Academia.eduAcademia.edu
© 2019 W. Szafer Institute of Botany Polish Academy of Sciences Plant and Fungal Systematics 64(2): 283–344, 2019 DOI: 10.2478/pfs-2019-0022 ISSN 2544-7459 (print) ISSN 2657-5000 (online) Biodiversity assessment of ascomycetes inhabiting Lobariella lichens in Andean cloud forests led to one new family, three new genera and 13 new species of lichenicolous fungi Adam Flakus1*, Javier Etayo2, Jolanta Miadlikowska3, François Lutzoni3, Martin Kukwa4, Natalia Matura1 & Pamela Rodriguez-Flakus5* Article info Received: 4 Nov. 2019 Revision received: 14 Nov. 2019 Accepted: 16 Nov. 2019 Published: 2 Dec. 2019 Associate Editor Paul Diederich 1 2 3 4 5 * Abstract. Neotropical mountain forests are characterized by having hyperdiverse and unusual fungi inhabiting lichens. The great majority of these lichenicolous fungi (i.e., detectable by light microscopy) remain undescribed and their phylogenetic relationships are mostly unknown. This study focuses on lichenicolous fungi inhabiting the genus Lobariella (Peltigerales), one of the most important lichen hosts in the Andean cloud forests. Based on molecular and morphological data, three new genera are introduced: Lawreyella gen. nov. (Cordieritidaceae, for Unguiculariopsis lobariella), Neobaryopsis gen. nov. (Cordycipitaceae), and Pseudodidymocyrtis gen. nov. (Didymosphaeriaceae). Nine additional new species are described (Abrothallus subhalei sp. nov., Atronectria lobariellae sp. nov., Corticifraga microspora sp. nov., Epithamnolia rugosopycnidiata sp. nov., Lichenotubeufia cryptica sp. nov., Neobaryopsis andensis sp. nov., Pseudodidymocyrtis lobariellae sp. nov., Rhagadostomella hypolobariella sp. nov., and Xylaria lichenicola sp. nov.). Phylogenetic placements of 13 lichenicolous species are reported here for Abrothallus, Arthonia, Globonectria, Lawreyella, Monodictys, Neobaryopsis, Pseudodidymocyrtis, Sclerococcum, Trichonectria and Xylaria. The name Sclerococcum ricasoliae comb. nov. is reestablished for the neotropical populations formerly named S. lobariellum (Sclerococcales). A key to sexual and asexual states of 40 species of lobariellicolous ascomycetous fungi is provided. Teleomorph-anamorph connections were established for several species using molecular methods and/or visual observations in nature. Additionally, we found that the anamorphic species Cornutispora ophiurospora inhabiting Lobariella was often accompanied by ascomata of Spirographa. Results of phylogenetic analyses, including newly generated sequences of several Cornutispora and Spirographa species inhabiting various host lichens, support the conclusion that Cornutispora is a synonym of Spirographa. Our Maximum Likelihood inference based on multiple loci show that all studied Spirographa (including Cornutispora) belong to a new lineage within Ostropales. Based on these highly supported phylogenetic placements and the distinct character states of their conidiomata, in comparison with other Lecanoromycetes, a new family is proposed – Spirographaceae fam. nov. This new lineage includes broadly distributed mycoparasites, inhabiting various lichen and fungal hosts, and representing an early diversification event preceding the lichen-forming clade of Fissurinaceae, Gomphillaceae and Graphidaceae. Two lichenicolous species, Asteroglobulus giselae and Pleoscutula arsenii, were found to be nested within the Spirographa clade, and their teleomorph-anamorph connections were confirmed based on genotypic and phenotypic data. This phylogenetic result is corroborated by their highly similar ascomata anatomy. Together these results strongly indicate that both species are congeneric with Spirographa. As a result, four new species (S. aggregata sp. nov., S. galligena sp. nov., S. maroneae sp. nov., and S. parmotrematis sp. nov.) and 15 new combinations are proposed (Spirographa ascaridiella comb. nov., S. arsenii comb. nov., S. ciliata comb. nov., S. giselae comb. nov., S. herteliana comb. nov., S. hypotrachynae comb. nov., S. intermedia comb. nov., S. lichenicola comb. nov., S. limaciformis comb. nov., S. ophiurospora comb. nov., S. pittii Department of Lichenology, W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland Navarro Villoslada 16, 3º dcha., E-31003 Pamplona, Navarra, Spain Department of Biology, Duke University, Durham, NC 27708, USA Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland Laboratory of Molecular Analyses, W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland Corresponding authors e-mail: a.flakus@botany.pl, p.rodriguez@botany.pl This work is licensed under the Creative Commons BY-NC-ND 4.0 License 284 Plant and Fungal Systematics 64(2): 283–344, 2019 comb. nov., S. pyramidalis comb. nov., S. triangularis comb. nov., S. tricupulata comb. nov., and S. vermiformis comb. nov.). Species of the genus Spirographa, as outlined here, are strongly host-specific, mainly at the generic level of their host. Some host genera can harbour more than one Spirographa species. Key words: Anamorph-teleomorph connection, Asteroglobulus, Cornutispora, lichenicolous fungi, Neotropics, Pezizomycotina, phylogenetics, Pleoscutula, Spirographa, systematics Introduction The combination of high altitude and precipitation drastically increases the biodiversity of symptomatic lichen-inhabiting fungi detectable by light microscopy (i.e., lichenicolous fungi, reproducing sexually or asexually on their hosts) in neotropical forests. Consequently, a network of tropical and subtropical montane cloud forests along the Andean cordillera and the Mexican mountain ranges hosts very particular and hyperdiverse lichenicolous fungi (Diederich 1997; Etayo 2002, 2017; Flakus et al. 2019). Lobariella (Peltigerales) is endemic to neotropical cloud forests, and one of the most common lichen genera in this ecosystem. It is also known to host the largest numbers of lichenicolous fungi (Etayo 2002, 2017). The genus Lobariella is known from Mexico to southern Brazil, with the exception of one species – L. crenulata, which is known additionally from Hawaii (Moncada et al. 2013). According to Moncada et al. (2013), Lobariella is a monophyletic, species-rich genus within Lobariaceae, with about 26 recently accepted species. Prior to our study, 19 species of lichenicolous Ascomycota and three species of Basidiomycota were described or reported from Lobariella, mainly from Colombian and Ecuadorian forests (Etayo 2002, 2010b, 2017; Flakus & Kukwa 2012a; Diederich et al. 2014). The main aims of this study were to: (i) describe previously unknown ascomycetous lichenicolous fungi growing on Lobariella in Bolivia, (ii) reveal their phylogenetic relationships within Pezizomycotina, and (iii) provide an identification key to facilitate future research on lichenicolous fungi. Moreover, during our study of Cornutispora and Spirographa inhabiting Lobariella in Bolivia, we discovered that they represent conidial and ascosporic states of a single genus (Spirographa). Therefore, we included newly generated sequences from Cornutispora and Spirographa collected from other host genera to reveal their phylogenetic affinity and to establish species bounderies within the genus Spirographa. Materials and methods Taxon sampling and morphological studies. Our results are based mainly on fresh material collected from Bolivia and Panama, and on specimens deposited at COL, DAOM, G, H, KRAM, LPB, M, PMA, UPS, UGDA, and VIT, as well as in the private herbarium of J.E. (Pamplona). Each type examined in this study is indicated by an exclamation mark (‘!’). Specimens for this study were collected by J. Etayo (J.E.), A. Flakus (A.F.), M. Kukwa (M.K.), and P. Rodriguez-Flakus (P.R.F.). Morphological and anatomical characters were examined using standard stereo- and compound-microscopes (Nikon SMZ 800, Nikon Eclipse 80i DIC, Japan). Sections were prepared manually using a razor blade, or a Thermo Fisher Scientific Microm HM430 (USA) freezing microtome combined with a BFS-MP freezing stage and a BFS-3MP controller. Sections and squash mounts were examined in distilled water, 10% KOH (K), Lactophenol Cotton Blue (LPCB; Fluka, no. 61335-100ML) or Congo Red. All photomicrographs showing anatomical characters were made using transmitted differential interference contrast (DIC) microscopy. Amyloid reactions of anatomical structures were tested using Lugol’s solution (I) (Fluka, no. 62650-1L-F), or with Lugol’s solution preceded by a 10% KOH treatment (K/I). The solubility of crystals was tested using K and a 50% nitric acid solution (N). All measurements were made in distilled water or LPCB. Ascospore measurements of several newly described taxa are presented as arithmetic mean () and standard deviation (s) (in brackets), flanked by the minimum and maximum observed values. Length/breadth ratios (l/b) are presented in the same way, followed by the number of measurements (n). Host lichen substances were investigated by thin layer chromatography (TLC) in solvents B’ and C following the methods by Culberson and Kristinsson (1970) and Orange et al. (2001). DNA extraction, PCR amplification, and DNA sequencing. We investigated 30 specimens of lichen- icolous fungi inhabiting Lobariella species representing a broad phylogenetic array within the Pezizomycotina: Abrothallales, Arthoniales, Cordieritidaceae (Helotiales), Cordycipitaceae (Hypocreales), Dactylosporaceae (Sclerococcales), Didymosphaeriaceae (Pleosporales), Nectriaceae (Hypocreales), Ostropales, and Xylariales. Additionally, we studied 18 specimens of Asteroglobulus, Cornutispora, Pleoscutula and Spirographa (the Spirographa complex) and two additional collections of Protounguicularia from various lichen hosts (altogether 32 speciemns). Ascomata or conidiomata of lichenicolous fungi, still on their lichen host, were stored at –20°C. They were removed from the host thallus and carefully cleaned in double distilled water on a microscope slide under sterile conditions to remove host tissues and other visible impurities using ultra-thin tweezers and a razor blade. DNA was extracted from 3 to 20 clean ascomata, conidiomata, or hymenia, depending on each specimen, using either the DNeasyTM Plant Mini Kit or QIAamp DNA Investigator Kit (Qiagen, Germany) following the manufacturer’s instructions. Primers used for PCR and sequencing are provided in Table 1, whereas the Systematic group Figure no. Loci Primer pairs + sequencing primers Substitution models and partitions Outgroup References Abrothallus (Abrothallales) Figure 1 nrITS + nrLSU + mrSSU ITS1F-ITS4, mrSSU1-mrSSU3R, HKY+G (ITS1, ITS2), SYM+I+G (5.8S), Patellaria atrata-Jahnula bipilcata LROR-LR7, LR5 SYM+G (mrSSU), GTR+I+G (LSU) clade Pérez-Ortega et al. 2014; Suija et al. 2015 Arthonia (Arthoniales) Figure 2 nrLSU + mrSSU + RPB2 mrSSU1-mrSSU3R, LROR, LR3, LR5 GTR+I+G (mrSSU), GTR+I+G (LSU, Opegrapha lithyrga-O. vulgata clade RPB2-1), SYM+G (RPB2-2), GTR+I+G (RPB2-3) Frisch et al. 2014 Globonectria and Trichonectria (Hypocreales) Figure 3 nrLSU + RPB1 + RPB2 ITS1F-LR5, ITS5 + TEF1 GTR+I+G (RPB2-2, RPB2-3, RPB1-1, Rosasphaeria moravica-Niesslia exilis Voglmayr & Jaklitsch 2019 RPB1-2, TEF1-1, TEF1-2, TEF1-3, LSU), clade GTR+G (RPB2-1, RPB1-3) Neobaryopsis (Hypocreales) Figure 4 nrSSU + nrLSU + RPB1 ITS1F-LR5, ITS5, LR3 + RPB2 + TEF1 GTR+I+G (LSU), K80+I+G (SSU), Hypocrea lactea-H. rufa clade SYM+I+G (RPB1, RPB2), GTR+I+G (TEF1) Pseudodidymocyrtis (Pleosporales) Figure 5 nrSSU + nrITS + nrLSU ITS1F-LR5, NS1-nssu1088 GTR+I+G (LSU), TVM+I+G (58S, SSU), Lentithecium fluviatile-Stagonospora Ariyawansa et al. 2014 SYM+G (ITS1), TVM+I+G (ITS2) paludosa clade Lawreyella (Helotiales) Figure 6 nrSSU + nr5.8S + nrLSU ITS1F-ITS4, ITS1F-LR5, LIC15R-LR6, SYM+I+G (SSU, 5.8S), GTR+I+G (LSU) Chlorociboria glauca-Encoelia furfu- Suija et al. 2015; Fryar et al. LROR-LR7, NS1-NS24, NS1-nssu1088, 2019 racea clade ITS5, LROR, LR5, nssu131, SRS7, Sclerococcum (Sclerococcales) Figure 7 nrITS + nrLSU + mrSSU ITS1F-ITS4, mrSSU1-mrSSU3R, HKY+G (mrSSU), K80+G (ITS1, ITS2), Fusichalara minuta-Rhopalophora Diederich et al. 2018; Olariaga LROR-LR7, LR5 K80+I (5.8S), SYM+I+G (LSU) et al. 2019 clavispora clade Xylaria (Xylariales) Figure 8 nrITS + RPB2 + beta-tub ITS1F-LR5, RPB2-5F-RPB2-7cf, GTR+I+G (ITS1, ITS2, Beta-tub), Poronia pileiformis-Podosordaria muli U'Ren et al. 2016 BT3LM5-BT10LM3 GTR+I+G (RPB2), JC (5.8S) clade Spirographaceae within Ostropales Figure 23 nrLSU, mrSSU, RPB1, ITS1F-LR5, mrSSU1-mrSSU3R, RPB1 GTR+G (RPB1-1, RPB2-1, mrSSU, Arctomia interfixa-Gregorella humida af-RPB1cf RPB2, RPB1-2, RPB2-2) (LSU, SSU) (RPB2-3, clade RPB1-3) Spirographa within Graphidaceae s.l. Figure 24A nrLSU, mrSSU, RPB2 Spirographa complex Figure 24B (species level relationships) ITS1F-LR5, mrSSU1-mrSSU3R Lawrey et al. 2015; Kepler et al. 2017 Baloch et al. 2013; Miadlikowska et al. 2014; Pino-Bodas et al. 2017; Carbone et al. 2017, 2019; Suija et al. 2018 GTR+G (mrSSU) (LSU, RPB1-1, Coenogonium luteum-Gyalecta jenesis Lücking et al. 2004; Lumbsch et al. 2014; Miadlikowska et al. RPB1-2) (RPB1-3) clade 2014; Carbone et al. 2017, 2019; Suija et al. 2018 nrITS, nrLSU, mrSSU, ITS1F-ITS4, ITS1F-LR5, mrS- GTR+G (ITS) (RPB1-1, RPB1-2, mrSSU) Fissurina nigrolabiata-F. aggregatula This study RPB1 SU1-mrSSU3R, RPB1 af-RPB1cf (LSU) (RPB1-3) clade A. Flakus et al.: Biodiversity assessment of ascomycetes inhabiting Lobariella lichens in Andean cloud forests Table 1. Sequence data acquisition (e.g., primers used, original source of sequences), assembled datasets (e.g., loci) and phylogenetic analyses (e.g., substitution models and partitions) used for this study. 285 286 amplification parameters and additional detailed information on PCR, visualization of amplicons, and preparation of samples can be found in Rodriguez-Flakus & Printzen (2014) and Flakus et al. (2019). PCR amplicons were sequenced by Macrogen (Amsterdam, the Netherlands). The newly generated sequences were carefully checked, assembled and edited manually using Geneious Pro 8.0. (Biomatters Ltd) and deposited in GenBank. Information about all OTUs used in this study including sequences downloaded from GenBank and newly obtained accession numbers are provided in Table S1. Phylogenetic analyses of Lobariella-inhabiting fungi, excluding the Spirographa complex. All sequences generated were subjected to BLAST (Altschul et al. 1990) and/or T-BAS Evolutionary Placement Algorithm (EPA) as implemented in the Tree-Based Alignment Selector toolkit (T-BAS version 2.1; Carbone et al. 2017, 2019) to verify potential fungal contamination and to reveal their general phylogenetic placement within Pezizomycotina. Alignments were generated for each locus using MAFFT (Katoh et al. 2005) as implemented in Geneious Pro. We removed ambiguously aligned regions using Gblocks version 0.91b (Castresana 2000) with default settings but allowing gaps in 50% of the sequences. All phylogenetic analyses were performed in the CIPRES Scientific Gateway (http://www.phylo.org/portal2/) (Miller et al. 2010). PartitionFinder 2 (Lanfear et al. 2016) was used to select the best partitioning scheme and substitution models under a greedy search algorithm and the Akaike information criterion (AICC) (Lanfear et al. 2012). Details about each partition and the substitution model selected are included in Table 1. Maximum likelihood (ML) analyses were carried out using a heuristic search as implemented in RAxML-HPC2 on XSEDE (Stamatakis 2006) with the GTRGAMMAI or GTRCAT model and 1000 bootstrap replicates to estimate branch support. Bayesian inference (BI) of phylogenetic relationships was implemented in MrBayes 3.2.6 on XSEDE (Ronquist et al. 2012) using the partitions and substitution models obtained with PartitionFinder 2. Two independent parallel runs were implemented, each with four incrementally heated (0.15) chains. This analysis was allowed to run for 20M generations, sampling every 1000th tree and discarding the first 50% of the sampled trees as part of the burn-in. The resulting ML and BI phylogenetic trees were visualized with Figtree 1.3.1 (Rambaut 2009). Datasets and phylogenetic analyses of the Spriro­ grapha complex. Although inconclusive because of low similarity (up to 80%) compared to available sequences, the BLAST results indicated a putative placement of 18 individuals morphologically identified as Asteroglobulus, Cornutispora, Pleoscutula, and Spirographa (i.e., the Spirographa complex) (Table S1) in Ostropomycetidae. We applied the Evolutionary Placement Algorithm (EPA) as implemented in T-BAS (version 2.1; Carbone et al. 2017, 2019) using the Lecanoromycetes reference tree (Miadlikowska et al. 2014; Carbone et al. 2019) based on each individual locus separately (mrSSU, nrLSU, and RPB1 A-F) and on these datasets combined. For each Plant and Fungal Systematics 64(2): 283–344, 2019 analysis we used the GTRGAMMA substitution model and calculated likelihood weights with a placement cutoff distance of 10. Based on the EPA analyses, which show a sister relationship of the Spirographa clade with Graphidaceae (results not presented), we selected a larger clade containing Arctomiales, Baeomycetales, Hymeneliales, Trapeliales and Ostropales from the Lecanoromycetes tree for a more thorough RAxML search and bootstrap analyses (1000 replicates) as implemented in T-BAS v. 2.1 based on the mrSSU, nrLSU and RPB1 A-F combined dataset. The following options were selected: do not include unknown duplicates, realign sequences in clade with MAFFT, GTRGAMMA substitution model, and Arctomiales to root the tree. Based on the resulting RAxML phylogeny (where the Spirographa complex remained sister to Graphidaceae with strong bootstrap support; results not shown), we selected Ostropales and Arctomiales clades (the latter was used to root the tree) containing 195 OTUs, combining 177 reference taxa and 18 individuals from the Spirographa complex. The single-locus alignments for three ribosomal loci: mrSSU, nrLSU, nrSSU; and two protein coding genes: RPB1 (two amplicons: RPB1 A-F, RPB1 F-G) and RPB2 (two amplicons: RPB2 5-7 and RPB2 7-11) were downloaded from T-BAS v. 2.1 (files associated with the Lecanoromycetes reference tree; Carbone et al. 2017, 2019). We supplemented this dataset with 13 additional taxa including members of three lichenicolous genera: Corticifraga, Sphaeropezia, Taitaia (Baloch et al. 2013; Pino-Bodas et al. 2017; Suija et al. 2018) and the genus Epigloea, potentially belonging to Ostropales (Pino-Bodas et al. 2017). All single-loci alignments were manually adjusted using Mesquite v.3.11 (Madison & Madison 2015) with the option ‘Nucleotide with AA color’ for guiding all alignments of protein-coding genes. Ambiguously-aligned regions (sensu Lutzoni et al. 2000) were delimited manually to be excluded from subsequent analyses. The combined 195-taxon dataset (with 177 reference taxa) included five taxa with one locus, 113 taxa with two loci, 39 taxa with three loci, eleven taxa with four loci, and nine taxa with five loci. It represented eight families currently classified in Ostropales: Coenogoniaceae, Gomphillaceae, Graphidaceae, Gyalectaceae, Protothelenellaceae, Sagiolechiaceae, Stictidaceae, Thelenellaceae (Lücking et al. 2017), and other lineages, e.g. Epigloeaceae and Thrombium epigaeum, both potentially affiliated with Ostropales (Pino-Bodas et al. 2017; Carbone et al. 2019). Based on the resulting sister relationship between the Spirographa and Graphidaceae clades, we assembled a 144-taxon dataset restricted to Graphidaceae s.lat. using mrSSU, nrLSU and RPB2 7-11 sequences and a 104-taxon dataset from Lumbsch et al. (2014; sequence data received from the last author upon request) to confirm this relationship. The initial single-locus alignments were reajusted manually (using Mesquite v.3.11), the RPB2 sequences were reverse complemented to reflect the 5’-3’ direction, the option ‘Nucleotide with AA color’ was used for guiding the alignment of this protein-coding gene, and the ambiguous regions were re-delimited. Because published A. Flakus et al.: Biodiversity assessment of ascomycetes inhabiting Lobariella lichens in Andean cloud forests phylogenies (e.g., Miadlikowska et al 2014) and the 195-taxon phylogeny from the current study (Fig. 23) strongly supported the sister relationship of the subfamilies Fissurinoideae and Gomphilloideae (currently recognized as Gomphillaceae; Lücking et al. 2017), which represent the first evolutionary split in Graphidaceae, we supplemented the alignments with ten additional members from both subfamilies (part of the Ostropales 195-taxon dataset) and twelve members of Gomphillaceae from Lücking et al. (2004) for a total of 144 taxa. Our Graphidaceae 144-taxon dataset includes all four subfamilies currently recognized in Graphidaceae (Fissurinoideae, Rodonographoideae, Graphidoideae, and Gomphilloideae = Gomphillaceae) and all tribes within Graphidoideae. The reference data for Graphidaceae included 20 taxa with one locus, 65 taxa with two genes, and 42 taxa with three genes. For the reconstruction of species level relationships within the Spirographa complex, we assembled a combined dataset of four loci (nrITS, nrLSU, mrSSU, and RPB1A-F) for all taxa with available sequence data, and two Fissurina species to root the tree (Table S1). ML analyses using RAxMLHPC-MPI-SSE3 (RAxMLHPC2 on XSEDE (8.2.10); Stamatakis 2006; Stamatakis et al. 2008) were performed (at the nucleotide level) on each locus separately and on each concatenated dataset (Ostropales 195-taxon dataset, Graphidaceae 144-taxon dataset, Spirographa complex 20-taxon dataset; Table S1). Optimal tree and bootstrap searches were conducted with the rapid hill-climbing algorithm for 1000 replicates with the GTR substitution model (Rodríguez et al. 1990) and gamma distribution parameter as implemented in CIPRES Science Gateway V 3.3 (Miller et al. 2010). For the concatenated analyses, each dataset was partitioned into subsets using PartitionFinder2 on XSEDE (Lanfear et al. 2012) as implemented in the CIPRES portal, with greedy search and using the AICc (Akaikes Information Criterion) for model selection (Table 1). Relationships receiving bootstrap support above 70% were considered well supported. Results Phylogenetic relationships of Lobariella-inhabiting fungi, excluding the Spirographa complex The BLAST and EPA results for 32 specimens (61 newly generated sequences for eight loci) of lichenicolous fungi inhabiting Lobariella in Bolivia using the Pezizomycotina tree in T-BAS (Table S1), revealed that they are spread across five classes within this subphylum (Arthoniomycetes, Dothideomycetes, Eurotiomycetes, Leotiomycetes and Sordariomycetes). Phylogenetic analyses were implemented on datasets restricted to eight taxonomic groups with more inclusive sampling for a finer resolution of their affinities: Abrothallus, Abrothallales (including Abrothallaceae, Aliquandostipitaceae, Hysteriaceae, and Patellariaceae; nrITS: 479 bp, nrLSU: 1265 bp, and mrSSU: 666 bp for 58 OTUs; Fig. 1), Arthonia, Arthoniales (including Arthoniaceae, Bryostigma clade, and Opegraphaceae; nrLSU: 1124 bp, mrSSU: 643 bp, and RPB2: 864 bp 287 for 27 OTUs; Fig. 2), Globonectria and Trichonectria, Hypocreales (including Bionectriaceae, Flammocladiaceae, Nectriaceae, Niessliaceae, and Stachybotriaceae; nrLSU: 853 bp, RPB1: 708 bp, RPB2: 1074 bp, and TEF1: 960 bp for 106 OTUs; Fig. 3), Neobaryopsis, Hypocreales (including Clavicipitaceae, Cordycipitaceae, Hypocreaceae, and Ophiocordycipitaceae; nrSSU: 1032 bp, nrLSU: 823 bp, RPB1: 700 bp, RPB2: 945 bp, and TEF1: 984 bp for 50 OTUs; Fig. 4), Pseudodidymocyrtis, Pleosporales (including Didymosphaeriaceae, Lentitheciaceae, and Massarinaceae; nrSSU: 987 bp, nrITS: 400 bp, and nrLSU: 875 bp for 65 OTUs; Fig. 5), Lawreyella, Helotiales (including Chlorociboriaceae, Cordieritidaceae, Helotiaceae, and Sclerotiniaceae; nrSSU: 1451 bp, nr5.8S: 456 bp, and nrLSU: 1130 bp for 50 OTUs; Fig. 6), Sclerococcum, Sclerococcales (including Dactylosporaceae; nrITS: 427 bp, nrLSU: 854 bp, and mrSSU: 656 bp for 44 OTUs; Fig. 7), and Xylaria, Xylariales (including Xylariaceae; nrITS: 383 bp, RPB2: 1149 bp, and beta-tub: 1103 bp for 20 OTUs; Fig. 8). The ML and BI analyses yielded similar topologies for each dataset. The trees are mostly congruent with recently published phylogenies (see Table 1). Abrothallus macrosporus and A. subhalei were found to be related to a single specimen of A. secedens, and part of a clade also containing A. sp., A. nephromatis, A. cladoniae, and a specimen of A. suecicus, however, with low phylogenetic confidence (Fig. 1). Abrothallus subhalei forms a well-supported clade (together with their anamorph: J.E. 44-1) distinct from A. macrosporus. Another anamorphic specimen, A. aff. ertzii (J.E. 5-1) seems to be closely related to the sexual state of A. ertzii s.str., but this relationship received low support. The large phylogenetic distance separating these two asexual morphs suggests that they may represent two distinct species (Fig. 1). Arthonia lobariellae is closely related to Arthonia ‘lobariicola’(highly supported relationship), an undescribed species from Japan (Fig. 2), which is part of the Bryostigma clade discussed by Frisch et al. (2014). Because our preliminary analyses (results not shown) revealed that four species from Hypocreales were split into two groups belonging to Nectriaceae and Cordycipitaceae, we performed two separate phylogenetic analyses to establish their relationships within each family. Globonectria cochensis and Trichonectria setadpressa are nested within Nectriaceae (Fig. 3), shown to be not monophyletic because of the inclusion of Stachybotryaceae, a relationship that is poorly supported. Globonectria forms a monophyletic group together with an unidentified Acremonium-like a sexual state (G. cochensis J.E. 33-20) growing on the same host lichen. The placement of Globonectria cochensis is uncertain in our phylogeny, but the genus appears to be closely related to members of the Nectriaceae. Globonectria is shown to be only distantly related to other lichenicolous genera, such as Pronectria. Trichonectria setadpressa was resolved in a well-supported clade together with the mycoparasitic T. rectipila (Fig. 3). Additionally, anamorph-teleomorph connections are established for Trichonectria setadpressa (sexual state) 288 Plant and Fungal Systematics 64(2): 283–344, 2019 and an Acremonium-like asexual state (A.F. 29612 and J.E. 20-13), which together form a well-supported monophyletic group (Fig. 3). The new genus Neobaryopsis (A.F. 25976-1 and J.E. 20-11) represents, together with the genus Simplicillium, the first lineage to split from the rest of the Cordycipitaceae (a result well-supported by bootstrap Patellaria atrata Hysteropatella clavispora Hysteropatella elliptica and Bayesian analyses, Fig. 4). The type species of the genera Lichenobarya (L. usneae) and Neobarya (N. parasitica) are resolved in different families (Hypocreaceae and Clavicipitaceae, respectively). Their relatively distant relationship to Neobaryopsis, confirms the results by Lawrey et al. (2015). An anamorphic specimem of Neobaryopsis andensis (A.F. 25967-2) is nested within 100/1 100/1 100/1 96/1 75/ /0.97 100/1 100/1 Outgroup /0.99 Farlowiella carmichaeliana 2 Farlowiella carmichaeliana 4 Farlowiella carmichaeliana 3 Farlowiella carmichaeliana 1 Aliquandostipite khaoyaiensis Jahnula aquatica Jahnula bipileata 2 100/1 Jahnula bipileata 1 Abrothallus acetabuli 2 Abrothallus suecicus 2 Abrothallus hypotrachynae 95/1 Abrothallus caerulescens 85/ Abrothallus parmeliarum 1 Abrothallus buellianus Abrothallus parmeliarum 2 Abrothallus parmotrematis Abrothallus suecicus 1 Abrothallus cladoniae Abrothallus nephromatis 1 Abrothallus sp. Abrothallus secedens 4 Abrothallus macrosporus (A.F. 25602) 70/0.95 Abrothallus subhalei (J.E. VII-7) Abrothallus subhalei (J.E. IX-7) Abrothallus subhalei (J.E. 44-1) anamorph Abrothallus subhalei (J.E. IX-6) 100/1 73/0.99 100/1 Abrothallaceae Abrothallus acetabuli 1 Abrothallus granulatae Abrothallus sp. AB67 Abrothallus eriodermae 2 Abrothallus eriodermae 1 Abrothallus sp. S1357a Abrothallus canariensis Abrothallus secedens 3 Abrothallus secedens 1 Abrothallus secedens 6 Abrothallus secedens 5 Abrothallus secedens 2 Abrothallus doliiformis 87/0.99 72/0.99 Abrothallus etayoi Abrothallus welwitschii 3 Abrothallus welwitschii 7 100/1 Abrothallus welwitschii 2 Abrothallus welwitschii 1 98/1 Abrothallus welwitschii 6 93/1 Abrothallus welwitschii 5 Abrothallus welwitschii 4 Abrothallus aff. ertzii (J.E. 5-1) anamorph Abrothallus ertzii Abrothallus kamchatica Abrothallus boomii Abrothallus nephromatis 3 99/1 Abrothallus nephromatis 6 Abrothallus nephromatis 4 Abrothallus nephromatis 5 0.05 Figure 1. Phylogenetic relationship of Abrothallus (specimens on Lobariella highlighted) within Abrothallales (including Abrothallaceae, Aliquandostipitaceae, Hysteriaceae, and Patellariaceae) inferred with ML analyses of combined nrITS, nrLSU and mrSSU dataset for 58 OTUs. Thick branches represent bootstrap values ≥ 70% and/or Bayesian posterior probabilities ≥ 0.95. The Abrothallus species inhabiting Lobariella are bolded. The scale bar represents number of nucleotide substitutions per site. 289 A. Flakus et al.: Biodiversity assessment of ascomycetes inhabiting Lobariella lichens in Andean cloud forests 100/1 Opegrapha lithyrga Outgroup Opegrapha vulgata Arthonia ruana Arthonia atra 88/1 100/1 100/1 Arthonia subfuscicola 1 Arthonia subfuscicola 2 97/1 Arthonia radiata 2 Arthoniaceae Arthonia calcarea 74/95 100/1 Arthonia radiata 3 Arthonia radiata 1 100/1 Bryostigma muscigenum /0.96 Arthonia peltigerina 100/1 /0.97 Arthonia sp. Se5 Arthonia lobariellae (A.F. 25324) 100/1 100/1 Arthonia ‘lobariicola’ 1 Arthonia ‘lobariicola’ 2 100/1 100/1 Arthonia apatetica 1 Arthonia apatetica 2 /1 Arthonia sp. Se3 88/99 /1 Bryostigma clade Arthonia neglectula 89/1 Arthonia lapidicola Arthonia sp. Se2 96/1 Arthonia stereocaulina Arthonia biatoricola /1 Arthonia phaeophysciae 97/0.95 100/1 Arthonia molendoi Arthonia parietinaria 0.05 Figure 2. Phylogenetic relationships of Arthonia lobariellae within Arthoniales (including Arthoniaceae, Bryostigma clade, and Opegraphaceae) inferred with ML analyses of combined nrLSU, mrSSU and RPB2 dataset for 27 OTUs. Thick branches represent bootstrap values ≥ 70% and/or Bayesian posterior probabilities ≥ 0.95. The Arthonia species inhabiting Lobariella is bolded and highlighted. The scale bar represents number of nucleotide substitutions per site. the clade represented by specimens in the sexual state of this species (Fig. 4). A specimen morphologically very similar to members of Didymocyrtis (Phaeosphaeriaceae) is shown in our phylogeny to represent a new genus Pseudodidymocyrtis (P. lobariellae A.F. 25130), sister to the saprobic genus Kalmusia (highly supported relationship, Fig. 5). Our phylogenetic anaysis placed Lawreyella lobariella (= Unguiculariopsis lobariella) within Cordieritidaceae (encoelioid-clade according to Suija et al. 2015a) together with several lichenicolous Helotiales (Fig. 6). This species is well-supported within a clade that includes Diplolaeviopsis ranula, Macroskyttea parmotrematis, and Protounguicularia nephromatis. This is the first time that P. nephromatis is included in a phylogenetic analysis (based on newly generated sequences from Bolivia). Unguiculariopsis, represented in our tree by U. lettaui and U. thallophila, is distantly related to L. lobariella within Cordieritidaceae. Therefore, a new genus, Lawreyella is proposed here to accommodate U. lobariella. As previously demonstrated by Diederich et al. (2018), Sclerococcum lobariellum is classified within the family Dactylosporaceae, Sclerococcales. The neotropical populations represented by four Bolivian collections growing 290 Plant and Fungal Systematics 64(2): 283–344, 2019 79 93 66 93 Bionectriaceae 0.06 Rosasphaeria moravica Eucasphaeria rustici Outgroup Eucasphaeria capensis Niesslia exilis Thyronectria aquifolii 95 Thyronectria lamyi Thyronectria berolinensis Thyronectria sinopica Thyronectria coryli Globonectria cochensis (J.E. 33-20) anamorph 100 Globonectria cochensis (A.F. 26012) 100 Globonectria cochensis (J.E. IX-9) Nectriaceae Nectria aurantiaca 90 Nectria cinnabarina Nectria pseudotrichia 99 Roselliniella sp. Roselliniella atlantica Pseudocosmospora vilior 93 92 Dialonectria episphaeria Cosmospora coccinea Stachybotrys chartarum 85 Myrothecium inundatum Stachybotriaceae Peethambara sundara 83 Peethambara spirostriata Penicillifer diparietispora Neocosmospora haematococca 95 Neocosmospora vasinfecta Cyanonectria cyanostoma 96 Persiciospora africana Neonectria ramulariae 88 99 Neonectria coccinea 70 Neonectria punicea Neonectria ditissima 92 Calonectria cylindrospora 71 Cylindrocladiella microcylindrica Leuconectria clusiae Nectriaceae Chaetopsina fulva 86 Volutella buxi Sarcopodium macalpinei Acremonium lichenicola 1 91 Trichonectria rectipila 74 Trichonectria setadpressa (A.F. 29612-2) anamorph 100 Trichonectria setadpressa (A.F. 29617) Trichonectria setadpressa (A.F. 29612-1) Trichonectria setadpressa (J.E. 20-13) anamorph Trichonectria setadpressa (A.F. 28886) Bullanockia australis 99 Xanthonectria pseudopeziza Flammocladiella decora Flammocladiellaceae Ijuhya peristomialis 90 Ijuhya fournieri Kallichroma tethys 100 Kallichroma glabrum validation Ijuhya chilensis Stilbocrea walteri 100 Stilbocrea macrostoma 1 Bryocentria brongniartii 100 Bryocentria metzgeriae 71 Acremonium zeylanicum Geosmithia lavendula 95 Geosmithia putterillii Leucosphaerina arxii 99 72 Bulbithecium hyalosporum Mycoarachis inversa 97 Nigrosabulum globosum Ovicillium attenuatum Emericellopsis maritima 100 Emericellopsis terricola 99 Emericellopsis glabra Acremonium acutatum 73 Acremonium alternatum Acremonium sclerotigenum Acremonium fusidioides 88 Acremonium hennebertii Stephanonectria keithii Clonostachys pityrodes 69 Clonostachys setosa Clonostachys rosea 98 Clonostachys grammicospora 69 Bionectria ochroleuca 1 99 Bionectria ochroleuca 2 Clonostachys epichloe Nectriopsis violacea 100 Nectriopsis exigua Synnemellisia aurantia Lasionectria sylvana 83 Lasionectria mantuana Lasionectria lecanodes Gliomastix masseei 96 Gliomastix roseogrisea Paracylindrocarpon aloicola 94 Verrucostoma martiniciensis 90 Verrucostoma freycinetiae Selinia pulchra Roumegueriella rufula 78 Geonectria subalpina Heleococcum japonicum 94 Heleococcum aurantiacum 100 Heleococcum japonense 98 Hydropisphaera suffulta 96 Hydropisphaera peziza Lasionectriella rubioi 98 Ochronectria calami Protocreopsis korfii 81 Protocreopsis pertusa Pronectria robergei Figure 3. Phylogenetic relationships of Globonectria and Trichonectria within Hypocreales (including Bionectriaceae, Flammocladiaceae, Nectriaceae, and Stachybotriaceae) inferred with ML analyses of combined nrLSU, RPB1, RPB2 and TEF1 dataset for 106 OTUs. Thick branches represent bootstrap values ≥ 70%. The Golbonectria and Trichonectria species inhabiting Lobariella are bolded and highlighted. The scale bar represents number of nucleotide substitutions per site. 291 A. Flakus et al.: Biodiversity assessment of ascomycetes inhabiting Lobariella lichens in Andean cloud forests 100/1 100/1 99/1 Hypocrea lactea Hypocrea pulvinata Trichoderma aggressivum 100/1 Trichoderma amazonicum Hypocrea sulphurea Hypocrea atroviridis 100/1 Hypocrea rufa 96/1 80/1 100/1 83/1 Hypomyces polyporinus Hypomyces aurantius Hypocreaceae s.lat. Cladobotryum asterophorum Lichenobarya usneae Ophiocordyceps prolifica 100/1 Ophiocordicipitaceae 93/1 Ophiocordyceps cuboidea Ophiocordyceps ryogamiensis Aschersonia calendulina /1 Moelleriella oxystoma 70/0.97 71/1 Neobarya sp. Neobarya parasitica 71/ Claviceps fusiformis 99/1 Claviceps paspali Simplicillium lamellicola 100/1 Simplicillium lanosoniveum 1 100/1 70/1 Simplicillium lanosoniveum 2 Neobaryopsis andensis (J.E. 20-11) 100/1 Neobaryopsis andensis (A.F. 25967-2) anamorph 100/ Neobaryopsis andensis (A.F. 25967-1) Torrubiella wallacei Lecanicillium aranearum 84/1 Engyodontium aranearum 84/1 Ascopolyporus polychrous 100/1 Ascopolyporus villosus /1 Gibellula longispora 96/1 Gibellula pulchra 89/1 Torrubiella ratticaudata 71/0.98 Akanthomyces novoguineensis 93/1 Akanthomyces cinereus Cordyceps pseudomilitaris 100/1 Cordyceps cardinalis Isaria farinosa 1 99/1 Isaria farinosa 2 92/1 Lecanicillium lecanii 99/1 Cordyceps coccidioperitheciata 1 99/1 Akanthomyces aculeatus 96/1 Beauveria caledonica 100/1 Beauveria bassiana 99/1 Beauveria brongniartii Cordyceps bifusispora 1 100/1 Isaria farinosa 3 79/0.97 Cordyceps kyusyuensis 100/1 Cordyceps militaris Clavicipitaceae 100/1 Outgroup Cordycipitaceae 0.03 Figure 4. Phylogenetic placement of Neobaryopsis (highlighted) within Hypocreales (including Clavicipitaceae, Cordycipitaceae, Hypocreaceae and Ophiocordycipitaceae) inferred with ML analyses of combined nrSSU, nrLSU, RPB1, RPB2 and TEF1 dataset for 50 OTUs. Thick branches represent bootstrap values ≥ 70% and/or Bayesian posterior probabilities ≥ 0.95. The lichenicolous species are bolded. The scale bar represents number of nucleotide substitutions per site. on Lobariella pallida, together with the anamorphic fungus Monodictys cf. fuliginosa (sample A.F. 27774), form a well-supported clade (Fig. 7) sister to S. lobariellum s.str., the