Academia.eduAcademia.edu
Fungal Diversity (2019) 96:347–433 https://doi.org/10.1007/s13225-019-00426-5 (0123456789().,-volV)(0123456789(). ,- volV) An online resource for marine fungi E. B. Gareth Jones1,2 • Ka-Lai Pang3 • Mohamed A. Abdel-Wahab1,4 • Bettina Scholz5 • Kevin D. Hyde6 Teun Boekhout7,8 • Rainer Ebel9 • Mostafa E. Rateb10 • Linda Henderson11 • Jariya Sakayaroj12 • Satinee Suetrong13 • Monika C. Dayarathne6 • Vinit Kumar6,17 • Seshagiri Raghukumar14 • K. R. Sridhar15 • Ali H. A. Bahkali1 • Frank H. Gleason16 • Chada Norphanphoun6 • Received: 3 January 2019 / Accepted: 20 April 2019 / Published online: 17 May 2019 Ó School of Science 2019 Abstract Index Fungorum, Species Fungorum and MycoBank are the key fungal nomenclature and taxonomic databases that can be sourced to find taxonomic details concerning fungi, while DNA sequence data can be sourced from the NCBI, EBI and UNITE databases. Nomenclature and ecological data on freshwater fungi can be accessed on http://fungi.life.illinois.edu/, while http://www.marinespecies.org/provides a comprehensive list of names of marine organisms, including information on their synonymy. Previous websites however have little information on marine fungi and their ecology, beside articles that deal with marine fungi, especially those published in the nineteenth and early twentieth centuries may not be accessible to those working in third world countries. To address this problem, a new website www.marinefungi.org was set up and is introduced in this paper. This website provides a search facility to genera of marine fungi, full species descriptions, key to species and illustrations, an up to date classification of all recorded marine fungi which includes all fungal groups (Ascomycota, Basidiomycota, Blastocladiomycota, Chytridiomycota, Mucoromycota and fungus-like organisms e.g. Thraustochytriales), and listing recent publications. Currently, 1257 species are listed in the marine fungi website (www. marinefungi.org), in 539 genera, 74 orders, 168 families, 20 classes and five phyla, with new taxa continuing to be described. The website has curators with specialist mycological expertise who help to provide update data on the classification of marine fungi. This article also reviews knowledge of marine fungi covering a wide range of topics: their higher classification, ecology and world distribution, role in energy transfer in the oceans, origin and new chemical structures. An updated classification of marine fungi is also included. We would like to invite all mycologists to contribute to this innovative website. Keywords Fungal classification  marine fungi website  High-throughput sequencing techniques  Fungal diversity  Origin of marine fungi Introduction Marine fungi have been studied since the first record of the species Sphaeria posidoniae (= Halotthia posidoniae) on the rhizome of the sea grass Posidonia oceanica in Algeria & Mohamed A. Abdel-Wahab mohamed.eisa@science.sohag.edu.eg Rainer Ebel r.ebel@abdn.ac.uk Mostafa E. Rateb Mostafa.Rateb@uws.ac.uk Extended author information available on the last page of the article by Durieu and Montagne (in Montagne 1856), but as yet there has been no webpage to accommodate all of the information on these organisms. This review introduces the website, www.marinefungi.org which has been developed to provide an up-to-date compendium on marine fungi. There have been various definitions as to what a marine fungus is, the generally quoted one is by Kohlmeyer and Kohlmeyer (1979): ‘‘obligate marine fungi are those that grow and sporulate exclusively in a marine or estuarine habitat’’. Jones et al. (2015) broadened this as they were of the opinion it was too narrow and they included marine derived fungi, as many are taxa isolated during bioprospecting for new secondary metabolites (Fenical and Jensen 1993; Fenical et al. 1998). Marine derived fungi are 123 348 generally asexual morphs, isolated from a wide range of substrates, dominating off shore habitats (e.g. deep sea) and are a good source of natural products. Various studies around the globe recognise these as a core group of fungi that are repeateadly isolated from various substrata in marine habitats. The definition used in the present article is that of Pang et al. (2016b) who reviewed the use of the terms ‘‘marine fungi’ and ‘marine-derived fungi’. They proposed the following definition for a marine fungus ‘any fungus that is recovered repeatedly from marine habitats, because: (1) it is able to grow and/or sporulate (on substrata) in marine environments; (2) it forms symbiotic relationships with other marine organisms; or (3) it is shown to adapt and evolve at the genetic level or be metabolically active in marine environments. A recurring question that has often been posed is ‘‘how many marine fungi are there?’’ (Jones 2011b). It has been estimated that there are at least 1.5 million fungal species on earth (Hawksworth 1991), while Blackwell (2011) puts the figure as 5.1 million. Recently, Hawksworth and Lucking (2017) have reviewed data on fungal diversity based on new evidence on plant/fungus ratios, environmental sequences studies and indicate the figure 1.5 million was conservative. They suggest that the figure should be in the range 2.2 to 3.8 million. However, only 120,000 to 143,273 fungi have been described so far (Hawksworth and Lücking 2017; Wijayawardene et al. 2017b; Index Fungorum 2018), most of which are terrestrial. Many authors stress that marine fungi are poorly studied in comparison to the number of other marine microorganisms (Jones and Richards 2011; Raghukumar 2017). The documentation of circa 1200 species in 72 years of marine mycological studies is great compared with some 120,000 terrestrial fungi that were described over 200 years of study (Kirk et al. 2008). Tisthammer et al. (2016) also opine that very little is known about the global distribution and diversity of marine fungi, while Drake et al. (2017) predict that much of the fungal diversity occurs in anaerobic deep sediments. These include ‘‘the dark fungi’’, detected by next generation sequencing (NGS) techniques and which have never been observed in culture. Hassett et al. (2019), in exploring marine fungal diversity, discovered that only half of the known marine fungal species have a publicly available DNA locus, and hypothesized that this is likely to hinder accurate high-throughput sequencing taxonomic classification as the discipline advances. Greater effort is required to sequence all known marine fungi to enable the identification of unculturable and cryptic taxa. All agree that fungi play a pivotal role in the marine ecosystem in the recycling of recalcitrant substrata, essential to marine food webs (Hyde and Jones 1988; O’Rorke et al. 2013), that they play a vital role as 123 Fungal Diversity (2019) 96:347–433 symbionts of marine and mangrove plants (Hyde and Lee 1998; Yarden 2014), are a source of various vitamins and sterols, and new bioactive compounds (Kagami et al. 2007; Ebel 2012; Raghukumar 2017). Many of these topics will be considered in greater detail later in this article. Marine fungi are an ecological assemblage that includes all classes of fungi from the zoosporic chytrids, ascomycetes (the largest group) and basidiomycetes (Kohlmeyer and Kohlmeyer 1979; Hyde et al. 1998; Pang and Jones 2012; Jones et al. 2015; Pang et al. 2016b; Raghukumar 2017). Various techniques are required to study such a diverse group of fungi and this has led to a polarization of views on the numbers of marine fungi (Vrijmoed 2000; Overy et al. 2019; also see below). To establish an understanding of the marine occurring mycota, a wide range of techniques has been used for their documentation; collection of substrates at selected locations (Pang et al. 2016a; Overy et al. 2019), removal of discs of wood from marine pilings (Petersen and Koch 1997), exposure of timber test blocks/panels (Meyers and Reynolds 1960; Byrne and Jones 1974) and other materials (Jones and Le Campion-Alsumard 1970), pre-inoculation of fungi into wood blocks before their exposure in the sea (Panebianco et al. 2002), isolation of fungi directly from water or sediments (Damare and Raghukumar 2008) and analysis of traces in sections of rocks and other solid geological substrates from marine environments (Drake et al. 2017). Recently developed molecular techniques, such as high-throughput sequencing, have been developed to identify species in environmental samples (Hongsanan et al. 2018). No single method can give a total remit of the worldwide distribution of marine fungi or of the interactions between taxa. Panebianco et al. (2002) have shown that interactions between fungi can affect the sequence of fungi colonising wood in the sea. For example, four marine fungi (Ceriosporopsis halima, Corollospora maritima, Halosphaeriopsis mediosetigera, Marinospora calyptrata were inoculated into balsa test blocks and submerged in the sea for 2, 6, 9 and 15 months and their colonization by native marine fungi recorded. Control balsa test blocks were similarly submerged and were colonized by a succession of marine fungi. However, the pre-inoculated C. maritima and H. mediosetigera blocks were not colonized by native marine fungi until they had been in the sea for 6 and 9 months, respectively. In other words, the preincoluated test blocks suppressed the development of native species. Various estimates of the number of marine fungi have been made: Jones and Mitchell (1996) put the figure at 1500, but these included many species that were inadequately described, or facultative species or synonyms of existing taxa. K. Schaumann (personal communication) estimated there are some 6000 marine fungi, but this Fungal Diversity (2019) 96:347–433 figure included taxa isolated from Arctic ice. Schmit and Shearer (2003, 2004) listed some 600 mangrove taxa, but this figure also included facultative marine fungi and those growing on the aerial parts of mangrove trees. Jones et al. (2009) reported 530 marine taxa in 321 genera, which included 424 Ascomycota (251 genera), 94 asexual morphs (61 genera), and 12 Basidiomycota (9 genera). Currently, 1257 species are listed in the marine fungi website (www. marinefungi.org), in 539 genera, 74 orders, 168 families, 20 classes and five phyla, with new taxa continuing to be described. The above is an underestimate as the list includes only fully identified fungi, as many taxa are identified only to genus or even a higher-level taxonomical rank (Supaphon et al. 2017) while ‘‘the dark fungi’’ remain unaccounted. Sequence data has enabled a more natural classification of the fungi to be developed (Hyde et al. 2013; Jones et al. 2015; Maharachchikumbura et al. 2016; Abdel-Wahab et al. 2017). The great leap in marine fungal numbers between 2009 and 2019 is accounted for by the inclusion of zoosporic fungi, marine yeasts, marine derived fungi and a broader interpretation in defining what constitutes a marine fungus (Jones et al. 2015; Pang et al. 2016b). Early estimates included only obligate marine fungi as defined by Kohlmeyer and Kohlmeyer (1979) which many marine mycologists considered too restrictive. Jones (2011b) estimated that the number of marine fungi may be 10,000 to 12,500 species based on the substrates and geographical locations to be sampled. Topics suggested for indepth study include: 1. Unidentified species on a range of substrates; 2. Marine derived fungi isolated from soils, sand, and water; 3. Planktonic fungi; 4. Deep-sea fungi; 5. Endobiota of marine algae; 6. Uncultured fungi; and 7. Cryptic species. Kis-Papo (2005) reviewed the number of marine fungi and based on the assumption that only circa 5% of all fungi have been described, she predicted there are 10,000 marine fungi. All this data is based on direct microscopical observations which limits knowledge of unculturable taxa and the characterization and identification of cryptic species (O’Brien et al. 2005). This topic is considered in greater detail below. Because of the limitations of microscopical studies mentioned above, other avenues have to be explored to determine total marine fungal biodiversity. Richards et al. (2012, 2015) identified 36 distinct and novel marine lineages, the majority (24) of which branched with the chytrids. Such studies vary widely in the diversity they document. Richards et al. (2012) concluded that fungi are 349 present in low diversity and in low abundance in many marine environments, especially in the upper water column. However, such methods have their limitations in that they identify groups of organisms, and at most to generic level or species groups (Pang and Jones 2017). Xu et al. (2017) in a culture-dependent and highthroughput sequencing study at a deep-sea hydrothermal vent site located at the Mid-Atlantic Ridge of the South Atlantic Ocean showed that the fungal community was dominated by members of the Ascomycota and the Basidiomycota. Several new phylotypes (28 of 65 fungal OTUs and 2 of 19 culturable fungal phylotypes) were identified to species level. Some phylotypes showed 100% similarity to taxa already reported from the marine environment: e.g. Cladosporium sphaerospermum, Stachybotrys chartarum. In that study, no sequences of the Chytridiomycota and the Mucoromycota were detected (Xu et al. 2017). Poli et al. (2018) identified 36 basidiomycete species that belong to six classes from various marine substrates from Mediterranean Sea using multi gene phylogenetic analyses. Xu et al. (2018) in a culture-dependent and high-throughput sequencing study of deep-sea sediments of a hydrothermal vent system in the Southwest Indian Ridge identified 14 fungal taxa, including 11 Ascomycota taxa (7 genera) and 3 Basidiomycota taxa (2 genera) based on internal transcribed spacers (ITS1, ITS2 and 5.8S) of rDNA. The Ascomycota dominated, accounting for 96.96% of the fungal community in the deep-sea hydrothermal area, while 36 OTUs belonged to unknown fungi. So, have these techniques greatly expanded our knowledge of marine fungi and their distribution? Malassezialike organisms have been recorded as true marine residents in environmental sequences recovered from habitats and locations, from polar regions to deep-sea vents (Edgcomb et al. 2011; Orsi et al. 2013; Amend 2014). Malassezia species are generally associated with skin diseases, such as dandruff and eczema and are generally difficult to culture axenically (Theelen et al. 2018). Amend (2014) therefore queried but accepted they were also true marine fungi. Bass et al. (2007), in a study on fungal diversity in deep-sea sediments of the Central Indian Basin at * 5000 m depth, concluded that most sequences clustered with known sequences of existing taxa with only seven divergent taxa. They noted the occurrence of Exobasidiomycetes and Cystobasidiomycetes for the first time from the deep-sea. Orsi et al. (2013), employing 18S rDNA amplicon pyrosequencing technique of deep-sea sediment samples, 123 350 noted that many of the fungi detected were of known taxonomical groups but included many taxa not observed by isolation/microscopical examination of marine substrates. Massana et al. (2015) noted the prevalence of Chytridiomycota in seawater, the group accounting for 60% of the diversity of the rDNA sequences sampled in six near-shore sites in Europe, and in Arctic and sub-Artic coastal sites. Many others reported that the Chytridiomycota were the most common fungal group in marine habitats (Mohamed and Martiny 2011; Guo et al. 2015; Richards et al. 2015; Comeau et al. 2016; Hassett and Grading 2016; Hassett et al. 2017; Picard 2017). This differs from the observations of Tisthammer et al. (2016) working on marine water and sediments, in that chytrids were relatively rare in their study. It is surprising that chytrids are so common in these studies as numerically Jones et al. (2015) only list 21 species in 13 genera. Comeau et al. (2016) note that the Ascomycota, Cryptomycota and Basidiomycota contribute only moderate-tominor diversity in their studies, while Tisthammer et al. (2016) regarded the Ascomycota and Basidiomycota the most abundant phyla in their sampling of marine water and sediments, with the three most abundant classes in their samples Pezizomycetes, Agaricomycetes and Eurotiomycetes. Poli et al. (2018) investigated the marine mycobiota mainly in the Mediterranean Sea, confirming the scarcity of Basidiomycota. At the subclass/ordinal level Pezizales, Hymenomycetidae and Eurotiales were the three most abundant. Of the marine Dikarya operational taxonomic units (OTU) clusters reported by Richards et al. (2015), most of the Ascomycota and Basidiomycota were yeasts and no sequences matched those of the marine taxa listed by Jones et al. (2015). Examination of fungi present in seawater by filtration technique developed by Iqbal and Webster (1973) for freshwater fungi, yielded few taxa (Fazzani and Jones 1977; unpublished data). However, sampling foam along the seashore yielded a variety of species trapped in the air bubbles of foam: Corollospora species dominate with many other species, Lindra marinera, Asteromyces cruciatus, Nia vibrissa, Paradendryphiella arenaria and Torpedospora radiata (Kohlmeyer and Kohlmeyer 1979; Tokura et al. 1982; Nakagiri 1989). Of the 1257 taxa listed in the marine fungi website, none have been recorded at a single location. These fungi have been reported from a wide variety of substrates, habitats and geographical locations, are pelagic in the open ocean, occur as endobiotes or parasites of marine plants or were recovered from the deep sea. A further question with 123 Fungal Diversity (2019) 96:347–433 respect to the OTUs recovered from deep sea sediments and seawater is whether they are biologically functioning in that environment or present as dormant spores? So, in high-throughput sequencing studies are we expecting too much as most fungi require specific substrates to grow on. The main purpose of this paper is to introduce the website marinefungi.org, to promote further study of marine fungi and document their worldwide distribution. We also present updated information on the numbers of marine fungi, their taxonomic groupings, recent techniques for studying their occurrence and distribution, suggest where further diversity might be encountered, their role in marine habitats and discuss the origin of marine fungi. Fungal websites The internet has become a major source for obtaining information worldwide. Over the last decades, fungal research has extended its horizon yielding a vast amount of data leading to the development of many websites dealing with different aspects of mycology. An integrated database, such as GenBank, provides us with a one stop solution where we can find DNA, protein, and articles. Similarly, there are some other websites which deal with specific mycological topics, and a selection is listed here: http://www.mycobank.org/. http://www.indexfungorum.org/. http://www.theyeasts.org. http://fungalgenera.org/. http://www.marinespecies.org/. http://www.mycology.net/index.html. http://www.mykoweb.com/index.html. https://www.gbif.org/. http://www.sp2000.org/. http://mycology.cornell.edu/funinfo.html. https://www.nature.com/omics/index.html. https://www.sanger.ac.uk/resources/downloads/fungi/. http://www.fgsc.net/. http://www.facesoffungi.org/. https://www.genome.jp/. http://www.lias.net/. http://www.fungi.com/. Very few of these websites specifically deal with marine fungi, while others are not open access portals such as Marine Lit (http://pubs.rsc.org/marinlit/, got to May 2017) and Dictionary of Natural Products (http://dnp. Fungal Diversity (2019) 96:347–433 chemnetbase.com/faces/chemical/ChemicalSearch.xhtml). The site ‘omics tools’ can be utilized as a beginning stage to get to required databases (https://omictools.com/) and can be a stepping stone in combining mass spectra data for comprehensive networking studies. The database (http:// fungalgenera.org/) provides a classification and notes on all genera of fungi, including marine fungi (Wijayawardene et al. 2017b). However, all databases cited above are biased towards terrestrial fungi and there is currently no database exclusively for marine fungi. The database (http://fungi. life.illinois.edu/) is exclusively devoted to freshwater Ascomycota and provides general information, recorded reports of freshwater species, and offers an illustrated profile of selected fungi (Shearer and Raja 2007). Another database is the Indian marine fungal database (www.fungifromindia.com/), which lists 233 strains of marine fungi found in India and is linked to MycoBank. The World Register of Marine Species (WoRMS) (www. marinespecies.org) plans to give a definitive and extensive documentation of names of all marine life forms. A further developed database ‘‘Faces of Fungi’’ (www.facesoffungi. org/) provides data of fungi and fungi-like life forms and includes fungal profiles, data on isolate status, chemistry, connections to sequences and culture collections, morphological and phylogenetic data, data of ecological and human significance (Jayasiri et al. 2015). Unfortunately, this database is still scantily populated, again with a predisposition towards terrestrial fungi. Keeping the above in mind, we are launching an exclusive marine web portal ‘‘www.marinefungi.org‘‘. This web portal will allow readers to access the classification of all known marine and marine derived fungi, detailed descriptions with illustrations, and their worldwide distribution. These details will be updated on a regular basis as 351 data becomes available. The site also documents recently published papers on marine fungi. Need for a marine fungi website Databases have a role in bringing together data scattered in a range of journals and this is particularly so for marine fungi where publications appear in journals in mycology, microbiology, marine biology, biofouling, botany, drug discovery and marine biomedicine and those on environmental issues. This is because marine fungi are an ecological assemblage and studies cover a broad spectrum of activities: taxonomy, molecular phylogeny, biochemistry, ecology, including biodegradation of recalcitrant compounds and their role in the food web in marine environments. Therefore, the primary objective of this website is to bring all this information together in a comprehensive database. The purpose of the marine fungi webpage is to (1) provide data on the distribution of marine fungi, (2) supply online information on classification, species description, specimen types and distribution, with each species described with illustrations where possible and (3) provide a higher classification of all documented marine fungi. It also includes a list of recent publications and a history of marine mycology. In the last three decades, sequence-based phylogenetic studies have revolutionised the systematics of fungi, leading to a more natural classification of fungi. However, it has also caused a taxonomic revolution to a number of fungal groups which were classified traditionally based on morphology. This also applies to many marine fungi and this website can provide up-to-date information for their classification. 123 352 Fungal Diversity (2019) 96:347–433 Operation of the marine fungi website The website marinefungi.org includes a number of functions: Home: This provides a general introduction to the website, how to search for particular species and lists all the species currently described in the database. Descriptions can be accessed by typing in the generic name which brings up the species name(s) associated with that genus and clicking one of these leads to a detailed account of its classification, description and illustration. A key is provided for a genus with more than one marine species. This list is updated as curators submit detailed descriptions of marine fungi. Genus Species Author Corollospora maritima Werderm., Notizblatt des Königl. bot. Gartens u. Museum zu Berlin 8: 248 (1922) 123 Class Order Family Sordariomycetes, Microascales Halosphaeriaceae Subclass Hypocreomycetidae Synonymy: Description Corollospora Werderm., Notizbl. Bot. Gart. BerlinDahlem 8: 248 (1922) Fungal Diversity (2019) 96:347–433 353 are listed along with their expertise and experience of working with marine fungi. History of marine mycology: This is planned in two sections, the origin of the International Marine Mycology Symposium (IMMS) which is held approximately every two years (completed) and a personal account of the history of marine mycology (work in progress). Fungal-like organisms: This is an early draft listing marine fungal-like organisms e.g. taxa in the Oomycota, once regarded as fungi. A curator is required to update the information and run this section of the website. Higher classification: This is the central part of the website as it taxonomically lists all currently known marine fungi. This is updated on a regular basis and indicates species for which sequence data is available. The higher classification of the fungi follows currently accepted schemes (Wijayawardene et al. 2017b, 2018). The classification is divided into seven parts and commences with an index to the major higher taxa and orders. The reader is directed to parts that list species under those higher order headings, for example part 1 is devoted to the Chytridiomycota, part 2 to the Basidiomycota and some orders of the Ascomycota while part 7 details marine yeasts belonging to both Ascomycota and Basidiomycota. In all cases individual species are listed under their families, orders and higher order taxa. For example: CHYTRIDIOMYCOTA 1. CHYTRIDIALES Cohn, Jber Schles Ges Vaterl Kultur 57: 279 (1879), emend. MozleyStandridge et al., Mycol. Res. 113: 502 (2009) Chytridiaceae Nowak., Akad Umiejetnosci Krakowie Wydzı́at mat Przyród: 174: 191 (1878), emend. Vélez et al., Mycologia 103: 123 (2011) Chytridium A. Braun, Betrach. Erschein. Verjüng. Natur.: 198 (1851) 1. Ch. codicola Zeller, Publ. Puget Sound Biol. Sta. Univ. Wash. 2: 121 (1918) Recent publications: This section provides all recently published papers on marine fungi abstracted from a wide range of mycological journals, currently mostly taxonomical. Curators: The database is serviced by specialists in marine mycology and is headed by Professor Gareth Jones aided by postgraduate students Vinit Kumar and Mark Galabon, who are responsible for updating the website. Others that contribute Contact: This website handles a large amount of information and it is prone to minor errors. You can leave a message here reporting these so that we can revise the content of the website. Any suggestions/comments are also welcomed. Alternatively, you can send your comments to the e-mail torperadgj@gmail.com. Review of current information on marine fungi Traditional surveys of marine fungi Marine fungi have been traditionally studied by collection, incubation, and examination of a range of substrates, each yielding its own characteristic group of fungi (Vrijmoed 2000; Sarma and Hyde 2001). Fungi are identified microscopically and illustrated with line drawings or photographs. Most studies have attempted their isolation and growth in culture, although this has not always been successful as in early studies e.g. Orcadia ascophylli (Sutherland 1915c), or more recently collected species, e.g. the wood inhabiting cleistothecial ascomycetes Biflua physasca and Marisolaris ansata (Koch and Jones 1989). Many marine fungi have been studied at the ultrastructure level in order to elicit morphological features that can be used in their classification, namely scanning and transmission electron micrographs of ascospores appendages (Johnson et al. 1984, 1987). Jones et al. (1983a) studied the fine structure of ascospores in Corollospora species and erected two new genera to accommodate two Corollospora species that did not group in the genus, namely: Kohlmeyeriella and Nereiospora and restored a third species to its original generic name Arenariomyces. Studies of the polar-unfurling appendages of Halosarpheia species also led to the characterization of similar genera, Cucullosporella and Tirispora (Alias et al. 2001; Jones et al. 123 354 1994). Each substrate generally tends to support different fungal species which may also differ according to the geographical location of the initial collection site: cold water species (Pugh and Jones 1986), tropical taxa (Jones and Pang 2012), or deep-water species (Dupont et al. 2009; Dupont and Schwabe 2016; Raghukumar 2017). Different substrates have also resulted in the adoption of various techniques for their study: observational, isolation and culture. Observational studies Driftwood, intertidal and trapped wood, timber sea defences, mangrove wood, leaves, seeds, fruits, decayed sea grasses, and algae are collected from the intertidal and sublittoral zones and returned to the laboratory for study. Samples are placed in clean plastic bags and examined with a dissecting microscope for marine fungi upon return to the laboratory, incubated in sterile humid plastic boxes and examined periodically for up to 2 months (Vrijmoed 2000; Abdel-Wahab et al. 2010). Isolation studies Marine fungi from seawater, sediments, deep-sea, and endobiotes have traditionally been discovered by the isolation of sporulating structures or plating out of subsamples of a substrate. A wide range of techniques have been used to isolate, grow on and obtain fruiting bodies of marine fungi (Vrijmoed 2000; Overy et al. 2019). Lignicolous fungi This group has been the most studied group of marine fungi, initially occurring on driftwood, trapped wood and test blocks/panels submerged in the sea (Meyers and Reynolds 1958; Byrne and Jones 1974; Panebianco 1994; Garzoli et al. 2015). Pilot studies were from temperate and cold-water locations (Hughes and Chamut 1971; Pugh and Jones 1986; Rama et al. 2014). Subsequently, a wealth of fungi has been reported from mangrove wood (Kohlmeyer 1968a; Abdel-Wahab et al. 2014, 2019; Devadatha et al. 2018a, b). Bugni and Ireland (2004) estimated that 10% of all known marine fungi were lignicolous species, which is a gross underestimate. Raghukumar (2017) stated that 190 marine fungi were recorded from driftwood and test panels exposed in the sea and about 300 species from decomposing mangrove wood. Algicolous marine fungi Algal samples are collected in sterile containers to prevent contamination and maintained cool as the thalli can quickly 123 Fungal Diversity (2019) 96:347–433 begin to decompose. Thalli need to be washed under running tap water to remove sediments and incubated in sterile containers. The first marine fungus from an alga was Blodgettia bornetii found in the filamentous green alga Cladophora caespitosa on the coasts of France and North America (Montagne 1856; Wright 1881). Kohlmeyer and Kohlmeyer (1979) listed 60 fungi from algal hosts that included 32 pathogenic on marine algae (31 ascomycetes and one asexual fungus) and 18 saprobic fungi (8 ascomycetes and 10 asexual fungi). Most recent accounts of algicolous fungi have been by Jones et al. (2012) and Raghukumar (2017). Algicolous marine fungi belong to Ascomycota, Basidiomycota, Chytridiomycota, Labyrinthulomycota and fungal-like taxa classified in Straminopiles. Basidiomycetes on algae include Mycaurola dilseae (initially described as an ascomycete) that infects Dilsea carnosa (Binder et al. 2006), and several marine yeasts e.g. Leucosporidium scottii occurred abundantly on brown seaweeds (Phaeophyta) particularly in the cooler months in southern British Columbia (Summerbell 1983). Bugni and Ireland (2004) suggested that circa 9% of marine fungi were isolated from marine algae. Zuccaro and Mitchell (2005) list 79 fungi from the brown alga Fucus serratus, while Jones (2011b) and Jones et al. (2012) consider this an underestimate with a potential for far greater diversity. Many of the taxa isolated from seaweeds are identified to genus level and these are generally marinederived fungi. The application of sequence data has enabled better identification of fungi isolated from algae as the studies of Gnavi et al. (2017) and Garzoli et al. (2018) have shown for taxa isolated from the green seaweed Flabellia petiolata and the brown seaweed Padina pavonica. Deep sea marine fungi Deep sea environment is an extreme habitat that has the following characteristics: dark, high hydrostatic pressure, low temperature (except hydrothermal vents) low oxygen level, and low nutrient availability. The International Geophysical Year 1958 initiated studies of deep waters, with the German programme focusing on marine mycology, with two cruises of the fishery research ship ‘‘Anton Dohrn’’ to Greenland, Iceland and Ireland (Höhnk 1959). Baiting bottom samples with pollen (Pinus montana), seeds, and cellophane recovered ‘‘Phycomycetes’’ and asexual morphs at depths of 3425 m (Höhnk 1961). Roth et al. (1964) isolated fungi from water samples collected from the surface to 4500 m deep from Atlantic Ocean. Kohlmeyer (1968b, 1977) described the first fungi from the deep sea and Kohlmeyer and Kohlmeyer (1979) listed five marine fungi recovered from the deep sea: Abyssomyces hydrozoicus, Bathyascus vermisporus, Oceanitis scuticella, Fungal Diversity (2019) 96:347–433 355 Allescheriella bathygena, Periconia abyssa. Abyssomyces hydrozoicus was described from chitin of a hydrozoan at a depth of 613 m deep while the other species grew on wood. Gaertner (1982) reported the presence of thraustochytrids from depths up to 3900 m in Atlantic waters. During the last two decades, several studies have been carried out to document fungi from deep sea environments from all major oceans using both culture-based and metagenomic methods and have resulted in the recognition of deep-sea fungal communities (Damare and Raghukumar 2008; Raghukumar et al. 2010; Nagahama and Nagano 2012; Zhang et al. 2013a, b; Ruff et al. 2013; Takishita 2015). Raghukumar and Damare (2008) listed 38 fungal taxa from various substrata (chitin of Hydrozoa, calcareous shells, sediments, water and wood) collected from depths that ranged between 600 m in Atlantic Ocean to 10,500 m in Mariana Trench. Burgaud et al. (2009) obtained 97 fungal isolates (62 filamentous and 35 yeasts) from 210 hydrothermal samples. In a metagenomic study, Nagahama et al. (2011) obtained 35 phylotypes from methane coldseep sites at 1080 m depth in Sagami Bay, Japan. Of the 35 phylotypes, 12 were early diverging fungi while the remaining 23 phylotypes belonged to Dikarya. Nagahama et al. (2006, 2008) also isolated a number of new yeasts from such environments e.g. Rhodotorula pacifica and Dipodascus tetrasporeus from deep sea sediments. Deep sea fungi showed abilities to produce antimicrobial compounds (Zhang et al. 2013), secondary metabolites (Li et al. 2007) and antifouling chemical structures (Zhang et al. 2014). Roth et al. 1964; Meyers et al. 1967; Schaumann 1974; Moustafa 1975; Abdel-Fattah et al. 1977; Damare et al. 2006). A wide range of habitats have been investigated including salt marshes (Pugh 1962), sand (Nicot 1958; Steele 1967), mangrove soils (Swart 1963) and oil spills (Bovio et al. 2016), leading to the discovery of new taxa: Dendryphiella arenaria (= Paradendryphiella arenaria; Nicot 1958) and Penicillium dimorphosporium (Swart 1970). Previous studies incubated sediment or water samples with baits or isolated fungi using plating method, but such methods cannot determine whether the fungi were active in degradation of organic matter present in sediments or water samples or present as dormant spores. Fungi in sea water and sediment Marine-derived fungi as defined by Pang et al. (2016b) have been found on drift- and intertidal wood, sediments, seawater, marine animals (especially sponges and nematodes), deep sea, saprobes and endobiotes of mangroves, salt marshes plants and seaweeds (Janson et al. 2005). Hundreds of species and isolates have been accumulated in the literature and a considerable number of the isolated fungi have been screened for natural products and proven to yield new secondary metabolites. Marine-derived fungi are mostly asexual morphs of ascomycetes and common genera are: Aspergillus, Cladosporium, Fusarium, Gliocladium, Microsphaeriopsis, Paecilomyces, Penicillium, Phoma, Phomopsis, Trichoderma and Ulocladium (Bugni and Ireland 2004). Marine derived fungi have been isolated from a variety of sources: 617 fungal isolates from coral reefs (Morrison-Gardiner 2002), 1000 isolates from sediments (Pivikin et al. 1999), 800 as endobiotes of mangroves (Pang et al. 2008) and 1743 as endobiotes and saprobes of mangroves and seaweeds (Schulz and Boyle 2005; Schulz et al. 2008). Many of these strains did not sporulate, while others could only be identified to genus. Marine derived fungi have also been Marine sediments cover two-thirds of the earth’s surface and represent a huge reservoir of microbes. Sparrow (1937) in a pioneer study explored fungi from mud samples collected offshore at the Woods Hole Oceanographic Institute, Massachusetts. He collected samples from depths ranging between 18 and 1127 m deep. Isolated fungi were similar to those found in terrestrial habitats with Penicillium species in abundance, while species of the genera Aspergillus, Cephalosporium, Trichoderma, Chaetomium, Alternaria, Cladosporium and Rhizopus were less abundant. Species of obligate marine fungi, Lulworthia and Ceriosporopsis, were also isolated from marine sediments (Johnson and Sparrow 1961). Höhnk (1952, 1955, 1956) conducted several studies on fungi in beach sand, eulittoral sediments, and brackish muds, where he isolated several fungal-like taxa (Straminopiles) belonging to the genera: Pythiomorpha, Pythiogeton, Pythium and Saprolegnia. Similar experiments resulted in the isolation of hundreds of fungal isolates that mostly resemble those isolated from terrestrial habitats (Höhnk 1956,1959; Apinis and Chesters 1964; Fungi in sea foams A unique group of fungi is found trapped in sea foam and attached to sand grains. Kohlmeyer (1966) identified twelve marine fungi namely: Alternaria sp., Arenariomyces trifurcatus, Corollospora lacera, C. maritima (most common), C. ramulosa, Paradendryphiella arenaria, Leptosphaeria australiensis, Lignincola laevis, Nereiospora comata, Halobyssothecium (= Passeriniella) obiones, Pestalotia sp., and Pleospora pelagica from foam samples collected from sandy beaches of North Carolina, Canary Islands and Georgia, USA. Extensive sampling of foam samples has been carried out by Tokura et al. (1982) and Nakagiri (1989). Marine-derived fungi 123 356 isolated from anoxic environments. Jebaraj et al. (2010) analysed fungal diversity in samples from the oxygen minimum zone (OMZ) of the Arabian Sea and obtained 26 cultures that could be assigned to the Basidiomycota, predominantly Pucciniomycotina (five cultures) and Pezizomycotina of Ascomycota (21 cultures). Araujo and Hagler (2011) documented yeasts found in sediments in 8 Brazilian mangroves, Kluyveromyves aestuarii was absent at one site with heavy plastic bag pollution. In the last update of the classification of marine fungi (Jones et al. 2015), 214 species of marine-derived fungi have been considered true marine fungi because they have been isolated from marine hosts or substrates more than once and their identity confirmed by molecular data. They included: 3 basidiomycetes, 210 ascomycetes and one mucoromycete. Specious genera represented by 5 species or more were: Aspergillus (35 species), Penicillium (29), Arthrobotrys (17), Trichoderma (9), Cladosporium (7), Talaromyces (7), Acremonium (6), Fusarium (5), Manacrosporium (5) and Phoma (5). Sponges are a good source of marine-derived fungi. Höller et al. (2000) isolated 681 fungal isolates referred to the Ascomycota (13 genera), Mucoromycota (2) and asexual fungi (37) from 16 species of sponges collected from temperate, subtropical, and tropical regions. Members of the following genera Acremonium, Arthrinium, Coniothyrium, Fusarium, Mucor, Penicillium, Phoma, Trichoderma, and Verticillium were frequently isolated from sponges, however, dominant genera are different from one host or location to another (Jones 2011a). Morrison-Gardiner (2002) isolated 208 fungal isolates from 70 sponge samples collected from Australian coral reefs with Alternaria, Aspergillus, Cladosporium, Fusarium, and Penicillium as the dominant genera. Bovio et al. (2018) described two new species: Thelebolus balaustiformis and T. spongiae from three Atlantic sponges, and reported great fungal diversity. Each sponge hosted a specific fungal community with more than half of the associated fungi being exclusive of each invertebrate. Endolithic fungi Endolithic fungi are considered a special category of rock transforming microorganisms and defined as those which are capable of boring into solid inorganic substrates. They include many species of Ascomycota, Basidiomycota, Mucoromycota and Chytridiomycota, but only a few of these species, such as Aspergillus sydowii, have been properly identified (Gleason et al. 2017a, b). The endolithic environment includes the pore spaces in shells and skeletons of living animals or of those buried in the sediments, in rocks and in the pores between mineral grains and is ubiquitous in all marine ecosystems (Golubic et al. 2005). 123 Fungal Diversity (2019) 96:347–433 Hyphae of endolithic fungi can penetrate calcium carbonate, silica and other inorganic solid substrates formed by living organisms and by geological processes (Kohlmeyer 1969b). Endolithic fungi cause significant bioerosion of many geological substrates over time and are involved in diseases of a number of commercially and ecologically important host animals in marine ecosystems, such as corals and bivalve molluscs (Golubic et al. 2005; Gadd 2007; Gleason et al. 2017a, b). Endolithic fungi include Aspergillus sydowii and Penicillium avellaneum in coral skeletons (Kendrick et al. 1982; Gleason et al. 2017a, b) and Fusarium solani reported from turtle egg shells (Sarmiento-Ramirez et al. 2016). Environmental sequencing surveys: highthroughput sequencing techniques High-throughput sequencing techniques have augmented our capacity to assess microbial eukaryotic diversity and related functions in microbial ecology (Peršoh 2015; Jayawardena et al. 2018; Xu et al. 2018). The use of molecular tools for identification of chytrid sequences originating from environmental DNA by reference to sequence databases (Hibbett et al. 2016) can overcome many limitations of traditional microscopic and culturing approaches. In this context, two key considerations are (i) there does not appear to be a universal genetic marker able to discriminate among distant taxa, and simultaneously provide adequate resolution to identify organisms at the species level (Hongsanan et al. 2018), and (ii) the current representation of Chytridiomycota, and especially parasitic chytrids, in sequence databanks is limited (Frenken et al. 2017). Although ITS rDNA regions are often used to examine species and strain-level fungal diversity, Vu et al. (2018) employed sequences of two nuclear ribosomal genetic markers, the Internal Transcribed Spacer and 5.8S gene (ITS) and the D1/D2 domain of the 26S Large Subunit (LSU), to generate DNA barcode data for ca. 100,000 fungal strains (Summerbell et al. 2007; Schoch et al. 2012; Jayawardena et al. 2018). However, 18S rDNA sequences give greater clarity in many fungal analyses (Freeman et al. 2009; Naff et al. 2013; Panzer et al. 2015; Tisthammer et al. 2016; Hassett and Gradinger 2016; Xu et al. 2016a, b; Hongsanan et al. 2018). Furthermore, it was shown the moderately-sized (* 440 bp) V4 amplicons are able to resolve fungal sequences to at least the genus level, confirmed by manual BLASTn of taxonomic identifications (Comeau et al. 2016). To extend the ecological coverage of chytrids, Comeau et al. (2016) conducted an in-depth analysis of fungal sequences within their collection of V4 18S rDNA pyrosequences originating from 319 individual marine (including sea-ice) libraries generated within diverse Fungal Diversity (2019) 96:347–433 projects studying Arctic and temperate biomes in the past decade. In this study, almost all sample types were dominated by marine Chytridiomycota-like sequences, followed by moderate to minor contributions of Ascomycota, Cryptomycota and Basidiomycota. The species and/or strain richness was found to be high, with many novel sequences and high niche separation. The high dominance of chytrids in Arctic sea-ice (93%) agrees with a recent 18S V2–V3 Alaskan study showing 70–95% chytrids among fungal sequences from land-fast ice and underlying marine sediments, identifying Mesochytriales, Chytridiales, Rhizophydiales and the Lobulomycetales as the closest related taxonomic orders in their BLAST queries and phylogenetic estimates of the five most abundant operational taxonomic units (OTUs) from each month in ice and sediment (Hassett and Gradinger 2016). In contrast, a recent meta-analysis by Tisthammer et al. (2016) focused on marine water and sediments and found that Dikarya were dominant and chytrids were relatively rare. However, their study was based upon only 56 samples from 33 sites, identified less than half the number of fungal sequences as the Comeau et al. (2016) study, and had a limited coverage of polar regions. They also targeted the small * 65 bp V9 variable region of the 18S rRNA gene and, consequently, greater than 50% of their 10,793 sequences remained unidentified. The V4 analysis with a larger dataset over a broad range of aquatic environments, with emphasis on planktonic and sea-ice systems, implies that chytrids may be more abundant than previously suspected and that aquatic fungi deserve renewed attention for their role in algal succession and carbon cycling. One of the major constraints for the taxonomy of Chytridiomycota is a general lack of sequence data, especially parasitic species (or those described as such). A survey of key databases for fungal taxonomic assignment reveals that Chytridiomycota represent between 0.1 and 4% of the fungal sequences, while the number of parasitic species may be fewer than a few dozen. The use of culture independent molecular methods, e.g. single cell/colony/ spore PCR (Ishida et al. 2015), as well as sequencing of bulk phytoplankton samples, will likely improve the representation of chytrids in future sequence databases (Frenken et al. 2017). Clearly high-throughput sequencing and next generation sequencing techniques bode well for the characterization of marine fungal communities and the determination of their role in deep water habitats (Xu et al. 2016a, b, 2018; Hassett et al. 2019). 