Academia.eduAcademia.edu
Accepted Manuscript Genera of phytopathogenic fungi: GOPHY 2 Y. Marin-Felix, M. Hernández-Restrepo, M.J. Wingfield, A. Akulov, A.J. Carnegie, R. Cheewangkoon, D. Gramaje, J.Z. Groenewald, V. Guarnaccia, F. Halleen, L. Lombard, J. Luangsa-ard, S. Marincowitz, A. Moslemi, L. Mostert, W. Quaedvlieg, R.K. Schumacher, C.F.J. Spies, R. Thangavel, P.W.J. Taylor, A.M. Wilson, B.D. Wingfield, A.R. Wood, P.W. Crous PII: S0166-0616(18)30019-8 DOI: 10.1016/j.simyco.2018.04.002 Reference: SIMYCO 76 To appear in: Studies in Mycology Please cite this article as: Marin-Felix Y, Hernández-Restrepo M, Wingfield MJ, Akulov A, Carnegie AJ, Cheewangkoon R, Gramaje D, Groenewald JZ, Guarnaccia V, Halleen F, Lombard L, Luangsa-ard J, Marincowitz S, Moslemi A, Mostert L, Quaedvlieg W, Schumacher RK, Spies CFJ, Thangavel R, Taylor PWJ, Wilson AM, Wingfield BD, Wood AR, Crous PW, Genera of phytopathogenic fungi: GOPHY 2, Studies in Mycology (2018), doi: 10.1016/j.simyco.2018.04.002. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Genera of phytopathogenic fungi: GOPHY 2 1,2* 1 2 3 4 Y. Marin-Felix , M. Hernández-Restrepo , M.J. Wingfield , A. Akulov , A.J. Carnegie , R. 5 6 1 1 7,8 1 Cheewangkoon , D. Gramaje , J.Z. Groenewald , V. Guarnaccia , F. Halleen , L. Lombard , J. Luangsa9 2 10 7 11 12 7,8 ard , S. Marincowitz , A. Moslemi , L. Mostert , W. Quaedvlieg , R.K. Schumacher , C.F.J. Spies , R. 13 10 2 2 14 1,2,15* Thangavel , P.W.J. Taylor , A.M. Wilson , B.D. Wingfield , A.R. Wood , and P.W. Crous Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands; 2Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Pretoria 0028, Pretoria, 0002, South Africa; 3V.N. Karasin National University of Kharkiv, Svobody sq. 4, Kharkiv 61077, Ukraine; 4Forest Science, NSW Department of Primary Industries, Locked Bag 5123, Parramatta, New South Wales 2124; 5Department of Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; 6Instituto de Ciencias de la Vid y del Vino, Consejo Superior de Investigaciones Científicas - Universidad de la Rioja - Gobierno de La Rioja, 26071 Logroño, La Rioja, Spain; 7 Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa; 8Plant Protection Division, ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa; 9Microbe Interaction and Ecology Laboratory, Biodiversity and Biotechnological Resource Research Unit (BBR), BIOTEC, NSTDA 113 Thailand Science Park Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; 10Faculty of Veterinary and Agricultural Sciences, University of Melbourne 3010, Melbourne, Victoria, Australia; 11Naktuinbouw, Sotaweg 22, 2371 GD Roelofarendsveen, the Netherlands; 12Hölderlinstraße 25, 15517 Fürstenwalde/Spree, Germany; 13Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland 1140, New Zealand; 14ARC – Plant Protection Research Institute, Private Bag X5017, Stellenbosch 7599, South Africa; 15Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands. M AN US C RI PT 1 *Correspondence: Y. Marin-Felix, y.marin@westerdijkinstitute.nl; P.W. Crous, p.crous@westerdijkinstitute.nl Running title: Genera of Phytopathogenic Fungi 2 D Abstract: This paper represents the second contribution in the Genera of Phytopathogenic Fungi (GOPHY) series. The series provides morphological descriptions and information regarding the pathology, distribution, hosts and disease symptoms for the treated genera. In addition, primary and secondary DNA barcodes for the currently accepted species are inlcuded. This second paper in the GOPHY series treats 20 genera of phytopathogenic fungi and their relatives including: Allantophomopsiella, Apoharknessia, Cylindrocladiella, Diaporthe, Dichotomophthora, Gaeumannomyces, Harknessia, Huntiella, Macgarvieomyces, Metulocladosporiella, Microdochium, Oculimacula, Paraphoma, Phaeoacremonium, Phyllosticta, Proxypiricularia, Pyricularia, Stenocarpella, Utrechtiana and Wojnowiciella. This study includes the new genus Pyriculariomyces, 20 new species, five new combinations, and six typifications for older names. TE Key words: DNA barcodes, fungal systematics, 26 new taxa, six new typifications AC C EP Taxonomic novelties: New genera: Pyriculariomyces Y. Marín, M.J. Wingf. & Crous; New species: Apoharknessia eucalypti Crous & M.J. Wingf., Cylindrocladiella addiensis L. Lombard & Crous, Cylindrocladiella nauliensis L. Lombard & Crous, Diaporthe heterophyllae Guarnaccia & Crous, Diaporthe racemosae A.R. Wood, Guarnaccia & Crous, Dichotomophthora basellae Hern.Restr., Cheew. & Crous, Dichotomophthora brunnea Hern.-Restr. & Crous,, Harknessia bourbonica Crous & M.J. Wingf., Harknessia corymbiae Crous & A.J. Carnegie, Harknessia cupressi Crous & R.K. Schumach., Harknessia pilularis Crous & A.J. Carnegie, Huntiella abstrusa A.M. Wilson, Marinc., M.J. Wingf., Metulocladosporiella chiangmaiensis Y. Marín, Cheew. & Crous, Metulocladosporiella malaysiana Y. Marín & Crous, Metulocladosporiella musigena Y. Marín, Cheew. & Crous, Metulocladosporiella samutensis Y. Marín, Luangsa-ard & Crous, Microdochium novae-zelandiae Hern.-Restr., Thangavel & Crous, Phaeoacremonium pravum C.F.J. Spies, L. Mostert & Halleen, Phyllosticta iridigena Y. Marín & Crous; Phyllosticta persooniae Y. Marín & Crous; New combinations: Macgarvieomyces luzulae (Ondřej) Y. Marín, Akulov & Crous, Pyriculariomyces asari (Crous & M.J. Wingf.) Y. Marín, M.J. Wingf. & Crous, Utrechtiana arundinacea (Corda) Crous, Quaedvl. & Y. Marín, Utrechtiana constantinescui (Melnik & Shabunin) Crous & Y. Marín; New status and combination: Oculimacula acuformis (Nirenberg) Y. Marín & Crous; Typification: Epitypification: Helminthosporium arundinaceum Corda, Phomopsis pseudotsugae M. Wilson, Pyricularia luzulae Ondřej, Pyricularia zingiberis Y. Nishik.; Lectotypification: Phomopsis pseudotsugae M. Wilson, Pyricularia zingiberis Y. Nishik. INTRODUCTION The series, Genera of Phytopathogenic Fungi (GOPHY), was launched by Marin-Felix et al. (2017) to provide a stable platform for the taxonomy of phytopathogenic fungi. The common denominator for the genera included in this series is their association with plant diseases. The authors recognise that many species treated are not well-known plant pathogens or where Koch’s postulates have not been proven for them. The focus of the series is mainly to resolve generic and species concepts of the fungi studied. This is particulary important because many taxa have been shown to represent species complexes, or to be accommodated in genera that are poly- or paraphyletic (Crous et al. 2015b). The Series links to a larger ACCEPTED MANUSCRIPT MATERIAL AND METHODS D M AN US C RI PT initiative known as the “The Genera of Fungi project” (www.GeneraOfFungi.org, Crous et al. 2014a, 2015a, Giraldo et al. 2017), which aims to revise the generic names of all currently accepted fungi (Kirk et al. 2013). Some of the main problems are that for many genera and species type material has not been designated or/and that the vast majority of these taxa were described before the DNA phylogenetic era (Hibbett et al. 2011) and thus lack DNA barcodes (Schoch et al. 2012). Another important aim of this project is to secure the application of names by generating DNA barcodes of type species of genera and type specimens of species. In those cases where no type material has been preserved, taxa need to be recollected, epi- or neotypes designated, and registered in MycoBank to ensure traceability of the nomenclatural act (Robert et al. 2013). The ultimate objective is to move to a single scientific name for fungi (Crous et al. 2015b) for which sexual-asexual links have been resolved. For each paper in the GOPHY series, morphological descriptions and information regarding the pathology, distribution, hosts and disease symptoms are provided for the treated genera. In addition, this information is linked to primary and secondary DNA barcodes of the current accepted species in each genus. These DNA barcodes are critically important because of problems relating to generic delimitation and species identification based solely on morphology. A clear example is the delimitation of the genera Bipolaris and Curvularia, treated in the first paper of the GOPHY series (Marin-Felix et al. 2017). These two genera share many morphological similarities, and intermediate conidial characters (Manamgoda et al. 2012). Species delimitation in both genera based on morphology alone is of limited value because many species have overlapping characters (Sivanesan 1987, Madrid et al. 2014, Manamgoda et al. 2014). Some genera include species that do not produce reproductive structures and their identification must rely on DNA data. For some phytopathogenic genera, the DNA barcodes for species delimitation have been established in previous studies, but for the vast majority, these data remain unavailable. Mycologists wishing to contribute to future issues in the GOPHY series are encouraged to contact Pedro Crous (p.crous@westerdijkinstitute.nl) before submitting their contributions. This will ensure there is no overlap with activities arising from other research groups. Preference will be given to genera that include novel DNA data and/or novel species, combinations or typifications. The generic contributions, apart from being published in this series of papers, will also be placed in the database displayed on www.plantpathogen.org. TE Isolates and morphological analysis AC C EP Descriptions of the new taxa and typifications are based on cultures obtained from the collection at the Westerdijk Fungal Biodiversity Institute in Utrecht, The Netherlands (CBS), the working collection of P.W. Crous (CPC), housed at the Westerdijk Fungal Biodiversity Institute, and the culture collection (CMW) of the Forestry and Agricultual Biotechnology Institute (FABI), at the University of Pretoria, South Africa. For fresh collections, we followed the procedures previously described in Crous et al. (1991). Colonies were transferred to different media, i.e. cherry decoction agar (CHA), carnation leaf agar (CLA), cornmeal agar (CMA), 2 % malt extract agar (MEA), 2 % potato dextrose agar (PDA), synthetic nutrient-poor agar (SNA), oatmeal agar (OA), water agar (WA) (Crous et al. 2009), autoclaved pieces of grapevine canes placed on water agar (grapevine water agar; GWA), pine needle agar (PNA; Smith et al. 1996), or malt extract peptone agar (MPA; Speakman 1984), and incubated at different conditions depending on the taxon to induce sporulation. Requirements of media and conditions of incubations are specified in each genus. Reference strains and specimens are maintained at the CBS, CMW and CPC. Vegetative and reproductive structures were mounted in 100% lactic acid either directly from specimens or from colonies sporulating on MEA, PDA, PNA, OA or SNA. For cultural characterisation, isolates were grown and incubated on different culture media and temperatures as stipulated for each genus. Colour notations were rated according to the colour charts of Rayner (1970). Taxonomic novelties were deposited in MycoBank (www.MycoBank.org; Crous et al. 2004a). DNA isolation, amplification and analyses ACCEPTED MANUSCRIPT Allantophomopsiella Crous, IMA Fungus 5: 180. 2014. Fig. 1. Classification: Leotiomycetes, Leotiomycetidae, Phacidiales, Phacidiaceae. RI PT Fungal DNA was extracted and purified directly from the colonies or host material as specified for each genus. Primers and protocols for the amplification and sequencing of gene loci, and software used for phylogenetic analyses can be found in the bibliography related to the phylogeny presented for each respective genus. Phylogenetic analyses consisted of Maximum-Likelihood (ML), Bayesian Inference (BI), and Maximum Parsimony (MP). The ML and the BI were carried out using methods described by Hernández-Restrepo et al. (2016b), and the MP using those described by Crous et al. (2006b). Sequence data generated in this study were deposited in GenBank and the alignments and trees in TreeBASE (http://www.treebase.org). DNA barcodes (genus): ITS, LSU. DNA barcodes (species): ITS, rpb2. Table 1. M AN US C Type species: Allantophomopsiella pseudotsugae (M. Wilson) Crous., basionym: Phomopsis pseudotsugae M. Wilson. Lectotype designated here: material deposited in Royal Botanic Garden Edinburgh, E00414771. Epitype and ex-epitype strain designated here: CBS H-23354, CBS 320.53. Conidiomata up to 600 m diam, pycnidial, immersed, becoming erumpent, irregularly multilocular, dark brown, ostiolate; conidiomatal wall composed of 3–4 layers of dark brown cells, textura angularis. Conidiophores arising from inner layer of conidioma, branched, septate, at times reduced to conidiogenous cells. Conidiogenous cells integrated or discrete, ampulliform to subcylindrical or lageniform, hyaline, smooth with minute periclinal thickening at apex. Conidia inequilaterally fusiform or naviculate, hyaline, smooth, aseptate, guttulate, bearing mucoid apical appendages, flabelliform to irregular in shape. Sexual morph unknown (adapted from Crous et al. 2014b). D Culture characteristics: Colonies spreading, flat with sparse aerial mycelium and feathery margins. On PDA surface olivaceous grey, reverse iron-grey. On OA surface olivaceous grey with patches of iron-grey. TE Optimal media and cultivation conditions: PNA at 25 °C under continuous near-ultraviolet li ght to promote sporulation. Distribution: North America and Europe. EP Hosts: Conifers (Pinaceae). Disease symptoms: Canker and dieback. AC C Notes: This genus was recently introduced by Crous et al. (2014b) to accommodate A. pseudotsugae, a pathogen of conifers that was found to be very damaging, especially after wounding during tree dormancy (Roll Hansen 1992). In a study considering the pathogenicity of this fungus on Pinus sylvestris associated with pruning wounds, it was observed that Allantophomopsis pseudotsugae occurred commonly in slash of pine trees wounded during the autumn (Uotila 1990). Allantophomopsiella is morphologically related to the phytopathogenic genera Apostrasseria and Allantophomopsis. However, it can be easily differentiated from both genera by the lack of percurrent proliferation on its conidiogenous cells, and by the production of inequilaterally fusiform or naviculate conidia. References: Uotila 1990 (pathogenicity); Crous et al. 2014b (morphology and phylogeny). Allantophomopsiella pseudotsugae (M. Wilson) Crous, IMA Fungus 5: 180. 2014. Fig. 1. Basionym: Phomopsis pseudotsugae M. Wilson, Transactions of the Royal Scottish Arboricultural Society 34: 147. 1920. ACCEPTED MANUSCRIPT Synonyms: Phacidiella coniferarum G.G. Hahn, Mycologia 49: 227. 1957. Phacidium coniferarum (G.G. Hahn) DiCosmo, et al., Canad. J. Bot. 61: 37. 1983. Allantophomopsis pseudotsugae (M. Wilson) Nag Raj, Coelomycetous anamorphs with appendagebearing conidia: 116. 1993. Additional synonyms are provided in Nag Raj (1993). RI PT Materials examined: UK, Scotland, Murthly, on Pseudotsuga menziesii (Pinaceae), Apr. 1920, M. Wilson (lectotype of Phomopsis pseudotsugae designated here: MBT379803, material deposited in Royal Botanic Garden Edinburgh, E00414771). Norway, Førde in Sunnfjord, shoot of Pseudotsuga menziesii (Pinaceae), Apr. 1948, H. Robak (epitype of Phomopsis pseudotsugae designated here CBS H-23354, MBT379804, culture ex-epitype CBS 320.53). M AN US C Notes: Allantophomopsis pseudotsugae was introduced by Wilson (1920) as Phomopsis pseudotsugae to accommodate a fungus that infects Pseudotsuga menziesii in Scotland. Type material was not specified when it was described, but the author deposited original material used for the Royal Botanic Garden Edinburgh. This material with the barcode number E00414771, which appears to be syntype material of the species, is selected here as lectotype. To fix the use of the name, the strain CBS 320.53 is designated here as ex-epitype. This strain was collected in Norway, occurring on the type host (Wilson 1920), and fits well with the description of the species recently provided by Crous et al. (2014b). Authors: Y. Marin-Felix & P.W. Crous Apoharknessia Crous & S.J. Lee, Stud. Mycol. 50: 239. 2004. Fig. 2. Classification: Sordariomycetes, Diaporthomycetidae, Diaporthales, Apoharknessiaceae. Type species: Apoharknessia insueta (B. Sutton) Crous & S.J. Lee, basionym: Harknessia insueta B. Sutton. Holotype of H. insueta: IMI 22697. Epitype and ex-epitype strain designated by Lee et al. (2004): CBS H-9913, CBS 111377 = STE-U 1451. DNA barcodes (genus): ITS, LSU. D DNA barcodes (species): ITS, cal, tub2. Table 2. AC C EP TE Conidiomata pycnidial, separate to gregarious, subepidermal, becoming erumpent, stromatic, amphigenous, depressed globose or subglobose to irregular, unilocular, glabrous; opening irregularly, with yellowish, furfuraceous cells, lacking a definite ostiole; conidiomatal wall of textura angularis. Conidiophores reduced to conidiogenous cells lining cavity. Conidiogenous cells lageniform to ampulliform or ampulliform to subcylindrical, hyaline, smooth, in mucilage, percurrently proliferating once or twice near apex. Conidia broadly ellipsoidal to obovoid or obliquely gibbose, apex obtusely rounded, aseptate, nonapiculate, medium brown or brown, with or without a longitudinal hyaline band on flat surface, thickwalled, smooth, with or without striations along length of conidia, with prominent central guttule; basal appendage absent or hyaline, tubular, smooth, thin-walled, devoid of cytoplasm; apical appendage absent or hyaline, conical or tubular, short, smooth, thin-walled, devoid of cytoplasm. Sexual morph unknown. Culture characteristics: Colonies flat on MEA, PDA and OA, with sparse or moderate aerial mycelium, smooth, lobate margins, fast sporulating. On MEA surface greenish black or olivaceous black in centre, dirty white in outer region; reverse olivaceous grey in centre, dirty white in outer region. Optimal media and cultivation conditions: MEA, PDA and OA under continuous near-ultraviolet light at 25 °C to promote sporulation. Distribution: Brazil, Colombia, Cuba, Malaysia and Mauritius. Hosts: Eucalyptus (Myrtaceae). Disease symptoms: Leaf spots. ACCEPTED MANUSCRIPT RI PT Notes: The genus Apoharknessia was established by Lee et al. (2004) for Ap. insueta, a presumed foliar pathogen of eucalypts in Brazil, Colombia, Cuba and Mauritius. The genus included two species following the description of Ap. eucalyptorum to accommodate a presumed endophyte of Eucalyptus pellita isolated from collections made in Malaysia (Crous et al. 2017a). Apoharknessia is distinguished from Harknessia by having an apical appendage on its conidia, and cultures that lack fluffy aerial mycelium and sporulate abundantly on the aerial hyphae. Cultures of Harknessia s. str. are slow to sporulate, and tend to form abundant pycnidial conidiomata in culture (Lee et al. 2004). Recently, the family Apoharknessiaceae was introduced based on a phylogenetic study of the members of the Diaporthales, in order to accommodate Apoharknessia, designated as the type genus of the family, together with Lasmenia, which is also a genus associated with plant disease (Senanayake et al. 2017). M AN US C References: Lee et al. 2004 (morphology and phylogeny); Crous et al. 2012c, 2017a, Senanayake et al. 2017 (phylogeny). Apoharknessia eucalypti Crous & M.J. Wingf., sp. nov. MycoBank MB820945. Fig. 3. Etymology: Name refers to Eucalyptus, the host genus from which this fungus was collected. D Foliicolous, isolated from leaves incubated in moist chambers (presumed endophytic). Conidiomata up to 250 µm diam, pycnidial, solitary to gregarious, subepidermal, becoming erumpent, stromatic, amphigenous, depressed globose; opening irregularly, with yellowish, furfuraceous cells; conidiomatal wall of textura angularis. Conidiophores reduced to conidiogenous cells lining cavity. Conidiogenous cells 8–12 × 3–5 µm, ampulliform to subcylindrical, hyaline, smooth, in mucilage, percurrently proliferating once or twice near apex. Conidia (7–)8–10(–11) × (5–)6(–7) µm, broadly ellipsoid to obovoid, apex obtusely rounded, aseptate, non-apiculate, medium brown, thick-walled, smooth, striations along length of conidium body, with prominent central guttule. Basal appendage absent or 0–2 µm long, 2 µm diam, hyaline, tubular, smooth, thin-walled, devoid of cytoplasm. TE Culture characteristics: Colonies on MEA, PDA and OA, with moderate aerial mycelium and smooth, lobate margins, reaching 60 mm diam after 2 wk at 25 °C. On MEA surface greenish black in middle, dirt y white in outer region, reverse olivaceous grey in centre, dirty white in outer region. On PDA surface and reverse olivaceous grey in centre, dirty white in outer region. On OA surface greenish black in middle, outer region dirty white. EP Material examined: Malaysia, Sabah, isolated from leaves of Eucalyptus pellita (Myrtaceae), May 2015, M.J. Wingfield (holotype CBS H-23081, culture ex-type CPC 27550 = CBS 142518). AC C Notes: Apoharknessia eucalypti is an odd member of the genus in that its conidia generally lack an apical appendage. The latter was observed on one or two conidia, irrespective of the media used for cultivation. The ITS sequence of Ap. eucalypti is only 92 % similar to that of Ap. insueta [GenBank JQ706083; Identities = 569/618 (92 %), 33 gaps (5 %)] and 97 % similar to that of Ap. eucalyptorum [GenBank KY979752; Identities = 604/621 (97 %), 5 gaps (0%)]. Authors: P.W. Crous, Y. Marin-Felix, J.Z. Groenewald & M.J. Wingfield Cylindrocladiella Boesew., Canad. J. Bot. 60: 2289. 1982. Fig. 4. Synonym: Nectricladiella Crous & C.L. Schoch, Stud. Mycol. 45: 54. 2000. Classification: Sordariomycetes, Hypocreomycetidae, Hypocreales, Nectriaceae. Type species: Cylindrocladiella parva (P.J. Anderson) Boesew., basionym: Cylindrocladium parvum P.J. Anderson. Representative strain: CBS 114524 = ATCC 28272. ACCEPTED MANUSCRIPT DNA barcodes (genus): LSU, ITS. DNA barcodes (species): his3, tef1, tub2. Table 3. Fig. 5. M AN US C RI PT Ascomata perithecial, superficial, solitary, basal stroma absent, globose to obpyriform, collapsing laterally when dry, smooth, with minute, brown setae arising from ascomatal wall surface, red, changing colour in KOH, ostiole consisting of clavate cells, lined with inconspicuous periphyses. Asci unitunicate, 8-spored, cylindrical, sessile, thin-walled, with a flattened apex, and a refractive apical apparatus. Ascospores uniseriate, overlapping, hyaline, ellipsoid to fusoid with obtuse ends, smooth, 1-septate. Conidiophores monomorphic, penicillate, or dimorphic (penicillate and subverticillate), mononematous, hyaline. Penicillate conidiophores consist of a stipe, a penicillate arrangement of fertile branches, a stipe extension, and a terminal vesicle. Subverticillate conidiophores consist of a stipe, and one or two series of phialides. Stipe septate, hyaline, smooth. Stipe extensions aseptate, straight, thick-walled, with one basal septum, terminating in a thin-walled vesicle of characteristic shape. Conidiogenous apparatus with primary branches 0–1-septate, secondary branches aseptate, terminating in 2–4 phialides. Phialides cylindrical, straight or doliiform to reniform to cymbiform, hyaline, aseptate, apex with minute periclinal thickening and collarette. Conidia cylindrical, rounded at both ends, straight, (0–)1(–3)-septate, frequently slightly flattened at base, held in asymmetrical clusters by hyaline slime. Chlamydospores brown, thickwalled, more frequently arranged in chains than clusters (adapted from Boesewinkel 1982 and Lombard et al. 2012). Culture characteristics: Colonies on MEA white to pale brick when young, becoming pale brick to dark sepia when mature, fluffy, cottony, effuse to convex with papillate surface, margin entire, undulate, lobate, or fimbriate, sometimes with abundant chlamydospores forming microsclerotia within medium. Optimal media and cultivation conditions: CLA to induce sporulation of the asexual morph at 25 °C, while for the sexual morph sterile toothpicks placed on SNA is used at 20 °C. Distribution: Worldwide. TE D Hosts: Soil-borne, weak pathogen of forestry, agricultural and horticultural crops (Crous 2002, Lombard et al. 2012). Disease symptoms: Leaf spots, cutting rot, stem cankers, damping-off and root rot. AC C EP Notes: Boesewinkel (1982) established the asexual genus Cylindrocladiella, based on C. parva, to accommodate several cylindrocladium-like species characterised by small (< 20 µm long), 1-septate, cylindrical conidia and aseptate stipe extensions. Initially, Cylindrocladiella spp. were linked to the sexual genus Nectricladiella (Crous & Wingfield 1993, Schoch et al. 2000). Following the implementation of the International Code of Nomenclature for algae, fungi and plants (ICN; McNeill et al. 2012), Rossman et al. (2013) proposed that the generic name Cylindrocladiella be retained over Nectricladiella. Recently, Lombard et al. (2015) showed that the genus Cylindrocladiella formed a monophyletic group in the Nectriaceae, closely related to the genera Aquanectria and Gliocladiopsis. To date, 36 species of Cylindrocladiella have been recognised (Crous & Wingfield 1993, van Coller et al. 2005, Inderbitzin et al. 2012, Lombard et al. 2012, 2015, 2017; Crous et al. 2017a), of which two are linked to nectricladiella-like sexual morphs (Schoch et al. 2000, Crous 2002, Lombard et al. 2012, 2015). These fungi are generally soil-borne and regarded as saprobes or weak pathogens of numerous plant hosts (Crous 2002, van Coller et al. 2005, Scattolin & Montecchio 2007, Lombard et al. 2012). Disease symptoms associated with Cylindrocladiella infection include leaf spots and root, stem and cutting rots (Crous et al. 1991, Peerally 1991, Crous & Wingfield 1993, Crous 2002, van Coller et al. 2005, Scattolin & Montecchio 2007, Lombard et al. 2012). References: Boesewinkel 1982 (morphology and pathogenicity); Crous & Wingfield 1993 (morphology); Schoch et al. 2000, Lombard et al. 2012, 2017 (morphology and phylogeny); Crous 2002 (morphology, pathogenicity and monograph); van Coller et al. 2005 (morphology, pathogenicity and phylogeny). ACCEPTED MANUSCRIPT Cylindrocladiella addiensis L. Lombard & Crous, sp. nov. MycoBank MB824497. Etymology: Name refers to Addis Abeba, Ethiopia, from where this fungus was collected. RI PT Cultures sterile. Cylindrocladiella addiensis differs from its closest phylogenetic neighbours, C. elegans and C. noveazelandica, by unique fixed alleles in three loci based on the alignments deposited in TreeBASE (S22340): ITS position 92(T); tef1 positions 32(T), 80(C), 84(C), 154(indel), 155(A), 156(G), 157(indel), 199(A), 244(G), 261(G), 368(T), 398(T), 458(G/C), 466(G), 467(C), 475(T), 478(C), 483(T), 485(T), 487(T), 490(T) and 492(G); tub2 position 174(indel). Culture characteristics: Colonies convex, cottony, with smooth margins, cream; reverse pale luteous; chlamydospores not seen; reaching 45–65 mm after 1 wk on MEA at 24 °C in ambient light. M AN US C Materials examined: Ethiopia, Addis Ababa, from soil, 2010, coll. P.W. Crous, isol. L. Lombard [holotype CBS 143794 (maintained as metabolically inactive culture), isotype cultures CBS 143793, CBS 143795 (also maintained as metabolically inactive cultures). Note: None of the three isolates of C. addiensis could be induced to sporulate on MEA, PDA, OA, SNA or SNA amended with carnation leaf pieces. Cylindrocladiella nauliensis L. Lombard & Crous, sp. nov. MycoBank MB824500. Fig. 6. Etymology: Name refers to the area Aek Nauli, Indonesia, from where this fungus was collected. TE D Conidiophores 35–55 × 3–6 m, dimorphic, penicillate and subverticillate, mononematous and hyaline, comprising a stipe, a penicillate arrangement of fertile branches, a stipe extension and a terminal vesicle; stipe septate, hyaline, smooth; stipe extension 100–135 m long, 4–5 m wide, aseptate, straight, thickwalled with one basal septum, terminating in thin-walled, broadly clavate to ellipsoidal vesicles sometimes with papillate apex. Penicillate conidiogenous apparatus 10–22 × 2–4 m, with primary branches aseptate, secondary branches 8–15 × 2–4 m, aseptate, each terminal branch producing 2–4 phialides; phialides 8–13 × 2–3 m, elongate doliiform to reniform to cymbiform, hyaline, aseptate, apex with minute periclinal thickening and collarette. Subverticillate conidiophores abundant, comprised of a septate stipe and rarely primary branches terminating in 2–4 phialides; primary branches 25–45 × 2–4 m, straight, hyaline, 0–1-septate; phialides 12–32 × 2–3 m, cymbiform to cylindrical, hyaline, aseptate, apex with minute periclinal thickening and collarette. Conidia (10–)11–13(–14) × 2–3 m (av. = 12 × 2 m), cylindrical, rounded at both ends, straight, 1-septate, frequently slightly flattened at base, held in asymmetrical clusters by hyaline slime. Sexual morph unknown. EP Culture characteristics: Colonies convex, cottony, with smooth margins, cream with pale luteous to brick centre; reverse pale luteous to honey with sepia centre; chlamydospores moderate throughout medium arranged in chains; reaching 60–70 mm after 1 wk on MEA at 24 °C in ambient light. AC C Materials examined: Indonesia, Sumatra Utara, Aek Nauli, from soil, May 2005, coll. M.J. Wingfield, isol. L. Lombard (holotype CBS H-23400, culture ex-type CBS 143792); ibid., isotype culture CBS 143791 (metabolically inactive). Notes: Cylindrocladiella nauliensis is closely related to C. longistipitata. The stipe extensions of C. nauliensis (up to 135 m long) are shorter than those of C. longistipitata (up to 216 m long; Lombard et al. 2012). Additionally, the conidia of C. nauliensis are smaller [(10–)11–13(–14) × 2–3 m (av. = 12 × 2 m)] than those of C. longistipitata [(12–)14–16(–17) × 2–4 m (av. = 15 × 3 m); Lombard et al. 2012]. Authors: L. Lombard & P.W. Crous Diaporthe Nitschke, Pyrenomyc. Germ. 2: 240. 1870. Figs 7, 8. Synonym: Phomopsis, Sacc., Syll. fung. (Abellini) 2: 484. 1883. Classification: Sordariomycetes, Sordariomycetidae, Diaporthales, Diaporthaceae. ACCEPTED MANUSCRIPT Type species: Diaporthe eres Nitschke. Lectotype designated by Udayanga et al. (2014a): B 70 0009145. Epitype and ex-epitype strain designated by Udayanga et al. (2014a): BPI 892912, AR5193 = CBS 138594. DNA barcodes (genus): ITS. RI PT DNA barcodes (species): cal, his3, tef1, tub2. Table 4. Fig. 9. M AN US C Ascomata immersed in substrate, subglobose or irregular, solitary or clustered in groups, often erumpent through a pseudostroma mostly surrounding ascomata with more or less elongated ascomatal necks. Pseudostroma distinct, often delimited with dark lines. Asci unitunicate, 8-spored, sessile, elongate to clavate or cylindrical, loosening from ascogenous cells at an early stage and floating free in ascomata. Ascospores biseriate to uniseriate in ascus, fusoid, ellipsoid to cylindrical, straight, inequilateral or curved, septate, hyaline, sometimes with appendages. Conidiomata pycnidial, deeply embedded in culture on several media, globose to conical, eustromatic, multilocular, occasionally with ostiolate necks, scattered or aggregated, brown to black, surface covered with hyphae, cream to pale luteous or yellowish, conidial droplets or cirrus exuding from central ostioles; conidiomatal wall consisting of pale brown, thick walled textura angularis. Conidiophores cylindrical to clavate, straight to sinuous, densely aggregated, branched, 0–6-septate, smooth, hyaline in upper region, pale brown at base. Conidiogenous cells phialidic, hyaline, cylindrical, terminal and lateral, tapering slightly towards apex. Paraphyses occasionally produced, intermingled among conidiophores, hyaline, smooth, 1–3-septate. Alpha conidia aseptate, generally hyaline, smooth, fusiform to ellipsoidal, with obtuse or acute to rounded ends, non- to multi-guttulate, but often bi-guttulate. Beta conidia aseptate, hyaline, filiform, smooth, straight or more often hooked, eguttulate, tapering or truncated towards ends. Gamma conidia rarely produced, hyaline, smooth, non- to multi-guttulate, fusiform to subcylindrical with acute or rounded apex (adapted from Gomes et al. 2013, Udayanga et al. 2014a). D Culture characteristics: Colonies on MEA, PDA and OA producing abundant compact, flattened, aerial mycelium, sometimes in rings, with an entire to irregular margin, white, cream to yellowish or pale olivaceous grey, smoke grey to grey, cottony. Reverse pale brown to grey, dark green, producing brownish dots with age, with solitary or aggregated conidiomata at maturity. TE Optimal media and cultivation conditions: On MEA, PDA and OA at 25 °C, or sterile pine need les placed on SNA at 25 °C under near-ultraviolet light (12 h light, 12 h dark) to induce sporulation of the asexual morph. EP Distribution: Worldwide. Hosts: On a wide range of plant families. AC C Disease symptoms: Root and fruit rots, dieback, stem cankers, leaf spots, leaf and pod blights, and seed decay. Notes: The genus Diaporthe presently includes 213 species supported by ex-type cultures and supplementary DNA barcodes, which include endophytes, saprobes and important plant pathogenic species. Recent phylogenetic analyses of the genus Diaporthe grouped some of those species into complexes, such as D. arecae, D. eres and D. sojae (Huang et al. 2013, Udayanga et al. 2014a, 2015). Several pathology studies confirmed Diaporthe species to be associated with diverse suites of diseases (Fig. 7) on a broad range of economically important agricultural crops (Udayanga et al. 2011). More than one Diaporthe species is frequently reported as causative agents of the same disease (Thomson et al. 2011, Guarnaccia et al. 2016). Although Diaporthe was historically considered monophyletic based on the typical phomopsis-like asexual morph, the paraphyletic nature of this genus was recently revealed (Gao et al. 2017, Senanayake et al. 2017). Most of the known species in early literature were described in relation to their host association and morphological characters. However, a single species of Diaporthe can be found on diverse hosts, and can co-occur on the same host or lesion in different life modes. Phylogenetic studies ACCEPTED MANUSCRIPT demonstrated that morphological characters are not always reliable for species level identification due to their variability under changing environmental conditions (Gomes et al. 2013). As a consequence, identification and description of species based on host association alone is no longer tenable. For accurate species delimitation, phylogenetic inference of the ITS, cal, his3, tef1 and tub2 or combinations of these is required. RI PT References: Mostert et al. 2001, Van Niekerk et al. 2005, Thomson et al. 2011, Guarnaccia et al. 2016, 2018 (morphology, pathogenicity and phylogeny); Udayanga et al. 2011, 2014a, 2015, Gomes et al. 2013 (morphology and phylogeny); Dissanayake et al. 2017b, c, Gao et al. 2017 (phylogeny). Diaporthe heterophyllae Guarnaccia & Crous, sp. nov. MycoBank MB823830. Fig. 10. Etymology: Name refers to Acacia heterophylla, the host from which this fungus was collected. M AN US C On PNA: Conidiomata 250–350 m diam, pycnidial, globose or irregular, solitary, deeply embedded in media, erumpent, dark brown to black, whitish translucent to yellow conidial drops and/or cirrus exuded from ostioles; conidiomatal wall consisting of 3–4 layers of medium brown textura angularis. Conidiophores 7–22 × 1.5–4 m, hyaline, smooth, 0–1-septate, densely aggregated, cylindrical, straight. Conidiogenous cells 6–9 × 1–2 m, phialidic, hyaline, terminal, cylindrical, tapered towards apex. Paraphyses not observed. Alpha conidia 6–10.5 × 2.5–4.5 m, mean ± SD = 8.4 ± 1.1 × 3.2 ± 0.4 m, L/W ratio = 2.6, aseptate, ovate to ellipsoidal, hyaline, multi-guttulate and acute or rounded at both ends. Beta conidia 17–24 × 1–2 m, mean ± SD = 21.7 ± 1.8 × 1.5 ± 0.3 m, L/W ratio = 14.5, hyaline, aseptate, eguttulate, filiform, curved, tapering towards both ends. Gamma conidia not observed. Culture characteristics: Colonies covering medium within 10 d at 21 °C, wi th surface mycelium flattened, dense and felty. Colony on MEA, PDA and OA at first white, becoming cream to yellowish, flat on MEA and OA, dense, felted on PDA. Reverse grey with brownish dots with age, with visible solitary conidiomata at maturity on all media. D Material examined: France, La Rèunion, on Acacia heterophylla (Fabaceae), 8 Mar. 2015, P.W. Crous (holotype CBS H-23376, culture ex-type CBS 143769 = CPC 26215). TE Notes: Diaporthe heterophyllae is phylogenetically close but clearly differentiated from D. eres based on ITS, tef1, tub2, his3 and cal sequence similarity (98 %, 88 %, 97 %, 95 %, and 97 %, respectively). Morphologically, D. heterophyllae differs from D. eres in its longer alpha conidia (6.5–10.5 vs. 6–8.5 m) and in its shorter beta conidia (17–24 vs. 22–28 m) (Udayanga et al. 2014a). EP Diaporthe racemosae A.R. Wood, Guarnaccia & Crous, sp. nov. MycoBank MB823831. Fig. 11. Etymology: Name refers to Euclea racemosa, the host from which this fungus was collected. AC C On PNA: Conidiomata 350–600 m diam, pycnidial, globose or irregular, solitary, deeply embedded in media, erumpent, dark brown to black, yellowish translucent to pale brown conidial drops and/or cirrus exuded from ostioles; conidiomatal wall consisting of 3–4 layers of pale brown textura angularis. Conidiophores 7–17 × 2–4 m, hyaline, smooth, 0–1-septate, densely aggregated, cylindrical, straight. Conidiogenous cells 5.5–8 × 1–2 m, phialidic, hyaline, terminal, subcylindrical, tapered towards apex. Paraphyses not observed. Alpha conidia 4–6.5 × 2–3 m, mean ± SD = 5.7 ± 0.6 × 2.3 ± 0.3 m, L/W ratio = 2.5, aseptate, ellipsoidal to subcylindrical, hyaline, non- to multi-guttulate and acute or rounded at both ends. Beta and gamma conidia not observed. Culture characteristics: Colonies covering medium within 10 d at 21 °C, wi th surface mycelium flattened, dense and felty. Colony on MEA and OA at first white, becoming olivaceous to dark grey. On PDA at first white, becoming white to yellowish. Reverse grey with brownish dots with age, with visible solitary conidiomata at maturity on all media. ACCEPTED MANUSCRIPT Material examined: South Africa, Western Cape, Bot River, from Euclea racemosa (Ebenaceae), 29 Dec. 2014, A.R. Wood (holotype CBS H-23377, culture ex-type CBS 143770 = CPC 26646). Authors: V. Guarnaccia, A.R. Wood & P.W. Crous RI PT Notes: Diaporthe racemosae is phylogenetically close but clearly differentiated from D. schini based on ITS, tef1, tub2, his3 and cal sequence similarity (98 %, 94 %, 98 %, 94 %, and 96 %, respectively). Moreover, D. racemosa produces only alpha conidia, while D. schini produces only beta conidia (Gomes et al. 2013). M AN US C Dichotomophthora Mehrl. & Fitzp. ex M.B. Ellis, Dematiaceous Hyphomycetes (Kew): 388. 1971. Fig 12. Synonyms: Dichotomophthora Mehrl. & Fitzp., Mycologia 27: 550. 1935. (nom. inval., Art. 39.1, Melbourne). Dichotomophthora Mehrl. & Fitzp. ex P.N. Rao, Mycopath. Mycol. appl. 28: 139. 