Academia.eduAcademia.edu
T H E G L O B A L M Y C O L O G I C A L J O U R N A L Volume 1 · No. 2 · December 2010 NEWS · REPORTS · RESEARCH NEWS · ARTICLES · CORRESPONDENCE S O C I E T Y A N D A S S O C I AT I O N N E W S · B O O K N E W S · F O R T H C O M I N G M E E T I N G S Colofon E DI TORI AL BOARD IMA Fungus Compiled by the International Mycological Association for the world’s mycologists. Editor-in-Chief Scope: All aspects of pure and applied mycological research and news. Layout Editors Aims: To be the flagship journal of the International Mycological Association. IMA FUNGUS is an international, peer-reviewed, open-access, full colour, fast-track journal. Associate Editors Frequency: Published twice per year (June and December). Articles are published online with final pagination as soon as they have been accepted and edited. ISSN E-ISSN 2210-6340 (print) 2210-6359 (online) Websites: www. imafungus.org www.ima-mycology.org E-mail: d.hawksworth@nhm.ac.uk Volume 1 · No. 2 · December 2010 Cover: Sporophores of Armillaria mellea in Kirstenbosch Botanical Garden, Cape Town, South Africa Prof. dr D.L. Hawksworth CBE, Departamento de Biologia Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramon y Cajal, 28040 Madrid, Spain; and Department of Botany, Natural History Museum, Cromwell Road, London SW7 5BD, UK; E-mail: d.hawksworth@nhm.ac.uk M.J. van den Hoeven-Verweij & M. Vermaas, CBS-KNAW Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands; E-mail: m.verweij@cbs.knaw.nl Dr T.V. Andrianova, M.G. Kholodny Institute of Botany, Tereshchenkivska Street 2, Kiev, MSP-1, 01601, Ukraine; E-mail: tand@darwin.relc.com Prof. dr D. Begerow, Lehrstuhl für Evolution und Biodiversität der Pflanzen, Ruhr-Universität Bochum, Universitätsstr. 150, Gebäude ND 44780, Bochum, Germany; E-mail: dominik.begerow@rub.de Dr S. Cantrell, Department of Plant Pathology and Crop Physiology, Louisiana State University, Agricultural Centre, 455 Life Sciences Bldg., Baton Rouge, LA 70803, USA; E-mail: scantrel@suagm.edu Prof. dr D. Carter, Discipline of Microbiology, School of Molecular Biosciences, Building G08, University of Sydney, NSW 2006, Australia; E-mail: d.carter@mmb.usyd.edu.au Prof. dr P.W. Crous, CBS-KNAW Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands; Email: p.crous@cbs.knaw.nl Prof. dr J. Dianese, Departamento de Fitopatologia, Universidade de Brasília, 70910-900 Brasília, D.F., Brasil; E-mail: jcarmine@unb.br Dr P.S. Dyer, School of Biology, Institute of Genetics, University of Nottingham, University Park, Nottingham NG7 2RD, UK; E-mail: paul.dyer@nottingham.ac.uk Dr M. Gryzenhout, Dept. of Plant Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa; E-mail: Gryzenhoutm@ufs.ac.za Prof. dr L. Guzman-Davalos, Instituto de Botánica, Departamento de Botánica y Zoología, Universidad de Guadalajara, A.P. 1-139 Zapopan, 45101, México; E-mail: lguzman@cucba.udg.mx Dr K. Hansen, Kryptogambotanik Naturhistoriska Riksmuseet, Box 50007, 104 05 Stockholm, Sweden; E-mail: karen. hansen@nrm.se Prof. dr K.D. Hyde, School of Science, Mae Fah Luang University, Tasud, Chiang Rai, Thailand; E-mail: kdhyde3@gmail. com Prof. dr L. Lange, Dean of Research, Aalborg University, Denmark; E-mail: lla@adm.aau.dk Prof. dr L. Manoch, Department o Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand; E-mail: agrlkm@ku.ac.th Prof. dr W. Meyer, Molecular Mycology Research Laboratory, CIDM, ICPMR, Level 3, Room 3114A, Westmead Hospital, Darcy Road, Westmead, NSW, 2145, Australia; E-mail: w.meyer@usyd.edu.au Dr D. Minter, CABI Bioservices, Bakeham Lane, Egham, Surrey, TW20 9TY, UK; E-mail: d.minter@cabi.org Dr L. Norvell, Pacific Northwest Mycology Service, LLC, 6720 NW Skyline Boulevard, Portland, Oregon 97229-1309, USA; E-mail: llnorvell@pnw-ms.com Dr G. Okada, Microbe Division / Japan Collection of Microorganisms, RIKEN BioResource Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; E-mail: okada@jcm.riken.jp Prof. dr N. Read, Fungal Cell Biology Group, Institute of Cell and Molecular Biology, Rutherford Building, University of Edinburgh, Edinburgh EH9 3JH, UK; E-mail: nick@fungalcell.org Prof. dr K.A. Seifert, Research Scientist / Biodiversity (Mycology and Botany), Agriculture & Agri-Food Canada, K.W. Neatby Bldg, 960 Carling Avenue, Ottawa, ON, K1A OC6, Canada; E-mail: seifertk@agr.gc.ca Prof. dr J. Taylor, Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA 94720, USA; E-mail: jtaylor@berkeley.edu Prof. dr M.J. Wingfield, Forestry and Agricultural Research Institute (FABI), University of Pretoria, Pretoria 0002, South Africa; E-mail: mike.wingfield@fabi.up.ac.za Prof. dr W.-Y. Zhuang, Systematic Mycology and Lichenology Laboratory, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, China; E-mail: zhuangwy@sun.im.ac.cn IMA FUNGUS IMA FuNgus · voluME 1 · No 2: 123–142 ART I CLE The history, fungal biodiversity, conservation, and future perspectives for mycology in Egypt Ahmed M. Abdel-Azeem Botany Department, Faculty of Science, University of Suez Canal, Ismailia 41522, Egypt; e-mail: zemo3000@yahoo.com Abstract: Records of Egyptian fungi, including lichenized fungi, are scattered through a wide array Key words: of journals, books, and dissertations, but preliminary annotated checklists and compilations are not checklist all readily available. This review documents the known available sources and compiles data for more distribution than 197 years of Egyptian mycology. Species richness is analysed numerically with respect to the fungal diversity systematic position and ecology. Values of relative species richness of different systematic and lichens ecological groups in Egypt compared to values of the same groups worldwide, show that our knowledge mycobiota of species numbers Egyptian fungi is fragmentary, especially for certain systematic and ecological groups such as Agaricales, Glomeromycota, and lichenized, nematode-trapping, entomopathogenic, marine, aquatic and coprophilous fungi, and also yeasts. Certain groups have never been studied in Egypt, such as Trichomycetes and black yeasts. By screening available sources of information, it was possible to delineate 2281 taxa belonging to 755 genera of fungi, including 57 myxomycete species as known from Egypt. Only 105 taxa new to science have been described from Egypt, one belonging to Chytridiomycota, 47 to Ascomycota, 55 to anamorphic fungi and one to Basidiomycota. Article info: Submitted: 10 August 2010; Accepted: 30 October 2010; Published: 10 November 2010. INTroducTIoN Biological diversity (biodiversity) encompasses the variety of life forms occurring in nature, from the ecosystem to the genetic level, as a result of evolutionary history (Wilson 1992). The idea that fungi form a kingdom distinct from plants and animals gradually became accepted only after Whittaker (1969). Presently, the “fungi” as a mega-diverse group span three kingdoms, most belonging to the Fungi (Eumycota), while others are classified in the Protozoa and Chromista (Straminipila) (Cavalier-Smith 1998, James et al. 2006b). The word “fungi”, lower case and not in italics, is commonly used as a collective term for organisms traditionally studied by mycologists from all three kingdoms (Hawksworth 1991). The myxomycetes have also been traditionally studied by mycologists (Everhart & Keller 2008, Rojas & Stephenson 2008), and are included here. Estimates for the number of fungi in the world range up to ca. 13.5 M species (McNeely et al. 1990, Hawksworth 1991, 2001, Hawksworth & Kalin-Arroyo 1995, Hyde 1996, Hyde et al. 1997, Tangley 1997, Groombridge & Jenkins 2002, Brusca & Brusca 2003, Rossman 2003, Crous et al. 2006, Adl et al. 2007, Kirk et al. 2008). It might be expected that the predicted numbers of fungi on Earth would have been considerably greater than the 1.5 M suggested by Hawksworth (1991), which is currently accepted as a working figure although recognized as conservative (Hawksworth 2001). The 10th edition of Ainsworth & Bisby’s Dictionary of the Fungi (Kirk et al. 2008) provided a total of 98 998 for the number of fungal species accepted to date (excluding taxa treated under Chromista and Protozoa). Kirk et al. (2008) reported 1 039 species chromistan fungal analogues and 1 165 as protozoan in which 1 038 are regarded as protozoan fungal analogues: Percolozoa (Acrasida), Amoebozoa (Dictyostelia, Myxogastria, Protostelia), Cercozoa (Plasmodiophorida) which were previously treated as Myxomycota and Plasmodiophoromycota. Egypt’s geographical position at the junction between two large continents (Africa and Asia), and its inclusion as part of the Mediterranean basin, has indelibly influenced both the people and the biota of the country socially, economically and biologically. Egypt is part of the Sahara of North Africa, it has an area of about 1 M km2, divided by the River Nile into a western part including the Libyan Desert (681 000 km2) and an eastern part comprising the Eastern Desert (223 000 km2), and the Sinai Peninsula (61 000 km2). The Nile basin, comprising the valley in the south (Upper Egypt) and Nile delta in the north (Lower Egypt), forms a riparian oasis (40 000 km2) that constitutes the densely inhabited farmlands of Egypt. © 2010 International Mycological Association You are free to share - to copy, distribute and transmit the work, under the following conditions: Attribution: You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work). Non-commercial: You may not use this work for commercial purposes. No derivative works: You may not alter, transform, or build upon this work. For any reuse or distribution, you must make clear to others the license terms of this work, which can be found at http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode. Any of the above conditions can be waived if you get permission from the copyright holder. Nothing in this license impairs or restricts the author’s moral rights. VOLUME 1 · NO. 2 123 ART I CLE Ahmed M. Abdel-Azeem Kassas (2002) mentioned four gaps related to biodiversity knowledge: the number of species on Earth; the diversity of the less conspicuous organisms such as fungi, bacteria, algae, and protozoa; the role played by each species among biotic elements of ecosystems; and the human ability to assess and forecast bio-ecological degradation. Documentation of the Egyptian fungi may be dated back to 4500 B.C., when ancient Egyptians produced a number of hieroglyphic depictions of plants (many of which are psychedelic) on walls and within texts throughout Egypt. Temples with countless pillars are shaped like huge mushrooms with tall stems, umbrella caps, and mushroom engravings distributed all over the country (Fig. 1). These are shaped like Amanita sporophores, and some like Psilocybe. Others look like bracket fungi and are decorated with pictures of an incredible variety of plants (Arthur 2000). In the Egyptian Book of the Dead, the Papyrus of Ani (Budge 1967), mushrooms are called “the food of the gods,” or “celestial food” and “the flesh of the gods.” Studies on fungi in Egypt started at the beginning of the 19th century on lichens (e.g. Delile 1813a, b, Nylander 1864, 1876, Müller 1880a–c, 1884, Stizenberger 1890, 1891). In the early 20th century, Sickenberger (1901) and Steiner (1893, 1916) provided information for collections of lichens from Egypt in the 19th and early 20th Century. In the Flore d’Egypte, Delile (1813a) presented a scientific study of Egyptian fungi into the early19th century (Mouchacca 2008), in which he described the gastromycete now known as Itajahya rosea (syn. Phallus roseus; Fig. 1) which he had collected in Damietta and Assiut in 1798 and 1799, respectively. It should be noted that some early works repeat previous records, sometimes ambiguously as a result of the misinterpretation of synonyms and erratic use of infraspecific ranks; further, in the case of Sickenberger, misspellings of scientific names (Seaward & Sipman 2006). By the beginning of the 20th century, special attention was being given to phytopathogenic fungi on wild and domesticated plants of economic importance (e.g. Fletcher 1902, Reichert 1921, Fahmy 1923, Shearer 1924, BritonJones 1922, 1923, 1925, Bishara 1928, Melchers 1931, Sirag El-Din 1931, Abdel-Salam 1933). Fig. 1. A. Giant mushroom-like pillars (upper part), which are common in Egyptian temples. B. Description of Phallus roseus by Delile (1813a). 124 Both Reichert and Melchers are considered the pioneer scientists in the documentation of Egyptian fungi. Israel Reichert (1891–1975) went to study in Germany. Here he obtained his doctorate on Die Pilzflora Ägypten in which 237 species were recognized, of which 42 were new to science. Unfortunately, none of his specimens were retained in Egypt, or if they were, there is no record of their whereabouts today. However, earlier material collected before 1914 was present in the Botanisches Museum in Berlin-Dahlem, which Reichert used when compiling his list of 1921, but it is not known if these specimens survived World War II. In 1927 Leo E. Melchers went to Egypt at the invitation of the Egyptian Minister of Agriculture as chief mycologist for 18 months. He met a series of difficulties such as there being no records available on the occurrence, distribution, or dates of any mycological observations conducted previously by any investigator in Egypt, and no mycological reference collection existing in the country. His checklist, however, included 345 species of fungi, especially those causing plant diseases (Melchers 1931). No studies were carried out on the soil fungi until the 1930s, yet it was to be expected that, in such a country with rich agricultural traditions, knowledge of these fungi should have attracted considerable interest. Research on Egyptian soil fungi was probably commenced by Younis Salem Sabet (1898–1977). Sabet graduated in 1921 from the High School of Agriculture (now the Faculty of Agriculture of Cairo University), and soon after was sent to England to study botany at the University of London, where he obtained a BSc (Hons) in 1925. After his return, he joined the Ministry of Agriculture in the Plant Breeding Section. In 1927 he was appointed lecturer in Botany in the faculty of Science of the newly established Egyptian University, and in 1935 published his pioneering study, which was followed by many other publications (Sabet 1936, 1938, 1939a). His exploration led to the discovery of three taxa which were described later as new to science. Sabet took the initiative in the establishment of some scientific organisations, and served as a member and president for several years in some others. Particularly of note were the Egyptian Academy of Sciences, Egyptian Botanical Society, Egyptian Science Union, Egyptian Association for Scientific Culture, Society of Applied Microbiology, Egyptian Phytopathological Society, Society for the History of Science, and Society of Atomic Energy. Near the end of the 1930s, new aspects of mycological research were introduced into Egypt by several investigators such as mycorrhizal fungi (Mostafa 1938, Sabet 1939b, 1940, 1945, Yousef 1946); biocontrol (Mostafa & Gayed 1953), rhizosphere (Montasir et al. 1956, Naim et al. 1957), air (Saad 1958, Zaki 1960), and stored seeds and grains (Assawah & El-Arosi 1960). In 1956 late Magdy A. Ragab (Department of Botany, Faculty of Agriculture, University of Cairo) isolated 16 new species for the first time from soil, water and some plant hosts (Ragab 1956). However, the credit for initiating real research concerned with Egyptian fungi must be given to Abdel-Al H. Moubasher IMA FUNGUS Mycology in Egypt ART I CLE Fig. 2. A selection of prominent mycologists who have contributed greatly to our knowledge of mycology in Egypt. A. Abdel-Al H. Moubasher. B. Samy M. El-Abyad. c. Jean Mouchacca. d. Abdul-Wahid F. Moustafa. E. Farida T. El-Hissy. F. Younis S. Sabet. g. Israel Reichert. h. Youssef A. Youssef. (Botany Department, Faculty