latter growing on Lobaria pulmonaria and represented in our tree by four samples collected in Europe (Austria, Canary Islands and France). Our results revealed that S. lobariellum s.lat. as delimited by Hafellner (1979) is an assemblage of at least two cryptic species (S. lobariellum and S. ricasoliae). An undescribed asexual state of a lichenicolous Xylaria was revealed, with strong phylogenetic support, to be a member of Xylaria, subgenus Pseudoxylaria sensu Hsieh et al. (2010) (Fig. 8). This lichenicolous species is sister to an endolichenic Xylaria species (FL0491) isolated in pure culture from Cladonia didyma in Florida (U’Ren et al. 2016). Taxonomy of Lobariella-inhabiting species excluding the Spirographa complex Abrothallus aff. ertzii Suija & Pérez-Ortega Note. This anamorph is characterized by having 1-septate, truncate, brown, verruculose conidia, (12.5–)14–18(–19) × 8.5–11 µm, produced in large, sessile conidiomata, 292 Plant and Fungal Systematics 64(2): 283–344, 2019 0.2–0.3 mm diam., with green and purple pigments (K+ bright-green). It represents very likely an undescribed species, that seems to be phylogenetically related (Fig. 1) to A. ertzii s.str. (but not conspecific) and unrelated to the sexual states of A. subhalei and A. macrosporus known from Lobariella (Fig. 1). A similar conidial state considered as a possible anamorph of A. macrosporus was described and illustrated by Etayo (2017). Abrothallus ertzii was described based on telomorphic specimens from Canada (Suija et. al. 2015b). This species inhabits Lobaria pulmonaria and is characterized by having 1-septate ascospores [9–(10.3)–11.5 × 3–(3.6)–4.5 µm according to Suija et al. 2015b], that easily break into part-spores. Its asexual state is unknown, but the species was reported by the authors as growing together with Phoma lobariae, a common coleomycetous fungus inhabiting Lobaria pulmonaria. Later, Diederich et al. (2018) assumed that P. lobariae is an anamorphic state of Abrothallus. Potentially, A. ertzii and A. lobariae may represent sexual and asexual states of a single Lentithecium fluviatile Katumotoa bambusicola Lentithecium aquaticum 90/1 90/1 Massarina eburnea Corynespora leucadendri 100/1 100/1 100/1 Stagonospora pseudocaricis Stagonospora paludosa 100/1 81/0.99 84/0.99 90/1 Outgroup Neottiosporina paspali Munkovalsaria donacina Montagnula sp. Munkovalsaria appendiculata Montagnula aloes Montagnula opulenta Didymocrea sadasivanii Phaeodothis winteri Neokalmusia brevispora 2 100/1 Neokalmusia brevispora 1 /0.96 Neokalmusia scabrispora 1 96/1 Neokalmusia scabrispora 2 100/1 Deniquelata barringtoniae 2 Deniquelata barringtoniae 1 Tremateia halophila /0.99 61/0.91 Bimuria novaezelandiae 100/1 99/1 Letendraea helminthicola Letendraea eurotioides Letendraea padouk Letendraea cordylinicola 2 Letendraea cordylinicola 1 Alloconiothyrium aptrootii 1 Alloconiothyrium aptrootii 2 Pseudodidymocyrtis lobariellae (A.F. 25130) 84/1 Kalmusia ebuli Kalmusia variisporum 82/0.95 Kalmusia longisporum 2 97/ Kalmusia longisporum 1 Paraconiothyrium archidendri Paraconiothyrium fuckelii 5 95/1 Paraconiothyrium fuckelii 6 Paraconiothyrium fuckelii 4 77/0.99 Paraconiothyrium fuckelii 3 79/1 98/1 Paraconiothyrium fuckelii 1 Paraconiothyrium fuckelii 2 Paraconiothyrium cyclothyrioides 100/1 Paraconiothyrium estuarinum Paraphaeosphaeria viridescens /1 Paraphaeosphaeria arecacearum Karstenula rhodostoma 84/0.98 Paraphaeosphaeria minitans 85/0.98 Paraphaeosphaeria angularis 99/1 Paraphaeosphaeria michotii 2 100/1 Paraphaeosphaeria michotii 1 Paraphaeosphaeria michotii 3 Paraconiothyrium africanum 92/1 Paraconiothyrium hawaiiense Paraconiothyrium fungicola 73/1 Paraconiothyrium magnolia Didymosphaeria variabile 99/1 Didymosphaeria rubiulmifolii 1 93/1 Didymosphaeria rubiulmifolii 3 Didymosphaeria rubiulmifolii 2 95/1 100/1 Didymosphaeria sp. 5 Didymosphaeria sp. 4 96/1 Didymosphaeria sp. 3 Didymosphaeria sp. 1 100/1 Didymosphaeria sp. 2 100/1 /0.98 95/1 /0.98 Didymosphaeriaceae /0.95 0.05 Figure 5. Phylogenetic placement of Pseudodidymocyrtis (shown in bold and highlighted) within Pleosporales (including Didymosphaeriaceae, Lentitheciaceae, and Massarinaceae) inferred with ML analyses of combined nrSSU, nrITS and nrLSU dataset for 65 OTUs. Thick branches represent bootstrap values ≥ 70% and/or Bayesian posterior probabilities ≥ 0.95. The scale bar represents number of nucleotide substitutions per site. 293 A. Flakus et al.: Biodiversity assessment of ascomycetes inhabiting Lobariella lichens in Andean cloud forests Chlorociboria glauca Cenangium ferruginosum Outgroup Encoelia furfuracea 1 Encoelia furfuracea 2 Llimoniella terricola Llimoniella gregorellae 1 100/1 Llimoniella gregorellae 2 99/1 83/1 100/1 100/1 Unguiculariopsis thallophila 1 96/1 Unguiculariopsis thallophila 2 100/1 99/1 100/1 Unguiculariopsis lettaui 3 Unguiculariopsis lettaui 1 Unguiculariopsis lettaui 2 Skyttea gregaria 100/1 Skyttea cismonicae 99/1 Skyttea radiatilis 1 Skyttea radiatilis 2 Skyttea pyrenulae 96/1 Skyttea nitschkei Skyttea lecanorae 1 100/1 89/0.96 Skyttea lecanorae 2 Ionomidotis fulvotingens 1 Ionomidotis fulvotingens 2 Rhymbocarpus fuscoatrae Ionomidotis fulvotingens 3 Ionomidotis fulvotingens Llimoniella sp. Encoelia heteromera 1 Encoelia heteromera 2 Ionomidotis olivascens 99/0.94 Ameghiniella australis Ionomidotis frondosa 2 99/ Cordierites frondosa Ionomidotis frondosa 1 95/1 79/0.98 100/1 76/0.98 100/1 /1 99/1 /0.98 100/1 100/1 70/1 87/1 100/1 /0.99 100/1 95/1 94/1 100/1 99/1 95/ Cordieritidaceae /1 Encoelia fimbriata Ionomidotis irregularis 1/100 Diplocarpa bloxamii Diplocarpa curreyana Cordierites guianensis Thamnogalla crombiei 1 Thamnogalla crombiei 2 97/0.99 Thamnogalla crombiei 3 Diplolaeviopsis ranula 1 Diplolaeviopsis ranula 2 Macroskyttea parmotrematis Protounguicularia nephromatis 1 100/1 Protounguicularia nephromatis 2 Lawreyella lobariella (A.F. 25239) Lawreyella lobariella (J.E. 41-3) Lawreyella lobariella (J.E. 18-5) Lawreyella lobariella (A.F. 25157) Lawreyella lobariella (A.F. 28889) 0.02 Figure 6. Phylogenetic relationships of Lawreyella (shown in bold and highlighted) within Helotiales (including Chlorociboriaceae, Cordieritidaceae, Helotiaceae, and Sclerotiniaceae) inferred with ML analyses of combined nr SSU, nr5.8 and nrLSU dataset for 50 OTUs. Thick branches represent bootstrap values ≥ 70% and/or Bayesian posterior probabilities ≥ 0.95. The scale bar represents number of nucleotide substitutions per site. species, however, this connection was not confirmed using molecular tools (as no sequences are available recently). Abrothallus lobariae is very different from our material as it develops aseptate, hyaline, smoothwalled conidia of a smaller size (3–4 × 2.5–3 µm) (Etayo & Diederich 1996b). 68°45′09″W, 1900 m, J.E. 5-1 (LPB, hb. Etayo). ECUADOR. Prov. Imbabura. Otavalo, Reserva bosque nublado INTAG, La delicia, bosque nublado con Gunnera y helechos arborescentes, sobre L. subexornata, corticícola, 2700 m, J.E. 25627 y Z. Palice (QCA, hb. Etayo). Ecology and distribution. Known so far from epiphytic Lobariella auriculata and L. exornata in Bolivia and Ecuador (Etayo 2017). Notes. This species was described by Etayo (2010b) Specimens examined. BOLIVIA. Dept. La Paz. Prov. Muñecas: Área Natural de Manejo Integrado Nacional Apolobamba, above Camata, close to Charazani-Paujeyuyo road, open area with schrubs, on Lobariella auriculata, 15°14′35″S, Abrothallus macrosporus Etayo & R. Sant. from Lobariella crenulata specimens collected in Colombia and Peru. It is characterized by having large, epruinose ascomata and 3-septate ascospores of 18.5–24 × 7–9 µm. The Bolivian samples fit the original description, but some specimens have slightly larger ascospores, 19–27 × 7–10 µm. 294 Plant and Fungal Systematics 64(2): 283–344, 2019 Ecology and distribution. Known from Bolivia, Colom- bia and Peru (Etayo 2010b), and Ecuador (Etayo 2017) from epiphytic Lobariella crenulata and L. pallida. Specimens examined. BOLIVIA. Dept. Cochabamba. Prov. Carrasco: Parque Nacional Carrasco, Meruvia close to Monte Punku, 17°35′06″S, 65°14′54″W, 3283 m, Podocarpus-Polylepis forest, on corticolous Lobariella sp., M.K. 15043b; on L. pallida, A.F. 25602 (KRAM, LPB), on L. pallida, A.F 25592; between Meruvia and Monte Punku, 17°34′43″S, 65°15′25″W, 3082 m, Podocarpus forest, corticolous, on L. pallida, A.F. 25615 (KRAM, LPB); Prov. Chapare: Parque Nacional Carrasco, Incachaca, 17°14′59″S, 65°49′36″W, 2560 m, Yungas cloud forest, corticolous, on L. pallida, A.F. 24708, on Lobariella sp., A.F. 24705 (KRAM, LPB), on L. cf. pallida, J.E. 29501 (LPB, hb. Etayo); Dept. La Paz. Prov. Franz Tamayo: Área Natural de Manejo Integrado Nacional Apolobamba, near Rio Pelechuco, below Pelechuco close to new road to Apolo, Fusichalara minuta 100/1 100/1 Rhopalophora clavispora 2 Outgroup Rhopalophora clavispora 1 Rhopalophora clavispora 3 Sclerococcum glaucomarioides Sclerococcum sp. Sclerococcum deminuta Sclerococcum ahtii 1 100/ Sclerococcum ahtii 2 Sclerococcum mangrovei Sclerococcum haliotrepha 1 100/1 100/1 Sclerococcum haliotrepha 2 Sclerococcum vrijmoediae Sclerococcum fusiformis 1 100/1 Sclerococcum fusiformis 2 Sclerococcum sp. AHE-2018a 81/1 86/0.96 100/1 Sclerococcum stygium 3 Sclerococcum stygium 1 Sclerococcum stygium 2 Sclerococcum ahtii 3 Sclerococcum ahtii 4 Sclerococcum lobariellum 1 Lobaria pulmonaria Canary Islands 100/0.98 Sclerococcum lobariellum 4 Lobaria pulmonaria France Sclerococcum lobariellum 2 Lobaria pulmonaria Austria 69/0.95 Sclerococcum lobariellum 3 Lobaria pulmonaria France Monodictys cf. fuliginosa (A.F. 27774) Ricasolia patinifera Bolivia (?contamination) 100/1 Sclerococcum Sclerococcum parasiticum 3 87/0.98 Sclerococcum ricasoliae (A.F. 29132) Lobariella pallida Bolivia Sclerococcum ricasoliae (A.F. 25611) Lobariella pallida Bolivia 100/1 94/0.96 Sclerococcum ricasoliae (A.F. 25967) Lobariella pallida Bolivia Sclerococcum ricasoliae (A.F. Fla6b) Lobariella pallida Bolivia Sclerococcum parasiticum 9 Sclerococcum parasiticum 5 Sclerococcum parasiticum 6 100/0.99 Sclerococcum parasiticum 7 Sclerococcum parasiticum 8 Sclerococcum parasiticum 1 Sclerococcum parasiticum 4 Sclerococcum parasiticum 2 100/1 Sclerococcum sphaerale 2 Sclerococcum sp. A1153 Sclerococcum sp. A1016 Sclerococcum sphaerale 1 Sclerococcum sphaerale 3 0.04 Figure 7. Phylogenetic relationships of Sclerococcum ricasoliae and Monodictys cf. fuliginosa (shown in bold and highlighted) within Sclerococcales (including Dactylosporaceae) inferred with BI analyses of combined nrITS, nrLSU and mrSSU dataset for 44 OTUs. Thick branches represent bootstrap values ≥ 70% and/or Bayesian posterior probabilities ≥ 0.95. The scale bar represents number of nucleotide substitutions per site. 295 A. Flakus et al.: Biodiversity assessment of ascomycetes inhabiting Lobariella lichens in Andean cloud forests Poronia pileiformi 100/1 Podosordaria mexicana 100/1 Outgroup Podosordaria muli Xylaria fimbriata Xylaria lichenicola (A.F. 26802) 100/1 Xylaria sp. FL0491 Xylaria brunneovinosa 100/1 Xylaria nigripes 100/1 Xylaria acuminatilongissima 97/1 94/1 Xylaria sp. 3 93/1 Xylaria escharoidea 100/1 Xylaria sp. 2 78/1 Pseudoxylaria Xylaria cirrata 98/1 Xylaria intraflava Xylaria atrodivaricata 100/1 Xylaria griseosepiacea Xylaria ochraceostroma 100/1 Xylaria sp. 5 Xylaria sp. 1 /0.97 Xylaria sp. 4 0.04 Figure 8. Phylogenetic relationships of Xylaria lichenicola within Xylariaceae [including Pseudoxylaria ‘TE’ clade (according to U’Ren et al. 2016), and also Poronia and Podosordaria] inferred with ML analyses of combined nrITS, RPB2 and beta-tub dataset for 20 OTUs. Thick branches represent bootstrap values ≥ 70% and/or Bayesian posterior probabilities ≥ 0.95. The lichenicolous species is bolded and highlighted. The scale bar represents number of nucleotide substitutions per site. 14°47′28″S, 69°01′32″W, 2860 m, open area with scattered trees, on corticolous L. pallida, M.K. 14824 (LPB); Prov. Nor Yungas: km 62 on the road Coroico–La Paz, 16°14′30″S, 67°49′58″W, 2848 m, Yungas secondary cloud forest, on L. pallida, J.E. 27650 (LPB); near Nogalani village, on the road Coroico-La Paz (casa azul de Alejo),16°12′57″S, 67°49′15″W, 2168 m, Yungas secondary cloud forest, on L. pallida, J.E. 27960, 27980 (LPB, hb. Etayo). Prov. Bautista Saavedra: km 202 on the road from Apolo to Charazani villages, 20 km from Charazani, 15°12′35″S, 68°51′30″W, 2259 m, transition Yungas montane forest-cloud forest, on apothecia of L. pallida, J.E. 27420 (LPB, hb. Etayo). Abrothallus subhalei Etayo, Flakus & Kukwa, sp. nov. (Fig. 9) MycoBank MB 833328 Diagnosis: Differs from A. halei in having smaller ascospores, 9–13 × 3–5 μm, which remain entire in ascus, yellowish green pruinose to almost black acomata, 0.22–0.45 mm diam., immersed black conidiomata, 100–160 µm diam., and hyaline, bacilliform to ellipsoid conidia, 2.5–7 × 1–2.5 μm, borne on large conidiogenous cells, 10–15 × 1.5–2.5 µm, and by the host selection (Lobariella). Type: Dept. Tarija, Prov. Burnet O’Connor, Sandiego Sur, campamento de los bomberos, old road between Tarija and Entrerios, 21°28′10″S, 64°12′37″W, 1912 m, disturbed Boliviano-Tucumano forest, on Lobariella crenulata, 30 July 2015, Javier Etayo IX-6 (LPB – holotype!). Description. Mycelium immersed, K/I–. Ascomata apothecioid, superficial on the thallus of the host, plane then convex to subsphaerical, covered by a yellowish green pruina and with age devoid of pruina and then almost black, 0.22–0.45 mm diam., constricted at the base, sessile. Epithecium brownish, covered by small yellow crystals and brown pigments dissolving in K, ~ 5 µm tall. Hymenium 60–80 µm tall, hyaline or with greenish and purple pigments in the upper part, K+ aeruginose, N± violet, hyaline in the lower part. Interascal filaments 1–1.5 µm 296 wide, dichotomously branched but strongly anastomosing in the upper part, the tips slightly widened, up to 2 µm wide. Subhymenium hyaline, indistinct, 15–25 µm tall. Hypothecium hyaline to pale brown, ~ 60–70 µm tall, of isodiametric to enlarged cells, 3–13 × 2–6 µm. Exciple evident but disappearing in older ascomata, 20–30 µm wide, composed of radially arranged hyphae in the upper part, and of isodiametric cells below. Asci bitunicate, clavate, with an apical aparatus when young, 40–63 × 7–10 µm, 8-spored. Ascospores brown, (1–)3-septate, 9–(x = 11 s = 1)–13 × 3–(x = 4 s = 0.5)–5 μm, l/b ratio 2.2– (x = 2.8 s = 0.3)–4 (n = 80), asymmetrical, constricted at the middle septum, usually not breaking into part-spores, verruculose. Anamorph pycnidial. Conidiomata black, Vouauxiomyces-like, immersed to slightly erumpent, 100– 160 µm diam., usually with a white mass of conidia at the top. Pycnidial wall dark brown, 10–13 µm wide, of isodiametric cells, 2–6 µm diam. Conidiogenous cells emerging from the inner part of the wall, long, phialidic, 10–15 × 1.5–2.5 µm, sometimes with 1(–2) pseudoseptata. Conidia bacilliform to narrowly ellipsoidal, hyaline, with both ends obtuse, 2.5–(x = 4.6 s = 1.1)–7 × 1–(x = 1.8 s = 0.3)–2.5 μm, l/b ratio 1.2–(x = 2.7 s = 1)–6 (n = 74). Etymology. Epithet refers to the morphologically similar Abrothallus halei. Ecology and distribution. Grows on epiphytic Lobariella auriculata, L. crenulata and L. pallida in Bolivia. Notes. Abrothallus subhalei is characterized by having small, (1–)3-septate ascospores, which remain unbroken in the ascus, and medium-sized apothecia that are usually yellow pruinose. The asexual state is characterized by having immersed conidiomata producing bacillar to narrowly ellipsoidal (2.5–6 × 1.5–2 µm) conidia, borne on large conidiogenous cells. The most similar taxon, A. halei was described from Lobaria pulmonaria and Ricasolia quercizans collected in Norway and the USA (Suija et al. 2011, 2015b). It is characterized by having ascospores breaking into two part-spores within the ascus when mature, 9–(10.7)–14 × 3.0–(4.0)–5.0 µm (according to Suija et al. 2011), and ascomata of 200–500 µm diam. (Suija et al. 2011). The asexual state of that species is unknown. Another species known only from its anamorphic state is A. lobariae, but conidia in this species have a different shape and size (3–4 × 2.5–3 µm in Etayo & Diederich 1996b). Specimens examined (sexual state). BOLIVIA. Dept. Cochabamba. Prov. Carrasco: Parque Nacional Carrasco, Koricaza, 17°33′21″S, 65°16′29″W, 2950 m, Páramo Yungueño, on trees, on Lobariella sp., J.E. 29323 (LPB, hb. Etayo); between Meruvia and Monte Punku, 17°34′43″S, 65°15′25″W, 3082 m, Podocarpus forest, corticolous on L. crenulata, A.F. 25617 (KRAM, LPB); Meruvia close to Monte Punku, 17°35′06″S, 65°14′54″W, 3283 m, Podocarpus-Polylepis forest, corticolous, on L. crenulata, A.F. 25587, on Lobariella sp., A.F. 25562 (KRAM, LPB); Wayra Mayu close to Monte Punku, 17°33′30″S, 65°16′08″W, 2750 m, lower montane Yungas cloud forest, corticolous, on L. auriculata, A.F. 25847 (KRAM, LPB); Dept. La Paz. Prov. Franz Tamayo: Parque Nacional y Área Natural de Manejo Integrado Madidi: Pukara between Keara and Keara Bajo, Plant and Fungal Systematics 64(2): 283–344, 2019 14°42′09″S, 69°05′17″W, 3420 m, open area with shrubs, Ceja de Monte Inferior (Altimontano), on corticolous L. reticulata, M.K. 14934 (LPB), corticolous, on L. crenulata, A.F. 25337 (KRAM, LPB); near Keara Bajo, 14°41′59″S, 69°04′34″W, 3290 m, open area with shrubs and scattered trees, corticolous, on L. crenulata, A.F. 25250 (KRAM, LPB); Prov. Larecaja: Jocollone village and 1 km further, Paramo Yungeño vegetation, open anthropogenic area, much Berberis, NE oriented slope, on Lobariella sp., 15°37′35″S, 68°41′21″W, 3545 m, 14 May 2011, J.E. 27212 (LPB, hb. Etayo); Prov. Muñecas: Área Natural de Manejo Integrado Nacional Apolobamba, above Camata, close to Charazani–Paujeyuyo road, 15°14′35″S, 68°45′09″W, 1900 m, open area with shrubs, corticolous, on L. crenulata, A.F. 24941 (KRAM, LPB); Prov. Nor Yungas: carretera Coroico-La Paz, bosque nublado yungas, sendero que parte de la Estación de servicio, on L. pallida, 3220–3250 m, S16°17′09″, W67°51′00″, J.E. 26712 (LPB, hb. Etayo); below Unduavi village, on the road La Paz – Chulumani, 16°18′27″S, 67°53′48″W, 3210 m, Yungas cloud forest, on L. pallida, A.F. 22187 (KRAM, LPB). Dept. Tarija. Prov. Burnet O’Connor: old road between Tarija and Entrerios, on Lobariella sp., 21°27′35″S, 64°13′28″W, 1917 m, Boliviano-Tucumano forest with Podocarpus, J.E. VII-7 (LPB, hb. Etayo). Specimens examined (asexual state). BOLIVIA. Dept. Cochabamba. Prov. Carrasco: Parque Nacional Carrasco, Koricaza, 17°33′21″S, 65°16′29″W, 2950 m, Páramo Yungueño, on trees, on Lobariella sp. J.E. 29323 (LPB, hb. Etayo). Prov. Tiraque: Parque Nacional Carrasco, old guard’s camp close to T7, open area with schrubs, on L. pallida, 17°18′23″S, 65°45′60″W, 3360 m, J.E. s.n. (44-1) (LPB, hb. Etayo). Dept. La Paz. Prov. Nor Yungas: carretera Coroico-La Paz, bosque nublado yungas, sendero que parte de la Estación de servicio, on L. pallida, 32203250 m, S16°17′09″, W67°51′00″, J.E. 26712 (LPB, hb. Etayo). ECUADOR. Dept. Otavalo. Prov. Imbabura: Lago Cuicocha, bosque arbustivo (2–3 m altura) con Puya hamata, taludes cerca del restaurante, on L. pallida, 17N 0795589, 0033416, 3100 m, J.E. 25554 (hb. Etayo). Arthonia lobariellae Etayo Notes. This recently decribed species (Etayo 2017) is characterized by having pale orange-brown to dark brown, large, irregular ascomata (flat when young and resembling galls of Tremella when well developed), 1-septate, hyaline ascospores, 6–11 × 3.5–5 µm and/or 1-septate conidia, 11–14 × 2.5–3.5 µm. In Bolivia its Bachmanniomyces-like anamorphic state seems to be relatively abundant. Bachmanniomyces santessonii (potential anamorph of Arthonia digitispora, fide Etayo 2002) described from Peru on Sticta has similar condiomata that differ in having smaller conidia 9–10.5 × 2.5–3 µm (Etayo 2010b). Ecology and distribution. Known from Bolivia, Colom- bia and Ecuador (Etayo 2017) from epiphytic Lobariella crenulata and L. pallida. Specimens examined. BOLIVIA. Dept. Cochabamba. Prov. Carrasco: Parque Nacional Carrasco, Meruvia close to Monte Punku, 17°35′06″S, 65°14′54″W, 3283 m, Podocarpus-Polylepis forest, corticolous, on Lobariella sp. growing on bark, M.K. 15036d (LPB); on L. crenulata, M.K. 15046a (LPB); on L. crenulata, A.F. 25558, 25559 (KRAM, LPB); between Meruvia and Monte Punku, 17°34′43″S, 65°15′25″W, 3082 m, Podocarpus forest, on corticolous L. crenulata, M.K. 15051b (LPB); near Río Batea Mayu close to Monte Punku, 17°31′33″S, 65°16′21″W, 2430 m, lower montane Yungas cloud forest, corticolous, on A. Flakus et al.: Biodiversity assessment of ascomycetes inhabiting Lobariella lichens in Andean cloud forests 297 Figure 9. Abrothallus subhalei (A–E, teleomorph on Lobariella crenulata, based on J.E. IX-6, holotype; F–H, anamorph on L. pallida, based on J.E. 44-1). A – pruinose apothecial ascomata on apothecial margin of the host; B – epruinose ascomata on apothecial disc of the host; C – section of ascomata in LPCB; D – asci in KOH; E – ascospores in water; F – pycnidial conidiomata immersed in apothecial hymenium of the host; G – section of conidiomata in LPCB; H – conidia in water (left) and LPCB (right). Scales: A–B = 500 µm; C = 50 µm; D, E, H = 10 µm; F = 250 µm; G = 25 µm. L. pallida, A.F. 25815 (KRAM, LPB); Wayra Mayu close to Monte Punku, 17°33′30″S, 65°16′08″W, 2750 m, lower montane Yungas cloud forest, corticolous, on L. pallida, A.F. 25858 (KRAM, LPB); on Lobariella sp., M.K. 15175b (LPB); Prov. Chapare: Parque Nacional Carrasco, Incachaca, 17°14′59″S, 65°49′36″W, 2560 m, Yungas cloud foreston, corticolous, L. pallida, A.F. 24715 (KRAM, LPB); Incachaca, 17°14′59″S, 65°49′36″W, 2560 m, Yungas cloud forest, on L. cf. pallida, J.E. 29499 (LPB, hb. Etayo); on L. pallida, J.E. 29500 (LPB, hb. Etayo). Prov. Tiraque: Parque Nacional Carrasco, Camino de los Nubes, Antenas Sillar-Villa Tunari old road, 17°12′32″S, 65°41′52″W, 3520 m, upper montane Youngas cloud forest, corticolous, on L. crenulata, A.F. 25986 (KRAM, LPB); Dept. La Paz. Franz Tamayo: Parque Nacional y Área Natural de Manejo Integrado Madidi, near Keara Bajo, 14°41′59″S, 69°04′34″W, 3290 m, open area with shrubs and scattered trees, corticolous, on L. pallida, A.F. 25217, 25246 (KRAM, LPB), on L. crenulata, A.F. 25245 (KRAM, LPB); on L. pallida, M.K. 14861b, 14868 (LPB, UGDA); below Keara Bajo, 14°41′47″S, 69°04′10″W, 3160 m, open area with shrubs and scattered trees, corticolous, on L. pallida, A.F. 25292, 25293, 25301 (KRAM, LPB); Pukara between Keara and Keara Bajo, 14°42′09″S, 69°05′17″W, 3420 m, open area with shrubs, corticolous, on L. pallida, A.F. 25323, 25324, 25325, M.K. 14918,14919,14920, 14923, 14929, 14932 (KRAM, LPB, UGDA); Área Natural de Manejo Integrado Nacional Apolobamba, below Pelechuco, 14°49′08″S, 69°03′50″W, 3560 m, open area with shrubs and Polylepis trees, corticolous, on L. pallida, A.F. 25459 (KRAM, LPB); Dept. La Paz. Prov. Murillo: Sainani, Valle del Zongo, 16°07′03″S, 68°04′42″W, 2170 m, open area with shrubs and scattered trees, corticolous, on L. pallida, A.F. 26277 (KRAM, LPB); Valle del Zongo, páramo yungueño, rocas sueltas entre pastos con arbustos, on Lobariella sp. , 3375 m, S16°10′15″, W68°08′02″, J.E. 26796, (LPB, hb. Etayo); Valle del Zongo, bosque yungas nublado, on L. pallida on bryophytes, 2900 m, 16°08′38″S, 68°06′59″W, J.E. 26811 (LPB, hb. Etayo). Prov. Nor Yungas: Desviación de La Paz a Coroico hacia Unchuavi, camino a Chulumani, bosque nublado; on L. pallida, 3210 m, S16°18′27″, W67°53′48″, J.E. 26915, 26936, (LPB, hb. Etayo). Dept. Santa Cruz. Prov. Manuel María Caballero: close to Siberia, 17°48′13″S, 64°40′45″W, 2550 m, in closed forest, on L. pallida on branches, J.E. 29450 (LPB, hb. Etayo). Atronectria lobariellae Etayo & Flakus, sp. nov. (Fig. 10) MycoBank MB 833329 Diagnosis: Differs from A. magellanica by smaller ascomata, 70–90 µm wide and 90–130 µm tall, the presence of oil guttules in the peridium, the absence of papillae, and its ecological preferences (growing on apothecial hymenia of Lobariella crenulata). Type: Bolivia: Dept. La Paz, Prov. Bautita Saavedra, 28 km from Charazani village, on the road Charazani–Apolo, 15°12′43″S, 68°47′25″W, 1650–1775 m, Yungas montane forest, open area with boulders or. SW, on L. crenulata, 18 May 2011, Javier Etayo 27343 (LPB – holotype!; hb. Etayo – isotype!). Description. Mycelium hyaline, immersed. Ascomata perithecioid dispersed, black, almost completely 298 Plant and Fungal Systematics 64(2): 283–344, 2019 Figure 10. Atronectria lobariellae (on Lobariella crenulata, based on A.F. 24939). A–B – perithecioid ascomata immersed in apothecial hymenium of the host; C – section of ascomata in water (left) and LPCB (right); D – asci in Congo Red (left) and LPCB (right); E – ascospores in water (left) and Congo Red (right). Scales: A = 500 µm; B = 250 µm; C = 25 µm; D–E = 10 µm. immersed in the hymenium of the host (only the apical part of the peridium is slightly above the hymenium surface), subsphaerical to widely pyriform, 70–90 µm wide and 90–130 µm tall, without papilla. Peridium 7–12 µm thick, hyaline, composed of several rows of thick-walled, isodiametric to elongated cells, 2–12 × 1.5–3 µm, thicker in the upper parth, up to 20–30 µm wide, with dark orange-brown to almost black color, K+ slightly purplish, N+ bright orange-brown, with yellowish orange oil guttules located in lower part of peridium, 4–7 µm diam. Hymenium I+ orangish, KI–, composed of simple to sparsely branched, septate paraphyses, 4–7 µm wide, strongly constricted near septa, and soon disappearing. Peryphyses thin, abundant around ostiolum, simple to septate, thinner at the apical part, 10–17 × 0.5–1.5 µm. Asci unitunicate, 8-spored, elongate clavate, obtuse (in water) to truncate (in K), slightly thickened apically (K/I–), with many small oil droplets (even in mature ascomata), 35–55 × 7–10 µm. Ascospores cylindrical, rarely ellipsoidal, straight, with a thin wall, hyaline, 1-septate, usually with two or more oil guttules per cell, not constricted at the septum, 6–(x = 9 s = 1.2)–11 × 2.5–(x = 2.8 s = 0.3)–3.5 μm, l/b ratio 2–(x = 3.3 s = 0.5)–4 (n = 76), without a perispore. Etymology. The epithet refers to the host genus. Ecology and distribution. This species is known from four localities in Bolivia where it grows in the apothecial disks of Lobariella crenulata. Notes. This hypocrealean fungus is a member of the previously monotypic genus Atronectria with A. magellanica known in southern South America from Nephroma antarcticum, Pseudocyphellaria coriifolia and P. hillii (Etayo & Sancho 2008). The new species, A. lobariellae, was found in the apothecial hymenia of Lobariella crenulata. Atronectria magellanica, which grows on the thallus of different hosts (not on the hymenium), clearly differs by having bigger ascomata (120–170 µm diam.), the absence of oil guttules in the peridium, the presence of prominent papillae, and ascospores containing refringent oil guttules (Etayo & Sancho 2008). Specimens examined. BOLIVIA. Dept. La Paz. Prov. Franz Tamayo: Área Natural de Manejo Integrado de Apolobamba, near Río Pelechuco, below Pelechuco close to new road to Apolo, 14°46′39″S, 69°00′35″W, 2550 m, on L. pallida, J.E. 13-3 (LPB, hb. Etayo). Dept. La Paz. Prov. Muñecas: Área Natural de Manejo Integrado Nacional Apolobamba, above Camata, close to Charazani-Paujeyuyo road, 15°14′35″S, 68°45′09″W, 1900 m, open area with shrubs, corticolous, on discs of L. crenulata, A.F. 24939 (KRAM, LPB). Prov. Nor Yungas: desviación de La Paz a Coroico hacia Unchuavi, camino a Chulumani, bosque nublado; 3210 m, 16°18′27″S, 67°53′48″W, on disk of L. crenulata, J.E. 26925 (LPB, hb. Etayo). Capronia epilobarina S. Y. Kondr. & D. J. Galloway Notes. The species was described by Kondratyuk and Galloway (1995b) from a species of Lobaria that has recently been shown to belong to Lobariella (Etayo 2017). Capronia epilobarina is characterized by having submuriform ascospores with (0–)3–5 transverse and 0–1 longitudinal septa, (20–)21.5–25.5(–29) × (4.5–)5.5–7 μm, and ascomata up to 250 μm diam. and covered by curved hairs, 45–54 × 3.5–4 μm (Kondratyuk & Galloway 1995b; Etayo 2017). It is probably a rare species as it was not re-collected during lichen explorations of Bolivia, Colombia and Ecuador. Ecology and distribution. Known only from the type collection in Ecuador on Lobariella sp. (Kondratyuk & Galloway 1995b; Etayo 2017). Capronia cf. solitaria Etayo Notes. This species was originally described from Heterodermia sp. in Ecuador, but also reported from A. Flakus et al.: Biodiversity assessment of ascomycetes inhabiting Lobariella lichens in Andean cloud forests Lobaria pulmonaria, Rinodina sp. and Sticta sp. (Etayo 2017). It is characterized by having small ascomata, 50–100 μm diam., and submuriform, fusiform ascospores with (0–3–)4–5 transverse and 0(–2) longitudinal septa, 13–16 × 4–6 μm, and aseptate, straight setae, 21–42 × 2.5–5 μm, developing close to the ostiole (Etayo 2017). Our Bolivian sample, growing on Lobariella pallida, differs from the original description in having 3-septate, ascospores, 15–16 × 4.5–5 μm, and most probably represents an undescribed species that deserves further studies. See also comments under C. solitaria in Etayo (2017). Ecology and distribution. The species has been reported from Ecuadro and Spain on Lobaria pulmonaria, Rinodina sp. and Sticta sp. (Etayo 2017). As lichenicolous on Lobariella (L. pallida, L. subexornata) it is known only from two localities in Bolivia and Ecuador (Etayo 2017). Specimens examined. BOLIVIA. Dept. La Paz. Prov. Nor Yungas: near Siniari colony, km 74 on the road Coroico-La Paz, 16°13′20″S, 67°50′37″W, 2090–2186 m, Yungas secondary cloud forest, on L. pallida, J.E. 27637 (LPB, hb. Etayo). Ceratosporium sp. Notes. Ceratosporium is an anamorphic state of the cos- mopolitan, saprobic genus Iodosphaeria, Xylariales (Samuels et al. 1987; Hsieh et al. 1997). Although we found in Bolivia a fungus morphologically similar to Ceratosporium growing on Lobariella pallida, we decided to postpone any taxonomic conclusions, as the material is sparse and the genus has never been reported from lichens. Our sample is characterized by having dark brown, smooth conidia with three arms, each one 130–147 × 16–19 µm, tapering towards the apex, with 13–14 distoseptate cells, and large, dark brown, 4–5 µm thick conidiophores. Ecology and distribution. Known from a single sample growing on epiphytic L. pallida in Bolivia. Specimens examined. BOLIVIA. Dept. La Paz. Prov. Murillo: Valle del Zongo, bosque Yungas nublado, 2900 m, 16°08′38″S, 68°06′59″W, on L. pallida on bryophytes, J.E. 26811 (LPB, hb. Etayo). Cladophialophora parmeliae (Etayo & Diederich) Diederich & Unter. Notes. This species was originally described as a member of Sclerococcum inhabiting Parmelia saxatilis (Etayo & Diederich 1996a) and recently transferred to Cladophialophora based on DNA sequences obtained from two strains growing on Hypotrachyna (Diederich et al. 2013). It is characterized by having 50–120 μm diam. sporodochia with a greyish conidial mass, and distinctly verrucose, greyish brown, ellipsoidal, (0–)1(–2)-septate, catenate conidia, 6–9 × 4–4.5 µm (Etayo & Diederich 1996a). Cladophialophora parmeliae is a typical generalist and was reported from a wide range of hosts. Further molecular studies are necessary to confirm its broad host preferences, or alternatively, the presence of multiple cryptic species. Because the Bolivian samples growing 299 on Lobariella spp. fit well with the original description, we decided to treat them as a single species. Ecology and distribution. The species is cosmopolitan and was reported from Hypotrachyna, Lobaria, Normandina, Pannaria, Parmelia, Punctelia and Sticta. In Bolivia it grows on epiphytic Lobariella crenulata, L. exornata, L. reticulata and L. subexornata. Specimens examined. BOLIVIA. Dept. La Paz. Prov. Murillo: Valle del Zongo, bosque nublado, near bridge, 2450 m, 16°07′41″S, 68°05′55″W, on Lobariella exornata on twigs, J.E. 26738 (LPB). Prov. Nor Yungas: carretera Coroico-La Paz, bosque nublado yungas, sendero que parte de la Estación de servicio, 3220–3250 m, 16°17′09″S, 67°51′00″W, J on L. cf. reticulata on twigs,.E. 27700 (LPB, hb. Etayo); desviación de La Paz a Coroico hacia Unduavi, camino a Chulumani, bosque nublado, 3210 m, 16°18′27″S, 67°53′48″W, on L. subexornata on twigs, J.E. 26933 (LPB, hb. Etayo). Dept. Santa Cruz. Prov. Manuel María Caballero: near Siberia, 17°49′38″S, 64°44′45″W, 3950 m, open Yungas cloud forest, on L. cf. crenulata, J.E. 29593 (LPB, hb. Etayo). Corticifraga microspora Etayo & Flakus, sp. nov. (Fig. 11) MycoBank MB 833330 Diagnosis: Differs from C. fuckelii by smaller, pyriform ascospores, 7–10 × 2.5–4 µm, and a different host selection (Lobariella pallida). Type: Bolivia: Dept. La Paz, Prov. Larecaja, Jocollone village and 1 km further, Paramo Yungeño vegetation, open anthropogenic area, with Berberis, NE oriented slope15°37′35″S, 68°41′21″W, 3545 m, 14 May 2011, on Lobariella pallida, Javier Etayo 27205 (LPB – holotype!; hb. Etayo – isotype!). Description. Mycelium hyaline. Apothecia breaking through the host cortex, single to slightly aggregated, not arranged concentrically, flat, not raised above the thallus level, rounded, angular or elongated, 150–280 µm diam., marginate. Margin thin, slightly elevated, incised, concolorous with the disc, 20–30 µm thick. Disc translucent, epruinose, yellowish to cream, finally brownish, flat. Epihymenium hyaline to pale brown, indistinct. Hymenium colorless, 30–50 µm tall, I–, KI–. Paraphyses straight, simple, 1–1.5 µm thick, not or rarely slightly capitate and with apices up to 2–3 µm wide. Hypothecium colorless, ~ 20–25 µm thick, K–, I–, of textura intricata, cells 1.5–2.5 µm wide. Exciple hyaline to yellowish brown, 30–80 µm thick, paraplectenchymatous, composed of isodiametric cells, 4–9 µm diam., K–, I–. Asci bitunicate, narrowly clavate, with markedly thickened apices, I–, KI–, 30–43 × 6–10 µm, 8–spored, endoascus K/I+ orange. Ascospores pyriform to widely ellisoidal, straight to slightly curved, 1-septate, not constricted at the septa, colorless, with a thin wall, with several small oil droplets inside, 7–(x = 8.3 s = 0.9)–10 × 2.5–(x = 3.4 s = 0.4)–4 μm, l/b ratio 1.8–(x = 2.5 s = 0.3)–3.2 (n = 46). Etymology. The epithet reflects the small size of the ascospores observed in this species. Ecology and distribution. Corticifraga micospora is known only from two localities at a high altitude in the Yungas forest where it grows on Lobariella pallida. 