Academia.eduAcademia.edu
Forest Ecology and Management 150 (2001) 27±57 Structure and ¯oristic composition of ¯ood plain forests in the Peruvian Amazon I. Overstorey Gustav Nebela,*, Lars Peter Kvista, Jerome K. Vanclayb, Henning Christensenc, Luis Freitasd, Juan RuõÂze a Department of Economics and Natural Resources, The Royal Veterinary and Agricultural University, Unit of Forestry, Rolighedsvej 23, 1958 Frederiksberg C, Denmark b School of Resource Science and Management, Southern Cross University, P.O. Box 157, Lismore, NSW 2480, Australia c Aarhus University, Botanical Institute, Nordlandsvej 68, 8240 Risskov, Denmark d Instituto de Investigaciones de la Amazonia Peruana, Av. Abelardo QuinÄones Km. 2.5, Iquitos, Peru e Universidad Nacional de la Amazonia Peruana, Facultad de IngenerõÂa Forestal, Pevas 584, Iquitos, Peru Abstract Three Peruvian ¯ood plain forests adjacent to the Ucayali river were sampled using nine 1 ha permanent sample plots in which stems exceeding 10 cm DBH were identi®ed and measured. These plots were measured four times during 1993±1997. Three plots were established in each of the three forest types high restinga, low restinga, and tahuampa, characterised in part by an annual inundation of one, two and four months per year, respectively. Stem density varied from 446 to 601 per hectare, and the basal area ranged between 20 and 29 m2/ha. A total of 321 species were recorded in the nine hectare sample, with 88± 141 species in each 1 ha plot. Species composition indicated a relatively low similarity between the forest types. Plots with the longest ¯ooding contained the most species, expressed both as per unit area as well as per 1000 stems. The ¯ood plain forests contained fewer tree species than adjacent non-¯ooded terra ®rme forest. Family importance values were calculated for each forest. In all three forests Leguminosae, Euphorbiaceae, Annonaceae and Lauraceae were important. The Moraceae family was conspicuous in both high restinga and low restinga. The Arecaceae and Meliaceae were notable in high restinga, as was Rubiaceae in low restinga. Lecythidaceae, Sapotaceae, and Chrysobalanaceae exhibited relatively high values in the tahuampa forest. High species importance values were obtained for Maquira coriacea, Guarea macrophylla, Terminalia oblonga, Spondias mombin, Ceiba pentandra, Hura crepitans, Eschweilera spp., Campsiandra angustifolia, Pouteria spp., Licania micrantha, Parinari excelsa, and Calycophyllum spruceanum. Among the species of smaller stature, Drypetes amazonica, Leonia glycicarpa, Theobroma cacao, and Protium nodulosum attained high values. # 2001 Elsevier Science B.V. All rights reserved. Keywords: Wetlands; Family importance value; Species importance value; Biodiversity; Species richness; Species evenness 1. Introduction * Corresponding author. Tel.: ‡45-35-28-22-32; fax: ‡45-35-28-26-71. E-mail address: gne@kv1.dk (G. Nebel). Although many quantitative ecological inventories have been undertaken in lowland Amazonian moist forests (e.g. Uhl and Murphy, 1981; Boom, 1986; 0378-1127/01/$ ± see front matter # 2001 Elsevier Science B.V. All rights reserved. PII: S 0 3 7 8 - 1 1 2 7 ( 0 0 ) 0 0 6 8 0 - 0 28 G. Nebel et al. / Forest Ecology and Management 150 (2001) 27±57 Rankin-de-MeÂrona et al., 1992; Valencia et al., 1994; and references in Table 1), their complexity and extent (approximately 613 million hectares; Eden, 1990) warrant further studies, in part because such data are a prerequisite for conservation and management (Hubbell and Foster, 1992; Hubbell, 1995; Whitmore, 1995). The present study contributes basic data on ¯oristic composition and structure of ¯ood plain forests of the lower RõÂo Ucayali region in the Peruvian Amazon. Flood plain forests were selected for the study because they are of considerable socio-economic importance (e.g. Hiraoka, 1985; Phillips, 1993; Kvist et al., 2001a), and provide considerable amounts of timber harvested in the Amazon (Macedo and Anderson, 1993; Ros-Tonen, 1993; Barros and Uhl, 1995). The study forms part of a research project aiming to provide knowledge on ecological, socio-economic, and management aspects of Peruvian ¯ood plain forests. Permanent sample plots provide the basis for ¯oristic and structural studies, and for studies and models of forest dynamics. Trees identi®ed within the plots also formed the basis for interviews with local informants about the use-values of different tree species on the ¯ood plains (Kvist et al., 1995; Kvist et al., 2001a,b). Three permanent sample plots were established at each of three locations, representative of three ¯ood plain forest types (EncarnacioÂn, 1985; EncarnacioÂn, 1993; Freitas, 1996a). To facilitate comparison with other studies, considerations in this paper are restricted to the overstorey, which in this case is de®ned as plant individuals equal to or larger than 10 cm diameter at breast height (DBH). The ¯oristic composition and structure of the understorey in restinga forests is described by Nebel et al. (2001). Table 1 summarises some of the existing ¯oristic and structural data from Amazonian ¯ood plain forests, and shows the considerable variability of these forests. 2. Study area The study was undertaken in the northeastern Peruvian department of Loreto, part of the Amazonian lowland. Permanent sample plots were established in the zones of Braga±Supay and Lobillo, which are located approximately 10 km east of the municipal town of Jenaro Herrera (48550 S, 738440 W). General aspects of the study area, including a key to ¯ood plain vegetation types, are described by Kvist and Nebel (2001). LopeÂz and Freitas (1990) reported that the vegetation in the Braga±Supay and Lobillo zones was riverine forest associated with ¯ood plain levees, while Lamotte (1990) described ¯oristic composition and forest succession in relation to landscape forms on an island located in the RõÂo Ucayali close to the study area. The vegetation studied at Braga±Supay was high and low restinga forest, while that at Lobillo was tahuampa forest (Kvist and Nebel, 2001). All the forests appeared to be undisturbed by humans, although trees of the most valuable commercial species may have been logged some decades ago. During high water, starting in September and peaking in April (Fig. 1), both sites are inundated by white water ¯owing in from the turbid RõÂo Ucayali. The approximate level of the terrain within the three forest types is indicated in Fig. 1, where a relative scale contrasts topography with corresponding average, maximum and minimum monthly water levels in the RõÂo Ucayali at Jenaro Herrera from September 1987 to February 1997. During this period the average annual ¯ooding in the high restinga, low restinga, and tahuampa sites was around one month, two months, and four months, respectively. The pattern of water level ¯uctuations at Jenaro Herrera resembles observations from the Amazon river at Iquitos (Kvist and Nebel, 2001). Junk (1989) and Irion et al. (1997) stress that in an ecological context unusually long periods of wetness or dryness are probably much more decisive than the average water ¯uctuations. Soils at the three study sites were entisols (Andersen, 1995): on the high and low restinga Typic Hydraquents, and in the tahuampa forest Tropic Fluvaquent. They were characterised by little faunal activity in all horizons. An upper A horizon of 5±10 cm lay above a B horizon stretching down to approximately 150 cm. The B horizon had a high clay content (generally exceeding 50%), but the fraction of sandy material increased with depth. In two of the pro®les a sudden change to almost pure sandy material was observed at approximately 100 cm depth, indicating that the particle size distribution is in¯uenced by the river dynamics in the area. Table 2 shows results from Table 1 Summary of some botanical inventories in Amazonian wetland forestsa Source Location and forest type MamirauaÂ, restinga alta Ayres (1995) MamirauaÂ, restinga baixa Ayres (1995) MamirauaÂ, igapo AnÄangu, vaÂrzea BeleÂm, igapoÂb Rio Xingu, vaÂrzeac Rio Orinoco, vaÂrzea Cocha Cashu, vaÂrzea Braga±Supay, bosque riberenÄo Itahuaya, bosque latifoliado de restinga de tahuampa Itahuaya, bosque latifoliado de bajeal de tahuampa Itahuaya, palmeral de tahuampa Yanamono, tahuampa Mishana, floodplain Mishana, tahuampa Rio Negro, igapo Ilha de Marchantaria, vaÂrzea GuamaÂ, vaÂrzea GuamaÂ, vaÂrzea Manaus, vaÂrzea Ilha de Marchantaria, vaÂrzea Taruma mirõÂm, igapo Braga±Supay, high restinga Braga±Supay, low restinga Lobillo, tahuampa Balslev et al. (1987) Black et al. (1950) Campbell et al. (1986) Colonnello (1990) Foster (1990) Freitas (1996a) Freitas (1996a) Freitas (1996a) Freitas (1996a) Gentry (1988) Gentry (1988) Gentry (1988) Keel and Prance (1979) Klinge et al. (1989), unpublishedd Pires and Koury (1959)d Pires and Koury (1959)e Revilla (1989)d Worbes (1983, 1986) Worbes (1983, 1986) This paper This paper This paper 16  0.0625 ha, 25 m  25 m or 10 m  62.5 m 16  0.0625 ha, 25 m 25 m or 10 m  62.5 m 1, ± 1, 2100 m transect of 105 points 1, 100 m  100 m 0.5, 10 m  500 m 4  0.05 ha, 10 m  50 m 5  1 ha, 100 m  100 m 8  1 ha, 100 m  100 m 3  1 ha, 100 m  100 m DBH/H min (dl) Lianas () Number of Basal area (m2/ha) Individuals Families Absolute Per hectare Genera Species 10 cm ‡ 49.8 580 580 35 ± 135 10 cm ‡ 32.6 416 416 35 ± 109 10 cm 10 cm 10 cm 10 cm 2m 30 cm 10 cm 10 cm ‡ ‡ ‡ 33.9 35.5 546 420 564 220 327 66±86 36 44 28 17 92 51 29 ‡ ‡ 24.1 22.0 546 420 564 440 1308 66±86 510 522 38 31 110 74 119 149 60 40 34 7±42 147 98 3  1 ha, 100 m  100 m 10 cm ‡ 24.5 517 33 94 123 4  1 ha, 100 m  100 m 10  0.01 ha, 2 m  50 m 10  0.01 ha, 2 m  50 m 10  0.01 ha, 2 m  50 m 12  0.015 ha, 10 m  15 m 10 cm 2.5 cm 2.5 cm 2.5 cm 1m 10 cm 8 cm 10 cm 5 cm 5 cm 5 cm 10 cm 10 cm 10 cm ‡ ‡ ‡ ‡ ‡ ‡ ? ? ‡ ‡ ‡ ‡ ‡ ‡ 32.7 490 28 51 58 40 18 50 58 163 249 168 54 1 3.8, 100 m  380 m 15  1 ha, 100 m  100 m 0.21 0.21 3  1 ha, 100 m  100 m 3  1 ha, 100 m  100 m 3  1 ha, 100 m  100 m 31.4 ‡ 60.0 37.1 24.7 22.6 27.7 1028 5711 737 1837 32411 167 172 1367 1697 1560 484 2160 795 819 456 566 520 21 >60 22 20 45 46 49 34 79 31 53 107 236 33 61 146 202 195 G. Nebel et al. / Forest Ecology and Management 150 (2001) 27±57 Ayres (1995) Sample size and shape a Forest type classi®cation according to authors. According to Keel and Prance (1979) this forest was erroneously classi®ed as igapoÂ: the correct classi®cation is vaÂrzea. c According to Klinge et al. (1989) this forest was erroneously classi®ed as vaÂrzea: the right classi®cation is igapoÂ. d Cited from Klinge et al. (1989). e Cited from Campbell et al. (1986). b 29 30 G. Nebel et al. / Forest Ecology and Management 150 (2001) 27±57 Fig. 1. Average (solid line), maximum and minimum monthly relative water levels in the RõÂo Ucayali at Jenaro Herrera (48550 S, 738440 W) during the period September 1987 to February 1997. The corresponding elevation is also shown for the forests of the high restinga (short dashes), the low restinga (long dashes) and the tahuampa (dotted). analyses of horizons in the soil pro®les of the three forests. These results are comparable to vaÂrzea soil properties reported from the Brazilian Amazon by Furch (1997). 