

Environmental and Social Impact Assessment – Vol III

China Huadian Engineering Co., Ltd

Huadian Dak Lak Wind Power Project

28 March 2022 Project No.: 0599549

Document details	
Document title	Environmental and Social Impact Assessment – Vol III
Document subtitle	Huadian Dak Lak Wind Power Project
Project No.	0599549
Date	28 March 2022
Version	Final
Author	ERM Vietnam
Client Name	China Huadian Engineering Co., Ltd

Documer	nt history					
Version	Revision	Author	Reviewed by	ERM approval to issue		Comments
				Name	Date	
Draft	0	ERM Vietnam	Tram Le, Claire Weller, Hanh Nguyen	Paola Romero	06.09.2021	Issued to Client
Draft	1.0	ERM Vietnam	Tram Le, Hanh Nguyen	Paola Romero	28.10.2021	Addressed comments
Draft	2.0	ERM Vietnam	Tram Le, Hanh Nguyen	Paola Romero	10.12.2021	Addressed comments
Final	3.0	ERM Vietnam	Tram Le, Hanh Nguyen	Paola Romero	28.03.2022	Final issuance

Signature Page

28 March 2022

Environmental and Social Impact Assessment – Vol III

Huadian Dak Lak Wind Power Project

Paola Romero Partner-in-Charge

ERM Vietnam 3rd Floor, Saigon Finance Centre 09 Dinh Tien Hoang, Dakao Ward District 1, Ho Chi Minh City Vietnam

© Copyright 2022 by ERM Worldwide Group Ltd and/or its affiliates ("ERM"). All rights reserved. No part of this work may be reproduced or transmitted in any form, or by any means, without the prior written permission of ERM

CONTENTS

10.	ENVIR	ONMENT	AL IMPACT ASSESSMENT	1
	10.1	Air Qualit	y Impact Assessment	1
		10.1.1	Scope of Assessment	1
		10.1.2	Relevant Guidelines and Criteria	1
		10.1.3	Baselines Conditions	2
		10.1.4	Impact Assessment	2
	10.2	Noise Im	pact Assessment	12
		10.2.1	Scope of the Assessment	12
		10.2.2	Background Noise Conditions	12
		10.2.3	Impact Assessment	18
	10.3	Water Re	esource Impact Assessment	33
		10.3.1	Scope of Assessment	33
		10.3.2	Relevant Guidelines and Criteria	34
		10.3.3	Baseline Conditions	35
	10.4	Soil Envir	Impact Assessment	57
	10.4			40
		10.4.1	Scope of Assessment	46
		10.4.2	Relevant Guidelines and Chena	47
		10.4.4	Impact Assessment.	47
	10.5	Electrom	agnetic Interference Impact Assessment	54
		10.5.1	Scope of Assessment	54
		10.5.2	Relevant Guidelines and Criteria	55
		10.5.3	Assessment Methodology	56
		10.5.4	Impact Assessment	56
	10.6	Climate C	Change Impact Assessment	66
		10.6.1	Scope of Assessment	66
		10.6.2	Relevant Guidelines and Criteria	66
		10.6.3	Baseline Conditions	69
		10.6.4	Impact Assessment	71
	10.7	Shadow I	Flicker Impact Assessment	78
		10.7.1	Scope of Assessment	78
		10.7.2	Applicable Standards	78
		10.7.3	Receptors	79
		10.7.4	Shadow Elickering Analysis	01 81
		10.7.6	Impact Assessment	90
	10.8	Visual Im	nact Assessment	93
	10.0	10.8.1	Scone of Assessment	03
		10.8.2	Consideration and Assumptions	
		10.8.3	Assessment Methodology	93
		10.8.4	Visual Baseline	94
		10.8.5	Impact Assessment	. 101
	10.9	Traffic an	d Transport Impact Assessment	. 121
		10.9.1	Scope of Assessment	. 121
		10.9.2	Relevant Guidelines and Criteria	121
		10.9.3	Baseline Conditions	122
		10.9.4	Impact Assessment	125
11.	BIODI	/ERSITY	IMPACT ASSESSMENT	133
	11.1	Scoping	of Likely Impacts to Biodiversity Values	. 133

	11.2 11 3	Impact A	ssessment Criteria	. 134
	11.3	Impact A	ssessment	. 138
		11.4.1	Loss of Terrestrial Habitat	. 139
		11.4.2	Disturbance to Terrestrial Species	. 143
		11.4.3	Barrier Creation, Fragmentation and Edge Effect Impacts	. 145
		11.4.4	Degradation of Habitat Impacts	. 146
		11.4.5	Invasive Species	. 148
		11.4.6	Mortality Impacts – Birds.	. 149
		11.4.7	Mortality Impacts – Dat	150
	11.5	Next Ste	ns	160
12	SOCI			161
	12.1	Introduct	ion	. 161
	12.2	Scope of	f Social Impact Assessment	. 162
	12.3	Economi Construc	c Displacement and Loss of Livelihood due to Land Acquisition for the Project (Pre-	. 170
		1231	Summary of Project's Land Lise and Land Acquisition	170
		12.3.1	Potential Impacts	189
		12.3.3	Existing Control	. 193
		12.3.4	Significance of Impacts	. 193
		12.3.5	Additional Mitigation and Management Measures	. 194
		12.3.6	Residual Impacts	. 195
		12.3.7	Monitoring and Audit	. 195
	12.4	Disturba	nce to Agricultural Production (Construction)	. 195
		12.4.1	Potential Impacts	. 195
		12.4.2	Existing Control.	. 196
		12.4.3	Significance of Impacts	. 196
		12.4.4	Additional Mitigation and Management Measures	107
		12.4.5	Monitoring and Audit	198
	12.5	Impacts	on Worker Rights, Occupational Health and Safety (Construction)	108
	12.0	12 5 1		100
		12.5.1	Folential Impacts	200
		12.5.3	Significance of Impacts	. 200
		12.5.4	Additional Mitigation and Management Measures	. 201
		12.5.5	Residual Impacts	. 203
		12.5.6	Monitoring and Audit	. 203
	12.6	Non-influ	IX Impact on Community Health, Safety and Security (Construction)	. 204
		12.6.1	Potential Impacts	. 204
		12.6.2	Existing Control	. 207
		12.6.3	Significance of Impacts	. 207
		12.0.4	Residual Impacts	200
		12.6.6	Monitoring and Audit	. 209
	12.7	Impacts	Associated with Migrant Workers Influx (Construction)	. 209
		12.7.1	Potential Impacts	. 209
		12.7.2	Existing Control	. 211
		12.7.3	Significance of Impacts	. 212
		12.7.4	Additional Mitigation and Management Measures	. 212
		12.7.5	Residual Impacts	. 214
		12.7.6	ivionitoring and Audit	. 214
	12.8	General	Disturbance to Local Community (Operation)	. 214
		12.8.1	Potential Impacts	. 214

	12.8.2	Existing Control	215
	12.8.3	Significance of Impacts	215
	12.8.4	Additional Mitigation and Management Measures	215
	12.8.5	Residual Impacts	216
	12.8.6	Monitoring and Audit	216
12.9	Relocatio	on Impact Due to Health and Safety Reasons (Operation)	216
	12.9.1	Potential Impacts	216
	12.9.2	Existing Control	220
	12.9.3	Significance of Impacts	220
	12.9.4	Additional Mitigation and Management Measures	221
	12.9.5	Residual Impacts	222
	12.9.6	Monitoring and Audit	222
12.10	Positive I Operation	Impacts on Local Employment and Community Development (Construction and n)	222
	12 10 1	Potential Impacts	222
	12.10.1	Significance of Impacts	223
	12.10.2	Existing Control	223
	12.10.0	Enhancement Measures	223
	12.10.5	Residual Impacts	
	12.10.6	Monitoring and Audit	224
12.11	Impacts of	on Indigenous Peoples (Construction and Operation)	224
	12.11.1	Vulnerability Analysis	225
	12.11.2	Potential Impacts	228
	12.11.3	Existing Control	230
	12.11.4	Significance of Impacts	230
	12.11.5	Additional Mitigation and Management Measures	231
	12.11.6	Monitoring and Audit	232
12.12	Gender li	mpact Assessment (Construction and Operation)	232
	12.12.1	Potential Impacts	232
	12.12.2	Existing Control	234
	12.12.3	Significance of Impacts	235
	12.12.4	Additional Mitigation and Management Measures	235
	12.12.5	Residual Impacts	236
	12.12.6	Monitoring and Audit	236
12.13	Human R	Rights Impact Assessment (Construction and Operation)	236
	12.13.1	Potential Impacts	236
	12.13.2	Existing Control	237
	12.13.3	Significance of Impacts	237
	12.13.4	Additional Mitigation and Management Measures	237
	12.13.5	Residual Impacts	239
40.44	12.13.6	Monitoring and Audit	239
12.14	Summary	y	239
UNPL	ANNED E	VENTS	241
13.1	Scope of	Assessment	241
13.2	Relevant	Guidelines and Regulatory Requirements	241
	13.2.1	Vietnam Regulations	241
	13.2.2	International Standards and Requirements	242
13.3	Assessm	ent Methodology	242
	13.3.1	Overview	243
	13.3.2	Assess the Scale of Consequence (Step 1)	243
	13.3.3	Assess the Likelihood (Step 2)	244
	13.3.4	Assess the Significance (Step 3)	244
13.4	Assessm	ent Potential of Impacts	244

13.

		13.4.1	During Site Preparation and Construction	250
		13.4.2	During Commissioning and Operation	261
	13.5	Summary	/	275
14.	CUMM	ULATIVE	EIMPACT ASSESSMENT	277
	14.1	Introducti	ion	277
	14.2	Relevant	Guidelines and Criteria	277
	14.3	Methodol	logy	278
		14.3.1	Scoping Phase I – VECs, Spatial and Temporal Boundaries	278
		14.3.2	Scoping Phase II – Other Activities and Environmental Drives	278
		14.3.3	Establish Information on Baseline Status of VECs	278
		14.3.4	Assess Cumulative Impacts on VECs	279
		14.3.5	Assess Significance of Predicted Cumulative Impacts	279
		14.3.6	Management of Cumulative Impacts – Design and Implementation	279
	14.4	Scoping a	and Assessment	279
		14.4.1	Identification of VECs	279
		14.4.2	Spatial Boundaries	279
		14.4.3	Identification of Relevant Developments, External Natural and Social Stressors .	280
	14.5	Cumulati	ve Impacts on Biodiversity	286
		14.5.1	Habitat Loss	286
		14.5.2	Barriers on Migratory Flyways	286
		14.5.3	Bird and Bat Strike	287
	14.6	Cumulati	ve Impact on Economy and Employment	287
	14.7	Cumulati	ve Impacts on Community Health and Safety	288
	14.8	Cumulati	ve Impact on Traffic	289
	14.9	Cumulati	ve Impacts on Local Community Livelihood	290
	14.10	Cumulati	ve Impacts on Infrastructure and Public Services	291
	14.11	Cumulati	ve impacts on mulgenous peoples within the project area and wider Ethnic Minor	ity
		groups		292
15.	GRIEV	groups	EDRESSAL MECHANISM	292 294
15.	GRIEV	groups ANCE RI	EDRESSAL MECHANISM	292 294 294
15.	GRIEV 15.1 15.2	groups ANCE RI Commun Worker G	EDRESSAL MECHANISM ity Grievance Mechanism Grievance Mechanism	292 294 294 298
15.	GRIEV 15.1 15.2	groups ANCE RI Commun Worker G 15.2.1	EDRESSAL MECHANISM ity Grievance Mechanism Grievance Mechanism Step 1: Disclosure of Worker Grievance Mechanism	292 294 294 298 298
15.	GRIEV 15.1 15.2	groups ANCE RI Commun Worker G 15.2.1 15.2.2	EDRESSAL MECHANISM ity Grievance Mechanism Grievance Mechanism Step 1: Disclosure of Worker Grievance Mechanism Step 2: Receiving and Keeping Track of Worker Grievance	292 294 298 298 298 298
15.	GRIEV 15.1 15.2	groups ANCE RI Commun Worker G 15.2.1 15.2.2 15.2.3	EDRESSAL MECHANISM ity Grievance Mechanism Grievance Mechanism Step 1: Disclosure of Worker Grievance Mechanism Step 2: Receiving and Keeping Track of Worker Grievance Step 3: Reviewing and Investigate Worker Grievance	292 294 298 298 298 298 299
15.	GRIEV 15.1 15.2	groups ANCE RI Commun Worker G 15.2.1 15.2.2 15.2.3 15.2.4	EDRESSAL MECHANISM ity Grievance Mechanism Grievance Mechanism Step 1: Disclosure of Worker Grievance Mechanism Step 2: Receiving and Keeping Track of Worker Grievance Step 3: Reviewing and Investigate Worker Grievance Step 4: Worker Grievance Settlement	292 294 298 298 298 298 299 299
15.	GRIEV 15.1 15.2	groups ANCE RI Commun Worker G 15.2.1 15.2.2 15.2.3 15.2.4 15.2.5	EDRESSAL MECHANISM ity Grievance Mechanism Grievance Mechanism Step 1: Disclosure of Worker Grievance Mechanism Step 2: Receiving and Keeping Track of Worker Grievance Step 3: Reviewing and Investigate Worker Grievance Step 4: Worker Grievance Settlement Step 5: Monitoring and Reporting in the Resolving Process	292 294 298 298 298 299 299 299 300
15.	GRIEV 15.1 15.2 15.3	groups ANCE RI Commun Worker G 15.2.1 15.2.2 15.2.3 15.2.4 15.2.5 AIIB's Pro	EDRESSAL MECHANISM ity Grievance Mechanism Grievance Mechanism Step 1: Disclosure of Worker Grievance Mechanism Step 2: Receiving and Keeping Track of Worker Grievance Step 3: Reviewing and Investigate Worker Grievance Step 4: Worker Grievance Settlement Step 5: Monitoring and Reporting in the Resolving Process oject-affected People's Mechanism (PPM)	292 294 298 298 298 298 299 299 300 301
15.	GRIEV 15.1 15.2 15.3	groups ANCE RI Commun Worker G 15.2.1 15.2.2 15.2.3 15.2.4 15.2.5 AIIB's Pro 15.3.1	EDRESSAL MECHANISM ity Grievance Mechanism Grievance Mechanism. Step 1: Disclosure of Worker Grievance Mechanism. Step 2: Receiving and Keeping Track of Worker Grievance Step 3: Reviewing and Investigate Worker Grievance Step 4: Worker Grievance Settlement. Step 5: Monitoring and Reporting in the Resolving Process oject-affected People's Mechanism (PPM) Project Processing Queries	292 294 294 298 298 298 299 299 300 301 301
15.	GRIEV 15.1 15.2 15.3	groups ANCE RI Commun Worker G 15.2.1 15.2.2 15.2.3 15.2.4 15.2.5 AIIB's Pro 15.3.1 15.3.2	EDRESSAL MECHANISM ity Grievance Mechanism Step 1: Disclosure of Worker Grievance Mechanism Step 2: Receiving and Keeping Track of Worker Grievance Step 3: Reviewing and Investigate Worker Grievance Step 4: Worker Grievance Settlement Step 5: Monitoring and Reporting in the Resolving Process oject-affected People's Mechanism (PPM) Project Processing Queries Requests for Dispute Resolution.	292 294 298 298 298 298 298 299 300 301 301 301
15.	GRIEV 15.1 15.2 15.3	groups ANCE RI Commun Worker G 15.2.1 15.2.2 15.2.3 15.2.4 15.2.5 AIIB's Pro 15.3.1 15.3.2 15.3.3	EDRESSAL MECHANISM ity Grievance Mechanism Srievance Mechanism Step 1: Disclosure of Worker Grievance Mechanism Step 2: Receiving and Keeping Track of Worker Grievance Step 3: Reviewing and Investigate Worker Grievance Step 4: Worker Grievance Settlement Step 5: Monitoring and Reporting in the Resolving Process oject-affected People's Mechanism (PPM) Project Processing Queries Requests for Dispute Resolution Requests for Compliance Review	292 294 298 298 298 298 299 300 301 301 301
15.	GRIEV 15.1 15.2 15.3 ENVIR	groups ANCE RI Commun Worker G 15.2.1 15.2.2 15.2.3 15.2.4 15.2.5 AIIB's Pro 15.3.1 15.3.2 15.3.3 ONMENT	EDRESSAL MECHANISM ity Grievance Mechanism Step 1: Disclosure of Worker Grievance Mechanism Step 2: Receiving and Keeping Track of Worker Grievance Step 3: Reviewing and Investigate Worker Grievance Step 4: Worker Grievance Settlement Step 5: Monitoring and Reporting in the Resolving Process oject-affected People's Mechanism (PPM) Project Processing Queries Requests for Dispute Resolution Requests for Compliance Review FAL AND SOCIAL MANAGEMENT PLAN	292 294 298 298 298 298 298 299 300 301 301 301 301 301
15.	GRIEV 15.1 15.2 15.3 ENVIR 16.1	groups ANCE RI Commun Worker G 15.2.1 15.2.2 15.2.3 15.2.4 15.2.5 AIIB's Pro 15.3.1 15.3.2 15.3.3 ONMENT Introducti	EDRESSAL MECHANISM	292 294 298 298 298 298 299 300 301 301 301 301 303
15.	GRIEV 15.1 15.2 15.3 ENVIR 16.1 16.2	groups ANCE RI Commun Worker G 15.2.1 15.2.2 15.2.3 15.2.4 15.2.5 AIIB's Pro 15.3.1 15.3.2 15.3.3 ONMENT Introducti Scope of	EDRESSAL MECHANISM ity Grievance Mechanism Srievance Mechanism Step 1: Disclosure of Worker Grievance Mechanism Step 2: Receiving and Keeping Track of Worker Grievance Step 3: Reviewing and Investigate Worker Grievance Step 4: Worker Grievance Settlement Step 5: Monitoring and Reporting in the Resolving Process oject-affected People's Mechanism (PPM) Project Processing Queries Requests for Dispute Resolution Requests for Compliance Review FAL AND SOCIAL MANAGEMENT PLAN ion and Objectives this ESMP	292 294 294 298 298 298 299 300 301 301 301 301 303 303 303
15.	GRIEV 15.1 15.2 15.3 ENVIR 16.1 16.2 16.3	groups ANCE RI Commun Worker G 15.2.1 15.2.2 15.2.3 15.2.4 15.2.5 AIIB's Pro 15.3.1 15.3.2 15.3.3 ONMENT Introducti Scope of Responsi	EDRESSAL MECHANISM ity Grievance Mechanism Srievance Mechanism Step 1: Disclosure of Worker Grievance Mechanism Step 2: Receiving and Keeping Track of Worker Grievance Step 3: Reviewing and Investigate Worker Grievance Step 4: Worker Grievance Settlement Step 5: Monitoring and Reporting in the Resolving Process oject-affected People's Mechanism (PPM) Project Processing Queries Requests for Dispute Resolution Requests for Compliance Review FAL AND SOCIAL MANAGEMENT PLAN ion and Objectives this ESMP ibility for ESMP Implementation	292 294 298 298 298 298 298 299 300 301 301 301 301 303 303 303 303 303
15.	GRIEV 15.1 15.2 15.3 ENVIR 16.1 16.2 16.3	groups ANCE RI Commun Worker G 15.2.1 15.2.2 15.2.3 15.2.4 15.2.5 AIIB's Pro 15.3.1 15.3.2 15.3.3 ONMENT Introducti Scope of Responsi 16.3.1	EDRESSAL MECHANISM ity Grievance Mechanism Grievance Mechanism Step 1: Disclosure of Worker Grievance Mechanism Step 2: Receiving and Keeping Track of Worker Grievance Step 3: Reviewing and Investigate Worker Grievance Step 4: Worker Grievance Settlement Step 5: Monitoring and Reporting in the Resolving Process oject-affected People's Mechanism (PPM) Project Processing Queries Requests for Dispute Resolution Requests for Compliance Review TAL AND SOCIAL MANAGEMENT PLAN tion and Objectives this ESMP ibility for ESMP Implementation Construction Phase	292 294 298 298 298 298 298 299 300 301 301 301 301 303 303 303 303 303 303 303
15.	GRIEV 15.1 15.2 15.3 ENVIR 16.1 16.2 16.3	groups ANCE RI Commun Worker G 15.2.1 15.2.2 15.2.3 15.2.4 15.2.5 AIIB's Pro 15.3.1 15.3.2 15.3.3 ONMENT Introducti Scope of Responsi 16.3.1 16.3.2	EDRESSAL MECHANISM Brievance Mechanism Brievance Mechanism Step 1: Disclosure of Worker Grievance Mechanism Step 2: Receiving and Keeping Track of Worker Grievance Step 3: Reviewing and Investigate Worker Grievance Step 4: Worker Grievance Settlement Step 5: Monitoring and Reporting in the Resolving Process oject-affected People's Mechanism (PPM) Project Processing Queries Requests for Dispute Resolution Requests for Compliance Review FAL AND SOCIAL MANAGEMENT PLAN tion and Objectives this ESMP ibility for ESMP Implementation Construction Phase Operation Phase	292 294 294 298 298 298 299 300 301 301 301 301 303 303 303 303 303 304 307
15.	GRIEV 15.1 15.2 15.3 ENVIR 16.1 16.2 16.3	groups ANCE RI Commun Worker G 15.2.1 15.2.2 15.2.3 15.2.4 15.2.5 AIIB's Pro 15.3.1 15.3.2 15.3.3 ONMENT Introducti Scope of Responsi 16.3.1 16.3.2 Training.	EDRESSAL MECHANISM	292 294 298 298 298 298 298 299 300 301 301 301 301 303 303 303 303 303 304 307 309
15.	GRIEV 15.1 15.2 15.3 ENVIR 16.1 16.2 16.3 16.4 16.5	groups ANCE RI Commun Worker G 15.2.1 15.2.2 15.2.3 15.2.4 15.2.5 AIIB's Pro 15.3.1 15.3.2 15.3.3 ONMENT Introducti Scope of Responsi 16.3.1 16.3.2 Training, Monitorin	EDRESSAL MECHANISM	292 294 298 298 298 298 298 299 300 301 301 301 301 301 303 303 303 303 303 307 309 309 309
15.	GRIEV 15.1 15.2 15.3 ENVIR 16.1 16.2 16.3 16.4 16.5 16.6	groups ANCE RI Commun Worker G 15.2.1 15.2.2 15.2.3 15.2.4 15.2.5 AIIB's Pro 15.3.1 15.3.2 15.3.3 ONMENT Introducti Scope of Responsi 16.3.1 16.3.2 Training, Monitorin Project E	EDRESSAL MECHANISM	292 294 298 298 298 298 299 300 301 301 301 301 301 303 303 303 303 303 303 304 309 309 309 309 309
15.	GRIEV 15.1 15.2 15.3 ENVIR 16.1 16.2 16.3 16.4 16.5 16.6 16.7	groups ANCE RI Commun Worker G 15.2.1 15.2.2 15.2.3 15.2.4 15.2.5 AIIB's Pro 15.3.1 15.3.2 15.3.3 ONMENT Introducti Scope of Responsi 16.3.1 16.3.2 Training, Monitorin Project E ESMP Lin	EDRESSAL MECHANISM	292 294 294 298 298 298 299 300 301 301 301 301 301 303 303 303 303 303 303 304 309 309 309 309 310
15.	GRIEV 15.1 15.2 15.3 ENVIR 16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.8	groups ANCE RI Commun Worker G 15.2.1 15.2.2 15.2.3 15.2.4 15.2.5 AIIB's Pro 15.3.1 15.3.2 15.3.3 ONMENT Introducti Scope of Responsi 16.3.1 16.3.2 Training, Monitorin Project E ESMP Lii Plans, Po	EDRESSAL MECHANISM Srievance Mechanism Srievance Mechanism Step 1: Disclosure of Worker Grievance Mechanism Step 2: Receiving and Keeping Track of Worker Grievance Step 3: Reviewing and Investigate Worker Grievance Step 4: Worker Grievance Settlement Step 5: Monitoring and Reporting in the Resolving Process oject-affected People's Mechanism (PPM) Project Processing Queries Requests for Dispute Resolution Requests for Compliance Review FAL AND SOCIAL MANAGEMENT PLAN ion and Objectives this ESMP ibility for ESMP Implementation Construction Phase Awareness and Competency og, Review, Audit and Reporting nvironmental and Social Management Plan nks to Other HSE Management Plans Dicies and Procedures	292 294 298 298 298 298 298 299 300 301 301 301 301 301 301 303 303 303 303 303 303 304 309 309 309 310 310

16.9.1	Air Quality Management	
16.9.2	Noise Management	
16.9.3	Water Resource Management	
16.9.4	Soil Environment Management	
16.9.5	Electromagnetic Interference Management	
16.9.6	Climate Change Management	
16.9.7	Shadow Flicker Management	
16.9.8	Visual Quality Management	
16.9.9	Traffic and Transport Management	
16.9.1	0 Biodiversity Management	
16.9.1	1 Social Management	
16.9.1	2 Unplanned Events Management	405
REFERENCES		424

APPENDIX LSHADOW FLICKER MAIN RESULTS – WORST CASE SCENARIOAPPENDIX MSHADOW FLICKER MAIN RESULTS – REAL CASE SCENARIOAPPENDIX NBOUNDARY MAP OF UXO CLEARANCE

List of Tables

Table 10.1	Scope of Air Quality Impact Assessment	1
Table 10.2	The Need for Detailed Assessment	3
Table 10.3	Dust Emission Magnitude	4
Table 10.4	Construction Material Reuse Plan	6
Table 10.5	Dust Emission Magnitude for Huadian Dak Lak Wind Power Project's Site	6
Table 10.6	Criteria for Assessing the Sensitivity of the Area to Dust Soiling Effects on People and Propert	y.7
Table 10.7	Criteria for Assessing the Sensitivity of the Area to Human Health Impacts	7
Table 10.8	Criteria for Assessing the Sensitivity of the Area to Ecological Impacts	8
Table 10.9	Sensitivity of the Surrounding Area	9
Table 10.10	Risk of Dust Impacts – Earthwork	. 10
Table 10.11	Risk of Dust Impacts – Construction	. 10
Table 10.12	Risk of Dust Impacts – Track out	. 10
Table 10.13	Risks of Impacts on Air Quality during Pre-Construction and Construction Phases	. 10
Table 10.14	Scope of Noise Impact Assessment	. 12
Table 10.15	Noise Impact during Construction Phase	. 19
Table 10.16	Assessment Features, Inputs and Assumptions	. 23
Table 10.17	Envision Reference Spectrum Used to Represent Envision EN-141/2.65 MW and EN-156/3.0	
	MW	. 24
Table 10.18	Representative Noise Sensitive Receptors	. 24
Table 10.19	Predicted Operational Noise Levels at NSRs (LAeq)	. 26
Table 10.20	Noise Impact Significance during Operation Phase	. 31
Table 10.21	Scope of Water Resource Assessment – Construction Phase	. 33
Table 10.22	Sensitivity Assessment Criteria for Water Resources	. 37
Table 10.23	Criteria for Impact Magnitude for Water Resource Impact Assessment	. 37
Table 10.24	Impact on Water Quantity from the Construction Activities and Worker's Activities	. 41
Table 10.25	Typical Composition of Untreated Domestic Wastewater	. 42
Table 10.26	Impact on Water Quality from the Construction Activities and Worker's Activities	. 43
Table 10.27	Impact on Water Quality from the Construction Activities and Worker's Activities	. 45
Table 10.28	Scope of Soil Environment Assessment	. 46
Table 10.29	Sensitivity Assessment Criteria for Soil Quality (Compaction, Erosion and Contamination)	. 48
Table 10.30	Criteria for Impact Magnitude for Assessment of Impact to Soil	. 48
Table 10.31	Impact on Soil Compaction and Erosion in the Construction Phase	. 50

Table 10.32	Monitoring for Soil Compaction and Erosion Management	51
Table 10.33	Impact on Soil Contamination in Construction Phase	52
Table 10.34	Impact on Soil Contamination in Operation Phase	53
Table 10.35	Scope of Electromagnetic Interference Assessment	54
Table 10.36	Basic Restriction and Reference Levels for Exposure to 50Hz EMF at the Edge of Right of W	ay
	(ROW)	56
Table 10.37	Transmission Line Parameters of 220kV Tower	56
Table 10.38	Maximum Electric and Magnetic Fields for Various Transmission Tower Types at the Edge of	the
	ROW	59
Table 10.39	EMF Impact Assessment from Overhead Transmission Line for the Operation Phase	59
Table 10.40	Impacts of EMF during Operation Phase from the 22 kV Underground Transmission Line	61
Table 10.41	Impacts of EMF during Operation Phase from the Substation	63
Table 10.42	Changes in Average Annual Temperature (°C) in Dak Lak Province	70
Table 10.43	Changes in Annual Rainfall (%) in Dak Lak Province	71
Table 10.44	Amount of Living Biomass before and After Land Conversion	72
Table 10.45	Annual GHG Emissions from Land Clearing in the Preparation Phase	72
Table 10.46	Tiers Approach for Estimation of GHG	73
Table 10.47	Default Emissions Factors and Energy Content Factor for Diesel Combustion in Mobile	
	Equipment and Vehicles	74
Table 10.48	List of Construction Equipment during the Construction Phase	74
Table 10.49	Estimated CO ₂ Emission from Operation of Heavy Equipment	75
Table 10.50	Estimated CO ₂ Emission from Transportation of Materials and Equipment	75
Table 10.51	Climate Change Impacts to Wind Power Production and Infrastructure	76
Table 10.52	windPRO Shadow Module Inputs (in bold the differences between Worst Case and Real Case	е
	Scenario)	84
Table 10.53	Impacts of Shadow Flickering	91
Table 10.54	Horizontal Field of View	96
Table 10.55	Vertical Field of View	96
Table 10.56	Sensitivity of Visual Receptors	.101
Table 10.57	Magnitude of Visual Effect	102
Table 10.58	Significance of Visual Effect	103
Table 10.59	VSRs Selected for the Visual Impact Assessment	103
Table 10.60	Summary of Visual Impacts	120
Table 10.61	Magnitude of Effect	125
Table 10.62	Receptor Sensitivity	125
Table 10.63	Significance of Impact Assessment Matrix	126
Table 10.64	Magnitude of Impact – Severance	127
Table 10.65	Magnitude of Impact – Driver Delay	.127
Table 10.66	Magnitude of Impact – Fear and Intimidation	128
Table 10.67	Magnitude of Impact – Accidents and Road Safety	128
Table 10.68	Traffic and Transport Magnitude for Huadian Dak Lak Wind Power Project's Site	.130
Table 10.69	Significance of Impact Relating to the Traffic and Transport	130
Table 11.1	Scoping of Potential Impacts to Biodiversity Values	133
Table 11.2	Habitat Impact Assessment – Significance Criteria	134
Table 11.3	Species Impact Assessment – Significance Criteria	135
Table 11.4	Existing Biodiversity Mitigation Measures	136
Table 11.5	Updated Development Status of Project Components	138
Table 11.6	Land Disturbance Footprint of Each Project Component	139
Table 11.7	Loss of Terrestrial Habitats (on habitat receptors)	140
Table 11.8	Species of Conservation Concern Found in Field Surveys	140
Table 11.9	Loss of Terrestrial Habitat (on species receptors)	142
Table 11.10	IA of Noise Disturbance on Terrestrial Species during Construction	.144
Table 11.11	Barrier Creation, Fragmentation and Edge Effect Impacts	146

Table 11.12	IA of Degradation of Habitats Caused by Dust	147
Table 11.13	IA of Waste and Wastewater Management	147
Table 11.14	IA of Invasive Species Introduction	148
Table 11.15	Assessment of Mortality Potential at Population Levels	151
Table 11.16	IA of Blade Collision	153
Table 11.17	Bat Foraging Preferences and Associated Collision Risk	156
Table 11.18	Risk Assessment of Bat Recorded in Field Surveys	157
Table 11.19	IA of Mortality on Bats	157
Table 11.20	IA of Mortality of Other Fauna	159
Table 12.1	Summary of Impacts, Receptors and Area of Influence	164
Table 12.2	Land Acquisition Scope and Status	171
Table 12.3	Memorandum of Agreement and Contract between the Project and Krong Buk District (LFDC)	on
	Project Land Acquisition	175
Table 12.4	Purchased Land Plots by Sub-project and Commune	177
Table 12.5	Land Use Right Certificates Obtained by the Project	178
Table 12.6	Land Acquisition Notifications by Krong Buk District People's Committee	184
Table 12.7	Land-based Livelihoods in Affected Villages	190
Table 12.8	Livelihood Impacts Perceived by the Surveyed Household	191
Table 12.9	Different Types of Land Holdings of Potentially Affected Households	192
Table 12.10	Economic Displacement and Loss of Livelihood	194
Table 12.11	Disturbance to Agriculture Production due to Construction and Operation Activities	197
Table 12.12	Impacts on Worker's Rights, Occupational Health and Safety	200
Table 12.13	Project Impacts Perceived by the Surveyed Household	207
Table 12.14	Impacts on Community Health, Safety and Security due to Construction Activities	207
Table 12.15	Security Situations of Affected District and Communes	210
Table 12.16	Impacts on Community Health, Safety and Security due to the Presence of Influx	212
Table 12.17	Health and Safety Impacts and General Disturbance to Local Community	215
Table 12.18	Physical Displacement Impact from Land Acquisition Due to Safety Zone	221
Table 12.19	Local Employment and Business during the Project Construction	223
Table 12.20	Main Livelihoods of the Surveyed Working Population	225
Table 12.21	Surveyed Population by Literacy	226
Table 12.22	Surveyed Population by Educational Attainment	226
Table 12.23	Main Ede Community Challenges	227
Table 12.24	Impacts on Indigenous Peoples	230
Table 12.25	Women's Ability to Sustain Their Livelihood	233
Table 12.26	Increase in Women's Workload	233
Table 12.27	Increase in Women's Dependency on Men	234
Table 12.28	Impacts on Women's Safety Due to the Influx of Migrant Workers	234
Table 12.29	Gender Impacts	235
Table 12.30	Human Rights Impacts	237
Table 12.31	Summary of Social Impact Assessment	239
Table 13.1	Applicable Equator Principles, AIIB ESF, and IFC Performance Standards for Unplanned Eve	nts
		242
Table 13.2	Indicative Level of Consequence for Potential Impacts from Unplanned Events	243
Table 13.3	Classification of Likelihood	244
Table 13.4	Risk Matrix for Potential Unplanned Events	244
Table 13.5	Unplanned Events Leading to Potential Impacts	244
Table 13.6	Potential Impacts from Unplanned Events and Pre-mitigation Risk Ranking	246
Table 13.7	Preventive and Mitigation Measures of Leakage and Spills Incidents during Pre-construction a	and
	Construction Phase	251
Table 13.8	Pre and Post Risk Ranking	252
Table 13.9	Preventive and Mitigation Measures of Traffic Accident	255
Table 13.10	Pre and Post Risk Ranking	256

Table 13.11	Evidence of UXO Detection and Clearance Completion	257
Table 13.12	Preventive and Mitigation Measures of Fire and Explosion during the Pre-Construction and	258
Table 13 13	Pre and Post Risk Ranking	259
Table 13.14	Preventive and Mitigation Measures of Occupational Health and Safety	260
Table 13 15	Pre and Post Risk Ranking of Occupational Accident	261
Table 13.15	Preventive and Mitigation Measure of Leakage and Spill during Commission and Operation	201
	Preventive and willigation measure of Leakage and Spin during Commission and Operation	262
Table 13 17	Pre and Post Risk Ranking	263
Table 13.17	Preventive and Mitigation Measures of Fire and Explosion during the Commission and Oper-	200
	Phase	264
Table 13.19	Pre and Post Risk Ranking	264
Table 13.20	Pre and Post Risk Ranking of Occupational Health and Safety Accident	265
Table 13.21	Setback Distances Adopted for Wind Turbines as per IFC Wind EHS Guidelines	267
Table 13.22	Preventive and Mitigation Measures of Blade Ejection Failure during Commission and Opera Phase	ation 270
Table 13 23	Pre and Post Risk Ranking	271
Table 13 24	Preventive and Mitigation Measures of Transmission Line Snapping and Transmission Pylor	<i>21</i> 1
	Collanse	' 273
Table 13 25	Pre and Post Risk Ranking	273
Table 13 26	Preventive and Mitigation Measures of Natural Hazards	274
Table 13 27	Pre and Post Risk Ranking	275
Table 13.28	Summarised the Impact Ranking of the Potential Unplanned Events during the Preparation	270
1001010.20	Construction and Operation Phases	276
Table 14 1	Area of Influence (Aol)	280
Table 14.2	Key Developers in the Immediate Region at the time of FSIA development	282
Table 14.3	Sconing Matrix	283
Table 14.4	Cumulative Impact Scoping for Economy and Employment	288
Table 14.5	Cumulative Impact Scoping for Community Health and Safety	288
Table 14.6	Cumulative Impact Scoping for Traffic	290
Table 14.7	Cumulative Impact Scoping for Local Community Livelihood	291
Table 14.8	Cumulative Impacts Scoping for Infrastructure and Public Services	291
Table 14 9	Cumulative Impacts Scoping for Ethnic Minority	292
Table 15.1	Methods of Disclosing the Worker Grievance Mechanism	298
Table 16 1	Role and Responsibilities for Environmental and Social Management during the Construction	<u>בסס</u> ו
	Phase	304
Table 16.2	Role and Responsibilities for Environmental and Social Management during the Operation p	hase
		307
Table 16.3	Specific Management Plans and Policies	310
Table 16.4	Air Quality Management	313
Table 16.5	Noise Management	317
Table 16.6	Water Resource Management	324
Table 16.7	Soil Environment Management	331
Table 16.8	Electromagnetic Interference Management	337
Table 16.9	Climate Change Management	340
Table 16.10	Shadow Flicker Management	344
Table 16.11	Visual Quality Management	347
Table 16.12	Traffic and Transport Management	348
Table 16.13	Biodiversity Management	351
Table 16.14	Social Management	366
Table 16.15	Unplanned Events Management	405

List of Figures

Figure 10.1	Potential Sensitive Receptors within 2 km Noise Buffer	. 13
Figure 10.2	Noise Sensitive Receptors in KB1 and KB2	. 14
Figure 10.3	Noise Sensitive Receptors in CN1 and CN2	. 14
Figure 10.4	NML1 Background Noise Curve	. 15
Figure 10.5	NML2 Background Noise Curve	. 16
Figure 10.6	NML3 Background Noise Curve	. 16
Figure 10.7	NML4 Background Noise Curve	. 17
Figure 10.8	NML5 background Noise Curve	. 17
Figure 10.9	NML6 Background Noise Curve	. 18
Figure 10.10	Worst-case and Operational Noise Contours of the Project	. 27
Figure 10.11	Predicted Wind Farm Noise Levels and Noise Assessment Criteria against (Hub Height) Wind	
	Speed for NSR 1 (which refers to Baseline Location NML 6)	. 27
Figure 10.12	Predicted Wind Farm Noise Levels and Noise Assessment Criteria against (Hub Height) Wind	
	Speed for NSR 2 and NSR 3 (which refer to Baseline Location NML 5)	. 28
Figure 10.13	Predicted Wind Farm Noise Levels and Noise Assessment Criteria against (Hub Height) Wind	
	Speed for NSR 4, NSR 5, and NSR 7 (which refers to Baseline Location NML 4)	. 28
Figure 10.14	Predicted Wind Farm Noise Levels and Noise Assessment Criteria against (Hub Height) Wind	
	Speed for NSR6 (which refers to Baseline Location NML3)	. 29
Figure 10.15	Predicted Wind Farm Noise Levels and Noise Assessment Criteria against (Hub Height) Wind	
	Speed for NSR8 (which refers to Baseline Location NML2)	. 29
Figure 10.16	Predicted Wind Farm Noise Levels and Noise Assessment Criteria against (Hub Height) Wind	
	Speed for NSR9 (which refers to Baseline Location NML1)	. 30
Figure 10.17	Classification of Sensitive Receptors with regards to the Noise Level Increments from the	
	Project's WTGs	. 30
Figure 10.18	Water Bodies in the Project's Area	. 36
Figure 10.19	3-compartment Septic Tank	. 40
Figure 10.20	Soil Stockpiling at the Project's site	. 50
Figure 10.21	Schematic Representation of Transmission Tower with Power Line Arrangement (for 220 kV	
	Transmission Tower)	. 57
Figure 10.22	Electric Field Distribution for the Proposed Transmission Tower at 1 m above the Ground	. 58
Figure 10.23	Magnetic Field Distribution for the Proposed Transmission Tower at 1m above the Ground	. 58
Figure 10.24	Magnetic Field Distribution in the Substation Studied by Tamrizi et al. (2016) for a 400kV	
	Substation (280m long, 140m wide)	. 63
Figure 10.25	Magnetic Fields Comparison from Wind Turbines and 500 kV Power Lines with Common	
F : 40.00	Household Electrical Devices	. 65
Figure 10.26	Projected Anomaly Changes for Maximum, Minimum, and Average Daily Temperatures in	
Figure 40.07	Vietnam for 2014 – 2059 and 2080 – 2099	. 70
Figure 10.27	Chadau Flickering Theory	.80
Figure 10.28	Snadow Flickering Theory	. 82
Figure 10.29	Impacted Receptors	. 85
Figure 10.30	Go Zone Plot Showing the Shadow Picketing of Groups of Receptor in [nours per year] and	06
Figure 10.21	Map of Bradigted Shadow Elicker for Krang Buk 182 (hours/war) Waret Case Separa	00. 00
Figure 10.31	Map of Predicted Shadow Flicker for Cu No 182 (hours/year) – Worst Case Scenario	. 00
Figure 10.32	Map of Predicted Shadow Flicker for Krong Puk 182 (nours/year) – Worst Case Scenario	.01
Figure 10.33	Map of Predicted Shadow Flicker for Cu No 182 (minutes/day) – Worst Case Scenario	.07
Figure 10.34	Impacted Groups of Recentors in Real Case Scenario and Comparison of Number of Impacted	. 00 1
i igule 10.33	Groups of Recentors between Worst Case and Real Case Scenarios	ہ 20
Figure 10 36	Man of Predicted Shadow Elicker for Krong Ruk 1&2 (hours/year) - Real Case Scenario	80. 80
Figure 10.37	Map of Predicted Shadow Flicker for Cu Ne 182 (hours/year) - Real Case Scenario	۵0 ۵۸
Figure 10.38	Viewshed (24 km Buffer)	. 90 . 98
Figure 10.30	Visual Sensitive Recentors Location	100
i iguie 10.58		100

Figure 10.40	Transportation Route of the Equipment	. 123	
Figure 10.41	The Proposed Transportation Routes of Wind Turbine Components and Materials to the Project's		
	Sites	. 124	
Figure 10.42	A Transportation of Oversized Equipment via National Highway No.14	. 129	
Figure 12.1	Area of Influence of Social Impacts	. 163	
Figure 12.2	Household Income Structure of Affected Communities (N=144)	. 191	
Figure 12.3	Excavated Soil from Construction Phase	. 196	
Figure 12.4	An Agriculture Hut where a Senior Farmer Couple Reside and Sell Drinks to Project Workers	204	
Figure 12.5	Safety Signal at a Turbine Construction Site which is Close to the Village Road	. 205	
Figure 12.6	Blade Throw Receptors – Krong Buk 1&2	.217	
Figure 12.7	Blade Throw Receptors – Cu Ne 1&2	.218	
Figure 12.8	High Noise Exceeded Receptors – Krong Buk 1&2	.218	
Figure 12.9	High Noise Exceeded Receptors – Cu Ne 1&2	.219	
Figure 12.10	Some of the Sensitive Receptors of Blade Ejection Failure	. 220	
Figure 13.1	Oil Slick from the Van at the Concrete Batching Plant	. 250	
Figure 13.2	Traffic Accident in Quang Binh Province during the Transportation of Wind Turbine Blade (Ma	ay	
	2021)	. 254	
Figure 13.3	Traffic Accident in Dak Lak Province during the Transportation of Wind Turbine Tower (July		
	2021)	. 254	
Figure 13.4	Impact Zone of Theoretical Blade Throw	. 267	
Figure 13.5	Blade Throw Sensitive Receptors	. 268	
Figure 13.6	Examples of Wind Turbine Blade Failure. Black Circles in the Middle Photograph Show a Tra	ce	
	of Flying Objects, Thrown from the Turbine to the Left, While Burning	. 269	
Figure 13.7	The Collapse Accident of Transmission Line in China in 2012	. 272	
Figure 14.1	Rapid Cumulative Impact Assessment Six-Step Approach	. 278	
Figure 14.2	Existing and Planned Wind Power Developments in the Immediate Region	. 281	
Figure 15.1	Suggested Community Grievance Mechanism for the Projects	. 295	
Figure 15.2	Developing Resolution Options, Response and Close-out	. 300	
Figure 16.1	E&S Management Structure during the Construction Phase	. 304	
Figure 16.2	E&S Management Structure during the Operation Phase	. 307	

Acronyms and Abbreviations

ACSR	Aluminium Conductor Steel Reinforced	
ACTIP	ASEAN Convention Against Trafficking in Persons, Especially Women and Children	
ACWC	ASEAN Commission on the Promotion and Protection of the Rights of Women and Children	
AHP	ASEAN Heritage Park	
AHRD	ASEAN Human Rights Declaration	
AICHR	Intergovernmental Commission on Human Rights	
AIIB	Asian Infrastructure Investment Bank	
ALARP	As Low As Reasonably Practicable	
AMS	ASEAN member states	
Aol	Area of Influence	
APF	Asia Pacific Forum of National Human Rights Institutions	
ASEAN	Association of Southeast Asian Nations	
AZE	Alliance for Zero Extinction	
CAT	Convention against Torture and Other Cruel, Inhuman or Degrading Treatment or Punishment	
CAT-Committee	Committee against Torture	
CED, Art.32	Interstate communication procedure under the International Convention for the Protection of All Persons from Enforced Disappearance	
CEDAW	Convention on the Elimination of All Forms of Discrimination against Women	
CED-Committee	Committee on Enforced Disappearances	
CEMA	Committee for Ethnic Minority Affairs	
CERD-Committee	Committee on the Elimination of Racial Discrimination	
CESCR-Committee	Committee on Economic, Social and Cultural Rights	
CHEC	China Huadian Engineering Co., Ltd	
CI	Cumulative impacts	
CIA	Cumulative Impact Assessment	
CMS	Central Monitoring System	
CMW-Committee	Committee on the Protection of the Rights of All Migrant Workers and Members of Their Families	

CN1	Cu Ne No.1 Wind Farm		
CN2	Cu Ne No.2 Wind Farm		
COMMIT	Coordinated Mekong Ministerial Initiative Against Trafficking		
COVID-19	Coronavirus Disease of 2019		
CPC	Commune People's Committee		
CPED	International Convention for the Protection of All Persons from Enforced Disappearance		
CR	Critically Endangered		
CRC	Convention on the Rights of the Child		
CRC-Committee	Committee on the Rights of the Child		
CRPD	Convention on the Rights of Persons with Disabilities		
CRPD-Committee	Committee on the Rights of Persons with Disabilities		
CSR	Compensation, Support and Resettlement		
CWU	Communal Women's Union		
DD	Data Deficient		
DEDAW	Declaration on the Elimination of Discrimination against Women		
DMS	Detailed Measurement Survey		
DOFA	Department of Foreign Affairs		
DOLISA	Department of Labour, Invalid, and Social Affairs		
DOLISA	Department of Labour, Invalid, and Social Affairs		
DONRE	Department of Natural Resources and Environment		
DONRE	Department Of Natural Resources And Environment		
DPC	District People's Committee		
DSRE	The Development Strategy for Renewable Energy of Vietnam		
EAAA	Ecologically Appropriate Area of Assessment		
EBA	Endemic Bird Area		
EBRD	European Bank for Reconstruction and Development's		
EHS	Environmental Health and Safety		
EIA	Environmental Impact Assessment		
EMF	Electric and Magnetic Fields		
EMI	Electromagnetic Interference		

EN	Endangered
EOO	Extent of Occurrence
EOR	Energy Outlook Report
EP	Equator Principles
EPC	Engineering Procurement and Construction
EPP	Environmental Protection Plan
ERM	Environmental Resources Management Ltd.
ESF	Environmental and Social Framework
ESIA	Environmental and Social Impact Assessment
ESIA	Environmental and Social Impact Assessment
ESMP	Environmental and Social Management Plan
ESMPF	Environmental and Social Management Planning Framework
ESP	Environmental and Social Policy
ESS	Environmental and Social Standards
FGDs	Focus Group Discussions
FI	Financial Intermediary
FiTs	Feed-in-Tariffs
FOA	Freedom of Association
FPIC	Free, Prior and Free Consent
FPIC	Free, Prior and Informed Consent
GBIF	Global Biodiversity Information Facility
GDP	Gross Domestic Product
GHG	Greenhouse Gas
GIIP	Good International Industry Practice
GISD	Global Invasive Species Database
GN	Guidance Note
GRDP	Gross Regional Domestic Product
HDI	The Human Development Index
IA	Impact Assessment
IBA	Important Bird and Biodiversity Area

IBAT	Integrated Biodiversity Assessment Tool		
ICCPR	International Covenant on Civil and Political Rights		
ICCPR-OP1	Optional Protocol to the International Covenant on Civil and Political Rights		
ICCPR-OP2	Second Optional Protocol to the International Covenant on Civil and Political Rights, aiming at the abolition of the death penalty		
ICERD	International Convention on the Elimination of All Forms of Racial Discrimination		
ICESCR	International Covenant on Economic, Social and Cultural Rights		
ICESCR - OP	Optional Protocol to the Covenant on Economic, Social and Cultural Rights		
ICMW	International Convention on the Protection of the Rights of All Migrant Workers and Members of Their Families (known as the Migrant Workers Convention)		
ICP	Informed Consultation and Participation		
ICPD	International Conference on Population and Development		
ICRMW	International Convention on the Protection of the Rights of All Migrant Workers and Members of Their Families		
IFC	International Finance Corporation		
ILO	International Labour Organization		
IOL	Inventory of Losses		
IPA	Important Plant Area		
IPIECA	International Petroleum Industry Environmental Conservation Association		
IPs	Indigenous Peoples		
ISO	International Organisation for Standardisation		
IUCN	International Union for the Conservation of Nature		
KBA	Key Biodiversity Area		
Klls	Key Informant Interviews		
LEP	Law on Environmental Protection		
LFDC	Land Fund Development Centre		
LURC	Land use right certificate		
MARD	Ministry of Agriculture and Rural Development		
MDGs	Millennium Development Goals		
MIP	Ministry of Investment and Planning		
MOCST	Ministry of Culture, Sports and Tourism		

MOET	Ministry of Education and Training	
MOIT	Ministry of Industry and Trade	
MOLISA	Ministry of Labour, War Invalids and Social Affairs	
MW	Megawatt	
n.d.	No date	
NCFAW	Committee for Advancement of Women	
NDVI	Normalised Differential Vegetation Index	
NE	Not Evaluated	
NGOs	Non-governmental Organisations	
NHRIs	National Human Rights Institutions	
NL	Not Listed	
NT	Near Threatened	
NTFPs	Non-timber Forest Products	
ODA	Official Development Assistance	
OECD	Economic Co-operation and Development	
OHCHR	Office of the United Nations High Commissioner for Human Rights	
OHS	Occupational Health and Safety	
OP-CAT	Optional Protocol to the Convention against Torture and Other Cruel, Inhuman or Degrading Treatment or Punishment	
OP-CEDAW	Optional Protocol to the Convention on the Elimination of Discrimination against Women	
OP-CRC-AC	Optional Protocol to the Convention on the Rights of the Child on the involvement of children in armed conflict	
OP-CRC-IC	Optional Protocol to the Convention on the Rights of the Child on a communications procedure	
OP-CRC-SC	Optional Protocols to CRC on the involvement of children in armed conflict and on the sale of children, child prostitution and child pornography	
OP-CRPD	Optional Protocol to the Convention on the Rights of Persons with Disabilities	
PAPs	Project Affected Persons	
PC	People's Committee	
PDP	National Power Development Master Plan	
PIM	Potential Interactions Matrix	

POP	Persistent Organic Pollutants		
PPC	Provincial People's Committee		
PSs	IFC Performance Standards		
RE	Renewable Energy		
RSZ	Rotor Swept Zone		
SAARC	South Asian Association for Regional Cooperation		
SCADA	Supervisory Control and Data Acquisition		
SDGs	Sustainable Development Goals		
SEA	Strategic Environmental Assessment		
SEDP	Social and Economic Development Plan		
SEDS	Social and Economic Development Strategy		
SPT	Subcommittee on the Prevention of Torture and other Cruel, Inhuman or Degrading Treatment or Punishment		
STD	Sexually Transmitted Diseases		
TCFD	Task Force on Climate Related Financial Disclosure		
TL	Transmission line		
TPES	Total Primary Energy Supply		
UN	United Nations		
UNDP	United Nations Development Program		
UNEP	United Nations Environmental Programme		
UNESCO	United Nations Educational, Scientific and Cultural Organization		
UNFCC	Kyoto Protocol on Climate Change		
UNWOMEN	United Nations Entity for Gender Equality and the Empowerment of Women		
USAID	United States Agency for International Development		
UXO	Unexploded Ordnance		
VEC	Valued Environmental and Social Components		
VRDB	Vietnam Red Data Book		
VSSID	Vietnam Social Security Identification		
VU	Vulnerable		
VWU	Vietnam Women's Union		

WBG	World Bank Group
WHO	World Health Organisation
WPP	Wind Power Project
WRO	Independent Worker Representative Organization
WTG	Wind Turbine Generator
WWF	World Wildlife Fund

10. ENVIRONMENTAL IMPACT ASSESSMENT

This chapter presents an assessment of impacts for key environmental aspects identified in the scoping process in Chapter 7 in Vol 2 ESIA. The impact assessment method is also described in Chapter 4 in Vol 1 ESIA. The outcomes of the assessment will inform the development of the ESMP, which will be used to implement relevant management plans.

10.1 Air Quality Impact Assessment

10.1.1 Scope of Assessment

Activities in the construction phase causing the potential impacts to air quality and stakeholders who are identified as receptors of the impacts are listed in Table 10.1. Activities during the operation phase is likely to have an insignificant impact on air quality. Therefore, the scope for impact assessment on air quality is limited to only activities in the pre-construction and construction phases for this ESIA.

Table 10.1	Scope of Air Quality Impact Assessment
------------	--

Phases	Potential Activities	Potential Impacts	Potential Consequences	Receptor
Pre- Construction and Construction	Land preparation and civil works such as land clearance, demolition, earthworks Transmission line, access road, internal road, laydown area construction Operation of ancillary facilities such as the concrete batching plant, diesel generator for power supply Transportation of equipment and materials, workers daily movement.	 Increased dust (e.g. PM₁₀) from ground preparation, work sites and material / equipment transportation Exhaust emissions (e.g. SO_x, CO, NO_x) from movement and operation of construction vehicles, machinery and other heavy equipment such as bulldozers, excavators, compactors and diesel generator. 	 Annoyance and nuisance to the general public as a result of dust deposition on properties, dwellings, cultural heritage sites and places of business Increased effects of morbidity/ reduced health due to exposure to dust and exhaust emissions. 	 Nearby residents Construction workers

10.1.2 Relevant Guidelines and Criteria

10.1.2.1 Vietnam Regulations

- QCVN 05:2013/BTNMT National Technical Regulation on Ambient Air Quality, and
- QCVN 06:2009/BTNMT National Technical Regulation on Hazardous Substance in Ambient Air.

10.1.2.2 International Guidelines

- AIIB ESS1 (2019): Environmental and Social Assessment and Management: To conduct an environmental and social assessment relating to these risks and impacts, and design appropriate measures to avoid, minimise, mitigate, offset or compensate for them
- IFC Performance Standards 3: Resource Efficiency and Pollution Prevention requires to the Project to consider ambient conditions and apply technically and financially feasible resources efficiency

and pollution prevention principles and techniques that are best suited to avoid, or where avoidance is not possible, minimise adverse impacts on human health and environment

- IFC EHS General Guidelines (Section 1.1, 2007): Air Emission and Ambient Air Quality contains common techniques for emission management that can be applied to a range of industry sectors. The guideline provides suggested approaches for the management of potentially significant emission sources and includes specific guidance for monitoring and assessment of impacts, and
- IAQM Guidance on the assessment of dust from demolition and construction, Version 1.1

10.1.3 Baselines Conditions

As stated in the Feasibility Study Report, the air quality condition of the baseline environment in the preliminary survey conducted by the Project's owner is fairly good. Also mentioned in the Dak Lak Provincial Environmental Monitoring Report 2020, the air monitoring results after three campaigns show that all air parameters are under the regulated threshold of National Technical Regulation *QCVN 05:2013/BTNMT* on Ambient Air Quality.

10.1.4 Impact Assessment

10.1.4.1 Impact during the Pre-construction and Construction Phase

10.1.4.1.1 Potential Impact

The assessment identified the following impacts that may arise from pre-construction and construction activities:

- Increased dust and particulate matter emission (TSP, PM_{2.5}, and PM₁₀) from the earthworks, site preparation activities (land clearing, levelling, excavation, concrete batching plant, etc.) and construction activities of project components such as wind turbine foundation, transmission towers, internal roads, and transportation of equipment and materials
- Elevated gaseous pollutants from fuel combustion by equipment and machines
- Exhaust emissions from construction machinery and other heavy equipment such as bulldozers, excavators, compactors, and diesel generator
- Exhaust emission (SO₂, CO, NO₂, NH₃) from road transport of equipment and material
- Smoke from burning vegetation clearance, should this occur, and
- Strengthening and maintenance of access roads.

10.1.4.1.2 Existing Controls

Regarding the Feasibility Study (FS) Report, Environmental Protection Plan (EPP) Report, and the Safe & Civilized Construction Plan¹, there are some existing controls recommended by the Project's owner to minimise the impact of the air pollution generated by the construction activities as following:

- All transportation vehicles, machinery and equipment used for the construction activities shall be certified by the Vietnam Registry Department. Avoid using old fashion vehicles or equipment which can induce high level of emission
- National Regulation TCVN 6438 2001 shall be applied to evaluate the concentration of some air pollutants such as CO and hydrocarbons emitted by the transportation vehicles and construction equipment. All equipment shall be granted with the Emission Certification issued by the National Certification Authority of Vietnam in accordance to the Decision No. 35/2005/QD-BGTVT

¹ Provided by the Project's Owner – China Huadian Engineering Co., Ltd (CHEC)

- Construction vehicles should be washed before leaving the construction site to minimise dust being
 produced in the outside roads and nearby residential areas
- Water sprinkling shall be enhanced as transportation, excavation, levelling, and compaction during drying season (two times per day). Avoid overloaded transportation, and travelling during night time and peak hour
- A canvas shall be used to cover the truck compartment while travelling to avoid construction material (sand, stone, cement, and brick) spillage to the roads
- Machine and equipment should be stored in a covered storage to avoid flying dust caused by strong wind during the construction phase
- Incineration of waste or construction materials (plastic bags) inside the construction site is prohibited, and
- Substation location shall be fenced and isolated to the surrounding areas to avoid dust and debris released to the environment.

10.1.4.1.3 Significance of Impacts

Among the dominant contributor effects to the human and ecology receptors during the demolition and construction phases is dust emission. In terms of the evaluation of the Impact significance, the method to assess the risk of dust emission which is developed by the Institute of Air Quality Management (IAQM)² should be adopted. The procedure to perform Dust Assessment is described as below:

- Step 1: Screen the need for detailed assessment;
- Step 2: Assess the risk of dust impacts separately for four main activities including demolition³, earthworks⁴, construction⁵ and track-out⁶. The assessment will be proceeded under three following steps:
 - Step 2A: Define potential dust emission magnitude
 - Step 2B: Define sensitivity of the area, and
 - Step 2C: Define the total risk of impacts based on the magnitude and sensitivity results.

10.1.4.1.3.1 Screening the Need for a Detailed Assessment (Step 1)

The screening criteria states that a detailed assessment will normally be required where there is:

Table 10.2 The Need for Detailed Assessment

Aspect	IAQM	Project
Human Receptor	 350 m of the boundary of the site, or 50 m of the route(s) used by construction vehicles on the public 	The nearest residential areas in Cu Pong and Cu Ne Communes are about 74 m from WTG A6 in KB1, 39 m from WTG B2 in KB2, 57 m from WTG

² Institute of Air Quality Management Guidance, https://iaqm.co.uk/guidance/

³ Demolition is any activity involved with the removal of an existing structure (or structures). This may also be referred to as deconstruction, specifically when a building is to be removed a small part at a time.

⁴ Earthworks covers the processes of soil-stripping, ground-levelling, excavation and landscaping.

⁵ Construction is any activity involved with the provision of a new structure (or structures), its modification or refurbishment. A structure will include a residential dwelling, office building, retail outlet, road, etc.

⁶ Track-out is the transport of dust and dirt from the construction/demolition site onto the public road network, where it may be deposited and then re-suspended by vehicles using the network. This arises when heavy duty vehicles (HDVs) leave the construction/demolition site with dusty materials, which may then spill onto Lathe road, and/or when HDVs transfer dust and dirt onto the road having travelled over muddy ground on site.

Aspect	IAQM	Project
	highway, up to 500 m from the site entrance(s).	C16 in CN1, and 63 m from WTG D11 in CN2, respectively
		A part of the equipment and material transportation route will be passed by densely residential area living along the access road and coffee forests on the way to the Project Site.
Ecological Receptor	 50 m of the boundary of the site, or 50 m of the route(s) used by construction vehicles on the public highway, up to 500 m from the site entrance(s) 	 During the bio baseline survey, there is a Tokey Geckko gecko (IUCN NE, VRDB VU) found 18.45 m away from the internal road systems

Therefore, the construction activities of the project will likely bring some impacts to the ecology system and the communities residing along the transportation routes. A detailed impact assessment will be necessary.

10.1.4.1.3.2	Determine the Magnitude of the Impact (Step 2A)
--------------	---

Methodology

The IAQM defines the dust emission magnitude based on the scale of the anticipated works. The criteria for estimating the magnitude of dust impacts from demolition, earthworks, construction and track-out as per the IAQM guidance note is presented in Table 10.3 and is used to inform the impact assessment.

Antivitiv	Impact Magnitude				
Activity	Small	Medium	Large		
Demolition ⁷	Total building volume <20,000 m ³ , construction material with low potential for dust release (e.g. metal cladding or timber), demolition activities <10 m above the ground, demolition during wetter months.	Total building volume 20,000 m ³ – 50,000 m ³ , potentially dusty construction material, demolition activities 10-20 m above ground level.	Total building volume > 50,000 m ³ , potentially dusty construction material (e.g. concrete), on- site crushing and screening, demolition activities >20 m above ground level.		
Earthworks	Total site area <2,500 m ² , soil type with large grain size (e.g. sand), <5 heavy earth moving vehicles active at any one time, formation of bunds <4 m in height, total material moved <20,000 tonnes, earthworks during wetter months.	Total site area 2,500 m ² – $10,000 \text{ m}^2$, moderately dusty soil type (e.g. silt), 5-10 heavy earth moving vehicles active at any one time, formation of bunds 4 m - 8 m in height, total material moved 20,000 tonnes –100,000 tonnes.	Total site area >10,000 m ² , potentially dusty soil type (e.g. clay, which will be prone to suspension when dry due to small particle size), >10 heavy earth moving vehicles active at any one time, formation of bunds >8 m in height, total material moved >100,000 tonnes.		
Construction	Total building volume <25,000 m ³ , construction	Total building volume 25,000m ³ – 100,000m ³ ,	Total building volume >100,000 m ³ , on site		

Table 10.3 Dust Emission Magnitude

⁷ In this Project, no construction at the area required demolition. Hence, demolition is not applicable in this Section.

Activity	Impact Magnitude				
	Small	Medium	Large		
	material with low potential for dust release (e.g. metal cladding or timber).	potentially dusty construction material (e.g. concrete), on site concrete batching.	concrete batching, sandblasting.		
Track-out	<10 HDV (>3.5 t) outward movements in any one day, surface material with low potential for dust release, unpaved road length <50 m.	10-50 HDV (>3.5 t) outward movements in any one day, moderately dusty surface material (e.g. high clay content), unpaved road length 50 m – 100 m.	>50 HDV (>3.5 t) outward movements in any one day, potentially dusty surface material (e.g. high clay content), unpaved road length >100 m.		

Assessment

Earthwork

There has been estimated approximately $55,730.5 \text{ m}^3$ ($156,045.4 \text{ tonnes}^8$) of excavated soil taken from 61.47 hectares (~ $614,700 \text{ m}^2$) of fixed-term land for the construction of transportation routes, laydown area, and wind turbine foundations. According to the construction plan of the Project, soil volume excavated was stored at the temporary soil stockpiling sites at WTGs' areas for being reused and recycled mostly for ground levelling and backfiling. Only 1 - 5% of excavated soil will be transported out of the Project site by an authorised local agency for their further treatment. The Project singed a contract with a local agency for transportation and treatment of the spoil construction materials. (See Table 10.4); hence, the impact magnitude is evaluated as **Large** according to the Table 10.3.

Construction

The largest source of emission in the construction phase is the fugitive dust emission from the construction activities, including construction of wind turbine foundation and the operation of onsite concrete batching plant. The area of construction within the Project site is relative medium. The construction activities have been also going to occur for a short period of time (about 18 months). As mentioned in the Project Description Section, the total concrete volume for the construction of 73 wind turbine foundations made in the concrete batching plant is approximately 69,800 m³ which makes the impact significance as **Medium** in accordance to Table 10.3.

Track-out

According to the construction plan of the Project, excavated soil volume in four Project's area is approximately $55,730 \text{ m}^3$, of which 95 - 99% to be reused and recycled for ground levelling and road renovation (See Table 10.4) and 1 - 5% will be tracked out. Hence, there has been only a small amount of soil (1,384.3 m³) to be transported out of the Project site.

The amount of construction materials to be used for the project was estimated about 5,550 m³ (sand, stones, cement, bricks, etc.) and 661 m³ (equivalent to approximately 5,189 tonnes of iron and steel). As provided by the Project's owners, 98 - 99% of the materials was reused and recycled at the Site. Only 1 - 2% which was equivalent to 85.5 m³ of sand, stones, cement, bricks and 8.54 m³ of iron and steel to be tracked out of the Site (See Table 10.4). Regarding the transportation plan of materials, the 20-30 m³ truck has been used to transport sand, stones, cement, bricks, etc., and 5-30 ton truck to transport iron and steel via National Highway No.14 and the access road. Based on the above transportation demand relating to the volume of tracked-out construction materials, it is estimated that there is less than ten heavy and non-heavy duty vehicles inward and outward movements per day, given the period of equipment and material transportation is estimated about 18 months for the construction phase.

⁸ Provided in the Geological Study Report, the bulk density of soil in Dak Lak Province is average of 2.8 g/cm³.

Considering that the main transportation road, National Highway No.14, is in very good condition with the surface width of more than 8 km which will unlikely generate any dust from the road surface, while the access road with the total length of 6.75 km is basalt red soil which may increase dust from the road surface. However, the access roads is to be expanded and renovated with clay-bound macadam layer serving the construction and operation phases. According to Table 10.3, the impact magnitude of dust emission during materials transportation period is considered **Small**.

Construction materials	Site	Total volume of materials (m ³)	% reuse of construction at site	% recycle ⁹	Final treatment
Excavated soil	KB1	12540	90%	8%	2%
	KB2	12540	95%	4%	1%
	CN1	17540	85%	10%	5%
	CN2	13110	95%	4%	1%
Sand, stones,	KB1	850	99%	0	1%
cement, bricks, etc.	KB2	850	99%	0	1%
	CN1	3000	98%	0	2%
	CN2	850	99%	0	1%
Iron and steel	KB1	155.1732	92%	7%	1%
	KB2	155.1732	92%	7%	1%
	CN1	193.3932	90%	8%	2%
	CN2	157.339	92%	7%	1%

 Table 10.4
 Construction Material Reuse Plan

Source: China Huadian Engineering Co., Ltd, 2021

In conclusion, the magnitude of dust emission from construction activities to air quality is summarised in Table 10.5.

Table 10.5 Dust Emission Magnitude for H	luadian Dak Lak Wind Power Project's Site
--	---

Activity	Dust Emission Magnitude
Demolition	-
Earthworks	Large
Construction	Medium
Track-out	Small

⁹ According to the EPP, the spoil construction materials which are reusable and recycled such as cement bags, iron debris will be collected, stored at the temporary place and further transported for scarp purchasing. The remaining of reusable construction materials including wood panel or timber pillar will be collected, stored and reused for other future constructions.

10.1.4.1.3.3 Determine the Sensitivity of the Area (Step 2B)

Methodology

Table 10.6

The IAQM defines the sensitivity of the area based on receptor type and the number of receptors within a certain distance from the source. Residential properties, schools, and hospitals are classified as high sensitivity to dust soiling and health effects. Locations where there are particularly important plant species (i.e. rice paddy) are classified as medium sensitivity. The criteria for estimating the sensitivity of the area as per IAQM guidance is presented in Table 10.6 and Table 10.7. The guidance provides a screening criterion of 350 m and 50 m from the construction site and access road to the nearest receptors respectively, beyond which impacts are not considered likely.

Criteria for Assessing the Sensitivity of the Area to Dust Soiling Effects on

People and Property						
Receptor	Number of	Distance from	Distance from the Source (m)			
Sensitivity	Receptors	<20	<50	<100	<350	
High	>100	High	High	Medium	Low	
	10-100	High	Medium	Low	Low	
	1-10	Medium	Low	Low	Low	
Medium	>1	Medium	Low	Low	Low	
Low	>1	Low	Low	Low	Low	

Note: For track-out the distances should be measured from the side of the roads used by construction traffic. Without site specific mitigation, track-out may occur from roads up to 500 m from large sites, 200 m from medium sites and 50 m from small sites, as measured from the site exit. The impact declines with distance from the site, and it is only necessary to consider track-out impacts up to 50 m from the edge of the road.

Table 10.7 Criteria for Assessing the Sensitivity of the Area to Human Health Impacts

Receptor	Annual Mean	Number of	Distance from the Source (m)				
Sensitivity	PM ₁₀ concentration	Receptors	<20	<50	<100	<200	<350
High	>32 µg/m³	>100	High	High	High	Medium	Low
		10-100	High	High	Medium	Low	Low
		1-10	High	Medium	Low	Low	Low
	28-32 µg/m³	>100	High	High	Medium	Low	Low
		10-100	High	Medium	Low	Low	Low
		1-10	High	Medium	Low	Low	Low
	24-28 µg/m ³	>100	High	Medium	Low	Low	Low
		10-100	High	Medium	Low	Low	Low
		1-10	Medium	Low	Low	Low	Low
	<24 µg/m ³	>100	Medium	Low	Low	Low	Low
		10-100	Low	Low	Low	Low	Low
		1-10	Low	Low	Low	Low	Low
Medium	>32 µg/m³	>10	High	Medium	Low	Low	Low

Receptor Sensitivity	Annual Mean Number of Distance from the Source (m)						
	PM ₁₀ concentration	Receptors	<20	<50	<100	<200	<350
		1-10	Medium	Low	Low	Low	Low
	28-32 µg/m ³	>10	Medium	Low	Low	Low	Low
		1-10	Low	Low	Low	Low	Low
	24-28 µg/m ³	>10	Low	Low	Low	Low	Low
		1-10	Low	Low	Low	Low	Low
	<24 µg/m³	>10	Low	Low	Low	Low	Low
		1-10	Low	Low	Low	Low	Low
Low	-	>=1	Low	Low	Low	Low	Low

Note: For track-out the distances should be measured from the side of the roads used by construction traffic. Without site specific mitigation, track-out may occur from roads up to 500 m from large sites, 200 m from medium sites and 50 m from small sites, as measured from the site exit. The impact declines with distance from the site, and it is only necessary to consider track-out impacts up to 50 m from the edge of the road.

Table 10.8 Criteria for Assessing the Sensitivity of the Area to Ecological Impacts

Receptor Sensitivity ^{ab}	Distance from the Source (m) ^c			
	<20	<50		
High	High	Medium		
Medium	Medium	Low		
Low	Low	Low		

^a The sensitivity of the area should be derived for each of the four activities: demolition, construction, earthworks and track out and for each designated site.

^b Only the highest level of area sensitivity from the table needs to be considered.

^c For track out, the distances should be measured from the side of the roads used by construction traffic. Without site-specific mitigation, track out may occur from roads up to 500 m from large sites, 200 m from medium sites and 50 m from small sites, as measured from the site exit. The impact declines with distance from the site.

Assessment

The scoping study, information from the FS report and the satellite imagery identified that:

- In terms of the criteria for assessing the sensitivity of the Area to Dust soiling Effects on People and Property:
 - The nearest identified residential areas is about 39 m away from the WTG B2 (KB2) in Cu Ne Commune, Krong Buk District. Within the radius range of 20 50 m from the Wind turbines footprint, there are two households. According to Table 10.6, the sensitivity of the Area induced by Dust Soiling Effect on People and Properties is ranked as Low for the earthwork and construction activities.
 - The track-out of construction material transportation can likely cause impacts to more than hundred households in Buon Dhia 1, Buon Dhia 2, and Ea Nguoi villages, Cu Ne Commune; which located less than 50 m from the edge of the access road. However, the amount of construction material released during the construction phase is not too much. Therefore, the

Sensitivity of the Area to Dust Effects on People living along transportation route is considered as **High**.

- In terms of criteria for assessing the sensitivity of the Area to Human Health Impacts:
 - According to the FS Report, the air quality of environmental baseline in the Project's area was quite good abided by the National Technical Regulation *QCVN 05:2013/BTNMT* on Ambient Air Quality. However, the current data on air quality at the Project's area was unavailable at the time of developing this ESIA. Assuming that the PM₁₀ concentration monitored in 24 hours in Dak Lak Province is relatively similar to the concentration monitored in Gia Lai Province¹⁰ which is approximately 7 22 µg/m³. In order to make a comparison with the IAQM standard (Refer Table 10.7), an average PM₁₀ concentration monitored in 24 hours should be converted into Annual mean PM₁₀ concentration¹¹. After the conversion, the Annual Mean PM₁₀ concentration for the Project site ranged from 5.93 µg/m³ to 18.64 µg/m³. According to Table 10.7, considering that the Annual Mean concentration is < 24 µg/m³, medium sensitivity of receptors, about two affected households, distance of 20 50 m from the source, the Sensitivity of the Area to Human Health Impacts of these receptors is considered Low to all activities (earthwork, construction and track-out) (Refer to Table 10.9).
- To the Criteria for assessing the sensitivity of the Area to the Ecological Impacts,
 - According to the 2021 biodiversity field survey report (See Chapter 7), there is no recorded endangered wild population of plant within the distance of 50 m away from the sources (WTG) (See Figure 8.6). Therefore, the sensitivity receptor is considered as **Low** for all activities (earthwork, construction, and track-out).

Overall, the sensitivity of the Area to Dust Soiling Effect and Human Health Impact are summarized in Table 10.9.

Potential Impact	Sensitivity of the Surrounding Area				
Potential impact	Earthwork	Construction	Track-out		
People and Properties	Low	Low	High		
Human Health	Low	Low	Low		
Ecological Impact	Low	Low	Low		

Table 10.9Sensitivity of the Surrounding Area

10.1.4.1.3.4 Determine the Risk of Impacts (Step 2C)

Methodology

The risk of impacts will be determined by combining the assessment of dust emission magnitude and the assessment of the sensitivity of the area. The risk matrices in Table 10.10, Table 10.11, and Table 10.12, provide a method of assigning the level of risk for each activity.

¹⁰ https://aqicn.org/city/vietnam/gia-lai/phuong-thong-nhat-pleiku/vn/

¹¹ According to UK Guidance of Air emissions risk assessment (Air emission risk assessment for your environmental permit – GOV.UK – www.gov.uk), annual Mean PM_{10} (long-term concentration) is assumed to be a half of short-term concentration (1hr Average PM_{10}). Therefore, the Annual Mean PM_{10} concentration for the Project site will be calculated using the same principle (i.e. by dividing 24hr average PM_{10} by 0.59 to 1hr average PM_{10} , then diving by 2).

Negligible

Sensitivity of Area	Dust Emission Magnitude				
	Large	Medium	Small		
High	High Risk	Medium Risk	Low Risk		
Medium	Medium Risk	Medium Risk	Low Risk		

Table 10.10 Risk of Dust Impacts – Earthwork

Table 10.11 Risk of Dust Impacts – Construction

Low Risk

Sensitivity of Area	Dust Emission Magnitude			
	Large	Medium	Small	
High	High Risk	Medium Risk	Low Risk	
Medium	Medium Risk	Medium Risk	Low Risk	
Low	Low Risk	Low Risk	Negligible	

Low Risk

Table 10.12 Risk of Dust Impacts – Track out

Sensitivity of Area	Dust Emission Magnitude			
	Large	Medium	Small	
High	High Risk	Medium Risk	Low Risk	
Medium	Medium Risk	Low Risk	Negligible	
Low	Low Risk	Low Risk	Negligible	

Assessment

Low

In terms of combination of Dust Emission Magnitude and the sensitivity of the areas, the risks ranking of Impacts for each activities (including earthworks, construction, and track-out) are summarized and presented in Table 10.13.

Table 10.13 Risks of Impacts on Air Quality during Pre-Construction and Construction Phases

Potential Impact	Risk			
	Earthwork	Construction	Track-out	
People and Properties	Low Risk	Low Risk	Low Risk	
Human Health	Low Risk	Low Risk	Negligible	
Ecological Impact	Low Risk	Low Risk	Negligible	

10.1.4.2 Additional Mitigation Measures

The following mitigation measures are designed to minimise the impact, as follows:

- Prioritise materials to be supplied by local suppliers
- Water sprays should be applied at land preparation area, access roads and any other exposed surfaces which could be source of dust are to be watered
- The speed limit of trucks and other vehicles should be control not to exceed 10 km/h within the Project boundary
- Areas of construction, stockpile areas and other exposed soils will be designated as such in order to minimise vehicle movements over these to the minimum amount possible
- No cleared vegetation to be burnt. Cleared vegetation will either be composed or reused for stabilisation purposes
- Ensure valid inspection certification for transport vehicles and construction machines
- Cover construction material deliveries or loads entering and leaving the construction site by an appropriate cover for the purpose of preventing materials and dust spillage
- Vehicles transporting materials inside or outside the construction site will not to be overloaded
- Vehicle engines need to be properly maintained to ensure minimization in vehicular emissions
- Use of modern equipment and vehicles meeting appropriate emissions standards, and regular preventative maintenance (in line with manufacturer's recommended maintenance schedules, taking into account intensity of use and operating environment)
- Minimising stockpiling by coordinating excavations, spreading, and regrading and compaction activities
- Excavation, handling and transport of erodible materials shall be avoided under high wind conditions where practicable. Where not feasible, transported erodible materials shall be covered
- Where possible, any soil stock piles should be located in sheltered areas where they are not exposed to wind. If not feasible, stock piles of soil (or other erodible materials) should be securely covered, and
- Rehabilitation or replanting of opened up areas that will no longer be used during the operation phase of the project.

10.1.4.3 Residual Impacts

With the implementation of the above mitigation measures, the residual impacts would be expected to decrease to Negligible.

10.1.4.4 Monitoring and Auditing

- In according to the EPP, some monitoring parameters including temperature, humidity, wind speed, noise, dust, CO, NO_x, SO₂ shall be monitored once per six months at three locations (Applicable standard: QCVN 05:2013/BNTMT on Ambient Air and QCVN 26:2010/BTNMT on Noise)
- Wind turbine construction site
- 220 kV substation, and
- Transmission line.
- Some additional monitoring is recommended based on Good Industry Practice¹² as follows:

¹² IAQM

- Carry out daily on-site inspections and off-site inspection, where receptors are nearby, to monitor dust deposition, record inspection results and make an inspection log available to the local authority when asked, and
- Increase the frequency of site inspections by the person accountable for air quality and dust issues on the site when activities with a high potential to procedure dust are being carried out and during prolonged dry or windy conditions.

The Project's Owner shall supervise the implementation of all proposed mitigation measures and monitoring by the Contractors.

10.1.4.5 Impact during Operation Phase

The potential impacts on air quality from operation activities (e.g. Wind Turbine Generator operations, inspection and maintenance) are considered negligible, so no further assessment is needed.

10.2 Noise Impact Assessment

10.2.1 Scope of the Assessment

The Scope of Noise Impact assessment which listed potential impacts and consequences as well as identified receptors is described in Table 10.14.

Phases	Potential Activities	Potential Impacts	Potential Consequences	Receptor
Construction	Equipment and material transport and supply	Short-term increase in noise levels (only 18 months of construction phase)	Potential consequences to human health can vary and depend on other factors such as noise level, human health conditions and age. Some studies showed that noise exposure had associated with hearing loss (ADLWD 2019), tinnitus, hypertension, vasoconstriction and other cardiovascular adverse effects (University of California 2019), changes in immune system and birth effects (Passchier 2000).	Nearby residents Construction workers and local people living within noise contour
	Land preparation and civil works such as land clearance, demolition, earthworks			
	Transmission line and laydown area construction			
	Operation of associated facilities such as the concrete batching plant			
	Transportation of equipment, workers and materials			
	Foundation construction and Installation work of the WTGs			
Operation	Operation of the WTGs	Long-term increase in noise levels	can cause in sleep disturbances and increased rate of diabetes.	

Table 10.14 Scope of Noise Impact Assessment

10.2.2 Background Noise Conditions

10.2.2.1 Introduction of Regression Analysis

Regression analysis of the background noise data and the hub height wind speed data were also carried out to determine a line of 'best fit' from the baseline noise measurements, from which the noise impact

assessment criteria have been established as a function of wind speed. Hence, the regression analysis allows for modification of the criteria with wind speed. Regarding the noise monitoring data results, measured noise levels were generally lower than daytime IFC guidelines (55 dB L_{Aeq}) at all six monitoring points. Measured levels were almost higher than night-time IFC guidelines (45 dB L_{Aeq}) at NML1, NML3, NML4, NML5, NML6, only noise levels monitored at NML2 were lower than the night-time value according to IFC 45 dB L_{Aeq} guidelines.

The high noise levels observed at five monitoring points during night-time except for NML2 were caused mainly by motorbikes, rooster crowing, cicadas and other insects and occasionally by loudspeaker and karaoke singing during the monitoring period. This indicates that noise levels were influenced by non-wind affected sources. Measurement data from the "Baseline Noise Report of Huadian Dak Lak Wind Power Project, Krong Buk District, Dak Lak Province" baseline report suggests the non-wind driven noise was present intermittently for large portions of the 48-hour measurement.

According to the research on satellite image, there are 4,602 potential sensitive receptors observed within 2 km noise buffer which is presented in Figure 10.1. Among 4,602 receptors, nine selected Noise Sensitive Receptors (NSRs) representing for nine groups from the 4,602 receptors based on the environmental setting at each receptors. The representative sensitive receptors (NSRs) in the four Project's areas including KB1 and KB2, and CN1 and CN2 were featured in Figure 10.2 and Figure 10.3, respectively.

Source: QGIS, ESRI, Google, June 2021

Figure 10.1 Potential Sensitive Receptors within 2 km Noise Buffer

Source: QGIS, ESRI, Google, August 2021

Figure 10.2 Noise Sensitive Receptors in KB1 and KB2

Source: QGIS, ESRI, Google, August 2021

Figure 10.3 Noise Sensitive Receptors in CN1 and CN2

10.2.2.2 Background Noise Plots and Regression Analysis Results

Background noise is typically expected to increase as wind speed increases, as a result of wind-induced noise generated around objects or vegetation. The measured background noise levels (LA90) for the night-time are plotted against the wind speed at a hub height of 130 metres to obtain a background versus wind speed characteristic.

The line of best fit for the data set is determined using a linear trend line. It provided the most realistic correlation between wind speed and background noise level.

The results of the background noise monitoring and analysis showing the measured noise data points are presented in Figure 10.4 to Figure 10.9 for NML1 to NML6. These plots show the line of 'best fit' curve during night-time given the threshold for noise level at night-time (45dbA) is more stringent than daytime (55dbA).

Figure 10.4 NML1 Background Noise Curve

Figure 10.5 NML2 Background Noise Curve

Figure 10.6 NML3 Background Noise Curve

www.erm.com Version: Final Project No.: 0599549 Client: China H

Figure 10.7 NML4 Background Noise Curve

Figure 10.8 NML5 background Noise Curve

www.erm.com Ver Project No.: 0599549 Clie

Figure 10.9 NML6 Background Noise Curve

10.2.3 Impact Assessment

10.2.3.1 Impacts during Construction Phase

10.2.3.1.1 Potential Impacts

During a Project's construction, a range of works and activities will be required at various locations within the area. Those with the potential to generate significant noise emissions include:

- Site preparation, construction and installation works associated with each of the proposed wind turbines
- Site preparation and building construction works associated any permanent facilities
- Construction and installation of the internal electrical network (between turbines) and any associated transmission lines, and
- Use of specialised (e.g. concrete batching plants) or unforeseen wind farm construction equipment, or activities that are to be undertaken.

10.2.3.1.2 Existing Control

The mitigation measures identified in the Feasibility Study Report and document namely Safe and Civilised Construction Plan provided by the Client include:

- Large noise sources such as concrete batching plant and motors should be reasonably arranged for operation time and placed at least 200 meters away from the residential areas
- Any traffics passing through the national roads, provincial roads and trails shall be abided by regulations of National Technical Standard *TCVN 5949-1998*. The speed and transportation time (only after 20:00) shall be in accordance to the regulated limitation

- All motor vehicles, heavy trucks, and construction equipment used in the Project must be checked regularly for noise and vibration
- Avoid construction works from 22:00 to 6:00AM in the next day, and
- Provide adequate PPEs (ear plugs) for workers as working in noisy areas.

10.2.3.1.3 Significance of Impacts

A quantitative noise modelling assessment has not been conducted for construction phase; however, these works and activities (or similar activities) are expected to generate noise levels that would potentially generate direct and negative impacts. This is typical of many construction works associated with major developments. Elevated levels will not represent a constant or long-term emission that would be experienced by the community throughout the projects construction schedule, or for the operational life of the wind farm. Construction noise levels would only be experienced for limited periods of time (18 months) when works are occurring at only select locations; they would often not be experienced for full daytime, evening or night-time periods. Any impacts associated with these works would be temporary and will not represent a permanent impact on the community and the surrounding environment. The impact magnitude accordingly is assessed as **Small** for the noise impact in the construction phase.

The noise level is accelerated by many construction activities, in particular the wind turbine foundation construction which significantly affects to nearby residential areas. Based on the satellite image and data collected during the site survey, there are potentially 4,602 sensitive receptors within the 2 km noise buffer defined by the IFC EHS Guidelines, in which, 147 sensitive receptors are identified to locate in the radius of 300 m of wind turbines. The nearest identified sensitive receptor is only approximately 39 m away from WTG B2 in Krong Buk 2, Cu Ne Commune, Krong Buk District, Dak Lak Province. Sensitive receptors (147 as mentioned above) are not only permanent residential buildings but also temporary houses and/or places for local people to stay and rest during their cultivation. According to the social baseline survey, many people were still moving to live in these houses to take care of their cultivating land nearby the construction site. In addition, the presence of a large labour forces at the construction site attracts many other services as local people come and sell beverage for workers at the site. Hence, the receptor sensitivity is considered as **High** level during the construction phase.

Some noise from construction sites is inevitable, such that good construction management practices usually focus on minimising noise impacts, rather than only on achieving numeric noise levels. Good-practice construction noise management and noise mitigation techniques may be required for construction of the Project to reduce noise levels as far as reasonably practicable. These would need to be considered and then implemented, where necessary.

Based on the findings discussed above, suitable recommendations which can be considered and potentially implemented on-site are provided in Section 10.2.3.1 of this report. Construction noise and vibration levels would be reduced and impacts during this stage be minimised with the successful implementation of these recommendations. Impacts may not be reduced to negligible levels for all receptors during all construction activities; however, the recommendations are designed to ensure that any residual impacts are minimised as far as is reasonably applicable.

Impact Description	Noise impacts durin	Noise impacts during Construction Phase				
Impact Nature	Negative		Positive		Neutral	
Impact Type	Direct		Indirect		Induced	
Impact Duration	Temporary	Short-term		Long-term		Permanent
Impact Extent	Local		Regional		Interna	ational
Impact Frequency	Intermittent over the construction period (18 months)					

Table 10.15	Noise Impact during Construction	n Phase
-------------	----------------------------------	---------

Impact Description	Noise impacts during Construction Phase					
Impact Magnitude	Negligible Small			Medium		Large
Receptor Sensitivity	Low		Medium		High	
Impact Significance	Negligible	Minor		Moderate		Major

10.2.3.1.4 Additional Mitigation Measures

Based on the findings of the qualitative construction noise assessment presented in the section above noise mitigation will be adopted as follows:

- Community engagement during the construction phase:
 - Engage with the community at the earliest to get their consent on some noisy activities and negotiate the best time to conduct some noisy work as the residents are not at home
 - Arrange the respite period for the noisy activities (5 10 minutes break every working hour), and
 - Alleviate community concern as construction noise is short-term and day time only. The noisiest is only at the place where the construction activities occur.
- During construction of the Project good practice construction noise mitigation and management measures should be implemented to reduce noise levels and minimise any impacts as far as reasonably practicable. A range of mitigation and management measures are available and those that are considered feasible, reasonable and practical to implement the specific tasks:
 - avoid unnecessary noise due to idling diesel engines and fast engine speeds when lower speeds are sufficient
 - ensure all machines used on the site are in good condition with limited number of allowed equipment at one location, with particular emphasis on exhaust silencers, covers on engines and transmissions and squeaking or rattling components. Excessively noisy machines should be repaired or removed from the site, and/or
 - ensure that all plant, equipment and vehicles movements are optimised in a forward direction to avoid triggering motion alarms that are typically required when these items are used in reverse.
- High noise generating construction works and activities should be limited to the daytime period (7:00 to 22:00), and work should be avoided on Sundays or public holidays if possible.
- Any works that are required during the night time period (22:00 to 7:00) should be justified and task-specific noise mitigation and management measures should be implemented to reduce noise impacts to the acceptable levels. These additional measures should consider the potential for sleep disturbance impacts that could occur during the night time period due to "peak" or "maximum" noise level events e.g. metal on metal contact, or general clangs and bangs.
- Works associated with transmission line and access road construction often require activities in closer proximity to receptors that are not affected by construction works at wind turbines, or permanent facilities. In these circumstances task-specific noise mitigation and management measures should be implemented (when works are close to receptors) to reduce noise impacts to acceptable levels.
- Construction road traffic and heavy vehicle movements have the potential to generate high "peak" or "maximum" noise level events and these should be limited during the night-time period, and avoided if possible. Where possible, significant noise generating vehicle movements should be limited to the daytime period. Where it is not possible for this to occur drivers should be instructed to arrive and depart as quietly as possible. Whilst on-site and in close proximity to receptors the

drivers should be instructed to implement good-practice noise management measures to reduce peak noise levels and minimise any impacts as far as reasonably practicable. During the works, instruct drivers to travel directly to site and avoid any extended periods of engine idling at or near residential areas, especially at night.

- If any validated noise complaints and grievances are received, the problem source and any potential noise reducing measures should be identified and evaluated for implementation during the works. If the noise complaint cannot be validated, no further mitigation or management measures are required.
- Limit unauthorised local people or any person coming near the construction site in order to reduce the unnecessary physical and mental health-related impact during the construction time.

No further recommendations for construction noise mitigation and management measures to those established by the findings of this assessment, and documented in this report, are provided or warranted for the Project. The Project personnel should, however remain aware of the potential for nuisance, or an unacceptable impact on amenity, to occur due to construction noise, continue to plan for and then manage construction works accordingly.

10.2.3.1.5 Residual Impacts

With the proposed mitigation measures, the residual impacts are supposed to be Minor.

10.2.3.1.6 Monitoring and Audit

Monitoring of Noise shall be conducted monthly at the same locations of the baseline monitoring survey and the starting point of Project access road from National Road No.14 during the construction phase till it finishes. The monitored parameters include L_{Aeq} in accordance to *QCVN 26:2010/BTNMT* – National Technical Regulation on Noise and IFC EHS Guidelines. The EPC company shall conduct weekly checks (e.g. monitoring locations to cover nearest sensitive areas to project boundary and along the National Road and access road) to determine if corrective actions or additional measures should be put in place.

10.2.3.2 Impacts during Operational Phase

10.2.3.2.1 Impact Assessment Criteria

Wind farm noise assessment criteria for receptors were based on the background noise plot against wind speed with the omission of non-wind sources, and on the limits defined in the ETSU-R-97 "*The Assessment & Rating of Noise from Wind Farms*" document referenced in the IFC Environmental, Health and Safety Guidelines for Wind Energy, 2015. Using this approach a noise limit was derived based on background noise which was 5 dBA above background noise (L_{A90}). Since wind turbine noise specification data are provided in terms of L_{Aeq}, the predicted L_{Aeq} noise levels from the wind turbines cannot be compared directly to the L_{A90} criteria. A further 2 dB has been added to convert the L_{A90} criteria to enable direct comparison to the predicted L_{Aeq} noise levels. This factor is based on the approximate difference between the two parameters for a typical wind farm based on the UK Institute of Acoustics (IOA) document "A Good Practice Guide to the Application of ETSU-R-97 for the Assessment and Rating of Wind Turbine Noise" (2013).

The IFC General EHS Guideline noise guidelines are also referenced in the IFC wind energy guidance, which are 55 dB L_{Aeq,1 hour} during the day (7:00 to 22:00) and 45 dB L_{Aeq,1 hour} at night (22:00 to 7:00). If the noise level measured at the noise sources exceeds the threshold regulated by IFC, the background noise will be applicable for assessment. Based on this methodology, the plots showing the impact assessment criteria relationship with hub height wind speed for each noise survey location (NML1 to NML6 for night-time only), where a line of 'best fit' was chosen with the omission of non-wind affected sources) are mentioned in Figure 10.4 to Figure 10.9.

10.2.3.2.2 Noise Prediction Method

The noise model used in this study to predict wind farm noise levels at sensitive receptors is based on ISO 9613-2:1996 as implemented in the computer-based Predictor noise model. The model predicts noise level through spherical spreading and includes the effect of air absorption (as per ISO 9613-2:1996), ground attenuation and shielding. The further advice provided by the UK IOA which is referenced in the IFC wind farm guidance has also been adopted.

Predicted L_{Aeq} noise levels were calculated based upon sound power levels determined in accordance with the recognised standard IEC-61400-11:2012 "*Wind Turbine Generator Systems – Part 11: Acoustic Noise Measurement Techniques*", where available, for the wind range of 3 m/s to 20 m/s (referred to cut-in and cut-out wind speed specs of two wind turbine types).

Key features, inputs and assumptions that have informed the noise modelling and assessment are reproduced or outlined in Table 10.16 below.

Table 10.16 Assessment Features, Inputs and Assumptions

ID	Features	Description					
1	General Acoustics	All sound pressure levels presented in this report (e.g. noise levels predicted at a receptor) are in decibels referenced to 2 x 10 ⁻⁵ Pa, with A-weighting applied. All sound power levels presented in this report (e.g. noise levels assigned to specific sources) are decibels referenced to 10 ⁻¹² W, with A-weighting applied.					
2a	Noise Modelling	Predictor noise modelling software package was utilised to calculate noise levels using the ISO 9613:2 noise propagation algorithms (international method for general purpose, 1/1 octaves). For sound calculated using ISO 9613:2, the indicated accuracy is ± 3dBA at source to receiver distances of up to 1000 metres and unknown at distances above 1000 metres.					
2b		The Predictor software package allows 3D elevation data to be combined with ground regions, water, foliage, barriers, significant building structures etc. and receptor locations, to create a detailed and accurate representation of the wind farm and surrounding area. The noise model allows for the quantification of noise levels from multiple sources, based on sound levels emitted from each source. It computes the noise propagation in the assessment area of influence to specifically quantify A-weighted decibels, Leq in dBA at identified noise-sensitive receptors.					
2c		A ground absorption factor of 0.5 was adopted across the entire modelled region, which represents an absorption factor for partly soft ground.					
3	Noise Source Data	Sound Power Level (L _w , dBA) data (overall L _w values) incorporated into the project-specific noise model for the Envision wind turbine model was provided for use in this assessment by the manufacturer. The Envision data identified the Lw, dBA value of:					
		- each wind turbine model (standard blades) at wind speeds between cut-in and cut-out e.g. 3 to 20 metres per second (m/s); and					
		- operation mode of wind turbine EN-141/2.65 (calculated for worst case scenario)					
		The key document referenced to quantify main source emissions for the Envision turbines provided by the Project owners is Document No.: EN- 141/2.65 MW Wind Turbine General Specification and EN-156/3.0 MW Wind Turbine Generator Product Manual.					
		 Spectral data (dBA per frequency band in 1/1 octaves). 					
		 Hub height of 130 metres has been adopted for all EN-156/3.0 and EN-141/2.65 wind turbines. 					
		Potential cumulative wind farm noise impacts:					
		 Noise modelling of potential cumulative wind farm noise takes into account predicted noise levels from nearby wind farms including Tay Nguyen and Ea Nam wind farms, given their potential to contribute to noise levels at NSRs associated with the Project. The cumulative impact assessment will be further assessed in later Chapter 					
		- Sound power level data was assumed in this report, adopting a worst-case approach for the candidate turbines.					
		A conservative hub height was adopted for all WTGs where data supplied by the client were unavailable					

10.2.3.2.3 Noise Emission Sources

The noise specifications adopted for the purpose of this assessment are presented in Table 10.17. These specifications are for wind speeds between 3 m/s and 20 m/s. Below 3 m/s significant differences in levels and impacts are not anticipated and above 20 m/s noise level results are expected to be equal to that modelled for the 20 m/s wind speed scenario.

The reference spectrum (noise level in dBA for each 1/1 octave band between 31.5 Hz and 8000 Hz), was taken from the Envision EN-141/2.65 MW and EN-156/3.0 MW wind turbine corrected to 109.1 and 106.99 dB(A), respectively and is also presented in Table 10.17. This spectrum is from Predictor V2020 wind turbines database. The sound power levels are presented for the highest overall sound power value used in the assessment (109.1 and 106.99 dBA) which applies at 9 m/s wind speed and above. The sound power spectrum has been adjusted at lower wind speeds to represent the lower sound power values that are generated.

Table 10.17Envision Reference Spectrum Used to Represent Envision EN-141/2.65 MW and
EN-156/3.0 MW

Make, Model, Mode,	Spectral Data – dBA in 1/1 Octave Bands: 31.5 to 8kHz									Overall	
Wind Speed	31.5	63	125	250	500	1000	2000	4000	8000	L _w (dBA)	
EN-156/3.0 MW	78.35	85.99	91.42	97.24	102.25	98.53	92.8	89.74	86.16	106.99	
EN-141/2.65 MW	68.4	80.3	89.9	97.4	102.2	98.1	90.8	80.7	67.1	109.1	

10.2.3.2.4 Representative Noise Sensitive Receptors for Modelling

A total of four representative Noise Sensitive Receptors (NSRs) were chosen as the closest in each group of receptors within areas most likely to be affected. These are described in Table 10.18 below.

Receptor ID	tor Coordinates (WGS 84)		Comments
	Longitude	Latitude	
NSR 1	108.16395	13.02287	Representative of closest residential properties in Buon Druong Village, Cu Pong Commune, Krong Buk District. NSR 1 is located approximately 253 metres of the nearest wind turbine A18. Associated noise monitoring location is NML6.
NSR 2	108.19611	13.02850	Representative of closest residential properties in Buon Moi Village, Cu Pong Commune, Krong Buk District. NSR 2 is located approximately 106 metres of the nearest wind turbine A17. Associated noise monitoring location is NML5.
NSR 3	108.17946	13.04375	Representative of closest residential properties in Buon Moi Village, Cu Pong Commune, Krong Buk District. NSR 3 is located approximately 80 metres of the nearest wind turbine B9. Associated noise monitoring location is NML5.
NSR 4	108.20317	13.06922	Representative of closest residential properties in Buon Kdro 2 Village, Cu Ne Commune, Krong Buk District. NSR 4 is located approximately

Table 10.18	Representative Noise Sensitive Recepto
Table 10.18	Representative Noise Sensitive Recepto

Receptor ID	Coordinates (WGS 84)		Comments
	Longitude	Latitude	
			39.2 metres of the nearest wind turbine B2. Associated noise monitoring location is NML4.
NSR 5	108.21397	13.065752	Representative of closest residential properties in Buon Kdro 2 Village, Cu Ne Commune, Krong Buk District. NSR 5 is located approximately 120 metres of the nearest wind turbine B19. Associated noise monitoring location is NML4.
NSR 6	108.24051	13.06662	Representative of closest residential properties in Buon Dhia 1 Village, Cu Ne Commune, Krong Buk District. NSR 6 is located approximately 504 metres of the nearest wind turbine C17. Associated noise monitoring location is NML3.
NSR 7	108.24717	13.054590	Representative of closest residential properties in Buon Kdro 2 Village, Cu Ne Commune, Krong Buk District. NSR 7 is located approximately 64.3 metres of the nearest wind turbine C16. Associated noise monitoring location is NML4.
NSR 8	108.25673	13.102260	Representative of closest residential properties in Ea Nguoi Village, Cu Ne Commune, Krong Buk District. NSR 8 is located approximately 374 metres of the nearest wind turbine C1. Associated noise monitoring location is NML2.
NSR 9	108.27617	13.119350	Representative of closest residential properties in Quang Trung Village, Ea Tan Commune, Krong Nang District. NSR 9 is located approximately 62 metres of the nearest wind turbine D5. Associated noise monitoring location is NML1.

Note 1: Universal Transverse Mercator coordinate system

10.2.3.2.5 Predicted Wind Farm Operational Noise Levels

The resultant worst-case operational noise levels from the Project for each NSR are presented in Table 10.20. Noise contour maps for the Project operating in the acoustically worst-case mode, are provided in Figure 10.10.

Table 10.19 P	Predicted Operational Noise Levels at NSRs (L	.Aeq)
---------------	---	-------

Wind Speed at Hub Height (m/s)	Predicted Noise Level at NSR 1	Predicted Noise Level at NSR 2	Predicted Noise Level at NSR 3	Predicted Noise Level at NSR 4	Predicted Noise Level at NSR 5	Predicted Noise Level at NSR 6	Predicted Noise Level at NSR 7	Predicted Noise Level at NSR 8	Predicted Noise Level at NSR 9
3	49	51	52	53	52	40	53	47	53
4	49	51	52	53	52	40	53	47	53
5	49	51	52	53	52	40	53	47	53
6	49	51	52	53	52	40	53	47	53
7	55	57	58	58	57	46	58	52	59
8	55	57	58	59	57	46	58	53	59
9	55	57	58	59	57	46	58	53	59
10	55	57	58	59	57	46	58	53	59
11	55	57	58	59	57	46	58	53	59
12	55	57	58	59	57	46	58	53	59
13	55	57	58	59	57	46	58	53	59
14	55	57	58	59	57	46	58	53	59
15	55	57	58	59	57	46	58	53	59
16	55	57	58	59	57	46	58	53	59
17	55	57	58	59	57	46	58	53	59
18	55	57	58	59	57	46	58	53	59
19	55	57	58	59	57	46	58	53	59
20	55	57	58	59	57	46	58	53	59
21	55	57	58	59	57	46	58	53	59
22	55	57	58	59	57	46	58	53	59
23	55	57	58	59	57	46	58	53	59
24	55	57	58	59	57	46	58	53	59
25	55	57	58	59	57	46	58	53	59

Source: QGIS, ESRI, Google, August 2021

Figure 10.10 Worst-case and Operational Noise Contours of the Project

10.2.3.2.6 Discussion of Predicted Wind Farm Noise

Wind farm noise predictions have been undertaken at each of the representative receptors (NSRs) for operations. Figure 10.11 to Figure 10.16 show the predicted noise levels without mitigation and a comparison with night-time impacts assessment criteria at four NSRs (as assumed that night-time is the most stringent noise level regarding IFC standard). These results are discussed further below.

Figure 10.11 Predicted Wind Farm Noise Levels and Noise Assessment Criteria against (Hub Height) Wind Speed for NSR 1 (which refers to Baseline Location NML 6)

Figure 10.12 Predicted Wind Farm Noise Levels and Noise Assessment Criteria against (Hub Height) Wind Speed for NSR 2 and NSR 3 (which refer to Baseline Location NML 5)

Figure 10.13 Predicted Wind Farm Noise Levels and Noise Assessment Criteria against (Hub Height) Wind Speed for NSR 4, NSR 5, and NSR 7 (which refers to Baseline Location NML 4)

Figure 10.14 Predicted Wind Farm Noise Levels and Noise Assessment Criteria against (Hub Height) Wind Speed for NSR6 (which refers to Baseline Location NML3)

Figure 10.15 Predicted Wind Farm Noise Levels and Noise Assessment Criteria against (Hub Height) Wind Speed for NSR8 (which refers to Baseline Location NML2)

Figure 10.16 Predicted Wind Farm Noise Levels and Noise Assessment Criteria against (Hub Height) Wind Speed for NSR9 (which refers to Baseline Location NML1)

Source: QGIS, ESRI, Google, June 2021

Figure 10.17 Classification of Sensitive Receptors with regards to the Noise Level Increments from the Project's WTGs

Overall, total eight NSRs namely NSR1, NSR2, NSR3, NSR4, NSR 5, NSR7, NSR8, and NSR9 over nine having noise impacts are predicted to be exceeded the stipulated limit (at 45dBA) in the IFC EHS guideline and ambient noise level of each correspondence NMLs for the night-time. Among eight NSRs, NSR5 and NSR8 are predicted to exceed the night-time criteria at wind speed of over 6m/s. Only one

NSR6 is predicted to have no noise impacts during night-time in comparison to background noise at NML3. Noise levels calculated at NSR1, NSR2, NSR3, NSR4, NSR5, NSR7, NSR8, and NSR9 associated with background noise level at NML1, NML2, NML4, NML5, and NML6 are expected to be over maximum 13dBA when wind speed reaches 7 – 8 m/s. During day time, there are only three NSRs including NSR1, NSR6, and NSR8 receiving noise level lower than the regulated limit (55dBA) according to IFC EHS Guidelines and background noise associated with the background noise level at NML2, NML3, and NML6. The remaining six over nine NSRs exceeded 3 – 4 dBA in comparison to the noise level of standard and baseline at wind speed of 6.5 m/s. Figure 10.17 presents the noise level increments for each identified receptors as mentioned in Figure 10.1 due to the operation of the Project's WTGs. Out of 4,602 identified receptors within the two-kilometre buffer, it is anticipated that:

- 3,524 (76.57%) identified receptors are already under the noise level threshold
- 333 (7.24%) identified receptors will received a noise level at the increment of less than 1dBA. A change in sound level of 1 dB cannot be perceived¹³.
- 415 (9.02%) identified receptor will received a noise level at the increment of more than 1dBA but less than 5dBA. A change in sound level within this range is considered a barely discernible difference^{wo}, and
- 330 (7.17%) identified receptors will received a noise level at the increment of more than 5dBA out of which 147 receptors are located within the WTGs safety zones (300.75 m for the EN-141/2.65 and 312 m for the EN-156/3.0). A change in sound level of 5 dB will typically result in a noticeable community response¹³.

10.2.3.2.7 Significant of Impacts

The assessment has indicated that noise impacts from the Project's WTGs operations are expected to be the most significant at NSR3 and NSR9 during the night-time because predicted noise levels are above criteria at maximum 13dBA at wind speed of 7 - 8 m/s when operating at the acoustically worst-case scenario. In addition, according to provided wind data (See Chapter 7 Environmental Baseline), it is observed that the wind speeds at 120 m are regularly fallen from 7 m/s to 8 m/s which means NSR3 is also expected to mostly receive at maximum +13dBA on top of current noise levels within the Project's area. For the remaining seven NSRs including NSR1, NSR2, NSR4, NSR 5, NSR7, NSR8, and NSR9, the predicted noise levels are also exceeded 4-12dBA in comparison to the background noise criteria at wind speed over 6.5 m/s. Therefore, the impact magnitude is therefore considered Large.

During the operation, the wind turbine noise exposure can cause direct and negative effect such as disturbance and potential health impact on local people living in nearby residential areas for long-term period (20 years of operation in this case). There are many publications showing the negative health-related effect on human such as physiological (blood pressure rising, headache, hearing loss and sleep disturbance) and psychological (annoyance or nervousness) symptoms¹⁴ ¹⁵. In addition, the closer the distance of exposing to the noise source, the more significant the impact will be. Also mentioned in Section 10.2.3.1.3, due to a dense of sensitive receptors situating around the WTGs, the impact associated with noise accelerates significantly during the operation phase. Hence, the sensitivity of receptors in the area is considered **High**. Therefore, the negative impact is ranked as being of **Major** significance, as shown in Table 10.20.

Table 10.20	Noise Impact Significance during Operation Phase	
-------------	--	--

Impact Description	Noise Disturbance and Potential Health Impact				
Impact Nature	Negative	Positive	Neutral		

¹³ http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.525.6394&rep=rep1&type=pdf

¹⁴ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5551191/

¹⁵ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4256253/

Impact Type	Direct		Indirect		Induced		
Impact Duration	Temporary	Short-	-term	rm Long-term		Permanent	
Impact Extent	Local	Regional		Globa		al	
Frequency	Operational noise lev conditions and WTG	Operational noise levels may occur intermittently or continuously depending on wind conditions and WTG operations in the operation phase					
Impact Magnitude	Negligible	Small		Medium		Large	
Receptor Sensitivity	Low		Medium		High		
Impact Significance	Negligible	Minor		Moderate		Major	

10.2.3.2.8 Additional Mitigation Measures

Below are some mitigation measures in terms of IFC hierarchy recommended for noise impact during the operation phase:

- Routine maintenance of wind turbines should also be conducted during the operation phase, with specific attention to equipment degradation that may cause further noise impacts. Any equipment that is abnormally noisy should be evaluated and repaired as necessary to return emissions to typical operating performance.
- Community grievance mechanism should be applied. It is recommended that if any repeated/validated noise complaints are received then compliance monitoring should be undertaken at the most affected receptors to confirm predicted noise levels. Where noise monitoring occurs, the work should be scoped and then conducted by a suitably experienced person. The purpose of the monitoring is to understand in-situ levels and to provide a comparison to predicted levels such that any additional controls be identified and then implemented if feasible, reasonable and practical to do so. If this is required:
 - All project / site noise levels should be measured in the absence of any influential source not associated with the project
 - If the measured site noise levels are below the predicted values and comply with the applicable thresholds, limits or criteria identified for each noise aspect, no further noise control is required, and
 - If the measured site noise levels are above the predicted noise levels or the applicable thresholds, limits or criteria identified for each noise aspect, further noise control should be considered.
- Closely collaborating with local authorities to ensure local people are well aware of the predicted noise exceedance areas and notify the potential impacts to local residents in case of new houses are proposed within those areas.
- Other receptors (183 receptors) outside of the buffer safety area of WTGs receiving a noise level at the increment of more than 5dBA shall also be closely communicated and monitored the noise impact level from wind turbine operation via different communication channels (village heads, Project's grievance mechanism, and local authorities).
- Operational curtailment: In certain jurisdictions, there may be requirements to shut down wind turbines in some periods during the specific meteorological conditions to meet the regulated noise emission at nearby dwellings.
- Consider to replace these WTGs (WTG A17, WTG B9 and WTG D5 associated with NSR2, NSR3 and NSR9 which generated high noise level exceeding 12-13 dBA more than the standard) with the quieter or even relocate these to the less sensitive areas to take advantage of distance and shielding.

- In the worst case scenario where the replacement or relocation of wind turbines is failed to minimise the generated high noise level, the removal of wind turbines (WTG A17, WTG B9, and WTG D5) shall be carefully considered.
- Relocation of potential sensitive receptors, particularly identified households living within the buffer safety area of 300 m of eight WTGs including WTG A17 (4 sensitive receptors SRs), WTG A18 (1 SR), WTG B2 (6SRs), WTG B9 (3SRs), WTG B19 (8SRs), WTG C1 (1SR), WTG C16 (5SRs), and WTG D5 (4SRs), who are predicted to be significantly affected by noise impact, is highly recommended, nevertheless a validation survey is recommended which includes additional survey to perform a census of the exact affected households and uses. Activities like agriculture, are not restricted in safety buffer areas according to national and international applicable standards. In this case, the relocation plan shall be developed and managed by the Project's owner. These 32 receptors out of 147 receptors located within the WTGs' safety zones are identified as severely impact by the noise more than others.

10.2.3.2.9 Residual Impacts

The residual impact is still considered as Major due to the high density of residential within the Project's area. The Project's owner shall be responsible for applying the mitigation measures and re-assessing the implementation to ensure that the noise level at the potential affected receptors is met the permissible threshold of national and international standards.

10.2.3.2.10 Monitoring and Audit

It is suggested that monitoring of noise will be conducted quarterly at representative areas of Noise sensitive receptors during the operation phase. The monitored parameters include L_{A90} and L_{Aeq} in accordance to *QCVN 26: 2010/BTNMT* – National Technical Regulation on Noise. Additionally, noise-related complaints should be monitored through the Project's grievance mechanism.

10.3 Water Resource Impact Assessment

10.3.1 Scope of Assessment

According to Feasibility Study Report, water for construction activities will be taken from nearby reservoir or local drilling wells. This section discusses the potential impacts of the Project's construction activities to the surface water and groundwater.

Activities causing the potential impacts to surface water availability and quality as well as receptors of the impacts are described in Table 10.21.

Potential Activities	Potential Impacts	Potential consequences	Receptors
Land preparation and civil works	Increased turbidity due to suspended solid concentration into	 Decreased quality in surface water bodies 	Water supplies:
Construction of transmission line, access road, wind turbine foundation, and laydown area	 nearby lakes, rivers and Streams Increased contaminants such as heavy metals, oil and grease etc. into surface water bodies from construction activities 	 (creeks) which is used by the local people for their domestic purposes. Water shortage for page/u recenters 	domestic water users Downstream surface water users
Operation of temporary facilities such as the concrete batching plant	 Waste discharged from construction activities and worker's activities 	nearly receptors	Project's proximity.

Table 10.21 Scope of Water Resource Assessment – Construction Phase

Potential Activities	Potential Impacts	Potential consequences	Receptors
Water consumption for worker's activities - groundwater.	Spillage of oil, chemicals, hazardous chemical from use of vehicles and construction machines during the construction phase, and		
Waste and wastewater management from construction activities and worker's activities	 Reduction in downstream water availability, conflicts with surface water users. 		
Hazardous waste storage and handling			

10.3.2 Relevant Guidelines and Criteria

10.3.2.1 Vietnam Regulations

- Circular No. 16/2009/TT-BTNMT dated 7 October 2009 on guiding the implementation of National technical regulations on environmental protection
- Circular No. 32/2013/TT-BTNMT dated 25 October 2013 on guiding the promulgation of National technical regulations on environment
- QCVN 08-MT:2015/BTNMT National Technical Regulation on Surface Water Quality
- QCVN 09-MT:2015/BTNMT National Technical Regulation on Groundwater Quality
- QCVN 14:2008/BTNMT National Technical Regulation on Domestic Wastewater
- Decree No. 149/2004/ND-CP: Government Decree on Regulation on Insurance of Permits for Water Resource Exploration, Exploitation and Use, or for Discharge of Wastewater into Water Source, and
- Decree No. 67/2003/ND-CP regarding Environmental Protection Fees and Charges for Wastewater.

10.3.2.2 International Guidelines

- ESS1: Environmental and Social Assessment and Management: To conduct an environmental and social assessment relating to these risks and impacts, and design appropriate measures to avoid, minimise, mitigate, offset or compensate for them
- IFC Performance Standard 3: Resource Efficiency and Pollution Prevention requires the Project to consider ambient conditions and apply technically and financially feasible resource efficiency and pollution prevention principles and techniques that are best suited to avoid, or where avoidance is not possible, minimize adverse impacts on human health and environment
- IFC Performance Standard 6: Biodiversity Conversation and Sustainable Management of Living Natural Resources recognized that protecting and conserving biodiversity, maintaining ecosystem services and sustainably managing living natural resources and fundamental to sustainable development
- IFC General EHS Guidelines (Section 1.3, 2007): Wastewater and Ambient Water Quality contains guidelines for projects that have discharge of process water, wastewater from utility operations or storm water to environment. The guidelines provide suggested approaches for the management of wastewater, including water conservation, wastewater treatment, storm water management and wastewater and water quality monitoring

- IFC General EHS Guidelines (Section 1.4, 2007): Water Conservation contains general recommendations for water conservation programmes, water monitoring and management programmes and process water reuse and recycling, and
- IFC General EHS Guidelines (Section 4.0, 2007): Construction and Decommissioning provides specific guidance on prevention and control of community health and safety impacts that may occur during new project development. It covers various aspects of the environment, including noise and vibration, soil erosion, air quality, solid waste, hazardous materials, wastewater discharges etc. It also covers occupational and community health and safety.

10.3.3 Baseline Conditions

10.3.3.1 Water Availability

10.3.3.1.1 Surface Water

As stated in Chapter 7, although there are no major rivers traversing the Project's area, many small lakes and creeks are evenly distributed around Cu Ne and Cu Pong Communes. In Cu Ne Commune, the main water sources serving the agricultural production in the area include Ea Kroa, Ea Drao, Ea Siak, Ea Kmu streams, and large and small ponds/dams covering an area of over 80 hectares. Most of these streams are stretching along the East of National Road 14 and flowing all year round from Northwest to Southeast with a relatively high flow. Additionally, the area to the West of National Highway No.14 has plenty of streams namely Ea Sup, Ea Bro, Ea Kring, Ea Mui, Ea Nang, Ea Gir, Ea Klang, and Ea Ne. All these streams flow under the East to the West direction with different flow rates during rainy and drying seasons. Moreover, there are a number of dams in the area such as Ea Klang dam covering an area of 6 hectares.

In Cu Pong Commune, there is a variety of surface water bodies such as streams (Ea Mok, Ea Sup, Ea Kok, Ea Ban, Ea Knung, Ea Drao, and Ea Tul) and lakes (Ea Bro, Ea Knung, Ea Klok, Krong Ana, and Adrong Diet) supporting to the irrigation of farming activities. However, severe drought happens leading to water shortage to this area every year during dry season.

Source: QGIS, ESRI, Google, August 2021

Figure 10.18 Water Bodies in the Project's Area

10.3.3.1.2 Groundwater

Regarding the social baseline, there are abundant sources of groundwater in Cu Ne Commune, Krong Buk District, Dak Lak Province which are exploited by the local people serving their domestic use and irrigation. The average depth of these groundwater wells in Cu Ne Commune is approximately 15 to 25 m.

Groundwater is also the main source for daily life and partly for crop irrigation during drying season of local people residing in Cu Pong Commune. The average depth of groundwater wells in Cu Pong Commune is recorded 18 - 20 m.

In accordance to the Social baseline survey report, 100% surveyed households in the area use groundwater for domestic use (68.8% uses driven wells and 31.2% uses drilling wells). Local people in Cu Ne and Cu Pong Communes can also access to secondary water sources with small percentage including 13.9% of bottled water, 2.8% of rain water, and 2.1% of water from river, spring, and lakes.

10.3.3.2 Water Quality

10.3.3.2.1 Surface Water

The surface water's quality at the area surrounding the Project site was in good condition according to the Feasibility Study Report and Dak Lak Province's Environmental Monitoring Report in 2020¹⁶. Assuming that all surface water parameters were under the threshold regulated in National Technical

¹⁶ Provided by the Department of Natural Resources and Environment (DoNRE) of Dak Lak Province

Regulations on Surface Water Quality (*QCVN 08-MT:2015/BTNMT*) at column B1 of the limits for irrigation, water transportation, or other similar purposes.

10.3.3.2.2 Groundwater

The Feasibility Study Report and the Dak Lak Province's Environmental Monitoring Report in 2020 also stated that the groundwater quality within and around the Project area has been in good condition. Also assuming that all parameters of ground water were lower than the allowable limits of the National Technical Regulation on ground water quality *QCVN 09-MT: 2015/BTNMT*.

10.3.4 Impact Assessment

For the assessment of water resource availability and water quality, the sensitivity and magnitude criteria are outlined in Table 10.22 and Table 10.23.

Sensitivity Criteria	Contributing Criteria						
	Environment ¹⁷	Social ¹⁸					
Low The water resource does not support diverse aquatic habitat or populations, or supports aquatic habitat or population that is of low quality.		The water resource has little or no role in terms of provisioning services as agricultural water source, other domestic uses as washing, bathing, industrial use and waterways for the local community.					
Medium	The water resource supports diverse populations of flora and fauna but available in the surface water bodies in the region.	The water resources have local importance in terms of provisioning services but there is ample capacity and/or adequate opportunity for alternative sources of comparable quality					
High	The water resource supports economically important or biologically unique aquatic species or provides essential habitat for such species.	The surface water resources are wholly relied upon locally, with no suitable technically or economically feasible alternatives, or is important at a regional or transboundary watershed level for provisioning services.					

 Table 10.22
 Sensitivity Assessment Criteria for Water Resources

Table 10.23	Criteria for Impact Magnitude for Water Res	source Impact Assessment
-------------	---	--------------------------

Magnitude Criteria	Negligible	Small	Medium	Large
General Criteria	No perceptible or readily measurable change from baseline conditions	Perceptible change from baseline conditions but likely to be within applicable norms and standards for model of use.	Clearly evident (e.g. perceptible and readily measurable) change from baseline conditions and/or likely to approach and even occasionally	Major changes in comparison to baseline conditions and/or likely to regularly or continually exceed applicable norms and

¹⁷ The extent to which the water resource plays an ecosystem or amenity role in terms of supporting biodiversity either directly or indirectly, particularly with respect to dependent ecosystems.

¹⁸ The extent to which the water resource provides or could provide a use (drinking water, agricultural uses, washing and other domestic or industrial, use as waterways) to the local communities and businesses, or is important in terms of national resource protection objectives, targets and legislation.

Magnitude Criteria	Negligible	Small	Medium	Large
			exceed applicable norms and standards for mode of use.	standards for mode of use.
Water Quantity	There is likely to be negligible or no consumption of surface water by the Project at any time	The Project will consume surface water, but the amounts abstracted are likely to be relatively small in comparison to the resources available at the time of use (i.e. taking into account seasonal fluctuation)	The Project will consume surface water, and the amounts abstracted are likely to be significant in comparison to the resource available at the time of use (i.e. taking into account seasonal fluctuation).	The Project will consume surface water, and the amounts abstracted are likely to be very significant in comparison to the resources available at the time of use ((i.e. taking into account seasonal fluctuation).
	There is likely to be negligible or no abstraction, use of or discharge to the groundwater by the Project at any time	The Project will consume groundwater or deliver discharge to groundwater, but the amount abstracted/ discharged are likely to be relative small in comparison to the resource available at the time of use (i.e. taking into account seasonal fluctuation).	The Project will consume groundwater or discharge to groundwater, and the amounts abstracted/discharged are likely to be significant in comparison to the resource available at the time od use (i.e. taking into account seasonal fluctuation)	The Project will consume groundwater or discharge to groundwater, and the amounts abstracted/discharged are likely to be very significant in comparison to the resource available at the time od use (i.e. taking into account seasonal fluctuation)
Water Quality	Water quality impacts are likely to be well within ambient levels or allowable criteria Discharges are expected to be well within statutory limits Potential short- term localized effects on water quality but likely to be highly transitory (e.g. lasting a matter of hours) and well within natural fluctuations	Water quality impacts are likely to be well within ambient levels or allowable criteria Discharge are expected to be within statutory limits Potential short-term localized effects on water quality but which are likely to return to equilibrium conditions within a short timeframe (e.g. hours or days at most)	Water quality impacts are likely to result in occasional exceedances of ambient levels or allowable criteria Occasional breaches of statutory discharge limits (limited periods) expected Potential localized effects on water quality which are likely to be fairly long lasting (e.g. weeks or months) and/or give rise to indirect ecological and/or socio-economic impacts	Water quality impacts are likely to routinely exceed ambient criteria levels or allowable criteria over large areas. Repeated breaches of statutory discharge limits (over extended periods) expected Potentially severe effects on water quality which are likely to be long-lasting (e.g. months or more) or permanent and/or give rise to indirect ecological and/or socio – economic impacts.

10.3.4.1 Impact during the Construction Phase

10.3.4.1.1 Potential Impact

The potential impacts on the quality of water surface from the construction activities of transmission line, other components and worker's activities include:

- Increase turbidity due to the sediment and suspended solid (SS) from excavated soil and construction materials washed into freshwater water bodies consisting of lakes and another natural streams
- Increase contaminants (construction debris, fuel, oil, etc.) washed/seep into water bodies due to run-off during rainy months
- Waste discharged from construction activities and worker's activities
- Spillage of oil, chemicals, hazardous chemical from the use of vehicles and construction machines during the construction phase, and
- Reduction in downstream water availability and groundwater resources which may cause conflicts of water demand of local community.

10.3.4.1.2 Existing Controls

The Project's owner suggested some existing controls to minimise the impact to the water sources induced by wastewater and solid waste during the construction phase as below:

- Impacts from wastewater and run-off water:
 - Arrange all working staffs at the construction site to stay in the rented local houses and utilise the in-situ toilets at place
 - The contractors working for the Project shall equip 5 10 portable toilets enclosed with 3compartment septic tanks¹⁹ (V=20m³) (See Figure 10.19) and domestic bins serving the worker's demand at the Project's locations including clearing, levelling, and backfilling areas
 - Utilise water efficiently for construction activities to avoid unnecessary loss of containment to the environment
 - Equipment shall be stored in indoor areas to avoid leakage of oil and lubricant to the environment
 - The repairing and maintenance of transportation vehicles shall be conducted at the garage in order to not release the oil and grease and wastewater from car washing to the surrounding environment
 - The drainage systems to be constructed in the construction areas. Run-off water (mainly rain water) will be collected by internal drainage system and then released into the environment by the inclination of the terrain. Regularly check and clean the drainage system to avoid blockage of soil, debris, and spoil, and
 - Main construction activities should be conducted during dry season to avoid contaminated runoff water into the environment in rainy season.

¹⁹ Environmental Protection Plan (EPP) provided by the Project's owner

Figure 10.19 3-compartment Septic Tank

- Impacts from solid waste:
 - Construction spoil:
 - Construction waste shall be stored at temporarily designated area to avoid being waterlogged and polluted to the surrounding environment
 - Construction waste materials shall be collected, classified and transported for proper treatment by licenced agency in accordance to Article 5, 6, and 7 of *Circular No.* 08/2017/TT-BXD on Construction Solid Waste Management dated 16 May 2017 by the Ministry of Construction.
 - Reuse and recycle construction materials such as plank or timber pillar to compact or strengthen the low terrain, and
 - Spoil materials such as soil, stone, brick, etc. shall be properly managed by the Project's owner and contractor to avoid being invaded to agricultural land of local people; otherwise the Project's owner shall be responsible for compensation and support local people for remediation.
 - Domestic waste:
 - A small amount of domestic waste generated from the location of wind turbine foundation will be collected and buried sanitarily in-situ
 - Domestic waste generated from substation's location shall be collected and stored in 120litter dustbin with lid, then being transported by licensed agency for proper treatment
 - The waste management plan (inventory, dustbin, and cleaning schedule) shall be prepared by the subcontractor during the pre-construction stage
 - Provide trainings and drills on sanitary, security, and environmental protection regulations for workers and personnel working on site
 - Littering is prohibited while working on site, and
 - Reduce, reuse, and recycle of spoil materials for ground levelling.

- Hazardous waste:
 - Hazardous waste materials such as oily rag, welding rod, and paint shall be collected, stored properly in bins with lid at temporarily designated area before being transported by licenced agency for proper treatment, and
 - Regular inspection and maintenance of material and equipment vehicles travelling to the site to avoid leakage of oil and fuel to the environment.

10.3.4.1.3 Significance of Impacts

10.3.4.1.3.1 Impact on Water Quantity

In the construction phase, the Project sourced the groundwater from nearby wells for its activities. The decrease in groundwater resources using for Project's activities is considered as Negative in terms of Impact Nature. It also causes the direct impact to the locals who are dependent on the surface water bodies and groundwater for daily uses. The impact duration is considered as short-term as it has been only within the 18-month of the construction phase and the impact extent is only local scale as happening within the Project's area and the immediate surroundings.

During the construction phase, the water requirement for wind turbine foundation construction and road watering is taken from wells via a pipeline of 1.5 m long. The construction period lasts for 18 months inevitably covering six months of dry season when drought significantly happens in Cu Ne and Cu Pong Communes (referred to environmental and social Baseline). The prolong drought in the areas has depressed the water level of groundwater at low for recent years^{20 21}. According to the Department of Agriculture and Rural Development²², groundwater sources in Krong Pak, Krong Buk Districts of Dak Lak Province are in deteriorated conditions due to pollution and over-exploitation. For instance, in Krong Buk District, the exploited groundwater reaches to 2,000 to 2,500 m³/day serving the need of irrigation and domestic uses of local people. Although the water requirement for the construction period is relatively small, the water competition with local demand is still high during dry season. Hence, the impact magnitude on water quantity-related impact is considered as **Medium**.

Regarding the receptor sensitivity aspect, the significance of impact has been assessed as **High** for social receptors taking into account the chances of an overexploited source of groundwater, causing scarcity of water in the region. The baseline social findings also indicated that the vast majority of affected households (144 surveyed households) rely mainly on groundwater (both driven and drilling wells) as the main source of drinking water and domestic use (bathing, and washing) beside a small percentage of water use from bottled water, rain water, and water from surface bodies (river, spring, and lake). Generally, the impact significance in terms of water quantity during the construction phase has been assessed as **Moderate**.

Table 10.24 Impact on Water Quantity from the Construction Activities and Worker's Activities

Impact Description	Impact on water quantity from construction activities and worker activities					
Impact Nature	Negative		Positive		Neutral	
Impact Type	Direct		Indirect		Induced	
Impact Duration	Temporary	Short-term		Long-term		Permanent

²⁰ https://nhandan.vn/tin-tuc-xa-hoi/tay-nguyen-no-luc-chong-han-456053

²¹ https://baotintuc.vn/tay-bac-tay-nguyen-tay-nam-bo/han-han-keo-dai-hang-nghin-ho-dan-o-dak-lak-thieu-nuoc-sinh-hoat-20200518114003807.htm

²² https://baodaklak.vn/channel/3489/201004/khai-thac-nguon-nuoc-ngam-loi-bat-cap-hai--1939156/

Impact Extent	Local		Regional		Global	
Impact Frequency	Intermittent over the construction period (within 18 months)					
Impact Magnitude	Negligible	Small		Medium		Large
Receptors Sensitivity	Low		Medium		High	
Impact Significance	Negligible	Mino	r	Moderate		High

10.3.4.1.3.2 Impact on Water Quality

In terms of water quality, the improper wastewater discharge from worker's activities and washing of machinery and trucks could have negative impact on surface water. During the peak period, the Project construction will require a workforce of approximately maximum 506 persons and staffs working onsite and at the construction office area. Regarding the benchmarks of water, the maximum water supply norm is specified as 180 litres/person/day²³, then the total water supply is estimated at 506 × 180 = 91,080 litres/day.

Moreover, Item a, Clause 1, Article 39 of *Decree No. 80/2014/ND-CP* specifies that domestic wastewater is estimated at approximately 100% of water supply. Hence, the amount of domestic wastewater for workers is about 91.08 m³/day.

The typical composition and concentration of untreated domestic wastewater²⁴ discharged from worker's activities during the construction phase is presented in Table 10.25 below:

Contaminants	Concentration (mg/l)	QCVN 14:2008/BTNMT (Column B) ²⁵	IFC EHS Guideline Value ²⁶	Applicable standards for the Project
BOD ₅	110 – 350	50	30	30
COD	250 – 800	-	- 125	- 125
Total suspended solid (TSS)	120 – 400	100	50	50
Total Nitrogen	20 – 70	-	10	10
Total Phosphorus	4 – 12	-	2	2
Oil and grease	50 – 100	20	10	10
Total coliform bacteria (MPN/100mL)	10 ⁷ - 10 ¹⁰	5000	400	400

 Table 10.25
 Typical Composition of Untreated Domestic Wastewater

The results show that the typical concentration of pollutants from domestic effluents exceeds the limit of *QCVN 14:2008/BTNMT* (Column B) and IFC EHS Guideline. The wastewater discharged from worker's activities, if not properly treated, will negatively cause surface and ground water contamination in short-term period of 18-month construction phase. Pollution in freshwater sources directly affect the locals that are dependent on the fresh water bodies. The impact extent is only local scale as happening within the Project's area and the immediate surrounding. In addition, as reported in the Dak Lak's Environmental Monitoring Report, surface water quality at the monitoring time in 2020 showed that all

²³ Source: Worker's accommodation: processes and standards (2009) – Public guidance note by IFC and the EBRD.

²⁴ Source: Wastewater Engineering – Treatment and Reuse (4th Edition) – Metcaft & Eddy, Inc.

²⁵ Source: QCVN 14: 2008/BTNMT – National Technical Regulation on Domestic Wastewater

²⁶ IFC EHS Guidelines for Environmental Wastewater and Ambient Water Quality.

parameters were lower than the thresholds regulated in *QCVN 08-MT:2015/BTNMT* on Surface water *Quality* at column B1 (for irrigation). Only some parameters including Total Suspended Solid (TSS), Chemical Oxygen Demand (COD), and Biochemical Oxygen Demand (BOD) were a bit higher than the limitation at some monitoring points due to the operation of nearby wastewater treatment plant near Ea Drueh stream, cassava factory near Ea Tam stream, and Buon Kuop hydroelectricity plant. These streams are not located in the Project's area; hence, there is no related and direct impact to the surface water bodies within the Project's boundary. Also reported the above-mentioned report, the groundwater quality at the Project's area was pretty good and lower than limited thresholds specified in *QCVN 09-MT:2015/BTNMT* on Ground Water Quality. The groundwater sources are good enough for local demand such as production and domestic use of people. Given that the Project will implement good practice control measures including wastewater will be collected and treated by the third specialised unit, the impacts magnitude on surface water quality due to wastewater discharge from worker's activities is considered as **Low**.

Fuel leakage from transformers at site during the construction phase becomes a contributing factor to the surface water and groundwater contamination. Given that there will be a reinforced concrete oil conservator tank with capacity of 96 m³ to be constructed, all of the leakage is contained and properly managed in case an accidental spills occur. Hence, the likelihood of spillage to the water bodies and seeping into groundwater is low and the impact magnitude can be considered **Small** this case.

As mentioned in Table 10.4, most of the excavated soil for turbine foundation construction and internal renovation was reused and recycled for ground levelling. The rest of spoil materials was expected to be transported out of the Project's site. It is noted that the nearest water bodies are located around 45 m away from WTG B17, 87 m away from WTG B8, and 95 m away from WTG B3, respectively. Therefore, the excavation and transportation of soil materials may potentially pose an impact to a dense network of streams and lakes situated in the Project's area and the proximity during the construction phase. In addition, a potential impact of soil erosion caused by Project's activities will contribute to increase the concentration of Total Dissolved Solid (TDS) and Total Suspended Solid (TSS) in surface water bodies, particularly in rainy season due to run-off. As a result, there may also be a chance of surface water contamination due to sediments from excavated soil and soil erosion washed out to nearby water bodies during rainy days. The impact may be elevated to an area prone to downpour, flooding, and landslide in Krong Buk District, Dak Lak Province during rainy season. Judging by that, the impact magnitude is assessed as **Medium**.

Regarding the social baseline, groundwater from wells is the main source of water requirement for local people residing in the Project's area and proximity instead of surface water bodies. Hence, the receptor sensitivity is assessed as **Low**.

Overall, the impact significance of water quality from the construction activities and worker's activities is considered as Minor (See Table 10.26).

Table 10.26 Impact on Water Quality from the Construction Activities and Worker's Activities

Impact Description	Impact on water quantity from construction activities and worker activities						
Impact Nature	Negative		Positive		Neut	ral	
Impact Type	Direct	Indirect			Induc	ced	
Impact Duration	Temporary	Short-term		Long-term		Permanent	
Impact Extent	Local	Local Regio		jional G		obal	
Impact Frequency	Intermittent over the construction period (within 18 months)						
Impact Magnitude	Negligible	Small		Medium		Large	

Receptors Sensitivity	Low		Medium		High	
Impact Significance	Negligible	Minor		Moderate		High

10.3.4.1.4 Additional Mitigation Measures

The following additional mitigations measures are based on ESIA requirements to minimise impacts associated with freshwater quality:

- Develop Construction E&S Management Program including:
 - Waste and wastewater Management Plan which will cover the management and mitigation measures to minimise the impacts on nearby water bodies and surrounding communities)
 - Soil Compaction, Erosion and Pollution Management Plan. The Plan should include some specific action but not limited to as follows:
 - Any soil stock piles (excavated materials) should be sited on flat ground, at distance from local drainage channels and at a location approved by local authorities, and
 - Stock piles of soil (or other erodible materials) should be securely covered.
 - Solid and hazardous Management Plan.
- Bunds or silt fences instead of canvas shall be constructed on the stockpiling areas to prevent wash away of sediment load to the water bodies
- Oil separation tank and sedimentation tank will be installed to capture and detain construction site runoff and oil and grease from vehicles and equipment. Where applicable, sediment control will be installed along major drainage lines where construction activity is taking place within 100 m of these line
- Vegetation located down-slope of the work site assists in filtering out sediment. Where practicable, maintain downstream vegetation in good condition during the construction process
- Collect and store in accordance with applicable regulations, all solid waste including domestic waste, hazardous waste, oil and grease from the maintenance, reparation and operation activities of equipment during the construction phase. Solid waste then shall be transported out of the Project's site in separated containers and treated properly by functional units in accordance to *Circular No. 36/2015/TT-BTNMT*
- All water and liquid wastes arising from the construction activities will be properly disposed of and will not be discharged into any water bodies/streams course without adequate treatment. Domestic wastewater will be collected and processed by the mobile sanitary facilities.
- Establish internal rules and activities for environmental protection, including littering and disposal of wastes
- Establish rain water / storm water drainage system that connects to oil-water separators to collect and remove oil prior to discharge into receiving bodies (at the operation house and the substation area)
- Domestic solid waste will be collected weekly. The Project's owner will sign an agreement with functional units for transporting and handling respective wastes
- The construction materials, debris and backfill will be stored away from water bodies or water ways and only at the designed sites along the construction zones
- Construction waste should be stored separately and be periodically collected by an authorized treatment and storage facility
- Hazardous waste to be collected and stored by project owners and handled by the official hazardous disposal organisation

- Prohibit discharging of waste and wastewater directly into fresh water bodies, and
- Supervise implementation of proposed mitigation measures by the Contractors.

10.3.4.1.5 Residual Impact

With the implementation of the existing controls and additional mitigation and management measures and monitoring and auditing outlined for construction above, the residual impacts would be anticipated to be **Minor**.

10.3.4.1.6 Monitoring and Audit

- Monitoring of water resource will be conducted every six months during the construction phase. The monitored parameters include pH, DO, BOD₅, TSS, COD, NO₃⁻, PO₄³⁻, Oil & grease will be measured and compared to allowable permits according to *QCVN 08 – MT:2015/BTNMT –* National Technical Regulation on Surface Water Quality and WHO Surface Water Quality guidelines specified in the World Bank Group Environmental, Health and Safety General Guidelines.
- Water quality monitoring should be conducted at surface water bodies and groundwater sources within the Project's area. Sampling, preservation, transportation and analysis must be complied with national standards.
- The Project's owner shall supervise the implementation of all proposed mitigation measures and monitoring by the Contractors.

10.3.4.2 Impact during the Operation Phase

The water requirement for the operation phase will be considerably less and will only be for domestic use (about 42^{27} workers on site × 180 litres/person/day × 100% = 7.56 m³/day). Given the installation of sanitary facility (toilets) which have septic tanks on site and Wastewater Management Plan for Operation Phase will be prepared and implemented, the risk of domestic wastewater discharge to water bodies is limited.

In addition, leaks and spills of oil, lubricants or fuel from the operation equipment due to malfunction of handling system and poor practice of operational workers are likely to occur but localized and in long-term period. In addition, there is an oil conservator tank to be constructed at site for oil transformer loss of containment. This event will be discussed in detail in the Section Unplanned Event.

The significance impact due to waste and wastewater discharge, small oil spillage during operation phase after implementation of mitigation measures is assessed as **Minor** (See Figure 10.40).

Table 10.27 Impact on Water Quality from the Construction Activities and Worker's Activities

Impact Description	Impact on water quantity from construction activities and worker activities					
Impact Nature	Negative Posi		Positive		Neut	ral
Impact Type	Direct		Indirect		Induced	
Impact Duration	Temporary	Shor	rt-term Long-term			Permanent
Impact Extent	Local	_	Regional		Glob	al
Impact Frequency	Steady over the operation period					
Impact Magnitude	Negligible	Small		Medium		Large

²⁷ The number of workers during the operation phase is provided by the Project's owner

Receptors Sensitivity	Low		Medium		High	
Impact Significance	Negligible	Minc	or	Moderate		High

10.4 Soil Environment Impact Assessment

10.4.1 Scope of Assessment

The key activities that are likely to have negative impacts on land and soils, including:

- Pre construction and construction phases:
 - Earthworks and construction activities resulting in soil compaction and loss of soil stabilising vegetation, hence increasing surface runoff and localised erosion such as:
 - Land and vegetation clearance in areas designated for WTG foundation, transmission line pylon;
 - Excavation for WTG foundations and electrical poles; and
 - Construction of internal road system.
 - Accidental leaks/spills of fuel, oil, chemical and hazardous materials/waste from machine and equipment during construction phase.
- Operation and management phase:
- Spillage of fuel, oil, chemicals and hazardous materials from Operation and Maintenance activities from O&M machine and turbines that might contaminate the soil.

It is noted that impacts caused by accidental leaks or spillage of fuel, oil, chemicals and hazardous materials from machine during Construction and Operation phases will be considered in detail as unplanned event and be assessed in Section 13.4.1.1 and 13.4.2.1.

The scope of Soil Environmental Impact Assessment which listed potential impacts and consequences as well as identified receptors is described in Table 10.28.

Phase	Potential Activities	Potential Impacts	Potential consequences	Receptors
Construction phase	 Groundworks and construction activities: Land and vegetation clearance in areas designated for WTG foundation, transmission line pylon Excavation for WTG foundations and electrical poles Construction of internal road system Accidental leaks/spills of fuel, oil and hazardous materials/waste from machine during construction phase 	 Loss of soil stabilizing vegetation; Soil compaction and erosion; Soil contamination. 	 Loss of top soil quality would affect cultivation productivity Loss of forest for WTG foundation construction by removal of stabilized top soil might potentially result in increased sediment in surface runoff and localized soil erosion 	 Soil quality in the Project area

 Table 10.28
 Scope of Soil Environment Assessment

Phase	Potential Activities	Potential Impacts	Potential consequences	Receptors
Operation Phase	 Spillage of fuel, oil, chemicals and hazardous materials from Operation and Maintenance activities 			

10.4.2 Relevant Guidelines and Criteria

10.4.2.1 Vietnam Regulations

- Circular No. 16/2009/TT-BTNMT dated 7 October 2009 on guiding the implementation of National technical regulations on environmental protection
- Circular No. 32/2013/TT-BTNMT dated 25 October 2013 on guiding the promulgation of National technical regulations on environment, and
- QCVN 03-MT: 2015 /BTNMT National Technical Regulation on the Allowable Limits of Heavy Metals in Soils.

10.4.2.2 International Guidelines

- ESS1: Environmental and Social Assessment and Management: To conduct an environmental and social assessment relating to these risks and impacts, and design appropriate measures to avoid, minimise, mitigate, offset or compensate for them
- IFC Performance Standard 3: Resource Efficiency and Pollution Prevention requires the Project to consider ambient conditions and apply technically and financially feasible resource efficiency and pollution prevention principles and techniques that are best suited to avoid, or where avoidance is not possible, minimize adverse impacts on human health and environment, and
- IFC General EHS Guidelines (Section 4.0, 2007): Construction and Decommissioning provides specific guidance on prevention and control of community health and safety impacts that may occur during new project development. It covers various aspects of the environment, including noise and vibration, soil erosion, air quality, solid waste, hazardous materials, wastewater discharges etc. It also covers occupational and community health and safety.

10.4.3 Baseline Conditions

According to the Feasibility Study Report, the soil quality within and around the Project area is still in good condition. Therefore, assuming that all soil parameters, even the heavy metals are under the threshold regulated in *QCVN 03-MT: 2015/BTNMT*- National technical regulation on the allowable limits of heavy metals in the soils (column limit for Agricultural land).

10.4.4 Impact Assessment

Impact on soil quality in the Project area is predicted and assessed based on the sensitivity and magnitude criteria are outlined in Table 10.29 and Table 10.30, respectively.

Table 10.29	Sensitivity	Assessment	Criteria	for	Soil	Quality	(Compaction,	Erosion	and
	Contamina	tion)							

Sensitivity Criteria	eria Contributing Criteria						
	Environment ²⁸	Social ²⁹					
Low	The soil quality does not support diverse habitat or populations and/or supports habitat or population of low quality	The soil quality has little or no role in provisioning of services as agricultural uses for the local community					
Medium	The soil quality supports diverse habitat or population of flora and fauna and supports habitats commonly available in the Project Aol	The soil has local importance in terms of provisioning services as agricultural services but there is ample capacity and/or adequate opportunity for alternative sources of comparable quality i.e. ready availability across the Aol.					
High	The soil quality supports economically important or biologically unique species or provides essential habitat for such species	The soil is wholly relied upon locally with no suitable technically or economically feasible alternatives, or is important at a regional level for provisioning services.					

Table 10.30 C	iteria for Impact Magnitude for Assessment of Impact to So	oil
---------------	--	-----

Magnitude Criteria	Negligible	Small	Medium	Large
Soil compaction, erosion and contamination	 Qualitative- No perceptible or readily measurable change from baseline conditions 	Perceptible change from baseline conditions but likely to easily revert back to earlier stage with mitigation	 Clearly evident (e.g. perceptible and readily measurable) change from baseline conditions and/or likely take time to revert back to earlier stage with mitigation 	Major (e.g. order of magnitude) change in comparison to baseline conditions and/or likely difficult or may not to revert back to earlier stage with mitigation
	 Scale- Localised area as Particular activity areas 	 Scale- Project site, activity areas and immediate vicinity not impacting any sensitive receptor 	 Scale – Project site, activity areas and immediate vicinity impacting sensitive receptors 	Scale – Regional or International
	 Time – Short duration (few days) or one 	 Short term – Only during particular activities or phase of the project 	 Long term – Spread across several phases of the project 	Permanent change

²⁸ The extent to which the soil quality plays an ecosystem role in terms of supporting biodiversity. This includes its role as in supporting a lifecycle stage

²⁹ The extent to which the soil quality provides a use (agricultural use) to the local communities and businesses, or is important in terms of national resource protection objectives, targets and legislation

Magnitude Criteria	Negligible	Small	Medium	Large
	time as temporary	lifecycle as civil works or construction phase (few months)	lifecycle (few years)	

10.4.4.1 Soil Compact and Erosion

10.4.4.1.1 Potential Impact

The potential impact from construction activities of WTG foundation, transmission line pylon and other project's components include:

- Loss of soil stabilising vegetation
- Soil erosion, and
- Soil compaction would lead to impact on the physical properties of soil such as reduction in pore spaces, water infiltration rate and soil strength.

10.4.4.1.2 Existing Controls

Regarding the Feasibility Study Report, the Safe and Civilised Construction Plan, and EPP there are some existing controls recommended by the Project's owner as followed:

- Excavation, filling and construction works shall be complied with the current regulations
- Dykes should be constructed along the construction works to avoid soil erosion
- Open ditches and ponds are constructed at the disposal site to prevent soil erosion
- Strengthen the foundations by embankment or plantation
- Plantation can be made in the temporary land area after the construction finishes to increase vegetation and minimise the soil erosion and landslide
- All construction activities including foundation excavation and site levelling are conducted in drying season to avoid erosion, and
- Disposed construction material pieces such as bricks and stones shall be reused. The excavated soil shall be used for backfilling and road construction. Other kinds of construction materials including irons and steels will be collected, transferred back to the manufacturer, reused, or scrap trading.

10.4.4.1.3 Significance of Impact – Construction Phase

The site clearance, excavation and road widening and upgrading will affect the top layers of the soil. The removal of stabilized top soil would result in slope destabilization and increased soil erosion. As provided by the Project's owner, the remaining amount of excavated soil for wind turbine foundation and internal road upgrading will be reused and recycled for ground levelling. Improper management of temporary soil stockpiling sites may cause soil erosion to nearby local household's cultivation land leading to damage to the local productivity. Areas which are potentially affected by soil compaction and erosion will be the construction site of new internal road, upgrading of access road and a soil stockpiling area. Soil compaction can increase the penetration resistance, a degradation of soil structure and also decrease the water infiltration and percolation in compacted soil which ruins the cultivation and plantation of local people³⁰. Hence, soil compaction and erosion also directly and negatively cause influence to local community as cultivation activities remain as their main livelihood. These areas are

³⁰ https://extension.psu.edu/effects-of-soil-compaction

localised within the Project site and limited during the short-term construction phase (18 months) and would last until the areas are fully rehabilitated during operation phase.

The Project's wind turbines will be located in highland area, loss of agricultural land for WTG foundation construction due to the removal of stabilised top soil might potentially result in increased sediment in surface runoff and localised soil erosion. Soil within the Project site is used for agricultural activities, such as cultivation of perennial trees and fruits planting in the Project AoI and supports a diverse habitat of flora and fauna. Therefore, the impact magnitude is considered as **Medium**.

Most of the area used for the Project's development is mainly agricultural land. Perennial and annual trees including coffee, pepper, cassava, sugarcane and other fruits (avocado, and durian) are the main sources of local community's livelihood, who is considered as a key receptor potentially affected by soil erosion resulted by the improper excavated soil stockpiling nearby farms (See Figure 10.20). Even the Project's owner and EPC contractor has used canvases to cover the soil stockpilings to prevent the soil erosion to the local vicinities, soil erosion-related impact to the plantation area and local households, especially during rainy season may potentially occur. This impact is also accelerated by flooding during rainy season leading to severe soil erosion at the Project's area. Hence, their sensitivity to soil compaction and erosion is considered to be **Medium**. Therefore, the negative impact is considered to be of **Moderate** significance (See Table 10.31).

Source: ERM, 2021

Figure 10.20 Soil Stockpiling at the Project's site

•	•					
Impact Description	Impact on Soil co	Impact on Soil compaction and erosion due to construction activities				
Impact Nature	Negative		Positive		Neut	ral
Impact Type	Direct		Indirect		Induced	
Impact Duration	Temporary	Sho	rt-term	Long-term		Permanent
Impact Extent	Local		Regional		Global	
Impact Frequency	Intermittent over th	e const	truction period	(18 months).		
Impact Magnitude	Negligible	Sma	II	Medium		Large
Receptors Sensitivity	Low		Medium		High	
Significance	Negligible	Minc	or	Moderate		High

Table 10.31 Impact on Soil Compaction and Erosion in the Construction Phase

10.4.4.1.4 Additional Mitigation Measures

The following additional mitigation measures are based on ESIA requirements to minimise impacts, including:

- Soil compaction and erosion management plan as part of Construction E&S Management Program shall be implemented during construction to incorporate requirements such as use of dust suppression, soil stabilisation during construction and storm water and sediment management and control
- Construction activities including site clearance, and excavation should be limited in some rainy days or during heavy winds and downpour to minimize erosion and run-off
- Procedures for responding to emergencies/accidental spills of hazardous materials, fuel and waste handling & management are developed and implemented
- Maintenance works are restricted to specially designated platforms with strict control of accidental spills, and
- The Project site should be restored at the end of the Project life-cycle to pre-Project level.

10.4.4.1.5 Residual Impact

With the implementation of the existing controls and additional mitigation and management measures, the residual impacts would be anticipated to be Minor.

10.4.4.1.6 Monitoring and Auditing

In addition to daily inspections, internal audits will also be conducted quarterly during the construction phase and bi-annually during operation phase until such time that full rehabilitation is reached, Based on monitoring and audits results, corrective and/or enhancing actions will be implemented. Some monitoring actions that should be implemented are provide in Table 10.32.

Action	Indicator	Timeline
Identification of Erosion Control and Sediment Control measures to each construction site.	Erosion Control and Sediment control measures designed specific to each site	Once prior to land preparation
Monitoring vegetation clearing	Vegetation clearing remains inside the identified zones (area monitoring)	During land preparation
Monitoring Sediment controls and Erosion controls	Current condition of Sediment controls and Erosion controls	A weekly basis; and immediately after rainfall events or flooding period
Monitoring of erosion prone areas	Status of erosion prone areas (downstream monitoring including TSS levels)	Daily
Visually monitoring stockpiles for signs of wind and rain erosion	Status of stockpiles	Daily
Monitoring compliance of mitigation measures implementation	Mitigation measures of soil compaction and erosion are in place	Throughout construction and operation phases (increase frequency during heavy rain months)

Table 10.32	Monitorina fo	r Soil Compa	ction and Erosic	n Management
	intering it			gomon

10.4.4.2 Soil Contamination due to Improper Waste Disposal and Leaks/Spills

10.4.4.2.1 Potential Impact

Construction workers working on-site would also generate domestic waste and wastewater, which may be released to the ground if not properly controlled and managed. The domestic waste at the construction site include organic waste, plastic, or glass. In addition, construction activities will also generate various types of hazardous wastes including oil, lubricants and diesel leaked from machine, equipment and vehicles. As provided by the Project's owner, there are maximum 120 staffs working on each site over total 506 personnel during the construction phase with the total generated solid waste of 206.4 kg/day (assuming that there is about 1.72 kg/person/day³¹)

Regarding Operation phase, solid waste generated by the O&M team during their daily activities includes oil, waste fuel, grease or disposal of organic waste and domestic waste. Regarding the FS report, it is noted that there will be about 42 staffs working on the site during the operation phase with the maximum generated solid waste of 1.72 kg/person/day³¹, so the estimated volume of municipal waste generated about 72.24 kg/day on average.

10.4.4.2.2 Existing Controls

Regarding the FS Report, EPP, and the Safe and Civilised Construction Plan, there are some existing controls recommended by the Project's owner during the construction phase as followed:

- There are about ten dustbins to be arranged on site, and
- Solid waste generated from the working teams who accommodate in the rented houses shall be collected and transported to the local garbage collection point for further treatment.
- Other existing controls prepared by the Project's owner in terms of solid waste management can be referred to Section 10.3.4.1.2 above.

10.4.4.2.3 Significance of Impact – Construction and Operation phases

Wastes (both non-hazardous and hazardous), if not properly managed would result in soil contamination within the Project's area and its surroundings. As a result, the cultivation, the local people's livelihoods and the agricultural land habitats nearby the Project area would be negatively and directly affected. The impact frequency is considered as short-term during 18-month construction phase but long-term during 20 years of the operation under the Project's life cycle. In addition, these receptors are in very close distance to the Project site so their sensitivity to soil contamination is considered to be **Medium**.

As defined in Table 10.30, the impact magnitude in terms of soil contamination is considered as **Medium** for construction phase and **Small** for the operation phase during the Project's life cycle.

Soil contamination may occur from leaks and spills of oil, lubricants or fuel from heavy equipment, improper handling of fuel storage during construction phase and operation phase. However, with the effective in place controls to mitigate impacts, the impact significance of soil contamination is considered to be of **Moderate** significance in construction phase and **Minor** significance in operation phase.

Impact Description	Impact on Soil environment due to waste generation (hazardous an non- hazardous)		
Impact Nature	Negative	Positive	Neutral

Table 10.33 Impact on Soil Contamination in Construction Phase

³¹ http://documents1.worldbank.org/curated/en/504821559676898971/pdf/Solid-and-industrial-hazardous-waste-management-assessment-options-and-actions-areas.pdf
Impact Type	Direct Indirect			Induced		
Impact Duration	Temporary	Short-term		Long-term		Permanent
Impact Extent	Local	Regional		Glob		al
Impact Frequency	Intermittent over th	e const	ruction period	(18 months).		
Impact Magnitude	Negligible	Sma	I	Medium		Large
Receptors Sensitivity	Low	Medium			High	
Impact Significance	Negligible	Minor		r Moderate		High

Table 10.34	Impact on Soil Contamination in Operation Phase
-------------	---

Impact Description	Impact on Soil environment due to waste generation (hazardous an non-hazardous)						
Impact Nature	Negative	Negative Positive Neutral					
Impact Type	Direct Indirect				Induc	Induced	
Impact Duration	Temporary	rry Short-term Long-term				Permanent	
Impact Extent	Local	Local Regional			Global		
Impact Frequency	Intermittent over th	e opera	ition period (20) years).			
Impact Magnitude	Negligible	Sma	II	Medium		Large	
Receptors Sensitivity	Low	w Medium High					
Impact Significance	Negligible	Minor Moderate High					

10.4.4.2.4 Additional Mitigation Measures

- The following additional mitigation measures are based on the ESIA requirements to minimise these impacts, including:
- Contract a competent/licensed contractor to collect, transport and treat domestic, construction and hazardous wastes from the project site
- Prohibit dumping any solid wastes to the soil or burning waste on the site
- Ensure that hazardous materials are stored in designated areas that are designed with impermeable floor, inflammable walls and accessible to authorized personnel
- Hazardous waste shall be properly managed in accordance with Decree No. 38/2015/ND-CP, Circular No. 36/2015/TT-BTNMT and QVCN 07:2009/BTNMT on Hazardous Waste as follows:
 - Hazardous waste is prohibited to be illegally disposed into the ground
 - All workers and staffs shall be trained on hazardous and non-hazardous waste classification and their handling methods
 - Proper facilities shall be supplied and areas for hazardous waste storage in the construction sites should be clearly determined in accordance with *Circular No. 36/2015/TT-BTNMT*
 - Appropriate organizations with proper license shall be contracted in order to periodically transport and dispose hazardous waste, and
 - A record of hazardous waste should be documented and available at the site (using the form specified in *Circular No. 36/2015/TT-BTNMT*) to allow monitoring volume of generated and

disposed hazardous waste in place by the authorised contractors. The numeric data in the record must be consistent in order to ensure that none of the improper disposal is made in the Project's area or other locations.

 In case of accidental/unintended spillage, the contaminated soil should be immediately collected and stored as hazardous waste.

10.4.4.2.5 Residual Impact

With the additional mitigation measures, the residual impacts caused by soil contamination in all the phases are expected to be **Negligible** to **Minor**.

10.4.4.2.6 Monitoring and Auditing

It is recommended that the monitoring program in construction and operation phases should be conducted as follows:

- Parameters: Arsenic, Cadmium, Total Chromium, Copper, Lead and Zinc
- Monitoring locations: Two locations
 - One location at the substation area, and
 - One location at the turbine area.
- Frequency: Every six months.
- Regulation: QCVN 03-MT: 2015/BTNMT National technical regulation on the allowable limits of heavy metals in soil.
- No additional specific monitoring or auditing is recommended.

10.5 Electromagnetic Interference Impact Assessment

10.5.1 Scope of Assessment

All transformers and transmission lines, especially high voltage lines, emit a type of low frequency nonionizing radiation caused by the generation of electric fields, due to electric charges (voltage), and magnetic fields, due to the flow of electrical current through transmission lines, which collectively is referred to as Electric and Magnetic Fields (EMF). Exposure to high levels of EMF can result in a health negative impacts to receptors along the transmission line and those residing near the substation. The strength and extent of EMF depends on three things:

- How much current is flowing
- The voltage, and
- Configuration of the wires (e.g. size, wiring phase configuration and separation between the wires).

Key aspects that are likely to negatively impact receptors during the operation phase include electromagnetic interference generated by wind turbines transformers, transmission line and substation transformers when the wind turbines are in operation (i.e. once electrical current flows through the conductors).

Phases	Potential Activities	Potential Impacts	Potential Consequences	Receptor
Operation	Long-term operational activities of transmission line, substation, and wind	Electromagnetic fields from transmission line	Health risks	Receptors along the transmission line and

Table 10.35 Scope of Electromagnetic Interference Assessment

Phases	Potential Activities	Potential Impacts	Potential Consequences	Receptor
	turbines as generating electricity from wind energy.	and transformers in substations		near the substation and wind turbines

10.5.2 Relevant Guidelines and Criteria

10.5.2.1 Vietnam Regulations

- Electricity Law dated 03 December 2004 and the Law on amendment and supplement to the Electricity Law dated 20th November 2012
- Decree No.14/2014/ND-CP, dated 26 February 2014 stipulating in detail the implementation of electricity law regarding electricity safety, and
- QCVN 25:2016/BYT National Technical Regulation on Industrial Frequency Electromagnetic Fields – Permissible Exposure Level of Industrial Frequency Electromagnetic Fields in the Workplace.

10.5.2.2 International Guidelines

IFC Environmental Health and Safety Guidelines for Electric Power Transmission and Distribution (2007) provides guidelines to manage potential environmental and community health and safety impacts from power construction facilities, including electric and magnetic fields.

As mentioned in the above section, electric fields are normally measured in kilovolts per metre (kV/m), while magnetic fields are defined by magnetic flux density, measured in micro-Tesla (µT) or milli-Gauss (mG). The World Bank Group's (WBG) Environmental, Health and Safety (EHS) Guideline³² for Power Transmission and Distribution (WBG, 2007) refers to the International Commission on Non-Ionizing Radiation Protection (ICNIRP)^{33 34} for health and safety standards relative to exposure to EMF. The World Health Organization (WHO)³⁵ refers to ICNIRP EMF standards as short-term and high level exposure limits. At present, ICNIRP limits consider the scientific evidence related to possible health effects from long-term, low level exposure to EMF fields insufficient to justify lowering these quantitative exposure limits. The ICNIRP EMF exposure limits are instantaneous and not averaging and it refers to Basic Restrictions and Reference Levels for both magnetic and electric fields under General Public and Occupational exposure conditions (Table 10.36). Basic Restrictions are the fundamental limits on exposure and are based on the internal electric currents or fields that cause established biological effects in humans. They are impractical to measure. Therefore, Reference Levels of exposure to the external fields, which are simpler to measure, are provided as an alternative means of showing compliance with the Basic Restrictions. The Reference Levels have been conservatively formulated to ensure compliance with the Basic Restrictions. In summary, these limits can be considered as chronic exposure standards, no health risks associated with short-term exposure are expected at these levels.

³² EHS Guidelines for Power Transmission and Distribution, April 30, 2007

³³ The ICNIRP Guidelines (2010) for limiting exposure to time-varying electric, magnetic and electromagnetic field (up to 300GHz) (http://www.icnirp.de/PubEMF.htm)

³⁴ These values represent the ICNIRP occupational exposure limits.

³⁵ WHO 2007, Extremely Low Frequency Fields – Environmental Health Criteria, Monograph No. 238 March 2007

Exposure	Electric field (kilo	Magnetic flux intensity						
Characteristics	volts per meter, kV/m)	Micro-Tesla (µT)	Milli-Gauss (mG)	Ampere/m (A/m)				
Occupational	10 kV/m	1,000 (500 prior to 2010)	10,000 (5,000 prior to 2010)	798 (399 prior to 2010)				
General Public	5 kV/m	200 (100 prior to 2010)	2,000 (1,000 prior to 2010)	160 (80 prior to 2010)				

Table 10.36Basic Restriction and Reference Levels for Exposure to 50Hz EMF at the Edge
of Right of Way (ROW)

10.5.3 Assessment Methodology

The calculation of Electro Magnetic Field (EMF) is one of the factors which must be considered during the design process especially for high voltage transmission lines. This is to determine Right of Way (ROW) of the power line such that there will not be danger for the people and surrounding environment.

An excel based software developed by EEP Portal³⁶ for the calculation of electromagnetic field (EMF) around transmission and distribution overhead lines was used to calculate EMF for the 110 kV transmission line proposed for the Project. The tool can be used to calculate one or two circuit lines in which ground wires can be incorporated for the EMF calculations. In addition, the tool allows combining and creating examples of power lines where two independent power lines can interact with each other. The EMF calculations applied for this tool uses the analytical approach described in EPRI Red Book "Transmission Line Reference Book", third edition, 2005³⁷. In addition, accuracy of these EMF calculations could be checked with other commercial software such as MATLAB or CDEGS (Current Distribution, Electromagnetic Fields, Grounding and Soil Structure Analysis).

10.5.4 Impact Assessment

10.5.4.1 EMF from Overhead 220kV Transmission Line

Input data

As mentioned in Chapter 2, the proposed 220 kV transmission line is a 220 kV double-circuit line with two ground wires that used support tower and angle towers.

The input data used for setting up the transmission tower and circuit lines is given for Tower which connects the existing 220kV transmission line to 22/220kV substation and shown in Table 10.37 and Figure 10.21.

			X [m]	Y [m]	U _{max} [kV]	I [A]	rA [mm]	d [mm]	n	Ph-seq
Line 1	Circuit 1	L1	-3.5	27.5	230	450	30.96	1.75	1	1
		L2	-3.5	23.5	230	450	30.96	1.75	1	2
		L3	-3.5	19.5	230	450	30.96	1.75	1	3
		g.w.	-3.5	32	0	0	15.48	1.75	1	0
		g.w.	3.5	32	0	0	15.48	1.75	1	0

Table 10.37 Transmission Line Parameters of 220kV Tower

³⁶ http://electrical-engineering-portal.com/download-center/electrical-ms-excel-spreadsheets/emf-td-overhead-lines

³⁷ https://www.academia.edu/36962429/EPRI_AC_Transmission_Line_Reference_Book_200_kV_and_Above_Third_Edition

		X [m]	Y [m]	U _{max} [kV]	l [A]	rA [mm]	d [mm]	n	Ph-seq
Circuit 2	L3	3.5	19.5	230	450	30.96	1.75	1	3
	L2	3.5	23.5	230	450	30.96	1.75	1	2
	L1	3.5	27.5	230	450	30.96	1.75	1	1

X [m] – horizontal length from the middle of the line; Y [m] – height in which wires are suspended; U_{max} [kV] – maximum permissible line voltage; I [A] – maximum permissible line current (in case of bundle it is; determined for all wires); r_A [mm] – wire radius; d_A [mm] – distance between wires in bundle; n – number of wires in bundle; Ph_{seq} – phase sequence. 1 – L1, 2 – L2, 3 – L3, 0 – Ground Wire

Figure 10.21 Schematic Representation of Transmission Tower with Power Line Arrangement (for 220 kV Transmission Tower)

The proposed minimum horizontal free space for the 220 kV double-circuit is 12 m (6 m on either side of the transmission tower). The Right of Way complies with national requirements in *Decree No.14/2014/ND-CP* dated 26 February 2014 stipulating in detail the implementation of electricity law regarding electricity safety. The double circuits wire bare to be positioned between 19 - 32 m.

10.5.4.1.1 Potential Impact

EMF can affect human health directly and indirectly. Direct effects result from direct interactions of fields with the body; indirect effects involve interactions with a conduction object where the electric potential of the object is different from that of the body. Exposure to low-frequency electric fields may cause well-defined biological responses, ranging from perception to annoyance, through surface electric-charge effects due to stimulation of central and peripheral nervous tissues and the induction in the retina of phosphines, a perception of faint flickering light in the periphery of the visual field.

10.5.4.1.2 Existing Controls

In according to the EPP, there are some existing controls proposed by the Project's owner as below:

- Ensure the safety distance abided by Decree No.14/2014/ND-CP
- Workers are all provided with PPEs during their work, and
- Arrange the working shifts to limit the working time of workers at site (especially at the substation)

10.5.4.1.3 Significance of Impacts

Operation of the Project will result in the formation of EMF along the transmission line and at the substations. Although high-voltage transmission lines do generate higher EMFs, this effect is offset by

the fact that the towers are higher, the ROW is wider, and phase cancellation shielding is applied. These measures result in EMF levels being lowered, at the edge of the ROW.

Based on the EPP model results, the electric field distribution and magnetic field distribution for the proposed transmission tower calculated at the distance from the transmission line at 1 m above the ground are presented in Figure 10.22 and Figure 10.23. The maximum electric and magnetic fields are 1.43 kV/m, 1.88 A/m respectively at 1 m above the ground.

Figure 10.22 Electric Field Distribution for the Proposed Transmission Tower at 1 m above the Ground

Figure 10.23 Magnetic Field Distribution for the Proposed Transmission Tower at 1m above the Ground

The maximum calculated electric field inside the ROW and magnetic field for 220 kV Transmission does not exceed the recommended ICNIRP occupational exposure limits.

The maximum electric and magnetic fields within the ROW for various transmission towers is shown in Table 10.38. The maximum calculated electric field occurs directly under the conductors and decreases out to the edge of the ROW. The phasing of double circuit that will be used in the proposed transmission line configuration results in cancellation effects for the electric fields resulting in rapid decrease with distance. The calculated maximum electric magnetic fields for various transmission towers are below the allowable public and occupational exposure limits in accordance with ICNRP and *Decree No.* 14/2014/ND-CP, dated 26 February 2014 of Government on stipulating in detail the implementation of electricity law regarding electricity safety, which requires the electricity field intensity in the areas where people regularly working must ensure the requirements not exceeding 5 kV/m.

Table 10.38Maximum Electric and Magnetic Fields for Various Transmission Tower Types
at the Edge of the ROW

Tower Type	E _{max} (kV/m)	H _{max} (A/m)
220 kV Tower (double circuits)	1.43	1.88
ICNIRP EMF exposure limits for General public	5	160
ICNIRP EMF exposure limits for Occupation	10	798

The EMF calculation results of different tower configuration have shown that at the distance of 6 m from the outmost transmission line, the maximum electric field reached 1.43 kV/m and magnetic field gained 1.88 A/m at the hanging height of wire of >19.5 m while most of human activities occurs at the height below 2 m. In addition, the 220 kV transmission line will be designed not to pass by many households.

The EMF for the proposed 220 kV tower configuration reduce rapidly with distance from the lines. As such, the significance of EMF caused by the Project on Human Health is considered to be **Negligible** (See Table 10.39).

Table 10.39 EMF Impact Assessment from Overhead Transmission Line for the Operation Phase

Impact Description	EMF from Overhea	EMF from Overhead Transmission Line						
Impact Nature	Negative	Positive		Neut	ral			
Impact Type	Direct Indirect			Induced		ced		
Impact Duration	Temporary	Shor	Short-term Long-term			Permanent		
Impact Extent	Local	Regional			Globa	Global		
Impact Frequency	The impact frequen substation, and is a	icy is clo issumed	osely related to d to be continu	o the operation ous during ope	of the veration a	wind farm and as a worst case.		
Impact Magnitude	Negligible	Sma	II	Medium		Large		
Receptor Sensitivity	Low	Medium			High			
Impact Significance	Negligible	Minc	or	Moderate		Major		

10.5.4.1.4 Additional Mitigation Measures

Other additional mitigation measures based on ESIA requirements to minimise impacts associated with EMF include:

• Avoid residential buildings, or acquire houses within the ROW.

- Avoid schools, hospitals, health clinics, and other similar buildings the Electrolytic Tough Pitch (ETP) alignment avoids these sensitive buildings and maintains at least a 32 m buffer to all schools and health clinics
- Tower safety features place warning signs prohibiting climbing on towers and incorporate design elements that prevent climbing of the towers
- Implement all H&S measures as specified in the regulations including earthling of buildings that are metal clad and directly below the transmission line
- Conduct regular clearance of the clear zone to ensure the area is safe as required by the regulation
- Conduct regular checking/ maintenance to ensure the safe condition of the tower and the cable, and
- Emergency contact information provide signage at each tower with emergency phone numbers.
- Arrange the shielding around the electromagnetic field source at the safety distance as electric fields can be easily shielded by trees, fences, buildings and most other structures. However magnetic fields are much more difficult to shield than electric fields.

10.5.4.1.5 Residual Impacts

The residual impact to occupational and public health from the transmission of power through the proposed 220 kV transmission line is considered to be Negligible.

10.5.4.1.6 Monitoring and Auditing

- The electromagnetic filed should be monitored in the safety corridors of the 220 kV transmission line, at the substation and at the location of turbine.
- The EMF monitoring survey should be conducted yearly during the operation phases.
- The EMF monitoring result must comply with Decree No. 14/2014/ND-CP, dated 26 February, 2014 on Stipulating in detail the implementation of electricity law regarding electricity safety and National Technical Regulation QCVN 25:2016/BYT on Industrial Frequency Electromagnetic Fields Permissible Exposure Level of Industrial Frequency Electromagnetic Fields in the Workplace. Should thresholds be exceeded, further mitigation options should be reviewed and considered.

10.5.4.2 EMF from 22 kV Underground Transmission Line

10.5.4.2.1 Potential Impacts

Electromagnetic filed from 22 kV underground transmission line.

10.5.4.2.2 Existing Controls

Refer to Section 10.5.4.1.2.

10.5.4.2.3 Significance of Impact

Based on Feasibility Study, the 22 kV underground cables are low-voltage and are buried directly underground which is inside the high-density polyethylene (HDPE). The EMF emission will be highly localised in terms of spatial extent. However, the underground cables is insulated, EMF would be of limited emission to surrounding environment where they pass through cable protection materials. The Feasibility Study design has shown that electric field exists between high-voltage conductive cores and earthling amour. Therefore, there is expected no E-field leaked by the cable as a result of cable shielding. Hence, the EMF levels expected at underground are comparatively small and the predicted magnetic fields are also expected to rapidly decrease both vertically and horizontally. Therefore, the magnitude of potential EMF impact is expected to be **Small**.

However, the nearest residential area is located at approximately 39 m from the Project's wind turbine (within ROW) which will be impacted negatively and directly from the EMF. The livelihood activities of local community have been identified to be within and surround the Projects' areas such as agricultural fields, coffee farms and fruits. So, the sensitivity of receptors is considered **Medium**.

In consideration of the above, the negative impact is assessed to be of Minor significance, as shown in Table 10.40.

Tr	Transmission Line							
Impact	Health Impact d	Health Impact due to EMF from 22 kV underground power cables.						
Impact Nature	Negative	Positive Neutral						
Impact Type	Direct		Indirect		Induc	ced		
Impact Duration	Temporary	Short-te	rm	Long-term		Permanent		
	Local		Regional			Global		
Impact Extent	Impacts are within the ROW.							
Impact Frequency	The impact frequ and assumed to I	ency is cl be contir	losely related to 1000s during op	the operation of peration as a wor	the wi st case	nd farm and substation, e.		
Impact Magnitude	Negligible	Small		Medium	Large	9		
Sensitivity of Receptors	Low Medium High							
0	Negligible	Minc	or	Moderate		Major		
Significance	The significance is Minor							

Table 10.40Impacts of EMF during Operation Phase from the 22 kV UndergroundTransmission Line

10.5.4.2.4 Additional Mitigation Measures

Some mitigation measures will be proposed in the ESIA, as follows:

- For double circuit lines, it may be possible to arrange the phases to maximise the magnetic field cancellation, and
- Installation of a passive shielding loop can be effective in reducing the magnetic field at a particular point.

10.5.4.2.5 Monitoring and Auditing

- It is proposed that EMF monitoring is carried out by using suitable magnetic and electric filed sensors within the first year of the operation on a quarterly basis. Should thresholds be exceeded, further mitigation options should be review and considered, and
- This monitoring will be included as part of the occupational health and safety monitoring program.

10.5.4.3 EMF from 22/220 kV Substation

Substations are part of the electricity supply network that enables the widespread use of electricity for public and industrial use. Inside the substation, there is an existence of switches, connections and a transformer. The transformer steps up voltage coming from wind farms and transforms them to the higher voltage of 220 kV used by transmission lines. Transformer is the main unit where EMF will be of similar magnitude as the transmission lines and hence it has to be located at a height similar to the transmission line and provide sufficient buffer around it to minimize occupational and public hazards. EMF from other elements in a substation will be small and standard mitigation methods are available to reduce both electric and magnetic fields generated by them, as described below. The electric and

magnetic field (EMF) levels within the fenced area of a substation depends on the number of transformers used in the substation. However, these EMF levels decrease rapidly with distance from the transformers and other electrical equipment. Most of the time, EMF levels drop to the same as surrounding background levels at a distance of 30 to maximum 60 m from the fenced area.

10.5.4.3.1 Potential Impact

Regarding the National Institutes of Environmental Health and Sciences (NIEHS – a federal research institute), most of the EMF comes from a substation is generated by these lines, rather than the equipment at the substation itself³⁸. Regardless the minor effect, EMF from substation also induces potential health impact on human health besides the transmission and distribution lines. According to many researched studies (A.P.Asanova et al., 1963, N.V.Revnova et al., 1966, T.E.Sazonova at el., 1969)³⁹, there is an apparent demonstration of the clinical and physiological aspects of human health influenced by EMF from substation. For instance, clear and visual health-related impacts are induced by 220, 330, 550 kV substation including cardio-vascular and nervous system functional changes. The EMF appearance can also lead to significant impacts on neurologic phenomenon (headache, flaccidity, fatigability, and sleepiness).

10.5.4.3.2 Existing / In-place Controls

Refer to Section 10.5.4.1.2.

10.5.4.3.3 Significance of Impacts

Predicting magnetic field profiles for substations is a complex exercise given the multitude of time varying sources orientated in multiple directions. As a result, the magnetic field profile is highly dependent on the particular circumstances. In order to understand the magnetic field pattern in the proposed step up substation, similar substation modelling performed elsewhere Tarmizi et al. (2016) was identified for discussion. Tarmizi et al. modelled magnetic field variability in a substation that had the 400 kV side connected to three loads, a shunt reactance and an autotransformer to step down the voltage to 220 kV. The substation considered by Tarmizi et al. was 280 m long, 140 m wide and the conductors are located at the height of 12m above the ground (on the 400 kV side). The normal operating currents at frequency of 50Hz for each load. The magnetic field distribution was calculated at the height of 1.7 m where measurements were available for comparison. The computed results for the normal operating currents are presented in Figure 10.24.

