Academia.eduAcademia.edu
Tolerance of some wood-decomposing basidiomycetes to aromatic compounds related to lignin degradation Veikko Hintikka Finnish Forest Research Institute, Unioninkatu 40 A, Helsinki 17, Finland Abstract. The tolerance of 46 wood-decomposing Hymenomycetes to 23 phenolic and rehted aromatic compounds was inveSit:igMed by <~Jding the compoudns to Hagem agar after autoclaving and cooling it to 70-80°C, and measuring the radial growth on these substrates after 8- 1'0 days (Table 1). Considerable differences in tolerance were found between the species. The mos1t wlerant were brown-rot fungi, whiJte-rot fungi being on the average more sensi:tive. When nMura!l substrates of these fungi were treated with FeCI!~ soluthe presence of . phenols, a posi·tive reaction was genera!lly obtained wivh the tion to rev<~Jl brown-rot, but not with the white-rot fungi. The results sugges•t that phenolic compounds may be important in the ecology of wood-decomposing fungi, e.g. in connection with the drying of wood. Introduction Considerable attention has been paid in recent years to the roles played by phenolic compounds in the degradation of lignin, hostparasite interactions and as constituents of higher plants (PRIDHAM 1960,HARBORNE 1964, K URSANOV & ZAPIWMETOV 1968) . In trees, phenolic compound's may have several different origins: i) they may occur as normal constituents of living wood and bark, either free or as glycosides; ii) they may be produced by the tree as a reaction to invading pathogens (SHAIN 1967); iii) they may accumulate as lignin degradation products owing to the activity of fungi; or iv) they may be synthetized by fungi or other wood-inhab- iting micro-organisms (PowER et a!. 1965, ARMAND & THIVEND 1965) . Wood decay in living and dead wood is generally caused a number of basi-diomycetes, many of which are effective lignin decomposers. Many earlier investigations (e.g. RENNERFELT & NACHT 1955, GADD 1957) have indicated that phenolic compounds exert a toxic influence on the growth of these fungi . This paper attempts, by studying the tolerance of some common wood-decomposing basidiomycetes to phenolic compounds known to occur in nature, to obtain preliminary information on the possible effects of these compounds in fungal ecology. Methods Fungus strains preserved in the Forest Biology Laboratory, Finnish Forest Research Institute, were used. The strains were kept on Hagem agar ( 5 g glucose, 5 g malt extract, 0,5 g KH 2 P0 4 , 0.5 g NH4 CJ, 0.5 g Mg 46 S0 4 , 0.5 ml FeCl 3 1 % solution, 15 g agar, 1000 ml dist. H 20) at +5°C with approximately two transfers a year. Most of the strains were isolated in the years 1966- 68. The following compounds were used: ani- sic acid Fluka puriss., benzaldehyde reag. qual., benzoic acid BDH anal. reag., caffeic acid Fluka pur., cinnamic acid Merck, pcresol Fluka puriss., 2,5~dihyroxbenzc acid Fluka puriss., ferulic acid Fluka purum, gallic acid, 4-hydroxybenzoic acid Fluka puriss., 4-hydroxybenzaldehyde Koch-Light, pure, guaiacol Rhone Poulenc, 3-methoxybenzoic acid Fluka purum, phenol BDH anal. reag., protocatechuic acid Sigma, pyrocatechol Merck pro anal., pyrogallol Merck pro anal ., resorcinol BDH anal. reag., salicylic acid BDH anal. reag., syringic acid Fluka purum, tannic acid Baker analyzed reag., 3,4, 5-trirnethoxybenzoic acid Fluka pururn, vanillic acid Fluka pururn, thymol tech., vanillin BDH anal. reag., veratric acid Fluka puriss. The tolerance was studied on Hagern agar, to which weighed amounts of phenolics were added after it had been autoclaved and cooled to 80--70°C, and which was poured into 10 ern petri dishes. Although the phenols were not sterilized, infection by molds and bacteria proved to be negligible. Radial growth on the agar was measured after 6--10 days. The results are given in Table 1. Results If we suppose that a natural wood substrate contains certain phenolic compounds, we can see from Table 1 that the activity and rapidity of growth of the wood-decomposing basidiomycetes investigated will differ in many respects from that observed on standard media. The