1966. (nom. inval., Art. 39.1, Melbourne). Classification: Dothideomycetes, Pleosporomycetidae, Pleosporales, Pleosporaceae. Type species: Dichotomophthora portulacae Mehrl. & Fitzp. ex M.B. Ellis. Type specimen and exparatype strain: IMI 8742, CBS 174.35. DNA barcodes (genus): ITS. DNA barcodes (species): ITS, rpb2, gpdh. Table 5. Fig. 13. TE D Conidiophores macronematous, mononematous, unbranched or irregularly branched, sometimes swollen and repeatedly dichotomously or trichotomously branched or lobed at apex, forming a stipe and head; stipe hyaline to brown; branches usually short. Conidiogenous cells mono- or polytretic, integrated, terminal, lobed, cicatrized. Conidia solitary, dry, simple, ellipsoidal to cylindrical, rounded at ends, subhyaline to brown, multi-distoseptate. Microconidia ovoid, 0–2-distoseptate. Sclerotia often formed in culture resembling immature perithecia, semi- or immersed in agar, subglobose, ellipsoidal, ovoid, dark brown or black. Sexual morph unknown (adapted from Ellis 1971). EP Culture characteristics: Colonies on PDA and OA white, hazel, orange, or dark grey to olivaceous, cottony, velvety, somewhat fluffy, or flat, margin irregular, effuse; reverse centre hazel, dark brown, periphery hazel, orange to luteous. Diffusible pigment luteous to orange (produced in some strains). Optimal media and cultivation conditions: On PDA and OA at 25 °C under near-ultraviolet lig ht (12 h light, 12 h dark). Some strains are sterile in culture. AC C Distribution: Worldwide. Hosts: Anredera and Basella (Basellaceae), Beta vulgaris (Chenopodiaceae), Gymnocalycium mihanovichii var. friedrichii and Myrtillocactus geometrizans (Cactaceae), Portulaca (Portulacaceae), and soil. Disease symptoms: Leaf spots, foliar abscission, stem blight, seed rot and damping-off. Notes: Dichotomophthora was introduced as a monotypic genus with Di. portulacae isolated from Portulaca oleracea in Hawaii (Mehrlich & Fitzpatrick 1935). However, the publication lacked a Latin diagnosis of the fungus and the name was therefore invalid. Later, Rao (1966) provided a Latin description of Di. portulacae and introduced a new species, Di. indica, but the validation was misapplied and both names were regarded as invalid (de Hoog & Oorschot 1983). Ellis (1971) validated the genus and the species based on the holotype specimen of Di. portulacae (IMI 8742). De Hoog & van Oorschot (1983) revised the taxonomy of Dichotomophthora and included Di. portulacae ACCEPTED MANUSCRIPT M AN US C RI PT and Di. lutea. Dichotomophthora portulacae was restricted to species with dichotomously branched conidiophores, and conidia with 2–3 septa, 45–75 × 20–30 µm. Dichotomophthora lutea was introduced based on Dactylaria lutea, which is characterised by unbranched or irregularly branched conidiophores, and conidia with 1–5 septa, 30–115 × 10–20 µm. Dichotomophthora species are mainly known as plant pathogens with a wide host range as well as soil-borne fungi or saprobes (Mehrlich & Fitzpatrick 1935, Routien 1957, Rao 1966, Ellis 1971, Klisiewicz 1985, Baudoin 1986, Pfeiffer et al. 1989, Eken 2003, Farr & Rossman 2017, Soares & Nechet 2017). However, a case of human keratitis caused by Di. portulacae was reported from subtropical Africa (de Hoog et al. 2000). Since many records of Di. portulacae may represent Di. lutea due to previous taxonomic confusion, host and distribution data need to be re-evaluated (de Hoog & van Oorschot 1983, Farr & Rossman 2017, Soares & Nechet 2017). This is the first time that numerous isolates, including the ex-type strains of both species of Dichotomophthora, have been subjected to phylogenetic analyses. Our results suggest that Dichotomophthora belongs in the Pleosporaceae (Pleosporales), closely related to Curvularia. The phylogenetic analysis and subtle morphological evidence revealed two additional new species, introduced here as Di. basellae and Di. brunnea. For an accurate identification at the species level, a DNA sequence analysis is recommended, since Dichotomophthora species are morphologically variable in culture and on natural substrates. References: Mehrlich & Fitzpatrick 1935, Routien 1957, Rao 1966, Ellis 1971, de Hoog & van Oorschot 1983 (taxonomy and morphology); Baudoin 1986, Klisiewicz 1985, Pfeiffer et al. 1989, Eken 2003, Soares & Nechet 2017 (pathogenicity). Dichotomophthora basellae Hern.-Restr., Cheew. & Crous, sp. nov. MycoBank MB824604. Fig. 14. Etymology: Name reflects the substrate from which this fungus was isolated, Basella alba. TE D Hyphae 3–7.5 µm wide, hyaline to brown, septate, smooth to verruculose. Conidiophores macronematous, mononematous, unbranched or irregularly branched, sometimes swollen and repeatedly dichotomously or trichotomously branched or lobed at apex, forming a stipe and head; stipe 970–1370 × 10–12(–14) µm, pale brown, smooth; branches usually short; head 23–65 µm wide, pale brown to brown. Conidiogenous cells polytretic, integrated and terminal, lobed, cicatrized, individual lobes 6–14 × 6–9.5 µm. Conidia 32–86 × 10–18 µm, solitary, dry, ellipsoidal to cylindrical rounded at ends, subhyaline to yellow brown, 2–5-distoseptate. Microconidia 11–30 × 9–13(–15) µm, obovoid to ellipsoidal, 0–2-distoseptate. Sclerotia 295–444 × 234–409 µm, resembling immature perithecia, semi- or immersed in agar, globose, subglobose, ellipsoidal, ovoid, dark brown or black. Sexual morph unknown. EP Culture characteristics: Colonies at 25 °C under near-ultraviolet light (1 2 h light, 12 h dark), on PDA and OA reaching 45–50 mm after 1 wk, centre black, periphery luteous, velvety, flat, margin regular, effuse; reverse centre olivaceous, dark brown, periphery pale luteous. Diffusible pigment luteous. AC C Material examined: Thailand, Chiang Mai, Chiang Mai university experimental farm, on leaves of Basella alba (Basellaceae), 2010, R. Cheewangkoon (holotype CBS H-23383, culture ex-type CPC 33016). Notes: Dichotomophthora basellae is represented by one strain isolated from leaf spots on Basella rubra in Thailand. This species is morphologically similar to Di. lutea in having multi-lobed conidiogenous cells producing pale brown conidia, and colonies that produce a luteous to orange diffusible pigment in culture. In our study, Di. basellae produces larger conidia than Di. lutea (32–86 × 10–18 µm vs. 14–65.5 × 7.5–13 µm). However, de Hoog & van Oorschot (1983) described larger conidia in Di. lutea (30–115 × 10–20 µm). Additional studies with more isolates are thus required to compare these morphological differences and substrate preferences of both species. Dichotomophthora brunnea Hern.-Restr. & Crous, sp. nov. MycoBank MB824605. Fig. 15. Etymology: From the Latin brunnea meaning brown, because of the brown colour of the conidia. ACCEPTED MANUSCRIPT RI PT Hyphae 2.5–7 µm wide, hyaline to dark brown, septate, slightly constricted at septa, smooth. Conidiophores macronematous, mononematous, repeatedly dichotomously or irregularly branched, lobed at apex, forming a stipe and head; stipe 42–536 × 4.5–7.5 µm, pale brown to brown, smooth; branches usually short; head 10–28 µm wide, brown to pale brown. Conidiogenous cells mono- or polytretic, integrated, terminal, lobed, cicatrized, individual lobes 6.5–17 × 4–9 µm. Conidia 29–56.5 × 6– 10 µm, solitary, dry, ellipsoidal to cylindrical rounded at ends, brown to dark brown, 2–6(–8)-distoseptate, straight or slightly curved. Microconidia 13–19.5 × 7–9.5 µm, obovoid to ellipsoidal, 0–1-distoseptate. Sclerotia not observed. Sexual morph unknown. Culture characteristics: Colonies on PDA and OA at 25 °C under near-ultrav iolet light (12 h light, 12 h dark), after 1 wk, reaching 90 mm, dark olivaceous, velvety, margin irregular, rhizoid (PDA) or entire (OA); reverse black. Diffusible pigment not produced. M AN US C Material examined: Unknown country, unknown substrate, date and collector (holotype CBS H-23382, culture ex-type dep. A. Arambarri LPS 325 = CBS 149.94). Notes: Dichotomophthora brunnea was previously maintained as Di. portulacae in the CBS collection. However, the phylogenetic analysis suggests that the strain CBS 149.94 is a distinct species. Morphologically, the new species differs from Di. basellae and Di. lutea in having dark brown conidia and conidiogenous cells with 1–3 lobes (vs. yellowish or pale brown conidia and conidiogenous cells with usually more than three lobes). Neither pigment nor sclerotia were observed on the media tested. Dichotomophthora lutea (Routien) de Hoog & Oorschot, Proc. Kon. Ned. Akad. Wetensch., Sect. C 86: 56. 1983. Fig. 12. Basionym: Dactylaria lutea Routien, Mycologia 49: 191. 1957. Synonym: Dichotomophthora indica Rao, Mycopath. Mycol. Appl. 28: 139. 1966. (nom. inval., Art. 35.1, Melbourne). EP TE D Hyphae 3–7.5 µm wide, hyaline to brown, septate, smooth to verruculose. Conidiophores macronematous, mononematous, unbranched or irregularly branched, sometimes swollen and repeatedly dichotomously or trichotomously branched or lobed at apex, forming a stipe and head; stipe 7.5–10(–12) µm wide, hyaline to brown, smooth; branches usually short; head 16.5–62 µm wide, pale brown to brown. Conidiogenous cells polytretic, integrated and terminal, discrete, lobed, cicatrized, individual lobes 8–13 × 4–11 µm. Conidia 14–65.5 × 7.5–13 µm, solitary, dry, ellipsoidal to cylindrical rounded at ends, straight to slightly curved, subhyaline to yellow brown, 0–4-distoseptate, sometimes constricted at septa, sometimes anastomosing conidia observed. Microconidia 12–27 × 7–13 µm, obovoid, 0–2-distoseptate. Sclerotia 146–325 × 197–370 µm, present or absent, often formed in culture, resembling immature perithecia, semi- or immersed in agar, globose, subglobose, ellipsoidal or ovoid, dark brown or black. Sexual morph unknown. AC C Culture characteristics: Colonies on PDA and OA at 25 °C under near-ultrav iolet light (12 h light, 12 h dark), reaching 20–80 mm after 1 wk, white, hazel, orange, or dark grey to olivaceous, cottony, velvety, somewhat fluffy, or flat, margin irregular, effuse; reverse centre hazel, dark brown, periphery hazel, orange to luteous. Diffusible pigment luteous to orange (produced in some strains). Materials examined: Argentina, isolated from soil, unknown date, J.B. Routien, (culture ex-type of Dactylaria lutea CBS 145.57). Cuba, Santiago de las Vegas, on leaves of Portulaca oleracea (Portulacaceae), 9 Mar. 1980, G. Arnold, INIFAT A80/85 = CBS 132.81. Italy, isolated from seedbed of Pinus radiata (Pinaceae), unknown date, G. Magnani, CBS 584.71. The Netherlands, on leaves of Portulaca oleracea (Portulacaceae), unknown date and collector, CBS 585.71; The Hague, on leaves of Portulaca oleracea (Portulacaceae), Jul. 1978, G.H. Boerema, CBS 518.78. Notes: In the phylogenetic tree (Fig. 13), Di. lutea is represented by five strains isolated from soil and leaves of Po. oleraceae from Argentina, Cuba, Italy and the Netherlands. This species shows morphological variation among strains, with different colour and aspect of the colonies, production or absence of diffusible pigment and sclerotia. The above description is based on CBS 584.71, CBS 585.71, CBS 518.78 and CBS 132.81. The conidia were smaller than those described by de Hoog & van Oorschot (1983) based on the ex-type strain CBS 145.57 (14–65.5 × 7.5–13 vs. 30–115 × 10–20 µm). ACCEPTED MANUSCRIPT Unfortunately, the ex-type strain was sterile under the culture media and conditions tested. RI PT Dichotomophthora portulacae Mehrl. & Fitzp. ex M.B. Ellis, Dematiaceous Hyphomycetes (Kew): 388. 1971. Synonyms: Dichotomophthora portulacae Mehrl. & Fitzp., Mycologia 27: 550. 1935. (nom. inval., Art. 39.1, Melbourne). Dichotomophthora portulacae Mehrl. & Fitzp. ex P.N. Rao, Mycopath. Mycol. Appl. 28: 139. 1966. (nom. inval., Art. 38.5(a), Melbourne). M AN US C Hyphae 1.5–6 µm wide, subhyaline to pale brown, septate, slightly constricted at septa, smooth to verruculose. Conidiophores macronematous, mononematous, branched more or less dichotomously in apical region, forming a stipe and head; stipe 120–220 µm long, up to 14 µm wide at apex, reddish brown, smooth, verruculose near base, terminal branches up to 110 µm long, each ending in two slightly swollen, rounded or angular lobes. Conidiogenous cells mono- or polytretic, integrated and terminal, cicatrized. Conidia 45–75 × 20–30 µm, solitary, dry, ellipsoidal to cylindrical rounded at ends, dark reddish-brown, smooth, 2–3-distoseptate. Sclerotia 120–170 µm diam, often formed in culture, resembling perithecia, subglobose to globose or ovoid, dark reddish-brown. Sexual morph unknown (adapted from de Hoog & van Oorschot 1983). Culture characteristics: Colonies at 25 °C under near-ultraviolet light (1 2 h light, 12 h dark) after 1 wk, on PDA reaching 60 mm, centre white, periphery olivaceous, cottony, margin irregular, effuse, white; reverse centre black, periphery olive. On OA reaching 45 mm, pale greenish grey, cottony, margin effuse, buff; reverse greenish olivaceous. Diffusible pigment not produced. Material examined: USA, Hawaii, on Portulaca oleracea (Portulacaceae), unknown date and collector, isol. F.P. Mehrlich (exparatype culture CBS 174.35). D Notes: In this study Di. portulacae was represented only by the ex-paratype strain, which together with Di. brunnea (CBS 149.94) formed a subclade in Dichotomophthora. Both species have dark brown or reddish brown conidia and conidiogenous cells with 1–3 lobes. Nevertheless, Di. portulacae has shorter conidia with fewer septa, (45–75 × 20–30 µm; 2–3-distoseptate vs. 29–56.5 × 6–10 µm; 2–6distoseptate). TE Authors: M. Hernández-Restrepo, R. Cheewangkoon & P.W. Crous EP Gaeumannomyces Arx & D.L. Olivier, Trans. Brit. Mycol. Soc. 35: 32. 1952. Fig 16. Synonyms: Rhaphidospora Fr., Summa veg. Scand. 2: 401. 1849. Rhaphidophora Ces. & De Not., Sfer. Ital.: 79. 1863. Classification: Sordariomycetes, Sordariomycetidae, Magnaporthales, Magnaporthaceae. AC C Type species: Gaeumannomyces graminis (Sacc.) Arx & D.L. Olivier, basionym: Rhaphidophora graminis Sacc. Representative strain: CPC 26020 = CBS 141384. DNA barcode (genus): LSU. DNA barcodes (species): ITS, tef1, rpb1. Table 6. Fig. 17. Ascomata perithecial, superficial, submerged, globose, subglobose to elliptical, with a central, ostiolate, cylindrical neck, dark brown to black; ascomatal wall comprised of pseudoparenchymatous cells, light or brown. Hamathecium comprised of septate, often constricted at septa, hyaline paraphyses, widest at base and gradually narrow at apex, exceeding asci, dissolving at maturity. Asci numerous, unitunicate, cylindrical to elongated clavate, short stalked, with apical refractile ring, 8-spored. Ascospores cylindrical, slightly curved to sinuate, widest in middle, ends rounded, vacuolated, septate, septa often indistinct, hyaline to pale brown, faintly tinted yellowish in mass. Conidiophores branched, verticillate, indeterminate, brown, often reduced to conidiogenous cells, hyaline to brown. Conidiogenous cells ACCEPTED MANUSCRIPT RI PT phialidic, solitary or in dense clusters, lageniform, cylindrical, straight or slightly curved tapering to a short cylindrical to funnel-shaped or hardly visible collarette. Conidia dimorphic (A) according to Wong & Walker (1975) “germinating phialidic conidia”: solitary, grouped in slimy heads, ovoid to cylindrical, straight or slightly curved, tapering to an often acute base, hyaline, and/or (B) according to Wong & Walker (1975) “non-germinating phialidic conidia”: solitary, arranged in heads, hyaline, falcate to lunate, usually strongly curved in a semicircle with varying degrees of curvature. Hyphopodia when present hyaline becoming brown when mature, simple or lobed. Sclerotia present or absent (adapted from Hernández-Restrepo et al. 2016b). Culture characteristics: Colonies on PDA mycelium mostly submerged, dark (grey olivaceous, greyish sepia, isabelline) aerial mycelium scarce, or sometimes cottony, white; margin effuse irregular to rhizoid. On MEA elevated, cottony to funiculose, aerial mycelium white or pale i.e. pale greenish grey, smoke grey, submerged mycelium black, margin effuse to rhizoid. Cultures of Gaeumannomyces vary in colour, growth rate and amount of aerial mycelium, dark hyphal strands and black sclerotia. M AN US C Optimal media and cultivation conditions: MEA and PDA incubated at 15–30 °C depending of sp ecies. Other methods described for production of perithecia include PDA with wheat seedlings (Speakman 1982) and flooded cultures in MPA (Speakman 1984). Distribution: Worldwide. Hosts: Mainly pathogens on grasses (Poaceae on Avena, Hordeum, Oryza & Leersia, Secale, Sorghum, Triticum, xTriticale, Zea, turf grasses, buffalo grass and other grasses) and Cyperaceae, but some occur on non-grass hosts as saprobes or endophytes. Disease symptoms: Take-all, crown black sheath rot, dieback, root decline, patches of white heads after flowering, stem- and root rot. EP TE D Notes: Gaeumannomyces comprises about 20 species (Hernández-Restrepo et al. 2016b) that are mainly pathogenic to grasses, but some species are also regarded as saprobic or endophytic. The generic type Gaeumannomyces graminis included four varieties based on ascospore size, hyphopodial morphology and host preferences i.e. G. graminis var. graminis, G. graminis var. avenae, G. graminis var. tritici and G. graminis var. maydis (Turner 1940, Dennis 1960, Walker 1972, Yao et al. 1992). After a wide range of isolates were subjected to DNA sequence analyses, it was demonstrated that these established varieties and cryptic species represent different, phylogenetically supported species (Ward & Bateman 1999, Ulrich et al. 2000, Freeman & Ward 2004, Hernández-Restrepo 2016b). Gaeumannomyces tritici and G. avenae, the causal agents of take-all of wheat and oat respectively, are more aggressive pathogens than G. graminis and other species in the genus. Species of Gaeumannomyces are morphologically difficult to distinguish because of their simple morphology, overlapping morphological features and considerable intraspecific variation. AC C References: von Arx & Olivier 1952, Deacon 1973, 1974 (taxonomy); Walker 1972, 1975, 1980, 1981 (taxonomy, morphology, pathogenicity); Asher & Shipton 1981 (biology and control); Elliott 1991, Elliott et al. 1993 (pathogenicity); Bateman et al. 1992, Augustin et al. 1999, Ulrich et al. 2000, Rachdawong et al. 2002 (molecular data); Freeman & Ward 2004 (review); Hernández-Restrepo et al. 2016b (morphology and phylogeny). Authors: M. Hernández-Restrepo & P.W. Crous Harknessia Cooke, Grevillea 9: 85. 1881. Fig. 18. Synonyms: Caudosporella Höhn., Sber. Akad. Wiss. Wien, Math.-naturw. Kl., Abt. 1 123: 135. 1914. Mastigonetron Kleb., Mykol. Zentbl. 4: 17. 1914. Cymbothyrium Petr., Sydowia 1: 148. 1947. Classification: Sordariomycetes, Sordariomycetidae, Diaporthales, Harknessiaceae. ACCEPTED MANUSCRIPT Type species: Harknessia eucalypti Cooke. Representative strain: CBS 342.97. DNA barcode (genus): LSU. DNA barcodes (species): ITS, cal, tub2. Table 7. Fig. 19. M AN US C RI PT Ascomata perithecial, single or aggregated, immersed, brown; necks emergent to depressed; ascomatal wall of 3–5 layers of brown cells of textura angularis. Paraphyses hyaline, septate, dispersed between asci. Asci 8-spored, unitunicate, cylindrical to clavate, short pedicellate, with J- apical ring. Ascospores uni- to biseriate, ellipsoid to fusoid, hyaline, aseptate, thick-walled, guttulate, smooth-walled. Conidiomata erumpent, scattered, pycnidial, unilocular, globose to subglobose, brown; conidiomatal wall comprising 3–4 layers of brown-walled cells of textura angularis. Macroconidiophores lining cavity or limited to a basal layer in some species; usually reduced to conidiogenous cells, rarely septate and branched; commonly invested in mucus. Macroconidiogenesis cells ampulliform, subcylindrical or cylindrical, hyaline, proliferating percurrently. Macroconidia consisting of a body with a basal appendage, delimited by a septum; conidium body unicellular, ellipsoid to fusoid, subcylindrical, globose, broadly ventricose, broadly ellipsoid or broadly fusoid, thick-walled, smooth, brown, with or without pale and dark coloured longitudinal bands, occasionally longitudinally striate, guttulate; basal appendages hyaline, tubular, smooth, thin-walled, often collapsing. Microconidiophores absent or present, in same conidioma, reduced to microconidiogenous cells. Microconidiogenous cells ampulliform or subcylindrical to lageniform, hyaline, smooth, with apical periclinal thickening. Microconidia hyaline, smooth, aseptate, oval to ellipsoid. Culture characteristics: Colonies spreading, fluffy, with moderate to abundant aerial mycelium, covering plate in 1 mo. On MEA surface dirty white to cream or pale luteous; reverse cream; sometimes sporulating with black conidiomata, oozing black masses. These culture characteristics also apply to the new taxa described below. Optimal media and cultivation conditions: MEA, PDA and OA under continuous near-ultraviolet light at 25 °C to promote sporulation. D Distribution: Worldwide. TE Hosts: On diverse gymnosperm and dicotyledonous hosts, especially on Eucalyptus (Myrtaceae), which is host to 27 of the currently accepted 38 species. EP Disease symptoms: Associated with leaf spots, leaf tip dieback or leaf scorch and stem cankers, but pathogenicity has not been established definitively (Crous et al. 2012c). AC C Notes: Harknessia is characterised by having stromatic to pycnidial conidiomata, and dark brown conidia with tube-shaped basal appendages, longitudinal striations, and rhexolytic secession (Crous et al. 2012c). Sexual morphs were initially described in Cryptosporella (Nag Raj & DiCosmo 1981), which was rejected in favour of the older genus Wuestneia (Reid & Booth 1989). However, the type species of Wuestneia, Wu. aurea (= Wuestneia xanthostroma), was located in the Cryphonectriaceae and was associated with a coelomycete asexual morph having hyaline conidia. Wuestneia is therefore not considered as synonym of Harknessia, and only species placed in the Harknessiaceae and linked to Harknessia morphs were thus transferred to Harknessia (Crous et al. 2012c). The family Harknessiaceae was introduced based on LSU sequences of taxa belonging to Diaporthales in order to accommodate Harknessia (Crous et al. 2012c). References: Lee et al. 2004 (morphology and phylogeny); Crous et al. 2012c (morphology and phylogeny). Harknessia bourbonica Crous & M.J. Wingf., sp. nov. MycoBank MB824016. Fig. 20. Etymology: Name refers to Île Bourbon, the original name of La Réunion Island. ACCEPTED MANUSCRIPT RI PT Caulicolous and foliicolous, isolated from leaves and twigs incubated in moist chambers (presumed endophyte). Conidiomata up to 300 µm diam, pycnidial, separate to gregarious, subepidermal, becoming erumpent, stromatic, amphigenous, depressed globose; with irregular opening and border of yellowish, furfuraceous cells; conidiomatal wall of textura angularis. Conidiophores reduced to conidiogenous cells lining conidiomatal cavity. Conidiogenous cells 8–10 × 4–8 µm, ampulliform to subcylindrical, hyaline, smooth, invested in mucilage, percurrently proliferating once or twice near apex. Conidia (12–)13–14(– 15) × (8–)9–10 µm in vitro, broadly ventricose to ellipsoid, apex subobtusely rounded, aseptate, nonapiculate, yellow-brown, thick-walled, striations in restricted areas, multi-guttulate. Basal appendage (5– )8–12 × 2–2.5 µm in vitro, hyaline, tubular, smooth, thin-walled, devoid of cytoplasm. Microconidia not seen. Material examined: France, La Réunion, 21°15'5.4"S 55°36'3.3"E, on leaf litt er of Eucalyptus robusta (Myrtaceae), 8 Mar. 2015, P.W. Crous & M.J. Wingfield (holotype CBS H-23387, culture ex-type CBS 143913 = CPC 26533). M AN US C Notes: Harknessia bourbonica is related to Ha. ravenstreetina, which was also isolated from Eucalyptus leaves. The two species are distinguished in that Ha. ravenstreetina has longer conidia (14−20 m) that lack striations and has shorter basal appendages (1.5−5 × 2–2.5 m). Harknessia corymbiae Crous & A.J. Carnegie, sp. nov. MycoBank MB824017. Fig. 21. Etymology: Name refers to the host genus, Corymbia. TE D Caulicolous and foliicolous, isolated from leaves and twigs incubated in moist chambers (presumed endophyte). Conidiomata up to 250 µm diam, pycnidial, separate to gregarious, subepidermal, becoming erumpent, stromatic, amphigenous, depressed globose; with irregular opening and border of yellowish, furfuraceous cells; conidiomatal wall of textura angularis. Conidiophores reduced to conidiogenous cells lining conidiomatal cavity. Conidiogenous cells 6–10 × 4–5 µm, ampulliform to subcylindrical, hyaline, smooth, invested in mucilage, percurrently proliferating once or twice near apex. Conidia (23–)25–28(– 30) × (8–)9 µm in vitro, subcylindrical, apex apiculate, aseptate, yellow-brown, thick-walled, lacking striations, granular; in lactic acid some conidia appear to have a central line of paler pigment. Basal appendage (50–)65–80(–100) × 3–4 µm in vitro, hyaline, tubular, smooth, thin-walled, devoid of cytoplasm. Microconidia 3–4 × 1.5–2 µm, hyaline, smooth, guttulate, aseptate, subcylindrical with obtuse ends. Material examined: Australia, New South Wales, Bom Bom State Forest, on leaf litter of Corymbia maculata (Myrtaceae), 13 Mar. 2017, A.J. Carnegie (holotype CBS H-23388, culture ex-type CPC 33289). AC C EP Notes: Harknessia corymbiae was located in a distinct clade distant from the other species of the genus. The only accepted species presently known from Corymbia is Ha. rhabdosphaera. Both species were collected from Australia, but Ha. rhabdosphaera has smaller, striated conidia [(13–)15–17 × (13–)14–15 µm] with short basal appendages (up to 5 µm long). Harknessia cupressi Crous & R.K. Schumach., sp. nov. MycoBank MB824018. Fig. 22. Etymology: Name refers to the host genus, Cupressus. Caulicolous and foliicolous, isolated from needles incubated in moist chambers (presumed endophyte). Conidiomata up to 250 µm diam, pycnidial, separate to gregarious, subepidermal, becoming erumpent, stromatic, amphigenous, depressed globose; with irregular opening and border of yellowish, furfuraceous cells; conidiomatal wall of textura angularis. Conidiophores reduced to conidiogenous cells lining conidiomatal cavity. Conidiogenous cells 5–10 × 3–5 µm, ampulliform to subcylindrical, hyaline, smooth, invested in mucilage, percurrently proliferating once or twice near apex. Conidia (20–)21–23(–25) × (8– )9–11(–13) µm in vitro, broadly ventricose, apex apiculate, aseptate, yellow-brown, thick-walled, striations in restricted areas, multi-guttulate. Basal appendage 2–5(–12) × 2–2.5 µm in vitro, hyaline, tubular, smooth, thin-walled, devoid of cytoplasm. Microconidia 4–7 × 3–4 µm, hyaline, smooth, aseptate, broadly ellipsoid. ACCEPTED MANUSCRIPT Materials examined: Spain, Zaragoza, Carretera El Frago, on needles of Cupressus sempervirens (Cupressaceae), 7 Jan. 2016, coll. R. Blasco, det. R.K. Schumacher (holotype CBS H-23389, culture ex-type CBS 143914 = CPC 30192); ibid., CPC 30174. Notes: Harknessia cupressi was located in an independent clade distant from the other species of the genus. Harknessia cupressi is the only species known from Cupressus sempervirens. RI PT Harknessia pilularis Crous & A.J. Carnegie, sp. nov. MycoBank MB824020. Fig. 23. Etymology: Name refers to Eucalyptus pilularis, the host species from which this fungus was isolated. M AN US C Caulicolous and foliicolous, isolated from leaves and twigs incubated in moist chambers (presumed endophyte). Conidiomata up to 250 µm diam, pycnidial, separate to gregarious, subepidermal, becoming erumpent, stromatic, amphigenous, depressed globose; with irregular opening and border of yellowish, furfuraceous cells; conidiomatal wall of textura angularis. Conidiophores reduced to conidiogenous cells lining conidiomatal cavity. Conidiogenous cells 4–7 × 2–5 µm, ampulliform to subcylindrical, hyaline, smooth, invested in mucilage, percurrently proliferating once or twice near apex. Conidia (13–)14–16(– 20) × (8–)11–12(–13) µm in vitro, globose to rarely broadly ellipsoid, apex obtusely rounded, aseptate, non-apiculate, yellow-brown, thick-walled, striations covering entire conidial body, multi-guttulate. Basal appendage (2–)3–5 × 2–2.5 µm in vitro, hyaline, tubular, smooth, thin-walled, devoid of cytoplasm. Microconidia not seen. Materials examined: Australia, New South Wales, Pine Creek State Forest, 30.405423S 152.932698E, on leaves of Eucalyptus pilularis (Myrtaceae), 23 Jan. 2017, A.J. Carnegie (holotype CBS H-23391, culture ex-type CPC 33218); ibid., CPC 33356. Notes: Harknessia pilularis is related to Ha. rhabdosphaera, but Ha. rhabdosphaera produces longer conidiogenous cells (7–15 × 4–6 µm), and wider conidia (13–15 µm). Authors: Y. Marin-Felix, A.J. Carnegie, M.J. Wingfield, R.K. Schumacher & P.W. Crous D Huntiella Z.W. de Beer, et al., Stud. Mycol. 79: 211. 2014. Fig. 24. TE Classification: Sordariomycetes, Hypocreomycetidae, Microascales, Ceratocystidaceae. EP Type species: Huntiella moniliformis (Hedgc.) Z.W. de Beer, et al., basionym: Ceratostomella moniliformis Hedgc. Holotype: BPI 595959. DNA barcodes (genus): LSU, 60S, mcm7. DNA barcodes (species): ITS, mcm7, tef1, tub2. Table 8. Fig. 25. AC C Ascomata perithecial, ellipsoidal, subglobose, globose to obpyriform or ovoid; bases ornamented with dark brown to black conical spines or pale brown, unbranched hyphae; necks long, straight or slightly curved, tapering towards apex, dark brown to black at base, becoming paler towards apex, ostiolate, with a disciform base; hyphae on neck hyaline, not divergent, straight or convergent. Asci evanescent. Ascospores hyaline, aseptate, in face view subglobose, in side view ellipsoidal giving an impression of a hat, with hood-like gelatinous sheath. Conidiophores macronematous, rarely branched, septate, occasionally reduced to conidiogenous cells. Conidiogenous cells hyaline, enteroblastic, mostly of two types, lageniform, producing rectangular-shaped conidia and cylindrical, producing barrel-shaped conidia. Conidia aseptate, majority of species have two distinct shapes: bacilliform, hyaline, or barrel-shaped or oblong to ellipsoidal, hyaline or subhyaline. Chlamydospores absent. Culture characteristics: On 2 % MEA aerial mycelium abundant, colonies white, yellow green to brown, smoke grey, dark olive to black. Some species produce aromas: Hu. bhutanensis produces an unpleasant rotten odour, Hu. decipiens, Hu. moniliformis and Hu. salinaria a pleasant banana-oil aroma, ACCEPTED MANUSCRIPT Hu. moniliformopsis little to no distinct odour, and Hu. omanensis fruity aroma that turns to a fermented odour with age. RI PT Optimal media and cultivation conditions: On 2 % MEA in dark, optimum growth varies between species: Hu. sublaevis 20–30 °C; Hu. bhutanensis, Hu. oblonga, Hu. ceramica and Hu. tribiliformis 20–25 °C; Hu. decipiens, Hu. chinaeucensis, Hu. inquinans, Hu. microbasis, Hu. salinaria and Hu. sumatrana 25–30 °C; Hu. cryptoformis, Hu. omanensis, Hu. savannae and H. tyalla 30–35 °C. Distribution: Australia, Bhutan, China, Ecuador, Indonesia, Malawi, Oman, South Africa and Tasmania. Hosts: Acacia (Fabaceae), Combretum and Terminalia (Combretaceae), Eucalyptus (Myrtaceae), Mangifera (Anacardiaceae) associated with Cryphalus scabricollis (bark beetle, Scolytinae), Picea (Pinaceae) infested with Ips schmutzenhoferi (bark beetle, Scolytinae), Pinus (Pinaceae), Ziziphus (Rhamnaceae), and Staphilinid (rove beetle, Staphylinidae) M AN US C Disease symptoms: Huntiella species do not produce distinct disease symptoms on their hosts in nature. They usually infect freshly made wounds on trees and infections are often associated with nitidulid beetles (Coleoptera: Nitidulidae) and flies (Diptera). Pathogenicity tests using some of the species have given rise to lesions under controlled environments, but, based on the size of lesions and failure to reisolate the fungus from these lesions, they are generally considered not to be primary pathogens (Tarigan et al. 2010, van Wyk et al. 2011, de Beer et al. 2014). TE D Notes: Huntiella is one of nine genera in the recently erected family, Ceratocystidaceae (De Beer et al. 2014, Mayers et al. 2015, Nel et al. 2017). The genus was proposed to accommodate Ceratocystis moniliformis and related species that form a well-defined monophyletic lineage within the group previously treated as Ceratocystis sensu lato (Wingfield et al. 2013). Huntiella currently includes 17 species. Species of Huntiella have several features in common, namely conical spines on their ascomatal bases, disk-like structures at the bases of the ascomatal necks, which break off easily, hat-shaped ascospores and one to two types of conidia (De Beer et al. 2014). Although morphological and culture characteristics overlap between the species, some species can be differentiated. These include Hu. sublaevis that has a limited number of spines on the ascomata (Van Wyk et al. 2011), and Hu. chinaeucensis and Hu. microbasis that have only rectangular-shaped conidia (Tarigan et al. 2010, Chen et al. 2013). With the exception of Hu. ceramica that is known only from the asexual morph, all other species have both sexual and asexual morphs. Different Huntiella species exhibit a variety of sexual strategies, with Hu. omanensis undergoing heterothallic mating while MAT2 isolates of Hu. moniliformis are able to reproduce unisexually (Wilson et al. 2015). AC C EP References: Kamgan et al. 2008, Heath et al. 2009, Tarigan et al. 2010, Kamgan Nkuekam et al. 2012, Chen et al. 2013, Kamgan Nkuekam et al. 2013 (pathogenicity); De Beer et al. 2013a (higher classification); De Beer et al. 2013b (nomenclature); Wingfield et al. 2013, De Beer et al. 2014 (generic definitions and phylogenetic relationships); Wilson et al. 2015 (mating strategies). Huntiella abstrusa A.M. Wilson, Marinc., M.J. Wingf., sp. nov. MycoBank MB821072. Fig. 26. Etymology: Name refers to the fact that this cryptic species was obscured by the name Ceratocystis moniliformis for more than a decade. On MEA: Ascomata 145–315 × 130–275 µm, perithecial, embedded in media or superficial in mycelial mass, single or in groups, pale brown when young, becoming dark brown with age, ellipsoidal to subglobose; asocomata wall textura epidermoidea to textura globulosa, covered with short sterile hyphae, 30–105 µm long, hyaline becoming pale brown with age, mostly unbranched, flexuous, tapering towards apex, with conical spines; necks 595–1100 µm long, 21–71.5 µm wide near base, 11–18 µm wide near apex, dark brown, tapering towards apex, becoming easily detached from ascomatal base when pressed, with a disk-like structure near base; hyphae near apex 18.5–37 µm long, 1–2 µm wide near base, 0.5–1.5 µm wide, mostly straight, showing no distinct divergent nor convergent, aseptate, unbranched, hyaline, tapering towards apex. Asci not observed. Ascospores 4.5–5.5 × 3.5–6 µm (av. 5.2 × 4.6 µm) without ACCEPTED MANUSCRIPT RI PT sheath, 2–3.5 µm thick in side-view, hyaline, oblong to subglobose, clothed with gelatinous sheath, 0.5– 1.5 µm thick, in side-view giving an impression of a hat. Conidiophores up to 80 µm long, septate, flexuous, sometimes branched, occasionally reduced to conidiogenous cells, often lightly sub-hyaline to pale brown near base. Conidiogenous cells hyaline, enteroblastic, in two shapes, originating from same or different hyphae; lageniform, 15.5–33 µm long, 2–4.5 µm wide at base, gradually tapering towards apex, 1–3 µm wide at apex, producing rectangular conidia; or cylindrical with wide-mouthed, 22–50 µm long, 3.5–6.5 µm wide at apex, 3–4 µm wide at base, producing barrel-shaped conidia. Conidia in chains, hyaline, aseptate, in two shapes, rectangular, 4–8.5 × 1.5–2.5 µm (av. 5.6 × 1.8 µm); or barrel-shaped, 5– 14.5 × 4–7 µm (av. 8.1 × 5.9 µm). Chlamydospores absent. Culture characteristics: On 2 % MEA optimum growth at 30 °C reaching 82.7 mm in dark in 3 d, followed by 25 °C reaching 77.3 mm, showing slow growth at 1 0, 15, 20, 35 °C. Cultures circular with smooth margins, aerial mycelium fluffy to velvety, moderately dense, above and below dark brown fading towards edge and with white margins. M AN US C Material examined: Indonesia, Riau province, Teso East, S 0°04’33.00”, E 101°37 ’23.00”, on the bark of Eucalyptus sp. (Myrtaceae), Oct. 2005, M. Tarigan (holotype PREM 61671, culture ex-type CBS 142243 = CMW 21092). Notes: For more than a decade, Hu. abstrusa was thought to be Ceratocystis moniliformis (now Hu. moniliformis). Phylogenetic analyses of ITS, LSU, 60S, mcm7 and tub2 have shown that Hu. abstrusa is distinct from Hu. moniliformis and other Huntiella spp. It is most closely related to Hu. inquinans, Hu. microbasis and Hu. sumatrana from Indonesia, Hu. chinaeucensis from China and Hu. bhutanensis from Bhutan (De Beer et al. 2014, Van Wyk et al. 2004, Tarigan et al. 2010, Chen et al. 2013). Neither Hu. abstrusa nor any of the other Huntiella species are primary pathogens and typically infect freshly made wounds on trees. Despite only minor morphological differences between Huntiella species, Hu. abstrusa can be distinguished from the other species by its longer necks and the presence of barrel-shaped conidia. The Hu. abstrusa isolate examined is considered heterothallic. Authors: A.M. Wilson, S. Marincowitz, M.J. Wingfield & B.D. Wingfield D Macgarvieomyces Klaubauf et al., Stud. Mycol. 79: 106. 2014. Fig. 27. TE Classification: Sordariomycetes, Sordariomycetidae, Magnaporthales, Pyriculariaceae. Type species: Macgarvieomyces borealis (de Hoog & Oorschot) Klaubauf et al., basionym: Pyricularia borealis de Hoog & Oorschot. Holotype and ex-type strain: IMI 105288, CBS 461.65. EP DNA barcodes (genus): LSU, ITS. DNA barcodes (species): ITS, act, cal, rpb1. Table 9. Fig. 28. AC C Mycelium consisting of smooth, hyaline, branched, septate hyphae. Conidiophores solitary, erect, straight or curved, mostly unbranched, medium to dark brown, smooth or finely verruculose, septate. Conidiogenous cells integrated, terminal, rarely intercalary, medium to dark brown, smooth or finely verruculose, forming a rachis with protruding denticles, appearing flat-tipped. Conidia solitary, narrowly obclavate to narrowly pyriform, hyaline, often becoming pale brown with age, smooth, granular, guttulate, medianly 1-septate, apex obtusely rounded; hila somewhat thickened, refractive or not, not or slightly darkened. Chlamydospores brown, ellipsoid, arranged in chains (adapted from Klaubauf et al. 2014). Culture characteristics: Colonies on MEA buff to rosy buff, isabelline or pale luteous, with pale olivaceous grey central mycelium, with entire, lobate or round and hairy edge, umbonate to conical or flat to slightly raised colony with somewhat velvety or wool-like texture; reverse iron grey, ochreous and buff towards edge or pale luteous. On CMA and OA transparent, pale luteous to olivaceous or grey olivaceous, flat, smooth and velutinous surface, undulate margin. Colonies on PDA pale luteous, white with buff centre or whitish to buff with honey centre, round, flat, fringed margin, reverse white with buff centre or whitish to buff with honey centre. ACCEPTED MANUSCRIPT Optimal media and cultivation conditions: On OA at 25 °C under dark, or autoclaved barley s eeds placed on SNA at 25 °C under near-ultraviolet light (12 h light, 12 h dark). Distribution: Europe, New Zealand. RI PT Hosts: Primarily on Juncus effusus and Luzula spp. (Juncaceae), also reported on Carex sp. and Kyllinga brevifolia (Cyperaceae). Disease symptoms: Leaf spots. M AN US C Notes: Macgarvieomyces was recently introduced to accommodate two species previously placed in Pyricularia. Phylogenetic analyses based on LSU, ITS, act, cal and rpb1 demonstrated that these taxa are not congeneric with Pyricularia s. str. (Klaubauf et al. 2014). Species in this genus were isolated from Juncaceae in Europe and associated with leaf spots. Species have also been reported on Cyperaceae and New Zealand (Farr & Rossman 2017); however, these host and distribution data have not been corroborated based on DNA sequence analyses. Reference: Klaubauf et al. 2014 (morphology and phylogeny). Macgarvieomyces luzulae (Ondřej) Y. Marín, Akulov & Crous, comb. nov. MycoBank MB823764. Fig. 29. Basionym: Pyricularia luzulae Ondřej, Česká Mykol. 42: 81. 