300 Plant and Fungal Systematics 64(2): 283–344, 2019 Figure 11. Corticifraga microspora (on Lobariella pallida, based on J.E. 27205, holotype). A – ascomata erumpent from the host thallus; B–C – section of ascomata in LPCB; D – hymenium in Congo Red; E – asci in K/I (left) and Congo Red (right); F – ascospores in water (left) and Congo Red (right). Scales: A = 250 µm, B–C = 50 µm; D–F = 10 µm. Notes. Corticifraga microspora has 1-septate ascospores similar to those of C. fuckelii, C. pseudocyphellariae and C. scrobiculatae. All those species can be separated by ascospore dimensions, which are (12–)13–17(–19) × (4–)4.5–6 µm, 12–15.5 × 3.5–4 µm, and (8.5–)10– 11.5(–14) × (4.5–)5–6(–7.5) µm, respectively (Hawksworth & Santesson 1990; Zhurbenko 2007). Additionally, they differ in their host preferences: C. fuckelii is a common species growing on Peltigera (Hawksworth & Santesson 1990; Zhurbenko 2007); while the two other species occur on Pseudocyphellaria freycinetii in Chile (Etayo & Sancho 2008) and on Lobarina scrobiculata in Alaska, respectively (Spribille et al. 2010). small size of the sample and the lack of DNA sequences withheld us from its formal description. Specimens examined. BOLIVIA Dept. La Paz. Prov. Nor Hawksworth (1979) from Lobaria pulmonaria in the British Isles. The Bolivian samples causes bleaching or necrosis on the host thallus, and conidiophores develop on the apothecial margin (Lobariella pallida) or on the top of isidia (L. exornata). Our material is characterized by having 6–7-septate conidiophores of a similar size to that in the protologue (120–140 × 5–7 μm; vs. 80–150 × 5–8 μm in E. hughesii), but develop a widened base (to 9 μm), and slightly smaller 2-septate conidia (20–25 × 9–13 μm; vs. 25–30(–40) × 11–13 μm in E. hughesii), with the medium cell slightly darker than the terminal cells. Further studies on a broader sampling are necessary to confirm whether populations of this fungus growing on Lobariella are conspecific with individuals inhabiting Lobaria pulmonaria. Yungas: desviación de La Paz a Coroico hacia Unchuavi, camino a Chulumani, bosque nublado; on L. pallida, 3210 m, 16°18′27″S, 67°53′48″W, J.E. 26946 (LPB, hb. Etayo). Ellisembia cf. lichenicola Heuchert & U. Braun Notes. Ellisembia currently comprises about 40 species that are mainly saprobic, growing on wood, plants and dead culms of grasses and bamboos (Wu & Zhuang 2005). However, E. asterinum (Shoemaker & Hambleton 2001) is fungicolous on Sphaeropsis and Macrophoma, and E. lichenicola is lichenicolous on Pertusaria and Physconia distorta (Heuchert & Braun 2006). Our specimen of Ellisembia inhabiting Lobariella in Bolivia fits very well within the genus description and is somewhat similar to E. lichenicola s.str. However, the Bolivian material differs in having shorter conidiophores [32–55 × 4–6 μm; vs. 20–60(–95) × 5–8 μm in E. lichenicola] and in conidia size [33–55 × 7–9 μm; vs. (19–)25–107 × 8–10 μm in E. lichenicola]. Although the range of conidial size included in the protologue is quite large, the observed differences suggest that the Bolivian material collected from Lobariella most probably represents a second, undescribed lichenicolous species within the genus. The Ecology and distribution. Known only from a single specimen growing on epiphytic Lobariella sp. in Bolivia. Specimens examined. BOLIVIA. Dept. La Paz. Prov. Larecaja: Jocollone village, Paramo Yungeño vegetation, open anthropogenic area with Berberis, NE oriented slope, on Lobariella sp., 15°37′35″S, 68°41′21″W, 3545 m, J.E. 27212 (LPB, hb. Etayo). Endophragmiella cf. hughesii D. Hawksw. Notes. Endophragmiell hughesii was described by Ecology and distribution. The species is known from Europe (from Lobaria pulmonaria) and Bolivia (from Lobariella exornata and L. pallida). Specimens examined. BOLIVIA. Dept. La Paz. Prov. Nor Yungas: near Siniari colony, km 74 on the road Coroico-La Paz, 16°13′20″S, 67°50′37″W, 2090–2186 m, Yungas secondary cloud forest, on L. pallida, J.E. 27645 (LPB, hb. Etayo); on L. exornata, J.E. 27647 (LPB). A. Flakus et al.: Biodiversity assessment of ascomycetes inhabiting Lobariella lichens in Andean cloud forests 301 Epithamnolia rugosopycnidiata Etayo & Flakus, sp. nov. (Fig. 12) from Ecuador also grows on twigs around remnants of crustose lichens. MycoBank MB 833331 Notes. The genus Epithamnolia was described by Zhurbenko (2012) for E. karatyginii growing on Thamnolia vermicularis. Recently, Suija et al. (2017) revealed the phylogenetic placement of Epithamnolia in Leotiomycetes and suggested that lichenicolous species of Hainesia also belong to this genus. Epithamnolia rugosopycnidiata is very similar to E. rangiferinae growing on Cladonia rangiferina by having similar simple and very short conidia. Epithamnolia rangiferinae can be distinguished by its larger conidia (4.5–5 × 1.4–1.5 µm) and cupulate, pale to dark brown conidiomata (K–) (Suija et al. 2017). This is the second known species of the genus with short, aseptate conidia. Diagnosis: Differs from E. rangiferina by pyriform, grey-brown to blackish conidiomata (K+ violet), 150–350 µm tall, 140– 250 µm wide, and smaller, bacilliform, conidia, 2–3 × 1–1.5 μm. Type: Bolivia, Dept. Santa Cruz, Provincia Caballero, near Siberia, 17°49′38″S, 64°44′45″W, 3950 m, on open yungas cloud forest, on unhealthy Lobariella sp. on twigs, 16 August 2012, Javier Etayo 29601 (LPB – holotype!; hb. Etayo – isotype!). Description. Mycelium indistinct. Conidiomata super- ficial, pyriform, grey brown to blackish, glabrous, with rugose surface, apiculate, 150–350 µm tall, 140–250 µm wide, dispersed to loosely aggregated in small groups. Peridium wall brown to greenish brown, K+ violet, 15–20 µm thick, of isodiametric to elongate cells, 2–10 × 1–4 µm, with dark and irregularly thickened walls. Conidiophores hyaline, arising from the base of the conidioma and sometimes acting as conidiogenous cells, simple to composed of 2–3 cells, straight or curved, 5–9 × 1.5–2 µm. Conidiogenous cells hyaline, enteroblastic, phialidic, determinate, integrated, acropleurogenous, habitually growing verticillately from a conidiophore, smooth-walled, lageniform, 7–12(–20) × 1–2 µm, with a thin apex, ~ 1 µm. Conidia hyaline, bacilliform, straight, with a base more or less truncate and a rounded apex, aseptate, smooth-walled, 2–(x = 2.5 s = 0.4)–3 × 1–(x = 1.2 s = 0.3)–1.5 μm, l/b ratio 1.4–(x = 2.1 s = 0.6)–3 (n = 32). Etymology. The epithet highlights the strongly corrugated pycnidial wall of the conidiomata in dry conditions. Ecology and distribution. Similar to several other species in the genus (Suija et al. 2017), Epithamnolia rugosopycnidiata does not seem to be a host-specific fungus. It was observed on Lobariella pallida and Lopezaria versicolor in Bolivia and Ecuador. The sample Specimens examined. BOLIVIA. Dept. Santa Cruz. Prov. Manuel María Caballero: near Siberia, open Yungas cloud forest, on Lopezaria versicolor, 17°49′38″S, 64°44′45″W, 3950 m, J.E. 29608 (LPB, hb. Etayo). ECUADOR. Dep. Nariño. Prov. Pasto: corregimiento El Encano, vereda Sta. Isabel, S lago La Cocha (guamues), páramo azonal con Blechnum, Weimannia, Esperomeles, etc., 0.59N 77.09W, 2700 m, on Lobariella pallida, J.E. 16596 (hb. Etayo). Globonectria cochensis Etayo (Fig. 13) Description of the asexual state. Conidiomata sporo- dochia-like agglomerated conidiophores, developing on an arachnoid subiculum on the upper side of the host thallus, white, fused in groups resembling droplets. Conidiogenous cells hyaline, aseptate, straight to slightly curved, wider at the base and tapering towards the apex, 15–30 × 1–2 μm. Conidia hyaline, aseptate, subglobose to broadly ellipsoidal, not truncate, 2–(x = 3.3 s = 0.8)–5 × 1.5–(x = 1.9 s = 0.3)–2.5 μm, l/b ratio 1–(x = 1.8 s = 0.5)–2.7 (n = 57). Notes. Globonectria cochensis was described from spec- imens collected in Colombia, and is characterized by Figure 12. Epithamnolia rugosopycnidiata (on Lobariella sp., based on J.E. 29601, holotype). A – section of pycnidial conidiomata in LPCB; B – conidiomata on the host thallus; C – section of conidiomata wall in LPCB; D – conidiogenous cells in water; E – conidia in water. Scales: A = 50 µm; B = 250 µm; C–D = 10 µm. 302 Plant and Fungal Systematics 64(2): 283–344, 2019 Figure 13. Globonectria cochensis anamorph (A, E, on Lobariella crenulata, based on A.F. 22184; B–D on Lobariella sp., based on J.E. 33-20). A–B – sporodochia-like conidiomata growing on the host thallus; C – conidia mixed with conidiogenous cells in water; D–E – conidia in LPCB. Scales: A–B = 250 µm; C–E = 10 µm. having a colorless peridium bordered by an external portion of orange color, cylindrical, 8-spored asci with an apical thickening, and subsphaerical ascospores (Etayo 2002). Later studies showed that this taxon produces 4-spored asci with ascospores that are first 1-septate, but very soon break into two subspherical half-spores (Etayo 2017). It is very similar to species of Pronectria, but our phylogenetic analysis confirmed its identity as a distinct genus (Fig 3). We have found an Acremonium-like anamorph growing intermixed with the sexual state of G. cochensis (J.E. 33-20) which, according to our phylogenetic anlyses (Fig. 3), may represent the asexual state of the species. Ecology and distribution. This species is known from Bolivia and Colombia (Etayo 2002) where it grows on epiphytic Lobariella crenulata and L. pallida. Specimens examined (sexual state). BOLIVIA. Dept. Cochabamba. Prov. Chapare: Parque Nacional Carrasco, Incachaca, 17°14′59″S, 65°49′36″W, 2560 m, Yungas cloud forest, on L. cf. pallida on trees, J.E. 29527 (LPB, hb. Etayo); near Lago Corani, 17°13′44″S, 65°53′39″W, 3260 m, open area with shrubs, on L. crenulata , J.E. IX-9 (LPB, hb. Etayo). Prov. Tiraque: Parque Nacional Carrasco, Camino de los Nubes, Antenas Sillar–Villa Tunari old road, 17°12′29″S, 65°41′24″W, 3591 m, open area with shrubs, corticolous, on L. crenulata, A.F. 26012 (KRAM, LPB). Dept. La Paz. Prov. Nor Yungas: below Unduavi village, on the road La Paz – Chulumani, Yungas cloud forest, 3210 m, 16°18′27″S, 67°53′48″W, on L. crenulata, J.E. 26942 (LPB, hb. Etayo), on L. crenulata, A.F. 22184, 22194 (KRAM, LPB); carretera La Paz a Pando, desviación hacia Hunduavi, orilla río Hunduabi, bosque nublado secundario, valle orientado al E, 3135 m, 16°18′50″S, 067°54′35″W, L. pallida, J.E. 26966 (LPB); near Nogalani village, on the road Coroico–La Paz (casa azul de Alejo), 16°12′57″S, 67°49′15″W, 2168 m, Yungas secondary cloud forest, on L. crenulata and L. pallida, J.E. 27969 (LPB, hb. Etayo). Specimens with Acremonium-like anamorph examined. BOLIVIA. Dept. Cochabamba. Prov. Carrasco: Parque Nacional Carrasco, near Río Batea Mayu close to Monte Punku, lower montane Yungas cloud forest, 17°31′33″S, 65°16′21″W, 2430 m, on Lobariella sp., J.E. 33-13, 33-20 (LPB, hb. Etayo). Dept. La Paz. Prov. Nor Yungas: below Unduavi village, on the road La Paz – Chulumani, Yungas cloud forest, 3210 m, 16°18′27″S, 67°53′48″W, on L. crenulata, A.F. 22184 (LPB). Intralichen lichenum (Diederich) Hawksworth & Cole Notes. Intralichen lichenum is a widely distributed spe- cies reported from various lichen hosts in Europe, USA, New Guinea and Antarctica (Hawksworth 1979; Brackel 2014; Diederich et al. 2018). It is easily distinguished by its poorly differentiated conidiophores developing in the host hymenium, and pale-brown, smooth-walled, aseptate conidia (3–4.5 × 2.5–4 μm) produced in basipetal chains. We found this species as a hyperparasite in the hymenium of Lawreyella lobariella growing on Lobariella crenulata in Colombia. Previously it has been reported as a hyperparasite of two other lichenicolous fungi: Opegrapha plectocarpoidea and Tremella ramalinae (Brackel 2014). Ecology and distribution. A cosmopolitan species reported from several host lichens and as a hyperparasite on some lichenicolous fungi (Hawksworth 1979; Brackel 2014; Diederich 2018). Specimens examined. COLOMBIA. Dept. Nariño. Prov. Pasto: Serranía de Morasurco, 1.16N, 77.13W, 3000–3300 m, preráramo arbustivo with Macleania, Oreopanax, Weimannia and Espeletia pycnophylla, Puya, on Lawreyella lobariella growing on Lobariella crenulata on twigs, J.E. 15917 (LPB, hb. Etayo). Lawreyella Flakus, Etayo, Kukwa & Rodr. Flakus, gen. nov. (Fig. 14) MycoBank MB 833332 Diagnosis: Differs from Diplolaeviopsis, Macroskyttea, Protounguicularia and Unguiculariopsis by having black, aggregate A. Flakus et al.: Biodiversity assessment of ascomycetes inhabiting Lobariella lichens in Andean cloud forests ascomata, containing a greenish pigment (K+ reddish brown, N+ bright green) in the hymenium and an additional orange-brown pigment in the exciple and epithecium (K+ purple then darkbrown, N+ purplish then orange-brown), short, aseptate, acute exipular hairs, that are wide at the base and solid along almost the entire length, and paraphyses with a large, swollen, tapering apical cell with a solid upper part. Generic type: Lawreyella lobariella (S. Y. Kondr. & D. J. Galloway) Flakus, Etayo, Kukwa & Rodr. Flakus, comb. nov., MycoBank MB 833333 (Basionym: Unguiculariopsis lobariella [as ‘lobariellum’] S. Y. Kondr. & D. J. Galloway, Bibliotheca Lichenologica 58: 238. 1995a). Description. Lichenicolous on Lobariaceae. Ascomata apothecia, 0.5–5 mm diam., dark brown to black, matte, immersed and interrumping the cortex of the host when young, sessile when mature, arranged in circular groups; groups of apothecia 0.5–3.5 mm diam., composed of ~ 10–60 apothecia. Disc exposed almost from the beginning, black, matte, slightly concave to flat (strongly concave when young and slightly convex when overmature). Margin greyish to blackish, paller than disc, hairy. Exciple well developed, pale to dark-brown, K+ purple then dark-brown, N+ slightly purplish then orange-brown, hyaline in the lower part, 40–60 μm wide laterally (without hairs 10–30 μm wide), paraplectenchymatous, 303 consisting of thick-walled, elongated to subsphaerical cells, 3–10 × 1–5 μm; inner exciple composed of more elongated cells, outermost part composed of cells protruding into excipular hairs. Excipular hairs 10–40 × 3–7 μm, simple, aseptate, smooth-walled, hyaline to brownish, with wide base or cylindrical, with tapering apex, solid almost along the entire length, composed of glassy material, and with small, rounded lumen at the base. Epihymenium brown, with granular K+ soluble pigments, KI–, K+ purple then dark brown, N+ slightly purplish then orange-brown, 10–20 μm tall. Hymenium hyaline to greenish, pigments K+ reddish brown, N+ yellowish green, 60–80 μm tall. Hypothecium brownish, up to 20–90 μm tall. Paraphyses not conglutinated, simple to sparsely branched, 1–2 μm wide, with a large apical cell; apical cell hyaline to pale brown, usually covered by a gel, 12–20 × 3–7 μm, with tapering apex, solid in the upper part (solid part 3–15 μm tall) and with a small lumen at the base. Asci 8-spored, functionaly unitunicate, clavate with a long stem, 50–70 × 6–10 μm, with wall apically slightly tickened. Ascospores hyaline, simple, straight to curved, narrowly ellipsoidal with acute ends, without perispore, in the type species 10–(x = 14.9 s = 2.7)–20 × 2.5–(x = 2.9 s = 0.3)–3.5 μm, l/b ratio 3.3–(x = 5.1 s = 1.1)–7.6 (n = 49). Figure 14. Lawreyella lobariella (on Lobariella pallida; A, D–J based on J.E. 41-3; B–C based on A.F 25157). A – aggregated apothecial ascomata on the host thallus; B – dispersed apothecial ascomata; C – apothecial ascomata with paller, hairy margins; D – section of ascomata in LPCB; E–F – section of exciple showing paraplectenchymatous tissue and outermost excipular cells protruding into hairs in LPCB; G – excipular cells with solid, glassy material and small lumen at the base in LPCB; H – enlarged apical cells of paraphyses with solid, glassy material in the apical part in LPCB; I – asci in Congo Red (left) and LPCB (right); J – ascospores in water. Scales: A–B = 500 µm; C = 250 µm; D = 50 µm; E–J = 10 µm. 304 Etymology. Lawreyella is named in honor of American lichenologist, Dr. James D. Lawrey, for on the occassion of 70th birthday. Ecology and distribution. Lawreyella lobariella was described from Ricasolia cf. erosa in Venezuela (Kondratyuk & Galloway 1995a). It is a very common species in neotropical cloud forests growing mainly on Lobariella crenulata and L. pallida, and rarely on Ricasolia in Bolivia, Colombia, Ecuador and Peru (Etayo 2002, 2010b, 2017). Notes. Lawreyella lobariella is phylogenetically unre- lated to Unguiculariopsis (Fig. 6), the genus under which this species was initially described. Unguiculariopsis differs from Lawreyella by aseptate and strongly hookshaped excipular hairs with characteristically swollen base, reddish brown to brown ascomata (K+ reddish to purplish, N–) and paraphyses that are apically not widened (Diederich & Etayo 2000). Although the new genus is closely related to Diplolaeviopsis, Macroskyttea, and Protounguicularia, it is easily distinguished by several anatomical characters. Diplolaeviopsis and Macroskyttea have aseptate, long, cylindrical or tapering excipular hairs, urceolate ascomata with a narrow pore when young and paraphyses that are apically not thickened (Diederich & Coppins 2014; Etayo et al. 2015; Suija et al. 2015a). Protounguicularia can be separated by its white to pale brownish ascomata, septate, cylindrical to slightly tapering excipular hairs and paraphyses that are apically not swollen (Huhtinen et al. 2008). We also collected other morphologically very similar fungi growing on Ricasolia casarettiana, but further molecular phylogenetic investigations are needed to confirm whether they represent Lawreyella lobariella. Specimens examined (on Lobariella). BOLIVIA. Dept. Cochabamba. Prov. Carrasco: Parque Nacional Carrasco, Koricaza, 17°33′21″S, 65°16′29″W, 2950 m, Páramo Yungueño, on Lobariella on trees, J.E. 29322, 29331, 29324 (LPB, hb. Etayo); Korikaza close to Monte Punku, 17°33′30″S, 65°16′32″W, 2880 m, lower montane Yungas cloud forest, corticolous, on L. pallida, A.F. 25752, 25754, M.K. 15106a (KRAM, LPB, UGDA); Meruvia close to Monte Punku, 17°35′06″S, 65°14′54″W, 3283 m, Podocarpus-Polylepis forest, corticolous, on L. auriculata, A.F. 25565, M.K. 15036c, 15042d, on L. pallida, A.F. 25566, M.K. 15042e (KRAM, LPB, UGDA); Wayra Mayu close to Monte Punku, 17°33′30″S, 65°16′08″W, 2750 m, lower montane Yungas cloud forest, on corticolous L. auriculata, M.K. 15175a, on L. pallida M.K. 15175, A.F. 25864 (KRAM, LPB, UGDA); near Lago Corani, close to Villa Tunari-Cochabamba road, 17°13′24″S, 65°53′31″W, 3271 m, open area with shrubs, on corticolous L. crenulata, M.K. 15420 (LPB, UGDA). Prov. Tiraque: Parque Nacional Carrasco, old guard’s camp, 17°18′23″S, 65°45′60″W, 3360 m, open area with shrubs, on corticolous Lobariella sp., M.K. 15290 (LPB, UGDA); Camino de los Nubes, Antenas Sillar-Villa Tunari old road, 17°12′32″S, 65°41′52″W, 3520 m, upper montane Youngas cloud forest, corticolous, on L. pallida A.F. 25977, 25982, M.K. 15249 (KRAM, LPB, UGDA); ibidem, 17°12′29″S, 65°41′24″W, 3591 m, open area with shrubs, corticolous, on L. pallida A.F. 26008 (KRAM, LPB), J.E. 41-3 (LPB, hb. Etayo); old guard’s camp close to T7, 17°18′23″S, 65°45′60″W, 3360 m, open area with shrubs, corticolous, on Plant and Fungal Systematics 64(2): 283–344, 2019 L. pallida, A.F. 26032, on L. crenulata, A.F. 26041 (KRAM, LPB). Prov. Chapare: Parque Nacional Carrasco, Incachaca, 17°14′59″S, 65°49′36″W, 2560 m, Yungas cloud forest, on L. pallida on trees, J.E. 29500 (LPB, hb. Etayo). Dept. La Paz. Prov. Franz Tamayo: Parque Nacional y Área Natural de Manejo Integrado Madidi, below Keara Bajo, 14°41′47″S, 69°04′10″W, 3160 m, open area with shrubs and scattered trees, corticolous, on L. pallida A.F. 25284, 25290, M.K. 14898 (KRAM, LPB, UGDA); below Pelechuco, 14°49′08″S, 69°03′50″W, 3560 m, open area with shrubs and Polylepis trees, on corticolous L. pallida, M.K. 14974 (LPB, UGDA); near Keara Bajo, 14°41′59″S, 69°04′34″W, 3290 m, open area with shrubs and scattered trees, on corticolous L. pallida, M.K. 14870, A.F. 25239/1, J.E. 18-5 (KRAM, LPB, UGDA, hb. Etayo); Pukara between Keara and Keara Bajo, 14°42′09″S, 69°05′17″W, 3420 m, open area with shrubs, on corticolous Lobariella sp., M.K. 14924, on L. pallida A.F. 25326 (KRAM, LPB, UGDA); Chuñuna above Keara, 14°41′11″S, 69°05′30″W, 4053 m, Polylepis pepei forest, corticolous, on L. soredians A.F. 25439 (KRAM, LPB); Área Natural de Manejo Integrado Nacional Apolobamba, near Rio Pelechuco, below Pelechuco close to new road to Apolo, 14°46′22″S, 69°00′11″W, 2480 m, lower montane Yungas cloud forest, corticolous, on Lobariella sp., A.F. 25070 (KRAM, LPB); ibid.14°47′28″S, 69°01′32″W, 2860 m, open area with scattered trees, corticolous, on L. pallida A.F. 25157 (KRAM, LPB); below Pelechuco, 14°49′08″S, 69°03′50″W, 3560 m, open area with shrubs and Polylepis trees, corticolous, on L. pallida A.F. 25466, 25467 (KRAM, LPB). Prov. Larecaja: Jocollone village and 1 km further, Paramo Yungeño vegetation, open anthropogenic area, much Berberis, NE oriented slope, 15°37′35″S, 68°41′21″W, 3545 m, J.E. 27202, 27205, 27290, 27355 (LPB, hb. Etayo). Prov. Murillo: Valle del Zongo, páramo yungueño, rocas sueltas entre pastos con arbustos, 3375 m, 16°10′15″S, 68°08′02″W, on L. crenulata on bushes, J.E. 26767 (LPB); Valle del Zongo, bosque yungas nublado, 2900 m, 16°08′38″S, 68°06′59″W, on L. pallida on bryophytes, J.E. 26811 (LPB, hb. Etayo); Sainani, Valle del Zongo, 16°07′20″S, 68°05′09″W, 2220 m, open area with shrubs and scattered trees, corticolous, on L. pallida, A.F. 26252, on Lobariella. sp. A.F. 26253, 26262 (KRAM, LPB). Prov. Nor Yungas: desviación de La Paz a Coroico hacia Unduavi, camino a Chulumani, bosque nublado, 3210 m, 16°18′27″S, 67°53′48″W, on L. subexornata, J.E. 26912 (LPB, hb. Etayo); on road La Paz -Chulumani, cloud forest, 3210 m, 16°18′27″S, 67°53′48″W, on L. crenulata, J.E. 26925 (LPB, hb. Etayo); Chuspipata station, old road Coroico–La Paz, 16°18′18″S, 67°48′55″W, 3009 m, disturbed Yungas cloud forest with shrubs and small trees, on L. pallida A.F. 28889 (KRAM, LPB); Coroico, Uchumachi footpath, 16°11′36″S, 67°43′21″W, 1897 m, disturbed Yungas cloud forest with shrubs and small treeson, on L. pallida A.F. 28844 (KRAM, LPB). Dept. Santa Cruz. Prov. Manuel María Caballero: near Siberia, 17°49′34″S, 64°43′14″W, 2800 m, Yungas cloud forest with outcrops, on Lobariella sp., J.E. 28765 (LPB, hb. Etayo). Dept. Tarija. Prov. Burnet O’Connor: near Soledad, 21°39′52″S, 64°07′22″W, 1700 m, Tucumano–Boliviano montano forest, on Lobariella sp., J.E. 28792 (LPB). Specimens on Ricasolia examined. BOLIVIA. Dept. Chuquisaca. Prov. Belisario Boeto: between Nuevo Mundo and Villa Cerrano, 19°00′49.5″S, 64°20′08.8″W, 2555 m, Boliviano-Tucumano forest with Podocarpus and Polylepis, on R. casarettiana on branch, J.E. 29790 (LPB, hb. Etayo). Dept. Tarija. Prov. Burnet O’Connor: old road between Tarija and Entrerios, 21°27′50″S, 64°12′51″W, 1924 m, Boliviano-Tucumano forest with epiphytes exposed, on R. casarettiana on branch, J.E. 29918 (LPB, hb. Etayo). A. Flakus et al.: Biodiversity assessment of ascomycetes inhabiting Lobariella lichens in Andean cloud forests Lichenopeltella santessonii (P. M. Kirk & Spooner) R. Sant. Notes. The Bolivian samples differ from the original description by having slightly larger ascospores (16–18 × 3.5–4.5 µm) and the presence of ascospores with three pairs of setulae. Ecology and distribution. The species in known from a few countries in the Northern Hemisphere (Spooner & Kirk 1990; Brackel 2011b), and from Bolivia, where it grows on species of Peltigera, Lobariella auriculata, and L. subexornata. Specimens examined. BOLIVIA. Dept. Cochabamba. Prov. Chapare: Parque Nacional Carrasco, Incachaca, 17°14′59″S, 65°49′36″W, 2560 m, Yungas cloud forest, on L. auriculata, A.F. 24725-1 (KRAM, LPB). Dept. La Paz. Prov. Franz Tamayo: Área Natural de Manejo Integrado Nacional Apolobamba, near Rio Pelechuco, below Pelechuco close to new road to Apolo, 14°46′59″S, 69°01′08″W, 2750 m, open area with scattered small trees, corticolous, on L. auriculata, A.F. 25117 (KRAM, LPB); Prov. Murillo: Valle del Zongo, bosque Yungas nublado, on L. subexornata, 2900 m, 16°08′38″S, 68°06′59″W, J.E. 26798 (LPB, hb. Etayo). Lichenotubeufia cryptica Etayo & Flakus, sp. nov. (Fig. 15) MycoBank MB 833334 Diagnosis: Differs from L. boomiana by having shorter ascospores, 100–150 × 2–3.5 μm, and a different ecology (growing on the lower side of thalli of Lobariella pallida). Type: Bolivia: Dept. Cochabamba. Prov. Carrasco: PN Carrasco, Koricaza, 17°33′21″S, 65°16′29″W, 2950 m, Páramo Yungueño, 18 Aug. 2012, on Lobariella pallida growing on trees, Javier Etayo 29331 (LPB – holotype!; hb. Etayo – isotype!, microscopic slide). Description. Ascomata perithecia, 130–200 µm diam., superficial, solitary, scattered or in groups, subglobose to pyriform, beige to cream colored, hairy around the whole 305 surface, not cupulate, not papillate, with a slightly darker spot around the ostiole. Peridium 15–20 µm wide, composed of several layers, hyaline to creamy colored, K+ slightly yellowish green, with isodiametric, thin-walled cells, 2–6 µm diam. Hairs hyaline, simple to septate, not branched, with acute apex, 35–80 × 3–8 µm, straight, thick-walled (with very thin lumen along the entire length) or solid in the apical part (whith lumen only at the base). Hamathecium I–, KI–, composed of persistent, branched and anastomosed paraphysoids, 0.5–1 µm wide. Asci bitunicate, long cylindrical, with a short foot, with thickened apex, 105–165 × 9–13 µm, 8–spored, K/I–, endoascus K/I+ orange. Ascospores needle-shaped, acicular, with acute ends, multiseptate, hyaline, 100–(x = 106.9 s = 13.9)– 150 × 2–(x = 2.7 s = 0.4)–3.5 μm, l/b ratio 33.3–(x = 40.9 s = 6.1)–50 (n = 26). Etymology. The epithet emphasizes the extreme difficulty of finding this fungus because it occurs on the lower side of thalli of Lobariella, where it is intermixed with host rhizines of the same color as the ascomata of the fungus. Ecology and distribution. It was found in two localities in Bolivia on Lobariella pallida near 3000 m and seems to be a very rare species. Notes. The genus Lichenotubeufia was introduced by Etayo (2017) to accommodate Tubeufia-like fungi occurring on lichens, and currently contains five species. Three of them grow on lichens from Peltigerales: L. boomiana (on Sticta), L. eriodermae (on Erioderma) and L. tafallae (on Leptogium). Lichenotubeufia boomiana is characterized by having shorter ascospores, 95–112 × 3–4 µm, and grows on the upper side of a different host thallus (Etayo 2017). Lichenotubeufia eriodermae clearly differs in having larger perithecia (reaching 200–300 μm diam.), larger aggregated hairs (100–150 × 2.5–3.5 µm), and thicker ascospores (4–5 um wide) (Etayo 2002), whereas Figure 15. Lichenotubeufia cryptica (on Lobariella pallida, based on A.F. 25145). A – perithecioid ascomata mixed with rhizines on the underside of the host thallus; B – excipular hairs in Congo Red (left) and LPCB (right); C–D – section of ascomata in LPCB (C) and Congo Red (D); E – asci in Congo Red; F – ascospores in Congo Red. Scales: A = 250 µm; B, F = 10 µm; C–E = 25 µm. 306 Plant and Fungal Systematics 64(2): 283–344, 2019 L. tafallae has much larger hairs (200–250 × 20–30 μm), which grow in groups near the ostiole. Other species from the genus can be identified using the key provided by Etayo (2017). Specimens examined. BOLIVIA. Dept. La Paz. Prov. Franz Tamayo: Área Natural de Manejo Integrado Nacional Apolobamba, near Rio Pelechuco, below Pelechuco close to new road to Apolo, 14°47′28″S, 69°01′32″W, 2860 m, open area with scattered trees, corticolous, on Lobariella pallida, A.F. 25145 (KRAM, LPB). Ecology and distribution. A relatively common species Nanostictis pluriseptatum Etayo Notes. This rare species was described from specimens collected in Colombia (Etayo 2002) and has recently been found in Bolivia. It is characterized by having marginate ascomata (0.25–0.35 mm diam.) with a pale yellowish disc and acicular 15–27-septate ascospores (64–105 × 3.5–4.5 μm). Ecology and distribution. Known from Bolivia and Colombia from Lobariella pallida and L. subexornata (Etayo 2002). Specimen examined. BOLIVIA. Dept. Cochabamba. Prov. Chapare: Parque Nacional Carrasco, Incachaca, 17°14′59″S, 65°49′36″W, 2560 m, Yungas cloud forest, on Lobariella subexornata on bushes, J.E. 29621 (LPB). Nectriopsis curtiseta Etayo 3–3.5 µm), hyaline, aseptate, conidiogenous cells (8–17 × 1.5–2.5 μm) that are wider at the base and tapering at the apex, and narrowly ellipsoidal, slightly tapering and evidently truncate, hyaline conidia 3.5–(x = 4.8 s = 0.7)–6 × 2–(x = 2.3 s = 0.3)–3 μm, l/b ratio 1.3–(x = 2.1 s = 0.5)–3 (n = 29). It was also characterized and illustrated by Etayo (2017; Fig. 9 as Acremonium sp.) based on a sample from Ecuador (J.E. 25430). It is most probable that this Acremonium-like anamorph is the asexsual state of N. curtiseta, a hypotheisis that needs, however, molecular confirmation. (Fig. 16) Notes. This species was recently decribed from Ecuador (Etayo 2017) and is characterized by having relatively large ascomata (120–200 μm diam.) and hyaline, verrucose ascospores, 7–10 × 3–3.5 µm. In some samples of N. curtiseta, chalk-white sporodochia-like agglomarated conidiophores mainly covering the apothecial margin of the host were observed. This anamorph is characterized by having colonies 0.2–0.8 mm diam., simple to branched, colorless conidiophores (5–6 × known from several localities in Bolivia and Ecuador, where it grows on Lobariella crenulata, L. pallida and Ricasolia patinifera. Specimens on Labariella examined (sexual state). BOLIVIA. Dept. Cochabamba. Prov. Chapare: Parque Nacional Carrasco, Incachaca, 17°14′59″S, 65°49′36″W, 2560 m, Yungas cloud forest, on Lobariella sp., J.E. 29503 (LPB, hb. Etayo); near Río Batea Mayu close to Monte Punku, 17°31′33″S, 65°16′21″W, 2430 m, corticolous, on Lobariella sp., A.F. 25810 (KRAM, LPB). Dept. La Paz. Prov. Murillo: Sainani, Valle del Zongo, 16°07′20″S, 68°05′09″W, 2220 m, open area with shrubs and scattered trees, corticolous, on L. pallida, A.F. 26258 (KRAM, LPB). Prov. Nor Yungas: near Nogalani village, on the road Coroico–La Paz (casa azul de Alejo),16°12′57″S, 67°49′15″W, 2168 m, Yungas secondary cloud forest, on L. pallida, 23 May 2011, J.E. 27960 (LPB, hb. Etayo); carretera Coroico-La Paz, bosque nublado yungas, sendero que parte de la Estación de servicio, 3220–3250 m, 16°17′09″S, 67°51′00″W, on L. pallida, J.E. 27682 (LPB, hb. Etayo). Specimens on Ricasolia examined (sexual state). Dept. Tarija. Prov. O’Connor: 26 km from Entre Ríos, near Soledad, 21°39′52″S, 64°07′22″W, 1700 m, Tucumano-Boliviano montano forest, on dead and brown R. patinifera, J.E. 28778 (LPB, hb. Etayo). Specimens of Acremonium-like anamorph examined (possible asexual state of N. curtiseta ). BOLIVIA. Dept. Cocha- bamba. Prov. Chapare: Parque Nacional Carrasco, near Río Batea Figure 16. Nectriopsis curtiseta anamorph (on Lobariella sp., based on A.F. 25810). A – white colonies of sporodochia growing in apothecial margin of the host; B – conidiogenous cells in LPCB; C – conidia in LPCB; D – evidently truncated conidia in LPCB. Scales: A = 250 µm; B–D = 10 µm. A. Flakus et al.: Biodiversity assessment of ascomycetes inhabiting Lobariella lichens in Andean cloud forests Mayu close to Monte Punku, 17°31′33″S, 65°16′21″W, 2430 m, corticolous, on Lobariella sp., A.F. 25810 (KRAM, LPB). Dept. La Paz. Prov. Nor Yungas: desviación de La Paz a Coroico hacia Unchuavi, camino a Chulumani, bosque nublado3210 m, 16°18′27″S, 67°53′48″W, on L. pallida, J.E. 26936 (LPB, hb. Etayo). ECUADOR. Prov. Imbabura. Reserva Ecológica Regional Cotacachi-Cayapas, desde Irunguicho a Lagunas de Piñán, bosque nublado or. N, on L. crenulata, 2700–3100 m, 17N 0803255, 0048059, J.E. & Z. Palice 25430 (hb. Etayo). Neobaryopsis andensis Flakus, Etayo, Kukwa & Rodr. Flakus, gen. et sp. nov. (Fig. 17) MycoBank MB 833335 (genus), MB 833336 (species) Diagnosis: Lichenicolous fungus characterized by having narrowly pyriform, yellowish to orange perithecioid ascomata, 500–700 µm high, 250–300 µm wide, developing on reduced white arachnoid subiculum, large, 50–90-septate, needle-shaped ascospores, 225–430 × 1.5–2.5 μm, and a synnematous asexual state, 100–400 µm tall, with a white stipe and a hyaline, pink to yellowish orange conidial mass, branched conidiophores, large phialides, 20–47 × 1.5–2 µm, and hyaline, ellipsoidal to obovoid conidia, 4–7 × 2–2.5 µm. Type: Bolivia, Dept. Cochabamba, Pov. Tiraque, Parque Nacional Carrasco, Camino de los Nubes, Antenas Sillar–Villa Tunari old road, 17°12′32″S, 65°41′52″W, 3520 m, upper montane Youngas cloud forest, corticolous, on Lobariella pallida, Adam Flakus 25967 (KRAM – holotype!; LPB – isotype!). Description. Ascomata perithecioid, distributed on the thallus of Lobariella, in small groups, growing on a poorly developed, white arachnoid subiculum not developing stromata, pyriform to elongate pyriform, 500–700 µm high, 250–300 µm wide, apex acute, smooth, yellowish orange to orange. Peridium 30–45 wide, hyaline to golden-orange, K+ pink then hyaline, composed of two layers of tangentially flattened cells; external layer of isodiametric, thick-walled cells, 2–4 × 2–3 µm; inner region of thin-walled cells, 3–12 × 1–2 µm. Hamathecium not seen. Asci linear, 8-spored, 340–450 × 5–7 µm, apex thickened with a conspicuous cap, 8-spored. Ascospores thread-like, 50–90-septate, 225–(x = 319.1 s = 64)–430 × 1.5–(x = 1.9 s = 0.4)–2.5 μm, l/b ratio 128–(x = 169.2 s = 29.8)–215 (n = 22). Anamorph synnematous. Synnemata unbranched, solitary or in small groups, 100–400 µm tall, capitate; stipe 50–150 µm wide, cylindrical, white, of intricately arranged hyphae, 1.5–3 µm wide; conidial mass 50–300 µm diam., globose, hemispherical, hyaline, pink to yellowish orange, smooth, opaque to slightly translucent. Conidiophores 50–90 µm large, branched, bi- or ter-verticillate, hyaline, 2–2.5 µm wide. Phialides developing terminally or intercalarily, cylindrical to slightly tapering, straight to slightly curved, 20–47 × 1.5–2 µm. Conidia ellipsoidal, bacilliform-ellipsoidal to obovoid, at one end wider, sometimes slightly constricted in the middle, hyaline, aseptate, smooth, without a gelatinous sheath or perispore, slightly truncated, 4–(x = 6 s = 1)–7 × 2–(x = 2.3 s = 0.3)–2.5 μm, l/b ratio 2–(x = 2.7 s = 0.5)–3.5 (n = 39). Etymology. The genus name refers to its morphologi- cal similarity with Neobarya, and the epithet reflects its occurrence in the Andes. 307 Ecology and distribution. The species is known from several localities in the Bolivian Andes where it grows on Lobariella auriculata, L. crenulata and L. pallida in Yungas and Boliviano-Tucumanos forests at a high altitude. Notes. Phylogenetic analyses revealed a strongly supported placement of Neobaryopsis in Cordycipitaceae (Fig. 4) and its recognition as a distinct genus within the group of Neobarya-like lichenicolous fungi. Neobaryopsis andensis occurs on Lobariella and is characterized by having very particular narrowly pyriform, yellowish to orange ascomata developing on a reduced white arachnoid subiculum, and large, multiseptate needle-like ascospores. Its asexual state produces short synnematous conidiomata with pale yellowish to pink conidial mass at the top. The morphology of ascomata makes it very similar to Nectria byssophila (Rossman 1979, 1983), Lichenobarya (Lawrey et al. 2015) and Neobarya s.str. (Candoussau et al. 2007). Nectria byssophila was originally described from bryophytes and frequently reported from various lichens. It develops a different asexual state, its ascomata are almostly entirely immersed in abundant white subiculum (byssoid stroma), and its ascospores are considerably thicker (Rossman 1983). Unfortunately, the phylogenetic position of Nectria byssophila is still unknown. Lichenobarya and Neobarya differ in their host selection (pyrenomycetes and Usnea, respectively) and the color of the ascomata (brown in Lichenobarya usneae vs. yellowish green in Neobarya parasitica). Neobarya parasitica (type species of the genus) is additionally characterized by having a different asexual state abundantly surrounding the perithecia of the species (Candoussau et al. 2007; Lawrey et al. 2015). South American material of Nectria byssophila has a variable morphology and it was reported from various lichens, e.g., Hypotrachyna, Normandina, Parmotrema, Stereocaulon and Teloschistes (Etayo 2002, 2017, Etayo & Sancho 2008). We have not studied specimens growing on hosts other than Lobariella, but probably some of them may also represent Neobaryopsis andensis. Specimens examined (sexual state). BOLIVIA. Dept. Cochabamba. Prov. Tiraque: Parque Nacional Carrasco, Camino de los Nubes, Antenas Sillar-Villa Tunari old road, 17°12′32″S, 65°41′52″W, 3520 m, upper montane Youngas cloud forest, on corticolous L. pallida, M.K. 15254 (LPB), on Lobariella sp., M.K. 15240 (LBP, UGDA). Dept. Chuquisaca. Prov. Belisario Boeto: close to Padilla, between Nuevo Mundo and Santa Rosa, slope or. W-NW, 18°57′11.9″S, 64°16′36.3″W, 1830 m, transition between Boliviano-Tucumano forest and dry interandean vegetation, bushy forest with Acacia and a large compositae, on L. cf. pallida on branches, J.E. 29446 (LPB, hb. Etayo). Dept. La Paz. Prov. Franz Tamayo: Parque Nacional y Área Natural de Manejo Integrado Madidi, below Keara Bajo, open area with shrubs and scattered trees, 14°41′47″S, 69°04′10″W, 3160 m, on L. auriculata, J.E. 20-11 (LPB, hb. Etayo). Prov. Murillo: Valle del Zongo, páramo yungueño, rocas sueltas entre pastos con arbustos, 3375 m, 16°10′15″S, 68°08′02″W, on L. crenulata on bushes, J.E. 26771, 26788 (LPB, hb. Etayo). Specimens examined (asexual state). BOLIVIA. Dept. Cochabamba. Prov. Tiraque: Parque Nacional Carrasco, Camino 308 Plant and Fungal Systematics 64(2): 283–344, 2019 Figure 17. Neobaryopsis andensis teleomorph (A–H) and anamorph (I–N) (A, C–I on Lobariella pallida, based on A.F. 25967, holotype; B, on L. auriculata, based on J.E. 20-11; J, N on L. cf. auriculata, based on J.E. 20-2). A – perithecioid ascomata on the host thallus; B – ascomata on the host isidia; C – section of the apical part of peridium in water; D – section of the lateral peridium in water; E – asci in water; F–G – ascus apex in Congo Red (F) and LPCB (G); H – ascospores in Congo Red; I–J – capitate synnemata growing on the host thallus; K – section of synnemata stem showing hyphal cells in LPCB; L – conidiogenous cells; M–N – conidia in water. Scales: A–B, I–J = 250 µm; C = 25 µm; E = 50 µm; D, F–H, K–N = 10 µm. de los Nubes, Antenas Sillar-Villa Tunari old road, 17°12′32″S, 65°41′52″W, 3520 m, upper montane Youngas cloud forest, on corticolous L. pallida, M.K. 15248 (LPB, UGDA). Dept. La Paz. Prov. Franz Tamayo: Parque Nacional y Área Natural de Manejo Integrado Madidi, below Keara Bajo, open area with shrubs and scattered trees, 14°41′47″S, 69°04′10″W, 3160 m, on L. cf. auriculata, J.E. 20-2 (LPB, hb. Etayo). Niesslia cf. lobariae Etayo & Diederich Notes. Niesslia lobariae was described by Etayo & Die- derich (1996b) from Lobaria pulmonaria, and it is characterized by having 50–150 µm diam., black ascomata, large setae (50–85 × 5–7 µm) and small, 1-septate, hyaline ascospores (4.5–8.5 × 1.5–2.5 μm). Niesslia cf. lobariae collected in Bolivia and Ecuador on Lobariella and Ricasolia partly fits the original description but develops shorter, 10–37 × 4–6 µm (base up to 6 µm wide) setae. Similar material was reported also from Ecuador on Sticta humboldtii and S. weigelii (Etayo 2017). The Monocillium-like anamorph growing on the thallus or directly on the ascomata of Niesslia cf. lobariae is characterized by having hyaline phialides, 2–4-septate, 42–75 × 3–4 µm, slightly wider at the base and in the upper part. A molecular phylogenetic evaluation of this complex is needed to establish species boundaries. Ecology and distribution. The species is known from Bolivia, France, Spain, and Papua New Guinea when it grows on Lobaria pulmonaria, Lobaria sp., Lobariella and Sticta (Etayo & Diederich 1996; Etayo 2017). Specimens examined. BOLIVIA. Dept. Cochabamba. Prov. Chapare: Parque Nacional Carrasco, near Lago Corani, close to Villa Tunari–Cochabamba road, 17°13′24″S, 65°53′31″W, 3271 m, open area with shrubs, on corticolous Lobariella sp., M.K. 15427 (LPB); Incachaca, 17°14′59″S, 65°49′36″W, 2560 m, Yungas cloud forest, on L. cf. pallida on trees, J.E. 29527 (LPB, hb. Etayo). Prov. Carrasco: Parque Nacional Carrasco, Koricaza, 17°33′21″S, 65°16′29″W, 2950 m, Páramo Yungueño, on disk of L. cf. pallida on trees, J.E. 29333 (LPB, hb. Etayo). Dept. La Paz. Prov. Nor Yungas: near Nogalani village, on the road Coroico-La Paz (casa azul de Alejo), 16°12′57″S, 67°49′15″W, 2168 m, Yungas secondary cloud forest, on L. pallida, J.E. 27981 (LPB, hb. Etayo). Niesslia schizospora Etayo Notes. Niesslia schizospora was originally described from specimens from Colombia colonizing Hypotrachyna, and is characterized by having ascospores measuring 5–8 × 1.5–2 μm and breaking into half-spores in asci, and setae with short secondary branches (Etayo 2002). It was also reported from Dichosporidium and Lobariella crenulata in Ecuador (Etayo 2017) and seems A. Flakus et al.: Biodiversity assessment of ascomycetes inhabiting Lobariella lichens in Andean cloud forests to be able to colonize different lichen hosts. According to Gams et al. (2019) the branched perithecial setae and fragmenting ascospores suggest that N. schizospora is not a member of Niesslia and might be more related to Valetoniella. Further phylogenetic studies are necessary to confirm this hypothesis. Ecology and distribution. In addition to being found on Hypotrachyna in Colombia (Etayo 2002) it was later reported from Dichosporidium sp. and Lobariella crenulata in Ecuador (Etayo 2017). Niesslia stictarum (Nannf. & R. Sant.) Tretiach & R. Sant. var. stictarum Notes. This taxon is characterized by having short setae (10–26 μm long) with a widened base (7–13 μm wide), giving the appearance of shark teeth, and 6–7 × 1.5–2 μm ascospores (Tretiach 2002; Etayo 2017). 