3. Materials and methods Between July and November 1993 nine 1 ha permanent sample plots were established. Six of these were located in the restinga forests at Braga±Supay, with three plots in the low, and three in the high restinga. Three plots were established in tahuampa forest at Lobillo. Plots were 100 m  100 m, except for one plot in the high restinga which was 80 m  125 m to conform with the topography at the location. Trees and lianas bigger than 8.5 cm were numbered with aluminium tags and their coordinates and DBH were measured. We chose a girth limit well below that desired for our analyses (10 cm DBH) to ensure the availability of at least one prior measurement for all recruits. Many of the palms retained leaf bases, and the diameter of these trees could not be determined by direct measurement. In such cases, we used the average DBH of conspeci®c trees without leaf bases. The total and commercial bole heights were estimated for all trees. In addition crown position and crown form were evaluated according to Dawkins classi®cation (Alder and Synnott, 1992). All individuals were identi®ed in the ®eld during plot establishment. Voucher specimens were collected from individuals where a proper ®eld identi®cation could not be made (approximately 62% of the individuals represented). These specimens were identi®ed at the Herbarium at the University of Aarhus (AAU) in Denmark. For most of the families and genera the specimens were sent to taxonomic specialists for identi®cation. Individuals that died during the period from plot establishment to collection took place, where it has not yet been possible to make an identi®cation, or where the voucher has been lost were recorded as unidenti®ed at family, genera or species level. Doublets were collected from most of the individuals and deposited at the Centro de Investigaciones Jenaro Herrera, at the Herbarium Amazonense in Iquitos (AMAZ), and at the University of San Marcos in Lima (USM). Table 2 Selected physical and chemical properties of soil pro®les in high restinga, low restinga, and tahuampaa Depth (cm) Horizon pH KCl P (mixed acid method) (mg/kg) NH4OAc extractable Ca (cmol‡/kg) Mg (cmol‡/kg) K (cmol‡/kg) Na (cmol‡/kg) KCl extractable Al3‡ (cmol‡/kg) 2‡ 2‡ ‡ ‡ ECEC High restinga 5 17 45 93 118 180 A Bw Bw Bs Bs2 C 5.2 5.6 5.5 5.5 6.1 6.3 4.3 4.1 3.8 3.9 4.7 5.0 3.17 0.73 0.41 0.34 0.19 0.17 14.48 30.02 28.49 40.82 188.44 178.19 16.72 14.79 14.35 12.57 2.04 2.59 3.25 3.33 5.08 5.32 0.73 0.66 0.30 0.26 0.29 0.40 0.07 0.05 0.34 0.26 0.33 0.23 0.07 0.07 0.30 0.48 1.49 1.12 0.25 0.22 20.91 19.11 21.54 19.64 3.14 3.58 Low restinga 8 35 73 108 157 190 A Bs Bs2 Bs3 Bs4 C 5.0 5.6 5.9 6.6 7.2 7.5 4.1 4.6 4.8 5.0 5.9 6.1 2.11 0.55 0.36 0.43 0.35 0.37 33.11 38.57 49.43 54.74 89.69 120.18 12.08 10.88 11.35 13.25 10.16 10.24 1.99 2.27 3.84 4.66 3.47 3.33 0.23 0.24 0.19 0.22 0.24 0.27 0.34 0.23 0.16 0.17 0.16 0.17 0.57 0.13 0.10 0.07 0.04 0.04 15.21 13.74 15.64 18.38 14.06 14.04 Tahuampa 10 50 87 120 162 195 A Bg Bt Bw1 Bw2 C 5.2 5.0 5.3 5.6 5.9 6.2 4.0 3.8 3.9 4.3 4.3 4.5 1.51 0.79 0.58 0.51 0.46 0.36 21.52 25.60 29.60 34.02 73.86 97.23 18.79 16.21 13.35 14.25 10.60 12.58 3.17 5.41 6.86 6.26 4.57 4.73 0.24 0.28 0.29 0.34 0.23 0.22 0.36 0.34 0.22 0.21 0.15 0.15 1.01 2.18 0.84 0.38 0.18 0.14 23.56 24.39 21.55 21.43 15.72 17.82 a G. Nebel et al. / Forest Ecology and Management 150 (2001) 27±57 H2 O Organic C (%) Based on Andersen (1995). 31 32 G. Nebel et al. / Forest Ecology and Management 150 (2001) 27±57 Family importance value (FIV) and species importance value (SIV) were calculated for individual plots, forest types as well as for all plots together. FIV and SIV were calculated from the formulae below according to Mori et al. (1983) and Curtis and McIntosh (1950, 1951), respectively. Relative diversity number of species of a family  100 ˆ total number of species of the sample Relative density number of individuals of a family  100 ˆ total number of individuals of the sample Relative dominance basal area of a family ˆ  100 total basal area of the sample FIV ˆ relative diversity ‡ relative density ‡ relative dominance Relative frequency number of sample units containing a species ˆ sample units for all species of the sample  100 Relative density number of individuals of a species  100 ˆ number of individuals of the sample Relative dominance basal area of a species ˆ  100 total basal area of the sample SIV ˆ relative frequency ‡ relative density ‡ relative dominance The number of sample units in which individuals of a species occur was used to calculate the relative frequency. In this study, the 1 ha plots were divided into 25 sample units. For unidenti®ed specimens it was assumed that they were already represented in a sample unit, and consequently they did not count in the frequency calculations. The similarity of forest types with regard to species composition was assessed using the Jaccard and Sùrensen coef®cients as described by Greig-Smith (1983) and Sùrensen (1948). A coef®cient of 1 means total similarity between communities. Jaccard coefficient number of shared species ˆ total number of species in community 1 and 2 SÖrensen coefficient 2number of shared species ˆ species of community 1‡species of community 2 4. Results 4.1. Density, basal area, species richness, and species evenness There was a considerable variation in stem number per hectare between the various 1 ha plots (446±601), with the highest density found in low restinga (Table 3). The distribution of diameters is illustrated in Fig. 2. The highest basal area was almost 28 m2/ha in the tahuampa forest, while there was approximately 24 m2/ha in the restinga forests. Fig. 3 shows the distribution of basal area by diameter classes. The height distribution of the individuals of each forest type is shown in Fig. 4. Figs. 5 and 6 indicate the distribution of individuals and tree sizes by species. Species were ordered according to their share of individuals and basal area, so that species with the highest number of individuals or basal area were counted ®rst. Thus, the species ranking differed in Figs. 5 and 6. In the tahuampa forest, a few Eschweilera species accounted for a high proportion of individuals and of basal area, re¯ecting the dominance of this genus in these forests. In all forest types, the plot of cumulative basal area (Fig. 6) curved more than the plot of tree numbers (Fig. 5), re¯ecting that the biggest trees comprised a few species, and that the smaller individuals contributed much of the biodiversity. Non-overlapping 1 ha plots established in the same vicinity within any of the three forest types were likely to have only 40±60% of the species in common. It is likely that species saturation was not reached within sample areas of one hectare, although it may indicate that these forests were not well de®ned types (Table 4). 33 G. Nebel et al. / Forest Ecology and Management 150 (2001) 27±57 Table 3 Number of families, number of species, number of individuals, and basal areas, for 1 ha plots, by forest types, and overall Families Species Basal area (m2/ha) Individuals Total Trees Total per ha Trees per ha High restinga Plot 1 Plot 2 Plot 3 45 35 38 41 146 88 101 101 139 86 98 97 456 469 446 452 451 466 442 446 24.7 25.0 23.9 25.3 Low restinga Plot 4 Plot 5 Plot 6 46 39 38 40 202 127 141 136 181 120 131 129 566 526 601 570 556 517 589 563 22.6 19.8 23.7 24.1 Tahuampa Plot 7 Plot 8 Plot 9 49 40 38 36 195 107 115 126 173 95 109 111 520 521 507 532 503 500 497 513 27.7 27.1 28.8 27.1 All plots 55 321 279 514 504 25.0 Fig. 2. Stand table showing stocking by diameter classes in high restinga (pluses), low restinga (squares), and tahuampa (triangles). No observations for tahuampa in the diameter class 120 cm. Regression lines calculated for density in DBH classes (excluding the diameter classes 10±20 and 120 cm). High restinga is represented by the solid line (N ˆ exp(6.665939±0.064113 midpoint), R2 ˆ 0:98), low restinga by the short dashes (N ˆ exp(6.337841±0.060681 midpoint), R2 ˆ 0:97), and tahuampa by the long dashes (N ˆ exp(7.079567±0.067973 midpoint), R2 ˆ 1:00). Midpoints for formulae are DBH in cm. 34 G. Nebel et al. / Forest Ecology and Management 150 (2001) 27±57 Fig. 3. Distribution of basal area by diameter classes in high restinga (pluses with solid line), low restinga (squares with short dashes), and tahuampa (triangles with long dashes). No observations for tahuampa in the diameter class 120 cm. Fig. 4. Height class distribution of individuals in high restinga (pluses with solid line), low restinga (squares with short dashes), and tahuampa (triangles with long dashes). 35 G. Nebel et al. / Forest Ecology and Management 150 (2001) 27±57 Fig. 5. Cumulative percentage of individuals as a function of the cumulative percentage of species, with data ordered by number of individuals per species. Table 4 Number (top right) and percentages (bottom left) of species shared between pairs of 1 ha plotsa Plot High restinga Low restinga Tahuampa 1 2 3 4 5 6 7 8 9 High restinga 1 2 3 (88) 55% 56% 67 (101) 51% 68 68 (101) 69 68 74 65 66 73 60 56 67 17 16 26 28 29 41 29 25 38 Low restinga 4 5 6 47% 40% 37% 43% 38% 31% 48% 43% 39% (127) 54% 49% 94 (141) 52% 86 95 (136) 37 42 49 52 57 63 47 54 56 Tahuampa 7 8 9 10% 16% 16% 8% 16% 12% 14% 23% 20% 19% 27% 23% 20% 29% 25% 25% 34% 27% (107) 47% 40% 71 (115) 42% 66 71 (126) a Actual species numbers in each plot are given in parentheses. 