of Science, Assiut University; Fig. 2). In the early 1960s, with colleagues and students, he broadened the scope of mycological research in Egypt by conducting many studies on fungi. These included aspects such as: cellulose-decomposition, thermophily, osmophily, seed and grain mycobiota, phylloplane fungi, mycotoxins, and aquatic fungi. Moubasher, with his colleagues and students, have published more than 150 scientific papers to date, and in 1993 he published his major contribution to mycology in the Arabic World, the lavishly illustrated Soil fungi of Qatar and other Arab Countries (Moubasher 1993). He also invited outside specialists to run courses from the 1980s and trained many PhDs students. Specialists included Colin Booth and David Hawksworth in the 1980s. El-Abyad & Abu-Taleb (1993) summarized the habitat diversity of Egyptian fungi, and in 1997 the late Samy M. El-Abyad (Botany Department, Faculty of Science, Cairo University; Fig. 2) presented his pioneering attempt to update the checklist of Egyptian fungi: 1 246 species were recorded of which 173 were referred to Mastigomycotina, 41 to Zygomycotina, 222 to Ascomycotina, 143 to Basidiomycotina, and 667 to Deuteromycotina. Different ecological and taxonomic groups were not separated cited in the checklist, such as protozoan fungal analogues (Myxomycota, Plasmodiophoromycota), lichens, yeasts, aquatic and marine VOLUME 1 · NO. 2 fungi, entomopathogenic fungi, nematophagous fungi, and mycorrhizal fungi. A large numbers of taxa, either reported in routine isolations or as novel taxa, are completely absent from this list. This may be due to his inability to trace the majority of references, which is actually the main reason why updated information documenting the fungi of Egypt was needed today. Amongst records lacking in the El-Abyad (1997) checklist are seven Podaxis species (Melchers 1931), Chaetomium gelasinosporum and C. uniporum (Aue & Müller 1967), C. mareoticum (Besada & Yusef 1969), Zygopleurage faiyumensis (Lundqvist 1969), Podospora aegyptiaca (Lundqvist 1970), Thermoascus aegyptiacus (Udagawa & Ueda 1983), and Gelasinospora hippopotama (Krug et al. 1994). In addition to the previous efforts of Reichert (1921), Melchers (1931), El-Abyad & Abu-Taleb (1993), and ElAbyad (1997), several other studies have added to the documentation of Egyptian fungi: Moubasher (1993), Lado (1994), Mouchacca (1995, 1999, 2001a, b, 2003a, b, 2004, 2005, 2008, 2009a, b; Fig. 2), Moustafa & Abdel-Azeem (2005a, b, 2006, 2010), Moustafa (2006), and Seaward & Sipman (2006). The late Abdel Razak Abo-Sedah organized the Second African Regional Mycological Congress, in Cairo in 1992, under the auspices of the IMA Committee for the 125 ART I CLE Ahmed M. Abdel-Azeem Development of Mycology in Africa. Then in 1993 he founded the Regional Center for Mycology and Biotechnology (RCMB) in Al-Azhar University, Cairo. The major tasks of this centre were the establishment of a fungal culture collection, the application of fungi in public health, agriculture, environment and industry, and supporting researchers as well as research projects. The centre actively participated in organizing further African regional and international conferences and meetings in Cairo in 1994, Vancouver in 1994, Zimbabwe in 1995, Cairo in 1996 on “Regulations of fungal activities”, and again in Cairo in 1999 on “Fungi and the Environment”. The center had collaborative agreements with the former International Mycological Institute (IMI) in the UK, and collaborative activities with Egyptian universities as well as with others in the UK, South Africa, Mauritius, Zimbabwe and Austria. The centre also initiated and published The African Journal of Mycology and Biotechnology from 1993 to 2001, which contained numerous contributions by Egyptian authors, and also a mycological newsletter in Arabic. From the beginning of 2005 to the end of 2007, the Biodiversity Monitoring and Assessment Project (BioMap) had as its primary objective to develop and strengthen biodiversity research, monitoring and assessment across Egypt. In this project an extensive e-database was established to map the distribution of species across Egypt, and document up to 50 % of the Egyptian fungi (<biomapegypt.org>). As mentioned above, the information concerning the fungi of Egypt is still incomplete and cannot be fully documented without an updated checklist of all taxa reported for the country. The present contribution assesses the diversity of fungi in Egypt. In addition, major groups of fungi are discussed briefly to highlight the extent of their diversity, followed by examples of habitats that are unique and deserve greater attention. These data show that the present contribution is a preliminary one concerning the diversity of Egyptian fungi, and therefore this summation is intended to enhance our knowledge of, and stimulate research into, the fungi of Egypt. MATErIAls ANd METhods The present contribution is based on an exhaustive revision of the available literature and sources of the Egyptian fungi reported from the 19th century to the present, including dissertations, published papers, compilations and checklists. Name corrections, authorities, and taxonomic assignments of all taxa reported in this article were checked against the Index Fungorum database (<indexfungorum.org>). In addition, websites of international mycological centres such as the ATCC (USA) (<atcc.org>), CABI (UK) (<194.203.77.76/grc/index.htm>), CBS (The Netherlands) (<cbs.knaw.nl>), MUCL (Belgium) (<cabri.org/ htdig/index-ebrcn.html>) and the catalogue of the culture collection of the Assiut University Mycological Center (AUMC 2010) were also consulted. The systematic arrangement in the present article follows Kirk et al. (2008). This study extended to more than eight years in documenting and updating the information on Egyptian 126 fungi. All results of the present study can be checked against the last updated checklist (El-Abyad 1997). rEsulTs general features of Egyptian fungi The number of fungi recorded in Egypt is 2 281 species, out of which 105 taxa have been described from Egypt as new to science: one in Chytridiomycota, 47 in Ascomycota, 56 in anamorphic fungi, and one in Basidiomycota. Reichert introduced 24 of the new taxa, representing 24.7 % of the novel taxa, followed by Jean Mouchacca and his colleagues (Laboratoire de Cryptogamie, Muséum National d’Histoire Naturelle, Paris), who described 18 new species (17.1 % of the total), and Abdul-Wahid F. Moustafa (Fig. 2) and his colleagues and students at the Suez Canal University who contributed 11 new taxa. Protozoan fungal analogues The kingdom Protozoa contains 115 000 known species. They are extremely diverse in their cell structure, patterns of nutrition, metabolic needs, reproduction, and habitat. This kingdom contains a grab-bag of organisms that do not fit into the other kingdoms. Protozoa are extremely difficult to classify so for the purpose of this survey, they are grouped by their nutritional patterns. Protozoan fungal analogues are heterotrophic and most are decomposers that feed on dead plants and animals by endocytosis (Kendrick 2000). According to Kirk et al. (2008) there are about 1 165 fungal protozoan analogues described. Slime moulds are a small and relatively homogenous group of eukaryotic organisms, and these are referred to as Myxomycota (Mycetozoa). In Egypt the slime moulds have never been the target of any widescale study (Lado 1994, Stephenson & Stempen 1994), except for the pioneer study of Abdel-Raheem (2002) on those of Upper Egypt (Ndiritu et al. 2009). Abdel-Raheem (2002) reported 20 species belonging to 17 genera in his first inventory of the protozoan fungal analogues (Myxomycota) of Upper Egypt from wood, bark of living and dead trees and leaf litter. Exhaustive examination of all available literature concerning protozoan fungal analogues in Egypt led to the discovery of reports of Protostelium irregulare (as “irregularis”; Olive & Stoianovitch 1969) and Eidamella spinosa (Kowalik & Sadurska 1973). The protozoan fungal analogues occurring on decaying wood, bark, leaf litter and papyrus papers presently amount to 57 species belonging to 25 genera. For more details refer to the PBI: Global Biodiversity of Eumycetozoans (<slimemold.uark.edu/fungi/default.aspx?selected=N ameDetails&NameId=F2C1B99A-6D50-4963-8BE115FFC34F8D5D&StateId=&Sort=&TabNum=8>) and Farghaly (2008). In addition, three species representing three genera of Cercozoa (previously Plasmodiophoromycota) have been recorded: Plasmodiophora, Spongospora, and Woronina. No dictyostelid cellular slime moulds are so far known from Egypt (Cavender et al. 2010). IMA FUNGUS Mycology in Egypt The kingdom Chromista (Straminipila) is a collection of eukaryotic, walled microorganisms that produce heterokont, wall-less cells in their life-cycles, including some fungallike groups that are not considered to be ancestors of any members of the Fungi (Lutzoni et al. 2004). Kirk et al. (2008) estimated the Chromistan fungal analogues as 1 039 known species and included the phyla Hyphochytriomycota, Labyrinthista, and Oomycota along with some taxa of uncertain position (incertae sedis). The late Farida T. El-Hissy (Botany Department, Faculty of Science, Assiut University; Fig. 2) was the founder of aquatic mycology research in Egypt. El-Hissy and her students published more than 60 papers on this topic. However, the plant pathogenic Oomycota have been the target of many research investigations since 1921, and in the present study, 186 taxa of chromistan fungal analogues were recorded, of which 172 belong to 40 genera of Oomycota. Four species and two genera of Labyrinthista were recorded, while Hyphochytriomycota are represented by six species within three genera. For more details refer to El-Helaly et al. (1963, 1966), Ali Hassanein et al. (1972), Khallil et al. (1995), and El-Hissy et al. (1990, 1992, 1997, 2004) Fungi (Eumycota) Blastocladiomycota This phylum was once considered part of the chytrids. However, most of the true chytrids (Chytridiomycota) produce a limited mycelium while Blastocladiomycota usually make extensive mycelia. Thus, they superficially resemble the water moulds to which they were thought to have been affiliated. Like the chytrids, Blastocladiomycota and Neocallimastigomycota are the only members of the fungi in which motility has been retained. In overall growth habit, the blastocladiomycetes tend to be eucarpic, in which there is an extensive vegetative growth habit in which some part of the organism participates in reproduction (asexual and sexual). Members of this phylum do exhibit a complete alternation of generation between a haploid gametophyte and a diploid sporophyte (Barr 1990, James et al. 2006a). Kirk et al. (2008) give a world total for Blastocladiomycota of 179 species. In Egypt, 27 species and one variety belonging to seven genera of Blastocladiomycota were found in this study. For more details see Ragab (1956), Yusef (1964), Gad et al. (1967), Gad & Sadek (1968), El-Hissy (1974), El-Hissy et al. (1997), El-Abyad (1997), Shoulkamy et al. (2001), and Abdel-Moneim (2010). Chytridiomycota Chytridiomycota are a phylum of fungi that reproduce through the production of motile spores (zoospores), typically propelled by a single, posteriorly directed flagellum. These organisms, often referred to as chytrid fungi or chytrids, have a global total of approximately 1 000 described species (James et al. 2006a). Based on biochemical characteristics, including chitin in cell walls, the α-aminoadipic acid lysine VOLUME 1 · NO. 2 synthetic pathway, and storage carbohydrates (i.e. glycogen), Bartnicki-Garcia (1970) classified Chytridiomycota as true fungi and this is supported by current molecular studies (Hibbett et al. 2007). In the past some authors considered the chytrids as a transitional group between protists and fungi because of their production of motile zoospores (Barr 1990). Kirk et al. (2008) give the number known Chytridiomycota as 706. The study of Gaertner (1954) on Chytridiomycota of Africa is considered one of the pioneer mycological studies in Egypt. However, the real start of research on chytrids in Egypt must be credited to Samy Kamel Mohamed Hassan (Minia University) who obtained his PhD from the University of Warsaw for work on chytrids and aquatic fungi in 1982. Later, Hassan and Mohamed Abdel-Wahab El-Naghy (Minia University) made a series of studies on chytrids in Egypt. Intensive revision of the nomenclature showed that 84 species belonging to 32 genera of Chytridiomycota were recorded in Egypt. For more details see El-Naghy et al. (1985, 1987), Hassan (1991a-d, 1993), Hassan & Fadl-Allah (1991), Hassan & Shoulkamy (1991), and Hassan & Shaban (1991). ART I CLE chromistan fungal analogues Zygomycota Zygomycota are a particularly ecologically diverse group of fungi, occurring as saprobes (Mucorales), harmless inhabitants of arthropod guts (Harpellales), plant mutualists forming ectomycorrhizas (Endogonales), and pathogens of animals, plants, amoebae, and especially other fungi (all Dimargaritales and some Zoopagales are mycoparasites) (James & O’Donnell 2007). Conversely, some Mucorales have a negative economic impact as they cause storage rots or plant diseases, while others can cause life-threatening opportunistic infections in diabetic, immuno-suppressed, and immuno-compromised patients. In addition, several species of Microsporidia cause serious human infections (de Hoog et al. 2000, James & O’Donnell 2007). According to Kirk et al. (2008) the total world number of Zygomycota is 1 065 species. Data collected from previous studies show the Zygomycota in Egypt to be fragmentary because members belonging to this group either have long been overlooked or simply reported as rare taxa during routine isolations. Abdel-Kader (1973) carried out a pioneering study in which he was able to isolate 11 species from a range of soils collected from various Egyptian localities. The second most relevant study is probably that of Al-Alfy (1995) who reported 21 species from various substrates, including soil, dung, stored seeds and grains, and the phyllosphere. In his recent contribution on Zygomycetes in Egypt, Moustafa (2006) reported 33 species, out of which nine were considered new Egyptian records. Revision of all available data showed that Zygomycota in Egypt comprises 70 taxa including eight varieties and seven special forms within 35 genera. In addition, Absidia aegyptiaca (Sartory et al. 1939) is omitted from the list, as no living or other type of authentic material is apparently preserved; furthermore the name was not validly published as it lacked a 127 ART I CLE Ahmed M. Abdel-Azeem Latin diagnosis (Mouchacca 1995). For more information on Egyptian Zygomycota refer to Kharboush (1969a, b), Besada & Yusef (1968), Abdel-Rahman et al. (1990), Moubasher (1993), El-Abyad & Abu-Taleb (1993), Swelim et al. (1994), Mouchacca (1995), El-Abyad (1997), Abdel-Azeem (2003), Moustafa (2006), Ali & Ibrahim (2008), Afify et al. (2009), and Moubasher et al. (2010). Glomeromycota The Glomeromycota currently comprises 169 described species (Kirk et al. 2008). The phylum is not as diverse as other phyla of fungi with only three families and such a modest number of species. However, they make up for this uniformity by being among the most abundant and widespread of all fungi. As far as we know, all species of Glomeromycota are mutualistic with plants, forming endomycorrhizas. Although there are various types of mycorrhizas, involving different fungal and plant symbionts, the arbuscular mycorrhiza type is the most widespread occurring in around 80 % of plant species (Redecker & Raab 2006). The pioneering work of Mostafa (1938) and Sabet (1939b, 1940, 1945; Fig. 2) is now accepted as the starting point of research on Egyptian Glomeromycota (Kelley 1950, AbdelMoneim & Abdel-Azeem 2009). These studies were followed by many other investigations concerned mainly with the ecology and physiology of endomycorrhizas in Egypt, viz. Fares (1986), Ishac et al. (1986), Abdel-Fattah (1991), Aboulkhair & El-Sokkary (1994), Mankarios & Abdel-Fattah (1994), AbdelFattah & Mankarios (1995), Abdel-Fattah & Rabie (1995), Abdel-Fattah et al. (1996), Abdalla & Abdel-Fattah (2000), Abdel-Fattah (2001), and Abdel-Azeem et al. (2007). However, surveys of Egyptian Glomeromycota are limited, and had never been the sole target of any study until Fares (1986) conducted a survey of vesicular arbuscular mycorrhizas, followed by Agwa (1990) on mycorrhizas and nodulation in some Egyptian plants. After 10 years, Agwa (2000) studied the arbuscular mycorrhizal fungi associated with medicinal plants as Glomales in Egypt (I)”. Agwa & Abdel-Fattah (2002) followed up their work “Glomales in Egypt (II)” as an ecological view of some saline affected plants in the delta of the Mediterranean coast. A study of the distribution of Glomales in the Egyptian Protectorates was published by Agwa & Al-Sodany (2003) as “Glomales in Egypt (III)”, which surveyed the distribution and ecology in some plants in the El-Omayed Biosphere Reserve. Later, other relevant studies were carried out by several investigators such as ElZayat et al. (2007) and Abdel-Moneim & Abdel-Azeem (2009) on the Wadi Allaqi and Saint Katherine Protectorate, respectively. Recently, Mansour (2010) screened 71 soil and root samples for endomycorrhizas in North Sinai and adopted some of them as biocontrol agents against fusarium-wilt of tomato. Eight genera and 19 species have been recorded in Egypt since 1938: Acaulospora, Entrophospora, Gigaspora, Glomus, Paraglomus, Sclerocysti, Scutellospora and Rhizophagus. Both Paraglomus occultum and Rhizophagus were recorded and never cited in any publication related to Egyptian Glomeromycota. For more details see Sabet (1939b) and Morton & Redecker (2001). 