309 having reticulate walls, and may represent another undescribed species. Ecology and distribution. Widely distributed and known from various lichen genera, including Candelariella, Cladonia, Erioderma, Graphis, Heterodermia, Lobariella, Parmelia, Pertusaria, Physcia, Punctelia and Sticta (Etayo 2010). Specimens examined. BOLIVIA. Dept. La Paz. Prov. Nor Yungas: below Unduavi village, near Río Unduavi, 16°18′50″S, 67°54′35″W, 3135 m, Yungas cloud forest, on Lobariella sp., J.E. 26963 (LPB, hb. Etayo); near Siniari colony, km 74 on the road Coroico–La Paz, 16°13′20″S, 67°50′37″W, 2090–2186 m, Yungas secondary cloud forest, on L. pallida, J.E. 27645 (LPB, hb. Etayo). PANAMA. Prov. Chiriquí. Parque Nacional Volcán Barú, Sendero Volcán, W slope, 08°48′49″N, 82°33′50″W, 2444 m, montane forest close to open rocks, on Lobariella sp. and Hypotrachyna sp., A.F. Baru-0-C1-P1-Fla1 (KRAM, PMA). Ecology and distribution. Originally described from Pronectria microspora Etayo Sticta ambavillaria in Tanzania (Tretiach 2002), but also known from Ecuador on Sticta and Lobariella pallida (Etayo 2017), and from Bolivia on L. pallida. Notes. This species was described from specimens col- Specimens examined. BOLIVIA. Dept. La Paz. Prov. Nor Yungas: desviación de La Paz a Coroico hacia Unchuavi, camino a Chulumani, bosque nublado, 3210 m, 16°18′27″S, 67°53′48″W, on L. pallida, J.E. 26940 (LPB, hb. Etayo). lected in Colombia and is characterized by having very small, yellowish to orange, immersed ascomata (60– 85 μm diam.) and hyaline, smooth-walled ascospores, 5–6.5(–7.5) × 3–4.5 μm (Etayo 2002). Ecology and distribution. Known from Lobariella Niesslia stictarum var. nuda Etayo crenulata, L. exornata and L. pallida from Bolivia and Colombia (Etayo 2002). Notes. This variety was described from Ecuador (Etayo Specimens examined. BOLIVIA. Dept. Cochabamba. Prov. 2017) on Lobariella pallida, and characterized by having ascomata covered only by hyaline setae 34–45 × 4–5 μm, and 7.5–10.5 × 2–3 μm ascospores. It is somewhat similar to saprobic N. waitemataensis described by Gams et al. (2019) from New Zealand, due to the absence of darkbrown setae and a subiculum, but it can be distinguished by larger ascomata (200–300 μm) and ascospores (10–13 × 3–3.5 μm). Chapare: Parque Nacional Carrasco, Incachaca, 17°14′59″S, 65°49′36″W, 2560 m, Yungas cloud forest, on Lobariella sp., J.E. 29504 (LPB), on L. exornata, J.E. 29520 (LPB, hb. Etayo). Dept. La Paz. Prov. Larecaja: Jocollone village and 1 km further, 15°37′35″S, 68°41′21″W, 3545 m, Paramo Yungeño vegetation, open anthropogenic area, much Berberis, NE oriented slope, on L. crenulata, J.E. 27206 (LPB, hb. Etayo). Prov. Nor Yungas: desviación de La Paz a Coroico hacia Unduavi, camino a Chulumani, S16°18′27″, W67°53′48″, 3210 m, bosque nublado, on L. pallida, J.E. 26940 (LPB, hb. Etayo). Ecology and distribution. Known from Bolivia and Ecuador on Lobariella pallida. Pseudocercospora cf. lichenum (Keissl.) D. Hawksw. Specimens examined. BOLIVIA. Dept. Santa Cruz. Prov. Manuel María Caballero: near Siberia, km 23, 217°49′13″S, 64°40′45″W, 2550 m, Yungas cloud forest, on Lobariella sp., J.E. 29453 (LPB). Notes. This species was described from specimens found Ovicuculispora parmeliae (Berk. & Curt.) Etayo s.lat. Notes. The genus Ovicuculispora was introduced by Etayo (2010) to accommodate two lichenicolous species, O. macrospora and O. parmeliae. It is characterized by having orange perithecia developing on a white arachnoid mycelium, and by the production of 1–2 macrospores together with 4 microspores in the same ascus. Ovicuculispora parmeliae s.lat. was shown to have a huge variation in size of macrospores and has been reported from many hosts (e.g., Lawrey et al. 1994; Cole & Hawksworth 2001; Diederich 2003; Flakus et al. 2006; Etayo 2010). It is very likely that it represents a species complex. Samples growing on Lobariella are characterized by having ascospores measuring (60–)73–94(–99) × 24–34 µm and on Loxospora cismonica and later reported from other lichens (Hawksworth 1979; Etayo & Diederich 1996; Etayo 2002). Our material is characterized by having the following features: conidiophores scattered or loosely grouped, well differentiated, brown, 3–5 septate, smooth, conidiogenous cells, 3.5–5 µm wide, sympodial, conidiogenous loci difficult to see, and pale brown, 1–3-euseptate conidia, 10–17 × 3–4 µm. Ecology and distribution. This species is widely distributed and has been reported from several lichen genera (Cladonia, Phyllospora, Lobaria, Sticta; Hawksworth 1979; Etayo & Diederich 1996; Etayo 2002) including the Bolivian Lobariella pallida. Specimens examined. BOLIVIA. Dept. La Paz. Prov. Larecaja: Jocollone village and 1 km further, Paramo yungeño vegetation, 15°37′35″S, 68°41′21″W, 3545 m, on L. pallida on schrubs, J.E. 27202 (LPB, hb. Etayo). Prov. Nor Yungas: desviación de 310 La Paz a Coroico hacia Unduavi, camino a Chulumani, bosque nublado, 3210 m, 16°18′27″S, 67°53′48″W, on L. pallida, J.E. 26946 (LPB, hb. Etayo). Pseudodidymocyrtis lobariellae Flakus, Rodr. Flakus & Etayo, gen. et sp. nov. (Fig. 18) MycoBank MB 833337 (genus), MB 833338 (species) Diagnosis: Differs from species of Kalmusia by its the lichenicolous life style, asci with a much shorter pedicel and a strongly thickened apical apparatus and an evident apical cushion, and paler, golden-brown to brown ascospores, K+ dark olivaceous-brown. Type: Bolivia: Dept. La Paz, Prov. Franz Tamayo, Área Natural de Manejo Integrado Nacional Apolobamba, near Rio Pelechuco, below Pelechuco close to new road to Apolo, 14°46′59″S, 69°01′08″W, 2750 m, open area with scattered small trees, on corticolous Lobariella pallida, Adam Flakus 25130 (KRAM – holotype!; LPB – isotype!). Description. Ascomata perithecioid, 200–250 μm high, 200–300 μm wide, subspherical to pyriform, dispersed, fully immersed in the host thallus and apothecial margins or breaking the cortex of the host thallus when older, visible as black dots, not causing gall formation. Peridium dark brown, covered by an indistinct clypeus, in the upper part usually developing a short beak, laterally 15–23 μm diam., consisting of 4–6 layers of cells, cell size 3–13 ×2–8 μm, inner part of thin-walled, hyaline to Plant and Fungal Systematics 64(2): 283–344, 2019 pale brown cells, outer layer of thin- to thick-walled, darkbrown cells. Pseudoparaphyses branched and anastomosing, 1.5–3 μm wide. Asci bitunicate, 90–130 ×10–12 μm, narrowly cylindrical, with a short pedicel, 10–15 μm, I–, K/I–, endoascus KI+ orange, with strongly thickened apical aparatus (2–7 μm tall) and an evident apical cushion (when seen in K/I), 8-spored. Ascospores uniseriate to half-overlapping, golden-brown to brown, K+ dark olivaceous-brown, 3-septate, strongly verruculose, strongly constricted, especially near median septum, the second cell from above wider, with a 1–3 μm thick gelatine coat when young, 15–(x = 18.9 s = 1.9)–22 × 5–(x = 5.8 s = 0.4)–6.5 μm, l/b ratio 2.6–(x = 3.3 s = 0.4)–4 (n = 35). Etymology. The generic name emphasizes the morpho- logical similarities with the lichenicolous genus Didymocyrtis. The epithet refers to the host genus. Ecology and distribution. Known only from the type locality where it grows on Lobariella pallida. Notes. As shown by our phylogenetic analyses (Fig. 5), Pseudodidymocyrtis lobariellae is placed in Didymosphaeriaeae close to the genus Kalmusia. In addition to the saprobic life style, Kalmusia differs from Pseudodidymocyrtis by asci with a long furcate pedicel and darker ascospores (Ariyawansa et al. 2014; Zhang et al. 2014). Pseudodidymocyrtis lobariellae also has a morphology Figure 18. Pseudodidymocyrtis lobariellae (on Lobariella pallida, based on A.F. 25130, holotype). A–B – perithecioid ascomata immersed in the host thallus; C–E – section of ascomata showing hymenium (C in LPCB), indistinct clypeus forming by projecting hyphae (D in water), and short apical beak (E in LPCB); F – section of lateral peridium in Congo Red; G – asci with evident apical apparatus in K/I; H – ascospores ornamentation in water; I – ascospores in water. Scales: A–B = 250 µm; C–E = 50 µm; F–I = 10 µm. A. Flakus et al.: Biodiversity assessment of ascomycetes inhabiting Lobariella lichens in Andean cloud forests very similar to some lichenicolous fungi, such as Didymocyrtis ramalinae (on Ramalina; Ertz et al. 2015), Leptosphaeria clarkii (on Peltigera; Hawksworth 1980), L. protousneae (on Protousnea; Etayo & Sancho 2008), and Leptosphaerulina peltigerae (on Peltigera; Hawksworth 1980). The morphologically most similar species are Didymocyrtis ramalinae (Phaeosphaeriaceae) and Leptosphaeria protousneae, but both differ by their asci having strongly thickened apical apparatus with a poorly developed structure (observed in K/I), uniform and thiner pseudoparaphyses, different pigments (in peridium and ascospores) changing colors in K to dark olivaceous-brown, not constricted ascospores and Phoma-like asexual state (Ertz et al. 2015). Leptosphaeria clarkii has ascospores [19–21(–22) × 4.5–6(–6.5) μm] and pseudoparaphyses (2.5–4 μm thick) very similiar to P. lobariellae and may represent another species in the genus. However, sequence data are presently not available to confirm this relationship. Leptosphaeria clarkii differs by its host selection, smooth-walled ascospores, and smaller ascomata (75–125 μm diam.) (Hawksworth 1980). Leptosphaerulina peltigerae may easily be separated from the new species by the gelatinized hamathecium (lack of paraphyses), and hyaline to very pale brown, smoothwalled and thicker [(4–)6.5–7.5 μm wide] ascospores, with (3–)4(–5) transverse septa and 0–1 vertical septum (Hawksworth 1980). Pyrenidium sp. ined. Notes. Pyrenidium is a member of the recently estab- lished family Pyrenidiaceae, Pleosporales (Huanraluek et al. 2019). A description of the new species discussed in this study will be included in the forthcoming taxonomic revision of the genus Pyrenidium (Navarro-Rosenés et al. in press). The species causes gall formation (0.2–0.3 mm diam.) on the host thallus, has immersed, aggregated perithecia, 130–150 μm diam., 8-spored asci, and dark brown 3-septate,18–22 × 6.5–9 μm ascospores. Ecology and distribution. In Bolivia this species usu- ally occurs on Lobariella, but similar morphotypes were also observed on Yoshimurella subdissecta and Ricasolia patinifera. It is uncertain if the individuals growing on different lichen hosts represent the same species. Specimens examined (on Lobariella). BOLIVIA. Dept. La Paz. Prov. Muñecas: Área Natural de Manejo Integrado Nacional Apolobamba, above Camata, close to Charazani-Paujeyuyo road, 15°14′35″S, 68°45′09″W, 1900 m, open area with shrubs, corticolous, on L. crenulata, A.F. 24935 (KRAM, LPB). Prov. Murillo: Valle del Zongo, 2450 m, S16°07′41″, W68°05′55″,bosque nublado, near bridge, on L. exornata on trees, J.E. 26739 (LPB); Sainani, Valle del Zongo, 16°07′20″S, 68°05′09″W, 2220 m, open area with shrubs and scattered trees, corticolous, on Lobariella sp., A.F. 26255 (KRAM, LPB). Prov. Nor Yungas: near Nogalani village, on the road Coroico-La Paz (casa azul de Alejo), 16°12′57″S, 67°49′15″W, 2168 m, Yungas secondary cloud forest, on L. pallida, J.E. 27968 (LPB, hb. Etayo). Prov. Bautista Saavedra: 28 km from Charazani village, on the road Charazani-Apolo, 15°12′43″S, 68°47′25″W, 1650–1775 m, Yungas montane forest, open area with boulders on SW, on L. crenulata, J.E. 27324 (LPB, hb. Etayo). 311 Specimens examined (on Ricasolia and Yoshimurella). BOLIVIA. Dept. La Paz. Prov. Nor Yungas: Parque Nacional Cotapata, between Tunkini and Chairo villages, above Tunkini, even Biologic station, 16°11′S, 67°52′W, 1300–1600 m, Yungas montane forest, on Y. subdissecta, J.E. 27708, 27725, (LPB, hb. Etayo). Dept. Tarija. Burnet O’Connor: 28 km from Entre Ríos, near Soledad, 21°41′00″S, 64°07′29″W, 1500 m, Tucumano-Boliviano montano forest, corticolous, on R. patinifera, A.F. 24225-1 (LPB); 26 km from Entre Ríos, near Soledad, 21°39′52″S, 64°07′22″W, 1700 m, Tucumano-Boliviano montano forest, on dead and brown Ricasolia sp., J.E. 28783, 28787 (LPB, hb. Etayo). Rhagadostomella hypolobariella Etayo & Flakus, sp. nov. (Fig. 19) MycoBank MB 833339 Diagnosis: Differs from R. gregaria by having 4-spored asci, 22–31 × 6–8 μm, (0–)2-septate ascospores, 10–17 × 1.5–3 μm, with acute ends, and the host selection, inhabiting the lower thallus surface of Lobariella pallida. Type: Bolivia, Dept. La Paz, Prov. Nor Yungas, near Siniari colony, km 74 on the road Coroico–La Paz, 16°13′20″S, 67°50′37″W, 2090–2186 m, Yungas secondary cloud forest, on Lobariella pallida, 24 May 2011, Javier Etayo 27636 (LPB – holotype!; hb. Etayo – isotype!). Description. Ascomata perithecioid, with a central osti- ole, in large groups of hundreds of perithecia on the lower surface of the thallus and rhizines of Lobariella, dark brown to black, subsphaerical to obpyriform, slightly flattened when dry, sessile, 30–60 μm diam. Peridium in upper part orange-brown, K+ olivaceous-brown, BCr+ blue, almost hyaline to pale brown below, paraplectenchymatous, with external cells thick-walled in the upper part, 4–8 μm diam., almost hyaline and with a very thin wall in the lower part. Paraphysoids soon disappearing. Periphyses ~ 1 μm wide, surrounded by a gel layer. Asci bitunicate, clavate, apex obtuse slightly flattened, wall slightly thickened at the apex, with a small ring in upper part easily visible in BCr, I–, KI–, epiplasm K/I+ orange, 4-spored, 22–31 × 6–8 μm. Ascospores present in the upper part of the ascus, narrowly ellipsoidal to fusiform, with acute ends and small constrictions in the middle, hyaline, (0–)2-septate, with 3–4 oil guttules, without a perispore, BCr+ blue, 10–(x = 14.3 s = 1.6)–17 × 1.5–(x = 2.3 s = 0.4)–3 μm, l/b ratio 4.8–(x = 6.4 s = 1.1)–9.3 (n = 29). Etymology. The epithet refers to the ecology of the new species inhabiting the lower thallus surface of Lobariella. Ecology and distribution. The species is known from several localities in Bolivian Yungas forest where it is always found on the lower surface of the thallus of Lobariella pallida. Notes. The monospecific genus Rhagadostomella was introduced by Etayo (2002) for R. gregaria growing on Sticta weigelii in Colombia. Etayo (2002) suggested that it belongs to the Nitschkiaceae (Coronophorales) but its phylogenetic position remains unknown. Rhagadostomella gregaria differs from the new species by its narrower and 1-septate ascospores (14–16.5 × 1.5–2 μm) that never develop acute apices. 312 Plant and Fungal Systematics 64(2): 283–344, 2019 Figure 19. Rhagadostomella hypolobariella (on Lobariella pallida; A, based on J.E. 27636, holotype; B–F, based on A.F. 25157-1). A–B – perithecioid ascomata on the underside of the host thallus; C – ostiolate, peritecioid ascomata in water; D – ascomata showing isodiametric cells of peridium in water; E – asci in LPCB; F – ascospores in LPCB. Scales: A = 200 µm; B = 250 µm; C = 25 µm; D–F = 10 µm. Specimens examined. BOLIVIA. Dept. Cochabamba. Prov. Manuel María Caballero: cerca Siberia, 17°45′54″S, 64°48′47″W, 2570 m, open Yungas cloud forest, on Lobariella sp., J.E. 28826 (LPB, hb. Etayo), on L. pallida, J.E. 29324 (LPB, hb. Etayo). Prov. Carrasco: Parque Nacional Carrasco, near Río Batea Mayu close to Monte Punku, 17°31′33″S, 65°16′21″W, 2430 m, lower montane Yungas cloud forest, corticolous, on Lobariella sp., A.F. 25827 (LPB). Dept. La Paz. Prov. Franz Tamayo; Área Natural de Manejo Integrado Nacional Apolobamba, near Rio Pelechuco, below Pelechuco close to new road to Apolo, 14°47′28″S, 69°01′32″W, 2860 m, open area with scattered trees, corticolous, on L. pallida, A.F. 25157/1 (KRAM, LPB). Prov. Nor Yungas: near Nogalani village, on the road Coroico-La Paz (casa azul de Alejo), 16°12′57″S, 67°49′15″W, 2168 m, Yungas secondary cloud forest, on L. pallida, J.E. 27956 (LPB, hb. Etayo). Roselliniella ramirezii Etayo Notes. The species is characterized by having black perithecioid ascomata (250–400 μm diam.) immersed in the host thallus and breaking through the thallus cortex with age, a dark brown mycelium, and aseptate, hyaline to pale brown ascospores (16–25 × 8–12 µm in Bolivian samples). The Bolivian samples are characterized by having slightly larger ascospores than those observed in Colombian and Ecuadorian populations, which measured 16–23 × 6–9 µm (Etayo 2002, 2017). Ecology and distribution. Known from Bolivia, Colom- bia (Etayo 2002) and Ecuador (Etayo 2017) from different species of Lobariella. Specimens examined. BOLIVIA. Dept. Cochabamba. Prov. Carrasco: Parque Nacional Carrasco, near Río Lopez Mendoza, 17°30′25″S, 65°16′51″W, 2248 m, lower montane Yungas cloud forest, corticolous, on Lobariella sp., A.F. 25690 (KRAM, LPB); Wayra Mayu close to Monte Punku, 17°32′27″S, 65°16′14″W, 2553 m, lower montane Yungas cloud forest, on saxicolous Lobariella sp., M.K. 15162 (LPB, UGDA); near Rio Ibirisu, close to Sajtarumi, 17°27′09″S, 65°16′29″W, 2059 m, lower montane Yungas cloud forest, on corticolous Lobariella sp., M.K. 15144c (LPB). Prov. Chapare: Parque Nacional Carrasco, Incachaca, 17°14′59″S, 65°49′36″W, 2560 m, Yungas cloud forest, oncorticolous, L. auriculata, A.F. 24711, 24724, 24725, on L. pallida, A.F. 24723 (KRAM, LPB), on L. exornata J.E. 29494, 29621, 29495 (LPB, hb. Etayo); near Río Batea Mayu close to Monte Punku, 17°31′33″S, 65°16′21″W, 2430 m, lower montane Yungas cloud forest, corticolous, on Lobariella sp. A.F. 25828 (KRAM, LPB); San Jacinto, cose to Villa TunariLago Corani road, 17°10′26″S, 65°45′13″W, 1877 m, open area with shrubs and scattered trees, on corticolous Lobariella sp., M.K. 15407 (LPB, UGDA). Dept. La Paz. Prov. Franz Tamayo: Parque Nacional y Área Natural de Manejo Integrado Madidi, below Keara Bajo, 14°41′40″S, 69°03′51″W, 3060 m, open area with shrubs and scattered trees, on corticolous Lobariella sp., M.K. 14882c, on L. crenulata, M.K. 14914 (LPB, UGDA); near Keara Bajo, 14°41′59″S, 69°04′34″W, 3290 m, open area with shrubs and scattered trees, corticolous, on L. pallida, A.F. 25243, 25247, L. crenulata, M.K. 14873b (KRAM, LPB, UGDA); Pukara between Keara and Keara Bajo, 14°42′09″S, 69°05′17″W, 3420 m, open area with shrubs, on corticolous L. pallida, M.K. 14936 (LPB); Área Natural de Manejo Integrado Nacional Apolobamba, near Rio Pelechuco, below Pelechuco close to new road to Apolo, 14°47′28″S, 69°01′32″W, 2860 m, open area with scattered trees, corticolous, on L. pallida, A.F. 25142, on L. auriculata, A.F. 25149 (KRAM, LPB). Prov. Nor Yungas: Desviación de La Paz a Coroico hacia Unchuavi, camino a Chulumani, 3210 m, S16°18′27″, W67°53′48″, bosque nublado, on L. pallida, J.E 26937 (LPB, hb. Etayo). Prov. Bautista Saavedra: km 202 on the road from Apolo to Charazani villages, 20 km from Charazani, 15°12′35″S, 68°51′30″W, 2259 m, transition Yungas montane forest-cloud forest, on L. pallida, J.E. 27416 (LPB); near Charazani village, 15°10′39″S, 68°56′36″W, 2237 m, Yungas montane forest with outcrops, on Lobariella sp., J.E 15-3 (LPB, hb. Etayo). Dept. Santa Cruz. Prov. Manuel María Caballero: near Siberia, km 232, 17°49′13″S, 64°40′45″W, 2550 m, Yungas cloud forest, on L. subexornata on trees, J.E. 29441 (LPB, hb. Etayo). Dept. Tarija. Prov. O’Connor: 26 km from Entre Ríos, near Soledad, 21°39′52″S, 64°07′22″W, 1700 m, Tucumano-Boliviano montano forest, on Lobariella cf. reticulata, J.E. 54-2 (LPB, hb. Etayo). A. Flakus et al.: Biodiversity assessment of ascomycetes inhabiting Lobariella lichens in Andean cloud forests Sclerococcum ricasoliae (Vouaux) Flakus, Rodr. Flakus & Etayo, comb. nov. (Fig. 20) MycoBank MB 833340 Basionym: Karschia ricasoliae Vouaux, Bulletin de la Société Mycologique de France 29: 448. 1913. Type: Mexico, Morelia, Cerro Azul, 2300 m, 10 March 1910, Brouard (Y. Rondon, MARSSJ – lectotype!, selected by Hafellner 1979). Description. Ascomata apothecioid, rounded, 0.15– 0.6 mm diam., dispersed or in small groups, black, matte. Disc flat, black. Margin distinct, persistent, concolorous with the disc. Exciple orange- to dark-brown, paraplectenchymatous, composed of thick-walled cells, laterally 20–40 μm wide, basally 25–50 μm wide, in the upper part composed of small cells, 2–6 × 2–4 μm, in the lower part of large cells, 5–15 × 4–11 μm. Epihymenium hyaline to light brown. Hymenium hyaline to light orange-brown, 45–70 μm high, strongly gelatinized. Paraphyses slightly branched and anastomosing, 1–2 μm wide, sometimes with swollen and pigmented apices, up to ~ 4 μm wide. Hypothecium dark orange-brown. Asci with a K/I+ dark blue outer layer, 8-spored, 35–50 × 10–15 μm. Ascospores light to dark greyish brown to brown, ellipsoidal, verruculose, 1-septate, without a gelatine coat, 8–(x = 11.6 s = 1.7)–15 × 4–(x = 5.2 s = 0.7)–6 μm, l/b ratio 1.5–(x = 2.2 s = 0.4)–3.5 (n = 94). 313 Ecology and distribution. The species is known from Bolivia, Ecuador, Mexico and Panama (also as Dactylospora lobariella) where it grow on various species of Lobariella, Ricasolia and Yoshimuriella (Flakus & Kukwa 2011; Etayo 2017). Notes. Dactylospora lobariella as circumscribed by Hafellner (1979) was reported from several host species from the order Peltigerales (Lobaria erosa, L. pulmonaria, Lobariella pallida, Pseudocyphellaria coppinsii, Ricasolia amplissima, R. patinifera, R. quercizans, R. virens and Yoshimuriella dissecta) in Bolivia, Canada, Chile, Ecuador, Europe, Macaronesia, Mexico and USA (Vouaux 1913; Hafellner 1979; Kondratyuk & Galloway 1995; Etayo & Diederich 1996; Galloway & Quilhot 1998; Diederich 2003; Spribille et al. 2010; Flakus & Kukwa 2012; Etayo 2017). Recently Diederich et al. (2018) confirmed its placement in Sclerococcales and transferred it to genus Sclerococcum. According to our analyses (Fig. 7) S. lobariellum s.lat. represents two semicryptic species: (i) neotropical populations growing on Lobariella pallida and Ricasolia patinifera and (ii) European populations of S. lobariellum s.str. growing on Lobaria pulmonaria. Because we observed additional small differences between the two taxa, mainly in ascospores size [8–(x = 11.6)–15 × 4–(x = 5.2)–6 μm (l/b ratio 2.2) in S. ricasoliae vs. 12–(x = 14)–17 × 4.5–(x = 5.2)–6.5 μm (l/b ratio 2.7) in Figure 20. Sclerococcum ricasoliae (A–E, on Lobariella pallida, based on A.F. 25967-3) and Monodyctis cf. fuliginosa (F–G, on Ricasolia patinifera, based on A.F. 27774). A – apothecial ascomata on the host thallus; B – section of ascomata in LPCB; C – section of exciple in LPCB; D – asci in water (left) and K/I (right); E – ascospores in water; F – simple conidia dispersed on the host thallus; G – muriform conidia in LPCB. Scales: A, F = 250 µm; B = 50 µm; C = 25 µm; D–E, G = 10 µm. 314 S. lobariellum], but also in the exciple and hymenium dimensions (already mentioned by Etayo 2017), we support the taxonomic distinctiveness of the neotropical populations from S. lobariellum s.str. Karschia ricasoliae described by Vouaux (1913) on Ricasolia (the type is small and in a poor condition, making it difficult to choose between Lobariella or Ricasolia) from mountain forest in Mexico seems to be the only available name. During our examination of several Ricasolia patinifera collections from Bolivia, we found an additional anamorphic fungus (A.F. 27774) growing intermixed with ascomata of Sclerococcum ricasoliae. The fungus is characterized by having dark brown, muriform conidia measuring 10–25 μm diam. (composed of cells of 4–6 μm diam.) and arising solitarily on the surface of the host from short conidiogenous cells. The fungus is very similar to Monodictys fuliginosa described and illustrated by Etayo & Diederich (1996) from Lobaria pulmonaria. Molecular data obtained from this individual (extracted directly from conidia) support its affiliation with Sclerococcum ricasoliae (Fig. 7). Because all known anamorphic states of Sclerococcum develop sporodochia while the conidia of the Bolivian Monodictys cf. fuliginosa (A.F. 27774) arise individually, we suspect that the sequence may be a result of a contamination from the sexual state of S. ricasoliae co-occurring on the same sample. On the other hand, in Europe we frequently observed M. fuliginosa-like anamorphs intermixed with S. lobariellum suggesting a possibility that our fungus represents a second type of anamorphic state of Sclerococcum, but this putative teleomorph-anamorph connection needs to be confirmed on a larger number of samples. Specimens on Lobariella examined. BOLIVIA. Dept. Cochabamba. Prov. Carrasco: Parque Nacional Carrasco, Meruvia close to Monte Punku, 17°35′06″S, 65°14′54″W, 3283 m, Podocarpus-Polylepis forest, corticolous, on L. pallida, A.F. 25590, on Lobariella sp. A.F. 25591, M.K. 15034 (KRAM, LPB, UGDA), on L. auriculata, M.K. 15029c (LPB), on Lobariella sp., J.E. 27-4 (LPB, hb. Etayo); between Meruvia and Monte Punku, 17°34′43″S, 65°15′25″W, 3082 m, Podocarpus forest, corticolous, on L. pallida, A.F. 25611, 25620 (KRAM, LPB). Prov. Tiraque: Parque Nacional Carrasco, Camino de los Nubes, Antenas Sillar-Villa Tunari old road, 17°12′32″S, 65°41′52″W, 3520 m, upper montane Youngas cloud forest, corticolous, on L. pallida, A.F. 25967; (KRAM, LPB) 17°12′29″S, 65°41′24″W, 3590 m, on Lobariella pallida, J.E 41-2 (LPB, hb. Etayo); old guard’s camp, 17°18′23″S, 65°45′60″W, 3360 m, open area with shrubs, on L. pallida, A.F. 26039, 26044 (KRAM, LPB), on Lobariella sp. J.E. 44-3 (LPB, hb. Etayo); Dept. La Paz. Prov. Franz Tamayo: Área Natural de Manejo Integrado Nacional Apolobamba, near Rio Pelechuco, below Pelechuco close to new road to Apolo, 14°46′22″S, 69°00′11″W, 2480 m, lower montane Yungas cloud forest, corticolous, on L. pallida, A.F. 25068 (KRAM, LPB); near Rio Pelechuco, below Pelechuco close to new road to Apolo, 14°46′59″S, 69°01′08″W, 2750 m, open area with scattered small trees, on corticolous Lobariella sp., M.K. 14787b (LPB). Prov. Larecaja: near Chumisa, close to Sorata-Consata road, 15°36′18″S, 68°39′28″W, 3337 m, open area with shrubs, corticolous, on L. pallida, A.F. 26303 (KRAM, LPB); above Sorata, close to Sorata-Mapiri road, 15°44′11″S, 68°38′41″W, 3706 m, open area with shrubs including Ericaceae, on Lobariella sp., J.E. II-1 (LPB, hb. Etayo). Prov. Murillo: Plant and Fungal Systematics 64(2): 283–344, 2019 Valle del Zongo, páramo yungueño, rocas sueltas entre pastos con arbustos, 3375 m, 16°10′15″S, 68°08′02″W, on L. crenulata, J.E. 26765 (LPB, hb. Etayo). Prov. Nor Yungas: desviación de La Paz a Coroico hacia Unchuavi, camino a Chulumani, bosque nublado, 3210 m, 16°18′27″S, 67°53′48″W, on L. pallida, J.E. 26936 (LPB, hb. Etayo); near Nogalani village, on the road Coroico-La Paz (casa azul de Alejo), 16°12′57″S, 67°49′15″W, 2168 m, Yungas secondary cloud forest, on L. pallida, J.E. 27960 (LPB, hb. Etayo); Coroico village, 16°11′10″S, 67°43′16″W, 1550 m, Yungas montane forest, on L. pallida, A.F. 16420-2 (KRAM, LPB); below Unduavi village, on the road La Paz-Chulumani, 16°18′27″S, 67°53′48″W, 3210 m, Yungas cloud forest, corticolous, on L. pallida, A.F. 22200 (KRAM, LPB). Dept. Santa Cruz. Prov. Comarapa: Remate, 17°52′11″S, 64°20′53″W, 2250, Yungas forest with big trees, partly grazed, corticolous, on L. pallida, A.F. 29132 (KRAM, LPB). PANAMA. Prov. Chiriquí. Parque Nacional Volcán Barú, Sendero Volcán, W slope, 08°48′49″N, 82°33′50″W, 2444 m, montane forest close to open rocks, on L. cf. pallida, A.F. Fla6/B (PMA). Specimens on Ricasolia patinifera examined. BOLIVIA. Dept. Chuquisaca. Prov. Belisario Boeto: between Nuevo Mundo and Villa Cerrano, 19°00′52″S, 64°20′17″W, 2569 m, Boliviano– Tucumano forest with Podocarpus and Polylepis, corticolous, A.F. 26632 (KRAM, LPB). Dept. Tarija. Prov. Burnet O’Connor: 26 km from Entre Ríos, near Soledad, 21°39′52″S, 64°07′22″W, 1690 m, Tucumano-Boliviano montano forest, corticolous, A.F. 24225 (KRAM, LPB); 60 km from Tarija, new road between Tarija and Entrerios, 21°28′52″S, 64°17′41″W, 1837, Boliviano-Tucumano forest with Podocarpus, corticolous, A.F. 27635 (KRAM, LPB); 112 km from Tarija on the way to Entre Ríos, near San Diego, 21°26′28″S, 64°14′37″W, 1620 m, Tucumano-Boliviano montano forest, J.E. 28595 (LPB, hb. Etayo). Specimen of Monodictys cf. fuliginosa examined. BOLIVIA. Dept. Tarija. Prov. Burnet O’Connor: close to los Pinos, old road between Entrerios and Tarija, 21°25′57″S, 64°19′17″W, 2178, Boliviano-Tucumano forest close to small river dominated by shrubs, on corticolous Ricasolia patinifera, A.F. 27774 (KRAM, LPB). Stigmidium disconephromeum Etayo Notes. Stigmidium disconephromeum has characteristic perithecioid ascomata (60–70 µm diam.), that are almost entirely immersed in the hymenium of the host apothecia, and small bacilliform, hyaline ascospores (10–13.5 × 3–3.5 µm), and was originally described from Nephroma antarcticum in Chile (Etayo & Sancho 2008). Later the species was reported from Ecuador as a parasite of Lobariella pallida (Etayo 2017). Although Stigmidium is considered strongly host-specific (Roux & Triebel 1994; Diederich et al. 2018) and the specimen growing on Lobariella may represent an additional species, further studies on a larger material are needed to reveal its taxonomic identity. There is one additional species, Stigmidium lobariae, decribed from Lobariaceae (Lobaria pulmonaria) and known from Alaska and Spain (Zhurbenko & Etayo 2012). This species is easily distinguished by its smaller ascomata (40–70 µm) and larger ascospores [(9.5−)12.5−15(−16.5) × (3−)3.5−4(−4.5) µm] of a different shape and color (olive-brown when mature). Other species growing on Peltigerales, such as S. croceae, S. cupulare, S. peltideae, S. pseudopeltideae, S. schaereri, S. solorinarium, and S. spegazzinii, apart from their distinct host preferences A. Flakus et al.: Biodiversity assessment of ascomycetes inhabiting Lobariella lichens in Andean cloud forests 315 (inhabiting Peltigera, Pseudocyphellaria, Sticta or Solorina) can also be differentiated by the ascospore and/or ascomata characters as discussed in detail by Zhurbenko & Etayo (2012). Ecology and distribution. The species is known from Chile (Etyo & Sancho 2008) and Ecuador (Etayo 2017) where it grows in the apothecial hymenium of Nephroma antarcticum and Lobariella pallida. Specimens examined. ECUADOR. Prov. Imbabura. Otavalo, Reserva bosque nublado INTAG, La delicia, bosque nublado con Gunnera y helechos arborescentes, 2700 m, corticícola, sobre L. pallida, J.E 25618 y Z. Palice (hb. Etayo). Trichonectria setadpressa Etayo (Fig. 21) Description of asexual state. Conidiomata sporodo- chia-like agregated conidiophorus, developing on an arachnoid subiculum on the upper side of the host thallus, pinkish, fused in groups resembling droplets. Conidiogenous cells hyaline, aseptate, straight to bent or twisted, wider at the base and tapering at the apex, 10–30 × 1–2.5 μm. Conidia hyaline, aseptate, subglobose to broadely ellipsoidal, not truncate, 2–(x = 3.1 s = 0.7)–4.5 × 2–(x = 2.3 s = 0.3)–3 μm, l/b ratio 0.7–(x = 1.4 s = 0.4)–2.3 (n = 47). Notes. This species was described from Colombia (Etayo 2002) and is characterized by having orange to brown, sessile ascomata (100–130 μm diam.), covered by short, adpressed, branched setae, and hyaline ascospores of 6–8 × 2–3 μm. We found two samples of T. setadpressa in Bolivia accompanied by an Acremonium-like anamorph representing its asexual state, as confirmed by our phylogenetic analysis (Fig. 3) Ecology and distribution. Known from Bolivia, Colom- bia (Etayo 2002) and Ecuador (Etayo 2017) from different species of Lobariella. Specimens examined (sexual state). BOLIVIA. Dept. Coch- abamba. Prov. Chapare: PN Carrasco, Incachaca, 17°14′59″S, 65°49′36″W, 2560 m, Yungas cloud forest, on Lobariella. subexornata on bushes, J.E. 29621 (LPB). Dept. La Paz. Prov. Franz Tamayo: Parque Nacional y Área Natural de Manejo Integrado Madidi, below Keara Bajo, open area with shrubs and scattered trees, 14°41′47″S, 69°04′10″W, 3160 mm, on L. pallida, J.E. 20-13 (LPB, hb. Etayo). Prov. Larecaja: Jocollone village and 1 km further, Paramo Yungeño vegetation, open anthropogenic area, with Berberis, 15°37′35″S, 68°41′21″W, 3545 m, NE oriented slope, on L. pallida, J.E. 27199 (LPB, hb. Etayo). Prov. Murillo: Valle del Zongo, 3375 m, S16°10′15″, W68°08′02″, páramo yungueño, rocas sueltas entre pastos con arbustos, on L. crenulata on bushes, J.E. 26776 (LPB, hb. Etayo). Prov. Nor Yungas: desviación de La Paz a Coroico hacia Unduavi, camino a Chulumani, bosque nublado, 3210 m, 16°18′27″S, 67°53′48″W, on L. crenulata, J.E. 26939 (LPB, hb. Etayo); near Siniari colony, km 74 on the road Coroico-La Paz, 16°13′20″S, 67°50′37″W, 2090–2186 m, Yungas secondary cloud forest, on L. pallida, J.E. 27645 (LPB, hb. Etayo); near Nogalani village, on the road Coroico-La Paz (casa azul de Alejo), 16°12′57″S, 67°49′15″W, 2168 m, Yungas secondary cloud forest, on L. pallida, J.E. 27958 (LPB, hb. Etayo); Parque Nacional Cotapata, la Cumbre de Sillu Tincara, 16°17′22″S, 67°53′29″W, 3518, Páramo Yungueño, corticolous, on L. pallida, A.F. 29612, 29617 (KRAM, LPB); Chus- Figure 21. Trichonectria setadpressa anamorph (on Lobariella pallida, based on A.F. 29612-2). A – sporodochia-like conidiomata growing on the host thallus; B – conidia in LPCB. Scales: A = 250 µm; B = 10 µm. pipata station, old road Coroico-La Paz, 16°18′18″S, 67°48′55″W, 3009, disturbed Yungas cloud forest with shrubs and small trees, on L. crenulata, A.F. 28886 (KRAM, LPB). Specimens examined (Acremonium-like asexual state). BOLIVIA. Dept. La Paz. Prov. Franz Tamayo: Parque Nacional y Área Natural de Manejo Integrado Madidi, below Keara Bajo, 14°41′47″S, 69°04′10″W, 3160 m, open area with shrubs and scattered trees, on L. pallida, J.E. 20-13 (LPB, hb. Etayo). Prov. Nor Yungas: Parque Nacional Cotapata, la Cumbre de Sillu Tincara, 16°17′22″S, 67°53′29″W, 3518, Páramo Yungueño, on corticolous L. pallida, A.F. 29612 (KRAM, LPB). Xenonectriella coppinsiana Etayo Notes. This species was described by Etayo (2017) as having red, K+ violet ascomata (120–200 μm diam.), with large, concolorous papillae, and verruculose ascospores (8.5–10.5 × 5.5–8 μm). Ecology and distribution. Known from Bolivia and Ecuador on Lobariella pallida (Etayo 2017). Specimens examined. BOLIVIA. Dept. La Paz. Prov. Franz Tamayo: Parque Nacional y Área Natural de Manejo Integrado Madidi, near Keara Bajo, 14°41′59″S, 69°04′34″W, 3290 m, open area with shrubs and scattered trees, on corticolous L. pallida, M.K. 14873a (LPB). Prov. Nor Yungas: Desviación de La Paz a Coroico hacia Unchuavi, camino a Chulumani, bosque nublado, 3210 m, S16°18′27″, W67°53′48″, on L. pallida, J.E. 26930 (LPB, hb. Etayo); below Unduavi village, on the road La Paz – Chulumani, 16°18′27″S, 67°53′48″W, 3210 m, Yungas cloud forest, on L. pallida, A.F. 22202 (KRAM, LPB). 