Academia.eduAcademia.edu
New Oleanane-type glycosides and secoiridoid glucoside from Aptandra zenkeri Michel Boni Bitchi, Abdulmagid Alabdul Magid, Faustin Aka Kabran, Philomène Akoua yao-Kouassi, Dominique Harakat, Laurence Voutquenne-Nazabadioko, Félix Zanahi Tonzibo To cite this version: Michel Boni Bitchi, Abdulmagid Alabdul Magid, Faustin Aka Kabran, Philomène Akoua yaoKouassi, Dominique Harakat, et al.. New Oleanane-type glycosides and secoiridoid glucoside from Aptandra zenkeri. Natural Product Research, Taylor & Francis, 2019, 34 (15), pp.2157-2166. ฀10.1080/14786419.2019.1577841฀. ฀hal-02430869฀ HAL Id: hal-02430869 https://hal.univ-reims.fr/hal-02430869 Submitted on 8 Oct 2021 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Natural Product Research r Fo New Oleanane-type glycosides and secoiridoid glucosides from Aptandra zenkeri Pe Journal: Natural Product Research er Manuscript ID Draft Manuscript Type: Research Article Re Date Submitted by the n/a Author: w vie Complete List of Authors: Bictchi, Boni; Universite Felix Houphouet-Boigny, UFR-SSMT Magid, Abdulmagid Alabdul; ICMR UMR CNRS 7312, Pharmacie Kabran, Faustin; Universite Felix Houphouet-Boigny, UFR-SSMT Kouassi, Phylomène; Universite Felix Houphouet-Boigny, UFR-SSMT HARAKAT, Dominique; University of Reims, Pharmacognosy Voutquenne-Nazabadioko, Laurence; ICMR-UMR CNRS 7312, Groupe Isolement et Structure, Campus Sciences, Bât. 18, BP 1039, 51687 Reims, France Tonzibo, Félix; Université de Cocody, On Keywords: Aptandra zenkeri Engl., secoiridoids glycosides, Aptandraceae, Oleananetype glycosides ly URL: http://mc.manuscriptcentral.com/gnpl Page 1 of 73 r Fo er Pe w vie Re ly On 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Natural Product Research URL: http://mc.manuscriptcentral.com/gnpl Natural Product Research New oleanane-type glycosides and secoiridoids glucosides from Aptandra zenkeri Michel Boni Bitchia,b, Abdulmagid Alabdul Magidb, Faustin Aka Kabrana, Philomène Akoua Yao-Kouassia, Dominique Harakatc, Laurence Voutquenne-Nazabadiokob and Félix Zanahi Tonziboa,* aLaboratoire de Chimie Organique Biologique, UFR Sciences des Structures de la Matière et Technologie, Université Félix Houphouët- Boigny, 22 BP 582 Abidjan 22, Cote d’Ivoire bICMR-UMR CNRS 7312, Groupe Isolement et Structure, Campus Sciences, Bât. 18, BP 1039, 51687 Reims, France cService Fo Commun d’Analyses, Institut de Chimie Moléculaire de Reims (ICMR), CNRS UMR 7312, Bat. 18 B.P. 1039, 51687 Reims Cedex 2, France iew ev rR ee rP On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 2 of 73 *Corresponding author. Tel: +225 05 07 19 67 E-mail address: tonzibz@yahoo.fr (Félix Zanahi Tonzibo) 1 URL: http://mc.manuscriptcentral.com/gnpl Page 3 of 73 Abstract Four new saponins, camelliagenin A and B derivatives, and three new secoiridoid glucosides were isolated from the stem bark of Aptandra zenkeri Engl. (Aptandraceae). Their structures were determined based on a combination of 1D- and 2D-NMR experiments techniques and HR-ESI-MS analysis. This is the first report on saponins in genus Aptandra. Keywords: Aptandra zenkeri Engl.; Aptandraceae; triterpenoid saponins; secoiridoid glucosides. iew ev rR ee rP Fo On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Natural Product Research 2 URL: http://mc.manuscriptcentral.com/gnpl Natural Product Research 1. Introduction The genus Aptandra belonging to the Aptandraceae family, is formed by four species, found in south America regions except Aptandra zenkeri Engl. present in Africa region (Nickrent et al. 2010). Aptandra zenkeri Engl. is a shrub, up to 15 m tall with reddish bark. The fruit are ellipsoid ovoid drupe, subtended by much enlarged, up to 10 cm wide, pink calix. As a folk medicine, this species has usually been used to treat hepatitis and coughing (Aubreville 1959; Burkill 1997; Louis et al. 1948; Neuwinger 2000; Villiers, 1973; List et Horhammer 1972). However, there has been no chemical or biological study reported on this plant. Only phytosterols and tocopherols were mentioned in Aptandra sprucea (Wiat et al. 2001). As a Fo part of a continuing study for the discovery of medicinal Ivory Cost species, seven compounds, including four saponins, camelliagenin A and B derivatives, and three secoiridoid rP glucosides derivatives of kingiside, were isolated from the stem bark of A. zenkeri. This paper deals with their isolation and structure elucidation of these compounds. rR 2. Results and Discussion ee The aqueous methanol extract obtained from the stem bark of A. zenkeri was concentrated ev under reduced pressure and then dissolved in water and extracted successively with CHCl3 and n-BuOH. The n-BuOH was fractionated by vacuum-liquid chromatography (VLC) and iew purified by medium-pressure liquid chromatography on RP-18 and semi-preparative HPLC to yield four undescribed triterpenoid glycosides (1-4) (Figure 1) and three secoiridoid glucosides (5-7) (Figure 2). Their structures were established by a detailed analysis of their On spectral data mainly by 500 MHz 2D NMR experiments and mass spectrometry. TLC analysis and NMR analysis of COSY, TOCSY, NOESY and HSQC spectra, allowed the full identification of the sugar units as β-D-glucopyranosiduronic acid (glcA), β-D-xylopyranose (xyl), β-D-glucopyranose (glc), and β-D-galactopyranose (gal). ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 4 of 73 Compound 1 was separated as a white, amorphous powder. The molecular formula C58H90O26 was deduced from the HR-ESI-MS [M + Na]+ ion at m/z 1225.5627 (calcd 1255.5618) (Figure S1). The 1H NMR spectrum of 1 (Figure S2) indicated the presence of six singlet methyl groups at δ 0.93, 0.98, 1.05, 1.07, 1.19, 1.52 (each 3H, s, H3-29, H3-26, H325, H3-30, H3-24, H3-27), a methylene and three methines bearing an oxygen function at δH 3.08, 3.28 (each 1H, d, J=11.0 Hz, H-28), 3.91 (1H, dd, J=11.3, 4.5 Hz, H-3), 4.13 (1H, brs, H-16), 5.45 (1H, dd, J=12.1, 5.6 Hz, H-22), an olefinic proton at δ 5.37 (1H, t, J=3.6 Hz, H3 URL: http://mc.manuscriptcentral.com/gnpl Page 5 of 73 12), and an aldehyde signal at δH 9.48 (1H, s, H-23), which were characteristic of a polyhydroxyolean-12-ene triterpene derivative. In the HMBC spectrum (Figure S6), the cross-peaks observed between H-24 and δ 84.7 (C-3) and δ 209.3 (C-23) placed a secondary OH at C-3 and an aldehyde group at C-4. The location of the aldehyde group at C-23 was deduced from the chemical shift of C-24 at δC 9.5 characteristic of an axial position, and by comparison of the 13C NMR spectrum (Figure S3) with that of camelliagenin B (Miyose et al. 2012). In the HMBC spectrum, correlations between H-28 and δC 69.5 (C-16) and 72.4 (C-22) allowed the location of the two secondary OH at C-16 and C-22 and of a primary OH at C-28. Full assignments of the proton and carbon resonances of the aglycone were achieved by Fo analysis of the COSY, HSQC and HMBC spectra (Table S1). The relative configuration of the aglycone of 1 was established from its ROESY spectrum. In the ROESY spectrum rP (Figure S7), correlations between H-3 and δ 1.38 (H-5) confirmed the α-axial orientation of the two protons. Similarly, the cross-peaks between the protons of the methyl angular groups ee H-25 and H-24 on one hand and H-26 on the