128 Lichen-forming fungi Lichens are unique associations composed of two to three different organisms living together in a mutualistic relationship in which the fungal partner forms the external structure. The name used is that of the fungal parter, and the photosynthetic partner or partners have independent scientific names. Estimates for the number of lichen fungi worldwide vary, but a draft global checklist has 18 882 names of lichen-forming and allied fungi (Feuerer & Hawksworth 2007). Egyptian lichens have received the attention of many researchers since the early 1800s (Delile 1813a, b, Nylander 1864, 1876, Müller 1880a–c, 1884, Stizenberger 1890, 1891, Sickenberger 1901, Steiner 1893, 1916, Werner 1966, Galun & Garty 1972, Temina et al. 2004, 2005, Seaward & Sipman 2006). Egyptian investigators have participated in a few studies of lichens, namely in North Sinai (Khalil 1995) and on trees (Koriem 2003), and there have also been some physiological studies on the bionts (Koriem 2006). Khalil (1995) recorded 43 species belonging to 18 genera, all of which are ascolichens without any basidiolichens at all, and only one of these had a perithecioid ascoma (Gonohymenia sinaica). Seaward & Sipman (2006) reported 157 taxa of lichenized fungi (149 species and 8 infraspecific taxa) and six lichenicolous fungi (fungi obligately growing on lichens). Foliose lichens are very scarce, only being represented by the genera Xanthoria (7 species) and Physcia (1 species). The fruticose growth form is better represented, with members of the genera Ramalina, Roccella, Seirophora and Tornabea. At the family level, Teloschistaceae accommodated the most taxa (39), followed by Roccellaceae (16), and Physciaceae (12). For more information concerning Egyptian lichens please see: check-lists of Lichens and Lichenicolous Fungi (<biologie.uni-hamburg.de/checklists/portalpages/ portalpage_checklists_switch.htm>), the Tel Aviv University Herbarium (TELA) (<tau.ac.il/~botany/Tela/lichen.html>), Galun & Garty (1972), Khalil (1995), Koriem (2003, 2006), Temina et al. (2004, 2005), and Seaward & Sipman 2006). Ascomycota (non-lichenized) Numerically Ascomycota constitute by far the largest group of fungi so far known, accommodating a relatively large assemblage of taxa estimated to be 65 % of all described fungi (Kirk et al. 2008) occurring in various habitats; aquatic or terrestrial, under moderate or stress conditions (Kodsueb et al. 2008a, b, Kruys & Ericson 2008, Thongkantha et al. 2008). A large number of Ascomycota species are economically important (e.g. Fusarium spp., Kvas et al. 2009; Colletotrichum spp., Damm et al. 2009, Hyde et al. 2009; Mycosphaerella spp., Crous 2009), while few are edible (morels and truffles), and some are used also in the production of food (including bread), drinks, organic acids, mycofungicides, fungal biofertilizers, cosmetics and hormones (Kaewchai et al. 2009, Hyde et al. 2010). This phylum encompasses biologically diverse forms. Many are free-living saprobes including species which may be cellulose decomposers, chitinolytic, keratinolytic, or IMA FUNGUS Mycology in Egypt VOLUME 1 · NO. 2 and fungi occurring in Egypt by Melchers (1931). Records concerning aspects of plant pathology in Egypt continued to be accumulated during many decades until El-Helaly et al. (1963, 1966) started to update the information, and another updated bibliography of agricultural studies conducted in Egypt between the period 1900 to 1970 appeared (Ali Hassanein et al. 1972). This revealed records of 82 species of teleomorphic plant pathogenic Ascomycota. For more details please check, Natrass (1933), Abou El-Seood (1968), Ghoniem (1985), El-Desouky & El-Wakil (2003), Phillips et al. (2006), and Hafez (2008). Anamorphic genera are gradually disappearing into the overall ascomycete system, though it will take many years before anamorph genera have fully integrated. A school of medical mycology in Egypt was formed at the beginning of 1967, when the late Youssef A. Youssef (Ain Shams University, Faculty of Science; Fig. 2) published two papers on fungus infection of the human ear. Youssef and his students and colleagues became interested in medical mycology, serology and fungi affecting human health. For more details see Youssef & Abdou (1967a, b), Hassan et al. (1980a–e, 1981), Youssef & Karam El-Din (1988a, b), Karam El-Din et al. (1994 a–c, 1995, 1996), and Youssef et al. (1989, 1992, 1993). In 1979 Ismail Abdel-Razak M. El-Kady received credit as the Egyptian mycologist working on mycotoxin producing fungi in Egypt. El-Kady and his coworkers studied the majority of aspects related to toxinogenic fungi, e.g. factors affecting mycotoxin production, toxinogenic taxa in food and feed, and mutagenic effects of fungal toxins. For more details see ElKady & Moubasher (1982 a, b), and El-Kady et al. (1989, 1994). In 1987, Mamdouh S. Haridy (Minia University, Faculty of Science) became the pioneer Egyptian mycologist in yeast identification and taxonomy, having completed his PhD thesis on the taxonomy of yeasts (“Taxonomie milchwirtschaftlich wichtiger Hefen”, Technical University, Munich). He conducted a series of extensive studies on the Egyptian saprobic yeasts from different ecological habitats and sources (Haridy 1992a, b, 1993a, b, 1994a, b, 2002). Recently, other areas of Egyptian mycology have been established, such as on the identification of human and plant pathogens by molecular techniques. Youssuf A. Gherbawy (Botany Department, Faculty of Science, South Valley University) focused on the identification of plant pathogens and saprobic fungi of food by means of molecular techniques (Gherbawy 2004, Gherbawy & Abdelzaher 2002, Gherbawy & Farghaly 2002, Gherbawy & Voigt 2010), and Sherif M. Zaki (Microbiology Department, Faculty of Science, Ain Shams University) extended the research of Youssef A. Youssef using the molecular techniques in species identification of human pathogens (Zaki et al. 2005, 2009, Zaki 2008). About 905 filamentous or yeast-like anamorphic fungi have been reported from Egypt. These taxa colonize, survive and multiply in air, litter, soil, plant surfaces, the human body and other substrates. Of these, only 28 are species ART I CLE coprophilous, others are parasitic forms including species which cause very serious plant diseases like powdery-mildew, wood-canker, ergot, rot, blight, scab, leaf curl, and leaf-spots (e.g. Alves et al. 2008, Aveskamp et al. 2008, Simonis et al. 2008, Wulandari et al. 2009). Others that are considered symbiotic forms contain species which live in association with insects or algae (lichens) or roots of plants (mycorrhizas). Ascomycota characteristically, when reproducing sexually, produce non-motile spores (ascospores) in a distinctive “ascus”. However, some members of the Ascomycota do not reproduce sexually and do not form asci or ascospores (anamorphic Ascomycota). These asexual members are assigned to Ascomycota based upon morphological and/ or physiological similarities to ascus-bearing taxa, and in particular by phylogenetic comparisons of DNA sequences. In old classification systems these were often placed in a separate artificial phylum, the deuteromycota (or “fungi imperfecti”). Molecular analyses can now place these genera and species among ascus-bearing taxa, or more rarely in other phyla such as Basidiomycota. The first reports of mutualistic non-lichenized ascusforming fungi from Egypt were those of Terfezia, Tirmania, and Morchella by Reichert (1921), and then Melchers (1931) who recorded six species. Later, Sabet (1935) recorded some saprobic Chaetomium species. The saprobic Ascomycota did not receive attention, and therefore information remained limited until the early 1970s, when some research on the group was initiated by Moubasher and his co-workers during their studies on soil fungi. Since then, fragmentary information has been accumulating, but these fungi had never been the main objective of any Egyptian study focusing on their ecology, distribution, and substrate preferences, untill the study of Abdel-Azeem (2003). Three hundred and three species of teleomorphic saprobic Ascomycota (including ascosporic yeasts) have been recorded from all terricolous substrates of Egypt (Moustafa & Abdel-Azeem 2010, and unpubl.). In their studies, 10 species of edible Ascomycota were recorded from Egypt within the genera Morchella, Terfezia, and Tirmania. In total, 328 taxa were recorded in this survey, of which only 32 species are ascosporic yeasts. Binyamini (1973) reported Peziza vesiculosa as a coprophilous fungus from occupied Palestine, and some samples were even collected from north Sinai during the occupation in 1967, but never cited as an Egyptian record in any checklist. In addition, Byssonectria tetraspora was recorded for the first time in Egypt by ElSaadawi & Shabbara (1999) as an association between a fungus and a moss. For more details see Sabet (1936, 1939a), Binyamini (1973), El-Saadawi & Shabbara (1999), Abdel-Hafez et al. (1995), Ibrahim (1995), El-Abyad (1997), Zaki et al. (2005), Moustafa & Abdel-Azeem (2005a, b, 2006, 2008, 2010), and Abdel-Azeem (2009). Records of phytopathogenic fungi in Egypt were scattered through the literature until 1921, when Israel Reichert (Fig. 2) carried out his pioneer study of Egyptian fungi. This was followed by a comprehensive checklist of plant diseases 129 ART I CLE Ahmed M. Abdel-Azeem of anamorphic ascomycetous yeasts, which belong to three genera. Furthermore, five genera of basidiomycetous yeasts and 18 species are recorded from all habitats in Egypt. For more information consult Al-Doory (1968), AbdelFattah (1985), Sherief (1985), Bagy & Abdel-Hafez (1985), Khater (1989), Shalouf (1989), Shindia (1990), Abdel-Mallek et al. (1995), Abdul Wahid et al. (1996), Hamdi & Hassanein (1996), El-Tanash (1997), Shalaby (1999), Mahmoud (1999), Ismail & Sabreen (2001), Teramoto et al. (2001), AbdelWahab (2002), Farghaly et al. (2004), Nofal & Haggag (2006), Haggag et al. (2007), Abdel-Hamed (2008), and Kottb (2008). Aquatic and marine fungi Marine fungi form an ecological, and not a taxonomic group (Raghukumar 2008, Jones et al. 2009, Hyde et al. 2000). Among these, the obligate marine fungi grow and sporulate exclusively in seawater, and their spores are capable of germinating in seawater (Hyde et al. 1998). On the other hand, facultative marine fungi are those obtained from freshwater or a terrestrial milieu, and have undergone physiological adaptations that allow them to grow and possibly also sporulate in the marine environment (Kohlmeyer & Kohlmeyer 1979). These fungi belong mostly to ascomycetes, their anamorphs, and a few basidiomycetes. Among the straminipilan fungi, those belonging to Labyrinthulomycetes, comprising the thraustochytrids, aplanochytrids, and labyrinthulids are obligate marine fungi (Raghukumar 2002), and those belonging to the oomycetes are also fairly widespread in the marine environment. About 3000 fungi (exclusive of yeasts) have been reported from aquatic habitats of which Ascomycota (1 527 spp.) and anamorphic taxa (785 spp.) are the most diverse groups, followed by Chytridiomycota (576 spp.) with Basidiomycota (21 spp.) as the least diverse group (Vijaykrishna et al. 2006, Shearer et al. 2007). Anwar Abdel Aleem (Faculty of Science, University of Alexandria), or Peripatetic Aleem as he was known among his colleagues, is one of the most brilliant Arab marine botanists and oceanographer extraordinaire. He is considered one of the pioneer marine Egyptian mycologists, with studies on marine fungi dating back to 1950 (Aleem 1950a–c, 1952a–c, 1953, 1962, 1974, 1975, 1978, 1980a, b, Aleem & Mailbari 1981). In Egypt, obligate and facultative marine fungi are considered as forgotten fungi (Jones 2001) because they never featured in research topics until 1993, which is considered the starting point of marine mycology research in Egypt. This provided Mohamed Abdel-Wahab (Botany Department, Faculty of Science, South Valley University, Sohag, Egypt) the possibility to publish his pioneering study on the Egyptian obligate mangrove-inhabiting fungi of the Red Sea in 1996. Three contributions of El-Sharouny et al. (1998, 1999) and Abd-Elaah (1998) shed light on the ecology and taxonomy of mangrovicolous, algicolous and aquatic fungi of the Red Sea in Upper Egypt. Abdel-Wahab (2000) obtained his PhD on the biodiversity of fungi in subtropical mangroves; he recorded 25 fungi on intertidal wood of 130 Avicennia marina collected from three mangrove stands of the Red Sea coast of Egypt. Abdel-Wahab et al. (2001a, b) published three new species, Halosarpheia unicellularis, Swampomyces aegyptiacus and S. clavatispora, from Red Sea mangroves. Pang et al. (2002) erected Jahnulales as a new lignicolous freshwater ascomycete order with the new species Patescospora separans from Egypt. Abdel-Raheem (2004) studied the effect of different techniques on diversity of freshwater hyphomycetes in the River Nile (Upper Egypt). Abdel-Wahab (2005) examined the diversity of marine fungi on intertidal decayed wood of A. marina and on decayed prop roots of Rhizophora mucronata in mangrove stands in the southern part of the Egyptian Red Sea coast; 39 species were identified on decayed wood of A. marina, of which 19 were new records for Egypt and the Red Sea. Freshwater fungi are those relying on freshwater for at least part of their life-cycle (Wong et al. 1998, Raja et al. 2009). Abdel-Aziz (2008) studied the diversity of aquatic fungi in Lake Manzala, which was the first report of aquatic fungi from the lake. Sixty taxa including 26 ascomycetes and 34 anamorphic fungi were recorded, of which 19 species were new records for Egypt. El-Sharouny et al. (2009) studied the fungal diversity in brackish and saline lakes in Egypt; 97 fungi (40 ascomycetes, 55 anamorphic fungi and 2 basidiomycetes) were identified from 764 collections, obtained from 545 samples, of which 70 were