Academia.eduAcademia.edu
Fitoterapia 78 (2007) 388 – 389 www.elsevier.com/locate/fitote Phythochemical communication Ozoroalide, a new macrolide from Ozoroa insignis Pedro J.M. Abreu a,⁎, Yonghong Liu a,b b a REQUIMTE, Departamento de Química, FCT-UNL, 2829-516, Caparica, Portugal Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510-301, PR China Received 21 July 2005; accepted 5 April 2007 Available online 5 May 2007 Abstract From the roots of Ozoroa insignis a new orsellinic acid named ozoroalide (1) and anacardic acid methyl ester (2) were isolated and identified on the basis of spectroscopic methods. © 2007 Elsevier B.V. All rights reserved. Keywords: Ozoroa insignis; Ozoroalide; Anacardic acid methyl ester 1. Plant Ozoroa insignis Del. (Heeria insignis Del.) (Anacardiaceae), collected in January 1994 at Contuboel, Guinea-Bissau was identified in the Herbarium of Botany Centre (LISC), where a voucher specimen is deposited. 2. Uses in traditional medicine Roots are used as a remedy for diarrhea, venereal diseases, tapeworm and hookworm, schistosomiasis, kidney trouble, migraine, and malaria [1–7]. The leaves like the roots have purgative action [6]. Poultices of pulped leaves are used for swellings on the feet, and a paste of leaves and bark to treat to skin-diseases [6]. In Guinea-Bissau, the infusion of roots is taken by women after childbirth to increase lactation [8]. In addition, anthelmintic effect of root bark and leaves against the worms Schistosoma mansoni and Hymenolepis diminuta [4], cytotoxic activity of a bark extract against Hep-G2, MDA-MB-231, and 5637 human cancer cell lines [1], and in vitro topoisomerase inhibition of stembark and stemwood [9], have been reported. 3. Previously isolated constituents Ginkgolic acid [1], anacardic acid [5], and essential oils [10]. 4. New isolated constituents 25 Ozoroalide (1, Fig. 1), (yield: 13 mg from 1.65 kg of dried roots), light yellow solid, mp 188-189 °C; [α]D + 5.2° (c 25 1.3 CHCl3); [α]365 − 63.3 (c 0.3 CHCl3); UV max (EtOH): 207 (log ε 3.85), 249 (3.09), 283 (2.94) nm; IR bands ⁎ Corresponding author. Fax: +351 212948550. E-mail address: pma@dq.fct.unl.pt (P.J.M. Abreu). 0367-326X/$ - see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.fitote.2007.04.001 P.J.M. Abreu, Y. Liu / Fitoterapia 78 (2007) 388–389 389 Fig. 1. Structure of compounds 1 and 2. (NaCl): 3364, 1686, 1606, 1280 cm− 1; HRESIMS: m/z 293.1740 [M + H]+. Calc. for C17H25O4 293.1747.EIMS m/z: 292 [M]+(70), 181 (100), 176 (65), 137 (65), 83 (25). 