1988. TE D Leaf spots up to 17 mm long, ellipsoid to fusiform, grey to pale brown at middle, dark brown at margin. On SNA: Mycelium with hyaline, smooth, septate, branched, 2–3 µm diam hyphae. Conidiophores 60– 120 × 4–7 µm, erect, dark brown, unbranched, subcylindrical, straight to flexuous, thick-walled, finely verruculose, 2–3-septate. Conidiogenous cells 30–50 × 4–6 µm, terminal and subcylindrical, finely verruculose, dark brown, tapering toward apex with numerous denticles pointing upwards, 1–4 × 1–1.5 µm; scars unthickened. Conidia (18–)20–22(–30) × (4–)5(–6) µm, solitary, narrowly pyriform, hyaline, becoming pale brown with age, guttulate, 1(–2)-septate, apex obtusely rounded, base truncate, 2 µm diam, slightly darkened, refractive. Culture characteristics: Colonies flat, spreading, with sparse to moderate aerial mycelium and smooth, lobate margins, covering plate after 2 wk at 25 °C. On MEA, PDA and OA surface and reverse pale luteous. EP Materials examined: Slovakia, on leaves of Luzula sylvatica (Juncaceae), Jul. 1984 (holotype of Pyricularia luzulae PRM 842743). Ukraine, on leaves of Luzula sp. (Juncaceae), 2016, A. Akulov (epitype of Pyricularia luzulae designated here MBT379806, CBS H-23355, culture ex-epitype CBS 143401 = CPC 32458); ibid., CWU (Myc) AS 5966 / 6437; Carpathian Biosphere reserve, on leaves of Luzula sylvatica (Juncaceae), Aug. 2016, A. Akulov, CPC 31555; ibid., CPC 31571. AC C Notes: Pyricularia luzulae was introduced for a fungus isolated on Luzula sylvatica from Slovakia (Ondřej 1988). In the original description PRM 842743 was designated as holotype, but no living culture was associated with this specimen. Therefore, a strain that closely fits the description of the protologue, and isolated from the same host in a close country to Slovakia, namely Ukraine, is designated here as epitype. The only difference observed was in the conidial size, since in the original description (in vivo) the conidia were larger and 1–2-septate (17.5–36 × 3.5–7.5 µm). However, the measurements of our isolate growing in vivo are 27.5–33 × 6.5–7.5 µm, and in vitro 18–30 × 4–6 µm, and conidia could become 2-septate with age. The phylogenetic study of Py. luzulae revealed that it belongs to Macgarvieomyces. As noted above, the host of this genus is Juncus effusus in the same family as Luzula (Juncaceae). Authors: Y. Marin-Felix, A. Akulov & P.W. Crous Metulocladosporiella Crous et al., Mycol. Res. 110: 269. 2006. Fig. 30. ACCEPTED MANUSCRIPT Classification: Eurotiomycetes, Chaetothyriomycetidae, Chaetothyriales, Herpotrichiellaceae. Type species: Metulocladosporiella musae (E.W. Mason) Crous et al., basionym: Cladosporium musae E.W. Mason. Lectotype designated by Crous et al. (2006a): IMI 7521 (slide). Epitype and ex-epitype strain designated by Crous et al. (2006a): CBS H-14788, CBS 161.74 = ATCC 36973. DNA barcodes (species): ITS, tef1. Table 10. Fig. 31. RI PT DNA barcodes (genus): LSU, ITS. M AN US C Mycelium internal and external on substrate, hyphae branched, septate, hyaline, subhyaline to pale olivaceous, thin-walled. Stromata lacking. Conidiophores macronematous, mononematous, occasionally with intermixed micronematous conidiophores, solitary or in loose groups, arising from hyphae, erect, with a long, subcylindrical, simple stipe and a branched terminal part; stipe septate, medium to brown, smooth or almost so, usually swollen at base; branched part loose to dense, metuloid, of short to long branchlets and ramoconidia, tips paler than stipes, subhyaline to pale olivaceous. Conidiogenous cells integrated, terminal, occasionally intercalary, polyblastic, sympodial; conidiogenous loci (conidial scars) subconspicuous to conspicuous, subdenticulate, truncate, unthickened to slightly thickened, and somewhat darkened-refractive. Conidia and ramoconidia in simple and branched chains, ellipsoid, ovoid, subcylindrical, or fusiform, 0–1-septate, subhyaline to pale olivaceous, thin-walled, smooth; hila truncate, unthickened to slightly thickened or slightly darkened-refractive; secession schizolytic. Sexual morph unknown (adapted from Crous et al. 2006a). Culture characteristics: Colonies on PDA and OA under near-ultraviolet light with smooth, regular margins and sparse to moderate aerial mycelium; surface on PDA pale mouse grey to mouse grey or dirty white-grey, greyish sepia, smoke grey to grey olivaceous, or olivaceous; reverse on PDA greenish black, cinnamon to isabelline with centre fuscous black, or grey olivaceous to dark grey olivaceous or olivaceous black. D Optimal media and cultivation conditions: SNA under near-ultraviolet light at 25 °C to indu ce sporulation. Hosts: Musa spp. (Musaceae). TE Distribution: Africa, America, Asia and Oceania. Disease symptoms: Leaf spots; Cladosporium speckle disease of banana. AC C EP Notes: Metulocladosporiella was introduced by Crous et al. (2006a) to accommodate two cladosporium-like species causing speckle disease on banana. Metulocladosporiella can be distinguished from Cladosporium and allied genera by the presence of apically branched, brown conidiophores with paler tips and chains of pale, smooth, often subhyaline conidia. The phylogenetic analysis based on the ITS and LSU sequences demonstrated that Metulocladosporiella belongs in Chaetothyriales. Morphologically, the conidiogenous loci and conidial hila resemble those of Cladophialophora, which is another member of this order. However, Cladophialophora produces unbranched, micro- to semimacronematous conidiophores, and concolourous conidia. Moreover, Cladophialophora includes human pathogenic species (Crous et al. 2006a). In the present study, the recommended barcodes for species delimitation are ITS and tef1. Hitherto, all species described in Metulocladosporiella are pathogens of banana and occur in countries where this crop is cultivated (Jones 2000, Crous et al. 2006a). Reference: Crous et al. 2006a (morphology and phylogeny). Metulocladosporiella chiangmaiensis Y. Marín, Cheew. & Crous, sp. nov. MycoBank MB824031. Fig. 32. Etymology: Name from Chiang Mai, the province in Thailand where this fungus was collected. ACCEPTED MANUSCRIPT M AN US C RI PT Mycelium internal and external, superficial; hyphae 1.5–3.5 µm wide, branched, septate, occasionally slightly constricted at septa, with small swellings, hyaline, subhyaline to pale olivaceous, thin-walled, smooth, hyphae occasionally aggregated, forming ropes; with numerous intermixed micronematous conidiophores, erect from vegetative mycelium, intercalary, straight to flexuous, unbranched, subhyaline, usually with simple terminal conidial chains. Macronematous conidiophores 85–1050 µm long, arising from superficial hyphae, erect, solitary to loosely aggregated, composed of a subcylindrical stipe, 5.5– 9.5(–10.5) µm wide, 3–18 septate, swollen or lobed at base, 8–17(–18.5) µm diam, with short, rhizoid, subhyaline to pale brown hyphae growing from base, medium to brown in lower half, paler towards apex, tips pale brown or even subhyaline, thick-walled below, thin-walled towards apex, smooth; apex persistently branched, branched part composed of usually fairly compact, closely arranged subcylindrical branchlets; primary branches (13–)17–45(–55) × 3–5.5 µm, 0(–1)-septate, giving rise to 1–3 secondary branches, or to conidiogenous cells; secondary branches 13–28 × 2.5–5(–5.5) µm, 0(–1)-septate, giving rise to 1–2(–3) conidiogenous cells; conidiogenous cells 9–17 × 3–5 µm, subcylindrical, terminal or occasionally intercalary, sympodial, polyblastic, conidiogenous loci 1–1.5(–2) µm wide, subconspicuous to conspicuous, subdenticulate, somewhat protuberant, truncate, wall unthickened to somewhat so, darkened-refractive. Conidia 5.5–10(–12.5) × 2.5–4 µm, in simple and branched acropetal chains, ellipsoid-ovoid, fusoid, subcylindrical, aseptate, subhyaline to pale brown, thin-walled, smooth, with 1–3(– 4) hila, 1–1.5 µm diam, up to 2 µm diam at base of ramoconidia, truncate, unthickened or almost so, and somewhat darkened-refractive, secession schizolytic; ramoconidia 7–15(–17) × 3–4.5 µm. Culture characteristics: Colonies on PDA reaching 25–28 mm diam after 2 wk at 25 °C, moderate aerial mycelium, velvety, umbonate; surface greyish sepia, halo surrounding centre vinaceous buff, and margins hazel; reverse cinnamon to isabelline, centre fuscous black. Colonies on OA reaching 32–35 mm diam after 2 wk at 25 °C, sparse aerial my celium, flat except margins due to aerial mycelium; surface hazel, centre brown vinaceous, margins smoke grey; reverse livid vinaceous, centre brown vinaceous, margins pale brown vinaceous. D Material examined: Thailand, Chiang Mai Province, Mae Klang Luang, N 18° 32.46 5', E 98° 32.874', from leaves of Musa sp. (Musaceae), 6 Oct. 2008, P.W. Crous & R. Cheewangkoon (holotype CBS H-23393, culture ex-type CBS 143918= CPC 18646). EP TE Notes: Metulocladosporiella chiangmaiensis is related to M. musigena. Both species are known from Thailand, and produce more micronematous conidiophores than any other species in the genus. However, M. chiangmaiensis produces longer macronematous conidiophores and shorter conidia than M. musigena, which produces conidiogenous cells directly from the apex of its macronematous conidiophores, which is not the case in M. chiangmaiensis. Metulocladosporiella malaysiana Y. Marín & Crous, sp. nov. MycoBank MB824032. Fig. 33. AC C Etymology: Name refers to Malaysia, the country from where it was isolated. Mycelium internal and external, superficial; hyphae 1–3.5 µm wide, branched, septate, occasionally constricted at septa, with swellings, hyaline, subhyaline to pale brown, thin-walled, smooth, hyphae occasionally aggregated, forming ropes; occasionally with intermixed micronematous conidiophores, erect from vegetative mycelium, intercalary, straight to flexuous, unbranched, subhyaline, usually with simple terminal conidial chains. Macronematous conidiophores 57–565 µm long, arising from superficial hyphae, erect, solitary to loosely aggregated, composed of a subcylindrical stipe, 5–8 µm wide, (1–)2–11septate, swollen or lobed at base, 7–15 µm diam, with short, rhizoid, subhyaline to pale brown hyphae growing from base, medium to brown in lower half, paler towards apex, tips pale brown or even subhyaline, thick-walled below, thin-walled towards apex, smooth; apex persistently branched, composed of fairly compact, closely arranged subcylindrical branchlets; primary branches (12–)16–44(–60) × 3.5– 5.5 µm, 0–1(–2)-septate, giving rise to 1–2(–3) secondary branches, or to conidiogenous cells; secondary branches 11.5–26.5(–39) × 3–4.5 µm, 0(–1)-septate, giving rise to 1–2(–3) conidiogenous cells; conidiogenous cells 10–23 × 2.5–4.5 µm, subcylindrical, terminal or occasionally intercalary, sympodial, polyblastic, conidiogenous loci subconspicuous to conspicuous, subdenticulate, somewhat protuberant, ACCEPTED MANUSCRIPT truncate, wall not to slightly thickened, darkened-refractive, 1–2 µm wide. Conidia 5.5–13.5(–14.5) × (2.5– )3–4.5(–5) µm, in simple and branched acropetal chains, ellipsoid-ovoid, fusoid, subcylindrical, aseptate, subhyaline to pale brown, thin-walled, smooth, with 1–3 hila, 0.8–1.4 µm diam, up to 2 µm diam at base of ramoconidia, truncate, not to slightly thickened, and somewhat darkened-refractive, secession schizolytic; ramoconidia 7–13(–14) × 3–4.5(–5) µm. RI PT Culture characteristics: Colonies on PDA reaching 23–27 mm diam after 2 wk at 25 °C, moderate aerial mycelium, giving cottony appearance, umbonate, margins fringed; surface olivaceous, mycelium smoke grey; reverse grey olivaceous to dark grey olivaceous. Colonies on OA reaching 30–34 mm diam after 2 wk at 25 °C, sparse aerial mycelium, u mbonate, margins fringed; surface olivaceous, mycelium smoke grey to grey olivaceous; reverse dark grey olivaceous. Material examined: Malaysia, from leaves of Musa sp. (Musaceae), 2010, M.H. Wong (holotype CBS H-23394, culture ex-type CBS 143919 = CPC 18131). M AN US C Notes: Metulocladosporiella malaysiana is related to M. samutensis. These can be easily distinguished based on the length of the macronematous conidiophores (57–565 in M. malaysiana vs. 200–1120 µm in M. samutensis), and the almost total absence of secondary branches in M. samutensis. Moreover, M. malaysiana produces fewer micronematous condiophores than the other species of Metulocladosporiella. Metulocladosporiella musigena Y. Marín, Cheew. & Crous, sp. nov. MycoBank MB824033. Fig. 34. Etymology: Name refers to Musa, the host from which it was isolated. AC C EP TE D Mycelium internal and external, superficial; hyphae 1–4 µm wide, branched, septate, occasionally slightly constricted at septa, with small swellings, hyaline, subhyaline to pale olivaceous, thin-walled, smooth, hyphae occasionally aggregated, forming ropes; with a great amount of intermixed micronematous conidiophores, erect from vegetative mycelium, intercalary, straight to flexuous, unbranched, subhyaline, usually with simple terminal conidial chains. Macronematous conidiophores (115–)170–780 µm long, arising from superficial hyphae, erect, solitary to loosely aggregated, composed of a subcylindrical stipe, 4.5–7.5 µm wide, 5–14 septate, swollen or lobed at base, 7.5–14.5(–18.5) µm diam, with short, rhizoid, subhyaline to pale brown hyphae growing from base, medium to brown in lower half, paler towards apex, tips brown, pale brown or subhyaline, thick-walled below, thinner-walled towards apex, smooth; apex usually persistently branched, branched part composed of usually fairly compact, closely arranged subcylindrical branchlets, or sometimes giving rise directly to conidiogenous cells; primary branches 19– 32.5(–43.5) × 3–4.5 µm, 0(–1)-septate, giving rise to 1–3 secondary branches, or to conidiogenous cells; secondary branches 15.5–31(–38) × 3–4.5 µm, 0(–1)-septate, giving rise to 1–3 conidiogenous cells; conidiogenous cells 13.5–28(–39.5) × 2.5–5 µm, subcylindrical, terminal or occasionally intercalary, sympodial, polyblastic, conidiogenous loci subconspicuous to conspicuous, subdenticulate, somewhat protuberant, truncate, wall unthickened to somewhat so, darkened-refractive, 1–2 µm wide. Conidia 5– 15.5(–19.5) × 2–3.5 µm, in simple and branched acropetal chains, ellipsoid-ovoid, fusoid, subcylindrical, aseptate, subhyaline to pale brown, thin-walled, smooth, with 1–3(–4) hila, 0.8–1.2 µm diam, up to 1.7 µm diam at base of ramoconidia, truncate, unthickened or almost so, and somewhat darkened-refractive, secession schizolytic; ramoconidia 8–20.5 × 2.5–4 µm. Culture characteristics: Colonies on PDA reaching 21–24 mm diam after 2 wk at 25 °C, moderate aerial mycelium, powdery, umbonate; surface smoke grey to grey olivaceous; reverse grey olivaceous to olivaceous black. Colonies on OA reaching 31–34 mm diam after 2 wk at 25 °C, moderate aerial mycelium, powdery, umbonate, slightly lobate; surface dark olivaceous, mycelium smoke grey to grey olivaceous; reverse dark slate blue. Material examined: Thailand, Chiang Mai Province, Mae Rim District, Queen Sirikit Botanic Garden, from Musa sp. (Musaceae), 19 Jul. 2008, P.W. Crous & R. Cheewangkoon (holotype CBS H-23395, culture ex-type CBS 143920 = CPC 31490). Notes: Metulocladosporiella musigena produces macronematous conidiophores directly producing conidiogenous cells at the apex, or composed of fairly compact branches, which are not observed in ACCEPTED MANUSCRIPT the other species of the genus. Moreover, it is characterised by the production of an excessive number of micronematous conidiophores. Metulocladosporiella samutensis Y. Marín, Luangsa-ard & Crous, sp. nov. MycoBank MB824034. Fig. 35. RI PT Etymology: Name from Samut Songkhram, the province in Thailand from where it was isolated. M AN US C Mycelium internal and external, superficial; hyphae 1.5–4 µm wide, branched, septate, occasionally slightly constricted at septa, with small swellings, hyaline, subhyaline to pale brown, thin-walled, smooth, hyphae occasionally aggregated, forming ropes; with intermixed micronematous conidiophores, erect from vegetative mycelium, intercalary, straight to flexuous, unbranched, subhyaline to pale brown, usually with simple terminal conidial chains. Macronematous conidiophores (200–)425–1000(–1120) µm long, arising from superficial hyphae, erect, solitary to loosely aggregated, composed of a subcylindrical stipe, 5.5–7.5(–8) µm wide, (4–)8–21(–29)-septate, swollen or lobed at base, 7–14.5(–20.5) µm diam, with short rhizoid subhyaline to pale brown hyphae growing from base, medium to brown in lower half, paler towards apex, tips pale brown or occasionally subhyaline, thick-walled below, thinner towards apex, smooth; apex giving rise directly to 1–2(–3) conidiogenous cells, or branched, branched part composed of loosely arranged subcylindrical branchlets; primary branches 24.5–39(–44) × 3–4(–5) µm, 0–1-septate, giving rise to 1–2(–3) conidiogenous cells, or rarely 1–2 secondary branches; conidiogenous cells (12–)14–25(– 32) × 3.5–5 µm, subcylindrical, terminal or occasionally intercalary, sympodial, polyblastic, conidiogenous loci subconspicuous to conspicuous, subdenticulate, somewhat protuberant, truncate, wall unthickened to somewhat so, darkened-refractive, 1–2 µm wide. Conidia 4.5–12.5(–13.5) × 3–4 µm, in simple and branched acropetal chains, ellipsoid–ovoid, fusiform, subcylindrical, aseptate, subhyaline to pale brown, thin-walled, smooth, with 1–3 hila, 1–1.5(–2) µm diam, truncate, unthickened or almost so, and somewhat darkened-refractive, secession schizolytic; ramoconidia 8–13.5(–15.5) × 3–5 µm. TE D Culture characteristics: Colonies on PDA reaching a diameter of 34–36 mm after 2 wk at 25 °C, moderate aerial mycelium, powdery because of macroconidia, margins fringed; surface smoke grey to grey olivaceous, margins olivaceous; reverse olivaceous grey. Colonies on OA reaching a diameter of 39–40 mm after 2 wk at 25 °C, moderate aerial mycel ium, powdery because of macroconidia, margins fringed; surface smoke grey to grey olivaceous, margins grey olivaceous; reverse olivaceous grey. Material examined: Thailand, Samut Songkhram Province, from Musa sp. (Musaceae), 8 Jun. 2008, P.W. Crous (holotype CBS H-23396, culture ex-type CBS 143921 = CPC 33939). EP Notes: Metulocladosporiella samutensis can easily be distinguished from other species of Metulocladosporiella by the production of conidiogenous cells directly from the apex, or loosely arranged primary branches, being almost totally absent of secondary branches. AC C Authors: Y. Marin-Felix, R. Cheewangkoon, J. Luangsa-ard & P.W. Crous Microdochium Syd. & P. Syd., Ann. Mycol. 22: 267. 1924. Fig 36. Synonyms: Monographella Petr., Ann. Mycol. 22: 144. 1924. Griphosphaerella Petr., Ann. Mycol. 25: 209. 1927. Gloeocercospora D.C. Bain & Edgerton, Phytopathology 33: 225. 1943. (nom. inval., Art. 39.1, Melbourne). Gloeocercospora D.C. Bain & Edgerton ex Deighton, Trans. Brit. Mycol. Soc. 57: 358. 1971. Gerlachia W. Gams & E. Müll., Neth. J. Pl. Path. 86: 49. 1980. Classification: Sordariomycetes, Xylariomycetidae, Xylariales, Microdochiaceae. Type species: Microdochium phragmitis Syd. Holotype: K-IMI 193888. Epitype and ex-epitype strain designated by Hernández-Restrepo et al. (2016a): CBS H-22135, CBS 285.71. DNA barcode (genus): LSU. ACCEPTED MANUSCRIPT DNA barcodes (species): ITS, rpb2, tub2. Table 11. Fig. 37. M AN US C RI PT Ascomata perithecial, immersed, subepidermal, solitary or in groups, pale brown to black, globose, subglobose to oval; ostiole central, neck papillate and often acute, usually more distinctly pigmented than ascomatal body, filled with slightly clavate periphyses; ascomatal wall brown, thin-walled, thickened and darker around ostiole, in face view textura angularis-epidermoidea. Hamathecium comprising septate, filamentous, apically free, thin-walled paraphyses. Asci unitunicate, oblong to clavate with 8 bi- to multiseriate ascospores, apex with an amyloid, refractive, flat, funnel-shaped ring. Ascospores clavate, fusoid or oblong, hyaline to brownish, straight or curved, smooth, septate. Conidiomata absent or present, sporodochial, epidermal or subepidermal, erumpent through stomata, or rupture of outer epidermal wall and cuticle, or by specialised egression hyphae through outer epidermal wall, hyaline, pseudoparenchymatic, spreading after egress. Conidiophores more or less verticillate, often slightly differentiated, reduced to conidiogenous cells, hyaline, smooth. Conidiogenous cells holoblastic, discrete, hyaline, smooth, solitary or aggregated in small sporodochia. Two kinds: with sympodial proliferation, cylindrical or slightly tapering to clavate, denticulate with one or more apical denticles; or with percurrent proliferation (annellidic), subcylindrical, obpyriform, ampulliform to lageniform. Conidia dry or in slimy mass, unicellular or multiseptate, hyaline, smooth, lunate, falcate, fusiform, filiform, obovoid or subpyriform, straight or curved, apex rounded, base flattened. Sometimes conidia originate directly from hyphae. Chlamydospores terminal or intercalary, solitary, in chains or grouped in clusters, brown (adapted from Hernández-Restrepo et al. 2016a). Culture characteristics: Colonies on OA saffron, salmon, peach or white when young, some species grey or dark grey when mature, glabrous or with moderate amount of mycelium, cottony to floccose, margin effuse. Optimal media and cultivation conditions: OA at 25 °C under dark conditions. Distribution: Worldwide. TE D Hosts: Mainly pathogens of grasses and cereals, but some also occur on non-grass hosts as Opuntia (Cactaceae) and Lycopodium (Lycopodiaceae), may cause losses to crops including rice, maize, wheat, barley and sorghum. Other species can be found in harvested grains. Disease symptoms: Microdochium patch or pink snow patch, leaf scald disease, tar spot disease, root necrosis and decay of grasses, leaf spots, among others. AC C EP Notes: Microdochium includes plant pathogenic as well as saprobic and soil fungi (Sydow 1924, de Hoog & Hermanides-Nijhof 1977, Parkinson et al. 1981, Jaklitsch & Voglmayr 2012, Zhang et al. 2015, Hernández-Restrepo et al. 2016a, Crous et al. 2018). For many years, species of Microdochium were recognised as fusarium-like fungi; however, morphological and molecular data separate these genera. Conidiogenesis in Microdochium is not phialidic as in true Fusarium species and the conidia have truncate basal cells rather than “foot-cells”. The sexual morphs of Microdochium are monographellalike, and it belongs in the Microdochiaceae (Xylariales) phylogenetically distant from true Fusarium in Nectriaceae (Hypocreales). For an accurate species identification of Microdochium species, DNA sequence analyses are required. Among the four loci studied (i.e. LSU, ITS, rpb2 and tub2), LSU is useful only for generic placement. Phylogenies based on individual gene regions of ITS, rpb2 and tub2, can be used to distinguish 14 species in Microdochium; those phylogenies generated from tub2 show longer distances between species and higher support values. This is more informative than ITS and rpb2 (Hernández-Restrepo et al. 2016a). References: von Arx 1981, 1984, Braun 1995 (taxonomy); Parkinson et al. 1981, Müller & Samuels 1984, Zhang et al. 2015 (morphology and pathogenicity); Hong et al. 2008 (pathogenicity); HernándezRestrepo et al. 2016a (morphology and phylogeny). ACCEPTED MANUSCRIPT Microdochium novae-zelandiae Hern.-Restr., Thangavel & Crous, sp. nov. MycoBank MB824606. Fig. 38. Etymology: Name is derived from New Zealand, the country where this fungus was collected. RI PT Mycelium superficial and immersed, composed of septate, branched, hyaline, smooth, 1–2.5 wide hyphae. Conidiomata sporodochium-like, formed in aerial mycelium or on agar surface, hyaline to pink. Conidiophores often reduced to conidiogenous cells. Conidiogenous cells 4–10 × 2–3 µm, integrated, terminal, polyblastic, proliferation sympodial, cylindrical to lageniform, hyaline, smooth; sometimes conidia formed directly on mycelium. Conidia 5.5–10 × 2–2.5 µm, solitary, fusoid, allantoid, lunate or slightly sigmoid, straight or curved, hyaline, smooth, 0(–1)-septate, base truncate. Chlamydospores not observed. M AN US C Culture characteristics: Colonies on OA reaching 45 mm diam after 1 wk at 25 °C, centre flat and rosy buff, periphery cottony and white, margins effuse; reverse rosy buff in centre. Materials examined: New Zealand, Christchurch, from turf leaves (Poaceae), 2015, R. Thangavel (holotype CBS H-23384, culture ex-type CBS 143847 = CPC 29376 = ICMP 21872 = MPI T15_05208H); ibid., Richmond, Nelson, on spruce (Pinaceae), 2014, R. Thangavel (CPC 29693 = MPI T14_00277D). Notes: Microdochium novae-zelandiae is known from two isolates, both of which were collected in New Zealand from different hosts belonging to the families Pinaceae and Poaceae. Based on a four-gene analysis, the new species was placed in a clade distinct from M. bolleyi, M. colombiense, M. majus and M. nivale (Fig. 37). Morphologically, M. novae-zelandiae has conidia similar in size to M. bolleyi and M. colombiense. However, subtle morphological differences exist in the conidial shapes of these taxa with M. novae-zelandiae having sigmoidal conidia. Compared with M. phragmitis, conidia of M. novae-zelandiae are smaller, mainly aseptate with variable shape [5.5–10 × 2–2.5 µm, 0(–1)-septate, fusiform, allantoid, lunate or slightly sigmoid in M. novae-zelandiae vs. 10–14.5 × 2–3 µm, 0–1-sepate, fusiform to navicular in M. phragmitis]. D Authors: M. Hernández-Restrepo, R. Thangavel & P.W. Crous TE Oculimacula Crous & W. Gams, Eur. J. Pl. Path. 109: 845. 2003. Fig. 39. Synonym: Helgardia Crous & W. Gams, Eur. J. Pl. Path. 109: 845. 2003. Classification: Leotiomycetes, Leotiomycetidae, Helotiales, Incertae sedis. AC C EP Type species: Oculimacula yallundae (Wallwork & Spooner) Crous & W. Gams = Helgardia herpotrichoides (Fron) Crous & W. Gams, basionym Cercosporella herpotrichoides Fron. Holotype: K(M) 233697. Neotype and ex-neotype strain of Helgardia herpotrichoides designated by Crous et al. (2003): CBS H-23003, CBS 110665. DNA barcode (genus): LSU. DNA barcodes (species): ITS, tef1. Table 12. Fig. 40. Ascomata 0.5–2.5 mm diam, apothecial, sessile, gregarious, circular to lobate, on a subiculum of white to dark brown hyphae, attached to substrate via a superficial mat of pale brown, thin hyphae. Disk smooth, grey with a pale grey margin, becoming emarginate and flattened to convex at maturity. Receptacle pale brown to grey-brown, cup-shaped. Medullary excipulum of multiseptate, hyaline hyphae. Ectal excipulum of thin-walled, dark brown, angular cells, becoming more elongated towards margin. Paraphyses filiform with obtuse ends, similar in length to asci. Asci 8-spored, unitunicate, clavate to subcylindrical or fusoid, with a short stalk, and an apical pore staining blue in Melzer’s reagent. Ascospores bi- to multiseriate, hyaline, smooth, aseptate, fusoid to subcylindrical or clavate with rounded ends, mostly straight. Conidiophores fasciculate or solitary on superficial mycelium, or arising from pale brown stromata, subcylindrical to geniculate-sinuous, rarely branching, hyaline to pale olivaceous, smooth, consisting of ACCEPTED MANUSCRIPT conidiogenous cells only, or slightly differentiated with up to 2 septa. Conidiogenous cells integrated, proliferating sympodially at apex, with inconspicuous, dense geniculations; loci unthickened, inconspicuous, not darkened. Conidia solitary, hyaline, smooth, arranged in slimy packets, acicular, filiform, straight to curved, one- to multiseptate, forming smaller, secondary conidia via microcyclic conidiation (adapted from Crous et al. 2003). RI PT Culture characteristics: Colonies with moderate aerial mycelium giving a cottony appearance. On PDA surface grey to olive grey, brownish-grey, pinkish-grey or greenish; reverse grey to greenish-black, greenish, brownish or creamy pink. Optimal media and cultivation conditions: SNA under continuous near-ultraviolet light at 25 °C. Distribution: Africa, Australasia, Europe, New Zealand and North America. M AN US C Hosts: Poaceae, including Triticum and Hordeum, among others. Disease symptoms: Eyespot lesions that girdle the stem and soften the stem-base. Notes: Oculimacula encompasses four species associated with eyespot disease symptoms of cereals in the temperate regions of the world. Eyespot is an important disease of stem bases in which the infection occurs at or near the soil line, attacking chiefly the basal leaf sheaths and internodal tissues of the culms (Sprague & Fellows 1934, Lucas et al. 2000). The fungus sporulates in the fall and spring producing the disease, and survives the winter on diseased stubble standing or lying in the field (Sprague & Fellows 1934). Disease control relies on the use of fungicides, delayed seeding in the fall and by planting resistant cultivars (Murray 1996, Douhan et al. 2002). Oculimacula was introduced by Crous et al. (2003) to accommodate sexual morphs previously classified in Tapesia, while Helgardia was introduced for the asexual morphs linked to Oculimacula. Johnston et al. (2014) synonymised these generic names and conserved the name Oculimacula because it is most commonly used by plant pathologists for the eyespot diseases of wheat and barley. TE D References: Sprague & Fellows 1934 (morphology and pathogenicity); Sprague 1936, Lucas et al. 2000 (pathogenicity); Nirenberg 1981 (morphology and pathogenicity); Crous et al. 2003 (morphology and phylogeny). AC C EP Oculimacula acuformis (Nirenberg) Y. Marín & Crous, comb. et stat. nov. MycoBank MB824638. Basionym: Pseudocercosporella herpotrichoides var. acuformis Nirenberg, Z. PflKrankh. PflSchutz 88: 244. 1981. Synonyms: Ramulispora herpotrichoides var. acuformis (Nirenberg) Boerema, et al., Netherlands Journal of Plant Pathology, Supplement 1 98: 22. 1992. Tapesia yallundae var. acuformis Boerema et al., Netherlands J. of Pl. Path., Supplement 1 98: 22. 1992. (nom. inval., Art. 40.3, Melbourne). Ramulispora acuformis (Nirenberg) Crous, S. Afr. J. Bot. 61: 46. 1995. Tapesia acuformis (Boerema et al.) Crous, S. Afr. J. Bot. 61: 46. 1995. (nom. inval., Art. 40.3, Melbourne). Helgardia acuformis (Nirenberg) Crous & W. Gams, Eur. J. Pl. Path. 109: 846. 2003. Oculimacula acuformis (Boerema et al.) Crous & W. Gams, Eur. J. Pl. Path. 109: 846. 2003. (nom. inval., Art. 40.3, Melbourne). Material examined: Germany, Tübingen, from Secale cereale (Poaceae) culm base, 1978, H. Nirenberg (culture ex-type CBS 495.80). Notes: Oculimacula acuformis was introduced to accommodate Tapesia yallundae var. acuformis (Crous et al. 2003). However, the combination is invalid because the basionym lacks details for the ex-type strain (Art 40.3). We have consequently proposed the new combination based on its asexual morph Pseudocercosporella herpotrichoides var. acuformis. This latter species was transferred to Helgardia in the same publication where Oculimacula acuformis was proposed and when both genera were first introduced (Crous et al. 2003). Helgardia acuformis is a synonym of Oculimacula acuformis. ACCEPTED MANUSCRIPT Authors: Y. Marin-Felix, J.Z. Groenewald & P.W. Crous Paraphoma Morgan-Jones & J.F. White, Mycotaxon 18: 58. 1983. Fig. 41. Synonym: Phoma section Paraphoma (Morgan-Jones & J.F. White) Boerema, Stud. Mycol. 32: 7. 1990. RI PT Classification: Dothideomycetes, Pleosporomycetidae, Pleosporales, Phaeosphaeriaceae. Type species: Paraphoma radicina (McAlpine) Morgan-Jones & J.F. White, basionym: Pyrenochaeta radicina McAlpine. Holotype: in VPRI (Australia, Shepparton, Victoria, on roots of Prunus cerasus (Rosaceae), 21 Oct 1901, Piscott, 2064.3). Epitype and ex-epitype strain designated by de Gruyter et al. (2010): CBS H-16560, CBS 111.79. DNA barcodes (genus): LSU, SSU. M AN US C DNA barcodes (species): ITS, rpb2, tef1, tub2. Table 13. Fig. 42. Conidiomata pycnidial, globose to subglobose, papillate, thick-walled, pseudoparenchymatous, ostiolate, uniloculate; conidiomatal matrix white or buff, cream, yellow, brown or hyaline; setae abundant, straight or flexuous, septate, pale brown to brown, short or relatively long, stiff or hyphal-like, scattered on surface of conidiomata, or abundant around ostioles. Micropycnidia fertile or sterile, produced abundantly in some species of Paraphoma, submerged in medium. Conidiophores ampulliform, hyaline, mostly reduced to phialidic conidiogenous cells. Conidiogenous cells lageniform, monophialidic, hyaline to subhyaline. Conidia ellipsoidal to subglobose, hyaline, guttulate, aseptate in vivo and in vitro. Chlamydospores absent or present, solitary, in short or long chains or aggregated, uni- or multicellular; multicellular chlamydospores alternarioid, pseudosclerotioid, epicoccoid and botryoid depending on species. Sexual morph unknown. D Culture characteristics: Colony colour, growth and pigmentation greatly dependant on media and incubation conditions. Colonies black, brown, olivaceous, yellow, red to pink, or grey and white; slow growing; aerial mycelium flat to effuse, aerial mycelium sparsely formed, floccose to tufted, felty, woolly or compact; margins regular, smooth and sharp, or irregular, crenate and lobate. TE Optimal media and cultivation conditions: CHA for colony growth and pigmentation, MEA mostly for colony pigmentation and acidified OA for both colony pigmentation and morphological identification, incubated for 1 wk in dark and 1 wk under near-ultraviolet light (13 h light, 11 h dark) at 20–22 °C to simulate colon y pigmentation and sporulation. EP Distribution: Temperate areas of Australia, Eurasia and North America. AC C Hosts: Mostly foliar pathogens of herbaceous plants, chiefly soil-borne, with wide host range including monocotyledonous plants, Asteraceae, Cupressaceae, Rosaceae and Solanaceae, occasionally saprobic. Disease symptoms: Crown discolouration, root rot and necrotic leaf spots. Notes: The type species of Paraphoma, Pa. radicina, clustered in a separate group outside Didymellaceae and hence was excluded from Phoma (de Gruyter et al. 2013). In a phylogenetic analysis based on LSU and SSU, Paraphoma radicina clustered in the Phaeosphaeriaceae, although other species belonged to the Cucurbitariaceae and Coniothyriaceae. Setose pycnidial conidiomata and dictyochlamydospores, which are characteristics of species of Paraphoma and Peyronellaea, can be observed in species of other phoma-like genera, such as Pyrenochaeta and Pleurophoma. Therefore, these morphological characters are not specific to these genera. In order to delineate Paraphoma, phylogenetic studies based on ITS, LSU, rpb2, tef1 and tub2 have been performed (Aveskamp et al. 2010, Moslemi et al. 2016, 2018, Crous et al. 2017a). Using ITS and LSU in combination with protein coding genes rpb2, tef1 and tub2 for precise identification of species of Paraphoma is necessary, as LSU alone is too conservative. ACCEPTED MANUSCRIPT References: de Gruyter & Boerema 2002, Zhang et al. 2009, 2012, de Gruyter et al. 2010, 2013 (pathogenicity, phylogeny and distribution); Boerema et al. 2004 (morphology, pathogenicity, media and incubation conditions); Aveskamp et al. 2009, 2010 (morphology, phylogeny and key of all Paraphoma spp.); Hay et al. 2015 (hosts). Phaeoacremonium W. Gams et al., Mycologia 88: 789. 1996. Fig 43. Synonym: Togninia Berl., Icon. fung. (Abellini) 3: 9. 1900. RI PT Authors: A. Moslemi, P.W.J. Taylor & P.W. Crous Classification: Sordariomycetes, Sordariomycetidae, Togniniales, Togniniaceae. M AN US C Type species: Phaeoacremonium parasiticum (Ajello et al.) W. Gams et al., basionym: Phialophora parasitica Ajello, et al. Holotype and ex-type strain: CBS H-17463, CBS 860.73. DNA barcodes (genus): SSU, LSU. DNA barcodes (species): act, tub2. Table 14. Fig. 44. EP TE D Ascomata perithecial, aggregated or solitary, superficial to immersed, non-stromatic, globose to subglobose, dark, opaque, long-necked; necks straight or flexuous; ascomatal wall fragile to leathery, comprising two layers of textura angularis: outer layer brown to dark brown, with cells smaller and more rounded than those of inner layer; inner layer hyaline to pale brown, cells flattened. Paraphyses abundant, broadly cellular, slightly constricted at septa, branching, hyaline, slightly tapering apically or thread-like towards apex. Ascogenous hyphae hyaline, sometimes branched in basal region, elongating during ascal formation with remnant tissue from which single asci arise. Asci arising in acropetal succession, appearing spicate when mature, unitunicate, 8-spored, ascal apex thickened with a nonamyloid apical ring, basally bluntly obtuse, sessile. Ascospores hyaline, aseptate, allantoid, reniform, cylindrical or oblong-ellipsoidal, mostly biseriate or in a single row. Conidiophores branched in basal region or unbranched, arising from aerial or submerged hyphae, erect, nearly cylindrical when unbranched, slightly tapering, straight or flexuous, variable in length, up to 7-septate, mostly pale brown, paler towards tip, percurrent rejuvenation observed, small warts or verruculose ornamentation mostly at base, usually with one integrated terminal phialide and one or two additional, discrete phialides at uppermost septum. Conidiogenous cells phialidic, discrete or integrated, terminal or lateral, mostly monophialidic, sometimes polyphialidic, sparsely warted, verruculose or smooth, pale brown to hyaline, with an inconspicuous funnel-shaped collarette. Three distinct classes of phialides (Types I–III) can be observed. Conidia aggregated into round, slimy heads at apices of phialides, hyaline, aseptate, smoothwalled, oblong-ellipsoidal to obovate, cylindrical, allantoid or reniform, uncommonly fusiform-ellipsoidal or globose, becoming biguttulate with age. AC C Culture characteristics: Colonies on MEA flat with entire margins, mostly moderately dense, predominantly felty, and sometimes woolly; brown, olive-grey, pale yellow to beige or pink to dark pink. Optimal media and cultivation conditions: 2 % MEA to induce sporulation of asexual morph. Cultural characters that are useful to distinguish Phaeoacremonium species include colour of colonies on MEA, and yellow pigment production on PDA and OA. For the sexual morph 2 % WA is used with twiceautoclaved pieces of 3–4 cm of grapevine cane at 22 °C (GWA). Distribution: Worldwide. Hosts: Frequently isolated from both diseased woody plants with brown wood streaking, and humans with phaeohyphomycotic infections. Other hosts include larvae of bark beetles, arthropods, and soil. Because of the involvement of members of this genus in Petri disease and esca of grapevines (Vitis spp.), isolates from this host have been intensively studied (Mostert et al. 2006, Gramaje et al. 2015, Spies et al. 2018). Even though Phaeoacremonium species can infect a wide range of woody hosts ACCEPTED MANUSCRIPT (more than 40 host plants), recent publications have shown the importance of Phaeoacremonium species in causing brown wood streaking of Olea europaea (Oleaceae) and Prunus spp (Rosaceae) (Damm et al. 2008, Carlucci et al. 2015). M AN US C RI PT Notes: Species delimitation based on morphology alone has little value since many species have overlapping characters. Moreover, the morphology of the sexual morph cannot be used because only 15 taxa are known. The two gene regions used most frequently for phylogenetic analyses are actin (act) and partial beta-tubulin (tub2) genes (Mostert et al. 2006). Phylogenetic analyses combining these two regions allow for the resolution of almost all currently known Phaeoacremonium species with good support (≥ 0.97 PP, ≥ 96% BS) (Fig. 44). The three exceptions to this are Pha. griseorubrum (paraphyletic), Pha. roseum (0.72 PP, 100 % BS) and Pha. viticola (0.87 PP, 62 % BS) (Fig. 44, also see Gramaje et al. 2015 and Spies et al. 2018). Other gene regions that have been used include the ITS, tef1 and cal (Groenewald et al. 2001, Mostert et al. 2005, Úrbez-Torres et al. 2014). Úrbez-Torres et al. (2014) included ITS and tef1 data along with act and tub in their phylogeny, which resolved all included species with more than 97 % or 96 % bootstrap support in maximum parsimony and neighbour joining analyses respectively. The ITS region is considered insufficiently variable to distinguish between several of the species and is not recommended as a barcode (Mostert et al. 2005); however, considering the resolution and support in the phylogeny of Úrbez-Torres et al. (2014), the tef1 region is valuable in resolving issues with support and resolution in the act-tub2 phylogeny. The cal region was sequenced for a limited number of species by Mostert et al. (2005) to resolve taxa related to Pha. rubrigenum. Unfortunately, sequence data for this region are available for a limited number of species and its usefulness in distinguishing between Phaeoacremonium species remains uncertain. D References: Crous et al. 1996 (taxonomy); Eskalen et al. 2005, Rooney-Latham et al. 2005 (sexual morph); Mostert et al. 2006, Gramaje et al. 2015 (taxonomy, distribution, host range, detection, identification, pathogenesis and epidemiology); Aroca & Raposo 2007, Pouzoulet et al. 2013, ÚrbezTorres et al. 2015 (detection and identification); Halleen et al. 2007, Damm et al. 2008; Aroca & Raposo 2009, Gramaje et al. 2010 (pathogenicity); Blanco-Ulate et al. 2013 (genome sequence); Moyo et al. 2014, Agustí-Brisach et al. 2015 (epidemiology); Réblová et al. 2015 (systematics). TE Phaeoacremonium pravum C.F.J. Spies, L. Mostert & Halleen, sp. nov. MycoBank MB821019. Fig. 45. Etymology: Latin, pravum meaning crooked, in reference to the crooked shape of some phialides. AC C EP Mycelium of branched, prominently septate, hyaline to pale brown, smooth to finely verruculose (1– )1.5–2.5 (av. 2) µm diam hyphae, forming bundles of up to 5 strands, individual strands in bundles often forming direct hyphal connections. Conidiophores (14.5–)16–61(–77) × 1.5–2.5 (av. 28.5 × 2) µm, smooth to finely verruculose, usually branched, hyaline, up to 9 septa. Phialides terminal or lateral, monophialidic, sometimes proliferating vegetatively behind collarette, types I and II dominant, collarettes funnel-shaped, 0.5–1.5 × 0.5–2 (av. 1 × 1.5) µm, smooth, hyaline; type I mainly subcylindrical, sometimes elongate ampulliform, (2–)2.5–10.5(–11) × 1–2 (av. 6 × 1.5) µm; type II subcylindrical with tapering apex to elongate ampulliform, sometimes curved or bent especially at apex, (8–)8.5–14(–14.5) × 1.5–2(–2.5) (av. 11.5 × 2) µm; type III subcylindrical with tapering apex to subulate, sometimes slender navicular, (14–)14.5–26.5(–31.5) × 1.5–2 (av. 19 × 1.5) µm. Conidia 3– 4(–4.5) × 1.5(–2) (av. 3.5 × 1.5) µm, borne in slimy heads, oblong-ovoid to ellipsoidal to allantoid. Culture characteristics: Colonies reaching a radius of 8–10 mm after 8 d at 25 °C. Minimum temperature for growth 10 °C, optimum 20 °C, maximu m 35 °C. Colonies on MEA smooth, submerged with entire edge, after 16 d white to pale buff above and in reverse. Colonies on PDA smooth, submerged, with central folds, with entire margin, after 16 d white to pale buff above and in reverse. Colonies on OA felty, folded, with submerged margins, with entire edge, after 16 d white to pale smoke grey with darker margins. Materials examined: South Africa, from wood of Vitis berlandieri × rupestris (rootstock cv. Richter 110) (Vitaceae), 18 Sep. ACCEPTED MANUSCRIPT 2014, A. Vermeulen (holotype CBS-H 23158, culture ex-type CBS 142686 = STE-U 8363 = CSN3); ibid., on Vitis vinifera cv. Early Sweet cordon (Vitaceae), 18 Sep. 2014, A. Vermeulen, CBS 142687 = STE-U 8364 = CSN11. M AN US C RI PT Notes: There are several differences between the ex-type strain (CBS 142686) and strain CBS 142687. Strain CBS 142687 had a higher optimum and maximum temperatures for growth (25 °C and 37 °C, respectively) than strain CBS 142686 and rea ched a radius of 11–12 mm after 8 d at 25 °C. After 16 d, colonies of strain CBS 142687 also had pronounced pigmentation on MEA i.e. rosy vinaceous with dark purple patches with central white tufts of aerial mycelium, and on PDA i.e. livid red to dark vinaceous with white to smoke grey woolly aerial mycelium, and on OA i.e. mouse grey to olivaceous grey with white margins. The act sequence of strain CBS 142687 differs from that of the ex-type (CBS 142686) at six positions over a length of 210 bases, resulting in paraphyly of this species in an act-only phylogeny (Spies et al. 2018). Considering the high similarity of tub2 sequences (598/599 identical bases), strong support for the monophyly of Pha. pravum in the combined act-tub2 phylogeny, and the fact that both strains produced curved phialides, CBS 142687 is regarded as Pha. pravum until additional strains and data become available to indicate differently. Authors: D. Gramaje, L. Mostert, C.F.J. Spies & F. Halleen Phyllosticta Pers., Traité sur les Champignons Comestibles (Paris): 55. 