Academia.eduAcademia.edu
BIODIVERSITY AND SUSTAINABILITY IN THE BULUNGAN RESEARCH FOREST, EAST KALIMANTAN, INDONESIA: THE RESPONSE OF PLANT SPECIES TO LOGGING A thesis submitted for the degree of Doctor of Philosophy at the University of Stirling By Ismayadi Samsoedin Department of Biological and Molecular Sciences University of Stirling Scotland 2006 1 DECLARATION I hereby declare that all the work in this thesis was composed by myself, except where specific acknowledgements are made. Stirling, December, 2005. 2 ABSTRACT This study reports forest structure, regeneration and the soil properties from unlogged and logged forest in the Bulungan Research Forest, Malinau District, East Kalimantan, Indonesia. Four sites were compared by using four 1-ha replicate plots in each of primary forest (PF), 5, 10 and 30-yr old logged forest (LF-5, LF-10, LF30). The tree species composition differ among forest types, as it was shown that the mean value of similarity indices for all pairs were 0.215 (for the Jaccard index) and 0.353 (for the Sorensen index). The low values for similarities among forest types were most probably caused by low numbers of species shared between each forest type. Both correlation values, r = 0.023 for Jaccard index and r = 0.031 for Sorensen index, showed no strong correlation between the similarity index (C) and the distance between forest types. This supports the use of a chronosequence approach. A total of 914 tree species with ≥ 10 cm dbh were recorded from 223 genera and 65 families. There were no significant differences in mean species numbers (166 – 180/ha) among treatments. Mean density of species was lower in LF-5 and LF-10 (501/ha) than in PF or LF-30 (605/ha and 577/ha); similarly to mean basal area (LF-5, 28.5 m2/ha; LF-10, 32.6 m2/ha) vs. PF (45.8 m2/ha) and LF-30 (46.9 m2/ha). Dead wood on the forest floor was significantly higher in LF-10 (75 m3/ha) than in the other treatments. Seedlings (< 2 cm dbh) of 1,022 species were recorded from 408 genera and 111 families. The mean number of tree seedling species ranged between 170-206; the mean density of seedlings was about two-fold lower in LF-10 (2790/ha) than in the other treatments. Saplings (>2 – 9.9 cm dbh) of 802 species belonged to 241 genera and 65 families. There was a high variability in species richness across treatments (89 – 191/ha), but not in stem numbers. The Dipterocarpaceae family was dominant in all treatments, followed by the Euphorbiaceae. The soils were acidic, low in nutrients and had low to very low fertility. Both primary and logged forest areas are marginal or not suitable for sustained production of plantation crops. Logging caused soil compaction in LF-30. Although in terms of number of species and trees, amount of BA, number of saplings and seedlings LF-30 appeared to have satisfied prescriptions for a second harvest, ecologically the forest is far from mature. 3 The Indonesian Selective Cutting and Replanting (TPTI) system may need to be revised to a 35 – 45 year cycle to ensure long-term forest productivity in terms of not only timber but other goods and ecosystem services, the value of which are never quantified in monetary terms, but can be higher than the timber revenue. Keywords: logging, primary forest, logged forest, species, genera, family, bulk density, soil nutrients 4 Acknowledgements I would like to convey my great gratitude to my supervisors Prof. J. Proctor and Prof. D. W. Hopkins of the University of Stirling for their great support and patience during guiding me through all the processes until the finishing of this thesis. I am deeply indebted to Prof. Jeffrey A. Sayer, the former Director-General of the Center for International Forestry Research (CIFOR) and Dr. Kuswata Kartawinata, the former Director of Bulungan Research Forest, CIFOR, for their constant encouragement to undertake a postgraduate programme at Stirling University with field studies at the Bulungan Research Forest, and for obtaining financial support through a John D. and Catherine T. MacArthur Foundation grant, awarded to CIFOR. I also thank the Forest Research and Development Agency (FORDA) of the Ministry of Forestry of Indonesia, Conservation International, BIOMA Foundation and Project Barito Ulu for providing additional financial assistance and facilities. Thanks are also due to Dr. Laszlo Nagy (McConnell Ecological Research Edinburgh, Scotland) for his great support and patience in guiding me during finishing this thesis. Prof. M.A. Sardjono (Center for Social Forestry, Mulawarman University, Samarinda, East Kalimantan), Dr. Douglas Sheil, Imam Basuki (CIFOR) and Dr. Chairil Anwar Siregar (FORDA-MOF) have provided constructive critical comments. I thank Dr. Kade Sidiyasa, Zaenal Arifin, Arbainsyah and Ambriansyah of Herbarium Wanariset, East Kalimantan and Ms. J.J. Afriastini of Herbarium Bogoriense for the identification of trees, saplings and seedlings. Appreciation also goes to my field assistants Sigit Budiarta, Petrus, Jalung, Irang, Laing, Asri and Sahar for their support in field data collection; to my assistants in Bogor, I Wayan Susi Dharmawan M.Sc. and Rita Oktarita for their support and encouragement in data organization; and to Edi Laksana who constantly helped me up to midnight during the last three months. Without their support, I would not have been able to complete this thesis. My appreciation goes to numerous persons who helped me in various ways, especially Dr. Jatna Supriatna (Conservation International Indonesia), Dr. Kenneth M. Dicken and Dr. Laura Snook (CIFOR), Dr. M. Bismark (FORDA), Dr. E. Widodo (Conservation International Indonesia), Mr. Gregory G. Hambaly and Mrs. Jenny A. Kartawinata. 5 I record my gratitude to all my colleagues, whose names have not been mentioned, for their assistance in various ways that helped my work along the way. I finally want to thank those who were always praying for me. My beloved wife Tini and my daughters Sita and Auria, who rarely saw me at home but constantly gave me spirit and light during my study, deserve my deepest appreciation and indebtedness. Last, but not least my sincerest and deepest gratitude and appreciation goes to my parents in law, Prof. and Mrs. Soekiman Atmosoedarjo and my parents, Mr. and Mrs. E. M. Samsoedin, for their untiring and unswerving encouragement throughout the study. 6 CHAPTER 1. GENERAL INTRODUCTION Tropical Rain Forests of Indonesia Tropical rain forest is one of the richest ecosystems (Whitmore 1990). It occurs in three main areas, namely South and Central America, Central and Western Africa and the Indo Malay-Borneo-New Guinea regions (Richards 1952; Odum 1971; Whitmore 1990). The Malay archipelago or Malesia is the second largest, with Indonesia occupying most of the area (Whitmore 1990), covering 60% of all forested lands in Southeast Asia and known as the third largest tropical forested area in the world after Brazil and Zaire. Indonesia is also known as the Sundaland hotspot (Whitten et al. 2004). It covers the western half of the Indo-Malayan archipelago, an area of about 1.5 million km2, lying on the equator and spanning a distance of 5,000 km between the Asian mainland and Australia. This area is dominated by Kalimantan (725,500 km2) and Sumatra (427,300 km2), the third and sixth largest islands on earth. Two-thirds of Indonesia’s land area of 191 million ha is forested, mostly with tropical hardwoods, and the rest is covered by shrubs, ferns and herbs that describe this ecologically complex system (Choong & Smith 1994). The wide range of geographical and climate conditions of Indonesia have resulted in one of the richest flora and fauna in the world. More or less 25,000 species of vascular plants can be found in the forest. It includes 381 species of mammals, 449 species of reptiles, 242 species of amphibians and 1,000 fresh water fish species. Kalimantan is home to about 430 fish species, with 164 of them endemic, while Sumatra has 270 species, 42 endemic (Kottelat & Whitten, 1996 in Whitten et al. 2004). The above source also reported that Indonesia has a variety of 7 endemic species such as 173 mammals (27 in Kalimantan), 146 birds (30 in Kalimantan), 249 reptiles, 172 amphibians and not less than 15,000 species of vascular plants. Kalimantan leads in endemic plant genera with 59 and Sumatra has 17. Kalimantan also has over 2,000 species of orchids. The flora includes several spectacular taxa, such as Rafflesia, famous botanical flagship for tropical rain forests, especially R. arnoldi, which has one metre “petals” and is the largest flower in the world. Soerianegara & Lemmens (1994) reported that among 4,000 recorded Indonesian timber species, consist of 400 species of important timber; 260 species of commercial timber and 120 species of major commercial timber (Martawidjaya et al 1986 in Manan 1993). Kalimantan has some 3,000 species of trees, including 267 species of Dipterocarpaceae of which 155 (58%) are endemic to the island and many are economically important (Whitten et al. 2004). Global issues on biodiversity decline have for long focused on production forests as after opening up the forest for logging often land conversion, planned or spontaneous, occurs to other land use forms. In Indonesia, lowland forest is believed to be the richest biodiversity area, however, due to the government interest in economic development most of it is allocated as production forest. According to Kartawinata et al. (2001), estimates of the extent of forest cover in Indonesia vary widely depending on the information sources. The Minister of State for Population and Environment of Indonesia (MOSPE) in 1992, using data from the Regional Physical Planning Programme for Transmigration (RePPProt 1990) and Dick (1991), gave an estimation of 118 million ha, excluding Java, Bali and the Lesser Sunda Islands. The Indonesian National Forest Inventory, utilizing 1986-1991 satellite data, 8 recorded that the total forested land covered 120.6 million ha or 69% of the total land area, excluding Java (GOI-FAO 1996 in Kartawinata et al. 2001). The Forest Land Use Allocation by consensus and the Provincial Spatial Plan harmonised their data up to April 1999 and estimated the area of about 121.1 million ha (Santoso 1999; Ismail 2000 in Kartawinata et al. 2001). LANDSAT data indicated that the forest area is 99.24 million ha, or 25% less than government statistics would suggest (Santoso 1999 in Kartawinata et al. 2001). However, the government recently claimed that the total forest area is 120.4 million ha (MOF 2005) and of this amount of forest 109.9 million ha has been classified into five major utilization classes (Table 1). Table 1. Forest area in Indonesia according to government classification Forest Land Class Conservation forest Protection forest Production forest Limited Production forest Converted Production forest Total Source: MOF 2005 Area (M ha) 23.2 29.1 27.7 16.2 13.7 109.9 These richest biological regions are now at critical levels due to the pressure of human activities, land use or resource management and this will deplete species diversity (Samsoedin & Mogea, 1989). 9 Logging Activities in Indonesia The History of Logging Timber exploitation has a long history in Kalimantan and was already important during Dutch colonial times (MacKinnon et al. 1990). Sewandono (1937 in Smits 1994) reported that there were Chinese wood exploitation companies which settled on islands near the coast of Sumatra and on Sumatra itself, not far from Singapore, starting their activities around 1880. Most of the forests logged were in peat swamps, with an average 70 m3/ha of marketable wood. The felled trees consisted of Dipterocarpaceae, Apocynaceae, Annonaceae and other families. The trees were felled manually and transported on round wood roads, covered with mud or pig fat to reduce friction. The same system was used in Kalimantan where it was called “kudakuda” logging. The wood was transported by ship to Singapore. In 1904 a number of timber concessions were granted in the upper Barito, Central Kalimantan and East Kalimantan especially Kutai (Potter 1988 in MacKinnon et al. 1990). By 1914 80% of timber floating down the Barito was from dipterocarps, while wood coming from the east coast was mainly ironwood (Eusideroxylon zwageri) (van Braam 1914 in MacKinnon et al. 1990). The large eastern tracts of dipterocarps were much more inaccessible and difficult to exploit, and several early attempts failed, in spite of heavy investment (Potter 1988 in MacKinnon et al. 1990). In 1924 Dutch colonial officers produced a forestry map for Central, South and East Kalimantan, which showed a forest cover of 94% in these areas. Figures for the extent of forested land published in 1929 were still the basis of giving timber concessions in 1975 (Hamzah 1978; Potter 1988 in MacKinnon et al. 1990). Around 10 1925, the Forest Service started a systematic exploration. Surveys were made of the standing volume using a line sampling method. Numerous herbarium specimens and wood samples were collected and identified and the Forest Research Institute prepared a list of scientific and local names of the trees (Hildebrand 1949-1954 in Smits 1994). In 1933, some Japanese companies started buying logs, especially the lighter Shorea species, near Tarakan, East Kalimantan. They bought the wood from local Dayaks and shipped it to Japan. The Dutch government made the companies work under The Nango Ringijo Kaisha (South Pacific Forest Exploitation Company) and gave them a forest concession near Sangkulirang Bay. A large amount of commercial wood especially Dipterocarpaceae could be harvested from this forest (Smits 1994). By the end of 1940, the company had established a fairly profitable enterprise employing 1,000 Indonesian and 100 Japanese labourers. About 100,000 m3 of logs were transported by railway to the log pond, from where they were shipped to Japan. An indigenous method with small dams to float logs through rivers was also used. In this concession a tractor was also tested, as well as high-lead logging with the use of light equipment. Because of the war the activities were stopped. In East Kalimantan near Nunukan and Sebatik a large concession called “Oost Borneo” was granted to Dutch companies i.e. KPM (Koninklijke Pakketvaart Maatschappij), NISHM (Nederlandsch Indische Steenkolen en Hout Maatschappy) and the local government of Bulungan as shareholders. Owing to the great financial losses the Dutch Government stopped this operation in 1941 (Kools 1949 in Smits 1994). During that period other important wood companies in East Kalimantan were the Borneo Busan Kaisha, in Samarinda, the firm H. Yukimoto in Balikpapan, and BPM (Bataviasche 11 Petrolum Maatschappiy), an oil company (Boer 1973 in Smits 1994). The latter felled large quantities of wood, mainly for its own supply. These companies and several other smaller ones obtained wood from their concessions through intermediary Chinese traders, not through organized logging activities of their own. The plan for exploitation of the Batu Licin forest in South Kalimantan for the abundant Dipterocarpaceae and iron wood could not be carried out because of the World War II. However, a great demand for wood during this war caused the installation of many mechanical sawmills such as those in Balikpapan, Samarinda and Nunukan in East Kalimantan. After the war these sawmills were taken over by the Forest Service. In 1958, Soepomo and Ardiwinata (in Smits 1994) pioneered experiments on mechanical logging in Mentawai near Balikpapan, East Kalimantan. Here the rail system was used to transport the logs to a log pond. Modern logging operations usually build road systems to enable them to do year round logging and transportation of the logs under all weather conditions. The approval of the law on forest investment in 1967 made logging operations very profitable. The exploitation was no longer limited to exiguous zones along the river banks, since heavy equipment could be used. After the law of foreign investment came into force, largescale exploitation of the forest started which led to the timber boom of the 1970s (Manning 1971 in Smits 1994). Up to the late 1970s, Indonesia’s natural forests were in relatively good condition. However, the 1970s was the era when the forest logging activities were started because the government needed a source of income for the development of the country which was known as REPELITA (Rencana Pembangunan Lima Tahun 12 or Five Year Development Plans). At that time, the government could not depend on oil where the price and limits to production were dictated by the OPEC, of which Indonesia is a member. Therefore, forests tended to replace oil as the major source of government income. The Development of Forest Regulation in Indonesia During the Dutch colonization period in 1895, the first forestry law (Bos Reglement I) was issued in recognition that serious forest degradation had occurred since the application of Cultuur Stelsel (forced cultivation practice of specific commercial crop plants) in 1830. This was followed in 1874 by Bos Reglement II which differentiated between teak forest and mixed forests containing many different species. In accordance with the policy of preserving protection forest, especially in West Java, Bos Reglement III was issued in 1897, and then further improvements were made as contained in Bos Reglement IV in 1913. Finally, in 1927 Bos Ordonnantie (Forestry Basic Regulation) was enacted, and complemented by Bos Verordening in 1932, with the primary aim of preserving forest for the sake of hydrology as well as socio-economic benefits (Samsoedin & Gintings 1997). When Indonesia gained independence in 1945, colonial regulations were still used to ensure the maintenance of forest and to avoid the lack of forest regulations. In 1945, the constitution was established and a clear statement in article 33 states that: ‘Land, water, and all kinds of national resources are controlled by the state and to be utilized for the maximum prosperity of the people’. In the new era (1966), before the introduction of enterprises (foreign or domestic) in forestry development, a Foresters Oath was declared in Kaliurang, Yogyakarta. This oath is considered as 13 the basic philosophy of Indonesian foresters. It was entitled ‘The Ideal Foundation for Foresters in Implementing Forestry’, and emphasized that forest utilization must be both optimal and sustainable. In 1967, Basic Forestry Law came into force. Among others, it states (article 6) that the government will initiate an overall plan in all regions to establish the provision, supply and utilization of the forest in a multipurpose and sustainable way (Samsoedin & Gintings 1997). To understand the legislation and policies affecting Indonesia’s forests it is important to identify the processes involved in the formation of logged forests. Article 33 of the 1945 Indonesian Constitution stipulates that the State controls forests and the utilization of the resources therein (Kartawinata et al. 2001). Commanded by this authority, the government of Indonesia controls, manages and administer the nation’s forest under the provisions of the 1967 Basic Forestry Law (Act 5) and the supporting rules and regulations. In 1999, a new Basic Forestry Law No. 41/1999 was enacted, which helps to strengthen forest conservation measures. Although they were recognized in the 1960 Agrarian Law, customary land rights (hak tanah adat) were not clearly acknowledged in the 1967 Basic Forestry Law. However, they were given more emphasis in the new Basic Forestry Law of 1999 (Kartawinata et al. 2001). In the period during the 1970s to 1990s, the government granted concessions to numerous logging companies, however, it failed to adequately enforce harvesting and replanting regulations. The logging companies have focused on maximizing their profits, while the government, benefiting from tax revenues, was responsible for reinvesting some of the revenues to assure adequate forest regeneration, watershed protection, provision of environmental services, and sustainability of traditional 14 social values in the concession. Since 1995, however, the government has empowered local people to take part in forest management and the establishment of social forestry programmes. This was supported by a decree in 1998 that authorized communities to undertake timber harvesting through cooperatives. Another similar programme is the Management of Forest Production by Traditional Societies, which involves non-government organizations (NGOs) working in partnership with local communities (Kartawinata et al. 2001). In 1989 and 1993, the Ministry of Forestry issued decrees stressing tighter control of logging, including pre-harvesting and post-harvesting inventories, diameter limits and post-harvesting treatments to ensure adequate regeneration. However, improvements were negligible, regeneration was poor, growing stocks decreased and environmental degradation continued (DFID & MOFEC 2000). Log production declined to about 25 million m3 in 1999 (Bureau of Planning 1999). The number of concessions and the area of concessions also declined from 538 in 1987 (Anonymous 1988) to 437 in 1998 (Djamaludin 1998) and 389 in 1999 (Kartidohardjo & Supriono 1999). The decrease in the number of concessions in 1998 and 1999 resulted from the revoking of the licenses of the non-performing concession holders and expired logging rights. In 2000, the number of the concessions in Indonesia was 270 within the total production forest area allocated for timber harvest of 28.15 million ha: in Sumatra 43 units (2.80 million ha), Kalimantan 127 units (10.76 million ha), Sulawesi 25 units (1.89 million ha), Maluku 24 units (1.84 million ha), West Nusa Tenggara 1 unit (0.03 million ha) and Papua 50 units (10.75 million ha) (Badan Planologi Kehutanan 2002 in Mukhtar 2005). 15 Illegal logging The impacts of deforestation, which is often initiated by logging, legal or illegal, on biodiversity became one of the most serious conservation concerns in Indonesia. Illegal logging is a major contributing factor to forest disturbance in Indonesia. The legal definition of illegal encompasses the practicing of illegal logging, processing, or trading (Mukhtar 2005). The scope of illegal exploitation encompasses: (1) Logging wholly or in part carried out by institutions or private entitities to whom it is not legitimised by an authorized institution; (2) Activities wholly or in part carried out by an institution or private entity outside the specifications he had gained permission for for lawfully operate in state-own forest. For example logging trees under an allowable diameter limit, logging trees of protected species, and logging over the permitted volume. Based on logging and conversion data since 1996, Mukhtar (2005) reported that deforestation in Indonesia reached 2 million ha/year. However, other sources put the rate of forest loss at nearly 3.6 million ha/year in 2002, or a quarter of the total global forest loss. Forest degradation in Indonesia has been caused by legal and illegal logging, the latter being the major cause of forest destruction. According WWFWorld Bank reports 78% of timber trading came from illegal logging (Greenpeace 2003 in Mukhtar 2005). Law and Regulations Related to Illegal Logging has been declared by the Government. There are: (1) Act No. 41/1999 regarding New Basic Forestry Law; (2) Act No.5/1990 regarding Natural Resource and its Ecosystem Conservation; (3) Act No. 23/1997 regarding Environmental Management; (4) Government regulation No. 16 28/1985 regarding Forest Protection; (5) Government regulation No. 34/2002 regarding Forest Land Use and Forest Planning, Forest Utilization and Forested Area Allocation; (6) Presidential instruction No. 5/2001 regarding the fight against illegal logging and illegal trade in the Leuser Ecosystem Area and in the Tanjung Putting National Park. Illegal logging organizations are quite similar to a “mafia” where each component has its own responsibilities that support each other. Production forest has suffered from illegal logging conducted by concessionaires or other agents. Conservation forest has also experienced illegal logging including protection forest, experimental forest, and national parks (Mukhtar 2005). Some technical factors that stimulate illegal logging practices are: accessibility to forest areas, imbalance in the supply–demand mechanism where supply from production forest is lower than the demand from the timber industry, labour availability, lack of a land border system, no post concession management, lack of personnel and forest patrols. Non-technical factors stimulating illegal logging are: unstable political situation; policy inconsistency; collusion, corruption and nepotism; revenue orientation of local government; euphoria of reformation and lack of law enforcement. Efforts have been made by the government such as the establishment of a task force in the field. There is also no follow up on various cases tackled during the operation against illegal logging. From 1,031 cases on the operation by the Ministry of Forestry in 2001, not even a single case was brought to court (ICEL-Indonesian Center for Environmental Law 2004). On a television program called “Halo Polisi 17 Plus” on the “Indosiar” channel conducted in July 2004, the Head of Information Division, Ministry of Forestry stated that combating a illegal logging became more difficult as the stakeholders themselves tended to be involved in the chain. Moreover, a high demand for the cheap timber that comes from illegal logging also makes the situation worse. For example, after the anti illegal logging operation, several local development projects stopped operating as material costs needed to be revised. Illegal logging has been one of the major concerns and priority policies of the Indonesian government. ICEL (2003) reported information that was released by the Ministry of Forestry through a press conference on January 15, 2003. It gave the picture of the actual condition in the field of tropical forest degradation and illegal logging, as follows: (a) Timber smuggling from Papua, East Borneo, West Borneo, Central Borneo, Central Sulawesi, Riau Sumatra, Nangroe Aceh Darusalam, North Sumatra and Jambi Sumatra to Malaysia, China, Vietnam, India reached 10 million m3/year. Papua alone contributed to 600,000 m3/month with a total loss of about Rp 600 billlion/month or about USD 60 million/month; (b) Illegal trading in the North Coastal Area reached 500,000 m3/month equivalent to 500-700 ships of timber with the total financial loss amounted to Rp 450 billlion/month or about USD 45 million/month; (c) Tremendous forest degradation occurred at the border between Indonesia and Malaysia. In East Borneo degradation reached 150,000 ha/year and in West Borneo 250,000 ha/year. 18 The Impact of Logging The response of vegetation to logging In harvested forests, gaps are generally larger than in primary forest, with soils compacted and churned up by heavy machinery. Thus, advanced regeneration is often destroyed. In such cases, pioneer vegetation germinating from seed dominates initial regrowth (Denslow et al. 1990; Pelissier et al. 1998; Silva et al. 1996; Swaine & Hall 1983). The large canopy openings, initially in the form of generally bare areas, can cover up to 14% to 50% of the ground, and are invaded by lightdemanding, fast growing and light-wood pioneer species of little commercial value (Fox 1969, Meijer 1970, Tinal & Palinewen 1978, Abdulhadi et al. 1981 in Kartawinata et al. 2001). Canopy gap dynamics has largely dominated the discussions about rainforest dynamics (Brokaw 1987; Brandani et al. 1988; Campbell 1991; Denslow 1987; Whitmore 1997; Whitmore & Brown 1996). In most circumstances, natural gaps have little decisive influence over the overall composition and richness of natural forests at the large-scale (Brown & Jennings 1998; Hubbell et al. 1999). These gaps, which are generally relatively small and quickly closed by advanced regeneration, are important for species that thrive on disturbance. For example, non-pioneer-light demanders are species that grow under the shade, but need increased light to reach the canopy include most dipterocarps (Hawthorne et al. 1998). Experimental evidence has shown this for some dipterocarp species which better in gaps than in the shade of young secondary forest species (Nguyen-The et al. 1998). It has also been shown that seedlings of timber species like Shorea leprosula and Dryobalanops lanceolata grew faster in logged forests of different ages than in primary forests (Howlett & Davidson 1996, Oorschot et al. 19 1996 in Kartawinata et al. 2001). Shade-bearers, on the other hand, generally decline when gaps are opened up e.g. Eusideroxylon zwageri, which grows without additional light in a closed forest, or for example, as has been shown experimentally for various Dipterocarpus spp. and Agathis damara (Oorschot et al. 1996 in Kartawinata et al. 2001). Excessive canopy opening could lead to regeneration problems, especially in exposed conditions where soils dry out rapidly and nutrients are lost through run-off. Herbaceous or shrubby vegetation associated with severe opening could interfere with regeneration and impede forest recovery (Epp 1987; Hawthorne 1993, 1994 in Kartawinata et al. 2001). As the canopy gaps resulting from logging are much larger than most natural tree-fall gaps in primary forests, the micro-climatic changes in the gaps are more drastic and can stress organisms adapted to the less severe regime of natural disturbances. Changes in light, humidity, temperature and wind could influence the growth of residual trees, saplings and seedlings (Whitmore & Wong 1958, Soekotjo and Thojib 1978 in Kartawinata et al. 2001). A high rate of evapo-transpiration leads to soil desiccation, which might in turn prevent seed germination and result in the death of existing seedlings. Crown dieback, sun-scalding of trunks and branches, water stress and insect attacks might also occur, leading to the death of residual trees (Blanche 1978, Ewel & Conde 1980 in Kartawinata et al. 2001). Brearley et al. (2004) reported that although the basal area, tree height and biomass of old secondary forest approached the primary forest, there were still major diffrences in the floristic and species diversity. Furthermore, in the stands with the 20 lowest remaining basal area, the establishment and growth of dipterocarp was strongly limited by the strong regeneration of pioneer species (Sist, et al. 2002). Succession in lowland dipterocarp rain forest may therefore depend on the successional state of the primary forest when it is logged. Logging not only disturb the forest stucture like any other extreme stochastic event, but interferes with the natural succesion (Bischoff et al. 2005). The Response of Wildlife to Logging Exploitation of natural forests modifies the ecosystem, resulting in some changes in the wildlife. However, management choices and operational practices can greatly influence the nature and degree of these changes. Since most tropical forests are considered poorly managed, not just for biodiversity conservation but also for productive exploitation (Putz et al. 2000, 2001a), there is much room for improvement (Johns 1997; Sheil & van Heist 2000). “It is difficult to determine exactly how logging affects wildlife. The impacts depend on the species, site conditions and other variables, but declining population is the most noticeable change” (Meijaard et al. 2005). Declines are often due to: (a) overcrowding in a limited remaining habitat; (b) decrease in food supply; (c) loss of key microhabitats, and changes in microclimate and microhabitat; (d) juvenile and adult mortalities due to increased predation, hunting, competition, or forage loss; (e) increased juvenile mortality through higher predation levels; (f) more open, disturbed habitats favouring introduced and native predators; (g) invasive species spreading and sharpening the competition for reduced resources; (h) reductions in critical resources, such as food, shelter, courtship and nesting sites; (i) increased morbidity 21 due to new diseases and declining population health; (j) increased hunting pressure; and (k) tree felling, skidding, and other timber extraction activities directly killing or fatally injuring individual animals. In reality, many changes in diversity and abundance occur simultaneously. The changes can then affect other species or aspects of the whole biological community. Ecological studies usually allow us to separate the possibilities, identify the mechanisms responsible for adverse effects of logging, and determine how these vary by site, taxon, and form of intervention (Meijaard et al. 2005). Several studies reported that effects from logging could extend considerable distances into surrounding undisturbed forests over the long-term (Bierregaard et al. 2001). The effects created specific microclimates that in turn affected wildlife species via declines in seed production, flowering and fruiting (Laurance 2001; Rankin-De Merona & Hutchings 2001). The transformation of primary or secondary forests seriously affects some bird species that require a large area of relatively undisturbed forest to maintain their breeding populations or mature trees for their nesting (Mclure 1968, Medway & Wells 1971 in Kartawinata et al. 2001). However, colonizing birds prefer to feed in disturbed forest and their numbers increased in secondary forest (Johns 1985). Price (1980) reported that insects were severely affected by the nature and intensity of logging, since they tended to occupy more specific environments. Even a single tree provides insects with a large number of distinct habitats. Certain groups of insects have a close and interdependent relationship with certain tree species, hence the removal of the insects or the tree species impinges on the life of the others (Ashton 1989 in Kartawinata et al. 2001). 22 Selective logging has negative impacts on the populations of arboreal mammals, because it alters their habitat and decreases food supply (Kartawinata et al. 2001). Although to some extent, the situation for browsing animals may be improved by the luxuriant secondary forest regeneration (Whitmore 1984), many of the mammals in Indonesia are in a critical situation. The examples are the two species of orang utan Pongo abelii in Sumatra and P. pygmaeus in Kalimantan, which are known globally as flagship species, both seriously threatened by habitat loss and hunting (Whitten et al. 2004). The Response of Soils to Logging Skidding, hauling and yarding of logs can disturb the ground surface by as much as 30% of the logged area (Fox 1969, Abdulhadi et al. 1981). The amount of disturbance to soil is determined by the logging intensity and technique, including the size and number of the machines used, and is influenced by the nature of soils and the topography. Along compacted roads and skid trails, water infiltration is reduced (Abdulhadi et al. 1981) and drains are often blocked. This matter could lead to an increase in surface runoff and subsequent erosion (Burgess 1971, Liew 1974 in Kartawinata et al. 2001). In canopy gaps, the quantity of rainwater leaching the soil surface increases and the complete removal of ground vegetation, especially on clay soils, leads to the development of a dense rill network on slopes. Sediment load in rivers and streams in logged forests during low-flow periods can be two to three times higher than in primary forests; during storm flows, sediment loads can be as much as 20 times higher, depending on forest conditions (Liew 1974 in Kartawinata et al. 2001). 23 Logging activities can affect the physical and chemical characteristics of the soil. Some studies have confirmed that timber harvesting often leads to topsoil losses (where most biologically available nutrients are found), erosion, and accelerated leaching of nutrients (Douglas et al. 1993). An additional loss of nutrients occurrs when biomass is removed – as in trees extracted during logging. Calcium, for example, illustrates the wider complexity of changing nutrient stocks and flows in disturbed forests. Calcium is commonly considered as a key mineral in the development of many vertebrate species (O’Brien 1998) and is likely to be a key factor causing the low abundance of many vertebrates in Malinau. In Kalimantan, forest clearance has been claimed to deplete calcium (Nykvist 1998). Losses of calcium could be also accelerated by increase of ground temperature when forests were cleared (Innes 1993). Fungi associated with decomposing woody litter might accumulate calcium and phosphorus making it less available temporarily to other organisms (also magnesium, manganese, copper, iron, nitrogen) (Coleman & Crossley 2003; Kurek 2002). Changes in nutrient availability, including calcium depletion and nitrogen retention, would have subtle, long-term effects on forest growth and composition. Studies on erosion and its relation to logging of humid tropical forests indicated that erosion does increase during and after logging (Burgess 1971; Anderson 1972; Liew 1974; Siregar 2004). Some researchers have indicated an alarming increase of soil loss after logging. Anderson (1972) stated that losses from one ha in Brazil increased from two tons per year before logging to 34 tons per year after logging. Other physical effects on soils included loss of structure and compaction (Basuki & Sheil 2002). Undisturbed forest soils tend to have higher 24 values for crumb stability and porosity and lower values for bulk density than soils that have been cleared (Siregar 2004). Opening primary forest could reduce soil organic matter and in turn reduce the cation exchange capacity, which is largely controlled by colloidal organic matter derived from the above-ground biomass. Litter production is higher and the rate of litter decomposition is slower in primary forest compared to logged forests (Ewel & Conde 1980), which is caused by lower soil temperature in the primary forest. Mycorrhizal fungi, on which many tropical forest trees (especially dipterocarps) depend for facilitating their nutrient uptake, a severely affected by even slight increases in soil temperature, soil compaction and soil desiccation (Smits 1983). The objectives of the study The study was undertaken in a lowland evergreen rain forest, dominated by dipterocarps in the Bulungan Research Forest, East Kalimantan, Indonesia (for site description see Chapter 2) in 2002-2005 to study the impact of logging on forest structure, regeneration, and soil properties. The study compared: 1) tree species composition, stem density, basal area, and coarse wood debris of four replicate 1-ha plots, from forest previously unlogged (PF), or logged with 30 year regeneration (LF-30), logged with 10 year regeneration (LF-10), and logged with 5 year regeneration (LF-5; Chapter 3); 2) the regeneration of seedlings and saplings across logging treatments (Chapter 4); 3) soil properties between unlogged and logged forest plots, and soil fertility and suitability for land conversion to agriculture (Chapter 5). 25 In addition, an assessment of the application of the Indonesian Selective Cutting and Replanting (TPTI) System was made (Chapters 3 and 4). The hypotheses of the study 1) Do tree species composition, stem density, basal area, and coarse wood debris change after logging ? (Chapter 3) 2) Can timber be harvested sustainably from lowland tropical forest in Indonesia using the Indonesian Selective Cutting and Replanting (TPTI) system ? (Chapter 3) 3) Is the number of seedlings and saplings across logging treatments similar to the number of seedlings and saplings in primary forest ? (Chapter 4) 4) Do soil physical properties and soil chemical properties change after logging ? (Chapter 5) 5) Are soil fertility and soil sustainability maintained following land conversion to agriculture ? (Chapter 5) 26 CHAPTER 2. STUDY SITE AND ITS PHYSICAL ENVIRONMENT East Kalimantan is known as a province with many economic activities, including logging, both legal and illegal. The study area is one of the major research sites used by the Centre for International Forest Research (CIFOR) and is known as the Bulungan Research Forest (BRF), or Malinau Research Forest, located in the district of Malinau, East Kalimantan, Indonesia. The BRF extends from 2o 45’ 12’’ N; 115o 48’ 8’’ E to 3o 21’ 4’’ N; 116o 34’ 3’’ E (Figure 1). The area is 321,000 ha and is adjacent to the Kayan Mentarang National Park. BRF has several concession holders, including P.T. INHUTANI I and P.T. INHUTANI II where this study was conducted. STUDY SITE The study areas are located in the timber concession area (ca 48,000 ha) of Perseroan Terbatas (P.T.) Inhutani II and includes the ex-concession area of P.T. Inhutani I, about 8 km from P.T. Inhutani II main base camp, where the primary forest was logged in 1974 (Figures 2 - 4). The logging techniques used by P.T. Inhutani I and II were conventional as defined in the Indonesian Selective Cutting and Replanting System (TPTI). Under this system trees with dbh > 50 cm are harvested (See Appendix 12). Forest condition in PF is shown in Figures 5. Figures 6 - 8 show the accessibility of the areas where the plots were located. 27 Brunei Tarakan Bontang Samarinda Balikpapan Indonesia Figure 1. Location of the Bulungan Research Forest, Malinau, East Kalimantan, Indonesia. Sources: Peta Administrasi Propinsi Kalimantan Timur, Scale 1: 1,1250,000 BAPPEDA (Land Resources Evaluation Project), 1999; Peta Administrasi dan Obyek Wisata, Kabupaten Bulungan, Scale 1: 800,000, Bappeda Tingkat II, Kabupaten Bulungan, Tanjung Selor; Landsat TM Path 117 Row 5820-04-1991; Landsat TM Path 118 Row 5808-01-1988; LandsatTM Path 117 Row 5822-05-1997 (in Machfudh, 2002). 28 ! " # $% & SLOPES : 0-8 % 8.1-15 % 15.1-25 % 25.1-40 % >40% Figure 2. Slope distribution and plot locations in the study area. Sources: Digital Elevation Model, 2000; Radarsat January, 2000; Landsat TM Path 117 Row 58 2004-1991; Landsat TM Path 118 Row 58 08-01-1998; Landsat TM Path 117 Row 58 22-051997 (in Machfudh, 2002). 29 Bengalun River P.T. Inhutani II main base camp 30-yr old logged forest (LF-30) (253 ha) Malinau River Figure 3. Satellite image of 30-yr old logged forest (LF-30), 8 km from P.T. Inhutani II main base camp. Sources: Landsat TM-5 image of the Bulungan Research Forest. 30 Legend : Road River Contour Point of Measurement Camp Figure 4. Thirty-year old logged forest (LF-30) plots in the concession area of P.T. Inhutani I, Malinau, East Kalimantan. Sources: Peta Areal Wana Wisata Lokasi Km. 8 Tg. Lapang Tidung Pala Propinsi Kalimantan Timur, Scale 1 : 2.500, PT. Inhutani I Administratur. 31 Figure 5. Primary forest condition in the Bulungan Research Forest, East Kalimantan. 32 Figure 6. Large gap in logged forest in the Bulungan Research Forest, East Kalimantan. 33 Figure 7. Accessibility to the primary forest plots. The above photos showed a broken bridge due to sudden flooding a night before. 34 Figure 8. Accessibility to plot location in the Bulungan Research Forest with emergent Koompassia excelsa (white trunk) below. 35 TOPOGRAPHY The topography is deeply eroded with a dense network of steep ridges and drainage gullies. Elevation at the logging site ranges from 100 to 300 m above sea level (asl). Overall, 84% of BRF is mountainous with an altitude range from 100 m. asl to almost 2000 m asl (Machfudh, 2002). The slopes in most of the BRF area range between 25% and 40%. The condition is also similar in the area of P.T. Inhutani II Malinau where 40% of the area consists of slopes (Table 2). Table 2. Slope distribution in the Bulungan Research Forest and P.T. Inhutani II concession area, East Kalimantan. Slope Class Bulungan Research Forest (%) (%) 0-8 22.23 8.1-15 25.06 15.1-25 0.23 25.1-40 39.97 >40 12.50 Source: Machfudh 2002 P.T. Inhutani II (%) 9.80 13.44 30.04 37.74 8.08 GEOLOGY The geology of the area is highly diverse (Table 3 and Figure 9). Formations include volcanic, metamorphic and tertiary and quaternary sedimentary rocks (including coal, limestone, sandstones and siltstones, etc.), and extensive alluvial deposits (Machfudh 2002). 36 Table 3. Distribution of geological groups in the Bulungan Research Forest, East Kalimantan. No 1 2 3 4 5 6 7 8 9 Rock Formation Lurah Formation Embaluh Group Mentarang Formation Embaluh Group Paking Formation Sembakung Formation Metulang Volcanic Langap Formation Jelai Volcanic Alluvium Plug Dyke Percentage (%) 16.47 54.41 0.29 0.29 9.12 2.94 7.06 < 0.01 < 0.01 Source: Geological Research and Development Centre 1995 (in Machfudh, 2002). ! ! " " # $ % & ! # ' ( ( )* # + ' ( ( , (# Figure 9. Geology of Bulungan Research Forest, East Kalimantan. Sources: Geological Research and Development Center (1995) Geological Map sheets of Malinau and Longbia (Napaku), Kalimantan. Scale 1: 250,000. GRDC, Bandung (in Machfudh, 2002). 37 SOILS The soils in the Bulungan Research Forest range from strongly weathered and acid ultisols to young inceptisols. Most of the Bulungan Research Forest area is dominated by three soil groups of the USDA soil classification: (1) Typic Tropaquepts (2) Typic Kanhapludults and (3) Dystropeptic Tropadults (Figure 10; Machfudh 2002, REPPProT 1978). * . / 0 * * * * -. / 0 1 . / -. / 0 1 . / 1 . / 0 1 . / 0 -. / 1 . / 0 1 . / 1 1 . / 1 . / 0 -. / Figure 10. Soil type distribution in the Bulungan Research Forest, East Kalimantan. Source: Land system and land suitability map of Malinau Sheet 1819. Series RePPProt 1987. Land system and land suitability map of Malinau Sheet 1818. Series RePPProt 1987. ( in Machfudh, 2002). 38 CLIMATE The climate of the study area is humid, belonging to rainfall type A according to Schmidt and Ferguson (1951) with a dry season less than two months and the wet season more than nine months, typically from April to December. Precipitation For Malinau District the mean annual rainfall was 3,828 mm/year between 1922 and 1980 and the number of rain days was 143 days/year (Table 4). Meteorological data for the BRF are available from the Binhut camp of P.T. Inhutani II at Km 74 and Seturan station of CIFOR at Km 90 for 1999-2002 (Figure 11). The mean number of rainy days and average precipitation (mm/month) at the study area ranged from 7 to 25 and 102 to 525 respectively while in Malinau district these ranged from 2 to 25 and 30 to 379 respectively. 39 Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual MONTHLY RAINFALL MEAN 230 191 251 270 360 332 345 335 368 369 379 299 3828 MAXIMUM 487 472 470 581 711 573 834 802 671 881 977 681 6237 MINIMUM 67 40 52 95 131 138 147 90 37 60 30 90 2428 SD CV MAXIMUM 100 112 114 150 134 109 147 177 136 182 172 130 822 0.4 126 0.6 188 0.5 215 0.6 160 0.4 170 0.3 152 0.4 188 0.53 185 0.4 205 0.49 155 0.45 138 0.44 174 0.21 PERIOD 1 (1-10) 78 66 72 95 115 114 115 109 141 126 128 106 2 (11-20) 82 77 94 90 111 85 97 119 110 133 137 115 3 (21-end) 70 50 85 84 133 133 132 108 116 109 114 78 MEAN 12 9 11 11 12 12 12 12 13 13 13 12 143 MAXIMUM 20 18 19 20 19 21 18 19 25 20 21 19 184 MINIMUM 5 2 3 2 5 5 4 3 3 6 5 6 85 SD 4 3 4 4 4 4 3 4 4 4 4 3 24 CV 0.3 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 10% 359 330 398 458 535 475 535 559 546 601 600 467 4911 20% 299 260 329 365 457 413 447 449 466 490 496 389 4473 50% 211 165 229 236 337 315 317 296 345 331 345 274 3743 80% 149 104 159 153 249 241 225 195 256 224 240 193 3131 90% 124 82 131 122 213 209 188 157 218 182 198 161 2852 95% 107 68 112 101 187 187 162 131 192 154 170 139 2642 98% 90 54 94 82 161 164 137 107 166 127 142 117 2422 MEAN 10 11 9 10 8 7 8 8 8 8 8 8 SD 5 5 5 4 4 3 3 4 3 5 4 3 1 in 2 9 10 8 9 7 6 7 7 7 7 7 7 1 in 5 13 14 12 13 11 9 10 11 10 11 11 10 1 in 10 16 17 15 15 13 11 12 13 12 14 13 12 1 in 20 19 20 18 17 16 13 14 16 14 17 16 14 1 in 50 24 24 23 20 19 15 16 19 16 22 19 16 34 36 36 37 34 34 35 36 36 35 37 36 IN ONE DAY DRY DAYS RETURN PERIOD DROUGHT DURATION ANALYSIS EXCEEDENCE PROBABILITY RAINDAYS Jan 10 DAYS MEANS Table 4. Rainfall analysis summary at the Malinau District Meteorological Station, East Kalimantan in period 1922 – 1980. No. of records Source: Dinas PekerjaanUmum KalimantanTimur. (1982). Rainfall records, East Kalimantan. SD, standard deviation; CV, coefficient of variation. 40 29 700 30 600 25 20 400 15 300 Rain day Precipitation (mm) 500 10 200 5 100 0 0 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 1999 2000 2001 Month 2002 5 7 9 11 2003 Figure 11. Mean monthly precipitation (mm) recorded at Seturan station of CIFOR, 1999–2003 in the Bulungan Reseacrh Forest, East Kalimantan. Note: Monthly average precipitation and the number of rainy days in 2001 were the average taken from 2 stations, namely Seturan Station of CIFOR in km 90 and Binhut camp of PT Inhutani II in km 74. Source: Seturan station of CIFOR 2001-2003 and Binhut camp of PT Inhutani II 1999 – 2001. Temperature and humidity The highest temperature (340C) in the Inhutani II concession area occurred on cleared land and the lowest temperature recorded (23.50C) was measured in unlogged forest. Relative humidity ranged from 75% to 98%. Seturan station of CIFOR (2000-2003) where most of my study was done recorded a highest temperature of 38.00C and the lowest of 22.20C (Table 5). The temperature in Bulungan Research Forest Station was relatively constant throughout the year (Figure 12). The daily average temperature 41 ranged from 24.10C (January) – 27.20C (May) and the maximum temperature ranged from 29.20C (January) – 32.70C (September). Table 5. Temperature and relative humidity recorded in Bulungan Research Forest Station 2000 – 2003. 2000 Month H (%) T 0 ( C) 2001 T Max 0 ( C) H (%) T 0 ( C) 2002 T Max 0 ( C) H (%) T 0 ( C) 2003 T Max 0 ( C) H (%) T 0 ( C) T Max (0C) January 86.3 25.0 33.0 89.0 26.0 33.0 82.8 23.3 26.3 79.9 22.2 24.6 February 86.0 25.3 33.0 87.7 26.0 31.0 90.4 25.6 29.0 90.2 25.3 29.1 March 85.3 25.5 35.0 88.0 26.3 33.0 89.4 26.3 29.6 89.9 26.1 29.5 April 86.0 26.5 33.0 86.3 26.7 33.0 86.8 26.6 30.0 87.9 26.7 30.7 May 80.5 27.3 34.0 86.7 27.3 32.0 87.6 26.8 30.4 86.2 27.3 33.5 June 85.7 26.3 33.0 85.7 27.0 33.0 89.4 26.7 30.0 86.7 26.6 33.4 July 82.0 26.5 33.0 86.3 24.0 31.0 87.7 27.0 30.1 88.4 25.7 29.7 August 82.5 27.0 33.0 85.3 27.3 34.0 87.9 26.4 30.1 88.9 26.4 30.1 September 83.0 26.6 38.0 82.7 27.3 33.0 90.0 25.9 29.8 89.9 25.0 30.1 October 84.3 27.2 35.0 89.0 26.7 31.0 89.5 26.4 30.0 91.2 22.7 28.2 November 85.7 26.7 32.0 90.0 27.0 32.0 89.7 26.6 29.9 89.1 26.3 31.8 December 88.7 26.3 32.0 87.0 26.3 31.0 91.3 26.2 29.4 83.9 23.0 26.7 Mean 84.7 26.3 33.0 87.0 26.8 32.3 88.6 26.1 29.6 87.7 25.3 29.8 Source: Seturan station of CIFOR. H, relative humidity; T, mean temperature; T max, mean of temperature maximum. 33.0 32.0 o Temperature ( C) 31.0 30.0 29.0 28.0 27.0 26.0 25.0 24.0 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Month 42 Figure 12. Maximum ( ) and average ( ) temperature at Seturan station of CIFOR in the Bulungan Research Forest, East Kalimantan. Relative humidity in the area was high. The most humid months were October and December with an average relative humidity of 91.2% and 91.3% respectively. The least humid months were January and May with 79.9% and 80.5% relative humidity respectively (Figure 13). 100.0 95.0 90.0 2000 2001 85.0 2002 2003 80.0 75.0 70.0 J an Feb M ar A pr M ay J un J ul A ug Sep Oct Nov Dec M o nt hs Figure 13. Monthly relative humidity between 2000-2003 in Seturan station of CIFOR in the Bulungan Research Forest, East Kalimantan. Vegetation types The BRF is covered entirely by tropical rain forest. This area is now become one of the remaining frontier forest in Asia (Machfudh 2002). According to Landsat TM-5 imagery taken in 1997 (Figure 14), the BRF consist of primary forest (97.84%), secondary forest (2.21%) and opened lands (0.04%). The floristic zones of the area can be seen in Figure 15. The BRF is divided into four forest types, namely lowland dipterocarp forest, sub-montane forest, riparian forest and alluvial forest. Dominant species with DBH ≥ 10 cm is from the family of Dipterocarpaceae (Machfudh 2002). According to O’Brien et al. (1998 in Machfudh 2002) 60% of the tree families and 36% of the tree genera known in Kalimantan occurred in BRF. 43 Figure 14. Landsat TM-5 image of the Bulungan Research Forest. 2 * ( 3 4 * * ( ( Figure 15. Floristic zones in the Bulungan Research Forest. 44 Population densities The BRF area especially the Malinau watershed is inhabited by various ethnic groups, such as the Punan, Kenyah, Merap, Abai and Putuk with the largest one is the Punan. According to Levang et al. (2002), the Punan is the largest remaining population of hunter gatherers in Asia. Other groups such Moslem Dayak, including the minority Javanese and Madurese transmigrants, mostly live near the district of Malinau. In general, those groups are known as forest dependent people (Machfudh 2002; Meijaard et al. 2005) The population density in Malinau District area is low. Only about 5 – 6000 individuals are distributed over an area of ca. 300,000 ha or about 2 individuals per km2 (Machfudh 2002). The forest area was used by indigenous Dayak communities who practiced shifting cultivation and harvested non-timber forest products (Kartawinata et al. 2002) and has very high values to many people living and around including communities in Malinau watershed. However, since the beginning of commercial timber exploitation in the late 1960’s, those values are disturbed even up to the present. Four decades after timber exploitation began, forest remains one of the major factors for foreign exchange for the district and central governments. There are so many negative impacts due to forest exploitation ecologically and economically. Local people who are known as a forest dependent are not able to practice their traditional activities any more as they lose access to the forest and forest resources. 45 Forest products provide subsistence goods (staple food, vegetables, fruits, game and fish), cash income (eagle wood, bezoars stone, rattan, resin and gum), building materials and medicinal plants. Considering the importance of forests to local people, we can easily imagine that local people would suffer most from forest exploitation. Logging activities The forest in BRF was in a good condition up to the late of 1960s when commercial logging were started around Malinau sub-district (Inhutani I staff, 1999 pers.comm.). The Indonesian Selective Cutting and Replanting system has been implemented from the beginning of logging activity in BRF, where all dipterocarp species with a diameter at breast height (dbh) of over than 50 or 60 cm can be harvested with a polycyclic feeling schedule of 35 years. In the highly productive dipterocarp forests, harvesting intensity commonly exceeds 100 m3/ha-1 or more than 10 trees/ha-1 (Sist et al. 2002). In extreme conditions, extracted timber volume in BRF reached 150 m3/ha (Priyadi 2005 pers.comm). According to Sist et al. (2002), the maximum harvesting intensity sufficient to sustain forest condition in BRF is 80 m3/ha. 46 CHAPTER 3. FLORISTIC COMPOSITION AND FOREST STRUCTURE IN UNLOGGED AND LOGGED STANDS INTRODUCTION Selective logging typically results in the destruction of about 50% of all trees present before logging (Johns 1992, Whitmore 1984), but this can vary greatly with the stocking density of commercially viable timber species, which is, in turn, dependent upon the botanical composition of the trees, current economic conditions and the methods of exploitation. Logging may create large gaps which allow the development of early succession vegetation and eventually influence the floristic composition and stand structure (Whitmore 1984). After more than 30 years of industrial logging activities in Indonesia, relatively few studies are available on the tree species composition in permanent sample plots (PSP), especially in Kalimantan. Long-term studies of species composition and turnover, using permanent sample plots in tropical rain forest are scarce because they are time consuming, difficult to maintain and therefore very expensive (Sheil 1998). Some of the world’s longest-term PSPs such as Budongo Forest in Uganda (Sheil 1995) or in Pasoh, Malaysia (Appanah 1998) have provided long-term data from both primary and treated tropical forest. Data from PSPs in Kolombangara, Solomon Islands are another good example, where forest dynamics studies spanned 34 years in 1998 (Burslem et al. 1998). Long-term studies, using PSPs are particularly important in Indonesia. PSPs, established in sites where their 47 maintenance can be ensured, will provide much needed information and play a major role both for ecological research and forest management (Sheil 1995). This chapter reports tree diversity, frequency and density based on data collected from 16 1-ha PSPs. The four sites had different ages of regrowth after logging, four plots at each site, namely 5, 10 and 30 years after logging as well as 4 plots in unlogged forest for control, as described in Chapter 2. The main objectives of the study were to evaluate the: • existing condition of trees in logged and unlogged forest; • use of the Indonesian Selective Cutting and Replanting System as applied in the BRF; and • sustainability of timber harvest in the BRF in general from lowland tropical forest in Indonesia. METHODS Sampling design and description of study plots A replicated, stratified-random sampling of primary forest and sites logged at various times in the past was used. The method of establishing all PSPs in the study areas was based on the techniques proposed by Dallmeier (1992), Alder & Synnott (1992) and Sheil (1998). Six blocks of about 100 ha each were selected after examining the inventory of Residual Plants Maps of P.T. Inhutani I and II. The information on the map was cross-checked with senior staff of P.T. Inhutani I and II who worked on the site before. Blocks 55, 56 and 64 are in primary forest (PF), 85 km from the P.T. Inhutani II main base camp; the forest logged five years 48 before the study, in 1998/1999, (LF-5) is 77 km, the forest logged 10 years before study, in 1992/1993, (LF-10) is 57 km, and the forest logged 30 years before study, in 1974/1975, (LF-30) is 8 km from P.T. Inhutani II main base camp (Table 6). All sites belong to P.T. Inhutani II, with the exception of LF-30, which belongs to P.T. Inhutani I. Within the blocks of ca. 100 ha, the position of the 1-ha plots was taken at random. In all, 16 PSP were established for this study, four in each of PF, LF-5, LF-10, and LF-30 (Table 6). Each plot was subdivided into 25 20 m x 20 m sub-plots. The centre of every plot (sub-plot 13) was marked with a 2-m long iron wood stake (10 cm x 10 cm in cross section) which was driven 1 m deep into the soil, with the aerial part painted white. The plot corners were clearly marked with 50 cm painted PVC and metal pipe (2.54 cm or 1 inch in diameter) stakes with a tag. Additional PVC stakes were located at every 20 m interval along each side. Table 6. Permanent sample plots with plot treatment in the Bulungan Research Forest, East Kalimantan, Indonesia 2002-2005. Code LF-30 PF LF-10 LF-5 Plot No 01 02 03 04 01 02 03 04 01 02 03 04 01 02 03 Description 30-yr old logged forest (Block 22); PT Inhutani I; 03O 27.607’ N to 116O 35.287’ E Primary forest (Blocks 55,56, 64); PT Inhutani II; 02O 58.527’ N to 116O 30.045’ E; 02O 57.957’ N to 116O 30.555’ E 10-yr old logged forest (Block 70,72); P.T. Inhutani II ; 03O 07.750’ N to 116O 29.001’ E 5-yr old logged forest (Blocks 39, 40); P.T. Inhutani II ; 03O 00.502’ N to 116O 30.572’ E ; 03O 00.327’ N to 49 Date of recording Feb-Mar 2002 and Sep-Dec 2002 Apr 2002 - Treatment Heavily logged in 1974/75, mainly for dipterocarp species Apr 2003 Dipterocarp-rich primary forest, planned to be logged in 2003 Heavily logged in 1992/93, mainly for dipterocarp species May 2003 Jan 2004 Heavily logged in 1998/99, mainly for dipterocarp species Aug 2002 Jan 2003 - Code Plot Description No O 04 116 30.604’ E Date of recording Treatment Trees with a diameter ≥ 10 cm dbh were recorded from every 20 m x 20 m sub-plot. All recorded trees were labelled with aluminium tags and aluminum nails at 140 cm above ground (Figure 16). Girth was measured 10 cm below the nail except where buttresses distorted the trunk; on such trees girth was measured 30 cm above the protrusion and a second nail marked 10 cm above the point of measurement. For multiple stemmed trees all trunks ≥ 10 cm dbh were measured and the points of measurement marked with a nail as described above. Only the largest trunk was tagged. Tree height was measured by using a clinometer. The horizontal distance (X) from the base of the trees to the point of measurement was at least 20 m. Two clinometer readings were taken, one from point of measurement (POM) to the tree base (A1) and another to the top of the crown (A2). Tree height was calculated using the formula: tree height (m) = X (tangent A1 + tangent A2) Tree circumference was measured by a tape and values were converted to dbh values. Identification and determination of species Field identification of tree species was made by observation using binoculars (Figure 17). Specimens were collected from each tree either by using a 50 catapult or by tree climbers (Figures 17 and 18). The specimens were air dried in the field and were identified at the Herbarium Bogoriense, Biological Research and Development Center, Indonesian Institute of Sciences, Bogor, and the Wanariset Herbarium, Forest Research Institute, Samarinda, East Kalimantan. 51 Figure 16. Making of tag (above) and tagged tree 52 Figure 17. Tree observation using binoculars (above); taking of leaf using catapult 53 Figure 18. Modern climber equipment (above); and tree identification in the field 54 For the identification keys found in various Floras, Manuals and Revisions including Index Kewensis, Checklist of Generic Names (van Steenis 1987), Tree Flora of Indonesia (Checklist by Whitmore et al. 1990), Tree Flora of Malaya and Lists of collections stored in Wanariset Herbarium (Sidiyasa et al. 1999) were used and determinations were checked against herbarium specimens lodged in the Herbarium Bogoriense and Wanariset Herbarium. Species-area curves In order to determine whether the species recorded in a 1-ha plot represented the number of species in the area studied, a species-area curve was constructed. Species data from the subplots within each hectare were systematically added to calculate a mean species/area curve for 1-ha with standard deviations. EstimateS calculates mean from all possible permutations of samples. Basal areas The basal area of trees was calculated as: 2 BA = dbh π 2 where BA is basal area, is constant (3.14) and dbh is diameter at breast height. Species diversity and equitability indices The species diversities among plots were compared by using the Shannon-Weiner diversity index (H) according to the equation (Clifford & Stephenson 1975): s pi ln pi H =− i =1 55 where s is the number of species, pi is the proportion of the individuals of the ith species to the total number of stems and ln is log 10 base. The equitability among plots were compared using the equation: E = H/Hmax where E is equitability, H is Shannon’s diversity index and Hmax equals ln (total number of species in H). Statistical analyses The statistical significance of differences among treatments means was assessed using one-way analyses of variance (ANOVA). Where results indicated significant (p<0.05) treatment effects, Tukey’s HSD test was used to determine the levels of significance among the treatment means. The data were analysed using Microsoft Excel 2003 and JMP 5.1 statistical programme published by SAS Institute in United States (Sall et al. 2005). Similarity analyses The similarity between forest types was measured with the Sorensen and Jaccard indices using the freeware EstimateS (http://viceroy.eeb.uconn.edu/estimates). 