new records for Egypt. The revision of all available data sources reveals that the total number of marine and aquatic fungi known in Egypt is 207 taxa (87 Ascomycota, 117 anamorphic taxa, and 3 Basidiomycota). There is no checklist of aquatic Egyptian fungi so far. For more details on these fungi see the website (<fungi. life.illinois.edu>), search mangrove fungi (<fungi.life.illinois. edu/search/mangrove_fungi>), and check relevant studies (Khallil 2001, Abdel-Aziz 2004, Abdel-Wahab et al. 2009, 2010). Entomopathogenic fungi The taxonomy of the entomopathogenic fungi has received much attention since the 1970s. More than 700 species of fungi are associated with insects, spiders, and mites (Samson et al. 1988, Hajek & St. Leger 1994, Sung et al. 2007, Aung et al. 2008). The invertebrate pathogenic fungi can be classified in the Mastigomycota, Zygomycota, Ascomycota, and allied anamorphic fungi; no truly entomopathogenic basidiomycetes have been documented (Samson et al. 1988). Entomopathogenic fungi range from commensals or mutualists, through ectoparasites which do not seriously affect their hosts, to pathogens which are lethal and include representatives of all the groups of fungi (Hawksworth et al. 1995). Few records appeared reporting the occurrence of entomogenous fungi in Egypt until Natrass (1932) published preliminary notes on some of these fungi in Egypt. He recorded five species: Empusa grylli (= Entomophaga grylli), Beauveria bassiana, Aspergillus flavus, Mucor racemosum, and Metarhizium anisopliae. In the beginning of the 1960s, IMA FUNGUS Mycology in Egypt Nematophagous fungi In Egypt, the study of nematophagous fungi dated back to 1963 when Hamdy Aboul-Eid (Department of Plant Pathology, Nematology Laboratory, National Research Centre, Dokki, Cairo) isolated and illustrated four species belonging to two genera. Various studies on the biocontrol of nematodes by fungi have been the target of many studies in Egypt; the most relevant are: Ali (1994, 1995), Ali & Barakat (1994), Aboul-Eid et al. (1997a, b, 2006), Ashour & Moustafa (1999), and Amin & Moustafa (2000). Out of these various data and information only 10 species belonging to seven genera were recorded as nematophagous fungi of Egypt. Basidiomycota The Basidiomycota contains about 31 503 described species, which represents 31.8 % of the known species of true Fungi (Kirk et al. 2008). This group includes mushrooms, puffballs, bracket fungi and some yeasts (Petersen et al. 2008, Wannathes et al. 2009). Many Basidiomycota decay dead organic matter, including wood and leaf litter symbiotic lifestyles (intimate mutually beneficial or harmful associations with other living organisms) are well developed in the Basidiomycota. They include major plant pathogens, such as “rusts” (Uredinales) and “smuts” (Ustilaginales), which attack wheat and other crops, and some human and animal pathogens. Not all symbiotic Basidiomycota cause harm to their partners. Indeed, some form ectomycorrhizas with the roots of plants, principally forest trees such as oaks, pines, dipterocarps, and eucalypts (Smith & Read 1997, Rinaldi et al. 2008). Other symbiotic Basidiomycota form associations with insects, including leaf-cutter ants, termites, scale insects, wood wasps, and bark beetles (Wheeler & Blackwell 1984, Mueller et al. 1998). Macro-Basidiomycota The first information on hyphenate macro-basidiomycota (phytopathogenic or saprobic) in Egypt dates back to Delile (1813a), Melchers (1931), and Morse (1933). In her study on the genus Podaxis, Morse referred to some samples collected from Egypt. After six decades more information about macro- VOLUME 1 · NO. 2 basidiomycota came to light through a series of studies carried out by several investigators, such as Mouchacca (1977), Zakhary (1979), Salem & Michail (1980), Zakhary et al. (1983), MalenÇon (1984), Assawah (1991), Chen (1999), Abu El-Souod et al. (2000), El-Fallal (2003), El-Fallal & Khedr (n. dat.), El-Fallal & El-Diasty (2006), Kim et al. (2006), and Abdel-Azeem (2009). An exhaustive revision of all the available literature and sources mentioned since 1931 shows that 108 taxa belonging to 65 genera, 104 species, and 4 varieties of Egyptian macrobasidiomycotese had been recorded up to the present time. ART I CLE Egypt started to apply biocontrol methods to insects by entomopathogenic fungi, and Gad et al. (1967) studied the occurrence of Coelomomyces indicus in Egypt. There are several studies on this ecological group of fungi in Egypt, such as Badran & Aly (1995), Shoulkamy et al. (1997), Shoulkamy & Lucarotti (1998), Hafez et al. (1997), Sewify (1997), Abdel-Baky (2000), Sewify <3.interscience.wiley. com/journal/119022140/abstract?CRETRY=1&SRETRY=0 - fn1#fn1&> Hashem (2001), Abdel-Sater & Eraky (2002), Ali (2003), <3.interscience.wiley.com/journal/119022140/ abstract?CRETRY=1&SRETRY=0 - fn1#fn1> Abdel-Mallek et al. (2003 a, b), El-Hady (2004), Mourad et al. (2005), Abdel-Mallek & Abdel-Rahman (2006), El-Maraghy et al. (2006), and Moubasher et al. (2010). As a result of these only 18 species belonging to 13 genera were recorded as entomopathogenic fungi of Egypt. For more details please refer to this site (<arsef.fpsnl.cornell.edu>). Plant pathogenic Basidiomycota Though many basidiomycetes are saprobes or wood-rotters, the Basidiomycota contains two common and destructive groups of plant pathogens: rusts and smuts. Rust fungi are the largest group of fungal plant pathogens, containing 7 000 species that possess the most complex life-cycles in the kingdom fungi (Sert 2009). They are obligate biotrophs and cause disease on most crops, ornamentals, and many other plants (Hawksworth et al. 1995). In addition to basidia and basidiospores, rusts produce other types of spores such as teliospores spermatia, aeciospores, and uredospores. Rusts that produce all five types of spores are referred to as macrocyclic, while rusts that lack one or more spore type are referred to as microcyclic. Unlike rusts, smuts produce only basidiospores and teliospores which can survive in the soil away from a host plant. Smuts commonly infect the ovaries of grains and are easily recognized by the formation of galls which contain masses of black spores (Agrios 2005). The initial research and documentation of rust and smut diseases in Egypt was by Reichert (1921), Briton-Jones (1922), Philp & Selim (1941), Abdel-Hak & Abdel-Rehim (1950), Ragab & Mahdi (1966), and Assawah (1969). Later, in-depth research was carried out by Egyptian and other investigators, with different targets such as taxonomy, pathogenicity, biocontrol and serology. The most relevant studies are: Sherif et al. (1991), El-Shamy (1996), Baka & Gjaerum (1996), Mennicken et al. (2005), Abd El Fattah et al. (2009), Abd EL-Ghany (2009) and Ismail et al. (2009). Baka & Gjaerum (1996) gave the first serious modern taxonomic treatment of local rusts, reporting 23 rust species on various monocotyledonous and dicotyledonous plants in the Nile Valley (see Mouchacca 2003b). As a result of these studies, 112 species of plant pathogenic Basidiomycota belonging to 21 genera were recorded from Egypt. Total recorded species After the omission of duplicate names, name correction, allowance for synonyms and taxonomic assignments of all reported taxa from Egypt, the number of the Egyptian fungi recorded is 2 281 taxa belonging to 755 genera (Table 1). At the generic level, some genera exhibit an extraordinary high species richness such as Aspergillus (100 spp.) and Penicillium (83). Other genera show moderate richness such as Chaetomium (53 spp.), Fusarium (49), Puccinia (41), Pythium (30) and Alternaria (27). 131 ART I CLE Ahmed M. Abdel-Azeem Table 1. Numbers of recorded Egyptian fungi. groups and Phyla El-Abyad (1997) Present survey Amoebozoa 0 25 Cercozoa 0 3 Hyphochytriomycota 1 3 Labyrinthista 0 2 Oomycota 25 40 Incertae sedis 0 1 Blastocladiomycota 3 7 Chytridiomycota 21 32 Zygomycota 17 35 Glomeromycota 0 8 Teleomorphic genera 80 251 Anamorphic genera 181 261 Basidiomycota 32 87 Total no. of genera recorded in Egypt 360 755 Total no. of species recorded in Egypt 1246 2281 Protozoan fungal analogues Chromistan fungal analogues Ascomycota dIscussIoN It is generally accepted that only about 7 % of all fungi have so far been discovered, and about 93 % still wait to be discovered. Fungi are neglected organisms and they are not well protected, but like animals and plants, they are endangered by human activities. Although the 1992 Convention on Biological Diversity extends protection to all groups of organisms, it is worded in terms of “animals, plants and microorganisms” and fungi do not fit well into these categories. In Egypt and up to now fungal biodiversity and conservation topics have been overlooked. As a result, countries which signed the Convention have almost universally overlooked fungi in preparing their biodiversity conservation plans: fungi are truly the orphans of Rio (Minter 2010). Threats to fungi throughout the globe are of concern since they are not only beautiful but also play a significant role in human welfare. Three steps were suggested by Moore et al. (2001) for fungal conservation: (1) conservation of habitats; (2) in situ conservation of non-mycological reserves/ ecological niches; and (3) ex situ conservation especially for saprobic species growing in culture. To help collections of fungal cultures to maintain appropriate standards, the World Federation for Culture Collections (WFCC) has formulated guidelines which outline the necessary requirements (Hawksworth 1991, Smith et al. 2001, Smith 2003). There are 573 microbial culture collections in 68 countries registered in the World Directory of Collections of Microorganisms (DCM) (<wfcc.info/datacenter.html>). In Egypt only two centers are recorded: EMCC (WDCM583) Egypt Microbial Culture Collection, Cairo Microbiological Resources Centre (Cairo MIRCEN), Ain Shams University, and NODCAR WDCM822 Marwa Mokhtar Abd Rabo, National Organization of Drug Control and research. However, Moubasher and his colleagues founded the Assiut University Mycological Centre (AUMC) in 1999 where more than 6 000 fungal isolates 132 belonging to more than 500 species are being preserved under low temperature (5 °C), deep-freezed (-80 °C), and lyophilized; this is the biggest reference culture collection in the Arab countries. The centre also has a collection of dried specimens (i.e. a fungarium) which is rare in Arab countries. In spite of this the AUMC is not yet registered with the WFCC. The number of habitats that potentially support specialized fungi is enormous. The fungi described as new to science during 1981 to 1990 were associated with 1 982 host genera or substrata (Hawksworth & Rossman 1997). Some unexplored substrata and habitats from which these fungi were found include the rumens of herbivorous mammals, algae, lichens, mosses, marine plants, including mangroves and driftwood, rocks and insect scales. The Egyptian fungi are presently represented by 2 281 taxa (1 035 species and 395 genera) out of the 101 202 world estimate. In comparing the fungal diversity recorded in Egypt with other countries, it is important to mention that some ecological groups of fungi are completely ignored or have never been studied in a comprehensive way in Egypt, such as Trichomycetes (a group of enigmatic fungi occurring in the hindguts of insects and other invertebrates; Lichtwardt 2002), in addition to hypersaline and black yeasts. Other groups needing more exploration such as algicolous fungi, invertebrate associated fungi, mycorrhizas, endophytic fungi, lichens, wood deteriorating, and coprophilous fungi. The potential fungal resources of Egypt are globally important and there are vast areas that are still unexplored. At present, Egypt needs more investigators and funds to explore and develop this research field and, therefore, the extensive collection of fungi in unexplored areas remains a priority. This review will be followed by an updated checklist of all recorded Egyptian fungi up to the present, a bibliographic study of Egyptian mycological research, and a book on the fungi of Egypt, supplemented with provisional keys to all species listed. IMA FUNGUS Mycology in Egypt All my thanks to the late Samy M El-Abyad (Botany Department, Abdel-Fattah GM (1991) Some physiological and ecological studies on vesicular-arbuscular (VA) mycorrhizal fungi. PhD thesis, Mansoura University, Egypt. Faculty of Science, Cairo University) for his courage in documenting Abdel-Fattah GM (2001) Measurement of the viability of AM fungi the Egyptian fungi in 1997. I express my appreciation to Paul M Kirk colonized in roots using three different stains and its relation to (CABI Europe, UK) for data on species names in the Index Fungorum growth and metabolic activities of soybean plants. Microbiological database; the late John C Krug (Centre for Biodiversity and Research 156: 359–367. Conservation Biology, Royal Ontario Museum, Toronto) for providing Abdel-Fattah GM, Mankarios AT (1995) Functional activity of some unavailable papers. I am further indebted to Jean Mouchacca Glomus mosseae in the protection of soybean from infection (Laboratoire de Cryptogamie, Muséum National d’Histoire Naturelle, by the pathogenic fungus Chalara elegans. Egyptian Journal of Paris), Yaacov Katan (Department of Plant Pathology and Microbiology 30: 207–305. Microbiology, Faculty of Agriculture, Food and Environmental Quality Abdel-Fattah GM, Rabie GH (1995) Improved growth and tolerance of Sciences, The Hebrew University of Jerusalem, Israel) and Hussien cowpea to irrigation with waste effluents from fertilizer’s factories M Rashad (Ashtoum El-Gamil Protectorate, Port Said, Egypt) for using mycorrhizal fungus (Glomus fasiculatum). Zagazig Journal their unfailing help during this work. I also owe thanks to Robert A of Pharmaceutical Sciences, Zagazig University 4: 87–97. Blanchette (Forest Pathology and Wood Microbiology Research Abdel-Fattah GM, Abo-Hamed SA, Mohamed ZA (1996) The role laboratory, Minnesota University) and El-Sayeda M Gaml El-Din of VA mycorrhizal fungus (Glomus mosseae) and kinetin in (Botany Department, Faculty of Science, Suez Canal University) for alleviation of salinity stress in Pisum sativum plants. 1- Plant critical reading the manuscript. I also thank Pedro W Crous (CBS- growth, photosynthetic pigments, nodulation, proline and nutrient KNAW Fungal Biodiversity Centre, Utrecht) who worked closely with contents. 1st International conference on fungi: Hopes and me in preparing and editing the manuscript and photoplates, and the Challenges. Cairo, 2–5 September 1996, Al-Azhar University, two anonymous reviewers for their constructive comments. ART I CLE AcKNowlEdgEMENTs Egypt: 67–81. Abd EL-Ghany TM, El-Taher EM, El-Sheikh HH (2009) Efficacy of rEFErENcEs fungal rust disease on Willow plant in Egypt. Australian Journal of Basic and Applied Sciences 3: 1527–1539. Abdel-Hafez SII, El-Said AHM, Maghraby TA (1995) Studies on fungi Abdalla ME, Abdel-Fattah GM (2000) Influence of the endomycorrhizal isolated from skin diseases and associated fungi of students fungus Glomus mosseae on the development of peanut pod rot in Qena and Red Sea Governorates, Egypt. Assiut Bulletin of disease in Egypt. Mycorrhiza 10: 29–35. Faculty of Science, Assiut University 24 (2-D): 181–209. Abd-Elaah GA (1998) The occurrence of fungi along the Red Sea Abdel-Hak T, Abdel Rehim MF (1950) Studies on long smut of coast and variability among isolates of Fusarium as revealed by sorghum in Egypt. Laboratory Research Committee Monthly isozyme analysis. Journal of Basic Microbiology 38: 303–311. Report, Ministry of Agriculture, Egypt. November volume: 226– Abdel-Azeem AM (2003) Ecological and taxonomical studies on ascospore-producing fungi in Egypt. PhD thesis, Faculty of Science, Suez Canal University, Egypt. Abdel-Azeem AM (2009) Operation Wallacea in Egypt. I- A preliminary study on diversity of fungi in the world heritage site of Saint Katherine, Egypt. Assiut University Journal of Botany 38: 29–54. 