316 Xenonectriella rugulatispora Etayo Description of the asexual state. Fusarium-like aggregated conidiophores yellowish to orange (sometimes violet) (K–), conidiophores hyaline, simple to branched, 3–4 µm thick, conidiogenous cells straight, hyaline, 15–18 × 2–3 µm, conidia hyaline, acicular, curved to sigmoid, simple (when young) to multi-septe, (60–)65–120(–130) × 2–3 µm. Notes. The sexual state of the species is characterized by having brown or black ascomata with a reddish tinge (250–500 μm diam.), with large papillae (up to 100 µm long), and rugulose ascospores (11–14.5 × 9–10 μm) (Etayo 2017). A Fusarium-like asexual state was observed growing close to X. rugulatispora on the same host in two Bolivian samples (J.E. 27314, 29592). Because Fusarium-like fungi were reported as an asexual state of several hypocrealean genera (Booth 1971; Gerlach & Niremberg 1982; Nelson et al. 1983; Rossman et al. 1999), we speculate that this state in our specimens belongs to X. rugulatispora. Ecology and distribution. Known from Bolivia, Colom- bia and Ecuador (Etayo 2017) on Lobariella auriculata, L. crenulata and L. pallida. In Bolivia the species is more frequent than X. coppinsiana. Specimens examined (sexual state). BOLIVIA Dept. Cocha- bamba. Prov. Carrasco: Parque Nacional Carrasco, Meruvia close to Monte Punku, 17°35′06″S, 65°14′54″W, 3283 m, Podocarpus – Polylepis forest, on corticolous L. pallida, M.K. 15043a (LPB). Prov. Chapare: PN Carrasco, Incachaca, 17°14′59″S, 65°49′36″W, 2560 m, Yungas cloud forest, on L. pallida, J.E. 29520 (LPB, hb. Etayo); Incachaca, 17°14′59″S, 65°49′36″W, 2560 m, Yungas cloud forest, on L. auriculata, A.F. 24734 (KRAM, LPB). Dept. La Paz. Prov. Franz Tamayo: Parque Nacional y Área Natural de Manejo Integrado Madidi, Pukara between Keara and Keara Bajo, 14°42′09″S, 69°05′17″W, 3420 m, open area with shrubs, on corticolous L. pallida, M.K. 14922 (LPB, UGDA). Prov. Larecaja: Jocollone village and 1 km further, Paramo Yungeño vegetation, open anthropogenic area, with Berberis, NE oriented slope, 15°37′35″S, 68°41′21″W, 3545 m, on L. pallida, J.E. 27199 (LPB, hb. Etayo). Prov. Murillo: Valle del Zongo, bosque nublado, near metal bridge, 2450 m, 16°07′41″S, 68°05′55″W, on L. exornata on trees, J.E. 26739 (LPB). Prov. Nor Yungas: carretera Coroico – La Paz, sendero que parte de la Estación de servicio, 3220–3250 m, S16°17′09″, W67°51′00″, bosque nublado yungas, on Lobariella sp., J.E. 26698, 27682. (LPB, hb. Etayo), on L. cf. reticulata, J.E. 27700 (LPB, hb. Etayo); desviación de La Paz a Coroico hacia Unduavi, camino a Chulumani, 3210 m, 16°18′27″S, 67°53′48″W, bosque nublado, on L. pallida, J.E. 26918 (LPB, hb. Etayo); Parque Nacional Cotapata, between Tunkini and Chairo villages, above Tunkini, even Biologic station, 16°11′S, 67°52′W, 1300– 1600 m, Yungas montane forest, on L. crenulata, J.E. 27773 (LPB, hb. Etayo); near Nogalani village, on the road Coroico-La Paz (casa azul de Alejo),16°12′57″S, 67°49′15″W, 2168 m, Yungas secondary cloud forest, on L. pallida, J.E. 27981 (LPB, hb. Etayo). Prov. Bautista Saavedra: 28 km from Charazani village, on the road Charazani-Apolo, 15°12′43″S, 68°47′25″W, 1650– 1775 m, Yungas montane forest, open area with boulders SW, on L. crenulata, J.E. 27319 (LPB, hb. Etayo). Dept. Santa Cruz. Prov. Manuel María Caballero: near Siberia, 17°49′34″S, 64°43′14″W, 2800 m, Yungas cloud forest with outcrops, on Lobariella sp., J.E. 28762 (LPB); near Siberia, 17°49′38″S, 64°44′45″W, 3950 m, open Yungas cloud forest, on L. cf. pallida, J.E. 29599 (LPB), on Lobariella sp., J.E. 29601 (LPB, hb. Etayo); near Siberia, Plant and Fungal Systematics 64(2): 283–344, 2019 17°49′38″S, 64°44′45″W, 3950 m, open Yungas cloud forest, on L. pallida, J.E. 29577 (LPB, hb. Etayo). Specimens of a Fusarium-like asexual state examined. BOLIVIA. Dept. La Paz. Prov. Bautista Saavedra: 28 km from Charazani village, on the road Charazani-Apolo, 15°12′43″S, 68°47′25″W, 1650–1775 m, Yungas montane forest, open area with boulders, on L. exornata, J.E. 27314 (LPB, hb. Etayo). Dept. Santa Cruz. Prov. Manuel María Caballero: near Siberia, 17°49′38″S, 64°44′45″W, 3950 m, open Yungas cloud forest, on apothecial disk of L. cf. pallida, J.E. 29592 (LPB, hb. Etayo). Xylaria lichenicola Flakus, Rodr. Flakus & Etayo, sp. nov. (Fig. 22) MycoBank MB 833341 Diagnosis: Lichenicolous fungus characterized by having dark brown sclerotia, 0.2–1.0 × 0.1–0.3 mm, with a rough surface, developing on a white arachnoid mycelium or directly on the host thallus, internally composed of hyaline, thick-walled, interwoven hyphae, 4–10 μm thick, with lumina 0.5–3 μm thick, surrounded by a cortical layer composed of dark-brown, isodiametric, thin-walled hyphae, with cells 4–17 μm diam. Type: Bolivia: Dept. Chuquisaca, Prov. Luis Calvo, Parque Nacional y Área Natural de Manejo Integrado Serranía del Iñao, between Ticucha and Entre Ríos, 19°31′09″S, 63°53′31″W, 1373, disturbed area with shrabs, corticolous, on Lobariella sp., Adam Flakus 26802 (KRAM – holotype!; LPB – isotype!). Description. Ascospores or conidia unknown. Colonies appearing as dispersed sclerotia with a white arachnoid mycelium, growing on the host thallus and causing bleaching. Mycelium hyaline, arachnoid, composed of branched and septate, hyaline hyphae, of two types, one with large, straight, cells, 30–150 × 2–10 μm, usually aggregated in compacted bunches, and a second of loosely arranged, short cells, 7–15 × 4–9 μm. Sclerotia dark brown, borne on a mycelium or directly on the host thallus, not immersed, narrowly ellipsoidal with acute ends to subglobose, 0.2–1.0 × 0.1–0.3 mm, usually in groups, dark brown, not translucent, shiny, with a rough surface, covered by short, dark brown hairs; internally composed of a mass of hyaline, thick-walled, interwoven hyphae, 4–10 μm thick, with lumina 0.5–3 μm thick, surrounded by a dark-brown, cortical layer composed of isodiametric, thin-walled hyphae, with cells 4–17 μm diam. Etymology. The epithet refers to the lichenicolous habitat. Ecology and distribution. Known only from the locus classicus in Bolivia on Lobariella sp. Notes. Xylaria lichenicola was revealed as a member of Xylaria subgenus Pseudoxylaria and was shown to be closely related to an endolichenic strain of Xylaria sp. (FL0491) known from Cladonia didyma. Based on the differences in host selection, we decided to formally described the lichenicolous species (Fig. 8), although, the endophyte may also belongs to it. Phylogenetic study of the Spirographa complex We gathered multilocus sequence data (nrITS, mrSSU, nrLSU, RPB1 A-F) from 18 individuals morphologically representing Spirographa and related taxa (the A. Flakus et al.: Biodiversity assessment of ascomycetes inhabiting Lobariella lichens in Andean cloud forests 317 Figure 22. Xylaria lichenicola (on Lobariella sp., based on A.F. 26802, holotype). A–B – sclerotia growing on host thallus; C – paraplectenchymatous tissue of the cortical layer in LPCB; D–E – section of the sclerotium in water (D) and LPCB (E); F–G – section of the brown-pigmented cortical layer in water (F) and LPCB (G); H – section of the hyaline, inner part of sclerotia in LPCB; I – compacted bunches of mycelial tissue in water; J – mycelium composed of large-celled straight hyphae in LPCB; K – mycelium composed of short-celled curved hyphae in LPCB. Scales: A = 500 µm; B = 250 µm; C, F–K = 10 µm; D = 50 µm; E = 25 µm. Spirographa complex) (Table S1). All 18 individuals were consistently monophyletic with strong bootstrap support (Figs 23–24A) forming an independent lineage sister to a highly supported clade encompassing Fissurinaceae + Gomphillaceae (sister relationship with 77% bootstrap support) + Graphidaceae (with 99% bootstrap support) in Ostropales (Fig. 23). Deep relationships representing the early evolutionary splits in the Ostropales are poorly supported, however, the overall topology (Fig. 23) is in agreement with the relationships revealed by multiple multilocus phylogenies for the class Lecanoromycetes (Miadlikowska et al. 2014; Pino-Bodas et al. 2017; Carbone et al. 2019; but see an alternative phylogeny and classification in Kraichak et al. 2019). Our phylogeny for Graphidaceae s.lat. (Fig. 24A) confirms overall the topology (e.g., delimitations and relationships among the subfamilies and tribes) revealed previously by Lumbsch at al. (2014). Based on the robust phylogenetic placement (above 75% bootstrap support) and phenotypic characteristics of all collections examined, we propose to recognize the Spirographa clade at the family level within the order Ostropales. Twenty-two species including four newly described (Spirographa aggregata, S. galligena, S. maroneae, and S. parmotrematis) are currently recognized in this monogeneric family. This discovery of another non-lichenized (lichenicolous and fungicolous) lineage in the Ostropales (Fig. 23) adds to the current understanding that multiple trophic transitions occurred in the Ostropomycetidae, including multiple putative losses of lichenization in this lichen dominated clade (Lutzoni et al. 2001; Spribille et al. 2014; Resl et al. 2018). 318 Plant and Fungal Systematics 64(2): 283–344, 2019 Taxonomy of the genus Spirographa Spirographaceae Flakus, Etayo & Miadlikowska, fam. nov. MycoBank MB 833342 Diagnosis: A monotypic family of lichenicolous and fungicolous fungi belonging to the Ostropales (Lecanoromycetes). The sexual state characterized by having apothecioid or perithecioid, cleistohymenial ascomata, immersed or sessile on the host thalli or hymenia, single or aggregated on a stroma, with honey-brown, dark-brown or black pigments, a persistent exciple, I– and K/I– hymenium, simple to branched paraphyses, functionally unitunicate asci, ~ 16–32-spored, and 1-septate, hyaline, narrowly ellipsoidal to fusiform, curved or sigmoid ascospores. The asexual state characterized by having immersed, pycnidial conidiomata, hyaline to yellowish brown or dark brown, disintegrating irregularly at the top to release conidia; hyaline, septate, branched conidiophores, holoblastic, synchronous or sympodial conidiogenous cells, and hyaline, Y-shaped, with a main axis and two diverging arms, or triangular, or tetra- to polyhedral conidia. Type genus: Spirographa Zahlbr. Description. Ascomata apothecioid or perithecioid, developing in the host thallus or hymenia, cleistohymenial, single or aggregated in stromata, immersed in the host or rarely sessile. Disc hidden (covered by the exciple at maturity) or, if visible, concave, orange-brown, darkbrown or black. Exciple honey-brown, dark-brown or black, K–, N–, prominent, composed of isodiametric to elongate cells, without hairs. Hymenium K/I–, I–, composed of hyaline, simple, slightly branched paraphyses, 1.5–4.0 µm thick, usually apically thickened, covered by gel and granular pigments. Epihymenium with honey-brown, orange brown or black, pigments granular, K–, N–. Asci clavate to cylindrical, functionally unitunicate, wall apically not thickened, K/I–, I–, ~ 16–32-spored. Ascospores 1-septate, hyaline, narrowly ellipsoidal to fusiform, spirally arranged in asci (except in short-spored species), with rounded or pointed ends, sometimes with large cilia developed on both ends, not constricted at the septa, straight to curved or sigmoid, smooth, without a gelatinous cover. Conidiomata immersed in the host thallus or hymenia, pycnidial, globose to pyriform, hyaline to yellowish brown or dark brown. Pycnidial wall composed of isodiametric to slightly elongated cells, disintegrating irregularly at the top to release a colorless to pale-pink mass of agglutinated conidia. Conidiophores hyaline, septate, thin-walled, arising from the innermost cells of the pycnidial walls, branched. Conidiogenous cells holoblastic, synchronous or sympodial, integrated, terminal to lateral, thin-walled, producing few conidia from minute loci. Conidia hyaline, truncate, aseptate, either Y-shaped, with a main axis and two diverging arms, or triangular, or tetra- to polyhedral. Notes. The genus Spirographa was introduced by Zahl- bruckner (1907) and later classified by Hawksworth and Sherwood (1982) in the family Odontotremataceae in Ostropales. Diederich & Etayo (2000) suggested a placement in Helotiales close to Skyttea. However, Diederich (2004) confirmed that ascomata in the young state are cleistohymenial and maintained the systematic position proposed by Hawksworth and Sherwood (1982). For a long time, the species concept in Spirographa was misunderstood and all known species were incorporated into S. fusisporella s.lat. (Kocourková 2000; Diederich 2004; Santesson et al. 2004; Ihlen & Wedin 2008; Brackel 2014). However, Etayo (2002, 2017) and Diederich (2004) mentioned high morpological variability of S. fusisporella and suggested that further taxonomic studies may split the taxon in several species. An additional two species of Spirographa were described from Usnea (S. usneae) and Sticta (S. longispora) (Flakus & Kukwa 2012b; Etayo 2017) based on morphological characters. Based on our multilocus phylogenetic analyses (Fig. 23, 24B), we demonstrated that Spirographa forms an independent lineage (recognized as Spirographaceae) within Ostropales, sister to the clade containing Fissurinaceae, Gomphillaceae and Graphidaceae. We also revealed that Cornutispora (Pirozynski 1973), a conidial genus of previously unknown phylogenetic position, represents an asexual state of Spirographa, and that Asteroglobulus (Brackel 2011) together with Pleoscutula (Vouaux 1913; Hafellner 1982) are congeneric with Spirographa (Fig. 24B). Our comprehensive assessment based on molecular, anatomical and ecological data, reveal that species of the re-circumscribed genus Spirographa are strongly host-specific, mainly at the generic level. Spirographa Zahlbr. (Figs 25–30) Generic type: Spirographa spiralis (Müll. Arg.) Zahlbr. = Asteroglobulus Brackel, Herzogia 24(1): 69. 2011., syn. nov. Type: Asteroglobulus giselae Brackel = Cornutispora Piroz., Mycologia 65(4): 763. 1973., syn. nov. Type: Cornutispora limaciformis Piroz. = Graphinella Zahlbr., Cat. Lich. Univers. 2: 285. 1923. Type: Graphinella fusisporella (Nyl.) Zahlbr. = Pleoscutula Vouaux, Bull. Soc. Mycol. Fr. 29: 434. 1913., syn. nov. Type: Pleoscutula arsenii Vouaux = Pleospilis Clem., Gen. Fung. (Minneapolis): 69. 1909. Type: Pleospilis vermiformis (Leight.) Clem. = Spilomela (Sacc. & D. Sacc.) Keissl., Beih. Bot. Zbl., Abt. 2 37: 272. 1920. ≡ Melaspilea subgen. Spilomela Sacc. & D. Sacc., Syll. Fung. (Abellini) 18: 179. 1906. Type: Spilomela vermifera (Leight.) Keissl. = Spirographomyces Cif. & Tomas., Atti Ist. bot. Univ. Lab. Crittog. Pavia 10(1): 43, 69. 1953. Type: Spirographomyces spiralis (Müll. Arg.) Cif. & Tomas. Description of the sexual state. Ascomata apothecioid or perithecioid, cleistohymenial, arising singly or aggregated in stromata, immersed in the host or sessile. When hymenium exposed at maturity then disc concave, darkbrown, orange-brown or black, usually concolorous with the margin or paler. Exciple honey-brown, dark-brown or black, K–, N–, prominent, without hairs, composed of isodiametric cells. Hymenium hyaline, K/I–, I–. Subhymenium indistinct. Epihymenium with honey-brown, orange brown or black, granular pigments, K–, N–. Paraphyses 1.5–4 µm thick, hyaline, simple, septate, sometimes slightly branched in the upper part, usually apically thickened and covered by granular pigment. Asci clavate A. Flakus et al.: Biodiversity assessment of ascomycetes inhabiting Lobariella lichens in Andean cloud forests to cylindrical, functionally unitunicate, wall apically not thickened, K/I–, I– (only endoascus I+ slightly orange), ~ 16–32-spored. Ascospores 1-septate, hyaline, narrowly ellipsoidal to fusiform, usually spirally arranged in the ascus, with rounded- or pointed-ends, sometimes with large cilia developed on both apices, not constricted at the septum, straight to curved or sigmoid, multiguttulate, smooth, without perispore, 7–48 × 1–4 µm. Description of the asexual state. Conidiomata immersed in the host thallus or hymenia, pycnidial, globose to pyriform, hyaline to yellowish brown or dark brown. Pycnidial wall composed of thin- to thick-walled isodiametric cells, disintegrating irregularly around the top to release a colorless to pale-pink mass of agglutinated conidia. Conidiophores hyaline, septate, thin-walled, arising from the innermost cells of the pycnidial walls, branched. Conidiogenous cells holoblastic, synchronous or sympodial, integrated, terminal to lateral, thin-walled, producing 1–3 conidia from minute loci. Conidia hyaline, truncate, aseptate, either Y-shaped, with a main axis and two diverging arms, or triangular, or tetra- to polyhedral, 3–35 µm diam. For a detailed description see Pirozynski (1973), Hawskworth (1976) and Punithalingam (2003). Notes. Members of the cosmopolitan genus Spirographa (especially its asexual Cornutispora-like states) were previously treated as generalists and reported from a broad variety of host lichens and also from non-lichenized fungi (e.g., Punithalingam 2003; Santesson et al. 2004; Ihlen & Wedin 2008; Brackel 2014). Our phylogenetic analyses showed that species in the genus are strongly host-specific, as the individuals collected from the same host genus clustered together (Fig. 24B). Future examination of a larger material may reveal additional undescribed species and could also help to understand the species boundaries, distribution, and host range in Spirographa. Our results clearly show that asexual states of Spirographa with very similar characteristics of conidia may be not related phylogenetically (e.g. S. giselae, S. pyramidalis and S. macropyramidalis) and their sexual states strongly differ in ascospore size (11–20 × 2–3.5 µm, 7–10 × 2–3 µm, and 9–13 × 2.5–3 µm, respectively). Keys for the identification of the majority of described Cornutispora-like anamorphs are available (Punithalingam 2003; Etayo 2017; Diederich et al. 2019). Ecology and distribution. Spirographa is a cosmopolitan genus known from a variety of lichen hosts and non-lichenized fungi. However, the distribution of the majority of the species is poorly known. Spirographa aggregata Flakus, Etayo & Miadlikowska, sp. nov. (Figs 25A, 26A, B, 27A) MycoBank MB 833343 Diagnosis: Differs from Spirographa arsenii in having longer, ciliate ascospores, 30–48 × 2.5–4 μm, apothecia of 250–450 µm diam. developing on black stromata, 1–8 mm diam., and in the host selection (Polyblastidium corallophorum). Type: Bolivia. Dept. La Paz. Prov. Murillo: below Potosí near campamento de los mineros, on the road La Paz – Valle 319 del Zongo, 16°17′43″S, 68°07′42″W, 4716 m, high Andean vegetation, on Polyblastidium corallophorum, Javier Etayo 34-5 (LPB – holotype!; hb. Etayo – isotype!). Description. Ascomata arranged in black, convex, matte, stromata, 1–8 mm diam. Ascomata 250–450 µm diam., apothecioid, black, strongly concave, matte, cleistohymenial. Disc exposed when mature, strongly concave, black, matte. Margin black, prominent, thick, with a rough surface, without hairs, concolorous with the disc. Exciple laterally 60–100 µm wide, of irregular outerline, irregularly pigmented, paraplectenchymatous, composed of thick-walled, isodiametric cells, 2–6 um diam., dark brown, olivaceous-brown to orange-brown, with additional yellowish green pigment (K+ intensifying yellowish green), with thin hyaline to yellowish green inner layer,10–15 um wide, composed of narrow, thin-walled hyphae. Epihymenium with orange-brown to dark-brown granular pigments. Hymenium 100–150 µm, hyaline. Subhymenium hyaline to yellowish green, ~ 20 µm tall. Paraphyses simples to sparsely branched, septate, 1.5– 3.5 µm, usually with a widened apical cell, up to 4–6 µm, with pigmented gel cover. Asci functionally unitunicate, widely clavate, with obtuse apex, about 32-spored, I–, KI–, 8–100 × 10–20 µm. Ascospores long fusiform, and apically cilate, hyaline, straight to curved, 1-septate, 30– (x = 37.9 s = 3.9)–48 × 2.5–(x = 3.7 s = 0.4)–4 μm, l/b ratio 7.5–(x = 10.5 s = 1.8)–14 (n = 27). Asexual state unknown. Etymology. The epithet refers to ascomata that are aggregated in stromata. Notes. The species is the only one in Spirographa developing ascomata aggregated on a stroma. It is characterized by having apothecioid ascomata, a strongly pigmented and large exciple, the presence of an additional yellowish green pigment in the exciple, and large, distinctly ciliate ascospores. The only other species of Spirographa having ciliate ascospores of a similar size is S. maroneae, which differs by single, perithecioid ascomata that are immersed in the host thallus, and by a different host selection (Maronea constans). The new species can be also confused with Spirographa arsenii and S. hypotrachynae, members of the former genus Pleoscutula, because of having similarly dark pigmented ascomata. Both, however, can be differentiated by their non-aggregated ascomata, shorter ascospores (9–13 × 2.5–4 µm in S. arsenii and 13–19 × 2–2.5 µm in S. hypotrachynae), and a different host selection (Heterodermia spp., Polyblastidium japonicum, and Lichenopeltella growing on Hypotrachyna, respectively) (Hafellner 1982; Etayo 2002). Ecology and distribution. It is known only from two localities in Bolivia where it grows on saxicolous Polyblastidium corallophorum. It seems to be a very rare species. Additional specimen examined. BOLIVIA. Dept. Cochaba- bamba. Prov. Carrasco: Carrasco National Park, Wayra Mayu close to Monte Punku, 17°32′27″S, 65°16′14″W, 2550 m, Yungas cloud forest, on Polyblastidium corallophorum on rock, J.E 31907 (LPB, hb. Etayo). 320 Plant and Fungal Systematics 64(2): 283–344, 2019 Arctomia interfixa Arctomia teretiuscula Arctomia delicatula OUTGROUP Wawea fruticulosa 100 Gregorella humida 0 Gregorella humida 1 Thrombium epigaeum THROMBIACEAE Protothelenella santessonii 100 PROTOTHELENELLACEAE Protothelenella corrosa Epigloea soleiformis 0 100 EPIGLOEACEAE Epigloea soleiformis 1 Thelenella antarctica 100 THELENELLACEAE Thelenella cinerascens 100 Thelenella muscorum Cyanodermella viridula 100 Cyanodermella oleoligni 82 Absconditella lignicola 100 Xyloschistes platytropa Cryptodiscus pini 100 90 Cryptodiscus pallidus 97 Cryptodiscus tabularum 87 Cryptodiscus foveolaris Cryptodiscus gloeocapsa 1 Cryptodiscus gloeocapsa 0 Cryptodiscus epicladonia 75 76 Cryptodiscus cladoniicola 0 100 Cryptodiscus cladoniicola 1 Stictis radiata 97 Stictis urceolata 1 100 100 Stictis urceolata 0 Acarosporina microspora STICTIDACEAE 78 Stictis populorum 100 Stictis brunnescens Carestiella socia Ostropa barbara Schizoxylon albescens Absconditella sphagnorum Sphaeropezia capreae 1 100 Sphaeropezia capreae 0 Sphaeropezia arctoalpina 100 Sphaeropezia ochrolechiae 80 83 Sphaeropezia mycoblasti 100 92 Sphaeropezia lyckselensis 0 Sphaeropezia lyckselensis 1 92 100 Sphaeropezia diffindens Sphaeropezia cassiopes Cryptodiscus rhopaloides Sagiolechia rhexoblephara 98 SAGIOLECHIACEAE Sagiolechia protuberans Odontotrema phacidioides 100 ODONTOTREMATRACEAE Odontotrema phacidiellum 98 Odontotrema richardsonii Coenogonium pineti 100 Coenogonium leprieurii COENOGONIACEAE 98 Coenogonium disjunctum 100 Coenogonium luteum Porina internigrans Porina lectissima 100 Porina epiphylla TRICHOTHELIACEAE Porina byssophila 100 Porina aenea Petractis clausa Phlyctis argena 100 Phlyctis agelaea Gyalidea praetermissa 93 Ramonia sp. 82 Petractis nodispora 87 Petractis luetkemuelleri Gyalecta leucaspis Gyalecta ulmi 85 GYALECTACEAE Gyalecta friesii 99 Gyalecta truncigena 100 Gyalecta geoica 78 100 Gyalecta flotowii Gyalecta russula 98 Gyalecta fagicola Gyalecta hypoleuca 100 83 100 Gyalecta herculana Gyalecta jenensis 100 Gyalecta schisticola Spirographa maroneae 100 Spirographa (Cornutispora) parmotrematis 0 Spirographa (Cornutispora) parmotrematis 1 100 98 Spirographa (Cornutispora) arsenii 0 100 Spirographa (Pleoscutula) arsenii 2 100 100 Spirographa (Cornutispora) arsenii 1 Spirographa pyramidalis 0 Spirographa (Cornutispora) pyramidalis 1 Spirographa giselae 0 SPIROGRAPHACEAE Spirographa (Pleoscutula) aggregata 83 100 Spirographa giselae 1 Spirographa (Asteroglobulus) giselae 0 Spirographa (Cornutispora) ophiurospora 0 82 Spirographa (Cornutispora) ophiurospora 1 Spirographa ophiurospora 0 100 Spirographa ophiurospora 1 Spirographa ophiurospora 2 99 Spirographa (Cornutispora) ophiurospora 2 Fissurina aff. humilis 83 77 100 Figure 23. Phylogenetic placement of Spirographaceae (highlighted) within Ostropales inferred from ML analyses based on a combined nrLSU, mrSSU, RPB1 and RPB2 dataset for 195 OTUs. Thick branches represent bootstrap values ≥ 70%. The lichenicolous species are bolded. The scale bar represents number of nucleotide substitutions per site. A. Flakus et al.: Biodiversity assessment of ascomycetes inhabiting Lobariella lichens in Andean cloud forests 86 95 98 75 77 Fissurina aff. humilis Dyplolabia afzelii Fissurina sp. 0 Fissurina sp. 1 Fissurina marginata 86 Fissurina insidiosa 88 Fissurina triticea FISSURINACEAE 98 100 96 99 87 Tricharia sp. Gyalidea fritzei Gyalidea hyalinescens Echinoplaca strigulacea Gyalideopsis vulgaris Corticifraga peltigerae 0 100 Corticifraga peltigerae 1 Taitaia aurea 0 100 Taitaia aurea 1 Taitaia aurea 2 Acanthothecis aurantiaca Chapsa pulchra Ocellularia profunda Ocellularia inturgescens Myriotrema olivaceum Myriotrema halei Ocellularia minutula 100 Ocellularia sp. 100 Ocellularia postposita Ocellularia chiriquiensis Ocellularia aurantia 1 100 Ocellularia aurantia 0 Ocellularia massalongoi 98 Ocellularia thelotremoides 100 Ocellularia perforata Ocellularia cavata 97 Ocellularia papillata 100 Ocellularia diacida Graphis sp. 1 100 Graphis sp. 0 100 Graphis aff. caesiella 92 Graphis scripta Graphis caesiella Graphis cf. gracilescens Graphis implicata Graphis cleistoblephara Platythecium grammitis Allographis pavoniana 100 Allographis cinerea 98 Allographis ruiziana Glyphis scyphulifera 100 Glyphis substriatula 89 Glyphis cicatricosa Diorygma sipmanii 100 Diorygma junghuhnii 100 Diorygma pruinosum 100 Diorygma circumfusum Platygramme australiensis 100 Platygramme caesiopruinosa Sarcographa ramificans 100 Phaeographis sp. 97 Sarcographa fenicis Phaeographis lecanographa 100 Phaeographis lobata Phaeographis caesioradians 99 Phaeographis brasiliensis 100 Phaeographis intricans Thelotrema bicinctulum Topeliopsis decorticans Topeliopsis muscigena Wirthiotrema glaucopallens Wirthiotrema trypaneoides Xalocoa ocellata Diploschistes actinostomus Diploschistes thunbergianus 100 Diploschistes scruposus Diploschistes diacapsis 92 Diploschistes rampoddensis Diploschistes muscorum Diploschistes cinereocaesius 1 Diploschistes cinereocaesius 0 Leucodecton subcompunctum Astrochapsa meridensis Pseudochapsa phlyctidioides 90 Chroodiscus coccineus 100 Chroodiscus argillaceus 95 Chroodiscus australiensis 95 Chroodiscus defectus Thelotrema gallowayanum 99 Thelotrema porinaceum Thelotrema nureliyum Thelotrema diplotrema 96 Thelotrema subtile Thelotrema suecicum 100 Thelotrema lepadinum 0 100 Thelotrema lepadinum 1 Thelotrema pachysporum 100 Thelotrema monosporum 93 100 Thelotrema monospermum Thelotrema saxatile GOMPHILLACEAE 100 99 94 100 100 98 80 98 0.3 Figure 23. Continued. GRAPHIDACEAE 321 322 Spirographa arsenii (Vouaux) Flakus, Etayo & Miadlikowska, comb. nov. (Figs 25B, 26C, 27B, 28A, 29A, 30A) MycoBank MB 833344 Basionym: Pleoscutula arsenii Vouaux, Bull. Soc. Mycol. Fr. 29: 435. 1913. Notes. The species was described by Vouaux (1913) and, as shown by Hafellner (1982), is characterized by having black, usually aggregated apothecia and small, narrowly ellipsoidal and slightly curved ascospores (9–13 × 2.5–4 µm). In the Bolivian material it was accompanied by a Cornutispora-like asexual state with triangular conidia (5–6.5 µm diam.). Ecology and distribution. The species is known from Bolivia and Mexico where it grows on different species of Heterodermia s.lat., including H. flabellata, H. galactophylla and Polyblastidium japonicum. Specimens examined (sexual state). BOLIVIA. Dept. Chuquisaca. Prov. Belisario Boeto: between Nuevo Mundo and Villa Cerrano, 19°00′49.5″S, 64°20′08.8″W, 2555 m, Boliviano-Tucumano forest with Podocarpus and Polylepis, on Heterodermia sp. on trunk, J.E. 29823 (LPB, hb. Etayo,). Dept. Cochabamba. Prov. Carrasco: Parque Nacional Carrasco, La Cumbre, El Camino de las Nubes, 17°17′46″S, 64°43′56″W, 4100 m, Páramo Yungueño with outcrops, on H. flabellata, J.E. 33-3 (LPB, hb. Etayo). Dept. La Paz. Prov. Franz Tamayo: between Apollo and Mapiri, 14°38′51″S, 68°24′44″W, 1521 m, savanna with schrubs and some trees, on Polyblastidium japonicum, A.F. 28238 (KRAM, LPB). Dpt. Tarija. Prov. Aniceto Arce: Reserva Nacional Flora y Fauna de Tariquía, between La Cumbre and quard station Los Alisos, 22°01′18.9″S, 64°34′22.5″W, 1950 m, upper montano Tucumano-boliviano cloud forest, on Heterodermia sp. on tree, J.E. 29840 (LPB, hb. Etayo); near La Mamora between Tarija and Bermejo, 22°09′51″S, 64°40′03″W, 1320 m, disturbed Tucumano-Boliviano forest, on Heterodermia sp. on trunk, J.E. 30409 (LPB). Prov. Burnet O’Connor: 60 km from Tarija, new road between Tarija and Entrerios, 21°28′52″S, 64°17′41″W, 1837 m, Boliviano-Tucumano forest with Podocarpus and small epiphytic orchids exposed SE, on Heterodermia sp. on branches, J.E. 30667 (LPB, hb. Etayo). Specimens examined (asexual state). BOLIVIA. Dept. Chu- quisaca. Prov. Belisario Boeto: close to Padilla between Nuevo Mundo and Santa Rosa, 18°57′06″S, 64°16′14″W, 1936 m, transition between Boliviano-Tucumano forests and dry interandean vegetation, on Heterodermia sp. on trunk, J.E. 30583 (LPB, hb. Etayo). Dept. Cochabamba. Prov. Carrasco: Parque Nacional Carrasco, near Sehuencas, 17°29′48″S, 65°16′22″W, 2250 m, vegetation with Alnus sp. along the river near Yungas cloud forest, on Heterodermia sp., J.E. 28238 (LPB, hb. Etayo). Dept. La Paz. Prov. Murillo: Sainani, Valle del Zongo, 16°07′03″S, 68°04′42″W, 2170 m, open area with shrubs and scattered trees, on H. galactophylla, A.F 26271 (KRAM); Sainani, Valle del Zongo, 16°07′20″S, 68°05′09″W, 2220 m, open area with shrubs and scattered trees, on P. cf. japonicum, A.F. 26253 (LPB). Prov. Nor Yungas: Parque Nacional Cotapata, Santa Catalina village, above Tunkini, 16°11′12″S, 67°52′07″W, 1600–1840 m, Yungas montane forest, on P. japonicum, J.E. 27387 (LPB, hb. Etayo). Dept. Santa Cruz. Prov. Manuel María Caballero: El Camino de las Orquideas, 17°49′50″S, 64°42′11″W, 2415 m, Yungas cloud forest, on Heterodermia sp., J.E. 28811, (LPB, hb. Etayo); 17°49′20″S, 64°42′31″W, 2340 m, Yungas cloud Plant and Fungal Systematics 64(2): 283–344, 2019 forest, on H. galactophylla, J.E. 28847 (hb. Etayo); near Siberia, 17°50′15″S, 64°42′36″W, 2700 m, Yungas cloud forest, on Heterodermia sp., J.E. 29181 (LPB, hb. Etayo). Dept. Tarija. Prov. Aniceto Arce: Papachacra, 21°41′52″S, 64°29′15″W, 1900 m, Tucumano-Boliviano altimontano forest, on Heterodermia sp. growing on tree, J.E. 28369 (hb. Etayo). Prov. Burnet O’Connor: old road between Tarija and Entrerios, 21°27′50″S, 64°12′51″W, 1924 m, Boliviano-Tucumano forest with epiphytes, on H. flabellata, J.E. 29-2, J.E. 29932 (LPB, hb. Etayo); Sandiego Sur, top of the hill on old road between Tarija and Entrerios, 21°27′04″S, 64°13′59″W, 1812 m, Boliviano-Tucumano forest, on H. flabellata, A.F. 27724 (KRAM); 60 km from Tarija, new road between Tarija and Entrerríos, 21°28′52″S, 64°17′41″W, 1837 m, Boliviano-Tucumano forest with Podocarpus and small epiphytic orchids exposed SE, on Heterodermia sp., J.E. 30668 (LPB, hb. Etayo); near Soledad, 21°40′49″S, 64°07′33″W, 1600 m, Tucumano-Boliviano montano forest, on Heterodermia sp. on tree, J. E. 28406 (LPB); RN de Flora y Fauna Tariquía, near Salinas, 21°49′15″S, 64°12′44″W, 1430 m, Tucumano-Boliviano montano forest, on Heterodermia sp., J.E. 28152 (LPB). Spirographa ascaridiella (Nyl.) Flakus, Etayo & Miadlikowska, comb. nov. (Fig. 25C, 26C, 27C) MycoBank MB 833345 Basionym: Lecidea ascaridiella Nyl. Nyl., Flora 51: 162. 1868. Type: [Ireland] Ad saxa calcarea prope Killarney in Hibernia, Carroll, (H-Nyl-21874 – lectotype!, selected by Holien & Triebel 1996; BM, isolectotype, non vidi). Notes. Spirographa ascaridiella was originaly described in Lecidea (Nylander 1868) and later placed in Spilomela and Pleopsilis (Hawksworth 1980, 1983; Sherwood-Pike 1987). Here we propose to place it in the genus Spirographa based on its similar anatomical characters. The species is known only from its sexual state and is characterized by having medium sized vermiform ascospores (22–36 × 2–2.5 µm) and by its host preference (Porpidia spp.). Ascospores from the holotype (H-Nyl-21874; Fig. 27C) were also pictured by Hawksworth (1980; Fig. 5A). Ecology and distribution. The type material is known from Ireland and grows on sterile cf. Porpidia sp. (containing confluentic acid) (Hawksworth 1980). Spirographa ciliata (Kalb) Flakus, Etayo & Miadlikowska, comb. nov. MycoBank MB 833346 Basionym: Cornutispora ciliata Kalb, in Gierl & Kalb, Herzogia 9: 632. 1993. Notes. The species was described from Dibaeis cretacea and is characterized by having Y-shaped conidia (~ 10 × 7 µm), composed of strongly swollen (at the base) and apically cilate arms, with non-evident main axis (6.5–9 × 2–2.5 µm) (Gierl & Kalb 1993). Punithalingam (2003) included into the species more Cornutispora specimens with a similar kind of conidia, but having various sizes and growing on different hosts, thereby broadening the species concept. We observed ciliata-like conidia on different hosts, however, only further molecular studies can 323 A. Flakus et al.: Biodiversity assessment of ascomycetes inhabiting Lobariella lichens in Andean cloud forests Fissurina nigrolabiata Outgroup Fissurina aggregatula Spirographa maroneae (A.F. 27345) on Maronea constans B Spirographa (Cornutispora) pyramidalis (A.F. 25129) on Remototrachyna costaricensis 78 Spirographa pyramidalis (J.E. 55-9) on Remototrachyna costaricensis 100 Spirographa (Cornutispora) parmotrematis (A.F. 28887) on Parmotrema sancti-angeli 100 Spirographa (Cornutispora) parmotrematis (starain A6) on Parmotrema sancti-angeli 94 89 Coenogonium luteum Gyalecta jenensis 98 SPIROGRAPHACEAE 100 Spirographa (Cornutispora) arsenii (A.F. 26271) on Heterodermia galactophylla Spirographa (Cornutispora) arsenii (J.E. 29-2) on Heterodermia flabellata 100 Spirographa (Pleoscutula) aggregata (J.E. 34-5) on Polyblastidium corallophorum FISSURINOIDEAE 95 80 95 Spirographa giselae (A.F. 26439) on Lichenopeltella cf. communis Spirographa giselae (A.F. 26962) on Lichenopeltella cf. communis 100 GOMPHILLOIDEAE 100 Spirographa (Asteroglobulus) giselae (A.F. 26959) on Lichenopeltella cf. communis 93 100 95 Spirographa (Cornutispora) ophiurospora (A.F. 25132) on Lobariella auriculata Redonographoideae Leptotremataceae Xalocoa ocellata 98 A Spirographaceae Spirographa (Pleoscutula) arsenii (J.E. 30-3) on Heterodermia flabellata Spirographa (Cornutispora) ophiurospora (J.E. VIII-8) on Lobariella pallida Spirographa ophiurospora (strain A11) on Lobariella pallida 99 100 Ocelullarieae 86 Spirographa ophiurospora (A.F. 28890) on Lobariella pallida 85 Spirographa (Cornutispora) ophiurospora (A.F. 25162) on Lobariella pallida 98 Spirographa ophiurospora (J.E. 14-3) on Lobariella pallida Heiomasia sipmanii Aggregatorygma triseptatum Thelotremataceae 80 Acanthotrema brasilianum GRAPHIDOIDEAE 0.08 Wirthiotremateae Diploschisteae Acanthothecieae Melanotopelia rugosa Schizotrema schizolomum Borinquenotrema soredicarpum Graphideae 0.2 Figure 24. Phylogenetic placement of the Spirographa complex (Spirographaceae) within Graphidaceae s.lat. (A, based on nrLSU, mrSSU and RPB1) and relationships within the Spirographa complex (B, based on nrITS, nrLSU, mrSSU and RPB1), inferred from ML analyses of combined dataset for 144 OTUs and 20 OTUs, respectively. Thick branches represent bootstrap values ≥ 70%. The scale bars represent number of nucleotide substitutions per site. 324 determine if they belong to single generalistic fungus or, more likely, to several host-speciefic species. Ecology and distribution. The type specimen was described from Dibaeis cretacea from Tasmania (Gierl & Kalb 1993), but the species has been reported from a number of other hosts. Spirographa fusisporella (Nyl.) Zahlbr. (Figs 25D, 26D–F, 27D) ≡ Graphis fusisporella Nyl., Flora (Regensburg) 49: 292. 1866. ≡ Graphinella fusisporella (Nyl.) Zahlbr., Cat. Lich. Univers. 2: 285. 1923. Type: CUBA. On trees in the Harallones M.V., coll. C. Wright 27, 14 Sept. (Nyl. 17) (M0086813 – lectotype! designated here, MBT389635). = Opegrapha spiralis Müll. Arg. Flora, Regensburg 63: 43. 1880. ≡ Spirographa spiralis (Müll. Arg.) Zahlbr., Cat. Lich. Univers. 2: 267. 1923, syn. nov. Type: BRAZIL. Coll. J. I. Puiggari, s.n., 1879 (G00294262 – lectotype!, selected by Holien & Triebel 1996). =?Spirographa antillarum Vain., Ann. Acad. Sci. Fenn., Ser. A 6(7): 164. 