Academia.eduAcademia.edu
INTERNATIONAL JOURNAL OF CONSERVATION SCIENCE ISSN: 2067-533X Volume 5, Issue 1, January-March 2014: 85-94 www.ijcs.uaic.ro ASSESSMENT OF LICHENS IN SELECTED SACRED GROVES OF WEST MIDNAPORE DISTRICT, WEST BENGAL, INDIA Uday Kumar SEN * Ecology and Taxonomy Laboratory, Department of Botany & Forestry, Vidyasagar University, Midnapore-721 102, West Bengal, India Abstract Sacred groves are traditionally protected relic forest patches surviving on socio-religious grounds. It harbors valuable regional biodiversity with vital ecosystem and are under anthropogenic threats. Sacred groves are fairly well-studied for socio-cultural and ecological aspects, and evaluation of higher flora and fauna and their conservation. However, there are no or scarce studies on cryptogams available on sacred groves. The lichens have long been recognized as biologically sensitive indicators of environmental conditions. The present study reveals the occurrence of 129 species of lichens, represented by 52 genera and 25 families in ten selected sacred groves. Shorea robusta exhibited the maximum diversity of lichens by 74 species. Since this is the first study of lichens in the district there is ample scope for further studies in South Bengal region. This study will help to understand the diversity of lichens better and give the correct status of the biodiversity of West Bengal. Keywords: Lichens; Diversity; Sacred Grove; West Midnapore; West Bengal; India. Introduction Lichens are polyphyletic in origin, and a unique group of non-vascular cryptogams composed of two quite different organisms, a fungus and an alga, forming a self-supporting combination. The fungal component is called the mycobiont and the algal component is known as the photobiont. These two live in intimate association appeared to be a single plant. They are the dominant life forms on the earth, constitute about 8% of the earth’s surface. The fungal component forms the bulk of the lichen thallus, and hyphae form a close network resembling a tissue–like mass with the algal cells. The fungi obtain their food either saprophytically from dead organic matter or eats by parasitic mode of actions from the living bodies of host organisms [1]. Algae synthesize their own food from carbon dioxide and water. Food materials from the alga diffuse out and are absorbed by the fungus. However, the reproductive organs are entirely fungal in nature [2]. There are two types of photobionts - a green and a blue-green alga. In most of the lichens, the main photobiont is a green alga. In some of the foliose lichens, blue-green alga acts as the primary photobiont. Blue-green algal symbiosis mainly found in leguminous trees which * Corresponding author: uudaysen@gmail.com, Mob: +919002524806 U.K. SEN shows their primitiveness, and there had been a shift from blue-green alga to green alga, as the latter being more efficient in photosynthesis [3]. Morphologically, the thallus of lichens shows variations in its structure such as crustose, squamolose, foliose and fruiticose forms. If the thallus is partially or superficially or completely developed within the substrate like rocks or bark, the fructification (ascocarp) is partially or fully visible. Generally, lichens stores green algae as the photobiotic component, and ascomycetes fungi as a mycobiont, which acts as modified vegetative or asexual propagules [4]. On the basis of substratum, lichens are classified as corticolous (on bark of trees), saxicolous (on rocks), terricolous (on soil) and follicolous (on leaf surfaces) [5]. Lichen is a highly diverse group and because of its universal distribution, they play very significant roles in the pioneer but when we compare with other group of plants they receive little scientific attention [6]. Sacred groves, the tribal community- based repositories of plant diversity, are fragments of landscape with distinctive ecological features; afford protection on the basis of sacredness or religious practice or