357 Classification of marine fungi Marine fungi, as with all fungi, have traditionally been classified based on morphological features (Inui et al. 1965), however this does not lead to a natural scheme. Johnson and Sparrow (1961), in a detailed treatise of marine fungi, classified fungi in oceans and estuaries into four classes, i.e. ‘Phycomycetes’, ‘Fungi Imperfecti’ (asexual morphs), ‘Ascomycetes’ (Ascomycota) and ‘Basidiomycetes’ (Basidiomycota). It is now known that ‘Phycomycetes’ and ‘Fungi Imperfecti’ are not natural groups; ‘Phycomycetes’ included both fungi and funguslike organisms (Adl et al. 2012), while ‘Fungi Imperfecti’ are asexual morphs of the Ascomycota and the Basidiomycota. Johnson and Sparrow (1961) provided a higherlevel classification of the marine ‘Ascomycetes’ based on characteristics of spores (shape and septation). Such phenotypic classifications are highly subjective, and do not say much on the evolutionary significance of these characters. For example, Barr (1983) considered that trabeculate pseudoparaphyses to be important at the ordinal level in the classification of the Melanommatales, yet Liew et al. (2000) showed that they were not phylogenetically distinguishable from cellular pseudoparaphyses. Such classifications have over the past 30 years been replaced with those based on SSU and LSU rDNA sequence data, which has enabled construction of the evolutionary relationships of fungi and identification of morphological characters that are of evolutionary importance (Wijayawardene et al. 2017, b). Molecular based studies have also highlighted the polyphyletic nature of many genera e.g. Halosarpheia (Pang et al. 2003), Ceriosporopsis, and Remispora (Sakayaroj et al. 2011). Consequently, Jones et al. (2009, 2015) provided updated classifications of marine fungi based on results from recent phylogenetic studies. Phylogenetic analysis of SSU and LSU rDNA also enabled linking of asexual morphs with their sexual states (Shenoy et al. 2006; Abdel-Wahab et al. 2010; Seifert et al. 2011; Abdel-Wahab and Bahkali 2012). Thus, this has revolutionised the taxonomic placements of asexual fungi as demonstrated for the marine asexual genera Hydea, Matsusporium, Molesporium, Moromyces, and Orbimyces in the Lulworthiaceae, Lulworthiales, genera with no known sexual morphs (Abdel-Wahab et al. 2010). More recent studies have included the sequencing of a wider range of genes e.g. LSU, SSU, TEF1a, RPB2 and b-tubulin (Wanasinghe et al. 2017). Marine yeasts were included in the most recent classification treatise of marine fungi (Jones et al. 2015) and can be classified based on sequencing of the D1/D2 domain of the 28S rDNA. Morphological characters can still be useful for higher-level taxa. The classification in this paper follows Liu et al. (2015a, b, c), Wang et al. 123 358 (2015, b) and Wijayawardene et al. (2017a, b) with some updates. Identification of species and genera based on sequence data has also been questioned especially when dealing with cryptic species. For yeasts, taxa are generally based on the sequence of the D1/D2 domain of the LSU rRNA gene and the nucleotide differences between closely related species. Kurtzman and Ribnett (1998), in a phylogenetic analysis of 26S D1/D2 nucleotide sequences, demonstrated that 12 substitutions (2%) to 20 substitutions (3.3%) differentiated between two closely related Candida species. Jeewon and Hyde (2016) have addressed the issue of the identification and demarcation of taxa and made a number (15) of recommendations, the key elements being: (1). Phylogenetic relationships of a novel taxon should include a comparison of at least ITS based phylogeny with a minimum of 4–5 closely related/similar taxa of the same genus, where available; (2). Regions of the ITS sequence (including 5.8S) analysed should be of a minimum 450 base pairs with \ 1% position ambiguities and 3). For practical purposes, a minimum of [ 1.5% nucleotide differences in the ITS regions may be indicative of a new species (for fast evolving introns of protein coding genes, a higher percentage in nucleotide differences is warranted). Higher classification The transition from a morphology-based to a phylogenybased classification has advanced our knowledge on the phylogenetic diversity of fungi (Wijayawardene et al. 2017a, b) and more recently evolution (Hongsanan et al. 2017; Hyde et al. 2017; Liu et al. 2017a, b). From four phyla of fungi described in Alexopoulos et al. (1996), 18 are recognised by Tedersoo et al. (2018), of which at least 6 phyla have marine representatives (Ascomycota, Basidiomycota, Blastocladiomycota, Chytridiomycota, Glomeromycota, Mucoromycota) in the Kingdom Fungi based on molecular phylogenomic analyses of genome data and expressed sequence tags (Hyde et al. 2018; Tedersoo et al. 2018). In a more recent metabarcoding proteome analysis using whole-genomic information, Cryptomycota was also found to be related to the Kingdom Fungi (Choi and Kim 2017), but the phylogenetic positions of Neocallimastigomycota and Microsporidia were not stable from one study to another. The major advance in the classification of the fungi was by Hibbett et al. (2007) which set a framework for studies into their taxonomy and lead to major taxonomical changes over the next 10 years. Currently, the arrangement of genera, families, orders and subclasses is progressing towards a natural classification (Wijayawardene et al. 2017a, b). These are notable for taxa at the class level Dothideomycetes (Hyde et al. 2013, Ariyawansa et al. 123 Fungal Diversity (2019) 96:347–433 2014, Wijayawardene et al. 2014, 2018), Sordariomycetes (Maharachchikumbura et al. 2015, 2016), Agaricostilbomycetes, Atractiellomycetes, Classiculomycetes, Cystobasidiomycetes, Microbotryomycetes, Mixiomycetes, Pucciniomycetes Spiculogloeomycetes, Tremellomycetes, and Tritirachiomycetes (Liu et al. 2015a, b, c; Wang et al. 2015a, b; Zhao et al. 2018) and the subclasses Diaporthomycetidae (Senanayake et al. 2016, 2017, 2018), Savoryellomycetidae (Hongsanan et al. 2018), Lulworthiomycetidae (Dayarathne et al. 2018), Pleosporomycetidae (Schoch et al. 2006) and Xylariomycetidae (Senanayake et al. 2015). For marine fungi, Johnson and Sparrow (1961) classified all zoosporic fungi and fungus-like organisms into ‘Phycomycetes’ and filamentous fungi mainly into ‘Fungi Imperfecti’ (Sphaeropsidales, Melanoconiales, Moniliales and ‘Ascomycetes’ (Plectomycetes, Pyrenomycetes, and Discomycetes). ‘Ascomycetes’ was further divided into Scolecosporae, Amerosporae, Didymosporae, Phragmosporae and Dictyosporae based on spore morphology. Increased efforts have been made in recent years for the collection of a number of marine fungi with unknown/ problematic taxonomic positions and phylogenetic studies have since resolved their higher-level classification. For example, Manglicola guatamalensis was originally classified in the Pleosporaceae, Venturiaceae (Kohlmeyer and Kohlmeyer 1971) or Hypsostromataceae (Huhndorf 1994). A phylogenetic analysis of the 18S and 28S rDNA revealed the species was related to the Jahnulales, an order previously known for the freshwater genus Jahnula (Pang et al. 2002). Recently, Jones et al. (2015) reorganised the classification of the known marine fungi (filamentous, zoosporic and yeasts) into Ascomycota, Basidiomycota, Blastocladiomycota Chytridiomycota and Mucoromycota. For the major marine groups, the Ascomycota was subdivided into six classes (Dothideomycetes, Eurotiomycetes, Leotiomycetes, Lichinomycetes, Orbiliomycetes, and Sordariomycetes) with 943 species while the Basidiomycota was referred to three classes (Agaricomycetes, Exobasidiomycetes, and Ustilaginomycetes) with a total of 96 species (www.marinefungi.org). The most recent classification of marine fungi is found in ‘‘List of marine fungi logged in the marine fungi website’’ and ‘‘Marine yeasts Ascomycota and Basidiomycota’’ in the Appendix section Ascomycota Jones et al. (2015) listed a total of 943 marine Ascomycota (805 filamentous fungi in 352 genera), yeasts 138 species (in 35 genera), a huge leap from 424 species in Jones et al. (2009). This difference was mainly due to the inclusion of a number of fungi which occur both in the terrestrial and Fungal Diversity (2019) 96:347–433 marine environments, such as Aspergillus spp., Penicillium spp. often listed as marine derived fungi, and yeasts. Major lineages of marine Ascomycota include the orders Microascales (the Halosphaeriaceae), Pleosporales, Eurotiales and Saccharomycetales, among which the latter two orders constitute taxa mainly associated with seawater, sand/sediment, plant substrates and animals (Jones et al. 2015). Marine fungi in the order Pleosporales mostly belong to some well-known terrestrial genera, such as Didymella, Leptosphaeria, Massarina and Phaeosphaeria, while others are genera known only from marine habitats and with few species, suggesting marine Dothideomycetes may have evolved recently in the sea (Vijaykrishna et al. 2006; Jones et al. 2015; Liu et al. 2017a, b). This view is supported by the fact that many marine occurring Dothideomycetes maintain an active mechanism of spore dispersal, especially those occurring in mangrove environments (Suetrong et al. 2009), and Vijaykrishna et al. (2006) provide molecular clock evidence that marine Dothideomycetes evolved from terrestrial species. A different character scenario is observed in the marine Sordariomycetes that also evolved from terrestrial ancestors (Vijaykrishna et al. 2006). An example is the family Halosphaeriaceae which was inferred to have evolved from a terrestrial environment (Spatafora et al. 1998) and is predominantly marine with 166 species occurring in 63 genera (Jones et al. 2015, 2017), many being monophyletic. Taxa in Halosphaeriaceae generally have deliquescing asci and diverse spore/spore appendage morphology and ontogeny, adaptations to dispersal/finding growth substrates in the marine environment (Jones 1994, 1995). Another order with exclusively marine taxa is the Lulworthiales (Kohlmeyer et al. 2000). Species of this order generally have filiform (filamentous) ascospores with many species found obligately on macroalgae or corals (Kohlmeyer et al. 2000, Campbell et al. 2005). Savoryellales, an order of aquatic fungi, was established to include Savoryella, Ascotaiwania and Ascothailandia (= Canalisporium) but only a few Savoryella species are marine (Abdel-Wahab and Jones 2000; Boonyuen et al. 2011). Other marine Sordariomycetes are either monotypic genera or belong to known terrestrial genera. Molecular data has yielded many new lineages of marine fungi. Marine Saccardoella species were examined phylogenetically based on 18S, 28S rRNA and tef1 genes and found to be unrelated to the Sordariomycetes but formed a monophyletic clade close to the Dothideomycetes (Pang et al. 2013). A new genus, Dyfrolomyces, was introduced to accommodate the marine Saccardoella species and a new species D. tiomanensis in a new family Dyfrolomycetaceae (Pang et al. 2013) and a new order Dyfrolomycetales (Hyde et al. 2013). Jones et al. (2015) introduced the new order Torpedosporales 359 (Hypocreomycetidae) with three new marine families: Juncigenaceae, Etheirophoraceae and, Torpedosporaceae, all with marine genera based on a combined analysis of the 18S and 28S rDNA genes. The terrestrial asexual morph genus Falcocladium formed the fourth family, Falcocladiaceae (Jones et al. 2014), and was not previously assigned to any family or order (Crous et al. 1994; Somrithipol et al. 2007). Thus, the study of marine fungi at the molecular level helped in broadening our ability to classify taxa from other habitats. Tirisporella beccariana, a species commonly found on fronds/rhizomes of the brackish water palm Nypa fruticans, was found to represent a new lineage with Thailandiomyces bisetulosis in the Diaporthales, based on a phylogenetic analysis of the 18S and 28S rDNA (Suetrong et al. 2015). A new family, Tirisporallaceae, was established to accommodate these two genera (Suetrong et al. 2015), and a third genus Bacusphaeria was subsequently included (Abdel-Wahab et al. 2017). Lanspora, an exclusively marine genus previously thought to have close phylogenetic relationship with the Ophiostomatales, was recently placed in the new order Phomatosporales based on analyses of the 18S, 28S and internal transcribed spacer regions of the rDNA (Senanayake et al. 2016) (www.mar inefungi.org). Basidiomycota As reported earlier, basidiomycetes are the least represented taxonomical group in marine ecosystems (Kohlmeyer and Kohlmeyer 1979; Pang et al. 2011; Jones and Fell 2012; Sakayaroj et al. 2012; Hattori et al. 2014; Poli et al. 2018). Jones et al. (2015) listed 21 filamentous marine basidiomycetes in 17 genera with 75 marine basidiomycete yeasts in 26 genera. These figures changed little 4 years later: 22 (17) and 80 (39) filamentous and basidiomycete yeasts, respectively. The greater number of yeast genera is due to a major phylogenetic revision of basidiomycetous yeasts by Liu et al. (2015a, b, c) and Wang et al. (2015a, b). These revisions resulted in the introduction of many new genera and families which also applied to marine yeasts, e.g. Saitozyma, Solicoccozyma, Symmetrospora and Vishniacozyma (Liu et al. 2015a, b; Wang et al. 2015a, b, c). Generally, basidiomes of marine Basidiomycota are small, rarely greater than 5 mm in diameter and this has been attributed to the prevailing conditions in marine habitats with strong wave action (Jones 1982, 1988; Binder and Hibbett 2001). However, basidiomycetes with larger basidiomes, such as Grammothele fuligo, Hyphoderma sambuci, and Schizophyllum commune, have been reported from the petioles of brackish water palm Nypa fruticans (Loilong et al. 2012). A study of butt rot attack of the mangrove tree Xylocarpus granatum identified three new species of the genus Fulvifomes (Hymenochaetaceae, Hymenochaetales): Fulvifomes halophilus, F. siamensis, F. 123 360 Fungal Diversity (2019) 96:347–433 Fig. 1 Stem/butt rot of Xylocarpus granatum trees with multi-branching and hollow trunks xylocarpicola as the causative agents. Fulvifomes species have woody bracket basidiocarps with tubes, round pores, circa 4–6 mm diameter (Hattori et al. 2014). These Fulvifomes species cause extensive decay of the Xylocarpus granatum trees (Sakayaroj et al. 2012) (Fig. 1) and like other basidiomycetes possess lignolytic enzymes causing brown rot decay (Pointing et al. 1998, 1999; Bucher et al. 2004). While new marine Ascomycota are continuing to be described, few new basidiomycetes have been documented (www.marinefungi.org). Blastocladiomycota and Chytridiomycota Jones et al. (2015) list few marine chytrids (27 species in 13 genera) and this is considered to be an underestimate bearing in mind sequence data from marine sediments, the deep sea and seawater (Hassett et al. 2017). In high throughput sequencing studies, representatives of the Chytridiomycota accounted for more than 60% of the rDNA sequences sampled in six near-shore sites around Europe (Massana et al. 2015; Richards et al. 2015). In Arctic and sub-Arctic coastal habitats, Chytrids have been described as the most abundant fungal group (Comeau et al. 2016; Hassett and Gradinger 2016; Hassett et al. 2017). Given the relatively high abundance of chytrid sequences recovered from the marine environment in comparison with recent descriptions of infections of marine diatoms by such parasites, there has been only full taxonomical descriptions for three marine representatives namely Rhizophydium littoreum, Thalassochytrium gracilariopsis and Chytridium polysiphoniae (= Algochytrops polysiphoniae) (Gleason et al. 2011; Ohtsuka et al. 2016). 123 Recent taxonomic studies on chytrids based on molecular phylogenies and zoospore ultrastructure were mainly conducted using isolates of saprobic chytrids (Letcher et al. 2008; Simmons 2011; Seto et al. 2017) which can be cultured on alternative substrates (e.g. pine pollen) instead of the far more complicated method of co-culturing host and parasites. Although there are a large number of described species of parasitic chytrids (Jones et al. 2015), only a few parasitic chytrid species have been sequenced and their phylogenetic positions clarified (Küpper et al. 2006; Karpov et al. 2010, 2014; Vélez et al. 2011; Lepelletier et al. 2014; Letcher et al. 2015; Seto et al. 2017). There appears to be no new chytrids described since the list published by Jones et al. (2015), however, the advent of sequence data has enabled better resolution of their taxonomy. Three species previously classified in Phlyctochytrium and Rhizophydium have now been assigned to new genera: Halomyces (H. littoreus = Rhizophydium littoreum), Paludomyces (P. mangrovei = Phlyctochytrium mangrovei) and Ulkenomyces (U. aestuarii = Phlyctochytrium aestuarii) (Letcher et al. 2015). These three genera are assigned to a new family Halomycetaceae in Rhizophydiales (Letcher et al. 2015). The taxonomic assignment of Chytridium polysiphoniae has been in doubt for many years (Jones et al. 2015) and Doweld (2014) introduced a new genus Algochytrops to accommodate A. polysiphoniae. Many marine Rhizophydium species require isolation and sequencing to determine their taxonomic assignment (www.marinefungi.org). Fungal Diversity (2019) 96:347–433 Asexual filamentous marine fungi The first three asexual marine fungi were described from marine algae (Wright 1881; Cooke 1888). Sutherland (1916b) in a major article described eight asexual fungi that are saprobic on decaying fronds of the brown alga Laminaria growing along the coasts of Dorset and Orkney and other sites in UK. The new fungi were: Alternaria maritima, Diplodina laminariae, Epicoccum maritimum, Fusidium maritimum, Monosporium maritimum, Paradendryphiella salina (= Cercospora salina), Sporotrichum maritimum, and Macrosporium laminarianum. He carefully assigned them to their respective genera so that seven of them still carry their original names. Barghoorn and Linder (1944) described two new genera and seven new species of asexual marine fungi namely: Botryophialophora marina, Dictyosporium pelagicum, Diplodia orae-maris, Helicoma maritimum (synonymized with Zalerion maritima), Orbimyces spectabilis, Phialophorophoma litoralis, and Zalerion maritima. Nilsson (1957) described Dinemasporium marinum from driftwood in Denmark. Moore and Meyers (1959) described the basidiomycete genus, Nia, as an asexual fungus. Meyers and Moore (1960) also described three new genera and one new species namely: Cirrenalia macrocephala, Cremasteria cymatilis (a rejected species), Halosphaeriopsis mediosetigera (= Trichocladium achrasporum) and Humicola alopallonella (= Trichocladium alopallonella). Johnson and Sparrow (1961) listed 26 species in 24 genera of asexual marine fungi. Kohlmeyer and Kohlmeyer (1979) listed 53 asexual marine fungi in 40 genera and that number increased to 60 species (40 genera) in the illustrated key to the filamentous higher marine fungi published by Kohlmeyer and Volkmann-Kohlmeyer (1991). Jones et al. (2009) in the updated classification of marine fungi listed 94 asexual fungi in 61 genera. AbdelWahab et al. (2010) in a major publication revised the phylogeny of the genera Cirrenalia and Cumulospora based on SSU and LSU rDNA and erected eight new genera, four new species and made six new combinations. Abdel-Wahab and Bahkali (2012) reviewed asexual filamentous marine fungi and listed 117 asexual marine fungi in 82 genera. Of the 116 listed species, 59 were sequenced for one or more genes and their sequences are present in GenBank. Forty sexual/asexual connections have been established based on morphology, and 31 of those connections are supported by molecular data. The listed 117 fungi belong to Dothideomycetes (33 species), Eurotiomycetes (1), Leotiomycetes (3), Orbiliomycetes (15), Sordariomycetes (46), Pezizomycotina incertae sedis (18) and one species, Allescheriella bathygena, belongs to Basidiomycota. In the last update of the classification of marine fungi, Jones et al. (2015) listed 300 marine asexual filamentous taxa in 91 genera. They included the marine- 361 derived fungi that are repeatedly isolated from marine hosts or substrates and identified to species level. The 300 species belong to Dothideomycetes (63 species), Eurotiomycetes (93), Leotiomycetes (7), Orbiliomycetes (24) and Sordariomycetes (72). The sexual morphs of the remaining species are unknown. Genera represented by 5 species or more are: Acremonium (13 species), Arthrobotrys (13), Aspergillus (47), Cladosporium (7), Curvularia (5), Penicillium (39), Periconia (5), Phoma (11), Stachybotrys (6), Stemphylium (5) and Trichoderma (12). Several asexual fungi have been transferred to their sexual morph genera with the application of the International Code of Nomenclature for algae, fungi, and plants (ICN; McNeill et al. 2012). Two or more names for different morphs of the same species are no longer allowed (one fungus = one name). Examples are species of the genera Halosigmoidea, Sigmoidea, Varicosporina that have been transferred to Corollospora; Moheitospora to Juncigena and Glomerulispora to Torpedospora (Réblová et al. 2016). The marine fungi website (www.marinefungi. org) presently lists only 17 asexual morphs as there is no sequence data available to link them to their sexual morph: e.g. Asteromyces cruciatus, Pycnodallia dupla and Sporidesmium salinum. Many of these were described before molecular data was used and they need to be recollected and sequenced to determine their taxonomic placement. Furthermore, type material is no longer available or in poor condition, e.g. the marine fungi described by Barghoorn and Linder (1944). Other asexual morph taxa mentioned above are listed under their sexual morphs as sequence data is available for them. Marine yeasts Jones et al. (2015) listed 213 marine yeasts in 61 genera, including taxa in the Basidiomycota and Ascomycota. Currently we list 220 species in 74 genera with representatives in 9 classes, 15 orders and 28 families. Thus, the number of marine yeasts has not increased dramatically over the past 4 years, but sequence data has fundamentally changed their taxonomic assignment. Liu et al. (2015a, b, c) and Wang et al. (2015a, b) have undertaken a major revision of the classification of basidiomycetous yeasts, especially the Agaricomycotina, Tremellomycetes, Pucciniomycotina and Ustilaginomycotina, previously based on physiological and biochemical characteristics, resulting in many genera being polyphyletic. This revision was based on the analysis of sequences of seven genes: three rRNA genes, namely the small subunit of the ribosomal DNA (rDNA), D1/D2 domains of the large subunit rDNA, and the internal transcribed spacer regions (ITS 1 and 2) of rDNA including 5.8S rDNA; and four protein-coding genes, namely the two subunits of the RNA polymerase II (RPB1 and RPB2), the translation elongation factor 1-a (TEF1) and the 123 362 mitochondrial gene cytochrome b (CYTB). This study has seen the introduction of a number of new families: Bulleribasidiaceae, Malasseziaceae [classes = Tremellomycetes and Malasseziomycetes respectively], Mrakiaceae, Piskurozymaceae, Sakakuchiaceae, Symmetrosporaceae, and Trimorphomycetaceae (all Basidiomycota) and all with representative marine yeasts. New genera containing marine yeasts are Bandonia, Cutaneotrichosporon, Hasegawazyma, Pseudohyphozyma, Saitozyma [= reinstated], Solicoccozyma, Sampaiozyma, Symmetrospora, Tausonia [= reinstated], and Vishniacozyma. It would appear that such a revision of ascomycetous yeasts, i.e., Saccharomycotina, is warranted to address their phylogeny based on modern concepts. (www.marinefungi.org). Ecological groups of marine fungi Many marine fungi have been documented as the result of ecological studies, e.g. endobiotes, salt marsh and mangrove fungi (Jones and Pang 2012). Marine fungal endobiotes Endophytic fungi are defined as fungi that colonize host plant tissues without causing any obvious symptoms of disease (Schulz and Boyle 2005). They have been isolated from a wide range of plant hosts, including temperate conifers (Arnold 2007; Higgins et al. 2007), tropical trees and plants (Oses et al. 2008; Tao et al. 2008), lichens (Li et al. 2007a, b), terrestrial grasses (Sánchez Márquez et al. 2008). Marine fungi can also be isolated from a wide range of animals and plants, especially marine associated plants from salt marshes, mangroves, seagrass species and marine algae (Zuccaro et al. 2003, 2008; Raghukumar 2008; Sakayaroj et al. 2010, 2012; Suryanarayanan et al. 2010; Buatong et al. 2012; Jones et al. 2012; Supaphon et al. 2013, 2014, 2017; Hong et al. 2015; Doilom et al. 2017). Researchers have been attracted to study fungal endobiotes due to their potential importance in ecology, which includes an array of benefits to their hosts, such as tolerance to heavy metals, increased drought resistance, reduced herbivory, defence against pathogens, enhanced growth and competitive ability (Saikkonen et al. 1998). Additionally, endophytic fungi, especially marine endobiotes, have currently been recognized as the most promising sources of novel natural products for their bioprospecting in medicine, agriculture and industry (Debbab et al. 2013; Wang et al. 2013; Pang et al. 2016a). In the last decade, secondary metabolites and, novel chemical structures, and a diverse array of compounds from marine and mangrove endophytic fungi have been discovered (Debbab et al. 2013; Wang et al. 2013; Pang et al. 2016a). 123 Fungal Diversity (2019) 96:347–433 Most of the research of marine fungal endobiotes has been made in exploring their occurrence, diversity and species richness. A review by Sakayaroj et al. (2012) documented 52 species of mangrove plant hosts, marine associated plants, salt-affected land plants, seagrasses, as well as seaweeds, that have been investigated for the presence of endophytic fungi. Most of the early studies focused on the abundance and presence of fungi based on morphological identification. The use of rDNA sequence data has been helpful in comparing sequence divergence and taxonomic identities within phylogenetically referenced databases of recognized species (Arnold 2007). Recently, there have been several studies undertaken using rDNA sequences, especially the ribosomal rDNA regions, to identify the phylogenetic diversity of endophytic fungi from various marine and mangrove plant hosts (Alva et al. 2002; Sakayaroj et al. 2010; Xing et al. 2010; Xing and Guo 2011; Sakayaroj et al. 2012; Li et al. 2016; Supaphon et al. 2017). So far circa 63 marine and mangrove plant species from 24 families have been investigated for fungal endobiotes (Sakayaroj et al. 2012; Mata and Cebrián 2013; Panno et al. 2013; Shoemaker and Wyllie-Echeverria 2013; Gnavi et al. 2014; Venkatachalam et al. 2015a, b; Li et al. 2016; Vohnı́k et al. 2016; Supaphon et al. 2017; Doilom et al. 2017). One of the largest mangrove plant family Rhizophoraceae (Bruguiera cylindrica, B. gymnorrhiza, B. parviflora, B. sexangula var. rhynchopetala, Rhizophora apiculata, R. mucronata, R. stylosa) harbours a high diversity of endophytic fungi. Up to 2700 fungal strains have been documented from these hosts (Sakayaroj et al. 2012). Another large family of mangrove plants Sonneratiaceae (Sonneratia alba, S. apetala, S. caseolaris, S. griffithii, S. hainanensis, S. ovata, S. paracaseolaris) also constitutes as many as 637 endophytic fungi (Sakayaroj et al. 2012). The number of studies of endophytic fungi from sea grasses have dramatically increased over the past few years. The occurrence and phylogenetic diversity of fungal endobiotes associated with the four major seagrass families (Cymodoceaceae, Hydrocharitaceae, Posidoniaceae, Zosteraceae) have been undertaken. The families Hydrocharitaceae and Posidoniaceae harbour the greatest number of fungi isolated, namely 258 and 286 strains, respectively. While the families Cymodoceaceae and Zosteraceae, yielded 141 and 119 strains, respectively (Mata and Cebrián 2013; Panno et al. 2013; Shoemaker and Wyllie-Echeverria 2013; Supaphon et al. 2013; Gnavi et al. 2014; Supaphon et al. 2014; Kirichuk and Pivkin 2015; Torta et al. 2015; Venkatachalam et al. 2015a, b; Subramaniyan et al. 2016; Vohnı́k et al. 2016; Supaphon et al. 2017). Fungal Diversity (2019) 96:347–433 Fungi from marine algae and endomycobiota in seaweeds have been reviewed by Jones et al. (2012) and Suryanarayanan (2012). Fungi on algal hosts consist of saprobic, parasitic, endophytic, lichens and mycophycobionts (Kohlmeyer and Kohlmeyer 1979). Since seaweeds cover large areas of the sea floor and oceans, they can be expected to yield a wide variety of fungi (Jones 2011b). Endophytic fungi from marine macroalgae have been identified as a potential source of biologically active natural products and enzymes (Flewelling et al. 2013; Sarasan et al. 2017). Based on the present literature survey by Sarasan et al. (2017), the maximum proportion of bioactive compounds produced are from fungi isolated from brown algae, followed by red and green algae. The identification of marine fungal endobiotes revealed a highly diverse taxonomic community. Most belong to the Ascomycota, and are dominated by the major classes: Dothideomycetes, Sordariomycetes, Eurotiomycetes and Leotiomycetes (Sakayaroj et al. 2012; Supaphon et al. 2017). Most endophytic fungi isolated are asexual morphs and are typical terrestrial lineages including the orders Capnodiales, Eurotiales, Hypocreales, Pleosporales, Trichosphaeriales and Xylariales (Sakayaroj et al. 2012; Supaphon et al. 2017). The predominant genera found as marine endobiotes from a wide range of hosts include Acremonium, Aspergillus, Cladosporium, Fusarium, Penicillium, Pestalotiopsis, Phomopsis and Phyllosticta. They have been mostly shown to dominate in terrestrial habitats from a wide range of hosts as well as in other marine sources, i.e. sediments, corals, sponges, sea fans (Zalar et al. 2007; Li and Wang 2009). Only a few reports documented the fungal endobiotes that are truly marine lineages. For example, Corollospora angusta, C. intermedia, Dendryphiella salina (= Paradendryphiella salina), Emericellopsis minima, Lindra obtusa and Sigmoidea marina (= Corollospora marina) have been observed as endobiotes of marine seaweeds (Zuccaro et al. 2003, 2004, 2008). Among these Acremonium fuci and Corollospora (= Halosigmoidea = Sigmoidea) marina were reported as new species. Moreover, Corollospora angusta was the dominant species described from the brown seaweed, Sargassum sp. (Hong et al. 2015). Mata and Cebrián (2013) and Torta et al. (2015) also reported a few marine species: Trichocladium alopallonellum, Halenospora varia, Paradendryphiella arenaria, Lindra thalassiae as endobiotes of the seagrasses Halodule wrightii and Thalassia testudinum, while Lulwoana sp. was found in the roots of Posidonia oceanica. Similarly, sequences of unidentified lulworthialean and aigialean species were also detected in roots of P. oceanica (Vohnı́k et al. 2016). In many cases, the endobiotes could be identified only at the ordinal or genus level, due to the use of only morphological identification as well as the lack of reference 363 DNA sequences in the GenBank database for comparison. In three publications on mangrove fungal endobiotes an average of 87% were identified at genus level, while only of 41% were identified at species level (Xing et al. 2010; Xing and Guo 2011; Li et al. 2016). For sea grass endobiotes, an average of 77% of isolates were identified at generic level, while only 34% isolates were identified at species level. In addition, for seaweeds an average of 91% were identified at genus level, while only 32% isolates identified to species level (Table 1). Sakayaroj et al. (2010) and Supaphon et al. (2017) reported several unidentified hypocrealean and pleosporalean taxa from sea grass species that potentially may represent new taxa. This agrees with Gnavi et al. (2014) in which several potential new species belonging in the order Pleosporales were isolated from Posidonia oceanica. Additionally, Vohnı́k et al. (2016) described a new monotypic lineage of pleosporalean species within the Aigialaceae associated with P. oceanica roots (www.marinefungi.org). For a meaningful evaluation of their diversity in the marine environment, identification of endophyte isolates to ordinal or genus level is not sufficient. A greater effort is required to generate sequence data to support their precise identification, i.e. sequencing of their protein-encoding genes and multigene sequence analysis. Moreover, the culture-independent approaches, including the genomebased techniques using metagenomics, next-generation genome sequencing and phylogenomics approaches, will help to evaluate the diversity of fungal communities and the discovery of novel genes and metabolites. The importance of culturomics is not disputed in this article, and this technique has been used to study the diversity of marine fungi. However, the fungal diversity resulted from isolation does not necessary represent true marine fungi, especially at the marine/terrestrial interface. NGS also suffers from the same pitfalls but this technique offers detection of minor populations, active populations and interactions between different microorganisms, the mentioned advantages of culturomics. Marine pathogens Most marine fungi are saprobes occurring on various substrates, while some form symbiotic associations with algae and some are pathogens of a wide range of organisms (Bauch 1936; Sparks and Hibbits 1979; Hatai 2012). Table 2 lists some examples of marine fungi that are regarded as parasites on various hosts, including seaweeds, salt marsh plants, mangrove plants, rhizomes of Posidonia oceanica and marine animals. 123 364 Fungal Diversity (2019) 96:347–433 Table 1 Numbers of marine fungal endobiotes that can be fully identified to genus and species level Substratum Number of isolates fully identified to genus level Number of isolates fully identified to species level References Mangrove plants 39/39 (100%) 17/39 (43.5%) Xing et al. (2010) 27/38 (71%) 12/38 (32%) Xing and Guo (2011) 33#/36* (91.7%) 17/36 (47.2%) Li et al. (2016) Average = 87% Average = 41% 14/16 (87.5%) 69/88 (78.4%) 5/16 (31.2%) 58/88 (66%) Mata and Cebrián (2013) Panno et al. (2013) 31/34 (91.2%) 7/38 (18.4%) Shoemaker and Wyllie-Echeverria (2013) Seagrasses 14/21 (66.7%) 5/21 (23.8%) Gnavi et al. (2014) 26/42 (62%) 4/42 (9.5%) Sakayaroj et al. (2010) 35/47 (74.5%) 15/47 (32%) Supaphon et al. (2014) 28/29 (96.6%) 27/29 (93.1%) Kirichuk and Pivkin (2015) 40/44 (91%) 10/44 (2.3%) Venkatachalam et al. (2015a) 25/32 (78.1%) 3/32 (9.4%) Venkatachalam et al. (2015b) 15/42 (35.7%) 25/42 (59.5%) Subrmaniyan et al. (2016) 68/81 (84%) 23/81 (28.4%) Supaphon et al. (2017) Average = 77% Marine seaweeds Average = 34% 30/31 (96.8%) 7/31 (22.6%) Zuccaro et al. (2003) 41/42 (97.6%) 15/42 (35.7%) Zuccaro et al. (2008) 56/72 (77.8%) 7/72 (9.7%) Suryanarayanan et al. (2010) 44/50 (88%) 30/50 (60%) Hong et al. (2015) 68/73 (93.2%) 25/73 (34.2%) Venkatachalam et al. (2015a) Average = 91% Average = 32% # Identified genus/species,* total species Seaweed pathogens Seaweeds represent the second largest source of marine fungi (Bugni and Ireland 2004; Schulz et al. 2008; Loque et al. 2010; Suryanarayanan et al. 2010; Godinho et al. 2013; see text on seaweed fungi above). Seaweed-associated fungi mostly include parasites, saprobes, or asymptomatic fungi (Bugni and Ireland 2004; Zuccaro et al. 2008; Loque et al. 2010; Suryanarayanan et al. 2010; Jones et al. 2012). The best documented seaweed parasites are Spathulospora species on the red alga Ballia (Kohlmeyer and Kohlmeyer 1979). The thallus of Spathulospora is crustose surrounding the algal host cells, bearing sterile and fertile hairs and trichogynes, the mycelium penetrating the host cell. Sometimes a single ascoma is born externally on a cell, the infecting mycelium confined to one algal cell. Of the six Spathulospora spp., three occur in the Pacific Ocean. 123 Phycomelaina laminaria is a member of the Sordariomycetes and parasitic on the kelps, Laminaria species and Alaria esculenta, forming black spots on the stems. New collections, isolation and sequencing is required to resolve the taxonomic position of Phycomelaina within the Sordariomycetes. Another genus found exclusively as parasites of algae is Haloguignardia (Lulworthiales) with five species (Kohlmeyer and Kohlmeyer 1979). Host taxa include the brown seaweeds Cystoseira, Halidrys, and Sargassum spp. Similarly, Pontogenia (Koralionastales) species (8 species) are all algal parasites occurring on a wide spectrum of hosts Castagnea chordariaeformis, Halopteris scoparia, Padina durvillaei (Phaeophyta), Codium spp. and Valoniopsis pachynema (Chlorophyta). The six Chadefaudia species (Halosphaeriaceae) are also known pathogens of various marine algae, but are not as host-specific as the other fungi mentioned above (Kohlmeyer and Kohlmeyer 1979). A well-documented pathogenic taxon is Mycaureola dilsea (Physalacriaceae, Fungal Diversity (2019) 96:347–433 365 Table 2 Pathogenic marine fungi and their hosts Taxa Host Algochytrops polysiphoniaeb Pylaiella littoralis Anthostomella sp.r Rhizophora mangle Atkinsiella panuliratah Spiny lobster Cercospora sp. o Rhizophora spp. Chadefaudia balliaea Ballia callitricha Chadefaudia gymnogongril Curdiea, Gigartina, Gymnogongrus, Laurencia, Microcladia, Ptilonia spp. Chadefaudia marinal Rhodymenia palmata Chadefaudia polyporolithil Polyporplithon spp. Cytospora rhizophoraej Rhizophora mangle Cytospora lumnitzericola p Lumnitzera racemosa Cytospora thailandicap Cytospora xylocarpip Xylocarpus moluccensis Xylocarpus granatum Didymella fucicolal Fucus spiralis, F. vesiculosus, Pelvetia canaliculata Didymella gloiopeltidial Gloiopeltis furcata Didymella magnei l Rhodymwnia palmata Didymosphaeria danical Chondrus crispus Exophiala spp.g Pathogens of fish Fulvifomes halophiluss Xylocarpus granatum F. siamensiss Xylocarpus granatum F. xylocarpicola s Flamingomyces ruppiaea Ruppia marina Haliphthoros milfordensise Juvenile stages of lobster Haloguignardia deciduel Sargassum daemelii, Sargassum sp. Haloguignardia irritansl Cystoseira osmundaceaI, Halidrys dioica Haloguignardia oceanical Haloguignardia tumefaciens Sargassum fluitans, S. natans l Sargassum spp. Halotthia posidoniaen Koorchaloma galateaem Posidonia oceanica, Cymodoce nodosum Juncus roemerianus Labyrinthuloides haliotidisb Juvenile abalone Lagenidium callinectesf Larvae of mangrove crab Leptosphaeria avicenniae l Avicennia spp. Lindra thalassiael Sargassum sp. (also in turtle grass, Thalassia testudinum) Lulworthia fucicolal Fucus versiculosus Lulworthia kniepiil Lithophyllum, Porplithon, Pseudolithophyllum spp. Massarina cystophorael Cystoseira osmundacea, C. subfarcinata Mycosphaerella ascophyhlii Ascophyllum nodoasum, Pelvetia canaliculata Mycaureola dilseaq Dilsea carnosa Ochroconis humicolag Fish Orcadia ascophyllil Ascophyllum, Fucus, Pelvetia spp. Parvulago marinaa Eleocharis parvula (Urocystidales) Pestalotiopsis juncestris n Juncus roemerianus Phycomelaina laminariael Plectosporium oratosquillaed Laminaria spp., Alaria esculenta Mantis shrimp Pontogeneia calosporak,l Castagnea chordariaeformia Pontogeneia codiicolal Codium fragile, C. simulans Pontogeneia cubensisl Halopteria scoparia l Halopteria scoparia Pontogeneia enormia Pontogeneia padinael Padina durvillaei 123 366 Fungal Diversity (2019) 96:347–433 Table 2 (continued) Taxa Host Pontogeneia valiniopsidisl Valoniopsis pachynema Pontoporeia biturbinatai Posidonia oceanica, Cymodoce nodosum Pseudocercospora avicenniaet Avicennia marina l Spathulospora adelpha Ballia callitricha Spathulospora antarctical Ballia callitricha Spathulospora calval Ballia callitricha Spathulospora lanatal Ballia hirsute, B. scoparia Spathulospora phycophilal Tetranacriella papillatan Ballia callitricha, B. scoparia Juncus roemerianus Thalassoascus tregouboviil Aglaozonia, Cystoseira, Zanardinia spp. Trailia ascophyllil Ascophyllum nodosum, Fucus sp. Trichomaris invadensu Tanner crab Scytalidium sp.g Fish Sphaeceloma cecidii l a b Cystoseira, Halidrys, Sargassum spp. c d Bauer et al. (2007); Bower (1987); Doweld (2014); Duc et al. (2010); eFisher et al. (1975); fHatai et al. (2000); gHatai (2012); hKitancharoen et al. (1994); iKohlmeyer (1963a); jKohlmeyer (1969c); kKohlmeyer (1975); lKohlmeyer and Kohlmeyer (1979); mKohlmeyer and VolkmannKohlmeyer (2002); nKohlmeyer and Volkmann-Kohlmeyer (2001a); oMcMillan (1984); pNorphanphoun et al. (2018); qPorter and Farnham (1986); rStevens (1920); sSakayaroj et al. (2012); tShivas et al. (2009); uSparks (1982) Basidiomycota) on the red seaweed Dilsea carnosa (Porter and Farnham 1986; Stanley 1992; Binder et al. 2006). Originally described as an ascomycete, but later studies confirmed it as a basidiomycete which can be found sporulating on Dilsea in September to October in temperate climates (Stanley 1992; Jones et al. 2012). Recent studies of pathogenic marine fungi on algae are few apart and are mainly taxonomic observations with only some being supported by sequence data (Inderbitzin et al. 2004; Binder et al. 2006; Gueidan et al. 2009; Pérez-Ortega et al. 2010; Taxopeus et al. 2011). Zoosporic fungi and fungal-like organisms also cause disease symptoms on marine algae, especially phytoplankton (Raghukumar 1987; Küpper and Müller 1999; Gleason et al. 2012; Doweld 2014; Scholz et al. 2014b; Gutiérrez et al. 2016; also see section above on Blastocladiomycota and Chytridiomycota). One species frequently identified as parasitic on a broad spectrum of red algae is Algochytrops polysiphoniae (= Chytridium polysiphoniae) (Küpper and Müller 1999; Gleason et al. 2012; Doweld 2014). Pathogens of salt marsh plants Salt marshes represent coastal marine ecosystems that occur mainly in temperate and high-latitude estuaries (Allen and Pye 1992; Simas et al. 2001), low hydrodynamic and periodic tidal flooding conditions (Simas et al. 2001). A number of aquatic plants, such as Spartina spp., Juncus roemerianus, Phragmites australis and sea grass 123 species of Halodule, Thalassia and Zostera, grow in such environments, and are the main sources of organic matter for fungi (Teal 1962; Christian et al. 1990; Newell et al. 1996; Van Ryckegem et al. 2006; Al-Nasrawi and Hughes 2012). Labyrinthulomycetes are reported to cause wasting diseases of Zostera marina and Halodule writghtii sea grasses with heavy losses (Sullivan et al. 2013). Two pathogenic basidiomycetes on maritime angiosperms are Flamingomyces ruppiae on Ruppia marina, and Parvulago marina on Eleocharis parvula (Urocystidales) (Bauer et al. 2007). Although a wide range of saprobic fungi occur on salt marsh plants such as Spartina spp., Juncus roemerianus, Phragmites australis, the parasitic fungi are known only from aerial shoots (Kohlmeyer and Volkmann-Kohlmeyer 2002). Kohlmeyer and Volkmann-Kohlmeyer (2001c) described 43 new species belonging to 14 new genera from the needle rush Juncus roemerianus, and all are saprobes of senescent standing culms and leaves. The sea grasses Posidonia oceanica and Cymodocea nodosum support a number of ascomycetes that grow on their living rhizomes: Halotthia posidoniae and Pontoporeia biturbinata (Kohlmeyer 1963b). Generally, they are found commonly on washed up rhizomes along the Mediterranean coast (Cuomo et al. 1985; Suetrong et al. 2009; Zhang et al. 2013a, b; Jones et al. 2015). Further studies are required to determine the relationship between these ascomycetes and their hosts. Fungal Diversity (2019) 96:347–433 Mangrove plants Many fungal pathogens of aerial parts of mangrove trees are documented, but few are known from submerged parts (Shivas et al. 2009; Norphanphoun et al. 2018). Butt rot of roots and lower parts of the mangrove tree Xylocarpus granatum have been shown to be caused by Fulvifomes species and is widespread in Thai mangroves (Sakayaroj et al. 2010; Hattori et al. 2014) (Fig. 1). 367 Haliphthoros milfordensis juvenile stages of lobster (Fisher et al. 1975), Trichomaris invadens in tanner crab (Sparks 1982), Labyrinthuloides haliotidis of juvenile abalone (Bower 1987, 2000), Atkinsiella panulirata from spiny lobster (Kitancharoen et al. 1994), Lagenidium callinectes in larvae of mangrove crab (Hatai et al. 2000) and Plectosporium oratosquillae in mantis shrimp (Duc et al. 2010), to name but a few. Pathogens of fish include Ochroconis humicola, Exophiala spp., and Scytalidium sp. (Hatai 2012). On animal hosts Fungi on diatoms Marine fungi also cause diseases of marine animals and plants, but this is a topic requiring greater investigation (Kohlmeyer and Volkmann-Kohlmeyer 2003; Gachon et al. 2010; Gleason et al. 2011; Jones 2011a). Crustacean species, fish and shell fish are the most frequently cited hosts for pathogenic marine fungi (Hatai et al. 2000; Hatai 2012). The substrates of animal origin consist of cellulose, chitin, keratin, and calcium carbonate with an organic matrix (Kohlmeyer and Kohlmeyer 1979; Alderman and Jones 1967; Jones 2011a). This is a well-researched topic because of the economic impact on commercial marine aquaculture facilities. Studies on zoosporic fungal-like parasites have been documented in a series of papers by Gleason et al. (2017a, b) and Collier et al. (2017), while Scholz et al. (2017a, b) consider the chytrid infection prevalence of marine diatoms. Le Campion-Alsumard et al. (1995) showed fungal hyphae in coral skeletons and soft coral tissue, while Porter and Lingle (1992) found thraustochytrids bore into mollusc shells. Marine fungi invade mollusc shells as endoliths (Golubic et al. 2005) and as pathogens causing shell disease (Alderman and Jones 1971). Ostracoblabe implexa was implicated in the debilitating disease of oysters in the UK (Alderman and Jones 1971). A number of fungi belonging to the genera Alternaria, Aspergillus, Cladosporium, Fusarium, Phoma, and species Aureobasidium pullulans, Hormonema dematioides, and Phialophora bubakii, have been isolated from corals along the coast of Bay of Bengal and the Arabian Sea (Raghukumar 2017), some of which have been implicated in coral diseases. Some of these form a constant association with living corals, pervading deep in coral skeletons. Black mat syndrome of the carapace of the tanner crab (Chionoecetes bairdi) has been attributed to Paraphoma fimeti (= Phoma fimeti) for a long time. Sparks and Hibbits (1979) investigated the invasive disease and reported that the fungus was probably fatal and significantly affected the crab population in Kodiak area of Alaska. The bleaching of corals and the role of fungi in colonizing such substrates warrants greater investigation. Common fungi and fungal-like organisms that are pathogens of various cultured fish and shellfish are Chytrid infections of marine microalgae and cyanobacteria, and diatoms, have only been considered in recent years (Scholz et al. 2014a, b, 2016a, b; Gutiérrez et al. 2016). In particular, marine planktonic diatoms such as Pseudonitzschia pungens (Hanic et al. 2009), Chaetoceros, Thalassiosira (Scholz 2015; Gutiérrez et al. 2016; Scholz et al. 2016a, b) and Cylindrotheca closterium (Elbrächter and Schnepf 1998; Scholz et al. 2014a, 2016a, b) as well as species of the genera Skeletonema (Gutiérrez et al. 2016), Rhizosolenia, Bellerochea, and Leptocylindrus (e.g. Scholz 2015) were identified as common host species for chytrids. Even in the marine microphytobenthos infections by chytrids were recently recorded, mainly affecting epipelic taxa of the order Naviculales (Diploneis bombus, Navicula digitoradiata and Achnanthales (Ach. brevipes), Thalassiophysales (Amphora ovalis) and Fragilariales (Fragilaria striatula) amongst others (Scholz 2015; Scholz et al. 2014a, 2016a). Therefore, the potential for the discovery and documentation of further marine chytrids in other hosts is high and may provide a better estimate of their numbers in the marine environment. Of the marine chytrid parasites of dinoflagellates identified so far, only one, Dinomyces arenysensis, is parasitic on the dinoflagellate Alexandrium minutum (Lepelletier et al. 2014). In the ocean, even though the presence of these parasitic fungi on planktonic and microphytobenthic diatoms has been reported (Elbrächter and Schnepf 1998; Hanic et al. 2009; Scholz et al. 2014a, b, 2016a, b), their impacts on marine diatom communities and in the food-web remain unclear (Wang and Johnson 2009; Gleason et al. 2011). Chytrids are often considered to be highly host-specific parasites (Kagami et al. 2007). Our current knowledge of host range and chytrid specificity is greatly biased by the fact that morphological identification often does not provide enough resolution to identify chytrids (and sometimes also hosts) at the species level (Frenken et al. 2017). Crossinfection assays under laboratory conditions often expose an even more complex picture, with some chytrids infecting specific host strains only (e.g. Scholz et al. 2017a) and others are capable of infecting different species, and within 123 368 single host species both susceptible and resistant strains occur as well (e.g. Lepelletier et al. 2014; Scholz et al. 2017a, b). In addition, laboratory test series with marine host-diatom and chytrid isolates indicated the potential of the diatoms to defend themselves against the infection by chytrid zoospores (Scholz et al. 2017a) as well as demonstrated a direct link between environmental stressors and host-susceptibility (Scholz et al. 2017b). Distribution of marine fungi Although marine fungi are worldwide in distribution certain taxa may be restricted geographically to the tropics, subtropics, temperate or polar waters (Hughes 1974, 1986; Hyde 1986; Hyde and Jones 1988; Schmit and Shearer 2003) (Fig. 2). Tropical marine fungi are known from the Atlantic, Indian and Pacific Oceans, from a wide range of substrates, with mangrove habitats supporting the greatest diversity (Schmit and Shearer 2003; Alias and Jones 2010; Pang et al. 2011). However, there is little overlap in fungal species from tropical (Fig. 2b) and temperate (Fig. 2a) regions (Jones and Pang 2012). Substantial information is available on the distribution of mangrove fungi with Schmit and Shearer (2003) listing 625 species, but this also included terrestrial species. Currently, some 500 fungi are known from mangrove habitats on 69 mangrove plants, sediments and seawater, with data from 80 countries. Schmit and Shearer (2003) indicate that the mangrove fungi in the Atlantic Ocean (12–47: mean 25.6) are fewer in number in comparison to those from the Indian (12–64: mean 42.9) and Pacific (17–95: mean 44) Oceans (Schmidt and Shearer 2003; Jones and Abdel-Wahab 2005). It had been suggested that this is because the mangrove trees diversity is lower in the Atlantic Ocean than in the Indian and Pacific Oceans. Mangrove tree species in the Atlantic Ocean are few and are often mangrove fringe communities, often Avicennia species. For example, only three tree species are present in the Florida locations studied by Jones and Puglisi (2006). In contrast, only one mangrove tree species is found in Red Sea mangroves, when extensive collections were made (Abdel-Wahab 2005; Abdel-Wahab et al. 2014). The greatest fungal diversity is in the Pacific Ocean and this reflects the intensity of study at these locations (Alias and Jones 2010; Pang et al. 2011). Kohlmeyer and Volkmann-Kohlmeyer (1989) opined that fungal diversity was dependent on the maturity of the mangrove trees, the nature of the host tissue, size of the mangrove forest and damage to the trees and the frequency of sampling (Jones 2000). Many tropical fungi are unique to mangrove substrates (Table 3) or host-specific to the brackish water palm Nypa fruticans, e.g. Aniptodera nypae, A. intermedia, 123 Fungal Diversity (2019) 96:347–433 Anthostomella nypae, Fasciatispora nypae, Helicascus nypae, Lignincola nypae, Linocarpon appendiculatum, Oxydothis nypae, Tirisporella beccariana, and Helicorhoidion nypicola, to list but a few (Loilong et al. 2012). Whether we can integrate observational documentation with high-throughput sequencing detection requires greater collaboration and selection of sampling locations. In broad terms there is a general agreement in the diversity to be found; Ascomycota is the dominant taxonomic group, while the Basidiomycota and chytrids are rare taxa (www. marinefungi.org). Both approaches detect fungi not documented by the other, therefore give a greater insight into the fungal diversity of the oceans. Role of marine fungi in the web of the oceans Energy fixed by primary photosynthetic producers in the oceans is channelled to various trophic levels to sustain biodiversity and ecosystem functioning. Microorganisms play a key role in regulating this energy flow (Fig. 3). Marine fungi are one of the major components in marine food webs and occur as saprobes, endobiotes, parasites and mutualists. Figure 4 schematically represents such fungal activities in the marine ecosystem. Firstly, as saprobes they transform the detritus or organic matter that originated from plants, algae and animals into valuable nutrients for consumers. Such turnover of organic matter gears up energy flow to the higher trophic levels. Ageing improves the nutrient composition and digestibility of mangrove leaves, compared to freshly fallen ones with fungi contributing to this feed improvement (Raghukumar 2005). By virtue of their ecological activities, marine fungi have the potential to play a major role in regulation of energy flow in marine ecosystems (Fig. 5). Fungi associated with living and dead organisms play various roles in energy transfer. Indeed, there is now sufficient evidence to show that fungi can affect energy flow in the oceans in many ways. A few representative examples from a vast amount of literature available are given in Table 4. Symbionts Mutualistic fungi ensure that the organisms they are associated with achieve optimal productivity in terms of energy. A highly diverse group of fungi distributed in various genera and orders, mostly found in terrestrial habitats, live as endobiotes in macrophytes and macroalgae and as symbionts in lichens (Gueidan et al. 2009; Sakayaroj et al. 2012, Table 4). However, their quantitative importance has been inadequately studied. Jones (2011b) is of the opinion that 6000 species of endobiotes of marine plants, seaweeds, and marine animals may occur. Fungal Diversity (2019) 96:347–433 369 Fig. 2 World distribution of marine fungi: a temperate species. b Tropical species. c Cosmopolitan species Parasites As parasites of primary producers, fungi can cause leaching of dissolved organic matter (DOM) and decimation of populations of microalgae. This can seriously affect production of grazers, which constitute secondary production. Numerous examples of parasites in macroalgae and phytoplankton are now known (Raghukumar 2017; see section on pathogenic marine fungi). The importance of chytrids in phytoplankton, particularly in cold waters is now gradually coming to light (Hassett and Gradinger 2016; Gutierrez et al. 2016; Comeau et al. 2016). 