³⁸ https://www.cga.ct.gov/2004/rpt/2004-R-0826.htm

³⁹ https://www.who.int/peh-emf/meetings/en/2Rubtsova.pdf

Figure 10.24 Magnetic Field Distribution in the Substation Studied by Tamrizi et al. (2016) for a 400kV Substation (280m long, 140m wide)

Figure 10.24 shows that the predicted highest value of the magnetic field is to be 4.164A/m located along busbar 1. For the normal operation conditions of the substation, the maximum values of the magnetic field were found to be below public exposure permissible limits proposed by ICNIRP. In addition, it clearly shows that the magnetic field decreases rapidly within the perimeter of the substation. However, for a lightning strike scenario, the magnetic field in the substation exceeded the public and the occupational exposure limit set by ICNIRP. The voltages and size of the substation used in the study by Tarmizi et al. were much higher than the proposed substation (voltage of 220 kV; and size up to 80m long by 70m wide) and hence the EMF impact is anticipated to be contained within the substation. In addition, according to the satellite image, there are no residential areas within the 300m safety zone of the substation, the sensitivity of receptors is considered Low.

Based on the analysis the assessment of impacts of EMF from substation during operation phase is shown in Table 10.41.

Impact Description	EMF from the Subs	EMF from the Substation during Operation Phase						
Impact Nature	Negative		Positive		Neuti	ral		
Impact Type	Direct		Indirect		Induc	ced		
Impact Duration	Temporary Short-		rt-term Long-term			Permanent		
Impact Extent	Local	Regional			obal			
Impact Frequency	The impact frequence assumed to be conti	cy is clo inuous d	sely related to t during operatior	he operation of as a worst cas	^t the wir se.	nd farm, and		
Impact Magnitude	Negligible	Sma	II	Medium		Large		
Receptor Sensitivity	Low	Medium		High				
Impact Significance	Negligible	Mino	r	Moderate	Major			

Table 10 41	Impacts of EME	during Operation	Phase from the	Substation
	Impacts of ENT	during Operation	Filase from the	e Substation

10.5.4.3.4 Additional Mitigation Measures

Some additional mitigation measures could be applied to reduce EMF impacts from substation to human health and to be aligned with *Circular No. 25/2016/TT-BYT* – National Technical Regulation on Industrial Frequency Electromagnetic Fields – Permissible Exposure Level of Industrial Frequency Electromagnetic Fields in the Workplace, as follows:

- Equip staffs who can come close to electromagnetic fields (EMF) with PPE and ensure O&M staff can work in different shifts to avoid the exposure time with EMF
- Put up warning signs for high voltage areas
- Organise periodic health check-ups for staff who work in EMF field location
- Provide staff with training on EMF section before performing work
- Consider reallocating sensitive receptors within the ROW (if any) (As observed through the satellite image, there is no sensitive receptors found within the ROW; however, a validation survey should be conducted to identify whether existence of any within the ROW).
- Use ferromagnetic and conductive materials for shielding as a barrier to reduce the field strength at the source, and
- Limit staff who have health problems such as cardiovascular and congenital diseases from working in areas with EMF.
- The Community Grievance Mechanism (GRM) as proposed in Chapter 6 Stakeholder Engagement (SEP) shall be applied to receive and timely resolve community's grievances related EMF effects caused by the Project activities during operation phase.

10.5.4.3.5 Residual Impacts

With appropriate mitigation measures, the occupational and human exposure can be minimized to fall under ICNIRP standards, therefore the residual impact to occupational and public from the substation is considered to be Negligible.

10.5.4.3.6 Monitoring and Auditing

The locally approved regulatory EPP states that the electromagnetic filed should be monitored at the vicinity of the substation. The EMF monitoring survey should be conducted yearly during the operation phase. The EMF result must comply with *Decree No. 14/2014/ND-CP*, dated 26 February 2014 on Stipulating in detail the implementation of electricity law regarding electricity safety and National Technical Regulation *QCVN 25:2016/BYT* on Industrial Frequency Electromagnetic Fields – Permissible Exposure Level of Industrial Frequency Electromagnetic Fields in the Workplace. Should thresholds be exceeded, further mitigation options should be reviewed and considered.

10.5.4.4 EMF from Wind Turbine

10.5.4.4.1 Significance of Impacts

EMF from the step up transformer either in the nacelle of the turbine rotor unit or at some height below it in wind turbines, which increases the voltage to 22 kV with rated capacity of 3.8 MVA, are expected to be lower than the 220 kV transmission lines. The maximum electric and magnetic fields are unlikely to be assessed quantitatively due to insufficient data of transformer.

The maximum electric and magnetic fields cannot be assessed quantitatively due to insufficient data of transformer. However, referred to EMF results from empirical studies of Canadian 27 MW wind farm by

McCallum et al. (2014)⁴⁰, EMF were collected during three operational scenarios to characterize potential EMF exposure: "high wind" (generating power), "low wind" (drawing power from the grid, but not generating power), and "shut off" (neither drawing, nor generating power). Magnetic field levels detected at the base of the turbines under both "high wind" and "low wind" conditions were low (0.9 mG) and rapidly diminished with distance, become indistinguishable from background within 2m of the base. This source appeared to have no influence magnetic field level at nearby sensitive receptors as located over 1km from the closet turbine. Even though there are a number of sensitive receptors within 1km from the closet wind turbines, the influence induced by magnetic field levels in the vicinity of wind turbines were lower than those produced by many common household electrical devices (Figure 10.25). Furthermore, when compared to ICNIRP guidelines, the levels of EMF measured around wind turbines were all well below levels known to cause harm to public and occupational health.

Source: McCallum et al. 2011

Figure 10.25 Magnetic Fields Comparison from Wind Turbines and 500 kV Power Lines with Common Household Electrical Devices

The maximum calculated electric field occurs directly under the base of the turbine and decreases outwards does not exceed the recommended ICNIRP occupational exposure limits. The EMF impact from the wind turbines are considered Negligible.

10.5.4.4.2 Additional Mitigation Measures

Whilst no EMF specific additional mitigation and management measures are recommended; to enhance safety, it is recommended to place warning signs prohibiting climbing on wind turbines and incorporating design elements that prevent climbing of the wind turbines. It is also recommended to provide emergency contact information by placing signage at each wind turbine containing emergency phone numbers.

⁴⁰ McCallum Lindsay, Aslund M.L.W, Knopper L D, Ferguson G M and Ollson C A. 2014. Measuring electromagnetic fields (EMF) around wind turbines in Canada: is there a human health concern? Environmental Health 2014, 13:9

10.5.4.4.3 Residual Impact

The residual impact to occupational and public from the substation is considered to be negligible.

10.5.4.4.4 Monitoring and Auditing

No specific monitoring and auditing is recommended.

10.6 Climate Change Impact Assessment

Climate change is now widely and globally recognised as one of the most significant environmental challenges. In terms of response and adaptation to climate change, a range of international and national policy and legislation has been introduced and implemented to encourage the development of renewable energy, reduce greenhouse gas emissions and combat the impacts of climate change.

Vietnam is particularly vulnerable to the effects of climate change and therefore has a strong commitment to achieve the global mitigation target. Vietnam has set its national targets for emissions mitigation in the Nationally Determined Contribution (NDC): 8-9% GHG emission reduction against the "Business As Usual" (BAU) scenario by 2030 when compared with 2010 and a 25% reduction by 2030 on the condition of substantial international financial and technical support.

10.6.1 Scope of Assessment

This section provides a qualitative assessment of the following Project's activities potential impacts on climate change, including:

- Pre-construction activity due to the Project's development such as vegetation clearance can be a contribution factor to the climate change
- Construction activities may increase greenhouse gas emissions such as the operation process of heavy equipment (excavator, heavy trucks, bulldozer, crane) and the transportation of turbine and material from the purchasing point to the Project site, and
- Operation of wind turbines.

In addition, the physical impacts of climate change have implications for performance of wind power production, because the main resources are directly linked to climatic variables such as rainfall, wind, and temperature. This section also provides a qualitative assessment of climate change impacts to the Project development.

10.6.2 Relevant Guidelines and Criteria

10.6.2.1 International Context

10.6.2.1.1 Intergovernmental Panel on Climate Change (IPCC)

In 1998, the World Meteorological Organisation (WMO) and the United Nations Environment Programme (UNEP) established the Intergovernmental Panel on Climate Change (IPCC) to provide independent scientific advice on climate change. The IPPC was originally tasked with the preparation of a report, based on available scientific information, on all aspects relevant to climate change and its impacts and to formulate realistic response strategies. This first assessment report of the IPCC served as the basis for negotiating the UNFCCC.

The IPCC has produced a variety of guidance documents and recommended methodologies for GHG emissions inventories including:

- 2006 IPCC Guidelines for National GHG Inventories
- 2019 Refinement to 2006 IPCC Guidelines for National GHG Inventories, and
- Good Practice Guidance and Uncertainty Management in National GHG Inventories.

10.6.2.1.2 United Nations Framework Convention on Climate Change (UNFCCC)

The UNFCCC sets an overall framework for intergovernmental efforts to tackle the challenges posed by climate change. It recognises that the climate system is a shared resource, the stability of which can be affected by industrial and other emissions of CO_2 and other GHGs. The convention has near-universal membership, with 192 countries (parties) having ratified the treaty known as the Kyoto Protocol.

Under the UNFCCC, governments:

- Gather and share information on GHG emissions, national policies, and best practices
- Launch national strategies for addressing GHG emissions and adapting to expected impacts, including the provision of financial and technological support to developing countries, and
- Cooperate in preparing for adaptation to the impacts of climate change.

10.6.2.1.3 Kyoto Protocol

The Kyoto Protocol entered into force on 16 February 2005. The Kyoto Protocol built upon the UNFCCC by committing to individual, legally binding targets to limit or reduce GHG emissions. The Kyoto Protocol had two commitment periods, the first was from 2008 to 2012 and the second was from 2013 to 2020. The GHGs included in the Kyoto Protocol were:

- Carbon Dioxide (CO₂)
- Methane (CH₄)
- Nitrous Oxide (N₂O)
- Hydrofluorocarbons (HFCs)
- Perfluorocarbons (PFCs), and
- Sulphur Hexafluoride (SF₆).

10.6.2.1.4 Paris Agreement

In 2015, the Paris Agreement set in place a durable and dynamic framework for all countries to take action on climate change from 2020 onwards (that is, after the Kyoto period), building on existing efforts in the period up to 2020. Key outcomes of the Paris Agreement include:

- A goal to keep the global average temperature increase to well below 2°C and to pursue efforts to keep warming to less than 1.5°C above pre-industrial levels
- All countries to set mitigation targets from 2020 onwards and to review targets every five years to build ambition over time, informed by a global stocktake
- Robust transparency and accountability measures to ensure confidence in countries' actions and track progress towards targets
- Promoting action to adapt and build resilience to climate change, and
- Financial, technological, and capacity building support to help developing countries implement the Paris Agreement.

10.6.2.2 Vietnam Context

10.6.2.2.1 Vietnam's Commitments to GHG Emissions Reductions

Vietnam is a signatory to three significant international conventions on climate change, signing the:

United Nations Framework Convention on Climate Change (UNFCC) in 1992, ratifying it in 1994

- Kyoto Protocol in 1998, ratifying it in 2002, and
- Paris Agreement in 2016, ratifying it in the same year.

Vietnam has submitted its updated National Determined Contributions to the UNFCCC Secretariat in July 2020. In this report, Vietnam has committed to reduce the GHG emissions by 8-9% (approximately 83.9 Mt CO₂-e) below the Business as Usual (BAU) scenario and by 27% (approximately 250.8 Mt CO₂-e) with international support by 2030⁴¹, compared to the previously stated reduction of 8% and 25% with unconditional and conditional contribution, respectively.

10.6.2.2.2 Policy Framework Supporting Implementation of GHG Reduction Targets

- Over the past 10 years, Vietnam has issued and adopted such mitigation-related policies, legal documents, strategies as well as programmes, plans, and schemes to support the implementation of GHG reduction targets. Some of the key documents are listed below:
- Resolution 24/NQ-TW (2013) Active response to climate change, improvement of natural resource management, and environmental protection
- Law on Environmental Protection (No. 55/2014/QH13): promoting clean and renewable energy; environmental protection fee; environmental protection fund; strategic environmental assessment
- Law No. 50/2010/QH12 on Energy Efficiency and Conservation (LEEC): promoting energy efficiency and conservation activities through regulations, standards, and incentives
- The National Climate Change Strategy (2011) approved by Decision No. 2139/QD-TTg
- Vietnam Green Growth Strategy (2011) approved by Decision 1393/1212/QD-TTg, and
- Renewable Energy Development Strategy (2015) approved by Decision No. 2068/2015/QD-TTg.
- The most recent policy related to GHG reduction targets is *Resolution No. 55NQ/TW* dated 11 February 2020 on the orientation of the National Energy Development Strategy of Vietnam to 2030. *Resolution No. 55NQ/TW* sets a number of targets as below:
- The share of RE in the total primary energy supply is expected to account for 15-20% by 2030, and 25-30% by 2045
- The ratio of energy saving over total final energy consumption compared to the BAU scenario will increase about 7% by 2030 and roughly 14% by 2045, and
- The national GHG emission reduction targets from energy activities against the BAU scenario will be 15% and 20% by 2030 and 2045, respectively.

10.6.2.3 International Lenders' Environment and Social Standards

In recognition of the international efforts to mitigate greenhouse gas emissions summarised above, international lenders explicitly require assessment of GHG and climate change risk such as Asian Infrastructure Investment Bank (AIIB) Environmental and Social Framework, International Finance Corporation (IFC), or Equator Principles (EP).

In the absence of national laws relating to the magnitude of GHG emissions from project developments, the guidelines and standards of international lender's environment and social standards are used to place project emissions into perspective as below:

10.6.2.3.1 AIIB Environmental Safeguards

The AIIB requires the design and implementation of the Project shall minimize the emission in accordance with the aims of the Paris Agreement in December 2015. The Project's Owner shall develop

⁴¹ Ministry of Natural Resources and Environment (MONRE), 2020.

mitigation or adaptation measures to reduce the risk of climate change, as relevant as well as assess the impacts of the Project on climate change. The opportunities for low-carbon use, emission reduction, adaptive capacity enhancement, resilience strengthening, and vulnerability reduction to climate change shall be identified, where applicable. The promotion of renewable energy use and climate-proofing incorporation shall be conducted technically and financially.

10.6.2.3.2 International Finance Corporation Performance Standards (IFC PS)

In recognition of the international efforts to mitigate greenhouse gas emissions summarised above, the International Finance Corporation (IFC) Performance Standards explicitly require assessment of climate change risk and an understanding of GHG emissions and energy use, and includes:

- IFC Performance Standard 1: The risks and impacts identification process will consider the emissions of greenhouse gases, the relevant risks associated with a changing climate and the adaptation opportunities, and potential transboundary effects, such as pollution of air, or use or pollution of international waterways.
- IFC Performance Standard 3, which requires:
 - Consideration of alternatives and implementation of technically and financially feasible and cost-effective options to reduce project-related GHG emissions during the design and operation of the project. These options may include, but are not limited to, alternative project locations, adoption of renewable or low carbon energy sources, sustainable agricultural, forestry and livestock management practices, the reduction of fugitive emissions and the reduction of gas flaring.
 - For projects that will generate over 25,000 tonnes of CO₂ equivalent (t CO₂-e)/ year, quantification of direct GHG emissions within the physical project boundary and indirect emissions associated with off-site production of energy (i.e. purchased electricity), will be conducted by the Client annually in accordance with internationally recognised methodologies and good practices.

10.6.2.3.3 Equator Principles

The Equator Principles (EP) is a voluntary environmental and social risk management framework, adopted by financial institutions, for determining, assessing and managing environmental and social risk in projects. EP4 was release in November 2019 with an effective date of 1 July 2020.

The EP4 notes that quantification of Scope 1 and Scope 2 emissions GHG emissions will be conducted in accordance with internationally recognised methodologies and good practice, for example, the GHG Protocol.

The EP4 notes that for all Projects, in all locations, when combined Scope 1 (direct) and Scope 2 (indirect) emissions are expected to exceed $100,000 \text{ t } \text{CO}_2$ -e annually, an alternatives analysis will be conducted to evaluate less GHG intensive alternatives.

10.6.3 Baseline Conditions

In order to provide climate change projection information, in 2013 the Intergovernmental Panel on Climate Change (IPCC) developed and published a new set of climate change scenarios, called RCPs (Representative Concentration Pathway). The four RCPs (RCP2.6, RCP4.5, RCP6 and RCP8.5), are named after a possible range of radiative forcing values⁴² in the year 2100 relative to preindustrial

⁴² Radiative forcing or climate forcing is the difference between insolation (sunlight) absorbed by the Earth and energy radiated back to the space. Changes to Earth's radiative equilibrium, that cause temperatures to rise or fall over decadal periods, are called climate forcing. (Source: Shindell, Drew (2013). "Radiative Forcing in the AR5" (PDF). Retrieved 17 December 2019 and Rebecca, Lindsey (14 January 2009). "Climate and Earth's Energy Budget: Feature Articles". earthobservatory.nasa.gov. Retrieved 17 December 2019)

values (+2.6, +4.5, +6.0 and +8.5 W/m², respectively). Climate change for Vietnam in general and for Dak Lak Province in particular is presented in details below.

10.6.3.1 Temperature

In Vietnam, for the RCP 4.5 scenarios stated that surface temperatures would increase by 1.9 - 2.4°C in the North and 1.7 - 1.9°C in the South. Regarding the RCP 8.5 scenarios, temperature would increase by 3.3 - 4.0°C in the North and 3.0 - 3.5°C in the South (IPCC, 2013). Extreme temperatures would have an upward trend⁴³. Another material Climate Risk Country Profile for Vietnam issued by the Asian Development Bank (ADB) and World Bank Group (WBG) also stated the projected anomaly changes for maximum, minimum, and average daily temperatures in Vietnam for 2014 – 2059 and 2080 – 2099 from the reference period of 1986 – 2005 for all RCPs as below:

	Average Daily Maximum Temperature		Average Daily Temperature		Average Daily Temperature	Average Daily Minimum Temperature	
Scenario	2040-2059	2080-2099	2040-2059	2080-2099	2040-2059	2080-2099	
RCP2.6	1.1	1.2	1.1	1.1	1.1	1.1	
	(-0.4, 2.7)	(-0.1, 2.8)	(-0.1, 2.3)	(-0.1, 2.4)	(-0.1, 2.1)	(-0.1, 2.2)	
RCP4.5	1.3	1.9	1.4	1.9	1.4	1.9	
	(–0.1, 3.1)	(0.3, 3.8)	(0.1, 2.7)	(0.7, 3.4)	(0.1, 2.5)	(0.5, 3.2)	
RCP6.0	1.1	2.2	1.2	2.3	1.1	2.2	
	(-0.3, 2.6)	(0.6, 4.2)	(-0.1, 2.3)	(0.7, 3.8)	(0.0, 2.2)	(0.7, 3.6)	
RCP8.5	1.8	3.7	1.8	3.7	1.8	3.7	
	(0.2, 3.5)	(1.8, 6.1)	(0.4, 3.1)	(2.1, 5.6)	(0.4, 3.0)	(2.1, 5.4)	

Figure 10.26 Projected Anomaly Changes for Maximum, Minimum, and Average Daily Temperatures in Vietnam for 2014 – 2059 and 2080 – 2099

According to the publication by a group of researchers in Hue University⁴⁴, there are two climate change scenarios namely A1B and B1 developed for Krong Bong District representing for Dak Lak Province in three periods of time including Year 2020 (2010 - 2039), Year 2050 (2040 - 2069), and Year 2080 (2070 - 2099). In A1B scenario, the annual average temperature is to increase 1.0° C, 2.0° C, and 2.8° C for 2020, 2050 and 2080, respectively while the annual average temperature increases 0.9° C, 1.5° C, and 2.0° C for 2020, 2050 and 2080, respectively in the second scenario B2. The changes in average annual temperature (°C) according the RCP 4.5 scenarios and RCP 8.5 scenarios for Dak Lak Province⁴³ is presented in Table 10.42.

No.	Province,	RCP 4.5 Scer	5 Scenarios		RCP 8.5 Scenarios		
	City	2016 – 2035	2046 – 2065	2080 – 2099	2016 – 2035	2046 – 2065	2080 – 2090
1	Dak Lak Province	0.7 (0.4÷1.2)	1.4 (0.9÷2.0)	1.8 (1.2÷2.6)	0.9 (0.6÷1.2)	1.9 (1.3÷2.6)	3.3 (2.7÷4.4)

Table 10.42 Changes in Average Annual Temperature (°C) in Dak Lak Province

Source: Climate Change and Sea Level Rise Scenarios for Vietnam published by the Ministry of Natural Resources and Environment 2016

⁴³ Climate change and sea level rise scenarios for Vietnam published by the Ministry of National Resources and Environment in Ha Noi, 2016.

⁴⁴https://www.researchgate.net/publication/341422794_Nghien_cuu_tac_dong_cua_bien_doi_khi_hau_den_hoat_dong_san_x uat_nong_nghiep_o_huyen_Krong_Bong_tinh_Dak_Lak

10.6.3.2 Rainfall

In Vietnam, for the RCP4.5 scenarios, annual rainfall would generally increase over a range of 5÷10% by early 21st century over the most parts of the country, 5÷15% by mid and late 21st century particularly in some coastal provinces in the Red River Delta and 20% in the North Central and a part of the South and Central Highlands. For the RCP8.5 scenarios, the greatest increase would be over 20% in most parts of the North, Mid-central and parts of the South and Central Highlands ⁴³; and

In Dak Lak Province, the changes in annual rainfall (%) regarding the RCP 4.5 scenarios and RCP 8.5 scenarios are demonstrated in Table 10.43.

		_					
No. Province,		RCP 4.5 Scenarios		RCP 8.5 Scenarios			
City	2016 – 2035	2046 – 2065	2080 – 2099	2016 – 2035	2046 – 2065	2080 – 2090	
1	Dak Lak Province	6.5 (2.2÷10.9)	7.6 (0.8÷15.7)	10.1 (-1.0÷20.3)	5.3 (-1.0÷11.6)	8.7 (1.8÷16.2)	11.4 (2.4÷19.5)

Table 10.43	Changes in Annual Rainfall (%) in Dak Lak Province
-------------	--

Source: Climate Change and Sea Level Rise Scenarios for Vietnam published by the Ministry of Natural Resources and Environment 2016

10.6.3.3 Tropical Depressions and Typhoons

On average, approximately 12 tropical depressions and typhoons had occurred in Vietnam's East Sea on an annual basis in the period of 1959 to 2015 (MONRE, 2016). Of these, seven depressions and typhoons had impacted Vietnam and five of them had made their ways onto Vietnam's mainland (MONRE, 2016); and

Tropical depressions and typhoons recorded in the same period of time show an increase in their intensity and a tendency to last longer and move southward (MONRE, 2016). The number of tropical depressions and typhoons is predicted under the RCP4.5 and RCP8.5 scenarios by MONRE to reduce slightly throughout the 21st century (MONRE, 2016). By the end of the 21st century, storm intensity is forecasted by the IPCC to increase by between 2 and 11% and rainfall within a 100 km buffer area from the storm eye is also predicted to increase by approximately 20% (IPCC, 2013).

10.6.3.4 Extreme Weather Events

The number of cold fronts had decreased gradually, yet their intensity had increased in the period of 1981 to 1990 (MONRE, 2009). Approximately 10 days of cold fronts per year are recorded for Hanoi City (MONRE, 2009). In addition, the number of droughts experienced in Vietnam, especially extreme droughts, has increased significantly since 2000 (MONRE, 2009); and

Droughts in Vietnam are likely to become more severe in future due to the increasing temperature and decreased rainfall during the dry season (MONRE, 2016). The number of hot days (temperature \geq 35°C) is predicted to increase to be 35 - 45 days per year by the middle of the 21st century and exceed 100 days per year by the end of the 21st century.

10.6.4 Impact Assessment

The WTGs is to be specifically designed and installed to operate stably under various weather and meteorological conditions including temperature, rainfall, and extreme weather. As such, the impact magnitude of climate change is predicted to be Small and the impact significance is also considered to be Negligible.

There are unavailable studies on impacts of natural disasters such as storms on wind farms, but they may cause damage to turbines and affect the lifespan of wind turbines and the transmission line.

10.6.4.1 Impacts of Project's Activities to Climate Change

10.6.4.1.1 Impact during Pre-construction Phase

10.6.4.1.1.1 Significance of Impact

In accordance to the Feasibility Study Report 2021 provided by the Project's owner, the Project development will cause an impact on 208.64 hectares (119.09 ha of fixed-term and 161.55 ha of temporary land) of agricultural land mainly for perennial trees plantation due to the vegetation clearance activity during the pre-construction phase. Vegetation clearing in this area can induce a change of carbon stocks from the removal of living biomass.

The land use category is assumed to be agricultural and crop land in line with IPCC categories (IPCC, 2006). GHG emission from land clearance is expected using the Equation 10.1 and the parameters summarised in Table 10.44. Total GHG emission from vegetation clearing are presented in Table 10.45.

Equation 10.1 Change in Biomass Carbon Stocks on Land Converted to another Land Category

$\Delta C_{LO_{LB}} = A_{Conversion} \times (B_{After} - B_{Before}) \times CF$

Where:

$\Delta C_{LO_{LB}}$	=	Annual change in carbon stocks in living biomass in land converted to 'other land'	(t C/year)
$A_{Conversion}$	=	Area of land converted to 'other land' from some initial	(ha/year)
B _{After}	=	Amount of living biomass immediately after conversion to 'other land'	(tonnes d.m./ha)
B_{Before}	=	Amount of living biomass immediately before	(tonnes d.m./ha)
CF	=	Carbon fraction of dry matter (default = 0.5)	(tonnes C/tonnes d.m.)

Table 10.44 Amount of Living Biomass before and After Land Conversion

Description	Amount of Living Biomass (tonnes d.m./ha)				
Description	Forest land	Agricultural land			
Before	60 ^a	2.6 ^b			
After	0°	0°			

a- Carbon stock in biomass for forest land for tropical forest, moist climate region from Table 3A.1.3 from Chapter 3.3 of Good Practice Guidance for Land use, Land-use Changes and Forestry (IPCC, 2003).

b- Carbon stock in biomass for perennial cropland for tropical, moist climate region from Table 3.3.8 from Chapter 3.3 of Good Practice Guidance for Land use, Land-use Changes and Forestry (IPCC, 2003)

c- Default assumption of 0 was assumed when converted to other land as per Section 3.7.2.1.1.1 from Good Practice Guidance for Land use, Land-use Changes and Forestry (IPCC, 2003)

Table 10.45 Annual GHG Emissions from Land Clearing in the Preparation Phase

Phase	Description	GHG Emissions (t CO ₂ -e/year) ^a		
		CO ₂	Total	
Preparation phase	Land clearing	994	994	

10.6.4.1.2 Impact during Construction Phase

10.6.4.1.2.1 Existing Controls

There is no existing measures/controls proposed for this Section.

10.6.4.1.2.2 Significance of Impact

Because climate change affects global receptors, the impact magnitude and resource/receptor sensitivity cannot be determined in the same way it can be for other impact assessment aspects such as soil, air or water resource, etc. For this reason, impact significance is only determined to be Significant or Not Significant using the IFC threshold value of 25,000 tonnes of carbon dioxide equivalent per year $(tCO_{2e})^{45}$.

Main construction activities such as construction of turbine foundation with reinforced concrete, installation of overhead and underground transmission line, wind turbines also used heavy equipment that consumes a relatively huge amount of diesel. The use diesel fuel has increased the production of greenhouse gases (GHG), especially carbon dioxide (CO₂), that contributing to climate change impacts.

The estimate of the Project GHG footprint was performed based on 2006 IPCC Guidelines for National GHG Inventories (UNFCCC, 2018b). The IPCC Guideline defined three level of methodological complexity, called "tier" for GHG accounting and reporting purposes, as shown in Table 10.46.

Scope	Description
Tier 1 Approach	Calculates emissions by multiplying estimated fuel consumed with a default emission factor.
	For CO ₂ , emission factors mainly depend upon the carbon content of the fuel and therefore emissions can be estimated fairly accurately using this method.
	Emission factors for CH_4 and N_2O depend on the combustion technology and operating conditions and vary significantly. As such, large uncertainties are anticipated from this method.
Tier 2 Approach	The approach is the same as Tier 1 but country-specific emission factors are used in place of the Tier 1 defaults.
Tier 3 Approach	Technology-specific emission factors.

Table 10.46	Tiers Approach for Estimation of	GHG
	The sum and the sum atom of	

In this Project, the emission from construction activities has been accounted in the Tier 1 method. The calculation is based on the amount of fuel consumption data and emission factors for CO_2 , CH_4 , and N_2O which will be applied to the corresponding activity data. GHG emission from mobile combustion including bulldozer, excavators, cranes, rollers, graders, trucks are estimated using Equation 2. The value of default emission factors and energy content factors are presented in Table 10.47.

⁴⁵ IFC Greenhouse Gas Reduction Accounting Guidance for Climate Related Projects. IFC Climate Business Department, May 2017

Equation 2 Fuel Combustion

$$E_{j} = \frac{Q_{i} \times EC_{j} \times EF_{ijoxec}}{1000}$$

Where:

Ej	=	Estimated emissions of gas type j (CO ₂ , CH ₄ or N ₂ O) from fuel type (i)	(t CO ₂ -e/year)
Q_{i}	=	Estimated quantity of fuel type (i)	(tonnes or GJ/year)
ECj	=	Energy content factor of fuel (j)	(GJ/t or GJ/kL)
EF _{ijoxec}	=	Emission factor for each fuel type (j)	(kg CO ₂ -e/GJ or tonne)

Table 10.47 Default Emissions Factors and Energy Content Factor for Diesel Combustion in Mobile Equipment and Vehicles

Description	Value	Units
Energy content factor for diesel	43 ^a	MJ/kg or GJ/t
	35.9 ^b	GJ/kL
Diesel density ^c	0.840	kg/L or t/kL
Tier 1 CO ₂ emission factor - diesel ^d	74.1	kg CO ₂ -e/ GJ
Tier 1 CH₄ emission factor - diesel ^d	4.15	kg CH₄/ TJ
	0.12	kg CO ₂ -e/ GJ
Tier 1 N ₂ O emission factor - diesel ^d	28.6	kg N ₂ O/ TJ
	7.6	kg CO ₂ -e/ GJ

a. (IPCC, 2006) - Table 1.2 (default net calorific values (NCVs) and lower and upper limits of the 95% confidence intervals), page 1.18, Volume 2 (Energy), Chapter 1 (Introduction).

b. Estimated by ERM based on the diesel density.

c. (STAMEQ, 2018) – TCVN 5689:2018, Table 1 (Diesel fuel oil - Specifications and test methods), Diesel density

d. (IPCC, 2006) - Table 3.3.1 (default emission factors for off-road mobile sources and machinery), page 3.36, Volume 2 (Energy), Chapter 3 (Mobile Combustion).

The estimated CO_2 emission from the operation of heavy equipment (See Table 10.48) with the assumption below is presented in Table 10.49. It is noted that these are estimates only, and actual emissions would vary depending on factors such as the actual construction schedule, actual material demand.

No	Equipment Type – Capacity	Quantity				
1	Crane	2				
2	Truck	10				
3	Bulldozers	11				
4	Mobile crane	14				
5	Total	37				

Table 10.48 List of Construction Equipment during the Construction Phase

Source: Refer to data provided by the Project's Owner

Table 10.49 Estimated CO₂ Emission from Operation of Heavy Equipment

No	Average number of heavy equipment for construction of each turbine	An average diesel consumption rate	Working hours/day	Construction period (18 months) (excluding public holidays)	
1	37 equipment	30 litters/hour ⁴⁶	8 hours/day	378 working days	

Diesel quantity to complete the construction of 18 wind turbines: 3,356,640 litres

Diesel density: 0.84 kg/litre

Emission factor (CO2-e) : 81.82 kg CO2-e/ GJ

Energy content factor for diesel: 43 MJ/kg

Total estimated CO2-e emission: 3,356,640 litres x 2.955 kg CO₂e/litre = 9,918.9 tons CO₂-e

Additionally, the estimated CO₂ emission from transportation of material and equipment is calculated as follows:

Table 10.50 Estimated CO₂ Emission from Transportation of Materials and Equipment

Items	Number of heavy haul vehicle movement (one- way)/ day	Number of transportation days	Diesel use Rate ⁴⁷ (litre/day)	Diesel Use Demand				
Wind turbine component (turbine blade, Nacelle, Hub, Tower sections) and Transmission line component were transported by specialized trailers	3	378	68	77,112 litres				
Material (sand, stone, cement, steel)	20	378	57	430,920 litres				
Diesel quantity to complete the transportation of material and equipment: 508,032 litres								

Total estimated CO₂e emission: 508,032 litres x 2.955 kg CO₂e/litre = 1,501 tons CO₂e

The estimated CO_2 emission over the Project Construction is likely to be less than the IFC threshold value of significance of 25,000 tons of carbon dioxide equivalent (tCO₂e). Therefore the impact is considered **Not Significant**.

10.6.4.1.3 Impact during Operation Phase

As mentioned above, once operational, the Project will make a contribution to Vietnam renewable energy sector and climate change targets. During the operation phase of the project's life cycle, Huadian Dak Lak Wind Power Project plans to generate totally 754.607 GWh/year of electricity through wind power, which is considered as zero GHG emission during operation phase. Through generating electricity by harnessing the power of the wind as opposed to burning a mix of fossil fuels, the Project is expected to provide a potential saving of 688,956.191 tonnes of carbon dioxide emission per year over its 20 year lifetime⁴⁸.

⁴⁶ Referred from Article "Evaluating the Environmental Impacts and Energy Performance of a wind farm system utilizing the Life – Cycle Assessment Method: A Practical Case Study", Mohamed R.Gomaa and et al, 2019

⁴⁷ Decision No 1134/QĐ-BXD of Ministry of Construction, dated October 8th 2015 on Rate of fuel consumption of construction equipment.

⁴⁸ The grid emission factor of Vietnam for 2018 is 0.913 tCO2/MWh, according to the Announcement No. 263/BĐKH-TTBVOD of Department of Climate Change, Ministry of Natural Resources and Environment

Therefore, the Project has **positive impacts** to Climate Change as it helps to reduce consumption of fossil fuels to generate electricity, and as a result, reducing the emissions of GHG and air pollutant emission.

10.6.4.2 Impact of Climate change to the Project

The potential impacts of climate changes affected to wind power generation and wind power infrastructure include:

- Extreme weather events, such as stronger and/or more frequent storms can reduce the output of energy, damage generation and grid infrastructure, affect security of energy supply and cause difficult access to the Project's location for maintenance
- Rapid change in wind speed can reduce power generation because turbines cannot operate in very high or very low winds (refer to cut-in and cut-out wind speeds), and
- Severe natural disaster such as flooding and landslide may affect to substation and other components which results in loss of supply locally.

10.6.4.2.1 Existing Control

Some existing controls were identified in the local EPP and Project engineering design, as follows:

- Each turbine will be installed stone embankment and foundation pit will be compacted to avoid flooding and landslide
- Some technical specifications in the Envision Design were already considered extreme climate condition such as extreme wind speed (10 min average) of 37.5 m/s; survival wind speed (3s gust) of 52.50 m/s and turbulence intensity. These parameters are adapted with extreme weather of Dak Lak province, Vietnam as several storm, typhoons were recorded in Dak Lak province with the maximum wind speed of 36.6 m/s (level 12). The wind turbine will stop producing power at ambient temperature below -40°C and above 50°C. The turbine is designed for use at altitudes up to 1,000 MASL standard and optional up to 2,000 MASL
- Drainage system will be designed and built around the turbines' foundation and transmission line pylon to ensure to accommodate the increased precipitation because of climate change
- Prepare flood warning and prevention system and develop an Emergency Preparedness and Response Plan, and
- When the flash flood occurs, the Project owner needs to evacuate workers out of dangerous areas, using on-site equipment and manpower to control the incidents.

10.6.4.2.2 Significance of Impact

The impact significance of Climate change to Wind Production is presented below in Table 10.51.

Impact Description	Climate Change Impacts to Wind Power Production and Infrastructure							
Impact Nature	Negative	٩	Jeutral					
Impact Type	Direct	Indirect	li	nduced				
	Climate change impar storm surges) affect c and physical infrastru	cts (such as changes i lirectly to wind turbine cture (wind turbines, tr	n wind speed, floc operation and win ransmission line ar	ding and inundation, d power production nd distribution system)				
Impact Duration	Temporary	Short-term	Long-term	Permanent				

 Table 10.51
 Climate Change Impacts to Wind Power Production and Infrastructure

Impact Extent	Local	Regional		Global		
Frequency	The impact frequency assumed to be likely t	ne operation of during operatio	the win n as a v	d farm, and worst case.		
Impact Magnitude	Negligible	Small		Medium		Large
Receptors Sensitivity	Low	Low		Medium		
Impact Significance	Negligible	Mino	r	Moderate		Major

10.6.4.2.3 Adaptation Measures

The following adaption measures are proposed on this ESIA to adapt impacts regarding to climate change, including:

- Construction design should take into account the increase in wind intensity to ensure stability of the WTG and avoid any community/occupational safety incidents
- In case that wind speeds are likely to increase, the selected turbine design (Envision 2.65 MW and 3.0MW) has been adapted to handle higher wind speeds and gusts, to capture greater wind energy with taller towers
- For transmission and distribution (including substation), specifying redundancy in control systems, multiple transmission and distribution routes, relocation. Where stronger winds are expected, higher design standards for distribution poles shall be adopted
- Where lightning strikes may increase, it must apply enhanced lightning protection and grounding system (earth wires, and spark gaps) in the distribution network
- Ensure the presence of rapid emergency teams to repair any damaged turbines in timely manner
- The planned areas for vegetation clearance linked to the construction works shall be clearly determined and demarcated by landmarks to avoid any accidental violation. Site clearance plan will be prepared to identify areas that will be retained with natural vegetation within the Project's boundaries
- Clearing vegetation outside of designated areas will be prohibited for Project staff, workers, all
 contractors and personnel engaged in or associated with the Project, with sanctions, including fines
 and dismissal, and prosecution under the relevant laws for clearing vegetation
- Some mitigation measures regarding to transportation plan should be done to avoid unnecessary trips that would make more vegetation clearance, and
- Some existing controls relating to the impact from natural disasters can be referred to Section 10.6.4.2.1.

10.6.4.2.4 Residual Impact

After applying all adaptation measures, the residual impact to the climate change can be considered to be Negligible.

10.6.4.2.5 Monitoring and Auditing

There is no monitoring and auditing program for Climate change aspect.

10.7 Shadow Flicker Impact Assessment

10.7.1 Scope of Assessment

Within windfarms, shadow flickering can have significant impacts on surrounding communities; this section is included to assess and address this particular impact. The likelihood and duration of the flickering effect usually depends upon a number of factors, including:

- The direction and distance of the property relative to the turbine (the further the observer is from the turbine, the less pronounced the effect will be)
- Turbine height and rotor diameter
- Time of the day and year linked to climatology conditions in the area
- Wind direction (that affect potential wind turbine orientation)
- General weather conditions (presence of cloud cover, fog, humidity reduces the occurrence of shadow flicker as the visibility itself of the turbine is reduced)
- Windows structure (e.g. window direction, window coverings, materials)
- Topography and presence of natural or anthropic barriers (i.e. vegetation, other buildings etc.)

In general, shadow flickering effect occurs during clear sky conditions, when the sun is low on the horizon (sunrise and sunset). As the angle of elevation from the horizon of the sun during midday changes throughout the year plus the topographical relief, each location experiences and is influenced by the shadow flickering effect phenomenally different. Hence, specific shadow receptors can be disturbed in different periods of the day or year.

The theoretical number of hours of experienced shadow flickering effect each year at a given location can be calculated by utilising modelling packages (e.g. Shadow model in windRPO 3.4) incorporating the sun path, topographical relief over the Project site, and rotor diameter and hub height details of wind turbine model.

When assessing shadow flickering impacts, the worst case and/or real case impacts are determined:

- Worst Case Scenario: the possibility of astronomical shadow flickering duration is maximum when the sun is lastingly shining during daylight hours (i.e. the sky is always clear), the wind turbine is always operating, the rotor is always is always perpendicular to the line from the WTG to the sun.
- Real Case Scenario: the expected shadow flickering duration when average sunshine hour probabilities and wind statistics at a certain region include turning off periods (low winds and high winds) are taking into account.

10.7.2 Applicable Standards

In August 2015, the World Bank Group published the Environmental, Health and Safety (EHS) Guidelines for Wind Energy⁴⁹. These are technical reference documents containing examples of good industry practice.

The definition adopted in the EHS guidelines states that shadow flicker occurs when the sun passes behind the wind turbine and casts a shadow. As the rotor blades rotate, shadows pass over the same point causing an effect termed shadow flicker. Shadow flicker may become a problem when potentially sensitive receptors (e.g. residential properties, workplaces, educational and/or healthcare spaces/facilities) are located nearby, or have a specific orientation to the wind energy facility.

Key points identified in the guidelines include:

⁴⁹ EHS Guidelines of World Bank Group:

https://www.ifc.org/wps/wcm/connect/topics_ext_content/ifc_external_corporate_site/sustainability-at-ifc/policies-standards/ehs-guidelines

- Shadow flicker occurs when the sun passes behind the wind turbine and casts a shadow. As the rotor blades rotate, shadows pass over the same point causing an effect termed shadow flicker. Shadow flicker may become a problem when potentially sensitive receptors (e.g., residential properties, workplaces, learning and/or health care spaces/facilities) are located nearby, or have a specific orientation to the wind energy facility.
- Potential shadow flicker issues are likely to be more important in higher latitudes, where the sun is lower in the sky and therefore casts longer shadows that will extend the radius within which potentially significant shadow flicker impact will be experienced.
- In case of the possibilities of modifying the wind turbines' locations where neighbouring receptors experience low shadow flicker effects, it is recommended that the predicted duration of shadow flickering effects experienced at a sensitive receptor should not exceed 30 hours per year and 30 minutes per day on the worst affected days, based on a worst-case scenario.
- Recommended preventative and mitigation measures to avoid substantial shadow flicker impacts include systematising wind turbines' arrangement appropriately, when feasible, to avoid shadow flicker being experienced or to meet duration limits of shadow casting continuously on the shadow sensitive receptor, as set out in the paragraph above, or scheduling wind turbines to shut down at intervals where shadow flicker limits are exceeded.

10.7.3 Receptors

The Project is divided into four (4) lots and named Krong Buk 1, Krong Buk 2, Cu Ne 1, and Cu Ne 2 which are separated to 2 groups Krong Buk 1&2 and Cu Ne 1&2 (Figure 1.1). Krong Buk 1 is located in Cu Pong commune and the western part of Chu Kbo commune, and Krong Buk 2 is located in Cu Ne commune and the south-eastern part of Ea Sin commune, Krong Buk district, Dak Lak province. Meanwhile, Cu Ne 1 and Cu Ne 2 are both located in Cu Ne commune, Krong Buk district, Dak Lak province.

As aforementioned in Section 5.3.1 - Areas of Influence of Shadow Flicker⁵⁰ was identified as 10 times rotor diameter (1,410 m of radius of influence (RoI) for EN141/2.65 and 1,560 m of RoI for EN156/3.0). It is situated in cultivation areas of Krong Buk districts characterised by low-altitude mountainous terrain (in a range of $610 - 830 \text{ mas}^{51}$) and agricultural land with a large area of rice fields. There are a total of 2,690 potential receptors that were identified within the AoI and could potentially experience the shadow flickering event and Figure 10.27 presents the location of such receptors.

shadow-flicker-evidence-base.pdf

⁵⁰ Area of Influence for Shadow Flicker impact:

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/48052/1416-update-uk-

⁵¹ masl: meter(s) above sea level

Source: QGIS, ESRI, Google, August 2021

Figure 10.27 Location of Receptors

10.7.4 Assessment Methodology

The project baseline conditions are summarized and represented in this section to describe general characteristics of the project area according to the meteorological baseline which is presented in Section 7.2.5. In addition, there are some assumptions for shadow flicker theory that should be stated prior to modelling. In particular:

- The average monthly sunshine hours is approximately 151 280 hours. As recorded, March attains the highest sub hours of 200 – 320 hours.
- The wind turbines have been considered operational with wind speed more than 3 m/s and for the same, based on annual wind rose and wind frequency data (see Table 7.10) it has been assumed that about 90% time of the year, the wind turbines will be operational.
- The blades of the wind turbines are perpendicular with north-east and south-west orientation have been considered based on the predominant wind direction available from the wind mast data (Figure 7.8), which could result in maximum possible size circular/ elliptical.
- It is noted that the assumption of non-vegetation does not take into account trees on the surface which may obscure the line of sight between shadow receptor and turbine in shadow flicker calculation.
- The sun can be represented as a single point.
- Flicker is ignored if sun is less than 3° above horizon due to atmospheric diffusion/ low radiation/ sheltering.

10.7.5 Shadow Flickering Analysis

This assessment was performed using windPRO 3.4©; a computer software which is widely used by the wind industry. The software package includes a Shadow Flicker Module (SHADOW) that calculates the frequencies and the intervals in which a specific neighbouring receptor or area will be affected by one or more wind turbines.

Two scenarios have been considered and modelled: Worst Case Scenario (maximum potential risk) and Real Case Scenario.

- Worst Case Scenario (WC): the calculation is based on the following key assumptions:
 - The presence of physical barriers is not considered
 - Natural vegetation screening is not included
 - Cloudiness, humidity are not considered
 - The sun is shining all the day, from sunrise to sunset
 - Local topography has been obtained from NASADEM
 - Rotor is always in operation and refrained from turning off during low winds or high winds
 - Shadow receptors are modelled using the "greenhouse" mode, meaning that shadow flicker effect to each receptor at all directions (visibility 360 degrees)
- Real Case Scenario (RC): is designed by considering planned turbines, the calculations are based on a more realistic situation where publicly available dataset of sun shining probability and average wind direction is applied. However, it should be noted that real case scenario still ignores other relevant conditions (e.g. vegetation cover, window characteristics) of the local settings that will theoretically lead to an overestimation of the shadow flickering occurrence.

All scenarios have been carried out with a chronological resolution of 1 minute (if shadow flicker is predicted to occur in any 1-minute period, the model records this as 1 minute of shadow flicker).

Independent of the selected scenario, the model calculates outputs according to the principles presented in Figure 10.28.

Figure 10.28 Shadow Flickering Theory

All receptors in both scenarios, assuming dwellings/groups of dwellings, within Shadow Flickering Aol of Project's WTGs have been modelled taking into account the following characteristics:

- Single storey building. Therefore, shadow flicker has been calculated at a height of 1 m (equivalent to the ground floor windows).
- Slope of the window has been set to 90°.
- The identified receptors are simulated as fixed points with the 360° viewpoint which represented an unrealistic scenario as real windows would only face a particular direction⁵².

10.7.5.1 Worst Case Scenario

The assumptions have been mentioned in Section 10.7.5 for the modelling setting of the Worst Case Scenario.

⁵² Worst Case Scenario in windPRO 3.4 software based on EHS Guidelines for Wind Energy

10.7.5.2 Real Case Scenario

The following assumptions have been considered in the modelling setting for Real Case Scenario:

Public data of average daily sunshine hours at Buon Ma Thuot meteorological station (approximately 340 m from the Project):

Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
5.16	6.18	6.35	5.70	6.96	5.65	5.58	4.98	5.13	6.14	7.61	8.24

- Local topography has been obtained from NASADEM
- No cloud cover or any other meteorological conditions that could potentially reduce visibility and the sunlight have been assumed
- Receptors modelled using greenhouse mode
- No existing physical barriers have been considered (e.g. trees, buildings)
- Rotors are always rotating
- The probability distribution of wind direction according to data recorded at the Project's measurement tower at the height of 80 m from 2013 to 2016:

Ν	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	wsw	w	WNW	NW	NNW	Sum
1.02%	3.60%	18.93%	13.44%	10.14%	6.25%	2.78%	1.52%	1.42%	2.10%	8.89%	16.63%	8.69%	2.82%	0.85%	0.94%	100%
89	315	1,658	1,177	888	548	243	133	124	184	779	1,457	761	247	75	82	8,760

It should be noted that even the assessment performed with such assumptions is leading to an overestimation in terms of real annual number of hours of shadow flicker at a specific location mainly because of the following local conditions have not been included:

- The occurrence of cloud cover has the potential to significantly reduce the number of shadow flickering hours that the observer can be experienced.
- The presence of aerosols in the atmosphere have the ability to influence the flickering duration as the length of the shadow cast by a WTG depends on the angle of direct sunlight hits, which is strictly determined by the amount of fine solid particles/liquid droplets in between the observer and the rotor.
- The analysis has not considered the presence of vegetation or any other physical barriers around a receptor that are able to block the view (at least partially) of the turbine.

10.7.5.3 Summary of Scenario Setting

The following table is reporting the modelling settings adopted per each scenario. However, it should be noted that the performed calculations did not consider the actual location and orientation of windows of the possible affected house, or the screening effects associated with existing, site-specific conditions and obstacles like other buildings, leading to potential of over-estimating the duration of occurrences when shadow flicker might be experienced at a specific location.

	Worst Case Scenario	Real Case Scenario			
Wind Turbine location	See Figure 10.27	See Figure 10.27			
Rotor diameter and hub height	141 m/ 130 m for EN141/2.65 156 m/ 130 m for EN156/3.0	141 m/ 130 m for EN141/2.65 156 m/ 130 m for EN156/3.0			
Wind Turbine Operation	Rotors are always rotating	Rotors are always rotating			
Wind Turbine Visibility	A WTG will be visible if it is visible from any part of the receiver window (greenhouse mode)	A WTG will be visible if it is visible from any part of the receiver window (greenhouse mode)			
Window stories dimensions	1m height / 1m large / 1m from the ground floor	1 m height / 1m large / 1m from the ground floor			
Cloudiness	Not considered	Not considered			
Physical barriers (i.e. vegetation)	Not considered	Not considered			
Minimum sun height over horizon for influence	3°	3°			
Day step for calculation	1 day	1 day			
Time step for calculation	1-minute	1-minute			
Shining period	The sun is always shining all day, from sunrise to sunset	The sun is shining as per available local sunshine data (Buon Ma Thuot meteorological station)			
Height contour	NASADEM	NASADEM			
Eye Height	1.5 m	1.5 m			

Table 10.52 windPRO Shadow Module Inputs (in bold the differences between Worst Case and Real Case Scenario)

10.7.5.4 Model Results

As presented above, two scenarios have been modelled using SHADOW module of windPRO soft-ware to identify the receptors potentially affected by the shadow flickering. The following sections are reporting the number of potentially affected receptors per each scenario.

10.7.5.4.1 Worst Case Scenario

As presented above, Worst Case Scenario has been modelled using SHADOW module of windPRO to identify the receptors potentially affected by the flickering. The project area is characterised by the presence of receptors in Krong Buk district.

The modelling package is calculating the predicted shadow flickering durations at receptors with a result of:

- 1,030 receptors which experience greater than 30 hours per year
- 866 receptors which experience greater than 30 minutes per day
- 785 receptors which experience greater than 30 hours per year and 30 minutes per day. These
 receptors were considered as impacted according to IFC EHS Guidelines for Wind Energy.

Worst Case Scenario has considered unrealistic conditions and its result led to a potential of 785 impacted receptors out of 2,690 mapped ones (around 29.18% and within the impacted zone in Figure 10.30). The key potentially impacted areas are mainly located in dense residential areas:

- Drang village, Cu Pong commune, and Dro village, Cu Ne commune within Krong Buk 1&2
- Ra, Kdeao, Ktang villages, Cu Ne commune within Cu Ne 1&2
- Sparse receptors within Cu Pong and Cu Ne communes

IFC thresholds have been exceeded for both parameters: hours/year and min/day at 785 receivers with the most impacted receptor (No.2307) experiences ~809 hours per year with the maximum of 193 minutes per shadow day.

The following charts and maps present the distribution of areas where flickering is calculated according to the Worst Case Scenario (from Figure 10.29 to Figure 10.34). A table of main result for all receptors is attached in Appendix L.

Figure 10.29 Impacted Receptors

Shadow flickering duration in [hours per year] and [minutes per day]

Figure 10.30 Go Zone Plot Showing the Shadow Flickering of Groups of Receptor in [hours per year] and [minutes per day]

Source: QGIS, ESRI, Google, September 2021

Figure 10.31 Map of Predicted Shadow Flicker for Krong Buk 1&2 (hours/year) – Worst Case Scenario

Source: QGIS, ESRI, Google, September 2021

Source: QGIS, ESRI, Google, September 2021

Figure 10.33 Map of Predicted Shadow Flicker for Krong Buk 1&2 (minutes/day) – Worst Case Scenario

Source: QGIS, ESRI, Google, September 2021

Figure 10.34 Map of Predicted Shadow Flicker for Cu Ne 1&2 (minutes/day) – Worst Case Scenario

10.7.5.4.2 Real Case Scenario

In order to assess the shadow flickering occurrence taking into account local conditions for few parameters, a second scenario has been calculated.

The predicted shadow flicker durations at receptors are presented from Figure 10.35 to Figure 10.37.

Based on these figures, the results confirmed that with the input of local conditions (wind directions and average daily sunshine hours) on the modelling, the number of impacted receptors have been reduced to 312 instead of 1,030 (by approximately 69.7%). In addition, most of the impacted receptors are sparse ones. For further detailed result of the modelling, please refer to Appendix M.

Figure 10.35 Impacted Groups of Receptors in Real Case Scenario and Comparison of Number of Impacted Groups of Receptors between Worst Case and Real Case Scenarios

Source: QGIS, ESRI, Google, September 2021

Source: QGIS, ESRI, Google, September 2021

Figure 10.37 Map of Predicted Shadow Flicker for Cu Ne 1&2 (hours/year) – Real Case Scenario

10.7.6 Impact Assessment

10.7.6.1 Potential Impacts

The association between shadow flicker caused by wind turbines and the effects on human health is highly debated.

Some studies suggest that flicker from turbines pose a potential risk of inducing photosensitive seizures (Harding et al, 2008; Smedley et al., 2010).

However, in 2011, the UK Department of Energy and Climate Change concluded in their Update Shadow Flicker Evidence Base report that "On health effects and nuisance of the shadow flicker effect, it is considered that the frequency of the flickering caused by the wind turbine rotation is such that it should not cause a significant risk to health".

Despite such conclusions, other reports state that although shadow flicker from wind turbines is unlikely to lead to a risk of photo-induced epilepsy, the potential for annoyance and disturbance are still present leading to stress (Cope et al., 2009; Minnesota Department of Health, 2009; National Research Council, 2007).

10.7.6.2 Existing/ In Place Control

The existing control measures section is based on local EPP of the Project. However, there are no mitigation measures in this document. Further mitigation measures are suggested in the additional mitigation measures section as below.

10.7.6.3 Significance of Impacts

The shadow flickering assessment has considered two scenarios as previously mentioned: a worstcase scenario and a more realistic one embedding local meteorological conditions. In both scenarios, even though the amount of receptors in real case scenario had been significantly reduced comparing to worst case scenario (312 versus 785 shadow receptors), these are still considered to be potentially impacted by shadow flickering exceeding the international maximum permissible limits. It should be noted that:

- Based on available satellite imagery, the potential impacted dwellings located within the areas of influence (1.41 km for EN141/2.65 and 1.56 km for EN156/3.0 from the WTG) are characterised by some dense residential areas and scattered receptors distributed in Cu Pong and Cu Ne communes. These conditions are able to reduce the potential for dense residential areas as the buildings could play a role of man-made barriers which is likely to prevent shadow flicker effect. By contrast, scattered receptors are likely to be affected by the casting unless there is natural barrier surrounding them.
- In addition, it should be considered that receptors have been identified using satellite imagery and not confirmed through a dedicated site visit. Potentially some of these are not representing dwellings where people permanently resided; therefore it would be good if the affected households could be verified through additional fieldwork and validation survey, to understand uses of the dwellings, if these are permanently habited by humans, if the windows are facing the rotors, if there are any blinds or not, etc. Therefore, we cannot state clearly the exact number of affected households nor if these will have to be relocated.
- The performed calculations in the modelling did not take into account the actual location and orientation of windows or the screening effects associated with existing, site-specific conditions and obstacles like other buildings which potentially leading to overestimate the duration of occurrences when shadow flicker might be experienced at a specific location.

Shadow flicker impacts are negative, direct and long-term during the Operation Phase of the Project. The impact scale is within Shadow Flicker AoI on the receptors which are surrounding the WTGs. Impact magnitude varies based on distance of receptors from the WTGs and their orientations.

Impact	Shadow flicker	Shadow flickering impacts during Operation Phase								
Impact Nature	Negative	Negative			Positive			Neutra	Neutral	
Impact Type	Direct			Indirect			Induc	Induced		
Impact Duration	Temporary Short-		-term Long-term		Permanent		rmanent			
Impact Extent	Local			Regional			Global			
Impact Frequency	The shadow flic	kerir	ng impa	ct cou	ld potent	ially occu	ur up t	to 12 ho	ours/	day
Impact Magnitude	Positive	Ne	gligible		Small		Med	ium		Large
Receptors Sensitivity	Low			Med	lium			High		
Significance	Negligible Minor		r Moderate		rate		Ма	jor		
	The significance	e is N	lajor							

Table 10.53	Impacts of Shadow Flickering
-------------	------------------------------

10.7.6.4 Additional Mitigation Measures

It should be understood that shadow flicker is considered an environmental "nuisance", rather than medical risk, as there is insufficient evidence to indicate that shadow flicker causes health problem.

Thus, the hierarchy of mitigation measures are identified to address issues regarding cause and effect of shadow flicker from wind turbine.

- Grievance Monitoring and Reporting Implementing a process to assess the real occurrence of the shadow flickering at local identified receptors (312) in order to eliminate the phenomena. In case of dwellings experienced flickering shadow, a detailed grievance mechanism should be available and the local community must be aware of the availability of grievance mechanism to submit their complaints regarding nuisances related to shadow flicker from turbines. Ensuring close monitoring through engagement with local stakeholders including informing to affected communities during the operational phase where there are predicted impacts from shadow flickers
- Visual Screening (Natural) Assess potential sensitive receptors, for which shadow flicker modelling indicates could exceed 30 hours per year and 30 minutes per day, after a validation survey at site to verify receptors which are not dwellings, and in order to ascertain the extent of existing natural visual screening in place. If not existing, the occurrence of shadow flickering during operation could be furtherly investigated, and if confirmed, increasing natural screening could be considered to minimise the effect.
- Visual Screening (Architectural/ Structural) If grievances are received linked to this impact or if natural visual screening at potential sensitive receptors are found to be insufficient to mitigate the shadow effect, further assessments will have to be performed and apply certain mitigation actions as installation of blinds, window shades, window tinting, awnings or fences at affected receptors, which will help to minimize the effect of shadow flicker.
- Operational Curtailment In case of shadow flicker related grievances are logged and/or after visual screening has been done, wind turbines operations will be investigated to determine specific wind turbine that result to shadow flicker exceedance of 30 hours/year and 30 minutes/day on affected structure. Based on such information, operational curtailment can be applied to reduce the affect to the impacted receptors which are identified based on the results of monitoring.
- Relocation once concluding the additional suggested assessment, if visual screening (both natural and architectural/ structural) and stopping operation of wind turbines fail to mitigate shadow flicker impact at impacted receptors, then relocation of affected dwellings would have to be considered and had to be openly presented to local community by the Client for prior consent. Any relocation process will have to be performed in accordance with AIIB ESS2 related to resettlement. A community disclosure will be highly recommended to clarify the significant of impact and ensure the community would be affected in case of changes of likelihood. However, it is important to understand that:
 - The Project Owner shall conduct a detailed census or inventory of loss of all impacted receptors by the worst case scenario and set out a "cut-off' date to avoid any new residential settlements within the impact zone after the date. In case the Project does not have enough resources, a communication channel via local authorities especially villages' heads should be established as long as all impacted receptors are well-informed about the impacts, cut-off date and grievance process
 - The Project Owner shall also strengthen the cooperation with local authorities to continuously implement local awareness raising of the Project impacts, especially flickering shadow affect, to local people, and
 - For any new settlements after the cut-off date and within the impacted zone, if their settlement lands are legally classified as residential lands, the Project Owner, with the support from local authorities, shall notify them about the shadow flickering issue and provide support to such households whether building structure or surrounding environment designs including natural and artificial barriers

10.7.6.5 Residual Impacts

Residual impact following the implementation of these mitigation measures is still considered to be Major given the high density of potentially impacted population within and near the Project's boundary. However, given the assessment is performed against WCS according to IFC standard, the Project can still be able to achieve and reduce the impact significance to Moderate depending on the efficiency of the mitigation measures and when local meteorological conditions are taken into account.

10.7.6.6 Monitoring and Audit

Grievance related to shadow flickering issue monitoring measures are identified and recommended.

10.8 Visual Impact Assessment

A visual impact assessment is an assessment of the potential impacts of the Project on specific views and on the general visual amenity experienced by people. Landscapes are not static but are dynamic, not least due to the range of natural and human factors that define their characteristics, but also due to the many different pressures that have altered landscapes in the past and will continue to do so in the future. Therefore, determining the significance of visual effects identified can be particularly challenging.

This section provides methodology, an assessment of baseline conditions within Project site and surroundings in relation to landscape and visual amenity and then assesses the anticipated impacts throughout the Project construction and operational phases. Then, a set of management measures (including mitigation measures, additional requirements, etc.) and monitoring measures have been identified to avoid impacts or reduce them to acceptable levels.

10.8.1 Scope of Assessment

The scope of this assessment is limited to the proposed Project wind turbine design and observers in Section 10.7, including a qualitative visual aesthetics assessment and associated reporting to document the methodology, findings and any agreed mitigation measures for the proposed wind farm site or design. The assessment scope included:

- Reviewing existing project information and operational activities to understand site conditions pertaining to visual impacts;
- Identify the closest and/or potentially most affected receptors situated within the potential area of influence of the wind farm and discuss the existing conditions near these receptors.

10.8.2 Consideration and Assumptions

Visual impacts relate to changes that arise in the composition of available views as a result of changes to the landscape, to people's response to any changes, and the overall impacts with respect to visual amenity.

Based on the SRTM (Shuttle Radar Topography Mission) data, it is noted that the Project wind turbines will be located in a raised area where the elevation can be up to 600 masl⁵³. It is also noted that the areas where the receptors and the wind turbines are located is distinguished by spread roughness of the terrain.

10.8.3 Assessment Methodology

Visual impacts relate to changes that arise in the composition of available views as a result of changes to the landscape, to people's response to any changes, and the overall impacts with respect to visual amenity. The methodology followed to identify and assess the significance of, and the effect of, changes resulting from the Project on both the landscape as an environmental resource in its own right, and on people's views and visual amenity is presented in the subsequent section. People have different

⁵³ masl: meters above sea level

responses to views and visual amenity depending on their context and purpose, with certain activities specifically associated with the enjoyment of the landscape (e.g., the use of footpaths and tourist routes and attractions) generally more susceptible to change. Residents are also considered to be particularly susceptible to change and the combined effects on a number of residents within an area may also be considered.

10.8.4 Visual Baseline

The assessment has been developed according to the following tasks:

- Study area definition
- Viewshed analysis
- Viewpoints and sensitive receptors identification

10.8.4.1 Study Area Definition and Viewshed

The landscape study area is defined as the area within which the Project could be discernible by the human eye and could interfere with the main sensitives identified in the local context.

To identify the landscape study area, the Zone of Theoretical Visibility (ZTV) has been determined through computer analysis of topographical mapping to establish the theoretical distance from which the wind turbines could be visible in each direction.

This ZTV was determined through a viewshed analysis using the software QGIS 3.20. The viewshed analysis is based only on topography (i.e. digital elevation model), and represents the areas from which the wind farm could be potentially visible. For this specific assessment SRTM (Shuttle Radar Topography Mission) 30 m Digital Elevation has been utilised.

Defining an appropriate viewshed is the starting point to understand the visual impacts of the Project. The area of the viewshed will vary depending on the nature and scale of the proposed facility. The larger (and higher) the facility is, the bigger the viewshed will be, as it may be visible for a greater distance. The viewshed is therefore the area that is most likely to be visually impacted.

The following information⁵⁴ explains how a viewshed is defined and identified depending on the horizontal and vertical field of views.

A. Horizontal Field of View

For most people, the horizontal central field of vision covers an angle of between 50° to 60°. Within this angle, both eyes observe an object simultaneously but from a slightly different angle. This creates a central field of greater magnitude than that possible by each eye separately. This central horizontal field of vision is termed the 'binocular field' (see green zone). Within this field images are sharp, depth perception occurs and colour discrimination is possible. Research suggests that the visual impact of a project component will vary according to the proportion the binocular field it occupies. Project components which occupy 5% or 2.5° or less of the horizontal central binocular field of vision are usually perceived as insignificant objects, whereas components which occupy 30° are considered to be visually dominating.

⁵⁴ Source: Human Dimension & Interior Space – A Source Book of Design Reference Standards, Julius Panero and Martin Zelnik, The Architectural Press Ltd. London, 1979

B. Vertical Field of View

The vertical central field of vision has a similar set of parameters. The vertical binocular field is normally 25° above the vertical and 30° below the vertical. When project components exceed the 50° upper visual limit of the eye, they are considered to dominate the vertical central field of vision. When project components occupy 0.5° they are not considered dominant, nor are they usually perceived as a significant change to the existing baseline condition when they are located within an anthropogenically modified landscape.

C. Horizontal versus Vertical Visibility over Distance

As a person moves further away from a project component, the visibility of the vertical dimension tends to reduce more significantly than the visibility of the horizontal dimension. This effect is illustrated below.

10.8.4.2 Visual Baseline

Visual interferences may occur when new elements are introduced into a landscape or existing elements are altered or removed leading to a change in the way that stakeholder's access, perceive or experience landscape resources.

Based on the Project characteristics the main interferences could occur from:

- Installation and operation of turbines
- Movement of large construction vehicles

The proposed wind turbines are the major visual element of the proposed development and may visually impact on the surrounding. As the viewer moves further away from these structures the visual impact decreases until it is no longer visible. However, before the point of non-visibility is reached, the wind turbines have reduced in scale such that they no longer have a significant visual impact.

The wind farm is comprised of a number of individual turbines of 2 types of Wind Turbine Generator (WTG) with following dimensions:

EN-141/2.65: 141 m rotor diameter and 130 m hub height

EN-156/3.00: 156 m rotor diameter and 130 m hub height

Those WTGs are located with a relatively small separation distances between each individual turbine, less than 700 m. In assessing the visual impact of the wind turbine, it is therefore assumed that the largest horizontal component is the entire rotor diameter, which would be a maximum of 141 m width for EN-141 and 156 m for EN-156. It has been also evaluated the combined effect of multiple rotors throughout the landscape.

As shown in Table 10.54, calculations suggest that the impact of rotors of WTGs would reduce to insignificance at about 3.2 km for EN-141 and 3.6 km for EN-156, as it would form less than 5% or 2.5° of the horizontal field of view.

Horizontal Field of View	Impact	Distance from Observer to rotors
<2.5° of view	The development will take up less than 5% of the central field of view. The development, unless particularly conspicuous against the background, will not intrude significantly into the view. The extent of the vertical angle will also affect the visual impact.	EN-141: >3.2 km EN-156: >3.6 km
$2.5^{\circ} - 30^{\circ}$ of view	The development may will have usually a moderate impact that may be not noticeable at the greatest distance of this range.	EN-141: 3.3 km to 263 m EN-156: 3.6 km to 291 m
>30° of view	Developments that fill more than 50% of the central field of vision will always be noticed and only sympathetic treatments will mitigate visual effects.	EN-141: <271 m EN-156: <291 m

Table 10.54Horizontal Field of View

A similar analysis can be undertaken based upon the vertical field of view for human vision (Table 10.55), shows the relationship between impact and the proportion that the development occupies within the vertical line of sight.

Vertical Line of Sight	Impact	Distance from Observer to the Wind Turbine's tip height
< 0.5° of vertical angle	A thin line in the landscape	EN-141: >23 km EN-156: >24 km
$0.5^{\circ} - 2.5^{\circ}$ of vertical angle	The degree of visual intrusion will depend on the development's ability to blend in with the surroundings	EN-141: 23 km to 4.6 km EN-156: 24 km to 4.8 km
> 2.5° of vertical angle	Usually visible, however the degree of visual intrusion will depend of the width of the object and its placement within the landscape	EN-141: <4.6 km EN-156: <4.8 km

Table 10.55 Vertical Field of View

Based on the above, it is reasonable that distances, at which the magnitude of visual impact of the wind turbine will be not significant, can be the ones greater than 23 km for EN-141 and 24 km for EN-156, where a fully visible wind turbine would be an insignificant element within the landscape. However, according to Figure 10.27, there are a large number of residential areas within the Project area in which

some of communities situated very close to WTGs (closer than 271 m deriving from 30° of horizontal view of EN-141), it is likely to increase the impact magnitude for those communities.

Generally, the more conservative or worse case distances form the basis for the assessment of visual impacts. Therefore, this development the greater impacts would be associated with the vertical field of view and so it is therefore proposed to use the vertical field of view of EN-156 as the farthest distance of visibility and extend the view shed to 24 km for the wind farm.

QGIS 3.20 was used to determine the ZTV for the Project. The current visibility within the ZTV will vary depending on the presence of intervening local topography, and features such as vegetation and buildings. The present view shed analysis has been based solely on topography and did not take into account the potential screening granted by the local vegetation patches, which would further reduce the actual view shed. Moreover, it should be highlighted that a typical view shed assessment does not take typical meteorological conditions into account that can result in changes to real visibility. For example, rainfall and other atmospheric conditions will alter the visibility of the wind farm. The diminution of visual clarity bought about by atmospheric conditions also increases with distance and cloudy days can result in a natural attenuation of the visibility of the Project.

Similar to cloud coverage, rainy days are able to reduce the visibility as the water droplets obscure vision. This varies greatly depending on the heaviness of the precipitation, but even light rain obscures distant objects greatly.

Figure 10.38 shows the ZTV mapping from any points inside the buffer area.

Source: QGIS, ESRI, Google, September 2021

Figure 10.38 Viewshed (24 km Buffer)

The results of the viewshed assessment as presented in Figure 10.39 show that the visibility is a part of whole area which is concentrated at the center of the Project because of the morphology of the area and distance to WTGs. Specifically, the terrain is a low-mountainous (600 - 850 masl) area which some blockable terrains are likely to reduce or block the visibility of WTGs at some locations of observer. The viewshed assessment is shown by 30 m viewshed zone overlapping most of tip height viewshed zone.

It should be emphasized that intervening vegetation is not included in this mapping and is likely to significantly reduce the visibility of wind turbines, in whole or in part, and therefore reduce the impact identified. However, the Project area is analysed and classified as agricultural and bare land, where the vegetation cover is very low. Therefore, the deviation of the assessment from reality is lowered.

Considering the potential visibility from local communities, the Project components, especially the wind turbines will either wholly or partly be visible from the residential areas in vicinity. Additionally, the National Road 1A goes through the Project area, this is likely to pose a significant temporary visual impact on mobile receptors.

Various locations within the Project area have been selected as visual sensitive receptors (VSRs), in order to evaluate the significance of impact at different directions. The selection boundary is within the vertical viewshed of the wind turbine's tip (radius 24 km) because this is the highest part to be seen. This will cover all the visual perception of people that could be affected by the presence of the Project. After choosing the receptors, a viewshed analysis could be carried out to reflect the view of receptors toward the turbines within field of view.

In order to screen the potential sensitive receptors, the following criteria were used to assess the sensitivity of the VSRs:

- Value and quality of existing views
- Type and estimated number of receiver population
- Duration of frequency of view
- Degree of visibility

Figure 10.39 shows the locations of the VSRs which are houses selected for analysis.

Source: QGIS, ESRI, Google, September 2021

10.8.5 Impact Assessment

The assessment of impacts on visual amenity was performed in accordance with accepted methodologies derived from best practice guidelines. Impact significance for visual amenity is generally derived on the basis of the following main factors:

- The quality/importance of the visual amenity as a resource/function that is potentially affected
- The sensitivity of the visual amenity towards Project activities
- The magnitude of change to the receiving visual amenity as a result of the Project

The visual impact assessment describes changes in the character of the available views to people resulting from a given Project and their visual amenity. To determine the significance of visual effects it is necessary to consider the sensitivity of the visual receptors against the magnitude of visual effects.

10.8.5.1 Methodology

10.8.5.1.1 Sensitivity of Receptors

Visual receptors are people and must be assessed in terms of their sensitivity, combining judgements on their susceptibility to the specific change proposed and the value attached to a view or their visual amenity. Susceptibility refers to the degree to which a particular visual receptor can accommodate change arising from the Project, without detrimental effects on the visual amenity, and will vary with the:

- Occupation or activity of people experiencing the view
- Location and context of the view
- Extent to which their attention or interest may be focused on the view and their visual amenity

Judgements about the sensitivity of visual receptors should be recorded on a scale (e.g., low, medium and high) with clearly stated criteria. Table 10.56 indicates the relative sensitivities of a number of visual receptors.

Table 10.56 Sensitivity of Visual Receptors

Visual Receptors	Sensitivity			
Small number of visitors with interest in their surroundings. Viewers with a passing interest not specifically focussed on the landscape e.g. workers, commuters. The quality of the existing view, as likely to be perceived by the viewer, is assessed as being low	Low			
Small numbers of residents and moderate numbers of visitors with an interest in their environment. Larger numbers of recreational road users. The quality of the existing view, as likely to be perceived by the viewer, is assessed as being medium				
Larger numbers of viewers and/or those with proprietary interest and prolonged viewing opportunities such as residents and users of attractive and well-used recreational facilities. The quality of the existing view, as likely to be perceived by the viewer, is assessed as being high	High			

10.8.5.1.2 Magnitude of Visual Effects

There is no standard methodology for the scale or magnitude of effects on views and visual amenity. However, it is generally based on the:

- Scale of change relating to the loss or additions of features in the view, including the proportion of the view occupied by the proposed development
- Degree of contrast or integration of any new feature or changes in the composition of the view
- Duration of the effect, whether temporary or permanent, intermittent or continuous

- Angle of view in relation to the main activity of the receptor
- Distance of the viewpoint from the Project
- Extent of the area over which the changes would be visible
- Variation in the degree of visibility of the Project (it is helpful to categorize those variations)
- The extent of the view that would be occupied by the Project: full, partial, glimpse etc.
- The distance of the viewpoint from the Project and whether the viewer would focus on the Project due to proximity or the Project would form one element in a particular view
- The proportion of the Project or particular features that would be visible: full, most, small amount, none
- Whether the view is transient or one of a sequence of views as from a moving vehicle or footpath

Consideration may also be given to the time of day and seasonal differences in effects. The worst case may need to be demonstrated (i.e., during dry season, when lower moisture levels increases visibility). The typical criteria and thresholds in determining the magnitude of effect on visual receptors are set out in Table 10.57.

Typical criteria and thresholds	Visual Magnitude of effect
A change which is barely or rarely perceptible, at very long distance, or visible for a short duration, perhaps at an oblique angle, or which blends in with the existing view. The change may be short term.	Negligible
A subtle change in the view, at long distances, or visible for a short distance, perhaps at an oblique angle, or which blends in with the existing view. The change may be short term.	Small
A noticeable change in the view at an intermediate distance, affecting a substantial part of the view, part a more wide-ranging, less concentrated change across an expansive area. The change may be medium to long term and may not be reversible.	Medium
A clearly evident change in the view at a close distance, affecting a substantial part of the view, continuously visible for a long duration, or obstructing important elements of the view. The change may be medium to long term and would not be reversible.	Large

Table 10.57 Magnitude of Visual Effect

10.8.5.1.3 Significance of Visual Effect

When determining the significance of visual effects, the following is taken into account:

- Large scale changes which introduce new discordant or intrusive elements into the view are more likely to be significant than small changes or changes involving features already present in the view
- Changes in views from recognized and important viewpoints or amenity routes are likely to be more significant than changes affecting less important paths and roads
- Changes affecting large numbers of people are generally more significant than those affecting a relatively small group of users

The significance matrix below illustrates the relationship between the sensitivity of a visual receptor and the magnitude of the visual effect. The significance of a visual effect may be adverse or beneficial dependent upon the nature of the change. Each case is assessed on its own merits using professional

judgement and experience, and there is no defined boundary between levels of effects. What level of effect constitutes a significant effect will vary on a project by project basis.

		Sensitivity of Visual Receptor					
		Low	Medium	High			
u	Negligible	Negligible	Negligible	Negligible			
de of ffect	Small	Negligible	Minor	Moderate			
Jnitue Jal E	Medium	Minor	Moderate	Major			
Maç Visu	Large	Moderate	Major	Major			

Table 10.58 Significance of Visual Effect

10.8.5.1.4 Selection of VSRs

Villages and major arterial transport routes are considered to be the most sensitive receptors near the Project Area. In this regard, there are four (4) villages (Drung Lon, Drang, Dro, and Drao villages) and one (1) major highway (national highway No.14). VSRs were selected for assessment based on the extent to which they represent the sensitivity across the Project area. Table 10.59 lists the VSRs selected.

VSR No.	Description	Rationale for Selection
VSR1	A house located in Drung Lon village, Cu Pong commune, Krong Buk district, Dak Lak province	Drung Lon is a small village located in vicinity of the south-west of Krong Buk 1. VSR1 is a representative of Drung Lon, Kbuon, Kdo, Drak Hue, and Yum villages, small residential areas that could be affected.
VSR2	A house located in Drang village, Cu Pong commune, Krong Buk district, Dak Lak province	Drang is a small village located in vicinity of the south of Krong Buk 2. VSR2 is a representative of Drang village, a small residential area that could be affected.
VSR3	A house located in Dro village, Cu Ne commune, Krong Buk district, Dak Lak province	Dro is a small village located in vicinity of the south-west of Cu Ne 1. VSR3 is a representative of Dro village, a small residential area that could be affected.
VSR4	A house located in Drao village, Cu Ne commune, Krong Buk district, Dak Lak province	Drao is a small village located in vicinity of the west of Cu Ne 1. VSR4 is a representative of Drao, Thea, and E Cung villages, small residential areas that could be affected.
VSR5	A house located in Kdruh village, Ea Nam commune, Ea H'Leo district, Dak Lak province	Kdruh is a small village located in vicinity of the north-west of Cu Ne 2 and next to National Highway 14. VSR5 is a representative of Kdruh village and village 2, small residential areas that could be affected.
VSR6	A house located in Chu Blang village, Pong Drang commune, Krong Buk district, Dak Lak province	Chu Blang is a village located 8.5 km to the south-east of Krong Buk 1 and next to National Highway 14. VSR6 is a representative of Chu

Table 10.59 VSRs Selected for the Visual Impact Assessment

VSR No.	Description	Rationale for Selection
		Blang and Tan Lap villages, dense residential areas that could be affected.
VSR7	A house located in Binh Tan ward, Buon Ho town, Dak Lak province	Binh Tan is a ward located 19.8 km to the south- east of Kong Buk 1. VSR7 is a representative of Binh Tan ward, an important and dense residential area that could be affected.
VSR8	A house located in village 8, Ea Drang township, Ea H'Leo district, Dak Lak province	Village 8 is located 11 km to the north-west of Cu Ne 2 and next to National Highway 14. VSR8 is a representative of village 2, 3, 7, 8, and 9, dense residential areas that could be affected.
VSR9	A house located in village 2, Ea Wy commune, Ea H'Leo district, Dak Lak province	Village 2 is located 23 km to the north-east of Cu Ne 2. VSR9 is a representative of village 2, a small residential area that could be affected.

10.8.5.1.5 Identification of Visual Impact

The visual impact is a product of the magnitude of change to the existing baseline conditions, the landscape context and the sensitivities of VSRs.

Figure 10.39 shows the location of the VSRs which have been selected for the analysis and Table 10.60 shows the summary of the visual impacts of the Project at the selected VSRs.

The following pages present the Impact Assessment for each VSR previously identified.

VIEWPOINT VSR1

Viewpoint Location Information									
Latitude	Longitude	Height above ground level (m)	Centre of Panorama – View Direction	Field of View (FoV) (°)	WTG within FoV	Visible WTG at tip height	Visible WTG at hub height	Nearest WTG (m)	Furthest WTG (m)
13.015921	108.157880	1.5	NE	50	67	55	31	765	17,276
Visual Sensitivity					Magnitude of Change				
The present view was taken from a small residential area of Drung Lon village in Cu Pong commune. Due to the average number of residents, the visual sensitivity is considered to be MEDIUM.					Due to the topography of the land and the distance, from this point of view, not all wind turbines are visible. In particular, the local residents could observe three (3) nearest wind turbines with nearly full of tower and rotor and the others exposed full of rotor. Thus, it is considered that the magnitude of change is LARGE.				

VIEWPOINT VSR2.1

Viewpoint Location Information										
Latitude	Longitude	Height above ground level (m)	Centre of Panorama – View Direction	Field of View (FoV) (°)	WTG within FoV	Visible WTG at tip height	Visible WTG at hub height	Nearest WTG (m)	Furthest WTG (m)	
13.038823	108.186914	1.5	N	50	9	9	8	1,126	3,310	
Visual Sensitivity	Visual Sensitivity					Magnitude of Change				
The present view was taken from a small residential area of Drang village in Cu Pong commune. Due to the small number of residents, the visual sensitivity is considered to be LOW.					Due to the topography of the land and the distance, from this point of view, all wind turbines within field of view are visible. In particular, it is highlighted that for most of the noticeable turbines, they are exposed from the tip clearance height. Thus, it is considered that the magnitude of change is LARGE.					

VIEWPOINT VSR2.2

ViewpointLocation Information									
Latitude	Longitude	Height above ground level (m)	Centre of Panorama – View Direction	Field of View (FoV) (°)	WTG within FoV	Visible WTG at tip height	Visible WTG at hub height	Nearest WTG (m)	Furthest WTG (m)
13.038823	108.186914	1.5	NE	50	54	9	6	1,259	13,237
Visual Sensitivity				Magnitude of Change					
The present view was taken from a small residential area of Drang village in Cu Pong commune. Due to the small number of residents, the visual sensitivity is considered to be LOW.				Due to the topography of the land and the distance, from this point of view, not all wind turbines within field of view are visible. In particular, it is highlighted that for several (9) noticeable turbines, they are exposed from the upper portion of rotor. Thus, it is considered that the magnitude of change is SMALL.					

VIEWPOINT VSR3.1

ViewpointLocati	ViewpointLocation Information											
Latitude	Longitude	Height above ground level (m)	Centre of Panorama – View Direction	Field of View (FoV) (°)	WTG within FoV	Visible WTG at tip height	Visible WTG at hub height	Nearest WTG (m)	Furthest WTG (m)			
13.052429	108.223614	1.5	WSW	50	23	1	0	2,492	7,503			
Visual Sensitivity					Magnitude of Change							
The present view the small number of	was taken from a sm of residents, the visua	all residential area of al sensitivity is consid	Dro village in Cu Ne lered to be LOW.	commune. Due to	From this present of rotor due to its to SMALL.	view, there is only on opography and distar	e wind turbine visible nce. Therefore, the m	which is exposed fro agnitude of change is	om the upper part s considered to be			

VIEWPOINT VSR3.2

ViewpointLocation Information												
Latitude	Longitude	Height above ground level (m)	Centre of Panorama – View Direction	Field of View (FoV) (°)	WTG within FoV	Visible WTG at tip height	Visible WTG at hub height	Nearest WTG (m)	Furthest WTG (m)			
13.052429	108.223614	1.5	NE	50	33	33	33	2,559	9,481			
Visual Sensitivity					Magnitude of Change							
The present view was taken from a small residential area of Dro village in Cu Ne commune. Due to the small number of residents, the visual sensitivity is considered to be LOW.					Due to the topogra visible from the mic	phy of the land and t Idle of tower. Thus, i	he distance, from this t is considered that th	s point of view, all wir ne magnitude of chan	nd turbines are ge is LARGE.			

VIEWPOINT VSR4.1

ViewpointLocati	Viewpoint Location Information											
Latitude	Longitude	Height above ground level (m)	Centre of Panorama – View Direction	Field of View (FoV) (°)	WTG within FoV	Visible WTG at tip height	Visible WTG at hub height	Nearest WTG (m)	Furthest WTG (m)			
13.079260	108.233963	1.5	SW	50	31	0	0	2,735	10,104			
Visual Sensitivity					Magnitude of Change							
The present view was taken from a small residential area of Drao village in Cu Ne commune. Due to the small number of residents, the visual sensitivity is considered to be LOW.					Due to the topogra visible. Thus, it is c	phy of the land and t considered that the m	he distance, from this agnitude of change is	s point of view, no wi s NEGLIGIBLE.	nd turbines are			

VIEWPOINT VSR4.2

ViewpointLocation Information											
Latitude	Longitude	Height above ground level (m)	Centre of Panorama – View Direction	Field of View (FoV) (°)	WTG within FoV	Visible WTG at tip height	Visible WTG at hub height	Nearest WTG (m)	Furthest WTG (m)		
13.079260 108.233963 1.5 NE 50 23 23 23 1,334 6,450											
Visual Sensitivity					Magnitude of Change						
The present view was taken from a small residential area of Drao village in Cu Ne commune. Due to the small number of residents, the visual sensitivity is considered to be LOW.					Due to the topogra visible from the mic	aphy of the land and t ddle of tower. Thus, i	he distance, from this t is considered that th	s point of view, all wir ne magnitude of chan	nd turbines are ge is LARGE.		

VIEWPOINT VSR4.3

ViewpointLocati	ViewpointLocation Information											
Latitude	Longitude	Height above ground level (m)	Centre of Panorama – View Direction	Field of View (FoV) (°)	WTG within FoV	Visible WTG at tip height	Visible WTG at hub height	Nearest WTG (m)	Furthest WTG (m)			
13.079260	108.233963	1.5	WSW	50	12	12	12	1,633	4,039			
Visual Sensitivity					Magnitude of Change							
The present view was taken from a small residential area of Drao village in Cu Ne commune. Due to the small number of residents, the visual sensitivity is considered to be LOW.					Due to the topogra visible from the mic	phy of the land and t Idle of tower. Thus, i	he distance, from this t is considered that th	point of view, all wir e magnitude of chan	nd turbines are ge is LARGE.			

VIEWPOINT VSR5.1

ViewpointLocati	ViewpointLocation Information											
Latitude	Longitude	Height above ground level (m)	Centre of Panorama – View Direction	Field of View (FoV) (°)	WTG within FoV	Visible WTG at tip height	Visible WTG at hub height	Nearest WTG (m)	Furthest WTG (m)			
13.137520	108.223327	1.5	SSW	50	38	23	8	7,646	14,765			
Visual Sensitivity					Magnitude of Change							
The view is taken from local community resides in Kdruh village, Ea Nam commune. Due to the small number of residents, the visual sensitivity is considered to be LOW.					Due to the topogra but a large number that the magnitude	phy of the land and t rof them only expos of change is SMALL	he distance, from the ed from the upper por 	e present view, most (tion of the rotor. Thus	ofWTGs are visible s, it is considered			

ViewpointLocation Information											
Latitude	Longitude	Height above ground level (m)	Centre of Panorama – View Direction	Field of View (FoV) (°)	WTG within FoV	Visible WTG at tip height	Visible WTG at hub height	Nearest WTG (m)	Furthest WTG (m)		
13.137520	108.223327	1.5	SSE	50	33	9	0	4,172	10,313		
Visual Sensitivity		•			Magnitude of Change						
The view is taken small number of re	from local community sidents, the visual se	resides in Kdruh villa ensitivity is considered	ge, Ea Nam commur d to be LOW.	e. Due to the	Due to the topography of the land and the distance, from the present view, a few WTGs are visible and all of them only exposed from the upper portion of the rotor. Hence, it is considered that the magnitude of change is SMALL.						

VIEWPOINT VSR6.1

ViewpointLocati	ViewpointLocation Information											
Latitude	Longitude	Height above ground level (m)	Centre of Panorama – View Direction	Field of View (FoV) (°)	WTG within FoV	Visible WTG at tip height	Visible WTG at hub height	Nearest WTG (m)	Furthest WTG (m)			
12.952535	108.248959	1.5	NNW	50	36	0	0	8,586	14,493			
Visual Sensitivity					Magnitude of Change							
The view is taken from local community resides in Chu Plang village, Pong Drang commune. Due to the small number of residents, the visual sensitivity is considered to be LOW.					Due to the topogra visible. Thus, it is o	phy of the land and t considered that the m	he distance, fromthis agnitude of change is	s point of view, no wi s NEGLIGIBLE.	nd turbines are			

VIEWPOINT VSR6.2

ViewpointLocati	on Information									
Latitude	Longitude	Height above ground level (m)	Centre of Panorama – View Direction	Field of View (FoV) (°)	WTG within FoV	Visible WTG at tip height	Visible WTG at hub height	Nearest WTG (m)	Furthest WTG (m)	
12.952535	108.248959	1.5	NNE	50	37	18	0	10,999	19,039	
Visual Sensitivity					Magnitude of Change					
The view is taken from local community resides in Chu Plang village, Pong Drang commune. Due to the small number of residents, the visual sensitivity is considered to be LOW.					Due to the topogra are visible and all o that the magnitude	phy of the land and t of them only exposed of change is SMALL	he very long distance I from the upper porti	e, from the present vie on of the rotor. Hence	ew, half of WTGs e, it is considered	

ViewpointLocati	on Information									
Latitude	Longitude	Height above ground level (m)	Centre of Panorama – View Direction	Field of View (FoV) (°)	WTG within FoV	Visible WTG at tip height	Visible WTG at hub height	Nearest WTG (m)	Furthest WTG (m)	
12.835871	108.246660	1.5	N	50	20	12	1	20,202	24,139	
Visual Sensitivity					Magnitude of Change					
The view is taken from local community resides in Binh Tan ward, Buon Ho district. Due to the important and relatively large residential area, the visual sensitivity is considered to be MEDIUM.					Due to the topogra half of WTGs are v considered that the	aphy of the land and t visible and most of the e magnitude of chang	he very long distance em exposed from the ge is SMALL.	e, from the present vi upper portion of the	ew, greater than rotor. Hence, it is	

VIEWPOINT VSR8

ViewpointLocati	on Information									
Latitude	Longitude	Height above ground level (m)	Centre of Panorama – View Direction	Field of View (FoV) (°)	WTG within FoV	Visible WTG at tip height	Visible WTG at hub height	Nearest WTG (m)	Furthest WTG (m)	
13.207949	108.207756	1.5	S	50	65	53	18	11,469	21,979	
Visual Sensitivity					Magnitude of Change					
The view is taken to number of resident	from local community ts, the visual sensitiv	resides in village 8, f ity is considered to be	Ea Drang township. [⊧LOW.	Due to the small	Due to the topogra are visible and exp of change is SMAL	phy of the land and t posed from the upper .L.	he very long distance portion of the rotor. T	e, from the present vi hus, it is considered	ew, most of WTGs that the magnitude	

VIEWPOINT VSR9

ViewpointLocation Information											
Latitude	Longitude	Height above ground level (m)	Centre of Panorama – View Direction	Field of View (FoV) (°)	WTG within FoV	Visible WTG at tip height	Visible WTG at hub height	Nearest WTG (m)	Furthest WTG (m)		
13.223592	108.060860	1.5	SW	50	15	11	10	21,963	24,115		
Visual Sensitivity					Magnitude of Change						
The view is taken from local community resides in village 2, Ea Wy commune. Due to the small number of residents, the visual sensitivity is considered to be LOW.					Due to the topography of the land and the very long distance, from the present view, most of WTGs are visible and exposed from the upper portion of the rotor. Thus, it is considered that the magnitud of change is NEGLIGIBLE.						

VSR	Distance to nearest wind turbine	Project visibility	Sensitivity of Receptor	Magnitude of Visual Effect	Significance of Visual Effect – Combined Impact
VSR1	0.8 km	Visible	Medium	Large	Major
VSR2.1	1.1 km	Visible	Low	Large	Moderate
VSR2.2	1.3 km	Visible	Low	Small	Negligible
VSR3.1	2.5 km	Visible	Low	Small	Negligible
VSR3.2	2.6 km	Visible	Low	Large	Moderate
VSR4.1	2.7 km	Invisible	Low	Negligible	Negligible
VSR4.2	1.3 km	Visible	Low	Large	Moderate
VSR4.3	1.6 km	Visible	Low	Large	Moderate
VSR5.1	7.6 km	Visible	Low	Small	Negligible
VSR5.2	4.1 km	Visible	Low	Small	Negligible
VSR6.1	8.6 km	Invisible	Low	Negligible	Negligible
VSR6.2	11.0 km	Visible	Low	Small	Negligible
VSR7	20.2 km	Visible	Medium	Small	Minor
VSR8	11.5 km	Visible	Low	Small	Negligible
VSR9	22.0 km	Visible	Low	Negligible	Negligible

Table 10.60	Summary of Visu	al Impacts
-------------	-----------------	------------

Nine VSRs were selected as representative of 23 villages, in which four (4) villages are major sensitive receptors as presented above, around the Project area and within the viewshed. VSR7 was only selected as representative of Binh Tan ward which is a dense and important residential area to verify the visibility from the area which is 20 km from Binh Tan ward to the Project.

It should be noted that views of the Project could be filtered through vegetation not included in the present analysis. As shown in Table 10.60, receptors located in vicinity of the Project are likely to be affected by the turbines, whilst the area located far away from the Project is not likely to be affected due to the distance and obstacles (e.g. terrain, vegetation, buildings).

The Project will be visible across an area of 200,000 ha. Within this, there are 23 villages, two wards and one major highway. The nine VSRs selected are broadly representative of the landscapes and sensitivities of the Project area. As noted in Table 10.60, only one out of nine selected VSRs were assessed as being impacted to a Major extent, as a result, the VSR1 was chosen as a representative of Drung Lon village which is situated within the Project area and very close to WTGs. Three VSRs will be affected to a Moderate extent, one VSR affected to a Minor extent whilst the rest were considered as Negligible extent. However, as the turbines are not erected, local communities do not see and/or foresee any issues/ problems related to visual impacts. Therefore, overall, the significance of visual impact that will result from the installation and operation of the wind turbines has been assessed as Moderate to Minor.

10.8.5.2 Additional Mitigation Measures

The following identifies mitigation measures to be applied by the Project Owner and EPC contractor:

 Siting and design of roads and other infrastructure to minimize off-site visibility from visually sensitive areas should be an important consideration

- Obvious logos and/or patterns with colours at long wavelength of the visible spectrum should be avoided to be painted for the WTGs
- Use of materials (e.g. coating components of wind turbines using white colour and preferably non-reflective paints in compliance with local regulatory) that will minimise light reflection should be used for all Project components (e.g. wind turbine with its tower and blades); The replacement of wind turbines with visually different wind turbines can result in visual clutter, so replacing wind turbines with the same or a visually similar model over the lifetime of the project may be an important requirement
- Existing vegetation should be retained to the greatest extent possible. Vegetation should be retained along roads, substations, and other Project infrastructure

10.8.5.3 Residual Impact

Following the implementation of these mitigation measures, the significance of residual impact is considered as Minor to Negligible.

10.8.5.4 Monitoring Audit

No specific monitoring measures are identified at this stage.

10.9 Traffic and Transport Impact Assessment

10.9.1 Scope of Assessment

The traffic assessment considers the potential effects of construction traffic on the road network within the vicinity of Huadian Dak Lak Wind Power Project on the following aspects of traffic and transportation:

- The capacity of the existing road network to accommodate the traffic volumes generated by the Project
- Transportation safety on public roads due to Project-related traffic, and
- The key activities that are likely to have negative impacts, including:
 - Transport of equipment (wind turbines and transmission line components) from Cam Ranh Port in Khanh Hoa Province to the Project site
 - Transportation materials from local vendors in Buon Ma Thuot City, Dak Lak Province to the Project's site, and
 - Daily movement of local construction workers⁵⁵.

10.9.2 Relevant Guidelines and Criteria

- Law No. 23/2008/QH12 issued by The National Assembly regulating on road traffic
- Guidelines for Environmental Impact Assessment issued by the Institute of Environmental Management and Assessment (IEMA, 2004), and
- Guidelines for Environmental Impact Assessment of Road Traffic issued by the Institute of Environmental Assessment, 1993.

⁵⁵ Assume that the construction activities only happen during weekdays and no construction on Sundays or public holidays.

10.9.3 Baseline Conditions

Huadian Dak Lak Wind Power Project identified the potential turbine and material delivery routes describes as follows:

- Transportation of major equipment including wind turbines, propeller, transformer, and other components will be imported at Cam Ranh Port in Khanh Hoa Province and transported to the Project site using the super-heavy and super-long vehicles via the route: Cam Ranh Port → Nguyen Trong Ky Street → Marine Transportation Route → Ba Thang Tu Street → National Highway No.1 → National Highway No.26 (Ninh Hoa Town) → National Highway No.14 → Turn left to the Unnamed road (about 5 km) → Krong Buk District → Project's Site. The total length of transportation route is nearly 222 km.
- Transportation of construction material: Materials including levelling sand, brick, stone, iron and steel materials can be purchased directly from local suppliers in Buon Ma Thuot City, Dak Lak Province and its vicinity. The average length of the material transportation route is approximately 56 km.
- The proposed transportation routes and its condition to access to the site development of Huadian Dak Lak Wind Power Project are demonstrated in Figure 10.40, and Figure 10.41.

Source: QGIS, ESRI, Google, June 2021

Figure 10.40 Transportation Route of the Equipment

Turn right from Nguyen Trong Ky Street to Ba Thang Tu St.

Turn right from National Road No.1 to National Road No.26

Turn right from National Road No.26 to national Road No.14 (Turning curve: 50 m)

Turn left from National Road No.14 to Unnamed Road (in Krong Buk District, Dak Lak Province)

Existing Access road to Huadian Dak Lak Wind Power Project's area

Internal road connecting Wind Turbine locations at the Project's site in Ea Sin Commune, Dak Lak Province

Figure 10.41 The Proposed Transportation Routes of Wind Turbine Components and Materials to the Project's Sites⁵⁶

⁵⁶ Photos are taken by ERM team during the site visit and referred from "Transport Survey and Public Road Requirements" Document provided by the Project's Owner.
10.9.4 Impact Assessment

10.9.4.1 Impact during Construction Phase

10.9.4.1.1 Potential Impact

Some potential impacts on traffic identified during the construction activities is presented below:

- Degradation of the public road infrastructure and network due to heavy load vehicle movement
- Disturbance to local transportation used by pedestrians and local vehicles due to an increase of ordinary traffic movement that might cause traffic congestion, and
- Increase of Traffic Safety Risks.

10.9.4.1.2 Existing Control

There is no existing control/measure suggested for this Section.

10.9.4.1.3 Significance of Impact

The assessment of the significance impact in terms of traffic and transport shall be based on the two aspects including magnitude of effect and receptor sensitivity. Accordingly, the Institute of Environmental Management and Assessment (IEMA⁵⁷) guidelines should be adopted for the evaluation. These criteria used to assess the magnitude of change and receptor sensitivity are presented in Table 10.61 and Table 10.62, respectively.

Magnitude	Description
Major	The proposals could result in an appreciable change in terms of length and/or duration to the present traffic routes or schedules or activities, which may result in hardship
Moderate	The proposals could result in changes to the existing traffic routes or activities such that some delays or rescheduling could be required, which cause inconvenience.
Minor	The proposals could occasionally cause a minor modification to routes, or a very slight delay in present schedules, or on activities in the short-term
Negligible	No effect on movement of road traffic above normal level

Table 10.61 Magnitude of Effect

Table 10.62	Receptor Sensitivity
-------------	----------------------

Magnitude	Description
High	Receptors of greatest sensitivities to changes in traffic flow, would include: People whose livelihood depends upon unrestricted movement within their environment including commercial drivers and companies who employ them, local residents, schools and colleges. Accidental hotspots would also be considered.
Medium	Traffic flow sensitive receptors, would include: People who pass through the area habitually, but whose livelihood is not wholly dependent on free access. Would also typically include: congested junctions, community services, parks, businesses with roadside frontage, and recreation facilities.

⁵⁷ https://www.iema.net/resources/event-reports/2020/02/13/iema-impact-assessment-guidance

Magnitude	Description
Low	Receptors with some sensitivity to changes in traffic flow:
	People who occasionally use the road network. Would also typically include: Public open spaces, nature conservative areas, listed buildings, tourist attractions, residential roads with adequate footway provision and places of worship.
Negligible	Receptors with very low sensitivity to traffic flow: People not sensitive to transport effects. Would also refer to receptors that are sufficiently distant from the affected roads and junctions.

Overall, in order to identify the significance of impact relating to the traffic and transport, the results from the receptor sensitivity and magnitude of effect are correlated and classified based on the below matrix in Table 10.63.

Sensitivity Magnitude	High	Medium	Low	Negligible
High	Major	Major	Moderate	Minor
Medium	Major	Moderate	Minor	Negligible
Low	Moderate	Minor	Negligible	Negligible
Negligible	Minor	Negligible	Negligible	Negligible

 Table 10.63
 Significance of Impact Assessment Matrix

10.9.4.1.3.1 Impact on Receptor Sensitivity

As observation and experience during the site visit, there are many receptors along the transportation routes of wind turbine components and materials to the Huadian Dak Lak Wind Power Project's areas such as households, schools, and other places of worship. However, regarding to some criteria suggested for the evaluation mentioned in Table 10.62, the impact of significance in terms of Sensitivity Receptor was assessed as **Medium.** Given some parts of the public roads might affect to local community due to the daily movement, the transportation of the wind turbine components and materials through the traffic routes does not impair the livelihood of nearby residential area.

10.9.4.1.3.2 Magnitude of Impact

Methodology

The Guidelines for the Environmental Assessment of Road Traffic by IEMA identify that the main transport impacts that could arise from the advent of Huadian Dak Lak Wind Power Project relating to some following aspects:

- Severance
- Driver delay
- Fear and intimidation, and
- Accidents and road safety.
- Details of the assessment criteria for all aspects are described as following:

Severance:

The potential for severance effects are based on an assessment of the magnitude of traffic flow impact, which takes into account the thresholds within the IEMA Guidelines and be presented in Table 10.64. The Traffic flow increase is also defined as the two-way Annual Average Daily Traffic Flow (AADT) specified by the material namely "Design Manual for Roads and Bridges – Pedestrians and Others and Community Effects".

Table 10.64 Magnitude of Impact – Severance

Magnitude of Impact	Traffic Flow Increase (AADT)
High	>90%
Medium	60-90%
Low	30-60%
Very Low	<30%

Driver delay:

IEMA Guideline identified this term as an issue when the addition of new development-generated traffic resulting in an increase in the number of vehicles using main routes and junctions. This may lead to additional delays depending on the existing operation, levels of background traffic and the development-generated traffic.

Tabla 10 65	Magnitudo	of Impact -	Driver Delay
	magnitude	or impact –	Driver Delay

Magnitude of Impact	Definition
Driver Delay along Road (Corridors
High	Average vehicle delay in increase of more than 10 minute as a result of the Proposed Development during the peak hour periods
Medium	Average vehicle delay increases between 5 to 10 minutes as a result of the Proposed Development during the peak hour periods
Low	Average vehicle delay increase between 1 and 5 minutes as a result of the Proposed Development during the peak hour periods
Very Low	Average vehicle delay increases are less than 1 minute as a result of the Proposed Development during the peak hour periods.

Fear and Intimidation:

A further impact of traffic flows on pedestrian movement and nearby sensitive receptors is the element of fear and intimidation that individual travellers will experience with respect to vehicle movements. The impact of this factor is dependent on the volume of traffic, the heavy-duty vehicle (HDV) content, the width of footway and its proximity to the carriageway. Accordingly, IEMA Guidelines also do a suggestion of some thresholds based on previous researches which is demonstrated in Table 10.66.

Magnitude of Impact	Change in Average Traffic Flow over 18-hour day (vehicles/hour)	Average 18-hour HDV Flow	Change in Average Speed over 18-hour (mph)
Extreme	1.800+	3.000+	20+
Moderate	1.200 – 1.800	2.000 – 3.000	15 – 20
Slight	600 – 1.200	1.000 – 2.000	10 – 15

Table 10.66Magnitude of Impact – Fear and Intimidation

Accidents and road safety:

The assessment of accident risk and highway safety is based upon existing accident rates and specific local circumstances to identify accident clusters. Regarding the IEMA guidelines, a professional judgement will be needed to assess the implications of local circumstance, or factors which may increase or decrease the risk of accident. Some suggestion made by IEMA guidelines for the assessment of the magnitude of impact relating to accidents and road safety is demonstrated in Table 10.67.

Table 10.67	Magnitude of Impact – Accidents and Road	Safety
-------------	--	--------

Magnitude of Impact	Definition
High	Expected increase in accident risk of 15% at the location of existing accident cluster
Medium	Expected increase in accident risk of 10% – 15% at the location of existing accident cluster
Low	Expected increase in accident risk of 5% – 10% at the location of existing accident cluster
Very Low	Expected increase in accident risk of less than 5% at the location of existing accident cluster

Assessment

Severance:

Project construction will generate traffic issues associated with the movement of turbine and transmission line component from Cam Ranh Port to the Project site. Regarding the estimation, the transportation time are approximately:

- Maximum 10 hours per round-trip (equivalent to nearly 222 km) for travelling from the Cam Ranh Port to the Laydown area of the Project to transport wind turbine components; and
- Maximum 3 hours per round-trip (equivalent to nearly 100 km) transporting material from local suppliers from Buon Ma Thuot City, Dak Lak Province to the Project's site.
- Given the transportation period is within 18 months, the average number of vehicles movements, including heavy load and non-heavy load vehicles transporting both equipment and construction materials are estimated maximum ten turns per day. This is equivalent of approximately five vehicles coming and leaving the sites per day. Therefore, the Traffic Flow Increase or AADT index is assessed as Very Low which is 30% of traffic and transport growth less than typical traffic movement on the two transportation routes of turbine components and materials.
- Driver delay:

The source of traffic congestion and delays will origin from the movement of oversized turbine components. Heavy trucks will likely move slower than typical other vehicles, particularly at bends or

junctions. Based on the actual experience of Project's team during the visit by observing a transportation of Wind Turbine Tower of other Project heading to Gia Lai Province by traversing through the National Highway No.14, it was estimated less than 1 minute delayed in the National Highway No.14 (See Figure 10.42) and less than 5 minutes delayed at some other points of transportation route. Therefore, the assessment of the significance Impact relating to the driver delay aspect can be at **Very Low** to **Low** level based on the range specified in Table 10.65.

Figure 10.42 A Transportation of Oversized Equipment via National Highway No.14

Fear and Intimidation:

As mentioned above, the significance of impact in terms of fear and intimidation depends mainly on the volume of traffic, the heavy-duty vehicle (HDV) content, the width of footway and its proximity to the carriageway. The estimated number of heavy-loaded vehicles to the Project's sites is less than 10 which is far away from the thresholds specified in Table 10.66. Additionally, there are at least two developments nearby Project situated also in Dak Lak Province including Tay Nguyen and Trung Nam Wind farms may propose the residential area an experience to the movement of the oversized and heavy-loaded vehicles. Therefore, the impact significance in relations to the fear and intimidation aspect is assessed as **Slight**.

Accidents and road safety:

The likelihood of traffic incidents such as crashes or injury increases along with an increase of traffic volume, especially the presence of a number of heavy load vehicle movements during construction phase. Additionally, the Huadian Dak Lak Wind Power Projects are located in a mountainous and highland area of Dak Lak Province with constant foggy conditions, so traffic accidents are likely to occur during the construction phase.

Regarding the statistical data of the Ministry of Transport, there are nearly 3,000 cases of traffic accident around Vietnam, particularly, nearly 200 accidental cases happening in National Highway $1A^{58}$. Additionally, in accordance to the summary of Wind Turbine Accident data updated to 31 March 2021 by a private UK group⁵⁹, there have been around six traffic accident cases during 20 years (2000 – 2021) induced by transportation of wind turbine components which contributes only 6% to be in a range of 5% - 10% of total road traffic happening on the Highway road. Therefore, the impact significance of wind turbine transportation can be assessed as **Low** as mentioned in Table 10.67.

In conclusion, the magnitude of traffic and transport aspect is summarised in Table 10.68.

⁵⁸ http://sgtvt.hochiminhcity.gov.vn/HoatDongAnh/2021/VPS/thang%201/Phu%20luc%20bieu%20do.pdf

https://tuoitre.vn/155-nguoi-chet-vi-tai-nan-giao-thong-tren-quoc-lo-1a-trong-2-thang-2018030617302701.htm

⁵⁹ http://www.caithnesswindfarms.co.uk/AccidentStatistics.htm

Aspect	Magnitude of Impact
Severance	Very Low
Driver Delay	Low
Fear and Intimidation	Slight
Accident and Road Safety	Low

Table 10.68 Traffic and Transport Magnitude for Huadian Dak Lak Wind Power Project's Site

10.9.4.1.3.3 Determine the Significance of Impact

Traffic and transport issue in terms of the advent of the Projects have a negative impact on traffic safety due to increases traffic volume and oversized and over mass load. The impact is expected to be affected to road networks and its users during the Projects' construction phase. Generally, the significance of impact relating to the traffic and transport during the construction phase is presented in Table 10.69.

Impact Description	Impact Relating to the Traffic and Transport					
Impact Nature	Negative		Positive		Neutral	
Impact Type	Direct		Indirect		Induced	
Impact Duration	Temporary Shor		t-term	Long-term		Permanent
Impact Extent	Local		Regional		Global	
Frequency	Intermittent over 18 months of construction period					
Impact Magnitude	Negligible	Negligible Small		Medium		Large
Receptors Sensitivity	Low	Medium		High		
Impact Significance	Negligible	Minor		Moderate		Major

 Table 10.69
 Significance of Impact Relating to the Traffic and Transport

10.9.4.1.4 Additional Mitigation and Management Measures

Prior to the commencement of construction, a detailed Traffic Management Plan (TMP) should be developed which will provide details on a range of traffic management measures including the timing and routeing of vehicles movements with the purpose of reducing the impact of construction traffic. Measures including in TMP should be:

- Scrutinised analysis and study of the entire route for transportation of the project components from the manufactured area to the project site.
- Active traffic controls (e.g. flaggers to direct traffic at the Project site entrance)
- Schedule construction deliveries and employee shift changes to minimise traffic congestion and delay
- Establish, train and monitor compliance with speed limits to reduce accidents and speed-related injuries
- Avoid peak times of day to reduce the risk of accidents
- Due to heavy load vehicle movement, some works will be required such as temporary removal of some trees, cooperating with local authority and seeking support from local community to expand the road for easily movement

- Collaborate with local communities and responsible authorities to improve signage (installation of convex mirror), visibility and overall safety of roads
- In terms of local pedestrians who is prone to be affected by movement of heavy vehicles of wind turbines components, there should be:
 - Installation of roadway illumination or enhancement of existing illumination to improve pedestrian's visibility, and
 - Retroreflective lights or decals should be equipped to the over-sized and over-mass transportation equipment to warn the pedestrians as passing by the residential areas.
- Information boards about traffic safety hazards and emergency contact information to be made available at the wind farm site
- Ensure that drivers carrying construction machinery and materials are instructed to drive within speed limits with careful consideration for village traffic
- Coordinate with emergency responders to ensure that appropriate first aid is provided in the event of accidents
- Establish a proper and accessible grievance mechanism to report concerns about public road conditions raised by local communities along the transportation route. The Project will carry out immediate investigation when the community submits related complaints
- Coordination between the Project proponent and the government agencies for road maintenance to identify necessary road repairs during Project construction, and
- Repair of any damaged road surfaces as needed which caused by the Project-related transportation.

10.9.4.1.5 Residual Impacts

As a result of implementation of proposed additional measures, the residual impact is considered **Negligible**.

10.9.4.1.6 Monitoring and Audit

- Monthly monitoring the implementation of all proposed mitigation measures specified in the Traffic Management Plan (TMP) should be conducted (such as specifying speed limits and safe distance for vehicles entering the site, using qualified drivers, stopping distracted driving)
- Bi-weekly road condition monitoring along the transportation route to understand road quality during construction phase.

10.9.4.2 Impact during Operational Phase

Operational traffic impacts will be associated with limited number of vehicles accessing the site for maintenance or security purposes, and safety risks or accidents due to the design of the road, driving behaviour of company drivers.

The potential impacts on traffic from operation activities (e.g. WTG operations, inspection and maintenance) are considered negligible so no further assessment is needed. However, some following measures still need to be implemented, as follows:

- Establish and monitor compliance with defensive driving guideline (e.g. speed limits to reduce accidents and speed-related injuries are limited of 20km/h), and
- The proposed grievance mechanism should be accessible for all villagers to report concerns associated with health and safety.

10.9.4.2.1 Monitoring and Audit

- Monthly monitoring the implementation of all proposed mitigation measures specified in the Traffic Management Plan (TMP) should be conducted (such as specifying speed limits and safe distance for vehicles entering the site, using qualified drivers, stopping distracted driving), and
- Regular road condition monitoring of the internal road to understand road quality during operations phase.

11. BIODIVERSITY IMPACT ASSESSMENT

In accordance with IFC PS1 and PS6, the objectives of the biodiversity impact assessment are to identify and quantify the potential Project impacts on biodiversity; design measures to avoid, minimise or mitigate potential adverse impacts; and identify likely residual impacts. The background assessment and baseline studies to identify relevant values have been reported in Chapter 8. This section includes:

- Impact assessment (IA) of the Project aspects with potential to result in direct and indirect adverse impacts on biodiversity values, focussing on habitats and threatened species;
- Development of mitigation measures to avoid and minimise potential adverse impacts on biodiversity, with priority given to impacts on features with significant biodiversity value; and
- Determination of residual impacts post-mitigation. In the event significant residual impacts are predicted to occur then additional mitigation measures are developed to avoid and minimise such effects, with biodiversity offsets considered as a last option in accordance with the mitigation hierarchy.

11.1 Scoping of Likely Impacts to Biodiversity Values

Table 11.1 defines the aspects of the Project that have potential to impact on biodiversity values to occur as a result of Project activities during different phases. These impacts to biodiversity are consistent with those identified in IFC PS6 and IFC EHS Guidelines for Wind Energy (2015), and relate to the Project activities that have been described for all phases of the proposed Project (see Section 2.1). These aspects may occur for the duration of the project, may only be relevant to a defined period of time (e.g. if construction areas are rehabilitated around the final Project footprint).

Impacts	Source of impacts		
Construction			
Habitat conversion and degradation	 Loss of habitats due to footprint of short- and long-termed land acquisition Reduction in quality of habitats due to (i) land clearance, (ii) discharge of waste, wastewater and dust and (iii) introduction and/or spreading of alien/invasive species. 		
Disturbance to fauna	 Interruptions or changes to fauna behaviours caused by noise, light, vibration and visual disturbances 		
Mortalities of fauna	 Fauna mortalities due to vehicle strikes, poaching and hunting and clearance of nests 		
Operation			
Habitat conversion and degradation	 Loss of habitats due to footprint of short- and long-termed land acquisition. Reduction in quality of habitats due to (i) land clearance, (ii) discharge of waste, wastewater and dust, (iii) introduction and/or spreading of alien/invasive species and (iv) increasing edge effects. 		
Barriers and fragmentation effects	 Fauna movements (e.g. daily commute between roosting and foraging sites, migratory patterns) are reduced/ hindered due to Project components 		
Disturbance to fauna	 Interruptions or changes to fauna behaviours and exclusion of species from its habitats caused by noise. 		
Mortalities of birds and bats	 Mortality due to potential flight of volant species through the Rotor Swept Zone (RSZ) of the wind turbines. 		
	 Mortality of birds due to electrocution on the transmission line 		
	 Mortality of bats due to barotrauma 		

Table 11.1 Scoping of Potential Impacts to Biodiversity Val

11.2 Impact Assessment Criteria

In order to assess the significance of impacts due to the Project before and after mitigation, IA matrices have been used to evaluate the severity of impacts to habitats (Table 11.2) and species (Table 11.3). The matrices take into consideration the sensitivity of receptors and the magnitude of effects caused by the Project.

Table 11.2 Habitat Impact Assessment – Significance Criter
--

Habitat Sensitivity/Value		Magnitude of Effect			
		Negligible	Small	Medium	Large
Low	Habitats with no or local designation/ recognition; habitats of significance for species of Least Concern; habitats which are common and widespread within the region.	Negligible	Negligible	Minor	Moderate
Medium	Habitats within nationally designated or recognised areas; habitats of significant importance to globally Vulnerable, Near Threatened or Data Deficient species; habitats of significant importance for nationally restricted range species; habitats supporting nationally significant concentrations of migratory species and/or congregatory species; nationally threatened or unique ecosystems.	Negligible	Minor	Moderate	Major
High	Habitats within internationally designated or recognised areas; habitats of importance to globally Critically Endangered or Endangered species; habitats of importance to endemic and/or globally restricted-range species; habitats supporting globally significant concentrations of migratory species and/ or congregatory species; highly threatened and/or unique ecosystems, areas associated with key evolutionary species.	Negligible	Moderate	Major	Critical
	threatened and/or unique ecosystems, areas associated with key evolutionary species.				

Magnitude of Effect Definition

Negligible	Effect is within the normal range of natural variation
Small	Affects only a small area of habitat, but without the loss of viability/function of the habitat
Medium	Affects a sufficient proportion of the habitat that the viability/function of part of the habitat or the entire habitat is reduced, but does not threaten the long-term viability of the habitat or species dependent on it.
Large	Affects the entire habitat or a significant proportion of the habitat to the extent that the viability/function of the entire habitat is reduced and the long-term viability of the habitat and the species dependent on it are threatened.

Habi	itat Sensitivity/Value	Magnitude of Effect			
		Negligible	Small	Medium	Large
Low	Species which are included on the IUCN Red List of Threatened Species as Least Concern (LC).	Negligible	Negligible	Minor	Moderate
Medium	Species included on the IUCN Red List of Threatened Species as Vulnerable (VU), Near Threatened (NT) or Data Deficient (DD). Species protected under national legislation. Nationally restricted range species. Nationally important number of migratory or congregatory species.	Negligible	Minor	Moderate	Major
High	Species included on the IUCN Red List of Threatened Species as Critically Endangered (CR) or Endangered (EN). Species having a globally Restricted Range (i.e. plants endemic to a site or found globally at fewer than 10 sites, fauna having a distribution range (or globally breeding range for bird species) less than 50,000 km ² . Internationally important numbers of migratory or congregatory species. Key evolutionary species.	Negligible	Moderate	Major	Critical

Table 11.3 Species Impact Assessment – Significance Criteria

Magnitude of Effect Definition

Negligible	Effect is within the normal range of variation for the population of the species.
Small	Affects a small proportion of a population, but does not substantially affect other species dependent on it, or the populations of the species itself
Medium	Affects a sufficient proportion of a species population that it may bring about a substantial change in abundance and/or reduction in distribution over one or more generations, but does not threaten the long-term viability of that population or any population dependent on it.
Large	Affects an entire population or species at sufficient scale to cause a substantial decline in abundance and/or change in distribution beyond with natural recruitment (reproduction, immigration from unaffected areas) may not return that population or species, or any population or species dependent upon it, to its former level within several generations, or when there is no possibility of recovery.

11.3 Existing Mitigation Measures

Impacts to biodiversity can be mitigated right from the planning stage so that Project design effectively embeds impact avoidance and mitigation measures. The alternatives of Project components and the rationale why the curent layout/model was chosen were not provided in details. However, some information about the Project components' design and layout described in Section 2.1.4, Section 2.1.5 and Section 2.1.6 are relevant to mitigating impacts on biodiversity. These are detailed below:

The criteria for selecting wind turbine for the Project include "having smallest footprint area" and "limiting impacts from noise and vibration". It is assumed that the chosen wind turbine model meets the described criteria above. An optimized footprint and reduced noise and vibration profile would contribute to reducing the effects of habitat loss and disturbance to fauna due to noise and vibration from the Project.

- The 22kV transmission line design has been selected to be underground, which helps to eliminate electrocution risks to birds.
- The locations of the 22/220 kV substation and 220kV tranmission line have been selected to mainly
 overlap plantations, which are considered modified habitats. This contributes to a reduction in the
 loss of natural habitats due to the Project.

The regulatory EPP and Safe and Civilized Construction Plan have been developed by the Project owner to set out mitigation measures for potential impacts to biodiversity during construction (see Table 11.4). These mitigation measures are assumed to be continued during operation where relevant.

Impacts	Existing mitigation measures
Habitat loss	Land clerance should only take place within the boundary consented by governmental authorities. Permanent land acquisition should only occur for development of turbine foundations and substations
	Develop a sanction plan and have a supervisor/inspector during the construction work
	 After completion of construction, ensure the restoration of the landscape at temporary used areas, and
	Utilize existing roads as much as possible.
Disturbance and Displacement of Terrestrial Species	Any Project-related traffic passing through the national roads, provincial roads and trails shall abide by regulations of National Technical Standard <i>TCVN 5949-1998</i> . The speed and transportation time (only after 20:00) shall be in accordance with the regulated limitation
	 All motor vehicles, heavy trucks, and construction equipment used in the Project must be checked regularly for noise and vibration, and
	Avoid construction works from 22:00 to 6:00 the next day.
Barrier Creation, Fragmentation and Edge effects	There are no mitigation measures in this document. Further mitigation measures is suggested in the additional mitigation measure
Degradation of	Dust
habitats	All transportation vehicles, machinery and equipment used for construction activities shall be certified by the Vietnam Registry Department. Avoid using old vehicles or equipment which do not meet present emission requirements
	National Regulation TCVN 6438 – 2001 shall be applied to evaluate the concentration of some air pollutants such as CO and hydrocarbons emitted by the transportation vehicles and construction equipment. All equipment shall be granted with the Emission Certification issued by the National Certification Authority of Vietnam in accordance to the Decision No. 35/2005/QD-BGTVT
	Construction vehicles should be washed before leaving the construction site to minimise dust being produced in the outside roads and nearby residential areas
	Enhancing water sprinkling as transportation, excavation, levelling, and compaction during drying season (2 times per day). Avoid overloaded transportation and travelling at night and peak hour
	A canvas should be used to cover the truck compartment while travelling to avoid construction material (sand, stone, cement, and brick) spillage to the roads

 Table 11.4
 Existing Biodiversity Mitigation Measures

Impacts	Existing mitigation measures
	Machine and equipment should be stored in a covered storage to avoid flying dust caused by strong wind during the construction phase
	 Incineration of waste or construction materials (plastic bags) inside the construction site is prohibited, and
	 Substation location shall be fenced and isolated from the surrounding areas to avoid dust and debris released to the environment.
	Waste
	 Construction waste shall be stored at a temporarily designated area to avoid being waterlogged and polluting to the surrounding environment
	Construction waste materials shall be collected, classified and transported for proper treatment by licensed agency in accordance to Article 5, 6, and 7 of <i>Circular No.</i> 08/2017/TT-BXD on Construction Solid Waste Management dated 16 May 2017 by the Ministry of Construction
	 Reuse and recycle construction materials such as plank or timber pillar to compact o strengthen the low terrain, and
	Spoil materials such as soil, stone, brick, etc. shall be properly managed by the Project's owner and contractor to avoid spill over onto agricultural land of local people; otherwise the Project's owner shall be responsible for compensation and support local people for remediation.
	Domestic Waste
	A small amount of domestic waste generated from the location of wind turbine foundation will be collected and buried sanitarily in-situ
	Domestic waste generated from substation's location shall be collected and stored in 120-litter dustbin with lid, then transported by licensed agency for proper treatment
	A waste management plan (inventory, dustbin, and cleaning schedule) shall be prepared by the subcontractor during the pre-construction stage
	Provide trainings and drills on sanitation, security, and environmental protection regulations for workers and personnel working at site
	Littering is prohibited while working on site, and
	Reduce, reuse, and recycle of spoil materials for ground levelling.
	Hazardous waste:
	 Hazardous waste materials such as oily rags, welding rods, and paint shall be collected, stored properly in bins with lids at temporarily designated areas before being transported by licensed agency for proper treatment, and
	 Regular inspection and maintenance of material and equipment vehicles travelling to the site to avoid leakage of oil and fuel to the environment.
	Wastewater
	Arrange all working staff at the construction site to stay in rented local houses and utilise toilets in place.
	 Contractors working for the Project shall equip 5 – 10 portable toilets enclosed with 3 conpartment septic tanks⁶⁰ (V=20m³) and domestic bins serving the worker's demand at the Project's locations including clearing, levelling, and backfilling areas

 $^{^{60}}$ Environmental Protection Plan (EPP) provided by the Project's owner

Impacts	Existing mitigation measures
	 Utilise water efficiently for construction activities to avoid unnecessary loss of containment to the environment
	Equipment shall be stored in indoor areas to avoid leakage of oil and lubricant to the environment
	The repairing and maintenance of transportation vehicles shall be conducted at the garage in order to not release oil and grease and wastewater from car washing to the surrounding environment
	Drainage systems are to be constructed in the construction areas. Run-off water (mainly rain water) will be collected by internal drainage system and then released into the environment by the inclination of the terrain. Regularly check and clean the drainage system to avoid blockage of soil, debris, and spoil, and
	Main construction activities should be conducted during dry season to avoid contaminated run-off water into the environment in rainy season.
Invasive species	There are no mitigation measures in this document. Further mitigation measures is
Mortality Impacts – Birds	suggested in the additional mitigation measure
Mortality Impacts – Bats	
Mortality Impacts – Other fauna	

11.4 Impact Assessment

This impact assessment is written on the basis that no land clearance/development has taken place. However, at the time of writing this impact assessment (as well as during biodiversity baseline collection), land clearance and construction of some Project components have started; which status is described in Table 11.5 below. It is expected that the mitigation measures recommended in this section will also be applied where possible for components that have already started construction.

No.	Project's components	Current Status	Expected Completion Date
1.	Turbine Area	Completed 8 foundations (out of 73 turbines)	 For foundation construction: February 2020 (excluding Cune 2) For turbines installation: March 2022
2.	22/220 kV Substation	Completed field levelling and part of the foundation	October 2021
3.	Access Roads	Completed the field levelling for access roads	October 2021
4.	Laydown Area	Completed the field levelling	October 2021
5.	Operational House	Not started	October 2021
6.	Worker Camp		October 2021
7.	Internal Road		December 2021
8.	22kV Transformer	1	April 2022

 Table 11.5
 Updated Development Status of Project Components

No.	Project's components	Current Status	Expected Completion Date
9.	22kV Transmission Line		April 2022

11.4.1 Loss of Terrestrial Habitat

11.4.1.1 Significance of Impacts

11.4.1.1.1 Habitats

Based on the outcomes of the geospatial assessment undertaken to define natural/modified habitat, the Project area totals 5,263.28 ha, wholly characterized by modified habitats (see Table 8.13).

The fixed-term and temporary land requirements of each Project component is provided in Table 11.6. The resulting habitat loss is only associated with modified habitats, including mostly agricultural land (see Figure 8.20 and Figure 8.21). The sensitivity of the modified habitats is regarded as low.

The total amount of land acquired by the Project (both fixed-term and temporarily used land) covers 119.71 ha. This is a relatively small extent in comparison to the area of plantations/agricultural land (mostly coffee plantations) available within the Project boundary (4,715.47 ha / 2.5%) (See Table 8.13). In addition, the mitigation measures that the Project owner plans to apply, as outlined in the regulatory EPP and Safe and Civilized Construction Plan, is considered effective to reduce the amount of land clearance. The magnitude of impact of habitat loss is considered to be small.

No.	Items	Land area (ha)
1	Fixed-term used land	119.0927
1.1	Turbine foundations and security fence	6.57
1.2	Traffic roads (Upgrading inter-village roads and building new internal roads)	45.5
1.3	22/220 kV substation	4.6
1.4	220 kV transmission line	0.0227
1.5	22 kV transmission line	62.4
2	Temporarily-used land	161.55
2.1	Traffic roads	63
2.2	Laydown area	15.33
2.3	220 kV overhead transmission line	0.02
2.4	22 kV underground and overhead transmission line ⁶¹	83.2

Table 11.6 Land Disturbance Footprint of Each Project Component

Table 11.7 summarizes the results of impact assessment (grey-shaded cells) of terrestrial habitat loss on habitat receptors.

⁶¹ Most of the 22kV Transmission Line are laying along with the internal road system area which are within the land acquisition process.

Impact Nature	Negative	Negative			Positive			Neutral		
Impact Type	Direct			Indirect			Induced			
Impact Duration	Temporary Short-			-term Long-term			Permanent			
Impact Extent	Local			Regional			Intern	ational		
Frequency	The impact is o	contin	uous w	ithin it	s duratio	n				
Impact Magnitude	Positive	Ne	gligible	Small Me			Med	dium Large		
Receptor Sensitivity	Low			Medium				High		
Impact Significance	Negligible	. Moderate			Major					

Table 11.7 Loss of Terrestrial Habitats (on habitat receptors)

11.4.1.1.2 Species as Receptor

Fauna and flora experience loss of habitats in two forms: direct loss due to Project components' clearance footprint and indirect habitat loss due to displacement from e.g. noise or visual disturbance. Species of conservation concern found during field surveys are listed in Table 11.8. Apart from these species, some potential endangered species could occur in the Project, such as Yellow-breasted Bunting; however, their presence was not confirmed during field surveys, (see Table 8.17).

No.	Scientific name	Common Name	IUCN	VRDB
Flora				
1	Dalbergia oliveri	Cẩm lai / Tamalan	EN	EN
2	Dipterocarpus intricatus	Dầu lông	EN	NL
3	Rauvolfia cambodiana	Ba gạc cam bốt	NL	VU
Non-volar	nt (non-flying) mammals			
4	Lutrogale perspicillata	Smooth-coated otter	VU	EN
Herpetofa	una			
5	Gekko Gecko	Tokay gecko	NL	VU
6	Coelognathus radiatus	Radiated ratsnakes	LC	VU
7	Ptyas korros	Indo-Chinese rat snake	NL	EN
8	Ophiophagus hannah	King cobra	VU	CR
Birds				
9	Psittacula alexandri	Red-breasted parakeet	NT	NL
10	P. finschii	Grey-headed parakeet	NT	NL

Table 11.8 Species of Conservation Concern Found in Field Surveys

The type of habitat loss that flora species will likely experience is direct loss. The locations of recorded endangered flora species are shown in Figure 8.6. However, since the surveys did not cover the whole

www.erm.com Project No.: 0599549 Project footprint, there is uncertainty regarding the occurrence of any individuals of these species elsewhere within the Project footprint.

Fauna can experience both direct and indirect habitat loss. The land classification map (see Figure 8.20 and Figure 8.21) presents the habitats where species of conservation concern identified during the field surveys occur. Species identified during the field surveys can occur in surface water (accounting for 1.89% of the Project area) and plantations/agricultural land (89.59% of Project area); with the Smooth-coated otter more dependent on surface water habitats. The Project footprint mostly covers plantations/ agricultural land, and does not transverse any surface water. However, it is also uncertain if any nests/dens of these species of conservation concern occur within the Project footprint. As no targeted surveys for the species have been carried out during the baseline, it is conservatively assumed that this otter species is present in wetland habitats within the Project area for the purposes of this impact assessment. Importantly, no wetland or riparian habitats will be directly affected by the construction or operation of the Project. The nearest turbine to any wetland is 250 m away and the majority are much further. This therefore reduce the potential for impacts on otter holts and primary foraging habitats. The loss of dry land plantation is highly unlikely to affect this species given it is sub-optimal foraging habitat compared to natural, dry land habitats that are inherently richer in biodiversity.

Different from direct loss, indirect loss is harder to quantify as it is not restricted within the clerance footprint and is species-specific. Little has been studied on the distance of which fauna is displaced during the construction phase of wind turbines. The displacement of fauna during construction is considered to be mostly associated to noise (for birds and non-volant mammals) and vibrations (herpetofauna). Kwon et al. (2018) modelled the level of noise emitted from different construction machines at different distances in urban areas, based on reference noise level at 15m taken from various international standards. They predicted that at 216m, most noise levels from various construction machines have been attenuated to below 56 dBA, except for drilling machine (62.34 dBA) and pile driver (64,90 dBA). According to the noise baseline (refer to Section 7.6.3), the background noise within the Project area ranges from 33.3 to 70.5 dBA, with most daytime noise is under 55 dBA. There is potential for fauna species to be impacted by noise emissions within 250 m from the construction site; beyond 250m, noise level from construction is expected to have attenuated to or below background noise level.

In terms of otters, Good industry practice (NIEA n.d.) indicates that the implementation of a buzzer zone of 30 m between construction works and otter holts is sufficient to protect the species from disturbance. This buffer area should be increased to 150 m for breeding holts – assuming holts may be present at the wetlands within the Project area – which is still outside the nearest turbine footprint (250 m). As no Project construction works are proposed within 250 m of wetland habitat, this would avoid potentially significant impacts on any otter dens should they be present. A monitoring survey prior to construction of any turbines within 250 m of any wetlands will be carried out as part of the ESAP to verify this conclusion.

During operation, fauna may also avoid the vicinity of Project components, which would result in indirect habitat loss. Studies have found that non-volant fauna do not show significant avoidance behaviours to wind farms (Agha et al. 2015; Łopucki, Klich & Gielarek 2017; Łopucki & Mróz 2016; Thaker, Amod & Harshal 2018), while this behaviour were proved in some specific avian species (Barré et al. 2018a; Bayne, Habib & Boutin 2008; Marques et al. 2020; Masden et al. 2009a; Thaker, Amod & Harshal 2018). The effects of displacement could be up to 650m for passerine birds (Bayne, Habib & Boutin 2008) and 1000m for bats (Barré et al. 2018b).

The receptor sensitivity is High as impacted species include one nationally CR species (king cobra) and two globally EN flora species (*D. oliveri* and *D. intricatus*), and two nationally EN animals (smooth-coated otter and Indo-Chinese rat snake).

A very small portion of these species' populations might be displaced from their habitats. However, considering that (i) most of the recorded species in the field survey are tolerant to modification, (ii) the habitats that can support these species still remain prevalent; (iii) bird and bat species that are more

affected by indirect habitat loss can easily migrate to those remaining habitats and (iv) species might show adaptation to the wind farms and reduce avoidance behavior (Madsen & Boertmann 2008), the effects of habitat loss is considered to be Small.

The overall significance of impact is Moderate.

Impact Nature	Negative	Negative			Positive				Neutral		
Impact Type	Direct			Indir	Indirect			Induce	Induced		
Impact Duration	Temporary Short-			-term	-term Long-term				Permanent		
Impact Extent	Local			Regional			Intern	International			
Frequency	The impact is co	ontin	uous w	ithin it	s duratio	n.					
Impact Magnitude	Positive	Ne	gligible	Small			Medium			Large	
Receptor Sensitivity	Low			Medium			High			<u>.</u>	
Impact Significance	Negligible Minor			Moderate			ate	Major			

 Table 11.9
 Loss of Terrestrial Habitat (on species receptors)

11.4.1.2 Additional Mitigation Measures

Additional mitigation measures are proposed during construction as follows:

- Conduct additional field survey to confirm the presence of Smooth-coated Otter within the project area as the evidence of this species being present came through an interview with only one person stating having observed 4 individuals of this species.
- A Wildlife Shepherding Protocol is to be used within the terrestrial Project Area to ensure that no
 active nests/dens or wildlife remain in the affected zone prior to any clearance and construction
 work. Wherever possible, fauna are to be relocated to their point of origin or similar natural adjacent
 areas;
- Use of appropriate noise suppression techniques (such as silencer, noise barrier) where applicable to limit the extent of indirect habitat loss.

11.4.1.3 Monitoring and Audit

The following monitoring measures and recommended for habitats and the habitats of species of conservation significance:

- Regular (weekly) inspections during construction are to occur along all Project boundaries and Project footprint to ensure compliance with clearing within marked boundaries/zones;
- Records of inspections and violation cases are to be kept and available when required; and
- During operation phase, monitoring of rehabilitation success/failure is to occur on all replanting sites. Monitoring frequency should be quarterly (biosis 2018). Where plant rehabilitation is determined to have failed, re-establishment is to occur with corrective measures after review of reasons of failure. Indicators for vegetation re-establishment should be at least 75% successful coverage.

11.4.1.4 Significance of Residual Impacts

The residual impacts from loss of terrestrial habiats are likely to be Minor to Negligible.

11.4.2 Disturbance to Terrestrial Species

The disturbance and displacement of terrestrial fauna species will primarily be caused by noise, light, presence of human and construction machines during construction. The construction phase is expected to last 18 months as according the to EPP (scheduled from July 2020 to September 2021).

During operation, disturbance is mainly from low-frequency noise emitted from wind turbine generators and affects the vocalization of species (Berger-Tal *et al.* 2019).

11.4.2.1 Significance of Impacts

11.4.2.1.1 Birds

According to the field surveys conducted in the Project area, avifauna species consist of mostly IUCN LC species, except for the Red-breasted Parakeet (IUCN NT; VRDB NL) and Grey-headed Parakeet (IUCN NT; VRDB NL). The receptor sensitivity is therefore conservatively assessed as Medium.

It is known from the literature that auditory hair cells of bird can be regenerated after acoustic trauma (Janas, Cotanche & Rubel 1996; Köppl 2011) and physical damages to birds occur at a relatively high noise level (more than 140 dbA for a single blast, 125 dbA for multiple blasts and more than 110 dbA for a continuous [more than 72 hours] noise during construction) (Dooling & Popper 2007). The study of Kwon et al. (2018) showed that at 15 meters, noise level of different machines ranged from 60 to 71 dbA. Therefore, to experience acoustic trauma, the birds would be required to occur very close to the noise source. This is very unlikely, as presence of human and construction machines are likely to have displaced bird outside of the construction zone already before construction starts. The magnitude of impact is negligible.

Therefore, the significance impact of disturbance during construction on birds are considered to be negligible.

11.4.2.1.2 Bats

The field surveys found seven bat species, all IUCN LC and VRDB NE. Bats are quite low in abundance within the Project area. The receptor sensitivity is low as only LC species are affected.

Nigh-time construction activites of the Project may have negative effects on bats. Literature indicates that the foraging success of bats may be reduced in a noisy environment and bats may abandon noisy areas (Bunkley et al. 2014; Luo, Siemers & Koselj 2015). The effects of auditory damage on bats are poorly-studied due to noise. In terms of light disturbance, a study showed that bats were shown to avoid up to 50m of streetlights (Azam et al. 2018).

It is not clear what construction activities will take place at night; however, it is likely to not involve heavy machinery work that emits loud noise that will disturb nearby human communities. Considering that the noise and light disturbance is likely to be within a small area restricted to (e.g. 250 m) around the construction works. Furthermore the plantations dominated by coffee and cashew are not suitable for bats foraging, so the indirect habitat loss derived from displacement is considered to be small (see section 11.4.1.1.2); the magnitude of effect is considered to be small.

Therefore, the significance impact of disturbance during construction on bats are considered to be negligible.

11.4.2.1.3 Non-volant Mammals

The non-volant mammals found during the field surveys included the nationally EN Smooth-coated Otter. The receptor sensitivity is therefore considered high. Limited studies have been conducted on hearing damage caused by construction activities on freshwater otters. However, this species may be disturbed from its dens due to vibration, for example during construction works. The location where otters have been identified during the field surveys is far from the construction area for any turbines (about 250m from the nearest Project component - turbine A14, see Figure 8.15). In addition, wild

mammals are sensitive to human presence and are likely to avoid the construction area. Therefore, the displacement impacts from noise and light are considered to be negligible.

Overall, the significance impact of disturbance during construction on otters are considered to be negligible.

11.4.2.1.4 Reptiles

Unlike other taxon, reptiles generally move slower and it was shown that they might 'freeze' as a species-specific response to threats including noise (Mancera et al. 2017), which increases its exposure time to noise emissions and therefore makes them more vulnerable to auditory damage. This assumes a conservative response, however, and it is more likely reptiles will move away from sources of noise. Furthermore some reptiles (i.e. snakes) only sense vibration. As vibration effects are generally localized within the immediate surroundings of the construction site (10 to 14m from the source) (Chen et al. 2019), it is unlikely that reptiles will experience significant impacts from vibration.

The reptilian diversity within the Project area includes four species of conservation significance – the Tokay Gecko (IUCN NL; VRDB VU), Radiated Ratsnake (IUCN LC; VRDB VU), Indo-Chinese Rat Snake (IUCN NL; VRDB EN) and King Cobra (IUCN VU; VRDB CR). The receptor sensitivity is therefore considered high. A small portion of individuals (particularly, those near the construction site) might be affected, but it is unlikely to threaten the long-term viability of these species' populations nationally or regionally. The magnitude of impact is considered to be Moderate, reflecting the high sensitivity of these species.

Impact Nature	Negative			Positive			Neutral			
Impact Type	Direct			Inc	direct			Induced		
Impact Duration	Temporary Short-te			erm		Long-t	erm		rmanent	
Impact Extent	Local			Re	gional			Inter	nati	onal
Frequency	The impact is im	The impact is impulsive and quite frequent within is duration								
Impact Magnitude	Positive	Ne	gligible	Small Mediu			Mediu	m Large		Large
	Negligible for Bir	rds a	nd Non-v	olan	it mamma	als. Sma	all for Ba	ts and	l Re	ptiles
Receptor Sensitivity	Low			Medium				High		
	Low for Bats, Me	ediur	n for Bird	s an	d High fo	or Non-v	olant ma	mmal	s an	d Reptiles.
Impact Significance	Negligible Minor			Moderate			ate	Major		ajor
	Negligible for Bir	Negligible for Birds, Non-volant mammals and Bats. Moderate for Reptiles.								

 Table 11.10
 IA of Noise Disturbance on Terrestrial Species during Construction

11.4.2.2 Additional Mitigation Measures

Additional mitigation measures are recommended during construction phase:

- Conduct additional field survey to confirm the presence of Smooth-coated Otter within the project area as the evidence of this species being present came through an interview with only one person stating having observed 4 individuals of this species.
- A Wildlife Shepherding Protocol is to be used within the terrestrial Project Area to ensure that no active nests/dens or wildlife remain in the affected zone prior to any clearance and construction work. Wherever possible, fauna are to be relocated to their point of origin or similar natural adjacent areas;

- Injured Wildlife Management Protocol is to be applied when injured individuals are found during daily inspection;
- Fencing is to be placed around major project sites during construction to restrict access to local fauna, and therefore stopping wildlife becoming trapped or harmed by works;
- Use of appropriate noise suppression techniques (such as silencer, noise barrier) where applicable;
- Regularly maintain machinery;
- Use cowl, hood and shield to minimize light spill.

11.4.2.3 Monitoring and Audit

- Conduct supervision on the implementation of mitigation measures for fauna disturbances daily during construction phase;
- Records of daily inspections, violation cases, records of construction schedule in which how many machines work at a same time, records of vehicle maintenance should be kept are to be kept and available when required.

11.4.2.4 Significance of Residual Impact

With the application of mitigation measures, the significance of all impacts of disturbance and displacement are likely to be Negligible. No further mitigation is required.

11.4.3 Barrier Creation, Fragmentation and Edge Effect Impacts

11.4.3.1 Significance of Impacts

11.4.3.1.1 Barrier Creations

Animals, mostly birds, spend extra energy to detour around the wind turbines (in case they do not completely avoid the wind farms), and the costs may become large as they cumulate through time. This may lead to reduction in reproduction success as animals require heavy investment of energy reserves during breeding; however the effects of cumulative energy loss to go around barriers are still remain poorly-understood (Masden et al. 2009b). It can be safe to assume that animals can adapt to changing their daily commute pathways, and can eat more when food is abundant to compensate for the cumulative energy loss. The negative effects are considered to be negligible.

For migratory populations, the extra energy to avoid the Project's components (e.g. turbines) is considered to be trivial. Although the effects of incurred energy costs to detour around the turbines are poorly-understood, such cost is considered negligible in comparisons to those required for flying in unfavourable wind and weathers (Masden et al. 2009a) that are more frequently encountered during the migratory trips. The effects could be larger in terms of multiple different windfarms sitting in an specific area (see Section 14.5.2).

The receptor sensitivity is Medium in lieu of the NT birds recorded in field survey.

11.4.3.1.2 Fragmentation

The landscape has already been significantly fragmented by large existing roads/built-up land, and there are no watercourses within the Project area. The development of additional internal access roads (which are generally shorter in lengths) adds negligible impacts to the existing level of fragmentation within the Project area. Non-flying species are unlikely to be fragmented by roads of this size, while birds and bats can easily cross these. The receptor sensitivity is considered as High due to the presence of EN species e.g. Smooth-coated Otter.

11.4.3.1.3 Edge Effects

There are no natural habitats located in the Project footprint (in other words, the Project components do not lead to clearance of the outermost of any natural habitats). The habitat receptor sensitivity is low. Edge effects are unlikely to occur.

Impact Nature	Negative	Negative			Positive			Neutral		
Impact Type	Direct			Indi	Indirect			Induced		
Impact Duration	Temporary Short-t			term	term Long-term			Permanent		
Impact Extent	Local			Reg	Regional			International		
Frequency	The impact is co	The impact is continuous within its duration.								
Impact Magnitude	Positive	Ne	gligible	e Small Me			Med	dium Large		
Receptor Sensitivity	Low			Medium				High		
	Low for Edge Eff	Low for Edge Effects, Medium for Bariers effects and High for Fragmentation effects								entation effects
Impact Significance	Negligible		Minor	Moderate			Major			

Table 11.11 Barrier Creation, Fragmentation and Edge Effect Impacts

11.4.3.2 Additional Mitigation Measures

• No additional mitigation measures are proposed.

11.4.3.3 Monitoring and Audit

No additional monitoring and audit programs are proposed.

11.4.3.4 Significance of Residual Impact

The significance of impacts are likely to be Negligible.

11.4.4 Degradation of Habitat Impacts

11.4.4.1 Potential Impacts and Consequences

A range of Project activities have the potential to lead to degradation of flora and fauna habitats including excavation, construction, land clearing, movement of vehicles, drilling, refuelling, hazardous materials storage and maintenance, through the generation of dust, runoff; as well as release of potential contaminants; and introduction or spread of invasive species. Such aspects of Construction activities including: erection of transmission towers, erection of wind turbines and installation of cables/wires and installation of associated infrastructure (such as the substation and laydown area) have been assessed below.

11.4.4.2 Dust

11.4.4.2.1 Significance of Impacts

During construction on land, the movement of vehicles as well as clearing and excavation activities have the potential to generate dust which may settle on vegetation adjacent to the construction area. Excessive dust deposition on flora may act to suppress growth through limiting photosynthesis and the dusty foliage may also become unpalatable to herbivores. Project construction activities will be temporary and dust generation is likely to be localised to active work areas.

However, rainfall and wind will generally remove dust from foliage; furthermore existing mitigation measures that Project owner has committed to will likely to have significantly reduced dust emissions.

The impacts from dust are therefore considered to be negligible. The receptor sensitivity is low as only modified habitats are affected.

Impact Nature	Negative			Positive				Neutral			
Impact Type	Direct			Indir	Indirect			Induc	Induced		
Impact Duration	Temporary Short-			-term	-term Long-term				Permanent		
Impact Extent	Local			Regional			Intern	International			
Frequency	The impact is v	ery f	requen	t withi	n its dura	ation.					
Impact Magnitude	Positive	Ne	gligible	e Small			Medium			Large	
Receptor Sensitivity	Low	Low			Medium			High			
Impact Significance	Negligible Minor			m Moderate			Major				

 Table 11.12
 IA of Degradation of Habitats Caused by Dust

11.4.4.2.2 Additional Mitigation Measures

Additional mitigation measures have been suggested in the Air Quality Impact Assessment (see Section 10.1.4.2). Apart from those, no further mitigation measures are proposed.

11.4.4.2.3 Monitoring and Audit

Monitoring and audit programs are as proposed in the Air Quality Impact Assessment (see Section 10.1.4.4). Apart from those, no further monitoring programs are proposed.

11.4.4.3 Waste and Wastewater

11.4.4.3.1 Significance of Impacts

Accidental release or spill of these wastes and wastewater can be toxic to flora and fauna locally if substances are released into the aquatic environment. Runoff from construction sites has potential to carry contaminants a substantial distance downstream. Construction activities such as refuelling, storage and other activities that involve oil and hazardous substances have the potential to result in accidental releases.

However, with the existing mitigation measures that the Project owner commits to do for waste and wastewater, the potential threats of habitat degradation are unlikely to happen. These implementations will also maintain existing water quality within the wetlands, meaning no significant impact is predicted on aquatic foraging habitats used by Smooth-coated Otters. The impact is considered to be negligible with the application of existing mitigation measures. The receptor sensitivity is low as only modified habitats are affected.

Impact Nature	Negative	Positive		Neutral			
Impact Type	Direct		Indirect		Induced		
Impact Duration	Temporary	Short	-term	Long-term	Permanent		
	The impact exists in	constru	uction phase a	nd continuous	into operation phase		
Impact Extent	Local		Regional		Intern	ational	

Table 11.13	IA of Waste and Wastewater Management
-------------	---------------------------------------

Frequency	Impact is contin	Impact is continuous within its duration.									
Impact Magnitude	Positive	Negligible		Small		Med	Medium		Large		
Receptor Sensitivity	Low			Medium				High			
Impact Significance	Negligible		Minor			Modera	ate		Maj	jor	

11.4.4.3.2 Additional Mitigation Measures

Additional mitigation measures have been suggested in the Water Resources Impact Assessment (see Section 10.3.4.1.4). Apart from those, no further mitigation measures are proposed.

11.4.4.3.3 Monitoring and Audit

Monitoring and audit programs are as proposed in the Air Quality Impact Assessment (see see Section 10.3.4.1.6). Apart from those, no further monitoring programs are proposed.

11.4.5 Invasive Species

11.4.5.1 Significance of Impacts

During construction, invasive species have the potential to be introduced or further spread throughout the Project area through increased movement of people, vehicles, machinery, vegetation and soil. An increase in the prevalence of weeds or other pests has the potential to reduce the quality of habitat for some native flora and fauna and affect the success of revegetation.

The field surveys recorded three invasive species within the Project area, including Siam Weed, Black Mimosa and the Billygoat-Weed. Other invasive species that have been recorded in Dak Lak province is listed in Table 8.6. These were commonly found within the Project area during baseline field surveys.

The impacts of invasive species is small as it affects a small area of habitat but without the loss of viability/functions of the habitats. The Project area only consists of modified habitats; therefore the receptor sensitivity is low. Overall the impact significance from invasive species is negligible; however, additional mitigation measures for invasive species are recommended to prevent introduction of new species and spread of existing species, as per required by IFC PS6.

Impact Nature	Negative			Positive			Neutral		
Impact Type	Direct			rect			Induced		
Impact Duration	Temporary Short-				Long-ter	m		Pe	rmanent
	The potentials to spread invasive species mostly exist in construction period, thus is short-term.								
Impact Extent	Local		Regional			Intern	atior	nal	
Frequency	Continuous with	in its durati	on						
Impact Magnitude	Positive	Negligible	•	Small		Med	ium	Large	
Receptor Sensitivity	Low		Med	ium			High		
Impact Significance	Negligible Minor			Moderate			Major		

 Table 11.14
 IA of Invasive Species Introduction

11.4.5.2 Additional Mitigation Measures

The following mitigation measures will be applied during construction and continue during operation.

- Existing populations and the introduction of new invasive species are to be managed. These measures are to be outlined in an *Invasive Species Management Plan* and will include measures such as:
 - The provenance of any fill material brought onto the site is to be checked for invasive species contamination.
 - Transportation vehicles should be inspected before entering site and wash down on arrival and departure.
- Temporary-used land will be rehabilitated using native species after construction.

11.4.5.3 Monitoring and Audit

During construction, daily supervision on the implementation of the *Invasive Species Management Plan* should be conducted. Records of inspections, violations should be kept and available when required. On a monthly basis, inspections should be done in Project area to identify any new proliferations and eradicate invasive species.

During operation, monthly monitoring should be done in rehabilitated areas to check for presence of invasive species and remove if any.

11.4.5.4 Significance of Residual Impact

With the application of mitigation measures, the significance of impacts are likely to be negligible.

11.4.6 Mortality Impacts – Birds

11.4.6.1 Significance of Impacts

During construction

How Project activities may lead to direct mortality of fauna species is different between the construction and operation phases. During construction, vehicle or machine strikes, falling debris, cutting down of trees that have juveniles nesting in them, and increased hunting or poaching conducted by workers pose risks to wildlife survival. The effects are considered to be small as species within the proximity of the construction site are likely to be displaced by multiple anthropogenic disturbances before construction starts. However, if active hunting and poaching are not hindered, and if wildlife do not abandon the area before clearance starts, the effects could be more severe than estimated. Further additional mitigation measures are recommended (e.g. *Wildlife Shepherding Protocol*) during construction stage to ensure wildlife deaths are from small to negligible. The receptor sensitivity is Medium in lieu of the NT birds recorded during field surveys.

During operation

For avifauna, risks of death are higher during operation phase due to potential collision with Project's facilities, mostly with turbine blades and transmission line. Transmission line risks include both collision with wires and accidental electrocution associated with perching on pylons. Large gliding species, such as raptor and heron species, are more prone to electrocution on transmission lines due to their large body size that can span the distance between two energized or grounded components (e.g. two wires, or between a wire and a non-insulated pole or pole equipment such as conductors).

The risk of collision with turbines varies depending on species present, numbers present, flight behaviour, location of the project in the landscape, local topography and habitat within and surrounding the site. This may include areas of aggregation and congregation, even where these may be kilometres away from the wind farm.

The baseline studies have identified 29 bird species that are prone to mortalities from collisions with turbine blades and electrocution on transmission lines (see Table 8.11). The impacts of mortalities are assessed within their global population backgrounds (see Table 11.15).

From the assessment in Table 11.15, one species, the Germain's Swiftlet (*Aerodramus germani*), was identified as vulnerable to mortality events that may equal an effect on 0.1% of its global population per year (the 0.1% figure is used as a precautionary figure to identify where population level effects may occur). This species is not a species of any conservation concern, and has a very high abundance within the Project area. The exceptionally high abundance within the Project area may be attributed to the swift farming practices in the Project area. Thus the mortality events for this species per year have the potential to reach 0.1% of the global population per year as a conservative estimate, although estimations of its populations are not available.

Although spending a high proportion of time in band 2 (which increases the risk of blade collisions) and having large wing spans, the raptor species recorded in the field surveys (Black-shouldered Kite, Shikra, Black Baza, Rufous-winged Buzzard, Grey-faced Buzzard, and Black Kite) are expected to be low in numbers in the Project area, according to the baseline studies. Mortality events in a year due the Project are therefore unlikely to reach 0.1% of global populations of these species.

Red-breasted Parakeet and the Grey-headed Parakeet species are characterised by flying in flocks, which could make these species more vulnerable to collisions; however, they were not recorded to fly up to band 2 during the field surveys. Likewise, mortalities of other species are unlikely to reach 0.1% of global populations due to not having large wing-spans, small abundances and/or having low/no time flying in band 2.

Although there is limited field survey data available, and avoidance behaviours and rates are species specific, given the limited value of the Project area to avifauna and the fact it comprises only of modified habitats, it is concluded that impacts on birds and their mortality rates will unlikely to be significant at the population levels, except for the Germain's swiftlet. However, this will be confirmed through further additional assessment and, if required, mitigation measures prior to construction and during operations.

No	Common name	IUCN	VRDB	Flying in band 2	Raptor	Large wing- span (≥ 50 cm)	Fly in flock (≥ 10 individuals)	Global populations (min)	0.1% global populations	Field survey numbers	Total fly time (s)	Percentage of band 2 flying time
1	Shikra	LC	NL	Yes	Yes	Yes	No	800,000	800	4	224	55%
2	Black-winged Kite	LC	NL	Yes	Yes	Yes	No	N/A	N/A	8	508	64%
3	Black Baza	LC	NL	Yes	Yes	Yes	No	10,000	10	2	47	32%
4	Rufous-winged Buzzard	LC	NL	Yes	Yes	Yes	No	1,000	1	5	540	56%
5	Grey-faced Buzzard	LC	NL	Yes	Yes	Yes	No	N/A	N/A	16	2,150	88%
6	Black Kite	LC	NL	Yes	Yes	Yes	No	1,000,000	1,000	2	47	32%
7	Edible-nest Swiftlet	LC	NL	Yes	No	No	Yes	N/A	N/A	2813	900,674	47%
8	Large-billed Crow	LC	NL	Yes	No	Yes	No	N/A	N/A	28	250	84%
9	Sooty-headed Bulbul	LC	NL	Yes	No	No	Yes	N/A	N/A	198	150	80%
10	Vinous-breasted Myna	LC	NL	Yes	No	No	Yes	N/A	N/A	49	60	67%
11	Barn Swallow	LC	NL	Yes	No	No	Yes	290,000,000	290,000	33	2,500	24%
12	Chinese Pond-heron	LC	NL	Yes	No	Yes	No	25,000	25	5	180	67%
13	White-shouldered Starling	LC	NL	Yes	No	No	Yes	N/A	N/A	14	45	67%
14	Asian Palm-swift	LC	NL	No	No	No	Yes	N/A	N/A	53	<200	N/A
15	Little Swift	LC	NL	No	No	No	Yes	N/A	N/A	10	<200	N/A
16	Greater Coucal	LC	NL	No	No	Yes	No	N/A	N/A	35	<200	N/A
17	Green-billed Malkoha	LC	NL	No	No	Yes	No	N/A	N/A	18	<200	N/A
18	Little Cormorant	LC	NL	No	No	Yes	Yes	N/A	N/A	10	<200	N/A
19	Asian Green Bee-eater	LC	NL	No	No	No	Yes	N/A	N/A	37	<200	N/A

Table 11.15 Assessment of Mortality Potential at Population Levels

www.erm.com Project No.: 0599549

No	Common name	IUCN	VRDB	Flying in band 2	Raptor	Large wing- span (≥ 50 cm)	Fly in flock (≥ 10 individuals)	Global populations (min)	0.1% global populations	Field survey numbers	Total fly time (s)	Percentage of band 2 flying time
20	Chestnut-headed Bee-eater	LC	NL	No	No	No	Yes	N/A	N/A	23	<200	N/A
21	Red-breasted Parakeet	NT	NL	No	No	No	Yes	N/A	N/A	31	<200	N/A
22	Grey-headed Parakeet	NT	NL	No	No	No	Yes	N/A	N/A	49	<200	N/A
23	Black Bulbul	LC	NL	No	No	No	Yes	N/A	N/A	38	<200	N/A
24	Red-rumped Swallow	LC	NL	No	No	No	Yes	N/A	N/A	12	<200	N/A
25	Chestnut-tailed Starling	LC	NL	No	No	No	Yes	N/A	N/A	4	<200	N/A
26	Eurasian Tree Sparrow	LC	NL	No	No	No	Yes	190,000,000	190,000	39	<200	N/A
27	House Sparrow	LC	NL	No	No	No	Yes	896,000,000	896,000	70	<200	N/A
28	Plain-backed Sparrow	LC	NL	No	No	No	Yes	N/A	N/A	13	<200	N/A
29	Scaly-breasted Munia	LC	NL	No	No	No	Yes	N/A	N/A	80	<200	N/A

As the affected species may include NT bird species (i.e. the Red-breasted Parakeet and Grey-headed Parakeet), the receptor sensitivity is conservatively assessed to be medium. Impacted species may experience substantial changes in abundance and/or reduction in distribution over one or more generations, but does not threaten the long-term viability of that population or any population dependent on it. The magnitude of impact is Medium. The overall impact significance is therefore Moderate. This will be subjective to change according to Collision Risk Modelling and monitoring programme during operation.

Impact Nature	Negative		Neutral		Positiv	/e
Impact Type	Direct		Indirect		Induce	ed
Impact Duration	Temporary	Short-	term	Long-term		Permanent
Impact Extent	Local		Regional		Globa	l
Impact Frequency	The transmission line	e and tu	Irbines will be o	operational nea	arly 24	hours a day.
Impact Magnitude	Negligible	Small		Medium		Large
Receptors Sensitivity	Low		Medium		High	
Impact Significance	Negligible	Minor		Moderate		Major

Table 11.16 IA of Blade Collision

11.4.6.2 Additional Mitigation Measures

11.4.6.2.1 During Construction Phase

- A Collision Risk Modelling is recommended to be undertaken to further assess collision risks for species that are vulnerable to collisions and electrocution (e.g. the Germain's swiftlet in this Project)
- A Wildlife Shepherding Protocol is to be used within the terrestrial Project Area to ensure that no active nests/dens or wildlife remain in the affected zone prior to any clearance and construction work. Wherever possible, fauna are to be relocated to their point of origin or similar natural adjacent areas.
- Injured Wildlife Management Protocol is to be applied when injured individuals are found during daily inspection;
- Hunting and poaching will be prohibited for Project staff, workers, all contractors and personnel engaged in or associated with the Project, with penalties levied, including fines and dismissal, and prosecution under the relevant laws;
- The Project owner shall provide training to staff and workers on all rules, regulations and information concerning restrictions related to the fauna/flora awareness, as well as the punishment that can expected if any staff or worker or other person associated with the Project violates rules and regulations.

11.4.6.2.2 During Operation Phase:

- Ensure that power towers and transmission lines meet safety standards such as Avian Power Line Interaction Committee (APLIC)⁶² to minimise birds and bats electric shock risk:
 - Framing structures so that there is adequate separation between phases or phases and grounds to accommodate large perching birds. Based on the dimensions of eagles, APLIC recommends 132 cm of horizontal separation and 88 cm of vertical separation;
 - Applying covers on phases or grounds where adequate separation is not feasible. Examples of covers include insulator/conductor covers, bushing covers, arrester covers, cutout covers, and jumper wire covers. Cover designs should be evaluated and approved by company engineers prior to use. (Note: bird/animal protection covers are not intended for human protection);
 - Image below illustrates the typical avian safe structures: single phase (left), three-phase with lowered 8-foot crossarm (right). On three phase structures, a vertical clearance of at least 105 cm between un-insulated conductors, ground wires and grounded hardware on poles with 8-foot crossarms will provide the 196 cm required clearance.

- Development of an Adaptive Bird Management Plan is also required. The plan should include:
 - Post-construction monitoring (see section Monitoring and audit below) and limits of acceptable of number of mortalities (triggers).
 - Further mitigation measure should be undertaken if exceeding triggers, which may involves:
 - Installation of bird multi-sensor monitoring system and deterrent system;
 - Increase curtailment of wind farms

⁶² APLIC offers a variety of training resources and guidance documents that identify causes and minimization methods for bird electrocutions and collisions with power lines. These resources include:

Avian Protection Plan (APP) Guidelines

Suggested Practices for Avian Protection on Power Lines document

Reducing Avian Collisions with Power Lines: State of the Art in 2012

Sage-grouse BMPs: Best Management Practices for Electric Utilities in Sage-grouse Habitat and Click here to view the Press Release

11.4.6.3 Monitoring and Audit

11.4.6.3.1 During Construction

- Supervise the implementation of anti-hunting and poaching policy for all labour forces and inspection for any wildlife in construction areas daily during construction phase;
- Where fauna is identified during regular inspections, this is to be confiscated (if poached) and photographed for record keeping. Records of injured and/or shepherded wildlife should be kept;
- Records are to be kept and regularly reviewed (quarterly) for implementation of the workforce training program for fauna/flora awareness.

11.4.6.3.2 During Operation

Monitoring of birds during operation will be required as part of the Adaptive Bird Management Plan:

- Conduct carcass monitoring during operations in the vicinity (within 85m radius) of the turbines (Zimmerling et al. 2013) and along the transmission line frequently (monthly) by trained personnel/dogs and bird experts. All carcasses or feather spots (remains of at least 10 feathers indicating a fatality whose carcass has been largely removed by scavengers) will be GPS referenced, photographed and notes taken on the following:
 - Species (this may require investigation of remains or photographs by bat/ ornithological specialist);
 - Sex and age (if known or which may require specialist input);
 - Date and time collected;
 - Turbine number, distance and compass direction (in degrees) from base;
 - Conditions (intact fresh and no signs of scavenging; scavenged; feather spot 10 or more feathers at one location indicating scavenging); and
 - Comments (e.g. any evidence of cause of death; recent weather conditions).
- Carcasses will be bagged and removed, and any not identified to species, age and sex held for examination, by a bird specialist.
- Periodic unannounced calibration checks will be undertaken to assess the finding efficiency (taking into account removal of carcasses by scavengers and observer variation) of observers and their dogs. These will involve the placement of 10 marked carcasses (recent evidence indicates that use of chickens and pheasants can lead to more rapid carcass removal than for raptor carcasses Phil Whitfield *pers comm.*) and a follow up visit to assess how many were found. This should be undertaken at least twice during both migration/dry season and non-migration/wet seasons to check for seasonal variation and influences (e.g. changes in crops, ground cover).
- Seasonal bird studies in year 1 and year 2 of operation, including ongoing monitoring to detail the understanding of bird utilization of the Project area. If species with significant conservation status are detected or monitoring indicates that turbines have a high collision risk, additional mitigation measures are to be considered and/or modified in these. Bird studies are highly recommended to be performed twice a year, especially during migration seasons (September November, February May).

11.4.6.4 Residual Impacts

A collision risk assessment is recommended to further quantify the significance of mortality impact to birds. To date no species of significant conservation concern have been recorded at the site but additional surveys are required to confirm this finding. Post-construction monitoring will be necessary

to verify impacts on birds and be supported by an adaptive management plan that can be implemented if mortality exceeds acceptable limits i.e. has population level effects.

11.4.7 Mortality Impacts – Bat

11.4.7.1 Significance of Impacts

11.4.7.1.1 During Construction

Threats to bats during construction phase are largely related to incidental death from clearing of vegetation where bats may be roosting. Further additional mitigation measures are recommended during construction stage to ensure wildlife deaths are from small to negligible.

11.4.7.1.2 During Operation

During operation phase, besides collision with turbine blades, barotrauma (tissue damage provoked by rapid pressure change) occurring when flying close to the blades is another cause for bat mortality. Mortality of bats are influenced by species-, environmental- and structure-related factors (Thaxter et al. 2017).

All bats were observed to fly in band 1 during field surveys; however, it is important to note that bats flying in band 2 were hard to detect during night time. Fatality risk are associated with different bats' foraging preferences, which are described in Table 11.17 (Neil Furey, pers. comm.). Bat fatalities can also be correlated with environmental factors, such as weather, as most of the worldwide studies found that higher mortality rates occur on low-wind nights (Arnett et al. 2013). Lights, colour and heat emissions could lure prey insects close to the turbines, which consequently lead to increased bat presence in the vicinity of the turbines (Rodrigues et al. 2015).

There were seven bat species found in the surveys (all are IUCN LC and VRDB NL species). The receptor sensitivity is therefore considered Low. One species – the Javan Pipistrelle - has a foraging strategy high above the ground (foraging strategy III) which is associated with high collision risk, while the rest adopt strategies considered low to medium risk (see Table 11.18).

There is limited information about the global populations of these species available; therefore the effects that collision resulting from the Project might have at population levels are difficult to assess quantitatively. However, the global population trends of the species are noted to be stable or increasing according to IUCN Red List. The general abundance of bats within the Project area is also considered relatively low, so it is unlikely that mortalities resulting from the Project would have significant impacts in a global context. However, since the surveys were conducted during rainy weather when bats were not very active, abundances of bats in the Project area could be greater than sampled. At this time, the impact magnitude is considered to be small. The overall significance is negligible. However, monitoring is necessary to validate this assessment.

Categories	Description	Collision Risk
I	Insectivorous species that forage in the highly cluttered airspace within the forest interior (or forest interior specialists).	Low
II	Insectivorous species that forage in the partially cluttered airspaces such as clearings, streams, or other tunnels within the forest or just above the canopy (edge and gap foragers).	Medium
III	Insectivorous species that forage in the unobstructed airspaces found in large clearings or high above the forest canopy (open-space foragers).	High

Table 11.17 Bat Foraging Preferences and Associated Collision Risk

Categories	Description	Collision Risk
IV	Fruit and nectar-eating bats that fly into the partially cluttered airspaces between tree canopies, roost in small numbers and forage locally.	Low
V	Fruit and nectar-eating bats that fly in unobstructed airspaces, roost in large colonies and forage over large areas.	Low

Source: Neil Furey, pers. comm.

veys

S/N	English name	IUCN	VRDB	Total counts	Foraging behaviour	Collision risk
	Greater short- nosed fruit bat	LC	NL	6	Fruit and nectar-eating bats that fly into the partially cluttered airspaces between tree canopies, roost in small numbers and forage	Low
	Hill Long- tongued Fruit Bat	LC	NL	2	locally.	
	Nepalese whiskered myotis	LC	NL	18	Insectivorous species that forage in the highly cluttered airspace within vegetation interior.	
	Peters's Myotis	LC	NL	3		
	Greater Asiatic yellow bat	LC	NL	8	Insectivorous species that forage in the partially cluttered airspaces such as clearings, streams, or other "tunnels" within the forest or just above	Medium
	Lesser Asiatic yellow bat	LC	NL	3	the canopy (edge and gap foragers).	
	Javan pipistrelle	LC	NL	16	Insectivorous species that forage in the unobstructed airspaces found in large clearings or high above the canopy (open-space foragers).	High

Impact Type	Direct			Indire	ct			Induce	d	
	These impacts are	e a direo	ct cor	nseque	ence from	n building	the Pr	ojects.		
Impact Duration	Temporary	Sł	hort-te	erm		Long-te	rm		Peri	manent
	The direct mortali construction phas	ty of bat e.	ts are	on-go	oing throu	ighout the	e Proje	cts' ope	ratio	n and
Impact Extent	Local			Regio	onal			Interna	itiona	ıl
Impact Frequency	The threat is cont	inous.								
Impact Magnitude	Positive	Negligi	ible		Small		Medi	um		Large
Receptor Sensitivity	Low			Mediu	um			High		
Impact Significance	Negligible	Mi	inor			Moderat	e		Maj	or

11.4.7.2 Additional Mitigation Measures

11.4.7.2.1 During Construction Phase

- A Wildlife Shepherding Protocol is to be used within the terrestrial Project Area to ensure that no active nests/dens or wildlife remain in the affected zone prior to any clearance and construction work. Wherever possible, fauna are to be relocated to their point of origin or similar natural adjacent areas;
- Injured Wildlife Management Protocol is to be applied when injured individuals are found during daily inspection;
- Hunting and poaching will be prohibited for Project staff, workers, all contractors and personnel engaged in or associated with the Project, with penalties levied, including fines and dismissal, and prosecution under the relevant laws;
- The Project owner shall provide training to staff and workers on all rules, regulations and information concerning restrictions related to the fauna/flora awareness, as well as the punishment that can expected if any staff or worker or other person associated with the Project violates rules and regulations.

11.4.7.2.2 During Operation Phase

- Using lights that have low ultraviolet wavelengths (reduce insect congregations around lights that bats forage on);
- Develop an Adaptive Bat Management Plan that includes:
 - Post-construction monitoring (see section below) and limits of acceptable of number of mortalities (triggers).
 - Further mitigation measure should be undertaken if reaching triggers:
 - Installation of suitable bat detectors fitted to the turbine or bat deterrent system;
 - Increase cut-in speed for rotors, as evidence suggests bats are more likely to collide with turbines in calmer conditions as low wind conditions provide better foraging and flying conditions than conditions with strong winds.

11.4.7.3 Monitoring and Audit

11.4.7.3.1 During Construction

- Supervise the implementation of anti-hunting and poaching policy for all labour forces and inspection for any wildlife in construction areas daily during construction phase;
- Where fauna is identified during regular inspections, this is to be confiscated (if poached) and photographed for record keeping. Records of injured and/or shepherded wildlife should be kept;
- Records are to be kept and regularly reviewed (quarterly) for implementation of the workforce training program for fauna/flora awareness.

11.4.7.3.2 During Operation

- Monitoring of bats during operations will be required as part of the Bat Management Plan:
- Conduct carcass monitoring within 85m radius from the turbines (Zimmerling et al. 2013) during operations on a monthly basis by trained personnel and bat experts (within the first year). All carcasses will be GPS referenced, photographed and notes taken on the following:
 - Species (this may require investigation of remains or photographs by bat/ ornithological specialist);

- Sex and age (if known or which may require specialist input);
- Date and time collected;
- Turbine number, distance and compass direction (in degrees) from base;
- Conditions (intact fresh and no signs of scavenging; scavenged); and
- Comments (e.g. any evidence of cause of death; recent weather conditions).
- Carcasses will be bagged and removed, and if species or age and sex are not identified, a bat specialist will be consulted;
- Periodic unannounced calibration checks will be undertaken to assess the finding efficiency (taking into account removal of carcasses by scavengers and observer variation) of observers and their dogs. These will involve the placement of 10 marked carcasses and a follow up visit to assess how many were found. This should be undertaken at least twice during both migration/dry season and non-migration/wet season to check for seasonal variation and influences (e.g. changes in crops, ground cover).
- Seasonal bat studies in year 1 and year 2 of operation, including ongoing monitoring to detail the understanding of bat utilization of the Project area. If species with significant conservation status are detected or monitored indicates that turbines have a high collision risk, additional mitigation measures are to be considered and/or modified in these. Bat assessment needs to be performed twice a year linked to the dry and wet season during year 1 and year 2 of operation.

11.4.8 Mortality Impacts – Other Fauna

11.4.8.1 Significance of Impacts

The mortalities of other fauna (including herpetofauna and non-volant mammals) mostly pertain to the construction phase. Threats include increased hunting and poaching risks due to increased numbers of people (e.g. workers) in the Project area and vehicle strikes/run-over. The receptor sensitivity is high based on the presence of endangered Smooth-coated Otter and four other endangered reptiles species (Tokay Gecko, Radiated Ratsnakes, Indo-chinese Rat Snake and King Cobra) in the Project area. The impacts is considered to range from Small to Medium as the populations of these species within the Project area could be low and loss of individuals would affect the viability of local populations.

Impact Nature	Negative			Posi	tive			Neutra	al	
Impact Type	Direct			Indir	ect			Induc	ed	
Impact Duration	Temporary		Short	-term		Long-te	erm		Pe	rmanent
Impact Extent	Local			Reg	ional			Intern	atior	nal
Frequency	The impact is in	npuls	ive and	l quite	frequent	within is	durat	ion		
Impact Magnitude	Positive	Ne	gligible		Small		Med	ium		Large
Receptor Sensitivity	Low			Med	ium			High		
Impact Significance	Negligible		Minor			Modera	ate		Ма	ijor

|--|

11.4.8.2 Additional Mitigation Measures

 Develop a detailed Traffic Management Plan (TMP) prior to the commencement of construction (see Section 10.9.4.1.4) that should ensure vehicles speed are in compliance with relevant regulations.

- A Wildlife Shepherding Protocol is to be used within the terrestrial Project Area to ensure that no
 active nests/dens or wildlife remain in the affected zone prior to any clearance and construction
 work. Wherever possible, fauna are to be relocated to their point of origin or similar natural adjacent
 areas;
- Injured Wildlife Management Protocol is to be applied when injured individuals are found during daily inspection;
- Hunting and poaching will be prohibited for Project staff, workers, all contractors and personnel engaged in or associated with the Project, with penalties levied, including fines and dismissal, and prosecution under the relevant laws;
- The Project owner shall provide training to staff and workers on all rules, regulations and information concerning restrictions related to the fauna/flora awareness, as well as the punishment that can expected if any staff or worker or other person associated with the Project violates rules and regulations

11.4.8.3 Monitoring and Audit

- Supervise the implementation of anti-hunting and poaching policy for all labour forces and inspection for any wildlife in construction areas daily during construction phase;
- Where fauna is identified during regular inspections, this is to be confiscated (if poached) and photographed for record keeping. Records of injured and/or shepherded wildlife should be kept;
- Records are to be kept and regularly reviewed (quarterly) for implementation of the workforce training program for fauna/flora awareness.

11.4.8.4 Significance of Residual Impacts

• With the additional mitigation measures, the residual impact is considered to be Negligible.

11.5 Next Steps

Based on the findings of these biodiversity impact assessments, the recommended next steps for the Project should involve:

- A Biodiversity Management Plan (BMP) to bring together all the mitigation and monitoring requirements and give details about how they should be carried out;
- As part of the BMP, an adaptive management plan with agreed levels of acceptable change (action triggers) linked to the findings of monitoring and with indications of what actions will be taken when limits are exceeded (e.g. when survey finds that impacts on birds and bats exceed what has been predicted, additional mitigations will be required to further reduce the effects);
12. SOCIAL IMPACT ASSESSMENT

12.1 Introduction

This chapter presents the assessment of socio-economic impacts resulting from the pre-construction, construction and operation of the Huadian Dak Lak Wind Power Project. The assessments are based on the impact assessment methodology detailed in Chapter 4 and the social baseline data presented in Chapter 9. This chapter aims to:

- Define the scope of the social impact assessment, including the area of influence and receptors considered;
- Identify the potential/existing social impacts associated with the pre-construction, construction, and operation activities of the Project. Issues concerning the perceptions and values of local residents are also put into consideration;
- Present existing controls to the impacts, which the Project Owner has already developed and implemented;
- Propose meaningful and effective mitigation measures and, where possible, enhance Project benefits; and
- Recommend an appropriate monitoring and auditing schedule.

The impacts are evaluated based on the Project-specific considerations, assumptions, and socialeconomic/cultural data. These parameters are then used to inform the significance of the impact across the Project phase cycle (i.e. pre-construction, construction, and operation). The social impact evaluation by ERM includes the following components:

- Consideration of the interaction of Project activities with the social receptors based on data provided by Project Owner and/or presented in the Feasibility Study (FS) report as well as the regulatory Environmental Protection Plan (EPP) report;
- Identification of the receptors, sensitivity/vulnerability and perceptions (if any) based on socialeconomic baseline data and consultations;
- Identification of potential impacts and benefits based on the method described above;
- Documentation of existing controls based on data provided by the Project Owner and/or presented in the Project FS and EPP reports;
- Evaluation of impact significance taking into account the vulnerability of the receptor and the magnitude of the impact;
- Development of additional mitigation/management (or enhancement) measures determined by understanding the impact and significance based on best practice; and
- Assessment of residual impact following an assumption that the mitigation and or management measures proposed are implemented effectively. In some cases, further discussion may be required to reassess Project design and/or how monitoring can play a part in the management process.