faith [7]. The groves are distributed uniformly in West Midnapore district, West Bengal, India, in the form of densely wooded natural patches, mainly angiospermic flora with perennial water resources in its vicinity. As being a unique ecosystem, it helps in soil and water conservation, preserving the biological wealth. They are the treasure house of many cryptogamic and phanerogamic plants such as algae, fungi, lichen, bryophyte, pteridophyta and angiosperms [8, 9]. The general floristic composition and physiognomy of vegetation of sacred groves are typically as the semi-evergreen forest [10]. The vegetation in undisturbed groves is luxuriant and comprises several stories of trees mixed with shrubs, lianas and herbs [11]. The soil is rich in humus, and covered with thick litter. Such types of groves create micro-climatic conditions, encouraging luxuriant growth of moisture-loving lichens including other growth forms, of immense ecological and economical values [12, 13]. The distribution of lichens (as in other cryptogams) is largely influenced by microclimatic factors such as topography, land cover and water. In sacred groves, four major ecological factors that produce several microclimatic niches for the growth of lichens are substrate, vegetation, climate and altitude [14]. The sacred grove provides a wide range of substrates for the growth of lichens, and hence, of the total 129 species of lichens, 116 are corticolous, 11 are saxicolous and 2 are follicolous. Study Area West Midnapore district lies between 22° 57' 10" to 21° 36' 35" N latitude and 88° 12' 40" to 86° 33' 50" E longitude, located in the southern part of West Bengal, India. It is bounded by Bankura district from the northern side and East Midnapore district from the south-eastern side. The southern boundary of the district is merged with Balasore and Mayurbhanj districts of Orissa, and the western boundary is merged with Singbhum, and east district of Jharkhand (Fig. 1). Fig. 1. Satellite and map view of West Medinipur district. 86 INT J CONSERV SCI 5, 1, JAN-MAR 2014: 85-94 ASSESSMENT OF LICHENS IN SACRED GROVES OF WEST MIDNAPORE DISTRICT, INDIA The human population of the district is 5943300 (density 640/km2), with 18.05% schedule castes and 14.87% schedule tribes population. Geographically, the area is 9295.28km2, which is further divided into four sub-divisions, 29 blocks and 8 municipalities. Location and Topography West Midnapore district represents regional diversity in terms of physiographic, agroclimatic characteristics and social composition etc. Geo-morphologically, the district is subdivided into three parts, viz. Chhotonagpur flanks with hills, mounds and rolling lands in the westernmost part, Rahr plain with lateritic uplands in the middle part and Alluvial plain of the east with recent deposits. It is hilly towards the north-west, represents low basins in the southeast and east. It has drought-affected dry areas in the west, but highly wet flood-affected in the east. Dense semi-evergreen forest in the west is replaced by semi-aquatic vegetations of marshy lands in the east. It has barren lateritic, non-arable lands in the west and north-west, which gradually changes with highly productive alluvial soil areas in the central and eastern part of the district. It is the abode of tribes and primitive tribes (Bhumij, Kheria, Lodha, Mahali, Munda and Santal) in the western blocks, while most of the area is inhabited by almost all castes of the society, representing the diverse culture across blocks. Extremely rugged topography is seen in the western part of the district and rolling topography is experienced consisting of lateritic areas. These rolling plains gradually merge into flat alluvial and deltaic plains to the east and south east of the district [15]. Climate and Soil The climate of the region is tropical; the terrain is characterized by hard rock uplands, lateritic areas, and flat alluvial and deltaic plains with fairly fertile soil. The area experiences