36 G. Nebel et al. / Forest Ecology and Management 150 (2001) 27±57 Fig. 6. Cumulative percentage of basal area as a function of the cumulative percentage of species, with data ordered by basal area per species. Table 5 shows that a considerable proportion of the total number of species identi®ed in the study were present only within one forest type. The number of unique species was highest for the tahuampa. Fifty percent of all species recorded in this study were only found within one of the forest types. Table 5 suggests that the typology adopted in this study was realistic, since around half of the species were found in only one of the forest types. Only 3% of the species were common to both high restinga and tahuampa, while 13±17% were shared between high and low restinga and between low restinga and Table 5 Distribution of species by forest typea Number of species Percentages of total species Jaccard coefficient Sùrensen coefficient a High restinga only Low restinga only Tahuampa only High and low restinga High restinga and tahuampa Low restinga and tahuampa All plots Total 24 7 47 15 87 27 55 17 8 3 41 13 59 18 321 100 ± ± ± ± ± ± ± ± ± ± 0.49 0.66 0.25 0.39 0.34 0.50 Number and percentages indicate species con®ned to the speci®ed type. Jaccard and Sùrensen coef®cients indicate similarity of the forest types. G. Nebel et al. / Forest Ecology and Management 150 (2001) 27±57 37 Fig. 7. Species±area curves for high restinga (solid), low restinga (dashed), and tahuampa (dotted) forests. Bottom extended curve (i.e. >3 ha) shows forests in the order high restinga, low restinga, and tahuampa. Upper extended curve shows forests in the order low restinga, tahuampa, and high restinga. tahuampa. This suggests that high restinga and tahuampa form ¯oristic extremes. The Jaccard and Sùrensen coef®cients indicate a low similarity in terms of species evenness, with the lowest coef®cient obtained for the high restinga and tahuampa. versus stem number (Fig. 8). Figs. 7 and 8 revealed that the difference between forests in species richness could to some extent be explained by differences in stem density. However, for equal stem densities the highest species number was still found in low restinga and tahuampa. 4.2. Species±density 4.3. Importance values Species±area curves showing the number of species recorded for different sample areas are presented in Fig. 7 for each of the three forests as well as for the three forests combined. No asymptotic tendency was evident within the three ha assessed for the individual forest types (except perhaps for high restinga). There was some suggestion that the slope of all curves decreased at about 1 ha, but this may be an artifact of sampling since non-contiguous 1 ha plots were used. When data from all three forests were combined, a steady increase in the number of species was evident, except for kinks at three and six hectares where new forest types were introduced. The number of species present within a given area may be in¯uenced by the stem density of that area, but in this study relatively similar curves were obtained from the plot of species Table 6 illustrates the relative importance of families present in the study. Corresponding values for species were given in Appendix A. 5. Discussion 5.1. Forest structure The density was highest in low restinga (566 per hectare) and lowest in the high restinga (456 per hectare). Comparable studies in other Amazonian ¯ood plain forests provided data in the range 417± 737 (Table 1), consistent with the present study, and with other studies in a broader context (e.g. Brunig, 38 G. Nebel et al. / Forest Ecology and Management 150 (2001) 27±57 Fig. 8. Species±density curves for high restinga (solid), low restinga (dashed), and tahuampa (dotted) forests. Bottom extended curve (i.e. >3 ha) shows forests in the order high restinga, low restinga, and tahuampa. Upper extended curve shows forests in the order low restinga, tahuampa, and high restinga. 1983; Bongers et al., 1988; Brinson, 1990; Lieberman and Lieberman, 1994; Richards, 1996; Thomsen, 1997). Contrary to this the basal area at Braga±Supay and Lobillo was somewhat lower than the values of more than 30 m2/ha measured in various other Amazonian ¯ood plain forests (Table 1) in Ecuador (Balslev et al., 1987) and Brazil (Worbes, 1983; Campbell et al., 1986; Worbes, 1986; Ayres, 1995). The ¯ood plain forests of the present study were at the lower end of the common range presented by Brinson (1990) for riverine forests, and compared with his average of 37.8 m2/ha. Similarly, our basal areas were consistent with those in non-¯ooded tropical rainforests (e.g. Brunig, 1983; Swaine et al., 1987; Bongers et al., 1988; Lieberman and Lieberman, 1994; Richards, 1996; Thomsen, 1997). The basal area distribution across diameter classes (Fig. 3) showed a decline in the higher diameter classes. This contrasted the observations for unlogged natural rain forests in Sarawak (Malaysia), where Korsgaard (1992) observed a close to constant share of basal area over 5 cm diameter classes in the range 10±60 cm. Assuming that a similar distribution could be present in the Braga±Supay and Lobillo ¯ood plain forests, this may be an indication that the forests were still in a succession development, or that some of the large trees were removed. The most abundant 10% of species accounted for approximately 50% of the individuals in the restinga forests and 60% in the tahuampa forest (Fig. 3). Similarly, the most dominant 10% of species accounted for 60 and 70% of the basal area, respectively. Comparable patterns were found by Balslev et al. (1987). It is worth noticing that in the tahuampa a few species accounted for more individuals and basal area than in the restinga forests in spite of a relatively high species number in this forest type. The size distribution of individuals (Fig. 2) followed the reverse J-pattern, normally observed in natural forests (e.g. Brunig, 1983; Richards, 1996). In the higher diameter classes the tahuampa forest had a higher proportion of individuals than the restinga forests, and the distribution of basal area followed a similar pattern (Fig. 3). The heights of the Braga±Supay and Lobillo forests were comparable to the Amazonian ¯ood plain forests studied in Ecuador by Balslev et al. (1987), in Venezuela by Colonnello (1990), and in Peru by Freitas (1996a). In contrast to these results a study of a ¯ood 39 G. Nebel et al. / Forest Ecology and Management 150 (2001) 27±57 Table 6 Relative density (Rel. den), relative diversity (Rel. div), relative dominance (Rel. dom) and resulting family importance values (FIV) for families present in the study area High restinga Anacardiaceae Annonaceae Apocynaceae Arecaceae Bignoniaceae Bombacaceae Boraginaceae Burseraceae Caesalpiniaceae Capparaceae Caryocaraceae Cecropiaceae Celastraceae Chrysobalanaceae Clusiaceae Combretaceae Connaraceae Convolvulariaceae Dichapetalaceae Dilleniaceae Ebenaceae Elaeocarpaceae Euphorbiaceae Fabaceae Flacourtiaceae Hippocrateaceae Icacinaceae Lacistemaceae Lauraceae Lecythidaceae Loganiaceae Malpighiaceae Melastomataceae Meliaceae Menispermaceae Mimosaceae Moraceae Myristicaceae Myrsinaceae Myrtaceae Nyctaginaceae Ochnaceae Olacaceae Phytolaccaceae Polygonaceae Proteaceae Quiinaceae Rubiaceae Sapindaceae Sapotaceae Low restinga Tahuampa Rel. den Rel. div Rel. dom FIV Rel. den Rel. div Rel. dom FIV Rel. den Rel. div Rel. dom FIV 1.17 8.92 0.29 9.44 0.15 1.46 1.46 2.12 0.44 0.51 ± 5.71 0.80 1.02 0.29 1.68 ± 0.15 0.07 0.07 0.22 0.88 10.31 4.02 1.24 ± 0.51 ± 2.19 1.32 ± 0.07 0.22 3.66 0.22 8.56 9.80 1.39 0.07 1.54 0.07 ± 0.44 ± 1.83 ± ± 2.34 0.44 4.10 2.42 6.36 0.14 18.56 0.04 5.42 0.32 0.63 0.52 0.11 ± 4.59 0.54 0.42 0.11 3.94 ± 0.03 0.03 0.02 0.05 0.37 7.53 2.07 0.79 ± 0.65 ± 0.90 1.46 ± 0.01 0.04 8.18 0.15 6.45 18.44 0.59 0.01 0.72 0.01 ± 0.21 ± 0.69 ± ± 1.27 0.08 2.29 0.94 10.14 1.18 2.83 0.06 1.06 2.24 0.82 0.24 0.12 ± 10.55 0.35 1.83 1.12 1.30 0.06 ± ± 0.06 0.12 1.12 10.90 3.71 1.53 ± 0.94 ± 4.42 2.24 ± 0.29 2.89 1.18 0.29 11.43 3.89 1.94 0.06 2.95 0.29 ± 1.24 ± 3.54 ± 0.06 3.01 1.30 3.01 1.77 7.29 0.92 2.29 0.02 5.70 1.00 0.26 0.18 0.03 ± 11.11 0.23 4.09 0.61 1.80 0.01 ± ± 0.01 0.05 1.91 7.08 2.25 1.14 ± 1.16 ± 2.53 2.38 ± 0.23 1.16 0.69 0.24 7.63 7.45 1.17 0.01 1.25 0.10 ± 2.93 ± 2.70 ± 0.01 12.72 1.46 2.05 0.13 6.41 0.64 ± ± 0.19 0.77 0.06 5.06 0.06 0.06 6.67 ± 5.90 0.45 0.45 0.06 0.32 3.08 0.06 0.19 0.83 5.51 2.44 0.06 1.03 0.06 0.06 1.92 27.18 0.26 0.19 0.32 3.01 0.13 3.85 1.99 1.03 0.06 1.99 0.06 0.45 0.32 0.06 3.85 0.13 ± 1.09 1.03 9.29 0.40 2.75 0.24 ± ± 0.77 0.36 0.02 6.81 0.01 0.51 6.01 ± 12.25 0.23 0.47 0.01 0.08 2.41 0.03 0.10 1.81 4.95 2.75 0.01 0.26 0.01 0.01 0.76 23.38 0.06 0.08 0.16 1.24 0.04 3.64 3.81 0.24 0.01 0.91 0.01 0.21 0.52 0.02 4.49 0.02 ± 1.49 0.57 12.00 1.36 6.12 0.68 2.72 1.36 2.72 0.68 0.68 2.04 0.68 ± 3.40 0.68 3.40 1.36 0.68 ± 1.36 0.68 0.68 1.36 0.68 4.76 4.08 1.36 ± 0.68 ± 4.76 2.04 ± 0.68 1.36 2.04 0.68 6.80 9.52 1.36 0.68 4.08 0.68 ± 1.36 ± 2.72 ± ± 4.76 2.04 3.40 4.95 21.41 1.12 30.72 1.55 9.61 2.46 3.43 3.00 1.30 ± 13.69 2.02 4.84 1.76 6.30 ± 1.53 0.78 0.77 1.63 1.92 22.61 10.17 3.39 ± 1.84 ± 7.85 4.81 ± 0.76 1.62 13.88 1.05 21.81 37.77 3.34 0.77 6.34 0.77 ± 2.01 ± 5.24 ± ± 8.38 2.56 9.79 1.48 6.90 0.99 1.97 0.49 2.46 0.99 0.49 1.48 0.49 ± 3.94 0.49 2.96 0.99 1.97 0.49 ± ± 0.49 0.49 1.48 3.45 6.90 3.45 ± 0.49 ± 6.40 1.97 ± 0.49 1.48 2.46 0.99 6.90 5.91 1.48 0.49 5.91 0.49 ± 1.48 ± 2.96 ± 0.49 3.94 2.96 3.45 4.19 24.32 3.09 7.08 0.57 9.23 4.22 1.58 1.89 0.64 ± 25.60 1.08 8.87 2.71 5.07 0.57 ± ± 0.56 0.66 4.51 21.43 12.86 6.12 ± 2.60 ± 13.35 6.59 ± 1.02 5.53 4.34 1.52 25.96 17.25 4.60 0.56 10.11 0.88 ± 5.64 ± 9.19 ± 0.56 19.67 5.71 8.50 1.02 6.63 1.02 ± ± 0.51 1.02 0.51 2.55 0.51 0.51 2.55 ± 5.10 1.02 2.04 0.51 1.02 0.51 0.51 1.02 2.55 3.57 7.14 0.51 2.55 0.51 0.51 6.12 2.04 1.02 1.02 1.02 2.55 0.51 6.63 4.59 1.53 0.51 7.14 0.51 0.51 1.53 0.51 3.57 0.51 ± 2.04 1.53 6.12 1.55 15.80 1.90 ± ± 1.48 2.15 0.60 14.42 0.59 1.08 15.22 ± 23.25 1.69 2.96 0.58 1.42 6.00 0.61 1.31 5.20 14.04 12.33 0.58 3.84 0.58 0.59 8.80 52.60 1.33 1.29 1.51 6.80 0.67 14.12 10.39 2.80 0.58 10.04 0.58 1.16 2.37 0.60 11.90 0.66 ± 4.62 3.13 27.42 40 G. Nebel et al. / Forest Ecology and Management 150 (2001) 27±57 Table 6 (Continued ) High restinga Rel. den Rel. div Simaroubaceae Sterculiaceae Tiliaceae Violaceae Vochysiaceae ± 2.78 0.59 5.12 0.29 ± 1.36 2.72 1.36 1.36 Low restinga Rel. dom FIV ± 1.13 0.38 1.09 0.24 ± 5.27 3.69 7.57 1.90 Tahuampa Rel. den Rel. div 0.12 0.77 0.77 0.94 0.18 plain forest at Manaus showed that almost all trees were less than 30 m high (Campbell et al., 1986). 