147. 1818. Fig. 46. Synonym: Guignardia Viala & Ravaz, Bull. Soc. mycol. Fr. 8: 63. 1892. Classification: Dothideomycetes, Dothideomycetidae, Botryosphaeriales, Phyllostictaceae. Type species: Phyllosticta convallariae Pers., nom. inval. (= Phyllosticta cruenta (Fr.) J. Kickx f.). Reference strain: CBS 858.71. DNA barcode (genus): LSU. DNA barcodes (species): ITS, act, gapdh, tef1. Table 15. Fig. 47. AC C EP TE D Ascomata pseudothecial, separate to gregarious, globose to subglobose, brown to black, unilocular with a central ostiole. Pseudoparaphyses mostly absent at maturity, filamentous, branched, septate when present. Asci bitunicate, fissitunicate, clavate to subcylindrical, 8-spored, fasciculate, stipitate, with an ocular chamber. Ascospores bi- to triseriate, hyaline, guttulate to granular, aseptate, ellipsoid, ellipsoid-fusoid to limoniform, smooth-walled, usually with mucilaginous caps at ends, or surrounded by a mucilaginous sheath. Conidiomata and spermatogonia pycnidial, immersed, subepidermal to erumpent, unilocular, rarely multilocular, glabrous, ostiolate, dark brown to black; ostiole circular to oval; conidiomatal wall thick-walled, dark brown, textura angularis, with inner layers of hyaline to pale brown, thin-walled, textura prismatica to angularis. Conidiophores lining cavity of conidioma, reduced to conidiogenous cells, invested in mucus. Conidiogenous cells discrete, producing macroconidia and spermatia, also produced in separate spermatogonia, ampulliform, lageniform, doliiform to subcylindrical, hyaline, smooth, proliferating percurrently near apex, invested in a mucoid layer. Conidia ellipsoid-fusoid to obovoid or ovoid, rarely subcylindrical, aseptate, broadly rounded at apex, often tapering strongly toward base, unicellular, hyaline, smooth-walled, guttulate to granular, often enclosed in a persistent mucilaginous sheath, and bearing an unbranched, tapering, straight to curved, mucoid apical appendage. Spermatogenous cells ampulliform to lageniform or subcylindrical, hyaline, smooth, phialidic. Spermatia hyaline, smooth, granular, subcylindrical or dumbbell-shaped, with rounded or blunt ends (adapted from Wikee et al. 2013b). Culture characteristics: Colonies on MEA, OA and PDA after 2 wk in dark at 27 °C erumpent or flat, spreading with sparse or moderate aerial mycelium; on MEA, OA and PDA surface frequently iron-grey or olivaceous grey, less frequently greenish to dark green; reverse iron-grey, olivaceous grey or black. Optimal media and cultivation conditions: PNA, OA, PDA and SNA under near-ultraviolet light at 27 °C to induce sporulation. ACCEPTED MANUSCRIPT Distribution: Worldwide. Hosts: Wide range of hosts from trees to ornamentals. Disease symptoms: Leaf spots and various fruit diseases. M AN US C RI PT Notes: Phyllosticta was introduced by Persoon (1818), with Phy. convallariae designated as type species (Donk 1968). However, this species was invalid because it lacked a description. Therefore, Phy. cruenta, which is a synonym of Phy. convallariae, was designated as type of the genus (van der Aa & Vanev 2002). There is no available type material for this species, which was described from Polygonatum multiflorum collected in Germany. A strain deposited in CBS previously identified as Guignardia reticulata, which is the sexual morph of Phy. cruenta, was isolated from Polygonatum odoratum in the Czech Republic, being a potential neotype for Phy. cruenta. However, this strain is sterile and we have chosen to consider it as a reference strain since we could not confirm its identification based on morphology. Phyllosticta includes plant pathogenic species that cause diseases of significant economic importance. For example, Phy. citricarpa is the responsible for citrus black spot, which is considered a quarantine pest in Europe and the USA (Baayen et al. 2002, Glienke et al. 2011, Guarnaccia et al. 2017). Other examples include the Phy. ampelicida species complex that causes black rot disease on grapevines (Wicht et al. 2012, Carstens et al. 2017), and the Phy. musarum species complex that is responsible for banana freckle disease (Pu et al. 2008, Wong et al. 2012). Phoma and Phyllosticta have been difficult to distinguish since both genera were recognised as pycnidial fungi producing unicellular, hyaline conidia. Subsequent molecular data enabled the discrimination of both genera, as well as the fact that Phyllosticta was linked to its sexual morph, Guignardia (Glienke et al. 2011, Wikee et al. 2011, 2013b, Wong et al. 2012, Zhou et al. 2015, Guarnaccia et al. 2017). Phyllosticta was formerly placed in the Botryosphaeriaceae, together with Botryosphaeria (Schoch et al. 2006). However, Wikee et al. (2013b) showed that it represents a different phylogenetic lineage, for which the family name Phyllostictaceae (Fries 1849) was resurrected. TE D References: van der Aa 1973 (morphology and pathogenicity); van der Aa & Vanev 2002 (synonyms, collection information and notes); Wikee et al. 2011 (pathogenicity and phylogeny); Glienke et al. 2011, Wong et al. 2012, Wikee et al. 2013b, Zhou et al. 2015, Guarnaccia et al. 2017 (ecology, morphology and phylogeny). Phyllosticta iridigena Y. Marín & Crous, sp. nov. MycoBank MB823971. Fig. 48. EP Etymology: Name reflects the host it was isolated from, Iris. AC C Conidiomata 90–200 µm diam, pycnidial, solitary, globose, dark brown, with central ostiole; conidiomatal wall of 3–8 layers of brown textura angularis. Conidiophores lining cavity, reduced to conidiogenous cells. Conidiogenous cells 4–7 × 4–6 µm, doliiform, hyaline, smooth, proliferating percurrently at apex. Conidia (10–)12–13(–15) × (7–)8(–9) µm, solitary, ellipsoid to obovoid, aseptate, smooth, hyaline, guttulate, granular; conidia encased in a mucoid sheath 2–3 µm diam, and a single apical mucoid appendage, 7–15 × 2 µm, tapering to acutely rounded apex. Culture characteristics: Colonies flat, spreading, with moderate aerial mycelium and smooth, feathery margins, reaching 45 mm diam after 2 wk at 25 °C. On MEA surface pale olivaceous grey, reverse irongrey. On PDA surface and reverse olivaceous grey. On OA surface pale olivaceous grey with diffuse yellow pigment in agar. Material examined: South Africa, on Iris sp. (Iridaceae), 16 Jan. 2010, P.W. Crous (holotype CBS H-23385, culture ex-type CBS 143410 = CPC 32669). Notes: This species clusters in a well-supported clade (95 % BS / 1 PP) with Phy. hypoglossi and Phy. cussoniae. Phyllosticta hypoglossi produces longer conidiogenous cells (10–15 µm) and wider conidia ACCEPTED MANUSCRIPT [(9–)10(–11) µm] than Phy. iridigena. Moreover, these three species are isolated from different hosts, i.e. Phy. hypoglossi from Ruscus (Ruscaceae), Phy. cussoniae on Cussonia (Araliaceae) and Phy. iridigena on Iris (Iridaceae). Phyllosticta cussonia and Phy. iridigena have been found in the same country, South Africa, while Phy. hypoglossi is an European species. Phyllosticta persooniae Y. Marín & Crous, sp. nov. MycoBank MB823972. Fig. 49. RI PT Etymology: Name reflects the host genus Persoonia from which it was isolated. M AN US C Conidiomata 200–300 µm diam, pycnidial, solitary, globose, dark brown, with central ostiole; conidiomatal wall of 3–8 layers of brown textura angularis. Conidiophores 10–18 × 6–7 µm, lining cavity, 0–1-septate, subcylindrical, hyaline, smooth, rarely branched. Conidiogenous cells 9–17 × 4–5 µm, terminal, subcylindrical, hyaline, smooth, proliferating percurrently at apex. Conidia (9–)10–11(–12) × (7–)8(–9) µm, solitary, ellipsoid to obovoid, aseptate, smooth, hyaline, guttulate, granular; conidia encased in a mucoid sheath that is inconspicuous and dissolves at maturity, but with a single apical mucoid appendage, 7–15 × 2–3 µm, tapering to acutely rounded apex. Culture characteristics: Colonies flat to erumpent, spreading, with sparse to moderate aerial mycelium and feathery, lobate margins, reaching 30 mm diam after 2 wk at 25 °C. On MEA surface smoke grey, reverse olivaceous grey. On PDA surface and reverse olivaceous grey. On OA surface pale mouse grey. Material examined: Australia, New South Wales, South East Forests National Park, Nunnock Swamp, on Persoonia sp. (Proteaceae), 28 Nov. 2016, P.W. Crous (holotype CBS H-23386, culture ex-type CBS 143409 = CPC 32603). TE Authors: Y. Marin-Felix & P.W. Crous D Notes: Phyllosticta persooniae is phylogenetically distant from all other species of Phyllosticta, the most closely related species being Phy. foliorum. Morphologically, these can be distinguished by the size of their conidia. Phyllostica foliorum is characterised by its larger conidia i.e. (12–)13–14(–15) × (9–)10(–11) m vs. (9–)10–11(–12) × (7–)8(–9) µm in Phy. persooniae. Moreover, Phy. foliorum has never been found on Persoonia (Proteaceae) or in Australia, which is the host and distribution of Phy. persooniae (Farr & Rossman 2017). Most species of Phyllosticta are host-specific. Proxipyricularia Klaubauf et al., Stud. Mycol. 79: 109. 2014. Fig 50. Classification: Sordariomycetes, Sordariomycetidae, Magnaporthales, Pyriculariaceae. EP Type species: Proxipyricularia zingiberis (Y. Nisik.) Klaubauf, et al., basionym: Pyricularia zingiberis Y. Nishik. Lectotype designated here: plate 4, fig. 3–8 in Nishikado Y. 1917. Ber. Ohara Inst. Landwirt. Forsch. 1: 222. Epitype and ex-epitype strain designated here: CBS H-23356, CBS 133594. AC C DNA barcodes (genus): LSU, ITS. DNA barcodes (species): ITS, act, cal, rpb1. Table 16. Fig. 28. Conidiophores solitary or in fascicles, subcylindrical, erect, olivaceous to medium brown, smooth, septate. Conidiogenous cells terminal and intercalary, pale brown, with denticulate conidiogenous loci and rhexolytic secession. Conidia solitary, formed sympodially, pyriform to obclavate, narrowed toward apex, rounded at base, 2-septate, subhyaline to pale brown, with a distinct protruding basal hilum, frequently with minute marginal frill (adapted from Klaubauf et al. 2014). Culture characteristics: Colonies reaching 43–50 mm in 1 wk at 25 °C, with out or with moderate aerial mycelium. On CMA surface and reverse transparent. On OA surface salmon to ochreous; reverse pale luteous to luteous. On PDA surface olivaceous to grey olivaceous with margins transparent; reverse olivaceous to grey olivaceous with margins buff. ACCEPTED MANUSCRIPT Optimal media and cultivation conditions: On CMA and OA at 25 °C in dark, or autoclaved bar ley seeds placed on SNA at 25 °C under near-ultraviolet light (12 h light, 12 h dark). Distribution: Japan. Hosts: Zingiber mioga and Z. officinale (Zingiberaceae). RI PT Disease symptoms: Leaf spots. M AN US C Notes: In a phylogenetic study of the genus Pyricularia based on LSU, ITS, act, cal and rpb1, Pyricularia zingiberis clustered in an independent clade distant from the type species of Pyricularia (Klaubauf et al. 2014). Therefore, the genus Proxipyricularia was introduced to accommodate this species, which is pathogen of Zingiber in Japan. Morphologically, both genera are similar, being characterised by medium brown conidiophores and a terminal and intercalary denticulate rachis, and subhyaline, 2-septate, obclavate conidia (Klaubauf et al. 2014). References: Nishikado 1917 (morphology and pathogenicity); Klaubauf et al. 2014 (morphology and phylogeny). Proxipyricularia zingiberis (Y. Nisik.) Klaubauf et al., Stud. Mycol. 79: 109. 2014. Fig. 50. Basionym: Pyricularia zingiberis Y. Nishik. (as “Piricularia zingiberi”), Ber. Ohara Inst. Landwirt. Forsch. 1: 216. 1917. Description: Klaubauf et al. (2014). D Culture characteristics: Colonies on CMA reaching 43–50 mm after 1 wk at 25 °C, without aerial mycelium; surface and reverse transparent. On OA reaching 48–50 mm after 1 wk at 25 °C, with moderate aerial mycelium appearing slightly cottony, margins arachnoid; surface salmon to ochreous; reverse pale luteous to luteous. On PDA reaching 47–48 mm after 1 wk at 25 °C, with sparse aerial mycelium, margins fringed; surface olivaceous to grey olivaceous with margins transparent; reverse olivaceous to grey olivaceous with margins buff. TE Materials examined: Japan, on leaves of Zingiber officinale (Zingiberaceae) (lectotype of Pyricularia zingiberis designated here, MBT379808, plate 4, fig. 3–8 in Nishikado Y. 1917. Ber. Ohara Inst. Landwirt. Forsch. 1: 222). Japan, Hyogo, on Zingiber mioga (Zingiberaceae), 2002, H. Kato [epitype of Pyricularia zingiberis designated here CBS H-23356, MBT379809, culture ex-epitype CBS 133594 = MAFF 240222 = HYZiM201-0-1(Z-2J)]. AC C EP Notes: Type material was not designated when Py. zingiberis was introduced (Nishikado 1917). Therefore, we selected the drawings of Nishikado in the original description as lectotype (Ber. Ohara Inst. Landwirt. Forsch. 1: 222, plate 4, fig. 3–8). To fix the application of the generic name, an epitype for this species is designated here from the same country (Japan) and host (Zingiber) as that of the original specimen. Pyriculariomyces Y. Marín, M.J. Wingf. & Crous, gen. nov. MycoBank MB823760. Fig. 51. Table 17. Etymology: Named after the genus Pyricularia, which it resembles morphologically. Ascomata separate, immersed, globose, brown, with central papillate neck and ostiole; ascomatal wall of 2–4 layers of brown textura angularis. Hamathecium dissolving upon maturity, with some cells remaining among asci. Asci unitunicate, hyaline, smooth, 8-spored, subcylindrical, stipitate, apical mechanism refractive, but not staining in Meltzer’s. Ascospores biseriate, fusoid-ellipsoid, widest in middle, tapering towards subobtusely rounded ends, slightly curved to straight, 3-septate, pale brown, guttulate. Conidiophores solitary, erect, straight to flexuous, unbranched, subcylindrical, brown, smooth, 1–8septate. Conidiogenous cells integrated, terminal, apex somewhat swollen with numerous denticle-like loci, slightly thickened and darkened. Conidia solitary, pyriform, brown, finely verruculose, guttulate, granular, apex subobtusely rounded, with or without mucoid cap, base truncate, hilum darkened, thickened, 2-septate. ACCEPTED MANUSCRIPT Culture characteristics: Colonies reaching 90 mm after 2 wk at 25 °C, with m oderate aerial mycelium and smooth, even margins. On MEA surface pale mouse grey with patches of dirty white, reverse isabelline with patches of pale luteous. On OA surface honey with patches of pale mouse grey. On PDA surface honey, reverse isabelline to honey. RI PT Type species: Pyriculariomyces asari (Crous & M.J. Wingf.) Y. Marín, M.J. Wingf. & Crous. Holotype and ex-type cultures: CBS H-22625, CBS 141328 = CPC 27444. M AN US C Notes: Pyriculariomyces is phylogenetically closely related to Pyricularia. However, Pyriculariomyces can easily be distinguished by production of integrated terminal conidiogenous cells, while Pyricularia produces terminal and intercalary conidiogenous cells. In Pyriculariaceae, the only genera characterised by only terminal conidiogenous cells are Barretomyces and Utrechtiana. However, these genera can easily be distinguished from Pyriculariomyces by the septation of the conidia i.e. 4(–5)-septate in Barretomyces and 1-septate in Utrechtiana. Moreover, Utrechtiana differs in the presence of conidiogenous cells that proliferate percurrently. Moreover, Pyriculariomyces can be distinguished from Pyricularia by the production of ascomata with papillate necks with ostioles, while Pyricularia is characterised by ascomata with long necks. Pyriculariomyces asari (Crous & M.J. Wingf.) Y. Marín, M.J. Wingf. & Crous, comb. nov. MycoBank MB823761. Fig. 51. Basionym: Proxipyricularia asari Crous & M.J. Wingf., Persoonia 36: 393. 2016. Description: Crous et al. (2016b). Materials examined: Malaysia, Sabah, on leaves and stems of Asarum sp. (Aristolochiaceae), May 2015, M.J. Wingfield (holotype CBS H-22625, culture ex-type CPC 27444 = CBS 141328); ibid., CPC 27442. D Notes: Pyriculariomyces asari was introduced as a species of Proxypiricularia to accommodate two specimens collected from Asarum (Crous et al. 2016b). However, the authors at the time suggested that this species could represent another genus in the Pyricularia complex. The phylogenetic analysis generated here based on four different loci (Fig. 28), support this hypothesis. TE Authors: Y. Marin-Felix, M.J. Wingfield & P.W. Crous Pyricularia Sacc. Michelia 2: 20. 1880. Fig 52. EP Classification: Sordariomycetes, Sordariomycetidae, Magnaporthales, Pyriculariaceae. AC C Type species: Pyricularia grisea Sacc. Lectotype designated by Rossman et al. (1990): BPI undistributed set. Epitype and ex-epitype strain designated by Crous et al. (2015a): CBS H-22280, CBS 138707. DNA barcode (genus): LSU. DNA barcodes (species): ITS, act, cal, rpb1. Table 18. Fig. 28. Ascomata ostiolate, solitary to gregarious, subspherical, brown to black, base immersed in host tissue, with long neck protruding above plant tissue; ascomatal wall consisting of several layers of brown textura angularis. Paraphyses intermingled among asci, unbranched, septate. Asci 8-spored, hyaline, subcylindrical to clavate, unitunicate, short-stipitate, with prominent apical ring. Ascospores bi- to multiseriate in asci, hyaline, guttulate, smooth-walled, fusiform, curved with rounded ends, transversely 3-septate, slightly constricted at septa. Conidiophores solitary or in fascicles, subcylindrical, erect, brown, smooth, rarely branched, with sympodial proliferation. Conidiogenous cells terminal and intercalary, pale brown, with denticulate conidiogenous loci and rhexolytic secession. Conidia solitary, pyriform to obclavate, narrowed toward tip, rounded at base, 2-septate, hyaline to pale brown, with a distinct basal hilum, sometimes with marginal frill (adapted from Klaubauf et al. 2014). ACCEPTED MANUSCRIPT Culture characteristics: Colonies on MEA white to vinaceous, pale olivaceous grey, smoke grey, or grey, cottony. Colonies on OA iron grey, transparent with greenish olivaceous parts, fuscous black with grey centre or hazel with smokey grey tufts. Distribution: Worldwide. RI PT Optimal media and cultivation conditions: On OA at 25 °C in dark, or autoclaved barley seed s placed on SNA at 25 °C under near-ultraviolet light (12 h lig ht, 12 h dark). Hosts: Wide range of monocot plants, including important crops of the Poaceae such as rice, barley, millet, oat and wheat. Disease symptoms: Leaf spot and blast diseases. AC C EP TE D M AN US C Notes: Pyricularia was recently re-evaluated in a phylogenetic study based on five loci (Klaubauf et al. 2014). In this study, the polyphyletic nature of the genus was resolved introducing eight new genera to accommodate the species of Pyricularia that were not grouped with the type species Py. grisea and Py. oryzae in Pyricularia s.str. Moreover, the family Pyriculariaceae was introduced to accommodate Pyricularia, which was previously considered a member of Magnaporthaceae. Pyriculariaceae, as well as Magnaporthaceae, accommodate mainly plant pathogenic species, some of which are of major importance in agriculture. Pyricularia oryzae is the causal agent of rice blast disease, which can result in up to a 30 % yield loss worldwide (Skamnioti & Gurr 2009). In a phylogenetic study based on 10 loci and 128 isolates of this species, three major clades were identified (Castroagudín et al. 2016). The first clade grouped the isolates associated only with rice and corresponds to the previously described rice blast pathogen Py. oryzae pathotype Oryza. The second clade accommodated isolates associated almost exclusively with wheat and corresponds to the previously described wheat blast pathogen Py. oryzae pathotype Triticum. A third clade accommodated isolates obtained from wheat as well as other Poaceae. This clade was distinct from Py. oryzae and represented a new species, Pyricularia graminis-tritici. This new species could not be morphologically distinguished from Py. oryzae, but a distinctive pathogenicity spectrum was observed (Castroagudín et al. 2016). However, the “oryzae” clade consists of various populations specific to different grass hosts that appear to be in the process of speciation. Consequently, the species in the “oryzae” clade are not commonly accepted, and some authors refer to them as lineages of Py. oryzae (Castroagudín et al. 2017). Further research is needed to resolve speciation within what is presently circumscribed as Py. oryzae. The sexual morph has been reported only in Py. grisea and Py. oryzae, both being heterothallic species. These are indistinguishable in conidium, perithecium and ascospore morphology. However, Py. oryzae was described as a new species distinct from Py. grisea based on DNA sequence differences in three different loci (act, cal and tub) and host range, since Py. grisea infects only crab grass (Couch & Kohn 2002). References: Klaubauf et al. 2014 (morphology and phylogeny); Castroagudín et al. 2016, 2017 (morphology, pathogenicity and phylogeny); Reges et al. 2016 (pathogenicity and phylogeny). Authors: Y. Marin-Felix & P.W. Crous Stenocarpella Syd. & P. Syd., Ann. Mycol. 15: 258. 1917. Fig. 53. Synonyms: Hendersoniopsis Woron., Fungal and Bacterial Diseases of Agricultural Plants: 255. 1922. Phaeostagonosporopsis Woron., La Defense des Plantes, Leningrad 2: 333. 1925. Classification: Sordariomycetes, Diaporthomycetidae, Diaporthales, Diaporthaceae. Type species: Stenocarpella macrospora (Earle) B. Sutton, basionym: Diplodia macrospora Earle. Isotype: IMI 12790. Ex-epitype strain designated by Crous et al. (2006b): CBS 117560 = MRC 8615. ACCEPTED MANUSCRIPT DNA barcodes (genus): LSU, ITS. DNA barcodes (species): ITS, tef1. Table 19. RI PT Mycelium immersed, brown, branched, septate. Conidiomata pycnidial, solitary or sometimes confluent, globose or elongated, dark brown, subepidermal, unilocular, conidiomatal wall composed of dark brown, thick-walled cells of textura angularis; neck single, circular, papillate, protruding. Conidiophores usually reduced to conidiogenous cells. Conidiogenous cells enteroblastic, phialidic, determinate, discrete, rarely integrated on 1-septate conidiophores, cylindrical, collarette with minute channel, periclinal wall thickened, formed from inner cells of pycnidial wall. Conidia pale brown, 0−3-septate, continuous or constricted, cylindrical to fusiform, straight or curved, apex obtuse, base tapered and truncate, thick and smooth-walled, eguttulate. Beta conidia absent or present, hyaline, scolecosporous, curved. Sexual morph unknown (adapted from Sutton 1980). M AN US C Culture characteristics: Colonies flat, with abundant aerial mycelium giving a cottony appearance; under continuous near-ultraviolet light abundant sporulation in 1 wk. On OA surface white to rosy buff to vinaceous buff, centre isabelline; reverse vinaceous buff, centre isabelline. Optimal media and cultivation conditions: OA and PNA at 25 °C under continuous near-ultravi olet light to promote sporulation. Distribution: Africa, America and Asia. Host: Zea mays (Poaceae). TE D Notes: The genus Stenocarpella was introduced by Sydow & Sydow (1917), with S. zeae designated as type species. Sutton (1977) synonymised S. zeae with Diplodia macrospora, transferring this latter species to Stenocarpella, recognising S. macrospora as the correct name for the type species. Two species are included in this genus i.e. S. macrospora and S. maydis, which cause Diplodia ear rot of maize (Crous et al. 2006b). Stenocarpella was initially placed in the Botryosphaeriaceae (Botryosphaeriales) because of the similarity with Diplodia. In a phylogenetic study based on LSU sequences, Crous et al. (2006b) showed that Stenocarpella belongs to the Diaporthaceae (Diaporthales). Subsequently, Lamprecht et al. (2011) confirmed this placement based on ITS and tef1 sequences. EP References: Sutton 1977, 1980 (morphology and pathogenicity); Crous et al. 2006b (morphology and phylogeny); Lamprecht et al. 2011 (morphology, pathogenicity and phylogeny). Authors: Y. Marin-Felix & P.W. Crous AC C Utrechtiana Crous & Quaedvl., Persoonia 26: 153. 2011. Fig 54. Classification: Sordariomycetes, Sordariomycetidae, Magnaporthales, Pyriculariaceae. Type species: Utrechtiana roumeguerei (Cavara) Videira & Crous, basionym Scolicotrichum roumeguerei Cavara = Utrechtiana cibiessia Crous & Quaedvlieg. Holotype and ex-type strain of Utrechtiana cibiessia: CBS H-20594, CBS 128780. DNA barcodes (genus): LSU, ITS. DNA barcodes (species): ITS, act, cal, rpb1. Table 20. Fig. 28. Mycelium internal, consisting of septate, smooth, hyaline, branched hyphae. Conidiophores predominantly solitary, erect, straight to flexuous, unbranched, 1-septate, medium brown to dark brown, subcylindrical with swollen basal cell. Conidiogenous cells integrated, terminal, cylindrical or subcylindrical, smooth or finely verruculose, thick-walled with thin-walled, clavate, bluntly rounded ACCEPTED MANUSCRIPT RI PT apex, with truncate, flattened scar, holoblastic; conidiophores rejuvenating percurrently. Conidia solitary, obpyriform or ellipsoid, pale brown, guttulate to granular, finely verruculose, 1–2-septate, thinwalled, apex bluntly to acutely rounded, base obtusely rounded with a flattened, darkened and thickened hilum that has a central pore. Synasexual morph selenosporella-like present or absent. Microconidiophores arranged in rosettes, branched, septate, pale brown, smooth, subcylindrical. Microconidiogenous cells pale brown, smooth to finely roughened, phialidic, terminal and lateral, fusoid-ellipsoid to ampulliform. Microconidia hyaline, smooth, aseptate, subcylindrical, straight to curved, ends obtuse. Culture characteristics: Colonies flat, spreading, with moderate aerial mycelium and even smooth margins. On MEA surface dirty white, sometimes turning grey olivaceous when fertile; reverse luteous or olivaceous grey in centre and luteous in outer region. On OA olivaceous grey to iron-grey or dirty white. M AN US C Optimal media and cultivation conditions: On OA at 25 °C under dark, or autoclaved barley s eeds placed on SNA at 25 °C under near-ultraviolet light (12 h light, 12 h dark). Distribution: America, Asia, Australia and Europe. Hosts: Phragmites spp (Poaceae). Disease symptoms: Leaf spot. EP TE D Notes: The genus Utrechtiana was described by Crous et al. (2011a) to accommodate the type species named Utrecthiana cibiessia, which is a foliar pathogen of Phragmites. However, this genus was considered synonymous with Deightoniella by Seifert et al. (2011) because of the morphology of the conidiophores (solitary, brown, with percurrent rejuvenation) and conidia (brown and septate). Moreover, U. cibiessia was demonstrated to be a synonym of Deightoniella roumeguerei, which Klaubauf et al. (2014) showed to belong to Pyriculariaceae, a family containing numerous cryptic fungal genera on Poaceae. However, Deightoniella has been shown to represent a polyphyletic genus. For example, Deightoniella torulosa, which is a foliar pathogen of Musa, proved to be a species of Corynespora (Crous et al. 2013), while a similar fungus occurring on leaf spots of Phragmites in South Africa was placed in Neodeightoniella (Crous et al. 2013). In a recent study, Videira et al. (2017) considered Utrechtiana and Deightoniella based on the type species Deightoniella africana to be different genera based on morphological characteristics. Utrechtiana lacks torsive to flexuous conidiophores with prominent conidiophore swellings, and its conidia are also pale brown, smooth to finely roughened, with prominent thickened, darkened scars. In contrast, conidia in Deightoniella are medium brown, verruculose, and obpyriform with prominent apical taper. In order to clarify the phylogenetic relationships between both genera, fresh material of Deightoniella africana is needed. AC C References: Constantinescu 1983 (morphology and pathogenicity); Mel’nik & Shabunin 2011 (morphology); Crous et al. 2011a, Klaubauf et al. 2014, Videira et al. 2017 (morphology and phylogeny). Utrechtiana arundinacea (Corda) Crous, Quaedvl. & Y. Marín, comb. nov. MycoBank MB824141. Fig. 54. Basionym: Helminthosporium arundinaceum Corda, as “Helmisporium”, Icon. fung. (Prague) 3: 10, tab. 2, fig. 25. 1839. Synonyms: Napicladium arundinaceum (Corda) Sacc., Syll. fung. 4: 482. 1886. Deightoniella arundinacea (Corda) S. Hughes, Mycol. Pap. 48: 29. 1952. Causing blight-like amphigenous lesions along leaves of Phragmites, medium brown with red-purple margins and yellow halo, extending across breadth of leaf, up to 7 mm diam, and along length, up to 20 cm long. Macroconidiophores 30–50 × 9–12 µm, amphigenous, predominantly solitary, but at times in fascicles of up to three, straight to flexuous, unbranched, 1-septate, medium brown, smooth, ACCEPTED MANUSCRIPT RI PT subcylindrical with swollen basal cell, 10–15 µm diam. Macroconidiogenous cells 20–35 × 7–9 µm, integrated, terminal, cylindrical, thick-walled with thin-walled apex, holoblastic; conidiophores proliferate percurrently. Macroconidia (22–)37–42(–45) × (17–)19–20(–21) µm, solitary, obpyriform, pale brown, guttulate, finely verruculose, (1–)2-septate, with distinct dark brown hilum, 3–4 µm. A selenosporella-like synasexual morph develops in culture, with microconidiophores arranged in rosettes, 15–40 × 3–6 µm, branched, 3–6-septate, pale brown, smooth, subcylindrical. Microconidiogenous cells 5–14 × 3–4 µm, pale brown, smooth to finely roughened, phialidic, terminal and lateral, fusoid-ellipsoid to ampulliform. Microconidia 7–10 × 1.5–2 µm, hyaline, smooth, aseptate, subcylindrical, straight to curved, ends obtuse. Macroconidiophores in culture up to 6-septate, 100 µm tall. Macroconidia 23–50 × 11–15 µm, slender, pyriform, prominently verrucose, medium brown. M AN US C Culture characteristics: Colonies flat, spreading, with moderate aerial mycelium and even smooth margins. On MEA surface dirty white, reverse olivaceous grey in centre, luteous in outer region. On OA olivaceous grey to iron-grey. Materials examined: Czech Republic, Prague, on living leaves of Phragmites sp. (Poaceae), 1838 (holotype in PRM missing, but slide ex-holotype, DAOM 19793). The Netherlands, on leaves of Phragmites sp. (Poaceae), 2 Jun. 2017, A. Mulder (epitype of Helminthosporium arundinaceum designated here CBS H-23402, MBT380884, culture ex-epitype CPC 33994). EP TE D Notes: Utrechtiana arundinacea is a commonly encountered European taxon treated in Deightoniella in previous studies (Constantinescu 1983, Mel’nik & Shabunin 2011, Ghosta & Abrinbana 2016). Morphologically, U. arundinacea and U. constantinescui appear to be related. Macroconidia of U. arundinaceum exhibit a strange phenomenon where a third septum develops 3–5 µm from the apex. The conidium body is prominently guttulate, except for this terminal chamber, which is smooth, pale brown, and lacks any guttules. This strange conidial apex is also visible in conidia of U. constantinescui (Mel’nik & Shabunin 2011), and apparently plays some role in infection/attachment, probably exuding a mucoid droplet, as is also seen in some genera in the Pyriculariaceae (Klaubauf et al. 2014). Furthermore, Mel’nik & Shabunin (2011) illustrate a selenosporella-like synasexual morph in both species, which has not been seen in U. roumeguerei, the type species of the genus. Utrechtiana roumeguerei was considered conspecific with U. arundinacea (Ellis 1957) until Constantinescu (1983) demonstrated that they are distinct species based on morphology and pathogenicity. Utrechtiana arundinacea often produces percurrently proliferating conidiogenous cells and obclavate 2-septate conidia, while U. roumeguerei is characterised by rarely percurrent conidiogenous cells and ovate to broadly ellipsoidal, 1-septate conidia. Moreover, U. arundinacea produces systemic infection in the host issues, whereas U. roumeguerei induces a local infection with limited development. In the present study, the DNA data support the placement of both taxa in the same genus (Fig. 28). The holotype specimen of Helminthosporium arundinaceum could not be located in PRM, and is presumed missing. However, a slide from the original material was preserved in DAOM. Due to the lack of living culture of that species, a specimen isolated from the same host and region is here designated as epitype. AC C Utrechtiana constantinescui (Melnik & Shabunin) Crous & Y. Marín, comb. nov. MycoBank MB824142 Basionym: Deightoniella constantinescui Melnik & Shabunin, Mikol. Fitopatol. 45: 257. 2011. Notes: The new combination U. constantinescui is designated here based on the morphology of its macro- and microconidial morphs. Fresh material should be recollected to verify this placement. As we mentioned above, this species is morphologically related to U. arundinacea. Both species can be distinguished based on the shape of their macroconidia (obpyriform in U. arundinacea vs. barrel-shaped in U. constantinescui) and the position of the conidial septa in U. constantinescui, 7–13 µm apart. Authors: Y. Marin-Felix, W. Quaedvlieg & P.W. Crous Wojnowiciella Crous et al., Persoonia 34: 201. 