56 RESULTS Species richness estimation Among all forest types, the highest species number (4 1-ha) occurred in LF-5 (408 species) and the lowest was found in PF (383) (Table 7). Sampling efficiency that calculated as a percentage of observed versus expected species, did not vary significantly between forest type and estimators (using six different estimators); with the exception of the Jack 2 estimator that yielded the most extreme values. Sampling efficiency was, however, lowest value in LF-10 varying between 61.3 – 67.4%. Sampling efficiency reached the highest value in LF-30 varying between 70.0 – 87.5% (Table 7). For an easier assessment of sampling efficiency, the mean of the six estimators was calculated and compared with the observed species (Fig. 19). Table 7. Block Species number of the different species estimators for the plant communities in each forest type. Percentages of estimated species to observed species are given in italic. Lowest and highest estimates of sampling efficiency are given in bold Species Number ICE % Chao2 % Jack1 % Jack2 % Bootstrap % MM Mean % PF 383 524.9 73.0 518.8 73.8 511.6 74.9 580.3 66.0 441.4 86.8 467.2 82.0 LF-5 408 599.7 68.0 567.9 71.8 553.0 73.8 632.8 64.5 473.2 86.2 533.4 76.5 LF-10 384 495.6 61.3 478.7 63.5 451.1 67.4 490.4 62.0 457.6 66.4 465.8 65.3 404 522.8 77.3 506.4 79.8 526.0 76.8 577.5 LF-30 Note: ICE = Incidence-based Coverage Estimator, MM Mean = Michaelis-Menten Mean 70.0 461.7 87.5 506.0 79.8 57 700 73.5 76.1 78.5 600 500 400 64.3 507.4 560.0 516.7 473.2 o 408.0 o 383.0 o 384.0 o 404.0 300 200 100 10.1 6.5 11.7 9.4 0 PF LF-5 LF-10 LF-30 Figure 19. Overall estimator mean (white bar), observed species (sphere) and mean SD of estimator (black bar) in the different forest types. Sampling efficiency (observed/estimated species) is given as percentage. The similarity in tree species composition The lowest value of the similarity index (Jaccard and Sorensen index) was found between LF-10 and LF-5 (0.189 and 0.317), though low similarity values were also found among forest types varying between 0.189 – 0.235 (for Jaccard index) and 0.317 – 0.380 (for Sorensen index) (Table 8). Both correlation values, r = 0.023 for Jaccard index and r = 0.031 for Sorensen index showed no strong correlation between the similarity index (C) and the distance between forest type, as the assumption for strong correlation is 0.5 r 1.0. In the correlation significant test, based on its hypotheses H0: p = 0.5; H1: p 0.5. Those two indexes also did not show any significance. 58 Table 8. Matrix of similarity in the tree species compositions among four forest types Jaccard index PF PF LF-5 189 LF-10 152 LF-30 156 Sorensen index PF PF LF-5 189 LF-10 152 LF-30 156 LF-5 0.227 145 138 LF-5 0.369 145 138 LF-10 0.228 0.189 LF-30 0.235 0.196 0.217 217 LF-10 0.370 0.317 LF-30 0.380 0.327 0.356 217 Note : Values in top right are the indices of similarity (Jaccard and Sorensen index) and numerals in lower left part are numbers of species shared between each plot; number of species found in PF is 383 species/4 ha can be seen in Table 9 Species-area curves The species area relationship showed that a considerable number of additional species was encountered more or less steadily up to the full plot size of 1-ha, without any indication of leveling off, which implies that a 1-ha plot does not capture the regional species richness (Figure 20). The calculation species accumulation curves of the LF-5 lied above the curves of PF, LF-10 and LF-30 (Figure 21). Generally the slopes of the species accumulation curves of the different forest types tended to be similar. 59 Number of Species 200 150 100 50 P lo t P lo t P lo t P lo t 1 2 3 4 P lo t P lo t P lo t P lo t 1 2 3 4 P lo t P lo t P lo t P lo t 1 2 3 4 P lo t P lo t P lo t P lo t 1 2 3 4 A 0 0 0 ,2 0 ,4 0 ,6 0 ,8 1 P lo t Size (H a) Number of Species 200 150 100 50 B 0 0 0 ,2 0 ,4 0 ,6 0 ,8 1 P lo t Size (H a) Number of Species 200 150 100 50 C 0 0 0 ,2 0 ,4 0 ,6 0 ,8 1 P lo t Size (H a) Number of Species 200 150 100 50 D 0 0 0 ,2 0 ,4 0 ,6 0 ,8 1 P lo t Size (Ha) Figure 20. Species-area curve for trees with dbh ≥ 10 cm in 1-ha plots of a lowland forest PF (A), LF-5 (B), LF-10(C) and LF-30 (D), by plotting the number of species against the cumulative area of sub-plots of 20 m x 20 m each. 60 Number of Species 500 400 300 PF LF-5 200 LF-10 LF-30 100 0 1 3 5 7 9 11 13 15 17 19 21 23 25 Number of Subplot Figure 21. Species accumulation curves for trees with dbh ≥ 10 cm in 4-ha plots of a lowland forest PF (A), LF-5 (B), LF-10(C) and LF-30 (D), by plotting the number of species against the cumulative area of subplots of 20 m x 20 m each. Graph obtained by EstimateS. 61 Species numbers, tree densities and basal area Overall, there were 914 species (dbh ≥ 10 cm) of 223 genera and of 65 families in the 16 plots. The number of families to which the species belonged was 54 in PF, 57 in LF-5, 57 in LF-10 and 51 in LF-30. The corresponding number of genera was 147, 159, 154 and 150, respectively (Table 9). Table 9. Combined totals of taxonomic richness, number of trees and basal area over four 1-ha plots in PF, LF-5, LF-10 and LF-30 in the Bulungan Research Forest, East Kalimantan PF LF-5 LF-10 LF-30 Number of families Number of genera Number of species (N/4 ha) Dipterocarpaceae Non-Dipterocarparceae 54 147 57 159 57 154 51 150 46 337 45 363 35 349 43 361 Total 383 408 384 404 Number of trees (N/4 ha) Dipterocarpaceae Non-Dipterocarpaceae 758 1663 360 1643 279 1725 632 1674 Total 2421 2003 2004 2306 Basal Area (m2/4 ha) Dipterocarpaceae Non-Dipterocarpaceae 109.2 74.0 36.7 77.2 31.8 98.6 72.2 115.5 Total 183.1 113.9 130.4 187.6 There were large variations in floristic composition between PF and LF (Tables 9-10). In PF there were 383 species, represented by a combined total of 2421 individuals. The mean species richness per 1-ha plot was 180 (range 160-196), the mean number of individuals was 605 (range 571-644), mean basal area was 45.8 m2/ha (range 34.7-53.5). In LF-5, there were 408 species, represented by a combined total of 2003 individuals. The mean species richness per 1-ha plot was 178 (range 165-193), the mean number of individuals was 501 (range 452-561), and the mean basal area was 28.5 m2/ha (range 25.6-33.5). In LF-10, there were 384 species, represented by 2004 individuals. The mean species richness per 1-ha plot was 166 (range 157-175), mean number of individuals was 501 (range 437-536), mean basal 62 area was 32.6 m2/ha (range 28.9-35.3). In LF-30 there were 404 species represented by 2306 individuals. The mean species richness per 1-ha plot was 179 (range 162197), mean number of individuals was 577 (range 558-616), mean basal area was 46.9 m2/ha (range 40.9-53.4). Shorea parvifolia Dyer had a prominence in PF and LF-5 with basal area values of 10.3 m2/4ha and 6.0 m2/4 ha, respectively (Table 11). In LF-10 and LF-30, non-dipterocarp species, namely Elateriospermum tapos Blume and Heritiera simplicifolia (Mast.) Kosterm had the largest basal areas of 6.1 m2/4 ha and 3.6 m2/4 ha, respectively. The Dipterocarpaceae family had the highest basal area in all treatments: a total of 109.2 m2 /4 ha in PF, 36.7 m2 /4 ha in LF-5, 31.8 m2 /4 ha in LF-10 and 72.2 m2 /4 ha in LF-30 (Table 12). Dipterocarpaceae and Euphorbiaceae were the two most species-rich families across all plots (Table 12); the number of species for Dipterocarpaceae was 84 across all 16 plots (Table 13). Other families, such as the pan-tropical Annonaceae, Euphorbiaceae, Moraceae, Myrtaceae, Rubiaceae, and Anacardiaceae, Burseraceae, Ebenaceae, Leguminosae, Sapotaceae, and Myristicaceae are known to be abundant and were recorded from all plots (Table 12). The most widespread species were all Dipterocarpaceae: Parashorea malaanonan, Shorea agamii, S. atrinervosa, S. hopeifolia, S. johorensis, S. leprosula, S. macroptera, S. ovalis, S. parvifolia, S. pauciflora, and S. pinanga were present in all plots (Table 13). Our finding of the Dipterocarpaceae from PF, LF-5, LF-10 and LF-30 were 46, 45, 35, and 43 species respectively (Table 12). Across all plots and treatments, Shorea parvifolia Dyer, S. pinanga Scheff and S. macroptera Dyer were the dominant species in the Dipterocarpaceae family 63 with total basal areas of 34.4 m2 /16 ha, 16.2 m2 /16 ha and 13.8 m2 /16 ha respectively. Table 10. The summary of the number of tree species (dbh ≥ 10 cm), number of stems, basal area, Shannon-Weiner diversity (H) and equitability (E) index values in PF, LF-5, LF-10, and LF-30, in the Bulungan Research Forest, East Kalimantan. Treatment PF Plot 1 2 3 Number of tree species 196 160 175 Number of stems 635 571 571 64 Basal area (m2) 44.2 34.7 53.5 H 2.004 1.963 2.036 E 0.874 0.891 0.908 Treatment Plot 4 Total Average (1 Ha) LF-5 Total Average (1 Ha) LF-10 Total Average (1 Ha) LF-30 Total Average (1 Ha) Grand total (16 Ha) 1 2 3 4 1 2 3 4 1 2 3 4 Number of tree species 187 383 180 165 174 193 178 408 178 173 157 160 175 384 166 162 185 197 170 404 179 914 Number of stems 644 2421 605 452 468 522 561 2003 501 437 536 504 527 2004 501 567 558 616 565 2306 577 8734 65 Basal area (m2) 50.7 183.1 45.8 27.2 25.6 27.7 33.5 114.0 28.5 35.3 28.9 32.1 34.1 130.4 32.6 49.6 43.7 53.4 40.9 187.6 46.9 615.1 H E 2.020 0.889 2.006 2.060 2.036 2.173 1.995 0.891 0.929 0.909 0.951 0.887 2.066 2.012 1.826 1.786 1.953 0.919 0.899 0.832 0.811 0.871 1.894 2.004 1.988 2.036 1.962 0.853 0.907 0.877 0.887 0.879 1.998 0.888 Table 11. Fifteen leading tree species in PF, LF-5, LF-10 and LF-30, based on basal area over four 1-ha plots. PF Species Shorea parvifolia Dyer LF-5 2 BA (m ) 10.27 Shorea macroptera Dyer 5.62 Shorea pauciflora King 5.56 Shorea johorensis Foxworthy Dryobalanops lanceolata Burck Shorea cf. obovoidea van Slooten Shorea parvistipulata (Heim) Symington Shorea sp. Mangifera swintoniodes Kosterm Shorea hopeifolia (Heim) Symington 2.58 2.49 Shorea parvifolia Dyer Alstonia spathulata Blume Parashorea malaanonan Merrill Dipterocarpus stellatus Vesque Dipterocarpus lowii Hook. f. BA (m ) 6.01 4.31 3.37 3.30 Species Elateriospermum tapos Blume Koompassia excelsa Taub. Eusideroxylon zwageri Teijsm Macaranga pearsonii Merrill LF-30 2 BA (m ) 6.08 5.85 5.84 5.46 3.25 Shorea pinanga Scheff. 4.98 Species Heritiera simplicifolia (Mast.) Kosterm Shorea beccarii Dyer ex Brandis Dipterocarpus pachyphyllus Meyer Shorea pinanga Scheff. BA (m2) 3.56 3.46 3.28 3.12 Koompassia malaccensis Maing. Macaranga hypoleuca Muell. Arg. Shorea angustifolia P. S. Ashton 2.72 2.82 2.44 Syzygium sp. 2.47 Hydnocarpus sp.1 4.76 2.41 Tetramerista glabra Miq. 2.26 Shorea parvifolia Dyer 3.32 2.21 Shorea macroptera Dyer 2.17 Macaranga hypoleuca Muell. Arg. 2.95 Pentace sp. 2 2.43 2.19 Shorea sp. 1.78 Shorea sp.1 2.78 Shorea parvifolia Dyer 2.36 2.19 Shorea ovalis Blume 1.46 Artocarpus lanceifolia Roxb. 2.30 Shorea agamii P. S. Ashton 2.05 Dialium kunstleri Prain 1.98 2.56 Shorea johorensis Foxworthy Sindora leiocarpa Baker ex K.Heyne Calophyllum cf. lowii Planch. & Triana 1.36 Santiria laevigata Blume 2.25 1.28 Dipterocarpus sp.1 1.72 1.28 Pometia pinnata G.Forst. 1.69 1.58 Unidentified sp 4 1.24 Shorea ovalis Blume 1.51 Vatica sp. 1 1.82 1.53 Shorea elliptica Meijer 1.20 Shorea atrinervosa Symington 1.44 Irvingia malayana Oliver 1.71 Shorea pinanga Scheff. 1.97 Dipterocarpus eurynchus Miq. 1.73 Shorea maxwelliana King 1.69 Parashorea malaanonan Merrill Parashorea parvifolia Wyatt-Smith ex P. S. Ashton Species LF-10 2 61 Artocarpus lanceifolia Roxb. Hopea semicuneata Symington 1.94 1.91 Table 12. The fifteen commonest families based on the number of tree species, number of stems and basal area over four 1-ha plots in each of PF, LF-5, LF-10 and LF-30. Treatment PF Number of species Number of trees Basal area (m2) Dipt. Euph. Myrist. Anac. Burse. Myr. Eben. Leg. Sapot. Anno. Morac. Polygal. Gutti. Fag. Laurac. 46 758 109.15 47 301 9.6 22 158 4.74 9 136 7.5 14 104 5.53 15 93 5.64 16 114 3.11 10 43 6.23 11 59 2.87 14 54 1.33 11 47 2.89 9 55 1.07 14 35 1.1 11 34 2.65 16 27 1.07 LF-5 Number of species Number of trees Basal area (m2) 45 360 36.7 56 318 7.58 23 149 4.69 13 90 4.15 14 93 4.43 16 105 6.1 12 68 1.83 13 46 5.99 16 67 3.65 14 55 1.74 7 32 1.68 5 26 0.72 13 61 2.81 13 45 2.77 23 63 2.18 LF-10 Number of species Number of trees Basal area (m2) 35 279 31.81 53 775 26.77 21 93 3.03 12 32 1.87 12 52 4.88 14 42 3.06 12 57 2.29 10 52 13.38 10 54 1.23 21 57 1.69 12 63 4.3 5 16 0.67 12 21 0.87 8 17 2.47 22 58 9.56 LF-30 Number of species Number of trees Basal area (m2) 43 632 72.15 48 439 18.35 22 127 4.9 16 45 4.48 17 80 5.22 12 37 1.89 14 69 2.5 14 80 14.67 10 86 3.38 17 69 2.4 19 92 6.78 11 24 1.12 10 20 0.51 10 18 1.21 16 63 6.42 Total Number of species Number of trees Basal area (m2) 84 2029 249.81 108 1833 62.29 47 527 17.36 32 303 17.99 26 329 20.07 35 277 16.69 33 308 9.73 25 221 40.27 28 266 11.14 39 235 7.15 27 234 15.64 17 121 3.57 30 137 5.28 26 114 9.1 54 211 19.25 62 Table 13. The occurrence of Dipterocarpaceae species in each of PF, LF-5, LF-10 and LF-30 in the Bulungan Research Forest, East Kalimantan. No. Species N BA (m2) PF LF5 LF10 LF30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 Anisoptera costata Korth. Dipterocarpus cornutus Dyer Dipterocarpus crinitus Dyer Dipterocarpus elongatus Korth. Dipterocarpus eurynchus Miq. Dipterocarpus gracilis Blume Dipterocarpus humeratus van Slooten Dipterocarpus lowii Hook. f. Dipterocarpus pachyphyllus Meyer Dipterocarpus stellatus Vesque Dipterocarpus tempehes van Slooten Dipterocarpus verrucosus Foxworthy ex. v. Slooten Dipterocarpus sp. Dipterocarpus sp.1 Dipterocarpus sp. 2 Dryobalanops lanceolata Burck Hopea cernua Teijsm. & Binn. Hopea dryobalanoides Miq. Hopea ferruginea Parijs Hopea mengerawan Miq. Hopea cf. obovoidea Sloot. Hopea semicuneata Symington Hopea sp. cf. Hopea sp. Hopea sp. 1 Parashorea lucida Kurz Parashorea malaanonan Merrill Parashorea parvifolia Wyatt-Smith ex P. S. Ashton Parashorea tomentella (Symington) Meijer Parashorea sp. 1 Shorea agamii P. S. Ashton Shorea cf. almon Foxworthy Shorea angustifolia P. S. Ashton Shorea atrinervosa Symington Shorea cf. atrinervosa Symington Shorea beccarii Dyer ex Brandis Shorea brunnescens P. S. Ashton Shorea elliptica Meijer Shorea faguetiana Heim Shorea fallax Meijer Shorea hopeifolia (Heim) Symington Shorea inappendiculata Burck Shorea johorensis Foxworthy Shorea laevifolia (Parijs) Endert Shorea lamellata Foxworthy Shorea leprosula Miq. 4 1 15 4 38 11 17 14 17 35 1 2 8 21 4 47 2 93 130 8 1 10 2 8 2 4 111 16 5 1 36 1 102 17 9 83 12 6 10 11 20 6 57 1 3 28 1.36 0.02 2.01 0.15 5.94 1.72 2.13 3.70 6.20 4.44 0.01 0.24 0.65 2.86 0.58 6.35 0.23 1.60 3.01 0.11 0.01 3.58 0.21 0.78 0.08 0.75 10.22 2.81 0.24 0.10 7.54 0.01 7.41 7.35 0.18 9.30 0.47 3.18 1.34 1.28 4.49 0.83 10.67 0.03 0.21 4.82 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 63 Table 13. Continued No. Species 1 77 2 12 7 14 36 3 46 2 265 26 2 35 88 3 2 4 38 30 10 20 6 2 7 1 18 45 30 1 17 1 3 5 51 BA (m2) 0.16 13.83 0.27 3.76 0.42 1.06 4.47 0.03 7.21 0.57 34.42 6.58 0.02 12.06 16.17 0.11 0.03 0.33 1.26 7.53 3.94 1.56 0.06 0.12 1.38 0.01 0.46 0.54 1.89 0.03 1.09 0.03 0.08 0.17 1.28 30 6 49 1.53 0.30 3.85 N 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 Shorea macrophylla (de Vriese) P. S. Ashton Shorea macroptera Dyer Shorea malaononan Blume Shorea maxwelliana King Shorea cf. maxwelliana King Shorea multiflora (Burck) Symington Shorea cf. obovoidea van Slooten Shorea ochracea Symington Shorea ovalis Blume Shorea cf. ovalis Blume Shorea parvifolia Dyer Shorea parvistipulata Heim Shorea patoienis P. S. Ashton Shorea pauciflora King Shorea pinanga Scheff. Shorea seminis v. Slooten Shorea smithiana Symington Shorea venulosa G. H. S. Wood ex Meijer Shorea xanthophylla Symington Shorea sp. Shorea sp. 1 Shorea sp. 2 Shorea sp. 3 Shorea sp. 4 Shorea sp. 5 Shorea sp. 6 Vatica albiramis v. Slooten Vatica granulata v. Slooten Vatica micrantha v. Slooten Vatica nitens King Vatica oblongifolia Hook.f. Vatica pauciflora Blume Vatica rassak Blume Vatica sarawakensis Heim Vatica umbonata Burck 82 83 84 Vatica vinosa P.S. Ashton Vatica sp. Vatica sp. 1 64 + + + + + + + + + + + + + + + + + + LF5 + + + + + + + + + + + + + + + + + + + + + - LF10 + + + + + + + + + + + + LF30 + + + + + + + + + + + + + + + + + + + + - + + + + + + PF The impact of logging on species numbers, tree densities and basal area Logging significantly affected the number of trees and the basal areas per plot, but not the number of species (Table 14). Table 14. Mean number of species, individual trees 10 cm dbh, and basal area in PF, LF-5, LF-10, and LF-30. Identical letters indicate no statistically significant differences among treatments at p 0.05. Treatment PF LF-5 LF-10 LF-30 p-value N species/ha 180a 178a 166a 179a 0.4029 N trees/ha 605a 501b 501b 577ab 0.0095 BA (m2/ha) 45.8a 28.5b 32.6b 46.9a 0.0007 The number of trees in LF-5 and LF-10 was significantly lower than in PF. The basal area in PF and LF-30 was significantly higher than the basal area in LF-5 and LF-10. PF had the highest mean number of species (180/ha) and number of trees (605/ha), while LF-30 had the highest basal area of 46.9 m2/ha, but not significantly different from PF. The comparison of the number of species and individual trees, and basal area for the Dipterocarpaceae family showed that in the logged plots their values were lower than in PF plots (Table 15). PF had the highest mean number of species per ha (28), number of trees (190) and basal area (27 m2/ha). There were significant differences within the logging treatments. LF-30 had significantly higher values for dipterocarp species richness than either LF-5 or LF-10 (26/ha vs. 15 and 20), number of individuals (158/ha vs. 70 and 91.5) and basal area (18 m2/ha vs. 7.9 and 9.3) (Table 15). 65 Table 15. Mean values of species richness, number of individuals and basal area for Dipterocarpaceae in four logging treatments. Significant differences (p 0.05) among treatments are indicated by a different letter after the mean value. Treatment PF LF-5 LF-10 LF-30 p-value N species/ha 28a 20b 15b 26ab 0.0037 N trees/ha 190a 91.5bc 70c 158ab 0.0038 BA (m2/ha) 27a 9.3c 7.9c 18b 0.0002 The mean basal area of non-dipterocarp trees was highest in LF-30 (significantly higher than that in PF and LF-5); means were not different for the number of species and number of trees for non-dipterocarps (Table 16). Table 16. Mean values of species richness, number of individuals and basal area for trees belonging to families other than Dipterocarpaceae in four logging treatments. Significant differences among treatments are indicated by a different letter after the mean value. Treatment PF LF-5 LF-10 LF-30 p-value N species/ha 151a 161.7a 152a 152a 0.6326 N trees/ha 416a 409.7a 433.5a 419a 0.9450 BA (m2/ha) 18.5b 19.15b 24.64ab 28.86a 0.0124 Effect of logging on the values Shannon-Weiner diversity index The value of the diversity index was significantly higher in LF-5 (2.07) than in LF10 (1.89), but neither value differed from either PF or LF-30 (Table 17). The higher value of H after logging may be explained by the increase in secondary forest species. The decrease in LF-10 perhaps points (together with the high volume of lying dead wood) to a particularly heavy-impact logging operation. 66 Table 17. Mean values of Shannon-Weiner diversity index (H) and equitability values (E) in four logging treatments. Significant differences among treatments are indicated by different letter after the mean value. Treatment H 2.00ab 2.07a 1.89b 1.99ab 0.0414 PF LF-5 LF-10 LF-30 p-value E 0.89ab 0.92a 0.85b 0.89ab 0.0435 The value of the diversity index was not affected significantly by stem densities differential on plots, but by the differential of number of species on plots (Table 18). It can be concluded that the differences in species richness is due to the sampling artefact. Table 18. Correlation between Shannon-Weiner diversity index (H), number of species (N species/ha) and stem density (N trees/ha) among four forest types. H N species/ha N trees/ha H 0.61* 0.02ns Note : * = significant at 5% level; ns = not significant at 1% and 5% levels Diameter class distribution The diameter class distribution of trees with dbh ≥ 10 cm (Table 19) showed more or less a typical size class graph of an undisturbed primary forest. Most trees were less than 30 cm dbh (79.5 %), with 62.4% in the 10-20 cm and 17.08 % in the 20.1-30 cm size classes. 67 Table 19. Diameter class distribution of trees ≥ 10 cm dbh in each of PF, LF-5, LF10 and LF-30 in the Bulungan Research Forest, East Kalimantan. Treatment PF Plot 10-20 20.130 30.140 40.150 dbh size class (cm) 50.1- 60.1- 70.160 70 80 80.190 90.1100 >100 Total 1 403 109 55 17 22 6 7 3 4 9 635 2 391 82 39 19 15 9 1 2 9 4 571 3 331 116 36 29 16 13 6 9 1 14 571 4 366 119 62 38 23 9 6 8 4 9 644 Total 1491 426 192 103 76 37 20 22 18 36 2421 Percent of total (%) 61.59 17.60 7.93 4.25 3.14 1.53 0.83 0.91 0.74 1.49 LF-5 1 301 59 37 21 13 9 3 4 4 1 452 2 303 87 33 24 8 1 5 2 1 4 468 3 315 111 42 21 19 6 4 3 1 0 522 4 373 91 41 22 15 6 8 2 1 2 561 Total 1292 348 153 88 55 22 20 11 7 7 2003 Percent of total (%) 64.50 17.37 7.64 4.39 2.75 1.10 1.00 0.55 0.35 0.35 LF-10 1 269 77 40 24 5 3 5 4 2 8 437 2 372 77 35 22 13 6 4 3 2 2 536 3 322 83 30 27 18 13 4 2 2 3 504 4 358 85 34 20 14 6 1 1 1 7 527 Total 1321 322 139 93 50 28 14 10 7 20 2004 Percent of total (%) 65.92 16.07 6.94 4.64 2.50 1.40 0.70 0.50 0.35 1.00 1 318 103 57 27 27 10 4 6 5 10 567 2 327 98 49 37 11 13 5 6 6 6 558 3 368 89 58 45 16 12 9 2 7 10 616 4 336 106 49 31 14 11 6 4 2 6 565 Total 1349 396 213 140 68 46 24 18 20 32 2306 Percent of total (%) Grand Total of number of individuals Percent of grand total (%) 58.50 17.17 9.24 6.07 2.95 1.99 1.04 0.78 0.87 1.39 5453 1492 697 424 249 133 78 61 52 95 62.43 17.08 7.98 4.85 2.85 1.52 0.89 0.70 0.60 1.09 LF-30 8734 The impact of selective logging for trees with a dbh >50 cm was clearly visible when diameter class distribution was compared for stems 50.0 cm dbh and trees with a dbh >50 cm (Table 20). PF and LF-30 were similar and significantly higher for the number of stems over 50 cm dbh than LF-5 and LF-10. Logging also 68 significantly affected the 30.1 – 40.0 cm and >100.1 cm classes. PF had the highest mean value for the >100.1 cm diameter class which is with 9 trees/ha (Table 21). LF-30 had the highest mean number of trees (53) in the 30.1 - 40.0 cm diameter class, significantly higher that LF-10 (35). Other diameter classes were not significantly affected by the logging activities. Table 20. Mean values of the number of stems with a dbh >50 cm vs. 10-50 cm in four logging treatments. Significant differences (at p 0.05) among treatments are indicated by different letter after mean value. Treatment N/ha (10-50 cm) 553a 470b 469b 525ab 0.0276 PF LF-5 LF-10 LF-30 p-value N/ha >50 cm 52a 31b 32b 52a 0.0009 Table 21. Mean values of number of stems in each of 10 cm diameter class in four logging treatments. Significant differences among treatments are indicated by different letter after the mean value. Treatment PF (stem/ha) LF-5 (stem/ha) LF-10 (stem/ha) LF-30 (stem/ha) p-value Diameter class (cm) 10.0 – 20.0 20.1 – 30.0 30.1 – 40.0 40.1 – 50.0 50.1 – 60.0 60.1 – 70.0 373a 323a 330a 337a 0.2624 107a 87a 81 a 99a 0.0994 48.ab 38ab 35 b 53 a 0.0209 26a 22a 23a 35a 0.0619 19a 14a 13a 17a 0.3693 9a 6a 7a 12a 0.0735 Diameter class (cm) Treatment PF (stem/ha) LF-5 (stem/ha) LF-10 (stem/ha) LF-30 (stem/ha) p-value 70.1 – 80.0 80.1 – 90.0 90.1 - 100.0 5.00a 5.00a 3.50a 6.00a 0.4492 5.50a 2.75a 3.00a 4.50a 0.3171 4.50a 1.75a 2.00a 5.00a 0.1055 >100 9.00a 2.33b 5.00ab 8.00ab 0.0276 Total number of stems in PF is not significantly different with total number of stems in LF-30. However, total number of stems in PF is significantly different with 69 total number of stems in LF-5 and LF-10. Proportion of total number of stems in LF-5, LF-10 and LF-30 compared to total number of stems in PF has an increasing trend from 82.7%, 82.8% to 95.2%. This indicated that total number of stems in the LF-30 tend to reach the total number of stems in PF (Table 22). Table 22. Proportion of the mean values of total number of stems in primary forest and logged forest of LF-5, LF-10 and LF-30. Significant differences among treatments are indicated by different letter after the mean value. Mean values of total number of stems in PF PF (A) 605.3a p-value Mean values of total number of stems in logged forests LF-5 (B1) 500.8b LF-10 (B2) 501.0b 0.0067 LF-30 (B3) 576.5ab Proportion (%) LF-5 82.7 LF-10 82.8 LF-30 95.2 Note : Proportion (%) = ( (B1 or B2 or B3) / (A) ) x 100% Abundant structure and family distribution of trees The distribution of 10 predominant species in four different forest types can be seen in Table 23. In PF case, the most abundant species was Mangifera swintoniodes Kosterm (76 individuals, 3.1% of the total individuals), followed by Hopea ferruginea Parijs (72 individuals, 3.0%), and Shorea parvifolia Dyer 72 individuals, 3.0%). While in LF-05, Shorea parvifolia Dyer (79 individuals, 3.9%) became the most abundant species, followed by Hopea ferruginea Parijs (58 individuals, 2.9%), and Knema cinerea (Poir.) Warb. (38 individuals, 1.9%). While LF-10 showed the most abundant species was pioneer species of Macaranga pearsonii Merrill (226 individuals, 11.3%), followed by Macaranga hypoleuca Muell. Arg. (142 individuals, 7.1%), and Macaranga bancana Muell. Arg. (103 individuals, 5.1%). All predominant species of Macaranga in LF-10 were not found in PF. In LF-30, the most abundant species was Hopea dryobalanoides (91 individuals, 3.9%), followed by Macaranga hypoleuca (84 individuals, 3.6%) and Shorea beccarii (69 70 individuals, 3.0%). Hopea dryobalanoides Miq. (91 individuals, 3.9%) was rare in PF, but became the most dominant species in LF-30. Macaranga hypoleuca Muell. Arg. (84 individuals, 3.6%) and three other pioneer species in LF-30 were not found in PF, but all the species, except Shorea parvifolia Dyer, were in rare position at LF30. Table 23. Distribution of 10 predominant species in four different forest types Rank PF 1 2 Species Name Mangifera swintoniodes Kosterm Hopea ferruginea Parijs 71 Abundance Proportion (%) 76 72 3.1 3.0 Rank in PF Rank 3 4 5 6 7 8 9 10 Species Name Shorea parvifolia Dyer Mallotus eucaustus Airy Shaw Shorea angustifolia P. S. Ashton Shorea macroptera Dyer Vatica granulata v. Slooten Shorea pinanga Scheff. Gluta wallichii (Hook. f.) Ding Hou Knema cinerea (Poir.) Warb. Total individuals Abundance 72 69 47 46 43 42 40 40 2421 Proportion (%) 3.0 2.9 1.9 1.9 1.8 1.7 1.7 1.7 Rank in PF Shorea parvifolia Dyer Hopea ferruginea Parijs Knema cinerea (Poir.) Warb. Syzygium sp. Macaranga gigantea Muell. Arg. Dipterocarpus stellatus Vesque Teijsmanniodendron simplicifolium Merrill. Gluta wallichii (Hook. f.) Ding Hou Parashorea malaanonan Merrill Mallotus penangensis Muell. Arg. Total individuals 79 58 38 36 33 29 3.9 2.9 1.9 1.8 1.6 1.4 37 2 10 72 164 116 29 27 27 27 2003 1.4 1.3 1.3 1.3 382 9 17 31 Macaranga pearsonii Merrill Macaranga hypoleuca Muell. Arg. Macaranga bancana Muell. Arg. Shorea parvifolia Dyer Elateriospermum tapos Blume Artocarpus lanceifolia Roxb. Eusideroxylon zwageri Teijsm. & Binn. Macaranga hosei King ex Hook.f. Mallotus penangensis Muell. Arg. Palaquium stenophyllum H. J. Lam Total individuals 226 142 103 78 68 36 28 28 25 24 2004 11.3 7.1 5.1 3.9 3.4 1.8 1.4 1.4 1.2 1.2 * * * 3 163 16 325 * 31 40 Hopea dryobalanoides Miq. Macaranga hypoleuca Muell. Arg. Shorea beccarii Dyer ex Brandis Shorea angustifolia P. S. Ashton Macaranga conifera (Zoll.) Muell. Arg. Koilodepas laevigatus Airy Shaw Artocarpus lanceifolia Roxb. Dialium kunstleri Prain Vatica sp. 1 Shorea parvifolia Dyer Total individuals Note : (*) Species not found in primary forest (PF) 91 84 69 55 52 47 45 39 37 36 2306 3.9 3.6 3.0 2.4 2.3 2.0 2.0 1.7 1.6 1.6 75 * 50 5 * * 16 * 159 3 LF-5 1 2 3 4 5 6 7 8 9 10 LF-10 1 2 3 4 5 6 7 8 9 10 LF-30 1 2 3 4 5 6 7 8 9 10 73 Table 24 shows the relative proportion of the number of species of 10 predominant tree family in primary forest, PF (A) and logged forest of LF-5 (B), LF10 (C) and LF-30 (D). In both primary and logged forests, the most species family was Euphorbiaceae and Dipterocarpaceae (Table 24). These two made up over 32.7% of the total species in the primary forest but reduce to 22.5 – 24.7% in the logged forests. However, the most expansive family after logging in LF-5 is Lauraceae (54.3%) Followed by Meliaceae (55.6%), Lauraceae (52.9%) and Annonaceae (46.2%) in LF-10, and for the LF-30 are Meliaceae (52.0%), Lauraceae (46.7%) and Guttiferae (41.7%) (Table 24). Table 24. Relative proportion of the number of species of 10 predominant tree family in primary forest, PF and logged forest of LF-5, LF-10 and LF-30. Family Species occuring in PF (A) PF Annonaceae Burseraceae Dipterocarpaceae Ebenaceae Euphorbiaceae Guttiferae Lauraceae Meliaceae Myristicaceae Myrtaceae 14 14 46 16 47 14 16 12 22 15 Species not found in PF (B) LF-5 (B1) 7 5 16 5 29 6 19 5 11 8 LF-10 (B2) 12 2 13 8 29 9 18 15 10 10 LF-30 (B3) 9 7 19 8 24 10 14 13 13 6 Relative proportion (%) LF-5 LF-10 LF-30 33.3 26.3 25.8 23.8 38.2 30.0 54.3 29.4 33.3 34.8 46.2 12.5 22.0 33.3 38.2 39.1 52.9 55.6 31.3 40.0 39.1 33.3 29.2 33.3 33.8 41.7 46.7 52.0 37.1 28.6 Note : Relative proportion (%) = ( (A) / (B1 or B2 or B3 + A) ) x 100% Coarse woody debris (CWD) There were no statistically significant differences among logging treatments in the number of standing dead stems, their basal area or volume (Table 25). A trend was, however, discernible which showed that recent logging reduced standing CWD in 74 comparison to PF and LF-30, a likely collateral impact of logging operations (Table 26). The basal area of ground stems was highest in LF-10, with the other treatments not being significantly different from each other (Table 27). There were no significant differences in dead ground volume (Table 27). This was caused by high variation within treatments (single extreme values in single plots: PF, LF-5 and LF30, see Table 25). Overall, LF-10 showed a near two-fold basal area and volume of ground CWD than any of the other treatments, likely to have been caused by specific logging operation-associated factors. 75 Table 25. Coarse woody debris (CWD): number of stems, basal area, and volume for both standing and ground in PF, LF-5, LF-10, and LF-30 in the Bulungan Research Forest, East Kalimantan. Standing Treatment Ground Basal Area (m2/ha) N Volume (m3/ha) Basal Area (m2/ha) N Volume (m3/ha) PF 1 26 3.7 28.6 159 9.9 64.7 2 37 3.3 18.1 66 4.6 26.2 3 21 2.3 23.4 79 4.9 33.4 4 27 4.4 41.4 59 4.4 33.1 111 13.7 111.5 363 23.8 157.4 1 40 2.8 24.7 144 6.5 38.9 2 31 2.2 19.8 116 5.4 32.5 3 34 2.1 21.7 107 7.2 40.4 4 27 1.6 12.2 94 8.7 66.9 Total 132 8.7 78.4 461 27.8 178.7 1 31 1.8 13.9 45 13.3 69.3 2 27 5.7 39.4 76 20.1 90.6 3 25 2.8 20.0 89 10.8 60.0 4 22 2.2 25.6 67 11.2 80.8 Total 105 12.3 98.9 277 55.4 290.7 1 31 2.7 21.2 35 1.6 9.2 2 40 2.9 37.4 71 4.4 43.4 3 44 6.7 82.1 116 9.4 74.2 4 37 3.3 39.8 108 8.4 72.3 Total 152 15.6 180.5 330 23.8 199.1 Total LF-5 LF-10 LF-30 76 Table 26. Mean values of the number of standing dead stems, their basal area and volume in four logging treatments. Significant differences (p<0.05) among treatments are indicated by different letters after the mean value. Treatment PF LF-5 LF-10 LF-30 p-value N standing dead stems 28a 33a 26a 38a 0.0626 Standing basal area (m2/ha) 3.43a 2.18a 3.08a 3.89a 0.4837 Standing volume (m3/ha) 27.86a 19.52a 24.71a 44.86a 0.2077 Table 27. Mean values of number of dead stems on the forest floor, their basal area and volume in four logging treatment. Significant differences (p< 0.05) among treatments are indicated by different letters after the mean value. Treatment PF LF-5 LF-10 LF-30 p-value N dead stems on forest floor 91a 115a 69a 83a 0.3929 basal area (m2/ha) 5.91b 6.89b 13.8a 5.93b 0.0382 volume (m3/ha) 39.57a 44.68a 75.06a 49.73a 0.1637 Height distribution Table 28 shows that correlation value of log-normal probability plot for diameter (dbh) is higher compared to the correlation value of normal probability plot. Correlation value of log-normal probability plot for diameter (dbh) lies between 0.94 – 0.95, while correlation value of normal probability plot for diameter (dbh) is between 0.79 – 0.85. With a higher correlation value of log-normal probability plot for diameter (dbh), thus the graphic between tree diameters with tree height can be described by a log relationship. 77 Table 28. Correlation of probability plot for diameter (dbh) among four forest types. Forest type PF LF-5 LF-10 LF-30 Correlation of probability plot for dbh (cm) Normal Log-normal 0.81 0.95 0.85 0.95 0.79 0.94 0.83 0.95 The examination of canopy heights showed that PF was of lower stature than either of the logged forest plots (Figures 23 - 26). This was confirmed by the dbh vs. height scatter plots (Figure 22). No emergent tress (> 50 m) were recorded in PF or LF-30 (Tables 29 and 32; Figures 23 and 26) while there were a number of emergent in LF-5 and LF-10 (Tables 30 - 31; Figures 24 - 25). In PF, the middle and upper canopy were dominated by species of the Dipterocarpaceae family such as Vatica vinosa, Shorea macroptera, Shorea elliptica, Shorea parvifolia, Shorea pauciflora and Shorea atrinervosa. Koompassia malaccensis was dominant in the upper canopy in LF-5 (Table 30), LF-10 (Table 31) and LF-30 (Table 32). Meanwhile, emergent level in LF-10 was almost dominated by Koompassia excelsa. In LF-5, the emergent level was dominated by Shorea parvifolia. The Dipterocarpaceae family and Koompassia were the main dominants in the upper canopy LF-5, LF-10 and LF-30 and emergent level in LF-5 and LF-10 (Figures 24-25). 78 PF LF-5 50.0 80.0 40.0 60.0 Tree Height 40.0 (m) 20.0 Tree Height 30.0 (m) 20.0 10.0 0.0 0.0 0.0 50.0 100.0 150.0 0.0 200.0 50.0 100.0 150.0 DBH(cm) DBH(cm) LF-30 LF-10 60.0 50.0 40.0 Tree Height 30.0 (m) 20.0 10.0 0.0 60.0 50.0 40.0 Tree Height 30.0 (m) 20.0 10.0 0.0 0.0 50.0 100.0 150.0 0.0 200.0 DBH(cm) 50.0 100.0 150.0 200.0 DBH(cm) Figure 22. Diameter at breast height (dbh) vs. tree height in the four 1-ha plots in PF, LF-5, LF-10 and LF-30 in the Bulungan Research Forest, East Kalimantan. 79 Table 29. Fifteen species with the highest trees in PF in the Bulungan Research Forest, East Kalimantan. Lower Canopy Species Ryparosa baccaureoides Sleumer Pentace borneensis Pierre Ilex sp. Dipterocarpus eurynchus Miq. Diospyros sp. Dillenia excelsa (Jack) Gilg. Coccoceras borneense J.J. Smith Adina polycephala Benth. Syzygium stictophyllum Merr. & Perry. Shorea xanthophylla Symington Shorea ovalis Blume Shorea angustifolia Ashton Parashorea parvifolia WyattSmith ex Ashton Madhuca cf. prolixa P.C. Yii & P. Chai Gymnachrantera contracta Warb. Middle Canopy Species Upper Canopy Species Emergent Species Vatica vinosa P.S. Ashton Shorea parvifolia Dyer not found Shorea macroptera Dyer Shorea pauciflora King not found Shorea elliptica Meijer Shorea cf. obovoidea Sloot. Mangifera swintonioides Kosterm. Gymnachrantera contracta Warb. Dryobalanops lanceolata Burck Dipterocarpus eurynchus Miq. Vatica vinosa P.S. Ashton Shorea parvifolia Dyer Shorea atrinervosa Symington Shorea beccariana Burck Hopea ferruginea Parijs. Shorea macroptera Dyer Shorea faquetiana Heim Shorea johorensis Foxw. not found not found Shorea parvifolia Dyer Parahorea parvifolia Wyatt-Smith ex Ashton Shorea leprosula Miq. Shorea johorensis Foxw. Drypetes plyneura Airy Shaw not found Dipterocarpus eurynchus Miq. Shorea parvistipulata Heim not found Shorea ovalis Blume Shorea macroptera Dyer Pentace borneensis Pierre Hopea sp. Garcinia rostrata T. et B. 80 not found not found not found not found not found not found not found not found not found 60.0 EMERGENT 50.0 Tree Height (m) 40.0 UPPER CANOPY 30.0 MIDDLE CANOPY 20.0 10.0 LOWER CANOPY 0.0 Tree Number Figure 23. Simulated profile diagram constructed from data on tree heights and tree positions as approximated by the tree numbers reflecting the sequence of recording in the four 1-ha plots of PF 81 Table 30. Fifteen species with the highest trees in LF-5 in the Bulungan Research Forest, East Kalimantan. Lower Canopy Species Litsea sp. 1 Pternandra galeata Ridley Litsea firma Hook. F. Shorea parvifolia Dyer Middle Canopy Species Scaphium macropodum (Miq.) Beumee ex Heyne Dacryodes rostrata (Blume) H.J. Lam Dacryodes costata (A.W. Benn) H.J. Lam Palaquium quercifolium Burck Upper Canopy Species Emergent Species Pouteria malaccensis (C.B. Clarke) Baehni Koompasia malaccensis Maing. ex. Benth. Barringtonia macrostachya Kurz. Shorea parvifolia Dyer Sindora leiocarpa Baker ex K. Heyne Dillenia exima Miq. Homalium grandiflorum Benth. Shorea parvifolia Dyer Knema cinerea (Poir) Warb. Dipterocarpus stellatus Vesque Diospyros sp. Buchanania sessilifolia Blume Barringtonia macrostachya Kurz. Shorea macroptera Dyer Elateriospermum tapos Blume Xanthophyllum sp. Shorea fallax Meijer Shorea elliptica Meijer Shorea pauciflora King Alstonia spathulata Shorea fallax Meijer Tetramerista glabra Miq. Magnolia gigantifolia Miq. Santiria griffithii Engl. Herritiera simplicifolia elata Ridley Diallium platysepalum Baker Scaphium macropodum Blume ex K. Heyne Myristica becarii Warb. Parashorea sp. 1 Shorea macroptera Dyer Sarcotheca diversifolia (Miq.) Hall. Diospyros buxifolia Hiern Beilschmeidia sp. 1 Calophyllum cf, lowii Planch.& Triana Shorea macroptera Dyer Dyera costulata Hook. f Garcinia sp. 1 Dialium patens Baker 82 Pentace triptera Mast. Koordesiodendron pinnatum Merrill Parashorea malaononan Merrill Syzygium chloranthum (Duthie) Merrill & Perryl Baccaurea sp. Shorea parvifolia Dyer Shorea sp. Shorea leprosula Miq. Shorea ovalis Blume Koompasia excelsa (Becc.) Taub. 60.0 EMERGENT 50.0 UPPER CANOPY Tree Height (m) 40.0 30.0 MIDDLE CANOPY 20.0 10.0 LOWER CANOPY 543 487 430 375 320 262 208 154 42 101 543 488 433 375 319 259 201 91 147 35 479 419 364 310 252 198 84 145 30 461 403 341 286 231 175 112 2 58 0.0 Tree Number Figure 24. Simulated profile diagram constructed from data on tree heights and tree positions as approximated by the tree numbers reflecting the sequence of recording in the four 1-ha plots of LF-5 83 Table 31. Fifteen species with the highest trees in LF-10 in the Bulungan Research Forest, East Kalimantan. Lower Canopy Species Upper Canopy Species Emergent Species Dipterocarpus humeratus Slooten Koompassia malaccensis Maing. ex. Benth. Koompassia excelsa (Becc.) Taub. Alseodaphne sp. Shorea sp.1 Elateriospermum tapos Blume Hydnocarpus sp.1 Koompassia excelsa (Becc.) Taub. Shorea atrinervosa Symington Dipterocarpus humeratus Slooten Diospyros sp.1 Pometia pinnata J.R.Forst. & G.Forst. Heritiera sumatrana (Miq.) Kosterm. Shorea parvifolia Dyer Dillenia excelsa (Jack) Gilg Santiria laevigata Blume Paracroton pendulus (Hassk.) Airy Shaw Mallotus penangensis Muell.Arg. Macaranga pearsonii Merr. Macaranga hypoleuca (Reichb.f. & Zoll.) Muell.Arg. Pimelodendron griffithianum (Muell.Arg.) Benth. Dacryodes rugosa (Blume) H.J. Lam. Macaranga hosei King ex Hook.f. Gynotroches axilaris Blume Elateriospermum tapos Blume Hopea cernua Teijsn. & Binn. Macaranga hypoleuca (Reichb.f. & Zoll.) Muell.Arg. Aglaia sp.5 Adinandra subsessilis Airy Show Dipterocarpus humeratus Slooten Shorea pinanga Scheff. Macaranga hypoleuca (Reichb.f. & Zoll.) Muell.Arg. Artocarpus lanceifolius Roxb. Macaranga hypoleuca (Reichb.f. & Zoll.) Muell.Arg. Macaranga pearsonii Merr. Macaranga pearsonii Merr. Sterculia sp.1 Middle Canopy Species Shorea hopeifolia (Heim) Symington Pometia pinnata J.R.Forst. & G.Forst. Hydnocarpus sp.1 Polyalthia glauca Boerl. Hydnocarpus sp.1 Sindora leiocarpa Baker ex K.Heyne Irvingia malayana Oliv. Dryobalanops lanceolata Burck Horsfieldia crassifolia (Hook.f. & Thomson) Warb. Dryobalanops lanceolata Burck Shorea ovalis Blume 84 Shorea sp.1 Koompassia excelsa (Becc.) Taub. Koompassia excelsa (Becc.) Taub. 60.0 EMERGENT 50.0 UPPER CANOPY Tree Height (m) 40.0 30.0 MIDDLE CANOPY 20.0 LOWER CANOPY 10.0 519 453 383 318 251 185 51 116 522 453 381 315 250 185 53 118 547 481 414 349 282 216 79 146 11 414 342 275 206 138 1 70 0.0 Tree Number Figure 25. Simulated profile diagram constructed from data on tree heights and tree positions as approximated by the tree numbers reflecting the sequence of recording in the four 1-ha of LF-10 85 Table 32. Fifteen species with the highest trees in LF-30 in the Bulungan Research Forest, East Kalimantan. Lower Canopy Species Middle Canopy Species Sterculia stipulata Korth. Pterospermum javanicum Jungh. Knema woodii J. Sinclair Caethocarpus castanocarpus Thwaites Anthocephalus chineensis (Lamk.) A.Rich. ex Walp. Sloanea javanica (Miq.) K.Schum. Scaphium macropodum (Miq.) Beumee ex Heyne Shorea pinanga Scheff. Knema laurina (Blume) Warb. Shorea sp. Macaranga hypoleuca (Reichb.f. & Zoll.) Muell.Arg. Macaranga hypoleuca (Reichb.f. & Zoll.) Muell.Arg. Shorea parvifolia Dyer Hopea semicuneata Symington Castanopsis fulva Gamble Xylopia malayana Hook.f. & Thomson Artocarpus lanceifolius Roxb. Artocarpus lanceifolius Roxb. Shorea johorensis Faxw. Parashorea malaanonan (Blanco) Merr Macaranga gigantea (Reichb.f. & Zoll.) Muell.Arg. Shorea parvifolia Dyer Shorea leprosula Miq. Shorea angustifolia P.S.Ashton Lauraceae Parashorea malaanonan (Blanco) Merr Dipterocarpus pachyphyllus Meijer Koordersiodendron pinnatum (Blanco) Merr. Syzygium ochneocarpum (Merrill) Merrill & Perry Pentace sp. 1 86 Upper Canopy Species Emergent Species Koompassia malaccensis Maing. ex. Benth. Heritiera simplicifolia (Mast.) Kosterm. not found Dipterocarpus pachyphyllus Meijer not found Shorea agamii P.S.Ashton Heritiera simplicifolia (Mast.) Kosterm. not found Dipterocarpus pachyphyllus Meijer not found Hopea semicuneata Symington Hopea semicuneata Symington Shorea beccariana Burck Scaphium macropodum Beum,e ex K.Heyne Irvingia malayana Oliv. not found Shorea pinanga Scheff. not found Shorea atrinervosa Symington not found Dipterocarpus sp. not found Dipterocarpus eurhynchus Miq. not found not found not found not found not found not found not found 60 EMERGENT Tree Height (m) 50 40 UPPER CANOPY 30 MIDDLE CANOPY 20 LOWER CANOPY 10 525 418 315 213 6 110 554 452 352 244 145 44 538 434 330 226 16 116 514 410 308 209 1 101 0 Tree Number Figure 26. Simulated profile diagram constructed from data on tree heights and tree positions as approximated by the tree numbers reflecting the sequence of recording in the four 1-ha plots of LF-30 DISCUSSION Floristic richness In primary lowland evergreen forest the number of tree species ≥ 10 cm dbh could vary from about 60 – 150 species/ha; to over 200 - 300 species/ha in very rich areas, such as western South America and parts of Malesia (Table 33; Richards 1996). In this study, the number of species in PF ranged from 160 to 196 species/ha, with similar values in the logged plots. This is similar to values reported for 1-ha plots from elsewhere in Borneo (Table 33). However, the value of similarity in 1-ha plot was smaller than that of in 4-ha plot. The expectation to get the lower similarity within plots was found in 1 ha plots of PF while the probability to sample the similar species were higher in the 4 ha plots. The result indicated the higher similarity 87 correlated to the ages of forest after logging (LF-05, LF-10 and LF-30) and size of sampling plots (4ha). Data in detail was shown in Table 8, related to the blooming of invasive (secondary forest species) species such Macaranga and other fast growing species under family Euphorbiaceae (Table 23). However, there were no correlation between distance and similarity in each pair of forest type. As the size of the sampled contiguous areas increases the number of tree species also rises, in a somewhat logarithmic manner (compare for example the mean species richness in 1-ha plots at BRF and the species total in the 50 ha plot at Pasoh in Table 34, where a 50-fold increase in plot size resulted in a 3.7-fold increase in species numbers). The species richness in lowland evergreen rain forests is very high and the plot sizes used in most studies were not uniform (e.g. Kartawinata et al 1981, Sist & Saridan 1999, Riswan 1982, Wyatt-Smith 1966, Wilkie et al 2004), since different scientists have used different criteria (Table 34), such as a single big plot, the sum of many small plots (non-contiguous plots) and transect plots, including PSPs in this study, show no plateau or ‘flattening’ even at sizes of 4-5 ha (Richards 1996) when species numbers are plotted at a normal scale against sample plot areas. The dominant family based on species numbers and basal area was Dipterocarpaceae in all plots, irrespective of treatments in this study. Other families, such as the pan-tropical Annonaceae, Euphorbiaceae, Moraceae, Myrtaceae, Rubiaceae (see e.g. Richards 1996), and Anacardiaceae, Burseraceae, Ebenaceae, Leguminosae, Sapotaceae, and Myristicaceae known to be abundant in far eastern lowland evergreen rainforest (e.g. Whitmore 1994) were recorded from all plots (Table 12). The most widespread species were all Dipterocarpaceae: Parashorea malaanonan, Shorea agamii, S. atrinervosa, S. hopeifolia, S. johorensis, S. leprosula, 88 S. macroptera, S. ovalis, S. parvifolia, S. pauciflora, and S. pinanga were present in all plots (Table 13). Selective logging is likely to affect species which have few individuals and a restricted distribution more than abundant and widely distributed ones. This may have implications for many species of the Dipterocarpaceae. Although it is the dominant family at BRF and in Borneo in general, many of its species are local, with a restricted distribution (Slik et al. 2002) and as a result may be sensitive to logging. At BRF, 22 species of Dipterocarpaceae out of a total of 66 in PF and LF-30 were recorded as far apart as distance of about 80 km (Table 13). Our finding of the Dipterocarpaceae from PF, LF-5, LF-10 and LF-30 were 46, 45, 35, and 43 species respectively (Table 12). Table 24 shown that, although the basal area of dipterocarp trees has recovered in the logged forest, but the relative proportion of the number of species of predominant tree family indicates that regeneration has not been occurs in 30 years after logging, indicates that such regeneration seldom occurs or often ends in failure. The tree species compositions differ among forest types, as it was shown in mean value of similarity index for all pairs were 0.215 (for Jaccard index) and 0.353 (for Sorensen index). The low values for similarities among forest types were most probably caused by low numbers of species shared between each forest type (Table 8). Our study in primary forest and logged forest found that similarity value among forest type dependent tree diversity (Table 8 and 10). Low species similarity between forest types followed by low in species diversity (H’ = 1.894 to 2.066). The logging operation causes a decrease in canopy cover of the forest and eventually a higher density of understorey vegetation. In general, an increase in the 89 density of understorey vegetation leads to higher abundance of Macaranga in forests (Kartawinata et al. 1981). Such changes provide newly available light resources source for understorey plant, and can distinctly influence species composition (Whitmore, 1990). Since there are no data of the original plant community in the logged forests prior to logging, we cannot confirm that differences of the species composition between primary and logged forests are caused by logging. However logging may changed the species compositions in the genera level. It was indicated by the increase of the invasive species in the logged forest (Table 23) such as Macaranga spp. in the older logged forest. Our samples showed that Mangifera swintoniodes Kosterm, was the most abundant species in the primary forest, but was rare or absent in the logged forests (Table 23). On the other hand, Macaranga pearsonii Merrill, Macaranga pearsonii Merrill and Hopea dryobalanoides Miq. were rare in the primary forest but became dominant in the logged forests. Macaranga spp are among the fast growing species once the canopy open (Whitmore 1990). Furthermore, these species such as Macaranga gigantea Muell. Arg., Macaranga pearsonii Merrill and Macaranga hypoleuca Muell. Arg were highly abundant and frequent in the logged forests. The species is known to occur in large numbers in highly abundant and frequent species in the logged forests as it was shown in LF-10 and LF-30 (Table 23). These suggest that Macaranga spp. may favor open habitat and may be a specialist for disturbed forest species (Richards 1996). Based on these differences of dominance structure between primary and logged forests, even if some part of the variability of species composition between the forests is a consequence of differences in the original plant community, we suspect that the main differences in species composition between the forest types 90 were related to lost of the canopy, changing the habitat structure for the plant species composition. These studies showed that species richness in selectively logged forest was not changed from that in primary forest (Table 14) but the species composition was changed because the proportion of open-habitat species increased in the community of logged forest (Table 23). Logging was associated with a significant decrease in canopy cover and an increase in understorey vegetation density relative to primary forest. Our study showed that selective logging operation in primary forest might not dramatically decrease total species number and overall abundance of plat. However, the operation may influence the species composition and dominance structure of the plant community, accompanied by an increase of abundant of shrub-layer species such as Macaranga. The canopy opening caused the establishment of exclusive territories of dominant species that sometimes lead to the structural simplification of the remainder of the plant community. Macaranga spp. had become highly dominant among the plant community in the logged forest (Table 23). We suspect that exclusive territories of this genera appeared in the logged forest (LF-10 and LF-30) and this may be a reason that plant diversity and composition became simplified. During succession after logging, pioneer trees reach successively larger diameter classes. In addition, some light demanding, non-pioneer tree species may exhibit higher growth rates after logging. Differential species response to disturbance can result in differences in tree composition within tree diameter classes as was shown by Newbery et al. (1996). Although commercial logging operations in East Kalimantan have been increasing since the late 1960s (Kartawinata et al. 1981), the effects of logging 91 related disturbance on tree diversity are largely under documented (Cannon et al. 1998). It is reasonable to assume that there exists a threshold where logging mediated forest disturbance increases tree species diversity by allowing the recruitment of light-demanding species, whilst maintaining the existing species pool (L. Nagy 2005, pers. comm.). This may have accounted for the higher tree species richness (dbh > 20 cm) 8 years after logging than in primary forest in West Kalimantan forest as has been reported by Cannon et al. (1998). Their results, however, have been criticized because of their small plot size and short time used after logging Sheil et al. (1998). Beyond a threshold, where a loss of the local species pool occurs and is not compensated for by the recruitment of pioneer species, a decrease in species diversity can be expected. The data from our study showed no apparent species number decreases after logging when compared with unlogged primary forest. Even if species richness was not statistically different among treatments, there was an indication of lower richness in LF-10 than in the others. This was confirmed by the H and E values (Table 17), which showed that diversity and equitability in LF-5 was higher than in LF-10. Dipterocarpaceae and Euphorbiaceae families were dominant in all plots (Table 12) where the pioneer species of Macaranga belongs to the Euphorbiaceae. Of the 15 species which contributed most to basal area the number of Dipterocarpaceae was 14 in PF, 8 in LF-5, 6 in LF-10 and 8 in LF-30. The data from this study did not support the findings of Cannon et al. (1998) for Dipterocarpaceae species (Tables 10 and 12). As selective logging mainly targets commercial species of Dipterocarpaceae, the amount of Dipterocarpaceae stems found in LF-5 (53%) and LF-10 (63%), but not in LF-30 (17%), was drastically lower than in PF. The number of stems of all non-Dipterocarpaceae families were surprisingly little affected. The 92 reduction in density of small dipterocarp trees (and saplings) in logged plots has been attributed to mortality induced by logging (Cannon et al. 1994), even though these trees were too small to be felled. Table 33. Tree density and number of species recorded in one-hectare plots in South East Asian lowland rain forest plots with some additional examples from Africa and Latin America. Altitude m (asl) Plot Size (ha) Number of replicate plots Mean Density (individual /ha) Mean Number of species per plot per ha Malinau PF LF-5 LF-10 100 100 100 1.0 1.0 1.0 4 4 4 605 501 501 180 178 166 This study This study This study LF-30 Seturan, Malinau 100 100 1.0 1.0 4 - 577 759 179 221 This study Kartawinata et al. (pers. comm.) Sabah Segaliud Lokan2 40-100 1.0 - 365 - 250 70 60 1.0 0.96 0.96 - 550 480 596 231 194 256 Poulsen et al (1994) Davies & Becker (1996) 200 50 0.95 1.0 - 778 615 >203 223 100 1.0 15 584 (+/-) 218 Proctor et al (1983) Proctor et al (1983) Wilkie et al (2004) Kade, Ghana 1 137 1.0 - 562 86 Kade, Ghana 2 130 1.0 - 541 92 119 1.0 - - - - 1.0 - 226 - Locality Source Kohler 2001 Brunei Belalong Ladan Andulau Serawak Gunung Mulu 1 Gunung Mulu 2 Wanariset Sangai, Central Kalimantan Africa Swaine et al 1987 Swaine et al 1987 Latin America Rio Negro, Venezuela Manaus, Brazil 93 Swaine et al 1987 Swaine et al 1987 The comparison example of mean species richness in 1-ha plots at BRF and the species total in the 50 ha plot at Pasoh, Malaysia, where shown a 50-fold increase in plot size resulted in a 3.7-fold increased in species numbers (Table 34). The species richness in lowland evergreen rain forests is higher and the plot sizes used in most studies were not uniform. The species numbers in each plot is not contiguous and the transect plot are plotted at a normal scale against sample plot areas. Table 34. Comparison of density and number of species in the present studies with those conducted in Sumatra, Malay Peninsula and Kalimantan. Locality Altitude Plot Size (Ha) Mean Density Number of Species <100 <100 <100 <100 3x4 0.25 1.5 1.6 521.3 680.7 541 445 538 28 239 209 Source East Kalimantan Berau Wanariset Semboja 1 Wanariset Semboja 2 Lempake Sist & Saridan (1999) Kartawinata (unpublished) Kartawinata (1981) Central Kalimantan 15 584 ± 72 94 1298 Riswan (1987) Wilkie et al (2004) Sabah Sepilok RP 17 Danum Valley 30 60 1.8 2x4 666 470 198 138 Nicholson (1965) Newbery et al (1992) 114 114 114 264 52 0.6 3 x 0.6 5 x 0.6 674 462 739 1083 212 240 100 Chai et al (1995) Philips et al (1994) Philips et al (1994) Philips et al (1994) Serawak Lambir National Park Lambir 2 Lambir 3,4,5 Mersing Malay Peninsula Pasoh Bukit Lagong Sungei Menyala 438 460-550 30 50 2 2 494 476.5 660 253 232 Kochummen et al (1990) Manokaran & Swaine (1994) Manokaran & Swaine (1994) 350-450 350-450 350-450 1.6 1.6 1.6 538 420 475 116 94 127 Abdulhadi et al (1989) Abdulhadi (1991) Abdulhadi et al. (1991) North Sumatra Ketambe 1 Ketambe 2 Ketambe 3 Note: Some additional information above were collected by Kartawinata 2005 (pers. comm.) Stand structure after logging Stand structure, or the temporary and physical distribution of trees in an area of forest (Oliver & Larson 1990) can be described by the number of trees per unit area in different diameter classes (Meyer et al. 1961), to which can be added age distribution (usually related to size distribution) and canopy class distribution (Daniel et al. 1987). A primary forest ecosystem is healthy if the structure of the stand represents different classes of diameter, and in general, all stages of growth (seedling, sapling, pole and tree). The number of trees per unit area is always greater in the smaller than in the larger diameter classes. This is because there are more trees in lower strata and because the latter include many young individuals of species that may reach the canopy when mature as well as species that will not do so. The diameter distribution in such forest follows the classical inverse-J distribution, as was 95 also found in this study from primary forest and logged forest (cf. Table 21). Changes in structure may result from differential diameter growth over time, influenced both by natural factors and management. There was no indication of change in structure as measured by the diameter class distribution in this study (Table 21). According to the TPTI system, the cutting and silviculture of natural production forest can be implemented if the area has a minimum number of 25 nucleus trees (seed trees) per ha. The appointed nucleus or seed trees must belong to those commercial species which are cut, and have a diameter of 20 - 50 cm. Where the density of nucleus trees is less than 25 per ha, other commercial species with diameter of > 50 cm may be enlisted as seed trees. The minimum diameter limit of trees to be cut is 50 cm, with a cutting rotation is 35 years. According to my observation in the field, this system was not implemented properly. There were too many stems cut and there were an excessive damage to remaining stock. A grouping of desired commercial species, especially dipterocarps will open larger gaps and cause heavy damage to the area. Although on average about 14 trees are felled per ha (MacKinnon et al. 1996), timber cutting intensity in East Kalimantan can reach 25 trees per ha and results in 30-40% damage by skidding alone (Matius 1991). In the study area, timber cutting ranged between 8-16 trees per ha. As the canopy becomes fully and efficiently occupied by foliage at all levels, a certain maximum production for the stand is achieved, which is a characteristic of the interaction between site and forest type, and determines the maximum yield of the stand. It is usually described in terms of the maximum basal area of the stand, and is likely to be in the order of 45-55 m2/ha for tropical mixed forest (Assmann 1970; Alder & Synnott 1992). The basal area values in the PF (45.8 m2/ha) and LF- 96 30 (46.9 m2/ha) in this study were in that range, whilst LF-5 (28.5m2/ha) and LF-10 (32.6 m2/ha) had lower values (Table 10). In this study both basal areas and the number of stems with a dbh >50 cm were similar in PF and LF-30. This alone may suggest that, all other factors being equal, a 35 year cutting cycle may be sustainable. However, simulation models for the growth of dipterocarp forest suggest that a logging cycle of at least 45 years (van Gardingen et al. 2003) to 60 years (Huth & Ditzer 2001), preferably in combination with reduced impact logging methods, is needed for sustainable yields. If the logging cycle is less than this period of time, the forest is unlikely to show a full recovery of structure and composition to that similar to a primary forest (i.e. unlogged forest). For example, Okuda et al. (2003) found that 40 years after logging using the Malayan Uniform System, the basal area of dipterocarps in the regenerating forest at Pasoh (Peninsula Malaysia) was similar to that in primary forest but the canopy was significantly lower and more even due to a lack of emergent trees. This trend was not observed in this study, except in LF-30 (Figure 26). The higher basal area of dipterocarps in the PF in this study was in line with the practice of selective logging, which primarily targets large sized commercial trees, which at first cutting are dominated by dipterocarps. The higher basal area of non-dipterocarps in the logged plots than in PF has probably arisen from the opening of the canopy after selective removal of dipterocarps which provides better growth conditions (more space and light) for remaining trees. Alstonia spathulata Blume, Eusideroxylon zwageri Teijsm, Syzygium sp., Mangifera swintonioides Kosterm, Elateriospermum tapos Blume, Heritiera simplicifolia (Mast.) Kosterm and 97 Koompassia excelsa Taub. are non-Dipterocarpaceae species, which had higher basal area values than another non-Dipterocarpaceae species. Although the impact of logging on the number of trees and species is obvious, the data from LF-30 as mentioned above showed an equal basal area with PF. The data also showed that LF-30 is dominated by commercial species from the Dipterocarpaceae family. According to the TPTI system, LF-30 is mature enough for a second harvest in 5 years time as this system uses a 35 year harvest cycle. However, the time taken for tropical forest to reach maturity through successional processes is still unknown. The absence of annual rings and differences in growth rates between PF and LF tree species make an estimation of time scale difficult. Although trees over 50 cm dbh are large enough to cut, some may be relatively young and may have never reached flowering stage, especially for dipterocarp species, which flower and fruit irregularly (Kartawinata et al. 1981). So, a 35 year cutting cycle may not give opportunities to many dipterocarps of sufficient girth to be harvested for the second cutting period for their reproductive contribution to future harvest regeneration. Various estimates agree that and rate of development in forest communities as well as individual species is over 100 years. Miscalculation in managing forests will cause genetic erosion and the loss of species diversity (Ewel and Conde 1980, Jacobs 1980 in Kartawinata et al. 2001), because selective logging creams off the best trees of commercial species, especially those of dipterocarps. Residual trees which are to provide seeds for future crops are smaller and genetically inferior, and sometimes even undesirable (Blanche 1978, Ashton 1980 in Kartawinata et al. 2001). Moreover, the residual trees, saplings and seedlings of commercial 98 dipterocarp species in logged forests usually have a lower quantity (Chapter 4; DFID and MOFEC 2000). The number of tree species in logged forests have been reported to be lower than those in primary forest, but the standing stock may be higher and the nucleus trees present in sufficient numbers for future forest development (Gintings 1969, Tarumingkeng et al. 1989 in Kartawinata et al. 2001). High logging damage, including crown injuries, have negative impacts on forest recovery and hence on volume increment and the response of the stand depends on the degree of canopy opening which is related to the intensity of logging (Bertault & Sist 1995, Sist 2000 in Kartawinata et al. 2001). So, if the government decides to conduct a second harvest of LF-30 forest many risks will be taken. Mismanagement of the forest resource will lead to the potential loss or degradation of genetic resources and the possibility that entire species, many of which are still unknown to science, might be lost forever. Tree heights have been rarely measured (Unesco 1978), because of the difficulties of measurement and the unreliability of the data. However, the measurement of tree heights is important as changes to vertical structure may become evident through repeat measurements in multi-strata forests, for example, the loss of an emergent layer (sensu Whitmore 1984) after logging. In this study, height data showed an odd distribution of trees with no emergent trees in PF and LF-30, although the upper and middle canopy of PF were dominated by the Dipterocarpaceae family (Table 29). This could be because the emergents were removed in LF-30, and PF may be growing in a less fertile area (it is reasonable to assume that the concessionaires may have started logging in the best areas and then 99 moved into the less good ones after the best were harvested). The emergent species of Dipterocarpaceae was found only in LF-5 (Shorea parvifolia) (Table 30) and the rest were dominated by fast growing legume species of Koompassia excelsa (LF-10) and in upper canopy K. malaccenesis (LF-5, LF-10 and LF-30) (Tables 30-32). Whitmore (1984) also reported that the emergent layer in Malaya was dominated mostly by Dipterocarpaceae and Leguminosae. He further mentioned that of the Dipterocarpaceae, Dipterocarpus, Dryobalanops and Shorea provide most emergents but by contrast Hopea and Vatica belong to the upper and middle canopy. Koompassia, Dialium and Sindora are the only species from 53 species of Leguminosae that grow large enough trees to be emergent. Slik et al. (2003) found Dipterocarpaceae and Euphorbiaceae as the dominant families in Kalimantan, however, in their study legumes ranked 12th among families and no legume genus occurred among the 25 most common genera, while in this study, legumes ranked 3 and 4 within 15 family dominance (Table 12). The term coarse woody debris (CWD) is little used among forest managers in Indonesia. According to Stevens (1997), CWD is defined as: “Sound and rotting logs and stumps that provide habitat for plants, animals and insects and a source of nutrients for soil development. Material generally greater than 8-10 cm in diameter”. CWD is primarily created as a result of tree death and it persists for some time following natural disturbances or forest harvesting. CWD forms part of the dead wood cycle wherein dead wood, whether standing or down, enters and leaves the forest ecosystem (Parminter 2002). CWD is critically important as habitat for wildlife (Snowman 2004). For example, there are twice as many species of beetles that live on dead and dying wood 100 as there are species of mammals, birds, reptiles, and amphibians in the entire world (Snowman 2004). Decaying wood also supports a range of bryophytes and fungi. The realization of the value of CWD for biodiversity has led foresters in North America to leave patches of forest uncut within timber harvest blocks during commercial logging operations. The management of CWD in Indonesia is far from reality, although it has been identified as one of the important components of biodiversity conservation programs (Proulx & Kariz 2002). That is why the implementation of research, strategic higher level wildlife objectives and stand level wildlife objectives is important. Prescribing stand conditions and implementing the intent of landscape level wildlife objectives has implications for how harvesting and silvicultural operations are conducted (Nochol 2002). The main impact of logging on vegetation is obvious. Felling even only 10% of the trees can result in destruction to at least 55% of the other trees leaving only 35% of the forest undisturbed after logging (MacKinnon et al. 1996). In East Kalimantan typical figures for forest damage from logging vary from 15% to 50% (Abdulhadi et al. 1981 in MacKinnon et al. 1996). Wyatt-Smith & Foenander (1962) found that 30% of the logged forest was covered by the crowns and residual boles of felled trees. The amount of biomass and inputs from residual trees in tropical rain forest are poorly documented (Clark et al. 2002), and the causes for their variation at landscapes scales has not been studied. It appears from the present study that in the absence of logging in the long term, the amount of CWD in PF in this study is about 270 m3/ha. CWD is a dynamic resource (Lloyd & MacMillan 2002), the various amounts of CWD in logged and unlogged forest apparently due to natural mortality (PF and LF) and in addition, that caused by human destruction (LF). Compared with old tropical forest in La Selva, Costa Rica 101 where the average amount of standing and dead wood was 25.4 m3/ha (Clark et al. 2002), the amount of CWD in PF in BRF is more than 10 fold higher. The tree performance in the study area can be seen in Figures 27-29. 