Each social impact was identified as part of the Project scoping process set out in the scoping methodology. These impacts have been selected based on a robust understanding of the proposed activities in the Project description (set out in the Project FS and EPP reports) and primary and secondary data gathered in the affected villages and by public consultation.

The significance of social and health impacts is then evaluated, taking into account the magnitude of the impact and the vulnerability of the affected receptors. The matrix provided in Chapter 5 is used to assign social, health, and cultural impact significance for both negative and positive impacts. Initially, the significance of the impact has been evaluated for the "general" population. The evaluation has then taken into account whether the identified vulnerable groups will be impacted differently. When this is

the case, the impact on these vulnerable groups has been differentially stated in the assessment (i.e. an impact may receive an overall significance rating of moderate, but a high rating when considered in relation to a particular group of vulnerable receptors).

The change brought by the Project has been reflected in the frame of reference of the local setting with stakeholder views on impacts integrated into the evaluation. It is common that the Project affected people may have the perception that an impact is different (either lower or higher) than is actually likely be the case. Perceived impacts have been captured and differentiated to 'actual' impacts; however, they are no less important than actual impacts with respect to addressing community acceptance for the Project. In some cases, failure to adequately assess such impacts and develop supporting mitigation is likely to result in Project delays as in the case of actual impacts.

The assessment of impacts has considered not only the magnitude of impact and vulnerability ratings but also the perceptions or sensitivities of stakeholders as well as any planning and development objectives laid out for the administrative area in which the Project is located. The impact significance has been discussed pre- and post-mitigation implementation, with the residual impact being as low as practicable. If the residual rating is still not acceptable, the impact and Project activities will require further discussion with the Project Owner to agree on a more appropriate design or technology that will result in a lower impact significance.

Impacts and benefits have been considered across the Project lifecycle (i.e. pre-construction, construction, and an operation phase of approximately 20 years).

The impacts identified during the social impact assessment will be mitigated and/or managed, aiming to reduce them to acceptable residual levels. Ideally, the Project Owner will adopt the proposed measures and implement them effectively throughout the appropriate Project phase. Often, in reality, however, the measures cannot be implemented as suggested and alternative actions are required; these are to be identified through monitoring. As such, the residual impact in some cases cannot always be determined as an acceptable level.

12.2 Scope of Social Impact Assessment

The social receptors are defined as communities currently residing in the Area of Influence (AoI) that the Project may impact as a result of their proximity to the Project site and/or associated facilities. Based on the scoping outcomes from Chapter 5, the Area of Influence for social impacts to the community is defined in Figure 12.1.

Project development activities causing potential impacts to stakeholders who are identified as receptors are summarised in Table 12.1. In each section, the Project's area of influence for a specific resource or receptor is described in the context of the identified impacts.

Source: QGIS, ESRI, Google, August 2021

Figure 12.1 Area of Influence of Social Impacts

Project Activities	Potential Impacts	Receptors	Areas of Influence
Pre-construction Phase		·	·
 Land acquisition Land preparation (site clearance, excavation and levelling), fencing, and civil works 	 Economic displacement and loss of livelihood: Loss of land and access to land owned by local people (i.e. Kinh peoples) and Indigenous peoples (i.e. Ede community) Loss or relocation of assets on land Change of land use Loss of/impact on livelihood associated with loss of land resulting in full or partial loss of income Physical displacement: According to the current data available to ERM linked to land acquisition, field survey and interviews with affected local authorities and communities, there is no physical displacement due to land acquisition for the Project. Nevertheless, as the land acquisition is not completed, physical displacement cannot be discarded; therefore, this must be confirmed via a Land Acquisition Audit. 	 Male and female land users who will have their land acquired by the Project; Kinh ethnic majority peoples and Ede Indigenous Peoples and other ethnic minority households 	 Project footprint includes all project components (e.g. turbine foundations, internal and access roads, substations, laydown areas, transmission line including Right Of Way (ROW)), and other facilities. Affected villages include: Cu Hriet and Ea Bro villages of Cu Pong commune; Ea My village of Ea Sin commune; Kdro 1, Kdro 2, Drah 1, Drah 2, Ea Kung, Ea Siek, Ea Krom, Kmu, and Ea Nguoi villages of Cu Ne commune; and Kty 4 and Kty 5 villages of Chu Kbo commune.

Table 12.1 Summary of Impacts, Receptors and Area of Influence

Construction Phase

Land clearance, lay down area	Recruitment and employment of construction workers	Project workers	Construction sites
usage during construction of wind turbine pole, and construction for Project components (e.g. wind turbine	Impacts to labour and human rights of contracted workers engaged by contractors		 Worker's accommodation (their houses or hostels, camps)
	Employment of children or other minors, forced or bonded labour		Cu Ne, Cu Pong, Ea Sin, and Chu Kbo communes

Project Activities	Potential Impacts	Receptors	Areas of Influence			
pole, transmission line, substation, access road)	 Potential for discriminatory practices to occur in the hiring process 		Krong Buk district			
 Higher risk activities include working at height, lifting operations, live electrical work, and use of vehicles/beaux 	 Potential for discrimination against workers that join unions (or other similar organisations) or take part in collective bargaining 					
equipment	Inappropriate or delayed payments to workers					
Presence of influx and	Lack of clarity information on workers' rights					
operation of worker's	Gender inequality during contractual processes					
Equipment and material	Unjustified dismissals					
transport and supply	Non-payment of overtime					
Construction of turbine	Working conditions					
foundations, transmission line pylons, internal road, auxiliary works, and turbine installation	Accidents, injuries, fatalities or other health and safety risks, which can arise from inappropriate working or unsafe conditions, such as excessive working hours, lack					
 Wastes, emissions, and discharges generation, 	of appropriate training, insufficient lock-out/tag-out practices as well as equipment failure					
handling, and disposal	Lack of appropriate EPP supply to workers					
 Operation of associated facilities such as concrete batching plant 	 Higher risk activities include working at height, lifting operations, live electrical work, use of vehicles/heavy equipment 					
Project vehicular movement	Operation of worker's accommodation					
(movement of trucks and lorries, transport of large- heavy equipment)	Impacts on worker's health and safety due to poor management of worker's accommodation					
7 - 1: 1 7	Community way of life, health, safety and security due to construction activities	Ede People and the general community in the	Construction sites in Cu Ne, Cu Pong, Ea Sin, and Chu Kbo			
	Impacts on mental health and wellbeing of people regiding in the Draiset featurint and adjacent events.	project location	communes			
	residing in the Project lootprint and adjacent areas due to		Krong Buk district			

Project Activities	Potential Impacts	Receptors	Areas of Influence
	induced noise vibration, dust and gas emissions from vehicles		
	 Risk of disease to the local population via contamination of groundwater (from borehole) and surface water (from ponds) 		
	 Risk of disease to the local population due to lack of proper hazardous and non-hazardous waste management 		
	 Risk of injury to local persons gaining unauthorised access to the construction or restricted sites 		
	Community way of life, health, safety and security due to the presence of influx	 Project workers and affected communities 	Cu Ne, Cu Pong, Ea Sin, and Chu Kbo communes
	 Risk of communicable disease spread (such as sexually transmitted infections, dengue, malaria, influenza, diarrheal, and COVID-19) 		
	Increased pressure on local health facilities/capacities		
	Increased pressure on local governance		
	 Tension with local communities due to issues of cultural conflict 		
	 Security-related impacts or concerns (such as drinking, drugs consumption, gambling, theft) 		
	 Risk posed by Project security arrangements to those within and outside the Project site 		
	 Risk of gender-based violence, violence against children, sexual harassment/abuse due to the increase in number of non-local male workers 		
	 Risk to vulnerable groups as prostitution and/or child labour 		

Project Activities	Potential Impacts	Receptors	Areas of Influence		
	Traffic safety due to increase traffic volume	Project workers and	■ Local roads in and near Cu Ne,		
	Increased risk of traffic accidents and interaction between Project vehicles and local communities	Affected Communities	Cu Pong, Ea Sin, and Chu Kbo communes		
	Increased risk to pedestrian using rural roads that are		Access roads		
	impacted by the project		National Highway		
Operation phase	-	-			
General operation activities	Community health, safety and security	Project workers and	■ Cu Ne, Cu Pong, Ea Sin, and Chu		
	Relocation of houses used to watch farms due to health and safety reasons	Affected Communities	Kbo communes		
	Impacts on mental health and wellbeing of people residing in the Project footprint and adjacent areas due to induced noise vibration and shadow flicker due to the presence of turbines				
	Visual impact due to the presence of turbines				
	 Physical displacement Possible physical displacement due to health and safety reasons mainly linked to noise and/or blade throw impacts 	 Affected people living within the 300 m safety buffer area 	Cu Ne, Cu Pong, Ea Sin, and Chu Kbo communes		
Unplanned Events	Community health	Local communities	■ Cu Ne, Cu Pong, Ea Sin, and Chu		
Leakage and spill incidents	Community safety and security		Kbo communes		
Fire and explosion	Environmental Quality				
Vehicle accident					
Blade throw					
Transmission line snapping					

Project Activities	Potential Impacts	Receptors	Areas of Influence
 Natural hazards (e.g. flood and landslide) 			
Project's lifecycle (e.g. constructi	on and operation phases)		
 Employee recruitment during construction activities Employee recruitment and supply demand 	 Positive Impacts on Local employment and Community Development Increased local employment and income Temporary direct employment for the Project and induced employment opportunities by local suppliers Opportunities for small and medium local businesses Community discontent due to high expectation to be hired as unskilled workers Reduction of economic opportunities to local business due to employee demobilization at the end of the construction phase 	 Project workers and Affected Communities Opportunity seekers and business owners Ede People and the general community in the project location 	 Dak Lak Province Krong Buk District Cu Ne, Cu Pong, Ea Sin, and Chu Kbo communes
 Project land acquisition, construction and operation activities 	 Impact on IP and ethnic minority groups Disruption of ethnic minority way of life, direct impact on their livelihood Relocation due to the impacts of noise, shadow flickering, blade thow etc. (This is only verified via a validation survey) Impact on Gender 	 Ede People as the land users of Agricultural land Women of Affected 	 Ethnic minority settlement and agricultural area in Cu Ne, Cu Pong, Ea Sin, and Chu Kbo communes Cu Ne, Cu Pong, Ea Sin, and Chu
	 Maintenance of structural gender inequality in work Local Women's Ability to sustain livelihood Women's workload Women's Dependency 	 Women of Affected Communities 	■ Cu Ne, Cu Pong, Ea Sin, and Chu Kbo communes

Project Activities	Potential Impacts	Receptors	Areas of Influence
	■ Women's Safety		
	<i>Impact on Human Rights</i>Disruption of ethnic minority way of lifeHuman Rights unprotected	Right-holders	 Dak Lak Province Krong Buk District Cu Ne, Cu Pong, Ea Sin, and Chu Kbo communes

12.3 Economic Displacement and Loss of Livelihood due to Land Acquisition for the Project (Pre-Construction)

12.3.1 Summary of Project's Land Use and Land Acquisition

12.3.1.1 Project's Land Acquisition Scope

The land occupied for the Project includes permanent and temporary land with a total area of 119.0927 hectares and 161.55 hectares, respectively. In which, the permanent land acquisition will be used for WTG foundation, transformer foundation, 220 kV substation and maintenance road, while the temporary land used for construction hoisting site, worker's camp, construction and production facilities, cable trench, and construction road. All of the land area for the Project has been identified as agriculture land of households. Detailed land acquisition scope, method, status and future actions by project component are presented in Table 12.2.

Land acquisition for the Project has been conducted into two different phases with two separate approaches: Phase 1: Land use right transfer based on a willing selling - willing buying principle, and Phase 2: Land acquisition based on a State-led process.

It is estimated that 1,436 households are affected by the land acquisition for the Project (see Table 12.2). Affected households include Ede people, however the number of affected Ede households and vulneralbe households is not confirmed at the time of ESIA reporting due to lack of available data on the characteristics of affected households. It is expected that by the end of January 2022, land acquisition process for the Project will be completed.

The current data available to ERM linked to land acquisition, field survey and interviews with local authorities and affected communities show there is no physical displacement due to land acquisition for the Project. However, as the land acquisition is not completed, physical displacement cannot be discarded, therefore this must be confirmed via a Land Acquisition Audit.

Table 12.2 Land Acquisition Scope and Status

No.	Project	Acquired	d Area (h	a)			Land Land Acquisition	Number of	Documents	Expected Land	
	Component	KB 1	KB 2	CN 1	CN 2	Total	Acquisition Approach	Status	Affected Households	Reviewed	Acquisition Completion
1	Fixed-term used land	32.72	26.92	31.2427	28.21	119.0927			1,436		
1.1	Turbine foundations and security fence	1.62	1.62	1.62	1.71	6.57	- 44 turbine foundations: Project-led land acquisition from households - 29 turbine foundations: State led land acquisition from households	 44 compensation plans submitted to KrongBuk DPC for approval (44 lands were purchased by Project staff) 15 turbine locations, compensatin payments were made; one turbine location is under re-measurement. 13 turbine locations that are under the management of An Thuan Coffee Company is under a negogiation process 	73	 44 Land Use Right Certificates for 44 land parcels One sample of Land Use Right Transfer Contract 44 Land Acquisition Notification Letters 	January 2022 with the following tasks: - Project's land is approved for wind power development in the District Land Use Plan - Land acquisition decisions issued for 44 purchsed lands for turbines locations - A regulatory land acquisition procedure will be conducted for 15 turbines locations - Negotiation process and then a regulatory land acquisition procedure will be conducted for the 14 remaining turbine land parcels.

No.	Project	Acquired Area (ha)					Land Land Acquis	Land Acquisition	nd Acquisition Number of	Documents	Expected Land
	Component	KB 1	KB 2	CN 1	CN 2	Total	Acquisition Approach	Status	Affected Households	Reviewed	Acquisition Completion
1.2	Transportation roads (Upgrading inter-village roads and building new internal roads)	11	11.5	13	10	45.5	State led land acquisition from households	 More than 50% agreements signed A total of 577 affected households have signed the contracts, among them, 254 affected households have been compensated, and 255 affected households have transferred their land for construction 	1,363	Memoranda of Agreement (MoA) and Contracts signed between the Project Subsidiary Companies and Krong Buk District Land Fund Development Center (LFDC)	January 2022 with the following tasks: - Negotiation with the remaning affected households - A regulatory land acquisition procedure will be conducted for all affected lands.
1.3	22/220 kV substation			4.6		4.6	Project-led land acquisition from households	 Under the approval for adding to District Land Use Plan 17 households were compensated and transferred 			January 2022 with the following tasks: - Project's land is approved for wind power development in the District Land Use Plan - A regulatory land acquisition procedure will be conducted

No.	Project	Acquired Area (ha)					Land Land Acqui	Land Acquisition	on Number of	Documents	Expected Land
	Component	KB 1	KB 2	CN 1	CN 2	Total	Acquisition Approach	Status	Affected Households	Reviewed	Acquisition Completion
								land for construction	-		
1.4	220 kV transmission line			0.0227		0.0227	State-led land acquisition from households	- Cadastral map excerpts have been submitted for approval - As in Item 1.2			January 2022 with the following tasks: - Negotiation with the remaning affected households
1.5	22 kV transmission line	20.1	13.8	12	16.5	62.4	State-led land acquisition from households	 More than 50% agreements signed As in Item 1.2 			 A regulatory land acquisition procedure will be conducted for all affected lands.
2	Temporarily- used land	15	15.00	13.95	14.29	161.55					
2.1	Transportation roads	15	16	18	14	63	State-led land acquisition from households	 More than 50% agreements signed As in Item 1.2 	Included in Item 1.2		January 2022 with the following tasks: - Negotiation with the remaning affected households - A regulatory land acquisition procedure will be conducted for all affected lands.
2.2	Laydown area	3.78	3.78	3.78	3.99	15.33	Rental	Completed	N/A		-

No.	Project Component	Acquired	l Area (h	a)			Land Land Acquisition	Number of	Documents	Expected Land	
		KB 1	KB 2	CN 1	CN 2	Total	Acquisition Approach	Status	Affected Households	Reviewed	Acquisition Completion
2.3	220 kV overhead transmission line			0.02		0.02	State-led land acquisition from households	More than 50% agreementssignedAs in Item 1.2	Included in Item 1.2		January 2022 with the following tasks: – Negotiation with the remaning affected
2.4	22 kV underground and overhead transmission line ⁶³	26.8	18.4	16	22	83.2	State-led land acquisition from households	- More than 50% agreement signed - As in Item 1.2	Included in Item 1.2		households A regulatory land acquisition procedure will be conducted for all affected lands.
2.5	Operation house					0.03	Rental	Completed	N/A		-

⁶³ Most of the 22kV Transmission Line are laying along with the internal road system area which are within the land acquisition process.

12.3.1.1.1 Phase 1: Land Use Right Transfer based on a Willing Selling -Willing Buying Principle (From September 2019 to October 2010)

The Project Owner, via their two project staff, purchased 44 land parcels from 44 households for turbine foundations. The Land Use Right Cetificates (LURCs) of the 44 land parcels were legally transferred to the two staffs of Green Circle, a local partner company of the Project:

- Lai Thi Thu Trang, with permanent residence in Hoan Kiem Quarter, Ha Noi City; and
- Dinh Hung Duong, with permanent residence in Kieu Thuy Quarter, Hai Phong City.

Detailed review of land use right transfer of the 44 land parcels is presented in Table 12.5.

Given the negotiation of land purchase processs is not documented for ERM to review, based on the review of land use right certificates of all 44 land parcels, it is concluded that the transactions of the the 44 land parcels for the Project are based on willing selling - willing buying principle. Further, based on the review of one land use right transfer contract between a local household and the Project staff, it is mentioned that the transaction between the household (including the signature of the head and all members of the households) and the project staff (Ms Lai Thi Thu Trang) is on a voluntary basis, under the witness and signatures of all representatives of adjunction households and the head of the village. The transactions of 44 LURCs is confirmed to be based on the willing buyer- willing seller method, which is based on the fact that these transactions were made without any interference by the Project and local authorities, but voluntarily between the previous land users and the Project staffs and that the land use right transfers were legally concluded with the name of the Project staffs certified as the current land user of the land parcels.

However, the use of the 44 purchased land parcels for a wind turbine development purpose is illegitimate as the current land use purpose of transferred land parcels is perennial crop land. As such, the Project Owner are working with Krong Buk District Land Fund Development Center to complete the procedure to acquire the purchased land parcels currently under the name of the two Project staffs for the Project with land use purpose conversion to wind farm development (see further Section 12.3.1.2.1).

12.3.1.1.2 Phase 2: Land Acquisition based on a State-led Process (From May 2021 to January 2022)

Land acquisition for other Project components is conducted as a State-led process, with the involvement of Krong Buk District Land Fund Development Center. In May 2021, the Project Subsidiary Companies signed a Memoranda of Agreement (MoA) and Contracts with Krong Buk District Land Fund Development Center (LFDC) for LFDC's support on land acquisition for the Project, including corrective actions for land use purpose conversion of the purchased 44 turbine locations (see Table 12.3).

Table 12.3Memorandum of Agreement and Contract between the Project and Krong Buk
District (LFDC) on Project Land Acquisition

No	Project	Subsidiary Companies	Memorandum of Agreement between the Project and Krong Buk District LFDC on Project Iand acquisition	Contract with between the Project and Krong Buk District LFDC on Project land acquisition
1	Krong Buk No.1 Wind Farm (hereinafter as "KB1")	Krong Buk New Energy Investment Company Limited	03/BBGN signed on 31 May 2021	04/2021/HD-BTHT signed on 31 May 2021
2	Krong Buk No.2 Wind Farm (hereinafter as "KB2")	Krong Buk Wind Energy Company Limited	04/BBGN signed on 31 May 2021	05/2021/HD-BTHT signed on 31 May 2021

No	Project	Subsidiary Companies	Memorandum of Agreement between the Project and Krong Buk District LFDC on Project land acquisition	Contract with between the Project and Krong Buk District LFDC on Project land acquisition
3	Cu Ne No.1 Wind Farm (hereinafter as "CN1")	Cu Ne Renewable Energy Investment Company Limited	01/BBGN signed on 31 May 2021	02/2021/HD-BTHT signed on 31 May 2021
4	Cu Ne No.2 Wind Farm (hereinafter as "CN2")	Cu Ne Wind Energy Investment and Management Company Limited	02/BBGN signed on 31 May 2021	03/2021/HD-BTHT signed on 31 May 2021

Based on the Memoranda of Agreement (MoA) and Contracts signed between the Project Subsidiary Companies and Krong Buk District Land Fund Development Center (LFDC) in May 2021, the Project request LFDC's support on land acquisition for the Project in compliance with the current State regulations. In order to speed up the land acquisition approval in meeting the Project's schedule, as stated in the MoA, the Project Owner will:

- Closely cooperate with the District LFDC and Commune People's Committees to carry out the inventory of loss and detailed measurement survey.
- Agree to pay in advance (1) the compensation based on the results of the inventory of loss and detailed measurement survey and (2) a monetary support equal to 2 times the compensation for affected households.
- Transfer the compensation and support amounts to the LFDC account so that LFDC can deliver the payment directly to the affected households agreed with the proposed compensation and support amounts.
- Furthermore, pay the different amount if the officially approved compensation, support, and resettlement (CSR) retrospectively determines a higher CSR value for affected households based on valuation and negotiation. If the official CSR value is lower than the paid amount, affected households do not have to refund the difference.

The District LFDC will support the Project's land acquisition in compliance with the current State's law and regulations. Project's land acquisition and CSR plan can be divided into phases based on the schedule. Based on the signed Contracts, District LFDC will be responsible for:

- Conducting quantity inventory, quality assessment, and loss determination related to land, trees, crops, properties, architectural works, and different types of plants grown on the land plots acquired and supports according to current regulations;
- Hiring a consultancy unit to appraise land price and submit it to competent authorities for approval to carry out compensation, support and resettlement (if any);
- Developing compensation, support and resettlement plans and submit them to competent authorities for approval;
- Developing cost estimates for compensation, support and resettlement and submit them to competent authorities for approval;
- Implementing compensation, support and resettlement plans for organizations, households and individuals whose land is acquired;
- Settling complaints and grievances about compensation, support, and resettlement related to the acquired land;

- Making dossiers requesting forced eviction and submit them to the competent authorities and coordinating with the Project Companies and relevant units to implement forced eviction (if any); and
- Coordinating with investors of technical infrastructure works such as: optical cables, electricity grid and telecommunications located in the site clearance area to be relocated, preparing documents to include the compensation value for approval (if any).

12.3.1.2 Land Acquisition Process

12.3.1.2.1 For 44 Turbine Foundations of the Project

The land acquisition process for the Project started in September 2019, and in October 2020, the Project obtained 44 Land Use Right Certificates (LURCs) transferred to two staffs of the Project's local partner company. Based on the review of the 44 LURCs obtained by the Project, the land use rights of the 44 land plots (144,380.7 m²) for perennial crop purpose were transferred based on willing selling - willing buying principle between individuals and households. The average size of transferred land plots is 3,218.38 m², and the largest land area is 5,427.7 m² while the smallest is 2,800.8 m² (see Table 12.5).

Among the 44 purchased land plots, 14 land plots are for turbine locations of KB1, 14 for KB2, 10 for CN1, and 6 for CN2. These land parcels are in Cu Ne commune (26), Cu Pong commune (11), Chu Kbo commune (5), and Ea Sin commune (2) (see Table 12.4). While only 6 LURCs mentioned the previous owners, four of them are Kinh households (ethnic majority group) and 2 are Ede (IPs).

Sub-Project Commune	KB 1	KB 2	CN 1	CN 2
Cu Pong	10	1		
Chu Kbo	4	1		
Cu Ne		10	10	6
Ea Sin		2		
Total	14	14	10	6

Table 12.4	Purchased Land Plots by Sub-project and Commune

As the purchased land is used for the construction and installation of turbines, it is required that such land plots are acquired under the industrial land use category to develop a Wind Power Project in compliance with the State regulations, including land use purpose conversion. Therefore, in May 2021, the Project Subsidiary Companies signed Memoranda of Agreement (MoA) and Contracts with Krong Buk District Land Fund Development Center (LFDC) for LFDC's support on land acquisition for the Project, including corrective actions for land use purpose conversion of the purchased 44 turbine locations.

On 07 June 2021, Krong Buk District People's Committee issued 44 Land Acquisition Notifications related wind turbine locations of CN1, CN2, KB1, and KB2 (see Table 12.6). It was informed that 900 m2 (0.09 hectares) from each of the land plot purchased under the name of Lai Thi Thu Trang and Dinh Hung Duong will be acquired for the Project. The notifications also mention that detailed measurement survey will be conducted between June and end August 2021 (there is no further information on the use of remaining land of the purchased land plots). It is informed by the Project Owner that 44 compensation plans of the 44 purchased land parcels were submitted to KrongBuk DPC for approval. The compensation plans by the Land Center passed the third-party review and was submitted to the Natural Resources and Environment Section and Treasury authorities of Krong Buk District for review on 26 August 2021. While the compensation plan review is completed now, further formalities related to issuance of Decisions on Land Acquisition are pending until the project lands are registered and listed in the land-use plan of the district for wind power project development.

No	Land Use Right Certificate No	Land User and In-Land property Owner	Permanent Residence	Land Portion No	Cadastral Map No	Area (m²)	Land Use Purpose	Land Use Term	Land Location	LURC Issuance Date	Previous Land Owner	Turbine Location	Project
1	CS 03830	Lai Thi Thu Trang	Hoan Kiem, Ha Noi City	84	27	2950.8	Perennial crop land	Until 2043	Cu Pong, Krong Buk, Dak Lak	16 September 2019		A2-3	KB1
2	CS 03886	Lai Thi Thu Trang	Hoan Kiem, Ha Noi City	21	38	3663.5	Perennial crop land	Until 2043	Cu Pong, Krong Buk, Dak Lak	09 November 2020		A3-2	KB1
3	CS 03815	Dinh Hung Duong	Kieu Thuy, Hai Phong City	101	37	2919	Perennial crop land	Until 2043	Cu Pong, Krong Buk, Dak Lak	09 September 2020		A6-4	KB1
4	CS 03820	Lai Thi Thu Trang	Hoan Kiem, Ha Noi City	100	36	4001.8	Perennial crop land	Until 2043	Cu Pong, Krong Buk, Dak Lak	09 September 2020		A7-2	KB1
5	CS 03829	Lai Thi Thu Trang	Hoan Kiem, Ha Noi City	90	47	2950.1	Perennial crop land	Until 2043	Cu Pong, Krong Buk, Dak Lak	16 September 2019		A8-3	KB1
6	CS 03818	Lai Thi Thu Trang	Hoan Kiem, Ha Noi City	67	48	2950.2	Perennial crop land	Until 2064	Cu Pong, Krong Buk, Dak Lak	16 September 2019		A9-2	KB1
7	CS 03753	Dinh Hung Duong	Kieu Thuy, Hai Phong City	43	49	2950.6	Perennial crop land	Until 2043	Cu Pong, Krong Buk, Dak Lak	06 August 2019		A10-4	KB1

Table 12.5 Land Use Right Certificates Obtained by the Project

No	Land Use Right Certificate No	Land User and In-Land property Owner	Permanent Residence	Land Portion No	Cadastral Map No	Area (m²)	Land Use Purpose	Land Use Term	Land Location	LURC Issuance Date	Previous Land Owner	Turbine Location	Project
8	CS 03354	Dinh Hung Duong	Kieu Thuy, Hai Phong City	93	10	2950.8	Perennial crop land	Until 2043	Cu Pong, Krong Buk, Dak Lak	16 September 2019		A11-2	KB1
9	CS 03311	Lai Thi Thu Trang	Hoan Kiem, Ha Noi City	98	6	3271.1	Perennial crop land	Until 2057	Chu Kbo, Krong Buk, Dak Lak	24 July 2020	Nguyen Thanh Tuan and Hoang Thi Tinh - Ea Sin, Krong Buk, Dak Lak	A12	KB1
10	CS 303339	Lai Thi Thu Trang	Hoan Kiem, Ha Noi City	90	14	2957.2	Perennial crop land	Until 2064	Chu Kbo, Krong Buk, Dak Lak	06 August 2020		A13-2	KB1
11	CS 03345	Lai Thi Thu Trang	Hoan Kiem, Ha Noi City	87	20	4489.5	Perennial crop land	Until 2063	Chu Kbo, Krong Buk, Dak Lak	06 August 2020		A14	KB1
12	CS 03763	Lai Thi Thu Trang	Hoan Kiem, Ha Noi City	45	49	2986.7	Perennial crop land	Until 2064	Cu Pong, Krong Buk, Dak Lak	13 August 2020		A15	KB1
13	CS 03811	Lai Thi Thu Trang	Hoan Kiem, Ha Noi City	70	48	2983	Perennial crop land	Until 2064	Cu Pong, Krong Buk, Dak Lak	10 September 2020		A16-3	KB1
14	CS 03414	Lai Thi Thu Trang	Hoan Kiem, Ha Noi City	95	10	2999.8	Perennial crop land	Until 2064	Chu Kbo, Krong Buk, Dak Lak	08 October 2020		A17	KB1
15	CS 03414	Lai Thi Thu Trang	Hoan Kiem, Ha Noi City	49	59	3126.1	Perennial crop land	Until 2064	Kdro, Cu Ne, Krong	05 August 2020	Y Xoem Rcham & H	B1	KB2

No	Land Use Right Certificate No	Land User and In-Land property Owner	Permanent Residence	Land Portion No	Cadastral Map No	Area (m²)	Land Use Purpose	Land Use Term	Land Location	LURC Issuance Date	Previous Land Owner	Turbine Location	Project
									Buk, Dak Lak		Ne Mlo, Cu Ne, , Krong Buk, Dak Lak		
16	CS 03756	Lai THI Thu Trang	Hoan Kiem, Ha Noi City	75	58	2952.2	Perennial crop land	Until 2063	Chu Kbo, Krong Buk, Dak Lak	14 August 2020		B2-2	KB2
17	CS 03779	Lai Thi Thu Trang	Hoan Kiem, Ha Noi City	77	58	2989.9	Perennial crop land	Until 2063	Cu Ne, Krong Buk, Dak Lak	28 August 2020		B3-7	KB2
18	CS 03723	Lai Thi Thu Trang	Hoan Kiem, Ha Noi City	63	68	3098.1	Perennial crop land	Until 2064	Cu Ne, Krong Buk, Dak Lak	29 July 2020		B4-2	KB2
19	CS 04564	Lai Thi Thu Trang	Hoan Kiem, Ha Noi City	92	63	3011.2	Perennial crop land	Until 2064	Cu Ne, Krong Buk, Dak Lak	11 September 2020		B5	KB2
20	CS 03354	Dinh Hung Duong	Kieu Thuy, Hai Phong City	133	71	2950.2	Perennial crop land	Until 2063	Ea Sin, Krong Buk, Dak Lak	31 August 2020		B7-2	KB2
21	CS 04570	Lai Thi Thu Trang	Hoan Kiem, Ha Noi City	136	71	2951.2	Perennial crop land	Until 2063	Ea Sin, Krong Buk, Dak Lak	18 September 2020		B8-2	KB2
22	CS 03784	Dinh Hung Duong	Kieu Thuy, Hai Phong City	101	13	4071	Perennial crop land	Until 2063	Cu Pong, Krong Buk, Dak Lak	26 August 2020		B9-2	KB2

No	Land Use Right Certificate No	Land User and In-Land property Owner	Permanent Residence	Land Portion No	Cadastral Map No	Area (m²)	Land Use Purpose	Land Use Term	Land Location	LURC Issuance Date	Previous Land Owner	Turbine Location	Project
23	CS 03829	Lai Thi Thu Trang	Hoan Kiem, Ha Noi City	105	79	2989.8	Perennial crop land	Until 2064	Cu Ne, Krong Buk, Dak Lak	08 October 2020		B13-2	KB2
24	CS 03743	Lai Thi Thu Trang	Hoan Kiem, Ha Noi City	38	78	3003.3	Perennial crop land	Until 2064	Cu Ne, Krong Buk, Dak Lak	06 August 2020		B14-4	KB2
25	CS 03736	Lai Thi Thu Trang	Hoan Kiem, Ha Noi City	115	80	2950.5	Perennial crop land	Until 2064	Cu Ne, Krong Buk, Dak Lak	09 August 2020		B15-7	KB2
26	CS 03724	Lai Thi Thu Trang	Hoan Kiem, Ha Noi City	113	80	3790.2	Perennial crop land	Until 2063	Cu Ne, Krong Buk, Dak Lak	28 July 2020		B16-2	KB2
27	CS 03740	Dinh Hung Duong	Kieu Thuy, Hai Phong City	161	81	3001.7	Perennial crop land	Until 2064	Cu Ne, Krong Buk, Dak Lak	06 August 2020		B18-2	KB2
28	CS 03718	Lai Thi Thu Trang	Hoan Kiem, Ha Noi City	130	59	2904.3	Perennial crop land	Until 2064	Cu Ne, Krong Buk, Dak Lak	24 July 2020		B19-4	KB2
29	CS 03755	Lai Thi Thu Trang	Hoan Kiem, Ha Noi City	54	33	2500.7	Perennial crop land	Until 2061	Cu Ne, Krong Buk, Dak Lak	14 August 2020		C1-2	CN1
30	CH 03004	Dinh Hung Duong	Kieu Thuy, Hai Phong City	3	42	5336.7	Perennial crop land	Until 2064	Drao, Cu Ne, Krong Buk, Dak Lak	27 July 2020	Y Guat Ayun & H Nguyen Mlo, Drao, Cu Ne, Krong Buk, Dak Lak	C2-2	CN1

No	Land Use Right Certificate No	Land User and In-Land property Owner	Permanent Residence	Land Portion No	Cadastral Map No	Area (m²)	Land Use Purpose	Land Use Term	Land Location	LURC Issuance Date	Previous Land Owner	Turbine Location	Project
31	CS 03811	Lai Thi Thu Trang	Hoan Kiem, Ha Noi City	54	33	2500.7	Perennial crop land	Until 2061	Cu Ne, Krong Buk, Dak Lak	14 August 2020		C3-4	CN1
32	CS 03811	Lai Thi Thu Trang	Hoan Kiem, Ha Noi City	126	42	3370.7	Perennial crop land	Until 2057	Cu Ne, Krong Buk, Dak Lak	29 September 2020		C4-2	CN1
33	CH 03746	Dinh Hung Duong	Kieu Thuy, Hai Phong City	139	52	3020.2	Perennial crop land	Until 2064	Cu Ne, Krong Buk, Dak Lak	06 August 2020		C6	CN1
34	CS 03735	Lai Thi Thu Trang	Hoan Kiem, Ha Noi City	107	44	3001.3	Perennial crop land	Until 2043	Cu Ne, Krong Buk, Dak Lak	03 August 2020		C7	CN1
35	CS 03735	Lai Thi Thu Trang	Hoan Kiem, Ha Noi City	127	64	2950.2	Perennial crop land	Until 2064	Cu Ne, Krong Buk, Dak Lak	06 August 2020		C8	CN1
36	CS 03814	Dinh Hung Duong	Kieu Thuy, Hai Phong City	138	65	2800.8	Perennial crop land	Until 2043	Cu Ne, Krong Buk, Dak Lak	29 September 2020		C9	CN1
37	CS 03756	Lai Thi Thu Trang	Hoan Kiem, Ha Noi City	143	65	2979.6	Perennial crop land	Until 2060	Cu Ne, Krong Buk, Dak Lak	09 November 2020		C16	CN1
38	CS 03805	Dinh Hung Duong	Kieu Thuy, Hai Phong City	105	85	3356.2	Perennial crop land	Until 2058	Cu Ne, Krong Buk, Dak Lak	24 September 2020		C17	CN1

No	Land Use Right Certificate No	Land User and In-Land property Owner	Permanent Residence	Land Portion No	Cadastral Map No	Area (m²)	Land Use Purpose	Land Use Term	Land Location	LURC Issuance Date	Previous Land Owner	Turbine Location	Project
39	CH 88669	Lai Thi Thu Trang	Hoan Kiem, Ha Noi City	37	74	4210	Perennial crop land	Until 2063	Cu Ne, Krong Buk, Dak Lak	27 July 2020	Le Huu Ching & Nguyen Thi Hong Gam, Cu Ne, Krong Buk, Dak Lak	D4	CN2
40	CH 02281	Dinh Hung Duong	Kieu Thuy, Hai Phong City	25	6	4282.1	Perennial crop land	Until 2064	Ea Nguoi, Cu Ne, Krong Buk, Dak Lak	31 July 2020	Trieu Van Tuan & Nguyen Thi No, Cu Ne, Krong Buk, Dak Lak	D8-2	CN2
41	CS 03777	Lai Thi Thu Trang	Hoan Kiem, Ha Noi City	62	14	2938.4	Perennial crop land	Until 2064	Cu Ne, Krong Buk, Dak Lak	28 August 2020		D15-3	CN2
42	CH 93220	Lai Thi Thu Trang	Hoan Kiem, Ha Noi City	71	34	4674.4	Perennial crop land	Until 2064	Ea Jin, Cu Ne, Krong Buk, Dak Lak	20 August 2020	Tran Van Chinh & Ho Thi Da Thao, Cu Ne, Krong Buk, Dak Lak	D17-3	CN2
	CH 93219	Lai Thi Thu Trang	Hoan Kiem, Ha Noi City	70	34	752.3	Perennial crop land	Until 2064	Ea Nguoi, Cu Ne, Krong Buk, Dak Lak	20 August 2020	Tran Van Chinh & Ho Thi Da Thao, Cu Ne, Krong Buk, Dak Lak		
43	CH 03830	Lai Thi Thu Trang	Hoan Kiem, Ha Noi City	66	22	2974.1	Perennial crop land	Until 2064	Cu Ne, Krong Buk, Dak Lak	28 September 2020		D18-2	CN2

Νο	Land Use Right Certificate No	Land User and In-Land property Owner	Permanent Residence	Land Portion No	Cadastral Map No	Area (m ²)	Land Use Purpose	Land Use Term	Land Location	LURC Issuance Date	Previous Land Owner	Turbine Location	Project
44	CH 02374	Lai Thi Thu Trang	Hoan Kiem, Ha Noi City	110	11	3918.5	Perennial crop land	Until 2064	Cu Ne, Krong Buk, Dak Lak	04 September 2020	Tran Khac Tuan & Hoang Thi Diem, Cu Ne, Krong Buk, Dak Lak	D19-2	CN2
		тот	AL			144,380.7							

Table 12.6 Land Acquisition Notifications by Krong Buk District People's Committee

No	Land Acquisition Notification No	Issued on	Issued by	Land acquired from	Current Residence	Area of acquired land (m ²)	Land Portion No	Cadastral Map No	Land Location	Proposed time for Detailed Measurement Survey
Cu N	le 1, Batch 1									
1	99/TB-UBND	07 June 2021	Krong Buk DCP	Lai Thi Thu Trang	Hoan Kiem, Ha Noi	900	54	33	Cu Ne, Krong Buk	June – end August 2021
2	100/TB-UBND	07 June 2021	Krong Buk DCP	Lai Thi Thu Trang	Hoan Kiem, Ha Noi	900	126	42	Cu Ne, Krong Buk	June – end August 2021
3	101/TB-UBND	07 June 2021	Krong Buk DCP	Lai Thi Thu Trang	Hoan Kiem, Ha Noi	900	107	44	Cu Ne, Krong Buk	June – end August 2021
4	102/TB-UBND	07 June 2021	Krong Buk DCP	Lai Thi Thu Trang	Hoan Kiem, Ha Noi	900	127	64	Cu Ne, Krong Buk	June – end August 2021
5	103/TB-UBND	07 June 2021	Krong Buk DCP	Lai Thi Thu Trang	Hoan Kiem, Ha Noi	900	143	65	Cu Ne, Krong Buk	June – end August 2021

No	Land Acquisition Notification No	Issued on	Issued by	Land acquired from	Current Residence	Area of acquired land (m²)	Land Portion No	Cadastral Map No	Land Location	Proposed time for Detailed Measurement Survey
6	104/TB-UBND	07 June 2021	Krong Buk DCP	Lai Thi Thu Trang	Hoan Kiem, Ha Noi	900	37	74	Cu Ne, Krong Buk	June – end August 2021
7	105/TB-UBND	07 June 2021	Krong Buk DCP	Dinh Hung Duong	Kien Thuy, Hai Phong	900	03	42	Cu Ne, Krong Buk	June – end August 2021
8	106/TB-UBND	07 June 2021	Krong Buk DCP	Dinh Hung Duong	Kien Thuy, Hai Phong	900	139	52	Cu Ne, Krong Buk	June – end August 2021
9	107/TB-UBND	07 June 2021	Krong Buk DCP	Dinh Hung Duong	Kien Thuy, Hai Phong	900	138	65	Cu Ne, Krong Buk	June – end August 2021
10	108/TB-UBND	07 June 2021	Krong Buk DCP	Dinh Hung Duong	Kien Thuy, Hai Phong	900	105	85	Cu Ne, Krong Buk	June – end August 2021
Cu N	le 2, Batch 1			·	·					·

	-									
11	110/TB-UBND	07 June 2021	Krong Buk DCP	Lai Thi Thu Trang	Hoan Kiem, Ha Noi	900	62	14	Cu Ne, Krong Buk	June – end August 2021
12	111/TB-UBND	07 June 2021	Krong Buk DCP	Lai Thi Thu Trang	Hoan Kiem, Ha Noi	900	111	44	Cu Ne, Krong Buk	June – end August 2021
13	112/TB-UBND	07 June 2021	Krong Buk DCP	Lai Thi Thu Trang	Hoan Kiem, Ha Noi	900	71	34	Cu Ne, Krong Buk	June – end August 2021
14	113/TB-UBND	07 June 2021	Krong Buk DCP	Lai Thi Thu Trang	Hoan Kiem, Ha Noi	900	66	22	Cu Ne, Krong Buk	June – end August 2021
15	114/TB-UBND	07 June 2021	Krong Buk DCP	Lai Thi Thu Trang	Hoan Kiem, Ha Noi	900	110	11	Cu Ne, Krong Buk	June – end August 2021
16	115/TB-UBND	07 June 2021	Krong Buk DCP	Dinh Hung Duong	Kien Thuy, Hai Phong	900	25	06	Cu Ne, Krong Buk	June – end August 2021

No	Land Acquisition Notification No	Issued on	Issued by	Land acquired from	Current Residence	Area of acquired land (m²)	Land Portion No	Cadastral Map No	Land Location	Proposed time for Detailed Measurement Survey
Kron	g Buk 1, Batch 1									
17	130/TB-UBND	07 June 2021	Krong Buk DCP	Lai Thi Thu Trang	Hoan Kiem, Ha Noi	900	84	27	Cu Pong, Krong Buk	June – end August 2021
18	131/TB-UBND	07 June 2021	Krong Buk DCP	Lai Thi Thu Trang	Hoan Kiem, Ha Noi	900	21	38	Cu Pong, Krong Buk	June – end August 2021
19	132/TB-UBND	07 June 2021	Krong Buk DCP	Lai Thi Thu Trang	Hoan Kiem, Ha Noi	900	100	36	Cu Pong, Krong Buk	June – end August 2021
20	133/TB-UBND	07 June 2021	Krong Buk DCP	Lai Thi Thu Trang	Hoan Kiem, Ha Noi	900	67	48	Cu Pong, Krong Buk	June – end August 2021
21	134/TB-UBND	07 June 2021	Krong Buk DCP	Lai Thi Thu Trang	Hoan Kiem, Ha Noi	900	49	59	Cu Pong, Krong Buk	June – end August 2021
22	135/TB-UBND	07 June 2021	Krong Buk DCP	Lai Thi Thu Trang	Hoan Kiem, Ha Noi	900	45	49	Cu Pong, Krong Buk	June – end August 2021
23	136/TB-UBND	07 June 2021	Krong Buk DCP	Lai Thi Thu Trang	Hoan Kiem, Ha Noi	900	70	48	Cu Pong, Krong Buk	June – end August 2021
24	137/TB-UBND	07 June 2021	Krong Buk DCP	Dinh Hung Duong	Kien Thuy, Hai Phong	900	101	37	Cu Pong, Krong Buk	June – end August 2021
25	138/TB-UBND	07 June 2021	Krong Buk DCP	Dinh Hung Duong	Kien Thuy, Hai Phong	900	43	49	Cu Pong, Krong Buk	June – end August 2021
26	139/TB-UBND	07 June 2021	Krong Buk DCP	Lai Thi Thu Trang	Hoan Kiem, Ha Noi	900	98	06	Chu Kbo, Krong Buk	June – end August 2021
27	140/TB-UBND	07 June 2021	Krong Buk DCP	Lai Thi Thu Trang	Hoan Kiem, Ha Noi	900	90	14	Chu Kbo, Krong Buk	June – end August 2021

No	Land Acquisition Notification No	Issued on	Issued by	Land acquired from	Current Residence	Area of acquired land (m ²)	Land Portion No	Cadastral Map No	Land Location	Proposed time for Detailed Measurement Survey
28	141/TB-UBND	07 June 2021	Krong Buk DCP	Lai Thi Thu Trang	Hoan Kiem, Ha Noi	900	49	59	Chu Kbo, Krong Buk	June – end August 2021
29	142/TB-UBND	07 June 2021	Krong Buk DCP	Lai Thi Thu Trang	Hoan Kiem, Ha Noi	900	95	10	Chu Kbo, Krong Buk	June – end August 2021
30	143/TB-UBND	07 June 2021	Krong Buk DCP	Dinh Hung Duong	Kien Thuy, Hai Phong	900	93	10	Chu Kbo, Krong Buk	June – end August 2021
Kror	ng Buk 2, Batch 1									
31	116/TB-UBND	07 June 2021	Krong Buk DCP	Lai Thi Thu Trang	Hoan Kiem, Ha Noi	900	49	59	Cu Ne, Krong Buk	June – end August 2021
32	117/TB-UBND	07 June 2021	Krong Buk DCP	Lai Thi Thu Trang	Hoan Kiem, Ha Noi	900	75	58	Cu Ne, Krong Buk	June – end August 2021
33	118/TB-UBND	07 June 2021	Krong Buk DCP	Lai Thi Thu Trang	Hoan Kiem, Ha Noi	900	77	58	Cu Ne, Krong Buk	June – end August 2021
34	119/TB-UBND	07 June 2021	Krong Buk DCP	Lai Thi Thu Trang	Hoan Kiem, Ha Noi	900	63	68	Cu Ne, Krong Buk	June – end August 2021
35	120/TB-UBND	07 June 2021	Krong Buk DCP	Lai Thi Thu Trang	Hoan Kiem, Ha Noi	900	105	79	Cu Ne, Krong Buk	June – end August 2021
36	121/TB-UBND	07 June 2021	Krong Buk DCP	Lai Thi Thu Trang	Hoan Kiem, Ha Noi	900	115	80	Cu Ne, Krong Buk	June – end August 2021
37	122/TB-UBND	07 June 2021	Krong Buk DCP	Lai Thi Thu Trang	Hoan Kiem, Ha Noi	900	113	80	Cu Ne, Krong Buk	June – end August 2021
38	123/TB-UBND	07 June 2021	Krong Buk DCP	Lai Thi Thu Trang	Hoan Kiem, Ha Noi	900	130	59	Cu Ne, Krong Buk	June – end August 2021

No	Land Acquisition Notification No	Issued on	Issued by	Land acquired from	Current Residence	Area of acquired land (m ²)	Land Portion No	Cadastral Map No	Land Location	Proposed time for Detailed Measurement Survey
39	124/TB-UBND	07 June 2021	Krong Buk DCP	Dinh Hung Duong	Kien Thuy, Hai Phong	900	38	78	Cu Ne, Krong Buk	June – end August 2021
40	125/TB-UBND	07 June 2021	Krong Buk DCP	Dinh Hung Duong	Kien Thuy, Hai Phong	900	161	81	Cu Ne, Krong Buk	June – end August 2021
41	126/TB-UBND	07 June 2021	Krong Buk DCP	Lai Thi Thu Trang	Hoan Kiem, Ha Noi	900	92	63	Ea Sin, Krong Buk	June – end August 2021
42	127/TB-UBND	07 June 2021	Krong Buk DCP	Lai Thi Thu Trang	Hoan Kiem, Ha Noi	900	136	71	Ea Sin, Krong Buk	June – end August 2021
43	128/TB-UBND	07 June 2021	Krong Buk DCP	Dinh Hung Duong	Kien Thuy, Hai Phong	900	133	71	Ea Sin, Krong Buk	June – end August 2021
44	129/TB-UBND	07 June 2021	Krong Buk DCP	Dinh Hung Duong	Kien Thuy, Hai Phong	900	101	13	Cu Pong, Krong Buk	June – end August 2021

12.3.1.2.2 For 29 remaining Turbine Locations

During ERM's interview with Krong Buk District LFDC in July 2021, it was informed that among the 29 remaining turbine locations, 16 land plots have gained in principle agreements with affected households. It is informed by the Project Owner that by November 2021, land compensation was paid to 15 out of 16 affected households. For the only one remaining households (C14 location), loss recount had to be conducted as the land owner rushed to plant additional trees. As a result, a new compensation plan was introduced, but the Krong Buk LFDC believes it unreasonably costly. As such it is expected to implement compulsory acquisition procedures after signing a contract with the Krong Buk LFDC.

Whereas the 13 turbine locations that are under the management of An Thuan Coffee Company will face difficulties due to the fact that there are currently unsolved issues related to coffee production between the Company and contracted farmers who are cultivating the land under the Company's management. The acquisition of these land parcels for the turbines requires intensive engagements among the Project Owner, local authorities, the An Thuan Coffee Company, and contracted farmers. Based on the update by the Project Owner in November 2021, a quadripartite meeting was held in August 2021, in which all parties exchanged opinions onnn compensation. Hamek, as the minority shareholder of the Project, will negotiate with the contact person of the coffee company on this issue on behalf of the Project Companies. Negotiation is currently in progress.

12.3.1.2.3 For Other Components of the Project

For the substation: As informed by the Project Owner, the cadastral map excerpt has been approved by the Department of Natural Resources and Environment of Dak Lak Province. The agreement on the location of the substation and transmission alignment has been approved by Dak Lak PPC. While the compensation plan review is completed now, further formalities related to issuance of Decisions on Land Acquisition are pending until the project lands are registered and listed in the land-use plan of the district for wind power project development.

Land acquisition for roads and transmission line: As updated by the Project Owner, a total of 594 affected households have signed the contracts, among them, 371 affected households have been compensated, and 372 affected households have transferred their land for construction:

- KB1: Contracts were signed with 197 households; 88 households were compensated and transferred land for construction.
- KN2: Contracts were signed with 150 households; 72 were compensated and 73 transferred land for construction.
- CN1: Contracts were signed with 209 households; 193 were compensated and transferred land for construction.
- CN2: Contracts were signed with 21 households; 1 was compensated and transferred land for construction.
- Substation: 17 households were compensated and transferred land for construction.

12.3.2 Potential Impacts

Potential impacts due to the land acquisition activities for the Project include:

- Economic displacement: loss of land and access to production land, resulting in loss of access, livelihood and income to the land users;
- Social/ cultural tension from dissatisfaction towards the compensation price and /or the unequal compensation between the affected households, especially among the Indigenous Peoples;

- Negative impacts on the reputation of the Project due to lack of Project's information disclosure with local authorities and communities while construction is taking place alongside the land acquisition process; and
- As the land acquisition process has not yet been completed, physical displacement cannot be discarded, therefore this must be confirmed via a Land Acquisition Audit. The current data available to ERM linked to land acquisition at the moment this ESIA was concluded, field survey and interviews with local authorities and affected communities' showed there is no physical displacement due to land acquisition for the Project.

These impacts on women and IPs are elaborated in the below sections.

Economic Displacement and Livelihood Impacts

Based on the scope of land acquisition for the Project, economic displacement due to land acquisition involves in:

- Acquisition of household's land;
- Restrictions on land use under the transmission line Right-of-Way (ROW); and
- There is no imposition of involuntary restrictions on the use of natural resources on people who live around the project area.

Currently, land at the Project site area are mainly used for agricultural production, particularly perennial crops. Main crops are coffee, avocado, durian, and pepper. Intercropping is regarded as a predominant cultivation method in the surveyed localities. The land acquisition would potentially impact affected households' future livelihoods and income from their agriculture production, which is considered the main occupation of the affected households. Land-based livelihoods remain key activities of affected villages (see Table 12.7). Among 144 households participated in the baseline interviews (see Chapter 9), land-based livelihoods is prominent (80%) of the household income structure (see Figure 12.2). For the interviewed Ede households, land-based livelihoods account for 82% of their household income sources.

Commune	Village	Land-based Livelihoods
Cu Ne	Kdro 1	About 90% of households rely on agricultural production with the focal crop of coffee and have a monthly income of around VND 4 million.
	Kdro 2	100% of local households earn incomes from coffee planting.
	Drah 1	100% of households do agricultural production as the main livelihood with focal crops of avocado, durian, coffee, and jackfruit.
	Drah 2	100% of households rely on agricultural production.
	Kmu	100% of households rely on agricultural production.
	Ea Kung	95% of local household work in agricultural production.
	Ea Siek	Agricultural production is the main livelihood.
	Ea Krom	100% of local households rely on agricultural production.
	Ea Nguoi	90% of local households depend on agricultural production.
Cu Pong	Cu Hriet	All households mainly reply on agricultural production with main crops of avocado, coffee, pepper, and durian.
	Ea Bro	Agricultural production is the main livelihood to all local households.
Ea Sin	Ea My	All households live on agricultural production with main coffee and pepper crops.

Table 12.7	Land-based Livelihoods in Affected Villages
------------	---

Commune	Village	Land-based Livelihoods
Chu Kbo	Kty 4	Agricultural production is the main livelihood to 90% of local households but its income reduces gradually due to weather conditions, low agricultural product prices, and high investment.
	Kty 5	99% of local household reply on agricultural production.

Source: Socio-economic survey conducted by ERM, July 2021

Source: Socio-economic survey conducted by ERM, July 2021

Figure 12.2 Household Income Structure of Affected Communities (N=144)

During interviews with village heads and potentially affected households, an excessive number of local respondents addressed that local livelihood is potentially affected by the project implementation such as agricultural assets shrinkage (59.5%) and thus production and business operation obstructions (56.9%) (see Table 12.8). Further information on direct and indirect impacts shall be collected and assessed during the Land Acquisition Audit.

Livelihoods Impacts	Cu Ne Commune (N=38)		Cu Pong Commune (N=34)		Ea Sin Commune (N=24)	Chu Kbo Commune (N=20)	All Surveyed Communes (N=116)		All Surveyed Communes	
	Kinh	Ede	Kinh	Ede	Kinh	Kinh	Kinh	Ede	(N=116)	
Loss of agricultural assets	13.2	18.4	2.9	38.2	83.3	85.0	42.2	17.2	59.5	
Negative impact on production and business activities	7.9	21.1	5.9	32.4	83.3	80.0	40.5	16.4	56.9	

 Table 12.8
 Livelihood Impacts Perceived by the Surveyed Household

Source: Socio-economic survey conducted by ERM, July 2021

It should also be noted that although turbine and transmission line foundations need a quite large size of land parcels, e.g. 900 m^2 , it is found out from the household interview findings that households in the

affected areas have large land holdings, particularly the average agricultural land for perennial crops per household of 18,630 m² (see Table 12.9). As such, the severely affected households (with acquired production land area equal to or higher than 10% of the total production land of the household) might be a modest number within the total affected households.

Land Type	Kinh Households (N=71)	Ede Households (N=73)	All Surveyed Households (N=144)
Average agricultural land for annual crops per household (m ²)	15,942	11,412	13,286
Average agricultural land for perennial crops per household (m ²)	18,514	18,740	18,630
Average forestry farming land per household (m ²)	43,633	30,333	27,817
Average residential and garden land per household (m ²)	804	1,407	4,737

Table 12.9	Different Types of Land Holdings of Potentially Affected Households
------------	---

Source: Socio-economic survey conducted by ERM, July 2021

Livelihood impacts due to economic displace on IPs communities and gender will be discussed in Sections 12.11 and Section 12.12.

Social and Cultural Tension in the Affected Communities

Social and cultural tensions in the affected communities have been arisen and might be further emerged due to the following reasons:

First, the Project has applied two different approaches in acquiring land for the Project:

- Willing selling willing buying approach for the first 44 turbine locations; and
- State-led approach based on a State-regulated CSR framework.

The two approaches may lead to unequal compensation between the affected households. This issue might be more serious among the Indigenous Peoples who are less receptive to the Project information and information linked to land acquisition.

Second, there might be dissatisfaction towards the compensation price, particularly to the affected households under the State-regulated CSR framework.

Third, tension within the community has been arisen during the construction work of some turbines in the purchased land, due to the fact that concerned people, including the 44 former land users did not know that the purchased land was to be used for a non-agricultural production purpose. Community tensions seemed to be increased particularly when construction activities had impacts on local roads and neighbouring households while they did not have sufficient information related to the Project and its impacts and mitigation measures. As such while it is not recommended that the 44 former land users will be included in the eligible household list of the Resettlement and Livelihood Restoration Plan, they should be identified and prioritised in the proposed community development programs.

Fourth, as explained earlier, land acquisition needed for the establishment of 13 turbine locations, which are under the management of An Thuan Coffee Company may face difficulties. There has been tension related to coffee production and distribution between the Company and contracted farmers who are cultivating on the land under the Company's management. Hamek, as the minority shareholder will on behalf of the Project Companies negotiate with the contact person of the coffee company upon land acquisition issue.

Negative Impacts on the Reputation of the Project

The Project has carried out construction activities in some turbine and substation locations based on purchased land parcels. However, the construction work should not have implemented if the land acquisition for a wind power project, including land use purpose conversion had not been conducted in compliance with the current State regulations. Community engagement has not been properly carried out prior starting construction, leading to community tension based on insufficient information about the Project and its impacts and mitigation measures. When such non-compliances were communicated in the affected community and wider via local newspapers, reputation of the Project might have been negatively impacted.

Potential Physical Displacement

Based on the current available data shared with ERM on the Project design and land acquisition scope for the Project, is seems that there will not be any physical displacement as the acquired land are for agriculture use and no physically displaced cases have been recorded up till now. However, as the land acquisition process for all project's components has not yet been completed, physical displacement is possible and needs to be confirmed as the land acquisition process is deemed to be completed. Potential physical displacement due to health and safety reasons will be discussed in Section 12.9.

12.3.3 Existing Control

The Project Subsidiary Companies have commissioned the Krong Buk District Land Fund Development Center (LFDC) to implement the land acquisition for the Project, including corrective actions for the purchased 44 turbine locations. Memoranda of Agreement (MoA) and Contracts for LFDC's support were signed between the two parties on 31 May 2021.

According to the legal entitlement applied for this Project, affected households will receive the compensation payment and different types of support (e.g. job transition support, life stabilization support, job recruitment assistance) in cash. There is no other compensation or supporting method to be applied to assist affected households.

A Stakeholder Engagement Plan (SEP) including a Community Grievance Mechanism (CGM) has been developed within this ESIA package. Also, A Resettlement and Livelihood Restoration Framework (RLRF) has been developed within this ESIA package.

12.3.4 Significance of Impacts

Land acquisition impact nature is considered a negative impact as it will directly take away the people's source of livelihoods. The land acquisition process will result in either long-term or permanent economic loss. Due to the large land holdings of households in the affected areas, particularly the average agricultural land for perennial crops per household of 18,630 m², the severely affected households (with acquired production land area equal to or higher than 10% of the total production land of the household) might not be a prominent proportion of the total affected households. According to the available current data to ERM on land acquisition, 44 households (approximately 216 people⁶⁴) are categorised under voluntary resettlement (land transactions were based on willing selling – willing buying) and 1,392 households (approximately 6,820 people) are under involuntary resettlement (economic displacement). Based on the current available data on the Project design and land acquisition scope for the Project, it seems that there will not be physical displacement, however, this will have to be reconfirmed once the land acquisition process is completed. Therefore, the land acquisition impact magnitude is predicted as Large.

The vulnerability profile among affected households is considered Medium in terms of local dependency on land-based livelihoods and the presence of ethnic minority communities. For vulnerable households, losing their land due to land acquisition for the Project can be perceived as high impact to them as it

⁶⁴ Based on the household survey finding which suggests that the average household size is 4.9 people.

might not be their intention to sell their land as land is the key source of their livelihood as a farmer. The overall impact significance is found Major.

Impact Description Economic Displacement and Loss of Livelihood											
Impact Nature	Negative			Positive				Neutra	Neutral		
Impact Type	Direct			Indirect				Induce	Induced		
Impact Duration	Temporary Short			term Long-term			Permanent		manent		
Impact Extent	Local			Regional				Interna	International		
Impact Magnitude	Positive	Neg	ligible	Small Med		Medi	lium La		Large		
Receptor Sensitivity	Low			Medi	um			High		1	
Impact Significance Negligible Minor				Moderat	e		Maj	or			

Table 12.10	Economic Displacement and Loss of Livelihood
-------------	--

12.3.5 Additional Mitigation and Management Measures

In addition to the mitigation and management measures required under the government-led land acquisition process, the following measures are recommended in order to meet international standards:

- Disclose the Community Grievance Mechanism (CGM) that is developed as part of the Stakeholder Engagement Plan (SEP) as soon as it is finalised, to support the local authorities in receiving and addressing land acquisition-related grievances. CGM should be disclosed to the affected communities, including affected ethnic minorities so that the affected community is aware of communications grievance lines and understand how to submit a grievance. Continuously coordinate with local authorities to solve any submitted grievance relevant to land acquisition activities.
- Disclose the SEP to ensure effective Project information disclosure and communication with affected households as well as relevant government stakeholder. Immediate disclosure of the Project update, ESIA findings, land acquisition and CSR policies should be conducted with land affected households through a culturally appropriate communication plan consisting of visual/graphic demonstration (e.g. leaflets, signs, video) and outreach activities (e.g. community events, informed sessions, open houses, meetings).
- Conduct a Land Acquisition Audit (LAA) to identify the gaps between the government-led process, the Project's practice and AIIB and IFC requirements on land acquisition and resettlement and current practices within the project. Gaps with the applicable standards which are not covered at this stage will be addressed through the LAA. Specific actions to minimize the gaps in providing appropriate compensation should be recommended and implemented.
- Develop and implement a Resettlement and Livelihood Restoration Plan (RLRP) based on the current Resettlement and Livelihood Restoration Framework (RLRF) to support the economically displaced households in restoring their livelihoods at least equal to similar level of livelihood condition before land acquisition. The RLRP should take the women, poor, and other vulnerable groups into account to ensure improvement of their standards of living to at least national minimum standards, they are not overlooked during Project implementation and left worse off.
- Assist the local community via a Community Development Plan (CDP) focusing on affected communities to ensure that local communities can benefit from the project. CDP will include community based development initiatives and programs to support the local communities where the project is located. A CDP would be implemented throughout the Project life and through a CDP, the Project can listen to concerns of the local people and thus build a relationship between the

Project and the surrounding communities. Households who had sold land for the Project without acknowledging land use purpose conversion for the wind power project should be prioritised in participating CDP programs. It is important that CDP budgets are committed on steady and multiyear timeframes, which reflects changing business needs and drivers for community development at various stages of the business or project cycle.

12.3.6 Residual Impacts

As a result of the implementation of the proposed measures, the economic displacement and loss of livelihood impacts will be reduced to **Minor**.

12.3.7 Monitoring and Audit

The following monitoring and audit programs are required:

- Creation and maintenance of a Consultation and Grievance record in relation to land acquisition.
- Preparation of the LAA and implementation of LAA Action Plan.
- Monitoring of the RLRP in a quarterly term.
- Preparation of a completion report for the RLRP.

12.4 Disturbance to Agricultural Production (Construction)

12.4.1 Potential Impacts

The social baseline survey indicates that the land-based livelihoods is a major source of livelihood for the surveyed population of the affected communities. Cultivation is the most common work among the surveyed population with land-based livelihoods. Coffee, avocado, durian, and pepper are main crops which are intercropped with coffee for increasing the production efficiency. Local farmers plant more diverse crops such as macadamia, maize, banana, and jackfruit for income security.

As the turbines and Project's components will be built mainly in agriculture land, a major concern raised by the local authority and local community during the social survey is that the Project activities, during the land clearing and construction of Project's components, are anticipated to cause soil erosion around the turbine locations, particularly in rainy season. The water runoff with sediment would cause the accumulation of sediment and disturbance to the adjacent production land including coffee plantations located adjacent to the turbines and the Project's Site, particularly soil stockpilling areas (see Figure 12.3).

Besides, risks to cultivation during the construction are exposed to the risk of soil and water degradation as a result of dust accumulation from construction work.

In addition, during the construction, land will be temporarily used for laydown area and crane installation area. These areas will be returned to the current land users upon completion of construction; however, disrupted access to farming areas is expected for short intermittent periods during the construction phase.

Source: ERM's site visit in May 2021

Figure 12.3 Excavated Soil from Construction Phase

12.4.2 Existing Control

Mitigation measure provided by the Project Owner and their contractors in the Feasibility Study Report, the Safe and Civilised Construction Plan, and EPP include:

- Excavation, filling and construction works shall be complied with the current regulations
- Dykes should be constructed along the construction works to avoid soil erosion
- Open ditches and ponds are constructed at the disposal site to prevent soil erosion
- Strengthen the foundations by embankment or plantation
- Plantation can be made in the temporary land area after the construction finishes to increase vegetation and minimise the soil erosion and landslide
- All construction activities including foundation excavation and site levelling are conducted in drying season to avoid erosion, and
- Disposed construction material pieces such as bricks and stones shall be reused. The excavated soil shall be used for backfilling and road construction. Other kinds of construction materials including irons and steels will be collected, transferred back to the manufacturer, reused, or scrap trading.

A Stakeholder Engagement Plan (SEP) including a Community Grievance Mechanism (CGM) has been developed within this ESIA package and should be implemented as soon as possible.

12.4.3 Significance of Impacts

According to Chapter Environmental Impact Assessment, section Soil Impact Assessment, the impacts from soil erosion and soil contamination were assessed as of Moderate significance. In addition, given Project's acquired land is located in the key areas of agricultural production of the four affected communes, the impact magnitude is Medium. Although it is unlikely that the Project will have significant
impact to the community incomes generated from agriculture production, the sensitivity of the receptors is assessed as Medium due to perceived concerns from local farmers surrounding the project site. As such, the agriculture production disturbance significance caused by the construction activity is assessed as **Moderate**.

	 	0011011 4011011	una	operation

Impact Description	Disturbance to	Disturbance to Agriculture Production due to Construction Activities									
Impact Nature	Positive	Positive			Neutral				Negative		
Impact Type	Induced			Indi	Indirect				Direct		
Impact Duration	Temporary Short-t			-term	n Long-term			Permanent		rmanent	
Impact Extent	Local			Regional				International			
Frequency	Intermittent (rai	ny se	easons)	durin	g the con	struction	and o	operatio	on ph	ase	
Impact Magnitude	Positive	Ne	gligible		Small		Med	Medium		Large	
Receptor Sensitivity	Low			Medium			High				
Impact Significance	Negligible Minor			Moderate			Major				

12.4.4 Additional Mitigation and Management Measures

Although the assessment in this ESIA determines that the impact is Minor, the Project is still expected to implement the following measures in addition to the measures provided in the local EPP as listed above and some recommendation have been offered by local authorities and communities to manage the impacts within this Minor significance. These include:

- The Project Owner should provide and communicate detailed information about the Project's plan and schedule particularly related to land clearing and construction to the community with a special attention to farmers located near the Project locations. Due to the presence of the Ede IP and other ethnic minority groups in this area, culturally sensitive communication approaches should be taken into account;
- The Project Owner should disclose and implementing the Community Grievance Mechanism (CGM) that is understood by and accessible to all villagers. The mechanism will be simple, efficient, timely and consultative;
- Project Owner will closely monitor the temporary impacts on land of villagers during construction. Construction contractors must restore the soil to the quality as before being affected to return to the households. The Project will request construction contractors to prepare and implement the suitable construction methods to mitigate the impacts on land of villagers during construction of access roads and other Project's components.
- Should any incident occur and cause damage to the surrounding agriculture production, the Project Owner will ensure that such incident should be investigated to determine the Project's responsibilities and compensation amount if necessary. Standard for compensation will follow the Vietnamese civil law and be based on negotiations between the Project's contractors and the land users. If a related community grievance is submitted to the Project, it will be solved in accordance with the procedure described in the SEP and CGM.

12.4.5 Residual Impacts

As a result of the implementation of the proposed measures, the impact to agriculture activities during the construction will be **Minor**.

12.4.6 Monitoring and Audit

The following monitoring activities are recommended:

- Ongoing monitoring and periodical audit are required to check if the above mitigation measures are implemented.
- Comply with the monitoring and evaluation framework proposed in relevant management plans (i.e. SEP; solid waste sub-management plan and soil compaction, erosion and pollution submanagement plan of Construction E&S management plan) during the implementation of these plans.

12.5 Impacts on Worker Rights, Occupational Health and Safety (Construction)

12.5.1 Potential Impacts

Worker's Rights, either Directly by the Project or Within its Supply Chain

It is estimated that 343 workers are employed at the peak time of the Project construction phase. It should be noted that 59 management and technical positions are for foreign workers. More than 50% of workers in the construction phase (177 positions) are recruited from the communes and district where the Project is located. Without appropriate safeguards, there is potential for workers' rights to be impacted, including workers directly employed by Project Owner and the contractors engaged in delivering the Project. Increasingly there is an expectation by stakeholders that a company has not only oversight of its workers but also its contractors and those involved in its supply chain. If safeguards are not in place, a range of potential impacts can arise, including:

- Lack of awareness on worker's human and labour rights;
- Violation of worker's rights encountered by contractors;
- Potential employment of children, forced or bonded labour. This risk is often higher for vulnerable groups (e.g. migrant labour);
- Potential for discriminatory practices to occur in the hiring process (e.g. gender equity);
- Potential for discrimination against workers that join unions (or other similar organisations) or take part in collective bargaining;
- Inappropriate or delayed payments to workers;
- Unjustified dismissals; and
- Risk of association with contractors (e.g. service contracts) or third parties (e.g. recruitment agents) adhering to relevant laws and international standards and guidance.

Worker's health and safety

Besides the potential impacts to worker's rights, the nature of the Project and its construction activities presents a range of health and safety risks for the workforce, including those employed by the Project Owner and their EPC Contractors. Potential workforce health and safety risks include:

- <u>Accidents and injuries</u>: which may occur as a result of construction activities if safe work practices are not followed. Examples include:
 - Injury/fatality risks associated with working at heights (e.g. excavation, foundation construction, pylon, scaffolding, cranes);
 - Injury/fatality in a collision due to the movement of the vehicle and large mobile plant equipment such as backhoes, bulldozers, graders and mobile cranes present health and safety risks if not handled appropriately;

- Non-compliance with health and safety programs, poor safety culture, and inappropriate use of worker personal protective equipment (PPE) may place workers at risk of accidents and injuries;
- A surge in vehicle usage increases the potential for an accident or injury to occur; and
- Manual handling associated with day to day construction activities can result in injuries.

The above is not an exhaustive list of potential risks and hazards but presents examples of the types of activities that could contribute to an accident or injury during construction.

- Occupational diseases: that are caused or aggravated by exposure to workplace hazards and are often categorised into the following groups musculoskeletal disorders, mental disorders, noise-induced hearing loss, infectious and parasitic disease, respiratory diseases, contact dermatitis, cardiovascular diseases, and occupational cancer. These diseases often develop as a result of poor working conditions and poor hygiene.
 - Some occupational diseases manifest shortly after exposure, while others take longer to manifest after exposure. Examples include:
 - Hearing impairment due to exposure to high noise levels during equipment transport and use of large machinery;
 - Respiratory disease due to exposure to dust and reduced ambient air quality;
 - Repetitive work movements which may cause lateral epicondylitis (i.e. tennis elbow);
- Infectious diseases are illnesses caused by a diverse range of pathogens that can be transmitted through means such as:
 - Disease vectors (e.g. mosquitos), which may result in diseases such as dengue fever or malaria;
 - Ingestion of unsanitary food and water, which may result in a parasitic infection or diseases such as salmonella, E.coli, and listeria; and
 - Human or pest contact, which may result in diseases such as sexually transmitted infections (STIs), tuberculosis, influenza and rabies.
- Workers' may contract infectious diseases via a number of pathways. Examples include:
 - Interactions with local community members, which can expose workers and vice versa to a range of communicable diseases (e.g. STIs, influenza.);
 - Un-hygienic and unsanitary facilities; and
 - Stagnant bodies of water created during the land clearing process, which can create disease vector habitat.
- The global COVID-19 situation is fluid and the duration of the crisis is yet unknown. Potential risks
 of spreading virus workers, especially from migrant workers to local workers and vice versa, are
 still expected.

Health and safety risks can impact workers in a range of ways – e.g. temporary illness to long-term health impacts. The worst-case scenario would be a fatality, or multiple fatalities, which has occurred on other large scale developments in Vietnam during the construction phase. It appears that workplace fatalities in Vietnam, particularly in the construction sector, are on the rise. In most cases, the accidents were caused by low awareness and ignorance about occupational safety regulations by employers and employees.

It should be noted that occupational health and safety hazards during the operation of wind energy facilities are generally similar to those of most large industrial facilities and infrastructure projects. They may include physical hazards, such as working at heights, lone working, working in confined spaces,

working with rotating machinery, and falling objects. Prevention and control of these and other physical, chemical, biological, and radiological hazards are similar to those discussed in the assessment for construction phase.

12.5.2 Existing Control

Besides existing measures for air quality, noise and water usage control as mentioned in Chapter 10, several mitigation measures were included in the EPP regarding the management of labour and working conditions. The Project Owner and their contractors need to:

- provide the required PPE to workers as per regulations and train them in the proper use and maintenance practices;
- have regulations on occupational safety and closely monitor these regulations throughout the construction phase;
- have fire prevention and emergency plans to prevent and respond any incidents;
- establish rules on order, hygiene and environmental protection in worker camps.

Local laws in regards to Covid-19 is implemented strictly in the Dak Lak province.

A Stakeholder Engagement Plan (SEP) including a Worker Grievance Mechanism (WGM) has been developed within this ESIA package.

12.5.3 Significance of Impacts

As the number of workers is over 500 during the peak time, with a high percentage of foreign workers the magnitude of impacts on worker's rights and working conditions was ranked as Medium. In addition to general accidents, injuries, and infectious diseases, construction sites often involve activities that generate large amounts of noise and dust, repetitive activities, and interactions with hazardous substances. Such activities can present potential occupational diseases. Although practices in Vietnam are improving, there continues to be allegations of violations of worker rights in the construction industry. A large number of workforce in the industry are low-skilled with limited awareness of their rights; therefore, poor working conditions, long working hours, and delayed payment of wages violations frequently remain unreported. As such, the vulnerability of Area of Influence (AoI) was considered Medium. Therefore, the overall impact significance of human rights, health, and safety risks to workers during the construction phase was assessed as Moderate.

Impact Description	Impacts on Wo	mpacts on Worker's Rights, Occupational Health and Safety									
Impact Nature	Negative			Positive				Neutral			
Impact Type	Direct	Direct			Indirect				Induced		
Impact Duration	Temporary Short-te			-term	n Long-term				Permanent		
Impact Extent	Local			Regional				International			
Frequency	Frequent over 1	2 mo	onths of	the c	onstructi	on period	J.				
Impact Magnitude	Positive	Neg	gligible	Small Me		Med	edium		Large		
Receptor Vulnerability	Low			Medium				High			
Impact Significance	Negligible	Negligible Minor				Modera	ate		Ма	ijor	

Table 12.12	Impacts on Worker's Rights.	Occupational Health and Safety
	impuoto on moritor o ragino,	occupational meanin and ourery

12.5.4 Additional Mitigation and Management Measures

In addition to the mitigation and management measures required under the regulation, the following measures are recommended in order to meet international standards:

Policies and Procedures

- Develop a Human Resources (HR) policies and procedures that are in line with Vietnam labour regulations, AIIB ESS1, and IFC PS2. The HR policy and procedure should include but not limited to:
 - Working conditions and Management of Worker Relationship;
 - HR Policy;
 - Working Relationship;
 - Working Condition and Terms of Employment;
 - Workers' Organization;
 - Non-discrimination and Equal Opportunity;
 - Retrenchment;
 - Grievance Mechanism;
 - Protecting the workforce: child labour and forced labour;
 - Occupational Health and Safety;
 - Workers engaged by Third Parties; and
 - Supply chain.

Worker's Rights

- The Project Owner develop and implement a Labour Management Plan;
- EPC Contractors shall establish employment practices that ensure workers are paid appropriately in accordance with working hours and in a timely manner, informed by national standards and industry benchmarks;
- Project Owner and their EPC Contractors shall comply with Vietnam Labour Code requirements related to the hiring of labour and with applicable requirements from the EHS international guidelines;
- Special attention shall be given to establishing clear contractual agreements through the inclusion of particular clauses between Project Owner and all of their subcontractors to avoid child labour, forced labour, and human trafficking and other violations of human rights;
- EPC Contractors shall establish employment practices to check legal worker's age in identification document upon recruitment to ensure no child labour or forced labour and avoidance of unjustified dismissals;
- EPC Contractors shall establish employment practices that ensure workers are not discriminated against on the grounds of ethnicity, sex, religion, political opinion, social origin, age, marital or relationship status, sexual orientation, or trade union activity. As part of the hiring process, age checks will be conducted;
- EPC Contractors shall ensure workers are made aware of their rights as part of the induction process;
- EPC Contractors should implement a "zero tolerance" policy towards inappropriate behaviour from and amongst the workforce;
- EPC Contractors Ensure workers have a right to join unions;

Project Owner and EPC Contractors shall establish a grievance mechanism for workers. This should include an option for grievances to be lodged anonymously. All workers, including those employed through the Project's supply chain, should have access to a grievance mechanism to ensure that their issues and concerns are identified and addressed. Contractors should be required to inform the Project about grievances raised;

Occupational Health and Safety

- The Project Owner shall develop and implement an Occupational Health and Safety (H&S) Management Plan (MP);
- EPC Contractors shall regularly inspect all critical components of the involved equipment and machinery;
- EPC Contractors shall establish operation and safety procedure for each equipment and make available for the workers involved;
- EPC Contractors shall ensure that only appropriately skilled and trained employees are assigned to the operation and maintenance of the corresponding equipment and machinery;
- EPC Contractors shall perform audits of different subcontractors involved in terms of health and safety topics to ensure these companies comply with the findings and remedial action follow-up;
- EPC Contractors shall establish health and safety internal rules and ensure worker's awareness of these rules;
- EPC Contractors shall ensure day to day compliance with the health and safety requirements (i.e. procedures, equipment usage, PPE usage, demonstration of safe behaviours, competent personnel, compliance with work permit system);
- EPC Contractors shall ensure safety measures are in place before workers perform high-risk tasks, such as working-at-height, loading and unloading of equipment, hot work, electrical works, use of scaffolds and heavy machinery;
- EPC Contractors shall monitor and report health and safety performance through site inspections to all involved subcontractors, using appropriate health and safety metrics, operations auditing as well as senior management review and follow-up;
- EPC Contractors shall monitor and report high-risk sites to restrict entry and prevent near misses, injuries and fatalities;
- EPC Contractors shall ensure training programs to adequately include the usage of appropriate PPE, good hygiene practices, awareness of infectious diseases, and the management of risks and hazards;
- EPC Contractors shall provide first aid box and competent first-aider at all construction sites and worker's accommodation facilities;
- Project Owner and their EPC Contractors shall conduct medical assessments of workers before they are mobilized to the site, including screening for infectious diseases and other health issues. This is to ensure workers are fit for work;
- Project Owner shall implement a system for selection and management of contractors/subcontractors/suppliers with clear criteria on required environmental and safety management capabilities;
- Project Owner and their EPC Contractors shall develop and implement a Worker Accommodation Management Plan in accordance with local regulations and IFC requirements to ensure the wellbeing of the workforce as well as the health, safety and security of local communities;

- EPC Contractors shall ensure the worker accommodation is constructed/leased and managed in accordance with Vietnam requirements and Worker's Accommodation: Processes and Standards developed by WBG, IFC and EBRD;
- Minimum requirements for the worker's accommodation facilities shall include:
 - Free of charge to workers, meaning that workers do not have to pay if they choose to stay in workers' camp built or owned by the Project Owner or the contractors;
 - Adequate living space for each worker;
 - At least one toilet shall be arranged for every 15 workers;
 - At least one shower/bathroom is provided for each 15 persons;
 - Wastewater, sewage, food and other waste materials shall be adequately discharged in compliance which Vietnam standard;
 - Male and female toilet/shower/bathroom shall be separated;
 - Sanitary, laundry and cooking facilities and potable water;
 - Adequate health, fire safety measures, including first aid and medical facilities;
 - Adequate heating and ventilation; and
 - Non-restrictive to workers' freedom of movement to and from the accommodation.
- Project Owner shall conduct regular audits of workers' accommodation sites of all involved subcontractors.

12.5.5 Residual Impacts

While Project mitigation measures will help prevent impacts on workers' health and safety, there is the potential for accidents to occur as a result of human error, occupational diseases to occur as a result of work activities/conditions, and diseases to spread. To reduce the impact significance to Negligible, it will be important that the Project Owner's existing policies and procedures (which are designed to protect the health and safety of workers) are implemented and regularly monitored to ensure that the policies and procedures are being effectively implemented. As result of implementation of the proposed additional measures, the residual Project negative impact to community safety will be reduced to Minor.

12.5.6 Monitoring and Audit

Ongoing monitoring of the health and safety practices as well as labour contracts and management will be required. This can be conducted through regular audits, particularly of all the involved contractors, to ensure the Project Owner's expectations regarding health and safety practices are being implemented.

The following monitoring activities are recommended:

- Ongoing monitoring and periodical audit are required to check if the above mitigation measures are implemented;
- Monitoring and audit are also required to be conducted in accordance to the schedule proposed in the management plans relating to air quality, noise and traffic management;
- Monitoring the road condition along the transportation during construction phase;
- Comply with the monitoring and evaluation framework proposed in the relevant Management plans such as Traffic Management Plan, Community Health and Safety Management Plan and Stakeholder Engagement Plan.

12.6 Non-influx Impact on Community Health, Safety and Security (Construction)

12.6.1 Potential Impacts

General construction activities of an onshore wind project include land clearance, land preparation and civil work, transportation of materials and workers, construction and installation of turbines, and construction of associated facilities including the access road, and transmission line. These activities are likely to generate noise, dust, and risk to the community's health and traffic safety. Without proper management of noise, waste and dust from construction activities, local residents may experience a nuisance. This includes residents living near the construction sites and along the main routes that the Project workforce utilises. It was observed during the site visit that there are dwellings and a number of temporarily scattered agriculture huts of the local farmers within the 300 m radius of the turbine construction sites. Most farmers in their middle and late ages prefer staying in these watch huts during both day and night to look after their agriculture field and livestock. When Project construction work starts, local people might want to stay at their agriculture huts to start their small business to sell fast food and drinks to construction workers. Improper management of the dust, waste and wastewater, noise, and vibration generated during construction activities may cause disturbances or certain health impacts to these families – the main receptors.

Source: ERM's site visit in May 2021

Figure 12.4 An Agriculture Hut where a Senior Farmer Couple Reside and Sell Drinks to Project Workers

Potential impacts and consequences of noise, vibration, waste and waste water as well as dust are also discussed in detail in Sections of Noise Impact assessment, Water Quality Impact Assessment, Solid Waste Impact Assessment and Air Quality impact assessment accordingly.

Health Issues as a Result of Noise, Dust, Vibration, and Waste

The main sources of noise and vibration in the construction phase are transportation, mobilisation of construction material and operation of heavy machineries during the construction process (main site and transmission line), include piling activities. However, these construction activities do not represent a constant source of noise that will occur on a day-to-day basis for the duration of the construction schedule. These activities are expected to occur for only portions of the work, and will not occur for

entire daytime periods. According to the noise modelling results conducted by ERM, The noise level is accelerated by many construction activities, in particular the wind turbine foundation construction which significantly affects to nearby residential areas. Based on the satellite image and data collected during the site survey, 147 sensitive receptors are identified to locate in the radius of 300 m of wind turbines. The nearest identified sensitive receptor is only approximately 39 m away from WTG B2 in Krong Buk 2, Cu Ne Commune, Krong Buk District, Dak Lak Province.

Waste and wastewater from construction are also an impact source on community health if not managed properly. During the construction phase, the domestic waste will be generated from up to 500 workers, non-hazardous and hazardous industrial wastes from construction activities. Improper management of waste and wastewater from construction would result in potential contamination of soil, groundwater and surface water as well as community health risks. The construction impact levels on surface and groundwater (due to rainwater runoff and wastewater discharge) of affected communes were assessed as low in ERM's water quality and waste impact assessment.

Meanwhile, dust may be generated during the earthworks and due to the mobilisation of construction materials to and from the Project site. Construction activities (such as soil disturbing activities, storage of materials such as concrete, and transportation of materials) without proper controls in place are likely to result in dust generation expected during the dry season. Based on the air quality impact assessment results, small-scale and centralized impacts were predicted for the exhaust emissions (from earthworks, construction activities and transportation).

Transportation of hazardous materials and hazardous waste from the construction site to the authorised treatment locations may also cause health risks to residents living by the transportation route or commuters travelling on the same road. The hazardous materials and waste, including engine/transformer oil, solvents, paints, used batteries, discarded lubricant, and fabric, electrical waste, medical waste, etc. may be released to the environment due to inadequate containment or traffic accidents, and consequently cause risks of fire, explosion and contamination of the environment to the community. During the implementation of construction activities, flammable gas, liquid or chemicals will be stored and used. As such, an emergency, such as fire, explosion or oil spill, may occur during the construction phase and may affect the nearby communes. These will be discussed in detail in the Unplanned Event Chapter.

Unauthorized Access to the Project Site

Unauthorized access of people nearby, especially children or vulnerable people, to the Project site is also likely to increase the risks of injuries and fatalities of public safety. It is the Project Owner and their contractors' responsibility to take necessary steps to ensure that local people and all workers are safe from activities on construction sites (see Figure 12.5).

Source: ERM's site visit in May 2021

Figure 12.5 Safety Signal at a Turbine Construction Site which is Close to the Village Road

www.erm.com Project No.: 0599549

Traffic Safety Issue during the Construction Phase

The main transportation routes used for equipment and materials for construction activities of the Project are mentioned in Section 2.5.2.5 Transportation of Equipment and Material.

The equipment transportation route is approximately 222 km from Cam Ranh Port in Nguyen Trong Ky Street, Cam Linh, Cam Ranh, Khanh Hoa Province to the Project's sites. The equipment transportation route at some points requires modification by widening the local curves, reinforcing bridges and dismantling line poles and other obstacles in order to meet the transportation requirements and facilitate external traffic conditions. Construction materials (levelling sand, brick, stone, iron, and steel) will be supplied by local vendors in Buon Ma Thuot City, Dak Lak Province or in the vicinities to be transported to the Project's site via transportation road system, through the National Highway No.14 and rural roads. It should be noted from the household survey that that local residents in the surveyed areas are less likely to be satisfied with the rural road system when most of them evaluate it as 'bad' (43.1%) and 'very bad' (2.8%). A large number of concreted inner village roads have been heavily degraded while some branches of roads in other villages are even still unconcreted and muddy in the rainy season, making difficulties in local mobility and accessibility of cultivation area. As such, mitigation measures should be in place to minimisze the negative impacts.

The traffic safety assessment considers the potential effects of construction traffic on the road network within the vicinity of the Project site on the following aspects of traffic and transportation:

- The capacity of the existing road network to accommodate the traffic volumes generated by the Project; and
- Transportation safety on public roads due to Project-related traffic.

The key activities that are likely to have negative impacts on the local infrastructure and traffic safety include:

- Transport of equipment (turbines and transmission line components and material) from Cam Ranh port to the Project site; and
- Daily movement of construction workers.

In 2020, there were 17 traffic accidents in Krong Buk district, killing eight people and injuring 12 others. The district police made records of 1,335 cases of violations of the Law on road traffic, of which 1,200 cases were fined with the amount of money contributed to the state budget at VND 838.98 million.

As such, a cumulative increase of heavy trucks presence is likely to pose potential impacts to Project affected commune in terms of:

- Degradation of the public road infrastructure and network due to heavy load vehicle movement;
- Traffic congestion due to an increase of traffic movement; and
- Increase of local traffic incidents

• The household interview findings also indicate that local social security is emerged as an urgent issue including concerns related to traffic problems during the construction phase (54.3%), potential accident risks during Project construction and operation (45.7%). Furthermore, according to respondents (46.6%), the local security situation could be further exacerbated and complicated by an influx of non-local resident workers. For community environment, health, and safety, air pollution and local health degradation came out on top concerns claimed by 54.3% and 50.9% surveyed respondents respectively. In addition, noise pollution generated from both Project construction and operation also bother a considerable number of surveyed population, 44.8% and 37.9% respectively.

Project Impacts (%)		Cu Ne Commune (N=38)		Cu Pong Commune (N=34)		Ea Sin Commune (N=24)	Chu Kbo Commune (N=20)	All Surveyed Communes (N=116)		All Surveyed Communes (N=116)	
		Kinh	Ede	Kinh	Ede	Kinh	Kinh	Kinh	Ede		
Social Security	Traffic during the Project's construction (-)	13.2	18.4	2.9	20.6	83.3	85.0	42.2	12.1	54.3	
	Migrant labour (-)	2.6	15.8	2.9	23.5	70.8	80.0	34.5	12.1	46.6	
	Risks of the Project's construction and operation (-)	2.6	18.4	2.9	29.4	66.7	60.0	31.0	14.7	45.7	
Environment,	Polluted air (-)	7.9	15.8	2.9	26.5	87.5	90.0	41.4	12.9	54.3	
Environment, Health and Safety	Noise during the Project's construction (-)	2.6	10.5	2.9	23.5	79.2	80.0	34.5	10.3	44.8	
	Noise during the Project's operation (-)	2.6	10.5	2.9	26.5	54.2	65.0	26.7	11.2	37.9	
	Health degradation (-)	2.6	18.4	5.9	23.5	79.2	85.0	37.9	12.9	50.9	

Source: Socio-economic survey conducted by ERM, July 2021

12.6.2 Existing Control

Refer to Chapter 10 for existing controls proposed for dust, noise, traffic safety, and biodiversity impacts.

12.6.3 Significance of Impacts

From the assessment of dust, noise, water quality, solid waste and air quality in Chapter 9, given the short construction period (12 months), this magnitude of impacts on local residents were predicted to be Medium as it would likely intermittently affect 147 sensitive receptors are identified to locate in the radius of 300 m of wind turbines and local infrastructure and health and safety of at least four affected communes. The local community's sensitivity was ranked as Medium, taking into consideration that the local communities have raised several concerns on noise and air pollution were raised during the social baseline interviews. Therefore, the significant impact of the community health and safety risk was assessed as **Moderate**.

Table 12.14	Impacts	on	Community	Health,	Safety	and	Security	due	to	Construction
	Activities	5								

Impact Description	Impacts on Commu Activities	Impacts on Community Health, Safety and Security due to Construction Activities								
Impact Nature	Negative		Positive		Neutral					
Impact Type	Direct		Indirect		Induced					
Impact Duration	Temporary	Short	-term	Long-term		Permanent				

Impact Description	Impacts on Co Activities	mpacts on Community Health, Safety and Security due to Construction Activities								
Impact Extent	Local		Reg	Regional				International		
Frequency	Frequent over 1	Frequent over 12 months of the construction period.								
Impact Magnitude	Positive	Negligible	1	Small Me			edium Large			
Receptor Vulnerability	Low		Мес	lium			High			
Impact Significance	Negligible	Minor			Modera	ate		Ма	jor	

12.6.4 Additional Mitigation and Management Measures

The Project Owner should implement the following additional mitigation measures to manage the potential negative impacts associated with construction activities:

- Project Owner and their EPC Contractors shall implement the imitation measures proposed in Chapter 10 for dust, noise, water quality, solid waste and air quality impacts to control the construction impacts; and
- Project Owner shall disclose the proposed grievance mechanism to make it accessible for all villagers to report concerns associated with health and safety issues. An immediate investigation shall be undertaken when complaints on accidents or near misses are submitted

In addition to measured proposed in the EPPs, the Project owners should implement the following additional mitigation measures:

- EPC Contractor should ensure:
 - All new drivers (including contractors for construction material transportation) must be licensed with good experience, and should be required to undergo safety training;
 - Flagmen should operate at the junction between the main roads and the access road to coordinate the trucks entering and exiting;
 - Speed limits should be enforced for all Project vehicles;
- The Project Owner should:
 - Together with EPC Contractor, develop a Traffic Management Plan for the construction phase. Procedure for responding to the traffic emergency should also be included in the plan;
 - Conduct disclosure and consultation with the surroundings communities and public facility (school) on key Project traffic routes, timing of peak movements, type of vehicles and heavy equipment and provision of road safety awareness to the surrounding community, through corporation with the local police to ensure local residents be aware of increase in the level of transportation activities during the Project Construction;
 - Disclose the proposed grievance mechanism so that it is accessible for all villagers to report concerns associated with health and safety. Where complaints on accidents or near misses are submitted the Project will undertake an immediate investigation;
 - Local communities should be familiarised with safety awareness and traffic management such as warning signs, limited speed and notifications of the risks of traffic accidents. This measure will need to be incorporated into a Community Health and Safety Management Plan;

- Project Owner should, where road conditions are poor occur as a result of Project activities, improve the road to ensure conditions meet the standard required for construction vehicle use; and
- Regular road condition monitoring along the transportation route to understand road quality during construction phase.

12.6.5 Residual Impacts

As result of implementation of the proposed additional measures, the residual Project negative impact to community safety will be reduced to **Minor**.

12.6.6 Monitoring and Audit

The following monitoring activities are recommended:

- On-going monitoring and periodical audit are required to check if the above mitigation measures are implemented at all levels of the Project supply chain; and
- Monitoring and audits are also required to be conducted in accordance with the schedule proposed in the management plans relating to dust, noise, water quality, solid waste, and air quality impacts management.

12.7 Impacts Associated with Migrant Workers Influx (Construction)

12.7.1 Potential Impacts

It is planed that the Project employs more than 343 workers (more than 50% of them are from the affected communes and district) during the construction phase of 12 months. The Project proponents will endeavour to source employees from the local area, subject to the availability of candidates with the required skills and experience. During construction, the EPC Contractors and subcontractors may arrange for workers to live in purpose-built accommodations. These facilities are expected to be sited, designed, and managed according to the standards specified in the IFC/WBG/EBRD guidance document.

The potential interaction between the workforce and local communities still poses the following risks:

- COVID-19 related risks;
- Increased risks of infectious diseases;
- General disturbance and tension between migrant workers and local communities; and
- Pressure on public service and infrastructure.

COVID-19 Related Risks

The global COVID-19 situation is fluid and the duration of the crisis is yet unknown. Potential risks of spreading the virus among the community, especially from workers to local communities and vice versa, are still expected.

Increased Risks of Infectious Diseases

Results from the social baseline survey indicated that the common infectious diseases in affected communes were influenza, dengue and hepatitis. From field observation, the main water source in the localities is ground water (from mainly dug wells). While some stated that this water source is safe for their daily use, the others are afraid that it might be alum-contaminated or polluted due to pesticide penetration. Around 10% of surveyed households (N=144) do not have any private toilets, as a result, there is outside defecation in garden areas, in fields or in the forest or some households share toilets with their relatives or neighbours. During the construction phase, the presence of non-local workers in

the area may exacerbate the existing health issues in the commune and might lead to an increased risk of diseases, including:

- Water-borne disease associated with poor sanitation of construction site and worker accommodation facilities;
- Sexually transmitted infections (STIs) and HIV/AIDS; and
- Gastro-intestinal diseases and other food borne diseases such as Hepatitis A due to poor standards of food hygiene in site catering facilities including facilities provided in workers' accommodation.

General Disturbance and Tension between Migrant Workers and Local Communities

The EPC Contractors and subcontractors may arrange on-site accommodation facilities for non-local workers. As such, interaction between migrant workers and the local residents will not pose a significant risk. However, the presence of a non-local workforce from other Vietnamese provinces may result in the presence of behavioural traits, habits and lifestyle in the community, which may be alien to the local community, especially when the majority of local people are the Ede. These behavioural traits may cause discomfort/ inconvenience to the Ede ethnic minority group resulting in disagreement and conflicts. The potential impacts on the local community include:

- Risk of prostitution: Most non-local workers employed by EPC Contractors and subcontractors are males, living away from home, and most of them will be without families. Therefore, increased demand of sexual services could be possible. Poverty could be an incentive for women to get involved in sex work as an alternative livelihood option for a quick income source. Female-headed/single-mom households seem to be the most vulnerable to this risk. Furthermore, the vulnerability of these women will be increased if these women have babies as a corollary of the unsafe prostitution. In particular, given the temporary nature of contract work, it is possible that both the women and children will be abandoned when the construction phase ends and the contractors move on, leaving a new group of single female-headed households often dependent upon their extended family support networks.
- Increased tension: Conflicts among Project workers and locals can ensue from the use and treatment of local resources, establishment of settlements and difference in treatment of new construction workers and local people. Conflicts may also arise between the local people when the local people's recruitment policy is not transparent and non-equal access to opportunities between affected villages.
- Increased alcohol and drug abuse: The presence of contractual workers may also increase alcohol and drug abuse in the area as the contractor workforce may originate from urban areas where exposure to alcohol and drugs is much more prevalent, which could then be introduced into the local area (see Table 12.5).

Locality	Security
Krong Buk	In 2020, there were 52 cases of violations of the law on social order in the district (a decrease of three cases compared to the same period in 2019), of which 50 cases were investigated and clarified (reaching the rate of 96.1%). The fight against crime and law violation was focused. In 2020, there were 16 cases of economic violation, 15 cases of environmental violation, 11 cases of drug abuse, two explosions, six suicides, three deaths due to drug shock, two deaths due to disease, and one case of food poisoning.
	In addition, the police force handled 15 cases of illegal religious activities
Cu Pong	In 2020, there had been nine cases of violation in the commune, of which:Two cases of property burglary;

Table 12.15 Security Situations of Affected District and Communes

Locality	Security							
	 Three gambling cases involving 15 attendees; 							
	 Three cases of intentional destruction of property; and 							
	 One case of setting off firecrackers. 							
	The commune also recorded four other accidents related to suicide (one case), electric shock (one case), drowning (one case), and unknown cause (one case).							
	In addition, seven people involved in the usage of narcotics and illicit drugs were detected.							
Ea Sin	Regarding the prevention of COVID-19 pandemic, in the first six months of 2021, the commune health station received 34 medical declarations and nine cases for home health monitoring. Up to 29 July 2021, there is no infected case detected in the locality.							
	In term of security, in 2019, Ea Sin commune was the only locality of Krong Buk district to recei the title of "commune free of drug addicts and crimes". In 2020, rural security situation was stab Specifically, the commune received only 14 crime reports, including six cases of property the two cases of murders, two gambling cases, two intentional injury cases, one property destructi case, and one case of violation of regulations on vehicle control.							
Chu Kbo	Regarding the security situation, in 2020, the CPC directed the Commune Public Security Division to coordinate with relevant departments to strengthen the work of ensuring political security, social order and safety in the commune. However, criminal activities have become more complex. In 2020, 54 cases occurred in the commune, an increase of 29 cases compared to 2019. Specifically, there were five cases of property theft, one property robbery case, one intentional injury case, seven cases of gambling, two cases of unexplained deaths, two cases of illegal drug possession, 22 cases handled administrative violations of illegal drug use, six cases of being compulsarily sent to detoxification establishments, three cases of illegal fireworks, two cases of							
	fire, and three cases of traffic accidents.							

Source: Socio-economic survey conducted by ERM, July 2021

Pressure on Public Service and Infrastructure

The surveyed data indicated that overall, local communities in affected communes were satisfied with the availability and accessibility of existing public services, including piped water, electricity, health care, market, and schools (see further the socio-economic baseline on local evaluation public facilities and services including local health stations, schools, water and electricity supply, waste collection, local markets and roads). Given the small number of migrant workers to be employed during the construction phase, it is anticipated to be a minor pressure on these infrastructures and services at the commune level.

Security Force

At the time of writing, it was unclear whether the Project will directly employ security staff or contract a private security force to protect their Project site, workers, and assets. The number of security guards to be deployed on-site was also not available. In both cases, the Project's security arrangements might posed threats to local communities in terms of potentially inappropriate use of force, unlawful detention, and sexual violence/harassment against women.

12.7.2 Existing Control

Some mitigation measures were provided in the local EPP including management of workers/ staff and collaboration with local authorities for security status updates, as follow:

 Coordinating with local authorities and relevant agencies to organize programs such as education and awareness raising for workers in terms of health and safety measures, and how to minimize or avoid conflict with local people;

- Coordinating with local authorities to manage temporary resident registration for migrant workers and to monitor social security in the area where migrant workers will be accommodated.
- No measure was proposed for the protection of local workers' right, health and safety. No gender mainstreaming measure in place to address gender-based violence and sexual harassment.

12.7.3 Significance of Impacts

Given the proportion of migrant workers compared to the total population of the Project's footprint area and their relatively short presence in the area (12 months of construction phase), the impact magnitude of the influx-induced risks was assessed as Small. Given the significant number of Ede ethnic minority group in the Project area, the existing health conditions of local people, and reliable availability of local infrastructure the vulnerability of the community was deemed Medium, resulting in the impact significance of the influx worker issues as **Minor**.

 Table 12.16
 Impacts on Community Health, Safety and Security due to the Presence of Influx

Impact Description	Impacts on Co Influx	Impacts on Community Health, Safety and Security due to the Presence of Influx								
Impact Nature	Negative	Negative			Positive					
Impact Type	Direct	Indirect	Indirect				Induced			
Impact Duration	Temporary	-term	erm Long-term			Permanent				
Impact Extent	Local	Local			Regional			International		
Frequency	Frequent over 1	2 months of	the const	ructi	on period					
Impact Magnitude	Positive	Negligible	Sn	nall		Medium			Large	
Receptor Vulnerability	Low		Medium				High			
Impact Significance	Negligible	Minor			Moderate			Major		

12.7.4 Additional Mitigation and Management Measures

The Project Owner should implement the following additional measures to maintain the impact level associated with the presence of migrant workers:

- Project Owner and their EPC Contractors shall strictly follow the Government's instructions on COVID-19, including compulsory COVID-19 tests and quarantine for migrant workers as well as wearing of face masks;
- Project Owner should develop a COVID-19 monitoring and response team, who are tasked with outbreak tracking and protocols and procedures developments as appropriate in line with local and national requirements and guidelines;
- Strictly follow the Government's instructions on COVID-19, including compulsory COVID-19 tests and quarantine for migrant workers, wearing of masks. The Project Owner should develop a COVID-19 monitoring and response team, who are tasked with tracking developments in the project countries and provinces, developing protocols and procedures as appropriate in line with local Government and international requirements and guidelines;
- Project Owner and their EPC Contractors shall conduct compulsory medical examinations (i.e. biannual health check-ups) for Project workers, including contractors, as required by national regulations, to ensure they are fit for work and to monitor the prevalence of communicable diseases
- Project Owner and their EPC Contractors shall ensure the health and safety of all workers and local communities by complying with relevant regulatory national requirements and international

best practices on medical safety and food hygiene on the construction sites if there will be installed canteens among the working areas and in the workers' accommodation areas that are equipped with canteens;

- The Project Environmental and Social Focal Point should assign and deliver induction training to guide requirements for culturally appropriate behaviours, and an overview of the risks to migrant staff and workers. The training will include key cultural sensitivity awareness topics/programs to ensure workers, including security staff, do not unintentionally offend the local community;
- Project Owner and their EPC Contractors shall regularly engage with local authorities relevant to crime (i.e. local police) or other social problems (e.g. village leaders) for prevention of issues and for mitigation purposes when Project influx-related issues arise;
- A Code of Conduct, including requirements on social interaction with the local community, gender awareness, vulnerable groups and environmental protection obligations, shall be developed for all involved staff and workers within the construction site (including all subcontractors). An appropriate mechanism to address non-compliance shall also be included as part of the labour contract. All staff and workers within the construction site shall be trained and made aware of the Code of Conduct;
- Project Owner should establish and implement regulatory requirements and good practices in relation to a background check, hiring, rules of conduct, training, equipping of security personnel;
- Project Owner shall ensure that training to security force will include adequate and clear requirements in using force and appropriate conduct toward workers and affected communities. Project Owner shall not sanction any use of force except when used for preventive and defensive purposes in proportion to the nature and extent of the threat; and
- Project Owner shall implement the Stakeholder Engagement Plan and disclose a grievance mechanism for workers and affected communities to express concerns about the Project-related issues as well as security arrangements and acts of security personnel.
- Establish a Local Recruitment Policy in the Labor Management Plan which commits a certain percentage of local recruitment, including women from local communities;
- Establish employment practices to check legal worker age in identification document upon recruitment to ensure no child labour or forced labour;
- Establish employment practices that ensure workers are provided an easy to understand contract that specifies working hours, overtime hours, breaks, and holidays;
- Establish employment practices that ensure workers are paid appropriately and in a timely manner, informed by national standards and industry benchmarks;
- Establish safeguards if recruitment agents are utilised. This includes pre-screening of potential
 agents and establishment of appropriate contractual obligations with the agent to ensure
 appropriate oversight is in place (so that workers are not placed in debt);
- Develop Influx Management Plan integrated in the Labor Management Plan including specific gender sensitive measures such as training for workers on gender based violence, including sexual harassment of women and girls, exploitative sexual relations, and illicit sexual relations with minors from the local community, and commitment/policy to cooperate with law enforcement agencies investigating perpetrators of gender-based violence;
- Establish safeguards to avoid gender-based violence and sexual harassment in the work place;
- Ensure the provision of occupational health and safety measures, including but not limited to: resting area and enough resting breaks during working hours, free PPEs.
- Disclose a grievance mechanism for workers. This should include an option for grievances to be lodged anonymously. All workers, including those employed through the Project's supply chain,

should have access to a grievance mechanism to ensure that their issues and concerns are identified and addressed. Contractors should be required to inform the Project about grievances raised. Disclose the grievance mechanism to workers and local people;

- Collaborate with local/relevant authorities to organise educational or awareness-raising programs for local workers about their rights;
- EPC Contractor should register temporary residence for non-local workers to local authorities to ensure the management of Project's related workforce; Regularly engage with local authorities relevant to crime (i.e. local police) or other social problems (e.g. village leaders) for prevention of issues and for mitigation purposes when issues arise;
- EPC Contractor should conduct compulsory medical examinations (i.e. annual health check-ups) for Project workers, including contractors, as required by national regulations, to ensure they are fit for work and to monitor the prevalence of communicable diseases detected through annual medical check-ups;
- Project Owner should develop Human Resource policies and procedures as well as Project Code of Conduct with an adoption of EPC contractors, and disseminate these to all workers including workers of contractors and ensuring their compliance. HR policies and procedures include commitment to non-employment of child labor and forced labor, non-discrimination and equal opportunity, respect for freedom of association, and aspects pertaining to working conditions, retrenchment, and worker accommodation as required applied for all types of employees;
- Project Owner and EPC contractors should ensure that the accommodation for immigrant workers meet the standards as guidance provided in the "Workers and Accommodation: Process and Standards" – a Guidance note by IFC and ERBD; Workers Accommodation Management Plan will be prepared with gender sensitive measures;

12.7.5 Residual Impacts

As a result of the implementation of the proposed management measures, the impact on community health, safety and security associated with a non-local presence is expected to reduce **Negligible** throughout the Project construction period.

12.7.6 Monitoring and Audit

The following monitoring activities are recommended:

- Ongoing monitoring and periodical audit are required to check if the above mitigation measures are in implementation.
- Comply with the monitoring and evaluation framework proposed in relevant management plans (i.e. Labor Management Plan, Workers Grievance Mechanism in SEP) during the implementation of these plans.

12.8 General Disturbance to Local Community (Operation)

12.8.1 Potential Impacts

During the operation phase (about 20 years), disturbance to the local communities mostly comes from the impacts from workers' presence, operation and maintenance of the turbines and substations.

The number of workers will be reduced to 42 staff/workers for the operation phase. Hence, community health issues associated with migrant workers' presence such as the transmission of communicable diseases or conflict between workforce and local communities, include littering and noise, fighting due to heavy drinking, and gambling, are expected to be minimal. Potential cultural conflict and tension due to the difference in culture and living style between the migrant and local people are also not expected during this phase.

Operational traffic impacts will be associated with emissions from a limited number of vehicles accessing the site for maintenance or security purposes. The potential impacts on traffic from operation activities (e.g. wind turbine generator operations, inspection and maintenance) are considered negligible, so no further assessment is needed.

Shadow flickers and visual impact to community health and safety are discussed in further details in the Section 10.7 and Section 10.8 accordingly. A total of 312 sensitive receptors are identified under the impact of the shadow flickering.

Noise from the operation of turbines, substation and transformers of the Project is defined as another potential factor caused nuisance and disturbance to surrounding community. Noise impacts from the Project's WTGs operations are discussed in details in the Section 10.2– Noise Impact Assessment. As mentioned in Section 10.2.3.1.3, due to a dense of sensitive receptors situating around the WTGs, the impact associated with noise accelerates significantly during the operation phase. Overall, the negative impact is ranked as being of Major significance.

The risk from blade throw will be assessed in the Unplanned Events Chapter. Within the impact zone of Blade Throw, there are approximately 147 sensitive receptors living near the Project's site.

12.8.2 Existing Control

Refer to Chapter 10 for existing controls proposed for dust, noise, water quality, solid waste and air quality impacts during operation phase.

12.8.3 Significance of Impacts

The magnitude of the aforementioned impacts was predicted to be Medium during operation as a result of related impact assessments above. Although the local community will have already had experience with the disturbance from construction, the impacts from the operation are expected to be different in nature and impact sources such as noise from the operation of turbines and transformers and the physical presence of turbine. The receptor sensitivity was considered as Medium, resulting in the impact significance being **Moderate**.

Impact Description	Health and Safe	Health and Safety Impacts and General Disturbance to Local Community									
Impact Nature	Negative	Negative			Positive				Neutral		
Impact Type	Direct I			Indirect			Induced				
Impact Duration	Temporary Short-te		erm Long-term			Permanent					
Impact Extent	Local	Local		Regional			International				
Impact Magnitude	Positive	Neg	ligible	Small Med			Medi	um Large			
Receptor Sensitivity	Low		Medium				High				
Impact Significance	Negligible		Minor			Modera	te		Majo	or	

Table 12.17	Health and Safety Impacts and General Disturbance to Local Community
-------------	--

12.8.4 Additional Mitigation and Management Measures

The Project Owner is required to implement the additional measures as proposed in Noise Impact Assessment, Visual Impact Assessment and Shadow Flicker Impact Assessment and other measures as below:

 As part of the Project SEP implementation, Project Owner should conduct close communication with local communities on Project environmental and social risks. Future risk-communication efforts will be undertaken in the context of continuing, intense social distrust and will have to be designed in a culturally appropriate way;

- Project Owner shall implement community grievance mechanism is implemented to obtain and resolve community's feedback and concerns in a timely manner;
- Project Owner shall ensure the implementation of community health and safety management and emergency preparedness and response measures are effectively maintained;
- Project Owner shall conduct regular compliance assessments; undertake site visits as required, identify any environment-related and social-related issues; and
- Project Owner shall document issues, propose necessary corrective actions, and prepare these in a corrective action plan.

To remain the significance of the impact as minor or reduce to negligible, the Project is required to implement the additional measures as proposed in Sections of Noise Impact Assessment, Visual Impact Assessment and Shadow Flicker Impact Assessment and other measures as below:

- Project Owner should keep implementing the SEP including grievance procedure during the Project's operation;
- Project Owner should keep implementing the CDP to support the local people in improvement of their socio-economic conditions. The CDP should be implemented throughout the Project's operation period and considered as Corporate Social Responsibility program of the Project Company;
- Basic skill requirements for operation phase should be announced at least six months in advance so that local people can have appropriate training orientation for themselves;
- Local procurement should be promoted during operation of the Project. In particular, the Project should use local foods/products and local supply to enhance benefits to the local communities.

12.8.5 Residual Impacts

Following the implementation of proposed additional measures, the residual impact is expected to be reduced to Negligible.

12.8.6 Monitoring and Audit

The following monitoring activities are recommended:

- Ongoing monitoring and periodical audit as proposed in the ESMP to ensure the above mitigation measures are in implementation, and
- Monitoring and audit are also required to be conducted in accordance to the schedule proposed in Chapter 10 for Noise Impact Assessment, Visual Impact Assessment, and Shadow Flicker Impact Assessment

12.9 Relocation Impact Due to Health and Safety Reasons (Operation)

12.9.1 Potential Impacts

The potential operation phase's impacts on communities due to Health and Safety Reasons still poses the following risks:

- Blade ejection failure (see further in Chapter Unplanned event, section Blade Ejection Failure);
- Noise impact (see further in Chapter Environmental Impact Assessment, section Noise Impact Assessment); and

 Shadow flicker impact (see further in Chapter Environmental Impact Assessment, section Shadow Flicker Impact Assessment).

As mentioned in Section 10.2, the noise modelling based on Project's wind turbine specification has concluded that households residing within a radius of 300 m from the turbine ground may be exposed to significant noise impacts from the turbine operation.

Additionally, according to Article 11 of Circular No. 02/2019/TT-BCT dated 15/1/2019 by the Ministry of Industry and Trade on wind power project development, the wind power work must be 300 m away the residential area. Although the huts/houses nearby the wind turbine built on the cultivation area and not considered a residential area, living in the farm watching huts/houses is part of the Ede ethnic minority people's customary practice in the area, and many of them live all day long in the huts/houses. Also, there are newly developed residential areas (see Figure 12.10).

Based on modelling and GIS mapping analyses, there are:

- Approximately 147 sensitive receptors (103 sensitive receptors in 300.75m of wind turbine EN-141/2.65 and 44 receptors in 312m of wind turbine EN-141/3.0) within the impact zone of blade throw;
- 32 sensitive receptors associated with eight WTGs with predicted high noise exceedance; and
- 312 sensitive receptors are identified under the impact of the shadow flickering based on real case scenario.

Source: QGIS, ESRI, Google, October 2021

Figure 12.6 Blade Throw Receptors – Krong Buk 1&2

Source: QGIS, ESRI, Google, October 2021

Source: QGIS, ESRI, Google, October 2021

Figure 12.8 High Noise Exceeded Receptors – Krong Buk 1&2

Source: QGIS, ESRI, Google, October 2021

Figure 12.9 High Noise Exceeded Receptors – Cu Ne 1&2

In case of dwellings experienced shadow flickering, a detailed grievance mechanism should be available and the local community must be aware of the availability of grievance mechanism to submit their complaints regarding nuisances related to shadow flicker from turbines. Ensuring close monitoring through engagement with local stakeholders including informing to affected communities during the operational phase where there are predicted impacts from shadow flickers. It is suggested that additional field survey to understand if there are really affected households by these three phenomena (e.g. shadow flicker, noise, and blade throw impacts) then according to the results, more mitigation measures are to be imposed and determination is made if relocation of the impacted receptors is needed.

Source: ERM's site visit in July 2021

Figure 12.10 Some of the Sensitive Receptors of Blade Ejection Failure

12.9.2 Existing Control

No existing control in place.

12.9.3 Significance of Impacts

Dwelling and farm watching house relocation impact nature is considered as negative impact as it will take away some of the affected people's access directly. While it required validation surveys and consultations with affected persons over different phases of the Project, the relocation would cause

permanent agricultural land loss and physical displacement to affected people who stay in the house and most of them will experience access restriction to their land during construction and operation. The impact magnitude is Large.

The vulnerability profile among affected households can be said to be high as they are an ethnic minority and many of them have illiterate breadwinners with limited skills to change their job but still manage to gain enough income to pass the poverty income rate. Losing their land or relocation due to health and safety reason can be perceived as high impact to them as it might not be their intention to sell or move away from their land as it is the key source of their livelihood as a farmers. Therefore, receptor sensitivity is High, leading to the physical displacement impact significance being **Major**.

Impact Description	Physical Dis	Physical Displacement Impact from Land Acquisition Due to Safety Zone									
Impact Nature	Negative	Negative			Positive				Neutral		
Impact Type	Direct	Direct			Indirect			Induced			
Impact Duration	Temporary Short-te		erm Long-term			m	Permanent				
Impact Extent	Local			Regional				International			
Impact Magnitude	Positive	Neg	ligible	Small		Mediu		um La		Large	
Receptor Sensitivity	Low		Medium			High					
Impact Significance	Negligible	Negligible Minor		1		Moderat	е		Maj	or	

 Table 12.18
 Physical Displacement Impact from Land Acquisition Due to Safety Zone

12.9.4 Additional Mitigation and Management Measures

The following additional mitigation and management measures are recommended in order to meet international standards:

- Conduct Validation Surveys to verify sensitive receptors as residential dwellings (e.g. type of structure, use, any humans residing permanently in these, etc.).
- Monitor the land acquisition process to ensure it complies with Vietnamese regulations, AIIB and IFC performance standards. This activity should be supported by documentation recording the land acquisition process. This will be required for internal and external audits accompanied by LAA, RLRF, and RLRP.
- Based on the CSR completion report, identify the gap between national, AIIB ESS2 and IFC PS 5 requirements on land acquisition and resettlement. Then formulate a Corrective Action Plan to close the gaps found.
- Prepare and include a SEP within the ESIA which covers Grievance Management Plan (GMP). GMP should be disclosed to the affected communities prior to the Project's construction implementation. As such, the affected community is aware of communication's grievance lines and understand how to submit a grievance.
- Continuously coordinate with commune PC to solve any submitted grievance relevant to land acquisition activities.
- When physical relocation is confirmed, Project shall develop and implement the Resettlement and Livelihood Restoration Plan (RLRP) for those identified as Project affected households. The LARP will be designed to ensure sustainable restoration and enhancement of income for impacted land users including the institutional arrangement, grievance redresness mechanism, and budget for each ativities. The Project Owner should priority the relocation before the turbine construction occurs to also minimise the disturbance impacts cause by the construction activities to the local

people staying in the huts/houses. The RLRP should take into account the women and other vulnerable groups to ensure they are not overlooked during Project implementation and left worse off.

12.9.5 Residual Impacts

With mitigation measures in place, the project may reduce the impact to **Moderate** significance along the year of project operation.

12.9.6 Monitoring and Audit

The following monitoring and audit actions are recommended:

- Prepare the Completion report for the land acquisition process.
- Monitor implementation of the RLRP on a quarterly basis.
- Prepare the Completion report for the RLRP.
- Maintain Consultation and Grievance records in relation to land acquisition.

12.10 Positive Impacts on Local Employment and Community Development (Construction and Operation)

12.10.1 Potential Impacts

The potential impacts on local employment and business during the Project's construction phase are considered as follow:

- Increase local employment and income;
- Provide temporary direct employment for the Project and induced employment opportunities by local suppliers;
- Provide opportunities for small and medium local businesses; and
- Community discontent due to high expectation in business and worker recruitment.

Baseline information showed that the large proportion of the surveyed population obtained primary and lower secondary education. As such, it can be assumed the education level in the Project area is low, which qualifies people for unskilled work.

The construction is expected to employ approximately 343 workers during peak times through direct hire and subcontractor recruitment. The Project Owner and EPC is committed to hiring local people for unskilled and semi-skilled positions. It is foreseen that without training, local people could meet of the required number of local employment, and the increase the employment opportunities for local people, training should be considered by the Project Owner. As such, the Project will create jobs and extra incomes for a small number of local people during the 12 months of construction phase

With the high percentage of local workers, the demand for services (e.g. groceries, restaurants, hairdressers, transport) and induced jobs are predicted small.

By the end of the construction phase, worker demobilization will occur. Fifty-four workers including 20 local wokers will work the operation phase. The significant reduction in workforce, as a result, will reduce the local community's income, but the skills and experience gained during the construction could remain and increase the job opportunities in other industries nearby for such local workers.

The impacts to the local economy from employment and business opportunities arising during Project construction and operation include local employment and local procurement. In addition to employment opportunities, the Project will also require goods and services for its construction activities such as construction materials, equipment, cleaning, catering and other hospitality services. However, it is noted from the socio-economic affected communes. Most of local people living close to the Project Site has

very limited commercial activities, mainly with mobile traders who are from center of Krong Buk district. Therefore, the above-mentioned opportunities will probably provide additional markets for the existing small and medium local businesses of the Krong Buk district. These may include sands and rocks suppliers, excavator and bulldozer equipment suppliers, restaurants, and lodging providers. On the other hand, grocery suppliers and food provider services might be provided by local business owner.

During the operational phase, the local economy will be positively influenced by an increase in taxation revenue of the Province, demand for materials and services and tourism development. The Project expects to employ 20 local employees (37% of total employees) during the operational phase. According to the local EPP report, while most of the labours during the operation phase will be the skilled labourers and will be likely recruited from outside of the area, priority will be given to the local community of Krong Buk district and Dak Lak province to fill the required unskilled/semi-skilled positions such as security personnel and kitchen support workers.

12.10.2 Significance of Impacts

Based on the above analysis, the Project is expected to have a positive impact in terms of employment, procurement and induced job opportunities, and increase the economic condition of the local people.

Given the Project Owner's commitment to optimize local employment and procurement, the Project would likely bring a positive impact to local communities. The impact during construction time is categorized as short-term impact as it is 12 months duration. The Project can give direct benefit to the local economy via tax to the local government. Given the number of economic opportunities possibly created in relation to the scale of local population through the project lifecycle, the impact magnitude is considered Medium. However, the positive impact cannot be achieved without enhancing measures and could create community discontent due to high expectations to be employed and benefit from Project activities, meaning the receptor sensitivity is Low, making the overall impact significance **Minor**.

Impact Description	Local Employm	Local Employment and Business during the Project Construction									
Impact Nature	Negative	Negative F			Positive				Neutral		
Impact Type	Direct Ir			Indire	Indirect			Induced			
Impact Duration	Temporary Sh		Short-term		Long-term			Permanent			
Impact Extent	Local		1	Regional			International				
Impact Magnitude	Positive	Neg	ligible	Small		Mediu		um		Large	
Receptor Sensitivity	Low	1		Medi	um			High		1	
Impact Significance	Negligible		Minor			Moderat	е		Majo	or	

Table 12.19 Local Employment and Business during the Project Construction

12.10.3 Existing Control

No existing control in place.

12.10.4 Enhancement Measures

Based on the above analysis, the Project is expected to have a positive impact in terms of employment, procurement, and induced job opportunities and increase the economic conditions of the local people. In order to enhance positive impacts, the following measures are recommended:

 Facilitate employment for local workers (e.g. un-skilled workers and provide adequate training for the tasks to be performed);

- Encourage contractors to hire local labour by the provision of a clear stipulation/commitment of using local labour, particularly in regards to economically displaced households, in the EPC contract and instruct the EPC contractors to prioritise qualified local people as construction workers in accordance with the needs of the Project;
- Communicate clear information about Project-related employment and business opportunities and prioritize local people wherever feasible. Such communication should be conducted at least two weeks before recruitment so that local people have enough time to prepare for the recruitment process (for example, preparing administration documentation for job application.);
- As locals are more likely to qualify for low-skilled jobs, the Project Owner should negotiate with Contractors to provide detailed requirements on educational qualifications and skills for each job opportunity;
- Work closely with local/relevant authorities to synchronize the Project's needs in terms of local labour as well as locals' capacity; and
- Provide grievance mechanism process from the beginning of Project construction process to manage community complaints and expectation on job hiring and purchasing process.

Based on ESIA requirements to optimise the benefits to the local community through employment and business opportunities, the Project Owner should implement the following additional measures to increase the adaptability local communities:

- Project Owner shall formalise, in all contracts, a clause on the Project's commitment to local employment and acquiring local goods and services wherever possible
- The Project Community Development Plan (CDP) should target the promotion of local employment, local business support, and improvement of health and sanitation as recommended during the social baseline interview with local communities. The CDP should also consider priority for women and other vulnerable groups, and
- Project Owner shall track and monitor the community grievance mechanism (as set out in the Stakeholder Engagement Plan) to handle concerns associated with Project employment/workforce recruitment.

12.10.5 Residual Impacts

With the proposed measures in place, the impact will be enhanced during the year of Project construction.

12.10.6 Monitoring and Audit

The following records are suggested to be kept:

- Number of workers hired local and non-local
- Type and frequency of information disclosure to community and government on workforce hiring
- Number of grievances received regarding workforce recruitment

12.11 Impacts on Indigenous Peoples (Construction and Operation)

As concluded in Section 5.2.2, the Ede located in the Project' area fulfil all four characteristics of IPs as defined in the AIIB ESS3 and IFC PS7 and is considered as IPs. Despite their recent significant progress in socio-economic development and high integration into the mainstream society, Ede people have maintained their own cultural uniqueness of a matrilineal system (see further Chapter 9).

12.11.1 Vulnerability Analysis

12.11.1.1 High Poverty Rate

According to Decision No. 861/QD-TTg dated on 4 June 2021 by the Prime Minister and Decision No. 433/QD-UBDT on approving the list of Zone III, II, I communes and the list of extremely difficult villages belonging to ethnic minorities and mountainous areas for the period 2021-2025, Krong Buk district has two Zone I communes (Cu Ne and Pong Drang communes), one Zone II commune (Cu Pong commune), and one Zone III commune (Ea Sin commune) with 13 villages categorised as "extremely difficult villages". It should be noted that ethnic minority households occupy 59.4% of the commune households and the number of poor ethnic minority households accounts for 77.2% (or 223 households) of the total number of poor households in the commune. In four Project affected communities, there is a common pattern that ethnic minorities including Ede people have a much higher poverty rate compared to the Kinh households.

- Cu Ne commune: Ethnic minority households occupy 59.4% of the commune households and the number of poor ethnic minority households accounts for 77.2% (or 223 households) of the total number of poor households in the commune.
- Cu Pong commune: There are 1,873 ethnic minority households (accounting for 67.1%), of which 233 households are poor household (accounting for 82.6% of the total poor households in the commune.
- Ea Sin commune: There are 371 ethnic minority households, of which 224 households (71.6%) are classified as poor.
- Chu Kbo: There are 134 ethnic minority households, of which 33 ethnic minority households (20% of the total poor households) are poor.

12.11.1.2 Agriculture Dependency

The analysis of main livelihoods of Ede ethnic minority people as found in the Socio-ecnomic baseline of Vol 2 ESIA, showed that Ede people's livelihoods are not dynamic as agriculture still occupies a major position in their livelihood typology, and on-farm income accounts for the largest share of household income. Low access to education and lack of capital may be great contributors to a less dynamic livelihood strategy of indigenous people. Statistically, the largest percentage of the 226 working people is engaged in land-based livelihoods (91.2% or 206 people), with the majority engaged in cultivation (see Table 12.20). Wage-based livelihoods have a smaller number of population with 19 people or 8.4%. Meanwhile, only one person or 0.4% generates their household income from enterprise-based livelihoods.

Main Livelihoods	N (226)	%	
Land-based	Cultivation	205	90.8
	Husbandry	1	0.4
Wage-based	Public servant	8	3.5
	Company worker	6	2.7
	Day labourer	5	2.2
Enterprise-based	Small business	1	0.4

Table 12.20 Main Livelihoods of the Surveyed Working Population

Source: Socio-economic survey conducted by ERM, July 2021

12.11.1.3 Literacy

Most of the surveyed population are literate with 86.7% or 286 people while around 13.3% or 44 people are illiterate (see Table 12.21). Of the 44 illiterate people, there 21 people in working-age group (aged from 28 to 57 years), two people under working age (aged of eight and 14), and 21 over working age (from 58 to 88 years old). While reasons for illiteracy have not been further investigated in the study, this may be attributed to difficult living conditions, poverty, disability, and geographical remoteness.

Table 12.21 Surveyed Population by Literacy

Literacy	N (330)	%
Illiterate	44	13.3
Literate	286	86.7

Source: Socio-economic survey conducted by ERM, July 2021

12.11.1.4 Educational Attainment

Most of the surveyed literate people (92.3% or 264 people) have been attending or completed general education, specifically 33.6%, 36%, and 22.7% at primary, lower secondary, and upper secondary education levels respectively (see Table 12.22). Furthermore, about 2.9% or eight literate people reached university education level (one dropped out, two attending, and five graduated), 1% or three people reached college level (one dropped out and two graduated), and one person completed vocational education (0.3%). It is worthy to note that ten people or 3.5% can read and write even though they have not attended any format education programs.

Table 12.22 Surveyed Population by Educational Attainment

Educational Attainment	N (286)	%
Literate without schooling	10	3.5
Primary education	96	33.6
Lower secondary education	103	36.0
Upper secondary education	65	22.7
Vocational school education	1	0.3
College education	3	1.0
University education	8	2.9

Source: Socio-economic survey conducted by ERM, July 2021

12.11.1.5 Child Marriage and Consanguineous Marriage

Child marriage and consanguineous marriage have been persistent problems among ethnic minority communities in Dak Lak province and have become a barrier to poverty reduction and social security. According to statistics, from 2015 to now, Dak Lak province had more than 2,600 cases of child marriage. According to the socio-economic survey of 53 ethnic minorities in 2019, the rate of child marriage⁶⁵ in Dak Lak reached 29%, mostly concentrated in Ea Sup, Krong Buk, Ea H'leo, Krong Bong,

⁶⁵ Phuc An (2020) and Vietnam Academy for Ethnic Minorities (2020)

M'Drak, Krong Pac, Lak, and Cu M'gar districts. The province recorded 1,815 consanguineous marriages in Ede, M'Nong, Mong, Tay, Nung, Dao, and Gia Rai communities in 2019. Child marriage and consanguineous marriage are more prevalent in Zone III communes and extremely difficult ethnic minority villages than in other areas.

The study recorded a small number of child marriages in the surveyed villages. Two Ede surveyed men in Kdro 2 village of Cu Ne commune and Cu Hriet village of Cu Pong commune were married despite their under-marriage-age status.

12.11.1.6 Challenges of Ede Community Development

In the course of Ede ethnic minority development, there are some challenges to surveyed communities in terms of local infrastructure, public services, environment, and social security according to evaluation of the surveyed households (see Table 12.23). Specifically, common difficulties of local infrastructure are normally asociated with low quality and degrading roads and limited public services such as water, electricity, and market. Environmental pollution is also a worrying problem in the locality along with local insecurities due to social evils and the influx of migrant workers during the implementation of many existing industrial projects in the locality. Consistently, the findings from KIIs showed that social evils including bike racing, thieves, drunkards, fighting, and even drug use are commonly reported among young people, especially Ede community in Cu Hriet (Cu Pong commune), Drah 1, Drah 2, and Ea Siek (Cu Ne commune).

Challenges	Description	No. of Responses	Cu Pong Commune		Cu Ne Commune				
		by Surveyed Households	Cu Hriet	Ea Bro	Kdro 1	Kdro 2	Drah 1	Drah 2	Ea Kung
Road	Dusty, unconcreted, and waterlogged roads are causing travel difficulties for local people, especially in the rainy season.	55	✓	~	•	•	•	•	•
Market	The market area is far from local residential areas.	34	~	~	~	~	~	✓	~
Water	Water shortage for daily usage and irrigation during the dry season, and allum contamination of water sources are common problems.	27	V	~	✓	✓	✓	✓	
Local schools	Degraded school facilities, lack of school facilities, and lack of English classes are challenging local efforts in improving education quality.	24	*	*	*		*	*	¥

Table 12.23	Main Ede Community Challenges
-------------	-------------------------------

Challenges	Description	No. of Responses	Cu Pong Commune		Cu Ne Commune				
		by Surveyed Households	Cu Hriet	Ea Bro	Kdro 1	Kdro 2	Drah 1	Drah 2	Ea Kung
Health stations	Inconvenient location of local health stations and lack of permanent well-qualified medical staff	18	•	~		~		•	✓
Internet and mobile services	The Internet and mobile connection in the surveyed areas is slow and unstable.	5	~	*			~		~
Other infrastructures	Street lighting system, cemetery building, and community building are recommendations from respondents	13	*	~	*			~	
Environment	Environmental pollutions (i.e. indiscriminate littering, household solid waste incineration, household wastewater, and coal production)	33	•	~	•	✓	✓	✓	
Local security	Social evils such as bike racing, thieves, drunkards, fighting, and even drug use occur in the surveyed communes. In addition, traffic accident and risks from the influx of migrant worker also emerge in the locality.	28	✓	•	V	 Image: A start of the start of	 Image: A start of the start of	 Image: A start of the start of	~

Source: Socio-economic survey conducted by ERM, July 2021

12.11.2 Potential Impacts

Requirement of FPICon/FPIC from Affected IPs Communities

AIIB ESS3 and IFC PS7 acknowledge that IPs may be particularly vulnerable and will require borrower/client therefore seeks the consent of affected communities when a project has any one of the following three types of activities:

- Commercial development of their cultural resources and knowledge (AIIB and IFC requirement);
- Physical displacement from their traditional or customary lands (AIIB and IFC requirement);
- Commercial development of natural resources within customary lands under use that would impact the livelihoods or the cultural, ceremonial, or spiritual uses that define their identity and community (AIIB and IFC requirement); and

 Use of cultural heritage, including knowledge, innovations, or practices of Indigenous Peoples for commercial purposes (IFC requirement)

Findings from the ERM scoping and social baseline study revealed that the livelihoods of Ede people highly rely on land-based production and that land acquisition impact is on individual households who belong to the Ede ethnic minority. It is unlikely that the Project's land acquisition will affect any land/ natural resources that are under customary use of Ede community. It is important to note that further relocation might to take place due to land acquisition impacts induced by noise impact on sensitive receptors, shadow flickering and blade throw. Such circumstances would require through additional fieldwork to confirm the exact number and type of residential dwelings and if so, perform consultations with affected households through this additional fieldwork. According to the information provided by the Project Owner and local authorities, physical displacement (if any) may induce relocation of IPs from their household's land or natural resources subject to traditional ownership or under customary use by IPs.

No impact on the cultural heritage are anticipated at time of this reporting. The project will not make commercial use of Ede cultural heritage or traditional knowledge and practices. Therefore, the FPICon/FPIC and consent through broad community support is not required (see detailed in Vol 1 ESIA). However, proper Informed Consultation and Participation (ICP) according to IFC PS7 with the Ede community is required to action through the implementation of a Stakeholder Engagement Plan.

Land Acquisition and Livelihoods Impact

As mentioned above, as Ede people are identified as a forest/natural resource dependant community, the loss of land will potentially lead to Loss of livelihood and/or income from the land-based livelihood, and thus a more vulnerable status to those households.

Social/cultural conflicts among the community might arise. Local people may lose trust in the local authority and Project Owner when they are not able to ensure equality in terms of compensation payment for land acquisition.

Impacts on Health, Safety and Security

Project's impacts on health, safety and security due to labor influx and activities during construction are discussed on the previous sections. These impacts would be of higher significance on ethnic minority people and communities given their low educational background, high dependency on natural resources, and limited modern healthcare access.

There is an increase in the percentage of local people concerning the threats associated with migrant workers to women. First and foremost, due to the COVID-19 epidemic context, local people are afraid of diseases which go along with the influx of migrant workers to their community. In addition, since there are many strangers coming to the village, local women will have a certain degree of worry as they do not know who these people are and what their backgrounds. Furthermore, the social situation in the community will become more complicated and might be dangerous for women in particular. Specifically, they will not dare to go out at night and they always feel insecure when they work in their coffee planting area alone (CP13, male respondent, Ede ethnicity, Ea Bro village, Cu Pong commune, 13 July 2021). It is recommended for both local authority and the Project to closely monitor and manage the migration of non-resident workers.

Improper Consultation with Affected IPs Communities

During the socio-economic baseline consultation, the affected Ede communities requested that more information on the Project development should be disclosed to them. Further specific information about the Project include:

- Land acquisition and compensation, support, and resettlement;
- Project implementation timeline
- Employment opportunities for the locals

- Project impacts on community environment
- Project impacts on community health
- What happens to the village or commune when the Project starts
- Negative impact mitigation strategies

They suggested that Project information is communicated through public community consultation, local authorities, or face-to-face meetings. The community consultation should be made available to the local people from the potentially affected communities in an appropriate form, manner, and language, specifically:

- It is crucial to invite all villagers, including men and women, vulnerable and non-vulnerable people to the meetings to get their perspective on the Project activities when necessary.
- The community consultation may be organised through face-to-face interactions or meetings. This
 may include translation of the Project documents into local ethnic languages verbally by using
 interpreters at community meetings.
- Pictorial communications and visualised tools will be used frequently during consultation or group meetings.
- The community consultation may be organised in the cultural house and at an appropriate time with consideration to local production schedule.

Positive Impacts

The Ede community in the Project area will likely benefit from the upgrade of infrastructure (e.g. upgrading the existing inter-village road and Project's internal and access road) and job opportunities. They are also beneficiaries of as ethnic minority development activities implemented by the Project during the Project construction and operation as suggested in the Indigenous Peoples Plan (IPP).

12.11.3 Existing Control

- A Stakeholder Engagement Plan (SEP) including a Community Grievance Mechanism (CGM) has been developed within this ESIA package.
- An Indigenous Peoples Plan has been developed within this ESIA package.

12.11.4 Significance of Impacts

Given FPIC is not required, a wide range of impacts from the Project, from livelihoods, to health and security, are predicted in all affected villages where Ede people live. Social and cultural conflict issues might if such potential impacts are not properly communicated and managed. As such, the impact magnitude is Medium

The receptors' sensitivity is assessed to be Medium in terms of high poverty rate, low educational attainment, high dependency on land-based livelihoods, and emerging challenges for community development. Eventually, the Project impacts on Ede livelihoods, way of life and cultural values during the land clearance and construction phase and the operation phase of the Project is assessed as Moderate significance.

Impact Description	Impacts on Indigenous Peoples						
Impact Nature	Negative Positive				Neutr	ral	
Impact Type	Direct	irect Indirect			Induc	ed	
Impact Duration	Temporary	Short	rt-term Long-term			Permanent	

Table 12.24	Impacts of	on Indigenous	Peoples
-------------	------------	---------------	---------

Impact Description	Impacts on Indigenous Peoples									
Impact Extent	Local			Regional				International		
Frequency	Throughout the Project's life cycle									
Impact Magnitude	Positive	Negligible			Small	Mec		lium		Large
Receptor Sensitivity	Low			Medium			High			
Impact Significance	Negligible		Minor	Minor			Moderate		Major	

12.11.5 Additional Mitigation and Management Measures

The Project is expected to implement the following mitigation measures:

- Disclose and implement a Stakeholder Engagement Plan during construction and operation. The SEP should include an Informed Consultation and Participation process for the Indigenous Peoples;
- Provide and communicate detailed information about the Project's plan and schedule particularly related to land clearing and construction to the community with a special attention to farmers nearby the project locations;
- It is recommended that once the ESIA has been finalised, it should be publicly disclosed to local authorities and community, with the participation of Indigenous People. The public disclosure should be in a form that allow two-way communication approach (i.e. public meeting, etc.) and in a culturally appropriate manner and understandable form for local people (non-technical languages). Provide assistance of local language that more familiar with IP context/understanding.
- Review all public consultation process to ensure:
 - The continued access to natural resources independent of Project's land purchasing; and
 - The provision of access, usage, and transit on land that the Project is developing on (i.e. access and use of land within the Project's footprint), subject to overriding health, safety, and security considerations to the Affected Communities of Indigenous Peoples.
- Disclose and implement a community grievance mechanism that is understood by and accessible for all villagers. The mechanism will be simple, efficient and timely and fully consultative. It should be disclosed in a culturally appropriate manner, with local language and easy to access.
- Disclose and implement the IPP based on the results of socio-economic baseline survey and consultations with relevant local authorities and communities. The implementation of the IPP should propose development programs that aid the avoidance and minimization of negative impacts on IPs, ensure social and economic benefits to IPs in a culturally appropriate and gender responsive manner; and strengthen the social, legal and technical capabilities of IPs to enable them to represent the affected IPs more effectively.
- Include affected IPs households as priority in RLRP and CDP programs when the management plans are developed.
- A Chance Find Procedure should be developed for the pre-construction and construction phase, given that the Project is located nearby the IP's location with probably physical cultural heritage.

12.11.5.1 Residual Impacts

As a result of the implementation of the proposed additional measures, the residual impact on lands, natural resources and cultural heritage of the Ede People during construction and operation phases is expected to be Minor.

12.11.6 Monitoring and Audit

Comply with the monitoring mechanism proposed in the SEP, IPP, RLRP, CDP and Chance Find Procedure during the implementation of these plans.

12.12 Gender Impact Assessment (Construction and Operation)

12.12.1 Potential Impacts

Maintenance of Structural Gender Inequality in Work

When the Project maintains human resource policy and planning that exclude a gender dimension, structural gender inequality in work might be strengthened. In the renewable energy sector in Vietnam, there is a small proportion of women in management, technical, and field-based roles and a high concentration of women in office positions such as administration, finance, and human resources. Gender awareness in human resource policy should:

- Refer to an understanding of the significance of gender in the positioning of people in the sector workforce, and a recognition that gender affects occupational choices, career patterns and working practices;
- Reflect the need for gender issues to be incorporated into worker training; and
- Relate to the representation of women in decision making in the company and Project.

Local Women's Ability to Sustain Livelihood

As indicated in the household survey findings, for women's ability to sustain their livelihood, a large proportion of local respondents (61.8%) stated that women livelihood would not be much affected by the Project implementation (see Table 12.25). This could be explained by the fact that the Project has just been in early implementation state and visible impacts have not been experienced yet. Reportedly, to some extent the Project construction may at best damage the road which is not a major problem as the Project can rehabilitate the road, therefore for women, this is not actually a threat. In addition, it is the employment opportunities generated from the Project that relieve some of the respondents as employment for women can be diverse especially women who are engaged in the business and service sector.

Since the Project operating in the locality, more job opportunities will be created along with the Project development, businesses will thrive, and women can have better jobs besides cultivation (CN 09, male respondent, Kinh ethnicity, Kdro 1 village, Cu Ne commune, 14 July 2021).

Meanwhile, some respondents (11.1%) addressed some potential impacts on local women regarding women's health, working environment, and women's role in the community (see Table 12.25). Initially, according to the respondents, the Project construction will generate an excessive amount of dust due to vehicle travelling and wind turbine installation which can affect women and community as a whole while they are working near the Project area. Furthermore, this can also obstruct women from working as they have to work near the Project area. In addition, in case the community is affected by the Project, the husband might have to find jobs in faraway places therefore household burden is going to be placed on women's shoulders.

Meanwhile, over a quarter (27.1%) do not have any perception on the given matter as they are either not affected by the Project or they cannot depict any visible impacts.
Responses	Cu Ne Commune (N=49)		Cu Pong Commune (N=46)		Ea Sin Commune (N=28)		Chu Kbo Commune (N=21)		All Surveyed Communes (N=144)	
	N	%	N	%	N	%	N	%	N	%
Yes	3	6.1	5	10.9	3	10.7	5	23.8	16	11.1
No	32	65.3	29	63.0	14	50.0	14	66.7	89	61.8
Not clear	14	28.6	12	26.1	11	39.3	2	9.5	39	27.1

Table 12.25	Women's Ability	/ to Sustain	Their Livelihood
-------------	-----------------	--------------	-------------------------

Source: Socio-economic survey conducted by ERM, July 2021

Women's Workload

Women's workload is also taken into account to consider whether it is increased by the Project development or not, common considerations are associated with accessibility to household production land and production infrastructure. Likewise, 65.3% of the respondents asserted that women workload remains unchanged even under the Project development (see Table 12.26). As shared by the respondents, although the Project may implement in the community, they will keep cultivating on their land plot as it is unchangeable.

Only 7.6% of the respondents depict the increase in women's workload. For these households, they assumed that women will abandon the land plot if there is a wind turbine near their working area. Hence many difficulties will occur during job transition (CN19, female respondent, Ede ethnicity, Kdro 2 village, Cu Ne commune, 15 July 2021). The remaining population (27.1%) do not have any responses on this matter.

Responses	Cu Ne Commune (N=49)		Cu Po Comm (N=46)	Cu Pong Commune (N=46)		Ea Sin Commune (N=28)		Chu Kbo Commune (N=21)		All Surveyed Communes (N=144)	
	N	%	N	%	N	%	Ν	%	Ν	%	
Yes	3	6.1	5	10.9	2	7.1	1	4.8	11	7.6	
No	33	67.3	29	63.0	15	53.6	17	81.0	94	65.3	
Not clear	13	26.5	12	26.1	11	39.3	3	14.3	39	27.1	

Table 12.26 Increase in Women's Workload

Source: Socio-economic survey conducted by ERM, July 2021

Women's Dependency

Women dependency on men is worth noticing as this depicts the link between genders and gender roles in the household. A similar pattern to the aforementioned parameters can be seen in both the percentage of people who agreed with the idea of women dependency on men may increase and those who oppose, 9.7% and 63.9% respectively (see Table 12.27). First of all, some respondents believe that once women lose their livelihood or are unable to carry on their work due to the impact of the Project, they have to rely on their husband because they find more difficulties to get new jobs apart from cultivation (CN19, female respondent, Ede ethnicity, Kdro 2 village, Cu Ne commune, 15 July 2021).

Meanwhile, others asserted that if there are any possible impacts created by the Project, both men and women will experience an equal amount of influence, hence the dependency due to Project impact is unrealistic (CP40, female respondent, Ede ethnicity, Cu Hriet village, Cu Pong commune, 13 July 2021). In addition, the Project development is also perceived as an opportunity for local women especially those in the business and service area. According to some surveyed people, if women have

compensation money from the Project, they will develop household business and become independent on household income, hence they will not have to rely on their husband (CN09, male respondent, Kinh ethnicity, Kdro 1 village, Cu Ne commune, 14 July 2021). In addition, women independency also reflects in the fact that they are able to find jobs on their own, even day labour jobs. This could be because women's role in the community is improved and women can work as equal as men. The remaining 26.4% did not provide any responses.

Responses	Cu Ne Commune (N=49)		Cu Pon Commu (N=46)	Cu Pong Commune (N=46)		Ea Sin Commune (N=28)		Chu Kbo Commune (N=21)		All Surveyed Communes (N=144)	
	N	%	N	%	N	%	N	%	N	%	
Yes	3	6.1	4	8.7	2	7.1	5	23.8	14	9.7	
No	33	67.3	29	63.0	16	57.1	14	66.7	92	63.9	
Not clear	13	26.5	13	28.3	10	35.7	2	9.5	38	26.4	

Table 12.27Increase in Women's Dependency on Men

Source: Socio-economic survey conducted by ERM, July 2021

Women's Safety

There is an increase in the percentage of local people concerning the threats associated with migrant workers to women, 26.4% while nearly half of the surveyed households (48.6%) do not think this is a threat (see Table 12.28). First and foremost, due to the COVID-19 context, local people are afraid of diseases which go along with the influx of migrant workers to their community. In addition, since there are many strangers coming to the village local women will have a certain degree of worrying as they do not know who these people are and what their backgrounds are. Furthermore, the social situation in the community will become more complicated and might be dangerous for women in particular. Specifically, they will not dare to go out at night and they always feel unsecured when they working in their coffee planting area alone (CP13, male respondent, Ede ethnicity, Ea Bro village, Cu Pong commune, 13 July 2021). Moreover, community security may be prone to the influx of migrant workers due to the emerging number of social problems such as pretty thieves or conflicts (ES09, male respondent, Kinh ethnicity, Ea My village, Ea Sin commune, 14 July 2021). It is recommended for both local authority and the Project to closely monitoring and manage the migration of non-resident workers.

Table 12.28	Impacts on Women's Safety	/ Due to the Influx of Migrant Workers
-------------	---------------------------	--

Responses	Cu Ne Commune (N=49)		Cu Pon Commu (N=46)	Cu Pong Commune (N=46)		Ea Sin Commune (N=28)		Chu Kbo Commune (N=21)		All Surveyed Communes (N=144)	
	N	%	N	%	N	%	N	%	N	%	
Yes	16	32.7	7	15.2	10	35.7	5	23.8	38	26.4	
No	19	38.8	27	58.7	10	35.7	14	66.7	70	48.6	
Not clear	14	28.5	12	26.1	8	28.6	2	9.5	36	25.0	

Source: Socio-economic survey conducted by ERM, July 2021

12.12.2 Existing Control

- A Stakeholder Engagement Plan (SEP) including a Community Grievance Mechanism (CGM) has been developed within this ESIA package
- An Indigenous Peoples Plan has been developed within this ESIA package.

12.12.3 Significance of Impacts

Based on the above discussions, the Project's gender impacts will mostly relate to the women's livelihoods, work and well-being. Such impacts will be most significant during the pre-construction, construction phase, and its consequence will last for long-term. The impact magnitude is therefore Medium.

However, based on the social survey results, local women found that there is a low possibility of increasing women's workload or dependency on men and destabilising their current livelihoods due to the impacts of the Project. Eventually, it could be concluded that the Project will pose negative impacts on women's livelihoods and health condition during its land clearance and construction phase and the operation phase. The impact significance is assessed as Minor.

Impact Description	Gender Impact	Gender Impact Assessment								
Impact Nature	Negative			Pos	Positive			Neutral		
Impact Type	Direct			Indir	Indirect			Induced		
Impact Duration	Temporary Short-te		term	n Long-term			Permanent			
Impact Extent	Local			Regional			International			
Impact Magnitude	Positive	Ne	gligible		Small		Med	lium		Large
Receptor Sensitivity	Low			Medium			High			
Impact Significance	Negligible Minor		Moderate		Major					

Table 12.29Gender Impacts

12.12.4 Additional Mitigation and Management Measures

The Project is expected to implement the following mitigation measures:

- Ensure that the Project's social management plans including SEP, IPP, RLRP, and CDP will include gender mainstreaming measures to ensure women's participation and benefits from all of the Project's activities. This will include but not limited to:
 - Create job opportunities and adequate trainings for women to increase their income, particularly for poor ethnic minority women;
 - Include measures to encourage women's participation in community activities, Project's information disclosure;
- Ensure gender responsive social protection for the labour force during the project implementation and maintenance HIV/AIDS, sexually transmitted infections (STIs), and other communicable diseases
- Contractors are recommended to utilize local work labours giving preference to women labourers in both skilled and unskilled types of labour. For unskilled types of labour, it should be ensured that they are equally paid with men on time and days. Gender responsive social protection for the labour force should implemented by the Project, including awareness raising on and programming responding to the risks of gender based violence;
- Ensure that occupational safety of women labourers are taken care of by contractors; and
- Ensure that women are well informed and have full access to the Community Grievance Mechanism in SEP.

12.12.5 Residual Impacts

As a result of the implementation of the proposed additional measures, the residual impact on women in all Project phases is expected to remain Minor.

12.12.6 Monitoring and Audit

- Comply with the monitoring mechanism proposed in the SEP, IPP, RLRP, and CDP during the implementation of these plans. All of the implementation reports of those plans should include gender issues.
- A mid-program and completion RLRP audit of livelihood restoration measures undertaken by thirdparty to determine if the livelihoods of displaced people are restored and sustained, and that no further interventions are considered necessary.

12.13 Human Rights Impact Assessment (Construction and Operation)

12.13.1 Potential Impacts

Inability of Stakeholders to Participate and/ or Access Remedy

A lack of engagement could constrain a community's freedom of opinion and expression and access to information. Potentially affected stakeholders have a right to be consulted, and to provide input on the activities that may impact them. To be effective, stakeholders require sufficient project information prior to providing informed feedback.

There is the potential that relevant stakeholders may not be able to participate in the engagement process and/ or grievance process. This is particularly relevant to vulnerable groups. Vulnerable status may stem from an individual's or group's race, colour, gender, language, religion, political or other opinion. Other factors that may be considered include factors such as age, literacy, sickness, physical or mental disability, poverty or economic disadvantage, and dependence on unique natural resources.

The Project Owner has established a Stakeholder Engagement Plan to support ongoing, active engagement with stakeholders, particularly local communities. The stakeholder engagement plan will be implemented throughout construction, operation and decommissioning, ensuring that stakeholders have access to Project information and grievance mechanisms from affected communities and workers.

Impact to Workers' Rights, Either Directly by the Project or Within its Supply Chain

The Project will employ a range of people, both directly and indirectly, during the construction phase (approximately 500 people) and operation phase (42 people). Without appropriate safeguards there is potential for the rights of workers to be impacted, including workers directly employed by the Project subsidiary companies as well as by the EPC contractors and subcontractors engaged by the Project during the construction and operational phases of the Project. Increasingly there is an expectation by stakeholders that a company not only has oversight of its workers, but also its contractors and those involved its supply chain.

Similar to construction, if safeguards are not in place, a range of potential impacts can arise, including discrimination within the workplace, mistreatment of migrant labour or other vulnerable groups, prevention of workers joining trade unions, and use of forced or child labour. If left unmanaged, this can result in instances of modern slavery.

This can ultimately impact on the rights of workers, such as an employee's right to enjoy just and favourable conditions of work, right to freedom of expression, right to freedom of movement, right to form and join trade unions, and right to be free from discrimination, amongst other rights.

Impact of an Accident or Injury to occur Involving a Worker

The nature of the Project presents occupational health and safety risks, which can result in impacts on worker rights, specifically their right to life, right to liberty and security, and right to health.

Construction and operation will involve a range of activities that could contribute to or present an occupational health and safety risk, resulting in an accident or injury. The worst case scenario would be a fatality.

Impact Associated with Employment of Security Personnel

The Project will employ a range of security measures, including the employment of security personnel. With an aim to minimise health and safety risks associated with having a wind power development in close proximity to local communities. The use of security personnel itself also presents risks. This includes abuse of power and use of inappropriate, disproportionate or excessive force by security personnel. This can impact the safety of nearby communities, and it presents implications for the community's right to life, fair and humane treatment, liberty, and security of person.

12.13.2 Existing Control

- A Stakeholder Engagement Plan (SEP) including a Community Grievance Mechanism (CGM) has been developed within this ESIA package
- An Indigenous Peoples Plan has been developed within this ESIA package.

12.13.3 Significance of Impacts

Based on the above discussions, human rights impacts involved several rights of affected communities, workers, and other stakeholders, including right to life, right to liberty and security, and right to health, right to enjoy just and favourable conditions of work, right to freedom of expression, right to freedom of movement, right to form and join trade unions, and right to be free from discrimination. Such impacts will be most significant during the construction phase, and its consequence will last for long-term. For this reason, the magnitude of the impact is considered medium.

The project affected areas include the presence of Ede IPs and other vulnerable groups. Also, the project will recruit a prominent foreign workers in its workforce. As such there are epistemic, social and cultural barriers for the two groups to fully understand and practice human rights in the local context of the Project area. For this reason, the receptor sensitivity is assessed as Medium and the overall impact significance is Moderate.

Impact Description	Human Rights	Human Rights Impact Assessment								
Impact Nature	Negative	Negative			Positive			Neutral		
Impact Type	Direct		Indir	ndirect			Induced			
Impact Duration	Temporary Short-t		-term		Long-term			Permanent		
Impact Extent	Local			Regional			International			
Impact Magnitude	Positive	Ne	gligible		Small	Med		lium		Large
Receptor Sensitivity	Low	÷		Med	lium			High		
Impact Significance	Negligible Minor				Moder	ate		Ма	ijor	

Table 12.30	Human	Riahts	Impacts
	numan	nights	impacts

12.13.4 Additional Mitigation and Management Measures

It will be important that the Stakeholder Engagement Plan that has been developed to guide ongoing engagement with stakeholders is actively implemented. This should include regular reviews and updates based on stakeholder feedback. Continued vigilance will be needed to ensure ongoing support is provided to vulnerable groups.

- Ensure all workers (including contractors) are aware of their role in the engagement and grievance management processes, as part of the workforce induction process. This should enable grievances to be lodged anonymously. All workers, including those employed through the Project's supply chain, should have access to a grievance mechanism to ensure that workers issues and concerns are being addressed.
- Implement the Project's grievance mechanism. This will provide an appropriate channel for stakeholders to voice their concerns, including opportunities for written and verbal communication. Ensure vulnerable groups are informed of their rights and the ways in which they can communicate their grievance.
- Develop and implement the policies across the Project's supply chain, including:
 - Labour management policies;
 - Community relations policies; and
 - Supply chain policies, including the supplier, vendor and contractor expectations.
 - These requirements should be embedded in relevant contracts, including agreements with EPC contractors.
- Employment practices will ensure that workers are not discriminated against on the grounds of race, colour, sex, religion, political opinion, national extraction, social origin, age, marital or relationship status, sexual orientation or trade union activity, other than in compliance with local content policy. As part of the hiring process, age checks will be conducted.
- Employment practices will ensure that passports or other forms of identification are not withheld. The identification can be stored in a safe location, but workers should always have access to their identification.
- Employment practices will ensure that workers are paid appropriately and in a timely manner, informed by national standards and industry benchmarks.
- Employment practices will ensure that workers are provided an easy to understand contract that specifies working hours, overtime hours, breaks, and holidays.
- Safeguards should be established if recruitment agents are utilised. This includes pre-screening
 and contractual obligations to ensure appropriate oversight of recruitment fees (so that workers are
 not placed in debt), and ensure passports or other forms of identification are not withheld.
- As part of the induction process, ensure workers are made aware of their rights.
- Development and implementation a HSE Plan. Provide an induction and on-going training for all workers regarding health and safety, including identification and management of risks and hazards and wearing appropriate personal protective equipment.
- Requirement that workers (including contractors) complete a JHAs prior to undertaking work, as well as daily toolbox discussions to ensure hazards are identified and management measures are implemented.
- Ensuring equipment is well maintained and sufficient lighting is available to maintain a safe work environment.
- Development of a traffic management plan to reduce the risk of accidents.
- Provision of 24/7 medical support to treat minor health issues, provide preventative care, and stabilize personnel; and coordinate with local medical emergency services for a higher level of care as needed.
- Conduct local risk assessments to identify security threats to determine the appropriate security requirements.

- Develop and implement a Workforce Code of Conduct, which outlines workforce behaviour expectations while onsite, in the workers camp and when interacting with local communities. This will apply to the security personnel.
- Document and investigate allegations of human rights abused by public or private security personnel. Report incidents of inappropriate force used by security personnel, and ensure appropriate action is taken to address the incident.
- Take appropriate disciplinary action where required, such as removal of personnel credibly alleged to have committed a human rights abuse.

12.13.5 Residual Impacts

As a result of the implementation of the proposed additional measures, the residual impact is expected to be Minor.

12.13.6 Monitoring and Audit

Ongoing monitoring of the stakeholder engagement program should be undertaken. Particular attention should be given to ensure that differentiated measures are effectively engaging vulnerable groups, including women, the elderly, the poor, and the disabled.

Additionally, it will be important to monitor and documented allegations of human rights violations, and where necessary investigate and take disciplinary action.

12.14 Summary

Significance of the impacts discussed in the above sections before and after mitigation is summarised in Table 12.31.

Sections	Impacts	Sig	gnificance of Im	pacts
		Impact Nature	Before Mitigation*	With Mitigation**
Pre-constr	uction Phase			
10.5	Economic Displacement and Loss of Livelihood due to Land Acquisition for the Project	Negative	Major	Minor
Constructi	on Phase			
10.6	Disturbance to Agriculture Production	Negative	Moderate	Minor
10.7	Impacts on Worker Rights, Occupational Health and Safety	Negative	Moderate	Minor
10.8	Impact on Community Health, Safety and Security (Non-influx)	Negative	Moderate	Minor
10.9	Impacts Associated with Migrant Worker (Influx)	Negative	Minor	Negligible
Operation	Phase	-	-	
10.10	General Disturbance on Local Community	Negative	Moderate	Minor
10.11	Relocation Impact Due to Health and Safety Reason	Negative	Major	Minor

Table 12.31 Summary of Social Impact Assessment

Sections	Impacts	Significance of Impacts					
		Impact Nature	Before Mitigation*	With Mitigation**			
Constructio	on and Operation Phase						
10.12	Positive Impacts on Local Employment and Community Development	Positive	Positive Impact				
10.13	Impacts on Indigenous Peoples	Negative	Moderate	Minor			
10.14	Gender Impact Assessment	Negative	Minor	Minor			
10.15	Human Rights Impact Assessment	Negative	Moderate	Minor			

Note: (*) without mitigation measures/management suggested from the ESIA.

(**) with mitigation measures/management suggested from the ESIA.

13. UNPLANNED EVENTS

This Chapter presents the probable impacts of unplanned events associated with construction and operation phases of the Project. The unplanned events are considered separately from routine and non-routine activities as they potentially arise from technical failure, human error, or as a results of unexpected natural phenomena.

The assessment of potential impacts arising from unplanned events are based on the environmental baseline data, consultation with China Huadian Engineering Co.,Ltd and judgements based on ERM's professional knowledge, previous experience and good practices. The assessment of unplanned impacts considers the occurring probability of unplanned events and an estimation of the severity of consequences. The assessment of the severity of impacts due to fire and explosion is based on the worst case scenario, where it is assumed that safety devices and associated measures fail to operate properly resulting in the incidents.

13.1 Scope of Assessment

This assessment addressed the following unplanned and non-routine events relating to the Wind power project include but not limited to:

- Spillage of fuel, oil, chemicals and hazardous materials
- Traffic including vehicle and vessel accidents
- Fire and explosion, including bushfire and Unexploded Ordnance (UXO)
- Blade throw
- Transmission line snapping, and transmission pylon/tower collapse
- Occupational Health and Safety, and
- Natural hazards.
- This section covers the impact assessment of the above-listed unexpected events by examining the potential and significance of the impacts. Then the set of preventive and mitigation measures are proposed accordingly based on the best practices (as recommended by the IFC EHS guidelines) and relevant national regulations in order to minimise the impact of these arising events during the project's lifecycle.

13.2 Relevant Guidelines and Regulatory Requirements

13.2.1 Vietnam Regulations

- Decree No. 02/2019/TT-BCT regulating Wind Power Development
- Decision No. 63/2014/QD-TTg dated 11 November, 2014 on amendments to some articles of the regulation on oil spill response according to the Decision No. 02/2013/QD-TTg dated 14 January, 2013
- Decision No.02/2013/QD-TTg dated 14 January, 2013 promulgating the regulation on oil spill response
- Decree No.95/2010/ND-CP on licensing of and cooperation with foreign search and rescue forces in Vietnam
- Decree No. 113/2017/ND-CP dated 09 October, 2017 specifying and providing guidelines for implementation of certain articles of the Law on Chemicals, and
- Circular No. 32/2017/TT-BCT dated 28 December, 2017 specifying and providing guidelines for implementation of certain articles of the Law on Chemicals and Decree No.113/2017/ND-CP specifying and providing guidelines for implementation of certain articles of the Law on Chemicals.

13.2.2 International Standards and Requirements

The International requirements applicable in the Project in terms of unplanned events are applied for this Chapter showed in Table 13.1.

Performance Standard	Requirement
ESS1: Environmental and Social Assessment and Management	To conduct an environmental and social assessment relating to these risks and impacts, and design appropriate measures to avoid, minimise, mitigate, offset or compensate for them
PS1: Assessment and Management of Environmental and Social Risks and Impacts	Emergency Preparedness and Response Where the project involves specifically identified physical elements, aspects and facilities that are likely to generate impacts the ESMS will establish and maintain an emergency preparedness and response system so that the Client, in collaboration with appropriate and relevant third parties, will be prepared to respond to accidental and emergency situations to prevent and mitigate any harm to people and/or the environment. The preparation will include the identification of area where accidents and emergency situations may occur, communities and individuals that may be impacted, response procedures, provision of equipment and resources, designation of responsibilities, communication, including that with potentially affected communities and periodic training to ensure effective response. The emergency preparedness and response activities will be periodically reviewed and revised, as
	necessary, to reflect changing conditions.
PS4: Community Health, Safety, and Security	Emergency Preparedness and Response The Client will also assist and collaborate with the affected communities, local government agencies, and other relevant parties, in their preparations to respond effectively to emergency situations especially when their participation and collaboration are necessary to respond to such emergency situations. If local government agencies have little or no capacity to respond effectively, the Client will play an active role in preparing for and responding to emergencies associated with the Project. The Client will document its emergency preparedness and response activities, resources, and responsibilities, and will disclose appropriate information to affected communities, relevant government agencies, or other relevant parties.

Table 13.1 Applicable Equator Principles, AllB ESF, and IFC Performance Standards for Unplanned Events

13.3 Assessment Methodology

The impact assessment methodology is implemented based on the baseline data of sensitive resources and socio-economic conditions as detailed in Chapter 4 of this ESIA. The main purpose of this chapter is to describe the overall approach applied for the assessment process of the impact and how to develop and propose the additional mitigation measures for each unexpected event.

The assessment of significant impact of unplanned events considers the happening probability of event and estimates the consequence severity of the events. Given that unplanned events are often single events that occur irregularly, the assessment also takes into account the frequency and likelihood of the impact.

The mitigation measures prescribed for each of the impacts are based on the international good practices (as recommended under the IFC EHS Guidelines listed above), and national regulatory requirements relevant to unplanned events.

13.3.1 Overview

To evaluate potential impacts from unplanned events, a risk-based approach is used to define:

- 1. The most likely unplanned events leading to environmental, social and/or community health impacts; and
- 2. Those unplanned events with the most significant potential environmental, social and/or community health impacts overall.

An effective tool namely Risk matrix is used to evaluate the severity of these unplanned events happening during the preparation, construction and operation phases of the project's lifecycle. The assessment principle of the impact significance for these unplanned events is therefore determined by evaluating the combination of the likelihood and consequence factors.

13.3.2 Assess the Scale of Consequence (Step 1)

Indicate levels of consequence for potential impacts from unplanned events can be defined for the physical, biological and social environment as provided in Table 13.2.

	Incidental (A)	Minor (B)	Moderate (C)	Major (D)	Severe (E)
Physical Environment	Impacts such as localised or short term effects or environmental media, meeting all environmental standards	Impacts such as widespread, short-term impacts to environmental media, meeting all environmental standards	Impacts such as widespread, long- term effects on environmental media, meeting all environmental standards	Impacts such as significant, widespread and persistent changes in environmental media OR Exceedance of environmental standards	Exceedance of environmental standards and fine/ prosecution
Biological Environment	Impacts such as localised or short term effects on habitat or species	Impacts such as localised, long term degradation of sensitive habitat or widespread, short-term impacts to habitat or species	Impacts such as localised but irreversible habitat loss or widespread, long-term effects on habitat or species	Impacts such as significant, widespread and persistent changes in habitat or species	Impacts such as persistent reduction in ecosystem function on a landscape scale or significant disruption of a sensitive species.
Social Environment	Slight, temporary, adverse impact on a few individuals	Temporary (<1 year), adverse impacts on community which are within international health standards	Adverse specific impacts on multiple individuals that can be restored in <1 year OR One or more injuries, not severe.	Adverse long-term, multiple impacts at a community level, but restoration possible. OR One or more severe injuries to a member of the public including permanently disabling injuries.	Adverse long- term, varied and diverse impacts at a community level or higher – restoration unlikely. OR Fatalities of public.

Table 13.2 Indicative Level of Consequence for Potential Impacts from Unplanned Events

13.3.3 Assess the Likelihood (Step 2)

Regarding the aim of the assessment, the occurrence likelihood of the unintentional events can be classified as five levels shown in Table 13.3 below:

Level	Description
Remote (1)	Not known in the industry
Very unlikely (2)	Known but unlikely to happen
Unlikely (3)	May occur one or more time in the Project's lifetime
Likely (4)	May occur once or twice per year
Expected (5)	May occur more than twice per year

Table 13.3 Classification of Likelihood

13.3.4 Assess the Significance (Step 3)

The consequences and likelihood of potential unplanned events are combined to determine the overall impact significance using the risk matrix shown in Table 13.4.

For the potential impacts that are determined to have an impact significance of Moderate or Major, risk reduction measures are identified; these can include measures that reduce the likelihood of the event from occurring, those that reduce the consequences on sensitive receptors/resources if the event were to occur, and those that effect the likelihood and consequence.

		Likelihood of Occurrence					
		1 Remote	2 Very unlikely	3 Unlikely	4 Likely	5 Expected	
	Incidental (A)	Negligible	Negligible	Negligible	Negligible	Negligible	
ence	Minor (B)	Negligible	Minor	Minor	Minor	Moderate	
eque	Moderate (C)	Minor	Minor	Moderate	Moderate	Major	
Cons	Major (D)	Moderate	Moderate	Major	Major	Major	
	Severe (E)	Major	Major	Major	Major	Major	

Table 13.4 Risk Matrix for Potential Unplanned Events

13.4 Assessment Potential of Impacts

Based on the Project activities, the potential unexpected events that were considered to have the highest potential environmental and social risks during all phases of the Project were shown in Table 13.5. Noted that for the commissioning and operational phases, only indicative project activities were listed. A more comprehensive evaluation of potential impacts would be conducted once sufficient detailed design information is available.

Table 13.5	Unplanned Events Leading to Potential Impacts
------------	---

Project Phase	Activity	Potential Receptors Affected
Site preparation	Small scale leakage and spill incidents from site-preparation / construction activities	Users of surface water and groundwater in Cu Ne and Cu Pong Communes

Project Phase	Activity	Potential Receptors Affected	
and construction	Traffic collisions	Users of the public roadways (National Highway 14) utilised by the project and transportation facilities	
	Fire and explosion	Nearby community: Cu Ne and Cu Pong Communes, Krong Buk District, Dak Lak Province Habitat, flora, and fauna in the vicinity of the site	
	Occupational Health and Safety	Workers and employees	
	Small scale leakage and spill incidents from activities on site	Users of groundwater in Cu Ne and Cu Pong Communes	
	Fire and explosion	Nearby community: Cu Ne and Cu Pong Communes Forest, habitats, flora, and fauna in the vicinity of the site.	
Commissioning	Blade ejection failure	Nearby community	
and Operation	Accidental transmission line snapping and tower swaying/collapsing	Nearby community	
	Natural Hazards – Flooding and landslides	Nearby community & properties Forest, habitats, flora, and fauna in the vicinity of the site.	
	Occupational Health and Safety	Workers and employees	

Potential impacts from these events were described in detail in the following section. These potential impacts had been classified using the risk-based impact assessment methodology for unplanned events included in Section 4.9. It should be noted that this methodology was different than that applied to potential impacts from planned activities, as the assessment of potential impacts from unplanned events must consider likelihood as well. Because a risk-based assessment methodology had been used, worst-case scenarios had been considered.

A summary of potential Project-related hazards, contributing causes, and consequences for the Project workforce, nearby communities and/or surrounding environment were summarised in Table 13.6. This table also provided a risk ranking for each potential impact pre-implementation of Project embedded controls.

Na	Heneral	2	0	Risk Ranking
NO.	Hazaro	Cause	Consequence	Pre-mitigation
Site I	Preparation / Construction			
1	Small scale leakage and spill incidents from site-	Corrosion, dropped objects or other damages to storage oil tanks/mobile gas stations; failure to secure valves; failure to maintain large mobile construction plant.	<u>Communities</u> – Based on the liquid fuel storage volumes, the potential exists for exposure to contaminated water or soil and resulting in long-term effects on surrounding communities utilising groundwater resources if a spill was not being contained.	3C (Moderate)
	preparation / construction activities		Environment – Based on the liquid fuel storage volumes potential for loss of containment of oil/chemicals into the ground of surrounding area, including nearby surface water resources results in localised, potentially long-term, degradation.	3C (Moderate)
2	Road traffic transporting personnel or materials involved in a collision	Wet / dark conditions, driver distraction, fatigue, other dangerous drivers, variable road conditions; rural areas with pedestrian road users As above with livestock in the road	<u>Communities</u> – Traffic accidents that involved community members, resulting in injury or fatality. Accidents might require use of local medical emergency services in the Project area and could temporarily decrease access to these services for local residents.	3D (Major)
			<u>Properties</u> – Traffic accident once happening can induce damage to the existing roads, highways, bridges and utility lines (e.g. electricity cable lines)	3D (Major)
3	Occupational Health and safety	 Working with heavy equipment Heavy handling Working at height or confined spaces, toxic atmosphere, oxygen deficiency, electric shock, etc. 	Workers and employees: - Health and safety risks during construction may result in an accident, injury or fatality.	4C (Moderate)
4	Fire and Explosion including Unexploded Ordnance (UXO)	Leakage and spill incidents of flammable materials, malfunctioning equipment and large mobile construction vehicle	<u>Communities</u> – Based on the liquid fuel storage volumes the potential exists for exposure to ignited due to malfunctioned equipment and resulting in potentially severe injuries to employees and spread to nearby communities' members	3D(Major)

Table 13.6 Potential Impacts from Unplanned Events and Pre-mitigation Risk Ranking

N	Hererd	Course	0	Risk Ranking
NO.	Hazard	Cause	Consequence	Pre-mitigation
			Environment: – Based on the liquid fuel storage volumes potential for ignition of leakage or spill of oil/chemicals due to human errors and malfunctioned short-circuit equipment, accidents might lead to uncontrollable wildfire, loss of crops and habitat, causing injury and life-threatening of local community.	3D (Major)
Com	missioning and Operation			
F	5 Small scale spill from activities on-site	Corrosion, dropped objects or other damage to small storage vessels; failure to secure valves; failure to maintain equipment.	<u>Communities</u> –Based on the liquid fuel storage volumes the potential exists for exposure to contaminated water or soil and resulting in long-term effects on surrounding communities utilising groundwater resources if a spill is not contained.	3B (Minor)
5			Environment - Based on the liquid fuel storage volumes potential for loss of containment of oil/chemicals into ground of surrounding area, including nearby surface water resources resulting in localised, potentially long-term, degradation.	3B (Minor)
		 Leakage and spill incidents of flammable materials, 	<u>Communities</u> – A large-scale fire could result in injuries to people in the surrounding communities, or in the worst-case fatalities. Explosions of malfunctioned equipment could result in rapid spread of fire and projectile spread of debris. This could result in injuries to people in the surrounding communities, or in the worst-case fatalities.	2E (Major)
6	Fire and explosion	 and explosion Damage of transmission line or Lightning strike Human's activities 	Environment: – A large-scale fire could result in damage/death of local flora and fauna. Accidents might lead to uncontrollable wildfire, loss of crops and habitat given the environment settings at the Project area. Explosions could result in rapid spread of fire and projectile spread of debris. This could result in damage/death of local flora and fauna.	2E (Major)
7		Root connection; catastrophic structural buckling or separation:	<u>Communities</u> – Blade ejection failure could result in rapid spread of fire and projectile spread of debris given the heights of wind turbines.	2E (Major)

Na	Hazard	Causa	C	Risk Ranking
NO.	Hazaro	Cause	Consequence	Pre-mitigation
		leading edge, trailing edge, or other bond separation; lightening damage; erosion; failure at outboard	This could result in injuries to surrounding communities, or in the worst-case fatalities	
	Blade ejection failure / Blade throw	aerodynamic device; reduction in stiffness of blades (up to 10%); superficial structural or delamination/laminate wrinkling that eventually become permanent damage; and over speeding due to failure of SCADA to rectify the failure or high wind/cyclonic/meteorological conditions	<u>Environment</u> – As above with local flora and fauna.	3C (Moderate)
8	Accidental transmission line snapping and tower swaying/collapsing	Wind/cyclonic/meteorological conditions, catastrophic structural separation, corrosion	<u>Communities</u> – Electrocutions that involved community members, resulting in injury or fatality, livestock leading to death of livestock and loss/reduction in community member's livelihood	3D (Major)
9	Natural Hazards Flooding & Landslide	 Heavy rainfall occurs that exceeds the capacity of the natural drainage system may cause flash flood event. Clearing vegetation for site preparation increases the rate of run-off and flood risks to downstream area. Landslide occurs in combination of many causes such as intense rainstorm, steep slopes (over 200) and vegetation removing that weakens soil bearing capacity 	<u>Communities:</u> Flood and Landslide can result in loss of human life, damage to property, destruction of crops, and loss of livestock that affects to livelihood. Flood and landslide may affects to substation and power components that lead to loss of electricity supply locally. <u>Environment:</u> A large-scale flood and landslide could result in damage/death of local flora and fauna. <u>Properties</u> – Natural hazards once happening can induce damage to many houses, existing roads, highways, bridges and utility lines (e.g. electricity cable lines)	3D (Major)

No.	Hazard	Cause	Consequence	Risk Ranking
			•	Pre-mitigation
		Occupational health and safety risks during operation, including		
		 Exposure of workers to electromagnetic field (EMF) while working in proximity to charged electric power lines 		
10	Occupational Health and Safety	 Safety risks due to working at heights Electric shock incidents can occur due to use of damaged equipment or improper operation of electric equipment, substation and transformers without protective devices and non-compliance of electric safety policy. 	Workers and employees: - Health and safety risks during construction may result in an accident, injury or fatality.	4D (Moderate)

Notes:

'Communities' refers to all individuals not directly or indirectly employed by the Project but living and/or working in proximity to Project infrastructure or areas of Project activity such that they are at risk of potential impacts from a Project-related unplanned event

In order to minimise the Project risk from the key potential unexpected events, the standard mitigation hierarchy should be applied. For the purposes of this assessment mitigation measures were discussed in the following sections where the pre-mitigation significance of the unplanned event is greater than minor.

Unlike impacts from planned activities, mitigation of unplanned events should consider both pre-event preventative actions (that reduce the likelihood of the cause of the potential impact) and post-event mitigation that reduces the magnitude of the consequence.

13.4.1 During Site Preparation and Construction

13.4.1.1 Leakage and Spill Incidents

13.4.1.1.1 Background and Potential Impact

There would be approximately 37 large mobile plant items that would be powered by diesel oil and would contain relatively small reservoirs of lube oil and hydraulic oil, with the potential for environmental damage if the materials are lost to the ground. Mobile plant will include:

- Cranes
- Pipe-laying cranes and plant
- Excavators
- Heavy goods vehicles
- Fork-lift trucks, and
- Fuel trucks.