species listed below ar those shown by their radial growth to be the most active at high concentrations of the respective compounds. Anisic acid: Laetiporus suphureus, Gloeophyllum sepiarium, Lentinus lepideus, Panellus serotinus, Fomitopsis annosa, Pleurotus ostreatus. Benzoic acid: Gymnopilus penetrans, Stereum sanguinolentum; tolerance of other species fairly uniform. Caffeic acid: Fomitopsis pinicola, Laetiporus sulphureus, Daedalea quercina, Piptoporus betulin us, I no notus rheades. Cinnarnic acid: Stereum purpureum, Corio! us hirsutus, Panellus serotinus, Phellinus pini, Pholiota alnicola. p-cresol: I no notus rheades, Lentinus lepideus, Stereum purpureum, Polyporus brumalis, Phellinus pini, Fomitopsis pinicola. 2,5-dihydroxybenzoic acid: Daedalea quercina, Fomitopsis pinicola, Laetiporus sulphureus, Coriolus vaporarius, Coriolellus serialis, Inonotus rheades. Ferulic acid: Stereum sanguinolentum, Coriolus hirsutus, Hirschioporus abietinus, Phellinus pini, Pycnoporus cinnabarinus, Pleurotus ostreatus, Gloeophyllum sepiarium. Gallic acid :F omito psis pinicola, Daedalea quercina, Inonotus rheades, Laetiporus sulp- hureus, Piptoporus betulinus, Coriolellus serialis. Guaiacol: I no notus rheades, Lentinus lepideus, Phcllinus pini. 4-Hydroxybenzaldehyde : Gloeophyllum sepiarium, Phellinus pini, Xeromphalina campanella, Stereum sanguinolentum, Phellinus tremulae, Psathyrella spadicea. 3-Methoxybenzoic acrd: Gymnopilus penetrans, Phellinus tremulae, Stereum purpureum, Polyporus brumalis, Coriolus zonatus, Pholiota aurivella. Phenol: Gloeophyllum sepiarium, Fomitopsis pinicola, Phellinus pini, P. tremulae, Stereum purpureum, Coriolus hirsutus. Protocatechuic acid: did not inhibit the growth rate of most species. Inhibition distinct in Pycnoporus cinnabarinus, Pleurotus ostreatus, and in Flammulina velutipes. Pyrocatechol: Phellinus pini, Daedalea quercina, St ereum purpureum, Polyporus brumalis, Fomito psis pinicola. Pyrogallol: Polyporus brumalis, Stereum sanguinolentum, Gloeoporus dichrous, Lentinellus omphalodes, Kuehneromyces mutabilis, Fames fomentarius. Resorcinol: Coriolus hirsutus, Daedalea quercina, Coriolus zonatus, Inonotus rheades, Panellus serotinus, Polypilus frondosu s, Fomitopsis pinicola. Salicylic acid: Gloeophyllum sepiarium, Laetiporus suphureus, Lentinus lepideus, Daedalea quercina, Polypilus frondosus, Panellus serotinus. Syringic acid: Laetiporus sulphureus, Fomitopsis pinicola, Coriolus vaporarius, Pipto47 ~ BENZOIC .I.CID ANISIC .I.CID -·---- CAFFEIC ACID p-CRESOL 2. 5- DIHYDROXYBENZOIC ACID CINNAI1IC ACID ~- CONCENTRATION 0/oo Aporpium. semisupinum Armillariella mellea Coriolellus eerialis Coriolus hirsutus c. vaporari us c. zonatus Daedalea quercina Flammulina velutipea Fames fomentariua Fomitopsis annosa F. pinicola Gloeophyllum sepiarium Gloeoporus dichrous Gymnopilus penetrans Hirschioporus abietinua Hypholoma capnoides Inonotus radiatus I. rheades · 0 "' q rN"' 0 00 0 "' 13 5 3 0 0 7 6 6 + 0 10 19 17 9 0 40373790 39383200 15 17 16 0 0 31 27 24 0 0 43 40 33 0 0 45 45 20 0 0 45 45 40 280 42 37 19 0 0 39 38 35 350 45 36 26 0 0 20 18 16 0 0 38 33 18 0 0 10 9 8 0 0 18 17 12 9 0 21222200 0 11 6 25 47 38 17 32 37 25 "'q "' ""q '"": "!"' 0 0 0 4 7 25 43 33 20 32 42 46 3 7 25 45 33 13 31 32 40 1 2 21 41 26 14 28 24 17 0 0 u: ~~ 0 ,.. 4 9 14 11 0 0 30 22 18 0 0 43 39 39 270 47 39 34 0 0 39 38 35 0 0 4 2 1 0 0 38 37 35 0 0 40343000 47 44 38 0 0 8 10 9 8 0 9 8 7 4 0 30 45 38 39 5 36 39 50 6 9 20 34 36 2 32 33 47 6 6 0 24 18 6 0 25 5 0 0323021 0 29 26 19 0 3 2 2 0 27 11 7 0 30 21 14 0505050 5 4 3 + 0 7 3 1 "'.;, c--. ('..U'\ .:t .:;t .:;t .:;t .:;t 0 16 11 0 18 11 0 8 8 0 10 6 0 50 45 "' "' "' "' "' "' "'"'"' r I I - 14 9 Pleurotus dryinus P. ostreatus Polyporus brumalis Polypilus f'rondosus Psathyrella spadicea Pycnoporus cinnabarinua Stereum hirsutum S. purpureum S. sanguinolentum Xeromphalina campanella 9 38 16 22 1 33 14 4 9 - 0 7 Piptoporus betulinus pH 17 34 25 30 2 32 18 18 8 0 40 25 30 20 17 3 4 8 25 19 16 1 + 8 5 0 0 18 10 2 0 6 4 1 1 9 0 8 12 9 10 7 0 7 0 17 14 0 7 5 0 15 8 0 3 4 18 32 34 35 2 33 32 45 6 