5.2. Family importance value (FIV) Table 7 contrasts the FIVs for the ten most important families in a Brazilian vaÂrzea forest located close to Manaus (Campbell et al., 1986), in a vaÂrzea forest of the Ecuadorian Amazon (Balslev et al., 1987) and of the forests of this study. The high restinga seemed to be characterised by the palms (FIV ˆ 31), which were much less important in the low restinga, and were completely absent from the tahuampa (except for species smaller than the 10 cm DBH limit of this study). The high restinga was further characterised by a high value of the Meliaceae (FIV ˆ 14). Sapotaceae (FIV ˆ 14) and Chrysobalanaceae (FIV ˆ 23) were abundant in the tahuampa. The low restinga had features in common with the high restinga and the tahuampa, apart from the abundance of Rubiaceae (FIV ˆ 20). 0.49 0.99 1.48 0.99 0.49 Rel. dom FIV 0.02 0.25 1.06 0.28 0.76 0.63 2.01 3.30 2.20 1.43 Rel. den Rel. div ± ± 0.90 0.13 0.19 ± ± 1.02 1.02 0.51 Rel. dom FIV ± ± 2.37 0.03 0.70 ± ± 4.29 1.18 1.40 Ecuadorian ¯ood plain forests were rather similar in familial composition (Table 7); especially with the high restinga forest where seven of the ten most important families of both forests were shared and had comparable FIVs. The Brazilian ¯ood plain forest seemed considerably different from the forests of this study as well as from the Ecuadorian ¯ood plain forest (Table 7), as it was completely dominated by the families of Leguminosae, Violaceae, Tiliaceae, and Euphorbiaceae. However, studies by Worbes (1983, 1986, 1997) and Worbes et al. (1992) indicated that there is ¯oristic variation among the ¯ood plain forests of the central Amazon, as other families than the four leading mentioned by Campbell et al. (1986) were important in terms of diversity and density in igapo and vaÂrzea forests in the Manaus area. Another study of three Brazilian ¯ood plain forests at Tefe (Ayres, 1995) suggested that Leguminosae, Euphorbiaceae, Annonaceae, Lecythidaceae, and Moraceae were among the ten most abundant families. Lauraceae, Bombacaceae, and Meliaceae were much Table 7 Family importance values (FIV) for the 10 most important families in Amazonian ¯ood plain forests of Brazil (Campbell et al., 1986), Ecuador (Balslev et al., 1987), and Peru (this paper)a Campbell et al. (1986) Balslev et al. (1987) This study (High restinga) This study (Low restinga) This study (Tahuampa) Family FIV Family FIV Family FIV Family FIV Family FIV Leguminosae Violaceae Tiliaceae Euphorbiaceae Lecythidaceae Annonaceae Moraceae Sapotaceae Meliaceae Polygonacaeae 121 44 43 15 9 7 7 7 7 5 Arecaceae Moraceae Leguminosae Bombacaceae Myristicaceae Rubiaceae Meliaceae Euphorbiaceae Lecythidaceae Lauraceae 53 44 24 20 20 15 12 8 8 7 Moraceae Leguminosae Arecaceae Euphorbiaceae Annonaceae Meliaceae Sapotaceae Bombacaceae Rubiaceae Lauraceae 51 35 31 23 21 14 10 10 8 8 Moraceae Leguminosae Annonaceae Euphorbiaceae Rubiaceae Lauraceae Myrtaceae Bombacaceae Polygonaceae Chrysobalanaceae 43 41 24 21 20 13 10 9 9 9 Lecythidaceae Leguminosae Sapotaceae Moraceae Chrysobalanaceae Annonaceae Euphorbiaceae Polygonaceae Myrtaceae Lauraceae 53 41 27 26 23 16 14 12 10 9 a Moraceae includes Cecropiaceae, while Leguminosae comprises the families Caesalpiniaceae, Fabaceae, and Mimosaceae. G. Nebel et al. / Forest Ecology and Management 150 (2001) 27±57 more prevalent in the forest less exposed to ¯ooding, while Sapotaceae and Chrysobalanaceae became relatively more frequent in the forests ¯ooded for a longer period. This pattern was much like that of the forests of Braga±Supay and Lobillo. Gentry (1988) stated that Leguminosae is virtually always the most diverse family in neotropical and African lowland primary forests. Exceptions are neotropical forests on extremely rich soils where Moraceae becomes very species rich. Palm species also tend to be abundant on nutrient rich soils, whereas on poorer soils families like Burseraceae, Lauraceae, and Sapotaceae are more prevalent. The results from Braga±Supay and Lobillo were generally consistent with this pattern. However, the Moraceae added most to diversity at high restinga and became less species rich over low restinga and tahuampa. Conversely, the families of Lauraceae and Sapotaceae became increasingly species rich from high restinga over low restinga and tahuampa. All sites were nutrient rich (Table 2); consequently it appeared that the diversity verus fertility pattern observed by Gentry (1988) is related to inundation period in the Braga±Supay and Lobillo areas. Flood plain forests in Manu were ¯oristically distinct from other neotropical lowland moist forests because of the relative absence of families like Lecythidaceae, Chrysobalanaceae, Vochysiaceea, and Burseraceae (Foster, 1990). We found a similar pattern, except that several species of Chrysobalanaceae were present, especially in the tahuampa forest, where the Lecythidaceae also dominated. 5.3. Species importance value (SIV) In the high restinga, the large trees Maquira coriacea, Guarea macrophylla, Terminalia oblonga, Spondias mombin, Ceiba pentandra, and Hura crepitans were all notable and characterised by high relative dominance, especially when compared to their relative density (Appendix A). The palm species Scheelea brachyclada dominated the high restinga, which was remarkable for a monocotelydoneous species in the forests of this study. Some other notable species in the lower strata of the high restinga were Drypetes amazonica, Leonia glycicarpa, Theobroma cacao, Protium nodulosum, and several Annonaceae species. For most of the species the relative frequency was more or less equal to the relative density. 41 The tahuampa was dominated by Eschweilera turbinata and Eschweilera parvifolia, both of which had high relative densities. Some of the larger important trees in this forest were Campsiandra angustifolia, Pouteria spp., Licania micrantha, Parinari excelsa, and Luehea cymulosa, which all attained high relative dominances (cf. relative densities). These species tended to be con®ned to the tahuampa, and were associated with other important species such as Tapura sp., and Duguetia spixiana, which both had high relative densities. The species common to both tahuampa and high restinga included M. coriacea and D. amazonica. The low restinga was characterised by the comparatively high importance values for Calycophyllum spruceanum, Zygia juruana, Mouriri grandi¯ora, Alchornea schomburgkii, and Xylopia micans (Table 8). 5.4. Species richness and species evenness Amazonian ¯ood plain forests normally contain fewer species than their non-inundated counterparts of the same region (Gentry, 1982, 1986; Campbell et al., 1986; Balslev et al., 1987; Junk, 1989; Dumont et al., 1990; Freitas, 1996a, 1996b; Worbes, 1997). The studies summarised in Table 1 also recorded relatively few species. In the present study we found it tempting to compare the occurrence of 279 tree species occurring in the nine 1 ha plots in Braga± Supay and Lobillo with the results from the Arboretum of Jenaro Herrera established nearby in nine hectare of non-¯ooded natural terra ®rme forest, where a total of 386 tree species with a diameter exceeding 10 cm DBH were recorded (Spichiger et al., 1989; Spichiger et al., 1990). Since the ¯ood plain forest plots were located in three distinct habitats, the diversity may have contributed a relatively high component of species richness. This contention was supported by the number of species con®ned to one of the forest types (Table 5). The Arboretum of Jenaro Herrera was located on a more homogeneous site, so more comparable samples may indicate a greater difference in species numbers. Our results supported the general impression mentioned by other workers: that Amazonian ¯ood plain forests are less species rich per unit area than adjacent terra ®rme forest. The stresses imposed by ¯ooding (e.g. Gill, 1970; Crawford, 42 G. Nebel et al. / Forest Ecology and Management 150 (2001) 27±57 Table 8 Species selected as characteristic of forests in this study and their species importance values (calculated for 1 ha plots) High restinga Low restinga Tahuampa Plot 1 Plot 2 Plot 3 Plot 4 Plot 5 Plot 6 Plot 7 Plot 8 Plot 9 Species characteristic of all three forest types Drypetes amazonica var. peruviana 11.7 Inga stenoptera 1.97 Maquira coriacea 13.08 Pouteria reticulata 3.64 6.73 2.74 5.31 4.04 24.13 6.97 26.37 4.2 6.29 8.3 10.02 0.48 12.61 5.68 5.39 2.24 14.13 2.08 10.1 2.88 0.59 1.77 ± 5.05 2.92 3.47 3.29 5.29 10.13 4.3 9.82 4.44 1.19 2.65 6.4 7.38 10.81 3.89 4.03 9.19 5.29 10.23 8.3 5.16 4.05 3.38 1.72 7.96 4.21 2.09 4.04 4.68 8.05 2.21 ± 3.77 11.35 4.48 8.59 4.78 9.27 9.24 4.98 9.98 5.32 3.64 3.85 5.08 1.64 4.3 1.35 3.52 ± 2.41 4.82 1.58 2.45 ± ± ± ± ± ± ± ± ± 0.76 ± ± ± 3.12 0.53 ± 0.63 ± 1.41 0.52 0.56 ± ± ± ± ± ± 1.78 2.62 1.09 4.99 8.06 23.6 22.38 22.71 4.07 3.7 35.14 5.26 11.07 1.14 11.96 11.59 1.15 9.71 4.39 6.05 4.55 5.47 2.74 0.9 17.91 5.23 1.99 3.63 ± 16.94 4.81 1.2 3.76 7.8 1.38 11.78 1.07 2.01 ± 4.12 1.36 ± ± 1.31 2.92 5.38 0.97 3.44 2.81 0.52 2.36 0.51 ± 1.3 3.27 ± ± 1.33 1.31 2.14 2.43 1.96 1.74 2.19 1.57 ± ± 1.39 0.53 ± 0.92 1.52 0.51 ± 2.31 2.04 ± 3.54 ± ± ± ± ± ± ± 1.11 ± ± ± ± ± 0.56 ± ± ± ± ± ± ± 1.34 ± ± 0.54 0.66 ± ± 0.49 ± ± 0.53 ± ± ± 5.56 ± ± 0.51 5.29 ± ± ± 0.6 0.97 1.29 1.1 ± 1.25 ± ± ± 0.62 0.67 ± ± 2.34 ± 1.25 ± ± 1.29 2.78 0.81 4.53 ± 0.81 ± 1.15 2.71 0.58 ± 2.14 ± 5.61 8.19 4.61 2.73 3.66 5.19 6.46 3.95 1.49 2.32 8.49 2.16 2.59 5.81 6.56 4.66 4.22 1.95 7.64 4.82 3.32 4.76 5.03 2 2.42 3.05 5.43 3.16 5.17 3.71 2.38 11.52 3.04 0.54 ± 4.15 3.94 3.32 9.13 3.3 12.22 6.11 6.59 3.61 3.29 1.08 0.58 22.99 0.72 ± ± ± ± 1.28 ± 1.25 ± 1.75 ± ± 0.79 ± 2.94 ± 1.72 ± ± 0.59 1.23 3.35 ± 1.72 1.3 3.47 ± ± 0.78 0.56 1.71 ± 0.99 ± ± 5.31 1.63 ± ± 2.17 1.04 2.28 ± 1.12 1.25 3.61 ± ± Species characteristic of restinga forests Spondias mombin sens. Lat. Oxandra sphaerocarpa Unonopsis floribunda Xylopia sp. 1 Ceiba pentandra Cordia nodosa Pourouma acuminata Terminalia oblonga Inga nobilis 3.96 5.47 6.88 6.81 ± 4.99 4.2 9.27 7.74 Species characteristic of low restinga and tahuampa Eschweilera parvifolia 0.61 Species characteristic of high restinga Guatteria sp. 1 5.57 Astrocaryum chonta 5.75 Scheelea brachyclada 39.76 Protium nodulosum 3.93 Pourouma cecropiifolia 4.76 Hura crepitans 7.75 Pterocarpus sp. 1 6.45 Guarea macrophylla 9.82 Inga cinnamomea 4.23 Inga edulis 6.14 Sorocea steinbachii 2.48 Sarcaulus brasiliensis ssp. Brasiliensis 3.49 Theobroma cacao 9.13 Leonia glycycarpa 10.1 Species characteristic of low restinga Xylopia micans Euterpe precatoria Cecropia membranacea Licania britteniana Sloanea guianensis Alchornea schomburgkii Croton cuneatus