Academia.eduAcademia.edu
Oecologia Australis 23(4):776-798, 2019 https://doi.org/10.4257/oeco.2019.2304.06 FLORA AND VEGETATION STRUCTURE OF VEREDA IN SOUTHWESTERN CERRADO Suzana Neves Moreira1*, Vali Joana Pott2, Arnildo Pott2, Rosa Helena da Silva2 & Geraldo Alves Damasceno Junior2 e e t t , , e y s 1 Universidade Estadual do Mato Grosso do Sul, Rua General Mendes de Moraes, 428, Centro, CEP 79400-000, Coxim, MS, Brazil. 2 Universidade Federal de Mato Grosso do Sul, Programa de Pós-Graduação em Biologia Vegetal, Instituto de Biociências, Cidade Universitária, Avenida Costa e Silva, s.n., Pioneiros, CEP 79070-900, Campo Grande, MS, Brazil. E-mails: suzannanevesmoreira@gmail.com (*corresponding author); arnildo.pott@gmail.com; vali.pott@gmail.com; rosahellenna@gmail.com; geraldodamasceno@gmail.com Abstract: This work was carried out aiming to evaluate phytosociological parameters and the influence of topographic gradient and water levels on plant distribution in a vereda. That for, we sampled two sites (wet grassland and floodable transition to pond) in two seasons (rainy and dry). Along permanent transects, every 10 m we placed transversally four quadrats of 1 m2, 2 m apart, a total of 280 plots, to estimate percentage cover of each species and water depth. To evaluate the influence of relief and flood level on plant distribution we performed a Principal Coordinate Analysis (PCoA) and Analysis of Permutational Multivariate Variance (PERMANOVA). We recorded 174 species, the richest families were Poaceae (40), Cyperaceae (25) and Asteraceae (14) and the richest genera Paspalum, Rhynchospora and Utricularia (8 each), Hyptis and Cyperus (6), Eleocharis, Ludwigia and Xyris (5). The phytosociological parameters revealed the importance of Poaceae, Cyperaceae and Asteraceae in these communities, corroborating other reports on veredas. We found discrete difference in the species richness between sampling periods, in both wet grassland and transition areas. The slope varied from 0 to 314 cm and was significant for species distribution in both seasons, with a continuum related to waterlogging and surface water on the distinct topographic quotas. In general, we found discrete groupments of species, particularly in lower quotas. The main indicator species were the filiform Eriochrysis holcoides (Poales, Poaceae), Rhynchospora emaciata (Poales, Poaceae), Andropogon virgatus (Poales, Poaceae), Paspalum erianthoides (Poales, Poaceae) and P. flaccidum (Poales, Poaceae). Some species tend to be selective whilst others show plasticity regarding microhabitat. Keywords: marsh grassland; phytosociology; savanna; topographic gradient; wetland. INTRODUCTION The Cerrado domain is characterized by a vegetation mosaic of savanna, forest and grassland (Felfili et al. 2004). According to Ribeiro & Walter (1998), the vereda is one of the physiognomies. This environment is interposed between Cerrado stricto sensu and gallery forest (Oliveira-Filho & Martins 1986) and plays an important role in linking these vegetation types (Carvalho 1991). Veredas are legally defined as “physiognomy of savanna, found on hydromorphic soils, usually with the arboreal palm Mauritia flexuosa (Arecales, Arecaceae) – buriti, emergent, without forming continuous canopy, intermingled with clumps of shrubbyherbaceous species” (Brasil 2012). That rule also Moreira et al. | 777 considers Permanent Preservation Area (PPA) a minimum 50 m wide belt along veredas, after the limit of the swampy or waterlogged area. Although there is a law protecting veredas, considering them as PPAs, they undergo anthropic processes that may become irreversible (Oliveira et al. 2009) since they are highly sensitive to disturbance and little resilient environments (Carvalho 1991). Human disturbances in wetlands can be shown by floristic changes, causing loss of biodiversity and consequent disruption of the ecosystem (Meirelles et al. 2004). The distribution of veredas is basically conditioned by physical factors, such as wet plain surfaces or flat valleys, permeable surface layer over an impermeable subsoil, water saturation nearly year-round and shallow water table (Drummond et al. 2005), where gentle slopes favor its seasonal rise to the surface (Oliveira-Filho & Martins 1986). The hydromorphic soils are ill-drained (Baccaro 1994, Ribeiro & Walter 1998), such as gleysols, planosols and organosols (Drummond et al. 2005). Guimarães et al. (2002) found two soil classes, Haplic Gleysol and Melanic Gleysol, in veredas in Uberlândia, MG. The hydrologic regime in wetlands is the major determinant in plant community patterns and species zonation (Casanova & Brock 2000). Gentry (1988) suggested that habitat contributes significantly for plant species diversity along topographic and edaphic gradients, as well as Rezende (2007) who found a strong influence of soil moisture gradient on species distribution, assorting plants into groups of dry and wet habitats and some occurring in both conditions. In the study area, the drainage from the wet grassland provides water to an adjacent pond (Moreira et al. 2015). Consequently, areas near the pond (transitional areas) remain with more water throughout the year when compared with wet grassland. The hypothesis we want to test is that topographic gradient and consequent different water levels influence plant species distribution patterns and abundance in vereda vegetation. Therefore, the study was divided into secondary objectives: (1) present the floristic composition of the whole vereda; (2) evaluate species richness and abundance in the areas (wet grassland and transitional areas) and in the seasons (dry and rainy); (3) analyze, in each season, if the topography and different water levels influence plant species distribution; (4) compare the floristic similarity between areas and seasons; (5) compare species richness between areas. MATERIAL AND METHODS Study area Our work was done in a vereda (20º33’24.1” S, 54º47’23.6” W, datum SAD69) at the Fazenda Modelo, municipality of Terenos, Mato Grosso do Sul state, Brazil. The area is at 550 m altitude and the seasonal climate is Aw in the classification of Peel et al. (2007). Monthly rainfall data were provided by a weather station, 30 km away, at the headquarters of Embrapa Beef Cattle Research Center. The original vegetation was Cerrado woodland of which a fragment remains at the wetland headwater, near an outcrop of laterite we believed that underlies this vereda. Close to the headwater is a stand of M. flexuosa. Surrounded by pasture (mainly Paspalum notatum (Poales, Poaceae) and Urochloa spp.), the study area is grazed and trampled by cows and horses, mainly in the dry season and on the edges, not sampled. Fieldwork and