102 Figure 27. Pioneer species of Macaranga gigantea (above) and large tree of Shorea leprosula in plot location . 103 Figure 28. Large trees of Shorea in plot location (above) and climber Equipment used for fertile specimen collection 104 Figure 29. A typical trunk of Sarcoteca sp., useful fruit tree species for local people and wildlife (above) and Shorea trees in primary forest plot. 105 CHAPTER 4. REGENERATION IN UNLOGGED AND LOGGED FOREST INTRODUCTION Dipterocarp-rich lowland evergreen rain forest covers most of East Kalimantan Province. Past and present exploitation and destruction have decreased the area of primary forest. Most forest is now logged over, characterized by logging roads dissecting the forest and by large gaps. The rivers carry a lot of suspended material and have a muddy appearance due to land clearance and logging; grassy hills, and a patchwork of cleared agricultural fields are found along the logging roads. Only a small proportion of rainforest trees are commercially valuable and will be removed for timber. Although only a few trees per ha on average are removed from dipterocarp forest the damage to the remaining forest is remarkable (e.g. MacKinnon et al. 1996). The felled trees damage a considerable part of the surrounding forest including trees valuable for local community and wildlife and cause the depletion of unknown genetic resources. Government regulations for the timber industry have been formulated through the system called the Indonesian Selective Cutting System (TPTI, see Appendix 11) to encourage a sustainable harvesting system. This system is designed to ensure that the number of good size of trees will be retained so that natural regeneration can take place. According to this system, concessionaires only undertake one cutting and must give the logged over forest a minimum of 35 years to regenerate and recover before being logged again. 106 This chapter compares regeneration (seedlings and saplings) in primary forest with logged over forest (LF-5, LF-10, and LF-30). The aim of this study was to evaluate if: • current timber harvest (timber or potential timber species) practices allowed sufficient regeneration; • timber can be harvested sustainably from lowland forest in Indonesia; • the Indonesian Selective Cutting System is suitable to allow sustainable forest management system in Indonesia. METHODS Sampling design Five sub-plots of 20 m x 20 m in each 1-ha plot (see Chapter 3 for details for plots and logging treatments), selected in a stratified random way were enumerated for saplings, with a dbh ≥ 2 cm and < 10 cm. Within each of the sub-plots, 10 m x 10 m areas were selected for the enumeration of seedlings. The saplings were labelled with an aluminium tag and their dbh was recorded. Seedlings (dbh <2 cm) were recorded and their height measured. The data collected were analyzed following Mueller-Dombois & Ellenberg (1974): density is the number of individuals or species/ha; species dominance is used synonymously with the basal area of each species; and frequency was calculated as the number of plots where a species was recorded/total number of sample plots. Importance value is calculated as the total of relative density, relative frequency and relative dominance. 107 RESULTS The full list of species by family and their density, relative density, frequency and basal area of each are shown in Appendices 13-72. Seedlings The total number of species for which seedlings were recorded within a total of 80 10 m x 10 m areas across 16 1-ha plots was 1,022 belonging to 408 genera of 111 families (Table 35). In PF there were 469 species, represented by 19,416 individuals in the 20 10 m x 10 m areas within the four 1-ha sample plots; in LF-5, 295 species and 20,256 individuals; in LF-10, 451 species with 11,158 individuals and in the LF30 489 species and 26,351 individuals (Table 35). The number of genera in PF, LF-5, LF-10 and LF-30 were 234, 200, 266 and 237 belonging to 83, 83, 93 and 90 families, respectively (Table 35). Table 35. Summary of the taxonomic composition of seedlings enumerated in PF, LF-5, LF-10 and LF-30 in the Bulungan Research Forest, East Kalimantan. PF 83 469 LF-5 83 295 LF-10 93 451 LF-30 90 489 24 445 469 26 269 295 23 428 451 29 460 489 Dipterocarp Non-dipterocarp Total 11425 7991 19416 9629 10627 20256 809 10349 11158 10689 15662 26351 Importance Value (%) Dipterocarp Non-Dipterocarp 68 132 55 145 13 187 45 155 200 200 200 200 Number of families Number of genera Number of species/0.05 ha Dipterocarp Non-Dipterocarp Total Number of individuals/0.05 ha Total 108 Of all the individuals 32,409 were seedlings of 48 species of Dipterocarpaceae (Table 36). Of Dipterocarpaceae recorded across all the plots, with Hopea dryobalanoides (13,818 seedlings in total), Vatica micrantha (3,340) and Shorea parvifolia (2,725) occurring in every plot (Table 36). Of the fifteen leading species Hopea dryobalanoides had the highest importance values in PF, LF-5 and LF-30 (22.5 %, 30.9% and 13.1%, respectively). In PF-10, Endospermum diadenum had the highest importance value (Table 37). The Total Species Importance Values for a Family (TSIVF) was highest for Dipterocarpaceae with 62.6 % in PF, 56.1 % in LF-5 and 47.2 % in LF-30, while Zingiberaceae was dominant in LF-10 (Table 38). 109 Table 36. The list of dipterocarp seedlings < 2 cm dbh recorded from PF, LF-5, LF10 and LF-30 in the Bulungan Research Forest, East Kalimantan. No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 Species Anisoptera sp. Dipterocarpus crinitus Dyer Dipterocarpus lowii Hook. f. Dipterocarpus sp. Dipterocarpus sp.1 Dipterocarpus sp.2 Dryobalanops lanceolata Burck Hopea cf. rudiformis Hopea dryobalanoides Miq. Hopea sp. Parashorea malaanonan Merrill Parashorea sp. Parashorea sp.1 Parashorea tomentella (Symington) Meijer Shorea agamii P. S. Ashton Shorea angustifolia P. S. Ashton Shorea beccarii Dyer ex Brandis Shorea cf. exstipulata Shorea cf. mujogensis P.S.Ashton Shorea cf. ovalis Blume Shorea cf. venulosa Shorea exstipulata Shorea fallax Meijer Shorea hopeifolia (Heim) Symington Shorea inappendiculata Burck Shorea johorensis Foxworthy Shorea laevifolia (Parijs) Endert Shorea leprosula Miq. Shorea macrophylla (de Vriese) P. S. Ashton Shorea macroptera Dyer Shorea maxwelliana King Shorea multiflora (Burck) Symington Shorea ovalis Blume Shorea parvifolia Dyer Shorea parvistipulata Heim Shorea patoienfis P. S. Ashton Shorea pauciflora King Shorea peltata Symington Shorea pinanga Scheff. Shorea sp. Shorea sp.1 Shorea sp.2 Vatica granulata v. Slooten Vatica micrantha v. Slooten Vatica nitens King Vatica oblongifolia Hook.f. Vatica sp. Vatica umbonata Burck Total 108 N 40 157 12 288 9 26 1,462 1 13,818 9 385 255 1 51 82 1,465 238 3 1,860 1 57 13 36 69 16 274 7 304 18 542 174 362 60 2,725 30 1,049 154 204 29 38 2,265 78 230 3,340 12 4 26 131 32,409 PF + + + + + + + + + + + + + + + + + + + + + + + + 24 LF-5 + + + + + + + + + + + + + + + + + + + + 20 LF-10 + + + + + + + + + + + + + + + + + + + + + + + 23 LF-30 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 29 Table 37. Fifteen leading species based on importance values of seedlings < 2 cm dbh in a four 1-ha plots in each of PF, LF-5, LF-10, and LF-30. PF Species LF-5 IV (%) Species LF-10 IV (%) Species LF-30 IV (%) Species IV (%) Hopea dryobalanoides Hopea dryobalanoides 22.48 Miq. Miq. Endospermum 30.89 diadenum (Miq.) Airy Shaw 4.32 Hopea dryobalanoides 13.07 Miq. Shorea parvifolia Dyer 8.47 Shorea sp.1 7.10 Alpinia sp. 4.20 Vatica micrantha v. Slooten Dryobalanops lanceolata Burck 7.49 Syzygium sp. 4.57 Costus globosus 3.01 Connarus sp. Shorea cf. mujogensis P.S.Ashton 5.85 Shorea parvifolia Dyer 4.46 Shorea parvifolia Dyer 2.69 Scaphium macropodum 4.39 Beume ex K. Heyne Shorea angustifolia P. S. Ashton 5.60 2.97 Zingiber sp.1 2.68 Shorea patoienfis P. S. Ashton Koilodepas sp. Dacryodes rostrata 4.35 (Blume) H. J. Lam forma pubescens 2.80 Cyrtandra sp.1 2.50 Koilodepas sp. 3.49 Spatholobus sp.3 3.48 Zingiber sp.3 2.74 Costus sp. 2.25 Shorea sp.1 3.29 Vatica micrantha v. Slooten 2.86 Artabotrys sp. 2.63 Plagiostachys sp. 2.19 Connarus sp. 2.61 2.45 Scindapsus sp. 2.15 Lophopetalum sp. 2.64 Shorea macroptera Dyer 2.33 Daemonorops sp. 2.22 Urticaceae 2.08 Mallotus dispar (Blume) Mull.Arg 2.57 Dipterocarpus sp. 1.59 Vatica granulata v. Slooten 1.55 Costus sp. 1.65 Bauchinia sp. Baccaurea tetandra Muell. Arg. 1.45 Scindapsus sp. 1.62 Spatholobus sanguineus Elmer 1.40 Pandanus sp. Macaranga bancana Muell. Arg. Gluta wallichii (Hook. f.) Ding Hou Connarus semidecandrus Jack Scaphium macropodum 1.40 Spathoglottis sp. Beume ex K. Heyne 1.69 Schindapsus sp. Shorea multiflora (Burck) Symington Spatholobus hirsutus 1.58 H.Wiriadinata & J.W.A.Ridder-Numan Ziziphus angustifolia 1.54 (Miq.) Hatusina ex Stennis 109 Shorea cf. mujogensis P.S.Ashton Endospermum 2.01 diadenum (Miq.) Airy Shaw Shorea angustifolia P. 1.97 S. Ashton Ziziphus angustifolia 1.88 (Miq.) Hatusina ex Stennis 10.84 6.89 4.34 2.93 2.12 2.07 1.60 1.86 Strychnos sp.1 1.52 1.69 Spatholobus sp.3 1.48 Table 38. Fifteen leading families based on Total Species Importance Value of seedlings < 2 cm diameter in four 1-ha plots per each of PF, LF5, LF-10 and LF-30. PF Family Dipterocarpaceae Euphorbiaceae Leguminosae Rubiaceae Annonaceae Connaracae Palmae Myristicaceae Lauraceae Meliaceae Ebenaceae Myrtacaceae Anacardiaceae Guttiferae Polygalaceae LF-5 TSIV (%) 65.27 19.89 14.05 9.52 6.92 4.13 3.99 3.88 3.27 2.98 2.91 2.82 2.78 2.57 2.50 LF-10 Family Dipterocarpaceae Euphorbiaceae Zingiberaceae Annonaceae Anacardiaceae Palmae Rubiaceae Leguminosae Burseraceae Myrtacaceae Lauraceae Melastomataceae Meliaceae Araceae Myristicaceae TSIV (%) 56.08 12.88 8.17 7.94 6.95 6.46 6.40 6.39 4.99 4.89 4.08 3.57 3.31 3.07 2.94 Family Zingiberaceae Euphorbiaceae Dipterocarpaceae Rubiaceae Leguminosae Annonaceae Palmae Araceae Moraceae Lauraceae Sapindaceae Gesneriaceae Myristicaceae Connaracae Rhamnaceae LF-30 TSIV (%) 21.20 20.24 12.33 11.34 11.10 10.03 6.47 6.30 5.87 4.22 3.69 3.58 3.55 3.49 3.03 Family Dipterocarpaceae Euphorbiaceae Leguminosae Connaracae Annonaceae Rubiaceae Sterculiaceae Moraceae Lauraceae Palmae Anacardiaceae Celastraceae Burseraceae Myristicaceae Ebenaceae Saplings The total number of species of saplings recorded in the 80 20 m x 20 m sub-plots across all 16 plots was 802 in 241 genera and 65 families. The number of genera in PF, LF-5, LF-10 and LF-30 was 144, 172, 152 and 121, belonging to 48, 55, 56 and 46 families, respectively (Table 39). In PF, 351 species, represented by 2,565 individuals had a total basal area of 4.14 m2/0.2 ha; in LF-5 462 species, represented by 2,553 individuals and a total basal area of 3.79 m2/0.2 ha; in LF-10, 270 species with 1,609 individuals and with a basal area of 2.68 m2/0.2 ha; and in LF-30 207 species with 1,153 individuals with an average of basal area 2.58 m2/0.2 ha. Dipterocarpaceae was the dominant family with regard to the basal area of saplings with 1.35 m2 in PF, 0.91 m2 in LF-5, 0.59 m2 in LF-10 and 0.71 m2 in LF-30 (Table 40). There were 66 species of Dipterocarpaceae recorded across all treatments (Table 41). Of those, Shorea parvifolia (BA = 0.525 m2), Vatica granulata (0.476 110 TSIV (%) 47.17 22.26 9.47 8.78 8.02 7.53 6.24 4.76 4.25 4.20 3.90 3.61 3.45 3.42 3.00 m2) and Parashorea malaanonan (0.144 m2) had the highest combined total basal areas. Fifteen leading species based on basal area of saplings in four 1-ha plots of lowland forest can be seen in Table 42. Vatica granulata had the highest BA in PF (0.27 m2) followed by Hopea ferruginea in LF-5, Shorea parvifolia in LF-10 and Hopea dryobalanoides in LF-30 with basal areas of 0.24 m2, 0.29 m2 and 0.31 m2 respectively. Shorea parvifolia was also the only species listed as one of the leading species in PF, LF-5, and LF-10 but not in LF-30. Only seven Dipterocarp species occurred in all plots and 14 species out of 50 Dipterocarpaceae species occurs in both PF and LF-30 (Table 41). Table 39. Summary of taxonomic composition of saplings enumerated in PF, LF-5, LF-10 and LF-30 in the Bulungan Research Forest, East Kalimantan. PF Families Genera Species (N/ 0.2 ha) Dipterocarp Non-Dipterocarp Total Saplings (N/ 0.2 ha) Dipterocarp Non-Dipterocarp Total Basal Area (m2/0.2 ha) Dipterocarp Non-Dipterocarp Total Importance Value (%) Dipterocarp Non-Dipterocarp Total LF-5 LF-10 LF-30 48 144 55 172 56 152 46 121 38 313 351 40 422 462 20 250 270 28 179 207 789 1776 2565 615 1938 2553 372 1237 1609 316 837 1153 1.35 2.79 4.14 0.91 2.88 3.79 0.59 2.09 2.68 0.71 1.87 2.58 76 59 53 69 224 241 247 231 300 300 300 300 Table 40. Fifteen families with the highest basal areas of saplings in PF, LF-5, LF-10 and LF-30 in the Bulungan Research Forest, East Kalimantan. 111 PF Family Dipterocarpaceae Euphorbiaceae Myristicaceae Rubiaceae Ebenaceae Annonaceae Myrtaceae Flacourtiaceae Polygalaceae Burseraceae Sapotaceae Tiliaceae Celastraceae Lauraceae Anacardiaceae LF-5 BA (m2) 1.35 0.60 0.24 0.18 0.17 0.15 0.14 0.13 0.13 0.13 0.11 0.08 0.06 0.06 0.05 Family Dipterocarpaceae Euphorbiaceae Myrtaceae Sapotaceae Myristicaceae Burseraceae Lauraceae Ebenaceae Annonaceae Melastomataceae Anacardiaceae Meliaceae Rubiaceae Guttiferae Moraceae LF-10 BA (m2) 0.91 0.71 0.36 0.17 0.16 0.14 0.12 0.10 0.10 0.09 0.08 0.08 0.08 0.08 0.05 112 Family Euphorbiaceae Dipterocarpaceae Myristicaceae Moraceae Meliaceae Burseraceae Sapindaceae Verbenaceae Ebenaceae Annonaceae Leguminosae Sterculiaceae Sapotaceae Rubiaceae Polygalaceae LF-30 BA (m2) 0.64 0.59 0.15 0.14 0.11 0.10 0.09 0.07 0.07 0.06 0.06 0.06 0.05 0.05 0.05 Family Dipterocarpaceae Euphorbiaceae Celastraceae Myristicaceae Myrtaceae Burseraceae Ebenaceae Moraceae Annonaceae Sapotaceae Anacardiaceae Lauraceae Leguminosae Sterculiaceae Polygalaceae BA (m2) 0.71 0.37 0.17 0.13 0.11 0.10 0.09 0.09 0.09 0.06 0.05 0.05 0.05 0.04 0.04 Table 41. The number of individuals and total basal area (m2) of each dipterocarp sapling recorded from PF, LF-5, LF-10 and LF-30 in the Bulungan Research Forest, East Kalimantan. No PF LF-5 LF-10 1 Anisoptera costata Korth. Species N 3 BA 0.002 + - + LF30 - 2 Dipterocarpus crinitus Dyer 2 0.001 - + - - 3 Dipterocarpus elongatus Korth. 7 0.013 + - - - 4 Dipterocarpus eurynchus Miq. 32 0.059 + - - - 5 Dipterocarpus humeratus van Slooten 2 0.001 - - + - 6 Dipterocarpus lowii Hook. f. 8 0.021 - + - - 7 Dipterocarpus pachyphyllus Meyer 3 0.005 + - - - 8 Dipterocarpus sp. 21 0.044 - + + + 9 Dipterocarpus stellatus Vesque 12 0.022 - + - - 1 0.001 + - - - 0.072 + - + + 10 Dryobalanops elliptica 11 Dryobalanops lanceolata Burck 60 12 Hopea cernua Teijsm. & Binn. 19 0.025 + - - - 13 Hopea cf. cernua Teijsm. & Binn. 1 0.003 - - - + 14 Hopea cf. rudiformis P.S. Ashton 1 0.002 - - - + 15 Hopea dryobalanoides Miq. 158 0.346 + + + + 16 Hopea ferruginea Parijs 251 0.414 + + - - 17 Hopea mengerawan Miq. 5 0.006 + + - - 18 Hopea sp. 7 0.010 + - - + 19 Parashorea malaanonan Merrill Parashorea parvifolia Wyatt-Smith ex P. S. Ashton Parashorea sp. 78 0.144 + + + + 1 0.002 + - - - 3 0.005 - - + + 20 21 22 Shorea agami P. S. Ashton 18 0.025 + + - + 23 Shorea angustifolia P. S. Ashton 31 0.059 + - - + 24 Shorea atrinervosa Symington 5 0.008 + + - - 25 Shorea beccarii Dyer ex Brandis 41 0.087 + + - + 26 Shorea bracteolata Dyer. 2 0.004 - + - - 27 Shorea cf. johorensis Foxworthy 1 0.000 - - - + 28 Shorea cf. lamellata Foxworthy 2 0.006 - - - + 29 Shorea cf. macroptera Dyer 1 0.001 - + - - 30 Shorea cf. maxwelliana King 2 0.003 + - - - 31 Shorea cf. obovoidea van Slooten 8 0.026 + - - - 32 Shorea cf. ovalis Blume 2 0.004 - - - + 33 Shorea cf. pinanga Scheff. 2 0.009 + - - - 34 Shorea fallax Meijer 10 0.012 - + - - 35 Shorea hopeifolia (Heim) Symington 13 0.022 + + + - 36 Shorea inappendiculata Burck 7 0.006 - - + - 37 Shorea johorensis Foxworthy 36 0.079 + + + + 38 Shorea leprosula Miq. 10 0.015 - + + + 39 Shorea macrocarpa 2 0.005 + + - - 40 Shorea macroptera Dyer 106 0.162 + + - + 41 Shorea maingayi 1 0.001 - + - - 42 Shorea maxwelliana King 10 0.013 + - - + 43 Shorea multiflora (Burck) Symington 21 0.041 + + + - 44 Shorea ochracea Symington 2 0.004 - + - - 45 Shorea ovalis Blume 15 0.016 + + - + 113 Table 41. Continued No Species N BA PF LF-5 LF-10 304 0.525 + + + + 20 0.029 - - + + 5 0.011 - - - + 45 0.052 + + + + 13 0.035 - - - + Shorea pinanga Scheff. 33 0.055 + - + - Shorea sp. 74 0.124 + + + + 46 Shorea parvifolia Dyer 47 Shorea parvistipulata Heim 48 Shorea patoiensis P. S. Ashton 49 Shorea pauciflora King 50 Shorea peltata Symington 51 52 LF30 53 Shorea sp. 2 18 0.040 - + - - 54 Shorea sp. 1 37 0.045 - + + - 55 Shorea sp. 3 24 0.036 - + - - 56 Shorea venulosa G. H. S. Wood ex Meijer 1 0.000 - + - - 57 Shorea xanthophylla Symington 49 0.094 + + - - 58 Vatica albiramis v. Slooten 57 0.080 + + - - 59 Vatica cf. oblongifolia Hook. f. 1 0.001 - - - + 60 Vatica granulata v. Slooten 307 0.476 + + - - 61 Vatica micrantha v. Slooten 5 0.010 - + - + 62 Vatica oblongifolia Hook.f. 15 0.013 + + + - 63 Vatica rassak Blume 4 0.010 - + - - 64 Vatica sp. 6 0.009 + + - - 65 Vatica sp. 1 1 0.001 - + - - 66 Vatica umbonata Burck 40 0.087 + + + + 67 Vatica vinosa P.S. Ashton 10 0.014 + + - - 2092 3.554 38 40 20 28 114 Table 42. Fifteen leading saplings species based on basal area (BA) in a four 1-ha plots in PF, LF-5, LF-10 and LF-30, in the Bulungan Research Forest, East Kalimantan. PF Species Vatica granulata v. Slooten. Hopea ferruginea Parijs. Mallotus moritzianus Muell. Arg. Shorea macroptera Dyer. Shorea parvifolia Dyer. Polyalthia cauliflora Hook,f, & Thomson. Shorea xanthophylla Symington. Knema cinerea (Poir,) Warb, var cinerea Mallotus eucaustus Airy Shaw. Diospyros sumatrana Miq. Parashorea malaanonan Merrill Dipterocarpus eurynchus Miq. LF-5 BA (m2) 0.27 0.17 0.16 0.13 LF-10 BA (m2) Species Hopea ferruginea Parijs. Vatica granulata v.Slooten. Syzygium chloranthum (Duthie) Merrill & Perry. Shorea parvifolia Dyer. 0.24 0.21 Hopea dryobalanoides Miq. 0.31 0.14 Lophopetalum sp. 0.16 0.12 0.12 0.08 Aglaia sp. 0.07 Knema sp. 0.11 0.06 Syzygium sp. 0.10 0.06 Diospyros sp. 0.07 0.05 Shorea beccarii Dyer ex Brandis 0.07 0.04 Shorea sp. 0.05 0.04 Dipterocarpus sp. 0.04 0.04 Polyalthia sp. 0.04 0.04 Shorea peltata Symington. 0.03 0.10 Syzygium sp. 0.07 0.09 Macaranga pruinosa Muell. Arg. 0.07 Croton argyratus Blume. 0.07 0.07 0.29 Knema sp. 0.08 0.08 BA (m2) 0.14 Madhuca magnifica S. Moore. Dacryodes rostrata (Blume) H, J, Lam forma pubescens Macaranga gigantea Muell. Arg. Shorea parvifolia Dyer. Macaranga bancana Muell. Arg. Species Koilodepas brevipes Merr. 0.12 0.09 Species LF-30 BA (m2) 0.06 0.06 Macaranga hypoleuca Muell. Arg. Elateriospermum tapos Blume. Dryobalanops lanceolata Burck. Shorea johorensis Foxworthy Macaranga pearsonii Merrill Artocarpus lanceifolius Roxb. Parashorea malaanonan Merrill 0.06 Vatica albiramis v, Slooten 0.05 0.06 Pternandra rostrata (Cogn,) M, P, Nayar 0.04 Syzygium sp. 0.04 Madhuca sp. 0.03 Vatica umbonata Burck. 0.06 Knema cinerea (Poir,) Warb, var cinerea 0.04 Macaranga sp. 1 0.04 Mallotus cf, griffithianus (Muell, Arg,) Hook. f. 0.03 Shorea pinanga Scheff. 0.05 Shorea sp. 2 0.04 Macaranga cf, depressa (Muell, Arg,) Muell. Arg. 0.04 Dialium kunstleri Prain. 0.03 Koilodepas brevipes Merr. 0.05 Gluta wallichii (Hook. f.) Ding Hou 0.04 Diospyros sp. 0.04 Mallotus griffthianus Hook, f. 0.03 The impact of logging treatment on seedlings and saplings regeneration Seedlings LF-30 had the highest number of species of seedlings (265/0.05 ha) and number of individuals (6588/0.05 ha; Table 43), significantly higher number of individuals than LF-10 (2790/0.05 ha). The differences in mean seedling species numbers among the four logging treatments fell just short of significance at the 95% level (p = 0.07, Table 44), however, pairwise comparisons either by Tukey’s family error rate or by Fisher’s individual error rate showed significant differences at 95% level 115 between LF-5 and LF-30, with the latter being more species-rich on average. The number of Dipterocarpaceae species was significantly higher in LF-30 (16/0.05 ha) than in any of the other treatments (Table 44); the number of Dipterocarpaceae seedlings was about 10-fold lower in LF-10 (202 vs. a mean range of 2407-2856) than in the other treatments (Table 44). Mean species number (235) and the mean number of individuals (3916) of nondipterocarps were highest in LF-30. While ANOVA did not give significant differences for the mean number of species of non-Dipterocarpaceae and mean number of seedlings of non-Dipterocarpaceae (Table 45), the number of seedlings in LF-30 appears much higher than in PF. Table 43. The mean number of species and individuals recorded as seedlings in PF, LF-5, LF-10, and LF-30. Identical letters indicate no statistically significant differences among treatments. Treatment PF LF-5 LF-10 LF-30 p -value N species/0.05 ha 206a 170a 212a 265a 0.2053 N seedlings/0.05 ha 4854ab 5064ab 2790b 6588a 0.0457 Table 44. The mean number of species seedlings and individuals belonging to the Dipterocarpaceae family recorded in PF, LF-5, LF10, and LF-30. Identical letters indicate no statistically significant differences among treatments. Treatment PF LF-5 LF-10 N species/0.05 N seedlings/0.05 ha ha 2b 2856a 1b 2407ab 3b 202b 116 LF-30 p -value 16a <0.0001 2672ab 0.0132 Table 45. The number of species seedlings and individuals belonging to the nonDipterocarpaceae family recorded in PF, LF-5, LF10, and LF-30. Identical letters indicate no statistically significant differences among treatments. Treatment PF LF-5 LF-10 LF-30 p -value N species/0.05 ha 204a 170a 207a 235.25 0.3518 N seedlings/0.05 ha 1998a 2657a 2587a 3916a 0.0863 Saplings PF had the highest total number of saplings (641/0.2 ha; Table 46) and number of Dipterocarpaceae saplings (197/0.2 ha; Table 47). LF-5 had significantly higher number of sapling species (191) than either PF (147), LF-10 (122) or LF-30 (89) (Table 46). A similar trend is evident for the number of sapling individuals, however, a large plot to plot variation caused the result to fall short of significance (Table 46). The lowest number of species of Dipterocarpaceae was recorded from LF-10 (10), significantly lower than in any other treatments (Table 47). The number of dipterocarp saplings was not different statistically because of high plot to plot variation, however, there is an indication (in the absence of a larger sample size) that LF-30 (79) might have significantly less saplings than PF (197) or LF-5 (154). The results for the number of non-Dipterocarpaceae species and their individuals are similar to the results obtained for dipterocarps (Table 48). 117 Table 46. The number of species of saplings and individuals in PF, LF-5, LF-10 and LF-30. Identical letters indicate no statistically significant differences among treatments. Treatment PF LF-5 LF-10 LF-30 p -value N species/0.05 ha 147ab 191a 122bc 89c 0.0013 118 N saplings/0.05 ha 641a 638a 402a 288a 0.1731 Table 47. The number of species of saplings and individuals of the Dipterocarpaceae family in PF, LF-5, LF-10 and LF-30. Identical letters indicate no statistically significant differences among treatments Treatment PF LF-5 LF-10 LF-30 p -value N species/0.05 ha 19a 21a 10b 13ab 0.0089 N saplings/0.05 ha 197a 154a 93a 79a 0.1731 Table 48. The number of species of saplings and individuals of nonDipterocarpaceae family in PF, LF-5, LF-10 and LF-30. Identical letters indicate no statistically significant differences among treatments Treatment PF LF-5 LF-10 LF-30 p -value N species/0.05 ha 126ab 173a 110bc 76c 0.0015 N saplings/0.05 ha 444a 485a 309ab 209b 0.0033 DISCUSSION As Whitmore (1982) has pointed out, regeneration processes are similar in essentials in tropical and temperate forests, but in the former they are more complex and the patterns of phases more diverse because of their much greater richness in tree species. Natural regeneration dynamics of dipterocarp forest are connected to the formation of gaps occurring after sporadic treefalls or other relatively small disturbances. Seedlings and saplings formerly suppressed by a closed canopy commence their growth after a gap is opened up. The existing seedling stock (of which some species are ephemeral, whilst others can persist in deep shade for many 119 years) and the new recruits from germinating seeds (of light demanding species) dispersed into the gap determine species composition and heterogeneity of the forest patch after disturbance (Whitmore 1978, Brokaw 1985, Denslow 1987). Regeneration is part of forest ecosystem dynamics which is influenced by environmental perturbations, such as logging. Seedlings and saplings are very responsive to changes in light intensity; many species respond to increased light availability by increased growth (e.g. Lamprecht 1989), whilst some lower canopy species may be unfavourably affected by excess light. Changing canopy density by opening up the forest can dramatically affect the intensity of light received by the forest floor. In general, after logging, such as in LF-5 and LF-10 in this study, the canopy opening is very high. Later, such as in our LF-30, the canopy closure of the stand can be high, but in patches, it may remain low. The impact of logging on saplings resulted in lower densities in logged forest than in primary forest (Table 46). This may have been caused simply by logging damage. The felling of large trees damages or kills many smaller trees, thereby the number of saplings can decrease after logging, such as it has been reported from Bukit Soeharto by Okimori (1991) and from PT. Gani Mulia Abadi by Matius (1991) and from PT. ITCI by Soedirman (1993; see also Table 49). This is in accordance with Adjers et al. (1995), who also reported that the number of saplings and seedlings of commercial dipterocarp species in logged forest was low, especially if the forest has been heavily logged or burnt. Another possible cause of a reduction in sapling numbers, alone or in combination with felling damage, is the temporal dynamics of pioneer species which invaded large felling gaps immediately after logging. The ranking of the Euphorbiaceae family second after the Dipterocarpaceae in this study and the occurrence of 120 Macaranga species among the top 15 dominant species is an indication of that (note that the Euphorbiaceae also has many shade bearing species in primary forest). In primary forest and old logged forest, recruitment rate matches mortality (Swaine et al. 1987). Studies on mortality and recruitment in logged forest have indicated higher mortality than recruitment and this is in accordance with Manokaran & Kochummen (1987) and Lang & Knight (1983) who found that in certain periods of succession mortality exceeds recruitment. High mortality in newly logged forest such as in LF-10 reflects the medium-term effects of logging damage. LF-10 had 10fold lower number of dipterocaps seedling and lower numbers of dipterocarp saplings even compared to LF-5. The answer to this phenomenon is simply due to the open area in LF-5 which had a large number of seedlings of light demanding pioneers species, such as Macaranga spp. and Anthocephallus spp. rather than shade tolerant species in the large gaps. Although Dawkins (1958) stated that there is no increment of sapling growth after logging but in term of basal area, all forest types were dominated by Dipterocarpaceae family (Table 40). In this study, we found that LF-30 had a good quality of forest in terms of floristic composition and stand structure, similarly to that reported by Soedirman (1993) who found that the number of trees in older logged forest was greater than in the newly logged forest. In addition, Soedirman’s study showed that the older logged forests were dominated by young trees up to 75%, the similar case to that also found in this study, where the regeneration of seedling species as well as the number of individuals in LF-30 was better than LF-5 and LF-10. 121 Table 49. Number of seedlings (< 2 cm dbh) and number of saplings (2 – 9.9 cm dbh) in primary lowland dipterocarp forest and logged forest in Kalimantan. Location alt Plot size 100 Mean of four 1-ha Mean of four 1-ha Mean of four 1-ha Mean of four 1-ha No. of seedlings Plot size No. of saplings References East Kalimantan BRF-CIFOR PF LF-5 LF-10 LF-30 RIL-CIFOR 100 100 100 100 4,854 5,064 2,790 6,588 - - Mean of four 1-ha Mean of four 1-ha Mean of four 1-ha Mean of four 1-ha Means 1ha 641 638 402 288 4,600 Bukit Suharto Forest Light logging Medium logging Heavy logging 60100 60100 60100 this study 1-ha 51,600 1-ha 4,150 1-ha 20,833 1-ha 3,681 1-ha 3,889 1-ha 3,472 1-ha 17,475 1-ha 1,224 1-ha 25,459 1-ha 1,352 Priyadi et al. (2005) Okimori (1991) PT. Gani Mulia Abadi Light logging Heavy logging 400 400 Soedirman (1993) P.T. ITCI LF-3 100 4 m2 LF-6 LF-10 LF-15 100 2 100 100 4m 4 m2 4 m2 27 25 m2 40 53 77 107 2 66 25 38 25 m 25 m2 25 m2 Jafarsidik 1998 South Kalimantan Kintap Forest 100 Means 1ha 73,920 Means 1ha 5,163 Kuusipalo et al. 1996 Kintap Forest PF 100 100 m2 325 - - LF-12 100 2 100 m 530 - - 100 845 m2 599 - - Kintap Gap forest Matius (1991) 122 Tuomela et al. (1994) Canopy opening in LF in contrast to PF stimulated the growth of seedlings (compare Table 43 and 46). A study by Seng et al (2004) in Peninsular, Malaysia showed that the mean basal area and the density of tree seedling and saplings with dbh < 5 cm was reduced by 150% of the original stand after logging in one compartment but also found an increment of up to 24.3% in another compartment. They also found that there were no changes in species composition before and after logging. Similar results were found by Chapman & Chapman (1997) in Kibale National Park in Uganda where there were no differences in the density and species richness of seedlings in the logged and unlogged forests. Similarly, our study showed little difference between PF and LF: the number of seedlings was reduced in LF-10 compared to PF but more seedlings were found in LF-5 and LF-30 than in PF. Seedlings of Hopea dryobalanoides were dominant in PF, LF-5 and LF-30 in this study. This fact indicated that the future harvesting is dominated by timber from the family Dipterocarpaceae especially Hopea dryobalanoides. LF-5 had a vigorous regeneration in this study: the highest number of species and stems of saplings (both Dipterocarpaceae and non-Dipterocarpaceae). This phenomenon may due to the greater light intensity in LF-5 compared to the other plots. All dipterocarps have seeds that can germinate and establish as seedlings beneath the shade of a closed canopy (Newman et. al., 1996; Whitmore, 1996). The seedlings of a number of species can persevere for many years, but some (e.g. Cotylelobium melanoxylon) will die within a year or so (L. Nagy pers. comm.). Kuusipalo et al. (1996) reported a similar result: seedling density tends to be higher in a logged forest than in unlogged forest, due to the higher light intensity. The 123 numbers of Euphorbiaceae was higher in LF-10 than in other plots, while Dipterocarpaceae had the highest basal area in PF, LF-5 and LF-30 (Table 40). This fact shows that Dipterocarpaceae regeneration is still greater than that of other families. This was because the basal area of Dipterocarpaceae is relatively higher than other families and canopy conditions promote the early growth of seedlings of Dipterocarpaceae. They then more or less cease growing in height until ‘released’ when the canopy above them is opened. The regeneration (seedlings and saplings) recorded in all treatments is encouraging with regard to producing future harvestable timber. An example of tagged saplings and a natural gap in PF can be seen in Figure 30. 124 Figure 30. Saplings with aluminium tags and signed of Block (above) and natural gap of about 800 m2 with Shorea parvifolia saplings in PF. 125 CHAPTER 5. SOILS INTRODUCTION Forests produce greater soil stability than any other vegetation type because of their high infiltration rates, protective ground cover, high consumption of soil water and high tensile strength of roots (FAO 2003). These attributes are particularly beneficial in a region with a high rainfall like the Bulungan Research Forest in East Kalimantan. Many remaining parts of tropical forest in Indonesia lie upon hilly and mountainous regions. Logging activities in such areas have a large potential to cause erosion and landslides (Sidle 2000 in FAO 2003). This is because logging interferes with the soil and its hydrological properties directly through churning and compaction. There are also indirect logging associated impacts on soil and soil processes by changing surface temperature. Current logging practices largely ignore collateral damage caused to soil, (also to remaining forest stock and hydrology). The microclimatic changes due to forest clearing from dark, moist, cool and wind free to dry, hot and exposed to air movement directly affect the vegetation, such as residual trees and saplings and seedlings (Ewel & Conde 1980). Due to the nature of its implementation, logging causes compaction in the soil profile. Further more, the degree of soil compaction affects soil bulk density and organic matter distribution (Siregar 2004). For example, Putz (1994) attributed logging damage that results in the destruction of natural regeneration and increased susceptibility to soil loss, wildfires, and weed infestations to lack of adequate management plans. Good and reliable information on logging impacts for management planning is a must for sustaining the 126 forest resource. Forest conservation has to focus not only on primary (unlogged) forest but also on logged forest (Meijaard et al. 2005). This chapter investigates changes to soil properties after logging. In particular, the distribution of soil bulk density and evaluation of soil organic matter as affected by logging activities in different age of logged forest. Forest land fertility and its potential suitability for crops were also evaluated. This study is designed to clarify the ecological effect caused by timber harvesting and to find out the answer whether the forest surrounding the study area is feasible to be converted into other potential conversion. METHODS Soil survey This soil survey was carried out in cooperation with Mr. Imam Basuki, a soil scientist at CIFOR, Bogor, Indonesia. Soil profile description Two soil profiles were described from 1 m deep soil pits for each of the 16 1-ha permanent plots used for tree recording and described in Chapters 2 and 3 , one about 5 m uphill and the other 5 m downhill from the plot edge. If stones prevented digging to 1 m depth, digging was stopped and the depth reached was recorded. Profiles were described using procedures outlined by Suwardi & Wiranegara (1998). Physical characteristics noted included depth, moisture regime, colour, texture, structure, consistency, and pore distribution. Soil sampling 127 Two types of soil samples were collected: (1) surface samples from intact forest floor not affected by skidding; and (2) surface samples from skid trails. Five sample points were randomly chosen from each 1-ha plot to represent areas without skid trails and another five from skid trails based on the length and form of the trails (Figure 31 and Appendix 8). Five samples were taken from the soil surface of each plot using a 5 cm diameter stainless steel ring with a volume of 167.48 cm3. Before extracting the core, the vegetation was cleared. All samples were taken in duplicate; the physical and chemical properties determined were identical to those for the profile samples. 128 Figure 31. An example of sampling near a skid trail from Plot 2 of LF-30 129 Soil analysis All measurements made in the laboratory are detailed in the Soil Division [Jurusan Tanah] (1992) for physical and in the Indonesian Soil Research Center [Puslittanak] (1998) for chemical characteristics. Physical measurements Texture (pipette procedure) Organic material was oxidised by H2O2 and soluble salts removed from the soil by HCl and heating. The remaining particles were minerals in the form of sand, silt and clay. Wet sieving separated the sand, in the first place, and sedimentation separated the silt from the clay. Bulk density (gravimeter procedure) Samples were dried in an electric oven at 105o C to achieve constant weight (24 hours). Dry density (Dd) was calculated as (mass after drying) / ring volume (167.48 cm3). Chemical measurements (Puslittanak 1998) pH value (KCl and H2O procedures) 1. Organic Carbon (Kurmis procedure) 2. Total Nitrogen (Kjeldahl procedure) 3. Available Phosphorus (= P2O5, by Bray I procedure) 4. Exchangeable bases, base saturation (BS), cation exchange capacity (CEC), acidity, aluminum, and iron concentration (this series of evaluations follows the sequential steps of “NH4OAc/ 23rd procedure”, of Puslittanak 1998). The soils were analysed by the Indonesian Soil Research Center (Puslittanak), Bogor. 130 Fertility evaluation Soil fertility was assessed using CEC (me/100g), base saturation (%), P2O5 (ppm), K+ (me/100g) and C-org (%) (Staf Peneliti 1983). The value of each indicator was then translated to scale of 1 to 5 and used to classify fertility. Exchangeable rather than available K+ and available rather than total phosphorus were used in this evaluation, as this is more relevant to actual fertility. Statistical analyses The statistical significance of differences among treatments means was assessed using one-way analyses of variance (ANOVA). Where results indicated significant (p<0.05) treatment effects, Tukey’s HSD test was used to determine the levels of significance among the treatment means. The data were analysed using Microsoft Excel 2003 and JMP 5.1 statistical programme published by SAS Institute in United States. Land evaluation As described in Basuki & Sheil (2005) ‘land evaluation’ means an area's potential for specific land-uses. Land and soil qualities, such as drainage and nutrient content, can play a significant role in determining the appropriateness/suitability for a chosen activity. Each sample plot was evaluated for its potential for sustained production under seven crops: upland-rice (Oryza sativa), oil palm (Elaeis guineensis), black pepper (Piper nigrum), coffee (Coffea arabica), cocoa (Theobroma cacao), candlenut (Aleurites moluccana) and rubber (Hevea brasiliensis) using the Standard Indonesian Department of Agriculture classification procedures (Biro Perencanaan 1997). For each plot the primary limiting factor was used to determine the plot's suitability. That is the factor or measure that is most unsuited to the crop in question. 131 Each plot was then rated highly suitable (S1), moderately suitable (S2), marginally suitable (S3), or permanently not suitable (N). S2 land has ‘light limiting factors and only requires minimum input in order to support a sustainable yield of a selected crop’. S3 land (marginally suitable) has ‘considerable limiting factors and requires sizeable inputs in order to support a sustainable yield of a determined crop’. Land is considered ‘permanently unsuitable’ when it is ‘neither economically nor biologically sustainable for a selected crop’ (Biro Perencanaan 1997). The evaluation/matching process between plot site characteristics and crop requirements was carried out using a Boolean logic formula in Microsoft Excel. This process is outlined below. Formula-1. Example of the Boolean logic (using MS-excel logic) to construct a formula for the land suitability class values of cationic exchange capacity (CEC) = IF (CEC = "","", IF (CEC >16, S1, IF (CEC <= 16, S2,0))) This means that if CEC is >16, the maximum possible land suitability class for pepper will be S1 or “very suitable”. Such criteria are applied until all characteristics have been evaluated. Then suitability is determined using the lowest rated characteristic. RESULTS Soil survey 132 Soil under lowland dipterocarp forests in the study area is oxisols (Basuki & Sheil, 2005). Full soil profile (Figure 32) descriptions from 32 pits are presented in Appendix (10). The impacts of logging on intact soil and on skid trail Soil physical and chemical characteristics Altogether, there were 140 surface samples: 60 skid trail samples (no skid trails in primary forest) and 80 surface samples from the intact forest floor not affected by skidding. Results obtained from this study shows that soil bulk density, pH (KCl) and C are significantly different from one site to another (LF-5, LF-10, LF-30, and PF, Table 50 and 51). This information is further indicates that the characteristics of soil in the study sites are naturally different. To see the different of skid trail and intact soil on different logging ages, the data were analyzed using completely randomized design using 4 replications in each forest type. The treatment that were tested are: PF (only intact soil), LF-5 + intact soil, LF-10 + intact soil, LF-30 + intact soil, LF-5 + skid trail, LF-10 + skid trail and LF-30 + skid trail. The effect of skid trail and intact soil across all logging ages is significant on the soil physical properties. While the effect of skid trail and intact soil has no significant impact on the soil physical properties at the same levels of logging ages. This indicated that skid trail activities did not damage the soil physical properties severely as compared to the intact soil plots and this trend was observed at all logging ages. The analysis result of physical soil properties of skid trails and intact soil comparison at different levels of logging can be seen in Table 52. The 133 result of soil chemical properties analysis is similar with soil physical properties analysis, except on C, N, C/N and Fe. On LF-10, the effect of skid trail and intact soil has significant results on C, N and Fe. While on LF-5 it has significant results on C/N. This indicated that skid trail activity on LF-10 reduced C, N and Fe significantly, while on LF-5 it reduced C/N significantly. The analysis comparison of chemical soil properties of skid trails and intact soil at different levels of logging can be seen in Table 53. The improvement of the soil chemical properties may occurred due to the increase in gap opening inducing the rate of decomposition of debris in forest surface. Across intact soils and skid trail soils, soil bulk density and pH (KCl) bearing lower values in more recently logged plots (Table 54). In contrast, C content fluctuated: it is higher in LF-5 and LF-10 but lower in LF-30. Bulk density is significantly different between PF and LF-30 but not significantly different from LF5 and LF-10. The pH (KCl) in PF is significantly different from LF-10 but not from LF-5 and LF-30. C in PF is not significantly different from logged forest plots. No significant difference was found on non-skid trail at different soil depths from 0-10 cm of LF-5, LF-10 and LF-30 on soil physical and chemical characteristic such as sand, silt, clay-course, clay-fine, pH (H2O), N, C/N, P2O5, Ca, Mg, K, Na, Bases, CEC, BS, Al, H and Fe (Table 54). Nitrogen tended to increase with increasing logging age (LF-5 and LF-10), but decrease in LF-30 (Table 54). Phosphorus was relatively fluctuating with increasing logging age (Table 54). Potassium, sodium, magnesium and hydrogen in PF was higher than potassium, sodium, magnesium and hydrogen in LF-5, LF-10 and LF-30 (Table 54). LF-5 reached the highest aluminum and CEC concentrations, while calcium concentration tended to increase with increasing logging age (Table 54). Base saturation tended to increase with increasing logging age (Table 54). 134 135 Figure 32. Soil profile in LF-30 (above) and new logging road along primary forest in the Bulungan Research Forest, East Kalimantan. Table 50. Summary of significance tests after one-way analyses of ANOVA carried out separately for intact surface soil and skid trails on each soil physical property from PF, LF-5, LF-10 and LF-30, in the Bulungan Research Forest, East Kalimantan Soil physical characteristic ✂✁☎✄ ✆✞✝✠✟✠✡☞☛✍✌ ✎✑✏✓✒✕✔✗✖✙✘✛✚☞✜✣✢✥✤ Sand (%) Silt (%) Clay-coarse (%) Clay-fine (%) Logging treatment effect p-value intact soil p-value skid trail 0.0044** 0.0693ns 0.0996ns 0.1048ns 0.2025ns 0.1375ns *, significant at 95% level; **, significant at 99% level; ns, not significant 136 0.0252* 0.0136* 0.1000ns 0.0723ns Table 51. Summary of significance tests after one-way analyses of ANOVA carried out separately for intact surface soil and skid trails on each soil chemical property from PF, LF-5, LF-10 and LF-30, in the Bulungan Research Forest, East Kalimantan Soil chemical characteristic ✦✠✧★✧✂✩✫✪ ✦✠✧✴✳✶✵ ✄ Logging treatment effect p-value Intact soil p-value Skid trail 0.8090ns ✬✮✭ ✬☎✯☎✰✍✱ ✡✲☛ 0.0041** 0.0231* C (%) N (%) C/N P2O5 (ppm) Ca2+ (me/100g) Mg2+ (me/100g) K+ (me/100g) Na+ (me/100g) Bases (me/100g) ✵✸✷✹✵ ✒✺✜✣✟✲✘✼✻ ✬✽✬ ✔✠✤ 0.0247* 0.1156ns 0.3882ns 0.2264ns 0.4707ns 0.9278ns 0.2612ns 0.1724ns 0.8543ns 0.1738ns 0.1189ns 0.0829ns 0.0114* 0.4081ns 0.7081ns 0.8898ns 0.2015ns 0.4633ns 0.7861ns 0.0696ns Base Saturation Al3+ (me/100g) H+ (me/100g) Fe3+ (ppm) 0.6102ns 0.1399ns 0.0595ns 0.1688ns 0.6092ns 0.0658ns 0.0303* 0.1147ns *, significant at 95% level; **, significant at 99% level; ns, not significant Table 52. Physical soil properties of skid trails and intact soil at different levels of logging Forest type PF LF-5 LF-10 LF-30 LF-5 LF-10 Logging treatment effect Intact soil Intact soil Intact soil Intact soil Skid trail Skid trail Soil physical properties Bulk density (gr/cm3) 1.04b 1.09b 0.98b 1.39a 1.11b 1.10b Sand (%) Silt (%) Clay-coarse (%) Clay-fine (%) 33.38bc 41.18ab 19.91cd 54.44a 36.11b 16.02d 37.01ab 23.82c 45.52a 26.53c 22.30c 44.83a 18.87abc 14.88bcd 19.71ab 12.01d 17.42bcd 24.11a 10.75cd 20.13ab 14.86bc 7.03d 24.19a 15.04bc 137 LF-30 Skid trail ✦☞✾✕✿✍❀ ✄ ✁❁✟ 1.43a < 0.0001** 48.11ab < 0.0001** 30.49bc < 0.0001** 12.51cd < 0.0001** 8.89cd < 0.0001** Note: Numbers followed by same letter indicates not significant at 95% level; ** , significant at 99% level Table 53. Chemical soil properties of skid trails and intact soil at different levels of logging 138 Forest type PF LF-5 LF-10 LF-30 LF-5 LF-10 LF-30 PF LF-5 LF-10 LF-30 LF-5 LF-10 LF-30 Logging treatment effect Intact soil Intact soil Intact soil Intact soil Skid trail Skid trail Skid trail ❏▲❑✑▼❖◆❁P ◗▲❘ Intact soil Intact soil Intact soil Intact soil Skid trail Skid trail Skid trail ❏▲❑✑▼❖◆❁P ◗▲❘ ❈☞❉❋❊✗●■❍ C (%) N (%) 4.09b 4.11b 4.25ab 4.10b 4.31ab 4.48a 4.01b 0.0013** 3.70c 3.73c 3.95ab 3.83bc 3.79bc 4.01a 3.74c < 0.0001** 1.82ab 2.07ab 2.36a 1.10c 1.44bc 1.60bc 1.08c < 0.0001** 0.16ab 0.18a 0.17a 0.10c 0.14abc 0.12bc 0.09c < 0.0001** C/N P2O5 (ppm) Ca2+ (me/100g) 11.65bc 12.70ab 13.40ab 11.45bc 9.90c 14.05a 12.11ab < 0.0001** 11.83a 7.29ab 9.71ab 6.43b 5.44b 7.49ab 6.66ab 0.0077** 0.28a 0.83a 1.28a 1.38a 0.71a 0.98a 0.56a 0.2026ns ❂☞❃❄❃❆❅ PF LF-5 LF-10 LF-30 LF-5 LF-10 LF-30 Intact soil Intact soil Intact soil Intact soil Skid trail Skid trail Skid trail ❏▲❑✑▼❖◆❁P ◗▲❘ Intact soil Intact soil Intact soil Intact soil Skid trail Skid trail Skid trail ❏▲❑✑▼❖◆❁P ◗▲❘ Mg2+ (me/100g) 0.57a 0.50a 0.45a 0.33a 0.35a 0.28a 0.28a 0.4485ns ●■❙✮● K (me/100g) Na (me/100g) Bases (me/100g) 0.23a 0.17ab 0.17ab 0.13b 0.14b 0.13b 0.11b 0.0001** 0.07ab 0.10a 0.08ab 0.04b 0.06ab 0.07ab 0.06ab 0.0117* 1.15a 1.59a 1.98a 1.87a 1.26a 1.46a 1.01a 0.6095ns 10.07b 15.72a 9.33b 6.08b 18.16a 9.72b 6.95b < 0.0001** Base Saturation 11.15ab 14.05ab 21.95ab 28.45a 9.65b 16.15ab 14.42ab 0.0428* Al3+ (me/100g) H+ (me/100g) Fe3+ (ppm) 6.81bc 9.90ab 3.61c 4.71c 12.52a 4.86c 6.26bc < 0.0001** 0.68ab 0.86a 0.31c 0.36bc 0.94a 0.36bc 0.48bc < 0.0001** 44.13a 38.76ab 42.38a 34.34b 43.70a 35.47b 33.64b 0.0390* + PF LF-5 LF-10 LF-30 LF-5 LF-10 LF-30 Soil chemical properties ❇ + ❚✛❯❲❱❖❳❩❨❭❬✲❬❫❪❫❴ Note: Numbers followed by same letter indicates not significant at 95% level; * , significant at 95% level; ** , significant at 99% level; ns , not significant Table 54. Summary statistics carried out separately for intact surface soil and skid trails on each soil physical and chemical property from PF, LF-5, LF-10 and LF-30, in the Bulungan Research Forest, East Kalimantan. 139 Characteristics Bulk density (g/cm3) Sand (%) Silt (%) Clay-coarse (%) Clay-fine (%) pH H2O pH KCl C (%) N (%) C/N Logging treatment PF LF-5 LF-10 LF-30 PF LF-5 LF-10 LF-30 PF LF-5 LF-10 LF-30 PF LF-5 LF-10 LF-30 PF LF-5 LF-10 LF-30 PF LF-5 LF-10 LF-30 PF LF-5 LF-10 LF-30 PF LF-5 LF-10 LF-30 PF LF-5 LF-10 LF-30 PF mean 1.04 1.09 0.98 1.39 33.38 41.18 19.91 54.44 37.01 23.82 45.52 26.53 18.87 14.88 19.71 12.01 10.75 20.13 14.86 7.03 4.07 4.09 4.25 4.09 3.69 3.71 3.95 3.83 1.82 2.07 2.36 1.10 0.16 0.18 0.17 0.10 11.64 Intact s.d. 0.15 0.23 0.17 0.15 13.07 27.51 11.19 12.28 8.9 16.46 8.23 10.2 4.31 7.89 6 7.78 3.36 14.4 4.7 3.23 0.37 0.37 0.32 0.41 0.13 0.18 0.17 0.3 0.5 0.97 0.94 0.25 0.04 0.09 0.05 0.02 1.76 n 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 Skid trail mean s.d. 1.11 0.32 1.10 0.15 1.43 0.17 36.11 18.84 16.02 4.44 47.62 14.11 22.3 11.65 44.83 3.58 30.62 9.56 17.42 7.79 24.11 7.39 12.54 5.56 24.19 11.65 15.04 4.87 9.22 2.90 4.31 0.32 4.47 0.37 4.02 0.40 3.77 0.12 4.01 0.17 3.73 0.11 1.44 0.97 1.6 0.84 1.08 0.35 0.14 0.08 0.12 0.06 0.09 0.03 - n 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 - Table 54. Continued Characteristics Logging treatment LF-5 LF-10 Intact 12.76 13.39 2.78 2.25 140 Skid trail 20 20 9.93 14.04 2.05 2.03 20 20 Characteristics P2O5 (ppm) Ca2+ (me/100g) Mg2+ (me/100g) K+ (me/100g) Na+ (me/100g) Bases (me/100g) CEC (me/100g) (me/100g) Base Saturation Al3+ (me/100g) Logging treatment LF-30 PF LF-5 LF-10 LF-30 PF LF-5 LF-10 LF-30 PF LF-5 LF-10 LF-30 PF LF-5 LF-10 LF-30 PF LF-5 LF-10 LF-30 PF LF-5 LF-10 LF-30 PF LF-5 LF-10 LF-30 PF LF-5 LF-10 LF-30 PF LF-5 LF-10 LF-30 Intact 11.54 11.83 7.29 9.71 6.43 0.28 0.83 1.28 1.38 0.57 0.50 0.45 0.33 0.23 0.17 0.17 0.13 0.07 0.10 0.08 0.04 1.15 1.59 1.98 1.87 10.07 15.72 9.33 6.08 11.16 14.04 22.00 28.41 6.81 9.90 3.61 4.71 2.05 7.69 6.71 5.94 3.42 0.38 1.86 1.87 2.17 0.65 0.87 0.38 0.41 0.12 0.09 0.12 0.05 0.06 0.05 0.06 0.02 1.03 2.75 2.25 2.51 1.81 10.29 2.24 1.31 9.58 21.41 21.93 31.96 1.92 7.14 1.34 2.5 Skid trail 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 11.99 5.44 7.49 6.59 0.71 0.98 0.59 0.35 0.28 0.28 0.14 0.13 0.11 0.06 0.07 0.06 1.26 1.46 1.04 18.16 9.72 7.04 9.6 16.16 14.65 12.51 4.86 6.12 1.45 5.02 5.99 2.59 0.67 1.21 0.91 0.29 0.17 0.40 0.05 0.04 0.06 0.04 0.06 0.04 0.95 1.35 1.19 10.08 2.91 1.46 8.44 17.37 15.44 7.52 2.66 1.59 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 Table 54. Continued Characteristics + H (me/100g) Logging treatment PF LF-5 Intact 0.68 0.86 0.26 0.62 141 Skid trail 20 20 0.94 0.53 20 Characteristics Fe3+ (ppm) Logging treatment LF-10 LF-30 PF LF-5 LF-10 LF-30 Intact 0.31 0.36 44.13 38.76 42.38 34.34 0.12 0.19 12.04 13.04 12.75 15.71 Skid trail 20 20 20 20 20 20 0.36 0.48 43.7 35.47 33.64 0.24 0.18 14.21 12.71 11.76 20 20 20 20 20 Soil fertility and the evaluation land suitability for crop production Fertility at all plots was low to very low for crop production (Table 55). Sites with the least fertile soil were found in LF-5 and LF-30 both on skid trail and non-skid trail, where phosphorus and potassium availability were reduced. Most of crops evaluated show S3 (marginal) or N (not suitable) class of suitability, while candlenut show N class for all sites (Table 56). It is only for coconut, peanut and rice that this area shows S2 (moderate) class of suitability. The results confirm that the production forest area would only support forestry activities. Table 55. Soil Fertility Class by logging treatment (PF, LF-5, LF-10, LF-30), sample (intact vs. skid trail) for each plot using Criteria from Indonesian Soil Research Center (LPT 1983), n=140 Treatment PF LF-5 Surface type Intact intact Plot C P2O5 1 1.86 10.15 0.22 9.42 5.98 Low 2 2.01 14.28 0.37 11.60 22.10 Low 3 1.49 7.99 0.15 9.35 5.99 Low 4 1.92 14.91 0.19 9.93 10.56 Low 1 2.55 3.41 0.18 28.94 3.48 Low 142 K2 O CEC B% Fertility Treatment Surface type Skid trail LF-10 Intact Skid trail Intact LF-30 Skid trail Plot C P2O5 2 0.93 10.65 0.12 4.10 18.54 Low - Very low 3 2.55 11.63 0.12 14.00 4.63 Low - Very low 4 2.23 3.47 0.25 15.83 29.51 Low 1 1.73 4.95 0.14 27.97 3.32 Low 2 1.05 8.34 0.12 5.46 17.91 3 2.12 6.23 0.10 19.26 2.96 Low 4 0.85 2.26 0.20 19.98 14.21 Low 1 2.32 14.10 0.24 7.85 33.58 Low 2 2.17 7.53 0.12 10.29 8.90 Low 3 3.02 10.23 0.18 10.56 8.75 Low 4 1.92 6.96 0.15 8.61 36.76 Low 1 1.66 10.24 0.09 7.92 27.97 Low 2 1.90 10.62 0.13 9.78 10.32 Low 3 1.63 5.13 0.15 8.17 12.24 Low 4 1.19 3.98 0.16 12.99 14.11 Low 1 1.02 5.78 0.13 4.87 18.22 Low - Very low 2 1.07 6.06 0.17 6.13 58.76 Low - Very low 3 1.24 5.85 0.08 6.67 27.04 Low 4 1.09 8.04 0.14 6.66 9.62 Low 1 1.28 6.48 0.08 6.76 6.20 Low 2 1.11 6.29 0.10 6.96 29.67 Low 3 1.22 8.04 0.10 7.10 8.65 Low 4 0.72 5.55 0.15 7.35 14.07 K2 O CEC B% Fertility Low - Very low Low to Very low Table 56. Suitability Class for each plot in PF, LF-5, LF-10, and LF-30 using Criteria from Indonesian Department of Agriculture (Biro Perencanaan 1997), n=140 Logging treatment PF LF-5 LF-10 Plot Cocoa Candlenut 1 2 3 4 1 2 3 4 1 S3 S3-N S3 S3 S3-N S3-N S3-N S3 S3-N N N N N N N N N N Rubber Coffee Rice Pepper Peanut Coconut Oil-palm S3-N S3-N N S3-N S3-N S3-N S3-N S3 S3-N S3-N S3-N N S3-N S3-N S3-N S3-N S3 S3-N S3 S3-N S3 S3 S3 S3-N S3-N S2-S3 S3 S3 S3-N S3 S3 S3-N S3-N S3-N S3 S3 N N N N N N N N N S2-S3 S2-N S3 S2-S3 S2-S3 S2-S3-N S2-S3-N S2 S2-S3 S3 S3-N S3 S3 S3-N S3-N S3-N S3 S3 143 Logging treatment LF-30 Plot Cocoa Candlenut 2 3 4 1 2 3 4 S3 S3 S3 S3-N N S3-N N N N N N N N N Rubber Coffee Rice Pepper Peanut Coconut Oil-palm S3 S3 S3 S3-N N S3-N N S3 S3 S3 S3-N N S3-N S3-N S3 S3 S3 S3 S3-N S3-N S3-N S3 S3 S3 S3-N N S3-N N N N N N N N S3-N S2 S2 S2-S3 S2-S3 S3-N S2-S3-N S3-N S3 S3 S3 S3-N S3-N S3-N S3-N DISCUSSION The summary statistics suggest that the laboratory analyses in this study were largely consistent with the results obtained by Basuki & Sheil (2005) for the area. All soils are acidic (pH (H2O) 4.1-4.4) and are low carbon, phosphorus, potassium, base saturation and CEC. The main soil types of Kalimantan (MacKinnon et al. 1996) range from histosols (bearing peat swamp forest) to heavily weathered spodosols (under heath forest) and oxisols (under tall lowland evergreen rainforest), such as at BRF. According to Basuki & Sheil (2005), soil types in the study area are oxisols. However, Siregar et al. (2005), reported that soils under lowland forest in his study area, which was in relatively close proximity to LF-5, LF-10 and PF, were Typic Kanhapludults or ultisols. Ashton & Hall (1992) reported three type of soils, namely ultisols, inceptisols and oxisols in their study area in Brunei and Sarawak which are located close to BRF (Figure 1). Logging practices vary widely but in most rainforests they involve the selection extraction of only a proportion of the larger trees. The passage of tractors, skidders and other heavy machines scrapes off litter and compacts top soils, reducing their porosity, aeration and infiltration capacity (Hamilton 1985) and result in erosion 144 as one of the most obvious physical evidence caused to logging in tropical lowland forests. Studies of erosion as a result of logging indicate that erosion increased during and after logging (Wyatt-Smith 1949, Liew 1974, Abdulhadi et al. 1981). Based on the observation (but not quantified study) during my study in the field, most erosion was mainly associated with roads and skid trails. Rates of recovery vary greatly, largely according to the intensity of disturbance. Badly damaged sites such as roads and landings appear to recuperate very slowly. Some have compact, bare and fragile soil surfaces for years after logging and traffic have ceased (Hamilton 1985). According to Popenoe (1959), compared to logged forest, primary forest soils tend to have lower values for bulk density than soils that have been logged. There was limited evidence for this at BRF, where logging has significantly increased bulk density (Table 50 and 52). Results obtained from this research indicate, however, that the soil bulk density only slightly increases in the skid trail as compared to that of intact soils. This is to say that the effect of skid trails and intact soils on soil bulk density is not significance statistically at the same level of logging (Table 52). The trend of slightly increase in soil bulk density due to skidding activity was true for most cases, namely LF-5, LF-10, and LF-30 (no observation of skid trails was made in primary forest). The fact that average soil bulk density tend to increase in all sites (LF-5, LF-10, and LH-30) is proven to be artifact. Note that the three sites were scattered within the distance of ca 100 km. Variation in the soil bulk density corresponds to clay content of the soil under investigation. Naturally, the lower the clay content of soil, the higher the soil bulk density. 