1915. Notes. Graphis fusisporella was described from Cuba (Nylander 1866) and the holotype is characterized by having hyaline, perithecioid ascomata (150–220 µm wide and 180–230 µm high) immersed in hymenia of corticolous Fissurina sp., and acicular, vermiform ascospores with ciliate ends (25–35 × 2–3 µm, n = 17). The lectotyope of Opegrapha spiralis (Müller 1880) has very similar ascomata immersed in hymenia of a corticolous Graphis sp. and very similar, ciliate ascospores (17–35 × 2–3 µm, n = 7). As both taxa have very distinct ascomata of a similar kind, growing immersed in hymenia of corticolous members of Graphidaceae and similar ciliate ascospores, we suggest considering Opegrapha spiralis as a synonym of Graphis fusisporella. Based on examination of a specimen of ‘Cornutispora cf. limaciformis’ growing on Graphidales in Brazil, we conclude that the conidia of S. fusisporella are limaciformis-like but of a larger size (Etayo in prep.). Following the original description of S. antillarum, this species is likely to be a synonym of S. fusisporella, but the type has not yet been examined. Plant and Fungal Systematics 64(2): 283–344, 2019 5–13 × 4–9 µm, galls formation on the host thallus, and the host preference (Erioderma sp.). Type: PANAMA. Prov. Chiriquí. Parque Nacional Volcán Barú, Sendero Volcán, W slope, montane forest close to open rocks, 08°48′49″N, 82°33′50″W, 2444 m, on epiphytic Erioderma sp., Adam Flakus Fla39B (PMA – holotype!). Description. Lichenicolous fungus causing galls formation on the host thallus; galls beige to pale brown, sometimes with pink tinge, 0.4–1.5 mm diam, internally hyaline to slightly yellowish, paraplectenchymatous, composed of thick-walled cells, 3–10 µm diam. Ascomata unknown. Conidiomata pycnidial, forming groups of 2–30, immersed inside galls induced on the host thallus, erumpent and sometimes partly exposed, subglobose to pyriform, 70–130 µm diam. Pycnidial wall hyaline to yellowish brown, 5–10 µm wide, composed of 5–10 layers of thin-walled hyphae, cells 3–10 × 1–3 µm, disintegrating by irregular opening around the top. Conidiophores hyaline, septate, thin-walled, arising from the innermost cells of the pycnidial walls, branched. Conidiogenous cells 10–13 × 1–2 µm, holoblastic, synchronous or sympodial, integrated, terminal to lateral, thin-walled, producing few conidia from minute loci. Conidia hyaline, aseptate, triangular, polyhedral or branched (almost Y-shaped), if branched then composed of thick main axis (5–8 × 5–6 µm) and two cylindrical to acute, short (1–3 × 1–2 µm) arms; entire measuring 5–(x = 8.7 s = 2.5)–13 × 4–(x = 7.1 s = 1.7)–9 μm (n = 22). Sexual state unknown. Etymology. The epithet refers to the gall induction on the host thallus. Ecology and distribution. Known from the type locality in Panama where it occurs on epiphytic Erioderma sp. Notes. Spirographa galligena can easily be differentiated from other anamorphic states of Spirographa species by its unique characters, such as the induction of galls on the host thallus, and conidia that are intermediate between triangularis-like and limaciformis-like and measure 6–13 × 4–9 µm in total. Spirographa giselae (Brackel) Flakus, Etayo & Miadlikowska, comb. nov. (Figs 25E, F, 26G, 27E, 28C, 29D, 30C) Ecology and distribution. The species is known from MycoBank MB 833348 Brazil and Cuba where it grows in hymenia of corticolous Graphidaceae (Fissurina sp. and Graphis sp.), whereas in Europe it is reported here on Graphis from Cantabri (northern Spain). Basionym: Asteroglobulus giselae Brackel, Herzogia 24(1): 69. 2011. Additional specimens examined. CUBA. Coll. A. Krempel- huber, s.n., 1883, (G00291639). SPAIN. Cantabria, valle de Villaverde, Mollinedo, Monte Tejea, sendero de las Fuentes del Agüera, 43°13′0.08″N, 3°16′15.5″W, 260–350 m, bosque mixto, on Graphis on Alnus, J.E. 28511 (hb. Etayo). Spirographa galligena Flakus, Etayo & Miadlikowska, sp. nov. (Figs 28B, 29B–C, 30B) MycoBank MB 833347 Diagnosis: Differs from other species of Spirographa by the triangular, or tetra- to polyhedral to almost Y-shaped conidia, Description of the sexual state. Ascomata cleistohymenial, sessile since young on the host thallus, rounded, with dark brown color, 100–200 µm diam. Margin distinct, dark-brown to black. Disk orange-brown. Exciple laterally 20–60 µm thick, basally 35–40 µm thick, with olivaceous-brown to brown pigments, composed of isodiametric cells. Hymenium hyaline, I–, KI–, 60–80 µm tall. Paraphyses hyaline, filiform, simple to slightly branched in upper part, septate, 1.5–2 µm wide, not or slightly capitate (to 2.5 µm) and covered by a yellow to orange-brown pigment. Epihymenium with an orangebrown pigment. Hypothecium hyaline, 15–20 µm tall. Asci clavate, not thickened apically, ~ 32-spored, 48–90 × A. Flakus et al.: Biodiversity assessment of ascomycetes inhabiting Lobariella lichens in Andean cloud forests 325 Figure 25. Morphological diversity of ascomata in Spirographa. A – S. aggregata on Polyblastidium corallophorum (J.E. 34-5, holotype); B – S. arsenii on Heterodermia flabellata (J.E. 30-3); C – S. ascaridiella on Porpidia sp. (H-Nyl-21874, lectotype); D – S. fusisporella on Fissurina sp. (M0086813, lectotype); E – S. giselae on Lichenopeltella cf. ramalinae growing on Ramalina farinacea (J.E. 30112); F – S. giselae on Lichenopeltella cf. communis (white arrow showing catathecium of Lichenopeltella) growing on Parmotrema crinitum (A.F. 26962); G – S. hypotrachynae on Hypotrachyna sp. (A.F. 19896); H – S. maroneae (perithecioid ascomata) in Maronea constans (A.F. 27345, holotype); I – S. ophiurospora on Lobariella cf. pallida (A.F. 28890); J – S. pyramidalis on Remototrachyna costaricensis (J.E. 55-1) ; K – S. triangularis on Pertusaria pertusa (J.E. 30859); L – S. usneae on Usnea sp. (A.F. 8176-2, holotype). Scales: A, D = 500 µm; B–C, E–H, J = 250 µm; I = 100 µm; K = 300 µm; L = 200 µm. 9–20 µm. Ascospores hyaline, acicular, curved to helicoid, with acute ends, 1-septate, not constricted at the septum, smooth, with several small oil guttules inside, without gelatin perispore, 11–(x = 16.7 s = 2.2)–20 × 1.5–(x = 2.6 s = 0.6)–3.5 μm, l/b ratio 4–(x = 6.8 s = 1.7)–12 (n = 71). Description of the asexual state. See Brackel (2011). Notes. The genus Asteroglobulus was introduced by Brackel (2011) for the conidial fungus A. giselae from Italy. It was characterized by having black conidiomata developing on blackish areas on Ramalina farinacea thalli and small triangular to tetrahedral conidia, 6–8(–10) μm diam. Later Diederich (2018) transferred Cornutispora pyramidalis (Etayo 2010) to the genus Asteroglobulus based on a similar anatomy of conidiomata and conidia. Our phylogenetic analyses (Fig. 24B) placed the Bolivian samples of A. giselae in a clade together with members of Cornutispora and Spirographa. We also observed the conidial state and Spirographa-like sexual state growing together on the same host thalli. All together, this convinced us that Asteroglobulus is another synonym of Spirographa. Spirographa giselae was originally described from blackish areas on Ramalina farinaceae from Italy (Brackel 2011). Our studies of material from Portugal and Spain (on R. farinacea and R. fraxinea) have shown that S. giselae is a hyperparasite and the black areas are caused by mycelia of the lichenicolous fungus Lichenopeltella cf. ramalinae. In Bolivia the species is also associated with members of Lichenopeltella (most 326 probably L. cf. communis) but growing on Parmotrema crinitum and P. reticulatum. Because the morphology of Spirographa giselae is very unique, i.e. sessile ascomata (not immersed from the early developmental stages) with orange-brown discs (Fig. 25E, F) and small triangular to tetrahedral conidia (Fig. 30C), and also because it is always associated with species of Lichenopeltella, we recognized the Bolivian and European material as a single species. However, the two populations differ slightly in ascospore shape and size [on Ramalina: 11– (x = 16.2 s = 2.5)–20 × 1.5–(x = 2 s = 0.3)–2.5 μm, l/b ratio 5.5–(x = 8.1 s = 1.6)–12 (n = 32)] vs. on Parmotrema: 12– (x = 17.2 s = 1.7)–20 × 2.5–(x = 3 s = 0.3)–3.5 μm, l/b ratio 4–(x = 5.8 s = 0.9)–7.6 (n = 39)], and the species boundaries need to be tested in the future on a larger material from its whole distribution range. Plant and Fungal Systematics 64(2): 283–344, 2019 Ecology and distribution. Spirographa giselae is known from Bolivia, Italy (Brackel 2011), Portugal and Spain, where it occurs as a hyperparasite of Lichenopeltella (L. cf. communis, and L. cf. ramalinae) growing on Ramalina farinacea (type material), R. fraxinea, Parmotrema crinitum, and P. reticulatum. Specimens examined (sexual state). BOLIVIA. Dept. Tarija. Prov. Aniceto Arce: Reserva Nacional de Flora y Fauna Tariquía, between la Cumbre and campamento los Alisos, 22°00′41″S, 64°36′02″W, 2560 m, Boliviano-Tucumano forest with Alnus acuminata and Polylepis, on Lichenopeltella cf. communis growing on Parmotrema crinitum and P. reticulatum, A.F. 26962, 26963 (LPB, KRAM). Dept. Chuquisaca, Prov. Zudañez, Área Natural de Manejo Integrado El Palmar, segunda villa de presto, Lomán, Salviatójo, 18°45′53″S, 64°49′57″W, 2875 m, Boliviano-Tucumano forest with Podocarpus, on L. cf. communis Figure 26. Sections of ascomata in selected species of Spirographa (A–C, E–G, I–K in LPCB; D, L in water; H in Congo Red). A–B – S. aggregata on Polyblastidium corallophorum (J.E. 34-5, holotype); C – S. arsenii on Heterodermia flabellata (J.E. 30-3); D–F – S. fusisporella (perithecioid ascomata) in hymenia of Fissurina sp. (M0086813, lectotype); G – S. giselae on Lichenopeltella cf. communis growing on Parmotrema crinitum (A.F. 26962); H–I – S. maroneae (perithecioid ascomata) in thallus of Maronea constans (A.F. 27345, holotype); J – S. ophiurospora on Lobariella cf. pallida (A.F. 28890); K – S. pyramidalis on Remototrachyna costaricensis (J.E. 55-1); L – S. usneae on Usnea sp. (A.F. 8176-2, holotype). Scales: A–B, D–G, K–L = 50 µm; C, H–J = 25 µm. A. Flakus et al.: Biodiversity assessment of ascomycetes inhabiting Lobariella lichens in Andean cloud forests 327 Figure 27. Morphological variability of ascospores in Spirographa. A – S. aggregata on Polyblastidium corallophorum (J.E. 34-5, holotype, in Congo Red); B – S. arsenii on Heterodermia flabellata (J.E. 30-3, in water); C – S. ascaridiella on Porpidia sp. (H-Nyl-21874, lectotype, in Congo Red); D – S. fusisporella in hymenia of Fissurina sp. [(M0086813, lectotype, in water (left) and Congo Red (right)]; E – S. giselae on Lichenopeltella cf. communis growing on Parmotrema crinitum [A.F. 26962, in water (up) and Congo Red (down)]; F – S. maroneae (perithecioid ascomata) in thallus of Maronea constans (A.F. 27345, holotype, in water); G – S. ophiurospora on Lobariella cf. pallida (A.F. 28890, in Congo Red); H – S. pyramidalis on Remototrachyna costaricensis (J.E. 55-1, in water); I – S. usneae on Usnea sp. (A.F. 8176-2, holotype, in water). Scales: A–I = 10 µm. growing on P. reticulatum, A.F. 26439 (KRAM, LPB). PORTUGAL. Distr. Bragança. Tas–os–Montes, Parque Natural Montesinho, camino de Soeira a Fresulfe, bosquetes de Quercus pyrenaica, 850 m, 41°52′51″N, 6°54′48″W, on L. cf. ramalinae growing on Ramalina farinacea, J.E. 30112 & E. Ros (hb. Etayo). SPAIN. Madrid. Rascafría, Las Presillas del Lozoya, travesía del Río, bosquete en galería, 40°52′50″N, 3°52′58″E, 1160 m, on R. fraxinea on Q. pyrenaica, J.E. 31796 (hb. Etayo). Specimens examined (asexual state). BOLIVIA. Dept. Tarija. Prov. Aniceto Arce: Reserva Nacional de Flora y Fauna Tariquía, between la Cumbre and camamento los Alisos, 22°00′41″S, 64°36′02″W, 2560 m, Boliviano-Tucumano forest with Alnus acuminata and Polylepis, on Lichenopeltella cf. communis growing on Parmotrema sp., A.F. 26959 (KRAM). Prov. Burnet O’Connor: close to los Pinos, 90 km from Tarija on old road between Entre Ríos and Tarija, 21°25′30″S, 64°19′07″W, 2265 m, on Lichenopeltella cf. communis growing on Parmotrema, J.E. 30601 (LPB, hb. Etayo). PORTUGAL. Distr. Bragança. Tas-os-Montes, Parque Natural Montesinho, camino de Soeira a Fresulfe, bosquetes de Quercus pyrenaica, 850 m, 41°52′51″N, 6°54′48″W, on L. cf. ramalinae growing on R. farinacea, J.E. 30112 & E. Ros hb. Etayo). SPAIN. Cáceres. P.N. de Monfragüe, alrededores de la Fuente del Francés, ~ 300 m, 39°49′46″N, 06°02′08″W, on L. cf. ramalinae growing on Ramalina sp. on Fraxinus, J.E. 29094 (hb. Etayo). Spirographa herteliana (Knoph.) Flakus, Etayo & Miadlikowska, comb. nov. MycoBank MB 833349 Basionym: Cornutispora herteliana Knoph, Biblioth. Lichenol. 88: 346. 2004. Notes. Cornutispora herteliana was described by Knoph (2004) from Japan. This species is characterized by having Y-shaped conidia (10.5–15.5 × ~ 7 µm) composed of the main axis (~ 10–11 × 2–3 µm) and 3–5 µm long conidial arms. Ecology and distribution. The species is known only from the type locality where it grows on Lecidella cf. elaeochroma (Knoph 2004). Spirographa hypotrachynae (Etayo) Flakus, Etayo & Miadlikowska, comb. nov. (Fig. 25G) MycoBank MB 833350 Basionym: Pleoscutula hypotrachynae Etayo, Biblioth. Lichenol. 84: 94. 2002. Type: Colombia. Dept. Cundinamarka. Munic. Villapizón: Páramo La Calavera, 3300 m, on Hypotrachyna sp., Javier Etayo 16305, E. Linares & J. Muňoz (COL – holotype!; hb. Etayo – isotype!). 328 Notes. Spirographa hypothrachynae was originally described by Etayo (2002) from Colombia growing on Hypotrachyna. This species is characterized by having black, partly immersed, apothecioid ascomata inhabiting Lichenopeltella growing on Hypotrachyna and medium sized ascospores (13–19 × 2–2.5 µm) (Etayo 2002). Spirographa pyramidalis, another species of this genus growing on Hypotrachyna can be easily separated by its shorter ascospores, 7–10 × 2–3 µm, with obtuse ends. S. giselae is also known as a hyperparasite on Lichenopeltella (growing on Parmotrema and Ramalina), but has slightly larger ascospores (12–20 × 2–3.5 µm) and usually an orange-brown pigmented discs. Further studies of fresh material are needed to confirm weather S. hypothrachynae and S. giselae represent separate species. Ecology and distribution. The species is known from Bolivia (Flakus & Kukwa 2012a), Colombia and Ecuador and occurs on Hypotrachyna (Etayo 2002, 2017). Plant and Fungal Systematics 64(2): 283–344, 2019 Notes. The species was originally described from Parme- lia sulcata in the UK as the first lichenicolous member of Cornutispora (Hawksworth 1976). It is known only from its anamorphic state characterized by having Y-shaped, conidia (10–14 × 7–9 µm) composed of a larger main axis (6–11.5 × 1.5–2 µm) and two smaller arms (2.5–6 × 0.5 µm). It was reported from several unrelated host genera and may represent an assemblage of cryptic species. Ecology and distribution. The type was collected in the UK on Parmelia sulcata (Hawksworth 1976). Additional collections were reported from several lichens (e.g., Brackel 2014). Spirographa limaciformis (Piroz.) Flakus, Etayo & Miadlikowska, comb. nov. (Figs 28D, 30D) MycoBank MB 833353 Basionym: Cornutispora limaciformis Piroz., Mycologia 65(4): 763. 1973. Specimens examined. BOLIVIA. Dept. Santa Cruz, Prov. Caballero, El Lago, Cochabamba-Santa Cruz road, 17°50′16″S, 64°43′56″W, 2960 m, open Yungas moosy cloud forest, on Hypotrachyna sp. on twigs, J.E. 28375 (LPB); near Siberia, 17°49′38″S, 64°44′45″W, 3950 m, open Yungas cloud forest, on Hypotrachyna sp. on branches, J.E. 29412 (hb. Etayo, LPB). Dept. Tarija. Prov. Aniceto Arce: Papachacra, 21°41′36″S, 64°29′33″W, 2195 m, Tucumano-Boliviano montane forest with Alnus acuminata, on thallus of Hypotrachyna sp., A.F. 19896 & J. Quisbert (KRAM, LPB). Type: Canada. Midhurst Nursery, Lake Simcoe Dist., Ontario, on Therrya fuckelii on Pinus resinosa, 27 May 1971, leg. R. L. Bowser & P. E. Buchan (DAOM 138360 – holotype!). Spirographa intermedia (Punith. & D. Hawksw.) Flakus, Etayo & Miadlikowska, comb. nov. Ecology and distribution. The type collection is known from Canada where it occurs on Therrya fuckelii growing on Pinus resinosa (Pirozynski 1973). MycoBank MB 833351 Basionym: Cornutispora intermedia Punith. & D. Hawksw., in Punithalingam, Mycol. Res. 107(8): 920. 2003. Notes. Spirographa limaciformis, the type species of Cornutispora, was described as hyperparasite on Therrya fuckelii growing on Pinus resinosa from Canada (Pirozynski 1973). The species is characterized by having large Y-shaped conidia, composed of a main axis (12–22 × 2.5–3.5 um) and two smaller arms (7–9.5 × 0.5 µm). Spirographa longispora Etayo described on Ochrolechia sp. from the USA and it is characterized by having Y-shaped conidia (15–25 × 8–20 µm) composed of an axis of somewhat similar size [main axis (7–)8–11(–12.5) × 2–2.5 µm] (Punithalingam 2003, Fig. 11). Notes. This species was recently introduced by Etayo (2017) to accommodate specimens growing on Sticta and characterized by having brownish ascomata, partly immersed in the host thallus, and large, vermiform ascospores (35–45 × 2–2.5 µm). An asexual state of the species is unknown. Ecology and distribution. The type was described from Ecology and distribution. The species is known only epiphytic Ochrolechia sp. in the USA (Punithalingam 2003). Specimens with similar conidia and growing on the same host are known from Bolivia, Norway and Spain. from the type locality in Ecuador where it grows on Sticta humboltii (Etayo 2017). Notes. The species is known only from the asexual state Other material on Ochrolechia studied (asexual state). BOLIVIA. Dept. Chuquisaca, Prov. Belisario Boeto, close to Padilla, between Nuevo Mundo and Santa Rosa, W-NW, 18°57′11.9″S, 64°16′36.3″W, on O. africana, J.E. 29861 (hb. Etayo). NORWAY: Kinsarvik, Handargervidda N.P., Tveitafossen galls, Pinus wood, on O. tartarea on rock, 60°21′04″N, 6°45′34″E, 200 m, J.E. 29553 (hb. Etayo). SPAIN. Navarra, valle del Baztán, puerto de Izpegui, cumbre, roquedo entre hayas, ~ 700 m, on O. tartarea on rock, J.E. 14241 (hb. Etayo). Spirographa lichenicola (D. Hawksw. & Sutton) Flakus, Etayo & Miadlikowska, comb. nov. MycoBank MB 833352 Basionym: Cornutispora lichenicola D. Hawksw. & B. Sutton, in Hawksworth, Trans. Br. Mycol. Soc. 67(1): 51. 1976. Specimen examined. ECUADOR. Prov. Carchi. Tulcán, Páramo El Ángel, de Tufiño a Maldonado ~ km 10, zona de las Lagunas Verdes, páramo con frailejones, 4000 m, 00°47′49″S, 77 °52′26″E, on Sticta humboldtii en arbustos, Javier Etayo 26984 & Z. Palice (QCA – holotype!; hb. Etayo – isotype!). Spirographa maroneae Flakus, Etayo & Miadlikowska, sp. nov. (Figs 25H, 26H–I, 27F) MycoBank MB 833354 Diagnosis: Differs from S. fusisporella by having dark brown pigmented perithecioid ascomata, 100–160 µm diam., larger ascospores, 30–40 × 2.5–3.5 µm, and the host selection (Maronea constans). Type: BOLIVIA. Dept. Tarija. Prov. Aniceto Arce: colese to la Mamora between Tarija and Bermejo, 22°09′51″S, 64°40′03″W, 1320 m, disturbed Tucumano-Boliviano forest, A. Flakus et al.: Biodiversity assessment of ascomycetes inhabiting Lobariella lichens in Andean cloud forests on corticolous Maronea constans, Adam Flakus 27345 (LPB – holotype!). Description. Ascomata perithecioid, subglobose, 100– 160 µm diam., dark brown to black, immersed in the host thallus, erumpent and partly exposed when mature, causing bleaching of the host. Exciple wall laterally 10–25 µm thick, with olivaceous-brown to brown pigment, K–, N– paraplectenchymatous, composed of isodiametric to elongate cells, with hyaline inerlayer of thin-walled cells, 3–7 × 1–3 µm, and pigmented outerlayer of thick-walled cells, 3–10 × 2–4 µm. Hymenium hyaline, I–, KI–, composed of adglutinate paraphyses. Paraphyses hyaline, filiform, simple to slightly branched, septate, 1.5–2 µm wide, not or slightly capitate at the apex. Subhymanium indistinct. Asci clavate, not thickened apically, ~ 32-spored, 55–80 × 12–25 µm. Ascospores hyaline, acicular, curved to helicoid, with ciliate ends, 1-septate, not constricted at the septum, smooth, 30–(x = 36.3 s = 3.3)–40 × 2.5– (x = 3 s = 0.3)–3.5 μm, l/b ratio 9.1–(x = 12.2 s = 1.5)–15.2 (n = 24). Anamorphic state unknown. Etymology. The epithet refers to the host of the new species. Ecology and distribution. The species is known from the type locality in Tucumano-Boliviano forest and inhabits corticolous Maronea constans. Notes. Spirographa maroneae is the second species in the genus with perithecioid ascomata. Spirographa fusisporella, which also has perithecioid ascomata, differs in having having hyaline perithecia, immersed in hymenia of lichens of the family Graphidaceae, and smaller ascospores (25–35 × 2–3 µm). Spirographa aggregata has ciliate ascospores of similar in size, but apothecioid ascomata are aggregated in stromata and grow on Polyblastidium corallophorum. Spirographa ophiurospora (Etayo) Flakus, Etayo & Miadlikowska, comb. nov. (Figs 25I, 26J, 27G, 28E, 29E, 30E) MycoBank MB 833355 Basionym: Cornutispora ophiurospora Etayo, Opera Lilloana 50: 148. 2017. Type: Ecuador. Prov. Loja. Sierra sur, Loja, Cajanuma, Parque Nacional Podocarpus, 2750–3000 m, bosque nublado y páramo, montañas ‘nudo de Sabanilla’, sobre Lobariella crenulata, Javier Etayo 20127 & Z. Palice (QCA – holotype!; hb. Etayo – isotype!). Description of sexual state. Ascomata 100–200 mm diam., cleistohymenial, sometimes aggregated, initially immersed in the host thallus, then breaking through the thallus cortex of the host and almost sessile when mature. Disc exposed, concave, concolorous with the margin or paller, dark brown, matte. Margin brown to black, prominent, thick, without hairs. Exciple paraplectenchymatous, laterally 35–45 mm wide, with a honey-brown to olivebrown pigment, K–, N–. Hymenium hyaline, 90–10 µm tall, I–, K/ I–. Subhymenium hyaline, indistinct. Epihymenium with honey-brown to orange brown, granular pigments, K–, N–. Paraphyses hyaline, simple, septate, 329 sometimes slightly branched in the upper part, 1.5–2.5 µm thick, apically slightly thicker (up to 3.5 µm) and covered by a granular pigment. Asci clavate to cylindrical, functionally unitunicate, wall apically not thickened, K/I–, I– (only endoascus slightly orange), ~ 32-spored, 55–70 × 10–15 µm. Ascospores hyaline, spirally arranged in ascus 1-septate with pointed ends, not constricted at the septum, fusiform, straight to curved or slightly sigmoid, smooth, without perispore, 30–(x = 35.4 s = 2.9)–40 × 1.5–(x = 1.8 s = 0.3)–2.5 μm (n = 26). Description of asexual state. See Etayo (2017). Notes. The species was only recently described by Etayo (2017) from Ecuador based on its Cornutispora-like asexual state, producing conidia composed of three, large arms of equal size, and inhabiting Lobariella crenulata. The sexual state was first reported from Colombia (Etayo 2002) and Peru (Etayo 2010) as Spirographa fusisporella on Lobariella pallida, but its connection to Cornutispora was never observed. Our phylogenetic analyses clearly confim that both reproductive states represent a single species (Fig. 24B). Ecology and distribution. The species seems to be very common in Andean cloud forests, and is known from Lobariella crenulata, L. pallida and L. subexornata in Bolivia, Colombia (Etayo 2002), Ecuador (Etayo 2017) and Peru (Etayo 2010). Specimens examined (sexual state). BOLIVIA. Dept. Cochabamba. Prov. Tiraque: Parque Nacional Carrasco, Camino de los Nubes, Antenas old road between Sillar and Villa Tunari, 17°12′32″S, 65°41′52″W, 3520 m, upper montane Youngas cloud forest, on corticolous L. pallida, M.K. 15249 (LPB, in specimen of Lawreyella lobariella). Dept. La Paz. Prov. Nor Yungas: Chuspipata station, old road Coroico-La Paz, 16°18′18″S, 67°48′55″W, 3009 m, disturbed Yungas cloud forest with shrubs and small trees, on Lobariella cf. pallida, A.F. 28890 (KRAM, LPB). Dept. La Paz. Prov. Franz Tamayo: Área Natural de Manejo Integrado de Apolobamba, near Rio Pelechuco, below Pelechuco close to new road to Apolo, open area with scattered small trees 14°46′59″S, 69°01′08″W, 2750 m, J.E. 14-3 (LPB, hb. Etayo). COLOMBIA. Dept. Cundinamarka. Munic. Villapizón: Paramo La Calavera, 3200–3400 m, on L. pallida, JE 16401 (hb. Etayo). PERU. Dept. Cuzco. Prov. Paucartambo: road Paucartambo – Pillcopata, just SW of Paso de Tres Cruces, 13°8′S, 71°38′W, 3450 m, on L. pallida, R. Santesson, A. Tehler & G. Thor P96:18 (UPS). Specimens examined (asexual state). BOLIVIA. Dept. Chuquisaca. Prov. Zudañez: Área Natural de Manejo Integrado El Palmar, segunda villa de presto, Lomán, Salviatójo, 18°45′51″S, 64°50′09″W, 2836 m, on L. pallida on trees, J.E. 29577 (LPB, hb. Etayo). Dept. Cochabamba. Prov. Carrasco: Parque Nacional Carrasco, Koricaza, 17°33′21″S, 65°16′29″W, 2950 m, Páramo Yungueño, on L. pallida on trees, J.E. 29324 (LPB, hb. Etayo); Meruvia close to Monte Punku, 17°35′06″S, 65°14′54″W, 3283 m, Podocarpus -Polylepis forest, on corticolous L. pallida, M.K. 15029b, A.F. 25567 (KRAM, LPB, UGDA). Prov. Chapare: Parque Nacional Carrasco, Incachaca, 17°14′59″S, 65°49′36″W, 2560 m, Yungas cloud forest, on L. subexornata on bushes, J.E. 29621 (LPB); near Lago Corani, close to Villa Tunari-Cochabamba road, 17°13′24″S, 65°53′31″W, 3271 m, open area with shrubs, on corticolous 330 L. crenulata M.K. 15420 (LPB, UGDA, specimen of Lawreyella lobariella); Prov. Tiraque, Parque Nacional Carrasco, old gurd’s camp, 17°18′23″S, 65°45′60″W, elev. 3360 m, open area with shrubs, on corticolous Lobariella sp., M.K. 15291 (LPB, UGDA). Dept. La Paz. Prov. Franz Tamayo: Área Natural de Manejo Integrado Nacional Apolobamba, below Pelechuco, 14°49′08″S, 69°03′50″W, 3560 m, open area with shrubs and Polylepis trees, on corticolous L. pallida, M.K. 14970, 14963 (LBP, UGDA); below Keara Bajo, 14°41′47″S, 69°04′10″W, 3160 m, open area with shrubs and scattered trees, on corticolous L. pallida, M.K. 14898b (LPB, UGDA); near Keara Bajo, 14°41′59″S, 69°04′34″W, 3290 m, open area with shrubs and scattered trees, corticolous, A.F. 25232 (KRAM, LPB); Área Natural de Manejo Integrado Nacional Apolobamba, near Rio Pelechuco, below Pelechuco close to new road to Apolo, 14°47′28″S, 69°01′32″W, 2860 m, open area with scattered trees, on corticolous Lobariella sp., M.K. 14824a, A.F. 25162 (KRAM, LPB, UGDA); ibidem, 14°46′59″S, 69°01′08″W, 2750 m, open area with scattered small trees, corticolous, on A.F. 25132 (KRAM, LPB). Prov. Murillo: Valle del Zongo, bosque yungas nublado2900 m, 16°08′38″S, 68°06′59″W, on L. subexornata, J.E. 26803 (LPB); Valle de Zongo, 3375 m, S16°10′15″, W68°08′02″, páramo yungueño, rocas sueltas entre pastos con arbustos, on L. crenulata on bushes, J.E. 26776 (LPB, hb. Etayo); Sainani, Valle del Zongo, 16°07′20″S, 68°05′09″W, 2220 m, open area with shrubs and scattered trees, corticolous, on Lobariella sp., A.F. 26260 (KRAM, LPB). Prov. Nor. Yungas: Desviación de La Paz a Coroico hacia Unchuavi, camino a Chulumani, 3210 m, S16°18′27″, W67°53′48″, bosque nublado, on L. pallida and L. crenulata, J.E. 26919 (LPB, hb. Etayo); Parque Nacional Cotapata, Santa Catalina village, above Tunkini, 16°11′12″S, 67°52′07″W, 1600–1840 m, Yungas montane forest, on L. pallida, J.E. 27400 (LPB); near Nogalani village, on the road Coroico–La Paz (casa azul de Alejo),16°12′57″S, 67°49′15″W, 2168 m, Yungas secondary cloud forest, on Lobariella sp., J.E. 27968 (LPB, hb. Etayo). Prov. Saavedra: 28 km from Charazani village, on the road Charazani – Apolo, 15°12′43″S, 68°47′25″W, 1650–1775 m, Yungas montane forest, open area with boulders SW, on L. crenulata, J.E. 27319 (LPB, hb. Etayo). Dept. Santa Cruz. Prov. Caballero: near Siberia, 17°49′38″S, 64°44′45″W, 3950 m, open Yungas cloud forest, on Lobariella pallida, J.E 28607 (LPB). COLOMBIA. Dept. Nariño. Munic. de Pasto: corregimiento El Encano, Parque Natural Tunguragua, SE lago La Cocha (Guamués), en Lobariella sp., 2700 m, páramo azonal sobre turbera, J.E. 15780 (LPB, hb. Etayo). ECUADOR. Prov. Loja. sierra sur, Loja, Cajanuma, Parque Nacional Podocarpus, bosque nublado y páramo, bajada hacia la salida, taludes y árboles de cuneta, 2500–2700 m, sobre L. pallida, J.E. 20171 (hb. Etayo). Spirographa parmotrematis Flakus, Etayo & Miadlikowska, sp. nov. (Figs 28F, 29F, 30F) MycoBank MB 833356 Diagnosis: Differs from S. pyramidalis by a different phylogenetical position, the smaller conidia 3–4.5 µm diam., and the host selection (Parmotrema). Type: Bolivia. Dept. La Paz. Prov. Nor Yungas: Chuspipata station, old road Coroico-La Paz, 16°18′18″S, 67°48′55″W, 3009 m, disturbed Yungas cloud forest with shrubs and small trees, on epiphytic Parmotrema sancti-angeli, 23 Nov. 2016, Adam Flakus 28887 (LPB – holotype!). Description. Lichenicolous fungus causing characteris- tic circular bleaching of the host thallus surrounded by dark-brown necrotic layer, ~ 0.3–1.2 mm diam. Ascomata Plant and Fungal Systematics 64(2): 283–344, 2019 unknown. Conidiomata pycnidial, dispersed, immersed inside of the host thallus, finally erumpent and sometimes partly exposed, subglobose to pyriform, 110–150 µm diam. Pycnidial wall hyaline to yellowis brown, 5–8 µm wide, composed of 3–6 layers of thin-walled hyphae, cells 1–4 × 0.5–2 µm, desintegrating by an irregular opening around the top. Conidiophores hyaline, septate, thinwalled, arising from the innermost cells of the pycnidial walls, branched. Conidiogenous cells ~ 2–4 × 1–2 µm, holoblastic, synchronous or sympodial, integrated, terminal to lateral, thin-walled, producing few conidia from minute loci. Conidia hyaline, aseptate, triangular to tetrahedral, 3–(x = 4 s = 0.5)–4.5 (n = 54) diam. Sexual state unknown. Etymology. The epithet refers to the host of the species. Ecology and distribution. Known from Bolivia and Portugal where it grows on Parmotrema. Notes. Originally Etayo (2010) described S. pyramidalis (in Cornutispora) from Hypotrachyna revoluta and Parmotrema sp. occurring in oceanic forests in Spain and the Azores. This species was recognized from its small triangular conidia and bleaching of the host thalli. Our phylogenetic analyses however revealed that specimens growing on Remototrachyna (closely related to Hypotrachyna) are not related phylogenetically to those on Parmotrema (Fig. 24B). Further analyses also revealed that conidia of S. pyramidalis s.str. (growing on Hypotrachyna and Remototrachyna) are slightly but consistently larger (4–5 µm diam.) than those growing on Parmotrema (3–4.5 µm diam.). Therefore, we introduce a new species, Spirographa parmotrematis, for the specimens growing on Parmotrema. Additional specimens examined. BOLIVIA. Dept. Chuqui- saca. Belisario Boeto: close to Padilla between Nuevo Mundo and Santa Rosa, 18°57′06″S, 64°16′14″W, 1936 m, transition between Boliviano-Tucumano forests and dry interandean vegetation, on Parmotrema sp., A.F. 26593 (LPB). Dept. Tarija. Prov. Aniceto Arce: close to Limal between Cayambuyo and Bermejo, 22°19′36″S, 64°29′51″W, 860 m, disturbed Sub-Andean Tucumano-Boliviano forest close to orange plantation, on P. sancti-angeli, A.F. 27283 (KRAM); Reserva Nacional de Flora y Fauna Tariquía, between la Cumbre and campamento los Alisos, 22°00′52″S, 64°36′24″W, 2796 m, forest with Polylepis, on thallus of corticolous P. cetratum, M.K. 16653 (LPB, UGDA). PORTUGAL. Azores. S. Miguel, Sete Ciudades, Lagoa verde, on Parmotrema sp., on Cryptomeria japonica, 140 m, 37°50′N, 25°47′W, J.E. 24103 (hb. Etayo). Spirographa pittii (D. Hawksw. & Punith.) Flakus, Etayo & Miadlikowska, comb. nov. MycoBank MB 833357 Basionym: Cornutispora pittii D. Hawksw. & Punith., in Punithalingam, Mycol. Res. 107(8): 925. 2003. Notes. The species is known only from its asexual state described from Australian species of Hypotrachyna and is characterized by having small (~ 6–7 × 5–7 µm), Y-shaped conidia, composed of the main axis (3–3.5 × 1–1.5 µm) and two arms [2–2.5 × 1–1.5(–2) µm] A. Flakus et al.: Biodiversity assessment of ascomycetes inhabiting Lobariella lichens in Andean cloud forests 331 Figure 28. Morphological diversity of conidiomata in Spirographa. A – S. arsenii on Heterodermia flabellata (J.E. 29-2); B – S. galligena on Erioderma sp. (A.F. Fla39B, holotype); C – S. giselae on Lichenopeltella cf. communis growing on Parmotrema crinitum (A.F.26959); D – S. limaciformis on Therrya fuckelii (DAOM138360, holotype); E – S. ophiurospora on Lobariella pallida (A.F. 25162); F – S. parmotrematis on Parmotrema sancti-angeli (A.F. 28887, holotype); G – S. pyramidalis on Remototrachyna costaricensis (A.F. 25129); H – S. usneae on Usnea sp. (A.F. 26545); I – S. vermiformis on Lepra amara (A.F. s.n.). Scales: A, C, E, G–H = 100 µm; B, D, F, I = 250 µm. (Punithalingam 2003). The asexual states of Spirographa hypotrachynae and S. pyramidalis, another two species of Spirographa growing on Hypotrachyna, can easily be distinguished by their smaller and triangular conidia with reduced arms. Ecology and distribution. It is known only from Hypo- trachyna formosana (?H. osseoalba) growing in Australia (Punithalingam 2003). The Bolivian record from Canoparmelia amazonica may represent other species (Flakus & Kukwa 2012a). Spirographa pyramidalis (Etayo) Flakus, Etayo & Miadlikowska, comb. nov. (Figs 25J, 26K, 27H, 28G, 29G, 30G) MycoBank MB 833358 Basionym: Cornutispora pyramidalis Etayo, Opuscula Philolichenum 8: 134. 2010. = Asteroglobulus pyramidalis (Etayo) Diederich, in Diederich, Lawrey & Ertz, Bryologist 121(3): 392. 2018. Type: Spain. Guipuzkoa. Peñas de Aia, way to Bianditz, 400–600 m, 43°16′N, 1°47′W, on Hypotrachyna revoluta on Larix, Javier Etayo 24739 (VIT – holotype!; hb. Etayo – isotype!). Description of the sexual state. Ascomata 100–200 mm diam., cleistohymenial, dispersed, initially immersed in the host thallus, then breaking through the thallus cortex of the host and almost sessile when mature; bleaching thallus of the host. Disc exposed, concave, concolorous with the margin or paller, dark brown, matte. Margin brown, prominent, thick, without hairs. Exciple paraplectenchymatous, laterally 15–25 µm wide, with pale-brown pigment, K–, N–. Hymenium hyaline, 45–65 µm tall, I–, K/ I–. Subhymenium hyaline, ~ 10 µm tall. Epihymenium with honey-brown to orange brown, granular pigments, K–, N– (dissolving in K), 5–10 µm tall. Paraphyses hyaline, simple, septate, 1–1.5 µm thick, sometimes slightly branched in the upper part, apically slightly thicker (up to 2.5 mm). Asci clavate to cylindrical, functionally unitunicate, wall apically not thickened, K/I–, I– (only endoascus slightly orange), ~ 32-spored, 40–50 × 10–15 µm. Ascospores hyaline, 1-septate, not constricted at the septum, narrowly ellipsoid to almost fusiform, straight to curved or slightly sigmoid, smooth, without perispore, 7–(x = 8.7 s = 0.8)–10 × 2–(x = 2.3 s = 0.3)–3 μm (n = 94). Description of the asexual state. See Etayo (2010). Notes. So far Spirographa pyramidalis was known only in asexual state. The species, growing on closely related Hypotrachyna and Remototrachyna, is characterized by having small triangular, pyramidalis-like conidia (4–5 µm diam.) and medium size ascospores (7–10 × 2–3 µm). 332 Ecology and distribution. The species is known from Bolivia, Ecuador and Spain (Etayo 2010) as a parasite of Hypotrachyna revoluta (host of the type), Hypotrachyna sp. and Remototrachyna costaricensis. Specimens examined. BOLIVIA. Dept. Cochabamba. Prov. Chapare: Parque Nacional Carrasco, San Jacinto, cose to Villa Tunari-Lago Corani road, 17°10′26″S, 65°45′13″W, 1877 m, open area with shrubs and scattered trees, on epiphytic Remototrachyna costaricensis, A.F. 26238 (KRAM, LPB). Dept. La Paz. Prov. Franz Tamayo: Área Natural de Manejo Integrado Nacional APOLOBAMB A near Rio Pelechuco, below Pelechuco close to new road to Apolo, 14°46′59″S, 69°01′08″W, 2750 m, open area with scattered small trees, on epiphytic R. costaricensis, A.F. 25129 (KRAM, LPB). Dept. Tarija. Prov. Aniceto Arce: Reserva Nacional de Flora y Fauna Tariquía, between la Cumbre and camamento los Alisos, 22°02′38″S, 64°35′47″W, 2460 m, Boliviano-Tucumano forest with Alnus acuminata and Polylepis, on corticolous Hypotrachyna sp., M.K. 16563 (LPB). Prov. Murillo: Sainani, Valle del Zongo, open area with shrubs and scattered trees, 16°07′03″S, 68°04′42″W, 2170 m, on R. costaricensis, J.E. 55-9 (LPB, hb. Etayo). ECUADOR. Prov. Imbabura. R. E. R. Cotacachi-Cayapas, desde Irunguichoa Lagunas de Piñán, bosque Plant and Fungal Systematics 64(2): 283–344, 2019 nublado, 2700–3100 m, en Hypotrachyna sp., J.E. 25483, J.E 25495 (QCA, hb. Etayo). Spirographa triangularis (Diederich & Etayo) Flakus, Etayo & Miadlikowska, comb. nov. (Fig. 25K) MycoBank MB 833359 Basionym: Cornutispora triangularis Diederich & Etayo, in Etayo & Diederich, Flechten Follmann, Contributions to Lichenology in Honour of Gerhard Follmann (Cologne): 209. 