5 0:: "'~ 0 0 0 0:: "' <'! u: "' r-; 0 0 0 0 - -- 2 9 16 13 7 3 20 16 2 12 12 27 42 45 35 3 35 31 45 5 9 8 0 0 5 5 0 4 5 36 25 25 14 14 13 18 13 8 12 11 8 22 22 22 26 21 19 4 3 7 21 17 17 45 26 21 Phellinus igniarius P. pini P. punctatus P. tremulae Pholiota alnicola P. aurivella F. squarrose. Phyllotopsis nidulans 0 5 + 0 13 14 36 30 19 17 10 0 0 0 10 6 15 8 5 24 23 0 0 0 8 5 25 0 0 26 22 12 + 0 3 1 1 8 + 8 + 0 6 5 25 25 18 0 0 13141300 18 16 12 0 0 3 12 8 0 0 26262200 23 22 18 0 0 10 14 8 0 0 26221300 35 2 4 0 0 Phellinus conchatua 0 - 0 0 0 0 0 0 0 0 0 Lentinus lepideus Panellus mitis P. serotinus P. stypticus Fanus conchatus "'~"' "'q "'""~ - 45 45 45 45 0 35 15 9 + 46 40 34 29 0 50 45 38 24 45 33 38 40 0 36 24 16 8 46432413 0 29 19 10 3 19 16 17 13 10 19 13 2 + 39 31 25 17 0 12 3 1 + 5 4 3 2 0 0 0 0 0 15 16 9 9 0 11 10 10 } 22 25 25 20 0 16 17 16 10 29202050 12181351 24 21 20130 4140 39330 3 1 1 + 0 40 43 44 330 17171590 q "' 0 8 7 5 2 1 7 3 0 0 0 0 5 6 4 2 1 3 2 2 3 0 8 0 0 0 0 0 16 14 10 7 6 15 0 0 0 0 25 21 + 0 0 0 39 25 25 15 2 22 22 16 12 0 40 19 1 6 0 0 0 31 32 26 15 11 0 0 0 0 0 40382000 0 11 11 8 5 4 11 8 6 0 0 22 16 15 0 0 0 23 24 22 22 16 14 5 0 0 0 35 37 26 0 0 6 10 0 0 50 45 25 0 0 0 24 20 1 0 0 0 26 5 3 0 0 7 1 + 0 0 17 5 0 0 0 24 21 16 16 37 22 30 34 32 25 19 16 41 40 38 37 1 1 1 1 43484036 20 21 18 18 20 14 11 0 0 24 16 17 15 14 23 16 1 0 23 21 16 12 Xuehneromyces mutabilis Laetiporus sulphureus Lentinellus omphalodea "' - 9 2 + 5 2 1 4 + 0 2 1 1 2 1 0 + + 0 2 + + 2 0 0 39 25 15 + 0 4 1 1 + 9 3 + 0 "' .;,"' .;, - 1 7 14 14 - 8 7 3 8 0 0 "' "' "' "' q qu:q "' '"""'"' 9 8 1 0 6 5 2 0 16 18 12 4 45 25 2 0 343424710 19 3 0 22 22 21 9 2 45 23 0 0 32 1 0 0 - -- 20 16 0 0 0 35 33 15 0 0 28 14 0 0 0 38393690 0 0 0 0 0 35 20 0 0 0 23 14 0 0 0 0 0 23 21 1 0 0 3 0 22 0 0 0 0 0 0 1 0 0 5 0 0 0 0 - 0 0 23 7 4 0 13 7 - 19 7 + 0 5 3 4 0 20 13 3 0 15 16 0 0 10 0 0 0 24 1 0 0 46 36 - 0 3 1 + 0 0 0 14 15 3 0 0 4 19 20 8 0 0 1 17 20 14 0 0 2 + 0 0 0 0 0 20 3 0 0 0 4282015 0 0 0 45 45 34 23 0 2 4 5 4 3 0 0 6 + 0 0 0 " "' "' "' "'0 0 0 50 35 4 0 0 50 40 7 + 0 0 35 . 30 15 + 0 39362782 2 0 45 40 25 0 0 35 18 5 0 46 45 7 0 0 30 16 5 0 0 0 22 18 0 0 0 16 13 6 0 0 0 19 15 2 0 0 18 6 0 0 0 0 1 0 0 0 0 5 0 0 0 0 0 23 6 0 0 0 15 8 3 0 3 0 23 23 15 9 1 14 13 11 4 - - - -+ 5 0 ':": ll"\.:;t 3 4 0 0 2 0 0 0 4 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31 9 0 0 0 38 14 0 0 0 43 44 17 + 0 35 25 + 0 0 4 3 0 0 0 39201300 35 22 1 0 0 % 41 18 1 0 1 2 1 0 0 8 6 2 0 0 ~~ II"\ 1.() IJ"'\ \0\0 24 22 28 29 3 32 15 14 15 ,.. "' 0u:' 0 0 q q ,.. 33 10 24 10 22 20 26 26 24 13 5 0 0 0 19 15 11 0 7 2 2 0 13 1 0 0 12 10 + 0 40 23 12 20 13 5 - 17 12 7 1 - - - -10 8 2 0 20 15 15 12 7 6 6 + 8 9 9 0 6 5 3 0 0 0 + - 0 7 0 0 0 0 0 0 0 0 0 - - - - 00 17 8 + 9 7 5 14 2 2 3 4 2 18 6 1 13 8 0 13 2 0 18 15 1 35 34 33 0 0 00 0 0 0 0 2 0 4 + 17 15 13 10 12 10 8 0 5 0 6 0 3 1 1 0 18 5 2 0 0 0 0 0 0 0 0 8 1 2 2 7 1 1 0 0000 0 0 0 0 0 0 - 17 34 25 21 3 17 19 45 18 6 0 1 + 0 0 1 0 0 5 0 20 2 28 7 32 34 29 27 3 2 27 8 28 23 5050 2 3 7 3 \0 ll"\\l'\IJ"'\ ll"\ ".;, 12 10 5 6 4 N<1' \!\ IJ"'\ 1<""\N N "' 0 "'0 0 0 0 0 IJ"'\ 1 4 - - 14 27 20 17 2 13 15 45 13 5 0 4 0 9 1 17 15 16 10 6 0 + 0 10 7 3 0 10 0 8 7 + 0 0 5 0 ;"' "' "' ;"' ( 0 /oo) "" 0 + 7 0 6 + 9 0 0 0 45 38 23 0 -34333215 - 10 9 10 2 0 22 22 21 15 - 45 32 18 0 0 32 3 3 0 50 39 35 30 16 18 - 5 0 15 - 14 0 0 0 50 37 28 26 12 10 5 13 14 ~ 0 ;-A~o -3 2- 1- 0- 0- -- 96 85 67 12 10 5 + 0 0 - 16 19 18 13 10 0 0 - 15 13 9 + 38 33130 21 21 11 4 6 0 0 - 15171510 22 8 0 - 16 20 10 5 + 0 0- 2 5 4 2 31 14 0 - 20 20 14 0 12 2 + 13 2 0 - 7 2 5 0 3 + 0 - 11 .1 1 11 10 Table 1. Radial growth of certain wood-decomposing fungi at different concentrations ( 1953) and MosER ( 1967) . BoNDARTSEV 0 GUAIACOL GALLIC - - - - - ACID ----- FERULIC ACID 0 + 3 0 1 0 5 0 0 "'~ qq 0 ,.- N 10 1 0 0 0 4 2 1 1 0 18 9 5 1 0 401915130 33 18 9 2 0 15 5 3 + 0 22 11 7 50 4 2 + 0 23 7 3 7 0 - 35 3 + 0 40 13 38 23 12 6 38 15 26 7 3 1 33 12 15 3 1 0 30 + 6 0 0 0 17 4 3 3 0 0 20 4 3 0 0 0 10 5 8 2 0 0 19 4 14 10 7 4 13 7 0 24 12 .10 4-HYDROXYBENZALDEHYDE ~~ U?