other, confirmed the β-axial orientation of these three methyl groups. The cross peaks between H-22 and H-30, H-22 and H-18 (δ 2.56), as rR well as those between H-16 and H-28, suggested that H-22 and H-16 are both β-oriented, which means that 22-OH and 16-OH group are both α-orientations. The H-3 correlated ev with H-23 at δ 9.91, indicating that the glycosidic chain group at C-3 is β-configured. The triterpene skeleton of 1 was identified as camelliagenin B (3β,16α,22α,28-tetrahydroxy,23- iew aldehyde-olean-12-ene) (Table S1) (Myose et al. 2012). In addition, the signals of angeloyl (ang) group at δH 1.92 (3H, s, ang-5), 1.99 (3H, d, J=7.2 Hz, ang-4), and 6.09 (1H, q, J=7.2 Hz, ang-3) were observed. The downfield chemical shift of H-22 (δ 5.45) of 1 and its On correlation with C-1 (δ 168.3) of angeloyl moiety in the HMBC experiment, established that angeloyl esterified C-22 of the aglycone. The aglycone of 1 was thus 22-O-angeloyl- ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Natural Product Research camelliagenin B. Furthermore, the presence of four sugar moieties in 1 was evidenced by the 1H-NMR spectrum which displayed four anomeric protons at δ 4.47, 4.64, 4.95, and 5.00, giving correlations with four anomeric carbons at δ 103.3, 104.7, 101.7, and 100.6, respectively in the HSQC spectrum (Figure S5). A glucuronic acid was identified starting from the anomeric proton at δH 4.47 (d, J=7.3 Hz), and characterized by a five spin system possessing large coupling constants (J=7.3 Hz) and by a carbonyl (C-6) resonating at δC 172.1 coupled with H-5 (δ 3.82, d, J=9.6 Hz) of the same sugar in the HMBC. The 13C-NMR signals of the glucuronic acid of 1 were fully determined in the HSQC experiments and revealed it to be substituted at positions C-2 (δ 76.7) and C-3 (δ 82.4) as summarized in Table S2. A β-D-galactopyranose (gal) whose anomeric proton resonated at δ 4.95 was characterized 4 URL: http://mc.manuscriptcentral.com/gnpl Natural Product Research by the large coupling constants JH-2,H-1 and JH-2,H-3 (≥ 8.1 Hz) and the small coupling constant between H-3 and H-4 (JH-3,H-4 = 3.3 Hz) as summarized in Table S2 (Agrawal 1992). The third sugar, with an anomeric proton resonating at δ 5.00 (d, J=6.9 Hz), was a pentose identified as β-D-xylopyranose (xyl) and was found to be substituted in the C-2 position (δ 82.6) (Table S2). The last sugar unit was identified as terminal β-D-glucopyranose (glc), starting from its anomeric proton signal at δ 4.64 (d, J=7.1 Hz). The rOe interactions observed in the ROESY spectrum between H-1, H-3 and H-5 of each sugar unit confirmed the α-axial orientation of these protons and the β-anomeric configuration. Complete assignments of the proton and carbon resonances of each sugar (Table S2) were achieved by analysis of COSY (Figure S4), Fo TOCSY (Figure S8), and HSQC (Figure S5) experiments. The position of the sugar components was determined on the basis of the HMBC experiment (Figure S6), which rP showed long-range correlations between the following proton and carbon pairs: glcA-H-1 and δ 84.7 (C-3 of the aglycone), indicating that the glycosidic chain was located at C-3 of ee the aglycone, gal-H-1 and δ 76.7 (glcA-C-2), xyl-H-1 and δ 82.4 (glcA-C-3), and glc-H-1 and δ 82.6 (xyl-C-2). Thus, the structure of 1 was elucidated to be 3-O-β-D-glucopyranosyl- rR (12)-β-D-xylopyranosyl-(13)-[β-D-galactopyranosyl)-(12)]-β-D-glucuronopyranosyl22-O-angeloyl-camelliagenin B. ev Compound 2 was separated as a white, amorphous powder. The HR-ESI-MS peak at m/z 1195.5522 [M + Na]+ (Figure S9) indicated the molecular formula of 2 to be C57H88O25 iew (calcd 1195.5522), suggesting one methylene bearing an oxygen (-CH2OH) less than that of 1. The 1H- and 13C-NMR data of 2 were superimposable on those of 1 except for the sugar moiety (Tables S1 and S2). These data suggested that 2 is a 22-angeloyl-camelliagenin B On derivative as 1, which was further confirmed by COSY, HSQC, HMBC and ROESY experiments on 2 (Figures S12, S13, S14 and S15 respectively). The 1D- and 2D-NMR data ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 6 of 73 of 2 confirmed the presence, as in 1, of one β-D-glucopyranosiduronic acid (glcA), one β-Dgalactopyranose (gal), and one β-D-xylopyranose (xyl) (Table S2). Further analysis indicated that the glucose sugar unit at C-2 of the xylose moiety in 1 was replaced by a β-Dxylopyranose (xyl') in 2 (Table S2). In addition, the xyl' was assigned to C-2 of xyl from the HMBC correlation between the xyl'-H-1 (δ 4.53, d, J=7.6 Hz) and xyl-C-2 (δ 83.7). In a similar fashion, the linkage of gal at C-2 of glcA, of xyl at C-3 of glcA, and of glcA at C3 of the aglycone were indicated by the correlations between xyl-H-1 (δ 4.92, d, J=7.4 Hz) and glcA-C-2 (δ 76.4), gal-H-1 (δ 4.99, d, J=7.3 Hz) and glcA-C-3 (δ 82.5), and glcA-H-1 (δ 4.45, d, J=7.4 Hz) and C-3 of the aglycone (δ 84.9), respectively. Consequently, the structure 5 URL: http://mc.manuscriptcentral.com/gnpl Page 7 of 73 of 2 was concluded to be 3-O-β-D-xylopyranosyl-(12)-β-D-xylopyranosyl-(13)-[β-Dgalactopyranosyl)-(12)]-β-D-glucuronopyranosyl-22-O-angeloyl-camelliagenin B Compound 3, separated as a white, amorphous powder, was assigned a molecular formula of C58H92O25 according to the HR-ESI-MS peack at m/z 1211.5834 [M+Na]+ (calc 1211.5825) (Figure S16). The 2D NMR analysis showed that compounds 1 and 3 differed only in the aglycone part at C-23 position (Table S1). The aldehyde function signal (δH 9.48; δC 209.3) in 1 was replaced by an angular methyl group at δH 1.12/δC 27.0 (CH3-23) in 3. This was confirmed by a HMBC correlation between δH 0.91 (s) (H3-24)/δC 27.0 (C-23), and the reverse one, between δH 1.12 (s)(H3-23)/δC 15.6 (C-24) (Figure S21). The triterpene skeleton Fo of 3 was thus determined as the known camelliagenin A (3β,16α,22α,28-tetrahydroxy-olean12-ene) (Table S1) (Myose et al. 2012). The downfield chemical shift of H-22 (δ 5.46) of 3 rP and its correlation with C-1 (δ 168.3) of angeloyl moiety in the HMBC experiment, established that angeloyl esterified the hydroxyl at C-22 of the aglycone. The sequence and ee the attachment of the tetrasaccharide chain in 3 were confirmed as in 1 by an HMBC experiment (Figure S21). Thus, the structure of 3 was elucidated as 3-O-β-D-glucopyranosyl- rR (12)-β-D-xylopyranosyl-(13)-[β-D-galactopyranosyl)-(12)]-β-D-glucuronopyranosyl22-O-angeloyl-camelliagenin A. ev Compound 4 exhibited in the HR-ESI-MS (positive-ion mode) a pseudo-molecular ion peak at m/z 1181.5732 [M+Na]+ (calcd 1181.5720) (Figure S24) consistent with a molecular iew formula of C57H90O24Na. The NMR signals of compound 4 sugar portion were superimposable to those of 2 (Table S2). The structural analysis also revealed that the NMR signals of the aglycone part of 4 were superimposable to those of 3 (Table S1). Full On assignments of the proton and carbon resonances of the aglycone and the sugar parts were achieved by analysis of the COSY, HSQC and HMBC spectra (Table S1). The sequence and ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Natural Product Research the attachment of the tetrasaccharide chain in 4 were confirmed as in 2 and 3 by an HMBC experiment (Figure S29). Thus, the structure of 4 was elucidated as 