an annual rainfall of 1400 - 1500mm, but is highly erratic for the last few years. The mean temperature of the area is between maximum of 44°C during peak summer and minimum 10°C during the coldest days of winter. Methodology Different species of lichens were opportunistically collected from ten different species of dicotyledonous trees from ten selected sacred groves of an (area more than 5 acres) and from rocks at ten different localities. Intensive sampling of lichens was carried out from January, 2010 to February, 2012. Lichens were collected along with substratum using sharp knife. The specimens were procured very precisely without damaging the thallus. Various species of lichen were also encountered through collection of fallen branches and twigs on the ground. The specimens were cleaned carefully by removing debris, sundried and deposited in the laboratory herbaria. Later, the species of lichens were identified upto species level using light compound binolcular microscope and also identified with the help of standard techniques such as spot tests, UV-light and Thin Layer Chromatography (TLC) [16-17]. The identification of each species of lichen was done using relevant keys, published literature and technical monographs [18-22]. Results and Discussions The lichen flora of the studied sacred groves was of tropical type, confined mostly on trees including few species grown on rocky substrate (Table 1). The few individuals of Shorea robusta was found to provide suitable habitat for rich growth of lichens (74 species). The other tree species harbouring lichens were Pongamia pinnata (11 species); Schleichera oleosa (8 species); Wrightia antidysenterica (7 species); Albizia lebbeck, Butea monosperma, Diospyros melanoxylon and Mangifera indica (3 species each), and Bombax ceiba, and Sapindus trifoliatus (2 species each) (Table 2, Fig. 2). http://www.ijcs.uaic.ro 87 U.K. SEN Table 1. Occurrance of lichens in selected sacred groves of West Midnapore district, West Bengal, India. Sr. No. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. 88 Lichen Species Anisomeridium terminatum (Nyl.) R. C. Harris Anthracothecium thwaitesii (Leight.) Müll. Arg. Arthonia translucens Stirt. Arthonia tumidula Leight. Arthonia medusula (Pers.) Nyl. Arthothelium albescens Patw. & Makhija Arthothelium confertum (A.L. Sm.) Makhija & Patw. Arthothelium erumpens Müll. Arg. Arthothelium pycnocarpoides Müll. Arg. Bacidia alutacea (Kremp.) Zahlbr. Bacidia convexula (Müll. Arg.) Zahlbr. Bacidia medialis (Tuck. ex Nyl.) B. de Lesd. Bacidia millegrana (Taylor) Zahlbr. Bacidia phaeolomoides (Müll. Arg.) Zahlbr. Bacidiospora psorina (Nyl. ex Hue) Kalb Bathelium benguelense Müll. Arg. Bathelium madreporiforme (Eschw.) Trevis. Bathelium tuberculosum (Makhija & Patw.) R. C. Harris Bulbothrix isidiza (Nyl.) Hale Byssoloma tricholomum (Mont.) Zahlbr. Caloplaca bassiae (Ach.) Zahlbr. Caloplaca herbidella (Hue) H. Magn. Caloplaca indurata V. Wirth & Vezda Caloplaca vitellinula (Nyl.) H.Olivier Caloplaca aurantia (Pers.) Hellb. Chapsa pseudophlyctis (Nyl.) Frisch Chrysothrix candelaris (L.) J. R. Laundon Cryptothecia bengalensis Jagadeesh, G. P. Sinha & Kr. P. Singh Cryptothecia effusa (Mull. Arg.) R. Sant. Cryptothecia involuta Stirt. Cryptothecia multipunctata Jagadeesh, G. P. Sinha & Kr. P. Singh Cryptothecia subtecta Stirt. Diorygma hieroglyphicum (Pers.) Staiger & Kalb Diorygma junghuhnii (Mont. & Bosch) Kalb, Staiger & Elix Diorygma megasporum Kalb, Staiger & Elix Diorygma pruinosum (Eschw.) Kalb, Staiger & Elix Diorygma radiatum (D.D. Awasthi & S.R. Singh) Kr.P. Singh & Swarnalatha Diploschistes muscorum (Scop.) R. Sant. Dyplolabia afzelii A. Massal. Glyphis cicatricosa Ach. Glyphis duriuscula Stirt. Glyphis scyphulifera (Ach.) Staiger Graphina platycarpa (Eschw.) Zahlbr. Graphis acharii Fée Graphis albidofarinacea Adaw. & Makhija Graphis albissima Mull.Arg. Graphis caesiella Vainio Graphis distincta Makhija & Adaw. Graphis filiformis Adaw. & Makhiza Graphis