229 (in Arabic). AbdEl-Hamed NA (2008) Ecological, physiological and taxonomical studies on the genus Fusarium in Egypt. MSc thesis, Faculty of Science, Assiut University, Egypt. Abdel-Kader MI (1973) Mucorales in Egyptian soil. MSc thesis. Faculty of Science, Assiut University, Egypt. Abdel-Mallek AY, Abdel-Rahman MAA (2006) Mycopathogens of the Abdel-Azeem AM, Abdel-Moneim TS, Ibrahim ME, Hassan MAA, corn leaf aphid, Rhoplosiphum maidis (Fitch.) infesting wheat Saleh MY (2007) Effect of long-term heavy metal contamination plants in Assiut, Egypt. Ninth Arab Congress of Plant Protection, on diversity of terricolous fungi and nematodes in Egypt - a case study. Water, Air, and Soil Pollution 186: 233–254. Abdel-Aziz FA (2004) Biodiversity of aquatic fungi, from the River Nile to the Sea. PhD thesis, South Valley University, Egypt. Abdel-Aziz FA (2008) Diversity of aquatic fungi on Phragmites australis at Lake Manzala, Egypt. Sydowia 60: 1–14. Abdel-Baky NF (2000) Cladosporium spp. an entomopathogenic 19–23 November 2006, Damascus, Syria. Abdel-Mallek AY, Omar SA, Bagy M K (1995) Influence of licid on fungi of human hair and keratin degradation. Journal of Islamic Academy of Sciences 8: 119–126. Abdel-Mallek AY, Abdel-Rahman MAA, Hamam GHA (2003a) Survey of entomopathogenic fungi naturally infecting cereal aphids (Homoptera: Aphididae) in southern Egypt. Proceedings fungus for controlling whiteflies and aphids in Egypt. Pakistan of Abstracts of the 9th European Meeting of the IOBC/WPRS Journal of Biological Sciences 3: 1662–1667. Working group “Insect Pathogens and Entomopathogenic Abd El Fattah AI, Alamri S, Abou-Shanab RAI, Hafez EE (2009) Nematodes”, University Kiel, Kiel, Germany: 2. Fingerprinting of Ustilago Scitaminea (Sydow) in Egypt Using Abdel-Mallek AY, Abdel-Rahman MAA, Omar SA, Hamam GHA Differential Display Technique: Chitinase Gene the Main Marker. (2003b) Survey of entomopathogenic fungi naturally infecting Research Journal of Agriculture and Biological Sciences 5: 674–679. cereal aphids infesting wheat plants in Assiut. Bulletin of Faculty Abdel-Fattah GM (1985) Studies on thermophilic xylan-decomposing fungi in humus. MSc thesis Faculty of Science, Mansoura University, Egypt. VOLUME 1 · NO. 2 of Science, Assiut University 32(2-D): 29–43. Abdel-Moneim TS (2010) Occurrence of nematophagous fungi in Ismailia Governorate, Egypt. The first international conference 133 ART I CLE Ahmed M. Abdel-Azeem on basic and applied mycology, 9–11 March 2010, Assiut, Egypt, Abstract book: 59. Abdel-Moneim TS, Abdel-Azeem AM (2009) Operation Wallacea in The morphological identify of tweleve nematode-antagonistic fungi and the bacterium Pasteuria penterans isolated from Egypt. II- Diversity of arbuscular mycorrhizal fungi in different El-Mansouria region soils (Giza, Egypt). Egyptian Journal of elevation wadis in Saint Katherine Protectorate, Egypt. Assiut Agronematology 1: 59–76. University Journal of Botany 38: 55–74. Abdel-Raheem AM (2002) Myxomycetes from Upper Egypt. Microbiological Research 157: 47–67. Abdel-Raheem AM (2004) Study of the effect of different techniques on diversity of freshwater hyphomycetes in the River Nile (Upper Egypt). Mycopathologia 157: 59–72. Abdel-Rahman TMA, Salama AM, Ali MIA, Tharwat HA (1990) Fibrinolytic activity of some fungi isolated from self-heated composted fertilizer. Journal of Plant Research 103: 313–324. Abdel-Salam MM (1933) Damping-off and other allied diseases of lettuce. Journal of Pomology and Horticultural Science 11: 259. Abdel-Sater MA, Eraky SA (2002) Bulbs mycoflora and their relation with three stored product mites. Mycopathologia 153: 33–39. Abdel-Wahab GHF (2002) Studies on the mycoflora of stored food. MSc thesis, Faculty of Science, Mansoura University, Egypt. Abdel-Wahab MA (1996) Studies on mangrove-inhabiting fungi of the Red Sea. MSc thesis, Faculty of Science, South Valley University, Sohag, Egypt. Abdel-Wahab MA (2000) Diversity of fungi in subtropical mangroves. PhD thesis, Faculty of Science, South Valley University, Sohag, Egypt. Abdel-Wahab MA (2005) Diversity of higher marine fungi from Egyptian Red Sea mangroves. Botanica Marina 48: 348–355. Abdel-Wahab MA, El-Sharouny HM, Jones EBG (2001a) Two new intertidal lignicolous Swampomyces species from Red Sea mangroves in Egypt. Fungal Diversity 8: 35–40. Aboul-Eid HZ, Hasabo SA, Noweer EMA (2006) Effect of a nematodetrapping fungus Dactylaria brochopaga on Meloidogyne incognita infesting olives and coconut palms in Egypt. International Journal of Nematology 16: 65–69. Aboulkhair KS, El-Sokkary IH (1994) Effect of salinity, boron and sodium on the growth and root infection by VAM, Rhizobium and Frankia of seedlings of three tree species. Journal of Agricultural Sciences, Egypt 19: 2969–2980. Abu El-Souod SM, Assawah S, Bedaiwy M (2000) Survey of mushrooms and polypores fungi in Delta region of Egypt. Proceeding of 1st International Conference of Biological Sciences (ICBS) Faculty of Science, Tanta University 7–8 May, 2000. Adl SM, Leander BS, Simpson AGB, Archibald JM, et al. (2007) Diversity, nomenclature, and taxonomy of Protists. Systematic Biology 56: 684–689. Afify AS, Mahmoud MA, Emara HA, Abdelkreem KI (2009) Phenolic Compounds and COD Removal from Olive Mill Wastewater by Chemical and Biological Procedures. Australian Journal of Basic and Applied Sciences 3: 1087–1095. Agrios GN (2005) Plant Pathology. 5th edn. Elsevier Academic Press, London, UK. Agwa HE (1990) Vesicular arbuscular mycorrhizae and nodulation in some Egyptian plants. PhD thesis, Tanta University, Egypt. Agwa HE (2000) Arbuscular mycorrhizal fungi (Glomales) in Egypt. I. A field survey of Arbuscular mycorrhizal fungi associated Abdel-Wahab MA, El-Sharouny HM, Jones EBG (2001b) Halosarpheia with medicinal plants and effect of inoculation on growth of unicellularis sp. nov. (Halosphaeriales, Ascomycota) based on some plants. African Journal of Mycology and Biotechnology morphological and molecular evidence. Mycoscience 42: 255– 260. 8: 1–12. Agwa HE, Abdel-Fattah GM (2002) Arbuscular mycorrhizal fungi Abdel-Wahab MA, Nagahama T, Abdel-Aziz FA (2009) Two new (Glomales) in Egypt II. An ecological view of some saline affected Corollospora species and one new anamorph based on plants in the Deltatic Mediterranean coastal land. Acta Botanica morphological and molecular data. Mycoscience 50: 147– 155. Abdel-Wahab MA, Pang KL, Nagahama T, Abdel-Aziz FA, Jones Hungarica 44: 1–17. Agwa HE, Al-Sodany YM (2003) Arbuscular-mycorrhizal fungi (Glomales) in Egypt. III: Distribution and ecology in some plants EBG (2010) Phylogenetic evaluation of anamorphic species of in El-Omayed Biosphere Reserve. Egyptian Journal of Biology Cirrenalia and Cumulospora with the description of eight new 5: 19–26. genera and four new species. Mycological Progress: <DOI 10.1007/s11557-010-0661-x>. Abdul Wahid OA, Moustafa AF, Moustafa AM (1996) Fungal population in the atmosphere of Ismailia City. Aerobiologia 12: 249–255. Abou El-Seood MS (1968) Survey of some fungal diseases of weeds and their relation to some economic crops. MSc thesis, Faculty of Agriculture, Assiut University, Egypt. Aboul-Eid HZ (1963) Studies on some aspects of nematode biological control. MSc thesis, Faculty of Agriculture, Cairo University, Egypt. Aboul-Eid HZ, Abdel-Bari AM, Korayem HA, Noweer EA (1997a) Concomitant occurrence of nematode-antagonistic fungi and bacteria associated with prevalent nematodes in Mansouria region soils. Egyptian Journal of Agronematology 1: 37–58. 134 Aboul-Eid HZ, Abdel-Bari AM, Ameen HA, Noweer EA (1997b) Al-Alfy SM (1995) Ecological studies on Mucorales fungi in Ismailia Governorate. MSc thesis. Faculty of Science, Suez Canal University, Egypt. Al-Doory Y (1968) Theisolation of keratinophilic fungi from African soils. Mycopathologia 36: 113–116. Aleem AA (1950a) A fungus in Ectocarpus granulosus C. Agardh near Plymouth. Nature 165: 119–120. Aleem AA (1950b) Phycomycetes marins de diatomees et d’algues dans la region de Banyuls-sur-Mer (Pyrenees-Orientales). Vie et Milieu 1: 421–440. Aleem AA (1950c) Phycomycetes marins parasites de diatomees et d’algues. Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences 231: 713–721. Aleem AA (1952a) Marine fungi from the west coast of Sweden. Arkiv för botanik 2 (3): 1–31. IMA FUNGUS Mycology in Egypt California, USA. marin parasite d’algues de la famille des Bonnemaisoniacees. Ashour EH, Mostafa FAM (1999) Effect of certain heavy metals on Comptes Rendus Hebdomadaires des Seances de l’Academie Meloidogyne spp. on the growth effect of the nematophagous fungus, Arthrobotrys oligospora, trap formation, root-knot des Sciences 235: 1250–1252. Aleem AA (1952c) Sur la présence de Melanopsamma tregoubovii Ollivier (Pyrénomycète) dans la Manche Occidentales. Parasite de Dilophus fasciola (Roth) Howe. Bulletin du Laboratoire nematode infection and enzymes production. Pakistan Journal of Biological Sciences 2: 515–522. Assawah MW (1969) Pileolaria terebinthis on pistachio in UAR (Egypt). Phytopathologia Mediterranea 8: 157–161. Maritime de Dinard 36: 21–24. Aleem AA (1953) Marine fungi from the west-coast of Sweden. Arkiv Assawah MW, El-Arosi H (I960) Fungi associated with wheat, barley and maize grains. Egyptian Journal of Botany 3: 64–79. för Botanik 2, 3: 1–33, 2 pls. Aleem AA (1962) Marine fungi from the White Sea. Botanicheskii Assawah WS (1991) Biochemical studies on some mushrooms in Zhurnal SSSR 47: 1582–1595. Akademia Nauk, Moscow and Egypt. PhD thesis. Faculty of Science, Tanta University, Tanta, Egypt. Leningrad, USSR. Aleem AA (1974) Marine fungi from Romania. Cercetari Marine, Aue R, Müller E (1967) Vergleichende Untersuchungen an einigen Chaetomium Arten. Berichte der Schweizerischen Botanischen Institutul Roman de Cercetari Marine, Constanta 7: 27–55. Aleem AA (1975) Marine fungi from Rumania. Rapport Commission Gesellschaft 77: 187–207. Mer AUMC (2010) Catalogue of Culture Collection. 2nd edn. Assiut Aleem AA (1978) New records of marine fungi from the Red Sea. Aung OM, Soytong K, Hyde KD (2008) Diversity of entomopathogenic Bulletin Faculty of Science, King Abdel-Aziz University, Jeddah fungi in rainforests of Chiang Mai Province, Thailand. Fungal International pour l’exploration scientifique de la Mediterranee 23: 73–74. 2: 131–132. University Mycological Center, Assiut. Diversity 30: 15–22. Aleem AA (1980a) Pythium marinum Sparrow (Phycomycetes) Aveskamp MM, Gruyter J de, Crous PW (2008) Biology and recent infesting Porphyra leucosticta Thuret in the Mediterranean Sea. developments in the systematics of Phoma, a complex genus of Botanica Marina 23: 405–407. Aleem AA (1980b) Distribution and ecology of marine fungi in Sierra Leone (tropical West Africa). Botanica Marina 23: 679–688. Aleem AA , Malibari AA (1981) Studies in tropical marine fungi I. Mangrove fungi from Sierra Leone (West Africa). 1. Deuteromycetes. Bulletin Faculty of Science, King Abdul Aziz University, Jeddah 5: 51–58. Ali Hassanein MDE, Morsi AAE, El-Sherif MAE (1972) Annotated bibliography of agricultural studies conducted in Egypt. Part one (1900–1970). Ali AHH (1994) Studies on some fungal nematode antagonists in relation to nematode egg hatching and reproduction. Egyptian Journal of Biological Pest Control 4: 57–65. Ali AHH (1995) Chaetomium spirale a potential fungus as a biocontrol agent for the reniform nematode on cotton. Egyptian Journal of Biological Pest Control 5: 55–60. Ali AHH, Barakat MLE (1994) Utilization of Trichoderma harzianum as a biological agent against root-knot nematode Meloidogyne incognita. Egyptian Journal of Biological Pest Control 4: 67–77. Ali FU, Ibrahim ZM (2008) Production and some properties of fibrinolytic enzyme from Rhizomucor miehei (Cooney & Emerson) Schipper. Journal of Applied Sciences Research 4: 892–899. Ali MAM (2003) Biological and ecological studies of certain pets of honey bee. PhD thesis. Faculty of Agriculture, Ain Shams University, Cairo, Egypt. Alves A, Crous PW, Correia, A, Phillips AJL (2008) Morphological and molecular data reveal cryptic speciation in Lasiodiplodia theobromae. Fungal Diversity 28: 1–13. Amin WA, Mostafa FAM (2000) Management of Meloidogyne incognita infecting sunflower by integration of Glomus mosseae with Trichoderma viride, T. harzianum and Arthrobotrys oligospora. Egyptian Journal of Agronematology 4: 21–30. Arthur J (2000) Mushrooms and mankind: the impact of mushrooms on human consciousness and religion. Book tree, Escondido, VOLUME 1 · NO. 2 ART I CLE Aleem AA (1952b) Olpidiopsis feldmanni sp. nov. champignon major quarantine significance. Fungal Diversity 31: 1–18. Badran RAM, Aly MZY (1995) Studies on the mycotic inhabitants of Culex pipiens collected from fresh water ponds in Egypt. Mycopathologia 132: 105–110. Bagy MMK, Abdel-Hafez AAI (1985) Mycoflora of camel and goat hairs from AI-Arish, Egypt. Mycopathologia 92: 125–128. Baka ZA, Gjaerum HG (1996) Egyptian Uredinales. I. Rusts on wild plants from the Nile Valley. Mycotaxon 60: 291–303. Barr DJS (1990) Phylum Chytridiomycota. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds), Handbook of Protoctista: 454–466. Jones & Bartlett, Boston, USA. Bartnicki-Garcia S (1970) Cell wall composition and other biochemical markers in fungal phylogeny. In: Harborne JB (ed.) Phytochemical Phylogeny, 81-103, Academic Press, London, UK. Besada WH, Yusef HM (1968) On the mycoflora of UAR soil. Proceedings of the Egyptian Academy of Science 21: 103–109. Besada WH, Yusef HM (1969) Chaetomium mareoticum sp. nov. Transactions of the British Mycological Society 52: 502–504. Binyamini N (1973) Coprophilous Fungi of Israel. III. Israel Journal of Botany 22: 159–165. Bishara I (1928) Cotton insects. Ministry of Agriculture, Egypt, Monthly Report 1: 4. Briton-Jones HR (1922) The smuts of millet. Ministry of Agriculture, Egypt. Technical Series Bulletin 18: 1–9. Briton-Jones HR (1923) A wound parasite of cotton bolls. Ministry of Agriculture, Egypt.Technical Series Bulletin 19: 1–8. Briton-Jones HR (1925) Mycological work in Egypt during the period 1920–1922. Ministry of Agriculture, Egypt. Technical Series Bulletin 49: 1–129. Brusca RC, Brusca GJ (2003) Invertebrates. 2nd edn. Sinauer Associates, Sunderland, Massachusetts, USA. Budge, EAW (1967) The Egyptian Book of the Dead (the papyrus of Ani). Dover Publications, Mineola, New York, USA. 135 ART I CLE Ahmed M. Abdel-Azeem Cavalier-Smith T (1998) A revised six-kingdom system of life. Biological Review 73: 203–266. Cavender JC, Landolt JC, Ndiritu GG, Stephenson SL (2010) El-Hissy FT, Khallil AM, Abdel-Raheem AA (1992) Occurrence and Dictyostelid cellular slime moulds from Africa. Mycosphere 1: distribution of zoosporic fungi and aquatic hyphomycetes in 147–152. Upper Egypt. Bulletin of Faculty of Science, Assiut University Chen C (1999) Genetical and molecular systematic study on the genus Montagnea Fr., a desert adapted Gasteromycete. MSc thesis Virginia Polytechnic Institute and State University, USA. Crous PW (2009) Taxonomy and phylogeny of the genus Mycosphaerella and its anamorphs. Fungal Diversity 38: 1–24. Crous PW, Rong IH, Wood A, Lee S, Glen H, Botha W, Slippers B, Beer WZ de, Wingfield MJ, Hawksworth DL (2006) How many species of fungi are there at the tip of Africa? Studies in Mycology 55: 13–33. Damm U, Woudenberg JHC, Cannon PF, Crous PW (2009) Colletotrichum species with curved conidia from herbaceous hosts. Fungal Diversity 39: 45–87. Delile AR (1813a) Flore d’Egypte. Paris. Delile AR (1813b) Florae aegyptiacae illustratio. Paris. El-Abyad MS (1997) Biodiversity of Fungal Biota in Egypt. Up-dated check-list. [Publication of National Biodiversity Unit No. 7.] Egyptian Environmental Affairs Agency. 