3-O-β-D-xylopyranosyl(12)-β-D-xylopyranosyl-(13)-[β-D-galactopyranosyl)-(12)]-β-D-glucuronopyranosyl22-O-angeloyl-camelliagenin A. Compound 5, obtained as colorless amorphous powder, possessed the molecular formula C19H26O12 as deduced from its HR-ESI-MS at m/z 469.1313 ([M + Na]+ calcd for C19H26O12Na 469.1322) and 487.1418 ([M + H2O + Na]+ calcd for C19H28O13Na 487.1428) (Figure S32). The 1H NMR spectrum (Figure S33) revealed signals attributed to a trisubstituted olefinic proton at δH 7.50 (s, H-3), an acetal proton at δH 5.80 (d, J=6.8, H-1), an 6 URL: http://mc.manuscriptcentral.com/gnpl Natural Product Research oxymethine at δH 5.21 (dq, J=6.6, 4.6 Hz, H-8), an oxymethyl signal at H 3.70 (s, H3-12), two methines at H 3.35 (H-5) and 2.24 (H-9), a methylene at H 2.55 and 2.65 (H2-6), and a secondary methyl at δH 1.00 (H3-10), together with a β-anomeric proton at δH 4.73 (d, J=7.9 Hz, H-1′) and an acetyl group δH 2.03 (H3-2''). The 13C NMR spectrum (Figure S34) exhibited signals for a carboxyl carbon at δC 174.4 (C-7), an ester carbon at δC 167.3 (C-11), a methoxy carbon at δC 50.3 (C-12), a trisubstituted double bond at C 152.7 (C-3), 109.4 (C-4), and an acetal carbon at δC 95.5 (C-1), along with signals for a glycoside moiety and an acetyl group (C 170.9, C-1″; 20.0, C-2″). These data suggested 5 to be an esterified secoiridoid-type monoterpene glycoside (Tan and Kong 1997; Garcia et al. 1990). The COSY and HSQC Fo experiments (Figures S35 and S36 respectively) allowed assignment of the protons and carbons of a -D-glucose unit (glc) starting from the anomeric proton (Table S3). The -D- rP glucose unit possessed two deshielded protons H2-6 (δH 3.68 and 3.92), which have HMBC correlations with the carbonyl carbon at δC 170.9, confirming the acetylated position of ee glucose. In the COSY experiment (Figure S35), correlations were observed between H-9/H-1, rR H-5 and H-8, H-5/H-6, and H-8/H-10. In the HMBC experiment (Figure S37), long-range correlations were observed between the following protons and carbons (H-1 and C-1', C-3, C- ev 5, C-8, C-9, C-10; H-3 and C-4, C-5, C-11; H-5 and C-3, C-6, C-7, C-1; H-8 and C-1, C-5, C7, C-10 ; H-12/C-11). The above evidence indicated 5 as a derivative of kingiside (Damtoft et iew al. 1993). The α position of the methyl group (C-10) at C-8 was deduced from the chemical shift value of C-10 signal which appeared at C 17.9 (17.7 for kingiside against 21.7 for 8epikingiside) (Damtofi et al. 1993; Xu et al. 2008). The relative configuration of the other On stereogenic centers C-1, C-5, and C-9 was established by analyzing coupling constant values, NOESY experiments and comparison with literature data (Damtofi et al. 1993; Garcia et al. 1990; Tan and Kong 1997). Thus, compound 5 was identified as 6'-O-acetyl-kingiside. ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 8 of 73 The positive HR-ESI-MS of compounds 6 and 7 (Figures S38 and S45 respectively) showed the same pseudomolecular ion peak [M + H2O + Na]+ at m/z 527.1733, in accordance with the molecular formula of C22H32O13 (calcd for C22H32O13Na 527.1741). The spectral data of 6 and 7 obtained from NMR experiments (Table S3) were similar to those of 5 except for the acyl groups, suggesting that 6 and 7 were kingiside derivatives. The characteristic NMR signals of a tigloyl group at δH 6.91 (dq, J = 6.6, 1.2 Hz, H-3''), δC 13.0 (C-4'') and 10.8 (C-5'') were observed and further assigned by a combination of HSQC (Figures S42 and S49) and HMBC (Figures S43 and S50) experiments (Alabdul Magid et al. 2012). The downfield chemical shift of H2-6' of glc (δH 3.67 and 3.92) of 6 and their correlations with C-1'' (δC 167.4) of tigloyl in 7 URL: http://mc.manuscriptcentral.com/gnpl Page 9 of 73 the HMBC experiment, established that tigloyl esterified C-6' of the -D-glucose unit. Thus, compound 6 was concluded to be 6'-O-tiglioyl-kingiside. Information from 1D and 2D NMR spectra of 7 indicated the presence of signals due to an angeloyl group at δH 6.14 (1H, dq, J = 7.2, 1.4 Hz, H-3′′), 2.01 (3H, dd, J = 7.2, 1.4 Hz, H-4′′), 1.92 (3H, d, J = 1.4 Hz, H-5′′) and at δC 167.3 (C-1′), 127.9 (C-2′′), 138.3 (C-3′′), 14.7 (C-4′′) and 19.5 (C-5′′). These data were in agreement with the corresponding ones reported for angeloyl moiety (Zong et al. 2015). Thus, compound 7 was elucidated as 6'-O-angeloylkingiside. This is the first report of triterpenoid saponins and iridoid glucosides from Aptandra genus and Aptandraceae family. Fo 3. Experimental procedures rP 3.1. General experimental procedures Optical rotations were measured on a Perkin Elmer model 341 polarimeter (589 nm, 20 °C). ee NMR data were performed in CD3OD on Bruker Avance 500. HRESIMS data were gained using a Micromass Q-TOF high-resolution mass spectrometer. Mass spectra were recorded in rR the positive-ion mode in the range m/z 100−2000, with a mass resolution of 20000 and an acceleration voltage of 0.7 kV. CC was carried out on HP-20 resin (Sigma Aldrich). Flash ev chromatography was conducted on a Grace Reveleris system equipped with dual UV and iew ELSD detection using Grace® cartridges (Silica gel or RP-C18). HPLC separations were performed on a Dionex apparatus equipped with an ASI-100 autosampler, an Ultimate 3000 pump, a STH 585 column oven, a diode array detector UVD 340S and a Chromeleon software. A prepacked RP-C18 column (Phenomenex 250 x 15 mm, Luna 5 µ) was used for On semi-preparative HPLC. The eluting mobile phase consisted of H2O with TFA (0.0025%) and CH3CN with a flow rate of 5 mL/min and the chromatogram was monitored at 205 and 210 ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Natural Product Research nm. TLC were carried out using silica gel 60 F254 pre-coated aluminium plates (0.2 mm, Merck). Spots were visualized through developing agent (CHCl3:MeOH:H2O, 14:6:1) and chromogenic agent (50% aq. H2SO4) subsequent heating. 3.2. Plant material The stem bark of Aptandra zenkeri Eng. were collected at Adiopodoumé, in August 2016. Its authenticated by National center of floristic of FHB University of Cocody (Ivory Coast). A voucher specimen has been deposited in herbarium of this center (Ake assi 6542). 3.3. Extraction and isolation 8 URL: http://mc.manuscriptcentral.com/gnpl Natural Product Research Dried and powdered stem bark (800 g) were macerated for 3h with 15 l of 80% aqueous MeOH and further refluxed for 3 h. After cooling, the solution was filtered and concentrated under reduced pressure to give a crude extract (150 g). The MeOH extract was then suspended in H2O (2 l) and successively partitioned with CHCl3 (3 × 1 l), and n-BuOH (3 × 1 l). The aqueous residues was subjected to a Diaion HP-20 open column and eluted with a 100% H2O and 100% MeOH to provide methanol and aqueous fraction. The n-BuOH extract (33 g) was fractionated by silica gel-vacuum liquid chromatography (VLC) (235 g, 10 cm × 6 cm) using a step-gradient solvent system CHCl3-MeOH-H2O from 10:0:0, 9:1:0, 8:2:0, 7:3:0.5 to 6:4:0 to obtain 6 fractions, each 1.5 l [A-F]. A portion of fraction C (3 g) was Fo purified by a flash chromatography over RP18, eluted by a gradient system of CH3CN-H2O (10% to 50%), in 40 min to afford 40 sub-fractions (C1-C40). Fractions C22 (131 mg) was rP purified by semi-prep. HPLC using a gradient from 10- 