During site preparation and the early stages of the construction phase, any accidental release of oils would occur to unpaved areas. Hence, the oil would seep into the ground and potential groundwater causing soil and groundwater contamination if the release was not responded to immediately. As observed during the site visit, there was an oil slick from the van nearby the drilling well (10 - 20 m) supplying water for construction and domestic activities at the concrete batching plant (See Figure 13.1) of the Project.

Additionally, lubricants which are not being expected to be readily biodegradable are also required in wide range of applications of a wind turbines, such as in bearings, couplings and gears and also in hydraulic systems. Once releasing into the environment, there will be a pollution leading to degradation to the soil and water at the affected terrestrial environment and proximities. In addition, improper management and control of hazardous material in general and oil in particular entails a potential risk of leakage and spill into the surrounding environment and its vicinity either from storage areas or throughout the equipment and machinery usage.

Source: ERM, 2021

Figure 13.1 Oil Slick from the Van at the Concrete Batching Plant

13.4.1.1.2 Existing Controls

According to the Feasibility Study Report and EPP, there is an oil conservator tank with capacity of 90 m^3 to be constructed at site for the oil loss of containment during the construction phase. This tank is constructed by the cast-in-place reinforced concrete B15 with the foundation's depth of 250 mm and wall's thickness of 200 mm. The cover of the tank is also made of precast reinforced concrete with stone 1×2.

13.4.1.1.3 Significance of Impact (Before Mitigation)

In terms of likelihood, the small, localized spillages are Likely to occur during the transfer of fuel and general construction activities, maintenance of machinery, improper storage of hazardous materials, malfunction of handling system. However, the consequence of loss of containment event during the preparation and construction phases is not significant as mentioned above which results to the assessed risk rankings of **Moderate** to both community and environment aspects. The significance is also provided in Table 13.6.

13.4.1.1.4 Additional Preventive and Mitigation Measures

All preventive and mitigation measures proposed to reduce the likelihood and severity of accidental onshore spills are summarised in Table 13.7.

Type of Control (i.e. Prevent / Mitigate)	Management Control	Responsibility – Organization	Timing
Preventive measure	Design the site to include good site management practices to ensure that the products are properly stored on site (e.g. secondary containment, double walled tanks, over filling alarm system).	EPC contractor	Before site preparation
Preventive measure	The Project will implement the SEP and a robust stakeholder engagement programme on emergency response. Engagement on emergency response will provide regular information on safety drills and guidance to residents in the event of an unplanned event.	Project's owner	Before site preparation
Preventive measure	Ensure good inspection and maintenance procedures for large mobile construction plant to minimise small leaks and spills such as: (i) Hazardous material (such as oil, fuel, etc.) should be stored in proper and designated areas where are hard impermeable surface, flame-proof, accessible only by authorised personnel and locked when not in use (ii) Maintain MSDS present at all times (iii) refuelling of equipment and vehicles will be carried out in designated areas on hard standing ground to prevent seepage of any spillages to the ground; (iv) Collection systems will be installed in these areas to manage any spills, fuels will be collected and either reused or removed by a local contractor; (v) The Project will restrict storage and handling of hazardous materials and fuels; (vi) Storage containers will be regularly checked and maintained; (vii) Ensure the	EPC contractor	During site preparation and construction

Table 13.7Preventive and Mitigation Measures of Leakage and Spills Incidents during Pre-
construction and Construction Phase

Type of Control (i.e. Prevent / Mitigate)	Management Control	Responsibility – Organization	Timing
	preparation of spill absorbent (including elite, clay, peat, etc.) and spill kit at hazardous material storage facility.		
Preventive measure	 Monitoring and Reporting Requirements: Inspection of storage hazardous materials; and Report any spillages and measures taken to minimise the impact and prevent from reoccurring in the future. 	Project's owner / EPC contractor	During site preparation and construction
Mitigation measure	 Prepare an Emergency Preparedness and Response Plan to cover accidental and emergency situations. This Plan will detail: Planning coordination: including procedures for informing local communities about emergency response, documentation and first aid / medical treatment; Emergency equipment: including equipment in the project design and any additional emergency equipment; Maintain good housekeeping including containment, cleaning up and disposal of contaminated soil as hazardous waste. Training: employees and contractors will be trained in emergency response procedures; and Auditing: audit records will be maintained on how the Plan is being implemented. 	Project's owner	Planning stage (before commissioning and operations)
Mitigation measure	Implement Emergency Preparedness and Response Plan (EPRP) and monitor contractors to ensure consistent implementation.	Project's owner	During commissioning and operations

13.4.1.1.5 Residual Impact

Regarding the leakage and spill incident, there are four recommended preventive measures are proposed to diminish the likelihood of the unplanned event from occurring. However, in case the event occurred, the consequence of the oil spills could potentially remain unchanged. Two suggested mitigation measures described in Table 13.7 would be applied to minimise these impacts. With both recommended preventive and mitigation measures, the residual impact decreases from moderate to minor level demonstrated in Table 13.8.

Impact Significance Aspects	Pre risk ranking (Without Mitigation Measures)	Post risk ranking (With mitigation measures)
Communities	3C Moderate	3B Minor
Environment	3C Moderate	2B Minor

13.4.1.1.6 Monitoring and Auditing

- Monthly monitoring the implementation of all proposed mitigation measures specified in Emergency Preparedness and Response Plan should be conducted properly;
- Daily inspection of any secondary containment of oil/chemical on site and ensure good maintenance procedures to minimize small leaks and spills.

13.4.1.2 Traffic Accidents

13.4.1.2.1 Background and potential impact

During the planning and construction phases, the project components including wind turbines, substations, and transmission lines manufactured in the domestic factories or imported from oversea are all transported to the project site where they are assembled. Due to big dimensions and weight, wind turbines and their components when being transported pose a challenge to the existing roads and infrastructure in the project area.

The wind turbine components will be transported from Cam Ranh Port in Cam Linh, Cam Ranh, Khanh Hoa Province through a long journey via National Highway No.1 and No. 14 which is nearly 222 km to the project site. Receptors for increased road safety risks during Project site preparation and construction included drivers, passengers, non-motorised travellers and livestock community on public roads. Although road users were likely to be accustomed to existing safety risks associated with existing road conditions, these receptors were unlikely to have experience driving or sharing the road with heavy trucks likely to be used during Project site preparation and especially construction phase.

Site preparation for the Huadian Dak Lak Wind Power Project would require a number of vehicle trips to deliver construction equipment and supplies, as well as daily trips of employee. Based on the estimation of transportation period, equipment and materials need to be delivered to the project site with the average number of vehicles movements including heavy load vehicle and non-heavy load vehicle was predicted maximum 10 trips per day. At the time of the Project's construction, there is no wind power developments under construction sharing the same equipment and material transportation route.

Based on the analysis, it was assumed that road safety risks increase roughly in proportion with increased vehicular traffic congestion. In case this unexpected event is improperly planned and managed, the heavy-load long-haul project components may damage the existing roads, highways, bridges and utility lines (e.g. electricity and cable lines) and could become a potential public safety concern to other vehicles on the road. Moreover, the transportation of large components on road may induce injury to people and damage to materials.

During the first six months in 2021, there were two traffic accidents caused by the transportation of the wind turbine blade and tower in Quang Binh⁶⁶ (May 2021) and Dak Lak^{67 68} (July 2021) Provinces. The one that happened in National Highway No. 1A, Bo Trach District, Quang Binh Province as transporting the wind turbine blade to the site caused significant damage to two other vehicles, ten road poles and destroyed one electric pole on the road (See Figure 13.2). The other that occurred in Phuong Hoang Pass (Phoenix Pass), National Highway No.26, M'Dak District, Dak Lak Province during the transportation of Wind Turbine Tower induced major traffic congestion in many hours and damaged the road infrastructure at local area (See Figure 13.3). There was no fatality recorded in two traffic accidents.

⁶⁶ https://vov.vn/xa-hoi/lat-xe-cho-canh-quat-dien-gio-sieu-khung-tren-quoc-lo-1a-doan-qua-quang-binh-858818.vov

⁶⁷ https://tuoitre.vn/xe-sieu-truong-cho-thiet-bi-dien-gio-lat-giua-deo-phuong-hoang-20210710102356514.htm

⁶⁸ https://thanhnien.vn/thoi-su/dak-lak-xe-cho-tru-dien-gio-nga-ngang-duong-phai-mo-loi-thong-tuyen-tren-ql26-1412136.html

Figure 13.2 Traffic Accident in Quang Binh Province during the Transportation of Wind Turbine Blade (May 2021)

Figure 13.3 Traffic Accident in Dak Lak Province during the Transportation of Wind Turbine Tower (July 2021)

13.4.1.2.2 Existing Controls

There is no existing controls recommended by the Project's owner.

13.4.1.2.3 Significance of Impact (Before Mitigation)

Taking all of the above into consideration, the anticipated impacts relating to traffic networks are considered of short-term duration (18 months) during the construction phase. Based on the given information, the risk is considered **Major** impact to the local community and properties which is stated in Table 13.6.

13.4.1.2.4 Additional Preventive and Mitigation Measures

Active mitigation measures that would be applied to mitigate potential road safety risks were provided in Table 13.9 below. These measures included development of a Transportation Management Plan that would address scheduling of road activity, monitoring conditions of public roads, and active traffic controls at the Project site entrance.

Type of Control (i.e. Prevent / Mitigate)	Management Control	Responsibility – Organization	Timing
	Developed and implemented a Traffic and Transportation Management Plan before commencement of any transportation activities. This should include measures such as:		
Preventive measure	route for transportation of the project components from the manufactured area to the project site.	EPC contractor	Site preparation and
	 Active traffic controls (e.g. flaggers to direct traffic at the Project site entrance); and 		construction
	 Schedule construction deliveries and employee shift changes to minimise traffic congestion and delay 		
Preventive measure	Design an H&S plan and good safety practices for the transportation (e.g. alcohol policy, good driving practice).	EPC contractor	Construction
Preventive measure	Strictly abide by the regulations specified in the Transport License granted by the Directorate for Roads of Vietnam for transporting the oversized and over-mass equipment:	Transportation	
	 The transportation only be allowed during 11:00PM – 5:00AM 	contractor / Project's owner /	Construction
	The allowable speed on the road could not exceed 20 km/h, and	organisations and Authorities	
	 A competent and certified organisations or authorities to monitor and regulate the traffic flow. 		
Preventive measure	Upgrade the access road systems to the Project site	Project's owner	Site preparation
Preventive measure	The Project will implement the SEP and a robust stakeholder engagement programme on emergency response. Engagement on emergency response will provide regular information on safety drills and guidance to residents in the event of an unplanned event.	Project's owner	Prior site preparation
Mitigation measure	Prepare Emergency Response Plan (ERP) and Emergency Management Plan (EMP).	Project's owner	Planning stage (before commissioning and operations)
Mitigation measure	Implement ERP and EMP and monitor contractors to ensure consistent implementation	EPC contractor / Project's owner	Prior to site preparation

Table 13.9	Preventive and Mitigation Measures of Traffic Accident
	i i o i o i i i a i i i gali o i i i a i i o i o i i i a i i o i o

13.4.1.2.5 Residual Impact

In terms of traffic accident events, there are five recommended preventive measures are proposed to diminish the likelihood of the unplanned event from occurring. However, in case the event occurred, the consequence of traffic accident could potentially remain significant. In these cases, another two suggested mitigation measures described in Table 13.9 would be applied to minimise these impacts. With both recommended preventive and mitigation measures, the residual impact are demonstrated in Table 13.10 below.

Table 13.10	Pre and Post Ris	k Ranking
-------------	------------------	-----------

Impact Significance Aspects	Pre risk ranking (Without Mitigation Measures)	Post risk ranking (With mitigation measures)
Communities	3D Major	2D Moderate
Properties	3D Major	2D Moderate

13.4.1.2.6 Monitoring and Auditing

- Monthly monitoring the implementation of all proposed mitigation measures specified in the Traffic Management Plan (TMP) should be conducted, and
- Regular road condition monitoring along the transportation route to understand road quality during construction phase.

13.4.1.3 Fire and Explosion, Including Unexploded Ordnance (UXO)

13.4.1.3.1 Background and Potential Impact

Given the nature of construction work, the utilisation of reasonably large volumes of hazardous chemicals for machinery and equipment shall be significantly considerable. Many of them are hydrocarbons (e.g. crude oil and refining products) that are also highly flammable. Improper handling and storing fuel can create a risk of loss of containment (i.e. large-scale spill), fires, or in some situations, explosions.

The Unexploded Ordnances (hereinafter as UXOs) is defined as a military ammunition or explosive ordnance that did not explode or function as intended. Some examples of UXO are to be mentioned including unexploded bombs, grenades, and artillery shells, mortars used by the Army or the Air Force which pose a risk of detonation. Explosion of Unexploded Ordnances (UXOs) left behind from the war should also need to be detected and cleared at the project sites before construction phase.

Large scale fires, or worst-case explosions, could potentially release smoke and fumes in the broader area generating health issues associated with inhalation of toxic substances and uncontrollable wildfire that would contribute to a loss of crops and habitats and impacts on the economics of the area (e.g. community and workers jobs and incomes).

The potential source of impacts associated with fire and explosion would occur as a result of the following events:

- Damage of the WTGs, transmission lines, insulators or other supporting parts
- Electrical arcs or flashovers
- Lightning strike
- Bushfire
- Plant and equipment failure, and

Explosion of Unexploded Ordnance (UXOs) left behind from the war.

The potential impacts from large scale fires include the release of smoke and fumes in the broader area generating health issues associated with inhalation of toxic substances and uncontrollable wildfire that would contribute to a loss of crops and habitats and impact on the economics of the area (e.g. community and workers' jobs and incomes).

13.4.1.3.2 Existing Controls

The Project's owner did incorporate and signed the contract with 319.7 Enterprise under the 319 Corporation Ministry of National Defence to conduct the survey on UXO identification, clearance and elimination for all four Projects (KB1, KB2, CN1, and CN2) in Cu Ne, Cu Pong Communes, Dak Lak Province. The mission had been completed by the 319 Corporation Ministry of National Defence for four Projects KB1, KB2, CN1, and CN2 and no UXO had been found in the survey area of the Project. The commitment documents of UXO clearance with detailed information are presented in Table 13.11. The location map of UXO clearance points in the Projects's area can be referred to Appendix N.

No.	Document No.	Project Name	Date	Areas
1	01/CKAT-KB1	Krong Buk 1 (KB1)		 Total areas of UXO detection: 41.95 ha Detection area from the depth of 3m: 34.82 ha Detection area from the depth of 5m: 7.13 ha
2	01/CKAT-KB2	Krong Buk 2 (KB2)	26 July	 Total areas of UXO detection: 49.17 ha Detection area from the depth of 3m: 41.29 ha Detection area from the depth of 5m: 7.88 ha
3	01/CKAT-CN1	Cu Ne 1 (CN1)	2021	 Total areas of UXO detection: 51.68 ha Detection area from the depth of 3m: 40.14 ha Detection area from the depth of 5m: 11.54 ha
4	01/CKAT-CN1	Cu Ne 2 (CN2)		 Total areas of UXO detection: 32.76 ha Detection area from the depth of 3m: 24.5 ha Detection area from the depth of 5m: 8.26 ha

Table 13.11	Evidence of UXO Detection and Clearance	Completion
	Evidence of one beleetion and olearance	Completion

Source: The Project's owner, 2021.

13.4.1.3.3 Significance of Impact (Before Mitigation)

The risk ranking assessment presented in Table 13.6 for the fire and explosion event caused by the above reasons is based on the two dominant factors including consequence and the likelihood of occurrence. The risk caused by UXO is considered Minor; However, taking fire-caused wind turbine failure as an representative of the unplanned event, based on the statistical data which stated that only 0.3 - 0.5 fire incidents happened per 1000 power stations⁶⁹ (for both onshore and offshore industries per year) the Likelihood of the occurrence is considered very unlikely while the event outcome causing loss of life and properties is remain severe. Therefore, the risk ranking of this event becomes **Major** for both community and environment aspects.

⁶⁹ https://www.firesafetysearch.com/fire-risk-in-wind-turbines/

13.4.1.3.4 Additional Preventive and Mitigation Measures

All preventive and mitigation measures proposed to reduce the likelihood and severity of accidental fire and explosion are summarised in Table 13.12 below.

Type of Control (i.e. Prevent / Mitigate)	Management Control	Responsibility – Organization	Timing
Preventive measure	Install firefighting equipment (such as fire extinguishers, proper communication equipment), especially at area with high risks of fire and explosion, such as warehouses of chemical and transformer stations	Project's owner / EPC contractor	Site preparation
Preventive measure	Prepare the Fire prevention and Fighting Plan that ensure compliance with Decree No. 79/2014/ND- CP guiding the Law on Fire Prevention and Fighting	Project's owner / EPC contractor	Site preparation and construction
Preventive measure	Conduct firefighting training to the emergency support team, contractors and workers on site and camping areas	Project's owner / EPC contractor	Site preparation and construction
Preventive measure	Store flammable materials away from ignition sources and oxidising materials	Project's owner / EPC contractor	Site preparation and construction
Preventive measure	Conduct regular inspections and maintenance to eliminate potential risks	Project's owner / EPC contractor	Site preparation and construction
Preventive measure	The Project will implement the SEP and a robust stakeholder engagement programme/plan on emergency response. Engagement on emergency response will provide regular information on safety drills and guidance to residents in the event of an unplanned event.	Project's owner	Site preparation and construction
Preventive measure	Implement routine inspection and maintenance procedures (in line with international best practice) for large storage vessels.	EPC contractor	Site preparation and construction
Mitigation measure	 Develop an Emergency Response Plan and Emergency Management Plan and monitor contractors to ensure consistent implementation. The Emergency response plan should include: Immediately pull the nearest fire alarm if a fire occurs, report the event to shift supervisor or foreman immediately for emergency response; 	Project's owner / EPC contractor	Site preparation

Table 13.12Preventive and Mitigation Measures of Fire and Explosion during the Pre-
Construction and Construction Phase

Type of Control (i.e. Prevent / Mitigate)	Management Control	Responsibility – Organization	Timing
	 When the emergency alarm sounds, all employees shall stop all activities and move to emergency assembly places immediately; 		
	 Limit the fire areas by utilizing the appropriate firefighting equipment, if the fire is small and controllable; and 		
	 Follow the procedure included in the Emergency Response and Evacuation Plan to take actions 		
Mitigation measure	Implement an Emergency Response Plan and Emergency Management Plan and monitor contractors to ensure consistent implementation	EPC contractor	During construction

13.4.1.3.5 Residual Impact

In regards to the unintentional event of fire and explosion, there are totally seven recommended preventive measures should be applied to diminish the likelihood of the unplanned event from occurring. However, in case the event occurred, the consequence of fire and explosion could potentially remain significant. In these cases, another two suggested mitigation measures described in Table 13.12 would be applied to minimise these impacts. With both recommended preventive and mitigation measures, the residual impact are minimise from major to minor for both community and environment aspects which is shown in Table 13.13 below.

Table 13.13	Pre and Post Risk Ranking
-------------	---------------------------

Impact Significance Aspects	Pre risk ranking (Without Mitigation Measures)	Post risk ranking (With mitigation measures)
Communities	3D Major	2D Moderate
Environment	3D Major	2C Minor

13.4.1.3.6 Monitoring and Auditing

A monthly audit program shall be established to check the implementation of emergency response and evacuation plan, staff training, equipment inspection, and firefighting drills.

13.4.1.4 Occupational Health and Safety Accident

13.4.1.4.1 Background and Potential Impact

The nature of the Project presents occupational health and safety risks, which can result in direct impacts on worker's health and safety. Construction will involve a range of activities such as construction of WTGs, transmission line pylons and upgrading access road that could contribute to or present an occupational health and safety risk, resulting in an accident, injury (physical injuries such as muscle strain and ligament tear may occur as loading/unloading activities), of even fatality, including:

The misuse of large mobile equipment, such as backhoes, bulldozers, graders and mobile cranes, which could, if not managed correctly, lead to an accident or injury, and

 Safety risks due to wrong handling of construction machinery, working at heights or confined spaces, falling objects, crushing, slip, trip and fall (slippery road during rainy season), occupational stress and severe working conditions (hot weather during dry season).

13.4.1.4.2 Existing Controls

The Safety and Civilized Construction Plan had been developed by the Project's Owner which requires the implementation of both EPC contractor and the Project's owner during the construction and operation phases.

13.4.1.4.3 Significance of Impact (Before Mitigation)

Occupational accidents are considered Likely to happen (may happen once or twice a year). The consequence can range widely from Incidental to Severe in case of major injury and fatality of construction workers. However, under the strict and proper compliance of the Safety and Civilized Construction Plan developed by the Project's owner, the consequence can be Moderate and the overall significance of impact is considered Moderate where strategic management and mitigation measures are still required.

13.4.1.4.4 Additional Preventive and Mitigation Measures

All preventative and mitigation measures proposed to reduce the likelihood and severity of accidental fire and explosion are summarised in Table 13.14 below.

Type of Control (i.e. Prevent/ Mitigate)	Management Control	Responsibility - Organisation	Timing
Preventive measures	All workers (including any subcontractors) should be provided with trainings on the Health and Safety policy in place, safe working practices, provided with PPE and informed regarding any Emergency Response Plans or first-aid kits provided on-site.	EPC Contractor	Before site construction
Preventive measures	Establish a grievance redressed mechanism in place, to allow for the employees and workers to report any concern or grievance related to work activities.	EPC Contractor	Before site construction
Preventive measures	Assigning supervisors to supervise the activities on site to ensure all safety regulations and practices are followed and the risks will be minimised	EPC Contractor	During construction phase
Preventive measures	Appropriate work equipment/methods must be used in case of working at height, hot areas, work in confined spaces etc.	EPC Contractor	During construction phase
Preventive measures	Ensuring that workers (including contractors) complete a Job Hazard Analysis (JHA) prior to undertaking construction activities, and also conduct daily toolbox discussions to ensure hazards are identified and management measures are implemented	EPC Contractor	During construction phase
Mitigation measures	Suitable exclusion zones should be established and maintained underneath any working at height activities, where possible, to protect workers from falling objects;	EPC Contractor	During construction phase.

 Table 13.14
 Preventive and Mitigation Measures of Occupational Health and Safety

Type of Control (i.e. Prevent/ Mitigate)	Management Control	Responsibility - Organisation	Timing
Mitigation measures	Avoid conducting tower installation or maintenance work during poor weather conditions and especially where there is a risk of lightning strikes	EPC Contractor/ Project's owner	During construction phase.
Mitigation measures	An emergency rescue plan detailing the methods should be in place to rescue workers who are stranded or incapacitated while working at height	EPC Contractor/ Project's owner	During construction phase.

13.4.1.4.5 Residual Impact

The mitigation measures, if implemented effectively, can reduce both the likelihood of occurrence of traffic accidents and the severity of consequence in case of actual happening. On that basis, the impact significance can be reduced to Minor (2C). The residual impact is presented in Table 13.15.

 Table 13.15
 Pre and Post Risk Ranking of Occupational Accident

Impact Significance	Pre risk ranking	Post risk ranking	
Aspects	(Without Mitigation Measures)	(With mitigation measures)	
Workers and employees	4C Moderate	2C Minor	

13.4.1.4.6 Monitoring and Auditing

Random audits to the project areas with high risk activities will be conducted on a monthly basis to ensure proper implementation of the mitigation measures and other internal safety procedures. Any found deviations will be followed up until resolved.

13.4.2 During Commissioning and Operation

13.4.2.1 Leakage and Spill Incidents

13.4.2.1.1 Background and Potential Impact

There would be widespread use of chemicals, including hydrocarbons, across the site during both phases of the Project for operation & maintenance (O&M) services. As a result, there was a risk that small volumes of chemicals could be spilled on-site. The risk of these spills reaching the environment would be minimal in paved areas. As most chemical usage would be in paved areas, the potential environmental and social impact of releases of oils during operation was likely to be low.

13.4.2.1.2 Existing Controls

There is no existing controls recommended by the Project owner.

13.4.2.1.3 Significance of Impact (Before Mitigation)

Accidental contaminant spills from operational activities, such as diesel or oil leaking from machinery, have the potential to impact the soil, freshwater and/or groundwater quality. The main concern associated with accidental contaminant spills relates to the potential impact on human health from exposure to contaminated soils or contaminated groundwater. It is noted that the impact of accidental spills depends on the location and extent of spills and the contaminant properties. Unintended contamination spills may also occur during the operation of the wind power and substation, and the impacts are likely to be similar to those described in the construction phase section. The significance

of impact caused by leakage and spill incidents is considered Moderate to both the communities the Environment.

13.4.2.1.4 Additional Preventive and Mitigation Measures

All preventive and mitigation measures proposed to reduce the likelihood and severity of accidental onshore spills are summarised in Table 13.16 below:

Type of Control (i.e. Prevent / Mitigate)	Management Control	Responsibility – Organization	Timing
Preventive measure	Implement good site management practices to ensure that the products are properly stored on site and in areas where spills will not easily release out to the environment (e.g. in paved areas with secondary containment).	O&M Contractor / Project's owner	Prior to commissioning
Preventive measure	The Project will implement the SEP and a robust stakeholder engagement programme on emergency response.	Project's owner	During commissioning and operation
Mitigation measure	 Prepare an Emergency Preparedness and Response Plan to cover accidental and emergency situations. This Plan will detail: Planning coordination: including procedures for informing local communities about emergency response, documentation and first aid / medical treatment; Emergency equipment: including equipment in the project design and any additional emergency equipment; Training: employees and contractors will be trained in emergency response procedures; and Auditing: audit records will be maintained on how the Plan is being implemented. 	O&M Contractor / Project's owner	Before commissioning and operation
Mitigation measure	Implement Emergency Preparedness and Response Plan and monitor contractors to ensure consistent implementation.	Project's owner	During commissioning and operation

Table 13.16 Preventive and Mitigation Measure of Leakage and Spill during Commission and Operation Phase

13.4.2.1.5 Residual Impact

Because the majority of the mitigation presented was preventative, the primary goal of these measures was to reduce the likelihood of the unplanned event from occurring. However, in case the event occurred, the consequence of the hydrocarbon spills could potentially remain as severe. In these cases, the post-event measures described in the previous section would apply to minimise impacts. With the application of two preventive measures and two mitigation measures, the residual impact is considered to be minimised to minor level and detailed in Table 13.17.

Impact Significance Aspects	Pre risk ranking (Without Mitigation Measures)	Post risk ranking (With mitigation measures)	
Communities	3B Minor	2C Minor	
Environment	3B Minor	2C Minor	

Table 13.17 Pre and Post Risk Ranking

13.4.2.1.6 Monitoring and Auditing

- Monthly monitoring the implementation of all proposed mitigation measures specified in Emergency Preparedness and Response Plan should be conducted properly;
- Daily inspection of any secondary containment of oil/chemical on site and ensure good maintenance procedures to minimize small leaks and spills.

13.4.2.2 Fire and Explosion

13.4.2.2.1 Background and Potential Impact

Damage of the wind turbine generators (WTGs) and their ancillary components, transmission line due to lighting strikes, electrical arcs or flashovers and malfunctioned equipment which resulting fires and even explosions as WTGs materials were informatively construed as flammable materials.

During the commissioning and operation phase, the potential impact associated with fire and explosion would happen as a result of the following events:

- Fuel storage
- Worker's living activities (cooking or smoking), or
- Electrical incidents during the operation.

Large scale fires, or worst-case explosions, could potentially release smoke and fumes in the broader area inducing health issues associated with inhalation of toxic substances and uncontrollable wildfire that would contribute to a loss of crops and habitats and impacts on the economics of the area (e.g. community and workers jobs and wellbeing). When happened, the disaster can bring about the loss of local houses, crops and vegetation and also affect the plant's operation.

13.4.2.2.2 Existing Controls

There is no existing controls recommended by the Project owner.

13.4.2.2.3 Significance of Impact (Before Mitigation)

Regarding the consequence it may cause serious injuries or even fatalities to human, the significance evaluation should be put for this fire and explosion unexpected event is **Major**. The reference of the significance is provided in Table 13.6.

13.4.2.2.4 Additional Preventive and Mitigation Measures

All preventive and mitigation measures proposed to reduce the likelihood and severity of accidental fire and explosion are summarised in Table 13.18 below:

Type of Control (i.e. Prevent / Mitigate)	Management Control	Responsibility – Organization	Timing
Preventive measure	The Project will implement the SEP and a robust stakeholder engagement programme on emergency response.	Project's owner	During commissioning and operation
Preventive measure	Implement routine inspection and maintenance procedures (in line with international best practice) for any Unplanned Events substances' storage vessels and WTGs.	EPC contractor / Project's owner	During commissioning and operation
Preventive measure	Install warning system, signal boards, lighting protection system where risks of fire and explosion exposed	Project's owner	During commissioning
Mitigation measure	Implement Emergency Preparedness and Response Plan with forest fire protection and monitor contractors to ensure consistent implementation Provide regularly safety and fire prevention & fighting drills.	Project's owner	During commissioning and operation

Table 13.18Preventive and Mitigation Measures of Fire and Explosion during the
Commission and Operation Phase

13.4.2.2.5 Residual Impact

Regarding the unintentional event of fire and explosion, there are totally three recommended preventive measures should be applied to diminish the likelihood of the unplanned event from occurring. However, in case the event occurred, the consequence of this could potentially remain severe. In this case, one more suggested mitigation measure detailed in Table 13.18 would be applied to minimise these impacts. With both recommended preventive and mitigation measures, the residual impact are minimise from major to minor level for both community and environment which is shown in Table 13.19 below.

Table 13.19 Pre and Post Risk Ranking

Impact Significance Aspects	Pre risk ranking (Without Mitigation Measures)	Post risk ranking (With mitigation measures)	
Communities	2E Major	2C Minor	
Environment	2E Major	2C Minor	

13.4.2.2.6 Monitoring and Auditing

An audit program shall be established to check the implementation of emergency response and evacuation plan, staff training, equipment inspection, and firefighting drills.

13.4.2.3 Occupational Health and Safety Accident

13.4.2.3.1 Background and Potential Impact

The operation and maintenance activities that could contribute to or present an occupational health and safety risk, resulting in an accident, injury, of even fatality, including:

- Exposure of workers to electromagnetic field (EMF) while working in proximity to charged electric power lines
- Safety risks due to working at heights, and
- Electric shock incidents can occur due to use of damaged equipment or improper operation of electric equipment, substation and transformers without protective devices and non-compliance of electric safety policy.

13.4.2.3.2 Existing Controls

The Safety and Civilized Construction Plan had been developed by the Project's Owner which requires the implementation of both EPC contractor and the Project's owner during the construction and operation phases.

13.4.2.3.3 Significance of Impact (Before Mitigation)

Similar to the construction phase, occupational accidents during the operation phase are considered Likely to happen (may happen once or twice a year). The consequence can range widely from Incidental to Severe in case of major injury and fatality of construction workers. However, under the strict and proper compliance of the Safety and Civilized Construction Plan developed by the Project's owner, the consequence can be Moderate and the overall significance of impact is considered Moderate where strategic management and mitigation measures are still required.

13.4.2.3.4 Additional Preventive and Mitigation Measures

During operation phase, similar preventive and mitigation measures as mentioned in the construction phase.

13.4.2.3.5 Residual Impact

The mitigation measures, if implemented effectively, can reduce both the likelihood of occurrence of traffic accidents and the severity of consequence in case of actual happening. On that basis, the impact significance can be reduced to Minor. The residual impact is presented in Table 13.20.

Table 13.20	Pre and Post Risk Ranking	g of Occupational	Health and Safet	y Accident
-------------	---------------------------	-------------------	------------------	------------

Impact Significance	Pre risk ranking	Post risk ranking
Aspects	(Without Mitigation Measures)	(With mitigation measures)
Staffs and Workers	4C Moderate	2C Minor

13.4.2.3.6 Monitoring and Auditing

Random audits to the areas with high risk activities will be conducted on a monthly basis to ensure proper implementation of the mitigation measures and other internal safety procedures. Any found deviations will be followed up until resolved.

13.4.2.4 Blade Ejection Failure / Blade throw

13.4.2.4.1 Background

Due to the installation and operation of wind turbine towers in the proximity of build-up areas, there is an emerging safety concern relating to the throwing of full or partial blade caused by rotor failure or normally known as "blade thrown" event. That unintentional event can endanger people living/working or just crossing by close to the wind farm. Assessment of reports and case studies in the open domain had revealed an increasing trend to determine the distance at which a rotor blade could be thrown. Therefore, it became strictly necessary to define setback distances and/or buffer zones to minimise the risk of damage or injury from components failure.

13.4.2.4.1.1 National and International Existing Standards

Blade throw/ ejection incidents have been classified as the following modelling studies conducted by various research groups and blade test practices based on the IEC 61400-23 technical specifications. They have been classified as

- (a) Root connection failure
- (b) Catastrophic structural buckling or separation
- (c) Leading edge, trailing edge, or other bond separation
- (d) Lightening damage
- (e) Erosion
- (f) Failure at outboard aerodynamic device
- (g) Reduction in stiffness of blades (up to 10%)

(h) Superficial structural or delamination/ laminate wrinkling that eventually becomes permanent, leading to damage, and

(h) Over speeding due to failure of supervisory control and data acquisition (SCADA) to rectify the failure or high wind/ cyclonic/ meteorological conditions.

Considering all of the above, it is difficult to attribute blade throw failure to a single attribute or a combination of attributes that result in these incidents occurring. Therefore, national regulations or recommendations are in place in some countries to define setback distances and/or buffer zones surrounding WTGs to minimise the risk of damage or injury from component failure.

In the current Vietnamese context, there exist no regulations regarding setback distances required to ensure safety of nearby settlements. However, the IFC EHS Guidelines on Wind Energy, 2015 has recommended a setback distance, based on a review of existing literature in this domain, (encompassing the rationale that WTG models have varying dimensions) which is 1.5 × turbine height (tower + rotor radius), although modelling suggests that the theoretical blade throw distance can vary with the size, shape, weight, and speed of the blades, and the height of the turbine. It is therefore recommended that the minimum setback distances required to meet noise and shadow flicker limits be maintained with respect to sensitive residential receptors to provide further protection.

13.4.2.4.1.2 Qualitative Blade Failure Assessment

The qualitative blade failure (BF) assessment encompassed the rationale that had been proposed by the IFC pertaining to setback distances which is 1.5 × turbine height (tower + rotor radius).

The Huadian Dak Lak Wind Power Projects comprises total 73 wind turbines. The blade throw/blade ejection (BT/BE) assessment was carried out considering the wind turbine specifications as proposed to be used in this Project. Wind turbines considered in BT/BE assessment are *Envision EN-141/2.65* and *Envision EN-156/3.0*.

The theoretical setback distances and impact zone of theoretical blade throw of the WTGs as per IFC wind guidelines have been presented in Table 13.21 and Figure 13.4. This information was used to independently assess the setback distances of the receptors that were identified using the latest satellite imagery of the Project area.

WTG Model	Project	Tower height (hub height)	Rotor Radius	Calculated setback distances in meters as per IFC Wind EHS guidelines
EN-141/2.65	Huadian Dak	130	70.5	= 1.5 × (hub height + rotor radius) = 1.5 × (130 + 70.5) = 300.75 m
EN-156/3.0	power plants	ower plants	78	= 1.5 × (hub height + rotor radius) = 1.5 × (130 + 78) = 312 m

Table 13.21	Setback Distances	Adopted for Wind	Turbines as per	r IFC Wind EHS Guidelines
-------------	-------------------	------------------	-----------------	---------------------------

Source: EHS guidelines for wind energy, IFC, August 7, 2015

Source: QGIS, ESRI, Google, July 2021

Figure 13.4 Impact Zone of Theoretical Blade Throw

13.4.2.4.2 Potential Impacts

The most severe failure of the "blade throw" generated from splintering of motor blades and detachment of debris from blade fragments could travel over long distance and damage people and properties. It could result in rapid spread of fire and projectile in some cases or spread of debris given the heights of wind turbines. Within the impact zone of Blade Throw, there are approximately 147 SRs (103 SRs in 300.75m of wind turbine EN-141/2.65 and 44 SRs in 312m of wind turbine EN-156/3.0) living near the Project's site (See Figure 13.5). Once happening, this unplanned event could result in injuries at surrounding communities, or in the worst-case fatalities, and damage to local flora and fauna.

Source: QGIS, ESRI, Google, July 2021

Figure 13.5 Blade Throw Sensitive Receptors

Source: Hamid Sarlak, Jens N.Sorensen. Characterization of blade thrown from a 2.3MW horizontal axis wind turbine upon failure. AIAA Scitech, 5-9 January 2015, Kissimmee, Florida. 53rd AIAA Aerospace Sciences Meeting

Figure 13.6 Examples of Wind Turbine Blade Failure. Black Circles in the Middle Photograph Show a Trace of Flying Objects, Thrown from the Turbine to the Left, While Burning

13.4.2.4.3 Existing Controls

There is no existing controls recommended by the Project's owner.

13.4.2.4.4 Significance of Impact (Before Mitigation)

Based on the statistical data, the likelihood of occurrence of the unexpected event "blade throw" is relatively rare; however, upon happening, full blade or blade fragments throwing caused by motor failure can produce catastrophic consequences which bring about major and moderate effect to the community and the environment, respectively. The significance of this unplanned event is assessed as **Major**.

13.4.2.4.5 Additional Preventive and Mitigation Measures

All preventive and mitigation measures proposed to reduce the likelihood and severity of accidental blade throw are summarised in Table 13.22 below:

Type of Control (i.e. Prevent / Mitigate)	Management Control	Responsibility – Organization	Timing
Preventive measure	Establish safety zone at least 312 m away from the WTGs with warning signals if possible. It was recommended that the minimum setback distances required to meet noise and shadow flicker limits be maintained with respect to sensitive residential receptors to provide further protection		Prior operation
Preventive measure	A validation survey of Blade Throw safety zone should be conducted to verified precise number of sensitive receptors within the safety zone and release the appropriate mitigation measures	Project's owner	Prior operation
Preventive measure	Implement the SEP and a robust stakeholder engagement programme on emergency response.	Project's owner	During the operation
Preventive measure	ntive ure Implement periodic routine inspection and maintenance procedures (in line with international best practice).		During the operation
Preventive measure	Install warning system, signal boards, lighting prevention system around the 312 m radius of danger zone where the WTGs located. Equipped vibration sensors for the warning of any imbalances in rotor blades.	O&M contractor/ Project's owner	Prior operation
Mitigation measure	Develop an Emergency Preparedness Response Plan (EPRP) and monitor contractors to ensure consistent implementation.	O&M contractor/ Project's owner	Prior operation
Mitigation measure	Implement an Emergency Preparedness Response Plan and monitor contractors to ensure consistent implementation	O&M contractor/ Project's owner	During the operation

Table 13.22 Preventive and Mitigation Measures of Blade Ejection Failure during Commission and Operation Phase

13.4.2.4.6 Residual Impact

Because the majority of the mitigation presented was preventative, the primary goal of these measures was to reduce the likelihood of the unplanned event from occurring. However, given the likelihood of

the event is well-known in the industry and have been occurring sporadically, hence, the possibility of such incident still remains Major to the communities and Moderate to the Environment, respectively. In these cases, the mitigation measures described in the previous section would be applied to minimise the severity on communities and surrounding environment. With four recommended preventive measures and two mitigation measures applied, the risk of the "blade throw" event minimise from major and moderate to minor raking to the community and environment aspects, respectively.

Table 13.23	Pre and Post Risk Ranking
-------------	---------------------------

Impact Significance Aspects	Pre risk ranking (Without Mitigation Measures)	Post risk ranking (With mitigation measures)	
Communities	2E Major	2C Minor	
Environment	3C Moderate	2B Minor	

13.4.2.4.7 Monitoring and Auditing

A quarterly audit program shall be established to check the implementation of regular technical inspection of the WTGs and blades' safety. Any identify gaps or areas of opportunity will be followed up after the inspection until resolved. The auditing records will be kept onsite for future review and supervision.

13.4.2.5 Transmission Line Snapping and Transmission Pylon Collapse

13.4.2.5.1 Background and Potential Impact

During the operation, there was a possibility of lines or transmission towers/parts snapping/swaying due to the tower failing and resulting in injuries and/or fatalities. The risk was mainly triggered by the poor foundation quality, tower member theft, material corrosion due to poor coating and poor quality or damaged fittings exposing the system to failure. Another reason brings about the collapse of transmission line is an impact by strong wind load recorded at a velocity of 25 m/s, according to a research by scientists in China. The collapse accident of transmission line in China became a case study and the related paper was published in 2016⁷⁰. Figure 13.7 demonstrates for the transmission pylon collapse event.

⁷⁰ https://www.jvejournals.com/article/17921

Source: https://www.jvejournals.com/article/17921

Figure 13.7 The Collapse Accident of Transmission Line in China in 2012

Once happening, this unintentional event can cause significant health and safety impact to the communities and surrounding environment. The receptor sensitivity was considered high as there were households and livelihood activities within the transmission line RoWs in the Project area. Impacts on community health and wellbeing could lead in injuries or even fatalities. Additionally, any contacts (both intentional and unintentional) with the exposing snapped transmission line can result in electrocution.

13.4.2.5.2 Existing Controls

There is no existing controls recommended by the Project owner.

13.4.2.5.3 Significance of Impact (Before Mitigation)

Remarkably, there are many households locating in the Project's site and the transmission line traverses the arable land of coffee and fruits of local people in Cu Ne Commune, Krong Buk District, Dak Lak Province. Although the likelihood of occurrence is Unlikely to happen, the potential consequence can be Major as taking place. Therefore, the significance is considered Major to the Communities the Environment which is provided in Table 13.6.

13.4.2.5.4 Additional Preventive and Mitigation Measures

All preventative and mitigation measures proposed to reduce the likelihood and severity of accidental transmission line snapping and transmission pylon collapse are summarised in Table 13.24 below.

Type of Control (i.e. Prevent / Mitigate)	Management Control	Responsibility – Organization	Timing	
Preventive measure	Establish a good practice and should comply with electricity safety related regulation or international standard, whichever, more stringent, in the design and installation of transmission line and transmission pylons	O&M Contractor / Project's owner	Prior operation	
Preventive measure	Implement the SEP and a robust stakeholder engagement programme on emergency response.	Project owner	During the operation	
Preventive measure	Implement periodic routine inspection and maintenance procedures (in line with the international best practice)	O&M Contractor / Project's owner	During the operation	
Preventive measure	Install warning system, signal boards, lighting prevention system, and anti-climbing devices on the tower.	system, signal boards, lighting tem, and anti-climbing devices O&M Contractor / Project's owner Prior oper		
Mitigation measure	Develop an Emergency Response Plan and Emergency Management Plan and monitor contractors to ensure consistent implementation.	and nitor O&M Contractor / stent Project's owner Prior operation		
Mitigation measure	Implement an Emergency Preparedness Response Plan and monitor contractors to ensure consistent implementation	O&M Contractor / Project's owner	During the operation	

Table 13.24Preventive and Mitigation Measures of Transmission Line Snapping and
Transmission Pylon Collapse

13.4.2.5.5 Residual Impact

Because the majority of the mitigation presented as preventative, the primary goal of these measures was to reduce the likelihood of the unplanned event from occurring. However, if the event occurred, the consequence of the transmission line snapping and transmission pylon collapse events could potentially remain severe. In these cases, the post-event measures described in the previous section would apply to minimise the impacts. With four recommended preventive measures and two mitigation measures proposed, the risk of transmission line snapping and transmission pylon collapse can be diminished to moderate ranking. The evaluation of pre and post risk ranking of this unplanned event is detailed in Table 13.25.

Table 13.25	Pre and Post Risk Ranking
-------------	---------------------------

Impact Significance Aspects	Pre risk ranking (Without Mitigation Measures)	Post risk ranking (With mitigation measures)
Communities	3D Major	2D Moderate
Environment	3D Major	2D Moderate

13.4.2.5.6 Monitoring and Auditing

A quarterly audit program shall be established to check the implementation of regular technical inspection of the transmission lines and transmission pylons' safety.

13.4.2.6 Natural Hazards

13.4.2.6.1 Background and Potential Impact

According to Chapter 7, Dak Lak Province has been yearly encountered many natural disasters including storm and tropical depressions, fog, thunderstorm, flooding, landslide and drought. Once happening, these natural hazards can cause significant effect and damage on human's life, livestock, and property.

13.4.2.6.2 Existing Controls

Regarding the document namely "Safe and Civilized Construction Plan" provided by the Project's owner, in order to prevent and reduce the natural hazards, the Project department did:

- Establish the geological disaster emergency plan, set up the corresponding emergency leading and working agencies, and clarify the job responsibilities
- Organise geological inspection prior to the commencement of the Project to find out the parts of areas that may be prone to landslide and try to avoid setting up camps, building facilities and carrying out the operations in high-risk areas of geological disasters,
- Provide publicity and education on natural disasters to improve awareness of all personnel participating the Project on preventing geological disasters
- Periodically carry out geological monitoring in the areas with high risk of geological disasters and give timely warning if abnormal conditions are found during the construction process, and
- Conduct the preventive and control measures for the inevitable disasters.

13.4.2.6.3 Significance of Impact (Before Mitigation)

According to the Environmental baseline, these kinds of natural disaster can likely happen and the consequence caused can be significant to the people, livestock and property; therefore, the significance of impact is considered as Major.

13.4.2.6.4 Additional Preventive and Mitigation Measures

All preventative and mitigation measures proposed to reduce the likelihood and severity of accidental natural unplanned events are summarised in Table 13.26 below.

Type of Control Re (i.e. Prevent / Management Control Mitigate) C		Responsibility – Organization	Timing
Preventive measure	Incorporation of siting and safety engineering criteria to prevent failures due to natural disasters.	O&M contractor / Project's owner	Prior commissioning
Preventive measure	Strengthen the weather forecasting system to notify the potential floods for the basin	Require more support from Meteorological stations at the region	Commissioning and operation phases

Table 13.26 Preventive and Mitigation Measures of Natural Hazards

Type of Control (i.e. Prevent / Mitigate)	Management Control	Responsibility – Organization	Timing
Preventive measure	Implement the SEP and a robust stakeholder engagement programme on emergency response.	Project's owner	During commissioning and operation
Preventive measure	Implement periodic routine inspection and maintenance procedures (in line with international best practice)	O&M contractor / Project's owner	During commissioning and operation
Preventive measure	Install warning system, signal boards, flood prevention systems.	O&M contractor / Project's owner	Prior commissioning
Mitigation measure	Develop an Emergency Response Plan and Emergency Management Plan and monitor contractors to ensure consistent implementation.	O&M contractor / Project's owner	Prior commissioning
Mitigation measure	Implement an Emergency Response Plan and Emergency Management Plan and monitor contractors to ensure consistent implementation	O&M contractor / Project's owner	During commissioning and operation

13.4.2.6.5 Residual Impact

It is noted that the likelihood of occurrence of natural hazards will not be increased by the project. The project should ensure that the introduction of hard surface areas does not increase the potential for flash flood etc. where possible. The project could also provide mitigation measures to minimise impacts and severe damage caused by the natural disasters.

Table 13.27	Pre and Post Risk Ranking
-------------	---------------------------

Impact Significance Aspects	Without Mitigation Measures	With mitigation measures
Communities	4D Major	4C Moderate
Environment	4D Major	4C Moderate
Properties	4D Major	4C Moderate

13.4.2.6.6 Monitoring and Auditing

The monitoring and auditing program is similar to the construction stage.

13.5 Summary

In brief, this section covers all unplanned events arising during the project's lifetime consisting of the preparation, construction, and operation phases and the pre and post risk ranking based on the magnitude of likelihood of occurrence and the potential consequence. The key findings of this chapter are summarised in Table 13.28.

Table 13.28	Summarised the Impact Ranking of the Potential Unplanned Events during the
	Preparation, Construction and Operation Phases

NI-	Unplanned Events	Phase	Influent aspects	Impact significance	
NO.				Pre-mitigation	Post-Mitigation
		Construction	Communities	3C Moderate	3B Minor
	Leakage and spill	phase	Environment	3C Moderate	2B Minor
1	incidents		Communities	3B Minor	2C Minor
		Operation phase	Environment	3B Minor	2C Minor
0	T ("	Construction	Communities	3D Major	2D Moderate
2	I raffic accidents	phase	Properties	3D Major	2D Moderate
		Construction	Communities	3D Major	2D Moderate
•	Fire and explosion	phase	Environment	3D Major	2C Minor
3		Operation phase	Communities	2E Major	2C Minor
			Environment	2E Major	2C Minor
	Occupational Health and	Construction phase	Workers and	4C Moderate	2C Minor
4	Safety	Operation phase	employees		
_	Blade ejection failure / Blade throw		Communities	2E Major	2C Minor
5		Blade throw Operation p	Operation phase	Environment	3C Moderate
	Transmission line		Communities	3D Major	2D Moderate
6	snapping and tower swaying/collapsing	Operation phase	Environment	3D Major	2D Moderate
7		Operation phase	Communities	4D Major	4C Moderate
	Natural Hazards Flooding & Landslide		Environment	4D Major	4C Moderate
			Properties	4D Major	4C Moderate

14. CUMMULATIVE IMPACT ASSESSMENT

14.1 Introduction

While the impacts of an individual project may be judged to be acceptable, there is also a need to consider the potential project's impacts to interact with impact associated with other developments – so called "cumulative" impacts.

The IFC Performance Standard (PS) 1 defines cumulative impacts as: "Impacts that result from incremental impact, on areas or resources used or directly impacted by the project, from other existing, planned or reasonably defined developments at the time the risks and impacts identification process is conducted. Cumulative impacts are limited to those impacts generally recognized as important on the basis of scientific concerns and/or concerns from Affected Communities".

IFC PS 1 requires that an environmental assessment should also address cumulative impacts. The objective of the Cumulative Impact Assessment (CIA) is to identify those environmental, social or health aspects that may not on their own constitute a significant impact but when combined with impacts from past, present or reasonably foreseeable future Project activities or other projects/activities may result in a larger and more significant impact.

In order to gain an understanding of the Project's overall contribution to impacts within Krong Buk Commune and other communes in Huong Hoa District, a cumulative impact assessment (CIA) is required to be undertaken. Whilst total cumulative impacts due to multiple projects within a given area should be identified within government led spatial planning efforts (generally as part of a Strategic Environmental Assessment), the Project owner needs to determine the degree to which it is contributing to these overall cumulative impacts on Valued Environmental and Social Components (VEC). In this regards, the objectives of the CIA are:

- Use the outcomes of the preceding chapters of this ESIA to determine spatial and temporal boundaries, identify VEC's and all development and external natural and social stressors affecting them
- Recognise and identify how the Project, along with other existing and future projects may contribute to cumulative impacts on the predicted future condition of the identified VEC's, and
- Develop measures to ensure these are avoided and/or minimised to the greatest extent if possible.

To achieve these objectives and gain an understanding of the complexities of cumulative impacts, this chapter presents a Rapid Cumulative Impact Assessment (RCIA), which has been undertaken largely in accordance with the IFC's Good Practice Handbook: Cumulative Impact Assessment and Management Guidance for Private Sector in Emerging Markets (the "IFC Handbook").

14.2 Relevant Guidelines and Criteria

- To achieve these objectives and gain an understanding of the complexities of cumulative impacts, this Chapter presents a Rapid Cumulative Impact Assessment (RCIA), which has been undertaken largely in accordance with international best practice guidance documents, such as:
- The European Union's "Guidelines for the Assessment of Indirect and Cumulative Impacts as well as Impact Interactions" (1999)
- The Canadian Environmental Assessment Agency's "Assessing Cumulative Environmental Effects under the Canadian Environmental Assessment Act" (2012)
- The IFC's "Good Practice Handbook: Cumulative Impact Assessment and Management Guidance for the Private Sector in Emerging Markets" (2013), and
- Scottish Natural Heritage (SNH), "Assessing the cumulative impact of onshore wind energy developments." (2012).

14.3 Methodology

The IFC's "Good Practice Handbook: Cumulative Impact Assessment and Management Guidance for the Private Sector in Emerging Markets" proposes as a useful preliminary approach to conduct a Rapid Cumulative Impact Assessment (RCIA). The RCIA provides a desk that, review in consultation with the affected communities and other stakeholders, enable the developer to determine whether its activities are likely to significantly affect the viability or sustainability of selected Valued Environmental and Social Components (VECs).

Regarding the definition in the IFC Good practice Handbook on the RCIA logical framework, Figure 14.1 illustrates an iterative six-step process: scoping (step 1 and step 2), VECs baseline determination (step 3), assessment of the contribution of the development under valuation to the predicted cumulative impacts (step 4), evaluation of significance of predicted cumulative impacts to the viability or sustainability of the effected VECs (step 5), and design implementation of mitigation measures to manage the development's contribution to the cumulative impacts and risks (step 6).

Figure 14.1 Rapid Cumulative Impact Assessment Six-Step Approach

14.3.1 Scoping Phase I – VECs, Spatial and Temporal Boundaries

Step 1 of the CIA involves identifying VECs and determining the spatial and temporal boundaries of the CIA. Based on the Handbook, the key objectives of this step include:

- Identify and agree on VECs in consultation with stakeholders
- Determine the time frame for the analysis, and
- Establish the geographic scope of the analysis.

14.3.2 Scoping Phase II – Other Activities and Environmental Drives

Based on the Handbook, the key objectives of this step include:

- Identify other past, existing, or planned activities within the analytical boundaries, and
- Assess the potential presence of natural and social external influences and stressors (e.g., droughts, other extreme climatic events).

14.3.3 Establish Information on Baseline Status of VECs

The key objectives include:

Define the existing condition of VECs

- Understand its potential reaction to stress, its resilience, and its recovery time, and
- Assess trends.

14.3.4 Assess Cumulative Impacts on VECs

The key objectives include:

- Identify potential environmental and social impacts and risks
- Assess expected impacts as the potential change in condition of the VECs (i.e., viability, sustainability), and
- Identify any potential additive, countervailing, masking, and/or synergistic effects

14.3.5 Assess Significance of Predicted Cumulative Impacts

Based on the Handbook, the key objectives of this step include:

- Define appropriate "thresholds" and indicators
- Determine impact and risk magnitude and significance in the context of past, present, and future actions, and
- Identify trade-offs.

14.3.6 Management of Cumulative Impacts – Design and Implementation

Based on the Handbook, the key objectives of this step include:

- Use the mitigation hierarchy
- Design management strategies to address significant cumulative impacts on selected VECs
- Engage other parties needed for effective collaboration or coordination
- Propose mitigation and monitoring programs, and
- Manage uncertainties with informed adaptive management.

14.4 Scoping and Assessment

14.4.1 Identification of VECs

The ESIA has identified the existing conditions of a range of Sensitive Receptors, defined as VECs for the purposes of this RCIA, including:

- Noise receptors in close proximity to the Project site (within 2 km radius of the Project's site)
- Biodiversity values and particularly bird and bats which are at risk from blade strike, and to a lesser extent habitat loss
- Terrestrial habitat
- Landscape and Visual Amenity, and
- Socio-economic and community.

14.4.2 Spatial Boundaries

According to the IFC Good Practice Handbook on Cumulative Impact Assessment, spatial and temporal boundaries of the Project includes the area that will be directly affected by the Project or activities – the Project's footprint and the proximities contributing to significant impacts outside the Project's footprint (e.g. transportation). The Area of Influences (AoI) was guided by information taken from similar projects

in Vietnam and abroad. This allows a decision to be made as to whether there is a potential for overlap with the Project and other development's impacts.

VECs	Potential Impact	Aol (km)
Physical features	Elevated noise from wind farm	2 ⁷¹
Ecological system	Collision of birds and bats with the turbines	50 (ADB, SPS, IFC PS6)
Landscape and Visual Amenity	Elevated visual nuisance from a cluster of wind farm	35 ⁷²
Socio-economic and community	Impacts generally recognised as important on the basis of scientific concerns and/or concern from affected and wider communities	Areas or resources used or directly impacted by the project, from other existing, planned, or reasonably defined developments ⁷³

Table 14.1	Area of Influence (Aol)
------------	-------------------------

14.4.3 Identification of Relevant Developments, External Natural and Social Stressors

According to Decision No. 234/QD-BCT dated 18 January 2018 by the Ministry of Industry and Trade on the approval of master plan of windfarm projects in Dak Lak Province until 2020, with a vision to 2030, the Province was approved for wind power development within seven areas, including:

- Zone 1: including Ea H'leo, Ea Wy, Cu Mot Communes, Ea H'leo District with total studied area of 1748.86 hectares (Expected capacity of 58.30 MW)
- Zone 2: including Cu Amung, Cu Mot, Ea Khal, Ea Wy Communes, Ea H'leo District with total studied area of 3780.49 hectares (Expected capacity of 126.02 MW)
- Zone 3: including Ea Sol, Dlie Yang, Ea Hiao, Ea Tal Communes, Ea H'leo District with total studied area of 5094.34 hectares (Expected capacity of 169.812 MW)
- Zone 4: including Ea Hiao Commune, Ea H'leo District (Total studied area: 1588.70 hectares, Expected capacity: 151.76 MW) and Dlie Ya, Cu Klong Communes, Krong Nang District with total studied area of 4552.84 hectares, Expected capacity of 151.76 MW)
- Zone 5: including Ea Tan Commune, Krong Nang District (Total studied area: 3174.46 hectares, Expected capacity: 105.82 MW), and Cu Ne, Chu Kbo, Cu Pong, Ea Sin Communes, Krong Buk District (Total studied area: 7631.58 hectares, Expected capacity: 254.47 MW)
- Zone 6: including Cu Dlie M'nong, Ea Tar Communes, Cu M'gar District (Total studied area: 4340.47 hectares, Expected capacity: 144.68 MW), Ea Ngai Commune, Krong Buk District (Total studied area: 1344.64 hectares, Expected capacity: 44.82 MW), and Doan Ket, An Binh, Dat Hieu Villages, Buon Ho Town (Total studied area: 3174.46 hectares, Expected capacity: 105.82 MW), and
- Zone 7: including Ea Tul, Ea Drong Communes, Cu M'gar District (Total studied area: 2053.63 hectares, Expected capacity: 68.45 MW), and Cu Bao, Binh Thuan Communes, Binh Tan, Binh Thuan Wards, Buon Ho Town (Total studied area: 4462.20 hectares, Expected capacity: 148.74 MW)

⁷¹ EHS Guidelines for Wind Energy by World Bank Group

 ⁷² Scottish Natural Heritage (SNH), "Assessing the cumulative impact of onshore wind energy developments" (2012)
 ⁷³ IFC PS1

Source: QGIS, ESRI, Google, August 2021

⁷⁴ The information relating to the specific locations of other vicinity developments is unavailable for being visualised in the map at the time of developing this ESIA.

Table 14.2	Key Developers in the Immediate Region at the time of ESIA development
------------	--

No.	Project	Location	Planned Capacity (MW)	Land Area (ha)	Development Status at the time of CIA	Tentative schedule for operation	Distance to the Project (km)
1	Tay Nguyen Wind Power Project	Village No.4, Dlie Yang Commune, Ea H'leo District	28	N/A	Implementation	2022	4.6
2	Ea H'leo 1 Wind Power Project	Ea Wy and Ea H'leo Communes, Ea H'leo District	57	N/A	Implementation	N/A	24.6
3	Ea H'leo 2 Wind Power Project	Cu Amung, Cu Mot, and Ea Khal Communes, Ea H'leo District		N/A	Implementation	N/A	15.9
4	Ea H'leo 3 Wind Power Project	Ea Sol Commune, Ea H'leo District	10	N/A	Planning	N/A	N/A
5	Ea H'leo 4 Wind Power Project	Ea Hiao, and Dlie Yang Communes, Ea H'leo District	10	N/A	Planning	N/A	N/A
6	Cu M'gar 2 Wind Power Project	Ea Tul Commune, Cu M'gar District	10	N/A	Planning	N/A	N/A
7	Buon Ho 1 Wind Power Project	Dat Hieu, An Binh, Doan Ket Villages, Ea Ngai Commune, Krong Buk District	20	N/A	Planning	N/A	N/A
8	Buon Ho 2 Wind Power Project	Thong Nhat, Binh Tan, Villages and Cu Bao Commune, Krong Buk District	20	N/A	Planning	N/A	N/A
9	Buon Ho 3 Wind Power Project	Binh Tan Village, Binh Thuan Commune, Krong Buk District	10	N/A	Planning	N/A	N/A
10	Ea Nam Wind Power Project	Ea Nam, Ea Khal, Dlie Yang Commune, Ea H'leo District	400	6,000	Completed	2021	2.7
11	Krong Buk 1 Wind Power Project	Cu Pong, and Chu Kbo Communes, Krong Buk District	50	18	Implementation	2021	0
12	Krong Buk 2 Wind Power Project	Cu Pong, Chu Kbo, and Ea Sin Communes, Krong Buk District	50	16.96	Implementation	2021	0
13	Cu Ne 1 Wind Power Project	Cu Ne Commune, Krong Buk District	50	10.78	Implementation	2021	0
14	Cu Ne 2 Wind Power Project	Cu Ne Commune, Krong Buk District	50	14.29	Implementation	2021	0

No.	Project	Location	Planned Capacity (MW)	Land Area (ha)	Development Status at the time of CIA	Tentative schedule for operation	Distance to the Project (km)
15	Beta Wind Power Project	Dat Hieu, An BInh, Doan Ket, Thong Nhat, Binh Tan Villages, Cu Bao Commune, Buon Ho Town, Ea Ngai Commune (Krong Buk District), and Ea Tul Commune (Cu M'Gar District)	50	10.9	Planning	2023	N/A
16	Alpha Wind Power Project	Ea Sol, Dlie Yang, Ea Hiao Communes, Ea H'leo District	20	6.5	Planning	2023	N/A

Sources: Letter No. 795/TTg-CN dated 25 June 2020 by Prime Minister on supplementing the Wind Power Projects in EDP VII; and Dak Lak Department of Industry and Trade⁷⁵

Table 14.3 Scoping Matrix

Impact Type	VEC's Likely to be Impacted	Existing Assessment in ESIA	CIA Scope
Noise	Local communities in Cu Pong, Cu Ne, Chu Kbo and Ea Sin communes and other nearby communes in Krong Buk District	Section 10.2 provides an assessment of noise impacts for the Project. Based on the assessed compliance of the individual operation of the Project and the cumulative operation of the nearby windfarms, predicted cumulative noise levels from these windfarms are not significant and therefore, achieves compliance at all receptors.	Given no windfarms will be developed within the radius of 2 km in the Project's vicinity, no further CIA is proposed.
Bird and bat strike and habitat loss.	Species of conservation significance known to habitat the local area (Section 8.2)	A detailed assessment of biodiversity impacts is provided in Chapter 11 and identifies impacts associated with the four Wind Farms' development only.	Cumulative assessment to be conducted using the findings from the assessment for the Project as guidance on the extent and likely significance of impacts.

⁷⁵ Dak Lak Department of Industry and Trade. Feb 2018. Announcement of the wind development planning of Dak Lak province in the period to 2020, with a vision to 2030. Available at: <u>https://socongthuong.daklak.gov.vn/vi/news/hoat-dong-nganh-cong-thuong/cong-bo-quy-hoach-phat-trien-gio-tinh-dak-lak-giai-doan-den-2020-co-xet-den-nam-2030-402.html</u> (Accessed on 6 Sep 2021)

Impact Type	VEC's Likely to be Impacted	Existing Assessment in ESIA	CIA Scope
Visual ImpactsLocal communities living in Krong Buk DistrictA visual assessment is provided at Section 10.8 which indicated that the impact of the Project on visual aesthetics is assessed as Minor. Furthermore, despite the fact that the closest wind farm is located about less than one kilometre away from the Project, impacts on visual aesthetics from these projects are not considered cumulatively due to a small number of visitors with interest in their surroundings as well as viewers with a passing interest not specifically focussed on the landscape e.g. workers, commuters.		No further CIA is proposed.	
Shadow Flickering Impacts	Local communities living in Cu Pong, Cu Ne, Chu Kbo and Ea Sin Communes.	Given that the Aol of shadow flickering issues is only within 10 times WTG's rotor diameter (1,410 m for EN141 and 1,560 m for EN156), residents who live in Cu Pong, Cu Ne, Chu Kbo and Ea Sin Communes are likely to experience shadow flickering periods during the day and throughout the year. As the surrounding wind power developments are still in planning and/ or specific turbine layouts have not yet been finalised, modelling for cumulative impact on Shadow Flicker could not be undertaken. However, according to representative points of those surrounding wind farms from desktop study and site visit survey, the distance from the representative locations of surrounding developments to identified receptors is greater than the theoretical radius of influence (See Section 10.7). Thus, cumulative impact assessment on shadow Flicker cumulative effect is scoped out of the report.	No further CIA is proposed.
Waste	No VEC's are likely to be impacted by waste.	Waste is not considered for the CIA as the ESMP has proposed appropriate management and mitigation measures. It is expected that any future developments will comply with Vietnamese waste storage and management regulations (as a minimum).	No further assessment required
Socio-Economic: Community Health and Safety	The VECs likely to be impacted are those people residing in Krong Buk District.	Section 12.6 presents a detailed assessment of impacts relating to community health and safety during Construction and Operation Phases.	A qualitative cumulative impact assessment will be undertaken, focusing on identification of ways in which cumulative

Impact Type	VEC's Likely to be Impacted	Existing Assessment in ESIA	CIA Scope
			impacts may occur to VECs, and develop appropriate mitigation strategies.
Socio-Economic: Economy and Employment	The VECs likely to be impacted are those people residing in Krong Buk District.	Social impacts of the Project, including impacts to employment and economy during both the Construction and Operation Phases, were assessed as part of Section 12.8	A qualitative assessment will be undertaken, focusing on identification of ways in which cumulative impacts may occur to VECs, and develop appropriate mitigation strategies to ensure that positive impacts are maximised.
Socio-Economic: Traffic	The VECs likely to be impacted are those people residing in Krong Buk District.	Section 12.6 presents a detailed assessment of impacts relating to traffic during Construction phase.	A qualitative assessment will be undertaken, focusing on identification of ways in which cumulative impacts may occur to VECs, and develop appropriate mitigation strategies.
Socio-Economic: Infrastructure and Public Services	The VECs likely to be impacted are those people residing in Krong Buk District.	Section 12.7 presents a detailed assessment of impacts relating to infrastructure and public services during Construction phase.	A qualitative assessment will be undertaken, focusing on identification of ways in which cumulative impacts may occur to VECs, and develop appropriate mitigation strategies.
Socio-Economic: Indigenous Peoples within the Project' area and wider Ethnic Minority groups	The VECs likely to be impacted are those people residing in Krong Buk District.	Section 12.11 presents a detailed assessment of impacts relating to infrastructure and public services during Construction phase.	A qualitative assessment will be undertaken, focusing on identification of ways in which cumulative impacts may occur to VECs, and develop appropriate mitigation strategies.

14.5 Cumulative Impacts on Biodiversity

14.5.1 Habitat Loss

According to satellite imagery analysis, the existing and planned CIA Projects (see Figure 14.2) are likely to occupy modified habitats. Although modified habitats are prevalent in the region, especially plantations, wetlands and water bodies that are important habitats for the endangered Smooth-coated Otter, as well as other endangered reptiles species were found during field surveys. Therefore, cumulative habitat loss in both direct and indirect forms may lead to incurred costs of searching for new foraging and roosting habitats for these species, and increased human-animals conflicts and hunting resulting in increased fauna mortalities.

14.5.1.1 Mitigation Measures

To mitigate the effect of cumulative habitat loss, a collaborative program between these wind farms are recommended to facilitate revegetation not only on temporary Projects' footprint, but also to create more greenery within the affected modified habitats to attract more artificial-habitat tolerant species.

- The Project is recommended to facilitate a Cumulative Impact Assessment (CIA) association with other projects and government representation (such as Dak Lak Provincial People Committee) to govern a system for managing cumulative impacts. This system should seek guidance from Vietnam regulations (such as Vietnam Data Red Book) and Vietnam commitments to international treaties such as Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES);
- Sharing of best practices in avoidance of forest loss through active monitoring during land clerance in construction phase (e.g. mark a defined boundary of clerance) and forest rehabilitation.
- Promote a fauna conservation program to raise awareness for local people about the protected status of endangered species under the laws of Vietnam. Violations could lead to sanctions and imprisonment.

14.5.2 Barriers on Migratory Flyways

Multiple windfarms and network of transmission lines aligning on the flyways of birds may create a cumulative barrier effects that cause birds to adjust their trajectories, resulting in increased energy expenditures to avoid the windfarms. Although effects of extra distances taken to detour around the barriers are poorly-understood, the cumulative barrier effects are likely to be insignificant. A study by Masden et al. (2009) suggested an equivalence of 100 Nysted wind farms⁷⁶ (16,600 MW, compared to total 835 MW of CIA Projects as from Table 14.2) will only bring about a reduction of 1% body mass of a bird to detour around them.

According to an unpublished report written for ERM by Dr. Neil Furey⁷⁷, bat migratory behaviour in Southeast Asia is much less studied than in temperate regions. The effects of wind farms as barriers to bats is poorly researched, although as bats show much less avoidance behaviour than birds, barrier effects would appear to be unlikely.

For non-volant mammals, their diversity, abundances and activities are likely to be low for the CIA Projects which are located mostly in heavily-modified habitats. The additional barriers created by Project components are considered to be negligible considering that non-volant fauna movements are already low.

⁷⁶ Nysted windfarm is a Danish offshore windfarm built in 2003, with 72 turbines and a total capacity of 166 MW, and was the largest in the world until 2007. In 2010, a 207 MW extension for the windfarm was conducted and finished in end of 2011.

⁷⁷ Conservation biologist specializes in Southeast Asian bats, who has worked in Southeast Asia since 1997 (resident since 1999), spending a decade in Vietnam. Much of his recent work has focused on strengthening national capacity for conservation science in Cambodia through his leadership and contributions to the Royal University of Phnom Penh.

14.5.2.1 Mitigation Measures

There are no additional mitigation measures proposed for this impact.

14.5.3 Bird and Bat Strike

The location of the Project is within close proximity to other windfarms that are existing, currently under construction or will be constructed in the future (see Table 14.2 and Figure 14.2). Of concern is the potential for cumulative impacts to biodiversity, as a result of increases in bird flight risk throughout the Rotor Swept Zone of these additional farms. A summary of studies by NWCC (2010) in North America anticipated a median of 4 bird fatalities and 15 bat fatalities per MW per year. The total capacity of nine developers identified in Table 14.2 is 835 MW, which means cumulative bird and bat deaths could be 3,340 and 1,728,450 per year respectively. However, given the differences in species composition, species behaviour, weather to name a few influencing factors, the guidance given by NWCC (2010) only provides a rough estimation of the scale of cumulative impacts.

As a proportion of the overall number of birds that may pass through the Project site, the estimated number of bird fatalities is generally low and unlikely to have population level effects (except for the Germain's swiftlet that is exceptionally abundant within the Project area). The abundances of birds, especially migratory birds should be reflected better after the third survey to inform cumulative impacts on bird strikes.

The number of predicted bat casualties, particularly given the slow reproductive ecology of bats, demonstrates the value of considering cumulative impacts. There is potential for this level of casualties to have an effect on common (LC) species, at least at a local level. Impacts will vary considerably between wind farms based primarily on location in relation to roosting and foraging areas. However, an awareness of the cumulative impact on bat populations will be a consideration when setting limits of acceptable change in the Adaptive Management Plan.

14.5.3.1 Mitigation Measures

The mitigation measures for cumulative bird and bat impacts are recommended for this Project are as followed:

- The Project is recommended to facilitate a Cumulative Impact Assessment (CIA) in association with other projects and government representation (such as Dak Lak Provincial People Committee) to govern a system for managing cumulative impacts. This system should be based on Vietnam regulations (such as Vietnam Data Red Book) and Vietnam commitments to international treaties such as Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES);
- Encourage CIA Projects to implement Wildlife Shepherding Protocol and Injured Wildlife Management Protocol across all projects;
- Sharing of best practices in bird transmission line designs and bird diverter deployment (designs for diverters, spacing and location along sensitive areas); and
- Sharing of post-contruction monitoring results, which would be very valuable to help understand the cumulative bird and bat mortatlities.

14.6 Cumulative Impact on Economy and Employment

In terms of economy and employment, the cumulative impact will be **Positive** and this positive impact will be assessed at national, provincial and local level through analysing tax revenue, economic development and employment opportunities, respectively. As indicated Table 14.4, the cumulative impacts will occur during both the Construction and Operation Phases of the Project. Benefits arising will come from the local employment and procurement activities of the Project as well as other local developments, both directly to the projects and indirectly via their subcontractors and suppliers. Based on ERM's firm knowledge and deep experience in many wind farm projects, each project requires an

average of approximately 100 workers for construction phase and 40 workers for the operation's activities. Although not all of these workers will be recruited from the local area based on the requirements of experience and professional skills, some will be employed from the local communities for unskilled and semi-skilled jobs. Additionally, needs of other types of business and service development including accommodation (e.g. hotels, guest houses), food and beverage and commercial areas will arise leading to the growth of local economy and increase of local recruitment.

	Project	Economy and Employment
Prop	osed developments	
1	Tay Nguyen Wind Power Project	СО
2	Ea H'leo 1 Wind Power Project	СО
3	Ea H'leo 2 Wind Power Project	СО
4	Ea H'leo 3 Wind Power Project	СО
5	Ea H'leo 4 Wind Power Project	СО
6	Cu M'gar 2 Wind Power Project	СО
7	Buon Ho 1 Wind Power Project	СО
8	Buon Ho 2 Wind Power Project	СО
9	Buon Ho 3 Wind Power Project	СО
10	Ea Nam Wind Power Project	0
11	Krong Buk 1 Wind Power Project	со
12	Krong Buk 2 Wind Power Project	СО
13	Cu Ne 1 Wind Power Project	СО
14	Cu Ne 2 Wind Power Project	СО
15	Beta Wind Power Project	СО
16	Alpha Wind Power Project	СО
C O D N	Pre and Construction phase Operation phase Decommissioning phase Negligible / Managed risk Large scale negative	

Table 14.4	Cumulative Impact Scoping for Economy and Employment
------------	--

14.7 Cumulative Impacts on Community Health and Safety

The cumulative impacts on community health and safety are assessed for both labour influx and noninflux related issues during construction and operation of the Project, simultaneously with other developments in Krong Buk District and its surroundings will be **Minor**, as shown in Table 14.5. As indicated in the scoping matrix (see Table 14.2), most of the cumulative impacts on community health and safety will mainly be from the Project's construction activities interacting with the construction of the nearby wind farm projects.

Table 14.5	Cumulative Impact Scoping for Community Health and Sa	afety

	Project	Community Health and Safety	
Proposed developments			
1 Tay Nguyen Wind Power Project		С	

Small scale negative

Positive

	Project	Community Health and Safety
2	Ea H'leo 1 Wind Power Project	С
3	Ea H'leo 2 Wind Power Project	С
4	Ea H'leo 3 Wind Power Project	С
5	Ea H'leo 4 Wind Power Project	С
6	Cu M'gar 2 Wind Power Project	С
7	Buon Ho 1 Wind Power Project	С
8	Buon Ho 2 Wind Power Project	С
9	Buon Ho 3 Wind Power Project	С
10	Ea Nam Wind Power Project	0
11	Krong Buk 1 Wind Power Project	С
12	Krong Buk 2 Wind Power Project	С
13	Cu Ne 1 Wind Power Project	С
14	Cu Ne 2 Wind Power Project	С
15	Beta Wind Power Project	С
16	Alpha Wind Power Project	С
C O D N	Pre and Construction phase Operation phase Decommissioning phase Negligible / Managed risk	

N Negligible / Managed risk Large scale negative Small scale negative Positive

Key cumulative impacts include increased risk of infectious disease, potential for increased crime, security, and cultural impacts such as the degradation of traditional values and changes in social networks due to the influx of migrant workers and non-local people who come to the Project's site in Krong Buk District, Dak Lak Province. Other potential impacts caused by the construction and operation activities (non-influx issues) of these developments comprise of noise, dust, waste, and traffic safety issues.

In addition to the mitigation measures proposed in Sections 12.6, the CHEC should adopt a collaborative approach and work with other local projects' owners and the local authorities as part of the Project's SEP. In particular, the Project should implement its ESMP to manage labour influx and environmental issues and to share best practices with other local project owners.

The Project's owner also should collect periodic reports from local clinics at commune and district levels to understand the community health and safety status in the area prior to and during the Project development. There should be a monitoring mechanism for ESMP implementation to identify its effectiveness and to allocate responsibility to certain developers in the instance where any issue arises. Where necessary, propose and conduct corrective actions in a timely manner.

14.8 Cumulative Impact on Traffic

Impacts on traffic comprise of potential traffic congestion and increased traffic safety risk in the areas along the transportation routes of projects. The interactions causing these cumulative impacts occur mostly during projects' simultaneous construction phase; a phase that requires a high frequency and volume of transportation activities. Taking into account the construction activities of Huadian Dak Lak Wind Power Project will happen simultaneously with construction activities of neighbouring projects (Tay Nguyen and Ea Nam) and transportation routes of those developments are the same route. Therefore, cumulative impacts on traffic will be **Major**.

	Project	Traffic	
Propo	Proposed developments		
1	Tay Nguyen Wind Power Project	С	
2	Ea H'leo 1 Wind Power Project	С	
3	Ea H'leo 2 Wind Power Project	С	
4	Ea H'leo 3 Wind Power Project	С	
5	Ea H'leo 4 Wind Power Project	С	
6	Cu M'gar 2 Wind Power Project	С	
7	Buon Ho 1 Wind Power Project	С	
8	Buon Ho 2 Wind Power Project	С	
9	Buon Ho 3 Wind Power Project	С	
10	Ea Nam Wind Power Project	N	
11	Krong Buk 1 Wind Power Project	С	
12	Krong Buk 2 Wind Power Project	С	
13	Cu Ne 1 Wind Power Project	С	
14	Cu Ne 2 Wind Power Project	С	
15	Beta Wind Power Project	С	
16	Alpha Wind Power Project	С	
C O D N	Pre and Construction phase Operation phase Decommissioning phase Negligible / Managed risk		

Table 14.6 Cumulative Impact Scoping for Traffic

D Decommissioning phase N Negligible / Managed risk Large scale negative Small scale negative Positive

In addition to the mitigation measures proposed in Section 10.9, CHEC should take a collaborative approach to working with the local authorities (e.g. Krong Buk district PC), relevant provincial authorities and organisations (e.g. Dak Lak provincial PC, Department of Transportation, Department of Traffic Police) and the owners of other developments, as part of the Project's SEP to upgrade the local roads for heavy delivery vehicles movements to support many developments in the Project's surrounding area.

14.9 Cumulative Impacts on Local Community Livelihood

Based on the Social Baseline data analysis, the local community in Cu Pong, Cu Ne, Chu Kbo and Ea Sin communes mainly earn their living by agricultural cultivation activities. Land at the Project site areas are largely utilized for agricultural production of high value perennial crops (e.g. coffee, acacia). The proposed Project sites are located in proximity to several wind power developments, which are currently under construction. It is anticipated that land acquisition for the development of these projects has put impacts on local communities' livelihood due to their reliance on land-based production. However, in comparison to total land area described in Land Use Plan 2020 of Krong Buk District approved under Decision No. 540/QD-UBND of Dak Lak PPC, dated 16 March 2020, the acquired land for these wind power developments account for a relative small percentage. As such, it is noted that a certain recovery from loss of asset and income from agriculture production is obtainable.

Given the social survey results of neighbouring wind power project have been shared, the interview of the Projects' affected households revealed that fair compensation from land acquisition process may allow them to further invest in other type of livelihood such as animal husbandry, which may considered

as positive impact. As such, with the existing controls measures, the significance of cumulative impact could be considered Minor.

	Project	Local Community Livelihood		
Proposed developments				
1	Tay Nguyen Wind Power Project	со		
2	Ea H'leo 1 Wind Power Project	со		
3	Ea H'leo 2 Wind Power Project	со		
4	Ea H'leo 3 Wind Power Project	со		
5	Ea H'leo 4 Wind Power Project	со		
6	Cu M'gar 2 Wind Power Project	со		
7	Buon Ho 1 Wind Power Project	со		
8	Buon Ho 2 Wind Power Project	со		
9	Buon Ho 3 Wind Power Project	со		
10	Ea Nam Wind Power Project	0		
11	Krong Buk 1 Wind Power Project	со		
12	Krong Buk 2 Wind Power Project	со		
13	Cu Ne 1 Wind Power Project	со		
14	Cu Ne 2 Wind Power Project	со		
15	Beta Wind Power Project	со		
16	Alpha Wind Power Project	со		
 C Pre and Construction phase O Operation phase 				

Table 14.7	Cumulative Impacts Scoping for Local Community Livelihood
------------	---

D

Decommissioning phase Negligible / Managed risk Ν

Large scale negative

Small scale negative

Positive

14.10 Cumulative Impacts on Infrastructure and Public Services

It is noted that the scoping matrix (see Table 14.8) illustrates the cumulative impacts on infrastructure and public services in both negative and positive aspects. Negative impacts are mostly associated with the additional strain on district-level services (e.g. local markets, inter-village roads, electricity), rising prices for commodities and food. Meanwhile, positive impacts include improvements to infrastructure and public services via the CDP developed by these developments, such as road renovation, health facilities and health care service support, and the increase and stabilisation of electricity supply, which becomes significant during the Operation Phase when projects begin generating revenue.

Table 14.8 **Cumulative Impacts Scoping for Infrastructure and Public Services**

	Project	Infrastructure and Public Services	
Proposed developments		Negative impact	Possitive impact
1	Tay Nguyen Wind Power Project	0	О
2	Ea H'leo 1 Wind Power Project	со	со
3	Ea H'leo 2 Wind Power Project	СО	со

	Project	Infrastructure and Public Services	
4	Ea H'leo 3 Wind Power Project	СО	со
5	Ea H'leo 4 Wind Power Project	со	со
6	Cu M'gar 2 Wind Power Project	со	со
7	Buon Ho 1 Wind Power Project	со	со
8	Buon Ho 2 Wind Power Project	со	со
9	Buon Ho 3 Wind Power Project	со	со
10	Ea Nam Wind Power Project	со	со
11	Krong Buk 1 Wind Power Project	со	со
12	Krong Buk 2 Wind Power Project	со	со
13	Cu Ne 1 Wind Power Project	со	со
14	Cu Ne 2 Wind Power Project	со	со
15	Beta Wind Power Project	со	со
16	Alpha Wind Power Project	co	со
C O D	Pre and Construction phase Operation phase Decommissioning phase		

N Negligible / Managed risk

Large scale negative

- Small scale negative
- Positive

In addition to mitigation measures proposed in Section 12.7, the Project Owners should seek a collaborative approach with local authorities and owners of other developments within Krong Buk district as part of the Project's SEP. In particular, the Project Owners should implement its ESMP to manage impacts on infrastructure and public services as well as to share good practices with other development owners, to develop and implement an infrastructure improvement project via its CDP programs.

14.11 Cumulative Impacts on Indigenous Peoples within the Project' area and wider Ethnic Minority groups

The assessment on the IP in this project, is provided in the socio-economic baseline and social impact assessment sections. In addition to those impacts, social/ cultural tension might be taken place to the wider ethnic minority.

No	Project	Ethnic Minority		
		Land Acquisition and Livelihoods	Health and Safety	Community Development
1	Tay Nguyen Wind Power Project	со	со	со
2	Ea H'leo 1 Wind Power Project	со	со	со
3	Ea H'leo 2 Wind Power Project	со	со	со
4	Ea H'leo 3 Wind Power Project	со	со	со
5	Ea H'leo 4 Wind Power Project	со	со	со
6	Cu M'gar 2 Wind Power Project	со	со	со
7	Buon Ho 1 Wind Power Project	0	0	0

Table 14.9 Cumulative Impact Scoping for Ethnic Minority

No	Project	Ethnic Minority		
		Land Acquisition and Livelihoods	Health and Safety	Community Development
8	Buon Ho 2 Wind Power Project	со	со	со
9	Buon Ho 3 Wind Power Project	со	со	со
10	Ea Nam Wind Power Project	О	О	О
11	Krong Buk 1 Wind Power Project	со	со	со
12	Krong Buk 2 Wind Power Project	со	со	со
13	Cu Ne 1 Wind Power Project	со	со	со
14	Cu Ne 2 Wind Power Project	со	со	со
15	Beta Wind Power Project	со	со	со
16	Alpha Wind Power Project	со	со	СО

Pre and Construction phase C O

Operation phase Ď

Decommissioning phase Negligible / Managed risk Ν

Large scale negative

Small scale negative

Positive

Except for mitigation measures proposed in Section 12.11, the Project Owners should consider taking a collaborative approach with representatives of IPs communities, local authorities, owners of other developments within Krong Buk District, and NGOs working in the region as part of the Project's SEP, particularly in the Project's disclosure and consultation with IPs. The Project Owners should develop and implement Indigenous Peoples Plans for the Project as well as to share good practices with other development owners.

15. GRIEVANCE REDRESSAL MECHANISM

Grievance redressal is another critical component of effective stakeholder engagement. The purpose of GRM is to provide a forum to the internal and external stakeholders to voice their concerns, queries and issues with the project. Such a mechanism would provide the stakeholders with one project personnel or one channel through which their queries will be channelled and will ensure timely responses to each query. This will allow for trust to be built amongst the stakeholders and prevent the culmination of small issues into major community unrest. The GRM will be accessible and understandable for all stakeholders in the project and for the entire project life. The GRM will be communicated to all relevant stakeholders.

As stated earlier, a grievance is a concern or complaint raised by an individual or a group within communities affected by company operations. Both concerns and complaints can result from either real or perceived impacts of a company's operations, and may be filed in the same manner and handled with the same procedure. Grievances may take the form of specific complaints for actual damages or injury, general concerns about project activities, incidents and impacts or perceived impacts. Based on the understanding of the project area and the stakeholders, an indicative list of the types of grievances have been identified for the project, as can be seen below:

- External Grievances: Grievance from all related stakeholders in general and community grievances in particular;
- Internal Grievances: Grievances from Employees (including both direct and indirect employees, including local workers and migrant workers through contractors); and
- AllB's Project-affected People's Mechanism (PPM).

It is noted the Project Owner has developed the Stakeholder Engagement Plan (SEP) including Community and Worker Grievance Mechanisms. The below sections present summarised procedures while SEP describes the detailed mechanisms, monitoring, and reporting.

15.1 Community Grievance Mechanism

To allow grievances to be incorporated into project decision-making and to allow key messages to be accurately communicated, all community grievances will be recorded in the issues/ grievances register as a means of maintaining transparency throughout any action taken relating to a grievance.

Community grievances can be submitted to the Project through different channels such as: grievance boxes which can be allocated in the office of the affected commune People's Committee; at the site office of the Project Owner; directly via a telephone hotline to the grievance team of the Project; or directly submitted to a person in charge of community liaison (e.g. Community and Social Relations Specialist) of the Project.

The community grievance mechanism is generally designed for different levels of redress, corresponding to the scale and seriousness of the complaint. Therefore, classification of the complaint is an important step.

The Project should appropriately recruit and allocate human resources to manage the procedure. A team of Community and Social Relations (CSR) Specialists should be established under the management of CSR Manager. Ideally, persons with social and community management background should be recruited and assigned as a CSR Specialist and this could include members of the local community who have the requisite skill set.

Details of each step in a community grievance mechanism are illustrated in Figure 15.1 and the following text.

Figure 15.1 Suggested Community Grievance Mechanism for the Projects

Step 1: Receive and log grievance (1 working day)

- The grievance should be collected by the Project representative. Ideally a member of a communication or community relations function (e.g. Community and Social Responsibility CSR Specialist) should be responsible for this.
- The grievance may be reached to the CSRs from the following sources:
 - Informing/ reporting to the CSRs by the grievant;
 - Submitting in the grievance boxes located at the offices of CPC/ WPC. These boxes will be checked weekly;
 - Informing/ reporting to the CSRs by the local authorities or Head of Villages during the project's engagements with local authorities and communities;
 - Informing/ reporting to the Project via the hotline; and
 - Informal engagement with local communities.
- The CSR logs the grievance using the Grievance Form and ensures that it is captured in a Grievance Log in order to monitor actions taken in resolving the grievance.

Step 2: Acknowledge grievance (approximately 3 working days)

- The CSR should communicate and it should be documented in writing, with the grievant acknowledging receipt of the grievance and providing information on the proposed steps and the anticipated timeframes for resolving the grievance.
- The date of receiving the grievance shall be record in the Grievance Form.

Step 3: Classification of grievance and forward to relevant department (approximately 3 working days)

The CSR should review and classify the grievances based on its nature.

- Grievances relating to resettlement: will be forwarded to the Land Fund Development Centre (LFDC) of Krong Buk District who is in charge of the implementation of the compensation, support and resettlement process for the Project for their resolution. Before forwarding such type of grievance, the CSR should record the nature and root causes of the grievances for the grievance following up and monitoring.
- Grievances relating to the Project activities: can be classified into two level of its complexity, which are:
 - *Simple grievances*: for one-off grievance, and the grievances are considered local (family to small area level) in nature and do not attract attention of media; or
 - *Complex grievances*: for the grievances that are either recurring and/or potentially affect the community (large group to village or commune level) and/or attract attention of media.

Step 4: Investigate and resolve grievances relating to the Project activities (approximately 15 working days)

- In the event that the grievances are assessed simple such as asking for further information about the Project and Project related procedure, direct interaction between the CSR and the grievant(s) shall be conducted. Solutions can then be developed and implemented.
- In the event that the grievances are considered as complex, immediate intervention of related parties such as senior managers, subcontractor, and/or village head, local authorities to seek their advice and then propose a resolution which is agreed by the parties in the discussion. The Project should assign resources to set up a Grievance Committee. Members of this Committee typically include Project Director, EHSS Manager and other related managers, if needed and are managed by CSR Manager. During the construction phase, managers of the subcontractor shall be involved to discuss and resolve the issues relating to their activities.

It is noted that any grievance that needs involvement of third party (e.g. technical expert, authority), the Project Owner needs to contact the relevant third party for their advice or resolution responsibilities.

- Depending on the complexity of the grievance, the CSRs may need to seek approval of:
 - If the solutions are not accepted by the grievant(s), the CSRs should conduct consultation with the grievant(s) to obtain further detailed clarification on the issues and to try and agree upon a mutual solution. Minutes of consultation session shall be kept in the Grievance Log. If a mutual solution cannot be obtained through consultation, third parties could be asked to be involved. The third-party can provide advice or facilitation in a way that is acceptable to all parties
 - In addition, where mediation is desired, academic or other local institutions may be sought out to play an "honest broker" role in mediating between the Project and stakeholder groups.

Step 5: Follow up on grievance (approximately 10 working day)

- Grievances relating to resettlement: the CSRs should work closely with the Authority to follow up with the resolution process of this type of grievance from the grievance review, resolution to the implementation of the proposed resolution to ensure no grievances will be left unsolved or pending too long.
- For all grievances: The CSRs is responsible for seeking the grievant(s) responses/feedback on the implementation of the resolutions. The implemented resolutions shall also be recorded in the Grievance Form and kept in place as required. These activities are considered as follow up actions. In case that the grievant did not receive any feedback after 15 working days since the submitted the grievance or did not agree with the resolutions, the grievant may submit another grievance to higher local authorities or higher level of the Project's management.

Step 6: Documentation and reporting (approximately 5 working days)

- All follow-up actions shall be tracked in the Grievance Log of the Project.
- The CSR is responsible for maintaining all records in the Grievance Log.

The CSR is responsible for preparing periodical reports to the CSR Manager about the resolution of each grievance processed by the CSR team.

Note for Grievances Raised by Indigenous Peoples

As stated in AIIB ESS3, design the mechanism to address Indigenous Peoples' concerns and complaints promptly, using an understandable and transparent process that is gender-sensitive, culturally appropriate and readily accessible to all affected Indigenous Peoples. The grievance mechanism may utilize existing formal or informal grievance mechanisms, provided that they are properly designed and implemented, and determined by the AIIB to be suitable for the Project; these may be supplemented, as needed, with Project-specific arrangements. Include provisions to protect complainants from retaliation and to remain anonymous, if requested.

Generally, the suggested community grievance mechanism is applied to the IPs grievant. During the socio-economic baseline survey of ESIA development, the literacy of Ede IPs are good and able to log in the grievances. Most of them can use both languages (i.e. Kinh/ Vietnamese and Ede). Nevertheless, there are some suggested points that need the Project Owner to make sure it is appropriate and accessible.

- "Pre-consult" with indigenous communities through their representative institutions (e.g. village head, village patriarch, IP influencer) to determine the issues in advance;
- Should be put into writing, publicised, and disclosed the community grievance mechanism at each affected IP village with the participation of diverse attendees (e.g. village head, village patriarch, IP influencer, woman, elderly, and youth) in a mean which can be accessible by all the impacted community and in cultural appropriateness;

- Should be provided in a format and language readily understandable (e.g. bilingual languages including Vietnamese and Ede) to the Ede IPs and/or communicated orally in areas where literacy levels are low;
- Village head, village patriarch, IP influencer should may be sought out to play an "honest broker" role in mediating between the company and IP groups. In certain circumstances, it can be good practice for a company to provide funding for such third-party advice or facilitation in a way that is acceptable to all parties and doesn't compromise the integrity of the process.

15.2 Worker Grievance Mechanism

Worker grievance process is comprised of five steps and each step is described as follows.

15.2.1 Step 1: Disclosure of Worker Grievance Mechanism

The disclosure, training and communication of the worker grievance mechanism will begin early in a project lifecycle and continue on an on-going basis as grievances arise. It will be disclosed in a culturally appropriate manner in the local language and format that is understandable to all the workers. The following information will be disclosed:

- To what extent the mechanism is capable of delivering;
- Who can raise complaints;
- Where, when, and how workers can lodge complaints. If the use of telephone or conventional communication infrastructure (phone, mail, Internet) is appropriate for receiving grievances, "hotline" telephone numbers, email addresses, and Web sites should be widely publicized through brochures, at meetings, via posters on a gate, and so on;
- Who is responsible for receiving and responding to complaints;
- What type of responses from grievances can be expected from the Project, including timing of responses;
- Commitment from the Project Owner to not threaten workers that place griveances; and
- The benefits that the grievant can receive from using the grievance mechanism.

Communication methods to be used are proposed in table below.

Methods	Benefits
One-to-one	Personal and effective form of communication
Email	Efficient for large teams or getting/ sharing information to the whole team
Meeting	Effective for teams/ groups to ask questions, get response and share plan
Instant messages	Efficient to questions or comments that need more immediate responses
Training	Appropriate for induction and/or refresh training to a large team/ group
Bulletin board	Applied to large-group communication

Table 15.1 Methods of Disclosing the Worker Grievance Mechanism

15.2.2 Step 2: Receiving and Keeping Track of Worker Grievance

The HR Specialist will receive and/or collect grievance submitted by the workers of the Projects as well as subcontractors through identified channels (e.g., grievance boxes, telephone hotlines, HR Specialist) and estimate the nature of the grievance. Upon receipt of grievance, the HR Specialist within two (02) working days shall evaluate and register the received grievance in the grievance logbook, with which

their subsequent decisions and actions will be tracked and recorded. The grievance logbook will be kept in the HR office and managed by HR Specialist or CSRs.

15.2.3 Step 3: Reviewing and Investigate Worker Grievance

The HR Specialist shall review, investigate and consult with affected person(s) as well as relevant personnel (e.g. Trade Union or Workers Representative, if any) to understand clearly and fully about the situation of the grievance. If required, a meeting can be organized for collection of detailed information, clarification, discussion, consultation and advice. Minutes of the meeting shall be kept in the grievance log. For anonymous grievance, HR Specialist may investigate and disclose the resolution in the bulletin board or public area. The reviewing and investigating process shall be conducted and finished within five (05) working days upon the grievance registration.

Status of the resolution process of all grievance cases will be followed up by HR Specialist and notified to the relevant parties including the grievant as well as relevant personnel and departments (if required).

15.2.4 Step 4: Worker Grievance Settlement

After the investigation of grievance, the HR Specialist will co-operate with related departments and personnel to propose appropriate resolution options and resolve the grievance under the instruction and advice of the Site Management Team. Timeframe for resolving a grievance shall be 3 - 5 working days depending on the complication of the grievance.

15.2.4.1 Resolution Options

Based on the results of the investigation, resolution options shall be suggested by concerned departments and personnel. Resolution options can be developed taking into consideration worker preferences, company policy, past experience, current issues and potential outcomes. It may be helpful to establish a "menu" of possible options (e.g. altering or halting harmful activities, providing apology, providing compensations, replacing lost property) appropriate for different types of grievances that company personnel can apply once a grievance is raised.

- If the grievant agrees with the proposed option(s), the solutions will be implemented accordingly within the 20 working days timeframe;
- If the option(s) are not accepted by the grievant(s), the HR Specialist should conduct consultation with the grievant(s) and relevant personnel to obtain further detailed clarification on the issues and to try and agree upon a mutual solution. Minutes of consultation session shall be kept in the grievance log; and
- If a mutual solution cannot be obtained through consultation, third parties (e.g. trade union, local authorities) could be asked to be involved. The third-party can provide advice or facilitation in a way that is acceptable to all parties.

15.2.4.2 Response

The HR Specialist will ensure that the grievant(s) is provided with updated information of the implementation of the resolution.

The HR Specialist is responsible for seeking the grievant(s) feedback on the implementation of grievance resolutions. Personnel responsible for investigating and resolving grievance should be diplomatic when engaging with workers, use detailed and respectful explanation, together with compelling evidence to ensure all grievances are satisfactorily resolved.

All engagement shall also be recorded in the grievance form and kept in place as required.

15.2.4.3 Close-out

Should the grievant(s) agree and accept the provided resolution, HR Specialist will record the agreement in a grievance resolution minute, update in the database and store all documentary evidence (e.g. photos, meeting minutes, and records with signature) in one central place as required.

If resolution option is rejected, all negotiation evidence, efforts and corrective actions should be documented for grievance tracking and for further reference, whether the Projects use other grievance mechanism outside the Project or inform the grievant(s) of no further action.

Should the grievant(s) want to seek for a legal grievance mechanism, Site Management Team should ensure that it is able to provide, where necessary, all documents relating to such grievance to authorities to prove that the grievance has been acted upon in compliance with this mechanism.

Figure 15.2 below shows the development of resolution options, response and close-out.

Figure 15.2 Developing Resolution Options, Response and Close-out

15.2.5 Step 5: Monitoring and Reporting in the Resolving Process

The HR Specialist shall monitor the execution of the agreed resolution between parties.

The HR Specialist shall prepare and submit quarterly report on status of grievance resolution to the Site Management Team for review and advice on corrective actions (if required).

15.3 AllB's Project-affected People's Mechanism (PPM)

The Project-affected People's Mechanism (PPM) provides an opportunity for an independent and impartial review of submissions from Project-affected people who believe they have been or are likely to be adversely affected by the failure of the Asian Infrastructure Investment Bank (AIIB) to implement its Environmental and Social Policy (ESP) when their concerns cannot be addressed satisfactorily through Project-level grievance redress mechanisms or AIIB Management's processes. The PPM is guided by the Policy on the PPM (PPM Policy) and Rules of Procedure of the PPM (PPM Rules of Procedure). The Complaints-resolution, Evaluation and Integrity Unit (CEIU) is responsible for the functioning of the PPM. It reports directly to the Bank's Board of Directors and is independent of AIIB's management.

Two or more Project-affected people (Requestors) may file a submission. They may authorize an incountry representative (Authorized Representative) to file a submission on their behalf. In exceptional situations, when in-country representation is unavailable, the Requestors may designate an individual or organization outside of the country as their Authorized Representative to file a submission.

The PPM's three submission-handling functions are summarized below.

15.3.1 Project Processing Queries

A Project Processing Query (PPQ) is designed to enable Project-affected people to obtain rapid resolution of their concerns about simple matters that arise during AIIB's environmental and social due diligence of a Project and do not require dispute resolution (see below). The due diligence includes screening, categorization and assessment of the environmental or social impacts of the Project. Examples of concerns that may be suitable for a PPQ include inquiries about the consultation process related to a Project or requests to address environmental nuisances such as dust, noise or mobility restrictions experienced during Project preparation.

15.3.2 Requests for Dispute Resolution

Requests for Dispute Resolution (RDR) allow the PPM to seek to facilitate and coordinate the resolution of a dispute that has arisen over measures required to mitigate known and quantifiable, potential or actual material adverse environment and social impacts that arise during AIIB's due diligence of a Project or during Project implementation. The parties to the dispute typically include the Client and the Requestors, but they may also involve Management and/or contractors or other parties involved in the Project processing or implementation. The aim of this process is to reach a time-bound and monitorable dispute resolution agreement between the parties concerned on actions to mitigate these impacts. Under this process, the PPM explores with the concerned parties mutually acceptable dispute resolution methods. This process may include consultative dialogue, information sharing, joint-fact finding, creation of a mediation mechanism or other methods.

15.3.3 Requests for Compliance Review

The process under a Request for Compliance Review (RCR) involves an investigation by the PPM of allegations by Project-affected people that AIIB has failed to comply with its obligations under the ESP in its environmental and social due diligence of a Project during Project preparation or its oversight of the Project during implementation, thereby causing or being likely to cause material adverse environmental or social impacts on the Project-affected people. If the allegations are substantiated, the process includes a review of any action plan proposed by Management to address these impacts.

Unlike the PPQ and RDR processes, an RCR requires that the PPM assess whether AIIB is in compliance with its ESP. The PPM reviews whether:

The facts alleged in the RCR are substantiated;

- A direct causal link exists between the adverse impact and alleged AIIB non-compliance with the ESP;
- The alleged adverse impact is material;
- Management has adequately explained its actions pursuant to the ESP;
- The actions proposed by Management to resolve the issues raised in the submission are appropriate.

If the PPM determines that there has been noncompliance with the ESP, AIIB Management prepares a Management Action Plan (MAP) to address the PPM's findings of noncompliance. The PPM submits its findings to AIIB's Board of Directors. The MAP is subject to approval by AIIB's Board of Directors. The PPM also submits to AIIB's Board of Directors its review of monitoring reports prepared by AIIB's Management on implementation of the MAP.

The submission shall identify the Requestors making the submission. The Requestors shall be encouraged but not required to indicate under which PPM function they propose their submission to be reviewed. Other information to be included in the submission shall be detailed in the sample submission form to be set out in the Rules of Procedure for the PPM.

The submission may be written in English or in any official or national language of the Requestors' country. The PPM's acknowledgment of submission receipt shall be in English and in the language of the submission, if such language is not English. Thereafter, PPM's communications with the Requestors shall be in English. The PPM shall also translate the substantive part of these communications into the submission language, if such language is not English. However, the English language version of AIIB's communications shall prevail in the case of a discrepancy between the English and translated version.

The PPM shall acknowledge receipt of a submission to the Requestors and recommend the most suitable processing option based on submission content, timing and eligibility criteria, taking the Requestors' proposal, if any, into account. The PPM shall determine whether the submission meets the eligibility criteria. If the submission meets such eligibility criteria, it shall be registered in the PPM registry.

The PPM may, unless the Member in which the Project is located objects, undertake site visits to the Project area at any time after a submission has been filed, in order to better understand submission issues and possible ways to address them. If the Member rejects a site visit request, the PPM will inform the Board of Directors and shall conduct its review on the basis of the available evidence. In the spirit of AIIB's partnership with its Members assistance from Members in facilitating timely PPM site visits is anticipated.

Once the submission has been registered in the PPM registry, the PPM shall provide a copy of it to Management. Management shall provide its response to the submission. The PPM shall facilitate constructive dialogue between Management, the Client, the Requestors and any other relevant parties to identify solutions to address the concerns raised. The Project Processing Queries shall be handled as promptly as possible in order to facilitate resolution of concerns during Project preparation.

16. ENVIRONMENTAL AND SOCIAL MANAGEMENT PLAN

16.1 Introduction and Objectives

The ESIA identified a number of environmental and social impacts that may potentially result from the construction and operation of the Project. In order to manage and mitigate these impacts, a range of measures has been developed to reduce the overall residual impacts to As low As Reasonably Practicable (ALARP). This Environmental and Social Management Plan (ESMP) provides a summary of the outcomes of the ESIA and helps the Project Owner track their requirements during the implementation phase. The key objectives of this ESMP are to:

- Collate the various mitigation and management measures developed throughout the local regulatory EPP and ESIA into a single source;
- Define monitoring requirements to determine the efficacy of all mitigation and management measures;
- Define the responsibilities for implementation and monitoring; and
- Provide clarity to all stakeholders as to what impacts have been identified, how they will be mitigated and managed, and through what means.

16.2 Scope of this ESMP

The scope of this ESMP covers the construction and operational aspects that have the potential to affect, positively or negatively, the environment and communities in which the Project Owner or its contractors will operate. As required by this ESMP, a range of detailed management plans will be developed and implemented for each specific phase of the Project. The responsibility for the implementation of these plans will lay variously with Project Owner, contractors and sub-contractors.

16.3 Responsibility for ESMP Implementation

The Contractor will be responsible for the implementation of most of the mitigation measures during the preparation and construction phases. Where the Contractor engages subcontractors to undertake all or part of the work scope, the Contractor should ensure that these parties implement the mitigation measures. If the Project Owner directly engages other contractors (other than the Contractor), the Project Owner should ensure that the mitigation measures are implemented by these parties. All parties involved in the construction process should follow the mitigation measures. Once the Project approaches its operation phase, the Project Owner will generally take sole responsibility.

16.3.1 Construction Phase

Figure 16.1 shows structures of Project Owner management at site level and subcontractors during construction phase. Role and responsibilities of each position in environmental and social management are presenting in sections below.

Table 16.1Role and Responsibilities for Environmental and Social Management during the
Construction Phase

Roles	Responsibilities					
	 Actively promoting and participating in the Project's EHSS Plan; 					
	 Ensuring that the ESMP, procedures and work practices are implemented across the Project; 					
	 Ensuring that the ESMP reflects the requirements of the Project in terms of resources and budget; 					
	 Ensuring that all legislative and company requirements are complied with; 					
Project Director	 Ensuring that all scopes of work are defined in accordance with the Project's ESMP rules and regulations, work practices and procedures, as detailed in this ESMP and other associated documentation (e.g. the EPP); 					
	 Ensuring that all contractors are made aware of their roles and responsibilities with regard to EHSS management; 					
	 Ensuring that EHSS is regularly discussed and reported on i.e. in the weekly contractor progress meeting; 					
	 Ensuring that all contractors are evaluated throughout the duration of the Project, as to their capabilities and performance; and 					
	 Ensuring implementation of EHSS audit recommendations for non-compliance issues. 					
Project HSE	 Communicating E&S policy to relevant Project's stakeholders; 					
Department	 Developing and proposing E&S objectives and targets for the Projects; 					
Roles	Responsibilities					
------------------------	------------------	---	--	--	--	--
		Obtaining and maintaining all regulatory E&S permits and approvals;				
	•	Developing and communicating E&S legal register to relevant parties of the Projects;				
		Coordinating for E&S risk assessment;				
	•	Developing and implementing the specific E&S management programs, plans and procedures for the construction phase;				
		Logging and resolving employees' and stakeholders' grievances and complaints;				
	-	Reviewing of the contractors' E&S procedures to ensure their alignment with the Projects' requirements;				
	•	Developing and implementing an E&S training program in collaboration with the EPC contractor;				
	•	Managing necessary resources for responding to emergency events, including manpower and facilities and equipment and ensure the implementation of the Projects' Emergency Preparedness and Response Plan (EPRP);				
	•	Cooperating with EPC contractor to implement the ESMP during the construction phase;				
	•	Leading E&S accident/incident investigations and reporting and lessons learned;				
	•	Ensuring appropriate corrective actions are implemented, tracked and completed in a timely manner;				
		Leading regular E&S meeting with contractors;				
	•	Monitoring and reporting the implementation of the Projects' E&S Management Plans to the relevant stakeholder in a timely manner; and				
	•	Manage, review and develop the Social Program to ensure that it fulfils Project requirements, including measures observed in this ESMP and monitor its implementation.				
		Coordinating and evaluating the effectiveness of all social management plans;				
	•	Managing the implementation of stakeholder relations and grievance management to ensure that all social-related requirements of this ESMP are implemented;				
	•	Managing the implementation of the community health program, including coordination with the HSE Department on OHS measures associated with the management of impacts to community health;				
Community Relations	•	Coordinating with HSE Department on implementation of the Project's vehicle safety measures associated with management of impacts to community safety;				
Department	•	Coordinating with Human Resources to ensure implementation of labour-related measures required in this ESMP;				
	•	Consulting with community and liaising with relevant stakeholders in implementing the required stakeholder and grievance management measures, including liaising with related government bodies as necessary;				
	-	Leading collaboration efforts to establish and implement the Project's Grievance Mechanism during Construction Phase, and supervise contractor's social performance as required in this ESMP; and				

Roles	Responsibilities				
	 Managing social monitoring and reporting the results to the Project Manager. 				
	 Cooperating with the Project E&S Manager and subcontractors to ensure that the Environmental and Social Management Plan and E&S procedures are developed and implemented during the construction phase; 				
	 Managing the subcontractors to ensure their compliance with E&S requirements of the Project; 				
EPC Contractor's	 Assigning competent E&S manager/coordinator who responsible for implementation of Environmental and Social Management Plan and E&S procedures at the Project site; 				
Site Manager	 Ensuring all EPC contractor's employees and subcontractors are trained on E&S requirements; 				
	 Ensuring the compliance with the Projects' requirements on inspection, auditing, monitoring and reporting; 				
	 Participating to the emergency response, incident and accident investigation; 				
	 Ensuring action plans for the Projects is reviewed and updated timely; and 				
	 Participating regular E&S meeting organized by the Project E&S Manager. 				
	 Developing and implementing E&S procedures at the Projects' site during construction phase; 				
	 Conducting E&S trainings to EPC contractor's and subcontractors' employees; 				
EPC Contractor's	Committing to report accident and incident and emergency cases within time frame;				
E&S Manager/Coordinato r	 Participate in emergency response, accident/incident investigation and reporting process; 				
	 Participating in the regular E&S inspection and audits; 				
	 Implementing corrective action plans; and 				
	 Participating the E&S monthly meeting. 				
	 Committing to full compliance with the Projects' E&S policies, standards and procedures; 				
Project's Employees, EPC Contractor's	 Attending the E&S induction training prior to starting their field work and any specific trainings, when required; 				
and Subcontractors'	 Adhering to the Projects' rules and specific requirements; 				
Employee	 Being accompanied at all times by a visitor's host; and 				
	Notifying respective Projects representative, such as engineers or E&S personnel of any unsafe acts or conditions.				

16.3.2 Operation Phase

Figure 16.2 provides the E&S management structure during the operation phase with the role and responsibilities mentioning in sections below.

Table 16.2	Role and Responsibilities for Environmental and Social Management durin		
	the Operation phase		

Roles	Responsibilities
Project Director	 Ensuring the implementation of the ESMP, its overall development and periodic monitoring in order to provide continuous improvement during the execution of the Projects' operation phase;
	 Providing adequate resources for the ESMP implementation;
	 Assigning a competent E&S personnel onsite;
	 Ensuring all incidents, accident, emergency cases are investigated and reporting and the action plan are implemented in a timely manner;
	Conducting management reviews for ESMP and approve monitoring/ audit reports; and
	 Communicating and reporting to the relevant stakeholders on the Projects' E&S performance.
E&S Manager	 Implementing the ESMP and E&S management plans, programs and procedures at the Projects;
	 Ensuring that all E&S activities are being carried out in compliance with the Projects' E&S policy, the approved E&S plans/ procedures and Applicable Standards;
	 Identifying and updating the Applicable Standards of the Projects;
	 Conducting E&S risks and impacts identification and assessment and proposing and coordinating the implementation of mitigation measures;
	Cooperating with Operation Manager to develop and implement E&S training plan;

Roles	Responsibilities
	Collecting and resolving employees' and stakeholders' grievance and complainte:
	 Managing personal protective equipment, first aid and emergency response facilities and equipment;
	 Managing contractors involved into the Projects' operation phase and ensuring their E&S performance in compliance with the Projects' requirements;
	 Leading incident, accident investigation and reporting;
	 Coordinating emergency response;
	 Engaging a third party to conduct the E&S monitoring plan;
	 Monitoring E&S performance of the Projects in accordance with the ESMF requirements;
	 Conducting E&S inspection, audit and implementing corrective action plan (when needed);
	 Prepare and submit E&S reports to the local authority, as legally required;
	 Coordinating with Operation Manager to collect E&S data and preparing and submitting E&S reports to the Project Director, as required; and
	 Organising Management Review regularly.
Operation Manager	 Supporting E&S Manager on implementation of ESMP and E&S documentations at the Projects;
	 Supporting E&S Manager on development and implementation of E&S trainings;
	 Ensuring the Projects' employees comply with E&S requirements;
	 Participating in incident, accident investigation and emergency response;
	 Supporting E&S Manager on implementation of corrective action plans; and
	 Participating in the Management Review and contributing to the improvement of the Projects' E&S performance.
Team Leaders	 Ensuring their staff are adequately trained and understanding the safe working procedures;
	 Reporting to the Operation Manager and the E&S Manager as required in the ESMF and the E&S procedures;
	 Monitoring health and safety performance and implementing improvements where required;
	 Identifying E&S objectives and targets for their divisions and provide such objectives and targets to the E&S Manager to integrate into the overall Project's E&S objectives and target;
	 Participating in E&S hazard identification and risk assessments;
	 Participating in regular E&S inspection, and audit;
	 Supporting E&S Manager on proposal and implementation of corrective action plans;
	Ensuring that any accidents, incidents or emergency case that occurs within their areas of responsibility are reported to the E&S Manager and the Operation Manager; and
	Providing feedback and idea to improve the E&S performance of the Projects.

Roles	Responsibilities
All Employees	 Attending all mandatory E&S trainings, understanding and complying with the E&S requirements of the Projects;
	 Notifying Team Leaders or E&S team of any perceived problems or deviations associated with E&S issues and ESMP;
	 Working safely, in accordance with procedures and work instructions, and training;
	 Only carrying out work for which they are adequately trained (unless under supervised training conditions);
	 Participating in accident investigations and emergency response when required; and
	 Taking corrective or preventive actions required by management.
Visitors and	 Contractors need to follow the contractor management procedure;
Contractors	 Attending the E&S induction training prior to starting their field work, and any specific trainings when required;
	 Adhering to the site rules and specific requirements of the Projects;
	 Being accompanied at all times by visitor's host; and
	 Notifying respective employees, engineers or Team Leaders of any unsafe acts or conditions.

16.4 Training, Awareness and Competency

It is expected that the Project would implement a training and awareness program covering EHSS expectations of the Project. As a minimum, this should be implemented during induction for all employees and contractors engaged in the Project's construction, with further training given depending on the level of responsibility for implementing HSE and social expectations and exposure to environmental and safety risks.

The Project should ensure that all personnel responsible for the implementation of this ESMP are competent on the basis of education, training and experience. All personnel shall be provided with environmental and social training appropriate to their scope of work and level of responsibility.

16.5 Monitoring, Review, Audit and Reporting

It would be expected that a monitoring, review and auditing program would be implemented during construction and operation phases to monitor implementation of the Project's HSE requirements and environment and social commitments. The inspections and audits will be done by the project identified HSE staff in coordination with O&M contractors and other external agencies identified. The entire process of monitoring and audits should being documented.

The project owner will develop and implement a programme of reporting through all stages of the project cycle. Delegated personnel shall require to fully complying with the reporting program in terms of both timely submissions of reports as per acceptable level of detail. Reporting will be done in form of environmental checklist, incident record register, environmental and social performance reports (weekly, monthly, and quarterly, half yearly, yearly)

16.6 Project Environmental and Social Management Plan

The development of an ESMP is considered to be good management practice for any project or activity with the potential to impact upon the physical, chemical, biological, social and health environment. In this instance, it provides guidance and a framework for ensuring that the commitments of the Client, made

both within this ESIA and within the Project's EPP, are upheld and that the HSE impacts of the Project are managed to an acceptable level and in accordance with the requirements of the Project's ESIA.

Specifically, this ESMP pulls together the mitigation and management measures identified within the ESIA as necessary during the Construction and Operation Phases of the Project.

The mitigation and management measures occur throughout the Project's lifetime, from preconstruction through to construction, operation and decommissioning. In addition, there are common mitigation and monitoring requirements that apply to all phases of the Project, e.g., vehicle use/operation.

The mitigation and monitoring measures specific to the impact assessment conducted for this Project's ESIA are together with information on:

- Relevant phase and activity;
- Impact summary and receptor impacted;
- Mitigation measures, responsibility and timing;
- Monitoring requirements, responsibility and timing; and
- Reporting requirements.

Where specific mitigation measures cannot be adequately defined due to lack of Project information or uncertainty regarding the environmental or social baseline, recommendations for the development of specific management plans or procedures or follow-up actions have been made.

16.7 ESMP Links to Other HSE Management Plans

Other types of plans are required to facilitate the practical implementation of the ESMP's commitments, for example, an Operational Environmental Management Plan, Social Management Plan or certain Safety Plans. These plans or studies are not substitutes for the overall ESMP, but serve to describe how the commitments will be implemented in detail (and likely at a later stage in Project development) than in the ESMP.

This ESMP will form part of future construction and operational activities, and plans for these Project phases will confirm how these commitments will be incorporated into the relevant EHSS management systems. Their implementation will fall under the responsibility of the Client. This ESMP is a live document and will be updated periodically, depending on Project progress and performance.

16.8 Plans, Policies and Procedures

The following plans and follow-up actions are identified as necessary for managing identified risks or for further understanding of potential environmental and social impacts. The Project Owner will develop these plans to manage specific risks or issues and to align the Project with the expectations of the IFC PS and EHS Guidelines.

Management Plan	Description
Resettlement and Livelihood Restoration Plan (RLRP)	The RLRP will comprise an assessment of involuntary land acquisition impacts and development of measures to address the impacts of the Project as per IFC PS. The RLRP also include compensation and entitlement for affected households.
Community Development Plan (CDP)	The CDP will be developed to contribute to addressing Project negative impacts to wider communities identified within the ESIA report for KrongBuk Wind Power Project. The CDP sets out how the Project will positively contribute to the wider communities affected by the projects, above and

Table 16.3 Specific Management Plans and Policies

Management Plan	Description
	beyond the positive impacts identified in the ESIA. As such, the key aim of the CDP is to ensure that long term social development for wider communities in the project area can be derived from the Project.
Occupational Health and Safety (OHS) Management Plan	An OHS Management Plan includes the mitigation measures proposed in this ESMP to manage OHS impacts to workers (e.g., compulsory medical examinations for Project workers).
Stakeholder Engagement Plan (SEP) (pre-construction and throughout the project), including Grievance Mechanism Procedure)	The SEP documents stakeholder engagement undertaken during the regulatory EPP and ESIA stages. The SEP is also an initial guide to future engagement and will need to be updated periodically to ensure on-going stakeholder engagement through various stages of the Project life cycle from construction to operation and decommissioning.
Traffic Management Plan (TMP)	The TMP provides measures to minimise traffic impacts that may occur during construction phase and provides a program to monitor and report on the effectiveness of these measures.
Community Health and Safety Management Plan (CHSMP)	The CHSMP prepared potential community health, safety and security risks. The CHSMP provides commitments, programs, procedures and guidance that respond to and mitigate the identified risks; provides monitoring and training program.
Biodiversity Management Plan (BMP)	The BMP describes (i) further details about the policies and monitoring programs outlined in the ESIA of the Project, and (ii) the approach how mitigation measures should be conducted following the hierarchy outlined in IFC Performance Standard Guide Note 6.
Influx Management Plan	The Influx Management Plan includes influx management measures to mitigate the adverse impacts of both planned and unplanned population influx during construction.
Construction Environmental and Social Management Program	This document outlines the key elements of an Environmental and Social Management Plan (ESMP) capturing the typical Environmental and Social (E&S) impacts and associated mitigation measures. The E&S impacts relating to physical environment factors (Water & wastewater, Soil compaction, erosion and pollution, Solid waste, and hazardous waste materials) and social aspects (cultural heritage) and associated mitigation measures need to be considered at minimum in the context of construction activities
Noise Management Plan	The Noise Management Plan sets out responsibilities and the management practices associated with the management of noise management during construction and operation of the Project. The Plan includes actions to control noise hazards. It also defines action to mitigate, prevent or avoid to the extent practical noise nuisance to site personnel and nearby community.
Security Management Plan (SMP)	The SMP is intended to set out responsibilities and the management practices associated with the management of security during construction of the Project. This SMP is developed to: (i) Ensure that the Project comply with applicable environmental, health and safety, and social (E&S) requirements; (ii) Ensure that all personnel involved in the construction of the Project, including the Site Management Team and subcontractors fully understand Project Owner's expectations on security management: and (iii)

Management Plan	Description
	Implement applicable Good International Industry Practices (GIIPs) to manage security related issues in an appropriate manner.
Emergency Preparedness and Response Plan	The EPRP is intended for use to response emergency elements such as identification of potential emergency scenarios, emergency incident classification, emergency response organization and responsibilities; emergency alarms and communication systems; specific emergency response plans; evacuation procedures; emergency response equipment; emergency preparedness, monitoring and training.
Shadow Flicker Management Plan (SFMP)	The SFMP is to manage hazards and risks from shadow flicker effect that could potentially affect community health and safety during the operation phase of the Projects. This Management Plan is developed to ensure that the Project complies with applicable environmental, health and safety, and social (E&S) requirements, anticipate, and avoid adverse impacts on the health and safety of the affected community from the Project activities during the operation phase.
Chance Find Procedure (CFP)	The CFP is a project-specific procedure that outlines what will need to be considered if previously unknown heritage resources, particularly archaeological resources, are encountered during project implementation. This procedure is developed for the construction phase of the Project to: (i) Protect tangible cultural heritage from adverse impacts of the Project activities; and (ii) Promote awareness of and appreciation for tangible cultural heritage and support its preservation
Corrective Action Plan (CAP) for LAA	For more details of CAP, please refer to standalone Land Acquisition Audit Report.

16.9 Construction and Operation Environment and Social Management Plan

This section outlines the construction and operation ESMP, which will be developed for the Project. The ESMP is based on the Project's EPP, the Feasibility Study (FS) Report, the Safe & Civilized Construction Plan and the outcomes of the ESIA.

16.9.1 Air Quality Management

Table 16.4Air Quality Management

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated Cost
Pre-construction a	nd Construction Phas	ses						
 Land preparation and civil works such as land clearance, demolition, earthworks Transmission line, access road, internal road, laydown area construction Operation of ancillary facilities such as the concrete batching plant, diesel generator for power supply Transportation of equipment and materials, 	Increased dust and particulate matter emission (TSP, PM2.5, and PM10) from the earthworks, site preparation activities (land clearing, levelling, excavation, concrete batching plant, etc.) and construction activities of project components such as wind turbine foundation, transmission towers, internal roads, and transportation of equipment and materials	 EPP FS Report Safe & Civilized Construction Plan 	Certify all transportation vehicles, machinery and equipment used for the construction activities by the Vietnam Registry Department. Avoid using old fashion vehicles or equipment which can induce high level of emission Apply National Regulation <i>TCVN</i> <i>6438 – 2001</i> to evaluate the concentration of some air pollutants such as CO and hydrocarbons emitted by the transportation vehicles and construction equipment. Grant all equipment with the Emission Certification issued by the National Certification Authority of Vietnam in accordance to the <i>Decision No. 35/2005/QD-BGTVT</i> Wash construction vehicles before leaving the construction site to minimize dust being produced in the outside roads and nearby residential areas	Project owner EPC Contractor	 Temperature, humidity, wind speed, noise, dust, CO, NOx, SO2 Monitoring locations: 3 locations Wind turbine construction site 220 kV substation, and Transmission line. 	Every 6 months	Monitoring report	Part of construction cost
workers daily movement.	 Elevated gaseous pollutants from fuel combustion by 		Enhance water sprinkling as transportation, excavation, levelling, and compaction during drying season (2 times/day). Avoid overloaded transportation	_				

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated Cost
	equipment and machines		and travelling during night time and peak hour					
	Exhaust emissions from construction machinery and other heavy aquiment such as		Use a canvas to cover the truck compartment while travelling to avoid construction material (sand, stone, cement, and brick) spillage to the roads					
	 bulldozers, excavators, compactors, and diesel generator Exhaust emission (SO2, CO, NO2, NH3) from road transport of equipment and material 		Store machine and equipment in a covered storage to avoid flying dust caused by strong wind during the construction phase					
			Prohibit incineration of waste or construction materials (plastic bags) inside the construction site					
			Fence and isolate substation location to the surrounding areas to avoid dust and debris released to the environment.	-				
	n Smoke from burning vegetation	ESIA 10.1.4.1	Prioritize materials to be supplied by local suppliers					
	 clearance, should this occur, and Strengthening and maintenance of access roads. 	arance, should s occur, and rengthening and hintenance of cess roads.	Apply water sprays at land preparation area, access roads and any other exposed surfaces which could be source of dust are to be watered	-				
			Control the speed limit of trucks and other vehicles not to exceed 20 km/h within the Project boundary	_				
			Designate areas of construction, stockpile areas and other exposed soils as such in order to minimize vehicle movements over these to the minimum amount possible					

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated Cost
			No cleared vegetation to be burnt. Cleared vegetation will either be composed or reused for stabilization purposes					
			Ensure valid inspection certification for transport vehicles and construction machines					
			Cover construction material deliveries or loads entering and leaving the construction site by an appropriate cover for the purpose of preventing materials and dust spillage					
			Control vehicles transporting materials inside or outside the construction site not to be overloaded					
			Properly maintain vehicle engines to ensure minimization in vehicular emissions	-				
			Use of modern equipment and vehicles meeting appropriate emissions standards, and regular preventative maintenance (in line with manufacturer's recommended maintenance schedules, taking into account intensity of use and operating environment)					
			Minimize stockpiling by coordinating excavations, spreading, and regrading and compaction activities	_				
			Avoid excavation, handling and transport of erodible materials under high wind conditions where					

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated Cost
			practicable. Where not feasible, transported erodible materials shall be covered					
			Where possible, any soil stockpiles should be located in sheltered areas where they are not exposed to wind. If not feasible, securely cover stock piles of soil (or other erodible materials)					
			Rehabilitate or replant opened up areas that will no longer be used during the operation phase of the project.					
Operation Phase								
 Maintenance activities 	Negligible	ESIA 10.1.4.5	No further mitigation measures.	_	-	_	_	_
 Inspection activities 								

16.9.2 Noise Management

Table 16.5Noise Management

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
Construction Phas	e							
 Equipment and material transport and supply Land preparation and civil works 	Short-term increase in noise levels (only 18 months of construction phase)	 FS Report Safe & Civilized Construction Plan 	Arrange reasonably operation time for large noise sources such as concrete batching plant, motors and equipment, and place them at least 200 meters away from the residential areas.	 Project owner EPC Contractor 	 L_{Aeq} in accordance to QCVN 26:2010/BTNMT National 	Monthly	Monitoring report	Part of construction cost
such as land clearance, demolition, earthworks Transmission line and laydown area construction	land A e, tl on, a rks T ssion line 1 łown ti nstruction ti	Abide any traffics passing through the national roads, provincial roads and trails by regulations of National Technical Standard <i>TCVN 5949-</i> <i>1998.</i> The speed and transportation time (only after 20:00) shall be in accordance to the regulated limitation (20km/b)		Regulation on Noise and IFC EHS Guidelines Monitoring locations: same locations of the				
 Operation of associated facilities such as the concrete batching plant 			Perform functional operation inspection of all motor vehicles, heavy trucks, and construction equipment used in the Project regularly for noise and vibration.		baseline monitoring survey and the starting point of Project access road from			
 Transportation of equipment, workers and 			Avoid nighttime construction works from 22:00 to 6:00AM in the next day.	orks No.14 No.14				
materialsFoundation construction and	rials Pr dation for rruction and ar	Provide adequate PPEs (earplugs) for workers as working in noisy areas.						
Installation work of the WTGs		ESIA 10.2.3.2	Implement community engagement as follows:	_				
			Engage with the community at the earliest to get their consent on some noisy activities and					

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			negotiate the best time to conduct some noisy work as the residents are not at home					
			Arrange the respite period for the noisy activities (5 – 10 minutes break every working hour), and					
			Alleviate community concern as construction noise is short-term and day time only. The noisiest is only at the place where the construction activities occur.					
			Avoid unnecessary noise due to idling diesel engines and fast engine speeds when lower speeds are sufficient.					
			Ensure all machines used on the site are in good condition with limited number of allowed equipment at one location, with particular emphasis on exhaust silencers, covers on engines and transmissions and squeaking or rattling components. Excessively noisy machines should be repaired or removed from the site, and/or	-				
			Ensure that all plant, equipment and vehicles movements are optimized in a forward direction to avoid triggering motion alarms that are typically required when these items are used in reverse.	_				
			Limit high noise generating construction works and activities to the daytime period (7:00 to 22:00).					

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			and avoid work on Sundays or public holidays if possible.					
			Justify any works that are required during the nighttime period (22:00 to 7:00) and implement task-specific noise mitigation and management measures to reduce noise impacts to the acceptable levels. These additional measures should consider the potential for sleep disturbance impacts that could occur during the nighttime period due to "peak" or "maximum" noise level events e.g. metal on metal contact, or general clangs and bangs.					
			Implement task-specific noise mitigation and management measures to reduce noise impacts to acceptable levels, when works associated with transmission line and access road construction often require activities in closer proximity to receptors that are not affected by construction works at wind turbines, or permanent facilities					
			Limit construction road traffic and heavy vehicle movements have the potential to generate high "peak" or "maximum" noise level events during the night-time period, and avoid them if possible. Where possible, limit significant noise generating vehicle movements to the daytime period. Where it is not possible for this to occur drivers should be instructed to arrive and depart as quietly as possible. Whilst on-site					
			and in close proximity to receptors, instruct the drivers to implement					

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			good-practice noise management measures to reduce peak noise levels and minimize any impacts as far as reasonably practicable. During the works, instruct drivers to travel directly to site and avoid any extended periods of engine idling at or near residential areas, especially at night.					
			Identify and evaluate the problem source and any potential noise reducing measures for implementation during the works if any validated noise complaints and grievances are received. If the noise complaint cannot be validated, no further mitigation or management measures are required.	-				
			Limit unauthorized local people or any person coming near the construction site in order to reduce the unnecessary physical and mental health-related impact during the construction time.	_				
Operation Phase								
Operation of the WTGs	Long-term increase in noise levels	ESIA 10.2.3.2	Conduct routine maintenance of wind turbines, with specific attention to equipment degradation that may cause further noise impacts. Evaluate and repair any equipment that is abnormally noisy as necessary to return emissions to typical operating performance	Project owner	 L_{A90} and L_{Aeq} in accordance to QCVN 26: 2010/BTNMT – National Technical Regulation on Noise 	Quarterly	Monitoring report	Part of operation cost
			Apply community grievance mechanism. It is recommended that if any repeated/validated noise	-	 Monitoring locations: representative 			

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			complaints are received then compliance monitoring should be undertaken at the most affected receptors to confirm predicted noise levels. Where noise monitoring occurs, the work should be scoped and then conducted by a suitably experienced person. The purpose of the monitoring is to understand in- situ levels and to provide a comparison to predicted levels such that any additional controls be identified and then implemented if feasible, reasonable and practical to do so. If this is required:		areas of Noise sensitive receptors during the operation phase			
			Measure all project/ site noise levels in the absence of any influential source not associated with the Project					
			Not require controls if the measured site noise levels are below the predicted values and comply with the applicable thresholds, limits or criteria identified for each noise aspect.					
			Consider further noise control if the measured site noise levels are above the predicted noise levels or the applicable thresholds, limits or criteria identified for each noise aspect.					
			Collaborate closely with local authorities to ensure local people are well aware of the predicted noise exceedance areas and notify the potential impacts to local residents					

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			in case of new houses are proposed within those areas					
			Communicate and monitor closely other receptors within the buffer safety area of 300 m on the rest WTGs the noise impact level from wind turbine operation via different communication channels (village heads, Project's grievance mechanism, and local authorities)					
			Other receptors (183 receptors) outside of the buffer safety area of WTGs receiving a noise level at the increment of more than 5dBA shall also be closely communicated and monitored the noise impact level from wind turbine operation via different communication channels (village heads, Project's grievance mechanism, and local authorities).					
			Operational curtailment: In certain jurisdictions, may require to shut down wind turbines in some periods during the specific meteorological conditions to meet the regulated noise emission at nearby dwellings					
			Consider to replace these WTGs (WTG A17, WTG B9 and WTG D5 associated with NSR2, NSR3 and NSR9 which generated high noise level exceeding 12-13 dBA more than the standard) with the quieter motors or if better, relocate these set to less sensitive areas to take advantage of distance and shielding.					

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			Worst case scenario, consider carefully the replacement or relocation of wind turbines which is failed to minimise the generated high noise level, the removal of wind turbines (WTG A17, WTG B9, and WTG D5)					
			Relocation of potential sensitive receptors, particularly identified households living within the buffer safety area of 300 m of eight WTGs including WTG A17 (4 sensitive receptors – SRs), WTG A18 (1 SR), WTG B2 (6SRs), WTG B9 (3SRs), WTG B19 (8SRs), WTG C1 (1SR), WTG C16 (5SRs), and WTG D5 (4SRs), who are predicted to be significantly affected by noise impact, is highly recommended, nevertheless a validation survey is recommended which includes additional survey to perform a census of the exact affected households and uses. Activities like agriculture, are not restricted in safety buffer areas according to national and international applicable standards. In this case, the relocation plan shall be developed and managed by the Project's owner. These 32 receptors out of 147 receptors located within the WTGs' safety zones are identified as severely impact by the noise more					
			than others					

16.9.3 Water Resource Management

Table 16.6 Water Resource Management

	-	Document	mitigation measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
Construction Phase								
 Land preparation and civil works Construction of transmission line, access road, wind turbine foundation, and laydown area Operation of temporary facilities such as the concrete batching plant Water consumption for worker's activities - groundwater. Waste and wastewater management from construction activities and worker's activities Hazardous waste storage and handling 	 Increase turbidity due to the sediment and suspended solid (SS) from excavated soil and construction materials washed into freshwater water bodies consisting of lakes and another natural streams Increase contaminants (construction debris, fuel, oil, etc.) washed/seep into water bodies due to run-off during rainy months 	EPP	 Wastewater and run-off water: Arrange all working staffs at the construction site to stay in the rented local houses and utilize the in-situ toilets at place Equip for the contractors working for the Project with 5 – 10 portable toilets enclosed with 3-compartment septic tanks (V=20m3) and domestic bins serving the worker's demand at the Project's locations including clearing, levelling, and backfilling areas Utilize water efficiently for construction activities to avoid unnecessary loss of containment to the environment Store equipment in indoor areas to avoid leakage of oil and lubricant to the environment Conduct the repairing and maintenance of transportation vehicles at the garage in order to not release the oil and grease and wastewater from car washing to 	 Project owner EPC Contractor 	 pH, DO, BOD₅, TSS, COD, NO₃⁻, PO₄³⁻, Oil & grease Monitoring locations: surface water bodies and groundwater sources within the Project's area 	Every 6 months	Monitoring report	Part of construction cost

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
	 Waste discharged from construction activities and worker's activities Spillage of oil, chemicals, hazardous chemical from the use of vehicles and construction machines during the construction phase, and Reduction in downstream water availability and groundwater resources that may cause conflicts of water demand of local community. 		 Construct the drainage systems in the construction areas. Collect runoff water (mainly rain water) by internal drainage system and then release into the environment by the inclination of the terrain. Regularly check and clean the drainage system to avoid blockage of soil, debris, and spoil, and Conduct main construction activities during dry season to avoid contaminated run-off water into the environment in rainy season. Construction spoil: Store construction waste at temporarily designated area to avoid being waterlogged and polluted to the surrounding environment Collect, classify and transport construction waste materials for proper treatment by licenced agency in accordance to Article 5, 6, and 7 of Circular No. 08/2017/TT-BXD on Construction Solid Waste Management dated 16 May 2017 by the Ministry of Construction. Reuse and recycle construction materials such as plank or timber pillar to compact or strengthen the low terrain, and 					

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			 Manage properly spoil materials such as soil, stone, brick, etc. to avoid being invaded to agricultural land of local people; otherwise, the Project's owner shall be responsible for compensation and support local people for remediation. 					
			Domestic waste:	_				
			Collect and bury sanitarily in-situ a small amount of domestic waste generated from the location of wind turbine foundation					
			 Collect and store domestic waste generated from substation's location in 120-litter dustbin with lid, then being transported by licensed agency for proper treatment 					
			Prepare the waste management plan (inventory, dustbin, and cleaning schedule) by the subcontractor during the pre- construction stage					
			 Provide trainings and drills on sanitary, security, and environmental protection regulations for workers and personnel working on site 					
			 Prohibit littering while working on site, and 					
			Reduce, reuse, and recycle of spoil materials for ground levelling.					

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			Hazardous waste:					
			Collect, store properly hazardous waste materials such as oily rag, welding rod, and paint shall be in bins with lid at temporarily designated area before being transported by licenced agency for proper treatment, and					
			Regular conduct inspection and maintenance of material and equipment vehicles travelling to the site to avoid leakage of oil and fuel to the environment.					
		ESIA 10.3.4.1	Develop Construction E&S Management Program including:					
			 Waste and wastewater Management Plan which will cover the management and mitigation measures to minimize the impacts on nearby water bodies and surrounding communities) 					
			Soil and Erosion Management Plan. The Plan should include some specific action but not limited to as follows:					
			 Any soil stock piles (excavated materials) should be located in sheltered areas where they are not exposed to wind and at a location approved by local authorities, and 					

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			 Stock piles of soil (or other erodible materials) should be securely covered. 					
			Construct bunds or silt fences instead of canvas on the stockpiling areas to prevent wash away of sediment load to the water bodies					
			Install oil separation tank and sedimentation tank to capture and detain construction site runoff and oil and grease from vehicles and equipment. Where applicable, install sediment control along major drainage lines where construction activity is taking place within 100 m of these line	-				
			Where practicable, maintain downstream vegetation in good condition during the construction process. Vegetation located down- slope of the work site assists in filtering out sediment.	_				
			Collect and store in accordance with applicable regulations, all solid waste including domestic waste, hazardous waste, oil and grease from the maintenance, reparation and operation activities of equipment during the construction phase. Then, transport solid waste out of the Project's site in separated containers and treated properly by functional units in accordance to <i>Circular No.</i> <i>36/2015/TT-BTNMT</i>					
			Dispose properly all water and liquid wastes arising from the construction activities and they will not be					

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			discharged into any water bodies/streams course without adequate treatment. Domestic wastewater will be collected and processed by the septic tanks.					
			Establish internal rules and activities for environmental protection, including littering and disposal of wastes					
			Establish rain water / storm water drainage system that connects to oil- water separators to collect and remove oil prior to discharge into receiving bodies (at the operation house and the substation area).					
			Collect domestic solid waste weekly. The Project's owner will sign an agreement with functional units for transporting and handling respective wastes.	_				
			Store the construction materials, debris and backfill away from water bodies or waterways and only at the designed sites along the construction zones.	_				
			Store separately and collect periodically construction waste by an authorized treatment and storage facility.					
			Collect and store hazardous waste by the Project owner and those waste will be handled by the official hazardous disposal organization.					
			Prohibit discharging of waste and wastewater directly into fresh water bodies.					

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			Supervise implementation of proposed mitigation measures by the Contractors.					
Operation Phase								
Domestic wastewater and waste discharge Leaks and spills of oil, lubricants or fuel from the operation equipment	Negligible	ESIA 10.3.4.2	No further mitigation measures	Project owner	-	_	-	_

16.9.4 Soil Environment Management

Table 16.7 Soil Environment Management

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
Construction Phas	se							
 Groundworks and construction activities: 	 Loss of soil stabilising vegetation Soil erosion EPP FS Report Safe & Civilized 	EPPFS ReportSafe &	Ensure that excavation, filling and construction works shall be complied with the current regulations	 Project owner EPC Contractor 	Soil Compaction and Erosion:		Monitoring report	Part of construction cost
 Land and Soil erosion Soil compaction clearance in areas designated for WTO for the basis 	Civilized Construction Plan	Construct dykes along the construction works to avoid soil erosion	-	Erosion Control and Sediment control measures designed specific to each site	Once prior to land preparation			
WTG foundation, transmission line pylon	would lead to signated for impact on the 'G foundation, physical nsmission line properties of on soil such as	Construct open ditches and ponds at the disposal site to prevent soil erosion		Vegetation clearing remains inside the identified zones (area monitoring)	During land preparation			
 Excavation for WTG foundations and electrical poles Construction of internal road 	reduction in pore spaces, water infiltration rate and soil strength.	S e I I I I I I I I I I I I I I I I I I	Strengthen the foundations by embankment or plantation	the foundations by int or plantationCurrent cond Sediment con and Erosion ofation n the temporary ifter the construction increase vegetation ze the soil erosion andStatus of eros prone areas (downstream monitoring in TSS levels)I construction activities pundation excavation velling in drying season posion.Status of stoce	Current condition of Sediment controls and Erosion controls	A weekly basis; and immediately after rainfall events or flooding	d ely fall	
 System Accidental leaks/spills of fuel, oil and hazardous 			Make plantation n the temporary land area after the construction finishes to increase vegetation and minimize the soil erosion and landslide		Status of erosion prone areas (downstream monitoring including TSS levels)	Daily		
materials/waste from machine during construction			Conduct all construction activities including foundation excavation and site levelling in drying season to avoid erosion.		Status of stockpiles	Daily		
phase			Reuse disposed construction material pieces such as bricks		Mitigation measures of soil compaction	Throughout construction		

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
 Generation of domestic waste and wastewater 		and stones. Use the excavated soil for backfilling and road construction. Other kinds of construction materials including irons and steels will be collected, transferred back to the manufacturer, reused, or scrap trading. and erosion are in place and operation phases (increase frequency during heavy rain months)						
			Arrange about ten dustbins on site		Waste Disposal and Leaks/Spills:	Every 6 months		
		ESIA 10.4.4.1 10.4.4.2	Collect solid waste generated from the working teams who accommodate in the rented houses and transport to the local garbage collection point for further treatment. Prepare and implement a soil and erosion management plan as part of Construction E&S Management Program to incorporate requirements such as use of dust suppression, soil stabilisation during construction and storm water and sediment management and control	Leaks/SpillDid waste generated working teams who odate in the rented nd transport to the local collection point for eatment.Arsenic, Cadmiur Chromiu Copper, Zinc in c with QC MT:2015 National regulatic allowabl heavy mison during construction n water and sediment	 Arsenic, Cadmium, Total Chromium, Copper, Lead and Zinc in compliance with QCVN 03- MT:2015/BTNMT - National technical regulation on the allowable limits of heavy metals in soil Monitoring 			
			Limit construction activities including site clearance, and excavation in some rainy days or during heavy winds and downpour to minimize erosion and run-off		locations: 2 locations - Substation area, and - Turbine area.			
			Develop and implement procedures for responding to emergencies/accidental spills of hazardous materials, fuel and waste handling & management					

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			Restrict maintenance works to specially designated platforms with strict control of accidental spills					
			Restore the Project site at the end of the Project life cycle to pre-Project level.					
			Contract a competent/licensed contractor to collect, transport and treat domestic, construction and hazardous wastes from the project site					
			Prohibit dumping any solid wastes to the soil or burning waste on the site					
			Ensure that hazardous materials are stored in designated areas that are designed with impermeable floor, inflammable walls and accessible to authorized personnel	_				
			Manage properly hazardous waste (HW) in accordance with Decree No. 38/2015/ND-CP, Circular No. 36/2015/TT-BTNMT and QVCN 07:2009/BTNMT on Hazardous Waste as follows:	_				
			Prohibit HW to be illegally disposed into the ground					
			 Train all workers and staffs on hazardous and non-hazardous waste classification and their handling methods 					
			 Supply proper facilities and clearly determine areas for HW 					

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			storage in the construction sites in accordance with <i>Circular No.</i> 36/2015/TT-BTNMT					
			 Contract appropriate organizations with proper license in order to periodically transport and dispose hazardous waste, and 					
			 Ensure that a record of hazardous waste should be documented and available at the site (using the form specified in <i>Circular No.</i> 36/2015/TT-BTNMT) to allow monitoring volume of generated and disposed hazardous waste in place by the authorized contractors. The numeric data in the record must be consistent in order to ensure that none of the improper disposal is made in the Project's area or other locations. 					
			In case of accidental/unintended spillage, collect and store immediately the contaminated soil as hazardous waste	_				
Operation Phase								
 Spillage of fuel, oil, chemicals and hazardous materials from 	 Loss of soil stabilizing vegetation; Soil 	ESIA 10.4.4.1 10.4.4.2	Contract a competent/licensed contractor to collect, transport and treat domestic and hazardous wastes from the project site	Project owner	Waste Disposal and Leaks/Spills: Arsenic, Cadmium, Total	Every 6 months	Monitoring report	Part of operation cost

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated	
Operation and Maintenance activities	compaction and erosion; Soil		Prohibit dumping any solid wastes to the soil or burning waste on the site		Chromium, Copper, Lead and Zinc in compliance with QCVN 03- MT:2015/BTNMT - National technical regulation on the allowable limits of beavy metals in				
 Generation of domestic waste and wastewater 	contamination.		Ensure that hazardous materials are stored in designated areas that are designed with impermeable floor, inflammable walls and accessible to authorized personnel						
			Manage properly HW in accordance with <i>Decree No.</i> 38/2015/ND-CP, Circular No. 36/2015/TT-BTNMT and QVCN 07:2009/BTNMT on Hazardous Waste as follows:		 soil Monitoring locations: 2 locations - Substation area, 				
			Prohibit HW to be illegally disposed into the ground Train all workers and staffs on hazardous and non-hazardous waste classification and their handling methods Supply proper facilities and clearly determine areas for HW storage in the construction sites in accordance with <i>Circular No.</i> 36/2015/TT-BTNMT		- Turbine area.				
			 Contract appropriate organizations with proper license in order to periodically transport and dispose hazardous waste, and 						
				 Ensure that a record of hazardous waste should be documented and available at the site (using the form 					

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			specified in <i>Circular No.</i> 36/2015/TT-BTNMT) to allow					
			and disposed hazardous waste					
			in place by the authorized contractors. The numeric data					
			in the record must be consistent in order to ensure					
			that none of the improper disposal is made in the					
			Project's area or other locations.					
			In case of accidental/unintended spillage, collect and store immediately the contaminated soil as hazardous waste	-				

16.9.5 Electromagnetic Interference Management

Table 16.8 Electromagnetic Interference Management

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
Operation Phase			·					
Waste, emissions	Electromagnetic	EPP	There are no existing controls.	_	_	_	_	_
(including electromagnetic interference) and discharge generation, handling and disposal	fields (EMF) from transmission line and transformers in substations lead to health risks	ESIA 10.5.4.1 10.5.4.2 10.5.4.3	Avoid residential buildings, or acquire houses within the ROW (if any). A validation survey shall be conducted to ensure there is existence of any houses or else locating within the ROW. Avoid schools, hospitals, health clinics, and other similar buildings – the ETP alignment avoids these sensitive buildings and maintains at least a 32 m buffer to all schools and health clinics	- Yearly OkV e oring rly esult ly	Vearly Monitori kV Yearly Monitori report y sult y	Monitoring report	Part of Operation cost	
		T s p li s e c t	Tower safety features – place warning signs prohibiting climbing on towers and incorporate design elements that prevent climbing of the towers.	_	with Decree No. 14/2014/ND-CP on Stipulating in detail the implementation of electricity law regarding electricity safety and National			
			Implement all H&S measures as specified in the regulations including earthling of buildings that are metal clad and directly below the transmission line.					
			Conduct regular clearance of the clear zone to ensure the area is safe as required by the regulation.		Regulation QCVN			
			Conduct regular checking/ maintenance to ensure the safe condition of the tower and the cable.		25:2016/BYT on Industrial Frequency Electromagnetic Fields – Permissible			

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
					Exposure Level of Industrial Frequency Electromagnetic Fields in the Workplace			
					Monitoring locations: in the safety corridors of the 220 kV transmission line, at the substation and at the location of turbine			
			Provide signage at each tower with emergency phone numbers, emergency contact information.	_	EMF from 22 kV Underground Transmission	Quarterly		
			Shield electric fields by trees, fences, buildings and most other structures. However, magnetic fields are much more difficult to shield than electric fields.	_	Line: Monitor EMF by using suitable magnetic and electric filed			
			Arrange the phases to maximize the magnetic field cancellation for double circuit lines		sensors within the first year of the operation			
			Install a passive shielding loop to reduce the magnetic field at a particular point		This monitoring will be included as part of the			
			Equip staffs who come in contact with EMF with PPE and ensure O&M staff can work in different shifts to avoid the exposure time with EMF		occupational health and safety			

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			Put up warning signs for high voltage areas		monitoring program.			
			Organize periodic health check-ups for staff who work in EMF field location		EMF from Substation:	Yearly		
			Provide staff with training on EMF section before performing work		 Monitor the electromagnetic 			
			Use ferromagnetic and conductive materials for shielding as a barrier to reduce the field strength at the source, and	-	filed at the vicinity of the substation			
			Limit staff who have health problems such as cardiovascular and congenital diseases from working in areas with EMF.	_	 The EMF result must comply with Decree No. 14/2014/ND-CP and National 			
			Place warning signs prohibiting climbing on wind turbines and incorporating design elements that prevent climbing of the wind turbines, and provide emergency contact information by placing signage at each wind turbine containing emergency phone numbers to enhance safety.	_	Technical Regulation QCVN 25:2016/BYT.			

16.9.6 Climate Change Management

Table 16.9 Climate Change Management

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporti ng	Estimated
Pre-construction Phase								
Vegetation clearance	Change of carbon stocks from the removal of living biomass	FS Report	There are no existing measures/ controls	_	-	-	-	-
Construction and Operation Phases								
Operation process of heavy equipment (excavator, heavy trucks, bulldozer, crane) Transportation of turbine and material from the purchasing point to the Project site	Consumption of a relatively huge amount of diesel lead to the production of greenhouse gases (GHG), especially carbon dioxide (CO ₂), that contributing to climate change impacts.	EPP	There are no existing measures/controls	Project owner	-	-	-	-
Generating electricity by harnessing the power of the wind	The Project helps to reduce consumption of fossil fuels to generate electricity, and as a result, reducing the emissions of GHG and air pollutant emission.		Install stone embankment for each turbine and compact foundation pit to avoid flooding and landslide					
Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporti ng	Estimated
---	---	--------------------	---	----------------	-------------------------	-------------------------	---------------	-----------
Extreme weather events	Reduce the output of energy, damage generation and grid infrastructure, affect security of energy supply and cause difficult access to the Project's location for maintenance		Consider some technical specifications in the Envision Design extreme climate condition such as extreme wind speed (10 min average) of 37.5 m/s; survival wind speed (3s gust) of 52.50 m/s and turbulence intensity. These parameters are adapted with extreme weather of Dak Lak province, Vietnam as several storm, typhoons were recorded in Dak Lak province with the maximum wind speed of 36.6 m/s (level 12). The wind turbine will stop producing power at ambient temperature below -40°C and above 50°C. The turbine is designed for use at altitudes up to 1,000 MASL standard and optional up to 2,000 MASL					
Rapid change in wind speed	Reduce power generation		Design and build drainage system around the turbine foundation and transmission line pylon to ensure to accommodate the increased precipitation because of climate change					
Severe natural disaster such as flooding and landslide	affect to substation and other components which results in loss of supply locally		Prepare flood warning and prevention system and develop an Emergency Preparedness and Response Plan, and Evacuate workers out of dangerous areas, using on-site equipment and manpower to control the incidents by the Project owner when the flash flood occurs.	-				

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporti ng	Estimated
		ESIA 10.6.4.2	Take into account the increase in wind intensity in construction design to ensure stability of the WTG and avoid any community/occupational safety incidents					
			Adapt selected turbine design (Envision 2.65 MW and 3.0MW) to handle higher wind speeds and gusts in case that wind speeds are likely to increase, to capture greater wind energy with taller towers					
			Specify redundancy in control systems, multiple transmission and distribution routes, relocation for transmission and distribution (including substation). Where stronger winds are expected, adopt higher design standards for distribution poles.					
			Apply enhanced lightning protection and grounding system (earth wires, and spark gaps) in the distribution network where lightning strikes may increase.					
			Ensure the presence of rapid emergency teams to repair any damaged turbines in timely manner	_				
			Determined clearly and demarcate the planned areas for vegetation clearance linked to the construction works by landmarks to avoid any accidental violation. Prepare Site clearance plan to identify areas that will be retained with					

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporti ng	Estimated
			natural vegetation within the Project's boundaries					
			Prohibit clearing vegetation outside of designated areas for Project staff, workers, all contractors and personnel engaged in or associated with the Project, with sanctions, including fines and dismissal, and prosecution under the relevant laws for clearing vegetation.	-				
			Do some mitigation measures regarding to transportation plan to avoid unnecessary trips that would make more vegetation clearance.					

16.9.7 Shadow Flicker Management

Table 16.10Shadow Flicker Management

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
Operation Phase				1				
Operation of turbines	The association	EPP	There are no existing measures/controls.	-	_	_	_	_
	flicker caused by wind turbines and the effects on human health is highly debated.	cker caused by ind turbines and e effects on uman health is ghly debated.	Grievance Monitoring and Reporting – Implement a process to assess the real occurrence of the shadow flickering at local identified receptors (312) in order to eliminate the phenomena. In case of dwellings experienced flickering shadow, a detailed grievance mechanism should be available and the local community must be aware of the availability of grievance mechanism to submit their complaints regarding nuisances related to shadow flicker from turbines. Ensuring close monitoring through engagement with local stakeholders during the operational phase where there are predicted impacts from shadow flickers	Project owner	Grievance related to shadow flickering issue monitoring measures are identified and recommended.	_	Monitoring report	Part of operation cost
			Visual Screening (Natural) – Assess potential sensitive receptors, for which shadow flicker modelling indicates could exceed 30 hours per year and 30 minutes per day (785 impacted receptors as result of Worst Case Scenario and 312 in real case scenario), through an on site validation survey to verify exact receptors and to ascertain the extent of existing natural visual screening in place. If not existing, the occurrence of shadow flickering during operation could be furtherly investigated, and if confirmed, increasing natural screening could be considered to minimise the effect.					

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			Visual Screening (Architectural/ Structural) – Perform further assessments and apply certain mitigation actions as installation of blinds, window shades, window tinting, awnings or fences at affected receptors, which will help to minimize the effect of shadow flicker, if grievances are received linked to this impact or if natural visual screening at potential sensitive receptors are found to be insufficient to mitigate the shadow effect.					
			Operational Curtailment – Investigate wind turbines operations to determine specific wind turbine that result to shadow flicker exceedance of 30 hours/year and 30 minutes/day on affected structure (almost WTGs cast flickering effect on a majority of communities during sunrise and sunset periods of time according to shadow flicker calendar of modelling results), if shadow flicker related grievances are logged and/or after visual screening has been done. Based on such information, operational curtailment can be applied to reduce the effect to the impacted receptors, which are identified based on the results of monitoring.					
			Relocation – Consider the relocation of affected dwellings, if so, present openly this relocation option to local community by the Client for prior consent, after concluding the additional suggested assessment, if visual screening (both natural and architectural/ structural) and stopping operation of wind turbines fail to mitigate shadow flicker impact at impacted receptors. Perform any relocation process in accordance with AIIB ESS2 related to resettlement. A community disclosure will be highly recommended to					

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			clarify the significant of impact and ensure the community would be affected in case of changes of likelihood. However, it is important to understand that:					
			The Project Owner shall conduct a detailed census or inventory of loss of all impacted receptors by the worst-case scenario and set out a "cut-off' date to avoid any new residential settlements within the impact zone after the date. In case the Project does not have enough resources, a communication channel via local authorities especially villages' heads should be established as long as all impacted receptors are well-informed about the impacts, cut-off date and grievance process					
			The Project Owner shall also strengthen the cooperation with local authorities to continuously implement local awareness raising of the Project impacts, especially flickering shadow affect, to local people, and					
			For any new settlements after the cut-off date and within the impacted zone, if their settlement lands are legally classified as residential lands, the Project Owner, with the support from local authorities, shall notify them about the shadow flickering issue and provide support to such households whether building structure or surrounding environment designs including natural and artificial barriers					

16.9.8 Visual Quality Management

Table 16.11Visual Quality Management

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
Pre-Construction,	Construction a	nd Operation	Phases					
Construction and	Visual impacts	EPP	There are no existing measures/controls.	_	_	_	_	_
installation of wind turbines ■ Operation of turbines		ESIA 10.8.5.2	Siting and design of roads and other infrastructure to minimize off-site visibility from visually sensitive areas should be an important consideration	 Project owner EPC Contractor 	-	-	-	-
		A cc sp U re cc tu tu ca tu m ar	Avoid obvious logos and/or patterns with colours at long wavelength of the visible spectrum to be painted for the WTGs					
			Use of materials that will minimise light reflection should be used for all Project components; The replacement of wind turbines with visually different wind turbines can result in visual clutter, so replacing wind turbines with the same or a visually similar model over the lifetime of the project may be an important requirement					
			Retain existing vegetation to the greatest extent possible. Retain vegetation along roads, substations, and other the Project's infrastructure					

16.9.9 Traffic and Transport Management

Table 16.12 Traffic and Transport Manageme	ent
--	-----

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
Construction Pl	nase							
 Transport of equipment (wind turbines and transmission line components) Transportation materials from local vendors 	 Degradation of the public road infrastructure and network due to heavy load vehicle movement Disturbance to local transportation 	EPP	There are no existing measures/ controls	 Project owner EPC Contractor 	Monitor the implementation of all proposed mitigation measures specified in the TMP (such as specifying speed limits and safe distance for vehicles entering the site, using qualified drivers, stopping distracted driving)	Monthly	Monitoring report	Part of construction cost
 Daily movement of local construction workers 	due to an increase of ordinary traffic movement that might cause	ESIA 10.10.4.1	Develop a detailed Traffic Management Plan (TMP) prior to the commencement of construction. Measures including in TMP should be:		Monitor road condition along the transportation route	Bi-weekly		
	traffic congestion, and Increase of Traffic Safety		Establish, train and monitor compliance with speed limits to reduce accidents and speed- related injuries	_				
	Risks.		Avoid peak times of day to reduce the risk of accidents	_				
			Due to heavy load vehicle movement, require some works such as temporary removal of some trees, cooperating with local authority and seeking support from	-				

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			local community to expand the road for easily movement					
			Collaborate with local communities and responsible authorities to improve signage, visibility and overall safety of roads					
			Make information boards about traffic safety hazards and emergency contact information available at the wind farm site					
			Ensure that drivers carrying construction machinery and materials are instructed to drive within speed limits with careful consideration for village traffic	_				
			Coordinate with emergency responders to ensure that appropriate first aid is provided in the event of accidents	_				
			Establish a proper and accessible grievance mechanism to report concerns about public road conditions raised by local communities along the transportation route. The Project will carry out immediate investigation when the community submits related complaints					
			Coordinate between the Project proponent and the government agencies for road maintenance to					

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			identify necessary road repairs during Project construction					
			Repair of any damaged road surfaces as needed which caused by the Project-related transportation.					
Operation Phas	e							
Operational traffic (e.g. WTG operations, inspection and maintenance)	Negligible	EPP	There are no existing measures/controls.	Project owner	Monitor the implementation of all proposed mitigation measures specified in the TMP (such as specifying speed limits and safe distance for vehicles entering the site, using qualified drivers, stopping distracted driving)	Monthly	Monitoring report	Part of Operation cost
		ESIA 10.10.4.2	Establish and monitor compliance with defensive driving guideline (e.g. speed limits to reduce accidents and speed-related injuries)		Regularly monitor road condition monitoring of the internal road	-		
			Make the proposed grievance mechanism accessible for all villagers to report concerns associated with health and safety.					

16.9.10 Biodiversity Management

Table 16.13Biodiversity Management

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated	
Construction and (Operation Ph	ases							
 Loss of habitats due to footprint of short- and long- termed land 	Habitat loss	 EPP Safe & Civilized Construction 	Below mitigation measures are for construction phase and are assumed to be continued during operation phase where relevant:	 Project owner EPC Contractor 	_	-	Monitoring report	Part of construction cost and operation	
acquisition	Plan	Plan	Conduct land clearance only within the boundary consented by governmental authorities. Conduct permanent land acquisition only for development of turbine foundations and substations	_					cost
		Develop a sanction pl supervisor/inspector of construction work Ensure the restoration at temporary used are completion of construct	Develop a sanction plan and have a supervisor/inspector during the construction work	_					
				Ensure the restoration of the landscape at temporary used areas after completion of construction	-				
 Interruptions or changes to fauna 	Disturbance to fauna	-	Utilize existing roads as much as possible	-					
behaviours caused by noise, light, vibration and visual disturbances			Abide any Project-related traffic passing through the national roads, provincial roads and trails by regulations of <i>National Technical Standard TCVN</i> <i>5949-1998.</i> The speed and transportation time (only after 20:00) shall be in accordance with the regulated limitation						

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			Check regularly all motor vehicles, heavy trucks, and construction equipment used in the Project for noise and vibration					
			Avoid construction works from 22:00 to 6:00 the next day					
 Reduction in quality of habitats due to (i) land clearance, (ii) discharge of waste, wastewater and dust and (iii) introduction and/or spreading of alien/invasive species and (iv) increasing edge effects. 	Habitat degradation		Refer to existing mitigation measures from EPP, FS Report and Safe & Civilized Construction Plan in section Air Quality Management and Water Resource Management					
Loss of habitats due to footprint of short- and long- termed land acquisition	Habitat loss	ESIA 11.9.4.1 - 11.9.4.8, 11.9.6	Additional mitigation measures to control the loss of terrestrial habitat are proposed during construction as follows:	 Project owner EPC Contractor 	During construction, inspections are to occur along all Project boundaries and Project footprint to ensure compliance with clearing within marked boundaries/zones	Weekly		
			Conduct additional field survey to confirm the presence of Smooth-coated Otter within the project area as the evidence of this species being present	-	■ N/A	N/A		

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			came through an interview with only one person stating having observed 4 individuals of this species					
			Use a Wildlife Shepherding Protocol within the terrestrial Project Area to ensure that no active nests/dens or wildlife remain in the affected zone prior to any clearance and construction work. Wherever possible, relocate fauna to their point of origin or similar natural adjacent areas Use of appropriate noise suppression techniques (such as silencer, noise barrier) where applicable to limit the extent of indirect habitat loss.		 During operation, monitoring of rehabilitation success/failure is to occur on all replanting sites. Where plant rehabilitation is determined to have failed, re- establishment is to occur with corrective measures after review of reasons of failure. Indicators for vegetation re- establishment should be at least 75% 	Quarterly		
			To mitigate the effect of cumulative habitat loss, below measures are recommended:	Project owner		_	_	
			Facilitate a Cumulative Impact Assessment (CIA) association with other projects and government representation (such as Dak Lak Provincial People Committee) to govern a system for managing cumulative					

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			impacts. This system should seek guidance from Vietnam regulations (such as Vietnam Data Red Book) and Vietnam commitments to international treaties such as Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES)					
			Share best practices in avoidance of forest loss through active monitoring during land clearance in construction phase (e.g. mark a defined boundary of clearance) and forest rehabilitation					
			Promote a fauna conservation program to raise awareness for local people about the protected status of endangered species under the laws of Vietnam. Violations could lead to sanctions and imprisonment.					
Interruptions or changes to fauna behaviours caused by noise, light, vibration and visual disturbances	Disturbance to fauna	Disturbance to fauna	Additional mitigation measures to control the disturbance to terrestrial species are recommended during construction phase:	 Project owner EPC Contractor 	During construction, conduct supervision on the implementation of mitigation measures for	Daily		
		construction phase:Conduct additional field survey to confirm the presence of Smooth-coated Otter within the project area as the evidence of this species being present came through an interview with only one person stating having observed 4 individuals of this species	3	fauna disturbances.				
			Use a Wildlife Shepherding Protocol within the terrestrial Project Area to					

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			ensure that no active nests/dens or wildlife remain in the affected zone prior to any clearance and construction work. Wherever possible, relocate fauna to their point of origin or similar natural adjacent areas					
			Apply Injured Wildlife Management Protocol when injured individuals are found during daily inspection					
			Place fencing around major project sites during construction to restrict access to local fauna, and therefore stopping wildlife becoming trapped or harmed by works					
			Use of appropriate noise suppression techniques (such as silencer, noise barrier) where applicable					
			Maintain regularly machinery					
			Use cowl, hood and shield to minimize light spill.	-				
 Reduction in quality of habitats due to (i) land clearance, (ii) discharge of waste, 	Habitat degradation		The following mitigation measures will be applied during construction and continue during operation to control invasive species:	 Project owner EPC Contractor 	During construction, conduct daily supervision on the implementation of the Invasive Species Management Plan.	Daily		
wastewater and dust and (iii) introduction and/or spreading of alien/invasive			Manage existing populations and the introduction of new invasive species. Outline these measures in an Invasive Species Management Plan and the plan will include measures such as:		During construction, conduct inspections in Project area to identify any new proliferations	Monthly		

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
species and (iv) increasing edge effects.			Check the provenance of any fill material brought onto the site for invasive species contamination; and		and eradicate invasive species.			
			Inspect transportation vehicles before entering site and wash down on arrival and departure.					
			Rehabilitate temporary-used land using native species after construction.		During operation, conduct monitoring in rehabilitated areas to check for presence of invasive species and remove if any.	Monthly		
 Mortality due to potential flight of volant species 	Mortalities of birds		Additional mitigation measures for mortality impacts on birds as follows:	 Project owner EPC Contractor 	 Supervise the implementation of anti-hunting and 	Daily		
through the			During construction phase		poaching policy for			
Zone (RSZ) of the wind turbines. Mortality of birds due to			Undertake a Collision Risk Modelling to further assess collision risks for species that are vulnerable to collisions and electrocution (e.g. the Germain's swiftlet in this case of this Project)	-	 inspection for any wildlife in construction areas daily Where fauna is 			
electrocution on the transmission line			Use a Wildlife Shepherding Protocol within the terrestrial Project Area to ensure that no active nests/dens or wildlife remain in the affected zone prior to any clearance and construction work. Wherever possible, relocate fauna to their point of origin or similar natural adjacent areas		identified during regular inspections, this is to be confiscated (if poached) and photographed for record keeping. Records of injured			

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			Apply Injured Wildlife Management Protocol when injured individuals are found during daily inspection		and/or shepherded wildlife should be kept;			
			Prohibit hunting and poaching for Project staff, workers, all contractors and personnel engaged in or associated with the Project, with penalties levied, including fines and dismissal, and prosecution under the relevant laws	_	Keep records and regularly review them (quarterly) for implementation of the workforce training program for fauna/flora			
		Provide training to staff and workers all rules, regulations and information concerning restrictions related to the fauna/flora awareness, as well as the punishment that can expected if any staff or worker or other person associated with the Project violates rules and regulations	-	awareness.				
			 During operation phase Ensure that power towers and transmission lines meet safety standards such as Avian Power Line Interaction Committee (APLIC) to minimise birds and bats electric shock risk: Framing structures so that there is adequate separation between phases or phases and grounds to accommodate large perching birds. Based on the dimensions of eagles, APLIC recommends 132 cm of horizontal separation and 88 cm of 	Project owner	Conduct carcass monitoring during operations in the vicinity (within 85m radius) of the turbines and along the transmission line frequently by trained personnel/dogs and bird experts. All carcasses or feather spots (remains of at least 10 feathers indicating a fatality whose carcass has	Monthly		
			vertical separation;		been largely removed			

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			 Applying covers on phases or grounds where adequate separation is not feasible. Examples of covers include insulator/conductor covers, bushing covers, arrester covers, cutout covers, and jumper wire covers. Cover designs should be evaluated and approved by company engineers prior to use. (Note: bird/animal protection covers are not intended for human protection); On three phase structures, a vertical clearance of at least 105 cm between un-insulated conductors, ground wires and grounded hardware on poles with 8-foot crossarms will provide the 196 cm required clearance. 		 by scavengers) will be GPS referenced, photographed and notes taken on the following: Species (this may require investigation of remains or photographs by bat/ ornithological specialist); Sex and age (if known or which may require specialist input); Date and time collected; Turbine number, distance and compass direction (in degrees) from base; Conditions (intact - fresh and no signs of scavenged; feather spot - 10 or more feathers at one 			
					 Comments (e.g. any evidence of cause of death; recent 			
					weather conditions).			

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			 Develop an Adaptive Bird Management Plan. The plan should include: Post-construction monitoring (see section Monitoring and audit below) and limits of acceptable of number of mortalities (triggers). 		Bag and remove carcasses, and any not identified to species, age and sex held for examination, by a bird specialist.	-		
			 Further mitigation measure should be undertaken if exceeding triggers, which may involves: Installation of bird multi-sensor monitoring system and deterrent system; Increase curtailment of wind farms 		Undertake periodic unannounced calibration checks to assess the finding efficiency (taking into account removal of carcasses by scavengers and observer variation) of observers and their dogs. These will involve the placement of 10 marked carcasses and a follow up visit to assess how	At least twice during both migration/dry season and non- migration/wet seasons to check for seasonal variation and influences		
					Seasonal bird studies in year 1 and year 2 of operation, including ongoing monitoring to detail the understanding of bird utilization of the Project area. If species with significant conservation status are detected or monitoring indicates	Twice a year, especially during migration seasons (September – November, February – May)		

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
					that turbines have a high collision risk, additional mitigation measures are to be considered and/or modified in these. Bird studies are highly recommended to be performed.			
Mortality of bats due to barotrauma	Mortalities of bats		Additional mitigation measures for mortality impacts on bats as follows:	 Project owner EPC 	n Supervise the implementation of anti-	Daily		
			During construction phase	Contractor	hunting and poaching			
			Use a Wildlife Shepherding Protocol within the terrestrial Project Area to ensure that no active nests/dens or wildlife remain in the affected zone prior to any clearance and construction work. Wherever possible, relocate fauna to their point of origin or similar natural adjacent areas	-	forces and inspection for any wildlife in construction areas daily; n Where fauna is identified during regular inspections, this is to be confiscated (if			
			Apply Injured Wildlife Management Protocol when injured individuals are found during daily inspection		poached) and photographed for record keeping. Records of injured			
			Prohibit hunting and poaching for Project staff, workers, all contractors and personnel engaged in or associated with the Project, with penalties levied, including fines and dismissal, and prosecution under the relevant laws Provide training to staff and workers on all rules, regulations and information	4	and/or shepherded wildlife should be kept; n Keep records and regularly review them (quarterly) for implementation of the workforce training program for fauna/flora			

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			concerning restrictions related to the fauna/flora awareness, as well as the punishment that can expected if any staff or worker or other person associated with the Project violates rules and regulations					
			During operation phase	Project owner	Conduct carcass	Monthly		
			Use lights that have low ultraviolet wavelengths (reduce insect congregations around lights that bats forage on)		monitoring within 85m radius from the turbines during operations on a			
			 Develop an Adaptive Bat Management Plan that includes: Post-construction monitoring (see section below) and limits of acceptable of number of mortalities (triggers). Further mitigation measure should be undertaken if reaching triggers: Installation of suitable bat detectors fitted to the turbine or bat deterrent system; Increase cut-in speed for rotors, as evidence suggests bats are more likely to collide with turbines in calmer conditions as low wind conditions provide better foraging and flying conditions than conditions with strong winds. 		 trained personnel and bat experts (within the first year). All carcasses will be GPS referenced, photographed and notes taken on the following: Species (this may require investigation of remains or photographs by bat/ ornithological specialist); Sex and age (if known or which may require specialist input); Date and time 			

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
					 Turbine number, distance and compass direction (in degrees) from base; 			
					 Conditions (intact - fresh and no signs of scavenging; scavenged; and 			
					Comments (e.g. any evidence of cause of death; recent weather conditions).			
					Bag and remove carcasses, and if species or age and sex are not identified , a bat specialist will be consulted	-		
					Undertake periodic unannounced calibration checks to assess the finding efficiency (taking into account removal of carcasses by scavengers and observer variation) of observers and their dogs. These will involve the placement of 10 marked	At least twice during both migration/dry season and non- migration/wet season to check for seasonal variation and influences		
					involve the placement of 10 marked carcasses and a follow			

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
					up visit to assess how many were found.			
					Seasonal bat studies in year 1 and year 2 of operation, including ongoing monitoring to detail the understanding of bat utilization of the Project area. If species with significant conservation status are detected or monitored indicates that turbines have a high collision risk, additional mitigation measures are to be considered and/or modified in these.	Twice a year linked to the dry and wet season during year 1 and year 2 of operation		
Fauna mortalities due to vehicle strikes, poaching	Mortalities of other fauna		Additional mitigation measures for mortality impacts on other fauna during construction as follows:	 Project owner EPC Contractor 	 Supervise the implementation of anti-hunting and 	Daily		
and hunting and clearance of nests		Develop a detailed Traffic Management Plan (TMP) prior to the commencement of construction (see section Traffic and Transportation Management) that should ensure vehicles speed are in compliance with relevant regulations		poaching policy for all labour forces and inspection for any wildlife in construction areas daily during construction phase;				
			Use a Wildlife Shepherding Protocol within the terrestrial Project Area to ensure that no active nests/dens or wildlife remain in the affected zone prior	prior	 Where fauna is identified during regular inspections, 			

Act	ivity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
				to any clearance and construction work. Wherever possible, relocate fauna to their point of origin or similar natural adjacent areas		this is to be confiscated (if poached) and photographed for			
				Apply Injured Wildlife Management Protocol when injured individuals are found during daily inspection	_	record keeping. Records of injured and/or shepherded wildlife should be			
			Prohibit hunting and poaching for Project staff, workers, all contractors and personnel engaged in or associated with the Project, with penalties levied, including fines and dismissal, and prosecution under the relevant laws	4	 kept; Keep records and regularly review them (quarterly) for implementation of the workforce 				
				Provide training to staff and workers on all rules, regulations and information concerning restrictions related to the fauna/flora awareness, as well as the punishment that can expected if any staff or worker or other person associated with the Project violates rules and regulations		training program for fauna/flora awareness.			
-	Mortality due to potential flight of volant	Mortalities of birds and bats	_	The mitigation measures for cumulative bird and bat impacts are recommended as follows:	Project owner	_	_		
	species through the Rotor Swept Zone (RSZ) of the wind turbines. Mortality of birds due to	the wept (SZ) of 1 5. y of le to		Facilitate a Cumulative Impact Assessment (CIA) in association with other projects and government representation (such as Dak Lak Provincial People Committee) to govern a system for managing cumulative impacts. This system should be based on Vietnam regulations (such as	-				

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
electrocution on the transmission line Mortality of			Vietnam Data Red Book) and Vietnam commitments to international treaties such as Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES)					
bats due to barotrauma			Encourage CIA Projects to implement Wildlife Shepherding Protocol and Injured Wildlife Management Protocol across all projects					
	Share best practices in bird transmission line designs and bird diverter deployment (designs for diverters, spacing and location along sensitive areas)							
			Share post-construction monitoring results, which would be very valuable to help understand the cumulative bird and bat mortalities					

16.9.11 Social Management

Table 16.14 Social Management

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
Pre-constructio	n							
Economic Displacement and Loss of Livelihood	 Economic displacement: loss of land and access to production land, resulting in loss of access, livelihood and 	ESIA 12.3.3	Affected households will receive the compensation payment and different types of support (e.g. job transition support, life stabilization support, job recruitment assistance, training) in cash. There is no other compensation or supporting method to be applied to assist affected households	Project owner	-	-	-	-
	 income to the land users; Social/ cultural tension from dissatisfaction towards the compensation price and /or the unequal compensation between the affected households, especially among the Indigenous Peoples; Negative impacts on the 	ESIA 12.3.4	 Disclose the Community Grievance Mechanism (CGM) that is developed as part of the Stakeholder Engagement Plan (SEP) immediately as soon as it is finalised to support the local authorities in receiving and addressing land acquisition-related grievances. CGM should be disclosed to the affected communities, including affected ethnic minorities so that the affected community is aware of communications grievance lines and understand how to submit a grievance. Continuously coordinate with local authorities to solve any submitted grievance relevant to land acquisition activities. 	Project owner	 Creation and maintenance of a Consultation and Grievance record in relation to land acquisition Grievance related to economic displacement and loss of livelihood Effectiveness of RLRP and CDP implementation 	Monitoring of the RLRP in a quarterly term	 SEP Monitoring report 	Part of operation cost

Activity/Aspect Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
the Project; and Potential physical displacement that need to be confirmed as the land acquisition process is deemed to be completed.		 Disclose the SEP to ensure effective Project information disclosure and communication with affected households as well as relevant government stakeholder. Immediate disclosure of the Project update, ESIA findings, land acquisition and CSR policies should be conducted with land affected households through a culturally appropriate communication plan consisting of visual/graphic demonstration (e.g. leaflets, signs, video) and outreach activities (e.g. community events, informed sessions, open houses, meetings). Conduct a Land Acquisition Audit (LAA) to identify the gaps between the government-led process, the Project's practice and AIIB and IFC requirements on land acquisition and resettlement. Specific actions to minimize the gaps in providing appropriate compensation should be recommended and implemented 		PAPs' feedback RLRP and CDP implementation programs.			
		 Develop and implement a RLRP based on the current RLRF to support the economically displaced households in restoring their livelihoods at least equal to similar level of livelihood condition before land acquisition. The RLRP should take the women, poor, and other yulnerable groups into account to 					

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			ensure improvement of their					
			standards of living to at least					
			national minimum standards, they					
			are not overlooked during Project					
			implementation and left worse off.					
			Assist the local community via a					
			Community Development Plan					
			(CDP) focusing on affected					
			communities to ensure that local					
			communities can benefit from the					
			project. CDP will include community					
			based development initiatives and					
			programs to support the local					
			communities where the project is					
			located. A CDP would be					
			implemented throughout the Project					
			life and through a CDP, the Project					
			can listen to concerns of the local					
			people and thus build a relationship					
			between the Project and the					
			surrounding communities.					
			Households who had sold land for					
			the Project without acknowledging					
			land use purpose conversion for the					
			wind power project should be					
			prioritised in participating CDP					
			programs. It is important that CDP					
			budgets are committed on steady					
			and multi-year timeframes, which					
			reflects changing business needs					
			and drivers for community					
			development at various stages of					
			the business or project cycle.					