1H-NMR (400 MHz, CDCl3): δ 1.26 (1H, m, H-7a), 1.31 (3H, d, 6.4 Hz, H-17), 1.32 (1H, m, H-8a), 1.40 (1H, m, H-6a), 1.41 (1H, m, H-5a), 1.47 (1H, m, H-7b), 1.48 (1H, m, H-8b), 1.54 (1H, m, H-6b), 1.61 (1H, m, H-4a), 1.64 (2H, m, H-9a, H-9b), 1.67 (1H, m, H-5b), 1.90 (1H, m, H-4b), 2.46 (1H, ddd, J 13.4, 6.7, 6.7 Hz, H-10a), 2.64 (1H, ddd, J 13.4, 6.7, 6.7 Hz, H-10b), 3.70 (3H, s, OCH3), 5.27 (1H, m, H-3), 6.21 (1H, s, H-14), 6.22 (1H, s, H-12); 13C NMR (100.61 MHz, CDCl3): δ 19.5 (C-17), 21.3 (C-5), 24.2 (C-6), 25.5 (C-7), 26.4 (C-8), 30.0 (C-9), 30.4 (C-10), 32.3 (C-4), 55.8 (OCH3), 72.4 (C-3), 97.0 (C-14), 108.3 (C-12), 117.3 (C16), 143.0 (C-11), 157.7 (C-15), 157.9 (C-13), 169.1 (C-1); HMBC (key H → C correlations): OCH3 → C-13; H10 → C-9, C-11, C-12, C-16; H-12 → C-10, C-16; H-14 → C-12, C-15, C-16; NOESY (key H ↔ H correlations): OCH3 ↔ H-12, H-14; H-12 ↔ H-10a. Anacardic acid methyl ester (2, Fig. 1): (yield: 50 mg from 1.65 kg of dried roots), white solid, mp 38–39 °C; UV max (EtOH): 210 (log ε 6.72), 245 (6.05), 311 (5.76) nm; IR bands (NaCl): 3064, 2917, 2852, 1665, 1607, 1578, 1449, 1315, 1250, 1205 cm− 1; EIMS m/z: 362 [M]+(83), (C23H38O3); 330 (48), 312 (40), 166 (63), 161 (74), 149 (100); 1H-NMR (400 MHz, CDCl3): δ 0.89 (3H, m, 15′-Me), 1.26 (24H, m, H-3′ to H-14′), 1.53 (1H, m, H-2′), 2.88 (1H, m, H-1′), 3.96 (3H, s, OCH3), 6.72 (1H, d, 7.2 Hz, H-4), 6.85 (1H, d, 8.4 Hz, H-6), 7.29 (1H, dd, 8.4, 7.2 Hz, H-5); 13C NMR (100.61 MHz, CDCl3): δ 14.1 (15′-CH3), 22.7 (C-14′), 27.2, 29.4, 29.5, 29.7, 29.9, 31.7 (C-3′ to C-13′), 31.9 (C-2′), 36.4 (C-1′), 52.1 (OCH3), 111.9 (C-2), 115.6 (C-6), 122.4 (C-4), 134.2 (C-5), 146.2 (C-3), 162.6 (C-1), 172.0 (CO); HMBC (key H → C correlations): OCH3 → CO; H-1′ → C-2, C-3, C-4; H-4 → C-1′, C-2; H-6 → C-1, C-4; NOESY (key H ↔ H correlations): H-4 ↔ H-1′, H-2′; H-5 ↔ H-4, H-6. Acknowledgment Fundação para a Ciência e a Tecnologia for a post-doc. grant (SFRH/BPD/14656/2003). References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] Rea AI, Schmidt M, Setzer WN, Sibanda S, Taylor C, Gwebu ET. Fitoterapia 2003;74:732. Gelfand M, Mavi S, Drummond RB, Ndemera B. The Traditional Medical Practitioner in Zimbabwe. Mambo Press; 1985. Ndamba J, Nyazema N, Makaza N, Anderson C, Kaondera KC. J Ethnopharmacol 1994;42:125. Mølgaard P, Nielsen SB, Rasmussen DE, Drummond RB, Makaza N, Andreassen J. J Ethnopharmacol 2001;74:257. He W, Puyvelde LV, Bosselaers J, de Kimpe ND, Flaas MVD, Roymans A, et al. Pharm Biol 2002;40:74. Burkill HM. The useful plants of West Tropical Africa, vol. 1. Kew: Royal Botanic Gardens; 1985. Asase A, Oteng-Yeboah AA, Odamtten GT, Simmonds MSJ. J Ethnopharmacol 2005;99:273. Abreu PM, Martins ES, Kayser O, Bindseil K-U, Siems K, Seemann A, et al. Phytomedicine 1999;6:187. Wall ME, Wani MC, Brown DM, Fullas F, Olwald JB, Josephson FF, et al. Phytomedicine 1996;3:281. Ayedoun MA, Moudachirou M, Garneau F-X, Gagnon H, Jean F-I, Tomi F, et al. J Essent Oil Res 1998;10:529.