data analysis Samplings were performed in the rainy and in the dry season. We placed four permanent transects to sample vegetation, being two on the floodable transitional zone, with 170 m (68 plots) and 140 m (56 plots) and two on the wet grassland, one 150 m long (60 plots) and another one 240 m long (96 plots), a total of 280 plots. The transition site, so called because it is located near a pond (described by Moreira et al. 2011), is seasonally flooded. In each transect, at every 10 m, we placed four plots of 1 m 2 transversally to the transect line and 2 m apart, a total of 280 plots. To visually estimate cover, we imagined a cross line dividing the plot in four quarters, and so on (Figure 1). The percentage cover (vertical projection) per plant species within each plot was visually estimated, always by the same two persons (S. N. M. and V. J. P.), who recognized vegetative plants. Some grasses flowered where we trampled them. Fertile plant specimens were botanized for the Herbarium CGMS of the Universidade Federal de Mato Grosso do Sul, while sterile ones were taken to the greenhouse until flowering. Taxonomic identification was achieved comparing vouchers Oecol. Aust. 23(4): 776–798, 2019 778 | Vegetation structure of vereda Figure 1. Study area and scheme of distribution of the plots in the place at the Fazenda Modelo, municipality of Terenos, Mato Grosso do Sul state, Brazil. in the herbarium and consulting bibliography and specialists. We calculated the phytosociological parameters Absolute Frequency (AF), Relative Frequency (RF), Absolute Cover (AC) and Relative Cover (RC) (Brower & Zar 1984) and the Sørensen Similarity Index (Mueller-Dombois & Ellenberg 1974). For that analysis we used percentage of cover as a measure of abundance instead of number of individuals, once defining an individual is very difficult for bunchy herbaceous species (Kent & Coker 1992), generally filiform. We used an optical level to do the topographic survey on the flood free part and we measured water depth per plot with a ruler (in cm) on flooded grassland to determine the altimetric position of each plot along transects. To evaluate the influence of the topography on the pattern of species distribution in the wet grassland and in transition areas, we utilized the spreadsheets with the percentages of cover of the species in relation to the topographic quotas of the terrain. In the analyses, the species cover percentages were distributed according to the respective topographic quotas, on a scale of 15 cm per quota. The plots within the limits of the topographic quotas were grouped for the analyses. Oecol. Aust. 23(4): 776–798, 2019 To compare the data between both seasons, we utilized the Principal Coordinates Analysis (PCoA), which allows to explore and visualize similarities or differences between data sets and reveals a centralized matrix decomposed in its eigenvalues and eigenvectors. Next, the groups identified in the PCoA were submitted to a Permutational Multivariate Analysis of Variance (PERMANOVA) to verify significance between the groupments of topographic quotas. The analyses were performed utilizing the package Vegan (Oksanen et al. 2014) of the program R (R Core team 2017). Regarding indicator species (Dufrêne & Legendre 1997), we utilized the function indval() of the package labdsv (David, 2016), also in R. An indicator species has specificity to a particular niche; thus, its presence or abundance was utilized to indicate a particular environment (Cáceres et al. 2010). RESULTS Overall floristic data The overall data shows a high plant richness in the studied vereda. In the wet grassland plus transition areas, we sampled 174 species of 97 genera and 46 families. Poaceae (40 species), Cyperaceae (25), Asteraceae (14) were the richest families, adding up 45% of the species, while 21 families showed Moreira et al. | 779 single species. The richest genera were Paspalum, Rhynchospora and Utricularia (8 each), Hyptis and Cyperus (6), Eleocharis, Ludwigia and Xyris (5), typical of veredas (Appendix 1). Comparing the general richness found in the wet grassland with the transitional areas, we observed that the first had a slightly lower number of species (113) than the latter (122). In the transition zone, we sampled 43 exclusive species, while the wet grassland showed 33, and 79 were common to both formations (Appendix 1). The Sørensen Similarity indexes for habitats and seasons showed a higher floristic similarity between dry and rainy seasons in similar environments than in relation to different environments (Table 1). In the analysis of the topographic gradient, we compared wet grassland and transitional area. The topographic quotas varied from 314 cm, the top level, where the water table was just close to the surface, to zero, the lowest ground, where the soil was waterlogged or flooded since toward the pond the water rose to the surface (Figures 2 and 3). The topography was important to determine the pattern of species distribution in both rainy (p = 0.001) and dry period (p = 0.001). In the rainy period, the Principal Coordinates Analysis (PCoA) indicates two main centroids related to the topographic quotas of 0-15 cm and 15-30 cm. The other quotas do not represent a clear pattern of separation of species, indicating that they are more Table 1. Sørensen Similarity Index between areas and sampled periods in a vereda, municipality of Terenos, State of Mato Grosso do Sul, Brazil. Grassland Rainy Grassland Dry Transitions Rainy Transitions Dry Grassland/Rainy Grassland/Dry . . 0.81 . 0.65 0.51 0.62 0.55 Transitions/Rainy Transitions/Dry . . . . . . 0.87 . Figure 2. Ordination of the herbaceous species by Principal Coordinates Analysis (PCoA) through declivity of the terrain sampled in a vereda in municipality of Terenos, state of Mato Grosso do Sul, Brazil, in the rainy period. The numbers mean the topographical quotas in centimeters. Oecol. Aust. 23(4): 776–798, 2019 780 | Vegetation structure of vereda Figure 3. Ordination of the herbaceous species by Principal Coordinates Analysis (PCoA) through declivity of the terrain sampled in a vereda in municipality of Terenos, state of Mato Grosso do Sul, Brazil, in the dry period. The numbers mean the topographic quotas in centimeters. similar between them (Figure 2). The Indicator Species Analysis for the rainy period revealed 62 species related with distinct topographic quotas forming two large groups, the first with 22 species and the second with 40 species. The indicator species of the first group are distributed in nine families, the richest being Poaceae (7 species), Cyperaceae (3) and Malvaceae, Lentibulariaceae and Asteraceae (2). The characteristic species of group I are: Utricularia gibba (Lamiales, Lentibulariaceae), Rhytachne rottboellioides (Poales, Poaceae), Byttneria palustris (Malvales, Malvaceae), Saccharum asperum (Poales, Poaceae) and Andropogon hypogynus (Poales, Poaceae). The species of the second group are represented by 10 families, Poaceae (12 species), Cyperaceae (11) and Asteraceae (5) having the largest number. The main indicator species are Eriochrysis holcoides (Poales, Poaceae), Rhynchospora emaciata (Poales, Cyperaceae), Andropogon virgatus (Poales, Poaceae), Paspalum erianthoides (Poales, Poaceae) and Paspalum flaccidum (Poales, Poaceae). In the dry period, the Principal Coordinates Analysis (PCoA) revealed a spaced pattern of the centroids, indicating that more topographic quotas Oecol. Aust. 23(4): 776–798, 2019 influenced the pattern of distribution. The quota of 0-15 cm, as well as in the rainy season, indicates the preference of some species, whilst the quotas 15-30 cm and 30-45 cm are more related between them than with the others. The highest topographic quotas demonstrated that the species occur similarly along the gradient, without forming characteristic groups (Figure 3). The Indicator Species Analysis for the dry period revealed 57 species related to the distinct topographic quotas. Differently from the rainy period, when we related the indicator species with the graph of species distribution, there is not a clear spatial separation or preference. However, the analysis indicated some key-species for the quota of 0-15 cm Schizachyrium gracilipes (Poales, Poaceae) and Eryngium ebracteatum (Apiales, Apiaceae) and 15-30 cm, Leersia hexandra (Poales, Poaceae), Caperonia castaneifolia (Malpighiales, Euphorbiaceae), Eleocharis plicarhachis (Poales, Cyperaceae), E. acutangula (Poales, Cyperaceae), Mikania stenophylla (Asterales, Asteraceae), Phyllanthus stipulatus (Malpighiales, Phyllanthaceae) and Aeschynomene Moreira et al. | 781 fluminensis (Fabales, Fabaceae). The quota of 3045 cm presented just a single indicator species, Lessingianthus rubricaulis (Asterales, Asteraceae). Wet grassland In wet grassland, we sampled 113 species, of 71 genera and 34 families. Poaceae (27 species), Cyperaceae (20), Asteraceae (11), Lamiaceae (6) and Xyridaceae and Lentibulariaceae (5) were the richest families, adding to 65.5% of total richness. The richest genera were Rhynchospora (8 species), Hyptis, Paspalum, Utricularia, and Xyris (5 each). Twenty families were represented by a single species and accumulated 17.8% of the floristic richness (Appendix 1). Eriochrysis holcoides (Poales, Poaceae) showed the highest cover in the rainy season, followed by Anthaenantia lanata (Poales, Poaceae), P. flaccidum, P. erianthoides, Rhynchospora globosa (Poales, Cyperaceae), A. virgatus, A. hypogynus and Axonopus uninodis (Poales, Poaceae). In the dry season, A. uninodis was the species with highest CV, followed by P. erianthoides, A. lanata, A. virgatus, P. dedeccae (Poales, Poaceae), P. flaccidum, R. globosa, A. hypogynus and Rhynchospora marisculus (Poales, Cyperaceae) (Table 2). The cover of Eryngium pandanifolium (Apiales, Apiaceae) did not differ between seasons. Transition areas In the transition areas, we sampled 122 species and 72 genera distributed into 34 families. Poaceae (28 species), Cyperaceae (20), Asteraceae (11) and Lentibulariaceae (8) were the richest families, adding to 55.8% of all recorded species. Another 15 families were represented by a single species or just 17.8% of the floristic richness. The richest genera were Utricularia (8), Rhynchospora (7) and Xyris, Eleocharis, Scleria, Hyptis and Ludwigia (4 each) (Appendix 1). Saccharum asperum, A. hypogynus and A. uninodis were the species with the highest relative cover the rainy season, compared with R. rottboellioides, A. hypogynus and Imperata tenuis (Poales, Poaceae) in the dry season (Table 2). DISCUSSION Overall floristic data Poaceae, Cyperaceae and Asteraceae were the richest families in other studies on wetlands in Cerrado (Guimarães 2001, Guimarães et al. 2002, Araújo et al. 2002, Meirelles et al. 2004, Munhoz & Felfili 2008, Oliveira et al. 2009, Moreira et al. 2011, Moreira et al. 2015, Bijos et al. 2017), as we also observed. These families contain species which Table 2. Species with highest Cover Values in Wet grassland and Transition Area at Vereda, municipality of Terenos, State of Mato Grosso do Sul, Brazil, in two differents environments and seasons with their respective Collector Number (COL.). M= Moreira,S.N. Numbers in bold represent the highest cover values. Family/Species Col. Wet grassland Transition Area Rainy Dry Rainy Dry M 143 5.8 6.33 1.04 0.35 M 37 1.11 1.93 6.45 8.58 Andropogon hypogynus Hack. M 89 7.13 7.16 17.38 16.86 Axonopus uninodis (Hack.) G.A. Black M 19 6.49 18.6 13.14 11.09 Eriochrysis holcoides (Nees) Kuhlm. M 101 23.04 3.78 3.65 5.69 Imperata tenuis Hack. M 208 3.15 2.55 11.7 15.73 Paspalum erianthoides Lindm. M 303 12.22 14.38 12.55 13.83 Paspalum flaccidum Nees M 285 12.91 10.15 1.25 1.19 Rhytachne rottboellioides Desv. M 90 2.07 1.84 5.05 34.32 Saccharum asperum (Nees) Steud. M 61 1.75 0.25 22.26 3.66 APIACEAE Eryngium pandanifolium Cham. & Schltdl. MALVACEAE Byttneria palustris Cristóbal POACEAE Oecol. Aust. 23(4): 776–798, 2019 782 | Vegetation structure of vereda occur mostly in sunny habitats (Coutinho 1978) but in wet grassland, the herbaceous dominance can be attributed to excess of water in the soil, what hinders the establishment of woody strata (Araújo et al. 2002). We collected a recently described new species, Cyperus longiculmis (Poales, Cyperaceae) (Pereira-Silva et al. 2018). In spite of wet grassland and transition zone presenting some exclusive species, the large number of species (79) in common reflects their capacity to colonize both habitats with higher or lower water saturation and a high similarity between the same habitats, even considering distinct sampling seasons. Thus, the sampled area exerts higher influence on the species composition than does the water regime. A similar result was already observed by Moreira et al. (2011) in ponds associated with veredas. The relationship between topographic quotas and distribution patterns is attributed to different moisture conditions along the relief gradient. Similar results were described in other studies (see Teixeira & Assis 2005 and Gaya 2014), where hydromorphic soils have different floristic and structural peculiarities, besides providing a greater variety of environments and, consequently, a more diverse flora. In our study area, the slope is easily perceived as slow and the drainage is gradual. The water movement is visible in the veins and animal tracks, from the highest to the lowest ground, where the water