Pterocarpus amazonum Mouriri grandiflora Inga vismiifolia Zygia juruana Virola pavonis Cathedra acuminata Coccoloba sp. 3 Triplaris amaricana Calycophyllum spruceanum ± ± 5.88 1.22 3.1 ± 1.76 ± ± ± ± 1.92 0.61 1.18 1.64 ± 43 G. Nebel et al. / Forest Ecology and Management 150 (2001) 27±57 Table 8 (Continued ) High restinga Species characteristic of tahuampa Duguetia spixiana Pseudoxandra polyphleba Campsiandra angustifolia Licania heteromorpha var. glabra Licania micrantha Parinari excelsa Tapura sp. Sapium glandulosum Eschweilera turbinata Coccoloba densifrons Coccoloba sp. 2 Pouteria procera Pouteria sp. 2 Luebea cymulosa Low restinga Tahuampa Plot 1 Plot 2 Plot 3 Plot 4 Plot 5 Plot 6 Plot 7 Plot 8 Plot 9 ± ± ± ± 0.55 ± ± 4.39 0.55 1.24 ± ± ± ± ± ± ± ± 0.63 ± 0.59 1.82 ± 1.13 ± ± 0.63 ± ± 0.67 ± ± ± ± ± 2.31 2.89 2.34 ± ± ± 0.87 ± ± ± ± ± 2.69 ± 3.42 0.8 1.56 ± 0.5 ± 3.12 2.93 1.36 ± ± ± 1.81 ± 2.79 1.39 2.8 ± 1.61 ± 1.61 4.67 0.52 ± ± ± ± ± 1.04 2.24 3.91 ± 4.13 0.79 1.08 7.52 1.37 11.6 1.7 2.85 7.71 4.35 3.65 57.79 4.11 7.72 9.45 7.68 4.37 3.85 4.93 12.59 5.64 8.45 13.73 6.89 4.26 34.66 6.2 6.7 4.62 6.65 3.35 4.91 3.22 20.48 2.51 12.02 1.16 12.8 7.92 25.92 1.01 1.67 9.51 14.65 4.82 1982; Junk, 1989; Armstrong et al., 1994), are possible causes of the relatively lower species richness of ¯ood plain forests (Brinson, 1990; Worbes, 1997). This would be in accordance with Richards (1969), who stated as a general rule that locations with relatively unfavourable growth conditions tend to be less species rich than those with more optimal conditions. Ayres (1995) and Worbes (1997) mentioned that in general the species richness increases with: (1) succession, (2) decreasing fertility, and (3) decreasing ¯ood stress. In the forests at Braga±Supay and Lobillo, located on sites with comparable soil fertility and ¯ooded by water from the same river, the species richness increased with the length of the ¯ooding period. The lowest species richness occured on the high restinga. The diameter distribution and occurrence of large individuals of non-pioneer species suggested that the forests were not of recent origin. However, the high importance value of Cecropiaceae and the presence of larger C. spruceanum in the low restinga indicated that it was relatively young; at least as compared to the high restinga forest where C. spruceanum was absent, except as regeneration in large clearings. The high restinga appeared to be a later succession stage than low restinga. However, its lower species richness was at odds with the proposition of Ayres (1995) and Worbes (1997). Notwithstanding this example, other ¯ood plain sites in the region with poor drainage do tend to be more speciespoor (Freitas, 1996a). Acknowledgements Thanks to Aristides Vasquez, Nitzen Saavedra, David Maytahuari, Fransisco Cachique, and Julio Irarica for ®eld assistance. Centro de Investigaciones Jenaro Herrera (CIJH) of the Instituto de Investigaciones de la Amazonia Peruana (IIAP) kindly contributed ®eld facilities and logistic support. Henrik Meilby, Wil de Jong, and Miguel Pinedo-Vasquez commented on an earlier version of the manuscript. We thank the following taxonomic specialists for helping to identify botanical specimens: C.C. Berg, J. Brandbyge, B.B. KlitgaÊrd, G.P. Lewis, P.J.M. Mass, T.D. Pennington, G.T. Prance, H. Rainer, S.S. Renner, M. de Rico-Arce and H. van der Werff. The study was made possible by grants from the Danish International Development Agency (DANIDA). Appendix A. Relative density (Rel. den), relative frequency (Rel. fre), relative dominance (Rel. dom), and the resulting species importance values (SIV) for species present in high restinga, low restinga, tahuampa, and all forests. Using the totals given in the bottom of the columns it is possible to calculate absolute values for each species. Numbers after species refer to collection numbers of J. RuõÂz, L. Freitas, L.P. Kvist registered at AAU. Numbers after species using a ``N'' refer to collection numbers of Nebel registered at AAU. 44 High restinga Anacardiaceae Spondias mombin L. 2278 Tapirira guianensis Aublet 1659 Apocynaceae Aspidosperma rigidum Rusby 9034 Aspidosperma sp. 5493 Himatanthus bracteatus (A. DC.) Woodson 2048 Malouetia tamaquarina (Aublet) A. DC. 5581 Arecaceae Astrocaryum chonta C. Martius Astrocaryum jauari C. Martius Euterpe precatoria C. Martius Scheelea brachyclada Burret Socratea exorrhiza (C. Martius) H. A. Wendland Rel. den Rel. fre Rel. dom 1.17 ± 1.57 ± 2.42 ± 0.8 ± ± ± 0.15 1.08 ± ± ± 0.2 ± ± 1.32 ± ± 0.22 2.12 0.07 Rel. den Rel. fre 5.15 ± 0.77 0.18 1.05 0.24 1.64 0.12 3.45 0.54 0.13 ± 0.2 ± 0.4 ± 0.73 ± 0.2 ± ± ± 0.04 2.08 ± ± ± 0.38 ± 0.12 ± 0.06 ± ± 0.16 ± 0.08 ± ± 0.03 ± 0.04 ± ± 0.31 ± 0.18 ± ± 0.19 0.06 ± ± ± 0.3 0.1 ± ± ± 0.04 0.01 ± ± ± 0.53 0.18 ± ± ± ± 1.66 ± ± 0.29 2.25 0.1 ± ± 1.17 ± ± 0.05 1.09 0.05 ± ± 4.15 ± ± 0.56 5.46 0.22 0.88 ± 0.59 0.12 0.18 0.41 2.36 0.24 1.21 ± 0.8 0.16 0.24 0.4 2.09 0.32 0.5 ± 0.3 0.04 0.23 0.12 1.7 0.1 2.59 ± 1.69 0.32 0.65 0.93 6.15 0.65 1.99 0.06 0.06 ± 0.71 0.71 0.06 1.15 2.88 0.1 0.1 ± 0.89 0.99 0.1 1.69 0.52 0.02 0.01 ± 0.76 0.17 0.02 0.35 5.39 0.18 0.17 ± 2.36 1.87 0.18 3.2 ± 2.27 ± 0.15 1.76 ± 0.07 ± 2.54 ± 0.2 1.96 ± 0 ± 1.35 ± 0.07 2.34 ± 0.01 ± 6.17 ± 0.41 6.05 ± 0.08 0.06 2.36 0.06 1.3 1.24 ± 0.18 0.08 2.01 0.08 1.69 1.45 ± 0 0.01 1.83 0.04 1.25 0.95 ± 0.12 0.15 6.2 0.18 4.23 3.63 ± 0.29 ± 0.06 0.77 0.26 ± 0.06 0.26 ± 0.1 0.99 0.4 ± 0.1 0 ± 0.03 0.18 0.49 ± 0.01 0.15 ± 0.19 1.94 1.14 ± 0.17 0.4 ± ± 0.29 ± ± 0.29 ± ± 0.14 ± ± 0.73 0.35 ± 0.82 0.4 ± 0.88 0.43 ± 0.49 1.18 ± 2.2 ± 0.06 ± ± 0.1 ± ± 0.02 ± ± 0.18 ± ± ± ± ± ± ± ± ± 0.58 0.89 0.22 1.69 1.46 ± 0.07 7.46 0.44 1.27 ± 0.1 5.77 0.49 0.29 0.82 1.3 ± 0.41 0.32 0.64 1.37 ± 0.4 0.19 1.13 0.75 ± 0.21 0.8 2.6 3.41 ± 1.02 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.73 ± 0.03 17.68 0.12 SIV Tahuampa 3.47 ± 0.2 30.91 1.05 Rel. dom SIV Rel. den Rel. fre Rel. dom SIV G. Nebel et al. / Forest Ecology and Management 150 (2001) 27±57 Annonaceae Anaxagorea sp. 2474 Annona hypoglauca C. Martius 5037 Annona sp. 1 5369 Crematosperma sp. 8712 Duguetia odorata (Diels) J F. Macbride 2461 Duguetia spixiana C. Martius 5508 Guatteria inundata C. Martius 5153 Guatteria sp. 1 2006 Guatteria sp. 2 9335 Guatteria sp. 3 5202 Malmea sp. 6013 Oxandra sphaerocarpa R. E. Fries 1579 Pseudoxandra polyphleba (Diels) R. E. Fries 4085 Rollinia cuspidata C. Martius 9266 Unonopsis floribunda Diels 1266 Unonopsis sp. 5248 Xylopia micans R. E. Fries 1165 Xylopia sp. 1 2024 Xylopia sp. 2 7178 Unidentified Low restinga Bignoniaceae Anemopaegma chrysanthum Dugand 8626 Mansoa standleyi (Steyermark) A. Gentry 2392 Tanaecium sp. 4306 ± 0.03 ± 0.2 0.06 ± 0.08 ± 0.02 ± 0.16 ± ± ± ± ± ± ± ± ± 0.07 0.1 0.01 0.18 ± ± ± ± ± ± ± ± 0.15 0.29 0.2 0.39 4.29 0.77 4.63 1.45 0.06 0.24 0.08 0.24 3.35 1.44 3.49 1.92 0.19 ± 0.1 ± 0.78 ± 1.07 ± 0.73 0.29 ± 0.88 0.39 ± 0.14 0.22 ± 1.76 0.9 ± 0.18 0.12 0.47 0.24 0.08 0.32 0.06 0.08 0.74 0.48 0.28 1.53 ± ± ± ± ± ± ± ± ± ± ± ± ± 1.46 ± 1.76 ± 0.32 ± 3.54 0.77 1.47 0.8 1.93 0.53 0.46 2.1 3.86 0.71 0.06 0.89 0.1 0.35 0.01 1.95 0.17 2.12 2.05 0.63 4.81 0.82 1.13 0.26 2.21 0.06 0.1 0.02 0.19 ± ± ± ± ± ± ± ± ± ± ± ± ± 0.06 ± ± 0.08 ± ± 0.02 ± ± 0.16 ± 0.06 ± 4.68 0.1 ± 3.98 0.02 ± 6.22 0.18 ± 14.88 0.22 0.07 0.15 ± 0.29 0.1 0.2 ± 0.11 0.03 0.38 ± 0.62 0.2 0.72 ± ± ± 0.06 0.12 ± ± 0.08 0.16 ± ± 0.03 0.13 ± ± 0.17 0.41 ± ± 0.13 0.13 ± ± 0.2 0.2 ± ± 0.03 0.54 ± ± 0.35 0.87 ± ± ± ± ± ± ± ± 0.06 0.1 0.02 0.18 Capparaceae Capparis sola J. F. Macbride 3013 Crateva tapia L. 5563 0.51 ± 0.68 ± 0.11 ± 1.31 ± 0.12 ± 0.16 ± 0.03 ± 0.3 ± ± 0.06 ± 0.1 ± 0.01 ± 0.18 Caryocaraceae Caryocar microcarpum Ducke 5479 ± ± ± ± ± ± ± ± 0.06 0.1 0.51 0.67 0.07 0.1 0.01 0.18 ± ± ± ± 0.06 0.1 0.01 0.17 ± ± 0.59 0.51 ± ± ± 0.59 0 ± ± ± 1.12 0.58 ± ± ± 2.29 1.1 ± 0.06 ± 1.24 6.54 0.06 0.08 ± 1.29 0 0.08 0.08 ± 1.58 5.7 0.02 0.06 0.06 ± 5.9 ± 0.1 0.1 ± 0 ± 0.01 0.03 ± 5.13 ± 0.18 0.2 ± 11.03 ± Bombacaceae Cciba pentandra (L.) Gaertner Ceiba samauma (C. Martius & Zuccarini) Schumann 5345 Matisia bracteolosa Ducke 2277 Pachira aquatica Aublet 4535 Pseudobombax munguba (C. Martius & Zuccarini) Dugand 9018 Boraginaceae Cordia lutea Lamarck 5159 Cordia nodosa Lamarck 3049 Burseraceae Protium nodulosum Swart 1090 Caesalpiniaceae Bauhinia guianensis Aublet 5530 Bauhinia sp. 1 1260 Campsiandra angustifolia (Bentham) Sandwith 5084 Crudia sp. 1 3094 Crudia sp. 2 2457 Cynometra sp. 9060 Macrolobium acaciifolium (Benth.) Benth. 9491 Tachigali sp. 5624 Cecropiaceae Cecropia ficifolia Warburg ex Snethlage N907037 Cecropia latiloba Miquel 5005 Cecropia litoralis Snethlage È cul 1195 Cecropia membranacea TrA Cecropia unidentified È cul 8450 Coussapoa asperifolia TrA 0.22 ± 4.1 12.24 0.15 45 ± 0.1 G. Nebel et al. / Forest Ecology and Management 150 (2001) 27±57 ± 0.07 46 High restinga Celastraceae Maytenus macrocarpa (R. & P.) Briquet 2408 Chrysobalanaceae Couepia subcordata Bentham 9400 Couepia sp. 6389 Hirtella elongata C. Martius & Zuccarini 7568 Hirtella triandra ssp. triandra Swartz 3243 Licania apetala var. aperta (E. Meyer) Fritsch, (Bentham) Prance 7104 Licania britteniana Fritsch 3088 Licania heteromorpha var. glabra Bentham (C. Martius ex Hooker f.) Prance 7530 Licania macrocarpa Cuatrecasas 2581 Licania micrantha Miquel 5558 Licania octandra ssp. pallida (Hooker f.) Prance 7040 Parinari excelsa Sabine 6054 Parinari parilis J. F. Macbride 1170 Unidentified Clusiaceae È des Calophyllum brasiliense CambessA 7639 Garcinia macrophylla C. Martius 7349 Vismia angusta Miquel 1298 Rel. den Rel. fre Rel. dom ± ± ± ± ± ± 0.07 0.1 ± SIV Tahuampa Rel. den Rel. fre Rel. dom SIV Rel. den Rel. fre Rel. dom SIV ± ± ± 0.06 ± 0.08 ± 0.14 ± 0.28 0.26 0.13 0.4 0.2 0.78 0.04 1.43 0.37 0.01 0.18 0.06 0.08 0.06 0.2 ± ± ± ± ± ± ± 0.06 0.08 0.02 0.16 ± ± ± ± 0.07 1.76 0 1.86 0.01 1.8 0.09 5.42 0.06 1.71 0 1.61 0.04 3.06 0.1 6.38 0.19 ± 0 ± 0.06 ± 0.25 ± 2.63 2.25 1.04 5.93 0.71 0.64 0.4 1.75 ± ± ± ± 0.8 0.88 0.54 2.22 0.35 0.48 0.23 1.07 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.24 0.12 ± 0.32 0.16 ± 0.26 0.07 ± 0.82 0.35 ± ± 0.45 0.06 ± 0.7 0.1 ± 0.33 0.01 ± 1.47 0.18 0.15 ± 0.1 ± 0.07 ± 0.32 ± 0.18 ± 0.24 ± 0.07 ± 0.49 ± 0.06 0.13 0.1 0.2 0.2 0.07 0.37 0.4 0.44 ± 0.59 ± 0.24 ± 1.27 ± 0.65 ± 0.88 ± 2.4 ± 3.93 ± 0.58 0.96 0.6 1.49 0.83 0.85 2 3.3 0.15 0.15 ± 0.2 0.2 ± 0.02 0.05 ± 0.37 0.39 ± ± ± ± ± ± ± ± ± ± ± ± ± ± 2.37 0.13 ± 2.09 0.2 ± 3.4 0.07 ± 7.86 0.4 ± 0.15 ± ± 0.2 ± ± 0.03 ± ± 0.37 ± 0.18 0.41 0.06 0.24 0.56 0 1.01 0.17 