145 In general, soil bulk density found in the study area showed comparable values with that for oxisols reported by Unesco (1978). The significantly higher bulk density in LF-30 than in the other treatments is obviously related to a higher sand content (Table 54). It has been shown that bulk density is affected by the structure of soil, namely its looseness or degree of compaction, as well as by its swelling and shrinking characteristics, which are dependent upon clay content (Siregar 2004). For example, Ohta et al. (1996) reported bulk density values inversely correlated with clay content from a lowland dipterocarp forest of the Bukit Suharto Conservation Forest, East Kalimantan. A lower bulk density in finer soils at any depth may be attributed to better structural development. Strongly weathered soil such as oxisols had undergone a high rate of physical and chemical weathering under the constantly warm and humid tropical climate. These soils consist primarily of kaolinite, a highly weathered clay mineral that is composed mainly of silica, aluminum, hydrogen and oxygen (Sanchez 1976). Consequently, these soil types bear a considerably low potential for adsorbing nutrients and releasing soil nutrients through mineral weathering (Siregar 2004). This low fertility level is strongly indicated by the low level of soil cation exchange capacity (CEC) in the study area which ranged from 6.51 to 16.94 me/100g at 0-10 cm depth. According to Cunningham (1963), CEC was playing an important role. The drop in CEC releases nutrients into soil solution, where they are subject to loss through leaching and surface runoff. CEC of skid trail samples decreased with increasing logging age. Meanwhile, CEC in intact soil in logged forest was lower than CEC of PF; the exception is CEC in LF-5 was higher than CEC in PF (Table 54). 146 The values of CEC in the study area were similar with CEC in Bukit Belalong (Pendry 1994); Danum Valley, Sabah (Newbery 1994 in Pendry 1994), and Dipterocarp regosol, podzol 1 and podzol 2 in Mulu Sarawak (Tie et al. 1979). However, compared with soil properties in other tropical rainforest, soil in primary forest in BRF was relatively lower in CEC than those in Sarawak and Sabah and this indicate strongly of low fertility level (Siregar 2004; Table 57). Tropical soils are usually regarded as leached, acidic and nutrient poor (Whitmore 1984; Riswan 1981). This was the case at BRF where soils were acidic and low in nutrients (Table 54) and Al3+ was the dominant cation in the soil solution, similarly to other soils in tropical rainforest in Kalimantan (e.g. Prajadinata 1996). High Al3+ concentration facilitates the immobilization of phosphorus and is antagonistic to the uptake of the basic cations. It is also moderately toxic in its own right to a wide range of plants. These effects are most acute in the kaolisols, some acid sulphate soils and some limestone oxidic clays. In soils without significant sources of aluminum in their parent materials, such as podzols, peats and some acid sulphate soils, 147 acid Table 57. Soil chemical characteristics of some primary lowland tropical rainforest in Borneo Samp le depth (cm) Location n pH Total N (mg g-1) Total P (mg g-1) (* ppm) Exchangeable cations (mequiv kg-1) K Na Ca Mg Al H Base Saturatio n (%) CEC (me/100g ) BRF Cifor, East Kalimantan Primary Forest1 0-10 20 4.1 0.16 11.83* 0.23 0.07 0.28 0.57 6.81 0.68 11.16 10.1 Logged Forest-51 0-10 40 4.2 0.16 6.37* 0.15 0.08 0.77 0.42 11.21 0.9 11.82 16.9 Logged Forest-101 0-10 40 4.4 0.14 8.6* 0.15 0.07 1.13 0.37 4.23 0.33 19.08 9.5 1 0-10 40 4.1 0.09 6.51* 0.12 0.05 0.98 0.31 5.41 0.42 21.53 6.5 0-3 1 3.8 0.45 - 0.23 0 0.17 0.23 6.19 1.17 2 26.8 0-30 1 4.4 0.08 - 0.04 0 0.1 0.07 3.94 0.28 3 8.3 3.2 0.95 0.04 0.14 0.01 0.1 0.24 9.07 0.08 4 3.6 0.37 3.17 3.71 5.92 0.73 - - - Logged Forest-30 RIL, BRF, CIFOR2 CL, BRF, CIFOR2 3 Barito Ulu, Central Kalimantan 0-10 - 9.67 5.4 Brunei, Belalong, 200m asl4 0-5 30 Brunei, Belalong, 500m asl4 0.5 30 3.8 4.6 0.37 3.25 1.03 6.11 1.11 - - - 14.0 Brunei, Belalong5 13 6 4.4 2.9 0.24 2.1 1.4 - - - - - - Brunei, Belalong6 0-5 10 3.7 0.20 - - - - Brunei, Belalong6 0-5 10 4.1 - - - - - Brunei, Belalong6 0-5 10 4.6 0.30 - - - - 5 3.7 - 0.42 - 2.6 0.27 3.4 2 8.4 - - - 2.2 0.5 1.8 10.6 Brunei, Andalau, Valley Site 0-1 2 3.8 5.1 0.06 2 2 - - - - - - Sabah, Danum7 0-8 30 - 3.9 0.21 2.38 0.12 0.41 - - - - - Sabah, Danum8 0-15 72 4.3 1.3 0.28 2.41 3..92 5.4 0.36 - - - 15.4 Sabah, Danum 0-10 160 - - 0.36 2.27 - 3.67 - - - - - Sabah, Silam,280m asll2 0-15 20 5.7 - - 1.4 77 246 1.0 - - - 49.0 Sabah, Silam,330m asl12 0-15 20 5.8 - - 1.7 23 157 1.3 - - - 61.0 - 9 12 Sabah, Silam,480m asl 0-15 20 6.1 2.3 42 115 0.60 - - - 8.8 Sarawak Mulu, Dipterocarp10 0-10 25 4.1 5.1 0.12 2.5 0.39 1.8 0.59 - - - 37.0 4 2.4 0.12 1 5.2 0.8 0.40 - - - 16.4 Sarawak Mulu, Dipterocarp, regosol1 - 0-12 1 l1 Sarawak Mulu, Dipterocarp, podzo 0-5 1 - 1.9 0.12 0.8 5.6 0.1 2.70 - - - 9.8 Sarawak Mulu, Dipterocarp, podzol2 0-6 1 4.8 2.7 0.11 1 5.2 0.7 0.50 - - - 14.0 1, This study; 2, Siregar (2004), 3, Prajadinata (1996); 4, Pendry (1994); 5, Ashton (1964); 6, Poulsen (1994); 7, Burghouts (1993); 8, D.M. Newbery in Pendry (1994); 9, Green (1992); 10, Proctor et al (1983); 11, Tie et al (1979); 12, Proctor et al (1988). 148 toxicity is mostly due to the direct activity of hydrogen ions (Rorison 1973), but there may also be specific effects by some organic acids. The changes in soil chemical characteristics that occurred after logging at skid trail and intact soil is not evident. Soil in the study area has a low capacity in adsorbing nutrients. This low fertility level is strongly indicated by low level of soil cation exchange capacity. Thus, it has a low content of nutrients. As reported by Ashton & Hall (1992), the standing volume and net volume increment in mixed dipterocarp forest of northwestern Borneo were dominated by the mature phase but soil nutrients probably influenced volume in the building phase. Moreover, the above source reported, mean proportional diameter increments of large trees were not correlated with measured soil nutrients but mean proportional diameter increment of recruits were correlated with measured soil nutrients. It can be concluded that the population of trees was not affected by soil nutrients. Fertility evaluation Fertility is a dynamic condition that determines how well the soil will support plant growth (Sumner 2000). All research sites unsurprisingly have low to very low fertility. This is determind mostly by low CEC or base saturation (Table 55). Our finding is in accordance with a report by Basuki & Sheil (2005) that describes the low fertility of Bulungan soil. Logging activities reduce soil fertility of inherently infertile forest soil in Bulungan by reducing the availability of P2O5 and K. In general, the samples are acidic. According to Hardjowigeno (1987), such acidity tends to immobilize “macro” nutrients (e.g. nitrogen, phosphorus, potassium, 149 calcium, magnesium and sulphur which are required in quite significant quantities by plants). In contrast, “micro” nutrient solubility (i.e. iron, manganese, zinc, copper and cobalt, which are only required in very low amounts) tend to be relatively high but leaching depletes some of these nutrients. Dissolved aluminum, and sometimes manganese (depending on mineral composition), can reach levels toxic to crops. Agriculture generally requires more neutral pH levels than we recorded. The forest vegetation is better adapted to these conditions. Given widespread poor fertility, it would be very important to maintain the actual forest cover and to prevent any idea of clearing the vegetation. Since the region has high rainfall, clearing the vegetation cover would decrease the soil quality very quickly mainly by leaching and erosion processes and degrade the water quality of the surrounding drainage system. Land evaluation for cropping alternatives Evaluation of land capacity of the BRF plots resulted in Suitable (S2), Marginal (S3) to Not Suitable (N) class. Candlenut and peanut are not suitable over the research area because of the high rainfall. Several sites are suitable only for coconut cropping (Table 56). No clear difference was found in the suitability of forest types for crops. Inherent limited soil fertility and the physical inhibition of sustainable production of plantation crops, e.g. steep slopes, tend to account for this. High rainfall, quick drainage, too fine texture and shallow soil depth of the research area are the factors that inhibit the suitability of these areas for agricultural crops. Both primary and logged over forest areas are marginal or not suitable for sustained production of non-forest vegetation. This suggests that forest vegetation should always be the main coverage of the area as it is the only reasonable choice for land utilization. 150 CHAPTER 6. GENERAL DISCUSSION AND CONCLUSIONS Floristic richness and stand structure after logging Logging activity is a main disturbance on tropical rain forests in Indonesia, especially in Kalimantan. This activity has caused a lack of plant biodiversity in primary forest. This study showed some decreases of shared species in Logged Forest (LF)-5, LF-10, and LF-30 compared to Primary Forest (PF). The percentages of shared species between LF-5, LF-10 and LF-30 were 49.3%, 39.7% and 40.7% to PF (Table 8). Beside the reduction of plant biodiversity numbers, a difference in species domination between logged forest and primary forest has also taken place. Species such as Mangifera swintoniodes and Hopea ferruginea dominated primary forest, while Macaranga pearsonii, Hopea dryobalanoides and Macaranga hypoleuca dominated in the logged forest. The similarity value among forest types depends on the tree diversities. Data from this study showed a low similarity index namely 0.215 from Jaccard index and 0.353 from Sorensen index. This can be caused from the lack of shared species between each forest type (Table 8) and low value of species diversity (H’ = 1.894 to 2.066) among forest types. This study found that family of Dipterocarpaceae and Euphorbiaceae are the most dominant families, contributing large component of the forest community in each stratum (Table 12); this is an aspect that needs special attention is their specificity on certain habitat after disturbance (Table 23) and their potential to be a good model in giving value of the forest ecosystem as a whole. Domination by these two families is caused by their sensitivity towards environmental change (Andersen 1997). One of the changes is by logging activities. This indication has also been 151 explained by Widodo et al. (2004), who showed that loss of canopy layer in the primary forest will directly impact the forest biodiversity. Studying the sustainability of plant diversity, in particular related to forest extraction in the tropics, has been extremely difficult because of the unavailability of logging techniques and standard devices in each ecological sites (e.g. Kartawinata et al. (1981), Sist & Saridan (1999), Riswan (1987), Wyatt-Smith (1966), Wilkie et al. (2004)). Thus, collections of plants were made in 16 1-ha plot following the standard of Alder & Synnott (1992), Dallmeier (1992) and Sheil (1998). Results of replicated samplings in the Bulungan Research Forest (BRF) showed that sampling efficiency’s percentage of observed versus expected species were less significantly varied between forest types and estimators. The distribution of class diameter showed no indication of changing stand structure (Table 21). In healthy primary forest ecosystem, the stand structure contains different classes of diameter at all stages of growth namely seedling, sapling, pole and tree. As for LF-30, floristic composition and stand structure had a good quality. Similarly, the number of trees in older logged forest were more numerous than in newly logged forest (Soedirman 1993). Basal area in LF-30 has approached the value of basal area in PF, which indicated the initial recovery of forest productivity after 30 years of logging. This enhancement of basal area has been stimulated by the large size of trees growing space, an impact of the logging activities, which then also affected a larger growth of trees diameter. 152 Coarse Woody Debris (CWD) Coarse woody debris in research plot of PF is 270 m3/ha or 10 times bigger than in old tropical forest in La Selva, Costa Rica. In the location, many CWD was found with crowns and residual boles of felled trees. This is consistent with the findings of Clark et al. (2002), who found that 30% of the logged forest was covered by the crowns and residual boles of felled trees. The amounts of biomass and inputs from residual trees in tropical rain forest are poorly documented and the causes for their variation at landscapes scales has not been studied. CWD itself is defined as a habitat for wildlife (Snowman 2004) and result of tree death, and it persists for some time following natural disturbances or forest harvesting (Parminter 2002). CWD can be rotting logs and stumps that provide habitat for plants, animals and insects as well as source of nutrients for soil development. As for Stevens (1997) decaying wood also supports a range of bryophytes and fungi. CWD management in Indonesia has not been implemented in a large scale, whereas CWD is one of the important components that mainly contribute for biodiversity conservation programme (Proulx & Kariz 2002). For larger improvement of CWD development in Indonesia, an implementation of research, strategic higher level wildlife objectives and stand level wildlife objectives will be required. Regeneration of seedlings and saplings Table 39 showed an interesting result on seedlings and saplings regeneration where saplings densities on logged forest are lower than primary forest, while Table 35 showed a higher seedlings density on logged forest compared to primary forest. For 153 saplings in particular, this may be caused by logging damage and low number of seedlings which, combined with logging perturbation, resulted in a net decrease in sapling recruitment while logging activities occurred. As for seedlings, it may have occurred due to the canopy opening in logged forest that stimulated the growth of seedlings. Other research in Peninsular Malaysia showed that the mean basal area and the density of tree seedlings and saplings with dbh < 5 cm was reduced by 150% of the original stand after logging in one compartment whilst in another compartment was increased up to 24%. Moreover, there is no change in species composition both before and after logging (Seng et al. 2004). Research in Kibale National Park in Uganda tends to achieve the same result with the one in Peninsular Malaysia, where there are no differences on density nor species richness of seedlings before and after logging (Chapman & Chapman 1997). Related to both researches, the result in BRF showed that there was a difference on number of seedlings in logged forest with primary forest, where the number of seedlings was reduced in LF-10 compared to PF but larger number of seedlings were found in LF-5 and LF-30 than in PF. Seedlings of Hopea dryobalanoides were dominant in PF, LF-5 and LF-30. This fact indicated that the future harvesting may be dominated by timber of the family Dipterocarpaceae, especially Hopea dryobalanoides. Canopy opening at the research location of logged forest stimulated the early growth stage of Dipterocarpaceae. It can be shown by Tables 38 and 40 that the Dipterocarpaceae regeneration is still better than the other family. Therefore, Dipterocarpaceae is a prospective family to be harvested in the future. Beside its dominance in BRF and Kalimantan, another point that needed to pay attention is 154 local species existence and their limited distribution due to their sensitivity towards logging activities (Slik et al. 2002). Soils and vegetation Soils and vegetation have a strong bond in which soil development is influenced by vegetation and the floristic composition of forest types is related to the soils (e.g. heath forest on spodsols vs. tall lowland evergreen forest on ultisols and oxisols). However, this study showed that the relation is not significant between the similarity index (C) and the distance between forest types (Table 8). It can be seen from the correlation value of Jaccard index where r = 0.023 and Sorensen index where r = 0.031. This fact is the same with the statement from Luizao (1995) and Primack et al. (1987) that said soil factors had only limited links to species composition. In general, the research showed that bulk density on logged forest is higher than bulk density on primary forest as described in Table 52 and Table 54. This condition is supported by Popenoe (1959) which mentioned that primary forest soils tend to have lower values for bulk density than soils that have been logged. The increase of bulk density is caused by logging mechanism activities and the higher sand content of the soils especially in LF-30 in Table 54. Siregar (2004) said that bulk density is affected by the structure of soil, such as its looseness or degree of compaction, as well as by its swelling and shrinking characteristics, which are dependent upon clay content. Compared with other research sites, the value of CEC in this research site is lower than in Sarawak (Tie et al. 1979) and Danum Valley, Sabah (Newberry 1994). 155 The low value of CEC in Table 54 and Table 57 indicated the low of soil fertility in the study area (Siregar 2004). Soil chemical properties are dependent on soil physical properties (Siregar 2006, pers.comm.) where the initial physical nature of the soil derived from its parent material. Thus, a change in the soil physical and chemical properties due to logging activities will influence the species existence in a particular forest types. Fertility and land evaluation for cropping alternatives The soil fertility category of land at the research location ranged from low to very low (Table 55). The low soil fertility such the low P2O5 and K contents can be caused by the logging activities. The analysis of soil fertility is similar to that of Basuki and Sheil (2005). Land condition in the research sites seemed not to suit the farming activities that occurred there due to some limiting factors, such as high precipitation, rapid drainage, and shallow soil depth (Table 56). With the consideration on low fertility of soil and unmatched condition between land and farming activities, forest existence should be prevented. Forest management in Indonesia Tropical rain forest development must be conducted with high awareness because the ecosystems are decreasing fast and the loss of biodiversity (MacKinnon et al. 1996). Depletion of genetic resource and the loss of species diversity are two of many impact of forest misuse. (Ewel & Conde 1980, Jacobs 1980 in Kartawinata et al. 2001). Selective logging creams off the best trees of commercial species, especially those from Dipterocarps family. 156 This issue has given a great concern in the importance of conservation of tropical rain forests. Vegetation analyses in the study sites indicated significant relation between logging and an increase in under storey vegetation density relative to primary forest. Studies in other places also proved that other animals are responsive to the alteration of physical and chemical environment (Putz 1994). However, results of this study showed logging operation in primary forest did not dramatically decreased the total species number and overall abundance of plants, but species composition in the logged forests was different compared to the primary forest. The maximum yield of a forest stand is usually determined by the maximum basal area, which in a tropical mixed forest is likely to be in the range of 45-55 m2/ha (Assmann 1970; Alder & Synnott 1992). Riswan & Kartawinata (1998a) reported that without additional disturbance, the recovery time is estimated to be more than 150 years for LF in order to develop into forest that is similar in structure to the original type through succession. In this study, both basal area and the number of stems with a dbh > 50cm were similar between PF and LF-30, while the data showed that LF-30 is dominated by commercial species of Dipterocarpaceae. Twenty five trees with dbh of 20-49 cm is also more than enough to be chosen for nucleus trees as required in the TPTI system. Thus, to the TPTI system, LF-30 is mature enough for a second harvest in 5 years time as this system uses a 35year harvest cycle. However, the time duration for tropical forest to reach the dynamic equilibrium through successional processes is still unknown. The absence of annual rings and differences in growth rates between PF and LF tree species make the estimation of time scale difficult. Although trees over 50 cm dbh are large enough to be cut, some may be relatively young and may have never reached the flowering stage, especially for dipterocarp species, which flowered and fruited 157 irregularly (Kartawinata et al. 1981). Therefore, a 35-year cutting cycle may not give opportunities to many dipterocarps of sufficient girth to be cut for the second cutting period for their reproductive contribution to future harvest regeneration. It consists of mixed species having a stratified structure and it regenerates naturally. The dominant Dipterocarpaceae species flower periodically ranging from three to ten years (Manan 1993). Thus, the selection of an appropriate silvicultural system in forest management is a crucial factor for the success of sustained yield production. The Indonesian Selective Cutting and Replanting (TPTI) system or formerly known as Indonesian Selective Cutting (TPI) was proposed by the Government of Indonesia as a viable system which comprises logging practice with diameter limit and forest regeneration. TPTI system has been considered as the most appropriate system in terms of economy, ecology and technology to be used in tropical rain forest or other tropical forests in Indonesia. Although the TPTI system can lead to sustainable management if properly applied and monitored (Manan 1993), according to the study in the field, and also as reported by many scientists such as MacKinnon et al. (1996) from other parts of Kalimantan, this system can not be implemented properly. If the government decides to do the second harvest of LF-30 forest, many risks will be taken. Mismanagement of the forest resource like this will lead to the potential loss or degradation of genetic resources and the possibility that many species still unknown to science can be lost forever. A solution has to be found for this problem. Based on the data from this study, the TPTI system can be implemented with some modifications, such as: (1) the harvest cycle need to be changed from 35 years to 45 years after logging to give more time to the damaged forest after logging to a better recover; (2) Ten healthy 158 trees of dbh > 100 cm should be left for seed production and long-term regeneration; (3) only slopes less than 30% or 270 can be extracted; and (4) slashing all undergrowth and climbers has to be re-evaluated. Although slashing activities strive for encouraging regeneration, it also eliminates many useful varieties of plant species such as rattan and other climber species (Appendix 13) and also tree seedlings as also reported by Sheil & van Heist (2000). Conclusions The tree species composition happened to decrease among logged forest compared to primary forest. Although total numbers of species in logged forest was increased, its shared species tend to decrease more than the one in primary forest. Stem density and basal area has a higher increase in logged forest. On LF-30, its stem density and basal area has approach the condition in PF. CWD ground on logged forest rise more than CWD in PF, while CWD standing on the contrary tend to decrease on the logged forest than on PF. Numbers of seedlings tend to be higher in the logged forest, while numbers of saplings tend to take more places in primary forest. This condition may occur because of the canopy opening due to the logging activities that can stimulate seedlings growth. Conversely, in this study, it was found that the impact of logging activities can reduce the existing numbers of saplings while numbers of seedlings when the logging activities occurred are very low. Thus, the potential for seedlings to reach saplings stage also became low. In the end, numbers of saplings in logged forest will be lower than in the primary forest. 159 In general, the study showed no significant differences on the physical and chemical properties of soil due to the skid trail effect and intact soil on the same logging age plot. On the contrary, in the different logging age plot, there has been a difference on the physical and chemical soil properties due to the skid trail and intact soil effect described on Tables 52 and 53. The significant differences were most likely caused by the types of soil that by natural is not alike with the forest type. Soil fertility and land cover analysis showed that land on the study site did not suit farming activities. Therefore, forest existence and condition need to be prevented. If the land is force to be use for farming activities, the risk for land recovery will take place in a higher level and forest conservation will also need to be conducted in a longer period. According to TPTI system, LF-30 is mature enough for a second harvest, however, result from this study indicated that 35 years cutting cycle might not give opportunities to some species, despite their large size, to make sufficient reproductive contribution to ensure the quality of future harvest regeneration. TPTI’s system may also need to be revised to ensure long-term forest productivity in terms of not only timber but other goods and ecosystem services, the value of which are not quantified in monetary terms, but can be higher than the timber revenue. 160 REFERENCES Abdulhadi, R. (1981) A Meliaceae forest in Ketambe, Gunung Leuser National Park, Sumatra with special reference to the status of dipterocarp species. In Soerianegara, Tjitrosomo, S. S., Umaly, R. C. & Umboh, I. (eds.). Proceeding of the Fourth Round-table Conference on Dipterocarps, Bogor, Indonesia, 12-15 December 1989. BIOTROP Special Publication No. 41, 307-315. Abdulhadi, R., Yusuf, R. & Kartawinata, K. (1981) A riverine tropical rain forest in Ketambe, Gunung Leuser National Park, Sumatra, Indonesia. In Soerianegara, Tjitrosomo, S. S., Umaly, R. C. & Umboh, I. (eds.). Proceeding of the Fourth Round-table Conference on Dipterocarps, Bogor, Indonesia, 12-15 December 1989. BIOTROP Special Publication No. 41, 247:255. Adjers, G., Hadengganan, S., Kuusipalo, J., Nuryanto, K. & Vesa, L. (1995) Enrichment planting of dipterocarps in logged-over secondary forests – effect of width, direction and maintenance method of planting line on selected Shorea species. Forest Ecology and Management 73, 259-70. Alder, D. (1990) GHAFOSIM: A projection system for natural forest growth and yield in Ghana. Consultancy report to Ministry of Land & natural Resources, Ghana. Pp. 114 Alder, D. & Synnott, T.J. (1992) Permanent Sample Plot Techniques for Mixed Tropical Forest. Oxford Forestry Institute, Department of Plant Sciences, University of Oxford. Tropical Forestry Papers 25. pp. 124. Altona, T. (1926) Djati en hindoes. Tectona 19, 939-1011. In Smits, W.T.M. (Ed.). Dipterocarpaceae: Mycorrhizae and Regeneration. Tropenbos. Samarinda, East Kalimantan. 161 Anderson, A. (1972) Devastation on the Amazon? Organic gardening and farming. Nov. 1972, 90-93. Anonymous (1988) History of Indonesia Forestry. Volume 1. Departemen Kehutanan, Jakarta. Pp. 140-147. Appanah, S. (1998) Management of natural forests in Appanah, S. & Turnbull, J. M. (eds.). A review of dipterocarps, taxonomy, ecology and silviculture. CIFOR, Bogor, Indonesia. Pp. 133-149. Appanah, S. & Turnbull, J. M.(eds.). (1998) A review of dipterocarps, taxonomy, ecology and silviculture. CIFOR, Bogor, Indonesia. Assman, E. (1970) The principles of forest yield study. Pergamon Press. pp 506 Ashton, P.S. & Pamela, H. (1992) Comparisons of structures among mixed dipterocarp forests of north-western Borneo. Journal of Ecology 80, 459-481 Badan Planologi Kehutanan (2002) Statistik Kehutanan Indonesia. Departemen Kehutanan. Jakarta. Bappenas (1993) Biodiversity Action Plant for Indonesia. Bappenas Jakarta. Basuki, I. & Sheil, D. (2005) Local Perspectives of Forest Landscapes: A Preliminary Evaluation of Land and Soils, and their Importance in Malinau, East Kalimantan, Indonesia. Center for International Forestry Research, Bogor, Indonesia. Bierregaard, R. O., Gascon, C., Lovejoy, T. E., & Mesquita, R. (2001) Lessons from Amazonia; the ecology and conservation of a fragmented forest. Yale University Press, New Haven, USA. Biro Perencanaan (1997) Kriteria Kesesuaian Tanah dan Iklim Tanaman Pertanian. Departemen Pertanian, Indonesia. Brandani, A., Hartshorn, G. S. & Orians, G. H. (1988) Internal heterogeneity of gaps and species richness in Costa Rican tropical wet forest. Journal of Tropical Ecology 4, 99-119. Brokaw, N. V. L. (1985) Treefalls, regrowth and community structure in tropical forests. In Picket, A. & White, P.S. (eds.). The ecology of natural disturbance and patch. Academic Press, New York, USA. pp. 31-41. Brokaw, N.V.L. (1987) Gap phase regeneration of three pioneer tree species in a tropical forest. Journal of Ecology 75, 9-20. Brown, N. D. & Jennings, S. (1998) Gap-size niche differentiation by tropical rainforest trees : a testable hypothesis or a broken-down bandwagon? Pages 79-94 in Newberry, D. M., Prins, H. H. T. and Brown, N. D. (eds.). Dynamics 162 of tropical communities. The 37th symposium of the British Ecological Society, Cambridge University 1996. Blackwell Science, Oxford, UK. Bureau of Planning (1991) Forestry Statistics of Indonesia. Secreatariat General of the Ministry of Forestry and Estate Crops, Jakarta. Burgess, P. F. (1971) The effect of logging on hill Dipterocarp forests. Malayan Nature Journal 24, 231-237. Burslem, D.F.R.P., Whitmore, T.C. & Denmark, N. (1998) A thirty-year record of forest dynamics from Kolombangara, Solomon Islands. In Dallmeier F. & Comiskey, J.A. (1998). Forest Biodiversity research, monitoring and modeling. Conceptual background and old world case studies. MAB Series Vol 20, 633-645 Campbell, D. C. (1991) Gap formation in tropical forest canopy by elephants, Oveng, Gabon, Central Africa. Biotropica 23, 195-196. Cannon, C.H., Peart, D.R., Leighton, M & Kartawinata, K. (1994) The structure of lowland rainforest after selective logging in West Kalimantan, Indonesia. Forest Ecology and Management 67, 49-68. Cannon, C.H., Peart, D.R. & Leighton, M. (1998) Tree species diversity in commercially logged Bornean rain forest. Science 281, 1366-1368. Chai, E. O. K., Lee, H. S. & Yamakura, T. (1995) Preliminary results from the 52hectare Long Term Ecological Research Plot at the Lambir National Parks, Sarawak, Malaysia. In Lee, H. S., Ashton, P. S. & Ogion, K. (eds.). Long Term Ecological Research of Tropical Rain Forest in Sarawak. Chapman, C.A. & Chapman L.J. (1997) Forest regeneration in logged and unlogged forests of Kibale National Park, Uganda. Biotropica 29 (4), 396-412. Clark, D.B., Clark, D.A., Brown, S. Oberbaur, S.F. & Veldkamp, E. (2002) Stocks and flows coarce woody debris across a tropical rain forest nutrient and topography gradient. Forest Ecology and Management 164, 237-248. Choong, E.T. & Smith, W.R. (1994) Technology Development of Indonesia’s Forest Industry toward Environmental Sustainability. Lokakarya Nasional Keanekaragaman Hayati Tropik Indonesia. Serpong, 3-5 November Coleman, D.C. & Crossley, D.A.J. (2003) Fundamental soil ecology. Academic Press, New York, USA and London, UK. Cunningham, R. K. (1963) The effect of clearing a tropical forest soil. Journal of Science 14, 334-345. Curran, L.M., S. Trigg, A. McDonald, D. Astiani, Y.M. Hardiono, P. Siregar, I. Caniago & E. Kasischke (2004) “Lowland forest loss in Protected areas of 163 Indonesian Borneo”. Science 303, 1000-1003. Dallmeier, F. (1992) Long –Term Monitoring of Biological Diversity in Tropical Forest Areas: Methods for Establishment and Inventory of Permanent Plots. MAB Digest 11. Unesco. February. pp. 72. Davies, S.J & Becker, P. (1996) Floristic composition and stand structure of mixed dipterocarp forest and heath forest in Brunei Darussalam. Journal of Tropical Forest Science 8 (4), 542-569 Denslow, J. S. (1987) Tropical rainforest gaps and tree species diversity. Annual review of ecology and Systematics 18, 431-451. Denslow, J. S., Gomez Dias, A. E. & Spies, T. A. (1990) Seed rain to tree fall gaps in a neotropical rainforest. Canadian Journal of Forest Research 20, 642-648. Departemen Kehutanan & Yayasan WWF Indonesia. (2004) Pedoman Penanggulangan Tindak Pidana Penebangan Pohon secara Tidak Sah. ITTO Project PD74/01 Rev.1(M), Departemen Kehutanan dan WWF Indonesia. Jakarta. Dick, J. (1991) Forest Land Use, Forest Use Zonation and Deforestation in Indonesia. Summary and Interpretation of Existing Information. MOSPE (Ministry of State for Population and Environment) and theEnvironmental Impact Management Agency (BAPEDAL), Jakarta. DFID & MOFEC (2000) Indonesia, Toward Sustainable Forest Management: Final Report of the Senior Management Advisory Team and the Provincial Level Forest Management Project. Department for International Development, United Kingdom Government and Ministry of Forestry and Estate Crops of the Republic of Indonesia, Jakarta. Direktorat Jenderal Pertambangan Umum (1982) Geological Mapping and Mineral Exploration in North-East Kalimantan. Department of Mining and Energy, Republic of Indonesia. Direktorat Bina Program (1990) The Land Resources of Indonesia: A National Overview. Direktorat Jenderal Penyiapan Pemukiman, Departemen Transmigrasi, Jakarta, Indonesia Direktorat Produksi Hasil Hutan (2000) Peninjauan Penerapan Sistem Silvikultur Pada Areal Pengusahaan Hutan Alam Produksi. Bagian Proyek KPHP Pusat. Jakarta. Directorate General of Forest Production Management-Ministry of Forestry (DGFPM-MOF) (2005) Statistics of Forest Production Management Year 2004. Jakarta, July. Pp 123 164 Djamaludin (1998) Pokok-Pokok Arahan Menteri Kehutanan, 16 Februari 1998 Rapat Kerja Nasional Departemen Kehutanan Tahun 1998. Douglas, I., Greer, T., Bidin, K. & Spilsbury, M. (1993) Impacts of rainforest logging on river systems and communities in Malaysia and Kalimantan. Global Ecology and Biogeography Letters 3, 245-252. Ewel, J. & Conde, L.F. 1980 Potential ecological impact of increased intensity of tropical forest utilization. Biotrop. Special publication No. 11. Bogor, Indonesia. FAO (2003) State of the world forest. Forest food and agriculture organization of the United Nations, Rome. Fenger, M. (2002) Ecological Role of CWD in Northern BC. NIVMA / NSC Winter Workshop Optimizing wildlife trees and coarse woody debris retention at the stand and landscape level. January 22-24, Coast Inn of the North Prince George, BC. Gintings, A. Ng. (1969) The Influence of Selective Felling on the Regeneration of Dipterocarpaceae forests in Eastern Sumatra. Sarjana thesis, Fakultas Kehutanan IPB, Bogor. Greenpeace (2003) Mitra Dalam Kejahatan: Investigasi Greenpeace Mengungkap Kaitan Antara Inggris dan raja kayu Indonesia. Greenpeace. Canonburry Villas London N1 2PN. Hamzah, Z. (1978) Some observations on the effects of mechanical logging on regeneration, soil and hydrological conditions in East Kalimantan, Indonesia in MacKinnon K., Hatta, G., Halim, H. and Mangalik, A. (1996) The Ecology of Kalimantan, Indonesian Borneo. Periplus Editions (HK) Ltd. Pp. 802. Hardjowigeno S. (1987) Ilmu Tanah. Edisi 1, Cetakan 2. (1989) Mediyatama Sarana Perkasa, Jakarta Hawthorne, W. D., Agyeman, V. K., Abu Juam, M. & Foli, E. G. (1998) Taking stock : An annotated bibliography of logging damage and recovery in tropical forests, and the results of new research in Ghana. Project report. Oxford Forestry Institute, Oxford, UK. Howlett, B.E. & Davidson, D.W. (1996) Dipterocarp seed and seedling performance in secondary logged forests dominated by Macaranga spp. in Appanah, S. and K.C. Khoo (Eds.) Proceedings of the fifth Round Table Conference on Dipterocarps. 7-10 November 1994. Chiang Mai, Thailand. Forest Research Institute Malaysia, Kepong. Pp 256-266. 165 Hubbell, S. P., Foster, R. B., O’Brien, S. T., Harms, K. E., Condit, R., Wechsler, B., Wright, S. J., & Loo de Lao, S. (1999) Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science 283, 554-557. Huth, A. & Ditzer, T. (2001) Long-term impacts of logging in a tropical rain forest – a simulation study. Forest Ecology and Management 142, 33-51. Innes, J. L. (1993) Forest health : Its assessment and status. CAB International, UK. Jafarsidik, J. (1998) Regeneration of the forest after logging at Kintap, South Kalimantan, Indonesia. Ph.D. Thesis. University of Stirling, Scotland, United Kingdom. Johns, A. G. (1997) Timber production and biodiversity conservation in tropical rainforests. Cambridge University Press, Cambridge, UK. Jurusan Tanah (1992) Pedoman Klasifikasi Tanah di Lapang. Institut Pertanian Bogor Press. Kartawinata, K., Abdullah, R. & Partomohardjo T. (1981) Composition and structure of a low land dipterocarp forest at Wanariset, East Kalimanatan. Malaysian Forester 44, 497-406 Kartawinata, K., Jessup, T.C., & Vayda, A.P. (1989) Exploitation in South East Asia. Pp. 591-610 in Lieth, H. & Werger, M.J.A. (Eds.) Tropical Forest Ecosystem: Biogeographical and Ecological Studies. Elsevier, Amsterdam. Kartawinata, K., Riswan, S., Gintings, A. Ng. & Puspitojati, T. (2001) An Overview of Post-Extraction Secondary Forest in Indonesia. Journal of Tropical Forest Science 13 (4), 621-638 Kartawinata, K. (2005) List of Permanent sample plots in Sumatra and Borneo. Personnal communication. Kartodihardjo, H. & Supriono, A. (1999) Dampak Pembangunan Sektoral terhadap Degradasi Hutan Alam-Kasus Pembangunan HTI dan Perkebunan di Indonesia. Paper Presented at Diskusi Pemberdayaan Ekonomi Masyarakat Berbasis Sumberdaya Alam: Studi Kasus Kehutanan dan Perkebunan. IPB, Bogor. Kochummen, K. M., LaFrankie, Jr., J. V. & Manokaran, N. (1990) Floristic composition of Pasoh Forest Reserve, a lowland rain forest in Peninsular Malaysia. Journal of Tropical Forest Science 3 (1), 1-13. Kottelat, M. & Whitten, T. (1996) Freshwater Biodiversity in Asia, with special reference to fish. World Bank Technical Paper No. 343. The World Bank, Washington D.C. 166 Kurek, E. (2002) Microbial mobilization of metal from mineral under aerobic consition. Pages 190-225 in Huang, P. M., Bollag, J. M. and Sevesi, N. (eds.). Interaction between soil particles and microorganism. Impact on the terrestrial ecosystem. Vol. 8. IUSS-UISS-IBU. John Wiley and Sons Ltd., Chichester, UK. Kuusipalo, J., Jafarsidik, Y., Adjers, G. & Tuomela, K. (1996) Population-dynamics of tree seedlings in a mixed dipterocarp rain-forest before and after logging and crown liberation. Forest Ecology and Management, 81, 85-94 Lamprecht, H. (1989) Silviculture in the tropics. Tropical forests ecosystems and their tree species in possibilities and method for their long term utilization. GTZ, Eschborn, Germany. Laurance, W. F. (2001) Fragmentation and plant communities : Synthesis and implications for landscape management. Pages 158-168 in Bierregaard, R. O., Gascon, C., Lovejoy, T. E. and Mesquita, R. (eds.). Lessons from Amazonia; the ecology and conservation of a fragmented forest. Yale University Press, New Haven, USA. Liew, T. C. (1974) A note on soil erosion study at Tawau Hills Forest Reserve. Malayan Nature Journal 27, 20-26. Lloyd, R. & MacMillan, T. (2002) Post-harvest CWD The long and short of it. NIVMA / NSC Winter Workshop Optimizing wildlife trees and coarse woody debris retention at the stand and landscape level. January 22-24, Coast Inn of the North Prince George, BC. ❵ LPT (1983) Kriteria Evaluasi Kesuburan Tanah. Lembaga Penelitian Tanah. Departemen Pertanian, Bogor. Luizao, F.J. (1995). Ecological studies in contrasting forest types in Central Amazonia. Ph.D. thesis. University of Stirling, Scotland, UK. Machfudh (2002) General Description of the Bulungan Research Forest. Technical Report Phase 1 1997-2001. ITTO Project PD 12/97 REV.1 (F). Forest, Science and Sustainability: The Bulungan Model Forest. Pp. 168. MacKinnon K., Hatta, G., Halim, H. & Mangalik, A. (1996) The Ecology of Kalimantan, Indonesian Borneo. Periplus Editions (HK) Ltd. Pp. 802. Manan, S. (1993) Sustainable tropical forest management. Is it a mission impossible? In Suhendang, E., Soerianegara, I. & Bahruni (1993). Menguak Permasalahan Pengelolaan Hutan Alam Tropis di Indonesia. Jurusan Manajemen Hutan, Fakultas Kehutanan, Institut Pertanian Bogor. Pp. 15-32. 167 Manly, B.F.J. (2001) Statistics for Environmental Science and Management. Chapman and Hall/CRC. Boca Raton-London-New York-Washington, D.C. pp. 326. Manokaran, N., Lafrankie, J.V. & Rahman, I. (1991) Structure and composition of the dipterocarpaceae in a low land rain forest in Peninsular Malaysia. In Soerianegara, S.S. Tjitrosomo, R.C. Umaly & I. Umboh (Eds.), Proceeding of the Fourth Round-table Conference on Dipterocarps, Bogor, Indonesia, 12-15 December 1989. BIOTROP Special Publication No. 41, 317-331 Manokaran, N. & Swaine, M.D. (1994) Population dynamic of tree in Dipterocarp forest of Peninsular Malaysia. Malaysian Forest Record No.41, Forest Research Institute Malaysia, Kepong. Matius, P. (1991) Study on regeneration process under the difference selective cutting conditions. Collaboration between Education & Cultural Departement – JICA. Samarinda, East Kalimantan. Meijaard, E., Sheil, D, Nasi, R., Augeri, D., Rosenbaum, B., Iskandar, D., Setyawati, T., Lammertink, M., Rachmatika, I., Wong, A., Soehartono, T., Stanley, S. & O’Brien, T. (2005) Life after logging : Reconciling wildlife conservation and production forestry in Indonesian Borneo. CIFOR, Indonesia. Meijer, W. (1970) Regeneration of tropical lowland forest in Sabah, Malaysia, forty years after logging. Malayan Forester 32, 204-229. Mensah, K. O. A. (1966) An analysis of logging damage in compartment 4 of Tano Suhien Forest Reserve, Ghana. Ghana Journal of Science 6, 63-69. MOF and FAO (1990) Situation and Outlook of the Forestry Sector in Indonesia. Volume I-IV. Jakarta. MOF (1995) 50 years Indonesian Forestry. Published by Ministry of Forestry, Manggala Wanabakti Building, Jakarta in Cooperation with Indonesian Forestry Community, Manggala Wanabakti Building, Jakarta. Pp. 16. MOF (2005) Rencana Strategis-Kementrian-Negara/Lembaga Departemen Kehutanan, Jakarta. Pp 34. (Renstra-KL). Mukhtar, A.S. (2005) Permasalahan Illegal Logging dan Peran Ilmu Pengetahuan dan Teknologi dalam Penanggulangannya. .Makalah disampaikan pada Diskusi Aktualisasi Peran IPTEK dalam Penanggulangan Penebangan Liar (Illegal Logging), Kementerian Negara Riset dan Teknologi RI, Jakarta 28 Juni. Nagy, L. (2005). Personal communication. 168 Nasendi, B.D. & Samsoedin, I. (1996) Recent Developments in Community-Based Forest Management Policies and Operational Activities in Indonesia. A Country Report presented at the 5th Asia Forest Network Meeting in Surajkund, New Delhi, India, 2-6 December. Newbery, D.Mc.C. & Proctor, J. (1984). Ecological studies in four contrasting lowland rain forests in Gunung Mulu National Park, Sarawak. IV. Association between tree distributions and soil factor. Journal of Ecology 72, 475-493 Newbery, D.Mc.C., Campbell, E.J.F., Lee, Y.F., Ridsdale, C.E. & Still, M.J. (1992) Primary lowland dipterocarp forest at Danum Valley, Sabah, Malaysia: structure, relative abudance and family composition. Philosophical Transaction of the Royal Society B 335, 341-356. Newman, M. F., Burgess, P. F. & Whitmore, T. C. (1996) Manuals of dipterocarps for foresters : Borneo island light hardwoods. Royal Botanic Garden Edinburgh and CIFOR, Bogor, Indonesia. Nicholson, D.I. (1965) A study of virgin forest near Sandakan, North Borneo. Proceeding of the Symposium on Humid Tropics Vegetation, Kuching, UNESCO, Paris. Pp 67-87. Nochol, C. (2002) Operational concerns arising from implementation of stand structural retention for wildlife. NIVMA / NSC Winter Workshop Optimizing wildlife trees and coarse woody debris retention at the stand and landscape level. January 22-24, Coast Inn of the North Prince George, BC Nykvist, N. (1998) Logging can cause a serious lack of calcium in tropical rain forest ecosystems: an example from Sabah, Malaysia in Schulte, A. and Ruhiyat, D. (eds.). Soils of tropical forest ecosystems: Characteristics, ecology and management. Springer-verlag, Berlin, Germany. Pp. 87-91. O’Brien, T. G. (ed.) (1998) Bulungan biodiversity survey: Preliminary results. Unpublished report to CIFOR and Wildlife Conservation Society. Wildlife Conservation Society – Indonesia, Bogor, Indonesia. Odum (1971) Fundamentals of Ecology. Third Edition. W.B. Saunders Company. Philadelphia. London. Toronto. Pp. 574. Ohta, S. & Syarif, E. (1996) Soils under lowland dipterocarp forests– characteristics and classification. In A. Schulte and D. Schöne (eds.) Dipterocarp forest ecosystems: Towards sustainable management. World Scientific Publishing Co. Pte. Ltd. Singapore. Okimori, Y. (1991) Research on regeneration process in secondary forest of tropical rain forest, East Kalimantan. Final report. The Tropical Rain Forest Research Project, Japan International Cooperation Agency. 169 Okuda, T., Suzuki, M., Adachi, N., Quah, E. S., Hussein, N. A. & Manokaran, N. (2003) Effect of selective logging on canopy and stand structure and tree species composition in a lowland dipterocarp forest in Peninsular, Malaysian Forest Ecology Management 175, 297-320. Oliver, C.D. & Larson, B.C. (1990) Forest Stand Dynamics. Mc Graw-Hill inc., New York. 467 pp. Pendry, C. A. (1994) Ecological studies on Rain Forests at Three Altitudes on Bukit Belalong, Brunei. Ph.D. Thesis. University of Stirling, Scotland, United Kingdom. Phinney, M. R.P.F. (2002) Bird use of residual forest structure. NIVMA / NSC Winter Workshop Optimizing wildlife trees and coarse woody debris retention at the stand and landscape level. January 22-24, Coast Inn of the North Prince George, BC. Popenoe, H. (1959) The influence of the shifting cultivation cycle on soil properties in Central America. Proceedings of the 9th Pacific Science Congress 7, 71-77. Potter, L. (1988b) Indigenous and colonizers: Dutch forest policy in South and East Borneo, 1900-1950. Paper presented in IUFRO. Tropical Forests Working Group, Conference on Tropical Forest History in South and Southeast Asia, ANU, Canberra in MacKinnon K., Hatta, G., Halim, H. and Mangalik, A. (1996) The Ecology of Kalimantan, Indonesian Borneo. Periplus Editions (HK) Ltd. Pp. 802. Poulsen, A.D., Nielsen, I.C., Tan, S. & Balslev, H. (1996) A quantitative inventory of trees in one-hectare of mixed dipterocarp forest in Temburong, Brunai Darussalam. In Edwards, D.S., Booth, W.E.& Choy, S.C. (Eds.) Tropical Rain Forest Research–Current Issues. Dodrecht, The Netherlands, Kluwer Academic Press. Primack, R.B., Chai, E.O.K., Tan, S.S. & Lee, H.S. (1987). The silviculture of dipterocarp trees in Sarawak, Malaysia. I. Introduction to the series and performance in primary forest. Malaysian Forester 50, 29-42 in Luizao, F.J. (1995). Ecological studies in contrasting forest types in Central Amazonia. Ph.D. thesis. University of Stirling, Scotland, UK. Priyadi, H., Gunarso, P., Kanninen, M., Sheil, D., Kartawinata, K. & Sist, P. (2005) Tree growth and Forest Regeneration under Different Logging Treatments in Permanent Sample Plots of a Hill Mixed Dipterocarps Forest, Malinau Research Forest, Indonesia. Paper presented in The International Workshop on Promoting Permanent Sample Plots in Asia and the Pacific Region: The role of field data to support silvicultural system and carbon sequestration study in 170 naturally managed forests toward sustainable forest management in Asia and the Pacific region (3-4 Agustus). Proctor, J., Anderson, J.M., Chai, P. & Wallack, H.W. (1983) Ecological studies in four contrasting tropical lowland rain forests in Gunung Mulu National Park. I. Forest Environment, structure and floristics. Journal of Ecology 71, 237-260. Proulx, G. & Kariz, R.M. (2002) Coarse woody debris and small mammal populations in the sub-boreal spruce biogeoclimatic zone of Fort St James Forest District, British Columbia. NIVMA / NSC Winter Workshop Optimizing wildlife trees and coarse woody debris retention at the stand and landscape level. January 22-24, Coast Inn of the North Prince George, BC. Puslittanak (1998) Penuntun Analisis Kimia Tanah dan Tanaman. Staf Laboratorium Kimia, Pusat Penelitian Tanah dan Agroklimat, Departemen Pertanian, Bogor. Putz F. E. (1994) Approaches to Sustainable Forest Management. Working Paper No. 4. CIFOR. Putz, F. E., Dykstra, D. P. & Heinrich, R. (2000) Why poor logging practices persist in the tropics. Conservation Biology, 14, 951-956. Putz, F. E., Blate, G., Redford, K. H., Fimbel, R. & Robinson, J. G. (2001a) Tropical forest management and conservation of biodiversity: an overview. Conservation Biology, 15, 7-20. Rankin-De Merona, J. M. & Hutchings, R. W. (2001) Deforestation effects at the edge of an Amazonian forest fragment: Tree mortality, damage and recruitment. Page 107-120 in Bierregaard, R. O., Gascon, C., Lovejoy, T. E. and Mesquita, R. (eds.). Lessons from Amazonia; the ecology and conservation of a fragmented forest. Yale University Press, New Heaven, USA. RePPProT (1990) The Land Resources of Indonesia: A National Overview. Regional Physical Planning Programme for Transmigration (RePPProT), Department of Transmigration, Jakarta. Richards, P.W. (1996) The Tropical Rain Forest: an ecological study. 2nd edition. Cambridge University Press. Pp.575. Riswan, S., Kentworthy, J.B., & Kartawinata, K. (1986) The estimation of temporal processes in tropical rain forest: study of primary mixed dipterocarp forest in Indonesia. Journal of Tropical Ecology 1, 171-182. Riswan, S. (1987) Structure and floristic composition of a mixed dipterocarp forest at Lempake, East Kalimantan. Pp. 436-457 in Kostermans A.J.G.H. (Ed.). 171 Proceeding of the third Round Table Conference of Dipterocarps. UNESCOROSTSEA, Jakarta. Riswan, S. & Kartawinata, K. (1998a). A lowland dipterocarp forest 35 years after pepper plantation in East Kalimantan, Indonesia. In Soemodihardjo, S. (1998). Some ecological aspects of tropical forest of East Kalimantan. A collection of research reports. MAB-Indonesia Institute of Sciences (LIPI), Indonesia. Contribution No. 48. Riswan, S. & Kartawinata, K. (1988b) Regeneration after disturbance in kerangas (heath) forest in East Kalimantan, Indonesia. Pp. 61-86 in Soemodihardjo, S. (Ed.). Some Ecological Aspects of Tropical Forest of East Kalimantan: A Collection of Research Papers, MAB Indonesia Contribution No. 48. Samsoedin, I. & Mogea, J.P. (1989) Potential Indonesia Forest Plants for Ornamental. Paper presented to the Flower Cultivation and Business Seminar. Cibubur, Jakarta, 12-13 June. Samsoedin, I. & Gintings, A. Ng. (1997) Conservation and Utilization: Present Status and Future Direction. MOF Report. Unpublished. Sanchez, P. A. (1976) Properties and management of soils in the tropics. John Wiley & Sons, Inc. Canada. Saragih, B. (2003) Illegal Logging, Pendefenisian dan Dampak dari inkosistensi Penanggulangannya. Makalah pada Lokakarya Pencegahan Illegal Logging dalam Pemanfaatan Hutan, Samarinda, 22 Juli 2003. Fakultas Kehutanan Univrsitas Mulawarman-World Wildlife Fund. Samarinda. Schmidt, F.H. & Ferguson, J.H.A. (1951) Rainfall Type Based on Wet and Dry Period Ration for Indonesia with Western New Guinea. Publ. No. 42. Jawatan Meteorologi dan Geofisika, Jakarta. Seng, H.W., Ratnam, W., Noor, S.M. & Clyde, M.M. (2004) The effects of the timing and method of logging on forest structure in Peninsular Malaysia. Forest Ecology and Management 203 (1-3), 209-228. Sewandono, M. (1973) Inventaries en inrichting van de veenmoerasbosschen in het panglongebied van Sumatra’s oostkust. Tectona XXX: 266-285. In Smits, W.T.M. (Ed.). (1994) Dipterocarpaceae: Mycorrhizae and Regeneration.Tropenbos.Samarinda, EastKalimantan. Sheil, D. (1995) A critique of permanent plot methods and analysis with examples from Budongo Forest, Uganda. Forest Ecology and Management 77, 11-34. Sheil, D. (1998) A half century of permanent plot observation in Budongo Forest, Uganda: histories, highlight and hypotheses. In: Dallmeier, F. & Cosmikey , 172 J.A. (Eds.). Forest biodiversity research, monitoring and modeling: conceptual background and old world case studies. Proceeding from the 1995 Smithsonian MAB Washington Symposium. MAB, UNESCO, Paris, pp. 399428. Sheil, D. (1999) Tree species diversity in logged rainforest. Technical Comment. Sience 284, 1587a Sheil, D. & van Heist, M. (2000) Ecology for tropical forest management. International Forestry Review 2, 261-270. Sidle, R.C. (2000) Watershed challenges for the 21st century: a global perspective for mountainous terrain. In Land stewardship in the 21st century: the contributions of watershed management, pp. 45-56. Proceedings, Rocky Mountain Research Station, RMRS-P-13. Fort Collins, Colorado, USA, United States Department of Agriculture (USDA) Forest Service. Silva, J. N. M., de Carvalho, J. O. P., Lopes, J. d. C. A., Oliveira, R. P. d. K., & de Oliveira, L. C. (1996) Growth and yield studies in the Tapajos region, Central Brazilian Amazon. Commonwealth Forestry Review 75, 325-329 and 350352. Siregar, C. A., Dharmawan, I. W. S., Gunarso, P. & Santosa, K. D. (2004) Impact of Reduced Impact Logging on Soil and Water Quality. Unpublished report to CIFOR. Indonesia. Sist, P., Nolan, T., Bertault, J. G. & Dykstra, D. (1998b) Harvesting intensity versus sustainability in Indonesia. Forest Ecology and Management 108, 251-260. Sist, P. & Saridan, A. (1999) Stand structure and floristic composition of a primary lowland dipterocarp forest in East Kalimantan. Journal of Tropical Forestry Sciences. 11, 704-722 Sist, P., Fimbel, R., Sheil, D., Nasi, R., & Chevallier, M. H. (2003a) Towards sustainable management of mixed dipterocarp forests of Southeast Asia : Moving beyond minimum diameter cutting limits. Environmental Conservation 30, 364-374. Sist, P., Sheil, D., Kartawinata, K. & Priyadi, H. (2003b) Reduced-impact logging in Indonesian Borneo : some results confirming the need for new silvicultural prescriptions. Forest Ecology and Management 179, 415-427. Slik, J.W.F. & 16 others (2003) A floristic analysis of the lowland dipterocarp forests of Borneo. Journal of Biogeography, 30, 1517-1531. Smits, W.T.M. (1994) Dipterocarpaceae: Mycorrhizae and Regeneration. Tropenbos Series 9. The Tropenbos Foundation. The Netherlands. Pp. 243. 173 Snowman, T.K. (2004) Rotten logs and sowbugs: the role of dead wood. In http//www.for.gov.bc.ca/hfd/pubs/docs/Wp/Wp30.pdf. Soedirman, S. (1993) Study on the stand characteristics in logged over cutting block, under conventional logging unit system. Collaboration between Education & Cultural Departement – JICA. Samarinda, East Kalimantan. Soerianegara, I. & Lemmens, R.H.M.J. (1994) Plants Resources of South-East Asia 5: (1) Timber Trees: Major commercial timbers. PROSEA, Bogor, Indonesia. Pp. 610. Staf Peneliti (1983) Terms of Reference Klasifikasi Kesesuaian Lahan. Pusat Penelitian Tanah. Proyek Pertanian Menunjang Transmigrasi (P3MT). Departemen Pertanian. Stevens, V. (1997) The ecological role of Coarse Woody Debris. An overview of the ecological importance of CWD in BC forests. Ministry of Forest Research Program, BC, USA. P.26 Suhendang, E., Soerianegara, I. & Bahruni. (1993) Menguak permasalahan pengelolaan hutan alam tropis di Indonesia. Faculty of Forestry, Bogor Agricultural University. Bogor. Sulaei, S.M. & Swaine, M.D. (1988) Rain forest seed dynamic during succession at Gogol, Papua New Guinea. Journal of Ecology 76, 1133-1152. Sulaiman, R.B.R (1997) Studies on the early establishment of dipterocarp seedlings in a Malaysian Logged Hill Forest. Ph.D Thesis. University of Stirling, Scotland. Sumitro, A. (1991) The cutting of climax trees of dipterocarps stand under intensive management. Pp. 201-202 in Soerianegara, I.. S.S. Tjitrosomo, R.C. Umaly and I. Umboh (Eds.) Proceedings of the Fourth Round Table Conference on Dipterocarps, 12-15 December 1989. Bogor, Indonesia. BIOTROP special Publication No. 41. Sumner (2000) Handbook of Soil Science. CRC Press LLC. Suwardi & Wiranegara (1998) Morfologi dan Klasifikasi Tanah. Jurusan Tanah, Fakultas Pertanian, Institut Pertanian Bogor. Swaine, M. D. & Hall, J. B. (1983) Early succession on cleared forest land in Ghana. Journal of Ecology 71, 601-627. Swaine, M.D., Lieberman, D. & Putz, F.E. (1987) Tree dynamics of tree populations in tropical forest: a review. Journal of Tropical Ecology 3, 359-366. 174 Tarumingkeng, R. & TEN OTHERS. (1989) Report on Field Case Studies of Forest Concession-UTF/INSo65/ INS-FORESTRY STUDIES Field Document No. 15. Directorate General of Forest Utilization, Ministry of Forestry, Government of Indonesia and Food and Agriculture Organizations of the United Nations, Jakarta. Tie, Y.L., Bailie, I.C., Sen C.P.M. & Pang L.C. (1979) Soils of Gunong Mulu National Park. Soil Survey Division, Research Branch, Department of Agriculture, Sarawak. Pp. 134. Tuomela, K., Kuusipalo, J, Adjers, G. & Vesa, L. (1994) Growth of dipterocarp seedlings in artificially created gaps: experiment in a logged-over forest in South Kalimantan, Indonesia. Proceedings of the International Symposium on Asian Tropical Forest Management. Samarinda, Indonesia 13-15 September. UNESCO (1978) Tropical forest ecosystem. A state of knowledge report. Natural resources research XIV. Pp 683. Van Braam (1914) in MacKinnon K., Hatta, G., Halim, H. & Mangalik, A. (1996) The Ecology of Kalimantan, Indonesian Borneo. Periplus Editions (HK) Ltd. Pp. 802. van Gardingen, P. R., McLeish, M. J., Phillips, P. D., Fadilah, D., Tyrie, G. & Yasman, I. (2003) Financial and ecological analysis of management options for logged-over dipterocarp forests in Indonesian Borneo. Forest Ecology Management 183, 1-29. Whitmore, T. C. (1978) Tree flora of Malaya. Manual for Forester. Vol. 3, Longman, London. Whitmore, T.C. (1982) On pattern and process in forests. Pp 45-49 in Te Pant Community as a Working Mechanism, Newman, E.I. (Ed.). Brit. Ecol. Soc. Special pubn 1, Blackwell, Oxford. Whitmore, T.C. (1984) Tropical Rain Forests of the Far East. 2nd edition. Oxford Science Publications. Clarendon Press, Oxford. pp. 352. Whitmore, T.C. (1990) An Introduction to Tropical Rain Forests. Clarendon PressOxford. Pp. 226. Whitmore, T. C. (1996) A review of some aspects of tropical rain forest seedling ecology with suggestions for further enquiry. In Swaine, M. D. (ed.) The ecology of tropical forest tree seedlings, 3-39. UNESCO, Paris, France and Parthenon, Carnforth, UK. Whitmore, T. C. & Brown, N. D. (1996) Dipterocarp seedling growth in rain forest canopy gaps during six and a half years. Philosophical Transactions of the Royal Society of London – Series B: Biological Sciences 351, 1195-1203. 175 Whitmore, T. C. (1997) Tropical forest disturbance, disappearance, and species loss. In Laurance, W. F. and Bierregaard, R. O. (eds.). Tropical forest remnants: Ecology, management, and conservation of fragmented communities. University of Chicago Press, Chicago, USA. Whitten, T, Van Dijk, P.P., Curran, L., . Meijaard, E., Wood, P., Supriatna, J. & Ellis, S. (2004) Sundaland in Mittermeier, R.A., Gil, P.R., Hoffmann, M., Pilgrim, J., Brooks, T., Mittermeier, C.G., Lamoureux, J., Da Fonseca, G.A.B. 2004. HOTSPOTS Revisited Earth Biologically Richest and Most Endangered Terrestrial Ecoregions, CEMEX. P 390. Wilkie, P., Argent, G., Cambell, A. & Saridan, A. (2004) The diversity of 15 ha of lowland mixed dipterocarps forest, Central Kalimantan. Biodiversity and Conservation 13, 695-708. Woods, T.N. & Bower, R.P. (1982) Rainfall Records, East Kalimantan. Catatan Curah Hujan Kalimantan Timur. REPORT Analysis Summaries and Histograms. Transmigration Area Development Project. April. Wyatt-Smith, J. (1949) Regrowth in clear areas. Malayan Forester 12, 83-86. Wyatt-Smith, J. & Foenander, E.C. (1962) Damage to regeneration as aresult of logging. Malayan Forester 25, 40-44. Wyatt-Smith, J. (1966) Ecological Studies on Malayan Forests. The composition and dynamic studies in lowland evergreen-rain forest in two 5-acre in Sunge Menyala Forest Reserve1947-59. Research Pamphlet 52, Forestry Research Institute, Kepong, Malaya. 