123 370 Fungal Diversity (2019) 96:347–433 Fig. 2 continued Table 3 Core mangrove fungi Ascomycota: Savoryella lignicola E.B.G. Jones et R.A. Eaton Antennospora quadricornuta (Cribb et J.W. Cribb) Massarina velatospora K.D. Hyde et Borse Aigialus grandis Kohlm. et S. Schatz Verruculina enalia (Kohlm.) Kohlm. et Volkm.-Kohlm. Dactylospora haliotrepha (Kohlm. et E. Kohlm.) Hafellner Asexual morphs: Halorosellinia oceanica (S. Schatz) Whalley, E.B.G. Jones, K.D. Hyde et Læssøe, Bactrodesmium linderi J.L. Crane et Shearer) M.E. Palm et E.L. Stewart Kallichroma tethys (Kohlm. et E. Kohlm.) Kohlm. et Volkm.Kohlm Hydea pygmea (Kohlm.) K.L. Pang et E.B.G. Jones Leptosphaeria australiensis (Cribb et J.W. Cribb) G.C. Hughes Periconia prolifica Anastasiou (= Okeanomyces cucullatus (Kohlm.) K.L. Pang et E.B.G. Jones) Natantispora retorquens (Shearer et J.L. Crane) J. Campb., J.L. Anderson et Shearer Basidiomycota: Neptunella longirostris (Cribb et J.W. Cribb) K.L. Pang et E.B.G. Jones Calathella mangrovei E.B.G. Jones et Agerer Saagaromyces ratnagiriensis (S.D. Patil et Borse) K.L. Pang et E.B.G. Jones Halocyphina villosa Kohlm. et E. Kohlm. Sammeyersia grandispora (Meyers) S.Y. Guo, E.B.G. Jones et K.L. Pang Saprobic fungi in detritus Colonization of primary producers upon their death, caused either by parasites or natural means, is another aspect of energy flow. Saprobic growth of fungi in detritus is believed to improve their nutritional value and sustains the growth of detritivores. Some of the best evidence for the role of fungi in this process comes from detritus produced 123 by coastal macrophytes, such as mangrove leaves and wood, salt marsh grasses and macroalgae (Table 4; Lee et al. 2017; Raghukumar 2017). A large part of dead Spartina is converted into fungal biomass (Newell and Porter 2000). Fungal biomass is also an important component of mangrove leaf detritus (Newell and Fell 1992). An energy budget study on mangroves from the mangrove estuary in north Brazil by Koch and Wolff (2002) has Fungal Diversity (2019) 96:347–433 371 is important in channelling energy, as shown in the next section. Saprobic fungi in DOM Fig. 3 Interactions of fungi with organisms in the marine trophic pyramid shown that the total leaf litter fall amounts to 13,700 kJ m-2 year-1, corresponding to approximately 685 g of dry weight production m-2 year-1. Nearly 75% of this is consumed by the crab Ucides cordatus. Ageing improves the nutrient composition and digestibility of mangrove leaves, compared to freshly fallen ones with fungi contributing to this feed improvement (Nordhansl and Wolff 2007). Enzymatic degradation improves digestibility and supplies essential nutrients to animal feeders. Release of DOM by the saprobic activities of fungi Both living and dead marine macrophytes leach substantial amounts of dissolved organic matter (DOM) into surrounding waters, which is then converted to varying extents into microbial biomass. Conversion of DOM to microbial particulate organic matter (POM) makes energy available to detritivores and supports trophic levels of upper echelons. DOM likely supports the considerable numbers of yeasts in the water column (Fell 1967, 2012). However, their biomass and involvement in energy transfer is still inadequately known and deserves attention. Better studied are the biomass of Basidiomycota, Ascomycota and Labyrinthulomycetes in the oceanic water column. All these groups are now well known to rival bacteria in biomass (Gutiérrez et al. 2011, 2016; Raghukumar 2017). Marine snow, formed by aggregation of dead phytoplankton and their exudates, dead zooplankton, empty larvacean carcases, pteropod feeding webs, and faecal pellets of marine invertebrates are important substrates for bacteria and fungi. The importance of fungi in colonizing marine aggregates, a long-neglected aspect, is now gaining further attention. At least two studies have shown that fungi are capable of densely colonizing marine snow and Fig. 4 Schematic processes of interaction of organic matter and fungi in marine ecosystem 123 372 Fungal Diversity (2019) 96:347–433 Fig. 5 Various mechanisms by which fungi influence energy transfer in the marine ecosystem attaining biomass levels equal to that of bacteria (Gutiérrez et al. 2011; Wang et al. 2014a, b). The importance of Labyrinthulomycetes in colonization of marine snow is now well-established (Bai et al. 2018). Fungi might be important in sinking of marine aggregates, the biological pump that transports organic matter to the deep-sea. Marine aggregates that sink to deeper waters from the surface harbour fungi. Using hybridization signals from CARD-FISH technique, Bochdansky et al. (2017) have recently shown that fungi and Labyrinthulomycetes accounted for * 1/5 each of all eukaryotic microbes on particles obtained from bathypelagic marine snow at depths of 1000 to 3900 m in North Atlantic and Arctic waters. Biomass of Labyrinthulomycetes was approximately equal to that of prokaryote biomass, while the combined biomasses of fungi and Labyrinthulomycetes exceeded that of prokaryotes. Bochdansky et al. (2017) opine that ‘eukaryotic microbes can no longer be considered sideshows to ecosystem processes of the deep sea’. Fungi in animal nutrition Fungi can mediate energy transfer to the trophic levels of grazers and detritivores through their growth in marine detritus. Salt marsh periwinkles can ingest 7% of naturally decayed leaves of the salt marsh grass per day and are capable of digesting 51% of the consumed detritus. Almost their entire nitrogen comes from fungi (Newell and Bärlocher 1993; Bärlocher and Newell 1994). Similar studies for mangrove and macroalgal detritus, and also for the 123 oceanic water column are required. Very often, the biomass or saprobic abilities of marine fungi may not be commensurate with their importance in terms of energy transfer to other animals. For instance, Kohlmeyer et al. (1995) found that the actual decomposition of wood by marine fungi is minimal compared with that of teredinid borers in mangrove wood, because fungi are restricted to the outer layers of the wood due to high oxygen requirements. However, fungi, along with bacteria, are essential as ‘preconditioners’ of the wood surface and enable teredinid larvae to settle and penetrate the substrate (Lee et al. 2017). It is now evident that fungi can contribute to substantial amounts of organic carbon at various levels of energy transfer in the oceans. A comprehensive study linking fungal biomass and productivity with various levels of primary and secondary production in the ocean pelagic is now needed to clarify their role in energy transfer mechanisms in the oceans. Such a study can draw inspiration of similar studies that have been carried out extensively in the Spartina alterniflora salt marsh grass ecosystem (Fell et al. 1984). For a holistic understanding of the role of fungi in energy transfer, their productivity and biomass at every stage of energy transfer should be comprehensively studied. Gessner and Chauvet (1993) and Newell (2001) have provided methods to study fungal productivity based on ergosterol synthesis. Fungal Diversity (2019) 96:347–433 373 Table 4 Representative examples of fungi and fungal-like organisms to show their role in various energy flow mechanisms Energy flow mechanism Examples Potential role of fungi References Through parasitic infection of primary producers Diatoms Skeletonema, Thalassiosira and Chaetoceros Chytrid sporangia contributed up to 4.2 mg C L-1; zoospores contributed up to 10.1 mg C-L Gutiérrez et al. (2016) Diatom Pseudo-nitzschia pungens Up to 15.9% of the bloom comprising 15 9 106 cells per litre of potential production infected by a chytrid and oomycete Bates et al. (1998), Hanic et al. (2009), and Scholz (2015) Diatom Coscinodiscus sp. Up to 500 cells L-1, with up to 51% cells infected by Lagenisma coscinodiscii Wetsteyn and Peperzak (1991) Filamentous brown alga Pylaiella littoralis 70% of the population can be infected by Oomycetes and chytrids Marano et al. (2012) Leaf detritus of Rhizophora mangle leaves from Florida Bay 0.17% of the dry weight biomass comprises fungi; roughly 121 dry kg of fungi in leaf detritus, presuming a conservative 712 dry kg/ha of leaves https://www.fws.gov/ verobeach/msrppdfs/ mangroves.pd Newell and Fell (1992) Detritus of Spartina alterniflora 190 kg of fungi per hectare of salt marsh grass Spartina Newell and Porter (2000) Oceanic waters across the Pacific Warm Pool from Hawaii to Australia DNA quantity of Basidiomycota was occasionally 20 to 100% that of bacteria Wang et al. (2014a, b) Upwelling waters of the The Humboldt Current System in the South Pacific Mycelial fungi contribute up to 40 lg C L-1, often rivalling that of bacteria Gutiérrez et al. (2011) Coastal and oceanic water column Subtropical coastal waters of China Yeasts abundant and likely play an important role in DOM utilisation Thraustochytrid biomass ranged from 5.27 to 36.20 lg carbon L-1, ofen equalling that of and bacterioplankton that ranged and 3.38 to 28.65 lg carbon L-1 Fell (2012) Arabian Sea Labyrinthulomycetes contribute up to 27.0 lg C and 1.51 lg N L-1 Raghukumar (2017) 1000 to 3900 m in North Atlantic and Arctic waters Combined biomasses of yeasts, mycelia fungi and Labyrinthulomycetes exceeded that of prokaryotes Bochdansky et al. (2017) Salt marsh grass, Spartina alterniflora along east coast of USA Almost the entire nitrogen in standing, decomposed detritus may be present in the form of fungi and is ingested by the shredder gastropod Littoraria irrorata (salt marsh periwinkle) Newell and Bärlocher (1993) and Bärlocher and Newell (1994) Calanus sinicus during winter in Tosa Bay of Japan A maximum of up to 8% of the sequence compositions in the gut comprised Aplanochytrium kerguelense Hirai et al. (2018) Through biomass build up in detritus Through utilisation of DOM and POM Through growth on marine snow As food for grazers and detritivores Origin of marine fungi. When did they migrate to the sea? It is postulated that the majority of life forms evolved in the sea, but this is unclear as far as fungi are concerned (Minic 2009). Fungi are presumed to have evolved in the Late Proterozoic (900-570 million years ago (MYA)) (Remy et al. 1994, 1995; Taylor et al. 1992, 1994, 1995, 1997, 2004). However, according to protein clock analyses by Heckman et al. (2001), fungi emerged in oceans approximately 1 billion years ago during the Proterozoic era of the Precambrian with deep branches such as the Chytridiomycota (Le Calvez et al. Liu et al. (2017a, b) 2009). It is thus possible that the emergence and initial diversification of fungi occurred in the marine environment (Le Calvez et al. 2009). The earliest possible date when fungi became adapted to freshwater habitation is estimated at 390 MYA (Vijaykrishna et al. 2006). In contrast to this, most of the fungi described from the deep sea have relations to species reported in the terrestrial environment. This indicates that their recent arrival in marine environments might have occurred by either wind or terrestrial runoff (Raghukumar et al. 2010). Alker et al. (2001) and Zuccaro et al. (2004) have also isolated ‘‘so called terrestrial fungi’’ from marine habitats and suggested that they may have evolved to live in marine habitats. Most fungal structures 123 374 have been poorly preserved as fossils. Fungal hyphae have very few unique morphological features and this makes it difficult to establish much of the fossil record for fungi (Berbee and Taylor 1993, 2010; Samarakoon et al. 2016). Marine fungi can be either mycetaen fungi or straminipilan organisms; hence, it is worth to consider the evolutionary origin of the two groups when considering the origin of marine fungi (Raghukumar 2017). The Kingdom Fungi comprises the phyla Chytridiomycota, Neocallimastigomycota, Blastocladiomycota, Glomeromycota, Ascomycota, Mucoromycota and Basidiomycota and the subphyla Kickexellomycotina, Zoopagomycotina Entomophthoromycotina, Mucoromycotina (incertae sedis), which are osmoheterotrophic (Hibbett et al. 2007). Data indicates that the Kingdom Mycetae and the Kingdom Metazoa shared a common ancestor (Baldauf 2003; Adl et al. 2012). The Kingdom Mycetae and its closest relatives, the aphelids, the cryptomycota, and the microsporidia, which are collectively called Holomycota (Lara et al. 2010), are most closely related to nucleariids, a group of single-celled opisthokont amoeboid protists. It represents the basal, earliest diverging branches of Mycetae (Jones et al. 2011; Gleason et al. 2012; James et al. 2013; Karpov et al. 2014). Mycetaean fungi probably evolved from a phagotrophic life style around 760 MYA–1.06 BYA (Gingras et al. 2011; BeraldiCampesi 2013). Sparrow (1960) and Karling (1977) suggested that early fungi may have moved onto ‘‘land’’ by first living in slime of microbes, with mats of streptophyte algae in soil near fresh-water habitats at the edges of rivers or ponds, the current habitat of Rozella, the Chytridiomycota, and Blastocladiomycota. It is believed that fungi with flagellated cells (Chytridiomycota) are the sister group of the remaining phyla of non-flagellated fungi (Mucoromycota, Glomeromycota, Ascomycota and Basidiomycota), indicating a single loss of the flagellum coincident with a shift to land (James et al. 2006). Molecular studies of chytrids are mostly of taxa from freshwater or terrestrial origin (James et al. 2006). There is no thorough evidence yet to show that ancestral chytrids were marine (James et al. 2006). However, recently, Bass et al. (2007) have recovered novel lineages of chytrids from environmental DNA from marine ecosystems and further studies should be conducted to find their phylogenetic relationships with other chytrids. Did bitunicate and unitunicate ascomycetes make the transition to the marine environment about the same time or at different geological times? It is reported that different lineages of ascomycetes and basidiomycetes made independent transitions from terrestrial and freshwater to the marine ecosystem (Spatafora et al. 1998; Vijaykrishna et al. 2006; Jones et al. 2009, 2015; Pang 2012; Chang et al. 2015). Ascomycota were believed to have evolved from 123 Fungal Diversity (2019) 96:347–433 marine red algae (Sachs 1874; Bessey 1950; Chang et al. 2015). Spathulospora was considered to be the earliest, ancient fungus related to Laboulbeniomycetes and to represent the hypothetical ancestor of the ascomycetes (Kohlmeyer 1973a, b). This ‘‘Floridean hypothesis’’ is no longer accepted (Kohlmeyer and Kohlmeyer 1979; Kohlmeyer 1986; Vijaykrishna et al. 2006; Jones et al. 2009) as parasitism is usually considered reductive in evolution because it simplifies the nutritional apparatus of organisms (Demoulin 1974). Beimforde et al. (2014) and PérezOrtega et al. (2016) reported that ascomycetes diverged from basidiomycetes between 512 and 588 MYA ago, with a median value of 533 MYA, which is consistent with other recent studies (Lücking et al. 2009; Berbee and Taylor 2010; Oberwinkler 2012; Hibbett et al. 2014; Hyde et al. 2017). The occurrence of marine ascomycetes as sister clades to terrestrial or freshwater taxa and the number of ascomycete genera containing both terrestrial and freshwater species, along with marine taxa provide evidence for the migration of ascomycetes from land to the marine environment (Vijaykrishna et al. 2006). It also indicates that transition to the marine environment occurred many times and was not a one-off occurrence. Many terrestrial and freshwater genera have marine members, i.e., Mycosphaerella, Passeriniella, Lophiostoma, Massarina, Trematosphaeria, Phaeosphaeria, Leptosphaeria, and Savoryella species (Pinruan et al. 2002, 2007; Vijaykrishna et al. 2006; Jones et al. 2009; Suetrong et al. 2015; Sakayaroj et al. 2011). Sakayaroj et al. (2011) documented that bitunicate and unitunicate ascomycetes may have followed different evolutionary pathways, the former preferably adapting to mangrove environments and the unitunicate forms to oceanic conditions. The transition may have brought about morphological diversity and changes in response to environmental conditions (Spatafora et al. 1998; Vijaykrishna et al. 2006). Recent studies with molecular clock analyses provide divergence time estimates of different marine lineages. The crown node and the stem node age should be taken into consideration when reviewing evidence from the molecular clock. The crown node age is affected by the model selection, species number used in the analysis and number of base pair differences between species (Gueidan et al. 2011; Prieto and Wedin 2013; Beimforde et al. 2014; Pérez-Ortega et al. 2016; Samarakoon et al. 2016; Zhao et al. 2016; Hongsanan et al. 2017; Hyde et al. 2017; Zhao et al. 2016, 2018). In addition, the use of a single fossil for the calibration leads to unpredictable results (Hug and Roger 2007). However, Hug and Roger (2007) suggested that the taxon sampling of the data set is less important for the age estimation. The Sordariomycetes diverged circa 290–380 MYA (Middle Devonian to Late Carboniferous), while Fungal Diversity (2019) 96:347–433 Samarakoon et al. (2019), Beimforde et al. (2014) and Pérez-Ortega et al. (2016) place the crown group as in the Permian (308, 256, 260 MYA, respectively). The subclasses Lulworthiomycetidae, Hypocreomycetidae, Savoryellomycetidae and Xylariomycetidae evolved during the Early Mesozoic (250–290 MYA), while Sordariomycetidae and Diaporthomycetidae originated in the Middle Mesozoic (145–200 MYA) (Hyde et al. 2017; Hongsanan et al. 2017; Dayarathne et al. 2018). Many lineages of marine fungi: Koralionastetales, Lulworthiales and Torpedosporales, comprise only marine taxa (Jones et al. 2015). The orders Koralionastetales and Lulworthiales co-evolved with a divergent age of 289 MYA (Hongsanan et al. 2017) which represents the most basal group. Thirty-five genera (of 58) of the Halosphaeriaceae are monotypic and found only in the marine environment e.g. Kitesporella, Moana, and Ocostaspora (Jones et al. 2015). Halosphaeriaceae species are well-adapted to an aquatic existence with early deliquescing asci and passive release of the ascospores, many of which have ascospore appendages that may aide dispersal and attachment (Jones 1994). The status of the Microascales (including the Halosphaeriaceae) and the marine order Torpedosporales is supported with a divergence time of 170–240 MYA (Hongsanan et al. 2017). Vijaykrishna et al. (2006) showed that Halosphaeriaceae evolved around 100 MYA and this has been confirmed by Dayarathne et al. (2018) e.g. 45–130 MYA. The vast diversity of Halosphaeriaceae suggests a recently evolved group with rapid speciation in response to a new environment. For example, circa 25 Corollospora species that are all marine oceanic species. Spatafora et al. (1998), and Campbell et al. (2003) provided data that the Halosphaeriales are secondary marine ascomycetes, derived from terrestrial ancestors. When considering the divergence of freshwater representatives, the Halosphaeriaceae are therefore secondary aquatic ascomycetes (Vijaykrishna et al. 2006). The divergent time for the marine Tirisporellales is put as 115 MYA with the order closely related to the Pseudovalsaceae in the phylogenetic tree (Hongsanan et al. 2017). Another order with marine, freshwater and terrestrial species is the Savoryellales with a stem age of 140 MYA (Hongsanan et al. 2017; Hyde et al. 2017). Within the Xylariomycetidae, the family Oxydothiaceae has a number of marine/mangrove species and appear to have a more recent divergent time of 115 MYA. No data is available for other marine lineages in the Sordariomycetes. When considering the available divergence time estimates, Koralionastetales and Lulworthiales might be the earliest marine lineages among marine ascomycetes. Bitunicate, marine ascomycetes belonging to the class Dothideomycetes have evolved several times from 375 terrestrial counterparts with many distinct lineages (Suetrong et al. 2009). Phylogenetic analyses of four nuclear genes, namely, the large and small subunits of the nuclear ribosomal RNA, transcription elongation factor 1-alpha, and the second largest RNA polymerase II subunit, established that the ecological group of marine bitunicate ascomycetes has representatives in the orders Capnodiales, Hysteriales, Jahnulales, Mytilinidiales, and Pleosporales (Jones et al. 2009, 2015; Suetrong et al. 2009). Eighteen out of 28 clades of Dothideomycetes have marine representatives, indicating that different lineages of these fungi colonized the sea independently (Liu et al. 2017a, b). The most common among these were the families Aigialaceae, Morosphaeriaceae, Trematosphaeriaceae, and Halojulellaceae. Divergence times (crown age) for most orders of Dothideomycetes (20 out of 32, or 63%) are between 100 and 220 MYA, while divergence for most families (39 out of 55, or 71%) are between 20 and 100 MYA (Liu et al. 2017a, b). Marine ascomycetous and basidiomycetous yeasts are fewer in number than their terrestrial counterparts and colonize a wide range of substrates: sea-grasses, seaweeds, free floating in the sea, sediments, and deep-sea coral (AmIn et al. 2008; Fell et al. 2011; Fell 2012). Divergence times for yeasts such as species of Rhodotorula, Wallemia, Malassezia and Ustilago, range from 250 to 500 MYA, all containing species known from the marine environment (Tedersoo et al. 2018). When they migrated/adapted to the marine milieu remains to be determined (Tables 5, 6). Marine filamentous basidiomycetes occur on mangrove wood or timbers submerged, trapped or floating in the sea (boats, piling, sea defences), seaweeds, and maritime plants (Jones and Fell 2012; Sakayaroj et al. 2012). One of the changes that resulted from the migration from terrestrial to marine aquatic habitats is the reduction in the size of the basidiocarp, e.g. as in Halocyphina villosa and Nia vibrissa (Binder and Hibbett 2001). The other is the production of appendaged basidiospores, as in Nia vibrissa and Digitatispora species (Binder et al. 2006; Jones and Choeyklin 2008). Transformations leading to the evolution of these basidiomycetes probably involved a shift from terrestrial to periodically immersed to fully submerged substrates, loss of ballistospory, and evolution of appendaged spores and an enclosed fruiting body (Binder and Hibbett 2001). However, most of these studies have been conducted with mostly terrestrial representatives rather than those of marine origin, hence, a thorough analysis with all the marine representative fungal taxa is recommended. 123 376 Fungal Diversity (2019) 96:347–433 Table 5 Divergent times for selected marine Sordariomycetes (after Samarakoon et al. 2016; Hongsanan et al. 2017; Hyde et al. 2017, Dayarathne et al. 2018) Class/order/family Divergent time (crown age, MYA) Divergent time (stem age, MYA) Sordariomycetes 320 340 (290–380) Halosphaeriaceae 50–130 170–240 Lulworthiales 100–125 290 Koralionastetales 200 290 Torpedosporales 170–240 165 (130–250) Tirisporellales 110 190 (130–250) Savoryellales 115 140 (130–250) Table 6 Divergent times for selected marine Dothideomycetes (After Liu et al. 2017a, b) Family Divergent time (crown age, MYA) Divergent time (stem age, MYA) Acrocalymmaceae 25 (8–45) 115 (70–155) Aigialaceae 25 (8–45) 115 (70–155 Halojulellaceae 20 (6–35) 150 (110–185) Halottiaceae 55 (20–109) 185 (135–135) Pleosporaceae 50 (25–70) 90 (65–120) Morosphaeriaceae 95 (65–130) 145 (110–180) Salsuginaceae 2 (0–2) 165 (85–180) Testudinaceae 95 (55–140) 150 (100–200) Trematosphaeriaceae 65 (35–90) 90 (60–120) Prospecting for novel chemical structures Endobiotes of marine plants and seaweeds have been a rich source of novel natural products for bioprospecting in medicine, agriculture and industry (Saikkonen et al. 1998; Debbab et al. 2013; Wang et al. 2013; Pang et al. 2016a). Marine fungi gained great interest for their natural product productivity and structural diversity. Researchers have found the same marine fungal species recovered from different locations are able to produce different metabolite profiles but the rate of re-isolation has recently increased. Until 2002, there were 272 newly discovered marine fungal natural products. This number has increased reaching 1120 by the end of 2010, roughly 100 new compounds being discovered on a yearly basis. During 2011 till 2013, the numbers of the new reported marine fungal compounds increased to around 250–300 per year. After 2013, the number of the new compounds increased dramatically to between 420 and 490 in 2014 till 2016, and peaked to a record 540 by the end of 2017 (Fig. 6). This statistical data indicated that the total number of newly discovered marine 123 fungal natural products is approximately 4000 by the end of 2017 and it is increasing again in 2018. In terms of chemical diversity, marine fungi have a proven track of producing metabolites belonging to diverse structural classes of compounds, mainly polyketides, prenylated polyketides, meroterpenoids, terpenoids, peptides including diketopiperazines, alkaloids and other nitrogen-containing metabolites, and few other classes (Rateb and Ebel 2011). This vast diversity is hard to find in nature if compared with other marine organisms, marine bacteria, or plants. To date, the global marine pharmaceutical pipeline consists of seven approved pharmaceuticals, four of which are anticancer drugs. Currently there are about 21 marine natural products or natural productderived compounds in Phase I to Phase III clinical trials, mainly in the area of cancer therapy (Marcel et al. 2016). Despite the large number of new marine fungal-derived metabolites with promising pharmacological activities, only the broad-spectrum antibiotic cephalosporin C can be tracked back as a marine fungal-derived drug which was discovered from the fungus Acremonium chrysogenum collected from the Sardinian coast (Abraham 1979). Another important marine fungal molecule is the diketopiperazine halimide [1] which was initially discovered by Fenical’s group in the 1990s as a tubulin depolymerising agent (Fenical et al. 1998). This molecule served as a lead structure for the closely related synthetic analogue plinabulin (NPI-2358, [2]), Beyond Spring Pharmaceuticals’ lead asset, which is currently in late-stage phase III clinical development for the prevention of chemotherapyinduced neutropenia (CIN) and as an anticancer therapy in non-small cell lung cancer (NSCLC) (https://clinicaltrials. gov/ct2/results?term=plinabulin&pg=1, https://www. The beyondspringpharma.com/en/pipeline/plinabulin/). minor input of fungi from marine habitats as a source of new drug leads is likely attributed to the fact that the chemical investigation of these micro-organisms for bioactive metabolites production was almost neglected till the end of the 1980s. Only 15 secondary metabolites were reported from marine-derived fungi until 1992 (Bugni and Ireland 2004). Herein we highlight a few biologically potent fungal secondary metabolites derived from marine habitats. In the following sections, a few examples of the recently discovered marine fungal natural products that exhibited strong or potent anti-infective or anticancer activities will be discussed. Antiviral marine fungal natural products Chemical investigation of the marine-derived fungus Eurotium rubrum led to the isolation of the prenylated indole diketopiperazine alkaloid neoechinulin B [3] which displayed a strong inhibitory effect against the H1N1 virus Fungal Diversity (2019) 96:347–433 377 Fig. 6 Secondary metabolites of fungi from marine habitats in infected Madin Darby Kidney (MDCK) cells, and also inhibited a panel of amantadine, oseltamivir and ribavirin resistant influenza clinical isolates. The absence of cytotoxic effect in addition to the broad spectrum of action against drug-resistant viral clinical isolates together with the diminished induction of drug resistance indicated the potential use of neoechinulin B to treat clinically resistant viral infections (Chen et al. 2015). The cyclic tetrapeptide asperterrestide A [4] isolated from the gorgonian coralderived fungus Aspergillus terreus SCSGAF0162 contains a rare 3-OH-N-CH3-Phe residue and exhibited an inhibitory effect against the M2-resistant influenza strain A/WSN/33 H1N1 replication in MDCK cells. It also exhibited cytotoxic effect on the human leukemic monocyte lymphoma U937 and acute lymphoblastic leukaemia MOLT-4 cell lines (He et al. 2013). Spiromastilactone D [5] isolated from a deep-sea derived fungus Spiromastix sp. was another potent inhibitor to a panel of amantadine and oseltamivir-resistant influenza virus strains (Niu et al. 2016). The phenylspirodrimane stachybotrin D [6] isolated from the marine sponge-associated fungus Stachybotrys chartarum MXH-X73 inhibited HIV-1 replication through the inhibition of reverse transcriptase without showing any cytotoxicity. Additionally, its assessment indicated similar inhibitory effects on HIV-1 replication of wild and several NNRTI-resistant HIV-1 strains (Ma et al. 2013). Antifungal marine fungal natural products Chemical investigation of the marine-derived fungus Stagonosporopsis cucurbitacearum led to the isolation of a 4-hydroxy-2-pyridone alkaloid didymellamide A [7] which exhibited good antifungal activity against azole-resistant and sensitive Candida albicans, C. glabrata, and Cryptococcus neoformans (Haga et al. 2009). Sclerotide B [8] is a novel cyclic hexapeptide isolated from the marinederived halotolerant Aspergillus sclerotiorum PT06-1 in a nutrient-limited hypersaline medium. It showed strong antifungal activity against C. albicans (Zheng et al. 2009)]. The sesquiterpene penicibilaene B [9] was isolated from Penicillium bilaiae MA-267 derived from the rhizospheric soil of a mangrove plant. It exhibited selective activity against the plant pathogenic fungus Colletotrichum gloeosporioides (Meng et al. 2014). The ergosteroid (22R,23S)-epoxy-3b,11a,14b,16b-tetrahydroxyergosta-5,7dien-12-one [10] isolated from the halotolerant fungus Aspergillus flocculosus PT05-1 obtained from a marine sediment in Fujian Province of China and exhibited good antifungal activity against Candida albicans (Zheng et al. 2013). Chemical investigation of the sponge-derived fungus Penicillium adametzioides AS-53 led to the isolation of the dithiodiketopiperazine derivative peniciadametizine A [11] which exhibited selective antifungal activity against the plant pathogenic fungus Aspergillus brassicae (Liu et al. 2015a). YM-202204 [12] is an antifungal antibiotic isolated from the culture broth of the sponge-derived fungus Phoma sp. Q60596 which showed strong inhibitory effect of the growth of Cryptococcus neoformans and Saccharomyces cerevisiae (Nagai et al. 2002). The alkaloid varioxepine A [13] isolated from the marine algal-derived endophytic fungus Paecilomyces variotii, characterized by a structurally unprecedented condensed 3,6,8-trioxabicyclo[3.2.1]octane motif and exhibited potent inhibitory activity against the plant-pathogenic fungus Fusarium graminearum (Zhang et al. 2014). 123 378 [1] Number in bracket refers in the text to the compound listed above. Antibacterial marine fungal natural products Chemical investigation of the marine mangrove plantderived Penicillium brocae MA-231 led to the isolation of polyoxygenated dihydropyrano[2,3-c]pyrrole-4,5-dione derivative, pyranonigrin A [14] which possess strong antimicrobial activity against a panel of Gram positive and negative bacterial pathogens (Meng et al. 2015). Chemical investigation of the marine sponge-derived fungus Penicillium adametzioides AS-53 resulted in the isolation of the bisthiodiketopiperazine derivative adametizine A [15] which exhibited good inhibitory activity against Staphylococcus aureus, Aeromonas hydrophilia, Vibrio spp., V. harveyi and V. parahaemolyticus (Liu et al. 2015b). Aspergillusene A [16] is a sesquiterpenoid isolated from the sponge-associated fungus Aspergillus sydowii ZSDS1F6 and displayed antimicrobial activities against Klebsiella pneumonia and Aeromonas hydrophila (Wang et al. 2014). The dihydroisocoumarin derivative penicisimpin A [17] isolated from the marine mangrove plant-derived fungus 123 Fungal Diversity (2019) 96:347–433 Penicillium simplicissimum MA-332 and exhibited strong activity against Escherichia coli, P. aeruginosa, Vibrio parahaemolyticus, and V. harveyi (Xu et al. 2016a, b). The pyridone trichodin A [18] was isolated from the marine fungus Trichoderma sp. strain MR106 and possessed moderate antibiotic activities against the Gram-positive B. subtilis, S. epidermidis, and methicillin-resistant S. aureus (MRSA) (Wu et al. 2014). Chromatographic analysis of the marine sponge-derived fungus Aspergillus sp. yielded unusual tryptophan-derived alkaloid, 3-((1-hydroxy-3-(2methylbut-3-en-2-yl)-2-oxoindolin-3-yl)methyl)-1-methyl3,4-dihydrobenzo[e][1,4]diazepine-2,5-dione [19] which selectively inhibited a panel of Vibrio species (Zhou et al. 2014). Diaporthalasin [20], a pentacyclic cytochalasin isolated from the marine-derived fungus Diaporthaceae sp. PSU-SP2/4 and displayed significant antibacterial activity against both S. aureus and MRSA (Khamthong et al. 2014). Chromatographic fractionation of the EtOAc extract from the culture of the white croaker (Genyonemus lineatus)derived Curvularia sp. IFB-Z10 gave a dinitrogenated alkaloid curvulamine [21] which exhibited strong antibacterial against a panel of patients-derived pathogens (Han et al. 2014). The aminolipopeptide trichoderin A [22] Fungal Diversity (2019) 96:347–433 379 isolated from the marine sponge-derived Trichoderma sp. exhibited potent anti-mycobacterial activity against M. smegmatis, M. bovis BCG, and Mycobacterium tuberculosis H37Rv under standard aerobic growth conditions as well as dormancy-inducing hypoxic conditions (Pruksakorn et al. 2010). in vitro cytotoxicity against a panel of human cancer cell lines (Chen et al. 2016). Chemical investigation of the marine-derived fungus Aspergillus ochraceus Jcma1F17 led to the isolation of 6b,9a-dihydroxy-14-p-nitrobenzoylcinnamolide [26], a metabolite that belongs to the rare nitrobenzoyl sesquiterpenoid class. It displayed significant A study by Soowannayan et al. (2019) demonstrated that the cell-free culture broths of Thai obligate marine fungi inhibited the growth and biofilm formation of Vibrio species. The most potent marine fungal strain identified as Oceanitis cincinnatula showed that it can protect shrimp against acute hepatopancreatic necrosis disease (AHPND). The results suggested that this obligate marine fungus may contain a substance(s) that did not inhibit the growth of pathogenic Vibrio bacteria and could potentially be used as shrimp feed supplement to protect shrimp against AHPND, possibly by inhibiting biofilm formation in the shrimp stomach. cytotoxicity against 10 cancer cell lines (Fang et al. 2014). Genome mining of the fungus Mucor irregularis QEN-189 isolated from fresh inner tissue of a marine mangrove plant resulted in the discovery of 20 structurally diverse complex indole-diterpenes compounds. Among them, rhizovarin B [27], showed good activity against the human A-549 and HL-60 cancer cell lines (Gao et al. 2016a). A novel oxaphenalenone, penicimutalidine [28], was isolated from the diethyl sulfate mutagenesis of the marine-derived Penicillium purpurogenum G59. Its inhibitory effects were stronger than that of the positive control 5-FU (5-Fuorouracil) on the same HL-60 cancer cells (Li et al. 2016). Pestalotioprolides E and F [29&30], are 14-membered macrolides isolated from the mangrove-derived endophytic fungus Pestalotiopsis microspora. Both compounds showed significant cytotoxicity against the murine lymphoma cell line L5178Y while compound [29] showed potent activity against the human ovarian cancer cell line A2780 (Liu et al. 2016). The diketopiperazine brocazine G [31] was characterized from the mangrove-derived Penicillium brocae MA-231. It exhibited potent cytotoxicity against both sensitive and cisplatin-resistant human ovarian cancer cells A2780 and A2780, respectively, and showed significantly stronger effect than that of the positive control cisplatin on both cell lines (Meng et al. 2016). Chemical analysis of a marine-derived fungus Chaunopycnis sp. (CMB-MF028) yielded the pyridinone derivative chaunolidone A [32] which was a selective and potent inhibitor of human non-small cell lung carcinoma cells (NCI-H460) Anticancer marine fungal natural products Bio-guided isolation of the deep-sea derived fungus Acaromyces ingoldii FS121 led to the isolation of a new naphtha-[2,3-b]pyrandione analogue acaromycin A [23] which exhibited potent in vitro growth inhibitory activities against four tumour cell lines (MCF-7, NCI-H460, SF-268 and HepG-2) comparable to the positive control cisplatin (Gao et al. 2016b). Chemical investigation of the bioactive extract of the marine sponge-derived fungus Stachylidium sp. led to the isolation of phthalimidine derivative mariline A1 [24] which was a potent inhibitor of human leukocyte elastase (Almeida et al. 2012). Chloropreussomerin A [25] obtained from the mangrove plant-derived endophyte Lasiodiplodia theobromae ZJ-HQ1 was the first chlorinated metabolite in the preussomerins family and showed potent 123 380 Fungal Diversity (2019) 96:347–433 (Shang et al. 2015). Cytochalasin K [33] isolated from the marine sponge-derived fungus Arthrinium arundinis ZSDS1-F3 exhibited strong cytotoxicity against a panel of human cancer cell lines (Wang et al. 2015). The chromone engyodontiumone H [34] was isolated from the deep-seaderived fungus Engyodontium album DFFSCS021 and showed significant selective cytotoxicity against the human histiocytic lymphoma U937 cell line (Yao et al. 2014). Chromosulfine [35] is a novel cyclopentachromone sulphide isolated from a neomycin-resistant mutant of the marine-derived fungus Penicillium purpurogenum G59 and could not be traced in the original strain. It showed good cytotoxic effect against a panel of cancer cell lines (Yi et al. 2016). over plastic in our seas and oceans has attracted much media attention. Do marine fungi have the potential in its breakdown! Mycelial adhesion by marine fungi to surfaces has been demonstrated by Hyde et al. (1986) while a number have been shown to colonise and degrade polyurethane panels exposed off the French coast (Jones and Le Campion-Alsumard 1970). Marine fungi are extremely versatile as studies on their pharmaceutical applications have been demonstrated above, and also their role in the decomposition of materials in the sea and the food web of the oceans (Sridhar 2012). However, they play a vital role in other biological fields, such as bioremediation, production of biosurfactants for different uses, industrial enzymes, pigments and dyes (Velmurugan and Lee 2012; Pang et al. 2016a). Their potential for industrial application has only recently been addressed (Jones et al. 2015) or as Carter and Berman (2016) opine ‘‘Has industry missed the boat’’. While marine Labyrinthulomycetes have been studied as a source of omega-3-polyunstaurated fatty acids and potential use in fish food (Jaritkhuan et al. 1998; Pang et al. 2016a, b). The use of filamentous fungi and yeasts as animal feed has largely gone unexplored. Currently the worlds concern Jones 2011a). Although Sutherland (1915a, b, c, 1916a, b) made a significant contribution to marine fungi on seaweeds, it was the paper by Barghoorn and Linder (1944) that probably influenced the development and study of this ecological group of fungi. The period 1960–1990 was the most intense time for the description of marine fungi, especially those found on mangrove substrates (Kohlmeyer 1966; Hyde and Jones 1988). Documentation of marine fungi has grown steadily from 100 species (circa 1960) to 1181 (2015) and new taxa continue to be introduced (1255 in 2018) (Jones et al. 2015; www.marinefungi.org). Over the past century techniques for their study has changed dramatically especially the introduction of sequencing methods and the application of high-throughput sequencing and next generation sequencing techniques. These have enabled a more natural classification of marine fungi and 123 Conclusion Marine mycology can be considered to have come of age with over 150 years documenting the occurrence and distribution of marine fungi (Desmazieres 1849; Meyers 1996; Fungal Diversity (2019) 96:347–433 the discovery of taxa whose morphology has yet to be established. Progress has been made in determining their ecological role in a number of habitats, their physiological requirements, and interactions in the colonization of substrates in the sea. Marine fungi have yielded an array of interesting secondary metabolies, some in advance stage of clearance. Some taxonomical groups require more intense study especially the Chytridiomycota and their role in the colonization of planktonic organisms. It is hoped that greater interaction between their study by traditional means and by high through put sequencing can be established to enable a better understanding of the global diversity of marine fungi. Acknowledgements Gareth Jones is supported under the Distinguished Scientist Fellowship Program (DSFP), King Saud University, Kingdom of Saudi Arabia. Ka-Lai Pang thanks the Ministry of Science and Technology, Taiwan, for financial support (105-2621-B-019 -002-). Kevin D. Hyde, Monika C. Dayarathne, Vinit Kumar and Chada Norphanphoun would like to thank the Thailand Research Fund grant entitled ‘‘Biodiversity, Phylogeny and role of fungal endobiotes on above parts of Rhizophora apiculata and Nypa fruticans’’ (grant no RSA5980068) and Mae Fah Luang University for the grant ‘‘Diseases of mangrove trees and maintenance of good forestry practice’’ (grant number: 60201000201) for support. Monika Dayarathne would like to acknowledge Dr. Wasana de Silva for her help in preparation of maps. Appendix List of marine fungi logged in the marine fungi website Taxa with the prefix * are asexual morphs whose sexual stage is unknown; # indicates molecular data available for these fungi. Taxa in underline text are new taxa in press. Phylum: BASIDIOMYCOTA Subphylum: Ustilaginomycotina Class: Ustilaginomycetes R. Bauer, Oberw. & Vnky, Can. J. Bot. 75: 1311 (1997) Subclass: Ustilaginomycetidae Jlich, Bibliotheca Mycologica 85: 54 (1981) 1. UROCYSTIDALES R. Bauer & Oberw., Can. J. Bot. 75 (8): 1311 (1997) Urocystidaceae Begerow, R. Bauer & Oberw., Can. J. Bot. 75(12): 2052 (1998) Flamingomyces R. Bauer, M. Lutz, Pia˛tek, Vánky & Oberw., Mycol. Res. 111(10): 1202 (2007) 1. #F. ruppiae (Feldmann) R. Bauer, M. Lutz, Pitek, Vnky & Oberw., Mycol. Res. 111(10): 1203 (2007) 2. USTILAGINALES G. Winter, Rab Kryptog-Flora, Pilze - Schizomyceten, Saccharomyceten und Basidiomyceten 1(1): 73 (1880) 381 Ustilaginaceae Tul. & C. Tul., Annls Sci. Nat., Bot., sr. 3 7: 14 (1847) Parvulago R. Bauer, M. Lutz, Pia˛tek, Vnky & Oberw., Mycol. Res. 111(10): 1203 (2007) 1. #P. marina (Durieu) R. Bauer, M. Lutz, Pia˛tek, Vnky & Oberw., Mycol. Res. 111(10): 1203 (2007) Class: Exobasidiomycetes Begerow, M. Stoll, R. Bauer, Mycologia 98(6): 908 (2006) Subclass: Exobasidiomycetidae Jlich, Bibliotheca Mycologica 85: 55 (1981) 1. EXOBASIDIALES Henn. (1900) Graphiolaceae Clem. & Shear, The genera of Fungi: 156 (1931) Family incertae sedis Graphiola Poit., Ann Sci Nat (Paris) 3: 473 (1824) 1. G. cylindrica Kobayasi, Nagaoa 1: 36 (1952) Exobasidiomycetidae incertae sedis Tilletiopsis Derx, Bull Jardin Bot Buitenzorg 17: 471 (1948) 1. #T. albescens Gokhale, Nova Hedwigia 23: 801 (1972) Subphylum: Pucciniomycotina Class: Tritirachiomycetes incertae sedis 1. TRITIRACHIALES Aime & Schell, Mycologia 103 (6): 1339 (2011) Tritirachiaceae Locq., Mycol Gén Struct (Paris): 208 (1984) Tritirachium Limber, Mycologia 32: 26 (1940) 1. T. candoliense Cathrine Sumathi Manohar, Teun Boekhout & Thorsten Stoeck, Fung Biol 118(2): 143 (2014) (marine sediments, Manohar et al. 2014) Subphylum: Agaricomycotina Class: Agaricomycetes Doweld, Prosyllabus Tracheophytorum, Tentamen systematis plantarum vascularium (Tracheophyta): LXXVII (2001) Subclass: Agaricomycetidae Parmasto, Windahlia 16: 16 (1986) 1. AGARICALES Underw., Moulds, mildews and mushrooms: 97 (1899) Niaceae Jülich, Bibliotheca Mycologica 85: 381 (1981) Calathella D.A. Reid, Persoonia 3: 122 (1964) 1. #C. mangrovei E.B.G. Jones & Agerer, Bot. Mar. 35: 259 (1992) Halocyphina Kohlm. & E. Kohlm., Nova Hedwigia 9: 100 (1965) 1. #H. villosa Kohlm. & E. Kohlm., Nova Hedwigia 9: 100 (1965) Nia R.T. Moore & Meyers, Mycologia 51(6): 874 (1961) 1. N. epidermoidea M.A. Rosell & Descals, Mycol. Res. 97(1): 68 (1993) 2. N. globospora Barata & Basilio, Mycol. Res. 101(6): 687 (1997) 123 382 3. #N. vibrissa R.T. Moore & Meyers, Mycologia 51(6): 874 (1961) 2. CANTHARELLALES Gum., Vergl. Morph. Biol. Pilze (Leipzig): 495 (1926) Botryobasidiaceae (Parmasto) Jlich, Biblthca Mycol. 