0.08 1.43 1.14 0.14 0.64 0.38 0.13 0.89 0.6 0 6.1 0.4 0.03 7.63 1.39 0.16 ± ± ± ± ± ± ± ± 0.13 0.2 0.14 0.47 0.07 0.22 0.1 0.2 0.01 0.1 0.18 0.51 1.06 0.06 1.13 0.08 0.59 0.02 2.77 0.16 0.32 ± 0.5 ± 0.09 ± 0.9 ± G. Nebel et al. / Forest Ecology and Management 150 (2001) 27±57 Coussapoa nitida Miquel 5621 È cul 6023 Coussapoa ovalifolia TrA Coussapoa trinervia Spruce ex Mildbread 3120 Coussapoa villosa Poeppig & Endlicher 8504 Coussapoa unidentified Pourouma acuminata C. Martius ex Miquel 1356 Pourouma cecropiifolia C. Martius 2014 Low restinga Combretaceae Buchenavia amazonia Al±Mayah & Stace 6316 Combretum llewelynii J. F. Macbride 8451 Terminalia dichotoma G. Meyer 5598 Terminalia oblonga (Ruiz Lopez & Pavon) Steudel 2196 Thiloa sp. 6111 ± ± ± ± ± ± 0.13 0.2 0.06 0.38 ± ± 1.68 ± ± 1.96 ± ± 3.94 ± ± 7.58 0.06 0.29 0.82 0.08 0.4 0.96 0.02 0.28 1.47 0.16 0.97 3.26 ± 0.13 0.06 ± 0.2 0.1 ± 0.35 0.05 ± 0.68 0.21 ± ± ± ± 0.12 0.16 0.02 0.3 0.13 0.2 0.02 0.35 Connaraceae Rourea amazonica Radlkofer 9535 ± ± ± ± 0.06 0.08 0.01 0.15 0.06 0.1 0.01 0.17 Convolvulariaceae Dicranostyles sp. 7153 Maripa sp. 1 3127 Maripa sp. 2 5234 ± 0.07 0.07 ± 0.1 0.1 ± 0.01 0.01 ± 0.18 0.19 ± ± ± ± ± ± ± ± ± ± ± ± 0.06 ± 0.26 0.1 ± 0.4 0.01 ± 0.07 0.17 ± 0.72 Dichapetalaceae Tapura sp. 5440 0.07 0.1 0.03 0.2 ± ± ± ± 3.08 2.58 2.21 7.87 0.07 ± ± 0.1 ± ± 0.02 ± ± 0.19 ± ± ± 0.06 ± ± 0.08 ± ± 0.01 ± ± 0.15 ± ± ± 0.06 ± ± 0.1 ± ± 0.03 ± ± 0.2 ± 0.15 0.07 ± 0.2 0.1 ± 0.03 0.01 ± 0.38 0.18 ± 0.12 ± ± 0.16 ± ± 0.05 ± ± 0.33 ± 0.13 0.06 ± 0.2 0.1 ± 0.08 0.01 ± 0.41 0.17 ± 0.88 1.08 0.37 2.32 0.94 1.13 1.49 3.55 0.32 0.5 0.16 0.98 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.06 ± 0.12 ± 0.08 ± 0.16 ± 0.09 ± 0.21 ± 0.23 ± 0.49 0.06 0.13 0.06 0.26 0.1 0.2 0.1 0.4 0.08 0.49 0.01 1.08 0.25 0.82 0.17 1.73 0.07 ± 0.95 ± 6.95 0.1 ± 1.17 ± 4.01 0.1 ± 0.38 ± 3.23 0.27 ± 2.5 ± 14.19 1.24 ± 2.89 ± 4.95 1.29 ± 2.49 ± 3.54 1.89 ± 1.45 ± 2.66 4.42 ± 6.83 ± 11.15 0.45 0.51 ± 0.71 1.54 0.5 0.8 ± 0.99 1.49 0.6 0.22 ± 0.2 1.61 1.54 1.53 ± 1.9 4.64 ± 0.88 ± ± ± 0.98 ± ± ± 2.38 ± ± ± 4.23 ± ± ± ± 0.41 0.12 ± ± 0.48 0.16 ± ± 0.27 0.03 ± ± 1.16 0.31 0.13 ± 0.71 ± 0.2 ± 0.89 ± 0.16 ± 0.23 ± 0.49 ± 1.83 ± Dilleniaceae Davilla nitida (M. Vahl) Kubitzki 4108 Doliocarpus dentatus (Aublet) Standley Tetracera sp. 2 7461 Ebenaceae Diospyros poeppigiana A. DC. 5528 Diospyros sp. 1 8716 Diospyros sp. 2 4238 Elaeocarpaceae Sloanea guianensis (Aublet) Bentham 6443 Sloanea sp. 1 7632 Sloanea sp. 2 7201 Sloanea sp. 3 6113 È Sloanea ternifolia (Mocino & SessA ex DC.) Standley 5047 Euphorbiaceae Alchornea schomburgkii Klotzsch 6577 Amanoa nanayensis W. F. Hayden 5512 Croton cuneatus Klotzsch 3553 Discocarpus brasiliensis Klotzsch 5166 Drypetes amazonica var. peruviana J. F. Macbride 2228 Glycydendron amazonicum Ducke 7625 Hura crepitans L. 2137 Mabea nitida Spruce ex Bentham 5327 Margaritaria nobilis L. f. N909168 47 ± G. Nebel et al. / Forest Ecology and Management 150 (2001) 27±57 ± 48 High restinga Fabaceae Andira inermis (W. Wright) H. B. K. ex DC. 5239 Andira sp. 1 7512 Andira sp. 2 7440 Andira sp. 3 7514 Lecointea amazonica Ducke 6135 Machaerium arboreum (Jacq.) Vogel 1535 Machaerium inundatum (Bentham) Ducke 5514 Machaerium isadelphum (E. Meyer) Amshoff 5498 Machaerium quinata (Aublet) Sandwith 9414 Machaerium riparium 9265 Machaerium sp. 1 8458 Machaerium sp. 2 8661 Machaerium sp. 3 8082 Ormosia sp. 1 3404 Ormosia sp. 2 6474 Ormosia sp. 3 Platymiscium stipulare Benth. 3382 Platymiscium ulei Harms 4135 Pterocarpus amazonum (C. Martius ex Bentham) Amshoff 7003 Pterocarpus sp. 1 3172 Pterocarpus sp. 2 8465 Swartzia cardiosperma Spruce ex Bentham 1152 Swartzia simplex (Swartz) Sprengel 1258 Swartzia sp. 6121 Vatairea guianensis Aublet 7152 Rel. den Rel. fre Rel. dom 0.88 0.51 0.07 1.08 0.59 0.1 0.89 0.42 0.17 0.15 0.2 ± ± ± ± ± ± SIV Tahuampa Rel. den Rel. fre Rel. dom 2.85 1.52 0.34 0.94 0.35 ± 1.05 0.4 ± 0.41 0.38 ± 0.05 0.39 0.47 0.64 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.06 ± 0.06 ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.07 0.51 0.15 ± ± ± ± ± ± ± 0.1 0.68 0.2 ± 3.07 ± ± 0.07 ± ± SIV Rel. den Rel. fre Rel. dom SIV 2.4 1.13 ± 1.47 ± ± 1.89 ± ± 1.95 ± ± 5.31 ± ± 0.56 1.67 0.38 0.6 0.68 1.67 ± ± 0.08 ± 0.08 ± ± ± 0.03 ± 0.02 ± ± ± 0.17 ± 0.16 ± 0.06 0.06 0.06 0.38 ± 0.06 0.1 0.1 0.1 0.6 ± 0.1 0.34 0.03 0.03 0.63 ± 0.02 0.5 0.2 0.19 1.61 ± 0.18 ± ± ± ± 0.06 0.1 0.01 0.17 ± 0.06 0.08 0.01 0.15 ± ± ± ± ± ± ± ± ± ± 0.5 0.51 0.16 ± ± ± ± ± ± ± 0.67 1.71 0.5 ± 0.06 0.06 0.06 0.06 0.18 ± ± 0.29 ± 1.36 0.08 0.08 0.08 0.08 0.24 ± ± 0.4 ± 0.96 0.01 0.03 0.03 0.03 0.05 ± ± 0.27 ± 0.71 0.15 0.17 0.17 0.17 0.47 ± ± 0.97 ± 3.03 0.06 ± ± ± ± 0.06 ± ± ± 0.58 0.1 ± ± ± ± 0.1 ± ± ± 0.89 0.04 ± ± ± ± 0.03 ± ± ± 0.26 0.2 ± ± ± ± 0.19 ± ± ± 1.73 2.25 ± ± 0.83 ± ± 6.15 ± ± 0.12 0.24 0.65 0.16 0.16 0.64 0.03 0.16 0.29 0.3 0.56 1.58 ± 0.13 0.26 ± 0.2 0.4 ± 0.09 0.1 ± 0.41 0.75 0.1 ± ± 0.02 ± ± 0.19 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.06 0.19 ± 0.1 0.3 ± 0.13 0.38 ± 0.29 0.87 G. Nebel et al. / Forest Ecology and Management 150 (2001) 27±57 Sapium glandulosum (L.) Morong 5342 Sapium marmierii Huber 2211 Sapium sp. Low restinga Flacourtiaceae Casearia aculeata Jacquin 1187 Casearia arborea (Richard) Urban 8431 Casearia sylvestris Swartz 8320 Casearia sp. 9333 Laetia corymbulosa Spruce ex Bentham 9289 Laetia sp. 1630 Xylosma sp. 1 8569 Xylosma sp. 2 0.2 1.17 ± ± ± 0.06 0.73 ± ± ± 0.47 2.93 ± ± ± 0.35 0.71 0.06 0.06 0.24 0.48 0.72 0.08 0.08 0.24 0.09 0.53 0.02 0.03 0.15 0.92 1.96 0.15 0.17 0.63 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.06 0.06 ± 0.08 0.08 ± 0.3 0.03 ± 0.44 0.16 ± ± ± 0.06 ± ± 0.1 ± ± 0.01 ± ± 0.17 ± ± ± ± ± ± ± ± 0.13 0.1 0.04 0.27 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.45 0.13 0.06 0.19 0.6 0.2 0.1 0.3 0.1 0.04 0.01 0.05 1.15 0.37 0.18 0.54 ± ± ± ± ± ± ± ± 0.06 0 0.01 0.08 Icacinaceae Calatola sp. 5014 Calatola venezuelana Pittier 4328 ± 0.51 ± 0.68 ± 0.65 ± 1.84 ± 0.94 ± 0.88 ± 1.16 ± 2.99 0.06 ± 0.1 ± 0.01 ± 0.17 ± Lacistemaceae Lacistema aggregatum (Berg.) Rusby 6423 ± ± ± ± ± ± ± ± 0.06 0.1 0.01 0.18 ± 0.44 ± ± ± ± 0.49 ± ± ± ± 0.13 ± ± ± ± 1.06 ± ± ± 0.24 0.88 0.12 ± 0.06 0.32 1.21 0.16 ± 0.08 0.09 0.44 0.05 ± 0.02 0.65 2.53 0.32 ± 0.16 ± 0.38 ± 0.06 ± ± 0.6 ± 0.1 ± ± 0.13 ± 0.02 ± ± 1.12 ± 0.19 ± 0.22 ± ± 0.44 ± 0.15 0.15 ± ± ± 0.29 ± ± 0.29 ± 0.2 0.2 ± ± ± 0.22 ± ± 0.28 ± 0.04 0.05 ± ± ± 0.74 ± ± 1.01 ± 0.38 0.39 ± ± ± 0.06 0.12 ± 0.53 ± 0.47 0.53 ± 0.18 ± 0.08 0.16 ± 0.56 ± 0.4 0.72 ± 0.24 ± 0.13 0.05 ± 0.44 ± 0.33 0.18 ± 0.1 ± 0.27 0.33 ± 1.53 ± 1.21 1.43 ± 0.51 ± 0.06 ± 0.13 0.26 0.26 ± 0.06 0.13 ± 0.06 0.1 ± 0.1 0.4 0.4 ± 0.1 0.2 ± 0.1 0.01 ± 0.03 0.07 0.09 ± 0.02 0.19 ± 0.01 0.18 ± 0.26 0.73 0.74 ± 0.18 0.52 ± 0.18 Hippocrateaceae Cheiloclinium cognatum (Miers) A. C. Smith 7544 Cheiloclinium klugii A. C. Smith 5139 Cheiloclinium sp. 1 7320 Cheiloclinium sp. 2 7266 Salacia impressifolia (Miers) A. C. Smith 5332 unidentified Lauraceae Aniba guianensis Aublet 9172 Aniba sp. 1 1138 Aniba sp. 2 8471 Aniba sp. 3 7366 Cinnamomum napoense H. van der Werff 9412 Endlicheria formosa A. C. Smith 2207 Endlicheria verticillata Mez 9737 Licaria armeniaca (Nees) Kostermans 5371 Nectandra cuneato±cordata Mez 6537 Ocotea bofo H. B. K. 7333 Ocotea cernua (Nees) Mez 8437 Ocotea javitensis 9056 Ocotea sp. 1 7436 Ocotea sp. 2 9196 Ocotea sp. 3 G. Nebel et al. / Forest Ecology and Management 150 (2001) 27±57 0.22 1.02 ± ± ± 49 50 High restinga Low restinga Rel. fre Rel. den Rel. fre 0.66 ± 0.07 ± ± 0.07 0.88 ± 0.1 ± ± 0 0.14 ± 0.02 ± ± 0.02 1.68 ± 0.19 ± ± 0.1 0.82 ± 0.06 0.12 ± 0.24 0.8 ± 0.08 0.16 ± 0 0.23 ± 0.02 0.05 ± 0.4 1.86 ± 0.16 0.33 ± 0.64 ± 0.06 ± 0.32 0.06 0.06 ± 0.1 ± 0.5 0.1 0 ± 0.02 ± 0.09 0.04 0.03 ± 0.18 ± 0.91 0.2 0.1 0.29 ± 0.59 0.39 ± 0.78 1.04 ± 0.3 1.73 ± 1.67 ± 0.18 1.53 ± 0.24 1.45 ± 0.08 1.88 ± 0.5 4.86 0.26 0.32 9.87 0.4 0.5 6.26 0.43 0.44 6.77 1.08 1.26 22.9 0.44 0.59 0.11 1.14 0.47 0.64 0.37 1.49 16.73 6.76 15.84 39.33 ± ± ± ± 0.06 0.08 0.04 0.18 ± ± ± ± Loganiaceae Strychnos sp. 1 5207 Strychnos sp. 2 7334 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.13 0.13 0.2 0.2 0.03 0.03 0.35 0.36 Malpighiaceae Byrsonima crispa Adr. Jussieu 7338 Byrsonima densa (Poiret) DC. 9104 ± 0.07 ± 0.1 ± 0.01 ± 0.18 ± 0.29 ± 0.32 ± 0.23 ± 0.85 0.06 0.13 0.1 0.2 0.01 0.06 0.18 0.39 Melastomataceae Miconia centrodesma Wurdack 8097 Miconia splendens (Swartz) Grisebach 4579 Mouriri grandiflora A. DC. 9273 0.07 ± 0.15 0.1 ± 0.1 0.02 ± 0.02 0.19 ± 0.27 0.18 0.06 2.65 0.24 0.08 1.69 0.06 0.01 1.09 0.47 0.15 5.43 ± 0.06 0.26 ± 0.1 0.4 ± 0.02 0.14 ± 0.19 0.8 Meliaceae Cedrela odorata L. 2066 Guarea macrophylla Vahl 3230 Trichilia inaequilatea Pennington 7021 Trichilia mazanensis J. F. Macbride 6116 Trichilia pallida Swartz 3449 Trichilia pleeana (Adr. Jussieu) C. DC. 6037 Trichilia rubra C. DC. 7191 0.51 2.78 ± ± ± 0.37 ± 0.68 2.64 ± ± ± 0.39 ± 0.57 7.37 ± ± ± 0.23 ± 1.77 12.79 ± ± ± 0.99 ± 0.18 0.47 ± ± 0.06 0.12 0.35 0.24 0.64 ± ± 0.08 0.16 0.48 0.11 0.34 ± ± 0.01 0.16 0.15 0.53 1.45 ± ± 0.15 0.44 0.98 ± 1.15 0.9 0.19 ± 0.06 0.71 ± 1.29 1.29 0.3 ± 0.1 1.09 ± 0.28 0.51 0.03 ± 0.16 0.26 ± 2.73 2.7 0.52 ± 0.32 2.06 Menispermaceae Anemospermum sp. 8459 Unidentified sp. 1 8660 Unidentified sp. 2 5316 0.22 ± ± 0.29 ± ± 0.15 ± ± 0.66 ± ± 0.24 0.06 ± 0.32 0.08 ± 0.21 0.02 ± 0.77 0.16 ± ± ± 0.13 ± ± 0.2 ± ± 0.04 ± ± 0.36 Pleurothyrium parviflorum Ducke 1278 Unidentified sp. 1 6399 Unidentified sp. 2 8601 Unidentified sp. 3 6441 Unidentified sp. 4 Unidentified Lecythidaceae Couroupita guianensis Aublet 7369 Couroutari oligantha A. C. Smith 6337 Eschweilera parvifolia C. Martius ex A. DC. 5031 Eschweilera turbinata (Berg) Niedenzu 5019 Gustavia augusta L. 9734 Rel. dom SIV Rel. dom SIV Rel. den Rel. fre Rel. dom SIV G. Nebel et al. / Forest Ecology and Management 150 (2001) 27±57 Rel. den Tahuampa ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.19 0.06 0.2 0.1 0.05 0.01 0.44 0.17 0.07 ± 1.39 1.76 2.12 0.07 ± 0.8 0.1 ± 1.57 1.76 1.96 0.1 ± 0.88 0.04 ± 0.43 2.15 0.99 0.02 ± 0.52 0.22 ± 3.39 5.67 5.06 0.19 ± 2.21 ± 0.18 0.65 0.71 2 ± 0.24 0.41 ± 0.24 0.64 0.88 1.93 ± 0.32 0.48 ± 0.12 0.25 0.82 1.36 ± 0.21 0.32 ± 0.54 1.54 2.42 5.29 ± 0.77 1.22 0.45 0.38 ± ± ± 0.13 0.06 ± 0.6 0.6 ± ± ± 0.2 0.1 ± 0.47 0.34 ± ± ± 0.14 0.01 ± 1.52 1.32 ± ± ± 0.47 0.18 ± 1.24 0.29 ± 0.29 ± 0.29 ± ± 1.37 0.39 ± 0 ± 0.29 ± ± 1.27 0.07 ± 0.41 ± 0.46 ± ± 3.88 0.76 ± 0.7 ± 1.05 ± ± 1.89 0.06 1.36 0.06 0.06 0.53 0.12 0.35 1.61 0.08 1.37 0 0.08 0.48 0.16 0.32 1.75 