1995. Description of the sexual state. Ascomata 100–170 µm diam., cleistohymenial, initially immersed and covered in part by the host thallus, then fully breaking the thallus cortex and almost sessile when mature. Disc exposed, concave, concolorous with margin, dark brown to black, matte. Margin dark brown, prominent, thick, without hairs. Exciple paraplectenchymatous, of 6–7 rows of cells, laterally 10–50 µm wide, brown to olivaceous brown, K–, N–, basally 15–20 µm thick. Hymenium hyaline, 60–90 µm tall, K/I–, I–. Subhymenium hyaline, indistinct. Epihymenium with orange-brown, granular pigments, K–, N–. Paraphyses 1–3 µm thick, simple to slightly branched Figure 29. Sections of conidiomata in selected species of Spirographa (A, C–I in LPCB; B in water). A – S. arsenii in Heterodermia flabellata (J.E. 29-2); B–C – S. galligena in Erioderma sp. (A.F. Fla39B, holotype); D – S. giselae in Lichenopeltella cf. communis growing on Parmotrema crinitum (A.F.26959); E – S. ophiurospora in Lobariella pallida (A.F. 25162); F – S. parmotrematis in Parmotrema sancti-angeli (A.F. 28887, holotype); G – S. pyramidalis in Remototrachyna costaricensis (A.F. 25129); H – S. usneae in Usnea sp. (A.F. 26545); I – S. vermiformis in Lepra amara (A.F. s.n.). Scales: A–I = 25 µm. A. Flakus et al.: Biodiversity assessment of ascomycetes inhabiting Lobariella lichens in Andean cloud forests 333 Figure 30. Morphological variability of conidia in Spirographa [all in water (left) and LPCB (right)]. A – S. arsenii in Heterodermia flabellata (J.E. 29-2); B – S. galligena in Erioderma sp. (A.F. Fla39B, holotype); C – S. giselae in Lichenopeltella cf. communis growing on Parmotrema crinitum (A.F.26959); D – S. limaciformis on Therrya fuckelii (DAOM138360, holotype); E – S. ophiurospora in Lobariella pallida (A.F. 25162); F – S. parmotrematis in Parmotrema sancti-angeli (A.F. 28887, holotype); G – S. pyramidalis in Remototrachyna costaricensis (A.F. 25129); H – S. usneae in Usnea sp. (A.F. 26545); I – S. vermiformis in Lepra amara (A.F. s.n.). Scales: A–I = 10 µm. in the upper part, septate, apically not thickened. Asci clavate to cylindrical, 50–90 × 14–21 µm, functionally unitunicate, apically not thickened, K/I–, I– (only endoascus slightly orange), ~ 32-spored. Ascospores, hyaline, 1-septate with pointed ends, not constricted at the septum, fusiform, straight to curved or slightly sigmoid, smooth, without perispore, 30–48 × 1.5–2.5 µm (n = 20). Description of the asexual state. See Etayo & Die- derich (1995). Notes. Spirographa triangularis was introduced by Etayo & Diederich (1995) based on a specimen of Cornutispora growing on epiphytic Pertusaria pertusa in Spain. It inhabits various species of Pertusaria and has conidia unique in the genus (11–17 µm diam.) composed of three segments of equal size (3–4 µm long), which are angular in shape and form distinctly triangular arms with cilia (Etayo & Diederich 1995; Fig. 3A). Based on a sample from Denmark growing on Pertusaria hymenea (IMI 233298), a possibly teleomorphic state of S. triangularis was illustrated by Hawksworth (1980; Fig. 5B as Spilomela ascaridiella) and by Sherwood-Pike (1987; Fig. 15 as Pleopsilis ascaridiella). In addition, in well preserved forests with Fagus and Abies in the Pyrenees, the Spirographa triangularis anamorph (Cornutispora) was observed growing intermixed with specimens of Spirographa on Pertusaria pertusa. However, samples we examined were characterized by having larger ascospores (30–48 × 1.5–2.5 µm) than those discussed by Hawksworth (1980) and Sherwood-Pike (1987) (22–35 × 1.5–2 µm). Although we were not able to confirm this anamorph-teleomorph connection based on molecular data, it is possible that the specimens of Spirographa growing on members of Pertusaria s.str. represent the sexual state of S. triangularis. Ecology and distribution. The species is known from Europe where it has been reported from epiphytic members of Pertusaria (P. flavida, P. hymenea and P. pertusa) (Hawksworth 1980; Sherwood-Pike 1987; Etayo & Diederich 1995). Specimens examined (sexual state). SPAIN. Huesca. Refugio de Linza, subida hacia Aztaparreta, hayedo–abetal, 42°51′12″N, 0°48′07″W, 1500 m, on P. flavida, J.E. 30861 (hb. Etayo). Álava. Ascensión al monte Gorbea por sendero desde Zárate, hayedo hiperhúmedo, 43°00′05.5N, 2°46′15.8″W, 1050 m, on P. pertusa on Fagus, J.E. 31601 (hb. Etayo). S. Miguel de Aralar, carretera de ascenso NA–7510, entre Km 8–9, hayedo entre roquedos calizos, 42°58′05″N, 1°58′16.0″W, 940 m., on P. hymenea on Fagus, J.E. 31721 (hb. Etayo). Specimens examined (asexual state). SPAIN. Navarra. S. Miguel de Aralar: sendero desde el aparcamiento casa forestal, 42°57′31″N, 2°02′57,4″W, 1000 m., on P. pertusa on 334 Fagus, J.E. 31721 hb. Etayo); S. Miguel de Aralar, carretera de ascenso NA-7510, entre Km 8-9, hayedo entre roquedos calizos, 42°58′05″N, 1°58′16.0″W, 940 m, on P. pertusa on Fagus, J.E. 31764 (hb. Etayo). Leiza: Leizalarrea, robledal en ladera de Quercus robur, 600 m, on P. pertusa on Q. robur, J.E. 28685 (hb. Etayo). País Vasco. Guipúzcoa: SA de Aralar, Lizarrusti, Lareo, sendero y alrededores del lago, hayedo, 720– 775 m, 42°58′43″N, 2°6′15″W, on P. pertusa on Fagus, J.E. 25973 (hb. Etayo); Oiartzun, camino a Artikutza, hayedo de Oieleku, 43°14′S, 1°49′W, on P. pertusa on Fagus, J.E. 23507 (hb. Etayo); 1 km después linde con Atallu (NA), área recreativa de Añi, cañón en pared or. S, 200–300 m, 43°04′30″N, 2°0′56″W, on P. pertusa on Fagus, J.E. 26556 (hb. Etayo). Spirographa tricupulata (F. Berger & E. Zimm.) Flakus, Etayo & Miadlikowska, comb. nov. MycoBank MB 833360 Basionym: Cornutispora tricupulata F. Berger & Er. Zimm., in Zimmermann & Berger, Herzogia 31: 738. 2018. Notes. Spirographa tricupulata was recently described by Zimmermann and Berger (2018) for a Cornutispora-like conidial fungus growing on Physcia stellaris. The species is characterized by having conidia composed of three equal arms (4–5.2 × 2.4–3 μm), which are strongly swollen at the base and develop cilia (1.2–1.5 μm long) at the ends. Conidia produced by the species are of an intermediate size as compared to S. ciliata and S. triangularis. Ecology and distribution. It is known from a single locality in Austria from Physcia stellaris. Spirographa usneae Flakus, Kukwa & Etayo (Figs 25L, 26K, 27I, 28H, 29H, 30H) Type: Bolivia. Dept. Cochabamba. Prov. Chapare: near Incachaca village, 17°14′13″S, 65°49′02″W, 2294 m, Yungas montane cloud forest, on thallus of Usnea sp., Adam Flakus 8176.2 (LPB – holotype!). Notes. The species is characterized by having black, immersed ascomata, 100–250 µm diam., with the disc concolorous with the margin, and fusiform, straight to curved or slightly sigmoid, mainly 1-septate ascospores with pointed ends, 15–32 × 2–3 μm (Flakus & Kukwa 2012b). We found its potential asexual state on the apothecial disc of Usnea in Bolivia (A.F. 26545) causing slight necrosis. The specimen is characterized by having Y-shaped, limaciformis-like conidia, 14–19 μm large, with the main axis of 7–15 × 1.5–2.5 μm and arms of 4–5 × 0.5–1 μm. However, the two states were never observed co-occurring, and molecular data should be used to confirm their identity. Ecology and distribution. The species is known from Bolivia and Ecuador on Usnea species. Specimens examined (sexual state). BOLIVIA: Dept. Coch- abamba. Prov. Carrasco, Parque Nacional Carrasco, Korikaza close to Monte Punku, 17°33′30″S, 65°16′32″W, 2880 m, lower montane Yungas cloud forest, on corticolous Usnea sp., M.K. 15112a (LPB). Dept. La Paz, Prov. Franz Tamayo, Área Natural de Manejo Integrado Nacional Apolobamba, near Rio Pelechuco, below Pelechuco, 14°47′28″S, 69°01′32″W, 2860 m, open area with scattered trees, on corticolous Usnea sp., M.K. Plant and Fungal Systematics 64(2): 283–344, 2019 14822 (LPB, UGDA); Prov. Muñecas, Área Natural de Manejo Integrado Nacional Apolobamba, above Camata, 15°14′35″S, 68°45′09″W, 1900, open area with shrubs, on Usnea sp. growing on shrubs, M.K. 14588 (LPB). ECUADOR: Prov. Tungurahua. Camino Baños a Puyo, confluencia de ríos Verde y Pastaza, Pailón del Diablo, en Usnea de color rojizo, 1600 m, J.E. 19937 (hb. Etayo). Specimens examined (asexual state). BOLIVIA. Dept. Chuquisaca. Prov. Belisario Boeto: close to Padilla between Nuevo Mundo and Santa Rosa, 18°57′12″S, 64°16′37″W, 1790 m, transition between Boliviano-Tucumano forests and dry interandean vegetation, on disc of corticolous Usnea sp., A.F. 26545 (LPB). Spirographa vermiformis (Leight.) Flakus, Etayo & Miadlikowska, comb. nov. (Figs 28H, 29I, 30I) MycoBank MB 833361 Basionym: Melaspilea vermiformis Leighton, Grevillea 3: 114. 1875. Notes. Melaspilea vermiformis was described by Leigh- ton (1875) from Wales based on material growing on Lepra albescens. Hawksworth (1980) considered the species to be similar to Lecidea ascaridiella and included both of them under name Spilomela ascaridiella. Later the species was moved to the genus Pleopsilis by Sharwood-Pike (1987) but the same species concept was maintained. For a long time Melaspilea vermiformis was treated as a later synonym of Spilomela ascaridiella, and some authors even considered those names as being synonyms of Spirographa fusisporella (eg. Holien & Triebel 1996; Diederich 2004; Etayo 2017). Because Melaspilea vermiformis and Cornutispora triangularis were described from rather similar hosts belonging to Pertusaria s.lat. (incl. Pertusaria s.str. and Lepra) we considered the possibility that they represent different sexual states of the same species. If so, it would mean that C. triangularis is a later synonym of M. vermiformis. However, we observed that samples of Cornutispora growing on Pertusaria s.str. (eg. P. flavicans, P. hymenea, P. pertusa) are characterized by having triangularis-like conidia (Etayo & Diederich 1995; Fig. 3A) while those growing on Lepra develop ciliata-like conidia (Fig. 30I). Together with the fact that the genus Lepra has recently been separated from Pertusaria based on phylogenetic results (Wei et al. 2017) it is likely that Cornutispora triangularis and Melaspilea vermiformis represent different species. In Europe at least two species of Spirographa can be distinguished on Pertusaria s.lat., especially by the conidia and host identity: (i) S. triangularis growing usually on Pertusaria pertusa and sporadically on P. flavida and P. hymenea, and (ii) S. vermiformis has conidia more similar to C. ciliata growing on Lepra (including L. albescens). Ecology and distribution. The species was described from Wales on Lepra albescens growing on Quercus (Hawksworth 1980) and a possible anamorphic state was observed in France and Spain. Additional material of S. cf. vermiformis examined (asexual state). FRANCE. Arette. La Pierre St. Martin le Braca, A. Flakus et al.: Biodiversity assessment of ascomycetes inhabiting Lobariella lichens in Andean cloud forests hayedo-abetal cerca de carretera D–132, 42°59′06″N, 0°44′38″W, 1480 m, on Fagus, on Lepra albescens, J.E. 31218 (hb. Etayo). SPAIN: Navarra. Lezáun, robledal detrás del hotel abandonado de la carr. Na-120, 42°47′08″N, 2°00′30″E, 930 m, on L. amara on Quercus pubescens, J.E. 31429 (hb. Etayo); alto de Belate, sendero hacia el antiguo Monasterio hospital Nuestra Señora de Belate, 43°02′23″N, 1°36′43″W, 890 m, on L. albescens on Fagus, J.E. 31242 (hb. Etayo); Quinto Real, carretera Eugui-Irurita, hayedo cerca aparcamiento setero, 43°01′22″N, 1°30′35″W, 1050 m, on L. albescens on Fagus, J.E. 27823 (hb. Etayo); Ciaúrriz, pista unos metros antes del cruce de la N-411 con la entrada al pueblo, robledal con boj húmedo, 42°55′49″N, 1°37′18″W, 625 m, on L. albescens on Q. faginea, J.E. 31596 (hb. Etayo); Baraibar, Sierra de Aralar, carretera, cerca del Santuario, on L. multipuncta on Fagus, J.E. 663 & O. Breuss (hb. Etayo); S. Miguel de Aralar, carretera de ascenso NA-7510, entre Km 8-9, hayedo entre roquedos calizos, 42°58′05″N, 1°58′16W, 940 m, on L. albescens var. corallina on Fagus, J.E. 31732 (hb. Etayo); ibidem, on L. multipuncta on Fagus, J.E. 31762 (hb. Etayo); Aldatz way to Beruete, pista por el NW hacia Aiztondo, hayedo y fresnedas, 43°01′10″N, 1°50′21″W, 880 m, on Lepra sp., J.E. 30634 (VIT). Álava: Álava, SA Entzía, puerto de Opacua, camino de Legaire, 940 m, on L. multipuncta on Fagus, J.E. 30071 (hb. Etayo). 335 bling galls of Tremella when well developed, ascospores 6–11 × 3.5–5 um, constricted at the septa, sometimes with one cell larger . . . . . . . . . . . . . . . Arthonia lobariellae Ascomata, originating from splits in the host cortex, then angular to rounded when mature, surrounded by a thin incised margin, 150–280 µm diam., pale yellowish to pale brown, ascospores not constricted at the septa, 7–10 × 2.5–4 µm . . . . . . . . . . Corticifraga microspora 9(4) Ascospores constantly 1-septate, 8–15 × 4–6 um, apothecia with elevated margin, shiny, epruinose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sclerococcum ricasoliae Ascospores mainly 3-septate, apothecia emarginate, matte, epruinose or green-pruinose . . . . . . . . . . . . . . 10 10(9) Ascospores 9–13× 3–5µm, ascomata usually green-pruinose . . . . . . . . . . . . . . . . . . . . . . Abrothallus subhalei Ascospores 18.5–27 × 7–10 μm, ascomata epruinose . . . . . . . . . . . . . . . . . . . . . . . Abrothallus macrosporus 11(3) Ascomata catathecioid, composed of radially arranged quadrangular cells, with convergent ostiolar setae, asci 8-spored, ascospores hyaline, 16–18 × 3.5–4.5 um, usually with setulae . . . . Lichenopeltella cf. santessonii Ascomata perithecioid . . . . . . . . . . . . . . . . . . . . . . . . 12 Key to lichenicolous ascomycetes growing on Lobariella 12(11) Ascomata pale pink, orange or red–violet . . . . . . . . 13 1 13(12) Asci producing one single macrospore together with 4 microspores; macrospores hyaline, 1-septate, slightly reticulate, (60–)73–94(–99) × 24–34 µm; microspores verrucose, 8–12 × 5–6 µm, ascomata orange, 250– 400 µm diam., sessile, developed on white arachnoid mycelium . . . . . . . . . . Ovicuculispora parmeliae s.lat. Sclerotia dark brown, with rough surface, 0.2–1.0 × 0.1–0.3 mm, internally composed of mass of hyaline, thick-walled, interwoven hyphae, 4–10 μm thick, surrounded by a dark-brown, cortical layer composed of isodiametric, thin-walled hyphae, of cells 4–17 μm diam; usually associated with superficial white mycelium; ascospores or conidia absent . . . . . . . . Xylaria lichenicola Sclerotia absent, ascospores or conidia present . . . . . 2 2(1) Spores produced in asci . . . . . . . . . . . . . . . . . . . . . . . 3 Spores not produced in asci . . . . . . . . . . . . . . . . . . . 32 3(2) Ascomata apothecioid or arthonioid; hymenium exposed at maturity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Ascomata perithecioid or catathecioid, hymenium not exposed at maturity . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4(3) Ascospores hyaline . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Ascospores pale to dark brown . . . . . . . . . . . . . . . . . . 9 5(4) Ascospores simple, straight to curved, narrowly ellipsoidal with acute ends, 10–20 × 2.5–3.5 μm, ascomata black, hairy, aggregated . . . . . . Lawreyella lobariella Ascospores 1- to multiseptate . . . . . . . . . . . . . . . . . . . 6 6(5) Ascospores 15–27-septate, acicular, 64–105 × 3.5–4.5 μm, ascomata marginate, immersed, 0.25–0.35 mm diam., disc pale yellowish . . . . . . Nanostictis pluriseptatum Ascospores 1-septate . . . . . . . . . . . . . . . . . . . . . . . . . . 7 7(6) Ascospores fusiform, with pointed ends, slightly curved or sigmoid, 30–40 × 1.5–2.5 um, asci multi-spored, ascomata immersed to sessile, dark brown, marginate . . . . . . . . . . . . . . . . . . . . . . . . . Spirographa ophiurospora Ascospores ellipsoidal with rounded ends, 7.5–11 × 3–5 µm, asci 8–spored . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 8(7) Ascomata arthonioid, emarginate, sessile, slightly elevated and irregular, pale orange-brown to dark brown, resem- Ascomata dark brown or black . . . . . . . . . . . . . . . . . 21 Asci producing spores of similar size . . . . . . . . . . . . 14 14(13) Ascospores multi-septate . . . . . . . . . . . . . . . . . . . . . 15 Ascospores 0–1-septate . . . . . . . . . . . . . . . . . . . . . . . 16 15(14) Ascomata orange, elongate, pear-shaped, sessile on reduced white arachnoid mycelium, single or in small groups, 500–700 µm high, 250–300 µm wide, without hairs hamathecium absent, ascospores acicular, hyaline, 225–430 × 1.5–2.5 µm . . . . . . Neobaryopsis andensis Ascomata beige to yellowish (intermixed with host rhizines on the lower side of the thallus), single, 130–200 µm diam., covered by thick-walled hairs, 35–80 × 3–8 µm, hamathecium with branched-anastomosed filaments, ascospores hyaline, acicular, 100–150 × 2–3.5 µm . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lichenotubeufia cryptica 16(14) Asci 4-spored. Ascospores 1-septate, breaking inside the ascus into two subglobose cells, hyaline, verrucose, 6–7.5 μm diam., ascomata orange, K–, 120–200 μm diam. . . . . . . . . . . . . . . . . . . . . . . . . Globonectria cochensis Asci 8-spored. Ascospores 1-septate not breaking inside the asci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 17(16) Ascospores finally yellowish brown, ascomata dark colored (red, reddish brown or reddish black), peridium K+ reddish violet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Ascospores hyaline, ascomata pale colored (salmon pink, yellowish orange or orange–brown), peridium K– . . . . 19 18(17) Ascomata red with large, concolorous papillae, 120– 200 μm in diam, ascospores verrculose, 8.5–10.5 × 5.5–8 μm . . . . . . . . . . . Xenonectriella coppinsiana 336 Plant and Fungal Systematics 64(2): 283–344, 2019 Ascomata brown or black with reddish tinge, without red papillae, 250–500 μm diam., ascospores rugulose, 11–14.5 × 9–10 μm . . . . Xenonectriella rugulatispora Ascomata 60–70 μm diam., aggregated on apothecial disc, asci 8-spored, ascospores bacilliform, 1-septate, 10–13.5 × 3–3.5 μm . . . Stigmidium disconephromeum 19(17) Ascomata large, 120–200 μm diam., salmon colored, subsphaerical, flattened in the apex, sessile, ascospores hyaline, verrucose, 7–10 × 3–3.5 µm . . . . . Nectriopsis curtiseta 29(26) Ascomata covered only by hyaline setae 34–45 × 4–5 μm, ascospores 7.5–10.5 × 2–3 μm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Niesslia stictarum var. nuda Ascomata smaller 60–130 μm diam., yellowish to orange-brown, ascospores smooth-walled . . . . . . . . . . 20 Ascomata covered by black setae . . . . . . . . . . . . . . . 30 20(19) Ascomata yellowish to orange, immersed in the host thallus, 60–85 μm diam., ascospores 5–7.5 × 3–4.5 μm . . . . . . . . . . . . . . . . . Pronectria microspora Ascomata orange to brown, sessile, 100–130 μm diam., covered by short setae, ascospores 6–9 × 2–3 μm . . . . . . . . . . . . . . . . . . . . . . . . . . Trichonectria setadpressa 21(12) Ascospores aseptate, hyaline to pale brown, 16–25 × 8–12 um; ascomata black, 200–400 μm diam., breaking the thallus, at least immersed in part, mycelium dark brown . . . . . . . . . . . . . . . . . . . . Roselliniella ramirezii Ascospores 1-septate, transversely septate or submuriform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 22(21) Ascospores grey-brown, yellow-brown or dark brown at maturity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Ascospores colorless at maturity, rarely brownish when overmatured . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 23(22) Ascomata immersed in the host thallus at least in young stage, without setae, ascospores golden-brown to darkbrown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Ascomata sessile, covered by black setae, ascospores dark-brown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 24(23) Ascomata 200–300 μm wide, solitary, fully immersed or breaking when older, not causing gall formation, ascospores 3-septate, golden-brown to brown, 15–22 × 5–6.5, strongly verrucose . . . Pseudodidymocyrtis lobariellea Ascomata 130–150 μm wide, in groups, fully immersed, causing galls formation, gall constricted at the base when older, of size 0.2–0.3 mm diam., ascospores 3-septate, dark-brown, 18–22 × 6.5–9 um, smooth-walled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pyrenidium sp. 25(23) Ascospores 3-septate, 15–16 × 4.5–5 μm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Capronia cf. solitaria Ascospores with with (0–)3–5 transverse and 0–1 longitudinal septa, 20–29 × 4.5–7 μm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Capronia epilobarina 26(22) Ascomata without setae, immersed to sessile on the host thallus, ascospores 0–2-septate . . . . . . . . . . . . . . . . . 27 Ascomata covered by black or hyaline setae, sessile, ascospores 1-septate . . . . . . . . . . . . . . . . . . . . . . . . . 29 27(26) Ascomata pyriform, immersed in the apothecial hymenia of the host, 70–90 µm wide, single, dark orange-brown to almost black, K+ slightly purplish, ascospores 1-septate, 6–11 × 2.5–3.5 µm . . . . . . . . . Atronectria lobariellae Ascomata sub-globose, not breaking the host, very small, 25–70 μm wide, aggregated, dark brown to black, K–, ascospores 0–2-septate, at least in part >11 μm long . . . . . 28 28(27) Ascomata 25–40 μm diam., aggregated on the lower surface, asci 4-spored, ascospores fusiform, 0–2-septate, 10–17 × 1.5–3 μm . . . . Rhagadostomella hypolobariella 30(29) Ascomata covered by medium sized setae with widened base, 10–37 × 4–6 µm (base up to 6 µm wide), ascospores 4.5–8.5 × 1.5–2.5 μm . . . . . . . . . Niesslia cf. lobariae Ascomata covered by shorter (8–26 × 5–13 μm long) or branched setae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 31(30) Ascospores breaking in ascus, 5–8 × 1.5–2 um, setae usually with short branches . . . . . Niesslia schizospora Ascospores not breaking, 6–7 × 1.5–2 μm, setae not branched, widened base (7–13 μm wide, shark-tooth shaped . . . . . . . . . . . Niesslia stictarum var. stictarum 32(2) Conidia arising within pycnidial conidiomata . . . . . 33 Conidia not arising within pycnidial conidiomata . . . 37 33(32) Conidia branched, Y-shaped, hyaline, 20–31 μm diam.; arms aseptate of the same size, 9–18 × 1.5–2.5 μm; conidiomata yellowish brown, peridium K–, immersed in the host thallus . . . Spirographa ophiurospora (anamorph) Conidia not branched . . . . . . . . . . . . . . . . . . . . . . . . 34 34(33) Conidia brown, verrucose, 1-septate, 12.5–19 × 8.5– 11 µm, conidiomata 200–300 μm diam. with green and purple pigments, K+ bright-green . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Abrothallus aff. ertzii (anamorph) Conidia hyaline, smooth-walled, aseptate or 1-septate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 35(34) Conidia 1-septate, hyaline, constricted at the septum, 11–14 × 2.5–3.5 μm, conidiomata immersed in irregular, flat, orange to brown gall-resembling ascomata . . . . . . . . . . . . . . . . . . . . . . . Arthonia lobariellae (anamorph) Conidia aseptate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 36(35) Conidiomata sessile, 150–350 µm tall, 140–250 µm wide, grey brown to blackish, with rugose surface (in section brown to greenish brown, K+ violet), conidia bacilliform, 2–3 × 1–1.5 µm . . . . . Epithamnolia rugosopycnidiata Conidiomata immersed to erumpent, 100–160 µm diam., black with a white mass of conidia on the top, conidia bacilliform to narrowly ellipsoidal, 2.5–7 × 1.5–2.5 µm . . . . . . . Abrothallus subhalei (anamorph) 37(32) Conidiophores tightly aggregated in sporodochia or synnemata; conidia hyaline to greyish brown . . . . . 38 Conidiophores scattered or loosely grouped, conidia brown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 38(37) Conidia produced on unbranched synnemata, 100– 400 µm tall, developing on white arachnoid mycelium, conidial mass 50–300 µm diam., hemispherical, hyaline, pink to yellowish orange, conidia bacilliform-ellipsoidal to obovoid, aseptate, without perispore, delicately truncate, 4–7 × 2–2.5 µm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Neobaryopsis andensis (anamorph) Conidial mass forming sporodochial structures. . . . . 39 39(38) Sporodochia yellowish to orange, conidia acicular, simple to multiseptate, 60–130 × 2–3 µm . . . . Fusarium sp. (possibly anamorph of X. rugulatispora) A. Flakus et al.: Biodiversity assessment of ascomycetes inhabiting Lobariella lichens in Andean cloud forests Sporodochia brown to greyish, 50–120 μm diam., conidia ellipsoidal, distinctly verrucose, catenate, greyish brown, 0–2-septate, 6–9 × 4–4.5 µm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cladophialophora parmeliae 40(37) Conidia branched, with three axes of similar size, 13–14-septate, single arm 130–147 × 16–19 µm developing directly on black, superficial, hyphae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ceratosporium sp. Conidia not branched, not developing on superficial hyphae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 41(40) Conidia brown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Conidia hyaline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 42(41) Conidiophores poorly differentiated. . . . . . . . . . . . . . 43 Conidiophores well differentiated . . . . . . . . . . . . . . . 44 43(42) Conidiophores immersed in host apothecial hymenia, pale-brown, conidia in basipetal chains, smooth–walled, aseptate, 3–4.5 × 2.5–4 μm; hyperparasitic on Lawreyella lobariella . . . . . . . . . . . . . . . . . . Intralichen lichenum Conidiophores developing on the host thallus, conidia muriform, subglobose to ellipsoidal, 10–25 µm diam., composed of cells 4–6 µm diam., arising singly on short, hyaline to pale brown conidiophores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Monodictys cf. fuliginosa 44(42) Conidia even in color, pale- to dark-brown, 1–3-septate, 10–17 × 3–4 µm . . . . Pseudocercospora cf. lichenum Conidia >20 μm long and wider, with basal or terminal cells paler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 45(44) Conidiophores 120–140 × 5–7 μm, conidia 2-septate, 20–25 × 9–13 μm, constricted at the septum, clavate, the basal cell paler, thin-walled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Endophragmiella aff. hughesii Conidiophores 32–55 × 4–6 μm, conidia 5–10-septate, not constricted at the septum, 33–55 × 7–9 μm, obclavate-subcylindrical, paler at the top, thick-walled . . . . . . . . . . . . . . . . . . . . . . . . . . . Ellisembia aff. lichenicola 46(41) Conidia narrowly ellipsoidal, slightly tapering and evidently truncate, 3.5–6 × 2–3 µm, l/b ratio average 2.1; growing in aggregated colonies covering large areas on apothecial margin of the host . . . . . . Acremonium sp. (possibly anamorph of Nectriopsis curtiseta) Conidia subglobose to broadly ellipsoidal, not evidently truncate; growing together forming white or pinkish droplets and developing on white, arachnoid subiculum on upper side of the host thallus . . . . . . . . . . . . . . . . 47 47(46) Conidial mass pinkish, conidia 2–4.5 × 2–3 μm, l/b ratio average 1.4 . . . .Trichonectria setadpressa (anamorph) Conidial mass white, conidia 2.5–5 × 1.5–2.5 μm, l/b ratio average 1.8 . . . . . Globonectria cochensis (anamorph) Discussion The genus Abrothallus inhabiting Lobariella is represented by three species including one new to science, A. subhalei (Fig. 1). The sister species Abrothallus macrosporus was previously described from Peru and seems to be a common parasite of Lobariella in Andean forests. Its potential anamorph, discussed previously by Etayo (2017), is thought to be A. aff. ertzii. However, in our phylogeny the latter is unrelated to A. macrosporus and 337 most probably represents an undescribed species or else the potential anamorph of A. ertzii s.str. (Fig. 1), which is known from Lobaria pulmonaria in Canada (Suija et al. 2015b). As revealed in our analyses, Arthonia lobariellae is closely related to the undescribed Arthonia ‘lobariicola’ from Japan (Fig. 2). It is a member of the Bryostigma clade discovered by Frisch et al. (2014). The Bryostigma clade includes mainly lichenicolous fungi in addition to the bryophilous Bryostigma muscigenum and a few lichen-forming fungi. This clade forms a distinct early diverging lineage in the Arthoniaceae as shown by Frisch et al. (2014). Arthonioid species included in this clade are morphologically different from the core Arthoniaceae (Frisch et al. 2014). They are characterized by having blackish and convex ascomata, Arthonia-type asci, small, hyaline and 1-septate ascospores with an enlarged upper cell, and a dark brown epithecium. The ascospores and ascus anatomy of Arthonia lobariellae fit this description. However, the species has rather different large orange-brown ascomata resembling Tremella-like galls (Etayo 2017) and frequently develop into the asexual state. Globonectria cochensis and Trichonectria setadpressa were for the first time revealed as members of Nectriaceae, however, their phylogenetic placement within the family is not well-supported and needs further work. Globonectria was shown to be distantly related to other lichenicolous genera in the family (especially to the most morphologically similar Pronectria) and connected with its potential anamorph. Therefore, its recognition at the genus level introduced by Etayo (2002) is justified (Fig. 3). Trichonectria setadpressa was resolved sister to T. rectipila (Fig. 3), a mycoparasitic member of the genus growing on Diatrype stigma (Xylariales) in North America (Rossman et al. 1999) and connected for the first time with its asexual morph. The co-occurrence of both the asexual and sexual states of C. cochensis and T. setadpressa was also observed a few times on the same host thalli. A previous study of Neobarya s.lat. by Lawrey et al. (2015) showed that the genus is polyphyletic. Neobarya s.str. belongs to Clavicipitaceae. Therefore, the new genus Lichenobarya (member of Hypocreaceae s.lat.; Fig. 4) was established for N. usneae. We confirm the polyphyly of Neobarya s.lat. (Lawrey et al. 2015) and introduced Neobaryopsis, another genus in the Neobarya-like lichenicolous species group inhabiting Lobariella (Fig. 4). Neobaryopsis andensis is well supported within Cordycipitaceae and is characterized by having very particular narrowly pyriform yellowish to orange ascomata developing on reduced white arachnoid subiculum, large multiseptate needle-like ascospores, and an asexual state consisting of short synnemata with pale yellowish to pink conidial mass at the top. Recently it was shown that pleosporalean lichenicolous fungi represent a polyphyletic assemblage (Ertz et al. 2015), with only some genera belonging to Pleosporales. Mycoparasites (including lichenicolous fungi) are rare in Pleosporales, an order that contains mainly 338 saprobic fungi and plant pathogens (Hyde et al. 2013; Ariyawansa et al. 2014). Therefore, it was surprising to find yet another lichenicolous species, Pseudodidymocyrtis lobariellae (Didymosphaeriaeae), in this group. This species is closely related to the saprobic genus Kalmusia (Fig. 5). In addition to its saprobic life style, Kalmusia clearly differs from Pseudodidymocyrtis by its asci developing long furcate pedicel and darker ascospores. Pseudodidymocyrtis lobariellae has a very similar morphology to some lichenicolous fungi inhabiting different lichen genera, especially Didymocyrtis ramalinae (on Ramalina; Ertz et al. 2015). The most morphologically similar species, Didymocyrtis ramalinae is a member of the recently reestablished genus Didymocyrtis (Phaeosphaeriaceae), accomodating several lichenicolous species (Ertz et al. 2015). It is characterized by its asci having a strongly thickened apical aparatus with a poorly developed structure (observed in K/I), uniform and thin pseudoparaphyses, pigments (in peridium and ascospores) changing colors in KOH to dark olivaceous-brown, not constricted ascospores and a Phoma-like asexual state (Ertz et al. 2015). In addition to the anatomical characters it differs from Pseudodidymocyrtis lobariellae in its phylogenetic placement in Phaeosphaeriaceae. Lawreyella lobariella, originally described as a member of Unguiculariopsis (Kondratyuk & Galloway 1995a), was revealed as a member of Cordieritidaceae, Helotiales (Fig. 6). It is closely related to the lichenicolous genera Diplolaeviopsis, Macroskyttea, and Protounguicularia. However, these genera strongly differ anatomically from Lawreyella, which is characterized by having black ascomata containing greenish pigment (K+reddish brown, N+ bright green) in its hymenium and an additional orangebrown pigment in the exciple and epithecium (K+ purple then dark-brown, N+ purplish then orange-brown), short excipular hairs, wide and slightly acute, and paraphyses strongly swollen apically with evident triangular gel sheaths. Diplolaeviopsis and Macroskyttea differ from Lawreyella by having mainly aseptate large cylindrical to tapering excipular hairs, urceolate ascomata with a narrow pore when young, apically not thickened paraphyses and coelomycete anamorph with hyaline, 1-septate conidia of unequal cells (Giralt & Hawksworth 1991; Diederich & Coppins 2014; Etayo et al. 2015; Suija et al. 2015a). Protounguicularia can be distinguished from Lawreyella by its white to pale brownish ascomata; septate, cylindrical to slightly tapering excipular setae, and paraphyses not swollen apically (Huhtinen et al. 2008). The distantly related genus Unguiculariopsis (type species – U. ilicincola) has also a very different morphology and differs from the new genus mainly its very characteristic excipular hairs, which are aseptate, with swollen bases, narrow to pointed, and strongly hook-shaped (including in the type species), its reddish to brown ascomata with orange brown pigment (K+ reddish to purplish, N–), and paraphyses that are not swollen (Diederich & Etayo 2000). Dactylospora lobariella, as circumscribed by Hafellner (1979), was reported from several host species (Lobaria erosa, L. pulmonaria, Lobariella pallida, Pseudocyphellaria coppinsii, Ricasolia amplissima, R. patinifera, Plant and Fungal Systematics 64(2): 283–344, 2019 R. quercizans, R. virens and Yoshimuriella dissecta) in Bolivia, Canada, Chile, Ecuador, Europe, Macaronesia, Mexico and USA (Vouaux 1913; Hafellner 1979; Kondratyuk & Galloway 1995b; Etayo & Diederich 1996b; Galloway & Quilhot 1998; Diederich 2003; Spribille et al. 2010; Flakus & Kukwa 2012a; Etayo 2017). Recently, Diederich et al. (2018) established its position in Sclerococcales and showed that Dactylospora and Sclerococcum represent sexual and asexual states, respectively, of the same genus. Consequently, the new combination Sclerococcum lobariellum has been introduced. According to our analyses (Fig. 7), neotropical populations of Sclerococcum lobariellum (growing on Lobariella pallida and Ricasolia patinifera) form a well-supported clade within Dactylosporaceae, but distinct from European populations of S. lobariellum s.str. (growing on Lobaria pulmonaria). Our results suggest that S. lobariella s.lat. represents a complex of two cryptic species. In Bolivia and Ecuador, S. lobariella s.lat. grows not only on L. pallida but also sporadicaly on Ricasolia patinifera and has very similar morphology to Karschia ricasoliae described by Vouaux (1913) from mountain forests in Mexico (growing on Ricasolia). Therefore, we reestablished the name of Sclerococcum ricasoliae to accommodate the neotropical populations of S. lobariellum s.lat. Xylaria lichenicola, which forms dark brown sclerotia usually associated with a superficial white mycelium and causing bleaching of the thallus of Lobariella, was revealed as a member of Xylaria subgenus Pseudoxylaria (Fig. 8). According to Hsieh et al. (2010), Pseudoxylaria is a monophyletic group that includes species associated with termite nests. Later studies by U’Ren et al. (2016) demonstrated that this clade also includes endolichenic fungi. Our lichenicolous Xylaria species forms a clade together with endolichenic Xylaria sp. (FL0491) and species associated with termite nests X. fimbriata. The endolichenic strain, most closely related to lichenicolous Xylaria inhabiting Lobariella, was isolated from Cladonia didyma. As was shown by Thomas et al. (2016), Xylaria lichenicola in Ecuadorian tropical cloud forest may develop different life strategies: they can grow in the forest canopy as endophytic fungi, or as decomposers on decaying wood. Therefore, it is possible that the asymptomatic endolichenic fungus from Cladonia didyma, and the lichenicolous fungus causing symptoms on Lobariella, represent the same species. We discovered that the anamorphic species Cornutispora ophiurospora inhabiting Lobariella, and the undescribed teleomorphic species of Spirographa, represent a single species. Subsequently, extensive phylogenetic analyses, including newly generated sequences of several Cornutispora and Spirographa species inhabiting nine different host species were carried out to reveal phylogenetic affiliation of those fungi (Figs 23, 24A, B). Based on these resulting phylogenies, we established anamorph-teleomorph connections within the genus Spirographa for the four-following species: Cornutispora pyramidalis+Spirographa pyramidalis, Cornutispora arsenii+Pleoscutula arsenii, Asteroglobulus giselae+Spirographa giselae, Cornutispora ophiurospora+Spirographa ophiurospora A. Flakus et al.: Biodiversity assessment of ascomycetes inhabiting Lobariella lichens in Andean cloud forests (Fig. 24B). The sexual and asexual states of several species were observed growing together on the same host. These multiple evidences of teleomorph-anamorph connections confirmed that Cornutispora and Spirographa are congeneric. The teleomorphs of Spirographa are morphologically similar (Figs 25, 26) but can be classified into a few phenotypic groups, including: (i) peritheciod, hyaline to pale-brown ascomata immersed in host hymenia (S. fusisporella), (ii) perithecioid, dark-brown to black ascomata immersed in host thalli (S. maroneae), (iii) pale to darkbrown ascomata immersed in the host thalli (e.g., S. ophiurospora, S. pyramidalis, S. usneae), (iv) dark-brown to black ascomata sitting on the host thalli (S. giselae, S. hypotrachynae), and (v) dark-brown to black ascomata grouped on black stromata (S. aggregata). Cornutispora-like anamorphs are even more uniform across species (Figs 28, 29) and are characterized by having immersed to rarely sessile, honey-, orange- to dark-brown pycnidial conidiomata. However, microscopic characters, including ascospores (Fig. 27) and conidia shape and size (Fig. 30), can be helpful in taxonomic studies of this genus. Conidia are highly variable among and within species. Nevertheless, they can be divided into five main morphological groups: (i) ciliata-like with strongly swollen (at the base), rounded in shape arms, and apical cilia (Fig. 30J; Gierl & Kalb 1993; Punithalingam 2003), (ii) intermedia-like with arms of almost equal sizes, gradually tapering (without swollen base) (Fig. 30F; Punithalingam 2003), (iii) limaciformis-like with evident, larger main axis and two shorter arms (Fig. 30E; Pirozynski 1973), (iv) pyramidalis-like with triangular, or tetra- to polyhedral, to stellate, with reduced arms (Fig. 30G; Etayo 2010a), and (v) triangularis-like with distinctly triangular arms of equal size, and angular in shape (Fig. 3A in Etayo & Diederich 1995). Determination of Cornutispora species using the key by Punithalingham (2003) was challenging and many of our samples did not fit well within the species descriptions. We often found intermediate morphotypes between species. We detected a slight difference in the size of conidia for the specimens inhabiting different hosts within the C. pyramidalis complex, corresponding to the relationships reported here (Fig. 24B). We concluded that the C. pyramidalis complex is composed of multiple species growing on different hosts: S. arsenii (on Heterodermia), S. giselae (on Lichenopeltella growing on Parmotrema and Ramalina), S. parmotrematis (on Parmotrema), and S. pyramidalis (on Hypotrachyna and closely related Remototrachyna). Moreover, each species is circumscribed by small but consistent differences in conidial size, and in the cases of S. arsenii, S giselae, and S. pyramidalis by ascospores of different sizes (9–13 × 2.5–4 µm, 7–10 × 2–3 µm and 12–20 × 2–3.5 µm, respectively). This is convincing evidence that conidia size is an important taxonomic character supporting the separation of host-specific species, and that it may indicate that some specimens deviating from the original description and growing on another host, may represents previously overlooked species. 