45% MeCN during 20 min, to yield compounds 5 (Rt 8.3; 11 mg), 6 (Rt 16.2; 2 mg), and 7 (Rt 17.2; 16 mg). A portion of ee fraction E (1 g) was purified by flash chromatography over RP18, eluted by a gradient system of CH3CN-H2O (20% to 60%), in 40 min to afford 40 sub-fractions (E1-E40). Fractions E25 (58 rR mg) was purified by semi-prep. HPLC using an isocratic elution 45% MeCN during 20 min, to yield compounds 1 (Rt 11.5 ; 13 mg), 2 (Rt 12.4; 11 mg), 3 (Rt 14.8 ; 5 mg), and 4 (Rt 16.0 ; 6 mg). iew ev 3.4. Compound 1 : 3-O-β-D-glucopyranosyl-(12)-β-D-xylopyranosyl-(13)-[β-Dgalactopyranosyl)-(12)]-β-D-glucuronopyranosyl-22-O-angeloyl-camelliagenin B. White, amorphous powder ; [α]20D +8 (c 1, CH3OH); HRESIMS (positive-ion mode) m/z On 1225.5627 [M + Na]+ (C58H90O26Na ; calcd for 1225.5618); 1H NMR (CD3OD, 500 MHz) : 1.05 (1H, td, J = 12.3, 4.5 Hz), 1.74 (1H, dt, J = 12.3, 3.2 Hz) (H-1), 1.81 (1H, m), 1.98 (1H, ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 10 of 73 m) (H-2), 3.91 (1H, dd, J = 11.3, 4.5 Hz, H-3), 1.38 (1H, m, H-5), 0.94 (1H, m), 1.58 (1H, m) (H-6), 1.28 (1H, m), 1.65 (1H, td, J = 13.0, 4.5 Hz) (H-7), 1.83 (1H, m, H-9), 1.97 (2H, m, H11), 5.37 (1H, t, J = 3.6 Hz, H-12), 1.33 (1H, m), 1.74 (1H, brd, J = 14.3 Hz) (H-15), 4.13 (1H, brs, H-16), 2.56 (1H, dd, J = 14.0, 3.5 Hz, H-18), 1.09 (1H, m), 2.49 (1H, t, J = 14.0 Hz, H-19), 1.54 (1H, m), 2.29 (1H, t, J = 11.9 Hz) (H-21), 5.45 (1H, dd, J = 12.1, 5.6 Hz, H-22), 9.48 (1H, s, H-23), 1.19 (3H, s, H-24), 1.05 (3H, s, H-25), 0.98 (3H, s, H-26), 1.52 (3H, s, H27), 3.08 (1H, d, J = 11 Hz), 3.28 (1H, d, J = 11Hz) (H-28), 0.93 (3H, s, H-29), 1.07 (3H, s, H-30), 6.09 (1H, q, J = 7.2 Hz, H-3’’), 1.99 (3H, d, J = 7.2 Hz, H-4’’), 1.92 (3H, s, H-5’’); 13C NMR (CD3OD, 500 MHz) : 37.9 (C-1), 24.3 (C-2), 84.7 (C-3), 54.8 (C-4), 47.8 (C-5), 19.8 (C-6), 31.8 (C-7), 39.9 (C-8), 46.5 (C-9), 35.6 (C-10), 23.2 (C-11), 122.8 (C-12), 142.6 9 URL: http://mc.manuscriptcentral.com/gnpl Page 11 of 73 (C-13), 41.1 (C-14), 33.8 (C-15), 69.5 (C-16), 43.9 (C-17), 40.4 (C-18), 46.6 (C-19), 31.1 (C20), 40.7 (C-21), 72.4 (C-22), 209.3 (C-23), 9.5 (C-24), 15.0 (C-25), 15.9 (C-26), 26.4 (C-27), 63.4 (C-28), 32.2 (C-29), 23.9 (C-30), 168.3 (C-1’’), 128.6 (C-2’’), 136.7 (C-3’’), 14.5 (C4’’), 19.5 (C-5’’); 1H- and 13C NMR data for sugar moieties (see Table S2). 3.5. Compound 2: 3-O-β-D-xylopyranosyl-(12)-β-D-xylopyranosyl-(13)-[β-Dgalactopyranosyl)-(12)]-β-D-glucuronopyranosyl-22-O-angeloyl-camelliagenin B. White, amorphous powder ; [α]20D +6 (c 0.81, CH3OH); HRESIMS (positive-ion mode) m/z 1195.5522 [M + Na]+ (C57H88O25Na; calcd for 1195.5512); 1H NMR (CD3OD, 500 MHz) : Fo 1.06 (1H, m), 1.74 (1H, dt, J = 14.0, 3.5 Hz) (H-1), 1.80 (1H, m), 1.98 (1H, m) (H-2), 3.89 (1H, dd, J = 11.5, 4.5 Hz, H-3), 1.38 (1H, brd, J = 12.3 Hz, H-5), 0.55 (1H, m), 1.58 (1H, m) rP (H-6), 1.28 (1H, dt, J = 13.1, 3.5 Hz), 1.64 (1H, td, J = 13.1, 4.6 Hz) (H-7), 1.81 (1H, m, H9), 1.97 (2H, m, H-11), 5.37 (1H, t, J = 3.6 Hz, H-12), 1.33 (1H, brd, J = 14.0 Hz), 1.73 (1H, ee td, J = 14.0, 3.5 Hz) (H-15), 4.13 (1H, brs, H-16), 2.55 (1H, dd, J = 14.3, 3.5 Hz, H-18), 1.08 (1H, m), 2.49 (1H, t, J = 14.3 Hz, H-19), 1.55 (1H, m), 2.29 (1H, t, J = 11.9 Hz) (H-21), 5.46 rR (1H, dd, J = 12.1, 5.5 Hz, H-22), 9.48 (1H, s, H-23), 1.19 (3H, s, H-24), 1.05 (3H, s, H-25), 0.98 (3H, s, H-26), 1.52 (3H, s, H-27), 3.08 (1H, d, J = 11.0 Hz), 3.28 (1H, d, J = 11.0 Hz) ev (H-28), 0.93 (3H, s, H-29), 1.07 (3H, s, H-30), 6.08 (1H, q, J = 7.3 Hz, H-3’’), 1.99 (3H, d, J = 7.3 Hz, H-4’’), 1.92 (3H, s, H-5’’); 13C NMR (CD3OD, 500 MHz) : 37.9 (C-1), 24.3 (C-2), iew 84.9 (C-3), 54.9 (C-4), 47.8 (C-5), 19.8 (C-6), 31.8 (C-7), 39.9 (C-8), 46.5 (C-9), 35.6 (C-10), 23.2 (C-11), 122.8 (C-12), 142.6 (C-13), 41.1 (C-14), 33.8 (C-15), 69.5 (C-16), 43.9 (C-17), 40.4 (C-18), 46.6 (C-19), 31.1 (C-20), 40.7 (C-21), 72.4 (C-22), 209.3 (C-23), 9.4 (C-24), On 15.0 (C-25), 15.9 (C-26), 26.4 (C-27), 63.4 (C-28), 32.2 (C-29), 23.8 (C-30), 168.3 (C-1’’), 128.6 (C-2’’), 136.7 (C-3’’), 14.5 (C-4’’), 19.5 (C-5’’); 1H- and moieties (see Table S2). 13C NMR data for sugar ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Natural Product Research 3.6. Compound 3: 3-O-β-D-glucopyranosyl-(12)-β-D-xylopyranosyl-(13)-[β-Dgalactopyranosyl)-(12)]-β-D-glucuronopyranosyl-22-O-angeloyl-camelliagenin A. White, amorphous powder ; [α]20D -5 (c 0.12, CH3OH); HRESIMS (positive-ion mode) m/z 1211.5834 [M + Na]+ (C58H92O25Na; calcd for 1211.5825); 1H NMR (CD3OD, 500 MHz) : 1.01 (1H, m), 1.65 (1H, dt, J = 12.2, 3.5 Hz) (H-1), 1.74 (1H, m), 1.94 (1H, m) (H-2), 3.22 (1H, dd, J = 11.8, 4.0 Hz, H-3), 0.81 (1H, brd, J = 11.7 Hz, H-5), 1.44 (1H, m), 1.61 (1H, m) (H-6), 1.37 (1H, m), 1.64 (1H, m) (H-7), 1.69 (1H, m, H-9), 1.94 (2H, m, H-11), 5.36 (1H, t, J = 3.3 Hz, H-12), 1.33 (1H, brd, J = 13.0 Hz), 1.78 (1H, dd, J = 13.0, 4.2 Hz) (H-15), 4.13 10 URL: http://mc.manuscriptcentral.com/gnpl Natural Product Research (1H, brs, H-16), 2.55 (1H, dd, J = 12.7, 3.4 Hz, H-18), 1.06 (1H, m), 2.49 (1H, t, J = 13.1 Hz, H-19), 1.58 (1H, m), 2.29 (1H, t, J = 12.9 Hz) (H-21), 5.46 (1H, dd, J = 12.1, 5.7 Hz, H-22), 1.12 (3H, s, H-23), 0.91 (3H, s, H-24), 1.01 (3H, s, H-25), 0.97 (3H, s, H-26), 1.50 (3H, s, H27), 3.08 (1H, d, J = 11.0 Hz), 3.29 (1H, d, J = 11.0 Hz) (H-28), 0.93 (3H, s, H-29), 1.07 (3H, s, H-30), 6.09 (1H, q, J = 7.4 Hz, H-3’’), 1.99 (3H, d, J = 7.4 Hz, H-4’’), 1.92 (3H, s, H-5’’); 13C NMR (CD3OD, 500 MHz) : 38.6 (C-1), 25.7 (C-2), 90.4 (C-3), 39.0 (C-4), 55.7 (C-5), 17.9 (C-6), 32.6 (C-7), 39.6 (C-8), 46.6 (C-9), 36.4 (C-10), 23.3 (C-11), 123.1 (C-12), 142.6 (C-13), 41.1 (C-14), 33.9 (C-15), 69.6 (C-16), 43.9 (C-17), 40.7 (C-18), 47.1 (C-19), 31.1 (C20), 40.7 (C-21), 72.5 (C-22), 27.0 (C-23), 15.6 (C-24), 14.8 (C-25), 15.9 (C-26), 26.3 (C-27), Fo 63.4 (C-28), 32.2 (C-29), 23.9 (C-30), 168.3 (C-1’’), 128.6 (C-2’’), 136.6 (C-3’’), 14.5 (C4’’), 19.5 (C-5’’); 1H- and 13C NMR data for sugar moieties (see Table S2). rP 3.7. Compound 4 : 3-O-β-D-xylopyranosyl-(12)-β-D-xylopyranosyl-(13)-[β-Dgalactopyranosyl)-(12)]-β-D-glucuronopyranosyl-22-O-angeloyl-camelliagenin A. ee White, amorphous powder; [α]20D -3 (c 0.26, CH3OH); HRESIMS (positive-ion mode) m/z rR 1181.5732 [M + Na]+ (C57H90O24Na ; calcd for 1181.5720); 1H NMR (CD3OD, 500 MHz) : 1.05 (1H, m), 1.65 (1H, dt, J = 13.5, 3.5 Hz) (H-1), 1.77 (1H, m), 1.95 (1H, m) (H-2), 3.21 ev (1H, dd, J = 11.2, 4.0 Hz, H-3), 0.81 (1H, brd, J = 11.4 Hz, H-5), 1.45 (1H, m), 1.58 (1H, m) (H-6), 1.37 (1H, m), 1.64 (1H, m) (H-7), 1.69 (1H, m, H-9), 1.94 (2H, m, H-11), 5.36 (1H, t, J iew = 3.6 Hz, H-12), 1.33 (1H, brd, J = 13.7 Hz), 1.78 (1H, dd, J = 13.7, 4.0 Hz) (H-15), 4.13 (1H, brs, H-16), 2.56 (1H, dd, J = 12.5, 3.6 Hz, H-18), 1.06 (1H, m), 2.48 (1H, t, J = 14.1 Hz, H-19), 1.59 (1H, m), 2.29 (1H, t, J = 12.2 Hz) (H-21), 5.46 (1H, dd, J = 12.2, 5.7 Hz, H-22), On 1.11 (3H, s, H-23), 0.91 (3H, s, H-24), 1.01 (3H, s, H-25), 0.97 (3H, s, H-26), 1.50 (3H, s, H27), 3.07 (1H, d, J = 11.1 Hz), 3.29 (1H, d, J = 11.1 Hz) (H-28), 0.93 (3H, s, H-29), 1.07 (3H, ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 12 of 73 s, H-30), 6.08 (1H, q, J = 7.4 Hz, H-3’’), 1.99 (3H, d, J = 7.4 Hz, H-4’’), 1.92 (3H, s, H-5’’); 13C NMR (CD3OD, 500 MHz) : 38.6 (C-1), 25.6 (C-2), 90.7 (C-3), 39.1 (C-4), 55.7 (C-5), 17.9 (C-6), 32.6 (C-7), 39.6 (C-8), 46.6 (C-9), 36.4 (C-10), 23.2 (C-11), 123.2 (C-12), 142.5 (C-13), 41.1 (C-14), 33.9 (C-15), 69.6 (C-16), 43.9 (C-17), 40.4 (C-18), 47.1 (C-19), 31.1 (C20), 40.7 (C-21), 72.5 (C-22), 27.0 (C-23), 15.5 (C-24), 14.8 (C-25), 15.9 (C-26), 26.3 (C-27), 63.4 (C-28), 32.2 (C-29), 23.9 (C-30), 168.3 (C-1’’), 128.6 (C-2’’), 136.7 (C-3’’), 14.5 (C4’’), 19.5 (C-5’’); 1H- and 13C NMR data for sugar moieties (see Table S2). 