85: 357 (1981) *Allescheriella Henn., Hedwigia 36: 244 (1897) 1. A. bathygena Kohlm., Revue Mycol., Paris 41(2): 199 (1977) Physalacriaceae Corner, Beihefte zur Nova Hedwigia 33: 10 (1970) Physalacria Peck, Bull. Torrey Bot. Club 9: 2 (1882) 1. #P. maipoensis Inderb. & Desjardin, Mycologia 91(4): 666 (1999) Mycaureola Maire & Chemin, C R Sanc. Acad. Sci., Paris 175: 321 (1922) 1. #M. dilseae Maire & Chemin., C R Sanc. Acad. Sci., Paris 175: 321 (1922) Schizophyllaceae Qul, Fl. Mycol. France: 365 (1888) Henningsomyces Kuntze, Revis. gen. pl. (Leipzig) 3(2): 483 (1898) 1. H. candidus cf (Pers.) Kuntze, Revis. gen. pl. (Leipzig) 3(2): 483 (1898) Schizophyllum Fr., [as ‘Schizophyllus’], Observ. Mycol. 1: 103 (1815) 1. #S. commune Fr., Syst. Mycol. 1: 330 (1821) 3. POLYPORALES Gum., Vergl Morphol Pilze: 503 (1926) Meruliaceae Rea, British Basidiomycertae: A handbook to the larger British fungi: 620 (1922) Hyphoderma Wallr., Fl. Crypt. Germ. 2: 576 (1833) 1. H. sambuci (Pers.) Jlich, Persoonia 8(1): 80 (1974) Polyporaceae Corda, Icon Fung hucusques cognitoru 3: 49 (1839) Grammothele Berk. & M.A. Curtis, J. Linn. Soc. Bot. 10: 327 (1869) 1. G. fuligo (Berk. & Broome) Ryvarden, Trans. Br. Mycol. Soc. 73: 15 (1979) Cerrena Gray, A natural arrangement of British plants 1: 649 (1821) 1. C. unicolor (Bull.) Murrill, J Mycol. 9(2): 91 (1903) 4. HYMENCHAETALES Oberw., Beitrge zur Biologie der niederen Pflanzen: 89 (1977) Hymenochaetaceae Donk, Bull. bot. Gdns Buitenz. 17(4): 474 (1948) Fulvifomes Murrill, North Polyp (5): 49 (1914) 1. #F. halophilus T. Hatt., Sakay. & E.B.G. Jones, Mycoscience 55: 347 (2014) 123 Fungal Diversity (2019) 96:347–433 2. #F. siamensis T. Hatt., Sakay. & E.B.G. Jones, Mycoscience 55: 346 (2014) 3. #F. xylocarpicola T. Hatt., Sakay. & E.B.G. Jones (2014), Mycoscience 55: 345 (2014) Agaricomycetes incertae sedis 1. RUSSULALES Kreisel ex P.M. Kirk, P.F. Cannon & J.C. David, Ainsworth & Bisby’s Dictionary of the Fungi, Edn 9 (Wallingford): xi (2001) Digitatispora clade Digitatispora Doguet, C. r. hebd. Sanc. Acad. Sci., Paris 254(25): 4338 (1962) 1. D. lignicola E.B.G. Jones, Mycotaxon 27: 155 (1986) 2. #D. marina Doguet, C. r. hebd. Sanc. Acad. Sci., Paris 254(25): 4338 (1962) Peniophoraceae Lotsy, Vortr. Bot. Stammesgesch. 1: 687, 689 (1907) Haloaleurodiscus N. Maek., Suhara & K. Kinjo, Mycol. Res. 109(7): 826 (2005) 1. #H. mangrovei N. Maek., Suhara & K. Kinjo, Mycol. Res. 109(7): 827 (2005) Phylum: ASCOMYCOTA Subphylum: Pezizomycotina Class: Dothideomycetes E. Erikss. & Winka, Myconet 1: 5 (1997) Subclass: Dothideomycetidae P.M. Kirk, P.F. Cannon, J.C. David & Stalpers ex C.L. Schoch, Spatafora, Crous & Shoemaker, Mycologia 98 (6): 1045 (2007) 1. CAPNODIALES Woron., Annales Mycologici 23: 177 (1925) Cladosporiaceae Chalm. & R.G. Archibald, The Yearbook of Tropical Medicine and Hygiene 1: 25 (1915) *Cladosporium Link, MagGesell Naturf Freunde Berlin 7: 37 (1816) 1. #C. cladosporioides (Fresen.) G.A. de Vries, Contrib. Knowledge of the Genus Cladosporium Link ex Fries: 57 (1952) 2. C. herbarum (Pers.) Link, in Willdenow, Mag. Gesell. Naturf. Freunde, Berlin 8: 37 (1816) 3. C. macrocarpum Preuss, Deutschlands Flora, Abt. III. Die Pilze Deutschlands 6-25/26: 27, t. 14 (1848) 4. #C. oxysporum Berk. & M.A. Curtis, Bot. J. Linn. Soc. 10: 362 (1869) 5. C. pseudocladosporioides Bensch, Crous & U. Braun, Studies in Mycology 67: 71 (2010) 6. C. psoraleae M.B. Ellis, Mycol Pap 131: 16 (1972) 7. #C. sphaerospermum Penz., Michelia 2(8): 473 (1882) 8. #C. tenuissimum Cooke, Grevillea 6(40): 140 (1878) 9. #C. uredinicola Speg., Anal. Mus. Nac. Hist. Nat. B. Aires 23: 122 (1912) Fungal Diversity (2019) 96:347–433 Mycosphaerellaceae Lindau, in Engler & Prantl, Nat. Pflanzenfam. Teil. 1 (Leipzig) 1: 421 (1897) *Davidiella Crous & U. Braun, Mycol. Progr. 2 (1): 8 (2003) 1. #D. tassiana (De Not.) Crous & U. Braun, in Braun, Crous, Dugan & de Hoog, Mycol. Progr. 2(1): 8 (2003) Mycosphaerella Johanson, fvers. K. Svensk. Vetensk.Akad. Frhandl. 41: 163 (1884) 1. M. punctiformis (Pers.) Starbäck, Bihang till Kungliga svenska Vetenskaps-Akademiens Handlingar 15 (2): 9 (1889) 2. M. salicorniae (Rabenh.) Lindau, Hilfsb Sammeln Ascomyc. 2: 103 (1903) 3. M. staticicola (Pat.) Dias, Mem. Soc. Brot.: 21 (1970) 4. M. suaedae-australis Hansf., Proc Linn Soc New South Wales 79(3–4): 122 (1954) 5. M. tassiana (De Not.) Johanson, Öfvers. K. Vetensk. Akad. Förh. 41 (9): 167 (1884) Pseudocercosporella Deighton, Mycological Papers 133: 38 (1973) 1. P. fraxini (Ellis & Kellerm.) U. Braun, Nova Hedwigia 58 (1–2): 212 (1994) *Ramichloridium Stahel ex de Hoog, Stud. Mycol. 15: 59 (1977) 1. #R. apiculatum (J.H. Mill., Giddens & A.A. Foster) de Hoog, Stud. Mycol. 15: 69 (1977) Septoria Sacc., Sylloge Fungorum 3: 474 (1884) 1. S. arundinacea Sacc., Michelia 1 (2): 195 (1878) Capnodiales, Mycosphaerellaceae, 2. S. ascophylli Melnik & J.E. Petrov, Novosti Sistematiki Nizshikh Rastenii 3: 211 (1966) Sphaerulina Sacc., Michelia 1(4): 399 (1878) 1. S. albispiculata Tubaki, Publs. Setomar. Biol. Lab. 15(5): 366 (1967) 2. S. orae-maris Linder, Farlowia 1(3): 413 (1944) Pharcidia Krb., Parerga Lichenol. 5: 469 (1865) 1. P. balani (G. Winter) Bausch, Publ. Stn. Zool. Napoli 15: 379 ((1936) 2. P. laminariicola Kohlm., Bot. Mar. 16: 209 (1973) 3. P. rhachiana Kohlm., Bot. Mar. 16: 210 (1973) *Rhabdospora (Durieu & Mont. ex Sacc.) Sacc., Syll. Fung. 3: 578 (1884) 1. R. avicenniae Kohlm. & E. Kohlm., Mycologia 63(4): 851 (1971) 269 (2006) Capnodiales incertae sedis Stigmidium Trevis., Conspect. Verruc.: 17 (1860) 1. S. ascophylli (Cotton) Aptroot, CBS Diversity Ser. (Utrecht) 5: 41 (2006) 2. S. apophlaeae (Kohlm.) Aptroot, CBS Diversity Ser. (Utrecht) 5: 36 (2006) Teratosphaeriaceae Crous & U. Braun, Studies in Mycology 58: 8 (2007) Acrodontium de Hoog, Studies in Mycology 1: 23 (1972) 1. A. hydnicola (Peck) de Hoog, Studies in Mycology 1: 31 (1972) 383 2. A. salmoneum de Hoog, Studies in Mycology 1: 29 (1972) 2. DOTHIDEALES Lindau, Natrl Pflanzenfam.: 373 (1897) Dothideaceae Chevall., Fl. gn. env. Paris 1: 446 (1826) Scirrhia Nitschke ex Fuckel, Jb Nassau Ver Naturk 23-24: 220 (1870) 1. S. annulata Kohlm., Volkm.-Kohlm. & O.E. Erikss., Can. J. Bot. 74(11): 1835 (1996) Dothioraceae Theiss. & P. Syd., Annales Mycologici 15 (6): 444 (1918) Aureobasidium Viala & G. Boyer, Revue Gn Bot 3: 371 (1891) 1. A. pullulans (de Bary & Lwenthal) G. Arnaud, Annals d’cole Nat d’Agric. de Montpellier, Sr 2 16(1–4): 39 (1918) [1917] 3. BOTRYOSPHAERIALES C.L. Schoch, Crous & Shoemaker, Mycologia 98(6): 1050 (2007) Botryosphaeriaceae Theiss. & Syd., Annls Mycol 16:16 (1918) Amarenomyces O.E. Erikss., Opera Bot. 60: 124 (1981) 1. A. ammophilae (Lasch) O.E. Erikss., Opera Bot. 60: 124 (1981) *Diplodia Fr., in Montagne, Annls. Sci. Nat. Bot. 1: 302 (1834) 1. D. orae-maris Linder, Farlowia 1(3): 403 (1944) 2. D. thalassia N.J. Artemczuk, Mikol. Fitopatol.: 95 (1980) *Lasiodiplodia Ellis & Everh., Bot. Gazette Crawfordsville 21: 92 (1896) 1. #L. theobromae (Pat.) Griffon & Maubl., Bull. Soc. Mycol. Fr. 25: 57 (1909) Phyllostictaceae Fr. [as ‘Phyllostictei’], Summa veg. Scand. (Stockholm) 2: 420 (1849) *Phyllosticta Pers., Trait sur les Champignons Comestibles: 147 (1818) 1. Ph. spartinae Brunaud, J. Hist. Nat. Bordeaux sud-ouest: 4 (1888) 4. MICROTHYRIALES G. Arnaud, Annal. Sci. Nat. Paris: 847 (1925) Microthyriaceae Sacc., Syll. Fung. 2: 658 (1883) Ellisiodothis Theiss., Annls. Mycol. 12(1): 73 (1914) 1. E. inquinans (Ellis & Everh.) Theiss., Annls Mycol 12(1): 73 (1914) Subclass: Pleosporomycetidae C.L. Schoch, Spatafora, Crous & Shoemaker, Mycologia 98 (6): 1048 (2007) 1. PLEOSPORALES Luttr. ex M.E. Barr, Prodromus to class Loculoascomycetes: 67 (1987) 123 384 Ascocylindricaceae Abdel-Wahab, Bahkali, E.B.G. Jones, Ariyawansa & K.D. Hyde, Fungal Divers. 75: 19 (2015) Ascocylindrica Abdel-Wahab, Bahkali & E.B.G. Jones, Fungal Divers. 75: 45 (2015) 1. #A. marina Abdel-Wahab, Bahkali & E.B.G. Jones, Fungal Divers. 75: 20 (2015) Aigialaceae Suetrong, Sakay., E.B.G. Jones Kohlm., Volkm.-Kohlm. & C.L. Scoch, Stud. Mycol. 64: 166 (2009) Aigialus Kohlm. & Schatz, Trans. Br. Mycol. Soc. 85: 699 (1985) 1. #A. grandis Kohlm. & S. Schatz, Trans. Br. Mycol. Soc. 85(4): 699 (1986) 2. #A. mangrovis Borse, Trans. Br. Mycol. Soc. 88: 424 (1987) 3. #A. parvus S. Schatz & Kohlm., Trans. Br. Mycol. Soc. 85(4): 704 (1986) 4. #A. rhizophorae Borse, Trans. Br. Mycol. Soc. 88: 425 (1987) 5. A. striatispora K.D. Hyde, Mycol. Res. 96: 1044 (1992) Ascocratera Kohlm., Can. J. Bot. 64: 3036 (1986) 1. #A. manglicola Kohlm., Can. J. Bot. 64: 3036 (1986) Rimora Kohlm., Volkm.-Kohlm., Suetrong, Sakay., E.B.G. Jones, Stud. Mycol. 64: 166 (2009) 1. #R. mangrovei (Kohlm. & Vittal) Kohlm., Volkm.Kohlm., Suetrong, Sakay. & E.B.G. Jones, Stud. Mycol. 64: 166 (2009) Amniculicolaceae Y. Zhang ter, C.L. Schoch, J. Fourn., Crous & K.D. Hyde, Stud. Mycol. 64: 95 (2009) Neomassariosphaeria Y. Zhang, J. Fourn. & K.D. Hyde, Stud. Mycol. 64: 96 (2009) 1. #N. typhicola (P. Karst.) Y. Zhang, J. Fourn. & K.D. Hyde, Stud. Mycol. 64: 96 (2009) Astrosphaeriellaceae Phook. & K.D. Hyde, Fungal Diversity 74: 161 (2015) Astrosphaeriella Syd. & P. Syd., Annls. Mycol. 11: 260 (1913) 1. A. asiana (K.D. Hyde) Aptroot & K.D. Hyde, Nova Hedwigia 70(1–2): 145 (2000) 2. A. mangrovei (Kohlm. & Vittal) Aptroot & K.D. Hyde, Nova Hedwigia 70(1–2): 154 (2000) 3. A. nypae K.D. Hyde, J. Linn. Soc. Bot. 110(2): 96 (1992) *Pithomyces Berk. & Broome, Bot. J. Linn. Soc. 14: 100 (1873) 1. #P. atro-olivaceus (Cooke & Harkn.) M.B. Ellis, Mycol. Pap. 76: 8 (1960) Biatriosporaceae K.D. Hyde, Fungal Divers. 63: 50 (2013) Biatriospora K.D. Hyde & Borse, Mycotaxon 26: 263 (1986) 1. #B. marina K.D. Hyde & Borse, Mycotaxon 26: 264 (1986) Caryosporaceae Huang Zhang, K.D. Hyde & Ariyaw., Fungal Diversity 75: 54 (2015) Caryospora De Not., Micromyc. Ital. Novi: 7 (1855) 123 Fungal Diversity (2019) 96:347–433 1. C. australiensis Abdel-Wahab & E.B.G. Jones, Mycoscience 41(4): 379 (2000) Coniothyriaceae W.B. Cooke, Revta Biol. Lisb. 12: 289 (1983) *Coniothyrium Corda, Icon. Fung. hucusque cognitorum 4: 38 (1840) 1. C. cerealis E. Mll., in Zogg, Phytopath. Z. 18: 11 (1951) 2. C. obiones Jaap, Schr. Naturw. Ver. Schles.-Holst. 14(1): 29 (1907) Cucurbitariaceae G. Winter, Rabenhorst’s KryptogamenFlora, Pilze - Ascomyceten 1(2): 308 (1885) Neocucurbitaria Wanas., E.B.G. Jones & K.D. Hyde, Mycosphere 8 (4): 408 (2017) 1. #N. aquatica Valenz.-Lopez, Crous, Stchigel, Guarro & J.F. Cano, Studies in Mycology 90: 45 (2017) Cyclothyriellaceae Jaklitsch & Voglmayr, Studies in Mycology 85: 39 (2016) Massariosphaeria (E. Mll.) Crivelli, ber die heterogene Ascomyceten gattung Pleospora Rabh.: 141 (1983) 1. M. erucacea Kohlm., Volkm.-Kohlm. & O.E. Erikss., Can. J. Bot. 74(11): 1835 (1996) 2. M. phaeospora (E. Müll.) Crivelli, Über die heterogene Ascomycetengattung Pleospora Rabh.: 141 (1983) 3. M. scirpina (G. Winter) Leuchtm., Sydowia 37: 174 (1984) Quintaria Kohlm. & Volkm.-Kohlm., Bot. Mar. 34: 34 (1991) 1. #Q. lignatilis (Kohlm.) Kohlm. & Volkm.-Kohlm., Bot. Mar. 34: 35 (1991) Dictyosporiaceae Boonmee & K.D. Hyde, Fungal Diversity 80: 462 (2016) Dictyosporium Corda, Beiträge zur gesammten Natur- und Heilwissenschaften: 87 (1836) 1. #D. oblongum (Fuckel) S. Hughes, Canadian Journal of Botany 36 (6): 762 (1958) 2. D. pelagicum (Linder) G.C. Hughes ex T.W. Johnson & F.K. Sparrow, 1961. Fungi in Oceans and Estuaries, Cramer, p. 391. Jalapriya D’souza, H.Y. Su, Z. Luo & K.D. Hyde, Fungal Diversity 80: 476 (2016) 1. #J. inflata (Matsush.) D’souza, H.Y. Su, Z. Luo & K.D. Hyde, Fungal Diversity 80: 478 (2016) 2. #J. toruloides (Corda) D’souza, H.Y. Su, Z. Luo & K.D. Hyde, Fungal Diversity 80: 478 (2016) Didymosphaeriaceae Munk, Dansk Bot. Ark. 15(2): 128 (1953) Deniquelata Ariyawansa & K.D. Hyde, Phytotaxa 105 (1): 15 (2013) 1.#D. vittalii Devadatha, V.V Sarma, E.B.G Jones, Mycosphere 9 (3): 570 (2018) https://doi.org/10.5943/mycosphere/9/3/8 Didymocrea Kowalski, Mycologia 57(3): 405 (1965) 1. #D. sadasivanii (T.K.R. Reddy) Kowalski, Mycologia 57(3): 405 (1965 Fungal Diversity (2019) 96:347–433 Didymosphaeria Fuckel, Jahrb. Nassau. Ver. Naturkd. 35: 140 (1870) 1. D. lignomaris Strongman & J.D. Mill., Proc. Nova Scotian Inst. Sci. 35(3–4): 102 (1986) Paraconiothyrium Verkley, Studies in Mycology 50 (2): 327 (2004) 1. P. fuckelii (Sacc.) Verkley & Gruyter, Studies in Mycology 75: 25 (2012) Pseudopithomyces Ariyaw. & K.D. Hyde, Fungal Diversity 75: 64 (2015) 1. #P. maydicus (Sacc.) J.F. Li, Ariyaw. & K.D. Hyde, Fungal Diversity 75: 69 (2015) Tremateia Kohlm., Volkm.-Kohlm. & O.E. Erikss., Bot. Mar. 38(2): 165 (1995) 1. #T. halophila Kohlm., Volkm.-Kohlm. & O.E. Erikss., Bot. Mar. 38(2): 166 (1995) Didymellaceae Gruyter, Aveskamp & Verkley, Mycol. Res. 113(4): 516 (2009) Ascochyta Lib., Pl Crypt: 8 (1830) 1. A. salicorniae Magnus, in Jaap, Schr. Naturw. Ver. Schles.-Holst. 12: 30 (1902) Boeremia Aveskamp, Gruyter & Verkley, Stud Mycol 65: 36 (2010) 1. B. exigua (Desm.) Aveskamp, Gruyter & Verkley, Stud Mycol 65: 37 (2010) Didymella Sacc., Michelia 2 (6): 57 (1880) 1. D. avicenniae S.D. Patil & Borse, Trans. Mycol. Soc. Jpn. 26(3): 271 (1985) 2. D. fucicola (G.K. Sutherl.) Kohlm., Phytopath. Z. 63: 342 (1968) 3. D. gloiopeltidis (Miyabe & Tokida) Kohlm. & E. Kohlm., Marine Mycology, the Higher Fungi (London): 382 (1979) 4. D. magnei Feldmann, Rev. Gn. Bot. 65: 414 (1958) Leptosphaerulina McAlpine, Fungus diseases of stonefruit trees in Australia: 103 (1902) 1. L. mangrovei Inderb. & E.B.G. Jones, in Inderbitzin, Jones & Vrijmoed, Mycoscience 41(3): 233 (2000) Halojulellaceae Ariyawansam, E.B.G. Jones, Suetrong, Alias, Kang & K.D. Hyde, Phytotaxa 130: 18 (2013) Halojulella Suetrong, K.D. Hyde & E.B.G. Jones, Phytotaxa 130: 18 (2013) 1. #H. avicenniae (Borse) Suetrong, K.D. Hyde & E.B.G. Jones, Phytotaxa 130: 19 (2013) Julella Fabre, Annales des Sciences Naturelles Botanique 9: 113 (1879) 1. J. herbatilis Kohlm., Volkm.-Kohlm. & O.E. Erikss., Bot. Mar. 40: 296 (1997) Halotthiaceae Y. Zhang, J. Fourn. & K.D. Hyde, Mycologia 105(3): 604 (2013) Halotthia Kohlm., Nova Hedwigia 6: 9 (1963) 1. #H. posidoniae (Durieu & Mont.) Kohlm., Nova Hedwigia 6: 9 (1963) 385 Mauritiana Poonyth, K.D. Hyde, Aptroot & Peerally, Fungal Divers. 4: 102 (2000) 1. #M. rhizophorae Poonyth, K.D. Hyde, Aptroot & Peerally, Fungal Divers. 4: 102 (2000) Pontoporeia Kohlm., Nova Hedwigia 6: 5 (1963) 1. #P. biturbinata (Durieu & Mont.) Kohlm., Nova Hedwigia 6: 5 (1963) 2. #P. mangrovei Devadatha, V.V Sarma, CREAM 8(2): 239 (2018). Leptosphaeriaceae M.E. Barr, Mycotaxon 29: 503 (1987) Leptosphaeria Ces. & De Not., Comment Soc Crittogam Ital 1(4): 234 (1863) 1. L. australiensis (Cribb & J.W. Cribb) G.C. Hughes, Syesis 2: 132 (1969) 2. L. avicenniae Kohlm. & E. Kohlm., Nova Hedwigia 9(1–4): 98 (1965) 3. L. maculans (Tul.) Ces. & De Not., Comm. Soc. Crittog. Ital. 1(4): 235 (1863) 4. L. marina Ellis & Everh., J. Mycol. 1(3): 43 (1885) 5. L. nypicola K.D. Hyde & Alias, Mycol. Res. 103(11): 1414 (1999) 6. L. pelagica E.B.G. Jones, Trans. Br. Mycol. Soc. 45(1): 105 (1962) 7. L. peruviana Speg., Anal. Soc. Cient. Argent. 12(4): 179 (no. 168) (1881) *Neosetophoma Gruyter, Aveskamp & Verkley, Mycologia 102(5): 1075 (2010) 1. #N. samararum (Desm.) Gruyter, Aveskamp & Verkley [as ‘samarorum’], in de Gruyter et al., Mycologia 102(5): 1075 (2010) Lentitheciaceae Yin. Zhang, C.L. Schoch, J. Fourn., Crous & K.D. Hyde, in Zhang et al. Stud. Mycol. 64: 93 (2009) Halobyssothecium Dayarathne, E.B.G. Jones & K.D. Hyde, Mycol Prog 17:1161–1171 (2018) 1. #H. obiones (M.E. Barr) Dayarathne, E.B.G. Jones & K.D. Hyde, Mycol Prog 17: 1166 (2018) *Lentithecium K.D. Hyde, J. Fourn. & Yin. Zhang, Fungal Divers 38: 234 (2009) 1. #L. rarum (Kohlm., Volkm.-Kohlm. & O.E. Erikss.) Suetrong, Sakay., E.B.G. Jones, Kohlm. & Volkm.Kohlm., Stud. Mycol. 64: 145-154 (2010) 2. #L. voraginesporum Abdel-Wahab, Bahkali & EBG Jones, Fungal Diversity 80: 53–55 (2016) Poaceascoma Phook. & K.D. Hyde, Cryptogamie, Mycologie 36 (2): 231 (2015) 1. #P. halophila Dayar. & K.D. Hyde, Fungal Diversity 87: 46 (2017) Towyspora Wanasinghe, E.B.G. Jones & K.D. Hyde, Fungal Divers. 78(2): 32 (2016) 1. #T. aestuari Wanasinghe, E.B.G. Jones & K.D. Hyde, Fungal Divers. 78: 35 (2016) Lindgomycetaceae K. Hirayama, Kaz. Tanaka & Shearer, Mycologia 102(3): 733 (2010) 123 386 Arundellina Wanasinghe, E.B.G. Jones & K.D. Hyde, Fungal Divers. 81: 59–61 (2016) 1. # A. typhae Wanasinghe, E.B.G. Jones & K.D. Hyde, Fungal Diversity 81: 59–61 (2016) Lophiostomataceae Sacc., Syll. Fung. 2: 672 (1883) Decaisnella Fabre, Annls. Sci. Nat. Bot. 9: 112 (1879) 1. D. formosa Abdel-Wahab & E.B.G. Jones, Can. J. Bot. 81(6): 598 (2003) *Floricola Kohlm. & Volkm.-Kohlm., Bot. Mar. 43(4): 385 (2000) 1. #F. striata Kohlm. & Volkm.-Kohlm., Bot. Mar. 43(4): 385 (2000 (Alternative classification: Teichospora Fuckel, Jahrbcher des Nassauischen Vereins fr Naturkunde 23-24: 160 (1870); #T. striata (Kohlmeyer & Volkmann-Kohlmeyer) Jaklitsch & Voglmayr, Mycol. Prog. 15 (3/31): 14 (2016)) Herpotrichia Fuckel, Fungi Rhenani Suppl. Exsic. No. 2171 (1868) 1. H. nypicola K.D. Hyde & Alias, Mycol. Res. 103(11): 1412 (1999) Lophiostoma Ces. & De Not., Comment Soc. Crittogam Ital. 1(4): 219 (1863) 1. L. acrostichi (K.D. Hyde) Aptroot & K.D. Hyde, Fungal Divers. Res. Ser. 7: 106 (2002) 2. #L. corticola (Fuckel) E.C.Y. Liew, Aptroot & K.D. Hyde [as ‘corticolum’], Mycologia 94(5): 812 (2002) 3. L. rhizophorae (Poonyth, K.D. Hyde, Aptroot & Peerally) Aptroot & K.D. Hyde, Fungal Divers. Res. Ser. 7: 108 (2002) Pseudoplatystomum Thambug. & K.D. Hyde, Fungal Diversity 74: 237 (2015) 1. #P. scabridisporum (Abdel-Wahab & E.B.G. Jones) Thambug. & K.D. Hyde, Fungal Diversity 74: 238 (2015) Vaginatispora K.D. Hyde, Nova Hedwigia 61 (1–2): 234 (1995) 1. #V. armatispora (K.D. Hyde, Vrijmoed, Chinnaraj & E.B.G. Jones) Wanasinghe, E.B.G. Jones & K.D. Hyde, Index Fungorum 324: 1 (2017) Massarinaceae Munk, Friesia 5: 305 (1956) Massarina Sacc., Syll. Fung. 2: 153 (1883) 1. M. beaurivagea Poonyth, K.D. Hyde, Aptroot & Peerally, Fungal Divers. 3: 139 (1999) 2. M. cystophorae (Cribb & J.W. Herb.) Kohlm. & E. Kohlm., Marine Mycology, the Higher Fungi (London): 427 (1979) 3. M. lacertensis Kohlm. & Volkm.-Kohlm., Aust. J. Mar. Freshwat. Res. 42(1): 92 (1991) 4. M. mauritiana Poonyth, K.D. Hyde, Aptroot & Peerally, Fungal Divers. 3: 141 (1999) 5. M. phragmiticola Poon & K.D. Hyde, Bot. Mar. 41(2): 145 (1998 6. M. ricifera Kohlm., Volkm.-Kohlm. & O.E. Erikss., Mycologia 87(4): 537 (1995) 123 Fungal Diversity (2019) 96:347–433 Neocamarosporiaceae, Wanas., Wijayaw., Crous & K.D. Hyde, Studies in Mycology 87: 245 (2017) Neocamarosporium Crous & M.J. Wingf., Persoonia 32: 273 (2014) 1. #N. obiones (Jaap) Wanas. & K.D. Hyde, Studies in Mycology 87: 249 (2017) 2. #N. salicorniicola Dayarathne, E.B.G. Jones & K.D. Hyde, Studies in Mycology 87: 250 (2017) 3. #N. chersinae Crous, IMA Fungus 8 (1): 146 (2017) (Found in sediments in saline lakes) 4. N. jorjanensis Papizadeh, Wijayaw., Amoozegar, Shahzadeh Fazeli, & K.D. Hyde, Mycol. Progress https:// doi.org/10.1007/s11557-017-1341-x 5. N. persepolisi Papizadeh, Wijayaw., Amoozegar, Shahzadeh Fazeli, & K.D. Hyde, Mycol. Progress https://doi. org/10.1007/s11557-017-1341-x 6. N. sollicola Papizadeh, Wijayaw.Amoozegar, Shahzadeh Fazeli & K.D. Hyde, Mycol. Progress https://doi.org/10. 1007/s11557-017-1341-x Melanommataceae G. Winter [as ‘Melanommeae’], Rabenh. Krypt.-Fl. 1(2): 220 (1885) Bicrouania Kohlm. & Volkm.-Kohlm., Mycol. Res. 94: 685 (1990) 1. B. maritima (P. Crouan & H. Crouan) Kohlm. & Volkm.-Kohlm., Mycol. Res. 94(5): 685 (1990) Caryosporella Kohlm., Proc. Indian Acad. Sci., Pl. Sci. 94: 355 (1985) 1. C. rhizophorae Kohlm., Proc. Indian Acad. Sci., Pl. Sci. 94(2–3): 356 (1985) *Pleurophomopsis Petr., Annls. Mycol. 22 (1–2): 156 (1924) 1. P. nypae K.D. Hyde & B. Sutton, Mycol. Res. 96(3): 213 (1992) Microsphaeropsidaceae Q. Chen, L. Cai & Crous, Studies in Mycology 82: 213 (2015) Microsphaeropsis Hhn., Hedwigia 59: 267 (1917) 1. #M. arundinis (S. Ahmad) B. Sutton, The Coelomycetes. Fungi imperfecti with pycnidia, acervuli and stromata: 423 (1980) Morosphaeriaceae Suetrong, Sakay., E.B.G. Jones & C.L. Schoch, Stud. Mycol. 64: 161 (2009) *Aegeanispora E.B.G. Jones et Abdel-Wahab, Botanica Marina 60: 470 (2017) 1. #A. elani E.B.G. Jones et Abdel-Wahab, Botanica Marine 60: 470 (2017) Morosphaeria Suetrong, Sakay., E.B.G. Jones & C.L. Scoch, Stud. Mycol. 64: 161 (2009) 1. #M. ramunculicola (K.D. Hyde) Suetrong, Sakay., E.B.G. Jones & C.L. Schoch, Stud Mycol 64: 162 (2009) 2. #M. velatispora (K.D. Hyde & Borse) Suetrong, Sakay., E.B.G. Jones & C.L. Schoch, Stud Mycol 64: 161 (2009) 3. #M. muthupetensis B. Devadatha, V. V. Sarma. et E.B.G Jones, Botanica Marina 61(4): 401 (2018) Helicascus Kohlm., Can. J. Bot. 47: 1471 (1969) Fungal Diversity (2019) 96:347–433 1. #H. kanaloanus Kohlm., Can. J. Bot. 47: 1471 (1969) 2. #H. mangrovei Preedanon, Suetrong & Sakay., Mycoscience 58 (3): 176 (2017) 3. #H. nypae K.D. Hyde, Bot. Mar. 34(4): 314 (1991) 4. #H. satunensis sp. nov.(in press) Periconiaceae (Sacc.) Nann., Repertorio sistematico dei miceti dell’ uomo e degli animali 4: 482 (1934) *Periconia Tode, Fungi Mecklenburgenses Selecti 2: 2 (1791) 1. P. byssoides Pers., Syn. meth. Fung. 686 (1801) 2. P. cookei E.W. Mason & M.B. Ellis, Mycol. Pap. 56: 72 (1953) 3. P. digitata (Cooke) Sacc., Syll Fung 4: 274 (1886) 4. P. echinochloae (Bat.) M.B. Ellis, Dematiaceous Hyphomycetes: 347 (1971) 5. P. minutissima Corda, Icon. Fung. hucusque cognitorum 1: 19, t. 5: 259 (1837) Pseudoastrosphaeriellaceae Phook. & K.D. Hyde, Fungal Diversity 74: 181 (2015) Carinispora K.D. Hyde, J. Linn. Soc. Bot. 110: 97 (1992) 1. C. nypae K.D. Hyde, J. Linn. Soc. Bot. 110: 99 (1992) 2. C. velatispora K.D. Hyde, Sydowia 46(2): 259 (1994) Phaeosphaeriaceae M.E. Bar, Mycologia 71: 948 (1979) *#Amarenographium E. Erikss., Mycotaxon 15: 199 (1982) 1. A. metableticum (Trail) O.E. Erikss., Mycotaxon 15: 199 (1982) 2. #A. solium Abdel-Wahab, Hodhod, Bahkali & K.D. Hyde, Cryptog. Mycol. 33(3): 289 (2012) Amarenomyces O.E. Erikss., Opera Bot. 60: 124 (1981) 1. A. ammophilae (Lasch) O.E. Erikss., Opera Bot. 60: 124 (1981 Lautitia S. Schatz, Can. J. Bot. 62(1): 31 (1984) 1. L. danica (Berl.) S. Schatz, Can J Bot 62(1): 31 (1984) Loratospora Kohlm. & Volkm.-Kohlm., Syst. Ascom. 12: 10 (1993) 1. #L. aestuarii Kohlm. & Volkm.-Kohlm., Syst. Ascom. 12: 10 (1993) *#Neosetophoma Gruyter, Aveskamp & Verkley, Mycologia 102(5): 1075 (2010) 1. #N. samararum (Desm.) Gruyter, Aveskamp & Verkley [as ‘samarorum’], in de Gruyter et al., Mycologia 102(5): 1075 (2010) Phaeosphaeria I. Miyake, Bot. Mag., Tokyo 23: 93 (1909) 1. Ph. anchiala Kohlm., Volkm.-Kohlm. & K.M. Tsui, Bot. Mar. 48(4): 308 (2005) 2. Ph. capensis Steinke & K.D. Hyde, Mycoscience 38(2): 101 (1997) 3. Ph. gessneri Shoemaker & C.E. Babc., Can. J. Bot. 67(5): 1567 (1989) 4. Ph. halima (T.W. Johnson) Shoemaker & C.E. Babc., Can. J. Bot. 67(5): 1514 (1989) 5. Ph. herpotrichoides (De Not.) L. Holm, Sym. Bot. Upsal. 14(3): 115 (1957) 387 6. Ph. macrosporidium (E.B.G. Jones) Shoemaker & C.E. Babc., Can. J. Bot. 67(5): 1532 (1989) 7. Ph. neomaritima (R.V. Gessner & Kohlm.) Shoemaker & C.E. Babc., Can. J. Bot. 67(5): 1572 (1989) 8. Ph. nodorum (E. Müll.) Hedjar., Sydowia 22(1–4): 79 (1969) 9. Ph. olivacea Kohlm., Volkm.-Kohlm. & O.E. Erikss., Bot. Mar. 40(4): 299 (1997) 10. Ph. orae-maris (Linder) Khashn. & Shearer, Mycol. Res. 100(10): 1351 (1996) 11. Ph. roemeriani Kohlm., Volkm.-Kohlm. & O.E. Erikss., Can. J. Bot. 76(3): 470 (1998) 12. Ph. spartinae (Ellis & Everh.) Shoemaker & C.E. Babc., Can. J. Bot. 67(5): 1573 (1989) 13. Ph. spartinicola Leuchtm., in Leuchtmann & Newell, Mycotaxon 41(1): 2 (1991) 14. Ph. typharum (Desm.) L. Holm, Symb. Bot. Upsal. 14(3): 126 (1957) *Stagonospora (Sacc.) Sacc., Syll. Fung. 3: 445 (1884) 1. S. abundata Kohlm. & Volkm.-Kohlm., Bot. Mar. 43(4): 390 (2000) 2. S. cylindrica Gunnell, Trans. Br. Mycol. Soc. 40(4): 451 (1957) 3. S. elegans (Berk.) Sacc., Syll. Fung. 3: 436 (1884) 4. S. haliclysta Kohlm., Bot. Mar. 16(4): 213 (1973) Phaeotrichaceae Cain, Canadian Journal of Botany 34 (4): 676 (1956) Trichodelitschia Munk, Dansk bot. Arkiv. 15(2): 109 (1953) 1. T. bisporula (P. Crouan & H. Crouan) Munk, Dansk bot. Arkiv. 15(2): 109 (1953) Pleosporaceae Nitschke, Verh. naturh. Ver. preuss. Rheinl. 26: 74 (1869) *Alternaria Nees, System der Pilze und Schwämme: 72 (1817) 1. #A. alternata (Fr.) Keissl., Beihefte Bot. Zentralblatt 29: 433 (1912) 2. A. alternariae (Cooke) Woudenberg & Crous, Stud. Mycol. 75: 206 (2013) 3. A. botrytis (Preuss) Woudenberg & Crous, Stud. Mycol. 75(1): 206 (2013) 4. A. maritima G.K. Sutherl., New Phytol. 15: 46 (1916) 5. A. raphani J.W. Groves & Skolko, Can. J. Res. 22: 227 (1944) 6. A. tenuissima (Nees) Wiltshire, Trans Br Mycol Soc 18 (2): 157 (1933) *Cochliobolus Drechsler, Phytopath. 24: 973 (1934) 1. C. tuberculatus Sivan., Trans. Br. Mycol. Soc. 84: 548 (1985) *Curvularia Boedijn, Bull Jardin Bot Buitenzorg 13(1): 123 (1933) 1. C. borreriae (Viégas) M.B. Ellis, in Viegas, Mycol. Pap. 106: 6 (1966) 123 388 2. C. hawaiiensis (Bugnic. ex M.B. Ellis) Manamgoda, L. Cai & K.D. Hyde, in Manamgoda, Cai, McKenzie, Crous, Madrid, Chukeatirote, Shivas, Tan & Hyde, Fungal Diversity 56(1): 141 (2012) 3. C. intermedia Boedijn, Bull. Jard. Bot. Buitenz, 3 Sér. 13(1): 126 (1933) 4. C. lunata (Wakker) Boedijn, Bull. Jard. Bot. Buitenz, 3 Sér. 13(1): 127 (1933) 5. C. protuberata R.R. Nelson & Hodges, Mycologia 57(5): 823 (1965) 6. C. tuberculata B.L. Jain, Trans. Br. Mycol. Soc. 45(4): 539 (1962) Bipolaris Shoemaker, Can. J. Bot. 37 (5): 882 (1959) 1. B. papendorfii (Aa) Alcorn, Mycotaxon 17: 68 (1983) Decorospora Inderb., Kohlm. & Volkm.-Kohlm., Mycologia 94(4): 657 (2002) 1. #D. gaudefroyi (Pat.) Inderb., Kohlm. & Volkm.Kohlm., Mycologia 94(4): 657 (2002) Drechslera S. Ito, Proc. Imp. Acad. Japan 6(8): 355 (1930) 1. D. dematioidea (Bubák & Wróbl.) Scharif, Studies on Graminicolous Species of Helminthosporium (Tehran): 81 (1963) Epicoccum Link, Magazin der Gesellschaft Naturforschenden Freunde Berlin 8: 32 (1815) 1. E. nigrum Link, Magazin der Gesellschaft Naturforschenden Freunde Berlin 8: 32 (1816) *Paradendryphiella Woudenberg & Crous, Stud. Mycol. 75: 207 (2013) 1. #P. arenariae (Nicot) Woudenberg & Crous, Stud. Mycol. 75: 208 (2013) 2. #P. salina (G.K. Sutherl.) Woudenberg & Crous, Stud. Mycol. 75: 207 (2013) Pleospora Rabenh. ex Ces. & De Not., Comm. Soc. Crittog. Ital. 1(4): 217 (1863) Under the one fungus one name Pleospora is synonymized under Stemphylium Wallr. (Wijayawardene et al. 2014) 1. P. gracilariae E.G. Simmons & S. Schatz, in Simmons, Mem. N. Y. Bot. Gdn. 49: 305 (1989) 2. P. pelagica T.W. Johnson, Mycologia 48(4): 504 (1956) 3. P. pelvetiae G.K. Sutherl., New Phytol. 14: 38 (1915) 4. P. spartinae (J. Webster & M.T. Lucas) Apinis & Chesters, Trans. Br. Mycol. Soc. 47(3): 432 (1964) 5. P. triglochinicola J. Webster, Trans. Br. Mycol. Soc. 53(3): 481 (1969) *Prathoda Subram., J. Indian bot. Soc. 35(1): 73 (1956) 1. P. longissima (Deighton & MacGarvie) E.G. Simmons, CBS Diversity Ser. (Utrecht) 6: 672 (2007) Pseudopithomyces Ariyaw. & K.D. Hyde, Fungal Diversity 75: 64 (2015) 123 Fungal Diversity (2019) 96:347–433 1. #P. maydicus (Sacc.) J.F. Li, Ariyaw. & K.D. Hyde, Fungal Diversity 75: 69 (2015) *Stemphylium Wallr., Fl. Crypt. Germ. 2: 300 (1833) 1. S. gracilariae E.G. Simmons, Mem N. Y. Bot. Gdn. 49: 305 (1989) 2. S. lycopersici (Enjoji) W. Yamam., Trans. Mycol. Soc. Jpn. 2: 93 (1960) 3. S. maritimum T.W. Johnson, Mycologia 48(6): 844 (1957) 4. S. triglochinicola B. Sutton & Piroz., Trans. Br. Mycol. Soc. 46(4): 519 (1963) 5. S. vesicarium (Wallr.) E.G. Simmons, Mycologia 61(1): 9 (1969) *Setosphaeria K.J. Leonard & Suggs, Mycologia 66: 294 (1974) 1. S. rostrata K.J. Leonard, Mycologia 68: 409 (1976) Ulocladium Preuss, Linnaea 24: 111 (1851) Following species transferred to Alternaria under the one fungus one name 1. U. chartarum (Preuss) E.G. Simmons, Mycologia 59 (1): 88 (1967) 2. U. consortiale (Thüm.) E.G. Simmons, Mycologia 59 (1): 84 (1967) Pyrenochaetopsidaceae Valenz.-Lopez, Crous, J.F. Cano, Guarro & Stchigel, Studies in Mycology 90: 56 (2017) Neopyrenochaeta Valenz.-Lopez, Crous, Stchigel, Guarro & J.F. Cano, Studies in Mycology 90: 54 (2017 1. N. inflorescentiae (Crous, Marinc. & M.J. Wingf.) Valenz.-Lopez, Crous, Stchigel, Guarro & J.F. Cano, Studies in Mycology 90: 55 (2017) Roussoellaceae J.K. Liu et al., Phytotaxa 181(1):7 (2014) Roussoella Sacc., Atti delĺIstituto Veneto Scienze 6: 410 (1888) 1. R. mangrovei Phukhamsakda & K.D. Hyde, Mycosphere 9 (2): 339 (2018) Salsugineaceae K.D. Hyde & S. Tibpromma, Fungal Divers. 63: 227 (2013) Acrocordiopsis Borse & K.D. Hyde, Mycotaxon 34(2): 535 (1989) 1. #A. patilii Borse & K.D. Hyde, Mycotaxon 34(2): 536 (1989) 2. A. sphaerica Alias & E.B.G. Jones, Fungal Divers. 2: 39 (1999) Salsuginea K.D. Hyde, Bot. Mar. 34(4): 315 (1991) 1. #S. ramicola K.D. Hyde, Bot. Mar. 34(4): 316 (1991) Sporormiaceae Munk, Dansk Bot. Ark. 17(1): 450 (1957) *Amorosia Mantle & D. Hawksw., Mycol. Res. 110(12): 1373 (2006) 1. #A. littoralis Mantle & D. Hawksw., Mycol. Res. 110(12): 1373 (2006) Fungal Diversity (2019) 96:347–433 Sporormiella Ellis & Everh., North American Pyrenomycetes: 136 (1892) 1. Sp. intermedia (Auersw.) S.I. Ahmed & Cain ex Kobayasi, Bull. Tokyo Sci. Mus.: 339 (1969) Westerdykella Stolk, Transactions of the British Mycological Society 38 (4): 422 (1955) 1. W. dispersa (Clum) Cejp & Milko, Ceská Mykologie 18 (2): 83 (1964) Striatiguttulaceae S.N. Zhang, K.D. Hyde & J.K. Liu, Mycokeys, 49: 110 (2019) Striatiguttula S.N. Zhang, K.D. Hyde & J.K. Liu, Mycokeys, 49: 111 (2019) 1. *#S. nypae S.N. Zhang, K.D. Hyde & J.K. Liu, Mycokeys, 49: 112 (2019) 2. #S. phoenicis S.N. Zhang, K.D. Hyde & J.K. Liu, Mycokeys 49: 115 (2019) Longicorpus S.N. Zhang, K.D. Hyde & J.K. Liu, Mycokeys, 49: 117 (2019) 1. #L. striataspora (K.D. Hyde) S.N. Zhang, K.D. Hyde & J.K. Liu, Mycokeys, 49: 118 (2019) Testudinaceae Arx, Persoonia 6(3): 366 (1971) Verruculina Kohlm. & Volkm.-Kohlm., Mycol. Res. 94(5): 689 (1990) 1. #V. enalia (Kohlm.) Kohlm. & Volkm.-Kohlm., Mycol. Res. 94(5): 689 (1990) Trematosphaeriaceae K.D. Hyde, Y. Zhang ter, Suetrong & E.B.G. Jones: 347 (2011) Falciformispora K.D. Hyde, Mycol. Res. 96(1): 26 (1992) 1. #F. lignatilis K.D. Hyde, Mycol. Res. 96(1): 27 (1992) Halomassarina Suetrong, Sakay., E.B.G. Jones, Kohlm., Volkm.-Kohlm. & C.L. Schoch, Stud. Mycol. 64: 161 (2009) 1. #H. thalassiae (Kohlm. & Volkm.-Kohlm.) Suetrong, Sakay., E.B.G. Jones, Kohlm., Volkm.-Kohlm. & C.L. Schoch, Stud. Mycol. 64: 161 (2009) Trematosphaeria Fuckel, Jb. Nassau. Ver. Naturk. 23-24: 161 (1870) 1. T. lineolatispora K.D. Hyde, Mycol. Res. 96(1): 28 (1992) 2. T. malaysiana Alias, T.A. McKeown, S.T. Moss & E.B.G. Jones, Mycol. Res. 105(5): 616 (2001) 3. T. mangrovis Kohlm., Mycopath. Mycol. Appl. 34: 1 (1968) Zopfiaceae G. Arnaud ex D. Hawksw., Syst. Ascom. 11: 77 (1992) Coronopapilla Kohlm. & Volkm.-Kohlm., Mycol. Res. 94: 686 (1990) 1. C. avellina Kohlm. & Volkm.-Kohlm., Mycol. Res. 94: 687 (1990) 2. C. mangrovei (K.D. Hyde) Kohlm. & Volkm.-Kohlm., Bot. Mar. 34: 19 (1991) Pleosporales incertae sedis 389 Acuminatispora S.N. Zhang., K.D. Hyde & J.K. Liu, 17: 1179 (2018) 1. #A. palmarum S.N. Zhang, K.D. Hyde & J.K. Liu, 17: 1181 (2018) *Amarenographium E. Erikss., Mycotaxon 15: 199 (1982) 1. A. metableticum (Trail) O.E. Erikss., Mycotaxon 15: 199 (1982) 2. #A. solium Abdel-Wahab, Hodhod, Bahkali & K.D. Hyde, Cryptog. Mycol. 33(3): 289 (2012) *Bactrodesmium Cooke, Grevillea 12(61): 35 (1883) 1. B. linderi (J.L. Crane & Shearer) M.E. Palm & E.L. Stewart, Mycotaxon 15: 319 (1982) Farasanispora Abdel-Wahab, Bahkali & E.B.G. Jones, Fungal Divers. 78: 63 (2016) 1. # F. avicenniae Abdel-Wahab, Bahkali & E.B.G. Jones, 78: 65 (2016) Heleiosa Kohlm., Volkm.-Kohlm. & O.E. Erikss., Can. J. Bot. 74(11): 1830 (1996) 1. H. barbatula Kohlm., Volkm.-Kohlm. & O.E. Erikss., Can. J. Bot. 74(11): 1830 (1996) *Paraphoma Morgan-Jones & J.F. White, Mycotaxon 18(1): 58 (1983) 1. #P. fimeti (Brunaud) Gruyter, Aveskamp & Verkley, Mycologia 102(5): 1076 (2010) Phoma Sacc., Michelia 2 (6): 4 (1880) 1. #P. glomerata (Corda) Wollenw. & Hochapfel, Z. ParasitKde 3(5): 592 (1936) 2. #P. herbarum Westend., Bull l’Acad Royale Sci Belgique Classe des Sciences 19: 118 (1852) 3. #P. putamina Holls, Nvnyt Kzlem 6 (1907) No sequence data 1. P. capitulum Panwar, P.N. Mathur & Thirum., Trans. Br. Mycol. Soc. 50(2): 261 (1967) 2. P. hibernica Grimes, M. O’Connor & Cummins, Trans. Br. Mycol. Soc. 17(1–2): 100 (1932) 3. P. laminariae Cooke & Massee, Grevillea 18(87): 53 (1890) 4. P. leveillei Boerema & G.J. Bollen, Persoonia (2): 115 (1975) 5. P. multispora V.H. Pawar, P.N. Mathur & Thirum., Trans. Br. Mycol. Soc. 50(2): 260 (1967) 6. P. nebulosa (Pers.) Mont., in Berkeley, Outl. Brit. Fung. (London): 314 (1860) 7. P. navium Woron., Arbeit Biol. Wolga-Station 8(1–3): 61 (1925) 8. P. ostiolata V.H. Pawar, P.N. Mathur & Thirum., Trans. Br. Mycol. Soc. 50(2): 262 (1967) 9. P. suaedae Jaap, Schr. Naturw. Ver. Schles.-Holst. 14(1): 27 (1907) Paraliomyces Kohlm., Nova Hedwigia 1: 81 (1959) 1.#P. lentifer Kohlm., Nova Hedwigia 1: 81 (1959) *Stagonosporopsis Died., Annls Mycol 10(2): 142 (1912) 123 390 1. St. cucurbitacearum (Fr.) Aveskamp, Gruyter & Verkley, Stud. Mycol. 65: 45 (2010) 2. KIRSCHSTEINIOTHELIALES Hern.-Restr., R.F. Castañeda, Gené & Crous, Studies in Mycology 86: 72 (2017) Kirschsteiniotheliaceae Boonmee & K.D. Hyde, Mycologia 104 (3): 705 (2012) Kirschsteiniothelia D. Hawksw., Botanical Journal of the Linnean Society 91: 182 (1985) 1. K. phoenicis S.N. Zhang & K.D. Hyde, Mycosphere 9(2): 357 (2018) 3. MYTILINIDIALES E.W.A. Boehm, C.L. Schoch & Spatafora, Mycol. Res. 113(4): 468 (2009) Mytilinidiaceae Kirschst., [as ‘Mytilidiaceae’], Verh. Bot. Ver. Prov. Brandenb 66: 28 (1924) Halokirschsteiniothelia S. Boonmee & K.D. Hyde, Mycologia 104(3): 705 (2012) 1. #H. maritima (Linder) Boonmee & K.D. Hyde, Mycologia 104(3): 705 (2012) *Pseudorobillarda Morelet, Bull. Soc. Sci. Nat. Arch. Toulon et du Var 175: 5 (1968) 1. #P. phragmitis (Cunnell) M. Morelet, Bull. Soc. Sci. Nat. Arch. Toulon et du Var 175: 6 (1968) 4. HYSTERIALES Lindau, Natürl Pflanzenfam: 265 (1896) Hysteriaceae Chevall., Flore Générale des Environs de Paris 1: 432 (1826) Gloniella Sacc., Syll. Fung. 2: 765 (1883) 1. G. clavatispora Steinke & K.D. Hyde, Mycoscience 38(1): 7 (1997) Hysterium Pers., Tentamen dispositionis methodicae Fungorum: 4, V-VI (1797) 1. #H. rhizophorae Dayarathne & K. D. Hyde, in Fungal Diversity 87:42 (2017) Dothideomycetes genera incertae sedis Belizeana Kohlm. & Volkm.-Kohlm., Bot. Mar. 30: 195 (1987) 1. B. tuberculata Kohlm. & Volkm.-Kohlm., Bot. Mar. 30: 196 (1987) Capillataspora K.D. Hyde, Can. J. Bot. 67(8): 2522 (1989) 1. C. corticola K.D. Hyde, Can. J. Bot. 67(8): 2522 (1989) Lineolata Kohlm. & Volkm.-Kohlm., Mycol. Res. 94: 687 (1990) 1. #L. rhizophorae (Kohlm. & E. Kohlm.) Kohlm. & Volkm.-Kohlm., Mycol. Res. 94(5): 688 (1990) Passeriniella Berl., Icon. Fung. 1(1): 51 (1890) 1. P. mangrovei G.L. Maria & K.R. Sridhar, Indian Journal of Forestry 25: 319 (2002) 123 Fungal Diversity (2019) 96:347–433 2. P. savoryellopsis K.D. Hyde & Mouzouras, Transactions of the British Mycological Society 91 (1): 179 (1988) *Rhabdospora (Durieu & Mont. ex Sacc.) Sacc., Syll. Fung. 3: 578 (1884) 1. R. avicenniae Kohlm. & E. Kohlm., Mycologia 63(4): 851 (1971) Thalassoascus Ollivier, C. r. hebd. Sanc. Acad. Sci. Paris 182: 1348 (1926) 1. T. cystoseirae (Ollivier) Kohlm., Mycologia 73: 837 (1981) 2. T. lessoniae Kohlm., Mycologia 73: 837 (1981) 3. T. tregoubovii Ollivier, C. R. Hebd. Sanc. Acad. Sci Paris 182: 1348 5. PATELLARIALES D. Hawksw. & O.E. Erikss., Syst. Ascomyc. 5: 181 (1986) Patellariaceae Corda, Icon. Fung. 2: 37 (1838) Banhegyia L. Zeller & Tóth, Sydowia 14: 326 (1960) 1. B. setispora L. Zeller & Tóth, Sydowia 14: 327 (1960) Patellaria Fr., Syst. Mycol. (Lindae) 2(1): 158 (1822) 1. #P. atrata (Hedw.) Fr., Syst. Mycol. (Lundae) 2(1): 158 (1822) 6. JAHNULALES K.L. Pang, Abdel-Wahab, El-Shar., E.B.G. Jones & Sivichai, Mycol. Res. 106(9): 1033 (2002) Aliquandostipitaceae Inderb., Am. J. Bot. 88(1): 54 (2001) *Xylomyces Goos, R.D. Brooks & Lamore, Mycologia 69: 282 (1977) 1. #X. chlamydosporus Goos, R.D. Brooks & Lamore, Mycologia 69(2): 282 (1977) Manglicolaceae Suetrong & E.B.G. Jones, Fungal Divers. 51: 183 (2011) Manglicola Kohlm. & E. Kohlm., Mycologia 63(4): 840 (1971) 1. #M. guatemalensis Kohlm. & E. Kohlm., Mycologia 63(4): 841 (1971) 7. VENTURIALES Yin. Zhang & K.D. Hyde, Fungal Diversity 51: 249–277 (2011) Sympoventuriaceae Yin. Zhang, C.L. Schoch & K.D. Hyde, Fungal Diversity 51: 251 (2011) *Ochroconis de Hoog & Arx, Kavaka 1: 57 (1973) 1. O. constricta (E.V. Abbott) de Hoog & Arx, Kavaka 1: 57 (1973) 1. O. humicola (G.L. Barron & Lv. Busch) de Hoog & Arx, Kavaka 1: 57 (1973) Dothideomycetes incertae sedis Aquamarina Kohlm., Volkm.-Kohlm. & O.E. Erikss., Mycol. Res. 100(4): 393 (1996) Fungal Diversity (2019) 96:347–433 1. A. speciosa Kohlm., Volkm.-Kohlm. & O.E. Erikss., Mycol. Res. 100(4): 393 (1996) 8. DYFROLOMYCETALES K.L. Pang, K.D. Hyde & E.B.G. Jones, Fungal Divers. 63: 7 (2013) Dyfrolomycetaceae K.D. Hyde, K.L. Pang, Alias, Suetrong & E.B.G. Jones, Cryptog. Mycol. 34: 227 (2013) Dyfrolomyces K.D. Hyde, K.L. Pang, Alias, Suetrong & E.B.G. Jones, Cryptog. Mycol. 34: 227 (2013) 1. #D. mangrovei (K.D. Hyde) K.D. Hyde, K.L. Pang, Alias, Suetrong & E.B.G. Jones, Cryptog. Mycol. 34(3): 228 (2013) 2. #D. marinospora (K.D. Hyde) K.D. Hyde, K.L. Pang, Alias, Suetrong & E.B.G. Jones, Cryptog. Mycol. 34(3): 228 (2013) 3. #D. rhizophorae (K.D. Hyde) K.D. Hyde, K.L. Pang, Alias, Suetrong & E.B.G. Jones, Cryptog. Mycol. 34(3): 228 (2013) 4. #D. tiomanensis K.L. Pang, S.A. Alias, K.D. Hyde, Suetrong & E.B.G. Jones, Cryptog. Mycol. 34(3): 228 (2013) *Helicorhoidion S. Hughes, Can. J. Bot. 36(6): 773 (1958) 1. H. nypicola K.D. Hyde & Goh, Mycol. Res. 103(11): 1420 (1999) Class: Eurotiomycetes O.E. Erikss. & Winka, Myconet 1: 6 (1997) Subclass: Eurotiomycetidae Doweld, Prosyllabus Tracheophytorum, Tentamen systematis plantarum vascularium (Tracheophyta): LXXVIII (2001) 1. ONYGENALES Cif. ex Benny & Kimbr., Mycotaxon 12(1): 8 (1980) Gymnoascaceae Baran., Bot. Ztg. 30: 158 (1872) Arachniotus J. Schröt., Kryptogamen-Flora von Schlesien 3-2(8): 210 (1893) 1. A. littoralis (G.F. Orr) Arx, Persoonia 9(3): 397 (1977) Gymnascella Peck, Annual Report on the New York State Museum of Natural History 35: 143 (1884) 1. G. dankaliensis (Castell.) Currah, Mycotaxon 24: 77 (1985) Myxotrichaceae Locq. ex Currah, Mycotaxon 24: 103 (1985) *Oidiodendron Robak, Nytt Magazin for Naturvidenskapene 71: 245 (1932) 1. O. griseum Robak, in Melin & Nannfeldt, Svensk Skogsvårdsförening Tidskr. 3-4: 440 (1934) Onygyneaceae Berk., Introduction to Crypt. Bot.: 272 (1857) Chrysosporium Corda, Deutschlands Flora, Abt. III. Die Pilze Deutschlands 3-13: 85 (1833) 1. C. merdarium (Link) J.W. Carmich., Can. J. Bot. 40 (8): 1160 (1962) 2. EUROTIALES G.W. Martin ex Benny & Kimbr., Mycotaxon 12(1): 23 (1980) 391 Monascaceae J. Schröt., Nat. Pflanzenfamilien: 148 (1894) Cephalotrichum Link, Magazin der Gesellschaft Naturforschenden Freunde Berlin 3 (1): 20 (1809) *1. C. stemonitis (Pers.) Nees, Magazin der Gesellschaft Naturforschenden Freunde Berlin 3 (1): 20 (1809) *Xeromyces L.R. Fraser, Proc. Linn. Soc. N. S. W. 78: 245 (1953) 1. #X. bisporus L.R. Fraser, Proc. Linn. Soc. N. S. W. 78: 245 (1954) Aspergillaceae Link, Abh. dt. Akad. Wiss. Berlin: 165 (1826) *Aspergillus P. Micheli ex Haller, Hist Stirp Helv 3: 113 (1768) 1. #A. aculeatus Iizuka, J. Agric. Chem. Soc. Japan: 807 (1953) 2. A. amstelodami Thom & Church, The Genus Aspergillus: 113 (1926) 3. A. awamori Nakaz., Rep. Gov. Res. Inst. Formosa: 1 (1907) 4. #A. candidus Link, Mag. Gesell. Naturf. Freunde, Berlin 3(1–2): 16 (1809) 5. A. carbonarius (Bainier) Thom, in Thom & Currie, J. Agric. Res. 7: 12 (1916) 6. #A. carneus Blochwitz, Annls. Mycol. 31(1/2): 81 (1933) 7. A. clavatus Desm., Annales des Sciences Naturelles Botanique 2: 71 (1834) 8. A. cervinus Massee, Bull. Misc. Inf., Kew 1914: 158 (1914) 9. A. chevalieri Thom & Church, The Genus Aspergillus: 111 (1926) 10. A. cristatus Raper & Fennell, The Genus Aspergillus: 169 (1965) 11. A. ficuum (Reichardt) Thom & Currie, J. Agric. Res. 7: 12 (1916) 12. A. fischeri Wehmer, Zentbl. Bakt. ParasitKde, Abt. II 18: 390 (1907) 13. A. flavipes (Bainier & R. Sartory) Thom & Church, Manual of the Aspergilli: 179 (1926) 14. #A. flavus Link, Mag. Gesell. Naturf. Freunde Berlin 3: 16 (1809) 15. #A. foetidus Thom & Raper, Manual of the Aspergilli: 219 (1945) 16. #A. fumigatus Fresen., Beitr. Mykol. 3: 81 (1863) 17. A. glaucus (L.) Link, Mag. Gesell. Naturf. Freunde Berlin 3(1–2): 82 (1809) 18. #A. gracilis Bainier, Bull. Soc. Mycol. Fr. 23(2): 92 (1907 19. A. kanagawaensis Nehira, J. Jap. Bot.: 109 (1951) 20. A. melleus Yukawa, J. Coll. Agric. Imp. Univ. Tokyo: 358 (1911) 21. A. nidulans (Eidam) G. Winter, Rabenhorst’s Kryptogamen-Flora, Pilze - Ascomyceten 1(2): 62 (1884) 22. #A. niger Tiegh., Annal. Sci. Natur. Bot. 8: 240 (1867) 23. #A. nomius Kurtzman, B.W. Horn & Hesselt., Antonie van Leeuwenhoek 53(3): 151 (1987) 123 392 24. A. nutans McLennan & Ducker, Aust. J. Bot. 2(3): 355 (1954) 25. #A. ochraceus K. Wilh., Beit Kenntni Pilzgattung Aspergillus: 66 (1877) 26. #A. ochraceopetaliformis Bat. & Maia, Anais Soc. Biol. Pernambuco 15(1): 213 (1957) 27. A. ostianus Wehmer, Bot. Zbl.: 461 (1897) 28. #A. penicillioides Speg., Revta. Fac. Agron. Vet. Univ. Na.c La Plata 2: 245 (1896) 29. A. protuberus Munt.-Cvetk., Mikrobiologiya 5: 119 (1968) 30. A. pseudodeflectus Samson & Mouch., Antonie van Leeuwenhoek 41(3): 345 (1975) 31. A. pulverulentus (McAlpine) Wehmer, Bot. Zentralbl.: 394 (1907) 32. A. repens (Corda) Sacc., Michelia 2(8): 577 (1882) 33. #A. restrictus G. Sm., J. Textile Res. Inst.: 115 (1931) 34. #A. ruber Thom & Church, The Aspergilli: 112 (1926) 35. #A. sclerotiorum G.A. Huber, Phytopathology 23: 306 (1933) 36. A. subsessilis Raper & Fennell, The Genus Aspergillus: 530 (1965) 37. #A. sydowii (Bainier & Sartory) Thom & Church, The Aspergilli: 147 (1926) 38. A. taichungensis Yaguchi, Someya & Udagawa, Mycoscience 36(4): 421 (1995) 39. #A. tamarii Kita, Centralbl. Bakteriol., Abt. 2: 433 (1913) 40. #A. terreus Thom, Am. J. Bot. 5 (2): 85 (1918) 41. A. terricola É.J. Marchal, Rev. Mycol. (Toulouse): 101 (1893) 42. #A. tubingensis Mosseray, La Cellule 43: 245 (1934) 43. #A. unguis (Weill & L. Gaudin) Dodge, Medical mycology. Fungous diseases of men and other mammals: 637 (1935) 44. #A. ustus (Bainier) Thom & Church, The Aspergilli: 152 (1926) 45. #A. versicolor (Vuill.) Tirab., Ann. Bot.: 9 (1908) 46. A. wentii Wehmer, Centralbl. Bakteriol.: 150 (1896) 47. A. westerdijkiae Frisvad & Samson, Stud. Mycol. 50(1): 30 (2004) *Dichotomomyces Saito ex D.B. Scott, Trans. Br. Mycol. Soc. 55(2): 313 (1970) 1. D. cejpii (Milko) D.B. Scott, Trans. Br. Mycol. Soc. 55(2): 314 (1970) Eupenicillium F. Ludw., Lehrbuch der Niederen Kryptogamen: 256, 257, 263 (1892) 1. E. limosum S. Ueda, Mycoscience 36(4): 451 (1995) Eurotium Link, Magazin der Gesellschaft Naturforschenden Freunde Berlin 3 (1): 31, t. 2 :44 (1809) 1. E. herbariorum (F.H. Wigg.) Link, Magazin der Gesellschaft Naturforschenden Freunde Berlin 3 (1): 31 (1809) 123 Fungal Diversity (2019) 96:347–433 2. E. rubrum Jos. König et al., Z. Untersuch. NahrungsGen.smittel: 726 (1901) *Emericella Berk., Intr. Crypt. Bot. (London): 340 (1857) 1. E. nidulans (Eidam) Vuill., C. r. hebd. Sanc. Acad. Sci., Paris 184: 137 (1927) 2. E. variecolor Berk. & Broome, Intr. Crypt. Bot. (London): 340 (1857) *Neosartorya Malloch & Cain, Can. J. Bot. 50(12): 2620 (1973) 1. N. laciniosa S.B. Hong, Frisvad & Samson, Int. J. Syst. Evol. Microbiol. 56(2): 484 (2006) 2. N. paulistensis Y. Horie, Miyaji & Nishim., in Horie et al., Mycoscience 36(2): 163 (1995) 3. N. tsunodae Yaguchi, Abliz & Y. Horie, Mycoscience 51(4): 261 (2010) *Paecilomyces Bainier, Bull. Soc. Mycol. Fr. 23(1): 27 (1907) 1. #P. variotii Bainier, Bull. Soc. Mycol. Fr. 23(1): 27 (1907) *Penicillium Link, Magazin der Gesellschaft Naturforschenden Freunde Berlin 3: 16 (1809) 1. P. asperosporum G. Sm., Trans. Br. mycol. Soc. 48 (2): 275 (1965) 2. #P. atrosanguineum B.X. Dong, Cesk Mykol. 27(3): 174 (1973) 3. P. atramentosum Thom, U.S.D.A. Bu Animal Ind Bull 118: 65 (1910) 4. P. attenuatum Kirichuk & Pivkin, in Kirichuk, Pivkin & Matveeva, Mycol. Progr. 16(1): 21 (2017) 5. P. aurantiogriseum Dierckx, Ann. Soc. Sci. Bruxelles 25: 88 (1901) 6. P. bilaiae Chalab., Notul. Syst. Sect. Cryptog. Inst. bot. Acad. Sci. U.S.S.R: 161-165 (1950) 7. #P. brevicompactum Dierckx, Ann. Soc. Sci. Bruxelles 25: 88 (1901) 8. P. camemberti Thom, Bull. U. S. Dep. Agric., Bur. Animal Ind. 82: 50 (1906) 9. P. canesens Sopp, Monograph of Penicillium 11: 181 (1912) 10. P. chermesinum Biourge, La Cellule 33: 284-288 (1923) 11. #P. chrysogenum Thom, Bull. U. S. Dep. Agric., Bur. Animal Ind. 118: 58 (1910) 12. #P. citrinum Thom, Bull. U. S. Dep. Agric., Bur. Animal Ind. 118: 61 (1910) 13. #P. citreonigrum Dierckx, Ann. Soc. Sci. Bruxelles 25: 86 (1901) 14. #P. commune Thom, Bull. U. S. Dep. Agric., Bur. Animal Ind. 118: 56–57 (1910) 15. P. corylophilum Dierckx, Annales de la Socit Scientifique de Bruxelles 25 (1): 86 (1901) 16. P. crustosum Thom, The Penicillia: 399 (1930) Fungal Diversity (2019) 96:347–433 17. P. decumbens Thom, Bull. U. S. Dep. Agric., Bur. Animal Ind. 181: 71 (1910) 18. P. decaturense S.W. Peterson, E.M. Bayer & Wicklow, Mycologia 96 (6): 1290 (2005) 18. P. dimorphosporum H.J. Swart, Trans. Br. Mycol. Soc. 55(2): 310 (1970) 19. P. dierckxii Biourge, La Cellule 33: 313 (1923) 20. P. dodgei Pitt, The genus Penicillium and its teleomorph states Eupenicillium and Talaromyces (London): 117 (1980) 21. #P. dravuni Janso, Mycologia 97(2): 445 (2005) 22. P. echinulatum Raper & Thom ex Fassat., Acta Universitatis Carolinae Biologica 12: 326 (1977) 23. P. expansum Link, Mag. Gesell. Naturf. Freunde, Berlin 3(1–2): 54 (1809) 24. P. glabrum (Wehmer) Westling, Ark. Bot. 11(1): 131 (1911) 25. P. granulatum Bainier, Bull. Soc. Mycol. Fr. 21: 127 (1905) 26. P. griseofulvum Dierckx, Ann. Soc. Sci. Bruxelles 25: 88 (1901) 27. P. implicatum Biourge, La Cellule 33(1): 278 (1923) 28. P. hirsutum Sartory & Bainier, Bull. Soc. mycol. Fr.: 373 (1913) 29. P. janczewskii K.M. Zalessky, Bull. Acad. Polon. Sci., Math. Nat., Sr. B: 488 (1927) 30. P. jejuense M.S. Park & Y.W. Lim, Mycologia 107 (1): 212 (2015) 31. P. lanosum Westling, Ark. Bot. 11: 97 (1911) 32. P. italicum Wehmer, Hedwigia 33: 211 (1894) 33. P. lividum Westling, Ark. Bot. 11: 136 (1911) 34. P. jensenii K.M. Zalessky, Bulletin International de l’Academie Polonaise des Sciences et des Lettres Srie B 1927: 494 (1927) 35. P. madriti G. Sm., Transactions of the British Mycological Society 44 (1): 42–50 (1961) 36. P. melinii Thom, The Penicillia: 273 (1930) 37. P. miczynskii K.M. Zalessky, Bull. Acad. Polon. Sci., Math. Nat., Sr. B: 482 (1927) 38. #P. minioluteum Dierckx, Ann. Soc. Sci. Bruxelles 25: 87 (1901) 39. P. montanense M. Chr. & Backus, Mycologia 54(5): 574 (1963) 40. P. multicolor Grig.-Man. & Porad., Arch. des Sciences Biol. Leningrad: 120 (1915) 41. P. nalgiovense Laxa, Zentralblatt fr Bakteriologie und Parasitenkunde Abteilung 2 86 (5–7): 160 (1932) 42. P. notatum Westling, Ark. Bot. 11: 95 (1911) 43. #P. ochotense Kirichuk & Pivkin, in Kirichuk, Pivkin & Matveeva, Mycol. Progr. 16(1): 21 (2017 44. #P. oxalicum Currie & Thom, J. Biol. Chem. 22(2): 289 (1915) 45. P. palitans Westling, Arkiv fr Botanik 11 (1): 83 (1911) 393 46. P. paneum Frisvad, in Boysen, Skouboe, Frisvad & Rossen, Microbiol., Reading 142(3): 546 (1996) 47. #P. paxilli Bainier, Bull. Soc. Mycol. Fr. 23: 95 (1907) 48. #P. piltuense Kirichuk & Pivkin, in Kirichuk, Pivkin & Matveeva, Mycol. Progr. 