176 Appendix 1. Tree species composition in a four 1-ha plots in primary and logged lowland forests in the Bulungan Research ForestCIFOR, East Kalimantan. Family Alangiaceae Anacardiaceae Species Name Alangium javanicum (Blume) Wangerin Alangium longiflorum Merrill Alangium ridleyi King Buchanania arborescens F. Muell. Buchanania sessifolia Blume Campnosperma auriculata Hook. f. Dracontomelon dao Merrill & Rolfe Drimycarpus luridus (Hook.f.) Ding Hou Drimycarpus sp. Gluta macrocarpa (Engl.) Ding Hou Gluta wallichii (Hook. f.) Ding Hou Koordersiodendron pinnatum Merrill Mangifera foetida Lour. Mangifera macrocarpa Blume Mangifera magnifica K. M. Kochummen Mangifera pajang Kosterm. Mangifera sp. 1 Mangifera sp. 2 Mangifera swintoniodes Kosterm Mangifera torquenda A. J. G. H. Kosterm Melanochyla auriculata Hook. f. Melanochyla beccariana Oliver PF LF-5 LF-10 LF-30 11 1 6 1 1 1 10 1 4 3 1 2 6 3 1 40 2 2 27 2 1 13 1 4 1 5 4 7 2 1 1 1 1 1 76 8 22 1 1 1 1 177 Total 24 1 3 3 14 4 5 5 1 6 84 11 2 1 1 1 1 1 99 8 1 2 Annonaceae 2 3 Melanochyla bullata Ding Hou Melanochyla caesia (BL.) Ding Hou Melanochyla elmeri Merrill Melanochyla fulvinervia (Blume) Ding Hou Melanochyla sp. Melanochyla sp.1 Melanochyla sp.2 Melanochyla sp.3 Melanochyla sp.4 Parishia insignis Hook.f. Semecarpus burburyanus Gibbs Semecarpus sp. Swintonia glauca Engl. Anaxagorea ramiflora Boerl. cf. Mitrephora sp. cf. Orophea sp. cf. Phaeanthus sp. Cyathocalyx bancanus Boerl. Cyathocalyx carinatus (Ridley) J.Sincl. Cyathocalyx magnifica Diels Cyathocalyx sp. Cyathocalyx sumatrana Scheff. Enicosanthum paradoxum Becc. Enicosanthum sp. Goniothalamus sp. Mezzettia parviflora Becc. Mitrephora maingayi Hook. f. & Thoms. Monocarpia kalimantanensis P. J. A. Kessler Polyalthia cauliflora Hook.f. & Thoms. Polyalthia glauca Boerl. Polyalthia lateriflora King Polyalthia microtus Miq. Polyalthia rumphii Merrill Polyalthia sp. Polyalthia sp.1 6 2 1 1 3 1 7 1 6 1 1 2 16 2 2 2 10 4 2 1 1 3 5 2 17 178 3 6 3 3 2 4 4 1 1 1 1 2 1 2 11 1 4 4 1 4 5 7 1 2 3 3 2 3 6 1 8 3 3 1 6 1 1 2 16 2 2 2 10 4 2 1 1 8 2 1 1 13 2 5 26 1 12 2 17 11 6 Apocynaceae Aquifoliaceae Bombacaceae 1 2 1 1 Polyalthia sp.2 Polyalthia sp.3 Polyalthia sp.4 Polyalthia sp.5 Polyalthia sp.6 Polyalthia subcordata Blume Polyalthia sumatrana (Miq.) Kurz Popowia hirta Miq. Pseuduvaria cf. rugosa Merrill Pseuduvaria reticulata Miq. Sageraea elliptica Hook. f. & Thoms. Sageraea lanceolata Miq. Xylopia caudata Hook. f. & Thoms. Xylopia elliptica Maing. ex Hook. f. Xylopia ferruginea Baill. Xylopia malayana Hook.f. & Thoms. Xylopia sp. Alstonia iwahigensis Elmer Alstonia sp. Alstonia spathulata Blume Apocynaceae Dyera costulata Hook. f. Kibatalia arborea G. Don Kibatalia flavida Blume Kibatalia maingayi (Hook. f.) R. E. Woodson Kibatalia villosa Rudjiman Tabernaemontana macrocarpa Korth. ex Blume Ilex cymosa Blume Ilex sp. 1 Ilex sp. 2 Coelostegia chartacea Soeg. Reksod. Coelostegia sp. Coelostegia sp. 1 Durio acutifolius (Mast.) Kosterm. Durio dulcis Becc. 2 15 1 9 2 15 2 2 1 1 1 3 12 2 1 1 2 10 2 1 2 1 1 2 9 3 1 1 1 3 1 6 2 2 1 1 1 2 1 2 3 3 3 3 179 1 3 2 1 1 2 1 1 2 1 41 2 2 1 1 14 12 4 3 12 4 1 3 1 1 10 1 2 2 2 1 2 1 2 4 3 3 5 4 Burseraceae 4 Durio grandiflorus (Mast.) Kosterm. & Soeg. Durio graveolens Becc. Durio griffithii Bakh. Durio kutejensis Becc. Durio lanceolatus Mast. Durio oxleyanus Griff. Durio sp. 1 Durio sp.2 Durio testudinarius Becc. Neesia synandra Mast. Canarium denticulatum Blume Canarium hirsutum Willd. Canarium littorale Blume Canarium megalanthum Merrill Canarium odontophyllum Miq. Canarium pillosum A. W. Benn. Canarium sp. Canarium sp. 2 Canarium sp.1 Dacryodes costata (A. W. Benn.) H. J. Lam Dacryodes crassipes Kalkman Dacryodes incurvata (Engl.) H. J. Lam Dacryodes laxa (A. W. Benn.) H. J. Lam Dacryodes rostrata (Blume) H. J. Lam forma pubescens Dacryodes rubiginosa (A. W. Benn.) H. J. Lam Dacryodes rugosa (Blume) H.J. Lam Dacryodes sp. Santiria apiculata A.W.Benn. Santiria griffithii Engl. Santiria laevigata Blume Santiria oblongifolia Blume Santiria rubiginosa Blume Santiria sp. Santiria sp.1 Santiria tomentosa Blume 3 2 3 6 1 2 1 3 6 1 1 7 1 2 3 2 2 1 6 14 1 4 7 3 6 2 2 35 15 21 1 2 1 2 2 5 2 11 2 27 1 13 8 1 1 5 1 3 4 3 2 14 18 1 2 4 1 2 4 1 12 2 17 15 3 1 3 3 2 1 1 5 180 2 3 1 1 3 7 4 6 4 14 2 1 8 2 11 1 8 22 1 11 13 6 3 4 11 2 60 4 73 1 67 2 5 5 4 5 2 3 4 10 Caesalpiniaceae Caprifoliaceae Celastraceae Chrysobalanaceae Combretaceae Cornaceae Crypteromiaceae Dilleniaceae Dipterocarpaceae 2 Triomma malaccensis Hook. f. Crudia teniupes Merrill Viburnum sp. Bhesa paniculata Arn. Celastraceae Kokoona littoralis M. A. Laws. Kokoona reflexta (M. A. Lawson) Ding Hou Lophopetalum beccarianum Pierre Lophopetalum cf. glabrum Ding Hou Lophopetalum javanicum Turcz. Lophopetalum sp. Lophopetalum subobovatum King Atuna excelsa (Jack) Kosterm. Atuna racemosa Rafin. Atuna sp. Licania splendens (Korthals) Prance Parinari racemosum Merrill Terminalia foetidissima Griff. Terminalia sp. 1 Terminalia subspathulata King Ellipanthus tomentosus Kurz Mastixia bracteata C. B. Clarke Mastixia rostrata Blume Mastixia sp. Mastixia trichotoma Blume Crypteronia macrophylla van Beusekom-Osinga Dillenia excelsa Martelli Dillenia eximia Miq. Dillenia grandifolia Wall. Dillenia pentagyna Roxb. Dillenia reticulata King Anisoptera costata Korth. cf. Hopea sp. Dipterocarpus cornutus Dyer Dipterocarpus crinitus Dyer 1 4 1 2 2 1 1 1 2 4 2 6 5 10 4 9 8 1 1 1 2 1 1 1 1 2 8 3 1 1 6 10 1 1 1 3 10 17 2 1 4 2 1 1 3 181 1 4 4 1 12 2 1 3 7 1 1 4 4 6 5 10 9 12 2 1 2 1 1 1 1 10 1 1 4 4 1 43 2 1 4 1 4 8 1 15 3 26 11 Dipterocarpus elongatus Korth. Dipterocarpus eurynchus Miq. Dipterocarpus gracilis Blume Dipterocarpus humeratus van Slooten Dipterocarpus lowii Hook. f. Dipterocarpus pachyphyllus Meyer Dipterocarpus sp. Dipterocarpus sp. 2 Dipterocarpus sp.1 Dipterocarpus stellatus Vesque Dipterocarpus tempehes van Slooten Dipterocarpus verrucosus Foxworthy ex. v. Slooten Dryobalanops lanceolata Burck Hopea cernua Teijsm. & Binn. Hopea cf. obovoidea Sloot. Hopea dryobalanoides Miq. Hopea ferruginea Parijs Hopea mengerawan Miq. Hopea semicuneata Symington Hopea sp. Hopea sp. 1 Parashorea lucida Kurz Parashorea malaanonan Merrill Parashorea parvifolia Wyatt-Smith ex P. S. Ashton Parashorea sp. 1 Parashorea tomentella (Symington) Meijer Shorea agamii P. S. Ashton Shorea angustifolia P. S. Ashton Shorea atrinervosa Symington Shorea beccarii Dyer ex Brandis Shorea brunnescens P. S. Ashton Shorea cf. almon Foxworthy Shorea cf. atrinervosa Symington Shorea cf. maxwelliana King Shorea cf. obovoidea van Slooten 1 1 11 15 2 14 2 2 5 2 29 1 23 20 1 1 1 21 2 15 4 4 1 3 1 72 8 1 58 1 91 10 1 28 15 27 1 1 17 47 6 12 2 6 36 182 1 3 2 12 1 1 20 5 1 5 1 8 2 4 36 16 55 3 69 4 38 11 17 14 17 8 4 21 35 1 2 47 2 1 93 130 8 10 2 2 4 111 16 1 5 36 102 17 83 12 1 9 7 36 Shorea cf. ovalis Blume Shorea elliptica Meijer Shorea faguetiana Heim Shorea fallax Meijer Shorea hopeifolia (Heim) Symington Shorea inappendiculata Burck Shorea johorensis Foxworthy Shorea laevifolia(Parijs) Endert Shorea lamellata Foxworthy Shorea leprosula Miq. Shorea macrophylla (de Vriese) P. S. Ashton Shorea macroptera Dyer Shorea malaononan Blume Shorea maxwelliana King Shorea multiflora (Burck) Symington Shorea ochracea Symington Shorea ovalis Blume Shorea parvifolia Dyer Shorea parvistipulata Heim Shorea patoienis P. S. Ashton Shorea pauciflora King Shorea pinanga Scheff. Shorea seminis v. Slooten Shorea smithiana Symington Shorea sp. Shorea sp. 4 Shorea sp. 5 Shorea sp. 6 Shorea sp.1 Shorea sp.2 Shorea sp.3 Shorea venulosa G. H. S. Wood ex Meijer Shorea xanthophylla Symington Vatica albiramis v. Slooten Vatica granulata v. Slooten 2 10 9 1 14 5 1 46 6 12 72 11 1 4 11 3 1 6 5 14 24 3 1 3 19 16 2 6 1 14 5 9 9 78 8 16 36 7 2 3 28 5 1 3 9 79 21 42 3 9 3 15 10 1 4 2 15 2 2 5 2 7 6 20 37 10 43 183 6 4 1 8 1 1 2 6 10 11 20 6 57 1 3 28 1 77 2 12 14 3 46 265 26 2 35 88 3 2 30 2 7 1 10 20 6 4 38 18 45 Ebenaceae 30 1 Vatica micrantha v. Slooten Vatica nitens King Vatica oblongifolia Hook.f. Vatica pauciflora Blume Vatica rassak Blume Vatica sarawakensis Heim Vatica sp. Vatica sp. 1 Vatica umbonata Burck Vatica vinosa P.S. Ashton Diospyros cf. oblonga Wall. Diospyros borneensis Hiern Diospyros buxifolia Hiern Diospyros cf. korthalsiana Hiern Diospyros cf. pendula Hasselt ex Hassk. Diospyros cf. perfida Bakh. Diospyros cf. sumatrana Miq. Diospyros curraniopsis Bakh. Diospyros diepenhorstii Miq. Diospyros elliptifolia Merrill Diospyros evena Bakh. Diospyros foxworthyii Bakh. Diospyros frutescens Blume Diospyros hallierii Bakh. Diospyros lanceaefolia Roxb. Diospyros levigata Diospyros macrophylla Blume Diospyros malayana Bakh. Diospyros oblonga Wall. Diospyros pendula Hasselt ex Hassk. Diospyros pilosanthera Blanco Diospyros polyalthioides Hiern Diospyros sp. Diospyros sp.1 Diospyros sp.2 9 1 7 1 2 1 2 3 31 27 1 3 25 2 4 3 1 1 11 4 3 2 37 16 3 1 1 10 4 1 8 9 8 2 1 2 3 2 1 5 19 4 1 2 2 2 12 2 11 10 3 6 18 14 13 10 1 12 1 184 30 1 17 1 3 5 6 49 51 30 2 14 29 1 8 2 4 6 2 1 5 19 23 1 2 2 2 5 23 10 3 1 49 24 1 Elaeocarpaceae Euphorbiaceae 2 1 1 Diospyros sp.3 Diospyros sp.4 Diospyros sp.5 Diospyros sp.7 Diospyros sp.8 Diospyros sumatrana Miq. Diospyros toposoides King ex Gamble Diospyros wallichii King ex Gamble Elaeocarpus cupreus Merrill Elaeocarpus parvifolius Wall. Elaeocarpus pedunculatus Wall. Elaeocarpus sp. Elaeocarpus sp.1 Elaeocarpus sp.2 Sloanea javanica (Miq.) Koord. & Valeton Antidesma leucopodum Miq. Antidesma neurocarpum Miq. Antidesma sp. Antidesma sp. 1 Antidesma trunciflorum Merrill Aporosa benthamiana Hook. f. Aporosa confusa Gage Aporosa falcifera Hook. f. Aporosa grandistipula Merrill Aporosa lucida (Miq.) Airy Shaw Aporosa lunatum Kurz Aporosa nitida Merrill Aporosa prainianaKing ex Gage Aporosa sp. Aporosa subcaudata Merrill Baccaurea angulata Merrill Baccaurea bracteata Muell. Arg. Baccaurea edulis Merrill Baccaurea javanica Muell. Arg. Baccaurea kunstleri King ex Gage 29 1 1 7 1 4 10 1 3 1 7 1 1 1 2 1 1 3 2 1 1 2 3 2 2 1 8 7 1 2 1 1 2 6 3 4 3 1 3 3 4 1 1 1 5 1 7 1 7 8 2 185 2 5 6 4 13 1 3 2 2 4 1 4 53 2 1 1 1 1 3 1 1 6 5 2 2 1 8 2 4 18 5 2 1 11 2 7 18 4 1 20 9 5 Baccaurea macrocarpa Muell. Arg. Baccaurea minor Hook. f. Baccaurea odoratissima Elmer Baccaurea pubera Muell. Arg. Baccaurea pyriformis Gage Baccaurea sp. Baccaurea sp.1 Baccaurea stipulata J. J. Smith Baccaurea sumatrana Muell. Arg. Baccaurea tetandra Muell. Arg. Baccaurea truncifllora Merrill Blumeodendron calophyllum AiryShaw Blumeodendron cf. tokbrai Kurz Blumeodendron elateriospermum J. J. Smith Bridelia glauca Blume Castanocarpus sp. Cephalomappa beccariana Baill. Cephalomappa lepidotula Airy Shaw Cephalomappa malloticarpa J. J. Smith Chaethocarpus castanocarpus Thw. Cleistanthus bakonensis Airy Shaw Cleistanthus beccarianus Jablonszky Cleistanthus myrianthus (Hassk.) Kurz Cleistanthus sp. Cleistanthus sumatranus Muell. Arg. Coccoceras borneense J. J. Smith. Croton argyratus Blume Drypetes crassipes Pax & K. Hoffm. Drypetes kikir Airy Shaw Drypetes laevis Pax et Hoffm. Drypetes longifolia Pax & K. Hoffm. Drypetes oblongifolia (Bedd.) Airy Shaw Drypetes polyneura Airy Shaw Drypetes sp. Elateriospermum tapos Blume 5 13 1 3 3 1 2 24 2 1 22 2 4 2 7 4 2 5 1 1 4 1 1 1 5 2 4 1 1 1 2 14 2 7 1 4 7 1 13 15 5 2 6 1 8 2 1 1 1 22 4 9 1 1 9 3 186 16 1 11 14 4 1 1 2 4 68 3 6 2 10 12 16 2 4 12 29 6 8 22 4 1 5 11 2 1 1 16 7 9 19 15 6 8 2 1 22 16 16 14 13 2 5 15 4 85 1 Glochidion arborescens Blume Glochidion bakonensis Glochidion borneensis Boerl. Glochidion celastroides Pax Glochidion cf. arborescens Blume Glochidion obscurum Blume Glochidion rubrum Blume Glochidion sericeum Zoll. & Mor. Glochidion sp. Koilodepas brevipes Merr. Koilodepas laevigatus Airy Shaw Macaranga aetheadenia Airy Shaw Macaranga bancana Muell. Arg. Macaranga beccariana Merrill Macaranga cf. hullettii King ex Hook.f. Macaranga cf. indistincta T. C. Whitmore Macaranga conifera (Zoll.) Muell. Arg. Macaranga gigantea Muell. Arg. Macaranga grandibracteolata Stuart J.Davies Macaranga hosei King ex Hook.f. Macaranga hypoleuca Muell. Arg. Macaranga lamellata T. C. Whitemore Macaranga lowii King ex Hook.f. Macaranga motleyana Muell. Arg. Macaranga pearsonii Merrill Macaranga pruinosa Muell. Arg. Macaranga repando-dentata Airy Shaw Macaranga sp. Macaranga winkleri Pax & K. Hoffm. Mallotus eucaustus Airy Shaw Mallotus griffthianus Hook. f. Mallotus korthalsii Muell. Arg. Mallotus macrostachyus Muell. Arg. Mallotus moritzianus Muell. Arg. Mallotus muticus (Muell. Arg.) Airy Shaw 2 1 1 3 1 1 2 6 4 3 4 47 1 1 1 3 22 69 33 8 8 14 1 1 1 8 2 103 13 6 7 16 3 28 142 2 10 226 1 1 5 52 17 3 84 12 1 3 11 13 16 4 1 1 2 187 6 3 9 1 1 2 2 3 1 6 5 2 3 4 47 3 105 19 6 7 52 69 3 31 226 2 52 9 229 15 12 1 14 93 4 1 1 8 13 Fagaceae 1 20 Mallotus peltatus Muell. Arg. Mallotus penangensis Muell. Arg. Mallotus sp. Mallotus subcaudatus Mallotus wrayi King ex Hook. f. Neoscortechinia kingii Pax & K. Hoffm. Neoscortechinia philippinensis (Merr.) P. C. Welzen Paracroton pendulus Miq. Phyllanthus emblica Linn. Pimelodendron griffithianum (Muell. Arg.) Hook. f. Pimelodendron papaveroides J. J. Smith Ptychopxis sp. 1 Ptychopyxis arborea(Merrill) Airy Shaw Ptychopyxis bacciformis Croizat Ptychopyxis sp. Trigonopleura malayana Hook. f. Trigonostemon sp. Trigonostemon sp. 1 Castanopsis fulva Gamble Castanopsis megacarpa Gamble Castanopsis motleyana King Castanopsis sp. Castanopsis sp. 1 Castanopsis sp. 2 Lithocarpus blumeanus Rehder Lithocarpus cantleyanus Rehder Lithocarpus conocarpa Rehder Lithocarpus cooperta Rehder Lithocarpus ewyckii Rehder Lithocarpus gracilis (Korth.) Soepadmo Lithocarpus lucidus Rehder Lithocarpus nieuwenhuisii (Seem) A. Camus Lithocarpus reflexus (King) A. Camus Lithocarpus sp. Lithocarpus sp.1 27 25 1 17 1 11 1 1 12 18 6 15 4 1 3 12 1 3 6 1 12 3 1 1 2 6 2 2 4 3 1 1 7 2 10 3 1 1 4 6 3 1 1 1 4 2 6 1 13 1 3 188 3 10 2 4 3 1 5 3 2 2 5 1 1 89 2 1 29 4 1 30 1 39 2 2 7 10 15 2 7 2 3 1 10 4 1 1 2 7 4 1 16 14 2 4 3 11 8 Flacortiaceae Guttiferae 1 Lithocarpus sp.2 Lithocarpus sp.3 Lithocarpus sp.4 Lithocarpus sp.5 Lithocarpus urceolaris (Jack) Merrill Quercus argentata Korth. Quercus gemelliflora Blume Quercus sp. Quercus sp. 1 Flacourtia rukam Zoll. & Mor. Homalium grandiflorum Benth. Hydnocarpus borneensis Sleumer Hydnocarpus castanea Hook. f. et Thoms Hydnocarpus kuenstleri Warb. Hydnocarpus polypetalus (v.Slooten) Sleum. Hydnocarpus sp. Hydnocarpus sp. 3 Hydnocarpus sp.1 Hydnocarpus sp.2 Hydnocarpus wodii Merrill Hydnocarpus wrayi King Ryparosa baccaureoides Sleum. Ryparosa hirsuta J. J. Smith Ryparosa kostermansii Sleum. Ryparosa sp. Calophyllum cf. hosei Ridley Calophyllum cf. lowii Planch. & Triana Calophyllum pulcherrimum Wall. Calophyllum sp. Calophyllum sp. 3 Calophyllum sp. 4 Calophyllum sp.1 Calophyllum sp.2 Calophyllum venulosum Zoll. Garcinia bancana (Miq.) Miq. 3 1 2 1 3 1 3 2 1 1 1 1 1 1 1 4 1 7 7 5 19 1 3 2 8 1 7 1 1 1 1 5 2 18 5 2 2 1 1 1 1 4 189 1 1 3 4 1 4 2 4 2 2 2 1 1 1 4 1 7 7 5 3 21 1 8 1 7 1 1 2 5 18 7 3 1 3 3 1 2 4 Hypericaceae Icacinaceae Lauraceae 1 Garcinia celebica L. Garcinia cf. griffithii T. Anders Garcinia dioica Blume Garcinia gaudichaudii Planch. & Triana Garcinia macrophylla Miq. Garcinia nervosa Miq. Garcinia parvifolia Miq. Garcinia penangiana Pierre Garcinia rostrata Hort. ex Boerl. Garcinia sp. Garcinia sp. 5 Garcinia sp.1 Garcinia sp.2 Garcinia sp.3 Garcinia sp.4 Kayea borneensis P. F. Stevens Mesua borneensis P.F. Stevens Mesua cf. conooidea Mesua sp. Mesua sp.1 Cratoxylum arborescens Blume Cratoxylum formosum Benth. & Hook. f. ex Dyer Cratoxylum sumatranum Blume Stemonurus grandifolius Becc. Stemonurus macrophyllus Blume Stemonurus scorpioides Becc. Stemonurus scundiflorus Blume Stemonurus sp. Stemonurus umbellatus Becc. Actinodaphne glabra Blume Alseodaphne elliptica Alseodaphne elmeri Merrill Alseodaphne glabra Blume Alseodaphne glomerata Nees Alseodaphne peduncularis Hook. f. 2 1 1 1 4 10 3 2 1 1 1 3 1 1 3 4 5 2 3 2 2 1 2 1 3 3 4 1 3 2 12 1 2 1 1 1 1 1 1 2 1 3 4 3 2 2 2 8 1 1 1 4 3 1 2 1 190 1 3 1 4 2 5 17 3 2 10 4 5 7 5 3 1 13 1 2 1 1 1 2 2 2 3 7 10 1 3 2 5 3 1 3 Alseodaphne sp. Alseodaphne sp. 1 Alseodaphne sp.2 Alseodaphne sp.3 Alseodaphne umbelliflora Hook. f. Alseodaphne untrinerved Beilschmiedia glabra Kosterm. Beilschmiedia madang Blume Beilschmiedia sp. Beilschmiedia sp.1 cf. Alseodaphne sp. Cinnamomum inners Reinw. Ex Blume Cinnamomum javanicum Blume Cryptocarya impressa Miq. Cryptocarya crassinervia Miq. Cryptocarya ferrea Blume Cryptocarya sp. Cryptocarya sp. 4 Cryptocarya sp.1 Cryptocarya sp.2 Cryptocarya sp.3 Cryptocarya tomentosa Blume Dehaasia elliptica Ridley Dehaasia firma Blume Dehaasia incrassata (Jack.) Kosterm. Dehaasia sp.1 Dehaasia tomentosa Blume Endiandra elongata Arifiani Endiandra kingiana Gamble Endiandra rubescens Blume ex Miq. Endiandra sp. Eusideroxylon zwageri Teijsm. & Binn. Lauraceae Litsea angulata Blume Litsea ferruginea Blume 4 4 2 1 2 4 9 1 1 10 2 1 1 2 4 2 1 2 1 1 3 1 5 2 2 1 1 1 1 3 3 2 13 1 2 1 1 1 1 1 1 2 1 1 3 3 28 1 1 191 11 3 8 15 1 2 2 1 1 6 13 1 1 2 1 1 4 5 4 1 1 1 1 3 3 15 1 3 1 2 3 4 1 40 6 1 1 Lecythidaceae Leguminosae 3 Litsea firma Hook. F. Litsea lanceifolia Hook. f. Litsea machilifolia Gamble Litsea noronhae Bl. Litsea oppositifolia L.S. Gibbs Litsea sessilis Boerl. Litsea sp. Litsea sp. 1 Neolitsea sp. Nothaphoebe panduriformis Gamble Phoebe elliptica Blume Phoebe grandis (Nees.) Merrill Phoebe sp. Barringtonia macrostachya Kurz Barringtonia sp. Afzelia rhamboidea F. Villar Aganope sp. Archidendron ellipticum (Bl.) Nielsen Archidendron microcarpum (Bentham) I. Nielsen Archidendron sp. Archidendron sp. 1 Cynometra ramiflora Miq. Cynometra sp. 1 Dialium indum Linn Dialium kunstleri Prain Dialium maingayi Dialium modestum (v. Steenis) Steyaert. Dialium patens Baker Dialium platysepalum Baker Dialium sp. Fabaceae Fordia splendidissima (Blume ex Miq.) J. R. M. Buijsen Koompassia excelsa Taub. Koompassia malaccensis Maing. Parkia speciosa Hassk. 1 3 1 3 4 4 4 1 1 1 1 1 1 10 1 6 1 1 2 1 5 2 2 2 1 1 3 8 4 8 5 39 4 7 7 4 5 8 7 1 1 5 2 2 6 10 2 10 1 192 8 8 8 1 1 1 1 4 1 3 1 3 1 3 4 11 4 4 1 1 1 1 17 1 2 2 2 1 4 1 17 8 23 39 8 3 6 21 3 1 7 5 26 11 Linaceae Loganiaceae Magnoliaceae Melastomataceae Meliaceae Parkia timoriana Merrill Saraca declinata Miq. Saraca sp. Sindora leiocarpa Baker ex K.Heyne Sindora wallichii Benth. Ctenolophon parvifolius Oliver Fagraea sp. Elmerillia tsiampacca (L.) Dandy Magnolia candollii (Blume) H. P. Nooteboom Magnolia gigantifolia (Miq.) H. P. Nooteboom Magnolia lasia H. P. Noot.eboom Magnolia sp. Memecylon myrsinoides Blume Memecylon borneense Merrill Memecylon costatum Miq. Memecylon edule Roxb. Memecylon floribundum Benth. Memecylon laurinum Blume Memecylon myrsinoides Blume Memecylon paniculatum Jack Memecylon sp. Pternandra azurea (Bl.) Burkill Pternandra caerulescens Jack pternandra galeata Ridley Pternandra rostrata (Cogn.) M. P. Nayar Pternandra sp. Aglaia argentea Blume Aglaia crassinervia Kurz ex Hiern Aglaia gigantea Pellegrin Aglaia leptantha Miq. Aglaia leucophylla King Aglaia macrocarpa (Miq.) C.M. Pannell Aglaia oligophylla Miq. Aglaia rubiginosa (Hiern.) C. M. Pannell Aglaia silvestris Merrill 3 2 9 1 1 7 1 8 1 1 6 4 3 1 6 1 1 3 2 2 2 2 1 7 1 1 3 3 2 6 1 1 8 2 2 1 3 4 5 2 5 3 21 1 3 17 1 1 1 1 1 1 2 1 1 193 1 3 1 2 1 1 6 2 17 5 8 1 1 5 15 13 1 1 1 5 18 1 4 5 2 7 1 9 3 39 1 1 3 1 2 2 1 2 3 1 Moraceae 3 7 Aglaia simplicifolia Harms. Aglaia sp. Aglaia sp. 3 Aglaia sp. 6 Aglaia sp. 7 Aglaia sp. 8 Aglaia sp.1 Aglaia sp.2 Aglaia sp.4 Aglaia sp.5 Aglaia spectabilis (Miq.) S. S. Jain & S. S. R. Bennet Aglaia tomentosa Teijsm. & Binn. Chisocheton ceramicus Miq. Chisocheton macrophyllus King Chisocheton patens Blume Chisocheton pentandrus Merrill Chisocheton sp. Dysoxylum alliaceum Blume Dysoxylum sp. Dysoxylum sp.1 Dysoxylum sp.2 Reinwardtiodendron humile (Hassk.) D. J. Mabberley Sandoricum emarginatum Hiern Sandoricum koetjape Merrill Sandoricum sp. Walsura pinnata Hassk Walsura sp. Walsura sp.1 Artocarpus anisophylla Miq. Artocarpus dadah Miq. Artocarpus elasticus Reinw Artocarpus integer Merrill Artocarpus kemando Miq. Artocarpus lanceifolia Roxb. Artocarpus nitida Trec. 4 10 4 1 1 2 1 2 3 3 2 2 2 3 1 3 2 6 6 6 3 1 1 1 4 1 4 1 3 1 3 1 3 1 1 1 1 1 1 1 4 1 1 1 1 2 3 4 7 36 1 45 1 5 2 1 1 29 4 194 4 7 6 3 27 10 4 1 1 3 1 2 3 1 9 1 3 8 2 10 1 7 3 3 2 1 1 1 5 2 1 5 3 12 8 8 116 6 Myristicaceae Artocarpus nitida Trec. ssp. borneense Artocarpus nitida Trec. ssp. griffithii Artocarpus odoratissima Blanco Artocarpus sp. Artocarpus sp.1 Artocarpus sp.2 Artocarpus tamaran Becc. Ficus aurata Miq. Ficus grossularioides Burm. f. Ficus obscura Blume Ficus sp. Ficus sp.1 Ficus uncinulata Corner Ficus vasculosa Wall. Parartocarpus bracteatus Becc. Parartocarpus venenosa Becc. Prainea limpato (Miq.) Beumee ex Heyne Streblus macrophyllus Blume Streblus sp. 1 Streblus sp. 2 Gymnacranthera contractaWarb. Gymnacranthera eugeniifolia (A. DC.) J. Sincl. var. griffithii Gymnacranthera farquhariana Warb. Gymnacranthera forbesii Warb. Gymnacranthera ocellata R. T. A.Schouten Gymnacranthera sp. Horsfieldia crassifolia Warb. Horsfieldia glabra Warb. Horsfieldia grandis Warb. Horsfieldia sp. Horsfieldia sp. 1 Horsfieldia subglobosa Warb. Horsfieldia wallichii Warb. Knema cf. latericia Knema cinerea (Poir) Warb. var. cordata 3 3 1 2 1 4 1 2 6 2 1 2 3 2 2 3 1 1 3 1 2 1 1 2 2 1 6 5 8 2 4 1 2 9 195 6 3 1 2 1 1 5 1 1 8 2 7 13 3 2 1 2 5 3 1 1 1 4 2 1 3 2 5 7 2 1 6 1 2 9 5 3 1 1 2 8 7 1 8 2 7 8 20 3 2 1 13 3 9 5 1 1 8 1 9 Myrsinaceae 4 40 Knema cinerea (Poir) Warb. var. sumatrana Knema cinerea (Poir.) Warb. Knema conferta Warb. Knema elliptica Warb. Knema elmeri Merrill Knema furfuracea Warb. Knema galeata J. Sincl. Knema glauca Warb. Knema hirtela W. J. J. O. de Wilde Knema korthalsii Warb. Knema kurtisii Warb. var. arenosa Knema latericia Elmer Knema latifolia Warb. Knema laurina Warb. Knema lunduensis (Sinclair) W. J. J. O. de Wilde Knema membranifolia H. Winkler Knema palens W. J. J. O. de Wilde Knema percoriacea J. Sincl. Knema pulchra Warb. Knema sp. Knema sp.1 Knema woodii J. Sincl. Myristica beccarii Warb. Myristica crassa King Myristica crassifolia Hook. f. & Thoms. Myristica depressa W. J. J. O. de Wilde Myristica iners Blume Myristica maxima Warb. Myristica sp. Myristica sp.1 Myristica villosa Warb. Myristica wallichii Hook. f. et Thoms. Ardisia fulginosa Blume Ardisia gambleana Furtado Ardisia macrophylla Wall. 14 38 1 1 5 1 6 1 10 5 7 8 7 2 3 4 3 7 8 7 10 4 19 7 1 1 1 13 4 2 3 14 11 3 7 2 4 10 5 10 7 10 1 26 5 1 8 1 2 17 9 1 4 11 1 196 1 11 7 1 2 9 2 4 78 1 1 15 19 4 12 3 8 4 44 5 24 1 1 21 8 17 23 8 10 16 3 1 1 63 14 11 1 14 1 2 11 1 Myrtaceae 1 Ardisia teysmanianna Scheff. Eugenia heteroclada Merrill Rhodamnia cinerea Jack. Syzygium acutangulum Niedenzu Syzygium bankense (Hassk.) Merrill & Perry Syzygium baramense (Merrill) Merrill & Perry Syzygium caudatilimbum (Merrill) Merrill & Perry Syzygium chloranthum (Duthie) Merrill & Perry Syzygium confertum (Korth.) Merrill & Perry Syzygium exacavatum Wall. Syzygium fastigiatum (Blume) Merrill & Perry Syzygium grande Wall.. Syzygium incarnata (Elmer) Merill & Perry Syzygium leptostemon (Korth.) Merrill & Perry Syzygium napiforme (Koord. & Valeton) Merrill & Perry Syzygium nigricans (King) Merrill & Perry Syzygium ochneocarpum (Merrill) Merrill & Perry Syzygium perpuncticulatum (Merrill) Merrill & Perry Syzygium picnanthum Merrill & Perry Syzygium prasiniflorum (Ridley) Merrill & Perry Syzygium sp. Syzygium sp.1 Syzygium sp.10 Syzygium sp.2 Syzygium sp.3 Syzygium sp.4 Syzygium sp.5 Syzygium sp.6 Syzygium sp.7 Syzygium sp.8 Syzygium sp.9 Syzygium stictophyllum Merrill & Perry Syzygium subcrenatum Merrill & Perry Syzygium tawahense (Korth.) Merrill & Perry Syzygium zeylanicum DC. 1 3 1 2 4 3 8 4 7 1 2 2 13 5 1 3 5 1 1 15 1 7 9 3 2 36 10 5 24 2 7 197 6 2 8 8 6 17 1 3 1 2 2 2 1 1 7 1 1 1 1 6 2 2 1 1 5 1 4 1 2 4 3 10 17 12 1 1 5 5 1 1 6 25 9 7 2 58 31 1 7 4 7 4 2 2 1 1 26 1 8 7 Ochnaceae Olacaceae Oleaceae Oxalidaceae Podocarpaceae Polygalaceae Tristaniopsis whiteana (Griff.) P. G. Wilson & J. T. Waterhouse Gomphia serrata (Gaertn.) Kanis Ochanostachys amentacea Mast. Scorodocarpus borneensis Becc. Strombosia ceylanica Gardn. Strombosia sp. cf. Chionanthus sp. Chionanthus curvicarpus R.Kiew Chionanthus cuspidatua Blume Chionanthus nitens Koord. & Valet. Chionanthus olingathus (Merrill) R. Kiew Chionanthus pubicalyx (Ridl.) R. Kiew Chionanthus sp. Chionanthus sp. 1 Sarcotheca diversifolia H. Hallier f. Sarcotheca sp. Podocarpus blumei Endl. Podocarpus neriifolia D. Don Xanthophyllum affine Korth. ex. Miq. Xanthophyllum amoenum Chod. Xanthophyllum cf. flavescens Roxb. Xanthophyllum cf. stapfii Chod. Xanthophyllum curtisii King Xanthophyllum ellipticum Korth. ex Miq. Xanthophyllum griffithii Hook. f. ex A. W. Benn. Xanthophyllum macrophyllum Baker Xanthophyllum obscurum A.W. Benn. Xanthophyllum parvum Chod. Xanthophyllum rufum A.W. Benn. Xanthophyllum scortechinii King Xanthophyllum sp. Xanthophyllum sp. 1 Xanthophyllum sp. 2 Xanthophyllum sp. 3 Xanthophyllum stipitatum A.W.Benn. 3 8 2 1 1 2 2 1 9 1 1 2 1 1 1 1 2 2 2 10 1 2 8 5 1 7 3 4 6 4 2 3 1 2 3 1 1 1 10 9 1 1 1 1 26 2 1 4 198 1 2 2 5 14 1 3 3 6 4 1 9 1 1 3 1 2 1 7 20 2 3 1 1 1 2 2 17 7 12 1 22 1 1 1 15 1 9 1 1 1 2 2 7 40 9 1 12 14 3 1 2 Proteaceae Rhamnaceae Rhizoporaceae Rosaceae Rubiaceae Helicia fuscotomentosa Suesseng Helicia petiolaris Benn. Helicia sp. Ziziphus angustifolius( Miq.) Hatusima ex van Steenis Ziziphus sp. Anisophyllea corneri Ding Hou Carallia brachiata Merrill Gynotroches axilaris Blume Gynotroches sp. Prunus arborea (Blume) Kalkm. Prunus beccarii (Ridley.) Kalkm. Prunus sp. Prunus sp.1 Prunus sp.2 Rosaceae Adina polycephala Benth. Anthocephalus cadamba Miq. cf. Pleiocarpidia sp. Gardenia sp. Gardenia tubifera Wall. Ixora brachyantha Merrill Ixora fluminalis Ridley Jackiopsis ornata (Wall.) C. E. Risdale Lasianthus sp. Maclurodendron porteri (Hook. f.) T. G. Hartley Nauclea sp. Neonauclea sp. Pleiocarpidia polyneura (Miq.) Bremek Pleiocarpidia sp. Porterandia anisophylla (Jack ex Roxb.) Ridley Rubiaceae Tarenna cumingiana Elmer Timonius borneensis Valet. Timonius lasianthoidesValet. Timonius sp. 7 1 2 2 2 2 1 2 3 1 2 2 2 2 2 1 1 1 1 2 1 4 1 3 1 3 6 3 4 11 3 1 2 1 3 10 3 8 6 1 1 2 3 2 2 2 2 2 1 3 2 1 5 5 1 199 1 1 9 2 4 1 2 9 3 1 4 1 5 2 4 1 3 20 1 2 7 12 13 6 1 1 7 2 2 1 5 4 1 5 5 2 Rutaceae Sabiaceae Santalaceae Sapindaceae Sapotaceae 3 3 Timonius sp. 1 Tricalysia malaccensis Merrill Urophyllum corymbosum Korth. Tetractomia sp. Tetractomia sp. 1 Meliosma nitida Bl. Meliosma sp. Scleropyrum wallichianum A. Arn. Dimocarpus dentatus W. Meijer ex Leenhouts Lepisanthes alata (Blume) Leenh. Nephelium cuspidatum Blume Nephelium juglandifolium Blume Nephelium maingayi Hiern Nephelium mutabile Blume Nephelium ramboutan-ake (Labill.) P.W. Leenhouts Nephelium sp. Nephelium uncinatum Radlk. Paranephelium nitidum King Pometia alnifolia Radlk. Pometia pinnata G.Forst. Xerospermum laevigatum Radlk. Xerospermum noronhianum Blume Chrysophyllum roxburghii G. Don Chrysophyllum sp. Madhuca borneensis van. Royen Madhuca cf. prolixa (Pierre ex Dubard) P.C.Yii & P. Chai Madhuca erythrophylla H. J. Lam Madhuca magnifica S. Moore Madhuca malaccensis H. J. Lam Madhuca mindanaensis Merrill Madhuca sericea H. J. Lam Madhuca sp. Madhuca sp.1 Palaquium beccarianum (Pierre) van Royen Palaquium calophyllum Pierre ex Burck 5 2 3 1 1 2 3 6 1 2 1 2 1 1 2 3 13 7 1 1 13 1 1 1 1 1 5 1 1 1 12 5 7 1 2 1 1 1 10 14 1 24 3 4 3 1 1 11 6 14 4 3 200 3 3 8 2 3 1 1 2 3 21 1 7 1 2 7 2 3 26 6 1 13 1 3 1 1 11 14 1 24 3 15 6 18 1 4 6 Simaroubaceae Sonneratiaceae Staphyliaceae Sterculiaceae Styracaceae Palaquium cochleariifolium van Royen Palaquium dasyphyllum Pierre ex Dubard. Palaquium ferox H. J. Lam Palaquium gutta Burck Palaquium quercifolium Burck Palaquium rostratum Burck Palaquium sericeum H. J. Lam Palaquium sp. Palaquium sp.1 Palaquium stenophyllum H. J. Lam Palaquium sumatranum Burck Payena lerii Kurz Payena lucida A. DC. Payena sp. Pouteria malaccensis (C. B. Clarke) Baehni Allantospermum borneense Forman Irvingia malayana Oliver Duabanga moluccana Blume Turpinia sphaerocarpa Hassk. Heritiera elata Ridley Heritiera javanica (Blume) Kosterm. Heritiera simplicifolia (Mast.) Kosterm. Heritiera sp. Heritiera sumatrana (Miq.) Kosterm. Pterospermum javanicum Jungh. Scaphium borneense (Merrill) Kostermans Scaphium macropodum Beume ex K. Heyne Sterculia coccinea Jack Sterculia foeltida Linn. Sterculia macrophyllla Vent. Sterculia oblongata R. Br. Sterculia rubiginosa Vent. Sterculia sp. Sterculia sp.1 Bruinsmia styracoides Boerlage & Koorders 6 2 15 10 2 1 4 5 1 7 10 1 1 15 1 4 1 24 9 1 3 27 1 2 1 1 2 4 1 6 1 2 2 2 2 1 1 1 1 6 21 2 2 1 8 1 5 1 3 11 2 9 4 3 12 12 2 3 1 2 1 201 2 1 13 1 5 2 1 10 5 3 23 30 16 6 4 52 1 2 2 3 3 2 8 2 1 10 1 9 1 14 5 3 53 2 12 2 3 3 8 16 1 Symplocaceae Theaceae Thymelaeaceae Tiliaceae 5 Symplocos cerasifolia Wall. Symplocos cochinchinensis S. Moore Symplocos crassipes C. B.Clarke Symplocos fasciculata Roxb. ex A. DC. Symplocos rubiginosa Wall ex A. DC. Symplocos sp. Symplocos sp. 1 Adinandra borneensis Kobuski Adinandra subsessilis Airy Shaw Ternstroemia aneura Miq. Ternstroemia sp. 1 Tetramerista glabra Miq. Aquilaria beccariana van Tiegh. Aquilaria malaccensis Lam. Gonystylus affinis Radlk. Gonystylus forbesii Gilg. Gonystylus keithii Airy Shaw Gonystylus sp Gonystylus sp 1 Brownlowia peltata Benth. cf. Microcos sp. Grewia fibrocarpa Mast. Grewia sp. Grewia tomentosa Juss. Microcos cinnamomifolia (Burret) Stapf ex P.S.Ashton Microcos crassifolia Burret Microcos paniculata Burret Microcos tomentosa Sm. Pentace borneensis Pierre Pentace erectinervia Kosterm. Pentace laxiflora Merrill Pentace sp. Pentace sp. 1 Pentace sp. 2 Pentace sp. 3 2 1 1 1 1 1 1 1 3 12 1 7 2 14 1 1 1 5 6 2 1 1 3 6 1 1 1 1 2 1 3 1 1 1 2 2 1 5 1 1 1 1 1 3 15 4 3 1 4 1 7 3 14 13 1 202 5 2 2 2 1 3 3 13 11 7 2 14 3 6 7 1 1 3 1 8 1 2 1 1 6 1 1 7 19 1 11 3 14 13 1 Ulmaceae Urticaceae Verbenaceae #N/A Pentace sp. 4 Pentace triptera Mast. Gironniera nervosa Planch. Gironniera subaequalis Planch. Laportea oblanceolata Merrill Geunsia pentandra Merrill Teijsmanniodendron coriaceum (C.B. Clarke) Kosterm Teijsmanniodendron scaberrimum Kosterm. Teijsmanniodendron simplicifolium Merrill. Teijsmanniodendron simplicioides Kosterm. Teijsmanniodendron sp. Teijsmanniodendron sp.1 Unident 1 Unident 4 Unident.2 Unident.3 Unident.5 Number of trees/4 Ha Number of species/4 Ha #N/A 6 2 6 6 1 13 1 8 1 5 16 5 12 4 2 1 1 6 19 5 1 1 4 6 29 1 7 12 2 6 1 #REF! #REF! Dead trees 203 #REF! #REF! 1 7 34 8 9 14 6 6 30 16 6 26 5 13 2 6 1 #REF! 0 0 0 0 0 110 132 104 152 498 Appendix 2. Tree species composition in 1ha plot of primary and logged lowland forests in the Bulungan Research ForestCIFOR, East Kalimantan. Family Alangiaceae Anacardiaceae Species Name Alangium javanicum (Blume) Wangerin Alangium longiflorum Merrill Alangium ridleyi King Buchanania arborescens F. Muell. Buchanania sessifolia Blume Campnosperma auriculata Hook. f. Dracontomelon dao Merrill & Rolfe Drimycarpus luridus (Hook.f.) Ding Hou Drimycarpus sp. Gluta macrocarpa (Engl.) Ding Hou Gluta wallichii (Hook. f.) Ding Hou Koordersiodendron pinnatum Merrill Mangifera foetida Lour. Mangifera macrocarpa Blume Mangifera magnifica K. M. Kochummen Mangifera pajang Kosterm. Mangifera sp. 1 Mangifera sp. 2 Mangifera swintoniodes Kosterm Mangifera torquenda A. J. G. H. Kosterm PF 1 5 2 3 5 LF5 4 1 1 2 3 LF10 4 1 1 1 Total LF-30 2 3 4 4 1 1 1 2 1 1 1 4 2 2 1 9 1 18 2 4 5 12 6 2 1 1 2 4 1 4 1 2 3 2 1 1 1 15 204 1 26 1 17 6 7 15 3 2 1 18 1 2 4 3 1 11 4 4 1 4 1 3 2 1 1 3 3 1 1 2 1 1 1 24 1 3 3 14 4 5 5 1 6 84 11 2 1 1 1 1 1 99 8 Annonaceae Melanochyla auriculata Hook. f. Melanochyla beccariana Oliver Melanochyla bullata Ding Hou Melanochyla caesia (BL.) Ding Hou Melanochyla elmeri Merrill Melanochyla fulvinervia (Blume) Ding Hou Melanochyla sp. Melanochyla sp.1 Melanochyla sp.2 Melanochyla sp.3 Melanochyla sp.4 Parishia insignis Hook.f. Semecarpus burburyanus Gibbs Semecarpus sp. Swintonia glauca Engl. Anaxagorea ramiflora Boerl. cf. Mitrephora sp. cf. Orophea sp. cf. Phaeanthus sp. Cyathocalyx bancanus Boerl. Cyathocalyx carinatus (Ridley) J.Sincl. Cyathocalyx magnifica Diels Cyathocalyx sp. Cyathocalyx sumatrana Scheff. Enicosanthum paradoxum Becc. Enicosanthum sp. Goniothalamus sp. Mezzettia parviflora Becc. Mitrephora maingayi Hook. f. & Thoms. Monocarpia kalimantanensis P. J. A. Kessler Polyalthia cauliflora Hook.f. & Thoms. Polyalthia glauca Boerl. Polyalthia lateriflora King Polyalthia microtus Miq. Polyalthia rumphii Merrill 1 1 1 2 1 3 2 3 1 1 1 1 2 1 2 2 1 3 1 1 1 1 5 2 8 8 2 1 1 2 10 1 2 1 1 1 1 2 1 3 3 1 1 1 1 1 1 3 1 1 1 2 1 1 1 3 1 2 2 4 3 9 5 3 2 205 1 6 1 1 1 2 2 3 1 2 4 2 2 1 2 1 2 2 3 6 1 8 3 3 1 6 1 1 2 16 2 2 2 10 4 2 1 1 8 2 1 1 13 2 5 26 1 12 2 17 Apocynaceae Aquifoliaceae Bombacaceae Polyalthia sp. Polyalthia sp.1 Polyalthia sp.2 Polyalthia sp.3 Polyalthia sp.4 Polyalthia sp.5 Polyalthia sp.6 Polyalthia subcordata Blume Polyalthia sumatrana (Miq.) Kurz Popowia hirta Miq. Pseuduvaria cf. rugosa Merrill Pseuduvaria reticulata Miq. Sageraea elliptica Hook. f. & Thoms. Sageraea lanceolata Miq. Xylopia caudata Hook. f. & Thoms. Xylopia elliptica Maing. ex Hook. f. Xylopia ferruginea Baill. Xylopia malayana Hook.f. & Thoms. Xylopia sp. Alstonia iwahigensis Elmer Alstonia sp. Alstonia spathulata Blume Apocynaceae Dyera costulata Hook. f. Kibatalia arborea G. Don Kibatalia flavida Blume Kibatalia maingayi (Hook. f.) R. E. Woodson Kibatalia villosa Rudjiman Tabernaemontana macrocarpa Korth. ex Blume Ilex cymosa Blume Ilex sp. 1 Ilex sp. 2 Coelostegia chartacea Soeg. Reksod. Coelostegia sp. Coelostegia sp. 1 1 2 2 1 2 1 1 2 1 4 1 2 1 1 2 1 3 3 1 8 2 1 6 1 1 6 5 4 1 1 2 1 2 1 1 2 3 1 3 6 1 1 2 1 1 2 5 1 1 1 4 2 1 1 3 1 1 1 1 1 2 1 4 1 1 2 1 1 1 2 2 2 1 1 1 1 1 1 2 2 1 2 1 1 3 206 11 6 1 2 1 1 2 1 41 2 2 1 1 14 12 4 3 12 4 1 3 1 1 10 1 2 2 2 1 2 1 2 4 3 3 Burseraceae Durio acutifolius (Mast.) Kosterm. Durio dulcis Becc. Durio grandiflorus (Mast.) Kosterm. & Soeg. Durio graveolens Becc. Durio griffithii Bakh. Durio kutejensis Becc. Durio lanceolatus Mast. Durio oxleyanus Griff. Durio sp. 1 Durio sp.2 Durio testudinarius Becc. Neesia synandra Mast. Canarium denticulatum Blume Canarium hirsutum Willd. Canarium littorale Blume Canarium megalanthum Merrill Canarium odontophyllum Miq. Canarium pillosum A. W. Benn. Canarium sp. Canarium sp. 2 Canarium sp.1 Dacryodes costata (A. W. Benn.) H. J. Lam Dacryodes crassipes Kalkman Dacryodes incurvata (Engl.) H. J. Lam Dacryodes laxa (A. W. Benn.) H. J. Lam Dacryodes rostrata (Blume) H. J. Lam forma pubescens Dacryodes rubiginosa (A. W. Benn.) H. J. Lam Dacryodes rugosa (Blume) H.J. Lam Dacryodes sp. Santiria apiculata A.W.Benn. Santiria griffithii Engl. Santiria laevigata Blume Santiria oblongifolia Blume Santiria rubiginosa Blume 3 2 2 1 1 2 2 1 1 1 2 1 1 2 1 1 1 1 1 3 2 1 3 1 2 1 3 1 1 1 1 7 1 1 1 1 2 1 1 1 1 2 2 1 8 4 2 2 2 6 4 1 1 1 3 3 1 1 1 2 3 2 3 4 1 3 2 1 3 2 1 3 5 1 4 10 6 3 9 2 1 3 1 4 8 1 6 4 3 8 2 1 1 2 1 1 1 21 1 4 1 7 4 2 1 1 1 1 10 1 7 4 1 2 2 4 9 1 1 1 6 2 2 1 4 4 4 4 1 5 3 5 1 5 4 2 1 1 3 1 1 1 207 1 2 5 4 7 4 6 4 14 2 1 8 2 11 1 8 22 1 11 13 6 3 4 11 2 60 4 73 1 67 2 5 5 4 5 2 Caesalpiniaceae Caprifoliaceae Celastraceae Chrysobalanaceae Combretaceae Cornaceae Crypteromiaceae Dilleniaceae Dipterocarpaceae Santiria sp. Santiria sp.1 Santiria tomentosa Blume Triomma malaccensis Hook. f. Crudia teniupes Merrill Viburnum sp. Bhesa paniculata Arn. Celastraceae Kokoona littoralis M. A. Laws. Kokoona reflexta (M. A. Lawson) Ding Hou Lophopetalum beccarianum Pierre Lophopetalum cf. glabrum Ding Hou Lophopetalum javanicum Turcz. Lophopetalum sp. Lophopetalum subobovatum King Atuna excelsa (Jack) Kosterm. Atuna racemosa Rafin. Atuna sp. Licania splendens (Korthals) Prance Parinari racemosum Merrill Terminalia foetidissima Griff. Terminalia sp. 1 Terminalia subspathulata King Ellipanthus tomentosus Kurz Mastixia bracteata C. B. Clarke Mastixia rostrata Blume Mastixia sp. Mastixia trichotoma Blume Crypteronia macrophylla van Beusekom-Osinga Dillenia excelsa Martelli Dillenia eximia Miq. Dillenia grandifolia Wall. Dillenia pentagyna Roxb. Dillenia reticulata King Anisoptera costata Korth. 1 1 1 1 1 2 1 3 1 3 1 1 1 1 1 2 2 1 2 1 1 1 1 1 2 1 3 8 3 1 4 3 1 4 4 1 1 1 3 3 5 2 1 1 1 1 1 1 1 1 1 2 2 6 1 1 1 1 7 2 1 1 1 2 1 1 2 1 2 16 1 4 1 1 1 2 3 1 1 208 1 1 1 7 3 4 10 2 1 3 7 1 1 4 4 6 5 10 9 12 2 1 2 1 1 1 1 10 1 1 4 4 1 43 2 1 4 1 4 cf. Hopea sp. Dipterocarpus cornutus Dyer Dipterocarpus crinitus Dyer Dipterocarpus elongatus Korth. Dipterocarpus eurynchus Miq. Dipterocarpus gracilis Blume Dipterocarpus humeratus van Slooten Dipterocarpus lowii Hook. f. Dipterocarpus pachyphyllus Meyer Dipterocarpus sp. Dipterocarpus sp. 2 Dipterocarpus sp.1 Dipterocarpus stellatus Vesque Dipterocarpus tempehes van Slooten Dipterocarpus verrucosus Foxworthy ex. v. Slooten Dryobalanops lanceolata Burck Hopea cernua Teijsm. & Binn. Hopea cf. obovoidea Sloot. Hopea dryobalanoides Miq. Hopea ferruginea Parijs Hopea mengerawan Miq. Hopea semicuneata Symington Hopea sp. Hopea sp. 1 Parashorea lucida Kurz Parashorea malaanonan Merrill Parashorea parvifolia Wyatt-Smith ex P. S. Ashton Parashorea sp. 1 Parashorea tomentella (Symington) Meijer Shorea agamii P. S. Ashton Shorea angustifolia P. S. Ashton Shorea atrinervosa Symington Shorea beccarii Dyer ex Brandis Shorea brunnescens P. S. Ashton Shorea cf. almon Foxworthy 4 3 1 3 1 8 1 2 4 10 1 11 1 1 3 11 4 1 1 1 15 2 9 1 3 2 8 9 2 4 2 2 2 4 1 20 5 17 21 1 1 10 2 1 1 3 4 9 1 1 5 2 1 2 23 12 1 11 34 27 6 31 5 1 16 1 22 34 1 9 8 1 1 2 3 1 15 2 5 1 5 11 9 18 1 14 2 4 3 1 2 29 4 7 1 3 2 5 3 16 1 41 1 7 2 1 2 7 8 2 45 6 2 1 1 3 2 12 3 1 209 8 31 2 4 5 23 8 1 15 4 38 11 17 14 17 8 4 21 35 1 2 47 2 1 93 130 8 10 2 2 4 111 16 1 5 36 102 17 83 12 1 Shorea cf. atrinervosa Symington Shorea cf. maxwelliana King Shorea cf. obovoidea van Slooten Shorea cf. ovalis Blume Shorea elliptica Meijer Shorea faguetiana Heim Shorea fallax Meijer Shorea hopeifolia (Heim) Symington Shorea inappendiculata Burck Shorea johorensis Foxworthy Shorea laevifolia(Parijs) Endert Shorea lamellata Foxworthy Shorea leprosula Miq. Shorea macrophylla (de Vriese) P. S. Ashton Shorea macroptera Dyer Shorea malaononan Blume Shorea maxwelliana King Shorea multiflora (Burck) Symington Shorea ochracea Symington Shorea ovalis Blume Shorea parvifolia Dyer Shorea parvistipulata Heim Shorea patoienis P. S. Ashton Shorea pauciflora King Shorea pinanga Scheff. Shorea seminis v. Slooten Shorea smithiana Symington Shorea sp. Shorea sp. 4 Shorea sp. 5 Shorea sp. 6 Shorea sp.1 Shorea sp.2 Shorea sp.3 Shorea venulosa G. H. S. Wood ex Meijer 25 1 5 3 1 1 4 3 1 1 6 10 6 1 2 2 2 1 1 4 5 3 1 17 4 1 1 1 18 1 5 3 15 4 1 12 1 19 4 7 26 3 6 2 3 23 3 2 2 10 15 1 3 6 3 3 2 1 2 3 1 2 1 1 8 1 2 4 6 2 1 3 7 1 7 3 1 10 8 2 2 10 1 1 3 2 14 3 5 2 3 11 7 1 1 14 2 1 1 4 13 3 10 6 49 5 1 3 2 16 4 26 6 32 1 3 4 3 7 2 10 5 25 8 1 3 4 4 12 5 1 2 1 20 2 1 2 3 2 5 2 7 5 1 3 1 5 7 210 1 2 1 5 1 1 4 6 7 9 7 36 2 6 10 11 20 6 57 1 3 28 1 77 2 12 14 3 46 265 26 2 35 88 3 2 30 2 7 1 10 20 6 4 Ebenaceae Shorea xanthophylla Symington Vatica albiramis v. Slooten Vatica granulata v. Slooten Vatica micrantha v. Slooten Vatica nitens King Vatica oblongifolia Hook.f. Vatica pauciflora Blume Vatica rassak Blume Vatica sarawakensis Heim Vatica sp. Vatica sp. 1 Vatica umbonata Burck Vatica vinosa P.S. Ashton Diospyros cf. oblonga Wall. Diospyros borneensis Hiern Diospyros buxifolia Hiern Diospyros cf. korthalsiana Hiern Diospyros cf. pendula Hasselt ex Hassk. Diospyros cf. perfida Bakh. Diospyros cf. sumatrana Miq. Diospyros curraniopsis Bakh. Diospyros diepenhorstii Miq. Diospyros elliptifolia Merrill Diospyros evena Bakh. Diospyros foxworthyii Bakh. Diospyros frutescens Blume Diospyros hallierii Bakh. Diospyros lanceaefolia Roxb. Diospyros levigata Diospyros macrophylla Blume Diospyros malayana Bakh. Diospyros oblonga Wall. Diospyros pendula Hasselt ex Hassk. Diospyros pilosanthera Blanco Diospyros polyalthioides Hiern 3 8 29 7 17 1 18 1 1 3 7 1 3 5 1 4 1 1 1 1 30 1 5 1 1 2 2 3 1 9 5 1 2 1 1 10 1 1 2 11 21 2 1 2 10 18 6 4 2 19 6 3 1 1 1 2 25 2 2 1 3 2 3 8 2 4 2 1 1 2 2 1 5 4 1 6 3 1 1 7 1 2 2 2 1 6 2 1 2 2 2 7 2 3 3 2 4 4 10 2 1 1 211 1 5 38 18 45 30 1 17 1 3 5 6 49 51 30 2 14 29 1 8 2 4 6 2 1 5 19 23 1 2 2 2 5 23 10 3 1 Elaeocarpaceae Euphorbiaceae Diospyros sp. Diospyros sp.1 Diospyros sp.2 Diospyros sp.3 Diospyros sp.4 Diospyros sp.5 Diospyros sp.7 Diospyros sp.8 Diospyros sumatrana Miq. Diospyros toposoides King ex Gamble Diospyros wallichii King ex Gamble Elaeocarpus cupreus Merrill Elaeocarpus parvifolius Wall. Elaeocarpus pedunculatus Wall. Elaeocarpus sp. Elaeocarpus sp.1 Elaeocarpus sp.2 Sloanea javanica (Miq.) Koord. & Valeton Antidesma leucopodum Miq. Antidesma neurocarpum Miq. Antidesma sp. Antidesma sp. 1 Antidesma trunciflorum Merrill Aporosa benthamiana Hook. f. Aporosa confusa Gage Aporosa falcifera Hook. f. Aporosa grandistipula Merrill Aporosa lucida (Miq.) Airy Shaw Aporosa lunatum Kurz Aporosa nitida Merrill Aporosa prainianaKing ex Gage Aporosa sp. Aporosa subcaudata Merrill Baccaurea angulata Merrill Baccaurea bracteata Muell. Arg. 2 3 1 4 8 2 1 6 11 2 4 3 6 2 1 5 1 1 1 1 3 7 2 1 19 6 4 1 7 1 2 3 1 4 1 3 1 1 3 3 4 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 3 2 1 1 1 4 3 1 1 1 4 2 1 2 1 3 2 3 1 1 3 1 1 1 2 2 1 1 1 2 1 1 1 212 2 4 1 1 1 2 1 4 1 1 1 1 1 1 1 1 1 1 2 1 2 3 1 49 24 1 2 2 4 1 4 53 2 1 1 1 1 3 1 1 6 5 2 2 1 8 2 4 18 5 2 1 11 2 7 18 4 1 Baccaurea edulis Merrill Baccaurea javanica Muell. Arg. Baccaurea kunstleri King ex Gage Baccaurea macrocarpa Muell. Arg. Baccaurea minor Hook. f. Baccaurea odoratissima Elmer Baccaurea pubera Muell. Arg. Baccaurea pyriformis Gage Baccaurea sp. Baccaurea sp.1 Baccaurea stipulata J. J. Smith Baccaurea sumatrana Muell. Arg. Baccaurea tetandra Muell. Arg. Baccaurea truncifllora Merrill Blumeodendron calophyllum AiryShaw Blumeodendron cf. tokbrai Kurz Blumeodendron elateriospermum J. J. Smith Bridelia glauca Blume Castanocarpus sp. Cephalomappa beccariana Baill. Cephalomappa lepidotula Airy Shaw Cephalomappa malloticarpa J. J. Smith Chaethocarpus castanocarpus Thw. Cleistanthus bakonensis Airy Shaw Cleistanthus beccarianus Jablonszky Cleistanthus myrianthus (Hassk.) Kurz Cleistanthus sp. Cleistanthus sumatranus Muell. Arg. Coccoceras borneense J. J. Smith. Croton argyratus Blume Drypetes crassipes Pax & K. Hoffm. Drypetes kikir Airy Shaw Drypetes laevis Pax et Hoffm. Drypetes longifolia Pax & K. Hoffm. Drypetes oblongifolia (Bedd.) Airy Shaw 3 5 1 1 1 2 1 7 2 2 1 4 2 1 1 1 1 1 1 1 2 5 2 2 1 1 1 5 1 1 1 3 22 2 1 1 13 1 2 1 6 1 2 2 4 3 1 2 1 1 1 3 1 2 1 1 5 3 3 1 1 1 3 2 2 1 1 1 2 1 1 1 1 1 11 2 1 2 2 5 1 7 8 2 1 2 3 3 7 1 3 1 2 4 1 1 2 2 1 3 1 1 1 1 1 21 1 16 2 1 1 1 1 8 4 4 1 1 213 2 1 1 2 1 5 14 20 9 5 12 16 2 4 12 29 6 8 22 4 1 5 11 2 1 1 16 7 9 19 15 6 8 2 1 22 16 16 14 13 2 5 Drypetes polyneura Airy Shaw Drypetes sp. Elateriospermum tapos Blume Glochidion arborescens Blume Glochidion bakonensis Glochidion borneensis Boerl. Glochidion celastroides Pax Glochidion cf. arborescens Blume Glochidion obscurum Blume Glochidion rubrum Blume Glochidion sericeum Zoll. & Mor. Glochidion sp. Koilodepas brevipes Merr. Koilodepas laevigatus Airy Shaw Macaranga aetheadenia Airy Shaw Macaranga bancana Muell. Arg. Macaranga beccariana Merrill Macaranga cf. hullettii King ex Hook.f. Macaranga cf. indistincta T. C. Whitmore Macaranga conifera (Zoll.) Muell. Arg. Macaranga gigantea Muell. Arg. Macaranga grandibracteolata Stuart J.Davies Macaranga hosei King ex Hook.f. Macaranga hypoleuca Muell. Arg. Macaranga lamellata T. C. Whitemore Macaranga lowii King ex Hook.f. Macaranga motleyana Muell. Arg. Macaranga pearsonii Merrill Macaranga pruinosa Muell. Arg. Macaranga repando-dentata Airy Shaw Macaranga sp. Macaranga winkleri Pax & K. Hoffm. Mallotus eucaustus Airy Shaw Mallotus griffthianus Hook. f. Mallotus korthalsii Muell. Arg. 4 1 1 4 2 3 2 1 23 26 13 6 1 1 10 2 1 2 1 1 1 1 1 1 3 1 1 1 1 5 3 2 3 4 47 1 1 7 1 1 1 15 1 43 4 2 2 1 14 68 2 1 1 1 214 7 6 1 6 1 30 5 7 3 1 21 20 35 3 51 2 2 1 1 6 3 11 1 1 1 2 27 1 85 65 1 38 7 6 5 3 1 1 1 1 1 3 4 35 1 7 14 3 36 7 1 6 2 30 44 4 9 1 4 7 1 1 49 2 2 2 4 7 16 4 9 15 4 85 1 2 2 3 1 6 5 2 3 4 47 3 105 19 6 7 52 69 3 31 226 2 52 9 229 15 12 1 14 93 4 1 Mallotus macrostachyus Muell. Arg. Mallotus moritzianus Muell. Arg. Mallotus muticus (Muell. Arg.) Airy Shaw Mallotus peltatus Muell. Arg. Mallotus penangensis Muell. Arg. Mallotus sp. Mallotus subcaudatus Mallotus wrayi King ex Hook. f. Neoscortechinia kingii Pax & K. Hoffm. Neoscortechinia philippinensis (Merr.) P. C. Welzen Paracroton pendulus Miq. Phyllanthus emblica Linn. Pimelodendron griffithianum (Muell. Arg.) Hook. f. Pimelodendron papaveroides J. J. Smith Ptychopxis sp. 1 Ptychopyxis arborea(Merrill) Airy Shaw Ptychopyxis bacciformis Croizat Ptychopyxis sp. Trigonopleura malayana Hook. f. Trigonostemon sp. Trigonostemon sp. 1 Fagaceae Castanopsis fulva Gamble Castanopsis megacarpa Gamble Castanopsis motleyana King Castanopsis sp. Castanopsis sp. 1 Castanopsis sp. 2 Lithocarpus blumeanus Rehder Lithocarpus cantleyanus Rehder Lithocarpus conocarpa Rehder Lithocarpus cooperta Rehder Lithocarpus ewyckii Rehder Lithocarpus gracilis (Korth.) Soepadmo Lithocarpus lucidus Rehder Lithocarpus nieuwenhuisii (Seem) A. Camus 1 1 1 3 1 3 2 3 6 4 1 1 1 8 3 9 11 8 8 10 7 4 9 1 5 3 3 1 2 5 1 5 1 2 2 3 1 6 3 1 1 1 7 1 2 4 1 3 1 1 2 1 1 1 8 1 1 2 1 1 1 1 4 1 1 1 5 11 7 3 1 4 5 1 1 1 2 10 2 1 1 1 1 1 1 5 1 1 1 2 1 2 1 2 1 4 1 3 1 1 1 6 1 1 4 1 1 4 215 8 1 3 2 1 1 2 4 2 1 1 2 1 1 1 1 8 13 1 89 2 1 29 4 1 30 1 39 2 2 7 10 15 2 7 2 3 1 10 4 1 1 2 7 4 1 16 14 2 4 Flacortiaceae Guttiferae Lithocarpus reflexus (King) A. Camus Lithocarpus sp. Lithocarpus sp.1 Lithocarpus sp.2 Lithocarpus sp.3 Lithocarpus sp.4 Lithocarpus sp.5 Lithocarpus urceolaris (Jack) Merrill Quercus argentata Korth. Quercus gemelliflora Blume Quercus sp. Quercus sp. 1 Flacourtia rukam Zoll. & Mor. Homalium grandiflorum Benth. Hydnocarpus borneensis Sleumer Hydnocarpus castanea Hook. f. et Thoms Hydnocarpus kuenstleri Warb. Hydnocarpus polypetalus (v.Slooten) Sleum. Hydnocarpus sp. Hydnocarpus sp. 3 Hydnocarpus sp.1 Hydnocarpus sp.2 Hydnocarpus wodii Merrill Hydnocarpus wrayi King Ryparosa baccaureoides Sleum. Ryparosa hirsuta J. J. Smith Ryparosa kostermansii Sleum. Ryparosa sp. Calophyllum cf. hosei Ridley Calophyllum cf. lowii Planch. & Triana Calophyllum pulcherrimum Wall. Calophyllum sp. Calophyllum sp. 3 Calophyllum sp. 4 Calophyllum sp.1 2 1 2 1 1 3 1 2 1 2 2 1 2 1 1 1 3 1 2 1 1 1 2 1 1 1 1 1 1 1 1 2 2 1 6 2 3 1 5 2 7 3 1 1 2 3 3 3 2 1 7 3 3 1 1 1 1 2 1 1 1 1 1 3 1 1 1 2 12 2 2 1 1 2 1 3 1 1 216 1 3 3 11 8 4 1 4 2 4 2 2 2 1 1 1 4 1 7 7 5 3 21 1 8 1 7 1 1 2 5 18 7 3 1 3 3 Hypericaceae Icacinaceae Lauraceae Calophyllum sp.2 Calophyllum venulosum Zoll. Garcinia bancana (Miq.) Miq. Garcinia celebica L. Garcinia cf. griffithii T. Anders Garcinia dioica Blume Garcinia gaudichaudii Planch. & Triana Garcinia macrophylla Miq. Garcinia nervosa Miq. Garcinia parvifolia Miq. Garcinia penangiana Pierre Garcinia rostrata Hort. ex Boerl. Garcinia sp. Garcinia sp. 5 Garcinia sp.1 Garcinia sp.2 Garcinia sp.3 Garcinia sp.4 Kayea borneensis P. F. Stevens Mesua borneensis P.F. Stevens Mesua cf. conooidea Mesua sp. Mesua sp.1 Cratoxylum arborescens Blume Cratoxylum formosum Benth. & Hook. f. ex Dyer Cratoxylum sumatranum Blume Stemonurus grandifolius Becc. Stemonurus macrophyllus Blume Stemonurus scorpioides Becc. Stemonurus scundiflorus Blume Stemonurus sp. Stemonurus umbellatus Becc. Actinodaphne glabra Blume Alseodaphne elliptica Alseodaphne elmeri Merrill 1 1 1 1 2 1 1 1 1 1 1 1 3 1 1 1 1 1 4 1 1 1 3 2 1 2 1 1 2 3 1 1 4 1 1 1 3 2 3 2 1 1 1 1 1 1 1 2 1 2 1 1 3 1 1 2 3 7 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 3 1 2 1 217 4 1 1 1 2 2 1 1 1 2 4 1 3 1 4 2 5 17 3 2 10 4 5 7 5 3 1 13 1 2 1 1 1 2 2 2 3 7 10 1 3 2 5 Alseodaphne glabra Blume Alseodaphne glomerata Nees Alseodaphne peduncularis Hook. f. Alseodaphne sp. Alseodaphne sp. 1 Alseodaphne sp.2 Alseodaphne sp.3 Alseodaphne umbelliflora Hook. f. Alseodaphne untrinerved Beilschmiedia glabra Kosterm. Beilschmiedia madang Blume Beilschmiedia sp. Beilschmiedia sp.1 cf. Alseodaphne sp. Cinnamomum inners Reinw. Ex Blume Cinnamomum javanicum Blume Cryptocarya impressa Miq. Cryptocarya crassinervia Miq. Cryptocarya ferrea Blume Cryptocarya sp. Cryptocarya sp. 4 Cryptocarya sp.1 Cryptocarya sp.2 Cryptocarya sp.3 Cryptocarya tomentosa Blume Dehaasia elliptica Ridley Dehaasia firma Blume Dehaasia incrassata (Jack.) Kosterm. Dehaasia sp.1 Dehaasia tomentosa Blume Endiandra elongata Arifiani Endiandra kingiana Gamble Endiandra rubescens Blume ex Miq. Endiandra sp. Eusideroxylon zwageri Teijsm. & Binn. 3 1 1 1 1 1 3 1 1 2 1 2 2 1 2 1 2 4 1 3 1 1 1 1 1 1 2 1 2 1 10 1 1 1 1 1 1 2 2 2 1 1 1 2 1 1 1 1 1 1 3 1 2 2 7 3 3 1 1 1 1 1 1 1 2 1 1 1 1 1 218 1 1 6 6 11 5 5 4 2 3 1 3 8 15 1 2 2 1 1 6 13 1 1 2 1 1 4 5 4 1 1 1 1 3 3 15 1 3 1 2 3 4 1 40 Lecythidaceae Leguminosae Lauraceae Litsea angulata Blume Litsea ferruginea Blume Litsea firma Hook. F. Litsea lanceifolia Hook. f. Litsea machilifolia Gamble Litsea noronhae Bl. Litsea oppositifolia L.S. Gibbs Litsea sessilis Boerl. Litsea sp. Litsea sp. 1 Neolitsea sp. Nothaphoebe panduriformis Gamble Phoebe elliptica Blume Phoebe grandis (Nees.) Merrill Phoebe sp. Barringtonia macrostachya Kurz Barringtonia sp. Afzelia rhamboidea F. Villar Aganope sp. Archidendron ellipticum (Bl.) Nielsen Archidendron microcarpum (Bentham) I. Nielsen Archidendron sp. Archidendron sp. 1 Cynometra ramiflora Miq. Cynometra sp. 1 Dialium indum Linn Dialium kunstleri Prain Dialium maingayi Dialium modestum (v. Steenis) Steyaert. Dialium patens Baker Dialium platysepalum Baker Dialium sp. Fabaceae Fordia splendidissima (Blume ex Miq.) J. R. M. 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 3 1 3 1 1 1 1 2 1 2 4 1 2 1 1 1 1 1 7 1 1 2 1 1 2 1 1 1 1 2 2 1 1 3 1 3 2 2 3 2 1 2 2 9 2 1 3 6 1 1 3 3 1 2 2 2 2 2 2 1 28 3 10 1 3 6 1 1 3 1 1 1 1 7 219 1 1 3 3 1 6 1 1 3 1 3 1 3 4 11 4 4 1 1 1 1 17 1 2 2 2 1 4 1 17 8 23 39 8 3 6 21 3 1 7 Linaceae Loganiaceae Magnoliaceae Melastomataceae Meliaceae Buijsen Koompassia excelsa Taub. Koompassia malaccensis Maing. Parkia speciosa Hassk. Parkia timoriana Merrill Saraca declinata Miq. Saraca sp. Sindora leiocarpa Baker ex K.Heyne Sindora wallichii Benth. Ctenolophon parvifolius Oliver Fagraea sp. Elmerillia tsiampacca (L.) Dandy Magnolia candollii (Blume) H. P. Nooteboom Magnolia gigantifolia (Miq.) H. P. Nooteboom Magnolia lasia H. P. Noot.eboom Magnolia sp. Memecylon myrsinoides Blume Memecylon borneense Merrill Memecylon costatum Miq. Memecylon edule Roxb. Memecylon floribundum Benth. Memecylon laurinum Blume Memecylon myrsinoides Blume Memecylon paniculatum Jack Memecylon sp. Pternandra azurea (Bl.) Burkill Pternandra caerulescens Jack pternandra galeata Ridley Pternandra rostrata (Cogn.) M. P. Nayar Pternandra sp. Aglaia argentea Blume Aglaia crassinervia Kurz ex Hiern Aglaia gigantea Pellegrin Aglaia leptantha Miq. Aglaia leucophylla King 4 4 1 2 1 3 2 1 1 1 1 4 1 3 1 1 1 2 2 2 3 1 1 3 1 2 2 1 1 5 2 1 1 2 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 2 3 1 1 1 1 1 6 4 1 1 1 4 1 3 1 2 3 1 1 1 2 1 1 1 1 1 1 1 2 2 1 1 2 1 2 3 2 4 1 2 1 4 3 8 2 6 2 1 1 1 1 1 1 1 2 15 3 1 1 1 1 1 1 1 1 1 220 1 1 5 26 11 1 6 2 17 5 8 1 1 5 15 13 1 1 1 5 18 1 4 5 2 7 1 9 3 39 1 1 3 1 2 2 Aglaia macrocarpa (Miq.) C.M. Pannell Aglaia oligophylla Miq. Aglaia rubiginosa (Hiern.) C. M. Pannell Aglaia silvestris Merrill Aglaia simplicifolia Harms. Aglaia sp. Aglaia sp. 3 Aglaia sp. 6 Aglaia sp. 7 Aglaia sp. 8 Aglaia sp.1 Aglaia sp.2 Aglaia sp.4 Aglaia sp.5 Aglaia spectabilis (Miq.) S. S. Jain & S. S. R. Bennet Aglaia tomentosa Teijsm. & Binn. Chisocheton ceramicus Miq. Chisocheton macrophyllus King Chisocheton patens Blume Chisocheton pentandrus Merrill Chisocheton sp. Dysoxylum alliaceum Blume Dysoxylum sp. Dysoxylum sp.1 Dysoxylum sp.2 Reinwardtiodendron humile (Hassk.) D. J. Mabberley Sandoricum emarginatum Hiern Sandoricum koetjape Merrill Sandoricum sp. Walsura pinnata Hassk Walsura sp. Walsura sp.1 Moraceae Artocarpus anisophylla Miq. Artocarpus dadah Miq. 1 1 1 3 1 1 1 2 6 3 1 5 2 3 1 3 3 1 3 1 3 1 4 1 1 1 1 1 1 2 3 1 2 1 1 1 1 1 1 1 1 3 3 1 1 1 1 2 1 1 2 2 1 3 1 1 3 2 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 2 1 1 1 1 3 1 221 2 1 2 3 1 3 27 10 4 1 1 3 1 2 3 1 9 1 3 8 2 10 1 7 3 3 2 1 1 1 5 2 1 5 3 Myristicaceae Artocarpus elasticus Reinw Artocarpus integer Merrill Artocarpus kemando Miq. Artocarpus lanceifolia Roxb. Artocarpus nitida Trec. Artocarpus nitida Trec. ssp. borneense Artocarpus nitida Trec. ssp. griffithii Artocarpus odoratissima Blanco Artocarpus sp. Artocarpus sp.1 Artocarpus sp.2 Artocarpus tamaran Becc. Ficus aurata Miq. Ficus grossularioides Burm. f. Ficus obscura Blume Ficus sp. Ficus sp.1 Ficus uncinulata Corner Ficus vasculosa Wall. Parartocarpus bracteatus Becc. Parartocarpus venenosa Becc. Prainea limpato (Miq.) Beumee ex Heyne Streblus macrophyllus Blume Streblus sp. 1 Streblus sp. 2 Gymnacranthera contractaWarb. Gymnacranthera eugeniifolia (A. DC.) J. Sincl. var. griffithii Gymnacranthera farquhariana Warb. Gymnacranthera forbesii Warb. Gymnacranthera ocellata R. T. A.Schouten Gymnacranthera sp. Horsfieldia crassifolia Warb. Horsfieldia glabra Warb. Horsfieldia grandis Warb. 1 1 1 8 1 1 9 3 4 2 4 12 4 1 2 11 9 1 11 2 1 2 1 1 2 1 3 5 12 1 14 12 7 1 1 2 1 1 1 3 1 3 1 1 1 3 1 2 1 1 1 1 2 3 1 3 1 2 1 2 2 1 1 1 1 1 2 2 1 4 1 3 2 1 1 8 2 5 1 5 2 1 1 2 4 1 6 4 2 3 1 2 3 2 1 1 1 222 3 4 2 1 2 1 1 1 1 1 1 12 8 8 116 6 3 2 5 7 2 1 6 1 2 9 5 3 1 1 2 8 7 1 8 2 7 8 20 3 2 1 13 3 9 Horsfieldia sp. Horsfieldia sp. 1 Horsfieldia subglobosa Warb. Horsfieldia wallichii Warb. Knema cf. latericia Knema cinerea (Poir) Warb. var. cordata Knema cinerea (Poir) Warb. var. sumatrana Knema cinerea (Poir.) Warb. Knema conferta Warb. Knema elliptica Warb. Knema elmeri Merrill Knema furfuracea Warb. Knema galeata J. Sincl. Knema glauca Warb. Knema hirtela W. J. J. O. de Wilde Knema korthalsii Warb. Knema kurtisii Warb. var. arenosa Knema latericia Elmer Knema latifolia Warb. Knema laurina Warb. Knema lunduensis (Sinclair) W. J. J. O. de Wilde Knema membranifolia H. Winkler Knema palens W. J. J. O. de Wilde Knema percoriacea J. Sincl. Knema pulchra Warb. Knema sp. Knema sp.1 Knema woodii J. Sincl. Myristica beccarii Warb. Myristica crassa King Myristica crassifolia Hook. f. & Thoms. Myristica depressa W. J. J. O. de Wilde Myristica iners Blume Myristica maxima Warb. Myristica sp. 1 2 1 1 1 1 2 2 1 1 1 1 1 34 2 3 3 7 1 1 2 15 12 1 1 10 1 1 4 2 6 2 1 2 2 1 4 2 1 2 1 2 1 1 1 1 5 3 5 4 1 1 2 3 2 3 2 4 3 1 1 1 5 2 1 2 6 2 1 4 5 6 2 1 1 2 3 2 1 5 2 1 2 5 3 7 2 3 4 1 2 1 6 1 1 1 13 2 1 1 3 1 3 1 3 5 1 3 3 1 1 1 1 1 9 2 1 5 1 1 9 2 1 6 2 3 2 1 223 10 7 1 3 3 9 2 9 3 5 6 1 1 1 1 1 1 1 1 2 1 4 2 5 1 1 8 1 9 4 78 1 1 15 19 4 12 3 8 4 44 5 24 1 1 21 8 17 23 8 10 16 3 1 1 63 14 11 Myrsinaceae Myrtaceae Myristica sp.1 Myristica villosa Warb. Myristica wallichii Hook. f. et Thoms. Ardisia fulginosa Blume Ardisia gambleana Furtado Ardisia macrophylla Wall. Ardisia teysmanianna Scheff. Eugenia heteroclada Merrill Rhodamnia cinerea Jack. Syzygium acutangulum Niedenzu Syzygium bankense (Hassk.) Merrill & Perry Syzygium baramense (Merrill) Merrill & Perry Syzygium caudatilimbum (Merrill) Merrill & Perry Syzygium chloranthum (Duthie) Merrill & Perry Syzygium confertum (Korth.) Merrill & Perry Syzygium exacavatum Wall. Syzygium fastigiatum (Blume) Merrill & Perry Syzygium grande Wall.. Syzygium incarnata (Elmer) Merill & Perry Syzygium leptostemon (Korth.) Merrill & Perry Syzygium napiforme (Koord. & Valeton) Merrill & Perry Syzygium nigricans (King) Merrill & Perry Syzygium ochneocarpum (Merrill) Merrill & Perry Syzygium perpuncticulatum (Merrill) Merrill & Perry Syzygium picnanthum Merrill & Perry Syzygium prasiniflorum (Ridley) Merrill & Perry Syzygium sp. Syzygium sp.1 Syzygium sp.10 Syzygium sp.2 Syzygium sp.3 Syzygium sp.4 Syzygium sp.5 5 1 1 2 1 1 3 1 1 2 1 10 1 1 1 3 1 2 4 3 1 1 4 3 3 1 4 2 1 1 1 2 3 1 1 2 1 10 1 1 1 1 1 1 2 3 1 1 6 4 1 4 1 6 5 1 1 3 2 4 7 6 3 3 5 4 16 2 11 2 4 4 2 2 6 2 4 2 5 4 2 1 1 1 2 3 1 224 1 2 1 2 1 2 2 1 2 2 1 14 1 2 11 1 1 4 1 2 4 3 10 17 12 1 1 5 5 1 1 6 25 9 7 2 58 31 1 7 4 7 4 Ochnaceae Olacaceae Oleaceae Oxalidaceae Podocarpaceae Polygalaceae Syzygium sp.6 Syzygium sp.7 Syzygium sp.8 Syzygium sp.9 Syzygium stictophyllum Merrill & Perry Syzygium subcrenatum Merrill & Perry Syzygium tawahense (Korth.) Merrill & Perry Syzygium zeylanicum DC. Tristaniopsis whiteana (Griff.) P. G. Wilson & J. T. Waterhouse Gomphia serrata (Gaertn.) Kanis Ochanostachys amentacea Mast. Scorodocarpus borneensis Becc. Strombosia ceylanica Gardn. Strombosia sp. cf. Chionanthus sp. Chionanthus curvicarpus R.Kiew Chionanthus cuspidatua Blume Chionanthus nitens Koord. & Valet. Chionanthus olingathus (Merrill) R. Kiew Chionanthus pubicalyx (Ridl.) R. Kiew Chionanthus sp. Chionanthus sp. 1 Sarcotheca diversifolia H. Hallier f. Sarcotheca sp. Podocarpus blumei Endl. Podocarpus neriifolia D. Don Xanthophyllum affine Korth. ex. Miq. Xanthophyllum amoenum Chod. Xanthophyllum cf. flavescens Roxb. Xanthophyllum cf. stapfii Chod. Xanthophyllum curtisii King Xanthophyllum ellipticum Korth. ex Miq. Xanthophyllum griffithii Hook. f. ex A. W. Benn. Xanthophyllum macrophyllum Baker 2 2 1 1 9 4 5 6 2 1 2 2 1 3 2 5 1 2 1 1 4 3 1 1 1 1 2 1 6 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 3 2 2 1 4 3 1 1 2 2 1 1 1 1 1 3 1 3 2 2 1 8 2 2 5 1 1 2 1 1 1 4 1 1 9 1 3 1 2 1 1 1 1 1 1 225 1 2 2 1 1 26 1 8 7 1 7 20 2 3 1 1 1 2 2 17 7 12 1 22 1 1 1 15 1 9 1 1 1 2 2 Proteaceae Rhamnaceae Rhizoporaceae Rosaceae Rubiaceae Xanthophyllum obscurum A.W. Benn. Xanthophyllum parvum Chod. Xanthophyllum rufum A.W. Benn. Xanthophyllum scortechinii King Xanthophyllum sp. Xanthophyllum sp. 1 Xanthophyllum sp. 2 Xanthophyllum sp. 3 Xanthophyllum stipitatum A.W.Benn. Helicia fuscotomentosa Suesseng Helicia petiolaris Benn. Helicia sp. Ziziphus angustifolius( Miq.) Hatusima ex van Steenis Ziziphus sp. Anisophyllea corneri Ding Hou Carallia brachiata Merrill Gynotroches axilaris Blume Gynotroches sp. Prunus arborea (Blume) Kalkm. Prunus beccarii (Ridley.) Kalkm. Prunus sp. Prunus sp.1 Prunus sp.2 Rosaceae Adina polycephala Benth. Anthocephalus cadamba Miq. cf. Pleiocarpidia sp. Gardenia sp. Gardenia tubifera Wall. Ixora brachyantha Merrill Ixora fluminalis Ridley Jackiopsis ornata (Wall.) C. E. Risdale Lasianthus sp. Maclurodendron porteri (Hook. f.) T. G. Hartley 8 1 5 10 1 1 3 2 1 2 1 5 1 1 6 2 5 3 2 1 2 2 1 1 5 2 1 1 1 1 1 1 2 1 2 1 1 2 1 3 1 2 1 2 1 1 1 1 2 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1 4 1 1 1 3 1 2 1 1 3 2 4 1 4 2 3 1 1 2 1 4 1 1 1 1 2 1 4 1 1 226 2 1 7 2 6 1 2 7 40 9 1 12 14 3 1 2 1 9 2 4 1 2 9 3 1 4 1 5 2 4 1 3 20 1 2 7 12 13 6 1 1 Rutaceae Sabiaceae Santalaceae Sapindaceae Sapotaceae Nauclea sp. Neonauclea sp. Pleiocarpidia polyneura (Miq.) Bremek Pleiocarpidia sp. Porterandia anisophylla (Jack ex Roxb.) Ridley Rubiaceae Tarenna cumingiana Elmer Timonius borneensis Valet. Timonius lasianthoidesValet. Timonius sp. Timonius sp. 1 Tricalysia malaccensis Merrill Urophyllum corymbosum Korth. Tetractomia sp. Tetractomia sp. 1 Meliosma nitida Bl. Meliosma sp. Scleropyrum wallichianum A. Arn. Dimocarpus dentatus W. Meijer ex Leenhouts Lepisanthes alata (Blume) Leenh. Nephelium cuspidatum Blume Nephelium juglandifolium Blume Nephelium maingayi Hiern Nephelium mutabile Blume Nephelium ramboutan-ake (Labill.) P.W. Leenhouts Nephelium sp. Nephelium uncinatum Radlk. Paranephelium nitidum King Pometia alnifolia Radlk. Pometia pinnata G.Forst. Xerospermum laevigatum Radlk. Xerospermum noronhianum Blume Chrysophyllum roxburghii G. Don Chrysophyllum sp. Madhuca borneensis van. Royen 1 1 1 2 2 2 1 1 1 1 1 3 2 2 1 4 1 2 1 1 2 1 3 3 4 1 1 1 3 1 1 1 2 1 4 1 1 1 1 1 3 3 5 1 4 2 1 1 1 2 1 1 1 1 2 2 1 2 4 1 2 1 1 3 1 1 6 4 1 1 1 1 1 2 3 5 9 2 1 1 1 1 227 1 6 2 2 7 2 2 1 5 4 1 5 5 2 3 8 2 3 1 1 2 3 21 1 7 1 2 7 2 3 26 6 1 13 1 3 1 1 11 Simaroubaceae Sonneratiaceae Staphyliaceae Sterculiaceae Madhuca cf. prolixa (Pierre ex Dubard) P.C.Yii & P. Chai Madhuca erythrophylla H. J. Lam Madhuca magnifica S. Moore Madhuca malaccensis H. J. Lam Madhuca mindanaensis Merrill Madhuca sericea H. J. Lam Madhuca sp. Madhuca sp.1 Palaquium beccarianum (Pierre) van Royen Palaquium calophyllum Pierre ex Burck Palaquium cochleariifolium van Royen Palaquium dasyphyllum Pierre ex Dubard. Palaquium ferox H. J. Lam Palaquium gutta Burck Palaquium quercifolium Burck Palaquium rostratum Burck Palaquium sericeum H. J. Lam Palaquium sp. Palaquium sp.1 Palaquium stenophyllum H. J. Lam Palaquium sumatranum Burck Payena lerii Kurz Payena lucida A. DC. Payena sp. Pouteria malaccensis (C. B. Clarke) Baehni Allantospermum borneense Forman Irvingia malayana Oliver Duabanga moluccana Blume Turpinia sphaerocarpa Hassk. Heritiera elata Ridley Heritiera javanica (Blume) Kosterm. Heritiera simplicifolia (Mast.) Kosterm. Heritiera sp. Heritiera sumatrana (Miq.) Kosterm. 