3.8. Compound 5: 6'-O-acetyl-kingiside. 11 URL: http://mc.manuscriptcentral.com/gnpl Page 13 of 73 Colorless, amorphous powder ; [α]20D -101 (c 1, CH3OH); HRESIMS (positive-ion mode): m/z 469.1313 [M + Na]+ (C19H26O12Na ; calcd for 469.1322) and m/z 487.1418 [M + H2O + Na]+ C19H28O13Na ; calcd for 487.1428); 1H NMR (CD3OD, 500 MHz) : 5.80 (1H, d, J = 6.8 Hz, H-1), 7.50 (1H, s, H-3), 3.35 (1H, m, H-5), 2.55 (1H, dd, J = 15.9, 7.0 Hz), 2.65 (1H, dd, J = 15.9, 6.1 Hz) (H-6), 5.21 (1H, dq, J = 6.6, 4.6 Hz, H-8), 2.24 (1H, dt, J = 6.8, 5.0 Hz, H-9), 1.00 (3H, d, J = 6.6 Hz, H-10), 3.0 (3H, s, 12-OCH3), 4.73 (1H, d, J = 7.9 Hz, H-1’), 3.23 (1H, dd, J = 9.2, 7.9 Hz, H-2’), 3.40 (1H, t, J = 9.5 Hz, H-3’), 3.30 (1H, t, J = 9.7 Hz, H4’), 3.33 (1H, m, H-5’), 3.68 (1H, dd, J = 11.8, 4.5 Hz), 3.92 (1H, dd, J = 11.8, 2.0 Hz) (H6’), 2.03 (3H, s, H-2’’); 13C NMR (CD3OD, 125 MHz) : 95.5 (C-1), 152.7 (C-3), 109.4 (C- Fo 4), 28.6 (C-5), 34.5 (C-6), 174.4 (C-7), 69.2 (C-8), 42.8 (C-9), 17.9 (C-10), 167.3 (C-11), 50.3 (C-12-OCH3), 99.0 (C-1’), 73.4 (C-2’), 76.9 (C-3’), 70.2 (C-4’), 77.1 (C-5’), 61.5 (C-6’), rP 170.9 (C-1’’), 20.0 (C-2’’). ee 3.9. Compound 6: 6'-O-tiglioyl-kingiside. Colorless, amorphous powder ; [α]20D -78 (c 1, CH3OH); HRESIMS (positive-ion mode) m/z rR 527.1733 [M + Na]+ (C22H32O13Na ; calcd for 527.1741); 1H NMR (CD3OD, 500 MHz) : 5.85 (1H, d, J = 6.7 Hz, H-1), 7.49 (1H, s, H-3), 3.38 (1H, m, H-5), 2.52 (1H, dd, J = 15.9, 6.9 ev Hz), 2.63 (1H, dd, J = 15.9, 6.7 Hz) (H-6), 5.27 (1H, dq, J = 6.5, 4.5 Hz, H-8), 2.30 (1H, dt, J = 6.8, 4.5 Hz, H-9), 1.42 (3H, d, J = 6.5 Hz, H-10), 3.70 (3H, s, 12-OCH3), 4.74 (1H, d, J = iew 7.9 Hz, H-1’), 3.20 (1H, dd, J = 9.1, 7.9 Hz, H-2’), 3.38 (1H, t, J = 9.5 Hz, H-3’), 3.27 (1H, t, J = 9.7 Hz, H-4’), 3.35 (1H, m, H-5’), 3.67 (1H, dd, J = 11.9, 4.9 Hz), 3.92 (1H, dd, J = 11.9, 2.1 Hz) (H-6’), 6.91 (1H, dq, J = 6.6, 1.2 Hz, H-3’’), 1.42 (3H, dd, J = 6.6, 1.2 Hz, H-4’’), 1.84 (3H, d, J = 1.2 Hz, H-5’’) ; 13C On NMR (CD3OD, 125 MHz) : 95.2 (C-1), 152.7 (C-3), 109.4 (C-4), 28.7 (C-5), 34.5 (C-6), 174.5 (C-7), 69.0 (C-8), 42.9 (C-9), 17.9 (C-10), 167.2 ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Natural Product Research (C-11), 50.3 (C-12-OCH3), 98.7 (C-1’), 73.3 (C-2’), 77.0 (C-3’), 70.1 (C-4’), 76.5 (C-5’), 61.4 (C-6’), 167.4 (C-1’’), 128.5 (C-2’’), 137.8 (C-3’’), 13.0 (C-4’’), 10.8 (C-5’’). 3.10. Compound 7: 6'-O-angeloyl-kingiside. Colorless, amorphous powder ; [α]20D -90 (c 0.26, CH3OH); HRESIMS (positive-ion mode) m/z 527.1733 [M + Na]+ (C22H32O13Na ; calcd for 527.1741) 1H NMR (CD3OD, 500 MHz) : 5.85 (1H, d, J = 6.4 Hz, H-1), 7.48 (1H, s, H-3), 3.40 (1H, m, H-5), 2.54 (1H, dd, J = 15.9, 6.9 Hz), 2.60 (1H, dd, J = 15.9, 6.4 Hz) (H-6), 5.32 (1H, dq, J = 6.9, 4.5 Hz, H-8), 2.30 (1H, dt, J = 6.9, 4.9 Hz, H-9), 1.44 (3H, d, J = 6.5 Hz, H-10), 3.70 (3H, s, 12-OCH3), 4.75 (1H, d, J = 7.9 Hz, H-1’), 3.22 (1H, dd, J = 9.3, 7.9 Hz, H-2’), 3.38 (1H, t, J = 9.5 Hz, H-3’), 3.28 (1H, t, 12 URL: http://mc.manuscriptcentral.com/gnpl Natural Product Research J = 9.7 Hz, H-4’), 3.33 (1H, m, H-5’), 3.67 (1H, dd, J = 11.9, 5.9 Hz), 3.90 (1H, dd, J = 11.9, 2.1 Hz) (H-6’), 6.14 (1H, dq, J = 7.2, 1.4 Hz, H-3’’), 2.01 (3H, dd, J = 7.2, 1.4 Hz, H-4’’), 1.92 (3H, d, J = 1.4 Hz, H-5’’) ; 13C NMR (CD3OD, 125 MHz) : 95.2 (C-1), 152.7 (C-3), 109.3 (C-4), 28.4 (C-5), 34.4 (C-6), 174.4 (C-7), 68.4 (C-8), 42.8 (C-9), 18.0 (C-10), 167.1 (C-11), 50.9 (C-12-OCH3), 99.0 (C-1’), 73.4 (C-2’), 76.9 (C-3’), 70.2 (C-4’), 77.1 (C-5’), 61.5 (C-6’), 167.3 (C-1’’), 127.9 (C-2’’), 138.3 (C-3’’), 14.7 (C-4’’), 19.5 ( (C-5’’). Acknowledgments The authors thank the Ministry of Research of Côte d’Ivoire for financial support. Fo Disclosure statement rP The authors have declared no conflict of interest. References ee Agrawal P K. 1992. NMR Spectroscopy in the structural elucidation of oligosaccharides rR and glycosides. Phytochemistry. 31: 3307-3330. Alabdul Magid A, Lalun N, Long C, Borie N, Bobichon H, Moretti C, Lavaud C. 2012. ev Triterpene saponins from Antonia ovata leaves. Phytochemistry. 77: 268-274. Aubréville A. 1959. La flore forestière de la Côte d’Ivoire. 2nd Edition. Tome premier. iew Publication No 15. Centre Technique Forestier Tropical, Nogent-sur-Marne, France. Burkill HM. 1997. The useful plants of West Tropical Africa. 2nd Edition. Volume 4, Families M–R. Royal Botanic Gardens, Kew, Richmond, United Kingdom. On Costa PAD, Ballus CA, Teixeira-Filho J, Godoy HT. 2010. Phytosterols and tocopherols content of pulps and nuts of brazilian fruits. Food Res. Inter. 43: 1603-1606. Damtoft S, Jensen SR, Thorsen J. 1993. Kingisidic acid and 8-Epi-Kingisidic acid from Citronella gongonha. Phytochemistry. 32: 1071-1072. ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 14 of 73 Garcia J, Mpondo EM, Kaouadji M. 1990. Kingiside and derivative from Gentiana pyrenaica. Phytochemistry. 29 : 3353-3355. List PH, Horhammer L. 1972. Chemikalien und Drogen (Am-Ch), Springer; Auflage: 4. Aufl, P 127. Louis J, Léonard J. 1948. Flore du Congo belge et du Ruanda-Urundi. Spermatophytes. In: Robyns W, Staner P, De Wildeman E, Germain R, Gilbert G, Hauman L, Homès M, Lebrun J, Louis J, Vanden Abeele M & Boutique R. (Editors). Volume 1. Institut National pour l’Étude Agronomique du Congo belge, Brussels, Belgium. pp. 249–278. 13 URL: http://mc.manuscriptcentral.com/gnpl Page 15 of 73 Myose M, Warashina T, Miyase T. 2012.Triterpene saponins with hyaluronidase inhibitory activity from the seeds of Camellia sinensis. Chem. Pharm. Bull. 60: 612-623. Neuwinger HD. 2000. African traditional medicine: a dictionary of plant use and applications, Medpharm Scientific, Stuttgart, Germany. Nickrent DL, Malécot V, Vidal-Russell R, Der JP. 2010. A revised classification of Santalales, Taxon. 59: 538-558. Tan RX, Kong L-D. 1997. Secoiridoids from Gentiana siphonatha. Phytochemistry. 46: 1035-1038. Villiers J-F. 1973. Olacaceae. In Flore du Cameroun. Volume 15. Muséum National Fo d’Histoire Naturelle, Paris, France. pp. 101–162. Xu M, Wang D, Zhang Y-J, Yang C-R. 2008. Iridoidal glucosides from Gentiana rhodantha, rP J. Asian Nat. Prod. Res. 10: 491-498. Zong J, Wang R, Bao G, Ling T, Zhang L, Zhang X, Hou R. 2015. Novel triterpenoid ee saponins from residual seed cake of Camellia oleifera Abel. show anti-proliferative activity against tumor cells. Fitoterapia. 