boccardo et al., 2008) the presence of Hygrocybe acutoconica, Pisolithus arrhizus and Ramaria fumigata should be emphasised as these specie were only recorded in few regions of Italy. At an ecological level, the majority of the recorded species belong to ECM fungal group (16 sp.) followed by soil saprotrophs (SHL= 13 sp.). The percentage of wood decaying fungi (SW) and parasitic (P) species were very low. According to several European studies on forest damage (Jakucs, 1988; Arnolds, 1991; Amaranthus, 1999; Tóth & Barta, 2010), our results, which emphasise a higher presence of ECM species than wood decaying fungi, allow us to classify this sites as a “healthy” habitat. It is worth noting the recording of Gymnopus aquosus, Helvella acetabulum and Peziza badia (Fig. 6) in the bamboo forest, as well as Pluteus romellii (Fig. 4) in the Australian forest. Despite this saprotroph species (with the exception for H. acetabulum, this being an ECM species, Tedersoo et al., 2010) are able to grow on different litter types, these findings increase the knowledge on their distributional range. These aforementioned species are described in literature (i.e. Boccardo et al., 2008) common in broadleaf habitats on the Italian territory. Finally, regarding the association of the recorded macrofungal species with the collections in GBH, it should be noted that the great majority of fungi (mainly ECM species) were recorded both in the forested areas (e.g. the Mediterranean maquis) and the exotic collections (e.g. the Australian and the bamboo forest), rather than in other habitat types or areas of GBH (Tab. 1). Boll. Mus. Ist. Biol. Univ. Genova, 77, 2015 20 –——————————————————————————————————– CONCLUSIONS Among numerous Italian and foreign gardens the Hanbury Botanic Gardens represent an exceptional climatised area where exotic plants arriving from all regions of the world, live together in the open air even though they are out of their natural environment. From our preliminary results it is possible to observe that several interesting macrofungi occur in the site also. Future mycological investigations need to be planned in order to improve the knowledge on the mycobiota of GBH and to understand if there exists a particular mycoflora associated with plant collections, as well as to investigate the presence and the correlation of fungi (e.g. endophytes) with exotic plant species. Plant conservation actions cannot be implemented without a complete knowledge on diversity and interactions between plants and other living organisms, such as fungi. ACKNOWLEDGEMENTS - This study was carried out in the framework of PhD in Applied Botany to the Agriculture and the Environment, University of Genoa. E. Ambrosio was supported by MIUR (Ministry of Education, Universities and Research – Italy) doctoral fellowship. Authors would like to thank Teresa Hunt for the text linguistic suggestions. Reviewers are also acknowledged for their useful comments and observations. REFERENCES Amaranthus M.P., 1999. The importance and conservation of ectomycorrhizal fungal diversity in forest ecosystems: lessons from Europe and the Pacific Northwest. Gen. Tech. Rep. PNWGTR-431. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest research Station, 15 pp. Ambrosio E., Cecchi G., Di Piazza S., Mariotti M.G., Zotti M., 2014. Corticioid fungi (Agaricomycetes, Basidiomycota) of Liguria (NW Italy): first contribution. Boll. Mus. Ist. Biol 76: 1-28. Antonín V., Noordeloos M. E., 2010. A Monograph of marasmioid and collybioid fungi in Europe. IHW-Verlag, 480 pp. Boll. Mus. Ist. Biol. Univ. Genova, 77, 2015 21 –——————————————————————————————————– Arnolds E., 1991. Decline of ectomycorrhizal fungi in Europe. Agriculture. Ecosystem & Environment 35: 209-244. Basso M.T., 1999. Lactarius Pers.. Fungi Europei. Vol.7. Libreria Mycoflora. Alassio (SV), 845 pp. Berger A., 1912. Hortus Mortolensis. Enumeratio Plantarum in Horto Mortolensi Cultarum. West, Newman and Co., Hatton Garden, London 1912. Bernicchia A., Gorjón S.P., 2010. Corticiaceae s.l.. Fungi Europaei 12. Ed. Candusso. Alassio, Italy, 1008 pp. BGC, 1987. Botanical Garden Conservation International. Available at: http://www.bgci.org Bidaud A., Moënne-Loccoz P., Reumaux P., Henry R., 1991-1999. Atlas des Cortinaires (Pars I-IX). Editions Fédération mycologique Dauphiné-Savoie. Marlioz. Francia. Bidaud A., Moënne-Loccoz P., Reumaux P., Henry R., 1997. Les Cortinaires hinnuloïdes, Hors-série n° 1. Editions Fédération mycologique Dauphiné-Savoie. Marlioz. Francia. Bidaud A., Carteret X., Eyssartier G., Moënne-Loccoz P., Reumaux P., 2000-2004. Atlas des Cortinaires (Pars X-XIV). Editions