~ - - 35 10 17 + 17 3 17 8 7 0 + 5 0 0 22 19 0 0 20 14 3 0 22 19 3 3 1 0 0 - 22 17 + 0 0 20 9 0 0 - 22 12 0 0 19 2 10 7 15 5 3 5 17 5 20 12 14 3 1 5 5 3 1 7 2 1 5 + + + 5 0 28 10 16 2 21 27 19 26 2 0 46 3 0 0 4 0 0 0 1 00 0 0 0 - 28 10 16 2 21 27 19 26 0 0 0 0 0 4 + 0 0 1 1 + 4 0 2 0 0 0 0 0 25 1 43 0 38 21 21 0 5 2 28 + 31 + 50 27 10 12 7 4 0 0 1 0 2 0 0 6 8 3 0 00 0 0 1 0 0 + 0 1 0 3 - 26 45 37 5 35 38 50 13 7 10 0 0 29 0 0 26 1 6 0 35 0 0 3 0 0 23 0 0 30 0 0 50 2 2 0 7 0 0 4 0 0 U"\1<"\C\J \0 N ~ ; 19 0 0 0 0 38 18 13 0 0 1 5 3 0 0 0 0 3 2 + 0 0 30 4 + 0 0 30 14 7 4 0 50 50 37 32 0 8 7 5 4 0 7 3 1 + 0 ~~ 45 45 40 38 19 28 10 20 20 30 30 0 0 0 22 24 1 0 0 30 28 0 0 0 36362820+0 0 0 0 0 + 0 + 0 + + I 15 3 2 0 - 15 2 0 0 6 1 0 0 - 7 6 + 0 22 13 10 0 - 20 11 3 0 40 22 8 0 - 45 29 <) 0 41 33 28 0 - 36 26 ) 0 14 7 7 0 - 17 15 1 , 0 28 9 4 0 0 26 25 5 0 45 5 0 0 - 4.5 43 0 0 34 1 + 0 - 45 15 <) 0 0 0 0 + 20 28 32 29 3 27 28 50 2 7 - 00 15 7 20 45 36 17 26 45 45 0 0 0 2 0 0 - - N 0 1 5 5 - - - -40 15 5 0 + ~; 24 7 16 3 26 15 30 12 0 + 0 0 0 0 0 0 3 0 0 2 3 + 0 1 0 + 1 "' "~ ~ C'--0 0 45 45 40 42 19 23 10 26 19 17 13 7 3 0 9 8 7 4 1 14 7 5 + + 3 4 3 1 0 18 7 4 0 0 13 9 7 0 0 13 9 6 0 0 18 18 10 + 0 35 38 40 22 10 3 0 5 0 28 10 16 6 2 1 5 + 25 4 50 10 2 + 4 2 "' 0 0 0 0 0 0 0 0 + 0 0 0 0 6 17 33 20 2 23 26 50 7 7 U'\ 0 0 4 4 0 2 1 + 2 4 0 4 0 1 0 0 0 0 0 - ,.. 0 3 6 6 0 3 1 + 2 5 0 6 0 2 0 7 0 0 0 0 0 22 40 38 37 0 28 18 7 0 0 29 21 22 4 3 5 0 0 - 32 39 39 10 - 15 14 12 0 ..: 14 6 5 0 - 15 9 4 1 0 3-IIETHO:I:YACID 6 ~~ "' " "'"' "'"' "' "' 30 22 30 36 24 45 15 36 - - - -- - - 3 0 45 45 + 0 0 - 45 45 - - - - - ~8 13 3 0 26 20 0 0 45 12 0 0 25 16 5 0 40 34 0 0 1 0 0 - 42 18 0 0 5 4 0 - 19 18 1 2 6 10 5 0 - 23 10 <) 0 0 0 0 - 10 9 0 0 8 5 0 0 26 21 0 0 12 3 0 0 19 14 0 0 0 + 0 0 0 0 0 26 45 37 5 35 38 50 13 7 24 13 15 11 21 18 22 23 43 7 " "'"'"' "' "' i-. if.~ "' "' "' i-.~ 23 11 7 10 20 18 21 17 % 6 of phenolic compounds. The nomenclature follows 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 7 0 0 0 0 0 0 0 ~ PHENOL CONCENTRATIO!f 0 /oo iporpium semisupinum K;' ~ ~ it\ ·o o o 11 3 PROTOCATECHUIC ACID o 0 -rN ~ ~ o o 0 0 0 11 11 10 Fames romentarius· 1~ ~ . ~ ~ 2~ 42 25 16 ·5 + 0 47 40 29 · 5 :2 o o o 38 40 12 ·16 8 . 4 0 0 17 19 20 .15 9 · 2 0 0 32 32 22 14 . 5 0 0 0 37 38 3913 8 oo ·o2545 Fo11itopsis annosa F. pinicola Gloeophyllum sepiarium Glosoporus dichrous G;ymnopilus penetrans Hirschioporus abietinus Hypholom.a capnoides lnonotus radiatus I. · rheades · 36. 20 3 41 • 16 11 321715 30 25 10 16 . 5 · 0 12 12 . ·3 6 0 0 17 8 . 2 9 10 2 X.uehneromyces m.utabilis Laetiporus sulphursus . ·18 13 32 6 gg .ArmillB.riella· mellea Coriolellus serialis Coriolus hirsutus C. vaporarius .c. ·zonatus · · · Daedalea quercin8. Flammulina velutipgs ~n Lentinellus omphalodes Lentiilua lepideus Panellus mitis P. aerotinus P. stypticus. :Panus conchatus · Fhellinua conchatus ~ Phellinus igniarius ·p. pini P. punctatus P. tremulae Pholiota alnicola P. auri vella P. squarrosa Phyllotopsis nidulans .Piptoporus .betulinus Pleurotus dryinus P. ostreatus Polyporus brumalis Polypilua .f'rondoaus Paatbyrella spadicea Pycnoporus cinnabarinus Stereum birautum. s. purpureum S. eanguinolentWI . Xeromphalin~ campanella pH 6 + ·~ ~ o J PYROCATECHOL ~ C! -r II"\ 8 2 3~ 2~ o. o 3 5 ~ ~ ~ o o o 2 1~ 1 1~ ~C! o~ PYROGALLOL ~ o o 0 0 - 12 1 ~ ~ ~ 1~ ~ ~ o~ RESORCINOL ~ o + 0 0 12 ggg 1~ 41 35 1 41 30 25 18 6 0 - 50 45 0 0 0 50 41 39 20 38 45 41 22 12 ·- - 40 8 1 o o 40 15 18 5 - - - - - - - 15. 7 6 0 0 15 '52 36 32 35 35 34 26 13 5 + 24 18 . 13 2 0 24 31 26 0 45 31 19 6 - - - 45. 3 0 0 0 45 3 3 0411318 · 0 . o .o-12 5 54012 SALICYLIC ACID ~ ~ ~ o o r No 8 4 31 26 11 23 38 7 16 26 19 11 18 14 .5 1~ 1 0 8 ~ ~ o o 1 SYRINGIC ACID TANNIC ACID 1 o o;t 1 13 0 o 4 13 ~ 0 ~ 0 U"\ N ..r\ r..:. 0 0 ·'() ? 6 3<i f ~ g24~ . .. o o o ~~ 1 1 3§ 1 n n ; o o + ·o go ogon624 21~ .10 ~ ~r ? ~ 15 5 + 12 10 . + 1 0 0 0 23 15 16 11. ;~ o 2; o o 26 18 15 3 25 0 0 2 0 n~ ~ ~ 0 - - 22 20 14 4 0 22 :i5 7 · o - 19 13 ? o o 19 19 2 ~ ~ c; ~ o - - 6g: ~ ~ 8 5 1~ nnn:; 1n~ g ~ n~ 6 3 1 ~ + o 1 1 2 1 ~ gg~ ~ 5 n ~n o o o 20 11 3 o o 20 1'> 3 o 8 3 0 0 19 16 12 2 + ~ o 1.0 J\ 30 · 29 45 45 38 43 39 37 5 5 36 38 39 39 50 50 6 14 9 8 1/\ If\ U"\ U"\.:;t ti.. 1.0 ~ i-.ti.. 1.0 ~ u-:.. ~ 28 1? 