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
Construction Pl	hases							
Disturbance to Agricultural production	 Soil erosion around the turbine locations Accumulation of sediment and disturbance to the production land located adjacent to the turbines and the Project's Site Soil and water degradation as a result of dust accumulation from construction work Disrupted access to farming areas during the construction phase 	 EPP FS Report Safe & Civilized Construction Plan 	 Excavation, filling and construction works shall be complied with the current regulations Dykes should be constructed along the construction works to avoid soil erosion Open ditches and ponds are constructed at the disposal site to prevent soil erosion Strengthen the foundations by embankment or plantation Plantation can be made in the temporary land area after the construction finishes to increase vegetation and minimise the soil erosion and landslide All construction activities including foundation excavation and site levelling are conducted in drying season to avoid erosion, and Disposed construction material pieces such as bricks and stones shall be reused. The excavated soil shall be used for backfilling and road construction. Other kinds of construction materials including irons and steels will be collected, transferred back to the manufacturer, reused, or scrap trading. 	 Project owner EPC Contractor 	Grievance related to disturbance to agricultural production	As suggested in each management plan	 SEP Monitoring report 	Part of construction cost

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			 A Stakeholder Engagement Plan (SEP) including a Community Grievance Mechanism (CGM) has been developed within this ESIA package 					
		ESIA 12.4.4	 The Project Owner should provide and communicate detailed information about the Project's plan and schedule particularly related to land clearing and construction to the community with a special attention to farmers located near the Project locations. Due to the presence of the Ede IP and other ethnic minority groups in this area, culturally sensitive communication approaches should be taken into account; The Project Owner should disclose and implementing the Community Grievance Mechanism (CGM) that is understood by and accessible to all villagers. The mechanism will be simple, efficient, timely and consultative; Grievance Mechanism for Indigenous peoples ill also be disclosed. 					
			 Project Owner will closely monitor the temporary impacts on land of villagers during construction. Construction contractors must restore the soil to the quality as before being affected to return to the households. The Project will 					

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			 request construction contractors to prepare and implement the suitable construction methods to mitigate the impacts on land of villagers during construction of access roads and other Project's components. Should any incident occur and cause damage to the surrounding agriculture production, the Project Owner will ensure that such incident should be investigated to determine the Project's responsibilities and compensation amount if necessary. Standard for compensation will follow the Vietnamese civil law and be based on negotiations between the Project's contractors and the land users. If a related community grievance is submitted to the Project, it will be solved in accordance with the procedure described in the SEP and CGM. 					
Impacts on Worker Rights, Occupational Health and Safety	 Worker's Rights Lack of awareness on worker's rights Violation of worker's rights encountered by contractors; Potential employment of children, 	EPP ;	 Provide open information of workers rights and contractual terms. provide the required PPE to workers as per regulations; have regulations on occupational safety and closely monitor these regulations throughout the construction phase; have fire prevention and emergency plans to prevent and respond any incidents; 	 Project owner EPC Contractor 	 Worker's grievance related to their rights, occupational health and safety; Number of worker having occupational diseases 	As suggested in each management plan	Monitoring report	Part of construction cost

Activity/Aspect Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
Activity/Aspect Potential Impact forced or bonded labour. This risk is often higher for vulnerable groups (e.g. migrant labour); Potential for discriminatory practices to occur in the hiring process; Potential for discrimination against workers that join unions (or	Source Document ESIA 12.5.4	 Mitigation Measure establish rules on order, hygiene and environmental protection in worker camps. A Stakeholder Engagement Plan (SEP) including a Community Grievance Mechanism (CGM) has been developed within this ESIA package Policies and Procedures Develop a Human Resources (HR) policies and procedures that are in line with Vietnam labour regulations, AIIB ESS1, and IFC PS2. The HR policy and procedure should include but not limited to: Working conditions and Management of Worker 	Responsibility	Monitoring Parameter Number of accident and injury cases in workplace Number of worker infected COVID-19	Monitoring Frequency	Reporting	Estimated
 other similar organisations) or take part in collective bargaining; Inappropriate or delayed payments to workers; Unjustified dismissals; and Risk of association 		 Relationship; HR Policy; Working Relationship; Working Condition and Terms of Employment; Workers' Organization; Non-discrimination and Equal Opportunity; Retrenchment; Grievance Mechanism; Child labor, forced labor and gender equity 					
with							

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
	(e.g. service contracts) or		 Protecting the workforce: child labour and forced labour; 					
	third parties		 Occupational Health and Safety; 					
	(e.g. recruitment agents)		 Workers engaged by Third Parties; and 					
	adhering to		Supply chain.					
	relevant laws		Worker's Rights					
	and international standards and guidance.		 The Project Owner develop and implement a Labour Management Plan; ERC Contractors shall establish 					
	Worker's health		employment practices that ensure					
	and safety		workers are paid appropriately in					
	Accidents and iniuries		accordance with working hours and in a timely manner, informed by					
	 Injury/fatality 		national standards and industry benchmarks;					
	associated with working a heights (e.g. excavation, foundation construction,	t	Project Owner and their EPC Contractors shall comply with Vietnam Labour Code requirements related to the hiring of labour and with applicable requirements from the EHS international guidelines;					
	pylon, scaffolding.		Special attention shall be given to establishing clear contractual					
	cranes);		agreements through the inclusion of					
	 Injury/fatality ir a collision due to the movement of 		particular clauses between Project Owner and all of their subcontractors to avoid child labour, forced labour, and human trafficking					
	the vehicle and large mobile	נ	rights;					

Activity/Aspect Potential Impact	Source Document	Mitigation Measure	Responsibility Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
 plant equipment such as backhoes, bulldozers, graders and mobile cranes present health and safety risks if not handled appropriately; Non- compliance with health and safety programs, pool safety culture, and inappropriate use of worker personal protective equipment (PPE) may place workers at risk of 		 EPC Contractors shall establish employment practices to check legal worker's age in identification document upon recruitment to ensure no child labour or forced labour and avoidance of unjustified dismissals; EPC Contractors shall establish employment practices that ensure workers are not discriminated against on the grounds of ethnicity, sex, religion, political opinion, social origin, age, marital or relationship status, sexual orientation, or trade union activity. As part of the hiring process, age checks will be conducted; EPC Contractors shall ensure workers are made aware of their rights as part of the induction process; EPC Contractors should implement a "zero tolerance" policy towards inappropriate behaviour from and amongst the workforce; EPC Contractors Ensure workers 				
 A surge in vehicle usage increases the potential for an accident or 		 Project Owner and EPC Contractors shall establish a grievance mechanism for workers. This should include an option for grievances to be lodged anonymously. All workers, including those employed through the Project's supply chain. 				

Activity/Aspect Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
injury to occur; and Manual handling associated with day to day construction activities can result in injuries.	Document	 should have access to a grievance mechanism to ensure that their issues and concerns are identified and addressed. Contractors should be required to inform the Project about grievances raised; Occupational Health and Safety The Project Owner shall develop and implement an Occupational Health and Safety (H&S) 		Parameter	Frequency		
Occupational diseases		Management Plan (MP); EPC Contractors shall regularly inspect all critical components of the					
Hearing impairment		inspect all critical components of the involved equipment and machinery;					
due to exposure to high noise levels during		 EPC Contractors shall establish operation and safety procedure for each equipment and make available for the workers involved; 					
equipment transport and use of large machinery;		EPC Contractors shall ensure that only appropriately skilled and trained employees are assigned to the operation and maintenance of					
Respiratory disease due to		the corresponding equipment and machinery;					
exposure to dust and reduced ambient air quality; Repetitive		 EPC Contractors shall perform audits of different subcontractors involved in terms of health and safety topics to ensure these companies comply with the findings and remedial action follow-up; 					
work movements which may		 EPC Contractors shall establish health and safety internal rules and 					

Activity/Aspect Potential Impa	ct Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated	
cause latera epicondyliti		ensure worker's awareness of these rules;						
(i.e. tennis elbow);		 EPC Contractors shall ensure day to day compliance with the health 						
Infectious diseases Disease vectors (e.g. mosquitos), which may result in diseases su as dengue fever or malaria; Ingestion of unsanitary food and water, whic may result in parasitic infection or diseases su	h a	 and safety requirements (i.e. procedures, equipment usage, PPE usage, demonstration of safe behaviours, competent personnel, compliance with work permit system); EPC Contractors shall ensure safety measures are in place before workers perform high-risk tasks, such as working-at-height, loading and unloading of equipment, hot work, electrical works, use of scaffolds and heavy machinery; EPC Contractors shall monitor and report health and safety performance through site inspections to all involved subcontractors, using appropriate health and safety metrics, operations auditing as well as 						
as salmone E.coli, and listeria; and	la,	senior management review and follow-up;						
 Human or p contact, wh may result i diseases su as sexually transmitted infections (STIs), 	est ch n ch	 EPC Contractors shall monitor and report high-risk sites to restrict entry and prevent near misses, injuries and fatalities; EPC Contractors shall ensure training programs to adequately include the usage of appropriate PPE, good hygiene practices. 						
Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
-----------------	---	--------------------	---	----------------	-------------------------	-------------------------	-----------	-----------
	tuberculosis, influenza and rabies.		awareness of infectious diseases, and the management of risks and hazards;					
	COVID-19 pandemic		 EPC Contractors shall provide first aid box and competent first-aider at all construction sites and worker's accommodation facilities; 					
			Project Owner and their EPC Contractors shall conduct medical assessments of workers before they are mobilized to the site, including screening for infectious diseases and other health issues. This is to ensure workers are fit for work;					
			 Project Owner shall implement a system for selection and management of contractors/subcontractors/suppliers with clear criteria on required environmental and safety management capabilities; 					
			 Project Owner and their EPC Contractors shall develop and implement a Worker Accommodation Management Plan in accordance with local regulations and IFC requirements to ensure the well-being of the workforce as well as the health, safety and security of local communities; 					
			 EPC Contractors shall ensure the worker accommodation is constructed/leased and managed in accordance with Vietnam 					

Activity/Aspect Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
		requirements and Worker's Accommodation: Processes and Standards developed by WBG, IFC and EBRD;					
		 Minimum requirements for the worker's accommodation facilities shall include: 					
		 Free of charge to workers, meaning that workers do not have to pay if they choose to stay in workers' camp built or owned by the Project Owner or the contractors; 					
		 Adequate living space for each worker; 					
		 At least one toilet shall be arranged for every 15 workers; 					
		 At least one shower/bathroom is provided for each 15 persons; 					
		 Wastewater, sewage, food and other waste materials shall be adequately discharged in compliance which Vietnam standard; 					
		 Male and female toilet/shower/bathroom shall be separated; 					
		 Sanitary, laundry and cooking facilities and potable water; 					
		 Adequate health, fire safety measures, including first aid and medical facilities; 					

Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
		 Adequate heating and ventilation; and Non-restrictive to workers' freedom of movement to and from the accommodation. Project Owner shall conduct regular audits of workers' accommodation sites of all involved subcontractors. 					
 Health Issues as a Result of Noise, Dust, Vibration, and Waste Unauthorized Access to the Project Site Traffic Safety Issue during the Construction Phase including: Degradation of the public road infrastructure and network due to heavy load vehicle movement; Traffic congestion 	ESIA 12.6.4	 Project Owner shall disclose the proposed grievance mechanism to make it accessible for all villagers to report concerns associated with health and safety issues. An immediate investigation shall be undertaken when complaints on accidents or near misses are submitted EPC Contractor should ensure: All new drivers (including contractors for construction material transportation) must be licensed with good experience, and should be required to undergo safety training; Flagmen should operate at the junction between the main roads and the access road to coordinate the trucks entering and exiting; Speed limits should be enforced for all Project vehicles; The Project Owner should: 	 Project owner EPC Contractor 	 Grievance related to non- influx impact Number of people having health Issues as a result of noise, dust, vibration, and waste Number of accident and injury cases in community 	As suggested in each management plan	 SEP Monitoring report 	Part of construction cost
	 Potential Impact Health Issues as a Result of Noise, Dust, Vibration, and Waste Unauthorized Access to the Project Site Traffic Safety Issue during the Construction Phase including: Degradation of the public road infrastructure and network due to heavy load vehicle movement; Traffic congestion due to an 	Potential ImpactSource Document• Health Issues as a Result of Noise, Dust, Vibration, and WasteESIA 12.6.4• Unauthorized Access to the Project SiteFaffic Safety Issue during the Construction Phase including: - Degradation of the public road infrastructure and network due to heavy load vehicle movement; - Traffic congestion due to an	Potential ImpactSource DocumentMitigation Measure- Adequate heating and ventilation; and- Adequate heating and ventilation; and- Non-restrictive to workers' freedom of movement to and from the accommodation Non-restrictive to workers' freedom of movement to and from the accommodation.• Health Issues as a Result of Noise, Dust, Vibration, and WasteESIA 12.6.4• Project Owner shall disclose the proposed grievance mechanism to make it accessible for all villagers to report concerns associated with health and safety issues. An immediate investigation shall be undertaken when complaints on accidents or near misses are submitted• Traffic Safety Issue during the construction Phase including: - Degradation of the public road infrastructure and network due to heavy load vehicle movement;• Flagmen should operate at the junction between the main roads and the access road to coordinate the trucks entering and exiting; - Speed limits should be enforced for all Project Owner should:	Potential ImpactSource DocumentMitigation MeasureResponsibility- Adequate heating and ventilation; and - Non-restrictive to workers' freedom of movement to and from the accommodation Adequate heating and ventilation; and - Non-restrictive to workers' freedom of movement to and from the accommodation.• Health Issues as a Result of Noise, Dust, Vibration, and WasteESIA 12.6.4• Project Owner shall conduct regular audits of workers' accommodation 	Potential ImpactSource DocumentMitigation MeasureResponsibilityMonitoring ParameterImage: Project Site- Adequate heating and ventilation; and - Non-restrictive to workers' freedom of movement to and from the accommodation sites of all involved subcontractors Project Owner shall conduct regular audits of workers' accommodation sites of all involved subcontractors Project owner owner the accessible for all villagers to proposed grievance mechanism to make it accessible for all villagers to access to the Project Site- Project Owner shall conduct regular audits of workers' accommodation sites of all involved subcontractors Project owner owner owner telated to non- influx impactImauthorized Access to the Project SiteESIA 12.6.4- Project Owner shall disclose the proposed grievance mechanism to make it accessible for all villagers to accidents or near misses are submitted- Project Contractor- Responsibility Monitoring ParameterImauthorized Access to the Project Site- Adequate heating and ventilation accident so near misses are submitted- Project Contractor should ensure: - All new drivers (including contractors for construction material transportation) must be licensed with good experience, and should be required to undergo safety training; - Flagmen should operate at the junction between the main roads and the access road to coordinate the trucks entering and exiting; - Speed limits should be enforced for all Project Owner should:- Number of accident and exiting; - Speed limits should be enforced for all Project Owner should;	Potential ImpactSource DocumentMitigation MeasureResponsibility Monitoring ParameterMonitoring FrequencyImage: Construction of the public rongestion of the public rongestion due to heavy lad vehicle movement; - Traffic congestion due to heavy lad vehicle - Traffic congestion due to heavy ind vehicle - Traffic congestionMitigation MeasureResponsibility Monitoring ParameterMonitoring FrequencyPotential Impact- Adequate heating and ventilation; and - Non-restrictive to workers' freedom of movement to and from the accommodation sites of all involved subcontractors Project owner - Project Owner shall conduct regular audits of workers' accommodation make it accessible for all vilagers to report concerns associated with health and safety issues. An immediate investigation shall be undertaken when complaints on accidents or near misses are submitted- Project owner - EPC Contractor - Degradation material transportation) must be licensed with good experience, and the access road to coordinate the trucks entering and exiting; - Flagmen should operate at the junction between the main roads and the access road to coordinate the trucks entering and exiting; - Speed limits should be enforced for all Project Owner should:- Non-between the and network and the access road to coordinate the trucks entering and exiting; - Speed limits should be enforced for all Project vehicles; - The Project Owner should:- Project Owner should:- Project owner - EPC - Contractor	Potential Impact Document Source Document Mitigation Measure Responsibility Monitoring Parameter Monitoring Parameter Reporting Prequency Image: Source Document Document - Adequate heating and ventilation; and - Non-restrictive to workers' freedom of movement to and from the accommodation. - Adequate heating and ventilation; and - Non-restrictive to workers' freedom of movement to and from the accommodation sites of all involved subcontractors. - Project Owner shall conduct regular audits of workers' accommodation sites of all involved subcontractors. - Project owner - Grievance related to non- influx impact Project Site - As suggested related to non- influx impact Project Site - SEP Image: Traffic Safety Issue during the Construction Phase including: - Degradation of the public road and network due to heavy load whicle movement; - Flagmen should perate at the junction between the main roads and the access road to coordinate the trucks entering and exiting; - Speed limits should be enforced for all Project Owner should; - Speed limits should be enforced for all Project Weing should; - Traffic congestion due to an - Traffic Advite Project Owner should; - Speed limits should be enforced for all Project Weing should; - The Project Owner should; - Number of accident and injury cases in community - Number of accident and injury cases in community

Activity/Aspect Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
increase of traffic movement; and - Increase of local traffic		 Together with EPC Contractor, develop a Traffic Management Plan for the construction phase. Procedure for responding to the traffic emergency should also be included in the plan; 					
incidents		 Conduct disclosure and consultation with the surroundings communities and public facility (school) on key Project traffic routes, timing of peak movements, type of vehicles and heavy equipment and provision of road safety awareness to the surrounding community, through corporation with the local police to ensure local residents be aware of increase in the level of transportation activities during the Project Construction; 					
		 Disclose the proposed grievance mechanism so that it is accessible for all villagers to report concerns associated with health and safety. Where complaints on accidents or near misses are submitted the Project will undertake an immediate investigation; Local communities should be familiarised with safety awareness and traffic management such as warning signs, limited speed and notifications of the risks of traffic 					

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			accidents. This measure will need to be incorporated into a Community Health and Safety Management Plan;					
			 Project Owner should, where road conditions are poor occur as a result of Project activities, improve the road to ensure conditions meet the standard required for construction vehicle use; and 					
			 Regular road condition monitoring along the transportation route to understand road quality during construction phase. 					
Impacts Associated with Migrant Workers Influx	 COVID-19 related risks; Increased risks of infectious diseases; General disturbance and tension between migrant workers and local communities; and Pressure on 	EPP	 Coordinating with local authorities and relevant agencies to organize programs such as education and awareness raising for workers in terms of health and safety measures, and how to minimize or avoid conflict with local people; Coordinating with local authorities to manage temporary resident registration for migrant workers and to monitor social security in the area where migrant workers will be accommodated. No measure was proposed for the protection of local workers' right, 		 Grievance related to migrant workers influx; Number of people infected COVID-19 (before and after construction phase); Number of people got infectious diseases 	As suggested in each management plan	Monitoring report	Part of construction cost
	Pressure on public service		health and safety. No gender		(before and after			

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
	and infrastructure.		address gender-based violence and sexual harassment.		construction phase)			
		ESIA 12.7.4	 Project Owner and their EPC Contractors shall strictly follow the Government's instructions on COVID-19, including compulsory COVID-19 tests and quarantine for migrant workers as well as wearing of face masks; 					
			Project Owner should develop a COVID-19 monitoring and response team, who are tasked with outbreak tracking and protocols and procedures developments as appropriate in line with local and national requirements and guidelines;					
			 Strictly follow the Government's instructions on COVID-19, including compulsory COVID-19 tests and quarantine for migrant workers, wearing of masks. The Project Owner should develop a COVID-19 monitoring and response team, who are tasked with tracking developments in the project countries and provinces, developing protocols and procedures as appropriate in line with local Government and international requirements and guidelines: 					
			 Project Owner and their EPC Contractors shall conduct 					

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			compulsory medical examinations (i.e. bi-annual health check-ups) for Project workers, including contractors, as required by national regulations, to ensure they are fit for work and to monitor the prevalence					
			 Project Owner and their EPC Contractors shall ensure the health and safety of all workers and local communities by complying with relevant regulatory national requirements and international best practices on medical safety and food hygiene on the construction sites if there will be installed canteens among the working areas and in the workers' accommodation areas that are equipped with canteens; 					
			The Project Environmental and Social Focal Point should assign and deliver induction training to guide requirements for culturally appropriate behaviours, and an overview of the risks to migrant staff and workers. The training will include key cultural sensitivity awareness topics/programs to ensure workers, including security staff, do not unintentionally offend the local community;					
			Project Owner and their EPC Contractors shall regularly engage					

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			with local authorities relevant to					
			social problems (e.g. village					
			leaders) for prevention of issues					
			and for mitigation purposes when					
			Project influx-related issues arise;					
			A Code of Conduct, including					
			requirements on social interaction					
			with the local community, gender					
			awareness, vulnerable groups and					
			environmental protection					
			obligations, shall be developed for					
			all involved staff and workers within					
			the construction site (including all					
			subcontractors). An appropriate					
			mechanism to address non-					
			compliance shall also be included					
			as part of the labour contract. All					
			staff and workers within the					
			construction site shall be trained					
			and made aware of the Code of					
			Conduct;					
			Project Owner should establish and					
			implement regulatory requirements					
			and good practices in relation to a					
			background check, hiring, rules of					
			conduct, training, equipping of					
			security personnel;					
			Project Owner shall ensure that					
			training to security force will include					
			adequate and clear requirements in					
			using force and appropriate conduct					
			toward workers and affected					
			communities. Project Owner shall					

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			 not sanction any use of force except when used for preventive and defensive purposes in proportion to the nature and extent of the threat; and Project Owner shall implement the Stakeholder Engagement Plan and disclose a grievance mechanism for workers and affected communities to express concerns about the Project-related issues as well as accurity arrangement and acts of 					
			 Establish a Local Recruitment Policy in the Labor Management Plan which commits a certain percentage of local recruitment, including women from local communities; 					
			 Establish employment practices to check legal worker age in identification document upon recruitment to ensure no child labour or forced labour; 					
			 Establish employment practices that ensure workers are provided an easy to understand contract that specifies working hours, overtime hours, breaks, and holidays; 					
			 Establish employment practices that ensure workers are paid appropriately and in a timely manner, informed by national 					

Activity/Aspect Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
		 standards and industry benchmarks; Establish safeguards if recruitment agents are utilised. This includes pre-screening of potential agents and actablishment of appropriate 					
		contractual obligations with the agent to ensure appropriate oversight is in place (so that workers are not placed in debt);					
		 Develop Influx Management Plan integrated in the Labor Management Plan including specific gender sensitive measures such as training for workers on gender based violence, including sexual harassment of women and girls, exploitative sexual relations, and illicit sexual relations with minors from the local community, and commitment/policy to cooperate with law enforcement agencies investigating perpetrators of gender- based violence; 					
		 Establish safeguards to avoid gender-based violence and sexual harassment in the work place; 					
		 Ensure the provision of occupational health and safety measures, including but not limited to: resting area and enough resting breaks during working hours, free PPEs, etc. 					

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
		Document	Establish a grievance mechanism for workers. This should include an option for grievances to be lodged anonymously. All workers, including those employed through the Project's supply chain, should have access to a grievance mechanism to ensure that their issues and concerns are identified and addressed. Contractors should be required to inform the Project about		Parameter	Frequency		
			 grievances raised. Disclose the grievance mechanism to workers and local people; Collaborate with local/relevant authorities to organise educational or awareness-raising programs for local workers about their rights. 					
			 EPC Contractor should register temporary residence for non-local workers to local authorities to ensure the management of Project's related workforce; Regularly engage with local authorities relevant to crime (i.e. local police) or other social problems (e.g. village leaders) for prevention of issues and for mitigation purposes when 					
			 issues arise; EPC Contractor should conduct compulsory medical examinations (i.e. annual health check-ups) for Project workers, including contractors, as required by national 					

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			regulations, to ensure they are fit for					
			work and to monitor the prevalence					
			of communicable diseases detected					
			through annual medical check-ups;					
			Project Owner should develop					
			Human Resource policies and					
			procedures as well as Project Code					
			of Conduct with an adoption of EPC					
			contractors, and disseminate these					
			to all workers including workers of					
			contractors and ensuring their					
			compliance. HR policies and					
			procedures include commitment to					
			non-employment of child labor and					
			forced labor, non-discrimination and					
			equal opportunity, respect for					
			freedom of association, and aspects					
			pertaining to working conditions,					
			retrenchment, and worker					
			accommodation as required applied					
			for all types of employees;					
			Project Owner and EPC contractors					
			should ensure that the					
			accommodation for immigrant					
			workers meet the standards as					
			guidance provided in the "Workers					
			and Accommodation: Process and					
			Standards" – a Guidance note by					
			IFC and ERBD; Workers					
			Accommodation Management Plan					
			will be prepared with gender					
			sensitive measures;					

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
Operation Phas	e		,					
 General Disturbance to Local Community 	 Impacts from workers' presence, operation and maintenance of the turbines and substations 	■ ESIA 12.8.4	 The Project Owner is required to implement the additional measures as proposed in Noise Impact Assessment, Visual Impact Assessment and Shadow Flicker Impact Assessment and Shadow Flicker Impact Assessment and other measures as below: As part of the Project SEP implementation, Project Owner should conduct close communication with local communities on Project environmental and social risks. Future risk-communication efforts will be undertaken in the context of continuing, intense social distrust and will have to be designed in a culturally appropriate way; Project Owner shall implement community's feedback and concerns in a timely manner; Project Owner shall ensure the implementation of community health and safety management and emergency preparedness and response measures are effectively maintained; 	Project Owner	 Grievance related to Noise, Visual, and Shadow Flicker impacts Effectiveness of CDP implementation PAPs' feedback CDP implementation programs. 	As suggested in each management plan	 SEP Monitoring report 	Part of operation cost
			compliance assessments; undertake site visits as required,					

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			identify any environment-related and social-related issues; and					
			 Project Owner shall document issues, propose necessary corrective actions, and prepare these in a corrective action plan 					
			To remain the significance of the impact as minor or reduce to negligible, the Project is required to implement the additional measures for Noise Impact Assessment, Visual Impact Assessment and Shadow Flicker Impact Assessment and other measures as below:					
			 Project Owner should keep implementing the SEP including grievance procedure during the Project's operation; 					
			 Project Owner should keep implementing the CDP to support the local people in improvement of their socio-economic conditions. The CDP should be implemented throughout the Project's operation period and considered as Corporate Social Responsibility program of the Project Company; 	2				
			 Basic skill requirements for operation phase should be announced at least six months in advance so that local people can have appropriate training orientation for themselves; 	ı				

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			Local procurement should be promoted during operation of the Project. In particular, the Project should use local foods/products and local supply to enhance benefits to the local communities.					
 Relocation Impact Due to Health and Safety Reasons 	 Blade ejection failure; Noise impact; and Shadow flicker impact 	ESIA 12.9.4	 Monitor the land acquisition process to ensure it complies with Vietnamese regulations, AIIB and IFC performance standards. This activity should be supported by documentation recording the land acquisition process. This will be required for internal and external audits; Perform validation survey to clearly identify the affected households by tese three events. Additional fieldwork needs to be performed coverthis census. Based on the CSR completion report, identify the gap between national, AIIB ESS2 and IFC PS 5 requirements on land acquisition and resettlement. Then formulate a Corrective Action Plan to close the gaps found; Prepare and include a SEP within the ESIA which covers Grievance Management Plan (GMP). GMP should be disclosed to the affected communities prior to the Project's construction implementation. 	Project Owner	 Grievance related to Land acquisition Effectiveness of LARP, CDP implementation PAPs' feedback LARP, CDP implementation programs. 	As suggested in each management plan	 SEP Monitoring report 	Part of operation cost

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			such, the affected community is aware of communication's grievance lines and understand how to submit a grievance;					
			 Continuously coordinate with commune PC to solve any submitted grievance relevant to land acquisition activities; 					
			 if physical relocation is confirmed, Project shall develop and implement the Land Acquisition and Resettlement Plan (LARP) for those identified as Project affected households. The LARP will be designed to ensure sustainable restoration and enhancement of income for impacted land users. The Project Owner should priority the relocation before the turbine construction occurs to also minimise the disturbance impacts cause by the construction activities to the local people staying in the huts/houses. The LARP should take into account the women and other vulnerable groups to ensure they are not overlooked during Project 					

 Positive Impacts on Local Employment 	 Increase local employment and income; 	■ ESIA 12.10.4	Based on the above analysis, the Project is expected to have a positive impact in terms of employment, procurement, and induced job	 Project Owner EPC contractors 	 Number of workers hired local and non- local 	As suggested in each	 SEP Monitoring report 	 Part of operation cost
--	---	-------------------	--	--	--	----------------------------	--	--

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
and Community Development	 Provide temporary direct employment for the Project and induced employment opportunities by local suppliers; Provide opportunities for small and medium local businesses; and Community discontent due to high expectation in business and worker recruitment 		 opportunities and increase the economic conditions of the local people. In order to enhance positive impacts, the following measures are recommended: Facilitate employment for local workers (e.g. un-skilled workers and provide adequate training for the tasks to be performed); Encourage contractors to hire local labour by the provision of a clear stipulation/commitment of using local labour, particularly in regards to economically displaced households, in the EPC contract and instruct the EPC contractors to prioritise qualified local people as construction workers in accordance with the needs of the Project; Communicate clear information about Project-related employment and business opportunities and prioritize local people wherever feasible. Such communication should be conducted at least two weeks before recruitment so that local people have enough time to prepare for the recruitment process (for example, preparing administration documentation for job application.); As locals are more likely to qualify 	 Type and frequency of information disclosure to community and government on workforce hiring Number of grievances received regarding workforce recruitment Effectiveness of CDP implementation PAPs' feedback CDP implementation programs. 	management plan		
			for low-skilled jobs, the Project				

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			Owner should negotiate with Contractors to provide detailed requirements on educational qualifications and skills for each job opportunity;					
			 Work closely with local/relevant authorities to synchronize the Project's needs in terms of local labour as well as locals' capacity; and 					
			Provide grievance mechanism process from the beginning of Project construction process to manage community complaints and expectation on job hiring and purchasing process.					
			Based on ESIA requirements to optimise the benefits to the local community through employment and business opportunities, the Project Owner should implement the following additional measures to increase the adaptability local communities:					
			 Project Owner shall formalise, in all contracts, a clause on the Project's commitment to local employment and acquiring local goods and services wherever possible 					
			The Project Community Development Plan (CDP) should target the promotion of local employment, local business support, and improvement of health					

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			and sanitation as recommended during the social baseline interview with local communities. The CDP should also consider priority for women and other vulnerable groups, and					
			Project Owner shall track and monitor the community grievance mechanism (as set out in the Stakeholder Engagement Plan) to handle concerns associated with Project employment/workforce recruitment					
Impacts on Indigenous Peoples	 Commercial development of their cultural resources and knowledge; Physical displacement from their traditional or customary lands; and Commercial 	ESIA 12.11.3	 Existing control: A Stakeholder Engagement Plan (SEP) including a Community Grievance Mechanism (CGM) has been developed within this ESIA package. An Indigenous Peoples Plan including ICP approach has been developed within this ESIA package and will have to be implemented ASAP within the project of interest and surrounding communieities. 	 Project Owner EPC contractors 	 Comply with the monitoring mechanism proposed in the SEP, IPP, RLRP, CDP and Chance Find Procedure during the implementation of these plans 	As suggested in each management plan	 SEP Monitoring report 	Part of operation cost
	development of natural resources within customary lands under use that would impact the	ESIA 12.11.5	 The Project is expected to implement the following mitigation measures: Disclose and implement a Stakeholder Engagement Plan during construction and operation. The SEP should include an Informed Consultation and 		PAPs' feedback IPP, RLRP, CDP implementation programs.			

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
	livelihoods or the cultural,		Participation process for the Indigenous Peoples;					
	ceremonial, or spiritual uses that define their identity and community		Provide and communicate detailed information about the Project's plan and schedule particularly related to land clearing and construction to the community with a special attention to farmers nearby the project locations;					
			 It is recommended that once the ESIA has been finalised, it should be publicly disclosed to local authorities and community, with the participation of Indigenous People. The public disclosure should be in a form that allow two-way communication approach (i.e. public meeting, etc.) and in a culturally appropriate manner and understandable form for local people (non-technical languages). Provide assistance of local language that more familiar with IP context/understanding. 					
			Review all public consultation process to ensure:					
			 The continued access to natural resources independent of Project's land purchasing; and 					
			 The provision of access, usage, and transit on land that the Project is developing on (i.e. access and use of land within the Project's footprint), subject to 					

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			overriding health, safety, and security considerations to the Affected Communities of Indigenous Peoples.				
			 Disclose and implement a community grievance mechanism that is understood by and accessible for all villagers. The mechanism will be simple, efficient and timely and fully consultative. It should be disclosed in a culturally appropriate manner, with local language and easy to access. Disclose and implement the IPP based on the results of socio-economic baseline survey and 				
			consultations with relevant local authorities and communities. The implementation of the IPP should propose development programs that aid the avoidance and minimization of negative impacts on IPs, ensure social and economic benefits to IPs in a culturally appropriate and gender responsive manner; and strengthen the social, legal and technical capabilities of IPs to enable them to represent the affected IPs more effectively.				
			 Include affected IPs households as priority in RLRP and CDP programs when the management plans are developed. 				

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			A Chance Find Procedure should be developed for the pre- construction and construction phase, given that the Project is located nearby the IP's location with probably physical cultural heritage					
Gender Impact Assessment	 Maintenance of Structural Gender Inequality in Work Local Women's Ability to 	ESIA 12.12.2	 A Stakeholder Engagement Plan (SEP) including a Community Grievance Mechanism (CGM) has been developed within this ESIA package An Indigenous Peoples Plan has been developed within this ESIA package 	Project Owner	 Comply with the monitoring mechanism proposed in the SEP, IPP, RLRP, CDP and Chance Find 	As suggested in each management plan	 SEP Monitoring report 	Part of operation cost
	Sustain Livelihood Workload Women's Dependency Women's Safety	ESIA 12.12.4	 Ensure that the Project's social management plans including SEP, IPP, RLRP, and CDP will include gender mainstreaming measures to ensure women's participation and benefits from all of the Project's activities. This will include but not limited to: Create job opportunities and adequate trainings for women to increase their income, particularly for poor ethnic minority women; Include measures to encourage women's participation in community activities, Project's information disclosure; Ensure gender responsive social protection for the labour force during the project implementation 		 Procedure during the implementation of these plans PAPs' feedback IPP, RLRP, CDP implementation programs. A mid-program and completion RLRP audit of livelihood restoration measures undertaken by third-party to determine if the livelihoods of displaced 			

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			 and maintenance HIV/AIDS, sexually transmitted infections (STIs), and other communicable diseases Contractors are recommended to utilize local work labours giving preference to women labourers in both skilled and unskilled types of labour. For unskilled types of labour, it should be ensured that they are equally paid with men on time and days. Gender responsive social protection for the labour force should implemented by the Project, including awareness raising on and programming responding to the risks of gender based violence; 	people are restored and sustained, and that no further interventions are considered necessary			
			 Ensure that occupational surery of women labourers are taken care of by contractors; and Ensure that women are well informed and have full access to the Community Grievance Mechanism in SEP. 				
 Human Rights Impact Assessment 	 Inability of Stakeholders to Participate and/ or Access Remedy; Impact to Workers' Rights, Either 	ESIA 12.13.2	 A Stakeholder Engagement Plan (SEP) including a Community Grievance Mechanism (CGM) has been developed within this ESIA package An Indigenous Peoples Plan has been developed within this ESIA package 	 Project Owner Comply with the monitoring mechanism proposed in the SEP during the implementation of these plans 	 As suggested in each management plan 	 SEP Monitoring report 	Part of operation cost

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
	Directly by the Project or Within its Supply Chain; Impact of an Accident or Injury to occur Involving a Worker; Impact Associated with Employment of Security Personnel	ESIA 12.13.4	 It will be important that the Stakeholder Engagement Plan that has been developed to guide ongoing engagement with stakeholders is actively implemented. This should include regular reviews and updates based on stakeholder feedback. Continued vigilance will be needed to ensure ongoing support is provided to vulnerable groups. Ensure all workers (including contractors) are aware of their role in the engagement and grievance management processes, as part of the workforce induction process. This should enable grievances to be lodged anonymously. All workers, including those employed through the Project's supply chain, should have access to a grievance mechanism to ensure that workers 	Monitor and documented allegations of human rights violations, and where necessary investigate and take disciplinary action			
			 addressed. Implement the Project's grievance mechanism. This will provide an appropriate channel for stakeholders to voice their concerns, including opportunities for written and verbal communication. Ensure vulnerable groups are informed of their rights and the ways in which they can communicate their grievance. 				

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			Develop and implement the policies across the Project's supply chain, including:					
			 Labour management policies; 					
			- Community relations policies; and					
			 Supply chain policies, including the supplier, vendor and contractor expectations. 					
			These requirements should be embedded in relevant contracts, including agreements with EPC contractors.					
			Employment practices will ensure that workers are not discriminated against on the grounds of race, colour, sex, religion, political opinion, national extraction, social origin, age, marital or relationship status, sexual orientation or trade union activity, other than in compliance with local content policy. As part of the hiring process, age checks will be conducted.					
			Employment practices will ensure that passports or other forms of identification are not withheld. The identification can be stored in a safe location, but workers should always have access to their identification.					
			Employment practices will ensure that workers are paid appropriately and in a timely manner, informed by					

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			national standards and industry benchmarks.					
			Employment practices will ensure that workers are provided an easy to understand contract that specifies working hours, overtime hours, breaks, and holidays.					
			Safeguards should be established if recruitment agents are utilised. This includes pre-screening and contractual obligations to ensure appropriate oversight of recruitment fees (so that workers are not placed in debt), and ensure passports or other forms of identification are not withheld.					
			 As part of the induction process, ensure workers are made aware of their rights. 					
			 Development and implementation a HSE Plan. Provide an induction and on-going training for all workers regarding health and safety, including identification and management of risks and hazards and wearing appropriate personal protective equipment. 					
			Requirement that workers (including contractors) complete a JHAs prior to undertaking work, as well as daily toolbox discussions to ensure hazards are identified and					

Activity/Aspect Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
		management measures are implemented.					
		Ensuring equipment is well maintained and sufficient lighting is available to maintain a safe work environment.					
		 Development of a traffic management plan to reduce the risk of accidents. 					
		Provision of 24/7 medical support to treat minor health issues, provide preventative care, and stabilize personnel; and coordinate with local medical emergency services for a higher level of care as needed.					
		 Conduct local risk assessments to identify security threats to determine the appropriate security requirements. 					
		 Develop and implement a Workforce Code of Conduct, which outlines workforce behaviour expectations while onsite, in the workers camp and when interacting with local communities. This will apply to the security personnel. 					
		 Document and investigate allegations of human rights abused by public or private security personnel. Report incidents of inappropriate force used by security personnel, and ensure appropriate 					

Activity/Aspect Potential Impact	Source Document	Mitigation Measure	Responsibility M Pa	lonitoring arameter	Monitoring Frequency	Reporting	Estimated
		action is taken to address the incident.					
		Take appropriate disciplinary action where required, such as removal of personnel credibly alleged to have committed a human rights abuse					

16.9.12 Unplanned Events Management

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
Pre-construction a	and Construction Ph	ases						
Small scale leakage and spill incidents from site- preparation / construction activities	Communities: Based on the liquid fuel storage volumes, the potential exists for exposure to contaminated water or soil and	EPPFS Report	Arrange an oil conservator tank with capacity of 90m ³ to be constructed at site for the oil loss of containment during the construction phase.	 Project owner EPC Contractor 	Monitor the implementation of all proposed mitigation measures specified in Emergency Preparedness and Response Plan	Monthly	Monitoring report	Part of construction cost
	resulting in long- term effects on surrounding communities utilizing groundwater resources if a spill	ESIA 13.4.1.1	Design the site to include good site management practices to ensure that the products are properly stored on site (e.g. secondary containment, double walled tanks, over filling alarm system).	EPC contractor	Inspect of any Daily secondary containment of oil/chemical on site and ensure good maintenance procedures to	Daily		
	contained. <u>Environment:</u> Based on the liquid fuel storage volumes potential for loss of containment of oil/chemicals into the ground of surrounding area, including nearby surface water		Implement the SEP and a robust stakeholder engagement program on emergency response. Engagement on emergency response will provide regular information on safety drills and guidance to residents in the event of an unplanned event. Ensure good inspection and maintenance procedures for large mobile construction plant	Project owner EPC contractor	minimize small leaks and spills			

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
	resources results in localized,		to minimize small leaks and spills such as:					
	potentially long- term, degradation.		 (i) Hazardous material (such as oil, fuel, etc.) should be stored in proper and designated areas where are hard impermeable surface, flame-proof, accessible only by authorized personnel and locked when not in use; 					
			(ii) Maintain MSDS present at all times;					
			(iii) refuelling of equipment and vehicles will be carried out in designated areas on hard standing ground to prevent seepage of any spillages to the ground;					
			(iv) Collection systems will be installed in these areas to manage any spills, fuels will be collected and either reused or removed by a local contractor;					
			 (v) The Project will restrict storage and handling of hazardous materials and fuels; 					
			(vi) Storage containers will be regularly checked and maintained;					
			(vii) Ensure the preparation of spill absorbent (including elite, clay, peat, etc.) and spill kit at					

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			hazardous material storage facility.					
			Monitoring and Reporting Requirements:	Project owner				
			 Inspect of storage hazardous materials; and 					
			Report any spillages and measures taken to minimise the impact and prevent from reoccurring in the future.					
			Prepare an Emergency Preparedness and Response Plan to cover accidental and emergency situations. This Plan will detail:	Project owner				
			 Planning coordination: including procedures for informing local communities about emergency response, documentation and first aid / medical treatment; 					
			 Emergency equipment: including equipment in the project design and any additional emergency equipment; 					
			Maintain good housekeeping including containment, cleaning up and disposal of contaminated soil as hazardous waste.					

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			 Training: employees and contractors will be trained in emergency response procedures; and Auditing: audit records will 					
			be maintained on how the Plan is being implemented.					
Road traffic transporting	Communities: Traffic accidents	EPP	There are no existing measures/controls	-	Monitor the implementation of	Monthly Monitoring report		
personnel or materials involved in a collision	that involved community members, resulting in injury or fatality. Accidents might require use of local medical emergency services in the Project area and could temporarily decrease access to these services for local residents. <u>Properties:</u> Traffic accident once happening can induce damage to the existing roads, highways, bridges and utility lines (e.g. electricity	ESIA 13.4.1.2	 Developed and implemented a Traffic and Transportation Management Plan before commencement of any transportation activities. This should include measures such as: Scrutinized analysis and study of the entire route for transportation of the project components from the manufactured area to the project site. Active traffic controls (e.g. flaggers to direct traffic at the Project site entrance); and Schedule construction deliveries and employee shift changes to minimize traffic congestion and delay 	EPC contractor	all proposed mitigation measures specified in the Traffic Management Plan (TMP) Monitor road condition along the transportation route to understand road quality			
	(e.g. electricity cable lines)		Design an H&S plan and good safety practices for the	EPC contractor				

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			transportation (e.g. alcohol policy, good driving practice).					
			Strictly abide by the regulations specified in the Transport License granted by the Directorate for Roads of Viet Nam for transporting the oversized and over-mass equipment:	Transportation contractor / Project owner / Certified organizations and Authorities				
			 The transportation only be allowed during 11:00PM – 5:00AM 					
			The allowable speed on the road could not exceed 20 km/h, and					
			A competent and certified organizations or authorities to monitor and regulate the traffic flow.					
			Upgrade the access road systems to the Project site	Project owner	_			
			Implement the SEP and a robust stakeholder engagement program on emergency response. Engagement on emergency response will provide regular information on safety drills and guidance to residents in the event of an unplanned event.	Project owner				

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			Prepare Emergency Response Plan (ERP) and Emergency Management Plan (EMP).	Project owner				
			Implement ERP and EMP and monitor contractors to ensure consistent implementation	Project ownerEPC Contractor				
Fire and Explosion including Unexploded Ordnance (UXO)	Fire and ExplosionCommunities: Based on the liquid fuel storage volumes the potential exists for exposure to ignited due to malfunctioned equipment and resulting in potentially severe injuries to employees and spread to nearby communities' membersEnvironment: Based on the liquid	Project owner's information	Incorporate and sign the contract with 3197 Enterprise under the 319 Corporation Ministry of National Defence to conduct the survey on UXO identification, clearance and elimination for all four Projects (KB1, KB2, CN1, and CN2) in Cu Ne, Cu Pong Communes, Dak Lak Province.	Project owner	Establish audit program to check the implementation of emergency response and evacuation plan, staff training, equipment inspection, and firefighting drills	Monthly	Monitoring report	
		ESIA 13.4.1.3	 Regarding the preventive measures for UXO: Install the warning signs around the UXO-contained areas where clearing has not been undertaken, if any Hold the induction training to all workers on UXO areas, and retrain as needed. 	 Project owner EPC Contractor 				
	volumes potential for ignition of leakage or spill of oil/chemicals due to human errors and malfunctioned		Install firefighting equipment (such as fire extinguishers, proper communication equipment), especially at area with high risks of fire and explosion, such as	 Project owner EPC Contractor 				

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
	short-circuit equipment, accidents might lead to uncontrollable wildfire, loss of crops and habitat, causing injury and life-threatening of local community.	ort-circuit iipment, iidents might d to controllable ffire, loss of ps and habitat, ising injury and threatening of al community.	warehouses of chemical and transformer stations					
			Prepare the Fire prevention and Fighting Plan that ensure compliance with <i>Decree No.</i> 79/2014/ND-CP guiding the Law on Fire Prevention and Fighting	Project ownerEPC Contractor				
			Conduct firefighting training to the emergency support team, contractors and workers on site and camping areas	 Project owner EPC Contractor 				
			Store flammable materials away from ignition sources and oxidizing materials	Project ownerEPC Contractor				
			Conduct regular inspections and maintenance to eliminate potential risks	Project ownerEPC Contractor				
			Implement the SEP and a robust stakeholder engagement program/ plan on emergency response. Engagement on emergency response will provide regular information on safety drills and guidance to residents in the event of an unplanned event.	Project owner				
			Implement routine inspection and maintenance procedures (in line with international best	EPC contractor				

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			practice) for large storage vessels.					
			Develop an Emergency Response Plan and Emergency Management Plan and monitor contractors to ensure consistent implementation. The Emergency response plan should include:	 Project owner EPC Contractor 				
			Immediately pull the nearest fire alarm if a fire occurs, report the event to shift supervisor or foreman immediately for emergency response;					
			When the emergency alarm sounds, all employees shall stop all activities and move to emergency assembly places immediately;					
			 Limit the fire areas by utilizing the appropriate firefighting equipment, if the fire is small and controllable; and 					
			 Follow the procedure included in the Emergency Response and Evacuation Plan to take actions 					
			Implement an Emergency Response Plan and	EPC contractor				
Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
-----------------------------------	---	-----------------------------------	--	----------------	--	------------------------------	-----------	-----------
			Emergency Management Plan and monitor contractors to ensure consistent implementation					
Occupational Health and safety	Workers and employees: Health and safety risks during construction may result in an accident, injury or	Project owner's information	Develop Safety and Civilized Construction Plan that requires the implementation of both EPC contractor and the Project's owner during the construction and operation phases.	Project owner	Random audits to the project areas with high risk activities to ensure proper implementation of the mitigation	Monthly Monitoring report		
	fatality.	ESIA 13.4.1.4	Provide all workers (including any subcontractors) with trainings on the Health and Safety policy in place, safe working practices, and provide PPE and inform them regarding any Emergency Response Plans or first aid kits provided on-site.	EPC Contractor	measures and other internal safety procedures			
			Establish a grievance redressed mechanism in place, to allow for the employees and workers to report any concern or grievance related to work activities.	EPC Contractor				
			Assign supervisors to supervise the activities on site to ensure all safety regulations and practices are followed and the risks will be minimized	EPC Contractor				

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Reporting Frequency	Estimated
			Use appropriate work equipment/methods in case of working at height, hot areas, work in confined spaces etc.	EPC Contractor			
			Ensure that workers (including contractors) complete a Job Hazard Analysis (JHA) prior to undertaking construction activities, and also conduct daily toolbox discussions to ensure hazards are identified and management measures are implemented	EPC Contractor			
			Establish and maintain suitable exclusion zones underneath any working at height activities, where possible, to protect workers from falling objects	EPC Contractor			
			Avoid conducting tower installation or maintenance work during poor weather conditions and especially where there is a risk of lightning strikes	 Project owner EPC Contractor 			
			Provide an emergency rescue plan detailing the methods in place to rescue workers who are stranded or incapacitated while working at height	 Project owner EPC Contractor 			

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
Commissioning a	nd Operation Phase	1			·			-
Small scale leakage and spill incidents from activities on site	Communities – Based on the liquid fuel storage volumes the potential exists for exposure to contaminated water or soil and	EPP	There are no existing controls.	D existing controls Monitor the implementation all proposed mitigation measures specinin Emergency Preparedness Response Pla	Monitor the implementation of all proposed mitigation measures specified in Emergency Preparedness and Response Plan	Monthly	Monitoring report	Part of operation cost
	resulting in long- term effects on surrounding communities utilizing groundwater resources if a spill is not contained. Environment - Based on the liquid	ESIA 13.4.2.1	Implement good site management practices to ensure that the products are properly stored on site and in areas where spills will not easily release out to the environment (e.g. in paved areas with secondary containment).	O&M Contractor / Project owner	Inspect any secondary containment of oil/chemical on site and ensure good maintenance procedures to minimize small leaks and spills	Daily		
	fuel storage volumes potential for loss of containment of		Implement the SEP and a robust stakeholder engagement program on emergency response.	Project owner				
	oil/chemicals into ground of surrounding area, including nearby surface water resources resulting in localized, potentially long- term, degradation.		 Prepare an Emergency Preparedness and Response Plan to cover accidental and emergency situations. This Plan will detail: Planning coordination: including procedures for informing local communities 	O&M Contractor / Project owner				

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			documentation and first aid / medical treatment;					
			 Emergency equipment: including equipment in the project design and any additional emergency equipment; 					
			 Training: employees and contractors will be trained in emergency response procedures; and 					
			 Auditing: audit records will be maintained on how the Plan is being implemented. 					
			Implement Emergency Preparedness and Response Plan and monitor contractors to ensure consistent implementation.	Project owner				
Fire and explosion	Communities – A	EPP	There are no existing controls.	_	Establish an audit	_	Monitoring	
	large-scale fire could result in injuries to people in the surrounding communities, or in	ESIA 13.4.2.2	Implement the SEP and a robust stakeholder engagement program on emergency response.	Project owner	program to check the implementation of emergency response and evacuation plan.		report	
	the worst-case fatalities. Explosions of malfunctioned equipment could result in rapid		Implement routine inspection and maintenance procedures (in line with international best practice) for any Unplanned Events substances' storage vessels and WTGs.	EPC contractor / Project owner	staff training, equipment inspection, and firefighting drills			

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
	spread of fire and projectile spread of debris. This could result in injuries to		Install warning system, signal boards, lighting protection system where risks of fire and explosion exposed	Project owner				
	people in the surrounding communities, or in the worst-case fatalities. Environment: – A large-scale fire could result in damage/death of local flora and fauna. Accidents might lead to uncontrollable wildfire, loss of crops and habitat given the environment settings at the Project area. Explosions could result in rapid spread of fire and projectile spread of debris. This could result in damage/death of local flora and fauna.		Implement Emergency Preparedness and Response Plan with forest fire protection and monitor contractors to ensure consistent implementation Provide regularly safety and fire prevention & fighting drills.	Project owner				

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated		
Occupational Health and Safety	Workers and employees: -FHealth and safety risks during construction may result in an accident, injury or fatality.F1	Project owner's information	Develop Safety and Civilized Construction Plan that requires the implementation of both EPC contractor and the Project's owner during the construction and operation phases.	Project owner C a v a p i i t t	Project owner Conduct random audits to the areas with high risk activities to ensure proper implementation of the mitigation	Conduct random Monthly Monitoring audits to the areas with high risk activities to ensure proper implementation of the mitigation measures and	Conduct random audits to the areas with high risk activities to ensure proper implementation of the mitigation	Monthly Mo rep	Monitoring report	
	fatality.	ESIA 13.4.2.3	All workers (including any subcontractors) should be provided with trainings on the Health and Safety policy in place, safe working practices, provided with PPE and informed regarding any Emergency Response Plans or first aid kits provided on- site.	EPC contractor / Project owner	measures and other internal safety procedures					
			Establish a grievance redressed mechanism in place, to allow for the employees and workers to report any concerns or grievance related to work activities.	Project owner						
			Use appropriate work equipment/methods in case of working at height, hot areas, work in confined spaces etc.	Project owner	_					
			Establish and maintain suitable exclusion zones underneath any working at height activities, where	Project owner	_					

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			possible, to protect workers from falling objects.					
			Avoid conducting tower installation or maintenance work during poor weather conditions and especially where there is a risk of lightning strikes	Project owner				
			Provide an emergency rescue plan detailing the methods in place to rescue workers who are stranded or incapacitated while working at height	Project owner				
Blade ejection	Communities –	EPP	There are no existing controls.	_	Establish an audit	Quarterly	Monitoring	_
failure	Blade ejection failure could result in rapid spread of fire and projectile spread of debris given the heights of wind turbines. This could result in injuries to surrounding communities, or in	ESIA 13.4.2.4	Establish safety zone at least 312 m away from the WTGs with warning signals if possible. It was recommended that the minimum setback distances required to meet noise and shadow flicker limits be maintained with respect to sensitive residential receptors to provide further protection;	Project owner	program to check the implementation of regular technical inspection of the WTGs and blades' safety		report	
	communities, or in the worst-case fatalities Environment – As above with local	e worst-case Implem talities robust s nvironment – As engage pove with local emerge		Project owner				
	flora and fauna.		Implement periodic routine inspection and maintenance	O&M contractor/ Project owner				

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			procedures (in line with international best practice).					
			Install warning system, signal boards, lighting prevention system around the 312 m radius of danger zone where the WTGs located. Equipped vibration sensors for the warning of any imbalances in rotor blades.	O&M contractor/ Project owner				
			Develop an Emergency Preparedness Response Plan (EPRP) and monitor contractors to ensure consistent implementation.	O&M contractor/ Project owner				
			Implement EPRP and monitor contractors to ensure consistent implementation	O&M contractor/ Project owner				
Accidental	Communities –	EPP	There are no existing controls.	_	Establish an audit	_	Monitoring	
transmission line snapping and tower swaying/collapsing	Electrocutions that involved community members, resulting in injury or fatality, livestock leading to death of livestock and loss/reduction in community	ESIA 13.4.2.5	Establish a good practice and should comply with electricity safety related regulation or international standard, whichever, more stringent, in the design and installation of transmission line and transmission pylons	O&M Contractor / Project owner	program to check the implementation of regular technical inspection of the transmission lines and transmission pylons' safety		report	
	member's livelihood		Implement the SEP and a robust stakeholder engagement program on emergency response.	Project owner				

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			Implement periodic routine inspection and maintenance procedures (in line with the international best practice)	O&M Contractor / Project owner				
			Install warning system, signal boards, lighting prevention system, and anti-climbing devices on the tower.	O&M Contractor / Project owner				
			Develop an EPRP and monitor contractors to ensure consistent implementation.	O&M Contractor / Project owner				
			Implement EPRP and monitor contractors to ensure consistent implementation	O&M Contractor / Project owner				
Natural Hazards – Flooding and landslides	Communities: Flood and Landslide can result in loss of human life, damage to property, destruction of crops, and loss of livestock that affects to livelihood. Flood and landslide may affects to substation and power components	Safe and Civilized Construction Plan	Establish the geological disaster emergency plan, set up the corresponding emergency leading and working agencies, and clarify the job responsibilities Organize geological inspection prior to the commencement of the Project to find out the parts of areas that may be prone to landslide and try to avoid setting up camps, building facilities and carrying out the operations in high-risk areas of geological disasters,	Project owner	The monitoring and to the construction s	auditing prog tage	ram is similar	
	that lead to loss of electricity supply		Provide publicity and education on natural disasters					

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
	locally. Environment: A large-scale flood and landslide could		to improve awareness of all personnel participating the Project on preventing geological disasters					
	result in damage/death of local flora and fauna. Properties – Natural hazards once happening can induce		Periodically carry out geological monitoring in the areas with high risk of geological disasters and give timely warning if abnormal conditions are found during the construction process, and					
	damage to many houses, existing roads, highways,		Conduct the preventive and control measures for the inevitable disasters.	_				
	bridges and utility lines (e.g. electricity cable lines)	ESIA 13.4.2.6	Incorporate siting and safety engineering criteria to prevent failures due to natural disasters.	O&M contractor / Project owner	_			
			Strengthen the weather forecasting system to notify the potential floods for the basin	Require more support from Meteorological stations at the region				
			Implement the SEP and a robust stakeholder engagement program on emergency response.	Project owner				
			Implement periodic routine inspection and maintenance procedures (in line with international best practice)	O&M contractor / Project owner				

Activity/Aspect	Potential Impact	Source Document	Mitigation Measure	Responsibility	Monitoring Parameter	Monitoring Frequency	Reporting	Estimated
			Install warning system, signal boards, flood prevention systems.	O&M contractor / Project owner				
			Develop an Emergency Response Plan and Emergency Management Plan and monitor contractors to ensure consistent implementation.	O&M contractor / Project owner				
			Implement an Emergency Response Plan and Emergency Management Plan and monitor contractors to ensure consistent implementation	O&M contractor / Project owner				

REFERENCES

- Agha, M., Lovich, J.E., Ennen, J.R., Augustine, B., Arundel, T.R., Murphy, M.O., Meyer-Wilkins, K., Bjurlin, C., Delaney, D., Briggs, J., Austin, M., Madrak, S.V. & Price. S.J. 2015. 'Turbines and Terrestrial Vertebrates: Variation in Tortoise Survivorship Between a Wind Energy Facility and an Adjacent Undisturbed Wildland Area in the Desert Southwest (USA)'. *Environmental Management*, vol. 56, no. 2, pp. 332–41.
- Agha, M., Lovich, J.E., Ennen, J.R., Augustine, B., Arundel, T.R., Murphy, M.O., Meyer-Wilkins, K., Bjurlin, C., Delaney, D., Briggs, J., Austin, M., Madrak, S.V. & Price, S.J. 2015, 'Turbines and Terrestrial Vertebrates: Variation in Tortoise Survivorship Between a Wind Energy Facility and an Adjacent Undisturbed Wildland Area in the Desert Southwest (USA)', Environmental Management, vol. 56, no. 2, pp. 332–41.
- Alistair Cook and Tamara Nair. 2021. Non-Traditional Security in the Asia-Pacific. Available at: https://doi.org/10.1142/11941 (Accessed on 7 August, 2021).
- Anh Dung. 2020. Dak Lak planted newly around 2,400 ha of forest land (Đắk Lắk trồng mới được gần 2.400 ha rừng). Available at: https://baotintuc.vn/tay-bac-tay-nguyen-tay-nam-bo/dak-lak-trong-moi-duoc-gan-2400-ha-rung-20201217155038495.htm (Accessed on 1 June 2021).
- Arnett, E.B., Johnson, G.D., Erickson, W.P. & Hein, C.D. 2013, A synthesis of operational mitigation studies to reduce bat fatalities at wind energy facilities in North America, A report submitted to the National Renewable Energy Laboratory, Bat Conservation International, Austin, Texas, USA.
- Arnett, E.B., Johnson, G.D., Erickson. W.P. & Hein. C.D. 2013. A synthesis of operational mitigation studies to reduce bat fatalities at wind energy facilities in North America. A report submitted to the National Renewable Energy Laboratory, Bat Conservation International, Austin, Texas, USA.
- Asian Development Bank (ADB). 2016. Promoting Ecosystem Services and Sustainable Forest Carbon Financing in the Asia Pacific. Technical Assistance Report - Project Number RETA8564. Available at: https://www.adb.org/sites/default/files/linked-documents/48189-002-sd-04.pdf (Accessed on 26 May 2021).
- Azam, C., Le Viol, I., Bas, Y., Zissis, G., Vernet, A., Julien, J.-F. & Kerbiriou, C. 2018, 'Evidence for distance and illuminance thresholds in the effects of artificial lighting on bat activity', Landscape and Urban Planning, vol. 175, pp. 123–35.
- Bamford, M., Watkins, D., Bancroft, W., Tischler, G. & Wahl, J. 2008. Migratory Shorebirds of the East Asian - Australasian Flyway; Population Estimates and Internationally Important Sites., Wetlands International - Oceania, Canberra, Australia.,. Available at: https://www.environment.gov.au/system/files/resources/782ebed5-6bdd-4a41-9759b60273b52021/files/shorebirds-east-asia.pdf (Accessed on 20 October 2020).
- Bao Trung. 2020. Lack of water in clean water works in the dry season (Mùa khô, công trình nước sạch cũng thiếu nước). Available at: https://laodong.vn/ban-doc/mua-kho-cong-trinh-nuoc-sach-cung-khat-804174.ldo (Accessed on 27 May 2021).
- Barré, K., Le Viol, I., Bas, Y., Julliard, R. & Kerbiriou, C. 2018a, 'Estimating habitat loss due to wind turbine avoidance by bats: Implications for European siting guidance', Biological Conservation, vol. 226, pp. 205–14.
- Barré, K., Le Viol, I., Bas, Y., Julliard, R. & Kerbiriou, C. 2018b, 'Estimating habitat loss due to wind turbine avoidance by bats: Implications for European siting guidance', Biological Conservation, vol. 226, pp. 205–14.

- Barré, K., Le Viol, I., Bas, Y., Julliard, R. & Kerbiriou. C. 2018a. 'Estimating habitat loss due to wind turbine avoidance by bats: Implications for European siting guidance'. *Biological Conservation*. vol. 226, pp. 205–14.
- Barré, K., Le Viol, I., Bas, Y., Julliard, R. & Kerbiriou. C. 2018b, 'Estimating habitat loss due to wind turbine avoidance by bats: Implications for European siting guidance', *Biological Conservation*, vol. 226, pp. 205–14.
- Bayne, E., Habib, L. & Boutin, S. 2008, 'Impacts of Chronic Anthropogenic Noise from Energy-Sector Activity on Abundance of Songbirds in the Boreal Forest', Conservation biology : the journal of the Society for Conservation Biology, vol. 22, pp. 1186–93.
- Bayne, E., Habib, L. & Boutin. S. 2008. 'Impacts of Chronic Anthropogenic Noise from Energy-Sector Activity on Abundance of Songbirds in the Boreal Forest', Conservation biology : the journal of the Society for Conservation Biology, vol. 22, pp. 1186–93.
- Berger-Tal, O., Wong, B., Candolin, U. & Barber, J. 2019, 'What evidence exists on the effects of anthropogenic noise on acoustic communication in animals? A systematic map protocol', Environmental Evidence, vol. 8.
- Berger-Tal, O., Wong, B., Candolin, U. & Barber. J. 2019. 'What evidence exists on the effects of anthropogenic noise on acoustic communication in animals? A systematic map protocol'. Environmental Evidence, vol. 8.
- biosis 2018, Silverton Wind Farm Vegetation Management Plan, Prepared for GE Renewable Energy, Albury, New South Wales.
- BKE-Solar.com. No date. Development of Solar energy in Dak Lak (Phát triển điện năng lượng mặt trời tại Đắk Lắk). Available at: https://bke-solar.com/phat-trien-dien-nang-luong-mat-troi-tai-dak-lak (Accessed on 27 May 2021).
- Bunkley, J., McClure, C., Kleist, N., Francis, C. & Barber, J. 2014, 'Anthropogenic noise alters bat activity levels and echolocation calls', Global Ecology and Conservation, vol. 3.
- Bunkley, J., McClure, C., Kleist, N., Francis, C. & Barber. J. 2014. 'Anthropogenic noise alters bat activity levels and echolocation calls'. Global Ecology and Conservation, vol. 3.
- Central Population and Housing Census Steering Committee. 2019. The 2019 Vietnam Population and Housing Census (April 2019). Vietnam: The Statistical Publishing House.
- Chen, A., Cheng, F., Wu, D. & Tang, X. 2019, 'Ground vibration propagation and attenuation of vibrating compaction', Journal of Vibroengineering, vol. 21, pp. 1342–52.
- Chu Kbo Commune Women's Union. 2020. Report on the results of the union and the women's movement in 2020, orientation and tasks in 2021.
- Chu Kbo CPC. 2020. Report on socio-economic and national security condition in 2020 and orientation development plans in 2021 (Báo cáo kết quả thực hiện nhiệm vụ phát triển kinh tế-xã hội, đảm bảo quốc phòng an ninh năm 2020 và phương hướng, nhiệm vụ trong năm 2021).
- CIVICUS & VOICE. 2018. Socialist Republic of Vietnam Joint Submission to the UN Universal Periodic Review 32nd Session of the UPR Working Group. Available at: https://www.civicus.org/documents/JointCIVICUSUPRSubmissonVietnam.pdf (Accessed on 7 August, 2021).
- Committee for Ethnic Minority Affairs and GSO. 2019. The results of the survey to collect information on the socio-economic status of 53 ethnic minorities in 2019 (Kết quả điều tra thu thập thông tin về thực trạng kinh tế xã hội của 53 dân tộc thiểu số năm 2019). Vietnam: General Statistics Office.
- Cu Ne CPC. 2021a. Report on socio-economic and national security condition in the first six months of 2021 and the key tasks for the last six months of 2021 (Báo cáo tình hình thực hiện nhiệm vụ

phát triển Kinh tế-Xã hội, Quốc phòng - An ninh 6 tháng đầu năm 2021 và nhiệm vụ trọng tâm 6 tháng cuối năm 2021).

- Cu Ne CPC. 2021b. Report on socio-economic and national security condition in 2020 and orientation development plans in 2021 (Báo cáo tình hình thực hiện nhiệm vụ phát triển Kinh tế-Xã hội, Quốc phòng An ninh năm 2020 và phương hướng nhiệm vụ năm 2021).
- Cu Pong Commune People's Committee (Cu Pong CPC). 2021. Report on the socio-economic development plan, national defense and security protection in 2020 and orientation in 2021 (Báo cáo Kế hoạch phát triển kinh tế xã hội, đảm bảo quốc phòng, an ninh năm 2020 và phương hướng, nhiệm vụ năm 2021).
- Cu Pong Commune Women's Union. 2020. Report on the Women's Union's work and movements targets 2020 and orientation for 2021(Báo cáo Kết quả công tác Hội và phong trào phụ nữ năm 2020, phương hướng, nhiệm vụ năm 2021).
- Cu Pong commune Women's Union. 2021. Report on the results of the association's activities in the first 6 months of the year. implementing orientations and tasks for the last 6 months of 2021 (Báo cáo Kết quả hoạt động công tác Hội 6 tháng đầu năm, triển khai phương hướng, nhiệm vụ 6 tháng cuối năm 2021).
- Cu Pong CPC. 2020. Report on the implementation results of the national target program on new rural construction in Cu Pong commune in 2020, and the plans for 2021 (Báo cáo kết quả thực hiện Chương trình mục tiêu Quốc gia xây dựng nông thôn mới năm 2020, kế hoạch thực hiện năm 2021)
- Dak Lak Department of Health. 2021. Updated statistics on the number of infected cases of Covid-19 in Dak Lak province (Thông tin cập nhật số ca mắc Covid-19 trên địa bàn tỉnh Đăk Lăk). Available at: http://yte.daklak.gov.vn/ASPX/TinTuc_ChiTiet.aspx?iDV=1&id=86110 (Accessed on 29 July 2021)
- Dak lak Department of Planning and Investment (Dak Lak DPI). 2021. Report on summary of mission in 2020 and orientation in 2021 (Báo cáo tổng kết công tác năm 2020 và phương hướng nhiệm vụ năm 2021). Available at: http://khdt.daklak.gov.vn/CMS/Content/BC%20417%20cua%20So%20KHDT.PDF (Accessed on 29 May 2021).
- Dak Lak Newspapers Portal. 2019. Ea Sin Commune Women's Union launches a Community Advisory Group (Hội Liên hiệp Phụ nữ xã Ea Sin ra mắt Tổ tư vấn cộng đồng). Available at: http://baodaklak.vn/channel/3484/201908/hoi-lien-hiep-phu-nu-xa-ea-sin-ra-mat-to-tu-vancong-dong-5645546/ (Accessed on 7 August, 2021).
- Dak Lak Online Newspaper. 2019. Dak Lak manages well the work of belief and religion (Đắk Lắk làm tốt công tác quản lý nhà nước về lĩnh vực tín ngưỡng, tôn giáo). Available at: http://baodaklak.vn/channel/3482/201901/dak-lak-lam-tot-cong-tac-quan-ly-nha-nuoc-ve-linh-vuc-tin-nguong-ton-giao-5616791/ (Accessed on 27 May 2021).
- Dak Lak PPC. 2009. Directive No. 12/2009/CT-UBND dated December 29, 2009 on the organization and implementation of the Law on Gender Equality (Chỉ thị số 12/2009/CT-UBND ngày 29 tháng 12 năm 2009 về Về việc tổ chức triển khai thực hiện Luật Bình đẳng giới). Aailable at: http://vbpl.vn/daklak/Pages/vbpq-toanvan.aspx?ItemID=57433 (Accessed on 8 June 2021).
- Dak Lak PPC. 2016. Decision No. 2382/QD-UBND dated August 15, 2016 on issues the plan for implementation of the national strategy on gender equality in dak lak province for 2016 – 2020 (Quyết định số 2382/QD-UBND ngày 15/8/2016 về ban hành kế hoạch thực hiện chiến lược quốc gia về bình đẳng giới tỉnh Đắk Lắk giai đoạn 2016-2020). Available at: https://thuvienphapluat.vn/van-ban/Van-hoa-Xa-hoi/Quyet-dinh-2382-QD-UBND-2016-Kehoach-thuc-hien-Chien-luoc-Quoc-gia-ve-binh-dang-gioi-Dak-Lak-392181.aspx (Accessed on 8 June 2021).

- Dak Lak Province People's Committee (Dak Lak PPC). 2019. Report on the generation and management of solid waste in Dak Lak province (Báo cáo tình hình phát sinh và quản lý chất thải rắn trên địa bàn tỉnh Đắk Lắk). Available at: https://daklak.gov.vn/documents/10181/1437501/60849-109.bc-ubnd.pdf?version=1.0 (Accessed on 1 June 2021).
- Dak Lak Province People's Committee (Dak Lak PPC). 2020. Report on the socio-economic development plan, national defense and security protection in 2020 and orientation in 2021 -No. 309/BC-UBND issued on November 24th 2021) (Báo cáo Kế hoạch phát triển kinh tế - xã hội, đảm bảo quốc phòng, an ninh năm 2020 và phương hướng, nhiệm vụ năm 2021 - Số 309/BC-UBND ngày 24 tháng 12 năm 2021).
- Dak Lak Province People's Committee (Dak Lak PPC). 2021a. Results and detailed list of communes belonging to III, II, I areas and extremely difficult villages in ethnic minority and mountainous areas of Dak Lak province in the period of 2021 - 2025 - No. 42/BC-UBND (Kết quả và danh sách chi tiết xác định các xã và khu vực III, II, I và thôn đặc biệt khó khăn thuộc vùng đồng bào dân tộc thiểu số và miền núi tỉnh Dak Lak giai đoạn 2021 - 2025 - Số 42/BC-UBND).
- Dak Lak Province People's Committee (Dak Lak PPC). 2021b. Decision 837/QD-UBND Decision on approving the land use plan 2021 of Krong Buk district (Quyết định 837/QD-UBND Quyết định về việc phê duyệt Kế hoạch sử dụng đất năm 2021 của huyện Krông Búk).
- Dak Lak Province Statistics Office. 2020b. Report on the implementation of the socio-economic development plan, ensuring national defense and security in 2020 and orientations and tasks in 2021 (Báo cáo Kết quả thực hiện kế hoạch phát triển kinh tế xã hội, đảm bảo quốc phòng, an ninh năm 2020 và phương hướng, nhiệm vụ năm 2021)
- Dak Lak Provincial Department of Education and Training. 2020. Implementation of educational works in the first six months of 2020 and orientation in the last 6 months of 2020 - No. 170/BC-SGDDT (Tình hình thực hiện công tác giáo dục 6 tháng đầu năm 2020 và phương hướng nhiệm vụ 6 tháng cuối năm 2020 - Số 170/BC-SGDDT)
- Dak Lak Provincial FPD 1998, Report on implementation of management and conservation plan for Glyptostrobus pensilis populations in Dak Lak province, Dak Lak Provincial People's Committee, Dak Lak.
- Dak Lak Provincial Portal. 2015. Overview of Dak Lak Province (TÓNG QUAN ĐẮK LẮK). Available at: https://daklak.gov.vn/tong-quan-dak-lak (Accessed on 5 June 2021).
- Dak Lak Provincial Portal. 2020. Orientation for synchronous infrastructure development for socioeconomic development in the period 2020-2025 (Định hướng phát triển kết cấu hạ tầng đồng bộ phục vụ phát triển kinh tế-xã hội trong nhiệm kỳ 2020-2025). Available at: https://daklak.gov.vn/-/-inh-huong-phat-trien-ket-cau-ha-tang-ong-bo-phuc-vu-phat-trien-kinhte-xa-hoi-trong-nhiem-ky-2020-2025 (Accessed on 6 August, 2021)
- Dak Lak Provincial Portal. No Date. About Dak Lak Province. Available at: https://daklak.gov.vn/web/english/about-daklak (Accessed on 5 June 2021).
- Dak Lak Provincial Statistics Office. 2020a. Statistical Yearbook in 2019 of Dak Lak Province. Dak Lak: Statistical Publishing House.
- Dak Lak Provincial Women's Union. 2021. Preliminary report on the work of the union and the women's movement in the first 6 months of the year, directions and tasks for the last 6 months of 2021.
- Dak Lak Women's Union Portal. 2018. The Women's Union of Krong Buk district launches the model of a community consultation group at the commune level (Hội Liên hiệp Phụ nữ huyện Krông Búk ra mắt Mô hình Tổ tư vấn cộng đồng cấp xã). Available at: http://phunu.daklak.gov.vn/-/hoi-lien-hiep-phu-nu-huyen-krong-buk-ra-mat-mo-hinh-to-tu-van-cong-ong-cap-xa (Accessed on 7 August, 2021).

- Dak Lak Women's Union Portal. 2019a. The Women's Union of Krong Buk district held a conference to summarize the Women's movement and the association's work in 2019 (Hội LHPN huyện Krông Búk tổ chức Hội nghị tổng kết phong trào Phụ nữ và công tác Hội năm 2019). Available at: http://phunu.daklak.gov.vn/-/hoi-lhpn-huyen-krong-buk-to-chuc-hoi-nghi-tong-ket-phong-trao-phu-nu-va-cong-tac-hoi-nam-2019 (Accessed on 7 August, 2021).
- Dak Lak Women's Union Portal. 2019b. The 10th Executive Committee meeting of the Cu Ne Commune Women's Union, term 2016-2021 (Hội nghị Ban chấp hành Hội Liên hiệp Phụ nữ xã Cư Né (mở rộng) lần thứ 10, khóa VII, nhiệm kỳ 2016-2021). Available at: http://phunu.daklak.gov.vn/-/hoinghi-ban-chap-hanh-hoi-lien-hiep-phu-nu-xa-cu-ne-mo-rong-lan-thu-10-khoa-vii-nhiem-ky-2016-2021 (Accessed on 7 August, 2021).
- Dak Lak Women's Union Portal. 2020. Initial effectiveness of the Community Advisory Group model (Hiệu quả bước đầu của mô hình Tổ Tư vấn cộng đồng). Available at: http://phunu.daklak.gov.vn/-/hieu-qua-buoc-au-cua-mo-hinh-to-tu-van-cong-ong (Accessed on 7 August, 2021).
- Decision 33/2020/QD-TTg dated 12/11/2020 by the Prime Minister on Criteria for defining ethnic minority and mountainous areas according to the level of development for the period 2021-2025 (Quyết định của Thủ tướng Chính phủ về Tiêu chí phân định vùng đồng bào dân tộc thiểu số và miền núi theo trình độ phát triển giai đoạn 2021-2025)
- Department of Agriculture and Rural Development. 2020. Report on summary of the implementation of the plan in 2020 and the implementation of tasks in 2021 for the agriculture and rural development sector (Báo cáo Tổng kết thực hiện kế hoạch năm 2020 và triển khai nhiệm vụ năm 2021 ngành nông nghiệp và Phát triển nông thôn).
- Department of Foreign Affairs and Trade (DFAT). 2017. Draft country information report Vietnam 2017. Australia: Department of Foreign Affairs and Trade.
- Department of Labor, War Invalids and Social Affairs of Dak Lak Province (DOLISA). 2020. Report on the Implementation in 2020 and the Plan for 2021 of the Labor, Employment and Vocational Education Office (Báo cáo kết quả hoạt động năm 2020 và kế hoạch năm 2021 của Phòng Lao động, Việc làm và Giáo dục nghề nghiệp)
- Do Hai Ha and Le Thu Hien. 2010. Vietnam: Privacy in Vietnam. Available at: https://www.mondaq.com/constitutional-administrative-law/106926/privacy-in-vietnam (Accessed on 7 August 2021).
- Do, H., Grant, J., Bon, T., Zimmer, H. & Nichols. J. 2017. 'Diversity depends on scale in the forests of the Central Highlands of Vietnam'. Journal of Asia-Pacific Biodiversity, vol. 10.
- Dooling, R. & Popper, A. 2007, The Effects of Highway Noise on Birds.
- Dooling, R. & Popper. A. 2007. The Effects of Highway Noise on Birds.
- Duong Nguyen. 2021. Dak Lak has 38 ranked relics (Đắk Lắk có 38 di tích được xếp hạng). Available at: http://vhttdldaklak.gov.vn/quan-ly-di-san/ak-lak-co-38-di-tich-uoc-xep-hang-9854.html (Accessed on 5 Jun 2021).
- Ea Sin Commune Women's Union. 2021. Report of the Executive Committee of the Ea Sin Commune Women's Union, term III, submitted to the Fourth Commune Women's Congress, term 2021-2026 (Báo cáo của Ban Chấp hành Hội Liên hiệp Phụ nữ xã Ea Sin khóa III, trình Đại hội đại biểu Phụ nữ xã khóa IV, nhiệm kỳ 2021-2026).
- Ea Sin CPC. 2020a. Report on socio-economic and national security condition in 2020 and orientation development plans in 2021 (Báo cáo kết quả thực hiện nhiệm vụ phát triển kinh tế-xã hội, đảm bảo quốc phòng an ninh năm 2020 và phương hướng, nhiệm vụ trong năm 2021)

- Ea Sin CPC. 2020b. Summary report on the operation in 2020 and the orientation in 2021 of Ea Sin communal health station (Báo cáo tổng kết tình hình hoạt động năm 2020 và định hướng hoạt động trong năm 2021 của trạm y tế xã Ea Sin)
- Ea Sin CPC. 2021. Report on the operation of the health station in the first six months and the orientations for the last 6 months of 2021 (Báo cáo hoạt động trạm y tế Ea Sin 6 tháng đầu năm và phương nhiệm vụ 6 tháng cuối năm 2021)
- Eames, J.C. & Nguyen. D.T. 2002. An interim biodiversity report for Yok Don National Park, Dak Lak province, Vietnam. Vietnam PARC Project, Yok Don Component.
- Election Observation and Democracy Support (EODS). 2021. Declaration on the Elimination of Discrimination against Women. Available at: https://www.eods.eu/library/UNGA_Declaration%20Women_1967_en.pdf (Accessed on 7 August, 2021)
- Fair Labor Association. 2020. Freedom of Association on The Nư Vietnam Labour Code. Available at https://www.fairlabor.org/report/freedom-association-new-vietnam-labor-code (Accessed on 7 August 2021)
- GAP & IDB. 2014. Gender and Renewable Energy: Wind, Solar, Geothermal and Hydroelectric Energy. Available at: https://publications.iadb.org/en/gender-and-renewable-energy-wind-solargeothermal-and-hydroelectric-energy (Accessed on 7 August, 2021).
- General Statistics Office of Vietnam (GSO). 2018. Statistical Yearbook of Vietnam 2017. Vietnam: General Statistics Office (Accessed on 7 August, 2021).
- General Statistics Office of Vietnam (GSO). 2019. Statistical Yearbook of Vietnam 2018. Vietnam: General Statistics Office.
- General Statistics Office of Vietnam (GSO). 2020a. Statistical Yearbook of Vietnam 2019. Vietnam: General Statistics Office.
- General Statistics Office of Vietnam (GSO). 2020b. Report on socio-economic development in Quarter IV and the whole year 2020. Vietnam: General Statistics Office.
- General Statistics Office of Vietnam (GSO). 2020c. The 2019 Vietnam population and housing census. Statistical Publishing House.
- General Statistics Office of Vietnam (GSO). 2021. Statistical Yearbook of Vietnam 2020. Vietnam: General Statistics Office.
- GISD n.d., Invasive species in Vietnam. Available at: http://issg.org/database/species/search.asp?st=sss&sn=&rn=Viet%20Nam%20(Vietnam)&ri= 19416&hci=-1&fr=1&sts=&lang=EN (Accessed on 28 September 2020).
- Green Climate Fund. 2020. Gender assessment for FP125: Strengthening the resilience of smallholder agriculture to climate change-induced water insecurity in the Central Highlands and South-Central Coast regions of Vietnam. Available at: https://www.greenclimate.fund/document/gender-assessment-fp125-strengthening-resiliencesmallholder-agriculture-climate-change (Accessed on 7 August, 2021)
- H'Xiu. 2019. Changes in the Cu Puong revolutionary base area (Đổi thanh ở vùng căn cứ cách mạng). Available at: https://vovworld.vn/vi-VN/chuyen-cua-lang/doi-thay-o-vung-can-cu-cach-mangcu-pong-778277.vov (Accessed on 5 June 2021).
- Hai Duong. 2020a. Many difficulties in supporting trafficked victims to return to their localities in Dak Lak (Nhiều khó khăn trong việc hỗ trợ nạn nhân bị mua bán trở về địa phương ở Đắk Lắk). Infornet Magazine. Available at: https://infonet.vietnamnet.vn/chuyen-de/phong-chong-buonban-nguoi/nhieu-kho-khan-trong-viec-ho-tro-nan-nhan-bi-mua-ban-tro-ve-dia-phuong-o-daklak-268748.html (Accessed on 7 August 2021)

- Hai Duong. 2020b. Dak Lak: Many forms of propaganda on the prevention and combat of human trafficking (Đắk Lắk: Nhiều hình thức tuyên truyền pháp luật phòng, chống mua bán người).
 Infornet Magazine. Available at: https://infonet.vietnamnet.vn/chuyen-de/phong-chong-buon-ban-nguoi/tuyen-truyen-pho-bien-phap-luat-ve-phong-chong-mua-ban-nguoi-o-dak-lak-268775.html (Accessed on 7 August 2021)
- Hoai Thu. 2021. Protecting and caring Dak Lak's children (Post: 1) (Bảo vệ và chăm sóc trẻ em ở Đắk Lắk (Bài 1). Ethnic and Mountainous Magazine. Available at: https://dantocmiennui.vn/bao-veva-cham-soc-tre-em-o-dak-lak-bai-1/304596.html (Accessed on 7 August 2021)
- Hoang Vy. 2018. Cu Pong Commune celebrates its 40th anniversary (Xã Cư Pong kỷ niệm 40 năm ngày thành lập). Available at: http://krongbuk.daklak.gov.vn/index.php?option=com_content&%3Bview=article&%3 Bid=1601:xa-cu-pong-k-ni-m-40-nam-ngay-thanh-l-p&%3Bcatid=79:tin-chinh (Accessed on 31 July 2021)
- Hoang, V.C., Tao, T.N., Hoa, T.N., Anh, M.L., Cuong, T.P., Truong, Q.N., Nikolai, L.O., Youhua, C., Bin, W., Thomas, Z. & Jianping. J. 2021. 'Two new cryptic species of Microhyla Tschudi, 1838 (Amphibia, Anura, Microhylidae) related to the M. heymonsi group from central Vietnam'. ZooKeys, no. 1036, pp. 47–74.
- Hong Mong. 2020. Krong Buk promotes the local image to call for investment in tourism development (Krông Búk quảng bá hình ảnh của địa phương để kêu gọi đầu tư phát triển du lịch). Available at: https://daklak.gov.vn/-/krong-buk-quang-ba-hinh-anh-cua-ia-phuong-e-keu-goi-au-tu-phattrien-du-lich- (Accessed on 28 May 2021).
- HRS–GPAR and Partners. 2019. VIETNAM Joint Civil Society Report. Available at: https://tbinternet.ohchr.org/Treaties/CCPR/Shared%20Documents/VNM/INT_CCPR_CSS_V NM_34096_E.pdf (Accessed on 7 August, 2021).
- Human Rights Indicators Work. 2020. Ratification of 18 International Human Rights Treaties. United Nations. Available at https://indicators.ohchr.org/ (Accessed on 7 August 2021).
- Human Rights Watch. 2018. World Report: Vietnam Events of 2017. Available at: https://www.hrw.org/world-report/2018/country-chapters/vietnam (Accessed on 7 August 2021).
- Huu Long. 2018. Beware of human trafficking in the Central Highlands (Cánh giác với nạn buôn người ở Tây Nguyên). Labour Magazine. Available at: https://laodong.vn/phong-su/canh-giac-voi-nan-buon-nguoi-o-tay-nguyen-619252.ldo (Accessed on 7 August 2021)
- Huynh Chien Thang. 2020. Krong Buk district: Positive results in socio-economic development in 2019 (Huyện Krông Búk: Những kết quả tích cực trong phát triển kinh tế - xã hội năm 2019). Available at: http://baodaklak.vn/channel/3483/202001/huyen-krong-buk-nhung-ket-qua-tich-cuc-trongphat-trien-kinh-te-xa-hoi-nam-2019-5666986 (Accessed on 26 May 2021)
- IEA. 2015. World Energy Outlook 2015. Available at https://www.iea.org/reports/world-energy-outlook-2015 (Accessed on 7 August, 2021).
- IFC 2019, International Finance Corporation's Guidance Note 6: Biodiversity Conservation and Sustainable Management of Living Natural Resources, viewed 27 October 2020, https://www.ifc.org/wps/wcm/connect/5e0f3c0c-0aa4-4290-a0f8-4490b61de245/GN6_English_June-27-2019.pdf?MOD=AJPERES&CVID=mRQjZva>.
- International Institute for Sustainable Development. 2021. Gender Equality: The Formula to Accelerate Implementation of the 2030 Agenda for Sustainable Development. Available at: https://www.iisd.org/system/files/2021-03/still-one-earth-gender.pdf (Accessed on 7 August 2021)

- Inter-Parliamentary Union and the United Nations. 2016. Handbook for Parliamentarians Available at: https://www.ohchr.org/documents/publications/handbookparliamentarians.pdf (Accessed on 7 August, 2021).
- IPIECA & The Danish Institute for Human Rights. 2013. Integrating human rights into environmental, social and health impact assessments. Available at: https://www.ipieca.org/news/integrating-human-rights-into-environmental-social-and-health-impact-assessments/ (Accessed on 7 August, 2021).
- IRENA. 2019. Renewable Energy: A Gender Perspective. Available at: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Jan/IRENA_Gender_perspective_2019.pdf (Accessed on 7 August, 2021).
- Janas, J., Cotanche, D. & Rubel, E. 1996, 'Avian cochlear hair cell regeneration: Stereological analyses of damage and recovery from a single high dose of gentamicin', Hearing research, vol. 92, pp. 17–29.
- Janas, J., Cotanche, D. & Rubel. E. 1996. 'Avian cochlear hair cell regeneration: Stereological analyses of damage and recovery from a single high dose of gentamicin'. Hearing research, vol. 92, pp. 17–29.
- Kim Bao. 2020a. Potential and orientation for renewable energy development in Dak Lak province to 2030, with vision to 2045 (Tiềm năng và định hướng phát triển năng lượng tái tạo tỉnh Đắk Lắk đến năm 2030, tầm nhìn đến năm 2045). Available at: https://daklak.gov.vn/-/tiem-nang-va-inh-huong-phat-trien-nang-luong-tai-tao-tinh-ak-lak-en-nam-2030-tam-nhin-en-nam-2045 (Accessed on 29 May 2021).
- Kim Bao. 2020b. Over VND 855 billion to implement the sustainable poverty reduction target program in the period of 2016-2020 (Hon 855 tỷ đồng thực hiện Chương trình mục tiêu giảm nghèo bền vững giai đoạn 2016-2020). Available at: https://daklak.gov.vn/-/hon-855-ty-ong-thuc-hienchuong-trinh-muc-tieu-giam-ngheo-ben-vung-giai-oan-2016-2020 (Accessed on 5 June 2021).
- Kim Hoang and Trang Tran. 2020. The impact of free migration on socio-economic development in the Central Highlands nowadays (Tác động của di cư tự do đến sự phát triển kinh tế – xã hội ở khu vực Tây Nguyên hiện nay). Available at: https://www.quanlynhanuoc.vn/2020/11/24/tacdong-cua-di-cu-tu-do-den-su-phat-trien-kinh-te-xa-hoi-o-khu-vuc-tay-nguyen-hien-nay/ (Accessed on 31 July 2021)
- Köppl, C. 2011, 'Birds-same thing, but different? Convergent evolution in the avian and mammalian auditory systems provides informative comparative models', Hearing Research, vol. 273, no. 1–2, pp. 65–71.
- Köppl. C. 2011. 'Birds-same thing, but different? Convergent evolution in the avian and mammalian auditory systems provides informative comparative models'. Hearing Research, vol. 273, no. 1–2, pp. 65–71.
- Krong Buk District Ethnic Minority Affairs Office. 2021. Report on commenting on the social survey for the environmental and social impact assessment of the wind power projects (Báo cáo về việc tham gia ý kiến đối với khảo sát xã hội phục vụ cho đánh giá tác động môi trường và xã hội của các dự án điện gió)
- Krong Buk District Portal. 2021a. Geographical location, natural and social conditions (Vị trí địa lý và điều kiện tự nhiên, xã hội). Available at: http://krongbuk.daklak.gov.vn/index.php?option=com_content&view=article&id=247&Itemid=6 16 (Accessed on 25 May 2021)
- Krong Buk District Portal. 2021b. Cu Pong commune (Xã Cư Pong). Available at: http://krongbuk.daklak.gov.vn/index.php?option=com_content&view=article&id=975&Itemid=2 (Accessed on 5 June 2021).

Krong Buk District Portal. No date a. Monuments, famous sites (Di tích, danh lam thắng cảnh). Available at:

http://krongbuk.daklak.gov.vn/index.php?option=com_content&view=article&id=874&Itemid=6 22 (Accessed on 29 May 2021).

- Krong Buk District Portal. No date b. Cu Ne commune (Xã Cư Né). Available at: http://krongbuk.daklak.gov.vn/index.php?option=com_content&view=article&id=980&Itemid=2 (Accessed on 5 June 2021).
- Krong Buk District Portal. No date c. Ea Sin commune (Xã Ea Sin). Available at: http://krongbuk.daklak.gov.vn/index.php?option=com_content&view=article&id=989&Itemid=2 (Accessed on 31 May 2021).
- Krong Buk District Statistics Office. 2020. Statistical Yearbook of Krong Buk district 2019. Dak Lak: Krong Buk Statistics Office.
- Krong Buk DPC. 2020. Report on socio-economic and national security condition in 2020 and orientation development plans in 2021 (Báo cáo kết quả thực hiện nhiệm vụ phát triển kinh tế xã hội, đảm bảo quốc phòng an ninh năm 2020 và phương hướng, nhiệm vụ năm 2021)
- Krong Buk DPC. 2021. Report on the implementation results of the national target program on new rural construction in Krong Buk district in the first 6 months of 2021, orientation and tasks for the last 6 months of 2021 (Báo cáo kết quả thực hiện Chương trình mục tiêu Quốc gia xây dựng nông thôn mới trên địa bàn huyện Krông Búk 6 tháng đầu năm 2021, phương hướng nhiệm vụ 6 tháng cuối năm 2021
- Kwon, N., Song, K., Lee, H.-S., Kim, J. & Park, M. 2018, 'Construction Noise Risk Assessment Model Focusing on Construction Equipment', *Journal of Construction Engineering and Management*, vol. 144.
- Kwon, N., Song, K., Lee, H.-S., Kim, J. & Park, M. 2018, 'Construction Noise Risk Assessment Model Focusing on Construction Equipment', Journal of Construction Engineering and Management, vol. 144.
- Lawyers Rights' Watch Canada. 2018. Human Rights Committee Consideration of the Implementation of the International Covenant on Civil and Political Rights by Vietnam. Available at: https://lawyersforlawyers.org/wp-content/uploads/ICCPR-Vietnam-Submission-List-of-Issues-30Apr18-FINAL.pdf (Accessed on 7 August, 2021).
- Le Huong. 2020. Village changed from building a new rural area (Buôn làng đổi thay từ xây dựng Nông thôn mới). Available at: https://baodantoc.vn/buon-lang-doi-thay-tu-xay-dung-nong-thon-moi-1586188547732.htm (Accessed on 5 June 2021).
- Le Thanh. 2018. Cu Ne commune focuses on innovation in Party building (Xã Cư Né chú trọng đổi mới trong công tác xây dựng Đảng). Available at: http://baodaklak.vn/channel/3482/201806/xa-cu-ne-chu-trong-doi-moi-trong-cong-tac-xay-dung-dang-5588505/ (Accessed on 31 July 2021)
- Le Thanh. 2019. Krong Buk district faces the risk of drought on a large scale (Huyện Krông Búk đối diện nguy cơ hạn hán trên diện rộng). Available at: http://baodaklak.vn/channel/3483/201903/huyen-krong-buk-doi-dien-nguy-co-han-han-tren-dien-rong-5623426/ (Accessed on 27 May 2021).
- Le Thanh. 2020. Efficiency of waste treatment model in Cu Pong commune (Hiệu quả mô hình xử lý rác thải ở xã Cư Pơng). Available at: http://baodaklak.vn/channel/3684/202009/hieu-qua-mo-hinh-xu-ly-rac-thai-o-xa-cu-pong-5698346/ (Accessed on 5 June 2021).
- Le Thanh. 2021a. Announcement of Tan Lap commune (Krong Buk district) meeting new rural standards (Công bố xã Tân Lập (huyện Krông Búk) đạt chuẩn nông thôn mới). Available at: http://baodaklak.vn/channel/3481/202104/cong-bo-xa-tan-lap-huyen-krong-buk-dat-chuan-nong-thon-moi-5731983/ (Accessed on 28 May 2021).

- Le Thanh. 2021b. Krong Buk district: The industrial production value is estimated at 25.56 billion VND (Huyện Krông Búk: Giá trị sản xuất ngành công nghiệp ước đạt 25,56 tỷ đồng). Available at: http://baodaklak.vn/channel/3482/202104/huyen-krong-buk-gia-tri-san-xuat-nganh-congnghiep-uoc-dat-2556-ty-dong-5730080/ (Accessed on 31 July 2021)
- Le Thanh. 2021c. Ea Sin changed from Resolution 04-NQ/HU (Ea Sin đổi thay từ Nghị quyết 04-NQ/HU). Available at: http://baodaklak.vn/channel/3482/202105/ea-sin-doi-thay-tu-nghi-quyet-04-5736866/ (Accessed on 31 July 2021)
- Łopucki, R. & Mróz, I. 2016, 'An assessment of non-volant terrestrial vertebrates response to wind farms--a study of small mammals.', Environmental monitoring and assessment, vol. 188, no. 2, p. 122.
- Łopucki, R. & Mróz. I. 2016. 'An assessment of non-volant terrestrial vertebrates response to wind farms--a study of small mammals.'. Environmental monitoring and assessment, vol. 188, no. 2, p. 122.
- Łopucki, R., Klich, D. & Gielarek, S. 2017, 'Do terrestrial animals avoid areas close to turbines in functioning wind farms in agricultural landscapes?', Environmental Monitoring and Assessment, vol. 189, p. 343.
- Łopucki, R., Klich, D. & Gielarek. S. 2017. 'Do terrestrial animals avoid areas close to turbines in functioning wind farms in agricultural landscapes?'. Environmental Monitoring and Assessment, vol. 189, p. 343.
- Luo, J., Siemers, B. & Koselj, K. 2015, 'How Anthropogenic Noise Affects Foraging', Global change biology, vol. 21.
- Luo, J., Siemers, B. & Koselj. K. 2015. 'How Anthropogenic Noise Affects Foraging', Global change biology, vol. 21.
- Madsen, J. & Boertmann, D. 2008, 'Animal behavioral adaptation to changing landscapes: Springstaging geese habituate to wind farms', Landscape Ecology, vol. 23, pp. 1007–11.
- Madsen, J. & Boertmann. D. 2008. 'Animal behavioral adaptation to changing landscapes: Springstaging geese habituate to wind farms', Landscape Ecology, vol. 23, pp. 1007–11.
- Mai Duc Ngoc. 2015. Key Communal Human Resources in Contemporary Rural Vietnam (Can bo lanh dao chu chot cap xa o nong thon Vietnam hien nay). Khoa hoc Xa hoi Vietnam 12(2015): 19-27.
- Mai Thanh. 2019. Dak Lak: Main export items (Đắk Lắk: Sản phẩm xuất khẩu chủ yếu). Available at: https://socongthuong.daklak.gov.vn/news/tin-cong-thuong/dak-lak-san-pham-xuat-khau-chuyeu-1292.html (Accessed on 5 June 2021).
- Mancera, K., Murray, P., Lisle, A., Dupont, C., Faucheux, F. & Phillips. C. 2017. The effects of acute exposure to mining machinery noise on the behaviour of eastern blue-tongued lizards (Tiliqua scincoides), vol. 26, pp. 11–24.
- Mancera, K., Murray, P., Lisle, A., Dupont, C., Faucheux, F. & Phillips, C. 2017, The effects of acute exposure to mining machinery noise on the behaviour of eastern blue-tongued lizards (Tiliqua scincoides), vol. 26, pp. 11–24.
- Marques, A., Santos, C., Hanssen, F., Muñoz, A.-R., Onrubia, A., Wikelski, M., Moreira, F., Palmeirim, J. & Silva. J. 2020. 'Wind turbines cause functional habitat loss for migratory soaring birds'. *Journal of Animal Ecology*, vol. 89, pp. 93–103.
- Marques, A., Santos, C., Hanssen, F., Muñoz, A.-R., Onrubia, A., Wikelski, M., Moreira, F., Palmeirim, J. & Silva, J. 2020, 'Wind turbines cause functional habitat loss for migratory soaring birds', Journal of Animal Ecology, vol. 89, pp. 93–103.

- Masden, E.A., Haydon, D.T., Fox, A.D., Furness, R.W., Bullman, R. & Desholm. M. 2009a. 'Barriers to movement: impacts of wind farms on migrating birds', ICES Journal of Marine Science, vol. 66, no. 4, pp. 746–53.
- Masden, E.A., Haydon, D.T., Fox, A.D., Furness, R.W., Bullman, R. & Desholm, M. 2009b, 'Barriers to movement: impacts of wind farms on migrating birds', ICES Journal of Marine Science, vol. 66, no. 4, pp. 746–53.
- Masden, E.A., Haydon, D.T., Fox, A.D., Furness, R.W., Bullman, R. & Desholm, M. 2009a, 'Barriers to movement: impacts of wind farms on migrating birds', ICES Journal of Marine Science, vol. 66, no. 4, pp. 746–53.
- Masden, E.A., Haydon, D.T., Fox, A.D., Furness, R.W., Bullman, R. & Desholm, M. 2009b, 'Barriers to movement: impacts of wind farms on migrating birds', ICES Journal of Marine Science, vol. 66, no. 4, pp. 746–53.
- Minh Thong. 2020. Setting up a wind power investment project in Krong Buk district (Lập dự án đầu tư điện gió tại huyện Krông Búk). Available at: http://baodaklak.vn/channel/3483/202007/lap-du-an-dau-tu-dien-gio-tai-huyen-krong-buk-5691920/ (Accessed on 31 July 2021)
- Minh Thuan. 2020. Krong Buk district: Resilience from the movement of good production and business (Huyện Krông Búk: Sức bật từ phong trào sản xuất kinh doanh giỏi). Available at: http://baodaklak.vn/channel/3483/202003/huyen-krong-buk-suc-bat-tu-phong-trao-san-xuat-kinh-doanh-gioi-5675741/ (Accessed on 28 May 2021).
- Ministry of Foreign Affairs. 2018. Country Report on the protection and promotion of Human Rights in Vietnam under the third cycle of the universal periodic review (UPR).
- Ministry of Industry and Trade (MOIT). 2020. Document No: 1931/BCT-DL on supplementing wind power projects (Công văn số 1931/BCT-DL về việc xem xét bổ sung quy hoạch các dự án điện gió). Available at: https://thukyluat.vn/cv/cong-van-1931-bct-dl-2020-bo-sung-quy-hoach-du-an-dien-gio-6b17e.html (Accessed on 7 August 2021).
- Ministry of Planning and Investment (MPI). 2021. Dak Lak's natural conditions. Available at: http://www.mpi.gov.vn/Pages/tinhthanhchitiet.aspx?idTinhThanh=29# (Accessed on 25 May 2021).
- Ngoc Linh. 2019. Dak Lak: Dak Lak: A commune has five clean water works worth hundreds of billions, waiting for selling scraps (Đắk Lắk: Một xã có 5 công trình nước sạch trăm tỷ "đắp chiếu", chờ bán phế liệu). Available at: https://moitruong.net.vn/dak-lak-mot-xa-co-5-cong-trinh-nuoc-sachtram-ty-dap-chieu-cho-ban-phe-lieu/ (Accessed on 1 June 2021).
- Nguoi lao dong. 2019. The Central Highlands lacks labour (Tây Nguyên thiếu lao động). Available at: https://nld.com.vn/thoi-su/tay-nguyen-thieu-lao-dong-20190530221146115.htm (Accessed on 7 August 2021).
- Nguyen Quy. 2020. Human trafficking cases down but not out in Vietnam. Available at: https://e.vnexpress.net/news/news/human-trafficking-cases-down-but-not-out-in-vietnam-4139200.html (Accessed on 7 August 2021)
- Nguyen The Anh. 2003. Village versus State: The Evolution of State-Local Relations in Vietnam until 1945. Southeast Asian Studies 41(1): 101-123.
- Nguyen, H., Dieu, M., Doan, T., Nguyen, T. & Nguyen. M.K. 2020. Nghiên Cứu Thành Phần Loài Và Mức Độ Xâm Hại Của Sinh Vật Ngoại Lai Ở Thành Phố Pleiku, Tỉnh Gia Lai.
- Nhu Quynh. 2018. People in Ea Sin commune are tired of waiting for electricity (Người dân xã Ea Sin mòn mỏi chờ điện). Available at: http://baodaklak.vn/channel/3484/201811/nguoi-dan-xa-ea-sin-mon-moi-cho-dien-5609319/ (Accessed on 27 May 2021).

- Nhu Quynh. 2019a. Krong Buk district: Many innovations in state management of beliefs and religions (Huyện Krông Búk: Nhiều đổi mới trong quản lý nhà nước về tín ngưỡng, tôn giáo). Available at: http://baodaklak.vn/channel/3482/201904/huyen-krong-buk-nhieu-doi-moi-trong-quan-lynha-nuoc-ve-tin-nguong-ton-giao-5630359/ (Accessed on 26 May 2021).
- Nhu Quynh. 2019b. Various forms of security and order maintenance in Ea Sin commune (Da dang các hình thức Sin). Available giữ gìn an ninh trật tư ở Ea at: http://baodaklak.vn/channel/3485/201908/da-dang-cac-hinh-thuc-giu-gin-an-ninh-trat-tu-o-easin-5645890/ (Accessed on 31 July 2021)
- Nhu Quynh. 2020a. Krong Buk district: Mobilizing all resources for rural transport development (Huyện Krông Búk: Huy động mọi nguồn lực phát triển giao thông nông thôn). Available at: http://baodaklak.vn/channel/3483/202012/huyen-krong-buk-huy-dong-moi-nguon-luc-phat-trien-giao-thong-nong-thon-5713141/ (Accessed on 26 May 2021).
- Nhu Quynh. 2020b. Krong Buk district: Achieved 11 socio-economic development targets in 2020 and exceeded the plan (Huyện Krông Búk: 11 chỉ tiêu phát triển kinh tế - xã hội năm 2020 đạt và vượt kế hoạch). Available at: http://www.baodaklak.vn/channel/3482/202012/huyen-krongbuk-11-chi-tieu-phat-trien-kinh-te-xa-hoi-nam-2020-dat-va-vuot-ke-hoach-5716777/ (Accessed on 28 May 2021).
- Nhu Quynh. 2021. The people of Krong Buk district benefit of the VssID application (Người dân huyện Krông Búk hưởng tiện ích từ ứng dụng VssID). Available at: http://baodaklak.vn/channel/3484/202105/nguoi-dan-huyen-krong-buk-huong-tien-ich-tu-ung-dung-vssid-5737552/ (Accessed on 29 May 2021).
- NIEA n.d., 'Otters & Development', Northern Ireland EN Agency, viewed 9 January 2021, https://cieem.net/wp-content/uploads/2019/07/natural-information-otters-and-development-2011.pdf>.
- NWCC 2010, 'Wind Turbine Interactions with Birds, Bats, and their Habitats: A Summary of Research Results and Priority Questions', National Wind Coordinating Collaborative, viewed https://www1.eere.energy.gov/wind/pdfs/birds_and_bats_fact_sheet.pdf>.
- NWCC 2010. 'Wind Turbine Interactions with Birds, Bats, and their Habitats: A Summary of Research Results and Priority Questions', *National Wind Coordinating Collaborative*. Available at: https://www1.eere.energy.gov/wind/pdfs/birds_and_bats_fact_sheet.pdf.
- Office of the High Commissioner for Human Rights (OHCHR). 2021. United Nations Human Rights Report 2020. Available at: https://www2.ohchr.org/english/OHCHRreport2020/ (Accessed on 7 August, 2021).
- Office of the High Commissioner for Human Rights (OHCHR). 2021a. Vienna Declaration and Programme of Action. Available at: https://www.ohchr.org/EN/ProfessionalInterest/Pages/Vienna.aspx (Accessed on 7 August, 2021).
- Office of the High Commissioner for Human Rights (OHCHR). 2021b. Your Human Rights. Available at: https://www.ohchr.org/en/issues/pages/whatarehumanrights.aspx (Accessed on 7 August, 2021).
- Office of the High Commissioner for Human Rights (OHCHR). 2021c. The Core International Human Rights Instruments and their monitoring bodies. Available at: https://www.ohchr.org/en/professionalinterest/pages/coreinstruments.aspx (Accessed on 7 August, 2021).
- Office of the High Commissioner for Human Rights (OHCHR). 2021d. Human Rights Bodies. Available at: https://www.ohchr.org/EN/HRBodies/Pages/HumanRightsBodies.aspx (Accessed on 7 August, 2021).

- Office of the High Commissioner for Human Rights and United Nations Staff College Project. 2000. Human Rights: A Basic Handbook for UN Staff. Available at: https://www.ohchr.org/Documents/Publications/HRhandbooken.pdf (Accessed on 7 August, 2021).
- Office of the United Nations High Commissioner for Human Rights. 2021a. Convention on the Elimination of All Forms of Discrimination against Women New York, 18 December 1979. Available at: https://www.ohchr.org/en/professionalinterest/pages/cedaw.aspx (Accessed on 7 August, 2021).
- Office of the United Nations High Commissioner for Human Rights. 2021b. United Nations Millennium Declaration. Available at: https://www.ohchr.org/EN/ProfessionalInterest/Pages/Millennium.aspx (Accessed on 7 August, 2021).
- Phuc An. 2020. Dak Lak: Child marriage and consanguineous marriage have no end (Đắk Lắk: Tảo hôn và hôn nhân cận huyết thống chưa có hồi kết). Ethnic Magazine. Available at: https://baodantoc.vn/dak-lak-tao-hon-va-hon-nhan-can-huyet-thong-chua-co-hoi-ket-1608713719263.htm (Accessed on 7 August 2021)
- Phuong Anh (2020). What are the plans for 2021, 2021-2025 and the results in 2020 in the Central Highlands? (Dự kiến kế hoạch 2021, 2021-2025 và những kết quả năm 2020 vùng Tây Nguyên thế nào?). Available at: https://kinhtevadubao.vn/du-kien-ke-hoach-2021-2021-2025-va-nhung-ket-qua-nam-2020-vung-tay-nguyen-the-nao-15843.html (Accessed on 7 August 2021)
- Rodrigues, L., Bach, L., Dubourg-Savage, M.J., Karapandža, B., Kovač, D., Kervyn, T., Dekker, J., Kepel, A., Bach, P., Collins, J. & Harbusch. C. 2015. 'Guidelines for consideration of bats in wind farm projects: Revision 2014', UNEP/EUROBATS. Available at: https://www.eurobats.org/sites/default/files/documents/publications/publication_series/pubseri es_no6_english.pdf.
- Rodrigues, L., Bach, L., Dubourg-Savage, M.J., Karapandža, B., Kovač, D., Kervyn, T., Dekker, J., Kepel, A., Bach, P., Collins, J. & Harbusch, C. 2015, 'Guidelines for consideration of bats in wind farm projects: Revision 2014', UNEP/EUROBATS, viewed https://www.eurobats.org/sites/default/files/documents/publications/publication_series/pubseries_no6_english.pdf>.
- Sustainable Energy For All. 2013. Global tracking framework. Available at: https://openknowledge.worldbank.org/bitstream/handle/10986/16537/EnergyforAllfinal.pdf?se quence=5&isAllowed=y (Accessed on 7 August, 2021)
- Thaker, M., Amod, Z. & Harshal, B. 2018, 'Wind farms have cascading impacts on ecosystems across trophic levels', Nature Ecology & Evolution, vol. 2, no. 12, pp. 1854–8.
- Thaker, M., Amod, Z. & Harshal. B. 2018. 'Wind farms have cascading impacts on ecosystems across trophic levels'. *Nature Ecology & Evolution*, vol. 2, no. 12, pp. 1854–8.
- Thaxter, C., Buchanan, G., Carr, J., Butchart, S., Newbold, T., Green, R., Tobias, J., Foden, W., O'Brien, S. & Pearce-Higgins. J. 2017. 'Bird and bat species' global vulnerability to collision mortality at wind farms revealed through a trait-based assessment.', Proceedings of the Royal Society B, vol. 284.
- Thaxter, C., Buchanan, G., Carr, J., Butchart, S., Newbold, T., Green, R., Tobias, J., Foden, W., O'Brien, S. & Pearce-Higgins, J. 2017, 'Bird and bat species' global vulnerability to collision mortality at wind farms revealed through a trait-based assessment.', Proceedings of the Royal Society B, vol. 284.
- The Business & Human Rights Resource Centre. 2017. Investor briefing: Renewable energy impacts
on communities.oncommunities.Availableat:https://media.business-

humanrights.org/media/documents/files/Investor_briefing_-_Renewable_energy__ _Apr_2017.pdf (Accessed on 7 August, 2021).

- The Business & Human Rights Resource Centre. 2019. Fast & Fair Renewable Energy Investments. Available at: https://old.businesshumanrights.org/sites/default/files/Renewable%20Energy%20Investor%20Briefing_0.pdf (Accessed on 7 August, 2021).
- The Constitution of the Socialist Republic of Vietnam. 2013. Available at: https://vietnamlawmagazine.vn/the-2013-constitution-of-the-socialist-republic-of-vietnam-4847.html (Accessed on 7 August, 2021).
- The Global Goals. 2021. Global goals for Sustainable development. Available at: https://www.globalgoals.org/5-gender-equality (Accessed on 7 August, 2021).
- The Hung. 2019. Dak Lak was the leading province in the Central Highlands and the 10th in the whole country (Đắk Lắk là tỉnh đứng đầu khu vực Tây Nguyên và thứ 10 toàn quốc về quy mô dân số). Available at: http://baodaklak.vn/channel/3481/201910/dak-lak-la-tinh-dung-dau-khu-vuc-tay-nguyen-va-thu-10-toan-quoc-ve-quy-mo-dan-so-5655123/ (Accessed on 5 June 2021).
- The Ministry of Labour Invalids and Social Affairs (MOLISA). 2018. Review of ten years of
implementing the Law on Gender Equality (Đánh giá 10 năm thi hành luật bình đẳng giới -
English summary).Available
at:
http://duthaovanban.molisa.gov.vn/detail.aspx?tab=2&vid=576 (Accessed on 7 August, 2021).
- The People in Need. 2019. Death Penalty and Freedom of Expression among Most Pressing Human Rights Issues in Vietnam. Available at: https://www.clovekvtisni.cz/en/death-penalty-andfreedom-of-expression-among-most-pressing-human-rights-issues-in-vietnam-5744gp (Accessed on 7 August 2021).
- The Prime Minister. 2017. Decision No. 1309/QD-TTg dated on 5 September, 2017 on the approval of a project that aims integrate human rights into subjects in education nationwide by 2025 (Quyết định số 1309/QĐ-TTg của Thủ tướng Chính phủ : Phê duyệt Đề án đưa nội dung quyền con người vào chương trình giáo dục trong hệ thống giáo dục quốc dân). Available at: http://vanban.chinhphu.vn/portal/page/portal/chinhphu/hethongvanban?class_id=2&_page=1 &mode=detail&document_id=191021 (Accessed on 7 August, 2021).
- Thuan Nguyen. 2020. Dak Lak: Aquaculture area is shrinking due to drought (Dak Lak: Diện tích nuôi trồng thuỷ sản bị thu hẹp do nắng hạn). Available at: https://thuysanvietnam.com.vn/dak-lak-dien-tich-nuoi-trong-thuy-san-bi-thu-hep-do-nang-han/ (Accessed on 28 May 2021).
- Tran, M.H., Le, T.T., Le, V.C., Dang, T.L. & Nguyen. V.S. 2001. Feasibility study for the establishment of Chu Prong Nature Reserve, Gia Lai province, BirdLife International Vietnam Programme and the Forest Inventory and Planning Institute., Hanoi.
- Tuan Anh. 2018. Cu Pong heroic land "blooms" (Vùng đất anh hùng Cư Pơng "Nở hoa"). Available at: https://dantocmiennui.vn/vung-dat-anh-hung-cu-pong-no-hoa/178378.html (Accessed on 5 June 2021).
- UN Department of Economic and Social Affairs. 2021. Available at: https://sdgs.un.org/goals (Accessed on 7 August 2021).
- UN Treaty Body Database. 2021. Committee on the Elimination of Racial Discrimination. Combined fifteenth to seventeenth reports submitted by Vietnam under article 9 of the Convention. Available at:

https://tbinternet.ohchr.org/Treaties/CERD/Shared%20Documents/VNM/CERD_C_VNM_15-17_6595_E.docx (Accessed on 7 August, 2021).

- UNFPA & MOLISA. 2021. Review of ten years of implementing the Law on Gender Equality. Available at: https://vietnam.unfpa.org/en/publications/review-ten-years-implementing-law-genderequality (Accessed on 7 August, 2021).
- United Nations Environment Programme Finance Initiative. 2014. The Human Rights Guidance Tool. Available at: https://www.unepfi.org/humanrightstoolkit/index.php (Accessed on 7 August, 2021).
- United Nations. 2014. Women's Rights are Human Rights. Available at: https://www.ohchr.org/documents/events/whrd/womenrightsarehr.pdf (Accessed on 7 August, 2021).
- United Nations. 2021a. Available at: https://www.un.org/en/about-us/un-charter/full-text (Accessed on 7 August, 2021).
- United Nations. 2021b. Universal Declaration of Human Rights. Available at: https://www.un.org/en/about-us/universal-declaration-of-human-rights (Accessed on 7 August, 2021)
- Van Thanh. 2018a. (WARNING) Many women in the Central Highlands are tricked into being sold to China (CÅNH GIÁC) Nhiều phụ nữ ở Tây Nguyên bị lừa bán sang Trung Quốc). People's Public Security Magazine. Available at: https://cand.com.vn/Lan-theo-dau-vet-toi-pham/Canh-giacvoi-nan-buon-ban-nguoi-o-Tay-Nguyen-i486775/ (Accessed on 7 August 2021)
- Van Thanh. 2018b. Announcement of the wind development planning in Dak Lak province for the period up to 2020, with a vision to 2030 (Công bố quy hoạch phát triển điện gió tỉnh Đắk Lắk giai đoạn đến năm 2020, có xét đến năm 2030). Available at: https://socongthuong.daklak.gov.vn/news/tin-cong-thuong/cong-bo-quy-hoach-phat-trien-giotinh-dak-lak-giai-doan-den-2020-co-xet-den-nam-2030-402.html (Accessed on 1 June 2021).
- Viet Le Ton. 2021. Vietnam Data Protection Overview. Available at: https://www.dataguidance.com/notes/vietnam-data-protection-overview (Accessed on 7 August 2021).
- Vietnam Academy for Ethnic Minorities. 2020. Dak Lak: Various forms of propaganda to repel child marriage and inbreeding (Đắk Lắk: Đa dạng hình thức tuyên truyền đẩy lùi tảo hôn và hôn nhân cận huyết). Available at: https://hvdt.edu.vn/tin-tuc/tin-tong-hop/dak-lak-da-dang-hinh-thuc-tuyen-truyen-day-lui-tao-hon-va-hon-nhan-can-huyet (Accessed on 7 August 2021)
- Vietnam Briefing. 2020. Renewables in Vietnam: Current Opportunities and Future Outlook. https://www.vietnam-briefing.com/news/vietnams-push-for-renewable-energy.html/. (Accessed 22 July 2019).
- Vietnam Gorvenment. 2007. Decree 137/2007/ND-CP on adjustment of administrative geography to establish communes in districts: Krong Ana, Ea Kar, Krong Buk, M'Drák, Ea H'Leo; adjustment of Kong Ana district administrative unit to establish Cu Kuin district, Dak Lak province (Nghi định 137/2007/ND-CP về việc điều chỉnh địa giới hành chính xã để thành lập xã thuộc các huyên: Krông Ana, Ea Kar, Krông Búk, M'Drắk, Ea H'Leo; điều chỉnh địa giới hành chính huyên Krông Ana đế thành lập huyện Cư Kuin, tỉnh Đắk Lắk). Available at: https://thuvienphapluat.vn/van-ban/Bo-may-hanh-chinh/Nghi-dinh-137-2007-ND-CP-dieuchinh-dia-gioi-hanh-chinh-xa-de-thanh-lap-xa-thuoc-huyen-Krong-Ana-Ea-Kar-Krong-Buk-M-Drak-Ea-H-Leo-54828.aspx (Accessed on 31 May 2021).
- Vietnam News Agency. 2021. Need to prevent illegal child labor in Dak Lak (Cần ngăn ngừa tình trạng trẻ em lao động trái phép ở Đắk Lắk). Available at: https://vnanet.vn/vi/anh/anh-thoi-su-trong-nuoc-1014/can-ngan-ngua-tinh-trang-tre-em-lao-dong-trai-phap-luat-o-dak-lak-5533636.html (Accessed on 7 August 2021)

- WHO. 2016. Achievement of the Health-related Millennium Development Goals in the Western Pacific Region. Available at: https://iris.wpro.who.int/bitstream/handle/10665.1/13441/WPR-2016-DHS-011-en.pdf (Accessed on 7 August, 2021).
- World Bank. 2021. Women, Business and the Law 2021. Available at: https://doi.org/10.1596/978-1-4648-1652-9 (Accessed on 7 August, 2021)
- WWF no date, Southeastern Asia: Vietnam, Cambodia, Laos, and Thailand, viewed 6 August 2021, https://www.worldwildlife.org/ecoregions/im0210>.
- Zimmerling, J., Pomeroy, A., d'Entremont, M. & Francis, C. 2013, 'Canadian Estimate of Bird Mortality Due to Collisions and Direct Habitat Loss Associated with Wind Turbine Developments', Avian Conservation and Ecology, vol. 8.

APPENDIX L SHADOW FLICKER MAIN RESULTS – WORST CASE SCENARIO

Project: 0599549 - Krongbuk Wind Energy LLC Huadian Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com ^{Calculated:} 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

Calculation: 05 Assumptions f Maximum distance Calculate only wher Please look in WTG	99549 - or shad or influen more tha table	Huadian Wind I ow calculatio ce an 20 % of sun is c	Powe ns covere	r Project - d by the bla	de		1	2		
Minimum sun heigh Day step for calcula Time step for calcu	tion tion ation	izon for influence		3 ° 1 day 1 mir	ys nutes	12			154 15 19 154 154 16 154 16 154 16 154 16 16	375 248 2486 248 192
Sunshine probability Jan Feb Mar A 5.16 6.18 6.35 5.	S (Avera or May 0 6.96 5	ge daily sunshine l Jun Jul Aug S 5.65 5.58 4.98 5.	nours) ep O 13 6.1	[] ct Nov D 14 7.61 8.3	ec 24	1000 C	(621 203 911	54673F
Operational time N NNE NE El 89 315 1,658 1,1	IE E 77 888 !	ESE SE SSE S 548 243 133 12	SSN 4 184	N SW WS 4 779 1,4	57	2262826 (2)1377.3 (2)2363	80/2402258 1632441	424 2010 10 1086 041 0 1086 19, 94	884!98 ^{1/774}	1 70812
W WNW NW M 761 247 75	NW Sur 82 8,76	n O				2295.20	3234340 145 1149 145 1149	4225	2516503 10	30
A ZVI (Zones of Visu calculation so non v values. A WTG will I window. The ZVI ca Height contours use Obstacles used in ca Eye height for map: Grid resolution: 1.0	al Influen sible WTC e visible i culation is d: Project lculation 1.5 m m	ice) calculation is p 6 do not contribute f it is visible from a s based on the follo Wizard Elevation I	erforn to cal any pa owing Data G	ned before t culated flick rt of the rec assumption rid (NASAD	flicker ser seiver s: EM (Succ	2290 70'1234.844 1996.49 22123'7 - 25/254 222-211;	523	2410 2410 17 17 13	ap and contribut	ors, ODbl
All coordinates are i UTM (north)-WGS84 WTGs	n Zone: 48	}			人 New W	TG	Scale Shadow re	1:200,000 eceptor		
			WTG	i type					Shadow da	ta
Easting North	ng Z	Row data/Description	Valid	Manufact.	Type-generator	Power, rated	Rotor diameter	Hub height	Calculation	RPM
Easting North	ng Z [m]	Row data/Description	Valid	Manufact.	Type-generator	Power, rated [kW]	Rotor diameter [m]	Hub height [m]	Calculation distance [m]	RPM
Easting North 1 854,238 1,452,	ng Z [m] 39 776.0	Row data/Description	Valid	Manufact.	Type-generator	Power, rated [kW] 2,650	Rotor diameter [m] 141.0	Hub height [m] 130.0	Calculation distance [m] 2,500	RPM [RPM] 0.0
Easting North 1 854,238 1,452, 2 853,773 1,452,	ng Z [m] 39 776.0 59 783.3	Row data/Description D1 3 D2	Valid No No	Manufact. Envision Envision	Type-generator -2,650 -2,650	Power, rated [kW] 2,650 2,650	Rotor diameter [m] 141.0 141.0	Hub height [m] 130.0 130.0	Calculation distance [m] 2,500 2,500	RPM [RPM] 0.0 0.0
Easting North 1 854,238 1,452, 2 853,773 1,452, 3 854,371 1,452,	ng Z [m] 39 776.0 59 783.3 685 779.6	Row data/Description 0 D1 3 D2 5 D3	Valid No No	Manufact. Envision Envision Envision	Type-generator -2,650 -2,650 -2,650	Power, rated [kW] 2,650 2,650 2,650	Rotor diameter [m] 141.0 141.0 141.0	Hub height [m] 130.0 130.0 130.0	Calculation distance [m] 2,500 2,500 2,500	RPM [RPM] 0.0 0.0 0.0 0.0
Easting North 1 854,238 1,452, 2 853,773 1,452, 3 854,371 1,452, 4 855,081 1,452,	ng Z [m] 39 776.0 59 783.3 85 779.6 06 796.7	Row data/Description 0 D1 3 D2 5 D3 7 D4	Valid No No No	Manufact. Envision Envision Envision Envision	Type-generator -2,650 -2,650 -2,650 -2,650	Power, rated [kW] 2,650 2,650 2,650 2,650 2,650	Rotor diameter [m] 141.0 141.0 141.0 141.0 141.0	Hub height [m] 130.0 130.0 130.0 130.0	Calculation distance [m] 2,500 2,500 2,500 2,500 2,500	RPM [RPM] 0.0 0.0 0.0 0.0 0.0
Easting North 1 854,238 1,452, 2 853,773 1,452, 3 854,371 1,452, 4 855,081 1,452, 5 855,237 1,452,	mg Z [m] 39 776.0 559 783.3 585 779.6 506 796.7 594 802.7	Row data/Description	Valid No No No No	Manufact. Envision Envision Envision Envision Envision	Type-generator -2,650 -2,650 -2,650 -2,650 -2,650 -2,650	Power, rated [kW] 2,650 2,650 2,650 2,650 2,650 2,650	Rotor diameter [m] 141.0 141.0 141.0 141.0 141.0	Hub height [m] 130.0 130.0 130.0 130.0 130.0	Calculation distance [m] 2,500 2,500 2,500 2,500 2,500	RPM [RPM] 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Easting North 1 854,238 1,452, 2 853,773 1,452, 3 854,371 1,452, 4 855,081 1,452, 5 855,237 1,452, 6 855,420 1,452,	mg Z [m] 39 776.0 59 783.3 85 779.6 906 796.7 594 802.7 224 815.0	Row data/Description	Valid No No No No No	Manufact. Envision Envision Envision Envision Envision	Type-generator -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650	Power, rated [kW] 2,650 2,650 2,650 2,650 2,650 2,650	Rotor diameter [m] 141.0 141.0 141.0 141.0 141.0 141.0	Hub height [m] 130.0 130.0 130.0 130.0 130.0 130.0 130.0	Calculation distance [m] 2,500 2,500 2,500 2,500 2,500 2,500 2,500	RPM [RPM] 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Easting North 1 854,238 1,452, 2 853,773 1,452, 3 854,371 1,452, 4 855,081 1,452, 5 855,237 1,452, 6 855,420 1,452, 7 854,827 1,451, 9 855,520 1,452, 1 451,527 1,451, 9 855,520 1,452, 1 451,527 1,451, 9 855,520 1,452, 1 451,527 1,451, 9 855,520 1,452, 1 451,527 1,451, 1 451,527 1,451, 1 452,527 1,451, 1 452,527 1,451, 1 452,527 1,451, 1 452,527 1,452, 1 452,527 1,452, 1 452,527 1,452, 1 452,527 1,452,527 1,452, 1 455,527 1,452,527 1,452, 1 452,527 1,452,557 1,452,527 1,452 1	[m] 39 776.0 59 783.3 685 779.6 606 796.7 694 802.7 224 815.0 995 800.1	Row data/Description	Valid No No No No No No	Manufact. Envision Envision Envision Envision Envision Envision	Type-generator -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650	Power, rated [kW] 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650	Rotor diameter [m] 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0	Hub height [m] 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0	Calculation distance [m] 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500	RPM [RPM] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Easting North 1 854,238 1,452, 2 853,773 1,452, 3 854,371 1,452, 4 855,081 1,452, 5 855,237 1,452, 6 855,420 1,452, 7 854,827 1,451, 8 855,589 1,451, 9 855 557 1 451,	mg Z [m] 39 776.0 559 783.3 585 779.6 506 796.7 594 802.7 224 815.0 595 800.1 311 819.2 513 819.2	Row data/Description	Valid No No No No No No No No	Manufact. Envision Envision Envision Envision Envision Envision Envision	Type-generator -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650	Power, rated [kW] 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650	Rotor diameter [m] 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0	Hub height [m] 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0	Calculation distance [m] 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500	RPM [RPM] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Easting North 1 854,238 1,452, 2 853,773 1,452, 3 854,371 1,452, 4 855,081 1,452, 5 855,237 1,452, 6 855,420 1,452, 7 854,827 1,451, 8 855,589 1,451, 9 855,557 1,451, 10 855,510 1,450,	[m] [39 776.0 59 783.3 85 779.6 06 796.7 394 802.7 224 815.0 95 800.1 311 819.2 550 813.0 35 799.0	Row data/Description	Valid No No No No No No No No No No	Manufact. Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision	Type-generator -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650	Power, rated [kW] 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650	Rotor diameter [m] 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0	Hub height [m] 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0	Calculation distance [m] 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500	RPM [RPM] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Easting North 1 854,238 1,452, 2 853,773 1,452, 3 854,371 1,452, 4 855,081 1,452, 5 855,237 1,452, 6 855,420 1,452, 7 854,827 1,451, 8 855,589 1,451, 9 855,557 1,451, 10 855,510 1,450, 11 853,726 1,451,	[m] [39 776.0 59 783.3 85 779.6 06 796.7 694 802.7 224 815.0 95 800.1 311 819.2 550 813.0 235 799.0	Row data/Description	Valid No No No No No No No No No No No No	Manufact. Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision	Type-generator -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650	Power, rated [kW] 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650	Rotor diameter [m] 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0	Hub height [m] 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0	Calculation distance [m] 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500	RPM [RPM] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Easting North 1 854,238 1,452, 2 853,773 1,452, 3 854,371 1,452, 4 855,081 1,452, 5 855,237 1,452, 6 855,420 1,452, 7 854,827 1,451, 8 855,589 1,451, 9 855,557 1,451, 10 855,510 1,450, 11 853,726 1,451, 12 853,637 1,450,	[m] [39 776.0 59 783.3 55 779.6 56 796.7 594 802.7 594 802.7 594 815.0 595 800.1 511 819.2 50 813.0 535 799.0 535 804.6 563 818.7	Row data/Description D1 D2 D3 D2 D3 D4 D5 D6 D7 2 D8 D9 D9 D10 D10 D11 2 D1 2 D8 D9 D10 D10 D11 2 D2 D10 D10 D1 D1 D2 D2 D2 D2 D3 D2 D2 D3 D2 D2 D3 D3 D2 D3 D3 D3 D3 D3 D3 D3 D3 D3 D3 D3 D3 D3	Valid No No No No No No No No No No No No No	Manufact. Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision	Type-generator -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650	Power, rated [kW] 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650	Rotor diameter [m] 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0	Hub height [m] 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0	Calculation distance [m] 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500	RPM [RPM] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Easting North 1 854,238 1,452, 2 853,773 1,452, 3 854,371 1,452, 4 855,081 1,452, 5 855,237 1,452, 6 855,420 1,452, 7 854,827 1,451, 8 855,589 1,451, 9 855,557 1,451, 10 855,510 1,450, 11 853,726 1,451, 12 853,637 1,450, 13 853,953 1,450,	[m] [39 776.0 59 783.3 59 783.3 59 783.3 50 796.7 594 802.7 594 802.7 594 802.7 594 815.0 50 813.0 50 813.0 535 799.0 535 804.6 543 818.7 581 800.6	Row data/Description D1 D2 D3 D2 D3 D4 D5 D6 D7 2 D8 D9 D10 D10 D10 D11 2 D8 D9 D10 D11 2 D8 D10 D10 D11 2 D2 D2 D2 D2 D3 D3 D2 D3 D3 D2 D3 D3 D3 D3 D3 D3 D3 D3 D3 D3 D3 D3 D3	Valid No No No No No No No No No	Manufact. Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision	Type-generator -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650	Power, rated [kW] 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650	Rotor diameter [m] 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0	Hub height [m] 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0	Calculation distance [m] 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500	RPM [RPM] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Easting North 1 854,238 1,452, 2 853,773 1,452, 3 854,371 1,452, 4 855,081 1,452, 5 855,237 1,452, 6 855,420 1,452, 7 854,827 1,451, 8 855,589 1,451, 9 855,557 1,451, 10 855,510 1,450, 11 853,726 1,451, 12 853,637 1,450, 13 853,953 1,450, 14 854,277 1,450, 15 854,727 1,450,	[m] [39 776.0 59 783.3 59 783.3 50 779.6 50 796.7 594 802.7 594 802.7 594 802.7 595 800.1 511 819.2 50 813.0 55 799.0 35 804.6 863 818.7 581 800.6 55 772.1 57 72.5 57 72.5 57 5.5 57 5.5	Row data/Description	Valid No No No No No No No No No No No	Manufact. Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision	Type-generator -2,650	Power, rated [kW] 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650	Rotor diameter [m] 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0	Hub height [m] 130.0 100.0 100	Calculation distance [m] 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500	RPM [RPM] 0.0
Easting North 1 854,238 1,452, 2 853,773 1,452, 3 854,371 1,452, 4 855,081 1,452, 5 855,237 1,452, 6 855,420 1,452, 7 854,827 1,451, 8 855,589 1,451, 9 855,557 1,451, 10 855,510 1,450, 11 853,726 1,451, 12 853,637 1,450, 13 853,953 1,450, 14 854,277 1,450, 15 854,797 1,449, 16 853 890 1 449	[m] [39 776.0 59 783.3 50 779.6 50 796.7 504 802.7 504 802.7 504 802.7 504 802.7 505 800.1 511 819.2 523 804.6 535 799.0 535 804.6 543 818.7 541 800.6 555 772.1 575 755.8 511 785 9	Row data/Description	Valid No No No No No No No No No No No No No	Manufact. Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision	Type-generator -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650	Power, rated [kW] 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650	Rotor diameter [m] 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0	Hub height [m] 130.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100	Calculation distance [m] 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500	RPM [RPM] 0.0
Easting North 1 854,238 1,452, 2 853,773 1,452, 3 854,371 1,452, 4 855,081 1,452, 5 855,237 1,452, 6 855,420 1,452, 7 854,827 1,451, 8 855,589 1,451, 9 855,557 1,451, 10 855,510 1,450, 11 853,726 1,451, 12 853,637 1,450, 13 853,953 1,450, 14 854,277 1,450, 15 854,797 1,449, 16 853,890 1,449, 17 853,793 1,449	[m] [39 776.0 59 783.3 50 779.6 50 796.7 504 802.7 504 802.7 504 802.7 504 802.7 504 802.7 505 800.1 511 819.2 505 779.0 535 804.6 543 800.6 555 772.1 575 755.8 511 785.9 778 780 1	Row data/Description	Valid No No No No No No No No No No No No No	Manufact. Envision	Type-generator -2,650	Power, rated [kW] 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650	Rotor diameter [m] 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0	Hub height [m] 130.0	Calculation distance [m] 2,500	RPM [RPM] 0.0
Easting North 1 854,238 1,452, 2 853,773 1,452, 3 854,371 1,452, 4 855,081 1,452, 5 855,237 1,452, 6 855,420 1,452, 7 854,827 1,451, 8 855,589 1,451, 9 855,557 1,451, 10 855,510 1,450, 11 853,726 1,451, 12 853,637 1,450, 13 853,953 1,450, 14 854,277 1,449, 16 853,890 1,449, 17 853,793 1,449, 18 852,984 1,451,	[m] [39 776.0 59 783.3 50 779.6 50 796.7 504 802.7 504 802.7 504 802.7 504 802.7 504 802.7 505 800.1 511 819.2 50 813.0 535 799.0 545 804.6 545 775.5 541 800.6 545 775.5 541 785.9 778 780.1 562 788.5	Row data/Description	Valid No No No No No No No No No No No No No	Manufact. Envision	Type-generator -2,650	Power, rated [kW] 2,650	Rotor diameter [m] 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0	Hub height [m] 130.0	Calculation distance [m] 2,500	RPM [RPM] 0.0
Easting North 1 854,238 1,452, 2 853,773 1,452, 3 854,371 1,452, 4 855,081 1,452, 5 855,237 1,452, 6 855,420 1,452, 7 854,827 1,451, 8 855,589 1,451, 10 855,510 1,450, 11 853,726 1,451, 12 853,637 1,450, 13 853,953 1,450, 14 854,277 1,450, 15 854,797 1,449, 16 853,890 1,449, 17 853,793 1,449, 18 852,984 1,451, 19 852,619 1,451,	Image Z [m] 39 776.0 39 776.0 39 385 779.6 385 365 779.6 395 364 802.7 394 394 802.7 394 395 800.1 813.0 395 804.6 35 303 818.0 6 305 772.1 363 305 775.5 8 311 785.9 780.1 325 780.1 362 303 786.6 3	Row data/Description	Valid No No No No No No No No No No No No No	Manufact. Envision	Type-generator -2,650	Power, rated [kW] 2,650	Rotor diameter [m] 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0	Hub height [m] 130.0	Calculation distance [m] 2,500	RPM [RPM] 0.0
Easting North 1 854,238 1,452, 2 853,773 1,452, 3 854,371 1,452, 4 855,081 1,452, 5 855,237 1,452, 6 855,420 1,452, 7 854,827 1,451, 8 855,589 1,451, 9 855,557 1,451, 10 855,510 1,450, 11 853,726 1,451, 12 853,637 1,450, 13 853,953 1,450, 14 854,277 1,449, 15 854,797 1,449, 16 853,890 1,449, 17 853,793 1,449, 18 852,984 1,451, 19 852,619 1,451, 20 853,064 1,450,	Image Z [m] 39 776.0 39 776.0 39 385 779.6 385 365 779.6 39 365 779.6 39 365 779.6 395 364 802.7 39 374 804.6 31 381 804.6 31 395 804.6 31 363 818.7 36 363 808.6 31 365 772.1 35 361 800.6 35 363 818.7 755.5 311 785.9 772.1 362 788.8 303 362 788.8 303 363 786.6 371	Row data/Description	Valid No No No No No No No No No No No No No	Manufact. Envision	Type-generator -2,650	Power, rated [kW] 2,650	Rotor diameter [m] 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0	Hub height [m] 130.0	Calculation distance [m] 2,500	RPM [RPM] 0.0
Easting North 1 854,238 1,452, 2 853,773 1,452, 3 854,371 1,452, 4 855,081 1,452, 5 855,237 1,452, 6 855,420 1,452, 7 854,827 1,451, 8 855,589 1,451, 10 855,510 1,450, 11 853,726 1,451, 12 853,637 1,450, 13 853,953 1,450, 14 854,277 1,450, 15 854,797 1,449, 16 853,890 1,449, 17 853,793 1,449, 18 852,984 1,451, 19 852,619 1,451, 20 853,064 1,450, 21 852,149 1,449,	[m] [39 776.0 59 783.3 50 779.6 50 783.3 50 779.6 50 796.7 50 802.7 50 802.7 50 802.7 50 800.1 811 819.2 50 813.0 535 779.0 535 804.6 535 772.1 545 775.5 541 804.6 57 755.5 511 785.9 78 780.1 562 788.8 503 786.6 571 804.6 567 769.5 564 769.5 565 772.9 575 55.5 575 55.5 577 755.5 577 755.5	Row data/Description	Valid No No No No No No No No No No No No No	Manufact. Envision	Type-generator -2,650	Power, rated [kW] 2,650	Rotor diameter [m] 141.0	Hub height [m] 130.0	Calculation distance [m] 2,500	RPM [RPM] 0.0
Easting North 1 854,238 1,452, 2 853,773 1,452, 3 854,371 1,452, 4 855,081 1,452, 5 855,237 1,452, 6 855,420 1,452, 7 854,827 1,451, 8 855,589 1,451, 9 855,557 1,451, 10 855,510 1,450, 11 853,726 1,451, 12 853,637 1,450, 13 853,953 1,450, 14 854,277 1,450, 15 854,797 1,449, 16 853,890 1,449, 17 853,793 1,449, 18 852,984 1,451, 19 852,619 1,451, 20 853,064 1,450, 21 852,149 1,449, 22 851,858 1,449, 22 851,858 1,449, 23 851,858 1,449, 23 851,858 1,448, 24 851,858 1,448, 25 854,555 1,	[m] [m] [39 776.0 59 783.3 85 779.6 906 796.7 94 802.7 224 815.0 95 800.1 811 819.2 150 813.0 935 799.0 235 804.6 838 800.6 255 772.1 362 788.8 803 786.6 371 804.6 367 769.9 386 722.6 386 722.6 386 722.6 387 789.7 388 780.1 389 780.1 380 780.6 371 804.6 371 804.6 373 780.7 380 780.6 371 804.6 373 780.7 380 780.6 373 780.7 380 780.6 373 780.7 380 780.6 374 780.7 380 780.6 375 755.8 381 780.7 382 780.7 382 780.7 383 780.6 375 755.8 383 780.6 384 780.7 385 772.7 385 772.7 385 772.7 385 772.7 385 772.7 385 775.8 385 775.8 385 775.7 385 775.7 395 7	Row data/Description	Valid No No No No No No No No No No No No No	Manufact. Envision	Type-generator -2,650	Power, rated [kW] 2,650	Rotor diameter [m] 141.0	Hub height [m] 130.0 100.0 100.0 100	Calculation distance [m] 2,500	RPM [RPM] 0.0
Easting North 1 854,238 1,452, 2 853,773 1,452, 3 854,371 1,452, 4 855,081 1,452, 5 855,237 1,452, 6 855,420 1,452, 7 854,827 1,451, 8 855,559 1,451, 9 855,557 1,451, 10 855,510 1,450, 11 853,726 1,451, 12 853,637 1,450, 13 853,953 1,450, 14 854,277 1,450, 15 854,797 1,449, 16 853,890 1,449, 17 853,793 1,449, 18 852,984 1,451, 19 852,619 1,451, 20 853,064 1,450, 21 852,149 1,449, 22 851,858 1,448, 23 853,650 1,448, 24 853,810 1,448, 25 853,854 1,451, 25 854,810 1,448, 25 853,854 1,458, 25 854,810 1,458, 25 854,	Img Z [m] 39 776.0 59 783.3 385 385 779.6 394 906 796.7 394 904 802.7 394 924 815.0 395 925 800.1 813.0 935 799.0 335 935 799.0 355 935 772.1 363 638 818.7 380.4 638 818.7 355 935 772.1 355 941 785.9 775.5 941 804.6 378.6 953 780.1 366.7 954 776.2 378.6 954 769.9 386 964 769.9 386	Row data/Description	Valid No No No No No No No No No No No No No	Manufact. Envision	Type-generator -2,650	Power, rated [kW] 2,650	Rotor diameter [m] 141.0	Hub height [m] 130.0	Calculation distance [m] 2,500	RPM [RPM] 0.0
Easting North 1 854,238 1,452, 2 853,773 1,452, 3 854,371 1,452, 4 855,081 1,452, 5 855,237 1,452, 6 855,420 1,452, 7 854,827 1,451, 8 855,559 1,451, 9 855,557 1,451, 10 855,510 1,450, 11 853,726 1,451, 12 853,637 1,450, 13 853,953 1,450, 14 854,277 1,450, 15 854,797 1,449, 16 853,890 1,449, 17 853,793 1,449, 18 852,984 1,451, 19 852,619 1,451, 20 853,064 1,450, 21 852,149 1,449, 22 851,858 1,448, 23 853,650 1,448, 24 853,819 1,448, 25 853 503 1 4,478	[m] [39 776.0 59 783.3 85 779.6 906 796.7 94 802.7 224 815.0 95 800.1 813.0 95 813.0 935 799.0 235 804.6 843 818.7 855 772.1 863 818.7 863 818.7 863 818.7 863 818.7 863 818.7 863 818.7 864 745.9 864 745.9 865 775.5 864 745.9 865 775.5 864 745.9 865 775.5 875 755.5 875 755.5 805 775 755.5 875 755 755.5 875 755	Row data/Description	Valid No No No No No No No No No No No No No	Manufact. Envision	Type-generator -2,650	Power, rated [kW] 2,650	Rotor diameter [m] 141.0	Hub height [m] 130.0	Calculation distance [m] 2,500	RPM [RPM] 0.0
Easting North 1 854,238 1,452, 2 853,773 1,452, 3 854,371 1,452, 4 855,081 1,452, 5 855,237 1,452, 6 855,420 1,452, 7 854,827 1,451, 8 855,559 1,451, 9 855,557 1,451, 10 855,510 1,450, 11 853,726 1,451, 12 853,637 1,450, 13 853,953 1,450, 14 854,277 1,450, 15 854,797 1,449, 16 853,890 1,449, 17 853,793 1,449, 18 852,984 1,451, 19 852,619 1,451, 20 853,064 1,450, 21 852,149 1,449, 22 851,858 1,448, 23 853,650 1,448, 24 853,819 1,448, 25 853,503 1,447, 26 854,303 1,447	Img Z [m] 39 776.0 59 783.3 385 906 796.7 394 904 802.7 324 904 802.7 324 924 815.0 305 935 800.1 311 941 819.2 315 950 813.0 325 935 799.0 335 935 799.0 335 935 772.1 355 936 775.5 8 937 780.1 362 938 786.6 378.6 937 804.6 667 947 804.7 785.9 9386 762.6 378.6 947 745.2 643 954 745.2 643	Row data/Description	Valid No No No No No No No No No No No No No	Manufact. Envision	Type-generator -2,650	Power, rated [kW] 2,650	Rotor diameter [m] 141.0	Hub height [m] 130.0	Calculation distance [m] 2,500	RPM [RPM] 0.0
Easting North 1 854,238 1,452, 2 853,773 1,452, 3 854,371 1,452, 4 855,081 1,452, 5 855,237 1,452, 6 855,240 1,452, 7 854,827 1,451, 8 855,589 1,451, 9 855,557 1,451, 10 855,510 1,450, 11 853,726 1,451, 12 853,637 1,450, 13 853,953 1,450, 14 854,277 1,450, 15 854,797 1,449, 16 853,890 1,449, 17 853,793 1,449, 18 852,984 1,451, 19 852,619 1,451, 20 853,064 1,450, 21 852,149 1,449, 22 851,858 1,448, 23 853,650 1,448, 24 853,819 1,448, 25 853,503 1,447, 26 854,303 1,447, 26 854,303 1,447, 27 854,269 1,446.	Img Z [m] 39 776.0 59 783.3 385 906 796.7 394 904 802.7 224 815 779.6 394 904 802.7 224 813 60.1 813.0 935 800.1 813.0 935 804.6 363 935 779.0 235 935 804.6 363 935 772.1 375.8 941 800.6 775.8 978 780.1 362 986 762.6 376.6 967 769.9 386.6 967 769.9 386.6 967 769.9 386.6 967 769.9 386.6 967 769.9 386.6 967 769.9 386.6 967 769.9 386.6 964 745.4 364.7 963 761.0 777.8 964 745.4 363.761.0 <td>Row data/Description</td> <td>Valid No No No No No No No No No No No No No</td> <td>Manufact. Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision</td> <td>Type-generator -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650</td> <td>Power, rated [kW] 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650</td> <td>Rotor diameter [m] 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0</td> <td>Hub height [m] 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0</td> <td>Calculation distance [m] 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500</td> <td>RPM [RPM] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>	Row data/Description	Valid No No No No No No No No No No No No No	Manufact. Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision Envision	Type-generator -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650 -2,650	Power, rated [kW] 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650 2,650	Rotor diameter [m] 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0 141.0	Hub height [m] 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0	Calculation distance [m] 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500	RPM [RPM] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Easting North 1 854,238 1,452, 2 853,773 1,452, 3 854,371 1,452, 4 855,081 1,452, 5 855,237 1,452, 6 855,240 1,452, 7 854,827 1,451, 8 855,589 1,451, 9 855,557 1,451, 10 855,510 1,450, 11 853,726 1,451, 12 853,637 1,450, 13 853,953 1,450, 14 854,277 1,450, 15 854,797 1,449, 16 853,890 1,449, 17 853,793 1,449, 18 852,984 1,451, 19 852,619 1,451, 20 853,064 1,450, 21 852,149 1,449, 28 853,650 1,448, 23 853,650 1,448, 24 853,819 1,448, 25 853,503 1,447, 26 854,303 1,447, 26 854,303 1,447, 27 854,269 1,446, 28 853,423 1,446,	Image Z [m] 39 776.0 559 783.3 385 506 796.7 394 507 783.3 385 5085 779.6 394 504 802.7 394 224 815.0 395 503 800.1 813.0 511 819.2 315 355 779.0 335 363 818.7 355 363 818.7 355 375 755.8 311 362 788.8 303 3786.6 376.6 376.6 361 804.6 376.6 377 804.6 376.6 378 804.6 376.6 364 745.4 364 374.5 376.1 376.6 364 745.4 363 376.6 3761.0 376.6 364 745.4 363 376.0 <td>Row data/Description</td> <td>Valid No No No No No No No No No No No No No</td> <td>Manufact. Envision</td> <td>Type-generator -2,650</td> <td>Power, rated [kW] 2,650</td> <td>Rotor diameter [m] 141.0</td> <td>Hub height [m] 130.0</td> <td>Calculation distance [m] 2,500</td> <td>RPM [RPM] 0.0</td>	Row data/Description	Valid No No No No No No No No No No No No No	Manufact. Envision	Type-generator -2,650	Power, rated [kW] 2,650	Rotor diameter [m] 141.0	Hub height [m] 130.0	Calculation distance [m] 2,500	RPM [RPM] 0.0
Easting North 1 854,238 1,452, 2 853,773 1,452, 3 854,371 1,452, 4 855,081 1,452, 5 855,237 1,452, 6 855,420 1,452, 7 854,827 1,451, 8 855,589 1,451, 9 855,557 1,451, 10 855,510 1,450, 11 853,726 1,451, 12 853,637 1,450, 13 853,953 1,450, 14 854,277 1,450, 15 854,797 1,449, 16 853,890 1,449, 17 853,793 1,449, 18 852,984 1,451, 19 852,619 1,451, 20 853,064 1,450, 21 852,149 1,449, 18 852,984 1,451, 20 853,064 1,450, 21 852,149 1,449, 23 853,650 1,448, 23 853,650 1,448, 24 853,819 1,448, 25 853,503 1,447, 26 854,303 1,447, 27 854,269 1,446, 28 853,423 1,446, 29 853,763 1,446,	Img Z [m] [39 776.0 59 783.3 385 779.6 59 783.3 385 779.6 59 783.3 385 779.6 594 802.7 224 815.0 595 800.1 311.8 819.2 511 813.0 6 363 818.7 525 772.1 555.8 804.6 6 535 775.5 8 1 785.9 611 785.9 786.4 6 6 763 780.1 8 6 6 769.9 6 627 788.8 8 8 6 769.6 6 6 769.6 6 6 769.6 6 6 769.6 6 6 769.6 6 6 769.6 6 6 769.6 6 6 769.6 6 6 769.6 6 6 764.7 6 6 764.6 6 6 764.6 6 6 764.7 6	Row data/Description	Valid No No No No No No No No No No No No No	Manufact. Envision	Type-generator -2,650	Power, rated [kW] 2,650	Rotor diameter [m] 141.0	Hub height [m] 130.0	Calculation distance [m] 2,500	RPM [RPM] 0.0 </td

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

commucu	nom previo	us pag	C .	W/TO							
		-	5	WIG	type	ж.,		D .		Shadow da	ta
Easting	Northing	Z	Row	valid	Manufact.	Type-generator	Power, rated	Rotor	Hub height	Calculation	RPIM
			data/Description				51	diameter		distance	
		[m]					[kW]	[m]	[m]	[m]	[RPM]
31 852,278	1,445,974	734.6	C19	No	Envision	-2,650	2,650	141.0	130.0	2,500	0.0
32 847,925	1,447,138	729.1	B1	No	Envision	-2,650	2,650	141.0	130.0	2,500	0.0
33 847,463	1,446,986	700.3	B2	No	Envision	-2,650	2,650	141.0	130.0	2,500	0.0
34 844,831	1,445,373	655.4	B7	No	Envision	-2,650	2,650	141.0	130.0	2,500	0.0
35 844,818	1,444,179	673.2	B9	No	Envision	-2,650	2,650	141.0	130.0	2,500	0.0
36 845,656	1,444,245	688.7	B10	No	Envision	-2,650	2,650	141.0	130.0	2,500	0.0
37 845,338	1,444,410	675.6	B11	No	Envision	-2,650	2,650	141.0	130.0	2,500	0.0
38 846,270	1,444,717	675.9	B13	No	Envision	-2,650	2,650	141.0	130.0	2,500	0.0
39 845,751	1,445,162	655.7	B14	No	Envision	-2,650	2,650	141.0	130.0	2,500	0.0
40 847,550	1,445,475	680.0	B15	No	Envision	-2,650	2,650	141.0	130.0	2,500	0.0
41 847,491	1,446,156	628.2	B17	No	Envision	-2,650	2,650	141.0	130.0	2,500	0.0
42 847,912	1,445,475	704.0	B18	No	Envision	-2.650	2,650	141.0	130.0	2,500	0.0
43 848 481	1,446,623	711.4	B19	No	Envision	-2.650	2,650	141.0	130.0	2,500	0.0
44 846.071	1,443,400	687.3	A2	No	Envision	-2.650	2,650	141.0	130.0	2,500	0.0
45 843 493	1 441 916	624 0	A5	No	Envision	-2 650	2,650	141.0	130.0	2 500	0.0
46 844 265	1 442 495	649 7	A6	No	Envision	-2 650	2,600	141.0	130.0	2,000	0.0
47 843 006	1 442 177	623 5	Δ7	No	Envision	-2,650	2,000	141.0	130.0	2,500	0.0
18 811 931	1 //1 370	653.2	ΔΟ	No	Envision	-2,650	2,050	1/110	130.0	2,500	0.0
10 8/5 688	1 / / 1 6/8	667 7	Δ10	No	Envision	-2,650	2,050	1/11.0	130.0	2,500	0.0
50 846 227	1 / / 1 003	711 0	A10 A11	No	Envision	2,650	2,050	1/11.0	130.0	2,500	0.0
51 040,237	1,441,703	607.1	A11 A12	No	Envision	2,050	2,030	141.0	120.0	2,500	0.0
52 846 040	1,442,042	660 /	A12 A15	No	Envision	2,650	2,030	141.0	130.0	2,500	0.0
52 040,047	1,440,700	704.7	A13 A17	No	Envision	2,050	2,030	141.0	120.0	2,500	0.0
53 040,019	1,442,473	507.0	A17 A10	No	Envision	-2,050	2,000	141.0	130.0	2,500	0.0
	1,441,029	277.0	A10	NO	Envision	-2,000	2,000	141.0	130.0	2,500	0.0
55 044,200	1,440,630	754 0	A19	NO	Envision	-2,000	2,030	141.0	130.0	2,300	0.0
50 852,387	1,448,118	750.9	C4	NO	Envision	-2,650	2,650	141.0	130.0	2,500	0.0
5/ 854,775	1,447,751	760.1	012	INO N.	Envision	-3,000	3,000	150.0	130.0	2,500	0.0
58 853,328	1,445,045	/56.5		NO	Envision	-3,000	3,000	156.0	130.0	2,500	0.0
59 853,282	1,445,629	/61.2	C14	NO	Envision	-3,000	3,000	156.0	130.0	2,500	0.0
60 853,212	1,446,272	762.5	C15	NO	Envision	-3,000	3,000	156.0	130.0	2,500	0.0
61 851,878	1,446,443	/42.0	C1/	No	Envision	-3,000	3,000	156.0	130.0	2,500	0.0
62 847,116	1,447,121	6/3.4	B3	No	Envision	-3,000	3,000	156.0	130.0	2,500	0.0
63 846,486	1,446,202	627.8	B4	No	Envision	-3,000	3,000	156.0	130.0	2,500	0.0
64 844,935	1,446,396	622.3	B5	No	Envision	-3,000	3,000	156.0	130.0	2,500	0.0
65 845,275	1,445,950	633.3	B6	No	Envision	-3,000	3,000	156.0	130.0	2,500	0.0
66 844,933	1,444,699	652.4	B8	No	Envision	-3,000	3,000	156.0	130.0	2,500	0.0
67 847,181	1,444,943	676.3	B16	No	Envision	-3,000	3,000	156.0	130.0	2,500	0.0
68 847,171	1,443,679	695.8	A1	No	Envision	-3,000	3,000	156.0	130.0	2,500	0.0
69 845,738	1,442,480	651.3	A3	No	Envision	-3,000	3,000	156.0	130.0	2,500	0.0
70 844,059	1,441,327	627.4	A8	No	Envision	-3,000	3,000	156.0	130.0	2,500	0.0
71 846,849	1,441,206	685.3	A13	No	Envision	-3,000	3,000	156.0	130.0	2,500	0.0
72 846,844	1,440,509	678.3	A14	No	Envision	-3,000	3,000	156.0	130.0	2,500	0.0
73 845,028	1,440,930	637.5	A16	No	Envision	-3,000	3,000	156.0	130.0	2,500	0.0

Shad	dow re	ceptor-I	nput						
No.	Easting	Northing	Ζ	Width	Height	Elevation	Slope of	Direction mode	Eye height
						a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
1	855,607	1,454,197	794.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2	855,649	1,454,043	788.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
3	855,539	1,454,106	791.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
4	854,743	1,454,059	745.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
5	854,838	1,454,025	749.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
6	854,389	1,454,069	747.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
7	854,226	1,453,999	743.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
8	854,173	1,453,995	745.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
9	854,038	1,454,017	742.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
10	853,705	1,454,091	725.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
11	853,498	1,454,053	720.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

Nam Le / nam.le@erm.com ^{Calculated:} 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No.	Easting	Northing	Ż	Width	Height	Elevation	Slope of	Direction mode	Eye height
						a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
12	853,134	1,453,865	720.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
13	853,148	1,453,877	721.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
14	853,423	1,453,782	750.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
15	853,525	1,453,673	759.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
10	853,543	1,453,775	751.4	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1/	854,319	1,453,789	740.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
10	054,200 054,461	1,403,020	748.Z	1.0	1.0	1.0	90.0	"Green house mode"	2.0
20	004,401	1,400,002	745 6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
20	85/ 679	1,453,655	745.0	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
21	854 717	1 453 793	743 7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
23	854,727	1,453,706	759.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
24	854,735	1,453,664	770.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
25	854,670	1,453,529	783.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
26	854,796	1,453,693	758.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
27	854,956	1,453,672	771.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
28	854,975	1,453,861	742.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
29	855,042	1,453,534	785.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
30	855,124	1,453,571	790.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
31	855,344	1,453,709	796.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
32	855,175	1,453,958	750.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
33	855,407	1,453,761	793.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
34	855,306	1,454,016	761.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
35	855,803	1,453,793	770.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
36	855,860	1,453,715	780.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
37	855,852	1,453,695	781.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
38	855,831	1,453,633	783.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
39	856,053	1,453,627	786.4	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
40	850,115	1,453,055	784.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
41	800,100	1,403,700	706.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
42	856 086	1,453,000	785 5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
43	856 270	1 453 756	775.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
45	856 223	1 453 737	779 5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
46	856 528	1 453 356	782.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
47	856,433	1,453,310	769.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
48	856,374	1,453,298	778.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
49	856,352	1,453,275	775.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
50	856,347	1,453,289	774.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
51	855,929	1,453,442	778.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
52	856,072	1,453,412	768.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
53	856,315	1,453,425	769.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
54	856,087	1,453,524	780.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
55	855,182	1,453,394	779.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
56	855,201	1,453,412	781.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
57	854,943	1,453,317	757.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
58	854,551	1,453,442	785.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
59	854,542	1,453,440	784.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
60	854,554	1,453,452	785.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
61	854,442	1,453,225	/68.1	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
02 40	053,980	1,403,320	7467	1.0	1.0	1.0	90.0	"Green house mode"	2.0
64	000,900	1,403,220	700.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
65	852 987	1,453,455	735 2	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
66	852 461	1 453 185	759 5	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
67	851 464	1.452 693	762.0	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
68	851,494	1,452,668	759.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
69	851.657	1,452.781	762.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
70	851,686	1,452.751	753.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
71	851,674	1,452,722	750.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
72	851,768	1,452,819	757.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
73	851,751	1,452,843	760.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