104: 7-13. Appendix A. Supplementary Material ev rR Supplementary data associated with this article can be found in the online version. iew On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Natural Product Research 14 URL: http://mc.manuscriptcentral.com/gnpl Natural Product Research 4'' O CH3 22 O 1'' H 28 16 HO HO R2 COOH O O HO O 2 xyl O glcA 2 HO O OH HO HO O 2'' CH3 OH 5'' H R1 23 O 1 : R1= CHO , R2 = CH2OH 2 : R1= CHO , R2 = H 3 : R1=CH3 , R2 = CH2OH 4 : R1=CH3 , R2 = H OH gal xyl/glc' H 3 3'' OH O HO HO Fo Figure 1. The structures of triterpenoid glycosides (1-4) isolated from the stem bark of Aptandra zenkeri Engl. ee rP O 11 COOCH3 H O 5 9 7 O 8 H 10 O 6: R = CH3 4'' 1'' 5'' CH3 O 1' 3'' 2'' CH3 O 7: R = iew HO glc O CH3 O 3 1 OH HO 1'' ev OR 2'' 5: R = rR CH3 Figure 2. The structures of secoiridoid glucosides (5-7) isolated from the stem bark of Aptandra zenkeri Engl. On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 16 of 73 15 URL: http://mc.manuscriptcentral.com/gnpl Page 17 of 73 SUPPLEMENTARY MATERIAL New oleanane-type glycosides and secoiridoids glucosides from Aptandra zenkeri Michel Boni Bitchia,b, Abdulmagid Alabdul Magidb, Faustin Aka Kabrana, Philomène Akoua Yao-Kouassia, Dominique Harakatc, Laurence Voutquenne-Nazabadiokob and Félix Zanahi Tonziboa,* aLaboratoire de Chimie Organique Biologique, UFR Sciences des Structures de la Matière et Technologie, Université Félix Houphouët- Boigny, 22 BP 582 Abidjan 22, Cote d’Ivoire bICMR-UMR Fo CNRS 7312, Groupe Isolement et Structure, Campus Sciences, Bât. 18, BP 1039, 51687 Reims, France cService rP Commun d’Analyses, Institut de Chimie Moléculaire de Reims (ICMR), CNRS UMR 7312, Bat. 18 B.P. 1039, 51687 Reims Cedex 2, France ee Abstract: Four new saponins, camelliagenin A and B derivatives, and three new secoiridoid glucosides were isolated from the stem bark of Aptandra zenkeri Engl. (Aptandraceae). Their rR structures were determined based on a combination of 1D- and 2D-NMR experiments techniques and HR-ESI-MS analysis. This is the first report on saponins in genus Aptandra. ev Keywords: Aptandra zenkeri Engl.; Aptandraceae; triterpenoid saponins; secoiridoid glucosides iew On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Natural Product Research *Corresponding author. Tel: +225 05 07 19 67 E-mail address: tonzibz@yahoo.fr (Félix Zanahi Tonzibo) 1 URL: http://mc.manuscriptcentral.com/gnpl Natural Product Research List of Supplementary Material Table S1 1H (500 MHz) and 13C (125 MHz) data of the aglycone moieties of compounds 1 - 4 (CD3OD) Table S2 1H (500 MHz) and 13C (125 MHz) NMR data of the sugar moieties of compounds 1 - 4 (CD3OD) Table S3. 1H (500 MHz) and 13C (125 MHz) NMR spectroscopic data of compounds 5-7 (CD3OD) Fo Figure S1. The HRESIMS of 1 Figure S2. The 1H-NMR spectrum of 1 in CD3OD rP Figure S3. The DEPT spectrum of 1 in CD3OD Figure S4. The 1H-1H COSY spectrum of 1 in CD3OD ee Figure S5. The HSQC spectrum of 1 in CD3OD Figure S6. The HMBC spectrum of 1 in CD3OD rR Figure S7. The 1H-1H ROESY spectrum of 1 in CD3OD Figure S8. The 1H-1H TOCSY spectrum of 1 in CD3OD ev Figure S9. The HRESIMS of 2 in CD3OD Figure S10. The 1H-NMR spectrum of 2 in CD3OD iew Figure S11. The J-mod spectrum of 2 in CD3OD Figure S12. The 1H-1H COSY spectrum of 2 in CD3OD Figure S13. The HSQC spectrum of 2 in CD3OD Figure S14. The HMBC spectrum of 2 in CD3OD On Figure S15. The 1H-1H ROESY spectrum of 2 in CD3OD Figure S16. The HRESIMS of 3 Figure S17. The 1H-NMR spectrum of 3 in CD3OD ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 18 of 73 Figure S18. The J-mod spectrum of 3 in CD3OD Figure S19. The 1H-1H COSY spectrum of 3 in CD3OD Figure S20. The HSQC spectrum of 3 in CD3OD Figure S21. The HMBC spectrum of 3 in CD3OD Figure S22. The 1H-1H ROESY spectrum of 3 in CD3OD Figure S23. The 1H-1H TOCSY spectrum of 3 in CD3OD Figure S24. The HRESIMS of 4 Figure S25. The 1H-NMR spectrum of 4 in CD3OD 2 URL: http://mc.manuscriptcentral.com/gnpl Page 19 of 73 Figure S26. The J-mod spectrum of 4 in CD3OD Figure S27. The 1H-1H COSY spectrum of 4 in CD3OD Figure S28. The HSQC spectrum of 4 in CD3OD Figure S29. The HMBC spectrum of 4 in CD3OD Figure S30. The 1H-1H ROESY spectrum of 4 in CD3OD Figure S31. The 1H-1H TOCSY spectrum of 4 in CD3OD Figure S32. The HRESIMS of 5 in CD3OD Figure S33. The 1H-NMR spectrum of 5 in CD3OD Figure S34. The DEPT spectrum of 5 in CD3OD Fo Figure S35. The 1H-1H COSY spectrum of 5 in CD3OD Figure S36. The HSQC spectrum of 5 in CD3OD rP Figure S37. The HMBC spectrum of 5 in CD3OD Figure S38. The HRESIMS of 6 ee Figure S39. The 1H-NMR spectrum of 6 in CD3OD Figure S40. The DEPTQ spectrum of 6 in CD3OD rR Figure S41. The 1H-1H COSY spectrum of 6 in CD3OD Figure S42. The HSQC spectrum of 6 in CD3OD ev Figure S43. The HMBC spectrum of 6 in CD3OD Figure S44. The 1H-1H ROESY spectrum of 6 in CD3OD Figure S45. The HRESIMS of 7 in CD3OD iew Figure S46. The 1H-NMR spectrum of 7 in CD3OD Figure S47. The J-mod spectrum of 7 in CD3OD Figure S48. The 1H-1H COSY spectrum of 7 in CD3OD Figure S49. The HSQC spectrum of 7 in CD3OD Figure S51. The 1H-1H NOESY spectrum of 7 ly Figure S50. The HMBC spectrum of 7 in CD3OD On 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Natural Product Research 3 URL: http://mc.manuscriptcentral.com/gnpl Natural Product Research Table S1. 1H (500 MHz) and 13C (125 MHz) data of the aglycone moieties of compounds 1 - 4 (CD3OD)  H (m, J Hz) 1 2 3 4 5 6 7 1.83, m 24.3 84.7 54.8 47.8 19.8 31.8 C 1.06, m 1.74, dt (14.0, 3.5) 1.80, m 1.98, m 3.89, dd (11.5, 4.5) 1.38, brd (12.3) 0.55, m 1.58, m 1.28, dt (13.1, 3.5) 1.64, td (13.1, 4.6) 1.97, m 5.37, t (3.6) 1.33, m 1.74, brd (14.3) 4.13, brs 2.56, dd (14.0, 3.5) 1.09, m 2.49, t (14.0) 1.81, m 69.5 43.9 40.4 46.6 31.1 40.7 32.2 23.9 84.9 54.9 47.8 19.8 31.8 39.9 46.5 35.6 23.2 122.8 142.6 41.1 33.8 69.5 2.55, dd (14.3, 3.5) 1.08, m 2.49, t (14.3) 43.9 40.4 46.6 1.01, m 1.65, dt (12.2, 3.5) 1.74, m 1.94, m 3.22, dd (11.8, 4.0) 0.81, brd (11.7) 1.44, m 1.61, m 1.37, m 1.64, m 1.55, m 2.29, t (11.9) 5.46, dd (12.1, 5.5) 9.48, s 1.19, s 1.05, s 0.98, s 1.52, s 3.08, d (11.0) 3.28, d (11.0) 0.93, s 1.07, s 6.08, q (7.3) 1.99, d (7.3) 1.92, s 31.1 40.7 72.4 209.3 9.4 15.0 15.9 26.4 63.4 32.2 23.8 168.3 128.6 136.7 14.5 19.5 38.6 25.7 90.4 39.0 55.7 17.9 32.6 1.69, m 1.94, m 5.36, t (3.3) 1.33, brd (13.0) 1.78, dd (13.0, 4.2) 4.13, brs 2.55, dd (12.7, 3.4) 1.06, m 2.49, t (13.1) 1.58, m 2.29, t (12.9) 5.46, dd (12.1, 5.7) 1.12, s 0.91, s 1.01, s 0.97, s 1.50, s 3.08, d (11.0) 3.29, d (11.0) 0.93, s 1.07, s 39.6 46.6 36.4 23.3 123.1 142.6 41.1 33.9 69.6 43.9 40.7 47.1 31.1 40.7 72.5 27.0 15.6 14.8 15.9 26.3 63.4 6.09, q (7.4) 1.99, d (7.4) 1.92, s 32.2 23.9 168.3 128.6 136.6 14.5 19.5  H (m, J Hz) 4 1.05, m 1.65, dt (13.5, 3.5) 1.77, m 1.95, m 3.21, dd (11.2, 4.0) 0.81, brd (11.4) 1.45, m 1.58, m 1.37, m 1.64, m 1.69, m 1.94, m 5.36, t (3.6) 1.33, brd (13.7) 1.78, dd (13.7, 4.0) 4.13, brs 2.56, dd (12.5, 3.6) 1.06, m 2.48, t (14.1) 1.59, m 2.29, t (12.2) 5.46, dd (12.2, 5.7) 1.11, s 0.91, s 1.01, s 0.97, s 1.50, s 3.07, d (11.1) 3.29, d (11.1) 0.93, s 1.07, s ly 168.3 128.6 136.7 14.5 19.5 1.33, brd (14.0) 1.73, td (14.0, 3.5) 4.13, brs 24.3 C On 72.4 209.3 9.5 15.0 15.9 26.4 63.4 1.97, m 5.37, t (3.6) 37.9 3 iew 1.54, m 2.29, t (11.9) 22 5.45, dd (12.1, 5.6) 23 9.48, s 24 1.19, s 25 1.05, s 26 0.98, s 27 1.52, s 28 3.08, d (11.0) 3.28, d (11.0) 29 0.93, s 30 1.07, s C22 Angeloyl 1 2 3 6.09, q (7.2) 4 1.99, d (7.2) 5 1.92, s 39.9 46.5 35.6 23.2 122.8 142.6 41.1 33.8  H (m, J Hz) ev 20 21 1.38, m 0.94, m 1.58, m 1.28, m 1.65, td (13.0, 4.5) 37.9 2 rR 17 18 19 1.05, td (12.3, 4.5) 1.74, dt (12.3, 3.2) 1.81, m 1.98, m 3.91, dd (11.3, 4.5)  H (m, J