3 32 14 12 3416 0 4610 5 43 45 7 33 32 26 37 37 22 38 23 8 5 4 3 5 4 3 36 7 + 37 - 1.1 38 36 12 41 30 .26 52 45 11 52 48 45 8 10 5 3 2 2 8 7 3 12 7 7 I.D \0 1.0 1.0 1.0 CO ti.. .;.. .;.. ,;., ti...;. · o 0 12 + 1 ·. 5 3 25 1 6 0 .A; o - - 2~ 0--34 12 9 0 35 . o o o 33 1 - - 4 .1 o - 30 1 + 0 40 10 6 1 50 + 0 0 9 ·2 0 - 9 CO 1.0 1.0 · ;~ 1.0 ~ ~ 7 8 0 13 16 10 9 o o o 23 16 8 + o 8 10 0 341313 10 22 17 7 2 35 26 29 23 + 1 o o o 33 22 14 8 2 1 1 0 0 4 2 1 + 0 1? 10 o o 30 21 16 13 o 18 0 0 0 40 33 15 13 0 10 o o o 50 57 45 30 o 10 5 5 1 9 1? 12 5 + 7 0 0 0 9 6 3 .1 0 <1' CO \0 .:t 1/\ N N U"\ 0 0 0 9 - 0 U"\ 1 g 0 1 13 0 5 0 0 4 1~ 0 ~ U"\~ 0 00 2 0 10 ~ ~ 5 43 18 16 9 27 20 14 3 8 10 5 3 18 16 15 0 30 12 9 oii01013 U"\ N ~ 1~ g 1~ + 1~ 5 .+ 1 2 12 0 10. 0 11 12 10 N 0 20 34 33 30 4 29 30 50 21 6 9 . 5 15 1.0 If\ N ~ 1.0 CO ~ 1.0 .:t 1.0 K"\ 6 3 924 · 1 1 0 12 12 11·. 01? 5 ·· 0 2 1 1 0. 24 .+ 0 +26 6 1 + 22 11 6 . 0 24 3 ·. 0 345 2 0 ·2o 15 3 14 . ·o 18 + + o . o 20 · 0 0 25 • 0 29 + 0 0 0 18 12 0 24 . 4 35 16 13 10 • 6 29 30 10 24 o 27 5 5 5 o 2 .2 1· 3 1 2 2 2 1 1 28 + 16 o 24 7 · o · o o 29 23 . 0 27 .5 34 20 15. 12. 10 50 50 o 50 + 70 32 16 10 o 17 10 ? 20 4 8 12 7 5 4 5 3 .1 5 0 5 1 + 0 0 ti.. ti.. i-.ti..ti.. u-\ J\ J\ ,;.,,;., ti...;. .; .;. ti.. ~ + + 0 0 ~ 3 8 0 41 22 11 8 6 7 o 28 23 8 1 1 2 0 19 7 2 1 3 18 15 10 2 + 3 0 23 2 + 0 0 2028 7 20 0 o 40 20 5 ·o 34 ·28 6 o 22 9 5 3 o 33 11 o o 0 3 44 . 3 1 0 45 22 10 4 38 23 15 10 0 37 18 15 9 5 03710 . 5 1342714 .. 73018151202819 93 + o 40 o o . o 38 18 5 + 30 12 3· 1 o - - - 0 21 4 + 0 21 10 o : 015 4 0 0 014 5 2 0 0 0 28 13 12 . 9 21 11 . .? 1 14 14 13 13 0 13 8 2 2 0 0 10 6 0 . 0 5 3 + 0 8 ? 5 2 0 ? 5 2 1 3 26 ·9 ? 0 11 7 3 + 14 6 5 ·. 2 0 9 3 1 1 + 2 18 10 1 . 0 15 15 8 + 13 9 7 2 0 12 6 2 2 2 + 20 12 0 0 0 11 2 ~ 5 4 2 2 4 ~ 1 2 +13 9 2 012 · 3 o 8 11 ? + 0 7 6 2 · 016 8 · 0 010 3 0 + 3 3 1 0 8 ? 2 0 20 11 5 0 13 10 10 01513· 1 022 6 3 0 13 . .? . 0 0 9 2 + 0 18 15 1 0 14 8 3 0402171252010 21 + o o 45 20 0 0 35 12 0 0 32 o o · o 5 . .. + 0 33 3 o o 42 9 2 0 50 50 45 30 34 13 ? 1 9 . 4 2 .0 .:t "\0 1 0 1.0 .r.. ..n .;. :; .;. .;.. w· uJ uJ .r.. <1' ~ CO CO 1.0 1.0 N g~ 3 ~ 3 g+ go 14~ ~ 5 0 0 12 7 oo18 4 1 0 7 .7 00 9 3 1 0 2 2 + 0 14 6 002211 + 0 13 9 + 0 12 2 702615 o 0 0 o 0 o 0 o 0 0 .:t N ,;.. ;.. ,;., .; .;. .; ,; of 9 9 o o 20 12 3 + 18 11 7 1 3414 0 . 0 29 7 1 1 33 ·20 13. 5 35 18 15 10 30 28 5 1 27 18 18 15 4 . 3 1 + 2 2 1. 1 29 16 10 2 24 11 10 1 30 18 1 0 34 11 6 0 50 o ·o o 70 30 14 2 21 4 1 1 8 15 13 5 6 5 + 0 5 4 3 0 Table 1 (continued). Radial growth of certain wood-decomposing fungi at different concentrations ( 0/oo) phenolic compounds. <.0 """ ~ U"\ N ~ ~ ~ 6 ~ ~L ~n H~ 64 ~1 o go M 6 o . o o 1· o · o o 5 g1 13~n ... . ~ + · o~ ~ o 18~ 1~ 5 · ·4~ go 20~ 12~ 16 6~ 1 o 13 n~ 4 .o 171o 1 +0036251929 623 8 8 5 · 5102210 +002212 5 201412 9 018 21215 . 13 5 9 7 2 1 + 0 14 12 9 8 5 15 9 11 11 6 3 2 11 6 + + 0 11 12 . ? 5 + 9 6 4 2 7 . 3 7 5 3 + 12 7 0 . 000181510 9 022 7 5 1 0 - - 1 5 1 1+01512 9 301612? 010 +10 ?·1 + 3 . 5 . 3 1 + 0 12 .9 5 5 2 ? 3• 3 3· 1 + 0 2 . + 0 0 0 2 9 3 2 + 3 2 1 0 7 . 2 8 . 5 3 2 16 15 12 2 0 0 22 22 15 15 2 19. 7 ? 4 1 0 - 20 0 0 0 0 20 1? 10 ? 0 20 17 15 5 15 0 13. 0 0 0 15 5 2 00026252220 0211412 2 000241514.. 002416. 12 · 1001515. 10 122 02211 6 + 11 0 0 0 0 0 4 . 5 4 3 .0 12 ·+ 0 0 0 - - 18 15 0 0 0 18 19 11 3 0 13 1? 14 0 1? 0 9 . 9 . . 3 + 15 2 . 0 0 0 0 21 24 21 17 . 0 26 5 3 0 0 - - 20 0 0 0 0 20 11 2 1 0 18 18 12 . 0 13" 3 14 0 0 0 4010 510045454545 .45453624 . 8 +0034 0 0.003423161204030 . 25 . 52912252015? 20 18 3 o o o 3412 : + 0 0 0 3? 21 17 2 0 0 27 7 · + o o o 3 1 . 0 0 0 0 25 14 10 + o o 33 24 6 0 0 0 50 45 35 12 + o 17 8 3 2 0 0 6 5 2 + 0 0 0 ~ 0 VANILL!l! 6 0 19 .16 0 0 21 0 23 10 ? 