21(2-D): 45–64. El-Hissy FT, El-Zayat S, Khallil AM, Massoud MS (1997) Aquatic fungi from the submerged mud of Aswan High Dam Lake. Microbiological Research 152: 27–32. El-Hissy FT, Ali EH, Abdel-Raheem AM (2004) Diversity of zoosporic fungi recovered from the surface water of four Egyptian lakes. Ecohydrology and Hydrobiology 4: 77–87. El-Kady IA, Moubasher MH (1982a). Toxigenicity and toxins of Stachybotrys isolates from wheat straw samples in Egypt. Experimental Mycology, 6: 25–30. El-Kady IA, Moubasher MH (1982b). Some cultural conditions that control biosynthesis of roridin E and satratoxin H by Stachybotrys chartarum. Cryptogamie Mycologie 3: 151–162. El-Kady IA, Moubasher AH, El-Maraghy SSM (1989). Zearalenone production by several genera of fungi other than Fusarium. Egyptian Journal of Botany 31: 99–108. El-Kady IA, El-Maraghy SSM, Zohri AA (1994). Mycotoxin producing El-Abyad MS, Abu-Taleb A (1993) II-Soil Fungi. Ecology of fungal potential of some isolates of Asperigllus flavus and Eurotium flora. In: Publication of National Biodiversity Unit. No. 1. Habitat group from meat products. Microbiolgical Research 149: 297– Diversity: 237–262. Egyptian Environmental Affairs Agency, Egypt. 307. El-Maraghy SS, Abdel-Rahman MAA, Abdel-Malek AY, Hussein KA El-Desouky SM, El-Wakil AA (2003) Occurrence of Monosporascus (2006) Natural incidence of entomopathogenic fungi isolated from root rot and vine decline of cantaloupe and watermelon in Egypt. soil in Assiut, Egypt. Ninth Arab Congress of Plant Protection, Egyptian Journal of Phytopathology 31: 141–150. 19–23 November 2006, Damascus, Syria. El-Fallal AA (2003) Agaricales from the countryside and grasslands El-Naghy MA, Hassan SKM, El-Komy HM (1985) Some chytrids of East Delta region, Egypt. Journal of Environmental Sciences from water streams in Minia Governorate. Bulletin of Faculty of 26: 339–352. Science, Assiut University 14: 17–32. El-Fallal AA, Khedr AA [undated] Podaxis pistillaris (Lin. ex. Press) El-Naghy MA, Hassan SKM, El-Komy HM (1987) Saprophytic Fr., an edible gasteromycete, from Zaranik protected area, North rhizophlyctoid and cladochytrioid fungi from water canals in Sinai, Egypt. <www.mans.eun.eg/FacSciD/arabic/PCVS/79069. Upper Egypt. Bulletin of Faculty of Science, El-Minia University htm>. 1: 77–102. El-Fallal AA, El-Diasty GG (2006) Evaluation of Egyptian white- El-Saadawi WE, Shabbara HM (1999) The first report on a moss- rot fungi for their ability to produce ligninolytic enzymes and fungus association in Egypt. Arab Gulf Journal of Scientific decolorization of Poly R. Bulletin of Faculty of Science, El-Minia University 17: 1–44. El-Hady MM (2004) Susceptibility of the citrus brown mite, Eutetranychus orientalis (Klein) to the entomopathogenic fungi, Verticillium lecanii and Metarhizium anisopliae. Egyptian Journal for Biological Pest Control 14: 409–410. El-Helaly A, Ibrahim I, Assawah M, El-Arosi H, Abou El-Dahab M, Research 17: 221–229. El-Shamy MMG (1996) Studies on what rust diseases in Egypt. PhD thesis, Faculty of Agriculture, Kafr El-Sheikh, Tanta University, Egypt. El-Sharouny HM, Raheem AM, Abdel-Wahab MA (1998) Manglicolous fungi of the Red Sea in Upper Egypt. Microbiological Research 153: 81–96. Michael S, Abdel-Rahim M (1963) General Survey of plant El-Sharouny HM, Abd-Elaah GA, Abdel-Wahab MA (1999) Fungal diseases and pathogenic organisms in the UAR (Egypt) until species isolated from algae and decayed leaves and the combined 1962. Alexandria Journal of Agricultural Research 8: 1–107. effect on salinity and temperature on three marine fungi. Proceedings El-Helaly A, Ibrahim I, Assawah M, El-Arosi H, Abou El-Dahab M, of the second International Conference on Fungi: Hopes and Michael S, Abdel-Rahim M, Wasfy EH, El-Goorani MA (1966) General Survey of plant diseases and pathogenic organisms in Challenges. Cairo, 29th Sept. – 1st Oct. 1999. Vol. I: 39–52. El-Sharouny HM, Gherbawy YAMH, Abdel-Aziz FA (2009) Fungal the UAR (Egypt) until 1965. Alexandria Journal of Agricultural diversity in brackish and saline lakes in Egypt. Nova Hedwigia Research 15: 1–153. 89: 437–450. El-Hissy FT (1974) On freshwater fungi in Egypt. Egyptian Journal of Botany 17: 187–189. 136 (Upper Egypt). Journal of Islamic Academy of Sciences 3: 298– 304. El-Tanash AB (1997) Studies on some fungi degrading tannins. MSc thesis, Faculty of Science, Mansoura University, Egypt. El-Hissy FT, Khallil AM, El-Nagdy MA (1990) Fungi associated with El-Zayat SA, Abdel-Azeem AM, Abdel-Moneim TS, Deyab AS (2007) some aquatic plants collected from freshwater areas at Assiut Association of arbuscular mycorrhizal fungi in Southern Eastern IMA FUNGUS Mycology in Egypt Minia Science Bulletin 18: 158–182. Everhart SE, Keller HW (2008) Life history strategies of corticolous myxomycetes: the life cycle, fruiting bodies, plasmodial types, and taxonomic orders. Fungal Diversity 29: 1–16. Fahmy T (1923) The production by Fusarium solani of a toxic excretory substance capable of causing wilting in plants. Phytopathology 13: 543. Fares CA (1986) Studies on vesicular arbuscular mycorrhizal in Egypt. MSc thesis, Faculty of Agriculture, Ain Shams University, Egypt. Farghaly MSEB (2008) Biodiversity and some physiological studies of Myxomycetes in Upper Egypt. MSc thesis, Faculty of Science, Sohag University, Egypt. Farghaly RM, Gherbawy YAMH, Yousef MS (2004) Contamination of meat stored in home refrigerators in Qena (Egypt). Czech Mycolology 56: 53–62. Feuerer T, Hawksworth DL (2007) Biodiversity of lichens, including a world-wide analysis of checklist data based on Takhatajan’s floristic regions. Biodiversity and Conservation 16: 85–98. Fletcher F (1902) Notes on two diseases of cotton. Journal of Khedive Agricultural Society and School of Agriculture Giza, Egypt 4: 2. Gad MA, Sadek S (1968) Experimental infection of Anopheles pharoensis larvae with Coelomomyces indicus. Journal of the Egyptian Public Health Association 43: 387–391. Haggag MW, Saker MM, Ibrahim AM (2007) Biocontrol activity and molecular characterization of three Tilletiopsis spp. against grape powdery mildew. Plant Protection Bulletin 49: 39–56. Hajek AE, St. Leger RJ (1994) Interactions between fungal pathogens and insect hosts. Annual Review of Entomology 39: 293–322. Hamdi A, Hassanein AM (1996) Survey of Fungal Diseases in North Egypt. LENS Newsletter 23(1/2): 52–56. Haridy MSA (1992a) A survey of yeasts found in the air of El-Minia city, Egypt. The Korian Journal of Mycology 20: 269–272. Haridy MSA (1992b) Yeast flora of raw milk in El-Minia city, Egypt. Cryptogamie Mycologie 13: 321–326. Haridy MSA (1993a) Yeast spoilage of some soft fruits in El-Minia city, Egypt. Bulletin of the Faculty of Science, Assiut University 22: 13–29. Haridy MSA (1993b) Yeast microflora of some aquatic habitats in ElMinia governorate, Egypt. Korian Journal of Mycology 21:127– 132. Haridy MSA (1994a) A survey of yeasts found in some plant flowers. El-Minia Science Bulletin 7: 77–88. Haridy MSA (1994b) Yeasts flora of bakeries in El-Minia city, Egypt. El-Minia Science Bulletin 7: 89–98. Haridy MSA (2002) Occurrence of yeast in cultivated soils in El-Minia city, Egypt. Mycobiology 30: 27–30. Hassan HY, Waraki SE, Madkour M, Hussein HA, Awad M, Safwat Gad MA, Sadek S, Fateen AY (1967) The occurrence of T, Youssef YA, Taha M, Hassan MN, Hammad HA (1980a) Coelomomyces indicus in Egypt. United Arab Republic Mosquito The study of mycoflora of sputum in patients with various News 27: 201–202. bronchopulmonary diseases in Egypt. Egyptian Journal of Chest Gaertner A (1954) Über das Vorkommen neiderer Erdphycomyceten in Afrika, Schweden und an einigen mitteleuropäischen Standorten. Archiv für Mikrobiologie 21: 4–56. Galun M, Garty J (1972) Lichens of north and central Sinai. Israel Journal of Botany 21: 243–254. Gherbawy YAMH (2004) Genetic variation among isolates of Alternaria spp. from some Egyptian crops. Archives of Phytopathology and Plant Protection 28: 77–89. Gherbawy YAMH, Abdelzaher HMA (2002) Using of RAPD-PCR for Separation of Pythium spinosum Sawada into two varieties: var. spinosum and var. sporangiferum. Cytologia 67: 83–94. Diseases and Tuberculosis 23: 5–18. Hassan HY, Refai M, Youssef YA, Taha M, Hassan MN, Hammad HA, Waraki SE, Madkour M, Hussein HA, Awad M, Safwat T (1980b) Incidence of yeasts in the sputum of patients with bronchopulmonary diseases in Egypt. Egyptian Journal of Chest Diseases and Tuberculosis 23: 27–32. Hassan HY, Youssef YA, Abogamra M, Hammad HA, Refai M (1980c) Mycological and serological studies on grain worker in mill factories in Cairo Egypt. Egyptian Journal of Chest Diseases and Tuberculosis 23: 33–48. Hassan HY, El-Sarangawy A, Youssef YA, Hassan MN, Taha M, Gherbawy YAMH, Farghaly RM (2002) Mycological studies on Hammad HA, Refai M (1980d) Preliminary study of mycoflora chicken-viscera with the aid of RAPD-PCR techniques as a tool in sputum of poultry workers and screening of their sera for for confirmation. Mycobiology 30: 5–12. antifungal precipitins. Egyptian Journal of Chest Diseases and Gherbawy YAMH, Voigt K (eds) (2010) Molecular Identification of Fungi. Springer, Heidelberg, Germany. Ghoniem KEA (1985) Studies on Powdery Mildew diseases in Egypt. MSc thesis, Faculty of Agriculture, Kafr El-Sheikh, Tanta University, Egypt. Groombridge B, Jenkins MD (2002) World Atlas of Biodiversity: Earth’s Living Resources in the 21st Century. University of California Press, Los Angeles, USA. Hafez M, Zaki FN, Moursy A, Sabbour M (1997) Biological effects of the entomopathogenic fungus Beauveria bassiana on the potato tuber moth Phthorimaea operculella (Seller). Anzeiger für Schädlingskunde 70: 158–159. Hafez YM (2008) Effectiveness of the antifungal black seed oil Tuberculosis 23: 61–70. Hassan HY, Youssef YA, Refai M, Taha M, Barakat E (1980e) Fungi in the air of different departments of Ain Shams Hospitals. Ain Shams Medical Journal 31: 345–355. Hassan HY, Awad M, Taha M, Youssef YA, Refai M, Hammad H, Salem A (1981) The search of fungi in pleural effusion. Egyptian Journal of Chest Diseases and Tuberculosis 24: 9–18. Hassan SKM (1991a) Chytrids in Egypt: I- Saprophytic species of the cladchytriaceae from water streams. Cryptogamie Mycologie 12: 211–225. Hassan SKM (1991b) Chytrids in Egypt: II– New records of species of Entophlyctidaceae. Cryptogamie Mycologie 12: 227–240. against powdery mildews of cucumber (Podosphaera xanthii) Hassan SKM (1991c) Chytrids in Egypt: III– Cellulolytic rhizophlyctoid and barley (Blumeria graminis f.sp. hordei). Acta Biologica fungi from water canals. Bulletin of Faculty of Science, Assiut Szegediensis 52: 17–25. University 19 (2–d): 283–298. VOLUME 1 · NO. 2 ART I CLE Desert (Wadi El-Alaqi, biosphere reserve) Aswan, Egypt. El- 137 ART I CLE Ahmed M. Abdel-Azeem Hassan SKM (1991d) Chytrids in Egypt: V- Additional species and new pathogen on anise seed in Egypt. Plant Pathology Journal Science, El-Minia University 4: 89–104. 8: 165–169. Hassan SKM (1993) Occurrence and distribution of Chytridiales Ismail MA, Sabreen MS (2001) Associated mycobiota of some types related to some physical and chemical factors. Acta Mycologica of cheese and cooking butter. Assiut Veterinary Medical Journal 44: 176–190. 28: 31–38. Hassan SKM, Fadl-Allah EM (1991) Studies of some zoosporic fungi in soils of Upper Egypt. Acta Mycologia 27: 157–170. Hassan SKM, Shaban JM (1991) Common chytrids in moist soil in El–Minia during different seasons. Bulletin of Faculty of Science, James TY, O’Donnell K (2007) Zygomycota. Microscopic ‘Pin’ or ‘Sugar’ Molds. Version 13 July 2007 (under construction). http:// tolweb.org/Zygomycota/20518/2007.07.13 in The Tree of Life Web Project, <tolweb.org/> James TY, Letcher PM, Longcore JE, Mozley-Standridge SE, Porter El-Minia University 4: 131–144. Hassan SKM, Shoulkamy MA (1991) Chytridiaceous fungi from D, Powell MJ, Griffith GW, Vilgalys R (2006a) A molecular water streams in Upper Egypt. Zentralblatt Mikrobiologie 146: phylogeny of the flagellated fungi (Chytridiomycota) and 509–523. description of a new phylum (Blastocladiomycota). Mycologia Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycological Research 95: 641–655. Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycological Research 105: 1422–1432. Hawksworth DL, Kalin-Arroyo MT (1995) Magnitude and Distribution of Biodiversity. In: Heywood V. (ed.), Global biodiversity assessment, 107–191. Cambridge, UK: Cambridge University Press. Hawksworth DL, Rossman AY (1997) Where are all the undescribed fungi? Phytopathology 87: 888–891. Hawksworth DL, Kirk PM, Sutton BC, Pegler DN (1995) Ainsworth and Bisby’s Dictionary of the Fungi (8th Ed.). CAB International, Wallingford, UK. Hibbett DS, Binder M, Bischoff JF, et al. (2007). A higher-level phylogenetic classification of the Fungi. Mycological Research 111: 509-547. Hoog GS de, Guarro J, Gene J, Figueras MJ (2000) Atlas of Clinical Fungi. 2nd edn. Centraalbureau voor Schimmelcultures, Baarn, The Netherlands. Hyde KD (1996) Measuring biodiversity: diversity of microfungi in north Queensland. In: Measuring and Monitoring Biodiversity in Tropical and Temperate Forests (Boyle TJB, Boontawee B, eds). CIFOR, Bogor: 271–286. Hyde KD, Sarma VV, Jones EBG (2000) Morphology and taxonomy 98: 860–871. James TY, Kauff F, Schoch CL, et al. (2006 b) Reconstructing the early evolution of the fungi using a six gene phylogeny. Nature 443: 818–822. Jones EBG (2001) The forgotten fungi: facultative marine fungi. In: 8th International Marine and Freshwater Mycology Symposium, Hurghada, Egypt: 13. Jones EBG, Sakayaroj J, Suetrong S, Somrithipol S, Pang KL (2009) Classification of marine Ascomycota, anamorphic taxa and Basidiomycota. Fungal Diversity 35: 1–187. Kaewchai S, Soytong K, Hyde KD (2009) Mycofungicides and fungal biofertilizers. Fungal Diversity 38: 25–50. Karam El-Din AA, Youssef AY, Soliman AK, Elias M (1994a) Comparative serological study on Cryptococcosis. African Journal of Mycology and Biotechnology 2: 125–138. Karam El-Din AA, Youssef AY, El-Kholy EM (1994b) Prevalence of fungi in clinical specimens from patients with fever of unknown origin, leukemia and cancer. African Journal of Mycology and Biotechnology 2: 139–154. Karam El-Din AA, Youssef AY, Hassan Y (1994c) Prevalence of pathogenic yeast fungi in clinical specimens from patients with candidiasis. African Journal of Mycology and Biotechnology 3: 37–47. Karam El-Din AA, Youssef AY, Taher EM (1995) Mycotic keratitis: Seasonal, Etiological and Biochemical study. African Journal of Mycology and Biotechnology 3: 133–152. of higher marine fungi. In: Marine Mycology- A Practical Approach Karam El-Din AA, Youssef AY, Zaki Sh (1996) Distribution of pathogenic (eds KD Hyde, SB Pointing): 172–204. [Fungal Diversity and potentially pathogenic fungi among soil fungal flora in Egypt. Research Series No. 1.] Fungal Diversity Press, Hong Kong. Hyde KD, Fröhlich J, Taylor JE (1997) Diversity of ascomycetes on palms in the tropics. In: Biodiversity of Tropical Microfungi (ed. KD Hyde): 141–156. Hong Kong University Press, Hong Kong Hyde KD, Gareth-Jones EB, Leaño E, Ponting AD, Vrijmoed LLP (1998) Role of fungi in marine ecosystems. Biodiversity and Conservation 7: 1147–1161. Hyde KD, Cai L, Cannon PF, et al. (2009) Colletotrichum – names in current use. Fungal Diversity 39: 147–182. Hyde KD, Bahkali AH, Moslem MA (2010) Fungi – an unusual source of cosmetics. Fungal Diversity 43: 1–9. Ibrahim RA (1995) Studies on desert truffles. MSc thesis, Faculty of Science, Cairo University, Cairo, Egypt. 138 Ismail AE, Ghoneem KM, Elwakil MA (2009) Puccinia pimpinellae, a parasitic behaviour of some members. Bulletin of Faculty of African Journal of Mycology and Biotechnology 4: 23–39. Kassas M (2002) Biodiversity: gaps in knowledge. The Environmentalist 22: 43–49. Kelley A (1950) Mycotrophy in plants. Chronica Botanica, Waltham, Massachsetts, USA. Kendrick B (2000) The Fifth Kingdom. 