5 7 2 14 1 11 2 13 1 2 1 2 1 1 3 11 1 6 1 5 2 3 1 3 3 2 1 6 1 4 1 1 5 1 4 4 10 4 2 5 6 4 1 2 1 1 2 8 1 3 1 1 2 2 1 2 5 6 1 1 3 2 2 1 9 7 3 5 6 14 1 1 1 2 1 2 1 1 1 2 2 1 1 1 2 1 2 1 1 1 1 1 3 1 2 1 1 2 1 228 3 3 1 4 2 1 3 1 2 1 24 3 15 6 18 1 4 6 1 10 5 3 23 30 16 6 4 52 1 2 2 3 3 2 8 2 1 10 1 9 1 14 Styracaceae Symplocaceae Theaceae Thymelaeaceae Tiliaceae Pterospermum javanicum Jungh. Scaphium borneense (Merrill) Kostermans Scaphium macropodum Beume ex K. Heyne Sterculia coccinea Jack Sterculia foeltida Linn. Sterculia macrophyllla Vent. Sterculia oblongata R. Br. Sterculia rubiginosa Vent. Sterculia sp. Sterculia sp.1 Bruinsmia styracoides Boerlage & Koorders Symplocos cerasifolia Wall. Symplocos cochinchinensis S. Moore Symplocos crassipes C. B.Clarke Symplocos fasciculata Roxb. ex A. DC. Symplocos rubiginosa Wall ex A. DC. Symplocos sp. Symplocos sp. 1 Adinandra borneensis Kobuski Adinandra subsessilis Airy Shaw Ternstroemia aneura Miq. Ternstroemia sp. 1 Tetramerista glabra Miq. Aquilaria beccariana van Tiegh. Aquilaria malaccensis Lam. Gonystylus affinis Radlk. Gonystylus forbesii Gilg. Gonystylus keithii Airy Shaw Gonystylus sp Gonystylus sp 1 Brownlowia peltata Benth. cf. Microcos sp. Grewia fibrocarpa Mast. Grewia sp. Grewia tomentosa Juss. 1 3 1 6 5 3 6 9 6 5 5 1 1 1 1 5 1 2 1 12 2 1 2 1 1 1 1 1 5 1 1 4 3 1 1 2 1 2 4 1 2 2 1 1 1 1 1 1 1 1 1 3 6 6 1 2 1 1 1 1 2 5 1 2 1 5 3 1 9 2 1 1 1 1 1 1 1 2 3 1 1 1 2 1 1 1 1 1 1 229 1 3 1 1 2 5 3 53 2 12 2 3 3 8 16 1 5 2 2 2 1 3 3 13 11 7 2 14 3 6 7 1 1 3 1 8 1 2 1 1 Ulmaceae Urticaceae Verbenaceae #N/A Number of trees/Ha Number of species/Ha Microcos cinnamomifolia (Burret) Stapf ex P.S.Ashton Microcos crassifolia Burret Microcos paniculata Burret Microcos tomentosa Sm. Pentace borneensis Pierre Pentace erectinervia Kosterm. Pentace laxiflora Merrill Pentace sp. Pentace sp. 1 Pentace sp. 2 Pentace sp. 3 Pentace sp. 4 Pentace triptera Mast. Gironniera nervosa Planch. Gironniera subaequalis Planch. Laportea oblanceolata Merrill Geunsia pentandra Merrill Teijsmanniodendron coriaceum (C.B. Clarke) Kosterm Teijsmanniodendron scaberrimum Kosterm. Teijsmanniodendron simplicifolium Merrill. Teijsmanniodendron simplicioides Kosterm. Teijsmanniodendron sp. Teijsmanniodendron sp.1 Unident 1 Unident 4 Unident.2 Unident.3 Unident.5 3 1 1 1 6 2 12 1 1 1 7 19 1 11 3 14 13 1 1 7 34 8 9 14 6 1 1 2 3 1 1 6 5 1 1 3 4 1 1 4 1 4 3 5 1 7 1 1 3 1 2 4 1 1 3 3 1 2 1 2 4 1 7 2 2 1 9 4 1 2 4 1 1 2 3 1 4 2 2 4 1 10 2 2 6 1 635 571 571 644 452 468 522 561 437 536 504 527 567 558 616 565 6 30 16 6 26 5 13 2 6 1 8734 196 160 175 187 165 174 193 178 173 157 160 175 162 185 197 170 914 3 7 1 9 3 10 1 4 3 5 230 2 2 7 4 11 1 2 4 5 1 #N/A Dead trees 25 37 231 21 27 40 31 34 27 31 27 24 22 31 40 44 37 498 Appendix 3. Sapling species composition in a four 1-ha plots in primary and logged lowland forests in the Bulungan Research Forest-CIFOR, East Kalimantan. Family Actinidiaceae Alangiaceae Anacardiaceae Species Name Saurauia sp, Saurauia sp,1 Saurauia subcordata Korth, Alangium javanicum (Blume) Wangerin Alangium sp, Buchanania arborescens F, Muell, Buchanania sessifolia Blume Buchanania sp, Campnosperma auriculatum Hook, f, Campnosperma malayanum cf, Buchanania Dracontomelon dao Merrill & Rolfe Drimycarpus luridus (Hook,f,) Ding Hou Drimycarpus sp, Gluta wallichii (Hook, f,) Ding Hou Koordersiodendron pinnatum Merrill Mangifera magnifica K, M, Kochummen Mangifera sp, Mangifera sp, 1 Mangifera swintonioides Kosterm Mangifera torquenda A, J, G, H, Kosterm Melanochyla (duri) Melanochyla elmeri Merrill Melanochyla fulvinervia (Blume) Ding Hou PF LF-5 LF-10 1 3 1 3 3 11 LF-30 5 1 7 1 2 3 3 1 2 1 2 1 4 1 2 2 11 1 1 32 1 37 1 1 19 5 3 1 1 1 1 1 232 7 2 Total 12 1 1 7 3 6 17 1 6 1 1 2 3 1 87 3 1 1 1 25 3 1 1 1 Annonaceae Melanochyla sp, Semecarpus burburyanus Gibbs Semecarpus sp, 1 Swintonia glauca Engl, cf, Popowia sp, Cyathocalyx bancanus Boerl, Cyathocalyx carinatus (Ridley) J,Sincl, Cyathocalyx sp, Cyathocalyx sp, 1 Goniothalamus cf, macrophyllus (Blume) Hook, f, & Thomson Goniothalamus macrophyllus (Blume) Hook, f, & Thomson Goniothalamus malayanus Hook,f, & Thomson Goniothalamus parallelovenius Ridley Goniothalamus sp, Goniothalamus sp,1 Mezzettia parviflora Becc, Mitrephora korthalsiana Miq, Mitrephora sp, Mitrephora sp, 1 Neouvaria Orophea sp, 1 Polyalthia cauliflora Hook,f, & Thomson Polyalthia cf, rumphii Merrill Polyalthia lateriflora King Polyalthia microtus Miq, Polyalthia rumphii Merrill Polyalthia sp, Polyalthia sp,1 Polyalthia sumatrana (Miq,) Kurz Popowia hirta Miq, Popowia pisocarpa (Blume) Endl, Popowia sp, 3 4 3 2 2 6 3 3 1 3 1 4 2 3 1 1 1 3 5 1 6 1 5 1 2 1 1 1 38 3 1 2 5 9 1 2 1 3 10 23 3 1 2 2 1 1 233 9 1 2 9 1 20 1 9 10 2 2 3 1 3 1 4 2 6 1 8 1 6 1 2 1 1 1 50 1 5 1 5 47 1 33 1 3 3 Apocynaceae Aquifoliaceae Bombacaceae Burseraceae Pseuduvaria reticulata Miq, Pseuduvaria rugosa (Blume) Merrill Sageraea elliptica Hook, f, & Thomson Sageraea lanceolata Miq, Sageraea sp, Uvaria sp, Xylopia caudata Hook, f, & Thomson Xylopia ferruginea Baill, Xylopia malayana Hook,f, & Thomson Xylopia sp, 1 Xylopia sp, 2 Alstonia angustifolia Wall, Alstonia iwahigensis Elmer Alstonia scholaris (L,) R,Br, Kibatalia maingayi (Hook, f,) R, E, Woodson Kibatalia sp, Tabernaemontana macrocarpa Korth, ex Blume cf, Ilex Ilex cymosa Blume Coelostegia sp, Durio cf, kutejensis Becc, Durio dulcis Becc, Durio griffithii Bakh, Durio kutejensis Becc, Durio lanceolatus Mast, Durio oxleyanus Griff, Durio sp, Neesia altissima Blume Neesia synandra Mast, Canarium costata (Benn,) H,J, Lam Canarium littorale Blume Canarium odontophyllum Miq, Canarium pillosum A, W, Benn, Canarium sp, 1 1 1 1 4 1 1 2 6 1 4 3 2 1 1 12 1 1 1 2 1 1 1 2 1 1 1 1 4 2 3 1 1 3 2 1 2 2 1 1 5 2 1 3 2 234 1 8 8 1 1 1 5 1 1 6 3 2 8 13 1 1 1 2 1 1 1 2 1 1 1 1 4 6 1 5 1 5 1 7 1 4 18 Celastraceae Chrysobalanaceae Connaraceae Canarium sp,1 cf, Canarium sp, Dacryodes costata (A,W,Benn,) H,J, Lam Dacryodes crassipes Kalkman Dacryodes incurvata (Engl,) H, J, Lam Dacryodes laxa (A, W, Benn,) H, J, Lam Dacryodes rostrata (Blume) H, J, Lam forma pubescens Dacryodes rubiginosa (A, W, Benn,) H, J, Lam Dacryodes rugosa (Blume) H,J, Lam Dacryodes sp, Santiria apiculata A,W,Benn, Santiria griffithii Engl, Santiria laevigata Blume var, laevigata Santiria oblongifolia Blume Santiria rubiginosa Blume Santiria sp, Santiria tomentosa Blume Bhesa paniculata Arn, Euonymus Kokoona beccarii Kokoona littoralis M, A, Laws, Kokoona sp, Kokoona subobovata Lophopetalum beccarianum Pierre Lophopetalum cf, beccarianum Pierre Lophopetalum sp, Salacia sp, Siphonodon celastrineus Griff, Atuna excelsa (Jack) Kosterm, Atuna racemosa Rafin, Parastemon urophyllus A, X, Parinari oblongifolia Hook,f, Ellipanthus tomentosus Kurz 4 1 4 11 3 22 33 1 25 4 2 1 42 2 8 1 2 8 18 5 1 13 2 8 12 1 1 1 3 4 2 2 5 1 1 3 5 1 59 13 1 1 4 2 1 1 4 1 2 4 1 235 65 1 3 5 4 1 37 4 26 6 90 2 58 2 1 3 1 1 3 6 7 1 1 3 5 1 1 64 13 67 1 1 4 2 2 4 9 Convolvulaceae Cornaceae Dilleniaceae Dipterocarpaceae Erycibe glomerata Blume Erycibe sp, Mastixia rostrata Blume Mastixia sp, Mastixia trichotoma Blume Dillenia excelsa Martelli Dillenia eximia Miq, Dillenia pentagyna Roxb, Dillenia sp, Dillenia suffruticosa (Griff,) Martelli Anisoptera costata Korth, Dipterocarpus crinitus Dyer Dipterocarpus elongatus Korth, Dipterocarpus eurynchus Miq, Dipterocarpus humeratus van Slooten Dipterocarpus lowii Hook, f, Dipterocarpus pachyphyllus Meyer Dipterocarpus sp, Dipterocarpus stellatus Vesque Dryobalanops elliptica Dryobalanops lanceolata Burck Hopea cernua Teijsm, & Binn, Hopea cf, cernua Teijsm, & Binn, Hopea cf, rudiformis P,S, Ashton Hopea dryobalanoides Miq, Hopea ferruginea Parijs Hopea mengerawan Miq, Hopea sp, Parashorea malaanonan Merrill Parashorea parvifolia Wyatt-Smith ex P, S, Ashton Parashorea sp, Shorea agami P, S, Ashton Shorea angustifolia P, S, Ashton Shorea atrinervosa Symington 6 1 1 2 1 6 3 9 5 13 6 1 2 1 1 2 2 7 32 2 8 3 1 12 1 9 19 4 16 50 1 1 90 4 4 30 1 13 161 1 14 1 1 130 9 25 3 14 13 21 1 2 2 236 4 1 3 10 7 1 2 1 3 22 5 13 2 1 3 2 7 32 2 8 3 21 12 1 60 19 1 1 158 251 5 7 78 1 3 18 31 5 Shorea beccarii Dyer ex Brandis Shorea bracteolata Dyer, Shorea cf, johorensis Foxworthy Shorea cf, lamellata Foxworthy Shorea cf, macroptera Dyer Shorea cf, maxwelliana King Shorea cf, obovoidea van Slooten Shorea cf, ovalis Blume Shorea cf, pinanga Scheff, Shorea fallax Meijer Shorea hopeifolia (Heim) Symington Shorea inappendiculata Burck Shorea johorensis Foxworthy Shorea leprosula Miq, Shorea macrocarpa Shorea macroptera Dyer Shorea maingayi Shorea maxwelliana King Shorea multiflora (Burck) Symington Shorea ochracea Symington Shorea ovalis Blume Shorea parvifolia Dyer Shorea parvistipulata Heim Shorea patoiensis P, S, Ashton Shorea pauciflora King Shorea peltata Symington Shorea pinanga Scheff, Shorea sp, Shorea sp, 2 Shorea sp,1 Shorea sp,3 Shorea venulosa G, H, S, Wood ex Meijer Shorea xanthophylla Symington Vatica albiramis v, Slooten 7 2 2 32 1 2 1 2 8 2 2 5 9 1 81 7 1 10 2 5 2 1 23 1 5 74 23 3 48 17 237 4 6 2 3 2 2 8 66 28 21 6 7 18 2 10 18 16 24 1 1 40 18 157 18 1 5 19 21 2 7 2 5 18 13 24 41 2 1 2 1 2 8 2 2 10 13 7 36 10 2 106 1 10 21 2 15 304 20 5 45 13 33 74 18 37 24 1 49 57 Ebenaceae Elaeocarpaceae Euphorbiaceae Vatica cf, oblongifolia Hook, f, Vatica granulata v, Slooten Vatica micrantha v, Slooten Vatica oblongifolia Hook,f, Vatica rassak Blume Vatica sp, Vatica sp, 1 Vatica umbonata Burck Vatica vinosa P,S, Ashton cf, Diospyros Diospyros borneensis Hiern Diospyros buxifolia Hiern Diospyros cf, laevis Boj, ex A, DC, Diospyros cf, sumatrana Miq, Diospyros curraniopsis Bakh, Diospyros elliptifolia Merrill Diospyros foxworthyii Bakh, Diospyros frutescens Blume Diospyros oblonga Wall, Diospyros pilosanthera Blanco var,oblonga Diospyros sp, Diospyros sp, 4 Diospyros sp, 6 Diospyros sp,1 Diospyros sp,2 Diospyros sp,3 Diospyros sp,5 Diospyros sumatrana Miq, Diospyros wallichii King ex Gamble Elaeocarpus pedunculatus Wall, Elaeocarpus sp, Sloanea sp, Agrostistachys longifolia Antidesma coriaceum Tul, 1 160 10 4 29 9 1 8 4 147 2 4 4 2 1 1 1 3 1 1 9 1 4 10 1 2 1 1 5 8 1 2 5 22 1 1 47 2 4 4 22 4 6 4 3 10 24 39 4 1 6 7 1 1 3 1 4 1 238 1 307 5 15 4 6 1 40 10 2 12 16 1 1 1 5 8 5 2 9 107 1 1 8 7 4 3 70 2 1 2 3 4 1 Antidesma grandistipulum Merrill Antidesma neurocarpum Miq, Antidesma sp, Antidesma sp, 1 Antidesma tomentosum Blume Aporosa antennifera (Airy Shaw) Airy Shaw Aporosa bakonensis Aporosa confusa Gage Aporosa elmeri Merril, Aporosa falcifera Hook, f, Aporosa grandistipula Merrill Aporosa lucida (Miq,) Airy Shaw Aporosa nitida Merrill Aporosa prainiana King ex Gage Aporosa sp, Aporosa sp, 1 Aporosa subcaudata Merrill Baccaurea angulata Merrill Baccaurea cf, sumatrana Muell, Arg, Baccaurea edulis Merrill Baccaurea javanica Muell, Arg, Baccaurea kunstleri King ex Gage Baccaurea macrocarpa Muell, Arg, Baccaurea minor Hook, f, Baccaurea minutiflora Muell, Arg, Baccaurea pubera Muell, Arg, Baccaurea sp, Baccaurea sp,1 Baccaurea stipulata J, J, Smith Baccaurea sumatrana Muell, Arg, Baccaurea tetandra Muell, Arg, Blumeodendron cf, tokbrai Kurz Blumeodendron sp, Bridelia glauca Blume 35 1 1 5 1 2 4 3 5 4 6 1 3 2 2 8 16 1 2 239 1 1 1 2 2 2 1 1 1 1 7 1 1 2 3 5 15 1 4 16 5 1 6 3 1 9 6 4 2 5 1 1 6 2 1 12 1 5 23 10 1 1 1 2 3 1 2 1 36 5 3 8 1 1 1 5 5 3 7 17 15 16 4 23 10 1 6 9 2 4 8 2 3 31 1 21 23 2 5 4 2 Cephalomappa beccariana Baill, Cephalomappa lepidotula Airy Shaw Cephalomappa sp, cf, Cleistanthus sp, Chaethocarpus castanocarpus Thw, Claoxylon sp, Cleistanthus bakonensis Airy Shaw Cleistanthus glaucus Cleistanthus myrianthus (Hassk,) Kurz Cleistanthus sp, Cleistanthus sp,1 Cleistanthus sp,2 Coccoceras borneense J, J, Smith, Coccoceras sp, Croton argyratus Blume Croton sp, Croton sp,1 Dimorphocalyx muricatus (Hook,f,) Airy Shaw Drypetes kikir Airy Shaw Drypetes laevis Pax et Hoffm, Drypetes longifolia Pax & K, Hoffm, Drypetes oblongifolia (Bedd,) Airy Shaw Drypetes polyneura Airy Shaw Drypetes sp, Drypetes sp,1 Elateriospermum tapos Blume Endospermum diadenum (Miq,) Airy Shaw Galearia fulva (Tul,) miq, Glochidion arborescens Blume Glochidion borneensis Boerl, Glochidion obscurum Blume Glochidion rubrum Blume Glochidion sericeum Zoll, & Mor, Glochidion sp, 1 12 1 2 2 4 1 5 4 1 5 1 5 8 2 1 12 4 1 43 12 2 1 18 1 2 1 3 1 5 1 3 3 1 22 1 2 3 3 1 4 1 1 1 1 13 6 2 3 240 3 23 4 1 12 3 2 4 1 4 1 11 18 8 2 4 1 43 14 1 18 2 5 1 8 5 5 1 30 1 1 2 13 6 2 3 30 Glochidion superbum Baill, Koilodepas brevipes Merr, Macaranga bancana Muell, Arg, Macaranga beccariana Merrill Macaranga cf, depressa (Muell, Arg,) Muell, Arg, Macaranga cf, lamellata Whitmore Macaranga conifera (Zoll,) Muell, Arg, Macaranga gigantea Muell, Arg, Macaranga hypoleuca Muell, Arg, Macaranga lowii King ex Hook,f, Macaranga motleyana Muell, Arg, Macaranga pearsonii Merrill Macaranga pruinosa Muell, Arg, Macaranga repando-dentata Airy Shaw Macaranga sp, Macaranga sp, 1 Macaranga winkleri Pax & K, Hoffm, Mallotus cf, griffithianus (Muell, Arg,) Hook, f, Mallotus dispar (Blume,) Muell, Arg, Mallotus eucaustus Airy Shaw Mallotus griffthianus Hook, f, Mallotus korthalsii Muell, Arg, Mallotus macrostachyus Muell, Arg, Mallotus moritzianus Muell, Arg, Mallotus muticus (Muell, Arg,) Airy Shaw Mallotus penangensis Muell, Arg, Mallotus repandus Muell, Arg, Mallotus sp, Mallotus sp, 1 Moultonianthus leembruggianus (Boerl, & Koord,) Steenis Neoscortechinia kingii Pax & K, Hoffm, Paracroton pendulus Miq, Phyllanthus acida 1 84 8 3 30 11 21 10 9 14 8 24 19 1 1 1 9 66 5 17 2 1 1 27 1 70 6 4 1 1 5 14 10 16 10 4 11 22 11 2 3 125 8 7 10 16 4 3 5 3 1 3 1 1 5 1 241 5 1 1 174 72 5 17 2 5 23 38 23 14 22 24 19 11 17 11 15 3 52 11 2 3 132 13 32 4 1 3 1 1 11 1 Fagaceae Flacourtiaceae Phyllanthus emblica Linn, Pimelodendron griffithianum (Muell, Arg,) Hook, f, Ptychophyxsis Ptychopyxis bacciformis Croizat Ptychopyxis cf, arborea (Merr,) Airy Shaw Ptychopyxis sp, Ptychopyxis sp, 1 Trigonopleura malayana Hook, f, Trigonostemon anomalus Merr, Trigonostemon elmeri Merr, Trigonostemon sp, Trigonostemon sp, 1 Castanopsis motleyana King Castanopsis sp, Lithocarpus sp, Lithocarpus cantleyanus Rehder Lithocarpus cf, leptogyne (Korth,) Soepadmo Lithocarpus ewyckii Rehder Lithocarpus gracilis (Korth,) Soepadmo Lithocarpus nieuwenhuisii (Seem) A, Camus Lithocarpus sp, 3 Lithocarpus sp,1 Lithocarpus sp,2 Lithocarpus urceolaris (Jack) Merrill Quercus argentata Korth, Quercus sp, cf, Hydnocarpus sp, Flacourtia rukam Zoll, & Mor, Flacourtiaceae Homalium grandiflorum Benth, Hydnocarpus borneensis Sleumer Hydnocarpus kuenstleri Warb, Hydnocarpus polypetalus (v,Slooten) Sleum, Hydnocarpus sp, 2 3 1 1 4 2 2 1 3 1 1 7 1 1 2 1 1 3 1 1 18 1 1 2 2 2 2 1 1 2 1 10 4 9 3 3 1 3 1 1 1 2 1 3 15 12 23 242 1 11 1 1 1 6 2 10 1 2 1 12 4 2 1 2 3 18 1 4 2 2 1 1 10 5 14 3 1 3 1 1 1 2 1 1 14 16 12 31 Guttiferae Hypericaceae Icacinaceae Hydnocarpus sp,1 Hydnocarpus wodii Merrill Hydnocarpus wrayi King Ryparosa baccaureoides Sleum, Ryparosa caesia Kurz ex King Ryparosa sp, Calophyllum cf, lowii Planch, & Triana Calophyllum pulcherrimum Wall, Calophyllum sp, Calophyllum sp,1 Calophyllum venulosum Zoll, Garcinia bancana (Miq,) Miq, Garcinia celebica L, Garcinia gaudichaudii Planch, & Triana Garcinia nervosa Miq, Garcinia parvifolia Miq, Garcinia penangiana Pierre Garcinia sp, Garcinia sp,1 Garcinia sp,2 Kayea borneensis P, F, Stevens Kayea sp, 1 Mammea malayana Kosterm, Mammea sp, Mammea sp, 1 Mesua acuminata Kosterm Mesua borneensis P,F, Stevens Mesua conoidea Mesua sp, Cratoxylum arborescens Blume Cratoxylum formosum Benth, & Hook, f, ex Dyer Cratoxylum sumatranum Blume Gonocaryum gracile Gonocaryum sp, 1 3 8 3 1 1 2 1 1 1 1 1 3 2 1 1 1 2 2 2 3 2 1 5 1 5 1 3 2 4 3 3 7 4 9 1 1 1 1 1 1 1 9 3 1 5 3 1 1 2 1 1 243 1 1 6 8 4 1 1 4 2 5 1 2 2 3 2 2 8 3 22 3 3 9 1 1 1 1 1 9 4 8 1 2 2 1 1 Lauraceae Stemonurus grandifolius Becc, Stemonurus macrophyllus Blume Stemonurus scundiflorus Blume Stemonurus sp, Actinodaphne glabra Blume Actinodaphne glomerata Nees Actinodaphne sp, Actinodaphne sp,1 Actinodaphne sphaerocarpa (Bl,) Nees, Alseodaphne / Dehaasia Alseodaphne cf, elmerii Merill Alseodaphne sp, Beilschmiedia glabra Kosterm, Beilschmiedia lucida (Miq,) Kosterm, Beilschmiedia madang Blume Beilschmiedia rubescens Beilschmiedia sp,1 cf, Lauraceae cf, Litsea sp, Cinnamomum inners Reinw, Ex Blume Cinnamomum javanicum Blume Cinnamomum sp, Cryptocarya crassinervia Miq, Cryptocarya ferrea Blume Cryptocarya sp, Cryptocarya sp,1 Cryptocarya tomentosa Blume Dehaasia crassifolia Dehaasia elliptica Ridley Dehaasia firma Blume Dehaasia incrassata (Jack,) Kosterm, Dehaasia sp, Dehaasia sp,1 Dehaasia tomentosa Blume 5 4 1 1 1 5 11 2 1 9 5 2 3 1 1 1 3 2 1 1 12 5 3 1 5 1 1 2 2 4 1 2 2 1 1 6 3 1 2 11 1 2 4 4 1 2 2 244 1 6 5 15 12 2 5 2 3 1 1 1 22 1 1 3 1 5 1 1 5 4 2 7 5 4 1 11 1 2 4 4 1 2 2 Lecythidaceae Leeaceae Leguminosae Endiandra rubescens Blume ex Miq, Endiandra sp, Eusideroxylon zwageri Teijsm, & Binn, Lauraceae Litsea firma Hook, F, Litsea glauca Siebold Litsea lanceifolia Hook, f, Litsea lanceifolia var lanceifolia Litsea noronhae Blume Litsea oppositifolia L,S, Gibbs Litsea resinosa Blume Litsea robusta Blume Litsea sessilis Boerl, Litsea sp, Litsea sp, 1 Litsea urceolaris Phoebe elliptica Blume Phoebe grandis (Nees,) Merrill Barringtonia macrostachya Kurz Barringtonia sp, Leea indica (Burm,f,) Merr, Leea sp, Leea sp, 1 Archidendron havilandii (Ridl,) I,C,Nielsen Archidendron microcarpum (Bentham) I, Nielsen Archidendron sp, cf, Dialium Crudia teijsmannii de Wit Cynometra ramiflora Miq, Cynometra sp, Cynometra sp, 1 Dialium indum Linn Dialium kunstleri Prain Dialium patens Baker 3 2 1 1 1 2 3 2 1 1 4 2 1 1 1 1 4 1 3 1 1 1 1 6 2 5 1 1 9 2 8 2 1 2 1 1 3 1 3 1 1 1 2 1 1 3 2 2 21 2 245 3 5 4 4 1 4 2 1 2 2 2 1 6 17 5 1 1 1 11 2 1 3 1 1 3 5 1 2 1 1 2 5 21 2 Liliaceae Linaceae Loganiaceae Magnoliaceae Melastomataceae Dialium platysepalum Baker Dialium sp, Dialium sp, 1 Fordia splendidissima (Blume ex Miq,) J, R, M, Buijsen Koompassia excelsa Taub, Koompassia malaccensis Maing, Leguminosae Millettia atropurpurea Ormosia sumatrana Prain ex King Parkia speciosa Hassk, Saraca declinata Miq, Sindora leiocarpa Baker ex K,Heyne Sindora wallichii Benth, Pleomele elliptica Thunb, Ctenolophon parvifolius Oliver Ixonanthes sp, Fagraea racemosa Jack ex Wall, Elmerrillia mollis Dandy Elmerrillia tsiampacca (L,) Dandy Magnolia candollii (Blume) H, P, Nooteboom Magnolia gigantea Magnolia gigantifolia (Miq,) H, P, Nooteboom Magnolia lasia H, P, Noot,eboom Magnolia magnifica Magnolia sp, Melastoma malabathricum L, Melastoma polyanthum Benth, Memecylon edule Roxb, Memecylon laurinum Blume Memecylon myrsinoides Blume Memecylon paniculatum Jack Memecylon sp, Pternandra caerulescens Jack Pternandra cordifolia Cogn, 1 1 9 1 1 1 3 1 2 1 2 2 1 12 1 2 1 6 10 4 1 2 2 3 2 1 1 1 1 2 1 7 2 5 1 5 1 11 2 1 1 1 7 5 1 3 3 4 1 2 4 246 5 6 7 2 1 1 6 1 1 1 4 4 2 1 24 1 4 3 1 2 8 11 6 5 2 1 2 4 5 2 8 2 18 12 1 3 5 6 10 4 3 1 8 11 1 Meliaceae Moraceae Pternandra galeata Ridley Pternandra rostrata (Cogn,) M, P, Nayar Pternandra sp, Aglaia argentea Blume Aglaia crassinervia Kurz ex Hiern Aglaia elliptica Blume, Aglaia leptantha Miq, Aglaia leucophylla King Aglaia odoratissima Blume, Aglaia oligophylla Miq, Aglaia rubiginosa (Hiern,) C, M, Pannell Aglaia silvestris Merrill Aglaia simplicifolia Harms, Aglaia sp, Aglaia sp,1 Aglaia tomentosa Teijsm, & Binn, cf, Chisocheton Chisocheton ceramicus Miq, Chisocheton patens Blume Chisocheton pentandrus Merrill Chisocheton sp, Dysoxylum sp, Dysoxylum sp,1 Lansium domesticum Correa Lansium sp, Meliaceae Sandoricum beccarianum Sandoricum sp, Walsura pinnata Hassk Walsura sp, Walsura sp,1 Artocarpus sp, 1 Artocarpus elasticus Reinw Artocarpus integer Merrill 10 1 6 33 1 6 1 1 3 2 2 3 15 2 1 1 1 1 2 2 6 3 3 7 6 38 2 8 8 1 8 1 2 1 2 6 2 9 5 1 1 1 1 1 1 2 1 1 1 1 4 247 2 3 6 49 2 1 1 1 2 3 3 4 2 6 8 64 7 16 1 8 1 2 10 8 6 2 1 3 1 2 1 1 1 1 6 3 Myristicaceae Artocarpus kemando Miq, Artocarpus lanceifolius Roxb, Artocarpus nitidus Trec, Artocarpus sp, Artocarpus tamaran Becc, Ficus grossularioides Burm, f, Ficus obscura Blume Ficus sp, Ficus sp,1 Ficus uncinulata Corner Ficus variegata Blume Parartocarpus sp, Prainea limpato (Miq,) Beumee ex Heyne Prainea sp, Streblus elongatus Gymnacranthera contractaWarb, Gymnacranthera farquhariana Warb, Gymnacranthera sp, Gymnacranthera sp, 1 Horsfieldia crassifolia Warb, Horsfieldia glabra Warb, Horsfieldia grandis Warb, Horsfieldia sp, Horsfieldia sp, 1 Knema beccariana Knema cf, laurina Warb, Knema cinerea (Poir) Warb, var, cordata Knema cinerea (Poir,) Warb, var cinerea Knema furfuracea Warb, Knema galeata J, Sincl, Knema glauca Warb, Knema latericia Elmer Knema latifolia Warb, Knema laurina Warb, 17 1 5 1 7 23 3 1 2 1 25 10 3 7 3 32 15 17 1 18 14 2 1 1 1 1 4 1 2 1 3 2 6 4 5 3 1 1 1 6 51 6 2 17 248 29 4 2 6 5 1 2 1 1 59 1 6 7 1 73 37 18 2 1 2 1 2 1 4 1 2 1 2 6 7 8 1 1 1 6 80 10 2 6 7 1 20 Myrsinaceae Myrtaceae Knema membranifolia H, Winkler Knema sp, Knema sp,1 Myristica beccariana Myristica beccarii Warb, Myristica cf, inners Blume Myristica iners Blume Myristica maxima Warb, Myristica sp, Myristica sp,1 Myristica villosa Warb, Ardisia anisophylla Reinw, Ardisia gambleana Furt, Ardisia sp, Ardisia sp, 1 Ardisia teysmanianna Scheff, cf, Syzygium sp, Rhodamnia cinerea Jack, Syzygium bankense (Hassk,) Merrill & Perry Syzygium caudatilimbum (Merrill) Merrill & Perry Syzygium cf, chloranthum (Duthie) Merrill & Perry Syzygium chloranthum (Duthie) Merrill & Perry Syzygium confertum (Korth,) Merrill & Perry Syzygium creaghii (Ridley) Merrill & Perry Syzygium ochneocarpum (Merrill) Merrill & Perry Syzygium perpuncticulatum (Merril) Merrill & Perryl Syzygium prasiniflorum (Ridley) Merrill & Perry Syzygium pterophorum Merill & Perry Syzygium sp, Syzygium sp, 3 Syzygium sp, 4 Syzygium sp,1 Syzygium sp,2 Syzygium stictophyllum Merrill & Perry 1 19 1 5 4 1 12 6 1 2 4 1 2 21 4 1 4 2 2 43 1 1 1 2 44 1 1 6 2 2 6 11 1 28 1 3 2 5 93 9 1 16 15 2 34 1 20 249 25 7 3 17 1 36 1 107 5 4 1 1 20 1 5 4 1 2 22 9 2 2 6 1 3 4 5 95 15 1 27 15 2 1 115 1 1 25 7 23 N/A Ochnaceae Olacaceae Oleaceae Piperaceae Polygalaceae Proteaceae Tristaniopsis whiteana (Griff,) P, G, Wilson & J, T, Waterhouse Indet 1 Indet 2 Indet 3 Gomphia serrata (Gaertn,) Kanis Anacolosa frutescens (Blume) Blume Ochanostachys amentacea Mast, Strombosia sp, Chionanthus cuspidatus Blume Chionanthus olingathus (Merrill) R, Kiew Chionanthus pluriflorus (Knobl,) R,Kiew, Chionanthus pubicalyx (Ridl,) R, Kiew Chionanthus sp, Chionanthus sp, 1 Piper sp, cf, Xanthophyllum sp, Xanthophyllum affine Korth, ex, Miq, Xanthophyllum cf, affine Korth, ex Miq, Xanthophyllum discolor Chodat Xanthophyllum flavescens Roxb, Xanthophyllum heterophyllum Meijden Xanthophyllum hypoleucum Merrill Xanthophyllum obscurum A,W, Benn, Xanthophyllum parvum Chod, Xanthophyllum rufum A,W, Benn, Xanthophyllum sp, Xanthophyllum sp, 1 Xanthophyllum sp, 2 Xanthophyllum sp, 3 Xanthophyllum stapfii Chod, Xanthophyllum vitellinum (Blume) D,Dietr, cf, Heliciopsis sp, Helicia petiolaris Benn, 1 1 1 1 2 1 1 3 4 1 6 3 1 1 1 5 3 3 4 1 3 1 1 1 3 22 3 1 3 6 4 3 1 1 1 2 1 16 9 23 5 1 3 11 6 1 11 1 1 3 1 1 250 1 2 2 1 3 1 5 1 5 10 4 10 29 3 1 3 9 4 1 1 1 2 1 21 9 46 9 1 1 1 3 1 2 Rhamnaceae Rhizoporaceae Rosaceae Rubiaceae Helicia sp, Heliciopsis artocarpoides (Elmer) Sleumer Ziziphus sp, Anisophyllea corneri Ding Hou Anisophyllea disticha Baill, Anisophyllea sp, 1 Anisophyllea sp, 2 Gynotroches axilaris Blume cf, Prunus sp, Parinari sp, Prunus sp, Anthocephalus chinensis Walp, Gaertnera vaginans (Blume) Merr, Gardenia sp, Gardenia tubifera Wall, Hypobathrum sp, Ixora brachyantha Merrill Ixora pseudojavanica Brem, Ixora sp, Ixora sp, 1 Ixora stenophylla (Korth,) Kuntz Jackiopsis ornata (Wall,) C, E, Risdale Lasianthus borneensis Merrill Lasianthus sp, Lasianthus sp, 1 Maclurodendron porteri (Hook, f,) T, G, Hartley Nauclea sp, Pleiocarpidia polyneura (Miq,) Bremek Pleiocarpidia sp, Porterandia anisophylla (Jack ex Roxb,) Ridley Praravinia megistocalyx Brem, Prismatomeris beccariana (Baill,) Johans Rothmannia sp, Rubiaceae 1 1 2 6 1 7 2 1 6 1 1 2 3 1 2 6 5 3 4 1 1 1 1 1 7 10 3 5 33 17 2 2 2 2 1 1 1 2 4 4 2 1 1 2 1 2 1 1 4 1 1 251 5 1 3 6 1 7 2 1 6 1 1 9 12 1 5 2 2 12 10 6 1 50 2 2 6 2 1 4 3 1 3 1 3 1 10 Rutaceae Sabiaceae Santalaceae Sapindaceae Tarenna sp, Tarenna winkleri Val, Timonius borneensis Valet, Timonius flavescens (Jack) Baker Timonius hirsutus Merrill Timonius sp, Timonius stipularis Tricalysia malaccensis Merrill Tricalysia singularis K, Schum, Urophyllum corymbosum Korth, Urophyllum macrophyllum Korth, Urophyllum sp, Urophyllum sp, 1 Urophyllum trifurcum Pearson ex King Wendlandia sp, 1 Citrus sp, Melicope sp, cf, Meliosma Meliosma nitida Blume Meliosma sp, Scleropyrum wallichianum A, Arn, Dimocarpus dentatus W, Meijer ex Leenhouts Ganophyllum falcatum Blume Lepisanthes alata (Blume) Leenh, Lepisanthes amoena (Hassk,) Leenh, Lepisanthes tetraphylla (Vahl,) Radlk, Mischocarpus sp, Nephelium cuspidatum Blume Nephelium lappaceum L, Nephelium mutabile Blume Nephelium sp, Nephelium sp,1 Nephelium uncinatum Radlk, Paranephelium nitidum King 1 1 1 1 2 2 1 29 37 10 6 4 12 2 7 1 1 4 4 1 3 1 2 1 1 1 1 2 10 2 1 1 1 3 2 3 8 4 15 4 4 2 5 252 1 29 1 8 16 2 2 1 1 1 1 2 12 1 2 4 33 37 29 2 1 3 1 2 1 1 2 2 15 2 1 1 1 15 15 4 4 33 1 16 16 Sapotaceae Scrophulariaceae Pometia pinnata G,Forst, Sapindaceae Xerospermum noronhianum Blume Ganua Ganua motleyana Madhuca beccariana Madhuca borneensis van, Royen Madhuca cf, prolixa (Pierre ex Dubard) P,C,Yii & P, Chai Madhuca elmeri Merr, Madhuca erythrophylla H, J, Lam Madhuca magnifica S, Moore Madhuca mindanaensis Merrill Madhuca motleyana (de Vriese) Baehni Madhuca prolixa (Pierre ex Dubard) P,C, Yii & P, Chai Madhuca sp, Madhuca sp, 2 Madhuca sp,1 Palaquium beccarianum Palaquium calophyllum Pierre ex Burck Palaquium cf, sericeum H, J, Lam Palaquium chrysophyllum Palaquium dasyphyllum Pierre ex Dubard, Palaquium gutta Burck Palaquium leiocarpum Boerl, Palaquium obovatum Engl, Palaquium quercifolium Burck Palaquium rostratum Burck Palaquium sericeum H, J, Lam Palaquium sp, Palaquium sp,1 Palaquium stenophyllum H, J, Lam Pouteria malaccensis (C, B, Clarke) Baehni Bacopa tomentosa 2 2 4 1 1 1 1 1 2 1 1 49 6 14 1 5 5 1 1 2 4 13 1 5 1 2 11 4 8 5 6 1 2 8 6 5 6 2 15 5 5 253 2 9 3 6 2 1 1 1 1 1 2 1 1 49 1 3 6 36 1 5 1 5 1 2 11 4 8 2 13 14 9 9 6 17 5 5 Simaroubaceae Sterculiaceae Styracaceae Symplocaceae Theaceae Thymelaeaceae Eurycoma longifolia Jack Irvingia malayana Oliver Byttneria sp, Heritiera elata Ridley Heritiera sp, Heritiera sumatrana (Miq,) Kosterm, Leptonychia heteroclita K, Schum, Pterospermum javanicum Jungh, Scaphium macropodum Beume ex K, Heyne Sterculia coccinea Jack Sterculia oblongifolia A, Cheval, Sterculia rubiginosa Vent, Sterculia sp, Sterculia sp,1 Sterculia stipulata Korth, Bruinsmia sp, Symplocos Symplocos cochinchinensis S, Moore Symplocos crassipes C, B,Clarke Symplocos rubiginosa Wall ex A, DC, Symplocos sp, Symplocos sp, 1 Symplocos sp, 2 Adinandra borneensis Kobuski Adinandra sp, cf, Theaceae Pyrenaria sp, Ternstroemia aneura Miq, Tetramerista glabra Miq, Theaceae Aquilaria beccariana van Tiegh, Aquilaria malaccensis Lam, Aquilaria sp Gonystylus affinis Radlk, 2 1 1 6 1 1 20 12 1 2 2 1 1 5 1 3 6 1 16 1 13 2 5 2 8 4 2 2 2 1 4 3 1 3 1 2 3 1 5 1 1 1 1 1 2 1 2 1 20 1 1 1 1 1 1 1 4 1 2 2 4 254 3 1 6 2 1 28 1 1 47 2 2 13 5 10 2 1 4 2 3 2 7 1 1 22 7 1 5 1 1 1 4 7 1 4 Tiliaceae Trigoniaceae Ulmaceae Urticaceae Verbenaceae Gonystylus brunnescens Airy Shaw Gonystylus sp Brownlowia peltata Benth, Grewia paniculata Roxb, Grewia sp, Microcos cinnamomifolia (Burret) Stapf ex P,S,Ashton Microcos crassifolia Burret Microcos sp, Microcos tomentosa Sm, Pentace borneensis Pierre Pentace erectinervia Kosterm, Pentace laxiflora Merrill Pentace sp, Pentace triptera Mast, Tiliaceae Trigoniastrum hypoleucum Miq, Trigoniastrum sp, Gironniera nervosa Planch, Dendrocnide sp, Dendrocnide stimulans (Lf,) Chew Laportea lanceolata Laportea lanceolata (Engl,) Chew Urticaceae 1 Urticaceae 2 Clerodendrum sp, Geunsia pentandra Merrill Teijsmanniodendron bogoriense Koord, Teijsmanniodendron coriaceum (C,B, Clarke) Kosterm Teijsmanniodendron scaberrimum Kosterm, Teijsmanniodendron simplicifolium Merrill, Teijsmanniodendron simplicioides Kosterm, Teijsmanniodendron sp, Teijsmanniodendron sp,1 Vitex gamosephala Griff, 1 1 6 2 1 2 7 1 1 2 4 24 4 3 1 2 2 3 1 4 1 3 6 5 1 1 3 7 2 5 2 3 1 5 1 2 1 4 1 2 10 1 1 4 2 6 15 2 1 255 25 4 4 4 7 8 1 3 16 1 1 6 4 1 14 24 6 6 4 2 1 4 1 17 12 1 1 4 2 3 1 5 3 27 6 19 4 14 7 1 Vitex sp, Vitex vestita Moldenke Number of saplings/0.2 Ha Number of species/0.2 Ha #N/A 2565 2553 4 7 1609 351 462 270 Dead saplings 3 256 1153 4 7 7880 207 802 3 Appendix 4. Sapling species composition in 1-ha plot of primary and logged lowland forests in the Bulungan Resarch Forest-CIFOR East Kalimantan. Family Species Name PF LF-5 1 Actinidiaceae Alangiaceae Anacardiaceae Saurauia sp, Saurauia sp,1 Saurauia subcordata Korth, Alangium javanicum (Blume) Wangerin Alangium sp, Buchanania arborescens F, Muell, Buchanania sessifolia Blume Buchanania sp, Campnosperma auriculatum Hook, f, Campnosperma malayanum cf, Buchanania Dracontomelon dao Merrill & Rolfe Drimycarpus luridus (Hook,f,) Ding Hou 2 3 4 LF-10 1 2 3 4 LF-30 1 1 2 2 1 1 2 3 1 1 4 1 Total 1 2 5 3 2 4 1 1 1 1 1 1 3 3 5 2 4 2 1 1 3 1 2 1 1 1 1 1 1 257 1 1 1 2 12 1 1 7 3 6 17 1 6 1 1 2 3 Annonaceae Drimycarpus sp, Gluta wallichii (Hook, f,) Ding Hou Koordersiodendron pinnatum Merrill Mangifera magnifica K, M, Kochummen Mangifera sp, Mangifera sp, 1 Mangifera swintonioides Kosterm Mangifera torquenda A, J, G, H, Kosterm Melanochyla (duri) Melanochyla elmeri Merrill Melanochyla fulvinervia (Blume) Ding Hou Melanochyla sp, Semecarpus burburyanus Gibbs Semecarpus sp, 1 Swintonia glauca Engl, cf, Popowia sp, Cyathocalyx bancanus Boerl, Cyathocalyx carinatus (Ridley) J,Sincl, Cyathocalyx sp, Cyathocalyx sp, 1 Goniothalamus cf, macrophyllus (Blume) Hook, f, & Thomson Goniothalamus macrophyllus (Blume) Hook, f, & Thomson Goniothalamus malayanus Hook,f, & Thomson Goniothalamus parallelovenius Ridley Goniothalamus sp, Goniothalamus sp,1 Mezzettia parviflora Becc, Mitrephora korthalsiana Miq, Mitrephora sp, Mitrephora sp, 1 Neouvaria Orophea sp, 1 5 1 2 3 1 10 5 13 1 6 4 29 2 4 3 2 1 1 1 6 3 10 3 1 1 1 3 1 1 1 1 4 1 1 1 1 1 2 2 3 2 2 2 2 1 1 3 1 4 2 1 1 1 2 2 3 2 6 1 1 1 2 1 5 3 1 1 258 1 1 1 2 1 1 87 3 1 1 1 25 3 1 1 1 9 10 2 2 3 1 3 1 4 2 1 8 1 6 1 2 1 1 1 Apocynaceae Aquifoliaceae Bombacaceae Polyalthia cauliflora Hook,f, & Thomson Polyalthia cf, rumphii Merrill Polyalthia lateriflora King Polyalthia microtus Miq, Polyalthia rumphii Merrill Polyalthia sp, Polyalthia sp,1 Polyalthia sumatrana (Miq,) Kurz Popowia hirta Miq, Popowia pisocarpa (Blume) Endl, Popowia sp, Pseuduvaria reticulata Miq, Pseuduvaria rugosa (Blume) Merrill Sageraea elliptica Hook, f, & Thomson Sageraea lanceolata Miq, Sageraea sp, Uvaria sp, Xylopia caudata Hook, f, & Thomson Xylopia ferruginea Baill, Xylopia malayana Hook,f, & Thomson Xylopia sp, 1 Xylopia sp, 2 Alstonia angustifolia Wall, Alstonia iwahigensis Elmer Alstonia scholaris (L,) R,Br, Kibatalia maingayi (Hook, f,) R, E, Woodson Kibatalia sp, Tabernaemontana macrocarpa Korth, ex Blume cf, Ilex Ilex cymosa Blume Coelostegia sp, Durio cf, kutejensis Becc, Durio dulcis Becc, 13 1 1 1 3 14 1 11 2 1 1 1 1 2 6 5 14 2 2 1 1 2 2 4 2 2 2 3 1 1 1 17 1 3 1 3 3 2 1 2 1 1 4 2 1 1 2 1 1 1 1 1 3 1 1 1 2 2 1 6 2 3 1 1 1 1 2 1 6 3 1 1 1 2 1 1 1 1 1 1 1 1 259 50 1 5 1 5 47 1 33 1 3 3 1 1 1 5 1 1 6 3 2 8 13 1 1 1 2 1 1 1 2 1 1 1 Burseraceae Celastraceae Durio griffithii Bakh, Durio kutejensis Becc, Durio lanceolatus Mast, Durio oxleyanus Griff, Durio sp, Neesia altissima Blume Neesia synandra Mast, Canarium costata (Benn,) H,J, Lam Canarium littorale Blume Canarium odontophyllum Miq, Canarium pillosum A, W, Benn, Canarium sp, Canarium sp,1 cf, Canarium sp, Dacryodes costata (A,W,Benn,) H,J, Lam Dacryodes crassipes Kalkman Dacryodes incurvata (Engl,) H, J, Lam Dacryodes laxa (A, W, Benn,) H, J, Lam Dacryodes rostrata (Blume) H, J, Lam forma pubescens Dacryodes rubiginosa (A, W, Benn,) H, J, Lam Dacryodes rugosa (Blume) H,J, Lam Dacryodes sp, Santiria apiculata A,W,Benn, Santiria griffithii Engl, Santiria laevigata Blume var, laevigata Santiria oblongifolia Blume Santiria rubiginosa Blume Santiria sp, Santiria tomentosa Blume Bhesa paniculata Arn, Euonymus Kokoona beccarii 1 1 1 1 1 2 3 1 1 1 1 1 2 1 1 2 1 7 1 3 5 1 2 2 1 1 2 3 1 1 1 1 1 1 1 1 1 6 2 1 1 4 3 1 5 1 1 11 3 10 10 1 3 1 6 2 1 18 18 9 1 2 1 1 8 1 7 2 6 7 3 1 2 2 1 2 9 1 4 3 17 4 1 1 4 2 1 1 3 1 1 4 3 2 1 1 1 1 2 1 2 5 1 1 3 260 1 4 6 1 5 1 5 1 7 1 4 18 4 1 37 4 26 6 90 1 3 4 58 2 1 3 1 1 3 6 7 1 1 3 Chrysobalanaceae Connaraceae Convolvulaceae Cornaceae Dilleniaceae Dipterocarpaceae Kokoona littoralis M, A, Laws, Kokoona sp, Kokoona subobovata Lophopetalum beccarianum Pierre Lophopetalum cf, beccarianum Pierre Lophopetalum sp, Salacia sp, Siphonodon celastrineus Griff, Atuna excelsa (Jack) Kosterm, Atuna racemosa Rafin, Parastemon urophyllus A, X, Parinari oblongifolia Hook,f, Ellipanthus tomentosus Kurz Erycibe glomerata Blume Erycibe sp, Mastixia rostrata Blume Mastixia sp, Mastixia trichotoma Blume Dillenia excelsa Martelli Dillenia eximia Miq, Dillenia pentagyna Roxb, Dillenia sp, Dillenia suffruticosa (Griff,) Martelli Anisoptera costata Korth, Dipterocarpus crinitus Dyer Dipterocarpus elongatus Korth, Dipterocarpus eurynchus Miq, Dipterocarpus humeratus van Slooten Dipterocarpus lowii Hook, f, Dipterocarpus pachyphyllus Meyer Dipterocarpus sp, Dipterocarpus stellatus Vesque Dryobalanops elliptica Dryobalanops lanceolata Burck 5 1 1 59 13 1 4 1 1 2 23 40 1 3 1 1 1 3 1 2 3 1 1 1 4 1 1 1 1 1 1 1 1 2 1 1 6 1 3 2 3 5 2 3 1 2 1 13 2 1 2 7 7 5 12 1 1 1 2 1 6 1 2 8 2 2 3 3 4 6 1 3 1 261 6 38 4 5 5 1 6 3 2 5 1 1 64 13 67 1 1 4 2 2 4 9 7 1 2 1 3 22 5 13 2 1 3 2 7 32 2 8 3 21 12 1 60 Hopea cernua Teijsm, & Binn, Hopea cf, cernua Teijsm, & Binn, Hopea cf, rudiformis P,S, Ashton Hopea dryobalanoides Miq, Hopea ferruginea Parijs Hopea mengerawan Miq, Hopea sp, Parashorea malaanonan Merrill Parashorea parvifolia Wyatt-Smith ex P, S, Ashton Parashorea sp, Shorea agami P, S, Ashton Shorea angustifolia P, S, Ashton Shorea atrinervosa Symington Shorea beccarii Dyer ex Brandis Shorea bracteolata Dyer, Shorea cf, johorensis Foxworthy Shorea cf, lamellata Foxworthy Shorea cf, macroptera Dyer Shorea cf, maxwelliana King Shorea cf, obovoidea van Slooten Shorea cf, ovalis Blume Shorea cf, pinanga Scheff, Shorea fallax Meijer Shorea hopeifolia (Heim) Symington Shorea inappendiculata Burck Shorea johorensis Foxworthy Shorea leprosula Miq, Shorea macrocarpa Shorea macroptera Dyer Shorea maingayi Shorea maxwelliana King Shorea multiflora (Burck) Symington Shorea ochracea Symington 19 1 7 43 39 1 29 1 1 1 4 3 1 8 94 3 55 1 8 1 1 4 8 6 6 3 45 2 1 2 10 17 1 4 22 4 10 60 3 2 7 8 8 2 1 4 1 3 1 1 3 1 1 1 1 3 3 3 3 4 3 21 5 2 1 2 1 2 8 2 2 8 1 5 9 2 1 2 3 2 1 21 4 1 12 10 38 6 1 1 1 16 1 6 1 2 4 4 1 14 1 9 2 3 2 1 1 262 1 1 10 4 4 1 19 1 1 158 251 5 7 78 1 3 18 31 5 41 2 1 2 1 2 8 2 2 10 13 7 36 10 2 106 1 10 21 2 Ebenaceae Shorea ovalis Blume Shorea parvifolia Dyer Shorea parvistipulata Heim Shorea patoiensis P, S, Ashton Shorea pauciflora King Shorea peltata Symington Shorea pinanga Scheff, Shorea sp, Shorea sp, 2 Shorea sp,1 Shorea sp,3 Shorea venulosa G, H, S, Wood ex Meijer Shorea xanthophylla Symington Vatica albiramis v, Slooten Vatica cf, oblongifolia Hook, f, Vatica granulata v, Slooten Vatica micrantha v, Slooten Vatica oblongifolia Hook,f, Vatica rassak Blume Vatica sp, Vatica sp, 1 Vatica umbonata Burck Vatica vinosa P,S, Ashton cf, Diospyros Diospyros borneensis Hiern Diospyros buxifolia Hiern Diospyros cf, laevis Boj, ex A, DC, Diospyros cf, sumatrana Miq, Diospyros curraniopsis Bakh, Diospyros elliptifolia Merrill Diospyros foxworthyii Bakh, Diospyros frutescens Blume Diospyros oblonga Wall, Diospyros pilosanthera Blanco var,oblonga 22 5 7 6 39 2 29 1 21 2 6 3 10 9 51 87 10 18 2 2 5 1 4 18 12 10 6 2 1 4 6 13 11 27 1 1 8 1 1 6 5 6 13 23 39 10 2 7 54 68 36 7 1 29 3 1 1 3 1 3 6 3 1 1 1 3 20 1 2 14 5 3 11 1 7 2 64 3 2 2 3 1 16 2 1 1 4 16 2 2 2 1 1 12 9 1 67 3 1 1 1 1 1 9 1 1 2 1 1 1 3 2 2 1 8 1 1 263 1 2 2 1 5 2 5 7 1 2 1 15 304 20 5 45 13 33 74 18 37 24 1 49 57 1 307 5 15 4 6 1 40 10 2 12 16 1 1 1 5 8 5 2 9 Elaeocarpaceae Euphorbiaceae Diospyros sp, Diospyros sp, 4 Diospyros sp, 6 Diospyros sp,1 Diospyros sp,2 Diospyros sp,3 Diospyros sp,5 Diospyros sumatrana Miq, Diospyros wallichii King ex Gamble Elaeocarpus pedunculatus Wall, Elaeocarpus sp, Sloanea sp, Agrostistachys longifolia Antidesma coriaceum Tul, Antidesma grandistipulum Merrill Antidesma neurocarpum Miq, Antidesma sp, Antidesma sp, 1 Antidesma tomentosum Blume Aporosa antennifera (Airy Shaw) Airy Shaw Aporosa bakonensis Aporosa confusa Gage Aporosa elmeri Merril, Aporosa falcifera Hook, f, Aporosa grandistipula Merrill Aporosa lucida (Miq,) Airy Shaw Aporosa nitida Merrill Aporosa prainiana King ex Gage Aporosa sp, Aporosa sp, 1 Aporosa subcaudata Merrill Baccaurea angulata Merrill Baccaurea cf, sumatrana Muell, Arg, Baccaurea edulis Merrill 6 1 5 5 6 1 4 1 16 1 1 1 3 1 4 3 3 6 9 6 4 27 8 1 2 1 42 1 4 1 1 5 4 5 1 2 2 2 7 1 1 1 1 2 4 1 1 8 3 11 13 1 1 1 2 1 2 1 1 1 1 1 1 1 1 2 1 1 1 4 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 4 1 2 5 3 3 1 1 8 2 2 3 3 3 1 1 3 3 4 1 1 2 4 1 264 2 11 2 3 1 1 5 107 1 1 8 7 4 3 70 2 1 2 3 4 1 1 36 5 3 8 1 1 1 5 5 3 7 17 15 16 4 23 10 1 6 Baccaurea javanica Muell, Arg, Baccaurea kunstleri King ex Gage Baccaurea macrocarpa Muell, Arg, Baccaurea minor Hook, f, Baccaurea minutiflora Muell, Arg, Baccaurea pubera Muell, Arg, Baccaurea sp, Baccaurea sp,1 Baccaurea stipulata J, J, Smith Baccaurea sumatrana Muell, Arg, Baccaurea tetandra Muell, Arg, Blumeodendron cf, tokbrai Kurz Blumeodendron sp, Bridelia glauca Blume Cephalomappa beccariana Baill, Cephalomappa lepidotula Airy Shaw Cephalomappa sp, cf, Cleistanthus sp, Chaethocarpus castanocarpus Thw, Claoxylon sp, Cleistanthus bakonensis Airy Shaw Cleistanthus glaucus Cleistanthus myrianthus (Hassk,) Kurz Cleistanthus sp, Cleistanthus sp,1 Cleistanthus sp,2 Coccoceras borneense J, J, Smith, Coccoceras sp, Croton argyratus Blume Croton sp, Croton sp,1 Dimorphocalyx muricatus (Hook,f,) Airy Shaw Drypetes kikir Airy Shaw 1 5 1 1 1 3 2 4 1 1 1 2 3 1 13 2 3 3 2 1 1 4 1 3 6 3 8 2 5 1 2 1 3 1 2 14 1 2 1 1 1 1 2 1 7 5 1 1 1 2 2 1 1 1 3 5 2 1 1 1 2 1 3 1 1 1 2 1 5 4 1 2 5 2 4 1 43 12 2 1 1 17 1 265 1 9 2 4 8 2 3 31 1 21 23 2 5 4 2 1 12 3 2 4 1 4 1 11 18 8 2 4 1 43 14 1 18 2 Drypetes laevis Pax et Hoffm, Drypetes longifolia Pax & K, Hoffm, Drypetes oblongifolia (Bedd,) Airy Shaw Drypetes polyneura Airy Shaw Drypetes sp, Drypetes sp,1 Elateriospermum tapos Blume Endospermum diadenum (Miq,) Airy Shaw Galearia fulva (Tul,) miq, Glochidion arborescens Blume Glochidion borneensis Boerl, Glochidion obscurum Blume Glochidion rubrum Blume Glochidion sericeum Zoll, & Mor, Glochidion sp, Glochidion superbum Baill, Koilodepas brevipes Merr, Macaranga bancana Muell, Arg, Macaranga beccariana Merrill Macaranga cf, depressa (Muell, Arg,) Muell, Arg, Macaranga cf, lamellata Whitmore Macaranga conifera (Zoll,) Muell, Arg, Macaranga gigantea Muell, Arg, Macaranga hypoleuca Muell, Arg, Macaranga lowii King ex Hook,f, Macaranga motleyana Muell, Arg, Macaranga pearsonii Merrill Macaranga pruinosa Muell, Arg, Macaranga repando-dentata Airy Shaw Macaranga sp, Macaranga sp, 1 Macaranga winkleri Pax & K, Hoffm, Mallotus cf, griffithianus (Muell, Arg,) Hook, 2 3 1 1 1 1 2 2 3 1 1 1 1 2 2 1 3 4 6 10 6 1 1 1 1 3 4 6 1 1 2 4 1 3 1 15 7 39 23 2 7 2 1 4 10 3 4 1 12 1 32 1 1 1 11 3 8 4 18 5 17 4 18 38 6 6 8 1 3 1 2 4 4 5 9 5 7 1 3 2 1 1 5 1 4 5 1 3 22 1 7 5 10 1 4 2 1 8 3 7 1 2 3 4 7 16 1 1 1 266 14 2 2 12 1 2 2 5 1 8 5 5 1 30 1 1 2 13 6 2 3 30 1 174 72 5 17 2 5 23 38 23 14 22 24 19 11 17 11 15 Fagaceae f, Mallotus dispar (Blume,) Muell, Arg, Mallotus eucaustus Airy Shaw Mallotus griffthianus Hook, f, Mallotus korthalsii Muell, Arg, Mallotus macrostachyus Muell, Arg, Mallotus moritzianus Muell, Arg, Mallotus muticus (Muell, Arg,) Airy Shaw Mallotus penangensis Muell, Arg, Mallotus repandus Muell, Arg, Mallotus sp, Mallotus sp, 1 Moultonianthus leembruggianus (Boerl, & Koord,) Steenis Neoscortechinia kingii Pax & K, Hoffm, Paracroton pendulus Miq, Phyllanthus acida Phyllanthus emblica Linn, Pimelodendron griffithianum (Muell, Arg,) Hook, f, Ptychophyxsis Ptychopyxis bacciformis Croizat Ptychopyxis cf, arborea (Merr,) Airy Shaw Ptychopyxis sp, Ptychopyxis sp, 1 Trigonopleura malayana Hook, f, Trigonostemon anomalus Merr, Trigonostemon elmeri Merr, Trigonostemon sp, Trigonostemon sp, 1 Castanopsis motleyana King Castanopsis sp, Lithocarpus sp, Lithocarpus cantleyanus Rehder 3 30 9 3 52 11 2 3 132 13 32 4 1 3 1 13 11 2 1 2 83 41 5 4 2 12 1 1 9 2 3 1 1 2 1 2 1 1 3 3 3 1 1 2 1 1 3 1 1 1 1 1 2 4 1 1 1 3 1 1 1 1 1 1 1 1 7 1 1 1 1 2 1 1 2 1 1 2 1 16 1 2 1 1 2 2 2 2 267 1 11 1 2 10 1 2 1 12 4 2 1 2 3 18 1 4 2 2 Flacourtiaceae Guttiferae Lithocarpus cf, leptogyne (Korth,) Soepadmo Lithocarpus ewyckii Rehder Lithocarpus gracilis (Korth,) Soepadmo Lithocarpus nieuwenhuisii (Seem) A, Camus Lithocarpus sp, 3 Lithocarpus sp,1 Lithocarpus sp,2 Lithocarpus urceolaris (Jack) Merrill Quercus argentata Korth, Quercus sp, cf, Hydnocarpus sp, Flacourtia rukam Zoll, & Mor, Flacourtiaceae Homalium grandiflorum Benth, Hydnocarpus borneensis Sleumer Hydnocarpus kuenstleri Warb, Hydnocarpus polypetalus (v,Slooten) Sleum, Hydnocarpus sp, Hydnocarpus sp,1 Hydnocarpus wodii Merrill Hydnocarpus wrayi King Ryparosa baccaureoides Sleum, Ryparosa caesia Kurz ex King Ryparosa sp, Calophyllum cf, lowii Planch, & Triana Calophyllum pulcherrimum Wall, Calophyllum sp, Calophyllum sp,1 Calophyllum venulosum Zoll, Garcinia bancana (Miq,) Miq, Garcinia celebica L, Garcinia gaudichaudii Planch, & Triana Garcinia nervosa Miq, Garcinia parvifolia Miq, 1 3 1 4 1 2 1 1 1 1 1 4 2 1 3 1 4 2 1 1 1 2 1 1 1 1 1 1 2 1 3 1 1 2 2 1 4 8 2 5 3 12 7 11 1 2 1 3 6 1 1 1 2 3 1 1 1 1 1 1 1 1 1 3 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 2 2 268 1 1 1 1 1 10 5 14 3 1 3 1 1 1 2 1 1 14 16 12 31 1 6 8 4 1 1 4 2 5 1 2 2 3 2 2 8 Hypericaceae Icacinaceae Lauraceae Garcinia penangiana Pierre Garcinia sp, Garcinia sp,1 Garcinia sp,2 Kayea borneensis P, F, Stevens Kayea sp, 1 Mammea malayana Kosterm, Mammea sp, Mammea sp, 1 Mesua acuminata Kosterm Mesua borneensis P,F, Stevens Mesua conoidea Mesua sp, Cratoxylum arborescens Blume Cratoxylum formosum Benth, & Hook, f, ex Dyer Cratoxylum sumatranum Blume Gonocaryum gracile Gonocaryum sp, 1 Stemonurus grandifolius Becc, Stemonurus macrophyllus Blume Stemonurus scundiflorus Blume Stemonurus sp, Actinodaphne glabra Blume Actinodaphne glomerata Nees Actinodaphne sp, Actinodaphne sp,1 Actinodaphne sphaerocarpa (Bl,) Nees, Alseodaphne / Dehaasia Alseodaphne cf, elmerii Merill Alseodaphne sp, Beilschmiedia glabra Kosterm, Beilschmiedia lucida (Miq,) Kosterm, Beilschmiedia madang Blume 1 2 3 2 1 2 1 1 3 1 2 1 1 2 6 4 1 1 2 2 1 1 1 1 1 1 1 1 1 1 2 7 1 2 4 1 1 1 1 2 1 1 1 1 4 3 4 1 1 1 3 7 1 1 1 1 3 1 3 2 4 2 1 2 2 3 1 1 1 2 1 1 1 1 1 1 3 269 5 6 2 3 22 3 3 9 1 1 1 1 1 9 4 8 1 2 2 1 1 6 5 15 12 2 5 2 3 1 1 1 22 1 1 3 Beilschmiedia rubescens Beilschmiedia sp,1 cf, Lauraceae cf, Litsea sp, Cinnamomum inners Reinw, Ex Blume Cinnamomum javanicum Blume Cinnamomum sp, Cryptocarya crassinervia Miq, Cryptocarya ferrea Blume Cryptocarya sp, Cryptocarya sp,1 Cryptocarya tomentosa Blume Dehaasia crassifolia Dehaasia elliptica Ridley Dehaasia firma Blume Dehaasia incrassata (Jack,) Kosterm, Dehaasia sp, Dehaasia sp,1 Dehaasia tomentosa Blume Endiandra rubescens Blume ex Miq, Endiandra sp, Eusideroxylon zwageri Teijsm, & Binn, Lauraceae Litsea firma Hook, F, Litsea glauca Siebold Litsea lanceifolia Hook, f, Litsea lanceifolia var lanceifolia Litsea noronhae Blume Litsea oppositifolia L,S, Gibbs Litsea resinosa Blume Litsea robusta Blume Litsea sessilis Boerl, Litsea sp, Litsea sp, 1 2 1 1 1 1 1 1 2 1 2 3 1 1 2 2 1 4 1 1 2 1 2 1 1 1 2 1 1 10 1 1 1 1 1 2 3 2 1 2 2 3 2 1 1 1 1 1 1 1 4 2 1 1 1 1 1 1 2 1 1 2 1 270 1 1 4 1 1 3 1 1 7 1 2 1 5 1 1 5 4 2 7 5 4 1 11 1 2 4 4 1 2 2 3 5 4 4 1 4 2 1 2 2 2 1 6 17 5 Lecythidaceae Leeaceae Leguminosae Litsea urceolaris Phoebe elliptica Blume Phoebe grandis (Nees,) Merrill Barringtonia macrostachya Kurz Barringtonia sp, Leea indica (Burm,f,) Merr, Leea sp, Leea sp, 1 Archidendron havilandii (Ridl,) I,C,Nielsen Archidendron microcarpum (Bentham) I, Nielsen Archidendron sp, cf, Dialium Crudia teijsmannii de Wit Cynometra ramiflora Miq, Cynometra sp, Cynometra sp, 1 Dialium indum Linn Dialium kunstleri Prain Dialium patens Baker Dialium platysepalum Baker Dialium sp, Dialium sp, 1 Fordia splendidissima (Blume ex Miq,) J, R, M, Buijsen Koompassia excelsa Taub, Koompassia malaccensis Maing, Leguminosae Millettia atropurpurea Ormosia sumatrana Prain ex King Parkia speciosa Hassk, Saraca declinata Miq, Sindora leiocarpa Baker ex K,Heyne Sindora wallichii Benth, 1 1 1 1 11 2 1 3 1 1 3 1 1 2 1 1 6 1 2 1 2 1 1 1 1 2 1 3 1 1 2 1 1 1 2 1 1 2 2 12 7 2 1 1 2 1 1 1 8 1 3 1 1 1 2 9 1 1 2 1 1 1 2 2 1 1 2 1 1 10 4 1 1 1 3 271 1 1 5 1 2 1 1 2 5 21 2 4 2 1 24 1 4 3 1 2 8 11 6 5 Liliaceae Linaceae Loganiaceae Magnoliaceae Melastomataceae Meliaceae Pleomele elliptica Thunb, Ctenolophon parvifolius Oliver Ixonanthes sp, Fagraea racemosa Jack ex Wall, Elmerrillia mollis Dandy Elmerrillia tsiampacca (L,) Dandy Magnolia candollii (Blume) H, P, Nooteboom Magnolia gigantea Magnolia gigantifolia (Miq,) H, P, Nooteboom Magnolia lasia H, P, Noot,eboom Magnolia magnifica Magnolia sp, Melastoma malabathricum L, Melastoma polyanthum Benth, Memecylon edule Roxb, Memecylon laurinum Blume Memecylon myrsinoides Blume Memecylon paniculatum Jack Memecylon sp, Pternandra caerulescens Jack Pternandra cordifolia Cogn, Pternandra galeata Ridley Pternandra rostrata (Cogn,) M, P, Nayar Pternandra sp, Aglaia argentea Blume Aglaia crassinervia Kurz ex Hiern Aglaia elliptica Blume, Aglaia leptantha Miq, Aglaia leucophylla King Aglaia odoratissima Blume, Aglaia oligophylla Miq, Aglaia rubiginosa (Hiern,) C, M, Pannell Aglaia silvestris Merrill 2 2 1 2 4 5 2 8 2 18 1 1 1 1 1 1 2 5 1 2 1 3 3 2 1 3 1 5 1 1 1 1 3 3 4 1 2 1 2 2 2 1 1 1 3 1 3 1 5 3 2 2 2 3 1 1 2 1 1 1 4 1 6 1 1 2 1 3 5 4 4 1 6 25 1 1 1 1 1 1 1 2 2 2 1 1 3 272 1 1 2 1 1 4 1 12 1 3 5 6 10 4 3 1 8 11 1 6 49 2 1 1 1 2 3 3 4 2 6 Moraceae Aglaia simplicifolia Harms, Aglaia sp, Aglaia sp,1 Aglaia tomentosa Teijsm, & Binn, cf, Chisocheton Chisocheton ceramicus Miq, Chisocheton patens Blume Chisocheton pentandrus Merrill Chisocheton sp, Dysoxylum sp, Dysoxylum sp,1 Lansium domesticum Correa Lansium sp, Meliaceae Sandoricum beccarianum Sandoricum sp, Walsura pinnata Hassk Walsura sp, Walsura sp,1 Artocarpus sp, 1 Artocarpus elasticus Reinw Artocarpus integer Merrill Artocarpus kemando Miq, Artocarpus lanceifolius Roxb, Artocarpus nitidus Trec, Artocarpus sp, Artocarpus tamaran Becc, Ficus grossularioides Burm, f, Ficus obscura Blume Ficus sp, Ficus sp,1 Ficus uncinulata Corner Ficus variegata Blume Parartocarpus sp, 1 5 1 2 2 7 2 1 1 2 1 4 5 2 16 9 7 6 1 2 2 1 3 3 4 2 1 2 1 1 6 1 2 1 4 1 1 1 1 1 1 1 3 3 4 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 6 1 2 5 1 6 2 1 2 4 1 1 1 1 1 1 22 4 16 8 15 1 2 8 9 4 1 1 3 1 4 6 10 2 5 2 3 1 1 3 4 1 4 3 2 2 12 11 2 2 1 2 273 2 8 64 7 16 1 8 1 2 10 8 6 2 1 3 1 2 1 1 1 1 6 3 1 59 1 6 7 1 73 37 18 2 1 2 Myristicaceae Myrsinaceae Prainea limpato (Miq,) Beumee ex Heyne Prainea sp, Streblus elongatus Gymnacranthera contractaWarb, Gymnacranthera farquhariana Warb, Gymnacranthera sp, Gymnacranthera sp, 1 Horsfieldia crassifolia Warb, Horsfieldia glabra Warb, Horsfieldia grandis Warb, Horsfieldia sp, Horsfieldia sp, 1 Knema beccariana Knema cf, laurina Warb, Knema cinerea (Poir) Warb, var, cordata Knema cinerea (Poir,) Warb, var cinerea Knema furfuracea Warb, Knema galeata J, Sincl, Knema glauca Warb, Knema latericia Elmer Knema latifolia Warb, Knema laurina Warb, Knema membranifolia H, Winkler Knema sp, Knema sp,1 Myristica beccariana Myristica beccarii Warb, Myristica cf, inners Blume Myristica iners Blume Myristica maxima Warb, Myristica sp, Myristica sp,1 Myristica villosa Warb, Ardisia anisophylla Reinw, 1 1 1 1 4 1 1 1 1 2 1 1 2 1 1 1 3 1 2 2 1 2 1 1 1 1 1 27 1 5 1 9 4 9 3 1 1 10 3 1 1 12 4 1 1 17 3 3 4 3 1 4 1 1 1 2 1 7 3 1 1 2 1 1 6 1 2 5 1 1 11 1 1 1 12 13 7 5 1 3 1 2 274 10 10 1 1 1 6 4 4 1 1 1 2 18 1 2 1 4 1 2 1 2 6 7 8 1 1 1 6 80 10 2 6 7 1 20 1 107 5 4 1 1 20 1 5 4 1 2 Myrtaceae N/A Ochnaceae Olacaceae Ardisia gambleana Furt, Ardisia sp, Ardisia sp, 1 Ardisia teysmanianna Scheff, cf, Syzygium sp, Rhodamnia cinerea Jack, Syzygium bankense (Hassk,) Merrill & Perry Syzygium caudatilimbum (Merrill) Merrill & Perry Syzygium cf, chloranthum (Duthie) Merrill & Perry Syzygium chloranthum (Duthie) Merrill & Perry Syzygium confertum (Korth,) Merrill & Perry Syzygium creaghii (Ridley) Merrill & Perry Syzygium ochneocarpum (Merrill) Merrill & Perry Syzygium perpuncticulatum (Merril) Merrill & Perryl Syzygium prasiniflorum (Ridley) Merrill & Perry Syzygium pterophorum Merill & Perry Syzygium sp, Syzygium sp, 3 Syzygium sp, 4 Syzygium sp,1 Syzygium sp,2 Syzygium stictophyllum Merrill & Perry Tristaniopsis whiteana (Griff,) P, G, Wilson & J, T, Waterhouse Indet 1 Indet 2 Indet 3 Gomphia serrata (Gaertn,) Kanis Anacolosa frutescens (Blume) Blume Ochanostachys amentacea Mast, 1 4 6 8 6 1 1 1 3 1 1 2 3 3 1 3 1 1 1 1 1 1 1 5 3 5 5 93 95 6 10 15 1 27 9 15 2 2 1 5 4 2 6 1 1 15 2 11 5 4 12 3 15 3 1 1 7 15 4 3 9 1 1 13 10 13 1 7 5 7 1 6 2 1 1 1 1 1 1 1 1 1 3 1 275 22 9 2 2 6 1 3 4 1 1 1 115 1 1 25 7 23 1 2 2 1 3 1 5 Oleaceae Piperaceae Polygalaceae Proteaceae Rhamnaceae Rhizoporaceae Strombosia sp, Chionanthus cuspidatus Blume Chionanthus olingathus (Merrill) R, Kiew Chionanthus pluriflorus (Knobl,) R,Kiew, Chionanthus pubicalyx (Ridl,) R, Kiew Chionanthus sp, Chionanthus sp, 1 Piper sp, cf, Xanthophyllum sp, Xanthophyllum affine Korth, ex, Miq, Xanthophyllum cf, affine Korth, ex Miq, Xanthophyllum discolor Chodat Xanthophyllum flavescens Roxb, Xanthophyllum heterophyllum Meijden Xanthophyllum hypoleucum Merrill Xanthophyllum obscurum A,W, Benn, Xanthophyllum parvum Chod, Xanthophyllum rufum A,W, Benn, Xanthophyllum sp, Xanthophyllum sp, 1 Xanthophyllum sp, 2 Xanthophyllum sp, 3 Xanthophyllum stapfii Chod, Xanthophyllum vitellinum (Blume) D,Dietr, cf, Heliciopsis sp, Helicia petiolaris Benn, Helicia sp, Heliciopsis artocarpoides (Elmer) Sleumer Ziziphus sp, Anisophyllea corneri Ding Hou Anisophyllea disticha Baill, Anisophyllea sp, 1 Anisophyllea sp, 2 Gynotroches axilaris Blume 1 1 2 3 2 3 1 1 2 2 5 1 3 1 1 2 1 1 1 3 4 1 12 5 2 1 1 6 4 2 2 1 4 2 1 1 1 1 2 1 2 2 7 2 1 2 5 3 10 1 13 2 3 2 1 1 2 2 1 4 4 4 1 4 1 1 1 3 1 1 1 1 1 1 1 2 1 4 3 2 1 4 276 2 4 1 5 10 4 10 29 3 1 3 9 4 1 1 1 2 1 21 9 46 9 1 1 1 3 1 2 1 3 6 1 7 2 1 6 Rosaceae Rubiaceae cf, Prunus sp, Parinari sp, Prunus sp, Anthocephalus chinensis Walp, Gaertnera vaginans (Blume) Merr, Gardenia sp, Gardenia tubifera Wall, Hypobathrum sp, Ixora brachyantha Merrill Ixora pseudojavanica Brem, Ixora sp, Ixora sp, 1 Ixora stenophylla (Korth,) Kuntz Jackiopsis ornata (Wall,) C, E, Risdale Lasianthus borneensis Merrill Lasianthus sp, Lasianthus sp, 1 Maclurodendron porteri (Hook, f,) T, G, Hartley Nauclea sp, Pleiocarpidia polyneura (Miq,) Bremek Pleiocarpidia sp, Porterandia anisophylla (Jack ex Roxb,) Ridley Praravinia megistocalyx Brem, Prismatomeris beccariana (Baill,) Johans Rothmannia sp, Rubiaceae Tarenna sp, Tarenna winkleri Val, Timonius borneensis Valet, Timonius flavescens (Jack) Baker Timonius hirsutus Merrill Timonius sp, 1 1 2 1 1 1 2 1 5 1 1 1 3 2 1 2 2 1 1 1 1 1 2 1 2 2 4 2 5 3 2 2 4 1 23 4 1 1 1 7 8 1 1 1 1 2 2 2 1 3 1 1 1 1 2 3 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 4 1 5 1 1 1 1 2 2 277 1 3 1 1 9 12 1 5 2 2 12 10 6 1 50 2 2 6 2 1 4 3 1 3 1 3 1 10 1 1 1 1 2 12 Rutaceae Sabiaceae Santalaceae Sapindaceae Sapotaceae Timonius stipularis Tricalysia malaccensis Merrill Tricalysia singularis K, Schum, Urophyllum corymbosum Korth, Urophyllum macrophyllum Korth, Urophyllum sp, Urophyllum sp, 1 Urophyllum trifurcum Pearson ex King Wendlandia sp, 1 Citrus sp, Melicope sp, cf, Meliosma Meliosma nitida Blume Meliosma sp, Scleropyrum wallichianum A, Arn, Dimocarpus dentatus W, Meijer ex Leenhouts Ganophyllum falcatum Blume Lepisanthes alata (Blume) Leenh, Lepisanthes amoena (Hassk,) Leenh, Lepisanthes tetraphylla (Vahl,) Radlk, Mischocarpus sp, Nephelium cuspidatum Blume Nephelium lappaceum L, Nephelium mutabile Blume Nephelium sp, Nephelium sp,1 Nephelium uncinatum Radlk, Paranephelium nitidum King Pometia pinnata G,Forst, Sapindaceae Xerospermum noronhianum Blume Ganua Ganua motleyana Madhuca beccariana 1 1 1 8 4 7 6 3 11 1 3 14 19 4 1 3 3 1 3 6 1 2 1 3 1 1 1 2 1 1 3 1 2 1 1 1 1 2 1 2 4 5 1 12 2 1 1 1 1 3 1 1 5 2 2 5 12 1 4 3 1 2 5 5 1 7 1 1 1 7 1 16 1 1 3 2 1 1 1 1 278 1 1 1 2 4 33 37 29 2 1 3 1 2 1 1 2 2 15 2 1 1 1 15 15 4 4 33 1 16 16 6 2 1 1 1 1 Madhuca borneensis van, Royen Madhuca cf, prolixa (Pierre ex Dubard) P,C,Yii & P, Chai Madhuca elmeri Merr, Madhuca erythrophylla H, J, Lam Madhuca magnifica S, Moore Madhuca mindanaensis Merrill Madhuca motleyana (de Vriese) Baehni Madhuca prolixa (Pierre ex Dubard) P,C, Yii & P, Chai Madhuca sp, Madhuca sp, 2 Madhuca sp,1 Palaquium beccarianum Palaquium calophyllum Pierre ex Burck Palaquium cf, sericeum H, J, Lam Palaquium chrysophyllum Palaquium dasyphyllum Pierre ex Dubard, Palaquium gutta Burck Palaquium leiocarpum Boerl, Palaquium obovatum Engl, Palaquium quercifolium Burck Palaquium rostratum Burck Palaquium sericeum H, J, Lam Palaquium sp, Palaquium sp,1 Palaquium stenophyllum H, J, Lam Pouteria malaccensis (C, B, Clarke) Baehni Scrophulariaceae Bacopa tomentosa Simaroubaceae Eurycoma longifolia Jack Irvingia malayana Oliver Sterculiaceae Byttneria sp, Heritiera elata Ridley Heritiera sp, 1 1 2 2 1 14 4 1 1 49 1 3 6 1 31 1 3 4 1 9 3 1 2 3 4 8 1 1 5 2 2 1 1 5 1 2 1 4 1 1 2 9 2 2 2 1 2 3 3 1 1 1 2 1 1 3 1 2 5 1 5 1 3 4 2 3 2 2 3 4 1 1 2 4 4 5 5 2 1 1 4 1 2 1 1 279 1 36 1 5 1 5 1 2 11 4 8 2 13 14 9 9 6 17 5 5 3 1 6 2 1 Styracaceae Symplocaceae Theaceae Thymelaeaceae Tiliaceae Heritiera sumatrana (Miq,) Kosterm, Leptonychia heteroclita K, Schum, Pterospermum javanicum Jungh, Scaphium macropodum Beume ex K, Heyne Sterculia coccinea Jack Sterculia oblongifolia A, Cheval, Sterculia rubiginosa Vent, Sterculia sp, Sterculia sp,1 Sterculia stipulata Korth, Bruinsmia sp, Symplocos Symplocos cochinchinensis S, Moore Symplocos crassipes C, B,Clarke Symplocos rubiginosa Wall ex A, DC, Symplocos sp, Symplocos sp, 1 Symplocos sp, 2 Adinandra borneensis Kobuski Adinandra sp, cf, Theaceae Pyrenaria sp, Ternstroemia aneura Miq, Tetramerista glabra Miq, Theaceae Aquilaria beccariana van Tiegh, Aquilaria malaccensis Lam, Aquilaria sp Gonystylus affinis Radlk, Gonystylus brunnescens Airy Shaw Gonystylus sp Brownlowia peltata Benth, Grewia paniculata Roxb, Grewia sp, 12 3 5 7 2 1 3 1 2 1 2 6 4 10 2 4 1 3 1 2 2 1 1 2 1 6 3 1 2 2 1 1 1 6 2 2 1 2 2 1 4 1 2 1 1 1 1 1 2 1 1 9 1 2 1 1 1 1 1 1 2 9 3 2 1 1 3 1 1 1 1 1 1 1 1 1 3 1 1 1 1 3 1 1 5 1 2 1 2 1 6 1 280 1 28 1 1 47 2 2 13 5 10 2 1 4 2 3 2 7 1 1 22 7 1 5 1 1 1 4 7 1 4 1 3 16 1 1 Trigoniaceae Ulmaceae Urticaceae Verbenaceae Number of saplings/0.2 Ha Microcos cinnamomifolia (Burret) Stapf ex P,S,Ashton Microcos crassifolia Burret Microcos sp, Microcos tomentosa Sm, Pentace borneensis Pierre Pentace erectinervia Kosterm, Pentace laxiflora Merrill Pentace sp, Pentace triptera Mast, Tiliaceae Trigoniastrum hypoleucum Miq, Trigoniastrum sp, Gironniera nervosa Planch, Dendrocnide sp, Dendrocnide stimulans (Lf,) Chew Laportea lanceolata Laportea lanceolata (Engl,) Chew Urticaceae 1 Urticaceae 2 Clerodendrum sp, Geunsia pentandra Merrill Teijsmanniodendron bogoriense Koord, Teijsmanniodendron coriaceum (C,B, Clarke) Kosterm Teijsmanniodendron scaberrimum Kosterm, Teijsmanniodendron simplicifolium Merrill, Teijsmanniodendron simplicioides Kosterm, Teijsmanniodendron sp, Teijsmanniodendron sp,1 Vitex gamosephala Griff, Vitex sp, Vitex vestita Moldenke 2 4 6 1 1 8 1 1 1 1 15 2 1 1 1 2 2 1 1 1 5 2 1 3 1 1 2 1 1 1 2 1 4 1 1 1 7 3 3 1 2 5 4 1 1 1 1 1 1 4 2 3 1 2 1 1 3 9 6 3 1 25 3 1 1 1 1 2 2 1 1 5 4 2 2 2 2 2 449 242 289 293 329 1 638 640 593 694 281 815 615 670 453 259 1 4 351 3 3 550 4 1 14 24 6 6 4 2 1 4 1 17 12 1 1 4 2 3 1 5 3 27 6 19 4 14 7 1 4 7 7880 Number of species/0.2 Ha #N/A 160 131 134 161 Dead saplings 188 2 282 221 211 145 1 107 103 136 142 86 76 108 84 802 3 Appendix 5. Seedling species composition in a four 1-ha plots in primary and logged lowland forests in the Bulungan Research ForestCIFOR, East Kalimantan. Family Acanthaceae Actinidiaceae Adiantceae Alangiaceae Amaryllidaceae Anacardiaceae Species Name Acanthaceae 1 Acanthaceae 2 Achanthus sp. Pseuderanthemum sp Ptyssiglottis sp. Staurogyne sp. Thunbergia sp. Saurauia sp. Saurauia sp.1 Lindsaea scandens Hook. Alangium javanicum (Blume) Wangerin Alangium sp. Curculigo racemosa Ridl. Curculigo sp. Anacardiaceae Anacardiaceae 1 Bouea sp. Buchanania sessifolia Blume Buchanania sp. Calycarpacana sp. PF LF-5 4 LF-10 55 170 3 5 1 LF-30 192 5 8 22 5 37 2 30 48 23 14 3 9 53 134 77 3 6 40 1 3 38 1 283 1 1 Total 192 5 59 5 207 5 30 138 23 14 6 15 53 157 40 1 3 1 39 1 Campnosperma macrophylla Campnosperma sp. Dracontomelon dao Merrill & Rolfe Dracontomelon sp. Drimycarpus luridus (Hook.f.) Ding How Drimycarpus sp. Gluta macrocarpa (Engl.) Ding Hou Gluta sp. Gluta wallichii (Hook. f.) Ding Hou Koordersiodendron pinnatum Merrill Mangifera sp. Mangifera swintoniodes Kostermans Melanochyla sp. Melanochyla sp.1 Melanochyla sp.2 Parishia insignis Hook.f. Semecarpus sp. Swintonia sp. Annonaceae Annonaceae Artabotrys sp. Artabotrys sp.1 Artabotrys suaveolens (Blume) Blume Cyathocalyx sp. Cyathostema excelsum J.Sinclair Dasymaschalon sp. Desmos chinensis Lour. Desmos sp. Fissistigma manubriatum (Hook.f. & Thomson) Merr. Fissistigma sp. Friesodielsia borneensis (Miq.) van Steenis Friesodielsia excisa (Miq.) van Steenis Friesodielsia sp. 1 6 8 2 1 8 2 1 5 60 377 47 23 1 78 1 1 3 14 4 91 144 8 13 6 12 6 130 16 3 413 10 1 39 1 21 9 1 20 1 22 10 3 1 10 4 8 10 29 3 1 284 44 1 6 10 1 10 4 19 4 575 144 24 86 15 6 12 6 140 16 1 476 1 9 1 20 1 22 6 11 1 14 8 83 Friesodielsia sp.1 Friesodielsia sp.2 Goniothalamus macrophyllus (Blume) Hook.f. & Thomson Goniothalamus sp. Goniothalamus sp.1 Goniothalamus sp.2 Mezzettia sp. Miliusa sp. Mitrelea sp. Neo-uvaria Neo-uvaria acuminatissima (Miq.) Airy Shaw Polyalthia cauliflora Hook.f. & Thoms. Polyalthia lateriflora King Polyalthia microtus Miq. Polyalthia rumphii Merrill Polyalthia sp. Polyalthia sp.1 Polyalthia sp.2 Polyalthia sumatrana (Miq.) Kurz Polyalthia tomentosa Popowia sp. Pseudovaria sp. Saccophetalum sp. Sageraea sp. Schindapsus sp. Uvaria borneensis (Merr.) T.M.A.Utterige Uvaria sp. Uvaria sp.1 Uvaria sp.2 Uvaria sp.3 Uvaria sp.4 Xylopia elliptica Maingay ex Hook.f. 9 2 1 3 2 1 13 54 23 2 52 57 2 1 6 7 133 67 7 10 6 10 4 2 1 4 8 7 10 4 2 76 5 18 5 7 1 9 1 85 137 70 2 15 1 4 50 17 21 17 6 14 2 7 1 3 49 3 1 21 198 4 10 18 25 5 285 58 15 1 7 10 163 175 1 12 176 3 1 64 1 22 1 8 21 198 4 111 15 1 7 10 5 Apocynaceae Araceae Xylopia malayana Hook.f. & Thoms. Xylopia sp. Xylopia sp. 1 Alstonia scholaris Alstonia sp. Apocynaceae kibatalia Tabernaemontana macrocarpa Korth. Ex Blume Tabernaemontana pauciflora Wight Tabernaemontana sp. Willughbeia coriacea Wall. Willughbeia firma Willughbeia sp. Willughbeia sp.1 Willughbeia sp.2 Willughbeia sp.3 Willughbeia sp.4 Aglaonema sp. Alocasia sp. Alocasia sp.1 Alocasia sp.2 Alocasia sp.3 Amorphophallus sp. Amorphophallus sp.1 Anadendrum sp. Araceae Araceae 1 Homalomena cordata Schott Homalomena sp. Homalomena sp.1 Photos sp. Photos sp.1 Photos sp.2 Photos sp.3 8 1 4 13 4 5 1 1 1 8 3 5 3 2 1 33 58 15 19 22 32 1 207 39 26 4 6 9 4 30 11 52 11 2 5 7 3 7 1 49 48 65 8 6 67 3 2 3 13 1 1 286 8 5 21 4 14 1 1 3 2 2 91 15 19 229 71 26 4 4 97 22 2 5 7 10 67 3 1 49 50 65 17 13 1 1 Areliaceae Aristolochiaceae Arucariaceae Asclepiadaceae Aspidaceae Aspleniaceae Athyriaceae Begoniaceae Blechnaceae Bombacaceae Raphidophora sp. Scindapsus sp. Scindapsus sp.1 Scindapsus sp.2 Schefflera sp. Thottea muluensis Ding Hou Aristolochia sp. Thottea sp. Thottea sp.1 Agathis bornensis Warb. Hoya sp. Thottea temosa (Blume) Ding Hou Dryopteris linearis Dryopteris sp. Heterogonium sp. Tectaria sp. Tectaria sp.1 Asplenium nitens Asplenium sp. Athyrium sp. Diplazium sp. Diplazium sp.1 Begonia sp. Begonia sp.1 Begonia sp.2 Blechnum orientale L Blechnum sp. Stenochlaena sp. Coelostegia sp. Durio acutifolius (Mast.) Kosterm. Durio cuntleyensis Durio dulcis Becc. Durio griffithii Bakh. Durio kutejensis Becc. Durio lanceolatus Mast. 3 12 12 209 37 214 2 8 14 101 4 5 1 3 1 1 1 55 15 5 3 3 26 25 10 3 4 10 35 2 29 24 1 3 83 1 2 7 20 1 2 2 14 1 1 10 2 2 9 3 287 15 536 4 5 1 39 8 17 1 1 1 55 15 5 26 25 10 6 7 10 35 2 53 1 3 85 7 20 1 3 2 25 3 2 12 Burseraceae Capparaceae Caprifoliaceae Celasaceae Celastraceae Combretaceae Durio oxleyanus Griff. Durio sp. Durio sp.1 Neesia sp. Neesia synandra Mast. Canarium littorale Blume Canarium megalanthum Merrill Canarium odonthophyllum Bakh. Canarium sp. Canarium sp.1 Canarium sp.2 Canarium sp.3 Dacryodes incurvata (Engl.) H. J. Lam Dacryodes laxa (A. W. Benn.) H. J. Lam Dacryodes rostrata (Blume) H. J. Lam forma pubescens Dacryodes rugosa (Blume) H.J. Lam Dacryodes sp. Santiria griffithii Engl. Santiria sp. Santiria sp.1 Triomma malaccensis Hook. f. Capparis sp. Viburnum sp. Celastrus sp. Bhesa paniculata Arn. Euonymus sp. Lophopetalum beccarianum Pierre Lophopetalum javanicum Turcz. Lophopetalum sp. Lophopetalum sp.1 Salacia leucoclada Ridl. Salacia sp. Combretum nigrescens King 1 2 8 4 1 1 15 1 1 8 13 9 1 3 1 4 23 4 1 1 32 1 48 30 532 17 2 8 11 95 12 2 156 21 140 11 68 1 6 2 1 6 3 4 165 649 2 3 73 43 3 13 9 3 1 3 1 10 4 5 7 447 44 1 2 6 128 17 68 1 3 1 1 3 1 3 3 3 3 127 26 3 1 1 1 33 31 288 1 38 622 2 39 11 Commelinaceae Connaracae Convolvulaceae Cornaceae Crypteronaceae Cucurbitaceae Cyperaceae Dilleniacea Combretum sp. Combretum sp.1 Terminalia sp. Commelina sp. Forrestia sp. Polila sp. Agelaea borneensis Merril Agelaea trinervis Merrill Cnestis platantha Griff Cnestis sp. Connarus sp. Connarus semidecandrus Jack Connarus sp.1 Connarus sp.2 Rourea sp. Rourea sp.1 Rouriopsis mimosoides Erycibe glomerolata Blume Erycibe sp. Erycibe sp.1 Erycibe sp.2 Erycibe sp.3 Erycibe sp.4 Merremia sp. Ellipanthus tomentosus Kurz Crypteronia sp. Cucurbitaceae Trichosanthes sp. Cyperus sp. Mapania cuspidata Mapania sp. Scleria sp. Tetracera indica Merril Tetracera scandens (L.) Merr. Tetracera sp. 1 33 5 1 4 5 50 4 18 1 412 223 2 3 1 58 33 3 4 3 42 6 63 65 96 21 21 1717 60 1 35 5 1 22 3 9 2 1 1 5 8 1 7 41 1 15 24 1 12 1 7 90 44 10 46 1 21 7 58 92 13 19 289 34 5 3 48 18 1 70 174 5 15 320 2150 60 1 2 3 1 58 89 8 4 1 25 9 27 1 12 1 45 10 71 1 111 19 157 Dilleniaceae Dioscoreaceae Dipterocarpaceae Tetracera sp.1 Tetracera sp.2 Dillenia excelsa Martelli Dillenia exima Dillenia sp. Dillenia suffruticosa (Griff.) Martelli Dioscorea olata Dioscorea sp. Anishoptera sp. Dipterocarpus crinitus Dyer Dipterocarpus lowii Hook. f. Dipterocarpus sp. Dipterocarpus sp.1 Dipterocarpus sp.2 Dryobalanops lanceolata Burck Hopea cf. rudiformis Hopea dryobalanoides Miq. Hopea sp. Macaranga bancana Muell. Arg. Macaranga gigantea Muell. Arg. Macaranga pruinosa Muell. Arg. Macaranga sp. Mallotus penangensis Muell. Arg. Mallotus sp. Parashorea malaanonan Merrill Parashorea sp. Parashorea sp.1 Parashorea tomentella (Symington) Meijer Shorea agamii P. S. Ashton Shorea angustifolia P. S. Ashton Shorea beccarii Dyer ex Brandis Shorea cf. exstipulata Shorea cf. mujogensis P.S.Ashton Shorea cf. ovalis Blume 76 1 13 5 1 20 6 3 3 4 1 2 24 157 12 119 1431 4294 97 2 16 30 6138 2 1 2 4 23 110 157 4 42 9 43 16 169 9 26 1 1 3344 88 235 1 51 82 472 170 993 68 3 1112 748 1 290 76 6 37 5 4 4 1 4 40 157 12 288 9 26 1462 1 13818 9 2 1 2 4 23 110 385 255 1 51 82 1465 238 3 1860 1 Ebenaceae Shorea cf. venulosa Shorea exstipulata Shorea fallax Meijer Shorea hopeifolia (Heim) Symington Shorea inappendiculata Burck Shorea johorensis Foxworthy Shorea laevifolia(Parijs) Endert Shorea leprosula Miq. Shorea macrophylla (de Vriese) P. S. Ashton Shorea macroptera Dyer Shorea maxwelliana King Shorea multiflora (Burck) Symington Shorea ovalis Blume Shorea parvifolia Dyer Shorea parvistipulata Heim Shorea patoienfis P. S. Ashton Shorea pauciflora King Shorea peltata Symington Shorea pinanga Scheff. Shorea sp. Shorea sp.1 Shorea sp.2 Vatica granulata v. Slooten Vatica micrantha v. Slooten Vatica nitens King Vatica oblongifolia Hook.f. Vatica sp. Vatica umbonata Burck Diospyros borneensis Hiern Diospyros buxifolia Hiern Diospyros currannii Merr. Diospyros sp. Diospyros sp. 4 Diospyros sp.1 57 13 36 161 3 358 17 1 1550 28 100 7 113 10 10 19 1 169 7 85 99 157 192 25 784 170 18 22 1408 76 11 11 10 146 171 29 69 16 3 247 1 5 2 230 532 12 124 43 15 9 31 34 144 1 1044 6 33 5 818 2 2808 4 26 1 26 8 112 123 5 1 291 6 6 21 145 15 11 57 13 36 69 16 274 7 304 18 542 174 362 60 2725 30 1049 154 204 29 38 2265 78 230 3340 12 4 26 131 49 70 9 411 15 17 Elaeocarpaceae Ericaceae Euphorbiaceae Diospyros sp.2 Diospyros sp.3 Diospyros sp.5 Diospyros sumatrana Miq. Elaeocarpus sp. Elaeocarpus stipularis Blume Sloanea sp. Ericaceae Antidesma montanum Blume Antidesma neurocarpum Miq. Antidesma sp. Antidesma sp.1 Antidesma sp.2 Antidesma sp.3 Antidesma sp.4 Antidesma tetandra Antidesma tomentosum Blume Aporosa dioica (Roxb.) Muell.Arg. Aporosa falcifera Hook.f. Aporosa frutescens Blume Aporosa grandistipulata Merril Aporosa lucida (Miq.) Airy Shaw Aporosa nitida Merrill Aporosa sp. Aporosa sp.1 Aporosa subcaudata Merrill Baccaurea cf. tetandra Baccaurea kunstleri King ex Gage Baccaurea lanceolata (Miq) Muell.Arg. Baccaurea macrocarpa Muell. Arg. Baccaurea ornatus Baccaurea parviflora (Mull.Arg.) Mull.Arg. Baccaurea sp. 3 22 36 14 13 1 4 1 10 7 1 1 13 1 23 41 1 35 6 5 7 1 1 21 41 3 8 1 3 16 11 36 2 1 14 16 2 3 152 54 1 1 10 31 33 5 4 14 10 7 5 1 5 1 2 9 187 2 1 154 292 23 29 1 10 56 16 1 13 1 23 48 62 48 4 8 1 3 16 11 36 2 4 14 51 201 10 66 1 1 10 Baccaurea sp. 1 Baccaurea sumatrana Muell. Arg. Baccaurea tetandra Muell. Arg. Blumeodendron kurzii Blumeodendron sp. Blumeodendron tokbrai Kurz Breynia sp. Bridellia sp. Cephalomappa beccariana Baill. cf. Cleistantus Chaetocarpus castanocarpus Chaetocarpus sp. Cleistanthus erycibifolius Airy Shaw Cleistanthus myrianthus (Hassk.) Kurz Cleistanthus sp. Cleistanthus sp.1 Cleistanthus sp.2 Cleistanthus sp.3 Coccoceras sp. Croton argyratus Croton argyratus Blume Croton sp. Dimorphocalyx muricatus (Hook.f.) Airy Shaw Dipterocarpus cornutus Dyer Dipterocarpus eurynchus Miq. Dipterocarpus sp. Dipterocarpus sp.1 Dipterocarpus stellatus Vesque Dipterocarpus verrucosus Foxworthy ex. v. Slooten Drypetes kikir Airy Shaw Drypetes longifolia (Blume) Pax & K.Hoffm> Drypetes sp. 1 13 187 3 3 1 2 11 1 2 1 5 3 1 1 2 1 1 1 5 6 11 4 7 40 5 3 24 94 1 5 1 13 15 2 215 9 28 65 24 1 8 149 293 7 2 215 37 65 24 1 43 51 8 64 222 8 2 1 13 199 1 8 3 8 1 1 2 1 1 1 12 46 16 4 3 24 94 2 18 15 Drypetes sp.1 Elateriospermum sp. Elateriospermum tapos Blume Endospermum diadenum (Miq.) Airy Shaw Euphorbiaceae (1) Galearia fulpa Galearia sp. Glochidion sericeum Glochidion sp. Glochidion sp.1 Koilodepas brevipes Merr. Koilodepas sp. Macaranga bancana Muell. Arg. Macaranga beccariana Merrill Macaranga hypoleuca Muell. Arg. Macaranga lowii King ex Hook.f. Macaranga pearsonii Merrill Macaranga repando-dentata Airy Shaw Macaranga sp. Macaranga sp.1 Mallotus cf. griffithianus Mallotus dispar (Blume) Mull.Arg. Mallotus eucaustus Airy Shaw Mallotus penangensis Muell.Arg. Mallotus sp. Mallotus sp.1 Mallotus wrayi King ex Hook. f. Neoscortechinia Neoscortechinia kingii Pax & K. Hoffm. Omphalea bracteata (Blanco) Merr. Paracroton pendulus Miq. Paracroton sp. 2 1 3 3 429 1 510 7 10 751 1 482 15 2 1 3 1 12 137 106 36 10 3 64 5 1 821 5 72 5 1 50 59 27 53 26 98 2 5 3 15 37 1 15 9 294 5 603 291 12 26 111 16 13 2 1 945 1 7 1 3 1 27 1 1709 588 57 12 3 136 5 1 50 5 603 350 12 93 69 26 98 2 5 126 25 13 Fagaceae Flacortiaceae Flagelariacea Gesneriaceae Pimeleodendron sp. Pimelodendron griffithianum (Muell. Arg.) Hook. f. Ptychopyxis bacciformis Croiz Ptycophxis sp. Trigonostemon elmeri Merr. Trigonostemon sp. Trigonostemon sp.1 Trigonostemon sumatranus Pax & K.Hoffm. Trigonostemon villosus Hook.f. Castanopsis sp. Lithocarpus sp. Lithocarpus cooperta Rehder Quercus sp. Casearia sp. Flacourtia rukam Zoll. & Mor. Flacourtia sp. Hydnocarpus polypetalus (v.Slooten) Sleum. Hydnocarpus sp. Hydnocarpus sp.1 Hydnocarpus sp.2 Hydnocarpus sp.3 Hydnocarpus sp.4 Hydnocarpus woodii Merr. Osmelia sp. Ryparosa kostermansii Sleum. Ryparosa sp. Flagellaria sp. Aechynanthus sp. Cyrtandra sp. Cyrtandra sp.1 Cyrtandra sp.2 Cyrtandra sp.3 6 1 95 14 214 3 19 4 1 7 20 26 2 3 2 1 1 5 16 15 3 1 1 2 2 4 4 20 4 4 10 3 12 5 14 1 18 10 2 2 13 2 1 11 2 8 12 6 28 295 1 1 2 226 6 56 5 57 2 6 96 3 247 4 6 7 20 26 3 52 2 1 11 6 3 8 30 32 4 4 2 19 1 11 2 2 2 319 20 62 5 Glicheniaceae Gnetaceae Graminae Guttiferae Hymenophyllaceae Hypericaceae Icacinaceae Cyrtandra sp.4 Cyrtandra sp.5 Cyrtandra sp.6 Cyrtandra sp.7 Gleicheria linearis Gnetum sp. Graminae Leptasis sp. Scrotochloa urceolata (Roxb.) Judz. Calophyllum gracilipes Merr. Calophyllum pulcherimum Calophyllum sp. Calophyllum sp.1 Calophyllum sp.2 Garcinia bancana (Miq.) Miq. Garcinia nervosa Miq. Garcinia parvifolia Miq. Garcinia sp. Garcinia sp.1 Kayea borneensis P. F. Stevens Kayea sp. Mammea sp. Mesua sp. Tricomanes javanicum Blume Cratoxylon formosum Benth. & Hook. F. ex Dyer Cratoxylon sp. Cratoxylum orborescens Cratoxylum sp. Gonocaryum calleryanum (Baill.) Becc. Gonocaryum sp. Maesa sp. Phytocrene sp. Phytocrene sp.1 1 1 1 1 2 147 5 4 5 2 16 24 122 66 61 6 3 1 19 146 1 7 1 13 15 2 2 16 9 56 5 1 1 2 4 8 4 1 12 12 4 1 1 3 7 12 1 296 2 33 1 1 1 1 147 134 2 20 24 6 19 276 1 1 7 3 13 96 2 6 3 4 13 12 12 4 1 1 3 9 33 12 1 Juglandaceae Lauraceae Lecythidaceae Leeaceae Leguminosae Stemonurus scorpioides Becc. Stemonurus scundiflorus Stemonurus sp. Stemonurus sp.1 Icacinaceae Engelhardia serrata Blume Actinodaphne glabra Blume Actinodaphne sp. Actinodaphne sp.1 Actinodaphne sp.2 Alseodaphne elmeri Merrill Alseodaphne sp. Beilschmiedia sp. Cinnamomum javanicum Blume Cinnamomum sp. Cryptocarya crassinervia Miq. Cryptocarya sp. Dehaasia sp. Endiandra kingiana Gamble Endiandra sp. Eusideroxylon zwageri Teijsm. & Binn. Lauraceae Litsea ferruginea Litsea firma Hook. F. Litsea oppositifolia L.S. Gibbs Litsea sp. Litsea sp.1 Litsea sp.2 Neolitsea sp. Barringtonia macrostachya Kurz Barringtonia sp. Planchonia sp. Leea indica (Burm.f.) Merr. Leea sp. Abarema sp. 5 3 12 1 96 1 27 6 6 2 4 3 13 6 11 2 19 1 3 5 36 82 13 12 2 62 30 9 3 2 36 3 15 2 21 3 16 5 1 11 8 10 123 1 36 6 3 134 2 2 32 3 7 3 1 12 13 9 1 297 4 1 1 5 12 100 1 27 6 8 43 1 3 6 125 4 16 14 3 92 33 15 5 54 5 1 17 12 303 2 2 32 3 8 1 33 9 1 Abrus sp. Archidendron clypearia (Jack) I.C.Nielsen Archidendron microcarpum (Bentham) I. Nielsen Archidendron sp. Archidendron sp.1 Bauhinia kockiana Korth. Bauhinia semibifida Roxb. Bauhinia sp. Bouchinia sp. Caesalpinia sp. Cynometra ramiflora Miq. Cynometra sp. Dalbergia parviflora Roxb. Dalbergia sp. Dialium indum Linn Dialium kunstleri Prain Dialium platysepalum Baker Dialium sp. Fordia seclendia Fordia sp. Fordia splendidissima (Blume ex Miq.) J. R. M. Buijsen Koompassia excelsa Taub. Koompassia malaccensis Maing. Koompassia sp. Mucuna sp. Parkia sp. Parkia speciosa Hassk. Parkia timoriana Merrill Phanera sp. Pithecellobium sp. Saraca declinata Miq. Saraca sp. 4 40 43 4 3 3 1 3 2 1 30 14 1 2 4 24 105 3 15 167 53 27 2 3 21 4 28 3 65 61 2 5 6 3 70 11 136 7 20 1 22 20 65 5 11 5 2 2 20 18 3 5 1 40 4 20 1 1 2 3 6 298 3 1 30 14 221 70 16 52 6 24 201 3 136 12 102 5 1 87 25 89 3 4 20 11 3 2 1 5 6 Liliaceae Linaceae Loganiaceae Lycopodiaceae Magnoliaceae Sindora leiocarpa Baker ex K.Heyne Sindora wallichii Benth Spatholobus ferrugineus Benth. Spatholobus hirsutus H.Wiriadinata & J.W.A.Ridder-Numan Spatholobus litoralis Hassk. Spatholobus macropterus Miq. Spatholobus sanguineus Elmer Spatholobus sp. Spatholobus sp.1 Spatholobus sp.2 Spatholobus sp.3 Spatholobus sp.4 Spatholobus sp.5 Dracaena sp. Liliaceae Pleomele sp. Smilax sp. Smilax Zeylanica Indraroucrea sp. Ixonanthus sp. Fagraea racemosa Jack ex Wall. Fagraea sp. Fagraea sp.1 Fragraea seroria Strychnos sp. Strychnos sp.1 Lycopodium cernum Lycopodium sp. Elmerillia mollis Magnolia candollii (Blume) H. P. Nooteboom Magnolia gigantifolia (Miq.) H. P. Nooteboom Magnolia lasia H. P. Noot.eboom 9 4 2 77 36 110 177 116 2 143 628 1 2 4 45 125 102 1 7 6 2 181 1 3 5 8 7 7 89 290 28 285 13 5 6 7 1 3 12 1 3 3 2 1 10 18 302 1 14 3 2 2 1 1 21 8 303 36 235 177 116 16 232 918 29 285 102 19 1 9 20 8 3 12 4 3 2 1 330 1 14 3 2 3 1 4 299 6 10 Maranthaceae Melastomaceae Melastomataceae Meliaceae Magnolia sp. Donax caniformis K.Schum Phacelophrynium maximum Phrynium sp. Phrynium sp.1 Phrynium sp.3 Phrynium sp.4 Phrynium sp.5 Stachyphrynium borneensis Astronia sp. Astronia sp.1 Clidemia hirta D.Don Clidemia sp. Medinella sp. Melastoma malabraticum Melastoma sp. Melastoma sp.1 Memecylon borneense Merrill Memecylon edule Roxb. Memecylon sp. Pternandra azurea (Bl.) Burkill Pternandra caerulescens Jack Pternandra galeata Ridley Pternandra rostrata (Cogn.) M. P. Nayar Pternandra sp. Aglaia argentea Blume Aglaia simplicifolia Harms. Aglaia sp. Aglaia sp.1 Aglaia sp.2 Aglaia sp.3 Aglaia sp.4 Aglaia sp.5 Aglaia tomentosa Teijsm. & Binn. 1 6 10 65 67 70 82 4 41 93 1 1 1 1 27 2 10 1 1 66 2 8 20 1 24 4 7 1 1 87 3 51 6 8 14 4 12 13 3 11 11 2 14 1 1 146 1 12 4 63 95 4 6 4 8 62 7 1 3 8 300 21 41 70 307 1 1 1 1 27 2 10 1 1 86 2 9 25 4 7 97 12 65 12 13 165 5 19 231 9 15 1 1 3 18 Menispermaceae Menispermaceae Moraceae Aglaia trinervis Chisocheton cf. patens Chisocheton sp. Dysoxylum alliaceum Blume Dysoxylum sp. Lansium domesticum Correa Lansium sp. Meliaceae 1 Meliaceae 2 Reinwardtiodendron humile (Hassk.) Mabb. Sandoricum sp. Walsura sp. Anamirta cocculus Wigght & Arn Coscinium sp. Fibraurea ochroleuca Fibraurea sp. Fibraurea tinctoria Lour. Menis sp. Menis sp.2 Menisp. 