2015. Fig. 55. Classification: Dothideomycetes, Pleosporomycetidae, Pleosporales, Phaeosphaeriaceae. ACCEPTED MANUSCRIPT Type species: Wojnowiciella eucalypti Crous et al. Holotype and ex-type strain: CBS H-22233, CBS 139904. DNA barcode (genus): LSU. DNA barcodes (species): ITS, rpb2, tef1. Table 21. Fig. 56. M AN US C RI PT Conidiomata pycnidial, globose, brown, separate, non-papillate or papillate, with central ostiole; conidiomata wall composed of 3–6 layers of brown cells, textura angularis. Conidiophores reduced to conidiogenous cells. Conidiogenous cells lining cavity, hyaline to pale brown, smooth, ampulliform to subcylindrical, appearing phialidic. Macroconidia subcylindrical, straight to slightly curved, apex subobtuse, base truncate, septate, at times with 1–2 oblique septa, thick-walled, verruculose, guttulate, golden brown. Microconidia in same or different conidiomata as macroconidia. Microconidiophores intermingled with macroconidiogenous cells, branched at base, septate, subcylindrical, hyaline, smooth. Microconidiogenous cells terminal and intercalary, hyaline, smooth, ampulliform to subcylindrical, phialidic with periclinal thickening. Microconidia solitary, hyaline, guttulate, smooth, subcylindrical to ellipsoid, apex obtuse to subobtuse, base truncate. Culture characteristics: Colonies on MEA, cottony, isabelline, greenish olivaceous, mouse grey to greyish sepia, sometimes with luteous exudate; reverse greyish sepia, chestnut, fulvous. Colonies on PDA pale mouse grey, brown vinaceous or greenish olivaceous, sometimes with luteous diffusible pigment; reverse luteous and black, greyish sepia or brown vinaceous. Optimal media and cultivation conditions: On autoclaved banana leaves placed on SNA at 25 °C under near-ultraviolet light (12 h light, 12 h dark). Distribution: Australia, China, Colombia, Italy, South Africa. TE Disease symptoms: Leaf spots. D Hosts: Eucalyptus grandis (Myrtaceae), Cissampelos capensis (Menispermaceae), Dactylis glomerata (Poaceae), Leptocarpus sp. (Restionaceae), Lonicera sp. and Viburnum utile (Caprifoliaceae), and Spartium sp. (Fabaceae). EP Notes: Wojnowiciella was established with W. eucalypti as type species, which differs from Septoriella hirta (syn. Wojnowicia hirta) by non-setous conidiomata, dark brown conidia and hyaline microconidia (Crous et al. 2015d). Although both genera belong to Phaeosphaeriaceae, Wojnowicia has been synonymised with Septoriella (Crous et al. 2015a). Currently Wojnowiciella comprises seven species isolated from leaf spots and twigs of different hosts (Table 21). Although they were associated with disease symptoms, their pathogenicity needs to be proven. AC C References: Wijayawardene et al. 2013 (morphology, as Wojnowicia); Crous et al. 2015d, 2016b (morphology); Li et al. 2015 (morphology and phylogeny, as Wojnowicia); Liu et al. 2015 (morphology and phylogeny, as Wojnowicia); Hernández-Restrepo et al. 2016c (morphology and phylogeny). Authors: M. Hernández-Restrepo & P.W. Crous ACKNOWLEDGEMENTS Yasmina Marin-Felix is grateful for the financial support received from the Vice- Chancellor's postdoctoral fellowship programme from University of Pretoria, South Africa. Keith A. Seifert is thanked for making images of Helminthosporium arundinaceum (slide ex-holotype, DAOM 19793) available for comparison. Didier Tharreau is thanked for digital images of Pyricularia oryzae, and Susan Thompson for Diaporthe gulyae. ACCEPTED MANUSCRIPT REFERENCES AC C EP TE D M AN US C RI PT Agustí-Brisach C, León M, García-Jiménez J, et al. (2015). Detection of grapevine fungal trunk pathogens on pruning shears and evaluation of their potential for spread of infection. Plant Disease 99: 976–981. Al-Subhi AM, Al-Adawi AO, Van Wyk M, et al. (2006). Ceratocystis omanensis, a new species from diseased mango trees in Oman. Mycological Research 110: 237–245. Andjic V, Hardy GE, Cortinas MN, et al. (2007). Multiple gene genealogies reveal important relationships between species of Phaeophleospora infecting Eucalyptus leaves. FEMS Microbiology Letters 268: 22−33. Ando Y, Masuya H, Aikawa T, et al. (2017). Diaporthe toxicodendri sp. nov., a causal fungus of the canker disease on Toxicodendron vernicifluum in Japan. Mycosphere 8: 1157–1167. Ando Y, Motohashi K, Yaguchi Y (2013). Taxonomic re-examination of Cryptomeria gall disease causing fungus. Japanese Journal of Mycology 54: 15−26. Ariyawansa HA, Hyde KD, Jayasiri SC, et al. (2015). Fungal diversity notes 111–252—taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 75: 27–274. Aroca A, Raposo R (2007). PCR-based strategy to detect and identify species of Phaeoacremonium causing grapevine diseases. Applied Environmental Microbiology 73: 2911–2918. Aroca A, Raposo R (2009). Pathogenicity of Phaeoacremonium species on grapevines. Journal of Phytopathology 157: 413–419. Asher MJC, Shipton PJ (1981). Biology and control of take-all. Academic Press, London, UK. Augustin C, Ulrich K, Ward E, et al. (1999). RAPD-based inter- and intravarietal classification of fungi of the Gaeumannomyces– Phialophora complex. Journal of Phytopathology 147: 109–117. Aveskamp MM, Verkley GJ, de Gruyter J, et al. (2009). DNA phylogeny reveals polyphyly of Phoma section Peyronellaea and multiple taxonomic novelties. Mycologia 101: 363–382. Aveskamp MM, de Gruyter J, Woudenberg JHC, et al. (2010). Highlights of the Didymellaceae: a polyphasic approach to characterise Phoma and related pleosporalean genera. Studies in Mycology 65: 1–60. Baayen RP, Bonants PJ, Verkley G, et al. (2002). Nonpathogenic isolates of the citrus black spot fungus, Guignardia citricarpa, identified as a cosmopolitan endophyte of woody plants, G. mangiferae (Phyllosticta capitalensis). Phytopathology 92: 464−477. Bateman GL, Ward E, Antoniw JF (1992). Identification of Gaeumannomyces graminis var. tritici and G. graminis var. avenae using a DNA probe and non-molecular methods. Mycological Research 96: 737–742. Baudoin ABAM (1986). First report of Dichotomophthora indica on common Purslane in Virginia. Plant Disease 70: 352. Blanco-Ulate B, Rolshausen P, Cantu D (2013). Draft genome sequence of the ascomycete Phaeoacremonium aleophilum strain UCR-PA7, a causal agent of the esca disease complex in grapevines. Genome Announcements 1: e00390–13. Boerema GH, de Gruyter J, Noordeloos ME, et al. (2004). Phoma identification manual: differentiation of specific and infraspecific taxa in culture. CABI Publishing, Wallingford, UK. Boesewinkel HJ (1982). Cylindrocladiella, a new genus to accommodate Cylindrocladium parvum and other small-spored species of Cylindrocladium. Canadian Journal of Botany 60: 2288–2294. Braun U (1995). A monograph of Cercosporella, Ramularia and allied genera (phytopathogenic hyphomycetes). Vol. 1. IHW Verlag, Eching, Germany. Bussaban B, Lumyong S, Lumyong P, et al. (2005). Molecular and morphological characterization of Pyricularia and allied genera. Mycologia 97: 1002–1011. Carlucci A, Lops F, Cibelli F, et al. (2015). Phaeoacremonium species associated with olive wilt and decline in southern Italy. European Journal of Plant Pathology 141: 717–729. Carstens E, Linde CC, Slabbert R, et al. (2017). A global perspective on the population structure and reproductive system of Phyllosticta citricarpa. Phytopathology 107: 758–768. Castroagudín VL, Danelli A, Moreira SI, et al. (2017). The wheat blast pathogen Pyricularia graminis-tritici has complex origins and a disease cycle spanning multiple grass hosts. BioRxiv 203455; doi.org/10.1101/203455 Castroagudín VL, Moreira SI, Pereira DAS, et al. (2016). Pyricularia graminis-tritici, a new Pyricularia species causing wheat blast. Persoonia 36: 199–216. Chen SF, Van Wyk M, Roux J, et al. (2013). Taxonomy and pathogenicity of Ceratocystis species on Eucalyptus trees in South China, including C. chinaeucensis sp. nov. Fungal Diversity 58: 267–279. Constantinescu O (1983). Deightoniella on Phragmites. Proceedings van de Koninklijke Nederlandse Akademie van Wetenschappen Section C 86: 137–141. Couch BC, Kohn LM (2002). A multilocus gene genealogy concord-ant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea. Mycologia 94: 683–693. Crous PW (2002). Taxonomy and pathology of Cylindrocladium (Calonectria) and allied genera. APS Press, St. Paul, Minnesota, USA. Crous PW, Carris LM, Giraldo A, et al. (2015a). The Genera of Fungi – fixing the application of the type species of generic names – G 2: Allantophomopsis, Latorua, Macrodiplodiopsis, Macrohilum, Milospium, Protostegia, Pyricularia, Robillarda, Rotula, Septoriella, Torula, and Wojnowicia. IMA Fungus 6: 163–198. Crous PW, Decock C, Schoch CL (2001). Xenocylindrocladium guianense and X. subverticmatum, two new species of hyphomycetes from plant debris in the tropics. Mycoscience 42: 559–566. Crous PW, Gams W, Stalpers JA, et al. (2004a). MycoBank: an online initiative to launch mycology into the 21st century. Studies in Mycology 50: 19–22. Crous PW, Gams W, Wingfield MJ, et al. (1996). Phaeoacremonium gen. nov. associated with wilt and decline diseases of woody hosts and human infections. Mycologia 88: 786–796. Crous PW, Giraldo A, Hawksworth DL, et al. (2014a). The Genera of Fungi: fixing the application of the type species of generic names. IMA Fungus 5: 141–160. Crous PW, Groenewald JZ, Gams W (2003). Eyespot of cereals revisited: ITS phylogeny reveals new species relationships. European Journal of Plant Pathology 109: 841–850. ACCEPTED MANUSCRIPT AC C EP TE D M AN US C RI PT Crous PW, Groenewald JZ, Shivas RG, et al. (2011a). Fungal Planet Description Sheets: 69–91. Persoonia 26:108–156. Crous PW, Hawksworth DL, Wingfield MJ (2015b). Identifying and naming plant-pathogenic fungi: past, present, and future. Annual Review of Phytopathology 53: 247–267. Crous PW, Mohammed C, Glen M, et al. (2007). Eucalyptus microfungi known from culture. 3. Eucasphaeria and Sympoventuria genera nova, and new species of Furcaspora, Harknessia, Heteroconium and Phacidiella. Fungal Diversity 25: 19–36. Crous PW, Phillips AJL, Wingfield MJ (1991). The genera Cylindrocladium and Cylindrocladiella in South Africa, with special reference to forest nurseries. South African Journal of Forestry 157: 69– 85. Crous PW, Quaedvlieg W, Hansen K, et al. (2014b). Phacidium and Ceuthospora (Phacidiaceae) are congeneric: taxonomic and nomenclatural implications. IMA Fungus 5: 173–193. Crous PW, Schroers H-J, Groenewald JZ, et al. (2006a). Metulocladosporiella gen. nov. for the causal organism of Cladosporium speckle disease of banana. Mycological Research 110: 264–275. Crous PW, Schumacher RK, Wingfield MJ, et al. (2015c). Fungal Systematics and Evolution, FUSE 1. Sydowia 67: 81–118. Crous PW, Shivas RG, Quaedvlieg W, et al. (2014c). Fungal Planet description sheets: 214–280. Persoonia 32: 184–306. Crous PW, Schumacher RK, Wingfield MJ, et al. (2018). New and interesting fungi. 1. Fungal Systematics and Evolution 1: 169–215. Crous PW, Shivas RG, Wingfield MJ, et al. (2012a). Fungal Planet description sheets: 128–153. Persoonia 29: 146–201. Crous PW, Slippers B, Wingfield MJ, et al. (2006b). Phylogenetic lineages in the Botryosphaeriaceae. Studies in Mycology 55: 235–253. Crous PW, Summerell BA, Shivas RG, et al. (2011b). Fungal Planet description sheets: 92–106. Persoonia 27: 130–162. Crous PW, Summerell BA, Shivas RG, et al. (2012b). Fungal Planet description sheets: 107–127. Persoonia 28: 138–182. Crous PW, Summerell BA, Shivas RG, et al. (2012c). A re-appraisal of Harknessia (Diaporthales), and the introduction of Harknessiaceae fam. nov. Persoonia 28: 49–65. Crous PW, Summerell BA, Swart L, et al. (2011c). Fungal pathogens of Proteaceae. Persoonia 27: 20–45. Crous PW, Verkley GJM, Groenewald JZ, et al. (2009). Fungal biodiversity. CBS Laboratory Manual Series 1. CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands. Crous PW, Wingfield MJ (1993). A re-evaluation of Cylindrocladiella, and a comparison with morphologically similar genera. Mycological Research 97: 433–448. Crous PW, Wingfield MJ, Burgess TI, et al. (2016a). Fungal Planet description sheets: 469–557. Persoonia 37: 218–403. Crous PW, Wingfield MJ, Burgess TI, et al. (2017a). Fungal Planet description sheets: 558–624. Persoonia 38: 240–384. Crous PW, Wingfield MJ, Burgess TI, et al. (2017b). Fungal Planet description sheets: 625–715. Persoonia 39: 270–467. Crous PW, Wingfield MJ, Guarro J, et al. (2013). Fungal Planet description sheets: 154–213. Persoonia 31: 188–296. Crous PW, Wingfield MJ, Guarro J, et al. (2015d). Fungal Planet description sheets: 320–370. Persoonia 34: 167–266. Crous PW, Wingfield MJ, Le Roux JJ, et al. (2015e). Fungal Planet description sheets: 371–399. Persoonia 35: 264–327. Crous PW, Wingfield MJ, Park RF (1991). Mycosphaerella nubilosa a synonym of M. molleriana. Mycological Research 95: 628–632. Crous PW, Wingfield MJ, Richardson DM, et al. (2016b). Fungal Planet description sheets: 400–468. Persoonia 36: 316–458. Crous PW, Wingfield MJ, Schumacher RK, et al. (2014d). Fungal Planet description sheets: 281–319. Persoonia 33: 212–289. da Silva MA, Correia KC, Barbosa MAG, et al. (2017). Characterization of Phaeoacremonium isolates associated with Petri disease of table grape in Northeastern Brazil, with description of Phaeoacremonium nordesticola sp. nov. European Journal of Plant Pathology 149: 695–709. Damm U, Mostert L, Crous PW, et al. (2008). Novel Phaeoacremonium species associated with necrotic wood of Prunus trees. Persoonia 20: 87–102. De Beer ZW, Duong TA, Barnes I, et al. (2014). Redefining Ceratocystis and allied genera. Studies in Mycology 79: 187–219. De Beer ZW, Seifert KA, Wingfield MJ (2013a). The ophiostomatoid fungi: their dual position in the Sordariomycetes. In: The ophiostomatoid fungi: expanding frontiers. CBS Biodiversity Series 12 (Seifert KA, De Beer ZW, Wingfield MJ, eds). CBSKNAW Fungal Biodiversity Centre, Utrecht, The Netherlands: 1–19. De Beer ZW, Seifert KA, Wingfield MJ (2013b). A nomenclator for ophiostomatoid genera and species in the Ophiostomatales and Microascales. In: The ophiostomatoid fungi: expanding frontiers. CBS Biodiversity Series 12 (Seifert KA, De Beer ZW, Wingfield MJ, eds). CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands: 245–322. de Gruyter, Boerema GH (2002). Contributions towards a monograph of Phoma (Coelomycetes) VIII. Section Paraphoma: Taxa with setose pycnidia. Persoonia 17: 541–561. de Gruyter J, Woudenberg JH, Aveskamp MM, et al. (2010). Systematic reappraisal of species in Phoma section Paraphoma, Pyrenochaeta and Pleurophoma. Mycologia 102: 1066–1081. de Gruyter J, Woudenberg JHC, Aveskamp MM, et al. (2013). Redisposition of phoma-like anamorphs in Pleosporales reevaluation. Studies in Mycology 75: 1–36. De Hoog GS, Guarro J, Gené J, et al. (2000). Atlas of clinical fungi. 2nd ed. Centraalbureau voor Schimmelcultures, Utrecht and Universitat Rovira i Virgili, Reus. De Hoog GS, Hermanides-Nijhof EJ (1977). Survey of the black yeasts and allied fungi. Studies in Mycology 15: 178–222. De Hoog GS, van Oorschot CAN (1983). Taxonomy of the Dactylaria complex I: Notes on the genus Dichotomophthora. Proceedings van de Koninklijke Nederlandse Akademie van Wetenschappen Section C 86: 55–61. Deacon JW (1973). Phialophora radicicola and Gaeumannomyces graminis on roots of grasses and cereals. Transactions of the British Mycological Society 61: 471–485. Deacon JW (1974). Further studies on Phialophora radicicola and Gaeumannomyces graminis on roots and stem bases of grasses and cereals. Transactions of the British Mycological Society 63: 307–327. Dennis RWG (1960). British cup fungi and their allies: An introduction to the Ascomycetes. Ray Society, London, UK. Dissanayake AJ, Camporesi E, Hyde KD, et al. (2017a). Molecular phylogenetic analysis reveals seven new Diaporthe species from Italy. Mycosphere 8: 853–877. Dissanayake AJ, Phillips AJL, Hyde KD, et al. (2017b). The current status of species in Diaporthe. Mycosphere 8: 1106–1156. ACCEPTED MANUSCRIPT AC C EP TE D M AN US C RI PT Dissanayake AJ, Zhang W, Liu M, et al. (2017c). Diaporthe species associated with peach tree dieback in Hubei, China. Mycosphere 8: 533–549. Doilom M, Dissanayake AJ, Wanasinghe DN, et al. (2017). Microfungi on Tectona grandis (teak) in Northern Thailand. Fungal Diversity 82: 107–182. Donk MA (1968). Report of the committee for Fungi and Lichen 1964–1968. Taxon 17: 578–581. Douhan GW, Murray TD, Dyer PS (2002). Species and mating-type distribution of Tapesia yallundae and T. acuformis and occurrence of apothecia in the U.S. Pacific Northwest. Phytopathology 92: 703–709. Du Z, Fan XL, Hyde KD, et al. (2016). Phylogeny and morphology reveal two new species of Diaporthe from Betula spp. in China. Phytotaxa 269: 90–102. Dupont J, Laloui W, Magnin S, et al. (2000). Phaeoacremonium viticola, a new species associated with esca disease of grapevine in France. Mycologia 92: 499–504. Eken C (2003). Dichotomophthora portulacae on Portulaca oleracea in Turkey. Mycotaxon 87: 153–156. Elliott ML (1991). Determination of an etiological agent of Bermuda grass decline. Phytopathology 81: 1380–1384. Elliott ML, Hagan AK, Mullen JM (1993). Association of Gaeumannomyces graminis var. graminis with a St. Augustine grass root rot disease. Plant Disease 77: 206–209. Ellis MB (1957). Some species of Deightoniella. Mycological Papers 66: 1–12. Ellis MB (1971). Dematiaceous Hyphomycetes. Commonwealth Mycological Institute, Kew, UK. Eskalen A, Rooney-Latham S, Gubler WD (2005). Occurrence of Togninia fraxinopennsylvanica on esca-diseased grapevines (Vitis vinifera) and declining ash trees (Fraxinus latifolia) in California. Plant Disease 89: 528. Essakhi S, Mugnai L, Crous PW, et al. (2008). Molecular and phenotypic characterization of novel Phaeoacremonium species associated with Petri disease and esca of grapevine. Persoonia 21: 119–134. Fan XL, Hyde KD, Udayanga D, et al. (2015). Diaporthe rostrata, a novel ascomycete from Juglans mandshurica associated with walnut dieback. Mycological Progress 14: 82. Farr DF, Rossman AY (2017). Fungal Databases, U.S. National Fungus Collections, ARS, USDA. https://nt.arsgrin.gov/fungaldatabases/. Accessed on November 2017. Freeman J, Ward E (2004). Gaeumannomyces graminis, the take-all fungus and its relatives. Molecular Plant Pathology 5: 235– 252. Fries EM (1849). Summa vegetabilium Scandinaviae. Typographis Academica, Uppsala, Sweden. Gao YH, Liu F, Cai L (2016). Unravelling Diaporthe species associated with Camellia. Systematics and Biodiversity 14: 102– 117. Gao YH, Liu F, Duan W, et al. (2017). Diaporthe is paraphyletic. IMA Fungus 8: 153–187. Gao YH, Su YY, Sun W (2015). Diaporthe species occurring on Lithocarpus glabra in China, with descriptions of five new species. Fungal Biology 119: 295–309. Gao YH, Sun W, Su YY (2014). Three new species of Phomopsis in Gutianshan Nature Reserve in China. Mycological Progress 13: 111–121. Giraldo A, Crous PW, Schumacher RK, et al. (2017). The Genera of Fungi – G3: Aleurocystis, Blastacervulus, Clypeophysalospora, Licrostroma, Neohendersonia and Spumatoria. Mycological Progress 16: 325–348. Ghosta Y, Abrinbana M (2016). Deightoniella arundinacea, new to mycobiota of Iran. Rostaniha 17: 92–94. Glienke C, Pereira OL, Stringari D, et al. (2011). Endophytic and pathogenic Phyllosticta species, with reference to those associated with Citrus Black Spot. Persoonia 26: 47−56. Gomes RR, Glienke C, Videira SIR, et al. (2013). Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi. Persoonia 31: 1–41. Graham AB, Johnston PR, Weir BS (2009). Three new Phaeoacremonium species on grapevines in New Zealand. Australasian Plant Pathology 38: 505–513. Gramaje D, Agustí-Brisach C, Pérez-Sierra A, et al. (2012). Fungal trunk pathogens associated with wood decay of almond trees on Mallorca (Spain). Persoonia 28: 1–713. Gramaje D, Armengol J, Mohammadi H, et al. (2009). Novel Phaeoacremonium species associated with Petri disease and esca of grapevines in Iran and Spain. Mycologia 101: 920–929. Gramaje D, García-Jiménez J, Armengol J (2010). Grapevine rootstock susceptibility to fungi associated with Petri disease and esca under field conditions. American Journal of Enology and Viticulture 61: 512–7520. Gramaje D, León M, Pérez-Sierra A, et al. (2014). New Phaeocremonium species isolated from sandalwood trees in Western Australia. IMA Fungus 5: 67–77. Gramaje D, Mostert L, Groenewald JZ, et al. (2015). Phaeoacremonium: From esca disease to phaeohyphomycosis. Fungal Biology 119: 759–783. Groenewald M, Kang J-C, Crous PW, et al. (2001). ITS and beta-tubulin phylogeny of Phaeoacremonium and Phaeomoniella species. Mycological Research 105: 651–657. Guarnaccia V, Crous PW (2017). Emerging citrus diseases in Europe caused by Diaporthe spp. IMA Fungus 8: 317–334. Guarnaccia V, Groenewald JZ, Li H, et al. (2017). First report of Phyllosticta citricarpa and description of two new species, P. paracapitalensis and P. paracitricarpa, from citrus in Europe. Studies in Mycology 87: 161–185. Guarnaccia V, Groenewald JZ, Woodhall J, et al. (2018). Diaporthe diversity and pathogenicity revealed from a broad survey of grapevine diseases in Europe. Persoonia 40: 135–153. Guarnaccia V, Vitale A, Cirvilleri G, et al. (2016). Characterisation and pathogenicity of fungal species associated with branch cankers and stem-end rot of avocado in Italy. European Journal of Plant Pathology 146: 963–976. Halleen F, Mostert L, Crous PW (2007). Pathogenicity testing of lesser-known vascular fungi of grapevines. Australasian Plant Pathology 36: 277–285. Hay FS, Gent DH, Pilkington SJ, et al. (2015). Changes in distribution and frequency of fungi associated with foliar diseases complex of pyrethrum in Australia. Plant Disease 9: 1227–1235. Heath RN, Wingfield MJ, Wingfield BD, et al. (2009). Ceratocystis species on Acacia mearnsii and Eucalyptus spp. in eastern and southern Africa including six new species. Fungal Diversity 34: 41–68. Hernández-Restrepo M, Groenewald JZ, Crous PW (2016a). Taxonomic and phylogenetic re-evaluation of Microdochium, ACCEPTED MANUSCRIPT AC C EP TE D M AN US C RI PT Monographella and Idriella. Persoonia 36: 57–82. Hernández-Restrepo M, Groenewald JZ, Elliott ML, et al. (2016b). Take-all or nothing. Studies in Mycology 83: 19–48. Hernández-Restrepo M, Schumacher RK, Wingfield MJ, et al. (2016c). Fungal Systematics and Evolution: FUSE 2. Sydowia 68: 193–230. Hibbett DS, Ohman A, Glotzer D, et al. (2011). Progress in molecular and morphological taxon discovery in Fungi and options for formal classification of environmental sequences. Fungal Biology Reviews 25: 38–47. Hirata K, Kusaba M, Chuma I, et al. (2007). Speciation in Pyricularia inferred from multilocus phylogenetic analysis. Mycological Research 111: 799–808. Hong SK, Kim WG, Choi HW, et al. (2008). Identification of Microdochium bolleyi associated with basal rot of creeping bent grass in Korea. Mycobiology 36: 77–80. Hu DM, Cai L, Hyde KD (2012). Three new ascomycetes from freshwater in China. Mycologia 104: 1478–1489. Huang F, Hou X, Dewdney MM, et al. (2013). Diaporthe species occurring on citrus in China. Fungal Diversity 61: 237–250. Huang F, Udayanga D, Wang X, et al. (2015). Endophytic Diaporthe associated with Citrus, a phylogenetic reassessment with seven new species from China. Fungal Biology 119: 331–347. Hyde KD, Hongsanan S, Jeewon R, et al. (2016). Fungal diversity notes 367–492, taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 80: 1–270. Inderbitzin P, Bostock RM, Subbarao KV (2012). Cylindrocladiella hahajimaensis, a new species of Cylindrocladiella transferred from Verticillium. MycoKeys 4: 1–8. Jaklitsch WM, Voglmayr H (2012). Phylogenetic relationships of five genera of Xylariales and Rosasphaeria gen. nov. (Hypocreales). Fungal Diversity 52: 75–98. Johnston PR, Seifert KA, Stone JK, et al. (2014). Recommendations on generic names competing for use in Leotiomycetes (Ascomycota). IMA Fungus 5: 91–120. Jones DR (2000). Fungal diseases of the foliage. In: Diseases of Banana, Abaca and Enset (Jones DR, ed). CABI Publishing, Wallingford, UK: 108–111. Kamgan NG, Jacobs K, De Beer ZW, et al. (2008). Ceratocystis and Ophiostoma species, including three new taxa, associated with wounds on native South African trees. Fungal Diversity 29: 37–59. Kamgan Nkuekam G, Wingfield MJ, Mohammed C, et al. (2012). Ceratocystis species, including two new species associated with nitidulid beetles, on eucalypts in Australia. Antonie van Leeuwenhoek 101: 217–241. Kamgan Nkuekam G, Wingfield MJ, Roux J (2013). Ceratocystis species, including two new taxa, from Eucalyptus trees in South Africa. Australasian Plant Pathology 42: 283–311. Kirk PM, Stalpers JA, Braun U, et al. (2013). A without-prejudice list of generic names of fungi for protection under the International Code of Nomenclature for algae, fungi and plants. IMA Fungus 4: 381–443. Klaubauf S, Tharreau D, Fournier E, et al. (2014). Resolving the polyphyletic nature of Pyricularia (Pyriculariaceae). Studies in Mycology 79: 85–120. Klisiewicz JM (1985). Growth and reproduction of Dichotomophthora portulacae and its biological activity on Purslane. Plant Disease 69: 761–762. Lamprecht SC, Crous PW, Groenewald JZ, et al. (2011). Diaporthaceae associated with root and crown rot of maize. IMA Fungus 2: 13–24. Lee S, Groenewald JZ, Crous PW (2004). Phylogenetic reassessment of the coelomycete genus Harknessia and its teleomorph Wuestneia (Diaporthales), and the introduction of Apoharknessia gen. nov. Studies in mycology 50: 235–252. Li WJ, Bhat DJ, Camporesi E, et al. (2015). New asexual morph taxa in Phaeosphaeriaceae. Mycosphere 6: 681–708. Liu JK, Hyde KD, Jones EBG, et al. (2015). Fungal diversity notes 1–110: taxonomic and phylogenetic contributions to fungal species. Fungal Diversity 72: 1–197. Lombard L, Cheewangkoon R, Crous PW (2017). New Cylindrocladiella spp. from Thailand soils. Mycosphere 8: 1088–1104. Lombard L, Shivas RG, To-Anun C, et al. (2012). Phylogeny and taxonomy of the genus Cylindrocladiella. Mycological Progress 11: 835–868. Lombard L, van der Merwe NA, Groenewald JZ, et al. (2015). Generic concepts in Nectriaceae. Studies in Mycology 80: 189– 245. Lombard L, van Leeuwen GCM, Guarnaccia V, et al. (2014). Diaporthe species associated with Vaccinium, with specific reference to Europe. Phytopathologia Mediterranea 53: 287–299. Lucas JA, Dyer PS, Murray TD (2000). Pathogenicity, hostspecificity and population biology of Tapesia spp., causal agents of eyespot disease of cereals. Advances in Botanical Research 33: 226–258. Luo J, Walsh E, Zhang N (2014). Four new species in Magnaporthaceae from grass roots in New Jersey Pine Barrens. Mycologia 106: 580–588. Luo J, Zhang N (2013). Magnaporthiopsis, a new genus in Magnaporthaceae. Mycologia 105: 1019–1029. Machingambi NM, Dreyer LL, Oberlander KC, et al. (2015). Death of endemic Virgilia oroboides trees in South Africa caused by Diaporthe virgiliae sp nov. Plant Pathology 64: 1149–1156. Madrid H, da Cunha KC, Gené J, et al. (2014). Novel Curvularia species from clinical specimens. Persoonia 33: 48–60. Manamgoda DS, Cai L, McKenzie EHC, et al. (2012). A phylogenetic and taxonomic re-evaluation of the Bipolaris – Cochliobolus – Curvularia complex. Fungal Diversity 56: 131–144. Manamgoda DS, Rossman AY, Castlebury LA, et al. (2014). The genus Bipolaris. Studies in Mycology 79: 221–288. Marin-Felix Y, Groenewald JZ, Cai L, et al. (2017). Genera of phytopathogenic fungi: GOPHY 1. Studies in Mycology 86: 99– 216. Mayers CG, Mcnew DL, Harrington TC, et al. (2015). Three genera in the Ceratocystidaceae are the respective symbionts of three independent lineages of ambrosia beetles with large, complex mycangia. Fungal Biology 119: 1075–1092. Mbenoun M, Wingfield MJ, Begoude Boyogueno AD, et al. (2014). Molecular phylogenetic analyses reveal three new Ceratocystis species and provide evidence for geographic differentiation of the genus in Africa. Mycological Progress 13: 219–240. McNeill J, Barrie FF, Buck WR, et al. (eds.) (2012). International Code of Nomenclature for algae, fungi and plants (Melbourne Code). [Regnum Vegetabile no. 154]. A.R.G. Gantner Verlag KG. ACCEPTED MANUSCRIPT AC C EP TE D M AN US C RI PT Mehrlich FP, Fitzpatrick HM (1935). Dichotomophthora portulacae, a pathogen of Portulaca oleracea. Mycologia 27: 543–550. Mel'nik VA, Shabunin DA (2011). Deightoniella constantinescui sp. nov. on Phragmites australis. Mikologiya i Fitopatologiya 45: 257–259. Moreno-Rico O, Groenewald JZ, Crous PW (2014). Foliicolous fungi from Arctostaphylos pungens in Mexico. IMA Fungus 5: 7– 15. Moslemi A, Ades PK, Crous PW, et al. (2018). Paraphoma chlamydocopiosa sp. nov. and Paraphoma pye sp. nov., two new species associated with leaf and crown infection of pyrethrum. Plant Pathology 67: 124–135. Moslemi A, Ades PK, Groom T, et al. (2016). Paraphoma crown rot of pyrethrum (Tanacetum cinerariifolium). Plant Disease 100: 2363–2369. Mostert L, Crous PW, Kang JC, et al. (2001). Species of Phomopsis and a Libertella sp. occurring on grapevines with specific reference to South Africa: morphological, cultural, molecular and pathological characterization. Mycologia 93: 146–167. Mostert L, Groenewald JZ, Summerbell RC, et al. (2005). Species of Phaeoacremonium associated with infections in humans and environmental reservoirs in infected woody plants. Journal of Clinical Microbiology 43: 1752–1767. Mostert L, Groenewald JZ, Summerbell RC, et al. (2006). Taxonomy and pathology of Togninia (Diaporthales) and its Phaeoacremonium anamorphs. Studies in Mycology 54: 1–115. Motohashi K, Inaba S, Anzai K, et al. (2009). Phylogenetic analyses of Japanese species of Phyllosticta sensu stricto. Mycoscience 50: 291−302. Moyo P, Allsopp E, Roets F, et al. (2014). Arthropods vector grapevine trunk disease pathogens. Phytopathology 104: 1063–1069. Müller E, Samuels GJ (1984). Monographella maydis sp. nov. and its connection to the tar-spot disease of Zea mays. Nova Hedwigia 40: 112–120. Murray TD (1996). Resistance to benzimidazole fungicides in the cereal eyespot pathogen, Pseudocercosporella herpotrichoides, in the Pacific Northwest 1984 to 1990. Plant Disease 80: 19–23. Nag Raj TR (1993). Coelomycetous anamorphs with appendage-bearing conidia. Mycologue Publications, Waterloo, Canada. Nag Raj TR, DiCosmo F (1981). A monograph of Harknessia and Mastigosporella with notes on associated teleomorphs. Bibliotheca Mycologica 80: 1–62. Nel WJ, Duong TA, Wingfield BD, et al. (2017). A new genus and species for the globally important, multi-host root pathogen Thielaviopsis basicola. Plant Pathology 10.1111/ppa.12803. Nirenberg HI (1981). Differenzierung der Erreger der Halmbruchkrankheit I. Morphologie. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz 88: 241–248. Nishikado Y (1917). Studies on the rice blast fungus. Berichte des Ohara Instituts für landwirtschaftliche Forschungen 1: 171– 218. Ondřej M (1988). Pyricularia luzulae Ondřej sp. n. Ceská Mykologie 42: 81–83. Parkinson VO, Sivanesan A, Booth C (1981). The perfect state of the rice leaf-scald fungus and the taxonomy of both the perfect and imperfect states. Transactions of the British Mycological Society 76: 59–69. Peerally A (1991) The classification and phytopathology of Cylindrocladium species. Mycotaxon 40: 323–366. Persoon CH (1818). Traité sur les champignons comestibles, contenant l’indication des espèces nuisibles; a l’histoire des champignons. Belin-Leprieur, Paris, France. Pfeiffer CM, Wheeler JE, Gilbertson RL (1989). First report of Dichotomophthora indica as a pathogen of Myrtillocactus geometrizans and Gymnocalycium mihanovichii var. friedrichii in Arizona. Plant Disease 73: 81. Pouzoulet J, Mailhac N, Couderc C, et al. (2013). A method to detect and quantify Phaeomoniella chlamydospora and Phaeoacremonium aleophilum DNA in grapevine-wood samples. Applied Microbiology Biotechnology 97: 10163–10175. Pu J, Xie Y, Zhang X, et al. (2008). Preinfection behaviour of Phyllosticta musarum on banana leaves. Australasian Plant Pathology 37: 60–64. Quaedvlieg W, Verkley GJM, Shin HD, et al. (2013). Sizing up Septoria. Studies in Mycology 75: 307–390. Rachdawong S, Cramer CL, Grabau EA, et al. (2002). Gaeumannomyces graminis vars. avenae, graminis, and tritici identified using PCR amplification of avenacinase-like genes. Plant Disease 86: 652–660. Raimondo ML, Lops F, Carlucci A (2014). Phaeoacremonium italicum sp nov., a new species associated with esca of grapevine in southern Italy. Mycologia 106: 1119–1126. Rao PN (1966). A new species of Dichotomophthora on Portulaca oleracea from Hyderabad, India. Mycopathologia et Mycologia Applicata 28: 137–140. Rayner RW (1970). A mycological colour chart. Commonwealth Mycological Institute, Kew, UK. Réblová M (2011). New insights into the systematics and phylogeny of the genus Jattaea and similar fungi of the Calosphaeriales. Fungal Diversity 49: 167–198. Réblová M, Mostert L (2007). Romellia is congeneric with Togninia, and description of Conidiotheca gen. nov. for one species of this genus with polysporous asci. Mycological Research 111: 299–307. Réblová M, Jaklitsch WM, Réblová K, et al. (2015). Phylogenetic reconstruction of the Calosphaeriales and Togniniales using five genes and predicted RNA secondary structures of ITS, and Flabellascus tenuirostris gen. et sp. nov. PloS ONE 10: e0144616 Reges JTA, Negrisoli MM, Dorigan AF, et al. (2016). Pyricularia pennisetigena and P. zingibericola from invasive grasses infect signal grass, barley and wheat. Pesquisa Agropecuária Tropical, Goiânia 46: 206–214. Reid J, Booth C (1989). On Cryptosporella and Wuestneia. Canadian Journal of Botany 67: 879–908. Robert V, Vu D, Amor ABH, et al. (2013). MycoBank gearing up for new horizons. IMA Fungus 4: 371–379. Roll-Hansen F (1992). Important pathogenic fungi on conifers in Iceland. Acta Botanica Islandica 11: 9–12. Rooney-Latham S, Eskalen A, Gubler WD (2005). Teleomorph formation of Phaeoacremonium aleophilum, cause of esca and grapevine decline in California. Plant Disease 89: 177–184. Rossman AY, Howard RJ, Valent B (1990). Pyricularia grisea, the correct name for the rice blast disease fungus. Mycologia 82: 509–512. Rossman AY, Seifert KA, Samuels GJ, et al. (2013). Genera in Bionectriaceae, Hypocreaceae, and Nectriaceae (Hypocreales) proposed for acceptance or rejection. IMA Fungus 4: 41–51. Routien JB (1957). Fungi isolated from soils. Mycologia 49: 188–196. ACCEPTED MANUSCRIPT AC C EP TE D M AN US C RI PT Santos JM, Correia VG, Phillips AJL (2010). Primers for mating-type diagnosis in Diaporthe and Phomopsis, their use in teleomorph induction in vitro and biological species definition. Fungal Biology 114: 255–270. Santos L, Phillips AJL, Crous PW (2017). Diaporthe species on Rosaceae with descriptions of D. pyracanthae sp. nov. and D. malorum sp. nov. Mycosphere 8: 485–511. Scattolin L, Montecchio L (2007). First report of damping-off of common oak plantlets caused by Cylindrocladiella parva in Italy. Plant Disease 91: 771. Schoch CL, Crous PW, Wingfield MJ, et al. (2000). Phylogeny of Calonectria and selected hypocrealean genera with cylindrical macroconidia. Studies in Mycology 45: 45–62. Schoch CL, Seifert KA, Huhndorf S, et al. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences, USA 109: 6241–6246. Schoch CL, Shoemaker RA, Seifert KA, et al. (2006). A multigene phylogeny of the Dothideomycetes using four nuclear loci. Mycologia 98: 1041–1052. Seifert K, Morgan-Jones G, Gams W, et al. (2011). The genera of Hyphomycetes. CBS Biodiversity Series 9. CBS-KNAW Fungal Biodiversity Centre, Utrecht, the Netherlands. Senanayake IC, Crous PW, Groenewald JZ, et al. (2017). Families of Diaporthales based on morphological and phylogenetic evidence. Studies in Mycology 86: 217–296. Sivanesan A (1987). Graminicolous species of Bipolaris, Curvularia, Drechslera, Exserohilum and their teleomorphs. Mycological Papers 158: 1–261. Skamnioti P, Gurr SJ (2009). Against the grain: safeguarding rice from rice blast disease. Trends in Biotechnology 27: 141–150. Smith H, Wingfield MJ, Crous PW, et al. (1996). Sphaeropsis sapinea and Botryosphaeria dothidea endophytic in Pinus spp. and Eucalyptus spp. in South Africa. South African Journal of Botany 62: 86–88. Soares DJ, Nechet KL (2017). Dichotomophthora sp. causing leaf spot and foliar abscission on Anredera cordifolia in Brazil. Australasian Plant Disease Notes 12: 51. Speakman JB (1982). A simple, reliable method of producing perithecia of Gaeumannomyces gramnis var. tritici and its application to isolates of Phialophora spp. Transactions of the British Mycological Society 79: 350–353. Speakman JB (1984). Perithecia of Gaeumannomyces graminis var. graminis and G. graminis var. tritici in pure culture. Transactions of the British Mycological Society 82: 720–723. Spies CFJ, Moyo P, Halleen F, et al. (2018). Phaeoacremonium species diversity on woody hosts in the Western Cape Province of South Africa. Persoonia 40: 26–62. Sprague R (1936). Relative susceptihility of certain species of gramineae to Cercosporella herpotrichoides. Journal of Agricultural Research 53: 659–670. Sprague R, Fellows H (1934). Cercosporella foot rot of winter cereals. Technical Bulletin 428: 1–24. Su YY, Cai L (2012). Polyphasic characterisation of three new Phyllosticta spp. Persoonia 28: 76−84. Sutton BC (1977). Coelomycetes VI. Nomenclature of generic names proposed for Coelomycetes. Mycological Papers 141: 1– 253. Sutton BC (1980). The Coelomycetes. Fungi imperfecti with pycnidia, acervuli and stromata. Commonwealth Mycological Institute, Kew, UK. Sydow H, Sydow P (1917). Beitrag zur Kenntniss der Pilzflora der Philippinen-Inseln. Annales Mycologici 15: 165–268. Sydow H (1924). Sydow, Mycotheca germanica. Fasc. XLII-XLV (No. 2051–2250). Annales Mycologici 22: 257–268. Tan YP, Edwards J, Grice KRE, et al. (2013). Molecular phylogenetic analysis reveals six new Diaporthe species from Australia. Fungal Diversity 61: 251–260. Tanney JB, McMullin DR, Green BD, et al. (2016). Production of antifungal and antiinsectan metabolites by the Picea endophyte Diaporthe maritima sp. nov. Fungal Biology 120: 1448–1457. Tarigan M, Gryzenhout M, Roux J, et al. (2010). Three new Ceratocystis spp. in the Ceratocystis moniliformis complex from wounds on Acacia mangium and A. crassicarpa. Mycoscience 51: 53–67. Thompson SM, Tan YP, Shivas RG, et al. (2015). Green and brown bridges between weeds and crops reveal novel Diaporthe species in Australia. Persoonia 35: 39–49. Thompson SM, Tan YP, Young AJ, et al. (2011). Stem cankers on sunflower (Helianthus annuus) in Australia reveal a complex of pathogenic Diaporthe (Phomopsis) species. Persoonia 27: 80–89. Turner EM (1940). Ophiobolus graminis Sacc. var. avenae var. n. as the cause of take-all or white-heads in Wales. Transactions of the British Mycological Society 24: 269–281. Udayanga D, Castlebury LA, Rossman AY, et al. (2014a). Insights into the genus Diaporthe: phylogenetic species delimitation in the D. eres species complex. Fungal Diversity 67: 203–229. Udayanga D, Castlebury LA, Rossman AY, et al. (2014b). Species limits in Diaporthe: molecular re-assessment of D. citri, D. cytosporella, D. foeniculina and D. rudis. Persoonia 32: 83–101. Udayanga D, Castlebury LA, Rossman AY, et al. (2015). The Diaporthe sojae species complex, phylogenetic re-assessment of pathogens associated with soybean, cucurbits and other field crops. Fungal Biology 119: 383–407. Udayanga D, Liu X, McKenzie EHC, et al. (2011). The genus Phomopsis: biology, applications, species concepts and names of common phytopathogens. Fungal Diversity 50: 189–225. Udayanga D, Liu XZ, MCkenzie EHC, et al. (2012). Multi-locus phylogeny reveals three new species of Diaporthe from Thailand. Cryptogamie Mycologie 33: 295–309. Ulrich K, Augustin C, Werner A (2000). Identification and characterization of a new group of root-colonizing fungi within the Gaeumannomyces–Phialophora complex. New Phytologist 145: 127–135. Uotila A (1990). Infection of pruning wounds in Scots pine by Phacidium coniferarum and selection of pruning season. Acta Forestalia Fennica 215: 1–36 Úrbez-Torres JR, Haag P, Bowen P, et al. (2014). Grapevine trunk diseases in British Columbia: incidence and characterization of the fungal pathogens associated with esca and Petri diseases of grapevine. Plant Disease 98: 469–482. Úrbez-Torres JR, Haag P, Bowen P, et al. (2015). Development of a DNA-macroarray for the detection and identification of fungal pathogens causing decline of young grapevines. Phytopathology 105: 1373–1383. ACCEPTED MANUSCRIPT AC C EP TE D M AN US C RI PT Van Coller GJ, Denman S, Groenewald JZ, et al. (2005). Characterisation and pathogenicity of Cylindrocladiella spp. associated with root and cutting rot symptoms of grapevines in nurseries. Australasian Plant Pathology 34: 489–498. van der Aa HA (1973). Studies in Phyllosticta I. Studies in Mycology 5: 1−110. van der Aa HA, Vanev S (2002). A revision of the species described in Phyllosticta. Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands. Van Niekerk JM, Groenewald JZ, Farr DF, et al. (2005). Reassessment of Phomopsis species on grapevines. Australasian Plant Pathology 34: 27–39. Van Rensburg JCJ, Lamprecht SC, Groenewald JZ, et al. (2006). Characterization of Phomopsis spp. associated with die-back of rooibos (Aspalathus linearis) in South Africa. Studies in Mycology 55: 65–74. Van Wyk M, Roux J, Barnes I, et al. (2004). Ceratocystis bhutanensis sp. nov., associated with the bark beetle Ips schmutzenhoferi on Picea spinulosa in Bhutan. Studies in Mycology 50: 365–379. Van Wyk M, Roux J, Barnes I, et al. (2006). Molecular phylogeny of the Ceratocystis moniliformis complex and description of C. tribiliformis sp. nov. Fungal Diversity 21: 181–201. Van Wyk M, Wingfield BD, Wingfield MJ (2011). Four new Ceratocystis spp. associated with wounds on Eucalyptus, Schizolobium and Terminalia trees in Ecuador. Fungal Diversity 46: 111–131. Videira SIR, Groenewald JZ, Nakashima C, et al. (2017). Mycosphaerellaceae – Chaos or clarity? Studies in Mycology 87: 257– 421. von Arx JA (1981). Notes on Microdochium and Idriella. Sydowia 34: 30–38. von Arx JA (1984). Notes on Monographella and Microdochium. Transactions of the British Mycological Society 83: 373–374. von Arx JA, Olivier D (1952). The taxonomy of Ophiobolus graminis Sacc. Transactions of the British Mycological Society 35: 29–33. Walker J (1972). Type studies on Gaeumannomyces graminis and related fungi. Transactions of the British Mycological Society 58: 427–457. Walker J (1975). Take-all disease of Gramineae: A review of recent work. Review of plant pathology 54: 113–143. Walker J (1980). Gaeumannomyces, Linocarpon, Ophiobolus and several other genera of scolecospored Ascomycetes and Phialophora conidial states, with a note on hyphopodia. Mycotaxon 11: 1–129. Walker J (1981). Taxonomy of take-all fungi and related genera and species. In: Biology and Control of Take-all (Asher MJC, Shipton PJ, eds). Academic Press, London, UK: 15–84. Wang X, Chen G, Huang F, et al. (2011). Phyllosticta species associated with citrus diseases in China. Fungal Diversity 52: 209–224. Ward E, Bateman GL (1999). Comparison of Gaeumannomyces- and Phialophora-like fungal pathogens from maize and other plants using DNA methods. New Phytologist 141: 323–331. Wicht B, Petrini O, Jermini M, et al. (2012). Molecular, proteomic and morphological characterization of the ascomycete Guignardia bidwellii, agent of grape black rot: a polyphasic approach to fungal identification. Mycologia 104: 1036–1045. Wijayawardene N, Song Y, Bhat DJ, et al. (2013). Wojnowicia viburni, sp. nov., from China and its phylogenetic placement. Sydowia 65: 129–138. Wikee S, Lombard L, Crous PW, et al. (2013a). Phyllosticta capitalensis, a widespread endophyte of plants. Fungal Diversity 60: 91–105. Wikee S, Lombard L, Nakashima C, et al. (2013b). A phylogenetic re-evaluation of Phyllosticta (Botryosphaeriales). Studies in Mycology 76: 1–29. Wikee S, Udayanga D, Crous PW, et al. (2011). Phyllosticta – an overview of current status of species recognition. Fungal Diversity 51: 43–61. Wilson M (1920). A new disease of the Douglas Fir in Scotland. Transactions of the Royal Scottish Arboricultural Society 34: 145–149. Wilson AM, Godlonton T, van der Nest MA, et al. (2015). Unisexual reproduction in Huntiella moniliformis. Fungal Genetics and Biology 80: 1–9. Wingfield BD, Van Wyk M, Roos H, et al. (2013). Ceratocystis: emerging evidence for discrete generic boundaries. In: The ophiostomatoid fungi: Expanding frontiers. CBS biodiversity series 12 (Seifert KA, De Beer ZW, Wingfield MJ, eds). CBSKNAW Fungal Biodiversity Centre, Utrecht, The Netherlands: 57–64. Wong MH, Crous PW, Henderson J, et al. (2012). Phyllosticta species associated with freckle disease of banana. Fungal Diversity 56: 173–187. Wong PTW (2002). Gaeumannomyces wongoonoo sp. nov., the cause of a patch disease of buffalo grass (St Augustine grass). Mycological Research 106: 857–862. Wong PTW, Walker J (1975). Germinating phialidic conidia of Gaeumannomyces graminis and phialophora-like fungi from Gramineae. Transactions of the British Mycological Society 65: 41–47. Wulandari NF, To-anun C, Hyde KD, et al. (2009). Phyllosticta citriasiana sp. nov., the cause of Citrus tan spot of Citrus maxima in Asia. Fungal Diversity 34: 23–39. Yang Q, Du Z, Tian CM (2018). Phylogeny and morphology reveal two new species of Diaporthe from Traditional Chinese Medicine in Northeast China. Phytotaxa 336: 159–170. Yang Q, Fan XL, Du Z, et al. (2017a). Diaporthe juglandicola sp. nov. (Diaporthales, Ascomycetes) evidenced by morphological characters and phylogenetic analysis. Mycosphere 8: 817–826. Yang Q, Fan XL, Du Z, et al. (2017b). Diaporthe species occurring on Senna bicapsularis in southern China, with descriptions of two new species. Phytotaxa 302: 145–155. Yang Q, Fan XL, Du Z, et al. (2017c). Diaporthe camptothecicola sp. nov. on Camptotheca acuminata in China. Mycotaxon 132: 591–601. Yao JM, Wang YC, Zhu YG (1992). A new variety of the pathogen of maize take-all. Acta Mycologica Sinica 11: 99–104. Yuan Z-Q, Mohammed C (2002). Ceratocystis moniliformopsis sp. nov., an early coloniser of Eucalyptus obliqua logs in Tasmania, Australia. Australian Systematic Botany 15: 125–133. Zhang K, Su YY, Cai L (2013a). Morphological and phylogenetic characterization of two new species of Phyllosticta from China. Mycological Progress 12: 547–556. ACCEPTED MANUSCRIPT RI PT Zhang K, Zhang N, Cai L (2013b). Typification and phylogenetic study of Phyllosticta ampelicida and P. vaccinii. Mycologia 105: 1030–1042. Zhang W, Nan Z, Tian P, et al. (2015). Microdochium paspali, a new species causing seashore paspalum disease in southern China. Mycologia 107: 80–89. Zhang Y, Crous PW, Schoch CL, et al. (2012). Pleosporales. Fungal Diversity 53: 1–221. Zhang Y, Schoch CL, Fournier J, et al. (2009). Multi-locus phylogeny of Pleosporales: a taxonomic, ecological and evolutionary re-evaluation. Studies in Mycology 64: 85–102. Zhang ZF, Liu F, Zhou X, et al. (2017). Culturable mycobiota from Karst caves in China, with descriptions of 20 new species. Persoonia 39:1–31. Zhou N, Chen Q, Carroll G, et al. (2015). Polyphasic characterization of four new plant pathogenic Phyllosticta species from China, Japan and the United States. Fungal Biology 119: 433–446. Legends to Figures Fig. 1. Allantophomopsiella pseudotsugae (CBS 841.91). A. Conidiomata forming on autoclaved barley leaves. B–E. Conidiogenous cells giving rise to conidia. F. Conidia. Scale bars: A = 300 m; others = 10 m (from Crous et al. 2014b). M AN US C Fig. 2. Apoharknessia spp. A. Disease symptoms of Apoharknessia eucalyptorum on Eucalyptus pellita. B, C. Conidiomata. B. Apoharknessia eucalyptorum (ex-type CBS 142519). C. Apoharknessia insueta (ex-type CBS 111377). D–G. Conidiogenous cells and conidia. D, E. Apoharknessia eucalyptorum (ex-type CBS 142519). F, G. Apoharknessia insueta (ex-type CBS 111377). H, I. Conidia. H. Apoharknessia eucalyptorum (ex-type CBS 142519). I. Apoharknessia insueta (ex-type CBS 111377). Scale bars: C = 25 µm; all others = 10 µm. Picture B taken from Crous et al. (2017a). Fig. 3. Apoharknessia eucalypti (ex-type CBS 142518). A. Conidiomata sporulating on SNA. B–E. Conidiogenous cells and conidia. F, G. Conidia. Scale bars: A = 250 m, B–G = 10 m. TE D Fig. 4. Cylindrocladiella spp. and disease symptoms. A–D. Disease symptoms associated with Cylindrocladiella spp. A–B. Cylindrocladiella spp. sporulating on the seed coat of Medicago sativa. C. Root rot of M. sativa seedling. D. Cylindrocladiella spp. on carnation leaf. E–AA. Asexual morph. E–I. Penicillate conidiophores. E. Cylindrocladiella longistipitata (ex-type CBS 116075). F. Cylindrocladiella kurandica (ex-type CBS 129577). G. Cylindrocladiella lanceolata (ex-type CBS 129566). H. Cylindrocladiella pseudoparva (ex-type CBS 129560). I. Cylindrocladiella nederlandica (ex-type CBS 152.91). J–N. Penicillate conidiophores. J. Cylindrocladiella hawaiiensis (ex-type CBS 129569). K. Cylindrocladiella australiensis (ex-type CBS 129567). L. Cylindrocladiella natalensis (ex-type CBS 114943). M. Cylindrocladiella cymbiformis (ex-type CBS 129553). N. Cylindrocladiella ellipsoidea (ex-type CBS 129573). O–S. Subverticillate conidiophores. O. Cylindrocladiella australiensis (ex-type CBS 129567). P. Cylindrocladiella longiphialidica (ex-type CBS 129557). Q. Cylindrocladiella pseudohawaiiensis (ex-type CBS 210.94). R–S. Cylindrocladiella natalensis (ex-type CBS 114943). T–Y. Terminal vesicles of stipe extensions. T. Cylindrocladiella hawaiiensis (ex-type CBS 129569). U. Cylindrocladiella stellenboschensis (ex-type CBS 110668). V. Cylindrocladiella cymbiformis (ex-type CBS 129553). W. Cylindrocladiella variabilis (ex-type CBS 129561). X. Cylindrocladiella lanceolata (ex-type CBS 129566). Y. Cylindrocladiella kurandica (ex-type CBS 129577). Z–AA. Conidia. Z. Cylindrocladiella natalensis (ex-type CBS 114943). AA. Cylindrocladiella brevistipitata (ex-type CBS 142783). Scale bars E–I, O = 50 m; J–N, P–AA = 10 m. EP Fig. 5. The Maximum Likelihood (ML) consensus tree of Cylindrocladiella spp. inferred from the combined ITS (547 bp), tef1 (527 bp) and tub2 (502 bp) sequence alignment. Thickened lines indicate branches present in the ML, Maximum parsimony (MP) and Bayesian consensus trees. Branches with ML-bootstrap (BS) & MP-BS = 100 % and posterior probabilities (PP) = 1.00 are in blue. Branches with ML-BS & MP-BS ≥ 75 % and PP ≥ 0.95 are in green. The scale bar indicates 0.02 expected changes per site. The tree is rooted to Gliocladiopsis sagariensis CBS 199.55. Ex-type strains are indicated in bold. GenBank accession numbers are indicated in Table 3 and in Lombard et al. (2012, 2017). TreeBASE: S22340. AC C Fig. 6. Cylindrocladiella nauliensis (ex-type CBS 143792). A–D. Penicillate conidiophores. E–H. Penicillate conidiogenous apparatus. I–L. Terminal vesicles of stipe extensions. M–N. Subverticillate conidiophores. O. Conidia. Scale bars A–D = 50 m; E– O = 10 m. Fig. 7. Disease symptoms associated with Diaporthe spp. A, B. Helianthus annuus plants affected by Diaporthe gulyae (courtesy Susan Thompson). C, D. Branch canker of Persea americana with associated Diaporthe foeniculina and Diaporthe sterilis. E, F. Phomopsis cane (courtesy Alessandro Vitale) and cane bleaching on shoot of Vitis vinifera caused by Diaporthe spp. (courtesy José Luis Ramos Sáez de Ojer). G, H. Decay of Vaccinium corymbosum caused by Diaporthe baccae and Diaporthe sterilis and artificial infection caused by inoculation of Diaporthe sterilis. I. Trunk canker with gummosis of Citrus limon caused by Diaporthe limonicola and Diaporthe melitensis. Pictures C, D taken from Guarnaccia et al. (2016); I from Guarnaccia & Crous et al. (2017). Fig. 8. Diaporthe spp. A–D. Sexual morph. A, B. Ascomata. A. Diaporthe ambigua (ex-type CBS 114015). B. Diaporthe aspalathi (ex-type CBS 117169). C, D. Asci with ascospores. C. Diaporthe ambigua (ex-type CBS 114015). D. Diaporthe aspalathi (ex-type CBS 117169). E–M. Asexual morph. E, F. Conidiomata sporulating. E. Diaporthe limonicola (ex-type CBS 142549). F. Diaporthe pseudomangiferae (ex-type CBS 101339). G–I. Conidiogenous cells and conidia. G. Diaporthe raonikayaporum (ex-type CBS 133182). H. Diaporthe tecomae (CBS 100547). I. Diaporthe limonicola (ex-type CBS 142549). J, K. Alpha conidia. J. Diaporthe cinerascens (CBS 719.96). K. Diaporthe pseudomangiferae (ex-type CBS 101339). L. Beta conidia of Diaporthe eleagni (CBS 504.72). M. Alpha, beta and gamma conidia of Diaporthe limonicola (ex-type CBS 142549). Scale bars = 10 m. Pictures A–D taken from Van Rensburg et al. (2006); F–H, J–L from Gomes et al. (2013); E, I, M from Guarnaccia & Crous et al. (2017). ACCEPTED MANUSCRIPT Fig. 9. Consensus phylogram of 2 052 trees resulting from a Bayesian analysis of the combined ITS (637 bp), tub2 (833 bp), his3 (592 bp), tef1 (496 bp) and cal (817 bp) sequence alignment of Diaporthe spp. Bootstrap support values and Bayesian posterior probability values are indicated at the nodes. Substrate and country of origin are listed next to the strain numbers. The newly recognised species are showed in bold. The tree was rooted to Diaporthella corylina CBS 121124. T indicates ex-type strain. TreeBASE: S21865. Fig. 10. Diaporthe heterophyllae (ex-type CBS 143769). A–C. Colonies on MEA, PDA and OA, respectively. D. Conidiomata sporulating on PNA. E. Conidiogenous cells and conidia. F. Alpha and beta conidia. Scale bars = 10 m. RI PT Fig. 11. Diaporthe racemosae (ex-type CBS 143770). A–C. Colonies on MEA, PDA and OA, respectively. D. Conidiomata sporulating on PNA. E. Conidiogenous cells and conidia. F. Alpha conidia. Scale bars = 10 m. Fig. 12. Dichotomophthora lutea. A–E. Colonies on PDA. F–J. Colonies on OA. K. Habit. L–N. Conidiophores and conidia. O–Q. Conidiogenous cells. R, S. Conidiogenous cells and conidia. T, U. Conidia and microconidia. V–X. Sclerotia. Y. Anastomosing conidia. (A, F = ex-type CBS 145.57; B, G, K, O–T, V, Y = CBS 584.71; C, H = CBS 585.71; D, I, U = CBS 132.81; E, J, W, X = CBS 518.78). Scale bars: V–X = 100 m; L, P = 20 m; others = 10 m. M AN US C Fig. 13. RAxML phylogram obtained from the combined ITS (759 bp), LSU (880 bp), gapdh (594 bp) and rpb2 (958 bp) sequence alignment of all the accepted species of Dichotomophthora. The tree was rooted to Curvularia portulacae CBS 239.48 and BRIP 14541. The novel species described in this study are shown in bold. RAxML bootstrap support (BS) values above 70 % are shown in the nodes. GenBank accession numbers are indicated in Table 5. T and PT indicate ex-type and ex-paratype strains, respectively. TreeBASE: S21899. Fig. 14. Dichotomophthora basella (ex-type CPC 33016). A–C. Disease symptoms caused by Di. basella in leaves of Basella rubra. D. Colony on PDA. E. Colony on OA. F. Colony overview with sclerotia and conidiophores. G–I. Conidiophores and conidia. J, K. Conidiogenous cells. L. Conidia. M. Microconidia. N, O. Sclerotia. Scale bars: N, O = 100 m; H = 50 m; others = 10 m. Fig. 15. Dichotomophthora brunnea (ex-type CBS 149.49). A. Colony on PDA. B. Colony on OA. C. Colony overview with conidiophores. D–J. Conidiophores, conidiogenous cells and conidia. K. Microconidia. L–Q. Conidia. Scale bars: D–G = 50 m; H = 20 m; others = 10 m. EP TE D Fig. 16. Gaeumannomyces spp. A–F. Sexual morph. A. Perithecia of Gaeumannomyces oryzicola (ex-type CBS 141390). B. Asci and paraphyses of Gaeumannomyces oryzinus (CPC 26065). C–E. Asci. C, D. Gaeumannomyces oryzinus (CPC 26043). E. Gaeumannomyces oryzicola (ex-type CBS 141390). F. Ascospores of Gaeumannomyces oryzinus (CBS 235.32). G–AH. Asexual morph. G–P. Conidiophores and conidiogenous cells. G. Gaeumannomyces californicus (ex-type CBS 141377). H. Gaeumannomyces fusiformis (ex-type CBS 141379). I. Gaeumannomyces arxii (CBS 903.73). J, N. Gaeumannomyces walkeri (ex-type CBS 141400). K. Gaeumannomyces graminis (CBS 141386). L. Gaeumannomyces graminicola (CBS 352.93). M. Gaeumannomyces oryzicola (ex-type CBS 141390). O. Gaeumannomyces oryzinus (CPC 26032). P. Gaeumannomyces radicicola (ex-type CBS 296.53). Q–Y. Conidia. Q. Gaeumannomyces radicicola (ex-type CBS 296.53). R. Gaeumannomyces oryzicola (ex-type CBS 141390). S, T. Gaeumannomyces walkeri (ex-type CBS 141400). U. Gaeumannomyces oryzinus (CPC 26067). V. Gaeumannomyces ellisiorum (ex-type CBS 387.81). W. Gaeumannomyces floridanus (ex-type CBS 141378). X. Gaeumannomyces graminicola (CPC 26036). Y. Gaeumannomyces arxii (CBS 903.73). Z–AH. Hyphopodia. Z. Gaeumannomyces ellisiorum (ex-type CBS 387.81). AA, AC. Gaeumannomyces glycinicola (CBS 141380). AB. Gaeumannomyces floridanus (ex-type CBS 141378). AD. Gaeumannomyces graminicola (CPC 26025). AE. Gaeumannomyces californicus (ex-type CBS 141377). AG. Gaeumannomyces oryzinus (CPC 26032). AF. Gaeumannomyces hyphopodioides (CPC 26267). AH. Gaeumannomyces walkeri (ex-type CBS 141400). Scale bars A, B= 50 m; C–F = 20 m; other = 10 m. Pictures taken from Hernández-Restrepo et al. (2016b). AC C Fig. 17. RAxML phylogram obtained from the combined ITS (715 bp), LSU (881 bp), rpb1 (617 bp) and tef1 (427 bp) sequence alignment of all the accepted species of Gaeumannomyces. The tree was rooted to Pseudophialophora eragrostis CM12m9 and Falciphora oryzae CBS 125863. RAxML bootstrap support (BS) values above 70 % are shown in the nodes. GenBank accession numbers are indicated in Table 6. T, ET and A indicate ex-type, ex-epitype and authentic strains, respectively. TreeBASE: S21899. Fig. 18. Harknessia spp. A–E. Disease symptoms on Eucalyptus. A. Harknessia fusiformis (CPC 13649). B. Harknessia hawaiiensis (CPC 15003). C. Harknessia ravenstreetina (ex-type CBS 132125). D. Harknessia rhabdosphaera (CPC 13593). E. Harknessia globispora (CPC 14924). F–L. Sexual morph of Harknessia eucalyptorum (CPC 12697). F. Ascoma with short neck, oozing ascospores. G, H. Paraphyses and asci. I, J. Asci. K. Paraphyses and ascal tip. L. ascospores. M–AA. Asexual morphs. M. Sporulating colony on OA of Harknessia ellipsoidea (ex-type CBS 132121). N–R. Conidiogenous cells giving rise to conidia. N, O. Harknessia gibbosa (ex-type CBS 120033). P. Harknessia pseudohawaiiensis (CPC 17380). Q. Harknessia ravenstreetina (CBS 132125ET). R. Harknessia renispora (CPC 17163). S–X. Conidia. S, T. Harknessia australiensis (ex-type CBS 132119). U. Harknessia kleinzeeina (ex-type CPC 16277). V. Harknessia eucalyptorum (CPC 12697). W. Harknessia ravenstreetina (ex-type CBS 132125). X. Harknessia renispora (CPC 17163). Y. Microconidiogenous cells giving rise to microconidia of Harknessia renispora (CPC 17163). Z, AA. Microconidia. Z. Harknessia renispora (CPC 17163). AA. Harknessia pseudohawaiiensis (CPC 17380). Scale bars: 10 m. Pictures taken from Crous et al. (2012c). Fig. 19. RAxML phylogram obtained from the combined ITS (643 bp), cal (499 bp) and tub2 (838 bp) sequence alignment of all accepted species of Harknessia. The tree was rooted to Cryphonectria parasitica. The novelties proposed in this study are indicated in bold. RAxML bootstrap support (BS) values above 70 % and Bayesian posterior probability scores above 0.95 are shown at the nodes. GenBank accession numbers were listed in Table 7 or in Crous et al. (2012c). T, ET and IsoT indicate ex-type, ex-epitype and ex-isotype strains, respectively. TreeBASE: S21899. ACCEPTED MANUSCRIPT Fig. 20. Harknessia bourbonica (ex-type CBS 143913). A. Conidioma on OA. B, C. Conidiogenous cells giving rise to conidia. D. Conidia. Scale bars: A = 150 m, B–D = 10 m. Fig. 21. Harknessia corymbiae (ex-type CPC 33289). A. Conidiomata on OA. B. Conidiogenous cells giving rise to conidia. C, D. Conidia. Scale bars: A = 250 m, B–D = 10 m. RI PT Fig. 22. Harknessia cupressi (ex-type CBS 143914). A. Conidiomata on OA. B, C. Conidiogenous cells giving rise to conidia. D, E. Conidia. Scale bars: A = 250 m, B–E = 10 m. Fig. 23. Harknessia pilularis (ex-type CPC 33218). A. Conidiomata on OA. B, C. Conidiogenous cells giving rise to conidia. D. Conidia. Scale bars: A = 250 m, B–D = 10 m. M AN US C Fig. 24. Huntiella spp. A–D. Disease symptoms. A. Eucalyptus trees artificially wounded to trap Huntiella spp. B. Lesion associated with inoculation with Huntiella sumatrana on an Acacia mangium stem. C. Discolouration of wood associated with artificially induced wound on the stem of a Eucalyptus tree from which Huntiella spp. were isolated. D. Blue-stained Eucalyptus wood associated with Huntiella infection. E–H, L. Sexual morphs. E. Ascomata on 2 % MEA in various developmental stage from young (paler) to mature (darker). F. Mature ascomata with fresh ascospore droplets at the tip of necks and ostiolar neck with a disc-like base (arrow). G, H. Young ascoma showing developing of conical spines (G) and ascomatal hyphae (H). L. Ascospores. I–K. Asexual morphs. I. Tubular-form conidiogenous cell producing barrel-shaped conidia. J. Flask-shaped conidiogenous cells producing rectangularshaped conidia. K. Rectangular-shaped conidia. E, F, H, K. Huntiella omanensis (CMW 11056). G, L. Huntiella moniliformis (CMW 36908). I, J. Huntiella abstrusa (CMW 21092). Scale bars: E = 500 µm; F = 250 µm; G, H = 50 µm; I–L = 10 µm. Fig. 25. A maximum likelihood (ML) phylogram constructed using the combined dataset of the 60S (370 bp), LSU (813 bp), ITS (393 bp), mcm7 (589 bp) and tub2 (433 bp) gene regions of Huntiella spp. ML analyses were performed using PhyML with Smart Model Selection Online, selecting the GTR substitution model. Bootstrap values of 70 % or more are indicated above the branches. The newly described species, Hu. abstrusa, is indicated in bold face. Trees and alignments were submitted to TreeBASE: S20860. Fig. 26. Huntiella abstrusa (ex-type CBS 142243 = CMW 21092). A. Ascomata on host substrate. B. Ascospore droplets of cream to yellow-coloured at the tip of ascomatal neck and ascomata embedded in aerial hyphae producing asexual structures. C. Colony on 2 % MEA grown in the dark at 30 °C for 3 d. D. Mature ascoma with a disk-like base (arrow). E. Base of young ascoma (1 wk) with conical spines (arrow) (image taken in bright field). F. Ascospores. G. Two types of conidia: rectangular-shaped and barrel-shaped conidia. H. Flask-shaped conidiogenous cells and rectangular-shaped conidia. I. Tubular-shaped conidiogenous cell and barrelshaped conidia. Scale bars: B = 500 µm; D = 100 µm; E = 50 µm; F–I = 10 µm. D Fig. 27. A–H. Macgarvieomyces juncicola (CBS 610.82). A. Colony sporulating on OA. B–G. Conidiophores and conidia forming on SNA. H. Conidia. Scale bars = 10 m. All pictures taken from Klaubauf et al. (2014). TE Fig. 28. RAxML phylogram obtained from the combined ITS (548 bp), act (375 bp), cal (579 bp) and rpb1 (1011 bp) sequence alignment of members of Pyriculariaceae. The tree was rooted to Bussabanomyces longisporus CBS 125232. The novelties proposed in this study are indicated in bold. RAxML bootstrap support (BS) values above 70 % and Bayesian posterior probability scores above 0.95 are shown at the nodes. GenBank accession numbers were listed in Klaubauf et al. (2014). T, ET and NT indicate ex-type, ex-epitype and ex-neotype strains, respectively. TreeBASE: S21899. EP Fig. 29. A–H. Macgarvieomyces luzulae (ex-epitype CBS 143401). A. Disease symptoms on leaves of Luzula sylvatica. B. Colony sporulating on OA. C–H. Conidiophores and conidia forming on SNA. I. Conidia. Scale bars = 5 m. AC C Fig. 30. Metulocladosporiella spp. A. Disease symptoms on Musa sp (indicated by the arrows). B–K. Asexual morph. B–D. Macronematous conidiophores. B. Metulocladosporiella musicola (CBS 121396). C. Metulocladosporiella musicola (ex-type CBS 110960). D. Metulocladosporiella musae (CPC 33937). E–G. Conidiogenous apparatus. E, F. Metulocladosporiella musae (CPC 33937). G. Metulocladosporiella musicola (ex-type CBS 110960). H. Lobed bases of macronematous conidiophore of Metulocladosporiella musae (CPC 33937). I–K. Micronematous conidiophores. I, J. Metulocladosporiella musae (CPC 33937). K. Metulocladosporiella musicola (CBS 121396). Scale bars: 10 m. Fig. 31. RAxML phylogram obtained from the combined ITS (667 bp), cal (524 bp) and tef1 (454 bp) sequence alignment of taxa belonging to Metulocladosporiella. The tree was rooted to Cladosporium tenuissimum CBS 125995ET. The novelties proposed in this study are indicated in bold. RAxML bootstrap support (BS) values above 70 % and Bayesian posterior probability scores above 0.95 are shown at the nodes. GenBank accession numbers are indicated in Table 10. T and ET indicate ex-type and ex-epitype strains, respectively. TreeBASE: S21899. Fig. 32. Metulocladosporiella chiangmaiensis (ex-type CBS 143918). A. Colony on PDA. B. Colony on OA. C–E. Macronematous conidiophores. F. Conidiogenous apparatus. G. Lobed bases of macronematous conidiophore. H–K. Micronematous conidiophores. Scale bars: C= 50 m; D = 20 m; all others 10 m. Fig. 33. Metulocladosporiella malaysiana (ex-type CBS 143919). A. Colony on PDA. B. Colony on OA. C–F. Macronematous conidiophores. G. Conidiogenous apparatus. H. Lobed bases of macronematous conidiophore. I–J. Micronematous conidiophores. Scale bars: C, D = 20 m; all others 10 m. Fig. 34. Metulocladosporiella musigena (ex-type CBS 143920). A. Colony on PDA. B. Colony on OA. C–F. Macronematous conidiophores. G–I. Conidiogenous apparatus. J, K. Lobed bases of macronematous conidiophore. L, M. Micronematous ACCEPTED MANUSCRIPT conidiophores. Scale bars: C–F = 20 m; G–M = 10 m; K applies to J, K. Fig. 35. Metulocladosporiella songkhramensis (ex-type CBS 143921). A. Colony on PDA. B. Colony on OA. C. Macronematous conidiophores. D–F. Conidiogenous apparatus. G. Lobed bases of macronematous conidiophore. H–J. Micronematous conidiophores. Scale bars: C = 20 m; all others 10 m. RI PT Fig. 36. Microdochium spp. A–F. Sexual morph of Microdochium seminicola (ex-type CBS 139951). A. Colony overview. B. Ascomata. C–E. Asci. F. Ascospores. G–U. Asexual morphs. G, H. Sporodochium G. Microdochium phragmites (CBS 423.78). H. Microdochium lycopodinum (CBS 109399). I–N. Conidiophores and conidiogenous cells. I. Microdochium neoqueenslandicum (extype CBS 108926). J. Microdochium citrinidiscum (ex-type CBS 109067). K. Microdochium seminicola (ex-type CBS 139951). L. Microdochium phragmites (ex-epitype CBS 285.71). M. Microdochium phragmites (CBS 423.78). N. Microdochium fisheri (ex-type CBS 242.91). O–U. Conidia. O. Microdochium seminicola (ex-type CBS 139951). P. Microdochium lycopodinum (CBS 109399). Q. Microdochium fisheri (ex-type CBS 242.91). R. Microdochium neoqueenslandicum (ex-type CBS 108926). S. Microdochium phragmites (CBS 423.78). T. Microdochium phragmites (ex-epitype CBS 285.71). U. Microdochium citrinidiscum (ex-type CBS 109067). V, W. Chlamydospores. V. Microdochium bolleyi (CPC 29379). W. Microdochium trichocladiopsis (ex-type CBS 623.77). Scale bars H = 100 µm; G = 50 µm; others = 10 µm. M AN US C Fig. 37. RAxML phylogram obtained from the combined ITS (618 bp), LSU (838 bp), tub2 (689 bp) and rpb2 (858 bp) sequence alignment of all the accepted species of Microdochium. The tree was rooted to Thamnomyces dendroidea CBS 123578 and Xylaria polymorpha MUCL 49884. The novel species described in this study is shown in bold. RAxML bootstrap support (BS) values above 70 % are shown in the nodes. GenBank accession numbers are indicated in Table 11. T and ET, ex-type and ex-syntype strains, respectively. TreeBASE: S21899. Fig. 38. Microdochium novae-zelandiae (ex-type CPC 29376) A. Colony overview. B, C. Sporodochium overview. B. From aerial mycelium. C. From agar surface. D–G. Conidiogenous cells and conidia. H, I. Hyphae and conidia. J. Conidia. Scale bars D–J = 10 µm. Fig. 39. Oculimacula spp. A–G. Disease symptoms. A, B. Eyespot lodging. C–E. Eyespots. F. Whiteheads of wheat. G. Apothecia of Oculimacula gamsii on wheat stubble. H–K. Sexual morphs of Oculimacula yallundae. H, I. Ascomata. J. Section through the ascoma showing ascal layer. K. Ascus and ascospores. L–O. Asexual morphs. L. Conidia and conidiogenous cells of Oculimacula gamsii. M. Conidial hila and conidiogenous cell of Oculimacula yallundae. N. Conidial hila and conidiogenous cell of Oculimacula gamsii. O. Conidial hila and conidiogenous cell of Oculimacula anguoides. Scale bars: I = 100 µm; J, K = 10 µm; L = 5 µm; M–O = 1 µm. D Fig. 40. RAxML phylogram obtained from the combined ITS (631 bp) and tef1 (575 bp) sequence alignment of taxa belonging to Oculimacula. The tree was rooted to Cadophora melinii. The new combination proposed in this study is indicated in bold. RAxML bootstrap support (BS) values above 70 % and Bayesian posterior probability scores above 0.95 are shown at the nodes. GenBank accession numbers are indicated in Table 12. T and NT indicate ex-type and ex-neotype strains, respectively. TreeBASE: S21899. EP TE Fig. 41. Paraphoma spp. A–E. Disease symptoms. A–B. Crown discolouration caused by Paraphoma vinacea (ex-type BRIP 63684). C. Water-soaked and necrotic leaf lesions caused by Paraphoma chlamydocopiosa (ex-type BRIP 65168). D. Marginal leaf chlorosis caused by Paraphoma pye on pyrethrum leaf (ex-type BRIP 65169). E–O. Asexual morphs. E. Conidiomata on SNA of Paraphoma fimeti (ex-neotype CBS 170.70). F. Conidiomata of Paraphoma vinacea (ex-type BRIP 63684). G. Conidiomatal wall of Paraphoma vinacea (ex-type BRIP 63684). H. Ostiolar zone of Paraphoma vinacea (ex-type BRIP 63684). I–L. Condiogenous cells. I, J. Paraphoma dioscoreae (ex-type CBS 135100). K, L. Paraphoma fimeti (ex-neotype CBS 170.70). M, N. Conidia. M. Paraphoma dioscoreae (ex-type CBS 135100). N. Paraphoma fimeti (ex-neotype CBS 170.70). O. Chlamydospores of Paraphoma vinacea (ex-type BRIP 63684). Scale bars: F = 100 µm; G, H = 20 µm; I, K, M–O = 10 µm; I applies to I, J; K applies to K, L. Pictures B, F, G taken from Moslemi et al. (2016); C, D from Moslemi et al. (2017); I, J, M from Quaedvlieg et al. (2013). AC C Fig. 42. Maximum likelihood PhyML combined phylogenetic tree of Paraphoma spp. inferred from ITS (680 bp), tef1 (550 bp) and tub2 (350 bp) using a GTR substitution model. Highest log likelihood -3812.4179. Bootstrap support values less than 65 % were removed. Scale bar indicated expected changes per site. The tree was rooted to Neosetophoma samarorum CBS 138.96. GenBank accession numbers are indicated in Table 13. TreeBASE: S22303. Fig. 43. Morphological structures of Phaeoacremonium spp. A–K. Asexual morphs. A. Conidiophores branched. B. Conidiophores unbranched. C. Percurrent rejuvenation of conidiophore. D. Mycelium showing prominent exudate droplets observed as warts. E. Conidiophore with polyphialides. F. Type III phialides. G. Type II phialide. H. Type I phialide. I. Conidia. J. Conidiophore. K. Type II phialide. L–T. Sexual morph. L, M. Ascomata on canes of Vitis vinifera. N. Longitudinal section through ascoma. O. One paraphyses. P, Q. Asci attached to ascogenous hyphae. R. Asci. S. Ascospores. A, B, D, F, G, I. Phaeoacremonium parasiticum (ex-type CBS 860.73). C. Phaeoacremonium hispanicum (ex-type CBS 123910). E. Phaeoacremonium amygdalinum (ex-type CBS 128570). H. Phaeoacremonium minimum (ex-type CBS 246.91). L–S. Phaeoacremonium minimum (holotype CBS 17463). Scale bars: A–I = 10 µm; A applies to A, B, D, F–I; C applies to C, E; L, M = 200 µm; N = 100 µm; O, P = 10 µm; P applies to P–S. Fig. 44. Bayesian consensus tree of the genus Phaeoacremonium as estimated from the combined act (~260 bp) and tub2 (~680 bp) regions. Bayesian posterior probability values and bootstrap support percentages are shown at the nodes. Support values of less than 0.7 posterior probability and 70 % bootstrap are not shown. Jattaea algeriensis, Calosphearia africana and Pleurostoma richardsiae were used as outgroups. GenBank accession numbers are listed in Spies et al. (2018). T indicates ex-type strains. TreeBASE: S22407. ACCEPTED MANUSCRIPT Fig. 45. Phaeoacremonium pravum (ex-type CBS 142686). A–C. Eight-d-old colonies on MEA (A), PDA (B) and OA (C). D. Subcylindrical type I phialides with funnel-shaped collarettes (arrows). E, F. Type III phialides. G, J. Branched conidiophores with crooked type II phialides. H. Elongate ampulliform type I phialide. I. Type I phialide with conidia borne in a slimy head. K. Crooked elongate ampulliform type I phialide with a funnel-shaped collarette showing lateral vegetative proliferation (arrow). Scale bar: K = 10 µm; K applies to D–K. RI PT Fig. 46. Phyllosticta spp. A−E. Disease symptoms. A. Aloe with dead leaf tips that harbour Phyllosticta aloeicola. B. Symtoms on Citrus maxima caused by Phyllosticta citrimaxima. D. Symptomatic leaf of Cussonia sp. caused by Phyllosticta cussoniae. E. Symptoms on lemon leaf caused by Phyllosticta sp. F−H. Sexual morphs. F, G. Asci and ascospores of Phyllosticta abieticola (extype CBS 112067). H. Ascospores of Phyllosticta capitalensis (ex-epitype CBS 128856). I−U. Asexual morphs. I. Conidiomata sporulating on OA of Phyllosticta cussoniae (ex-epitype CPC 14873). J. Vertical section through conidioma of Phyllosticta rhaphiolepidis (ex-type MUCC 432). K. Conidiomatal wall of textura angularis of Phyllosticta rhaphiolepidis (ex-type MUCC 432). L. Conidioma with ostiole (arrowed) of Phyllosticta cordylinophila (ex-neotype CPC 20261). M, N. Conidiogenous cells giving rise to conidia. M. Phyllosticta foliorum (ex-neotype CBS 447.68). N. Phyllosticta capitalensis (ex-epitype CBS 128856). O−Q. Conidia. O. Phyllosticta aloeicola (CPC 20677). P. Phyllosticta podocarpicola (ex-type CBS 728.79). Q. Phyllosticta capitalensis (ex-epitype CBS 128856). R, S. Appressoria of Phyllosticta mangifera-indica (ex-type CPC 20274). T, U. Spermatia. T. Phyllosticta cussoniae (ex-epitype CPC 14873). U. Phyllosticta leucothoicola (ex-type MUCC 553). Scale bars: I = 25 µm; all others = 10 µm. Pictures N, Q taken from Glienke et al. (2011); all the other pictures taken from Wikee et al. (2013b). M AN US C Fig. 47. RAxML phylogram obtained from the combined ITS (492 bp), act (291 bp), gapdh (629 bp) and tef1 (341 bp) sequence alignment of all the accepted species of Phyllosticta. The tree was rooted to Peyronellaea obtusa CMW8232. The novelties proposed in this study are indicated in bold. RAxML bootstrap support (BS) values above 70 % and Bayesian posterior probability scores above 0.95 are shown at the nodes. GenBank accession numbers are indicated in Table 15. T, ET, IsoT, IsoET and NT indicate extype, ex-epitype, ex-isotype, ex-isoepitype and ex-neotype strains, respectively. TreeBASE: S21899. Fig. 48. Phyllosticta iridigena (ex-type CBS 143410). A. Conidiomata sporulating on SNA. B–E. Conidiogenous cells giving rise to conidia. F. Conidia. Scale bars A= 200 m, B–F= 10 m. Fig. 49. Phyllosticta persooniae (ex-type CBS 143409). A. Conidiomata sporulating on OA. B, C. Conidiogenous cells giving rise to conidia. D. Conidia. A= 200 m, B–D= 10 m. Fig. 50. Proxipyricularia zingiberis (ex-epitype CBS 133594). A–C. Conidiophores and conidia. D. Conidia. Scale bars = 5 m. Fig. 51. Pyriculariomyces asari (ex-type CBS 141328). A. Ascomata on host tissue. B. Section of ascoma. C–E. Asci and ascospores. F. Conidiophores on SNA. G, H. Conidiophores and conidia. I. Conidia. Scale bars: B = 100 m; all others = 10 m; C applies to C, D; G applies to G, I. Pictures A, B, D, E, G, H taken from Crous et al. (2016b). EP TE D Fig. 52. Pyricularia spp. A–C. Leaf spots of rice caused by Pyricularia oryzae. D–H. Sexual morph of Pyricularia oryzae. D, E. Crossing of different strains of Pyricularia oryzae to produce the sexual morph. F. Ascoma. G. Asci. H. Germinating ascospore. I–U. Asexual morph. I, J. Sporulation on sterile barley seed on SNA. I. Pyricularia grisea (BR0029). J. Pyricularia graminis-tritici (ex-type URM7380). K–O. Conidiophores and conidia. K, L. Pyricularia ctenantheicola (GR0002). M, N. Pyricularia graminis-tritici (ex-type URM7380). O. Pyricularia oryzae (URM7369). P. Pyricularia oryzae (BF0028). Q–S. Conidia. Q. Pyricularia ctenantheicola (GR0002). R. Pyricularia oryzae (URM7369). S. Pyricularia graminis-tritici (ex-type URM7380). T. Macroconidia of Pyricularia grisea (BR0029) (arrows indicate apical marginal frill, which is a remnant of the apical mucoid cap). U. Microconidia of Pyricularia grisea (BR0029). Scale bars: F = 50 m; others = 10 m. Pictures D, E, G taken by Dounia Saleh, CIRAD; F, H by Didier Tharreau, CIRAD; I, K, L, P, Q, T from Klaubauf et al. (2014); J, M–O, R, S from Castroagudín et al. (2016). AC C Fig. 53. Stenocarpella spp. A. Zea mays infected with Stenocarpella maydis. B–K. Asexual morphs. B. Conidiomata with exuding conidial mass on pine needle agar of Stenocarpella maydis (ex-epitype CBS 117559). C. Hyaline layer of conidiogenous cells giving rise to brown conidial mass of Stenocarpella macrospora (CPC 11863). D–F. Conidiogenous cells giving rise to conidia. D, E. Stenocarpella macrospora (CPC 11863). F. Stenocarpella maydis (ex-epitype CBS 117559). G–I. Conidia. G, H. Stenocarpella macrospora (CPC 11863). I. Stenocarpella maydis (ex-epitype CBS 117559). J. Conidiogenous cells giving rise to beta conidia of Stenocarpella macrospora (CPC 11863). K. Beta conidia of Stenocarpella macrospora (CPC 11863). Scale bars: 10 m. All pictures except for A taken from Lamprecht et al. (2011). Fig. 54. A–I. Utrechtiana arundinacea (ex-epitype CPC 33994). A. Leaf spot on Phragmites sp. B–E. Macroconidiophores bearing macroconidia. G–H. Microconidiophores bearing microconidia. I. Microconidia. J–S. Utrechtiana roumeguerei (ex-type CBS 128780). J. Leaf spot on Phragmites australis. K. Close-up of conidiophores on leaf surface. L–P. Conidiophores bearing conidia. Q. Germinating conidium. R, S. Conidia. Scale bars = 10 m. Pictures J–S taken from Klaubauf et al. (2014). Fig. 55. Wojnowiciella spp. A–F. Conidiomata overview. A. Wojnowiciella leptocarpi (ex-type CBS 116584). B, E. Wojnowiciella dactylidis (CPC 30353). C. Wojnowiciella cissampeli (ex-type CBS 141297). D. Wojnowiciella eucalypti (ex-type CBS 139904). F. Wojnowiciella dactylidis (CPC 32741). G, H. Hand section of the conidiomata with hyaline conidiogenous cells and dark brown conidia of Wojnowiciella leptocarpi (ex-type CBS 116584). I–L. Conidiogenous cells. I, J. Wojnowiciella cissampeli (ex-type CBS 141297). K. Wojnowiciella eucalypti (ex-type CBS 139904). L. Wojnowiciella leptocarpi (CBS 116585). M–Q. Macroconidia. M, N. Wojnowiciella leptocarpi (ex-type CBS 116584). O. Wojnowiciella cissampeli (ex-type CBS 141297). P. Wojnowiciella dactylidis (CPC 32741). Q. Wojnowiciella dactylidis (CPC 30353). R. Microconidia of Wojnowiciella eucalypti (ex-type CBS 139904). Scale bars: E–G = 50 m; H = 20 m; others = 10 m. Photos taken from Crous et al. (2015d, 2016b). Fig. 56. RAxML phylogram obtained from the combined ITS (742 bp), LSU (885 bp), rpb2 (1029 bp) and tef1 (998 bp) sequence ACCEPTED MANUSCRIPT AC C EP TE D M AN US C RI PT alignment of all the accepted species of Wojnowiciella. The tree was rooted to Phaeosphaeria caricis CBS 120249 and Septoriella hirta CBS 536.77. RAxML bootstrap support (BS) values above 70 % are shown in the nodes. GenBank accession numbers are indicated in Table 21. T indicates ex-type strains. TreeBASE: S21899. ACCEPTED MANUSCRIPT Table 1. DNA barcodes of accepted Allantophomopsiella sp. Species Isolate1 GenBank accession numbers2 ITS rpb2 KJ663825 KJ663905 Reference AC C EP TE D M AN US C RI PT Allantophomopsiella CBS 320.53ET Crous et al. pseudotsugae (2014b) 1 CBS: Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands. ET indicates exepitype strain. 2 ITS: internal transcribed spacers and intervening 5.8S nrDNA; rpb2: partial RNA polymerase II largest subunit gene. ACCEPTED MANUSCRIPT Table 2. DNA barcodes of accepted Apoharknessia spp. Isolates1 AC C EP TE D M AN U SC RI PT References GenBank accession numbers2 ITS cal tub2 Apoharknessia eucalypti CBS 142518T MG934432 MG934510 MG934505 Present study T Ap. eucalyptorum CBS 142519 KY979752 KY979867 KY979919 Crous et al. (2017a) MG934511 MG934506 Crous et al. (2012c), present study Ap. insueta CBS 111377ET JQ706083 1 CBS: Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands. T and ET indicate ex-type and ex-epitype strains. 2 ITS: internal transcribed spacers and intervening 5.8S nrDNA; cal: partial calmodulin gene; tub2: partial β-tubulin gene. Species ACCEPTED MANUSCRIPT Table 3. DNA barcodes of accepted Cylindrocladiella spp. 2 GenBank accession numbers LSU his3 tef1 MH111393 - CBS 143794 ITS MH111383 CBS 143793 MH111385 - - MH111395 CBS 143795 MH111384 - - MH111394 T tub2 MH111388 RI PT Cylindrocladiella addiensis 1 Isolates MH111389 Present study T JN100624 AF220952 JN099222 JN099249 JN098932 AY793509 JN099060 MF444940 JN099087 JN098747 MF444926 AY793471 C. clavata C. cymbiformis C. elegans CBS 129564 T CBS 129553 T CBS 338.92 T JN099095 JN099103 AY793444 JN099135 JN099143 JN099201 JN098858 JN098866 AY793512 JN098974 JN098988 JN099039 JN098752 JN098753 AY793474 C. ellipsoidea C. hahajimaensis C. hawaiiensis C. horticola C. humicola C. infestans CBS 129573 T MAFF 238172 T CBS 129569 T CBS 142784 T CBS 142779 T CBS 111795 T JN099094 JN687561 JN100621 MF444911 MF444906 AF220955 JN099134 JN099219 JN099199 JN098857 JN098929 AY793513 JN098973 JN687562 JN099057 MF444938 MF444933 JN099037 JN098757 JN098761 MF444924 MF444919 AF320190 C. kurandica C. lageniformis CBS 129577 T CBS 340.92 T JN100646 AF220959 JN099245 JN099165 JN098953 AY793520 JN099083 JN099003 JN098765 AY793481 C. lanceolata C. lateralis C. longiphialidica C. longistipitata CBS 129566 T CBS 142788 T CBS 129557 T CBS 116075 T JN099099 MF444914 JN100585 AF220958 JN099139 JN099264 JN099155 JN098862 JN098851 AY793546 JN098978 MF444942 JN098966 JN098993 JN098789 MF444928 JN098790 AY793506 C. microcylindrica CBS 111794 T AY793452 JN099203 AY793523 JN099041 AY793483 TE D M AN U CBS 129567 T CBS 142786 IMI 346845 EP Present study Present study C. australiensis C. brevistipitata C. camelliae AC C References MH111390 SC Species Lombard et al. (2012) Lombard et al. (2017) Van Coller et al. (2005), Lombard et al. (2012) Lombard et al. (2012) Lombard et al. (2012) van Coller et al. (2005), Lombard et al. (2012) Lombard et al. (2012) Inderbitzin et al. (2012) Lombard et al. (2012) Lombard et al. (2017) Lombard et al. (2017) Schoch et al. (2000), Crous et al. (2001), van Coller et al. (2005), Lombard et al. (2012) Lombard et al. (2012) Schoch et al. (2000), van Coller et al. (2005), Lombard et al. (2012) Lombard et al. (2012) Lombard et al. (2017) Lombard et al. (2012) Schoch et al. (2000), van Coller et al. (2005), Lombard et al. (2012) van Coller et al. (2005), Lombard et al. ACCEPTED MANUSCRIPT JN100588 JN100603 AF220963 JN099178 JN099195 JN099212 JN098895 JN098910 AY793525 JN099016 JN099033 JN099050 CBS 143792 T MH111387 - - MH111397 CBS 143791 MH111386 - - MH111396 CBS 114943 T CBS 152.91 T CBS 486.77 C. nauliensis MH111392 (2012) Lombard et al. (2012) Lombard et al. (2012) Schoch et al. (2000), van Coller et al. (2005), Lombard et al. (2012) Present study MH111391 Present study JN098794 JN098800 AY793485 RI PT T C. natalensis C. nederlandica C. novazelandica Schoch et al. (2000), van Coller et al. (2005), Lombard et al. (2012) T C. peruviana IMUR 1843 AF220966 JN099266 AY793540 JN098968 AY793500 Schoch et al. (2000), van Coller et al. (2005), Lombard et al. (2012) T C. pseudocamelliae CBS 129555 JN100577 JN099256 JN098843 JN098958 JN098814 Lombard et al. (2012) T C. pseudohawaiiensis JN099128 JN099174 JN098890 JN099012 JN098819 Lombard et al. (2012) CBS 210.94 T C. pseudoinfestans AF220957 JN099166 AY793548 JN099004 AY793508 Schoch et al. (2000), van Coller et al. CBS 114531 (2005), Lombard et al. (2012) T C. pseudoparva CBS129560 JN100620 JN099218 JN098927 JN099056 JN098824 Lombard et al. (2012) T C. queenslandica CBS 129574 JN099098 JN099098 JN098861 JN098977 JN098826 Lombard et al. (2012) T C. reginae MF444909 MF444936 MF444922 Lombard et al. (2017) CBS 142782 T C. stellenboschensis JN100615 JN099213 JN098922 JN099051 JN098829 Lombard et al. (2012) CBS 110668 T C. terrestris CBS 142789 MF444915 MF444943 MF444929 Lombard et al. (2017) T C. thailandica JN100582 JN099261 JN098848 JN098963 JN098834 Lombard et al. (2012) CBS 129571 T C. variabilis CBS 129561 JN100643 JN099242 JN098950 JN099080 JN098719 Lombard et al. (2012) T C. viticola AY793468 JN099226 AY793544 JN099064 AY793504 van Coller et al. (2005), Lombard et al. CBS 112897 (2012) T C. vitis CBS 142517 KY979751 KY979806 KY979891 KY979918 Crous et al. (2017a) 1 CBS: Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands; IMI: International Mycological Institute, CABI-Bioscience, Egham, Bakeham Lane, U.K; IMUR: Institute of Mycology, University of Recife, Recife, Brazil; MAFF: Genetic Resources Centre, National Agriculture and Food Research T Organization (NARO), NARO Genebank, Ibaraki, Japan. indicates ex-type strains. 