1 + 33 23 19 0 19 15 0 0 23 12 10 0 0 22 3 o 33 30 30 18 9 30 25 26.32 ·37 34 14 o o ·. o 33 37 20 14 25 35 29 24 3 10 1 1 1 1 6 ..3 · · 1 o o o - - 20 0 - - 19 1 g § o o o 45 45 45 45 2 45 27 11 8 5 - ·- 50 30 · 21 ·+ o 50 15 ·9· o 34 35 2<i. 4 35 1 22 ·22 6 o 7 • + 0 46 46 46 46 · 36 45 45 48 29 10 4 0 45 8 2 0 0 45 40 28 21 2 45 19 15 0 35 16 38 20 12 ? · 830454242371243383835 .1 63040 3 00 ·0403014 9034272618251130 3 1 0 + o o 46 46 42 37 5 45 38 15 2 + - · - 34 24 15 8 o 34 9 1 o o 38 37 :26 o 25 3 30 o o ·o 0 0 01919181.5 + 17. 1? 11 6 2 - -20 3 0 0 0 2012 .3 + 0 21 . 13 ? 015 015 2 3 0 1 0 0 39 . 29 5 3 . 0 31 8 ? . 0 0 - - 21 13 50 0 21 14 . 8 50 21 17 8 + 28 0 14 3 0 0 0 0 0 5 6 1 1 0 3 . 0 0 0 . 0 - - 9 ? + 0 0 9 6 3 1 0 5 5 .+ 0 8 0 8 8 .2 0 0 0 0 15 .13 13 12 3 27 10 2 0 0 - - 1? ? 0 0 0 1? 10 .6 3 0 11 .16 12 0 10 3 14.10 10· ?. 1 0 0 22 22 18 18 18 26 21 21 12 8 ~ - 1? . 10 . .. o 0 1? 11 12 9 3 15 17 16 · 2 10 10 13 10 8 .2 . + 0 0 0 24 18 10 9 . 0 2? 8 10 0 5 . ·o o o 37 43 45 45 41 39 38 ·34 20 0 16 ~ 0 0 ~ 1~ 1~ 1~ 1~ ~ . ~ 2~ ~ ~ 1~ 1{ ~ ~ 21 5 50 31 21 0 40 6 43 23 13 10 0 42 29 26 20 50 24 10 13 · o 35 26 12 o 30 16 27 1 1 o · o 40 o o o 35 29 17 11 3 13 19 14 3 16 7 8 . 2 .1 '() 0 22 7 ·2 0 13 11 7 ·1 5 5 24 23 20 12 16 11 18 16 15 17 16 26 4 0 0 24 18 : 8 13 0 29 15 14 1 26 2 30 4 + 0 0 - - - - 29 8 1 4035 . 2014 035 o4o :3 o o o341313143511 + § VANILLIC ACID I'IETHOXYBENZOIC ACID C! o 3,4,5-TRI THYMOL ~ 6 1 1 o o 0 ;0 2 2 + 0 0 0 1 1 + 0 0 0 n 0 + 0 +0 3 1 00 1 + + 0 50 5 4 0 0 20 0 0 0 0 0 0 14 1 · + o 0 23 5 0 0 0 30 19 9 4 0 24 2 + o 0 4 1 + + + 20 ? 3 1 0 25 11 2 0 0 50 2? 14 3 0 27 3 1 1 0 5 2 1 1 1.0 .n 1/\ ~ 11\.::t ti...r.. ~ "' porus betulinus, Gloeophyllurn sepiariurn, Daedalea quercina. Tannic acid: Laetiporus sulphureus and Daedalea quercina grew well in 0. 75 % solution, Stereurn hirsuturn and Phellinus igniaTius significantly less well. Trimethoxybenzoic acid: LactipoTUs sulphureus, Coriolus vaporarius, Gloeophyllum sepiariurn, Coriolus hirsutus, Lentinus lepideus, Polyporus brurnalis. Thymol: Stereurn purpureurn, Coriolus hirsutus, Lentinellus ornphalodes, Fornes furnentarius, Hirschioporus abietinus. Vanillic acid: Laetiporus sulphureus, Daedalea quercina, Lentinellus ornphalodes, Polypilus frondosus, Hirschioporus abictinus, Gloeophyllurn separiurn. Vanillin: Coriolus hirsutus, Fornitopsis p£nicola, Coriolellus serialis, Inonotus rheades, Lentinus lepideus. Discussion The tox1c1ty of phenols is in many cases highly dependent on environmental conditions, especially on pH (CocHRANE 1958, CRUICKSHANK & PERRIN 1964). As seen from Table 1, the acidity of the medium was in several cases considerably increased when the phenolic compounds were added. The acidity of wood attacked by wood-rotting fungi varies within fairly wide limits, pH values from 2.8 to 4.0 being common, and for this reason strongly buttered media were not used. In addition, the reaction of the fungus to phenolic compounds can be modified by altering the composition of the medium in regard to its nitrogenous compounds, especially amino acids (FwoD & KIRKHAM 1960). Also the age of the isolated culture seems to some extent to influence the results, especially in pathogenic species. Among the species investigated, it is possible to distinguish a group of species which ha,·e in general a high tolerance to the compounds studied, viz.: Fornotopsis pinicola, Lentin us lepideus, Daedalea quercina, Laetiporus sulphurcus, Stereurn sanguinolenturn, Gloeophyllurn sepiariurn, and Phellinus pini. Of these fungi, Lmtinus is known to be fairly resistant to phenolic compounds used in wood protection, and Phellinus pini grows i'1 nature in pine heartwood, the fungitoxicity of which depends largely on its content of pinosylvin. Except for Stereurn and Phellinus, the species mentioned are pronounced brown-rot fungi (CARTWRIGHT & FINDLAY 1958, K"ii.RIK 1965 ). According to CsERJESI ( 1969), brown-rot fungi are more tolerant to dihydroquercetin, which occurs in bark of Pseudotsuga and Larix, than white-rot fungi. In connection with the present investiga- 50 tion, observations on the occurrence of phenolic compounds in nature were made by applying a solution of 1 % FeCl 3 in 5 % ethanol to wood near the