1 Stephania corymbosa Tinospora sp. Artocarpus cf. nitida Artocarpus dadah Miq. Artocarpus elastica Reinw Artocarpus integer Merrill Artocarpus lanceifolius Roxb. Artocarpus sp. Artocarpus tamaran Becc. Ficus grossularioides Burm. f. Ficus obscura Blume Ficus sinuata Thunb Ficus sp. Ficus sp.1 25 1 2 1 2 4 3 8 4 1 4 4 4 1 3 1 1 7 1 1 9 24 50 2 8 17 17 11 7 17 1 1 1 1 7 51 2 88 51 23 1 4 7 17 1 15 1 1 11 124 3 4 2 78 1 1 12 12 192 49 1 1 102 76 301 25 1 4 1 13 7 4 4 4 1 13 32 1 1 50 2 8 45 7 17 1 1 1 2 17 19 374 71 6 3 195 1 188 63 Musaceae Myristicaceae Myrsinaceae Ficus sp.2 Ficus sp.3 Ficus sp.4 Ficus sp.5 Moraceae 1 Moraceae 2 Parartocarpus sp. Prainea sp. Musa sp. Gymnacranthera farquhariana Warb. Gymnacranthera sp. Horsfieldia grandis Warb. Horsfieldia sp. Knema cinerea (Poir.) Warb. Knema furfuracea Warb. Knema glauca Warb. Knema glaucescens Jack Knema latericia Elmer Knema laurina Warb. Knema palens W. J. J. O. de Wilde Knema sp. Knema sp.1 Knema sp.2 Knema sp.3 Knema sp.4 Knema sp.5 Myristica iners Blume Myristica maxima Warb. Myristica simiarum A.DC. Myristica sp. Myristica villosa Warb. Ardisia cf. lanceolata Ardisia korthalsiana Scheff. Ardisia lanceolata Ardisia megistosepala Merr. 1 1 1 1 1 2 10 48 14 4 87 32 4 2 58 9 21 2 14 7 1 4 27 7 2 3 1 13 37 10 6 11 19 213 1 2 1 2 3 3 8 16 5 2 2 31 2 1 2 4 7 302 22 3 2 1 1 1 4 27 7 11 21 3 19 1 22 68 48 51 4 104 32 4 242 3 1 2 3 3 29 2 2 56 2 1 2 4 7 Myrtacaceae Nepenthaceae Nephrolepydaceae Ochnaceae Olacaceae Oleaceae Orchidaceae Oxalidaceae Ardisia sp. Ardisia sp.1 Embelia sp. Labisia pumila (Blume) Benth. & Hook.f. cf. Syzygium Eugenia caudatilimba Merr. Eugenia sp. Syzygium grande Wall. Syzygium horsfieldii Syzygium sp. Syzygium sp.1 Syzygium sp.2 Syzygium sp.3 Syzygium sp.4 Syzygium sp.5 Syzygium tawahense (Korth.) Merrill & Perry Tristaniopsis sp. Nephentes melamphora Nephrolepis bisserrata Nephrolepis sp. Gomphia serrata (Gaertn.) Kanis Ochanostachys amentacea Mast. Strombosia sp. Chionanthus sp. Linociera macrophylla Linociera sp. Linociera sp.1 Calanthe sp. cf. Calanthe Dendrobium sp. Orchidaceae Spathoglottis sp. Sarcotheca diversifolia (Miq..) Hallier 27 9 2 16 36 39 2 1 22 16 118 11 3 38 1 1 8 47 2 2 1095 75 2 1 70 3 113 8 47 2 2 27 3 1 1 806 158 104 72 1 70 3 113 6 8 1 90 1 1 12 1 115 1 2 13 3 1 72 3 3 36 1 2 7 26 6 23 193 303 1 49 4 12 6 8 3 106 1 8 1 235 1 1 2 7 26 6 24 242 16 Palmae Passifloraceae Piperaceae f. Sarcotheca sp. Arenga sp. Artocarpus lanceifolia Roxb. Artocarpus sp. Calamus blumei Becc. Calamus caesius Calamus flabellatus Becc. Calamus javensis Blume Calamus sp. Calamus sp.1 Calamus sp.2 Calamus tiliaris Caryota sp. Ceratolobus sp. Daemonorops sabut Becc. Daemonorops sp. Korthalsia echinometra Becc. Korthalsia ferox Becc. Korthalsia furtadoana J.Dransf. Korthalsia sp. Korthalsia sp.1 Korthalsia sp.2 Licuala sp. Licuala spinosa Thunb. Pinanga sp. Salacca sp. Freycinetia sp. Pandanus sp. Pandanus sp.1 Pandanus sp.2 Pandanus sp.4 Adenia macrophylla Blume Kord. Piper baccatum Blume Piper sp. 6 7 30 10 2 5 2 10 8 1 15 4 10 74 66 1 1 5 10 9 330 53 19 116 26 69 51 7 24 95 56 5 9 17 7 1 172 3 7 1 1 15 18 6 45 13 2 2 7 3 1 9 4 21 200 2 63 20 26 1 3 13 3 1 1 1 71 304 40 6 6 9 5 2 50 8 16 14 312 3 9 1 15 1 67 559 141 50 22 139 7 2 15 3 1 1 35 280 23 26 1 1 1 117 Piper sp.1 Piper sp.2 Podocarpaceae Nageia wallichiana Kuntze Polygalaceae Xanthophyllum affine Korth. ex. Miq. Xanthophyllum cf. griffithii Hook.f. ex Benn Xanthophyllum ellipticum Korth. ex Miq. Xanthophyllum flavescens Xanthophyllum griffithii Hook. f. ex A. W. Benn. Xanthophyllum heterophyllum Xanthophyllum heterophyllum Meijden Xanthophyllum obscurum A.W.Benn. Xanthophyllum rufum A.W. Benn. Xanthophyllum sp. Xanthophyllum sp.1 Xanthophyllum sp.2 Xanthophyllum sp.3 Xanthophyllum sp.4 Xanthophyllum sp.5 Xanthophyllum sp.6 Xanthophyllum sp.7 Polypodiaceae Dipteris conjungata Reinw. Dipteris sp. Drynaria sparsisora (Desv.) Moore Fern sp. Fern sp.1 Fern sp.2 Fern sp.3 Fern sp.4 Fern sp.5 Fern sp.6 Fern sp.7 Fern sp.8 1 1 1 33 44 24 1 1 2 5 2 5 1 23 16 5 1 1 1 57 44 27 56 33 14 8 6 51 4 2 50 9 8 1 1 6 3 6 114 4 29 42 39 4 1 53 1 10 1 26 305 2 5 2 5 1 29 150 42 14 8 2 50 9 8 1 1 6 3 6 167 5 39 43 39 4 27 Proteaceae Rhamnaceae Rhizoporaceae Rosaceae Rubiacea Fern sp.9 Fern sp.10 Fern sp.11 Fern sp.12 Fern sp.13 Oleandra sp.(Vern) Helicia sp. Helicia sp.1 Helicia sp.2 Rhamnaceae Sageretia hamosa Brongn. Ventilago sp. Ziziphus angustifolia (Miq.) Hatusina ex Stesnis Ziziphus horsfieldii Ziziphus liana Ziziphus sp. Ziziphus sp.1 Ziziphus sp.2 Ziziphus sp.3 Ziziphus sp.4 Anisophyllea corneri Ding Hou Anisophyllea disticha Baill. Carallia bracteata (Lour.) Merr. Carallia sp. Prunus sp. Rubus moluccana Licania splendens (Kortthal) Prance Parinari oblongifolia Hook. f. Parinari sp. Parinari sp.1 Acranthera sp. Anthocephalus chinensis Walp. Argostemma sp. Canthium sp. 37 2 8 6 18 1 11 1 2 7 1 1 1 10 113 24 136 8 323 1 72 28 19 2 1 14 4 5 8 3 7 1 1 2 2 1 1 2 1 1 2 9 1 4 306 3 79 37 2 8 6 18 1 21 1 1 1 10 596 8 1 1 114 23 2 5 8 3 7 1 1 4 1 1 2 3 1 9 4 79 4 Cephaelis sp. cf. Argostemma sp. Frismatomeris beccariana (Baill.) Johans Frismatomeris sp. Gaertnera sp. Gaertnera sp.1 Gardenia sp. Hedyotis cf. congesta Wall. Ex G.Don Hedyotis sp. Hypobathrum sp. Ixora cf. fumialis Ixora javanica Ixora sp. Ixora sp.1 Ixora sp.2 Ixora sp.3 Kailarsenia sp. Lasianthus angustifolia King & Gamble Lasianthus sp. Lasianthus sp.1 Lasianthus sp.2 Mussaenda sp. Nauclea sp. Oxyceros sp. Paederia foetida L. Pavetta sp. Pleiocarpidia sp. Porterandia anisophylla (Jack ex Roxb.) Ridley Porterandia sp. Praravinia sp. Psychotria sarmentosa Blume Psychotria sp. 3 3 10 6 10 6 19 1 7 3 8 19 13 2 39 9 59 114 6 4 1 16 124 7 13 16 1 311 1 29 11 4 3 11 7 162 81 45 6 45 12 4 11 5 6 14 1 3 3 1 2 3 1 307 19 16 124 17 39 3 30 19 13 75 425 8 33 1 11 243 4 3 112 30 4 6 14 1 3 3 1 2 4 Psychotria viridiflora Reinw.ex Blume Psychotria viridis Ruiz & Paw Rathmannia sp. Rubiaceae Rubiaceae 1 Rubiaceae 2 Rubiaceae 3 Rubiaceae 4 Rubiaceae 5 Saprosma membranocea Merr. Steenisia sp. Streblosa sp. Tarenna sp. Timonius flavescens (Jack) Baker Timonius lasianthoides Valet. Timonius sp. Timonius sp.1 Timonius sp.2 Tricalysia sp. Uncaria hirsuta Uncaria hirta Uncaria littorale Uncaria longifolia (Poir.) Merr. Uncaria sp. Uncaria sp.1 Uncaria sp.2 Uncaria sp.3 Urophyllum arborescens Urophyllum glabrum Jack ex wall Urophyllum sp. Urophyllum sp.1 Urophyllum sp.2 Urophyllum sp.3 Urophyllum sp.4 Urophyllum sp.5 1 1 1 8 6 2 6 1 1 9 1 8 52 3 3 18 2 2 47 6 22 69 9 24 3 38 19 3 13 29 2 1 1 1 1 11 1 35 7 3 36 15 1 6 23 3 308 81 1 6 7 1 3 1 1 1 14 2 6 1 3 28 1 8 52 3 2 2 53 51 2 78 1 1 1 38 55 6 13 1 35 7 90 60 24 8 1 3 Rutaceae Sabiaceae Sapindaceae Sapotaceae Urophyllum sp.6 Luvunga sp. Luvunga sp.1 Luvunga sp.2 Rutaceae 1 Rutaceae 2 Meliosma integrifolia Meliosma sp. Meliosma sumatrana (Jack) Walp. Dimocarpus dentatus W. Meijer ex Leenhouts Dimocarpus longan Lour. Dimocarpus sp. Guioa sp. Lepisanthus fruticosa (Roxb.) Leenh. Lepisanthus sp. Mischocarpus sp. Nephelium cuspidatum Blume Nephelium lappaceum L. Nephelium sp. Nephelium uncinatum Radlk. Paranephelium nitidum King Pometia pinnata G.Forst. Xerospermum noronhianum Blume Xerospermum sp. Madhuca beccariana Madhuca mindanaensis Merrill Madhuca pallida (Burck) Baehni Madhuca sp. Madhuca sp.1 Madhuca sp.2 Palaquium calophyllum Pierre ex Burck Palaquium gutta Burck Palaquium leiocarpum 11 10 20 1 24 46 170 1 4 1 1 2 1 22 5 48 13 13 38 2 3 1 5 3 1 2 4 4 2 34 73 1 34 22 8 74 15 6 4 1 1 13 3 11 1 37 1 15 81 2 2 5 1 22 309 11 250 20 1 1 4 1 3 6 70 13 51 2 3 1 5 4 3 68 110 3 97 5 39 1 30 6 85 2 2 5 1 22 Schizaeaceae Selaginellaceae Simaraubaceae Simaroubaceae Sterculiaceae Symplocaceae Tectraria group Theaceae Palaquium obovatum Palaquium quercifolium Burck Palaquium rostratum Burck Palaquium sp. Palaquium stenophyllum H.J.Lam Payena sp. Pouteria sp Lygodium cyrcinatum Lygodium sp. Schizaea sp. Selaginella Selaginella plana Selaginella sp. Eurycoma longifolia Jack Irvingia malayana Oliver Buettneria sp. Heritiera elata Ridley Heritiera sp. Heritiera sumatrana (Miq.) Kosterm. Pterospermum javanicum Jungh. Scaphium macropodum Beume ex K. Heyne Scaphium sp. Sterculia rubiginosa Vent Sterculia sp. Sterculia sp.1 Sterculia sp.2 Sterculia sp.3 Sterculiaceae Symplocos sp. Symplocos sp.1 Symplocos sp.2 Arcypteris irregularis Tectraria sp. Adinandra sp. 3 10 2 15 1 43 8 20 1 54 1 67 16 16 12 4 3 7 8 1 1 2 1 6 5 1 23 4 1 1058 11 24 212 5 4 1 2 2 177 3 1 2 2 1 7 10 8 5 7 31 42 1 2 7 3 22 2 5 1 25 2 1 2 310 2 26 98 60 54 1 16 11 15 11 24 212 9 16 6 3 1 2 6 1 1258 3 17 47 49 1 2 2 33 2 5 1 1 29 Theaeceae Thelypteridaceae Thymelaeaceae Tiliaceae Trigoniaceae Ulmaceae Urticaceae Ternstroemia sp. Tetramerista glabra Miq. Tetramerista sp. Camellia lanceolata Seem. Pronephrium rubicundum Aquilaria beccariana van Tiegh. Aquilaria malaccensis Lam. Aquilaria sp. Enkleia malaccensis Griff. Enkleia sp. Gonystylus affine Gonystylus macrophyllus Gonystylus sp. Gonystylus velutinus Airy Shaw Brownlowia peltata Benth. Grewia fibrocarpa Mast. Grewia paniculata Grewia sp. Microcos cinnamomifolia (Burret) Stapf ex P.S.Ashton Microcos crassifolia Burret Microcos sp. Microcos tomentosa Sm. Pentace adenophora Kosterm. Pentace erectinervia Kosterm. Pentace laxiflora Merr. Pentace sp. Pentace sp.1 Trigoniastrum hypoleucum Miq. Trigoniastrum sp. Trigoniastrum sp.1 Trigoniastrum sp.2 Gironniera nervosa Plancoh. Gironniera subaequalis Planch. Dendrocnide sp. 1 1 14 1 1 8 2 3 9 7 1 1 9 2 48 1 1 12 1 41 35 4 7 1 15 4 2 4 2 6 1 2 2 1 2 8 6 5 47 3 7 1 5 2 3 9 2 5 3 9 2 14 4 10 7 311 1 1 14 1 8 3 10 1 60 9 1 1 12 1 91 4 4 8 2 8 7 16 3 2 8 16 47 3 10 1 5 11 10 25 Verbenaceae Vitaceae Zingiberaceae Laportea sp. Orophea sp. Poikilospermum sp. Urticaceae Callicarpa longifolia Lam. Callicarpa sp. Clerodendron sp. Geunsia pentandra Merr. Geunsia sp. Teijsmanniodendron sp. Teijsmanniodendron bogoriense Koord. Teijsmanniodendron sp.1 Vitex sp. Ampelocissus Borneensis Ampelocissus imperialis Ampelocissus sp. Cayratia sp. Cayratia sp.1 Cayratia sp.2 Cissus sp. Pterisanthes sp. Pterisanthes sp.1 Tetrastigma manubriatum Tetrastigma sp. Tetrastigma sp.1 Vitaceae sp. Vitaceae sp.1 Vitis sp. Alpinia aquatica Rosc. Alpinia galanga Willd. Alpinia ligulata Alpinia sp. Alpinia sp.1 Amomum sp. 1 2 11 2 206 11 7 16 49 5 2 1 7 4 7 2 43 7 2 6 2 1 6 13 2 77 1 2 1 5 6 7 12 6 4 87 34 416 11 34 1 5 7 1 1 1 25 24 13 4 312 68 1 2 6 217 11 14 7 2 1 115 7 2 6 2 7 13 2 77 1 7 6 1 5 27 1 1 1 10 25 24 34 584 4 45 NA Costus globosus Costus sp. Costus speciosus (Koenig) Smith Etlingera littoralis Etlingera sp. Globba sp. Globba sp.1 Hornstedtia sp. Hornstedtia sp.1 Hornstedtia sp.2 Plagiostachys cf. breviramosa Plagiostachys sp. Zingiber sp. Zingiber sp.1 Zingiber sp.2 Zingiber sp.3 Zingiber sp.4 Zingiber sp.5 Zingiber sp.6 Zingiber sp.7 Zingiber sp.8 Zingiber sp.9 Zingiber sp. 10 Zingiber sp.11 Zingiber sp.12 Indet Indet 1 Indet 2 Indet 3 Indet 4 Indet 5 Indet 6 Indet 7 Indet 8 245 37 5 5 86 310 198 1 27 70 109 8 27 12 17 2 118 4 435 11 56 21 231 8 137 1 1 1 1 1 1 1 1 273 5 19 3 1 1 40 1 313 2 46 3 2 2 2 2 1 7 310 451 1 27 75 259 5 12 17 2 21 231 13 274 8 436 12 57 1 1 1 1 273 1 1 43 46 3 2 2 2 2 1 7 Number of seedlings/0.05 ha Number of species/0.05 ha 19416 469 20256 295 314 11158 451 26351 489 77181 1022 Appendix 6. Seedling species composition in 1ha plot in primary and logged lowland forests in the Bulungan Research ForestCIFOR, East Kalimantan. Family Species Name PF 1 2 3 4 LF-5 1 2 3 4 LF-10 1 2 3 4 Acanthaceae Acanthaceae 1 Acanthaceae 2 Achanthus sp. Pseuderanthemum sp Ptyssiglottis sp. Staurogyne sp. Thunbergia sp. Actinidiaceae Saurauia sp. Saurauia sp.1 Adiantceae Lindsaea scandens Hook. Alangiaceae Alangium javanicum (Blume) Wangerin Alangium sp. Curculigo racemosa Ridl. Curculigo sp. Anacardiaceae Anacardiaceae Anacardiaceae 1 Bouea sp. Buchanania sessifolia Blume Buchanania sp. 4 5 26 3 3 2 6 23 30 1 11 2 7 10 22 14 6 2 3 2 32 Amaryllidaceae 1 Total 2 85 4 3 82 57 20 4 8 55 170 2 LF-30 1 17 1 7 8 3 1 7 21 4 2 130 9 315 2 2 10 17 1 1 1 2 1 4 3 1 1 2 37 192 5 59 5 207 5 30 138 23 14 6 15 53 157 40 1 3 1 39 Calycarpacana sp. Campnosperma macrophylla Campnosperma sp. Dracontomelon dao Merrill & Rolfe Dracontomelon sp. Drimycarpus luridus (Hook.f.) Ding How Drimycarpus sp. Gluta macrocarpa (Engl.) Ding Hou Gluta sp. Gluta wallichii (Hook. f.) Ding Hou Koordersiodendron pinnatum Merrill Annonaceae Mangifera sp. Mangifera swintoniodes Kostermans Melanochyla sp. Melanochyla sp.1 Melanochyla sp.2 Parishia insignis Hook.f. Semecarpus sp. Swintonia sp. Annonaceae Artabotrys sp. Artabotrys sp.1 Artabotrys suaveolens (Blume) Blume Cyathocalyx sp. Cyathostema excelsum J.Sinclair Dasymaschalon sp. Desmos chinensis Lour. 1 1 1 6 10 1 2 1 5 3 3 1 1 1 1 3 2 2 3 2 29 9 1 1 13 9 9 76 6 5 3 11 42 281 14 3 31 18 13 1 10 1 3 18 1 1 72 2 14 109 6 2 1 1 3 3 5 4 575 19 1 22 1 1 3 4 2 3 15 3 71 1 18 9 176 51 91 95 1 1 10 4 4 2 6 6 3 7 1 3 10 2 5 3 1 2 1 2 1 27 10 5 13 3 15 6 12 6 140 16 1 476 1 9 1 20 1 316 2 144 24 86 12 26 3 4 19 1 22 Desmos sp. Fissistigma manubriatum (Hook.f. & Thomson) Merr. 1 Fissistigma sp. Friesodielsia borneensis (Miq.) van Steenis 10 2 3 1 4 3 1 3 8 10 3 26 12 1 1 7 2 1 10 6 2 13 1 5 14 1 2 4 5 3 5 2 6 23 1 23 1 3 4 5 2 24 56 1 17 1 133 67 7 10 6 10 4 2 7 10 4 1 Polyalthia cauliflora Hook.f. & Thoms. 12 31 Polyalthia lateriflora King Polyalthia microtus Miq. Polyalthia rumphii Merrill Polyalthia sp. Polyalthia sp.1 Polyalthia sp.2 Polyalthia sumatrana (Miq.) Kurz Polyalthia tomentosa 1 1 2 5 2 2 17 16 3 2 6 1 11 5 7 27 15 18 1 2 11 4 2 1 10 28 24 22 11 163 14 4 2 1 7 16 4 4 175 1 12 176 3 1 64 5 5 117 9 1 4 21 19 1 2 12 3 4 7 7 8 1 83 2 1 13 6 6 1 6 11 1 14 1 8 Friesodielsia excisa (Miq.) van Steenis Friesodielsia sp. Friesodielsia sp.1 Friesodielsia sp.2 Goniothalamus macrophyllus (Blume) Hook.f. & Thomson Goniothalamus sp. Goniothalamus sp.1 Goniothalamus sp.2 Mezzettia sp. Miliusa sp. Mitrelea sp. Neo-uvaria Neo-uvaria acuminatissima (Miq.) Airy Shaw 3 14 3 1 1 317 1 Popowia sp. Pseudovaria sp. Saccophetalum sp. Sageraea sp. Schindapsus sp. Uvaria borneensis (Merr.) T.M.A.Utterige Uvaria sp. Uvaria sp.1 Uvaria sp.2 Uvaria sp.3 Uvaria sp.4 Xylopia elliptica Maingay ex Hook.f. Xylopia malayana Hook.f. & Thoms. Xylopia sp. Xylopia sp. 1 Apocynaceae Alstonia scholaris Alstonia sp. Apocynaceae kibatalia Tabernaemontana macrocarpa Korth. Ex Blume Tabernaemontana pauciflora Wight Tabernaemontana sp. Willughbeia coriacea Wall. Willughbeia firma Willughbeia sp. Willughbeia sp.1 Willughbeia sp.2 Willughbeia sp.3 Willughbeia sp.4 5 3 8 3 1 1 1 4 1 2 1 20 10 10 4 4 92 3 106 1 9 7 2 6 8 1 1 12 6 1 15 1 2 1 6 3 39 5 3 2 3 1 2 1 3 10 2 3 1 1 3 4 1 4 1 1 2 1 3 13 14 10 28 13 111 15 1 7 10 5 8 2 12 22 1 8 21 198 4 8 15 19 9 5 1 1 1 13 20 2 1 114 5 17 4 318 5 21 4 14 1 1 3 4 6 53 14 3 40 16 2 91 15 19 229 71 26 4 Araceae Areliaceae Aristolochiaceae Arucariaceae Asclepiadaceae Aspidaceae Aglaonema sp. Alocasia sp. Alocasia sp.1 Alocasia sp.2 Alocasia sp.3 Amorphophallus sp. Amorphophallus sp.1 Anadendrum sp. Araceae Araceae 1 Homalomena cordata Schott Homalomena sp. Homalomena sp.1 Photos sp. Photos sp.1 Photos sp.2 Photos sp.3 Raphidophora sp. Scindapsus sp. Scindapsus sp.1 Scindapsus sp.2 Schefflera sp. Thottea muluensis Ding Hou Aristolochia sp. Thottea sp. Thottea sp.1 Agathis bornensis Warb. Hoya sp. Thottea temosa (Blume) Ding Hou Dryopteris linearis Dryopteris sp. Heterogonium sp. Tectaria sp. 5 1 1 4 4 4 8 11 5 1 6 3 14 2 29 10 17 1 4 2 3 2 3 11 35 5 4 3 16 3 1 1 39 37 57 1 3 4 4 10 8 3 8 8 1 2 3 18 44 5 1 1 2 1 12 16 3 46 7 48 2 99 42 172 15 3 1 3 3 20 11 24 4 2 2 8 14 1 1 1 55 15 2 2 1 26 19 319 6 1 2 4 97 22 2 5 7 10 67 3 1 49 50 65 17 13 1 1 15 536 4 5 1 39 8 17 1 1 1 55 15 5 26 25 Aspleniaceae Athyriaceae Begoniaceae Blechnaceae Bombacaceae Burseraceae Tectaria sp.1 Asplenium nitens Asplenium sp. Athyrium sp. Diplazium sp. Diplazium sp.1 Begonia sp. Begonia sp.1 Begonia sp.2 Blechnum orientale L Blechnum sp. Stenochlaena sp. Coelostegia sp. Durio acutifolius (Mast.) Kosterm. Durio cuntleyensis Durio dulcis Becc. Durio griffithii Bakh. Durio kutejensis Becc. Durio lanceolatus Mast. Durio oxleyanus Griff. Durio sp. Durio sp.1 Neesia sp. Neesia synandra Mast. Canarium littorale Blume Canarium megalanthum Merrill Canarium odonthophyllum Bakh. Canarium sp. Canarium sp.1 Canarium sp.2 Canarium sp.3 2 1 1 1 1 1 8 3 1 1 3 10 35 2 29 1 22 1 1 3 65 18 2 1 6 20 1 1 2 2 1 6 7 1 1 1 1 7 1 2 2 9 1 2 3 1 2 2 2 1 4 1 11 4 1 2 1 1 2 1 1 6 2 2 1 2 25 3 2 12 1 8 13 9 1 3 1 4 3 1 2 3 4 1 2 1 320 10 6 7 10 35 2 53 1 3 85 7 20 1 3 1 23 4 1 1 17 Dacryodes incurvata (Engl.) H. J. Lam 12 Combretaceae Commelinaceae Connaracae 32 1 Dacryodes laxa (A. W. Benn.) H. J. Lam Capparaceae Caprifoliaceae Celasaceae Celastraceae 3 Dacryodes rostrata (Blume) H. J. Lam forma pubescens 6 Dacryodes rugosa (Blume) H.J. Lam Dacryodes sp. Santiria griffithii Engl. Santiria sp. Santiria sp.1 Triomma malaccensis Hook. f. Capparis sp. Viburnum sp. Celastrus sp. Bhesa paniculata Arn. Euonymus sp. Lophopetalum beccarianum Pierre Lophopetalum javanicum Turcz. Lophopetalum sp. Lophopetalum sp.1 Salacia leucoclada Ridl. Salacia sp. Combretum nigrescens King Combretum sp. Combretum sp.1 Terminalia sp. Commelina sp. Forrestia sp. Polila sp. Agelaea borneensis Merril 12 1 5 16 39 14 31 363 11 1 2 1 1 6 126 4 18 11 6 1 1 4 3 8 16 10 1 6 16 5 3 532 21 1 44 29 156 5 1 4 1 2 2 21 140 11 68 1 3 4 63 1 1 3 3 1 1 6 2 1 6 3 4 38 165 1 1 2 1 1 3 2 3 127 6 1 13 2 5 1 93 2 120 409 3 2 10 2 4 1 2 1 11 28 1 22 3 27 1 1 8 2 4 321 2 1 27 5 9 1 22 41 3 2 7 11 13 5 4 2 1 1 5 2 649 2 3 73 43 34 5 3 48 18 1 70 Convolvulaceae Cornaceae Crypteronaceae Cucurbitaceae Cyperaceae Dilleniacea Dilleniaceae Agelaea trinervis Merrill Cnestis platantha Griff Cnestis sp. Connarus sp. Connarus semidecandrus Jack Connarus sp.1 Connarus sp.2 Rourea sp. Rourea sp.1 Rouriopsis mimosoides Erycibe glomerolata Blume Erycibe sp. Erycibe sp.1 Erycibe sp.2 Erycibe sp.3 Erycibe sp.4 Merremia sp. Ellipanthus tomentosus Kurz Crypteronia sp. Cucurbitaceae Trichosanthes sp. Cyperus sp. Mapania cuspidata Mapania sp. Scleria sp. Tetracera indica Merril Tetracera scandens (L.) Merr. Tetracera sp. Tetracera sp.1 Tetracera sp.2 Dillenia excelsa Martelli Dillenia exima 27 100 1 5 143 1 102 2 2 1 43 9 4 17 4 10 4 4 43 34 20 126 67 1 2 33 46 18 6 3 41 18 8 1 27 15 1 4 15 9 2 1 4 6 805 89 176 647 25 4 1 13 7 22 13 4 2 11 3 5 1 14 3 5 5 3 4 3 4 1 4 2 1 1 1 5 11 5 2 21 14 1 5 31 10 1 1 5 2 10 7 14 1 44 7 1 39 16 1 6 1 9 1 39 7 14 2 6 75 1 2 25 29 13 2 16 2 4 1 1 5 322 2 6 1 71 174 5 15 320 2150 60 1 2 3 1 58 89 8 4 1 25 9 27 1 12 1 45 10 71 1 111 19 157 76 6 37 5 Dillenia sp. Dillenia suffruticosa (Griff.) Martelli Dioscoreaceae Dioscorea olata Dioscorea sp. Dipterocarpaceae Anishoptera sp. Dipterocarpus crinitus Dyer Dipterocarpus lowii Hook. f. Dipterocarpus sp. Dipterocarpus sp.1 Dipterocarpus sp.2 Dryobalanops lanceolata Burck Hopea cf. rudiformis Hopea dryobalanoides Miq. Hopea sp. Macaranga bancana Muell. Arg. Macaranga gigantea Muell. Arg. Macaranga pruinosa Muell. Arg. Macaranga sp. Mallotus penangensis Muell. Arg. Mallotus sp. Parashorea malaanonan Merrill Parashorea sp. Parashorea sp.1 Parashorea tomentella (Symington) Meijer Shorea agamii P. S. Ashton Shorea angustifolia P. S. Ashton Shorea beccarii Dyer ex 1 4 1 2 4 4 1 27 2 1 4 40 157 12 288 9 26 1462 2 37 2 1 1 1 117 6 116 1 2 28 5 3 1 21 12 1 2 4 6 7 1431 1247 7 880 2167 14 1259 76 1 3707 49 12 2 5 154 8 1 13 775 1441 2 1 13818 9 2 1 1 2 2 2 23 2 4 23 100 10 107 20 4 16 1166 6 2 7 20 1 2 1087 1 41 9 110 385 8 33 47 9 120 103 3 255 1 51 7 10 4 82 1465 123 4 238 1 47 4 80 223 2 688 72 461 1 14 28 25 34 323 9 Brandis Shorea cf. exstipulata Shorea cf. mujogensis P.S.Ashton Shorea cf. ovalis Blume Shorea cf. venulosa Shorea exstipulata Shorea fallax Meijer Shorea hopeifolia (Heim) Symington Shorea inappendiculata Burck Shorea johorensis Foxworthy Shorea laevifolia(Parijs) Endert Shorea leprosula Miq. Shorea macrophylla (de Vriese) P. S. Ashton Shorea macroptera Dyer Shorea maxwelliana King Shorea multiflora (Burck) Symington Shorea ovalis Blume Shorea parvifolia Dyer Shorea parvistipulata Heim Shorea patoienfis P. S. Ashton Shorea pauciflora King Shorea peltata Symington Shorea pinanga Scheff. Shorea sp. Shorea sp.1 Shorea sp.2 Vatica granulata v. Slooten Vatica micrantha v. Slooten 3 1112 3 1860 748 1 1 69 1 57 13 36 69 1 16 56 13 3 33 15 60 3 97 1 11 51 1 7 312 12 23 3 1 142 10 180 77 12 171 138 17 1019 16 21 106 3 65 38 14 68 41 41 1 1 6 2 7 17 2 1 95 7 5 11 634 124 40 6 5 1 5 12 5 225 74 14 5 1 1408 52 24 1 6 10 10 1 1 92 156 542 174 362 30 2 13 32 2 128 1 155 128 729 60 2725 30 1049 6 22 2 766 2 2 3 6 5 1 52 9 532 1122 324 304 18 1 2 1 274 7 101 29 183 3 64 89 3 21 38 19 6 3 37 19 1686 154 204 29 38 2265 78 230 3340 Ebenaceae Elaeocarpaceae Ericaceae Euphorbiaceae Vatica nitens King Vatica oblongifolia Hook.f. Vatica sp. Vatica umbonata Burck Diospyros borneensis Hiern Diospyros buxifolia Hiern Diospyros currannii Merr. Diospyros sp. Diospyros sp. 4 Diospyros sp.1 Diospyros sp.2 Diospyros sp.3 Diospyros sp.5 Diospyros sumatrana Miq. Elaeocarpus sp. Elaeocarpus stipularis Blume Sloanea sp. Ericaceae Antidesma montanum Blume Antidesma neurocarpum Miq. Antidesma sp. Antidesma sp.1 Antidesma sp.2 Antidesma sp.3 Antidesma sp.4 Antidesma tetandra Antidesma tomentosum Blume Aporosa dioica (Roxb.) Muell.Arg. Aporosa falcifera Hook.f. Aporosa frutescens Blume Aporosa grandistipulata 12 4 26 61 1 41 30 12 5 13 10 2 4 4 2 5 24 3 9 2 1 1 18 8 27 7 15 52 34 3 3 8 1 14 4 6 7 3 2 23 67 7 1 20 17 9 1 5 4 3 1 2 2 16 27 3 3 1 1 5 3 1 1 45 12 28 2 2 1 3 1 1 1 10 1 13 1 23 48 6 19 62 48 4 8 1 3 16 45 8 3 1 3 10 1 9 9 10 22 1 6 1 13 13 8 1 5 1 1 2 1 3 4 6 9 1 5 11 7 3 2 1 3 8 2 6 11 12 4 26 131 49 70 9 411 15 17 29 1 10 56 16 1 11 4 32 1 2 2 1 325 36 2 4 Merril Aporosa lucida (Miq.) Airy Shaw Aporosa nitida Merrill Aporosa sp. Aporosa sp.1 Aporosa subcaudata Merrill Baccaurea cf. tetandra Baccaurea kunstleri King ex Gage Baccaurea lanceolata (Miq) Muell.Arg. Baccaurea macrocarpa Muell. Arg. Baccaurea ornatus Baccaurea parviflora (Mull.Arg.) Mull.Arg. Baccaurea sp. Baccaurea sp. 1 Baccaurea sumatrana Muell. Arg. Baccaurea tetandra Muell. Arg. Blumeodendron kurzii Blumeodendron sp. Blumeodendron tokbrai Kurz Breynia sp. Bridellia sp. Cephalomappa beccariana Baill. cf. Cleistantus Chaetocarpus castanocarpus Chaetocarpus sp. Cleistanthus erycibifolius Airy Shaw 10 3 4 11 2 2 30 1 14 8 15 1 1 4 4 2 3 2 50 16 59 27 3 3 28 8 19 3 5 1 2 1 4 6 6 2 5 2 1 3 2 10 5 1 1 2 2 1 10 1 1 1 1 16 4 162 5 37 33 28 56 16 9 5 2 3 1 3 2 2 187 1 13 1 199 1 2 51 201 10 66 1 1 3 1 1 1 2 2 1 1 1 1 3 1 1 2 1 1 1 326 1 8 3 8 1 1 2 1 1 1 Cleistanthus myrianthus (Hassk.) Kurz 3 5 10 Cleistanthus sp. Cleistanthus sp.1 Cleistanthus sp.2 Cleistanthus sp.3 Coccoceras sp. Croton argyratus Croton argyratus Blume Croton sp. Dimorphocalyx muricatus (Hook.f.) Airy Shaw Dipterocarpus cornutus Dyer Dipterocarpus eurynchus Miq. Dipterocarpus sp. Dipterocarpus sp.1 Dipterocarpus stellatus Vesque Dipterocarpus verrucosus Foxworthy ex. v. Slooten 2 1 1 4 4 3 18 18 5 12 2 2 1 8 2 1 1 3 11 93 9 1 3 1 1 5 14 1 81 2 1 1 132 9 25 65 3 37 65 24 11 1 Drypetes kikir Airy Shaw Drypetes longifolia (Blume) Pax & K.Hoffm> 3 Drypetes sp. Drypetes sp.1 Elateriospermum sp. Elateriospermum tapos Blume Endospermum diadenum (Miq.) Airy Shaw 1 1 1 4 2 41 51 8 12 1 40 1 222 2 1 945 8 1 103 11 10 25 4 1 2 11 235 142 6 509 1 1 2 2 215 9 4 1 46 16 4 3 24 94 2 18 15 1 1 2 46 1 1 1 1 7 1 3 7 Euphorbiaceae (1) Galearia fulpa Galearia sp. 2 327 1 Glochidion sericeum Glochidion sp. Glochidion sp.1 Koilodepas brevipes Merr. Koilodepas sp. Macaranga bancana Muell. Arg. Macaranga beccariana Merrill Macaranga hypoleuca Muell. Arg. Macaranga lowii King ex Hook.f. Macaranga pearsonii Merrill Macaranga repando-dentata Airy Shaw Macaranga sp. Macaranga sp.1 Mallotus cf. griffithianus Mallotus dispar (Blume) Mull.Arg. Mallotus eucaustus Airy Shaw Mallotus penangensis Muell.Arg. Mallotus sp. Mallotus sp.1 Mallotus wrayi King ex Hook. f. Neoscortechinia Neoscortechinia kingii Pax & K. Hoffm. 1 290 94 218 1 2 6 149 185 11 1 114 4 2 41 1 3 5 79 58 142 14 12 2 8 3 307 102 9 4 1 1 99 2 3 2 248 167 2 1 1 3 39 11 61 5 1 4 9 34 5 300 240 30 12 15 3 12 10 53 26 10 1 1 77 11 136 5 1 3 1 27 1 1709 588 57 12 2 25 1 29 12 3 63 291 5 9 50 5 603 350 3 4 5 12 15 7 4 93 1 69 26 98 2 4 2 5 15 Omphalea bracteata (Blanco) Merr. Paracroton pendulus Miq. Paracroton sp. 9 328 37 30 32 12 126 3 9 13 1 3 25 13 6 Pimeleodendron sp. Pimelodendron griffithianum (Muell. Arg.) Hook. f. Ptychopyxis bacciformis Croiz Ptycophxis sp. Trigonostemon elmeri Merr. Trigonostemon sp. Trigonostemon sp.1 Trigonostemon sumatranus Pax & K.Hoffm. Trigonostemon villosus Hook.f. Fagaceae Castanopsis sp. Lithocarpus sp. Lithocarpus cooperta Rehder Quercus sp. Casearia sp. Flacortiaceae Flacourtia rukam Zoll. & Mor. Flacourtia sp. Hydnocarpus polypetalus (v.Slooten) Sleum. Flagelariacea Gesneriaceae Hydnocarpus sp. Hydnocarpus sp.1 Hydnocarpus sp.2 Hydnocarpus sp.3 Hydnocarpus sp.4 Hydnocarpus woodii Merr. Osmelia sp. Ryparosa kostermansii Sleum. Ryparosa sp. Flagellaria sp. Aechynanthus sp. 1 54 1 28 12 3 3 15 2 2 9 5 43 145 12 14 1 2 2 4 1 7 19 6 96 1 26 247 4 6 7 20 26 1 1 3 4 4 3 5 2 2 1 9 3 1 5 4 3 2 3 1 2 1 6 2 1 1 1 1 1 3 2 2 4 20 4 4 3 6 1 3 8 2 1 2 10 3 12 2 5 1 5 1 11 3 5 1 1 2 2 329 4 3 52 2 1 11 6 30 32 4 4 2 19 1 11 2 2 2 Glicheniaceae Gnetaceae Graminae Guttiferae Hymenophyllaceae Hypericaceae Cyrtandra sp. Cyrtandra sp.1 Cyrtandra sp.2 Cyrtandra sp.3 Cyrtandra sp.4 Cyrtandra sp.5 Cyrtandra sp.6 Cyrtandra sp.7 Gleicheria linearis Gnetum sp. Graminae Leptasis sp. Scrotochloa urceolata (Roxb.) Judz. Calophyllum gracilipes Merr. Calophyllum pulcherimum Calophyllum sp. Calophyllum sp.1 Calophyllum sp.2 Garcinia bancana (Miq.) Miq. Garcinia nervosa Miq. Garcinia parvifolia Miq. Garcinia sp. Garcinia sp.1 Kayea borneensis P. F. Stevens Kayea sp. Mammea sp. Mesua sp. Tricomanes javanicum Blume Cratoxylon formosum Benth. & Hook. F. ex Dyer 3 3 3 3 8 3 3 2 9 17 162 6 56 5 2 12 50 26 2 26 5 26 87 1 1 1 1 2 147 2 1 1 1 5 8 1 2 4 3 1 2 24 14 2 6 3 9 19 18 110 9 11 30 24 1 32 6 20 3 1 1 24 13 1 1 1 4 2 1 7 1 2 3 1 1 13 2 6 4 4 2 2 3 2 3 3 1 17 2 1 2 1 319 20 62 5 1 1 1 1 147 134 2 20 24 1 3 1 12 3 12 330 1 2 3 3 19 276 1 1 7 3 13 96 2 6 3 4 13 12 12 Icacinaceae 4 Cratoxylon sp. Cratoxylum orborescens Cratoxylum sp. Gonocaryum calleryanum (Baill.) Becc. Gonocaryum sp. Maesa sp. Phytocrene sp. Phytocrene sp.1 Stemonurus scorpioides Becc. Stemonurus scundiflorus Stemonurus sp. Stemonurus sp.1 Icacinaceae Juglandaceae Engelhardia serrata Blume Lauraceae Actinodaphne glabra Blume Actinodaphne sp. Actinodaphne sp.1 Actinodaphne sp.2 Alseodaphne elmeri Merrill Alseodaphne sp. Beilschmiedia sp. Cinnamomum javanicum Blume Cinnamomum sp. Cryptocarya crassinervia Miq. Cryptocarya sp. Dehaasia sp. Endiandra kingiana Gamble Endiandra sp. Eusideroxylon zwageri Teijsm. & Binn. 1 1 3 4 3 32 10 1 1 2 1 1 1 11 52 12 1 1 1 2 7 3 3 2 1 28 12 5 1 2 6 3 4 1 1 2 1 1 2 3 2 8 1 12 4 4 4 1 20 11 1 1 5 1 36 2 17 1 3 6 1 21 19 2 1 13 1 2 1 4 2 4 1 10 2 6 3 5 12 3 3 2 3 1 5 5 3 2 2 16 1 Lauraceae 331 9 33 12 1 5 12 100 1 27 6 8 43 1 3 6 125 4 16 14 3 1 46 29 11 3 1 12 1 1 4 4 1 1 3 4 92 33 15 5 54 5 Lecythidaceae Leeaceae Leguminosae Litsea ferruginea Litsea firma Hook. F. Litsea oppositifolia L.S. Gibbs Litsea sp. Litsea sp.1 Litsea sp.2 Neolitsea sp. Barringtonia macrostachya Kurz Barringtonia sp. Planchonia sp. Leea indica (Burm.f.) Merr. Leea sp. Abarema sp. Abrus sp. Archidendron clypearia (Jack) I.C.Nielsen Archidendron microcarpum (Bentham) I. Nielsen Archidendron sp. Archidendron sp.1 Bauhinia kockiana Korth. Bauhinia semibifida Roxb. Bauhinia sp. Bouchinia sp. Caesalpinia sp. Cynometra ramiflora Miq. Cynometra sp. Dalbergia parviflora Roxb. Dalbergia sp. Dialium indum Linn Dialium kunstleri Prain Dialium platysepalum Baker 1 5 5 4 2 3 1 1 5 4 65 10 31 17 10 21 1 2 1 5 15 15 1 39 2 2 1 1 1 15 11 69 303 2 2 32 3 3 3 1 1 17 12 5 1 1 1 3 8 1 33 9 1 43 4 1 2 3 1 5 2 1 12 2 6 1 1 8 8 5 2 14 1 1 2 6 1 2 1 7 1 1 11 8 14 10 1 1 2 1 1 5 1 1 55 43 47 11 10 13 5 3 2 10 7 3 1 2 4 105 2 332 1 24 1 33 44 1 2 3 1 12 7 34 1 19 7 2 1 10 5 22 1 4 3 5 111 1 22 1 28 3 1 30 14 221 70 16 52 6 24 201 3 136 12 Dialium sp. Fordia seclendia Fordia sp. Fordia splendidissima (Blume ex Miq.) J. R. M. Buijsen Koompassia excelsa Taub. Koompassia malaccensis Maing. Koompassia sp. Mucuna sp. Parkia sp. Parkia speciosa Hassk. Parkia timoriana Merrill Phanera sp. Pithecellobium sp. Saraca declinata Miq. Saraca sp. Sindora leiocarpa Baker ex K.Heyne Sindora wallichii Benth Spatholobus ferrugineus Benth. Spatholobus hirsutus H.Wiriadinata & J.W.A.Ridder-Numan Spatholobus litoralis Hassk. Spatholobus macropterus Miq. Spatholobus sanguineus Elmer Spatholobus sp. Spatholobus sp.1 Spatholobus sp.2 Spatholobus sp.3 Spatholobus sp.4 15 3 2 3 12 43 5 1 3 1 17 2 102 5 1 87 1 22 1 3 16 3 3 1 5 4 10 55 10 2 4 13 5 1 1 2 11 1 16 12 25 89 1 3 4 20 11 3 2 1 5 6 21 3 8 303 3 5 1 1 5 7 1 4 13 1 2 1 2 1 3 2 6 5 3 1 1 2 77 33 2 19 16 1 2 104 77 5 1 1 3 22 1 19 1 127 36 110 15 14 111 235 177 116 12 230 1 14 116 14 2 103 398 7 4 148 9 68 333 5 1 7 152 1 80 66 11 1 4 69 8 65 16 232 918 29 285 Liliaceae Linaceae Loganiaceae Lycopodiaceae Magnoliaceae Spatholobus sp.5 Dracaena sp. Liliaceae Pleomele sp. Smilax sp. Smilax Zeylanica Indraroucrea sp. Ixonanthus sp. Fagraea racemosa Jack ex Wall. Fagraea sp. Fagraea sp.1 Fragraea seroria Strychnos sp. Strychnos sp.1 Lycopodium cernum Lycopodium sp. Elmerillia mollis Magnolia candollii (Blume) H. P. Nooteboom 102 1 Maranthaceae Melastomaceae 2 1 2 2 4 4 1 1 1 3 6 7 5 2 5 1 3 3 6 3 1 3 1 2 2 1 2 4 4 2 1 8 10 113 1 9 81 99 14 1 1 1 1 1 1 Magnolia gigantifolia (Miq.) H. P. Nooteboom Magnolia lasia H. P. Noot.eboom Magnolia sp. Donax caniformis K.Schum Phacelophrynium maximum Phrynium sp. Phrynium sp.1 Phrynium sp.3 Phrynium sp.4 Phrynium sp.5 Stachyphrynium borneensis Astronia sp. 9 1 9 1 1 3 2 1 330 1 14 3 2 3 1 1 3 2 2 2 5 2 27 54 102 19 1 9 20 8 3 12 4 20 23 1 1 2 2 1 2 10 2 25 13 2 3 21 41 70 307 1 1 1 1 27 2 43 24 50 32 1 42 1 50 1 1 1 2 2 334 25 Melastomataceae Meliaceae Astronia sp.1 Clidemia hirta D.Don Clidemia sp. Medinella sp. Melastoma malabraticum Melastoma sp. Melastoma sp.1 Memecylon borneense Merrill Memecylon edule Roxb. Memecylon sp. Pternandra azurea (Bl.) Burkill Pternandra caerulescens Jack Pternandra galeata Ridley Pternandra rostrata (Cogn.) M. P. Nayar Pternandra sp. Aglaia argentea Blume Aglaia simplicifolia Harms. Aglaia sp. Aglaia sp.1 Aglaia sp.2 Aglaia sp.3 Aglaia sp.4 Aglaia sp.5 Aglaia tomentosa Teijsm. & Binn. Aglaia trinervis Chisocheton cf. patens Chisocheton sp. Dysoxylum alliaceum Blume Dysoxylum sp. Lansium domesticum Correa 10 1 1 20 3 14 2 2 11 21 2 1 3 6 6 5 1 24 1 4 1 2 4 23 3 1 10 7 2 10 1 2 3 8 54 2 1 34 16 2 2 8 2 65 2 26 48 1 54 18 2 3 8 2 11 11 18 24 10 24 29 2 1 1 3 1 25 1 1 335 2 7 1 15 2 2 25 1 4 1 13 7 2 3 3 1 4 4 22 7 1 1 1 3 12 13 6 1 1 5 36 1 18 3 3 8 165 5 19 231 9 15 1 1 3 18 1 4 7 97 12 4 14 3 10 1 1 86 2 9 25 4 8 1 2 4 1 Lansium sp. Meliaceae 1 Meliaceae 2 Reinwardtiodendron humile (Hassk.) Mabb. Sandoricum sp. Walsura sp. Menispermaceae Anamirta cocculus Wigght & Arn Menispermaceae Coscinium sp. Fibraurea ochroleuca Fibraurea sp. Fibraurea tinctoria Lour. Menis sp. Menis sp.2 Menisp. 1 Stephania corymbosa Tinospora sp. Moraceae Artocarpus cf. nitida Artocarpus dadah Miq. Artocarpus elastica Reinw Artocarpus integer Merrill Artocarpus lanceifolius Roxb. Artocarpus sp. Artocarpus tamaran Becc. Ficus grossularioides Burm. f. Ficus obscura Blume Ficus sinuata Thunb Ficus sp. Ficus sp.1 Ficus sp.2 Ficus sp.3 Ficus sp.4 3 2 2 1 3 1 1 2 11 7 1 4 10 3 3 1 38 2 10 1 1 3 2 4 1 3 7 4 6 6 11 10 3 17 1 1 1 1 4 2 1 1 13 1 1 2 1 130 1 1 9 4 2 40 9 2 2 1 1 4 13 1 3 44 3 66 1 4 2 3 17 29 1 57 3 13 5 1 14 1 1 1 1 336 8 44 10 25 34 23 3 1 31 12 9 2 1 1 50 2 8 45 7 17 1 1 1 2 17 19 374 1 8 12 10 1 71 6 3 195 1 188 63 2 1 1 69 32 1 15 1 2 5 1 10 13 32 1 6 3 33 1 12 4 4 4 1 Musaceae Myristicaceae Ficus sp.5 Moraceae 1 Moraceae 2 Parartocarpus sp. Prainea sp. Musa sp. Gymnacranthera farquhariana Warb. Gymnacranthera sp. Horsfieldia grandis Warb. Horsfieldia sp. Knema cinerea (Poir.) Warb. Knema furfuracea Warb. Knema glauca Warb. Knema glaucescens Jack Knema latericia Elmer Knema laurina Warb. Knema palens W. J. J. O. de Wilde Knema sp. Knema sp.1 Knema sp.2 Knema sp.3 Knema sp.4 Knema sp.5 Myristica iners Blume Myristica maxima Warb. Myristica simiarum A.DC. Myristica sp. Myristica villosa Warb. Myrsinaceae Ardisia cf. lanceolata Ardisia korthalsiana Scheff. Ardisia lanceolata Ardisia megistosepala Merr. 1 4 24 6 1 2 10 32 13 1 81 14 1 8 2 8 1 3 1 8 22 17 1 16 3 12 1 1 13 1 3 5 8 3 4 9 9 1 3 1 7 17 20 5 1 4 11 3 3 1 2 1 50 1 1 1 1 1 7 15 1 1 1 3 1 1 2 1 2 1 39 1 8 6 4 25 99 1 1 1 1 1 3 2 2 15 1 1 1 2 4 7 337 4 5 7 17 5 1 1 4 27 7 11 21 3 1 1 19 1 22 68 48 51 4 104 32 4 242 3 1 2 3 3 29 2 2 56 2 1 2 4 7 Ardisia sp. Ardisia sp.1 Embelia sp. Labisia pumila (Blume) Benth. & Hook.f. Myrtacaceae Nepenthaceae Nephrolepydaceae Ochnaceae Olacaceae Oleaceae Orchidaceae cf. Syzygium Eugenia caudatilimba Merr. Eugenia sp. Syzygium grande Wall. Syzygium horsfieldii Syzygium sp. Syzygium sp.1 Syzygium sp.2 Syzygium sp.3 Syzygium sp.4 Syzygium sp.5 Syzygium tawahense (Korth.) Merrill & Perry Tristaniopsis sp. Nephentes melamphora Nephrolepis bisserrata Nephrolepis sp. Gomphia serrata (Gaertn.) Kanis Ochanostachys amentacea Mast. Strombosia sp. Chionanthus sp. Linociera macrophylla Linociera sp. Linociera sp.1 Calanthe sp. cf. Calanthe Dendrobium sp. 2 15 9 15 1 4 6 11 13 5 7 2 11 2 1 22 20 1 7 15 1 118 11 3 38 1 3 1 4 36 11 2 1 1 3 2 25 275 78 370 83 15 143 1 33 72 1 8 59 11 20 43 1 3 13 62 24 14 5 8 1 1 2 85 3 10 1 1 2 1 6 8 3 106 1 3 1 4 1 2 1 1 5 4 3 8 1 17 86 12 1 17 34 1 2 5 2 23 6 338 3 9 9 1 8 47 2 2 1095 75 2 1 70 3 113 1 2 10 17 8 1 235 1 1 2 7 26 6 Oxalidaceae Palmae 6 29 Orchidaceae Spathoglottis sp. Sarcotheca diversifolia (Miq..) Hallier f. Sarcotheca sp. Arenga sp. Artocarpus lanceifolia Roxb. Artocarpus sp. Calamus blumei Becc. Calamus caesius Calamus flabellatus Becc. Calamus javensis Blume Calamus sp. Calamus sp.1 Calamus sp.2 Calamus tiliaris Caryota sp. Ceratolobus sp. Daemonorops sabut Becc. Daemonorops sp. Korthalsia echinometra Becc. Korthalsia ferox Becc. Korthalsia furtadoana J.Dransf. Korthalsia sp. Korthalsia sp.1 Korthalsia sp.2 Licuala sp. Licuala spinosa Thunb. Pinanga sp. Salacca sp. Freycinetia sp. Pandanus sp. 1 28 16 3 5 1 133 23 1 3 2 2 26 3 9 1 2 1 2 5 2 2 24 4 8 2 1 7 2 6 11 4 4 32 67 35 38 1 26 9 16 22 10 28 2 1 12 26 3 5 2 1 1 1 2 20 10 9 1 3 13 1 4 4 3 14 3 11 1 1 107 6 22 12 9 171 22 30 13 3 2 12 1 43 25 2 3 22 16 39 49 4 8 6 35 1 24 15 25 17 16 6 48 8 1 19 7 7 17 1 1 50 22 2 12 3 2 2 1 4 7 1 1 1 139 7 2 15 3 1 1 35 280 3 1 3 9 1 39 339 40 21 64 1 57 48 1 15 6 9 5 2 50 8 16 14 312 3 9 1 15 1 67 559 141 3 9 5 24 242 16 1 1 1 4 Passifloraceae Piperaceae Podocarpaceae Polygalaceae Pandanus sp.1 Pandanus sp.2 Pandanus sp.4 Adenia macrophylla Blume Kord. Piper baccatum Blume Piper sp. Piper sp.1 Piper sp.2 Nageia wallichiana Kuntze Xanthophyllum affine Korth. ex. Miq. Xanthophyllum cf. griffithii Hook.f. ex Benn Xanthophyllum ellipticum Korth. ex Miq. 1 22 3 1 1 1 1 14 1 55 16 7 3 14 6 1 1 2 3 20 19 2 23 1 8 4 1 11 8 1 117 1 1 1 57 1 2 2 2 1 2 Xanthophyllum heterophyllum Xanthophyllum heterophyllum Meijden 1 2 2 5 1 23 2 2 12 5 14 2 11 6 18 4 5 15 10 8 25 20 15 1 16 3 2 1 1 9 8 340 2 5 2 1 2 23 26 1 1 44 1 Xanthophyllum flavescens Xanthophyllum griffithii Hook. f. ex A. W. Benn. Xanthophyllum obscurum A.W.Benn. Xanthophyllum rufum A.W. Benn. Xanthophyllum sp. Xanthophyllum sp.1 Xanthophyllum sp.2 Xanthophyllum sp.3 Xanthophyllum sp.4 Xanthophyllum sp.5 Xanthophyllum sp.6 Xanthophyllum sp.7 19 4 14 4 29 6 150 42 14 8 2 50 9 8 48 Polypodiaceae Proteaceae Rhamnaceae Dipteris conjungata Reinw. Dipteris sp. Drynaria sparsisora (Desv.) Moore Fern sp. Fern sp.1 Fern sp.2 Fern sp.3 Fern sp.4 Fern sp.5 Fern sp.6 Fern sp.7 Fern sp.8 Fern sp.9 Fern sp.10 Fern sp.11 Fern sp.12 Fern sp.13 Oleandra sp.(Vern) Helicia sp. Helicia sp.1 Helicia sp.2 Rhamnaceae Sageretia hamosa Brongn. Ventilago sp. Ziziphus angustifolia (Miq.) Hatusina ex Stesnis Ziziphus horsfieldii Ziziphus liana Ziziphus sp. Ziziphus sp.1 Ziziphus sp.2 Ziziphus sp.3 Ziziphus sp.4 1 1 1 1 6 1 5 2 6 2 30 4 7 4 63 29 42 4 19 4 4 1 1 49 1 6 28 1 4 6 1 15 36 1 1 1 8 6 18 1 1 3 2 5 1 2 6 1 1 1 9 71 4 10 1 6 23 1 17 6 47 5 82 3 5 2 97 34 3 3 1 1 1 3 5 4 176 16 1 25 25 14 8 10 10 2 341 9 18 8 1 2 3 6 167 5 39 43 39 4 27 37 2 8 6 18 1 21 1 1 1 10 596 8 1 1 114 23 2 5 8 Rhizoporaceae Anisophyllea corneri Ding Hou Anisophyllea disticha Baill. Carallia bracteata (Lour.) Merr. Carallia sp. Rosaceae Prunus sp. Rubus moluccana Licania splendens (Kortthal) Prance Parinari oblongifolia Hook. f. Parinari sp. Parinari sp.1 Rubiacea Acranthera sp. Anthocephalus chinensis Walp. Argostemma sp. Canthium sp. Cephaelis sp. cf. Argostemma sp. Frismatomeris beccariana (Baill.) Johans 1 3 7 7 1 1 2 1 1 4 1 1 2 2 2 1 1 1 1 1 1 3 5 1 1 1 72 3 3 2 7 10 1 2 2 1 8 11 2 124 1 1 2 4 19 3 1 6 1 1 1 39 6 9 6 14 1 2 5 13 14 28 13 6 67 45 5 11 145 342 3 1 9 4 79 4 3 10 6 1 Frismatomeris sp. Gaertnera sp. Gaertnera sp.1 Gardenia sp. Hedyotis cf. congesta Wall. Ex G.Don Hedyotis sp. Hypobathrum sp. Ixora cf. fumialis Ixora javanica Ixora sp. Ixora sp.1 2 160 6 19 16 124 17 39 3 30 19 13 75 425 Ixora sp.2 Ixora sp.3 Kailarsenia sp. Lasianthus angustifolia King & Gamble Lasianthus sp. Lasianthus sp.1 Lasianthus sp.2 Mussaenda sp. Nauclea sp. Oxyceros sp. Paederia foetida L. Pavetta sp. Pleiocarpidia sp. Porterandia anisophylla (Jack ex Roxb.) Ridley Porterandia sp. Praravinia sp. Psychotria sarmentosa Blume Psychotria sp. Psychotria viridiflora Reinw.ex Blume Psychotria viridis Ruiz & Paw Rathmannia sp. Rubiaceae Rubiaceae 1 Rubiaceae 2 Rubiaceae 3 Rubiaceae 4 Rubiaceae 5 Saprosma membranocea Merr. Steenisia sp. 3 1 2 4 1 14 3 1 1 11 1 1 7 4 4 16 111 31 26 5 28 22 1 9 4 3 31 3 9 3 5 9 1 22 8 3 3 11 7 2 2 2 1 5 4 2 1 4 3 7 3 3 4 1 3 1 2 2 1 1 8 33 1 11 243 4 3 112 30 4 6 14 1 3 3 1 2 4 1 1 1 1 1 6 2 5 1 1 14 2 6 1 3 28 1 8 8 1 2 1 5 1 1 1 343 8 1 7 1 3 9 Streblosa sp. Tarenna sp. Timonius flavescens (Jack) Baker Timonius lasianthoides Valet. Timonius sp. Timonius sp.1 Timonius sp.2 Tricalysia sp. Uncaria hirsuta Uncaria hirta Uncaria littorale Uncaria longifolia (Poir.) Merr. Uncaria sp. Uncaria sp.1 Uncaria sp.2 Uncaria sp.3 Urophyllum arborescens Urophyllum glabrum Jack ex wall Urophyllum sp. Urophyllum sp.1 Urophyllum sp.2 Urophyllum sp.3 Urophyllum sp.4 Urophyllum sp.5 Urophyllum sp.6 Rutaceae Luvunga sp. Luvunga sp.1 Luvunga sp.2 Rutaceae 1 Rutaceae 2 Sabiaceae Meliosma integrifolia 52 1 1 52 3 2 1 1 2 3 16 12 2 17 2 4 22 1 10 25 33 1 26 2 2 2 2 3 9 1 1 1 1 1 23 3 12 26 2 3 1 16 4 13 1 11 14 10 7 3 36 15 1 2 19 3 4 4 21 1 5 3 1 18 10 32 1 4 3 11 10 11 1 1 2 3 9 10 6 24 15 1 29 11 8 1 4 1 344 40 90 53 51 2 78 1 1 1 38 55 6 13 1 35 7 90 60 24 8 1 3 11 250 20 1 1 4 1 Sapindaceae Meliosma sp. Meliosma sumatrana (Jack) Walp. Dimocarpus dentatus W. Meijer ex Leenhouts Dimocarpus longan Lour. Dimocarpus sp. Guioa sp. Lepisanthus fruticosa (Roxb.) Leenh. Lepisanthus sp. Mischocarpus sp. Nephelium cuspidatum Blume Nephelium lappaceum L. Nephelium sp. Nephelium uncinatum Radlk. Paranephelium nitidum King Pometia pinnata G.Forst. Xerospermum noronhianum Blume Xerospermum sp. Sapotaceae Madhuca beccariana Madhuca mindanaensis Merrill Madhuca pallida (Burck) Baehni Madhuca sp. Madhuca sp.1 Madhuca sp.2 Palaquium calophyllum Pierre ex Burck Palaquium gutta Burck Palaquium leiocarpum Palaquium obovatum 1 1 1 1 11 10 3 1 6 12 2 6 6 22 2 3 6 14 70 1 5 9 13 51 2 3 29 2 2 1 1 2 3 1 1 2 1 5 4 3 2 2 5 23 3 46 24 2 1 2 1 10 4 12 18 10 7 5 1 10 1 5 9 3 4 4 3 1 13 1 4 1 1 1 3 71 2 1 1 1 2 8 4 15 1 11 39 1 30 6 4 36 7 32 2 8 7 7 2 2 3 68 110 3 97 5 3 1 2 345 6 85 2 2 5 1 22 2 Schizaeaceae Selaginellaceae Simaraubaceae Simaroubaceae Sterculiaceae Palaquium quercifolium Burck Palaquium rostratum Burck Palaquium sp. Palaquium stenophyllum H.J.Lam Payena sp. Pouteria sp Lygodium cyrcinatum Lygodium sp. Schizaea sp. Selaginella Selaginella plana Selaginella sp. Eurycoma longifolia Jack Irvingia malayana Oliver Buettneria sp. Heritiera elata Ridley Heritiera sp. Heritiera sumatrana (Miq.) Kosterm. Pterospermum javanicum Jungh. Scaphium macropodum Beume ex K. Heyne Symplocaceae Scaphium sp. Sterculia rubiginosa Vent Sterculia sp. Sterculia sp.1 Sterculia sp.2 Sterculia sp.3 Sterculiaceae Symplocos sp. Symplocos sp.1 Symplocos sp.2 3 9 2 13 1 1 41 1 1 7 3 1 17 26 4 1 39 4 4 9 2 50 10 15 1 16 3 1 4 12 4 3 3 7 2 22 112 82 1 3 18 5 5 3 1 1 2 1 3 1 3 1 3 1 1 1 1 40 1 1 13 59 1 65 2 1 2 2 1 1 3 7 5 2 8 1 81 1 2 8 3 2 1 3 4 10 1 1 5 3 346 34 2 2 1 16 11 15 11 24 212 9 16 6 3 1 2 6 1 1 445 498 1258 8 11 4 18 21 1 1 8 9 1 5 3 11 3 98 60 54 3 17 47 49 1 2 2 33 2 5 Tectraria group Theaceae Theaeceae Thelypteridaceae Thymelaeaceae Tiliaceae Arcypteris irregularis Tectraria sp. Adinandra sp. Ternstroemia sp. Tetramerista glabra Miq. Tetramerista sp. Camellia lanceolata Seem. Pronephrium rubicundum Aquilaria beccariana van Tiegh. Aquilaria malaccensis Lam. Aquilaria sp. Enkleia malaccensis Griff. Enkleia sp. Gonystylus affine Gonystylus macrophyllus Gonystylus sp. Gonystylus velutinus Airy Shaw Brownlowia peltata Benth. Grewia fibrocarpa Mast. Grewia paniculata Grewia sp. Microcos cinnamomifolia (Burret) Stapf ex P.S.Ashton Microcos crassifolia Burret Microcos sp. Microcos tomentosa Sm. Pentace adenophora Kosterm. Pentace erectinervia Kosterm. Pentace laxiflora Merr. Pentace sp. Pentace sp.1 1 2 7 1 9 2 1 5 1 8 1 1 29 1 1 14 1 8 2 3 4 2 1 11 1 1 3 3 4 10 1 15 24 2 3 6 60 9 1 1 12 1 13 2 1 6 3 3 1 6 2 9 1 1 1 1 41 1 1 3 11 10 11 91 4 4 8 2 2 3 1 1 3 1 1 3 1 2 4 1 2 6 1 2 1 2 2 1 1 2 6 2 6 5 9 34 4 347 2 1 1 8 7 16 3 2 4 1 2 3 8 16 47 Trigoniaceae Trigoniastrum hypoleucum Miq. Trigoniastrum sp. Trigoniastrum sp.1 Trigoniastrum sp.2 Ulmaceae Gironniera nervosa Plancoh. Gironniera subaequalis Planch. Urticaceae Dendrocnide sp. Laportea sp. Orophea sp. Poikilospermum sp. Urticaceae Verbenaceae Callicarpa longifolia Lam. Callicarpa sp. Clerodendron sp. Geunsia pentandra Merr. Geunsia sp. Teijsmanniodendron sp. Teijsmanniodendron bogoriense Koord. Vitaceae Teijsmanniodendron sp.1 Vitex sp. Ampelocissus Borneensis Ampelocissus imperialis Ampelocissus sp. Cayratia sp. Cayratia sp.1 Cayratia sp.2 Cissus sp. Pterisanthes sp. Pterisanthes sp.1 Tetrastigma manubriatum Tetrastigma sp. 2 1 3 7 1 5 3 5 5 3 4 2 2 7 12 1 2 1 2 1 1 8 5 9 2 2 2 3 3 26 5 17 1 1 5 2 3 1 6 2 1 2 2 201 7 5 2 1 3 8 10 1 5 11 10 31 8 7 2 3 3 2 1 3 1 3 1 5 6 2 77 1 2 5 6 1 5 1 1 348 6 5 4 3 4 1 2 25 1 2 6 217 11 14 7 2 1 115 7 2 6 2 7 13 2 77 1 7 6 1 5 27 Zingiberaceae Tetrastigma sp.1 Vitaceae sp. Vitaceae sp.1 Vitis sp. Alpinia aquatica Rosc. Alpinia galanga Willd. Alpinia ligulata Alpinia sp. Alpinia sp.1 Amomum sp. Costus globosus Costus sp. Costus speciosus (Koenig) Smith Etlingera littoralis Etlingera sp. Globba sp. Globba sp.1 Hornstedtia sp. Hornstedtia sp.1 Hornstedtia sp.2 Plagiostachys cf. breviramosa Plagiostachys sp. Zingiber sp. Zingiber sp.1 Zingiber sp.2 Zingiber sp.3 Zingiber sp.4 Zingiber sp.5 Zingiber sp.6 Zingiber sp.7 Zingiber sp.8 Zingiber sp.9 1 1 1 2 13 7 19 5 4 1 1 12 2 45 4 3 40 13 224 1 21 104 33 55 61 36 15 3 16 34 4 11 13 1 29 5 3 5 4 24 1 13 231 34 309 84 49 27 57 20 1 17 1 13 6 52 31 8 2 7 4 8 5 2 14 4 12 21 231 8 34 349 251 21 118 4 129 11 56 33 104 1 1 1 1 1 1 1 1 2 2 3 2 1 5 1 2 9 1 1 1 10 25 24 34 584 4 45 310 451 1 27 75 259 5 12 17 2 21 231 13 274 8 436 12 57 1 1 1 1 NA 241 Zingiber sp. 10 Zingiber sp.11 Zingiber sp.12 Indet Indet 1 Indet 2 Indet 3 Indet 4 Indet 5 Indet 6 Indet 7 Indet 8 Number of seedlings/0.05 ha Number of species/0.05 ha 32 1 1 32 1 3 5 1 45 2 1 1 1 2 2 2 2 1 7 3680 193 5810 176 4447 167 5479 289 4257 178 350 5839 164 4539 159 5621 178 3748 269 3430 272 2140 153 1840 153 8160 271 3460 273 6300 274 8431 242 273 1 1 43 46 3 2 2 2 2 1 7 77181 1022 351 Appendix 7. Notes on permanent sample plot methods used by CIFOR in the Bulungan Research Forest (1998/99). N O T E : T H I S IS I N T E N D E D A S A Q U IC K W O R K I N G D R A F T T O L E A V E W I T H TH E PROJ EC T. CO MMEN TS AND CORR EC TIO NS AR E N EED ED A ND WOU LD B E W ELCO ME. The main data sheet This sheet contains the main tree data (species, diameter [and details of the measurement], crown position), standing dead wood (dead trees) and tree cavities. All stems with a girth at 1.3 m of 62 cm and over are recorded, this includes palms, climbers, dead trees and any other form of stem that qualifies by virtue of its diameter. The form has the following layout – superscripts are used to provide explanations below. BRFCIFOR: SFM Plot Data sheet Recorder4 Pencatat p.o.m. Code Kode titik ukur 15 Sheet headers 1 2 3 4 5 6 7 8 Petak is the name of the actual forest block or compartment being worked in, e.g. 27a. Plot is the name of the plot, e.g. ‘H3’ Date is the day of the field observations being recorded (day/month/year). Recorder is the name of the field booker – the person who has filled in the sheet. This person is responsible for ensuring that the final sheets are free of careless errors, and should check and initial each sheet upon completion to show they have been completed and checked. Team is for names of other team members. These may be called upon to clarify or comment upon any discrepancies in the data. Page _ of _ records the number of pages out of a total for the whole plot. This is checked and completed when the plot is finished. These will be used to organise the sheets and check for omissions. This is not filled in the field (when the data is computer inputted the person responsible fills in their name) This is not filled in the field (this is the file name given to the computer entered data) 352 Trees High Actual(m) 23 13 h tinggi ukur 14 (m) A2 (Tangent)22 Girth Keliling (cm.mm) 9 A1 (Tanget )21 Subplot 10 Stem Name Nama 12 number Nomor 11 Date CWD Limbah Kayu Kasar 19 Stem length if broken (m) 20 Halaman (office) File name8 Dead Mati 18 (office) Input by7 Lubang Page ___ of ___6 Cavities (I-3)17 Team 5 Date (d-m-y)3 Tanggal (h-b-t) (1- Plot2 Crown Pos' 5) 16 Petak1 9 This is not filled in the field (this is the data the file of computer entered data is created). Column headers 10 11 12 13 14 15 Subplot is the location of the stem observations being made on this row. The number comes from the south-west tag within the local 20 by 20 m grid square. The subscripts a, b, c, d, are added to denote the south-west, south-east, north-west, and north-east quarters of this square (i.e. each 10 by 10m has a unique name). The grid layout is pictured in Fig 1. Stem number is the number painted on the stem. These are given sequentially to each new stem recorded. Each stem in the plot has a unique number. Note that on multi-stemmed individuals each stem receives a different number. Name is the recorded taxonomic information. What to record here (or whether it is to be left blank in the field) depends upon arrangements made for identification. Girth is the measured circumference of the stem recorded and rounded to the nearest tenth of a cm (i.e. mm). Each measure must conform to the agreed conventions (see sheet on how to measure stems. Fig 2) h is the height or distance along the stem from the ground to the point of measurement. In most cases this will be 1.3 m (one meter and thirty centimetres), but in specific cases different h’s will be needed (see Fig 2). The maximum h to be used (e.g. on high buttresses) is 3m, i.e. if buttresses or deformities continue above 3m the measure is still made at 3m. p.o.m. code (point of measurement code) records the reason why a particular stem measurement may have been difficult either in terms of access to a suitable p.o.m. or in determining where the p.o.m. should be. A p.o.m. code is always needed when h is not 1.3m dbh. P.O.M. Codes B Buttresses F Fallen stem (prone, but still alive) ML Multiple low branching stems MH Multiple high branching stems JA Joining above (multiple stems on one plant) C Curved or angled stem D deformity at 1.3.m ( BAP Branch at 1.3m Irreg Irregular CS Coppice sprout LS Low sprout/shoot/stem BA Broken above (the actual tree is a sprout above the measurement) SFF Sprout/shoot/stem from fallen SR Stilt roots 353 IS Intimate stems (p.o.m. difficult as two or more stems are pressed against each other) – note this was omitted from the reference sheet. IC Intimate climber (measure difficult due to one or more climbers/lianas/strangler obscuring the p.o.m.) – note this was omitted from the reference sheet. 16 Crown position is a simple 1-5 classification of a tree’s crown position with respect to direct incident light. 1 Crown receives no direct sunlight, being totally shaded. 2 Crown receives some direct sunlight from the sides, but none from above. 3 Crown receives some direct sunlight from above 4 Whole crown receives full overhead light, but not a full unimpeded cone with sides 45o from the vertical 5 Whole crown receives direct light within a cone with sides 45o from the vertical. 17 Cavities records holes within the tree bole up to a height of 10m. Each cavity is classed by size on a scale 1-3. Multiple cavities require multiple entries (i.e. for three cavities with classes 1, 1 and 3 ‘1,1,3’ is entered). Cavities must be real hollows, not bark wounds. Each stem should be observed from the four major compass points (north, south, east and west). The three cavity classes are: 1: Openings < 100 cm2 (the maximum size is approximately the size of a fist) 2: Openings 100-400 cm2 (a square opening of the maximum size would have a width of 20 cm) 3: Openings > 400 cm2 (a square opening of the minimum size has a width of 20 cm) 18 19 Dead is ticked if a stem is dead. Dead stems are included if they have a measured circumference at 1.3 m of 62 cm or over. Slashing the stem to check for live sappy tissue IS permitted on leafless stems. Note dead stems are included in all measures except for crown position. This will include any large stumps more than 1.3 m in height, leaning and fallen trees held by other vegetation (‘snags’) – but not fallen stems lying prone on the ground (though their stumps may qualify if these are snapped stems). CWD (coarse woody debris) is a 1-4 classification of decay applied only to dead stems. The four stem-decay classes are: 1: Wood hard, bark on, (small branches and/or twigs <1 cm diameter often present) 2: Wood soft on outside (knife blade easily embedded to 1-2 cm) 3: Wood soft throughout but some structural integrity remaining (knife easily embedded > 2 cm, bark and branches usually absent) 4: Wood soft throughout and structural integrity very low (collapsed stem or collapsible under slight pressure, bark and branches absent). The class is assessed at several points on the stem between 1-1.5 m above the ground. The most advanced decay class is recorded. 20 Stem length if broken is used if the stem is broken above the measure. The length of the remaining stem (ground to break point) is recorded (estimated) in meters. Note that this applies to living and dead trees. 21 A1(Tangent 1) record from the clinometer for calculating trees hight actual 22 A 2 (Tangent 2) record from the clinometer for calculating trees height actual An example of a partially completed form might be as follows: BRFCIFOR: SFM Plot Data sheet 354 Date (d-m-y)3 Tanggal (h-b-t) 01 1 01 2 01 3 01 4 01 5 01 6 01 7 Garcinia sp. Shorea sp.2 Santiria oblongifolia Blume Dillenia excelsa (Jack) Gilg Teijsmanniodendron sp. Saraca sp. Shorea sp.2 65.2 1.3 4 76.0 1.6 Irreg - 120.5 2.1 B 62.0 1.3 3 89.6 1.3 3 223.3 3 3,3,2 V 2 22 4 B 2 5 …. Fallen dead wood data sheet The method is based upon a line intercept procedure. Each grid line, including the plot boundaries, is recorded as a separate transect labelled by the grid post numbers at the line’s furthest end points. In each plot there are 12 100 meter transects, six running north-south and six running east-west. Where ever the line crosses a piece of fallen wood the diameter of that piece is assessed perpendicular to its grain at that point. If the diameter is greater than or equal to 10 cm it is recorded on the data sheet, with the diameter rounded down to the nearest five cm (i.e. the lowest class is 10 cm, the next is 15 etc.). If the piece is non-circular at the point where the line crosses, two further considerations must be made: 1). Is the piece squashed or crushed out of shape? (If so it is acceptable to move the measure to the nearest point on the piece where the ‘true’ diameter may be assessed, or alternatively, to estimate a likely ‘true’ diameter); 2). The overall condition of the log is recorded with respect to decay state and wholeness. These two conditions are outlined below. The decay-state of the wood is classified on a scale of 1 to 4: 1: Wood hard, bark on, (small branches and/or twigs <1 cm diameter often present) 2: Wood soft on outside (knife blade easily embedded to 1-2 cm) 3: Wood soft throughout but some structural integrity remaining (knife easily embedded > 2 cm, bark and branches usually absent) 4: Wood soft throughout and structural integrity very low (collapsed stem or collapsible under slight pressure, bark and branches absent). Wholeness is assessed by noting whether the log is hollow and/or complete at the point where the transect line crosses the log. If a log is only half or a quarter present, this is indicated in the notes section of the data sheet by writing “one half log” etc. If a log is hollow at the transect intercept, the percent to which it is hollow is 355 Trees High Actual(m) 23 if A2 (Tangent)22 Subplot 10 13 h p.o.m. tinggi Code ukur (m) Kode 14 titik ukur 15 A1 (Tanget )21 11 Girth Keliling (cm.mm) Stem length broken (m) 20 Stem Name Nama number Nomor CWD Limbah Kayu Kasar 19 Halaman 12 Dead Mati 18 (office) (office) File name8 Inputted by7 Date9 Lubang Page ___ of ___6 Cavities (I-3)17 Team 5 Recorder4 Pencatat (1- Plot2 Crown Pos' 5) 16 Petak1 subjectively assessed at 4 levels: 25, 50, 75, and 100 percent. Record this percent in the notes section of the data sheet. Stumps (less than 1.3 m in height) are recorded by their diameter just above the roots. These records are labelled as ‘stump’ in the notes. Canopy closure data sheet Densiometer records are made just to the west of each of the 36 grid points (make sure that the stake at each point and the recorder’s head are not included by the densiometer). At each stake four readings are made; one at north, south,-east and west. The densiometer is held at ‘elbow-height’, and a compass is used to orient the densiometer to north, south, east and west. Full instructions for use are provided on the inside of the densiometer lid. Note that each of the four densiometer readings will be between zero and 96 (do not make any corrections to make this 1-100, this will be done later in the computer). D.S. 29/10/98. With thanks to Hari, Aep, Sigit, Ellen, Phil, Pak Riswan and Ismayadi for their hard work and for their feedback on these methods. CIFOR - Permanent Sample Plot (Bulungan). Subplot and grid labels. 