3rd edn. Focus Publishing, Newbury. Massachsetts, USA. Khalil HME (1995) The effect of microenvironmental variation on the distribution of the macrolichens in Gebel Dalfa, North Sinai, Egypt. MSc thesis, Faculty of Science, Suez Canal University, Egypt. Khallil AM (2001) Ingoldian and other filamentous fungi of hot springs. Bulletin of the Faculty of Science, Assiut University 30 (1-D): 21–31. Ishac YZ, El-Haddad ME, Daft MJ, Ramadan EM, El-Demerdash Khallil AM, El-Hissy FT, Ali E (1995) Seasonal fluctuations of aquatic ME (1986) Effect of seed inoculation, mycorrhizal infection and fungi recovered from Egyptian soil (Delta Region). Journal of organic amendment on wheat growth. Plant and Soil 90: 373–382. Basic Microbiology 35: 93–102. IMA FUNGUS Mycology in Egypt Malençon G (1984) Phallus roseus A. Delile 1813, alias Itajahya rosea of the soil fungal flora in the different types of soil in the UAR. (Delile) Ed. Fischer 1929. Bulletin de la Société Mycologique de Bulletin of Faculty of Science Alexandria University 9: 683–698. France 100: 15–33. Kharboush MAM (1969b) On the ecology of soil fungi. II-Some ecological aspects of the soil fungal flora in the UAR. Bulletin of Faculty of Science Alexandria University 9: 699–716. Khater HM (1989) Survey of soil from different sites at Cairo for yeast fungi. MSc thesis. Faculty of Science, Ain Shams University. Mankarios AT, Abdel-Fattah GM (1994) Ecology of VA-mycorrhiza in Some Egyptian soils. Egyptian Journal of Botany 34: 135–152. Mansour MAI (2010) Endomycorrhizal fungi as a biocontrol mean of tomato-fusarial –wilt in North Sinai. MSc thesis, Faculty of Education, University of Suez Canal, Al-Arish, Egypt. Kim HM, Paik S, Ra KS, Koo KB, Yun JW, Choi JW (2006) Enhanced McNeely JA, Miller KR, Mittermeier R, Werner TB (1990) production of exopolysaccharides by fed-batch culture of Conserving the World’s Biological Diversity. International Union Ganoderma resinaceum DG-6556. The Journal of Microbiology for Conservation of Nature and Natural Resources, Gland, 44: 233–242. Switzerland. Kirk P, Cannon PF, Minter DW, Stalpers JA (2008) Ainsworth & Melchers LE (1931) A check list of plant diseases and fungi occurring Bisby’s Dictionary of the Fungi. 10th edn. CAB International, in Egypt. Transactions of the Kansas Academy of Science 34: Wallingford, UK. Kodsueb R, McKenzie EHC, Lumyong S, Hyde KD (2008a) Diversity of saprobic fungi on Magnoliaceae. Fungal Diversity 30: 37–53. Kodsueb R, McKenzie EHC, Lumyong S, Hyde KD (2008b) Fungal succession on woody litter of Magnolia liliifera (Magnoliaceae). Fungal Diversity 30: 55–72. Kohlmeyer J, Kohlmeyer E (1979) Marine Mycology. The Higher Fungi. Academic Press, New York, U.S.A. 41–106. Mennicken M, Maier W, Oberwinkler F (2005) A contribution to the rust flora (Uredinales) on Zygophylloideae (Zygophyllaceae) in Africa. Mycotaxon 91: 39–48. Minter DW (2010) Conservation of fungi: the orphans of the Rio De Janeiro Convention. In: The First International Conference on Basic and applied Mycology, 9–11 March 2010, Assiut, Egypt: 22–23. Koriem AM (2003) Light and electron microscopic study of the Montasir AH, Mostafa MA, Elwan SH (1956) Development of lichen Xanthoria Parietina infecting fruit trees in Egypt. 8th Arab soil microflora under Zygophylum album L. and Zygophylum Congress of Plant Protection, 12–16 October 2003, El-Beida, Libya. Koriem AM (2006) First isolation and cultivation of the fungus and the alga of the lichen Xanthoria parietina infecting mango trees coccinum L. Ain Shams Science Bulletin, No. 1. Moore D, Nauta MN, Evans SE, Rotheroe M (eds) (2001) Fungal Conservation, Issues and Solutions. Cambridge University Press, Cambridge, UK. in Egypt. 9th Arab Congress of Plant Protection, 19–23 November Morse EE (1933) A study of the genus Podaxis. Mycologia 25: 1–33. 2006, Damascus, Syria. Morton JB, Redecker D (2001) Two new families of Glomales, Kottb MR (2008) Survey and characterization of Trichoderma and Gliocladium species and specification of their biocontrol ability. MSc thesis, Faculty of Science, Suez Canal University, Egypt. Kowalik R, Sadurska I (1973) Microflora of papyrus from samples of Cairo Museum. Studies in Conservation 18: 1–24. Krug JC, Khan RS, Jeng RS (1994) A new species of Gelasinospora with multiple germ pores. Mycologia 86: 250–253. Archaeosporaceae and Paraglomaceae, with two new genera Archaeospora and Paraglomus, based on concordant molecular and morphological characters. Mycologia 93: 181– 195. Mostafa MA (1938) Mycorrhiza in Tropaeolum majus L. and Phlox drummondii Hook. Annals of Botany 2: 481–490. Mostafa MA, Gayed SK (1953) Interaction between Trichoderma Kruys Å, Ericson L (2008) Species richness of coprophilous viride and Fusarium vasinfectum and its possible bearing on the ascomycetes in relation to variable food intake by herbivores. biological control of the cotton-wilt disease in Egypt. Extrait du Fungal Diversity 30: 73–81. Kvas M, Marasas WFO, Wingfield BD, Wingfield MJ, Steenkamp ET (2009) Diversity and evolution of Fusarium species in the Gibberella fujikuroi complex. Fungal Diversity 34: 1–21. Lado C (1994) A checklist of myxomycetes of Mediterranean countries. Mycotaxon lII: 117–185. Lichtwardt R (2002) Biogeographical implications of trichomycete distributions. (Abstract). IMC7 Book of Abstracts, p. 48. Lundqvist N (1969) Zygopleurage and Zygospermella (Sordariaceae s. lat., Pyrenomycetes). Botanska Notiser 122: 353–374. Lundqvist N (1970) New Podospora (Sordariaceae s. lat., Pyrenomycetes). Svensk Botanisk Tidskrift 64: 409–420. Lutzoni FF, Kauff CJ, Cox D, et al. (2004) Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. American Journal of Botany 91(10): 1446–1480. Bulletin de l’Institut d’Égypte 35: 191–211. Moubasher AH (1993) Soil fungi of Qatar and other Arab Countries. The Scientific and Applied Research Centre, University of Qatar. Moubasher AH , Abdel-Rahman MA, Abdel-Mallek AY, Hammam GHA (2010) Biodiversity of entomopathogenic fungi infecting cereal and cabbage aphids in Assiut. In: The First International Conference on Basic and applied Mycology, 9–11 March 2010, Assiut, Egypt: 34. Mouchacca J (1977) Les champignons de la momie de Ramsès. Comptes Rendus de l’Academie des Sciences de Paris 285: 515–517. Mouchacca J (1995) Check-list of novel fungi from the Middle East described mainly from soil since 1930. Sydowia 47: 240–257. Mouchacca J (1999) A list of novel fungi described from the Middle East, mostly from non-soil substrata. Nova Hedwigia 68: 149–174. Mahmoud YAG (1999) First environmental isolation of Cryptococcus Mouchacca J (2001a) Biodiversité des récentes découvertes neoformans var. neoformans and var. gatti from the Gharbia fongiques, dans les états arides de l’est méditerranéen (Moyen- Governorate, Egypt. Mycopathologia 148: 83–86. Orient). Bocconea 13: 131–143. VOLUME 1 · NO. 2 ART I CLE Kharboush MAM (1969a) On the ecology of soil fungi. I-Distribution 139 ART I CLE Ahmed M. Abdel-Azeem Mouchacca J (2001b) New fungi described from north east Africa Egyptian cotton varieties. Ain Shams Science Bulletin 2: 65–83. and other Arab countries since 1940. What conclusions could Natrass RM (1932) Preliminary notes on some entomogenous fungi be drawn from this scientific activity? Cairo University African in Egypt. Ministry of Agriculture, Egypt. Technical Series Bulletin Studies Review 23: 49–84. Natrass RM (1933) A new species of Hendersonula (H. toruloidea) on taxa introduced from the Middle East (1940–2000). Mycotaxon deciduous trees in Egypt. Transactions of the British Mycological 88: 19–40. Mouchacca J (2003b) A selection of bibliography on the biodiversity and phytopathology of African fungi (–1994). Cryptogamie Mycologie 24: 213–263. Mouchacca J (2004) Novel fungal taxa from the arid Middle East (1940–2000): omissions from previous notes. Cryptogamie Mycologie 25: 149–171. Mouchacca J (2005) Mycobiota of the arid Middle East: check-list of novel fungal taxa introduced from 1940 to 2000 and major recent biodiversity. Journal of Arid Environments 60: 359–387. Mouchacca J (2008) Novel fungal taxa from the arid Middle East introduced prior to the year 1940. I - Non lichenized Ascomycetes. Cryptogamie Mycologie 29: 365–388. Mouchacca J (2009a) Novel fungal taxa from the arid Middle East introduced prior to the year 1940. II – Anamorphic fungi: Hyphomycetes. Cryptogamie Mycologie 30: 199–222. Mouchacca J (2009b) Novel fungal taxa from the arid Middle East introduced prior to the year 1940. III – Anamorphic fungi: Coelomycetes. Cryptogamie Mycologie 30: 377–403. Moustafa AF (2006) Fungi of Egypt. Zygomycetes. AUMC Descriptions, No. 1. Assiut. Moustafa AF, Abdel-Azeem AM (2005a) Zygopleurage zygospora (Sepg.) Boedijn, a new record to the Egyptian Ascomycetes. Assiut University Journal of Botany 34: 165–169. Moustafa AF, Abdel-Azeem AM (2005b) The genus Chaetomium in Egypt. El-Minia Science Bulletin 16: 235–256. Moustafa AF, Abdel-Azeem AM (2006) Some new records to Society 18: 189–198. Ndiritu GG, Winsett KE, Spiegel FW, Stephenson SL (2009) A checklist of African myxomycetes. Mycotaxon 107: 353–356. Nofal MA, Haggag WM (2006) Integrated management of powdery mildew of mango in Egypt. Crop Protection 25: 480–486. Nylander W (1864) Lichenes in Aegypto a cel. Ehrenberg collecti. Actes de la Société Linnéenne de Bordeaux 25: 63–70. Nylander W (1876) Lichenes in Aegypto a cel. Larbalestier collecti. Flora 59: 281–285. Olive LS, Stoianovitch C (1969) Monograph of the genus Protostelium. American Journal of Botany 56: 979–988. Pang KL, Abdel-Wahab MA, Sivichai S, El-Sharouny HM, Jones EBG (2002) Jahnulales (Dothideomycetes, Ascomycota): a new order of lignicolous freshwater ascomycetes. Mycological Research 106: 1031–1042. Petersen RH, Desjardin DE, Krüger D (2008) Three type specimens designated in Oudemansiella. Fungal Diversity 32: 81–96. Phillips AJL, Oudemans PV, Correia A, Alves A (2006) Characterisation and epitypification of Botryosphaeria corticis, the cause of blueberry cane canker. Fungal Diversity 21: 141–155. Philp J, Selim AG (1941) Rust-resistant wheats for Egypt. Nature 147: 209–209. Ragab MA (1956) A contribution to the fungi of Egypt. Mycologia 48: 167–168. Ragab MA, Mahdi MT (1966) Studies on Tolyposporium ehrenbergii the cause of long smut of Sorghum in Egypt (UAR). Mycologia 58: 184–191. the Egyptian Ascomycetes with a provisional key to their Raghukumar C (2002) Bioremediation of coloured pollutants by identification. Assiut University Journal of Botany 35: 87–103. terrestrial versus facultative marine fungi. In: Fungi in the Moustafa AF, Abdel-Azeem AM (2008) Thielavia gigaspora, a Marine Environment (ed. KD Hyde): 317–344. [Fungal Diversity new thermotolerant ascomycete from Egypt. Microbiological Research 163: 441–444. Moustafa AF, Abdel-Azeem AM (2010) An annotated check-list of Egyptian Ascomycota reported from soil and other terricolous substrates. [Unpublished data.] Mourad AK, Zaghloul OA, Kady EL, Nemat FM, Morsy ME (2005) A novel approach for the management of the chalkbrood disease Research Series no.7.] Fungal Diversity Press, Hong Kong. Raghukumar C (2008) Marine fungal biotechnology: an ecological perspective. Fungal Diversity 31: 19–35. Raja HA, Ferrer A, Shearer CA (2009) Freshwater ascomycetes: a new genus, Ocala scalariformis gen. et sp. nov, and two new species, Ayria nubispora sp. nov. and Rivulicola cygnea sp. nov. Fungal Diversity 34: 79–86. infesting honeybee Apis mellifera L. (Hymenoptera: Apidae) Redecker D, Raab P (2006) Phylogeny of the Glomeromycota colonies in Egypt. Communications in Agricultural and Applied (arbuscular mycorrhizal fungi): recent developments and new Biological Sciences 70: 601–611. Mueller UG, Rehner SA, Schultz TR (1998) The evolution of agriculture in ants. Science 281: 2034–2038. Müller J (1880a) Les lichens d’Egypte. Revue Mycologique 2: 38–40. Müller J (1880b) Enumeratio lichenum aegyptiacorum hucusque cognitorum [1]. Revue Mycologique 2: 40–44. Müller J (1880b) Enumeratio lichenum aegyptiacorum hucusque cognitorum [2]. Revue Mycologique 2: 73–83. Müller J (1884) Enumerationis lichenum aegyptiacorum. Supplement I. Revue Mycologique, Toulouse 6: 15–20. Naim MS, Mahmoud SAZ, Hussein AM (1957) Qualitative and quantitative studies on the rhizosphere microflora of some 140 120: 1–9. Mouchacca J (2003a) Annotated basic references of novel fungal gene markers. Mycologia 98: 885–895. Reichert I (1921) DiePilzflora Äegypten. Engler’s Botanischen Jahrbüchen 56: 595–727. Rinaldi AC, Comandini O, Kuyper TW (2008) Ectomycorrhizal fungal diversity: separating the wheat from the chaff. Fungal Diversity 33: 1–45. Rojas C, Stephenson SL (2008) Myxomycete ecology along an elevation gradient on Cocos Island, Costa Rica. Fungal Diversity 29: 117–127. Rossman AY (2003) A strategy for an All Taxa Inventory of Fungal Biodiversity. In: Biodiversity and Terrestrial Ecosystems( eds CI Peng, CH): 169–194. Taipei. IMA FUNGUS Mycology in Egypt spores at Alexandria. Annals of Allergy 21: 471. Sabet YS (1935) A preliminary study of Egyptian soil fungi. Bulletin of the Faculty of Science, Egyptian University, Cairo 5: 1–29. Sabet YS (1936) Preliminary study of Penicillium egyptiacum v. Beyma. Zentralblatt für Bakteriologie 94: 97–102. Sabet YS (1938) Contributions to the study of Penicillium egyptiacum v. Beyma. Transactions of the British Mycological Society 21: 198–210. in Egypt. PhD thesis, Faculty of Science, Zagazig University, Egypt. Shoulkamy MA, Lucarotti CJ (1998) Pathology of Coelomomyces stegomyiae in larval Aedes aegypti. Mycologia 90: 559–564. Shoulkamy MA, Lucarotti CJ, El-Ktatny MST, Hassan SKM (1997) Factors affecting Coelomomyces stegomyiae infections in adult Aedes aegypti. Mycologia 89: 830–836. Shoulkamy MA, Abdelzaher HMA, Shahin AAB (2001) Ultrastructural changes in the muscles, midgut, hemopoietic organ, imaginal Sabet YS (1939a) On some fungi isolated from soil in Egypt. Bulletin discs and Malpighian tubules of the mosquito Aedes aegypti of the Faculty of Science, Fouad I University, Egyptian University, larvae infected by the fungus Coelomomyces stegomyiae. Cairo 19: 1–112. Sabet YS (1939b) Cotton mycorrhiza. Nature 144: 37. Sabet YS (1940) Mycorrhizal habit in the date palm (Phoenix dactyliferea L.). Nature 145: 782. Sabet YS (1945) Reactions of citrus mycorrhiza to manurial treatment. Proceeding of Egyptian Acadamy of Science 1: 21–28. Salem MA, Michail SH (1980) Inonotus psuedohisbidus on Populous nigra in Egypt. Transactions of the British Mycological Society 74: 107–110. Samson RA, Evans HC, Latg JP (1988) Atlas of Entomopathogenic fungi. Springer, Berlin Heidelberg New York. Sartory A, Meyer J, Tawfik Z (1939) Contribution à l’étude d’une Mucoracée, Absidia aegyptiacum n. sp., ferment alcoolique de la Bouza d’Egypte. Comptes rendus hebdomadaires des Séances de l’Académie des Sciences, Paris 208: 1842–1843. Mycopathologia 149: 99–106. Sickenberger E (1901) Lichenes. Memoires de l’Institut d’Egypte 4: 319–331. Sirag El-Din A (1931) The citrus twig gum disease in Egypt. Ministry of Agriculture, Egypt. Technical Series Bulletin 109: 1–16. Simonis JL, Raja HA, Shearer CA (2008) Extracellular enzymes and soft rot decay: Are ascomycetes important degraders in fresh water? Fungal Diversity 31: 135–146. Smith D (2003) Culture collections over the world. International Microbiology 6: 95–100. Smith D, Ryan MJ, Day JG (eds) (2001) The UK National Culture Collection Biological Resource: properties, maintenance and management. UK National Culture Collection, Egham. Smith SE, Read DJ (1997) Mycorrhizal Symbiosi. 