16(1): 19 (2017) 49. P. purpurascens (Sopp) Biourge, La Cellule 33: 105 (1923) 50. P. purpureogenum Stoll: 235–237 (1923) 51. P. raistrickii G. Sm., Trans. Br. Mycol. Soc. 18(1): 90 (1933) 52. #P. restrictum J.C. Gilman & E.V. Abbott, J. Iowa State College, Sci. 1: 297 (1927) 53. P. roseopurpureum Dierckx, Annales de la Socit Scientifique de Bruxelles 25 (1): 86 (1901) 54. P. sacculum E. Dale, Annls. Mycol. 24(1/2): 137 (1926) 55. P. sclerotiorum J.F.H. Beyma, Zentralblatt fr Bakteriologie und Parasitenkunde Abteilung 2 96: 416 (1937) 56. #P. simplicissimum (Oudem.) Thom, The Penicillia: 335 (1930) 57. P. solitum Westling, Ark. Bot. 11: 52 (1911) 58. P. spinulosum Thom, Bull. U. S. Dep. Agric., Bur. Animal Ind. 118: 76 (1910) 59. P. steckii K.M. Zalessky, Bulletin International de l’Academie Polonaise des Sciences et des Lettres Srie B 1927: 469 (1927) 60. P. thomii Maire, Bull. Soc. Hist. Nat. Afr. N. 8: 189–192 (1917) 61. #P. toxicarium I. Miyake, in Miyake, Naito & Sumida, Manual and Atlas of the Penicillia (Amsterdam): 125 (1940) 62. P. velutinum J.F.H. Beyma, Zentralblatt fr Bakteriologie und Parasitenkunde Abteilung 2 91: 352 (1935) 63. P. vinaceum J.C. Gilman & E.V. Abbott, Iowa State College Journal of Science 1 (3): 299 (1927) 64. #P. virgatum Nirenberg & Kwana, Mycol. Res. 109(9): 977 (2005) 65. P. vulpinum (Cooke & Massee) Seifert & Samson, Advances in Penicillium and Aspergillus Systematics: 144 (1985) 66. P. waksmanii K.M. Zalessky, Bull. Acad. Polon. Sci., Math. et Nat., Sr. B: 468 (1927) *Purpureocillium Luangsa-ard, Hywel-Jones, Houbraken & Samson, in Luangsa-ard, Houbraken, Doorn, Hong, Borman, Hywel-Jones & Samson, FEMS Microbiol. Lett. 321(2): 144 (2011) 1. #P. lilacinum (Thom) Luangsa-ard, Houbraken, HywelJones & Samson, in Luangsa-ard, Houbraken, Doorn, Hong, Borman, Hywel-Jones & Samson, FEMS Microbiol. Lett. 321(2): 144 (2011) Talaromyces C.R. Benj., Mycologia 47: 681 (1955) 1. T. flavus (Klcker) Stolk & Samson, Stud. Mycol. 2: 10 (1972) 123 394 2. T. helicus C.R. Benj., Mycologia 47(5): 684 (1955) 3. T. minioluteus (Dierckx) Samson, N. Yilmaz, Frisvad & Seifert, in Samson, Yilmaz, Houbraken, Spierenburg, Seifert, Peterson, Varga & Frisvad, Stud Mycol 70: 176 (2011) 4. #T. pinophilus (Hedgc.) Samson, N. Yilmaz, Frisvad & Seifert, in Samson et al., Stud. Mycol. 70: 176 (2011) 5. #T. purpureogenus Samson et al., in Samson et al., Stud. Mycol. 70: 177 (2011) 6. #T. radicus (A.D. Hocking & Whitelaw) Samson, Yilmaz, Frisvad & Seifert, Stud. Mycol. 70: 177 (2011) 7. T. rugulosus (Thom) Samson, N. Yilmaz, Frisvad & Seifert, in Samson, Yilmaz, Houbraken, Spierenburg, Seifert, Peterson, Varga & Frisvad, Stud Mycol 70: 177 (2011) 8. T. variabilis Sopp, Skrifter udgivne af Videnskabs-Selskabet i Christiania. Mathematisk-Naturvidenskabelig Klasse 11: 169 (1912) 9. #T. verruculosus (Peyronel) Samson, Yilmaz, Frisvad & Seifert, Stud. Mycol. 70: 177 (2011) Nectriaceae Tul. & C. Tul., Selecta Fungorum Carpologia: Nectriei- Phacidiei- Pezizei 3: 3 (1865) *Tubercularia Tode, Fung. Mecklenb. Sel. 1: 18 (1790) 1. T. pulverulenta Speg., Anal. Soc. Cient. Argent. 12(1): 32 (1881) Trichocomaceae E. Fisch., Nat. Pflanzenfamilien: 310 (1897) Hemicarpenteles A.K. Sarbhoy & Elphick, Transactions of the British Mycological Society 51 (1): 155 (1968) 1. H. ornata (Raper, Fennell & Tresner) Arx, The genera of fungi sporulating in pure culture: 94 (1974) Cordycipitaceae Kreisel, Grundz. Natrl. Syst. Pilze: 112 (1969) *Beauveria Vuill., Bull. Soc. Bot. Fr. 59: 40 (1912) 1. B. bassiana (Bals.-Criv.) Vuill., Bull. Soc. Bot. Fr. 12: 40 (1912) Cordyceps Fr., Handbuch zur Erkennung der nutzbarsten und am häufigsten vorkommenden Gewächse: 346 (1833) 1. C. polyarthra Möller, Bot Mitt Trop 9: 213 (1901) Subclass: Chaetothyriomycetidae Doweld, Prosyllabus Tracheophytorum, Tentamen systematis plantarum vascularium (Tracheophyta): LXXVIII (2001) 1. CHAETOTHYRIALES M.E. Barr, Mycotaxon 29: 502 (1987) Herpotrichiellaceae Munk, Dansk bot. Ark. 15(2): 131 (1953) Capronia Sacc., Syll. Fung. 2: 288 (1883) 1. C. ciliomaris (Kohlm.) E. Mll., Petrini, P.J. Fisher, Samuels & Rossman, Trans. Br. Mycol. Soc. 88(1): 73 (1987) 2. C. coronata Samuels, Trans. Br. Mycol. Soc. 88(1): 65 (1987) *Coniosporium Link, Mag. Gesell. naturf. Freunde, Berlin 3(1–2): 8 (1809) 123 Fungal Diversity (2019) 96:347–433 1. C. perforans Sterfl., in Sterflinger et al., Antonie van Leeuwenhoek 72(4): 352 (1997) Exophiala J.W. Carmich., Sabouraudia 5(1): 122 (1966) 1. E. dermatitidis (Kano) de Hoog, Stud. Mycol. 15: 118 (1977) 2. E. pisciphila McGinnis & Ajello, Mycologia 66(3): 518 (1974) 3. E. salmonis J.W. Carmich., Sabouraudia 5(1): 122 (1966) 4. E. xenobiotica de Hoog et al., Anton. van Leeuw. 90(3): 264 (2006 *Metulocladosporiella Crous, Schroers, Groenewald, U. Braun & Schubert, Mycol. Res. 110(3): 269 (2006) 1. #M. musae (E.W. Mason) Crous, Schroers, J.Z. Groenew., U. Braun & K. Schub., Mycol. Res. 110(3): 269 (2006) *Phialophora Medlar, Mycologia 7(4): 202 (1915) 1. Ph. bubakii (Laxa) Schol-Schwarz, Persoonia 6(1): 66 (1970) 2. Ph. cinerescens (Wollenw.) J.F.H. Beyma, Antonie van Leeuwenhoek 6: 38 (1940) 3. Ph. fastigiata (Lagerb. & Melin) Conant, Mycologia 29 (5): 597 (1937) 2. PYRENULALES Fink ex D. Hawksw. & O.E. Erikss., Syst. Ascomyc. 5: 182(1986) Requienellaceae Boise, Mycologia 78: 37 (1986) Pyrenographa Aptroot, Biblioth. Lichenol. 44: 103 (1991) 1. P. xylographoides Aptroot, Biblioth. Lichenol. 44: 103 (1991) Pyrenulales incertae sedis Xenus Kohlm. & Volkm.-Kohlm., Cryptog. Bot. 2: 367 (1992) 1. X. lithophylli Kohlm. & Volkm.-Kohlm., Cryptog. Bot. 2(4): 368 (1992) 3. COLLEMOPSIDIALES Pere-Otega, Gardo-Benavert & Grube, Fungal Diversity 80: 296 (2016) Xanthopyreniaceae Zahlbr., Syst. Lich.: 91 (1926) Collemopsidium Nyl., Flora (Regensburg) 64: 6 (1881) 1. #C. halodytes (Nyl.) Grube & B.D. Ryan, Lichen Flora of the Greater Sonoran Desert Region (Tempe) 1: 163 (2002) 2. #C. elegans (R. Sant.) Grube & B.D. Ryan, Lichen Flora of the Greater Sonoran Desert Region (Tempe) 1: 163 (2002) 3. #C. foveolatum (A.L. Sm.) F. Mohr,.Mycol. Res. 108(5): 529 (2004) 4. #C. ostrearum (Vain.) F. Mhor, Mycol. Res. 108 (5): 530 (2004) 5. C. pelvetiae (G.K. Sutherl.) Kohlm., D. Hawksw. & Volkm.-Kohlm., Mycol. Progr. 3 (1): 54 (2004) Fungal Diversity (2019) 96:347–433 6. C. pneumatophorae (Kohlm.) Aptroot, Mycosphaerella and its anamorphs: 2. Conspectus of Mycosphaerella: 160 (2006) 7. #C. sublitorale (Leight.) Grube & B.D. Ryan, Lichen Flora of the Greater Sonoran Desert Region (Tempe) 1: 163 (2002) 4. VERRUCARIALES Mattick ex D. Hawksw. & O.E. Erikss., Syst. Ascomyc. 5: 183 (1986) Verrucariaceae Zenker, Pharmaceutische Waarenkunde 1: 123 (1827) Hydropunctaria Gerw. Keller, Gueidan & Ths, Taxon 58(1): 193 (2009) 1. H. adriatica (Zahlbr.) C. Keller & Gueidan, Taxon 58(1): 194 (2009) 2. H. amphibia (Clemente ex Ach.) Cl. Roux, in Roux, Masson, Bricaud, Coste & Poumarat, Bull. Soc. linn. Provence, num. spc. 14: 108 (2011) 3. H. aractina (Wahlenb.) Orange, Lichenologist 44(3): 305 (2012) 4. H. orae Orange, Lichenologist 44(3): 314 (2012) 5. H. oceanica Orange, Lichenologist 44(3): 312 (2012) 6. H. maura (Wahlenb.) C. Keller, Gueidan & Ths, Taxon 58(1): 194 (2009) Mastodia Hook. f. & Harv.: 499 (1847) 1. M. tessellata (Hook. f. & Harv.) Hook. f. & Harv., Bot. Antarc. Voy.: 499 (1847) Verrucaria Schrad., Spicilegium Florae Germanicae: 108 (1794) 1. V. adguttata Zahlbr. Denkschr. Kaiserl. Akad. Wiss. Wien, Math.-Naturwiss. Kl. 104: 250 (1941) 2. V. allantoidea H. Harada, Nova Hedwigia 60(1–2): 75 (1995) 3. V. ceuthocarpa Wahlenb., in Acharius, Method Lich.: 22 (1803) 4. V. corallensis P.M. McCarthy, Australas. Lichenol. 63: 17 (2008) 5. V. ditmarsica Erichs., Schr. Naturw. Ver. Schles.-Holst. 22: 90 (1937) 6. V. erichsenii Zschacke, Verh. Bot. Ver. Prov. Brandenb. 70: 192 (1928) 7. V. halizoa Leight., Lich.-Fl. Great Brit.: 436 (1871) 8. V. halochlora H. Harada, Nova Hedwigia 60(1–2): 74 (1995) 9. V. microsporoides Nyl., Bull. Soc. Bot. Fr. 8: 759 (1863) [1861] 10. V. paulula Sandst., Helgolander Wiss. Meeresunters. 16: 5 (1925) 11. V. psychrophila I.M. Lamb, Discovery Repts. 25: 18 (1948) 12. V. sandstedei B. de Lesd., Bull. Soc. Bot. Fr. 58(8): 662 (1912) 395 13. V. serpuloides I.M. Lamb, Discovery Repts. 25: 20 (1948) 14. V. sessilis P.M. McCarthy, N. Z. Jl Bot. 29(3): 285 (1991) 15. V. subdiscreta P.M. McCarthy, Muelleria 7(3): 327 (1991) 16. V. thalassina (Zahlbr.) Zschacke, Rabenh. Krypt.-Fl., Edn 2 (Leipzig) 9.1(1): 132 (1933) Gueid Wahlenbergiella Gueidan & Thüs, Taxon 58(1): 199 (2009) 1. W. mucosa (Wahlenb.) Gueidan & Ths, Taxon 58(1): 200 (2009) 2. W. striatula (Wahlenb.) Gueidan & Ths, Taxon 58(1): 200 (2009) 3. W. tavaresiae (R.L. Moe) Gueidan, Ths & Prez-Ort., Bryologist 114(3): 567 (2011) Class: Laboulbeniomycetes Engl., Natrl. Pflanzenfam.: vi (1897) 1. LABOUBENIALES Lindau, Natrl Pflanzenfam: 491 (1897) Laboulbeniaceae G. Winter, Rabenh. Krypt.-Fl.: 918 (1886) Laboulbenia Mont. & C.P. Robin, Histoire naturelle des vgtaux parasites qui croissent sur l’homme et sur les animaux vivants: 622 (1853) 1. L. marina F. Picard, C. R. Soc. Biol., Paris 65: 484 (1908) Eurotiomycetes incertae sedis Dactylosporaceae Bellem. & Hafellner, Cryptog. Mycol. 3: 79 (1982) Dactylospora Krb., Syst. Lich. Germ.: 271 (1855) 1. D. canariensis Kohlm. & Volkm.-Kohlm., Mycotaxon 67: 248 (1998) 2. #D. haliotrepha (Kohlm. & E. Kohlm.) Hafellner, Beih. Nova Hedwigia 62: 111 (1979) 3. D. mangrovei E.B.G. Jones, Alias, Abdel-Wahab & S.Y. Hsieh, Mycoscience 40(4): 317 (1999) 4. #D. vrijmoediae K.L. Pang, S.Y. Guo, Alias, Hafellner & E.B.G. Jones, Bot. Mar. 57(4): 317 (2014) Class: Leotiomycetes O.E. Erikss. & Winka, Myconet 1: 7 (1997) Subclass: Leotiomycetidae 1. HELOTIALES Nannf. ex Korf & Lizon, Mycotaxon 75: 501 (2000) Helotiaceae Rehm, Rabenhorst’s Kryptogamen-Flora, Pilze - Ascomyceten 1(3): 647 (1886) Amylocarpus Curr., Proc. R. Soc. Lond., B Biol. Sci. 9: 122 (1859) 1. #A. encephaloides Curr., Proc. R. Soc. Lond., B Biol. Sci. 9: 119 (1859) 123 396 Dactylaria Sacc., Michelia 2 (6): 20 (1880) 1. D. humicola G.C. Bhatt & W.B. Kendr., Canadian Journal of Botany 46 (10): 1256 (1968) Leotiaceae Corda, Icones fungorum hucusque cognitorum 5: 37 (1842) Calycina Nees ex Gray, A natural arrangement of British plants 1: 669 (1821) 1. #C. marina (W. Phillips ex Boyd) T. Rm, Baral, O.E. Eriks., Bot. Mar. [In Press] * Halenospora E.B.G. Jones, Fungal Divers. 35: 154 (2009) 1. #H. varia (Anastasiou) E.B.G. Jones, Fungal Divers. 35: 154 (2009) * Pezoloma Clem., The genera of Fungi: 86, 175 (1909) 1. #P. ericae (D.J. Read) Baral, in Baral & Krieglsteiner, Acta Mycologica, Warszawa 41(1): 16 (2006) Leptodontidiaceae Hern.-Restr., Crous & Gené, Studies in Mycology 86: 81 (2017) Leptodontidium de Hoog, Taxon 28: 347 (1979) 1. L. orchidicola Sigler & Currah, Canadian Journal of Botany 65 (12): 2476 (1987) Myxotrichaceae Locq. ex Currah, Mycotaxon 24: 103 (1985) *Pseudogymnoascus Raillo, Zentbl. Bakt. ParasitKde, Abt. II 78: 520 (192 1. #P. pannorum (Link) Minnis & D.L. Lindner, Fungal Biol. 117(9): 646 (2013) Sclerotiniaceae Whetzel, Mycologia 37(6): 652 (1945) Botrytis P. Micheli ex Haller, Historia stirpium indigenarum Helvetiae inchoata: 111 (1768) 1. B. cinerea Pers., Neues Magazin fr die Botanik. 1: 126, t. 3:9 (1794) *Botryophialophora Linder, Farlowia 1(3): 403 (1944) 1. B. marina Linder, Farlowia 1(3): 404 (1944) Vibrisseaceae Korf, Mycosystema 3: 23 (1990) Vibrissea Fr., Syst. Mycol. 2: 31 (1822) 1. V. nypicola K.D. Hyde & Alias, Mycol. Res. 103(11): 1419 (1999) Dermateaceae Fr., [as ‘Dermatei’], Summa veg. Scand. 2: 345 (1849) Belonium Sacc., Bot. Central. 18: 219 (1884) 1. B. heteromorphum (Ellis & Everh.) Seaver, The North American Cup-fungi (Inoperculates) (3): 174 (1951) Hyaloscyphaceae Nannf., Nova Acta R. Soc. Scient. Upsal. 8(2): 258 (1932) Brunnipila Baral, Beih. Z. Mykol. 6: 49 (1985) 1. B. palearum (Desm.) Baral, Beih. Z. Mykol. 6: 51 (1985) Lachnum Retz., Fl scand prodr., Edn altera: 329 (1795) 1. L. spartinae S.A. Cantrell, Mycotaxon 57: 482 (1996) 2. THELEBOLALES P.F. Cannon, Dictionary of the fungi: XI (2001) 123 Fungal Diversity (2019) 96:347–433 Thelebolaceae (Brumm.) Eckblad, Nytt Mag. Bot. 15(1–2): 22 (1968) Antarctomyces Stchigel & Guarro, Mycol. Res. 105(3): 378 (2001) 1. A. psychrotrophicus Stchigel & Guarro, Mycol. Res. 105(3): 378 (2001) Thelebolus Tode, Fungi Mecklenburgenses Selecti 1: 41 (1790) 1.#Th. balaustiformis E. Bovio, L. Garzoli, A. Poli, V. Prigione, G.C. Varese, Fungal Systematics and Evolution 1: 154 (2018) 2. #Th. microsporus (Berk. & Broome) Kimbr., Annual Report of the Institute for Fermentation Osaka 3: 50 (1967) 3. #Th. spongiae E. Bovio, L. Garzoli, A. Poli, V. Prigione, G.C. Varese, Fungal Systematics and Evolution 1: 158 (2018) Helotiales incertae sedis Cadophora Lagerb. & Melin, Svenska Skogsvrdsfreningens Tidskr 2(2–4): 263 (1928) 1. C. malorum (Kidd & Beaumont) W. Gams, Stud. Mycol. 45: 188 (2000) Gloeotinia M. Wilson, Noble & E.G. Gray, Trans. Br. Mycol. Soc. 37(1): 31 (1954) 1. #G. granigena (Qul.) T. Schumach., Mycotaxon 8(1): 125 (1979) 2. G. juncorum (Velen.) Baral, Beih. Z. Mykol. 6: 17 (1985) 3. G. tremulenta (Prill. & Delacr.) M. Wilson, Noble & E.G. Gray, Trans. Br. Mycol. Soc. 37(1): 29 (1954) *Scytalidium Pesante, Annali della Sperimentazione Agaria 11 (suppl.): 264 (1957) 1. S. infestans Iwatsu, Udagawa & Hatai, Trans. Mycol. Soc. Jpn. 31(3): 391 (1990) *Tiarosporella Hhn. in Weese, in Weese, Ber. dt. bot. Ges. 37: 159 (1919) 1. T. halmyra Kohlm. & Volkm.-Kohlm., Mycotaxon 59: 79 (1996) Leotiomycetes incertae sedis *Geomyces Traaen, Nytt. Mag. Natur. 52: 28 (1914) 1. G. pannorum (Link) Sigler & J.W. Carmich., Mycotaxon 4(2): 377 (1976) Pseudogymnoascus Raillo, Zentralblatt fr Bakteriologie und Parasitenkunde Abteilung 2 78: 520 (1929) 1. P. roseus Raillo, Zentralblatt fr Bakteriologie und Parasitenkunde Abteilung 2 78: 520 (1929) Class: Lichinomycetes Reeb, Lutzoni & Cl. Roux, Mol. Phylogenet. Evol. 32: 1055 (2004) Subclass: Lichinomycetidae 1. LICHINALES Henssen & Bdel, Syst. Ascomyc. 5: 138 (1986) Lichinaceae Nyl., Mm. Soc. Sci. Nat. Cherbourg 2: 8 (1854) Fungal Diversity (2019) 96:347–433 Lichina C. Agardh, Syn. Alg. Scand.: xii, 9 (1817) 1. L. confinis (O.F. Mll.) C. Agardh, Spec. Alg. 1: 105 (1821) 2. L. pygmaea (Lightf.) C. Agardh, Syn. Alg. Scand.: xii, 9 (1817) Subclass: Arthonomycetidae Family incertae sedis Melaspileaceae Walt. Watson, New Phytol. 28: 94 (1929) Melaspilea Nyl., Act. Soc. Linn. Bordeaux 21: 416 (1857) 1. M. mangrovei Vrijmoed, K.D. Hyde & E.B.G. Jones, Mycol. Res. 100(3): 293 (1996) 1. ARTHONIALES Henssen ex D. Hawksw. & O.E. Erikss., Syst. Ascomyc. 5: 177 (1986) Roccellaceae Chevall., [as ‘Rocellaceae’], Fl. Gn. Env. Paris 1: 604 (1826) Halographis Kohlm. & Volkm.-Kohlm., Can. J. Bot. 66(6): 1138 (1988) 1. H. runica Kohlm. & Volkm.-Kohlm., Can. J. Bot. 66(6): 1138 (1988) Class: Orbiliomycetes O.E. Erikss. & Baral, Myconet 9: 96 (2003) Subclass: Orbiliomycetidae 1. ORBILIALES Baral, O.E. Erikss., G. Marson & E. Weber, Myconet 9: 96 (2003) Orbiliaceae Nannf., Nova Acta R. Soc. Scient. Upsal. 8(2): 250 (1932) *Arthrobotrys Corda, Pracht.-Fl. Eu.r Schimmelbild.: 43 (1839) 1. A. arthrobotryoides (Berl.) Lindau, Rabenh. Krypt.-Fl., Edn 2 (Leipzig) 1.8: 371 (1906) [1907] 2. A. brochopaga (Drechsler) S. Schenck, W.B. Kendr. & Pramer, Can. J. Bot. 55(8): 982 (1977) 3. A. cladodes var. cladodes Drechsler, Mycologia 29(4): 463 (1937) 4. A. conoides Drechsler, Mycologia 29(4): 476 (1937) 5. A. dactyloides Drechsler, Mycologia 29(4): 486 (1937) 6. A. eudermata (Drechsler) M. Scholler, Hagedorn & A. Rubner, Sydowia 51(1): 102 (1999) 7. A. javanica (Rifai & R.C. Cooke) Jarow., Acta Mycologica, Warszawa 6(2): 373 (1970) 8. A. mangrovispora Swe, Jeewon, Pointing & K.D. Hyde, Bot. Mar. 51(4): 332 (2008) 9. A. musiformis Drechsler, Mycologia 29(4): 481 (1937) 10. A. oligospora Fresen., Beitr. Mykol. 1: 18 (1850) 11. A. polycephala (Drechsler) Rifai, Reinwardtia 7(4): 371 (1968) 12. A. pyriformis (Juniper) Schenk, W.B. Kendr. & Pramer, Can. J. Bot. 55(8): 984 (1977) 397 13. A. superba Corda, Pracht.-Fl. Eur. Schimmelbild.: 43 (1839) 14. A. thaumasius (Drechsler) S. Schenck, W.B. Kendr. & Pramer [as ‘thaumasia’], Can. J. Bot. 55(8): 984 (1977) 15. A. vermicola (R.C. Cooke & Satchuth.) Rifai, Reinwardtia 7(4): 371 (1968) *Dactylellina M. Morelet, Bull. Soc. Sci. Nat. Arch. Toulon et du Var 178: 6 (1968) 1. #D. ellipsospora (Preuss) M. Scholler, Hagedorn & A. Rubner, Sydowia 51(1): 110 (1999) 2. #D. haptotyla (Drechsler) M. Scholler, Hagedorn & A. Rubner, Sydowia 51(1): 110 (1999) 3. D. huisuniana (J.L. Chen, T.L. Huang & Tzean) M. Scholler, Hagedorn & A. Rubner, Sydowia 51(1): 111 (1999) 4. #D. lysipaga (Drechsler) M. Scholler, Hagedorn & A. Rubner, Sydowia 51(1): 111 (1999) *Drechslerella Subram., J. Ind. Bot. Soc. 42: 299 (1963) 1. D. aphrobrocha (Drechsler) M. Scholler, Hagedorn & A. Rubner, Sydowia 51(1): 99 (1999) *Dactylella Grove, J. Bot. Br. Foreign 22: 199 (1884) 1. D. beijingensis Xing Z. Liu, C.Y. Shen & W.F. Chiu, Mycosystema 5: 113 (1992) 2. D. aquatica (Ingold) Ranzoni, Farlowia 4: 360 (1953) Dactylaria Sacc., Michelia 2 (6): 20 (1880) 1. D. purpurella (Sacc.) Sacc., Michelia 2(no. 6): 20 (1880) *Gamsylella M. Scholler, Hagedorn & A. Rubner, Sydowia 51(1): 108 (1999) 1. G. gephyropaga (Drechsler) M. Scholler, Hagedorn & A. Rubner, Sydowia 51(1): 108 (1999) *Geniculifera Rifai, Mycotaxon 2(2): 214 (1975) 1. G. bogoriensis (Rifai) Rifai, Mycotaxon 2(2): 216 (1975) *Monacrosporium Oudem., Ned. Kruidk. Arch. 4: 250 (1885) 1. #M. cionopagum (Drechsler) Subram., J. Indian Bot. Soc. 42: 293 (1964) 2. #M. drechsleri (Tarjan) R.C. Cooke & C.H. Dickinson, Trans. Br. Mycol. Soc. 48(4): 623 (1965) 3. #M. ellipsosporum (Preuss) R.C. Cooke & C.H. Dickinson, Trans. Br. Mycol. Soc. 48(4): 622 (1965) 4. #M. thaumasium (Drechsler) de Hoog & Oorschot, Stud. Mycol. 26: 120 (1985) Class: Sordariomycetes O.E. Erikss. & Winka, Myconet 1: 10 (1997) Subclass: Hypocreomycetidae O.E. Erikss. & Winka, Myconet 1(1): 6 (1997) 1. HYPOCREALES Lindau, Natrl. Pflanzenfam.: 343 (1897) Bionectriaceae Samuels & Rossman, Stud. Mycol. 42: 15 (1999) Bionectria Speg., Boln Acad. Nac. Cienc. Crdoba 579: 563 (1919) 123 398 1. #B. ochroleuca (Schwein.) Schroers & Samuels, Z. Mykol. 63(2): 151 (1997) Halonectria E.B.G. Jones, Trans. Br. Mycol. Soc. 48(2): 287 (1965) 1. H. milfordensis E.B.G. Jones, Trans. Br. Mycol. Soc. 48(2): 287 (1965) Heleococcum C.A. Jrg., Botanisk Tidsskrift 37(5): 417 (1922) 1. H. japonense Tubaki, Trans. Mycol. Soc. Jpn. 8(1): 5 (1967) *Hydropisphaera Dumort., Comment. bot.: 89 (1822) 1. H. erubescens (Roberge ex Desm.) Rossman & Samuels, Stud. Mycol. 42: 30 (1999) Kallichroma Kohlm. & Volkm.-Kohlm., Mycol. Res. 97: 759 (1993) 1. #K. asperum Abdel-Wahab, Bahkali & E.B.G. Jones, Phytotaxa 260: 69 (2016) 2. # K. ellipsoideum Abdel-Wahab, Bahkali & E.B.G. Jones, Phytotaxa 260: 70 (2016 3. K. glabrum (Kohlm.) Kohlm. & Volkm.-Kohlm., Mycol. Res. 97(6): 759 (1993) 4. #K. tethys (Kohlm. & E. Kohlm.) Kohlm. & Volkm.Kohlm., Mycol. Res. 97(6): 759 (1993) Pronectria Clem., The genera of Fungi: 78: 282 (1931) 1. P. laminariae (O.E. Erikss.) Lowen, Mycotaxon 39: 461 (1990) Sesquicillium W. Gams, Acta Botanica Neerlandica 17: 455 (1968) 1. S. microsporum (Jaap) Veenb.-Rijks & W. Gams, Cephalosporium-artige Schimmelpilze: 226 (1971) Hypocreaceae De Not., G. Bot. Ital. 2: 48 (1844) *Acrostalagmus Corda, Icon. fung. 2: 15 (1838) 1. A. luteoalbus (Link) Zare, W. Gams & Schroers [as ‘luteo-albus’], Mycol. Res. 108(5): 581 (2004) *Gliocladium Corda, Icon. fung. 4: 30 (1840) 1. G. roseum Bainier, Bull. Soc. Mycol. Fr. 23: 111 (1907) Hypocrea Fr., Syst. Orb. Veg. 1: 104 (1825) 1. #H. lixii Pat., Revue Mycol. Toulouse 13(51): 138 (1891) 2. H. vinosa Cooke, Grevillea 8(46): 65 (1879) *Trichoderma Pers., Neues Mag. Bot. 1: 92 (1794) 1. #T. asperellum Samuels, Lieckf. & Nirenberg, Sydowia 51(1): 81 (1999) 2. #T. atroviride P. Karst., Bidr. K nn. Finl. Nat. Folk 51: 363 (1892) 3. T. aureoviride Rifai, Mycol. Pap. 116: 34 (1969) 4. T. citrinoviride Bissett, Can. J. Bot. 62(5): 926 (1984) 5. T. citrinum (Pers.: Fr.) Jaklitsch, W. Gams & Voglmayr, Mycotaxon 126: 147 (2014) 6. T. deliquescens (Sopp) Jaklitsch, Fungal Divers. 48: 176 (2011) 7. T. hamatum (Bonord.) Bainier, Bull. Soc. Mycol. Fr. 22: 131 (1906) 123 Fungal Diversity (2019) 96:347–433 8. #T. harzianum Rifai, Mycol. Pap. 116: 38 (1969) 9. T. polysporum (Link) Rifai, Mycological Papers 116: 18 (1969) 10. #T. stilbohypoxyli Samuels & Schroers, in Samuels et al., Stud. Mycol. 56: 128 (2006) 11. #T. koningii Oudem., Arch. N erl. 7: 291 (1902) 12. T. longibrachiatum Rifai, Mycol. Pap. 116: 42 (1969) 13. T. pseudokoningii Rifai, Mycol. Pap. 116: 45 (1969) 14. #T. virens (J.H. Mill., Giddens & A.A. Foster) Arx, Beih Nova Hedwigia 87: 288 (1987) 15. #T. viride Pers., Neues Mag Bot 1: 92 (1794) Stachybotryaceae L. Lombard & Crous, Persoonia 32: 283 (2014) *Stachybotrys Corda, Icon. Fung. 1: 21 (1837) 1. S. atra Corda, Icon. Fung. (Prague) 1: 21 (1837) 2. #S. chartarum (Ehrenb.) S. Hughes, Can. J. Bot. 36(6): 812 (1958) 3. #S. chlorohalonata B. Andersen & Thrane, Mycologia 95(6): 1228 (2004) 4. S. kampalensis Hansf., Proc. Linn. Soc. Lond. 155: 45 (1943) 5. S. mangiferae P.C. Misra & S.K. Srivast., Trans. Br. Mycol. Soc. 78(3): 556 (1982) 6. S. nephrospora Hansf., Proc. Linn. Soc. Lond. 155: 45 (1943) Nectriaceae Tul. & C. Tul., Selecta Fungorum Carpologia: Nectriei- Phacidiei- Pezizei 3: 3 (1865) Cosmospora Rabenh., Hedwigia: 59 (1862) 1. C. butyri (J.F.H. Beyma) Gr fenhan, Seifert & Schroers, Stud. Mycol. 68: 96 (2011) Cylindrocarpon Wollenw., Phytopathology 1: 225 (1913) 1. C. cylindroides Wollenw., Phytopath. 1: 212, 225 (1913) Fusicolla Bonord., Handbuch der allgemeinen Mykologie: 150 (1851) 1. F. aquaeductuum (Radlk. & Rabenh.) Gr fenhan, Seifert & Schroers, Stud. Mycol. 68: 100 (2011) *Fusarium Link, Mag Gesell Natur Freunde Berlin 3: 10 (1809) 1. #F. chlamydosporum Wollenw. & Reinking, Phytopath. 15 (3): 156 (1925) 2. F. heterosporum Nees & T. Nees, Nova Acta Acad. Caes. Leop.-Carol. Nat. Cur. 9: 235 (1818) 3. F. incarnatum (Roberge) Sacc., Sylloge Fungorum 4: 712 (1886) 4. F. oxysporum Schltdl., Flora Berolinensis Parsecunda: Cryptogamia: 106 (1824) 5. #F. proliferatum (Matsush.) Nirenberg ex Gerlach & Nirenberg, Mitt. Biol. Bund. Aust. Land.-U. Forstw. 169: 38 (1982) 6. F. solani (Mart.) Sacc., Michelia 2 (no. 7): 296 (1881) Gibberella Sacc., Michelia 1 (1): 43 (1877) 1. #G. fujikuroi (Sawada) Wollenw., Z. ParasitKde 3: 514 (1931) Fungal Diversity (2019) 96:347–433 2. G. gordonii C. Booth, The genus Fusarium: 177 (1971) 3. G. tricincta El-Gholl, McRitchie, Schoult. & Ridings, Can. J. Bot. 56(18): 2206 (1978) Haematonectria Samuels & Nirenberg, Stud. Mycol. 42: 134 (1999) 1. #H. haematococca (Berk. & Broome) Samuels & Rossman, in Rossman, Samuels, Rogerson & Lowen, Stud. Mycol. 42: 135 (1999) *Mariannaea G. Arnaud ex Samson, Stud. Mycol. 6: 74 (1974) 1. M. elegans (Corda) Samson, Stud. Mycol. 6: 75 (1974) Nectria (Fr.) Fr., Summa vegetabilium Scandinaviae 2: 387 (1849) 1. N. pulverulenta Dingley, Transactions and Proceedings of the Royal Society of New Zealand 83 (4): 657 (1956) Neocosmospora E.F. Sm., U.S.D.A. Div. Veg. Pathol. Bull. 17: 45 (1899) 1. N. tenuicristata S. Ueda & Udagawa, Mycotaxon 16(2): 387 (1983) Payosphaeria W.F. Leong, Bot. Mar. 33: 511 (1990) 1. P. minuta W.F. Leung, in Leong, Tan, Hyde & Jones, Bot. Mar. 33: 511 (1990) Ophiocordycipitaceae G.H. Sung, J.M. Sung, HywelJones & Spatafora, Stud. Mycol. 57: 35 (2007) Elaphocordyceps G.H. Sung & Spatafora, Stud. Mycol. 57: 36 (2007) 1. #E. subsessilis (Petch) G.H. Sung, J.M. Sung & Spatafora, in Sung et al., Stud. Mycol. 57: 37 (2007) Tolypocladium W. Gams, Persoonia 6 (2): 185 (1971) 1. T. cylindrosporum W. Gams, Persoonia 6 (2): 187 (1971) 2. T. geodes W. Gams, Persoonia 6 (2): 187 (1971) 3. T. inflatum W. Gams, Persoonia 6 (2): 185 (1971) HYPOCREALES incertae sedis *Acremonium Link, Mag. Gesell. Naturf. Freunde, Berlin 3(1–2): 15 (1809) 1. A. alternatum Link, Mag. Gesell. Naturf. Freunde, Berlin 3(1–2): 15 (1809) 2. A. cereale (P. Karst.) W. Gams, Cephalosporium-artige Schimmelpilze: 88 (1971) 3. #A. charticola (Lindau) W. Gams, Cephalosporium-artige Schimmelpilze: 46 (1971) 4. A. chrysogenum (Thirum. & Sukapure) W. Gams, Cephalosporium-artige Schimmelpilze: 109 (1971) 5. #A. fuci Summerb., Zuccaro & W. Gams, Stud. Mycol. 50(1): 288 (2004) 6. A. fusidioides (Nicot) W. Gams, Cephalosporium-artige Schimmelpilze (Stuttgart): 70 (1971) 7. A. furcatum (Moreau & V. Moreau) ex W. Gams, Nova Hedwigia 18: 3 (1969) 8. A. implicatum (J.C. Gilman & E.V. Abbott) W. Gams, Trans. Br. Mycol. Soc. 64(3): 394 (1975) 399 9. A. luzulae (Fuckel) W. Gams, Cephalosporium-artige Schimmelpilze: 92 (1971) 10. A. neocaledoniae Roquebert & J. Dupont, in Dupont, Bettucci, Pietra, Laurent & Roquebert, Mycotaxon 75: 355 (2000) 11. A. persicinum (Nicot) W. Gams, Cephalosporium-artige Schimmelpilze (Stuttgart): 75 (1971) 12. #A. polychromum (J.F.H. Beyma) W. Gams, Cephalosporium-artige Schimmelpilze (Stuttgart): 81 (1971) 13. A. potronii Vuill., Bull. S anc. Soc. Sci. Nancy, S r. 3 11: 147 (1910) 14. A. rutilum W. Gams, Cephalosporium-artige Schimmelpilze: 105 (1971) 15. A. striatisporum (Onions & G.L. Barron) W. Gams, Cephalosporium-artige Schimmelpilze (Stuttgart): 97 (1971) 16. A. tubakii W. Gams, Cephalosporium-artige Schimmelpilze : 55 (1971) Emericellopsis J.F.H. Beyma, Anton. van Leeuw. 6: 264 (1940) 1. E. humicola (Cain) Cain ex Grosklags & Swift, Mycologia 49: 306 (1957) 2. E. maritima Beliakova, Mikol. Fitopatol. 4(6): 530 (1970) 3. E. microspora Backus & Orpurt, Mycologia 53: 67 (1961) 4. E. minima Stolk, Trans. Br. Mycol. Soc. 38(4): 419 (1955) 5. E. pallida Beliakova, Mikol. Fitopatol. 8: 386 (1974) 6. E. stolkiae D.E. Davidson & M. Chr., Trans. Br. Mycol. Soc. 57(3): 385 (1971) *Gliomastix Gueg., Bulletin de la Soci t Mycologique de France 21: 240 (1905) 1. G. murorum (Corda) S. Hughes, Can. J. Bot. 36(6): 769 (1958) *Myrothecium Tode, Fung. mecklenb. sel. (L neburg) 1: 25 (1790) 1. #M. inundatum Tode, Fung. mecklenb. sel. (L neburg) 1: 25 (1790) 2. M. roridum Tode, Fung. mecklenb. sel. (L neburg) 1: 25 (1790) 3. M. verrucaria (Alb. & Schwein.) Ditmar, in Sturm, Deutschl. Fl., 3 Abt. (Pilze Deutschl.) 1(1): 7 (1813) *Sarocladium W. Gams & D. Hawksw., Kavaka 3: 57 (1976) 1. S. strictum (W. Gams) Summerb., in Summerbell et al., Stud. Mycol. 68(1): 158 (2011) 2. S. kiliense (Gr tz) Summerbell, Studies in Mycology 68: 158 (2011) Sedecimiella K.L. Pang, Alias & E.B.G. Jones, Bot. Mar. 53(6): 495 (2010) 123 400 1. S. taiwanensis K.L. Pang, Alias & E.B.G. Jones, Bot. Mar. 53(6): 495 (2010) *Stachylidium Link, Mag. Gesell. Naturf. Freunde Berlin 3: 15 (1809) 1. S. bicolor Link, Mag. Gesell. Naturf. Freunde, Berlin 3(1–2): 15 (1809) Stilbella Lindau, in Engler & Prantl, Nat. Pflanzenfam., Teil. I (Leipzig): I. Tl., 1. Abt.: Fungi (Eumycetes): 489 (1900) 1. S. aciculosa (Ellis & Everh.) Seifert, Stud. Mycol. 27: 44 (1985) *Trichothecium Link, Neues J. Bot. 3(1–2): 18 (1809) 1. T. sympodiale Summerb., Seifert & Schroers, in Summerbell et al., Stud. Mycol. 68: 160 (2011) 2. CORONOPHORALES Nannf., Nova Acta R. Soc. Scient. Upsal. 8(2): 54 (1932) Nitschkiaceae (Fitzp.) Nannf., Nova Acta R. Soc. Scient. Upsal. 8(2): 56 (1932) Groenhiella J rg. Koch, E.B.G. Jones & S.T. Moss, Bot. Mar. 26: 265 (1983) 1. G. bivestia J rg. Koch, E.B.G. Jones & S.T. Moss, Bot. Mar. 26(6): 265 (1983) 3. MICROASCALES Luttr. ex Benny & Kimbr., Mycotaxon 12(1): 40 (1980) Halosphaeriaceae E. Mull. & Arx ex Kohlm., Can. J. Bot. 50(9): 1951 (1972) Alisea J. Dupont & E.B.G. Jones, Mycol. Res. 113(12): 1358 (2009) 1. #A. longicolla J. Dupont & E.B.G. Jones, Mycol. Res. 113(12): 1358 (2009) Amphitrite S. Tibell, Svensk Mykologisk Tidskrift 37 (2): 45 (2016) 1. A. annulata S. Tibell, Svensk Mykologisk Tidskrift 37: 45 (2016) Aniptodera Shearer & M.A. Mill., Mycologia 69(5): 893 (1977) 1. A. aquadulcis (S.Y. Hsieh, H.S. Chang & E.B.G. Jones) J. Campb., J.L. Anderson & Shearer, Mycologia 95(3): 549 (2003) 2. #A. aquibella J. Yang & K.G. Hyde, Fungal Diversity 78: 94 (2016) 3. #A. chesapeakensis Shearer & M.A. Mill., Mycologia 69(5): 894 (1977) 4. A. haispora Vrijmoed, K.D. Hyde & E.B.G. Jones, Mycol. Res. 98(6): 701 (1994) 5. A. intermedia K.D. Hyde & Alias, Mycol. Res. 103(11): 1409 (1999) 6. A. juncicola Volkm.-Kohlm. & Kohlm., Bot. Mar. 37(2): 109 (1994) 7. A. limnetica Shearer, Mycologia 81(1): 140 (1989) 123 Fungal Diversity (2019) 96:347–433 8. A. mangrovei K.D. Hyde, Can. J. Bot. 64(12): 2989 (1986) 9. A. nypae K.D. Hyde, Sydowia 46(2): 257 (1994) 10. A. salsuginosa Nakagiri & Tad. Ito, Mycol. Res. 98(8): 931 (1994) Anisostagma K.R.L. Petersen & J rg. Koch, Mycol. Res. 100: 209 (1996) 1. A. rotundatum K.R.L. Petersen & J rg. Koch, Mycol. Res. 100(2): 211 (1996) Antennospora Meyers, Mycologia 49: 501 (1957) 1. #A. quadricornuta (Cribb & J.W. Cribb) T.W. Johnson, J. Elisha Mitchell Scient. Soc. 74: 46 (1958) Aniptosporopsis K.L. Pang, C.L. Lu, W.T. Ju et E.B.G. Jones, Botanica Marina 60: 459 (2017) 1. #A. lignatilis (K.D. Hyde) K.L. Pang, C.L. Lu, W.T. Ju et E.B.G. Jones, Botanica Marina 60: 459 (2017) Appendichordella R.G. Johnson, E.B.G. Jones & S.T. Moss, Can. J. Bot. 65(5): 941 (1987) 1. A. amicta (Kohlm.) R.G. Johnson, E.B.G. Jones & S.T. Moss, Can. J. Bot. 65(5): 941 (1987) Arenariomyces Höhnk, Veroff. Inst. Meeresf. Bremerhaven 3: 28 (1954) 1. A. majusculus Kohlm. & Volkm.-Kohlm., Mycol. Res. 92(4): 411 (1989) 2. A. parvulus J rg. Koch, Nordic J. Bot. 6(4): 497 (1986) 3. #A. trifurcatus Höhnk, Veroff. Inst. Meeresf. Bremerhaven 3: 30 (1954) 4. A. triseptatus Kohlm., Marine Ecology, [Publicazioni della Stazione Zoologica Napoli I] 5(4): 333 (1984) 5. A. truncatellus J rg. Koch, Mycotaxon 124: 70 (2013) Bathyascus Kohlm., Revue Mycol. 41(2): 190 (1977) 1. B. avicenniae Kohlm., Bot. Mar. 23(8): 530 (1980) 2. B. grandisporus K.D. Hyde, Bot. Mar. 30(5): 413 (1987) 3. B. mangrovei Ravik. & Vittal, Mycol. Res. 95(3): 370 (1991) 4. B. tropicalis Kohlm., Bot. Mar. 23(8): 532 (1980) 5. B. vermisporus Kohlm., Revue Mycol., Paris 41(2): 191 (1977) Carbosphaerella I. Schmidt, Feddes Repert. 80(2–3): 108 (1969) 1. #C. leptosphaerioides I. Schmidt, Natur Naturschutz Mecklenberg 7: 9 (1969) 2. C. pleosporoides I. Schmidt, Feddes Repert. 80: 108 (1969) Ceriosporopsis Linder, Farlowia 1: 408 (1944) 1. C. caduca E.B.G. Jones & Zainal, Mycotaxon 32: 238 (1988) 2. C. cambrensis I.M. Wilson, Trans. Br. Mycol. Soc. 37(3): 276 (1954) 3. C. capillacea Kohlm., Can. J. Bot. 59(7): 1314 (1981) 4. #C. halima Linder, Farlowia 1(3): 409 (1944) 5. #C. intricata (Jorg. Koch & E.B.G. Jones) Sakay., K.L. Pang & E.B.G. Jones, Fungal Divers. 46: 99 (2011) 6. C. minuta Abdel-Wahab, Nagahama et E.B.G. Jones, Botanica Marina 60: 475 (2017) Fungal Diversity (2019) 96:347–433 7. C. sundica J rg. Koch & E.B.G. Jones, Nordic J. Bot. 6(3): 339 (1986) Chadefaudia Feldm.-Maz., Revue Generale de Botanique 64: 150 (1957) 1. C. balliae Kohlm., Mycologia 65(1): 244 (1973) 2. C. corallinarum (P. Crouan & H. Crouan) E. M ll. & Arx, The Fungi (London) 4A: 116 (1973) 3. C. gymnogongri (Feldmann) Kohlm., Bot. Mar. 16(4): 202 (1973) 4. C. marina Feldm.-Maz., Rev. Gen. Bot. 64: 150 (1957) 5. C. polyporolithi (Bonar) Kohlm., Bot. Mar. 16(4): 205 (1973) 6. C. schizymeniae Stegenga & Kemperman, Bot. Mar. 27(9): 443 (1984) Corallicola Volkm.-Kohlm. & Kohlm., Mycotaxon 44(2): 418 (1992) 1. C. nana Volkm.-Kohlm. & Kohlm., Mycotaxon 44(2): 418 (1992) Corollospora Werderm., Notizbl. Bot. Gart. Berlin-Dahlem: 248 (1922) 1. #C. anglusa Abdel-Wahab & Nagah., Mycoscience 50(3): 149 (2009) 2. #C. angusta Nakagiri & Tokura, Trans. Mycol. Soc. Jpn. 28(4): 417 (1988) 3. C. armoricana Kohlm. & Volkm.-Kohlm., Can. J. Bot. 67(5): 1281 (1989 4. #C. baravispora Steinke & E.B.G. Jones, Fungal Divers. 35: 88 (2009) 5. C. besarispora Sundari, Mycol. Res. 100(10): 1259 (1996) 6, C. borealis S. Tibell, Svensk Mykologisk Tidskrift 37 (2): 47 (2016) 7. C. californica Kohlm. & Volkm.-Kohlm., Bot. Mar. 40(3): 225 (1997) 8. C. cinnamomea J rg. Koch, Nordic J. Bot. 6(4): 498 (1986) 9. C. colossa Nakagiri & Tokura, Trans. Mycol. Soc. Jpn. 28(4): 418 (1988) 10. #C. filiformis Nakagiri, Trans. Mycol. Soc. Jpn. 28(4): 422 (1988) 11. C. fusca Nakagiri & Tokura, Trans. Mycol. Soc. Jpn. 28(4): 424 (1988) 12. C. gracilis Nakagiri & Tokura, Trans. Mycol. Soc. Jpn. 28(4): 426 (1988) 13. C. indica Prasann., Ananda & K.R. Sridhar, J. Environ. Biol. 21: 235 (2000) 14. #C. intermedia I. Schmidt, Natur Naturschutz Mecklenberg 7: 6 (1970) 15. #C. lacera (Linder) Kohlm., Ber. Deut. Bot. Ges. 75: 126 (1962) 16. C. luteola Nakagiri & Tubaki, Trans. Mycol. Soc. Jpn. 23(2): 102 (1982) 401 17. #C. marina (Haythorn & E.B.G. Jones) E.B.G. Jones, K.L. Pang & Abdel-Wahab, IMA Fungus 7:137 (2016) 18. #C. maritima Werderm., Notizbl. Knigl. Bot. Gart. Museum Berlin 8: 248 (1922) 19. C. mesopotamica Al-Saadoon, Marsh Bulletin 2: 135 (2006) 20. C. novofusca Kohlm. & Volkm.-Kohlm., Bot. Mar. 34(1): 34 (1991) 21. #C. parvula (Zuccaro, J.I. Mitchell & Nakagiri) E.B.G. Jones, K.L.Pang & Abdel-Wahab, IMA Fungus 7:137 (2016) 22. #C. portsaidica Abdel-Wahab & Nagah., Mycoscience 50(3): 152 (2009) 23. C. pseudopulchella Nakagiri & Tokura, Trans. Mycol. Soc. Jpn. 28(4): 428 (1988) 24. #C. pulchella Kohlm., I. Schmidt & N.B. Nair, Ber. Deut. Bot. Ges. 80: 98 (1967) 25. #C. ramulosa (Meyers & Kohlm.) Abdel-Wahab, IMA fungus7:137 (2016) 26. #C. quinqueseptata Nakagiri, Trans. Mycol. Soc. Jpn. 28(4): 430 (1988) Cucullosporella K.D. Hyde & E.B.G. Jones, Mycotaxon 37: 200 (1990) 1. #C. mangrovei (K.D. Hyde & E.B.G. Jones) K.D. Hyde & E.B.G. Jones, Mycotaxon 37: 200 (1990) Ebullia K.L. Pang, Mycoscience 56: 40 (2015) 1. #E. octonae (Kohlm.) K.L. Pang, Mycoscience 56: 40 (2015) Gesasha Abdel-Wahab & Nagahama, Nova Hedwigia 92(3–4): 501 (2011) 1. #G. mangrovei Abdel-Wahab & Nagah., Nova Hedwigia 92(3–4): 507 (2011) 2. #G. peditatus Abdel-Wahab & Nagah., Nova Hedwigia 92(3–4): 502 (2011) 3. #G. unicellularis Abdel-Wahab & Nagah., Nova Hedwigia 92(3–4): 505 (2011) Haligena Kohlm., Nova Hedwigia 3: 87 (1961) 1. #H. elaterophora Kohlm., Nova Hedwigia 3: 87 (1961) Haiyanga K.L. Pang & E.B.G. Jones, Raffles Bull. Zool., Suppl. 19: 8 (2008) 1. #H. salina (Meyers) K.L. Pang & E.B.G. Jones, Raffles Bull. Zool., Suppl. 19: 8 (2008) Halosarpheia sensu stricto Kohlm. & E. Kohlm., Trans. Br. Mycol. Soc. 68(2): 208 (1977) 1. #H. fibrosa Kohlm. & E. Kohlm., Trans. Br. Mycol. Soc. 68(2): 208 (1977) 2. #H. japonica Abdel-Wahab & Nagah., Mycol. Progr. 11(1): 89 (2013) 3. #H. trullifera (Kohlm.) E.B.G. Jones, S.T. Moss & Cuomo, Trans. Br. Mycol. Soc. 80(2): 200 (1983) 4. #H. unicellularis Abdel-Wahab & E.B.G. Jones, in Abdel-Wahab, Pang, El-Sharouny & Jones, Mycoscience 42(3): 255 (2001) 123 402 Halosarpheia sensu lato 1. H. bentotensis Jorg. Koch, Nordic J. Bot. 2(2): 165 (1982) 2. H. culmiperda Kohlm., Volkm.-Kohlm. & O.E. Erikss., Mycologia 87(4): 532 (1995) 3. #H. marina (Cribb & J.W. Cribb) Kohlm., Marine Ecology, [Pubblicazioni della Stazione Zoologica Napoli I] 5(4): 345 (1984) 4. H. minuta W.F. Leong, Can. J. Bot. 69(4): 883 (1991) 5. H. phragmiticola Poon & K.D. Hyde, Bot. Mar. 41(2): 143 (1998) Halosphaeria Linder, Farlowia 1(3): 412 (1944) 1. #H. appendiculata Linder, Farlowia 1(3): 412 (1944) Halosphaeriopsis T.W. Johnson, J. Elisha Mitchell Scient. Soc. 74: 44 (1958) 1. #H. mediosetigera (Cribb & J.W. Cribb) T.W. Johnson, J. Elisha Mitchell Scient. Soc. 74: 44 (1958) Havispora K.L. Pang & Vrijmoed, Mycologia 100(2): 293 (2008) 1. #H. longyearbyenensis K.L. Pang & Vrijmoed, Mycologia 100(2): 293 (2008) Iwilsoniella E.B.G. Jones, Syst. Ascomyc. 10(1): 8 (1991) 1. I. rotunda E.B.G. Jones, Syst. Ascomyc., 10(1): 8 (1991) Kitesporella Jheng & K.L. Pang, Bot. Mar. 55: 462 (2012) 1. K. keelungensis J.S. Jheng & K.L. Pang, Bot. Mar. 55(5): 462 (2012) Kochiella Sakay., K.L. Pang & E.B.G. Jones, Fungal Divers. 46: 96 (2011) 1. #K. crispa (Kohlm.) Sakay., K.L. Pang & E.B.G. Jones, Fungal Divers. 46: 96 (2011) Lautisporopsis E.B.G. Jones, Yusoff & S.T. Moss, Mycotaxon 67: 1 (1998) 1. L. circumvestita (Kohlm.) E.B.G. Jones, Yusoff & S.T. Moss, Can. J. Bot. 72(10): 1558 (1994) Lignincola Höhnk, Veroff. Inst. Meeresf. Bremerhaven 3: 216 (1955) 1. L. conchicola J.K. Liu, E.B.G. Jones & K.D. Hyde, Mycotaxon 117: 344 (2011) 2. #L. laevis Höhnk, Ver ff. Inst. Meeresf. Bremerhaven 3: 216 (1955) 3. L. nypae K.D. Hyde & Alias, in Hyde, Goh, Lu & Alias, Mycol. Res. 103(11): 1417 (1999) 4. #L. tropica Kohlm., Marine Ecology [Pubblicazioni della Stazione Zoologica Napoli I] 5(4): 355 (1984) Limacospora Jörg. Koch & E.B.G. Jones, Can. J. Bot. 73(7): 1011 (1995) 1. L. sundica (Jörg. Koch & E.B.G. Jones) Jörg. Koch & E.B.G. Jones, Can. J. Bot. 73(7): 1013 (1995) Luttrellia Shearer, Mycologia 70(3): 692 (1978) 1. L. estuarina Shearer, Mycologia 70(3): 693 (1978) Magnisphaera J. Campbell, J.L. Anderson & Shearer, Mycologia 95(3): 546 (2003) 123 Fungal Diversity (2019) 96:347–433 1. #M. spartinae (E.B.G. Jones) J. Campb., J.L. Anderson & Shearer, Mycologia 95(3): 547 (2003) Marinospora A.R. Caval., Nova Hedwigia 11: 548 (1966) 1. M. calyptrata (Kohlm.) A.R. Caval., Nova Hedwigia 11: 548 (1966) 2. #M. longissima (Kohlm.) A.R. Caval., Nova Hedwigia 11: 548 (1966) Moana Kohlm. & Volkm.-Kohlm., Mycol. Res. 92 (4): 418 (1989) 1. M. turbinulata Kohlm. & Volkm.-Kohlm., Mycol. Res. 92(4): 418 (1989) Morakotiella Sakay., Mycologia 97(4): 806 (2005) 1. #M. salina (C.A. Farrant & E.B.G. Jones) Sakay., Mycologia 97(4): 806 (2005) Nais Kohlm., Nova Hedwigia 4: 409 (1962) 1. #N. inornata Kohlm., Nova Hedwigia 4: 409 (1962) Natantispora J. Campbell, J.L. Anderson & Shearer, Mycologia 95(3): 543 (2003) 1. #N. lotica (Shearer) J. Campb., J.L. Anderson & Shearer, Mycologia 95(3): 543 (2003) 2. #N. retorquens (Shearer & J.L. Crane) J. Campb., J.L. Anderson & Shearer, Mycologia 95(3): 543 (2003) 3. #N. unipolarae K.L. Pang, S.Y. Guo & E.B.G. Jones, In Liu et al. Fungal Divers. 72:19 (2015) Nautosphaeria E.B.G. Jones, Trans. Br. Mycol. Soc. 47(1): 97 (1964) 1. #N. cristaminuta E.B.G. Jones, Trans. Br. Mycol. Soc. 47(1): 97 (1964) Neptunella K.L. Pang & E.B.G. Jones, Mycol. Progr. 2(1): 35 (2003) 1. #N. longirostris (Cribb & J.W. Cribb) K.L. Pang & E.B.G. Jones, Mycol. Progr. 2(1): 35 (2003) Nereiospora E.B.G. Jones, R.G. Johnson & S.T. Moss, J. Linn. Soc. Bot. 87(2): 204 (1983) 1. #N. comata (Kohlm.) E.B.G. Jones, R.G. Johnson & S.T. Moss, J. Linn. Soc. Bot. 87(2): 206 (1983) 2. #N. cristata (Kohlm.) E.B.G. Jones, R.G. Johnson & S.T. Moss, J. Linn. Soc. Bot. 87(2): 206 (1983) Nimbospora J. Koch, Nordic J. Bot. 2(2): 166 (1982) 1. N. bipolaris K.D. Hyde & E.B.G. Jones, Can. J. Bot. 63(3): 611 (1985) 2. #N. effusa Jrg. Koch, Nordic J. Bot. 2(2): 166 (1982) Nohea Kohlm. & Volkm.-Kohlm., Syst. Ascomyc. 10: 121 (1991) 1. #N. umiumi Kohlm. & Volkm.-Kohlm., Syst. Ascomyc. 10: 122 (1991) 2. N. delmarensis (Kohlm. & Volkm.-Kohlm.) AbdelWahab, Mycotaxon 115: 448 (2011) 3. #N. spinibarbata (Jrg. Koch) Abdel-Wahab, Mycotaxon 115: 448 (2011) Oceanitis Kohlm., Revue Mycol. 41(2): 193 (1977) 1. #O. cincinnatula (Shearer & J.L. Crane) J. Dupont & E.B.G. Jones, Mycol. Res. 113(12): 1357 (2009) Fungal Diversity (2019) 96:347–433 2. #O. scuticella Kohlm., Revue Mycol., Paris 41(2): 194 (1977) 3. #O. unicaudata (E.B.G. Jones & Camp.-Als.) J. Dupont & E.B.G. Jones, Mycol. Res. 113(12): 1357 (2009 4. #O. viscidula (Kohlm. & E. Kohlm.) J. Dupont & E.B.G. Jones, Mycol. Res. 113(12): 1358 (2009) Ocostaspora E.B.G. Jones, R.G. Johnson & S.T Moss, Bot. Mar. 26: 353 (1983) 1. #O. apilongissima E.B.G. Jones, R.G. Johnson & S.T. Moss, Bot. Mar. 26(7): 354 (1983) Okeanomyces K.L. Pang & E.B.G. Jones, J. Linn. Soc. Bot. 146(2): 228 (2004) 1. #O. cucullatus (Kohlm.) K.L. Pang & E.B.G. Jones, J. Linn. Soc. Bot. 146(2): 228 (2004) Ondiniella E.B.G. Jones, R.G. Johnson & S.T. Moss, Bot. Mar. 27: 136 (1984) 1. #O. torquata (Kohlm.) E.B.G. Jones, R.G. Johnson & S.T. Moss, Bot. Mar. 27(3): 136 (1984) Ophiodeira Kohlm. & Volkm.-Kohlm., Can. J. Bot. 66 (10): 2062 (1988) 1. #O. monosemeia Kohlm. & Volkm.-Kohlm., Can. J. Bot. 66(10): 2062 (1988) Paraaniptodera K.L. Pang, C.L. Lu, W.T. Ju et E.B.G. Jones, Botanica Marina 60: 460 (2017) 1. P. longispora (K.D. Hyde) K.L. Pang, C.L. Lu, W.T. Ju et E.B.G. Jones, Botanica Marina 60: 460 (2017) Praelongicaulis E.B.G. Jones, Abdel-Wahab, & K.L. Pang, gen. nov. Fungal Divers. 73: 54 (2015) 1. #P. kandeliae (Abdel-Wahab & E.B.G. Jones) E.B.G. Jones, Abdel-Wahab, & K.L. Pang, comb. nov. Fungal Divers. 73: 54 (2015) Panorbis J. Campbell, J.L. Anderson & Shearer, Mycologia 95(3): 544 (2003) 1. #P. viscosus (I. Schmidt) J. Campb., J.L. Anderson & Shearer, Mycologia 95(3): 544 (2003) Pileomyces K.L. Pang & Jheng, Bot. Stud. 53: 536 (2012) 1. #P. formosanus K.L. Pang & J.S. Jheng, Bot. Stud. 53: 536 (2012) Pseudolignincola Chatmala & E.B.G. Jones, Nova Hedwigia 83(1–2): 225 (2006) 1. #P. siamensis Chatmala & E.B.G. Jones, in Jones, Chatmala & Pang, Nova Hedwigia 83(1–2): 226 (2006) Remispora Linder, Farlowia 1(3): 409 (1944) 1. #R. maritima Linder, Farlowia 1: 410 (1944) 2. R. minuta E.B.G. Jones, K.L. Pang & Vrijmoed, Can. J. Bot. 82(4): 486 (2004) 3. #R. pileata Kohlm. Nova Hedwigia 6(3–4): 319 (1963) 4. #R. spitsbergensis K.L. Pang & Vrijmoed, Mycologia 101(4): 533 (2009) 5. #R. stellata Kohlm., Nova Hedwigia 2: 334 (1960) 6. #R. quadri-remis (Höhnk) Kohlm., Nova Hedwigia 2: 332 (1960) 403 Saagaromyces K.L. Pang & E.B.G. Jones, Mycol. Progr. 2(1): 35 (2003) 1. #S. abonnis (Kohlm.) K.L. Pang & E.B.G. Jones, Mycol Progr 2(1): 35 (2003) 2. #S. glitra (J.L. Crane & Shearer) K.L. Pang & E.B.G. Jones, Mycol. Progr. 2(1): 35 (2003) 3. #S. mangrovei Abdel-Wahab, Bahkali & E.B.G. Jones, In: Liu et al. Fungal Divers. 72:32 (2015) 4. #S. ratnagiriensis (S.D. Patil & Borse) K.L. Pang & E.B.G. Jones, in Pang, Vrijmoed, Kong & Jones, Mycol. Progr. 2(1): 35 (2003) Sablecola E.B.G. Jones & K.L. Pang & Vrijmoed, Can. J. Bot. 82(4): 486 (2004) 1. #S. chinensis E.B.G. Jones, K.L. Pang & Vrijmoed, Can. J. Bot. 82(4): 486 (2004) Thalassogena Kohlm. & Volkm.-Kohlm., Syst. Ascomyc. 6: 223 (1987) 1. Th. sphaerica Kohlm. & Volkm.-Kohlm., Syst. Ascomyc. 6(2): 225 (1987) Thalespora Chatmala & E.B.G. Jones, Nova Hedwigia 83(1–2): 228 (2006) 1. #T. appendiculata Chatmala & E.B.G. Jones, in Jones, Chatmala & Pang, Nova Hedwigia 83(1–2): 229 (2006) Tinhaudeus K.L. Pang, S.Y. Guo & E.B.G. Jones, Fungal Divers. 75: 160 (2015) 1. #T. formosanus K.L. Pang, S.Y. Guo &E.B.G. Jones, Fungal Divers. 75: 164 (2015) Tirispora E.B.G. Jones & Vrijmoed, Can. J. Bot. 72(9): 1373 (1994) 1. T. mandoviana V.V. Sarma & K.D. Hyde, Australas. Mycol. 19(2): 52 (2000) 2. #T. unicaudata E.B.G. Jones & Vrijmoed, in Jones, Vrijmoed, Read & Moss, Can. J. Bot. 72(9): 1373 (1994) Toriella Sakay., K.L. Pang & E.B.G. Jones, Fungal Divers. 46(1): 99 (2011) 1. T. tubulifera (Kohlm.) Sakay., K.L. Pang & E.B.G. Jones, Fungal Divers. 46(1): 100 (2011) Trailia G.K. Sutherl., Trans. Br. Mycol. Soc. 5: 149 (1915) 1. T. ascophylli G.K. Sutherl., Trans. Br. Mycol. Soc. 5(1): 149 (1915) Trichomaris Hibbits, G.C. Hughes & Sparks, Can. J. Bot. 59(11): 2123 (1981) 1. T. invadens Hibbits, G.C. Hughes & Sparks, Can. J. Bot. 59(11): 2123 (1981) Tubakiella Sakay., K.L. Pang & E.B.G. Jones, Fungal Divers. 46: 97 (2011) 1. #T. galerita (Tubaki) Sakay., K.L. Pang & E.B.G. Jones, Fungal Divers. 46: 99 (2011) Tunicatispora K.D. Hyde, Aust. Syst. Bot. 3: 712 (1990) 1. T. australiensis K.D. Hyde, Aust. Syst. Bot. 3(4): 712 (1990) Microascaceae Luttr. ex Malloch, Mycologia 62: 734 (1970) 123 404 Acaulium Sopp, Skrifter udgivne af Videnskabs-Selskabet i Christiania. Mathematisk-Naturvidenskabelig Klasse 11: 42 (1912) 1. A. acremonium (Delacr.) Sandoval-Denis, Guarro & Gen, Studies in Mycology 83: 199 (2016) Cephalotrichum Link, Magazin der Gesellschaft Naturforschenden Freunde Berlin 3 (1): 20 (1809) 1. C. stemonitis (Pers.) Nees, Magazin der Gesellschaft Naturforschenden Freunde Berlin 3 (1): 20 (1809) Microascus Zukal, Verhandlungen der ZoologischBotanischen Gesellschaft Wien 35: 342 (1885) 1. #M. brevicaulis S.P. Abbott, in Abbott, Sigler & Currah, Mycologia 90(2): 298 (1998) 2. M. paisii (Pollacci) Sandoval-Denis, Gen & Guarro, Persoonia 36: 21 (2016) 3. M. trigonosporus C.W. Emmons & B.O. Dodge, Mycologia 23(5): 317 (1931) Petriella Curzi, Bolletino della Stazione di Patologia Vegetale Roma 10: 384 (1930) 1. P. sordida (Zukal) G.L. Barron & J.C. Gilman, Can. J. Bot. 39: 839 (1961) Pseudallescheria Negr. & I. Fisch., Revista Inst. Bacteriol. ‘Dr. Carlos G. Malbrn’ 12(201): 5–9 (1944) 1. Ph. boydii (Shear) McGinnis, A.A. Padhye & Ajello, Mycotaxon 14(1): 97 (1982) *Scopulariopsis Bainier, Bull. Soc. Mycol. Fr. 23: 98 (1907) 1. S. brumptii Salv.-Duval, Thèse Fac Pharm Paris 23: 58 (1935) 2. S. candida Vuill., Bull. Soc. Mycol. Fr. 27(2): 143 (1911) 3. S. halophilica Tubaki, Trans. Mycol. Soc. Jpn. 14(4): 367 (1973) 4. S. hibernica A. Mangan, Trans. Br. Mycol. Soc. 48 (3): 617 (1965) Wardomyces F.T. Brooks & Hansf., Transactions of the British Mycological Society 8 (3): 137 (1923) 1. W. anomalus F.T. Brooks & Hansf., Trans. Br. Mycol. Soc. 8 (3): 137 (1923) 4. GLOMERELLALES Chadef. ex Rblov, W. Gams & Seifert, Stud. Mycol. 68: 170 (2011) Plectosphaerellaceae W. Gams, Summerbell & Zare, Nova Hedwigia 85(3–4): 476 (2007) Plectosphaerella Kleb., Phytopath. Z. 1: 43 (1930) 1. #P. oratosquillae (P.M. Duc, Yaguchi & Udagawa) A.J.L. Phillips, A. Carlucci & M.L. Raimondo, Persoonia 28: 43 (2012) 2. P. cucumerina (Lindf.) W. Gams, Persoonia 5 (2): 179 (1968) Verticillium Nees, System der Pilze und Schwmme: 56 (1817) 123 Fungal Diversity (2019) 96:347–433 1. V. dahliae Kleb., Mycologisches Centralblatt 3: 66 (1913) 5. PLEUROTHECIALES Réblová & Seifert, Persoonia 37: 63 (2016) Pleurotheciaceae Réblová & Seifert, Persoonia 37: 63 (2016) *Phaeoisaria Hhn., Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften Math.-naturw. Klasse Abt. I 118: 330 (1909) 1. #Ph. sedimenticola X.L. Cheng & Wei Li, Mycologia 127: 20 (2014) 6. TORPEDOSPORALES E.B.G. Jones. Abdel-Wahab & K.L. Pang, Fungal Divers. (2015) Fungal Diversity 73: 43 (2015) Juncigenaceae E.B.G. Jones, Abdel-Wahab & K.L. Pang, Cryptog. Mycol. 35(2): 133 (2014) Khaleijomyces Abdel-Wahab, Phytotaxa 340 (3): 289 (2018) 1. # Kh. marinus Abdel-Wahab, Phytotaxa 340 (3): 289 (2018) Juncigena Kohlm., Volkm.-Kohlm. & O.E. Erikss., Bot. Mar. 40: 291 (1997) 1. #J. adarca Kohlm., Volkm.-Kohlm. & O.E. Erikss., Bot. Mar. 40(4): 291 (1997) 2. #J. fruticosae (Abdel-Wahab, Abdel-Aziz & Nagah.) A.N. Mill. & Shearer, in Réblová et al., IMA Fungus 7(1): 139 (2016) Fulvocentrum E.B.G. Jones & Abdel-Wahab, Cryptog. Mycol. 35(1): 131 (2014) 1. #F. aegyptiaca (Abdel-Wahab, El-Sharouney & E.B.G. Jones) E.B.G. Jones & Abdel-Wahab, Cryptog. Mycol. 35(1): 1321 (2014) 2. #F. clavatisporium (Abdel-Wahab, El-Sharouney & E.B.G. Jones) E.B.G. Jones & Abdel-Wahab, Cryptog. Mycol. 35(1): 132 (2014) 3. #F. rubrum Abdel-Wahab & E.B.G. Jones Nov. Hedwigia (in press) Marinokulati E.B.G. Jones & K.L. Pang, Cryptog. Mycol. 35(1): 132 (2014) 1. #M. chaetosa (Kohlm.) E.B.G. Jones & K.L. Pang, Cryptog. Mycol. 35(1): 132 (2014) Etheirophoraceae Rungjindamai, Somrithipol & Suetrong, Cryptog. Mycol. 35(2): 134 (2014) Etheirophora Kohlm. & Volkm.-Kohlm., Mycol. Res. 92(4): 414 (1989) 1. E. bijubata Kohlm. & Volkm.-Kohlm., Mycol. Res. 92(4): 414 (1989) 2. E. blepharospora (Kohlm. & E. Kohlm.) Kohlm. & Volkm.-Kohlm., Mycol. Res. 92(4): 415 (1989) 3. E. unijubata Kohlm. & Volkm.-Kohlm., Mycol. Res. 92(4): 415 (1989) Fungal Diversity (2019) 96:347–433 Swampomyces Kohlm. & Volkm.-Kohlm., Bot. Mar. 30: 198 (1987) 1. #S. armeniacus Kohlm. & Volkm.-Kohlm., Bot. Mar. 30(3): 200 (1987) 2. #S. triseptatus K.D. Hyde & Nakagiri, Sydowia 44(2): 122 (1992) Torpedosporaceae E.B.G. Jones & K.L. Pang, Cryptog. Mycol. 