339 Acknowledgements We are greatly indebted to our colleagues and all staff of the Herbario Nacional de Bolivia, Instituto de Ecología, Universidad Mayor de San Andrés, La Paz, for their generous longterm cooperation. We would also like to thank SERNAP (http:// sernap.gob.bo), and the staff of all protected areas for granting permits for scientific studies, as well as their assistance and logistical support during the field work. We want to express our gratitude to the Panamanian Ministry of Environment for facilitating this research through issuing collecting and export permits; the Panamanian Institute for Scientific Research and High Technology Services (INDICASAT-AIP) for hosting the project and specifically Dr. Omar López for his assistance with the permit process. Special thanks to the GoLife team (especially Betsy Arnold and Alicia Ibáñez) for organizing and executing the collecting trip in Panama, and to Paul Diederich for his valuable comments on the manuscript and enlightening discussions. This research was financially supported by the National Science Centre (NCN) in Poland (DEC-2013/11/D/NZ8/ 03274) and by National Science Foundation (Golife project, NSF-1541548) in USA. Supplementary electronic material Table S1. Voucher data and GenBank accession numbers for the sequences included in this study. Newly generated sequences are shown in bold. Download file References Alstrup, V. & Hawksworth, D. L. 1990. The lichenicolous fungi of Greenland. Meddelelser om Gronland, Bioscience 31: 1–90. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. 1990. Basic local alignment search tool. Journal of Molecular Biology 215: 403–410. Ariyawansa, H.A., Tanaka, K., Thambugala, K. M., Phookamsak, R., Tian, Q., Camporesi, E., Hongsanan, S., Monkai, J., Wanasinghe, D. N., Mapook, A., Chukeatirote, E., Kang, J.-C., Xu, J.-C., McKenzie, E. H. C., Jones, E. B. G. & Hyde, K. D. 2014. A molecular phylogenetic reappraisal of the Didymosphaeriaceae (= Montagnulaceae). Fungal Diversity 68: 69–104 Ashrafi, S., Helaly, S., Schroers, H. J., Stadler, M., Richert-Poeggeler, K. R., Dababat, A. A. & Maier, W. 2017. Ijuhya vitellina sp. nov., a novel source for chaetoglobosin A, is a destructive parasite of the cereal cyst nematode Heterodera filipjevi. PLoS One 12: e0180032 Aptroot, A. 2004. Two new ascomycetes with long gelatinous appendages collected from monocots in the tropics. Studies in Mycology 50: 307–312. Baloch, E., Gilenstam, G. & Wedin, M. 2013 The relationships of Odontotrema (Odontotremataceae) and the resurrected Sphaeropezia (Stictidaceae) – new combinations and three new Sphaeropezia species. Mycologia 105: 384–397. Booth, C. 1971. Fusarium: Laboratory Guide to the Identification of the Major Species. The Common Wealth Mycological Institute, Kew. Brackel, W. von. 2011a. Lichenicolous fungi and lichens from Puglia and Basilicata (southern Italy). Herzogia 24: 65–101. Brackel, W. von. 2011b. Lichenopeltella rangiferinae sp. nov. and some other lichenicolous fungi from Iceland. Acta Botanica Islandica 15: 51–60. Brackel, W. von. 2014. Kommentierter Katalog der flechtenbewohnenden Pilze Bayerns. Bibliotheca Lichenologica 109: 1–476. Candoussau, F., Boqueras, M., Gómez-Bolea, A., Læssøe, T., Lowen, R., Rogers, J. D., Rossman, A. Y. & Samuels, G. J. 2007. Observations on Neobarya, including new species and new combinations. Sydowia 59: 179–215. 340 Carbone, I., White, J. B., Miadlikowska, J., Arnold, A. E., Miller, M. A., Kauff, F., U’Ren, J. M., May, G. & Lutzoni, F. 2017. T-BAS: TreeBased Alignment Selector toolkit for phylogenetic-based placement, alignment downloads, and metadata visualization: an example with the Pezizomycotina tree of life. Bioinformatics 33:1160–1168. Carbone, I., White, J. B., Miadlikowska, J., Arnold, A. E., Miller, M. A., Magain, N., U’Ren, J. M. & Lutzoni, F. 2019. T-BAS version 2.1: Tree-Based Alignment Selector toolkit for evolutionary placement and viewing of alignments and metadata on curated and custom trees. Microbiology Resource Announcements 8: e00328-19. Plant and Fungal Systematics 64(2): 283–344, 2019 Diederich, P. 2003. New species and new records of American lichenicolous fungi. Herzogia 16: 41–90. Diederich, P. 2004. Spirographa. In: Nash III, T.H., Ryan, B. D., Diederich, P., Gries, C. & Bungartz, F. (eds): Lichen Flora of the Greater Sonoran Desert Region, Vol. 2, pp. 702–703. Lichens Unlimited, Arizona State University, Tempe, Arizona. Diederich, P. & Coppins, B. J. 2014. Diplolaeviopsis symmictae (Helotiales, Ascomycota), a new lichenicolous fungus on Lecanora symmicta. Bulletin de la Société des Naturalistes Luxembourgeois 115: 151–155. Castresana, J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17: 540–552. Diederich, P. & Etayo, J. 2000. A synopsis of the genera Skyttea, Llimoniella and Rhymbocarpus (lichenicolous Ascomycota, Leotiales). The Lichenologist 32: 423–485. Castlebury, L. A., Rossman, A. Y., Sung, G., Hyten, A. S., & Spatafora, J. W. 2004. Multigene phylogeny reveals new lineage for Stachybotrys chartarum, the indoor air fungus. Mycological Research 108: 864–872. Diederich, P., Ertz, D., Lawrey, J. D., Sikaroodi, M.& Untereiner, W. A. 2013. Molecular data place the hyphomycetous lichenicolous genus Sclerococcum close to Dactylospora (Eurotiomycetes) and S. parmeliae in Cladophialophora (Chaetothyriales). Fungal Diversity 58: 61–72. Chaverri, P., Bischoff, J. F., Evans, H. C. & Hodge, K. T. 2005. Regiocrella, a new entomopathogenic genus with a pycnidial anamorph and its phylogenetic placement in the Clavicipitaceae. Mycologia 97: 1225–1237. Chaverri, P., Salgado, C., Hirooka, Y., Rossman, A. Y. & Samuels, G. J. 2011. Delimitation of Neonectria and Cylindrocarpon (Nectriaceae, Hypocreales, Ascomycota) and related genera with Cylindrocarponlike anamorphs. Studies in Mycology 68: 57–78. Diederich, P., Lawrey, J. D., Capdet, M., Pereira, S., Romero, A. I., Etayo, J., Flakus, A., Sikaroodi, M.& Ertz, D. 2014. New lichen-associated bulbil-forming species of Cantharellales (Basidiomycetes). The Lichenologist 46: 333–347. Diederich, P., Lawrey, J. D. & Ertz, D. 2018. The 2018 classification and checklist of lichenicolous fungi, with 2000 non-lichenized, obligately lichenicolous taxa. The Bryologist 12: 340–425. Cole, M. S. & Hawksworth, D. L. 2001. Lichenicolous fungi, mainly from the USA, including Patriciomyces gen. nov. Mycotaxon 77: 305–338. Diederich, P., Common, R. S., Braun, U., Heuchert, B., Millanes, A., Suija, A. & Ertz. D. 2019. Lichenicolous fungi from Florida growing on Graphidales. Plant and Fungal Systematics 64: 249–282. Crous, P. W., Mohammed, C., Glen, M., Verkley, G. J. M. & Groenewald, J. Z. 2007. Eucalyptus microfungi known from culture. 3. Eucasphaeria and Sympoventuria genera nova, and new species of Furcaspora, Harknessia, Heteroconium and Phacidiella. Fungal Diversity 25: 19–36. Ekanayaka, A. H., Jones, G. E. B., Hyde, K. D. & Zhao, Q. 2019. A stable phylogeny for Dactylosporaceae. Cryptogamie Mycologie 40: 23–44. Crous, P. W., Wingfield, M. J., Burgess, T. I., Hardy, G. E., Crane, C., Barrett, S., Cano-Lira, J. F., Le Roux, J. J., Thangavel, R., Guarro, J., Stchigel, A. M., Martín, M. P., Alfredo, D. S., Barber, P. A., Barreto, R. W., Baseia, I. G., Cano-Canals, J., Cheewangkoon, R., Ferreira, R. J., Gené, J., Lechat, C., Moreno, G., Roets, F., Shivas, R. G., Sousa, J. O., Tan, Y. P., Wiederhold, N. P., Abell, S. E., Accioly, T., Albizu, J. L., Alves, J. L., Antoniolli, Z. I., Aplin, N., Araújo, J., Arzanlou, M., Bezerra, J. D., Bouchara, J. P., Carlavilla, J. R., Castillo, A., Castroagudín, V. L., Ceresini, P. C., Claridge, G. F., Coelho, G., Coimbra, V. R., Costa, L. A., da Cunha, K. C., da Silva, S. S., Daniel, R., de Beer, Z. W., Dueñas, M., Edwards, J., Enwistle, P., Fiuza, P. O., Fournier, J., García, D., Gibertoni, T. B., Giraud, S., Guevara-Suarez, M., Gusmão, L. F., Haituk, S., Heykoop, M., Hirooka, Y., Hofmann, T. A., Houbraken, J., Hughes, D. P., Kautmanová, I., Koppel, O., Koukol, O., Larsson, E., Latha, K. P., Lee, D. H., Lisboa, D. O., Lisboa, W. S., López-Villalba, Á., Maciel, J. L., Manimohan, P., Manjón, J. L., Marincowitz, S., Marney, T. S., Meijer, M., Miller, A. N., Olariaga, I., Paiva, L. M., Piepenbring, M., Poveda-Molero, J. C., Raj, K. N., Raja, H. A., Rougeron, A., Salcedo, I., Samadi, R., Santos, T. A., Scarlett, K., Seifert, K. A., Shuttleworth, L. A., Silva, G. A., Silva, M., Siqueira, J. P., Souza-Motta, C. M., Stephenson, S. L., Sutton, D. A., Tamakeaw, N., Telleria, M. T., Valenzuela-Lopez, N., Viljoen, A., Visagie, C. M., Vizzini, A., Wartchow, F., Wingfield, B. D., Yurchenko, E., Zamora, J. C. & Groenewald, J. Z. 2016. Fungal Planet description sheets: 469–557. Persoonia 37: 218–403. Ertz, D., Miadlikowska, J., Lutzoni, F., Dessein, S., Raspé, O., Vigneron, N., Hofstetter, V. & Diederich, P. 2009. Towards a new classification of the Arthoniales (Ascomycota) based on a threegene phylogeny focussing on the genus Opegrapha. Mycological Research 113: 141–152. Ertz, D., Diederich, P., Lawrey, J. D., Berger, F., Freebury, C. E., Coppins, B., Gardiennet, A. & Hafellner, J. 2015. Phylogenetic insights resolve Dacampiaceae (Pleosporales) as polyphyletic: Didymocyrtis (Pleosporales, Phaeosphaeriaceae) with Phoma-like anamorphs resurrected and segregated from Polycoccum (Trypetheliales, Polycoccaceae fam. nov.). Fungal Diversity 74: 53–89. Etayo, J. 2002. Aportaciόn al conocimiento de los hongos liquenícolas de Colombia. Bibliotheca Lichenologica 84: 1–154. Etayo, J. 2010a. Lichenicolous fungi from the western Pyrenees. V. Three new ascomycetes. Opuscula Philolichenum 8: 131–139. Etayo, J. 2010b. Hongos liquenícolas de Perú. Bulletin de la Société linnéenne de Provence 61: 1–46. Etayo, J. 2017. Hongos liquenícolas de Ecuador. Opera Lilloana 50: 1–535. Etayo, J. & Diederich, P. 1995. Lichenicolous fungi from the western Pyrenees, France and Spain. I. New species of Deuteromycetes, pp. 205–221. In: Daniels, F. J. A., Schulz, M.& Peine, J. (eds), Flechten Follmann. Contributions to Lichenology in Honour of Gerhard Follmann. Geobotanical and Phytotaxonomical Study Group, Botanical Institute, University of Cologne, Cologne. Culberson, C. F. & Kristinsson, H. 1970. A standardized method for the identification of lichen products. Journal of Chromatography 46: 85–93. Etayo, J. & Diederich, P. 1996a. Lichenicolous fungi from the western Pyrenees, France and Spain. II. More Deuteromycetes. Mycotaxon 60: 415–428. Currie, C. R., Wong, B., Stuart, A. E., Schultz, T. R., Rehner, S. A., Mueller, U. G., Sung, G., Spatofora, J. W. & Straus, N. A. 2003 Ancient tripartite coevolution in the attine ant-microbe symbiosis. Science 299: 386–388. Etayo, J. & Diederich, P. 1996b. Lichenicolous fungi from the western Pyrenees, France and Spain. III. Species on Lobaria pulmonaria. Bulletin de la Société des Naturalistes Luxembourgeois 97: 93–118. Diederich, P. 1997. Lichenicolous fungi in the tropics. Bibliotheca Lichenologica 68: 215–221. Etayo, J. & Sancho, L. G. 2008. Hongos liquenícolas del Sur de Sudamérica, especialmente de Isla Navarino (Chile). Bibliotheca Lichenologica 98: 1–302. A. Flakus et al.: Biodiversity assessment of ascomycetes inhabiting Lobariella lichens in Andean cloud forests Etayo, J., Flakus, A., Suija, A. & Kukwa, M. 2015. Macroskyttea parmotrematis gen. et sp. nov. (Helotiales, Leotiomycetes, Ascomycota), a new lichenicolous fungus from Bolivia. Phytotaxa 224: 247–257. 341 Hawksworth, D. L. & Sherwood M. A. 1982. Two new families in the Ascomycotina. Mycotaxon 16: 262–264. Flakus, A. & Kukwa, M. 2012a. New records of lichenicolous fungi from Bolivia. Opuscula Philolichenum 11: 36–48. Hawksworth, D. L., Millanes, A. M. & Wedin, M. 2010. Roselliniella revealed as an overlooked genus of Hypocreales, with the description of a second species on parmelioid lichens. Persoonia 24: 12–17. Flakus, A. & Kukwa, M. 2012b. New species of lichenicolous fungi from Bolivia. The Lichenologist 44: 469–477. Heuchert, B. & Braun, U. 2006. On some dematiaceous lichenicolous hyphomycetes. Herzogia 19: 11–21. Flakus, A., Kukwa, M.& Czarnota, P. 2006. Some interesting records of lichenized and lichenicolous Ascomycota from South America. Polish Botanical Journal 51: 209–215. Hijikawa, Y., Matsuzaki, M., Suzuki, S., Inaoka, D. K., Tatsumi, R., Kido, Y., & Kita, K. 2016. Re-identification of the ascofuranone-producing fungus Ascochyta viciae as Acremonium sclerotigenum. The Journal of Antibiotics 70: 304–307. Flakus, A., Etayo, J., Pérez-Ortega, S., Kukwa, M., Palice, Z. & Rodriguez-Flakus, P. 2019. A new genus, Zhurbenkoa, and a novel nutritional mode revealed in the family Malmideaceae (Lecanoromycetes, Ascomycota). Mycologia 111: 593–611. Hirooka, Y., Rossman, A. Y. & Chaverri, P. 2011. A morphological and phylogenetic revision of the Nectria cinnabarina species complex. Studies in Mycology 68: 35–56. Frisch, A., Thor, G., Ertz, D. & Grube, M. 2014. The arthonialean challenge: restructuring Arthoniaceae. Taxon 63: 727–744. Hirooka, Y., Kobayashi, T., Ono, T., Rossman, A. Y. & Chaverri, P. 2010. Verrucostoma, a new genus in the Bionectriaceae from the Bonin Islands, Japan. Mycologia 102: 418–429. Frisch, A., Grube, M., Kashiwadani, H. & Ohmura, Y. 2018. Arthoniaceae with reddish, K+ purple ascomata in Japan. Phytotaxa 356: 19–33. Fryar, S. C., Haelewaters, D. & Catcheside, D. E. A. 2019. Annabella australiensis gen. & sp. nov. (Helotiales, Cordieritidaceae) from South Australian mangroves. Mycological Progress 18: 973–981. Galloway, D. J. & Quilhot, W. 1998. Checklist of Chilean lichen-forming and lichenicolous fungi. Gayana Botanica 55: 111–185. Gams, W., Stielow, B. Gräfenhan, T.& Schroerset, H.-J. 2019. The ascomycete genus Niesslia and associated monocillium-like anamorphs. Mycological Progress 18: 5–76. Gerlach, W., Nirenberg, H. I. 1982. The genus Fusarium – A pictorial atlas Mitteilungen aus der Biologischen Bundesanstalt für Landund Forstwirtschaft Berlin-Dahlem. Germany, Kommissionsverlag Paul Parey. Gierl, C. & Kalb, K. 1993. Die Flechtengattung Dibaeis. Eine Übersicht über die rosafrüchtigen Arten von Baeomyces sens. lat. nebst Anmerkungen zu Phyllobaeis gen. nov. Herzogia 9: 593–645. Giralt, M. & Hawksworth, D. L. 1991. Diplolaeviopsis ranula, a new genus and species of lichenicolous coelomycetes growing on the Lecanora strobilina group in Spain. Mycological Research 95: 759–761. Grum-Grzhimaylo, A. A., Debets, A. J. M., van Diepeningen, A. D., Georgieva, M. L. & Bilanenko, E. N. 2013a. Sodiomyces alkalinus, a new holomorphicalkaliphilic ascomycete within the Plectosphaerellaceae. Persoonia 31: 147–158. Grum-Grzhimaylo, A. A., Georgieva, M. L., Debets, A. J. M. & Bilanenko, E. N. 2013b. Are alkalitolerant fungi of the Emericellopsis lineage (Bionectriaceae) of marine origin? IMA Fungus 4: 213–228. Hafellner, J. 1979. Karschia. Revision einer Sammelgattung an der Grenze von lichenisierten und nichlichenisier ten Ascomyceten. Beiheft zur Nova Hedwigia 62: 1–248. Hafellner, J. 1982. Studien über lichenicole Pilze und Flechten I. Die Gattung Pleoscutula Vouaux. Herzogia 6: 289–298. Halleen, F., Schroers, H. J., Groenewald, J. Z. & Crous, P. W. 2004. Novel species of Cylindrocarpon (Neonectria) and Campylocarpon gen. nov. associated with black foot disease of grapevines (Vitis spp.). Studies in Mycology 50: 431–456. Hawksworth, D. L. 1976. New and interesting microfungi from Slapton, South Devonshire: Deuteromycotina III. Transactions of the British Mycological Society 67: 51–59. Hawksworth, D. L. 1979. The lichenicolous hyphomycetes. Bulletin of the British Museum (Natural History), Botany Series 6: 183–300. Hawksworth, D. L. 1980. Notes on some fungi occurring on Peltigera, with a key to accepted species. Transactions of the British Mycological Society 74: 363–386. Hawksworth, D. L. & Santesson, R. 1990. A revision of the lichenicolous fungi previously referred to Phragmonaevia. Bibliotheca Lichenologica 38: 121–143. Holien, H. & Triebel, D. 1996. Spirographa vinosa, a new odontotremoid fungus on Ochrolechia and Pertusaria. The Lichenologist 28: 307–313. Hsieh, W. H., Chen, C. Y. & Sivanesan, A. 1997. Iodosphaeria polygoni sp. nov., a new pyrenomycete from Taiwan. Mycological Research 101: 841–842. Hsieh, H. M., Lin, C. R., Fang, M. J., Rogers, J. D., Fournier, J., Lechat, C. & Ju Y. M. 2010 Phylogenetic status of Xylaria subgenus Pseudoxylaria among taxa of the subfamily Xylarioideae (Xylariaceae) and phylogeny of the taxa involved in the subfamily. Molecular Phylogenetics Evolutin 54: 957–969. Huanraluek, N., Ertz, D., Phukhamsakda, C., Hongsanan, S., Jayawardena, R. S. & Hyde, K. D. 2019. The family Pyrenidiaceae resurrected. Mycosphere 10: 634–654. Huhtinen, S., Hawksworth, D. L. & Ihlen, P. G. 2008. Observations on two glassy-haired lichenicolous discomycetes. The Lichenologist 40: 549–557. Hyde, K. D., Jones, E. B. G., Liu, J.-K., Ariyawansa, H., Boehm, E., Boonmee, S., Braun, U., Chomnunti, P., Crous, P. W., Dai, D.-Q., Diederich, P., Dissanayake, A., Doilom, M., Doveri, F., Hongsanan, S., Jayawardena, R., Lawrey, J. D., Li, Y.-M., Liu, Y.-X., Lücking, R., Monkai, J., Muggia, L., Nelsen, M. P., Pang, K. L., Phookamsak, R., Senanayake, I. C., Shearer, C. A., Suetrong, S., Tanaka, K., Thambugala, K. M., Wijayawardene, N. N., Wikee, S., Wu, H.-X., Zhang, Y., Aguirre-Hudson, B., Alias, S. A., Aptroot, A., Bahkali, A. H., Bezerra, J. L., Bhat, D. J., Camporesi, E., Chukeatirote, E., Gueidan, C., Hawksworth, D. L., Hirayama, K., De Hoog, S., Kang, J.-C., Knudsen, K., Li, W.-J., Li, X.-H., Liu, Z.-Y., Mapook, A., McKenzie, E. H. C., Miller, A. N., Mortimer, P. E., Phillips, A. J. L., Raja, H. A., Scheuer, C., Schumm, F., Taylor, J. E., Tian, Q., Tibpromma, S., Wanasinghe, D. N., Wang, Y., Xu, J.-C., Yacharoen, S., Yan, J.-Y. & Zhang, M. 2013. Families of Dothideomycetes. Fungal Diversity 63: 1–313 Ihlen, P. G. & Wedin, M. 2008. An annotated key to the lichenicolous Ascomycota (including mitosporic morphs) of Sweden. Nova Hedwigia 86: 275–365. Jaklitsch, W. M. 2009. European species of Hypocrea part I. The greenspored species. Studies in Mycology 63: 1–91. Jaklitsch, W. M. & Voglmayr, H. 2011. Nectria eustromatica sp. nov., an exceptional species with a hypocreaceous stroma. Mycologia 103: 209–218. Johnson, D., Sung, G. H., Hywel-Jones, N. L., Luangsa-ard, J., Bischoff, J. F., Kepler, R. M. & Spatafora, J. W. 2009. Systematics and evolution of the genus Torrubiella (Hypocreales, Ascomycota). Mycological Research 113: 279–289. Katoh, K., Kuma, K., Toh, H. & Miyata, T. 2005. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Research 33: 511–518. Kepler, R. M., Luangsa-ard, J. J., Hywel-Jones, N. L., Quandt, C. A., Sung, G.-H., Rehner, S. A., Aime, M. C., Henkel, T. W., Sanjuan, T., 342 Plant and Fungal Systematics 64(2): 283–344, 2019 Zare, R., Chen, M., Li, Z., Rossman, A. Y., Spatafora, J. W. & Shrestha, B. 2017. A phylogenetically-based nomenclature for Cordycipitaceae (Hypocreales). IMA Fungus 8: 335–353. Knoph, J.-G. 2004. Cornutispora herteliana, a new lichenicolous coelomycete from Japan. Bibliotheca Lichenologica 88: 345–348. Kocourková, J. 2000 [1999]. Lichenicolous fungi of the Czech Republic (the first commented checklist). Acta Musei Nationalis Pragae, Series S, Historia Naturalis 55: 59–169. Kondratyuk, S. Y. & Galloway, D. J. 1995a. Some new species of lichenicolous fungi. Bibliotheca Lichenologica 58: 235–244. Kondratyuk, S. Y. & Galloway, D. J. 1995b. Two new lichenicolous fungi from Lobaria and Sticta (Stictaceae), pp. 255–261. In: Daniels, F. J. A., Schulz, M. & Peine, J. (eds), Flechten Follmann. Contributions to Lichenology in Honour of Gerhard Follmann. Geobotanical and Phytotaxonomical Study Group, Botanical Institute, University of Cologne, Cologne. Miadlikowska, J., Kauff, F., Högnabba, F., Oliver, J. C., Molnár, K., Fraker, E., Gaya, E., Hafellner, J., Hofstetter, V., Gueidan, C., Otálora, M. A. G., Hodkinson, B., Kukwa, M., Lücking, R., Björk, C., Sipman, H. J. M., Burgaz, A. R., Thell, A., Passo, A., Myllys, L., Goward, T., Fernández-Brime, S., Hestmark, G., Lendemer, J., Lumbsch, H. T., Schmull, M., Schoch, C. L., Sérusiaux, E., Maddison, D. R., Arnold, A. E., Stenroos, S. & Lutzoni, F. 2014. Multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 312 genera and 66 families. Molecular Phylogenetics and Evolution 79: 132–168. Miller, M.A., Pfeiffer, W. & Schwartz, T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees, pp. 45–52. In: Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, Louisiana, 14 Nov 2010. Piscataway, IEEE. Moncada, B., Lücking R. & Betancourt-Macuase L. 2013. Phylogeny of the Lobariaceae (lichenized Ascomycota: Peltigerales), with a reappraisal of the genus Lobariella. The Lichenologist 45: 203–263. Kraichak, E., Huang, J.-P., Nelsen, M., Leavitt, S. D. & Lumbsch, H. T. 2018. A revised classification of orders and families in the two major subclasses of Lecanoromycetes (Ascomycota) based on a temporal approach. Botanical Journal of the Linnean Society 188:233–249. Müller, J. 1880. Lichenologische Beiträge. X. Flora (Regensburg) 63: 40–45. Lanfear, R., Calcott, B., Ho, S.Y. & Guindon, S. 2012. PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29: 1695–1701. Navarro-Rosines, P., Roux C. & Etayo J. (eds). Aproximación a la revisión del género Pyrenidium (Dacampiaceae, Dothideomycetes, hongos liquenícolas no liquenizados). Association Française de Lichénologie. Societat Catalana de Micologia (in press). Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. 2016. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34: 772–773. Nelson, P. E., Toussoun, T. A., Marasas, W. F. O. 1983. Fusarium species: An illustrated manual for identification. Pennsylvania, USA: Pennsylvania State University Press. Lawrey, J. D., Rossman, A. Y. & Lowen, R. 1994. Inhibition of selected hypocrealean fungi by lichen secondary metabolites. Mycologia 86: 502–506. Lawrey, J. D., Etayo, J., Dal-Forno, M., Driscoll, K. E. & Diederich, P. 2015. Molecular data support establishment of a new genus for the lichenicolous species Neobarya usneae (Hypocreales). The Bryologist 118: 83–92. Lechat, C. & Fournier, J. 2016. Lasionectriella, a new genus in the Bionectriaceae, with two new species from France and Spain, L. herbicola and L. rubioi. Ascomycete.org 8: 59–65. Lechat, C., Lesage-Meessen, L. & Favel, A. 2015. A new species of Ijuhya, I. fournieri, from French Guiana. Ascomycete.org 7: 101–104. Lechat, C., Fournier, J., Vega, M. & Priou, J-P. 2018. Geonectria, a new genus in the Bionectriaceae from France. Ascomycete.org 10: 81–55. Leighton, W. A. 1875 Lichenological researches in North and South Wales in 1874. Grevillea 3: 113–116. Lombard, L., Houbraken, J., Decock, C., Samson, R. A., Meijer, M., Réblová, M., Groenewald, J. Z. & Crous, P. W. 2016. Generic hyper-diversity in Stachybotriaceae. Persoonia 36: 156–246. Lücking, R., Stuart, B. L. & Lumbsch, H. T. 2004. Phylogenetic relationships of Gomphillaceae and Asterothyriaceae: evidence from a combined Bayesian analysis of nuclear and mitochondrial sequences. Mycologia 96: 283–294. Nylander, W. 1866. Collectio lichenum ex insula Cuba. Flora (Regensburg) 49: 289–295. Nylander, W. 1868. Addenda nova ad lichenographiam Europaeam. Contin. VII. Flora (Regensburg) 51: 161–165. Olariaga, I., Teres, J., Martín, J., Prieto, M., & Baral, H.-O. 2019. Pseudosclerococcum golindoi gen. et sp. nov., a new taxon with apothecial ascomata and a Chalara-like anamorph within the Sclerococcales (Eurotiomycetes). Mycological Progress 18: 895–905. Orange, A., James, P. W. & White, F. J. 2001. Microchemical Methods for the Identification of Lichens. British Lichen Society. Pärtel, K., Baral, H.-O., Tamm, H. & Põldmaa, K. 2016. Evidence for the polyphyly of Encoelia and Encoelioideae with reconsideration of respective families in Leotiomycetes. Fungal Diversity 82: 183–219. Pérez-Ortega, S., Suija, A., Crespo, A. & de los Ríos, A. 2014. Lichenicolous fungi of the genus Abrothallus (Dothideomycetes: Abrothallales ordo nov.) are sister to the predominantly aquatic Janhulales. Fungal Diversity 64: 295–304. Peterson, K. R. & Pfister, D. H. 2010. Phylogeny of Cyttaria inferred from nuclear and mitochondrial sequence and morphological data. Mycologia 102: 1398–1416. Pino-Bodas, R., Zhurbenko, M. P. & Stenroos, S. 2017. Phylogenetic placement within Lecanoromycetes of lichenicolous fungi associated with Cladonia and some other genera. Persoonia 39: 91–117. Pirozynski, K.A. 1973. Three hyperparasites of ascomycetes. Mycologia 65: 761–767. Lumbsch, H. T., Kraichak, E., Parnmen, S., Rivas Plata, E., Aptroot, A., Cáceres, M. E. S., Ertz, D., Feuerstein, S. C., Mercado-Díaz, J. A., Staiger, B., van den Broeck, D. & Lücking, R. 2014. New higher taxa in the lichen family Graphidaceae (lichenized Ascomycota: Ostropales) based on a three-gene skeleton phylogeny. Phytotaxa 189: 39–51. Põldmaa, K. 2011. Tropical species of Cladobotryum and Hypomyces producing red pigments. Studies in Mycology 68: 1–34. Lutzoni, F., Wagner, P., Reeb, V. & Zoller, S. 2000. Integrating ambiguously aligned regions of DNA sequences in phylogenetic analyses without violating positional homology. Systematic Biology 49: 628–651. Põldmaa K., Larsson E. & Köljalg U. 1999. Phylogenetic relationships in Hypomyces and allied genera, with emphasis on species growing on wood-decaying homobasidiomycetes. Canadian Journal of Botany 77: 1756–1768 Maddison, W. P. & Maddison, D.R. 2015. Mesquite: A modular system for evolutionary analysis, version 3.11. https://www. mesquiteproject.org/ Punithalingam, E. 2003. Nuclei, micronuclei and appendages in tri- and tetraradiate conidia of Cornutispora and four other coelomycete genera. Mycological Research 107: 917–948. Pitt, W. M., Urbez-Torres, J. R. & Trouillas, F. P. 2014. Munkovalsaria donacina from grapevines and Desert Ash in Australia. Mycosphere 5: 656–661. A. Flakus et al.: Biodiversity assessment of ascomycetes inhabiting Lobariella lichens in Andean cloud forests Rambaut, A. 2009. FigTree version 1.3.1 [computer program] http:// tree.bio.ed.ac.uk Réblová, M., Untereiner, W. A., Štěpánek, V. & Gams, W. 2016. Disentangling Phialophora section Catenulatae: disposition of taxa with pigmented conidiophores and recognition of a new subclass, Sclerococcomycetidae (Eurotiomycetes). Mycological Progress 16: 27–46. Rehner, S. A. & Samuels, G. J. 1995. Molecular systematics of the Hypocreales: a teleomorph gene phylogeny and the status of their anamorphs. Canadian Journal of Botany 73: 816–823. Rehner, S. A., Minnis, A. M., Sung, G.-H., Luangsa-ard, J. J., Devotto, L. & Humber, R. A. 2011. Phylogeny and systematic of the anamorphic, entomopathogenic genus Beauveria. Mycologia 103: 1055–1073. Resl, P., Fernández-Mendoza, F., Mayrhofer, H., & Spribille, T. 2010. The evolution of fungal substrate specificity in a widespread group of crustose lichens. Proceedings of the Royal Society B: Biological Sciences 285: 20180640. Rodriguez, F., Oliver, J. L., Marin, A. & Medina, J. R. 1990. The general stochastic model of nucleotide substitution. Journal of Theoretical Biology 142: 485–501. Rodriguez-Flakus, P & Printzen, C. 2014. Palicella, a new genus of lichenized fungi and its phylogenetic position within Lecanoraceae. The Lichenologist 46: 535–552. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., Huelsenbeck, J. P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. Rossman, A.Y. 1979. A preliminary account of the taxa described in Calonectria. Mycotaxon 8: 485–558. Rossman, A. Y. 1983. The phragmosporous species of Nectria and related genera. Mycological Papers 150: 1–164. Rossman, A. Y., Samuels, G. J., Rogerson, C. T. & Lowen, R. 1999. Genera of Bionectriaceae, Hypocreaceae and Nectriaceae (Hypocreales, Ascomycetes). Studies in Mycology 42: 1–248. Rossman, A.Y., Mckemy, J. M., Pardo-Schultheiss, R. A. & Schroers, H.-J. 2001. Molecular studies of the Bionectriaceae using large subunit rDNA sequences. Mycologia 93: 100–110. Roux, C. & Triebel, D. 1994. Révision des espèces de Stigmidium et de Sphaerellothecium (champignons lichénicoles non lichénisés, Ascomycetes) correspondant à Pharcidia epicymatia sensu Keissler ou à Stigmidium schaereri auct. Bulletin de la Société Linéenne de Provence 45: 451–542. Samuels, G. J., Müller, E. & Petrini, O. 1987. Studies in the Arnphisphaeriaceae (sensu lato) 3. New species of Monographella and Pestalosphaeria, and two new genera. Mycotaxon 28: 473–499. Santesson, R., Moberg, R., Nordin, A., Tønsberg, T. & Vitikainen, O. 2004. Lichen-forming and Lichenicolous Fungi of Fennoscandia. Museum of Evolution, Uppsala University, Uppsala, Sweden. Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., Chenb, W. & Fungal Barcoding Consortium. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences 109: 6241–6246. 343 Spatafora, J. W. & Blackwell, M. 1993. Molecular systematics of unitunicate perithecial ascomycetes: the Clavicipitales-Hypocreales connection. Mycologia 85: 912–922. Spooner, B. M. & Kirk, P. M. 1990. Observations on some genera of Trichothyriaceae. Mycological Research 94: 223–230. Spribille, T., Pérez-Ortega, S., Tønsberg, T. & Schirokauer, D. 2010. Lichens and lichenicolous fungi of the Klondike Gold Rush National Historic Park, Alaska, in a global biodiversity context. The Bryologist 113: 439–515. Spribille, T., Resl, P., Ahti, T., Pérez-Ortega, S., Mayrhofer, H. & Lumbsch, H.T. 2014. Molecular systematics of the wood-inhabiting, lichen-forming genus Xylographa (Baeomycetales, Ostropomycetidae) with eight new species. Symbolae Botanicae Upsalienses 37: 1–87. Stamatakis, A. 2006. RAxML-VI-HPC: Maximum likelihoodbased phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690. Stamatakis, A., Hoover, P. & Rougemont, J. 2008. A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 57: 758–771. Stenroos, S., Laukka, T., Huhtinen, S., Dobbeler, P., Myllys L., Syrjänen, K. & Hyvönen, J. 2010. Multiple origins of symbioses between ascomycetes and bryophytes suggested by a five-gene phylogeny. Cladistics 26: 281–300. Suh, S-O. & Blackwell, M. 1999. Molecular phylogeny of the cleistothecial fungi placed in Cephalothecaceae and Pseudeurotiaceae. Mycologia 91: 836–848 Suija, A., Pérez-Ortega, S. & Hawksworth, D. L. 2011. Abrothallus halei (Ascomycota, incertae sedis), a new lichenicolous fungus on Lobaria species in Europe and North America. The Lichenologist 43: 51–55. Suija, A., Ertz, D., Lawrey, J. D. & Diederich, P. 2015a. Multiple origin of the lichenicolous life habit in Helotiales, based on nuclear ribosomal sequences. Fungal Diversity 70: 55–72. Suija, A., de los Ríos, A. & Pérez-Ortega, S. 2015b. A molecular reappraisal of Abrothallus species growing on lichens of the order Peltigerales. Phytotaxa 195: 201–226. Suija, A, van den Boom, P., Zimmermann, E., Zhurbenko, M. P., Diederich, P. 2017 Lichenicolous species of Hainesia belong to Phacidiales (Leotiomycetes) and are included in an extended concept of Epithamnolia. Mycologia 109: 882–899. Suija, A., Kaasalainen, U., Kirika, P. M. & Rikkinen, J. 2018.Taitaia, a novel lichenicolous fungus in tropical montane forests in Kenya (East Africa). The Lichenologist 50: 173–184. Summerbell, R. C., Gueidan, C., Schroers, H-J., de Hoog, G. S., Starink, M., Arocha Rosete, Y., Guarro, J. & Scott, J. A. 2011. Acremonium phylogenetic overview and revision of Gliomastix, Sarocladium, and Trichothecium. Studies in Mycology 68: 139–162. Sung, G. H., Hywell-Jones, N. L., Sung, J. M., Luangsa-ard, J. J., Shrestha, B. & Spatafora, J. W. 2007. Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Studies in Mycology 57: 5–59. Thomas, D. C., Vandegrift, R., Ludden, A., Carroll, G. C. & Roy, B. A. 2016 Spatial ecology of the fungal genus Xylaria in a tropical cloud forest. Biotropica 48: 381–393. Schroers, H.J. 2001. A monograph of Bionectria (Ascomycota, Hypocreales, Bionectriaceae) and its Clonostachys anamorphs. Studies in Mycology 46: 1–214 Tretiach, M. 2002. Niesslia robusta, a new lichenicolous fungus on Tephromela grumosa from Tuscany, Italy. Nova Hedwigia 75: 357–365. Sherwood-Pike, M. A. 1987. The ostropalean fungi III: The Odontotremataceae. Mycotaxon 28: 137–177. U’Ren, J. M., Miadlikowska, J., Zimmerman, N. B., Lutzoni, F., Stajich, J. E. & Arnold, A. E. 2016. Contributions of North American endophytes to the phylogeny, ecology, and taxonomy of Xylariaceae (Sordariomycetes, Ascomycota). Molecular Phylogenetics and Evolution 98: 210–232. Shoemaker, R. A. & Hambleton, S. 2001. ‘Helminthosporium’ asterinum, Polydesmus elegans, Imimyces, and allies. Canadian Journal of Botany 79: 592–599. Seifert, K. A., McMullen, C. R., Yee, D., Reeleder, R. D. & Dobinson, K. F. 2003. Molecular differentiation and detection of ginseng adapted isolates of the root rot fungus Cylindrocarpon destructans. Phytopathology 93:1533–1542. Voglmayr, H. & Jaklitsch, W. M. 2019. Stilbocrea walteri sp. nov., an unusual species of Bionectriaceae. Mycological Progress 18: 91–105. Vouaux, L. 1913. Synopsis des champignons parasites de lichens. Bulletin de la Société Mycologique de France 29: 447–494. 344 Wang, Z., Binder, M., Schoch, C. L., Johnston, P. R., Spatafora, J. W. & Hibbett, D. S. 2006. Evolution of helotialean fungi (Leotiomycetes, Pezizomycotina): A nuclear rDNA phylogeny. Molecular Phylogenetics and Evolution 41 : 295–312. Wei, X. L., Schmitt, I., Hodkinson, B. P., Flakus, A., Kukwa, M., Divakar, P. K., Kirika, P. M., Otte, J., Meiser, A. & Lumbsch, H. T. 2017. Circumscription of the genus Lepra, a recently resurrected genus to accommodate the ‘Variolaria’ – group of Pertusaria sensu lato (Pertusariales, Ascomycota). PloS ONE 12(7): e0180284 Wu, W.P. & Zhuang, W.Y. 2005. Sporidesmium, Endophragmiella and related genera from China. Fungal Diversity Research Series 15: 1–531. Zahlbruckner, A. 1907. Ascolichens (Schlauchflechten; Hymenolichens (Basidiomycetenflechten). In: Engler, A. & Prantl, K. (eds), Die Natürlichen Pflanzenfamilien nebst ihren Gattungen und wichtigeren Arten, insbesondere den Nutzpflanzen, unter Mitwirkung zahlreicher hervorragender Fachgelehrten begründet. I Teil, 1Abteilung*: Lichens (Flechten), pp. 49–249. Engelmann, Leipzig. Plant and Fungal Systematics 64(2): 283–344, 2019 Zhang, N. & Blackwell, M. 2002. Molecular phylogeny of Melanospora and similar pyrenomycetous fungi. Mycological Research 106: 148–155. Zhang, Y., Zhang, J., Wang, Z., Fournier, J., Crous, P. W., Zhang, X., Li, W., Ariyawansa, H. A. & Hyde, K. D. 2014. Neotypification and phylogeny of Kalmusia. Phytotaxa 176: 164–173. Zhurbenko, M. 2007. Corticifraga santessonii and C. chugachiana (Lecanoromycetes, Ascomycota), new species of lichenicolous fungi from the Holarctic. The Lichenologist 39: 221–226. Zhurbenko, M. P. 2012. Lichenicolous fungi growing on Thamnolia, mainly from the Holarctic, with a worldwide key to the known species. The Lichenologist 44: 147–177. Zhurbenko, M. P. & Etayo, J. 2012. Stigmidium lobariae, a new lichenicolous fungus from the Holarctic. Mycosphere 3: 62–64. Zimmermann, E. & Berger, F. 2018. Beitrag zur lichenicolen Mycobiota Österreichs – Funde aus den Tiroler Alpen I. Herzogia 31: 732–762.