begins to dam up, as well as in puddles in small depressions between grass bunches. The soil was not analyzed, but we observed that the wet grassland was waterlogged in spite of the slope because there is a thicker organic top horizon functioning as a sponge compared with the transition floodable grassland. Positive relationships between declivity and species distribution in forests were described by several authors (see Gartlan et al. 1986, Oliveira-Filho et al. 1994a, 1994b, Van Den Berg & Oliveira-Filho 1999). The Principal Coordinates Analysis and the Indicator Species Analysis in both sampled periods suggest the formation of groups mainly on the lowest quotas and that these lack exclusive species since they occur in the transition zone between the wet grassland and the associated pond. This could be explained by transition areas containing species from either. The transition zones can be characterized as ecotones. A pioneer study on vereda Oecol. Aust. 23(4): 776–798, 2019 by Goldsmith (1974) found a type of vegetation in the transition area and that this change occurs in a subtle way, as a continuum. In the moist and flooded gradient of veredas occurs a continuum of species replacement gradient where the plant communities have components from neighbouring zones and also exclusive species (Costa 2007). The moisture gradient can select different species (Kurtz et al. 2013). Some occur preferentially in flooded soils, others in dry soils, plus those occurring in both environments (Guimarães et al. 2002, Resende et al. 2013). The indicator species of the rainy period reflect basically the growth habit of the individuals. Many cespitous tall grasses have vigorous growth in wetlands, such as A. hypogynus, A. virgatus, E. holcoides, P. erianthoides, P. flaccidum, R. rottboellioides and S. asperum, as well as Cyperaceae, e.g. R. emaciata. The submerged or palustrine herb Utricularia gibba (Lamiales, Lentibulariaceae) has abundant ramified stolons (Baleeiro et al. 2017), what contributes to its higher frequency and cover, preferentially in wetter habitats, along animal tracks throughout the area. The indicator species in the dry period correspond majorly to other botanical families. P. stipulatus, A. fluminensis and L. rubricaulis do not present stoloniferous propagation, such as Poaceae and Cyperaceae, however, occur in specific zones, i.e. areas with less flooding. Wet grassland Similar to several reports the richest families in wet grassland were Poaceae, Cyperaceae and Asteraceae (Guimarães et al. 2002, Araújo et al. 2002, Meirelles et al. 2004, Munhoz & Felfili 2007, Munhoz & Felfili 2008, Oliveira et al. 2009, Moreira et al. 2011, Moreira et al. 2015, Bijos et al. 2017), plus the main genera Rhynchospora and Xyris (Araújo et al. 2002, Munhoz & Felfili 2007, Resende et al. 2013). Araújo et al. (2002) suggest that these richest families have species well adapted to the conditions of soil and waterlogging, commonly found in veredas, reflected by the high representativity of the herbaceous stratum. The highest cover values (CV) represent species with dense tussocks as much in the dry as in the rainy season, such as A.lanata and P. erianthoides (Poaceae) and R. globosa (Cyperaceae). The dense tussocks of filiform species can hinder the Moreira et al. | 783 establishment of other species in wetter zones of the vereda (Araújo et al. 2002), such as A. lanata, A. hypogynus, A. uninodis and R. rottboellioides. E. pandanifolium (Apiaceae) showed high CV in both seasons. Differently from grasses, this species grows in groups and shows high competitiveness for space with graminoids, mainly for having rosette-like large strong leaves (Cardozo 2017), pushing others aside. The species which form dense tussocks, such as grasses, tend to show higher cover than small and slender herbs in high abundance (Munhoz & Felfili 2008). We observed that some species of Lamiaceae (Hyptis spp.), Ochnaceae (Sauvagesia racemosa), Apocynaceae (Rhabdadenia ragonesei), Orobanchaceae (Escobedia grandiflora), Gesneriaceae (Sinningia elatior) and Lentibulariaceae (Utricularia praelonga) elongate stems over the filiform tussocks to expose the flowers, as also reported by Araújo et al. (2002). The dense grass bunch expands to its periphery and tends to die in the middle, where the decayed matter becomes colonized by ferns and shrubs (e. g. Miconia chamissois, Myrtales, Melastomataceae). There is a higher probability to find fertile plants during the rainy season. We found the highest species richness in the rainy season (Munhoz & Felfili 2006), what does not correspond to the establishment of true aquatic plants but to the appearance of species between seasons or just not sampled before. deficit. This tussock grass is only grazed after burn or during critical dry or flood periods (Pott 1982), though in the study area it occurs in the transition temporary pond/wet grassland, where cattle can have access but prefers softer grasses, what could explain its high coverage. We observed that I. tenuis formed dense dominant populations, what is due to the multiple aggregate culms (Welker & Longhi-Wagner 2012) from the strong rhizome net. Frequent in the studied vereda, R. rottboellioides is not yet cited for the Central-West region in the list of the Brazilian Flora (Flora do Brasil 2018). We concluded that the studied vereda presents a continuum of environmental conditions related to soil moisture and waterlogging of the distinct topographic quotas. Thereby, some species tend to occur preferentially in certain microhabitats whilst others show a wider plasticity. Transition areas Araújo, G. M., Barbosa, A. A. A., Arantes, A. A., & Amaral, A. F. 2002. Composição florística de Veredas no município de Uberlândia, MG. Revista Brasileira de Botânica, 25(4), 475-493. Baccaro, C. A. D. 1994. As unidades geomorfológicas e a erosão nos chapadões do município de Uberlândia. Sociedade & Natureza, Uberlândia, 6(11/12), 19-33 Baleeiro, P. C., Moreira, A. D. R., Silva, N. G., & Bove, C. P. 2017. Flora do Rio de Janeiro: Lentibulariaceae. Rodriguésia, 68(1), 59-71. DOI: 10.1590/2175-7860201768111 Bijos, N. R., Eugênio, C. U. O., Mello, T. R. B., Souza, G. F., & Munhoz, C. B. R. 2017. Plant species composition, richness, and diversity in the palm swamps (veredas) of Central Brazil. Flora, 236-237, 94-99. DOI: 10.1016/j.flora.2017.10.002 Brasil. 