0.04 1.15 0.03 0.14 0.24 0.03 0.09 5.25 0.18 3.87 0.09 0.28 1.25 0.31 0.77 0.96 0.13 0.64 0.13 0.06 ± 0.45 0.06 1.29 0.2 0.89 0 0.1 ± 0.7 0.1 0.95 0.13 0.98 0.05 0.02 ± 0.46 0.02 3.2 0.46 2.51 0.18 0.18 ± 1.61 0.18 0.22 ± 0.29 ± 0.07 ± 0.59 ± 2.83 ± 2.89 ± 1.03 ± 6.75 ± ± 0.13 ± 0.2 ± 0.02 ± 0.35 0.29 0.39 0.24 0.92 0.12 0.16 0.29 0.57 0.13 0.2 0.12 0.45 0.07 0.22 ± 0.66 0.07 ± 0.66 0.73 0.07 0.07 ± 0.07 0.22 3.15 0.1 0.29 ± 0.68 0.1 ± 0.78 0.68 0.1 0.1 ± 0.1 0 3.23 0.01 1.4 ± 0.56 2.79 ± 1.32 0.29 1.53 0.79 ± 0.02 0.07 8.68 0.19 1.92 ± 1.9 2.96 ± 2.76 1.7 1.7 0.97 ± 0.19 0.29 15.05 0.18 0.35 ± 0.18 ± 0.12 0.06 0.12 ± 0.06 ± ± 0.12 1.24 0.24 0.48 ± 0.24 ± 0.08 0.08 0.16 ± 0.08 ± ± 0 1.61 0.19 0.35 ± 0.1 ± 0.03 0.3 0.12 ± 0.04 ± ± 0.09 6.02 0.61 1.19 ± 0.52 ± 0.23 0.44 0.4 ± 0.18 ± ± 0.21 8.86 0.06 0.32 0.06 ± ± 0.06 ± ± ± ± 0.06 ± ± 0.9 0.1 0.5 0.1 ± ± 0.1 ± ± ± ± 0.1 ± ± 1.09 0.04 0.9 0.21 ± ± 0.01 ± ± ± ± 0.02 ± ± 2.41 0.2 1.72 0.38 ± ± 0.18 ± ± ± ± 0.18 ± ± 4.4 1.02 ± 1.17 ± 0.2 ± 2.4 ± 0.47 ± 0.48 ± 0.13 ± 1.08 ± ± 0.26 ± 0.4 ± 0.04 ± 0.7 51 Moraceae Batocarpus amazonicus (Ducke) Fosberg 8630 Brosimum guianensis 7573 Brosimum lactescens S. Moore 4097 Brosimum potabile Ducke 7546 Clarisia biflora R. & P. 1049 Ficus boliviana C. C. Berg 2455 Ficus coboffima Standley Ficus killipii Standley 4167 Ficus maxima Miller N217296 Ficus pallida M. Vahl 3195 Ficus schultesii Dugand 3383 Ficus trigona L. f. Ficus ypoilophlebia Dugand Ficus unidentified Maquira coriacea (Karsten) C. C. Berg 2018 Perebea longipedunculata C. C. Berg 1217 Pseudolmedia rigida (Klotzsch & Karsten) Cuatrecasas 5229 ± ± G. Nebel et al. / Forest Ecology and Management 150 (2001) 27±57 Mimosaceae Acacia kuhlmanii Ducke 6575 Acacia macbredei Britton & Rose ex J. F. Macbride 5214 Albizia sp. 7264 Inga bourgonii (Aublet) DC. 5569 Inga cinnamomea Spruce ex Bentham 1097 Inga edulis C. Martius 1007 Inga nobilis Willdenow 1180 Inga pavoniana G. Don 4264 Inga psittacorum L. Uribe 1515 Inga semialata (Vell. Conc.) C. Martius 1002 Inga stenoptera Bentham 1381 Inga tessmannii Harms 1551 Inga vismiifolia Poeppig 5242 Inga unidentified Stryphnodendron sp. 5001 Zygia cauliflora (Willdenow) Pittier 3234 Zygia divaricata aff. (Bentham) Pittier 7627 Zygia inaequalis (H. & B. ex Willd.) Pittier 8148 Zygia juruana (Harms) L. Rico 1467 Zygia unifoliolata (Bentham) Pittier 5105 52 High restinga Low restinga Rel. fre 1.54 0.95 1.66 0.98 0.34 0.2 Myristicaceae Iryanthera juruensis Warburg 7467 Virola elongata (Bentham) Warburg 6500 Virola pavonis (A. DC.) A. C. Smith 8454 ± 0.66 0.73 ± 0.78 0.78 Myrsinaceae Stylogyne sp. 3463 0.07 Sorocea steinbachii C. C. Berg 1141 Trophis racemosa (L.) Urban 2106 Myrtaceae Calyptranthes sp. 9388 Eugenia egensis DC. 7398 Eugenia heterochroma Diels 6156 Eugenia lambertiana DC. 7065 Eugenia marowijensis Miquel 2351 Eugenia muricata DC. 1091 Eugenia ochrophloea Diels 4347 Eugenia patens Poiret N109216 Eugenia sp. 1 7214 Eugenia sp. 2 1190 Eugenia sp. 3 4517 Eugenia sp. 4 9045 Eugenia sp. 5 6338 Eugenia sp. 6 5503 Marlierea subulata McVaugh 7519 Myrcia sp. 1 7356 Myrcia sp. 2 7052 Myrcia sp. 3 7050 Myrcia sp. 4 9368 Myrcia sp. 5 7347 Myrcia sp. 6 7372 Myrcia sp. 7 8299 Myrcia sp. 8 7096 Myrciaria floribunda (West ex Willdenow) O. Berg 7045 Unidentified Rel. dom SIV Rel. den Rel. fre Rel. dom SIV Rel. den Rel. fre Rel. dom SIV 3.54 2.13 0.77 0.12 0.96 0.16 0.2 0.03 1.93 0.31 0.13 ± 0.2 ± 0.03 ± 0.36 ± ± 0.35 0.24 ± 1.79 1.76 0.29 0.59 1.06 0.4 0.64 1.13 0.07 0.28 0.82 0.77 1.51 3 0.83 0.06 0.13 1.19 0.1 0.2 0.17 0.01 0.06 2.2 0.17 0.39 0.1 0.01 0.19 0.06 0.08 0.01 0.15 0.06 0.1 0.01 0.17 0.29 ± ± ± 0.44 0.15 0.29 ± ± ± 0.29 ± ± ± ± ± ± ± ± 0.07 ± ± ± ± 0.39 ± ± ± 0.59 0.2 0.39 ± ± ± 0.29 ± ± ± ± ± ± ± ± 0.1 ± ± ± ± 0.26 ± ± ± 0.11 0.06 0.17 ± ± ± 0.09 ± ± ± ± ± ± ± ± 0.02 ± ± ± ± 0.95 ± ± ± 1.14 0.4 0.85 ± ± ± 0.68 ± ± ± ± ± ± ± ± 0.19 ± ± ± ± 0.41 ± ± ± 0.35 0.35 0.41 0.06 ± 0.29 0.24 0.06 ± 0.06 ± ± ± ± 0.12 0.47 ± 0.12 ± ± 0.48 ± ± ± 0.48 0.32 0.56 0.08 ± 0.32 0.32 0.08 ± 0.08 ± ± ± ± 0.08 0.56 ± 0.16 ± ± 0.32 ± ± ± 0.09 0.14 0.12 0.03 ± 0.12 0.08 0.01 ± 0.11 ± ± ± ± 0.03 0.17 ± 0.03 ± ± 1.21 ± ± ± 0.92 0.81 1.1 0.17 ± 0.73 0.64 0.15 ± 0.25 ± ± ± ± 0.23 1.2 ± 0.31 ± ± ± 0.06 0.06 0.13 ± ± 0.38 ± 0.19 ± ± ± 0.32 0.06 0.06 0.06 0.13 0.06 ± ± 0.06 ± 0.06 0.26 ± 0.1 0.1 0.2 ± ± 0.6 ± 0.2 ± ± ± 0.5 0.1 0.1 0.1 0.2 0.1 ± ± 0.1 ± 0.1 0.3 ± 0.01 0.02 0.03 ± ± 0.1 ± 0.08 ± ± ± 0.08 0.19 0.01 0.01 0.08 0.06 ± ± 0.04 ± 0.05 0.12 ± 0.18 0.18 0.36 ± ± 1.08 ± 0.47 ± ± ± 0.9 0.36 0.17 0.18 0.4 0.22 ± ± 0.21 ± 0.22 0.67 ± ± ± ± ± ± ± ± 0.06 0 0.03 0.09 G. Nebel et al. / Forest Ecology and Management 150 (2001) 27±57 Rel. den Tahuampa ± 0.07 ± 0.1 ± 0.01 ± 0.18 0.29 ± 0.32 ± 0.1 ± 0.71 ± 0.06 ± 0.1 ± 0.01 ± 0.17 ± Ochnaceae Ouratea sp. 5256 ± ± ± ± ± ± ± ± 0.45 0.7 0.21 1.35 Olacaceae Cathedra acuminata (Bentham) Miers 7397 Heisteria spruceana Engler 5599 Minquartia guianensis Aublet 2223 0.15 ± 0.29 0.2 ± 0.39 0.05 ± 0.16 0.4 ± 0.84 0.71 0.06 0.47 0.96 0.08 0.64 2.04 0.01 0.86 3.72 0.15 1.97 0.19 0.06 0.06 0.3 0.1 0.1 0.44 0.01 0.06 0.93 0.18 0.22 Phytolaccaceae Seguieria sp. 5301 ± ± ± ± ± ± ± ± 0.06 0.1 0.02 0.19 0.59 0.78 0.2 1.57 1.06 1.29 0.43 2.78 1.15 1.39 1.23 3.77 ± 0.22 ± ± ± 0.15 ± 0.88 ± 0.29 ± ± ± 0.2 ± 0.78 ± 0.06 ± ± ± 0.05 ± 0.38 ± 0.58 ± ± ± 0.39 ± 2.04 0.12 0.12 ± 0.06 ± 1 ± 1.18 0.16 0.08 ± 0.08 ± 1.29 ± 1.13 0.04 0.03 ± 0.26 ± 1.15 ± 0.76 0.32 0.23 ± 0.4 ± 3.44 ± 3.07 0.06 ± 0.06 ± 1.35 0.32 0.38 0.51 0.1 ± 0.1 ± 1.79 0.4 0.6 0.8 0.01 ± 0.01 ± 2.2 0.69 0.16 0.2 0.18 ± 0.17 ± 5.34 1.41 1.14 1.51 Proteaceae Roupala sp. 5353 ± ± ± ± ± ± ± ± 0.13 0.2 0.02 0.35 Quiinaceae Quiina sp. 8398 ± ± ± ± 0.06 0.08 0.01 0.15 ± ± ± ± 0.66 0.07 ± 0.68 0.1 ± 0.2 0.2 ± 1.54 0.38 ± 0.35 ± 0.88 0.32 ± 0.8 0.12 ± 11.81 ± ± ± ± ± ± ± ± ± ± ± ± 0.37 ± 0.07 0.07 ± 0.95 0.07 ± ± 0.39 ± 0.1 0.1 ± 1.17 0.1 ± ± 0.13 ± 0.44 0.02 ± 0.26 0.02 ± ± 0.88 ± 0.61 0.19 ± 2.39 0.19 ± ± 1.12 ± ± 0.12 0.06 0.24 0.12 ± 0.12 1.29 ± ± 0.16 0.08 0.32 0.16 ± 0.08 0.5 ± ± 0.03 0.02 0.08 0.07 ± 0.03 2.9 ± ± 0.31 0.16 0.63 0.35 ± 0.23 ± 0.06 0.51 ± ± ± 0.38 0.13 ± ± 0.1 0.8 ± ± ± 0.6 0.2 ± ± 0.12 0.82 ± ± ± 0.53 0.02 ± ± 0.28 2.13 ± ± ± 1.51 0.35 ± 0.07 0 0.02 0.09 ± ± ± ± ± ± ± ± Rubiaceae Borojoa sp. 1 1552 Borojoa sp. 2 Calycophyllum spruceanum (Bentham) Hooker f. ex Schumann 8449 Chomelia barbellata Standley 1416 Duroia duckei Huber 6069 Genipa americana L. 5077 Psychotria marginata Swartz 1246 Psychotria remota Bentham 1365 Randia armata (Swartz) DC. 8457 Simira sp. 9731 Uncaria guianensis (Aublet) Gmelin 5120 Uncaria tomentosa (Willdenow ex Roemer & Schultes) DC. 1012 unidentified 0.8 ± 13.5 53 Polygonaceae Coccoloba densifrons C. Martius ex Meissner 5274 Coccoloba lehmannii Lindau 9006 Coccoloba mollis Casaretto 2019 Coccoloba peruviana Lindau Coccoloba sp. 1 8010 Coccoloba sp. 2 5329 Coccoloba sp. 3 9042 Ruprechtia tangarana Standley 6209 Triplaris amaricana L. 2122 G. Nebel et al. / Forest Ecology and Management 150 (2001) 27±57 Nyctaginaceae Neea floribunda Diels 8667 Neea sp. 9089 54 High restinga Low restinga Rel. fre 0.72 ± 2.84 0.22 0.15 0.15 0.34 0.13 ± 0.06 ± ± ± 0.83 0.2 ± 0.1 ± ± ± 1.19 0.03 ± 0.01 ± ± ± 0.53 0.36 ± 0.17 ± ± ± 2.56 0.08 0.7 0.71 0.99 0.41 2.1 0.32 ± 0.11 ± 0.67 ± 0.06 0.06 0.1 0.1 0.31 0.03 0.47 0.19 ± ± ± ± 0.26 0.4 0.15 0.81 0.19 0.06 0.08 0.02 0.16 0.38 0.6 0.2 1.18 ± ± ± ± ± ± 0.26 0.4 0.06 0.71 ± ± ± ± ± ± ± 0.51 0.7 1.21 2.42 ± ± ± ± 0.47 0.64 0.99 2.1 2.31 2.39 3.16 7.85 1.54 ± 0.07 2.27 1.66 ± 0.1 2.25 0.76 ± 0.04 1.23 3.96 ± 0.21 5.75 0.82 ± 0.12 0.94 0.8 ± 0.08 1.13 0.27 ± 0.07 0.38 1.9 ± 0.27 2.44 1.67 0.06 2.05 0.9 2.09 0.1 2.98 0.7 1.18 0.19 4.51 0.44 4.94 0.35 9.55 2.04 0.07 0 0.04 0.11 0.06 0 0.08 0.14 0.06 0 0.04 0.11 Simaroubaceae Simaba orinocensis H.B.K. N409099 ± ± ± ± 0.12 0.16 0.02 0.3 ± ± ± ± Sterculiaceae Sterculia sp. 3492 Theobroma cacao L. 2016 0.22 2.56 0.29 1.86 0.5 0.63 1.02 5.05 0.12 0.65 0.16 0.64 0.05 0.2 0.33 1.49 ± ± ± ± ± ± ± ± Sapotaceae Chrysophyllum argenteum ssp. Auratum (Miquel) Pennington 5295 Chrysophyllum sp. 1 3282 Elaeoluma glabrescens (C. Martius & Eichler) AubreÂville 5168 Pouteria cuspidata ssp. Cuspidata (A. DC.) Baehni 6332 Pouteria cuspidata ssp. Dura (Eyma) Pennington 5128 Pouteria glomerata ssp. Glomerata (Miquel) Radlkofer 5048 Pouteria gomphiifolia (C. Martius) Radlkofer 5169 Pouteria procera (C. Martius) Pennington 7145 Pouteria reticulata (Engler) Eyma 2004 Pouteria sp. 1 5036 Pouteria sp. 2 7076 Sarcaulus brasiliensis ssp. Brasiliensis (A. DC.) Eyma 2336 Unidentified Rel. fre Rel. dom ± 0.07 ± ± 0.29 ± 0.07 ± 0.1 ± ± 0.39 ± 0.1 ± 0.01 ± ± 0.05 ± 0.02 ± ± 0.07 ± SIV Rel. den Rel. fre Rel. dom ± 0.18 ± ± 0.73 ± 0.19 0.24 ± 0.77 0.06 0.06 0.06 0.12 0.32 ± 0.96 0.08 0.08 0.08 0.16 0.17 ± 1.11 0.08 0.01 0.02 0.06 ± ± 0.29 0.32 0.1 ± 0.18 ± 0.36 ± 0.24 ± ± ± ± ± 0.07 0.1 0.02 ± ± ± SIV Rel. dom SIV G. Nebel et al. / Forest Ecology and Management 150 (2001) 27±57 Rel. den Sapindaceae Allophylus sp. 1 6454 Allophylus sp. 2 3478 Cupania latifolia H. B. K. 1507 Cupania sp. Paullinia alata (R. & P.) Don 3285 È des 6272 Paullinia elegans CambessA Unidentified sp. 5548 Rel. den Tahuampa Tiliaceae Apeiba aspera Aublet 3016 Apeiba sp. 3331 Luehea cymulosa Spruce ex Bentham 7084 Vasivaea sp. 6556 Total absolute values 0.29 0.1 0.1 0.1 0.18 0.08 0.12 0.01 0.83 0.25 0.29 0.18 0.06 ± 0.41 0.29 0.08 ± 0.56 0.4 0.06 ± 0.88 0.11 0.19 ± 1.86 0.81 ± ± 0.77 0.13 ± ± 1.09 0.2 ± ± 2.33 0.04 ± ± 4.2 0.37 0.44 4.68 0.49 3.42 0.08 1 1.01 9.11 0.06 0.88 0.08 0.96 0.01 0.26 0.15 2.11 0.06 0.06 0.1 0.1 0.01 0.02 0.18 0.18 0.22 ± 0.07 ± 0.29 ± 0.1 ± 0.07 ± 0.17 ± 0.59 ± 0.34 ± 0.12 ± ± 0.06 0.16 ± ± 0 0.04 ± ± 0.72 0.32 ± ± 0.78 ± 0.19 ± ± ± 0.3 ± ± ± 0.7 ± ± ± 1.19 ± ± 1367 1022 74.1 1697 1244 68.0 1560 1006 82.9 G. Nebel et al. / Forest Ecology and Management 150 (2001) 27±57 Violaceae Gloeospermum equatoriense Hekking 2168 Leonia glycycarpa Ruiz LuÂpez & PavuÂn 2027 Vochysiaceae Vochysia venulosa Warming 9546 Vochysia sp. 1 6395 Vochysia sp. 2 3246 Vochysia unidentified 0.37 0.07 0.07 0.07 55 56 G. Nebel et al. / Forest Ecology and Management 150 (2001) 27±57 References Alder, D., Synnott, T.J., 1992. Permanent Sample Plot Techniques for Mixed Tropical Forest. Tropical Forestry Papers, No. 25. Oxford Forestry Institute, Oxford. 