Nam Le / nam.le@erm.com ^{Calculated:} 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No.	Easting	Northing	Ż	Width	Height	Elevation	Slope of	Direction mode	Eye height
	0	0			Ū	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
74	851,770	1,452,888	759.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
75	851,828	1,452,885	753.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
76	851,918	1,452,911	743.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
77	851,839	1,452,989	757.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
78	851,910	1,453,016	748.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
79	852,193	1,452,853	753.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
80	852,290	1,452,628	779.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
81	852,405	1,452,628	776.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
82	852,634	1,452,661	780.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
83	852,708	1,452,607	783.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
84	852,752	1,453,024	768.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
85	852,782	1,453,028	766.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
86	852,787	1,453,027	766.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
87	853,799	1,452,931	759.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
88	853,774	1,453,098	744.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
89	854,138	1,453,173	766.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
90	854,158	1,453,125	760.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
91	854,246	1,453,102	759.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
92	854,271	1,453,126	763.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
93	854,281	1,453,111	763.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
94	854,446	1,452,948	762.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
95	855,574	1,453,053	762.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
96	855,861	1,453,095	770.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
97	855,789	1,453,035	766.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
98	855,765	1,453,114	763.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
99	855,840	1,452,936	783.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
100	855,978	1,453,022	781.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
101	855,970	1,452,872	794.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
102	856,160	1,452,911	791.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
103	856,137	1,452,975	790.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
104	856,421	1,452,851	786.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
105	856,544	1,452,882	779.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
106	856,333	1,452,681	807.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
107	856,258	1,452,499	823.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
108	855,887	1,452,721	807.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
109	855,736	1,452,733	792.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
110	855,905	1,452,451	805.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
111	855,487	1,452,523	795.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
112	852,707	1,452,475	781.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
113	852,667	1,452,478	782.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
114	852,617	1,452,461	786.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
115	852,536	1,452,493	793.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
116	852,522	1,452,505	792.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
11/	852,471	1,452,440	791.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
118	852,459	1,452,439	791.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
119	852,422	1,452,468	792.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
120	852,385	1,452,506	792.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
121	852,437	1,452,541	/89.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
122	852,314	1,452,497	787.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
123	852,323	1,452,455	790.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
124	852,341	1,452,414	788.4	1.0	1.0	1.0	90.0	Green nouse mode	2.0
125	852,290	1,452,400	789.8	1.0	1.0	1.0	90.0	Green nouse mode	2.0
120	852,160	1,452,399	/80./	1.0	1.0	1.0	90.0	Green nouse mode	2.0
12/	052,190	1,452,445	104.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
128	052,230	1,452,478	100.0	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
129	052,141	1,452,447	104.9 770 1	1.0	1.0	1.0	90.0	"Croop boulds mode"	2.0
130	052,089	1,452,427	110.1 777 0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
131	052,019	1,452,432	111.U	1.0	1.0	1.0	90.0	"Green house mode"	2.0
132	052,077	1,452,399	1/0.1	1.0	1.0	1.0	90.0	"Croop boulds mode"	2.0
133	052,080	1,452,375	119.0 701 1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
134	052,077	1,452,351	101.4	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
135	002,003	1,402,345	100.0	1.0	1.0	1.0	7U.U	Green nouse mode	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
	0	0			0	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
136	852,113	1,452,314	782.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
137	852,122	1,452,361	784.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
138	852,172	1.452.347	785.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
139	852 183	1 452 350	785 5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
140	852 210	1 452 354	786.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1/1	852 2/2	1 452 359	788.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
141	052,245	1,452,550	700.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
142	002,200	1,452,500	709.0 700 E	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
143	052,304	1,452,504	700.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
144	852,100	1,452,313	782.8	1.0	1.0	1.0	90.0	Green house mode	2.0
145	852,188	1,452,300	782.3	1.0	1.0	1.0	90.0	Green house mode	2.0
146	852,029	1,452,299	/83.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
147	852,025	1,452,280	/8/./	1.0	1.0	1.0	90.0	"Green house mode"	2.0
148	852,010	1,452,264	789.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
149	852,027	1,452,207	784.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
150	852,073	1,452,245	783.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
151	852,089	1,452,260	783.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
152	852,006	1,452,103	782.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
153	852,009	1,452,113	781.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
154	852,046	1,452,028	782.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
155	852,012	1,451,868	775.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
156	852,005	1,451,869	775.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
157	852.086	1,451,880	777.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
158	852.314	1.452.225	780.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
159	852 467	1 452 272	785.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
160	852 641	1 452 161	767.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
161	853 600	1 452 268	760.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
160	053,000	1,452,200	760.5	1.0	1.0	1.0	20.0	"Groop bouso modo"	2.0
162	053,455	1,452,000	709.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
103	003,041	1,452,500	709.4	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
104	804,303	1,452,454	703.9	1.0	1.0	1.0	90.0	Green nouse mode	2.0
165	854,376	1,452,507	769.9	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
166	854,273	1,452,359	763.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
167	854,222	1,452,355	762.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
168	854,245	1,452,308	764.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
169	854,568	1,452,273	773.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
170	854,620	1,452,298	776.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
171	855,313	1,452,283	810.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
172	855,364	1,452,465	805.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
173	855,277	1,452,642	807.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
174	855,402	1,452,377	808.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
175	856,210	1,452,393	823.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
176	856,356	1,452,403	822.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
177	856,803	1,452,284	831.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
178	856,894	1,452,278	828.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
179	856,802	1,452,137	831.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
180	856,792	1,452,233	834.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
181	856 738	1 452 287	829.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
101	856 601	1 452 266	827 O	1.0	1.0	1.0	90.0	"Green house mode"	2.0
102	050,074	1,452,200	027.0	1.0	1.0	1.0	90.0 00.0	"Groop bouso modo"	2.0
103	050,577	1,452,200	020.7	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
104	000,370	1,402,202	010.1 010 F	1.0	1.0	1.0	90.0	"Green house mode"	2.0
100	050,270	1,452,251	016.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
180	856,270	1,452,220	810.1	1.0	1.0	1.0	90.0	Green house mode	2.0
187	856,151	1,452,148	805.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
188	856,058	1,452,151	801.1	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
189	856,223	1,452,067	/98.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
190	856,970	1,451,222	776.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
191	856,843	1,450,898	767.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
192	856,719	1,451,320	786.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
193	856,510	1,451,045	784.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
194	856,278	1,451,035	787.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
195	856,251	1,451.255	787.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
196	853.786	1,451,240	806.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
197	853,917	1,451,093	805.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
	0	Ū			0	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		` [́m]
198	854.353	1.451.071	768.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
199	852,908	1,450,812	805.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
200	852,873	1.450.851	803.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
201	852 865	1 450 817	806.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
201	852,858	1 450 758	812.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
202	852 866	1 450 696	812.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
203	052,000	1,450,090	012.7	1.0	1.0	1.0	90.0 00.0	"Groop bouso modo"	2.0
204	052,000	1,450,700	014.9	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
205	052,101	1,430,774	014.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
206	852,112	1,450,798	813.Z	1.0	1.0	1.0	90.0	Green house mode	2.0
207	852,768	1,450,823	812.4	1.0	1.0	1.0	90.0	Green house mode	2.0
208	852,789	1,450,910	804.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
209	852,750	1,450,832	811.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
210	852,767	1,450,918	805.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
211	852,680	1,451,145	804.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
212	852,478	1,451,046	794.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
213	852,454	1,451,055	792.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
214	852,439	1,451,059	790.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
215	852,432	1,451,057	790.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
216	852,406	1,451,063	789.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
217	852,366	1,451,050	789.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
218	852,352	1,451,031	788.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
219	852,417	1.451.107	792.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
220	852,380	1,451,105	792.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
221	852 374	1 451 104	793.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
222	852 361	1 451 103	793 5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
222	852 353	1 451 105	703.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
223	052,333	1,451,105	702.6	1.0	1.0	1.0	20.0	"Groop bouso modo"	2.0
224	052,327	1,451,100	793.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
220	002,000	1,401,107	797.0 707 E	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
220	852,350	1,451,107	797.5	1.0	1.0	1.0	90.0	Green nouse mode	2.0
227	852,268	1,451,056	791.6	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
228	852,261	1,451,059	792.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
229	852,257	1,451,104	792.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
230	852,253	1,451,098	792.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
231	852,223	1,451,099	793.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
232	852,233	1,451,107	793.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
233	852,184	1,451,090	792.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
234	852,199	1,451,097	792.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
235	852,175	1,451,102	791.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
236	852,139	1,451,105	791.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
237	852,104	1,451,088	792.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
238	852,107	1,451,053	792.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
239	852,136	1,451,055	791.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
240	852,154	1,451,054	791.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
241	852,001	1.451.133	796.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
242	851,973	1,451,136	795.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
243	852 005	1 451 091	795.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
210	852 061	1 / 51 038	79/ 9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
244	052,001	1,451,050	794.9	1.0	1.0	1.0	90.0 00.0	"Groop bouso modo"	2.0
245	052,040	1,451,045	794.0	1.0	1.0	1.0	90.0	"Groop bouso modo"	2.0
240	002,030	1,451,045	794.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
247	052,020	1,451,043	795.Z	1.0	1.0	1.0	90.0	"Green house mode"	2.0
248	852,010	1,451,040	795.5	1.0	1.0	1.0	90.0	Green nouse mode	2.0
249	852,009	1,451,051	795.8	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
250	852,005	1,451,050	/95.9	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
251	851,992	1,451,048	797.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
252	851,986	1,451,046	798.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
253	851,976	1,451,039	799.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
254	851,971	1,451,034	800.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
255	851,963	1,451,029	800.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
256	851,953	1,451,027	802.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
257	851,960	1,451,052	801.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
258	851,956	1,451,049	801.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
259	851,948	1,451.045	803.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
	0				0	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
260	851,904	1,451,046	803.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
261	851,891	1,451,046	802.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
262	851,874	1,451,041	801.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
263	851,893	1.451.027	802.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
264	851,862	1.451.041	800.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
265	851 844	1 451 030	800.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
266	851 825	1 451 042	800.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
267	851 848	1 450 994	800.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
267	851 854	1 /50 998	800.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
200	Q51 Q2Q	1 450 080	QO1 1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
209	051,020	1,450,900	001.1	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
270	051,007	1,451,051	001.9	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
271	051,900	1,450,990	001.9 002 E	1.0	1.0	1.0	90.0	"Green house mode"	2.0
272	001,914	1,430,992	002.0 002.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2/3	051,932	1,451,000	802.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
274	051,941	1,451,007	802.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
275	851,935	1,451,008	802.1	1.0	1.0	1.0	90.0	Green nouse mode	2.0
276	851,909	1,451,092	801.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
277	851,895	1,451,074	802.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
278	851,879	1,451,085	802.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
279	851,842	1,451,081	801.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
280	851,816	1,451,079	801.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
281	851,742	1,451,097	798.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
282	851,938	1,450,960	804.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
283	851,909	1,450,943	804.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
284	851,873	1,450,926	806.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
285	851,819	1,450,914	805.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
286	851,713	1,450,865	804.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
287	851,757	1,450,857	804.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
288	851,957	1,450,926	801.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
289	851,932	1,450,919	803.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
290	851,917	1,450,913	803.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
291	851,904	1,450,913	804.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
292	851,944	1,450,883	797.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
293	851,933	1,450,881	798.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
294	851,917	1,450,875	800.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
295	851,901	1,450,861	799.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
296	851,843	1,450,849	802.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
297	851,812	1,450,838	805.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
298	851,801	1,450,835	805.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
299	851,776	1,450,828	804.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
300	851,721	1,450,805	804.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
301	851.617	1,450,838	803.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
302	851,639	1,450,849	803.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
303	851,654	1,450,836	803.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
304	851.587	1.450.825	803.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
305	851,576	1,450,823	804.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
306	851 559	1 450 812	805.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
307	851 540	1 450 802	805.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
308	851 529	1 450 802	805.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
300	Q51 52/	1,450,002	803.3	1.0	1.0	1.0	0.0	"Green house mode"	2.0
310	Q51 527	1,450,771	803.8	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
211	051,557	1,450,770	003.0	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
212	051,554	1,450,788	004.9	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
31Z	001,002	1,400,779	003.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
213		1,400,802	700 7	1.0	1.0	1.0	90.0		2.0
314 215	051,564	1,450,752	199.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
315	051,586	1,450,765	199.9	1.0	1.0	1.0	90.0	Green nouse mode"	2.0
316	051,601	1,450,770	801.6	1.0	1.0	1.0	90.0	Green nouse mode"	2.0
31/	851,642	1,450,778	803.5	1.0	1.0	1.0	90.0	Green house mode"	2.0
318	851,544	1,450,739	/98.9	1.0	1.0	1.0	90.0	Green house mode"	2.0
319	851,480	1,450,779	803.5	1.0	1.0	1.0	90.0	Green nouse mode"	2.0
320	851,467	1,450,780	804.0	1.0	1.0	1.0	90.0	Green nouse mode"	2.0
321	851,452	1,450,771	803.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
	0				0	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
322	851,439	1,450,763	802.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
323	851,416	1,450,764	801.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
324	851,380	1,450,754	800.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
325	851.374	1,450,753	799.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
326	851.355	1,450,747	798.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
327	851 341	1 450 712	794 9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
328	851 362	1 450 717	796.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
320	851 557	1 451 003	804.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
330	851 562	1 450 967	802.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
221	Q51 5302	1 450 010	802.1 802.0	1.0	1.0	1.0	0.0 00 0	"Green house mode"	2.0
222	051,557	1,430,717	720 7	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
222	050,407	1,449,173	737.7	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
221	050,490	1,449,149	720.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
225	000,473	1,449,101	737.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
335	850,449	1,449,090	740.8	1.0	1.0	1.0	90.0	Green house mode	2.0
330	850,429	1,449,022	752.3	1.0	1.0	1.0	90.0	Green nouse mode	2.0
337	850,433	1,448,953	750.7	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
338	850,506	1,449,102	/38.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
339	850,516	1,449,064	/3/.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
340	850,498	1,449,010	739.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
341	850,475	1,448,924	747.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
342	850,495	1,448,904	748.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
343	850,487	1,448,893	749.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
344	850,586	1,449,013	737.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
345	850,588	1,448,989	736.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
346	850,596	1,448,897	736.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
347	850,604	1,448,882	736.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
348	850,540	1,448,856	741.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
349	850,481	1,448,855	748.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
350	850,494	1,448,857	747.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
351	850,442	1,448,849	750.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
352	850,639	1,448,865	736.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
353	850,672	1,448,861	735.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
354	850,691	1,448,845	734.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
355	850,703	1,448,856	733.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
356	850,776	1,448,848	732.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
357	850.616	1,448,796	741.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
358	850 648	1 448 804	739.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
359	850 620	1 448 769	743.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
360	850 633	1 448 742	744 1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
361	850 677	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	720 5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
362	850 776	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7427	1.0	1.0	1.0	90.0	"Green house mode"	2.0
363	850 720	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	740.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
364	850 575	1 448 804	740.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
365	850 558	1 448 802	742.0	1.0	1.0	1.0	00.0	"Green house mode"	2.0
266	050,550	1 1 1 0 001	745.5	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
267	000,020	1,440,004	740.4	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
307	050,500	1,440,000	749.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
308	850,407	1,448,810	749.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
369	850,502	1,448,741	753.2	1.0	1.0	1.0	90.0	Green nouse mode	2.0
370	850,470	1,448,749	754.5	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
3/1	850,506	1,448,777	/50./	1.0	1.0	1.0	90.0	"Green house mode"	2.0
372	850,714	1,448,813	/36.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
373	850,565	1,448,689	/49.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
374	850,480	1,448,695	753.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
375	850,666	1,448,692	743.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
376	850,802	1,448,685	741.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
377	850,846	1,448,682	738.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
378	850,877	1,448,712	736.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
379	850,877	1,448,644	733.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
380	850,846	1,448,641	736.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
381	850,794	1,448,647	740.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
382	850,788	1,448,605	741.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
383	850,767	1,448,599	743.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
					0	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
384	850,704	1,448,601	743.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
385	850,649	1,448,599	745.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
386	850.554	1.448.597	749.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
387	850 497	1 448 590	748.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
388	850 481	1 448 586	749.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
380	850 119	1 1 1 1 8 5 9 0	750.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
200	050,447	1,440,570	750.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
201	000,470	1,440,000	705.1	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
202	000,903	1,440,007	130.1	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
392	850,841	1,448,551	132.8	1.0	1.0	1.0	90.0	Green house mode	2.0
393	850,829	1,448,553	/33.3	1.0	1.0	1.0	90.0	Green house mode	2.0
394	850,812	1,448,543	/35.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
395	850,719	1,448,555	744.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
396	850,697	1,448,524	741.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
397	850,672	1,448,504	738.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
398	850,579	1,448,550	744.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
399	850,542	1,448,547	744.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
400	850,534	1,448,542	743.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
401	850,538	1,448,528	742.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
402	850,577	1,448,580	747.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
403	850,506	1,448,494	739.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
404	850.546	1.448.268	742.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
405	850,681	1.448.277	737.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
406	850 705	1 448 067	756.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
407	850 733	1 448 075	755 5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
108	850 716	1 1 1 1 1 0 0 0 7	756.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
400	850 701	1 / / 8 070	752.3	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
409	050,771	1,440,079	752.5	1.0	1.0	1.0	90.0 00.0	"Groop bouso modo"	2.0
410	050,709	1,440,110	752.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
411	000,700	1,440,130	701.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
412	850,734	1,448,138	755.2	1.0	1.0	1.0	90.0	Green nouse mode	2.0
413	850,838	1,448,041	752.9	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
414	850,842	1,447,993	/54.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
415	850,879	1,447,989	752.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
416	850,906	1,447,982	753.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
417	850,889	1,448,049	750.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
418	850,858	1,448,031	752.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
419	850,854	1,448,089	745.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
420	850,906	1,448,118	743.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
421	850,884	1,448,150	743.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
422	850,851	1,448,125	743.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
423	850,812	1,448,186	741.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
424	850,851	1,448,194	742.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
425	850,851	1,448,240	739.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
426	850,905	1,448,177	741.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
427	850,927	1,448,191	739.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
428	850,941	1 448 149	737.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
429	850.947	1.448.091	740.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
430	850 999	1 448 062	742 7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
/31	851 009	1 1/18 2/15	731 5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
431	851 010	1,440,245	731.5	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
432	051,010	1,440,227	732.4	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
433	051,012	1,440,170	734.1	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
434		1,440,210	729.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
435	851,050	1,448,197	/31.1	1.0	1.0	1.0	90.0	Green house mode	2.0
436	851,084	1,448,234	121.8	1.0	1.0	1.0	90.0	Green nouse mode"	2.0
437	851,094	1,448,208	/30.0	1.0	1.0	1.0	90.0	Green nouse mode"	2.0
438	851,060	1,448,271	727.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
439	851,061	1,448,288	727.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
440	851,092	1,448,290	727.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
441	851,017	1,448,313	730.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
442	851,032	1,448,275	729.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
443	851,008	1,448,259	730.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
444	851,006	1,448,332	730.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
445	851,103	1,448.336	727.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No.	Easting	Northing	Ž	Width	Height	Elevation	Slope of	Direction mode	Eye height
						a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
446	851,042	1,448,330	729.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
447	851,168	1,448,302	724.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
448	851,234	1,448,247	721.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
449	850,973	1,448,062	743.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
450	850,980	1,447,988	750.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
451	851,030	1,448,000	746.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
452	851,044	1,447,998	745.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
453	851,064	1,447,991	745.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
454	850,991	1,447,960	752.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
455	850,953	1,447,952	756.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
456	850,929	1,447,885	/5/./	1.0	1.0	1.0	90.0	"Green house mode"	2.0
457	850,894	1,447,887	752.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
458	850,954	1,447,888	757.9	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
459	850,977	1,447,895	750.8	1.0	1.0	1.0	90.0	Green nouse mode	2.0
400	051,041	1,447,897	749.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
401	051,004	1,447,099	740.9	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
402	851 022	1,447,000	750.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
403	850 068	1 //7 8/3	754.2	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
404	850 908	1 //7 8/7	7527	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
465	850 830	1 //7 81/	758.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
467	851 021	1 448 161	737.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
468	851 029	1 448 084	741 1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
469	851.028	1,448,032	743.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
470	851.058	1.447.965	747.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
471	851,167	1,447,915	742.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
472	851,172	1,447,942	740.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
473	850,984	1,447,743	754.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
474	850,964	1,447,781	754.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
475	850,914	1,447,730	754.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
476	850,905	1,447,699	752.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
477	850,955	1,447,679	756.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
478	850,997	1,447,700	757.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
479	850,991	1,447,681	759.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
480	850,944	1,447,641	752.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
481	850,991	1,447,622	755.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
482	850,909	1,447,642	744.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
483	850,843	1,447,625	739.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
484	850,930	1,447,530	740.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
485	850,993	1,447,536	743.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
480	851,025	1,447,543	745.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
487	050,972	1,447,470	138.Z	1.0	1.0	1.0	90.0	"Green house mode"	2.0
400	050,955	1,447,444	734.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
409	851 <i>4</i> 57	1 // 0 1/2	714.2	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
490	851 441	1 448 225	712.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
492	851 351	1 448 208	714.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
493	851 939	1 447 800	732 5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
494	851,931	1,447,739	730.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
495	851,979	1.447.753	731.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
496	851,964	1,447,702	728.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
497	851,938	1,447,694	726.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
498	851,893	1,447,697	722.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
499	851,872	1,447,591	718.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
500	851,964	1,447,583	715.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
501	851,991	1,447,642	722.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
502	852,035	1,447,698	728.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
503	851,998	1,447,690	727.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
504	852,077	1,447,692	730.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
505	852,092	1,447,696	731.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
506	852,137	1,447,695	730.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
507	852,186	1,447,708	729.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No.	Easting	Northing	Ž	Width	Height	Elevation	Slope of	Direction mode	Eye height
						a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
508	852,222	1,447,702	730.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
509	852,256	1,447,714	729.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
510	852,303	1,447,726	728.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
511	852,356	1,447,731	727.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
512	852,373	1,447,740	727.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
513	852,243	1,447,759	732.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
514	852,131	1,447,732	730.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
515	851,991	1,447,812	735.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
516	852,241	1,447,886	750.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
517	852,299	1,447,768	731.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
518	852,346	1,447,785	/31.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
519	852,396	1,447,804	/31.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
520	852,342	1,447,832	/35.3	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
521	852,332	1,447,879	139.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
522	002,442	1,447,777	121.3	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
523	052,475	1,447,770	724.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
525	852,500	1,447,791	725.4	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
526	852 571	1 //7 8/3	727.7	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
520	852 625	1 447 861	727.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
528	852,623	1 447 949	736.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
529	852 393	1 448 373	763.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
530	852.533	1,448,376	768.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
531	852,567	1.448.474	767.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
532	852.676	1.448.523	771.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
533	852,733	1,448,543	769.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
534	852,772	1,448,578	772.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
535	852,822	1,448,652	774.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
536	852,873	1,448,540	774.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
537	852,819	1,448,515	770.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
538	852,791	1,448,493	770.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
539	853,026	1,448,836	769.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
540	853,030	1,449,000	773.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
541	852,874	1,449,018	757.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
542	853,101	1,449,204	773.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
543	853,147	1,449,208	773.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
544	853,085	1,449,174	772.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
545	853,071	1,449,138	//1.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
546	853,177	1,449,380	/81.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
547	853,285	1,449,297	701 1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
548	053,290	1,449,000	791.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
550	003,373	1,449,709	002.4 002.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
551	Q52 /22	1 //0 707	802.0	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
552	853 203	1 // 0 8/1	797 7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
553	853 249	1 449 893	803 5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
554	853 247	1 449 900	803.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
555	853,242	1,449,907	803.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
556	853.214	1,449,932	801.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
557	853,207	1,449,937	800.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
558	853,199	1,449,936	799.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
559	853,192	1,449,941	799.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
560	853,202	1,449,988	796.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
561	853,220	1,449,977	796.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
562	853,164	1,449,963	802.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
563	853,138	1,449,960	806.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
564	853,127	1,449,963	807.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
565	853,110	1,449,972	808.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
566	853,084	1,449,977	808.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
567	853,075	1,449,978	808.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
568	853,049	1,449,981	809.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
569	853,009	1,449,973	809.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
		Ū			U	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
570	853,003	1,449,944	805.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
571	853,005	1,450,018	814.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
572	852,998	1,450,033	814.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
573	852,992	1,450,046	814.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
574	852,977	1,450,051	814.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
575	852 968	1 450 060	814 7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
576	852 957	1 450 073	814.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
577	853 007	1,450,075	812.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
578	853 03/	1 450 046	812.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
570	852 866	1 1 1 0 071	805 0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
500	052,000	1,449,971	003.0	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
500	052,055	1,449,970	003.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
501	052,030	1,449,934	774 2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
502	052,344	1,430,476	7/4.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
283	852,501	1,450,424	709.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
584	852,495	1,450,048	783.Z	1.0	1.0	1.0	90.0	"Green house mode"	2.0
585	851,999	1,449,940	744.1	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
586	851,695	1,450,206	769.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
587	851,704	1,450,269	768.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
588	851,806	1,450,390	/61.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
589	851,812	1,450,385	/61.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
590	851,742	1,450,417	764.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
591	851,725	1,450,461	767.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
592	851,510	1,450,110	790.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
593	851,565	1,450,581	786.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
594	851,456	1,450,573	784.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
595	851,843	1,450,890	804.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
596	851,864	1,450,900	805.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
597	851,873	1,450,902	804.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
598	851,883	1,450,906	804.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
599	851,980	1,450,887	791.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
600	851,980	1,450,836	794.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
601	851,960	1,450,818	797.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
602	851,967	1,450,791	798.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
603	851,941	1,450,859	795.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
604	851,866	1,450,831	801.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
605	851,878	1,450,830	800.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
606	851.842	1,450,824	803.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
607	851.824	1.450.814	805.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
608	851.794	1.450.801	803.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
609	851,777	1,450,791	801.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
610	851 899	1 450 804	802.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
611	851 888	1 450 799	802.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
612	851 879	1 450 792	803.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
612	851 857	1 450 785	802.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
61/	851 727	1 450 710	796.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
615	851 7 <i>1</i> 0	1,450,710	790.2	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
616	051,740	1,450,719	700 5	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
417	051,741	1,450,745	799.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
(10	001,770	1,400,732	199.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
610	001,/01	1,430,742	000.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
619	051,793	1,450,727	801.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
620	851,888	1,450,761	802.0	1.0	1.0	1.0	90.0	Green nouse mode	2.0
621	851,901	1,450,777	802.2	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
622	851,914	1,450,782	802.3	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
623	851,957	1,450,732	793.0	1.0	1.0	1.0	90.0	Green house mode"	2.0
624	851,928	1,450,746	/98.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
625	851,886	1,450,736	802.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
626	851,895	1,450,715	800.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
627	851,915	1,450,723	798.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
628	851,873	1,450,711	799.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
629	851,862	1,450,704	798.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
630	851,851	1,450,701	798.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
631	851.834	1,450,715	800.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
						a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
632	851,823	1,450,689	797.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
633	851,816	1,450,709	799.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
634	851,783	1,450,696	797.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
635	851,800	1,450,679	796.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
636	851,720	1,450,644	786.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
637	851,749	1,450,677	794.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
638	851,699	1,450,737	797.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
639	851,859	1,450,757	801.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
640	851,844	1,450,777	802.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
641	851,805	1,450,768	802.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
642	851,792	1,450,762	801.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
643	852,375	1,450,901	781.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
644	852,448	1,450,686	780.3	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
645	855,049	1,450,156	141.2	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
040	052,103	1,450,083	131.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
647	050,170	1,449,224	100.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
048 440	050,152	1,449,227	750.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
049 450	830,080	1,449,280	759.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
00U 4E1	000,020	1,449,284	151.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
450	000,900	1,449,300	757.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
652	055,927	1,447,377	756.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
654	Q55 Q22	1,449,410	756.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
655	855 817	1 //0 /70	755.8	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
656	855 727	1 //0 612	757.0	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
657	855 697	1 449,012	757.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
658	855 692	1 449 642	756 5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
659	855 684	1 449 645	754.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
660	855 566	1 449 535	741.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
661	855 589	1 449 583	744 7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
662	855.638	1,449,657	747.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
663	855,695	1,449,758	752.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
664	855,678	1,449,821	744.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
665	855,340	1,449,831	726.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
666	855,760	1,450,302	764.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
667	855,890	1,450,344	767.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
668	855,876	1,450,118	772.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
669	856,062	1,450,121	787.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
670	856,131	1,450,172	789.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
671	856,175	1,450,333	772.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
672	856,246	1,449,961	799.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
673	856,320	1,450,442	758.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
674	856,445	1,450,440	766.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
675	856,403	1,450,419	762.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
676	856,449	1,450,211	775.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
677	856,934	1,450,597	767.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
678	856,161	1,446,967	802.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
679	856,180	1,446,997	798.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
680	856,141	1,447,063	799.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
681	856,108	1,447,203	804.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
682	856,132	1,447,207	803.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
683	856,147	1,447,222	803.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
684	856,182	1,447,231	806.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
685	856,062	1,447,408	798.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
686	856,135	1,447,431	797.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
687	856,292	1,447,471	/86.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
688	855,999	1,446,758	808.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
689	856,036	1,446,721	804.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
690	855,957	1,446,770	811.9	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
691	855,929	1,446,781	812.7	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
692	855,954	1,446,820	809.5	1.0	1.0	1.0	90.0	Green nouse mode"	2.0
693	855,923	1,446,841	810.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
	0				0	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
694	855,897	1,446,808	810.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
695	855,853	1,446,826	807.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
696	855,804	1.446.824	808.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
697	855 781	1 446 920	806.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
698	855 736	1 446 842	809.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
600	855 715	1 116 031	805.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
700	055,715	1,440,751	003.2	1.0	1.0	1.0	^{90.0}	"Creen house mode"	2.0
700	055,005	1,440,000	004.2	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
701	000,047	1,440,930	002.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
702	855,609	1,446,923	801.7	1.0	1.0	1.0	90.0	Green house mode	2.0
703	855,551	1,446,911	802.3	1.0	1.0	1.0	90.0	Green nouse mode	2.0
704	855,649	1,447,015	800.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
/05	855,585	1,447,040	801.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
/06	855,611	1,447,082	799.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
707	855,653	1,447,050	802.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
708	855,668	1,447,107	803.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
709	855,680	1,447,164	802.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
710	855,653	1,447,179	804.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
711	855,643	1,447,154	805.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
712	855,809	1,447,281	801.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
713	855,874	1,447,299	799.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
714	855,696	1,447,284	805.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
715	855,492	1.447.001	801.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
716	855,470	1,446,963	796.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
717	855 464	1 446 963	796.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
718	855 166	1 117 018	798.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
710	855 128	1 1 1 6 967	793.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
720	055,420	1 446 076	702.0	1.0	1.0	1.0	00.0	"Groop bouso modo"	2.0
720	000,070	1,440,970	793.9	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
721	000,000	1,440,903	790.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
722	800,340	1,440,992	799.4	1.0	1.0	1.0	90.0	Green nouse mode	2.0
723	855,315	1,446,988	802.8	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
724	855,355	1,447,048	798.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
/25	855,304	1,447,071	/9/.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
726	855,197	1,447,051	795.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
727	855,160	1,446,919	792.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
728	855,162	1,446,877	792.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
729	855,174	1,446,838	793.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
730	855,120	1,447,077	794.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
731	855,086	1,447,061	794.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
732	855,034	1,447,093	794.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
733	855,029	1,447,134	794.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
734	855,003	1,447,142	793.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
735	854,942	1,447,162	793.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
736	854,859	1,447,132	789.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
737	854,759	1.447.152	795.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
738	854,761	1.447.199	795.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
739	854 719	1 447 163	793.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
740	85/ 681	1 1 1 7 171	788 5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
740	054,001	1,447,174	700.5	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
741	054,050	1,447,104	704.9	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
742	004,000	1,447,130	700.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
743	804,010	1,447,194	103.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
744	854,619	1,447,227	118.3	1.0	1.0	1.0	90.0	Green nouse mode	2.0
745	854,592	1,447,244	/81.6	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
/46	854,/13	1,44/,036	/84.9	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
/47	854,726	1,446,990	/86.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
748	854,627	1,446,953	787.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
749	854,697	1,446,834	790.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
750	854,508	1,446,885	784.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
751	854,455	1,447,032	783.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
752	854,483	1,447,084	783.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
753	854,552	1,447.248	778.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
754	854.541	1,447.262	778.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
755	854,474	1,447,218	779.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
						a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
756	854,429	1,447,249	783.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
757	854,447	1,447,282	780.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
758	854,377	1,447,296	785.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
759	854,349	1,447,247	782.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
760	854,360	1,447,293	785.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
761	854,401	1,447,294	785.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
762	854,296	1,447,275	783.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
763	854,249	1,447,277	780.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
764	854,361	1,447,344	786.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
765	854,395	1,447,338	784.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
766	854,479	1,447,346	780.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
767	854,580	1,447,361	786.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
768	854,631	1,447,346	784.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
769	854,257	1,447,325	779.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
770	854,246	1,447,272	780.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
771	854,234	1,447,320	779.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
772	854,126	1,447,322	778.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
773	854,117	1,447,285	780.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
774	854,083	1,447,281	781.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
775	854,027	1,447,269	778.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
776	853,942	1,447,319	775.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
777	853,913	1,447,282	779.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
778	853,853	1,447,279	777.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
779	853,614	1,447,307	774.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
780	853,767	1,447,275	774.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
781	853,515	1,447,318	770.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
782	853,375	1,447,298	768.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
783	853,434	1,447,317	770.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
784	853,398	1,447,226	770.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
785	853,250	1,447,218	768.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
786	853,220	1,447,211	769.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
787	853,222	1,447,246	767.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
788	853,110	1,447,187	762.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
789	853,035	1,447,203	761.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
790	852,900	1,447,129	761.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
791	852,865	1,447,105	758.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
792	852,844	1,447,103	756.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
793	852,834	1,447,094	756.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
794	852,833	1,447,149	756.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
795	852,807	1,447,085	757.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
796	852,776	1,447,121	756.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
797	852,734	1,447,117	757.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
798	852,741	1,447,059	753.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
799	852,708	1,447,050	750.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
800	852,699	1,447,100	755.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
801	852,647	1,447,088	749.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
802	852,651	1,447,025	749.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
803	852,650	1,446,975	747.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
804	852,621	1,447,069	748.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
805	852,631	1,447,074	748.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
806	852,639	1,447,185	750.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
807	852,568	1,447,068	750.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
808	852,542	1,447,029	750.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
809	852,520	1,447,034	747.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
810	852,515	1,446,979	748.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
811	852,553	1,446,983	752.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
812	851,439	1,450,741	800.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
813	851,481	1,450,757	801.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
814	851,500	1,450,763	801.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
815	851,576	1,450,791	803.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
816	851,484	1,450,473	779.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
817	851,431	1,450,464	778.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No.	Easting	Northing	Ž	Width	Height	Elevation	Slope of	Direction mode	Eye height
						a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
818	851,520	1,450,352	784.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
819	851,559	1,450,447	777.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
820	852,488	1,446,992	744.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
821	852,436	1,446,960	743.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
822	852,405	1,446,995	742.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
823	852,376	1,446,990	744.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
824	852,423	1,447,039	738.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
825	852,381	1,447,042	739.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
826	852,322	1,447,007	742.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
827	852,348	1,447,002	742.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
828	852,357	1,447,098	737.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
829	852,332	1,447,104	738.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
830	852,327	1,447,054	742.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
831	852,268	1,447,064	742.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
832	852,265	1,447,016	745.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
833	852,337	1,446,935	745.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
834	852,324	1,446,944	745.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
835	852,327	1,446,953	745.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
836	852,270	1,446,897	742.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
837	852,306	1,446,900	743.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
838	852,338	1,446,897	744.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
839	852,364	1,446,897	746.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
840	852,398	1,446,889	749.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
841	852,441	1,446,885	748.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
842	852,428	1,446,934	746.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
843	852,389	1,446,929	748.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
844	852,478	1,446,913	747.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
845	852,533	1,446,894	746.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
846	852,462	1,447,143	738.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
847	852,498	1,447,128	742.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
848	852,498	1,447,128	742.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
849	852,597	1,447,177	748.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
850	852,641	1,447,216	748.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
851	852,512	1,447,186	743.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
852	852,546	1,447,191	745.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
853	852,535	1,447,244	738.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
854	852,546	1,447,297	736.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
855	852,467	1,447,251	736.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
856	852,409	1,447,216	730.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
857	852,391	1,447,259	728.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
858	852,351	1,447,266	723.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
859	852,339	1,447,159	730.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
860	852,328	1,447,183	728.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
861	852,285	1,447,219	727.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
862	852,291	1,447,277	725.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
863	852,217	1,447,290	726.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
864	852,215	1,447,225	731.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
865	852,234	1,447,172	734.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
866	852,220	1,447,169	/35.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
867	852,237	1,447,137	/38./	1.0	1.0	1.0	90.0	"Green house mode"	2.0
868	852,246	1,447,109	/40.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
869	852,274	1,447,123	/3/.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
870	852,298	1,447,121	/36.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
8/1	852,212	1,447,068	/43.4	1.0	1.0	1.0	90.0	Green house mode"	2.0
8/2	852,226	1,447,064	/43./	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
8/3	852,182	1,447,068	743.4	1.0	1.0	1.0	90.0	Green nouse mode"	2.0
8/4	852,134	1,447,035	/45.4	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
8/5	852,067	1,447,048	742.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
8/6	852,085	1,447,094	742.3	1.0	1.0	1.0	90.0	Green house mode"	2.0
8//	852,059	1,447,150	139.6	1.0	1.0	1.0	90.0	Green house mode"	2.0
8/8	852,088	1,447,138	/39.5	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
879	852,099	1,447,166	/36.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
						a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
880	852,120	1,447,192	734.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
881	852,133	1,447,198	734.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
882	852,130	1,447,231	731.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
883	851,988	1,447,166	743.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
884	851,976	1,447,212	738.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
885	851,938	1,447,213	739.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
886	852,065	1,447,205	734.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
887	851,965	1,447,141	745.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
888	851,882	1,447,138	744.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
889	851,920	1,447,109	745.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
890	851,937	1,447,100	745.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
891	851,963	1,447,104	746.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
892	851,976	1,447,114	746.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
893	851,986	1,447,113	746.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
894	852,009	1,447,099	744.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
895	852,024	1,447,107	744.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
896	852,039	1,447,102	743.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
897	852,020	1,447,044	741.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
898	851,979	1,447,053	743.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
899	851,968	1,447,033	743.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
900	851,873	1,447,070	743.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
901	852,030	1,447,038	741.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
902	852,191	1,447,018	744.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
903	852,248	1,447,024	745.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
904	852,239	1,446,964	744.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
905	852,162	1,446,919	741.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
906	852,115	1,446,970	743.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
907	852,070	1,446,966	742.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
908	852,054	1,446,998	742.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
909	852,060	1,447,002	742.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
910	852,065	1,446,994	742.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
911	852,029	1,446,992	741.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
912	852,027	1,446,943	742.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
913	851,979	1,446,952	743.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
914	851,949	1,446,908	738.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
915	852,014	1,446,898	739.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
916	851,866	1,446,954	736.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
917	851,855	1,446,915	733.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
918	851,843	1,446,913	732.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
919	851,915	1,446,849	729.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
920	851,911	1,446,915	738.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
921	851,943	1,446,851	730.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
922	852,065	1,446,833	736.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
923	852,082	1,446,798	739.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
924	852,009	1,446,764	734.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
925	852,002	1,446,697	737.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
926	852,059	1,446,738	743.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
927	852,077	1,446,698	748.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
928	852,117	1,446,682	751.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
929	852,151	1,446,688	752.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
930	852,175	1,446,680	752.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
931	852,220	1,446,730	750.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
932	852,228	1,446,720	750.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
933	852,164	1,446,729	748.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
934	852,129	1,446,736	747.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
935	852,153	1,446,773	744.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
936	852,183	1,446,855	743.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
937	852,234	1,446,856	747.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
938	852,223	1,446,848	147.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
939	852,209	1,446,806	744.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
940	852,236	1,446,763	/50.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
941	852,266	1,446,734	749.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No.	Easting	Northing	Ž	Width	Height	Elevation	Slope of	Direction mode	Eye height
	-	-			-	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
942	852,303	1,446,687	748.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
943	852,321	1,446,795	748.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
944	852,339	1,446,844	747.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
945	852,472	1,446,869	746.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
946	851,927	1,447,066	745.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
947	852,582	1,446,980	751.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
948	852,568	1,447,007	751.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
949	852,614	1,447,010	749.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
950	852,638	1,447,096	749.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
951	852,623	1,447,107	748.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
952	852,732	1,447,077	755.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
953	851,257	1,446,295	712.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
954	851,231	1,446,289	717.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
955	851,191	1,446,284	724.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
956	851,173	1,446,281	724.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
957	851,165	1,446,331	722.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
958	851,184	1,446,335	722.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
959	851,200	1,446,330	721.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
960	851,221	1,446,333	719.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
961	851,249	1,446,332	715.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
962	851,266	1,446,398	719.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
963	851,231	1,446,378	719.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
964	851,197	1,446,376	720.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
965	851,165	1,446,371	723.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
966	851,195	1,446,419	720.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
967	851,232	1,446,426	720.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
968	851,256	1,446,430	719.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
969	851,254	1,446,138	718.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
970	851,208	1,446,121	724.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
971	851,209	1,446,049	725.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
972	851,483	1,446,797	708.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
973	851,460	1,446,789	706.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
974	851,446	1,446,771	705.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
975	851,481	1,446,753	706.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
976	851,465	1,446,867	707.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
977	851,222	1,446,704	717.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
978	851,187	1,446,677	727.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
979	851,148	1,446,695	727.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
980	850,994	1,446,753	729.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
981	850,972	1,446,762	730.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
982	851,028	1,446,779	724.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
983	850,874	1,446,794	726.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
984	850,832	1,446,809	722.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
985	850,767	1,446,810	726.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
986	850,717	1,446,858	725.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
987	850,674	1,446,829	733.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
988	850,645	1,446,833	734.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
989	850,619	1,446,869	732.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
990	850,920	1,446,964	711.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
991	850,571	1,446,839	736.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
992	850,460	1,446,873	738.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
993	850,381	1,446,911	738.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
994	850,372	1,446,912	738.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
995	850,375	1,446,953	736.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
996	850,368	1,446,948	737.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
997	850,586	1,447,064	729.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
998	850,574	1,447,043	727.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
999	850,629	1,447,089	728.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1000	850,981	1,447,343	729.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1001	850,946	1,447,359	728.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1002	850,915	1,447,425	731.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1003	851,350	1,447,490	726.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No.	Easting	Northing	Ż	Width	Height	Elevation	Slope of	Direction mode	Eye height
	Ū	0			0	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
1004	852,663	1,443,677	715.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1005	852,664	1,443,628	714.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1006	852,634	1,443,631	712.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1007	852,646	1,443,594	717.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1008	852,601	1,443,620	709.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1009	852,763	1,443,803	706.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1010	852,745	1,443,790	707.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1011	852,570	1,443,927	702.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1012	854,043	1,453,014	740.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1013	854,608	1,453,051	751.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1014	856,571	1,451,591	807.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1015	856,184	1,451,365	782.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1016	855,698	1,451,408	810.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1017	851,226	1,451,726	788.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1018	851,383	1,451,819	784.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1019	851,433	1,451,783	778.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1020	852.052	1.450.571	779.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1021	852.016	1,450,316	767.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1022	852,302	1,449,693	772.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1023	852.214	1,449,498	770.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1024	852,608	1,449,780	773.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1025	852 674	1 449 656	766.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1026	853,463	1,449,552	785.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1020	853 469	1 449 520	782.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1029	853 443	1 449 514	782.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1020	853 512	1 449 390	768.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1027	853 530	1 449 196	756.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1030	853 565	1 449 152	752.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1031	853 574	1 // 0 230	754 7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1032	853 625	1 // 0 202	760 1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1033	855 724	1 / / 9 0 / 5	762.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1034	855 771	1 //8 021	775 5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1033	855 813	1,440,721	780.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1030	855 8/1	1 // 8 873	781.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1037	855 885	1 // 8 857	775 7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1030	856 001	1 448 765	776 1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1037	856 026	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	776.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1040	851 324	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	772.2	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
1041	851 366	1 1 1 1 5 1 1 2	725.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1042	851 262	1,445,145	725.0	1.0	1.0	1.0	00.0	"Green house mode"	2.0
1043	851 212	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	723.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1044	Q51 202	1 445 040	720.5	1.0	1.0	1.0	00.0	"Green house mode"	2.0
1043	851 /67	1,445,047	712.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1040	851 500	1 115 089	710.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1047	Q51 272	1,445,007	776.7	1.0	1.0	1.0	00.0	"Green house mode"	2.0
1040	Q51 073	1,445,245	720.7	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
1050	850 008	1,443,272	720.0	1.0	1.0	1.0	00.0	"Green house mode"	2.0
1050	851 030	1 /// 977	700.7	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
1051	951,030 951 247	1 /// 222	704.5	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
1052	051,247	1,444,000	704.0	1.0	1.0	1.0	90.0 00.0	"Croon house mode"	2.0
1053	051,200	1,444,071	703.2	1.0	1.0	1.0	90.0	"Croop house mode"	2.0
1054	051,057	1,444,027	717.6	1.0	1.0	1.0	90.0 00.0	"Croon house mode"	2.0
1055	051,005	1,444,033	712.0	1.0	1.0	1.0	90.0 00.0	"Croon house mode"	2.0
1050	8/8 774	1 /// 0/0	750.2	1.0	1.0	1.0	90.0 QA A	"Green house mode"	2.0
1057	Q/Q 714	1 111 040	759.0	1.0	1.0	1.0	90.0 00 0	"Green house mode"	2.0
1000	040,710	1 1 1 1 0 0	750.3	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
1009	040,700	1 1 1 1 047	701.2	1.0	1.0	1.0	70.0 00.0	"Groop house mode"	2.0
1000	040,073	1 / / / 207	700.3	1.0	1.0	1.0	70.0 00.0	"Groop house mode"	2.0
1001	040,/01 0/0 104	1,444,327	/4∠.0 770 /	1.0	1.0	1.0	90.0 00 0	"Green house mode"	2.U 2.0
1002	047,134	1,440,030	110.4 774 4	1.0	1.0	1.0	90.0	"Groop bouse mode"	2.0
1003	047,113 0/0 110	1,440,030	775 2	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.U 2.0
1004	8/0 1/F	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	77/0	1.0	1.0	1.0	90.0 Q0 0	"Green house mode"	2.0
1000	047,140	1,440,770	114.7	1.0	1.0	1.0	70.0		2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
	-	_			-	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
1066	849,244	1,446,811	772.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1067	849,271	1,446,808	770.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1068	849,256	1,446,788	769.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1069	849 238	1 446 774	770.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1070	849 242	1 446 724	769.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1071	849 239	1 446 696	767.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1071	Q/Q 221	1,440,070		1.0	1.0	1.0	00.0	"Green house mode"	2.0
1072	Q10 221	1,440,717	766.6	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
1075	047,234	1,440,000	760.0	1.0	1.0	1.0	90.0 00.0	"Creen house mode"	2.0
1074	049,220	1,440,003	704.7	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1075	049,233	1,440,049	704.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
10/6	0 849,221	1,440,032	761.4	1.0	1.0	1.0	90.0	Green nouse mode	2.0
1077	849,215	1,446,618	760.7	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1078	849,223	1,446,602	762.0	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1079	849,277	1,446,729	764.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1080	849,289	1,446,733	/64.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1081	849,332	1,446,737	762.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1082	849,373	1,446,725	757.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1083	849,407	1,446,742	752.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1084	849,278	1,446,666	764.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1085	849,296	1,446,666	764.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1086	849,313	1,446,689	764.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1087	849,347	1,446,688	763.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1088	849,359	1,446,689	761.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1089	849,356	1,446,683	762.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1090	849,357	1,446,662	762.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1091	849,340	1,446,659	763.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1092	849,425	1,446,677	750.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1093	849,394	1,446,725	755.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1094	849,435	1,446,618	751.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1095	849,388	1,446,616	758.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1096	849.315	1,446,621	762.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1097	849 294	1 446 614	763 5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1098	849,280	1,446,620	764.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1090	849 264	1 446 612	764 1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1100	8/9///7	1 446 570	751 5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1100	8/0 205	1,440,570	758.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1101	047,373	1,440,500	765 2	1.0	1.0	1.0	90.0 00.0	"Croon house mode"	2.0
1102	2 2/0 222	1,440,579	765 1	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
1100	049,203	1,440,570	763.1	1.0	1.0	1.0	90.0 00.0	"Croon house mode"	2.0
1104	047,217	1,440,372	762.2	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1100	049,219	1,440,372	703.9	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1100	049,217	1,440,000	700.1	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1107	849,215	1,440,530	700.U	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1100	049,200	1,440,300	700.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1109	049,208	1,440,494	703.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1110	0 49,203	1,446,469	/59./	1.0	1.0	1.0	90.0	Green nouse mode	2.0
	849,197	1,446,451	/5/.0	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1112	849,194	1,446,427	/5/.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1113	849,196	1,446,413	757.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1114	849,196	1,446,399	757.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1115	849,202	1,446,377	758.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1116	849,131	1,446,355	754.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1117	849,105	1,446,334	753.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1118	849,181	1,446,356	758.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1119	849,201	1,446,353	758.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1120	849,221	1,446,357	758.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1121	849,238	1,446,351	759.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1122	849,245	1,446,383	759.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1123	849,261	1,446,400	760.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1124	849,292	1,446,393	759.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1125	849,304	1,446,380	758.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1126	849,256	1,446,353	759.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1127	849,280	1,446,321	756.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No.	Easting	Northing	Ż	Width	Height	Elevation	Slope of	Direction mode	Eye height
	0	Ū			0	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
1128	849,336	1,446,379	756.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1129	849,348	1,446,378	755.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1130	849,378	1,446,396	753.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1131	849,385	1,446,417	753.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1132	849,437	1,446,382	746.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1133	849,414	1,446,338	746.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1134	849,432	1,446,334	744.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1135	849,523	1,446,336	733.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1136	849,907	1,446,396	758.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1137	849,852	1,446,376	756.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1138	849,837	1,446,430	752.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1139	849,833	1,446,473	749.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1140	849,868	1,446,466	751.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1141	849,892	1,446,260	760.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1142	849,908	1,446,211	759.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1143	850,421	1,445,826	737.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1144	850,516	1,445,836	736.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1145	850,626	1,445,617	736.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1146	850,686	1,445,672	737.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1147	850,700	1,445,535	731.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1148	850,707	1,445,639	734.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1149	850,614	1,445,514	738.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1150	850,716	1,445,403	732.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1151	849,179	1,446,333	757.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1152	849,185	1,446,305	757.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1153	849,187	1,446,282	756.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1154	849,177	1,446,196	752.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1155	849,186	1,446,257	755.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1156	849,219	1,446,282	756.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1157	849,286	1,446,238	752.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1158	849,310	1,446,282	752.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1159	849,324	1,446,223	747.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1160	849,329	1,446,176	742.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1161	849,259	1,446,187	749.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1162	849,181	1,446,233	754.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1163	849,197	1,446,243	753.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1164	849,182	1,446,267	755.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1165	849,195	1,446,271	755.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1166	849,352	1,446,264	749.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1167	849,427	1,446,289	742.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1168	849,401	1,446,189	742.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1169	849,157	1,446,169	/51.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
11/0	849,157	1,446,149	751.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
11/1	849,165	1,446,130	/50./	1.0	1.0	1.0	90.0	"Green house mode"	2.0
11/2	849,168	1,446,111	/50.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
11/3	849,169	1,446,093	/51.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
11/4	849,155	1,446,080	/52./	1.0	1.0	1.0	90.0	"Green house mode"	2.0
11/5	849,144	1,446,054	/55.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
11/0	849,160	1,446,028	758.3	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1170	849,148	1,446,013	758.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1170	049,159	1,445,998	760.5	1.0	1.0	1.0	90.0	Green house mode	2.0
11/5	049,152	1,445,966	762.4	1.0	1.0	1.0	90.0	Green house mode	2.0
1101	047,105	1,440,014	109.9	1.0	1.0	1.0	90.0	"Groop bouse mode"	2.0
1101	047,101	1,440,015	761 1	1.0	1.0	1.0	90.0	"Groop bouse mode"	2.0
1102	049,199	1,440,UI/	/01.1 760 7	1.0	1.0	1.0	90.0	"Groop bouse mode"	2.0
1103	047,223	1,440,UII	7610	1.0	1.0	1.0	90.0	"Groop bouse mode"	2.0
1104	047,173	1,440,942	104.0 761 /	1.0	1.0	1.0	90.0	"Groop bouse mode"	2.0
1100	047,107 0/0 001	1,440,098 1 //F 004	757 0	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
1100	047,221	1,440,090	101.9	1.0	1.0	1.0	90.0	"Groop house mode"	2.0
110/	047,217	1,440,925	755 0	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
1100	047,213	1 //5 022	752.0	1.0	1.0	1.0	90.0 Q0 0	"Green house mode"	2.0
1107	UT7,200	1,740,700	1 J Z . 1	1.0	1.0	1.0	70.0	SICCI HOUSE HOUE	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
						a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
1190	849,454	1,445,987	739.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1191	849,383	1,446,096	739.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1192	849,340	1,446,117	740.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1193	849,427	1,446,117	734.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1194	849,386	1,446,030	741.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1195	849,393	1,446,001	743.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1196	849,386	1,445,956	741.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1197	849,443	1,445,922	735.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1198	849,303	1,445,872	747.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1199	849,335	1,445,870	745.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1200	849,316	1,445,892	/4/.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1201	849,345	1,445,824	746.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1202	849,190	1,445,811	759.0	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1203	849,198	1,445,827	/58.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1204	849,158	1,445,812	760.8	1.0	1.0	1.0	90.0	Green house mode	2.0
1205	849,128	1,445,821	760.1	1.0	1.0	1.0	90.0	Green house mode	2.0
1200	849,130	1,445,812	760.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1207	049,134	1,440,007	108.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1208	049,179	1,445,701	762.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1209	049,109	1,440,722	757.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1210	849,230	1,445,719	/00.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1211	049,230	1,440,090	757.1	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1212	049,224	1,440,002	750.9	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1213	049,210	1,440,040	757.7	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1214	Q/Q 170	1 1 1 5 662	761.5	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
1215	Q/Q 165	1 1 1 5 611	767.9	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
1210	Q/Q 12/	1 1 1 5 627	767.0	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
1217	8/0 1/2	1 1 1 5 672	765.3	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
1210	8/0 120	1 1 1 5 605	767.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1217	849 118	1 445 731	763.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1220	849 159	1 445 729	763.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1222	849,162	1,445,747	761.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1223	849,153	1,445,759	762.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1224	849,112	1,445,586	765.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1225	849,129	1,445,582	766.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1226	849,133	1,445,538	765.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1227	849,132	1,445,556	765.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1228	848,938	1,445,593	757.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1229	848,951	1,445,563	759.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1230	848,975	1,445,466	760.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1231	848,950	1,445,433	756.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1232	849,072	1,445,269	763.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1233	849,079	1,445,282	763.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1234	849,068	1,445,283	763.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1235	849,074	1,445,290	763.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1236	849,064	1,445,300	763.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1237	849,157	1,445,244	760.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1238	849,097	1,445,352	764.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1239	849,152	1,445,365	757.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1240	849,143	1,445,368	758.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1241	849,160	1,445,366	756.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1242	849,187	1,445,368	755.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1243	849,202	1,445,363	757.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1244	849,218	1,445,370	757.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1245	849,227	1,445,371	757.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1246	849,223	1,445,401	757.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1247	849,201	1,445,398	757.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1248	849,187	1,445,398	756.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1249	849,172	1,445,402	756.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1250	849,257	1,445,378	755.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1251	849,252	1,445,394	755.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No.	Easting	Northing	Ž	Width	Height	Elevation	Slope of	Direction mode	Eye height
	-	-			-	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
1252	849,249	1,445,414	754.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1253	849,233	1,445,299	761.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1254	849,223	1,445,299	760.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1255	849,216	1.445.305	759.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1256	849,210	1.445.310	759.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1257	849,198	1,445,308	758.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1258	849 193	1 445 308	757 5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1250	849 180	1 445 301	756.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1260	8/9 160	1 1 1 1 5 3 1 3	758 1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1200	Q/Q 1/2	1,445,515	760.1	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
1201	047,142	1,445,514	766.2	1.0	1.0	1.0	90.0 00.0	"Groop bouso modo"	2.0
1202	049,203	1,445,450	750.5	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1203	049,197	1,443,430	750.5	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1204	049,103	1,443,440	750.7	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1205	849,155	1,445,459	151.3	1.0	1.0	1.0	90.0	Green house mode	2.0
1200	849,218	1,445,445	750.0	1.0	1.0	1.0	90.0	Green house mode	2.0
1267	849,262	1,445,478	752.1	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1268	849,261	1,445,460	/52.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1269	849,265	1,445,453	/52./	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1270	849,258	1,445,430	753.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1271	849,265	1,445,437	753.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1272	849,274	1,445,356	754.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1273	849,207	1,445,548	757.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1274	849,218	1,445,530	755.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1275	849,232	1,445,551	755.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1276	849,222	1,445,486	755.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1277	849,209	1,445,500	755.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1278	849,191	1,445,486	756.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1279	849,319	1,445,542	744.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1280	849,384	1,445,629	738.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1281	849,382	1,445,650	739.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1282	849,259	1,445,778	756.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1283	849 346	1 445 754	747.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1284	849 344	1 445 735	747 1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1285	849 385	1 445 767	739.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1200	Q10 202	1 445 803	740.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1200	8/0 /10	1 115 809	736.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1207	Q10 120	1 445 767	730.0	1.0	1.0	1.0	00.0	"Green house mode"	2.0
1200	049,420	1,445,707	734.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1207	049,440	1,445,700	733.7	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1290	047,477	1,445,777	734.1	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1291	849,401	1,445,815	130.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1292	849,440	1,445,099	732.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1293	849,433	1,445,700	133.2	1.0	1.0	1.0	90.0	Green house mode	2.0
1294	849,423	1,445,085	734.3	1.0	1.0	1.0	90.0	Green house mode	2.0
1295	849,337	1,445,693	745.5	1.0	1.0	1.0	90.0	Green house mode	2.0
1296	849,307	1,445,696	749.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1297	849,341	1,445,649	743.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1298	849,335	1,445,638	743.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1299	849,355	1,445,624	741.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1300	849,387	1,445,589	737.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1301	849,315	1,445,211	765.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1302	849,127	1,445,397	758.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1303	849,122	1,445,412	758.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1304	849,115	1,445,426	758.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1305	849,108	1,445,472	759.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1306	849,110	1,445,506	762.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1307	849,061	1,446,035	757.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1308	849,161	1,445,149	760.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1309	849,195	1,445,115	763.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1310	849,253	1,445,122	765.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1311	849.256	1,445,181	764.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1312	849,205	1,445.207	762.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1313	849,237	1,445.013	767.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
		Ū			0	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
1314	849,226	1,444,904	756.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1315	849,233	1,444,845	748.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1316	849,192	1.444.985	762.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1317	849 189	1 445 008	763 5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1318	849 143	1 445 025	762.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1310	8/0 121	1 1 1 1 5 0 3 3	762.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1220	047,121	1,443,033	703.7	1.0	1.0	1.0	90.0 00.0	"Creen house mode"	2.0
1220	049,104	1,444,901	757.5	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1222	049,140	1,444,972	757.9	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1322	849,118	1,444,978	757.8	1.0	1.0	1.0	90.0	Green house mode	2.0
1323	849,079	1,445,002	/58.8	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1324	848,850	1,445,008	/58.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1325	848,700	1,444,925	768.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1326	848,633	1,444,930	766.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1327	848,667	1,444,975	765.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1328	848,611	1,444,969	766.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1329	848,808	1,444,838	758.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1330	848,717	1,444,776	750.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1331	848,850	1,444,775	752.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1332	848,861	1,444,868	764.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1333	848,920	1,444,928	764.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1334	848.970	1.444.955	762.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1335	848 946	1 444 966	764 1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1336	848 953	1 444 976	763.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1337	848 974	1 444 984	762.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1220	8/8 086	1 1 1 1 8 36	756 1	1.0	1.0	1.0	00.0	"Green house mode"	2.0
1220	Q/Q 227	1,444,030	765.8	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
1240	047,237	1,445,070	703.0	1.0	1.0	1.0	90.0 00.0	"Creen house mode"	2.0
12/1	049,109	1,443,202	702.1	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1341	040,710	1,444,399	747.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1342	848,070	1,444,422	152.1	1.0	1.0	1.0	90.0	Green house mode	2.0
1343	848,649	1,444,427	759.6	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1344	848,639	1,444,443	761.4	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1345	848,581	1,444,527	/55.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1346	848,558	1,444,870	/65.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1347	848,525	1,444,904	766.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1348	848,488	1,444,870	762.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1349	848,455	1,444,850	761.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1350	848,462	1,444,807	760.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1351	848,303	1,444,534	759.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1352	848,260	1,444,506	753.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1353	848,307	1,444,485	765.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1354	848,321	1,444,465	769.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1355	848,318	1,444,451	770.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1356	848,312	1,444,438	769.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1357	848,311	1,444,430	768.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1358	848.314	1.444.413	768.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1359	848.318	1,444,389	767.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1360	848 315	1 444 365	765.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1361	8/8 316	1 111 351	765.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1362	8/8 320	1 1 1 1 2 2 6	767.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1262	040,320	1,444,520	767.0	1.0	1.0	1.0	90.0 00.0	"Croon house mode"	2.0
1000	040,324	1,444,313	707.3	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1304	040,300	1,444,200	767.2	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1305	848,328	1,444,265	763.0	1.0	1.0	1.0	90.0	Green nouse mode	2.0
1366	848,362	1,444,287	/05.0	1.0	1.0	1.0	90.0	Green nouse mode"	2.0
136/	848,356	1,444,306	/64.6	1.0	1.0	1.0	90.0	Green nouse mode"	2.0
1368	848,353	1,444,330	764.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1369	848,386	1,444,345	766.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1370	848,397	1,444,360	767.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1371	848,402	1,444,314	769.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1372	848,410	1,444,300	771.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1373	848,404	1,444,282	772.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1374	848,468	1,444,356	770.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1375	848,455	1,444,465	766.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
						a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
1376	848,458	1,444,554	760.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1377	848,452	1,444,569	758.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1378	848,488	1,444,248	771.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1379	848,271	1,444,448	757.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1380	848,273	1,444,409	757.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1381	848,272	1,444,382	759.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1382	848,285	1,444,328	767.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1383	848,283	1,444,310	768.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1384	848,506	1,444,126	769.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1385	848,485	1,444,123	771.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1386	848,488	1,444,080	768.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1387	848,472	1,444,087	769.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1388	848,459	1,444,113	770.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1389	848 441	1 444 117	768.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1390	848 423	1 444 120	766.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1301	848 402	1 444 125	765.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1307	8/8 305	1 /// 110	765.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1372	8/8 373	1 /// 121	765.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
120/	848 350	1,444,121	766 1	1.0	1.0	1.0	00.0	"Green house mode"	2.0
1305	8/8/150	1 /// 161	768.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1375	8/8/326	1,444,101	767.1	1.0	1.0	1.0	00.0	"Green house mode"	2.0
1370	040,430	1,444,100	707.1	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1397	040,427	1,444,104	707.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1370	040,434	1,444,104	101.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1399	040,410	1,444,100	/0/.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1400	848,411	1,444,105	/0/.1	1.0	1.0	1.0	90.0	Green house mode	2.0
1401	848,402	1,444,103	101.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1402	040,392	1,444,100	767.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1403	848,380	1,444,170	/08.0	1.0	1.0	1.0	90.0	Green house mode	2.0
1404	848,378	1,444,101	707.9	1.0	1.0	1.0	90.0	Green nouse mode	2.0
1405	848,373	1,444,163	768.2	1.0	1.0	1.0	90.0	Green nouse mode	2.0
1406	848,362	1,444,162	768.5	1.0	1.0	1.0	90.0	Green nouse mode	2.0
1407	848,353	1,444,161	768.8	1.0	1.0	1.0	90.0	Green nouse mode	2.0
1408	848,348	1,444,166	769.0	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1409	848,337	1,444,164	769.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1410	848,326	1,444,158	/68./	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1411	848,315	1,444,159	768.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1412	848,304	1,444,156	/68./	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1413	848,343	1,444,123	/65.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1414	848,333	1,444,128	/66.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1415	848,299	1,444,122	765.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1416	848,292	1,444,122	766.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1417	848,278	1,444,126	765.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1418	848,267	1,444,125	764.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1419	848,252	1,444,125	764.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1420	848,241	1,444,127	765.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1421	848,232	1,444,123	764.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1422	848,225	1,444,124	765.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1423	848,221	1,444,125	765.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1424	848,200	1,444,129	766.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1425	848,179	1,444,115	765.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1426	848,150	1,444,124	766.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1427	848,163	1,444,119	766.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1428	848,186	1,444,130	767.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1429	848,281	1,444,173	768.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1430	848,267	1,444,174	767.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1431	848,259	1,444,167	768.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1432	848,251	1,444,159	768.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1433	848,236	1,444,164	768.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1434	848,227	1,444,164	769.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1435	848,222	1,444,158	769.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1436	848,217	1,444,161	769.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1437	848,206	1,444,158	769.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No.	Easting	Northing	Ż	Width	Height	Elevation	Slope of	Direction mode	Eye height
	Ū	0			0	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
1438	848,199	1,444,159	769.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1439	848,194	1,444,161	769.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1440	848,186	1,444,156	769.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1441	848,177	1,444,158	769.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1442	848,161	1,444,163	768.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1443	848,143	1,444,163	767.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1444	848,117	1,444,152	764.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1445	848,106	1,444,158	762.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1446	848,112	1,444,098	763.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1447	848,137	1,444,125	766.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1448	848,099	1,444,121	762.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1449	848,075	1,444,157	758.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1450	847,997	1,444,156	756.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1451	847,877	1.444.114	744.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1452	847,721	1,444,104	758.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1453	847,719	1,444,117	758.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1454	847.678	1.444.100	756.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1455	847,690	1,444,115	758.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1456	847.674	1.444.157	754.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1457	847,645	1,444,149	753.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1458	848,488	1.444.227	771.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1459	848,436	1.444.213	771.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1460	848,424	1.444.243	775.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1461	848,413	1,444,257	776.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1462	848 409	1 444 268	774 6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1463	848.398	1,444,328	768.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1464	848,263	1,444,215	763.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1465	848,269	1,444,225	762.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1466	848,272	1,444,234	762.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1467	848,275	1,444,252	763.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1468	848,286	1,444,154	768.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1469	848,451	1,444,114	769.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1470	848,406	1,444,128	766.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1471	848,495	1,444,071	767.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1472	848.535	1,444,036	766.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1473	848.550	1,444,030	766.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1474	848.563	1,444,017	765.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1475	848.602	1,444,001	762.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1476	848,585	1,443,998	762.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1477	848,590	1,444,002	763.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1478	848.624	1,443,985	759.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1479	848.639	1,443,989	761.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1480	848,631	1,443,967	757.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1481	848,642	1,443,957	757.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1482	848.668	1,443,946	761.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1483	848,713	1,443,933	766.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1484	848,737	1,443,941	768.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1485	848,732	1,443,922	767.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1486	848.771	1.443.920	766.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1487	848,762	1,443,935	767.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1488	848,768	1,443,893	761.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1489	848,775	1,443,890	761.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1490	848 747	1 443 889	760 1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1491	847.321	1,444,176	731.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1492	847.322	1.444.188	731.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1493	847,312	1,444,203	729.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1494	847 305	1.444.213	727.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1495	847,271	1.444.240	723.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1496	847,248	1,444,262	720.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1497	847.240	1.444.264	719.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1498	847.217	1,444.273	718.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1499	847,190	1,444.223	712.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No.	Easting	Northing	Ż	Width	Height	Elevation	Slope of	Direction mode	Eye height
		0			0	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
1500	847,234	1,444,162	711.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1501	847,156	1,444,278	708.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1502	847,138	1,444,288	703.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1503	847,097	1,444,280	697.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1504	847.024	1,444,302	696.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1505	847.014	1.444.291	694.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1506	846,995	1,444,308	696.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1507	847 005	1 444 244	689.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1508	846 980	1 444 261	689.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1500	847 066	1 444 247	694.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1510	8/6 010	1 /// 218	601 7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1510	Q16 Q10	1 /// 268	60/ 0	1.0	1.0	1.0	00.0	"Green house mode"	2.0
1512	8/6 751	1 /// 2/5	695 5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1512	040,751	1 /// 161	720 /	1.0	1.0	1.0	90.0 00.0	"Croon house mode"	2.0
1513	040,311	1,444,101	720.4	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1514	040,301	1,444,170	721.7	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1515	840,203	1,444,214	702.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1510	840,182	1,444,220	/00.4	1.0	1.0	1.0	90.0	Green house mode	2.0
1517	846,162	1,444,206	698.5	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1518	846,219	1,444,263	/03.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1519	846,299	1,444,272	/0/.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1520	846,278	1,444,261	707.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1521	846,268	1,444,264	705.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1522	846,339	1,444,128	716.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1523	846,334	1,444,068	718.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1524	846,289	1,444,056	714.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1525	846,275	1,444,083	711.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1526	846,078	1,444,148	696.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1527	846,063	1,444,142	694.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1528	846,060	1,444,159	695.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1529	846,113	1,444,228	696.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1530	845,926	1,444,252	687.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1531	845,902	1,444,204	689.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1532	845,783	1,444,181	691.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1533	844,815	1,444,973	662.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1534	844.865	1.444.911	660.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1535	844.332	1.445.361	678.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1536	844,263	1,445,323	674.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1537	844,188	1.445.471	667.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1538	844 488	1 445 298	687.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1539	844 086	1 445 411	661.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1540	843 957	1 445 415	650.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1540	8// /13	1 // 2 202	664 7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
15/12	8// /2/	1 1 1 2 3 05	666.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1542	Q11 112	1 //2 212	660.2	1.0	1.0	1.0	00.0	"Green house mode"	2.0
1545	044,443	1,443,312	470.2	1.0	1.0	1.0	90.0 00.0	"Creen house mode"	2.0
1044	044,404	1,443,313	670.3	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1040	044,430	1,443,341	672.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1540	844,472	1,443,319	6/2.0	1.0	1.0	1.0	90.0	Green nouse mode	2.0
1547	844,490	1,443,346	672.0	1.0	1.0	1.0	90.0	Green nouse mode	2.0
1548	844,499	1,443,393	672.9	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1549	844,521	1,443,347	6/4.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1550	844,512	1,443,334	6/3.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1551	844,552	1,443,336	676.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1552	844,580	1,443,350	678.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1553	844,547	1,443,392	677.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1554	844,546	1,443,413	676.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1555	844,513	1,443,408	674.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1556	844,592	1,443,389	678.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1557	844,587	1,443,404	678.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1558	844,585	1,443,409	678.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1559	844,600	1,443,444	677.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1560	844,630	1,443,415	680.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1561	844,616	1,443,383	680.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No.	Easting	Northing	Ż	Width	Height	Elevation	Slope of	Direction mode	Eye height
	Ū	0			0	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
1562	844,635	1,443,359	682.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1563	844,626	1,443,367	681.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1564	844,615	1,443,344	680.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1565	844,687	1,443,367	685.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1566	844,708	1.443.378	685.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1567	844,719	1,443,386	686.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1568	844 735	1 443 386	687 5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1569	844 771	1 443 434	692.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1570	844 745	1 443 444	687.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1570	844 712	1 443 440	684.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1572	Q11 700	1 1 1 2 1 7 5	683.0	1.0	1.0	1.0	00.0	"Green house mode"	2.0
1572	044,722	1 / / 2 / 05	6017	1.0	1.0	1.0	90.0 00.0	"Croop house mode"	2.0
1573	811 750	1 1 1 2 1 7 9	686.3	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
1574	044,750	1,443,470	40E E	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1575	044,709	1,443,492	400.1	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1570	044,702	1,443,301	007.1 405.2	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1577	844,813	1,443,398	095.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
15/8	844,832	1,443,390	696.7	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
15/9	844,857	1,443,400	696.7	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1580	844,860	1,443,400	696.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1581	844,870	1,443,404	696.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1582	844,899	1,443,402	696.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1583	844,869	1,443,382	698.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1584	844,845	1,443,457	690.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1585	844,835	1,443,454	690.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1586	844,836	1,443,484	686.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1587	844,801	1,443,485	686.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1588	844,874	1,443,498	688.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1589	844,876	1,443,507	687.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1590	844,935	1,443,413	697.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1591	844,930	1,443,506	692.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1592	844,958	1,443,522	691.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1593	844,977	1,443,526	692.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1594	844,983	1,443,523	692.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1595	845,003	1,443,527	692.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1596	845.028	1,443,533	690.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1597	845,007	1,443,482	696.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1598	844,961	1,443,419	699.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1599	844,975	1,443,425	699.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1600	844 998	1 443 425	699.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1601	845 016	1 443 419	699.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1602	845 044	1 443 423	699.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1602	845 070	1 443 429	699.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1603	845 049	1 443 534	689.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1605	8/5 0//	1 1 1 2 5 3 7	688.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1605	8/5 081	1 1 1 2 5 2 2	680.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1607	Q/5 151	1,443,332	701 3	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
14007	045,151	1,443,471	701.5	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1600	040,101	1,443,470	701.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1609	045,170	1,443,474	/03.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1010	845,174	1,443,500	699.5	1.0	1.0	1.0	90.0	Green house mode	2.0
1011	845,241	1,443,496	699.2	1.0	1.0	1.0	90.0	Green house mode	2.0
1612	845,251	1,443,499	697.6	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1613	845,265	1,443,501	696.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1614	845,487	1,443,559	689.8	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1615	845,461	1,443,532	691.4	1.0	1.0	1.0	90.0	Green house mode"	2.0
1616	845,535	1,443,548	692.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1617	845,534	1,443,558	691.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1618	845,552	1,443,575	689.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1619	845,591	1,443,575	688.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1620	845,677	1,443,587	691.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1621	845,699	1,443,593	688.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1622	845,783	1,443,652	689.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1623	845,805	1,443,660	690.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No.	Easting	Northing	Ż	Width	Height	Elevation	Slope of	Direction mode	Eye height
	Ū	0			0	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
1624	845,810	1,443,666	690.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1625	845,835	1,443,682	692.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1626	845,845	1,443,700	693.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1627	845,865	1,443,720	695.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1628	845,873	1,443,719	696.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1629	845,887	1,443,731	698.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1630	845.899	1,443,744	701.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1631	845,913	1,443,756	704.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1632	845,948	1,443,795	707.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1633	845,965	1,443,800	709.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1634	845 723	1 443 554	689.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1635	845 726	1 443 570	689 1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1636	845 684	1 443 554	690.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1637	845 650	1 443 514	692.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1638	845 650	1 443 509	692.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1630	8/5 637	1 443 501	6072.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1640	845 610	1 443 502	603.0	1.0	1.0	1.0	00.0	"Green house mode"	2.0
16/1	845 570	1 / / 3 / 92	601 1	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
1642	045,570	1 1 1 2 100	601 5	1.0	1.0	1.0	90.0 00.0	"Croop house mode"	2.0
1642	045,550	1,443,490	601 /	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1643	045,502	1,443,477	402.2	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1644	040,002	1,443,403	601.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1040	843,347	1,443,480	691.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1040	845,507	1,443,482	092.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1647	845,493	1,443,473	691.1	1.0	1.0	1.0	90.0	Green house mode	2.0
1648	845,468	1,443,425	684.7	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1649	845,539	1,443,428	690.4	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1650	845,549	1,443,433	691.2	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1651	845,532	1,443,429	690.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1652	845,421	1,443,476	691.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1653	845,398	1,443,468	692.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1654	845,360	1,443,467	696.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1655	845,305	1,443,447	692.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1656	845,294	1,443,440	690.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1657	845,394	1,443,418	689.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1658	845,129	1,443,416	697.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1659	845,108	1,443,413	698.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1660	845,072	1,443,400	698.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1661	845,074	1,443,388	697.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1662	845,057	1,443,388	698.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1663	845,046	1,443,389	698.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1664	845,033	1,443,380	700.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1665	845,026	1,443,363	700.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1666	845,008	1,443,369	701.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1667	844,945	1,443,365	695.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1668	844,954	1,443,348	696.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1669	844,907	1,443,332	696.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1670	844,896	1,443,328	697.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1671	844,857	1,443,322	695.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1672	844,848	1,443,320	694.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1673	844,827	1,443,316	694.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1674	844,837	1,443,294	692.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1675	844,785	1,443,307	694.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1676	844,768	1,443,287	694.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1677	844,755	1,443,305	691.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1678	844,750	1,443,279	691.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1679	844,743	1,443,276	689.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1680	844,694	1,443.264	687.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1681	844.688	1,443.260	687.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1682	844,653	1,443.282	685.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1683	844,659	1,443.306	685.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1684	844,616	1,443.297	680.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1685	844,590	1,443.279	679.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
	0	Ū			0	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
1686 8	844,576	1,443,265	678.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1687 8	844.590	1.443.240	680.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1688 8	844,606	1,443,244	681.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1689 8	844 616	1 443 252	681.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1690 8	844 621	1 443 242	681.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1601 9	Q11 615	1 // 2 257	681 /	1.0	1.0	1.0	00.0	"Green house mode"	2.0
1402 0	044,013	1,443,237	402 E	1.0	1.0	1.0	90.0 00.0	"Creen house mode"	2.0
1692 0	044,040	1,443,270	003.0 470 E	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1693 0	044,372	1,443,227	679.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1094 8	844,507	1,443,230	0/8.9	1.0	1.0	1.0	90.0	Green house mode	2.0
1695 8	844,564	1,443,269	6//.2	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1696 8	844,547	1,443,272	6/5.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1697 8	844,532	1,443,280	673.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1698 8	844,523	1,443,275	673.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1699 8	844,498	1,443,278	671.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1700 8	844,508	1,443,249	672.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1701 8	844,516	1,443,238	674.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1702 8	844,537	1,443,231	676.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1703 8	844,485	1,443,230	672.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1704 8	844,477	1,443,227	672.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1705 8	844,469	1,443,229	671.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1706 8	844,458	1.443.237	670.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1707 8	844,447	1,443,240	670.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1708 8	844 436	1 443 238	670 1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1709 8	844 414	1 443 239	670.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1710 9	8 <i>11 1</i> 01	1 112 212	670.3	1.0	1.0	1.0	00.0	"Green house mode"	2.0
1710 0	Q11 200	1,443,242	660 5	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
1710	044,300	1,443,241	440 7	1.0	1.0	1.0	90.0 00.0	"Creen house mode"	2.0
1712 0	044,377	1,443,244	4477	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1714 0	044,331	1,443,242		1.0	1.0	1.0	90.0	"Green house mode"	2.0
1714 (844,303	1,443,279	005.7	1.0	1.0	1.0	90.0	Green house mode	2.0
1/15 8	844,296	1,443,276	665.9	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1/16 8	844,292	1,443,288	665.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1/1/ 8	844,325	1,443,285	664.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1/18 8	844,312	1,443,304	664.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1719 8	844,213	1,443,342	661.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1720 8	844,225	1,443,348	660.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1721 8	844,224	1,443,301	662.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1722 8	844,214	1,443,262	664.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1723 8	844,190	1,443,267	662.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1724 8	844,181	1,443,262	662.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1725 8	844,176	1,443,267	661.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1726 8	844,169	1,443,273	660.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1727 8	844,153	1,443,278	660.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1728 8	844,145	1,443,276	661.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1729 8	844.134	1.443.286	660.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1730 8	844,118	1,443,286	660.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1731 8	844 107	1 443 298	659.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1732 9	811,107	1 1/13 353	658.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1732 0	811 001	1,443,333	655.3	1.0	1.0	1.0	00.0	"Green house mode"	2.0
172/ 0	044,004	1,443,324	652 F	1.0	1.0	1.0	90.0 00.0	"Groop house mode"	2.0
1734 0	043,920	1,443,400	000.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1732 0	843,905	1,443,399	004.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1/30 0	843,880	1,443,408	053.0	1.0	1.0	1.0	90.0	Green nouse mode	2.0
1/3/ 8	843,847	1,443,403	650.8	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1/38 8	843,821	1,443,3/3	648.2	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1739 8	843,813	1,443,374	647.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1740 8	843,761	1,443,399	646.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1741 8	843,754	1,443,397	646.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1742 8	843,751	1,443,400	646.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1743 8	844,677	1,443,312	686.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1744 8	844,304	1,443,163	674.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1745 8	844,318	1,443,178	673.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1746 8	844,345	1,443.179	674.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1747 8	844,350	1,443,143	675.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No.	Easting	Northing	Ż	Width	Height	Elevation	Slope of	Direction mode	Eye height
	0	0			0	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
1748	844,333	1,443,109	674.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1749	844,367	1,443,189	674.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1750	844,384	1,443,199	673.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1751	844,404	1,443,202	673.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1752	844,409	1,443,166	676.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1753	844,356	1,443,088	675.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1754	844.344	1,443,094	674.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1755	844.298	1.443.051	674.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1756	844.304	1,443,031	672.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1757	844,277	1,443,026	672.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1758	844.364	1,443,037	673.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1759	844 407	1 443 050	675.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1760	844,440	1,443,103	678.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1761	844 413	1 443 204	673 1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1762	844 424	1 443 200	673.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1762	844 436	1 443 207	672.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1764	8// /73	1 // 2 106	674.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1765	8// 511	1 1 1 2 170	678.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1766	Q11 521	1 1 1 2 1 2 6	678.6	1.0	1.0	1.0	00.0	"Green house mode"	2.0
1767	Q11 572	1,443,100	670.0	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
1760	044,373	1,443,194	600 2	1.0	1.0	1.0	90.0 00.0	"Croop house mode"	2.0
1760	044,002	1,443,174	401.3	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1709	044,090	1,443,192	402.2	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1770	044,012	1,443,103	00Z.Z	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1//1	844,019	1,443,207	001.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1//2	844,027	1,443,200	00Z.Z	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1//3	844,030	1,443,200	082.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1775	844,701	1,443,225	087.0	1.0	1.0	1.0	90.0	Green house mode	2.0
1//5	844,711	1,443,226	687.9	1.0	1.0	1.0	90.0	Green house mode	2.0
1//0	844,721	1,443,230	688.4	1.0	1.0	1.0	90.0	Green house mode	2.0
1///	844,/3/	1,443,236	689.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1//8	844,747	1,443,232	690.0	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
17/9	844,775	1,443,232	691.8	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1780	844,784	1,443,224	690.6	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1/81	844,802	1,443,246	695.3	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1/82	844,806	1,443,244	694.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1783	844,827	1,443,251	692.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1/84	844,833	1,443,258	693.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1785	844,868	1,443,242	687.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1/86	844,880	1,443,245	687.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1/8/	844,894	1,443,254	688.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1788	844,917	1,443,269	691.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1/89	844,929	1,443,284	695.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1790	844,967	1,443,302	696.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1/91	844,978	1,443,310	697.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1/92	845,008	1,443,297	699.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1/93	845,045	1,443,338	698.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1794	845,052	1,443,343	697.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1795	845,061	1,443,347	696.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1796	845,080	1,443,349	695.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1797	845,375	1,443,360	686.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1798	845,379	1,443,374	687.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1799	845,237	1,443,396	690.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1800	845,266	1,443,433	691.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1801	844,346	1,442,983	671.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1802	844,435	1,443,055	678.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1803	844,460	1,443,072	681.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1804	844,464	1,443,055	680.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1805	844,456	1,443,042	678.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1806	844,501	1,443,045	681.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1807	844,493	1,443,041	681.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1808	844,516	1,443,076	687.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1809	844,531	1,443,085	689.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
			[m]	[m]	[m]	a.g.l.	window r∘ı		(ZVI) a.g.l.
1810	811 538	1 1/13 078	689.7	1 0	1 0	1.0	00 0 []	"Green house mode"	2.0
1811	844 546	1 443,070	689.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1812	844.546	1,443.058	688.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1813	844.546	1,443.052	687.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1814	844,527	1,443,023	681.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1815	844,533	1,443,016	680.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1816	844,540	1,443,022	681.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1817	844,476	1,443,016	675.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1818	844,459	1,443,018	675.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1819	844,496	1,443,007	675.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1820	844,500	1,442,993	674.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1821	844,558	1,443,013	680.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1822	844,566	1,443,018	681.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1823	844,580	1,443,024	681.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1824	844,598	1,443,028	680.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1825	844,587	1,443,061	685.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1826	844,584	1,443,067	685.9	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1027	844,579	1,443,081	00/.I	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1020	044,00Z 8// 617	1,443,007	683 6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1830	811 630	1 // 2 085	683.8	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
1830	844 588	1 443,003	684.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1832	844 568	1 443 138	684.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1833	844.616	1,443,146	684.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1834	844.623	1,443,148	684.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1835	844,649	1,443,136	686.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1836	844,667	1,443,137	687.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1837	844,675	1,443,150	686.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1838	844,647	1,443,181	683.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1839	844,720	1,443,156	689.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1840	844,760	1,443,160	688.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1841	844,772	1,443,163	687.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1842	844,781	1,443,186	686.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1843	844,805	1,443,186	684.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1844	844,818	1,443,163	683.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1845	844,846	1,443,179	685.3	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1840	844,878	1,443,189	687.U	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1047	Q11 010	1 // 2 105	685.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
18/0	8// 9/8	1 1 1 2 2 1 5	690 5	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
1850	844 958	1 443 251	692.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1851	844.974	1.443.252	694.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1852	844,969	1,443,223	690.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1853	844,984	1,443,222	691.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1854	845,050	1,443,253	693.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1855	845,056	1,443,289	696.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1856	845,066	1,443,291	695.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1857	845,136	1,443,297	689.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1858	845,153	1,443,307	688.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1859	845,143	1,443,244	686.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1860	845,195	1,443,263	684.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1861	845,106	1,443,228	688.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1862	845,098	1,443,221	688.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1003	040,084	1,443,212	000.5 400 F	1.0	1.0	1.U 1.0	90.0	"Green house mode"	2.0
1004 1045	040,UI3	1,443,195	000.0 607 0	1.0	1.0	1.0	90.0 00 0	"Green house mode"	2.0
1900	84/ 000	1 4/2 127	687 0	1.0	1.0	1.0	90.0 90.0	"Green house mode"	∠.0 2 ∩
1867	844 022	1 443 197	687 0	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
1868	844.978	1,443,183	685.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1869	844.969	1,443,178	684.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1870	844,941	1,443,166	681.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1871	844,911	1,443,149	678.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No.	Easting	Northing	Ž	Width	Height	Elevation	Slope of	Direction mode	Eye height
		Ū			0	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
1872	844,882	1,443,140	678.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1873	844,892	1,443,148	679.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1874	844,888	1,443,111	675.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1875	844,924	1,443,108	673.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1876	844,810	1,443,113	683.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1877	844,844	1,443,140	681.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1878	844,837	1,443,080	680.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1879	844,805	1,443,059	679.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1880	844,791	1,443,062	680.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1881	844,759	1,443,055	682.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1882	844,736	1,443,051	682.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1883	844,751	1,443,113	687.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1884	844,783	1,443,125	685.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1885	844,741	1,443,105	687.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1886	844,729	1,443,104	687.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1887	844,701	1,443,098	687.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1888	844.694	1,443,096	687.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1889	844.671	1,443,087	686.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1890	844,660	1,443,085	685.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1891	844,704	1,443,049	680.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1892	844,680	1,443,039	677.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1893	844.655	1,443,038	676.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1894	844.632	1,443,045	679.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1895	844 573	1 442 984	673.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1896	844 559	1 442 981	674 1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1897	844 541	1 442 978	674 7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1898	844 509	1 442 962	673 5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1899	844 502	1 442 959	673.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1900	844 497	1 442 943	672.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1901	844 466	1 442 953	672.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1902	844 453	1 442 943	672.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1903	844 421	1 442 985	672.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1904	844 400	1 442 977	671.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1005	8// 202	1 1/2 988	670.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1906	8// /30	1 112 935	672.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1907	844 407	1 442 933	671.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1908	844 385	1 442 937	669 5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1900	844 386	1 442 911	668.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1010	811 386	1 //2 871	666.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1011	8/5 100	1 //2 1/2	677 7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1012	8/5 093	1 1 1 1 2 1 3 6	678 1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1013	8/5 073	1 // 2 121	679.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
101/	8/5 060	1 // 2 128	679.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1015	8/5 089	1 //3 10/	674.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1016	Q15 100	1 //2 115	674.0	1.0	1.0	1.0	00.0	"Green house mode"	2.0
1017	Q15 161	1,443,113	667.6	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
1019	811 109	1,443,030	678.2	1.0	1.0	1.0	00.0	"Green house mode"	2.0
1010	Q11 102	1 //2 116	678 1	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
1020	Q11 100	1 //2 115	678.3	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
1020	044,407	1,445,115	670.5	1.0	1.0	1.0	90.0 00.0	"Croop house mode"	2.0
1022	044,400	1,443,120	670.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1022	044,403	1,443,127	677.0	1.0	1.0	1.0	90.0 00.0	"Croop house mode"	2.0
1923	044,400	1,443,137	477 1	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1724	044,440 Q11 127	1,443,140	676 0	1.0	1.0	1.0	70.0 00.0	"Green house mode"	2.0
1923	044,43/	1 110 140	675 0	1.0	1.0	1.0	90.0 00.0	"Groop house mode"	2.0
1920	044,430	1,443,104	676 2	1.0	1.0	1.0	90.0	"Groop house mode"	2.0
192/	044,430	1,443,139	010.3 47/ 1	1.0	1.0	1.0	90.0	"Croop house mode"	2.0
1920	044,429	1,443,104	670.0	1.0	1.0	1.0	90.0 00.0	"Groop bouse mode"	2.0
1929	044,479	1,443,130	019.U	1.0	1.0	1.0	90.0	"Groop house mode"	2.0
1730	044,494	1,443,117	002.3 40F F	1.0	1.0	1.0	7U.U	"Croop house mode"	2.0
1931	044,523	1,443,117	000.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1932	044,043	1,443,138	004.4	1.0	1.0	1.0	7U.U	"Croop house mode"	2.0
1733	043./82	1,443,140	000. I	1.0	1.0	1.0	7U.U	GLEEN HOUSE [[]006	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No.	Easting	Northing	Ż	Width	Height	Elevation	Slope of	Direction mode	Eye height
	0	0			0	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
1934	843,765	1,443,113	668.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1935	843,743	1,443,109	668.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1936	843,800	1,443,118	667.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1937	843,716	1,443,117	669.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1938	843,686	1,443,114	667.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1939	843,649	1,443,097	665.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1940	843,636	1,443,096	665.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1941	843,616	1,443,067	662.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1942	843.571	1,443,099	661.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1943	843,525	1,443,005	658.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1944	843,515	1,443,050	658.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1945	843,479	1,443,023	656.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1946	843.446	1,443,027	655.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1947	843,485	1,442,954	657.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1948	843,468	1,442,933	656.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1949	843 462	1 442 913	654.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1950	843 450	1 442 911	654 3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1951	843 435	1 442 890	652.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1952	843 412	1 442 860	648 7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1953	843 397	1 442 874	648.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1957	8/3 376	1 112 831	6/2 5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1055	Q12 210	1,442,004	640.6	1.0	1.0	1.0	00.0	"Green house mode"	2.0
1955	Q12 2/Q	1 // 2 2 2 2	6/1 /	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
1950	043,340	1,442,020	625 7	1.0	1.0	1.0	90.0 00.0	"Croop house mode"	2.0
1957	043,231	1,442,790	424.2	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1950	043,222	1,442,075	625.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1909	042,073	1,442,007	425.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1900	042,900	1,442,319	617 6	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1901	042,710	1,442,500	647.0 640.4	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1902	042,000	1,442,300	450.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1903	042,093	1,442,471	000.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1904	042,370	1,442,400	000.Z	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1900	042,000	1,442,453	000.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1900	842,300	1,442,400	000.Z	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1967	842,529	1,442,372	055./	1.0	1.0	1.0	90.0	Green house mode	2.0
1968	842,487	1,442,375	053.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1909	042,491	1,442,323	002.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1970	842,451	1,442,300	053.7	1.0	1.0	1.0	90.0	Green house mode	2.0
1971	842,450	1,442,353	000.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1972	042,442	1,442,343	003.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1973	842,432	1,442,324	652.0	1.0	1.0	1.0	90.0	Green house mode	2.0
1974	842,418	1,442,317	650.6	1.0	1.0	1.0	90.0	Green house mode	2.0
1975	842,392	1,442,288	650.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1970	842,303	1,442,272	002.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1977	842,347	1,442,252	055.I	1.0	1.0	1.0	90.0	Green house mode	2.0
1978	842,340	1,442,228	050.0	1.0	1.0	1.0	90.0	Green house mode	2.0
1979	842,398	1,442,100	050.5	1.0	1.0	1.0	90.0	Green house mode	2.0
1980	842,363	1,442,162	657.3	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1981	842,354	1,442,158	658.0	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1982	842,366	1,442,153	658.0	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1983	842,344	1,442,139	659.0	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1984	842,341	1,442,123	658.8	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1985	842,343	1,442,110	658.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1986	842,355	1,442,117	658.9	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1987	842,346	1,442,093	658.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1988	842,367	1,442,095	657.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1989	842,404	1,442,115	657.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1990	842,384	1,442,120	658.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1991	842,403	1,442,084	656.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1992	842,387	1,442,060	653.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1993	842,411	1,442,046	650.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1994	842,400	1,442,038	649.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1995	842,345	1,442,044	653.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No. Eas	sting	Northing	Ż	Width	Height	Elevation	Slope of	Direction mode	Eye height
	0	0			0	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
1996 842	2,330	1,441,978	643.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1997 842	2,326	1,441,938	640.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1998 842	2,326	1,441,926	639.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1999 842	2,324	1,441,865	636.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2000 842	2,339	1,441,856	636.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2001 842	2,384	1,441,831	634.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2002 842	2,318	1,441,928	639.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2003 842	2,372	1,441,813	632.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2004 842	2,365	1,441,767	626.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2005 842	2,327	1,441,771	626.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2006 842	2,316	1,441,772	626.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2007 842	2,371	1,441,725	623.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2008 842	2,411	1,441,750	626.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2009 842	2,425	1,441,786	632.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2010 842	2,370	1,441,651	618.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2011 842	2,374	1,441,640	618.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2012 842	2,378	1,441,604	615.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2013 842	2,334	1,441,579	609.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2014 842	2,332	1,441,624	609.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2015 842	2,396	1,441,478	605.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2016 842	2,384	1,441,476	606.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2017 842	2,1//	1,441,388	610.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2018 842	2,1/1	1,441,400	612.1	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
2019 842	2,163	1,441,393	611.7	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
2020 842	2,236	1,441,313	604.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2021 842	2,048	1,440,945	5//.0	1.0	1.0	1.0	90.0	Green house mode	2.0
2022 842	2,038	1,440,957	5/8.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2023 842	2,038	1,440,897	5/9.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2024 842	2,025	1,440,914	580.Z	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2025 842	2,021	1,440,880	582.3	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
2020 842	017	1,440,004	502.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2027 842		1,440,000	500.7	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
2020 042	020	1 //0 8/3	580.7	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
2029 042	010	1 //0 8/5	500.7	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
2030 042	055	1 110 856	570 0	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
2031 042	0000	1 110 827	582.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2032 042	076	1 440 823	582.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2033 042	080	1 440 835	581 7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2035 842	097	1 440 841	580.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2036 842	2.104	1,440,836	580.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2037 842	2.107	1,440,834	581.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2038 842	2,073	1,440,797	585.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2039 842	2,055	1,440,784	585.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2040 842	2,047	1,440,794	583.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2041 841	,990	1,440,717	589.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2042 842	2,066	1,440,728	592.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2043 842	2,123	1,440,775	586.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2044 842	2,386	1,440,799	592.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2045 842	2,360	1,440,795	586.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2046 842	2,343	1,440,800	584.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2047 842	2,334	1,440,780	583.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2048 842	2,327	1,440,779	583.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2049 842	2,318	1,440,784	582.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2050 842	2,294	1,440,780	579.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2051 842	2,291	1,440,777	579.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2052 842	2,283	1,440,770	579.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2053 842	2,271	1,440,769	579.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2054 842	2,256	1,440,772	580.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2055 842	2,246	1,440,808	581.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2056 842	2,229	1,440,819	581.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2057 842	2.210	1,440,826	581.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No. Easting	Northing	Z Width	n Height	Elevation	Slope of	Direction mode	Eye height
				a.g.l.	window		(ZVI) a.g.l.
	[1	m] [m]	[m]	[m]	[°]		[m]
2058 842,231	1,440,843 58	1.3 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2059 842,239	1,440,855 58	1.9 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2060 842,285	1,440,864 58	4.4 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2061 842,279	1,440,834 58	3.3 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2062 842,302	1,440,830 58	3.3 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2063 842.318	1,440,831 58	4.0 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2064 842 323	1,440,840,58	5.0 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2065 842 295	1,440,870,58	4.8 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2066 842 320	1 440 888 58	85 10	1.0	1.0	90.0	"Green house mode"	2.0
2067 842 403	1 440 796 59	5.5 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2068 842 352	1 440 901 59	29 10	1.0	1.0	90.0	"Green house mode"	2.0
2000 042,352	1 1 1 1 879 59	1 1 1 0	1.0	1.0	90.0	"Green house mode"	2.0
2007 042,307	1 440 896 59	8.8 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2070 042,377		63 10	1.0	1.0	90.0	"Green house mode"	2.0
2071 042,377		70 10	1.0	1.0	90.0	"Green house mode"	2.0
2072 042,402	1,440,720 37	03 10	1.0	1.0	00.0	"Green house mode"	2.0
2073 042,434	1,440,075 00	0.3 1.0	1.0	1.0	90.0 00.0	"Groon house mode"	2.0
2074 042,437		0.1 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2075 042,430	1,440,854 00	0.7 1.0	1.0	1.0	90.0	"Creen house mode"	2.0
2070 042,439	1,440,007 00	0.1 1.0	1.0	1.0	90.0	"Creen house mode"	2.0
2077 042,301	1,440,949 30	9.4 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2078 842,330		9.4 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2079 842,328		8.0 1.0	1.0	1.0	90.0	Green house mode	2.0
2080 842,390	1,440,946 59	2.1 1.0	1.0	1.0	90.0	Green nouse mode	2.0
2081 842,397	1,441,022 59	5.2 1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
2082 842,420	1,441,000 59	9.6 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2083 842,448	1,441,022 60	2.4 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2084 842,476	1,440,951 60	3.6 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2085 842,496	1,440,980 60	6.3 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2086 842,471	1,441,012 60	3.7 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2087 842,464	1,441,017 60	3.3 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2088 842,475	1,441,036 60	3.1 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2089 842,498	1,441,026 60	5.7 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2090 842,558	1,440,956 61	1.4 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2091 842,491	1,440,907 60	5.4 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2092 842,501	1,440,852 60	6.4 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2093 842,511	1,440,862 60	8.2 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2094 842,586	1,440,983 61	1.9 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2095 842,592	1,440,976 61	1.6 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2096 842,610	1,440,998 61	0.8 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2097 842,560	1,440,864 61	3.8 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2098 842,568	1,440,809 61	1.5 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2099 842,555	1,440,810 61	0.8 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2100 842,538	1,440,809 60	9.7 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2101 842,537	1,440,787 60	7.9 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2102 842,515	1,440,786 60	6.4 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2103 842,485	1,440,788 60	4.0 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2104 842,496	1,440,804 60	5.5 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2105 842,459	1,440,790 60	1.5 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2106 842,455	1,440,744 59	6.8 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2107 842,489	1,440,759 60	2.8 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2108 842,469	1,440,690 59	4.3 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2109 842,571	1,440,758 60	8.6 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2110 842,554	1,440,747 60	7.1 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2111 842,535	1,440,755 60	6.0 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2112 842.565	1,440,723 60	7.4 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2113 842.596	1,440.694 60	8.3 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2114 842.611	1,440,705 61	0.3 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2115 842 646	1,440,699 61	1.0 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2116 842 658	1,440,696 61	0.5 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2117 842 684	1,440,696,61	0.2 10	1.0	1.0	90.0	"Green house mode"	2.0
2118 842 694	1,440,806 61	6.8 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2119 842 685	1,440,811 61	5.8 1.0	1.0	1.0	90.0	"Green house mode"	2.0
	, ,						

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No. Ea	asting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
						a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
2120 84	42,674	1,440,805	615.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2121 84	42,668	1,440,808	614.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2122 84	42,658	1,440,803	614.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2123 84	42,649	1,440,806	614.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2124 84	42,637	1,440,801	614.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2125 84	42,625	1,440,787	613.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2126 84	42,603	1,440,806	614.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2127 84	12.590	1,440,801	612.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2128 84	12,608	1,440,701	609.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2129 84	42,711	1,440,693	610.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2130 84	12 628	1 440 871	614.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2131 84	12,620	1 440 848	613 7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2132 84	12,000	1 440 854	614.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2132 04	12,077	1 440 851	614.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2133 84	12,703	1 440 895	616.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2134 04	12,721	1 /// 031	616.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2135 04	12,720	1 // 001	618.8	1.0	1.0	1.0	00.0	"Green house mode"	2.0
2130 04	12 770	1 // 0 0 2	618.6	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
2137 04	10 701	1,440,723	610.0	1.0	1.0	1.0	90.0 00.0	"Croop house mode"	2.0
2130 04	+2,701 12 70 <i>1</i>	1,440,927	620.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2137 04	12,174	1,440,933	422.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
2140 04	+2,000	1,440,929	022.3	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
2141 84	42,707	1,440,814	616.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2142 84	42,700	1,440,802	010.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2143 84	42,820	1,440,799	014.4	1.0	1.0	1.0	90.0	Green house mode	2.0
2144 84	42,775	1,440,671	611.4	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
2145 84	42,780	1,440,662	610.8	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
2146 84	42,775	1,440,640	608.9	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
2147 84	42,766	1,440,624	607.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2148 84	42,726	1,440,588	604.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2149 84	42,782	1,440,552	610.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2150 84	42,743	1,440,487	609.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2151 84	42,729	1,440,523	607.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2152 84	42,724	1,440,533	606.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2153 84	42,769	1,440,489	610.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2154 84	42,786	1,440,500	611.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2155 84	42,784	1,440,482	610.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2156 84	42,794	1,440,476	611.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2157 84	42,813	1,440,497	612.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2158 84	42,836	1,440,485	614.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2159 84	42,845	1,440,488	615.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2160 84	42,805	1,440,535	611.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2161 84	42,818	1,440,530	612.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2162 84	42,842	1,440,547	613.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2163 84	42,854	1,440,548	614.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2164 84	42,834	1,440,571	611.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2165 84	42,840	1,440,602	611.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2166 84	42,871	1,440,487	618.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2167 84	42,889	1,440,495	619.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2168 84	42,874	1,440,533	616.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2169 84	42,929	1,440,527	622.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2170 84	42,959	1,440,541	619.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2171 84	42,945	1,440,578	617.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2172 84	42,917	1,440,591	618.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2173 84	42,924	1,440,501	621.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2174 84	42,941	1,440,500	620.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2175 84	12,936	1,440,489	620.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2176 84	12,956	1,440.482	618.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2177 84	12,990	1,440,494	616.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2178 84	12,995	1,440,483	615.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2179 84	13,030	1,440.510	615.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2180 84	43,051	1,440.500	616.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2181 84	43,090	1,440.504	620.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
	0				0	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
2182	842,911	1,440,435	614.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2183	842,940	1,440,439	614.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2184	842.963	1,440,376	610.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2185	842 997	1 440 420	612.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2100	842 962	1 440 426	612.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2100	8/2 9/5	1 110 117	612.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2107	042,743	1,440,417	412.0	1.0	1.0	1.0	90.0 00.0	"Creen house mode"	2.0
2100	042,913	1,440,417	612.4	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
2109	042,900	1,440,410	600.2	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
2190	842,894	1,440,383	009.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2191	842,889	1,440,371	607.9	1.0	1.0	1.0	90.0	Green nouse mode	2.0
2192	842,732	1,440,593	604.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2193	842,820	1,440,711	610.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2194	842,868	1,440,671	614.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2195	842,842	1,440,635	611.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2196	842,836	1,440,639	610.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2197	842,872	1,440,728	614.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2198	843,063	1,440,385	614.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2199	843,069	1,440,449	616.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2200	843,047	1,440,451	616.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2201	843,034	1,440,446	616.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2202	842,931	1,440,262	597.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2203	842,949	1 440 264	598.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2204	842,892	1,440,265	597.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2201	842 888	1 440 307	601.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2200	8/3 10/	1 1 1 1 3 1 2	61/ 9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2200	Q/2 126	1,440,342	61/ 0	1.0	1.0	1.0	00.0	"Green house mode"	2.0
2207	043,120	1,440,320	616 7	1.0	1.0	1.0	00.0	"Croon house mode"	2.0
2200	043,130	1,440,355	620 /	1.0	1.0	1.0	90.0	"Croop house mode"	2.0
2209	043,100	1,440,345	616 0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
2210	043,120	1,440,378	010.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2211	843,149	1,440,437	618.0	1.0	1.0	1.0	90.0	Green nouse mode	2.0
2212	843,144	1,440,433	617.7	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
2213	843,144	1,440,481	622.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2214	843,138	1,440,479	622.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2215	843,130	1,440,484	621.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2216	843,220	1,440,456	623.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2217	843,201	1,440,450	622.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2218	843,228	1,440,477	623.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2219	843,273	1,440,445	626.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2220	843,159	1,440,516	626.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2221	843,227	1,440,398	622.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2222	843,248	1,440,365	625.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2223	843,278	1,440,360	626.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2224	843,305	1,440,354	626.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2225	843,428	1,440,484	636.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2226	842.010	1.440.524	613.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2227	842,113	1,440,531	608.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2228	842,142	1,440,533	604.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2220	842 142	1 440 571	602.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2227	8/2 1//	1 440 580	602.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2230	Q12,179	1,440,500	601.2	1.0	1.0	1.0	00.0	"Green house mode"	2.0
2231	042,170	1,440,500	6001.2	1.0	1.0	1.0	90.0 00.0	"Groop house mode"	2.0
2232	042,107	1,440,557	000.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
2233	042,101	1,440,034	070.0	1.0	1.0	1.0	90.0	"Creen house mode	2.0
2234	042,191	1,440,538	578.U	1.0	1.0	1.0	90.0	Green nouse mode"	2.0
2235	842,222	1,440,534	596.1	1.0	1.0	1.0	90.0	Green nouse mode"	2.0
2236	842,230	1,440,536	596.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2237	842,217	1,440,578	598.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2238	842,218	1,440,599	598.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2239	842,266	1,440,598	595.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2240	842,230	1,440,475	598.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2241	842,136	1,440,480	608.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2242	842,145	1,440,508	605.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2243	842,273	1,440,433	603.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
		Ū			0	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
2244	842,265	1,440,432	604.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2245	842,253	1,440,434	604.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2246	842,242	1,440,444	603.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2247	842 299	1 440 451	599.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2247	842 321	1 440 468	597.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2240	Q12,021	1,440,400	506.8	1.0	1.0	1.0	00.0	"Green house mode"	2.0
2247	042,272	1,440,301	570.0	1.0	1.0	1.0	90.0 00.0	"Creen house mode"	2.0
2200	042,330	1,440,471	597.1	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
2201	042,300	1,440,470	597.5	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
2252	842,372	1,440,522	593.2	1.0	1.0	1.0	90.0	Green house mode	2.0
2253	842,385	1,440,473	596.2	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
2254	842,399	1,440,467	595.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2255	842,406	1,440,428	598.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2256	842,400	1,440,413	598.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2257	842,347	1,440,412	598.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2258	842,345	1,440,425	598.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2259	842,316	1,440,415	601.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2260	842,312	1,440,407	602.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2261	842,294	1,440,401	605.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2262	842,257	1,440,392	609.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2263	842,356	1,440,367	600.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2264	842,427	1,440,328	601.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2265	842,429	1,440,315	601.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2266	842,495	1,440,343	599.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2267	842 483	1 440 360	598 7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2267	842 467	1 440 429	594 0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2200	8/2 /51	1 110 138	595 2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2207	012,451	1,440,430	500 7	1.0	1.0	1.0	00.0	"Croon house mode"	2.0
2270	042,403	1,440,303	500.0	1.0	1.0	1.0	90.0	"Croop house mode"	2.0
2271	042,447	1,440,377	599.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
2272	842,021	1,440,338	593.Z	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2273	842,600	1,440,310	600.3	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
2274	842,581	1,440,302	602.9	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
2275	842,573	1,440,299	603.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2276	842,659	1,440,281	598.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2277	841,909	1,440,778	583.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2278	841,900	1,440,764	585.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2279	841,939	1,440,765	586.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2280	849,741	1,447,067	767.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2281	849,725	1,447,111	764.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2282	849,777	1,447,077	768.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2283	849,812	1,447,092	767.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2284	849,808	1,447,127	763.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2285	843,428	1,443,637	654.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2286	843,361	1,443,629	658.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2287	843,442	1,443,559	653.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2288	843.391	1,443,357	660.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2289	843,255	1,443,331	658.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2290	843 251	1 443 444	663 7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2200	8/3 //9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	664.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2271	8/3 562	1 1 1 1 5 702	657.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2272	043,302	1,445,772	645.2	1.0	1.0	1.0	90.0 00.0	"Croon house mode"	2.0
2293	043,312	1,445,100	640.3 640.4	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
2294	043,399	1,440,100	451 0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
2295	843,032	1,445,191	051.9	1.0	1.0	1.0	90.0	Green nouse mode	2.0
2296	843,618	1,445,109	048.8	1.0	1.0	1.0	90.0	Green nouse mode"	2.0
2297	843,641	1,445,063	64/.8	1.0	1.0	1.0	90.0	Green nouse mode"	2.0
2298	843,772	1,445,124	653.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2299	843,727	1,445,170	656.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2300	843,813	1,445,166	656.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2301	844,024	1,445,058	652.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2302	844,008	1,445,049	651.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2303	843,971	1,444,990	647.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2304	844,104	1,444,958	647.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2305	844.212	1,444,995	654.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No.	Easting	Northing	Ż	Width	Height	Elevation	Slope of	Direction mode	Eye height
	Ū	0			0	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
2306	844,965	1,444,806	652.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2307	845,033	1,444,726	652.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2308	845,139	1,444,554	660.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2309	845,336	1,444,616	663.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2310	845,085	1,444,393	660.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2311	845.329	1,444,091	679.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2312	845,415	1,444,117	681.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2313	845.594	1,444,036	675.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2314	845 492	1 444 234	687.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2315	845 700	1 444 327	682.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2316	846 640	1 444 704	689 5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2310	8/6 166	1 111 756	676 A	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2317	846 141	1 444 914	671.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2310	8/6 131	1 /// 033	660 0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2317	8/5 950	1,444,753	660.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2320	Q15 Q76	1,444,734	663 1	1.0	1.0	1.0	00.0	"Green house mode"	2.0
2321	043,070 046 065	1,444,002	664 4	1.0	1.0	1.0	90.0 00.0	"Croop house mode"	2.0
2322	840,000 815 001	1,444,979	660 3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2323	045,904	1,443,091	640.3	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
2324	045,000	1,444,930	627 0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2323	040,09Z	1,440,390	620.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
2320	045,449	1,445,401	030.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2327	845,412	1,445,508	624.I	1.0	1.0	1.0	90.0	Green house mode	2.0
2328	845,489	1,445,463	032.5 F00 F	1.0	1.0	1.0	90.0	Green house mode	2.0
2329	845,288	1,445,564	598.5	1.0	1.0	1.0	90.0	Green house mode	2.0
2330	847,080	1,444,645	684.9	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
2331	847,119	1,444,628	688.4	1.0	1.0	1.0	90.0	Green house mode	2.0
2332	847,049	1,444,750	683.4	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
2333	846,993	1,444,823	672.8	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
2334	846,931	1,445,014	6/5.8	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
2335	846,968	1,445,117	6/6.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2336	846,745	1,445,250	6/1.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2337	846,728	1,445,216	666.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2338	846,700	1,445,173	660.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2339	846,802	1,445,309	686.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2340	846,775	1,445,325	686.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2341	846,758	1,445,360	684.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2342	846,616	1,445,456	6/8./	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2343	846,418	1,445,548	684.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2344	846,357	1,445,628	671.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2345	845,879	1,445,636	636.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2346	845,856	1,445,691	633.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2347	845,822	1,445,698	626.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2348	845,812	1,445,784	632.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2349	845,783	1,445,853	641.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2350	845,389	1,445,950	636.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2351	845,422	1,446,019	636.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2352	845,213	1,446,161	631.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2353	845,228	1,446,203	628.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2354	845,248	1,446,194	628.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2355	845,107	1,446,245	627.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2356	845,079	1,446,253	625.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2357	845,142	1,446,316	623.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2358	844,958	1,446,440	618.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2359	845,122	1,446,563	581.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2360	844,829	1,446,462	624.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2361	844,934	1,446,541	613.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2362	844,710	1,446,513	619.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2363	844,558	1,446,502	612.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2364	844,198	1,446,501	571.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2365	844,171	1,446,634	564.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2366	844,335	1,446,875	561.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2367	844,148	1,447,000	568.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No. Easting	Northing	Z Widtl	h Height	Elevation	Slope of	Direction mode	Eye height
			0	a.g.l.	window		(ZVI) a.g.l.
	[[m] [m]	[m]	[m]	[°]		[m]
2368 844,13	0 1,446,987 56	68.9 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2369 844,03	5 1,447,008 57	74.3 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2370 843,93	3 1,446,891 56	51.4 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2371 843,82	3 1,446,949 56	51.6 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2372 844.43	2 1.446.966 57	75.3 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2373 844 47	3 1.446.913 56	66 10	1.0	1.0	90.0	"Green house mode"	2.0
2374 844 49	R 1 447 008 57	767 10	1.0	1.0	90.0	"Green house mode"	2.0
2375 844 51	1 1 447 028 57	761 10	1.0	1.0	90.0	"Green house mode"	2.0
2376 844 09	7 1 447 293 61	115 10	1.0	1.0	90.0	"Green house mode"	2.0
2377 843 90	R 1 447 347 59	900 10	1.0	1.0	90.0	"Green house mode"	2.0
2377 844 64	0 1,447,047 07 0 1 116 011 55	507 1.0	1.0	1.0	00.0	"Green house mode"	2.0
2370 044,04	7 1,440,741 J. 1 1 1 1 6 001 54	57.7 I.O	1.0	1.0	90.0 00.0	"Groon house mode"	2.0
2379 044,01	1,440,904 JC	5/1.4 1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
2300 044,00	7 1,440,074 JC	1.0 1.0 1.0 1.0	1.0	1.0	90.0	"Creen house mode"	2.0
2301 044,74		02.2 I.U	1.0	1.0	90.0	"Creen house mode"	2.0
2302 044,00	5 1,440,027 37 1 1 446 020 E4	3.0 I.0	1.0	1.0	90.0	"Green house mode"	2.0
2383 844,94		7.0 1.0	1.0	1.0	90.0	Green house mode"	2.0
2384 844,89	/ 1,44/,068 56	0/.0 I.0	1.0	1.0	90.0	Green nouse mode	2.0
2385 845,57	/ 1,446,922 59	73.6 I.U	1.0	1.0	90.0	"Green nouse mode"	2.0
2386 845,23	3 1,446,865 59	76.3 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2387 845,32	1 1,446,819 59	75.5 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2388 845,37	4 1,446,859 60	0.4 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2389 845,40	7 1,446,894 60	05.0 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2390 845,39	1 1,446,923 60	03.1 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2391 845,49	7 1,446,813 59	92.0 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2392 845,65	3 1,446,941 59	95.7 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2393 845,79	9 1,446,847 59	91.7 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2394 845,84	8 1,446,817 58	38.8 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2395 846,00	0 1,446,848 59	90.9 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2396 846,11	0 1,446,943 61	17.2 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2397 846,11	6 1,447,026 62	27.1 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2398 846,35	6 1,446,948 63	32.9 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2399 846,30	3 1,446,963 63	38.6 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2400 846,39	9 1,447,115 65	53.4 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2401 846,62	5 1,447,199 67	76.8 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2402 846,67	4 1,446,956 66	64.8 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2403 847,01	4 1,447,423 70	04.1 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2404 847,16	3 1,447,203 68	35.9 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2405 847,29	0 1,447,292 69	99.9 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2406 847,40	7 1.447.352 69	92.8 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2407 848,38	4 1.445.011 76	5.6 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2408 848,48	4 1,442,337 79	94.8 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2409 848.47	3 1.442.322 79	94.9 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2410 848.57	9 1.442.608 79	91.6 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2411 848.47	3 1.442.508 79	98.9 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2412 848 15	6 1 442 543 76	64.5 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2413 848.20	8 1.442.486 75	58.8 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2414 847 76	3 1 442 523 74	18.8 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2415 847 33	5 1,112,020 7 1 5 1 442 712 71	13.8 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2415 047,35	0 1,442,712 71 0 1 //2 63/ 71	12.0 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2410 047,20	7 1,442,034 71 1 1 1 1 0 0 1 1 67	12.1 1.0	1.0	1.0	90.0 00.0	"Groon house mode"	2.0
2417 047,70	4 1,440,044 07 6 1 110 650 66	562 1.0 562 10	1.0	1.0	90.0 00.0	"Green house mode"	2.0
2410 047,31		50.5 1.0 571 10	1.0	1.0	90.0 00.0	"Groon house mode"	2.0
2417 047,30	5 1,440,000 00 7 1 1/10 600 44	5 / 10	1.0	1.0	70.0 00 0	"Green house mode"	2.0
2420 047,31		100.4 I.U	1.0	1.0	90.0	"Green house mode"	2.0
2421 041,31	5 1,440,087 00 5 1 440 705 77	04.0 I.U	1.0	1.0	90.0	"Creen house mode"	2.0
2422 847,38		00.U I.U	1.0	1.0	90.0	"Green house mode"	2.0
2423 847,22	7 1,440,498 68 1 1 440 220 (T	0.1 C.10	1.0	1.0	90.0	"Green house mode"	2.0
2424 847,24	1 1,440,330 6/	1.0 I.0	1.0	1.0	90.0	Green nouse mode"	2.0
2425 847,12	7 1,440,482 69	13.1 1.0	1.0	1.0	90.0	Green nouse mode"	2.0
2426 846,61	J 1,439,962 65	5.7 1.0	1.0	1.0	90.0	Green nouse mode"	2.0
2427 846,70	1 1,439,969 65	2.9 1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
2428 846,57	5 1,439,880 66	6.0 1.0	1.0	1.0	90.0	"Green house mode"	2.0
2429 846.50	5 1,439,961 66	0.9 1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
						a.g.l.	window		(ZVI) a.g.l.
2420.0		1 440 100	[m]	[m]	[m]	[m]	[°]	"Creen heree meede"	[m]
2430 8	846,551	1,440,103	643.3	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
2431 0	840,339 816 310	1,440,072	047.1 662.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2432 0	840,310 846 157	1,439,934	650 5	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
2433 0	845 877	1 // 2 571	690.3	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
2434 0	845 965	1 443 445	691.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2436 8	845 994	1 443 414	690 5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2437 8	846.194	1.443.239	679.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2438 8	846,115	1.443.080	676.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2439 8	845,993	1,443,164	681.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2440 8	845,715	1,442,955	655.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2441 8	847,108	1,446,141	609.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2442 8	847,162	1,446,092	616.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2443 8	848,744	1,446,651	737.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2444 8	848,726	1,446,652	736.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2445 8	848,722	1,446,651	735.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2446 8	848,691	1,446,642	736.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2447 8	848,700	1,446,658	733.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2448 8	848,726	1,446,617	736.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2449 8	848,611	1,446,594	734.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2450 8	848,601	1,446,619	732.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2451 8	849,049	1,446,745	763.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2452 8	849,033	1,446,738	762.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2453 8	848,976	1,446,383	732.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2454 8	848,324	1,442,167	/8/.8	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
2400 0	847,332 047 443	1,441,002	099.U 401 1	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
2400 0	847,44Z	1,441,790	600.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2457 0	047,422 047 256	1 //1 261	667.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2450 0	816 667	1 1 1 1 6 1 2	654 4	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
2439 0	846 725	1 440,042	651 5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2461 8	847 155	1 440 682	668.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2462 8	844.195	1,442,469	651.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2463 8	844,106	1,442,290	644.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2464 8	844,098	1,442,322	645.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2465 8	843,862	1,442,701	640.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2466 8	843,230	1,441,803	615.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2467 8	843,017	1,441,072	620.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2468 8	843,235	1,441,057	630.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2469 8	846,642	1,442,652	687.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2470 8	846,714	1,442,470	696.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2471 8	846,719	1,442,317	698.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2472 8	846,772	1,442,292	699.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
24/3 8	846,513	1,442,098	695.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
24/4 8	846,567	1,442,203	698.0	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
24/5 8	840,527	1,441,988	690.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
24/0 0	040,417	1,441,922	690.8	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
24// 0	040,232 8/5 705	1,441,401	650.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2470 0	816 202	1 //1 616	678 1	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
2479 0	855 530	1 452 119	819 5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2481 8	855 676	1 452 149	817.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2482 8	855.826	1,452,201	812.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2483 8	855,815	1,452,243	810.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2484 8	855,985	1,452,111	798.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2485 8	855,909	1,452,083	812.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2486 8	856,108	1,452,030	790.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2487 8	855,173	1,451,878	804.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2488 8	855,014	1,451,914	797.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2489 8	853,068	1,450,756	803.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2490 8	853,094	1,450,745	804.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2491 8	853,191	1,450,722	800.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No. Ea	asting	Northing	Ż	Width	Height	Elevation	Slope of	Direction mode	Eye height
	Ũ	0			0	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
2492 85	53,163	1,450,720	801.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2493 85	55,851	1,449,897	760.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2494 85	53,507	1,447,205	771.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2495 85	53,660	1,447,061	771.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2496 85	53,805	1,447,014	771.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2497 85	54,023	1,446,973	776.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2498 85	53,803	1,446,717	770.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2499 85	53,775	1,446,664	772.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2500 85	53,774	1,446,578	776.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2501 85	53,415	1,446,365	770.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2502 85	53,664	1,446,195	767.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2503 85	53,218	1,445,910	770.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2504 85	52,970	1,445,880	765.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2505 85	52,989	1,445,762	765.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2506 85	53,145	1,445,782	765.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2507 85	53,119	1,445,670	767.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2508 85	52,983	1,445,580	757.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2509 85	52,621	1,445,708	760.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2510 85	52,593	1,445,629	756.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2511 85	52,336	1,445,681	758.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2512 85	52,352	1,445,684	758.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2513 85	52.287	1.445.517	753.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2514 85	52,192	1,445,748	746.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2515 85	52,433	1,445,830	755.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2516 85	52,303	1,445,787	752.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2517 85	52.207	1.445.755	746.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2518 85	52,269	1,445,438	753.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2519 85	52,221	1,445,429	750.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2520 85	52,298	1.445.322	749.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2521 85	52,102	1,445,307	741.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2522 85	51.830	1,445,260	718.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2523 85	52,810	1.444.222	721.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2524 85	52,807	1.444.227	721.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2525 85	52,778	1.444.220	719.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2526 85	52,883	1.444.220	728.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2527 85	53.001	1,444,153	731.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2528 85	53,221	1,444,706	753.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2529 85	54.464	1,444,434	764.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2530 85	54,601	1.444.292	755.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2531 85	55.548	1,446,694	804.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2532 85	55.637	1,446,691	803.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2533 85	55.164	1.448.511	783.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2534 85	54,945	1,448,538	761.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2535 85	55,249	1,448,426	784.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2536 85	55.344	1.448.357	781.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2537 85	55,292	1,448,665	778.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2538 85	55,738	1,447,439	801.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2539 85	55,701	1,447,541	799.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2540 85	55.720	1.447.523	801.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2541 85	55,845	1,447,579	800.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2542 85	55.823	1,447,639	799.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2543 85	55.745	1.447.763	795.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2544 85	55,740	1,447.725	793.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2545 85	55,734	1,447,724	793.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2546 85	55,726	1,447,750	794 5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2547 85	55,718	1,447,713	792.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2548 85	55,771	1,447.893	791.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2549 85	55.822	1,447,908	791 8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2550 85	55.695	1,448,082	790.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2551 85	55,536	1,448,145	787 0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2552 85	55,709	1,448,492	785.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2553 85	55,777	1,448.698	785.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
		Ū			0	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
2554	855,797	1,448,803	781.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2555	855,899	1,448,801	777.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2556	855,968	1.448.361	790.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2557	855 980	1 448 379	790.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2558	855 774	1 448 327	790.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2550	855 979	1 //8 032	790.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2557	053,777	1,440,052	790.5	1.0	1.0	1.0	90.0 00.0	"Creen house mode"	2.0
2000	000,000	1,440,009	100.Z	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
2001	000,100	1,440,044	111.Z	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
2562	854,875	1,447,505	//5./	1.0	1.0	1.0	90.0	Green house mode	2.0
2563	844,817	1,441,289	642.8	1.0	1.0	1.0	90.0	Green nouse mode	2.0
2564	845,014	1,441,463	662.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2565	844,611	1,441,114	634.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2566	844,505	1,440,967	627.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2567	845,385	1,441,237	630.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2568	845,366	1,441,320	644.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2569	844,615	1,442,157	618.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2570	841,893	1,443,025	630.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2571	842,007	1,442,776	626.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2572	841,940	1,442,610	615.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2573	841,757	1,442,448	585.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2574	842,087	1,442,718	618.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2575	842,357	1,442,455	656.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2576	842,311	1,442,455	653.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2577	842,303	1,442,410	650.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2578	842,309	1 442 414	650.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2579	842.321	1,442,401	649.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2580	842 300	1 442 446	651 5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2581	843 147	1 443 146	644 2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2582	8/3 158	1 113 068	6/2 0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2502	Q17 102	1,445,000	691.0	1.0	1.0	1.0	00.0	"Green house mode"	2.0
2503	847,403 847,400	1,440,097	605.6	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
2504	047,420	1,440,790	602.6	1.0	1.0	1.0	90.0 00.0	"Croon house mode"	2.0
2000	047,370	1,440,021	702.0	1.0	1.0	1.0	90.0	"Croop house mode"	2.0
2000	047,443	1,440,091	400.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
2007	047,304	1,440,924	690.9	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
2000	047,424	1,440,989	091.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2589	847,818	1,446,972	/18.3	1.0	1.0	1.0	90.0	Green nouse mode	2.0
2590	847,832	1,446,892	099.0	1.0	1.0	1.0	90.0	Green nouse mode	2.0
2591	848,194	1,445,018	/55.2	1.0	1.0	1.0	90.0	Green nouse mode	2.0
2592	848,186	1,445,052	/56.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2593	848,393	1,444,999	/6/.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2594	848,375	1,444,965	763.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2595	848,411	1,445,174	738.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2596	848,218	1,445,137	759.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2597	848,079	1,445,326	731.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2598	846,127	1,439,364	670.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2599	846,081	1,439,366	672.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2600	846,301	1,439,493	669.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2601	847,645	1,439,577	668.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2602	847,806	1,439,638	672.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2603	847,900	1,439,635	675.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2604	847,280	1,439,802	653.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2605	848,017	1,441,153	697.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2606	848,032	1,441.147	695.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2607	848,021	1,441.135	692.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2608	853 523	1,444,650	723.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2609	853 559	1,444,654	719 4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2610	853 656	1 445 612	730 7	10	1.0	1.0	90.0	"Green house mode"	2.0
2610	852 575	1 4/5 602	740 5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2612	853 833	1 445 220	73/ 7	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
2012	QE2 421	1 // 5 005	767 5	1.0	1.0	1.0	0.0	"Green house mode"	2.0
2013	000,001	1 116 101	7/102.0	1.0	1.0	1.0	70.0 00 0	"Green house mode"	2.0
2014	Q5/ E/7	1 // 6 /00	757 4	1.0	1.0	1.0	90.0 00 0	"Green house mode"	2.0 2 A
2010	004,04/	1,440,409	101.0	1.0	1.0	1.0	70.0		∠.∪

To be continued on next page...

Nam Le / nam.le@erm.com ^{Calculated:} 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
						a.g.l.	window		(ZVI) a.g.l.
0/4/	054 / 40	4 4 4 4 0 0 0	[m]	[m]	[m]	[m]	[°]		[m]
2616	854,642	1,446,393	/55.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2617	854,681	1,446,448	766.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2018	855,442	1,440,473	//8.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2019	045,199 045 105	1,447,921	640 0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2020	Q15 321	1,447,740 1 //7 Q//	666 7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2627	811 996	1 //7 0//	667.8	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
2622	844 952	1 447 814	663.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2624	844.577	1,447,898	647.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2625	844,402	1,447,876	639.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2626	844,449	1,447,871	641.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2627	844,497	1,447,746	653.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2628	844,203	1,447,779	612.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2629	844,232	1,447,790	619.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2630	848,822	1,447,504	749.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2631	848,820	1,447,673	764.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2632	845,867	1,447,894	661.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2633	844,531	1,443,297	673.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2634	844,441	1,443,268	668.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2635	844,425	1,443,238	670.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2636	844,661	1,443,294	686.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2637	844,649	1,443,344	684.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2638	844,619	1,443,446	6/8.5	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
2639	844,073	1,443,455	681.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2040	044,030 011 050	1,443,470	0/0.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2041	Q11 616	1 // 2 615	666.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2642	845 373	1 443,013	696.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2644	845 386	1 443 465	693.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2645	845.032	1,444,140	672.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2646	844,892	1,444,109	669.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2647	844,885	1,444,136	669.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2648	844,686	1,444,492	661.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2649	844,402	1,444,399	665.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2650	844,413	1,444,602	647.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2651	844,492	1,444,517	660.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2652	844,188	1,444,172	680.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2653	844,512	1,444,136	679.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2654	844,027	1,444,611	653.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2655	844,1/3	1,444,633	650.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2656	844,447	1,444,855	649.0	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
2057	843,977	1,444,207	6//.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2000	043,077 845 018	1,443,723	701 5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2009	8// 721	1 // 2 205	687.6	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
2661	845 860	1 443 668	696 7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2662	847.351	1,443,766	710.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2663	847.176	1,443,753	696.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2664	847,166	1,443,765	694.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2665	845,842	1,444,588	664.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2666	846,915	1,438,916	650.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2667	846,768	1,438,918	640.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2668	856,018	1,446,794	807.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2669	856,022	1,446,781	807.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2670	856,072	1,446,767	805.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2671	850,453	1,448,499	741.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2672	850,459	1,448,496	741.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2673	850,459	1,448,496	741.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
26/4	850,483	1,448,550	/44.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
20/5	850,455	1,448,560	/46.5	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
20/0 2477	050,44/	1,440,548	740.1 740.7	1.0	1.0	1.0	90.0	"Groop house mode"	2.0
20//	000,477	1,440,40/	140.1	1.0	1.0	1.0	90.0	Green nouse mode	2.0

To be continued on next page...

windPRO 3.4.388 by EMD International A/S, Tel. +45 96 35 44 44, www.emd.dk, windpro@emd.dk

Nam Le / nam.le@erm.com 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

...continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
						a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
2678	850,481	1,448,470	740.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2679	850,418	1,448,692	756.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2680	850,431	1,448,734	755.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2681	850,426	1,448,869	752.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2682	850,438	1,448,954	750.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2683	850,457	1,449,050	747.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2684	850,462	1,449,017	745.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2685	850,514	1,449,049	737.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2686	849,232	1,444,951	763.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2687	849,216	1,444,969	764.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2688	849,252	1,444,931	761.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2689	849,243	1,444,897	755.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2690	849,242	1,444,886	753.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0

Calculation Results

Shado	ow receptor			
	Shadow, wors	t case		Shadow, expected values
No.	Shadow hours	Shadow days	Max shadow	Shadow hours
	per year	per year	hours per day	per year
	[h/year]	[days/year]	[h/day]	[h/year]
1	0:00	0	0:00	0:00
2	0:00	0	0:00	0:00
3	0:00	0	0:00	0:00
4	0:00	0	0:00	0:00
5	0:00	0	0:00	0:00
6	0:00	0	0:00	0:00
7	0:00	0	0:00	0:00
8	0:00	0	0:00	0:00
9	0:00	0	0:00	0:00
10	0:00	0	0:00	0:00
11	0:00	0	0:00	0:00
12	3:43	24	0:11	1:18
13	1:00	12	0:06	0:21
14	0:00	0	0:00	0:00
15	7:24	32	0:17	2:31
16	0:00	0	0:00	0:00
17	0:00	0	0:00	0:00
18	0:00	0	0:00	0:00
19	0:00	0	0:00	0:00
20	0:00	0	0:00	0:00
21	0:00	0	0:00	0:00
22	0:00	0	0:00	0:00
23	0:00	0	0:00	0:00
24	0:00	0	0:00	0:00
25	0:00	0	0:00	0:00
26	0:00	0	0:00	0:00
27	0:00	0	0:00	0:00
28	0:00	0	0:00	0:00
29	0:00	0	0:00	0:00
30	0:00	0	0:00	0:00
31	0:00	0	0:00	0:00
32	0:00	0	0:00	0:00
33	0:00	0	0:00	0:00
34	0:00	0	0:00	0:00
35	0:00	0	0:00	0:00
36	2:59	26	0:08	1:47
37	4:00	32	0:09	2:19
38	6:17	48	0:09	3:26
39	2:34	34	0:06	1:13
40	0:00	0	0:00	0:00

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com ^{Calculated:} 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

continued from previous page						
	Shadow, wors	t case		Shadow, expected values		
No.	Shadow hours	Shadow days	Max shadow	Shadow hours		
	per year	per year	hours per day	per year		
41	[n/year]	[days/year]	[n/day]	[n/year]		
41	0:00	0	0:00	0:00		
42	0.00	0	0.00	0.00		
43	0.00	0	0.00	0:00		
44	0.00	0	0.00	0:00		
46	9.27	34	0.00	4:25		
47	10:46	34	0.24	4.55		
48	12:34	38	0:26	5:47		
49	13:02	36	0:27	5:53		
50	13:19	38	0:28	6:07		
51	15:16	76	0:16	8:07		
52	40:06	97	0:39	20:55		
53	22:01	60	0:29	10:27		
54	11:11	72	0:13	6:01		
55	9:12	36	0:19	5:20		
56	6:56	30	0:17	4:06		
57	4:38	24	0:15	2:50		
58	0:00	0	0:00	0:00		
59	0:00	0	0:00	0:00		
60	0:00	0	0:00	0:00		
61	56:50	82	0:48	17:10		
62	22:08	60	0:29	6:54		
63	28:54	85	0:29	9:38		
64	14:51	50	0:23	4:33		
65	29:53	107	0:23	9:50		
66	24:21	90	0:25	7:37		
67	2:28	18	0:10	0:50		
68	2:40	18	0:11	0:55		
69	3:16	20	0:12	1:08		
70	3:34	20	0:13	1:13		
71	3:37	19	0:14	1:13		
72	4:01	21	0:14	1:25		
73	3:44	20	0:13	1:20		
74	3:58	21	0:14	1:23		
/5	4:28	22	0:15	1:34		
/6	10:30	55	0:18	3:36		
77	4:33	23	0:15	1:32		
78	11:16	65	0:17	3:41		
79	/:02	27	0:20	2:27		
8U 01	11:13	52	0:20	3:52		
01 92	30.46	135	0.23	4.50		
0Z	30.40	130	0.29	11.55		
0J 84	37.53	104	0.31	10:40		
85	37.41	118	0.31	12:06		
86	37.55	117	0.32	12:10		
87	117.00	163	1.05	37.40		
88	21:16	70	0:25	7:07		
89	31:54	84	0:34	10:36		
90	43:57	104	0:34	14:20		
91	46:46	104	0:38	15:15		
92	37:15	88	0:39	12:19		
93	41:41	94	0:39	13:42		
94	153:16	172	1:22	60:57		
95	85:54	88	1:26	38:15		
96	37:52	60	0:51	16:10		
97	44:48	73	0:56	18:28		
98	51:21	67	1:04	23:07		
99	95:34	158	1:02	44:32		
100	59:28	117	0:48	28:39		
101	75:40	168	0:47	31:47		

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

continued from previous page					
	Shadow, wors	t case		Shadow, expected values	
No.	Shadow hours	Shadow days	Max shadow	Shadow hours	
	per year	per year	hours per day	per year	
100	[n/year]	[days/year]	[n/day]	[n/year]	
102	47:14	139	0:34	19:53	
103	02.00	109	0.39	20.35	
104	23.31	82	0.27	8.03	
105	63.27	177	0.23	27.34	
100	71.34	211	0.34	25.12	
108	85:03	186	0:48	30:17	
109	150:53	266	1:00	55:04	
110	160:57	244	1:01	67:43	
111	263:53	208	1:49	73:52	
112	31:29	115	0:32	10:36	
113	28:17	107	0:30	9:31	
114	25:00	104	0:27	8:28	
115	19:09	94	0:23	6:27	
116	18:40	94	0:23	6:16	
117	17:42	89	0:22	6:04	
118	17:27	91	0:22	5:59	
119	13:20	64	0:21	4:31	
120	12:03	59	0:20	4:05	
121	13:28	59	0:22	4:34	
122	11:02	55	0:19	3:45	
123	11:25	59	0:19	3:53	
124	12:32	63	0:19	4:17	
120	0.09	54	0.16	2.00	
120	9.00	52	0.10	3.00	
127	9.20	53	0.17	3.13	
120	8.39	52	0:16	2.57	
130	5:45	26	0:16	1:56	
131	5:35	25	0:16	1:53	
132	0:00	0	0:00	0:00	
133	8:43	53	0:16	3:00	
134	8:41	56	0:15	3:00	
135	8:36	54	0:15	2:58	
136	9:31	58	0:16	3:18	
137	9:07	56	0:16	3:08	
138	9:56	60	0:16	3:26	
139	10:05	60	0:17	3:29	
140	10:37	61	0:17	3:40	
141	10:57	61	0:17	3:47	
142	11:13	62	0:17	3:52	
143	12:18	65	0:18	4:15	
144	10:22	62	0:10	3:30	
145	9.05	03 56	0:17	3:54	
140	7.51	57	0.14	2.47	
147	7.01	58	0.14	2.42	
140	8.53	62	0.13	3.08	
150	9:20	62	0:15	3:16	
151	9:37	61	0:15	3:21	
152	71:19	156	0:52	22:49	
153	65:41	148	0:50	20:56	
154	105:49	203	0:54	35:23	
155	83:22	238	0:51	28:50	
156	80:41	216	0:51	27:45	
157	81:39	212	0:57	27:41	
158	16:29	81	0:20	6:06	
159	23:05	109	0:22	8:31	
160	40:10	136	0:28	14:57	
161	142:40	249	1:04	54:38	
162	241:16	252	2:00	85:31	

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com ^{Calculated:} 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

continued from previous page						
	Shadow, wors	t case		Shadow, expected values		
No.	Shadow hours	Shadow days	Max shadow	Shadow hours		
	per year	per year	hours per day	per year		
	[h/year]	[days/year]	[h/day]	[h/year]		
163	144:16	261	1:05	55:06		
164	133:16	255	0:54	40:06		
165	127:58	258	0:52	39:43		
166	66:18	194	0:33	24:05		
167	5/:1/	158	0:32	20:47		
168	58:59	162	0:33	22:01		
169	267:55	247	1:44	117:19		
170	262:35	247	1:29	109:04		
1/1	563:44	339	2:45	145:56		
172	37:03	118	0:28	12:25		
174	666:37	282	3:09	297:40		
174	85:47	181	1:27	29:20		
1/5	69:52	205	0:40	25:31		
1/0	00:28	210	0:35	23:00		
170	35:45	183	0:22	13:30		
170	28:38	155	0:21	10:54		
1/9	29:55	107	0:23	10:50		
180	30:39	180	0:23	12:53		
101	40.UZ	220	0.23	10.11		
102	52:21	222	0:27	19:39		
103	00:28	237	0:30	27:10		
104	72.27	210	0.35	29.19		
100	70.03	212	0.39	22.33		
100	93.04	247	0.30	33.30		
107	90.20	222	0.49	40.22		
100	107.38	211	0.49	12.12		
107	33.18	117	0.37	42.45 0·51		
101	20·1/	88	0.20	7:50		
102	29.14 /1.56	121	0.27	13.35		
102	41.30 51·30	121	0.20	15.55		
194	36.40	115	0.37	14:08		
195	140.51	228	1.02	51:45		
196	636.31	220	3.13	225:05		
197	124:48	233	1:12	54:07		
198	160.53	244	1.72	55.32		
199	72:06	211	0:43	24:43		
200	94:26	223	0:41	33:50		
201	77:17	216	0:41	26:57		
202	53:52	167	0:41	18:19		
203	55:53	144	0:42	19:50		
204	49:26	166	0:38	16:58		
205	57:31	170	0:38	20:03		
206	66:59	185	0:37	23:46		
207	75:30	202	0:37	27:07		
208	93:04	249	0:38	34:23		
209	78:23	210	0:36	28:19		
210	81:53	220	0:37	30:15		
211	62:48	178	0:33	21:20		
212	44:59	183	0:28	15:36		
213	41:20	158	0:27	14:13		
214	40:35	158	0:27	13:56		
215	40:56	165	0:27	14:07		
216	57:46	197	0:35	20:40		
217	57:36	204	0:36	20:42		
218	43:43	174	0:25	15:22		
219	94:11	223	0:53	35:01		
220	98:10	233	0:52	36:46		
221	98:02	232	0:52	36:44		
222	98:11	233	0:51	36:51		
223	99:59	236	0:51	37:35		

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com ^{Calculated:} 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

No. Shadow, worst case Shadow hours Shadow hours <th colspan="7">continued from previous page</th>	continued from previous page						
No. Shadow hours Shadow hours Shadow Shadow hours per year per year per year per year [h/year] [days/year] [h/day] [h/year] 224 100:37 241 0:49 37:53 225 100:30 258 0:60 41:05 226 110:29 258 0:44 29:47 228 79:44 213 0:44 29:47 230 93:16 250 0:44 35:09 231 87:54 247 0:42 33:05 232 89:58 257 0:43 33:52 233 80:13 232 0:40 26:36 235 70:49 223 0:40 26:36 236 60:07 197 0:38 22:7 237 56:20 188 0:37 21:08 238 64:39 212 0:33 15:03 240 75:46 207 0:39 </td <td></td> <td>Shadow, wors</td> <td>t case</td> <td></td> <td>Shadow, expected values</td>		Shadow, wors	t case		Shadow, expected values		
per year per year hours per day per year [h/vkyar] [fa/sy/year] [h/vkyar] [h/vkyar] 224 100:37 241 0:49 38:26 225 103:30 258 0:40 38:26 226 110:29 258 0:60 41:05 227 77:23 209 0:44 29:04 230 93:16 250 0:44 35:09 231 87:54 247 0:42 33:05 232 99:58 257 0:43 33:12 233 80:13 232 0:40 26:36 235 70:49 22:37 26:15 236 60:07 197 0:38 22:27 237 56:20 188 0:37 21:08 238 69:39 212 0:33 15:36 240 75:46 207 0:32 14:12 243 42:52 182 14:12 <t< td=""><td>No.</td><td>Shadow hours</td><td>Shadow days</td><td>Max shadow</td><td>Shadow hours</td></t<>	No.	Shadow hours	Shadow days	Max shadow	Shadow hours		
[h/year] [days/year] [h/year] 224 100:37 241 0:49 37:53 225 103:30 258 0:44 38:26 226 110:29 258 0:50 41:05 227 77:23 209 0:44 28:60 228 79:44 213 0:44 35:40 230 93:16 250 0:44 35:05 232 89:58 257 0:43 33:52 233 80:13 232 0:40 30:12 234 82:41 239 0:41 31:06 235 70:49 223 0:40 26:36 236 60:07 197 0:38 22:77 237 56:20 188 0:37 21:08 238 69:39 212 0:33 15:03 241 42:33 199 0:33 15:03 242 40:20 197 0:32 14:12 <t< td=""><td></td><td>per year</td><td>per year</td><td>hours per day</td><td>per year</td></t<>		per year	per year	hours per day	per year		
224 100:37 241 0:49 37:53 225 103:30 288 0:50 41:05 227 77:23 209 0:44 28:50 228 79:44 213 0:44 29:47 229 94:35 253 0:44 35:09 231 87:54 247 0:42 33:05 232 89:58 257 0:43 33:52 233 80:13 232 0:40 30:12 234 82:41 239 0:41 31:06 235 70:49 223 0:40 26:36 236 60:07 197 0:38 22:27 237 56:20 188 0:37 21:08 238 69:39 212 0:33 15:03 241 42:52 182 0:33 15:03 244 62:51 205 0:35 23:43 243 42:52 182 0:33 15:26 244 62:51 205 0:33 16:28		[h/year]	[days/year]	[h/day]	[h/year]		
226 103:30 258 0:49 38:26 226 10:29 258 0:50 41:05 227 77:23 209 0:44 28:50 228 79:44 213 0:44 28:60 230 93:16 250 0:44 35:40 231 87:54 247 0:42 33:05 232 89:58 257 0:43 33:52 233 80:13 232 0:40 30:12 234 82:41 239 0:41 31:06 235 70:49 223 0:40 26:35 236 60:07 197 0:38 22:77 237 56:20 188 0:37 21:08 240 75:46 207 0:39 28:29 241 42:33 199 0:33 15:03 242 40:20 197 0:32 14:12 243 42:52 182 0:33 15:03 244 6:51 205 0:35 23:43	224	100:37	241	0:49	37:53		
226 110:29 28 0:50 41:05 227 77:23 209 0:44 28:50 228 94:35 253 0:44 35:40 230 93:16 250 0:44 35:09 231 87:54 247 0:42 33:05 233 80:13 232 0:40 30:12 234 82:41 239 0:41 31:06 235 70:49 223 0:40 26:36 236 60:07 197 0:38 22:77 237 56:20 188 0:37 21:08 238 69:39 212 0:37 26:15 240 75:46 207 0:38 27:58 241 42:52 182 0:33 15:36 243 42:52 182 0:33 15:36 244 62:51 205 0:35 23:43 244 62:51 205 0:35 23:43 244 62:51 107 0:33 17:08	225	103:30	258	0:49	38:26		
227 77:23 209 0:44 28:0 228 79:44 213 0:44 35:40 230 93:16 250 0:44 35:40 231 87:54 247 0:42 33:05 232 89:58 257 0:43 33:52 233 80:13 232 0:40 30:12 234 82:41 239 0:41 31:06 235 70:49 223 0:40 26:35 236 60:07 197 0:38 22:27 237 56:20 188 0:37 21:08 238 69:39 212 0:37 26:15 239 74:18 210 0:38 27:58 240 75:46 207 0:39 28:29 241 42:33 199 0:33 15:03 242 40:20 197 0:32 14:12 243 42:51 125 0:35 20:33 244 62:51 125 126 13:16:07	226	110:29	258	0:50	41:05		
228 /9:44 213 0:44 29:47 229 94:35 253 0:44 35:40 230 97:54 247 0:42 33:05 233 80:13 232 0:40 30:12 234 82:41 239 0:41 31:06 235 70:49 223 0:40 26:36 236 60:07 197 0:38 22:27 237 56:20 188 0:37 21:08 238 69:39 212 0:37 26:15 239 74:18 210 0:38 27:58 240 75:46 207 0:39 28:29 241 42:33 199 0:33 15:03 242 40:20 197 0:32 14:12 243 42:52 182 0:33 15:36 244 62:51 205 0:35 20:33 246 52:4 181 0:34 19:03 247 50:18 171 0:33 17:08	227	77:23	209	0:44	28:50		
229 94:35 253 0:44 35:40 230 93:16 250 0:44 35:09 231 87:54 247 0:42 33:05 232 89:58 257 0:43 33:52 233 80:13 232 0:40 30:12 234 82:41 239 0:41 31:06 235 70:49 223 0:40 26:36 236 60:07 197 0:38 22:27 237 56:20 188 0:37 26:15 239 74:18 210 0:38 27:58 240 75:46 207 0:33 15:03 242 40:20 197 0:32 14:12 243 42:52 182 0:33 15:36 244 62:51 205 0:35 23:43 245 54:18 185 0:32 16:43 247 50:18 174 0:34 19:03 248 47:55 171 0:33 17:22	228	79:44	213	0:44	29:47		
230 93:16 250 0:44 35:09 231 87:54 247 0:42 33:05 232 89:58 257 0:43 33:52 233 80:13 232 0:40 30:12 234 82:41 239 0:41 31:06 235 70:49 223 0:40 26:36 236 60:07 197 0:38 22:7 237 56:20 188 0:37 21:08 238 69:39 212 0:37 26:15 240 75:46 207 0:39 28:29 241 42:33 199 0:33 15:03 242 40:20 197 0:32 14:12 243 42:52 182 0:33 15:36 244 62:51 205 0:35 20:33 245 54:18 185 0:33 17:08 244 62:65 171 0:33 17:08 245 54:18 187 0:33 17:22	229	94:35	253	0:44	35:40		
231 87:54 247 0:42 33:05 232 89:58 257 0:43 33:52 233 80:13 232 0:40 30:12 234 82:41 239 0:41 31:06 235 70:49 223 0:40 26:36 236 60:07 197 0:38 22:27 237 56:20 188 0:37 26:15 239 74:18 210 0:38 27:58 240 75:46 207 0:33 15:03 242 40:20 197 0:32 14:12 243 42:52 182 0:35 23:43 244 62:51 205 0:35 23:43 245 54:18 185 0:33 17:08 244 52:24 181 0:34 19:03 247 50:18 171 0:33 17:22 250 45:30 164 0:33 17:08 251 43:46 163 0:32 16:28	230	93:16	250	0:44	35:09		
222 89:58 257 0:43 33:52 233 80:13 232 0:40 30:12 234 82:41 239 0:41 31:06 235 70:49 223 0:40 26:36 236 60:07 197 0:38 22:27 237 56:20 188 0:37 21:08 238 69:39 212 0:7:38 27:58 240 75:46 207 0:33 15:03 242 40:20 197 0:32 14:12 243 42:52 182 0:35 23:43 244 62:51 205 0:35 23:43 244 62:51 205 0:35 20:33 246 52:24 181 0:34 19:03 247 50:18 171 0:33 17:72 250 45:30 164 0:33 17:708 251 43:46 163 0:32 16:28 252 42:51 161 0:31 15:50	231	87:54	247	0:42	33:05		
233 80:13 232 0:40 30:12 234 82:41 239 0:41 31:06 235 70:49 223 0:40 26:36 236 60:07 197 0:38 22:27 237 56:20 188 0:37 21:08 238 69:39 212 0:37 26:15 240 75:46 207 0:39 28:29 241 42:33 199 0:33 15:36 242 40:20 197 0:32 14:12 243 42:52 182 0:33 15:36 244 62:51 205 0:35 23:43 245 54:18 185 0:32 16:38 246 52:24 181 174 0:33 17:22 250 45:30 164 0:33 17:22 250 45:30 164 0:33 17:22 250 45:30 164 0:31 16:07 253 41:59 162 0:31 15:50	232	89:58	257	0:43	33:52		
234 82:41 239 0:41 31:06 235 70:49 223 0:40 26:36 236 60:07 197 0:38 22:27 237 56:20 188 0:37 21:08 238 69:39 212 0:37 26:15 239 74:18 210 0:38 27:58 240 75:46 207 0:39 28:29 241 42:33 199 0:33 15:03 242 40:20 197 0:32 14:12 243 42:52 182 0:35 23:43 244 62:51 20:33 15:36 244 62:51 10:34 19:03 244 62:51 171 0:33 17:02 247 50:18 174 0:34 19:03 248 47:55 171 0:33 17:02 250 45:30 164 0:33 17:08 251 43:46 163 0:32 16:28 252 42:51 <td>233</td> <td>80:13</td> <td>232</td> <td>0:40</td> <td>30:12</td>	233	80:13	232	0:40	30:12		
235 00:49 223 0:40 26:36 236 60:07 197 0:38 22:27 237 56:20 188 0:37 21:08 238 69:39 212 0:37 26:15 239 74:18 210 0:38 27:58 240 75:46 207 0:39 28:29 241 42:33 199 0:33 15:03 242 40:20 197 0:32 14:12 243 42:52 182 0:33 15:36 244 62:51 205 0:35 20:33 246 52:24 181 0:34 19:51 247 50:18 174 0:33 18:07 248 47:55 171 0:33 17:22 250 45:30 164 0:33 17:22 250 45:30 164 0:33 17:26 254 41:49 160 0:30 15:49 255 41:09 159 0:29 14:08	234	82:41	239	0:41	31:06		
236 60:01 197 0:38 22:27 237 55:20 188 0:37 21:08 238 69:39 212 0:37 26:15 239 74:18 210 0:38 27:58 240 75:46 207 0:39 28:29 241 42:33 199 0:33 15:03 242 40:20 197 0:32 14:12 243 42:52 182 0:33 15:36 244 62:51 205 0:35 23:43 245 54:18 185 0:35 20:33 246 52:24 181 0:34 19:03 249 46:06 167 0:33 17:22 250 45:30 164 0:33 17:08 251 43:46 163 0:32 16:28 252 42:51 161 0:31 15:00 253 41:09 159 0:29 1	235	/0:49	223	0:40	26:36		
231 $66:20$ 188 $0:37$ $21:08$ 238 $69:39$ 212 $0:37$ $26:15$ 239 $74:18$ 210 $0:38$ $27:58$ 240 $75:46$ 207 $0:39$ $28:29$ 241 $42:33$ 199 $0:33$ $15:03$ 242 $40:20$ 197 $0:32$ $14:12$ 243 $42:52$ 182 $0:35$ $23:43$ 244 $62:51$ 205 $0:35$ $23:43$ 244 $62:51$ 205 $0:35$ $20:33$ 246 $52:24$ 181 $0:34$ $19:51$ 247 $50:18$ 174 $0:34$ $19:03$ 248 $47:55$ 171 $0:33$ $17:22$ 250 $45:30$ 164 $0:33$ $17:22$ 250 $45:30$ 164 $0:33$ $17:08$ 251 $43:46$ 163 $0:32$ $16:28$ 252 $42:51$ 161 $0:31$ $16:07$ 253 $41:59$ 162 $0:31$ $15:36$ 254 $41:49$ 160 $0:30$ $15:49$ 255 $41:09$ 153 $0:29$ $13:53$ 260 $32:09$ 124 $0:27$ $11:34$ 262 $30:21$ 118 $0:26$ $11:09$ 263 $32:35$ 125 $0:27$ $12:11$ 264 $29:57$ 119 $0:26$ $10:47$ 266 $27:14$ 113 $0:26$ $14:42$ 267 <td< td=""><td>236</td><td>60:07</td><td>197</td><td>0:38</td><td>22:27</td></td<>	236	60:07	197	0:38	22:27		
238 69:39 212 0:37 26:15 239 74:18 210 0:38 27:58 240 75:46 207 0:39 28:29 241 42:33 199 0:33 15:03 242 40:20 197 0:32 14:12 243 42:52 182 0:33 15:36 244 62:51 205 0:35 23:43 245 54:18 185 0:35 20:33 246 52:24 181 0:34 19:03 247 50:18 174 0:33 17:02 250 45:30 164 0:33 17:08 251 43:46 163 0:32 16:28 252 42:51 161 0:31 16:07 253 41:59 162 0:31 15:50 254 41:49 160 0:30 15:49 255 41:59 152 0:29 15:05 257 38:34 153 0:30 14:20	237	56:20	188	0:37	21:08		
239 /4:18 210 0:38 2/:58 240 75:46 207 0:39 28:29 241 42:33 199 0:33 15:03 242 40:20 197 0:32 14:12 243 42:52 182 0:33 15:36 244 62:51 205 0:35 23:43 245 54:18 185 0:35 20:33 246 52:24 181 0:34 19:51 247 50:18 174 0:33 17:02 248 47:55 171 0:33 18:07 249 46:06 167 0:33 17:08 251 43:46 163 0:32 16:28 252 42:51 161 0:31 15:50 254 41:49 160 0:30 15:49 255 41:09 159 0:30 15:36 256 39:51 159 0:29 14:08 259 37:15 152 0:27 11:52	238	69:39	212	0:37	26:15		
240 $75:46$ 207 $0:39$ $28:29$ 241 $42:33$ 199 $0:33$ $15:03$ 242 $40:20$ 197 $0:32$ $14:12$ 243 $42:52$ 182 $0:33$ $15:36$ 244 $62:51$ 205 $0:35$ $20:33$ 246 $52:24$ 181 $0:34$ $19:51$ 247 $50:18$ 174 $0:34$ $19:03$ 248 $47:55$ 171 $0:33$ $17:22$ 250 $45:30$ 164 $0:33$ $17:08$ 251 $43:46$ 163 $0:32$ $16:28$ 252 $42:51$ 161 $0:31$ $16:07$ 253 $41:59$ 162 $0:31$ $15:50$ 254 $41:49$ 160 $0:30$ $15:49$ 255 $41:09$ 159 $0:29$ $15:05$ 257 $38:34$ 153 $0:30$ $14:20$ 258 $38:01$ 154 $0:29$ $14:08$ 259 $37:15$ 152 $0:29$ $13:53$ 260 $32:09$ 124 $0:27$ $11:52$ 261 $31:28$ 123 $0:27$ $11:34$ 262 $30:21$ 118 $0:26$ $10:59$ 263 $32:35$ 125 $0:27$ $12:11$ 264 $29:57$ 119 $0:26$ $10:47$ 264 $29:57$ 119 $0:26$ $14:42$ 268 $37:05$ 148 $0:26$ $14:08$ 277 <td< td=""><td>239</td><td>/4:18</td><td>210</td><td>0:38</td><td>27:58</td></td<>	239	/4:18	210	0:38	27:58		
241 42:33 199 0:33 15:03 242 40:20 197 0:32 14:12 243 42:52 182 0:33 15:36 244 62:51 205 0:35 23:43 245 54:18 185 0:34 19:51 247 50:18 174 0:34 19:03 248 47:55 171 0:33 17:08 250 45:30 164 0:33 17:08 251 43:46 163 0:32 16:28 252 42:51 161 0:31 16:07 253 41:59 162 0:31 15:50 254 41:49 160 0:30 15:49 255 41:09 159 0:29 15:05 257 38:34 153 0:30 14:20 258 38:01 154 0:29 13:53 260 30:21 118 0:26 11:09 261 31:28 123 0:27 11:34	240	/5:46	207	0:39	28:29		
242 40:20 197 0:32 14:12 243 42:52 182 0:33 15:36 244 62:51 205 0:35 23:43 245 54:18 185 0:35 20:33 246 52:24 181 0:34 19:03 247 50:18 174 0:33 17:02 248 47:55 171 0:33 18:07 249 46:06 167 0:33 17:08 250 45:30 164 0:33 17:08 251 43:46 163 0:32 16:28 252 42:51 161 0:31 16:07 253 41:59 162 0:31 15:50 254 41:49 160 0:30 15:36 255 43:34 153 0:30 14:20 258 38:01 154 0:29 14:08 259 37:15 152 0:27 11:34 262 30:21 118 0:26 10:09	241	42:33	199	0:33	15:03		
243 $42:52$ 182 $0:33$ $15:36$ 244 $62:51$ 205 $0:35$ $22:33$ 245 $54:18$ 185 $0:35$ $20:33$ 246 $52:24$ 181 $0:34$ $19:51$ 247 $50:18$ 174 $0:34$ $19:03$ 248 $47:55$ 171 $0:33$ $17:22$ 250 $45:30$ 164 $0:33$ $17:08$ 251 $43:46$ 163 $0:32$ $16:28$ 252 $42:51$ 161 $0:31$ $15:00$ 254 $41:49$ 160 $0:30$ $15:49$ 255 $41:59$ 162 $0:31$ $15:50$ 254 $41:49$ 160 $0:30$ $15:36$ 256 $39:51$ 159 $0:29$ $15:05$ 257 $8:34$ 153 $0:30$ $14:20$ 258 $38:01$ 154 $0:29$ $14:08$ 259 $37:15$ 152 $0:27$ $11:52$ 260 $32:09$ 124 $0:27$ $11:52$ 261 $31:28$ 123 $0:27$ $12:11$ 264 $29:57$ 119 $0:26$ $10:59$ 265 $29:19$ 118 $0:26$ $14:08$ 269 $43:36$ 166 $0:25$ $16:24$ 270 $27:12$ 122 $0:24$ $10:02$ 271 $39:32$ 170 $0:27$ $15:08$ 272 $39:21$ 159 $0:27$ $15:08$ 272	242	40:20	197	0:32	14:12		
244 $62:51$ 205 $0:35$ $22:43$ 246 $52:24$ 181 $0:34$ $19:51$ 247 $50:18$ 174 $0:34$ $19:03$ 248 $47:55$ 171 $0:33$ $18:07$ 249 $46:06$ 167 $0:33$ $17:22$ 250 $45:30$ 164 $0:33$ $17:22$ 250 $45:30$ 164 $0:33$ $17:08$ 251 $43:46$ 163 $0:32$ $16:28$ 252 $42:51$ 162 $0:31$ $15:50$ 254 $41:49$ 160 $0:30$ $15:49$ 255 $41:09$ 159 $0:29$ $15:05$ 257 $38:34$ 153 $0:30$ $14:20$ 258 $38:01$ 154 $0:29$ $14:08$ 259 $37:15$ 152 $0:29$ $13:53$ 260 $32:09$ 124 $0:27$ $11:52$ 261 $31:28$ 123 $0:27$ $11:34$ 262 $30:21$ 118 $0:26$ $10:69$ 265 $29:19$ 118 $0:26$ $14:42$ 266 $27:14$ 113 $0:25$ $9:54$ 267 $38:38$ 155 $0:26$ $14:42$ 268 $37:05$ 148 $0:26$ $10:47$ 264 $29:57$ 119 $0:27$ $15:08$ 277 $39:32$ 170 $0:27$ $15:08$ 277 $39:32$ 170 $0:27$ $15:08$ 277	243	42:52	182	0:33	15:36		
245 $54:18$ 185 $0:34$ $19:51$ 246 $52:24$ 181 $0:34$ $19:03$ 247 $50:18$ 174 $0:33$ $18:07$ 249 $46:06$ 167 $0:33$ $17:22$ 250 $45:30$ 164 $0:33$ $17:08$ 251 $43:46$ 163 $0:32$ $16:28$ 252 $42:51$ 161 $0:31$ $16:07$ 253 $41:59$ 162 $0:31$ $15:50$ 254 $41:49$ 160 $0:30$ $15:49$ 255 $41:09$ 159 $0:30$ $15:36$ 256 $39:51$ 159 $0:29$ $15:05$ 257 $38:34$ 153 $0:30$ $14:20$ 258 $38:01$ 154 $0:29$ $14:08$ 259 $37:15$ 152 $0:29$ $15:53$ 260 $32:09$ 124 $0:27$ $11:52$ 261 $31:28$ 123 $0:27$ $11:34$ 262 $30:21$ 118 $0:26$ $10:47$ 264 $29:57$ 119 $0:26$ $10:47$ 264 $29:57$ 119 $0:26$ $14:42$ 268 $37:05$ 148 $0:26$ $14:08$ 269 $43:36$ 166 $0:25$ $16:24$ 270 $27:14$ 132 $0:27$ $14:59$ 273 $40:46$ 162 $0:28$ $15:31$ 274 $41:08$ 162 $0:28$ $15:31$ 276 <td< td=""><td>244</td><td>62:51</td><td>205</td><td>0:35</td><td>23:43</td></td<>	244	62:51	205	0:35	23:43		
246 $52:24$ 181 $0:34$ $19:51$ 247 $50:18$ 174 $0:34$ $19:03$ 248 $47:55$ 171 $0:33$ $18:07$ 249 $46:06$ 167 $0:33$ $17:22$ 250 $45:30$ 164 $0:33$ $17:08$ 251 $43:46$ 163 $0:32$ $16:28$ 252 $42:51$ 161 $0:31$ $15:07$ 253 $41:59$ 162 $0:31$ $15:50$ 254 $41:49$ 160 $0:30$ $15:49$ 255 $41:09$ 159 $0:29$ $15:05$ 257 $38:34$ 153 $0:30$ $14:20$ 258 $38:01$ 154 $0:29$ $13:53$ 260 $32:09$ 124 $0:27$ $11:52$ 261 $31:28$ 123 $0:27$ $11:34$ 262 $30:21$ 118 $0:26$ $10:47$ 264 $29:57$ 119 $0:26$ $10:47$ 264 $29:57$ 119 $0:26$ $10:47$ 264 $29:57$ 119 $0:26$ $14:42$ 268 $37:05$ 148 $0:26$ $14:08$ 269 $43:36$ 166 $0:25$ $16:24$ 270 $27:21$ 122 $0:24$ $10:02$ 271 $39:32$ 170 $0:27$ $15:08$ 272 $39:57$ 159 $0:28$ $15:13$ 274 $41:08$ 162 $0:28$ $15:13$ 274 <td< td=""><td>245</td><td>54:18</td><td>185</td><td>0:35</td><td>20:33</td></td<>	245	54:18	185	0:35	20:33		
247 $50:18$ 174 $0:34$ $19:03$ 248 $47:55$ 171 $0:33$ $17:22$ 250 $45:30$ 164 $0:33$ $17:22$ 250 $45:30$ 164 $0:33$ $17:08$ 251 $43:46$ 163 $0:32$ $16:28$ 252 $42:51$ 161 $0:31$ $16:07$ 253 $41:59$ 162 $0:31$ $15:50$ 254 $41:49$ 160 $0:30$ $15:49$ 255 $41:09$ 159 $0:30$ $15:36$ 256 $39:51$ 159 $0:29$ $14:08$ 259 $37:15$ 152 $0:29$ $13:53$ 260 $32:09$ 124 $0:27$ $11:52$ 261 $31:28$ 123 $0:27$ $11:44$ 262 $30:21$ 118 $0:26$ $10:59$ 265 $29:19$ 118 $0:26$ $10:47$ 264 $29:57$ 119 $0:26$ $10:47$ 264 $29:57$ 119 $0:26$ $14:42$ 268 $37:05$ 148 $0:26$ $14:08$ 269 $43:36$ 166 $0:25$ $16:24$ 270 $27:21$ 122 $0:24$ $10:02$ 271 $39:32$ 170 $0:27$ $15:08$ 272 $39:21$ 159 $0:27$ $14:59$ 273 $40:46$ 162 $0:28$ $15:13$ 276 $31:09$ 119 $0:28$ $11:06$ 277 <td< td=""><td>246</td><td>52:24</td><td>181</td><td>0:34</td><td>19:51</td></td<>	246	52:24	181	0:34	19:51		
248 $47:55$ 171 $0:33$ $18:07$ 249 $46:06$ 167 $0:33$ $17:22$ 250 $45:30$ 164 $0:33$ $17:08$ 251 $43:46$ 163 $0:32$ $16:28$ 252 $42:51$ 161 $0:31$ $16:07$ 253 $41:59$ 162 $0:31$ $15:50$ 254 $41:49$ 160 $0:30$ $15:49$ 255 $41:09$ 159 $0:29$ $15:05$ 257 $38:34$ 153 $0:30$ $14:20$ 258 $38:01$ 154 $0:29$ $13:53$ 260 $32:09$ 124 $0:27$ $11:52$ 261 $31:28$ 123 $0:27$ $11:52$ 261 $31:28$ 123 $0:27$ $11:34$ 262 $30:21$ 118 $0:26$ $10:59$ 265 $29:19$ 118 $0:26$ $10:47$ 266 $27:14$ 113 $0:25$ $9:54$ 267 $38:38$ 155 $0:26$ $14:42$ 268 $37:05$ 148 $0:26$ $14:42$ 268 $37:05$ 148 $0:26$ $14:42$ 271 $39:32$ 170 $0:27$ $15:08$ 272 $39:21$ 159 $0:27$ $14:59$ 273 $40:46$ 162 $0:28$ $15:31$ 274 $41:08$ 162 $0:28$ $15:13$ 274 $30:31$ 119 $0:28$ $11:06$ 277	247	50:18	1/4	0:34	19:03		
249 $46:06$ 167 $0:33$ $17:22$ 250 $45:30$ 164 $0:33$ $17:08$ 251 $43:46$ 163 $0:32$ $16:28$ 252 $42:51$ 161 $0:31$ $16:07$ 253 $41:59$ 162 $0:31$ $15:50$ 254 $41:49$ 160 $0:30$ $15:49$ 255 $41:09$ 159 $0:29$ $15:05$ 257 $38:34$ 153 $0:30$ $14:20$ 258 $38:01$ 154 $0:29$ $14:08$ 259 $37:15$ 152 $0:29$ $13:53$ 260 $32:09$ 124 $0:27$ $11:52$ 261 $31:28$ 123 $0:27$ $11:34$ 262 $30:21$ 118 $0:26$ $10:59$ 265 $29:19$ 118 $0:26$ $10:47$ 266 $27:14$ 113 $0:25$ $9:54$ 267 $38:38$ 155 $0:26$ $14:42$ 268 $37:05$ 148 $0:26$ $14:42$ 268 $37:05$ 148 $0:26$ $14:08$ 269 $43:36$ 166 $0:25$ $16:24$ 270 $27:21$ 122 $0:24$ $10:02$ 271 $39:32$ 170 $0:27$ $15:08$ 272 $39:21$ 159 $0:28$ $15:31$ 274 $41:08$ 162 $0:29$ $15:40$ 277 $30:31$ 119 $0:27$ $16:62$ 277	248	47:55	1/1	0:33	18:07		
250 $45:30$ 164 $0:33$ $17:08$ 251 $43:46$ 163 $0:32$ $16:28$ 252 $42:51$ 161 $0:31$ $15:07$ 253 $41:59$ 162 $0:31$ $15:50$ 254 $41:49$ 160 $0:30$ $15:49$ 255 $41:09$ 159 $0:30$ $15:36$ 256 $39:51$ 159 $0:29$ $15:05$ 257 $38:34$ 153 $0:30$ $14:20$ 258 $38:01$ 154 $0:29$ $14:08$ 259 $37:15$ 152 $0:29$ $13:53$ 260 $32:09$ 124 $0:27$ $11:34$ 262 $30:21$ 118 $0:26$ $11:09$ 263 $32:35$ 125 $0:27$ $12:11$ 264 $29:57$ 119 $0:26$ $10:59$ 265 $29:19$ 118 $0:26$ $10:47$ 266 $27:14$ 113 $0:25$ $9:54$ 267 $38:38$ 155 $0:26$ $14:42$ 268 $37:05$ 148 $0:26$ $14:08$ 269 $43:36$ 166 $0:25$ $16:24$ 270 $27:21$ 122 $0:24$ $10:02$ 271 $39:32$ 170 $0:27$ $14:59$ 273 $40:46$ 162 $0:28$ $15:31$ 274 $41:08$ 162 $0:29$ $15:40$ 275 $39:57$ 159 $0:28$ $15:13$ 276	249	46:06	16/	0:33	17:22		
251 $43:46$ 16.3 $0:32$ $16:28$ 252 $42:51$ 161 $0:31$ $16:07$ 253 $41:59$ 162 $0:31$ $15:50$ 254 $41:49$ 160 $0:30$ $15:49$ 255 $41:09$ 159 $0:30$ $15:36$ 256 $39:51$ 159 $0:29$ $15:05$ 257 $38:34$ 153 $0:30$ $14:20$ 258 $38:01$ 154 $0:29$ $14:08$ 259 $37:15$ 152 $0:27$ $11:52$ 260 $32:09$ 124 $0:27$ $11:52$ 261 $31:28$ 123 $0:27$ $11:34$ 262 $30:21$ 118 $0:26$ $10:69$ 263 $32:35$ 125 $0:27$ $12:11$ 264 $29:57$ 119 $0:26$ $10:59$ 265 $29:19$ 118 $0:26$ $10:47$ 266 $27:14$ 113 $0:25$ $9:54$ 267 $38:38$ 155 $0:26$ $14:42$ 268 $37:05$ 148 $0:26$ $14:08$ 269 $43:36$ 166 $0:25$ $16:24$ 270 $27:21$ 122 $0:24$ $10:02$ 271 $39:32$ 170 $0:27$ $14:59$ 273 $40:46$ 162 $0:28$ $15:31$ 274 $41:08$ 162 $0:29$ $15:40$ 275 $39:57$ 159 $0:28$ $15:31$ 274 <td< td=""><td>250</td><td>45:30</td><td>164</td><td>0:33</td><td>17:08</td></td<>	250	45:30	164	0:33	17:08		
252 $42:51$ 161 $0:31$ $16:07$ 253 $41:59$ 162 $0:31$ $15:50$ 254 $41:49$ 160 $0:30$ $15:49$ 255 $41:09$ 159 $0:30$ $15:36$ 256 $39:51$ 159 $0:29$ $15:05$ 257 $38:34$ 153 $0:30$ $14:20$ 258 $38:01$ 154 $0:29$ $13:53$ 260 $32:09$ 124 $0:27$ $11:34$ 262 $30:21$ 118 $0:26$ $11:09$ 263 $32:35$ 125 $0:27$ $12:11$ 264 $29:57$ 119 $0:26$ $10:47$ 266 $29:19$ 118 $0:26$ $10:47$ 266 $29:19$ 118 $0:26$ $10:47$ 266 $29:19$ 118 $0:26$ $14:42$ 268 $37:05$ 148 $0:26$ $14:42$ 268 $37:05$ 148 $0:26$ $14:68$ 269 $43:36$ 166 $0:25$ $16:24$ 270 $27:21$ 122 $0:24$ $10:02$ 271 $39:32$ 170 $0:27$ $14:59$ 273 $40:46$ 162 $0:28$ $15:31$ 274 $41:08$ 162 $0:29$ $15:40$ 275 $39:57$ 159 $0:28$ $15:13$ 276 $31:09$ 119 $0:26$ $10:20$ 279 $27:16$ 114 $0:26$ $9:40$ 280	251	43:46	163	0:32	16:28		
253 $41:59$ 162 $0:31$ $15:50$ 254 $41:49$ 160 $0:30$ $15:49$ 255 $41:09$ 159 $0:29$ $15:05$ 257 $38:34$ 153 $0:30$ $14:20$ 258 $38:01$ 154 $0:29$ $14:08$ 259 $37:15$ 152 $0:29$ $13:53$ 260 $32:09$ 124 $0:27$ $11:52$ 261 $31:28$ 123 $0:27$ $11:34$ 262 $30:21$ 118 $0:26$ $10:59$ 263 $32:35$ 125 $0:27$ $12:11$ 264 $29:57$ 119 $0:26$ $10:59$ 265 $29:19$ 118 $0:26$ $10:47$ 266 $27:14$ 113 $0:25$ $9:54$ 267 $38:38$ 155 $0:26$ $14:42$ 268 $37:05$ 148 $0:26$ $14:42$ 268 $37:05$ 148 $0:26$ $14:42$ 268 $37:05$ 148 $0:27$ $15:08$ 272 $39:21$ 159 $0:27$ $14:59$ 273 $40:46$ 162 $0:28$ $15:31$ 274 $41:08$ 162 $0:29$ $15:40$ 275 $39:57$ 159 $0:28$ $15:13$ 276 $31:09$ 119 $0:27$ $10:58$ 278 $29:02$ 118 $0:26$ $10:20$ 279 $27:16$ 114 $0:26$ $9:40$ 280	252	42:51	161	0:31	16:07		
254 $41:49$ 160 $0:30$ $15:49$ 255 $41:09$ 159 $0:30$ $15:36$ 256 $39:51$ 159 $0:29$ $15:05$ 257 $38:34$ 153 $0:30$ $14:20$ 258 $38:01$ 154 $0:29$ $14:08$ 259 $37:15$ 152 $0:29$ $13:53$ 260 $32:09$ 124 $0:27$ $11:52$ 261 $31:28$ 123 $0:27$ $11:34$ 262 $30:21$ 118 $0:26$ $11:09$ 263 $32:35$ 125 $0:27$ $12:11$ 264 $29:57$ 119 $0:26$ $10:59$ 265 $29:19$ 118 $0:26$ $10:47$ 266 $27:14$ 113 $0:25$ $9:54$ 267 $38:38$ 155 $0:26$ $14:42$ 268 $37:05$ 148 $0:26$ $14:42$ 268 $37:05$ 148 $0:26$ $14:42$ 268 $37:05$ 148 $0:26$ $14:68$ 270 $27:21$ 122 $0:24$ $10:02$ 271 $39:32$ 170 $0:27$ $14:59$ 273 $40:46$ 162 $0:28$ $15:31$ 274 $41:08$ 162 $0:28$ $15:13$ 276 $31:09$ 119 $0:27$ $10:58$ 278 $29:02$ 118 $0:26$ $10:20$ 279 $27:16$ 114 $0:26$ $9:40$ 280	253	41:59	162	0:31	15:50		
255 $41:09$ 159 $0:30$ $15:36$ 256 $39:51$ 159 $0:29$ $15:05$ 257 $38:34$ 153 $0:30$ $14:20$ 258 $38:01$ 154 $0:29$ $14:08$ 259 $37:15$ 152 $0:29$ $13:53$ 260 $32:09$ 124 $0:27$ $11:52$ 261 $31:28$ 123 $0:27$ $11:34$ 262 $30:21$ 118 $0:26$ $11:09$ 263 $32:35$ 125 $0:27$ $12:11$ 264 $29:57$ 119 $0:26$ $10:47$ 266 $27:14$ 113 $0:25$ $9:54$ 267 $38:38$ 155 $0:26$ $14:42$ 268 $37:05$ 148 $0:26$ $14:08$ 269 $43:36$ 166 $0:25$ $16:24$ 270 $27:21$ 122 $0:24$ $10:02$ 271 $39:32$ 170 $0:27$ $15:08$ 272 $39:21$ 159 $0:28$ $15:13$ 274 $41:08$ 162 $0:29$ $15:40$ 275 $39:57$ 159 $0:28$ $15:13$ 276 $31:09$ 119 $0:28$ $11:06$ 277 $30:31$ 119 $0:23$ $7:46$ 280 $25:56$ 111 $0:25$ $9:09$ 281 $22:28$ 103 $0:23$ $7:46$ 284 $64:30$ 225 $0:25$ $23:53$	254	41:49	160	0:30	15:49		
256 $39:51$ 159 $0:29$ $15:05$ 257 $38:34$ 153 $0:30$ $14:20$ 258 $38:01$ 154 $0:29$ $14:08$ 259 $37:15$ 152 $0:29$ $13:53$ 260 $32:09$ 124 $0:27$ $11:52$ 261 $31:28$ 123 $0:27$ $11:34$ 262 $30:21$ 118 $0:26$ $11:09$ 263 $32:35$ 125 $0:27$ $12:11$ 264 $29:57$ 119 $0:26$ $10:59$ 265 $29:19$ 118 $0:26$ $10:47$ 266 $27:14$ 113 $0:25$ $9:54$ 267 $38:38$ 155 $0:26$ $14:42$ 268 $37:05$ 148 $0:26$ $14:08$ 269 $43:36$ 166 $0:25$ $16:24$ 270 $27:21$ 122 $0:24$ $10:02$ 271 $39:32$ 170 $0:27$ $15:08$ 272 $39:21$ 159 $0:28$ $15:13$ 274 $41:08$ 162 $0:29$ $15:40$ 275 $39:57$ 159 $0:28$ $15:13$ 276 $31:09$ 119 $0:28$ $11:06$ 277 $30:31$ 119 $0:27$ $10:58$ 278 $29:02$ 118 $0:26$ $9:40$ 280 $25:56$ 111 $0:25$ $9:09$ 281 $22:28$ 103 $0:23$ $7:46$ 282 $5:$	255	41:09	159	0:30	15:36		
257 $38:34$ 153 $0:30$ $14:20$ 258 $38:01$ 154 $0:29$ $14:08$ 259 $37:15$ 152 $0:29$ $13:53$ 260 $32:09$ 124 $0:27$ $11:52$ 261 $31:28$ 123 $0:27$ $11:34$ 262 $30:21$ 118 $0:26$ $11:09$ 263 $32:35$ 125 $0:27$ $12:11$ 264 $29:57$ 119 $0:26$ $10:59$ 265 $29:19$ 118 $0:26$ $10:47$ 266 $27:14$ 113 $0:25$ $9:54$ 267 $38:38$ 155 $0:26$ $14:42$ 268 $37:05$ 148 $0:26$ $14:08$ 269 $43:36$ 166 $0:25$ $16:24$ 270 $27:21$ 122 $0:24$ $10:02$ 271 $39:32$ 170 $0:27$ $14:59$ 273 $40:46$ 162 $0:29$ $15:40$ 275 $39:57$ 159 $0:28$ $15:13$ 276 $31:09$ 119 $0:28$ $11:06$ 277 $30:31$ 119 $0:27$ $10:58$ 278 $29:02$ 118 $0:26$ $10:20$ 279 $27:16$ 114 $0:26$ $9:40$ 280 $25:56$ 111 $0:25$ $9:09$ 281 $22:28$ 103 $0:23$ $7:46$ 282 $5:49$ 202 $0:28$ $21:13$ 283 $61:$	256	39:51	159	0:29	15:05		
258 $38:01$ 154 $0:29$ $14:08$ 259 $37:15$ 152 $0:29$ $13:53$ 260 $32:09$ 124 $0:27$ $11:52$ 261 $31:28$ 123 $0:27$ $11:34$ 262 $30:21$ 118 $0:26$ $11:09$ 263 $32:35$ 125 $0:27$ $12:11$ 264 $29:57$ 119 $0:26$ $10:59$ 265 $29:19$ 118 $0:26$ $10:47$ 266 $27:14$ 113 $0:25$ $9:54$ 267 $38:38$ 155 $0:26$ $14:42$ 268 $37:05$ 148 $0:26$ $14:08$ 269 $43:36$ 166 $0:25$ $16:24$ 270 $27:21$ 122 $0:24$ $10:02$ 271 $39:32$ 170 $0:27$ $15:08$ 272 $39:21$ 159 $0:28$ $15:31$ 274 $41:08$ 162 $0:29$ $15:40$ 275 $39:57$ 159 $0:28$ $15:13$ 276 $31:09$ 119 $0:28$ $11:06$ 277 $27:16$ 114 $0:26$ $9:40$ 280 $25:56$ 111 $0:25$ $9:09$ 281 $22:28$ 103 $0:23$ $7:46$ 282 $5:49$ 202 $0:28$ $21:13$ 283 $61:51$ 215 $0:25$ $23:53$	257	38:34	153	0:30	14:20		
259 $37:15$ 152 $0:29$ $13:53$ 260 $32:09$ 124 $0:27$ $11:52$ 261 $31:28$ 123 $0:27$ $11:34$ 262 $30:21$ 118 $0:26$ $11:09$ 263 $32:35$ 125 $0:27$ $12:11$ 264 $29:57$ 119 $0:26$ $10:59$ 265 $29:19$ 118 $0:26$ $10:47$ 266 $27:14$ 113 $0:25$ $9:54$ 267 $38:38$ 155 $0:26$ $14:42$ 268 $37:05$ 148 $0:26$ $14:42$ 268 $37:05$ 148 $0:26$ $14:42$ 269 $43:36$ 166 $0:25$ $16:24$ 270 $27:21$ 122 $0:24$ $10:02$ 271 $39:32$ 170 $0:27$ $15:08$ 272 $39:21$ 159 $0:27$ $14:59$ 273 $40:46$ 162 $0:28$ $15:31$ 274 $41:08$ 162 $0:29$ $15:40$ 275 $39:57$ 159 $0:28$ $15:13$ 276 $31:09$ 119 $0:26$ $10:20$ 279 $27:16$ 114 $0:26$ $9:40$ 280 $25:56$ 111 $0:25$ $9:09$ 281 $22:28$ 103 $0:23$ $7:46$ 282 $5:49$ 202 $0:28$ $21:13$ 283 $61:51$ 215 $0:27$ $23:14$ 284 $64:$	258	38:01	154	0:29	14:08		
280 $32:09$ 124 $0:27$ $11:52$ 261 $31:28$ 123 $0:27$ $11:34$ 262 $30:21$ 118 $0:26$ $11:09$ 263 $32:35$ 125 $0:27$ $12:11$ 264 $29:57$ 119 $0:26$ $10:59$ 265 $29:19$ 118 $0:26$ $10:47$ 266 $27:14$ 113 $0:25$ $9:54$ 267 $38:38$ 155 $0:26$ $14:42$ 268 $37:05$ 148 $0:26$ $14:08$ 269 $43:36$ 166 $0:25$ $16:24$ 270 $27:21$ 122 $0:24$ $10:02$ 271 $39:32$ 170 $0:27$ $15:08$ 272 $39:21$ 159 $0:27$ $14:59$ 273 $40:46$ 162 $0:28$ $15:31$ 274 $41:08$ 162 $0:29$ $15:40$ 275 $39:57$ 159 $0:28$ $15:13$ 276 $31:09$ 119 $0:28$ $11:06$ 277 $30:31$ 119 $0:27$ $10:58$ 278 $29:02$ 118 $0:26$ $9:40$ 280 $25:56$ 111 $0:25$ $9:09$ 281 $22:28$ 103 $0:23$ $7:46$ 282 $5:49$ 202 $0:28$ $21:13$ 283 $61:51$ 215 $0:27$ $23:14$ 284 $64:30$ 225 $0:25$ $23:53$	259	37:15	152	0:29	13:53		
261 $31:28$ 123 $0:27$ $11:34$ 262 $30:21$ 118 $0:26$ $11:09$ 263 $32:35$ 125 $0:27$ $12:11$ 264 $29:57$ 119 $0:26$ $10:59$ 265 $29:19$ 118 $0:26$ $10:47$ 266 $27:14$ 113 $0:25$ $9:54$ 267 $38:38$ 155 $0:26$ $14:42$ 268 $37:05$ 148 $0:26$ $14:42$ 268 $37:05$ 148 $0:26$ $14:08$ 269 $43:36$ 166 $0:25$ $16:24$ 270 $27:21$ 122 $0:24$ $10:02$ 271 $39:32$ 170 $0:27$ $15:08$ 272 $39:21$ 159 $0:27$ $14:59$ 273 $40:46$ 162 $0:28$ $15:31$ 274 $41:08$ 162 $0:29$ $15:40$ 275 $39:57$ 159 $0:28$ $15:13$ 276 $31:09$ 119 $0:27$ $10:58$ 278 $29:02$ 118 $0:26$ $10:20$ 279 $27:16$ 114 $0:26$ $9:40$ 280 $25:56$ 111 $0:25$ $9:09$ 281 $22:28$ 103 $0:23$ $7:46$ 282 $5:49$ 202 $0:28$ $21:13$ 283 $61:51$ 215 $0:27$ $23:14$ 284 $64:30$ 225 $0:25$ $23:53$	260	32:09	124	0:27	11:52		
262 $30:21$ 118 $0:26$ $11:09$ 263 $32:35$ 125 $0:27$ $12:11$ 264 $29:57$ 119 $0:26$ $10:59$ 265 $29:19$ 118 $0:26$ $10:47$ 266 $27:14$ 113 $0:25$ $9:54$ 267 $38:38$ 155 $0:26$ $14:42$ 268 $37:05$ 148 $0:26$ $14:08$ 269 $43:36$ 166 $0:25$ $16:24$ 270 $27:21$ 122 $0:24$ $10:02$ 271 $39:32$ 170 $0:27$ $15:08$ 272 $39:21$ 159 $0:27$ $14:59$ 273 $40:46$ 162 $0:28$ $15:31$ 274 $41:08$ 162 $0:29$ $15:40$ 275 $39:57$ 159 $0:28$ $15:13$ 276 $31:09$ 119 $0:28$ $11:06$ 277 $30:31$ 119 $0:27$ $10:58$ 278 $29:02$ 118 $0:26$ $9:40$ 280 $25:56$ 111 $0:25$ $9:09$ 281 $22:28$ 103 $0:23$ $7:46$ 282 $5:49$ 202 $0:28$ $21:13$ 283 $61:51$ 215 $0:27$ $23:14$ 284 $64:30$ 225 $0:25$ $23:53$	201	31:28	123	0:27	11:34		
263 $32:35$ 125 $0:27$ $12:11$ 264 $29:57$ 119 $0:26$ $10:59$ 265 $29:19$ 118 $0:26$ $10:47$ 266 $27:14$ 113 $0:25$ $9:54$ 267 $38:38$ 155 $0:26$ $14:42$ 268 $37:05$ 148 $0:26$ $14:08$ 269 $43:36$ 166 $0:25$ $16:24$ 270 $27:21$ 122 $0:24$ $10:02$ 271 $39:32$ 170 $0:27$ $15:08$ 272 $39:21$ 159 $0:27$ $14:59$ 273 $40:46$ 162 $0:28$ $15:31$ 274 $41:08$ 162 $0:29$ $15:40$ 275 $39:57$ 159 $0:28$ $15:13$ 276 $31:09$ 119 $0:28$ $11:06$ 277 $30:31$ 119 $0:27$ $10:58$ 278 $29:02$ 118 $0:26$ $9:40$ 280 $25:56$ 111 $0:25$ $9:09$ 281 $22:28$ 103 $0:23$ $7:46$ 282 $55:49$ 202 $0:28$ $21:13$ 283 $61:51$ 215 $0:27$ $23:14$ 284 $64:30$ 225 $0:25$ $23:53$	262	30:21	118	0:26	11:09		
264 $29:57$ 119 $0:26$ $10:59$ 265 $29:19$ 118 $0:26$ $10:47$ 266 $27:14$ 113 $0:25$ $9:54$ 267 $38:38$ 155 $0:26$ $14:42$ 268 $37:05$ 148 $0:26$ $14:08$ 269 $43:36$ 166 $0:25$ $16:24$ 270 $27:21$ 122 $0:24$ $10:02$ 271 $39:32$ 170 $0:27$ $15:08$ 272 $39:21$ 159 $0:27$ $14:59$ 273 $40:46$ 162 $0:28$ $15:31$ 274 $41:08$ 162 $0:29$ $15:40$ 275 $39:57$ 159 $0:28$ $15:13$ 276 $31:09$ 119 $0:28$ $11:06$ 277 $30:31$ 119 $0:27$ $10:58$ 278 $29:02$ 118 $0:26$ $9:40$ 280 $25:56$ 111 $0:25$ $9:09$ 281 $22:28$ 103 $0:23$ $7:46$ 282 $55:49$ 202 $0:28$ $21:13$ 283 $61:51$ 215 $0:27$ $23:14$ 284 $64:30$ 225 $0:25$ $23:53$	203	32:35	120	0:27	12:11		
265 $29:19$ 118 $0:26$ $10:47$ 266 $27:14$ 113 $0:25$ $9:54$ 267 $38:38$ 155 $0:26$ $14:42$ 268 $37:05$ 148 $0:26$ $14:08$ 269 $43:36$ 166 $0:25$ $16:24$ 270 $27:21$ 122 $0:24$ $10:02$ 271 $39:32$ 170 $0:27$ $15:08$ 272 $39:21$ 159 $0:27$ $14:59$ 273 $40:46$ 162 $0:28$ $15:31$ 274 $41:08$ 162 $0:29$ $15:40$ 275 $39:57$ 159 $0:28$ $15:13$ 276 $31:09$ 119 $0:28$ $11:06$ 277 $30:31$ 119 $0:27$ $10:58$ 278 $29:02$ 118 $0:26$ $9:40$ 280 $25:56$ 111 $0:25$ $9:09$ 281 $22:28$ 103 $0:23$ $7:46$ 282 $55:49$ 202 $0:28$ $21:13$ 283 $61:51$ 215 $0:27$ $23:14$ 284 $64:30$ 225 $0:25$ $23:53$	264	29:57	119	0:26	10:59		
266 27.14 113 0.23 9.34 267 $38:38$ 155 $0:26$ $14:42$ 268 $37:05$ 148 $0:26$ $14:08$ 269 $43:36$ 166 $0:25$ $16:24$ 270 $27:21$ 122 $0:24$ $10:02$ 271 $39:32$ 170 $0:27$ $15:08$ 272 $39:21$ 159 $0:27$ $14:59$ 273 $40:46$ 162 $0:28$ $15:31$ 274 $41:08$ 162 $0:29$ $15:40$ 275 $39:57$ 159 $0:28$ $15:13$ 276 $31:09$ 119 $0:28$ $11:06$ 277 $30:31$ 119 $0:27$ $10:58$ 278 $29:02$ 118 $0:26$ $9:40$ 280 $25:56$ 111 $0:25$ $9:09$ 281 $22:28$ 103 $0:23$ $7:46$ 282 $55:49$ 202 $0:28$ $21:13$ 283 $61:51$ 215 $0:27$ $23:14$ 284 $64:30$ 225 $0:25$ $23:53$	200	29.19	110	0.20	0.54		
267 36.36 133 0.26 14.42 268 $37:05$ 148 $0:26$ $14:08$ 269 $43:36$ 166 $0:25$ $16:24$ 270 $27:21$ 122 $0:24$ $10:02$ 271 $39:32$ 170 $0:27$ $15:08$ 272 $39:21$ 159 $0:27$ $14:59$ 273 $40:46$ 162 $0:28$ $15:31$ 274 $41:08$ 162 $0:29$ $15:40$ 275 $39:57$ 159 $0:28$ $15:13$ 276 $31:09$ 119 $0:28$ $11:06$ 277 $30:31$ 119 $0:27$ $10:58$ 278 $29:02$ 118 $0:26$ $9:40$ 280 $25:56$ 111 $0:25$ $9:09$ 281 $22:28$ 103 $0:23$ $7:46$ 282 $55:49$ 202 $0:28$ $21:13$ 283 $61:51$ 215 $0:27$ $23:14$ 284 $64:30$ 225 $0:25$ $23:53$	200	27.14	115	0.25	9.04		
266 37.03 143 0.26 14.06 269 $43:36$ 166 $0:25$ $16:24$ 270 $27:21$ 122 $0:24$ $10:02$ 271 $39:32$ 170 $0:27$ $15:08$ 272 $39:21$ 159 $0:27$ $14:59$ 273 $40:46$ 162 $0:28$ $15:31$ 274 $41:08$ 162 $0:29$ $15:40$ 275 $39:57$ 159 $0:28$ $15:13$ 276 $31:09$ 119 $0:28$ $11:06$ 277 $30:31$ 119 $0:27$ $10:58$ 278 $29:02$ 118 $0:26$ $9:40$ 280 $25:56$ 111 $0:25$ $9:09$ 281 $22:28$ 103 $0:23$ $7:46$ 282 $55:49$ 202 $0:28$ $21:13$ 283 $61:51$ 215 $0:27$ $23:14$ 284 $64:30$ 225 $0:25$ $23:53$	207	30.30 27.05	100	0.20	14.42		
269 43.30 100 0.23 10.24 270 $27:21$ 122 $0:24$ $10:02$ 271 $39:32$ 170 $0:27$ $15:08$ 272 $39:21$ 159 $0:27$ $14:59$ 273 $40:46$ 162 $0:28$ $15:31$ 274 $41:08$ 162 $0:29$ $15:40$ 275 $39:57$ 159 $0:28$ $15:13$ 276 $31:09$ 119 $0:27$ $10:58$ 278 $29:02$ 118 $0:26$ $10:20$ 279 $27:16$ 114 $0:26$ $9:40$ 280 $25:56$ 111 $0:25$ $9:09$ 281 $22:28$ 103 $0:23$ $7:46$ 282 $55:49$ 202 $0:28$ $21:13$ 283 $61:51$ 215 $0:27$ $23:14$ 284 $64:30$ 225 $0:25$ $23:53$	200	37.03	140	0.20	14.08		
270 27.21 122 0.24 10.02 271 $39:32$ 170 $0:27$ $15:08$ 272 $39:21$ 159 $0:27$ $14:59$ 273 $40:46$ 162 $0:28$ $15:31$ 274 $41:08$ 162 $0:29$ $15:40$ 275 $39:57$ 159 $0:28$ $15:13$ 276 $31:09$ 119 $0:27$ $10:58$ 278 $29:02$ 118 $0:26$ $10:20$ 279 $27:16$ 114 $0:26$ $9:40$ 280 $25:56$ 111 $0:25$ $9:09$ 281 $22:28$ 103 $0:23$ $7:46$ 282 $55:49$ 202 $0:28$ $21:13$ 283 $61:51$ 215 $0:27$ $23:14$ 284 $64:30$ 225 $0:25$ $23:53$	209	43.30	100	0.25	10.24		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	270	27.21	122	0.24	15.02		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	271	20.21	170	0.27	14.50		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	272	J9.21 10.16	162	0.27	14.39		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	273	40.40	162	0.20	15:31		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	274	20.57	102	0.29	15.40		
270 31.07 117 0.26 11.00 277 30:31 119 0:27 10:58 278 29:02 118 0:26 10:20 279 27:16 114 0:26 9:40 280 25:56 111 0:25 9:09 281 22:28 103 0:23 7:46 282 55:49 202 0:28 21:13 283 61:51 215 0:27 23:14 284 64:30 225 0:25 23:53	210	37.37	107	0.20	11.06		
277 30.51 117 0.27 10.56 278 29:02 118 0:26 10:20 279 27:16 114 0:26 9:40 280 25:56 111 0:25 9:09 281 22:28 103 0:23 7:46 282 55:49 202 0:28 21:13 283 61:51 215 0:27 23:14 284 64:30 225 0:25 23:53	270 777	31.07	117	0.20	10.58		
270 27:16 113 0:26 9:40 280 25:56 111 0:25 9:09 281 22:28 103 0:23 7:46 282 55:49 202 0:28 21:13 283 61:51 215 0:27 23:14 284 64:30 225 0:25 23:53	277 270	20.31	112	0.27	10.30		
277 27.10 114 0.20 7.40 280 25:56 111 0:25 9:09 281 22:28 103 0:23 7:46 282 55:49 202 0:28 21:13 283 61:51 215 0:27 23:14 284 64:30 225 0:25 23:53	270	27.02	11/	0.20	9.40		
281 22:28 103 0:23 7:46 282 55:49 202 0:28 21:13 283 61:51 215 0:27 23:14 284 64:30 225 0:25 23:53	217 220	27.10	111	0.20	9.00		
282 55:49 202 0:28 21:13 283 61:51 215 0:27 23:14 284 64:30 225 0:25 23:53	200 201	23.30	103	0.23	7:46		
283 61:51 215 0:27 23:14 284 64:30 225 0:25 23:53	282	55.49	202	0.23	21.13		
284 64:30 225 0:25 23:53	283	61.51	215	0:27	23:14		
	284	64:30	225	0:25	23:53		