2012. Lei No. 12.651, de 25 de maio de 2012. Poaceae, Cyperaceae and Asteraceae correspond to the richest families in most reports on wetlands, such as veredas (Araújo et al. 2002, Guimarães et al. 2002, Meirelles et al. 2002, Tannus & Assis 2004, Munhoz & Felfili 2006, Munhoz & Felfili, 2007, Oliveira et al. 2009, Moreira et al. 2011, Resende et al. 2013, Moreira et al. 2015, Silva et al. 2017, Bijos et al. 2017, Moreira et al. 2017). Coutinho (1998) and Araújo et al. (2002) mention that these three families present a great number of genera and heliophilous species. Saccharum asperum can occur either in drier areas of the vereda edge (Oliveira et al. 2009) or water courses and marshes, with high cover (Meirelles et al. 2002). Andropogon hypogynus was representative in both seasons, showing to be adapted to either flooding or relative water ACKNOWLEDGEMENTS We thank the Universidade Federal de Mato Grosso do Sul (UFMS) for sponsoring the study. To Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for scholarship to Suzana Neves Moreira and grants to Arnildo Pott and Geraldo Alves Damasceno Junior. To Embrapa Gado de Corte that gave us access to the area and kept firebreaks. REFERENCES Oecol. Aust. 23(4): 776–798, 2019 784 | Vegetation structure of vereda Conselho Nacional do Meio Ambiente, Brasília, Brasil. Retrieved on June 21, 2018, from http:// w w w.pla na lto.gov.br/cciv i l _03/_ Ato20112014/2012/Lei/L12651.htm Brower, J. E., & Zar, J. H. 1984. Field and laboratory methods for general ecology. 2nd ed. Iowa: Wm. C. Brown Company: p. 226. Cáceres, M., Legendre, P., & Moretti, M. 2010. Improving indicator species analysis by combining groups of sites. Oikos, 119(10), 16741684. DOI: 10.1111/j.1600-0706.2010.18334.x Cardozo, A. L. 2017. O gênero Eryngium L. (Apiaceae, Saniculoideae) no Estado do Paraná. Master Thesis. Setor de Ciências Biológicas, Universidade Federal do Paraná. p. 88. Carvalho, P. G. S. 1991. As Veredas e sua importância no domínio dos cerrados. Informe Agropecuário, 168, 54-56. Casanova, M. T., & Brock, M. A. 2000. How do depth, duration and frequency of flooding influence the establishment of wetland plant communities? Plant Ecology, 147, 237-250. DOI: 10.1023/A:1009875226637 Costa, A. F. 2007. Zonação do gradiente vegetacional Cerrado Típico-Campo SujoVereda, na Estação Ecológica de Águas Emendadas, Brasilia, DF. Master thesis. Departamento de Ecologia, Universidade de Brasília: p. 65. Coutinho, L. M. 1978. O conceito de Cerrado. Revista Brasileira de Botânica, 1, 17-73. David, W. R. 2016. Labdsv: Ordination and Multivariate Analysis for Ecology. R package version 1.8-0. Retrieved from https://CRAN.Rproject.org/package=labdsv Dufrêne, M., & Legendre, P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs, 67, 345-366. DOI: 10/bbgdvn Drummond, G. M., Martins, C. S., Machado, A. B. M., Sebaio, F. A., & Antonini, Y. 2005. Biodiversidade em Minas Gerais: Um atlas para sua conservação. Belo Horizonte: Fundação Biodiversitas: p. 222. Felfili, J. M., Silva-Junior. M. C., Sevilha, A. C., Fagg, C. W., Walter, B. M. T., Nogueira, P. E., & Rezende, A. B. 2004. Diversity, floristic and structural patterns of Cerrado vegetation in central Brazil. Plant Ecology, Dordrecht, 175, 37-46. DOI: 10.1023/B:VEGE.0000048090.07022.02 Oecol. Aust. 23(4): 776–798, 2019 Flora do Brasil. 2018. Poaceae in Flora do Brasil 2020 under construction. Jardim Botânico do Rio de Janeiro. Retrieved on October 08, 2018, from http://floradobrasil.jbrj.gov.br/reflora/ floradobrasil/FB13567 Gartlan, J. S., Newbery, D. M., Thomas, D. W., & Waterman, P. G. 1986.The influence of topography and soil phosphorus on the vegetation of Korup Reserve, Cameroun. Vegetatio, 65, 131-148. DOI: 10.1007/BF00044814 Gaya, T. R. L. M. 2014. A floresta inundável do norte de Minas Gerais: identidade florística e estrutura de comunidades arbustivo-arbóreas. Lavras, MG. Master thesis. Engenharia Florestal. Universidade Federal de Lavras: p. 225. Gentry, A. H. 1988. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Annals of the Missouri Botanical Garden, 75(1), 1–34. Goldsmith, F. B. 1974. Multivariate analyses of tropical grassland communities in Mato Grosso, Brasil. Journal of Biogeography, 1(1), 111-122. Guimarães, A. J. M. 2001. Característica do solo e da comunidade vegetal em área natural e antropizada de uma Vereda na região de Uberlândia, MG. Master thesis. Ecologia e Conservação dos Recursos Naturais. Universidade Federal de Uberlândia, Uberlândia: p. 44. Guimarães, A. J. M., Araújo, G. M., & Corrêa, G. F. 2002. Estrutura fitossociológica em área natural e antropizada de uma vereda em Uberlândia, MG. Acta Botanica Brasilica, 16(3), 317-330. DOI: 10.1590/S0102-33062002000300007 Kent, M., & Coker, P. 1992. Vegetation description and analysis: A practical approach. Michigan: CRC Press: p. 363. Kurtz, B. C., Gomes, J. C., & Scarano, F. R. 2013. Structure and phytogeographic relationships of swamp forests of Southeast Brazil. Acta Botanica Brasilica, 27(4), 647-660. DOI: 10.1590/ S0102-33062013000400002 Meirelles, M. L., Oliveira, R. C., Vivaldi, L. J. Santos, A. R., & Correia, Jr. 2002. Espécies do estrato herbáceo e profundidade do lençol freático em áreas úmidas do Cerrado. Boletim de Pesquisa e Desenvolvimento, Embrapa Cerrados, 25, 1-19. Meirelles, M. L., Guimarães, A. J. M., Oliveira, R.C., Moreira et al. | 785 Araújo, G. M., & Walter, J. F. 2004. Impactos sobre o estrato herbáceo de Áreas Úmidas do Cerrado. In: L.M.S. Aguiar, & A. J. A. Camargo (Eds.), Cerrado: ecologia e caracterização. pp. 41-68. Planaltina: Embrapa Cerrados. Moreira, S. N., Pott, A., Pott, V. J., & DamascenoJunior, G. A. 2011. Structure of pond vegetation of a vereda in the Brazilian Cerrado. Rodriguésia, 62(4), 721-729. DOI: 10.1590/S217578602011000400002 Moreira, S. N., Eisenlohr, P. V., Pott, A., Pott, V. J., & Oliveira-Filho, A. T. 2015. Similar vegetation structure in protected and non-protected wetlands in Central Brazil: conservation significance. Environmental Conservation, 42, 356-362. DOI: 10.1017/S0376892915000107 Moreira, S. N., Pott, V. J., & Pott, A. 2017. Are Mauritia flexuosa L. f. palm swamps in the Brazilian Pantanal true veredas? A floristic appraisal. Boletim do Museu Paraense Emílio Goeldi Ciências Naturais, 12(2), 221-238. Mueller-Dombois, D., & Ellenberg, H. 1974. Aims and methods of vegetation ecology. New York: John Wiley & Sons: p. 547. Munhoz, C. B. R., & Felfili, J. M. 2006. Floristics of the herbaceous and sub-shrub layer of a moist grassland in the Cerrado Biosphere Reserve (Alto Paraíso de Goiás), Brazil. Edinburgh Journal of Botany, 63, 343-354. DOI: 10.1017/ S0960428606000539 Munhoz, C. B. R., & Felfili, J. M. 2007. Florística do estrato herbáceo-subarbustivo de um campo limpo úmido em Brasília, Brasil. Biota Neotropica, 7(3), 205-215. DOI: 10.1590/S167606032007000300022 Munhoz, C. B. R., & Felfili, J. M. 2008. Fitossociologia do estrato herbáceo-subarbustivo de um campo limpo úmido no Brasil Central. Acta Botanica Brasilica, 22(4), 905-913. DOI: 10.1590/ S0102-33062008000400002 Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., & Wagner, H. 2014. Vegan: Community Ecology Package. R Package Version 2.2-0. Retrieved from http:// CRAN.Rproject.org/package=vegan Oliveira-Filho, A. T., & Martins, F. R. 1986. Distribuição, caracterização e composição florística das formações vegetais da região da Salgadeira, na Chapada dos Guimarães (MT). Revista Brasileira de Botânica, 9, 207-223. Oliveira-Filho, A. T., Almeida, R. J., Mello, J. M., & Gavilanes, M. L. 1994a. Estrutura fitossociológica e variáveis ambientais em um trecho da mata ciliar do córrego dos Vilas Boas, Reserva Biológica do Poço Bonito, Lavras (MG). Revista Brasileira de Botânica, 17, 67-85. Oliveira-Filho, A. T., Vilela, E. A., Carvalho, D. A., & Gavilanes, M. L. 1994b. Effect of soils and topography on the distribution of tree species in a tropical riverine forest in Southeastern Brazil. Journal of Tropical Ecology, 10(4), 483508. DOI: 10.1017/S0266467400008178 Oliveira, G. C., Araújo, G. M., & Barbosa, A. A. A. 2009. Florística e zonação de espécies vegetais em veredas no Triângulo Mineiro, Brasil. Rodriguésia, 60(4), 1077-1085. DOI: 10.1590/2175-7860200960417 Peel, M. C., Finlayson, B. L., & McMahon, T. A. 2007. Updated world map of the KöppenGeiger climate classification. Hydrology and Earth System Sciences, 11(5), 1633-1644. DOI: 10.5194/hess-11-1633-2007 Pereira-Silva, L., Hefler, S. M., & Trevisan, R. 2018. Cyperus longiculmis and C. valiae (Cyperaceae), two new species from Brazil. Systematic Botany, 43(3), 741-746. DOI: 10.1600/036364418X697454 Pott, A. 1982. Pastagens da sub-regiões do Paiaguás e da Nhecolândia do Pantanal MatoGrossense. Corumbá: EMBRAPA/UEPAE: p. 49. R Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from http://www.R-project.org/ Resende, I. L. M., Chaves, L. J., & Rizzo, J. A. 2013. Floristic and phytosociological analysis of palm swamps in the central part of the Brazilian savanna. Acta Botanica Brasilica 27, 205-225. DOI: 10.1590/S0102-33062013000100020 Rezende, J. M. 2007. Florística, fitossociologia e a influência do gradiente de umidade do solo em campos limpos úmidos no Parque Estadual de Jalapão, Tocantins. Master thesis. Departamento de Engenharia Florestal. Universidade de Brasília. p. 60. Ribeiro, J. F., & Walter, B. M. 1998. Fitofisionomias do bioma Cerrado. In: S. M. Sano, & S. P. Almeida (Orgs.), Cerrado: Ambiente e flora. pp. 89-166. Planaltina: Embrapa/CPAC. Silva, D. P., Amaral, A. G., Bijos, N. R., & Munhoz, Oecol. Aust. 23(4): 776–798, 2019 786 | Vegetation structure of vereda C. B. R. 2017. Is the herb-shrub composition of veredas (Brazilian palm swamps) distinguishable? Acta Botanica Brasilica, 32(1), 47-54. DOI: 10.1590/0102-33062017abb0209 Tannus, J. L. S., & Assis, M. A. 2004. Composição de espécies vasculares de campo sujo e campo úmido em área de cerrado, Itirapina - SP, Brasil. Revista Brasileira de Botânica, 27(3), 489–506. DOI:10.1590/S0100-84042004000300009 Teixeira, A. P., & Assis, M. A. 2005. Caracterização florística e fitossociológica do componente arbustivo-arbóreo de uma floresta paludosa no Município de Rio Claro (SP), Brasil. Revista Brasileira de Botânica, 28(3), 467-476. DOI: 10.1590/s0100-84042005000300005 Van Den Berg, E., & Oliveira-Filho, A. T. 1999. Spatial partitioning among tree species within an area of tropical montane gallery forest in South-eastern Brazil. Flora, 194(3), 249-266. DOI: 10.1016/S0367-2530(17)30911-8 Welker, C. A. D., & Longhi-Wagner, M. H. 2012. The genera Eriochrysis P. Beauv., Imperata Cirillo and Saccharum L. (Poaceae–Andropogoneae– Saccharinae) in the state of Rio Grande do Sul, Brazil. Brazilian Journal of Botany 35(1), 87-105. DOI: 10.1590/S0100-84042012000100010 Submitted: 15 October 2018 Accepted: 22 July 2019 Published online: 16 December 2019 Associate Editors: Camila Aoki & Gudryan J. Barônio Oecol. Aust. 23(4): 776–798, 2019 Appendix 1. Species sampled in Wet grassland and Transition Areas at Vereda, municipality of Terenos, State of Mato Grosso do Sul, Brazil, with their respective Collector Number (Col.), Relative Frequency (RF), Relative Cover (RC) and Cover Values (CV). The value was described for two different seasons (Rainy and Dry) and two different environments (Wet Grassland and Transition Area). M= Suzana Neves Moreira and P= Vali Joana Pott. The numbers in bold represent the highest coverage values. Wet grassland Family/Species Col. Rainy Transition Area Dry Rainy RC RF CV RC RF CV M 084 0.06 0.12 0.18 0.06 0.13 0.19 P 10.918 0.08 0.37 0.45 0.4 0.27 0.67 Dry RC RF CV RC RF CV 0.53 1.17 1.7 1.7 3.85 5.55 0 0.16 0.16 3.96 2.02 5.98 0.31 0.09 0.4 ALISMATACEAE Echinodorus longipetalus Micheli Helanthium tenellum (Mart.) Britton Sagittaria rhombifolia Cham. M 87 APIACEAE Eryngium ebracteatum Lam. M 178 0.08 0.12 0.2 Eryngium floribundum Cham. & Schltdl. M 31 0.74 0.61 1.35 0.94 0.66 1.6 0.25 0.16 0.4 0.83 0.75 1.58 M 143 3.72 2.08 5.8 3.94 2.39 6.33 0.57 0.47 1.04 0.07 0.28 0.35 Mandevilla widgrenii C. Ezcurra M 284 0.06 0.37 0.43 0.3 0.62 0.92 2.99 5.91 8.91 Rhabdadenia madida (Vell.) Miers M 26 0.06 0.37 0.43 0.03 0.23 0.27 0.03 0.19 0.22 Secondatia densiflora A. DC. M 58 0.1 0.19 0.29 Widgrenia corymbosa Malme M 54 Eryngium Schltdl. pandanifolium Cham. & APOCYNACEAE 0.13 0.14 0.25 0.4 0.65 0.32 1.63 1.95 0.61 2.07 2.68 0.03 0.16 0.18 0.08 0.09 0.17 ARECACEAE Mauritia flexuosa L.f. M 366 ASTERACEAE Acilepidopsis echitifolia (Mart. ex DC.) H.Rob. M 192 Achyrocline alata (Kunth) DC. M 156 0.59 0.86 1.45 0.06 0.13 0.19 Appendix 1. Continued on next page... Moreira et al. | 787 Oecol. Aust. 23(4): 776–798, 2019 0.01 Wet grassland Family/Species Campuloclinium (Less.) DC. Col. macrocephalum Rainy Transition Area Dry Rainy Dry RC RF CV RC RF CV RC RF CV RC RF CV M 358 Chromolaena laevigata (Lam.) R.M. King & H. Rob. M 199 0.52 0.49 1.01 0.56 0.27 0.83 0.04 0.16 0.2 Chromolaena palmaris (Sch. Bip. ex Baker) R.M. King. & H. Rob. M 359 1.29 1.84 3.13 0.06 0.13 0.19 0.06 0.23 0.29 Conyza bonariensis (L.) Cronquist M 135 0.02 0.16 0.17 0.05 0.19 0.24 Leptostelma tweediei (Hook. & Arn.) D.J.N.Hind & G.L.Nesom Lessingianthus bardanoides (Less.) H. Rob. Lessingianthus rubricaulis (Humb. & Bonpl.) H.Rob. M 107 0.06 0.25 0.31 0.14 0.27 0.41 M 100 0.36 0.25 0.61 0.07 0.27 0.34 0.1 0.39 0.49 0.04 0.19 0.23 M 176 0.7 1.1 1.8 0.02 0.13 0.15 0.32 1.17 1.49 0.45 1.88 2.33 Mikania cordifolia (L. f.) Willd. M 201 0 0.12 0.12 0.14 0.23 0.37 Mikania stenophylla Holmes M 95 0.12 0.39 0.51 0.03 0.23 0.26 Pichrosia longifolia D. Don Trichogonia crenulata (Gardner) D.J.N. Hind Vernonanthura chamaedrys (Less.) H.Rob. BEGONIACEAE Begonia cucullata Willd. P 8914 0.19 0.86 1.05 M 125 0.67 1.1 1.77 1.63 1.33 2.96 0.22 0.47 0.69 M 40 0.11 0.37 0.48 0.31 0.27 0.58 0.49 0.7 1.19 0.23 0.66 0.89 M 108 0.01 0.12 0.13 0.01 0.13 0.14 0.02 0.16 0.17 0.01 0.09 0.1 0.02 0.16 0.17 0.65 0.23 0.89 0.15 0.09 0.25 CAMPANULACEAE Lobelia aquatica Cham. M 152 Lobelia camporum Pohl M 113 Pratia hederacea Hook. & Arn. M 45 0.06 0.12 0.18 0.05 0.13 0.18 Appendix 1. Continued on next page... 788 | Vegetation structure of vereda Oecol. Aust. 23(4): 776–798, 2019 Appendix 1. ...Continued Appendix 1. ...Continued Wet grassland Family/Species Col. Rainy RC CHARACEAE Nitella furcata (Roxb. ex Bruzelius) Agardh CHLORANTHACEAE M 307 Hedyosmum brasiliense Miq. M 43 RF Transition Area Dry CV RC RF Rainy CV Dry RC RF CV 0.09 0.39 0.48 0.11 0.54 0.65 0.01 0.16 0.16 RC RF CV 0.17 0.56 0.73 0.03 0.19 0.22 CUCURBITACEAE Melothria fluminensis Gardner M 28 0.05 0.25 0.3 Ascolepis brasiliensis (Kunth) Benth. ex C.B. Clarke M 11 0.3 1.47 1.77 Cyperus brevifolius (Rottb.) Endl. ex Hassk. 