2nd ed. Academic Press, London. Seaward MRD, Sipman HJM (2006) An updated checklist of Steiner J (1893) Beiträge zur Lichenenflora Griechenlands und lichenized and lichenicolous fungi for Egypt. Willdenowia 36: Egyptens. Sitzungsberichte der Kaiserlichen Akademie der 537–555. Sert HB (2009) Additions to rust and smut fungi of Turkey. Phytoparasitica 37: 189-192. Sewify G (1997) Occurrence and pathogenicity of entomopathogenic fungi in Egypt. In: 7th National conference of pest and diseases of vegetables and fruits in Egypt. Ismailia, Suez Canal University, Egypt 25–26 November 1997: 380–395. Sewify G, Hashem YM (2001) Effect of the entomopathogenic fungus Metarhizium anisopliae (Metsch.) Sorokin on cellular Wissenschaften 102: 152–176. Steiner J (1916) Aufzählung der von J. Bornmüller im Oriente gesammelten Flechten. Annals Naturhistorische Museum Wien 30: 24–39. Stephenson SL, Stempen H (1994) Myxomycetes: a hand book of slime molds. Timber Press. Portland, Oregon, USA. Stizenberger E (1890) Lichenaea Africana. Berichte über die Tätigkeit der St. Gallischen Naturwissenschaftlichen Gesellschaft 1888– 89: 105–249. defence response and oxygen uptake of the wax moth Galleria Stizenberger E (1891) Lichenaea Africana. Berichte über die Tätigkeit mellonella L. (Lep., Pyralidae). Journal of Applied Entomology der St. Gallischen Naturwissenschaftlichen Gesellschaft 1889– 125: 533–536. 90: 133–268. Shalaby KEEM (1999) Physiological studies on some chitin-degrading Sung GH, Hywel-Jones NL, Sung JM, Luangsa-Ard JJ, Shrestha B, fungi. MSc thesis, Faculty of Science, Zagazig University, Egypt. Spatafora JW (2007) Phylogenetic classification of Cordyceps Shalouf HMS (1989) Studies on fungal leaf spots of some plants in Egypt. MSc thesis Faculty of Science, Mansoura University, Egypt. Shearer CA, Descals E, Volkmann-Kohlmeyer B, Kohlmeyer J, and the clavicipitaceous fungi. Studies in Mycology 57: 5–59. Swelim MA, Baka ZAM, El-Dohlob SM, Hazzaa MM, El-Sayed TI (1994) Mycoflora of stored poultry fodder in Egypt and their ability to produce aflatoxins. Microbiological Research 149: 435–442. Marvanová L, Padgett D, Porter D, Thorton HA, Voglmayr Tangley L (1997) How many species are there? US News and World H, Raja HA, Schmit JP (2007) Fungal biodiversity in aquatic Report Aug. 18, 1997. <www.usnews.com/usnews/culture/ habitats. Biodiversity and Conservation 19: 49–67. Shearer A (1924) Cotton wilt 3rd Annual Report, Cotton Research Board, Ministry of Agriculture. Egypt: 37. Sherief AA (1985) Studies on xylan-decomposing fungi Egypt. PhD thesis, Faculty of Science, Mansoura University, Egypt. articles/970818/archive_007681.htm> Temina M, Wasser SP, Nevo E (2004) New records of lichenized fungi from the Near East, Mycologia Balcanica 1: 139–151. Temina M, Nevo E, Wasser SP (2005) The lichen genus Acarospora in Israel and its vicinity. Nova Hedwigia 80: 433–451. Sherif S, Ghanem EH, Shafik I, Mustafa EE, Abdel-Aleem MM (1991) Teramoto Y, Yoshida S, Ueda S (2001) Characteristics of Egyptian Integrated control of wheat loose smut in Egypt. Assiut Journal of boza and a fermentable yeast strain isolated from the wheat Agricultural Science 22: 153–163. Shindia AAE (1990) Studies on fungal degradation of composts VOLUME 1 · NO. 2 ART I CLE Saad SI (1958) Studies in atmospheric pollen grains and fungus bread. World Journal of Microbiology and Biotechnology 17: 241–243. 141 ART I CLE Ahmed M. Abdel-Azeem Thongkantha S, Lumyong S, McKenzie EHC, Hyde KD (2008) Fungal Youssef YA, Karam El-Din A (1988a) Airborne spore of opportunistic saprobes and pathogens occurrence on tissues of Dracaena fungi in the atmosphere of Cairo, Egypt. I. Mould Fungi. Grana loureiri and Pandanus spp. Fungal Diversity 30: 149–179. 27: 89–92. Udagawa S, Ueda S (1983) Thermoascus aegyptiacus. Transactions of the Mycological Society of Japan 24: 135. Vijaykrishna D, Jeewon R, Hyde KD (2006) Molecular taxonomy, origins and evolution of freshwater ascomycetes. Fungal Diversity 23: 351–390. Youssef YA, Karam El-Din A (1988b) Airborne spores of opportunistic fungi in the atmosphere of Cairo Egypt. II. Yeast Fungi. Grana 27: 247–250. Youssef YA, Karam El-Din A, Mohamed A (1989) Survey of soil for human pathogenic fungi from Ismailia Governorate. Egypt. Wannathes N, Desjardin DE, Hyde KD, Perry BA, Lumyong S Bulletin of Faculty of Science, Mansoura University 16: 153–163. (2009) A monograph of Marasmius (Basidiomycota) from Youssef YA, Karam El-Din A, Hassanein SM (1992) Occurrence of Northern Thailand based on morphological and molecular (ITS keratinolytic fungi and related dermatophytes in soils in Cairo, sequences). Fungal Diversity 37: 209–306. Egypt. Zentralblatt für Mikrobiologie 147: 80–85. Werner RG (1966) Notes de lichenologie libano-syrienne, VIII et Youssef YA, Karam El-Din A, Ismail ThFM (1993) Occurrence of egyptienne. Bulletin de la Societe Botanique de France 113: Cryptococcus meningitis in Cairo, Egypt. African Journal of 74–83. Wheeler Q, Blackwell M (1984) Fungus-insect Relationships. Columbia University Press, New York. Whittaker RH (1969) New concepts of kingdoms of organisms. Science 163: 150–160. Wilson EO (1992) The Diversity of Life. Harvard University Press, Cambridge, Massachusetts, USA. Wong KMK, Goh TK, Hodgkiss IJ, Hyde KD, Ranghoo VM, Tsui CKM, Ho WH, Wong SW, Yeun TK (1998) Role of fungi in freshwater ecosystems. Biodiversity and Conservation 7: 1187–1206 Wulandari NF, To-anun C, Hyde KD, Duong LM, Gruyter J de, Meffert Mycology and Biotechnology 1: 107–115. Yusef HM (1964) Observations on phytopathogenic fungi new to UAR (Egypt). Journal of Botany of the United Arabic Republic 7: 87–94. Zakhary JW (1979) Studies on edible mushrooms in Egypt. MSc Thesis, Faculty of Agriculture, Alexandria University, Egypt. Zakhary JW, Abo-Bakr TM, El-Mahdy AR, El-Tabery SAM (1983) Chemical composition of wild mushrooms collected from Alexandria, Egypt. Food Chemistry 11: 31–41. Zaki MK (1960) Studies on dissemination of pollen grains and spores in Cairo area. MSc thesis, Cairo University, Egypt. JP, Groenewald JZ, Crous PW (2009) Phyllosticta citriasiana Zaki SM (2008) Molecular Identification of Phaeohyphomycosis sp. nov., the cause of Citrus tan spot of Citrus maxima in Asia. Agents Inhabiting Natural environments in Egypt. International Fungal Diversity 34: 23–39. Journal of Biotechnology and Biochemistry 4: 293–301. Yousef HM (1946) The mycorrhizae of Iris germanica Lange and Zaki SM, Mikami Y, Karam El-Din AA, Youssef YA (2005) Asparagus sperengeri Regel. Proceedings of Egyptian Academy Keratinophilic fungi recovered from muddy soil in Cairo vicinities, of Science 20: 45–61. Egypt. Mycopathologia 160: 245–251. Youssef YA, Abdou MH (1967a) Studies on fungus infection of the Zaki SM, Ibrahim N, Aoyama K, Shetaia YM, Abdel-Ghany K, external ear. I. Mycological and clinical observations. Journal of Mikami Y (2009) Dermatophyte Infections in Cairo, Egypt. Laryngology and Otology 81: 401–412. Mycopathologia 67: 133–137. Youssef YA, Abdou MH (1967b) Studies on fungus infection of the external ear. II. On the chemotherapy of Otomycosis. Journal of Laryngology and Otology 81: 1005–1012. 142 IMA FUNGUS I NST RUCT I ONS TO AUT HORS EDI TORI AL BOARD All submitted materials must be digitized and submitted electronically to d.hawksworth@nhm.ac.uk and p.crous@cbs.knaw.nl, with the manuscript ideally in Microsoft Word. Illustrations (Line drawings (600 dpi or higher) and half tone pictures (300 dpi or higher) should be submitted separately, never embedded in Word files. Phylogenetic trees will only be accepted when submitted as Powerpoint files, or in Adobe (never as pictures). The corresponding author should confirm that: (a) all named authors have agreed to publication of the work; and (b) the manuscript does not infringe any personal or other copyright or property rights. Papers cited as “in press” should be provided for the benefit of the referees. The content should be structured as follows: ABSTRACT, INTRODUCTION, MATERIALS AND METHODS, RESULTS, TAXONOMY, DISCUSSION, ACKNOWLEDGEMENTS and REFERENCES. Key words and a Running Head should also be provided. English-English is preferred, and used for all non-article material. Authors of articles can use American-English, provided that it is consistent within their contributions. Words of non-English origin, like bona fide, prima facie, in vitro, in situ, should be placed in italic, together with scientific names of any rank (e.g. Ascomycota, Dothideales, Mycosphaerellaceae, Mycosphaerella nubilosa). Common abbreviations are as follows: h, min, s, mL, µL, mg/L, °C, Fig., d, wk, but also ITS, RPD, RFLP, rDNA, 18S etc. Authorities of fungal taxa should be omitted from the general text, unless novelties and synonymies are listed, or nomenclatural issues discussed. In these cases, authorities for taxa should follow the list of authors’ names, see http://www.speciesfungorum.org/AuthorsOfFungalNames.htm, followed by the year of publication of the name. Journal abbreviations in the text (species synonymies, descriptions, etc.) should follow the International Plant Name Index (see http://www.ipni.org/index.html). Experimental procedures must be reproducible and must follow Good Cultural Practice (Mycological Research 106: 1378–1379), with sequences lodged at GenBank, alignments in TreeBASE, voucher specimens in a public reference collection recognized in Index, or another recognized on-line herbarium (Index Herbariorum or the World Directory of Collections and Cultures of Microorganisms acronym, with accession numbers where allocated, and accompanying ex-type and other cultures in long-term culture collections. For new scientific names a MycoBank number is required (see www.MycoBank.org), and should be obtained on acceptance for publication. Collections must be cited as: Specimens examined. COUNTRY, location, substratum, date (e.g. 10 Dec. 1993), collector (e.g. S. Uper & F. Ungus) (COLLECTION ACRONYM and ACCESSION NUMBER -- holotypus; cultures ex-holotype COLLECTION ACRONYM(S) AND ACCESSION NUMBER(S)) (the country in small caps and specimen collector italics; everything else in Roman type). Reference citation in text: References in the text should be chronological, and given in the following form: “Smith & Jones (1965) have shown ...”, or, “some authors (Zabetta 1928, Taylor & Palmer 1970, Zabetta 1970) consider that ...”. The names of collaborating authors are joined by an ampersand (&). Where there are three or more authors, names should be cited by the first name only, adding “et al.”, e.g. “Bowie, Black & White (1964)” are given as “Bowie et al. (1964)” or “(Bowie et al. 1964)”. Where authors have published more than one work in a year, to which reference is made, they should be distinguished by placing a, b, etc. immediately after the date, e.g. “Dylan (1965a, b)”. Reference citations in text should be in ascending order of year first, followed by authors’ names. Each reference should include the full title of the paper and journal, volume number, and the final as well as the first page number. In the case of chapters in books, the names of editors, first and last page numbers of the articles, publisher and place of publication are needed. Examples: Black JA, Taylor JE (1999a) Article title. Studies in Mycology 13: 1–10. Black JA, Taylor JE (In press) Article title. Fungal Biology. Black JA, Taylor JE, White DA (1981) Article title. In: Book title (KA Seifert, W Jones & P. Jones, eds): 11–30. Town (and country if not well-known): Press. Simpson H, Seifert KA (2000) Book Title. 2nd edn. Town (and country if not well-known): Press. White DA (2001) Dissertation Title. PhD thesis, Department, University, Country. Copyright / Proprietary Rights Notice: Unless otherwise noted, the IMA holds the copyright on all materials published in IMA Fungus, whether in print or electronic form, both as a compilation and as individual articles. All Journal content is subject to ‘fair use’ provisions of U.S. or applicable international copyright laws (see http://www.copyright.gov/title17/92chap1.html). The following guidelines apply to individual users: A. Individuals may view, download, print, or save Journal content for the purposes of research, teaching, and/or private study. Systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher approval. B. Individuals may not reproduce, post, redistribute, sell, modify or create a derivative work of any Journal content, without prior, express written permission of the Publisher. Permission is granted, however, to provide a limited amount of print or electronic Journal content for purposes of regulatory approval, patent and/or trademark applications or other legal or regulatory purposes. C. Any use and/or copies of this Journal in whole or in part, must include the customary bibliographic citation, including author attribution, date, article title, the Journal name and its URL (web site address) and MUST include the copyright notice. Individuals may not remove, cover, overlay, obscure, block, or change any copyright notices, legends, or terms of use. D. For permissions to reprint or copy Journal content beyond that permitted by Section 107 or 108 of the U.S. Copyright Law, contact the Copyright Clearance Center. The fee code for users of the Transactional Reporting Service appears in each abstract and full text article Editorial (1) News The home stretch for fungal barcoding Fungi and the Convention on Biological Diversity Mycologists go political, with success Mushrooms – the new plastic? White truffles still demand a high price Fungi on German TV: focus on black fungi (2) (3) (4) (4) (4) (5) Reports IMC9: The Biology of Fungi. A personal reflection International Commission on the Taxonomy of Fungi (ICTF) (8) (11) Awards and Personalia IMA Medals awarded at IMC9 Order of Canada: Stanley J Hughes Obituary: C Terence Ingold (1905–2010) IMA Young Mycologist Awards (15) (17) (17) (18) Correspondence A vision for the future of the ICTF (20) Research News Carbonaceous spherules exposed as fungal sclerotia, are not evidence of the impact of a comet Physiological differences between wet- and dry-distributed conidia Mobile chromosomes: the clue to pathogenicity in Fusarium species Ectomycorrhizal symbiosis in basidio- and ascomycete fungi have different origins A basal bryophilous fungus associates with cyanobacteria Molecular clocks and evolutionary rates Numbers of fungi in China (22) (23) (23) (24) (24) (25) (26) Society and Association News International Society for Fungal Conservation Mycological Society of America Iranian Mycological Society (27) (30) (31) Book News (32) Forthcoming Meetings (36) Articles “The enigma of Calonectria species occurring on leaves of Ilex aquifolium in Europe” by Christian Lechat, Pedro W. Crous and Johannes Z. Groenewald “How to describe a new fungal species” by Keith A. Seifert and Amy Y. Rossman “What is Johansonia?” by Pedro W. Crous, Robert W. Barreto, Acelino C. Alfenas, Rafael F. Alfenas and Johannes Z. Groenewald “The history, fungal biodiversity, conservation, and future perspectives for mycology in Egypt” by Ahmed M. Abdel-Azeem “IMC9 Edinburgh Nomenclature Sessions” by Lorelei L. Norvell, David L. Hawksworth, Ronald H. Petersen and Scott A. Redhead “Fungal phoenix rising from the ashes?” by Michael J. Wingfield, Martin P.A. Coetzee, Pedro W. Crous, Diana Six and Brenda D. Wingfield “Modelling fungal colonies and communities: challenges and opportunities” by Ruth E. Falconer, James L. Bown, Eilidh McAdam, Paco Perez-Reche, Adam T. Sampson, Jan van den Bulcke and Nia A. White “Colletotrichum: species, ecology and interactions” by Ulrike Damm, Riccardo Barroncelli, Lei Cai, Yasuyuki Kubo, Richard O’Connell, Bevan Weir, Kae Yoshino and Paul F. Cannon “Cryptic species in lichen-forming fungi” by Ana Crespo and H. Thorsten Lumbsch “Sex in Penicillium series Roqueforti” by Jos Houbraken, Jens C. Frisvad and Robert A. Samson “Anaerobic fungi: Neocallimastigomycota” by Gareth W Griffith, Scott Baker, Kate Fliegerova, Audra Liggenstoffer, Mark van der Giezen, Kerstin Voigt and Gordon Beakes “Polyphasic taxonomy of Aspergillus section Sparsi” by János Varga, Jens C. Frisvad and Robert A. Samson “Aspergillus sect. Aeni sect. nov., a new section of the genus for A. karnatakaensis sp. nov. and some allied fungi” by János Varga, Jens C. Frisvad and Robert A. Samson 101 109 117 123 143 149 155 161 167 171 181 187 197