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com ^{Calculated:} 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

continued from previous page					
	Shadow, wors	t case		Shadow, expected values	
No.	Shadow hours	Shadow days	Max shadow	Shadow hours	
	per year	per year	hours per day	per year	
	[h/year]	[days/year]	[h/day]	[h/year]	
285	63:03	216	0:24	23:08	
286	47:20	193	0:21	17:11	
287	49:08	190	0:23	17:41	
288	60:05	202	0:29	22:23	
289	62:49	211	0:28	23:15	
290	64:03	215	0:27	23:34	
291	64:19	216	0:27	23:39	
292	62:14	205	0:29	22:15	
293	62:41	211	0:29	22:25	
294	62:17	213	0:28	22:14	
295	6U:56 E1:44	213	0:28	21:34	
290	31.40 44.10	192	0.23	16.09	
297	40.10	170	0.24	10.19	
270	43.14	177	0.24	15.20	
299	43.40 20·40	175	0.23	14.09	
300	36.40	105	0.22	13.42	
303	30.34	18/	0.19	13.42	
302	41·48	179	0.20	15.27	
304	35.29	195	0.20	13.17	
305	33.48	185	0.19	12.40	
306	34:04	200	0:18	12:46	
307	33:44	203	0:18	12:38	
308	31:38	194	0:17	11:51	
309	35:30	207	0:18	13:08	
310	36:21	206	0:18	13:30	
311	36:33	203	0:18	13:38	
312	36:35	202	0:18	13:36	
313	38:24	194	0:19	14:20	
314	36:07	199	0:19	13:13	
315	37:27	196	0:20	13:47	
316	37:19	194	0:20	13:47	
317	36:51	188	0:20	13:35	
318	34:25	204	0:19	12:29	
319	27:40	153	0:17	10:17	
320	25:48	147	0:17	9:35	
321	24:21	131	0:17	9:02	
322	24:12	130	0:16	8:58	
323	22:20	123	0:16	8:17	
324	21:02	120	0:16	7:47	
325	20:41	119	0:16	7:39	
220	20.00	120	0.10	9.52	
327	24.00	130	0.10	0.52	
320	20.01	161	0.10	11.12	
330	30.13	152	0.18	10.21	
331	26:39	136	0.18	9.25	
332	18:00	66	0:23	6:26	
333	19:06	68	0:24	6:57	
334	18:20	65	0:24	6:39	
335	18:05	68	0:23	6:47	
336	25:33	115	0:22	9:43	
337	33:15	148	0:22	12:12	
338	20:31	73	0:24	7:42	
339	22:37	82	0:24	8:38	
340	34:18	136	0:24	13:00	
341	31:10	139	0:24	11:11	
342	27:27	130	0:24	9:42	
343	24:32	119	0:24	8:32	
344	31:21	109	0:26	11:46	
345	32:33	115	0:26	12:10	

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com ^{Calculated:} 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

continued from previous page					
	Shadow, wors	t case		Shadow, expected values	
No.	Shadow hours	Shadow days	Max shadow	Shadow hours	
	per year	per year	hours per day	per year	
	[h/year]	[days/year]	[h/day]	[h/year]	
346	23:44	89	0:26	8:08	
347	24:34	94	0:26	8:25	
348	18:41	78	0:25	6:13	
349	16:05	//	0:24	5:24	
350	16:21	71	0:24	5:28	
351	17:11	85	0:23	5:54	
352	25:43	96	0:26	8:49	
353	27:00	95	0:27	9:17	
354	27:56	97	0:28	9:35	
355	28:04	94	0:28	9:40	
356	29:44	92	0:30	10:18	
357	20:02	/6	0:26	6:39	
358	21:58	82	0:27	/:18	
359	19:26	/0	0:26	6:28	
360	19:41	72	0:27	6:35	
361	21:50	/6	0:27	/:14	
362	27:23	91	0:30	9:04	
363	23:07	//	0:29	/:4/	
364	18:24	70	0:25	6:08	
365	17:39	/0	0:25	5:53	
366	16:19	6/	0:24	5:28	
367	15:30	66	0:24	5:12	
368	14:45	64	0:23	4:58	
369	14:54	62	0:24	5:05	
370	13:53	60	0:23	4:44	
3/1	15:22	66	0:24	5:11	
372	28:45	105	0:28	9:47	
3/3	16:54	66	0:25	5:50	
374	14:10	58	0:23	4:54	
3/5	20:30	12	0:27	7:00	
3/6	27:28	84	0:31	9:18	
3//	30:30	88	0:32	10:22	
3/8	33:54	99	0:33	11:19	
3/9	33:24	94	0:33	11:54	
380	30:46	80	0:32	10:58	
381	27:22	83	0:31	9:37	
382	27:47	8Z 01	0:30	10:12	
202	20.30	01	0.30	9.47	
384	22:58	74	0:28	8:18	
205	20.25	62	0.27	5.52	
200	10.04	61	0.23	5.05 5.21	
388	15.01	60	0.24	5.10	
380	14.04	58	0.23	1.18	
300	13.55	58	0.22	4.40 A·AQ	
301	10.53	132	0.23	10.13	
302	37.04	102	0.34	14.24	
302	37.04	98	0.32	13:40	
394	34.32	100	0.31	13.24	
395	25.07	78	0.29	9.25	
396	25:30	82	0.28	9.42	
397	25.00	81	0.28	9:45	
398	18:51	67	0:26	6:46	
399	17:35	65	0:25	6:16	
400	17:19	64	0:25	6:11	
401	17:46	65	0:25	6:26	
402	18:05	66	0:25	6:23	
403	17:31	65	0:24	6:30	
404	13:53	58	0:19	5:07	
405	5:51	25	0:18	2:04	
406	5:17	25	0:16	1:51	

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com ^{Calculated:} 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

No. Shadow, worst case Shadow hours per year per year per year hours per dwast per year per year per year per year hours per dwast per year per year	continued from previous page					
No. Shadow hours Shadow lours Shadow Shadow hours per year per year per year per year 107 5:36 26 0:16 1:57 408 5:21 24 0:16 1:51 409 6:18 26 0:18 2:12 410 5:59 25 0:17 2:03 411 6:01 25 0:16 1:54 413 6:48 28 0:18 2:19 414 6:46 27 0:18 2:19 415 7:21 28 0:20 2:33 417 7:32 29 0:20 2:30 420 7:50 28 0:21 2:37 412 7:42 28 0:21 2:37 423 6:53 26 0:20 2:22 424 7:14 27 0:20 2:29 425 7:53 26 0:23 2:50		Shadow, wors	t case		Shadow, expected values	
per year per year fours per day per year 407 5:36 26 0:16 1:57 408 5:21 24 0:16 1:51 409 6:18 26 0:16 1:51 410 5:59 25 0:17 2:03 411 6:01 25 0:16 1:54 413 6:48 28 0:18 2:21 414 6:46 27 0:18 2:19 415 7:21 28 0:19 2:27 416 7:44 28 0:21 2:37 417 7:32 29 0:20 2:33 417 7:42 28 0:21 2:41 421 7:11 27 0:20 2:37 422 7:13 27 0:20 2:22 424 7:14 27 0:20 2:22 424 7:14 27 0:20 2:23 425 </td <td>No.</td> <td>Shadow hours</td> <td>Shadow days</td> <td>Max shadow</td> <td>Shadow hours</td>	No.	Shadow hours	Shadow days	Max shadow	Shadow hours	
		per year	per year	hours per day	per year	
407 $5:36$ 26 $0:16$ $1:51$ 408 $5:21$ 24 $0:16$ $1:51$ 409 $6:18$ 26 $0:18$ $2:12$ 410 $5:59$ 25 $0:17$ $2:03$ 411 $6:01$ 25 $0:16$ $1:54$ 413 $6:48$ 28 $0:18$ $2:21$ 414 $6:46$ 27 $0:18$ $2:19$ 415 $7:21$ 28 $0:19$ $2:30$ 416 $7:44$ 28 $0:20$ $2:33$ 417 $7:32$ 29 $0:20$ $2:37$ 418 $7:06$ 28 $0:21$ $2:37$ 420 $7:50$ 28 $0:21$ $2:37$ 421 $7:42$ 28 $0:21$ $2:37$ 422 $7:13$ 27 $0:20$ $2:22$ 423 $6:53$ 26 $0:20$ $2:22$ 424 $7:14$ 27 $0:20$ $2:29$ 425 $7:23$ 27 $0:21$ $2:41$ 427 $8:06$ 28 $0:22$ $2:47$ 428 $8:21$ 29 $0:23$ $2:56$ 430 $9:12$ 31 $0:24$ $3:15$ 433 $9:16$ 30 $0:24$ $3:16$ 434 $9:17$ 30 $0:25$ $4:10$ 435 $9:55$ 31 $0:25$ $4:14$ 433 $9:16$ 30 $0:24$ $3:16$ 434 $10:01$ 32 $0:25$ $3:30$ 44		[h/year]	[days/year]	[h/day]	[h/year]	
408 5:21 24 0:16 1:51 409 6:18 26 0:18 2:12 410 5:59 25 0:17 2:03 411 6:01 25 0:17 2:03 412 5:34 28 0:18 2:19 413 6:48 28 0:19 2:30 416 7:44 28 0:19 2:37 418 7:06 28 0:19 2:37 419 7:11 27 0:20 2:33 420 7:50 28 0:21 2:41 421 7:42 28 0:21 2:37 422 7:13 27 0:20 2:29 423 6:53 26 0:20 2:29 424 7:14 27 0:20 2:29 425 7:23 27 0:21 2:36 426 7:51 28 0:22 2:47 428 8:21 29 0:23 2:56 430 9:17 30 </td <td>407</td> <td>5:36</td> <td>26</td> <td>0:16</td> <td>1:57</td>	407	5:36	26	0:16	1:57	
409 6:18 26 0:18 2:12 410 5:59 25 0:17 2:03 411 6:01 25 0:17 2:03 412 5:34 25 0:16 1:54 413 6:48 28 0:19 2:30 414 6:46 27 0:18 2:17 416 7:44 28 0:20 2:38 417 7:32 29 0:20 2:37 418 7:06 28 0:21 2:37 420 7:50 28 0:21 2:37 421 7:42 28 0:21 2:37 422 7:13 27 0:20 2:22 424 7:14 27 0:20 2:22 425 7:23 27 0:21 2:36 426 7:51 28 0:22 2:41 427 8:06 28 0:22 2:41 428 8:21 29 0:23 2:50 429 8:26 28 </td <td>408</td> <td>5:21</td> <td>24</td> <td>0:16</td> <td>1:51</td>	408	5:21	24	0:16	1:51	
410 5:59 25 0:17 2:03 411 6:01 25 0:16 1:54 413 6:48 28 0:18 2:19 414 6:46 27 0:18 2:19 415 7:21 28 0:19 2:30 416 7:44 28 0:20 2:33 417 7:32 29 0:20 2:37 418 7:06 28 0:21 2:41 420 7:50 28 0:21 2:41 421 7:42 28 0:21 2:30 423 6:53 26 0:20 2:22 424 7:14 27 0:20 2:29 423 6:53 26 0:23 2:50 425 7:23 27 0:21 2:36 426 7:51 28 0:22 2:47 428 8:21 29 0:33 2:50 427 8:6 28 0:23 3:16 433 9:16 30 <td>409</td> <td>6:18</td> <td>26</td> <td>0:18</td> <td>2:12</td>	409	6:18	26	0:18	2:12	
411 $6:01$ 25 $0:17$ $2:03$ 412 $5:34$ 25 $0:16$ $1:54$ 413 $6:48$ 28 $0:18$ $2:19$ 414 $6:46$ 27 $0:18$ $2:20$ 415 $7:21$ 28 $0:20$ $2:33$ 416 $7:44$ 28 $0:20$ $2:37$ 417 $7:32$ 29 $0:20$ $2:37$ 418 $7:06$ 28 $0:19$ $2:27$ 419 $7:11$ 27 $0:20$ $2:30$ 420 $7:50$ 28 $0:21$ $2:37$ 421 $7:42$ 28 $0:21$ $2:34$ 423 $6:53$ 26 $0:20$ $2:22$ 424 $7:14$ 27 $0:20$ $2:29$ 425 $7:51$ 28 $0:21$ $2:41$ 426 $7:51$ 28 $0:22$ $2:47$ 426 $7:51$ 28 $0:23$ $2:50$ 426 $7:51$ 28 $0:23$ $2:56$ 430 $9:12$ 31 $0:24$ $3:15$ 432 $9:15$ 31 $0:24$ $3:15$ 433 $9:16$ 30 $0:24$ $3:12$ 434 $12:09$ 49 $0:25$ $4:10$ 435 $9:55$ 31 $0:25$ $4:10$ 435 $9:55$ 31 $0:25$ $4:17$ 436 $12:18$ 51 $0:25$ $3:30$ 440 $12:45$ 52 $0:25$ $3:30$ 434 $9:19$ 31 <td< td=""><td>410</td><td>5:59</td><td>25</td><td>0:17</td><td>2:03</td></td<>	410	5:59	25	0:17	2:03	
412 $5:34$ 25 $0:16$ $1:54$ 413 $6:48$ 28 $0:18$ $2:19$ 415 $7:21$ 28 $0:19$ $2:30$ 416 $7:44$ 28 $0:20$ $2:38$ 417 $7:32$ 29 $0:20$ $2:37$ 418 $7:66$ 28 $0:19$ $2:77$ 419 $7:11$ 27 $0:20$ $2:30$ 420 $7:50$ 28 $0:21$ $2:41$ 421 $7:42$ 28 $0:21$ $2:41$ 422 $7:13$ 27 $0:20$ $2:28$ 423 $6:53$ 26 $0:20$ $2:29$ 425 $7:23$ 27 $0:21$ $2:41$ 427 $8:66$ 28 $0:22$ $2:47$ 428 $8:21$ 29 $0:23$ $2:56$ 430 $9:12$ 31 $0:23$ $3:11$ 431 $9:17$ 30 $0:24$ $3:14$ 433 $9:16$ 30 $0:24$ $3:14$ 434 $12:09$ 49 $0:25$ $4:10$ 435 $9:55$ 31 $0:25$ $4:17$ 438 $10:01$ 32 $0:25$ $4:17$ 438 $10:01$ 32 $0:25$ $4:17$ 438 $10:01$ 32 $0:25$ $4:17$ 438 $10:01$ 32 $0:25$ $4:17$ 439 $10:04$ 32 $0:25$ $4:14$ 444 $9:26$ 32 $0:24$ $3:16$ <t< td=""><td>411</td><td>6:01</td><td>25</td><td>0:17</td><td>2:03</td></t<>	411	6:01	25	0:17	2:03	
413 6:48 28 0:18 2:21 414 6:46 27 0:18 2:19 415 7:21 28 0:19 2:30 416 7:44 28 0:20 2:37 418 7:06 28 0:19 2:27 419 7:11 27 0:20 2:30 420 7:50 28 0:21 2:41 421 7:42 28 0:21 2:41 422 7:13 27 0:20 2:28 423 6:53 26 0:20 2:22 424 7:14 27 0:21 2:41 425 7:51 28 0:22 2:47 426 7:51 28 0:23 2:50 429 8:26 28 0:23 2:56 429 8:26 28 0:23 2:56 430 9:12 31 0:24 3:11 433 9:16 30 0:24 3:12 433 9:16 30 </td <td>412</td> <td>5:34</td> <td>25</td> <td>0:16</td> <td>1:54</td>	412	5:34	25	0:16	1:54	
414 6:46 27 0:18 2:19 415 7:21 28 0:20 2:38 417 7:32 29 0:20 2:37 418 7:06 28 0:21 2:37 419 7:11 27 0:20 2:30 420 7:50 28 0:21 2:37 421 7:42 28 0:21 2:37 422 7:13 27 0:20 2:28 424 7:14 27 0:20 2:29 425 7:23 27 0:21 2:41 427 8:06 28 0:22 2:47 428 8:21 29 0:23 2:56 430 9:12 31 0:23 2:56 430 9:12 31 0:24 3:14 433 9:16 30 0:24 3:15 434 12:09 49 0:25 4:10 435 9:55 31 0:25 3:25 436 12:18 51	413	6:48	28	0:18	2:21	
416 7:21 28 0:19 2:30 416 7:44 28 0:20 2:37 418 7:06 28 0:19 2:27 418 7:06 28 0:21 2:41 420 7:50 28 0:21 2:41 421 7:42 28 0:20 2:28 423 6:53 26 0:20 2:29 424 7:14 27 0:21 2:36 425 7:23 27 0:21 2:36 426 7:51 28 0:22 2:47 426 7:51 28 0:22 2:47 428 8:21 29 0:23 2:50 429 8:26 28 0:23 3:11 431 9:17 30 0:24 3:12 433 9:16 31 0:25 4:10 433 9:15 31 0:25 4:14 433 9:16 32 0:25 3:30 444 12:09 49<	414	6:46	27	0:18	2:19	
416 $f:44$ 28 $0:20$ $2:37$ 417 $7:52$ 29 $0:20$ $2:37$ 418 $7:06$ 28 $0:19$ $2:27$ 419 $7:11$ 27 $0:20$ $2:30$ 420 $7:50$ 28 $0:21$ $2:41$ 421 $7:42$ 28 $0:21$ $2:37$ 422 $7:13$ 27 $0:20$ $2:22$ 424 $7:14$ 27 $0:20$ $2:22$ 425 $7:23$ 27 $0:21$ $2:41$ 426 $7:51$ 28 $0:21$ $2:41$ 427 $8:06$ 28 $0:22$ $2:47$ 428 $8:21$ 29 $0:23$ $2:56$ 430 $9:12$ 31 $0:23$ $3:11$ 431 $9:17$ 30 $0:24$ $3:14$ 433 $9:16$ 30 $0:24$ $3:12$ 434 $12:09$ 49 $0:25$ $4:10$ 435 $9:55$ 31 $0:25$ $3:25$ 436 $12:18$ 51 $0:25$ $4:14$ 437 $12:30$ 51 $0:25$ $4:14$ 438 $10:01$ 32 $0:25$ $3:30$ 440 $12:45$ 52 $0:24$ $3:13$ 443 $9:19$ 31 $0:24$ $3:16$ 444 $9:42$ 31 $0:24$ $3:16$ 444 $9:26$ 32 $0:24$ $3:13$ 445 $13:14$ 53 $0:25$ $4:24$ 443 $9:19$ 31 $0:24$ $3:16$ </td <td>415</td> <td>7:21</td> <td>28</td> <td>0:19</td> <td>2:30</td>	415	7:21	28	0:19	2:30	
417 $7:32$ 29 $0:20$ $2:37$ 418 $7:06$ 28 $0:19$ $2:27$ 419 $7:11$ 27 $0:20$ $2:30$ 420 $7:50$ 28 $0:21$ $2:37$ 422 $7:13$ 27 $0:20$ $2:28$ 423 $6:53$ 26 $0:20$ $2:22$ 424 $7:14$ 27 $0:20$ $2:29$ 425 $7:23$ 27 $0:21$ $2:36$ 426 $7:51$ 28 $0:22$ $2:47$ 428 $8:21$ 29 $0:23$ $2:50$ 429 $8:26$ 28 $0:22$ $2:47$ 428 $8:21$ 29 $0:23$ $3:11$ 431 $9:17$ 30 $0:24$ $3:15$ 432 $9:15$ 31 $0:24$ $3:14$ 433 $9:16$ 30 $0:24$ $3:12$ 434 $12:09$ 49 $0:25$ $4:10$ 435 $9:55$ 31 $0:25$ $4:17$ 436 $12:18$ 51 $0:25$ $4:17$ 438 $10:01$ 32 $0:25$ $3:30$ 440 $12:45$ 52 $0:25$ $4:24$ 441 $9:34$ 31 $0:24$ $3:18$ 442 $9:42$ 31 $0:24$ $3:16$ 444 $9:26$ 32 $0:25$ $4:24$ 441 $9:34$ 31 $0:24$ $3:16$ 444 $9:26$ 32 $0:25$ $4:29$	416	/:44	28	0:20	2:38	
418 $f:06$ 28 $0:19$ $2:27$ 419 $7:50$ 28 $0:21$ $2:30$ 420 $7:50$ 28 $0:21$ $2:37$ 421 $7:42$ 28 $0:21$ $2:37$ 422 $7:13$ 27 $0:20$ $2:28$ 423 $6:53$ 26 $0:20$ $2:22$ 424 $7:14$ 27 $0:20$ $2:29$ 425 $7:51$ 28 $0:21$ $2:41$ 427 $8:06$ 28 $0:22$ $2:47$ 428 $8:21$ 29 $0:23$ $2:50$ 429 $8:26$ 28 $0:23$ $2:56$ 430 $9:12$ 31 $0:24$ $3:15$ 431 $9:17$ 30 $0:24$ $3:12$ 433 $9:16$ 30 $0:24$ $3:12$ 434 $12:09$ 49 $0:25$ $4:10$ 435 $9:55$ 31 $0:25$ $4:17$ 438 $10:01$ 32 $0:25$ $3:30$ 440 $12:45$ 52 $0:25$ $4:24$ 441 $9:34$ 31 $0:24$ $3:16$ 442 $9:42$ 31 $0:24$ $3:16$ 444 $9:26$ 32 $0:27$ $5:38$ 444 $13:14$ 53 $0:25$ $4:29$ 445 $0:21$ 75 $0:28$ $6:15$ 444 $9:26$ 32 $0:24$ $3:13$ 444 $9:26$ 32 $0:24$ $3:16$ 444 $9:26$ 32 $0:27$ $5:38$ <td>417</td> <td>7:32</td> <td>29</td> <td>0:20</td> <td>2:37</td>	417	7:32	29	0:20	2:37	
419 $f:11$ 27 $0:20$ $2:30$ 420 $7:50$ 28 $0:21$ $2:41$ 421 $7:42$ 28 $0:21$ $2:37$ 422 $7:13$ 27 $0:20$ $2:22$ 423 $6:53$ 26 $0:20$ $2:22$ 424 $7:14$ 27 $0:20$ $2:29$ 425 $7:23$ 27 $0:21$ $2:41$ 427 $8:06$ 28 $0:22$ $2:47$ 428 $8:21$ 29 $0:23$ $2:56$ 429 $8:26$ 28 $0:23$ $2:56$ 429 $8:26$ 28 $0:23$ $2:56$ 430 $9:12$ 31 $0:24$ $3:15$ 431 $9:17$ 30 $0:24$ $3:14$ 433 $9:16$ 30 $0:24$ $3:14$ 434 $12:09$ 49 $0:25$ $4:10$ 435 $9:55$ 31 $0:25$ $4:17$ 438 $10:01$ 32 $0:25$ $3:30$ 440 $12:45$ 52 $0:25$ $3:30$ 440 $12:45$ 52 $0:25$ $4:24$ 411 $9:34$ 31 $0:24$ $3:16$ 444 $9:26$ 32 $0:25$ $4:29$ 444 $9:26$ 32 $0:25$ $4:24$ 441 $9:33$ 31 $0:24$ $3:16$ 444 $9:26$ 32 $0:25$ $4:29$ 446 $9:53$ 31 $0:24$ $3:16$	418	7:06	28	0:19	2:27	
420 $7:50$ 28 $0:21$ $2:37$ 421 7.42 28 $0:21$ $2:37$ 422 $7:13$ 27 $0:20$ $2:22$ 424 $7:14$ 27 $0:20$ $2:29$ 424 $7:14$ 27 $0:20$ $2:29$ 425 $7:51$ 28 $0:21$ $2:36$ 426 $7:51$ 28 $0:22$ $2:47$ 427 $8:06$ 28 $0:22$ $2:47$ 428 $8:21$ 29 $0:23$ $2:50$ 429 $8:26$ 28 $0:23$ $2:56$ 430 $9:12$ 31 $0:24$ $3:15$ 433 $9:16$ 30 $0:24$ $3:15$ 433 $9:16$ 30 $0:24$ $3:12$ 434 $12:09$ 49 $0:25$ $4:10$ 435 $9:55$ 31 $0:25$ $3:31$ 436 $12:18$ 51 $0:25$ $4:14$ 437 $12:30$ 51 $0:25$ $4:14$ 437 $12:30$ 51 $0:25$ $3:30$ 440 $12:45$ 52 $0:25$ $3:30$ 440 $12:45$ 52 $0:24$ $3:13$ 442 $9:42$ 31 $0:24$ $3:18$ 442 $9:42$ 31 $0:24$ $3:13$ 443 $9:19$ 31 $0:24$ $3:13$ 444 $9:53$ 31 $0:24$ $3:13$ 445 $13:14$ 53 $0:25$ $4:29$ <	419	7:11	27	0:20	2:30	
421 7.42 28 0.21 2.37 422 7.13 27 0.20 2.22 424 7.14 27 0.20 2.29 425 7.23 27 0.21 2.36 426 7.51 28 0.21 2.41 427 8.06 28 0.22 2.47 428 $8:21$ 29 0.23 $2:50$ 429 $8:26$ 28 0.23 $2:56$ 430 9.12 31 0.23 $3:11$ 431 $9:17$ 30 $0:24$ $3:14$ 433 $9:16$ 30 $0:24$ $3:12$ 434 $12:09$ 49 $0:25$ $4:10$ 435 $9:55$ 31 $0:25$ $4:14$ 437 $12:30$ 51 $0:25$ $4:14$ 437 $12:30$ 51 $0:25$ $3:30$ 440 $12:45$ 52 $0:25$ $3:31$ 439 $10:04$ 32 $0:25$ $3:30$ 440 $12:45$ 52 $0:25$ $4:24$ 441 $9:34$ 31 $0:24$ $3:16$ 444 $9:26$ 32 $0:24$ $3:13$ 445 $13:14$ 53 $0:25$ $4:29$ 446 $9:53$ 31 $0:24$ $3:16$ 444 $9:26$ 32 $0:24$ $3:13$ 445 $13:14$ 53 $0:25$ $4:29$ 446 $9:53$ 30 $0:22$ $3:01$	420	7:50	28	0:21	2:41	
422 $/113$ $2/$ $0:20$ $2:28$ 423 $6:53$ 26 $0:20$ $2:22$ 424 $7:14$ 27 $0:20$ $2:29$ 425 $7:23$ 27 $0:21$ $2:36$ 426 $7:51$ 28 $0:22$ $2:47$ 428 $8:21$ 29 $0:23$ $2:50$ 429 $8:26$ 28 $0:23$ $2:56$ 430 $9:12$ 31 $0:23$ $3:11$ 431 $9:17$ 30 $0:24$ $3:15$ 432 $9:15$ 31 $0:24$ $3:14$ 433 $9:16$ 30 $0:24$ $3:12$ 434 $12:09$ 49 $0:25$ $4:10$ 435 $9:55$ 31 $0:25$ $4:14$ 437 $12:30$ 51 $0:25$ $4:14$ 437 $12:30$ 51 $0:25$ $3:31$ 439 $10:04$ 32 $0:25$ $3:31$ 440 $12:45$ 52 $0:25$ $4:24$ 441 $9:34$ 31 $0:24$ $3:16$ 444 $9:42$ 31 $0:24$ $3:16$ 444 $9:63$ 30 $0:22$ $3:01$ 445 $13:14$ 53 $0:22$ $3:01$ 446 $9:53$ 31 $0:24$ $3:50$ 447 $16:21$ 72 $0:27$ $5:38$ 448 $18:02$ 75 $0:28$ $6:15$ 449 $8:45$ 29 $0:23$ $3:02$	421	7:42	28	0:21	2:37	
423 $6:53$ 26 $0:20$ $2:22$ 424 $7:14$ 27 $0:20$ $2:29$ 425 $7:23$ 27 $0:21$ $2:36$ 426 $7:51$ 28 $0:22$ $2:47$ 428 $8:21$ 29 $0:23$ $2:50$ 429 $8:26$ 28 $0:23$ $2:50$ 429 $8:26$ 28 $0:23$ $3:11$ 431 $9:17$ 30 $0:24$ $3:15$ 433 $9:16$ 30 $0:24$ $3:14$ 433 $9:16$ 30 $0:24$ $3:12$ 434 $12:09$ 49 $0:25$ $4:10$ 435 $9:55$ 31 $0:25$ $3:25$ 436 $12:18$ 51 $0:25$ $4:17$ 438 $10:01$ 32 $0:25$ $4:31$ 439 $10:04$ 32 $0:25$ $3:30$ 440 $12:45$ 52 $0:25$ $4:24$ 441 $9:34$ 31 $0:24$ $3:16$ 444 $9:42$ 31 $0:24$ $3:16$ 444 $9:66$ 32 $0:24$ $3:13$ 445 $13:14$ 53 $0:25$ $4:29$ 446 $9:53$ 31 $0:24$ $3:16$ 447 $16:21$ 72 $0:27$ $5:38$ 448 $18:02$ 75 $0:28$ $6:15$ 449 $8:45$ 29 $0:23$ $3:02$ 450 $8:53$ 30 $0:22$ $3:01$	422	/:13	27	0:20	2:28	
424 7.14 27 0.20 2.29 425 7.23 27 0.21 2.36 426 7.51 28 0.22 2.47 428 $8:21$ 29 0.23 2.56 430 $9:12$ 31 0.23 $3:11$ 431 $9:17$ 30 $0:24$ $3:15$ 433 $9:16$ 30 $0:24$ $3:14$ 433 $9:16$ 30 $0:24$ $3:14$ 433 $9:16$ 30 $0:24$ $3:12$ 434 $12:09$ 49 0.25 $4:10$ 435 $9:55$ 31 $0:25$ $3:31$ 436 $12:18$ 51 $0:25$ $4:14$ 437 $12:30$ 51 $0:25$ $4:14$ 438 $10:01$ 32 $0:25$ $3:30$ 440 $12:45$ 52 $0:25$ $4:24$ 441 $9:34$ 31 $0:24$ $3:18$ 442 $9:42$ 31 $0:24$ $3:16$ 444 $9:26$ 32 $0:24$ $3:13$ 445 $13:14$ 53 $0:25$ $4:29$ 446 $9:53$ 31 $0:24$ $3:16$ 444 $9:26$ 32 $0:24$ $3:12$ 447 $16:21$ 72 $0:27$ $5:38$ 448 $18:02$ 75 $0:28$ $6:15$ 459 $8:57$ 30 $0:22$ $3:01$ 455 $8:19$ 30 $0:22$ $3:01$	423	6:53	26	0:20	2:22	
425 $7:23$ 27 $0:21$ $2:36$ 426 $7:51$ 28 $0:21$ $2:41$ 427 $8:06$ 28 $0:22$ $2:47$ 428 $8:21$ 29 $0:23$ $2:50$ 429 $8:26$ 28 $0:23$ $2:56$ 430 $9:12$ 31 $0:23$ $3:11$ 431 $9:17$ 30 $0:24$ $3:15$ 432 $9:15$ 31 $0:24$ $3:14$ 433 $9:16$ 30 $0:24$ $3:12$ 434 $12:09$ 49 $0:25$ $4:10$ 435 $9:55$ 31 $0:25$ $4:10$ 435 $9:55$ 31 $0:25$ $4:14$ 437 $12:30$ 51 $0:25$ $4:17$ 438 $10:01$ 32 $0:25$ $3:31$ 439 $10:04$ 32 $0:25$ $3:30$ 440 $12:45$ 52 $0:25$ $4:24$ 441 $9:34$ 31 $0:24$ $3:18$ 442 $9:42$ 31 $0:24$ $3:16$ 444 $9:19$ 31 $0:24$ $3:22$ 446 $9:53$ 31 $0:24$ $3:22$ 446 $9:53$ 31 $0:24$ $3:54$ 448 $18:02$ 75 $0:28$ $6:15$ 448 $18:02$ 75 $0:28$ $6:15$ 450 $8:53$ 30 $0:22$ $3:01$ 455 $8:19$ 30 $0:20$ $2:44$ <	424	7:14	27	0:20	2:29	
426 $7:51$ 28 $0:21$ $2:41$ 427 $8:06$ 28 $0:22$ $2:47$ 428 $8:21$ 29 $0:23$ $2:50$ 429 $8:26$ 28 $0:23$ $2:56$ 430 $9:12$ 31 $0:23$ $3:11$ 431 $9:17$ 30 $0:24$ $3:15$ 432 $9:15$ 31 $0:24$ $3:14$ 433 $9:16$ 30 $0:24$ $3:12$ 434 $12:09$ 49 $0:25$ $4:10$ 435 $9:55$ 31 $0:25$ $4:14$ 437 $12:30$ 51 $0:25$ $4:17$ 438 $10:01$ 32 $0:25$ $3:31$ 439 $10:04$ 32 $0:25$ $3:30$ 440 $12:45$ 52 $0:25$ $4:24$ 441 $9:34$ 31 $0:24$ $3:18$ 442 $9:42$ 31 $0:24$ $3:14$ 443 $9:19$ 31 $0:24$ $3:13$ 445 $13:14$ 53 $0:25$ $4:29$ 446 $9:53$ 31 $0:24$ $3:22$ 447 $16:21$ 72 $0:27$ $5:38$ 448 $18:02$ 75 $0:28$ $6:15$ 448 $18:02$ 75 $0:28$ $6:15$ 450 $8:53$ 30 $0:22$ $3:01$ 455 $8:19$ 30 $0:20$ $2:44$ 456 $8:05$ 30 $0:19$ $2:44$ <tr< td=""><td>425</td><td>7:23</td><td>27</td><td>0:21</td><td>2:36</td></tr<>	425	7:23	27	0:21	2:36	
427 $8:06$ 28 $0:22$ $2:47$ 428 $8:21$ 29 $0:23$ $2:50$ 429 $8:26$ 28 $0:23$ $2:56$ 430 $9:12$ 31 $0:23$ $3:11$ 431 $9:17$ 30 $0:24$ $3:14$ 432 $9:15$ 31 $0:24$ $3:14$ 433 $9:16$ 30 $0:24$ $3:12$ 434 $12:09$ 49 $0:25$ $4:10$ 435 $9:55$ 31 $0:25$ $3:25$ 436 $12:18$ 51 $0:25$ $4:14$ 437 $12:30$ 51 $0:25$ $3:30$ 440 $12:45$ 52 $0:25$ $3:30$ 440 $12:45$ 52 $0:25$ $3:30$ 440 $12:45$ 52 $0:25$ $4:24$ 441 $9:34$ 31 $0:24$ $3:18$ 442 $9:42$ 31 $0:24$ $3:13$ 445 $13:14$ 53 $0:25$ $4:29$ 446 $9:53$ 31 $0:24$ $3:22$ 447 $16:21$ 72 $0:27$ $5:38$ 448 $8:62$ 29 $0:23$ $3:02$ 450 $8:53$ 30 $0:22$ $3:01$ 451 $11:11$ 48 $0:24$ $3:50$ 452 $11:24$ 49 $0:24$ $3:54$ 453 $11:56$ 49 $0:25$ $4:05$ 454 $8:57$ 30 $0:20$ $2:48$ <	426	7:51	28	0:21	2:41	
428 $8:21$ 29 $0:23$ $2:50$ 429 $8:26$ 28 $0:23$ $2:56$ 430 $9:12$ 31 $0:23$ $3:11$ 431 $9:17$ 30 $0:24$ $3:15$ 432 $9:15$ 31 $0:24$ $3:14$ 433 $9:16$ 30 $0:24$ $3:12$ 434 $12:09$ 49 $0:25$ $4:10$ 435 $9:55$ 31 $0:25$ $3:25$ 436 $12:18$ 51 $0:25$ $4:17$ 438 $10:01$ 32 $0:25$ $3:31$ 439 $10:04$ 32 $0:25$ $3:30$ 440 $12:45$ 52 $0:25$ $4:24$ 441 $9:34$ 31 $0:24$ $3:18$ 442 $9:42$ 31 $0:24$ $3:13$ 445 $13:14$ 53 $0:25$ $4:29$ 444 $9:26$ 32 $0:24$ $3:13$ 445 $13:14$ 53 $0:25$ $4:29$ 446 $9:53$ 31 $0:24$ $3:22$ 447 $16:21$ 72 $0:27$ $5:38$ 448 $18:02$ 75 $0:28$ $6:15$ 459 $8:57$ 30 $0:22$ $3:01$ 451 $11:11$ 48 $0:24$ $3:50$ 452 $11:24$ 49 $0:25$ $4:05$ 454 $8:57$ 30 $0:22$ $3:01$ 455 $8:05$ 30 $0:20$ $2:48$ <	427	8:06	28	0:22	2:47	
429 $8:26$ 28 $0:23$ $2:56$ 430 $9:12$ 31 $0:23$ $3:11$ 431 $9:17$ 30 $0:24$ $3:15$ 432 $9:15$ 31 $0:24$ $3:14$ 433 $9:16$ 30 $0:24$ $3:12$ 434 $12:09$ 49 $0:25$ $4:10$ 435 $9:55$ 31 $0:25$ $4:10$ 435 $9:55$ 31 $0:25$ $4:14$ 437 $12:30$ 51 $0:25$ $4:14$ 439 $10:04$ 32 $0:25$ $3:30$ 440 $12:45$ 52 $0:25$ $4:24$ 441 $9:34$ 31 $0:24$ $3:16$ 442 $9:42$ 31 $0:24$ $3:16$ 444 $9:26$ 32 $0:24$ $3:13$ 445 $13:14$ 53 $0:25$ $4:29$ 446 $9:53$ 31 $0:24$ $3:22$ 447 $16:21$ 72 $0:23$ $3:02$ 448 $18:02$ 75 $0:28$ $6:15$ 449 $8:45$ 29 $0:23$ $3:02$ 450 $8:53$ 30 $0:22$ $3:01$ 451 $11:14$ 49 $0:24$ $3:54$ 455 $8:19$ 30 $0:20$ $2:48$ 456 $8:05$ 30 $0:19$ $2:44$ 451 $11:24$ 49 $0:24$ $3:54$ 455 $8:19$ 30 $0:20$ $2:48$ <tr< td=""><td>428</td><td>8:21</td><td>29</td><td>0:23</td><td>2:50</td></tr<>	428	8:21	29	0:23	2:50	
430 $9:12$ 31 $0:23$ $3:11$ 431 $9:17$ 30 $0:24$ $3:15$ 432 $9:15$ 31 $0:24$ $3:12$ 434 $12:09$ 49 $0:25$ $4:10$ 435 $9:55$ 31 $0:25$ $3:25$ 436 $12:18$ 51 $0:25$ $4:14$ 437 $12:30$ 51 $0:25$ $4:14$ 437 $12:30$ 51 $0:25$ $4:14$ 439 $10:04$ 32 $0:25$ $3:30$ 440 $12:45$ 52 $0:25$ $4:24$ 441 $9:34$ 31 $0:24$ $3:18$ 442 $9:42$ 31 $0:24$ $3:14$ 443 $9:19$ 31 $0:24$ $3:13$ 445 $13:14$ 53 $0:25$ $4:29$ 446 $9:53$ 31 $0:24$ $3:22$ 447 $16:21$ 72 $0:27$ $5:38$ 448 $18:02$ 75 $0:28$ $6:15$ 449 $8:45$ 29 $0:23$ $3:02$ 450 $8:53$ 30 $0:22$ $3:01$ 451 $11:11$ 48 $0:24$ $3:50$ 454 $8:57$ 30 $0:22$ $3:01$ 455 $8:19$ 30 $0:20$ $2:48$ 456 $8:05$ 30 $0:19$ $2:40$ 455 $8:19$ 30 $0:20$ $2:48$ 456 $8:05$ 30 $0:19$ $2:40$ <t< td=""><td>429</td><td>8:26</td><td>28</td><td>0:23</td><td>2:56</td></t<>	429	8:26	28	0:23	2:56	
431 $9:17$ 30 $0:24$ $3:15$ 432 $9:15$ 31 $0:24$ $3:14$ 433 $9:16$ 30 $0:24$ $3:12$ 434 $12:09$ 49 $0:25$ $4:10$ 435 $9:55$ 31 $0:25$ $3:25$ 436 $12:18$ 51 $0:25$ $4:17$ 438 $10:01$ 32 $0:25$ $3:31$ 439 $10:04$ 32 $0:25$ $3:30$ 440 $12:45$ 52 $0:25$ $4:24$ 441 $9:34$ 31 $0:24$ $3:16$ 442 $9:42$ 31 $0:24$ $3:16$ 443 $9:19$ 31 $0:24$ $3:13$ 445 $13:14$ 53 $0:25$ $4:29$ 446 $9:53$ 31 $0:24$ $3:22$ 447 $16:21$ 72 $0:27$ $5:38$ 448 $18:02$ 75 $0:28$ $6:15$ 449 $8:45$ 29 $0:23$ $3:02$ 450 $8:53$ 30 $0:22$ $3:01$ 451 $11:11$ 48 $0:24$ $3:50$ 452 $31:024$ $4:56$ $8:05$ 30 $0:19$ $2:44$ $4:57$ 30 $0:22$ $3:01$ 455 $8:19$ 30 $0:20$ $2:48$ 456 $8:05$ 30 $0:19$ $2:40$ 458 $8:25$ 30 $0:20$ $2:51$ 459 $8:59$ 32 $0:21$ $3:02$ 460 $11:46$ <	430	9:12	31	0:23	3:11	
4329:15310:243:14 433 9:16300:243:12 434 12:09490:254:10 435 9:55310:253:25 436 12:18510:254:17 438 10:01320:253:31 439 10:04320:253:30 440 12:45520:254:24 441 9:34310:243:18 442 9:42310:243:16 444 9:26320:243:13 445 13:14530:254:29 446 9:53310:243:22 447 16:21720:275:38 448 18:02750:286:15 449 8:45290:233:02 450 8:53300:223:01 451 11:11480:243:50 452 11:24490:254:05 454 8:57300:202:48 456 8:05300:192:40 455 8:19300:202:51 459 8:59320:213:02 460 11:46510:234:01 451 12:10500:244:17 463 11:28520:223:56 464 9:14320:213:08 465 8:23320:24 <td>431</td> <td>9:17</td> <td>30</td> <td>0:24</td> <td>3:15</td>	431	9:17	30	0:24	3:15	
4339:1630 $0:24$ $3:12$ 43412:0949 $0:25$ 4:104359:5531 $0:25$ 3:2543612:1851 $0:25$ 4:1443712:3051 $0:25$ 4:1743810:0132 $0:25$ 3:3044012:4552 $0:25$ 4:244419:3431 $0:24$ 3:184429:4231 $0:24$ 3:164439:1931 $0:24$ 3:1344513:1453 $0:25$ 4:294469:5331 $0:24$ 3:1244716:2172 $0:27$ 5:3844818:0275 $0:28$ $6:15$ 4498:4529 $0:23$ $3:02$ 4508:5330 $0:22$ $3:01$ 45111:1148 $0:24$ $3:50$ 45211:2449 $0:24$ $3:54$ 45311:5649 $0:25$ $4:05$ 4548:5730 $0:20$ $2:48$ 4558:1930 $0:20$ $2:44$ 4577:5330 $0:22$ $3:01$ 458 $8:25$ 30 $0:20$ $2:51$ 459 $8:59$ 32 $0:21$ $3:02$ 46011:4651 $0:23$ $4:01$ 46112:1050 $0:24$ $4:09$ 46212:2953 $0:24$ $4:09$ 463	432	9:15	31	0:24	3:14	
434 $12:09$ 49 $0:25$ $4:10$ 435 $9:55$ 31 $0:25$ $3:25$ 436 $12:18$ 51 $0:25$ $4:14$ 437 $12:30$ 51 $0:25$ $4:17$ 438 $10:01$ 32 $0:25$ $3:31$ 439 $10:04$ 32 $0:25$ $3:30$ 440 $12:45$ 52 $0:25$ $4:24$ 441 $9:34$ 31 $0:24$ $3:18$ 442 $9:42$ 31 $0:24$ $3:16$ 444 $9:26$ 32 $0:24$ $3:13$ 445 $13:14$ 53 $0:25$ $4:29$ 446 $9:53$ 31 $0:24$ $3:22$ 447 $16:21$ 72 $0:27$ $5:38$ 448 $18:02$ 75 $0:28$ $6:15$ 449 $8:45$ 29 $0:23$ $3:02$ 450 $8:53$ 30 $0:22$ $3:01$ 451 $11:11$ 48 $0:24$ $3:50$ 452 $11:24$ 49 $0:24$ $3:54$ 453 $11:56$ 49 $0:22$ $3:01$ 455 $8:19$ 30 $0:20$ $2:48$ 456 $8:05$ 30 $0:19$ $2:40$ 458 $8:25$ 30 $0:20$ $2:51$ 459 $8:59$ 32 $0:21$ $3:02$ 460 $1:46$ 51 $0:23$ $4:01$ 455 $8:19$ 32 $0:24$ $4:09$	433	9:16	30	0:24	3:12	
435 $9:55$ 31 $0:25$ $3:25$ 436 $12:18$ 51 $0:25$ $4:14$ 437 $12:30$ 51 $0:25$ $3:31$ 439 $10:01$ 32 $0:25$ $3:30$ 440 $12:45$ 52 $0:25$ $4:24$ 441 $9:34$ 31 $0:24$ $3:18$ 442 $9:42$ 31 $0:24$ $3:14$ 442 $9:42$ 31 $0:24$ $3:13$ 445 $13:14$ 53 $0:25$ $4:29$ 446 $9:53$ 31 $0:24$ $3:22$ 447 $16:21$ 72 $0:27$ $5:38$ 448 $18:02$ 75 $0:28$ $6:15$ 449 $8:45$ 29 $0:23$ $3:02$ 450 $8:53$ 30 $0:22$ $3:01$ 451 $11:11$ 48 $0:24$ $3:50$ 452 $11:24$ 49 $0:25$ $4:05$ 453 $11:56$ 49 $0:22$ $3:01$ 455 $8:19$ 30 $0:20$ $2:48$ 456 $8:05$ 30 $0:19$ $2:44$ 457 $7:53$ 30 $0:20$ $2:51$ 459 $8:59$ 32 $0:21$ $3:02$ 460 $11:46$ 51 $0:23$ $4:01$ 455 $8:19$ 30 $0:22$ $2:51$ 456 $8:05$ 30 $0:19$ $2:44$ 456 $8:05$ 30 $0:24$ $4:09$ <	434	12:09	49	0:25	4:10	
43612:1851 $0:25$ 4:1443712:3051 $0:25$ 4:1743810:0132 $0:25$ 3:3143910:0432 $0:25$ 3:3044012:4552 $0:25$ 4:244419:3431 $0:24$ 3:184429:4231 $0:24$ 3:164439:1931 $0:24$ 3:164449:2632 $0:25$ 4:294469:5331 $0:24$ 3:1244513:1453 $0:25$ 4:294469:5331 $0:24$ 3:2244716:2172 $0:27$ 5:3844818:0275 $0:28$ 6:154498:4529 $0:23$ $3:02$ 4508:5330 $0:22$ $3:01$ 45111:1148 $0:24$ $3:50$ 45211:2449 $0:25$ $4:05$ 4548:5730 $0:22$ $3:01$ 4558:1930 $0:20$ $2:48$ 456 $8:05$ 30 $0:19$ $2:44$ 4577:5330 $0:20$ $2:48$ 456 $8:05$ 30 $0:20$ $2:51$ 459 $8:59$ 32 $0:21$ $3:02$ 46011:4651 $0:23$ $4:01$ 46112:10 50 $0:24$ $4:09$ 46212:29 53 $0:24$ $4:07$ 464 </td <td>435</td> <td>9:55</td> <td>31</td> <td>0:25</td> <td>3:25</td>	435	9:55	31	0:25	3:25	
437 $12:30$ 51 $0:25$ $4:17$ 438 $10:01$ 32 $0:25$ $3:31$ 439 $10:04$ 32 $0:25$ $3:30$ 440 $12:45$ 52 $0:25$ $4:24$ 441 $9:34$ 31 $0:24$ $3:18$ 442 $9:42$ 31 $0:24$ $3:16$ 444 $9:26$ 32 $0:24$ $3:13$ 445 $13:14$ 53 $0:25$ $4:29$ 446 $9:53$ 31 $0:24$ $3:22$ 447 $16:21$ 72 $0:27$ $5:38$ 448 $18:02$ 75 $0:28$ $6:15$ 449 $8:45$ 29 $0:23$ $3:02$ 450 $8:53$ 30 $0:22$ $3:01$ 451 $11:11$ 48 $0:24$ $3:50$ 452 $11:24$ 49 $0:25$ $4:05$ 453 $11:56$ 49 $0:22$ $3:01$ 455 $8:19$ 30 $0:20$ $2:48$ 456 $8:05$ 30 $0:19$ $2:44$ 457 $7:53$ 30 $0:20$ $2:51$ 459 $8:59$ 32 $0:21$ $3:02$ 460 $11:46$ 51 $0:23$ $4:01$ 461 $12:10$ 50 $0:24$ $4:09$ 462 $12:29$ 53 $0:24$ $4:07$ 464 $9:14$ 32 $0:21$ $3:08$ 465 $8:23$ 32 $0:20$ $2:50$ <td>436</td> <td>12:18</td> <td>51</td> <td>0:25</td> <td>4:14</td>	436	12:18	51	0:25	4:14	
43810:01 32 $0:25$ $3:31$ 439 $10:04$ 32 $0:25$ $3:30$ 440 $12:45$ 52 $0:25$ $4:24$ 441 $9:34$ 31 $0:24$ $3:18$ 442 $9:42$ 31 $0:24$ $3:16$ 444 $9:26$ 32 $0:24$ $3:13$ 445 $13:14$ 53 $0:25$ $4:29$ 446 $9:53$ 31 $0:24$ $3:22$ 447 $16:21$ 72 $0:27$ $5:38$ 448 $18:02$ 75 $0:28$ $6:15$ 449 $8:45$ 29 $0:23$ $3:02$ 450 $8:53$ 30 $0:22$ $3:01$ 451 $11:11$ 48 $0:24$ $3:50$ 452 $11:24$ 49 $0:24$ $3:54$ 453 $11:56$ 49 $0:25$ $4:05$ 454 $8:57$ 30 $0:20$ $2:48$ 455 $8:19$ 30 $0:20$ $2:48$ 456 $8:05$ 30 $0:19$ $2:44$ 457 $7:53$ 30 $0:20$ $2:51$ 458 $8:25$ 30 $0:20$ $2:51$ 459 $8:59$ 32 $0:21$ $3:02$ 460 $11:46$ 51 $0:23$ $4:01$ 461 $12:10$ 50 $0:24$ $4:17$ 463 $11:28$ 52 $0:22$ $3:56$ 464 $9:14$ 32 $0:21$ $3:08$ <t< td=""><td>437</td><td>12:30</td><td>51</td><td>0:25</td><td>4:17</td></t<>	437	12:30	51	0:25	4:17	
43910:04 32 $0:25$ $3:30$ 440 $12:45$ 52 $0:25$ $4:24$ 441 $9:34$ 31 $0:24$ $3:18$ 442 $9:42$ 31 $0:24$ $3:16$ 443 $9:19$ 31 $0:24$ $3:16$ 444 $9:26$ 32 $0:24$ $3:13$ 445 $13:14$ 53 $0:25$ $4:29$ 446 $9:53$ 31 $0:24$ $3:22$ 447 $16:21$ 72 $0:27$ $5:38$ 448 $18:02$ 75 $0:28$ $6:15$ 449 $8:45$ 29 $0:23$ $3:02$ 450 $8:53$ 30 $0:22$ $3:01$ 451 $11:11$ 48 $0:24$ $3:50$ 452 $11:24$ 49 $0:25$ $4:05$ 453 $11:56$ 49 $0:22$ $3:01$ 455 $8:19$ 30 $0:20$ $2:48$ 456 $8:05$ 30 $0:19$ $2:40$ 458 $8:25$ 30 $0:20$ $2:51$ 459 $8:59$ 32 $0:21$ $3:02$ 460 $11:46$ 51 $0:23$ $4:01$ 461 $12:10$ 50 $0:24$ $4:09$ 462 $12:29$ 53 $0:24$ $4:17$ 463 $11:28$ 52 $0:22$ $3:56$ 464 $9:14$ 32 $0:21$ $3:08$ 465 $8:23$ 32 $0:20$ $2:50$ <t< td=""><td>438</td><td>10:01</td><td>32</td><td>0:25</td><td>3:31</td></t<>	438	10:01	32	0:25	3:31	
440 $12:45$ 52 $0:25$ $4:24$ 441 $9:34$ 31 $0:24$ $3:18$ 442 $9:42$ 31 $0:24$ $3:16$ 443 $9:19$ 31 $0:24$ $3:16$ 444 $9:26$ 32 $0:25$ $4:29$ 446 $9:53$ 31 $0:24$ $3:22$ 447 $16:21$ 72 $0:27$ $5:38$ 448 $18:02$ 75 $0:28$ $6:15$ 449 $8:45$ 29 $0:23$ $3:02$ 450 $8:53$ 30 $0:22$ $3:01$ 451 $11:11$ 48 $0:24$ $3:50$ 452 $11:24$ 49 $0:25$ $4:05$ 453 $11:56$ 49 $0:22$ $3:01$ 455 $8:19$ 30 $0:20$ $2:48$ 456 $8:05$ 30 $0:19$ $2:40$ 458 $8:25$ 30 $0:20$ $2:51$ 459 $8:59$ 32 $0:21$ $3:02$ 460 $11:46$ 51 $0:23$ $4:01$ 461 $12:10$ 50 $0:24$ $4:09$ 462 $12:29$ 53 $0:24$ $4:17$ 463 $11:28$ 52 $0:22$ $3:56$ 464 $9:14$ 32 $0:21$ $3:08$ 465 $8:23$ 32 $0:20$ $2:50$ 466 $7:10$ 30 $0:17$ $2:26$ 467 $9:21$ 311 $0:24$ $3:11$ <	439	10:04	32	0:25	3:30	
441 $9:34$ 31 $0:24$ $3:18$ 442 $9:42$ 31 $0:24$ $3:24$ 443 $9:19$ 31 $0:24$ $3:16$ 444 $9:26$ 32 $0:24$ $3:13$ 445 $13:14$ 53 $0:25$ $4:29$ 446 $9:53$ 31 $0:24$ $3:22$ 447 $16:21$ 72 $0:27$ $5:38$ 448 $18:02$ 75 $0:28$ $6:15$ 449 $8:45$ 29 $0:23$ $3:02$ 450 $8:53$ 30 $0:22$ $3:01$ 451 $11:11$ 48 $0:24$ $3:50$ 452 $11:24$ 49 $0:25$ $4:05$ 453 $11:56$ 49 $0:22$ $3:01$ 455 $8:19$ 30 $0:20$ $2:48$ 456 $8:05$ 30 $0:19$ $2:40$ 458 $8:25$ 30 $0:20$ $2:51$ 459 $8:59$ 32 $0:21$ $3:02$ 460 $11:46$ 51 $0:23$ $4:01$ 461 $12:10$ 50 $0:24$ $4:09$ 462 $12:29$ 53 $0:24$ $4:17$ 463 $11:28$ 52 $0:22$ $3:56$ 464 $9:14$ 32 $0:21$ $3:08$ 465 $8:23$ 32 $0:20$ $2:50$ 466 $7:10$ 30 $0:17$ $2:26$ 467 $9:21$ 311 $0:24$ $3:11$ <	440	12:45	52	0:25	4:24	
442 $9:42$ 31 $0:24$ $3:24$ 443 $9:19$ 31 $0:24$ $3:16$ 444 $9:26$ 32 $0:24$ $3:13$ 445 $13:14$ 53 $0:25$ $4:29$ 446 $9:53$ 31 $0:24$ $3:22$ 447 $16:21$ 72 $0:27$ $5:38$ 448 $18:02$ 75 $0:28$ $6:15$ 449 $8:45$ 29 $0:23$ $3:02$ 450 $8:53$ 30 $0:22$ $3:01$ 451 $11:11$ 48 $0:24$ $3:50$ 452 $11:24$ 49 $0:25$ $4:05$ 453 $11:56$ 49 $0:25$ $4:05$ 454 $8:57$ 30 $0:20$ $2:48$ 456 $8:05$ 30 $0:19$ $2:44$ 457 $7:53$ 30 $0:20$ $2:51$ 458 $8:25$ 30 $0:20$ $2:51$ 459 $8:59$ 32 $0:21$ $3:02$ 460 $11:46$ 51 $0:23$ $4:01$ 461 $12:10$ 50 $0:24$ $4:09$ 462 $12:29$ 53 $0:24$ $4:17$ 463 $11:28$ 52 $0:22$ $3:66$ 464 $9:14$ 32 $0:21$ $3:08$ 465 $8:23$ 32 $0:20$ $2:50$ 466 $7:10$ 30 $0:17$ $2:26$ 467 $9:21$ $3:1$ $0:24$ $3:11$ <	441	9:34	31	0:24	3:18	
443 $9:19$ 31 $0:24$ $3:16$ 444 $9:26$ 32 $0:24$ $3:13$ 445 $13:14$ 53 $0:25$ $4:29$ 446 $9:53$ 31 $0:24$ $3:22$ 447 $16:21$ 72 $0:27$ $5:38$ 448 $18:02$ 75 $0:28$ $6:15$ 449 $8:45$ 29 $0:23$ $3:02$ 450 $8:53$ 30 $0:22$ $3:01$ 451 $11:11$ 48 $0:24$ $3:50$ 452 $11:24$ 49 $0:25$ $4:05$ 453 $11:56$ 49 $0:25$ $4:05$ 454 $8:57$ 30 $0:20$ $2:48$ 456 $8:05$ 30 $0:19$ $2:44$ 457 $7:53$ 30 $0:20$ $2:51$ 458 $8:25$ 30 $0:20$ $2:51$ 459 $8:59$ 32 $0:21$ $3:02$ 460 $11:46$ 51 $0:23$ $4:01$ 461 $12:10$ 50 $0:24$ $4:09$ 462 $12:29$ 53 $0:24$ $4:17$ 463 $11:28$ 52 $0:22$ $3:56$ 464 $9:14$ 32 $0:21$ $3:08$ 465 $8:23$ 32 $0:20$ $2:50$ 466 $7:10$ 30 $0:17$ $2:26$ 467 $9:21$ 31 $0:24$ $3:11$	442	9:42	31	0:24	3:24	
444 $9:26$ 32 $0:24$ $3:13$ 445 $13:14$ 53 $0:25$ $4:29$ 446 $9:53$ 31 $0:24$ $3:22$ 447 $16:21$ 72 $0:27$ $5:38$ 448 $18:02$ 75 $0:28$ $6:15$ 449 $8:45$ 29 $0:23$ $3:02$ 450 $8:53$ 30 $0:22$ $3:01$ 451 $11:11$ 48 $0:24$ $3:50$ 452 $11:24$ 49 $0:25$ $4:05$ 453 $11:56$ 49 $0:25$ $4:05$ 454 $8:57$ 30 $0:20$ $2:48$ 456 $8:05$ 30 $0:19$ $2:40$ 458 $8:25$ 30 $0:20$ $2:51$ 459 $8:59$ 32 $0:21$ $3:02$ 460 $11:46$ 51 $0:23$ $4:01$ 461 $12:10$ 50 $0:24$ $4:09$ 462 $12:29$ 53 $0:24$ $4:17$ 463 $11:28$ 52 $0:22$ $3:56$ 464 $9:14$ 32 $0:21$ $3:08$ 465 $8:23$ 32 $0:21$ $3:08$ 465 $8:23$ 32 $0:20$ $2:50$ 466 $7:10$ 30 $0:17$ $2:26$ 467 $9:21$ 31 $0:24$ $3:11$	443	9:19	31	0:24	3:10	
445 $13:14$ 53 $0:25$ $4:29$ 446 $9:53$ 31 $0:24$ $3:22$ 447 $16:21$ 72 $0:27$ $5:38$ 448 $18:02$ 75 $0:28$ $6:15$ 449 $8:45$ 29 $0:23$ $3:02$ 450 $8:53$ 30 $0:22$ $3:01$ 451 $11:11$ 48 $0:24$ $3:50$ 452 $11:24$ 49 $0:24$ $3:54$ 453 $11:56$ 49 $0:25$ $4:05$ 454 $8:57$ 30 $0:20$ $2:48$ 456 $8:05$ 30 $0:19$ $2:44$ 457 $7:53$ 30 $0:20$ $2:51$ 458 $8:25$ 30 $0:20$ $2:51$ 459 $8:59$ 32 $0:21$ $3:02$ 460 $11:46$ 51 $0:23$ $4:01$ 461 $12:10$ 50 $0:24$ $4:09$ 462 $12:29$ 53 $0:24$ $4:17$ 463 $11:28$ 52 $0:22$ $3:56$ 464 $9:14$ 32 $0:21$ $3:08$ 465 $8:23$ 32 $0:20$ $2:50$ 466 $7:10$ 30 $0:17$ $2:26$ 467 $9:21$ 31 $0:24$ $3:11$	444	9:20	32	0:24	3:13	
440 $9:53$ 31 $0:24$ $3:22$ 447 $16:21$ 72 $0:27$ $5:38$ 448 $18:02$ 75 $0:28$ $6:15$ 449 $8:45$ 29 $0:23$ $3:02$ 450 $8:53$ 30 $0:22$ $3:01$ 451 $11:11$ 48 $0:24$ $3:50$ 452 $11:24$ 49 $0:25$ $4:05$ 453 $11:56$ 49 $0:22$ $3:01$ 453 $11:56$ 49 $0:22$ $3:01$ 455 $8:19$ 30 $0:20$ $2:48$ 456 $8:05$ 30 $0:19$ $2:44$ 457 $7:53$ 30 $0:20$ $2:51$ 458 $8:25$ 30 $0:20$ $2:51$ 459 $8:59$ 32 $0:21$ $3:02$ 460 $11:46$ 51 $0:23$ $4:01$ 461 $12:10$ 50 $0:24$ $4:09$ 462 $12:29$ 53 $0:24$ $4:17$ 463 $11:28$ 52 $0:22$ $3:56$ 464 $9:14$ 32 $0:21$ $3:08$ 465 $8:23$ 32 $0:20$ $2:50$ 466 $7:10$ 30 $0:17$ $2:26$ 467 $9:21$ 31 $0:24$ $3:11$	445	13:14	53	0:25	4:29	
447 $16:21$ 72 $0:27$ $5:38$ 448 $18:02$ 75 $0:28$ $6:15$ 449 $8:45$ 29 $0:23$ $3:02$ 450 $8:53$ 30 $0:22$ $3:01$ 451 $11:11$ 48 $0:24$ $3:50$ 452 $11:24$ 49 $0:25$ $4:05$ 453 $11:56$ 49 $0:25$ $4:05$ 454 $8:57$ 30 $0:20$ $2:48$ 456 $8:05$ 30 $0:19$ $2:44$ 457 $7:53$ 30 $0:20$ $2:51$ 458 $8:25$ 30 $0:20$ $2:51$ 459 $8:59$ 32 $0:21$ $3:02$ 460 $11:46$ 51 $0:23$ $4:01$ 461 $12:10$ 50 $0:24$ $4:09$ 462 $12:29$ 53 $0:24$ $4:17$ 463 $11:28$ 52 $0:22$ $3:56$ 464 $9:14$ 32 $0:21$ $3:08$ 465 $8:23$ 32 $0:20$ $2:50$ 466 $7:10$ 30 $0:17$ $2:26$ 467 $9:21$ 31 $0:24$ $3:11$	440	9:53	31	0:24	3:22	
446 18.02 73 0.26 6.13 449 $8:45$ 29 $0:23$ $3:02$ 450 $8:53$ 30 $0:22$ $3:01$ 451 $11:11$ 48 $0:24$ $3:50$ 452 $11:24$ 49 $0:24$ $3:54$ 453 $11:56$ 49 $0:25$ $4:05$ 454 $8:57$ 30 $0:20$ $2:48$ 456 $8:05$ 30 $0:19$ $2:44$ 457 $7:53$ 30 $0:20$ $2:51$ 458 $8:25$ 30 $0:20$ $2:51$ 459 $8:59$ 32 $0:21$ $3:02$ 460 $11:46$ 51 $0:23$ $4:01$ 461 $12:10$ 50 $0:24$ $4:09$ 462 $12:29$ 53 $0:24$ $4:17$ 463 $11:28$ 52 $0:22$ $3:56$ 464 $9:14$ 32 $0:21$ $3:08$ 465 $8:23$ 32 $0:20$ $2:50$ 466 $7:10$ 30 $0:17$ $2:26$ 467 $9:21$ 31 $0:24$ $3:11$	447	10:21	72	0:27	0:38 4:1E	
449 6.43 29 0.23 3.02 450 $8:53$ 30 $0:22$ $3:01$ 451 $11:11$ 48 $0:24$ $3:50$ 452 $11:24$ 49 $0:25$ $4:05$ 453 $11:56$ 49 $0:25$ $4:05$ 454 $8:57$ 30 $0:20$ $2:48$ 456 $8:05$ 30 $0:19$ $2:44$ 457 $7:53$ 30 $0:20$ $2:51$ 458 $8:25$ 30 $0:20$ $2:51$ 459 $8:59$ 32 $0:21$ $3:02$ 460 $11:46$ 51 $0:23$ $4:01$ 461 $12:10$ 50 $0:24$ $4:09$ 462 $12:29$ 53 $0:24$ $4:17$ 463 $11:28$ 52 $0:22$ $3:56$ 464 $9:14$ 32 $0:21$ $3:08$ 465 $8:23$ 32 $0:20$ $2:50$ 466 $7:10$ 30 $0:17$ $2:26$ 467 $9:21$ 31 $0:24$ $3:11$	440	0.45	70	0.20	0.15	
450 6.53 50 0.22 3.01 451 $11:11$ 48 $0:24$ $3:50$ 452 $11:24$ 49 $0:24$ $3:54$ 453 $11:56$ 49 $0:25$ $4:05$ 454 $8:57$ 30 $0:22$ $3:01$ 455 $8:19$ 30 $0:20$ $2:48$ 456 $8:05$ 30 $0:19$ $2:44$ 457 $7:53$ 30 $0:20$ $2:51$ 458 $8:25$ 30 $0:20$ $2:51$ 459 $8:59$ 32 $0:21$ $3:02$ 460 $11:46$ 51 $0:23$ $4:01$ 461 $12:10$ 50 $0:24$ $4:09$ 462 $12:29$ 53 $0:24$ $4:17$ 463 $11:28$ 52 $0:22$ $3:56$ 464 $9:14$ 32 $0:21$ $3:08$ 465 $8:23$ 32 $0:20$ $2:50$ 466 $7:10$ 30 $0:17$ $2:26$ 467 $9:21$ 31 $0:24$ $3:11$	449	0.40	29	0.23	3.02	
451 11.11 46 0.24 3.50 452 $11:24$ 49 $0:24$ $3:54$ 453 $11:56$ 49 $0:25$ $4:05$ 454 $8:57$ 30 $0:22$ $3:01$ 455 $8:19$ 30 $0:20$ $2:48$ 456 $8:05$ 30 $0:19$ $2:44$ 457 $7:53$ 30 $0:20$ $2:51$ 458 $8:25$ 30 $0:20$ $2:51$ 459 $8:59$ 32 $0:21$ $3:02$ 460 $11:46$ 51 $0:23$ $4:01$ 461 $12:10$ 50 $0:24$ $4:09$ 462 $12:29$ 53 $0:24$ $4:17$ 463 $11:28$ 52 $0:22$ $3:56$ 464 $9:14$ 32 $0:21$ $3:08$ 465 $8:23$ 32 $0:20$ $2:50$ 466 $7:10$ 30 $0:17$ $2:26$ 467 $9:21$ 31 $0:24$ $3:11$	450	0.00	30	0.22	2.50	
452 11.24 47 0.24 3.54 453 $11:56$ 49 $0:25$ $4:05$ 454 $8:57$ 30 $0:22$ $3:01$ 455 $8:19$ 30 $0:20$ $2:48$ 456 $8:05$ 30 $0:19$ $2:44$ 457 $7:53$ 30 $0:20$ $2:51$ 458 $8:25$ 30 $0:20$ $2:51$ 459 $8:59$ 32 $0:21$ $3:02$ 460 $11:46$ 51 $0:23$ $4:01$ 461 $12:10$ 50 $0:24$ $4:09$ 462 $12:29$ 53 $0:24$ $4:17$ 463 $11:28$ 52 $0:22$ $3:56$ 464 $9:14$ 32 $0:21$ $3:08$ 465 $8:23$ 32 $0:20$ $2:50$ 466 $7:10$ 30 $0:17$ $2:26$ 467 $9:21$ 31 $0:24$ $3:11$	451	11.11	40	0.24	3.50	
433 11.30 47 0.23 4.03 454 $8:57$ 30 $0:22$ $3:01$ 455 $8:19$ 30 $0:20$ $2:48$ 456 $8:05$ 30 $0:19$ $2:44$ 457 $7:53$ 30 $0:20$ $2:51$ 458 $8:25$ 30 $0:20$ $2:51$ 459 $8:59$ 32 $0:21$ $3:02$ 460 $11:46$ 51 $0:23$ $4:01$ 461 $12:10$ 50 $0:24$ $4:09$ 462 $12:29$ 53 $0:24$ $4:17$ 463 $11:28$ 52 $0:22$ $3:56$ 464 $9:14$ 32 $0:21$ $3:08$ 465 $8:23$ 32 $0:20$ $2:50$ 466 $7:10$ 30 $0:17$ $2:26$ 467 $9:21$ 31 $0:24$ $3:11$	402	11.24	49	0.24	3.34 4.0E	
454 6.57 30 0.22 3.01 455 $8:19$ 30 $0:20$ $2:48$ 456 $8:05$ 30 $0:19$ $2:44$ 457 $7:53$ 30 $0:19$ $2:40$ 458 $8:25$ 30 $0:20$ $2:51$ 459 $8:59$ 32 $0:21$ $3:02$ 460 $11:46$ 51 $0:23$ $4:01$ 461 $12:10$ 50 $0:24$ $4:09$ 462 $12:29$ 53 $0:24$ $4:17$ 463 $11:28$ 52 $0:22$ $3:56$ 464 $9:14$ 32 $0:21$ $3:08$ 465 $8:23$ 32 $0:20$ $2:50$ 466 $7:10$ 30 $0:17$ $2:26$ 467 $9:21$ 31 $0:24$ $3:11$	455	8.57	49	0.25	4.05 3·01	
453 8.17 30 0.20 2.46 456 $8:05$ 30 $0:19$ $2:44$ 457 $7:53$ 30 $0:19$ $2:40$ 458 $8:25$ 30 $0:20$ $2:51$ 459 $8:59$ 32 $0:21$ $3:02$ 460 $11:46$ 51 $0:23$ $4:01$ 461 $12:10$ 50 $0:24$ $4:09$ 462 $12:29$ 53 $0:24$ $4:17$ 463 $11:28$ 52 $0:22$ $3:56$ 464 $9:14$ 32 $0:21$ $3:08$ 465 $8:23$ 32 $0:20$ $2:50$ 466 $7:10$ 30 $0:17$ $2:26$ 467 $9:21$ 31 $0:24$ $3:11$	454	0.57	30	0.22	2.49	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	455	0.19 8.05	30	0.20	2.40	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	450	7.52	20	0.19	2:44	
456 8:23 30 0:20 2:31 459 8:59 32 0:21 3:02 460 11:46 51 0:23 4:01 461 12:10 50 0:24 4:09 462 12:29 53 0:24 4:17 463 11:28 52 0:22 3:56 464 9:14 32 0:21 3:08 465 8:23 32 0:20 2:50 466 7:10 30 0:17 2:26 467 9:21 31 0:24 3:11	457	0.05	30	0.19	2.40	
460 11:46 51 0:23 4:01 461 12:10 50 0:24 4:09 462 12:29 53 0:24 4:17 463 11:28 52 0:22 3:56 464 9:14 32 0:21 3:08 465 8:23 32 0:20 2:50 466 7:10 30 0:17 2:26 467 9:21 31 0:24 3:11	400	0.20 8.50	30 20	0.20	2.31	
461 12:10 50 0:23 4:01 461 12:10 50 0:24 4:09 462 12:29 53 0:24 4:17 463 11:28 52 0:22 3:56 464 9:14 32 0:21 3:08 465 8:23 32 0:20 2:50 466 7:10 30 0:17 2:26 467 9:21 31 0:24 3:11	407	11.74	J∠ 51	0.21	J.02 A·∩1	
461 12:10 55 0.24 4.07 462 12:29 53 0:24 4:17 463 11:28 52 0:22 3:56 464 9:14 32 0:21 3:08 465 8:23 32 0:20 2:50 466 7:10 30 0:17 2:26 467 9:21 31 0:24 3:11	400	10.40	50	0.23	4.01	
463 11:28 52 0:24 4.17 463 11:28 52 0:22 3:56 464 9:14 32 0:21 3:08 465 8:23 32 0:20 2:50 466 7:10 30 0:17 2:26 467 9:21 31 0:24 3:11	<u>⊿</u> 62	12.10	50	0.24	4.07 A·17	
160 1120 32 0.22 3.30 464 9:14 32 0:21 3:08 465 8:23 32 0:20 2:50 466 7:10 30 0:17 2:26 467 9:21 31 0:24 3:11	462	11.22	53	0.24	3.56	
465 8:23 32 0:21 3.00 466 7:10 30 0:17 2:26 467 9:21 31 0:24 3:11	464	9.14	32	0.22	3.08	
466 7:10 30 0:17 2:26 467 9:21 31 0:24 3:11	465	8.23	32	0.21	2:50	
467 9:21 31 0:24 3:11	466	7:10	30	0:17	2:26	
	467	9:21	31	0:24	3:11	

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com ^{Calculated:} 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

cont	inued from previ	ous page		
	Shadow, wors	t case		Shadow, expected values
No.	Shadow hours	Shadow days	Max shadow	Shadow hours
	per year	per year	hours per day	per year
4/0	[n/year]	[days/year]	[h/day]	[h/year]
468	9:39	31	0:24	3:21
409	9:39	30	0:24	3:19
470	11.49	49	0.24	4.01 5.02
471	14.45	50	0.20	5.02
472	10.36	37	0.27	3.57
474	9.46	35	0.21	3.26
475	9.20	36	0.21	3.25
476	9:34	37	0:19	3:36
477	11:03	41	0:20	4:19
478	11:35	41	0:21	4:29
479	11:43	42	0:20	4:37
480	12:03	45	0:20	4:49
481	14:38	54	0:21	5:56
482	0:00	0	0:00	0:00
483	10:29	39	0:20	4:09
484	22:01	71	0:21	8:30
485	21:58	66	0:22	8:25
486	23:20	80	0:23	8:53
487	12:21	44	0:20	4:36
488	9:59	38	0:19	3:43
489	31:20	109	0:34	10:51
490	31:01	112	0:34	10:44
491	23:31	68	0:34	8:04
492	22:14	82	0:31	7:37
493	20:59	100	0:19	7:42
494	23:29	113	0:20	8:38
495	26:51	129	0:20	9:52
496	20:15	112	0:21	9:34
497	20:33	113	0:20	9:20
490	20.01	100	0.20	9.32
500	21.1J 12.22	52	0.20	1:20
500	12.22	97 97	0.22	4.20
502	25.07	105	0.22	9.00
502	24.55	105	0.22	8.59
504	23:22	101	0:23	8:14
505	23:10	99	0:23	8:09
506	21:35	92	0:24	7:29
507	22:00	91	0:26	7:32
508	18:09	66	0:27	6:00
509	19:58	72	0:28	6:36
510	24:56	88	0:30	8:18
511	30:23	104	0:32	10:23
512	31:24	103	0:32	10:48
513	32:37	127	0:27	11:28
514	28:31	113	0:24	10:08
515	23:12	109	0:20	8:30
516	33:01	134	0:24	12:27
517	36:13	137	0:29	12:52
518	36:13	128	0:31	12:57
519	33:55	121	0:32	12:12
520	43:04	145	0:30	15:52
521	44:15	147	0:28	10:22
522	30:35	92	0:35	10:44
5∠3 ⊑24	30:43	9U 01	0:37	1U:48 0.50
524 525	∠ö:∠1 20.27	0 I	0:39	9:59
020 504	20:21	70 71	0.30	0.58
520	∠7.20 22.17	20 20	0.40 A-20	9.00 11·10
528	61:59	161	0:37	21:53
525				

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com ^{Calculated:} 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

continued from previous page					
	Shadow, wors	t case		Shadow, expected values	
No.	Shadow hours	Shadow days	Max shadow	Shadow hours	
	per year	per year	hours per day	per year	
	[h/year]	[days/year]	[h/day]	[h/year]	
529	30:00	139	0:22	11:01	
530	45:33	192	0:25	16:49	
531	38:35	152	0:26	14:16	
532	62:25	181	0:34	19:20	
533	84:24	206	0:37	25:49	
534	95:29	239	0:51	29:32	
535	80:10	209	0:59	26:09	
536	107:46	225	1:02	35:40	
537	96:48	198	0:58	31:22	
538	80:55	182	0:52	28:32	
539	50:22	110	1:04	17:23	
540	74.42	132	0.51	23.00	
541	74.43	144	0.39	20.17	
542	90.39 107.15	220	0.40	27.40	
545	107.15	220	0.49	40:44	
544	112.12	217	0.43	40.44	
545	73.16	16/	0.42	25.01	
547	91·46	166	1.05	31.13	
5/8	161.58	202	1.03	60.51	
5/0	168.10	272	1.02	58.37	
550	250.36	280	1.13	91.15	
551	160.53	193	1.23	56:55	
552	112.52	153	1.24	40:35	
553	102:17	182	1:23	37:08	
554	101:18	184	1:23	36:46	
555	100:02	187	1:22	36:15	
556	91:25	137	1:21	32:47	
557	90:45	135	1:21	32:32	
558	88:45	134	1:21	31:56	
559	87:59	130	1:21	31:40	
560	114:54	222	1:22	40:36	
561	115:55	220	1:23	40:41	
562	84:14	127	1:17	30:18	
563	77:04	120	1:13	28:05	
564	75:13	119	1:12	27:30	
565	73:23	115	1:10	26:59	
566	71:04	116	1:09	26:30	
567	70:13	117	1:08	26:20	
568	67:51	122	1:06	25:51	
569	65:06	131	1:03	25:26	
570	63:34	126	1:04	24:36	
571	75:30	159	1:00	30:46	
572	77:30	154	1:00	31:46	
573	78:18	150	0:59	32:03	
574	75:38	147	0:57	31:13	
575	74:17	146	0:56	30:39	
5/6	/3:46	158	0:54	30:10	
5//	89:08	164	1:01	34:54	
578	86:09	148	1:04	33:58	
579	81:30	178	0:39	36:19	
580	84:21	178	0:41	37:46	
281	90:59	103	0:52	42:49	
582	90:22	1/4	0:57	31:5U 24:10	
583	100:45	212	0:54	30:12 22.50	
584	103:46	195	0:53	33:37	
202 E01	52:49 26:24	105	0:30	20:02	
000 507	∠0.∠0 20.40	1/0	0.20	7.∠1 10:05	
507	20.40 21∙10	01	0.20	7.25	
580	21.10	95	0.20	7:25	
507	2		0.20		

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com ^{Calculated:} 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

continued from previous page					
	Shadow, wors	t case		Shadow, expected values	
No.	Shadow hours	Shadow days	Max shadow	Shadow hours	
	per year	per year	hours per day	per year	
	[h/year]	[days/year]	[h/day]	[h/year]	
590	41:56	198	0:25	15:17	
591	32:31	162	0:24	11:50	
592	16:55	102	0:20	6:10	
593	20:21	121	0:21	7:08	
594	17:17	111	0:20	6:05	
595	63:54	212	0:25	23:13	
596	65:03	225	0:25	23:44	
597	65:18	225	0:26	23:50	
598	65:29	221	0:26	23:58	
599	58:14	197	0:29	20:44	
600	49:24	169	0:30	16:38	
601	47:07	1//	0:29	15:48	
602	40:39	161	0:29	13:30	
603	38:08	200	0:29	20:20	
604	46:25	191	0:26	15:58	
605	40:00	109	0:27	15:47	
600	43:07	183	0:25	14:59	
607	39:01	159	0:24	13:40	
600	30.33	150	0.24	13.00	
609	33.14	130	0.24	12.34	
610	22.27	140	0.27	10.52	
412	32.30	141	0.27	10.33	
01Z 412	31.09	137	0.27	10.29	
614	29.20	133	0.20	0.06	
615	20.09	143	0.24	9.00	
616	20.19	139	0.24	9.12 Q·/1	
617	27.15	147	0.23	9.41	
618	25.35	120	0.24	9.56	
610	25.25	127	0.24	0.30 0·11	
620	20.00	136	0.23	10.27	
620	32.25	141	0.27	11:01	
622	22.20	143	0.27	11.20	
622	25.25	145	0.20	12.22	
624	33.31	139	0.29	11.36	
625	29.38	134	0.27	10.19	
626	30:03	131	0:28	10:30	
627	31.58	138	0.28	11.09	
628	29:52	144	0:27	10:30	
629	30:33	147	0:27	10:47	
630	30:45	150	0:27	10:50	
631	28:46	145	0:26	10:08	
632	30:36	154	0:26	10:43	
633	28:00	139	0:25	9:52	
634	28:10	141	0:25	9:51	
635	29:48	151	0:26	10:24	
636	28:25	159	0:24	9:49	
637	28:29	150	0:25	9:51	
638	29:55	163	0:23	10:40	
639	28:51	133	0:26	9:59	
640	28:03	130	0:26	9:38	
641	25:59	122	0:25	9:03	
642	25:14	120	0:24	8:48	
643	30:08	98	0:26	10:28	
644	99:57	206	0:49	33:55	
645	76:51	164	0:49	22:55	
646	73:18	191	0:37	24:34	
647	16:14	80	0:21	4:53	
648	16:59	81	0:21	5:06	
649	17:55	79	0:23	5:24	
650	20:42	83	0:25	6:15	

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com ^{Calculated:} 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

continued from previous page				
	Shadow, wors	t case		Shadow, expected values
No.	Shadow hours	Shadow days	Max shadow	Shadow hours
	per year	per year	hours per day	per year
/ 5 1	[n/year]	[days/year]	[h/day]	[h/year]
05 I 45 2	22:53	110	0:27	7:11
002 452	24:17	110	0:28	0.54
654	29.30	139	0.31	9.54
655	30.58	132	0.32	10.40
656	J1.24 /0·/1	1/2	0.35	14.03
657	45.14	155	0.35	15:41
658	46:43	157	0:36	16:12
659	47:33	156	0:36	16:37
660	50:05	118	0:50	17:05
661	47:28	124	0:40	17:11
662	51:45	168	0:38	19:00
663	59:04	198	0:39	22:05
664	54:35	171	0:42	20:49
665	133:11	236	0:55	56:47
666	32:55	155	0:20	12:50
667	34:19	190	0:17	12:12
668	45:12	190	0:25	19:12
669	27:59	166	0:17	12:12
670	24:02	155	0:15	10:46
671	11:19	90	0:12	4:15
6/2	10:20	97	0:12	3:43
6/3	5:58	38	0:12	2:05
6/4	7:10	55	0:10	3:15
676	0.43	56	0.12	2.04
670	7.40 15·16	50 70	0.12	5.22
678	6.57	78	0.23	2.01
679	6:20	63	0.07	1:56
680	6:04	57	0:10	1:58
681	18:00	113	0:15	4:52
682	19:01	117	0:15	5:09
683	20:09	121	0:15	5:29
684	19:08	125	0:14	5:15
685	17:49	99	0:18	5:32
686	14:43	91	0:16	4:35
687	9:01	56	0:15	2:31
688	3:29	30	0:11	1:04
689	3:37	34	0:11	1:05
690	3:37	32	0:11	1:06
691	3:48	32	0:11	1:10
692	3:43	32	0:11	1:11
693	4:07	42	0:12	1:21
694	4:22	44	0:12	1:23
695	5:10 E:4E	53 E0	0:13	1:44
407	0.40	09 70	0.14	1.00
698	6.58	72	0.14	2.18
699	8.22	91	0.15	3.13
700	9:52	112	0:10	3:37
701	9:23	85	0:18	3:32
702	11:31	112	0:19	4:25
703	12:43	121	0:20	4:43
704	7:50	49	0:18	2:50
705	9:27	68	0:19	3:36
706	14:58	91	0:19	4:44
707	11:05	78	0:18	3:37
708	18:24	103	0:17	5:30
709	21:46	125	0:17	6:37
710	21:49	126	0:17	6:42
711	22:01	121	0:17	6:37

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com ^{Calculated:} 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

continued from previous page				
	Shadow, wors	t case		Shadow, expected values
No.	Shadow hours	Shadow days	Max shadow	Shadow hours
	per year	per year	hours per day	per year
- 4 0	[h/year]	[days/year]	[h/day]	[h/year]
712	23:10	127	0:19	6:33
/13	30:23	140	0:22	8:22
/14	14:02	87	0:16	4:55
/15	12:08	82	0:22	4:28
/16	14:04	94	0:23	5:00
/1/	14:25	94	0:23	5:06
/18	13:12	82	0:23	4:57
/19	16:11	104	0:25	5:45
720	15:24	/8	0:26	5:18
721	10:12	81	0:27	5:38
122	18:10	108	0:27	0:39
723	10.40	04	0.27	0.40
724	17.21	90 105	0.20	0.43
720	19.37	100	0.29	10.22
720	27.24	131	0.34	10.33
729	27.44	90	0.30	9.43 0·17
720	27.32	90	0.30	9.17
727	27.32	153	0.33	12.40
730	30.36	167	0:30	15:40
737	18.17	107	0.40	10.37
732	48.47	164	0.43	21.11
737	53.03	166	0:45	23.11
735	65:41	180	0:45	29.08
736	84.44	195	0:54	36.29
737	116:20	192	1:02	55:14
738	87:53	195	0:59	40:53
739	109:03	187	1:06	52:01
740	94:21	177	1:06	44:40
741	78:40	167	1:00	36:28
742	110:51	169	1:13	54:20
743	42:10	131	0:35	17:31
744	35:52	117	0:22	11:40
745	38:47	125	0:22	12:44
746	102:47	139	1:24	45:47
747	96:35	146	1:21	40:01
748	143:24	169	1:39	55:34
749	146:39	236	1:12	44:24
750	334:48	284	1:49	106:01
751	306:21	165	2:09	151:47
752	173:58	134	1:47	89:11
753	42:06	129	0:24	14:06
754	47:01	141	0:25	15:59
755	31:56	102	0:26	12:11
756	46:12	132	0:27	18:35
757	55:55	142	0:27	20:54
758	48:52	122	0:28	18:00
/59	35:50	96	0:30	17:29
760	45:59	115	0:29	17:13
761	51:41	131	0:28	19:07
762	29:19	/8	0:32	13:34
763	14:36	54	0:27	8:10
704	42:31	100	0:30	12.04
707 747	50:34	120 175	0:29	10:30
100 747	00.29 26.14	140	0.20	10.20
760	15.25	120	0.21	14.42 A·01
740 740	10.20 25.26	03 56	0.20	4.21 5.51
709	23.20	50	0.32	9.06
771	18.56	45	0.27	4.14
772	1:44	39	0:04	0:42

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com ^{Calculated:} 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

continued from previous page				
	Shadow, wors	t case		Shadow, expected values
No.	Shadow hours	Shadow days	Max shadow	Shadow hours
	per year	per year	hours per day	per year
	[h/year]	[days/year]	[h/day]	[h/year]
773	1:16	24	0:04	0:35
//4	1:22	26	0:04	0:38
775	1:44	28	0:05	0:48
776	11:47	68	0:23	4:41
777	2:31	35	0:06	1:11
778	11:39	72	0:21	4:41
779	55:57	127	0:38	22:22
780	25:22	116	0:27	10:17
781	80:27	155	0:43	30:15
782	92:55	191	0:36	34:05
783	91:45	176	0:38	33:59
784	68:18	187	0:36	25:49
785	56:27	143	0:31	21:07
786	54:14	142	0:31	20:19
787	59:05	153	0:31	22:10
788	48:09	137	0:28	17:59
789	35:30	117	0:26	13:20
790	56:58	168	0:41	20:05
791	87:28	200	0:54	29:30
792	89:30	199	0:53	30:03
793	96:25	211	0:52	32:30
794	38:23	83	0:42	11:52
795	98:10	216	0:50	33:19
796	78:01	172	0:48	26:04
797	78:42	172	0:45	26:25
798	80:19	208	0:46	27:26
799	67:09	180	0:44	23:16
800	78:36	182	0:43	26:47
801	58:26	158	0:41	19:54
802	54:58	161	0:41	19:28
803	56:26	165	0:41	19:58
804	51:14	146	0:40	17:50
805	53:27	150	0:40	18:30
806	56:26	137	0:40	18:40
807	43:57	133	0:37	15:24
808	40:19	131	0:36	14:16
809	38:42	126	0:35	13:40
810	39:18	135	0:35	14:00
811	42:51	145	0:37	15:11
812	28:01	141	0:17	10:17
813	31:05	160	0:17	11:27
814	34:57	211	0:18	12:53
815	37:43	200	0:19	14:03
816	18:59	114	0:21	6:51
817	15:57	92	0:20	5:45
818	21:50	134	0:21	7:51
819	22:01	120	0:22	7:59
820	34:55	113	0:34	12:21
821	33:29	123	0:33	12:07
822	30:38	111	0:31	10:53
823	27:36	98	0:31	9:47
824	31:40	111	0:32	11:05
825	29:13	105	0:31	10:12
826	24:59	92	0:29	8:48
827	26:19	95	0:30	9:17
828	31:34	116	0:30	11:10
829	36:41	130	0:30	13:09
830	25:28	91	0:29	8:49
831	29:09	114	0:28	10:17
832	22:29	87	0:28	7:53
833	26:11	98	0:30	9:31

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com ^{Calculated:} 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

continued from previous page				
	Shadow, wors	t case		Shadow, expected values
No.	Shadow hours	Shadow days	Max shadow	Shadow hours
	per year	per year	nours per day	per year
024	[n/year]	[days/year]	[n/day]	[n/year]
834	25:23	95	0:29	9:12
033	20:24	90	0:29	9:11
030	23.00	07	0.20	0.43
037	23.24	93 101	0.29	9.10
030	27.21	101	0.30	9.30
840	29.13	107	0.31	12:06
Q/1	37.57	122	0.32	12.00
8/12	33.37	128	0.33	12.10
8/3	20.40	120	0.32	10.32
8//	27.02 /1·09	1/17	0.31	14:58
845	42.58	140	0.34	15:31
846	40:57	137	0.33	14:02
847	40:08	123	0:34	13:39
848	40:08	123	0:34	13:39
849	60:01	147	0:38	19:53
850	43:20	122	0:37	14:26
851	67:51	186	0:35	23:27
852	65:09	173	0:36	22:16
853	74:59	184	0:35	27:05
854	63:22	171	0:34	24:02
855	81:50	202	0:33	29:45
856	75:44	211	0:31	27:09
857	77:01	215	0:31	27:56
858	66:41	194	0:30	24:00
859	53:19	158	0:30	19:27
860	58:29	171	0:29	21:23
861	53:19	175	0:28	19:25
862	57:14	180	0:28	20:17
863	45:16	156	0:27	15:33
864	42:11	144	0:27	15:26
865	51:19	169	0:27	19:05
866	49:54	168	0:27	18:34
867	48:09	155	0:27	17:48
868	42:13	143	0:27	15:23
869	45:09	145	0:28	16:32
870	43:55	142	0:29	15:59
871	33:55	128	0:27	12:09
872	32:15	123	0:27	11:30
8/3	35:02	130	0:26	12:38
874	29:57	124	0:25	10:49
8/5	33:57	130	0:24	12:27
8/0	39:03	149	0:24	14:23
8//	30:44	120	0:24	11:24
0/0	34.27	137	0.24	12.47
000	24.20	120	0.24	12.32
000 991	34.20	129	0.25	12.45
882	34.28	130	0.25	12.32
883	25.26	114	0.23	9.18
884	24.54	107	0.22	9.01
885	23.25	108	0.22	8.24
886	30:16	121	0:24	11:07
887	24:16	112	0:21	8:52
888	20:50	105	0:20	7:34
889	22:53	112	0:20	8:27
890	24:18	115	0:21	9:02
891	25:25	119	0:21	9:27
892	25:52	120	0:22	9:35
893	26:36	122	0:22	9:52
894	29:42	131	0:23	11:01

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

continued from previous page				
	Shadow, wors	t case		Shadow, expected values
No.	Shadow hours	Shadow days	Max shadow	Shadow hours
	per year	per year	hours per day	per year
	[h/year]	[days/year]	[h/day]	[h/year]
895	30:29	133	0:23	11:17
896	33:28	144	0:23	12:23
897	34:09	137	0:23	12:36
898	33:22	142	0:22	12:22
899	32:02	140	0:22	11:52
900	22:13	112	0:20	8:18
901	33:28	135	0:24	12:19
902	22:32	99	0:27	7:59
903	21:45	84	0:27	7:36
904	21:43	88	0:27	7:48
905	19:21	79	0:26	7:01
906	17:44	79	0:25	6:21
907	19:47	97	0:24	7:10
908	26:48	118	0:24	9:45
909	27:12	120	0:24	9:53
910	25:30	114	0:24	9:15
911	26:48	118	0:23	9:46
912	17:47	89	0:23	6:26
913	22:01	109	0:22	8:02
914	30:24	124	0:27	10:55
915	24:31	102	0:23	8:51
916	33:35	133	0:24	12:29
917	39:42	137	0:27	14:07
918	40:46	141	0:27	14:27
919	38:56	105	0:30	12:59
920	33:02	119	0:28	11:48
921	42:16	130	0:30	14:29
922	41:26	128	0:33	14:28
923	48:18	139	0:34	16:40
924	40:38	113	0:30	13:24
925	37:12	142	0:29	12:51
926	54:44	180	0:32	18:46
927	46:42	166	0:31	15:41
928	69:45	171	0:46	28:06
929	92:02	165	1:16	38:01
930	125:07	160	1:36	54:10
931	66:57	151	1:04	24:37
932	89:34	150	1:27	35:51
933	58:42	163	0:35	20:01
934	58:03	170	0:34	19:52
935	54:22	162	0:36	18:53
936	20:23	82	0:27	7:24
937	22:25	89	0:28	8:07
938	21:54	89	0:28	7:55
939	38:54	143	0:32	14:03
940	49:47	146	0:38	17:21
941	86:41	139	1:30	35:24
942	164:25	135	1:57	72:10
943	25:34	93	0:32	9:06
944	29:40	109	0:32	10:40
945	38:23	133	0:36	13:52
946	25:29	124	0:21	9:30
947	48:14	167	0:38	1/:0/
948	43:29	141	0:37	15:23
949	49:38	155	0:39	1/:3/
950	58:17	159	0:40	19:45
951	57:38	157	0:39	19:24
952	84:51	202	0:45	29:08
953	104:19	1/6	1:09	37:54
954	95:44	168	1:06	34:43
955	83.23	159	1.0.1	3011

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

continued from previous page					
	Shadow, wors	t case		Shadow, expected values	
No.	Shadow hours	Shadow days	Max shadow	Shadow hours	
	per year	per year	hours per day	per year	
	[h/year]	[days/year]	[h/day]	[h/year]	
956	79:24	155	0:59	28:29	
957	73:02	142	0:59	25:05	
958	76:49	147	1:01	26:22	
959	80:33	148	1:03	27:48	
960	85:42	154	1:05	29:35	
961	94:02	163	1:08	32:36	
962	105:17	182	1:01	35:42	
963	89:37	168	1:01	30:04	
964	80:04	156	0:57	26:56	
965	72:36	147	0:54	24:33	
966	88:06	175	0:51	29:49	
967	95:52	170	0:53	32:30	
968	100:29	167	0:55	34:03	
969	67:41	172	0:45	24:54	
970	65:14	173	0:45	24:07	
971	36:00	148	0:30	12:50	
972	27:12	121	0:21	9:49	
973	26:48	119	0:21	9:42	
974	36:58	147	0:30	13:01	
975	40:25	144	0:36	13:40	
976	24:56	114	0:21	8:54	
977	96:23	206	0:52	31:52	
978	64:23	115	0:50	20:43	
979	59:43	115	0:47	19:12	
980	43:35	107	0:40	14:03	
981	42:44	120	0:39	13:48	
982	60:17	141	0:41	19:33	
983	33:46	99	0:35	10:54	
984	30:19	81	0:34	9:45	
985	22:36	54	0:32	7:22	
986	24:33	76	0:31	7:56	
987	20:05	68	0:29	6:43	
988	18:56	66	0:28	6:22	
989	19:33	71	0:27	6:30	
990	18:49	64	0:27	6:07	
991	16:26	63	0:25	5:36	
992	14:36	69	0:22	5:04	
993	13:06	62	0:20	4:35	
994	13:16	68	0:20	4:40	
995	12:47	62	0:20	4:08	
996	12:17	58	0:20	4:00	
997	20:22	/0	0:26	6:52	
998	24:49	81	0:26	8:16	
999	9:41	50	0:19	3:28	
1000	6:08	43	0:11	2:09	
1001	0:00	0	0:00	0:00	
1002	7:23	33	0:17	2:45	
1003	12:42	90	0:13	4:36	
1004	0:00	0	0:00	0:00	
1005	0:00	0	0:00	0:00	
1006	0:00	0	0:00	0:00	
1007	0:00	0	0:00	0:00	
1008	0:00	0	0:00	0:00	
1009	0:00	0	0:00	0:00	
1010	0:00	0	0:00	0:00	
1011	0:00	0	0:00	0:00	
1012	31:47	86	0:31	10:40	
1013	119:33	15/	1:07	46:35	
1014	45:11	120	0:37	14:45	
1015	82:35	205	1:06	20:27	
1016	425:41	278	2:53	116:40	

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

continued from previous page					
	Shadow, wors	t case		Shadow, expected values	
No.	Shadow hours	Shadow days	Max shadow	Shadow hours	
	per year	per year	hours per day	per year	
4047	[h/year]	[days/year]	[h/day]	[h/year]	
1017	13:26	56	0:21	4:35	
1018	27:41	120	0:26	9:28	
1019	32:18	154	0:27	11:12	
1020	30.27	214	0.37	20.30	
1021	44.20	256	0.37	10.14	
1022	20.50	230	0.18	10.20	
1023	112.53	153	1.10	45:47	
1024	88:52	133	1:26	29:10	
1026	131:27	186	1:11	43:01	
1027	118:47	189	1:10	39:39	
1028	107:38	197	1:07	36:13	
1029	137:04	143	1:40	46:07	
1030	39:42	124	0:39	13:21	
1031	47:51	122	0:44	15:50	
1032	67:59	141	0:52	24:45	
1033	171:28	158	1:34	65:47	
1034	23:43	135	0:16	6:58	
1035	13:21	102	0:13	3:55	
1036	8:40	68	0:12	2:44	
1037	9:39	92	0:11	2:53	
1038	9:14	77	0:12	2:39	
1039	6:09	47	0:10	1:50	
1040	4:03	31	0:10	1:08	
1041	39:59	88	0:44	15:01	
1042	41:46	90	0:47	15:27	
1043	33.10 20·10	60 75	0.41	12.12	
1044	20.40 63·12	130	0.30	24.20	
1045	62.12	125	0.39	24.20	
1040	82.09	125	0.51	31.34	
1047	37:31	77	0:49	12:49	
1049	27:14	111	0:28	9:33	
1050	21:26	73	0:28	8:18	
1051	37:16	114	0:28	14:14	
1052	17:31	83	0:17	6:43	
1053	15:17	66	0:18	5:54	
1054	11:54	64	0:14	4:17	
1055	14:27	75	0:13	5:18	
1056	3:33	21	0:12	1:12	
1057	3:04	29	0:09	1:17	
1058	0:00	0	0:00	0:00	
1059	3:09	31	0:09	1:20	
1060	0:00	0	0:00	0:00	
1061	0:00	0	0:00	0:00	
1062	47:03	140	0:34	19:30	
1003	02.10 /0.18	100	0.30	21.40	
1065	49.10	140	0.30	16:53	
1005	32.01	119	0.34	12.27	
1067	30:06	116	0:28	11:32	
1068	31:39	116	0:30	11:57	
1069	33:04	121	0:30	12:24	
1070	34:14	127	0:31	12:14	
1071	36:44	138	0:31	12:33	
1072	36:16	133	0:31	12:51	
1073	40:07	149	0:32	13:12	
1074	44:55	158	0:33	14:12	
1075	44:04	154	0:33	13:40	
1076	45:06	149	0:34	13:44	
1077	44.17	146	0.32	13.18	

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com ^{Calculated:} 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

continued from previous page				
	Shadow, wors	t case		Shadow, expected values
NO.	Shadow hours	Shadow days	Max shadow	Shadow hours
	per year	[days/year]	Induis per day	per year [b/year]
1078	41·12	[uays/year] 141	0·34	12·13
1070	30.56	99	0.34	11.09
1080	30:02	97	0:30	10:52
1081	26:46	92	0:28	9:41
1082	25:25	88	0:27	9:02
1083	25:41	82	0:32	9:13
1084	35:52	139	0:30	11:39
1085	33:22	134	0:29	10:54
1086	29:56	122	0:28	10:11
1087	27:11	116	0:27	9:14
1088	26:54	112	0:27	9:08
1089	27:07	114	0:27	9:09
1090	28:04	119	0:27	9:13
1091	29:10	122	0:27	9:32
1092	17:35	52	0:27	6:24
1093	25:47	84	0:31	9:08
1094	27:30	110	0:20	8:40
1095	31.30	101	0.27	9.39 11.02
1090	37.31	147	0.29	11:02
1098	38.37	144	0.30	11.33
1099	38:53	142	0:30	11:34
1100	31:52	137	0:26	9:14
1101	32:34	151	0:26	9:20
1102	34:54	133	0:30	10:05
1103	34:14	133	0:30	9:52
1104	40:27	138	0:34	11:55
1105	36:46	129	0:34	10:42
1106	34:07	121	0:33	9:52
1107	30:21	95	0:33	8:44
1108	31:34	79	0:34	8:56
1109	32:47	77	0:35	9:14
1110	35:22	/3	0:36	9:57
1110	39:32	/8	0:37	11:11
1112	40:38	91 115	0:37	12:53
1113	52.55	110	0.37	14.39
1115	55.53	103	0.37	14:46
1116	47:05	80	0:30	11.38
1117	31:49	61	0:38	7:23
1118	49:29	90	0:38	12:35
1119	48:31	91	0:36	12:25
1120	49:50	96	0:35	12:57
1121	47:58	96	0:34	12:28
1122	50:44	110	0:33	13:46
1123	36:56	86	0:32	10:24
1124	32:45	79	0:31	9:15
1125	34:05	84	0:30	9:33
1126	47:51	98	0:33	12:34
1127	41:40	118	0:32	10:53
1120	29.49	70	0.29	0.20
1129	20.49	81	0.29	7.18
1131	23.57	79	0:28	6:46
1132	24:24	110	0:27	7:16
1133	31:54	140	0:28	9:24
1134	31:14	143	0:28	9:17
1135	23:05	77	0:27	6:42
1136	15:18	169	0:12	4:52
1137	18:22	182	0:14	5:39
1138	17:44	165	0:15	5:32

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com ^{Calculated:} 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

continued from previous page				
	Shadow, worst	t case		Shadow, expected values
No.	Shadow hours	Shadow days	Max shadow	Shadow hours
	per year	per year	hours per day	per year
1120	[n/year]	[days/year]	[n/day]	[n/year]
1139	15:40	125	0:15	4:45
1140	10.03	140	0.14	4.42
1141	13.34	115	0.12	4.15
1142	34.36	113	0.12	12.10
1143	34.30	114	0.27	12:06
1145	13:06	57	0:19	4:31
1146	15:42	89	0:20	5:09
1147	15:44	61	0:21	5:45
1148	15:35	75	0:21	5:16
1149	13:02	57	0:19	4:45
1150	19:14	77	0:21	7:19
1151	40:05	76	0:37	9:50
1152	27:39	78	0:32	6:36
1153	17:26	83	0:26	4:18
1154	2:39	50	0:05	1:19
1155	5:32	86	0:06	1:56
1156	22:46	92	0:29	5:42
1157	13:21	88	0:22	3:18
1158	32:58	122	0:30	8:29
1159	14:57	89	0:22	4:24
1160	10:09	/6	0:13	5:30
1161	5:46	80	0:10	2:53
1162	4:29	82 07	0:04	1.51
1164	0.15	0/ 02	0.05	1.00
1165	13:45	87	0.18	2.27
1166	30.14	108	0.23	7:40
1167	41:35	141	0.29	11.16
1168	21:18	141	0:19	7:44
1169	2:31	44	0:05	1:12
1170	4:26	56	0:09	2:24
1171	8:20	67	0:13	4:36
1172	11:09	76	0:14	6:03
1173	12:47	82	0:14	6:51
1174	13:26	84	0:15	7:09
1175	14:18	88	0:14	7:29
1176	14:10	94	0:13	7:13
1177	14:16	98	0:14	7:12
1178	12:00	102	0:13	5:51
11/9	9:45	/6	0:13	4:36
1180	13:00	99	0:13	6:30
1101	11:51	99	0:13	5:52
1102	0.55	100	0:12	5:12 4:14
118/	7.10	61	0.12	3.73
1185	6.42	55	0.12	3.10
1186	6.12	38	0.12	2:56
1187	6:42	55	0:12	3:11
1188	0:02	0	0:00	0:00
1189	0:00	0	0:00	0:00
1190	7:08	55	0:12	3:07
1191	8:40	60	0:13	4:09
1192	11:52	66	0:13	6:09
1193	11:43	103	0:13	5:02
1194	0:00	0	0:00	0:00
1195	5:45	38	0:12	2:45
1196	5:31	34	0:13	2:38
1197	7:13	52	0:13	3:02
1198	5:41	34	0:13	2:34
1199	5:27	34	0:13	2:25

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com ^{Calculated:} 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

cont	inued from previ	ous page		
	Shadow, worst	t case		Shadow, expected values
No.	Shadow hours	Shadow days	Max shadow	Shadow hours
	per year	per year	hours per day	per year
1000	[h/year]	[days/year]	[h/day]	[h/year]
1200	5:37	34	0:13	2:35
1201	5:04	3Z E 4	0:13	2:08
1202	0.40	55	0.14	2.37
1203	0.55	56	0.14	3.02
1204	7.12 8·10	50 66	0.14	3:40
1205	7.57	62	0.15	3.40
1200	8:57	76	0:15	4:12
1208	5:50	38	0:13	2:24
1209	5:46	33	0:14	2:23
1210	5:29	32	0:13	2:16
1211	5:20	32	0:13	2:11
1212	5:28	31	0:14	2:13
1213	5:36	32	0:14	2:15
1214	5:44	35	0:14	2:20
1215	5:47	39	0:14	2:21
1216	5:53	40	0:14	2:23
1217	6:12	42	0:14	2:30
1218	5:57	39	0:14	2:26
1219	0:27	43	0:14	2:40
1220	7:11	55 45	0:14	3:00
1221	0.15	40	0.13	2.30
1222	6.34	40 50	0.14	2:44
1223	6:24	41	0:14	2:43
1225	5:56	36	0:14	2:15
1226	6:04	40	0:14	2:12
1227	5:57	38	0:14	2:11
1228	12:16	67	0:21	4:52
1229	11:20	60	0:20	4:20
1230	10:26	58	0:19	3:36
1231	11:58	62	0:21	3:59
1232	8:41	56	0:16	2:26
1233	8:22	56	0:16	2:22
1234	8:38	57	0:16	2:26
1235	8:23	53 E4	0:16	2:23
1230	0.30	54	0.10	2.27
1237	7.23	17	0.14	2.04
1230	6:44	34	0.15	2.02
1240	6:52	34	0:15	2:05
1241	6:43	34	0:15	2:02
1242	6:21	33	0:15	1:56
1243	6:16	45	0:14	1:55
1244	5:51	42	0:14	1:49
1245	5:46	42	0:13	1:47
1246	5:54	41	0:14	1:53
1247	6:02	44	0:14	1:56
1248	6:09	34	0:14	1:56
1249	6:21	32	0:15	2:00
1250	5:34	42	0:13	1:45
1201	5:3∠ 5:12	4 I /2	0.13	1.40 1.51
1252	J.4∠ 5·22	+3 <u>∕</u> /2	0.14	1.31
1254	5.20	44	0:13	1:40
1255	5:48	43	0:13	1:41
1256	6:08	46	0:13	1:47
1257	6:24	46	0:14	1:52
1258	6:33	47	0:14	1:55
1259	7:01	51	0:14	2:02
1260	6:53	38	0:15	1:59

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com ^{Calculated:} 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

continued from previous page				
	Shadow, worst	t case		Shadow, expected values
No.	Shadow hours	Shadow days	Max shadow	Shadow hours
	per year	per year	hours per day	per year
	[h/year]	[days/year]	[h/day]	[h/year]
1261	7:13	50	0:15	2:06
1262	6:14	45	0:14	2:07
1263	6:21	45	0:14	2:10
1264	6:43	45	0:15	2:16
1265	6:53	46	0:15	2:21
1266	6:04	44	0:14	2:02
1267	5:45	42	0:14	2:00
1268	5:45	43	0:14	1:58
1269	5:40	45	0:14	1:55
1270	5:37	41	0:14	1:52
1271	5:30	41	0:14	1:50
1272	5.24	40	0.13	1.39
1273	5.50	52 11	0.14	2.02
1274	5.50	41	0.14	2.00
1270	J.Z/ E.E4	31	0.14	1.56
1270	6:07	42	0.14	2.04
1277	6.17	43	0.14	2.07
1270	5.21	20	0.13	1.5/
1277	5:00	27	0.14	1.54
1200	5.00	27	0.14	2:01
1201	5:45	45	0.14	2.01
1202	4:46	29	0.13	1.29
1203	4.53	29	0.13	2:01
1285	0:00	0	0:00	0:00
1286	0:00	0	0:00	0:00
1287	0:00	0	0:00	0:00
1288	0:00	0	0:00	0:00
1289	0:00	0	0:00	0:00
1290	6:59	50	0:12	2:47
1291	7:03	53	0:13	2:48
1292	0:00	0	0:00	0:00
1293	0:00	0	0:00	0:00
1294	4:56	28	0:14	2:00
1295	4:59	29	0:13	2:02
1296	5:06	30	0:13	2:05
1297	5:06	29	0:14	2:03
1298	5:13	29	0:14	2:04
1299	5:10	29	0:14	2:00
1300	5:07	29	0:14	1:54
1301	4:14	37	0:10	1:09
1302	7:02	36	0:15	2:12
1303	7:07	35	0:16	2:16
1304	7:09	34	0:16	2:19
1305	7:24	49	0:16	2:33
1306	6:51	48	0:15	2:25
1307	15:22	89	0:16	8:09
1308	8:39	6/	0:14	2:26
1309	7:52	63	0:13	2:13
1310	6:01	53	0:11	1:41
1311	5:27	44	0:11	1:30
1312	0:20	52	0:13	1:40
1313	0:5U	δU	0:11	2.24
1314	0:25 2:25	90 45		2:02
1010	3.∠3 1 <i>1</i> .10	105	0.00	2.20
1010	14.17	100	0.13	3.30
131/ 1210	14.31 16.96	109	0.13	3.40 1·17
1210	10.20	115	0.14	4.17
1320	13.12	103	0.14	3:16
1321	14:21	105	0:14	3:34

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com ^{Calculated:} 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

continued from previous page				
	Shadow, worst	case		Shadow, expected values
No.	Shadow hours	Shadow days	Max shadow	Shadow hours
	per year	per year	hours per day	per year
1000	[n/year]	[days/year]	[n/day]	[n/year]
1322	14:38	104	0:15	3:38
1223	0.03	00	0.10	4.14
1324	1.25	90 24	0.09	0.29
1325	1.23	24	0.05	0.29
1320	5.50	70	0.00	1.31
1328	2:47	47	0:00	0:51
1329	1:26	23	0:06	0:26
1330	0:00	0	0:00	0:00
1331	1:36	24	0:06	0:28
1332	1:14	32	0:04	0:21
1333	5:55	78	0:07	1:30
1334	4:30	77	0:06	1:14
1335	4:39	73	0:06	1:16
1336	6:27	93	0:07	1:40
1337	9:22	98	0:11	2:20
1338	0:00	0	0:00	0:00
1339	7:05	61	0:11	2:00
1340	7:59	54	0:15	2:14
1341	0:00	0	0:00	0:00
1342	0:00	0	0:00	0:00
1343	0:00	0	0:00	0:00
1344	5:45	73	0:07	2:12
1345	4:13	43	0:08	1:11
1346	2:29	28	0:07	0:47
1347	2:47	29	0:08	0:55
1348	3:32	33	0:09	1:07
1349	4:04	34	0:10	1:15
1350	4:05	35	0:10	1:12
1351	14:55	88	0:13	3:51
1352	14:29	81	0:15	3:33
1254	10.00	00 61	0.11	2.27
1354	7.20	53	0.10	1.40
1355	1.02	35 45	0.09	0.59
1350	3.30	43	0.00	0:47
1358	1.43	29	0:05	0.22
1359	0:00	0	0:00	0:00
1360	0:00	0	0:00	0:00
1361	0:00	0	0:00	0:00
1362	0:00	0	0:00	0:00
1363	0:55	12	0:05	0:34
1364	5:08	32	0:11	3:00
1365	9:43	48	0:14	5:22
1366	7:49	44	0:13	4:23
1367	5:06	33	0:11	2:58
1368	0:46	11	0:05	0:28
1369	0:33	10	0:04	0:20
1370	0:00	0	0:00	0:00
1371	5:30	38	0:11	3:08
1372	6:51	46	0:11	3:49
1373	8:06	52	0:11	4:25
1374	4:15	59	0:08	2:03
1375	8:08	76	0:08	2:04
13/6	5:39	50	0:10	1:35
13//	5:53	49	0:10	1:39
13/8	8:29	/4	0:10	4:10
13/9	5:34	49 15	0:10	1:15
130U 1201	0:23	21	0.02	0.05
1201 1222	0.03	5	0.01	0.00
1302	0.00	0	0.00	0.00

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com ^{Calculated:} 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

continued from previous page				
	Shadow, worst	case		Shadow, expected values
No.	Shadow hours	Shadow days	Max shadow	Shadow hours
	per year	[days/year]	fours per day	per year [b/year]
1383	0.00	[uays/year] N	0.00	0.00
1384	4:56	42	0:10	2:21
1385	5:04	41	0:10	2:25
1386	5:08	40	0:11	2:23
1387	5:18	41	0:11	2:29
1388	5:32	42	0:11	2:39
1389	6:18	46	0:12	3:01
1390	6:57	48	0:12	3:19
1391	7:49	52	0:13	3:43
1392	7:49	50	0:13	3:43
1393	8:39	54	0:13	4:06
1394	9:22	58	0:14	4:26
1395	6:45	52	0:11	3:11
1390	7:24	50	0:11	3:29
1397	7:41	50 40	0:12	3:37
1390	7.50	58	0.11	3.40
1400	8.12	60	0.12	3.40
1400	8:34	60	0:12	4:03
1402	8:52	64	0:12	4:11
1403	9:29	68	0:12	4:30
1404	9:25	66	0:13	4:27
1405	9:42	68	0:13	4:36
1406	10:16	74	0:13	4:54
1407	10:47	77	0:13	5:10
1408	11:44	84	0:13	5:44
1409	12:20	84	0:13	6:04
1410	12:39	84	0:14	6:13
1411	13:28	82	0:14	6:41
1412	13:56	82	0:14	6:56
1413	9:44	60	0:14	4:37
1414	10:20	04 70	0:14	4:54
1410	11.00	70	0.15	5.50
1410	12.10	90	0.15	6:49
1418	15.15	88	0:15	7.27
1419	16:40	88	0:16	8:14
1420	17:19	86	0:16	8:38
1421	18:09	86	0:17	9:03
1422	18:19	84	0:17	9:11
1423	18:30	84	0:17	9:17
1424	19:13	80	0:17	9:47
1425	20:49	84	0:18	10:32
1426	21:00	78	0:19	10:50
1427	21:02	81	0:18	10:45
1428	19:22	78	0:17	9:55
1429	15:37	74	0:15	8:02
1430	15.32	72	0.15	0.13 8.08
1431	16.21	74	0.15	8.00
1432	16:38	70	0:15	8.38
1434	16:32	72	0:16	8:36
1435	16:56	72	0:16	8:47
1436	16:48	70	0:16	8:46
1437	17:05	70	0:16	8:55
1438	16:54	70	0:17	8:51
1439	16:52	68	0:17	8:52
1440	17:21	68	0:17	9:06
1441	17:08	66	0:17	9:03
1442	16:32	62	0:18	8:49
1443	16:18	60	0:19	8:46

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com ^{Calculated:} 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

continued from previous page				
	Shadow, wors	t case		Shadow, expected values
NO.	Shadow hours	Shadow days	Max shadow	Shadow hours
	per year	per year	Induis per day	per year [b/year]
1444	18·17	[uays/year] 67	0.20	9·46
1445	17:27	72	0:20	9:24
1446	24:49	95	0:21	12:39
1447	21:22	77	0:19	11:05
1448	23:12	90	0:21	12:06
1449	17:12	81	0:22	9:20
1450	9:36	70	0:21	5:23
1451	10:33	119	0:17	4:36
1452	5:13	93	0:05	1:41
1453	6:02	104	0:06	1:57
1454	5:29	101	0:05	1:59
1455	6:27	111	0:06	2:12
1456	4:15	63	0:06	2:13
1457	4:00	4/	0:06	2:12
1458	7:14	/ 1	0:10	3:28
1459	9:10	78 68	0:11	4:31
1400	9.27 8·55	62	0.10	4.34
1462	8.42	58	0.10	4:40
1463	3:47	30	0:09	2:14
1464	13:40	58	0:16	7:21
1465	12:45	54	0:16	6:55
1466	11:44	52	0:16	6:26
1467	9:13	44	0:15	5:10
1468	14:53	82	0:15	7:28
1469	5:55	46	0:11	2:49
1470	7:35	51	0:13	3:37
1471	5:05	38	0:11	2:20
1472	4:30	36	0:10	1:57
14/3	4:17	35	0:10	1:50
1474	4:07	34	0:10	1:44
1475	3.00	32 33	0.10	1.30
1470	4:06	33	0.11	1.43
1478	3:58	31	0:10	1:39
1479	3:38	31	0:10	1:31
1480	4:02	31	0:10	1:40
1481	3:55	31	0:10	1:37
1482	3:24	30	0:09	1:24
1483	2:38	27	0:08	1:05
1484	2:21	26	0:07	0:58
1485	2:29	27	0:08	1:01
1486	2:13	26	0:07	0:54
1487	2:14	26	0:07	0:55
1488	2:33	27	0:08	1:02
1409	2.31	27	0.08	1.01
1490	2.47	43	0.09	1.07
1492	3:53	44	0:10	1:14
1493	4:10	42	0:10	1:21
1494	5:00	57	0:10	1:34
1495	9:15	77	0:11	2:36
1496	13:56	94	0:16	3:43
1497	14:01	93	0:16	3:46
1498	14:49	95	0:17	4:00
1499	7:57	68	0:14	2:34
1500	7:37	68	0:14	2:21
1501	8:59	68	0:15	2:58
1502	9:57	71	0:16	3:18 2.54
1503	11:51	/5 5/	0:18	3:04 1:10
1004	12.21	54	0.20	4.12

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com ^{Calculated:} 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

continued from previous page				
	Shadow, wors	t case		Shadow, expected values
NO.	Shadow hours	Shadow days	Max shadow	Shadow hours
	per year	[days/year]	Induis per day	per year [b/year]
1505	12·45	[uays/year] 55	[170ay] ∩·21	4·18
1505	13.43	58	0.21	4.78
1500	14:06	60	0:27	4:37
1508	14:37	61	0:22	4:50
1509	13:19	80	0:20	4:18
1510	10:22	33	0:24	3:45
1511	17:51	65	0:25	5:55
1512	22:00	71	0:28	7:09
1513	77:55	213	0:47	22:46
1514	72:34	192	0:47	21:00
1515	113:13	222	1:02	34:05
1516	119:14	222	1:04	36:13
1517	140:55	240	1:10	42:29
1518	94:10	188	1:00	30:11
1519	69:22	159	0:51	22:42
1520	75:39	167	0:52	24:18
1521	/8:2/	108	0:54	25:17
1522	07.20 118.34	223	0.40	20.39
1523	1/0.05	230	0.45	40.20
1524	139.59	235	0.51	40:20
1526	230:22	250	1:29	65:58
1527	231:47	257	1:34	65:47
1528	244:58	263	1:34	70:28
1529	160:33	244	1:17	49:19
1530	339:34	291	2:00	109:08
1531	403:33	280	2:27	117:52
1532	343:36	241	3:03	80:03
1533	33:53	100	0:35	11:41
1534	42:22	115	0:37	15:49
1535	80:05	145	1:03	27:16
1536	65:20	131	0:56	22:23
1537	/2:3/	189	0:51	25:42
1538	217:49	236	1:29	/9:1/
1539	50:12	159	0:43	20:04
1540	53:27	100	0:37	19:32 2·14
1541	0.27	20	0.19	2.14
15/2	6.31	20	0.19	2.15
1544	6:35	20	0.17	2.13
1545	6:24	25	0:19	2:14
1546	10:22	52	0:19	3:30
1547	10:53	57	0:19	3:40
1548	11:34	62	0:19	3:50
1549	11:33	60	0:20	3:53
1550	11:11	58	0:20	3:46
1551	11:48	60	0:20	3:58
1552	12:32	64	0:20	4:12
1553	12:33	67	0:20	4:10
1554	13:16	/4	0:20	4:25
1555	12:13	6/	0:20	4:02
1556	13:49	/4	0:21	4:37
1007	14.43 15.00	07 QA	0.∠1	4.09 5.06
1550	15.02	78	0.21	5.26
1560	16.19	83	0:21	5:36
1561	14:25	79	0:21	4:51
1562	13:53	70	0:21	4:39
1563	14:05	73	0:21	4:43
1564	13:13	65	0:21	4:26
1565	16:46	88	0:22	5:45

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com ^{Calculated:} 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

continued from previous page				
	Shadow, worst	t case		Shadow, expected values
No.	Shadow hours	Shadow days	Max shadow	Shadow hours
	per year	per year	hours per day	per year
1544	[n/year]	[days/year]	[n/day]	[n/year]
1500	21:30	120	0:22	7.27
1567	21.40	121	0.22	7.31
1560	21.40	101	0.23	6.38
1570	17.08	8/	0.23	6:02
1570	15:46	69	0.23	5:32
1572	11:40	51	0:23	4:02
1573	15:36	86	0:23	5:30
1574	15:58	89	0:23	5:38
1575	14:18	71	0:23	4:58
1576	22:18	120	0:23	7:44
1577	20:59	111	0:23	7:20
1578	21:27	112	0:24	7:31
1579	20:39	107	0:24	7:15
1580	20:41	106	0:24	7:16
1581	20:24	104	0:25	7:11
1582	20:17	100	0:26	7:08
1583	21:50	112	0:24	7:40
1584	15:53	73	0:25	5:28
1585	15:46	76	0:25	5:26
1586	13:46	53	0:25	4:46
1587	15:12	73	0:24	5:17
1588	14:32	55	0:26	5:04
1589	17:21	78	0:26	6:05
1590	18:00	79	0:27	6:10
1591	18:39	80	0:27	6:32
1592	19:58	83	0:29	6:58
1593	20:33	83	0:29	7:09
1594	20:38	84	0:29	7:11
1595	21:27	84	0:30	7:28
1590	23:02	89	0:31	7:58
1597	20.00	03 90	0.29	7.10 6.22
1590	10.33	80 00	0.27	0.22
1600	20.04	02 83	0.27	6.54
1600	20.04	84	0.20	7.13
1601	20.00	86	0.27	7:36
1602	23.05	89	0:30	8:02
1604	23.57	90	0.32	8.16
1605	23:53	91	0:31	8:14
1606	25:34	94	0:33	8:48
1607	27:26	97	0:34	9:30
1608	28:07	97	0:35	9:44
1609	28:49	99	0:35	9:58
1610	29:40	101	0:36	10:13
1611	34:03	105	0:39	11:40
1612	35:18	108	0:39	12:04
1613	36:32	110	0:40	12:28
1614	75:55	168	0:53	25:10
1615	66:53	167	0:51	22:16
1616	86:29	173	0:58	28:36
1617	87:27	172	0:57	28:45
1618	98:58	165	0:59	31:59
1619	124:32	164	1:03	40:31
1620	139:27	150	1:23	42:52
1621	133:34	142	1:18	39:44
1622	13:43	47	0:23	4:48
1623	0:00	0	0:00	0:00
1624	0:00	U	0:00	0:00
1625	0:00	0	0:00	0:00
1020	1:19	30	0:18	1:37

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com ^{Calculated:} 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

continued from previous page				
	Shadow, wors	t case		Shadow, expected values
No.	Shadow hours	Shadow days	Max shadow	Shadow hours
	per year	per year	nours per day	per year
1407	[n/year]	[days/year]	[n/day]	[n/year]
1627	15:50	49 E1	0:23	3:39
1628	10:03	51	0:23	3:44
1629	34.57	103	0.24	4.40 0:45
1621	26.57	103	0.23	9.45 10·22
1622	25.44	110	0.24	10.25
1632	31.52	123	0.25	9.42
1633	178.03	169	1.20	55.17
1634	160.50	156	1.30	48.22
1635	166:04	172	1.27	53:06
1630	123.52	193	1.10	40:47
1638	122.52	196	1.11	40:35
1639	115:17	192	1:09	38:18
1640	104:58	188	1:06	34:58
1641	89:58	186	1:01	29:55
1642	86:53	180	1:00	28:56
1643	88:45	182	1:00	29:34
1644	76:33	161	0:58	25:28
1645	80:34	167	0:59	26:47
1646	70:17	152	0:55	23:28
1647	66:39	148	0:54	22:23
1648	60:54	131	0:52	20:44
1649	75:17	144	0:58	25:31
1650	77:44	149	0:59	26:18
1651	73:38	143	0:58	24:57
1652	54:01	131	0:49	18:15
1653	50:23	124	0:47	17:07
1654	45:09	119	0:45	15:24
1655	39:48	111	0:42	13:40
1656	38:48	109	0:41	13:21
1657	49:41	120	0:47	17:01
1658	26:35	94	0:34	9:11
1659	25:20	90	0:33	8:45
1660	23:34	88	0:32	8:07
1001	23:57	89	0:32	8:14
1662	22:59	90	0:31	7:54
1003	22:10	87	0:30	7:37
1604	21.32	00	0.30	7.24
1666	22.00	93 Q/	0.29	7.40
1667	21.20	110	0.20	9·21
1668	23.01	95	0.27	8:05
1669	26.01	120	0.27	9:04
1670	25.57	123	0.25	9.01
1671	25:14	126	0:25	8:44
1672	25:06	127	0:24	8:40
1673	24:11	128	0:24	8:19
1674	24:31	130	0:24	8:22
1675	21:09	122	0:23	7:08
1676	19:22	105	0:22	6:30
1677	19:51	109	0:22	6:40
1678	15:11	70	0:22	5:04
1679	9:42	33	0:22	3:18
1680	15:35	81	0:22	5:13
1681	15:07	78	0:21	5:04
1682	12:43	61	0:21	4:16
1683	13:24	64	0:21	4:29
1684	12:32	59	0:21	4:12
1685	12:00	57	0:20	4:02
1686	11:44	56	0:20	3:57
1687	11:46	57	0:20	3:58

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com ^{Calculated:} 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

continued from previous page				
	Shadow, worst	t case		Shadow, expected values
No.	Shadow hours	Shadow days	Max shadow	Shadow hours
	per year	per year	hours per day	per year
1/00	[h/year]	[days/year]	[h/day]	[n/year]
1688	12:05	58	0:20	4:04
1689	12:17	28	0:21	4:08
1690	12.12	00 60	0.21	4.00
1607	12.21	60	0.21	4.09
1692	12.42	55	0.21	4.15 3·52
1694	11:13	54	0:20	3:48
1695	11:33	57	0:20	3:53
1696	11:25	54	0:20	3:51
1697	11:19	56	0:20	3:49
1698	11:00	55	0:20	3:43
1699	10:39	53	0:20	3:36
1700	10:49	54	0:20	3:40
1701	10:42	52	0:20	3:38
1702	10:57	52	0:20	3:43
1703	10:15	50	0:19	3:30
1704	10:10	50	0:19	3:29
1705	10:05	50	0:19	3:27
1706	10:04	50	0:19	3:27
1707	9:56	51	0:19	3:24
1708	6:32	26	0:19	2:13
1709	6:15	25	0:18	2:07
1710	0:17	20	0:18	2:08
1712	0:13	20	0:18	2:07
1712	0.00	24	0.10	2.02
1717	5.25	24	0.17	1.55
1715	5.25	24	0.17	1.52
1716	5:20	24	0:17	1:51
1717	5:36	24	0:17	1:56
1718	5:31	24	0:17	1:55
1719	4:55	23	0:16	1:43
1720	4:56	23	0:16	1:43
1721	4:55	22	0:16	1:42
1722	4:54	25	0:16	1:41
1723	6:13	36	0:16	2:14
1724	8:13	43	0:15	3:01
1725	7:32	41	0:15	2:45
1726	6:53	39	0:15	2:30
1/2/	7:10	40	0:15	2:37
1720	8:17	43	0:15	3:02
1729	7:03	39	0:15	2:35
1730	0.17	44 20	0.15	3.02
1731	0.49 4·17	20	0.15	1.29
1732	9.12	48	0:13	3.19
1734	3:25	19	0:13	1:10
1735	3:44	26	0:13	1:18
1736	7:59	52	0:13	2:54
1737	12:25	72	0:14	4:41
1738	13:00	78	0:13	4:41
1739	13:55	82	0:12	5:03
1740	19:46	101	0:16	7:21
1741	20:11	102	0:16	7:30
1742	20:24	103	0:16	7:35
1743	13:50	67	0:21	4:38
1744	15:56	68	0:16	5:31
1745	13:27	58	0:16	4:45
1746	11:38	54	0:16	4:11
1747	17:03	70	0:17	5:55
1/48	21:13	84	U:17	1:12

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com ^{Calculated:} 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

Shadow, worst case Shadow horus Shadow horus Max shadow per year per year [h/year] [h/year] [h/year] 1749 7:00 38 0:17 2:27 1750 5:52 24 0:17 2:27 1750 5:52 24 0:17 7:59 1752 8:42 43 0:17 3:07 1753 2:2:19 88 0:17 7:33 1755 2:1:15 104 0:17 7:04 1756 19:15 88 0:17 7:33 1756 19:15 88 0:17 5:41 1757 17:2:1 82 0:17 5:41 1758 2:5:03 104 0:18 8:2:5 1759 2:8:22 115 0:19 9:33 1760 19:22 73 0:19 9:32 1761 6:16 27 0:18 2:11 1763 9:36 55 <td< th=""><th colspan="5">continued from previous page</th></td<>	continued from previous page				
No. Shadow nours Shadow agy Max shadow Shadow nours [Ayyear] [[days/year] [[h/day] [[h/year] [1749 7:00 38 0:17 1:59 1750 5:52 24 0:17 1:59 1751 6:08 26 0:18 2:04 1752 8:42 43 0:17 7:33 1755 21:15 104 0:17 7:04 1755 21:15 104 0:17 5:41 1756 19:15 88 0:17 5:41 1758 25:03 104 0:18 8:25 1760 19:22 73 0:19 9:33 1760 19:22 73 0:19 3:40 1764 9:54 48 0:19 3:25 1766 10:24 54 0:19 3:40 1764 9:54 48 0:19 3:40 1765 11:27 53 0:20		Shadow, wors	t case		Shadow, expected values
per year fundary per dyar 1749 7:00 38 0:17 2:27 1750 5:52 24 0:17 2:59 1751 6:08 26 0:18 2:04 1752 8:42 43 0:17 3:07 1753 22:10 88 0:17 7:30 1755 21:15 104 0:17 7:04 1756 19:15 88 0:17 5:41 1756 19:12 73 0:19 6:42 1760 19:22 73 0:19 6:42 1761 6:16 27 0:18 2:11 1762 6:29 2:0 0:18 3:19 1764 9:54 48 0:19 3:36 1765 10:24 54 0:20 3:51 1766 10:39 52 0:19 3:40 1766 10:24 54 0:20 4:05 1770 1:56 <td>NO.</td> <td>Shadow hours</td> <td>Shadow days</td> <td>Max shadow</td> <td>Shadow hours</td>	NO.	Shadow hours	Shadow days	Max shadow	Shadow hours
17497:00380:1712:271750 $5:52$ 240:171:591751 $6:08$ 260:182:041752 $8:42$ 430:173:07175322:40880:187:40175422:19880:177:33175521:151040:177:04175422:19820:175:41175521:151040:175:41175825:031040:188:25176019:22730:199:33176019:22730:199:33176019:22730:193:3617616:16270:182:1117639:36500:182:1117649:54480:193:25176510:24540:193:340176411:16520:203:51176611:27530:204:04177011:56540:204:04177111:16520:214:08177212:12560:214:10177415:17800:225:54177515:36790:225:54177617:34900:225:54177515:36790:226:13178019:16930:236:32178119:30980:236:3		per year	per year	Induis per day	per year [b/year]
17505:52240:171:591751 $6:08$ 260:182:041752 $8:42$ 430:173:071753 $22:40$ 880:187:401754 $22:19$ 880:177:331755 $21:15$ 1040:177:041756 $19:15$ 880:175:411757 $17:21$ 820:199:331760 $19:22$ 730:196:421761 $6:16$ 270:182:011762 $6:29$ 260:182:111763 $9:36$ 500:182:111764 $9:54$ 480:193:25176510:24540:193:36176610:39520:193:40177611:56540:204:04177011:56540:204:05177112:12560:214:10177312:29570:214:10177415:17800:225:08177515:36790:225:14177617:34900:225:08177515:36790:225:14177617:34900:225:08177515:36790:225:14177617:34900:225:08177515:36790:225:14177617:34900:	1749	[1//year] 7·∩∩	[uays/year] 38	0·17	2.27
1751 $6:08$ 2.6 $0:18$ 2.04 1752 $8:42$ 43 $0:17$ 3.07 1754 $22:19$ 88 $0:17$ $7:40$ 1755 $21:15$ 104 $0:17$ $7:33$ 1755 $21:15$ 104 $0:17$ $7:34$ 1755 $21:15$ 104 $0:17$ $5:41$ 1756 $19:15$ 88 $0:17$ $6:16$ 1757 $17:21$ 82 $0:17$ $5:41$ 1758 $25:03$ 104 $0:18$ $8:25$ 1759 $28:22$ 115 $0:19$ $9:33$ 1766 $19:22$ 73 $0:19$ $6:42$ 1761 $6:16$ 27 $0:18$ $2:11$ 1763 $9:36$ 50 $0:18$ $3:19$ 1764 $9:54$ 48 $0:19$ $3:25$ 1765 $10:24$ 54 $0:19$ $3:40$ 1766 $11:27$ 53 $0:20$ $4:05$ 1776 $11:16$ 52 $0:20$ $4:05$ 1777 $11:56$ 54 $0:22$ $5:08$ 1772 $12:17$ 56 $0:21$ $4:15$ 1774 $15:16$ 79 $0:22$ $5:54$ 1777 $18:0$ 92 $0:22$ $5:54$ 1777 $18:0$ 92 $0:23$ $6:32$ 1775 $15:36$ 79 $0:22$ $5:54$ 1777 $18:0$ 92 $0:23$ $6:32$ 1778 $18:10$ 92 <td>1750</td> <td>5:52</td> <td>24</td> <td>0:17</td> <td>1:59</td>	1750	5:52	24	0:17	1:59
1752 8.42 43 0.17 3.07 1753 22.40 88 $0:18$ 7.40 1754 22.19 88 $0:17$ $7:33$ 1755 21.15 104 $0:17$ $7:04$ 1756 $19:15$ 88 $0:17$ $5:41$ 1757 17.21 82 $0:17$ $5:41$ 1758 $25:03$ 104 $0:18$ $8:25$ 1760 $19:22$ 73 $0:19$ $6:42$ 1761 $6:16$ 27 $0:18$ $2:11$ 1763 $9:36$ 50 $0:18$ $2:11$ 1764 $9:54$ 48 $0:19$ $3:25$ 1765 $10:24$ 54 $0:19$ $3:36$ 1766 $10:39$ 52 $0:19$ $3:40$ 1767 $11:56$ 54 $0:20$ $4:04$ 1770 $11:56$ 54 $0:20$ $4:05$ 1771 $12:12$ 56 $0:21$ $4:10$ 1772 $12:17$ 56 $0:21$ $4:10$ 1773 $12:29$ 57 $0:21$ $4:15$ 1774 $9:16$ 93 $0:23$ $6:32$ 1774 $9:16$ 93 $0:23$ $6:32$ 1774 $9:16$ 93 $0:23$ $6:32$ 1774 $9:16$ 93 $0:23$ $6:32$ 1774 $9:16$ 93 $0:23$ $6:32$ 1774 $9:16$ 93 $0:23$ $6:32$ 1777 $18:30$ 92	1751	6:08	26	0:18	2:04
1753 $22:40$ 88 $0:18$ $7:40$ 1754 $22:19$ 88 $0:17$ $7:33$ 1755 $12:15$ 104 $0:17$ $7:04$ 1756 $19:15$ 88 $0:17$ $5:41$ 1757 $17:21$ 82 $0:17$ $5:41$ 1757 $17:22$ $82:22$ 115 $0:19$ $9:33$ 1760 $19:22$ 73 $0:19$ $6:42$ 1761 $6:16$ 27 $0:18$ $2:11$ 1763 $9:36$ 50 $0:18$ $2:11$ 1764 $9:54$ 48 $0:19$ $3:25$ 1765 $10:24$ 54 $0:19$ $3:36$ 1766 $10:39$ 52 $0:19$ $3:40$ 1767 $11:16$ 52 $0:20$ $3:51$ 1776 $11:54$ 56 $0:20$ $4:04$ 1777 $11:56$ 54 $0:20$ $4:05$ 1777 $11:56$ 54 $0:20$ $4:05$ 1777 $11:56$ 54 $0:20$ $4:05$ 1777 $11:56$ 54 $0:20$ $4:05$ 1777 $11:56$ 54 $0:20$ $4:05$ 1777 $11:56$ 54 $0:20$ $4:05$ 1777 $11:56$ 54 $0:20$ $4:04$ 1777 $11:56$ 54 $0:22$ $5:08$ 1777 $11:56$ 54 $0:22$ $5:08$ 1777 $15:37$ 70 $0:22$ $5:04$ 1778 $8:10$ <	1752	8:42	43	0:17	3:07
1754 $22:19$ 88 $0:17$ $7:33$ 1755 $21:15$ 104 $0:17$ $7:34$ 1756 $19:15$ 88 $0:17$ $6:16$ 1757 $17:21$ 82 $0:17$ $5:41$ 1758 $25:03$ 104 $0:18$ $8:25$ 1759 $28:22$ 115 $0:19$ $9:33$ 1760 $19:22$ 73 $0:19$ $6:42$ 1761 $6:16$ 27 $0:18$ $2:07$ 1762 $6:29$ 26 $0:18$ $3:19$ 1764 $9:54$ 48 $0:19$ $3:25$ 1765 $10:24$ 54 $0:19$ $3:36$ 1766 $10:39$ 52 $0:20$ $3:51$ 1766 $10:24$ 54 $0:20$ $4:04$ 1770 $11:56$ 54 $0:20$ $4:04$ 1770 $11:56$ 54 $0:20$ $4:05$ 1771 $12:12$ 56 $0:21$ $4:10$ 1772 $12:17$ 56 $0:21$ $4:10$ 1774 $15:17$ 80 $0:22$ $5:08$ 1775 $15:36$ 79 $0:22$ $5:08$ 1777 $18:30$ 92 $0:23$ $6:32$ 1780 $9:16$ 93 $0:23$ $6:32$ 1781 $19:30$ 98 $0:23$ $6:35$ 1782 $19:41$ 98 $0:23$ $6:35$ 1782 $19:41$ 98 $0:23$ $6:35$ 1784 $21:49$ 105 </td <td>1753</td> <td>22:40</td> <td>88</td> <td>0:18</td> <td>7:40</td>	1753	22:40	88	0:18	7:40
175521:15104 $0:17$ 7.04175619:1588 $0:17$ 6:16175717:2182 $0:17$ 5:41175825:03104 $0:18$ 8:25175928:22115 $0:19$ 9:33176019:2273 $0:19$ 6:4217616:1627 $0:18$ 2:1117626:2926 $0:18$ 2:1117639:3650 $0:18$ 3:1917649:5448 $0:19$ 3:25176510:2454 $0:19$ 3:36176610:3952 $0:19$ 3:40176711:1652 $0:20$ 3:51176611:2753 $0:20$ 4:05177011:5654 $0:20$ 4:05177111:5654 $0:22$ 5:08177211:5456 $0:21$ 4:08177212:1756 $0:21$ 4:15177415:1780 $0:22$ 5:04177515:3679 $0:22$ 5:54177618:1092 $0:23$ $6:32$ 177818:1092 $0:23$ $6:32$ 178119:3098 $0:23$ $6:32$ 178119:3098 $0:23$ $6:32$ 178421:47104 $0:24$ 7:07178421:49105 $0:24$ 7:18178523:57104 $0:26$ 8:01 <t< td=""><td>1754</td><td>22:19</td><td>88</td><td>0:17</td><td>7:33</td></t<>	1754	22:19	88	0:17	7:33
1756 $19:15$ 88 $0:17$ $6:16$ 1757 $17:21$ 82 $0:17$ $5:41$ 1759 $28:22$ 115 $0:19$ $9:33$ 1760 $19:22$ 73 $0:19$ $6:42$ 1761 $6:16$ 27 $0:18$ $2:07$ 1762 $6:29$ 26 $0:18$ $3:19$ 1764 $9:54$ 48 $0:19$ $3:25$ 1765 $10:24$ 54 $0:19$ $3:36$ 1766 $10:39$ 52 $0:20$ $3:51$ 1766 $11:27$ 53 $0:20$ $3:55$ 1766 $11:27$ 53 $0:20$ $4:04$ 1770 $11:56$ 54 $0:20$ $4:04$ 1770 $11:56$ 54 $0:20$ $4:05$ 1771 $12:12$ 56 $0:21$ $4:10$ 1772 $12:17$ 56 $0:21$ $4:10$ 1773 $12:29$ 57 $0:22$ $5:14$ 1774 $15:17$ 80 $0:22$ $5:68$ 1777 $18:00$ 92 $0:22$ $6:02$ 1778 $8:10$ 92 $0:23$ $6:32$ 1780 $19:30$ 98 $0:23$ $6:32$ 1780 $19:30$ 98 $0:23$ $6:32$ 1784 $21:49$ 105 $0:24$ $7:18$ 1784 $21:49$ 105 $0:24$ $7:18$ 1784 $21:49$ 105 $0:24$ $7:18$ 1784 $21:49$ 105 <	1755	21:15	104	0:17	7:04
1757 $17:21$ 82 $0:17$ $5:41$ 1758 $25:03$ 104 $0:18$ $8:25$ 1760 $19:22$ 73 $0:19$ $9:33$ 1760 $19:22$ 73 $0:19$ $6:42$ 1761 $6:16$ 27 $0:18$ $2:07$ 1762 $6:29$ 26 $0:18$ $2:11$ 1763 $9:36$ 50 $0:18$ $3:19$ 1764 $9:54$ 48 $0:19$ $3:25$ 1765 $10:24$ 54 $0:19$ $3:40$ 1767 $11:16$ 52 $0:20$ $3:51$ 1767 $11:54$ 56 $0:20$ $4:04$ 1770 $11:56$ 54 $0:20$ $4:05$ 1771 $12:12$ 56 $0:21$ $4:08$ 1772 $12:17$ 56 $0:21$ $4:10$ 1773 $12:29$ 57 $0:21$ $4:10$ 1774 $15:17$ 80 $0:22$ $5:14$ 1775 $15:36$ 79 $0:22$ $5:08$ 1777 $18:00$ 92 $0:22$ $6:06$ 1779 $18:33$ 92 $0:23$ $6:32$ 1781 $19:30$ 98 $0:23$ $6:32$ 1782 $19:41$ 98 $0:23$ $6:32$ 1784 $21:49$ 105 $0:24$ $7:18$ 1785 $23:57$ 104 $0:26$ $8:01$ 1784 $21:49$ 105 $0:24$ $7:18$ 1784 $21:49$ 105 <	1756	19:15	88	0:17	6:16
1758 $25:03$ 104 $0:18$ $8:25$ 1759 $28:22$ 115 0.19 $9:33$ 1760 $19:22$ 73 $0:19$ $6:42$ 1761 $6:16$ 27 $0:18$ $2:111$ 1763 $9:36$ 50 $0:18$ $3:19$ 1764 $0:54$ 48 $0:19$ $3:25$ 1765 $10:24$ 54 $0:19$ $3:40$ 1766 $10:39$ 52 $0:19$ $3:40$ 1766 $11:27$ 53 $0:20$ $3:55$ 1769 $11:54$ 56 $0:20$ $4:04$ 1770 $11:56$ 54 $0:20$ $4:05$ 1771 $12:12$ 56 $0:21$ $4:10$ 1771 $12:12$ 56 $0:21$ $4:10$ 1772 $12:17$ 56 $0:21$ $4:10$ 1773 $12:29$ 57 $0:22$ $5:08$ 1775 $15:36$ 79 $0:22$ $5:08$ 1777 $18:30$ 92 $0:22$ $6:02$ 1778 $18:10$ 92 $0:23$ $6:32$ 1780 $19:16$ 93 $0:23$ $6:32$ 1781 $19:30$ 98 $0:23$ $6:32$ 1784 $21:49$ 105 $0:24$ $7:18$ 1785 $23:57$ 104 $0:26$ $8:01$ 1784 $21:49$ 105 $0:27$ $8:18$ 1785 $23:57$ 104 $0:26$ $8:01$ 1784 $21:49$ 1	1757	17:21	82	0:17	5:41
1749 $28:22$ 115 $0:19$ $9:33$ 1760 $19:22$ 73 $0:19$ $6:42$ 1761 $6:16$ 27 $0:18$ $2:07$ 1762 $6:29$ 26 $0:18$ $2:11$ 1763 $9:36$ 50 $0:18$ $3:19$ 1764 $9:54$ 48 $0:19$ $3:25$ 1765 $10:24$ 54 $0:19$ $3:40$ 1767 $11:16$ 52 $0:20$ $3:51$ 1768 $11:27$ 53 $0:20$ $4:04$ 1770 $11:54$ 56 $0:21$ $4:08$ 1777 $11:56$ 54 $0:20$ $4:05$ 1771 $12:12$ 56 $0:21$ $4:10$ 1773 $12:29$ 57 $0:21$ $4:10$ 1774 $15:17$ 80 $0:22$ $5:08$ 1777 $18:30$ 92 $0:22$ $6:02$ 1776 $17:34$ 90 $0:22$ $6:02$ 1778 $18:10$ 92 $0:23$ $6:32$ 1780 $19:16$ 93 $0:23$ $6:32$ 1781 $19:30$ 98 $0:23$ $6:32$ 1782 $19:41$ 98 $0:23$ $6:32$ 1784 $21:49$ 105 $0:27$ $8:18$ 1784 $21:49$ 105 $0:27$ $9:49$ 1784 $21:49$ 105 $0:27$ $9:49$ 1784 $21:49$ 105 $0:27$ $9:44$ 1786 $23:57$ 104	1758	25:03	104	0:18	8:25
1760 $19:22$ 73 $0:19$ $6:42$ 1761 $6:16$ 27 $0:18$ $2:07$ 1762 $6:29$ 26 $0:18$ $2:11$ 1763 $9:36$ 50 $0:18$ $3:19$ 1764 $9:54$ 48 $0:19$ $3:25$ 1765 $10:24$ 54 $0:19$ $3:36$ 1767 $11:16$ 52 $0:20$ $3:51$ 1767 $11:54$ 56 $0:20$ $4:04$ 1770 $11:54$ 56 $0:21$ $4:08$ 17770 $11:56$ 54 $0:20$ $4:05$ 17771 $12:12$ 56 $0:21$ $4:10$ 17772 $12:17$ 56 $0:21$ $4:16$ 17772 $12:17$ 80 $0:22$ $5:54$ 17774 $15:17$ 80 $0:22$ $5:54$ 17775 $15:36$ 79 $0:22$ $5:54$ 17777 $18:00$ 92 $0:22$ $6:02$ 1778 $18:10$ 92 $0:23$ $6:33$ 1782 $19:41$ 98 $0:23$ $6:35$ 1782 $19:41$ 98 $0:23$ $6:35$ 1782 $19:41$ 98 $0:23$ $6:35$ 1783 $21:17$ 104 $0:24$ $7:07$ 1784 $21:49$ 105 $0:24$ $7:18$ 1785 $23:57$ 104 $0:26$ $8:01$ 1784 $21:49$ 105 $0:27$ $9:49$ 1789 $28:45$ <td< td=""><td>1759</td><td>28:22</td><td>115</td><td>0:19</td><td>9:33</td></td<>	1759	28:22	115	0:19	9:33
1762 $6:10$ 27 $0:18$ $2:11$ 1763 $9:36$ 50 $0:18$ $3:19$ 1764 $0:54$ 48 $0:19$ $3:25$ 1765 $10:24$ 54 $0:19$ $3:36$ 1766 $10:39$ 52 $0:19$ $3:40$ 1767 $11:16$ 52 $0:20$ $3:55$ 1769 $11:54$ 56 $0:20$ $4:04$ 1770 $11:56$ 54 $0:20$ $4:05$ 1771 $12:12$ 56 $0:21$ $4:08$ 1772 $12:17$ 56 $0:21$ $4:10$ 1773 $12:29$ 57 $0:22$ $5:14$ 1774 $15:17$ 80 $0:22$ $5:68$ 1777 $18:30$ 92 $0:22$ $6:06$ 1777 $18:30$ 92 $0:22$ $6:06$ 1777 $18:33$ 92 $0:23$ $6:32$ 1781 $19:30$ 98 $0:23$ $6:32$ 1782 $19:41$ 98 $0:23$ $6:32$ 1784 $21:49$ 105 $0:24$ $7:18$ 1787 $26:50$ 108 $0:27$ $8:44$ 1788 $28:43$ 128 $0:27$ $9:49$ 1784 $21:49$ 105 $0:24$ $7:18$ 1784 $24:50$ 108 $0:27$ $8:44$ 1788 $28:43$ 128 $0:27$ $9:49$ 1789 $26:28$ 104 $0:30$ $9:18$ 1799 $24:48$ 9	1760	19:22	/3	0:19	6:42
1763 $0:36$ 50 $0:18$ 2.11 1764 $9:54$ 48 $0:19$ $3:25$ 1765 $10:24$ 54 $0:19$ $3:36$ 1766 $10:39$ 52 $0:19$ $3:40$ 1767 $11:16$ 52 $0:20$ $3:51$ 1768 $11:27$ 53 $0:20$ $4:04$ 1770 $11:56$ 54 $0:20$ $4:05$ 17771 $12:12$ 56 $0:21$ $4:100$ 17772 $12:29$ 57 $0:21$ $4:15$ 17774 $15:17$ 80 $0:22$ $5:144$ 1776 $17:34$ 90 $0:22$ $5:54$ 1777 $18:00$ 92 $0:22$ $6:06$ 1779 $18:33$ 92 $0:23$ $6:32$ 1781 $19:30$ 98 $0:23$ $6:35$ 1784 $21:49$ 105 $0:24$ $7:18$ 1785 $23:57$ 104 $0:26$ $8:01$ 1786 $24:50$ 108 $0:27$ $8:44$ 1789 $28:45$ 126 $0:27$ $9:54$ 1789 $28:45$ 126 $0:27$ $9:54$ 1799 $29:12$ 119 $0:28$ $10:08$ 1792 $30:10$ 120 $0:29$ $10:30$ 1784 $21:49$ 106 $0:27$ $8:44$ 1789 $28:45$ 126 $0:27$ $9:54$ 1789 $28:45$ 126 $0:27$ $9:54$ 1799 $24:16$	1761	0:10	27	0:18	2:07
1764 $9:54$ 48 $0:19$ $3:25$ 1766 $10:39$ 52 $0:19$ $3:40$ 1767 $11:16$ 52 $0:20$ $3:51$ 1768 $11:27$ 53 $0:20$ $3:55$ 1769 $11:54$ 56 $0:20$ $4:04$ 1770 $11:56$ 54 $0:20$ $4:05$ 1771 $12:12$ 56 $0:21$ $4:08$ 1772 $12:17$ 56 $0:21$ $4:10$ 1773 $12:29$ 57 $0:21$ $4:15$ 1774 $15:17$ 80 $0:22$ $5:08$ 1775 $15:36$ 79 $0:22$ $5:14$ 1777 $18:00$ 92 $0:22$ $6:06$ 1779 $18:33$ 92 $0:23$ $6:13$ 1780 $19:16$ 93 $0:23$ $6:32$ 1781 $19:30$ 98 $0:23$ $6:35$ 1782 $19:41$ 98 $0:23$ $6:35$ 1784 $21:49$ 105 $0:24$ $7:18$ 1785 $23:57$ 104 $0:26$ $8:01$ 1784 $21:49$ 105 $0:24$ $7:18$ 1785 $23:57$ 104 $0:26$ $8:01$ 1784 $21:49$ 105 $0:24$ $7:18$ 1785 $23:57$ 104 $0:26$ $8:01$ 1786 $24:50$ 108 $0:27$ $9:49$ 1786 $24:50$ 108 $0:27$ $9:49$ 1789 $26:06$ <td< td=""><td>1762</td><td>0.29</td><td>20</td><td>0.10</td><td>2.11</td></td<>	1762	0.29	20	0.10	2.11
176510.24540.193.36176610.39520.193.40176711.16520.203.51176811.27530.203.55176911.54560.204.04177011.56540.204.05177112.12560.214.10177312.29570.214.15177415.17800.225.08177515.36790.225.14177617.34900.225.54177718.00920.226.02177818.10920.236.13178019.16930.236.32178119.30980.236.32178219.41980.236.35178321.171040.247.07178421.491050.247.18178523.571040.268.01178624.501080.278.18178726.061160.278.44178828.431280.279.54179029.121190.2810.08179220.211190.2810.08179425.291000.318.54179524.4860.318.54179624.36820.338.26179748.221030.47	1764	9.50	48	0.10	3.17
176610.39520.193.40176711.16520.20 3.51 176811.27530.20 3.55 176911.54560.20 4.04 177011.56540.20 4.05 177112.12560.21 4.08 177212.17560.21 4.10 177312.29570.21 4.15 177415.17800.22 5.08 177515.36790.22 5.54 177718:00920.22 6.06 177818:10920.23 6.13 178019:16930.23 6.32 178119:30980.23 6.32 178219:41980.23 6.35 178321:171040.247:07178421:491050.247:18178523:571040.26 $8:01$ 178624:501080.27 $8:18$ 178726:061160.27 $9:49$ 179029:121190.2810:09179129:021190.2810:09179224:48960:31 $8:54$ 179524:48960:31 $8:54$ 179624:36820:33 $8:26$ 179748:221030:4716:34179848:091040:4012:291801<	1765	10.24	40 54	0.17	3.36
176711:16520.203:51176811:27530.203:55176911:54560:204:04177011:56540:204:05177112:12560:214:08177212:17560:214:10177312:29570:214:15177415:17800:225:08177515:36790:225:14177617:34900:225:54177718:00920:226:02177818:10920:236:13178019:16930:236:32178119:30980:236:35178219:41980:236:35178321:171040:268:01178421:491050:247:07178421:491050:247:07178424:501080:278:18178726:061160:278:44178928:451260:279:54179029:121190:2810:0917910:2810:091188:54179230:101200:2910:30179326:281040:309:18179425:291000:318:54179524:48960:318:35179624:36820:33 <td>1766</td> <td>10:39</td> <td>52</td> <td>0:19</td> <td>3:40</td>	1766	10:39	52	0:19	3:40
1768 $11:27$ 53 $0:20$ $3:55$ 1769 $11:54$ 56 $0:20$ $4:04$ 1770 $11:56$ 54 $0:20$ $4:05$ 1771 $12:12$ 56 $0:21$ $4:10$ 1772 $12:17$ 56 $0:21$ $4:10$ 1773 $12:29$ 57 $0:22$ $5:08$ 1775 $15:36$ 79 $0:22$ $5:14$ 1776 $17:34$ 90 $0:22$ $5:54$ 1777 $18:00$ 92 $0:22$ $6:13$ 1778 $18:10$ 92 $0:23$ $6:13$ 1780 $19:16$ 93 $0:23$ $6:35$ 1781 $19:30$ 98 $0:23$ $6:35$ 1782 $19:41$ 98 $0:23$ $6:35$ 1783 $21:17$ 104 $0:24$ $7:07$ 1784 $21:49$ 105 $0:24$ $7:18$ 1785 $23:57$ 104 $0:26$ $8:01$ 1786 $24:50$ 108 $0:27$ $8:44$ 1788 $28:43$ 128 $0:27$ $9:49$ 1789 $28:45$ 126 $0:27$ $9:54$ 1790 $29:02$ 119 $0:28$ $10:08$ 1792 $30:10$ 120 $0:29$ $10:30$ 1793 $26:28$ 104 $0:30$ $9:18$ 1794 $42:36$ 82 $0:33$ $8:26$ 1797 $48:22$ 103 $0:47$ $16:34$ 1799 $34:10$ </td <td>1767</td> <td>11:16</td> <td>52</td> <td>0:20</td> <td>3:51</td>	1767	11:16	52	0:20	3:51
1769 $11:54$ 56 $0:20$ $4:04$ 1770 $11:56$ 54 $0:20$ $4:05$ 1771 $12:12$ 56 $0:21$ $4:08$ 1772 $12:17$ 56 $0:21$ $4:10$ 1773 $12:29$ 57 $0:21$ $4:15$ 1774 $15:17$ 80 $0:22$ $5:08$ 1775 $15:36$ 79 $0:22$ $5:14$ 1776 $17:34$ 90 $0:22$ $6:06$ 1777 $18:00$ 92 $0:22$ $6:06$ 1779 $18:10$ 92 $0:23$ $6:13$ 1780 $19:16$ 93 $0:23$ $6:32$ 1781 $19:30$ 98 $0:23$ $6:35$ 1783 $21:17$ 104 $0:24$ $7:07$ 1784 $21:49$ 105 $0:24$ $7:18$ 1785 $23:57$ 104 $0:26$ $8:01$ 1786 $24:50$ 108 $0:27$ $8:18$ 1787 $26:06$ 116 $0:27$ $9:49$ 1789 $28:45$ 126 $0:27$ $9:54$ 1790 $29:12$ 119 $0:28$ $10:08$ 1792 $30:10$ 120 $0:29$ $10:30$ 1794 $42:29$ 100 $0:31$ $8:54$ 1795 $24:48$ 96 $0:31$ $8:35$ 1796 $24:36$ 82 $0:33$ $8:26$ 1797 $48:22$ 103 $0:47$ $16:34$ 1799 $34:10$ </td <td>1768</td> <td>11:27</td> <td>53</td> <td>0:20</td> <td>3:55</td>	1768	11:27	53	0:20	3:55
1770 $11:56$ 54 $0:20$ $4:05$ 1771 $12:12$ 56 $0:21$ $4:08$ 1772 $12:17$ 56 $0:21$ $4:10$ 1773 $12:29$ 57 $0:22$ $5:08$ 1775 $15:36$ 79 $0:22$ $5:64$ 1777 $17:34$ 90 $0:22$ $5:54$ 1777 $18:30$ 92 $0:22$ $6:02$ 1778 $18:10$ 92 $0:23$ $6:13$ 1781 $19:16$ 93 $0:23$ $6:32$ 1781 $19:30$ 98 $0:23$ $6:32$ 1782 $19:41$ 98 $0:23$ $6:35$ 1783 $21:17$ 104 $0:24$ $7:07$ 1784 $21:49$ 105 $0:24$ $7:18$ 1785 $23:57$ 104 $0:26$ $8:01$ 1786 $24:50$ 108 $0:27$ $8:18$ 1787 $26:06$ 116 $0:27$ $8:44$ 1788 $28:43$ 126 $0:27$ $9:54$ 1790 $29:12$ 119 $0:28$ $10:09$ 1791 $29:02$ 119 $0:28$ $10:08$ 1792 $30:10$ 120 $0:29$ $10:30$ 1794 $25:29$ 100 $0:31$ $8:35$ 1796 $24:36$ 82 $0:33$ $8:26$ 1797 $48:20$ 103 $0:47$ $1:34$ 1798 $48:09$ 104 $0:46$ $16:30$ 1799 $3:10$	1769	11:54	56	0:20	4:04
1771 $12:12$ 56 $0:21$ $4:08$ 1772 $12:17$ 56 $0:21$ $4:10$ 1773 $12:29$ 57 $0:21$ $4:15$ 1774 $15:17$ 80 $0:22$ 5.08 1775 $15:36$ 79 $0:22$ $5:44$ 1776 $17:34$ 90 $0:22$ $6:02$ 1777 $18:00$ 92 $0:22$ $6:06$ 1777 $18:33$ 92 $0:23$ $6:13$ 1780 $19:16$ 93 $0:23$ $6:32$ 1781 $19:30$ 98 $0:23$ $6:35$ 1783 $21:17$ 104 $0:24$ $7:07$ 1784 $21:49$ 105 $0:24$ $7:18$ 1785 $23:57$ 104 $0:26$ $8:01$ 1786 $24:50$ 108 $0:27$ $8:18$ 1787 $26:06$ 116 $0:27$ $8:44$ 1788 $28:43$ 128 $0:27$ $9:54$ 1790 $29:12$ 119 $0:28$ $10:09$ 1791 $29:02$ 119 $0:28$ $10:09$ 1792 $30:10$ 120 $0:29$ $10:30$ 1794 $25:29$ 100 $0:31$ $8:54$ 1795 $24:48$ 96 $0:31$ $8:35$ 1796 $24:36$ 82 $0:33$ $8:26$ 1797 $48:09$ 104 $0:46$ $16:30$ 1798 $48:09$ 104 $0:46$ $16:30$ 1799 $34:1$	1770	11:56	54	0:20	4:05
1772 $12:17$ 56 $0:21$ $4:10$ 1773 $12:29$ 57 $0:21$ $4:15$ 1774 $15:17$ 80 $0:22$ $5:08$ 1775 $15:36$ 79 $0:22$ $5:14$ 1776 $17:34$ 90 $0:22$ $5:54$ 1777 $18:00$ 92 $0:22$ $6:06$ 1779 $18:10$ 92 $0:23$ $6:13$ 1780 $19:16$ 93 $0:23$ $6:32$ 1781 $19:30$ 98 $0:23$ $6:35$ 1782 $19:41$ 98 $0:23$ $6:35$ 1783 $21:17$ 104 $0:26$ $8:01$ 1784 $21:49$ 105 $0:24$ $7:18$ 1785 $23:57$ 104 $0:26$ $8:01$ 1786 $24:50$ 108 $0:27$ $8:18$ 1787 $26:06$ 116 $0:27$ $9:49$ 1789 $28:45$ 126 $0:27$ $9:54$ 1790 $29:12$ 119 $0:28$ $10:09$ 1791 $29:02$ 119 $0:30$ $9:18$ 1794 $25:29$ 100 $0:31$ $8:55$ 1797 $48:22$ 103 $0:47$ $16:34$ 1798 $48:09$ 104 $0:46$ $16:30$ 1799 $34:10$ 100 $0:39$ $11:45$ 1802 $27:58$ 112 $0:19$ $9:71$ 1803 $25:23$ 103 $0:19$ $9:39$ 1804 $27:$	1771	12:12	56	0:21	4:08
1773 $12:29$ 57 $0:21$ $4:15$ 1774 $15:17$ 80 $0:22$ $5:08$ 1775 $15:36$ 79 $0:22$ $5:14$ 1776 $17:34$ 90 $0:22$ $5:54$ 1777 $18:00$ 92 $0:22$ $6:02$ 1778 $18:10$ 92 $0:23$ $6:13$ 1780 $19:16$ 93 $0:23$ $6:32$ 1781 $19:30$ 98 $0:23$ $6:32$ 1782 $19:41$ 98 $0:23$ $6:35$ 1783 $21:17$ 104 $0:24$ $7:07$ 1784 $21:49$ 105 $0:24$ $7:18$ 1785 $23:57$ 104 $0:26$ $8:01$ 1786 $24:50$ 108 $0:27$ $8:18$ 1787 $26:06$ 116 $0:27$ $8:44$ 1788 $28:43$ 128 $0:27$ $9:49$ 1789 $28:45$ 126 $0:27$ $9:54$ 1790 $29:12$ 119 $0:28$ $10:09$ 1791 $29:02$ 119 $0:28$ $10:08$ 1792 $30:10$ 120 $0:29$ $10:30$ 1793 $26:28$ 104 $0:30$ $9:18$ 1794 $48:29$ 103 $0:47$ $16:34$ 1796 $24:36$ 82 $0:33$ $8:26$ 1797 $48:22$ 103 $0:47$ $16:34$ 1798 $48:09$ 104 $0:40$ $12:29$ 1801 1	1772	12:17	56	0:21	4:10
1774 $15:17$ 80 $0:22$ $5:08$ 1775 $15:36$ 79 $0:22$ $5:14$ 1776 $17:34$ 90 $0:22$ $5:54$ 1777 $18:00$ 92 $0:22$ $6:02$ 1778 $18:10$ 92 $0:23$ $6:13$ 1780 $19:16$ 93 $0:23$ $6:32$ 1781 $19:30$ 98 $0:23$ $6:32$ 1782 $19:41$ 98 $0:23$ $6:35$ 1783 $21:17$ 104 $0:24$ $7:07$ 1784 $21:49$ 105 $0:24$ $7:18$ 1785 $23:57$ 104 $0:26$ $8:01$ 1786 $24:50$ 108 $0:27$ $8:18$ 1787 $26:06$ 116 $0:27$ $8:44$ 1788 $28:43$ 126 $0:27$ $9:54$ 1790 $29:12$ 119 $0:28$ $10:09$ 1791 $29:02$ 119 $0:28$ $10:08$ 1792 $30:10$ 120 $0:29$ $10:30$ 1793 $26:28$ 104 $0:30$ $9:18$ 1796 $24:36$ 82 $0:33$ $8:26$ 1797 $48:22$ 103 $0:47$ $16:34$ 1798 $48:09$ 104 $0:40$ $12:29$ 1801 $19:16$ 82 $0:18$ $6:26$ 1802 $27:58$ 112 $0:19$ $9:19$ 1804 $27:28$ 110 $0:19$ $9:19$ 1804 27	1773	12:29	57	0:21	4:15
17/5 $15:36$ 79 $0:22$ $5:14$ 1776 $17:34$ 90 $0:22$ $5:54$ 1777 $18:00$ 92 $0:22$ $6:02$ 1778 $18:10$ 92 $0:22$ $6:06$ 1779 $18:33$ 92 $0:23$ $6:13$ 1780 $19:16$ 93 $0:23$ $6:32$ 1781 $19:30$ 98 $0:23$ $6:35$ 1783 $21:17$ 104 $0:24$ $7:07$ 1784 $21:49$ 105 $0:24$ $7:18$ 1785 $23:57$ 104 $0:26$ $8:01$ 1786 $24:50$ 108 $0:27$ $9:49$ 1786 $28:45$ 126 $0:27$ $9:49$ 1789 $28:45$ 126 $0:27$ $9:54$ 1790 $29:12$ 119 $0:28$ $10:09$ 1791 $29:02$ 119 $0:28$ $10:08$ 1794 $25:29$ 100 $0:31$ $8:54$ 1795 $24:48$ 96 $0:31$ $8:35$ 1796 $4:36$ 82 $0:33$ $8:26$ 1797 $48:22$ 103 $0:47$ $16:34$ 1799 $34:10$ 100 $0:39$ $11:45$ 1800 $36:12$ 104 $0:40$ $12:29$ 1801 $19:16$ 82 $0:18$ $6:26$ 1802 $27:58$ 112 $0:19$ $9:39$ 1804 $27:28$ 110 $0:19$ $9:51$ 1806 $28:$	1774	15:17	80	0:22	5:08
1776 $17:34$ 90 $0:22$ $5:54$ 1777 $18:00$ 92 $0:22$ $6:02$ 1778 $18:10$ 92 $0:23$ $6:13$ 1780 $19:16$ 93 $0:23$ $6:32$ 1781 $19:30$ 98 $0:23$ $6:32$ 1782 $19:41$ 98 $0:23$ $6:35$ 1783 $21:17$ 104 $0:24$ $7:07$ 1784 $21:49$ 105 $0:24$ $7:18$ 1785 $23:57$ 104 $0:26$ $8:01$ 1786 $24:50$ 108 $0:27$ $8:44$ 1786 $24:50$ 108 $0:27$ $9:49$ 1787 $26:06$ 116 $0:27$ $9:49$ 1789 $28:45$ 126 $0:27$ $9:54$ 1790 $29:12$ 119 $0:28$ $10:09$ 1791 $29:02$ 119 $0:28$ $10:08$ 1792 $30:10$ 120 $0:29$ $10:30$ 1793 $26:28$ 104 $0:30$ $9:18$ 1794 $25:29$ 100 $0:31$ $8:54$ 1795 $24:48$ 96 $0:31$ $8:35$ 1796 $24:36$ 82 $0:18$ $6:26$ 1802 $27:58$ 112 $0:19$ $9:27$ 1803 $25:23$ 103 $0:19$ $8:39$ 1804 $27:28$ 110 $0:19$ $9:51$ 1806 $28:22$ 109 $0:20$ $9:39$ 1807 29	1//5	15:36	79	0:22	5:14
1777 $18:00$ 92 $0:22$ $6:06$ 1778 $18:10$ 92 $0:23$ $6:13$ 1780 $19:16$ 93 $0:23$ $6:32$ 1781 $19:30$ 98 $0:23$ $6:32$ 1782 $19:41$ 98 $0:23$ $6:35$ 1783 $21:17$ 104 $0:24$ $7:07$ 1784 $21:49$ 105 $0:24$ $7:18$ 1785 $23:57$ 104 $0:26$ $8:01$ 1786 $24:50$ 108 $0:27$ $8:18$ 1787 $26:06$ 116 $0:27$ $9:49$ 1789 $28:45$ 126 $0:27$ $9:54$ 1790 $29:12$ 119 $0:28$ $10:09$ 1791 $29:02$ 119 $0:28$ $10:09$ 1792 $30:10$ 120 $0:29$ $10:30$ 1793 $26:28$ 104 $0:30$ $9:18$ 1794 $25:29$ 100 $0:31$ $8:54$ 1795 $24:48$ 96 $0:31$ $8:55$ 1796 $48:09$ 104 $0:46$ $16:30$ 1799 $34:10$ 100 $0:39$ $11:45$ 1800 $36:12$ 104 $0:40$ $12:29$ 1801 $19:16$ 82 $0:18$ $6:26$ 1802 $27:58$ 112 $0:19$ $9:27$ 1804 $27:28$ 110 $0:19$ $9:19$ 1806 $28:22$ 109 $0:20$ $9:39$ 1806 <td< td=""><td>1//6</td><td>17:34</td><td>90</td><td>0:22</td><td>5:54</td></td<>	1//6	17:34	90	0:22	5:54
177918.10 92 0.22 0.023 6.13 1779 18.33 92 0.23 6.28 1781 19:30 98 0.23 6.32 1782 19:41 98 0.23 6.35 1783 $21:17$ 104 0.24 7.07 1784 $21:49$ 105 0.24 7.18 1785 $23:57$ 104 0.26 $8:01$ 1786 $24:50$ 108 0.27 $8:18$ 1787 $26:06$ 116 0.27 $8:44$ 1788 $28:43$ 128 0.27 $9:49$ 1789 $28:45$ 126 0.27 $9:54$ 1790 $29:12$ 119 $0:28$ $10:09$ 1791 $29:02$ 119 $0:28$ $10:08$ 1792 $30:10$ 120 $0:29$ $10:30$ 1793 $26:28$ 104 $0:30$ $9:18$ 1794 $25:29$ 100 $0:31$ $8:54$ 1795 $24:48$ 96 $0:31$ $8:35$ 1796 $24:36$ 82 $0:33$ $8:26$ 1797 $48:22$ 103 $0:47$ $16:34$ 1798 $48:09$ 104 $0:40$ $12:29$ 1801 $19:16$ 82 $0:18$ $6:26$ 1802 $27:58$ 112 $0:19$ $9:27$ 1804 $27:28$ 110 $0:19$ $9:19$ 1806 $28:22$ 109 $0:20$ $9:39$ 1806 $29:08$ 116	1///	18:00	92	0:22	6:02
177 10.33 72 0.23 6.13 1780 $19:16$ 93 0.23 $6:32$ 1781 $19:30$ 98 $0:23$ $6:32$ 1782 $19:41$ 98 $0:23$ $6:35$ 1783 $21:17$ 104 $0:24$ $7:07$ 1784 $21:49$ 105 $0:24$ $7:18$ 1785 $23:57$ 104 $0:26$ $8:01$ 1786 $24:50$ 108 $0:27$ $8:14$ 1786 $24:50$ 108 $0:27$ $8:44$ 1788 $28:43$ 128 $0:27$ $9:54$ 1789 $28:45$ 126 $0:27$ $9:54$ 1790 $29:12$ 119 $0:28$ $10:09$ 1791 $29:02$ 119 $0:28$ $10:08$ 1792 $30:10$ 120 $0:29$ $10:30$ 1793 $26:28$ 104 $0:30$ $9:18$ 1794 $25:29$ 100 $0:31$ $8:54$ 1796 $24:36$ 82 $0:33$ $8:26$ 1797 $48:22$ 103 $0:47$ $16:34$ 1798 $48:09$ 104 $0:46$ $16:30$ 1799 $34:10$ 100 $0:39$ $11:45$ 1800 $36:12$ 104 $0:40$ $12:29$ 1801 $19:16$ 82 $0:18$ $6:26$ 1802 $27:58$ 110 $0:19$ $9:51$ 1806 $28:22$ 109 $0:20$ $9:53$ 1808 <t< td=""><td>1770</td><td>10.10</td><td>92</td><td>0.22</td><td>0.00</td></t<>	1770	10.10	92	0.22	0.00
1780 1710 178 0.125 0.125 1781 $19:30$ 98 $0:23$ $6:32$ 1782 $19:41$ 98 $0:23$ $6:35$ 1783 $21:17$ 104 $0:24$ $7:07$ 1784 $21:49$ 105 $0:24$ $7:18$ 1785 $23:57$ 104 $0:26$ $8:01$ 1786 $24:50$ 108 $0:27$ $8:18$ 1787 $26:06$ 116 $0:27$ $8:44$ 1788 $28:43$ 128 $0:27$ $9:54$ 1790 $29:12$ 119 $0:28$ $10:09$ 1791 $29:02$ 119 $0:28$ $10:08$ 1792 $30:10$ 120 $0:29$ $10:30$ 1793 $26:28$ 104 $0:30$ $9:18$ 1794 $25:29$ 100 $0:31$ $8:54$ 1795 $24:48$ 96 $0:31$ $8:35$ 1796 $24:36$ 82 $0:33$ $8:26$ 1797 $48:29$ 104 $0:40$ $12:29$ 1801 $19:16$ 82 $0:18$ $6:26$ 1802 $27:58$ 112 $0:19$ $9:27$ 1803 $25:23$ 103 $0:19$ $8:39$ 1804 $27:28$ 110 $0:19$ $9:19$ 1806 $28:22$ 109 $0:20$ $9:53$ 1806 $29:06$ 112 $0:20$ $9:53$ 1809 $19:07$ 89 $0:18$ $6:44$	1780	10.35	92	0.23	6.28
1782 $19:41$ 98 $0:23$ $6:35$ 1783 $21:17$ 104 $0:24$ $7:07$ 1784 $21:49$ 105 $0:24$ $7:18$ 1785 $23:57$ 104 $0:26$ $8:01$ 1786 $24:50$ 108 $0:27$ $8:18$ 1787 $26:06$ 116 $0:27$ $8:44$ 1788 $28:43$ 128 $0:27$ $9:54$ 1799 $28:45$ 126 $0:27$ $9:54$ 1790 $29:12$ 119 $0:28$ $10:09$ 1791 $29:02$ 119 $0:28$ $10:08$ 1792 $30:10$ 120 $0:29$ $10:30$ 1793 $26:28$ 104 $0:30$ $9:18$ 1794 $25:29$ 100 $0:31$ $8:54$ 1795 $24:48$ 96 $0:31$ $8:35$ 1796 $24:36$ 82 $0:33$ $8:26$ 1797 $48:22$ 103 $0:47$ $16:34$ 1798 $48:09$ 104 $0:46$ $16:30$ 1799 $34:10$ 100 $0:39$ $11:45$ 1800 $36:12$ 104 $0:19$ $9:27$ 1803 $25:23$ 103 $0:19$ $8:39$ 1804 $27:28$ 110 $0:19$ $9:19$ 1806 $28:22$ 109 $0:20$ $9:53$ 1806 $29:06$ 112 $0:20$ $9:53$ 1806 $29:06$ 112 $0:20$ $9:53$ 1809 <td>1781</td> <td>19:30</td> <td>98</td> <td>0:23</td> <td>6:32</td>	1781	19:30	98	0:23	6:32
1783 $21:17$ 104 $0:24$ $7:07$ 1784 $21:49$ 105 $0:24$ $7:18$ 1785 $23:57$ 104 $0:26$ $8:01$ 1786 $24:50$ 108 $0:27$ $8:18$ 1787 $26:06$ 116 $0:27$ $8:44$ 1788 $28:43$ 128 $0:27$ $9:49$ 1789 $28:45$ 126 $0:27$ $9:54$ 1790 $29:12$ 119 $0:28$ $10:09$ 1791 $29:02$ 119 $0:28$ $10:09$ 1793 $26:28$ 104 $0:30$ $9:18$ 1794 $25:29$ 100 $0:31$ $8:54$ 1795 $24:48$ 96 $0:31$ $8:54$ 1796 $24:36$ 82 $0:33$ $8:26$ 1797 $48:22$ 103 $0:47$ $16:34$ 1798 $48:09$ 104 $0:46$ $16:30$ 1799 $34:10$ 100 $0:39$ $11:45$ 1800 $36:12$ 104 $0:40$ $12:29$ 1801 $19:16$ 82 $0:18$ $6:26$ 1802 $27:58$ 112 $0:19$ $9:27$ 1803 $25:23$ 103 $0:19$ $9:39$ 1804 $27:28$ 110 $0:19$ $9:51$ 1806 $28:22$ 109 $0:20$ $9:39$ 1807 $29:06$ 112 $0:20$ $9:53$ 1808 $21:54$ 94 $0:19$ $7:37$ 1809 $19:07$ 89 $0:18$ $6:44$	1782	19:41	98	0:23	6:35
1784 $21:49$ 105 $0:24$ $7:18$ 1785 $23:57$ 104 $0:26$ $8:01$ 1786 $24:50$ 108 $0:27$ $8:18$ 1787 $26:06$ 116 $0:27$ $8:44$ 1788 $28:43$ 128 $0:27$ $9:49$ 1789 $28:45$ 126 $0:27$ $9:54$ 1790 $29:12$ 119 $0:28$ $10:09$ 1791 $29:02$ 119 $0:28$ $10:08$ 1792 $30:10$ 120 $0:29$ $10:30$ 1793 $26:28$ 104 $0:30$ $9:18$ 1794 $25:29$ 100 $0:31$ $8:54$ 1795 $24:48$ 96 $0:31$ $8:35$ 1796 $24:36$ 82 $0:33$ $8:26$ 1797 $48:22$ 103 $0:47$ $16:34$ 1798 $48:09$ 104 $0:46$ $16:30$ 1799 $34:10$ 100 $0:39$ $11:45$ 1800 $36:12$ 104 $0:40$ $12:29$ 1801 $19:16$ 82 $0:18$ $6:26$ 1802 $27:58$ 112 $0:19$ $9:27$ 1803 $25:23$ 103 $0:19$ $9:39$ 1804 $27:28$ 110 $0:19$ $9:51$ 1806 $28:22$ 109 $0:20$ $9:39$ 1807 $29:06$ 112 $0:20$ $9:53$ 1808 $21:54$ 94 $0:19$ $7:37$ 1809 <td>1783</td> <td>21:17</td> <td>104</td> <td>0:24</td> <td>7:07</td>	1783	21:17	104	0:24	7:07
1785 $23:57$ 104 $0:26$ $8:01$ 1786 $24:50$ 108 $0:27$ $8:18$ 1787 $26:06$ 116 $0:27$ $8:44$ 1788 $28:43$ 128 $0:27$ $9:49$ 1789 $28:45$ 126 $0:27$ $9:54$ 1790 $29:12$ 119 $0:28$ $10:09$ 1791 $29:02$ 119 $0:28$ $10:08$ 1792 $30:10$ 120 $0:29$ $10:30$ 1793 $26:28$ 104 $0:30$ $9:18$ 1794 $25:29$ 100 $0:31$ $8:54$ 1795 $24:48$ 96 $0:31$ $8:35$ 1796 $24:36$ 82 $0:33$ $8:26$ 1797 $48:22$ 103 $0:47$ $16:34$ 1798 $48:09$ 104 $0:46$ $16:30$ 1799 $34:10$ 100 $0:39$ $11:45$ 1800 $36:12$ 104 $0:40$ $12:29$ 1801 $19:16$ 82 $0:18$ $6:26$ 1802 $27:58$ 112 $0:19$ $9:27$ 1803 $25:23$ 103 $0:19$ $9:39$ 1804 $27:28$ 110 $0:19$ $9:51$ 1806 $28:22$ 109 $0:20$ $9:39$ 1807 $29:06$ 112 $0:20$ $9:53$ 1808 $21:54$ 94 $0:19$ $7:37$ 1809 $19:07$ 89 $0:18$ $6:44$	1784	21:49	105	0:24	7:18
1786 $24:50$ 108 $0:27$ $8:18$ 1787 $26:06$ 116 $0:27$ $8:44$ 1788 $28:43$ 128 $0:27$ $9:49$ 1789 $28:45$ 126 $0:27$ $9:54$ 1790 $29:12$ 119 $0:28$ $10:09$ 1791 $29:02$ 119 $0:28$ $10:08$ 1792 $30:10$ 120 $0:29$ $10:30$ 1793 $26:28$ 104 $0:30$ $9:18$ 1794 $25:29$ 100 $0:31$ $8:54$ 1795 $24:48$ 96 $0:31$ $8:35$ 1796 $24:36$ 82 $0:33$ $8:26$ 1797 $48:22$ 103 $0:47$ $16:34$ 1798 $48:09$ 104 $0:46$ $16:30$ 1799 $34:10$ 100 $0:39$ $11:45$ 1800 $36:12$ 104 $0:40$ $12:29$ 1801 $19:16$ 82 $0:18$ $6:26$ 1802 $27:58$ 112 $0:19$ $9:27$ 1803 $25:23$ 103 $0:19$ $9:39$ 1804 $27:28$ 110 $0:19$ $9:51$ 1806 $28:22$ 109 $0:20$ $9:39$ 1807 $29:06$ 112 $0:20$ $9:53$ 1808 $21:54$ 94 $0:19$ $7:37$ 1809 $19:07$ 89 $0:18$ $6:44$	1785	23:57	104	0:26	8:01
1787 $26:06$ 116 $0:27$ $8:44$ 1788 $28:43$ 128 $0:27$ $9:49$ 1789 $28:45$ 126 $0:27$ $9:54$ 1790 $29:12$ 119 $0:28$ $10:09$ 1791 $29:02$ 119 $0:28$ $10:08$ 1792 $30:10$ 120 $0:29$ $10:30$ 1793 $26:28$ 104 $0:30$ $9:18$ 1794 $25:29$ 100 $0:31$ $8:54$ 1795 $24:48$ 96 $0:31$ $8:35$ 1796 $24:36$ 82 $0:33$ $8:26$ 1797 $48:22$ 103 $0:47$ $16:34$ 1798 $48:09$ 104 $0:46$ $16:30$ 1799 $34:10$ 100 $0:39$ $11:45$ 1800 $36:12$ 104 $0:40$ $12:29$ 1801 $19:16$ 82 $0:18$ $6:26$ 1802 $27:58$ 112 $0:19$ $9:27$ 1803 $25:23$ 103 $0:19$ $9:39$ 1804 $27:28$ 110 $0:19$ $9:51$ 1806 $28:22$ 109 $0:20$ $9:39$ 1807 $29:06$ 112 $0:20$ $9:53$ 1808 $21:54$ 94 $0:19$ $7:37$ 1809 $19:07$ 89 $0:18$ $6:44$	1786	24:50	108	0:27	8:18
1788 $28:43$ 128 $0:27$ $9:49$ 1789 $28:45$ 126 $0:27$ $9:54$ 1790 $29:12$ 119 $0:28$ $10:09$ 1791 $29:02$ 119 $0:28$ $10:08$ 1792 $30:10$ 120 $0:29$ $10:30$ 1793 $26:28$ 104 $0:30$ $9:18$ 1794 $25:29$ 100 $0:31$ $8:54$ 1795 $24:48$ 96 $0:31$ $8:35$ 1796 $24:36$ 82 $0:33$ $8:26$ 1797 $48:22$ 103 $0:47$ $16:34$ 1798 $48:09$ 104 $0:46$ $16:30$ 1799 $34:10$ 100 $0:39$ $11:45$ 1800 $36:12$ 104 $0:40$ $12:29$ 1801 $19:16$ 82 $0:18$ $6:26$ 1802 $27:58$ 112 $0:19$ $9:27$ 1803 $25:23$ 103 $0:19$ $9:39$ 1804 $27:28$ 110 $0:19$ $9:51$ 1806 $28:22$ 109 $0:20$ $9:39$ 1807 $29:06$ 112 $0:20$ $9:53$ 1808 $21:54$ 94 $0:19$ $7:37$ 1809 $19:07$ 89 $0:18$ $6:44$	1787	26:06	116	0:27	8:44
1789 $28:45$ 126 $0:27$ $9:54$ 1790 $29:12$ 119 $0:28$ $10:09$ 1791 $29:02$ 119 $0:28$ $10:08$ 1792 $30:10$ 120 $0:29$ $10:30$ 1793 $26:28$ 104 $0:30$ $9:18$ 1794 $25:29$ 100 $0:31$ $8:54$ 1795 $24:48$ 96 $0:31$ $8:35$ 1796 $24:36$ 82 $0:33$ $8:26$ 1797 $48:22$ 103 $0:47$ $16:34$ 1798 $48:09$ 104 $0:46$ $16:30$ 1799 $34:10$ 100 $0:39$ $11:45$ 1800 $36:12$ 104 $0:40$ $12:29$ 1801 $19:16$ 82 $0:18$ $6:26$ 1802 $27:58$ 112 $0:19$ $9:27$ 1803 $25:23$ 103 $0:19$ $9:39$ 1804 $27:28$ 110 $0:19$ $9:19$ 1806 $28:22$ 109 $0:20$ $9:39$ 1807 $29:06$ 112 $0:20$ $9:53$ 1808 $21:54$ 94 $0:19$ $7:37$ 1809 $19:07$ 89 $0:18$ $6:44$	1788	28:43	128	0:27	9:49
1790 $29:12$ 119 $0:28$ $10:09$ 1791 $29:02$ 119 $0:28$ $10:08$ 1792 $30:10$ 120 $0:29$ $10:30$ 1793 $26:28$ 104 $0:30$ $9:18$ 1794 $25:29$ 100 $0:31$ $8:54$ 1795 $24:48$ 96 $0:31$ $8:35$ 1796 $24:36$ 82 $0:33$ $8:26$ 1797 $48:22$ 103 $0:47$ $16:34$ 1798 $48:09$ 104 $0:46$ $16:30$ 1799 $34:10$ 100 $0:39$ $11:45$ 1800 $36:12$ 104 $0:40$ $12:29$ 1801 $19:16$ 82 $0:18$ $6:26$ 1802 $27:58$ 112 $0:19$ $9:27$ 1803 $25:23$ 103 $0:19$ $8:39$ 1804 $27:28$ 110 $0:19$ $9:19$ 1806 $28:22$ 109 $0:20$ $9:39$ 1807 $29:06$ 112 $0:20$ $9:53$ 1808 $21:54$ 94 $0:19$ $7:37$ 1809 $19:07$ 89 $0:18$ $6:44$	1789	28:45	126	0:27	9:54
1791 29.02 119 0.28 10.08 1792 $30:10$ 120 $0:29$ $10:30$ 1793 $26:28$ 104 $0:30$ $9:18$ 1794 $25:29$ 100 $0:31$ $8:54$ 1795 $24:48$ 96 $0:31$ $8:35$ 1796 $24:36$ 82 $0:33$ $8:26$ 1797 $48:22$ 103 $0:47$ $16:34$ 1798 $48:09$ 104 $0:46$ $16:30$ 1799 $34:10$ 100 $0:39$ $11:45$ 1800 $36:12$ 104 $0:40$ $12:29$ 1801 $19:16$ 82 $0:18$ $6:26$ 1802 $27:58$ 112 $0:19$ $9:27$ 1803 $25:23$ 103 $0:19$ $8:39$ 1804 $27:28$ 110 $0:19$ $9:51$ 1806 $28:22$ 109 $0:20$ $9:39$ 1807 $29:06$ 112 $0:20$ $9:53$ 1808 $21:54$ 94 $0:19$ $7:37$ 1809 $19:07$ 89 $0:18$ $6:44$	1701	29:12	119	0:28	10:09
1792 30.10 120 0.27 10.30 1793 $26:28$ 104 $0:30$ $9:18$ 1794 $25:29$ 100 $0:31$ $8:54$ 1795 $24:48$ 96 $0:31$ $8:35$ 1796 $24:36$ 82 $0:33$ $8:26$ 1797 $48:22$ 103 $0:47$ $16:34$ 1798 $48:09$ 104 $0:46$ $16:30$ 1799 $34:10$ 100 $0:39$ $11:45$ 1800 $36:12$ 104 $0:40$ $12:29$ 1801 $19:16$ 82 $0:18$ $6:26$ 1802 $27:58$ 112 $0:19$ $9:27$ 1803 $25:23$ 103 $0:19$ $8:39$ 1804 $27:28$ 110 $0:19$ $9:19$ 1805 $29:08$ 116 $0:19$ $9:51$ 1806 $28:22$ 109 $0:20$ $9:39$ 1807 $29:06$ 112 $0:20$ $9:53$ 1808 $21:54$ 94 $0:19$ $7:37$ 1809 $19:07$ 89 $0:18$ $6:44$	1702	29:02	119	0:28	10:08
1793 25.29 100 0.30 7.10 1794 $25:29$ 100 $0:31$ $8:54$ 1795 $24:48$ 96 $0:31$ $8:35$ 1796 $24:36$ 82 $0:33$ $8:26$ 1797 $48:22$ 103 $0:47$ $16:34$ 1798 $48:09$ 104 $0:46$ $16:30$ 1799 $34:10$ 100 $0:39$ $11:45$ 1800 $36:12$ 104 $0:40$ $12:29$ 1801 $19:16$ 82 $0:18$ $6:26$ 1802 $27:58$ 112 $0:19$ $9:27$ 1803 $25:23$ 103 $0:19$ $8:39$ 1804 $27:28$ 110 $0:19$ $9:19$ 1805 $29:08$ 116 $0:19$ $9:51$ 1806 $28:22$ 109 $0:20$ $9:39$ 1807 $29:06$ 112 $0:20$ $9:53$ 1808 $21:54$ 94 $0:19$ $7:37$ 1809 $19:07$ 89 $0:18$ $6:44$	1792	26.28	120	0.29	0.30 0.18
1795 $24:48$ 96 $0:31$ $0:54$ 1795 $24:36$ 82 $0:33$ $8:26$ 1797 $48:22$ 103 $0:47$ $16:34$ 1798 $48:09$ 104 $0:46$ $16:30$ 1799 $34:10$ 100 $0:39$ $11:45$ 1800 $36:12$ 104 $0:40$ $12:29$ 1801 $19:16$ 82 $0:18$ $6:26$ 1802 $27:58$ 112 $0:19$ $9:27$ 1803 $25:23$ 103 $0:19$ $8:39$ 1804 $27:28$ 110 $0:19$ $9:51$ 1806 $28:22$ 109 $0:20$ $9:39$ 1807 $29:06$ 112 $0:20$ $9:53$ 1808 $21:54$ 94 $0:19$ $7:37$ 1809 $19:07$ 89 $0:18$ $6:44$	1794	25.20	104	0.30	8:54
179624:3682 $0:33$ $8:26$ 1797 $48:22$ 103 $0:47$ $16:34$ 1798 $48:09$ 104 $0:46$ $16:30$ 1799 $34:10$ 100 $0:39$ $11:45$ 1800 $36:12$ 104 $0:40$ $12:29$ 1801 $19:16$ 82 $0:18$ $6:26$ 1802 $27:58$ 112 $0:19$ $9:27$ 1803 $25:23$ 103 $0:19$ $8:39$ 1804 $27:28$ 110 $0:19$ $9:51$ 1805 $29:08$ 116 $0:19$ $9:51$ 1806 $28:22$ 109 $0:20$ $9:39$ 1807 $29:06$ 112 $0:20$ $9:53$ 1808 $21:54$ 94 $0:19$ $7:37$ 1809 $19:07$ 89 $0:18$ $6:44$	1795	24:48	96	0:31	8:35
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1796	24:36	82	0:33	8:26
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1797	48:22	103	0:47	16:34
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1798	48:09	104	0:46	16:30
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1799	34:10	100	0:39	11:45
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1800	36:12	104	0:40	12:29
180227:581120:199:27180325:231030:198:39180427:281100:199:19180529:081160:199:51180628:221090:209:39180729:061120:209:53180821:54940:197:37180919:07890:186:44	1801	19:16	82	0:18	6:26
1803 25:23 103 0:19 8:39 1804 27:28 110 0:19 9:19 1805 29:08 116 0:19 9:51 1806 28:22 109 0:20 9:39 1807 29:06 112 0:20 9:53 1808 21:54 94 0:19 7:37 1809 19:07 89 0:18 6:44	1802	27:58	112	0:19	9:27
1804 27:28 110 0:19 9:19 1805 29:08 116 0:19 9:51 1806 28:22 109 0:20 9:39 1807 29:06 112 0:20 9:53 1808 21:54 94 0:19 7:37 1809 19:07 89 0:18 6:44	1803	25:23	103	0:19	8:39
1805 29:08 116 0:19 9:51 1806 28:22 109 0:20 9:39 1807 29:06 112 0:20 9:53 1808 21:54 94 0:19 7:37 1809 19:07 89 0:18 6:44	1804	27:28	110	0:19	9:19
1807 29:06 112 0:20 9:53 1808 21:54 94 0:19 7:37 1809 19:07 89 0:18 6:44	1805	29:08	110	0:19	9:51
1807 23.00 112 0.20 9.55 1808 21:54 94 0:19 7:37 1809 19:07 89 0:18 6:44	1000	20:22	109	0.20	7.37 0.52
1809 19:07 89 0:18 6:44	1802	27.00	94	0.20	7:33
	1809	19:07	89	0:18	6:44