2 ITS: internal transcribed spacers and intervening 5.8S nrDNA; his3: partial histone H3 gene; tef1: partial translation elongation factor 1-alpha gene; tub2: partial β-tubulin gene. AY793526 JN099009 D TE AY793486 SC JN099171 M AN U AF220964 EP CBS 114524 AC C C. parva ACCEPTED MANUSCRIPT Table 5. DNA barcodes of accepted Dichotomophthora spp. Species Isolates1 GenBank accession numbers2 gapdh rpb2 References RI PT ITS CPC 33016T Present study CBS 149.94T Present study CBS 145.57T Present study CBS 584.71 Present study CBS 585.71 Present study CBS 518.78 Present study CBS 132.81 Present study Present study Di. portulacae CBS 174.35PT 1 CBS: Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands; CPC: Culture collection of Pedro Crous, housed at the Westerdijk Fungal Biodiversity Institute. T and PT indicate ex-type and paratype strains, respectively. 2 ITS: internal transcribed spacers and intervening 5.8S nrDNA; gapdh: partial glyceraldehyde-3-phosphate dehydrogenase gene; rpb2: partial RNA polymerase II largest subunit gene. AC C EP TE D M AN U SC Dichotomophthora basellae Di. brunnea Di. lutea ACCEPTED MANUSCRIPT Table 6. DNA barcodes of accepted Gaeumannomyces spp. Gaeumannomyces amomi Isolates1 GenBank accession numbers2 CBS 109354T ITS rpb1 tef1 AY265318 - KX306679 References RI PT Species Bussaban et al. (2005), Hernández-Restrepo et al. (2016b) G. ellisiorum G. floridanus G. fusiformis CPC 26258 KX306486 T KX306490 CBS 141377 T CBS 387.81 KM484835 CBS 141378 T KX306491 CBS 141379 T T CPC 26057 G. graminicola CBS 352.93T Klaubauf et al. (2014), Hernández-Restrepo et al. (2016b) KX306683 Hernández-Restrepo et al. (2016b) KX306622 KX306688 Hernández-Restrepo et al. (2016b) KX306625 KX306691 Hernández-Restrepo et al. (2016b) KM485051 KX306692 Klaubauf et al. (2014), Hernández-Restrepo et al. (2016b) KX306626 KX306693 Hernández-Restrepo et al. (2016b) KX306492 KX306627 KX306694 Hernández-Restrepo et al. (2016b) KX306493 KX306628 KX306695 Hernández-Restrepo et al. (2016b) KM485050 KX306697 Klaubauf KM484834 AC C G. glycinicola KX306619 KX306681 SC KX306480 ET CBS 141387 M AN U G. californicus T KM485053 D G. avenae KM484837 TE G. australiensis CBS 903.73T EP G. arxii et al. (2014), Hernández-Restrepo et al. (2016b) G. graminis CPC 26020 KX306498 KX306633 KX306701 Hernández-Restrepo et al. (2016b) G. hyphopodioides CBS 350.77T KX306506 KM009192 KM009204 Hernández-Restrepo et al. (2016b), Luo et al. (2014) G. oryzicola CBS 141390T KX306516 KX306646 KX306717 Hernández-Restrepo et al. (2016b) G. oryzinus CBS 235.32 JX134669 KM485049 JX134695 Klaubauf et al. (2014), Luo & ACCEPTED MANUSCRIPT CBS 296.53T KM484845 KM485061 KM009206 Zhang (2013) Klaubauf et al. (2014) G. setariicola CBS 141394T KX306524 KX306654 KX306725 Hernández-Restrepo et al. (2016b) G. tritici CBS 905.73 KM484841 KM485057 KX306731 RI PT G. radicicola Klaubauf et al. (2014), Hernández-Restrepo et al. (2016b) CBS 141400T KX306543 KX306670 KX306746 Hernández-Restrepo et al. (2016b) G. wongoonoo BRIP 60376A KP162137 - - Wong (2002) 1 SC G. walkeri AC C EP TE D M AN U BRIP: Queensland Plant Pathology Herbarium, Brisbane, Australia; CBS: Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands; CPC: Culture collection of Pedro Crous, housed at the Westerdijk Fungal Biodiversity Institute. T, ET and A indicate extype, ex-epitype and authentic strains, respectively. 2 ITS: internal transcribed spacers and intervening 5.8S nrDNA; rpb1: partial RNA polymerase II largest subunit gene; tef1: partial elongation factor gene. ACCEPTED MANUSCRIPT Table 7. DNA barcodes of accepted Harknessia spp. Ha. platyphyllae Ha. proteae References RI PT SC M AN U Ha. ellipsoidea Ha. eucalypti Ha. eucalyptorum Ha. fusiformis Ha. gibbosa Ha. globispora Ha. hawaiiensis Ha. ipereniae Ha. karwarrae Ha. kleinzeeina Ha. leucospermi Ha. malayensis Ha. molokaiensis Ha. pellitae Ha. pilularis D CBS 137228ET CBS 132119T CBS 142539T CBS 142541T CBS 142540T CBS 143913T CBS 111829T CBS 142538T CPC 33289T CBS 143914T CPC 30174 CBS 132121T CBS 342.97 CBS 111115T CBS 110785T CBS 120033T CBS 111578T CBS 114811 CBS 120030T CBS 115648 CPC 16277T CBS 775.97T CBS 142544T CBS 114877T CBS 142543T CPC 33218T CPC 33356 CBS 142542T CBS 136426T TE Harknessia arctostaphyli Ha. australiensis Ha. banksiae Ha. banksiae-repens Ha. banksiigena Ha. bourbonica Ha. capensis Ha. communis Ha. corymbiae Ha. cupressi GenBank accession number2 ITS cal tub2 KJ152781 KJ179923 JQ706085 JQ706171 JQ706130 KY979782 KY979872 KY979938 KY979785 KY979875 KY979940 KY979784 KY979874 MG934433 MG934512 AY720719 AY720782 AY720751 KY979778 KY979868 MG934434 MG934513 MG934507 MG934435 MG934514 MG934436 MG934515 JQ706087 JQ706173 JQ706132 AY720745 AY720808 AY720777 AY720747 AY720810 AY720779 AY720721 AY720784 AY720753 EF110615 JQ706182 JQ706142 AY720722 AY720785 AY720754 AY720723 AY720786 AY720755 EF110614 JQ706192 JQ706151 AY720748 AY720811 AY720780 JQ706108 JQ706193 JQ706152 AY720727 AY720790 AY720759 KY979789 KY979879 KY979941 AY720749 AY720812 AY579335 KY979788 KY979878 MG934438 MG934517 MG934508 MG934439 MG934518 MG934509 KY979787 KY979877 KF777162 - EP Isolates1 AC C Species Moreno-Rico et al. (2014) Crous et al. (2012c) Crous et al. (2017a) Crous et al. (2017a) Crous et al. (2017a) Present study Lee et al. (2004) Crous et al. (2017a) Present study Present study Present study Crous et al. (2012c) Lee et al. (2004) Lee et al. (2004) Lee et al. (2004) Crous et al. (2007), (2012c) Lee et al. (2004) Lee et al. (2004) Crous et al. (2007), (2012c) Lee et al. (2004) Crous et al. (2012c) Lee et al. (2004) Crous et al. (2017a) Lee et al. (2004), Mostert et al. (2005) Crous et al. (2017a) Present study Present study Crous et al. (2017a) Crous et al. (2013) ACCEPTED MANUSCRIPT AC C EP TE D M AN U SC RI PT Ha. protearum CBS 112618T AY720732 AY720795 AY720764 Lee et al. (2004) JQ706111 JQ706196 JQ706155 Crous et al. (2012c) Ha. pseudohawaiiensis CBS 132124T Ha. ravenstreetina CBS 132125T JQ706112 JQ706197 JQ706156 Crous et al. (2012c) IsoT Ha. renispora CBS 153.71 AY720737 AY720800 AY720769 Lee et al. (2004) Ha. rhabdosphaera CBS 122373 JQ706118 JQ706201 JQ706161 Crous et al. (2012c) Ha. spermatoidea CBS 132127ET JQ706120 JQ706203 JQ706163 Crous et al. (2012c) Ha. syzygii CBS 111124T AY720738 AY720801 AY720770 Lee et al. (2004) Ha. uromycoides CBS 110729 AY720739 AY720802 AY720771 Lee et al. (2004) T Ha. viterboensis CBS 115647 AY720740 AY720803 AY720772 Lee et al. (2004) JQ706122 JQ706205 JQ706165 Crous et al. (2012c) Ha. weresubiae CBS 132128ET 1 CBS: Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands; CPC: Culture collection of Pedro Crous, housed at the Westerdijk Fungal Biodiversity Institute. T, ET and IsoT indicate ex-type, ex-epitype and ex-isotype strains, respectively. 2 ITS: internal transcribed spacers and intervening 5.8S nrDNA; cal: partial calmodulin gene; tub2: partial β-tubulin gene. ACCEPTED MANUSCRIPT Table 8. DNA barcodes of accepted Huntiella spp. Isolates1 Huntiella abstrusa Hu. bhutanensis CBS 142243T CBS 114289T Hu. ceramica Hu. chinaeucensis Hu. cryptoformis Hu. decipiens Hu. inquinans Hu. microbasis Hu. moniliformis Hu. moniliformopsis CBS 122299T CBS 127185T CBS 131279T CBS 129736T CBS 124388T CBS 124013T CBS 118127 CBS 109441T GenBank accession numbers2 ITS tub2 mcm7 tef1 KY913291 KY913290 KY913289 AY528952 AY528962 KM495412 AY528962a NR119506 EU245022 EU244994 KM495485 EU244926b JQ862729 JQ862717 KM495416 JQ862741c KC691464 KC691488 KC691512c HQ203216 HQ203233 KM495422 HQ236435c EU588587 EU588666 KM495436 EU588674a EU588593 EU588672 KM495442 EU588680a FJ151422 FJ151456 KM495443 FJ151478a AY528998 AY528987 KM495444 AY529008a References Present study Van Wyk et al. (2004), De Beer et al. (2014) RI PT Species AC C EP TE D M AN U SC Heath et al. (2009), De Beer et al (2014) Chen et al. (2013), De Beer et al. (2014) Mbenoun et al. (2014) Kamgan Nkuekam et al. (2013), De Beer et al.(2014) Tarigan et al. (2010), De Beer et al (2014) Tarigan et al. (2010); De Beer et al. (2014) Van Wyk et al. (2011), De Beer et al. (2014) Yuan & Mohammed (2002), Van Wyk et al. (2004), De Beer et al. (2014) Hu. oblonga CBS 122291T EU245019 EU244991 KM495447 EU244951b Heath et al. (2009), De Beer et al. (2014) Hu. omanensis CBS 115787 DQ074742 DQ074732 KM495449 DQ074737a Al-Subhi et al. (2006) Hu. salinaria CBS 129733T HQ203213 HQ203230 KM495461 HQ236432c Kamgan Nkuekam et al.(2013), De Beer et al. (2014) Hu. savannae CBS 121151T EF408551 EF408565 KM495462 EF408572c Kamgan et al. (2008), De Beer et al. (2014) Hu. sublaevis CBS 122517 FJ151431 FJ151465 KM495464 FJ151486b Van Wyk et al. (2011), De Beer et al. (2014) Hu. sumatrana CBS 124011PT EU588589 EU588668 KM495465 EU588678a Tarigan et al. (2010), De Beer et al. (2014) Hu. tribiliformis CBS 115866T AY529003 AY529003 KM495468 AY529014a Van Wyk et al. (2006), De Beer et al. (2014) Hu. tyalla CBS 128703T HM071900 HM071913 KM495470 HQ236452c Kamgan Nkuekam et al. (2012), De Beer et al. (2014) 1 CBS: Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands. T and PT indicate ex-type and ex-paratype strains, respectively. 2 ITS: internal transcribed spaces and intervening 5.8S nrDNA, tub2: partial β-tubulin gene, mcm7: mini-chromosome maintenance complex component 7, tef1: partial translation elongation factor 1-alpha gene. a, b and c in tef1column indicate the primers used in sequencing: a: Ef1-728f, ef1-986r, b: EF1f, EF1r, c:EF1f, EF2r. ACCEPTED MANUSCRIPT Table 9. DNA barcodes of accepted Macgarvieomyces spp. 1 2 SC M AN U D TE EP AC C Isolates RI PT GenBank accession numbers References ITS act cal rpb1 Macgarvieomyces borealis CBS 461.65T KM484854 KM485170 KM485239 KM485070 Klaubauf et al. (2014) M. juncicola CBS 610.82 KM484855 KM485171 KM485240 KM485071 Klaubauf et al. (2014) M. luzulae CBS 143401ET MG934440 MG934463 MG934519 MG934469 Present study CPC 31555 MG934441 MG934464 MG934520 MG934470 Present study CPC 31571 MG934442 MG934465 MG934521 MG934471 Present study 1 CBS: Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands; CPC: Culture collection of Pedro Crous, housed at the Westerdijk Fungal Biodiversity Institute. T and ET indicate ex-type and ex-epitype strains. 2 ITS: internal transcribed spacers and intervening 5.8S nrDNA; act: partial actin gene; cal: partial calmodulin gene; rpb1: partial RNA polymerase II largest subunit gene. Species ACCEPTED MANUSCRIPT Table 10. DNA barcodes of accepted Metulocladosporiella spp. Isolates1 AC C EP TE D M AN U SC RI PT GenBank accession numbers2 References ITS cal tef1 Metulocladosporiella chiangmaiensis CBS 143918T MG934443 MG934522 MG934476 Present study M. malaysiana CBS 143919T MG934444 MG934523 MG934477 Present study ET M. musae CBS 161.74 DQ008137 MG934478 Crous et al. (2006a), present study CBS 113863 DQ008138 MG934524 MG934479 Crous et al. (2006a), present study CPC 33937 MG934445 MG934525 MG934480 Present study T M. musicola CBS 110960 DQ008127 MG934526 MG934481 Crous et al. (2006a), present study CBS 110962 MG934446 MG934527 MG934482 Crous et al. (2006a), present study CBS 110964 MG934447 MG934528 MG934483 Crous et al. (2006a), present study CBS 113860 DQ008130 MG934529 MG934484 Crous et al. (2006a), present study CBS 113861 DQ008131 MG934530 MG934485 Crous et al. (2006a), present study CBS 113862 DQ008132 MG934531 MG934486 Crous et al. (2006a), present study CBS 113864 DQ008133 MG934532 MG934487 Crous et al. (2006a), present study CBS 113865 DQ008134 MG934533 MG934488 Crous et al. (2006a), present study CBS 113873 DQ008135 MG934534 MG934489 Crous et al. (2006a), present study CPC 18124 MG934448 MG934535 MG934490 Present study CPC 32807 MG934449 MG934536 MG934491 Present study CPC 32849 MG934450 MG934537 MG934492 Present study CPC 32970 MG934451 MG934538 MG934493 Present study T M. musigena CBS 143920 MG934452 MG934539 MG934494 Present study M. samutensis CBS 143921T MG934453 MG934540 MG934495 Present study 1 CBS: Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands; CPC: Culture collection of Pedro Crous, housed at the Westerdijk Fungal Biodiversity Institute. T and ET indicate ex-type and ex-epitype strains. 2 ITS: internal transcribed spacers and intervening 5.8S nrDNA; cal: partial calmodulin gene; tef1: partial translation elongation factor 1-alpha gene. Species ACCEPTED MANUSCRIPT Table 12. DNA barcodes of accepted Oculimacula spp. Isolates1 GenBank accession numbers2 References RI PT Species ITS tef1 CBS 495.80T MG934455 MG934497 Present study CBS 114730 MG934454 MG934496 Present study T CBS 496.80 LT990662 LT990618 Present study MG934456 MG934498 Present study CBS 110665NT CBS 128.31 MG934457 MG934499 Present study CBS 494.80 JF412009 MG934500 Tsang (unpubl. data), present study 1 CBS: Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands. T and NT indicate ex-type and ex-neotype strains, respectively. 2 ITS: internal transcribed spacers and intervening 5.8S nrDNA, tef1: partial translation elongation factor 1-alpha gene. AC C EP TE D M AN U SC Oculimacula acuformis O. aestiva O. anguioides O. yallundae ACCEPTED MANUSCRIPT Table 13. DNA barcodes of accepted Paraphoma spp. Species Isolates1 GenBank accession number2 tef1 tub2 rpb2 References RI PT ITS AC C EP TE D M AN U SC Paraphoma BRIP 65168T KU999072 KU999080 KU999084 Moslemi et al. (2018) chlamydocopiosa NT Pa. chrysanthemicola CBS 522.66 KF251166 KF253124 KF252661 KF252174 Quaedvlieg et al. (2013) Pa. dioscoreae CBS 135100T KF251167 KF253125 KF252662 KF252175 Quaedvlieg et al. (2013) KF252665 KF252178 Quaedvlieg et al. (2013) Pa. fimeti CBS 170.70NT KF251170 KF253128 Pa. pye BRIP 65169T KU999073 KU999081 KU999085 Moslemi et al. (2018) ET KF251172 KF253130 KF252667 KF252180 Quaedvlieg et al. (2013) Pa. radicina CBS 111.79 Pa. rhaphiolepidis CBS 142524T KY979758 KY979896 KY979924 KY979851 Crous et al. (2017a) Pa. vinacea BRIP 63684T KU176884 KU176896 KU176892 Moslemi et al. (2016) 1 BRIP: Queensland Plant Pathology Herbarium, Brisbane, Australia; CBS: Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands. T, ET and NT indicate ex-type, ex-epitype and ex-neotype strains, respectively. 2 ITS: internal transcribed spacers and intervening 5.8S nrDNA; tef1: partial translation elongation factor 1-alpha gene; tub2: partial β-tubulin gene; act: partial actin gene; rpb2: partial RNA polymerase II second largest subunit gene. ACCEPTED MANUSCRIPT Table 14. DNA barcodes of accepted Phaeoacremonium spp. CBS 120863T CBS 142688T CBS 110034T CBS 110627T CBS 128570T CBS 114992T IFRDCC 3035T CBS 777.83T ICMP 17421T CBS 142691T CBS 113589T CBS 112949T CBS 142694T PARC 327T CBS 123909T CBS 123037T CBS 101585T STE-U 5969T CBS 142712T CBS 142713T ICMP 16988T STE-U 5966T CBS 111657T CBS 123910T CBS 123036T CBS 391.71T CBS 101357T CBS 137763T CBS 142697T CBS 109479T CBS 110156* CBS 142699T CBS 137497T CBS 142710T CBS 246.91T CMM 4312T ICMP 17037T CBS 142704T CBS 860.73T STE-U 6104T CBS 142705T CBS 142686T CBS 142706T STE-U 5967T CBS 142101T PARC 273T CBS 142708T CBS 498.94T CBS 137498T CBS 113597T CBS 123034T CBS 142711T CBS 337.90T CBS 113584T CBS 110573T MFLUCC 13-0707T CBS 111586T CBS 123033T TE EP AC C References Damm et al. (2008) Spies et al. (2018) Mostert et al. (2005) Mostert et al. (2005) Gramaje et al. (2012) Mostert et al. (2006) Hu et al. (2012) Mostert et al. (2006) Graham et al. (2009) Spies et al. (2018) Mostert et al. (2005) Mostert et al. (2006) Spies et al. (2018) Úrbez-Torres et al. (2014) Gramaje et al. (2009) Essakhi et al. (2008) Groenewald et al. (2001) Damm et al. (2008) Spies et al. (2018) Spies et al. (2018) Graham et al. (2009) Damm et al. (2008) Mostert et al. (2005) Gramaje et al. (2009) Essakhi et al. (2008) Mostert et al. (2006) Mostert et al. (2006) Raimondo et al. (2014) Spies et al. (2018) Mostert et al. (2005) Réblová (2011) Spies et al. (2018) Gramaje et al. (2014) Spies et al. (2018) Mostert et al. (2006) da Silva et al. (2017) Graham et al. (2009) Spies et al. (2018) Mostert et al. (2006) Damm et al. (2008) Spies et al. (2018) Present study Spies et al. (2018) Damm et al. (2008) Crous et al. (2016a) Úrbez-Torres et al. (2014) Spies et al. (2018) Mostert et al. (2006) Gramaje et al. (2014) Mostert et al. (2005) Essakhi et al. (2008) Spies et al. (2018) Mostert et al. (2006) Mostert et al. (2005) Mostert et al. (2005) Ariyawansa et al. (2015) Mostert et al. (2006) Essakhi et al. (2008) RI PT Phaeoacremonium africanum Pha. album Pha. alvesii Pha. amstelodamense Pha. amygdalinum Pha. angustius Pha. aquaticum Pha. argentinense Pha. armeniacum Pha. aureum Pha. australiense Pha. austroafricanum Pha. bibendum Pha. canadense Pha. cinereum Pha. croatiense Pha. fraxinopennsylvanicum Pha. fuscum Pha. gamsii Pha. geminum Pha. globosum Pha. griseo-olivaceum Pha. griseorubrum Pha. hispanicum Pha. hungaricum Pha. inflatipes Pha. iranianum Pha. italicum Pha. junior Pha. krajdenii Pha. leptorrhynchum Pha. longicollarum Pha. luteum Pha. meliae Pha. minimum Pha. nordesticola Pha. occidentale Pha. oleae Pha. parasiticum Pha. pallidum Pha. paululum Pha. pravum Pha. proliferatum Pha. prunicola Pha. pseudopanacis Pha. roseum Pha. rosicola Pha. rubrigenum Pha. santali Pha. scolyti Pha. sicilianum Pha. spadicum Pha. sphinctrophorum Pha. subulatum Pha. tardicrescens Pha. tectonae Pha. theobromatis Pha. tuscanicum GenBank accession numbers2 act tub2 EU128142 EU128100 KY906884 KY906885 AY579234 AY579301 AY579228 AY579295 JN191303 JN191307 DQ173127 DQ173104 n/a3 n/a3 DQ173135 DQ173108 EU595463 EU596526 KY906656 KY906657 AY579229 AY579296 DQ173122 DQ173099 KY906758 KY906759 KF764499 KF764651 FJ517153 FJ517161 EU863514 EU863482 DQ173137 AF246809 EU128141 EU128098 KY906740 KY906741 KY906648 KY906649 EU595466 EU596525 EU128139 EU128097 AY579227 AY579294 FJ517156 FJ517164 EU863515 EU863483 AY579259 AF246805 DQ173120 DQ173096 KJ534046 KJ534074 KY906708 KY906709 AY579267 AY579330 DQ173139 DQ173110 KY906688 KY906689 KF835406 KF823800 KY906824 KY906825 AY735497 AF246811 KY030803 KY030807 EU595460 EU596524 KY906936 KY906937 AY579253 AF246803 EU128144 EU128103 KY906880 KY906881 KY084248 KY084246 KY906902 KY906903 EU128137 EU128095 KY173569 KY173609 KF764506 KF764658 KY906830 KY906831 AY579238 AF246802 KF835403 KF823797 AY579224 AF246800 EU863520 EU863488 KY906838 KY906839 DQ173142 DQ173113 AY579231 AY579298 AY579233 AY579300 KT285563 KT285555 DQ173132 DQ173106 EU863490 EU863458 M AN US C Isolates1 D Species ACCEPTED MANUSCRIPT Pha. venezuelense Pha. vibratile Pha. viticola CBS 651.85T CBS 117115T CBS 101738T AY579256 DQ649063 DQ173131 AY579320 DQ649064 AF192391 Mostert et al. (2005) Réblová & Mostert (2007) Dupont et al. (2000) EP TE D M AN US C Not available. Only ITS sequence available: NR136032 AC C 3 RI PT 1 CBS: Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands; IFRDCC: International Fungal Research and Development Center, Bailongsi, China; ICMP: International Collection of Microorganisms from Plants, Auckland, New Zealand; PARC: Pacific Agri-Food Research Centre in Summerland, British Columbia, Canada; CMM: Culture Collection of Phytopathogenic Fungi “Prof. Maria Menezes”, Universidade Federal Rural de Pernambuco, Recife, Brazil; STE-U: Department of Plant Pathology, Stellenbosch University, South Africa; MFLUCC: Mae Fah Luang Culture Collection, Chiang Rai, Thailand. T indicates ex-type strains. *Ex-type of Pha. novae-zealandiae, synonymised with Pha. leptorrhynchum by Réblova (2011). 2 act: partial actin gene; tub2: partial β-tubulin gene. ACCEPTED MANUSCRIPT Table 15. DNA barcodes of accepted Phyllosticta spp. Isolates1 Phyllosticta abieticola CBS 112067T Phy. alliacea MUCC 0014T GenBank accession number2 ITS act gapdh tef1 KF170306 KF289238 AB454263 AB704207 - RI PT Species CBS 136058T ATCC 200578NT MUCC 0031T KF154280 KC193586 AB454274 KF289311 KC193581 AB704216 KF289124 KC193584 - KF289193 - Phy. aristolochiicola Phy. aspidistricola BRIP 53316aT MUCC 0010T JX486129 AB454260 AB704204 - - Phy. beaumarisii CBS 535.87T AY042927 KF306232 KF289074 KF289170 Phy. bifrenariae Phy. brazillianiae Phy. capitalensis Phy. carissicola Phy. carochlae Phy. catimbauensis Phy. cavendishii Phy. citriasiana CBS 128855T CBS 129060T CBS 128856ET CPC 25665T CGMCC 3.17317T URM 7672T BRIP 55420IsoT CBS 120486T JF343565 JF343572 JF261465 KT950849 KJ847422 MF466160 JQ743562 FJ538360 JF343649 JF343656 JF343647 KT950872 KJ847430 MF466157 FJ538476 JF343744 JF343758 JF343776 KT950876 KJ847438 JF343686 JF343586 JF343593 JF261507 KT950879 KJ847444 MF466155 FJ538418 Phy. citribraziliensis CBS 100098T FJ538352 FJ538468 JF343691 FJ538410 Phy. citricarpa Phy. citrichinaensis Phy. citrimaxima Phy. concentrica CBS 127454ET CBS 130529T CBS 136059T CBS 937.70ET JF343583 JN791597 KF170304 FJ538350 JF343667 JN791526 KF289300 KF289257 JF343771 KF289157 JF411745 JF343604 JN791452 KF289222 FJ538408 M AN U D TE EP AC C SC Phy. aloeicola Phy. ampelicida Phy. ardisiicola References Wikee et al. (2013b) Motohashi et al. (2009), Ando et al. (2013) Wikee et al. (2013b) Zhang et al. (2013b) Motohashi et al. (2009), Ando et al. (2013) Crous et al. (2012a) Motohashi et al. (2009), Ando et al. (2013) Baayen et al. (2002), Wikee et al. (2013b) Glienke et al. (2011) Glienke et al. (2011) Glienke et al. (2011) Crous et al. (2015e) Zhou et al. (2015) Crous et al. (2017b) Wong et al. (2012) Wulandari et al. (2009), Glienke et al. (2011) Wulandari et al. (2009), Glienke et al. (2011) Glienke et al. (2011) Wang et al. (2011) Wikee et al. (2013b) Wulandari et al. (2009), Glienke et al. (2011), Wikee et al. (2013b) CBS 136244NT CBS 111639 CBS 858.71 CBS 136060ET CBS 126.22T KF170287 KF170307 MG934458 JF343578 FJ538353 KF289295 KF289234 MG934465 JF343662 FJ538469 KF289076 MG934474 JF343764 KF289164 KF289172 MG934501 JF343599 FJ538411 Phy. ericarum Phy. eugeniae CBS 132534T CBS 445.82 KF206170 AY042926 KF28291 KF289246 KF289162 KF289139 KF289227 KF289208 Phy. fallopiae MUCC 0113T AB454307 AB704228 - - Phy. foliorum Phy. gaultheriae Phy. hamamelidis Phy. hostae Phy. hubeiensis Phy. hymenocallidicola Phy. hypoglossi CBS 447.68NT CBS 447.70T MUCC 149 CGMCC 3.14355T CGMCC 3.14986T CBS 131309T KF170309 JN692543 KF170289 JN692535 JX025037 JQ044423 KF289247 KF289248 KF289309 JN692511 JX025032 KF289242 KF289132 JN692508 JN692503 JX025027 KF289142 KF289201 JN692531 JN692523 JX025042 KF289211 CBS 434.92NT FJ538367 FJ538483 JF343695 FJ538425 Phy. ilicis-aquifolii Phy. iridigena Phy. kerriae CGMCC 3.14358T CBS 143410T MUCC 0017T JN692538 MG934459 AB454266 JN692514 MG934466 AB704209 - JN692526 MG934502 KC342576 Phy. leucothoicola CBS 136073T AB454370 KF289310 - - Phy. ligustricola MUCC 0024T AB454269 AB704212 - - Phy. maculata Phy. mangiferaeindicae CBS 132581ET CBS 136061T JQ743570 KF170305 KF289296 KF289121 KF289190 M AN U D TE EP AC C RI PT Phy. cordylinophila Phy. cornicola Phy. cruenta Phy. cussonia Phy. elongata SC ACCEPTED MANUSCRIPT Wikee et al. (2013b) Wikee et al. (2013b) Present study Glienke et al. (2011) Wulandari et al. (2009), Wikee et al. (2013b) Wikee et al. (2013b) Baayen et al. (2002), Wikee et al. (2013b) Motohashi et al. (2009), Ando et al. (2013) Wikee et al. (2013b) Su & Cai (2012) Wikee et al. (2013b) Su & Cai (2012) Zhang et al. (2013a) Crous et al. (2011b), Wikee et al. (2013b) Wulandari et al. (2009), Glienke et al. (2011), Wikee et al. (2013b) Su & Cai (2012) Present study Motohashi et al. (2009), Ando et al. (2013), Wikee et al. (2013a) Motohashi et al. (2009), Wikee et al. (2013b) Motohashi et al. (2009), Ando et al. (2013) Wong et al. (2012) Wikee et al. (2013b) ACCEPTED MANUSCRIPT CBS 138899T CBS 585.84NT BRIP 55434IsoET CBS 134750T KP004447 KF206176 JQ743584 AB454318 KF289249 AB704233 KF289135 - KF289204 - Phy. owaniana CBS 776.97ET FJ538368 KF289254 JF343767 FJ538426 Phy. pachysandricola MUCC 124T AB454317 AB704232 - - Phy. paracapitalensis Phy. paracitricarpa Phy. parthenocisii Phy. partricuspidatae Phy. paxistimae Phy. persooniae Phy. philoprina Phy. podocarpi CBS 141353T CBS 141357T CBS 111645 NBRC 9466T CBS 112527T CBS 143409T CBS 587.69 CBS 111646 KY855622 KY855635 JN692542 KJ847424 KF206172 MG934460 KF154278 AF312013 KY855677 KY855690 JN692518 KJ847432 KF289239 MG934467 KF289250 KC357670 KY855735 KY855748 KJ847440 KF289140 MG934475 KF289137 KF289169 KY855951 KY855964 JN692530 KJ847446 KF289209 MG934503 KF289206 KC357671 Phy. podocarpicola Phy. pseudotsugae Phy. rhaphiolepidis CBS 728.79T CBS 111649 MUCC 432T KF206173 KF154277 DQ632660 KF289252 KF289236 AB704242 KF289134 KF289167 - KF289203 KF289231 DQ632724 Phy. rubella Phy. schimae Phy. schimicola Phy. sphaeropsoidea CBS 111635T CGMCC 3.14354T CGMCC 3.17319T CBS 756.70 KF206171 JN692534 KJ847426 AY042934 KF289233 JN692510 KJ847434 KF289253 KF289129 JN692506 KJ854895 KF289133 KF289198 JN692522 KJ847448 KF289202 Phy. spinarum Phy. styracicola Phy. telopeae Phy. vaccinii CBS 292.90 CGMCC 3.14985T CBS 777.97T ATCC 46255ET JF343585 JX052040 KF206205 KC193585 JF343669 JX025035 KF289255 KC193580 JF343773 JX025030 KF289141 KC193583 JF343606 JX025045 KF289210 KC193582 AC C EP TE D M AN U SC RI PT Phy. mimusopisicola Phy. minima Phy. musarum Phy. neopyrolae Crous et al. (2014d) Wikee et al. (2013b) Wong et al. (2012) Motohashi et al. (2009), Ando et al. (2013) Wulandari et al. (2009), Glienke et al. (2011), Wikee et al. (2013b) Motohashi et al. (2009), Ando et al. (2013) Guarnaccia et al. (2017) Guarnaccia et al. (2017) Su & Cai (2012) Zhou et al. (2015) Wikee et al. (2013b) Present study Wikee et al. (2013b) Wikee et al. (2013b), Carroll (unpubl. data), Wikee (unpubl. data) Wikee et al. (2013b) Wikee et al. (2013b) Andjic et al. (2007), Ando et al. (2013) Wikee et al. (2013b) Su & Cai (2012) Zhou et al. (2015) Baayen et al. (2002), Wikee et al. (2013b) Glienke et al. (2011) Zhang et al. (2013a) Wikee et al. (2013b) Zhang et al. (2013b) ACCEPTED MANUSCRIPT AC C EP TE D M AN U SC RI PT Phy. vacciniicola CBS 136062T KF170312 KF289287 KF289165 KF289229 Wikee et al. (2013b) KJ847436 KJ847442 KJ847450 Zhou et al. (2015) Phy. vitisCGMCC 3.17322T KJ847428 rotundifoliae Phy. yuccae CBS 117136 JN692541 JN692517 JN692507 JN692529 Su & Cai (2012) 1 ATCC: American Type Culture Collection, Virginia, USA; BRIP: Queensland Plant Pathology Herbarium, Brisbane, Australia; CBS: Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands; CGMCC: Chinese General Microbiological Culture Collection Center, Beijing, China; CPC: Culture collection of Pedro Crous, housed at Westerdijk Fungal Biodiversity Institute; MUCC: Murdoch University, Perth, Western Australia; NBRC: Biological Resource Center, NITE, Chiva, Japan; URM: Culture Collection Mycobank, Prof. Maria Auxiliadora Cavalcanti, Federal University of Pernambuco, Recife, Brazil. T, ET, IsoT, IsoET and NT indicate ex-type, ex-epitype, ex-isotype, ex-isoepitype and ex-neotype strains, respectively. 2 ITS: internal transcribed spacers and intervening 5.8S nrDNA; act: partial actin gene; gapdh: partial glyceraldehyde-3-phosphate dehydrogenase gene; tef1: partial translation elongation factor 1-alpha gene. ACCEPTED MANUSCRIPT Table 16. DNA barcodes of accepted Proxipyricularia sp. Proxypiricularia zingiberis Isolates 1 CBS 133594ET ITS AB274434 GenBank accession numbers act cal AB274446 KM485246 2 References rpb1 KM485091 RI PT Species 1 Hirata et al. (2007), Klaubauf et al. (2014) CBS: Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands. ET indicates ex-epitype strain. ITS: internal transcribed spacers and intervening 5.8S nrDNA; act: partial actin gene; cal: partial calmodulin gene; rpb1: partial RNA polymerase II largest subunit gene. AC C EP TE D M AN U SC 2 ACCEPTED MANUSCRIPT Table 17. DNA barcodes of accepted Pyriculariomyces sp. 1 CBS 141328T ITS KX228291 GenBank accession numbers act cal KX228361 MG934541 2 References rpb1 KX228368 EP TE D M AN U SC Crous et al. (2016b), present study CPC 27442 KX228290 KX228360 MG934472 Crous et al. (2016b), present study 1 CBS: Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands; CPC: Culture collection of Pedro Crous, housed at Westerdijk Fungal Biodiversity Institute. T indicates ex-type strain. 2 ITS: internal transcribed spacers and intervening 5.8S nrDNA; act: partial actin gene; cal: partial calmodulin gene; rpb1: partial RNA polymerase II largest subunit gene. AC C Pyriculariomyces asari Isolates RI PT Species ACCEPTED MANUSCRIPT Table 18. DNA barcodes of accepted Pyricularia spp. Isolates1 Pyricularia angulata Py. ctenantheicola Py. graminis-tritici NBRC 9625 CBS 138601T URM7380T ITS AY265322 KM484879 - GenBank accession numbers2 act cal KM485183 KM485253 KU952138 KU952892 References rpb1 KM485099 - RI PT Species AC C EP TE D M AN U SC Bussaban et al. (2005) Klaubauf et al. (2014) Castroagudín et al. (2016) Py. grisea CBS 128304 KM484881 KM485184 KM485255 KM485101 Klaubauf et al. (2014) Py. oryzae CBS 255.38 KM484889 KM485190 KM485261 KM485109 Klaubauf et al. (2014) Py. penniseticola CBS 138603T KM484929 KM485220 KM485148 Klaubauf et al. (2014) KM484935 KM485225 KM485294 KM485153 Klaubauf et al. (2014) Py. pennisetigena CBS 138604T Py. urashimae CBS 142117T KY173437 KY173571 KY173578 Crous et al. (2016a) KM484941 KM485229 KM485297 KM485157 Klaubauf et al. (2014) Py. zingibericola CBS 138605T 1 CBS: Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands; NBRC: Biological Resource Center, NITE, Chiva, Japan; URM: Culture Collection Mycobank, Prof. Maria Auxiliadora Cavalcanti, Federal University of Pernambuco, Recife, Brazil. T indicates ex-type strains. 2 ITS: internal transcribed spacers and intervening 5.8S nrDNA; act: partial actin gene; cal: partial calmodulin gene; rpb1: partial RNA polymerase II largest subunit gene. ACCEPTED MANUSCRIPT Table 19. DNA barcodes of accepted Stenocarpella spp. Isolates1 AC C EP TE D M AN U SC RI PT GenBank accession number2 References ITS tef1 MG934504 Lamprecht et al. (2011), present study Stenocarpella macrospora CBS 117560ET FR748048 S. maydis CBS 117558ET FR748051 FR748080 Lamprecht et al. (2011) 1 ET CBS: Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands. indicates ex-epitype strains. 2 ITS: internal transcribed spacers and intervening 5.8S nrDNA; tef1: partial translation elongation factor 1-alpha gene. Species ACCEPTED MANUSCRIPT Table 20. DNA barcodes of accepted Utrechtiana spp. 1 CPC 33994ET CBS 128780T ITS MG934461 JF951153 GenBank accession numbers act cal MG934468 MG934542 KM485163 KM485232 2 References rpb1 MG934473 KM485047 EP TE D M AN U SC Present study Crous et al. (2011a), Klaubauf et al. (2014) 1 T ET CBS: Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands. and indicate ex-type and ex-epitype strains, respectively. 2 ITS: internal transcribed spacers and intervening 5.8S nrDNA; act: partial actin gene; cal: partial calmodulin gene; rpb1: partial RNA polymerase II largest subunit gene. AC C Utrechtiana arundinacea U. roumeguerei Isolates RI PT Species ACCEPTED MANUSCRIPT Table 21. DNA barcodes of accepted Wojnowiciella spp. 1 ITS KX228272 CBS 141297T GenBank accession numbers LSU rpb2 KX228323 - 2 References tef1 LT990616 EP TE D M AN U SC Crous et al. (2016b), present study W. dactylidis MFLUCC 13-0735T KP744470 KP684149 Liu et al. (2015) CPC 27468 LT990658 LT990630 LT990644 LT990611 Present study CPC 30353 LT990659 LT990631 LT990612 Present study CPC 32741 LT990660 LT990632 LT990613 Present study CPC 33929 LT990661 LT990633 LT990645 LT990614 Present study W. eucalypti CBS 139904T KR476741 KR476774 LT990617 Crous et al. (2015d), present study W. leptocarpi CBS 115684T KX306775 KX306800 LT990646 LT990615 Hernández-Restrepo et al. (2016c), present study W. lonicerae MFLUCC 13-0737T KP744471 KP684151 Liu et al. (2015) W. spartii MFLUCC 13-0402T KU058719 KU058729 Li et al. (2015) W. viburni MFLUCC 12-0733T KC594286 KC594287 Wijayawardene et al. (2013) 1 CBS: Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands; CPC: Personal collection of Pedro Crous housed at the Westerdijk Fungal Biodiversity Institute; MFLUCC: Mae Fah Luang University Culture Collection, Chiang Rai, Thailand. T indicates ex-type strain. 