furcata Fée. Graphis glaucescens Fee. Graphis handelii Zahlbr. Graphis hiascens (Fée) A.W. Archer Graphis japonica (Müll. Arg.) A.W. Archer & Lücking Graphis librata C. Knight Graphis perticosa (Kremp.) A.W. Archer Graphis pinicola Zahlbr. Graphis pyrrhocheiloides Zahlbr. Graphis scripta (L.) Ach. Graphis streblocarpa (Bél.) Nyl. Graphis subasahinae Nagarkar & Patw. Graphis tenella Ach. Graphis chlorotica A. Massal. Graphis cincta (Pers.) Aptroot Graphis insulana (Müll. Arg.) Lücking & Sipman Haematomma wattii (Stirt.) Zahlbr. Herpothallon isidiatum Jagadeesh & G.P. Sinha Heterodermia albidiflava (Kurok.) D.D. Awasthi Heterodermia diademata (Taylor) D. D. Awasthi Heterodermia obscurata (Nyl.) Trevis. Heterodermia pseudospeciosa (Kurok.) W. L. Culb. Laurera aurentiaca Makhija & Patw. Laurera cumingii (Mont.) Zahlbr. Laurera keralensis Upreti & Ajay Singh Laurera kundarensis Upreti & Ajay Singh Laurera vezdae Makhija & Patw. Habit Habit Family Substratum/Host plant Monoblastiaceae Pyrenulaceae Arthoniaceae Arthoniaceae Arthoniaceae Arthoniaceae Arthoniaceae Arthoniaceae Arthoniaceae Ramalinaceae Ramalinaceae Ramalinaceae Ramalinaceae Ramalinaceae Ramalinaceae Trypetheliaceae Trypetheliaceae Trypetheliaceae Parmeliaceae Pilocarpaceae Teloschistaceae Teloschistaceae Teloschistaceae Teloschistaceae Teloschistaceae Graphidaceae Chrysothricaceae Arthoniaceae Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Fo. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. C C C C C C C C C C C C C C C C C C C F C C C S C C C C Mangifera indica L. (Anacardiaceae) Schleichera oleosa (Lour.) Merr. (Sapindaceae) Schleichera oleosa (Lour.) Merr. (Sapindaceae) Diospyros melanoxylon Roxb. (Ebenaceae) Diospyros melanoxylon Roxb. (Ebenaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Sapindus trifoliatus L. (Sapindaceae) Diospyros melanoxylon Roxb. (Ebenaceae) Pongamia pinnata (L.) Pierre (Fabaceae) Pongamia pinnata (L.) Pierre (Fabaceae) Schleichera oleosa (Lour.) Merr. (Sapindaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Albizia lebbeck (L.) Benth. (Fabaceae) Schleichera oleosa (Lour.) Merr. (Sapindaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Arthoniaceae Arthoniaceae Arthoniaceae Cr. Cr. Cr. C C C Wrightia antidysenterica (L.) R.Br. (Apocynaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Arthoniaceae Graphidaceae Graphidaceae Cr. Cr. Cr. C C C Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Graphidaceae Graphidaceae Graphidaceae Cr. Cr. Cr. C C S Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Fo. Fo. Fo. Fo. Cr. Cr. Cr. Cr. Cr. S C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C Thelotremataceae Graphidaceae Graphidaceae Graphidaceae Graphidaceae Graphidaceae Graphidaceae Graphidaceae Graphidaceae Graphidaceae Graphidaceae Graphidaceae Graphidaceae Graphidaceae Graphidaceae Graphidaceae Graphidaceae Graphidaceae Graphidaceae Graphidaceae Graphidaceae Graphidaceae Graphidaceae Graphidaceae Graphidaceae Graphidaceae Graphidaceae Graphidaceae Haematommataceae Arthoniaceae Physciaceae Physciaceae Physciaceae Physciaceae Trypetheliaceae Trypetheliaceae Trypetheliaceae Trypetheliaceae Trypetheliaceae Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Pongamia pinnata (L.) Pierre (Fabaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Butea monosperma (Lam.) Taub. (Fabaceae) Pongamia pinnata (L.) Pierre (Fabaceae) Bombax ceiba L.(Malvaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Butea monosperma (Lam.) Taub. (Fabaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Schleichera oleosa (Lour.) Merr. (Sapindaceae) Wrightia antidysenterica (L.) R.Br. (Apocynaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Schleichera oleosa (Lour.) Merr. (Sapindaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Pongamia pinnata (L.) Pierre (Fabaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Pongamia pinnata (L.) Pierre (Fabaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Wrightia antidysenterica (L.) R.Br. (Apocynaceae) Albizia lebbeck (L.) Benth. (Fabaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Schleichera oleosa (Lour.) Merr. (Sapindaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Wrightia antidysenterica (L.) R.Br. (Apocynaceae) Pongamia pinnata (L.) Pierre (Fabaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Pongamia pinnata (L.) Pierre (Fabaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Bombax ceiba L.