basidiocarps of ca. 30 wood-rotting fungi. This reagent reacts with orto-diphenols producing a blackish color. Sound wood does not react except near the cambium. The natural substrates of the following species gave a strong reaction with FeCl 3 : Fornitopsis pinicola, Gloeophyllum sepiariurn, PiptopoTUs betulinus, Daedalea quercina, and Lactiporus sulphureus. When these species and Fornitopsis annosa were grown aseptically on pieces of birch wood for 3 months, a positive reaction with FeCl 3 was obtained, but not with 14 white-rot fungi . Thus there seems to exist a certain correlation between the tolerance of brown-rot fungi to phenolic compounds and the occurrence o.f ferric-chloride positive substances in wood decomposed by the fungi in question. It is interesting to note that certain species which are in most cases highly tolerant to most of the compounds investigated are in some cases rather sensitive. For instance, cinnamic acid inhibited the growth of Lentinu.s lepideus more than that of other brown-rot fungi. Caffeic acid, which is known from pine bark (OKSANEN 1961), and pyrocatechol proved to be slightly more toxic to Fornito psis annosa than to other rapidly growing species, and this was also the case with salicylic acid and Pleurotus ostreatus and Kuehneromyces rnutabilis. Among species which often grow together in birch trunks, Fornitopsis pinicola is in general most tolerant to most compounds, but at high concentrations of py.rogallol Fornes forn entarius, Gloeoporus dichrous, Lentinellus ornphalodes, and Kuehnerornyces rnutabilis seem to be more active Fig. 1. A piece of spruce stump decomposed by Fomitopsis pinicola, treated with FeCla (above) and diazotized sulfanilic acid (below) to reveal phenolic compounds. than F. pinicola. According to SIEGLE (1967 ), pyrogallol occurs as a glycoside in the heartwood of Betula papyrifera. In the present material ,r emarkably many of the species most active in pyrogallol medium occur in nature in birch wood. Our information concerning the occurrence and absence of the investigated compounds in natural wood and in wood decomposed by micro-organisms is not comprehensive enough to allow comparisons between the tolerances of decomposing species and the substrate in all cases. Oak wood is, however, known to contain considerable amounts of tannic acid (KARRER 1958) and the species of the present material most tolerant to this compound, Laetiporus sulphureus and Daedalea quercina, occur commonly in oak wood. Ferulic acid occurs, according to ERDTMAN (1958) in healing wounds of Pinus, and among the species having the highest tolerance to it were Stereum sanguinolentum and Phellinus pini, which occur as wound parasites of Pinus, and Hirschioporus abietinus, which is one of the first colonizers of fallen spruce. On the other hand, RoBBINs & HERVEY ( 1965) have found that this acid stimulates the growth of certain wood-destroying fungus species, which are not included in this investigation. Lignin from the wood of deciduous trees is known to yield more syringyl groups than lignin from ·Conifer wood. In the present experiments, syringic acid and syringa1dehyde were not significantly more favorable to the growth of species occurring in nature in deciduous wood than to that of species found in conifer wood. In general, species which are more or less primary wood decomposers in nature, were by and large the most resistant to the phenols, and species occurring in wood at a more advanced stage of decay were more sensitive, e.g. Xeromphalina campanella, but there were many exceptions. Among fungi growing in aspen wood I nonotus rhcades was especially resistant to phenols, e.g. to p-cresol, to which it was more tolerant than Lentinus lepideus. When wood dries, its moisture content decreases from 150% to ca. 30 %, and the concentration of the solutions in the wood should consequently increase at least 5-fold, near the surface possibly even more owing to the transpiration stream. It is interesting to note that some of the most resistant species often grow in wood exposed to drying, as Gloeophyllum