24 25 20 19 18 17 16 11 12 13 14 15 10 9 8 7 6 1 2 3 East South 356 4 5 20m 23 20m 22 % + 20m 21 North West 20m 20m 20m 20m 20m 20m 20m Appendix 8. Skid trail maps of each plot in LF-5, LF-10 and LF-30. 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 phh phk C N C/N P2O5 Ca Mg K Na Total KTK KB Al H Fe 1 clayh layer 1 clayk samptype 1 silt replic. 1 sand Landtype 6302 weight puslitnr Nr. Appendix 9. Soil data tabulation 56.8 28.5 10.8 3.9 3.8 3.8 1.35 0.11 12 5.0 0.38 0.15 0.11 0.05 0.69 4.68 15 4.95 0.41 29.18 59.2 28.4 8.4 4.0 3.6 3.6 1.11 0.09 12 13.6 0.22 0.17 0.13 0.04 0.56 5.55 10 5.19 0.42 54.00 58.1 27.2 9.0 5.7 3.9 3.8 0.78 0.07 11 2.6 0.30 0.12 0.11 0.07 0.60 3.78 16 3.09 0.55 27.93 49.6 29.3 11.8 9.3 4.2 3.8 0.72 0.07 10 3.7 0.73 0.33 0.13 0.02 1.21 4.75 25 3.70 0.30 27.93 52.3 29.0 10.4 8.3 4.0 3.7 1.13 0.11 10 4.0 0.81 0.41 0.15 0.02 1.39 5.58 25 3.98 0.24 29.80 43.9 34.5 15.2 6.4 3.6 3.6 1.18 0.11 11 4.2 0.30 0.14 0.13 0.02 0.59 7.10 8 7.38 0.65 29.18 50.9 26.4 13.1 9.6 3.8 3.8 0.85 0.08 11 7.3 0.15 0.06 0.07 0.07 0.35 5.35 7 5.51 0.32 30.62 37.9 39.2 14.4 8.5 3.6 3.6 1.51 0.11 14 8.2 0.10 0.11 0.07 0.08 0.36 6.57 5 7.62 0.58 35.90 39.9 36.4 13.6 10.1 3.6 3.6 1.44 0.12 12 4.8 0.15 0.14 0.07 0.03 0.39 7.43 5 7.53 0.53 28.51 40.1 36.8 14.8 8.3 3.6 3.6 1.44 0.11 13 7.9 0.15 0.14 0.07 0.04 0.40 7.35 5 7.17 0.76 32.74 211.80 1 209.63 2 6303 1 1 1 1 3 6343 1 1 1 1 253.66 259.87 4 6344 1 1 1 1 216.61 5 6345 1 1 1 1 216.81 6 6304 1 1 2 1 234.47 7 6347 1 1 2 1 8 6348 1 1 2 1 220.55 193.48 9 6349 1 1 2 1 214.06 10 6350 1 1 2 1 11 6620 1 1 3 1 - 49.0 27.0 11.0 13.0 3.8 3.7 0.77 0.05 15 7.8 0.21 0.21 0.09 0.06 0.57 7.13 8 4.40 0.10 8.42 12 6621 1 1 3 2 - 42.0 28.0 18.0 12.0 4.0 3.8 0.34 0.03 11 6.4 0.47 0.18 0.09 0.03 0.77 7.88 10 5.24 0.15 10.58 13 6618 1 1 4 1 - 36.0 33.0 19.0 12.0 4.0 3.8 0.73 0.05 15 28.9 0.73 0.24 0.16 0.21 1.34 8.66 15 6.12 0.21 3.16 14 6619 1 1 4 2 244.31 33.0 33.0 22.0 12.0 4.0 3.8 0.33 0.03 11 29.9 0.17 0.07 0.09 0.04 0.37 8.25 4 5.84 0.19 15.02 15 6305 1 2 1 1 55.2 28.1 11.3 5.4 4.6 4.0 0.92 0.11 8 2.6 4.93 0.43 0.18 0.05 5.59 5.71 98 1.39 0.03 30.42 16 6306 1 2 1 1 44.0 36.0 12.2 7.8 4.1 3.7 1.05 0.11 10 5.8 0.90 0.33 0.18 0.04 1.45 7.48 19 6.70 0.55 29.18 30.1 51.2 13.2 5.5 4.9 4.3 1.31 0.16 8 6.7 5.92 1.90 0.27 0.05 8.14 8.02 >100 0.39 0.04 55.25 71.2 19.3 5.7 3.8 4.2 3.8 1.00 0.10 10 8.0 1.43 0.23 0.13 0.02 1.81 4.43 41 2.27 0.22 11.90 63.9 20.2 9.7 6.2 4.1 3.8 1.06 0.11 10 7.1 1.41 0.28 0.07 0.03 1.79 5.02 36 3.38 0.31 41.71 246.42 262.03 17 6307 1 2 1 1 239.21 18 6346 1 2 1 1 285.35 19 6351 1 2 1 1 clayh phh phk C N C/N P2O5 Ca Mg K Na Total KTK KB Al H Fe layer 1 clayk samptype 2 silt replic. 2 sand Landtype 1 weight puslitnr Nr. 6352 55.8 28.1 9.2 6.9 3.9 3.7 0.87 0.08 11 3.5 0.36 0.29 0.07 0.07 0.79 5.48 14 5.32 0.40 43.82 38.3 33.2 13.2 15.3 4.6 3.7 1.15 0.10 12 5.3 1.09 0.17 0.14 0.12 1.52 8.75 17 3.47 0.37 33.70 43.1 32.6 14.6 9.7 4.4 3.9 0.80 0.07 11 5.9 4.22 1.11 0.10 0.06 5.49 7.60 72 3.62 0.18 29.04 43.6 35.9 11.2 9.3 3.9 3.6 1.69 0.16 11 11.5 0.68 0.25 0.14 0.05 1.12 7.87 14 6.50 0.45 54.38 249.10 20 244.78 21 6353 1 2 2 1 274.28 22 6354 1 2 2 1 160.32 23 6355 1 2 2 1 228.12 24 6356 1 2 2 1 54.4 31.0 8.4 6.2 4.2 3.9 1.05 0.09 12 5.2 1.03 0.39 0.07 0.07 1.56 5.12 30 3.63 0.43 33.79 25 6624 1 2 3 1 - 43.0 37.0 14.0 6.0 4.0 3.7 0.72 0.05 14 9.3 0.53 0.32 0.10 0.11 1.06 10.06 11 6.46 0.07 9.79 26 6625 1 2 3 2 - 41.0 37.0 16.0 6.0 4.2 3.7 0.30 0.02 15 6.5 0.35 0.23 0.09 0.12 0.79 10.98 7 8.22 0.33 4.18 27 6622 1 2 4 1 - 43.0 27.0 17.0 13.0 3.6 3.5 0.84 0.06 14 6.2 0.43 0.28 0.09 0.12 0.92 11.61 8 9.40 0.35 10.62 28 6623 1 2 4 2 228.30 37.0 28.0 23.0 12.0 3.8 3.6 0.61 0.05 12 6.4 0.26 0.15 0.09 0.12 0.62 14.40 4 11.06 0.49 10.23 29 6381 1 3 1 1 59.0 23.8 11.7 5.5 4.1 3.7 1.41 0.10 14 4.5 0.20 0.15 0.07 0.01 0.43 5.89 7 4.60 0.37 18.48 45.5 35.6 8.1 10.8 4.2 3.7 0.93 0.07 13 3.5 0.15 0.28 0.07 0.01 0.51 6.36 8 5.78 0.46 61.25 49.5 29.3 11.7 9.5 3.8 3.7 1.10 0.10 11 12.3 0.21 0.17 0.11 0.02 0.51 6.71 8 6.81 0.43 70.22 60.5 27.3 7.5 4.7 5.3 4.9 1.74 0.12 15 4.5 7.79 0.84 0.07 0.01 8.71 6.67 >100 0.04 0.10 32.21 29.8 37.9 16.3 16.0 4.1 3.7 1.03 0.10 10 4.3 0.72 0.15 0.07 0.01 0.95 7.73 12 8.24 0.48 15.84 57.1 33.5 1.2 8.2 4.0 3.7 1.11 0.09 12 12.1 0.31 0.16 0.14 0.08 0.69 6.53 11 6.42 0.56 54.38 64.1 16.2 13.4 6.3 4.3 3.8 1.16 0.08 15 5.4 0.26 0.09 0.07 0.00 0.42 6.49 6 5.68 0.32 62.30 46.7 19.3 25.9 8.1 4.2 3.7 0.87 0.07 12 7.0 0.87 0.22 0.07 0.00 1.16 6.91 17 7.81 0.35 29.04 32.6 38.9 15.8 12.7 3.9 3.7 1.64 0.13 13 10.3 0.10 0.06 0.11 0.02 0.29 8.31 3 7.97 0.64 25.34 47.2 28.3 14.3 10.2 3.7 3.7 1.31 0.12 11 5.4 0.21 0.12 0.09 0.01 0.43 7.24 6 6.65 0.45 18.48 224.92 30 6382 1 3 1 1 252.83 31 6384 1 3 1 1 222.70 32 6385 1 3 1 1 33 6390 1 3 1 1 219.76 239.50 34 6383 1 3 2 1 256.71 35 6386 1 3 2 1 247.66 36 6387 1 3 2 1 255.49 37 6388 1 3 2 1 38 6389 1 3 2 1 39 6640 1 3 3 1 - 54.0 18.0 18.0 10.0 4.1 3.8 0.40 0.03 13 5.9 0.47 0.22 0.09 0.06 0.84 8.95 9 5.63 0.31 67.53 40 6641 1 3 3 2 - 49.0 17.0 17.0 17.0 4.1 3.8 0.32 0.02 16 7.9 0.13 0.07 0.09 0.22 0.51 8.64 6 6.45 0.17 73.91 259.29 puslitnr Landtype replic. samptype layer weight sand silt clayk clayh phh phk C N C/N P2O5 Ca Mg K Na Total KTK KB Al H Fe 6638 1 3 4 1 - 28.0 35.0 23.0 14.0 3.9 3.7 1.24 0.08 16 7.7 0.04 0.09 0.09 0.06 0.28 14.18 2 10.74 0.47 22.16 42 6639 1 3 4 2 228.58 25.0 32.0 25.0 18.0 4.2 3.8 0.46 0.03 15 5.9 0.04 0.04 0.07 0.14 0.29 13.35 2 10.57 0.59 103.12 43 6308 1 4 1 1 64.8 21.6 6.3 7.3 3.7 3.6 1.19 0.09 13 14.4 0.31 0.14 0.14 0.02 0.61 7.41 8 7.97 0.55 44.07 74.8 17.4 5.9 1.9 3.7 3.7 1.11 0.09 12 6.5 0.25 0.15 0.17 0.07 0.64 5.31 12 4.68 0.59 24.83 70.4 4.7 19.5 5.4 4.0 3.8 1.19 0.08 15 7.0 0.25 0.15 0.13 0.07 0.60 5.14 12 5.12 0.31 29.18 41.3 7.9 41.8 9.0 3.7 3.7 1.30 0.09 14 7.4 0.30 0.17 0.13 0.04 0.64 8.41 8 8.73 0.70 36.62 52.7 27.9 8.9 10.5 4.0 3.8 0.64 0.06 11 4.7 0.30 0.12 0.11 0.07 0.60 7.05 9 7.15 0.18 16.76 73.7 19.3 3.6 3.4 3.8 3.8 0.93 0.07 13 7.1 0.51 0.14 0.11 0.09 0.85 3.93 22 3.53 0.14 17.38 66.3 19.5 7.0 7.2 3.9 3.9 1.02 0.07 15 5.5 0.42 0.17 0.15 0.09 0.83 6.51 13 5.56 0.47 25.45 62.2 18.0 7.9 11.9 4.2 3.8 0.47 0.04 12 3.5 0.19 0.09 0.08 0.10 0.46 8.02 6 6.76 0.58 23.76 45.4 28.7 12.4 13.5 4.4 3.7 0.49 0.04 12 8.7 0.14 0.12 0.08 0.10 0.44 7.60 6 8.62 0.88 30.62 9.2 56.7 21.6 12.5 5.1 3.9 0.68 0.08 9 2.9 0.48 1.68 0.35 0.11 2.62 10.71 24 5.70 0.46 34.45 Nr. 41 235.33 44 6309 1 4 1 1 202.75 45 6310 1 4 1 1 46 6311 1 4 1 1 169.11 252.09 47 6312 1 4 1 1 248.75 48 6313 1 4 2 1 241.01 49 6314 1 4 2 1 50 6391 1 4 2 1 271.65 275.80 51 6392 1 4 2 1 250.22 52 6473 1 4 2 1 53 6644 1 4 3 1 - 56.0 20.0 11.0 13.0 3.7 3.8 0.93 0.05 19 7.1 0.30 0.12 0.09 0.06 0.57 7.42 8 4.86 0.27 13.21 54 6645 1 4 3 2 - 47.0 23.0 14.0 16.0 4.0 3.8 0.36 0.03 12 9.6 0.17 0.03 0.09 0.12 0.41 8.82 5 6.87 0.05 28.29 55 6642 1 4 4 1 - 69.0 14.0 7.0 10.0 3.9 3.9 0.80 0.04 20 8.6 0.13 0.07 0.09 0.24 0.53 6.81 8 2.89 0.44 15.82 56 6643 1 4 4 2 120.98 65.0 14.0 9.0 12.0 3.9 4.0 0.47 0.02 24 13.5 0.17 0.09 0.07 0.06 0.39 6.52 6 4.70 0.04 23.78 57 6461 2 1 1 1 36.9 32.0 18.4 12.7 4.2 3.7 1.69 0.12 14 8.0 0.09 0.17 0.21 0.06 0.53 10.10 5 8.08 0.83 36.93 52.2 28.0 8.6 11.2 4.1 3.7 1.33 0.13 10 8.0 0.05 0.14 0.28 0.09 0.56 6.70 8 4.73 0.54 37.24 37.7 36.7 18.3 7.3 3.7 3.6 2.29 0.17 13 11.9 0.09 0.20 0.18 0.06 0.53 10.26 5 6.79 0.85 43.76 45.0 27.6 18.7 8.7 3.8 3.6 1.98 0.15 13 10.8 0.14 0.20 0.22 0.03 0.59 9.83 6 7.80 0.95 40.35 37.8 32.5 17.3 12.4 3.8 3.6 2.00 0.16 13 12.1 0.10 0.14 0.22 0.06 0.52 10.19 5 8.50 0.82 54.62 167.81 58 6462 2 1 1 1 59 6463 2 1 1 1 156.75 150.50 60 6464 2 1 1 1 163.43 61 6465 2 1 1 1 puslitnr Landtype replic. samptype layer weight sand silt clayk clayh phh phk C N C/N P2O5 Ca Mg K Na Total KTK KB Al H Fe 6628 2 1 3 1 - 28.0 33.0 20.0 19.0 3.8 3.8 1.18 0.07 17 3.9 0.09 0.16 0.12 0.18 0.55 9.68 6 6.95 0.12 4.51 63 6629 2 1 3 2 - 29.0 29.0 26.0 16.0 4.0 3.8 0.56 0.04 14 5.9 0.04 0.12 0.09 0.18 0.43 10.19 4 6.92 0.32 4.12 64 6626 2 1 4 1 - 34.0 28.0 23.0 15.0 3.6 3.7 1.31 0.08 16 8.1 0.30 0.24 0.09 0.12 0.75 12.04 6 8.70 0.45 8.62 65 6627 2 1 4 2 223.50 32.0 26.0 26.0 16.0 3.9 3.8 0.47 0.04 12 7.2 0.26 0.15 0.07 0.18 0.66 10.24 6 8.10 0.06 3.32 66 6466 2 2 1 1 19.6 48.2 21.7 10.5 4.4 3.7 2.42 0.19 13 24.6 1.28 1.47 0.36 0.27 3.38 11.79 29 4.82 0.53 56.49 67 6467 2 2 1 1 16.4 49.3 20.2 14.1 4.5 3.8 2.57 0.23 11 30.7 0.15 2.01 0.52 0.11 2.79 14.01 20 5.55 0.56 52.76 10.7 47.9 23.9 17.5 4.9 3.8 1.86 0.17 11 6.7 0.47 1.69 0.50 0.12 2.78 11.92 23 5.66 0.42 52.76 12.3 52.3 23.7 11.7 4.5 3.8 1.47 0.16 9 3.9 0.28 1.64 0.25 0.11 2.28 10.87 21 5.41 0.45 38.49 Nr. 62 168.96 171.77 68 6468 2 2 1 1 205.26 69 6469 2 2 1 1 186.71 70 6470 2 2 1 1 13.0 52.6 20.1 14.3 4.6 3.7 1.73 0.12 14 5.4 0.28 1.08 0.21 0.09 1.66 9.43 18 6.14 0.51 27.62 71 6632 2 2 3 1 - 37.0 27.0 21.0 15.0 4.1 3.8 1.03 0.08 13 6.7 0.60 1.33 0.19 0.15 2.27 11.67 19 4.88 0.21 10.22 72 6633 2 2 3 2 - 64.0 17.0 12.0 7.0 4.2 4.0 0.27 0.02 14 7.4 0.13 0.38 0.09 0.10 0.70 7.72 9 3.65 0.26 6.48 73 6630 2 2 4 1 - 12.0 47.0 22.0 19.0 3.8 3.6 2.31 0.12 19 8.9 0.30 1.22 0.23 0.18 1.93 14.07 14 6.99 0.43 4.80 74 6631 2 2 4 2 171.37 10.0 39.0 31.0 20.0 4.1 3.7 1.01 0.08 13 5.7 0.17 1.09 0.38 0.36 2.00 15.57 13 9.37 0.06 13.43 75 6373 2 3 1 1 33.2 33.5 18.6 14.7 3.7 3.7 1.76 0.19 9 6.7 0.16 0.18 0.16 0.02 0.52 10.42 5 8.05 0.96 45.94 38.2 27.7 22.4 11.7 4.0 3.8 1.07 0.11 10 6.6 0.05 0.16 0.16 0.02 0.39 7.23 5 5.87 0.64 73.92 21.4 42.5 22.2 13.9 3.6 3.6 2.35 0.21 11 17.5 0.21 0.19 0.07 0.02 0.49 11.99 4 10.21 0.98 35.38 38.9 30.8 20.1 10.2 4.1 3.8 1.31 0.09 15 6.0 0.05 0.26 0.22 0.09 0.62 8.84 7 5.98 0.49 29.17 192.85 76 6374 2 3 1 1 164.11 77 6375 2 3 1 1 157.04 78 6471 2 3 1 1 205.76 79 6472 2 3 1 1 52.6 25.3 14.6 7.5 4.3 3.9 0.98 0.10 10 3.1 0.19 0.28 0.14 0.09 0.70 8.26 8 5.06 0.42 36.93 80 6636 2 3 3 1 - 17.0 40.0 28.0 15.0 3.7 3.7 1.25 0.09 14 4.5 0.13 0.18 0.14 1.68 2.13 13.21 16 8.12 0.41 11.21 81 6637 2 3 3 2 - 20.0 36.0 29.0 15.0 4.1 3.8 0.93 0.08 12 4.5 0.44 0.34 0.16 0.18 1.12 13.09 9 7.47 0.14 7.24 82 6634 2 3 4 1 - 33.0 25.0 29.0 13.0 3.7 3.7 1.26 0.07 18 7.7 0.09 0.24 0.09 0.12 0.54 11.54 5 8.39 0.43 8.03 P2O5 Ca Mg K Na Total KTK KB Al H Fe 1 C/N 1 N 4 C 2 phk 6376 phh 84 clayh layer 2 clayk samptype 4 silt replic. 3 sand Landtype 2 weight puslitnr 6635 Nr. 83 217.72 31.0 22.0 34.0 13.0 4.2 3.8 0.62 0.03 21 5.2 0.04 0.03 0.05 0.12 0.24 12.28 2 7.81 0.14 3.06 40.8 40.8 14.7 3.7 4.3 3.8 1.49 0.14 11 8.4 1.39 1.05 0.28 0.00 2.72 7.65 36 3.36 0.27 21.12 39.7 33.3 19.7 7.3 3.9 3.7 1.48 0.15 10 13.9 0.16 0.10 0.14 0.02 0.42 9.98 4 7.32 0.68 53.86 36.6 29.2 23.6 10.6 3.9 3.8 1.53 0.14 11 7.8 0.11 0.11 0.11 0.00 0.33 9.40 4 7.71 0.79 47.52 45.8 37.8 9.2 7.2 3.7 3.6 2.70 0.23 12 23.1 0.16 0.21 0.29 0.02 0.68 12.21 6 7.98 0.60 48.05 38.7 32.2 21.4 7.7 3.7 3.3 2.38 0.18 13 21.2 0.11 0.14 0.14 0.02 0.41 10.39 4 11.14 1.36 49.63 181.92 85 6377 2 4 1 1 164.40 86 6378 2 4 1 1 157.47 87 6379 2 4 1 1 88 6380 2 4 1 1 89 6648 2 4 3 1 - 37.0 23.0 29.0 11.0 4.1 3.8 0.73 0.06 12 8.6 0.17 0.06 0.19 0.12 0.54 9.56 6 6.17 0.36 17.80 90 6649 2 4 3 2 - 31.0 22.0 33.0 14.0 4.2 4.0 0.34 0.03 11 54.9 1.12 0.21 0.60 0.18 2.11 10.69 20 5.32 0.25 35.64 91 6646 2 4 4 1 - 34.0 31.0 20.0 15.0 3.7 3.6 0.90 0.05 18 10.1 0.04 0.06 0.09 0.06 0.25 12.43 2 10.23 0.75 9.04 92 6647 2 4 4 2 160.75 30.0 31.0 25.0 14.0 4.1 3.7 0.48 0.04 12 8.4 0.17 0.09 0.09 0.09 0.44 11.23 4 9.06 0.45 7.55 93 6442 3 1 1 1 18.4 54.6 14.8 12.2 4.8 4.5 2.34 0.19 12 22.1 3.68 1.84 0.65 0.27 6.44 8.96 72 0.52 0.13 46.24 14.1 53.4 21.6 10.9 4.0 3.8 2.05 0.14 15 13.2 0.89 0.34 0.14 0.03 1.40 6.63 21 2.77 0.28 49.97 13.5 48.2 25.9 12.4 4.1 3.7 4.27 0.23 19 15.7 1.45 0.49 0.14 0.09 2.17 9.45 23 3.87 0.29 49.35 16.3 45.2 24.0 14.5 4.2 3.9 1.68 0.15 11 7.7 0.33 0.43 0.14 0.03 0.93 7.99 12 4.12 0.33 45.93 25.3 49.7 18.0 7.0 4.6 3.9 1.24 0.09 14 11.8 1.72 0.56 0.14 0.09 2.51 6.23 40 2.72 0.16 38.17 11.8 43.4 36.5 8.3 4.1 3.9 2.11 0.15 14 18.9 0.85 0.31 0.07 0.04 1.27 9.23 14 4.18 0.50 31.04 9.6 43.7 34.1 12.6 4.7 4.1 1.18 0.09 13 4.1 0.14 0.15 0.07 0.03 0.39 6.61 6 3.15 0.31 32.28 22.3 54.9 16.0 6.8 5.2 4.6 1.70 0.14 12 14.1 5.03 0.69 0.11 0.03 5.86 7.08 83 0.43 0.13 26.69 12.8 43.4 33.0 10.8 4.7 4.1 0.99 0.08 12 3.7 0.90 0.00 0.07 0.06 1.03 6.83 15 3.04 0.18 32.59 10.4 44.5 27.7 17.4 4.3 3.9 2.34 0.21 11 10.4 1.51 0.49 0.11 0.09 2.20 9.85 22 3.95 0.27 50.90 21.8 51.7 18.1 8.4 5.2 4.2 2.03 0.15 14 7.5 4.50 1.62 0.14 0.03 6.29 8.51 74 0.56 0.19 49.04 160.58 153.98 94 6443 3 1 1 1 136.45 95 6444 3 1 1 1 96 6445 3 1 1 1 176.30 209.10 97 6446 3 1 1 1 160.73 98 6437 3 1 2 1 179.03 99 6438 3 1 2 1 170.80 100 6439 3 1 2 1 101 6440 3 1 2 1 184.76 158.33 102 6441 3 1 2 1 - 103 6433 3 1 3 1 clayh phh phk C N C/N P2O5 Ca Mg K Na Total KTK KB Al H Fe layer 2 clayk samptype 3 silt replic. 1 sand Landtype 3 weight puslitnr Nr. 6435 23.3 50.3 16.1 10.3 4.7 4.1 1.56 0.13 12 10.5 3.13 0.78 0.11 0.04 4.06 8.00 51 1.85 0.13 28.55 11.3 44.4 24.9 19.4 4.1 4.0 2.06 0.18 11 6.2 0.19 0.25 0.11 0.06 0.61 11.84 5 6.03 0.40 40.35 11.3 41.9 27.0 19.8 4.7 4.2 0.88 0.08 11 2.4 0.14 0.20 0.07 0.03 0.44 9.45 5 5.76 0.39 31.04 11.9 39.6 29.0 19.5 4.3 3.9 1.87 0.17 11 4.1 0.33 0.14 0.11 0.03 0.61 11.35 5 4.48 0.41 48.05 63.6 18.9 11.8 5.7 4.3 3.9 1.95 0.18 11 15.0 0.56 0.27 0.14 0.18 1.15 9.34 12 3.00 0.32 49.63 11.8 41.7 27.1 19.4 4.1 3.9 2.33 0.16 15 6.3 0.38 0.22 0.13 0.03 0.76 12.20 6 4.03 0.33 18.48 12.2 42.6 27.3 17.9 4.2 4.0 1.72 0.16 11 8.6 0.35 0.21 0.09 0.09 0.74 8.11 9 3.51 0.51 61.25 12.1 39.6 28.8 19.5 4.2 3.9 2.98 0.18 17 3.6 0.53 0.44 0.13 0.10 1.20 10.46 11 3.84 0.41 54.38 11.5 42.3 27.5 18.7 4.0 3.8 2.58 0.20 13 17.3 0.54 0.33 0.15 0.03 1.05 12.12 9 3.98 0.36 35.38 10.9 40.6 28.1 20.4 4.4 4.0 1.68 0.10 17 11.2 0.38 0.13 0.09 0.03 0.63 9.18 7 3.52 0.32 21.12 12.9 45.0 25.8 16.3 4.0 3.8 4.00 0.20 20 20.7 0.39 0.32 0.18 0.24 1.13 13.24 9 4.60 0.38 53.86 14.6 42.8 32.6 10.0 5.1 4.1 0.28 0.02 14 1.4 0.70 0.25 0.13 0.07 1.15 6.24 18 2.80 0.20 47.52 10.8 39.1 33.3 16.8 4.7 3.9 0.94 0.07 13 2.5 0.34 0.21 0.09 0.10 0.74 8.13 9 3.95 0.31 70.22 23.8 44.7 18.6 12.9 4.4 4.0 1.66 0.13 13 4.1 0.47 0.38 0.26 0.05 1.16 6.96 17 2.82 0.36 32.21 21.3 43.6 23.2 11.9 4.8 4.2 0.88 0.09 10 2.8 0.19 0.21 0.21 0.03 0.64 6.10 10 2.87 0.28 34.14 8.9 46.5 26.5 18.1 4.0 3.8 1.65 0.13 13 3.0 0.33 0.16 0.11 0.10 0.70 7.87 9 3.51 0.45 62.30 8.2 42.1 32.0 17.7 4.5 4.1 0.91 0.09 10 2.6 0.24 0.15 0.07 0.06 0.52 6.36 8 3.17 0.33 32.90 20.2 40.9 19.5 19.4 3.8 3.8 2.51 0.19 13 10.0 0.44 0.27 0.18 0.02 0.91 10.07 9 6.32 0.39 42.83 16.3 45.5 17.7 20.5 4.1 4.1 5.19 0.36 14 24.7 0.40 0.27 0.23 0.05 0.95 14.80 6 3.51 0.32 26.07 15.3 43.4 20.1 21.2 3.9 3.9 2.89 0.16 18 5.4 0.26 0.19 0.13 0.02 0.60 8.93 7 5.19 0.19 55.25 17.5 43.9 21.3 17.3 4.1 4.1 2.05 0.18 11 3.2 0.66 0.37 0.18 0.02 1.23 9.55 13 4.20 0.16 27.31 104 105 6434 3 1 4 1 - 106 6436 3 1 4 2 181.35 107 6423 3 2 1 1 160.63 108 6424 3 2 1 1 109 6425 3 2 1 1 154.86 150.85 110 6426 3 2 1 1 125.16 111 6427 3 2 1 1 127.65 112 6419 3 2 2 1 113 6420 3 2 2 1 177.15 149.70 114 6421 3 2 2 1 215.43 115 6422 3 2 2 1 198.43 116 6428 3 2 2 1 117 6429 3 2 3 1 118 6431 3 2 3 2 - 119 6430 3 2 4 1 - 120 6432 3 2 4 2 160.58 121 6329 3 3 1 1 122 6330 3 3 1 1 103.40 156.21 123 6331 3 3 1 1 164.50 124 6332 3 3 1 1 clayh phh phk C N C/N P2O5 Ca Mg K Na Total KTK KB Al H Fe layer 1 clayk samptype 1 silt replic. 3 sand Landtype 3 weight puslitnr Nr. 6333 21.2 43.4 18.2 17.2 3.9 3.9 2.44 0.19 13 7.8 0.31 0.29 0.18 0.04 0.82 9.45 9 4.61 0.42 68.28 20.6 42.4 20.2 16.8 4.1 4.0 1.91 0.14 14 8.3 0.35 0.17 0.13 0.07 0.72 7.02 10 4.90 0.21 21.11 19.2 47.0 17.5 16.3 4.0 3.9 2.43 0.20 12 5.6 0.30 0.37 0.18 0.04 0.89 9.70 9 3.82 0.35 15.52 16.5 46.8 21.8 14.9 4.2 4.0 0.78 0.05 16 3.5 0.35 0.14 0.09 0.02 0.60 7.29 8 4.68 0.19 27.31 21.2 43.8 19.3 15.7 4.5 4.1 1.31 0.09 15 3.2 1.27 0.45 0.18 0.04 1.94 7.56 26 3.80 0.02 29.80 19.6 41.6 20.4 18.4 4.0 4.0 1.71 0.14 12 5.1 0.30 0.23 0.18 0.02 0.73 9.29 8 4.46 0.39 41.59 20.8 44.0 21.6 13.6 4.0 4.0 1.84 0.12 15 18.3 0.36 0.40 0.18 0.02 0.96 6.88 14 3.25 0.36 86.90 21.4 41.0 24.9 12.7 4.3 4.1 0.69 0.07 10 2.7 0.39 0.25 0.18 0.02 0.84 5.87 14 3.42 0.27 13.66 18.7 39.2 22.5 19.6 4.1 4.0 0.91 0.08 11 11.3 0.39 0.22 0.11 0.04 0.76 7.86 10 4.49 0.34 13.04 19.4 40.2 20.3 20.1 3.9 3.9 2.18 0.18 12 10.1 0.68 0.21 0.12 0.07 1.08 8.77 12 4.91 0.18 12.42 18.4 44.9 20.8 15.9 4.1 3.8 1.89 0.15 13 7.5 0.23 0.23 0.14 0.09 0.69 9.29 7 5.33 0.53 33.52 20.4 52.5 13.9 13.2 4.6 4.1 1.49 0.12 12 5.7 1.37 0.22 0.07 0.08 1.74 7.07 25 3.42 0.31 35.38 27.0 53.6 9.8 9.6 4.0 3.8 1.99 0.16 12 11.1 0.56 0.46 0.14 0.09 1.25 7.25 17 3.27 0.33 28.55 22.5 56.7 12.0 8.8 4.9 4.1 1.71 0.14 12 4.8 2.92 0.79 0.14 0.15 4.00 6.50 62 1.53 0.17 32.59 20.2 52.1 12.6 15.1 4.8 4.0 2.51 0.18 14 5.7 8.19 0.91 0.27 0.09 9.46 12.96 73 1.93 0.13 36.31 18.4 46.0 7.7 27.9 4.7 4.0 1.63 0.12 14 3.4 0.52 0.17 0.14 0.09 0.92 11.51 8 7.04 0.37 38.80 16.5 48.6 22.0 12.9 4.8 4.1 1.42 0.11 13 6.9 3.58 0.58 0.22 0.06 4.44 12.70 35 5.84 0.29 37.86 22.7 44.6 20.6 12.1 4.8 3.9 0.61 0.04 15 1.6 0.48 0.23 0.14 0.21 1.06 17.88 6 13.40 0.97 28.24 21.1 50.6 18.8 9.5 4.5 3.9 0.97 0.06 16 2.6 0.79 0.20 0.14 0.06 1.19 11.69 10 8.70 0.95 35.38 17.0 45.5 19.3 18.2 4.8 4.1 1.33 0.09 15 5.4 0.84 0.24 0.14 0.06 1.28 11.15 11 6.86 0.53 32.28 17.6 45.5 21.5 15.4 4.5 3.9 1.85 0.15 12 13.4 0.14 0.28 0.16 0.09 0.67 10.37 6 5.60 0.58 32.59 132.44 125 191.34 126 6334 3 3 2 1 175.61 127 6335 3 3 2 1 235.62 128 6336 3 3 2 1 207.62 129 6337 3 3 2 1 130 6338 3 3 2 1 172.41 131 6339 3 3 3 1 - 132 6342 3 3 3 2 - 133 6340 3 3 4 2 134 6341 3 3 4 1 170.43 135 6447 3 4 1 1 197.24 136 6448 3 4 1 1 203.03 137 6449 3 4 1 1 138 6450 3 4 1 1 189.02 201.43 139 6451 3 4 1 1 174.23 140 6452 3 4 2 1 198.30 141 6453 3 4 2 1 206.94 142 6454 3 4 2 1 143 6455 3 4 2 1 202.94 211.51 144 6456 3 4 2 1 - 145 6457 3 4 3 1 clayh phh phk C N C/N P2O5 Ca Mg K Na Total KTK KB Al H Fe layer 2 clayk samptype 3 silt replic. 4 sand Landtype 3 weight puslitnr Nr. 6459 13.7 43.9 31.9 10.5 4.8 4.0 0.55 0.05 11 5.4 0.19 0.18 0.07 0.12 0.56 9.87 6 6.80 0.37 39.73 10.1 46.5 24.7 18.7 4.3 3.7 1.91 0.20 10 7.9 0.24 0.39 0.36 0.09 1.08 18.66 6 14.02 1.78 34.14 12.8 41.0 25.1 21.1 4.5 3.9 1.04 0.10 10 2.9 0.24 0.31 0.22 0.15 0.92 20.26 5 14.30 1.11 39.42 30.9 9.7 22.6 36.8 4.4 3.8 1.62 0.17 10 1.4 0.39 0.16 0.09 0.10 0.74 26.61 3 20.23 1.02 26.40 23.2 13.5 22.0 41.3 4.0 3.6 2.69 0.28 10 3.7 0.68 0.53 0.26 0.10 1.57 30.68 5 18.48 1.53 32.21 18.5 14.8 25.6 41.1 4.4 3.7 2.66 0.25 11 1.7 0.34 0.26 0.22 0.10 0.92 31.83 3 20.42 1.79 38.02 24.0 13.1 23.4 39.5 4.1 3.6 2.68 0.29 9 3.4 0.40 0.21 0.18 0.17 0.96 33.08 3 22.32 1.81 48.58 42.8 17.7 13.9 25.6 3.9 3.6 3.12 0.26 12 6.8 0.34 0.19 0.13 0.17 0.83 22.50 4 16.98 1.68 43.30 26.6 12.6 24.3 36.5 4.5 3.8 1.66 0.16 10 2.6 0.93 0.28 0.11 0.07 1.39 27.83 5 19.66 1.42 42.24 31.7 15.5 19.9 32.9 4.1 3.5 3.47 0.31 11 8.7 0.35 0.25 0.18 0.03 0.81 28.39 3 18.19 1.57 32.74 29.2 9.8 21.9 39.1 4.6 3.7 0.79 0.11 7 2.3 0.65 0.22 0.18 0.04 1.09 29.15 4 21.26 1.89 42.24 32.7 14.6 17.5 35.2 4.3 3.7 2.11 0.19 11 8.5 0.34 0.21 0.13 0.10 0.78 26.31 3 18.28 0.98 45.94 21.3 14.2 29.7 34.8 4.8 3.8 0.60 0.08 8 2.6 0.35 0.10 0.09 0.04 0.58 28.15 2 23.06 0.94 73.92 24.9 10.0 28.2 36.9 4.4 3.7 1.80 0.21 9 1.4 0.59 0.30 0.18 0.10 1.17 27.39 4 18.59 1.68 54.91 19.0 12.0 25.8 43.2 4.8 3.8 0.88 0.13 7 0.9 0.41 0.17 0.18 0.07 0.83 32.94 3 21.12 2.66 69.70 56.1 18.7 11.6 13.6 4.4 3.6 1.55 0.12 13 5.0 0.38 0.14 0.15 0.17 0.84 10.72 8 8.46 0.83 27.46 53.1 18.1 14.5 14.3 4.4 3.8 0.55 0.06 9 1.4 0.23 0.08 0.08 0.10 0.49 9.29 5 7.47 0.77 53.33 77.4 14.8 4.3 3.5 3.7 3.7 0.72 0.05 14 5.0 0.47 0.14 0.11 0.07 0.79 3.37 23 3.07 0.10 25.45 68.5 19.8 4.0 7.7 3.6 3.6 1.61 0.12 13 30.7 0.30 0.20 0.16 0.07 0.73 6.09 12 5.13 0.32 26.07 68.8 18.9 5.7 6.6 3.8 3.7 1.30 0.09 14 5.0 0.17 0.15 0.15 0.07 0.54 5.57 10 4.28 0.33 27.31 90.2 6.8 2.5 0.5 4.2 3.9 0.40 0.02 20 8.6 0.25 0.11 0.09 0.05 0.50 1.41 35 1.15 0.11 39.73 146 147 6458 3 4 4 1 - 148 6460 3 4 4 2 133.91 149 6409 4 1 1 1 144.59 150 6410 4 1 1 1 151 6411 4 1 1 1 163.12 135.14 152 6412 4 1 1 1 154.07 153 6413 4 1 1 1 114.67 154 6414 4 1 2 1 155 6415 4 1 2 1 136.49 164.44 156 6416 4 1 2 1 151.48 157 6417 4 1 2 1 139.25 158 6418 4 1 2 1 159 6405 4 1 3 1 160 6406 4 1 3 2 - 161 6407 4 1 4 1 - 162 6408 4 1 4 2 214.02 163 6315 4 2 1 1 164 6316 4 2 1 1 174.72 229.08 165 6317 4 2 1 1 269.88 166 6318 4 2 1 1 clayh phh phk C N C/N P2O5 Ca Mg K Na Total KTK KB Al H Fe layer 1 clayk samptype 1 silt replic. 2 sand Landtype 4 weight puslitnr Nr. 6319 74.2 5.9 14.5 5.4 4.0 3.9 0.63 0.05 13 4.0 0.21 0.14 0.09 0.05 0.49 4.04 12 3.70 0.22 44.07 62.2 19.5 7.1 11.2 3.8 3.8 0.74 0.06 12 6.5 0.26 0.09 0.09 0.05 0.49 5.35 9 4.74 0.42 48.42 50.4 24.9 12.6 12.1 4.0 3.8 0.72 0.07 10 5.8 0.60 0.18 0.11 0.07 0.96 7.17 13 5.96 0.46 58.35 74.4 18.5 3.3 3.8 4.2 3.8 2.26 0.17 13 18.1 0.82 0.21 0.18 0.07 1.28 5.81 22 2.36 0.38 19.25 64.9 21.5 6.1 7.5 4.1 3.8 1.23 0.10 12 8.4 1.33 0.26 0.11 0.02 1.72 5.23 33 3.20 0.30 54.62 60.1 20.0 7.4 12.5 4.2 4.0 0.31 0.03 10 2.9 0.22 0.12 0.09 0.02 0.45 3.73 12 3.63 0.33 28.56 69.4 20.7 5.1 4.8 4.2 3.9 0.82 0.06 14 6.3 0.55 0.23 0.09 0.02 0.89 3.60 25 2.90 0.22 30.42 63.7 22.6 8.5 5.2 4.1 3.9 0.37 0.04 9 6.3 0.34 0.21 0.11 0.05 0.71 4.42 16 4.33 0.27 26.69 75.0 15.2 3.5 6.3 4.1 3.9 1.53 0.11 14 16.5 0.26 0.22 0.11 0.05 0.64 6.14 10 4.20 0.54 16.76 57.1 10.7 26.2 6.0 4.1 4.0 0.57 0.04 14 4.7 0.25 0.12 0.09 0.02 0.48 3.95 12 3.17 0.22 20.49 63.1 22.6 7.3 7.0 4.1 3.8 1.92 0.11 17 12.8 0.10 0.06 0.07 0.03 0.26 5.91 4 4.53 0.44 27.46 71.7 20.4 5.3 2.6 4.1 3.9 0.80 0.05 16 10.6 0.10 0.05 0.03 0.01 0.19 2.23 9 2.05 0.27 53.33 36.0 16.9 20.0 27.1 4.3 3.7 3.09 0.28 11 12.6 0.25 0.17 0.17 0.09 0.68 18.84 4 12.88 1.18 26.40 27.6 15.8 17.2 39.4 3.9 3.6 3.47 0.29 12 11.6 0.23 0.24 0.27 0.21 0.95 22.02 4 16.67 1.79 32.21 41.2 18.0 12.1 28.7 3.9 3.8 3.46 0.26 13 10.6 0.17 0.13 0.08 0.10 0.48 21.02 2 11.97 0.87 38.02 34.6 13.1 18.7 33.6 4.3 4.0 0.96 0.08 12 2.2 0.48 0.30 0.14 0.08 1.00 19.86 5 14.12 1.05 48.58 31.2 12.4 19.3 37.1 3.8 3.8 1.73 0.18 10 2.8 0.16 0.11 0.07 0.02 0.36 21.81 2 14.91 1.09 43.30 37.7 16.9 14.6 30.8 4.1 3.9 2.95 0.27 11 4.9 0.27 0.28 0.11 0.02 0.68 18.97 4 11.16 0.87 42.24 42.4 17.3 11.9 28.4 4.2 3.9 1.59 0.15 11 2.5 0.11 0.10 0.07 0.02 0.30 15.16 2 10.74 1.10 32.74 38.1 18.3 12.3 31.3 4.2 3.8 3.36 0.29 12 18.7 0.11 0.27 0.12 0.02 0.52 20.49 3 11.42 0.92 42.24 48.9 20.0 9.3 21.8 4.2 4.1 1.97 0.17 12 5.3 0.11 0.21 0.14 0.08 0.54 12.54 4 8.33 0.23 76.03 240.16 167 240.29 168 6320 4 2 2 1 254.14 169 6321 4 2 2 1 230.98 170 6322 4 2 2 1 231.31 171 6323 4 2 2 1 172 6324 4 2 2 1 259.42 173 6325 4 2 3 1 - 174 6326 4 2 3 2 - 175 6327 4 2 4 1 176 6328 4 2 4 2 175.37 177 6363 4 3 1 1 235.06 178 6364 4 3 1 1 148.00 179 6365 4 3 1 1 180 6366 4 3 1 1 151.45 148.01 181 6367 4 3 1 1 153.13 182 6368 4 3 2 1 122.81 183 6369 4 3 2 1 129.98 184 6370 4 3 2 1 185 6371 4 3 2 1 203.80 114.67 186 6372 4 3 2 1 - 187 6359 4 3 3 1 clayh phh phk C N C/N P2O5 Ca Mg K Na Total KTK KB Al H Fe layer clayk samptype 2 silt replic. 3 sand Landtype 3 weight puslitnr 4 Nr. 6360 46.7 19.6 14.1 19.6 4.1 4.0 1.06 0.11 10 3.0 0.10 0.16 0.07 0.03 0.36 11.87 3 11.69 0.48 45.41 29.4 18.4 15.3 36.9 4.1 4.0 2.97 0.26 11 8.0 0.11 0.20 0.15 0.08 0.54 19.03 3 13.15 0.56 31.15 30.5 12.5 19.7 37.3 4.2 4.1 1.66 0.15 11 3.8 0.12 0.13 0.08 0.09 0.42 18.53 2 12.85 0.31 77.62 5.9 51.4 25.4 17.3 4.5 3.7 1.79 0.19 9 5.1 2.34 1.12 0.44 0.12 4.02 17.04 24 8.04 0.72 41.71 5.4 60.8 13.7 20.1 3.8 3.6 2.84 0.24 12 2.5 0.29 0.55 0.17 0.10 1.11 14.18 8 6.89 0.76 43.82 5.5 50.3 19.0 25.2 3.9 3.5 2.79 0.23 12 6.2 0.58 0.85 0.26 0.10 1.79 18.34 10 9.10 1.16 29.04 3.9 52.1 24.8 19.2 4.1 3.5 2.07 0.17 12 1.1 0.52 0.71 0.19 0.07 1.49 16.47 9 9.85 0.92 54.38 44.7 33.1 14.2 8.0 5.4 4.3 1.68 0.12 14 2.5 8.46 3.97 0.17 0.16 12.76 13.11 97 0.16 0.12 77.62 7.7 42.9 27.0 22.4 4.7 3.8 0.78 0.10 8 1.7 0.81 0.92 0.22 0.10 2.05 11.78 17 8.14 0.67 35.90 9.8 41.9 28.0 20.3 4.8 3.8 0.71 0.10 7 2.0 2.79 0.75 0.20 0.14 3.88 19.16 20 11.35 0.85 28.51 20.7 24.5 24.5 30.3 4.0 3.5 1.72 0.19 9 2.9 1.92 0.92 0.18 0.11 3.13 40.98 8 30.78 2.28 32.74 8.1 52.0 24.2 15.7 4.7 3.7 0.53 0.07 8 1.1 0.66 0.47 0.17 0.10 1.40 12.58 11 7.89 0.45 76.03 38.3 35.5 18.0 8.2 4.7 3.8 0.51 0.08 6 3.6 0.95 0.93 0.22 0.15 2.25 15.38 15 9.47 0.79 45.41 8.9 56.9 20.5 13.7 4.3 3.8 1.46 0.16 9 2.2 0.38 1.35 0.32 0.23 2.28 11.28 20 5.49 0.50 33.79 8.3 55.1 26.9 9.7 4.9 3.8 0.80 0.10 8 1.1 0.38 1.42 0.35 0.07 2.22 12.56 18 6.73 0.60 31.15 5.3 54.4 23.1 17.2 3.9 3.7 1.91 0.18 11 3.9 0.32 0.30 0.14 0.12 0.88 11.54 8 10.34 0.35 54.91 13.1 45.1 27.6 14.2 4.1 3.8 0.52 0.08 7 2.2 0.26 0.53 0.14 0.06 0.99 13.76 7 11.83 0.98 69.70 188 189 6357 4 3 4 1 - 190 6358 4 3 4 2 185.48 191 6396 4 4 1 1 187.67 192 6397 4 4 1 1 193 6398 4 4 1 1 188.33 200.98 194 6399 4 4 1 1 164.14 195 6402 4 4 1 1 230.74 196 6393 4 4 2 1 197 6394 4 4 2 1 189.58 152.86 198 6395 4 4 2 1 237.47 199 6403 4 4 2 1 264.10 200 6404 4 4 2 1 201 6400 4 4 3 1 202 6401 4 4 3 2 - 203 6361 4 4 4 1 - 204 6362 note 1=log 30 2=primary forest 3=log 10 4 4 4 note Replication in each landtype. 2 note note 1=non skid trail 1=0-20 cm 2=skid trail 2=20-40 cm 3=profile downslope 4=log 5 4=profile upslope Appendix 10. Soil description in 16 1-ha plots in Primary (PF) and logged (LF) lowland forests in the Bulungan Reseacrh Forest-CIFOR, East Kalimantan. Profile LF-30, plot 01/Upper Slope Drainage: Quite Impeded Soil Horizons Description Horizon 1: Horizon 2: Horizon 3: Horizon 4: Horizon 5: 0-4 cm; fibrious 4-14/16 cm; 10YR6/6; SCL/Sandy Clayey Loam; angular blocky, 1 cm, medium; friable; micro roots 25% macro roots 10%; micro pores +++, macro pores ++; sandstone 25% 14/16-33/36 cm; 10YR6/6; SCL/Sandy Clayey Loam; angular blocky, 1 cm, strong; firm; micro roots 15%, macro roots 7%; micro pores +++, macro pores ++; sandstone 20% 33/36-59/61 cm; 10YR6/6; SC/Sandy Clay; angular blocky, 1 cm, strong; firm; micro roots 25%, macro roots 3%; micro pores ++++, macro pores ++; mottle 2.5Y7/4 >59/61 cm; 7.5YR6/6; SC/Sandy Clay; angular blocky, 1 cm, strong; firm; micro roots 25%, macro roots 3%; micro pores ++++, macro pores +; mottle 2.5Y7/4 sandstone Profile LF-30, plot 01/Down Slope Drainage: Quick Soil Horizons Description Horizon 1: Horizon 2: Horizon 3: Horizon 4: 0-4/8 cm; 10YR6/4; mottle organic matter 50%; scl/sandy clayey loam; angular blocky, 0.5 cm, medium; friable; micro pores ++, macro pores ++; micro roots 40%, macro roots 5% 4/8-31/33 cm; 10YR6/6; mottle 2.5YR7/4 10%, organic matter 10%; sandy clayey loam; angular blocky, 2.5 cm, strong; firm; micro pores ++, macro pores ++; micro roots 15%, macro roots 15% 31/33-56/61 cm; 10YR6/6; mottle 7.5YR6/6 50%, organic matter 5%; sc/sandy clay; angular blocky, 1.5, strong; firm; micro pores +++, macro pores ++; micro roots 15%, macro roots 10%; >56/61 cm; 7.5YR6/6; mottle 5YR6/6 and 2.5Y7/4 50%; cl/clayey loam; angular blocky, 1.5 cm, strong; firm; micro pores +++, macro pores ++; micro roots 15%, macro roots 5%; sandstone 385 Profile LF-30, plot 02/Upper Slope Drainage: Quick Note: Many hardpans in half-part of the profile below section Soil Horizons Description Horizon 1: Horizon 2: Horizon 3: Horizon 4: 0-3/6 cm; 10YR6/4; mottle of organic mater; sic/silt clay; hardpan 2.5YR4/4 2%; angular blocky, 0.5 cm, weak; friable; micro pores +++, macro pores ++; micro roots 30%, macro roots 10% 3/6-23/60 cm; 7.5YR6/6; mottle of organic matter; sic/silt clay; hardpan 5Y8/1 (light gray) and 2.5YR4/4 4%; angular blocky, 2 cm, strong; very firm; micro pores ++++, macro pores ++; micro roots 15%, macro roots15% 23/60-80/92 cm; 10YR6/6; sic/silt clay; hardpan 5Y8/1 60%and 2.5YR4/4 10%; angular blocky, 1.5 cm, medium; firm; micro pores ++++, macro pores +; micro roots 10%, macro roots 5% >80/92 cm; 10YR6/6; sic/silt clay; hardpan 5Y8/1 85% and 2.5YR4/4 2%; angular blocky, 1 cm, weak; friable; micro pores ++++, macro pores +; micro roots 5%, macro roots 2% Profile LF-30, plot 02/Down Slope Drainage: Quick Soil Horizons Description Horizon 1: Horizon 2: Horizon 3: Horizon 4: 0-8/10 cm; 10YR5/3; mottle G25/5BG; sicl/silt clayey loam; angular blocky, 1 cm, medium; friable; micro pores ++++, macro pores +++; micro roots 50%, macro roots 7% 8/10-58/61 cm; 10YR6/4; mottle 2.5YR4/4 20%; sicl/silt clayey loam; angular blocky, 0.5 cm, weak; friable; micro pores +++, macro pores ++; micro roots 15%, macro roots 7%; pan of sand 58/61-83/85 cm; 10YR6/4; mottle 2.5YR4/4 5%; sicl/silt clayey loam; angular blocky, 0.5 cm, weak; friable; micro pores ++++, macro pores ++; micro roots 10%, macro roots 2%; pan 70% >83/85 cm; 10YR6/4; pan of sand 95%; sicl/silt clayey loam; micro pores ++++, macro pores -; micro roots 5%, macro roots 2% 386 Profile LF-30, plot 03/Upper Slope Drainage: Moderate Dry leafs: 10cm thick Soil Horizons Description Horizon 1: Horizon 2: Horizon 3: Horizon 4: Horizon 5: 0-4 cm; fibrist 4-15/19 cm; 10YR6/8; mottle of organic matter 10YR5/4; sc/sandy clay; angular blocky, 1 cm, weak; friable; micro pores +, macro pores +++; micro roots 30%, macro roots 25% 15/19-22/30 cm; 10YR6/8; sc/sandy clay; angular blocky, 1.5 cm, weak; friable; micro pores ++, macro pores ++; micro roots 30%, macro roots 15%; 22/30-40/49 cm; 10YR6/8; sc/sandy clay; angular blocky, 2 cm, strong; very firm; micro pores +++ macro pores +; micro roots 20%, macro roots 2%; quartz stone 0.5 cm 3% >40/49 cm; 10YR6/8; c/clay; angular blocky, 2.5 cm, strong; very firm; micro pores ++++, macro pores +; micro roots 2%, macro roots 20%; quartz stone 3 cm and 0.5 cm 5% Profile LF-30, plot 03/Down Slope Drainage: Soil Horizons Horizon 1: Horizon 2: Horizon 3: Horizon 4: Description 0-4/8 cm; 10YR5/3; mottle 10YR6/6 and 10YR6/2 20%; sc/sandy clay; angular blocky, 1.5 cm, medium; friable; micro pores +++, macro pores +++; micro roots 60%, macro roots 15% 4/8-30/34 cm; 10YR6/6; mottle of organic matter; sc/sandy clay; angular blocky, 1.5 cm, medium; friable; micro pores +++, macro pores +++; micro roots 35%, macro roots 10% 30/34-61/69 cm; 10YR6/6; mottle of organic matter; sc/sandy clay; angular blocky, 1.5 cm, medium; friable; micro pores +++, macro pores ++; micro roots 25%, macro roots 5%; sandstone debris 2 cm 5% 61/69-100 cm; 10YR6/6; mottle 2.5YR4/4; sc/sandy clay; angular blocky, 2 cm, medium; friable; micro pores +++, macro pores ++; 387 Horizon 5: micro roots 5%, macro roots 5%; sandstone debris 5 cm 40% >100 cm; 10YR6/6; mottle 2.5YR4/4 10%; sc/sandy clay; angular blocky, 2 cm, medium; firm; micro pores +++, macro pores +; micro roots 5%, macro roots 10%; sandstone debris 10 cm 30% and quartz 10% 388 Profile LF-30, plot 04/Upper Slope Drainage: Soil Horizons Horizon 1: Horizon 2: Horizon 3: Horizon 4: Description 0-2 cm; fibrist; micro roots 90%, macro roots 10% 2-7/10 cm; 10YR5/4; sl/sandy loam; angular blocky, 0.5, weak; very friable; micro pores +++, macro pores ++; micro roots 50%, macro roots 20% 7/10-24/27 cm; 10YR6/8; sl/sandy loam; angular blocky, 1 cm, weak; very friable; micro pores +++, macro pores ++; micro roots 40%, macro roots 10% >24/27 cm; 10YR6/8; sl/sandy loam; angular blocky, 1 cm, weak; friable; micro pores +++, macro pores ++; micro roots 30%, macro roots-; sandstone 90% Profile LF-30, plot 04/Down Slope Drainage: Quick Soil Horizons Description Horizon 1: Horizon 2: Horizon 3: Horizon 4: 0-22/32 cm; 10YR6/6; mottle of sandstone 5Y8/2 2%; scl/sandy clayey loam; angular blocky, 1 cm, weak; friable; micro pores +++, macro pores +++; micro roots 15%, macro roots 7% 22/32-52/64 cm; 10YR7/6; mottle of organic matter 10YR5/4 2% and of sandstone 5Y8/2 2%; sc/sandy clay; angular blocky, 2.5 cm, strong; firm; micro pores ++++, macro pores ++; micro roots 10%, macro roots 3% 52/64-75/86 cm; 10YR6/6; mottle of organic matter 10YR5/4; scl/sandy clayey loam; angular blocky, 1 cm, weak; friable; micro pores +++, macro pores ++; micro roots 25%, macro roots 5% >75/86 cm; 10YR6/6; mottle 2.5YR4/4; scl/sandy clayey loam; angular blocky, 1.5 cm, medium; firm; micro pores +++, micro roots 10%, macro roots - 389 Profile PF, plot 01/Upper Slope Drainage: Impeded Soil Horizons Description Horizon 1: Horizon 2: Horizon 3: Horizon 4: Horizon 5: 0-2/5 cm; fibric-hemic; micro roots 60%, macro roots 5% 2/5-13/15 cm; 10YR6/6; mottle of organic matter; cl/clayey loam; angular blocky, 1 cm, weak; friable; micro pores +++, macro pores ++; micro roots 20%, macro roots 10% 13/15-28/33 cm; 7.5YR6/6; c/clay; angular blocky, 1 cm, medium; friable; micro pores ++++, macro pores +; micro roots 15%, macro roots 10% 28/33-48/59 cm; 7.5YR6/8; c/clay; angular blocky, 1 cm, medium; firm; micro pores ++++, macro pores -; micro roots 10%, macro roots 5% >48/59 cm; 5YR6/8; c/clay; angular blocky, 2 cm, medium; firm; micro pores ++++, macro pores -; micro roots 5%, macro roots 5% Profile PF, plot 01/Down Slope Drainage: Quite Impeded Soil Horizons Description Horizon 1: Horizon 2: Horizon 3: Horizon 4: Horizon 5: Horizon 6: 0-2/6 cm; fibrist; micro roots 80%, macro roots 3% 2/6-10/14 cm; 10YR5/4; sicl/silt clayey loam; angular blocky, 1.5 cm, weak; friable; micro pores +++, macro pores ++; micro roots 10%, macro roots 10%; 10/14-20/25 cm; 10YR6/6; cl/clayey loam; angular blocky, 1.5cm, medium; friable; micro pores +++, macro pores +; micro roots 10%, macro roots + 20/25-38/41 cm; 10YR6/6; cl/clayey loam; angular blocky, 1.5 cm, medium; firm; micro pores ++++, macro pores -; micro roots 10%, macro roots -; rayap 38/41-69 cm; 7.5YR6/8; c/clay; angular blocky, 3 cm, strong; very firm; micro pores ++++, macro -; micro roots 5%, macro roots >69 cm; 7.5YR6/8; c/clay; angular blocky, 3 cm, strong; very firm; micro pores ++++, macro pores -; micro roots 5%, macro roots - 390 Profile PF, plot 02/Upper Slope Drainage: Quite Impeded Soil Horizons Description Horizon 1: Horizon 2: Horizon 3: Horizon 4: Horizon 5: 0-4/14 cm; 10YR6/6; mottle of organic matter; cl/clayey loam; angular blocky, 1 cm, medium; friable; micro pores +++, macro pores ++; micro roots 20%, macro roots 5%; 4/14-16/26 cm; mottle 2.5Y7/4 and 7.5YR6/6; cl/clayey loam; 10YR6/6; angular blocky, 1.5 cm, medium; firm; micro pores +++, macro pores ++; micro roots 10%, macro roots 10%; 16/26-31/40 cm; 7.5YR6/6; mottle 2.5Y7/4 5% and 2.5YR4/6 5%;cl/clayey loam; angular blocky, 2 cm, medium; firm; micro pores +++, macro pores +; micro roots 10%, macro roots 10% 31/40-55/75 cm; 5 YR6/6; mottle 2.5Y7/4 30% and 2.5YR4/6 30%; c/clay; angular blocky, 1.5 cm, medium; firm; micro pores ++++, macro pores +; micro roots 10%, macro roots 5%; hardpan >55/75 cm; hardpan 2.5Y6/4 and 2.5YR4/6 100% Profile PF, plot 02/Down Slope Drainage: Quite Impeded Soil Horizons Description Horizon 1: Horizon 2: Horizon 3: Horizon 4: 0-4/8 cm; 10YR4/2 and 10YR5/4; cl/clayey loam; angular blocky, 1 cm, weak; friable; micro pores +++, macro pores ++; micro roots 40%, macro roots 30%; hardpan of limonit 5% 4/8-50/60 cm; 10YR6/6; cl/clayey loam; angular blocky, 1.5 cm, medium; friable; micro pores ++++, macro pores ++; micro roots 25%, macro roots 5%; hardpan of limonit 80% 50/60-70/90 cm; 10YR6/6; cl/clayey loam; angular blocky, 1.5 cm, medium; friable; micro pores ++++, macro pores +; micro roots 5%, macro roots 1%; hardpan of limonit 80% >70/90 cm; 10YR6/6; cl/clayey loam; angular blocky, 1 cm, medium; friable; micro pores ++++, macro pores -; micro and macro roots -; hardpan of limonit 95% 391 Profile PF, plot 03/Upper Slope Drainage: Impeded by clay Soil Horizons Description Horizon 1: Horizon 2: Horizon 3: Horizon 4: 0-2/4 cm; 10YR4/2; sic/silty clay; angular blocky, 0.5 cm, medium; friable; micro pores +, macro pores +++; micro roots 50%, macro roots 20% 2/4-23/26 cm; 10YR6/6; sic/silty clay; angular blocky, 1.5 cm, weak; friable; micro pores ++, macro pores ++; micro roots 15%, macro roots 15%; hardpan of limonit 80% 23/26-56/63 cm; 5YR6/8; c/clay; angular blocky, 1.5 cm, weak; friable; micro pores +++, macro pores +; micro roots 15%, macro roots 15%; charcoal >56/63 cm; 5YR6/8; c/clay; angular blocky, 2 cm, medium; friable; micro pores +++, macro pores +; micro roots 5% and macro roots 5% Profile PF, plot 03/Down Slope Drainage: Impeded by clay and slope Soil Horizons Description Horizon 1: Horizon 2: Horizon 3: 0-24/42 cm; 10YR7/6; rust 2.5Y3/1, 5Y7/3; sicl/silty clay loam; >5 cm, plastic; micro pores +++, macro pores +; micro roots 40%, macro roots 40% 24/42-80/98 cm; 10YR7/6; rust 2.5YR6/4;sic/silty clay; >5 cm, plastic; micro pores +++, macro pores +; micro roots 20%, macro roots 20%; hardpan of limonite, small >80/98; 10YR7/6; 2.5YR4/4; sic/silty clay; >5 cm, plastic; micro pores ++++, macro pores -; micro roots 10%, macro roots -; limonite/gibbsite Profile PF, plot 04/Upper Slope Drainage: Slow by slope and clay Soil Horizons Description Horizon 1: Horizon 2: 0-3/5 cm; 10YR4/2; fibrist; micro roots 80%, macro roots 5% 3/5-17/25 cm; 10YR6/6; sic/silty clay; angular blocky, 1 cm, weak; very friable; micro pores ++, macro pores ++; micro roots 20%, macro roots 30% 392 Horizon 3: Horizon 4: 17/25-33/36 cm; 7.5YR6/6; c/clay; angular blocky, 2 cm, medium; firm; micro pores +++, macro pores +; micro roots 25%, macro roots 5% >33/36 cm; 5YR6/8; c/clay; angular blocky, 2 cm, strong; very firm; micro pores +++, macro pores +; micro roots 10% and macro roots 5% Profile PF, plot 04/Down Slope Drainage: Quite Slow by clay Soil Horizons Description Horizon 1: Horizon 2: Horizon 3: Horizon 4: Horizon 5: 0-5/8 cm; 10YR3/2; fibrist; micro roots 60%, macro roots 20% 5/8-15/23 cm; 10YR5/6; sic/silty clay; angular blocky, 0.5 cm, weak; very friable; micro pores +, macro pores +++; micro roots 30%, macro roots 40% 15/23-33/45 cm; 10YR6/6; rust 10YR6/2 rounded; sic/silty clay; angular blocky, 1 cm, medium; friable; micro pores ++, macro pores ++; micro roots 20%, macro roots 20% 33/45-62 cm; 7.5YR6/8; sic/silty clay; angular blocky, 2 cm, medium; quite plastic; micro pores ++, macro pores ++; micro roots 15% and macro roots 10% >62 cm; 5YR6/8; rust 10YR7/6; c/clay; angular blocky, 2 cm, medium; friable; micro pores +++, macro pores +; micro root 5%, macro roots 3% Profile LF-10, plot 01/Upper Slope Drainage: Quite Impeded by clay Soil Horizons Description Horizon 1: Horizon 2: Horizon 3: Horizon 4: 0-6 cm; 10YR3/2; sicl/silty clay loam; angular blocky, 0.5 cm, medium; micro pores ++, macro pores ++; micro roots +++, macro roots ++ 6-30/32 cm; 10YR4/6; sicl/silty clay loam; angular blocky, 1 cm, medium; friable; micro pores +++, macro pores +; micro roots +++%, macro roots + 30/32-60 cm; 10YR5/6; sicl/silty clay loam; angular blocky, 1 cm, medium; firm; micro pores +++, macro pores +; micro roots +, macro roots + >60 cm; 7.5YR6/6; sicl/silty clay loam; angular blocky, 1 cm, medium; firm; micro pores +++, macro pores +; micro roots + and macro roots - 393 Profile LF-10, plot 01/Down Slope Drainage: Impeded by stone Soil Horizons Description Horizon 1: 0-20/26 cm; 10YR4/3; rust 10YR8/1; sicl/silty clay loam; angular blocky, 0.5 cm, weak; friable; micro pores +++, macro pores +; micro roots +++, macro roots + Horizon 2: 20/26-30 cm; 10YR8/1; rust 10YR6/6; sicl/silty clay loam; angular blocky, 1 cm, medium; firm; micro pores +++, macro pores +; micro roots ++, macro roots Horizon 3: >30 stone Profile LF-10, plot 02/Upper Slope Drainage: Quite impeded by clay Soil Horizons Description Horizon 1: Horizon 2: Horizon 3: Horizon 4: 0-5/7 cm; 10YR3/2; sicl/silty clay loam; angular blocky, 0.3 cm, medium; friable; micro pores +, macro pores ++; micro roots +++, macro roots ++ 5/7-32/34 cm; 10YR5/6; sic/silty clay; angular blocky, 1 cm, medium;firm; micro pores ++, macro pores ++; micro roots ++, macro roots + 32/34-47/52 cm; 7.5YR5/6; rust 10YR5/6; sic/silty clay; angular blocky, 1 cm, medium; firm; micro pores +++, macro pores +; micro roots +, macro roots + >47/52 cm; 7.5YR5/6; sic/silty clay; angular blocky, 2 cm, strong; very firm; micro pores ++++, macro pores ; micro roots - and macro roots - Profile LF-10, plot 02/Down Slope Drainage: medium Soil Horizons Description Horizon 1: Horizon 2: Horizon 3: 0-8/12 cm; 10YR4/6; sicl/silty clay loam; angular blocky, 0.3 cm, medium; friable; micro pores +, macro pores +++; micro roots +++, macro roots ++ 8/12-30/40 cm; 10YR5/6; sicl/silty clay loam; angular blocky, 1 cm, medium; friable; micro pores ++, macro pores ++; micro roots ++, macro roots ++; black stone 20% >30/40 cm; 7.5YR6/6; rust 10R6/8 15%; sic/silty clay; angular blocky, 2 cm, strong; firm; micro pores +++, macro pores +; micro roots ++, macro roots - 394 Profile LF-10, plot 03/Upper Slope Drainage: medium Soil Horizons Description Horizon 1: 0-6/9 cm; 10YR3/4; sicl/silty clay loam; angular blocky, 0.5 cm, medium; very friable; micro pores ++, macro pores ++; micro roots +++, macro roots ++ Horizon 2: 6/9-20/34 cm; 10YR5/6; sicl/silty clay loam; angular blocky, 1 cm, medium; friable; micro pores +++, macro pores +; micro roots ++, macro roots ++ Horizon 3: 20/34-45/50 cm; 10YR5/6; rust 7.5YR5/6 30%; sic/silty clay; angular blocky, 1 cm, medium; firm; micro pores +++, macro pores +; micro roots ++, macro roots + Horizon 4: >45/50 cm; 10YR5/6; rust 7.5YR5/6 50%; sic/silty clay; angular blocky, 3 cm, strong; firm; micro pores ++++, macro pores -; micro roots ++ and macro roots Profile LF-10, plot 03/Down Slope Drainage: medium Soil Horizons Description Horizon 1: Horizon 2: Horizon 3: Horizon 4: 0-3/5 cm; 10YR3/4; sicl/silty clay loam; angular blocky, 0.5 cm, medium; friable; micro pores ++, macro pores ++; micro roots +++, macro roots ++ 3/5-14/40 cm; 10YR5/6; rust grey 20%; sicl/silty clay loam; angular blocky, 1 cm, medium; firm; micro pores +++, macro pores +; micro roots ++, macro roots ++ 14/40-67/72 cm; 10YR5/6; rust grey 30%; sic/silty clay; angular blocky, 1 cm, medium; firm; micro pores +++, macro pores +; micro roots +, macro roots +; stone 20 cm size >67/72 cm; 7.5YR5/6; sic/silty clay; angular blocky, 3 cm, medium; firm; micro pores +++, macro pores -; micro roots + and macro roots -; stone Profile LF-10, plot 04/Upper Slope Drainage: Quite Slow by clay Soil Horizons Description Horizon 1: 0-4/5 cm; 10YR3/4; sicl/silty clay loam; angular blocky, 0.5 cm, medium; very friable; micro pores ++, macro pores ++; micro roots +++, macro roots ++ 395 Horizon 2: Horizon 3: Horizon 4: Horizon 5: 4/5-14/20 cm; 10YR5/6; sicl/silty clay loam; angular blocky, 1 cm, medium; friable; micro pores +++, macro pores ++; micro roots ++, macro roots + 14/20-38/41 cm; 10YR5/6; sic/silty clay; angular blocky, 2 cm, medium; firm; micro pores +++, macro pores +; micro roots ++, macro roots + 38/41-93 cm; 10YR5/6; rust 7.5YR6/8, 10%; c/clay; angular blocky, 3 cm, strong; firm; micro pores ++++, macro pores -; micro roots + and macro roots -; stone 10-20 cm >93 cm; 7.5YR6/8; rust 10YR5/6, 10%; c/clay; angular blocky, 3 cm, strong; very firm; micro pores ++++, macro pores -; micro root +, macro roots - Profile LF-10, plot 04/Down Slope Drainage: Quite Slow by clay Soil Horizons Description Horizon 1: Horizon 2: Horizon 3: Horizon 4: 0-5/20 cm; 10YR3/4; rust 10YR5/6; sicl/silty clay loam; angular blocky, 0.5 cm, medium; very friable; micro pores ++, macro pores ++; micro roots +++, macro roots ++ 5/20-32 cm; 10YR5/6; sicl/silty clay loam; angular blocky, 1 cm, medium; friable; micro pores +++, macro pores +; micro roots ++, macro roots + 32-49/60 cm; 10YR5/6; rust 10YR3/2, worm; sic/silty clay; angular blocky, 2 cm, medium; firm; micro pores +++, macro pores +; micro roots +, macro roots + >49/60 cm; 7.5YR6/8; rust 10YR5/6; sic/silty clay; angular blocky, 3 cm, medium; very firm; micro pores ++++, macro pores -; micro roots +, macro roots - Profile LF-5, plot 01/Upper Slope Drainage: Quite Impeded by slope Soil Horizons Description 396 Horizon 1: Horizon 2: Horizon 3: Horizon 4: 0-4/8 cm; 10YR5/4; rust 10YR5/6 and 10R4/8 5% each; sil/silty loam; angular blocky, 1 cm, medium; firm; micro pores ++, macro pores ++; micro roots +++, macro roots ++ 4/8-14/26 cm; 10YR6/6; rust 10YR5/6 30% and 10R4/8 15%; sicl/silty clay loam; angular blocky, 2 cm, strong; very firm; micro pores +++, macro pores ++; micro roots +++, macro roots ++ 14/26-29/60 cm; 7.5YR6/6; rust 10YR5/6 50% and 10R4/8 15%; sicl/silty clay loam; angular blocky, 2 cm, strong; very firm; micro pores +++, macro pores +; micro roots +, macro roots + >29/60 cm; 10YR5/6; rust 10R4/8; masive; micro pores ++++, macro pores -; micro roots + and macro roots - Profile LF-5, plot 01/Down Slope Drainage: Quick Soil Horizons Description Horizon 1: Horizon 2: Horizon 3: Horizon 4: 0-4/6 cm; 10YR4/3; sil/silty loam; angular blocky, 0.2 cm, weak; very friable; micro pores +, macro pores +++; micro roots +++, macro roots +++ 4/6-7/14 cm; 10YR5/6; sicl/silty clay loam; angular blocky, 1 cm, strong; firm; micro pores +++, macro pores +; micro roots ++, macro roots ++ 7/14-22/24 cm; 10YR5/6; rust 5YR6/8 and G27/1; sicl/silty clay loam; angular blocky, 2 cm, strong; very firm; micro pores +, macro pores +; micro roots +, macro roots + >22/24 cm; G1,5; rust 10YR6/6; masive ; micro pores ++++, macro pores -; micro roots + and macro roots - Profile LF-5, plot 02/Upper Slope Drainage: Quite Slow by clay 397 Soil Horizons Horizon 1: Horizon 2: Horizon 3: Horizon 4: Horizon 5: Description 0-3/4 cm; 10YR3/2; ls/loamy sand; angular blocky, 0.5 cm, weak; very friable; micro pores ++, macro pores +++; micro roots ++, macro roots ++ 3/4-18/22 cm; 10YR4/4; ls/loamy sand; angular blocky, 0.5 cm, weak; very friable; micro pores +++, macro pores ++; micro roots +++, macro roots ++; charcoal, 0.5 cm, 2% 18/22-37/49 cm; 10YR5/6; sl/sandy loam; angular blocky, 0.5 cm, weak; friable; micro pores +++, macro pores +; micro roots ++, macro roots ++; charcoal 0.5 cm, 20% 37/49-77/82 cm; 10YR5/6; sl/sandy loam; angular blocky, 2 cm, medium; firm; micro pores +++, macro pores +; micro roots + and macro roots +; charcoal, 1 cm, 3% >77/82 cm; 10YR7/6; sl/sandy loam; angular blocky, 2 cm, medium; firm; micro pores +++, macro pores +; micro root +, macro roots + Profile LF-5, plot 02/Down Slope Drainage: Quite Impeded by slope Soil Horizons Description Horizon 1: Horizon 2: Horizon 3: Horizon 4: Horizon 5: 0-6/20 cm; 10YR4/3; rust organic matter; ls/loamy sand; angular blocky, 1 cm, weak; not plastic; micro pores +++, macro pores ++; micro roots +++, macro roots ++ 6/20-18/29 cm; 10YR6/6; rust G2,5/1, 1%; ls/loamy sand; angular blocky, 1 cm, weak; not plastic; micro pores +++, macro pores ++; micro roots ++, macro roots ++ 18/29-32/36 cm; 10YR6/6; rust G2,5/1, 3%; sl/sandy loam; angular blocky, 2 cm, medium; plastic; micro pores +++, macro pores ++; micro roots ++, macro roots ++ 38/41-39/70 cm; 10YR6/6; rust G2,5/1, 15%; sil/silty loam; angular blocky, 2 cm, medium; plastic; micro pores +++, macro pores ++; micro roots ++ and macro roots ++ 39/70-71/99 cm; 10YR6/6; rust G2,5/1, 30%; sil/silty loam; angular blocky, 2 cm, medium; plastic; micro pores +++, macro 398 Horizon 6: pores +; micro root +, macro roots + >71/99; G2,5/1; rust 10YR6/8, 30%; sl/sandy loam; angular blocky, 3 cm, strong; very plastic; micro pores ++++, macro pores -; micro roots +, macro roots - Profile LF-5, plot 03/Upper Slope Drainage: medium Soil Horizons Description Horizon 1: Horizon 2: Horizon 3: Horizon 4: 0-5 cm; 10YR4/3; sil/silty loam; angular blocky, 0.5 cm, medium; very friable; micro pores ++, macro pores ++; micro roots +++, macro roots ++ 5-20 cm; 10YR6/6; sicl/silty clay loam; angular blocky, 0.5 cm, medium; friable; micro pores ++, macro pores ++; micro roots ++, macro roots ++ 20-41 cm; 10YR6/8; sicl/silty clay loam; angular blocky, 2 cm, strong; firm; micro pores +++, macro pores -; micro roots +, macro roots + >41 cm; 7.5YR6/8; sicl/silty clay loam; angular blocky, 3 cm, strong; very firm; micro pores +++, macro pores -; micro roots + and macro roots + Profile LF-5, plot 03/Down Slope Drainage: medium Soil Horizons Description Horizon 1: Horizon 2: Horizon 3: Horizon 4: 0-5/7 cm; 7.5YR4/3; sil/silty loam; angular blocky, 1 cm, medium; plastic; micro pores +, macro pores +++; micro roots +++, macro roots +++ 5/7-30/33 cm; 7.5YR6/8; rust 7.5YR7/8 and 7.5YR8/1 5% each; sicl/silty clay loam; angular blocky, 2 cm, strong; very plastic; micro pores ++, macro pores ++; micro roots ++, macro roots ++ 30/33-49/67 cm; 7.5YR7/8; 7.5YR8/1, 20%; sicl/silty clay loam; angular blocky, 3 cm, strong; very plastic; micro pores +++, macro pores +; micro roots +, macro roots ++; stone 10% >49/67 cm; 7.5YR7/8; rust 7.5YR6/8, 10%; sicl/silty clay loam; angular blocky, 3 cm, strong; very plastic; micro pores +++, macro 399 pores +; micro roots + and macro roots +; stone 10% Profile LF-5, plot 04/Upper Slope Drainage: medium Soil Horizons Description Horizon 1: Horizon 2: Horizon 3: Horizon 4: 0-5/8 cm; 10YR5/6; rust organic matter; sl/sandy loam; angular blocky, 1 cm, strong; friable; micro pores ++, macro pores +++; micro roots +++, macro roots ++ 5/8-27/29 cm; 10YR6/8; scl/sandy clay loam; angular blocky, 2 cm, strong; friable; micro pores +++, macro pores ++; micro roots ++, macro roots + 27/29-49/52 cm; 10YR7/6; scl/sandy clay loam; angular blocky, 2 cm, strong; friable; micro pores +++, macro pores +; micro roots +, macro roots + >49/52 cm; 10YR7/6; scl/sandy clay loam; angular blocky, 2 cm, strong; friable; micro pores +++, macro pores +; micro roots + and macro roots +; fragipan 10 cm, rounded Profile LF-5, plot 04/Down Slope Drainage: medium Soil Horizons Description Horizon 1: Horizon 2: Horizon 3: 0-8/15 cm; 10YR5/4; sil/silty loam; angular blocky, 0.2 cm, weak; very friable; micro pores ++, macro pores +++; micro roots +++, macro roots ++ 8/15-18/30 cm; 10YR6/6; rust 10YR5/4, 40%; sicl/silty clay loam; angular blocky, 2 cm, medium; firm; micro pores +++, macro pores ++; micro roots ++, macro roots + 18/30-56/74 cm; 7.5YR6/8; rust 10YR5/4, 10%; sicl/silty clay 400 Horizon 4: loam; angular blocky, 2 cm, strong; very firm; micro pores +++, macro pores +; micro roots +, macro roots + >56/74 cm; 7.5YR6/8; rust 10YR6/68, 10%; sicl/silty clay loam; angular blocky, 3 cm, strong; very firm; micro pores ++++, macro pores -; micro roots + and macro roots - 401 Appendix 11. Indonesian Selective Cutting and Replanting (TPTI) system. The following account provides an overview of the Silvicultural System of Indonesian Selective Cutting and Replanting (TPTI). Taken from: MoF. 1997. 1 Introduction The Silvicultural of Indonesian Selective Cutting and Replanting (TPTI) is a silvicultural system which comprises logging practice with diameter limit and forest regeneration. In the beginning, it was referred to as Indonesian Selective Cutting (TPI) in the year 1972. This silvicultural system is considered the most appropriate in term of economy, ecology and technology to be used in tropical rain forest or other tropical forest in Indonesia. Natural production forests in Indonesia, either in the form of permanent or limited forest, are generally dominated by trees belonging to the Dipterocarpaceae, together with other commercial tree species. Several other tree species, sometimes dominate tropical rain forests which grow on certain sites, for example ramin in peat swamp forest, Agathis in forest with sandy soil ebony in rocky and somewhat dry areas, eucalypts in dry climate, Rhizophora in mangrove forest, pelawan in heath forest, etc. The silvicultural system of selective cutting is one of the most difficult silvicultural system to be implemented, especially in the mixed forest of various ages, such as tropical rain forest in Indonesia. However, since the logged over area of selective cutting is opened and disturbed only a little as compared with that of clear cutting system, this system is consider safer for protection and sustainability of tropical rain forest ecosystem. 402 Silvicultural system of Indonesian selective cutting and replanting (TPTI) 2 Silvicultutral system is a series of planned activities to manage the forest which include logging, regeneration and tending of forest stand, to ensure the sustainability of timber production or other forest products. On the other hand, TPTI is a silvicultural system with diameter limit and forest regeneration. TPTI system based on forest inventory and forest sustainability principle which include production sustainability, soil and water conservation, nature protection, silvical characteristic of the tree species and economic consideration of the company. The objective of TPTI system is regulating the utilization of natural production forest and improving the value of forest, in terms of quality in the logged over areas, in order that in the next rotation, mixed forest stand can be formed which can function as sustainable raw material supplier for industry. For achieving the above mentioned objective, silvicultural practice in forest regeneration is directed towards : • Regulating the composition of tree species in the forest so that it will be more profitable in terms of ecology and economy. • Regulating the structure and maintaining the optimum density of the forest which is expected to increase the production of round wood as compared to the previous condition. • Ensuring the forest function for soil and water conservation. • Ensuring the function of forest protection. Selective cutting system is in fact more difficult than order silvicultural system, and require forester professionalism. In contrast with the previous TPI, in 403 the present TPTI, each HPH (forest concession) is obliged to establish a department of silviculture separated with department of exploitation or logging. The department of silviculture should be sufficiently supplied with facilities, fund and infrastructure, and should be led and staffed by forestry educated personnel who understand the science and practice of silviculture. All activities and schedules in TPTI should be understood and implemented. Establishment of TPTI demonstration plots, seed stand and nurseries spread over the logged over area, will support very much the success of TPTI. Therefore, each of silviculture staff in HPH will find it easy to refer to the desirable condition according to TPTI technical guidelines. 3 Series of activities To achieve the target expected in TPTI, the following series of activities and schedules are establish : No. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. Stage of TPTI Activities Organization of Working Area Stand Inventory before Logging Opening Up of Forest Area Logging Liberation Inventory of Residual Stand Procurement of Planting Stock Enrichment/Planting First Stage Tending Advanced Tending Liberation Thinning Time of Implementation (Year) Et-3 Et-2 Et-1 Et 0 Et+1 Et+1 Et+2 Et+2 Et+3 Et+4 Et+9 Et+14 Et+19 Continually Forest Protection and Research Note Et : denotes the year when the logging takes places 404 4 General provision The implementation of TPTI silviculture system in forest utilization is intended to regulate the cutting and silviculture of natural production forest, which has a minimum number of 25 nucleus trees (seed trees) per hectare. The appointed nucleus or seed trees are preferred as those commercial trees similar with the ones logged, with minimum diameter of 20 cm. If the number is less than 25 trees per hectare, other species can be included. Annual cutting quota is adjusted with the cutting quota and the standing stock volume of commercial species. Forest concession holders should prepare : • Unit of silviculture organization which is separated from logging organization. • Sufficient skillful forestry technical personnel. • Sufficient budget for silviculture activities. In a unit of natural production forest utilization which has a specific stand structure and species composition, an adjustment of TPTI silvicultural system can be made as follows : In mangrove forest, the silvicultural system guidelines is based on the Decree of Director General of Forestry No : 60/Kpts/DJ/1/1978. In swamp forest with forest composition comprising specific commercial species, for instance ramin, perupuk, and other commercial species, and the forest concession holders are not able/difficult to conduct planting/enrichment, then the 405 concession holder is allowed only to cut trees maximally 2/3 of the total number of trees according to the species composition. In swamp forest, in which trees with diameter of 50 cm upward are not found, for instance in mixed ramin forest, then for specifically ramin forest, reduction of diameter limit to 35 cm. For cutting can be done, with nucleus (seed tree) is minimally 25 trees per hectare. Cutting rotation is established as 25 years. Regulation of trees which are allowed to be cut, follows a provisions as in point (b). In condition where the nucleus trees with diameter of 20 – 49 cm is less than 25 trees per hectare, then the lack of this tree can be compensated by adding with other commercial species with a diameter of more than 50 cm which function also as seed trees. Minimum diameter limit of trees to be cut is 50 cm, with minimum number of nucleus trees at 25 trees per hectare, and the cutting rotation is 35 years. In conditions where some commercial species grow very slowly, and commercial tree species with a diameter of 50 cm upward is difficult to find, such as in mixed ebony forest, then specifically for ebony forest, reduction of diameter limits to 35 cm for cutting is allowed, with a minimum number of nucleus trees 23 trees per hectare (with a minimum diameter of 15 cm). Cutting rotation is established as 45 years. 406 Appendix 12. Lianas found in PF, LF-5, LF-10 and LF-30 in the Bulungan Research Forest, East Kalimantan Family Acanthaceae Anonaceae Apocynaceae Araceae Asclepiadaceae Capparaceae Combretaceae Species Name Group Thunbergia sp. Artabotrys sp. Artabotrys sp.1 Artabotrys suaveolens (Blume) Blume Desmos chinensis Lour. Desmos sp. Fissistigma manubriatum (Hook.f. & Thomson) Merr. Fissistigma sp. Friesodielsia borneensis (Miq.) van Steenis Friesodielsia excisa (Miq.) van Steenis Friesodielsia sp. Friesodielsia sp.1 Friesodielsia sp.2 Miliusa sp. Mitrelea sp. Neo-uvaria Uvaria borneensis (Merr.) T.M.A.Utterige Uvaria sp. Uvaria sp.1 Uvaria sp.2 Uvaria sp.3 Uvaria sp.4 Willughbeia coriacea Wall. Willughbeia firma Willughbeia sp. Willughbeia sp.1 Willughbeia sp.2 Willughbeia sp.3 Willughbeia sp.4 Photos sp. Photos sp.1 Photos sp.2 Photos sp.3 Raphidophora sp. Schindapsus sp. Scindapsus sp. Scindapsus sp.1 Scindapsus sp.2 Hoya sp. Capparis sp. Salacia leucoclada Ridl. Salacia sp. Combretum nigrescens King 407 Liana Liana Liana Liana Liana Liana Liana PF LF-5 3 413 LF-10 LF-30 30 39 1 21 9 22 10 3 1 10 4 Liana Liana Liana Liana Liana Liana Liana Liana 8 10 29 Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana 10 Liana Liana 3 1 44 2 1 6 10 4 4 18 58 15 19 22 32 58 15 1 7 10 33 207 39 26 4 3 13 1 1 3 12 12 209 1 3 3 1 1 25 8 198 214 6 101 4 5 3 33 31 39 11 Total 30 476 1 9 22 6 11 1 14 8 83 2 1 6 10 4 4 111 15 1 7 10 91 15 19 229 71 26 4 17 13 1 1 15 198 536 4 5 1 6 3 73 43 Connaracae Convolvulaceae Cucurbitaceae Euphorbiaceae Flagelariacea Gesneriaceae Gnetaceae Icacinaceae Leguminosae Liliaceae Linaceae Loganiaceae Menispermaceae Combretum sp. Combretum sp.1 Agelaea borneensis Merril Agelaea trinervis Merrill Cnestis platantha Griff Cnestis sp. Connarus sp. Connarus semidecandrus Jack Connarus sp.1 Connarus sp.2 Rourea sp. Rourea sp.1 Erycibe sp. Erycibe sp.1 Erycibe sp.2 Erycibe sp.3 Erycibe sp.4 Merremia sp. Cucurbitaceae Trichosanthes sp. Omphalea bracteata (Blanco) Merr. Flagellaria sp. Aechynanthus sp. Gnetum sp. Maesa sp. Phytocrene sp. Phytocrene sp.1 Bauhinia kockiana Korth. Bauhinia semibifida Roxb. Bauhinia sp. Bouchinia sp. Mucuna sp. Phanera sp. Spatholobus ferrugineus Benth. Spatholobus hirsutus H.Wiriadinata & J.W.A.Ridder-Numan Spatholobus litoralis Hassk. Spatholobus macropterus Miq. Spatholobus sanguineus Elmer Spatholobus sp. Spatholobus sp.1 Spatholobus sp.2 Spatholobus sp.3 Spatholobus sp.4 Spatholobus sp.5 Smilax sp. Smilax Zeylanica Indraroucrea sp. Strychnos sp. Strychnos sp.1 Anamirta cocculus Wigght & Arn Coscinium sp. Fibraurea ochroleuca Fibraurea sp. Fibraurea tinctoria Lour. Menispermaceae Menis sp.2 Menisp. 1 408 Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana 1 50 4 18 1 412 223 2 3 33 3 4 63 65 96 21 21 33 5 7 41 1 15 1717 60 1 35 5 1 22 3 9 15 2 2 5 12 1 30 14 1 12 1 111 2 5 122 33 167 53 70 4 2 77 36 181 110 177 116 2 143 628 1 102 7 45 125 5 8 7 7 89 290 28 285 7 1 3 18 10 302 1 1 1 50 2 8 17 17 11 7 17 34 5 70 174 5 15 320 2150 60 1 2 3 89 8 4 1 25 9 12 1 126 2 2 134 33 12 1 30 14 221 70 4 2 303 36 235 177 116 16 232 918 29 285 102 20 8 3 330 1 1 1 50 2 8 45 7 17 Myrsinaceae Palmae Pandanaceae Passifloraceae Piperaceae Rhamnaceae Rosaceae Rubiacea Rutaceae Sterculiaceae Thymelaeaceae Vitaceae Stephania corymbosa Tinospora sp. Embelia sp. Calamus blumei Becc. Calamus caesius Calamus flabellatus Becc. Calamus javensis Blume Calamus sp. Calamus sp.1 Calamus sp.2 Calamus tiliaris Caryota sp. Ceratolobus sp. Daemonorops sabut Becc. Daemonorops sp. Korthalsia echinometra Becc. Korthalsia ferox Becc. Korthalsia furtadoana J.Dransf. Korthalsia sp. Korthalsia sp.1 Korthalsia sp.2 Freycinetia sp. Adenia macrophylla Blume Kord. Piper baccatum Blume Piper sp. Piper sp.1 Piper sp.2 Ventilago sp. Ziziphus horsfieldii Ziziphus liana Ziziphus sp. Ziziphus sp.1 Ziziphus sp.2 Ziziphus sp.3 Ziziphus sp.4 Rubus moluccana Psychotria sarmentosa Blume Uncaria hirsuta Uncaria hirta Uncaria littorale Uncaria longifolia (Poir.) Merr. Uncaria sp. Uncaria sp.1 Uncaria sp.2 Uncaria sp.3 Paederia foetida L. Luvunga sp. Luvunga sp.1 Luvunga sp.2 Buettneria sp. Enkleia malaccensis Griff. Enkleia sp. Ampelocissus Borneensis Ampelocissus imperialis Ampelocissus sp. Cayratia sp. Cayratia sp.1 Cayratia sp.2 409 Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana Liana 2 30 10 1 1 1 10 8 1 15 4 10 74 66 1 1 5 10 9 330 53 19 116 26 69 51 7 24 95 56 5 9 17 21 2 1 71 40 24 136 72 28 19 2 172 3 7 1 1 15 18 6 45 13 2 9 2 3 1 113 1 6 1 1 323 1 14 4 5 8 1 2 1 1 1 1 24 3 38 19 3 13 11 1 6 10 20 1 9 24 1 9 46 170 2 2 1 48 1 6 2 13 2 77 1 1 1 3 50 8 16 14 312 3 9 1 15 1 67 559 141 50 22 139 7 2 35 1 1 117 1 1 596 1 1 114 23 2 5 8 1 2 1 1 1 38 55 6 13 1 6 250 20 1 3 60 9 2 7 13 2 77 1 Cissus sp. Pterisanthes sp. Pterisanthes sp.1 Tetrastigma manubriatum Tetrastigma sp. Tetrastigma sp.1 Vitaceae sp. Vitaceae sp.1 Vitis sp. Number of lianas including rattan (Palmae) 410 Liana Liana Liana Liana Liana Liana Liana Liana Liana 2 1 2704 5 6 7 12 6 4 1907 2183 1 5 7 1 1 1 4946 7 6 1 5 27 1 1 1 10 11740