(Malvaceae) Butea monosperma (Lam.) Taub. (Fabaceae) Mangifera indica L. (Anacardiaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) INT J CONSERV SCI 5, 1, JAN-MAR 2014: 85-94 ASSESSMENT OF LICHENS IN SACRED GROVES OF WEST MIDNAPORE DISTRICT, INDIA 77. Sr. No. Lecanora cinereofusca H.Magn. Lichen Species 78. 79. 80. 81. 82. 83. 84. 85. 86. 87. 88. 89. 90. 91. Lecanoraceae Family Lecanora iseana Räsänen Lecanoraceae Lecidea granifera (Nyl.) Zahlbr. Lecideaceae Lecidea lapicida (Ach.) Ach. Lecideaceae Lecidea plana (J. Lahm) Nyl. Lecideaceae Lecidella enteroleucella (Nyl.) Hertel Lecanoraceae Leiorreuma exaltatum (Mont. & v.d. Bosch) Staiger Graphidaceae Leptogium austroamericanum (Malme) C.W.Dodge Collemataceae Letrouitia domingensis (Pers.) Hafellner & Bellem. Letrouitiaceae Letrouitia leprolyta (Nyl.) Hafellner Letrouitiaceae Letrouitia transgressa (Malme) Hafellner & Bellem. Letrouitiaceae Miriquidica deusta (Stenh.) Hertel & Rambold Lecanoraceae Mycomicrothelia conothele (Nyl.) Hawksw. Arthopyreniaceae Myelochroa xantholepis (Mont. & Bosch) Elix & Hale Parmeliaceae Myriotrema norstictideum (Patw. & Nagarkar) Thelotremataceae D.D.Awasthi 92. Opegrapha rufescens Pers. Roccellaceae Graphidaceae 93. Pallidogramme chrysenteron (Mont.) Staiger, Kalb & Lücking 94. Parmotrema andinum (Müll.Arg.) Hale Parmeliaceae 95. Parmotrema ravum (Krog & Swinscow) Sérus Parmeliaceae 96. Parmotrema tinctorum (Despr. ex Nyl.) Hale Parmeliaceae 97. Pertusaria kodaikanalensis M. Choisy Pertusariaceae Pertusaria melastomella Nyl. Pertusariaceae 98. 99. Pertusaria multipuncta (Turner) Nyl. Pertusariaceae 100. Pertusaria quassiae (Fée) Nyl. Pertusariaceae 101. Phaeographis brasiliensis (A. Massal.) Kalb & MatthesGraphidaceae Leicht 102. Platythecium grammitis (Fée) Staiger Graphidaceae 103. Polymeridium proponens (Nyl.) R.C. Harris Trypetheliaceae 104. Pseudopyrenula subnudata Müll. Arg. Trypetheliaceae 105. Pseudopyrenula subvelata (Nyl.) Müll. Arg. Trypetheliaceae 106. Pyrenula acutalis R.C. Harris Pyrenulaceae 107. Pyrenula anomala (Ach.) Vain. Pyrenulaceae 108. Pyrenula citriformis R.C. Harris Pyrenulaceae 109. Pyrenula introducta (Stirt.) Zahlbr. Pyrenulaceae 110. Pyrenula leucotrypa (Nyl.) Upreti Pyrenulaceae 111. Pyrenula mamillana (Ach.) Trevis. Pyrenulaceae 112. Pyrenula nitens (Fée) Fée Pyrenulaceae 113. Pyrenula sublaevigata (Patw. & Makhija) Upreti Pyrenulaceae 114. Pyrenula subnitida Müll. Arg. Pyrenulaceae 115. Pyrenula thelomorpha Tuck. Pyrenulaceae 116. Pyxine coccifera (Fée) Nyl. Physciaceae 117. Ramboldia russula (Ach.) Kalb, Lumbsch & Elix Lecanoraceae 118. Reimnitzia sentensis (Tuck.) Kalb. Thelotremataceae 119. Rinodina oxydata (A. Massal.) A. Massal. Physciaceae 120. Sarcographa tricosa (Ach.) Müll. Arg. Graphidaceae 121. Staurothele drummondii (Tuck.) Tuck. Verrucariaceae 122. Strigula complanata (Fée) Mont. Strigulaceae Trypethelium eluteriae Spreng. Trypetheliaceae 123. 124. Trypethelium endosulphureum Makhija & Patw. Trypetheliaceae 125. Trypethelium platystomum Mont. Trypetheliaceae 126. Trypethelium pupula (Ach.) R.C. Harris Trypetheliaceae 127. Trypethelium tropicum (Ach.) Müll. Arg. Trypetheliaceae 128. Tylophoron protrudens Nyl. Arthoniaceae 129. Verrucaria rupestris Schrader Verrucariaceae Abbreviations: C-Corticolus, Cr-Crustose, F-Follicolus, Fo-Foliose, S-Saxicolous Cr. C Habit Habit Shorea robusta Gaertn. (Dipterocarpaceae) Substratum/Host plant Wrightia antidysenterica (L.) R.Br. (Apocynaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Cr. Cr. Cr. Cr. Cr. Cr. Fo. Cr. Cr. Cr. Cr. Cr. Fo. Cr. C C S S S C C C C C S C C C Cr. Cr. C C Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Fo. Fo. Fo. Cr. Cr. Cr. Cr. Cr. C C C S C C C C Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Fo. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. Cr. C C C C C C C C C C C C C C C C C S C S F C C C C C C S Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Pongamia pinnata (L.) Pierre (Fabaceae) Wrightia antidysenterica (L.) R.Br. (Apocynaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Schleichera oleosa (Lour.) Merr. (Sapindaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Pongamia pinnata (L.) Pierre (Fabaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Pongamia pinnata (L.) Pierre (Fabaceae) Wrightia antidysenterica (L.) R.Br. (Apocynaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Albizia lebbeck (L.) Benth. (Fabaceae) Mangifera indica L. (Anacardiaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Sapindus trifoliatus L. (Sapindaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Shorea robusta Gaertn. (Dipterocarpaceae) Table 2. Lichen Species hosted by tree species. Sr. No. 1. 2. 3. 4. 5. 7. 8. 1 Family Anacardiaceae Apocynaceae Dipterocarpaceae Ebenaceae Fabaceae Malvaceae Sapindaceae Total (7) http://www.ijcs.uaic.ro Scientific Name Mangifera indica L. Wrightia antidysenterica (L.) R.Br. Shorea robusta Gaertn. Diospyros melanoxylon Roxb. Albizia lebbeck (L.) Benth. Butea monosperma (Lam.) Taub. Pongamia pinnata (L.) Pierre Bombax ceiba L. Sapindus trifoliatus L. Schleichera oleosa (Lour.) Merr. 10 No. of Species hosted 3 7 74 3 3 3 11 2 2 8 116 89 U.K. SEN Fig. 2. Lichen species hosted by the plant. The study revealed the occurrence of 22 families of lichens represented by 52 genera and 129 species. Graphidaceae (38 species) was the most dominant family, followed by Trypetheliaceae (16); Arthoniaceae (14); Pyrenulaceae (11); Physciaceae and Ramalinaceae (6 each); Lecanoraceae, Parmeliaceae, and Teloschistaceae (5 each); Pertusariaceae (4); Lecideaceae, Letrouitiaceae, and Thelotremataceae (3 each); Verrucariaceae (2); Arthopyreniaceae, Chrysothricaceae, Collemataceae, Haematommataceae, Monoblastiaceae, Pilocarpaceae, Roccellaceae, and Strigulaceae (1 each) (Table 3, Fig. 3). Among the various growth forms crustose was the dominant (118 species) than foliose (11 species). On the basis of substratum, the studied lichens of the sacred groves was found to prefer corticolous (116 species on bark) habitat, followed by saxicolous (11 on rock), and follicolous (2 on leaf) habitat. The rich lichen flora on a particular tree is dependent on a wide range of interrelated factors. The microclimate exhibited by various parts of encountered tree species including the mature substratum, are two important factors in determining the lichen growth on a tree. The age, smoothness, roughness, and spongy nature of bark, along with pH, nutrient status, buffer capacity and water holding capacity of soil are other important factors affecting the growth of lichens on the trees. The reason for rich lichen flora harboured by Shorea robusta could be due to the variation of the tree bark at different parts of the tree [23]. Fig. 3. Total number of lichen species with family. 90 INT J CONSERV SCI 5, 1, JAN-MAR 2014: 85-94 ASSESSMENT OF LICHENS IN SACRED GROVES OF WEST MIDNAPORE DISTRICT, INDIA Table 3. Enumeration of Family, Genus and Species of Lichens. Sr. No. Family Genus 1. Arthoniaceae Reichenb. ex Reichenb. 2. 3. 4. 5. Arthopyreniaceae W. Watson Chrysothricaceae Zahlbr. Collemataceae Zenker Graphidaceae Dumort. 6. 7. Haematommataceae Hafellner Lecanoraceae Körb. 8. 9. 10. 11. Lecideaceae Chevall. Letrouitiaceae Bellem. & Hafellner Monoblastiaceae W. Watson Parmeliaceae Zenker 12. 13. Pertusariaceae Körb. ex Körb. Physciaceae Zahlbr. 14. 15. Pilocarpaceae Zahlbr. Pyrenulaceae Rabenh. 16. Ramalinaceae C. Agardh 17. 18. 19. 20. Roccellaceae Chevall. Strigulaceae Zahlbr. Teloschistaceae Zahlbr. Thelotremataceae (Nyl.) Stizenb. 