35(2): 135 (2014) Torpedospora Meyers, Mycologia 49: 496 (1957) 1. #T. ambispinosa Kohlm., Nova Hedwigia 2: 336 (1960 2. #T. radiata Meyers, Mycologia 49: 496 (1957) 3. # T. mangrovei (Abdel-Wahab & Nagah.) E.B.G. Jones & Abdel-Wahab, in Réblová et al., IMA Fungus 7(1): 139 (2016) Subclass: Savoryellomycetidae Hongsanan, K.D. Hyde & Maharachch., Fungal Diversity 84: 35 (2017) 1. SAVORYELLALES Boonyuen, Suetrong, S. Sivichai, K.L. Pang & E.B.G. Jones, Mycologia 103(6): 1368 (2011) Savoryellaceae Jaklitsch & Rblov, in Jaklitsch & Rblov, Index Fungorum 209 (2015) Savoryella E.B.G. Jones & R.A. Eaton, Trans. Br. Mycol. Soc. 52(1):161 (1969) 1. #S. appendiculata K.D. Hyde & E.B.G. Jones, Bot. Mar. 35(2): 89 (1992) 2. #S. lignicola E.B.G. Jones & R.A. Eaton, Trans. Br. Mycol. Soc. 52(1): 161 (1969) 3. #S. longispora E.B.G. Jones & K.D. Hyde, Bot. Mar. 35(2): 84 (1992) 4. S. melanospora Abdel-Wahab & E.B.G. Jones, Mycoscience 41(4): 387 (2000) 5. S. paucispora (Cribb & J.W. Cribb) J. Koch, Nordic J. Bot. 2(2): 169 (1982) Subclass: Diaporthiomycetidae I.C. Senanayake, Maharachch., K.D. Hyde, Fungal Divers. 72: 10 (2015) 1. DIAPORTHALES Nannf., Nova Acta R. Soc. Scient. upsal., 8(2): 53 (1932) Valsaceae Tul. & C. Tul., Selecta Fungorum Carpologia 1: 180 (1861) *Cytospora Ehrenb., Sylvae mycologicae Berolinenses: 28 (1818) 1. C. rhizophorae Kohlm. & E. Kohlm., Mycologia 63(4): 847 (1971) Valsa Fr., Summa vegetabilium Scandinaviae 2: 410 (1849) 1. V. abietis Fr., Summa veg Scand, Section Post. (Stockholm): 412 (1849) Diaporthaceae Höhn. ex Wehm., American Journal of Botany 13: 638 (1926) Diaporthe Nitschke, Pyrenomycetes Germanici 2: 240 (1870) 405 1. D. salsuginosa Vrijmoed, K.D. Hyde & E.B.G. Jones, Mycol. Res. 98(6): 699 (1994) *Phomopsis (Sacc.) Sacc., Annls Mycol. 3(6): 166 (1905) 1. P. mangrovei K.D. Hyde, Mycol. Res. 95(9): 1149 (1991) 2. P. pittospori (Cooke & Harkn.) Grove, Bulletin of Miscellaneous Informations of the Royal Botanical Gardens Kew 1919 (4): 181 (1919) Gnomoniaceae G. Winter, Rabenhorst’s KryptogamenFlora, Pilze - Ascomyceten 1(2): 570 (1886) *Gloeosporidina Petr., Annls Mycol. 19(3–4): 214 (1921) 1. G. cecidii (Kohlm.) B. Sutton, The Coelomycetes (Kew): 517 (1980) Hypophloeda K.D. Hyde & E.B.G. Jones, Trans. Mycol. Soc. Jpn. 30(1): 61 (1989) 1. H. rhizospora K.D. Hyde & E.B.G. Jones, Trans. Mycol. Soc. Jpn. 30(1): 62 (1989 Lautosporaceae Kohlm., Volkm.-Kohlm. & O.E. Erikss., Bot. Mar. 38: 169 (1995) Lautospora K.D. Hyde & E.B.G. Jones, Bot. Mar. 32: 479 (1989) 1. L. gigantea K.D. Hyde & E.B.G. Jones, Bot. Mar. 32(3): 479 (1989) 2. #L. simillima Kohlm., Volkm.-Kohlm. & O.E. Erikss., Bot. Mar. 38(2): 169 (1995) 2. OPHIOSTOMATALES Benny & Kimbr., Mycotaxon 12 (1): 48 (1980) Ophiostomataceae Nannf., Nova Acta Regiae Societatis Scientiarum Upsaliensis 8 (2): 30 (1932) Ophiostoma Syd. & P. Syd., Annales Mycologici 17 (1): 43 (1919) 1. O. ulmi (Buisman) Melin & Nannf., Svenska Skogsvårdsföreningens Tidskrift 32: 408 (1934) 3. PHOMATOSPORALES Senan., Maharachch. & K.D. Hyde, Mycosphere 7 (5): 631 (2016) Phomatosporaceae Senan. & K.D. Hyde, Mycosphere 7 (5): 633 (2016) Lanspora K.D. Hyde & E.B.G. Jones, Can. J. Bot. 64(8): 1581 (1986) 1. #L. coronata K.D. Hyde & E.B.G. Jones, Can. J. Bot. 64(8): 1581 (1986) Phomatospora Sacc., Grevillea 4(29): 22 (1875) 1. P. acrostichi K.D. Hyde, Trans. Br. Mycol. Soc. 90(1): 135 (1988) 2. #P. bellaminuta Kohlm., Volkm.-Kohlm. & O.E. Erikss., Bot. Mar. 38(2): 181 (1995) 3. P. dinemasporium J. Webster, Trans. Br. Mycol. Soc. 38: 364 (1955) 4. P. kandeliae K.D. Hyde, Trans. Mycol. Soc. Jpn. 33(3): 315 (1992) 5. P. nypae K.D. Hyde, Sydowia 45(2): 200 (1993) 123 406 6. P. nypicola K.D. Hyde & Alias, Mycol. Res. 103(11): 1417 (1999) 7. P. phragmiticola Poon & K.D. Hyde, Bot. Mar. 41(2): 148 (1998) 4. TIRISPORELLALES Suetrong, K.L. Pang & E.B.G. Jones, Fungal Divers. (2015) Tirisporellaceae Suetrong, K.L. Pang & E.B.G. Jones, Cryptog. Mycol. [In Press] Bacusphaeria Norlailatul, Alias & S. Suetrong, Bot Mar 60: 479 (2017) 1. #B. nypenthi Norlailatul, Alias & S. Sueterong, In Abdel-Wahab et al., Bot mar 60: 479 (2017) Tirisporella (Ces.) E.B.G. Jones, K.D. Hyde & Alias, Can. J. Bot. 74(9): 1490 (1996) 1. #T. beccariana (Ces.) E.B.G. Jones, K.D. Hyde & Alias, Can. J. Bot. 74(9): 1490 (1996) Subclass: Sordariomycetidae O.E. Erikss. & Winka, Myconet 1(1): 10 (1997) 1. BOLINIALES P.F. Cannon, Dictionary of the fungi: X (2001) Boliniaceae Rick, Brotria Sr. Bot. 25(2): 65 (1931) Lentomitella Höhn., Annal. Mycol. 3(6): 552 (1906) 1. #L. cirrhosa (Pers.) R blov, Mycologia 98(1): 82 (2006) 2. CALOSPHAERIALES M.E. Barr, Mycologia 75: 11 (1983) Calosphaeriaceae Munk, Dansk botanisk Arkiv 17 (1): 278 (1957) Jattaea Berl., Icones Fungorum. Pyrenomycetes. Sphaeriaceae. Allantosporae 3: 6 (1900) 1. J. mucronata Dayarathne & K.D. Hyde, Botanica Marina 60: 479 (2017) 3. CHAETOSPHAERIALES Chaetosphaeriaceae Réblová, M.E. Barr & Samuels, Sydowia 51: 56 (1999) Chaetosphaeria Réblová, M.E. Barr & Samuels, Sydowia 51: 56 (1999) 1. Ch. mangrovei Dayarathne, E.B.G. Jones & K.D. Hyde, Mycosphere 9: 395 (2018) 4. MAGNAPORTHALES Thongk., Vijaykr. & K.D. Hyde, Fungal Divers. 34: 166 (2009) Magnaporthaceae P.F. Cannon, Syst. Ascomyc. 13(1): 26 (1994) Buergenerula Syd., Annls Mycol. 34(4–5): 392 (1936) 1. #B. spartinae Kohlm. & R.V. Gessner, Can. J. Bot. 54(15): 1764 (1976) 123 Fungal Diversity (2019) 96:347–433 Kohlmeyeriopsis S. Klaubauf, M.H. Lebrun & P.W. Crous, Stud. Mycol. 79: 101 (2014) 1. #K. medullaris (Kohlmeyer, Volkmann-Kohlmeyer & O.E. Eriksson) S. Klaubauf, M.H. Lebrun & P.W. Crous, Studies in Mycology 79: 101 (2014) Pseudohalonectriaceae Hongsanan & K.D. Hyde, Fungal Diversity 84: 33 (2017) Pseudohalonectria Minoura & T. Muroi, Trans. Mycol. Soc. Jpn. 19: 132 (1978) 1. P. falcata Shearer, Can. J. Bot. 67(7): 1945 (1989) 2. P. halophila Kohlm. & Volkm.-Kohlm., Bot. Mar. 48(4): 310 (2005) 5. SORDARIALES Chadef. ex D. Hawksw. & O.E. Erikss., Syst. Ascomyc. 5: 182 (1986) Lasiosphaeriaceae Nannf., Nova Acta R. Soc. Scient. upsal. 8(2): 50 (1932) Biconiosporella Schaumann, Ver ff. Inst. Meeresf. Bremerhaven: 14: 24 (1972) 1 B. corniculata Schaumann, Ver ff. Inst. Meeresf. Bremerhaven 14(1): 24 (1972) Zopfiella G. Winter, Rabenhorst’s Kryptogamen-Flora, Pilze - Ascomyceten 1(2): 56 (1884) 1. Z. latipes (N. Lundq.) Malloch & Cain, Can. J. Bot. 49: 876 (1971) 2. Z. marina Furuya & Udagawa, J. Jap. Bot. 50(8): 249 (1975) Chaetomiaceae G. Winter, Rabenh Krypt-Fl: 153 (1885) Chaetomium Kunze, Mykologische Hefte 1: 15 (1817) 1. Ch. crispatum (Fuckel) Fuckel, Jb. nassau. Ver. Naturk. 23–24: 90 (1870) 2. Ch. erectum Skolko & J.W. Groves, Can. J. Res., Section C 26: 277 (1948) 3. Ch. funicola Cooke, Grevillea 1(11): 176 (1873) 4. Ch. globosum Kunze, in Kunze & Schmidt, Mykologische Hefte (Leipzig) 1: 16 (1817) 5. Ch. heteropilum N.J. Artemczuk, Mikol. Fitopatol. 14(2): 93 (1980) 6. Ch. ramipilosum Schaumann, Arch. Mikrobiol. 91(2): 98 (1973) 7. Ch. thermophilum La Touche, Trans. Br. Mycol. Soc. 33(1–2): 95 (1950) Sordariales incertae sedis Abyssomyces Kohlm., Ber. Deut. Bot. Ges. 83(9–10): 505 (1970) 1. A. hydrozoicus Kohlm., Ber. Deut. Bot. Ges. 83(9–10): 505 (1970) *Koorchaloma Subram., J. Indian Bot. Soc. 32: 124 (1953) 1. K. galateae Kohlm. & Volkm.-Kohlm., Bot. Mar. 44(2): 147 (2001) 2. K. spartinicola V.V. Sarma, S.Y. Newell & K.D. Hyde, Bot. Mar. 44(4): 321 (2001) Fungal Diversity (2019) 96:347–433 6. PHYLLACHORALES M.E. Barr, Mycologia 75: 11 (1983) Phyllachoraceae Theiss. & P. Syd., Annls Mycol. 13(3–4): 168 (1915) Phyllachora Nitschke ex Fuckel, Jb. Nassau. Ver. Naturk. 23–24: 216 (1870) 1. Ph. paludicola Kohlm. & Volkm.-Kohlm., Mycologia 95(1): 120 (2003) Polystigmataceae Höhn. ex Nannf., Nova Acta Regiae Societatis Scientiarum Upsaliensis 8 (2): 51 (1932) Polystigma DC., Fl Fran 6: 164 (1815) 1. P. apophlaeae Kohlm., in Kohlmeyer & Demoulin, Bot. Mar. 24(1): 13 (1981) Phyllachorales incertae sedis Marinosphaera K.D. Hyde, Can. J. Bot. 67(10): 3080 (1989) 1. #M. mangrovei K.D. Hyde, Can. J. Bot. 67(10): 3080 (1989) Phycomelaina Kohlm., Phytopath. Z. 63(4): 350 (1968) 1. P. laminariae (Rostr.) Kohlm., Phytopath. Z. 63: 350 (1968) 7. TRICHOSPHAERIALES M.E. Barr, Mycologia 75: 11 (1983) Trichosphaeriaceae G. Winter, Rabenh. Krypt.- Fl.: 191(1885) *Brachysporium (Sacc.) Sacc., Syll. Fung. 4: 423 (1886) 1. B. helgolandicum Schaumann, Helgolander wiss, Meeresunters. 25(1): 26–34 (1973) Trichosphaeriales insertae sedis Khuskia H.J. Huds., Trans. Br. Mycol. Soc. 46(3): 358 (1963) 1. #K. oryzae H.J. Huds., Trans. Br. Mycol. Soc. 46(3): 358 (1963) Nigrospora Zimm., Centralblatt für Bakteriologie und Parasitenkunde 8: 220 (1902) 1. N. oryzae (Berk. & Broome) Petch, J. Indian bot. Soc.: 24 (1924) Sordariomycetes incertae sedis *Myrmecridium Arzanlou, W. Gams & Crous, Stud. Mycol. 58: 84 (2007) 1. #M. schulzeri (Sacc.) Arzanlou, W. Gams & Crous, in Arzanlou et al., Stud. Mycol. 58: 84 (2007) *Radulidium Arzanlou, W. Gams & Crous, Studies in Mycology 58: 89 (2007) 1. R. epichloës (Ellis & Dearn.) Arzanlou, W. Gams & Crous, Studies in Mycology 58: 89 (2007) Subclass: Xylariomycetidae O.E. Erikss. & Winka, Myconet 1(1): 12 (1997) XYLARIALES Nannf., Nova Acta R. Soc. Scient. upsal. 8(2): 66 (1932) 407 Amphisphaeriaceae G. Winter, Rabenhorst’s Kryptogamen-Flora, Pilze - Ascomyceten 1(2): 259 (1885) Amphisphaeria Ces. & De Not., Comm. Soc. crittog. Ital. 1(4): 223 (1863) 1. A. culmicola Sacc., Nuovo Giornale Bot. It. 5: 283 (1873) Apiosporaceae K. D. Hyde, J. Fr hl., Joanne E. Taylor & M.E. Barr, Sydowia 50(1): 23 (1998) Apiospora Sacc., Atti della Societ Veneziana-Trentina-Istriana di Scienze Naturali 4: 85 (1875) 1. #A. montagnei Sacc., Nuovo G. Bot. Ital. 7: 306 (1875) *Arthrinium Kunze, Mykologische Hefte 1: 9 (1817) 1. A. algicola (N.J. Artemczuk) E.B.G. Jones, Sakay., Suetrong, Somrith. & K.L. Pang, Fungal Divers.: 150 (2010) Bartaliniaceae Wijayaw., Maharachch. & K.D. Hyde, Fungal Diversity 73: 85 (2015) Broomella Sacc., Sylloge Fungorum 2: 557 (1883) 1. B. acuta Shoemaker & E. Mll., Can. J. Bot. 41 (8): 1239 (1963) Cainiaceae J.C. Krug, Sydowia 30(1–6): 123 (1978) Arecophila K.D. Hyde, Nova Hedwigia 63: 82 (1996) 1. A. nypae K.D. Hyde, Nova Hedwigia 63: 95 (1996) Atrotorquata Kohlm. & Volkm.-Kohlm., Syst. Ascomyc. 12(1–2): 8 (1993) 1. A. lineata Kohlm. & Volkm.-Kohlm., Syst. Ascomyc. 12(1–2): 8 (1993) Monographella Petr., Annls. Mycol. 22(1–2): 144 (1924) 1. M. nivalis (Schaffnit) E. Mll., Revue Mycol., Paris 41(1): 132 (1977) *Pestalotiopsis Steyaert, Bull. Jard. bot. tat Brux. 19(3): 300 (1949) 1. #P. guepinii (Desm.) Steyaert [as ‘guepini’], Bull. Jard. bot. tat Brux. 19(3): 312 (1949) 2. P. juncestris Kohlm. & Volkm.-Kohlm., Bot. Mar. 44(2): 149 (2001) Clypeosphaeriaceae G. Winter, Rabenh Krypt-Fl 1(2): 554 (1886) Apioclypea K.D. Hyde, J. Linn. Soc. Bot. 116: 316 (1994) 1. A. nypicola K.D. Hyde, J. Frhl. & Joanne E. Taylor, Sydowia 50(1): 36 (1998) Ommatomyces Kohlm., Volkm.-Kohlm. & O.E. Erikss., Mycologia 87(4): 538 (1995) 1. O. coronatus Kohlm., Volkm.-Kohlm. & O.E. Erikss., Mycologia 87(4): 538 (1995) Diatrypaceae Nitschke, Verh. naturh. Ver. preuss. Rheinl.: 73 (1869) Cryptosphaeria Grev., Scott. crypt. fl. (Edinburgh) 1: pl. 13 (1822) 1. #Cryp. avicenniae Devadatha & V.V. Sarma, sp. nov. in press 2. Cryp. bathurstensis (K.D. Hyde & Rappaz) Dayarathne & K.D. Hyde, comb. nov., in press 3. Cryp. eunomia (Fr.) Fuckel, Jb. Nassau. Ver. Naturk. 23–24: 212 (1870) 123 408 4. #Cryp. halophila Dayarathne & K.D. Hyde, sp. nov., in press Cryptovalsa Ces. & De Not. ex Fuckel, Jahrbcher des Nassauischen Vereins fr Naturkunde 23–24: 212 (1870) 1. C. halosarceiicola K.D. Hyde, Mycol.Res 97(7): 799 (1993) 2. #C. mangrovei Abdel-Wahab & Inderb., in Inderbitzin, Abdel-Wahab, Jones & Vrijmoed, Mycol. Res. 103(12): 1628 (1999) 3. C. suaedicola Spooner, Trans. Br. mycol. Soc. 76(2): 269 (1981) Diatrype Fr., Summa veg. Scand., Sectio Post. (Stockholm): 384 (1849) 1. #D. mangrovei Dayarathne & K.D. Hyde sp. nov. Diatrypasimilis J.J. Zhou & Kohlm., Mycologia 102(2): 432 (2010) 1. #D. australiensis J.J. Zhou & Kohlm., Mycologia 102(2): 432 (2010) Eutypa Tul. & C. Tul., Select. Fung. Carpol. 2: 52 (1863) 1. Eutypa bathurstensis K.D. Hyde & Rappaz, Mycol. Res. 97(7): 861 (1993) Eutypella (Nitschke) Sacc., Atti Soc. Veneto-Trent. Sci. Nat. 4: 80 (1875) 1.# E. naqsii K.D. Hyde, Mycol. Res. 99(12): 1462 (1995) Halocryptovalsa Dayarathne & K.D. Hyde gen nov. 1. #H. avicenniae (Abdel-Wahab, Bahkali & E.B.G. Jones) Dayarathne & K.D. Hyde comb. nov. 2. #H. salicorniae Dayarathne & K.D. Hyde sp. nov. Halodiatrype Dayarathne & K.D. Hyde, Mycosphere 7 (5): 617 (2016) 1. #H. avicenniae Dayarathne & K.D. Hyde, Mycosphere 7 (5): 618 (2016) 2. #H. salinicola Dayarathne & K.D. Hyde, Mycosphere 7 (5): 617 (2016) 3. #H. mangrovei (K.D. Hyde) Dayarathne & K.D. Hyde, Mycosphere 7 (5): 619 (2016) Pedumispora K.D. Hyde & E.B.G. Jones, Mycol. Res. 96: 78 (1992) 1. #P. rhizophorae K.D. Hyde & E.B.G. Jones, Mycol. Res. 96(1): 78 (1992) Peroneutypa Berl., Icon. Fung.: 80 (1902) 1. P. scoparia (Schwein.) Carmarán & A.I. Romero, in Carmarán, Romero & Giussani, Fungal Diversity 23: 84 (2006) Hyponectriaceae Petr., Annls. Mycol. 21(3–4): 305 (1923) Frondicola K.D. Hyde, J. Linn. Soc. Bot. 110: 100 (1992) 1. F. tunitricuspis K.D. Hyde, J. Linn. Soc. Bot. 110(2): 102 (1992) Phragmitensis K.M. Wong, Poon & K.D. Hyde, Bot. Mar. 41(4): 379 (1998) 1. P. marina M.K.M. Wong, Poon & K.D. Hyde, Bot. Mar. 41(4): 379 (1998) Physalospora Niessl, Verh. nat. Ver. Brnn 14: 170 (1876) 123 Fungal Diversity (2019) 96:347–433 1. Ph. citogerminans Kohlm., Volkm.-Kohlm. & O.E. Erikss., Bot. Mar. 38: 183 (1995) Xylariaceae Tul. & C. Tul., Select. Fung. Carpol.: 3 (1863) Ascotricha Berk., Annals and Magazine of Natural History 1: 257 (1838) 1. A. chartarum Berk., Ann Nat Hist, Mag Zool Bot Geol 1: 257 (1838) 2. # A. longipila X.L. Chen & W. Li, Mycologia 107: 492 (2015) 3. # A. parvispora X.L. Chen & W. Li, Mycologia 107 (2): 494 (2015) 4. # A. sinuosa (W. Li & X.L. Cheng) X.L. Chen & W. Li, Mycologia 107 (2): 494 (2015) Anthostomella Sacc., Atti Soc. Veneto-Trent. Sci. Nat., Padova, Sr 44: 84 (1875) 1. A. atroalba Kohlm., Volkm.-Kohlm. & O.E. Erikss., Can. J. Bot. 76(3): 467 (1998) 2. A. nypae K.D. Hyde, B.S. Lu & Alias, Mycol. Res. 103(11): 1409 (1999) 3. A. nypensis K.D. Hyde, Alias & B.S. Lu, Mycol. Res. 103(11): 1410 (1999) 4. A. nypicola K.D. Hyde, Alias & B.S. Lu, Mycol. Res. 103(11): 1411 (1999) 5. A. poecila Kohlm., Volkm.-Kohlm. & O.E. Erikss., Bot. Mar. 38(2): 175 (1995) 6. A. punctulata (Roberge ex Desm.) Sacc., Syll. Fung. 1: 278 (1882) 7. A. semitecta Kohlm., Volkm.-Kohlm. & O.E. Erikss., Bot. Mar. 38: 177 (1995) 8. A. spissitecta Kohlm. & Volkm.-Kohlm., Mycol. Res. 106(3): 369 (2002) 9. A. torosa Kohlm. & Volkm.-Kohlm., Mycol. Res. 106(3): 365 (2002) Astrocystis Berk. & Broome, J. Linn. Soc. Bot. 14(74): 123 (1873) 1. A. nypae G.J.D. Sm. & K.D. Hyde, Fungal Divers. 7: 93 (2001) 2. A. selangorensis G.J.D. Sm. & K.D. Hyde, Fungal Divers. 7: 104 (2001) *Dicyma Boulanger, Rev. gn. Bot. 9: 18 (1897) 1. D. ovalispora (S. Hughes) Arx, Gen. Fungi Sporul. Cult., Edn. 3 (Vaduz): 316 (1981) Fasciatispora K.D. Hyde, Trans. Mycol. Soc. Jpn. 32: 265 (1991) 1. F. lignicola Alias, E.B.G. Jones & Kuthub., Mycotaxon 52(1): 78 (1994) 2. F. nypae K.D. Hyde, Trans. Mycol. Soc. Jpn. 32(2): 267 (1991) Halorosellinia Whalley, E.B.G. Jones, K.D. Hyde & Laessoe, Mycol. Res. 104(3): 368 (2000) 1. #H. oceanica (S. Schatz) Whalley, E.B.G. Jones, K.D. Hyde & Lsse, Mycol. Res. 104(3): 370 (2000) Fungal Diversity (2019) 96:347–433 2. # H. rhizophorae Dayarathne, E.B.G. Jones K.D. Hyde, Fungal Divers. 78: 117 (2016) Hypoxylon Bull., Histoire des champignons de la France. I: 168 (1791) 1. H. croceum J.H. Mill., Mycologia 25(4): 323 (1933) Nemania Gray, A natural arrangement of British plants 1: 516 (1821) 1. N. maritima Y.M. Ju & J.D. Rogers, Nova Hedwigia 74(1–2): 102 (2002) Nipicola K.D. Hyde, Cryptog. Bot. 2: 330 (1992) 1. N. carbospora K.D. Hyde, Cryptog. Bot. 2(4): 330 (1992) 2. N. selangorensis K.D. Hyde, Sydowia 46(2): 262 (1994) Xylaria Hill ex Schrank, Baierische Flora 1: 200 (1789) 1. #X. hypoxylon (L.) Grev., Fl. Edin.: 355 (1824) 2. X. psidii J.D. Rogers & Hemmes, Mycologia 84(2): 167 (1992) Oxydothidaceae Konta & K.D. Hyde, Fungal Diversity 84: 36 (2017) Oxydothis Penz. & Sacc., Malpighia 11: 505 (1897) 1. O. nypae K.D. Hyde & Nakagiri, Trans. Mycol. Soc. Jpn. 30(1): 70 (1989) 2. O. nypicola K.D. Hyde, Sydowia 46(2): 298 (1994) Xylariales incertae sedis Adomia S. Schatz, Trans. Br. Mycol. Soc. 84: 555 (1985) 1. A. avicenniae S. Schatz, Trans. Br. Mycol. Soc. 84(3): 555 (1985) *Dinemasporium Lv., Annls Sci. Nat. Bot. 5: 274 (1846) 1. D. marinum Sv. Nilsson, Bot. Notiser 110: 321 (1957) Lanceispora Nakagiri, Okane, Tad. Ito & Katum., Mycoscience 38(2): 208 (1997) 1. L. amphibia Nakagiri, Okane, Tad. Ito & Katum., Mycoscience 38(2): 208 (1997) Subclass: Lulworthiomycetidae Dayarathne, E.B.G. Jones, & K.D. Hyde, Fungal Divers. 72: 10 (2015) 1. LULWORTHIALES Kohlm., Spatafora & Volkm.Kohlm., Mycologia 92(3): 456 (2000) Lulworthiaceae Kohlm., Spatafora & Volkm.-Kohlm., Mycologia 92(3): 456 (2000) *Cumulospora I. Schmidt, Mycotaxon 24: 420 (1985) 1. #C. marina I. Schmidt, Mycotaxon 24: 421 (1985) *Halazoon Abdel-Aziz, Abdel-Wahab & Nagahama, Mycol Progr 9(4): 545 (2010) 1. #H. fuscus (I. Schmidt) Abdel-Wahab, K.L. Pang, Nagah., Abdel-Aziz & E.B.G. Jones, Mycol. Progr. 9(4): 547 (2010) 2. #H. melhae Abdel-Aziz, Abdel-Wahab & Nagah., Mycol. Progr. 9(4): 546 (2010) *Hydea K.L. Pang & E.B.G. Jones, Mycol. Progr. 9(4): 549 (2010) 409 1. #H. pygmea (Kohlm.) K.L. Pang & E.B.G. Jones, Mycol. Progr. 9(4): 549 (2010) Kohlmeyeriella E.B.G. Jones, R.G. Johnson & S.T. Moss, J. Linn. Soc. Bot. 87: 208 (1983) 1. #K. crassa (Nakagiri) Kohlm., Volkm.-Kohlm., J. Campb., Spatafora & Grfenhan, Mycol. Res. 109(5): 564 (2005) 2. #K. tubulata (Kohlm.) E.B.G. Jones, R.G. Johnson & S.T. Moss, J. Linn. Soc. Bot. 87(2): 210 (1983) Lindra I.M. Wilson, Trans. Br. Mycol. Soc. 39(4): 411 (1956) 1. L. crassa (Kohlm.) Kohlm. & Volkm.-Kohlm., Bot. Mar. 34(1): 23 (1991) 2. L. hawaiiensis Kohlm. & Volkm.-Kohlm., Can. J. Bot. 65(3): 574 (1987) 3. L. inflata I.M. Wilson, Trans. Br. Mycol. Soc. 39(4): 411 (1956) 4. #L. obtusa Nakagiri & Tubaki, Mycologia 75(3): 488 (1983) 5. #L. thalassiae Orpurt et al., Bull. Mar. Sci. Gulf Caribb. 14: 406 (1964) Lulwoana Kohlm., Volkm.-Kohlm., J. Campb., Spatafora & Grfenhan, Mycol. Res. 109(5): 562 (2005) 1. #L. uniseptata (Nakagiri) Kohlm., Volkm.-Kohlm., J. Campb., Spatafora & Grfenhan, Mycol Res 109(5): 562 (2005) Lulwoidea Kohlm., Volkm.-Kohlm., J. Campb., Spatafora & Grfenhan, Mycol. Res. 109 (5): 564 (2005) 1. #L. lignoarenaria (Jrg. Koch & E.B.G. Jones) Kohlm., Volkm.-Kohlm., J. Campb., Spatafora & Grfenhan, Mycol. Res. 109(5): 564 (2005) Lulworthia G.K. Sutherl., Trans. Br. Mycol. Soc. 5: 261 (1915) sensu stricto 1. #L. atlantica E. Azevedo, Caeiro & Barata, Mycologia, 109: 2, 292 (2017) 2. #L. fucicola G.K. Sutherl., Trans. Br. Mycol. Soc. 5(2): 259 (1916) Lulworthia sensu lato 1. L. bulgariae Parg.-Leduc, Annls Sci. Nat. Bot. Biol. Vg. sr .12(8): 193 (1967) 2. L. calcicola Kohlm. & Volkm.-Kohlm., Mycologia 81(2): 289 (1989) 3. L. curalii (Kohlm.) Kohlm. & Volkm.-Kohlm., Bot. Mar. 34(1): 24 (1991) 4. #L. floridana Meyers, Mycologia 49: 515 (1957) 5. L. halima (Diehl & Mounce) Cribb & J.W. Cribb, Pap. Dept. Bot. Univ. Qd. 3(10): 80 (1955) 6. L. kniepii (Ade & Bauch) Petr., Sydowia 10(1–6): 297 (1957) 7. L. lindroidea Kohlm., Bot. Mar. 23(8): 537 (1980) 8. L. longirostris (Linder) Cribb & J.W. Cribb, Pap. Dept. Bot. Univ. Qd. 3: 80 (1955) 9. #L. medusa (Ellis & Everh.) Cribb & J.W. Cribb, Pap. Dept. Bot. Univ. Qd. 3: 80 (1955) 123 410 10. #L. purpurea (I.M. Wilson) T.W. Johnson, Mycologia 50(2): 154 (1958) *Matsusporium K.L. Pang & E.B.G. Jones, Mycol. Progr. 9(4): 550 (2010) 1. #M. tropicale (Kohlm.) E.B.G. Jones & K.L. Pang, Mycol. Progr. 9(4): 550 (2010) *Moleospora Abdel-Aziz, Abdel-Wahab & Nagahama, Mycol. Progr. 9(4): 547 (2010) 1. #M. maritima Abdel-Wahab, Abdel-Aziz & Nagah., Mycol. Progr. 9(4): 548 (2010) *Moromyces Abdel-Wahab, K.L. Pang, Nagah., AbdelAziz & E.B.G. Jones, Mycol. Progr. 9(4): 555 (2010) 1. #M. varius (Chatmala & Somrith.) Abdel-Wahab, K.L. Pang, Nagah., Abdel-Aziz & E.B.G. Jones, Mycol. Progr. 9(4): 555 (2010) *Orbimyces Linder, Farlowia 1(3): 404 (1944) 1. #O. spectabilis Linder, Farlowia 1: 404 (1944) Rostrupiella Jrg. Koch, K.L. Pang & E.B.G. Jones, Bot. Mar. 50(5–6): 295 (2007) 1. #R. danica Jrg. Koch, K.L. Pang & E.B.G. Jones, Bot. Mar. 50(5/6): 295 (2007) Haloguignardia Cribb & J.W. Cribb, Pap. Dept. Bot. Univ. Qd. 3(12): 97 (1956) 1. H. cystoseirae Kohlm. & Demoulin, Bot. Mar. 24(1): 9 (1981) 2. H. decidua Cribb & J.W. Cribb, Pap. Dept. Bot. Univ. Qd. 3: 97 (1956) 3. #H. irritans (Setch. & Estee) Cribb & J.W. Cribb, Pap. Dept. Bot. Univ. Qd. 3: 98 (1956) 4. H. oceanica (Ferd. & Winge) Kohlm., Mar. Biol. 8: 344 (1971) 5. H. tumefaciens (Cribb & J.W. Cribb) Cribb & J.W. Cribb, Pap. Dept. Bot. Univ. Qd. 3: 98 (1956) Sammeyersia S.Y. Guo, E.B.G. Jones et K.L. Pang, Botanica Marina 60: 483 (2017) 1. #S. grandispora (Meyers) S.Y. Guo, E.B.G. Jones et K.L. Pang, Botanica Marina 60: 483 (2017) Spathulosporaceae Kohlm., Mycologia 65: 615 (1973) Spathulospora A.R. Caval. & T.W. Johnson, Mycologia 57: 927 (1965) 1. #S. adelpha Kohlm., Mycologia 65(3): 615 (1973) 2. #S. antarctica Kohlm., Mycologia 65(3): 619 (1973) 3. S. calva Kohlm., Mycologia 65(3): 622 (1973) 4. S. lanata Kohlm., Mycologia 65(3): 625 (1973) 5. S. phycophila A.R. Caval. & T.W. Johnson, Mycologia 57(6): 927 (1965) 2. KORALIONSTETALES Kohlm., Volkm.-Kohlm., J. Campb. & Inderb., Mycol. Res. 113(3): 377 (2009) Koralionastetaceae Kohlm. & Volkm.-Kohlm., Mycologia 79: 764 (1987) 123 Fungal Diversity (2019) 96:347–433 Koralionastes Kohlm. & Volkm.-Kohlm., Mycologia 79: 765 (1987) 1. K. angustus Kohlm. & Volkm.-Kohlm., Mycologia 79(5): 768 (1987) 2. K. ellipticus Kohlm. & Volkm.-Kohlm., Mycologia 79(5): 765 (1987) 3. K. giganteus Kohlm. & Volkm.-Kohlm., Can. J. Bot. 68(7): 1554 (1990) 4. K. ovalis Kohlm. & Volkm.-Kohlm., Mycologia 79(5): 765 (1987) 5. K. violaceus Kohlm. & Volkm.-Kohlm., Can. J. Bot. 68(7): 1556 (1990) Pontogeneia Kohlm., Bot. Jb. 96(1–4): 200 (1975) 1. P. calospora (Pat.) Kohlm., Bot. Jb. 96(1–4): 205 (1975) 2. P. codiicola (Dowson) Kohlm. & E. Kohlm., Marine Mycology, the Higher Fungi (London): 350 (1979) 3. P. cubensis (Har. & Pat.) Kohlm., Bot. Jb. 96(1–4): 207 (1975) 4. P. enormis (Pat. & Har.) Kohlm., Botanische Jahrbcher fr Systematik Pflanzengeschichte und Pflanzengeographie 96(1–4): 208 (1975) 5. P. erikae Kohlm., Bot. Mar. 24(1): 16 (1981) 6. P. microdictyi Kohlm. & Volkm.-Kohlm., Mycol. Res. 113(3): 378 (2009) 7. P. padinae Kohlm., Bot. Jb. 96(1–4): 201 (1975) 8. P. valoniopsidis (Cribb & J.W. Cribb) Kohlm., Bot. Jb. 96(1–4): 209 (1975) Unitunicate Ascomycota family/genera incertae sedis Argentinomyces N.I. Pea & Aramb., Mycotaxon 65: 333 (1997) 1. A. naviculisporus N.I. Pea & Aramb., Mycotaxon 65: 333 (1997) Aropsiclus Kohlm. & Volkm.-Kohlm., Syst. Ascomyc. 13: 24 (1994) 1. A. junci (Kohlm. & Volkm.-Kohlm.) Kohlm. & Volkm.Kohlm., Syst. Ascomyc. 13(1): 24 (1994 Biflua Jorg. Koch & E.B.G. Jones, Can. J. Bot. 67(4): 1187 (1989) 1. B. physasca Jørg. Koch & E.B.G. Jones, Can. J. Bot. 67(4): 1187 (1989) Crinigera I. Schmidt, Mycotaxon 24: 420 (1985) 1. C. maritima I. Schmidt, Nat. Naturs. Mecklenburg. 7: 11 (1969) Dryosphaera Jørg. Koch & E.B.G. Jones, Can. J. Bot. 67(4): 1184 (1989) 1. D. navigans Jørg. Koch & E.B.G. Jones, Can. J. Bot. 67(4): 1185 (1989) 2. D. tenuis Andrienko, Ukr. Bot. Zh. 58: 244 (2001) 3. D. tropicalis Kohlm. & Volkm.-Kohlm., Can. J. Bot. 71(7): 992 (1993) Eiona Kohlm., Ber. Deut. Bot. Ges. 81: 58 (1968) Fungal Diversity (2019) 96:347–433 1. E. tunicata Kohlm., Ber. Deut. Bot. Ges. 81: 58 (1968) Fusariella Sacc., Atti delĺIstituto Veneto Scienze 2: 463 (1884) 1. F. obstipa (Pollack) S. Hughes, Mycol Pap 28: 9 (1949) Hansfordia S. Hughes, Mycological Papers 43: 15 (1951) 1. H. pulvinata (Berk. & M.A. Curtis) S. Hughes, Can J Bot 36: 771 (1958) Hapsidascus Kohlm. & Volkm.-Kohlm., Syst. Ascomyc. 10: 113 (1991) 1. H. hadrus Kohlm. & Volkm.-Kohlm., Syst. Ascomyc. 10(2): 115 (1991) *Hymenopsis Sacc., Syll. Fung. 4: 744 (1886) 1. H. chlorothrix Kohlm. & Volkm.-Kohlm., Mycol. Res. 105(4): 504 (2001) Mangrovispora K.D. Hyde & Nakagiri, Syst. Ascomyc. 10(1): 19 (1991) 1. M. pemphii K.D. Hyde & Nakagiri, Syst. Ascomyc. 10(1): 20 (1991) Marisolaris Jørg. Koch & E.B.G. Jones, Can. J. Bot. 67(4): 1190 (1989) 1. M. ansata Jørg. Koch & E.B.G. Jones, Can. J. Bot. 67(4): 1193 (1989) Orcadia G.K. Sutherl., Trans. Br. Mycol. Soc. 5(1): 151 (1915) 1. O. ascophylli G.K. Sutherl., Trans. Br. Mycol. Soc. 5(1): 151 (1915) Rhizophila K.D. Hyde & E.B.G. Jones, Mycotaxon 34(2): 527 (1989) 1. R. marina K.D. Hyde & E.B.G. Jones, Mycotaxon 34(2): 528 (1989) *Tetranacriella Kohlm. & Volkm-Kohlm, Bot. Mar. 44(2): 152 (2001) 1. T. papillata Kohlm. & Volkm.-Kohlm., Bot. Mar. 44(2): 152 (2001) Asexual marine fungi not assigned to any higher order Some of the marine species listed in this section may not have been sequenced thus confirmation of their taxonomic position is required, although terrestrial species may have been assigned to a higher taxon. For most species listed there are no cultures or sequences to our knowledge. *Asteromyces Moreau & M. Moreau ex Hennebert, Can. J. Bot. 40(9): 1211 (1962) 1. A. cruciatus Moreau & F. Moreau ex Hennebert, Can. J. Bot. 40(9): 1213 (1962) *Cytoplacosphaeria Petr., Annls Mycol. 17(2–6): 79 (1919) 1. C. phragmiticola Poon & K.D. Hyde, Bot. Mar. 41(2): 148 (1998) *Heliscella Marvanov, Trans. Br. Mycol. Soc. 75(2): 224 (1980) 1. H. stellatacula (P.W. Kirk ex Marvanov & Sv. Nilsson) Marvanov, Trans. Br. Mycol. Soc. 75(2): 224 (1980) 411 *Hyphopolynema Nag Raj, Can. J. Bot. 55(7): 760 (1977) 1. H. juncatile Kohlm. & Volkm.-Kohlm., Mycotaxon 70: 489 (1999) *Nypaella K.D. Hyde & B. Sutton, Mycol. Res. 96(3): 210 (1992) 1. N. frondicola K.D. Hyde & B. Sutton, Mycol. Res. 96(3): 210 (1992) *Mycoenterolobium Goos, Mycologia 62(1): 172 (1970) 1. M. platysporum Goos, Mycologia 62(1): 172 (1970) *Octopodotus Kohlm. & Volkm.-Kohlm., Mycologia 95(1): 117 (2003) 1. O. stupendus Kohlm. & Volkm.-Kohlm., Mycologia 95(1): 117 (2003) *Phragmospathula Subram. & N.G. Nair, Anton. van Leeuw. 32(4): 384 (1966) 1. P. phoenicis Subram. & N.G. Nair, Anton. van Leeuw. 32(4): 384 (1966) *Plectophomella Moesz, Magy. Bot. Lapok 21: 13 (1922) 1. P. nypae K.D. Hyde & B. Sutton, Mycol. Res. 96(3): 211 (1992) *Pycnodallia Kohlm. & Volkm.-Kohlm., Mycol. Res. 105(4): 500 (2001) 1. P. dupla Kohlm. & Volkm.-Kohlm., Mycol. Res. 105(4): 500 (2001) *Sporidesmium Link, Mag. Gesell. Naturf. Freunde, Berlin 3(1–2): 41 (1809) 1. S. salinum E.B.G. Jones, Trans. Br. Mycol. Soc. 46(1): 135 (1963) *Trichocladium Harz, Bull. Soc. Imp. Nat. Moscou 44(1): 125 (1871) (Polyphyletic genus with six marine species, but these have not been sequenced) 1. T. alopallonellum (Meyers & R.T. Moore) Kohlm. & Volkm.-Kohlm., Mycotaxon 53: 352 (1995) 2. T. constrictum I. Schmidt, Natur Naturschutz Mecklenberg 12: 114 (1974) 3. T. lignicola I. Schmidt [as ‘lignincola’], Natur Naturschutz Mecklenberg 12: 116 (1974) 4. T. melhae E.B.G. Jones, Abdel-Wahab & Vrijmoed, Fungal Divers. 7: 50 (2001) 5. T. nypae K.D. Hyde & Goh, in Hyde, Goh, Lu & Alias, Mycol. Res. 103(11): 1420 (1999) *Cytoplacosphaeria Petr., Annls Mycol. 17(2–6): 79 (1919) 1. C. rimosa Petr., Annls Mycol. 17(2/6): 79 (1919) *Phialophorophoma Linder, Farlowia 1(3): 402 (1944) 1. P. litoralis Linder, Farlowia 1: 403 (1944) *Phragmostilbe Subram., Mycopath. Mycol. Appl. 10(4): 351 (1959) 1. Ph. linderi Subram., Mycopath. Mycol. Appl. 10(4): 352 (1959) *Pleurophomopsis Petr., Annls Mycol. 22(1–2): 156 (1924) 123 412 1. P. nypae K.D. Hyde & B. Sutton, Mycol. Res. 96(3): 213 (1992) Zygosporium Mont., Annales des Sciences Naturelles Botanique 17: 152 (1842) 1. Z. masonii S. Hughes, Mycol. Pap. 44: 15 (1951) Phylum: MUCOROMYCOTA MUCORALES Fr., Systema Mycologicum 3: 296 (1832) Mucoraceae Dumort., Commentationes botanicae: 69: 81 (1822) Absidia Tiegh., Annales des Sciences Naturelles Botanique 4 (4): 350 (1878) 1. A. glauca Hagem, Skrifter udgivne af Videnskabs-Selskabet i Christiania. Mathematisk-Naturvidenskabelig Klasse 7: 43 (1908) Mucor Fresen., Beitrge zur Mykologie 1: 7 (1850) 1. M. hiemalis Wehmer, Annales Mycologici 1(1): 39 (1903) 2. M. racemosus Bull., Hist. Champ. Fr. (Paris) 1: 104 (1791) 3. M. racemosus f. sphaerosporus (Hagem) Schipper, Studies in Mycology 36 (4): 480 (1970) Rhizopus Ehrenb., Nova Acta Academiae Caesareae Leopoldino-CarolinaeGermanicae Naturae Curiosorum 10: 198 (1820 1. #Rh. microsporus var. rhizopodiformis (Cohn) Schipper & Stalpers, Stud. Mycol. 25: 30 (1984) 2. Rh. stolonifer (Ehrenb.) Vuill., Revue Mycol., Toulouse 24: 54 (1902) Phylum CHYTRIDIOMYCOTA 1. CHYTRIDIALES Cohn, Jber Schles Ges Vaterl Kultur 57: 279 (1879), emend. MozleyStandridge et al., Mycol. Res. 113: 502 (2009) Chytridiaceae Nowak., Akad Umiejetnosci Krakowie Wydzı́at mat Przyród: 174: 191 (1878), emend. Vélez et al., Mycologia 103: 123 (2011) Chytridium A. Braun, Betrach. Erschein. Verjüng. Natur.: 198 (1851) 1. Ch. codicola Zeller, Publ. Puget Sound Biol. Sta. Univ. Wash. 2: 121 (1918) 2. Ch. lagenaria Schenk, Verhandlungen PhysikalischMedizinische Gesellschaft Würzburg 8: 241 (1858) 3. Ch. lagenaria var. japonense Kobayasi & M. Ôkubo, Bull. Natn. Sci. Mus., Tokyo 33: 56 (1953) 4. Ch. megastomum Sparrow, Dansk botanisk Arkiv 8 (6): 21 (1933)? 5. Ch. proliferum Karling, Sydowia 20: 122 (1968) 6. Ch. turbinatum Kobayasi & M. Ôkubo, Bull. Natn. Sci. Mus., Tokyo, B 1: 69 (1954) Phlyctochytrium J. Schröt., Nat. Pflanzenfamilien: 78 (1892) 1. Ph. bryopsidis Kobayasi & M. Ôkubo, Bull. Natn. Sci. Mus., Tokyo 1(2 (35)): 66 (1954) 123 Fungal Diversity (2019) 96:347–433 2. Ph. cladophorae Kobayasi & M. Ôkubo, Bull. Natn. Sci. Mus., Tokyo, B 1: 64 (1954) 3. Ph. japonicum (Kobayasi & M. Ôkubo) Sparrow, Aquatic Phycomycetes. Second Ed (1960) 4. Ph. marinum Kobayasi & M. Ôkubo, Bull. Natn. Sci. Mus., Tokyo, B 33: 55 (1953) Rhizidium A. Braun, Monatsber. Königl. Preuss. Akad. Wiss. Berlin 1856: 591 (1856) 1. Rh. braunii Zopf, Nova Acta Acad. Caes. Leop.-Carol. German. Nat. Cur. 52: 349 (1888) 2. Rh. tomiyamanum Konno; J. Jap. Bot., 44: 315–317 (1969) Tylochytrium Karling, Mycologia 31: 287 (1939) 1. T. pollinis-pini (A. Braun) Doweld Index Fungorum 101: 1 (2014) Chytriomycetaceae Letcher, Mycologia 103: 127 (2011) Rhizoclosmatium H.E. Petersen, J. Bot. Paris 17: 216 (1903) 1. Rhi. marinum Kobayasi & M. Ôkubo, Bull. Natn. Sci. Mus., Tokyo, N.S. 1(2 (35)): 68 (1954) 2. CLADOCHYTRIALES S. E. Mozley Standridge, Mycol. Res. 113: 502 (2009) Endochytriaceae Sparrow ex D.J.S. Barr, Canadian Journal of Botany 58 (22): 2390 (1980) Catenochytridium Berdan, Am. J. Bot. 26(7): 460 (1939) 1. C. carolinianum f. marinum Kobayasi & M. Ôkubo, Bull. Natn. Sci. Mus., Tokyo, B 33: 57 (1953) 3. LOBULOMYCETACETALES D. R. Simmons, Mycol. Res. 113: 453 (2009) Family incertae sedis Algochytrops Doweld, Index Fungorum, 123: 1 (2014) 1. #Al. polysiphoniae (Cohn) Doweld, Index Fungorum, 123: 1 (2014) 4. RHIZOPHYDIALES Letcher, Mycol. Res. 110: 908 (2006) Dinomycetaceae Karpov and Guillou, Protist 165: 240 (2014) Dinomyces Karpov and Guillou, Protist 165: 241 (2014) 1. #D. arenysensis S.A. Karpov & L. Guillou, Protist 165(2): 230–244 (2014) Halomycetaceae Letcher and M.J. Powell, Mycologia, 107(4): 819 (2015) Halomyces Letcher and M.J. Powell, Mycologia, 107(4): 819 (2015) 1. #H. littoreus (Amon) Letcher & M.J. Powell, Mycologia, 107(4): 819 (2015) Paludomyces Letcher & M.J. Powell, Mycologia, 107(4): 819 (2015) 1. #P. mangrovei (Ulken) Letcher & M.J. Powell, Mycologia, 107(4): 820 (2015) Fungal Diversity (2019) 96:347–433 Ulkenomyces Letcher & M.J. Powell, Mycologia 107(4): 821 (2015) 1. #Ul. aestuarii (Ulken) Letcher & M.J. Powell, Mycologia 107(4): 821 (2015) Rhizophydiaceae Letcher, Mycological Research 110 (8): 909 (2006) Rhizophydium Schenk, Verhandlungen PhysikalischMedizinische Gesellschaft Würzburg 8: 245 (1858) 1. Rh. globosum (A. Braun) Rabenh., Flora Europaea algarum aquae dulcis et submarinae 3: 280 (1868) Following species need verification: Rhizophhydiales incertae sedis 1. Rh. cladophorae (Kobayasi & M. Ôkubo) Sparrow, Aquatic Phycomycetes, Edn 2 (Ann Arbor): 266 (1960) 2. Rh. codicola Zeller, Publ. Puget Sound Biol. Sta. Univ. Wash. 2: 122 (1918) 3. Rh. halophilum Uebelm., ex Letcher, in Letcher & Powell, Publication of the Zoosporic Research Institute 1: 26 (2012) 4. Rh. keratinophilum Karling, Am. J. Bot. 33(9): 753 (1946) 5. Rh. subglobosum Kobayasi & M. Ôkubo, Bull. Natn. Sci. Mus., Tokyo, N.S. 1(2 (35)): 63 (1954) Ubelmesseromycetaceae M.J. Powell & Letcher, Mycologia 107:423 (2015) Ubelmesseromyces M.J. Powell & Letcher, Mycologia 107:423 (2015 1. #U. harderi M.J. Powell & Letcher, Mycologia 107:423 (2015) Chytridiomycota incertae sedis Blyttiomyces A.F. Bartsch, Mycologia 31: 559 (1939) 1. Bl. verrucosus Dogma, Kalikasan 8(3): 238 (1980) Thalassochytrium Nyvall, M. Pedersén & Longcore, J. Phycol. 35: 176 (1999) 1. Th. gracilarriopsis Nyvall, M. Pedersén & Longcore, J. Phycol. 35(1): 182 (1999) Fungi incertae sedis Olpidiaceae J. Schröt., Krypt.-Fl. Schlesien: 180 (1886) Olpidium (A. Braun) J. Schröt., Krypt.-Fl- Schlesien 31(2): 180 (1886) 1. O. rostriferum Ivimey Cook, Trans. Sapporo Nat. Hist. Soc. 13(2–3): 80 (1934) ? Valid taxon Coenomyces Deckenb., Flora (Regensburg) 92: 265 (1903) 1. C. consuens K.N. Deckenb., Flora (Regensburg) 92: 265 (1903) Phylum: BLASTOCLADIOMYCOTA BLASTOCLADIOMYCETES 413 1. BLASTOCLADIALES H.E. Peterson, Bot. Tidsskr. 29: 357 (1909) Catenariaceae Couch, Mycologia 37: 187 (1945) Catenaria Sorokin, Revue Mycol. Toulouse 11: 139 (1889) 1. C. anguillulae Sorokin, Annls Sci. Nat., Bot., sér. 6: 67 (1876) Marine yeasts Ascomycota and Basidiomycota Updated 31 December 2018 All species listed have been reported from marine habitats, even if they are facultative! Phylum: BASIDIOMYCOTA Subphyllum: Agaricomycotina Class: Tremellomycetes Doweld, Prosyllabus Tracheophytorum, Tentamen Systematis Plantarum Vascularium (Tracheophyta): LXXVII (2001) 1. CYSTOFILOBASIDIALES Fell, Roeijmans & Boekhout, Int. J. Syst. Bacteriol. 49: 911 (1999) Cystofilobasidiaceae K. Wells & Bandoni, The Mycota, A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research (Berlin) 7(B): 113 (2001) Cystofilobasidium Oberw. & Bandoni, in Oberwinkler, Bandoni, Blanz & Kisimova-Horovitz, Syst. Appl. Microbiol. 4(1): 116 (1983) 1. C. capitatum (Fell, I.L. Hunter & Tallman) Oberw. & Bandoni, in Oberwinkler, Bandoni, Blanz & KisimovaHorovitz, Syst. Appl. Microbiol. 4(1): 116 (1983) 2. C. bisporidii (Fell, I.L. Hunter & Tallman) Oberw. & Bandoni [as ‘bisporidiis’], in Oberwinkler, Bandoni, Blanz & Kisimova-Horovitz, Syst. Appl. Microbiol. 4(1): 118 (1983) 3. C. infirmominiatum (Fell, I.L. Hunter & Tallman) Hamam., Sugiy. & Komag., J. gen. appl. Microbiol., Tokyo 34(3): 276 (1988) 4. C. macerans Samp., in Libkind, Gadanho, Broock & Sampaio, Int. J. Syst. Evol. Microbiol. 59(3): 627 (2009) Mrakiaceae X.Z. Liu, F.Y. Bai, M. Groenew. & Boekhout, Studies Mycology 81: 29 (2016) Mrakia Y. Yamada & Komag., J. Gen. Appl. Microbiol., Tokyo 33(5): 456 (1987) 1. M. frigida (Fell, Statzell, I.L. Hunter & Phaff) Y. Yamada & Komag., J. gen. appl. Microbiol., Tokyo 33(5): 457 (1987) Tausonia Babeva, Mikrobiologiya 67: 231. 1998. emend. X.Z. Liu, F.Y. Bai, M. Groenew. & Boekhout.Studies Mycology 81: 32 (2016) 1. T. pullulans (Lindner) X.Z. Liu, F.Y. Bai, M. Groenew. & Boekhout, Studies Mycology 81: 32 (2015) 2. TREMELLALES Fr., Syst. Mycol. (Lundae) 1: 2 (1821) 123 414 Bulleribasidiaceae X.Z. Liu, F.Y. Bai, M. Groenew. & Boekhout, Studies in Mycology 81: 122 (2015) Dioszegia Zsolt, Bot. Közl. 47(1–2): 64 (1957) 1. D. hungarica Zsolt, Bot. Közl. 47(1–2): 64 (1957) Hannaella F.Y. Bai & Q.M. Wang, FEMS Yeast Res 8(5): 805 (2008) 1. H. luteola (Saito) F.Y. Bai & Q.M. Wang, FEMS Yeast Research 8 (5): 805 (2008) 2. H. surugaensis (Nagah., Hamam. & Nakase) F.Y. Bai & Q.M. Wang, in Wang & Bai, FEMS Yeast Res. 8(5): 805 (2008) Tremellaceae Fr., Syst. Mycol. (Lundae) 1: lv (1821) Bandonia A.M. Yurkov, X.Z. Liu, F.Y. Bai, M. Groenew. & Boekhout, Studies in Mycology 81: 143 (2015) 1. B. marina (Uden & Zobell) A.M. Yurkov, X.Z. Liu, F.Y. Bai, M. Groenew. Boekhout, Studies in Mycology 81: 143 (2015) Bullera Derx, Annales Mycologici 28 (1–2): 11 (1930) 1. B. unica Hamam. & Nakase, Antonie van Leeuwenhoek 69: 288 (1996) Cutaneotrichosporon X.Z. Liu, F.Y. Bai, M. Groenew. & Boekhout, Studies in Mycology 81: 139 (2015) 1. Cu. curvatus (Diddens & Lodder) A.M. Yurkov, X.Z. Liu, F.Y. Bai, M. Groenew. & Boekhout, Studies in Mycology 81: 139 (2015 Papiliotrema J.P. Samp., M. Weiss & R. Bauer, Mycologia 94 (5): 875 (2002) 1. P. pseudoalba (Nakase & M. Suzuki) X.Z. Liu, F.Y. Bai, M. Groenew. & Boekhout, Studies in Mycology 81: 126 (2015) 2. P. flavescens (Saito) X.Z. Liu, F.Y. Bai, M. Groenew. & Boekhout, Studies in Mycology 81: 126 (2015) 3. P. mangalensis (Fell, Statzell & Scorzetti) A.M. Yurkov, Studies in Mycology 81: 126 (2015) 4. P. laurentii (Kuff.) X.Z. Liu, F.Y. Bai, M. Groenew. & Boekhout, Studies in Mycology 81: 126 (2015) Trimorphomycetaceae X.Z. Liu, F.Y. Bai, M. Groenew. & Boekhout, Studies in Mycology 81: 133 (2015) Saitozyma X.Z. Liu, F.Y. Bai, M. Groenew. & Boekhout, Studies in Mycology 81: 134 (2015) 1. S. flava (Saito) X.Z. Liu, F.Y. Bai, M. Groenew. & Boekhout, Studies in Mycology 81: 134 (2015). Groenew. & Boekhout, Studies in Mycology 81: 134 (2015) Kwoniella Statzell & Fell, FEMS Yeast Res. 8(1): 107 (2008) 1. K. mangroviensis Statzell, Belloch & Fell, FEMS Yeast Res. 8(1): 107 (2008) Vishniacozyma X.Z. Liu, F.Y. Bai, M. Groenew. & Boekhout, Studies in Mycology 81: 123 (2015) 1. V. carnescens (Verona & Luchetti) X.Z. Liu, F.Y. Bai, M. Groenew. & Boekhout, Studies in Mycology 81: 124 (2015) 2. V. dimennae (Fell & Phaff) X.Z. Liu, F.Y. Bai, M. Groenew. & Boekhout, Studies in Mycology 81: 124 (2015) 123 Fungal Diversity (2019) 96:347–433 3. V. tephrensis (Vishniac) X.Z. Liu, F.Y. Bai, M. Groenew. & Boekhout, Studies in Mycology 81: 124 (2015) 4. V. victoriae (M.J. Montes, Belloch, Galiana, M.D. Garcı́a, C. Andrés, S. Ferrer, Torr.-Rodr. & J. Guinea) X.Z. Liu, F.Y. Bai, M. Groenew. & Boekhout, Studies in Mycology 81: 124 (2015) 3. TRICHOSPORONALES Boekhout & Fell, Int J Evol Microbiol 50: 133 (2000) Trichosporonaceae Nann., Repert. mic. uomo: 285 (1934) Trichosporon Behrend, Berliner Klin. Wochenschr. 21: 464 (1890) 1. T. arenicola J.A. Lima & L.A. Queiroz, Publicações Inst. Micol. Recife 690: 2 (1972) 2. T. asahii Akagi ex Sugita, A. Nishikawa & Shinoda, J. Gen. Appl. Microbiol., Tokyo 40(5): 405 (1994) 3. T. coremiiforme (M. Moore) E. Guého & M.T. Sm., Antonie van Leeuwenhoek 61(4): 308 (1992) 4. T. cutaneum (Beurm., Gougerot & Vaucher bis) M. Ota, Annls Parasit. hum. comp. 4: 12 (1926) 5. T. japonicum Sugita & Nakase, Int. J. Syst. Bacteriol. 48(4): 1426 (1998) Vanrija R.T. Moore, Botanica Marina 23 (6): 367 (1980) 1. V. humicola (Dasz.) R.T. Moore, Botanica Marina 23 (6): 368 (1980) Cryptococcaceae Kütz. ex Castell. & Chalm., Manual of Tropical Medicine: 1070 (1919) Cryptococcus Vuill., Revue Générale des Sciences Pures et Appliquées 12: 741 (1901) 1. Cr. deuterogattii Hagen & Boekhout, In: Hagen F, Khayhan K, Theelen B, Kolecka A Polacheck I, Sionov E, Falk R, Parnmen S, Lumbsch JT, Boekhout T Fungal Genet. Biol. (In Press) (2015) 2. Cr. neoformans (San Felice) Vuill., Rev. Gén. Sci. Pures Appl. 12: 747–750 (1901) 4. FILOBASIDIALES Jülich, Biblthca Mycol. 85: 324 (1981) Filobasidiaceae L.S. Olive, J. Elisha Mitchell scient. Soc. 84: 261 (1968) Filobasidium L.S. Olive, J. Elisha Mitchell Scient. Soc. 84: 261 (1968) 1. F. capsuligenum (Fell, Statzell, I.L. Hunter & Phaff) Rodr. Mir., Antonie van Leeuwenhoek 38(1): 96 (1972) 2. F. chernovii (Á. Fonseca, Scorzetti & Fell) X.Z. Liu, F.Y. Bai, M. Groenew. & Boekhout, Studies in Mycology 81: 118 (2015) 3. F. magnum (Lodder & Kreger-van Rij) X.Z. Liu, F.Y. Bai, M. Groenew. & Boekhout, Studies in Mycology 81: 118 (2015) 4. F. uniguttulatus Kwon-Chung, Int. J. Syst. Bacteriol. 27(3): 293 (1977) Fungal Diversity (2019) 96:347–433 Naganishia Goto, J. Fermen. Technol. Osaka 41: 461 (1963) 1. N. albida (Saito) X.Z. Liu, F.Y. Bai, M. Groenew. & Boekhout, Studies in Mycology 81: 118 (2015) 2. N. liquefaciens (Saito & M. Ota) X.Z. Liu, F.Y. Bai, M. Groenew. & Boekhout, Studies in Mycology 81: 119 (2015) 3. N. qatarensis Fotedar et al., Int J Syst Evol Microbiol., 68(9): 2918 (2018) Piskurozymaceae X.Z. Liu, F.Y. Bai, M. Groenew. & Boekhout, Studies in Mycology 81: 120 (2015) Solicoccozyma X.Z. Liu, F.Y. Bai, M. Groenew. & Boekhout, Studies in Mycology 81: 121 (2015) 1. S. keelungensis (C.F. Chang & S.M. Liu) A.M. Yurkov, Studies in Mycology 81: 121 (2015) 2. S. terrea (Di Menna) A.M. Yurkov, Studies in Mycology 81: 122 (2015) Subphyllum: Pucciniomycotina Class: Microbotryomycetes incertae sedis Pseudohyphozyma Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout, Studies in Mycology 81: 184 (2015) 1. P. bogoriensis (Deinema) Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout, Studies in Mycology 81: 185 (2015) Sampaiozyma Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout, Studies in Mycology 81: 185 (2015) 1. S. ingeniosa (Di Menna) Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout, Studies in Mycology 81: 186 (2015) 1. KRIEGERIALES Toome & Aime, Mycologia 105 (2): 489 (2013) Camptobasidiaceae R.T. Moore, Mycotaxon 59: 8 (1996) Glaciozyma Turchetti, L.B. Connell, Thomas-Hall & Boekhout, Extremophiles 15(5): 579 (2011) 1. G. antarctica (Fell, Statzell, I.L. Hunter & Phaff) Turchetti, L.B. Connell, Thomas-Hall & Boekhout, Extremophiles 15(5): 579 (2011) 2. LEUCOSPORIDIALES J.P. Samp., M. Weiss & R. Bauer, Mycological Progress 2 (1): 61 (2003) Leucosporidiaceae Jülich, Biblthca Mycol. 85: 377 (1982) Leucosporidium Fell, Statzell, I.L. Hunter & Phaff, Antonie van Leeuwenhoek 35(4): 438 (1969) 1. L. scottii Fell, Statzell, I.L. Hunter & Phaff, Antonie van Leeuwenhoek 35(4): 440 (1969) 2. L. escuderoi Vaca, Laich & R. Chávez, Antonie van Leeuwenhoek 105 (3): 599 (2014) 3. SPORIDIOBOLALES J.A. Samp., M. Weiss, R. Bauer, Mycol. Prog. 2(1):66 (2003) Sporidiobolaceae R.T. Moore, Bot. Mar. 23(6): 371 (1980) 415 Rhodotorula F.C. Harrison, Proc. & Trans. Roy. Soc. Canada, ser. 3 21(5): 349 (1927) 1. R. aurantiaca (Saito) Lodder, Verh. K. Akad. Wet., tweede Sect. 32: 78 (1934) 2. R. babjevae (Golubev) Q.M. Wang, F.Y. Bai, M. Groenewald & T. Boekhout, Studies in Mycology 81: 181 (2015) 3. R. diobovata (S.Y. Newell & I.L. Hunter) Q.M. Wang, F.Y. Bai, M. Groenewald & T. Boekhout, Studies in Mycology 81: 181 (2015) 4. R. evergladensis Fell, Statzell & Scorzetti: 547 (2011) 5. R. glutinis (Fresen.) F.C. Harrison, Proc. & Trans. Roy. Soc. Canada, ser. 3 21(5): 349 (1928) 6. R. graminis Di Menna, J. Gen. Microbiol. 18: 270 (1958) 7. R. mucilaginosa (A. Jörg.) F.C. Harrison, Proc. & Trans. Roy. Soc. Canada, ser. 3 21(5): 349 (1928) 8. R. paludigenum Fell & Tallman, Int. J. Syst. Bacteriol. 30(4): 658 (1980) 9. R. sphaerocarpum S.Y. Newell & Fell, Mycologia 62(1): 276 (1970) 10. R. toruloides I. Banno, J. Gen. Appl. Microbiol., Tokyo 13: 193 (1967) Rhodosporidiobolus Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout, Studies in Mycology 81: 181 (2015) 1. Rho. fluvialis (Fell, Kurtzman, Tallman & J.D. Buck) Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout, Stud. Mycol. 81: 181 (2015) Sporobolomyces Kluyver & C.B. Niel, Zentbl. Bakt. ParasitKde, Abt. II 63: 19 (1924) 1. S. blumea M. Takash. & Nakase, Mycoscience 41(4): 366 (2000) 2. S. carnicolor Yamasaki & H. Fujii, Bull. Agrochem. Soc. Japan 24: 11-15 (1950) 3. S. johnsonii (Nyland) Q.M. Wang, F.Y. Bai, M. Groenewald & T. Boekhout, Studies in Mycology 81: 182 (2015) 4. S. pararoseus H.C. Olson & B.W. Hammer, Iowa State College Journal of Science 11: 210 (1937) 5. S. salmonicolor (B. Fisch. & Brebeck) Kluyver & C.B. Niel, Zentralblatt für Bakteriologie und Parasitenkunde Abteilung 2 63: 19 (1924) Class: Cystobasidiomycetes R. Bauer, Begerow, J.P. Samp., M. Weiss & Oberw., Mycol. Progr. 5(1): 46 (2006) 1. CYSTOBASIDIALES R. Bauer, Begerow, J.P. Samp., M. Weiss & Oberw., Mycol. Progr. 5(1): 46 (2006) Cystobasidiaceae Gäum., Vergl. Morph. Pilze (Jena): 411 (1926) Cystobasidium (Lagerh.) Neuhoff, emend. Yurkov et al., Antonie van Leeuwenhoek 107: 179 (2015) 1. C. benthicum (Nagahama, Hamamoto, Nakase & Horikoshi) Yurkov et al., Antonie van Leeuwenhoek 107: 186 (2015) 123 416 2. C. minuta (Saito) A.M. Yurkov, A. Kachalkin, H.M. Daniel, M. Groenew., Libkind, V. de Garcia, P. Zalar, Gouliamova, Boekhout & Begerow, Antonie van Leeuwenhoek 107 (1): 180 (2014) 3. C. pallidum (Lodder) Yurkov et al., Antonie van Leeuwenhoek 107: 181 (2015) 4. C. portillonense (Laich, Vaca & Chávez) Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout, Studies in Mycology 81: 173 (2015) 5. C. slooffiae (Novák & Vörös-Felkai) Yurkov et al., Antonie van Leeuwenhoek 107: 190 (2015) Occultifur Oberw., Rep. Tottori Mycol. Inst. 28: 119 (1990) 1. O. externus J.P. Samp., R. Bauer & Oberw., Mycologia 91(6): 1095 (1999) Symmetrosporaceae Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout, Studies in Mycology 81: 175 (2015) Symmetrospora Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout, Studies in Mycology 81: 175 (2015) 1. S. marina (Phaff, Mrak & O.B. Williams) Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout, Studies in Mycology 81: 176 (2015) 2. ERYTHROBASIDIALES R. Bauer, Begerow, J.P. Samp., M. Weiss & Oberw., Mycol. Progr. 5(1): 46 (2006) Erythrobasidiaceae Denchev, Mycol. Balcanica 6: 87. 2009. Erythrobasidium Hamam., Sugiy. & Komag., J. Gen. Appl. Microbiol., Tokyo 34(3): 285 (1988) 1. E. hasegawianum Hamam., Sugiy. & Komag., J. Gen. Appl. Microbiol., Tokyo 37: 131 (1991) Sakaguchiaceae Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout, Studies in Mycology 81: 177 (2015) Sakaguchia Y. Yamada, K. Maeda & Mikata, Biosc., Biotechn., Biochem. 58(1): 102 (1994) 1. S. dacryoidea (Fell, I.L. Hunter & Tallman) Y. Yamada, K. Maeda & Mikata, Biosc., Biotechn., Biochem. 58(1): 102 (1994) 2. S. cladiensis (Fell, Statzell & Scorzetti) Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout, Studies in Mycology 81: 177 (2015) 3. S. lamellibrachiae (Nagahama, Hamamoto, Nakase & Horikoshi) Q.M. Wang, F.Y. Bai, M. Groenewald & T. Boekhout, Studies in Mycology 81: 177 (2015) Hasegawazyma Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout, Studies in Mycology 81: 175 (2015) 1. H. lactosa (T. Haseg.) Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout, Studies in Mycology 81: 175 (2015) Class: Agaricostilbomycetes Subclass: Agaricostilbomycetidae 123 Fungal Diversity (2019) 96:347–433 1. AGARICOSTILBALES Oberw. & R. Bauer, Sydowia 41: 240 (1989) Agaricostilbaceae Oberw. & R. Bauer, Sydowia 41: 240 (1989) Sterigmatomyces Fell, Antonie van Leeuwenhoek 32: 101 (1966) 1. St. halophilous Fell, Antonie van Leeuwenhoek 32: 101 (1966) Kondoaceae R. Bauer, Begerow, J.P. Samp., M. Weiss & Oberw., Mycological Progress 5 (1): 45 (2006) Kondoa Y. Yamada, Nakagawa & I. Banno, Journal of General and Applied Microbiology Tokyo 35 (5): 383 (1989) 1. K. malvinella (Fell & I.L. Hunter) Y. Yamada, Nakagawa & I. Banno, Journal of General and Applied Microbiology Tokyo 35 (5): 384 (1989) Subphyllum: Ustilaginomycotina Class: Ustilaginomycetes R. Bauer, Oberw. & Vánky, Can. J. Bot. 75: 1311 (1997) 1. USTILAGINALES G. Winter, Rabenh. Krypt.-Fl., Edn 2 (Leipzig) 1.1: 73 (1880) Ustilaginaceae Tul. & C. Tul., Annls Sci. Nat., Bot., sér. 3 7: 14 (1847) Ustilago (Pers.) Roussel, Flore du Calvados et terrains adjacents, composée suivant la méthode de Jussieu: 47 (1806) 1. U. abaconensis (Statzell, Scorzetti & Fell) Q.M. Wang, Begerow, F.Y. Bai & Boekhout, Studies in Mycology 81: 82 (2015) Pseudozyma Bandoni emend. Boekhout, J Gen Appl Microbiol, Tokyo 41(4): 359-366 (1985) 1. P. hubeiensis F.Y. Bai & Q.M. Wang, in Wang, Jia & Bai, Int. J. Syst. Evol. Microbiol. 56(1): 291 (2006) Class: Malasseziomycetes Boekhout, Q.M. Wang, F.Y. Bai, In: Q.-M. Wang, B. Theelen, M. Groenewald, F.-Y. Bai, T. Boekhout, Persoonia 33: 46 (2014) 1. MALASSEZIALES R.T. Moore, Bot. Mar. 23(6): 371 (1980) Malasseziaceae Denchev & R.T. Moore, Mycotaxon 110: 379 (2009) Malassezia Baill., Traité de Bot Médicale Cryptogamique: 234 (1889) 1. M. furfur (C.P. Robin) Baill., Traité Bot. Méd. Crypt.: 234 (1889) Subphyllum: Pucciniomycotina Class: Tritirachiomycetes Aime & Schell, Mycologia 103(6): 1339 (2011) Fungal Diversity (2019) 96:347–433 1. TRITIRACHIALES Aime & Schell, in Schell, Lee & Aime, Mycologia 103(6): 1339 (2011) Tritirachiaceae Aime & Schell, Mycologia 103(6): 1339 (2011) Tritirachium Limber, Mycologia 32(1): 24 (1940) 1. T. candoliense Manohar, Boekhout & Stoeck, Fungal Biol. 118(2): 143 (2014) Basidiomycota incertae sedis Class: Wallemiomycetes Zalar, de Hoog & Schroers, Antonie van Leeuwenhoek 87(4): 322 (2005) 1. WALLEMIALES Zalar, de Hoog & Schroers, Antonie van Leeuwenhoek 87(4): 322 (2005) Wallemiaceae R.T. Moore, Rhizoctonia Species, Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control (Dordrecht): 20 (1996) Wallemia Johan-Olsen, Skr. VidenskSelsk. Christiania, Kl. I, Math.