23 0.04 0.12 0.16 Cyperus haspan L. M 67 0.04 0.12 0.16 Cyperus longiculmis Pereira-Silva, Hefler & R. Trevis. M 71 Cyperus rigens var. impolitus (Kunth) Hefler & Longhi-Wagner P 10.841 0.37 1.23 1.6 0.71 1.86 2.57 0.03 0.23 0.27 M 77 0.2 0.86 1.06 0.25 0.27 0.52 0.03 0.16 0.19 0.09 0.93 1.02 0.2 0.94 1.14 0.03 0.39 0.42 0.34 0.66 1 0.24 0.62 0.86 0.75 2.72 3.47 CYPERACEAE Cyperus valie Pereira-Silva. Hefler & R. Trevis. Eleocharis acutangula (Roxb.) Schult. 0.53 0.65 P 10.274 M 310 Eleocharis capillacea Kunth P 10.848 0.13 0.86 0.99 0.12 0.53 0.65 Eleocharis minima Kunth P 10.985 0.01 0.49 0.5 0.01 0.13 0.14 M7 0 0.12 0.12 Eleocharis nudipes Palla Appendix 1. Continued on next page... Moreira et al. | 789 Oecol. Aust. 23(4): 776–798, 2019 Cyperus unioloides R. Br. 0.12 Wet grassland Family/Species Col. Rainy RC Eleocharis Svenson plicarhachis (Griseb.) RF Transition Area Dry CV RC RF Rainy CV M 309 RC RF CV RC RF CV 0.58 2.56 3.14 0.48 1.6 2.07 Lipocarpha humboldtiana Nees M 12 0.17 0.74 0.91 Rhynchospora conferta (Nees) Boeckeler M 10 0.04 0.25 0.29 M 0.2 0.98 1.18 M 116 0.26 0.49 0.75 Rhynchospora loefgrenii Boeckeler M 14 3.33 4.9 8.23 4.41 5.05 9.46 Rhynchospora marisculus Lindl. ex Nees M 80 2.7 2.45 5.15 3.97 3.06 7.03 Rhynchospora rugosa (Vahl) Gale M 325 0.62 0.86 1.48 1.06 1.73 2.79 Rhynchospora trispicata (Nees) Schrad. ex Steud. M 204 0.41 0.49 0.9 0.95 1.33 2.28 0.68 1.09 M 294 1.69 1.84 3.53 0.5 1.33 1.83 0.3 Rhynchospora corymbosa (L.) Britton Rhynchospora Boeckeler Rhynchospora Boeckeler (Nees) emaciata velutina (Kunth) Scleria hirtella Sw. Dry 1.31 3.32 4.63 0.2 0.93 1.13 0.02 0.09 0.11 0.05 0.4 0.45 0.18 0.23 0.41 0.35 0.19 0.53 1.8 3.03 4.83 0.99 2.82 3.81 0.12 0.19 0.3 0.08 0.09 0.17 0.03 0.19 0.22 1.76 0.19 0.38 0.57 0.93 1.24 0.35 0.94 1.29 0.06 0.62 0.68 M8 0.08 0.16 0.24 Scleria leptostachya Kunth M 148 0.46 1.1 1.56 0.39 1.73 2.12 0.14 0.62 0.76 0.03 0.19 0.22 Scleria lithosperma (L.) Sw. M 162 0.29 1.35 1.64 0.64 2.66 3.3 0.01 0.47 0.48 0.31 0.38 0.68 Scleria microcarpa Nees ex Kunth M 75 0 0.16 0.16 0.12 0.09 0.21 ERIOCAULACEAE Eriocaulon sellowianum Kunth M 69 0.2 0.74 0.94 0.27 0.53 0.8 0 0.16 0.16 0.35 0.38 0.73 Syngonanthus caulescens (Poir.) Ruhland M3 0.52 1.1 1.62 0.65 1.33 1.98 0.02 0.16 0.17 0.04 0.28 0.32 0.31 1.63 1.95 0.54 1.88 2.41 EUPHORBIACEAE Caperonia castaneifolia (L.) A. St.-Hil. M 165 Appendix 1. Continued on next page... 790 | Vegetation structure of vereda Oecol. Aust. 23(4): 776–798, 2019 Appendix 1. ...Continued Appendix 1. ...Continued Wet grassland Family/Species Sapium hasslerianum Huber Col. M 144 Rainy Transition Area Dry RC RF CV 0.02 0.12 0.14 RC RF Rainy CV Dry RC RF CV RC RF CV FABACEAE Aeschynomene fluminensis Vell. M 50 0.11 0.23 0.35 0.26 0.38 0.64 Aeschynomene sensitiva Sw. M 175 0.1 0.31 0.41 0.08 0.09 0.17 0.02 0.16 0.17 0.01 0.09 0.1 0.11 0.31 0.42 0.04 0.09 0.13 0.02 0.19 0.2 0.02 0.09 0.11 0.01 0.09 0.1 GENTIANACEAE Chelonanthus alatus (Aubl.) Pulle M 117 0.07 0.37 0.44 Schultesia aptera Cham. P 10.870 0.3 1.47 1.77 Schultesia gracilis Mart. M 114 0.97 2.7 3.67 Schultesia heterophylla Miq. P 10.849 GESNERIACEAE Sinningia elatior (Kunth) Chautems M 59 0.32 0.93 1.25 0.02 0.13 0.15 0.81 1.06 1.87 0.35 1.46 1.81 HYPNACEAE Isopterygium tenerifolium Mitt. P 10.969 IRIDACEAE M 98 0.17 0.86 1.03 Cantinoa althaeifolia (Pohl ex Benth.) Harley & J.F.B.Pastore M 301 0.82 0.98 1.8 Hyptis crenata Pohl ex Benth. M 944 0.01 0.12 0.13 Hyptis lavandulacea Pohl ex Benth. M 188 0.18 0.37 0.55 Hyptis microphylla Pohl ex Benth. M 360 Hyptis pachyarthra Briq. M 109 LAMIACEAE 0.26 0.61 0.87 0.09 0.53 0.62 0.08 0.02 0.31 0.16 0.39 0.17 Appendix 1. Continued on next page... Moreira et al. | 791 Oecol. Aust. 23(4): 776–798, 2019 Cypella laxa Ravenna Wet grassland Family/Species Col. Rainy RC Dry CV RC RF CV M 336 0.12 0.16 0.28 0.07 0.09 0.16 Utricularia foliosa L. M 184 0.51 1.17 1.67 Utricularia gibba L. M 129 0 0.12 0.12 2.11 4.66 6.77 0.01 0.09 0.1 Utricularia hydrocarpa Vahl M 180 0.01 0.12 0.13 0.61 2.72 3.33 Utricularia myriocista A. St.-Hil. & Girard M 134 0.21 0.62 0.84 Utricularia nervosa Weber ex Benj. M 30 0.25 0.37 0.62 0.05 0.27 0.32 0.01 0.09 0.1 Utricularia praelonga A. St.-Hil. & Girard M1 0 0.12 0.12 0.05 0.4 0.45 0.01 0.09 0.1 Utricularia trichophylla Spruce ex Oliv. M 76 0.03 0.37 0.4 Utricularia tricolor A. St.-Hil. M 130 0.02 0.09 0.11 Hyptis recurvata Poit. M 82 0.48 1.96 2.44 RC RF CV 0.05 0.4 0.45 0.24 0.66 0.9 Dry RF M 170 CV Rainy RC Hyptis pulchella Briq. RF Transition Area LAURACEAE Nectandra gardneri Meisn. LENTIBULARIACEAE 0.25 0.23 0.48 MALPIGHIACEAE Heteropterys procoriacea Nied. M 38 Heteropterys eglandulosa A. Juss. M 345 Heteropterys orinocensis (Kunth) A.Juss. M 371 0.28 0.37 0.65 0.31 0.4 0.71 0.37 0.74 1.11 0.6 1.33 1.93 0.14 0.31 0.45 0.14 0.19 0.33 2.18 4.27 6.45 2.19 6.38 8.58 MALVACEAE Byttneria palustris Cristóbal M 37 Melochia simplex A. St.-Hil. M 362 0.57 1.55 2.13 0.04 0.09 0.13 Melochia villosa (Mill.) Fawc. & Rendle M 282 0.13 0.31 0.44 0.25 0.75 1 Appendix 1. Continued on next page... 792 | Vegetation structure of vereda Oecol. Aust. 23(4): 776–798, 2019 Appendix 1. ...Continued Appendix 1. ...Continued Wet grassland Family/Species Col. Rainy RC Sida rhombifolia L. RF Transition Area Dry CV RC RF Rainy CV - Dry RC RF CV RC RF CV 0.01 0.16 0.16 0.87 2.41 3.28 0.02 0.19 0.2 0.36 1.17 1.53 0.94 2.25 3.19 MAYACACEAE Mayaca sellowiana Kunth M 83 0.06 0.25 0.31 0.1 0.4 0.5 MELASTOMATACEAE Acisanthera alsinaefolia Triana - Acisanthera divaricata Cogn. M 314 Acisanthera variabilis (DC.) Triana M 339 Miconia chamissois Naudin M 34 Tibouchina gracilis (Bonpl.) Cogn. M 85 0.21 0.66 0.87 0.34 0.7 1.04 0.32 0.66 0.98 0.47 1.71 2.18 0.34 1.06 1.4 0.17 0.62 0.79 0.02 0.19 0.21 0.12 0.12 0.24 0.34 1.59 1.93 0.04 0.39 0.43 0.15 0.47 0.62 M 174 0.2 0.54 0.74 0.22 0.66 0.88 Ludwigia irwinii Ramamoorthy M 86 0.37 1.09 1.46 0.41 1.41 1.82 Ludwigia nervosa (Poir.) H. Hara M 74 0.52 1.59 2.11 0.99 1.99 2.98 0.36 1.09 1.45 0.48 1.5 1.98 Ludwigia sericea (Cambess.) H. Hara M 39 0.07 0.12 0.19 0.06 0.13 0.19 0.08 0.16 0.24 0.2 0.47 0.67 M 123 0.06 0.12 0.18 0.06 0.13 0.19 0.06 0.16 0.21 0.04 0.09 0.13 MYRSINACEAE Rapanea umbellata (Mart.) Mez M 96 OCHNACEAE Sauvagesia racemosa A. St.