21. Trypetheliaceae Zenker 22. Verrucariaceae Zenker Total 22 Arthonia Arthothelium Cryptothecia Herpothallon Tylophoron Mycomicrothelia Chrysothrix Leptogium Chapsa Diorygma Dyplolabia Glyphis Graphina Graphis Leiorreuma Pallidogramme Phaeographis Platythecium Sarcographa Haematomma Lecanora Lecidella Miriquidica Ramboldia Lecidea Letrouitia Anisomeridium Bulbothrix Myelochroa Parmotrema Pertusaria Heterodermia Pyxine Rinodina Byssoloma Anthracothecium Pyrenula Bacidia Bacidiospora Opegrapha Strigula Caloplaca Diploschistes Myriotrema Reimnitzia Bathelium Laurera Polymeridium Pseudopyrenula Trypethelium Staurothele Verrucaria 52 Species Genus-wise 3 4 5 1 1 1 1 1 1 5 1 3 1 22 1 1 1 1 1 1 2 1 1 1 3 3 1 1 1 3 4 4 1 1 1 1 10 5 1 1 1 5 1 1 1 3 5 1 2 5 1 1 129 Total 14 1 1 1 38 1 5 3 3 1 5 4 6 1 11 6 1 1 5 3 16 2 129 Threats and Conservation Lichens are very sensitive organisms and their response to the environmental changes may include changes in their diversity, abundance, morphology, physiology, accumulation of pollutants, etc. [24]. The main threats that apply to biodiversity in general are also true for lichens, e.g. habitat fragmentation, habit degradation and loss, overexploitation, air pollution and the change of climate [25]. The rapid urbanization, agriculture, tourism and small scale http://www.ijcs.uaic.ro 91 U.K. SEN industrialization in remote areas lead to the fast extinction of the sacred groves as well as the lichens. Lichens are slow growing organisms, and thus, if once removed from their habitat, they will take several years to re-establish or ultimately disappears [26]. Conservation of their habitats is very important to prevent the extinction of lichens. It can be done by developing strategies for in-situ and ex-situ conservation. The overexploitation of natural resources should be reduced and conservation areas must be prioritized. It is important to create awareness among people about the importance and conservation of lichens. Conclusions Sacred groves are religiously protected areas provide a comprehensive and rich ecological niche as repositories of genetic diversity. Moreover, it is felt that there are tremendous direct and indirect pressures at work on the groves threatening their existence. These threats can be related to increasing prospects of tourism, higher demands for NTFPs, fuel wood collection, decrease in the religious faiths along with fall in the commitment of the present generation towards such natural sacred areas, and lastly, the heavy burden of developmental interventions are prepared to undertake. Microclimatic conditions of sacred groves play an important role in the ecology of lichen. Availability of water, sunlight, moderate climate, unpolluted atmosphere, wind condition and type of substratum are the major factors responsible for the optimal growth of lichens. From the present study, it has become evident that sacred grove abodes a good number of lichen in its rich habitats which are getting depleted due to various factors. Little attention of administrators towards the deteriorating condition of holy places and the groves add another dimension. Such gene pool reserves can definitely serve as icons of in situ conservation under the prevailing times through a good mixture of scientific measures and awareness building efforts with the active involvement of the local community and the government. Acknowledgments The author of the present manuscript would like to express his gratitude to his supervisor for providing a timely help and logistic facilities to carry out this work in the Department of Botany and Forestry, Vidyasagar University, Midnapore, West Bengal. The author is also thankful to the local communities whose support was impressive during the collection period of lichens. References [1] V. Ahmadjian, The Lichen Symbiosis, John Wiley & Sons, Inc., New York, 1993, pp. 250. [2] D.D. Awasthi, A Handbook of Lichens, Bishen Singh Mahendra Pal Singh, Dehra Dun, India, 2000. [3] B. Bergman, A.N. Rai, C. Johansson, E. Söderbäck, Cyanobacterial-plant symbioses. Symbiosis, 14, 1992, pp. 61–81. 