Hz) ee 16 C rP 8 9 10 11 12 13 14 15 1 Fo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 20 of 73 6.08, q (7.4) 1.99, d (7.4) 1.92, s C 38.6 25.6 90.7 39.1 55.7 17.9 32.6 39.6 46.6 36.4 23.2 123.2 142.5 41.1 33.9 69.6 43.9 40.4 47.1 31.1 40.7 72.5 27.0 15.5 14.8 15.9 26.3 63.4 32.2 23.9 168.3 128.6 136.7 14.5 19.5 4 URL: http://mc.manuscriptcentral.com/gnpl Page 21 of 73 Table S2 1H (500 MHz) and 13C (125 MHz) NMR data of the sugar moieties of compounds 1 - 4 (CD3OD). H, m (J Hz) 1 glcA (at C-3) 1 4.47, d (7.3) 2 3.84, t (8.3) 3 3.78, t (8.3) 4 3.62, t (8.5) 5 3.82, d (9.6) 6 gal (at glcA-C-2) 1 4.95, a 2 3.52, t (8.1) 3 3.54, dd (8.1, 3.3) 4 3.84, t (3.3) 5 3.63, m 6 3.75, dd (11.1, 5.3) 3.80, dd (11.1, 3.0) Xyl (at glcA-C-3) 1 5.00, d (6.9) 2 3.53, dd (8.5, 6.9) 3 3.65, t (8.5) 4 3.60, m 5 3.19, dd (11.5, 8.5) 3.96, dd (11.5, 5.1) glc/xyl (at xyl-C-2) 1 4.64, d (7.1) 2 3.31, dd (8.8, 7.1) 3 3.41, t (8.8) 4 3.37 (8.8) C H, m (J Hz) 103.3 76.7 82.4 69.6 75.0 172.1 2 C H, m (J Hz) 4.45, d (7.4) 3.71, dd (8.0, 7.4) 3.72, t (8.0) 3.58, t (8.5) 3.82, d (9.5) 103.4 76.4 82.5 69.6 75.0 172.2 101.7 72.1 73.5 69.3 75.2 61.0 4.99, d (7.3) 3.48, t (8.5) 3.52, dd (8.5, 3.6) 3.83, t (3.6) 3.64, brt (6.2) 3.73, dd (11.5, 5.3) 3.80, dd (11.5, 2.8) 100.6 82.6 75.8 69.5 65.2 104.7 74.5 76.7 70.3 4.52, d (7.8) 3.97, dd (8.8, 7.8) 3.83, t (9.0) 3.61, t (9.0) 3.73, d (9.1) 104.5 77.5 82.7 70.3 75.3 172.4 4.53, d (7.5) 3.92, t (8.2) 3.79, t (82) 3.61, t (8.5) 3.78, d (9.5) 105.6 77.4 82.5 70.0 75.2 172.2 101.4 72.0 73.7 69.6 75.1 61.1 4.98, d (7.4) 3.61, t (8.1) 3.55, dd (8.1, 3.2) 3.87, t (3.2) 3.66, m 3.69, a 3.76, dd (11.4, 2.8) 101.9 72.2 73.3 68.7 75.3 61.0 5.07, d (7.3) 3.54, t (8.1) 3.53, dd (8.1, 2.5) 3.83, t (2.6) 3.58, m 3.65, dd (11.4, 4.7) 3.80, dd (11.4, 3.0) 101.5 72.1 74.7 69.1 74.7 61.4 4.92, d (7.4) 3.41, dd (8.5, 7.4) 3.60, t (8.5) 3.59, m 3.28, a 3.92, dd (11.2, 4.7) 100.7 83.7 76.1 69.5 65.2 5.00, d (7.1) 3.54, dd (8.3, 7.1) 3.66, t (8.3) 3.59, m 3.30, a 4.02, dd (11.5, 5.7) 100.8 82.7 76.0 69.4 65.3 4.99, d (7.4) 3.44, dd (8.3, 7.4) 3.62, t (8.3) 3.58, m 3.28, dm (11.4) 3.94, dd (11.4, 4.5) 100.7 83.7 76.1 69.6 65.4 4.53, d (7.6) 3.30, dd (9.0, 7.6) 3.35, t (9.0) 3.54, m 3.20, dd (11.2, 10.7) 3.97, dd (11.5, 5.4) 106.6 74.8 76.5 69.6 4.69, d (7.3) 3.33, a 3.42, t (8.0) 3.37, t (8.5) 104.6 74.3 76.7 70.2 4.56, d (7.2) 3.31, a 3.35, t (9.0) 3.37, m 106.0 73.4 76.6 69.6 77.0 3.21, t (11.2) 65.9 65.9 3.35, m ev 61.5 rR C 3.99, dd (11.2, 5.4) 3.78, dd (11.0, 5.2) 3.91, dm (11.0) 61.5 iew 3.76, dd (11.2, 5.9) 3.91, dm (11.2) a overlapped signals 6 77.0 ee 3.33, m 4 H, m (J Hz) rP 5 3 C Fo On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Natural Product Research 5 URL: http://mc.manuscriptcentral.com/gnpl Natural Product Research Table S3. 1H (500 MHz) and 13C (125 MHz) NMR spectroscopic data of compounds 5-7 (CD3OD). position 5 H m (J in Hz) 1 3 4 5 6 5.80, d (6.8) 7.50, s 7 8 9 10 11 12 (OCH3) 174.4 69.2 42.8 17.9 167.3 50.3 99.0 73.4 76.9 70.2 77.1 61.5 3.38, m 2.52, dd (15.9, 6.9) 2.63, dd (15.9, 6.7) 5.27, dq (6.5, 4.5) 2.30, dt (6.8, 4.5) 1.42, d (6.5) 3.70, s 2.03, s 170.9 20.0 95.2 152.7 109.4 28.7 34.5 174.5 69.0 42.9 17.9 167.2 50.3 4.74, d (7.9) 3.20, dd (9.1, 7.9) 3.38, t (9.5) 3.27, t (9.7) 3.35, m 3.67, dd (11.9, 4.9) 3.92, dd (11.9, 2.1) 98.7 73.3 77.0 70.1 76.5 61.4 rR 4.73, d (7.9) 3.23, dd (9.2, 7.9) 3.40, t (9.5) 3.30, t (9.7) 3.33, m 3.68, dd (11.8, 4.5) 3.92, dd (11.8, 2.0) 5.85, d (6.7) 7.49, s 167.4 128.5 137.8 13.0 10.8 ee 6.91, dq (6.6, 1.2) 1.42, dd (6.6, 1.2) 1.84, d (1.2) 7 H m (J in Hz) 5.85, d (6.4) 7.48, s 3.40, m 2.54, dd (15.9, 6.9) 2.60, dd (15.9, 6.4) 5.32, dq (6.9, 4.5) 2.30, dt (6.9, 4.9) 1.44, d (6.5) 3.70, s 4.75, d (7.9) 3.22, dd (9.3, 7.9) 3.38, t (9.5) 3.28, t (9.7) 3.33, m 3.67, dd (11.9, 5.9) 3.90, dd (11.9, 2.1) 6.14, dq (7.2, 1.4) 2.01, dd (7.2, 1.4) 1.92, d (1.4) C 95.2 152.7 109.3 28.4 34.4 174.4 68.4 42.8 18.0 167.1 50.9 99.0 73.4 76.9 70.2 77.1 61.5 167.3 127.9 138.3 14.7 19.5 iew ev 1'' 2'' 3'' 4'' 5'' 5.21, dq (6.6, 4.6) 2.24, dt (6.8, 5.0) 1.00, d (6.6) 95.5 152.7 109.4 28.6 34.5 C rP β-D-glc 1' 2' 3' 4' 5' 6' 3.35, m 2.55, dd (15.9, 7.0) 2.65, dd (15.9, 6.1) 3.70, s 6 H m (J in Hz) C Fo On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 22 of 73 6 URL: http://mc.manuscriptcentral.com/gnpl Page 23 of 73 Figure S1. The HRESIMS of 1 iew ev rR ee rP Fo On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Natural Product Research 7 URL: http://mc.manuscriptcentral.com/gnpl Natural Product Research iew ev rR ee rP Fo Figure S2. The 1H-NMR spectrum of 1 in CD3OD On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 24 of 73 8 URL: http://mc.manuscriptcentral.com/gnpl Page 25 of 73 iew ev rR ee rP Fo Figure S3. The DEPT spectrum of 1 in CD3OD On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Natural Product Research 9 URL: http://mc.manuscriptcentral.com/gnpl Natural Product Research ev rR ee rP Fo Figure S4. The 1H-1H COSY spectrum of 1 in CD3OD iew On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 26 of 73 10 URL: http://mc.manuscriptcentral.com/gnpl Page 27 of 73 iew ev rR ee rP Fo Figure S5. The HSQC spectrum of 1 in CD3OD On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Natural Product Research 11 URL: http://mc.manuscriptcentral.com/gnpl Natural Product Research iew ev rR ee rP Fo Figure S6. The HMBC spectrum of 1 in CD3OD On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 28 of 73 12 URL: http://mc.manuscriptcentral.com/gnpl Page 29 of 73 iew ev rR ee rP Fo Figure S7. The 1H-1H ROESY spectrum of 1 in CD3OD On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Natural Product Research 13 URL: http://mc.manuscriptcentral.com/gnpl Natural Product Research ev rR ee rP Fo Figure S8. The 1H-1H TOCSY spectrum of 1 in CD3OD iew On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 30 of 73 14 URL: http://mc.manuscriptcentral.com/gnpl Page 31 of 73 ee rP Fo Figure S9. The HRESIMS of 2 iew ev rR On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Natural Product Research 15 URL: http://mc.manuscriptcentral.com/gnpl Natural Product Research iew ev rR ee rP Fo Figure S10. The 1H-NMR spectrum of 2 in CD3OD On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 32 of 73 16 URL: http://mc.manuscriptcentral.com/gnpl Page 33 of 73 iew ev rR ee rP Fo ly Figure S11. The J-mod spectrum of 2 in CD3OD On 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Natural Product Research 17 URL: http://mc.manuscriptcentral.com/gnpl Natural Product Research iew ev rR ee rP Fo Figure S12. The 1H-1H COSY spectrum of 2 in CD3OD On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 34 of 73 18 URL: http://mc.manuscriptcentral.com/gnpl Page 35 of 73 iew ev rR ee rP Fo Figure S13. The HSQC spectrum of 2 in CD3OD On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Natural Product Research 19 URL: http://mc.manuscriptcentral.com/gnpl Natural Product Research iew ev rR ee rP Fo On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 36 of 73 Figure S14. The HMBC spectrum of 2 in CD3OD 20 URL: http://mc.manuscriptcentral.com/gnpl Page 37 of 73 iew ev rR ee rP Fo On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Natural Product Research Figure S15. The 1H-1H ROESY spectrum of 