2 ITS: internal transcribed spacers and intervening 5.8S nrDNA; LSU: partial large subunit RNA gene; rpb2: partial RNA polymerase II largest subunit gene; tef1: partial translation elongation factor 1-alpha gene. AC C Wojnowiciella cissampeli Isolates RI PT Species ACCEPTED MANUSCRIPT Table 4. DNA barcodes of accepted Diaporthe spp. Isolates1 GenBank accession numbers ITS T CBS 129521 D. acericola MFLUCC 17-0956 D. acerina CBS 137.27 D. acutispora D. alleghaniensis D. alnea D. ambigua tub2 KP004509 his3 KP004504 tef1 KC343005 KC343973 KC343489 KY964224 KY964074 - KC343006 KC343974 KC343490 KC343732 cal - - Crous et al. (2014b) KC343731 KC343247 Gomes et al. (2013) KY964180 KY964137 KC343248 Dissanayake et al. (2017a) Gomes et al. (2013) KX986764 KX999195 KX999235 KX999155 KX999274 Gao et al. (2017) CBS 495.72 T FJ889444 KC843228 KC343491 GQ250298 KC343249 Gomes et al. (2013) CBS 146.46 T KC343008 KC343976 KC343492 KC343734 KC343250 Gomes et al. (2013) T KC343010 KC343978 KC343494 KC343736 KC343252 Gomes et al. (2013) T AF230751 JX275452 - GQ250351 JX197443 Gomes et al. (2013) T CBS 114015 CBS 114016 D. amygdali CBS 126679 KC343022 KC343990 KC343506 KC343748 KC343264 Gomes et al. (2013) D. anacardii CBS 720.97 T KC343024 KC343992 KC343508 KC343750 KC343266 Gomes et al. (2013) KC343026 D D. ampelina CGMCC 3.18285 T T KP004460 RI PT D. acaciigena CBS 138862 References 2 SC Diaporthe acaciarum T M AN U Species KC343511 KC343752 KC343268 Gomes et al. (2013) LC 3418 T IFRDCC 3051 D. arctii CBS 136.25 D. arecae CBS 161.64T KP267896 KP293476 KP293550 KP267970 - Gao et al. (2016) JQ797437 - - - - Hu et al. (2012) KC343031 KC343999 KC343515 KC343757 KC343273 Gomes et al. (2013) KC343032 KC344000 KC343516 KC343758 KC343274 Gomes et al. (2013) AC C D. aquatica T KC343994 TE D. apiculatum CBS 111592 EP D. angelicae T D. arengae T CBS 114979 KC343034 KC344002 KC343518 KC343760 KC343276 Gomes et al. (2013) D. aseana MFLUCC 12T 0299a T CBS 136967 KT459414 KT459432 - KT459448 KT459464 Hyde et al. (2016) D. asheicola KJ160562 KJ160518 - KJ160594 KJ160542 Lombard et al. (2014) T KC343036 KC344004 KC343520 KC343762 KC343278 T KC343038 KC344006 KC343522 KC343764 KC343280 Van Rensburg et al. (2006) Gomes et al. (2013) D. aspalathi CBS 117169 D. australafricana CBS 111886 ACCEPTED MANUSCRIPT D. baccae T CBS 136972 KJ160565 MF418509 MF418264 KJ160597 - Lombard et al. (2014) CBS 122.21 KC343040 KC344008 KC343524 KC343766 KC343282 Gomes et al. (2013) CBS 138.27 T BRIP 54792 KC343041 JX862529 KC344009 KF170921 KC343525 - KC343767 JX862535 KC343283 - Gomes et al. (2013) Thompson et al. (2015) D. benedicti CFCC 50062 T KP208847 KP208855 KP208851 KP208853 KP208849 Fan et al. (2015) CFCC 50469 T KT732950 KT733020 KT732999 KT733016 KT732997 Du et al. (2016) CFCC 51128 T KX024653 KX024657 KX024661 KX024655 KX024659 Du et al. (2016) T KC343134 KC344102 KC343618 KC343860 KC343376 Gomes et al. (2013) KJ490597 KJ490418 KJ490539 KJ490476 - Huang et al. (2015) KJ490582 KJ490403 KJ490524 KJ490461 - Huang et al. (2015) D. bicincta CBS 121004 D. biconispora CGMCC 3.17252 D. biguttusis T ICMP20657 KF576282 KF576306 - KF576257 - Gao et al. (2015) T MG281015 MG281188 MG281361 MG281536 MG281710 T KC343042 KC344010 KC343526 KC343768 KC343284 Guarnaccia et al. (2018) Gomes et al. (2013) T KY085927 KY115600 KY115605 KY115603 KY115597 Crous et al. (2016a) T KY203726 KY228893 KY228881 KY228887 KY228877 Yang et al. (2017c) T KC843230 - KC843120 KC843174 Crous et al. (2012b) CGMCC 3.17081 D. bohemiae CBS 143347 D. brasiliensis CBS 133183 D. caatingaensis T D D. biguttulata T CBS 141542 CFCC 51632 D. canthii CBS 132533 JX069864 D. carpini CBS 114437 KC344012 KC343528 KC343770 KC343286 Gomes et al. (2013) KF777155 - - KF777244 - Crous et al. (2013) T CBS 127268 KC343045 KC344013 KC343529 KC343771 KC343287 Gomes et al. (2013) T KC343047 KC344015 KC343531 KC343773 KC343289 Gomes et al. (2013) CBS 136440 CBS 139.27 EP D. celastrina KC343044 T AC C D. caulivora TE D. camptothecicola D. cassines SC D. betulicola M AN U D. betulae RI PT D. batatas D. beckhausii D. beilharziae T MG281017 MG281190 MG281363 MG281538 MG281712 T D. celeris CBS 143349 D. ceratozamiae CBS 131306 JQ044420 - - - - Guarnaccia et al. (2018) Crous et al. (2011b) D. cf. heveae 1 D. cf. heveae 2 CBS 852.97 CBS 681.84 KC343116 KC343117 KC344084 KC344085 KC343600 KC343601 KC343842 KC343843 KC343358 KC343359 Gomes et al. (2013) Gomes et al. (2013) D. chamaeropis CBS 454.81 KC343048 KC344016 KC343532 KC343774 KC343290 Gomes et al. (2013) KJ197288 KJ197268 - KJ197250 - Thompson et al. (2015) D. charlesworthii T BRIP 54884m ACCEPTED MANUSCRIPT D. cinerascens CBS 719.96 T KC343050 KC344018 KC343534 KC343776 KC343292 Dissanayake et al. (2017a) Gomes et al. (2013) T KX228273 KX228384 KX228366 - - Crous et al. (2016b) D. citri T CBS 135422 KC843311 KC843187 MF418281 KC843071 KC843157 D. citriasiana CBS 134240T JQ954645 KC357459 MF418282 JQ954663 KC357491 Udayanga et al. (2014b) Huang et al. (2013) D. citrichinensis CBS 134242T JQ954648 MF418524 KJ420880 JQ954666 KC357494 Huang et al. (2013) KP267854 KP293434 KP293508 KP267928 - Gao et al. (2016) D. cissampeli D. compacta CBS 141331 T LC3083 KY964220 KY964104 - KY964176 KY964133 RI PT MFLUCC 17-1023 SC D. cichorii CBS 124654 KC343054 KC344022 KC343538 KC343780 KC343296 Gomes et al. (2013) CBS 114435 KC343055 KC344023 KC343539 KC343781 KC343297 Gomes et al. (2013) D. crotalariae CBS 162.33 KC343056 KC344024 KC343540 KC343782 KC343298 Gomes et al. (2013) DAOM 42078 T KM453210 KP118848 KM453212 KM453211 - Udayanga et al. (2015) D. cuppatea T CBS 117499 AY339322 JX275420 KC343541 AY339354 JX197414 D. cynaroidis D. cytosporella CBS 122676 T CBS 137020 KC343058 KC843307 KC344026 KC843221 KC343542 MF418283 KC343784 KC843116 KC343300 KC843141 D D. cucurbitae T M AN U D. convolvuli D. crataegi D. decedens CBS 109772 KC343059 KC343543 KC343785 KC343301 Van Rensburg et al. (2006) Gomes et al. (2013) Udayanga et al. (2014b) Gomes et al. (2013) D. detrusa CBS 109770 KC343061 KC344029 KC343545 KC343787 KC343303 Gomes et al. (2013) KF777156 - - - - Crous et al. (2013) KJ490624 KJ490445 KJ490566 KJ490503 - Huang et al. (2015) KY964215 KY964099 - KY964171 - KX986779 KX999212 KX999251 KX999171 KX999281 Dissanayake et al. (2017a) Gao et al. (2017) TE D. discoidispora T CBS 136552 T ICMP20662 MFLUCC 17-1015 D. elaeagni-glabrae CGMCC 3.18287T AC C D. dorycnii D. eleagni CBS 504.72 D. ellipicola CGMCC 3.17084 D. endophytica T EP D. diospyricola KC344027 KC343064 KC344032 KC343548 KC343790 KC343306 Gomes et al. (2013) KF576270 KF576291 - KF576245 - Gao et al. (2015) T KC343065 KC344033 KC343549 KC343791 KC343307 Gomes et al. (2013) T KJ210529 KJ420799 KJ420850 KJ210550 KJ434999 T JX069862 - - - - Udayanga et al. (2014a) Crous et al. (2012b) CBS 133811 D. eres CBS 138594 D. eucalyptorum CBS 132525 T ACCEPTED MANUSCRIPT CBS 444.82 KC343098 KC344066 KC343582 KC343824 KC343340 Gomes et al. (2013) D. fibrosa D. foeniculina CBS 109751 T CBS 111553 KC343099 KC343101 KC344067 KC344069 KC343583 KC343585 KC343825 KC343827 KC343341 KC343343 Gomes et al. (2013) Gomes et al. (2013) D. fraxini-angustifoliae BRIP 54781 JX862528 KF170920 - JX852534 - Tan et al. (2013) KF576281 KF576305 - KF576256 KF576233 Gao et al. (2015) KC343112 KC344080 KC343596 KC343838 KC343354 Gomes et al. (2013) KC343839 KC343355 Gomes et al. (2013) KT459457 KT459470 Hyde et al. (2016) KJ197252 - Thompson et al. (2015) D. fusicola T CGMCC 3.17087 T T RI PT D. eugeniae CBS 180.91 D. gardeniae CBS 288.56 KC343113 KC344081 KC343597 D. garethjonesii KT459423 KT459441 - D. goulteri MFLUCC 120542aT T BRIP 55657a KJ197290 KJ197270 - D. gulyae BRIP 54025 T JF431299 KJ197271 - JN645803 - Thompson et al. (2015) T M AN U CBS 592.81 KC343115 KC344083 KC343599 KC343841 JX197454 Gomes et al. (2013) T KJ210538 KJ420828 KJ420875 KJ210559 KJ435043 T MG600222 MG600226 MG600220 MG600224 MG600218 Udayanga et al. (2014a) Present study KC343118 KC344086 KC343602 KC343844 KC343360 Gomes et al. (2013) T MG281123 D D. helianthi SC D. ganjae MG281471 MG281644 MG281820 T D. helicis CBS 138596 D. heterophyllae CBS 143769 T D. hickoriae CBS 145.26 D. hispaniae CBS 143351 D. hongkongensis CBS 115448 KC343119 KC344087 KC343603 KC343845 KC343361 Guarnaccia et al. (2018) Gomes et al. (2013) D. hordei CBS 481.92 KC343120 KC344088 KC343604 KC343846 KC343362 Gomes et al. (2013) TE T MG281296 CBS 143353 MG281126 MG281299 MG281474 MG281647 MG281823 D. impulsa D. incompleta CBS 114434 T CGMCC 3.18288 KC343121 KX986794 KC344089 KX999226 KC343605 KX999265 KC343847 KX999186 KC343363 KX999289 Guarnaccia et al. (2018) Gomes et al. (2013) Gao et al. (2017) D. inconspicua CBS 133813 T KC343123 KC344091 KC343607 KC343849 KC343365 Gomes et al. (2013) T CBS 133812 KC343126 KC344094 KC343610 KC343852 KC343368 Gomes et al. (2013) T KC343052 KC344020 KC343536 KC343778 KC343294 T KJ869133 KJ869245 - - - Guarnaccia & Crous (2017) Crous et al. (2014c) T KU985101 KX024634 - KX024628 KX024616 Yang et al. (2017a) AC C D. infecunda D. infertilis CBS 230.52 D. isoberliniae CBS 137981 D. juglandicola EP D. hungariae CFCC 51134 ACCEPTED MANUSCRIPT - - JN645809 - Thompson et al. (2011) BRIP 54031 KJ197272 - JN645797 - Thompson et al. (2011) JN712460 KY435673 KY435653 KY435632 KY435663 Crous et al. (2011c) T MF418422 MF418582 MF418342 MF418501 MF418256 JX862533 KF170925 - JX862539 - Guarnaccia & Crous (2017) Tan et al. (2013) KC153104 KF576311 - KC153095 - Gao et al. (2014) MF190139 - - - - KF576267 KF576291 - KF576242 - Senanayake et al. (2017) Gao et al. (2015) KJ590728 KJ610883 KJ659188 KJ590767 KJ612124 Udayanga et al. (2015) KC343135 KC344103 KC343619 KC343861 KC343377 Gomes et al. (2013) KY964190 KY964073 - KY964146 KY964116 KC343136 KC344104 KC343620 KC343862 KC343378 Dissanayake et al. (2017a) Gomes et al. (2013) KJ197289 KJ197269 - KJ197251 - Thompson et al. (2015) KC153096 - - KC153087 - Gao et al. (2014) KY435668 KY435648 KY435627 KY435658 Santos et al. (2017) D. limonicola CBS 142549 D. litchicola BRIP 54900 D. lithocarpus T CGMCC 3.15175 T D. litoricola MFLUCC 16-1195 D. longicicola CGMCC 3.17089 D. longicolla D. longispora T T FAU 599 CBS 194.36 T D. lonicerae MFLUCC 17-0963 D. lusitanicae CBS 123212T T D. macintoshii BRIP 55064a D. mahothocarpus CGMCC 3.15181 T D. malorum CBS142383 D. manihotia CBS 505.76 D. maritima D. masirevicii T KY435638 DAOMC 250563 BRIP 57892a T T T M AN U CBS 111980 SC JF431301 T RI PT JF431295 T D D. leucospermi T TE D. kongii BRIP 54033 KC343138 KC344106 KC343622 KC343864 KC343380 Gomes et al. (2013) KU552025 KU574615 - KU552023 - Tanney et al. (2016) EP D. kochmanii KJ197277 KJ197257 - KJ197239 - Thompson et al. (2015) T KC343139 KC344107 KC343623 KC343865 KC343381 Gomes et al. (2013) CBS 133185 D. maytenicola CBS 136441 T KF777157 KF777250 - - - Crous et al. (2013) D. megalospora D. melitensis CBS 143.27 CBS 142551T KC343140 MF418424 KC344108 MF418584 KC343624 MF418344 KC343866 MF418503 KC343382 MF418258 D. melonis CBS 507.78 KC343142 KC344110 KC343626 KC343868 KC343384 Gomes et al. (2013) Guarnaccia & Crous (2017) Gomes et al. (2013) D. middletonii BRIP 54884e KJ197286 KJ197266 - KJ197248 - Thompson et al. (2015) KJ197283 KJ197263 - KJ197245 - Thompson et al. (2015) D. miriciae AC C D. mayteni T T T BRIP 54736j ACCEPTED MANUSCRIPT ICMP20656 D. musigena KU557563 KU557587 - KU557631 KU557611 KJ490633 KJ490454 KJ490575 KJ490512 - Dissanayake et al. (2017c) Huang et al. (2015) CBS 129519 KC343143 KC344111 KC343627 KC343869 KC343385 Gomes et al. (2013) T KC343144 KC344112 KC343628 KC343870 KC343386 Gomes et al. (2013) KC343145 KC344113 KC343629 KC343871 KC343387 Gomes et al. (2013) KU712449 KU743988 - KU749369 KU749356 Doilom et al. (2017) KC343154 JX862530 KC344122 KF170922 KC343638 - KC343880 JX862536 KC343396 - Gomes et al. (2013) Tan et al. (2013) T KC343157 KC344125 KC343641 KC343883 KC343399 Gomes et al. (2013) T MG386072 - MG386137 - - Crous et al. (2017b) T T T D. neilliae CBS 144.27 D. neoarctii CBS 109490 MFLUCC 14-1136 D. nomurai D. nothofagi CBS 157.29 T BRIP 54801 D. novem CBS 127271 D. obtusifoliae CBS 143449 D. ocoteae CBS 141330 KX228293 KX228388 - - - Crous et al. (2016b) D. oncostoma CBS 589.78 KC343162 KC344130 KC343646 KC343888 KC343404 Gomes et al. (2013) KP267863 KP293443 KP293517 KP267937 - Gao et al. (2016) KJ490628 KJ490449 KJ490570 KJ490507 - Huang et al. (2015) KF576264 D D. neoraonikayaporum T RI PT D. multigutullata T SC MFLUCC 16-0113 M AN U D. momicola KF576288 - KF576239 KF576222 Gao et al. (2015) KC344132 KC343648 KC343890 KC343406 Gomes et al. (2013) D. oraccinii D. ovalispora D. ovoicicola LC 3166 T T ICMP20659 CGMCC 3.17092 T T CBS 133186 KC343164 D. padi var. padi D. paranensis CBS 114200 CBS 133184 KC343169 KC343171 KC344137 KC344139 KC343653 KC343655 KC343895 KC343897 KC343411 KC343413 Gomes et al. (2013) Gomes et al. (2013) D. parapterocarpi CBS 137986 KJ869138 KJ869248 - - - Crous et al. (2014c) T JX862532 KF170924 - JX862538 - Tan et al. (2013) D. passiflorae EP BRIP 54847 AC C D. pascoei T TE D. oxe T JX069860 KY435674 KY435654 KY435633 KY435664 Crous et al. (2012b) T CBS 132527 D. passifloricola CBS 141329 KX228292 KX228387 KX228367 - - Crous et al. (2016b) D. penetriteum LC 3353 KP714505 KP714529 KP714493 KP714517 - Gao et al. (2016) T D. perjuncta CBS 109745 KC343172 KC344140 KC343656 KC343898 KC343414 Gomes et al. (2013) D. perniciosa D. perseae CBS 124030 CBS 151.73 KC343149 KC343173 KC344117 KC344141 KC343633 KC343657 KC343875 KC343899 KC343391 KC343415 Gomes et al. (2013) Gomes et al. (2013) ACCEPTED MANUSCRIPT MFLUCC 16-0105 D. phaseolorum CBS 113425 D. phragmitis T T CBS 138897 T KU557555 KU557579 - KU557623 KU557603 KC343174 KC344142 KC343658 KC343900 KC343416 Dissanayake et al. (2017c) Gomes et al. (2013) KP004445 KP004507 KP004503 - - Crous et al. (2014b) KX986774 KX999207 KX999246 KX999167 KX999278 Gao et al. (2017) KC343907 KC343423 Gomes et al. (2013) KC343910 KC343426 Gomes et al. (2013) KY964181 KY964138 KF777245 - Dissanayake et al. (2017a) Crous et al. (2013) - - Crous et al. (2013) CGMCC3.18281 CBS 101339T KC343181 KC344149 KC343665 D. pseudophoenicicola CBS 462.69T KC343184 KC344152 KC343668 D. pseudotsugae MFLU 15-3228 KY964225 KY964108 - D. psoraleae CBS 136412 T KF777158 KF777251 - T KF777159 KF777252 - M AN U MFLUCC 10-0571 JQ619899 JX275460 - JX275416 JX197451 Udayanga et al. (2012) MFLUCC 10-0580a JQ619887 JX275441 - JX275403 JX197433 Udayanga et al. (2012) D. pulla CBS 338.89 T KC343152 KC344120 KC343636 KC343878 KC343394 Gomes et al. (2013) D. pustulata D. pyracanthae CBS 109742 T CBS142384 KC343185 KY435635 KC344153 KY435666 KC343669 KY435645 KC343911 KY435625 KC343427 KY435656 Gomes et al. (2013) Santos et al. (2017) D. racemosae CBS 143770 MG600223 MG600227 MG600221 MG600225 MG600219 Present study KC343188 KC344156 KC343672 KC343914 KC343430 Gomes et al. (2013) KU900335 KX432254 - KX365197 - KC343189 KC344157 KC343673 KC343915 KC343431 Dissanayake et al. (2017a) Gomes et al. (2013) KP208847 KP208855 KP208851 KP208853 KP208849 Fan et al. (2015) KC343234 KC344202 KC343718 KC343960 KC343476 KC343190 KC344158 KC343674 KC343916 KC343432 Udayanga et al. (2014b) Gomes et al. (2013) KJ197287 KJ197267 - KJ197249 - Thompson et al. (2015) JX862531 KF170923 - JX862537 - Tan et al. (2013) T KY852495 KY852511 KY852503 KY852507 KY852499 Yang et al. (2018) T KC343191 KC344159 KC343675 KC343917 KC343433 Gomes et al. (2013) D. raonikayaporum D. ravennica T T CBS 133182 MFLUCC 15–0479 CBS 146.27 CFCC 50062 D. rudis CBS 113201 D. saccarata CBS 116311 D. sackstonii T AC C D. rhoina D. rostrata T TE D. pterocarpi D. pterocarpicola D CBS 136413 EP D. psoraleae-pinnatae SC D. podocarpimacrophylli D. pseudomangiferae RI PT D. pescicola T BRIP 54669b T T D. salicicola BRIP 54825 D. sambucusii CFCC 51986 D. schini CBS 133181 ACCEPTED MANUSCRIPT CFCC 51988T D. schoeni MFLU 15-1279 D. sclerotioides CBS 296.67 T T KY852497 KY852513 KY852505 KY852509 KY852501 Yang et al. (2018) KY964226 KY964109 - KY964182 KY964139 KC343193 KC344161 KC343677 KC343919 KC343435 Dissanayake et al. (2017a) Gomes et al. (2013) D. scobina CBS 251.38 KC343195 KC344163 KC343679 D. sennae CFCC 51636 T KY203724 KY228891 - CFCC 51634 T KY203722 KY228889 - T KJ197274 KJ197254 - D. sennicola RI PT D. schisandrae KC343921 KC343437 Gomes et al. (2013) KY228885 KY228875 Yang et al. (2017b) KY228883 KY228873 Yang et al. (2017b) KJ197236 - Thompson et al. (2015) BRIP 55665a D. siamensis D. sojae MFLUCC 10-0573a CBS 139282T JQ619879 KJ590719 JX275429 KJ610875 KJ659208 JX275393 KJ590762 KJ612116 Udayanga et al. (2012) Udayanga et al. (2015) D. spartinicola CBS 140003T KR611879 KR857695 KR857696 - - Crous et al. (2015c) D. sterilis CBS 136969T KJ160579 KJ160528 MF418350 KJ160611 KJ160548 Lombard et al. (2014) D. stewartii CBS 193.36 FJ889448 - - GQ250324 - Santos et al. (2010) D. stictica CBS 370.54 KC343212 KC344180 KC343696 KC343938 KC343454 Gomes et al. (2013) D. subclavata ICMP20663 KJ490630 KJ490451 KJ490572 KJ490509 - Huang et al. (2015) D. subordinaria D. taoicola CBS 101711 MFLUCC 16-0117T KC343213 KU557567 D M AN U SC D. serafiniae KC344181 KU557591 KC343697 - KC343939 KU557635 KC343455 - D. tecomae CBS 100547 T KC344183 KC343699 KC343941 KC343457 MFLUCC 12-0777 T KU712430 KU743977 - KU749359 KU749345 Doilom et al. (2017) MFLUCC 13-0471 T KU712439 KU743986 - KU749367 KU749354 Doilom et al. (2017) D. tectonigena MFLUCC 12-0767 T KU712429 KU743976 - KU749371 KU749358 Doilom et al. (2017) D. terebinthifolii CBS 133180 KC343216 KC344184 KC343700 KC343942 KC343458 Gomes et al. (2013) KC153098 - - KC153089 - Gao et al. (2014) D. ternstroemia EP D. tectonendophytica AC C D. tectonae TE KC343215 Gomes et al. (2013) Dissanayake et al. (2017c) Gomes et al.(2013) T CGMCC 3.15183 T D. thunbergii MFLUCC 10-0756a JQ619893 JX275449 - JX275409 JX197440 Udayanga et al. (2012) D. torilicola MFLUCC 17-1051 T KY964212 KY964096 - KY964168 KY964127 D. toxica CBS 534.93 KC343220 KC344188 KC343704 KC343946 KC343462 Dissanayake et al. (2017a) Gomes et al.(2013) T FFPRI420987 LC275192 LC275224 LC275216 LC275216 LC275200 Ando et al. (2017) D. tulliensis D. ueckerae BRIP 62248a FAU 656 KR936130 KJ590726 KR936132 KJ610881 KJ659215 KR936133 KJ590747 KJ612122 Crous et al. (2015e) Huang et al. (2015) D. undulata CGMCC 3.18293 KX986798 KX999230 KX999269 KX999190 - Gao et al. (2017) KJ490587 KJ490408 KJ490529 KJ490466 - Huang et al. (2015) AF317578 KC344196 KC343712 GQ250326 KC343470 Gomes et al. (2013) KJ869137 KJ869247 - - - Crous et al. (2014c) D. vaccinii CGMCC3.17569 CBS 160.32 T T T D. vangueriae CBS 137985 D. vawdreyi BRIP 57887a D. velutina CGMCC 3.18286 D. vexans D. virgiliae D. woodii KR936126 KR936128 KX986790 KX999223 CBS 127.14 CBS 138788T KC343229 KP247573 KC344197 KP247582 CBS 558.93 KC343244 T KR936129 - Crous et al. (2015e) KX999182 - Gao et al. (2017) KC343713 - KC343955 - KC343471 - KC344212 KC343728 KC343970 KC343486 Gomes et al.(2013) Machingambi et al. (2015) Gomes et al. (2013) KX999261 M AN U D. unshiuensis T SC D. toxicodendri RI PT ACCEPTED MANUSCRIPT CBS 148.27 KC343245 KC344213 KC343729 KC343971 KC343487 Gomes et al. (2013) CGMCC 3.18282 T KX986783 KX999216 KX999255 KX999175 - Gao et al. (2017) CGMCC 3.18289 T KX986796 KX999228 KX999267 KX999188 KX999290 Gao et al. (2017) D. yunnanensis 1 D D. woolworthii D. xishuangbanica AC C EP TE BRIP: Queensland Plant Pathology Herbarium, Brisbane, Australia; CBS: Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands; CFCC: China Forestry Culture Collection Center, Beijing, China; CGMCC: Chinese General Microbiological Culture Collection Center, Beijing, China; CPC: Culture collection of Pedro Crous, housed at Westerdijk Fungal Biodiversity Institute; DAOM: Plant Research Institute, Department of Agriculture (Mycology), Ottawa, Canada; DAOMC: Canadian Collection of Fungal Cultures, Ottawa, Canada; FAU: Isolates in culture collection of Systematic Mycology and Microbiology Laboratory; ICMP: International Collection of Micro-organisms from Plants, Landcare Research, Private Bag 92170, Auckland, New Zealand; IFRDCC: International Fungal Research and Development Culture Collection; MFLU: Mae Fah Luang University herbarium, Thailand; MFLUCC: Mae Fah Luang University Culture Collection, Chiang Rai, Thailand; LC: Working collection of Lei Cai, T housed at Institute of Microbiology, Chinese Academy of Sciences, Beijing, China. indicates ex-type strains. 2 ITS: internal transcribed spacers and intervening 5.8S nrDNA; tub2: partial β-tubulin gene; his3: partial histone H3 gene; tef1: partial elongation factor 1-alpha gene; cal: partial calmodulin gene. ACCEPTED MANUSCRIPT Table 11. DNA barcodes of accepted Microdochium spp. Isolates 1 GenBank accession numbers rpb2 tub2 References CBS 290.79 KP859014 KP859123 KP859077 Hernández-Restrepo et al. (2016a) Mi. bolleyi CBS 540.92 KP859010 KP859119 KP859073 Hernández-Restrepo et al. (2016a) LT990657 LT990643 LT990610 Present study KP859003 KP859112 KP859066 KP858999 KP859108 KP859062 Hernández-Restrepo et al. (2016a) KU746690 - KP859015 CBS 624.94 T Mi. chrysanthemoides CGMCC3.17929 Mi. fisheri CBS 242.91T T T Hernández-Restrepo et al. (2016a) KU746781 Zhang et al. (2017) KP859124 KP859078 Hernández-Restrepo et al. (2016a) KP859016 KP859125 KP859079 Hernández-Restrepo et al. (2016a) KP859001 KP859110 KP859064 Hernández-Restrepo et al. (2016a) KP859111 KP859065 Hernández-Restrepo et al. (2016a) KP859117 KP859071 Hernández-Restrepo et al. (2016a) Mi. lycopodinum CBS 122885 Mi. majus CBS 741.79 Mi. neoqueenslandicum CBS 108926T KP859002 T KP859008 M AN U Mi. colombiense CBS 109067 D Mi. citrinidiscum T SC Microdochium albescens CPC 29378 CBS 116205 Mi. novae-zelandiae CBS 143847 LT990655 LT990641 LT990608 Present study CPC 29693 LT990656 LT990642 LT990609 Present study KP859013 KP859122 KP859076 Hernández-Restrepo et al. (2016a) KP859038 KP859147 KP859101 Hernández-Restrepo et al. (2016a) Mi. phragmitis CBS 285.71 Mi. seminicola CBS 139951T Mi. sorghi CBS 691.96 KP859000 KP859109 KP859063 Hernández-Restrepo et al. (2016a) CBS 269.76 T KP859009 KP859118 KP859072 Hernández-Restrepo et al. (2016a) CBS 623.77 T KP858998 KP859107 KP859061 Hernández-Restrepo et al. (2016a) AC C Mi. trichocladiopsis EP ET TE Mi. nivale Mi. tainanense 1 ITS 2 RI PT Species CBS: Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands; CPC: Personal collection of Pedro Crous housed at the Westerdijk Fungal Biodiversity Institute; CGMCC: China General Microbiological Culture Collection Center. T and ET indicate extype and ex-epitype strains. ACCEPTED MANUSCRIPT 2 AC C EP TE D M AN U SC RI PT ITS: internal transcribed spacers and intervening 5.8S nrDNA; rpb2: partial RNA polymerase II second largest subunit gene; tub2: partial β-tubulin gene. AC C EP TE D M AN U SC RI PT ACCEPTED MANUSCRIPT AC C EP TE D M AN U SC RI PT ACCEPTED MANUSCRIPT AC C EP TE D M AN U SC RI PT ACCEPTED MANUSCRIPT AC C EP TE D M AN U SC RI PT ACCEPTED MANUSCRIPT x10 Gliocladiopsis sagariensis CBS 199.55 Cylindrocladiella clavata CBS 129563 Cylindrocladiella clavata CBS 129564 Cylindrocladiella humicola CBS 142777 Cylindrocladiella humicola CBS 142779 Cylindrocladiella reginae CBS 142782 ACCEPTED MANUSCRIPT EP TE D M AN U SC RI PT Cylindrocladiella parva CBS 114524 Cylindrocladiella stellenboschensis CBS 115611 Cylindrocladiella stellenboschensis CBS 110668 Cylindrocladiella pseudoparva CBS 129560 Cylindrocladiella pseudoparva CBS 113624 Cylindrocladiella lanceolata CBS 129565 Cylindrocladiella lanceolata CBS 129566 Cylindrocladiella lageniformis CBS 340.92 Cylindrocladiella lageniformis CBS 111060 Cylindrocladiella hahajimaensis PD684 Cylindrocladiella variabilis CBS 375.93 Cylindrocladiella variabilis CBS 129561 Cylindrocladiella australiensis CBS 129567 Cylindrocladiella australiensis CBS 129568 Cylindrocladiella longistipitata CBS 112953 Cylindrocladiella longistipitata CBS 116075 Cylindrocladiella nauliensis CBS 143791 Cylindrocladiella nauliensis CBS 143792 Cylindrocladiella ellipsoidea CBS 129572 Cylindrocladiella ellipsoidea CBS 129573 Cylindrocladiella thailandica CBS 129570 Cylindrocladiella thailandica CBS 129571 Cylindrocladiella horticola CBS 142785 Cylindrocladiella horticola CBS 142784 Cylindrocladiella queenslandica CBS 129575 Cylindrocladiella queenslandica CBS 129574 Cylindrocladiella pseudoinfestans CBS 114531 Cylindrocladiella pseudoinfestans CBS 114530 Cylindrocladiella kurandica CBS 129576 Cylindrocladiella kurandica CBS 129577 Cylindrocladiella brevistipitata CBS 142786 Cylindrocladiella infestans CBS 191.50 Cylindrocladiella infestans CBS 111795 Cylindrocladiella lateralis CBS 142788 Cylindrocladiella lateralis CBS 142787 Cylindrocladiella hawaiiensis CBS 129569 Cylindrocladiella hawaiiensis CBS 118704 Cylindrocladiella pseudohawaiiensis CBS 210.94 Cylindrocladiella pseudohawaiiensis CBS 115610 Cylindrocladiella viticola CBS 112897 Cylindrocladiella viticola CBS 114682 x4 Cylindrocladiella elegans CBS 338.92 Cylindrocladiella elegans CBS 110801 Cylindrocladiella novaezelandica CBS 486.77 Cylindrocladiella addiensis CBS143794 x4 Cylindrocladiella addiensis CBS143793 Cylindrocladiella addiensis CBS143795 Cylindrocladiella cymbiformis CBS 129553 Cylindrocladiella pseudocamelliae CBS 129556 Cylindrocladiella pseudocamelliae CBS 129555 x4 Cylindrocladiella microcylindrica CBS 111794 Cylindrocladiella natalensis CBS 114944 x4 Cylindrocladiella natalensis CBS 114943 Cylindrocladiella terrestris CBS 142790 Cylindrocladiella terrestris CBS 142789 Cylindrocladiella peruviana IMUR1843 Cylindrocladiella peruviana CBS 114697 Cylindrocladiella longiphialidica CBS 129558 Cylindrocladiella longiphialidica CBS 129557 Cylindrocladiella camelliae CBS 114891 Cylindrocladiella camelliae IMI 346845 Cylindrocladiella nederlandica CBS 152.91 Cylindrocladiella nederlandica CBS 146.94 0.2 AC C x10 AC C EP TE D M AN U SC RI PT ACCEPTED MANUSCRIPT AC C EP TE D M AN U SC RI PT ACCEPTED MANUSCRIPT AC C EP TE D M AN U SC RI PT ACCEPTED MANUSCRIPT CBS 121124T Corylus sp. China Diaporthella corylina Diaporthe eleagni D. saccarata D. oncostoma D. incospicua D. anacardii D. cytosporella D. baccae D. foeniculina D. hongkongensis D. pseudophoenicicola D. pseudomangifaerae D. arengae D. perseae D. arecae D. decedens D. citri D. citrichinensis D. heterophyllae sp. nov. D. neilliae D. alnea D. helicis D. pulla AC C EP TE D M AN U SC CBS 504.72 Eleangus sp. Netherlands CBS 116311T Protea repens South Africa 1/100 CBS 589.78 Robinia pseudoacacia FranceMANUSCRIPT 0.73/100 ACCEPTED T CBS 133813 Maytenus ilicifolia Brazil CBS 720.97T Anacardium occidentale Eastern Africa 0.94/CBS 137020 T Citrus limon Spain 0.89 CBS 136972 T Vaccinium corymbosum Italy 1/100 CBS 187.27 Camellia sinensis Italy 1/100 CBS 111553T Foeniculum vulgare Spain 1/98 CBS 111554 Foeniculum vulgare Portugal 0.99/75 CBS 123208 Foeniculum vulgare Portugal CBS 123209 Foeniculum vulgare Portugal CBS 115448 T Dichroa febrifuga China 1/100 CBS 462.69T Phoenix dactylifera Spain CBS 101339 T Mangifera indica Dominican Republic 1/100 CBS 114979 T Arenga engleri Hong Kong 1/81 1/CBS 151.73 Persea gratissima Netherlands CBS 161.64T Areca catechu India 1/59 1/- CBS 535.75 Citrus sp. Suriname CBS 109772 Coryllus avellana Austria CBS 134237 Citrus reticulata China 1/100 CBS 134239T Citrus sinensis USA 0.76/99 1/99 CBS 135422 Citrus sp. USA 1/100 CBS 134242T Citrus sp. China CPC 26215 T Acacia heterophylla La Réunion (France) 1/52 CBS 144.27T Spiraea sp. USA CBS 146.46T Alnus sp. Netherlands 1/CBS 138596T Hedera helix France 1/100 CBS 338.89T Hedera helix Yugoslavia 1/99 0.81/CBS 200.39 Laurus nobilis Germany 1/92 CBS 116953 Pyrus pyrifolia New Zealand 1/91 CBS 113470 Castanea sativa Australia CBS 587.79 Pinus pentaphylla Japan 0.67/CBS 439.82T Cotoneaster sp. Scotland CBS 101742 Fraxinus sp. Netherlands 1/100 1/93 CBS 138594 Ulmus laevis Germany 1/81 CBS 139.27T Celastrus sp. USA CBS 121004T Junglans sp. USA 1/90 CBS 495.72T Betula alleghaniensis Canada 0.81/1/89 CBS 160.32T Vaccinium macrocarpon USA 1/96 CBS 118571 Vaccinium corymbosum USA 1/100 0.05 0.98/59 CBS 122114 Vaccinium corymbosum USA RI PT 4X D. eres D. celastrina D. bicincta D. alleghaniensis D. vaccinii D. carpini D. detrusa D. impulsa D. fibrosa D. ampelina AC C EP TE D M AN U SC RI PT CBS 114437 Carpinus betulus Sweden CBS 109770 Barberis vulgaris Austria 1/100 ACCEPTED MANUSCRIPT CBS 114434 Sorbus aucuparia Sweden 0.99/CBS 109751 Rhamnus cathartica Austria 1/0.8/CBS 111888 Vitis vinifera USA 0.99/1/100 CBS 114016 T Vitis vinifera France CBS 109745 T Ulmus glabra Austria CBS 129521 T Acacia retinodes Australia CBS 126679T Prunus dulcis Portugal 1/100 1/100 0.89/CBS 136969 T Vaccinium corymbosum Italy 0.98/CBS 534.93 T Lupinus angustifolius Australia 4X 0.83 BRIP 54801 T Nothofagus cunninghamii Australia 1/CBS 111886 T Vitis vinifera Australia 1/100 CBS 113201 Vitis vinifera Portugal 1/100 1/100 CBS 114436 Sambucus cf. racemosa Sweden CBS 134240 T Citrus unshiu China CBS 117167 Aspalathus linearis South Africa 1/100 CBS 187.87 Helianthus annuus Italy 1/100 CBS 133812 T Schinus terebinthifolius Brazil 1/99 CBS 127271T Glycine max Croatia 0.99/76 CBS 111592 T Heracleum sphondylium Austria 1/100 0.99/79 CBS 117499 T Aspalathus linearis South Africa CBS 133180 T Schinus terebinthifolius Brazil 1/100 1/100 CPC 26646T Euclea racemosa South Africa 1/99 CBS 133181 T Schinus terebinthifolius Brazil CBS 344.94 Helianthus annuus 1/98 1/100 CBS 592.81 T Helianthus annuus Serbia CBS 507.78T Cucumis melo 0.78/CGMCC3 17569 T Citrus unshiu China 1/95 CBS 199.39 Unknown Italy 0.94/1/100 CBS 230.52 T Citrus sinensis Suriname 1/75 CBS 133811 T Schinus terebinthifolius 1/100 CBS 139282T Glycine max USA 1/100 CBS 116019 Caperonia palustris USA CBS 113425 Olearia cf. rani New Zealand 0.99/94 0.05 1/85 CBS 127465 Actinidia chinensis New Zealand D. perjuncta D. acaciigena D. amygdali D. sterilis D. toxica D. nothofagi D. australafricana D. rudis D. citriasiana D. ambigua D. infecunda D. novem D. angelicae D. cuppatea D. terebinthifolii D. racemosae sp. nov. D. schini D. helianthi D. melonis D. unshiuensis D. infertilis D. endophytica D. sojae D. phaseolorum AC C EP TE D M AN U SC RI PT ACCEPTED MANUSCRIPT AC C EP TE D M AN U SC RI PT ACCEPTED MANUSCRIPT AC C EP TE D M AN U SC RI PT ACCEPTED MANUSCRIPT ACCEPTED MANUSCRIPT CBS 584.71 100 CBS 145.57T Dichotomophthora lutea CBS 585.71 100 100 CBS 518.78 100 CPC 33016T 100 RI PT CBS 132.81 Dichotomophthora basellae sp. nov. CBS 174.35PT Dichotomophthora portulacae CBS 149.94T Dichotomophthora brunnea sp. nov. M AN U BRIP 14541 SC 100 100 CBS 239.48 AC C EP TE D 0.004 Curvularia portulacae AC C EP TE D M AN U SC RI PT ACCEPTED MANUSCRIPT AC C EP TE D M AN U SC RI PT ACCEPTED MANUSCRIPT AC C EP TE D M AN U SC RI PT ACCEPTED MANUSCRIPT CPC 26020 Gaeumannomyces graminis ACCEPTED MANUSCRIPT 100 CBS 141390T Gaeumannomyces oryzicola 97 CBS 141387T Gaeumannomyces australiensis CBS 141377T Gaeumannomyces californicus 100 CBS 141379T Gaeumannomyces fusiformis CBS 352.93T Gaeumannomyces graminicola CBS 141378T Gaeumannomyces floridanus 90 RI PT 100 99 CBS 235.32T Gaeumannomyces oryzinus CBS 296.53T SC Gaeumannomyces radicicola 98 CBS 350.77T Gaeumannomyces hyphopodioides M AN U 100 BRIP 60376A Gaeumannomyces wongoonoo 79 CBS 141394T Gaeumannomyces setariicola 100 CBS 903.73T 94 CBS 141400T CBS 905.73 CPC 26258ET TE 89 94 D 92 CPC 26057T 98 EP 100 CBS 109354T AC C 0.03 Gaeumannomyces tritici Gaeumannomyces avenae Gaeumannomyces glycinicola Gaeumannomyces ellisiorum CM12M9T CBS 125863T Gaeumannomyces walkeri Gaeumannomyces amomi CBS 387.81T 100 Gaeumannomyces arxii Pseudophialophora eragrostis Falciphora oryzae AC C EP TE D M AN U SC RI PT ACCEPTED MANUSCRIPT 3x Cryphonectria parasitica ACCEPTED MANUSCRIPT 85/0.99 AC C EP TE D 89/0.95 0.05 Harknessia pilularis sp. nov. Harknessia corymbiae sp. nov. Harknessia syzygii Harknessia eucalyptorum Harknessia renispora Harknessia pellitae Harknessia banksiae-repens Harknessia banksiae Harknessia banksiigena Harknessia communis RI PT 90/0.99 Harknessia rhabdosphaera Harknessia fusiformis SC 9x M AN U 81/- CBS 122373 100/1 CPC 33356 CPC 33218T CPC 33289T CBS 111124T 100/1 CBS 113620 CBS 111115T CBS 153.71IsoT CBS 142543T CBS 142541T CBS 142539T 96/0.99 73/CBS 142540T CBS 142538T CPC 11124 100/1 90/1 CBS 110785T CBS 120030T CBS 115647T 98/1 CBS 132127ET 99/1 CBS 132128ET CBS 113074 CBS 110729 CBS 110729 99/87/1 CPC 16277T CPC 13596 100/1 CBS 132119T CBS 143913T 95/0.96 CBS 142544T 96/1 100/1 CPC 17209 CBS 132125T T 100/1 CBS 132121 CPC 17113 CBS 142542T 92/1 CBS 115648 T 96/1 CBS 132124 CPC 13001 95/1 CBS 114811 100/1 CBS 111122 CPC 14924 99/1 CBS 111578T 93/1 CPC 13643 CBS 342.97 97/1 CBS 114877T CBS 136426T CBS 137228ET 86/CBS 120033T 86/0.95 CPC 17642 CBS 111829T CBS 115061 99/1 CBS 112618T 72/CBS 111830 96/1 CBS 112620 100/1 CBS 775.97T CBS 143914T 100/1 CPC 30174 Harknessia ipereniae Harknessia viterboensis Harknessia spermatoidea Harknessia weresubiae Harknessia uromycoides Harknessia kleinzeeina Harknessia australiensis Harknessia bourbonica sp. nov. Harknessia malayensis Harknessia ravenstreetina Harknessia ellipsoidea Harknessia platyphyllae Harknessia karwarrae Harknessia pseudohawaiiensis Harknessia hawaiiensis Harknessia globispora Harknessia eucalypti Harknessia molokaiensis Harknessia proteae Harknessia arctostaphyli Harknessia gibbosa Harknessia capensis Harknessia protearum Harknessia leucospermi Harknessia cupressi sp. nov. AC C EP TE D M AN U SC RI PT ACCEPTED MANUSCRIPT AC C EP TE D M AN U SC RI PT ACCEPTED MANUSCRIPT AC C EP TE D M AN U SC RI PT ACCEPTED MANUSCRIPT AC C EP TE D M AN U SC RI PT ACCEPTED MANUSCRIPT AC C EP TE D M AN U SC RI PT ACCEPTED MANUSCRIPT CMW 9986 ACCEPTED MANUSCRIPT 100 Huntiella moniliformopsis CMW 13013 Huntiella tribiliformis 100 CMW 10134 Huntiella moniliformis 100 Huntiella sublaevis CMW 22449 CMW 28932 Huntiella bhutanensis RI PT CMW 8217 CMW 17300 Huntiella savannae Huntiella oblonga CMW 23803 100 SC CMW 30855 CMW 25911 M AN U 86 CMW 15245 CMW 24658 CMW 21109 79 TE D CMW 21117 AC C EP 0.04 Huntiella tyalla CMW 21092 CMW 21106 Huntiella decipiens Huntiella salinaria Huntiella ceramica Huntiella chinaeucensis Huntiella sumatrana Huntiella microbasis Huntiella abstrusa sp. nov. Huntiella inquinans AC C EP TE D M AN U SC RI PT ACCEPTED MANUSCRIPT AC C EP TE D M AN U SC RI PT ACCEPTED MANUSCRIPT Pyricularia grisea CBS 128304 96/1 Pyricularia penniseticola ML0031T ACCEPTED MANUSCRIPT 83/0.99 -/1 100/1 96/0.97 Pyricularia oryzae CBS 255.38 Pyricularia graminis-tritici URM7380T Pyricularia angulata NBRC 9625 Pyricularia Pyricularia urashimae CBS 142117T Pyricularia zingibericola RN0001 85/1 Pyricularia ctenantheicola GR0002T 100/1 Pyriculariomyces asari CPC 27442 Pyriculariomyces gen. nov. Pyriculariomyces asari CPC 27444T Neopyricularia commelinicola CBS 128308T 78/0.99 Neopyricularia Proxypiricularia Proxipyricularia zingiberis CBS 132195 Bambusicularia SC Bambusicularia brunnea CBS 133599T 91/0.99 RI PT Pyricularia pennisetigena ML0036T Utrechtiana roumeguerei CBS 128780 100/1 T Utrechtiana Utrechtiana arundinacea CPC 33994ET M AN U Pseudopyricularia cyperi CBS 133595T 71/0.97 100/1 Pseudopyricularia higginsii CBS 121934 100/1 79/0.98 Pseudopyricularia hagahagae CPC 25635T Pseudopyricularia Pseudopyricularia bothriochloae CBS 136427T Pseudopyricularia kyllingae CBS 133597T 80/- Macgarvieomyces juncicola CBS 610.82 Macgarvieomyces luzulae CPC 32458ET D 99/1 100/1 Macgarvieomyces luzulae CPC 31571 Macgarvieomyces Macgarvieomyces luzulae CPC 31555 TE 100/1 Macgarvieomyces borealis CBS 461.65T AC C EP Xenopyricularia zizaniicola CBS 133593NT 0.07 Barretomyces Barretomyces calatheae CBS 129274 Xenopyricularia Bussabanomyces longisporus CBS 125232T AC C EP TE D M AN U SC RI PT ACCEPTED MANUSCRIPT AC C EP TE D M AN U SC RI PT ACCEPTED MANUSCRIPT 3x Cladosporium tenuissimum CBS 125995ET ACCEPTED MANUSCRIPT CPC 33937 -/1 CBS 161.74ET Metulocladosporiella musae CBS 113863 100/1 M. malaysiana sp. nov. CBS 143919T M. samutensis sp. nov. CBS 143921T M. musigena sp. nov. CBS 143920T 90/1 RI PT 3x M. chiangmaiensis sp. nov. CBS 143918T CPC 32970 100/1 CBS 113862 100/1 85/0.98 CBS 113860 M AN U 73/0.99 SC CBS 113864 76/0.99 CBS 113865 CPC 32807 94/0.98 CPC 32849 D CPC 18124 AC C 0.05 EP TE 71/1 -/1 CBS 113873 CBS 113861 CBS 110960T CBS 110962 99/1 CBS 110964 M. musicola AC C EP TE D M AN U SC RI PT ACCEPTED MANUSCRIPT AC C EP TE D M AN U SC RI PT ACCEPTED MANUSCRIPT AC C EP TE D M AN U SC RI PT ACCEPTED MANUSCRIPT AC C EP TE D M AN U SC RI PT ACCEPTED MANUSCRIPT AC C EP TE D M AN U SC RI PT ACCEPTED MANUSCRIPT CBS 741.79 ACCEPTED MANUSCRIPT Microdochium majus CBS 116205T Microdochium nivale 100 Microdochium colombiense CBS 624.94T 82 CPC 29378 100 Microdochium bolleyi 98 100 RI PT CBS 540.92 CPC 29376T Microdochium novae-zelandiae sp. nov. CPC 29693 CBS 139951T Microdochium seminicola SC 100 99 100 100 CBS 691.96 100 CBS 269.76T CBS 285.71ET CBS 122885T EP 100 AC C CBS 242.91T 100 0.06 D TE 100 Microdochium citrinidiscum Microdochium sorghi Microdochium taiwanense Microdochium trichocladiopsis CBS 623.77T CBS 108926T M AN U CBS 109067T 100 Microdochium albescens CBS 290.79 100 Microdochium neoqueenslandicum Microdochium phragmitis Microdochium lycopodinum Microdochium fisheri Thamnomyces dendroidea CBS 123578 Xylaria polymorpha MUCL 49884 AC C EP TE D M AN U SC RI PT ACCEPTED MANUSCRIPT AC C EP TE D M AN U SC RI PT ACCEPTED MANUSCRIPT CBS 496.80T Oculimacula anguioides ACCEPTED MANUSCRIPT CBS 495.80T 2x -/1 Oculimacula acuformis comb. nov. CBS 114730 Oculimacula aestiva 95/- CBS 128.31 Oculimacula yallundae CBS 110655NT RI PT 75/0.98 CBS 494.80 2x SC Cadophora melinii AF0832052 AC C EP TE D M AN U 0.02 AC C EP TE D M AN U SC RI PT ACCEPTED MANUSCRIPT ACCEPTED MANUSCRIPT BRIP 65178 TE D M AN U SC RI PT BRIP 65179 BRIP 65170 BRIP 65177 BRIP 57989 Pa. chlamydocopiosa BRIP 65176 BRIP 65174 BRIP 57988 BRIP 65168 BRIP 65173 BRIP 63682 BRIP 63685 Pa. vinacea BRIP 63684 BRIP 63683 BRIP 65169 Pa. pye BRIP 65171 Pa. rhaphiolepidis CBS 142524 CBS 522.66 Pa. chrysanthemicola CBS 172.70 CBS 111.79 Pa. radicina CBS 102875 CPC 11361 Pa. dioscoreae CPC 11355 CBS 135100 CBS 379.67 CBS 550.70 CBS 368.91 Pa. fimeti CBS 164.31 CBS 119754 CBS 258.68 CBS 170.70 Neosetophoma samarorum CBS 138.96 AC C EP 0.009 AC C EP TE D M AN U SC RI PT ACCEPTED MANUSCRIPT CBS 211.97 CBS 110212 Phaeoacremonium fraxinopennsylvanicum 0.98/89 CBS 101585T 0.85/65 ICMP 17037T Phaeoacremonium occidentale 1/99 T CBS 123037 Phaeoacremonium croatiense 0.99/98 T CBS 123036 Phaeoacremonium hungaricum 1/100 PARC392 Phaeoacremonium canadense 0.99/92 DAOM 242366T ACCEPTED MANUSCRIPT CBS 114512 1/100 CBS 110157 Phaeoacremonium leptorrhynchum CBS 110156 MFLUCC 14-1130 1/100 MFLUCC 14-1125 Phaeoacremonium tectonae T MFLUCC 13-0707 1/89 CBS 777.83T Phaeoacremonium argentinense 1/100 T CBS 142704 1/100 Phaeoacremonium oleae CBS 142701 0.99/86 ICMP 17038 1/100 ICMP 16988T Phaeoacremonium globosum ICMP 16987 1/100 ICMP 17421T Phaeoacremonium armeniacum 0.98/95 1/100 STE-U 6364 Phaeoacremonium africanum CBS 120863T 0.99/83 1/100 STE-U 5968 1/97 Phaeoacremonium prunicolum CBS 120858T CBS 120857T Phaeoacremonium griseo-olivaceum 1/100 CBS 142715 Phaeoacremonium spadicum CBS 142711T 0.75/59 Pir-1 1/100 Phaeoacremonium iranianum CBS 117114 T CBS 101357 1/100 CBS 246.91T 0.89/69 1/100 Phaeoacremonium minimum CBS 100397 1/100 CBS 110703 CBS 123033T Phaeoacremonium tuscanicum 0.72/100 PARC273 Phaeoacremonium roseum 1/97 DAOM 242365T CBS 114992T 1/100 Phaeoacremonium angustius 1/100 CBS 114991 0.87/62 CBS 113065 1/78 1/81 CBS 101738T Phaeoacremonium viticola CBS 101737 CBS 142700 1/100 Phaeoacremonium longicollarum CBS 142699T CBS 114994 1/100 CBS 114993 Phaeoacremonium austroafricanum T 1/100 CBS 112949 1/95 1/100 Phaeoacremonium pseudopanacis CBS 142101T 0.99/100 CBS 142717 Phaeoacremonium geminum 1/98 CBS 142713T Phaeoacremonium gamsii CBS 142712T T Phaeoacremonium theobromatis CBS 111586 T CBS 120862 Phaeoacremonium pallidum 1/100 CBS 142689 1/97 Phaeoacremonium album 1/98 CBS 142688T CBS 142694T Phaeoacremonium bibendum 1/100 T CBS 142708 Phaeoacremonium rosicola Psp-2 1/100 Phaeoacremonium amygdalinum Psp-1 T CBS 128570 AC C EP TE D M AN U SC RI PT 0.88/94 1/100 CBS 137498T Phaeoacremonium santali A4 A37 0.93/57 CBS 566.97 Phaeoacremonium griseorubrum 0.79/65 CBS 111657T 1/99 CBS 113597T 1/99 Phaeoacremonium scolyti CBS 113593 CBS 112585 1/99 Phaeoacremonium amstelodamense CBS 110627T CBS 142687 1/100 ACCEPTED MANUSCRIPT Phaeoacremonium pravum sp. nov. CBS 142686T 0.95/91 1/100 CBS 142707T Phaeoacremonium proliferatum CBS 142706 0.88/48 CBS 113592 1/100 Phaeoacremonium australiense 1/100 CBS 113589T 1/100 CBS 113587 0.99/85 Phaeoacremonium subulatum CBS 113584T 1/96 CBS 142698 Phaeoacremonium junior 1/97 CBS 142697T 1/98 CMM 4334 1/100 Phaeoacremonium nordesticola CMM 4312T 1/100 A34 Phaeoacremonium luteum 1/86 CBS 137497T 1/100 CBS 110573T Phaeoacremonium tardicrescens 1/100 CBS 137764 1/96 CBS 137763T Phaeoacremonium italicum 0.99/80 CBS 113590 CBS 408.78 0.98/100 Phaeoacremonium alvesii T 1/100 CBS 110034 CBS 498.94T 0.98/83 Phaeoacremonium rubrigenum 0.97/97 CBS 112046 Phaeoacremonium paululum CBS 142705T 0.62/84 CBS 860.73T 1/100 CBS 514.82 Phaeoacremonium parasiticum 0.8/48 CBS 113585 1/100 CBS 142691T Phaeoacremonium aureum 1/100 CBS 142690 1/100 STE-U 6366 Phaeoacremonium fuscum 1/100 CBS 120856T CBS 113595 0.81/57 CBS 110119 Phaeoacremonium venezuelense 1/100 CBS 651.85T Pm4 1/100 0.88/45 Phaeoacremonium cinereum Pm2 1/100 CBS 123909T CBS 123910T Phaeoacremonium hispanicum 1/100 1/100 CBS 117115T Phaeoacremonium vibratile 1/97 CBS 391.71T 1/100 Phaeoacremonium inflatipes CBS 113273 CBS 166.75 0.7/99 CBS 110118 1/100 Phaeoacremonium krajdenii CBS 109479T 0.89/40 CBS 110368 1/100 CBS 142710T Phaeoacremonium meliae CBS 142709 1/100 CBS 694.88 Phaeoacremonium sphinctrophorum CBS 337.90T 1/100 CBS 123035 Phaeoacremonium sicilianum CBS 123034T 0.95/79 Jattaea algeriensis CBS 120871 Calosphaeria africana CBS 120870 Pleurostoma richardsiae CBS 270.33T TE D EP AC C 1/99 M AN U SC RI PT 1/100 0.2 AC C EP TE D M AN U SC RI PT ACCEPTED MANUSCRIPT AC C EP TE D M AN U SC RI PT ACCEPTED MANUSCRIPT Phyllosticta podocarpi Phyllosticta carissicola Phyllosticta pseudotsugae Phyllosticta owaniana Phyllosticta vaccinii Phyllosticta vacciniicola Phyllosticta philoprina Phyllosticta ilicis-aquifolii Phyllosticta mangifera-indica Phyllosticta mimusopisicola Phyllosticta brazilianiae Phyllosticta beaumarisii Phyllosticta partricuspidatae Phyllosticta parthenocissi Phyllosticta ampelicida Phyllosticta vitis-rotundifoliae Phyllosticta musarum Phyllosticta maculata Phyllosticta cavendishii Phyllosticta aristolochiicola Phyllosticta cordylinophila Phyllosticta paracapitalensis Phyllosticta capitalensis Phyllosticta alliacea Phyllosticta fallopiae Phyllosticta schimae Phyllosticta schimicola Phyllosticta carochlae Phyllosticta ardisiicola Phyllosticta styracicola Phyllosticta eugeniae Phyllosticta aloeicola Phyllosticta podocarpicola Phyllosticta paxistimae Phyllosticta pachysandricola Phyllosticta leucothoicola Phyllosticta cornicola Phyllosticta gaultheriae Phyllosticta neopyrolae Phyllosticta rubella Phyllosticta yuccae Phyllosticta hamamelidis Phyllosticta sphaeropsoidea Phyllosticta minima Phyllosticta ligustricola Phyllosticta abieticola Phyllosticta telopeae Phyllosticta cruenta Phyllosticta hubeiensis Phyllosticta persooniae sp. nov. Phyllosticta foliorum Phyllosticta hymenocallidicola Phyllosticta citriasiana Phyllosticta citrimaxima Phyllosticta paracitricarpa Phyllosticta citricarpa Phyllosticta bifrenariae Phyllosticta catimbauensis Phyllosticta rhaphiolepidis Phyllosticta ericarum Phyllosticta citribraziliensis Phyllosticta concentrica Phyllosticta kerriae Phyllosticta spinarum Phyllosticta citrichinaensis Phyllosticta elongata Phyllosticta cussonia Phyllosticta iridigena sp. nov. Phyllosticta hypoglossi Phyllosticta aspidistricola Phyllosticta hostae AC C EP TE D M AN U SC RI PT CBS 111646 CPC 25665T CBS 111649 70/CBS 776.97ETACCEPTED MANUSCRIPT 97/1 ATCC 46255ET CBS 136062T 99/1 CBS 587.69 CGMCC 3.14358T CBS 136061T CBS 138899T CBS 129060T CBS 535.87T 79/0.99 NBRC 9466T CBS 111645 72/0.98 ATCC 200578NT CGMCC 3.17322T IsoET 93/0.97 100/1 BRIP 55434 CBS 132581ET 88/0.98 BRIP 55420IsoT T BRIP 53316a CBS 136244NT CPC 26517T CBS 128856ET 99/1 T 90/0.95 MUCC 0014 T MUCC 0113 100/1 CGMCC 3.14354T CGMCC 3.17319T CGMCC 3.17317T MUCC 0031T CGMCC 3.14985T CBS 445.82 CBS 136058T CBS 728.79T CBS 112527T MUCC 124T CBS 136073T 73/CBS 111639 CBS 447.70T CBS 134750T 99/1 CBS 111635T CBS 117136 MUCC 149 CBS 756.70 90/CBS 585.84NT MUCC 0024T CBS 112067T CBS 777.97T CBS 858.71 CGMCC 3.14986T CBS 143409T CBS 447.68NT CBS 131309T 75/0.95 99/1 CBS 120486T CBS 136059T CBS 141357T 100/1 100/1 CBS 127454ET CBS 128855T URM 7672T -/0.96 MUCC 0432T 98/1 T 100/1 CBS 132534 75/0.98 CBS 100098T CBS 937.70ET -/0.95 MUCC 0017T CBS 292.90 98/1 CBS 130529T CBS 126.22T 76/CBS 136060ET CBS 143410T 80/CBS 434.92NT 76/- 95/1 MUCC 0010T CGMCC 3.14355T Peyronellaea obtusa CMW8232 99/1 0.05 AC C EP TE D M AN U SC RI PT ACCEPTED MANUSCRIPT AC C EP TE D M AN U SC RI PT ACCEPTED MANUSCRIPT AC C EP TE D M AN U SC RI PT ACCEPTED MANUSCRIPT AC C EP TE D M AN U SC RI PT ACCEPTED MANUSCRIPT AC C EP TE D M AN U SC RI PT ACCEPTED MANUSCRIPT AC C EP TE D M AN U SC RI PT ACCEPTED MANUSCRIPT AC C EP TE D M AN U SC RI PT ACCEPTED MANUSCRIPT AC C EP TE D M AN U SC RI PT ACCEPTED MANUSCRIPT 65 MFLUCC 13-0735T ACCEPTED MANUSCRIPT CPC 27468 76 70 Wojnowiciella dactylidis CPC 30353 CPC 33929 CPC 32741 CBS 141297T RI PT 78 Wojnowiciella cissampeli MFLUCC 13-0737T Wojnowiciella lonicerae MFLUCC 13-0402T Wojnowiciella spartii Wojnowiciella eucalypti MFLUCC 12-0733T M AN U CBS 115684T SC CBS 139904T 100 100 AC C EP TE D 0.02 Wojnowiciella viburni Wojnowiciella leptocarpi CBS 120249 Phaeosphaeria caricis CBS 536.77T Septoriella hirta