92 INT J CONSERV SCI 5, 1, JAN-MAR 2014: 85-94 ASSESSMENT OF LICHENS IN SACRED GROVES OF WEST MIDNAPORE DISTRICT, INDIA [4] C.J. Alexopoulos, C.W. Mims, M. Blackwell, Introductory Mycology (4th edition), John Wiley and Sons, New York, 1996. [5] R.A. Armstrong, CRC Handbook of Lichenology, Substrate Colonization, Growth and Competition, Vol. 2, Boca Raton: CRC Press, 1988, pp. 3-16. [6] D.D. Awasthi, A Compendium of the Macrolichens from India, Nepal and Sri Lanka, Bishen Singh Mahendra Pal Singh, Dehra-Dun, 2007, pp. 580. [7] R.K. Bhakat, U.K. Sen, P.K. Pandit, Role of a sacred grove in conservation of plants, Indian Forester, 134(7), 2008, pp. 866-874. [8] S. Nayaka, D.K. Upreti, Scope for cryptogamic studies in sacred groves – A case study of lichens from Maharashtra, Journal of Economic and Taxonomic Botany, 28(1), 2004, pp. 209-212. [9] H. Singh, T. Husain, P. Agnihotri, P.C. Pande, M. Iqbal, Biodiversity conservation through traditional beliefs system: a case study from Kumaon Himalayas, India, International Journal of Conservation Science, 3(1), 2012, pp. 33-40. [10] * * *, The State of Forest Report, Forest Survey of India, Ministry of Environment & Forests, New Delhi, India, 1997. [11] U.K. Sen, R.K. Bhakat, Sacred grove and plant conservation: An insight from taxonomy and ecology, Mutidisciplinary Approaches in Angiosperm Systamatics (Editors: G.G. Maiti, S.K. Mukherjee,), Department of Botany, University of Kalyani, West Bengal, India, 2012, pp. 610-621. [12] D.K. Upreti, P.K. Divakar, S. Nayaka, Commercial and ethnic use of lichens in India, Economic Botany, 59(3), 2005, pp. 269 – 273. [13] B. Kumar, Lichen resource use pattern and its socioeconomic status in temperate region of Garhwal Himalaya, India, Nature and Science, 7(2), 2009, pp. 101-106. [14] S. Nayaka, A.M. Reddy, P. Ponmurugan, A. Devi, G. Ayyappadasan, D.K. Upreti, Eastern Ghats’ biodiversity reserves with unexplored lichen wealth, Current Science, 104(7), 2013, pp. 821-825. [15] Anon, District Human Development Report, Paschim Medinipur, Development & Planning Department Government of West Bengal, 2011. [16] J.A. Elix, K.D. Ernst-Russel, Catalogue of Standardized Thin Layer Chromatographic Data and Biosynthetic Relationships for Lichen Substances (2nd edition), Australian National University, Canberra, 1993. [17] A. Orange, P.W. James, F.J. White, Microchemical Methods for the Identification of Lichens, British Lichen Society, UK, 2001, pp. 101. [18] S. Huneck, I. Yoshimura, Identification of Lichen Substances, Springer, Tokyo, 1996, pp. 1-493. [19] K.P. Singh, G.P. Sinha, Indian Lichens: An Annotated Checklist, Governament of India, Botanical Survey of India, Ministry of Environment and Forest, India, 2010, pp. 571. [20] K.S. Vinayaka, Y.L. Krishnamurthy, S. Nayaka, Macrolichen flora of Bhadra Wildlife Sanctuary, Karnataka, India, Annals of Forestry, 11, 2010, pp. 26–32. [21] J. Rout, P. Das, D.K. Upreti, Epiphytic lichen diversity in a Reserve Forest in southern Assam, North East India, Tropical Ecology, 51(2), 2010, pp. 281-288. http://www.ijcs.uaic.ro 93 U.K. SEN [22] K.P. Singh, K. Kumar, A note of the lichens from Simlipal Biosphere Reserve, Odisha, India, Indian Journal of Forestry, 35(3), 2012, pp. 383-390. [23] Satya, D.K. Upreti, S. Nayaka, Shorea robusta – an excellent host tree for lichen growth in India, Current Science, 89(4), 2005, pp. 594-595. [24] T. de Wit, Epiphytic lichens and air pollution in the Netherlands, Bibliotheca Lichenologica, 5, 1976, pp. 1-227. [25] D.K. Upreti, Loss of diversity in Indian lichen flora, Environmental Conservation, 22(4), 2005, pp. 362-363. [26] R.G. Woods, B.J. Coppins, A Conservation Evaluation of British Lichens and Lichenicolous Fungi. Species Status 13, Joint Nature Conservation Committee, Peterborough, 2012. Received: June, 24, 2013 Accepted: November, 26, 2013 94 INT J CONSERV SCI 5, 1, JAN-MAR 2014: 85-94