-Natur.(no. 12): 6 (1887) 1. W. sebi (Fr.) Arx, Gen. Fungi Sporul. Cult. (Lehr): 166 (1970) Phyllum: ASCOMYCOTA Subphyllum: Saccharomycotina Class: Saccharomycetes (G. Winter, Rabenh. Krypt.-Fl., Edn 2 (Leipzig) 1.1: 32 (1880) 1. SACCHAROMYCETALES Kudryavtsev, System. Hefen (Berlin): 270 (1960) Dipodascaceae Engl. & E. Gilg, Syllabus, Edn 9 & 10 (Berlin): 59 (1924) Galactomyces Redhead & Malloch, Can. J. Bot. 55(13): 1708 (1977) 1. G. candidum de Hoog & M.T. Sm., Stud. Mycol. 50(2): 504 (2004) Endomycetaceae J. Schröt., Krypt.-Fl. Schlesien (Breslau) 3.2(1–2): 208 (1893) Trichomonascus H.S. Jacks., Mycologia 39(6): 712 (1947) 1. T. ciferrii (M.T. Sm., Van der Walt & Johannsen) Kurtzman & Robnett, FEMS Yeast Res. 7(1): 149 (2007) Saccharomycetaceae G. Winter, Rabenh. Krypt.-Fl., Edn 2 (Leipzig) 1.1: 58 (1880) Citeromyces Santa Marı́a, Bol. Inst. Nac. Invest. Agron. 17: 275 (1957) 1. Cit. matritensis (Santa Marı́a) Santa Marı́a, Bol. Inst. Invest. Agron. Madr. 17(no. 37): 275 (1957) Lodderomyces Van der Walt, Antonie van Leeuwenhoek 32: 2 (1966) 1. L. elongisporus (Recca & Mrak) van der Walt, Bothalia 10(3): 418 (1971) Kazachstania Zubcova, Bot. Mater. Gerb. Inst. Bot. Akad. Nauk kazakh. SSR 7: 53 (1971) 417 1. K. bovina Kurtzman & Robnett, J. Clin. Microbiol. 43(1): 105 (2005) 2. K. exigua (Reess ex E.C. Hansen) Kurtzman, FEMS Yeast Res. 4(3): 238 (2003) 3. K. hetergenica Kurtzman & Robnett, J. Clin. Microbiol. 43(1): 107 (2005) 4. K. jiainica C.F. Lee & Chun H. Liu, FEMS Yeast Res. 8(1): 116 (2008) 5. K. pintolopesii Kurtzman, Robnett, J.M. Ward & T.J. Walsh, J. Clin. Microbiol. 43(1): 108 (2005) 6. K. siamensis Limtong, Yongman., Tun, H. Kawas. & Tats. Seki, Int. J. Syst. Evol. Microbiol. 57(2): 421 (2007) 7. K. slooffiae Kurtzman & Robnett, J. Clin. Microbiol. 43(1): 109 (2005) 8. K. yakushimaensis (Mikata & Ueda-Nishim.) Kurtzman, FEMS Yeast Research 4 (3): 239 (2003) Kluyveromyces van der Walt, Antonie van Leeuwenhoek 22: 271 (1956) 1. Kl. aestuarii (Fell) van der Walt, Antonie van Leeuwenhoek 31: 347 (1965) 2. Kl. lactis var. drosophilarum (Shehata, Mrak & Phaff) G.I. Naumov, E.S. Naumova, Barrio & Querol, Mikrobiologiya 75(3): 299-304 (2006) 3. Kl. lactis var. lactis (Dombr.) van der Walt, Bothalia 10(3): 417 (1971) 4. Kl. marxianus (E.C. Hansen) van der Walt, Bothalia 10(3): 418 (1971) 5. Kl. nonfermentans Nagah., Hamam., Nakase & Horikoshi, Int. J. Syst. Bacteriol. 49(4): 1903 (1999) Kodamaea Y. Yamada, Tom. Suzuki, M. Matsuda & Mikata, Biosc., Biotechn., Biochem. 59(6): 1174 (1995) 1. Kod. ohmeri (Etchells & T.A. Bell) Y. Yamada, Tom. Suzuki, M. Matsuda & Mikata, Biosc., Biotechn., Biochem. 59(6): 1174 (1995) Kregervanrija Kurtzman, FEMS Yeast Res. 6(2): 289 (2006) 1. Kr. fluxuum (Phaff & E.P. Knapp) Kurtzman, FEMS Yeast Res. 6(2): 291 (2006) FEMS Yeast Research 6 (2): 289 (2006) Lachancea Kurtzman, FEMS Yeast Res. 4(3): 239 (2003) 1. L. fermentati Kurtzman, FEMS Yeast Res. 4(3): 240 (2003) 2. L. meyersii Fell, Statzell & Kurtzman, Stud. Mycol. 50(2): 360 (2004) 3. L. thermotolerans (Filippov) Kurtzman, FEMS Yeast Res. 4(3): 240 (2003) Nakazawaea Y. Yamada, K. Maeda & Mikata, Biosc., Biotechn., Biochem. 58(7): 1256 (1994) 1. N. holstii (Wick.) Y. Yamada, K. Maeda & Mikata, Biosc., Biotechn., Biochem. 58(7): 1256 (1994) Saccharomyces Meyen ex Hansen, Vergleichende Morphologie und Biologie der Pilze, Mycetozen und Bacterien: 29 (1883) 123 418 1. S. cerevisiae Meyen ex E.C. Hansen, Meddn Carlsberg Lab. 2: 29 (1883) 2. S. pastorianus Reess ex E.C. Hansen, Zentbl. Bakt. ParasitKde, Abt. II 12(19-21): 538 (1904) Saturnispora Z.W. Liu & Kurtzman, Antonie van Leeuwenhoek 60(1): 28 (1991) 1. Sa. mendoncae Kurtzman, FEMS Yeast Res. 6(2): 292 (2006) 2. Sa. satoi (K. Kodama, Kyono & S. Kodama) Z.W. Liu & Kurtzman, Antonie van Leeuwenhoek 60(1): 28 (1991) Schwanniomyces Klöcker, Meddn Carlsberg Lab. 7: 249 (1909) 1. Sch. etchellsii (Kreger-van Rij) M. Suzuki & Kurtzman, in Kurtzman & Suzuki, Mycoscience 51(1): 11 (2010) 2. Sch. polymorphus var. africanus (Van der Walt, Nakase & M. Suzuki) M. Suzuki & Kurtzman, in Kurtzman & Suzuki, Mycoscience 51(1): 11 (2009) 3. Sch. vanrijiae (van der Walt & Tscheuschner) M. Suzuki & Kurtzman, in Kurtzman & Suzuki, Mycoscience 51(1): 11 (2010) Torulaspora Lindner, Jb. Vers.- Lehranst. Brau. Berl. 7: 441 (1904) 1. T. delbruechii (Lindner) E.K. Novák & Zsolt, Acta bot. hung. 7: 113 (1961) 2. T. globosa (Klöcker) van der Walt & Johannsen, C.S.I.R. Res. Rep. 325: 15 (1975) 3. T. maleeae Limtong, Imanishi, Jindam., S. Ninomiya, Yongman. & Nakase, FEMS Yeast Res. 8(2): 340 (2008) Zygotorulaspora Kurtzman, FEMS Yeast Res. 4(3): 243 (2003) 1. Z. florentina (T. Castelli ex Kudryavtsev) Kurtzman, FEMS Yeast Res. 4(3): 243 (2003) Pichiaceae Zender, Bull. Soc. bot. Genève, 2 sér. 17: 290 (1925) Brettanomyces Kuff. & van Laer, Bulletin de la Société Chimiques Belges 30: 270-276 (1921) 1. B. bruxellensis Kuff. & van Laer, Bull. Soc. Chim. Belg. 30: 276 (1921) Pichia E.C. Hansen, Zentbl. Bakt. ParasitKde, Abt. II 12(19): 538 (1904) 1. P. fermentans Lodder, Zentbl. Bakt. ParasitKde, Abt. II 86: 242 (1932) 2. P. kluyveri Bedford ex Kudryavtsev, Bot. Mater. Otd. Sporov. Rast. Bot. Inst. Komarova Akad. Nauk S.S.S.R. 13: 145 (1960) 3. P. kudriavzevii Boidin, Pignal & Besson, Bull. trimest. Soc. mycol. Fr. 81(4): 589 (1965) 4. P. mandshurica Saito, Report of the Central Laboratory, South Manchuria Railway Company 1: 35 (1914) 5. P. membranifaciens (E.C. Hansen) E.C. Hansen, Zentbl. Bakt. ParasitKde, Abt. II 12(19-21): 538 (1904) 6. P. norvegensis Leask & Yarrow, Sabouraudia 14: 61 (1976) 123 Fungal Diversity (2019) 96:347–433 7. P. occidentalis (Kurtzman, M.J. Smiley & C.J. Johnson) Kurtzman, Robnett & Bas.-Powers, FEMS Yeast Res. 8(6): 946 (2008) 8. P. terricola Van der Walt, Antonie van Leeuwenhoek 23: 28 (1957) Trichomonascaceae Kurtzman & Robnett, FEMS Yeast Res. 7(1): 150 (2007) Blastobotrys Klopotek, Archiv für Mikrobiol 58: 92 (1967) 1. Bl. parvus (Fell & Statzell) Kurtzman & Robnett, FEMS Yeast Res. 7(1): 149 (2007) Barnettozyma Kurtzman, Robnett & Bas.-Powers, FEMS Yeast Res. 8(6): 948 (2008) 1. Bar. californica (Lodder) Kurtzman, Robnett & Bas.Powers, FEMS Yeast Res. 8(6): 948 (2008) Saccharomycodaceae Kudryavtsev, System. Hefen (Berlin): 270 (1960) Hanseniaspora Zikes, Zentbl. Bakt. ParasitKde, Abt. II 30: 148 (1911) 1. H. occidentalis M.T. Sm., Antonie van Leeuwenhoek 40(3): 441 (1974) 2. H. uvarum (Niehaus) Shehata, Mrak & Phaff ex M.T. Sm., in Smith, Yeasts, a taxonomic study, 3rd Edn (Amsterdam): 159 (1984) 3. H. valbyensis Klöcker, Zentbl. Bakt. ParasitKde, Abt. II 35: 385 (1912) Debaryomycetaceae Kurtzman & M. Suzuki, Mycoscience 51(1): 12 (2010) Debaryomyces Lodder & Kreger-van Rij, in Kreger-van Rij, Yeasts, a taxonomic study, 3rd Edn (Amsterdam): 130, 145 (1984) 1. D. hansenii (Zopf) Lodder & Kreger, The Yeasts: a taxonomic study: 280 (1952) 2. D. nepalensis Goto & Sugiy., J. Jap. Bot. 43: 103 (1968) Meyerozyma Kurtzman & M. Suzuki, Mycoscience 51(1): 8 (2010) 1. Me. caribbica (Vaughan-Mart., Kurtzman, S.A. Mey. & E.B. O’Neill) Kurtzman & M. Suzuki, Mycoscience 51(1): 8 (2010) 2. Me. guilliermondii (Wick.) Kurtzman & M. Suzuki, Mycoscience 51(1): 7 (2010) Millerozyma Kurtzman & M. Suzuki, Mycoscience 51 (1): 8 (2010) 1. M. farinosa (Lindner) Kurtzman & M. Suzuki, Mycoscience 51 (1): 8 (2010) Candida Berkhout, De schimmelgeslachten Monilia, Oidium, Oospora en Torula: 41 (1923) This genus is highly polyphyletic and taxonomic changes can be expected. 1. C. aaseri Dietrichson ex Uden & H.R. Buckley, in Lodder, Yeasts, a taxonomic study, 2nd Edn (Amsterdam): 912 (1970) Fungal Diversity (2019) 96:347–433 2. C. albicans (C.P. Robin) Berkhout, De Schimmelgesl. Monilia, Oidium, Oospora en Torula, Disset. Ultrecht: 44 (1923) 3. C. anatomiae (Zwillenb.) S.A. Mey. & Yarrow, in Yarrow & Meyer, Int. J. Syst. Bacteriol. 28(4): 611 (1978) 4. C. andamanensis Am-In, Limtong, Yongman. & Jindam., Int. J. Syst. Evol. Microbiol. 61(2): 459 (2011) 5. C. atlantica (Siepmann) S.A. Mey. & Simione, in Meyer & Yarrow, Mycotaxon 66: 100 (1998) 6. C. berthetii Boidin, Pignal, Mermiér & Arpin, Cahiers de La Maboké 1: 100 (1963) 7. C. boidinii C. Ramı́rez, Microbiol. esp. 6(3): 251 (1953) 8. C. carpophila (Phaff & M.W. Mill.) Vaughan-Mart., Kurtzman, S.A. Mey. & E.B. O’Neill, FEMS Yeast Res. 5(4-5): 467 (2005) 9. C. catenulata Diddens & Lodder, Die Hefesammlung des ‘Centraalbureau voor Schimmelcultures’: Beitrage zu einer Monographie der Hefearten. II. Teil. Die anaskosporogenen Hefen. Zweite Halfte: 486 (1942) 10. C. choctaworum S.O. Suh & M. Blackw., in Suh, McHugh & Blackwell, Int. J. Syst. Evol. Microbiol. 54(6): 2422 (2004) 11. C. conglobata (Redaelli) Cif., in Lodder, Manuale di Micologia Medica, Edn 2 2: 245 (1960) 12. C. cylindracea Koichi Yamada & Machida ex S.A. Mey. & Yarrow, Mycotaxon 66: 100 (1998) 13. C. diddensii (Phaff, Mrak & O.B. Williams) Fell & S.A. Mey. [as ‘diddensii’], Mycopath. Mycol. appl. 32: 189 (1967) 14. C. fennica (Sonck & Yarrow) S.A. Mey. & Ahearn, Mycotaxon 17: 297 (1983) 15. C. freyschussii H.R. Buckley & Uden, Mycopath. Mycol. appl. 36: 263 (1968) 16. C. germanica Kurtzman, Robnett & Yarrow, Antonie van Leeuwenhoek 80(1): 79 (2001) 17. C. glabrata (H.W. Anderson) S.A. Mey. & Yarrow, in Yarrow & Meyer, Int. J. Syst. Bacteriol. 28(4): 612 (1978) 18. C. glaebosa Komag. & Nakase, J. gen. appl. Microbiol., Tokyo 11: 262 (1965) 19. C. guilliermondii (Castell.) Langeron & Guerra, Annls Parasit. hum. comp. 16(5): 467 (1938) 20. C. haemulonis (Uden & Kolip.) S.A. Mey. & Yarrow [as ‘haemulonii’], in Yarrow & Meyer, Int. J. Syst. Bacteriol. 28(4): 612 (1978) 21. C. hollandica Knutsen, V. Robert & M.T. Sm., Int. J. Syst. Evol. Microbiol. 57(10): 2434 (2007) 22. C. inconspicua (Lodder & Kreger-van Rij) S.A. Mey. & Yarrow, in Yarrow & Meyer, Int. J. Syst. Bacteriol. 28(4): 612 (1978) 23. C. insectamans D.B. Scott, Van der Walt & Klift, in van der Walt, Scott & van der Klift, Mycopath. Mycol. appl. 47(3): 226 (1972) 419 24. C. intermedia (Cif. & Ashford) Langeron & Guerra, Annls Parasit. hum. comp. 16(5): 461 (1938) 25. C. laemsonensis Am-In, Limtong, Yongman. & Jindam., Int. J. Syst. Evol. Microbiol. 61(2): 458 (2011) 26. C. magnoliae (Lodder & Kreger-van Rij) S.A. Mey. & Yarrow, in Yarrow & Meyer, Int. J. Syst. Bacteriol. 28(4): 613 (1978) 27. C. maltosa Komag., Nakase & Katsuya, J. gen. appl. Microbiol., Tokyo 10: 327 (1964) 28. C. maris (Uden & Zobell) S.A. Mey. & Yarrow, in Yarrow & Meyer, Int. J. Syst. Bacteriol. 28(4): 613 (1978) 29. C. maritima (Siepmann) Uden & H.R. Buckley, in Lodder, Mycotaxon 17: 298 (1983) 30. C. melibiosica H.R. Buckley & Uden, Mycopath. Mycol. appl. 36: 264 (1968) 31. C. membranifaciens (Lodder & Kreger-van Rij) Wick. & Burton, J. Bact. 68: 597 (1954) 32. C. mesenterica (A. Geiger) Diddens & Lodder, Die Hefasammlung des ‘Centraalbureau voor Schimmelcultures’: Beitrage zu einer Monographie der Hefearten. II. Teil. Die anaskosporogenen Hefen. Zweite Hälfte: 196 (1942) 33. C. michaelii S.O. Suh, N.H. Nguyen & M. Blackw., Mycol. Res. 109(9): 1049 (2005) 34. C. mogii Vidal-Leir., Antonie van Leeuwenhoek 33: 342 (1967) 35. C. neustonenis C.F. Chang & S.M. Liu, Antonie van Leeuwenhoek 97(1): 38 (2010) 36. C. norvegica (Reiersöl) S.A. Mey. & Yarrow, in Yarrow & Meyer, Int. J. Syst. Bacteriol. 28(4): 613 (1978) 37. C. oleophila Montrocher, Revue Mycol., Paris 32: 73 (1967) 38. C. parapsilosis (Ashford) Langeron & Talice, Annls Parasit. hum. comp. 10: 1 (1932) 39. C. phangngaensis Limtong, Yongman., H. Kawas. & Tats. Seki [as ‘phangngensis’], in Limtong, Youngmanitchai, Kawasaki & Seki, Int. J. Syst. Evol. Microbiol. 58(2): 517 (2008) 40. C. picinguabensis Ruivo, Pagnocca, Lachance & C.A. Rosa, in Ruivo, Lachance, Rosa, Bacci & Pagnocca, Int. J. Syst. Evol. Microbiol. 56(5): 1149 (2006) 41. C. pini (Lodder & Kreger-van Rij) S.A. Mey. & Yarrow, in Yarrow & Meyer, Int. J. Syst. Bacteriol. 28(4): 613 (1978) 42. C. pseudolambica M.T. Sm. & Poot, in Smith, Poot & Kull, Stud. Mycol. 31: 175 (1989) 43. C. ranongensis Am-In, Limtong, Yongman. & Jindam., Int. J. Syst. Evol. Microbiol. 61(2): 459 (2011) 44. C. rhagii (Diddens & Lodder) Jurzitza, Kühlw. & Kreger-van Rij, Arch. Mikrobiol. 36(3): 237 (1960) 45. C. rhizophoriensis Fell, M.H. Gut., Statzell & Scorzetti [as ‘rhizophoriensis’], in Fell, Statzell-Tallman, Scorzetti & Gutiérrez, Antonie van Leeuwenhoek 99(3): 545 (2011) 123 420 46. C. rugosa (H.W. Anderson) Diddens & Lodder, Die Hefasammlung des ‘Centraalbureau voor Schimmelcultures’: Beitrage zu einer Monographie der Hefearten. II. Teil. Die anaskosporogenen Hefen. Zweite Halfte: 280 (1942) 47. C. saitoana Nakase & M. Suzuki, J. gen. appl. Microbiol., Tokyo 31: 85 (1985) 48. C. sake (Saito & M. Ota) Uden & H.R. Buckley ex S.A. Mey. & Ahearn, in Lodder, Mycotaxon 17: 298 (1983) 49. C. salmanticensis (Santa Marı́a) Uden & H.R. Buckley, in Lodder, Mycotaxon 17: 298 (1983) 50. C. sanitii Limtong, Am-In, Kaeww., Boonmak, Jindam., Yongman., Srisuk, H. Kawas. & Nakase, in Limtong, Kaewwichian, Am-In, Boonmak, Jindamorakot, Yongmanitchai, Srisuk, Kawasaki & Nakase, FEMS Yeast Res. 10(1): 118 (2010) 51. C. santamariae Montrocher, Revue Mycol., Paris 32: 77 (1967) 52. C. sekii Limtong, Kaeww., Jindam., Am-In, Boonmak, Yongman., Srisuk, H. Kawas. & Nakase, in Limtong, Kaewwichian, Am-In, Boonmak, Jindamorakot, Yongmanitchai, Srisuk, Kawasaki & Nakase, FEMS Yeast Res. 10(1): 121 (2010) 53. C. silvae Vidal-Leir. & Uden, Antonie van Leeuwenhoek 29: 261 (1963) 54. C. solani Lodder & Kreger-van Rij, Yeasts, a taxonomic study, [Edn 1] (Amsterdam): 672 (1952) 55. C. stellata (Kroemer & Krumbholz) S.A. Mey. & Yarrow, in Yarrow & Meyer, Int. J. Syst. Bacteriol. 28(4): 614 (1978) 56. C. suecica Rodr. Mir. & Norkrans, Antonie van Leeuwenhoek 34: 115 (1968) 57. C. suwanaritii Limtong, Boonmak, Kaeww., Am-In, Jindam., Yongman., Srisuk, H. Kawas. & Nakase, in Limtong, Kaewwichian, Am-In, Boonmak, Jindamorakot, Yongmanitchai, Srisuk, Kawasaki & Nakase, FEMS Yeast Res. 10(1): 120 (2010) 58. C. tenuis Diddens & Lodder, Die Hefesammlung des ‘Centraalbureau voor Schimmelcultures’: Beitrage zu einer Monographie der Hefearten. II. Teil. Die anaskosporogenen Hefen. Zweite Hälfte: 488 (1942) 59. C. thaimeueangensis Limtong, Yongman., H. Kawas. & Tats. Seki, Int. J. Syst. Evol. Microbiol. 57(3): 651 (2007) 60. C. torresii (Uden & Zobell) S.A. Mey. & Yarrow, in Yarrow & Meyer, Int. J. Syst. Bacteriol. 28(4): 614 (1978) 61. C. tropicalis (Castell.) Berkhout, De Schimmelgesl. Monilia, Oidium, Oospora en Torula, Disset. Utrecht: 44 (1923) 62. C. versatilis (Etchells & T.A. Bell) S.A. Mey. & Yarrow, in Yarrow & Meyer, Int. J. Syst. Bacteriol. 28(4): 614 (1978) 63. C. viswanathii Sandu & H.S. Randhawa, Mycopath. Mycol. appl. 18: 179 (1962) 64. C. zeylanoides (Castell.) Langeron & Guerra, Annls Parasit. hum. comp. 16(5): 501 (1938) 123 Fungal Diversity (2019) 96:347–433 Priceomyces M. Suzuki & Kurtzman, in Kurtzman & Suzuki, Mycoscience 51(1): 8 (2010) 1. P. carsonii (Phaff & E.P. Knapp) M. Suzuki, in Kurtzman & Suzuki, Mycoscience 51(1): 9 (2010) Scheffersomyces Kurtzman & M. Suzuki, Mycoscience 51(1): 9 (2010) 1. Sch. spartinae (Ahearn, Yarrow & Meyers) Kurtzman & M. Suzuki, Mycoscience 51(1): 9 (2010) Dipodascaceae Engl. & E. Gilg, Syllabus, Edn 9 & 10 (Berlin): 59 (1924) Yarrowia Van der Walt & Arx, Antonie van Leeuwenhoek 46: 519 (1980) 1. Y. lipolytica (Wick., Kurtzman & Herman) Van der Walt & Arx, Antonie van Leeuwenhoek 46: 519 (1980) Metschnikowiaceae T. Kamieński ex Doweld, Index Fungorum 33: 1 (2013) Clavispora Rodr. Mir., Antonie van Leeuwenhoek 45: 480 (1979) 1. Cl. lusitaniae Rodr. Mir., Antonie van Leeuwenhoek 45(3): 480 (1979) Metschnikowia Kamienski, Trudy imp. S-peterb. Obshch. Estest.: 364 (1899) 1. Met. bicuspidata (Metschn.) T. Kamieński, Trudy S. Petersb. Obschch. Est. Otd. Bot. 30(1): 363 (1900) 2. Met. krissii (Uden & Cast.-Branco) Uden, Revta Biol., Lisb. 3: 96 (1962) 3. Met. pulcherrima Pitt & M.W. Mill., Mycologia 60(3): 669 (1968) 4. Met. reukauffii Pitt & M.W. Mill., Mycologia 60(3): 671 (1968) 5. Met. zobellii (Uden & Cast.-Branco) Uden, Revta Biol., Lisb. 3(1): 96 (1962) Wickerhamomyces Kurtzman, Robnett & Bas.-Powers, FEMS Yeast Res. 8(6): 951 (2008) 1. W. anomalus (E.C. Hansen) Kurtzman, Robnett & Bas.Powers, FEMS Yeast Res. 8(6): 952 (2008) 2. W. bovis (Uden & Carmo Souza) Kurtzman, Robnett & Bas.-Powers, FEMS Yeast Res. 8(6): 952 (2008) 3. W. canadensis (Wick.) Kurtzman, Robnett & Bas.Powers, FEMS Yeast Res. 8(6): 952 (2008) 4. W. hampshirensis (Kurtzman) Kurtzman, Robnett & Bas.-Powers, FEMS Yeast Res. 8(6): 952 (2008) 5. W. sydowiorum (D.B. Scott & Van der Walt) Kurtzman, Robnett & Bas.-Powers, FEMS Yeast Res. 8(6): 952 (2008) SACCHAROMYCETALES incertae sedis Cyberlindnera Minter, Mycotaxon 110: 473 (2009) 1. Cyb. fabianii (Wick.) Minter, Mycotaxon 110: 474 (2009) 2. Cyb. jadinii (Sartory, R. Sartory, Weill & J. Mey.) Minter, Mycotaxon 110: 474 (2009) Fungal Diversity (2019) 96:347–433 3. Cyb. saturnus (Klöcker) Minter, Mycotaxon 110: 476 (2009) Hyphopichia Arx & Van der Walt, Antonie van Leeuwenhoek 42(3): 310 (1976) 1. Hy. burtonii (Boidin, Pignal, Lehodey, Vey & Abadie) Arx & Van der Walt, Antonie van Leeuwenhoek 42(3): 310 (1976) Trigonopsis Schachner, Zeitschrift für das Gesammte Brauwesen 52: 137 (1929) 1. Tri. cantarellii (Van der Walt & Kerken) Kurtzman & Robnett, FEMS Yeast Res. 7(1): 150 (2007) Torulopsis Berl., Giorn. Vitic. Enol.: 54 (1894) Species under this name are common in the literature and now placed in various other genera, particularly Candida. Yamadazyma Billon-Grand, Mycotaxon 35(2): 202 (1989) 1. Y. mexicanum (M. Miranda, Holzschu, Phaff & Starmer) Billon-Grand, Mycotaxon 35(2): 203 (1989) Zygoascus M.T. Sm., Antonie van Leeuwenhoek 52: 27 (1986) 1. Z. hellenicus M.T. Sm., Antonie van Leeuwenhoek 52(1): 27 (1986) References Abdel-Fattah JH, Moubasher M, Abdel-Hafez AH, Abdel-Hafez SI (1977) Studies on mycoflora of salt marshes in Egypt. 1. Sugar fungi. Mycopath 61:19–26 Abdel-Wahab MA (2005) Diversity of marine fungi from Egyptian Red Sea mangroves. Bot Mar 48:348–355 Abdel-Wahab MA, Bahkali AHA (2012) Taxonomy of filamentous anamorphic marine fungi: morphology and molecular evidence. In: Jones EBG, Pang KL (eds) Marine fungi and fungal-like organisms. Walter de Gruyter GmbH & Co. KG, Berlin/Boston, pp 65–90 Abdel-Wahab MA, Jones EBG (2000) Three new marine ascomycetes from driftwood in Australian sand dunes. Mycoscience 41:379–388 Abdel-Wahab MA, Pang KL, Nagahama T, Abdel-Aziz FA et al (2010) Phylogenetic evaluation of anamorphic species of Cirrenalia and Cumulospora with the description of eight new genera and four new species. Mycol Prog 9:537–558 Abdel-Wahab MA, Hodhod MS, Bahkali AHA, Jones EBG (2014) Marine fungi of Saudi Arabia. Bot Mar 57:323–335 Abdel-Wahab MA, Dayarathne MC, Suetrong S, Guo SY et al (2017) New saprobic marine fungi and a new combination. Bot Mar 60:469–488 Abdel-Wahab MA, Jones EBG, Bahkali AHA, Elgorban AM (2019) Marine fungi from Red Sea mangroves in Saudi Arabia with Fulvocentrum rubrum sp. nov. (Torpedosporales, Ascomycota). Nova Hedwig 108:365–377 Abraham EP (1979) A glimpse of the early history of the cephalosporins. Rev Infect Dis 1:99–105 Adl SM, Simpson AG, Lane CE, Lukeš J et al (2012) The revised classification of eukaryotes. J Eukaryot Microbiol 59:429–493 Alderman DJ, Jones EBG (1967) Shell disease of Ostrea edulis L. Nature 216:797–798 Alderman DJ, Jones EBG (1971) Shell disease of oysters. Fish Invest Ser 11(16):1–16 421 Alexopoulos CJ, Mims CW, Blackwell M (1996) Introductory mycology. Wiley, New York Alias SA, Jones EBG (2010) Fungi from mangroves of Malaysia. Inst Ocean Earth Sci Uni Malaya, Malaysia Alias SA, Moss ST, Jones EBG (2001) Cucullosporella mangrovei, ultrastructure of ascospsores and their appendages. Mycoscience 42:405–411 Alker AP, Smith GW, Kim K (2001) Characterization of Aspergillus sydowii (Thom & Church), a fungal pathogen of Caribbean Sea fan corals. Hydrobiologia 460:105–111 Allen JRL, Pye K (1992) Coastal saltmarshes: their nature and importance. In: Allen JRL, Pye K (eds) Saltmarshes: morphodynamics, conservation, and engineering significance. Cambridge University Press, Cambridge Almeida C, Hemberger Y, Schmitt SM, Bouhired S et al (2012) Marilines A-C: novel phthalimidines from the sponge-derived fungus Stachylidium sp. Chem Eur J 18:8827–8834 Al-Nasrawi HG, Hughes AR (2012) Fungal diversity associated with salt marsh plants Spartina alterniflora and Juncus roemerianus in Florida. Jordan J Biol Sci 5:247–254 Alva P, Mckenzie EHC, Pointing SP, Pena-Murala R et al (2002) Do seagrasses harbour endobiotes? In: Hyde KD (ed) Fungi in marine environments. Fungal Divers Press, Hong Kong, pp 167–178 Am-In S, Yongmanitchai W, Limtong S (2008) Kluyveromyces siamensis sp. nov., an ascomycetous yeast isolated from water in a mangrove forest in Ranong Province, Thailand. FEMS Yeast Res 8:823–828 Amend AS (2014) From dandruff to deep-sea vents: Malassezia-like fungi are ecologically hyper-diverse. PLoS Pathog 10:e1004277 Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fung Biol Rev 21:51–66 Apinis AE, Chesters CGC (1964) Ascomycetes of some salt marshes and sand dunes. Trans Br Mycol Soc 47:419–435 Araujo FV, Hagler AN (2011) Kluyveromyces aestuarii, a potential environmental quality indicator for mangroves in the State of Rio de Janeiro, Brazil. Braz J Microbiol 42:954–958 Ariyawansa HA, Tanaka K, Thambugala KM, Phookamasak R et al (2014) A molecular phylogenetic reappraisal of the Didymosphaeriaceae (= Montagnulaceae). Fungal Divers 68:699–699 Bai M, Sen B, Wang Q, Zie Y et al (2018) Molecular detection and spatiotemporal characterization of Labyrinthulomycete protist diversity in the coastal waters along the Pearl River Delta. Microb Ecol 2:89. https://doi.org/10.1007/s00248-018-1235-8 Baldauf SI (2003) The deep roots of Eukaryotes. Science 300:415–424 Barghoorn ES, Linder DH (1944) Marine fungi: their taxonomy and biology. Farlowia 1:395–467 Bärlocher F, Newell SY (1994) Growth of the saltmarsh periwinkle Littoraria irrorata on fungal and cordgrass diets. Mar Biol 118:109–114 Barr ME (1983) The ascomycete connection. Mycologia 75:1–13 Bass D, Howe A, Brown N, Barton H et al (2007) Yeast forms dominate fungal diversity in the deep oceans. Proc R Soc B 274:3069–3077 Bates SS, Garrison DL, Horner RA (1998) Bloom dynamics and physiology of domoic-acid-producing Pseudonitzschia species. In: Anderson DM, Cembella AD, Hallegraeff GM (eds) Physiological ecology of harmful algal blooms. Springer-Verlag, Heidelberg, Germany, pp. 267–292 Bauch R (1936) Ophiobolus kniepii, ein neuer parasitischer Pyrenomycet auf Kalkalgen. Pubbl Staz Zool Napoli 15:377–391 Bauer R, Luta M, Piatek M, Vanky K et al (2007) Flamingomyces and Parvulago, new genera of marine smut fungi (Ustialinomycotina). Mycol Res 111:1199–1206 123 422 Beimforde C, Feldberg K, Nylinder S, Rikkinen J et al (2014) Estimating the Phanerozoic history of the Ascomycota lineages: combining fossil and molecular data. Mol Phylogenet Evol 78:386–398 Beraldi-Campesi H (2013) Early life on land and the first terrestrial ecosystems. Ecol Process 2:1–17 Berbee ML, Taylor JW (1993) Dating the evolutionary radiations of the true fungi. Can J Bot 71:1114–1127 Berbee ML, Taylor JW (2010) Dating the molecular clock in fungi— how close are we? Fungal Biol Rev 24:1–16 Bessey EA (1950) Morphology and taxonomy of fungi. McCraw-Hill, New York Binder M, Hibbett DS (2001) Phylogenetic relationships of the marine gasteromycete Nia vibrissa. Mycologia 93:679–688 Binder M, Hibbett DS, Wang Z, Farnham WF (2006) Evolutionary relationships of Mycaureola dilseae (Agaricales), a basidiomycetes pathogen of a subtidal Rhodophyte. Am J Bot 93:547–556 Blackwell M (2011) The Fungi: 1, 2, 3. 5.1 million species? Am J Bot 98:426–438 Bochdansky AB, Clouse MA, Herndl GJ (2017) Eukaryotic microbes, principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic marine snow. ISME J 11:362–373 Boonyuen N, Chuaseeharonnacha C, Suetrong S, Sri-Indrasutdh V et al (2011) Savoryellales (Hypocreomycetideae, Sordariomycetes): a novel lineage of aquatic ascomycetes inferred from multiple-gene phylogenies of the genera Ascotaiwania, Ascothailandia and Savoryella. Mycologia 103:1351–1352 Bovio E, Gnavi G, Prigione V, Spina et al (2016) The culturable mycobiota of a Mediterranean marine site after an oil spill: isolation, identification and potential application in bioremediation. Sci Total Environ 576:310–318 Bovio E, Garzoli L, Poli A, Prigione V et al (2018) The culturable mycobiota associated with three Atlantic sponges, including two new species: Thelebolus balaustiformis and T. spongiae. Fungal Syst Evol 1:141–167 Bower SM (1987) Labyrinthuloides haliotidis (Protozoa: Labyrinthomorpha), a parasite of juvenile abalone in a British Columbia mariculture facility. Can J Zool 65:1996–2007 Bower SM (2000) Infectious diseases of ablone (Haliotis sp.) and risks associated with transplanatation. In: Campbell A (ed) Workshop on rebuilding albalone stocks in British Columbia. NRC Research News, Ottawa, pp 111–122 Buatong J, Chaowalit P, Rukachaisirikul V (2012) Diversity of endophytic and marine-derived fungi associated with marine plants and animals. In: Jones EBG, Pang K-L (eds) Marine fungi and fungal-like organisms. Walter de Gruyter, Berlin, pp 291–328 Bucher VVC, Hyde KD, Pointing SB, Reddy CA (2004) Production of wood decay enzymes, mass loss and lignin solubilization in wood by marine ascomycetes and their anamorphs. Fungal Divers 15:1–14 Bugni TS, Ireland CM (2004) Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Nat Prod Rep 21:143–163 Burgaud G, Le Calvez T, Arzur D, Vandenkoornhuyse P et al (2009) Diversity of culturable marine filamentous fungi from deep-sea hydrothermal ventsemi. Environ Microbiol 11:1588–1600 Byrne PJ, Jones EBG (1974) Lignicolous marine fungi. Veroff Inst Meeresforsch Bremerhaven Supplement 5:301–320 Campbell J, Anderson JL, Shearer CA (2003) Systematics of Halosarpheia based on morphological and molecular data. Mycologia 95:530–552 Campbell J, Volkmann-Kohlmeyer B, Gräfenhan T, Spataofora JW et al (2005) A reevaluation of Lulworthiales: relationships based on 18S and 28S rDNA. Mycol Res 109:556–568 123 Fungal Diversity (2019) 96:347–433 Carter GT, Berman VS (2016) Marine natural propducts in Pharma: how industry missed the boat. In: Baker BJ (ed) Marine Biomedicine, from beach to bedside. CRC Press, New York, pp 531–539 Chang Y, Wang S, Sekimoto S, Aerts AL et al (2015) Phylogenomic analyses indicate that early fungi evolved digesting cell walls of algal ancestors of land plants. Genome Biol Evol 7:1590–1601 Chen X, Si L, Liu D, Proksch P et al (2015) Neoechinulin B and its analogues as potential entry inhibitors of influenza viruses, targeting viral hemagglutinin. Eur J Med Chem 93:182–195 Chen S, Chen D, Cai R, Cui H et al (2016) Cytotoxic and antibacterial preussomerins from the mangrove endophytic fungus Lasiodiplodia theobromae ZJ-HQ1. J Nat Prod 79:2397–2402 Choi J, Kim SH (2017) A genome tree of life for the fungi kingdom. Proc Natl Acad Sci 114:9391–9396 Christian RR, Bryant WL, Brinson MM (1990) Juncus roemerianus production and decomposition along gradients of salinity and hydroperiod. Mar Ecol Prog Ser 68:137–145 Collier JL, Geraci-Yee S, Lilje O, Gleason FH (2017) Possible impacts of zoosporic parasites in diseases of commercially important marine mollusc species: part II. Labyrinthulomycota. Bot Mar 60:409–417 Comeau AM, Vincent WF, Bernier L, Lovejoy C (2016) Novel chytrid lineages dominate fungal sequences in diverse marine and freshwater habitats. Sci Rep 6:30120 Cooke MC (1888) New British fungi. Grevillea 16:77–81 Crous PW, Wingfield MJ, Alfeans AC, Silveira SF (1994) Cylindrocladium naviculatum sp. nov., and two new vesiculate hyphomycete genera, Falcocladium and Vesicladiella. Mycotaxon 50:441–458 Cuomo V, Vanzanella F, Fresi E, Cinelli F et al (1985) Fungal flora of Posidonia oceanica and its ecological significance. Trans Br Mycol Soc 84:35–40 Damare S, Raghukumar C (2008) Fungi and macroag-gregation in deep-sea sediments. Microb Ecol 56:168–177 Damare S, Raghukumar C, Raghukumar S (2006) Fungi in deep-sea sediments of the Central Indian Basin. Deep-Sea Res I 53:14–27 Daniel I, Oger P, Winter R (2006) Origins of life and biochemistry under high-pressure conditions. Chem Soc Rev 35:858–875 Dayarathne MC, Maharachchikumbura SSN, Jones EBG, De Silva KHWL et al (2018) The evolution of Savoryellaceae and evidence for its ranking as a subclass. Fungal Divers 84:25–41 Debbab A, Aly AH, Proksch P (2013) Mangrove derived fungal endobiotes—a chemical and biological perception. Fungal Divers 61:1–27 Demoulin V (1974) The origin of Ascomycetes and Basidiomycetes. The case for a red algal ancestry. Not Rev 40:13–14 Desmazieres JBHJ (1849) Plantes Cryptogames de France, 2nd ed., No. 1778. Lille Devadatha B, Sarma VV, Ariyawansa HA, Jones EBG (2018a) Deniquelata vittalii sp. nov., a novel Indian saprobic marine fungus on Suaeda monoica and two new records of marine fungi from Muthupet mangroves, East coast of India. Mycosphere 9:565–582 Devadatha B, Sarma VV, Jeewon R, Wanasinghe DN et al (2018b) Thyridariella, a novel marine fungal genus from India: morphological characterization and phylogeny inferred from multigene DNA sequence analyses. Mycol Prog 17:791–804 Doilom M, Manawasinghe IS, Jeewon R, Jayawardena RS et al (2017) Can ITS sequence data identify fungal endobiotes from cultures? A case study from Rhizophora apiculata. Mycosphere 8:1869–1892 Doweld A (2014) Nomenclatural novelties. Index Fungorum 123:1 Drake H, Ivarsson M, Bengtson S, Heim C et al (2017) Anaerobic consortia of fungi and sulfate reducing bacteria in deep granite fractures. Nat Commun 8:55 Fungal Diversity (2019) 96:347–433 Duc PM, Wada S, Kurata O, Hatai K (2010) In vitro and in vivo efficacy ofantifungal agents against Acremonium sp. Fish Pathol 45:109–114 Dupont J, Schwabe E (2016) First evidence of the deep-sea fungus Oceanitis scuticella Kohlmeyer (Halosphaeriaceae, Ascomycota) from the Northern Hemisphere. Bot Mar 59:275–282 Dupont J, Magnin S, Rousseau F, Zbinden M et al (2009) Molecular and ultrastructural characterization of two ascomycetes found on sunken wood off Vanuatu Islands in the deep Pacific Ocean. Mycol Res 113:1351–1364 Ebel R (2012) Natural products from marine-derived fungi. In: Jones EBG, Pang KL (eds) Marine fungi and fungal-like organisms. der Gruyter, Berlin, pp 411–440 Edgcomb VP, Beaudoin D, Gast R, Biddle JF et al (2011) Marine subsurface eukaryotes: the fungal majority. Environ Microbiol 13:172–183 Elbrächter M, Schnepf E (1998) Parasites of harmful algae. In: Anderson DM, Cembella AD, Hallegraeff GM (eds) Physiological ecology of harmful algal blooms. Springer, Berlin, pp 351–363 Fang W, Lin X, Zhou X, Wan J et al (2014) Cytotoxic and antiviral nitrobenzoyl sesquiterpenoids from the marine derived fungus Aspergillus ochraceus Jcma1F17. Med Chem Commun 5:701–705 Fazzani K, Jones EBG (1977) Spore release and dispersal in marine and brackish water fungi. Mater Org 12:235–248 Fell JW (1967) Distribution of yeasts in the Indian Ocean. Bull Mar Sci 17:454–470 Fell JW (2012) Yeasts in marine environments. In: Jones EBG, Pang KL (eds) Marine fungi and fungal-like organisms. Walter de Gruyter GmbH & Co KG, Berlin/Boston, pp 91–102 Fell JW, Master IM, Wiegert RG (1984) Litter decomposition and nutrient enrichmen. In: The mangrove ecosystem: research methods, pp 239–251 Fell JW, Statzell-Tallman S, Scorzetti G, Gutiérrez MH (2011) Five new species of yeasts from fresh water and marine habitats in the Florida Everglades. Antonie Van Leeuwenhoek 99:533–549 Fenical W, Jensen PR (1993) Marine microorganisms: a new biomedical resource. In: Attaway DH, Zaborsky OR (eds) Marine biotechnology, vol 1 pharmaceutical and bioactive natural products, vol 1. Plenum Press, New York, pp 419–459 Fenical W, Jensen PR, Cheng XC (1998) US Pat 6069146. https:// patents.google.com/patent/US6069146A/en. Accessed Sept 2018 Fisher WS, Nilson EH, Shleser RS (1975) Effect of fungus Haliphthoros milfordensis on the juvenile stages of the American lobster, Homarus americanus. J Invertebr Pathol 26:41–45 Flewelling AJ, Ellsworth KT, Sanford J, Forward E et al (2013) Macroalgal endobiotes from the Atlantic Coast of Canada: a potential source of antibiotic natural products? Microorganisms 1:175–187 Fotedar R, Kolecka A, Boekhout T, Fell FW et al (2018a) Naganishia qatarensis sp. nov., a novel basidiomycetous yeast species from a hypersaline marine environment in Qatar. Int J Syst Evol Micobiol 68:2924–2929 Fotedar R, Kolecka A, Boekhout T, Fell JW et al (2018b) Fungal diversity of the hypersaline Inland Sea in Qatar. Bot Mar. https:// doi.org/10.1515/bot-2018-0048 Freeman KR, Martin AP, Karki D, Lynch RC et al (2009) Evidence that chytrids dominate fungal communities in high-elevation soils. Proc Natl Acad Sci USA 106:18315–18320 Frenken T, Alacid E, Berger SA, Bourne EC et al (2017) Integrating chytrid fungal parasites into plankton ecology: research gaps and needs. Environ Microbiol 19:3802–3822 Gachon MM, Sime-Ngando T, Strittmatter M, Chambouvet A et al (2010) Algal diseases: spotlight on a black box. Trends Plant Sci 15:633–640 423 Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49 Gaertner A (1982) Lower marine fungi from the Northwest African upwelling areas and from the Atlantic off Portugal. Meteor Forsch Ergebn D 34:9–30 Gao SS, Li XM, Williams K, Proksch P et al (2016a) Rhizovarins A-F, indole-diterpenes from the mangrove-derived endophytic fungus Mucor irregularis QEN-189. J Nat Prod 79:2066–2074 Gao XW, Liu HX, Sun ZH, Chen YC et al (2016b) Secondary metabolites from the deep-sea derived fungus Acaromyces ingoldii FS121. Molecules 21:371/1–371/7 Garzoli L, Gnavi G, Tamma F, Tosi S et al (2015) Sink or swim: updated knowledge on marine fungi associated with wood substrates in the Mediterranean Sea and hints about their potential to remediate hydrocarbons. Prog Oceanogr 137:140–148 Garzoli L, Poli A, Prigione V, Gnavi G et al (2018) Peacock’s tail with a fungal cocktail: first assessment of the mycobiota associated with the brown alga Padina pavonica. Fung Ecol 35:87–97 Gessner MO, Chauvet E (1993) Ergosterol-to-biomass conversion factors for aquatic hyphomycetes. Appl Environ Microbiol 59:502–507 Gingras M, Hagadorn JW, Seilacher A, Lalonde SV et al (2011) Possible evolution of mobile animals in association with microbial mats. Nat Geosci 4:372 Gleason FH, Küpper FC, Amon JP, Picard K et al (2011) Zoosporic fungi in marine ecosystems: a review. Mar Freshw Res 62:383–393 Gleason FH, Carney LT, Lilje O, Glockling ST (2012) Ecological potentials of species of Rozella (Cryptomycota). Fungal Ecol 5:651–656 Gleason FH, Gadd GM, Pitt JI, Larkum AWD (2017a) The roles of endolithic fungi in bioerosion and disease in marine ecosystems. I. General concepts. Mycology 8:205–215 Gleason FH, Gadd GM, Pitt JI, Larkum AWD (2017b) The roles of endolithic fungi in bioerosion and disease in marine ecosystems. II. Potential facultatively parasitic anamorphic ascomycetes can cause disease in corals and molluscs. Mycology 8:216–227 Gnavi G, Ercole E, Panno L, Vizzini A et al (2014) Dothideomycetes and Leotiomycetes sterile mycelia isolated from the Italian seagrass. Posidonia oceanica based on rDNA data. Springer Plus 3:508 Gnavi G, Garzoli L, Poli A, Prigione V et al (2017) The culturable mycobiota of Flabellia petiolata: first survey of marine fungi associated to a Mediterranean green alga. Plos ONE Godinho VM, Furbino LE, Santiago IF, Pellizzari FM et al (2013) Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica. ISME J 7:1434–1451 Golubic S, Radtke G, Le Campion-Alsumard T (2005) Endolithic fungi in marine ecosystems. Trends Microbiol 13:229–235 Gueidan C, Thüs H, Pérez-Ortega S (2009) Phylogenetic position of the brown algae-associated lichenized fungus Verrucaria tavaresiae (Verrucariaceae). The Bryologist 114:563–569 Gueidan C, Ruibal C, De Hoog GS, Schneider H (2011) Rockinhabiting fungi originated during periods of dry climate in the late Devonian and middle Triassic. Fungal Biol 115:987–996 Guo X, Zhang Q, Zhang X, Zhang J et al (2015) Marine fungal communities in water and surface sediment of a sea cucumber farming system: habitat-differentiated distribution and nutrients driving succession. Fungal Ecol 14:87–98 Gutiérrez MH, Pantoja S, Tejos E, Quiñones RA (2011) The role of fungi in processing marine organic matter in the upwelling ecosystem off Chile. Mar Biol 158:205–219 123 424 Gutiérrez MH, Jara AM, Pantoja S (2016) Fungal parasites infect marine diatoms in the upwelling ecosystem of the Humboldt current system off central Chile. Environ Microbiol 18:1646–1653 Haga A, Tamoto H, Ishino M, Kimura E (2013) Pyridone alkaloids from a marine-derived fungus, Stagonosporopsis cucurbitacearum, and their activities against azole-resistant Candida albicans. J Nat Prod 76:750–754 Han WB, Lu YH, Zhang AH, Zhang GF et al (2014) Curvulamine, a new antibacterial alkaloid incorporating two undescribed units from a Curvularia species. Org Lett 16:5366–5369 Hanic LA, Sekimoto S, Bates SS (2009) Oomycete and chytrid infections of the marine diatom Pseudo-nitzchia pungens (Bacillariophyceae) from Prince Edward Island. Can Bot 87:1096–1105 Hassett BT, Gradinger R (2016) Chytrids dominate arctic marine fungal communities. Environ Microbiol 18:2001–2009 Hassett BT, Ducluzeaua ALL, Collins RE, Gradinger R (2017) Spatial distribution of aquatic marine fungi across the western Arctic and sub-Arctic. Environ Microbiol 19:475–484 Hassett BT, Vonnahme TR, Peng X, Jones EBG, Heuzé C (2019) Review of planktonic marine fungi, cultured and high-throughput sequencing diversity and ecology. Bot Mar (in press) Hatai K (2012) Diseases of fish and shellfish caused by marine fungi. In: Raghukumar C (ed) Biology of marine fungi. Springer, Germany, pp 15–52 Hatai K, Rosa D, Nakayama T (2000) Identification of lower fungi isolated from larvae of mangrove crab, Scylla serrata, in Indonesia. Mycoscience 41:565–572 Hattori T, Sakayaroj J, Jones EBG, Suetrong S et al (2014) Three species of Fulviformes (Basidiomycota, Hymenochaetales) associated with rots on mangrove tree Xylocarpus granatum in Thailand. Mycoscience 55:344–354 Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance and conservation. Mycol Res 95:641–655 Hawksworth DL, Lücking R (2017) Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol Spectr. https://doi.org/10.1128/ microbiolspec.FUNK-0052-2016 He F, Bao J, Zhang XY, Tu ZC et al (2013) Asperterrestide A, a cytotoxic cyclic tetrapeptide from the marine-derived fungus Aspergillus terreus SCSGAF0162. J Nat Prod 76:1182–1186 Heckman DS, Geiser DM, Eidell BR, Stauffer RL et al (2001) Molecular evidence for the early colonization of land by fungi and plants. Science 293:1129–1133 Hibbett DS, Binder M, Bischoff JF, Blackwell M et al (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–554 Hibbett DS, Bauer R, Binder M, Giachini AJ et al (2014) 14 Agaricomycetes. In: Systematics and evolution. Springer, Berlin, pp. 373–429 Hibbett D, Abarenkov K, Koljalg U, Opik M et al (2016) Sequencebased classification and identification of Fungi. Mycologia 108:1049–1068 Higgins KL, Arnold AE, Miadlikowska J, Sarvate SD et al (2007) Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endobiotes from three major plant lineages. Mol Phylogenet Evol 42:543–555 Hirai J, Hamamoto Y, Honda D, Hidaka K (2018) Possible aplanochytrid (Labyrinthulea) prey detected using 18S metagenetic diet analysis in the key copepod species Calanus sinicus in the coastal waters of the subtropical western North Pacific. Plankton Benthos Res 13:75–82 Höhnk W (1952) Studien zur Brack-und Seewassermykologie 1. Veröff Inst Meeresforsch Bremerh 1:115–125 123 Fungal Diversity (2019) 96:347–433 Höhnk W (1955) Marine Pilze vom watt und meeresgrund (Chytridiales und Thraustochytriaceae). Natwissen 42:348–349 Höhnk W (1956) Studien zur Brack-und Seewassermykologie. VI. Uber die pilzliche Besiedlung verschieden salziger submerser Standorte. Veroeff Inst Meeresforsch Bremerhaven 4:195–213 Höhnk W (1959) Ein Beitrag zur ozeanischen Mykologie. Dtsch Hydrogr Z Reihe B 3:81–87 Höhnk W (1961) A further contribution to the oceanic mycology. Cons Inter Explor Mer 12:202–208 Höller U, Wright AD, Matthée GF, Konig KM et al (2000) Fungi from marine sponges: diversity, biological activity and secondary metabolites. Mycol Res 104:1354–1365 Hong JH, Jang S, Heo YM, Min M et al (2015) Investigation of marine-derived fungal diversity and their exploitable biological activities. Mar Drugs 13:4137–4155 Hongsanan S, Maharachchikumbura SSN, Hyde KD, Samarakoon MC et al (2017) An updated phylogeny of Sordariomycetes based on phylogenetic and molecular clock evidence. Fungal Divers 84:25–41 Hongsanan S, Jeewon R, Purahong W, Xie N et al (2018) Can we use environmental DNA as holotypes? Fungal Divers 92:1–30 https://clinicaltrials.gov/ct2/results?term=plinabulin&pg=1. Accessed Sept 2018 https://www.beyondspringpharma.com/en/pipeline/plinabulin/ Accessed Sept 2018) Hug LA, Roger AJ (2007) The impact of fossils and taxon sampling on ancient molecular dating analyses. Mol Biol Evol 24:1889–1897 Hughes GC (1974) Geographical distribution of the higher mariner fungi. Veröff Inst Meerersforsch Bremerhaven, Suppl. 10(5):419–441 Hughes GC (1986) Biogeography and the marine fungi. In: Moss ST (ed) The biology of marine fungi. Cambridge Uni Press, Cambridge, pp 275–295 Hughes GC, Chamut PS (1971) Lignicolous marine fungi from southern Chile, including a review of distribution in the southern hemisphere. Can J Bot 49:1–11 Huhndorf SM (1994) Neotropical ascomycetes. 5. Hypsostromataceae, a new family of Loculoascomycetes and Manglicola samuelsii, a new species from Guyana. Mycologia 86:266–269 Hyde KD (1986) Frequency of occurrence of lignicolous marine fungi in the tropics. In: Moss ST (ed) The biology of marine fungi. Cambridge Univ Press, Cambridge, pp 311–322 Hyde KD, Jones EBG (1988) Marine mangrove fungi. Mar Ecol 9:15–33 Hyde KD, Lee SY (1998) Ecology of mangrove fungi and their role in nutrient cycling: what gaps occur in our knowledge? Hydrobiologia 295:107–118 Hyde KD, Jones EBG, Moss ST (1986) Mycelial adhesion to surfaces. In: Moss ST (ed) The biology of marine fungi. Cambridge Univ. Press, Cambridge, pp 331–340 Hyde KD, Jones EBG, Leaño E, Pointing SB et al (1998) Role of fungi in marine ecosystems. Biodivers Conserv 7:1147–1161 Hyde KD, Jones EBG, Ariyawansa H, Liu JK et al (2013) Families of Dothideomycetes. Fungal Divers 63:1–313 Hyde KD, Maharachchikumbura SSN, Hongsanan S, Samarakoon MC et al (2017) The ranking of fungi—a tribute to David L. Hawksworth on his 70th birthday. Fungal Divers 84:1–23 Hyde KD, Chaiwan N, Norphanphoun C, Boonmee S et al (2018) Mycosphere notes 169–224. Mycosphere 9:271–430 Inderbitzin P, Lim SR, Volkmann-Kohlmeyer B, Kohlmeyer J et al (2004) The phylogenetic position of Spathulospora based on DNA sequences from dried herbarium material. Mycol Res 108:737–748 Inui T, Takeda Y, Iizuka H (1965) Taxonomical studies on genus Rhizopus. J Gen Appl Microbiol 11:1–121 Fungal Diversity (2019) 96:347–433 Iqbal SH, Webster J (1973) Aquatic hyphomycete spora of the River Exe and its tributaries. Trans Br Mycol Soc 61:331–336 Ishida S, Nozaki D, Grossart HP, Kagami M (2015) Novel basal, fungal lineages from freshwater phytoplankton and lake samples. Environ Microbiol Rep 7:435–441 Jaritkhuan S, Jones EBG, Bremer GB (1998) Thraustochytrids as a food source for aquaculture. In: Proc Intern Mycol Conference on Biodiversity and Biotechnology, pp 163–168 James TY, Kauff F, Schoch C, Matheny PB et al (2006) Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 443:818–822 James TY, Pelin A, Bonen L, Ahrendt S et al (2013) Shared signatures of parasitism and phylogenomics unite Cryptomycota and Microsporidia. Curr Biol 23:1548–1553 Janson JE, Bernan VS, Greenstein M, Bugni TS et al (2005) Penicillium dravuni, a new marine derived species from an alga in Fiji. Mycologia 97:444–453 Jayasiri SC, Hyde KD, Abd-Elsalam KA, Abdel-Wahab MA et al (2015) The Faces of Fungi database: fungal names linked with morphology, phylogeny and human impacts. Fungal Divers 74:3–18 Jayawardena RS, Purahong W, Zhang W, Wubet T et al (2018) Biodiversity of fungi on Vitis vinifera L. revealed by traditional and high-resolution culture-independent approaches. Fungal Divers 90:1–84 Jebaraj CS, Raghukumar C, Behnke A, Stoeck T (2010) Fungal diversity in oxygen-depleted regions of the Arabian Sea revealed by targeted environmental sequencing combined with cultivation. FEMS Microbiol Ecol 71:399–412 Jeewon R, Hyde KD (2016) Establishing species boundaries and new taxa among fungi: recommendations to resolve taxonomic ambiguities. Mycosphere 7:1669–1677 Ji NY, Wang BG (2016) Mycochemistry of marine algicolous fungi. Fungal Divers 80:301–342 Johnson TW, Sparrow FK (1961) Fungi in oceans and estuaries. Cramer, Weinheim Johnson RG, Jones EBG, Moss ST (1984) Taxonomic studies of the Halosphaeriaceae: Remispora Linder, Marinospora Cavaliere and Carbosphaerella Schmidt. Bot Mar 27:557–566 Johnson RG, Jones EBG, Moss ST (1987) Taxonomic studies of the Halosphaeriaceae: Ceriosporopsis, Haligena and Appendichordella gen. nov. Can J Bot 65:931–942 Jones EBG (1982) Decomposition by basidiomycetes in aquatic environments. In: Frankland JC, Hedger JN, Swift MJ (eds) Decomposer Basidiomycetes their biology and ecology. Cambridge Univ Press, Cambridge, pp 192–212 Jones EBG (1988) Do fungi occur in the sea? The Mycologist 2:150–157 Jones EBG (1994) Fungal adhesion. Presidential address 1992. Mycol Res 98:961–981 Jones EBG (1995) Ultrastructure and taxonomy of the aquatic ascomycetous order Halosphaeriales. Can J Bot 73:S790–S801 Jones EBG (2000) Marine fungi: some factors influencing biodiversity. Fungal Divers 4:53–73 Jones EBG (2011a) Fifty years of marine mycology. Fungal Divers 50:73–112 Jones EBG (2011b) Are there more marine fungi to be described? Bot Mar 54:343–354 Jones EBG, Abdel-Wahab MA (2005) Marine fungi from the Bahamas Islands. Bot Mar 48:356–364 Jones EBG, Choeyklin R (2008) Ecology of marine and freshwater basidiomycetes. In: Boddy L, Frankland JC, van West P (eds) Ecology of saprotrophic basidiomycetes. Elsevier, London, pp 301–324 425 Jones EBG, Le Campion-Alsumard T (1970) Marine fungi on polyurethane covered plates submerged in the sea. Nova Hedwig 19:567–582 Jones EBG, Fell JW (2012) Basidiomycota. In: Jones EBG, Pang KL (eds) Marine and fungal-like organisms. De Gruyter, Germany, pp 49–63 Jones EBG, Mitchell JL (1996) Biodiversity of marine fungi. In: Cimerman A, Gunde-Cimerman N (eds) Biodiversity: international biodiversity seminar. National Institute of Chemistry and Slovenia National Commission for UNESCO, Ljubljana, Slovenia, pp 31–42 Jones EBG, Pang KL (2012) Tropical aquatic fungi. Biodivers Cons 21:2403–2423 Jones EBG, Johnson RG, Moss ST (1983a) Taxonomic studies of the Halosphaeriaceae: Corollospora Werdermann. Bot J Linn Soc 87:193–212 Jones EBG, Johnson RG, Moss ST (1983b) Ocostaspora apilongissima gen. et sp. nov: a new marine Pyrenomycete from wood. Bot Mar 24:353–360 Jones EBG, Vrijmoed LLP, Read SJ, Moss ST (1994) Tirispora, a new genus in the Halosphaeriales. Can J Bot 72:1373–1378 Jones EBG, Sakayaroj J, Suetrong S, Somrithipol S et al (2009) Classification of marine Ascomycota, anamorphic taxa and Basidiomycota. Fungal Divers 35:1–187 Jones EBG, Puglisi MP (2006) Marine fungi from Florida. Florida Sci 69:157–164 Jones MDM, Forn I, Gadelha C, Egan MJ et al (2011) Discovery of novel intermediate forms redefines the fungal tree of life. Nature 474:200–203 Jones EBG, Pang KL, Stanley SJ (2012) Fungi from marine algae. In: Jones EGB, Pang KL (eds) Marine and fungal-like organisms. De Gruyter, Germany, pp 329–344 Jones EBG, Alias SA, Pang KL (2013a) Distribution of marine fungi and fungus-like organisms in the South China Sea and their potential use in industry and pharmaceutical application. Malaysian J Sci 32(SCS Sp Issue):119–130 Jones EBG, Sueterong S, Cheng WH, Rungjindamai N et al (2014) An additional fungal lineage in the Hypocreomycetidae (Falcocladium species) and the taxonomic re-evaluation of Chaetosphaeria chaetosa and Swampomyces species, based on morphology, ecology and phylogeny. Cryptog Mycol 35:119–138 Jones EBG, Suetrong S, Bahkali AH, Abdel-Wahab MA et al (2015) Classification of marine Ascomycota, Basidiomycota, Blastocladiomycota and Chytridiomycota. Fungal Divers 73:1–72 Jones EBG, Ju WT, Lu CL, Guo SY, Pang KL (2017) The Halosphaeriaceae revisted. Bot Mar 60:453–468 Jones MC, Dye SR, Fernandes JA, Frölicher TL et al (2013b) Predicting the impact of climate change on threatened species in UK waters. PLoS ONE 8:e54216 Jones MDM, Richards TA (2011) Environmental DNA analysis and the expansion of the fungal tree of life. In: Pöggeler S, Wöstemeyer J (eds) Evolution of fungi and fungal-like organisms, The Mycota XIV. Springer, Berlin Kagami M, de Bruin A, Ibelings BW, Van Donk E (2007) Parasitic chytrids: their effects on phytoplankton communities and foodweb dynamics. Hydrobiologia 578:113–129 Karling JS (1977) Inconographicum iconarum, 2nd edn. Cramer, Vaduz Karpov SA, Letcher PM, Mamkaeva MA, Mamkaeva KA (2010) Phylogenetic position of the genus Mesochytrium (Chytridiomycota) based on zoospore ultrastructure and sequences from the 18S and 28S rRNA gene. Nova Hedwig 90:81–94 Karpov SA, Kobseva AA, Mamkaeva MA, Mamkaeva KA et al (2014) Gromochytrium mamkaevae gen. & sp. nov. and two new 123 426 orders: Gromochytriales and Mesochytriales (Chytridiomycetes). Persoonia 32:115–126 Kendrick B, Risk MJ, Michaelides J, Bergman K (1982) Amphibious microborers, bioeroding fungi isolated from live corals. Bull Mar Sci 32:862–867 Khamthong N, Rukachaisirikul V, Phongpaichit S, Preedanon S et al (2014) An antibacterial cytochalasin derivative from the marinederived fungus Diaporthaceae sp. PSU-SP2/4. Phytochem Lett 10:5–9 Kirichuk NN, Pivkin MV (2015) Filamentous fungi associated with the seagrass Zostera marina Linnaeus, 1753 of Rifovaya Bay (Peter the Great Bay, the Sea of Japan). Russ J Mar Biol 41:351–355 Kirk P, Cannon PF, Minter DW, Stalpers JA (2008) Ainsworth & Bisby’s dictionary of the fungi, 10th edn. CAB International, Wallingford, UK Kis-Papo T (2005) Marine fungal communities. In: Dighton J, Wjits JF, Oudemans P (eds) The fungal community, its organisation and role in the ecosystem, 3rd edn. CRC Press, Boca Baton, pp 61–92 Kitancharoen N, Nakamura K, Wada S, Hatai K (1994) Atkinsiella awabi sp. nov. isolated from stocked abalone, Haliotis sieboldii. Mycoscience 35:265–270 Kobayashi J, Ishibashi M (1993) Bioactive metabolites of symbiotic marine microorganisms. Chem Rev 93:1753–1769 Koch J, Jones EBG (1989) The identity of Crinigera maritima and three new genera of marine cleistothecial ascomycetes. Can J Bot 67:1183–1197 Koch V, Wolff M (2002) Energy budget and ecological role of mangrove epibenthos in the Caeté estuary, North Brazil. Mar Ecol Prog Ser 228:119–130 Kohlmeyer J (1963a) Parasitische und epiphytische Pilze auf Meeresalgen. Nova Hedwig 6:127–146 Kohlmeyer J (1963b) Fungi marini novi vel critici. Nova Hedw 6:297–329 Kohlmeyer J (1966) Ecological observations on arenicolous marine fungi. Z Allg Mikrobiol 6:94–105 Kohlmeyer J (1968a) Marine fungi from the tropics. Mycologia 60:252–270 Kohlmeyer J (1968b) The first Ascomycete from the deep sea. J Elisha Mitchell Sci Soc 84:239–241 Kohlmeyer J (1969a) Deterioration of wood by marine fungi in the deep sea. In: Materials performance and the deep sea. Am Soc Test Mater, Spec Tech Publ, vol 445, pp 20–29 Kohlmeyer J (1969b) Marine fungi of Hawaii including the new genus Helicascus. Can J Bot 47:1460–15487 Kohlmeyer J (1969c) The role of marine fungi in the penetration of calcareous substances. Am Zool 9:741–746 Kohlmeyer J (1970) Ein neuer Ascomycet auf Hydrozoen im Sudatlantik. Ber Dtsch Bot Ges 83:505–509 Kohlmeyer J (1973a) Spathulosporales, a new order and possible missing link between Laboulbeniales and Pyrenomycetes. Mycologica 65:614–647 Kohlmeyer J (1973b) Fungi from marine algae. Bot Mar 16:201–215 Kohlmeyer J (1975) Revision of algicolous Zigonella spp. and description of Pontogenia gen. nov. (Ascomycetes). Bio Sci 25:86–93 Kohlmeyer J (1977) New genera and species of higher fungi from the deep sea (1615–5315 m). Rev Mycol 41:189–206 Kohlmeyer J (1986) Taxonomic studies of the marine Ascomycotina. In: Moss ST (ed) The biology of marine fungi. Cambridge University Press, Cambridge, pp 99–210 Kohlmeyer J, Kohlmeyer E (1979) Marine mycology. The higher fungi. Academic Press, New York 123 Fungal Diversity (2019) 96:347–433 Kohlmeyer J, Volkmann-Kohlmeyer B (1989) Hawaiian marine fungi, including two new genera of Ascomycotina. Mycol Res 92:410–421 Kohlmeyer J, Volkmann-Kohlmeyer B (1991) Illustrated key to the filamentous marine fungi. Bot Mar 34:1–61 Kohlmeyer J, Volkmann-Kohlmeyer B (2001a) Fungi on Juncus roemerianus: new coelomycetes with notes on Dwayaangam junci. Mycol Res 105:500–505 Kohlmeyer J, Volkmann-Kohlmeyer B (2001b) Fungi on Juncus roemerianus. 