124 pp. Andersen, M.K., 1995. Jorde i peruviansk Amazonas. Thesis, Royal Veterinary and Agricultural University, 46 pp. Armstrong, W., BraÈndle, R., Jackson, M.B., 1994. Mechanisms of ¯ood tolerance in plants. Acta Botanica Neerlandica 43 (4), 307±358. Ayres, J.M., 1995. As matas de vaÂrzea do MamirauaÂ. MCT Ð CNPq Sociedade Civil MamirauaÂ, 123 pp. Balslev, H., Luteyn, J., éllgaard, B., Holm-Nielsen, L.B., 1987. Composition and structure of adjacent un¯ooded and ¯oodplain forest in Amazonian Ecuador. Opera Botanica 92, 37±57. Barros, A.C., Uhl, C., 1995. Logging along the Amazon River and estaury: patterns, problems and potential. Forest Ecol. Manageme. 77, 87±105. Black, G.A., Dobzhansky, T., Pavan, C., 1950. Some attempts to estimate species diversity and population density of trees in Amazonian forests. Bot. Gazette 111, 413±425. Bongers, F., Popma, J., del Castillo, J.M., Carabias, J., 1988. Structure and ¯oristic composition of the lowland rain forest of Los Tuxtlas Mexico. Vegetatio 74, 55±80. Boom, B.M., 1986. A forest inventory in Amazonian Bolivia. Biotropica 18 (4), 287±294. Brinson, M.M., 1990. Riverine forests. In: Lugo, A.E., Brinson, M., Brown, S. (Eds.), Forested Wetlands. Elsevier, Amsterdam, pp. 87±141. Brunig, E.F., 1983. Vegetation structure and growth. In: Golley, F.B. (Ed.), Tropical Rain Forest Ecosystems. Structure and Function. Elsevier, Amsterdam, pp. 49±75. Campbell, D.G., Douglas, C.D., Prance, G.T., Maciel, U.N., 1986. Quantitative ecological inventory of terra ®rme and vaÂrzea tropical forest on the Rio Xingu, Brazilian Amazon. Brittonia 38 (4), 369±393. Colonnello, G., 1990. A Venezuelan ¯oodplain study on the Orinoco River. For. Ecol. Manage. 33/34, 103±124. Crawford, R.M.M., 1982. Physiological responses to ¯ooding. Encyclopedia of Plant Physiol. 12B, 453±477. Curtis, J.T., McIntosh, R.P., 1950. The interrelations of certain analytic and synthetic phytosociological characters. Ecology 31 (3), 435±455. Curtis, J.T., McIntosh, R.P., 1951. An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology 32 (3), 476±496. Dumont, J.F., Lamotte, S., Kahn, F., 1990. Wetland and upland forest ecosystems in Peruvian Amazonia: plant species diversity in the light of some geological and botanical evidence. For. Ecol. Manageme. 33/34, 125±139. Eden, J.E., 1990. Ecology and Land Management in Amazonia. Belhaven Press, London, 269 pp. EncarnacioÂn, F., 1985. IntroduccioÂn a la ¯ora y vegetacioÂn de la Amazonia Peruana: estado actual de los estudios, medio natural y ensayo de una clave de determinacioÂn de las formaciones vegetales en la llanura AmazoÂnica. Candollea 40, 237±252. EncarnacioÂn, F., 1993. El bosque y las formaciones vegetales en la llanura AmazoÂnica del PeruÂ. Alma MaÂter 6, 95±114. Foster, R.B., 1990. The ¯oristic composition of the Rio Manu ¯oodplain forest. In: Gentry, A.H. (Ed.), Four Neotropical Rainforests. Yale University Press, New Haven, pp. 99±111. Freitas, L.A., 1996a. CaracterizacioÂn ¯orõÂstica y estructural de cuatro comunidades boscosas de la llanura aluvial inundable en la zona Jenaro Herrera, Amazonia Peruana. Instituto de Investigaciones de la Amazonia Peruana, Iquitos. Documento Tecnico, No. 21. 73 pp. Freitas, L.A., 1996b. CaracterizacioÂn ¯orõÂstica y estructural de cuatro comunidades boscosas de terraza baja en la zona de Jenaro Herrera, Amazonia Peruana. Instituto de Investigaciones de la Amazonia Peruana, Iquitos. Documento Tecnico, No. 26. 77 pp. Furch, K., 1997. Chemistry of vaÂrzea and igapo soils and nutrient inventory of their ¯oodplain forests. In: Junk, W.J. (Ed.), The Central Amazon Floodplain. Ecology of a Pulsing System. Springer, Berlin, pp. 47±68. Gentry, A.H., 1982. Patterns of neotropical plant species diversity. In: Hecht, M.K., Wallace, B., Prance, G.T. (Eds.), Evolutionary Biology, Vol. 15. Plenum Press, New York, pp. 1±84. Gentry, A.H., 1986. Sumario de patrones ®togeogra®cos neotropicales y sus implicaciones para el desarollo de la Amazonia. Revista de la Academia Colombiana de Ciencias Exactas. FõÂsicas y Naturales 16 (61), 101±116. Gentry, A.H., 1988. Changes in plant community diversity and ¯oristic composition on environmental and geographical gradients. Annals Missouri Bot. Garden 75, 1±34. Gill, C.J., 1970. The ¯ooding tolerance of woody species Ð a review. For. Abstracts 31 (4), 671±688. Greig-Smith, P., 1983. Quantitative Plant Ecology. Blackwell Scienti®c Publications, Oxford, 359 pp. Hiraoka, M., 1985. Mestizo subsistence in riparian Amazonia. Natl. Geogr. Res. 1 (2), 236±246. Hubbell, S.P., 1995. Toward a global research strategy on the ecology of natural tropical forests to meet conservation and management needs. In: Lugo, A.E., Lowe, C. (Eds.), Tropical Forests: Management and Ecology. Springer, Berlin, pp. 423±437. Hubbell, S.P., Foster, R.B., 1992. Short-term dynamics of a neotropical forest: why ecological research matters to tropical conservation and management. OIKOS 63, 48±61. Irion, G., Junk, W.J., de Mello, J.A.S.N., 1997. The large central Amazonian river ¯oodplains near Manaus: geological, climatological, hydrological, and geomorphological aspects. In: Junk, W.J. (Ed.), The Central Amazon Floodplain. Ecology of a Pulsing System. Springer, Berlin, pp. 23±46. Junk, W.J., 1989. Flood tolerance and tree distribution in central Amazonian ¯oodplains. In: Holm-Nielsen, L.B., Nielsen, I.C., Balslev, H. (Eds.), Tropical Forests. Botanical Dynamics, Speciation and Diversity. Academic Press, London, pp. 47±64. Keel, S.H.K., Prance, G.T., 1979. Studies of the vegetation of a white-sand black-water igapo (Rio Negro, Brazil). Acta Amazonica 9 (4), 645±655. Klinge, H., Junk, W.J., Revilla, C.J., 1989. Status and distribution of forested wetlands in tropical South America. For. Ecol. Manage. 33/34, 81±101. G. Nebel et al. / Forest Ecology and Management 150 (2001) 27±57 Korsgaard, S., 1992. An Analysis of Growth Parameters and Timber Yield Prediction. The Council for Development Research, Copenhagen, Unpublished report, 120 pp. Kvist, L.P., Andersen, M.K., Hesselsùe, M., Vanclay, J., 1995. Estimating use-values and relative importance of Amazonian ¯ood plain trees and forests to local inhabitants. Commonwealth For. Rev. 74 (4), 293±300. Kvist, L.P., Nebel, G., 2001. A review of Peruvian ¯ood plain forests: ecosystems, inhabitants and resource use. For. Ecol. Manage. 150, 3±26. Kvist, L.P., Gram, S., CaÂcares, A.C., OreÂ, I.B., 2001a. A socioeconomy of villagers in The Peruvian Amazon with a particular focus at extraction: a comparison of seven ¯ood plain communities along the lower Ucayali and MaranÄon rivers. For. Ecol. Manage. 150, 175±186. Kvist, L.P., Andersen, M.K., Stagegaard, J., Hesselsùe, M., Llapapasca, C., 2001b. Extraction from woody forest plants in ¯ood plain communities in Amazonian Peru: use, choice, evaluation and conservation status of resources. For. Ecol. Manage. 150, 147±174. Lamotte, S., 1990. Fluvial dynamics and succession in the Lower Ucayali River basin, Peruvian Amazonia. For. Ecol. Manage. 33/34, 141±156. Lieberman, M., Lieberman, D., 1994. Patterns of density and dispersion of forest trees. In: McDade, L.A., Bawa, K.S., Hespenheide, H.A., Harsthorn, G.S. (Eds.), La Selva. Ecology and Natural History of a Neotropical Rain Forest. The University of Chicago Press, Chicago and London, pp. 106±119. LopeÂz, J.P., Freitas, D., 1990. Geographical aspects of forested wetlands in the Lower Ucayali, Peruvian Amazonia. For. Ecol. Manageme. 33/34, 157±168. Macedo, D.S., Anderson, A.B., 1993. Early ecological changes associated with logging in an Amazonian ¯oodplain. Biotropica 25 (2), 151±163. Mori, S.A., Boom, B.M., de Carvalho, A.M., dos Santos, T.S., 1983. Southern Bahian moist forests. Bot. Rev. 49 (2), 155±232. Nebel, G., Dragsted, J., Vanclay, J.K., 2001. Structure and ¯oristic composition of ¯ood plain forests in the Peruvian Amazon: II. the understorey of restinga forests. For. Ecol. Manage. 150, 59±77. Phillips, O., 1993. The potential for harvesting fruits in tropical rainforests: new data from Amazonian Peru. Biodiversity Conserv. 2, 18±38. Rankin-de-MeÂrona, J.M., Prance, G.T., Hutchings, R.W., Silva, M.F., Rodrigues, W.A., Uehling, M.E., 1992. Preliminary results of a large-scale tree inventory of upland rain forest in the central Amazon. Acta Amazonica 22 (4), 493±534. View publication stats 57 Richards, P.W., 1969. Speciation in the tropical rain forest and the concept of the niche. Biol. J. Linnean Soc. 1, 149±153. Richards, P.W., 1996. The Tropical Rain Forest. Cambridge University Press, Cambridge, 575 pp. Ros-Tonen, M.A.F., 1993. Tropical Hardwood from the Brazilian Amazon. Verlag Breitenbach Publishers, SaarbruÈcken Ð Fort Lauderdale, 279 pp. Spichiger, R., MeÂroz, J., Loizeau, P.-A., de Ortega, L.S., 1989. ContribucioÂn a la ¯ora de la Amazonia Peruana. Los aÂrboles del ArboreÂtum Jenaro Herrera, Vol. 1. Conservatoire et jardin botaniques de GeneÁve, Geneve, 359 pp. Spichiger, R., MeÂroz, J., Loizeau, P.-A., de Ortega, L.S. 1990. ContribucioÂn a la ¯ora de la Amazonia Peruana. Los aÂrboles del ArboreÂtum Jenaro Herrera, Vol. 2. Conservatoire et jardin botaniques de GeneÁve, Geneve, 565 pp. Swaine, M.D., Hall, J.B., Alexander, I.J., 1987. Tree population dynamics at Khade, Ghana (1968±1982). J. Trop. Ecol. 3, 331±345. Sùrensen, T., 1948. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Det Kongelige Danske Videnskabers Selskab. Biologiske Skrifter 5 (4), 1±34. Thomsen, K., 1997. Potential of non-timber forest products in tropical rain forest in Costa Rica. Ph.D. dissertation. Faculty of Natural Science, University of Copenhagen. Uhl, C., Murphy, P.G., 1981. Composition, structure, and regeneration of a tierra ®rme forest in the Amazon basin of Venezuela. Trop. Ecol. 22 (2), 219±237. Valencia, R., Balslev, H., Paz y Mino, G.C., 1994. High tree alpha-diversity in Amazonian Ecuador. Biodiversity Conserv. 3, 21±28. Whitmore, T.C., 1995. Perspectives in tropical rain forest research. In: Lugo, A.E., Lowe, C. (Eds.), Tropical Forests: Ecology and Management. Springer, Berlin, pp. 397±407. Worbes, M., 1983. Vegetationskundliche Untersuchungen zweier È berschwemmungswaÈlder in Zentralamazonien Ð vorlaÈu®ge U Ergebnisse. Amazonia 8 (1), 47±65. Worbes, M., 1986. Lebensbedingungen und Holzwachstum in È berschwemmungswaÈldern. Scripta Geozentralamazonischen U botanica 17, 7±112. Worbes, M., 1997. The forest ecosystem of the ¯oodplains. In: Junk, W.J. (Ed.), The Central Amazon Floodplain. Ecology of a Pulsing System, Springer, Berlin, pp. 223±266. Worbes, M., Klinge, H., Revilla, J.D., Martius, C., 1992. On the dynamics, ¯oristic subdivision and geographical distribution of vaÂrzea forests in Central Amazonia. J. Veg. Sci. 3, 553±564.