2 in CD3OD Figure S16. The HRESIMS of 3 21 URL: http://mc.manuscriptcentral.com/gnpl Natural Product Research iew ev rR ee rP Fo On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 38 of 73 22 URL: http://mc.manuscriptcentral.com/gnpl Page 39 of 73 iew ev rR ee rP Fo Figure S17. The 1H-NMR spectrum of 3 in CD3OD On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Natural Product Research 23 URL: http://mc.manuscriptcentral.com/gnpl Natural Product Research Figure S18. The J-mod spectrum of 3 in CD3OD iew ev rR ee rP Fo On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 40 of 73 24 URL: http://mc.manuscriptcentral.com/gnpl Page 41 of 73 iew ev rR ee rP Fo Figure S19. The 1H-1H COSY spectrum of 3 in CD3OD On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Natural Product Research 25 URL: http://mc.manuscriptcentral.com/gnpl Natural Product Research iew ev rR ee rP Fo Figure S20. The HSQC spectrum of 3 in CD3OD On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 42 of 73 26 URL: http://mc.manuscriptcentral.com/gnpl Page 43 of 73 iew ev rR ee rP Fo Figure S21. The HMBC spectrum of 3 in CD3OD On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Natural Product Research 27 URL: http://mc.manuscriptcentral.com/gnpl Natural Product Research ev rR ee rP Fo Figure S22. The 1H-1H ROESY spectrum of 3 in CD3OD iew On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 44 of 73 28 URL: http://mc.manuscriptcentral.com/gnpl Page 45 of 73 iew ev rR ee rP Fo On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Natural Product Research Figure S23. The 1H-1H TOCSY spectrum of 3 in CD3OD 29 URL: http://mc.manuscriptcentral.com/gnpl Natural Product Research iew ev Figure S24. The HRESIMS of 4 rR ee rP Fo On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 46 of 73 30 URL: http://mc.manuscriptcentral.com/gnpl Page 47 of 73 iew ev rR ee rP Fo Figure S25. The 1H-NMR spectrum of 4 in CD3OD On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Natural Product Research 31 URL: http://mc.manuscriptcentral.com/gnpl Natural Product Research iew ev rR ee rP Fo Figure S26. The J-mod spectrum of 4 in CD3OD On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 48 of 73 32 URL: http://mc.manuscriptcentral.com/gnpl Page 49 of 73 iew ev rR ee rP Fo ly Figure S27. The 1H-1H COSY spectrum of 4 in CD3OD On 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Natural Product Research 33 URL: http://mc.manuscriptcentral.com/gnpl Natural Product Research iew ev rR ee rP Fo Figure S28. The HSQC spectrum of 4 in CD3OD On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 50 of 73 34 URL: http://mc.manuscriptcentral.com/gnpl Page 51 of 73 ev rR ee rP Fo Figure S29. The HMBC spectrum of 4 in CD3OD iew On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Natural Product Research 35 URL: http://mc.manuscriptcentral.com/gnpl Natural Product Research rR ee rP Fo Figure S30. The 1H-1H ROESY spectrum of 4 in CD3OD iew ev On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 52 of 73 36 URL: http://mc.manuscriptcentral.com/gnpl Page 53 of 73 iew ev rR ee rP Fo On Figure S31. The 1H-1H TOCSY spectrum of 4 in CD3OD ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Natural Product Research 37 URL: http://mc.manuscriptcentral.com/gnpl Natural Product Research ee rP Fo Figure S32. The HRESIMS of 5 iew ev rR On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 54 of 73 38 URL: http://mc.manuscriptcentral.com/gnpl Page 55 of 73 iew ev rR ee rP Fo Figure S33. The 1H-NMR spectrum of 5 in CD3OD On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Natural Product Research 39 URL: http://mc.manuscriptcentral.com/gnpl Natural Product Research iew ev rR ee rP Fo Figure S34. The DEPT spectrum of 5 in CD3OD On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 56 of 73 40 URL: http://mc.manuscriptcentral.com/gnpl Page 57 of 73 iew ev rR ee rP Fo Figure S35. The 1H-1H COSY spectrum of 5 in CD3OD On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Natural Product Research 41 URL: http://mc.manuscriptcentral.com/gnpl Natural Product Research ev rR ee rP Fo Figure S36. The HSQC spectrum of 5 in CD3OD iew On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 58 of 73 42 URL: http://mc.manuscriptcentral.com/gnpl Page 59 of 73 ev rR ee rP Fo Figure S37. The HMBC spectrum of 5 in CD3OD iew On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Natural Product Research 43 URL: http://mc.manuscriptcentral.com/gnpl Natural Product Research Figure S38. The HRESIMS of 6 iew ev rR ee rP Fo On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 60 of 73 44 URL: http://mc.manuscriptcentral.com/gnpl Page 61 of 73 iew ev rR ee rP Fo Figure S39. The 1H-NMR spectrum of 6 in CD3OD On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Natural Product Research 45 URL: http://mc.manuscriptcentral.com/gnpl Natural Product Research iew ev rR ee rP Fo Figure S40. The DEPTQ spectrum of 6 in CD3OD On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 62 of 73 46 URL: http://mc.manuscriptcentral.com/gnpl Page 63 of 73 ev rR ee rP Fo Figure S41. The 1H-1H COSY spectrum of 6 in CD3OD iew On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Natural Product Research 47 URL: http://mc.manuscriptcentral.com/gnpl Natural Product Research ev rR ee rP Fo Figure S42. The HSQC spectrum of 6 in CD3OD iew On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 64 of 73 48 URL: http://mc.manuscriptcentral.com/gnpl Page 65 of 73 rR ee rP Fo Figure S43. The HMBC spectrum of 6 in CD3OD iew ev On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Natural Product Research 49 URL: http://mc.manuscriptcentral.com/gnpl Natural Product Research ev rR ee rP Fo Figure S44. The 1H-1H ROESY spectrum of 6 in CD3OD iew On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 66 of 73 50 URL: http://mc.manuscriptcentral.com/gnpl Page 67 of 73 rP Fo Figure S45. The HRESIMS of 7 iew ev rR ee On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Natural Product Research 51 URL: http://mc.manuscriptcentral.com/gnpl Natural Product Research iew ev rR ee rP Fo Figure S46. The 1H-NMR spectrum of 7 in CD3OD On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 68 of 73 52 URL: http://mc.manuscriptcentral.com/gnpl Page 69 of 73 iew ev rR ee rP Fo On Figure S47. The J-mod spectrum of 7 in CD3OD ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Natural Product Research 53 URL: http://mc.manuscriptcentral.com/gnpl Natural Product Research iew ev rR ee rP Fo On Figure S48. The 1H-1H COSY spectrum of 7 in CD3OD ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 70 of 73 54 URL: http://mc.manuscriptcentral.com/gnpl Page 71 of 73 iew ev rR ee rP Fo On Figure S49. The HSQC spectrum of 7 in CD3OD ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Natural Product Research 55 URL: http://mc.manuscriptcentral.com/gnpl Natural Product Research iew ev rR ee rP Fo On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 72 of 73 Figure S50. The HMBC spectrum of 7 in CD3OD 56 URL: http://mc.manuscriptcentral.com/gnpl Page 73 of 73 ev rR ee rP Fo Figure S51. The 1H-1H NOESY spectrum of 7 in CD3OD iew On ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Natural Product Research 57 URL: http://mc.manuscriptcentral.com/gnpl