16. More new coelomycetes, including Tetranacriella, gen. nov. Bot Mar 44:147–156 Kohlmeyer J, Volkmann-Kohlmeyer B (2001c) The biodiversityof fungi on Juncus roemerianus. Mycol Res News 105:1411–1412 Kohlmeyer J, Volkmann-Kohlmeyer B (2002) Fungi on Juncus and Spartina: new marine species of Anthostomella, with a list of marine fungi known on Spartina. Mycol Res 106:365–374 Kohlmeyer J, Volkmannn-Kohlmeyer B (2003) Marine Ascomycetes from algae and animals’ hosts. Bot Mar 46:285–306 Kohlmeyer J, Bebout B, Volkmann-Kohlmeyer B (1995) Decomposition of mangrove wood by marine fungi and Teredinids in Belize. PSZNI Mar Ecol 16:27–39 Kohlmeyer J, Spatafora JA, Volkmann-Kohlmeyer B (2000) Lulworthiales, a new order of marine Ascomycota. Mycologia 92:453–458 Küpper FC, Müller DG (1999) Massive occurrence of the heterokont and fungal parasites Anisolpidium, Eurychasma and Chytridium in Pylaiella littoralis (Ectocarpales, Phaeophyceae). Nova Hedwig 69:381 Küpper FC, Maier I, Müller DG, Loiseaux-de Goer S et al (2006) Phylogenetic affinities of two eukaryotic pathogens of marine macroalgae, Eurychasma dicksonii (Wright) Magnus and Chytridium polysiphoniae Cohn. Cryptog Algol 27:165–184 Kurtzman CP, Ribnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 73:331–371 Lara E, Moreira D, López-Garcia P (2010) The environmental clade LKM11 and Rozella form the deepest branching clade of Fungi. Protist 161:116–121 Le Calvez T, Burgaud G, Mahe S, Barbier G et al (2009) Fungal diversity in deep-sea hydrothermal ecosystems. Appl Environ Microbiol 75:6415–6421 Le Campion-Alsumard T, Golubic T, Priess K (1995) Fungi in corals symbiosis or disease? Interaction between polyps and fungi causes pearl-like skeleton biominerilazation. Mar Ecol Prog Ser 117:137–147 Lee SY, Jones EBG, Diele K, Castellanos-Galindo GA et al (2017) Biodiversity. In: Rivera-Monry V, Lee SY, Kristensen E, Twilley RR (eds) Mangrove ecosystems: a global biogeographic perspective. Springer, New York, pp 55–84 Lepelletier F, Karpov SA, Alacid E, Le Panse S et al (2014) Dinomyces arenysensis gen. et sp. nov. (Rhizophydiales, Dinomycetaceae fam. nov.), a chytrid infecting marine dinoflagellates. Protist 165:230–244 Letcher PM, Vélez CG, Barrantes ME, Powell MJ et al (2008) Ultrastructural and molecular analyses of Rhizophydiales (Chytridiomycota) isolates from North America and Argentina. Mycol Res 112:759–782 Letcher PM, Powell MJ, Davis WJ (2015) A new family and four new genera in Rhizophydiales (Chytridiomycota). Mycologia 107:808–830 Li CW, Xia MW, Cui CB, Peng JX et al (2016) A novel oxaphenalenone, penicimutalidine: activated production of oxaphenalenones by the diethyl sulphate mutagenesis of marine-derived fungus Penicillium purpurogenum G59. RSC Adv 6:82277–82281 Fungal Diversity (2019) 96:347–433 Li DH, Cai SX, Tian L, Lin ZJ et al (2007a) Two new metabolites with cytotoxicities from deep-sea fungus, Aspergillus sydowii YHll-2. Arch Pharm Res 30:1051–1054 Li Q, Wang G (2009) Diversity of fungal isolates from three Hawaiian marine sponges. Microb Res 164:233–241 Li WC, Zhou J, Guo SY, Guo LD (2007b) Endophytic fungi associated with lichens in Baihua mountain of Beijing, China. Fungal Divers 25:69–80 Liew ECY, Aptroot A, Hyde KD (2000) Phylogenetic significance of the pseudoparaphyses in Loculoascomycete taxonomy. Mol Phylogenetics Evol 20:1–13 Liu XZ, Wang QM, Theelen B, Groenewald M et al (2015a) Phylogeny of tremellomycetous yeasts and related dimorphic and filamentous basidiomycetes reconstructed from multiple gene sequence analyses. Stud Mycol 81:1–26 Liu XZ, Wang QM, Göker M, Groenewald M et al (2015b) Towards an integrated phylogenetic classification of the Tremellomycetes. Stud Mycol 81:85–147 Liu Y, Li XM, Meng LH, Jiang WL et al (2015c) Bisthiodiketopiperazines and acorane sesquiterpenes produced by the marinederived fungus Penicillium adametzioides AS-53 on different culture media. J Nat Prod 78:1294–1299 Liu Y, Mandi A, Li XM, Meng LH et al (2015d) Peniciadametizine A, a dithiodiketopiperazine with a unique spiro[furan-2,70 pyrazino[1,2-b][1,2]oxazine] skeleton, and a related analogue, peniciadametizine B, from the marine sponge-derived fungus Penicillium adametzioides. Mar Drugs 13:3640–3652 Liu S, Dai H, Makhloufi G, Heering C et al (2016) Cytotoxic 14-membered macrolides from a mangrove-derived endophytic fungus Pestalotiopsis microspore. J Nat Prod 79:2332–2340 Liu Y, Singh P, Liang Y, Li J et al (2017a) Abundance and molecular diversity of thraustochytrids in coastal waters of southern China. FEMS Microbiol Ecol 5:89. https://doi.org/10.1093/femsec/ fix070 Liu JK, Hyde KD, Jeewon R, Phillips AJL et al (2017b) Ranking higher taxa using divergence times: a case study in Dothideomycetes. Fungal Divers 84:75–99 Loilong A, Salayaroj J, Ringjindamain Choeyklin R et al (2012) Biodiversity of fungi on the palm Nypa fruticans. In: Jones EBG, Pang KL (eds) Marine and fungal-like organisms. De Gruyter, Germany, pp 273–290 Loque CP, Medeiros AO, Pellizzari FM, Olivera EC et al (2010) Fungal community associated with marine macro algae from Antarctica. Polar Biol 33:641–648 Lücking R, Huhndorf S, Pfister DH, Plata ER et al (2009) Fungi evolved right on track. Mycologia 101:810–822 Lutley M, Wilson IM (1972) Development and fine structure of ascospores in the marine fungus Ceriosporopsis halima. Trans Br Mycol Soc 58:393–402 Ma X, Li L, Zhu T, Ba M et al (2013) Phenylspirodrimanes with antiHIV activity from the sponge-derived fungus Stachybotrys chartarum MXH-X73. J Nat Prod 76:2298–2306 Maharachchikumbura SSN, Hyde KD, Jones EBG, McKenzie EHC et al (2015) Towards a natural classification and backbone tree for Sordariomycetes. Fungal Divers 72:199–301 Maharachchikumbura SSN, Hyde KD, Jones EBG, McKenzie EHC et al (2016) Families of Sordariomycetes. Fungal Divers 79:1–317 Mantle PG, Hawksworth DL, Pazoutova S, Collinson LM et al (2006) Amorosia littoralis gen. sp. nov., a new genus and species name for the scorpinone and caffeine-producing hyphomycetes from the littoral zone in The Bahamas. Mycol Res 110:371–1378 Marano AV, Pires-Zottarelli CLA, de Souza JI, Glockling SL, Leano EM, Gachon CMM, Strittmatter M, Gleason FH (2012) Hyphochytriomycota, oomycota and perkinsozoa (Supergroup Chromalveolata). In: Jones EBG, Pang K-L (eds) Marine 427 mycology-marine fungi and fungal-like organisms. De Gruyter, Berlin, pp 167–213 Marcel J, Pascale D, Andersen JH, Reyes F et al (2016) The marine biodiscovery pipeline and ocean medicines of tomorrow. J Mar Biol Assoc UK 96:151–158 Massana R, Gobet A, Audic S, Bass D et al (2015) Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing. Environ Microbiol 17:4035–40490 Mata JL, Cebrián J (2013) Fungal endobiotes of the seagrasses Halodule wrightii and Thalassia testudinum in the north-central Gulf of Mexico. Bot Mar 56:541–545 McMillan RT Jr (1984) Effective fungicides for the control of Cercospora spot on Rhizophora mangle. Int J Plant Pathol 2(2):85–88 McNeill J, Barrie FR, Buck WR, Demoulin V et al (2012) International Code of Nomenclature for algae, fungi and plants (Melbourne Code) adopted by the Eighteenth International Botanical Congress Melbourne, Australia, July 2011. Publ. 2012. Regnum Fungal Diversity 123 Vegetabile 154. Koeltz Scientific Books. ISBN 978-3-87429-425-6 Meng LH, Li XM, Liu Y, Wang BG (2014) Penicibilaenes A and B, sesquiterpenes with a tricyclo[6.3.1.0(1,5)]dodecane skeleton from the marine isolate of Penicillium bilaiae MA-267. Org Lett 16:6052–6055 Meng LH, Li XM, Liu Y, Wang BG (2015) Polyoxygenated dihydropyrano [2,3-c]pyrrole-4,5-dione derivatives from the marine mangrove-derived endophytic fungus Penicillium brocae MA-231 and their antimicrobial activity. Chin Chem Lett 26:610–612 Meng LH, Wang CY, Mandi A, Li XM et al (2016) Three diketopiperazine alkaloids with spirocyclic skeletons and one bisthiodiketopiperazine derivative from the mangrove-derived endophytic fungus Penicillium brocae MA-231. Org Lett 18:5304–5307 Meyers SP (1996) Fifty years of marine mycology: highlights of the past, projections for the coming century. SIMS News 46:119–127 Meyers SP, Moore RT (1960) Thalassiomycetes II. New genera and species of Deuteromycetes. Am J Bot 47:345–349 Meyers SP, Reynolds ES (1958) A wood incubation method for the study of lignicolous marine fungi. Bull Mar Sci Gulf Caribbean 8:342–347 Meyers SP, Reynolds ES (1960) Occurrence of lignicolous fungi in northern Atlantic and Pacific marine localities. Can J Bot 38:217–226 Meyers SP, Ahearn DG, Grunkel W, Roth FJ (1967) Yeasts from the North Sea. Mar Biol 1:118–123 Minic Z (2009) Organisms of deep sea hydrothermal vents as a source for studying adaptation and evolution. Symbiosis 47:121–132 Mohamed DJ, Martiny JBH (2011) Patterns of fungal diversity and composition along a salinity gradient. ISME J 5:379–388 Montagne JFC (1856) Sylloge Generum Specierumque Cryptogamarum. Bailliere et Fils, Paris Moore RT, Meyers SP (1959) Thalassiomycetes I. Principles of delimitation of the marine mycota with a description of a new aquatically adapted Deuteromycete. Mycologia 51:871–876 Morrison-Gardiner S (2002) Dominant fungi from Australian coral reefs. Fungal Divers 9:105–121 Moustafa AF (1975) Osmophilous fungi in the salt marshes of Kuwait. Can J Microbiol 21:1573–1580 Mouzouras R (1986) Pattern of timber decay caused by marine fungi. In: Moss ST (ed) The biology of marine fungi. Cambridge University Press, Cambridge, pp 341–353 123 428 Naff CS, Darcy JL, Schmidt SK (2013) Phylogeny and biogeography of an uncultured clade of snow chytrids. Environ Microbiol 15:2672–2680 Nagahama T, Nagano Y (2012) Cultured and uncultured fungal diversity in deep-sea environments. In: Raghukumar C (ed) Biology of marine fungi. Springer, Berlin, pp 173–187 Nagahama T, Hamamoto M, Hor K (2006) Rhodotorula pacifica sp. nov., a novel yeast species from sediment collected on the deepsea floor of the north-west Pacific Ocean. Int J Syst Evol Microbiol 56:295–299 Nagahama T, Abdel-Wahab MA, Nogi Y, Miyazaki M et al (2008) Dipodascus tetrasporeus sp. nov., an ascosporogenous yeast isolated from deep-sea sediments in the Japan Trench. Int J Syst Evol Microbiol 58:1040–1046 Nagahama T, Takahashi E, Nagano Y, Abdel-Wahab MA et al (2011) Molecular evidence that deep-branching fungi are major fungal components in deep-sea methane cold-seep sediments. Environ Microbiol 13:2359–2370 Nagai K, Kamigiri K, Matsumoto H, Kawano Y et al (2002) YM202204, a new antifungal antibiotic produced by marine fungus Phoma sp. J Antibiot 55:1036–1041 Nagano Y, Nagahama T, Hatada Y, Nunoura T et al (2010) Fungal diversity in deep-sea sedimentsdthe presence of novel fungal groups. Fungal Ecol 3:316–325 Nakagiri A (1989) Marine fungi in sea foam from Japanese coast. IFO Res Commun 14:52–79 Nakagiri A, Ito T (1991) Basidiocarp development of the cyphelloid gasteroid aquatic basidiomycetes Halocyphina villosa and Limnoperdon incarnatum. Can J Bot 69:2320–2327 Nakagiri A, Ito T (1997) Retrostium amphiroae gen. et sp. nov. inhabiting a marine red alga, Amphiroa zonata. Mycologia 89:484–493 Nakagiri A, Okane I, Ito T (1998) Zoosporangium development, zoospore release and culture properties of Halophytophthora mycoparasitica. Mycoscience 3:223–230 Newell SY (2001) Fungal biomass and productivity. In: Methods in microbiology, vol 3. Academic Press, pp 357–372 Newell SY, Bärlocher F (1993) Removal of fungal and total organic matter from decaying cordgrass leaves by shredder snails. J Exp Mar Biol Ecol 171:39–49 Newell SY, Fell JW (1992) Ergosterol content of living and submerged, decaying leaves and twigs of red mangrove. Can J Microbiol 38:979–982 Newell SY, Porter D (2000) Microbial secondary production from saltmarsh-grass shoots, and its known and potential fates. In: Weinstein MP, Kreeger DA (eds) Concepts and controversies in tidal marsh ecology. Kluwer, Amsterdam, pp 159–185 Newell SY, Porter D, Lingle WL (1996) Lignocellulolysis by ascomycetes (Fungi) of a saltmarsh grass (smooth cordgrass). Microsc Res Tech 33:32–46 Nicot J (1958) Une moisissure arénicole du littoral atlantique: Dendryphiella arenaria sp.nov. Rev Mycol 23:87–99 Nilsson S (1957) A new Danish fungus, Dinemasporium marinum. Bot Not 110:321–324 Niu S, Si L, Liu D, Zhou A et al (2016) Spiromastilactones: a new class of influenza virus inhibitors from deep-sea fungus. Eur J Med Chem 108:229–244 Norphanphoun C, Raspé O, Jeewon R, Wen TC et al (2018) Morphological and phylogenetic characterisation of novel Cytospora species associated with mangroves. MycoKeys 38:93–120 Oberwinkler F (2012) Evolutionary trends in Basidiomycota. Stapfia 96:45–104 Ohtsuka S, Suzaki T, Horiguchi T, Suzuki N (2016) Marine protists: diversity and dynamics. Springer, Tokyo. ISBN 978-4-43155129-4 123 Fungal Diversity (2019) 96:347–433 Orsi W, Biddl JF, Edgcomb V (2013) Deep sequencing of subseafloor eukaryotic rRNA reveals active fungi across marine subsurface provinces. PLoS ONE 8:e56335 O’Brien HE, Parrent JL, Jackson JA, Moncalvo J-M et al (2005) Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol 71:5544–5550 O’Rorke R, Lavery SD, Wang M, Nodder SD et al (2013) Determining the diet of larvae of the red rock lobster (Jasus edwardsii) using high-throughput DNA sequencing techniques. Mar Biol 161:551–563 Overy DP, Rämä T, Oosterhuis R, Walker AK, Pang KL (2019) The neglected marine fungi, sensu stricto, and their isolation for natural products’ discovery. Mar Drugs 17(1):42–62. https://doi. org/10.3390/md17010042 Panebianco C (1994) Temperature requirements of selected marine fungi. Bot Mar 37:157–161 Panebianco C, Tam WT, Jones EBG (2002) The effect of preinoculation of balsa wood by selected marine fungi and their effect on subsequent colonization in the sea. Fungal Divers 10:77–88 Pang KL (2012) Phylogeny of the marine Sordariomycetes. In: Jones EBG, Pang K-L (eds) Marine fungi and fungal-like organisms. Walter de Gruyter GmbH & Co KG, Berlin/Boston, pp 35–47 Pang KL, Jones EBG (2012) Epilogue: importance and impact of marine mycology and fungal-like organisms: challenges for the future. In: Jones EBG, Pang KL (eds) Marine and fungal-like organisms. De Gruyter, Germany, pp 509–517 Pang KL, Jones EBG (2017) Recent advances in marine mycology. Bot Mar 60:361–362 Pang KL, Abdel-Wahab MA, Sivichai S, El-Sharouney HM et al (2002) Jahnulales (Dothideomycetes, Ascomycota): a new order of lignicolous freshwater ascomycetes. Mycol Res 106:1031–1042 Pang KL, Vrijmoed LLP, Kong RYC, Jones EBG (2003) Polyphyly of Halosarpheia (Halosphaeriales, Ascomycota): implications on the use of unfurling ascospore appendages as a systematic character. Nova Hedwig 77:1–18 Pang KL, Vrijmoed LLP, Goh TK, Plaingame N et al (2008) Fungal endobiotes associated with Kandelia candel (Rhizophoraceae) in Mai Po Nature Reserve, Hong Kong. Bot Mar 51:171–178 Pang KL, Jheng JS, Jones EBG (2011) Marine mangrove fungi of Taiwan. National Taiwan Ocean Univ, Chilung, pp 1–131 Pang KL, Hyde KD, Alias SA, Suetrong S et al (2013) Dyfrolomycesillaceae, a new family in the Dothideomycetes, Ascomycota. Cryptog Mycol 34:223–232 Pang KL, Tsui CKM, Jones EBG, Vrijmoed LLP (2016a) Bioprospecting fungi and the Labyrinthulomyces and the OceanLand Interface. In: Baker BJ (ed) Marine Biomedicine, from beach to bedside. CRC Press, New York, pp 379–391 Pang KL, Overy DP, Jones EBG, da Luz Calado M et al (2016b) Marine fungi’ and ‘marine-derived fungi’ in natural product chemistry research: toward a new consensual definition. Fungal Biol Rev 30:163–175 Panno L, Bruno B, Voyron S, Anastasi A et al (2013) Diversity, ecological role and potential biotechnological applications of marine fungi associated to the seagrass Posidonia oceanica. New Biotechnol 30:685–694 Panzer K, Yilmaz P, Weiß M, Reich L et al (2015) Identification of habitat-specific biomes of aquatic fungal communities using a comprehensive nearly full-length 18S rRNA dataset enriched with contextual data. PLoS ONE 10:e0134377 Pérez-Ortega S, Spribille T, Palice Z, Elix JA et al (2010) A molecular phylogeny of the Lecanora varia group, including a new species from western North America. Mycol Prog 9:523–535 Fungal Diversity (2019) 96:347–433 Pérez-Ortega S, Garrido-Benavent I, Grube M, Olmo R et al (2016) Hidden diversity of marine borderline lichens and a new order of fungi: Collemopsidiales (Dothideomyceta). Fungal Divers 80:285–300 Peršoh D (2015) Plant-associated fungal communities in the light of meta’omics. Fungal Divers 75:1–25 Petersen KRL, Koch J (1997) Substrate preference and vertical zonation of lignicolous marine fungi on mooring posts of oak (Quercus sp.) and larch (Larix sp.) in Svanemøllen Harbour. Bot Mar 40:451–463 Picard KT (2017) Coastal marine habitats harbour novel early diverging fungal diversity. Fungal Ecol. 25:1–13 Pinruan U, Jones EBG, Hyde KD (2002) Aquatic fungi from peat swamp palms: Jahnula appendiculata sp. nov. Sydowia 54:242–247 Pinruan U, Hyde KD, Lumyong S, McKenzie EHC et al (2007) Occurrence of fungi on tissues of the peat swamp palm Licuala longicalycata. Fungal Divers 25:157–173 Pivikin MV, Afiyatullov SS, Elyakov GB (1999) Biodiversity of marine fungi and new biological active substances from them. In: Chou CH, Walker GR, Reinhardt C (eds) From organisms to ecosystems in the Pacific. Biodivers Alleopathy, pp 91–99 Pointing SB, Vrijmoed LLP, Jones EBG (1998) A qualitative assessment of lignocellulose degrading enzyme activity in marine fungi. Bot Mar 41:293–298 Pointing SB, Buswell JA, Jones EBG, Vrijmoed LLP (1999) Extracellular cellulolytic enzyme profiles of five lignicolous mangrove fungi. Mycol Res 103:690–700 Poli A, Vizzini A, Prigione V, Varese GC (2018) Basidiomycota isolated from the Mediterranean Sea—phylogeny and putative ecological roles. Fungal Ecol 36:51–62 Porter D, Farnham WF (1986) Mycaureola edulis, a marine basidiomycete parasite of the red alga, Dilsea carnosa. Trans Br Mycol Soc 87:575–582 Porter D, Lingle WL (1992) Endolithic thraustochytrid marine fungi from planted shell fragments. Mycologia 84:289–299 Prieto M, Wedin M (2013) Dating the diversification of the major lineages of Ascomycota (Fungi). PLoS ONE 8:e65576 Pruksakorn P, Arai M, Kotoku N, Vilchèze C et al (2010) Trichoderins, novel aminolipopeptides from a marine spongederived Trichoderma sp., are active against dormant mycobacteria. Bioorg Med Chem Lett 20:3658–3663 Pugh GJF (1962) Studies on fungi in coastal soils. II. Fungal ecology in a developing salt marsh. Trans Br Mycol Soc 45:560–566 Pugh GJF, Jones EBG (1986) Antarctic marine fungi: a preliminary account. In: Moss ST (ed) The biology of marine fungi. Cambridge Univ. Press, Cambridge, pp 323–330 Raghukumar C (1987) Fungal parasites of marine algae from Mandapam (South India). Dis Aquat Organ 3:137–145 Raghukumar C (2008) Marine fungal biotechnology: an ecological perspective. Fungal Divers 31:19–35 Raghukumar S (2017) Fungi in coastal and oceanic marine ecosystems. Springer, New York Raghukumar C, Damare SR (2008) Deep-sea fungi. In: Michiels C, Bartlett DH, Aertsen A (eds) High-pressure microbiology. ASM Press, Washington, DC, USA, pp 265–292 Raghukumar C, Damare S, Singh P (2010) A review on deep-sea fungi: occurrence, diversity and adaptions. Bot Mar 53:479–492 Rama T, Norden J, Davey ML, Mathiassen GH, Spatafora JW, Kauserud H (2014) Fungi ahoy! Diversity on marine wooden substrata in the high North. Fungal Ecol 8:46–58 Rateb ME, Ebel R (2011) Secondary metabolites of fungi from marine habitats. Nat Prod Rep 28:290–344 Réblová M, Miller AN, Rossman AY, Seifert KA et al (2016) Recommendations for competing sexual-asexually typified 429 generic names in Sordariomycetes (except Diaporthales, Hypocreales, and Magnaporthales). IMA Fungus 7:131–153 Reed M (1902) Two new ascomycetous fungi parasitic on marine algae. Univ Cal Publ Bot 1:141–164 Remy W, Taylor TN, Hass H (1994) Early Devonian fungi: a blastocladalean fungus with sexual reproduction. Am J Bot 81:690–702 Remy W, Hass H, Kerp H (1995) Fossil arbuscular mycosshiza from early Debonian. Myhcologia 87(4):561–573 Richards TA, Jones MD, Leonard G, Bass D (2012) Marine fungi: their ecology and molecular diversity. Annu Rev Mar Sci 4:495–522 Richards TA, Leonard G, Mah F, del Campo J et al (2015) Molecular diversity and distribution of marine fungi across 130 European environmental samples. Proc R Soc B 282:2015–2243 Roth FJ, Orpurt PA, Ahearn DG (1964) Occurrence and distribution of fungi in a subtropical marine environment. Can J Bot 42:375–383 Ruff SE, Arnds J, Knittel K, Amann R et al (2013) Microbial communities of deep-sea methane seeps at Hikurangi Continental Margin (New Zealand). PLoS ONE 8:e72627 Sachs J (1874) Lehrbuch der Botanik, 4th edn. Engelman, Leipzig Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endobiotes: a continuum of interactions with host plants. Ann Rev Ecol Syst 29:319–343 Sakayaroj J, Preedanon S, Supaphon O, Jones EBG, Phongpaichit S (2010) Phylogenetic diversity of endophyte assemblages associated with the tropical seagrass Enhalus acoroides in Thailand. Fungal Divers 42:27–45 Sakayaroj J, Pang KL, Jones EBG (2011) Multi-gene phylogeny of the Halosphaeriaceae: its ordinal status, relationships between genera and morphological character evolution. Fungal Divers 46:87–109 Sakayaroj J, Preedanon S, Suetrong S, Klaysuban A et al (2012) Molecular characterization of basidiomycetes associated with the decayed mangrove tree Xylocarpus granatum in Thailand. Fungal Divers 56:145–156 Samarakoon MC, Hyde KD, Promputtha I, Hongsanan S et al (2016) Evolution of Xylariomycetidae (Ascomycota: Sordariomycetes). Mycosphere 7:1746–1761 Samarakoon MC et al (2019) An updated fossil calibrations and ancient lineages of Ascomycota towards the divergence time estimations (in press) Sánchez Márquez S, Bills GF, Zabalgogeazcoa I (2008) Diversity and structure of the fungal endophytic assemblages from two sympatric coastal grasses. Fungal Divers 33:87–100 Sarasan M, Puthumana J, Job N, Han J et al (2017) Marine algicolous fendophytic Fungi—a promising drug resource of the era. J Microbiol Biotechnol 27:1039–1052 Sarma VV, Hyde KD (2001) A review on frequently occurring fungi in mangroves. Fungal Divers 8:1–34 Sarmiento-Ramirez JM, Sim J, Van West P, Dieguez-Uribeondo J (2016) Isolation of fungal pathogens from eggs of the endangered sea turtle species Chelonia mydas in Ascension Island. J Mar Biol Assoc UK 97:661–667 Schaumann K (1974) Zur Verbreitung saprophytischer hoherer Pilzkeime in der Hochsee. Erste quantitative Ergebnisse aus der Nordsee und dem NO-Atlantik. Veroeff Ins Meeresforsch Bremerhaven Supp 5:287–300 Schmit JP, Shearer CA (2003) A checklist of mangrove associated fungi. Mycotaxon 80:423–477 Schmit JP, Shearer CA (2004) Geographical and host distribution of lignicolous mangrove microfungi. Bot Mar 47:496–500 Schoch CL, Shoemaker RA, Seifert KA, Hambleton S et al (2006) A multigene phylogeny of the Dothideomycetes using four nuclear loci. Mycologia 98:1041–1052 123 430 Schoch CL, Seifert KA, Huhndorf S, Robert V et al (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal NA barcode marker for fungi. PNAS 109:6241–6246 Scholz B (2015) Host-pathogen interactions between brackish and marine microphytobenthic diatom taxa and representatives of the Chytridiomycota, Oomycota and Labyrinthulomycota. Status report for the Icelandic Research Fund from May to June 2014. https://doi.org/10.13140/rg.2.1.4769.6087 Scholz B, Küpper FC, Vyverman W, Karsten U (2014a) Eukaryotic pathogens (Chytridiomycota and Oomycota) infecting marine microphytobenthic diatoms—a methodological comparison. J Phycol 50:1009–1019 Scholz MJ, Weiss TL, Jinkerson RE, Jing J et al (2014b) Ultrastructure and composition of the Nannochloropsis gaditana cell wall. Eukaryot Cell 13:1450–1464 Scholz B, Guillou L, Marano AV, Neuhauser S et al (2016a) Zoosporic parasites infecting marine diatoms: a black box that needs to be opened. Fungal Ecol 19:59–76 Scholz B, Küpper FC, Vyverman W, Karsten U (2016b) Effects of eukaryotic pathogens (Chytridiomycota and Oomycota) on marine microphytobenthic diatom community compositions in the Solthörn tidal flat (southern North Sea, Germany). E J Phycol 5:253–269 Scholz B, Küpper FC, Vyverman W, Ólafsson HG, Karsten U (2017a) Chytridiomycosis of marine diatoms—the potential role of chemotactic triggers and defense molecules in parasite-host interactions. Mar Drugs 15:26 Scholz B, Küpper FC, Vyverman W, Ólafsson HG, Karsten U (2017b) Effects of environmental parameters on chytrid infection prevalence of four marine diatoms—a laboratory case study. Bot Mar 60:419–431 Schulz B, Boyle C (2005) The endophyte continuum. Mycol Res 109:661–686 Schulz B, Draeger S, Del Cruz TE, Rheinheimer J et al (2008) Screening strategies for obtaining novel, biologically active, fungal secondary metabolites from marine habitats. Bot Mar 51:219–234 Shivas RG, Young AJ, Crous PW (2009) Pseudocercospora avicenniae R.G. Shivas, A.J. Young & Crous, sp. nov. Fungal Planet 40 Shoemaker G, Wyllie-Echeverria S (2013) Occurrence of rhizomal endobiotes in three temperate northeast pacific seagrasses. Aquat Bot 111:71–73 Seifert KA, Morgan-Jones G, Gams W, Kendricket B (2011) The genera of Hyphomycetes, CBS biodiversity series, vol 9. CBSKNAW Fungal Biodiversity Centre, Utrecht, The Netherlands Senanayake IC, Maharachchikumbura SSN, Hyde KD, Bhat JD et al (2015) Towards unraveling relationships in Xylariomycetidae (Sordariomycetes). Fungal Divers 73:73–144 Senanayake IC, Al-Sadi AM, Bhat JD, Camporesi E et al (2016) Phomatosporales ord. nov. and Phomatosporaceae fam. nov., to accommodate Lanspora, Phomatospora and Tenuimurus, gen. nov. Mycosphere 7:628–641 Senanayake IC, Crous PW, Groenewald JC, Maharachchikumbura SSN et al (2017) Families of Diaporthales based on morphological and phylogenetic evidence. Stud Mycol 86:217–296 Senanayake IC, Jeewon R, Chomnunti P, Wanasinghe DN et al (2018) Taxonomic circumscription of Diaporthales based on multigene phylogeny and morphology. Fungal Divers 93:241–443 Seto K, Kagami M, Degawa Y (2017) Phylogenetic position of parasitic chytrids on diatoms: characterization of a novel clade in Chytridiomycota. J Eukaryot Microbiol 64:383–393 Shang Z, Li L, Espósito BP, Salim AA et al (2015) New PKS-NRPS tetramic acids and pyridinone from an Australian marine-derived fungus Chaunopycnis sp. Org Biomol Chem 13:7795–7802 123 Fungal Diversity (2019) 96:347–433 Shearer CA, Raja HA (2007) Freshwater Ascomycetes Database: hhtp://fungi.lifeIllinois.edu/ Shenoy BD, Jeewon R, Wu WP, Bhat DJ et al (2006) Ribosomal and RPB2 DNA sequence analyses suggest that Sporidesmium and morphologically similar genera are polyphyletic. Mycol Res 110:916–928 Simas T, Nunes JP, Ferreira JG (2001) Effects of global climate change on coastal salt marshes. Ecol Model 139:115 Somrithipol S, Sudhom N, Tippawan S, Jones EBG (2007) A new species of Falcocladium (Hyphomycetes) with turbinate vesicles from Thailand. Sydowia 59:148–153 Soowannayan C, Tejab DNC, Yatip P, Mazumder FY et al (2019) Vibrio biofilm inhibitors screened from marine fungi protect shrimp against acute hepatopancreatic necrosis disease (AHPND). Aquaculture 499:1–8 Sparks AK (1982) Observations on the histopathology and probable progression of the disease caused by Trichomaris invadens, an invasive ascomycete, in the Tanner crab, Chionoecetes bairdi. J Invertebr Pathol 40:242–254 Sparks AK, Hibbits J (1979) Black mat syndrome, an invasive myctic disease of the tanner crab, Chionoecetes bairdi. J Invert Path 34:184–191 Sparrow FK (1937) The occurrence of saprophytic fungi in marine muds. Biol Bull 73:242–248 Sparrow FK (1960) Aquatic phycomycetes, 2nd edn. University of Michigan Press, Ann Arbor Spatafora J, Volkmann-Kohlmeyer B, Kohlmeyer J (1998) Independent terrestrial origins of the Halosphaeriales (marine Ascomycota). Am J Bot 85:1569–1580 Sridhar KR (2012) Decomposition of material in the sea. In: Jones EBG, Pang KL (eds) Marine and fungal-like organisms. De Gruyter, Germany, pp 475–500 Stanley SJ (1992) Observations on the seasonal occurrence of marine endophytic and parasitic fungi. Can J Bot 70:2089–2096 Steele CW (1967) Fungus populations in marine waters and coastal sands of the Hawaiian Line, and Phenix Islands. Pac Sci 21:317–331 Stevens FL (1920) New or noteworthy Porto Rican fungi. Bot Gaz 70:399–402 Subrmaniyan R, Ponnambalam S, Thirunavukarassu T (2016) Inter species variations in cultivable endophytic fungal diversity among the tropical seagrasses. Proc Natl Acad Sci India, Sect B Biol Sci Suetrong S, Schoch CL, Spatafora JW, Kohlmeyer J et al (2009) Molecular systematics of the marine Dothideomycetes. Stud Mycol 64:155–173 Suetrong S, Klaysuban A, Sakayaroj J, Preedanaon S et al (2015) Tirisporellaceae, a new family in the order Diaporthales (Sordariomycetes, Ascomycota). Cryptog Mycol 36:319–330 Sullivan BK, Sherman TD, Damare VS, Lilje O et al (2013) Potential roles of Labyrinthula spp. in global seagrass population declines. Fungal Ecol 6:328–338 Summerbell RC (1983) The heterobasidiomycetous yeast genus Leucosporidium in an area of temperate climate. Can J Bot 61:1402–1410 Supaphon P, Phongpaichit S, Rukachaisirikul V, Sakayaroj J (2013) Antimicrobial potential of endophytic fungi derived from three seagrass species: Cymodocea serrulata, Halophila ovalis and Thalassia hemprichii. PLoS ONE 8:e72520 Supaphon P, Phongpaichit S, Rukachaisirikul V, Sakayaroj J (2014) Diversity and antimicrobial activity of endophytic fungi isolated from the seagrass Enhalus acoroides. Indian J Mar Sci 43:785–797 Supaphon P, Phongpaichit S, Sakayaroj J, Rukachaisirikul V et al (2017) Phylogenetic community structure of fungal endobiotes in seagrass species. Bot Mar 60:489–502 Fungal Diversity (2019) 96:347–433 Suryanarayanan TS (2012) Fungal endosymbionts of seaweeds. In: Raghukumar C (ed) Biology of marine fungi, progress in molecular and subcellular biology, vol 53. Springer, Berlin, pp 53–69 Suryanarayanan TS, Venkatachalam A, Thirunavukkarasu N et al (2010) Internal mycobiota of marine macroalgae from the Tamilnadu coast: distribution, diversity and biotechnological potential. Bot Mar 53:457–468 Sutherland GK (1915a) New marine fungi on Pelvetia. New Phytol 14:33–42 Sutherland GK (1915b) Additional notes on marine Pyrenomycetes. New Phytol 14:183–193 Sutherland GK (1915c) New marine Pyrenomycetes. Trans Br Mycol Soc 5:147–154 Sutherland GK (1916a) Additional notes on marine Pyrenomycetes. Trans Br Mycol Soc 5:257–263 Sutherland GK (1916b) Marine fungi Imperfecti. New Phytol 15:35–48 Swart HJ (1963) Further investigations of the mycoflora in the soil of some mangrove swamps. Acta Bot Neerl 12:98–111 Swart HJ (1970) Penicillium dimorphosporium sp. nov. Trans Br Mycol Soc 55:310–313 Takishita K (2015) Diversity of microbial eukaryotes in deep sea chemosynthetic ecosystems illuminated by molecular techniques. In: Ohtsuka S, Suzaki T, Horiguchi T, Suzuki N, Not F (eds) Marine protists diversity and dynamics. Springer, pp 47–61 Tao G, Liu ZY, Hyde KD, Lui XZ et al (2008) Whole rDNA analysis reveals novel and endophytic fungi in Bletilla ochracea (Orchidaceae). Fungal Divers 33:101–122 Taxopeus J, Kozera CJ, OLeary SJB, Garbary DJ (2011) A reclassification of Mycophycias ascophylli (Ascomycota) based on nuclear large ribosomal subunit DNA sequences. Bot Mar 54:325–334 Taylor TN, Remy W, Hass H (1992) Fungi from the Lower Devonian Rhynie chert: chytridiomycetes. Am J Bot 79:1233–1241 Taylor TN, Galtier J, Axsmith BJ (1994) Fungi from the Lower Carboniferous of central France. Rev Palaeobot Palynol 83:253–260 Taylor TN, Remy W, Hass H, Kerp H (1995) Fossil arbuscular mycorrhizae from the Early Devonian. Mycologia 87:560–573 Taylor TN, Hass H, Kerp H (1997) A cyanolichen from the Lower Devonian Rhynie chert. Am J Bot 84:992–1004 Taylor TN, Klavins SD, Krings M, Taylor EL et al (2004) Fungi from the Rhynie chert: a view from the dark side. Trans R Soc Edinburgh, Earth Sciences 94:457–473 Teal JM (1962) Energy flow in the salt marsh ecosystem of Georgia. Ecology 43:614–624, subunit DNA sequences. Bot Mar 54:325–334 Tedersoo L, Snachez-Ramirez S, Köljalg U, Bahram M et al (2018) High-level classification of the fungi and a tool for evolutionary ecological analysis. Fungal Divers 90:135–159 Tisthammer KH, Cobian GM, Amend AS (2016) Global biogeography of marine fungi is shaped by the environment. Fungal Ecol 19:39–46 Theelen B, Cafarchia C, Gaitanis G, Bassukas ID et al (2018) Malassezia ecology, pathophysiology, and treatment. Med Mycol 56:S10–S25 Tokura R, Shimooka V, Morigichi K, Yahi T et al (1982) Studies on the proper guidance of biological marine practise. VI. Observation of marine fungi in Hakoishi, Central Region of Japan. Kyoto Univ. of Edu Fushimi-ku, Kyoto 612. Japan 12:29–57 Tomlinson PB (1986) The Biology of mangroves. Cambridge Univ Press, Cambridge Torta L, Piccolo SL, Piazza G, Burruano SD et al (2015) Lulwoana sp., a dark septate endophyte in roots of Posidonia oceanica (L.) Delile seagrass. Plant Biol 17:505–511 431 Van Hyning JM, Scarborough AM (1971) identification of fungal encrustation of the snow crah Chionoecetes bairdi. J Fish Res Board Can 30:1738–1739 Van Ryckegem G, Van Driessche G, Van Beeumen JJ, Verbeken A (2006) The estimated impact of fungi on nutrient dynamics during decomposition of Phragmites australis leaf sheaths and stems. Microb Ecol 52:564–574 Vélez CG, Letcher PM, Schultz S, Powell MJ, Churchill PF (2011) Molecular phylogenetic and zoospore ultrastructural analyses of Chytridium olla establish the limits of a monophyletic Chytridiales. Mycologia 103:118–130 Velmurugan N, Lee YS (2012) Enzymes from marine fungi: current research and future prospects. In: Jones EBG, Pang KL (eds) Marine and fungal-like organisms. De Gruyter, Germany, pp 441–474 Venkatachalam A, Govinda Rajulu MB, Thirunavukkarasu N, Suryanarayanan TS (2015a) Endophytic fungi of marine algae and seagrasses: a novel source of chitin modifying enzymes. Mycosphere 6:345–355 Venkatachalam A, Thirunavukkarasu N, Suryanarayanan TS (2015b) Distribution and diversity of endobiotes in seagrasses. Fungal Ecol 13:60–65 Vijaykrishna D, Jeewon R, Hyde KD (2006) Molecular taxonomy, origins and evolution of freshwater ascomycetes. Fungal Divers 23:351–390 Vrijmoed LLP (2000) Isolation and culture of higher filamentous fungi. In: Hyde KD, Pointing SB (eds) Marine mycology: a practical approach, fungal diversity research series 1. Fungal Divers Press, Hong Kong, pp 1–20 Vohnı́k M, Borovec O, Kolařı́k M (2016) Communities of cultivable root mycobionts of the seagrass Posidonia oceanica in the Northwest Mediterranean Sea are dominated by a hitherto undescribed pleosporalean dark septate endophyte. Microb Ecol 71:442–451 Vu D, Groenewald M, de Vries M, Gehrmann T et al (2018) Largescale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom Fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud Mycol 92:136–154 Wanasinghe DN, Jeewon R, Tibpromma S, Jones EBG, Hyde KD (2017) Saprobic Dothideomycetes in Thailand: Muritestudina gen. et sp. nov. (Testudinaceae) a new terrestrial pleosporalean ascomycete, with hyaline and muriform ascospores. Stud Fungi 2:219–234 Wang G, Johnson ZI (2009) Impact of parasitic fungi on the diversity and functional ecology of marine phytoplankton. In: Kersey WT, Munger SP (eds) Marine phytoplankton. Nova Science Publisher Inc., New York, USA, pp 211–228 Wang X, Ma ZG, Song BB, Chen CH et al (2013) Advances in the study of the structures and bioactivities of metabolites isolated from mangrove-derived fungi in the South China. Sea Mar Drugs 11:3601–3616 Wang JF, Lin XP, Qin C, Liao SR et al (2014a) Antimicrobial and antiviral sesquiterpenoids from sponge-associated fungus, Aspergillus sydowii ZSDS1-F6. J Antibiot 67:581–583 Wang X, Singh P, Gao Z, Zhang X et al (2014b) Distribution and diversity of planktonic fungi in the West Pacific Warm Pool. PLoS ONE 9:e101523 Wang J, Wang Z, Ju Z, Wan J et al (2015a) Cytotoxic cytochalasins from marine-derived fungus Arthrinium arundinis. Planta Med 81:160–166 Wang QM, Begerow D, Groenewald M, Liu XZ (2015b) Phylogeny of yeasts and related filamentous fungi within Pucciniomycotina determined from multigene sequence analyses. Stud Mycol 81:27–53 123 432 Wang QM, Begerow D, Groenewald M, Liu XZ et al (2015c) Multigene phylogeny and taxonomic revision of yeasts and related fungi in the Ustilaginomycotina. Stud Mycol 81:55–83 Wang QM, Yurkov AM, Göker M, Lumbsch HT et al (2015d) Phylogenetic classification of yeasts and related taxa within Pucciniomycotina. Stud Mycol 81:149–189 Wang W, Li S, Chen Z, Li Z et al (2017) Secondary metabolites produced by the deep-sea-derived fungus Engyodontium album. Chem Nat Compd 53:224–226 Wetsteyn LPMJ, Peperzak L (1991) Field observations in the oosterschelde (The Netherlands) on Coscinodiscus concinnus and Coscinodiscus granii (Bacillariophyceae) infected by the marine fungus Lagenisma coscinodisci (Oomycetes). Hydrobiol Bull 25:15–21 Wijayawardene NN, Bhat DJ, Hyde KD, Camporesi E et al (2014) Camarosporium sensu stricto in Pleosporinae, Ploepsorales with two new specvies. Phytotaxa 183:16–26 Wijayawardene NN, Hyde KD, Tibpromma S, Wamnasinghe DN et al (2017a) Towards incorporating asexual fungi in a natural classification: check-list and notes. Mycosphere 8:1457–1554 Wijayawardene NN, Hyde KD, Rajeshkumar KC, Hawksworth DL et al (2017b) Notes for genera: Ascomycota. Fungal Divers 86:1–594 Wijayawardene NN, Hyde KD, Lumbsch T, Liu JK et al (2018) Outline of Ascomycota—2017. Fungal Divers 88:167–263 Winter G (1887) Exotische Pilze IV. Hedwigia 26:6–18 Wright EP (1881) On Blodgettia confervoides Harvey, forming a new genus and species of fungi. Trans R Ir Acad 28:21–26 Wu B, Oesker V, Wiese J, Schmaljohann R, Imhoff JF (2014) Two new antibiotic pyridones produced by a marine fungus, Trichoderma sp. strain MF106. Mar Drugs 12:1208–1219 Xing X, Guo S (2011) Fungal endophyte communities in four Rhizophoraceae mangrove species on the south coast of China. Ecol Res 26:403–409 Xing XK, Chen J, Xu MJ, Lin WH et al. (2010) Fungal endobiotes associated with Sonneratia (Sonneratiaceae) mangrove plants on the south coast of China. Forest Pathol Xu W, Pang KL, Luo ZH (2014) High fungal diversity and abundance recovered in the Deep-Sea sediments of the Pacific Ocean. Microb Ecol 68:688–698 Xu R, Li XM, Wang BG (2016a) Penicisimpins A-C, three new dihydroisocoumarins from Penicillium simplicissimum MA-332, a marine fungus derived from the rhizosphere of the mangrove plant Bruguiera sexangula var. Rhynchopetala. Phytochem Lett 17:114–118 Xu W, Luo ZH, Guo S, Pang KL (2016b) Fungal community analysis in the deep-sea sediments of the Pacific Ocean assessed by comparison of ITS,18S and 28S ribosomal DNA regions. DeepSea Res I 10:951–960 Xu W, Guo S, Pang KL, Luo ZH (2017) Fungi associated with chimney and sulfide samples from a South Mid-Atlantic Ridge hydrothermal site: distribution, diversity and abundance. DeepSea Res Part I 123:48–55 Xu W, Gong LF, Pang KL, Luo ZH (2018) Fungal diversity in deepsea sediments of a hydrothermal vent system in the Southwest Indian Ridge. Deep-Sea Res Part I 131:16–26 123 Fungal Diversity (2019) 96:347–433 Yao Q, Wang J, Zhang X, Nong X et al (2014) Cytotoxic polyketides from the deep-sea-derived fungus Engyodontium album DFFSCS021. Mar Drugs 12:5902–5915 Yarden (2014) Fungal association with sessile marine invertebrates. Front Microbiol 5:228 Yi L, Cui CB, Li CW, Peng JX et al (2016) Chromosulfine, a novel cyclopentachromone sulfide produced by a marine-derived fungus after introduction of neomycin resistance. RSC Adv 6:43975–43979 Zalar P, de Hoog GS, Schroers HJ, Crous PW et al (2007) Phylogeny and ecology of the ubiquitous saprobe Cladosporium sphaerospermum, with descriptions of seven new species from hypersaline environments. Stud Mycol 58:157–183 Zebrowski G (1936) New genera of Cladochytriaceae. Ann Miss Bot Gard 23:553–564 Zhang XY, Zhang Y, Xu XY, Qi SH (2013a) Diverse deep-sea fungi from the South China Sea and their antimicrobial activity. Curr Microbiol 67:525–530 Zhang Y, Fournier J, Phookamsak R, Bahkali AH et al (2013b) Halotthiaceae fam. nov. (Pleosporales) accommodates the new genus Phaeoseptum and several other aquatic genera. Mycologia 105(3):603–609 Zhang P, Mandi A, Li XM, Du FY et al (2014) Varioxepine A, a 3Hoxepine-containing alkaloid with a new oxa-cage from the marine algal-derived endophytic fungus Paecilomyces variotii. Org Lett 16:4834–4837 Zhao RL, Zhou JL, Chen J, Margaritescu S et al (2016) Towards standardizing taxonomic ranks using divergence times—a case study for reconstruction of the Agaricus taxonomic system. Fungal Divers 78:239–292 Zhao RL, Li GJ, Sánchez-Ramı́rez S, Stata M et al (2018) A six-gene phylogenetic overview of Basidiomycota and allied phyla with estimated divergence times of higher taxa and a phyloproteomics perspective. Fungal Divers 84:43–74 Zheng J, Zhu H, Hong K, Wang Y et al (2009) Novel cyclic hexapeptides from marine-derived fungus, Aspergillus sclerotiorum PT06-1. Org Lett 11:5262–5265 Zheng J, Wang Y, Wang J, Liu P et al (2013) Antimicrobial ergosteroids and pyrrole derivatives from halotolerant Aspergillus flocculosus PT05-1 cultured in a hypersaline medium. Extremophiles 17:963–971 Zhou Y, Debbab A, Wray V, Lin W et al (2014) Marine bacterial inhibitors from the sponge-derived fungus Aspergillus sp. Tetrahedron Lett 55:2789–2792 Zuccaro A, Mitchell JI (2005) Fungal communities of seaweeds. In: Deighton J, White JF, Oudemans P (eds) The fungal community. CRC, Taylor and Francis, New York Zuccaro A, Schulz B, Mitchell JI (2003) Molecular detection of ascomycetes associated with Fucus serratus. Mycol Res 107:1451–1466 Zuccaro A, Summerbell RC, Gams W, Schroers H-F, Mitchell JI (2004) A new Acremonium species associated with Fucus spp, and its affinity with a phylogenetically distinct marine Emericellopsis clade. Stud Mycol 50:283–297 Zuccaro A, Schoch CL, Spatafora JW, Kohlmeyer J et al (2008) Detection and identification of fungi intimately associated with the brown seaweed Fucus serratus. Appl Environ è 74:931–941 Fungal Diversity (2019) 96:347–433 433 Affiliations E. B. Gareth Jones1,2 • Ka-Lai Pang3 • Mohamed A. Abdel-Wahab1,4 • Bettina Scholz5 • Kevin D. Hyde6 • Teun Boekhout7,8 • Rainer Ebel9 • Mostafa E. Rateb10 • Linda Henderson11 • Jariya Sakayaroj12 • Satinee Suetrong13 • Monika C. Dayarathne6 • Vinit Kumar6,17 • Seshagiri Raghukumar14 • K. R. Sridhar15 • Ali H. A. Bahkali1 • Frank H. Gleason16 • Chada Norphanphoun6 1 10 School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK 11 School of Life and Environmental Sciences, University of Sydney, Macleay Building A12, Sydney, NSW 2006, Australia 12 School of Science, Walailak University, 222 Thaiburi, Thasala District, Nakhon Si Thammarat 80161, Thailand 13 Fungal Biodiversity Laboratory (BFBD), National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand 14 Tamra’, 313 (Plot No. 162), Vainguinnim Valley, Dona Paula, Goa 403 004, India 15 Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, The Netherlands Department of Biosciences, Mangalore University, Mangalore, Karnataka, India 16 Institute of Biodiversity and Ecological Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia 17 Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Huay Keaw Road, Suthep, Muang District, Chiang Mai 50200, Thailand Deptartment of Botany and Microbiology, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Kingdom of Saudi Arabia 2 Hampshire, UK 3 Institute of Marine Biology and Centre of Excellence for the Oceans, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 20224, Taiwan 4 Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag 82524, Egypt 5 BioPol ehf, Marine Biotechnology, Einbúastig 2, 545 Skagaströnd, Iceland 6 Center of Excellence in Fungal Diversity Mae Fah Luang University, 333 M.1 Thasud, Muang Chiang Rai, Chiang Rai 57100, Thailand 7 8 9 Department of Chemistry, Marine Biodiscovery Centre, University of Aberdeen, Aberdeen AB24 3UE, UK 123