Fédération mycologique Dauphiné-Savoie. Marlioz. Francia. Bidaud A., Moënne-Loccoz P., Carteret X., Reumaux P., Eyssartier G., 2005-2008. Atlas des Cortinaires (Pars XV-XVII). Editions Fédération mycologique Dauphiné-Savoie. Marlioz. Francia. Bidaud A., Moënne-Loccoz P., Reumaux P., Carteret X., 2009-2010. Atlas des Cortinaires (Pars XVIII-XIX). Editions Fédération mycologique Dauphiné-Savoie. Marlioz. Francia. Bidaud A., Carteret X., Reumaux P., Moënne-Loccoz P., 2012. Atlas des Cortinaires (Pars XX). Editions Fédération mycologique Dauphiné-Savoie. Marlioz. Francia. Boccardo F., Traverso M., Vizzini A., Zotti M., 2008. Guida ai funghi d’Italia Zanichelli Editore, Bologna, 620 pp. Breitenbach J., Kränzlin F., 1995. Fungi of Switzerland. Vol. 4 Agarics 2sd part. Ed. Mykologica, Lucerne, 368 pp. Breitenbach J, Kränzlin F., 2000. Champignon de Suisse. Tome V. Champignons á lames, 3éme partie. Cortinariaceae. Mykologia, Lucerne. 340 pp. Campodonico P.G., 2010. Thomas Hambury and his garden. Boll. Mus. Ist. Biol. Genova, 72: 12-14. Boll. Mus. Ist. Biol. Univ. Genova, 77, 2015 22 –——————————————————————————————————– CBD, 1992. Convention on Biological Diversity. Available at http://www.biodiv.org/ Deacon J.W., 2006. Fungal biology. Blackwell Publishing. 380 pp GSPC, 2002. The global strategy for plant conservation. Available at: https://www.bgci.org/ourwork/gspc/ Hulme P.E., 2011. Addressing the threat to biodiversity from botanic gardens. Trends Ecol. Evol. 26 (4): 168-174. Hibbett D.S., Binder M., Bischoff J.F., Blackwell M., Cannon P.F., Eriksson O.E., Huhndorf S., James T., Kirk P.M., Lücking R., Lumbsch T., Lutzoni F., Matheny P.B., Mclaughlin D.J., Powell D.J., Redhead J., Schoch C.L., Spatafora J.W., Stalpers J.A., Vilgalys R., Aime M.C., Aptroot A., Bauer R., Begerow D., Benny G.L., Castlebury L.A., Crous P.W., Dai Y-C., Gams W., Geiser D.M., Griffith G.W., Gueidan C., Hawksworth D.L., Hestmark G., Hosaka K., Humber R.A., Hyde K., Ironside J.E., Kõljalg U., Kurtzman C.P., Larsson K-H., Lichtwardt R., Longcore J., Miądlikowska J., Miller A., Moncalvo J-M., Mozley-Standridge S., Oberwinkler F., Parmasto E., Reeb V., Rogers J.D., Roux C., Ryvarden L., Sampaio J.P., Schüßler A., Sugiyama J., Thorn R.G., Tibell L., Untereiner W.A., Walker C., Wang Z., Weir A., Weiß M., White M.M., Winka K., Yao Y-J., Zhang N., 2007. A higher-level phylogenetic classification of the Fungi. Mycol. Res. 111, 509-547. Kirk P.M., Cannon P.F., Minter D.W., Stalpers J.A., 2008. Dictionary of the Fungi. 10 edn. CAB International, Wallingford, 771 pp. Jakucs W., 1988. Ecological approach to forest decay in Hungary. Ambio 170:241-272. Muñoz A.J., 2005. Boletus s.l. Fungi Europei. Vol. 2. Edizione Candusso, Alassio (SV), 952 pp. Mueller G.M., Foster M., Bills G.F., 2004. Biodiversity of Fungi Inventory and Monitoring Methods. Academic Press, Burlington. 777 pp. Neville P., Poumarat S., 2004. Amanitae. Amanita, Limacella & Torrendia. Fungi Europaei. Vol. 9. Edizione Candusso, Alassio(SV), 1120 pp. Oldfield S., 2010. The role of botanical gardens in the third millennium. Boll. Mus. Ist. Biol. Genova, 72: 19-23. Onofri S., Bernicchia A.R., Filipello V., Padovan F., Perini C., Ripa C., Salerni E., Savino E., Venturella G., Vizzini A., Zotti M., Boll. Mus. Ist. Biol. Univ. Genova, 77, 2015 23 –——————————————————————————————————– Zucconi L., 2005. Checklist dei funghi italiani. Carlo Delfino Editore. 380 pp. Penzig O., 1884. Funghi della Mortola. Note Micologiche. Estratto dal Tomo II, Serie VI degli Atti dell’Istituto veneto di scienze, lettere ed arti. Venezia. 25 pp. Parra Sanchez L.A., 2008. Agaricus L. Allopsalliota Natura & Bas. Fungi Europaei. Parte prima. Alassio(SV), 823 pp. Profumo P., 2010. Is Thomas Hanbury’s idea of garden still alive? Boll. Mus. Ist. Biol. Genova, 72: 15-17. Rivas Martinez S., 2008. Global Bioclimatics. Available at: http://www.globalbioclimatics.org Robich G., 2003. Mycena d’Europa. Associazione Micologica Bresadola, Trento, 728 pp. Tedersoo L., May T.W., Smith M., 2010. Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20, 217-263. Tóth B.B., Barta Z., 2010. Ecological studies of ectomycorrhizal fungi: an analysis of survey methods. Fungal Divers. 45: 3-19. Zotti M., Orsino F., 2001. The check-list of Ligurian macrofungi. Fl. Medit. 11: 115–294 Zotti M., Vizzini A., Traverso M., Boccardo F., Pavarino M., Mariotti M., 2008. The macrofungal checklist of Liguria (Italy): current survey status. Mycotaxon 105: 167 – 170. Zotti M., Vizzini A., Di Piazza S., Pavarino M., Mariotti M.G., 2010. Hypogeous fungi in Liguria (Italy): distribution and ecology. Cryptogamie mycol. 31 (1): 47-57.