-Hil. M 32 ONAGRACEAE Ludwigia bullata (Hassl.) H. Hara (Micheli) ORCHIDACEAE Cyrtopodium paludicola Hoehne Appendix 1. Continued on next page... Moreira et al. | 793 Oecol. Aust. 23(4): 776–798, 2019 Ludwigia filiformis Ramamoorthy M 166 Wet grassland Family/Species Col. Rainy Transition Area Dry RC RF CV RC RF Rainy CV Habenaria nuda Lindl. M 324 0.02 0.12 0.14 Habenaria pungens Cogn. M 323 0.02 0.12 0.14 M 94 0.14 0.37 0.51 0.06 0.13 0.19 M 363 0.07 0.12 0.19 0.19 0.13 0.32 0.02 0.13 0.15 Dry RC RF CV 0.01 0.16 0.16 0.11 0.31 0.43 RC RF CV 0.14 0.28 0.42 0.15 0.09 0.25 11.79 5.07 16.86 OROBANCHACEAE Escobedia grandiflora (L. f.) Kuntze PASSIFLORACEAE Passiflora pottiae Cervi & Imig PHYLLANTHACEAE Hieronyma alchorneoides Allemão Phyllanthus Webster stipulatus (Raf.) M 364 G.L. M 203 PIPERACEAE Piper fuligineum Kunth Piper macedoi Yunck. M 36 - PLANTAGINACEAE Bacopa monnierioides (Cham.) B.L. Rob. M 41 0.03 0.31 0.34 Bacopa reflexa (Benth.) Edwall M 213 0 0.16 0.16 Bacopa scabra Descole & Borsini M 205 0.05 0.25 0.3 Andropogon bicornis L. M 137 0.06 0.12 0.18 Andropogon glaziovii Hack. M 221 Andropogon hypogynus Hack. M 89 3.58 3.55 7.13 3.57 3.59 7.16 Andropogon macrothrix Trin. M 104 0.24 0.12 0.36 0.39 0.4 0.79 0.02 0.13 0.15 POACEAE 12.96 4.42 17.38 Appendix 1. Continued on next page... 794 | Vegetation structure of vereda Oecol. Aust. 23(4): 776–798, 2019 Appendix 1. ...Continued Appendix 1. ...Continued Wet grassland Family/Species Col. Rainy Transition Area Dry Rainy Dry RC RF CV RC RF CV RC RF CV RC RF CV P 10058 3.87 4.78 8.65 4.91 6.24 11.15 0.65 1.32 1.97 0.74 1.88 2.61 Anthaenantia lanata (Kunth) Benth. M 334 9.08 4.41 13.49 6.88 4.65 11.53 Anthaenantiopsis trachystachya (Nees) Mez ex Pilg. M 56 0.78 0.37 1.15 0.75 0.4 1.15 0.12 0.16 0.28 Arundinella hispida (Humb. & Bonpl. ex Willd.) Kuntze M 24 0.04 0.13 0.17 Axonopus cf. comans (Trin. ex Döll) Kuhlm. P 10.777 0.96 0.66 1.62 7.33 3.76 11.09 Andropogon virgatus Desv. M 19 5.02 1.47 Axonopus purpusii (Mez) Chase M 20 Axonopus siccus (Nees) Kuhlm. M 20 1.74 0.86 2.6 Coelorhachis aurita (Steud.) A. Camus M 60 0.29 0.61 0.9 0.27 0.66 Eriochrysis cayennensis P. Beauv. M 17 0.47 1.35 1.82 1.22 Eriochrysis holcoides (Nees) Kuhlm. M 101 14.83 8.21 23.04 Hyparrhenia bracteata (Humb. & Bonpl. ex Willd.) Stapf M 189 0.58 0.98 1.56 Hyparrhenia rufa (Nees) Stapf M 361 Ichnanthus procurrens (Nees ex Trin.) Swallen M 22 0.18 0.49 0.67 0.15 0.4 0.55 Imperata tenuis Hack. M 208 1.92 1.23 3.15 1.62 0.93 2.55 Leersia hexandra Sw. M 259 Paspalum dedeccae Quarin M 343 Paspalum erianthoides Lindm. M 303 9.65 2.57 Paspalum erianthum Nees ex Trin. M 304 0.02 0.12 6.49 12.36 6.24 9.88 3.26 13.14 0.14 0.16 0.29 0.93 0.43 0.7 1.12 0.31 0.75 1.06 1.99 3.21 0.44 0.7 1.14 1.38 1.41 2.79 2.05 1.73 3.78 1.86 1.79 3.65 3.53 2.16 5.69 0.37 0.66 1.03 0.61 0.78 1.39 0.41 0.75 1.16 0.08 0.08 0.09 0.1 8.05 3.65 11.7 10.47 5.26 15.73 2.49 2.87 5.36 0.69 3 3.69 9.68 2.87 12.55 10.26 3.57 13.83 18.6 6.22 4.38 10.6 12.22 11.32 3.06 14.38 0.14 2.27 2.13 4.4 Appendix 1. Continued on next page... Moreira et al. | 795 Oecol. Aust. 23(4): 776–798, 2019 Axonopus uninodis (Hack.) G.A. Black Wet grassland Family/Species Col. Rainy Transition Area Dry Rainy Dry RC RF CV RC RF CV RC RF CV RC RF CV 6.7 3.45 10.15 0.63 0.62 1.25 0.53 0.66 1.19 0.08 0.16 0.24 0.04 0.09 0.13 Paspalum flaccidum Nees M 285 8.99 3.92 12.91 Paspalum glaucescens Hack. M 365 1.29 1.23 2.52 Paspalum lenticulare Kunth M 327 Paspalum maculosum Trin. M 299 Paspalum wrightii Hitchc. & Chase M 355 Rheochloa scabriflora Filg.. P.M. Peterson & Y. Herrera M 330 0.06 0.49 0.55 0.19 0.66 0.85 0.01 0.16 0.16 0.09 0.28 0.37 Rhytachne rottboellioides Desv. M 90 0.6 1.47 2.07 1.31 0.53 1.84 3.11 1.94 5.05 24.37 9.95 34.32 Saccharum asperum (Nees) Steud. M 61 1.38 0.37 1.75 0.12 0.13 0.25 16.36 5.9 22.26 1.41 2.25 3.66 Saccharum villosum Steud. M 73 0.28 0.25 0.53 2.97 2.52 5.49 5.22 3.42 8.63 3.71 3.85 7.55 Sacciolepis vilvoides (Trin.) Chase M 140 3.87 3.92 7.79 0.11 0.4 0.51 Schizachyrium condensatum (Kunth) Nees P 10.787 0.01 0.12 0.13 0.4 0.93 1.33 0.1 0.47 0.56 0.05 0.28 0.33 Schizachyrium gracilipes (Hack.) A. Camus M 340 0.21 1.17 1.38 0.06 0.66 0.72 Setaria parviflora (Poir.) Kerguélen M 1278 0.1 0.16 0.25 0.02 0.09 0.12 0.05 0.19 0.24 0.01 0.09 0.1 Steinchisma decipiens (Nees ex Trin.) W.V. Br. M 93 Steinchisma laxum (Sw.) Zuloaga M 18 Trichanthecium caaguazuense (Henrard) Zuloaga & Morrone M 157 Trichanthecium parvifolium Zuloaga & Morrone (Lam.) M 128 0.11 0.49 0.6 0.07 0.39 0.46 0.05 0.39 0.44 0.02 0.7 0.72 Appendix 1. Continued on next page... 796 | Vegetation structure of vereda Oecol. Aust. 23(4): 776–798, 2019 Appendix 1. ...Continued Appendix 1. ...Continued Wet grassland Family/Species Col. Rainy RC RF Transition Area Dry CV RC RF Rainy CV Dry RC RF CV RC RF CV 0.06 0.16 0.21 0.04 0.09 0.13 0.29 0.54 0.84 0.4 0.47 0.87 0.14 0.78 0.92 0.02 0.19 0.21 0.02 0.16 0.17 1.01 1.55 2.56 0.08 0.56 0.64 PONTEDERIACEAE Pontederia parviflora Alexander M 368 PRIMULACEAE Anagalis minima (L.) E.H.L. Krause M 42 0.07 0.27 0.34 2.17 2.13 4.3 PTERIDACEAE Pityrogramma calomelanos (L.) Link M 224 1.72 2.7 4.42 M 168 0.04 0.12 0.16 RUBIACEAE Borreria pulchristipula Bacigalupo & E.L. Cabral (Bremek.) Hexasepalum radula (Willd.) Delprete & J.H. Kirkbr. M 92 SAPINDACEAE Matayba elaeagnoides Radlk. M 338 SCROPHULARIACEAE M6 0.02 0.13 0.15 SOLANACEAE Schwenckia juncoides Chodat Solanum subinerme Jacq. M 55 P 10.552 STYRACACEAE Styrax camporum Pohl M 65 Appendix 1. Continued on next page... Moreira et al. | 797 Oecol. Aust. 23(4): 776–798, 2019 Melasma stricta (Benth.) Hassl. Wet grassland Family/Species Col. Rainy Transition Area Dry Rainy Dry RC RF CV RC RF CV RC RF CV RC RF CV M 88 0.14 0.25 0.39 0.06 0.13 0.19 0.04 0.16 0.2 0.06 0.09 0.16 Xyris jupicai Rich. M 348 0.06 0.12 0.18 1.27 2.39 3.66 0.21 0.47 0.68 0.13 0.38 0.51 Xyris laxiflora F. Muell. M 126 0.47 0.74 1.21 0.84 1.06 1.9 0.62 1.71 2.33 0.41 1.03 1.44 Xyris savanensis Miq. M 351 1.74 1.96 3.7 0.11 0.53 0.64 Xyris schizachne Mart. M 353 0.04 0.12 0.16 0.08 0.39 0.47 0.05 0.28 0.34 Xyris tortula Mart. M 350 0.01 0.12 0.13 0.12 0.23 0.36 0.08 0.19 0.26 URTICACEAE Cecropia pachystachya Trécul XYRIDACEAE 798 | Vegetation structure of vereda Oecol. Aust. 23(4): 776–798, 2019 Appendix 1. ...Continued