sepiarium, Coriolus vaporarius, and Lentinus lepideus. On the basis of tolerance alone, it is not possible to assess exactly the role of the compounds investigated in the ecology of wooddecomposing fungi, as in the changing conditions in natural wood account must be taken of the ability to utilize and detoxify these compounds (LvR 1962 ) as well as of the possible adaptation of mycelia to these compounds. In certain cases, the metabolic products may be more toxic than the original compound (GsERJESI 1969). In addition, many mold species are known to utilize these compounds in nature (HENDERSON 1965, JoNES and FARMER 1967). 51 Acknowledgements This investigation has been carried out in the Finnish Forest Research Institute on a grant from Finnish State Board of Ag:ci- culture and Forestry. The author is indebted to Miss RrTVA KLEMETTI for technical assistance. REFERENCE ARMAND, D . & S. TmvEND, 1966 : Sur la production d'acides phenols par des myceliums d'Hymenomycetes lignicoles en millieu glucose. Rev. Myc. 3•0, 215- 224. BoNDARTSEv, A. S., 1·95·3·: Trutovye grihy evropeiskoi chas•ti SSSR i Kavikaza. -- Mosikva. 1106 pp. CARTWRIGHT, K. s. G. & w. P. K. FINDLAY, 1•958 : Decay in timber and its prevention. London. 3·3:2 pp. CocHRANE, V . W., 1'9·58•: Physiology of fungi. New York. 5·24 pp. CRUICKSHANK, I. A. M . & D . R . PERRIN, 1'964: Pathoilogicail function of phenolic compound~ in planw. - ] . B. HARBORNE, erl., Biochemistry of phenoilic compounds 512544. London and New York. CsERJESI, A. ]., 11969·: Toxici.ty and biodegradati·on of dihydroqercetin. - Ca;n. J . Micro·7 ~ 1.40 bioi. 15., 13 ERDTMAN, H., 196,8: Karnved ooh karnvedSJkemi. - Svens·k Pappers•tidning 6.1, 62 · 5 ~ 6 · 3 · 2 . FLOOD, A. E. & D . S. KIRKHAM, 1960•: T'he effect of some phenolic compounds on the growth a;nd SJPOru.!aJtion of two Venturia species. Plhenolics in plants in hea:l th <lind disease, ed, by. ] . B. PriJdham, 81--84. Oxfovd. GADD, 0., 1957: Wood decay resUilting from rot fungi. - Paper aJnd Timber 39, 3<6 ~ 374 . HARBORNE, ]. B. ed., 19•64 : Biochemistry of phenolic compounds. London and New York. 61•8 pp. HENDERSON, M . E. K ., 1·9 65: Enrichment in soil of fungi which uti'lize aromatic compounds. - Plant a;nd Sohl 23, 3 · 3 · ~35.0 JoNES, D. & V . C. FARMER, 19·6.7: The ecollogy and physiology of so il fungi involved ;n the degraidaJtion of li,!;'nin and related aromatic compounds. - Journ. Soil Sd. 18, 7~4. 52 KARRER, W ., 195•8 : Kons•titu•tion und Vorkommen der orga;nischen P£lanzenstoffe exdusive A•likaloiJde). Basel und S•tuttgart. 12·07 pp. KuRSANOv, . . L. & M . N. ZAPROMETOV, edi·to·rs, 1968 : Fenolnyie soedineniya i ih biologitseskie funkts•ii. - MoSikva. 4·21 pp. KAARIK, A., 1'9•6 5: T'he identification of mycelia of wood-decay fungi by their oxidation reactions wiJuh phenolic compounds. - Studia ForestaJia Suecica 216. 20 pp. LYR, H ., 19•62 : DetoxificaJtion of heartwood toxins and chlorophenols by hi·g her fungi . - Nature 19·5 , 2•89- 2•9·0. MosER, M ., 1'967: Die Rohrlinge und Blatterpilze ( Agaricales). - Kleine Kryptogamenf.lora von Deuts•ohland, heraus•g . von H . GAMS, Band II b/2. Jena. 443 pp. 0KSANEN, H ., 19·61 : Paper chromatography of phenolic conSJtituents of the bark of pine (Pinus s>ylvesotris L. ). - Suomen Kemis·tilehti B 34, 91- 92. PowER, D. M., G . H . N. TowERS & A. C . NEISH, · 1965: Biosynthesis of phenolic acids by certain wood-destroying basidiomycetes . - Can. ]. Biochemistry 43, 1397- 1407. PR!DHAM, ] . B. ed., 196•0: Phenolics in plants in heal•th and disease. - Oxford. 13•1 pp. RENNERFELT, E . & G . NACI-IT, 1955 : The fungicidaJ aotivi<ty of some cons·ti•tuents from heart· wood of oonifers. - Svensk Botanisk Tidskrif.t 49·, 419- 432. RoBBINs, W. ]. & A. HERVEY, 19•66 : Response of eight basidiomycetes to ferulic acid. Bult Torr. Bot. Oluh 92, 266- 269. SHAIN, L ., 19·6·7 : Resistance of sapwood in s:tems of lobhyllly pine to infection by Fomes annosus. Phytopathology 57, W34- 1045. SIEGLE, H ., 19•67 : Microbiological and biochemicaJ aspeots of heartwood s•tain in Betula paJPyrifera Marsh. Can. ] . Bot. 45 , 147-154.