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com ^{Calculated:} 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

continued from previous page				
	Shadow, wors	t case		Shadow, expected values
No.	Shadow hours	Shadow days	Max shadow	Shadow hours
	per year	per year	hours per day	per year
1010	[h/year]	[days/year]	[h/day]	[h/year]
1810	20:07	92	0:18	7:03
1011	18:30	84	0:18	0:33
1012	24.02	99 101	0.20	0.20
1013	23.22	101	0.20	10.28
1815	32.17	117	0.21	11.02
1816	31.24	117	0.21	10:44
1817	32.30	124	0.21	11.00
1818	31:40	122	0:20	10:42
1819	33:39	124	0:21	11:26
1820	34:39	129	0:21	11:48
1821	33:03	116	0:22	11:20
1822	32:12	115	0:22	11:03
1823	30:58	111	0:22	10:40
1824	30:22	107	0:23	10:33
1825	22:14	91	0:20	7:51
1826	20:48	89	0:19	7:23
1827	17:10	80	0:19	6:11
1828	12:31	62	0:20	4:24
1829	12:20	56	0:20	4:18
1830	12:33	56	0:20	4:23
1831	11:25	56	0:19	3:58
1832	10:54	52	0:19	3:48
1833	11:54	55	0:20	4:07
1834	11:54	55	0:20	4:07
1835	12:32	5/	0:20	4:21
1030	14:32	70	0:21	5:03
1037	14.47	70	0.21	3.07
1030	12.42	50 78	0.21	4.21
18/0	17.47	82	0.22	6:06
1841	18.20	82	0.23	6.17
1842	19:08	86	0:24	6:30
1843	20:18	88	0:25	6:53
1844	20:33	86	0:25	7:02
1845	21:32	87	0:26	7:18
1846	22:47	91	0:27	7:42
1847	24:39	100	0:27	8:17
1848	25:26	97	0:28	8:34
1849	29:28	129	0:28	10:02
1850	30:11	128	0:28	10:20
1851	30:42	127	0:29	10:33
1852	29:03	115	0:29	9:46
1853	29:40	120	0:29	10:02
1854	34:39	123	0:32	12:00
1855	32:23	116	0:31	11:17
1856	32:31	114	0:32	11:20
1057	33:15	104	0:30	10.45
1000	31.14 40.20	90 110	0.37	14.09
1860	30.70	107	0.30	13.52
1861	20.28	126	0.41	13:32
1862	39.26	128	0:35	13:41
1863	38:44	131	0:34	13:26
1864	30:46	111	0:31	10:24
1865	30:18	110	0:31	10:15
1866	29:37	108	0:31	10:02
1867	28:44	106	0:30	9:43
1868	28:22	103	0:30	9:36
1869	27:55	103	0:30	9:28
1870	26:30	98	0:30	9:01

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com ^{Calculated:} 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

continued from previous page				
	Shadow, worst	t case		Shadow, expected values
NO.	Shadow hours	Shadow days	Max shadow	Shadow hours
	per year	per year	louis per day	per year [b/year]
1871	25·21	[uays/year] 104	[1702y] ∩·29	8·46
1872	23:27	90	0:27	8:11
1873	24:01	91	0:28	8:16
1874	26:02	119	0:29	9:35
1875	29:11	131	0:31	10:54
1876	20:07	85	0:25	7:06
1877	21:32	86	0:26	7:27
1878	23:30	118	0:26	8:54
1879	22:58	119	0:25	8:53
1880	21:56	114	0:25	8:24
1001	20:15	108	0:24	7:43
1883	17.21	79	0.23	6:05
1884	18.42	81	0.23	6.31
1885	16:59	80	0:22	5:59
1886	16:36	80	0:22	5:51
1887	15:37	77	0:21	5:30
1888	15:29	77	0:21	5:27
1889	15:01	75	0:21	5:18
1890	14:53	74	0:21	5:14
1891	17:51	96	0:23	6:38
1892	25:08	106	0:24	9:25
1893	28:04	111	0:26	10:10
1894	24.55	92 128	0.23	0.04 11.33
1896	40.32	120	0.20	14.33
1897	38:33	129	0:20	13:34
1898	37:10	139	0:22	13:09
1899	35:51	139	0:22	12:41
1900	33:41	145	0:22	12:12
1901	28:50	127	0:21	9:56
1902	27:52	128	0:21	9:51
1903	27:25	120	0:20	9:06
1904	24:45	108	0:20	8:15
1905	24.30	101	0.19	0.10
1900	23.37	100	0.20	8.08
1908	22:34	98	0:20	7:50
1909	24:45	116	0:20	9:19
1910	29:53	136	0:20	12:14
1911	41:44	145	0:38	15:07
1912	40:04	147	0:37	14:33
1913	38:01	155	0:36	13:53
1914	37:02	157	0:35	13:32
1915	42:23	149	0:36	15:54
1910	43:00	144	0:38	10:20
1917	20.30	90	0.30	25.02
1919	20:40	94	0:18	7:21
1920	21:17	95	0:18	7:21
1921	14:29	60	0:18	5:09
1922	13:16	57	0:18	4:47
1923	14:52	74	0:18	5:20
1924	13:02	69	0:18	4:41
1925	13:37	71	0:18	4:54
1926	9:35	50	0:18	3:20
1927	10:30	59	U:18 0.10	3:4∠ 3·26
1920	7.40 Q.20	 ⊿∧	0.10	3.20
1930	12:55	55	0:18	4:40
1931	11:57	65	0:18	4:15

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com ^{Calculated:} 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

continued from previous page				
	Shadow, wors	t case		Shadow, expected values
NO.	Shadow hours	Shadow days	Max shadow	Shadow hours
	per year	[days/year]	Induis per day	per year [b/year]
1932	10.21	[uays/year] 51	0.18	3.36
1933	7:00	52	0:10	2:21
1934	6:25	50	0:10	2:11
1935	6:00	49	0:10	2:04
1936	6:58	52	0:10	2:21
1937	5:46	48	0:09	1:59
1938	5:33	46	0:09	1:55
1939	5:20	45	0:09	1:52
1940	5:03	43	0:09	1:46
1941	5:13	44	0:09	1:48
1942	2:46	24	0:09	0:57
1943	2:33	23	0:09	0:49
1944	2:33	23	0:08	0:50
1945	2:27	22	0:08	0:48
1946	2:21	22	0:08	0:45
1947	2:20	22	0:08	0:46
1948	10:48	00 70	0:29	5:23
1949	27.00	72	0.30	0.49
1950	30.33 40·40	91	0.30	12.50
1952	48.33	106	0.30	15.33
1953	46:12	103	0:37	14:45
1954	37:59	101	0:36	11:58
1955	29:34	80	0:35	9:38
1956	32:23	87	0:35	10:21
1957	19:05	48	0:31	6:20
1958	16:22	41	0:31	5:31
1959	9:03	30	0:23	3:10
1960	10:13	32	0:25	3:29
1961	6:40	27	0:18	2:18
1962	6:11	26	0:17	2:07
1963	6:13	27	0:17	2:09
1964	18:10	56	0:33	5:52
1965	43:46	80	0:52	12:54
1900	30:21	/5	0:48	10:46
1907	115:24	143	1:05	30:49
1900	102:05	145	1.00	34.24
1970	92.56	151	0.56	30.11
1971	90:30	157	0:56	29:30
1972	87:51	164	0:56	28:50
1973	82:15	170	0:55	27:04
1974	76:12	154	0:54	25:04
1975	67:42	142	0:52	22:38
1976	58:28	137	0:48	19:51
1977	55:38	131	0:46	19:03
1978	54:32	129	0:46	18:46
1979	63:06	128	0:51	21:30
1980	59:02	144	0:47	20:16
1981	57:58	147	0:46	19:55
1982	6U:14	140	0:47	20:40
1983	58:31	151	0:45	20:10
1704 1025	60.27	151	0.45	20.20
1986	61.56	151	0:46	20.00
1987	61:59	155	0:45	21:26
1988	65:36	156	0:47	22:41
1989	70:18	148	0:51	24:14
1990	66:09	148	0:48	22:49
1991	73:53	162	0:51	25:43
1992	74:54	174	0:51	26:27

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com ^{Calculated:} 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

continued from previous page				
N	Shadow, wors	t case	N	Shadow, expected values
NO.	Shadow hours	Shadow days	Max shadow	Shadow hours
	per year	[days/year]	Induis per day	per year [b/year]
1993	84·37	[uays/year] 183	0.54	30.31
1994	83.37	187	0.54	30.17
1995	66:54	175	0:47	23:40
1996	111:23	217	0:48	40:38
1997	136:41	236	0:47	50:21
1998	137:10	239	0:47	50:37
1999	99:11	215	0:44	35:53
2000	91:32	204	0:41	32:43
2001	67:40	155	0:44	23:06
2002	135:50	240	0:47	50:08
2003	63:15	150	0:44	21:49
2004	66:21	177	0:45	23:11
2005	60:55	173	0:42	21:19
2006	59:57	1/3	0:42	20:59
2007	78:26	223	0:47	27:39
2008	78:50	206	0:49	27:37
2009	74.03	220	0.40	20.00
2010	80.34	239	0.47	20.22
2011	75.50	242	0.40	26:35
2012	68·18	194	0.45	24:05
2014	64:31	175	0:45	22:17
2015	97:55	202	0:49	36:17
2016	95:06	203	0:48	35:15
2017	64:38	172	0:37	24:23
2018	63:08	178	0:36	23:41
2019	62:35	175	0:36	23:31
2020	62:05	135	0:40	23:43
2021	9:11	42	0:17	3:08
2022	8:58	43	0:17	3:04
2023	9:16	44	0:17	3:10
2024	8:52	43	0:17	3:01
2025	8:56	44	0:16	3:04
2026	8:57	44	0:16	3:04
2027	9.10	40	0.17	2.09
2020	9.04	43	0.10	3.09
2027	9.00	47	0.17	3:07
2030	9.37	47	0.10	3.20
2032	9:52	48	0:17	3:29
2033	9:55	48	0:17	3:31
2034	9:53	47	0:17	3:29
2035	10:19	48	0:18	3:37
2036	10:13	46	0:18	3:37
2037	10:21	48	0:18	3:40
2038	10:04	50	0:17	3:38
2039	9:40	48	0:16	3:30
2040	9:37	47	0:16	3:28
2041	9:07	47	0:15	3:23
2042	9:40	50	0:10	3:40
2043	10:43	50	0:17	3:57
2044	0.00	0	0.00	0.00
2040	0.00	0	0.00	0.00
2040	0:00	0	0:00	0:00
2048	0:00	õ	0:00	0:00
2049	0:00	Õ	0:00	0:00
2050	9:54	37	0:21	3:54
2051	9:49	37	0:21	3:52
2052	14:21	58	0:21	5:28
2053	14:05	59	0:20	5:21

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

continued from previous page				
	Shadow, wors	t case		Shadow, expected values
No.	Shadow hours	Shadow days	Max shadow	Shadow hours
	per year	per year	hours per day	per year
2054	[n/year]	[days/year]	[h/day]	[n/year]
2054	13:37	57	0:20	5:09
2005	13:00	55	0:20	4:48
2050	12.20	52	0.20	4.33
2057	17.00	51	0.19	4.17
2050	12.12	52	0.20	4.23
2060	12:54	53	0:20	4:37
2061	13:08	53	0:20	4:47
2062	9:09	35	0:21	3:27
2063	0:00	0	0:00	0:00
2064	0:00	0	0:00	0:00
2065	12:59	55	0:20	4:38
2066	8:38	33	0:20	3:06
2067	16:14	64	0:21	6:13
2068	13:23	53	0:20	4:43
2069	13:56	56	0:20	5:00
2070	14:12	58	0:20	5:04
2071	13:45	56	0:20	4:50
2072	14:10	56	0:21	4:59
2073	14:58	58	0:21	5:23
2074	14:58	58 60	0:21	5:22 5:41
2075	15.22	62	0.21	5.52
2070	13.37	53	0.21	4:36
2078	13:13	53	0:21	4:36
2079	8:32	32	0:21	2:59
2080	13:54	55	0:21	4:50
2081	8:27	30	0:21	2:52
2082	13:49	55	0:21	4:48
2083	14:07	55	0:21	4:54
2084	17:24	73	0:21	6:05
2085	17:05	69	0:21	5:57
2086	16:01	65	0:21	5:34
2087	15:57	65	0:21	5:32
2088	15:49	64	0:22	5:29
2089	16:31	66 07	0:22	5:44
2090	21.00	07 70	0.22	6:40
2091	10.39	/ 9	0.21	1.35
2072	17.00	65	0.21	6.21
2094	21:43	90	0:23	7:37
2095	22:04	89	0:23	7:46
2096	22:30	89	0:23	7:52
2097	22:04	94	0:21	8:12
2098	24:21	98	0:22	9:21
2099	23:35	95	0:22	9:02
2100	22:43	93	0:22	8:40
2101	24:25	100	0:22	9:25
2102	23:14	96	0:21	8:56
2103	18:45	/2	0:21	7:17
2104	18:24	69 67	0:21	6.52
2105	20.33	78	0.21	8.00
2100	20.55	79	0.22	8:10
2108	28:25	96	0:22	10:44
2109	32:31	127	0:22	12:23
2110	32:40	128	0:22	12:25
2111	28:09	115	0:22	10:47
2112	30:06	98	0:22	11:22
2113	25:54	86	0:23	9:37
2114	26:56	88	0:23	10:02

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com Calculated: 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

continued from previous page				
	Shadow, worst	t case		Shadow, expected values
No.	Shadow hours	Shadow days	Max shadow	Shadow hours
	per year	per year	hours per day	per year
2115	[n/year]	[days/year]	[n/day]	[n/year]
2115	24:24 22:11	81 70	0:23	8:39
2110	23.11	/0 /7	0.22	0.30
2117	22.50	110	0.22	5.35 13·01
2110	36.15	13/	0.24	13.01
2117	35.57	134	0.24	13:42
2120	34:16	134	0:24	13:05
2122	33:52	134	0:23	12:55
2123	31:11	119	0:23	11:56
2124	30:40	118	0:23	11:45
2125	32:59	131	0:23	12:35
2126	26:35	105	0:22	10:13
2127	26:11	104	0:22	10:05
2128	26:24	87	0:23	9:49
2129	11:49	40	0:21	4:24
2130	24:05	93	0:23	9:03
2131	27:12	102	0:24	10:23
2132	28:06	104	0:24	10:44
2133	30:39	111	0:25	11:43
2134	28:06	99	0:25	10:37
2135	26:31	97	0:25	9:48
2136	29:45	104	0:26	11:16
2137	29:35	102	0:26	11:07
2138	30:05	103	0:20	11:19
2139	21.10	104	0.27	11.23
2140	31.19	78	0.27	11.50
2141	29.19	76	0.20	11.20
2142	27.15	66	0.20	10.27
2144	0:00	0	0:00	0:00
2145	0:00	0	0:00	0:00
2146	0:00	0	0:00	0:00
2147	0:00	0	0:00	0:00
2148	8:08	30	0:21	2:45
2149	10:08	40	0:21	3:27
2150	10:48	45	0:20	3:46
2151	9:51	40	0:20	3:21
2152	9:32	39	0:20	3:14
2153	11:20	46	0:21	3:59
2154	11:21	45	0:21	3:58
2155	11:47	47	0:21	4:10
2156	12:08	49	0:21	4:20
2157	11:57	48	0:21	4:12
2158	12:40	50	0:21	4:34
2109	12.40	42	0.21	4.35
2100	11.14	42	0.21	3.43
2167	11.14	43	0.21	3:54
2163	11:36	44	0:22	3:58
2164	9:37	33	0:22	3:16
2165	9:23	32	0:22	3:11
2166	13:24	51	0:22	4:50
2167	13:36	52	0:22	4:53
2168	12:14	47	0:22	4:14
2169	13:32	51	0:22	4:46
2170	14:19	50	0:24	5:01
2171	11:28	36	0:24	3:55
2172	10:39	35	0:23	3:37
2173	14:21	54	0:22	5:11
2174	15:00	54	0:23	5:26
2175	15:21	57	0:23	5:36

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com Calculated: 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

cont	inued from previ	ous page		
	Shadow, wors	t case		Shadow, expected values
NO.	Shadow hours	Shadow days	Max shadow	Shadow hours
	per year	[days/year]	Induis per uay	per year [b/year]
2176	16·44	[uays/year] 60	[170ay] ∩·24	6·11
2170	17:48	60	0:24	6:35
2178	18:38	62	0:25	6:58
2179	18:59	62	0:26	6:59
2180	20:30	66	0:27	7:40
2181	22:02	70	0:27	8:19
2182	21:21	91	0:23	8:06
2183	21:21	88	0:24	8:09
2184	26:15	96	0:25	10:19
2185	23:25	81	0:26	9:12
2186	20:38	/3	0:25	8:01
2187	20:15	/3	0:24	7:52
2100	19:54	84 96	0:23	7:40
2109	20.14	76	0.23	7.40
2170	20:02	80	0.23	8.12
2192	8:09	30	0:23	2:45
2193	0:00	0	0:00	0:00
2194	0:00	0	0:00	0:00
2195	0:00	0	0:00	0:00
2196	0:00	0	0:00	0:00
2197	0:00	0	0:00	0:00
2198	36:35	110	0:27	14:09
2199	25:46	85	0:27	10:06
2200	23:50	79	0:27	9:17
2201	23:24	/8	0:26	9:07
2202	24:10	84	0:24	9:16
2203	23.30	03	0.24	0.00
2204	30.09	103	0.24	11.39
2200	29:58	92	0:24	11:28
2207	24:17	82	0:26	9:15
2208	29:08	89	0:28	11:08
2209	22:49	79	0:26	8:41
2210	36:11	102	0:29	13:54
2211	40:11	118	0:29	15:34
2212	40:00	117	0:29	15:29
2213	28:13	86	0:29	11:01
2214	27:53	86	0:29	10:53
2215	20:31	0 I 110	0:28	10:18
2210	44.40	117	0.31	17.15
2217	43:47	124	0:32	16:56
2219	36:47	76	0:33	14:14
2220	25:10	76	0:29	9:36
2221	35:16	97	0:31	13:30
2222	21:42	77	0:25	8:17
2223	14:32	64	0:18	5:39
2224	9:26	41	0:17	3:47
2225	45:28	106	0:37	17:25
2226	10:59	/2	0:12	4:12
2221 วาว0	10:57 17:71	۲ ۵ ۵	0:14	0:22
2220 2220	16.17	88 88	0.15	6.10
2230	15:06	78	0:15	5:46
2231	17:38	94	0:16	6:42
2232	18:13	83	0:16	6:48
2233	18:26	82	0:16	6:51
2234	18:35	82	0:16	6:55
2235	18:05	78	0:17	6:41
2236	18:04	77	0:17	6:41

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

cont	inued from previ	ous page		
	Shadow, wors	t case		Shadow, expected values
No.	Shadow hours	Shadow days	Max shadow	Shadow hours
	per year	per year	hours per day	per year
0007	[h/year]	[days/year]	[h/day]	[h/year]
2237	20:43	90	0:17	7:47
2238	19:57	90	0:17	7:34
2239	22:19	90 57	0:18	8:23
2240	10.01	37 72	0.14	5.04
2241	15.59	73	0.14	5.01
2242	13.37	23	0.13	1.27
2243	4.17	23	0.13	1.26
2244	4:12	24	0:13	1:26
2246	5:21	37	0:13	1:51
2247	4:36	24	0:14	1:34
2248	4:47	24	0:15	1:37
2249	11:27	56	0:14	4:06
2250	4:57	24	0:15	1:41
2251	4:59	24	0:15	1:41
2252	10:01	50	0:16	3:33
2253	5:24	26	0:16	1:50
2254	5:26	25	0:16	1:51
2255	5:32	26	0:16	1:54
2256	5:31	27	0:15	1:54
2257	5:04	25	0:15	1:44
2258	5:07	26	0:15	1:45
2259	4:46	24	0:14	1:38
2260	4:47	26	0:14	1:38
2201	4:29	20	0:13	1:32
2202	4:02	25 27	0:12	1:23
2203	0.10 6.15	27	0.15	1.00
2204	0.15	30	0.15	2.21
2205	7:05	31	0.15	2.24
2200	6:45	30	0.17	2.31
2268	6:22	28	0:17	2:13
2269	6:04	27	0:17	2:05
2270	6:17	28	0:16	2:16
2271	6:13	29	0:16	2:15
2272	12:47	56	0:20	4:53
2273	9:06	38	0:18	3:37
2274	8:46	36	0:18	3:29
2275	8:36	36	0:17	3:26
2276	15:40	69	0:20	6:14
2277	8:00	44	0:15	2:50
2278	7:51	45	0:14	2:49
2279	8:14	45	0:15	2:58
2280	12:05	//	0:20	5:06
2281	14:08	93	0:19	0:01
2282	10.42	08 42	0:19	4:38
2203	10.43	03	0.20	4.20 5.11
2204	30.06	101	0.21	11.36
2203	22·18	89	0.23	8:44
2287	19:42	74	0:22	7:27
2288	5:38	40	0:10	2:15
2289	0:00	0	0:00	0:00
2290	6:49	34	0:14	2:32
2291	2:12	24	0:07	0:45
2292	32:56	135	0:23	11:54
2293	49:42	207	0:25	17:24
2294	49:19	194	0:26	17:00
2295	50:56	190	0:27	17:32
2296	45:52	170	0:27	15:43
2297	45:13	160	0:27	15:37

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

cont	inued from prev	ious page		
	Shadow, wors	t case		Shadow, expected values
No.	Shadow hours	Shadow days	Max shadow	Shadow hours
	per year	per year	hours per day	per year
	[h/year]	[days/year]	[h/day]	[h/year]
2298	56:57	165	0:31	19:37
2299	48:50	149	0:29	10:29
2300	58:05 100-50	100	0:32	19:43
2301	106.06	220	0.40	20.27
2302	90.24	230	0.37	30.37
2303	71.00	172	0.37	23.29
2305	80:38	150	0:48	26:10
2306	487:42	262	3:45	202:59
2307	808:50	365	3:13	328:45
2308	313:47	224	2:43	80:32
2309	215:16	172	1:52	63:43
2310	402:07	348	1:58	154:32
2311	193:23	186	1:33	67:15
2312	181:50	198	1:44	66:06
2313	43:25	96	0:42	12:38
2314	487:04	270	2:41	171:22
2315	746:31	365	3:28	293:32
2316	257:36	333	1:26	95:38
2317	708:35	365	3:08	219:43
2318	88:31	203	0:41	31:09
2319	76:50	190	0:41	27:28
2320	250:48	290	1:58	96:UT
2321	194.04 86:42	200	0:44	27.58
2322	346.20	763	0.44	27.30
2323	140.27	203	1.34	52:00
2325	52.39	155	0.28	18:35
2326	115:15	199	1:05	37:12
2327	48:38	72	0:52	20:27
2328	55:46	133	0:51	21:17
2329	91:24	140	1:01	42:33
2330	61:59	218	0:40	19:34
2331	55:42	213	0:38	17:18
2332	59:29	193	0:44	21:47
2333	215:44	273	1:51	86:04
2334	410:12	291	2:37	145:52
2335	253:11	265	2:34	84:43
2336	92:31	228	0:42	34:04
2337	147:50	283	1:06	50:41
2338	200:34	314	1:08	69:11 24:27
2339	65.05	220	0.43	24.27
2340	64.09	221	0:42	22.30
2341	76:50	251	0:40	29.35
2343	66:41	180	0:39	25:55
2344	40:42	107	0:42	13:05
2345	32:54	112	0:30	12:03
2346	70:57	117	0:55	20:31
2347	68:04	115	0:55	20:03
2348	158:08	239	1:05	49:17
2349	177:57	258	1:17	61:45
2350	689:25	271	3:04	237:00
2351	558:14	271	2:52	256:29
2352	22:39	96	0:25	8:18
2353	22:30	91	0:26	8:07
2354	23:40	94	0:27	8:35
2355	20:55	108	0:23	9:53
2356	27:50	112	0:22	IU: IO 91-22
∠307 2358	546.07	294	∠.30 3·09	226.06

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com Calculated: 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

continued from previous page				
	Shadow, worst	t case		Shadow, expected values
No.	Shadow hours	Shadow days	Max shadow	Shadow hours
	per year	per year	hours per day	per year
2250	[n/year]	[days/year]	[n/day]	[n/year]
2339	225:11 625:42	190	1:50	110:25
2300	201.42	202	3.19 2.10	72.01
2301	201.50	120	2.04	86.11
2302	1/8.55	135	1.35	47:56
2364	59.15	133	0.46	19:48
2365	44:04	74	0:48	14:16
2366	5:52	27	0:17	1:59
2367	5:07	28	0:14	1:38
2368	4:47	26	0:14	1:33
2369	0:00	0	0:00	0:00
2370	31:32	64	0:35	9:49
2371	24:19	56	0:31	7:40
2372	7:42	36	0:16	2:22
2373	7:39	33	0:18	2:25
2374	10:46	50	0:17	3:17
2375	14:07	66	0:17	4:32
2376	0:00	0	0:00	0:00
2377	0:00	0	0:00	0:00
2378	15:27	66	0:20	4:54
2379	15:11	68	0:19	4:48
2380	13:35	58	0:20	4:22
2381	3:47	19	0:15	1:18
2382	19:03	72	0:22	0:04
2303	21.40	74	0.23	0:00
2304	24.17	97	0.00	8:06
2305	19.08	95	0.23	6:48
2387	24.04	105	0.17	8.28
2388	16:09	74	0:21	5:31
2389	16:38	77	0:21	5:38
2390	16:39	78	0:21	5:36
2391	21:08	87	0:22	7:14
2392	29:42	117	0:25	10:14
2393	75:38	144	0:54	32:48
2394	86:18	169	0:57	37:17
2395	85:50	199	0:44	34:56
2396	68:42	177	0:35	28:34
2397	49:38	137	0:35	19:47
2398	81:11	194	0:46	30:17
2399	73:24	194	0:43	27:24
2400	68:05	163	0:51	25:10
2401	102:40	157	1:12	35:10
2402	175:20	242	1:10	00:12 9:10
2403	24.00 700.01	225	0.33	0.10 225:05
2404	184.10	255	1.55	87.05
2403	162.35	122	1.53	66:18
2400	4.20	34	0.11	1.34
2408	3:38	82	0:05	0:57
2409	4:08	75	0:05	1:03
2410	1:13	23	0:05	0:20
2411	1:43	40	0:04	0:30
2412	19:44	114	0:18	6:09
2413	22:40	128	0:17	6:42
2414	30:26	120	0:26	10:18
2415	151:52	193	1:14	57:07
2416	92:14	134	1:04	42:02
2417	51:31	148	0:31	17:23
2418	110:24	169	1:09	47:41
2419	111:35	169	1:11	47:49

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

cont	inued from prev	ious page		
	Shadow, wors	t case		Shadow, expected values
No.	Shadow hours	Shadow days	Max shadow	Shadow hours
	per year	per year	hours per day	per year
0.400	[h/year]	[days/year]	[h/day]	[h/year]
2420	135:48	202	1:10	62:26
2421	91:14	134	1:02	40:06
2422	97:47	148	1:02	43:51
2423	115.00	04	1.20	40.30
2424	317.00	209	2.04	98.28
2426	0:00	0	0:00	0:00
2427	0:00	0 0	0:00	0:00
2428	0:00	0	0:00	0:00
2429	2:08	51	0:04	0:31
2430	1:38	27	0:05	0:27
2431	3:42	47	0:07	0:57
2432	0:53	25	0:03	0:12
2433	4:35	46	0:08	1:04
2434	124:17	94	1:40	31:13
2435	639:13	291	2:53	181:23
2436	677:17	333	3:19	209:39
2437	71:37	146	0:39	25:51
2438	17:46	44	0:31	5:49
2439	46:18	136	0:30	17:33
2440	41:45	112	0:32	15:07
2441	194:30	205	2:19	64:49
2442	204.09	210	2.10 1.47	99.22
2443	229.30	220	1.47	95.24
2444	264.47	242	1.52	97:47
2446	337:36	253	2:05	122:17
2447	305:51	268	2:01	117:26
2448	289:42	227	1:53	96:03
2449	552:35	261	3:05	158:09
2450	664:49	323	2:54	222:07
2451	78:14	197	0:47	28:15
2452	82:26	198	0:49	29:36
2453	46:13	78	0:56	10:41
2454	1:41	30	0:05	0:27
2455	16:31	98	0:25	5:21
2456	23:43	120	0:27	6:53
2457	23:31	115	0:27	6:48
2458	1/0:20	150	1:19	81:58
2409	200.00	212	2.12	70.57
2400	290.09	201	1.36	98.08
2462	465:30	249	2:41	178:05
2463	59:26	160	0:42	24:56
2464	41:52	151	0:25	15:01
2465	123:34	161	1:12	37:22
2466	302:38	248	2:20	133:01
2467	44:27	130	0:34	15:45
2468	84:23	184	0:43	31:35
2469	226:19	259	1:34	76:17
2470	508:17	245	2:37	174:55
2471	18:24	62	0:26	5:08
24/2	18:23	84	0:23	5:41
24/3	165:17	15/	2:03	82:44
24/4 2/75	33:22 200-51	149	U.3Z	10.00 80·10
2413	200.01	201	1.37	130.14
2470	207.19	271	1.12	65:09
2478	50:17	150	0:39	18:01
2479	51:37	135	0:46	19:05
2480	75:05	161	1.06	20.59

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com Calculated: 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

cont	inued from previ	ous page		
	Shadow, worst	t case		Shadow, expected values
No.	Shadow hours	Shadow days	Max shadow	Shadow hours
	per year	per year	hours per day	per year
2401	[n/year]	[days/year]	[n/day]	[n/year]
2481	284:07	234	2:01	83:21
2402	144.03	221	1.13	50.10
2403	129.40	205	0.55	47.40
2404	165.16	237	1.12	52.41
2403	181.02	237	1.12	69.23
2487	279:22	240	1:40	118:49
2488	129:49	219	1:01	46:40
2489	105:58	227	0:54	37:00
2490	118:50	240	0:57	42:21
2491	184:51	274	1:13	68:35
2492	172:40	275	1:04	63:51
2493	48:36	198	0:30	17:40
2494	77:55	173	0:45	28:33
2495	52:01	91	0:51	17:45
2496	197:00	179	1:27	86:34
2497	270:00	163	2:36	92:25
2498	262:17	219	2:11	84:51
2499	168:00	188	2:11	49:01
2500	//:46	105	1:02	40:06
2501	399:03	217	2:35	190:06
2502	139:24	170	1:22	41:38
2503	11/:38	219	1:14	41:56
2504	202.50	270	1:24	33:15 121-10
2505	392.00	270	2.20	101.19
2500	522.25 622.57	240	2.34	102.27
2508	298.26	250	1.42	109.29
2500	63:38	117	0.53	22.16
2510	116:18	189	1:01	51:04
2511	32:16	83	0:38	11:14
2512	33:10	83	0:38	11:33
2513	178:12	176	2:17	76:18
2514	25:07	77	0:33	8:44
2515	41:26	94	0:42	13:55
2516	30:34	80	0:36	10:27
2517	25:57	80	0:33	9:01
2518	636:57	344	3:58	289:32
2519	606:32	326	3:31	218:56
2520	419:39	228	2:49	103:25
2521	336:44	199	2:29	130:17
2522	185:16	171	1:35	69:18
2523	0:00	0	0:00	0:00
2524	0:00	0	0:00	0:00
2525	0:00	0	0:00	0:00
2520	0:00	0	0:00	0:00
2527	0.00	0	0.00	0.00
2520	3.20	11	0.00	0:46
2530	0:00	0	0:00	0:00
2531	13:09	99	0:20	4:03
2532	10:34	88	0:18	3:14
2533	18:20	96	0:21	6:16
2534	28:53	87	0:29	9:02
2535	19:08	126	0:19	6:32
2536	16:23	101	0:17	5:14
2537	10:59	55	0:19	3:31
2538	51:57	197	0:27	15:35
2539	46:43	213	0:30	16:12
2540	41:01	179	0:28	13:34
2541	28:03	138	0:24	9:30

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com Calculated: 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

cont	inued from previ	ous page		
	Shadow, wors	t case		Shadow, expected values
No.	Shadow hours	Shadow days	Max shadow	Shadow hours
	per year	per year	hours per day	per year
25/2	20·40	[uays/year]	[1/uay] 0:25	11·/2
2542	20.23	74	0.23	7:04
2544	23:13	105	0:30	7:47
2545	23:31	105	0:30	7:52
2546	22:57	101	0:30	7:55
2547	25:21	113	0:31	8:22
2548	18:43	66	0:29	7:26
2549	16:22	61	0:27	6:34
2550	38:13	158	0:31	15:57
2551	62:14	185	0:40	28:57
2552	5:38	64	0:11	1:45
2553	15:43	143	0:12	4:28
2554	9:26	/3	0:12	2:55
2555	/:5/	66 107	0:11	2:28
2000	21:23	107	0:20	0.27
2557	19.14 18.58	103	0.20	9.37
2559	16.30	121	0.13	6:09
2560	10:54	40	0:21	4:38
2561	9:04	35	0:19	3:47
2562	93:59	126	0:56	26:03
2563	255:56	278	2:23	96:19
2564	596:59	338	3:23	278:40
2565	291:42	248	2:03	93:46
2566	340:18	248	2:17	152:15
2567	152:36	235	1:07	45:42
2568	146:18	247	1:09	49:05
2569	98:41	244	0:47	36:39
2570	2:24	20	0:09	0:46
2571	2:44	19	0:11	0:57
2572	37:59	102	0:30	6:20
2573	0.00	03	0.20	0:00
2575	63:51	94	0:00	20.10
2576	64:32	120	0:43	20:53
2577	61:40	143	0:44	20:10
2578	62:26	138	0:44	20:23
2579	64:21	144	0:45	21:04
2580	64:24	127	0:43	21:00
2581	0:00	0	0:00	0:00
2582	9:46	34	0:21	3:13
2583	38:15	123	0:32	16:56
2584	16:17	58	0:30	5:37
2585	16:05	6 I 110	0:30	5:28
2000	40.43	225	0.43	17.00
2588	567.12	235	2.30 1·11	175.02
2589	212.43	209	1.39	67.14
2590	294:54	248	1:47	85:45
2591	9:40	50	0:17	3:36
2592	9:33	45	0:17	3:43
2593	4:02	33	0:10	1:26
2594	4:41	36	0:11	1:37
2595	35:22	96	0:25	9:16
2596	14:56	81	0:15	4:46
2597	131:28	230	0:52	42:57
2598	0:00	0	0:00	0:00
2599	0:00	U	0:00	0:00
2000	0:00	U	0:00	0.00
2001 2602	0.00	0	0.00	0.00
2002	0.00	0	0.00	0.00

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

cont	inued from previ	ous page		
	Shadow, wors	t case		Shadow, expected values
NO.	Shadow hours	Shadow days	Max shadow	Shadow hours
	[b/vear]	[days/year]	Induis per day	per year [b/year]
2603		[uays/year]	0.00	0.00
2603	0.00	0	0.00	0:00
2605	21:37	69	0:27	8:45
2606	25:05	76	0:26	10:39
2607	27:46	80	0:27	11:49
2608	0:00	0	0:00	0:00
2609	0:00	0	0:00	0:00
2610	158:51	159	1:24	50:57
2611	278:06	231	1:52	87:28
2612	118:18	177	1:09	56:40
2613	547:56	295	2:45	201:44
2614	390:20	298	2:00	170:58
2615	89:32	210	0:40	35:44
2616	79:02	224	0:36	31:57
2617	59:22	169	0:31	25:55
2618	39:57	1/6	0:27	11:31
2019	8:38	02	0:11	2:54
2620	0.33	5Z 63	0.15	2.09
2627	5.10	40	0.15	1.37
2622	4.00	28	0.10	1.20
2623	0:00	0	0:00	0:00
2625	0:00	0	0:00	0:00
2626	0:00	0	0:00	0:00
2627	0:00	0	0:00	0:00
2628	0:00	0	0:00	0:00
2629	0:00	0	0:00	0:00
2630	36:49	112	0:33	17:48
2631	4:56	55	0:09	2:47
2632	6:16	30	0:16	1:56
2633	11:10	55	0:20	3:46
2634	6:36	26	0:19	2:15
2635	6:20	26	0:18	2:09
2636	13:09	63	0:21	4:24
2037	13:47	70 77	0:21	4:37
2030	15.00	77	0.21	5.24
2640	15.23	69	0.22	5.17
2641	18:27	82	0.22	6:15
2642	8:32	29	0:22	2:56
2643	47:03	124	0:46	16:01
2644	48:26	123	0:46	16:29
2645	391:02	210	2:42	118:31
2646	237:18	176	2:11	54:22
2647	364:26	189	2:31	80:51
2648	63:05	125	0:48	21:18
2649	145:35	230	1:10	46:07
2650	149:06	248	1:06	53:26
2651	156:37	207	1:17	59:22
2052	/2:20	1/2	0:58	24:48
2003	287:11	233	2:01	25:04
2004	12.17 69.27	171	0.39	20.04 2 1 ·15
2000	142.12	200	1.40	24.1J 46·44
2657	49:51	157	0:41	17:17
2658	25:52	84	0:32	9:40
2659	20:40	84	0:29	7:06
2660	9:19	31	0:22	3:11
2661	0:00	0	0:00	0:00
2662	450:37	253	2:43	214:19
2663	653:02	341	3:58	225:28

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

inued from previ			
Shadow, wors	t case		Shadow, expected values
Shadow hours	Shadow days	Max shadow	Shadow hours
per year	per year	hours per day	per year
[h/year]	[days/year]	[h/day]	[h/year]
598:09	327	4:01	192:20
280:40	274	1:35	111:15
0:00	0	0:00	0:00
0:00	0	0:00	0:00
3:25	31	0:10	1:04
3:29	30	0:11	1:05
3:11	31	0:10	0:59
15:40	60	0:23	5:43
16:06	62	0:23	5:54
16:06	62	0:23	5:54
15:48	62	0:24	5:33
14:39	57	0:23	5:04
14:43	58	0:23	5:08
17:14	65	0:23	6:31
17:21	64	0:24	6:33
12:28	56	0:21	4:19
12:51	58	0:21	4:25
20:45	103	0:22	7:15
33:44	149	0:23	12:24
23:08	99	0:23	8:57
28:55	123	0:24	11:00
24:01	95	0:24	9:12
11:30	94	0:12	2:51
12:30	100	0:12	3:08
10:38	95	0:12	2:37
8:17	90	0:11	2:00
7:11	87	0:10	1:44
	inued from previ Shadow, wors Shadow hours per year [h/year] 598:09 280:40 0:00 0:00 3:25 3:29 3:11 15:40 16:06 16:06 15:48 14:39 14:43 17:14 17:21 12:28 12:51 20:45 33:44 23:08 28:55 24:01 11:30 12:30 10:38 8:17 7:11	inued from previous page Shadow, worst case Shadow hours Shadow days per year per year [h/year] [days/year] 598:09 327 280:40 274 0:00 0 0:00 0 3:25 31 3:29 30 3:11 31 15:40 60 16:06 62 16:06 62 16:06 62 17:14 65 17:21 64 12:28 56 12:51 58 20:45 103 33:44 149 23:08 99 28:55 123 24:01 95 11:30 94 12:30 100 10:38 95 8:17 90 7:11 87	inued from previous page Shadow, worst case Shadow hours Shadow days Max shadow per year per year hours per day [h/year] [days/year] [h/day] 598:09 327 4:01 280:40 274 1:35 0:00 0 0:00 0:00 0 0:00 3:25 31 0:10 3:29 30 0:11 3:11 31 0:10 15:40 60 0:23 16:06 62 0:23 16:06 62 0:23 15:48 62 0:24 14:39 57 0:23 17:14 65 0:23 17:21 64 0:24 12:28 56 0:21 12:51 58 0:21 12:51 58 0:22 33:44 149 0:23 28:55 123 0:24 24:01

Total amount of flickering on the shadow receptors caused by each WTG No. Name Worst case Expected

· ·			Empoorod
		[h/year]	[h/year]
1	D1	420:49	174:41
2	D2	566:52	202:04
3	D3	285:55	97:10
4	D4	568:50	202:18
5	D5	1326:17	519:29
6	D6	1244:20	381:52
7	D7	352:29	151:44
8	D8	385:53	154:47
9	D9	564:07	159:33
10	D10	159:53	67:58
11	D11	795:31	281:20
12	D12	428:07	168:13
13	D13	189:45	62:55
14	D14	227:14	73:18
15	D15	315:49	130:54
16	D16	660:24	236:48
17	D17	486:13	171:21
18	D18	210:48	73:39
19	D19	231:24	84:49
20	C1	313:44	106:10
21	C2	744:00	285:45
22	C3	277:43	97:20
23	C5	133:21	48:30
24	C6	295:15	102:17
25	C7	213:33	73:24
26	C8	268:00	90:22
27	C10	1365:12	512:46
28	C11	628:07	223:21
29	C12	1071:25	432:54

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 5:08 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Worst Case

continued	from previous page		
No. Name	Worst case	Expected	
	[h/year]	[h/year]	
30 C16	1886:45	700:22	
31 C19	274:31	91:25	
32 B1	388:53	136:52	
33 B2	999:51	322:31	
34 B7	628:00	242:30	
35 B9	1298:11	397:18	
36 B10	1971:27	706:30	
37 B11	1049:46	347:49	
38 B13	1353:41	443:15	
39 B14	591:20	177:39	
40 B15	287:13	95:37	
41 B17	309:30	110:17	
42 B18	215:46	79:40	
43 B19	1164:28	391:51	
44 A2	1367:18	430:14	
45 A5	368:24	140:51	
46 A6	696:22	252:36	
47 A7	376:50	129:15	
48 A9	893:55	376:05	
49 A10	328:33	117:00	
50 A11	576:37	235:13	
51 A12	265:24	83:06	
52 A15	186:26	60:05	
53 A17	818:49	289:33	
54 A18	394:13	156:18	
55 A19	430:03	191:17	
56 C4	168:01	57:54	
57 C9	245:31	93:11	
58 C13	102:43	34:01	
59 C14	1407:58	473:39	
60 C15	680:24	285:34	
61 017	532:33	207:55	
62 B3	1297:07	529:12	
63 B4	241:43	83:40	
64 B5	1954:50	667:18	
65 B6	1206:03	459:09	
66 B8	1//4:1/	680:43	
0/ BIO	/95:49	2/1:00	
08 AT	1307:24	203:38	
09 A3	197:02	03:45	
/U A8	292:13	95:04 121-01	
/ I AI 3	338:30	131:01	
12 AI4	900:42	321:14	
13 AIO	203:20	90:24	

Total times in Receptor wise and WTG wise tables can differ, as a WTG can lead to flicker at 2 or more receptors simultaneously and/or receptors may receive flicker from 2 or more WTGs simultaneously.

APPENDIX M SHADOW FLICKER MAIN RESULTS – REAL CASE SCENARIO

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

-2,650

-2,650

-2,650

-2,650

-2,650

2,650

2.650

2,650

2.650

2,650

141.0

141.0

141.0

141.0

141.0

27 854,269 1,446,917 781.0 C10

28 853,423 1,446,806 758.3 C11

29 853,763 1,446,020 746.4 C12

30 852,210 1,445,365 749.5 C16

To be continued on next page...

No

No

No

No

No

Envision

Envision

Envision

Envision

130.0

130.0

130.0

130.0

2,500

2.500

2,500

2,500

2,500

0.0

0.0

0.0

0.0

0.0

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page

continueu i	rom previo	us pay	C	WTC	A. 110.0						**
Facting	Northing	7	Dour	Volid	type	Tuno gonorator	Dowor roted	Datar	Llub boight	Snauow ua	
Easting	Northing	Z	KOW	valid	Manufact.	Type-generator	Power, rated	ROLOI	Hub neight	Calculation	RPIVI
		f	data/Description				EL 3 A / I	diameter	[]	distance	
		[m]					[KVV]	[m]	[m]	[m]	[RPIVI]
31 852,278	1,445,974	734.6	C19	No	Envision	-2,650	2,650	141.0	130.0	2,500	0.0
32 847,925	1,447,138	729.1	B1	No	Envision	-2,650	2,650	141.0	130.0	2,500	0.0
33 847,463	1,446,986	700.3	B2	No	Envision	-2,650	2,650	141.0	130.0	2,500	0.0
34 844,831	1,445,373	655.4	B7	No	Envision	-2,650	2,650	141.0	130.0	2,500	0.0
35 844,818	1,444,179	673.2	B9	No	Envision	-2,650	2,650	141.0	130.0	2,500	0.0
36 845,656	1,444,245	688.7	B10	No	Envision	-2,650	2,650	141.0	130.0	2,500	0.0
37 845,338	1,444,410	675.6	B11	No	Envision	-2,650	2,650	141.0	130.0	2,500	0.0
38 846,270	1,444,717	675.9	B13	No	Envision	-2,650	2,650	141.0	130.0	2,500	0.0
39 845,751	1,445,162	655.7	B14	No	Envision	-2,650	2,650	141.0	130.0	2,500	0.0
40 847.550	1.445.475	680.0	B15	No	Envision	-2.650	2,650	141.0	130.0	2,500	0.0
41 847 491	1,446,156	628.2	B17	No	Envision	-2.650	2,650	141.0	130.0	2,500	0.0
42 847 912	1 445 475	704 0	B18	No	Envision	-2 650	2,650	141.0	130.0	2 500	0.0
43 848 481	1 446 623	711 4	B19	No	Envision	-2,650	2,600	141.0	130.0	2,000	0.0
11 846 071	1 1 1 3 1 00	687.3	Δ2	No	Envision	-2,650	2,000	141.0	130.0	2,500	0.0
15 813 103	1 //1 016	624.0	A2 A5	No	Envision	2,650	2,050	1/1.0	130.0	2,500	0.0
45 045,475	1,441,910	640 7	AJ A4	No	Envision	-2,030	2,030	141.0	120.0	2,500	0.0
40 044,200	1,442,490	049.7 400 E	A0	NO	Envision	-2,000	2,000	141.0	130.0	2,300	0.0
47 843,000	1,442,177	023.5	A7	NO	Envision	-2,050	2,050	141.0	130.0	2,500	0.0
48 844,931	1,441,379	053.2	A9	NO	Envision	-2,650	2,650	141.0	130.0	2,500	0.0
49 845,688	1,441,648	667.7	A10	NO	Envision	-2,650	2,650	141.0	130.0	2,500	0.0
50 846,237	1,441,903	/11.0	ATT	NO	Envision	-2,650	2,650	141.0	130.0	2,500	0.0
51 847,142	1,442,842	697.1	A12	No	Envision	-2,650	2,650	141.0	130.0	2,500	0.0
52 846,049	1,440,780	660.4	A15	No	Envision	-2,650	2,650	141.0	130.0	2,500	0.0
53 846,819	1,442,473	704.7	A17	No	Envision	-2,650	2,650	141.0	130.0	2,500	0.0
54 843,046	1,441,629	597.8	A18	No	Envision	-2,650	2,650	141.0	130.0	2,500	0.0
55 844,258	1,440,850	622.6	A19	No	Envision	-2,650	2,650	141.0	130.0	2,500	0.0
56 852,387	1,448,118	756.9	C4	No	Envision	-2,650	2,650	141.0	130.0	2,500	0.0
57 854,775	1,447,751	760.1	C9	No	Envision	-3,000	3,000	156.0	130.0	2,500	0.0
58 853,328	1,445,045	756.5	C13	No	Envision	-3,000	3,000	156.0	130.0	2,500	0.0
59 853,282	1,445,629	761.2	C14	No	Envision	-3,000	3,000	156.0	130.0	2,500	0.0
60 853,212	1,446,272	762.5	C15	No	Envision	-3,000	3,000	156.0	130.0	2,500	0.0
61 851,878	1,446,443	742.0	C17	No	Envision	-3,000	3,000	156.0	130.0	2,500	0.0
62 847,116	1,447,121	673.4	B3	No	Envision	-3,000	3,000	156.0	130.0	2,500	0.0
63 846,486	1,446,202	627.8	B4	No	Envision	-3,000	3,000	156.0	130.0	2,500	0.0
64 844 935	1,446,396	622.3	B5	No	Envision	-3.000	3,000	156.0	130.0	2,500	0.0
65 845 275	1 445 950	633 3	B6	No	Envision	-3,000	3,000	156.0	130.0	2 500	0.0
66 844 933	1 444 699	652.4	B8	No	Envision	-3 000	3,000	156.0	130.0	2,000	0.0
67 847 181	1 111 913	676 3	B16	No	Envision	-3 000	3,000	156.0	130.0	2,500	0.0
68 847 171	1,444,745	605 8	Δ10 Λ1	No	Envision	3,000	3,000	156.0	130.0	2,500	0.0
40 047,171	1,443,079	451 2	A1 A2	No	Envision	-3,000	3,000	150.0	130.0	2,500	0.0
	1,442,400	407 4	A0	No	Envision	-3,000	3,000	150.0	130.0	2,300	0.0
70 844,059	1,441,327	027.4 405 2	A0	NO	Envision	-3,000	3,000	100.0	130.0	2,500	0.0
1 040,049	1,441,200	670.3	A13	NO	Envision	-3,000	3,000	100.0	130.0	2,500	0.0
12 840,844	1,440,509	0/8.3	A14	NO	Envision	-3,000	3,000	150.0	130.0	2,500	0.0
/3 845,028	1,440,930	637.5	A16	NO	Envision	-3,000	3,000	156.0	130.0	2,500	0.0

Shad	dow re	ceptor-I	nput						
No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
						a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
1	855,607	1,454,197	794.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2	855,649	1,454,043	788.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
3	855,539	1,454,106	791.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
4	854,743	1,454,059	745.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
5	854,838	1,454,025	749.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
6	854,389	1,454,069	747.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
7	854,226	1,453,999	743.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
8	854,173	1,453,995	745.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
9	854,038	1,454,017	742.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
10	853,705	1,454,091	725.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
11	853,498	1,454,053	720.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
						a.g.l.	window		(ZVI) a.g.l.
10	050 104	1 452 0/5	[m]	[m]	[m]	[m]	[°]		[m]
12	853,134	1,453,865	720.8	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
13	853,148	1,453,877	750 1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
14	000,420	1,400,702	750.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
16	853 5/3	1,453,075	759.Z	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
17	854 319	1 453 789	728.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
18	854 265	1 453 620	748.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
19	854,461	1.453.852	736.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
20	854.628	1.453.833	745.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
21	854,679	1,453,761	753.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
22	854,717	1,453,793	743.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
23	854,727	1,453,706	759.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
24	854,735	1,453,664	770.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
25	854,670	1,453,529	783.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
26	854,796	1,453,693	758.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
27	854,956	1,453,672	771.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
28	854,975	1,453,861	742.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
29	855,042	1,453,534	785.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
30	855,124	1,453,571	790.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
31	855,344	1,453,709	796.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
32	855,175	1,453,958	750.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
33	855,407	1,453,761	793.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
34 25	855,300	1,454,010	701.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
30	000,003	1,403,793	700 4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
20	000,000 855 852	1,403,713	700.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
30	855 831	1,453,075	782.3	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
30	856 053	1 453 627	786.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
40	856,115	1.453.655	784.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
41	856,165	1,453,766	786.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
42	856,057	1,453,868	786.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
43	856,086	1,453,934	785.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
44	856,270	1,453,756	775.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
45	856,223	1,453,737	779.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
46	856,528	1,453,356	782.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
47	856,433	1,453,310	769.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
48	856,374	1,453,298	778.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
49	856,352	1,453,275	775.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
50	856,347	1,453,289	774.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
51	855,929	1,453,442	//8.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
52	856,072	1,453,412	768.3	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
53	056 007	1,453,425	709.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
55	000,007 855 182	1,403,024	700.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
56	855 201	1 / 53 / 12	781 0	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
57	854 943	1 453 317	757 1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
58	854 551	1 453 442	785.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
59	854.542	1.453.440	784.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
60	854,554	1,453,452	785.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
61	854,442	1,453,225	768.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
62	853,980	1,453,320	773.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
63	853,980	1,453,225	766.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
64	853,711	1,453,433	747.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
65	852,987	1,453,305	735.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
66	852,461	1,453,185	759.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
67	851,464	1,452,693	762.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
68	851,494	1,452,668	759.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
69	851,657	1,452,781	762.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
70	851,686	1,452,751	/53.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
71	851,674	1,452,722	/50.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
12	051,/68	1,452,819	151.0	1.0	1.0	1.0	90.0	Green nouse mode"	2.0
13	051,/51	1,452,843	100.0	1.0	1.0	1.0	90.0	Green nouse mode"	2.0

To be continued on next page...

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

.continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
	5	5			5	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
74	851,770	1,452,888	759.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
75	851,828	1,452,885	753.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
76	851,918	1,452,911	743.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
77	851,839	1,452,989	757.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
78	851,910	1,453,016	748.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
79	852,193	1,452,853	753.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
80	852,290	1,452,628	779.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
81	852,405	1,452,628	776.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
82	852,634	1,452,661	780.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
83	852,708	1,452,607	783.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
84	852,752	1,453,024	768.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
85	852,782	1,453,028	766.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
86	852,787	1,453,027	766.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
87	853,799	1,452,931	759.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
88	853,774	1,453,098	744.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
89	854,138	1,453,173	766.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
90	854,158	1,453,125	760.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
91	854,246	1,453,102	759.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
92	854,271	1,453,126	763.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
93	854,281	1,453,111	763.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
94	854,446	1,452,948	762.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
95	855,574	1,453,053	762.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
96	855,861	1,453,095	770.3	1.0	1.0	1.0	90.0	Green nouse mode	2.0
97	855,789	1,453,035	766.2	1.0	1.0	1.0	90.0	Green nouse mode	2.0
98	855,765	1,453,114	763.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
100	855,840	1,452,930	783.0	1.0	1.0	1.0	90.0	Green house mode	2.0
100	855,978	1,453,022	701.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
101	800,970	1,452,872	794.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
102	056,100	1,452,911	791.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
103	050,137	1,452,975	790.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
104	000,421	1,402,001	700.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
100	000,044	1,402,002	007 0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
100	050,333	1,452,001	007.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
107	855 887	1,452,477	807 0	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
100	855 736	1,452,721	7923	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
110	855 905	1 452 451	805.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
111	855 487	1 452 523	795 3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
112	852 707	1 452 475	781.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
113	852 667	1 452 478	782.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
114	852,617	1,452,461	786.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
115	852,536	1,452,493	793.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
116	852,522	1,452,505	792.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
117	852,471	1,452,440	791.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
118	852,459	1,452,439	791.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
119	852,422	1,452,468	792.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
120	852,385	1,452,506	792.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
121	852,437	1,452,541	789.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
122	852,314	1,452,497	787.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
123	852,323	1,452,455	790.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
124	852,341	1,452,414	788.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
125	852,290	1,452,400	789.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
126	852,160	1,452,399	786.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
127	852,196	1,452,445	784.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
128	852,236	1,452,478	786.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
129	852,141	1,452,447	784.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
130	852,089	1,452,427	778.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
131	852,079	1,452,432	777.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
132	852,077	1,452,399	776.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
133	852,080	1,452,375	779.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
134	852,077	1,452,351	781.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
135	852,063	1,452.345	780.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page

No.	Easting	Northing	Ż	Width	Height	Elevation	Slope of	Direction mode	Eye height
	5	5			5	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
136	852,113	1.452.314	782.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
137	852,122	1,452,361	784.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
138	852,172	1,452,347	785.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
139	852 183	1 452 350	785.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
140	852 210	1 452 354	786.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
141	852 243	1 452 358	788.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1/2	852,243	1 452 360	789 5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
142	852 304	1,452,500	709.5	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
143	852 160	1 452 313	700.5	1.0	1.0	1.0	0.0	"Green house mode"	2.0
144	852,100 852,100	1 452 300	702.0	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
145	052,100	1,452,500	702.5	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
140	052,029	1,452,277	703.7	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
147	052,025	1,402,200	707.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
140	052,010	1,452,204	707.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
149	852,027	1,452,207	784.8	1.0	1.0	1.0	90.0	Green nouse mode	2.0
150	852,073	1,452,245	103.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
151	852,089	1,452,260	783.2	1.0	1.0	1.0	90.0	Green nouse mode	2.0
152	852,006	1,452,103	782.4	1.0	1.0	1.0	90.0	Green nouse mode	2.0
153	852,009	1,452,113	/81./	1.0	1.0	1.0	90.0	"Green house mode"	2.0
154	852,046	1,452,028	/82.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
155	852,012	1,451,868	775.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
156	852,005	1,451,869	775.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
157	852,086	1,451,880	777.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
158	852,314	1,452,225	780.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
159	852,467	1,452,272	785.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
160	852,641	1,452,161	767.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
161	853,600	1,452,268	760.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
162	853,453	1,452,606	769.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
163	853,641	1,452,300	759.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
164	854,353	1,452,454	763.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
165	854,376	1,452,507	769.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
166	854,273	1,452,359	763.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
167	854,222	1,452,355	762.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
168	854,245	1,452,308	764.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
169	854,568	1,452,273	773.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
170	854,620	1,452,298	776.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
171	855.313	1.452.283	810.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
172	855.364	1,452,465	805.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
173	855.277	1.452.642	807.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
174	855,402	1,452,377	808.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
175	856 210	1 452 393	823 5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
176	856 356	1 452 403	822.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
177	856 803	1 452 284	831.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
178	856 894	1 452 278	828.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
179	856 802	1 452 137	831 1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
180	856 792	1 152 233	83/1 2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
181	856 738	1 152 287	820.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
101	056 604	1,452,207	027.2	1.0	1.0	1.0	20.0	"Groop bouso modo"	2.0
102	050,094	1,452,200	027.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
103	050,399	1,402,200	020.9	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
104	050,375	1,452,252	010.1	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
100	050,270	1,452,251	016.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
100	000,270	1,452,220	010.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
187	850,151	1,452,148	805.2	1.0	1.0	1.0	90.0	Green nouse mode	2.0
188	856,058	1,452,151	801.1	1.0	1.0	1.0	90.0	Green nouse mode	2.0
189	856,223	1,452,067	/98.6	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
190	856,970	1,451,222	//6.5	1.0	1.0	1.0	90.0	Green nouse mode"	2.0
191	856,843	1,450,898	/6/.5	1.0	1.0	1.0	90.0	Green house mode"	2.0
192	856,719	1,451,320	/86.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
193	856,510	1,451,045	784.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
194	856,278	1,451,035	/87.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
195	856,251	1,451,255	787.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
196	853,786	1,451,240	806.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
197	853,917	1,451,093	805.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page

No.	Easting	Northing	Ž	Width	Height	Elevation	Slope of	Direction mode	Eye height
	5	5			5	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		Ì [m]
198	854.353	1.451.071	768.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
199	852,908	1,450,812	805.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
200	852.873	1,450,851	803.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
201	852 865	1 450 817	806.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
202	852 858	1 450 758	812.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
202	852 866	1 450 696	812.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
203	852,000	1,450,070	Q1/ Q	1.0	1.0	1.0	00.0	"Green house mode"	2.0
204	852 787	1,450,700	Q14.7	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
205	052,707	1,450,774	014.0	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
200	052,112	1,450,790	013.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
207	052,700	1,450,625	012.4	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
200	002,709	1,450,910	004.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
209	852,750	1,450,832		1.0	1.0	1.0	90.0	"Green house mode"	2.0
210	852,707	1,450,918	805.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
211	852,680	1,451,145	804.1	1.0	1.0	1.0	90.0	Green nouse mode	2.0
212	852,478	1,451,046	794.9	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
213	852,454	1,451,055	792.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
214	852,439	1,451,059	790.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
215	852,432	1,451,057	790.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
216	852,406	1,451,063	789.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
217	852,366	1,451,050	789.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
218	852,352	1,451,031	788.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
219	852,417	1,451,107	792.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
220	852,380	1,451,105	792.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
221	852,374	1,451,104	793.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
222	852,361	1,451,103	793.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
223	852,353	1,451,105	793.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
224	852,329	1,451,106	793.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
225	852,335	1,451,167	797.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
226	852,350	1,451,167	797.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
227	852,268	1,451,056	791.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
228	852,261	1.451.059	792.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
229	852,257	1,451,104	792.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
230	852,253	1,451,098	792.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
231	852 223	1 451 099	793.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
232	852 233	1 451 107	7933	1.0	1.0	1.0	90.0	"Green house mode"	2.0
232	852 184	1 451 090	792.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
234	Q52,104	1 / 51 / 007	702.0	1.0	1.0	1.0	00.0	"Green house mode"	2.0
234	852 175	1 / 51 102	701 /	1.0	1.0	1.0	90.0	"Green house mode"	2.0
235	Q52,173	1,451,102	701 0	1.0	1.0	1.0	00.0	"Green house mode"	2.0
230	052,137	1,451,105	791.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
23/	052,104	1,401,000	792.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
230	052,107	1,451,055	792.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
239	002,100	1,451,055	791.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
240	002,104	1,401,004	791.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
241	852,001	1,451,133	796.0	1.0	1.0	1.0	90.0	Green nouse mode	2.0
242	851,973	1,451,136	795.9	1.0	1.0	1.0	90.0	Green nouse mode	2.0
243	852,005	1,451,091	795.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
244	852,061	1,451,038	/94.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
245	852,046	1,451,045	794.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
246	852,038	1,451,045	794.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
247	852,026	1,451,043	795.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
248	852,016	1,451,046	795.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
249	852,009	1,451,051	795.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
250	852,005	1,451,050	795.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
251	851,992	1,451,048	797.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
252	851,986	1,451,046	798.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
253	851,976	1,451,039	799.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
254	851,971	1,451,034	800.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
255	851,963	1,451,029	800.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
256	851,953	1,451,027	802.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
257	851,960	1,451,052	801.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
258	851,956	1,451,049	801.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
259	851,948	1,451,045	803.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page

No.	Easting	Northing	Ž	Width	Height	Elevation	Slope of	Direction mode	Eye height
					0	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
260	851,904	1,451,046	803.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
261	851,891	1,451,046	802.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
262	851,874	1,451,041	801.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
263	851,893	1,451,027	802.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
264	851,862	1,451,041	800.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
265	851,844	1,451,030	0.008	1.0	1.0	1.0	90.0	"Green house mode"	2.0
266	851,825	1,451,042	800.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
267	851,848	1,450,994	800.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
268	851,854	1,450,998	800.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
269	851,828	1,450,980	801.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
270	851,807	1,451,031	801.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
271	851,900	1,450,990	801.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
272	851,914	1,450,992	802.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
273	851,932	1,451,000	802.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
274	851,941	1,451,007	802.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
275	851,935	1,451,008	802.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
276	851,909	1,451,092	801.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
277	851,895	1,451,074	802.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
278	851,879	1,451,085	802.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
279	851,842	1,451,081	801.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
280	851,816	1,451,079	801.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
281	851,742	1,451,097	798.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
282	851,938	1,450,960	804.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
283	851,909	1,450,943	804.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
284	851,873	1,450,926	806.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
285	851,819	1,450,914	805.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
286	851,713	1,450,865	804.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
287	851,/5/	1,450,857	804.8	1.0	1.0	1.0	90.0	Green nouse mode	2.0
288	851,957	1,450,926	801.5	1.0	1.0	1.0	90.0	Green nouse mode	2.0
289	851,932 0F1 017	1,450,919	803.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
290	051,917	1,450,913	803.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
291	051,904	1,450,913	804.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
292	051,944	1,400,000	797.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
293	001,900	1,400,001	190.1 000 7	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
294	051,917	1,400,070	700.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
290	051,901	1 /50 0/0	002 2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
290	Q51 Q12	1,450,049	805 5	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
277	851 801	1 / 50 835	805 <i>I</i>	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
270	851 776	1,450,055	804 0	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
300	851 721	1,450,020	804.0	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
301	851 617	1 450 838	803.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
302	851 639	1 450 849	803.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
303	851,654	1,450,836	803.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
304	851,587	1,450,825	803.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
305	851,576	1,450,823	804.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
306	851,559	1.450.812	805.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
307	851,540	1,450,802	805.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
308	851.529	1,450,802	805.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
309	851.524	1.450.771	803.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
310	851,537	1,450,778	803.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
311	851,554	1,450,788	804.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
312	851,552	1,450,779	803.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
313	851,604	1,450,802	804.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
314	851,564	1,450,752	799.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
315	851,586	1,450,765	799.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
316	851,601	1,450,770	801.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
317	851,642	1,450,778	803.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
318	851,544	1,450,739	798.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
319	851,480	1,450,779	803.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
320	851,467	1,450,780	804.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
321	851,452	1,450,771	803.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page

No.	Easting	Northing	Ż	Width	Height	Elevation	Slope of	Direction mode	Eye height
	5	5			5	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
322	851,439	1.450.763	802.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
323	851,416	1,450,764	801.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
324	851,380	1,450,754	800.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
325	851 374	1 450 753	799.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
326	851 355	1 450 747	798.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
327	851 341	1 450 712	794 9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
322	851 362	1 450 717	796.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
320	851 557	1 451 003	804.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
330	Q51 562	1 450 067	Q07.0	1.0	1.0	1.0	0.0	"Green house mode"	2.0
221	851 530	1 450 010	802.1	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
222	051,557	1,430,717	720 7	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
222	050,407	1,449,173	737.7	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
221	000,490	1,449,149	730.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
225	000,473	1,449,101	739.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
335	850,449	1,449,090	750.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
330	850,429	1,449,022	752.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
337	850,433	1,448,953	750.7	1.0	1.0	1.0	90.0	Green nouse mode	2.0
338	850,506	1,449,102	/38.0	1.0	1.0	1.0	90.0	Green nouse mode	2.0
339	850,516	1,449,064	/3/.6	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
340	850,498	1,449,010	739.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
341	850,475	1,448,924	747.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
342	850,495	1,448,904	/48.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
343	850,487	1,448,893	749.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
344	850,586	1,449,013	737.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
345	850,588	1,448,989	736.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
346	850,596	1,448,897	736.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
347	850,604	1,448,882	736.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
348	850,540	1,448,856	741.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
349	850,481	1,448,855	748.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
350	850,494	1,448,857	747.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
351	850,442	1,448,849	750.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
352	850,639	1,448,865	736.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
353	850,672	1,448,861	735.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
354	850,691	1,448,845	734.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
355	850,703	1,448,856	733.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
356	850,776	1,448,848	732.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
357	850,616	1,448,796	741.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
358	850,648	1,448,804	739.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
359	850,620	1,448,769	743.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
360	850,633	1,448,742	744.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
361	850,677	1,448,754	739.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
362	850,776	1,448,752	742.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
363	850,720	1,448,707	740.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
364	850,575	1,448,804	742.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
365	850,558	1,448,802	743.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
366	850,523	1,448,804	746.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
367	850,500	1,448,805	749.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
368	850,467	1,448,816	749.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
369	850,502	1,448,741	753.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
370	850,470	1,448,749	754.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
371	850,506	1,448,777	750.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
372	850,714	1,448,813	736.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
373	850.565	1,448,689	749.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
374	850 480	1 448 695	753.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
375	850,666	1,448,692	743.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
376	850 802	1 448 685	741 7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
377	850 846	1 448 682	738.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
372	850 877	1 448 712	736.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
270	850 877	1 448 644	732 Q	1.0	1.0	1.0	90.0	"Green house mode"	2.0
200	850 914	1 //2 6/1	736 0	1.0	1.0	1.0	90.0 QA A	"Green house mode"	2.0
201	QE0 704	1 //0 4/7	710.0	1.0	1.0	1.0	70.0 00 0	"Green house mode"	2.0
301 201	Q50,194	1 / / 0 405	740.3	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
30Z	050,100	1,440,000	741.0	1.0	1.0	1.0	70.0 00.0	"Croop bourse mode"	2.0
203	000,707	1,440,099	143.0	1.0	1.0	1.0	70.0	OLEEH HOUSE HIDDE	2.0

To be continued on next page...

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page

No.	Easting	Northing	Ž	Width	Height	Elevation	Slope of	Direction mode	Eye height
	-	-			-	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
384	850,704	1,448,601	743.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
385	850,649	1,448,599	745.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
386	850,554	1,448,597	749.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
387	850,497	1,448,590	748.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
388	850,481	1,448,586	749.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
389	850,449	1,448,590	750.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
390	850,470	1,448,660	753.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
391	850,903	1,448,557	730.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
392	850,841	1,448,551	732.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
393	850,829	1,448,553	733.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
394	850,812	1,448,543	735.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
395	850,719	1,448,555	744.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
396	850,697	1,448,524	741.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
397	850,672	1,448,504	738.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
398	850,579	1,448,550	744.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
399	850,542	1,448,547	744.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
400	850,534	1,448,542	743.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
401	850,538	1,448,528	742.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
402	850,577	1,448,580	747.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
403	850,506	1,448,494	739.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
404	850,546	1,448,268	742.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
405	850,681	1,448,277	737.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
406	850,705	1,448,067	756.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
407	850,733	1,448,075	755.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
408	850,716	1,448,087	756.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
409	850,791	1,448,079	752.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
410	850,769	1,448,116	752.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
411	850,768	1,448,138	751.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
412	850,734	1,448,138	755.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
413	850,838	1,448,041	752.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
414	850,842	1,447,993	754.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
415	850,879	1,447,989	752.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
416	850,906	1,447,982	753.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
417	850,889	1,448,049	750.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
418	850,858	1,448,031	752.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
419	850,854	1,448,089	745.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
420	850,906	1,448,118	743.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
421	850,884	1,448,150	743.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
422	850,851	1,448,125	743.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
423	850,812	1,448,186	741.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
424	850,851	1,448,194	742.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
425	850,851	1,448,240	739.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
426	850,905	1,448,177	741.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
427	850,927	1,448,191	739.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
428	850,941	1,448,149	737.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
429	850,947	1,448,091	740.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
430	850,999	1,448,062	742.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
431	851,009	1,448,245	731.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
432	851,010	1,448,229	732.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
433	851,012	1,448,198	734.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
434	851,070	1,448,218	729.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
435	851,056	1,448,197	731.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
436	851,084	1,448,234	727.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
437	851,094	1,448,208	730.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
438	851,060	1,448,271	727.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
439	851,061	1,448,288	727.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
440	851,092	1,448,290	727.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
441	851,017	1,448,313	730.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
442	851,032	1,448,275	729.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
443	851,008	1,448,259	730.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
444	851,006	1,448,332	730.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
445	851,103	1,448,336	727.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
	5	5			5	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		` [́m]
446	851,042	1,448,330	729.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
447	851,168	1,448,302	724.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
448	851,234	1,448,247	721.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
449	850,973	1,448,062	743.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
450	850,980	1,447,988	750.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
451	851.030	1,448,000	746.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
452	851 044	1 447 998	745 7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
453	851 064	1 447 991	745.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
454	850 991	1 447 960	752.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
455	850 953	1 447 952	756 1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
455	850 929	1 117 885	757 7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
450	850 894	1 117 887	752.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
458	850 951	1 1 1 7 888	757.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
150	850 977	1 //7 805	756.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
437	851 0/1	1 //7 807	7/0 8	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
400	851 06 <i>1</i>	1 //7 200	749.0	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
401	051,004	1 447,077	740.7	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
402	051,003	1,447,000	750.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
403	051,022	1,447,044	752.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
404	000,900	1,447,043	704.2	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
400	000,900	1,447,047	752.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
400	850,839	1,447,814	/58.2	1.0	1.0	1.0	90.0	Green nouse mode	2.0
467	851,021	1,448,161	131.2	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
468	851,029	1,448,084	741.1	1.0	1.0	1.0	90.0	Green nouse mode	2.0
469	851,028	1,448,032	743.6	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
470	851,058	1,447,965	747.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
4/1	851,167	1,447,915	742.4	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
4/2	851,172	1,447,942	740.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
4/3	850,984	1,447,743	/54.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
4/4	850,964	1,447,781	754.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
475	850,914	1,447,730	/54.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
4/6	850,905	1,447,699	/52.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
4//	850,955	1,447,679	/56.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
478	850,997	1,447,700	/5/.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
479	850,991	1,447,681	759.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
480	850,944	1,447,641	752.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
481	850,991	1,447,622	755.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
482	850,909	1,447,642	744.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
483	850,843	1,447,625	739.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
484	850,930	1,447,530	740.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
485	850,993	1,447,536	743.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
486	851,025	1,447,543	745.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
487	850,972	1,447,470	738.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
488	850,935	1,447,444	734.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
489	851,457	1,448,121	714.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
490	851,456	1,448,143	715.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
491	851,441	1,448,225	712.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
492	851,351	1,448,208	714.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
493	851,939	1,447,800	732.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
494	851,931	1,447,739	730.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
495	851,979	1,447,753	731.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
496	851,964	1,447,702	728.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
497	851,938	1,447,694	726.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
498	851,893	1,447,697	722.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
499	851,872	1,447,591	718.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
500	851,964	1,447,583	715.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
501	851,991	1,447,642	722.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
502	852,035	1,447,698	728.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
503	851,998	1,447,690	727.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
504	852,077	1,447,692	730.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
505	852,092	1,447,696	731.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
506	852,137	1,447,695	730.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
507	852,186	1,447,708	729.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
	5	5			5	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		` [́m]
508	852,222	1,447,702	730.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
509	852,256	1,447,714	729.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
510	852,303	1,447,726	728.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
511	852,356	1,447,731	727.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
512	852,373	1,447,740	727.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
513	852,243	1,447,759	732.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
514	852,131	1,447,732	730.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
515	851,991	1,447,812	735.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
516	852,241	1,447,886	750.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
517	852,299	1,447,768	731.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
518	852,346	1,447,785	731.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
519	852,396	1,447,804	731.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
520	852,342	1,447,832	735.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
521	852,332	1,447,879	739.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
522	852,442	1,447,777	727.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
523	852,475	1,447,775	724.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
524	852,506	1,447,791	725.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
525	852,461	1,447,829	727.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
526	852,571	1,447,843	727.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
527	852,625	1,447,861	727.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
528	852,641	1,447,949	736.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
529	852,393	1,448,373	763.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
530	852,533	1,448,376	768.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
531	852,567	1,448,474	767.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
532	852,676	1,448,523	771.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
533	852,733	1,448,543	769.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
534	852,772	1,448,578	772.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
535	852,822	1,448,652	774.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
536	852,873	1,448,540	774.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
537	852,819	1,448,515	770.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
538	852,791	1,448,493	770.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
539	853,026	1,448,836	769.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
540	853,030	1,449,000	773.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
541	852,874	1,449,018	757.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
542	853,101	1,449,204	773.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
543	853,147	1,449,208	773.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
544	853,085	1,449,174	772.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
545	853,071	1,449,138	771.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
546	853,177	1,449,380	781.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
547	853,285	1,449,297	778.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
548	853,296	1,449,566	791.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
549	853,373	1,449,709	802.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
550	853,426	1,449,685	802.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
551	853,432	1,449,727	803.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
552	853,293	1,449,841	797.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
553	853,249	1,449,893	803.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
554	853,247	1,449,900	803.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
555	853,242	1,449,907	803.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
556	853,214	1,449,932	801.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
557	853,207	1,449,937	800.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
558	853,199	1,449,936	799.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
559	853,192	1,449,941	799.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
560	853,202	1,449,988	796.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
561	853,220	1,449,977	/96.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
562	853,164	1,449,963	802.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
563	853,138	1,449,960	806.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
564	853,127	1,449,963	807.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
565	853,110	1,449,972	808.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
566	853,084	1,449,977	808.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
567	853,075	1,449,978	808.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
568	853,049	1,449,981	809.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
569	853,009	1,449,973	809.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
	5	5			5	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
570	853,003	1,449,944	805.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
571	853,005	1,450,018	814.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
572	852,998	1,450,033	814.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
573	852,992	1,450,046	814.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
574	852,977	1,450,051	814.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
575	852,968	1,450,060	814.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
576	852,957	1,450,073	814.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
577	853,007	1,450,106	812.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
578	853,034	1,450,046	812.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
579	852,866	1,449,971	805.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
580	852,853	1,449,970	803.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
581	852,838	1,449,954	801.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
582	852,544	1,450,478	774.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
583	852,501	1,450,424	769.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
584	852,495	1,450,648	783.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
585	851,999	1,449,940	/44.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
586	851,695	1,450,206	769.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
587	851,704	1,450,269	768.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
588	851,806	1,450,390	/61.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
589	851,812	1,450,385	761.6	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
590	851,742	1,450,417	764.5	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
591	851,725	1,450,401	707.9	1.0	1.0	1.0	90.0	Green nouse mode	2.0
592	051,510	1,450,110	790.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
593	051,000	1,400,001	701.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
594	051,400	1,450,573	784.9 004 1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
595	051,043	1,450,090	004.1 005.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
597	851 873	1,450,900	804.8	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
508	851 883	1 / 50 906	804.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
599	851 980	1 450 887	791.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
600	851,980	1.450.836	794.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
601	851,960	1,450,818	797.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
602	851,967	1,450,791	798.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
603	851,941	1,450,859	795.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
604	851,866	1,450,831	801.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
605	851,878	1,450,830	800.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
606	851,842	1,450,824	803.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
607	851,824	1,450,814	805.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
608	851,794	1,450,801	803.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
609	851,777	1,450,791	801.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
610	851,899	1,450,804	802.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
611	851,888	1,450,799	802.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
612	851,879	1,450,792	803.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
613	851,857	1,450,785	802.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
614	851,727	1,450,710	796.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
615	851,740	1,450,719	797.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
616	851,741	1,450,745	799.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
61/	851,775	1,450,732	/99.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
618	851,781	1,450,742	800.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
619	851,795	1,450,727	801.5	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
620	851,888	1,450,701	802.0	1.0	1.0	1.0	90.0	Green nouse mode	2.0
021	851,901	1,450,777	802.2	1.0	1.0	1.0	90.0	Green nouse mode	2.0
622	051,914	1,400,782	0UZ.3	1.U 1.0	1.U 1.0	1.0	90.0	"Green house mode"	2.0
623	051,957	1,400,732	193.U 700 1	1.0	1.0	1.0	90.0	"Groop bouss mode"	2.0
024 625	051,928	1,450,746	170.4 002 0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
672	001,000 051 00F	1,400,730	002.U 000 0	1.0	1.0	1.0	70.0 00 0	"Green house mode"	2.0
020 627	001,070 051 01E	1,400,710	000.0 700 /	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
620	851 972	1,450,723	700.4 700 0	1.0	1.0	1.0	90.0 90.0	"Green house mode"	∠.∪ 2.0
620	851 862	1 450 704	798 7	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
630	851 851	1 450 701	798 3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
631	851,834	1.450 715	800.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
201	,001	,							

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page

No.	Easting	Northing	Ž	Width	Height	Elevation	Slope of	Direction mode	Eye height
	0				0	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
632	851,823	1,450,689	797.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
633	851,816	1,450,709	799.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
634	851,783	1,450,696	797.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
635	851,800	1,450,679	796.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
636	851,720	1,450,644	786.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
637	851,749	1,450,677	794.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
638	851,699	1,450,737	797.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
639	851,859	1,450,757	801.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
640	851,844	1,450,777	802.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
641	851,805	1,450,768	802.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
642	851,792	1,450,762	801.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
643	852,375	1,450,901	781.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
644	852,448	1,450,686	780.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
645	855,049	1,450,156	747.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
646	855,165	1,450,083	737.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
647	856,170	1,449,224	758.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
648	856,152	1,449,227	757.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
649	856,080	1,449,280	759.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
650	856,020	1,449,284	757.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
651	855,958	1,449,368	757.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
652	855,927	1,449,399	757.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
653	855,854	1,449,418	756.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
654	855,832	1,449,451	756.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
655	855,817	1,449,470	755.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
656	855,727	1,449,612	757.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
657	855,697	1,449,636	757.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
658	855,692	1,449,642	756.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
659	855,684	1,449,645	754.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
660	855,566	1,449,535	741.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
661	855,589	1,449,583	744.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
662	855,638	1,449,657	747.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
663	855,695	1,449,758	752.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
664	855,678	1,449,821	744.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
665	855,340	1,449,831	726.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
666	855,760	1,450,302	764.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
667	855,890	1,450,344	767.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
668	855,876	1,450,118	772.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
669	856,062	1,450,121	787.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
670	856,131	1,450,172	789.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
671	856,175	1,450,333	772.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
672	856,246	1,449,961	799.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
673	856,320	1,450,442	758.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
674	856,445	1,450,440	766.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
675	856,403	1,450,419	762.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
676	856,449	1,450,211	775.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
677	856,934	1,450,597	767.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
678	856,161	1,446,967	802.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
679	856,180	1,446,997	798.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
680	856,141	1,447,063	799.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
681	856,108	1,447,203	804.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
682	856,132	1,447,207	803.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
683	856,147	1,447,222	803.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
684	856,182	1,447,231	806.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
685	856,062	1,447,408	798.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
686	856,135	1,447,431	797.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
687	856,292	1,447,471	786.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
688	855,999	1,446,758	808.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
689	856,036	1,446,721	804.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
690	855,957	1,446,770	811.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
691	855,929	1,446,781	812.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
692	855,954	1,446,820	809.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
693	855,923	1,446,841	810.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page

No.	Easting	Northing	Ż	Width	Height	Elevation	Slope of	Direction mode	Eye height
	5	5			5	a.a.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
694	855.897	1.446.808	810.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
695	855,853	1,446,826	807.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
696	855,804	1,446,824	808.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
697	855 781	1 446 920	806.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
698	855 736	1 446 842	809.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
699	855 715	1 446 931	805.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
700	855 665	1 116 888	804.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
700	855 647	1 446 950	802.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
707	855 600	1 446 023	201 7	1.0	1.0	1.0	0.0	"Green house mode"	2.0
702	855 551	1,440,923	201.7 202.2	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
703	055,551	1 440,911	002.J	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
704	055,049	1,447,013	000.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
705	000,000	1,447,040	700 /	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
700	000,011	1,447,002	199.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
707	800,000	1,447,050	802.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
708	800,008	1,447,107	803.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
709	855,680	1,447,164	802.8	1.0	1.0	1.0	90.0	Green nouse mode	2.0
710	855,653	1,447,179	804.7	1.0	1.0	1.0	90.0	Green nouse mode	2.0
711	855,643	1,447,154	805.8	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
/12	855,809	1,447,281	801.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
/13	855,874	1,447,299	/99.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
/14	855,696	1,447,284	805.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
715	855,492	1,447,001	801.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
716	855,470	1,446,963	796.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
717	855,464	1,446,963	796.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
718	855,466	1,447,018	798.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
719	855,428	1,446,967	793.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
720	855,398	1,446,976	793.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
721	855,365	1,446,983	796.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
722	855,340	1,446,992	799.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
723	855,315	1,446,988	802.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
724	855,355	1,447,048	798.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
725	855,304	1,447,071	797.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
726	855,197	1,447,051	795.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
727	855,160	1,446,919	792.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
728	855,162	1,446,877	792.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
729	855,174	1,446,838	793.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
730	855,120	1,447,077	794.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
731	855,086	1,447,061	794.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
732	855,034	1,447,093	794.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
733	855,029	1,447,134	794.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
734	855,003	1,447,142	793.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
735	854,942	1,447,162	793.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
736	854,859	1,447,132	789.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
737	854,759	1,447,152	795.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
738	854,761	1,447,199	795.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
739	854,719	1,447,163	793.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
740	854,681	1,447,174	788.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
741	854,658	1,447,184	784.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
742	854,653	1,447,150	785.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
743	854,610	1,447,194	783.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
744	854,619	1,447,227	778.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
745	854.592	1.447.244	781.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
746	854,713	1,447,036	784.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
747	854.726	1,446,990	786.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
748	854 627	1,446,953	787.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
749	854,697	1,446,834	790.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
750	854 508	1.446 885	784 0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
751	854 455	1 447 032	783.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
752	854 483	1.447 08/	783 7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
752	854 552	1 447 249	778 0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
751	854 5/1	1 447 240	778 1	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
755	85/ 17/	1 //7 010	770 /	1.0	1.0	1.0	90.0	"Green house mode"	2.0
100	004,474	1,777,210	117.4	1.0	1.0	1.0	70.0	Sicci nouse moue	2.0

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
	5	5			5	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		` [́m]
756	854,429	1,447,249	783.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
757	854,447	1,447,282	780.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
758	854,377	1,447,296	785.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
759	854,349	1,447,247	782.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
760	854,360	1,447,293	785.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
761	854,401	1,447,294	785.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
762	854,296	1,447,275	783.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
763	854,249	1,447,277	780.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
764	854,361	1,447,344	786.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
765	854,395	1,447,338	784.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
766	854,479	1,447,346	780.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
767	854,580	1,447,361	786.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
768	854,631	1,447,346	784.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
769	854,257	1,447,325	779.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
770	854,246	1,447,272	780.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
771	854,234	1,447,320	779.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
772	854,126	1,447,322	778.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
773	854,117	1,447,285	780.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
774	854,083	1,447,281	781.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
775	854,027	1,447,269	778.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
776	853,942	1,447,319	775.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
777	853,913	1,447,282	779.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
778	853,853	1,447,279	777.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
779	853,614	1,447,307	774.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
780	853,767	1,447,275	774.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
781	853,515	1,447,318	770.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
782	853,375	1,447,298	768.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
783	853,434	1,447,317	770.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
784	853,398	1,447,226	770.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
785	853,250	1,447,218	768.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
786	853,220	1,447,211	769.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
787	853,222	1,447,246	767.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
788	853,110	1,447,187	762.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
789	853,035	1,447,203	761.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
790	852,900	1,447,129	761.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
791	852,865	1,447,105	758.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
792	852,844	1,447,103	756.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
793	852,834	1,447,094	756.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
794	852,833	1,447,149	756.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
795	852,807	1,447,085	757.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
796	852,776	1,447,121	756.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
797	852,734	1,447,117	757.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
798	852,741	1,447,059	753.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
799	852,708	1,447,050	750.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
800	852,699	1,447,100	755.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
801	852,647	1,447,088	749.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
802	852,651	1,447,025	749.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
803	852,650	1,446,975	747.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
804	852,621	1,447,069	748.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
805	852,631	1,447,074	748.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
806	852,639	1,447,185	750.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
807	852,568	1,447,068	/50.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
808	852,542	1,447,029	750.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
809	852,520	1,447,034	/4/.8	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
810	852,515	1,446,979	/48.3	1.0	1.0	1.0	90.0	Green house mode"	2.0
811	852,553	1,446,983	/52.1	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
812	851,439	1,450,741	800.3	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
813	851,481	1,450,757	801.0	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
814	851,500	1,450,763	801.7	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
815	851,576	1,450,791	803.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
816	851,484	1,450,473	//9.5	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
817	851,431	1,450,464	//8.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page

No.	Easting	Northing	Ž	Width	Height	Elevation	Slope of	Direction mode	Eye height
	0				Ū	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
818	851,520	1,450,352	784.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
819	851,559	1,450,447	777.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
820	852,488	1,446,992	744.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
821	852,436	1,446,960	743.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
822	852,405	1,446,995	742.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
823	852,376	1,446,990	744.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
824	852,423	1,447,039	738.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
825	852,381	1,447,042	739.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
826	852,322	1,447,007	742.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
827	852,348	1,447,002	742.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
828	852,357	1,447,098	737.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
829	852,332	1,447,104	738.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
830	852,327	1,447,054	742.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
831	852,268	1,447,064	742.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
832	852,265	1,447,016	745.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
833	852.337	1,446,935	745.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
834	852.324	1,446,944	745.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
835	852.327	1,446,953	745.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
836	852,270	1,446,897	742.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
837	852,306	1,446,900	743.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
838	852 338	1 446 897	744 6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
830	852 364	1 446 897	746.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
840	852 398	1 446 889	749.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
841	852 441	1 446 885	748.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
8/2	852 / 28	1 446 034	746.7	1.0	1.0	1.0	00.0	"Green house mode"	2.0
8/3	852 380	1 1 1 1 6 9 9 9	7/8 8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
Q11	852,307	1 1 1 1 0 0 1 2	740.0	1.0	1.0	1.0	00.0	"Green house mode"	2.0
845	852 533	1 / / 6 80/	747.4	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
846 846	852 462	1 / / 7 1 / 2	730.0	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
040	052,402	1 / / 7 1 20	730.1	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
047	052,490	1,447,120	742.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
040	052,490	1,447,120	742.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
049	002,097	1,447,177	740.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
050	052,041	1,447,210	740.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
001	002,012	1,447,100	743.9	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
052	052,340	1,447,191	745.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
000	002,000	1,447,244	130.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
804	052,340	1,447,297	/ 30.3 724 E	1.0	1.0	1.0	90.0	"Green house mode"	2.0
800	852,407	1,447,231	130.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
800	852,409	1,447,210	730.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
807	052,391	1,447,239	128.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
828	852,351	1,447,200	723.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
040	052,339	1,447,109	730.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
000	002,020	1,447,103	720.1	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
061	002,200	1,447,219	721.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
062	052,291	1,447,277	725.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
803	052,217	1,447,290	720.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
804	852,215	1,447,223	731.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
865	852,234	1,447,172	734.5	1.0	1.0	1.0	90.0	Green house mode	2.0
800	852,220	1,447,109	735.2	1.0	1.0	1.0	90.0	Green house mode	2.0
867	852,237	1,447,137	738.7	1.0	1.0	1.0	90.0	Green house mode	2.0
808	852,240	1,447,109	740.9	1.0	1.0	1.0	90.0	Green nouse mode	2.0
869	852,274	1,447,123	131.3	1.0	1.0	1.0	90.0	Green nouse mode	2.0
870	852,298	1,447,121	/36.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
٥/١ ٥٦٥	052,212	1,447,068	143.4	1.0	1.0	1.0	90.0	Green nouse mode"	2.0
8/2	052,226	1,447,064	143.1	1.0	1.0	1.0	90.0	Green house mode"	2.0
8/3	052,182	1,447,068	743.4	1.0	1.0	1.0	90.0	Green nouse mode"	2.0
8/4	852,134	1,447,035	/45.4	1.0	1.0	1.0	90.0	Green nouse mode"	2.0
8/5	852,067	1,447,048	742.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
8/6	852,085	1,447,094	742.3	1.0	1.0	1.0	90.0	Green nouse mode"	2.0
8//	852,059	1,447,150	/39.6	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
8/8	852,088	1,447,138	/39.5	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
879	852,099	1,447,166	/36.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page

No.	Easting	Northing	Ž	Width	Height	Elevation	Slope of	Direction mode	Eye height
						a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
880	852,120	1,447,192	734.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
881	852,133	1,447,198	734.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
882	852,130	1,447,231	731.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
883	851,988	1,447,166	743.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
884	851,976	1,447,212	738.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
885	851,938	1,447,213	739.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
886	852,065	1,447,205	734.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
887	851,965	1,447,141	745.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
888	851,882	1,447,138	744.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
889	851,920	1,447,109	745.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
890	851,937	1,447,100	745.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
891	851,963	1,447,104	746.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
892	851,976	1,447,114	746.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
893	851,986	1,447,113	746.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
894	852,009	1,447,099	744.8	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
895	852,024	1,447,107	744.0	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
896	852,039	1,447,102	743.0	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
897	852,020	1,447,044	741.4	1.0	1.0	1.0	90.0	Green house mode	2.0
898	051,979	1,447,053	743.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
000	051,900	1,447,033	743.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
900	051,073	1,447,070	743.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
901	052,030 052 101	1,447,038	741.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
90Z	052,191	1,447,010	744.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
903	Q52,240	1,447,024	745.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
904	852 162	1 // 6 010	744.1	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
905	852 115	1 1 1 1 6 970	741.0	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
900	852 070	1 446 966	743.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
908	852 054	1 446 998	742.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
909	852,004	1 447 002	742.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
910	852,065	1.446.994	742.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
911	852.029	1.446.992	741.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
912	852,027	1,446,943	742.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
913	851,979	1,446,952	743.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
914	851,949	1,446,908	738.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
915	852,014	1,446,898	739.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
916	851,866	1,446,954	736.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
917	851,855	1,446,915	733.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
918	851,843	1,446,913	732.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
919	851,915	1,446,849	729.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
920	851,911	1,446,915	738.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
921	851,943	1,446,851	730.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
922	852,065	1,446,833	736.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
923	852,082	1,446,798	739.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
924	852,009	1,446,764	734.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
925	852,002	1,446,697	737.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
926	852,059	1,446,738	743.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
927	852,077	1,446,698	748.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
928	852,117	1,446,682	751.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
929	852,151	1,446,688	752.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
930	852,175	1,446,680	752.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
931	852,220	1,446,730	750.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
932	852,228	1,446,720	750.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
933	852,164	1,446,729	/48.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
934	852,129	1,446,736	/4/.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
935	852,153	1,446,773	/44./	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
936	852,183	1,446,855	143.8	1.0	1.0	1.0	90.0	Green nouse mode"	2.0
937	852,234	1,446,856	141.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
938	852,223	1,446,848	141.3	1.0	1.0	1.0	90.0	Green nouse mode"	2.0
939	052,209	1,440,800	750.0	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
940	052,230	1,440,703	710.8	1.0	1.0	1.0	9U.U	"Green house mode"	2.0
94 I	002,200	1,440,734	149.3	1.0	1.0	1.0	90.0	Green nouse mode	Z.U

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
	5	5			5	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
942	852,303	1,446,687	748.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
943	852,321	1,446,795	748.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
944	852,339	1,446,844	747.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
945	852,472	1,446,869	746.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
946	851,927	1,447,066	745.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
947	852,582	1,446,980	751.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
948	852,568	1,447,007	751.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
949	852,614	1,447,010	749.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
950	852,638	1,447,096	749.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
951	852,623	1,447,107	748.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
952	852,732	1,447,077	755.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
953	851,257	1,446,295	712.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
954	851,231	1,446,289	717.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
955	851,191	1,446,284	724.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
956	851,173	1,446,281	724.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
957	851,165	1,446,331	722.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
958	851,184	1,446,335	722.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
959	851,200	1,446,330	721.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
960	851,221	1,446,333	719.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
961	851,249	1,446,332	715.0	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
962	851,266	1,446,398	719.4	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
903	851,231	1,440,378	719.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
904	051,197	1,440,370	720.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
900	051,100	1,440,371	723.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
900	051,190	1,440,419	720.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
907	051,252	1,440,420	720.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
900	851 25 <i>1</i>	1 / / 6 130	719.5	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
909 070	851 208	1 // 6 121	724.2	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
071	851 200	1 //6 0/0	724.2	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
972	851 483	1 446 797	708.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
973	851 460	1 446 789	706.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
974	851,446	1,446,771	705.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
975	851,481	1,446,753	706.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
976	851,465	1.446.867	707.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
977	851,222	1,446,704	717.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
978	851,187	1,446,677	727.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
979	851,148	1,446,695	727.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
980	850,994	1,446,753	729.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
981	850,972	1,446,762	730.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
982	851,028	1,446,779	724.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
983	850,874	1,446,794	726.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
984	850,832	1,446,809	722.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
985	850,767	1,446,810	726.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
986	850,717	1,446,858	725.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
987	850,674	1,446,829	733.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
988	850,645	1,446,833	734.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
989	850,619	1,446,869	732.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
990	850,920	1,446,964	711.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
991	850,571	1,446,839	736.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
992	850,460	1,446,873	/38.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
993	850,381	1,446,911	/38.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
994	850,372	1,446,912	/38.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
995	850,375	1,446,953	/36.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
996	850,368	1,446,948	131.3	1.0	1.0	1.0	90.0	Green nouse mode"	2.0
997	850,586	1,447,064	129.1	1.0	1.0	1.0	90.0	Green nouse mode"	2.0
998	050,574	1,447,043	121.8	1.0	1.0	1.0	90.0	Green nouse mode"	2.0
999	850,629	1,447,089	128.6	1.0	1.0	1.0	90.0	Green house mode"	2.0
1000	050,981	1,447,343	129.5	1.U 1.0	1.U 1.0	1.0	90.0	"Green house mode"	2.0
1001	000,940 850 015	1,447,359	1∠Ö.Ŏ 721 4	1.U 1.0	1.U 1.0	1.0	90.0 00 0	"Green house mode"	2.0
1002	000,910	1,447,425	131.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1003	001,000	1,447,490	120.4	1.0	1.0	1.0	70.0	OLEEH HOUSE HIDDE	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
						a.g.l.	window		(ZVI) a.g.l.
4004	050 / / 0	4 4 4 9 4 7 7	[m]	[m]	[m]	[m]	[°]		[m]
1004	852,663	1,443,677	/15.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1005	852,664	1,443,628	/14.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1006	852,034	1,443,031	/12./	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1007	052,040	1,443,594	717.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1008	852 763	1 // 2 802	709.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1009	852 745	1 // 3 700	700.5	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
1010	852 570	1 443 927	702.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1012	854 043	1 453 014	740.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1012	854.608	1,453.051	751.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1014	856,571	1,451,591	807.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1015	856,184	1,451,365	782.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1016	855,698	1,451,408	810.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1017	851,226	1,451,726	788.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1018	851,383	1,451,819	784.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1019	851,433	1,451,783	778.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1020	852,052	1,450,571	779.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1021	852,016	1,450,316	767.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1022	852,302	1,449,693	772.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1023	852,214	1,449,498	770.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1024	852,608	1,449,780	773.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1025	852,674	1,449,656	766.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1026	853,463	1,449,552	/85.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1027	853,469	1,449,520	782.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1028	853,443	1,449,514	782.5	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1029	053,312	1,449,390	766.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1030	853 565	1,449,190	750.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1031	853 574	1 // 0 220	754 7	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
1032	853 625	1 449 293	760 1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1034	855,724	1,449,045	762.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1035	855,771	1,448,921	775.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1036	855,813	1,448,860	780.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1037	855,841	1,448,873	781.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1038	855,885	1,448,857	775.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1039	856,001	1,448,765	776.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1040	856,026	1,448,724	776.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1041	851,324	1,445,117	723.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1042	851,366	1,445,143	725.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1043	851,262	1,445,117	725.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1044	851,212	1,445,117	728.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1045	851,382	1,445,049	718.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1046	851,467	1,445,040	712.2	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1047	051,509	1,445,089	/10.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1048	051,373	1,445,243	720.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1049	850 008	1,443,292	720.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1050	851 030	1,444,934	700.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1051	851 247	1 444,077	704.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1052	851 285	1 444 891	703.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1054	851.059	1,444,629	711.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1055	851,005	1,444,655	712.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1056	850,984	1,444,587	718.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1057	848,726	1,444,048	759.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1058	848,716	1,444,061	758.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1059	848,705	1,444,052	761.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1060	848,693	1,444,067	760.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1061	848,761	1,444,327	742.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1062	849,134	1,446,836	778.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1063	849,113	1,446,830	776.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1064	849,118	1,446,807	775.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1065	849,145	1,446,776	774.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
						a.g.l.	window		(ZVI) a.g.l.
40//			[m]	[m]	[m]	[m]	[°]		[m]
1066	849,244	1,446,811	112.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1067	849,271	1,446,808	7/0.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1068	849,250	1,440,788	769.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1009	049,230	1,440,774	760.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1070	Q/Q 220	1,440,724	767.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1071	8/10 221	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	707.9	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
1072	849 234	1 446 680	766.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1073	849 226	1 446 663	764.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1075	849.235	1,446,649	764.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1076	849,221	1,446,632	761.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1077	849,215	1,446,618	760.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1078	849,223	1,446,602	762.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1079	849,277	1,446,729	764.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1080	849,289	1,446,733	764.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1081	849,332	1,446,737	762.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1082	849,373	1,446,725	757.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1083	849,407	1,446,742	752.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1084	849,278	1,446,666	764.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1085	849,296	1,446,666	764.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1086	849,313	1,446,689	764.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1087	849,347	1,446,688	763.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1088	849,359	1,446,689	761.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1089	849,356	1,446,683	762.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1090	849,357	1,446,662	762.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1091	849,340	1,446,659	763.3	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1092	849,425	1,440,077	750.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1093	049,394	1,440,720	755.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1094	Q10 200	1 1 1 1 6 6 1 6	751.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1095	849 315	1 446 621	762 5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1097	849 294	1 446 614	763.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1098	849.280	1,446,620	764.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1099	849,264	1,446,612	764.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1100	849,447	1,446,570	751.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1101	849,395	1,446,566	758.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1102	849,272	1,446,579	765.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1103	849,283	1,446,576	765.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1104	849,217	1,446,592	762.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1105	849,219	1,446,572	763.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1106	849,217	1,446,556	765.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1107	849,215	1,446,530	766.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1108	849,208	1,446,506	765.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1109	849,208	1,446,494	763.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1110	849,203	1,446,469	759.7	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1111	849,197	1,440,451	/5/.U	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1112	049,194	1,440,427	101.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1113	049,190 9/0 106	1,440,413	757.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1114	8/10 202	1 1 1 1 1 2 2 7 2	758 5	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
1115	849 131	1 446 355	754 5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1117	849 105	1 446 334	753.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1118	849,181	1,446,356	758.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1119	849.201	1,446.353	758.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1120	849,221	1,446,357	758.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1121	849,238	1,446,351	759.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1122	849,245	1,446,383	759.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1123	849,261	1,446,400	760.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1124	849,292	1,446,393	759.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1125	849,304	1,446,380	758.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1126	849,256	1,446,353	759.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1127	849,280	1,446,321	756.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
						a.g.l.	window		(ZVI) a.g.l.
1100	040 224	1 447 270	[m]	[m]	[m]	[m]	[°]	"Creen heree meede"	[m]
1128	849,336	1,446,379	/50.3	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1129	849,348	1,440,378	/55.1 752.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1120	049,370	1,440,390	752.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1131	8/0 /27	1 // 6 382	746.6	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
1132	849 414	1 446 338	746.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1134	849 432	1 446 334	744.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1135	849.523	1,446,336	733.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1136	849.907	1,446,396	758.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1137	849,852	1,446,376	756.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1138	849,837	1,446,430	752.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1139	849,833	1,446,473	749.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1140	849,868	1,446,466	751.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1141	849,892	1,446,260	760.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1142	849,908	1,446,211	759.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1143	850,421	1,445,826	737.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1144	850,516	1,445,836	736.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1145	850,626	1,445,617	736.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1146	850,686	1,445,672	737.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1147	850,700	1,445,535	731.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1148	850,707	1,445,639	734.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1149	850,614	1,445,514	738.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1150	850,716	1,445,403	732.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1151	849,179	1,446,333	757.0	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1152	849,185	1,440,305	757.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1153	049,107	1,440,202	752.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1154	8/10 186	1,440,190	755.0	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
1156	849 219	1 446 282	756.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1157	849 286	1 446 238	752.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1158	849.310	1.446.282	752.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1159	849,324	1,446,223	747.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1160	849,329	1,446,176	742.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1161	849,259	1,446,187	749.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1162	849,181	1,446,233	754.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1163	849,197	1,446,243	753.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1164	849,182	1,446,267	755.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1165	849,195	1,446,271	755.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1166	849,352	1,446,264	749.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1167	849,427	1,446,289	742.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1168	849,401	1,446,189	742.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1169	849,157	1,446,169	751.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1170	049,107 040 14E	1,440,149	751.2	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1170	049,100	1,440,130	750.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1172	8/0 160	1 // 6 / 0 3	751.2	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
1174	849 155	1 446 080	752.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1175	849 144	1 446 054	755.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1176	849,160	1.446.028	758.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1177	849,148	1,446,013	758.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1178	849,159	1,445,998	760.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1179	849,152	1,445,966	762.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1180	849,165	1,446,014	759.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1181	849,181	1,446,015	760.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1182	849,199	1,446,017	761.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1183	849,223	1,446,011	760.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1184	849,193	1,445,942	764.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1185	849,189	1,445,898	764.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1186	849,221	1,445,896	757.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1187	849,217	1,445,925	162.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1188	849,275	1,445,996	/55.8	1.0	1.0	1.0	90.0	Green house mode"	2.0
1189	849,288	1,445,933	/52.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
						a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
1190	849,454	1,445,987	739.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1191	849,383	1,446,096	739.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1192	849,340	1,446,117	/40.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1193	849,427	1,446,117	/34.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1194	849,386	1,446,030	741.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1195	849,393	1,446,001	743.0	1.0	1.0	1.0	90.0	Green nouse mode	2.0
1190	849,380	1,445,950	741.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1197	049,443	1,440,922	135.1	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1190	049,303 049,303	1,440,072	747.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1200	Q/Q 216	1 / / 5 202	743.4	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
1200	8/0 3/5	1 //5 82/	747.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1201	849 190	1 445 811	759.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1202	849,198	1,445,827	758.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1200	849,158	1.445.812	760.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1205	849,128	1.445.821	760.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1206	849,130	1.445.812	760.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1207	849,134	1,445,867	758.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1208	849,179	1,445,701	762.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1209	849,189	1,445,722	759.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1210	849,230	1,445,719	756.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1211	849,235	1,445,696	757.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1212	849,224	1,445,652	756.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1213	849,210	1,445,640	757.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1214	849,188	1,445,656	760.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1215	849,179	1,445,662	761.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1216	849,165	1,445,644	762.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1217	849,134	1,445,637	764.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1218	849,143	1,445,672	765.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1219	849,129	1,445,695	764.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1220	849,118	1,445,731	763.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1221	849,159	1,445,729	763.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1222	849,162	1,445,747	761.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1223	849,153	1,445,759	762.9	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1224	849,112	1,445,580	765.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1220	049,129	1,440,002	760.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1220	049,133 9/0 132	1,440,000	765.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1227	8/8 938	1 1 1 5 502	763.9	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
1220	848 951	1 445 563	759.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1230	848,975	1,445,466	760.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1231	848.950	1,445,433	756.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1232	849,072	1,445,269	763.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1233	849,079	1,445,282	763.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1234	849,068	1,445,283	763.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1235	849,074	1,445,290	763.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1236	849,064	1,445,300	763.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1237	849,157	1,445,244	760.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1238	849,097	1,445,352	764.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1239	849,152	1,445,365	757.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1240	849,143	1,445,368	758.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1241	849,160	1,445,366	756.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1242	849,187	1,445,368	755.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1243	849,202	1,445,363	757.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1244	849,218	1,445,370	757.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1245	849,227	1,445,371	/57.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1246	849,223	1,445,401	/5/.2	1.0	1.0	1.0	90.0	Green house mode"	2.0
1247	849,201	1,445,398	/5/.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1248	049,18/	1,445,398	156.9	1.0	1.0	1.0	90.0	Green house mode"	2.0
1249	049,172	1,445,402	/50.0 755.0	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1250	049,257	1,440,3/8	100.3	1.0	1.0	1.0	90.0	"Croop house mode"	2.0
1221	049,252	1,445,394	100.3	1.0	1.0	1.0	90.0	Green nouse mode.	2.0

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
			[]	[]	[]	a.g.l.	window		(ZVI) a.g.l.
1252	010 210	1 445 414	[m] 754 0	[m] 1 0	[m] 1 0	[m] 1 0	[1]	"Groop bouso modo"	[[11]
1202	049,249 Q/Q 222	1,440,414	754.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1253	8/10 222	1 //5 200	760.7	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
1254	8/10 216	1 //5 305	750.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1255	849 210	1 445 310	759 1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1250	849 198	1 445 308	758.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1258	849,193	1,445,308	757.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1259	849,180	1,445,301	756.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1260	849,160	1,445,313	758.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1261	849,142	1,445,314	760.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1262	849,203	1,445,456	756.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1263	849,197	1,445,456	756.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1264	849,163	1,445,446	756.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1265	849,155	1,445,459	757.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1266	849,218	1,445,445	756.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1267	849,262	1,445,478	752.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1268	849,261	1,445,460	752.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1269	849,265	1,445,453	752.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1270	849,258	1,445,430	753.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
12/1	849,265	1,445,437	753.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1272	849,274	1,445,356	754.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
12/3	849,207	1,445,548	/5/.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1274	849,218	1,445,530	755.8 755.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1275	049,232	1,440,001	755.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1270	049,222 9/0 200	1,440,400	755.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1277	8/0 101	1 1 1 1 5 1 86	756 1	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
1270	849 319	1 445 542	744 3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1280	849 384	1 445 629	738.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1281	849.382	1,445,650	739.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1282	849,259	1,445,778	756.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1283	849,346	1,445,754	747.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1284	849,344	1,445,735	747.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1285	849,385	1,445,767	739.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1286	849,392	1,445,803	740.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1287	849,419	1,445,809	736.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1288	849,428	1,445,767	734.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1289	849,446	1,445,766	733.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1290	849,479	1,445,797	734.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1291	849,461	1,445,815	735.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1292	849,440	1,445,699	732.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1293	849,433	1,445,700	733.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1294	049,423	1,440,000	734.3	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1290	049,337	1,440,093	740.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1290	8/9 307	1 1 1 5 6 1 9	749.5	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
1277	849 335	1 445 638	743.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1299	849 355	1 445 624	743.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1300	849.387	1,445,589	737.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1301	849.315	1.445.211	765.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1302	849,127	1,445,397	758.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1303	849,122	1,445,412	758.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1304	849,115	1,445,426	758.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1305	849,108	1,445,472	759.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1306	849,110	1,445,506	762.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1307	849,061	1,446,035	757.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1308	849,161	1,445,149	760.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1309	849,195	1,445,115	763.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1310	849,253	1,445,122	765.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1311	849,256	1,445,181	764.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1312	849,205	1,445,207	762.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1313	849,237	1,445,013	767.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page

No.	Easting	Northing	Ż	Width	Height	Elevation	Slope of	Direction mode	Eye height
	Ū	0			0	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
1314	849,226	1,444,904	756.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1315	849,233	1,444,845	748.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1316	849,192	1,444,985	762.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1317	849,189	1,445,008	763.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1318	849,143	1,445,025	762.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1319	849,121	1,445,033	763.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1320	849,154	1,444,961	757.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1321	849,146	1,444,972	757.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1322	849 118	1 444 978	757.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1323	849 079	1 445 002	758.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1324	848 850	1 445 008	758.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1324	8/8 700	1 111 925	768 1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1326	848 633	1 444 930	766 5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1320	8/8 667	1 /// 975	765.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1220	Q/Q 611	1,444,975	766.0	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
1320	8/8 808	1 /// 020	758.8	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
1327	040,000	1,444,030	750.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1000	040,/1/	1,444,770	750.1	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1001	040,000	1,444,773	752.5	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1332	040,001	1,444,000	764.1	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1333	848,920	1,444,928	704.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1334	848,970	1,444,955	762.8	1.0	1.0	1.0	90.0	Green nouse mode	2.0
1335	848,946	1,444,966	764.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1336	848,953	1,444,976	763.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1337	848,974	1,444,984	762.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1338	848,986	1,444,836	756.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1339	849,237	1,445,076	/65.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1340	849,109	1,445,262	762.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1341	848,716	1,444,399	747.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1342	848,676	1,444,422	752.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1343	848,649	1,444,427	759.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1344	848,639	1,444,443	761.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1345	848,581	1,444,527	755.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1346	848,558	1,444,870	765.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1347	848,525	1,444,904	766.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1348	848,488	1,444,870	762.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1349	848,455	1,444,850	761.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1350	848,462	1,444,807	760.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1351	848,303	1,444,534	759.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1352	848,260	1,444,506	753.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1353	848,307	1,444,485	765.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1354	848,321	1,444,465	769.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1355	848,318	1,444,451	770.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1356	848,312	1,444,438	769.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1357	848,311	1,444,430	768.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1358	848,314	1,444,413	768.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1359	848,318	1,444,389	767.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1360	848,315	1,444,365	765.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1361	848,316	1,444,351	765.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1362	848,320	1,444,326	767.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1363	848,324	1,444,315	767.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1364	848,308	1,444,285	767.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1365	848.328	1,444,265	763.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1366	848.362	1,444,287	765.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1367	848.356	1,444,306	764.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1368	848 353	1,444,330	764.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1369	848,386	1,444,345	766 5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1370	848 397	1,444,360	767.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1371	848 402	1 444 314	769 3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1372	848 410	1,444 300	771 R	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1272	848 /0/	1 444 282	772 /	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1373	848 468	1 444 254	7707	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
1275	8/8 /55	1 /// //5	766.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1070	0-0,400	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	100.7	1.0	1.0	1.0	70.0	Sicci nouse moue	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page

No.	Easting	Northing	Ż	Width	Height	Elevation	Slope of	Direction mode	Eye height
	Ū	0			0	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
1376	848,458	1,444,554	760.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1377	848,452	1,444,569	758.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1378	848,488	1,444,248	771.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1379	848,271	1,444,448	757.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1380	848,273	1,444,409	757.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1381	848.272	1,444,382	759.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1382	848,285	1,444,328	767.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1383	848,283	1,444,310	768.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1384	848 506	1 444 126	769 7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1385	848 485	1 444 123	771 2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1386	848 488	1 444 080	768.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1300	8/8 /72	1 /// 087	760.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1388	848 459	1 444 113	770.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1300	8/8///1	1 /// 117	768.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1200	Q/Q /22	1,444,117	766.7	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
1201	8/8 /02	1 /// 125	765.8	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
1202	040,402	1,444,123	705.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1392	040,393	1,444,119	700.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1373	040,372	1,444,121	705.2	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1394	040,300	1,444,124	760.1	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1393	848,450	1,444,101	108.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1396	848,436	1,444,166	/6/.1	1.0	1.0	1.0	90.0	Green nouse mode	2.0
1397	848,427	1,444,164	/6/.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1398	848,434	1,444,184	/6/.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1399	848,418	1,444,166	/6/.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1400	848,411	1,444,165	767.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1401	848,402	1,444,163	/6/.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1402	848,392	1,444,165	767.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1403	848,386	1,444,170	768.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1404	848,378	1,444,161	767.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1405	848,373	1,444,163	768.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1406	848,362	1,444,162	768.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1407	848,353	1,444,161	768.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1408	848,348	1,444,166	769.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1409	848,337	1,444,164	769.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1410	848,326	1,444,158	768.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1411	848,315	1,444,159	768.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1412	848,304	1,444,156	768.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1413	848,343	1,444,123	765.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1414	848,333	1,444,128	766.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1415	848,299	1,444,122	765.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1416	848,292	1,444,122	766.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1417	848,278	1,444,126	765.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1418	848,267	1,444,125	764.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1419	848,252	1,444,125	764.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1420	848,241	1,444,127	765.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1421	848,232	1,444,123	764.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1422	848,225	1,444,124	765.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1423	848,221	1,444,125	765.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1424	848,200	1,444,129	766.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1425	848,179	1,444,115	765.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1426	848,150	1,444,124	766.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1427	848,163	1,444,119	766.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1428	848,186	1,444,130	767.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1429	848,281	1,444,173	768.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1430	848 267	1.444.174	767.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1431	848,259	1,444,167	768.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1432	848 251	1,444 159	768 7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1432	848 236	1 444 164	768 9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1430	848 227	1,444 164	769 0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1/125	848 222	1 444 159	769.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1433	848 217	1 444 161	769 /	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
1/27	8/8 204	1 /// 150	760 5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
143/	575,200	1,774,100	107.0	1.0	1.0	1.0	70.0	Sicci nouse moue	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
						a.g.l.	window		(ZVI) a.g.l.
4 4 0 0	0.40.400		[m]	[m]	[m]	[m]	[°]		[m]
1438	848,199	1,444,159	769.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1439	848,194	1,444,161	769.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1440	848,180	1,444,150	769.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1441	040,1// 0/0 161	1,444,138	769.1 769.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1442	040,101 Q/Q 1/2	1 /// 162	767.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1443	8/8 117	1 /// 152	767.0	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
1445	848 106	1 444 158	762.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1446	848 112	1 444 098	763.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1447	848,137	1,444,125	766.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1448	848,099	1,444,121	762.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1449	848,075	1,444,157	758.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1450	847,997	1,444,156	756.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1451	847,877	1,444,114	744.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1452	847,721	1,444,104	758.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1453	847,719	1,444,117	758.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1454	847,678	1,444,100	756.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1455	847,690	1,444,115	758.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1456	847,674	1,444,157	754.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1457	847,645	1,444,149	753.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1458	848,488	1,444,227	771.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1459	848,436	1,444,213	771.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1460	848,424	1,444,243	775.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1461	848,413	1,444,257	776.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1462	848,409	1,444,268	774.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1463	848,398	1,444,328	768.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1464	848,263	1,444,215	763.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1465	848,269	1,444,225	762.7	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1400	848,272	1,444,234	762.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
140/	848,275	1,444,252	763.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1400	040,200	1,444,104	760.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1409	8/8/06	1,444,114	766.3	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
1470	8/8/195	1 /// 071	767.5	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
1471	848 535	1 444 036	766.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1473	848.550	1,444,030	766.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1474	848.563	1.444.017	765.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1475	848,602	1,444,001	762.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1476	848,585	1,443,998	762.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1477	848,590	1,444,002	763.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1478	848,624	1,443,985	759.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1479	848,639	1,443,989	761.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1480	848,631	1,443,967	757.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1481	848,642	1,443,957	757.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1482	848,668	1,443,946	761.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1483	848,713	1,443,933	766.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1484	848,737	1,443,941	768.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1485	848,732	1,443,922	767.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1486	848,771	1,443,920	/66./	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1487	848,762	1,443,935	/6/.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1488	848,768	1,443,893	701.9	1.0	1.0	1.0	90.0	Green house mode	2.0
1489	040,770	1,443,890	761.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1490	040,747	1,443,009	700.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1471	041,321 8/17 200	1 /// 100	721 2	1.0	1.0	1.0	90.0 90.0	"Green house mode"	∠.∪ 2.0
1492	041,322 8/17 210	1 /// 202	720 1	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.U 2.0
149/	847 305	1 444 212	727.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1495	847 271	1.444 240	723 0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1496	847.248	1,444,262	720.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1497	847.240	1.444.264	719.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1498	847.217	1,444.273	718.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1499	847,190	1,444,223	712.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

.continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
	0	0			0	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
1500	847,234	1,444,162 7	11.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1501	847,156	1,444,278 7	08.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1502	847,138	1,444,288 7	03.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1503	847,097	1,444,280 6	97.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1504	847,024	1,444,302 6	96.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1505	847,014	1,444,291 6	94.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1506	846,995	1,444,308 6	96.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1507	847,005	1,444,244 6	89.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1508	846,980	1,444,261 6	89.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1509	847,066	1,444,247 6	94.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1510	846,919	1,444,318 6	91.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1511	846,849	1,444,268 6	94.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1512	846,751	1,444,245 6	95.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1513	846,311	1,444,161 7	20.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1514	846,301	1,444,178 7	21.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1515	846,203	1,444,214 7	02.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1516	846,182	1,444,226 7	00.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1517	846,162	1,444,206 6	98.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1518	846,219	1,444,263 7	03.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1519	846,299	1,444,272 7	07.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1520	846,278	1,444,261 7	07.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1521	846,268	1,444,264 7	05.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1522	846,339	1,444,128 7	16.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1523	846,334	1,444,068 7	18.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1524	846,289	1,444,056 7	14.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1525	846,275	1,444,083 7	11.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1526	846,078	1,444,148 6	96.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1527	846,063	1,444,142 6	94.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1528	846,060	1,444,159 6	95.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1529	846,113	1,444,228 6	96.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1530	845,926	1,444,252 6	87.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1531	845,902	1,444,204 6	89.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1532	845,783	1,444,181 6	91.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1533	844,815	1,444,973 6	62.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1534	844,865	1,444,911 6	60.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1535	844,332	1,445,361 6	78.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1536	844,263	1,445,323 6	74.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1537	844,188	1,445,471 6	67.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1538	844,488	1,445,298 6	87.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1539	844,086	1,445,411 6	61.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1540	843,957	1,445,415 6	50.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1541	844,413	1,443,303 6	64.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1542	844,424	1,443,305 6	66.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1543	844,443	1,443,312 6	69.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1544	844,454	1,443,313 6	70.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1545	844,436	1,443,341 6	69.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1546	844,472	1,443,319 6	72.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1547	844,490	1,443,346 6	72.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1548	844,499	1,443,393 6	72.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1549	844,521	1,443,347 6	74.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1550	844,512	1,443,334 6	/3.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1551	844,552	1,443,336 6	76.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1552	844,580	1,443,350 6	/8.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1553	844,547	1,443,392 6	1/.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1554	844,546	1,443,413 6	76.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1555	844,513	1,443,408 6	14.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1556	844,592	1,443,389 6	78.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1557	844,587	1,443,404 6	78.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1558	844,585	1,443,409 6	78.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1559	844,600	1,443,444 6	77.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1560	844,630	1,443,415 6	80.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1561	844,616	1,443,383 6	80.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page

No.	Easting	Northing	Ż	Width	Height	Elevation	Slope of	Direction mode	Eye height
	Ū	0			0	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
1562	844,635	1,443,359	682.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1563	844,626	1,443,367	681.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1564	844,615	1,443,344	680.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1565	844,687	1,443,367	685.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1566	844,708	1,443,378	685.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1567	844,719	1,443,386	686.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1568	844,735	1,443,386	687.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1569	844,771	1,443,434	692.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1570	844 745	1 443 444	687.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1571	844 712	1 443 440	684 2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1572	844 722	1 443 475	683.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1572	8// 7/0	1 113 185	684 7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1574	844 750	1 443 478	686.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1575	811 750	1 // 2 /02	685 5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1575	Q11 752	1,443,472	680 1	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
1570	Q11 Q12	1 //2 200	605.3	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
1577	044,013	1,443,370	404 7	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1570	044,032	1,443,390	404 7	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1579	044,007	1,443,400	404 7	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1580	044,000	1,443,400	090.7 404 E	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1501	844,870	1,443,404	090.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1582	844,899	1,443,402	696.4	1.0	1.0	1.0	90.0	Green nouse mode	2.0
1583	844,869	1,443,382	698.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1584	844,845	1,443,457	690.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1585	844,835	1,443,454	690.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1586	844,836	1,443,484	686.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1587	844,801	1,443,485	686.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1588	844,874	1,443,498	688.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1589	844,876	1,443,507	687.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1590	844,935	1,443,413	697.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1591	844,930	1,443,506	692.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1592	844,958	1,443,522	691.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1593	844,977	1,443,526	692.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1594	844,983	1,443,523	692.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1595	845,003	1,443,527	692.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1596	845,028	1,443,533	690.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1597	845,007	1,443,482	696.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1598	844,961	1,443,419	699.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1599	844,975	1,443,425	699.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1600	844,998	1,443,425	699.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1601	845,016	1,443,419	699.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1602	845,044	1,443,423	699.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1603	845,070	1,443,429	699.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1604	845,049	1,443,534	689.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1605	845,044	1,443,537	688.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1606	845,081	1,443,532	689.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1607	845,151	1,443,471	701.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1608	845,161	1,443,470	701.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1609	845,176	1,443,474	703.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1610	845,174	1,443,500	699.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1611	845,241	1,443,496	699.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1612	845,251	1,443,499	697.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1613	845.265	1.443.501	696.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1614	845,487	1,443,559	689.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1615	845,461	1.443.532	691.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1616	845 535	1,443,548	692.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1617	845.534	1,443,558	691 2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1618	845 552	1,443,575	689.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1610	845 501	1 443 575	688.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1620	845 677	1 443 587	691 1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1620	8/5 600	1 //2 502	688 F	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1621	845 792	1 442 652	680.0	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
16022	040,700 Q15 005	1 112 440	600 F	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
1023	040,000	1,443,000	070.0	1.0	1.0	1.0	70.0	Green nouse mode	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
			[]	[]	[]	a.g.l.	window		(ZVI) a.g.l.
1601	015 010	1 112 666	[m] 600.7	[m] 1 0	[m] 1 0	[m] 1 0	[1]	"Groop house mode"	[[11]
1624	040,010 845 835	1,443,000	602.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1625	845 845	1 // 3 700	693.6	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
1620	845 865	1 443 720	695.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1627	845.873	1,443,719	696.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1629	845.887	1.443.731	698.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1630	845,899	1,443,744	701.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1631	845,913	1,443,756	704.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1632	845,948	1,443,795	707.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1633	845,965	1,443,800	709.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1634	845,723	1,443,554	689.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1635	845,726	1,443,570	689.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1636	845,684	1,443,554	690.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1637	845,650	1,443,514	692.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1638	845,650	1,443,509	692.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1639	845,637	1,443,501	693.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1640	845,610	1,443,502	693.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1641	845,570	1,443,488	691.I	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1642	845,550	1,443,498	691.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1043	045,50Z	1,443,499	091.4 402.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1644	040,002	1,443,403	093.3 601 0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1645	845 507	1 // 2 / 82	697.0	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
1640	845 493	1 443 473	691 1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1648	845 468	1 443 425	684 7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1649	845.539	1,443,428	690.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1650	845,549	1,443,433	691.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1651	845,532	1,443,429	690.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1652	845,421	1,443,476	691.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1653	845,398	1,443,468	692.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1654	845,360	1,443,467	696.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1655	845,305	1,443,447	692.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1656	845,294	1,443,440	690.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1657	845,394	1,443,418	689.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1658	845,129	1,443,416	697.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1659	845,108	1,443,413	698.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1660	845,072	1,443,400	698.1	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1601	845,074	1,443,388	697.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1662	045,057	1,443,300	090.Z	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1664	8/5 033	1 // 2 280	700.0	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
1665	845 026	1 443 363	700.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1666	845.008	1,443,369	701.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1667	844,945	1,443,365	695.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1668	844,954	1,443,348	696.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1669	844,907	1,443,332	696.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1670	844,896	1,443,328	697.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1671	844,857	1,443,322	695.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1672	844,848	1,443,320	694.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1673	844,827	1,443,316	694.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1674	844,837	1,443,294	692.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1675	844,785	1,443,307	694.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1676	844,768	1,443,287	694.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1677	844,755	1,443,305	691.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1678	844,750	1,443,279	691.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
16/9	844,743	1,443,276	689./	1.0	1.0	1.0	90.0	Green nouse mode"	2.0
1680	044,094	1,443,264	00/.U	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1601	044,008	1,443,260	00/.U	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1002 1600	044,003	1,443,202	000.0 685 4	1.0	1.0	1.U 1.0	90.0 00.0	"Green house mode"	2.0
168/	844,009	1 443,300	680.0	1.0	1.0	1.0	90.0 90.0	"Green house mode"	∠.0 2 ∩
1685	844 500	1 442 270	670 N	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
1000	J77,J70	1,773,279	517.0	1.0	1.0	1.0	70.0	Sicci nouse mode	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page

No.	Easting	Northing	Ż	Width	Height	Elevation	Slope of	Direction mode	Eye height
	Ū	0			0	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
1686	844,576	1,443,265	678.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1687	844,590	1,443,240	680.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1688	844,606	1,443,244	681.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1689	844,616	1,443,252	681.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1690	844,621	1,443,242	681.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1691	844.615	1.443.257	681.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1692	844,640	1,443,270	683.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1693	844.572	1,443,227	679.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1694	844 567	1 443 236	678.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1695	844 564	1 443 269	677.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1696	844 547	1 443 272	675.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1697	8// 532	1 1 1 2 2 8 0	673.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1698	844 523	1 443 275	673.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1600	811 108	1 1 1 2 2 7 8	671 0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1700	811 508	1 1 1 2 2 10	672.0	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
1700	Q11 516	1 //2 220	674.2	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
1701	044,010	1,443,230	674.2	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1702	044,007	1,443,231	670.2	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1703	044,403	1,443,230	672.4	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1704	844,477	1,443,227	0/2.U	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1705	844,409	1,443,229	0/1.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1706	844,458	1,443,237	670.6	1.0	1.0	1.0	90.0	Green nouse mode	2.0
1707	844,447	1,443,240	6/0.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1708	844,436	1,443,238	670.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1709	844,414	1,443,239	670.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1710	844,404	1,443,242	670.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1/11	844,388	1,443,241	669.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1712	844,379	1,443,244	668.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1713	844,331	1,443,242	667.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1714	844,303	1,443,279	665.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1715	844,296	1,443,276	665.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1716	844,292	1,443,288	665.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1717	844,325	1,443,285	664.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1718	844,312	1,443,304	664.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1719	844,213	1,443,342	661.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1720	844,225	1,443,348	660.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1721	844,224	1,443,301	662.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1722	844,214	1,443,262	664.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1723	844,190	1,443,267	662.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1724	844,181	1,443,262	662.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1725	844,176	1,443,267	661.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1726	844,169	1,443,273	660.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1727	844,153	1,443,278	660.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1728	844,145	1,443,276	661.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1729	844,134	1,443,286	660.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1730	844,118	1,443,286	660.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1731	844,107	1,443,298	659.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1732	844,105	1,443,353	658.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1733	844,004	1,443,324	655.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1734	843,920	1,443,400	653.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1735	843,905	1,443,399	654.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1736	843,880	1,443,408	653.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1737	843.847	1,443,403	650.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1738	843.821	1,443,373	648.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1739	843.813	1,443,374	647.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1740	843 761	1,443,399	646.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1741	843 754	1,443,397	646.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1742	843 751	1,443,400	646.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1742	844 677	1 443 312	686.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1744	844 304	1,443,163	674 3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
17/5	844 219	1 442 179	672 Q	1.0	1.0	1.0	90.0	"Green house mode"	2.0
17/16	844 215	1 442 170	674 5	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
1740	811 250	1 //2 1/2	675.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1/4/	54,550	1,773,143	013.7	1.0	1.0	1.0	70.0	Sicci nouse moue	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
						a.g.l.	window		(ZVI) a.g.l.
1740	044 000	1 442 100 /		[m]	[m]	[m]	[°]		[m]
1748	844,333	1,443,109 6	5/4.5	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1749	844,307	1,443,189 0	2/4.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1750	044,304	1,443,199 0	515.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1751	811 109	1,443,202 0	575.5 676 A	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
1752	844 356	1 443 088 6	575.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1754	844 344	1 443 094 6	575.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1755	844,298	1.443.051 6	574.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1756	844.304	1.443.031 6	572.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1757	844,277	1,443,026 6	572.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1758	844,364	1,443,037 6	673.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1759	844,407	1,443,050 6	675.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1760	844,440	1,443,103 6	678.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1761	844,413	1,443,204 6	673.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1762	844,424	1,443,200 6	673.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1763	844,436	1,443,207 6	672.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1764	844,473	1,443,196 6	674.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1765	844,511	1,443,179 6	678.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1766	844,531	1,443,186 6	678.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1767	844,573	1,443,194 6	579.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1768	844,582	1,443,194 6	580.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1769	844,598	1,443,192 6	581.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1770	844,612	1,443,183 6	682.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1770	844,619	1,443,207 6	581.9	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1//2	844,027	1,443,206 0	202.Z	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1774	044,030	1,443,200 0	20Z.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1775	8// 711	1,443,225 0	507.0 587.0	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
1776	844 721	1 443 230 6	588.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1777	844 737	1 443 236 6	500.4 589.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1778	844.747	1.443.232	590.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1779	844,775	1,443,232 6	591.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1780	844,784	1,443,224 6	690.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1781	844,802	1,443,246 6	695.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1782	844,806	1,443,244 6	694.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1783	844,827	1,443,251 6	592.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1784	844,833	1,443,258 6	693.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1785	844,868	1,443,242 6	687.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1786	844,880	1,443,245 6	687.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1787	844,894	1,443,254 6	588.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1/88	844,917	1,443,269 6	591.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1789	844,929	1,443,284 6	595.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1790	044,907	1,443,302 0	290.8 407 E	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1702	044,970	1,443,310 0	400 0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1792	845.000	1,443,297 0	599.0 508.8	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
1794	845 052	1 443 343 6	570.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1795	845 061	1 443 347 6	596.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1796	845.080	1.443.349	595.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1797	845.375	1,443,360 6	586.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1798	845,379	1,443,374 6	587.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1799	845,237	1,443,396 6	690.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1800	845,266	1,443,433 6	691.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1801	844,346	1,442,983 6	671.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1802	844,435	1,443,055 6	678.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1803	844,460	1,443,072 6	681.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1804	844,464	1,443,055 6	680.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1805	844,456	1,443,042 6	678.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1806	844,501	1,443,045 6	581.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1807	844,493	1,443,041 6	681.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1808	844,516	1,443,076 6	587.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1809	844,531	1,443,085 6	589.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
			[m]	[m]	[m]	a.g.l.	window		(ZVI) a.g.l.
1010	011 520	1 112 070	[m] 600 7	[m] 1 0	[m] 1 0	[m] 1 0	[1]	"Groop house mode"	[[11]
1010	044,000 811 516	1,443,070	680 6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1812	844 546	1 443 058	688.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1813	844 546	1 443 052	687.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1814	844.527	1,443.023	681.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1815	844,533	1,443,016	680.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1816	844,540	1,443,022	681.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1817	844,476	1,443,016	675.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1818	844,459	1,443,018	675.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1819	844,496	1,443,007	675.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1820	844,500	1,442,993	674.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1821	844,558	1,443,013	680.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1822	844,566	1,443,018	681.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1823	844,580	1,443,024	681.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1824	844,598	1,443,028	680.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1020	044,307 011 501	1,443,001	080.U	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1820	811 579	1 // 3 081	687 1	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
1828	844 602	1 443 087	684 3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1829	844.617	1,443.084	683.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1830	844,630	1,443,085	683.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1831	844,588	1,443,127	684.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1832	844,568	1,443,138	684.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1833	844,616	1,443,146	684.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1834	844,623	1,443,148	684.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1835	844,649	1,443,136	686.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1836	844,667	1,443,137	687.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1837	844,675	1,443,150	686.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1838	844,647	1,443,181	683.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1839	844,720	1,443,156	689.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1840	844,760	1,443,100	688.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
18/12	044,772 8// 781	1,443,103	686 /	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
1843	844 805	1 443 186	684 4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1844	844,818	1,443,163	683.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1845	844,846	1,443,179	685.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1846	844,878	1,443,189	687.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1847	844,901	1,443,216	686.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1848	844,919	1,443,195	685.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1849	844,948	1,443,245	690.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1850	844,958	1,443,251	692.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1851	844,974	1,443,252	694.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1052	844,969	1,443,223	690.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1003	044,904	1,443,222	691.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1855	845,050	1 // 2 280	696.6	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
1856	845 066	1 443 291	695.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1857	845,136	1.443.297	689.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1858	845,153	1,443,307	688.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1859	845,143	1,443,244	686.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1860	845,195	1,443,263	684.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1861	845,106	1,443,228	688.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1862	845,098	1,443,221	688.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1863	845,084	1,443,212	688.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1864	845,013	1,443,195	688.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1865	845,006	1,443,192	687.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1866	844,999	1,443,187	687.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1867	844,988	1,443,187	68/.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1060	044,978	1,443,183	4044	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1009	044,909 8// 0/1	1,443,178	004.0 681 /	1.0	1.0	1.0	90.0 90.0	"Green house mode"	∠.∪ 2.0
1871	844,741 844 011	1 443,100	678.0	1.0	1.0	1.0	90.0 90.0	"Green house mode"	∠.0 2 ∩
1071	JT7,711	1,773,147	070.7	1.0	1.0	1.0	70.0	Sicci nouse mode	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page

No.	Easting	Northing	Ż	Width	Height	Elevation	Slope of	Direction mode	Eye height
	0	Ū			Ū	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
1872	844,882	1,443,140	678.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1873	844,892	1,443,148	679.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1874	844,888	1,443,111	675.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1875	844,924	1,443,108	673.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1876	844,810	1,443,113	683.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1877	844,844	1,443,140	681.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1878	844,837	1,443,080	680.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1879	844,805	1,443,059	679.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1880	844,791	1,443,062	680.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1881	844,759	1,443,055	682.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1882	844,736	1,443,051	682.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1883	844,751	1,443,113	687.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1884	844,783	1,443,125	685.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1885	844,741	1,443,105	687.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1886	844,729	1,443,104	687.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1887	844,701	1,443,098	687.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1888	844,694	1,443,096	687.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1889	844,671	1,443,087	686.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1890	844,660	1,443,085	685.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1891	844,704	1,443,049	680.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1892	844,680	1,443,039	677.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1893	844,655	1,443,038	676.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1894	844,632	1,443,045	679.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1895	844,573	1,442,984	673.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1896	844,559	1,442,981	674.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1897	844,541	1,442,978	674.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1898	844,509	1,442,962	673.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1899	844,502	1,442,959	673.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1900	844,497	1,442,943	672.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1901	844,466	1,442,953	672.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1902	844,453	1,442,943	672.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1903	844,421	1,442,985	672.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1904	844,400	1,442,977	671.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1905	844,392	1,442,988	670.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1906	844,430	1,442,935	672.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1907	844,407	1,442,933	671.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1908	844,385	1,442,937	669.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1909	844,386	1,442,911	668.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1910	844,386	1,442,871	666.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1911	845,109	1,443,142	677.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1912	845,093	1,443,136	678.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1913	845,073	1,443,131	679.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1914	845,060	1,443,128	679.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1915	845,089	1,443,104	674.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1916	845,109	1,443,115	674.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1917	845,164	1,443,058	667.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1918	844,408	1,443,119	678.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1919	844,403	1,443,116	678.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1920	844,409	1,443,115	678.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1921	844,455	1,443,126	678.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1922	844,463	1,443,129	678.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1923	844,453	1,443,137	677.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1924	844,448	1,443,146	677.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1925	844,437	1,443,148	676.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1926	844,450	1,443,164	675.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1927	844,436	1,443,159	676.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1928	844,429	1,443,164	676.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1929	844,479	1,443,136	679.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1930	844,494	1,443,117	682.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1931	844,523	1,443,117	685.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1932	844,543	1,443,138	684.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1933	843,782	1,443,140	665.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page

No.	Easting	Northing	Ż	Width	Height	Elevation	Slope of	Direction mode	Eye height
	Ū	0			0	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
1934	843,765	1,443,113	668.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1935	843,743	1,443,109	668.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1936	843,800	1,443,118	667.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1937	843,716	1,443,117	669.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1938	843,686	1,443,114	667.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1939	843.649	1.443.097	665.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1940	843,636	1,443,096	665.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1941	843,616	1,443,067	662.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1942	843 571	1 443 099	661 5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1943	843 525	1 443 005	658.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1944	843 515	1 443 050	658.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
10/5	8/3 /70	1 // 2 022	656 O	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1946	843 446	1 443 027	655 5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
10/7	8/3 /85	1 1/2 05/	657 1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
10/18	8/3 /68	1 // 2 022	656.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
10/0	8/3 /62	1 //2 012	654.0	1.0	1.0	1.0	00.0	"Green house mode"	2.0
1050	043,402	1 // 2 011	654.2	1.0	1.0	1.0	90.0 00.0	"Croon house mode"	2.0
1950	043,430	1,442,711	652.2	1.0	1.0	1.0	90.0	"Croop house mode"	2.0
1951	043,433	1,442,070	610 7	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1952	043,412	1,442,000	610 0	1.0	1.0	1.0	90.0	"Croop house mode"	2.0
1903	043,377	1,442,074	040.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
1954	843,370	1,442,834	042.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1955	843,349	1,442,804	640.6	1.0	1.0	1.0	90.0	Green house mode	2.0
1950	843,348	1,442,828	041.4	1.0	1.0	1.0	90.0	Green house mode	2.0
1957	843,231	1,442,790	635.7	1.0	1.0	1.0	90.0	Green nouse mode	2.0
1958	843,222	1,442,675	626.2	1.0	1.0	1.0	90.0	Green nouse mode	2.0
1959	842,873	1,442,007	035.3	1.0	1.0	1.0	90.0	Green nouse mode	2.0
1960	842,958	1,442,519	635.9	1.0	1.0	1.0	90.0	Green nouse mode	2.0
1961	842,718	1,442,568	647.6	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1962	842,688	1,442,560	648.4	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
1963	842,693	1,442,471	650.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1964	842,578	1,442,466	655.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1965	842,556	1,442,453	655.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1966	842,566	1,442,456	655.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1967	842,529	1,442,372	655.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1968	842,487	1,442,375	653.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1969	842,491	1,442,323	652.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1970	842,451	1,442,366	653.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1971	842,450	1,442,353	653.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1972	842,442	1,442,343	653.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1973	842,432	1,442,324	652.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1974	842,418	1,442,317	650.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1975	842,392	1,442,288	650.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1976	842,353	1,442,272	652.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1977	842,347	1,442,252	655.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1978	842,346	1,442,228	656.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1979	842,398	1,442,166	656.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1980	842,363	1,442,162	657.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1981	842,354	1,442,158	658.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1982	842,366	1,442,153	658.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1983	842,344	1,442,139	659.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1984	842,341	1,442,123	658.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1985	842,343	1,442,110	658.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1986	842,355	1,442,117	658.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1987	842,346	1,442,093	658.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1988	842,367	1,442,095	657.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1989	842,404	1,442,115	657.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1990	842,384	1,442,120	658.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1991	842,403	1,442,084	656.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1992	842,387	1,442,060	653.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1993	842,411	1,442,046	650.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1994	842,400	1,442,038	649.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1995	842,345	1,442,044	653.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
			[m]	[m]	[m]	a.g.l.	window r∘ı		(ZVI) a.g.l.
1006	813 330	1 1/1 078 4	643 6	1 0	1 0	1.0		"Green house mode"	2.0
1990	842,330	1 441,970 0	640 5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1998	842.326	1.441.926 6	639.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
1999	842.324	1.441.865 6	636.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2000	842,339	1,441,856 6	636.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2001	842,384	1,441,831 6	634.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2002	842,318	1,441,928 6	639.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2003	842,372	1,441,813 6	632.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2004	842,365	1,441,767 6	626.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2005	842,327	1,441,771 6	626.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2006	842,316	1,441,772 6	626.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2007	842,371	1,441,725 6	623.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2008	842,411	1,441,750 6	626.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2009	842,425	1,441,786 6	632.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2010	842,370	1,441,051 0	010.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2011	042,374	1,441,040 0	010.U	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
2012	042,370 9/2 22/	1,441,004 0	600 1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2013	842,334	1 441,579 0	609.1 609.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2014	842 396	1 441 478 6	605.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2016	842.384	1,441,476 6	606.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2017	842,177	1.441.388 6	610.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2018	842,171	1,441,400 6	612.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2019	842,163	1,441,393 6	611.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2020	842,236	1,441,313 6	604.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2021	842,048	1,440,945 5	577.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2022	842,038	1,440,957 5	578.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2023	842,038	1,440,897 5	579.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2024	842,025	1,440,914 5	580.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2025	842,021	1,440,880 5	582.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2026	842,017	1,440,864 5	582.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2027	842,036	1,440,866 5	580.7	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
2020	042,020	1,440,043 3	501.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2029	8/2 010	1,440,045	581 0	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
2030	842.055	1.440.856 5	579.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2032	842.068	1.440.827 5	582.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2033	842,076	1,440,823 5	582.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2034	842,080	1,440,835 5	581.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2035	842,097	1,440,841 5	580.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2036	842,104	1,440,836 5	580.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2037	842,107	1,440,834 5	581.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2038	842,073	1,440,797 5	585.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2039	842,055	1,440,784 5	585.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2040	842,047	1,440,794 5	583.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2041	841,990	1,440,717 5	589.0	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
2042	842,066	1,440,728 5	592.8	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
2043	042,123	1,440,775 3	500.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2044	8/2 360	1 1 1 1 7 9 5	592.0	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
2045	842 343	1 440 800 5	584 4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2047	842.334	1,440,780 5	583.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2048	842,327	1,440,779 5	583.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2049	842,318	1,440,784 5	582.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2050	842,294	1,440,780 5	579.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2051	842,291	1,440,777 5	579.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2052	842,283	1,440,770 5	579.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2053	842,271	1,440,769 5	579.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2054	842,256	1,440,772 5	580.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2055	842,246	1,440,808 5	581.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2056	842,229	1,440,819 5	581.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2057	842,210	1,440,826 5	581.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page

No.	Easting	Northing 2	Z Wio	dth	Height	Elevation	Slope of	Direction mode	Eye height
		[m	o] [n	-1	[m]	a.g.l.	vindow		(ZVI) a.g.l.
2058	Q12 221	1 1 1 1 0 8 1 3 5 8	11] [11 12 1	ı] ∩	1 0	1.0		"Green house mode"	2.0
2050	842,231	1 440 855 58	1.3 1. 19 1	0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
2060	842.285	1,440,864 584	1.7 1. 1.4 1.	0	1.0	1.0	90.0	"Green house mode"	2.0
2061	842.279	1,440,834 583	3.3 1.	0	1.0	1.0	90.0	"Green house mode"	2.0
2062	842,302	1,440,830 583	3.3 1.	0	1.0	1.0	90.0	"Green house mode"	2.0
2063	842,318	1,440,831 584	4.0 1.	0	1.0	1.0	90.0	"Green house mode"	2.0
2064	842,323	1,440,840 58	5.0 1.	0	1.0	1.0	90.0	"Green house mode"	2.0
2065	842,295	1,440,870 584	4.8 1.	0	1.0	1.0	90.0	"Green house mode"	2.0
2066	842,320	1,440,888 588	3.5 1.	0	1.0	1.0	90.0	"Green house mode"	2.0
2067	842,403	1,440,796 595	5.5 1.	0	1.0	1.0	90.0	"Green house mode"	2.0
2068	842,352	1,440,901 592	2.9 1.	0	1.0	1.0	90.0	"Green house mode"	2.0
2069	842,367	1,440,879 594	4.4 1.	0	1.0	1.0	90.0	"Green house mode"	2.0
2070	842,399	1,440,896 598	3.8 1.	0	1.0	1.0	90.0	"Green house mode"	2.0
2071	842,379	1,440,912 596	5.3 1.	0	1.0	1.0	90.0	"Green house mode"	2.0
2072	842,402	1,440,920 59	7.0 I.	0	1.0	1.0	90.0	"Green house mode"	2.0
2073	042,434	1,440,893 000	J.3 I.)1 1	0	1.0	1.0	90.0	"Creen house mode"	2.0
2074	042,437 812 120	1,440,697 000). I I.) 7 1	0	1.0	1.0	90.0	"Green house mode"	2.0
2075	842,450	1 440 867 600), 1.) 1 1	0	1.0	1.0	90.0	"Green house mode"	2.0
2070	842 361	1 440 949 589	941	0	1.0	1.0	90.0	"Green house mode"	2.0
2078	842.336	1,440,919,589	9.4 1	0	1.0	1.0	90.0	"Green house mode"	2.0
2079	842.328	1,440,918 588	3.0 1.	0	1.0	1.0	90.0	"Green house mode"	2.0
2080	842,390	1,440,946 592	2.1 1.	0	1.0	1.0	90.0	"Green house mode"	2.0
2081	842,397	1,441,022 595	5.2 1.	0	1.0	1.0	90.0	"Green house mode"	2.0
2082	842,420	1,441,000 599	9.6 1.	0	1.0	1.0	90.0	"Green house mode"	2.0
2083	842,448	1,441,022 602	2.4 1.	0	1.0	1.0	90.0	"Green house mode"	2.0
2084	842,476	1,440,951 603	3.6 1.	0	1.0	1.0	90.0	"Green house mode"	2.0
2085	842,496	1,440,980 600	5.3 1.	0	1.0	1.0	90.0	"Green house mode"	2.0
2086	842,471	1,441,012 603	3.7 1.	0	1.0	1.0	90.0	"Green house mode"	2.0
2087	842,464	1,441,017 603	3.3 1.	0	1.0	1.0	90.0	"Green house mode"	2.0
2088	842,475	1,441,036 603	3.1 1.	0	1.0	1.0	90.0	"Green house mode"	2.0
2089	842,498	1,441,026 60	D./ 1.	0	1.0	1.0	90.0	"Green house mode"	2.0
2090	842,558 042 401		1.4 I. 5.4 1	0	1.0	1.0	90.0	"Green house mode"	2.0
2091	042,491	1,440,907 000).4 I. 5/1 1	0	1.0	1.0	90.0	"Green house mode"	2.0
2092	8/2 511	1,440,852,000	2.4 1.	0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
2073	842,511	1 440 983 61	19 1	0	1.0	1.0	90.0	"Green house mode"	2.0
2095	842.592	1,440,976 61	1.6 1.	0	1.0	1.0	90.0	"Green house mode"	2.0
2096	842,610	1,440,998 610).8 1.	0	1.0	1.0	90.0	"Green house mode"	2.0
2097	842,560	1,440,864 613	3.8 1.	0	1.0	1.0	90.0	"Green house mode"	2.0
2098	842,568	1,440,809 61	1.5 1.	0	1.0	1.0	90.0	"Green house mode"	2.0
2099	842,555	1,440,810 610).8 1.	0	1.0	1.0	90.0	"Green house mode"	2.0
2100	842,538	1,440,809 609	9.7 1.	0	1.0	1.0	90.0	"Green house mode"	2.0
2101	842,537	1,440,787 60	7.9 1.	0	1.0	1.0	90.0	"Green house mode"	2.0
2102	842,515	1,440,786 600	5.4 1.	0	1.0	1.0	90.0	"Green house mode"	2.0
2103	842,485	1,440,788 604	1.0 1.	0	1.0	1.0	90.0	"Green house mode"	2.0
2104	842,496	1,440,804 605	5.5 l.	0	1.0	1.0	90.0	"Green house mode"	2.0
2105	842,459	1,440,790 60	1.5 1. 1.0 1	0	1.0	1.0	90.0	"Green house mode"	2.0
2100	842,455	1,440,744 590	0.8 I. 00 1	0	1.0	1.0	90.0	"Green house mode"	2.0
2107	042,409 812 160	1,440,739 002	2.0 I. 13 1	0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
2100	842,403	1 440 758 608	+.5 1. R 6 1	0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
2107	842 554	1 440 747 60	7.01. 7.11	0	1.0	1.0	90.0	"Green house mode"	2.0
2111	842,535	1,440,755 600	5.0 1.	0	1.0	1.0	90.0	"Green house mode"	2.0
2112	842,565	1,440,723 60	7.4 1.	0	1.0	1.0	90.0	"Green house mode"	2.0
2113	842,596	1,440,694 608	3.3 1.	0	1.0	1.0	90.0	"Green house mode"	2.0
2114	842,611	1,440,705 610).3 1.	0	1.0	1.0	90.0	"Green house mode"	2.0
2115	842,646	1,440,699 61	1.0 1.	0	1.0	1.0	90.0	"Green house mode"	2.0
2116	842,658	1,440,696 610).5 1.	0	1.0	1.0	90.0	"Green house mode"	2.0
2117	842,684	1,440,696 610).2 1.	0	1.0	1.0	90.0	"Green house mode"	2.0
2118	842,694	1,440,806 616	5.8 1.	0	1.0	1.0	90.0	"Green house mode"	2.0
2119	842,685	1,440,811 615	5.8 1.	0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
		-				a.g.l.	window		(ZVI) a.g.l.
0100	040 / 74		mj	[m]	[m]	[m]	[°]	"Creen heure mede"	[m]
2120	842,674	1,440,805 61	5.5	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
2121	842,008	1,440,808 61	4.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2122	042,000	1,440,603 01	4.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2123	8/2 637	1,440,800 01	4.3	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
2124	842 625	1 440 787 61	37	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2120	842 603	1 440 806 61	4.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2120	842,590	1,440,801 61	2.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2128	842,608	1,440,701 60	9.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2129	842,711	1,440,693 61	0.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2130	842,628	1,440,871 61	4.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2131	842,655	1,440,848 61	3.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2132	842,677	1,440,854 61	4.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2133	842,705	1,440,851 61	4.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2134	842,721	1,440,895 61	6.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2135	842,720	1,440,931 61	6.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2136	842,754	1,440,901 61	8.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2137	842,770	1,440,923 61	8.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2138	842,781	1,440,927 61	8.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2139	842,794	1,440,933 62	0.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2140	042,000	1,440,929 02	2.3	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
2141	042,707 842 756	1,440,614 01	0.0 6 8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2142	8/2 820	1,440,002 01	0.0 1 1	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
2143	842 775	1 440 671 61	ч.ч 1 Д	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2145	842,780	1.440.662 61	0.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2146	842,775	1,440,640 60	8.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2147	842,766	1,440,624 60	7.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2148	842,726	1,440,588 60	4.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2149	842,782	1,440,552 61	0.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2150	842,743	1,440,487 60	9.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2151	842,729	1,440,523 60	7.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2152	842,724	1,440,533 60	6.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2153	842,769	1,440,489 61	0.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2154	842,786	1,440,500 61	1.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2155	842,784	1,440,482 61	0.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2156	842,794	1,440,476 61	1.5	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
2157	042,013	1,440,497 01	2.8 1 0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2100	042,030 842 845	1,440,463 01	4.9 5 Q	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2157	842,845	1 440 535 61	1.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2160	842 818	1 440 530 61	2.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2162	842,842	1,440,547 61	3.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2163	842,854	1,440,548 61	4.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2164	842,834	1,440,571 61	1.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2165	842,840	1,440,602 61	1.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2166	842,871	1,440,487 61	8.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2167	842,889	1,440,495 61	9.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2168	842,874	1,440,533 61	6.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2169	842,929	1,440,527 62	2.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2170	842,959	1,440,541 61	9.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2171	842,945	1,440,578 61	7.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
21/2	842,917	1,440,591 61	8.8 1 2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
21/3	042,924	1,440,501.62	1.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
∠1/4 217⊑	042,941 042 024	1,440,500 62	0.9	1.0	1.0	1.U 1.0	90.0	"Green house mode"	2.0
2173 2174	042,930 812 054	1,440,407 02 1 /// /Q7 61	0.3 Q /	1.0	1.0	1.0	90.0 Q0 0	"Green house mode"	2.0
2170	842,900	1 440,402 01	6.4	1.0	1.0	1.0	90.0 90.0	"Green house mode"	∠.0 2 ∩
2178	842 995	1.440.483 61	5.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2179	843.030	1,440,510 61	5.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2180	843,051	1,440,500 61	6.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2181	843,090	1,440,504 62	0.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

.continued from previous page

No. Easting North	ning Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
Ū	0		0	a.g.l.	window		(ZVI) a.g.l.
	[m]	[m]	[m]	[m]	[°]		[m]
2182 842,911 1,440	,435 614.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2183 842,940 1,440	,439 614.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2184 842,963 1,440	,376 610.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2185 842,997 1,440	,420 612.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2186 842,962 1,440	,426 612.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2187 842,945 1,440	,417 612.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2188 842,913 1,440	,417 612.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2189 842,905 1,440	,418 612.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2190 842,894 1,440	,383 609.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2191 842,889 1,440	,371 607.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2192 842,732 1,440	,593 604.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2193 842,820 1,440	,711 610.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2194 842,868 1,440	,671 614.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2195 842,842 1,440	,635 611.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2196 842,836 1,440	,639 610.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2197 842,872 1,440	,728 614.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2198 843,063 1,440	,385 614.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2199 843,069 1,440	,449 616.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2200 843,047 1,440	,451 616.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2201 843,034 1,440	,446 616.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2202 842,931 1,440	,262 597.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2203 842,949 1,440	,264 598.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2204 842,892 1,440	,265 597.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2205 842,888 1,440	,307 601.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2206 843,104 1,440	,342 614.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2207 843,126 1,440	,328 614.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2208 843,150 1,440	,353 616.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2209 843,186 1,440	,345 620.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2210 843,128 1,440	,378 616.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2211 843,149 1,440	,437 618.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2212 843,144 1,440	,433 617.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2213 843,144 1,440	,481 622.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2214 843,138 1,440	,479 622.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2215 843,130 1,440	,484 621.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2216 843,220 1,440	,456 623.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2217 843,201 1,440	,450 622.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2218 843,228 1,440	,4// 623./	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2219 843,273 1,440	,445 626.4	1.0	1.0	1.0	90.0	Green nouse mode	2.0
2220 843,159 1,440	,516 626.3	1.0	1.0	1.0	90.0	Green nouse mode	2.0
2221 843,227 1,440	,398 622.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2222 843,248 1,440	,305 025.2	1.0	1.0	1.0	90.0	Green house mode	2.0
	,300 020.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
	101 626.4	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
	,404 030.7 EDA 412 A	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
2220 042,010 1,440	524 013.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2227 042,113 1,440	522 604 E	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
2220 042,142 1,440	533 004.3	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
2229 042,142 1,440	580 602.6	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
	586 601 2	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
	537 600 8	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
	531 508 8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2233 042,101 1,440	538 598 0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2235 842 222 1 1/440	534 596 1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2236 842 230 1 1/10	536 596 2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2237 842 217 1 440	578 598 6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2238 842 218 1 440	599 598 5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2239 842 266 1 440	598 595 6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2240 842 230 1 440	475 598 1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2241 842 136 1 440	480 608 1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2242 842.145 1.440	508 605 7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2243 842 273 1 440	433 603.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page

No. Eastir	ng Northing	Ż	Width	Height	Elevation	Slope of	Direction mode	Eye height
	0 0			Ū	a.g.l.	window		(ZVI) a.g.l.
		[m]	[m]	[m]	[m]	[°]		[m]
2244 842,2	65 1,440,432	604.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2245 842,2	53 1,440,434	604.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2246 842,2	42 1,440,444	603.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2247 842,2	99 1,440,451	599.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2248 842.3	21 1,440,468	3 597.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2249 842.2	92 1.440.501	596.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2250 842.3	38 1 440 471	597.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2251 842.3	50 1,440,470	597.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2252 842 3	72 1 440 522	593.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2253 842 3	85 1 440 473	596.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2256 842 3	99 1 440 467	595 9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2254 042,5	06 1 440 429	2 502 3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2255 842,4	00 1,440,420	598.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2250 042,4	47 1 440,410 47 1 440 412	508 6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2257 042,5	47 1,440,412	500.0	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
2250 042,5	45 1,440,425 16 1 //0 /15	601 1	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
2237 042,3	10 1,440,410	402 4	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
2200 042,3	12 1,440,407	40E 4	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
2201 042,2	94 1,440,401 57 1 440 202	005.4	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
2202 842,2	57 1,440,392 54 1 440 247	2 609.4	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
2203 842,3	30 1,440,307 37 1 440 330	000.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2264 842,4	27 1,440,328	601.3	1.0	1.0	1.0	90.0	Green nouse mode	2.0
2265 842,4	29 1,440,315	601.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2266 842,4	95 1,440,343	599.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2267 842,4	83 1,440,360) 598.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2268 842,4	67 1,440,429	9 594.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2269 842,4	51 1,440,438	3 595.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2270 842,4	63 1,440,385	598.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2271 842,4	47 1,440,377	599.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2272 842,6	21 1,440,338	3 593.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2273 842,6	00 1,440,310	600.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2274 842,5	81 1,440,302	2 602.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2275 842,5	73 1,440,299	0 603.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2276 842,6	59 1,440,281	598.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2277 841,9	09 1,440,778	3 583.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2278 841,9	00 1,440,764	585.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2279 841,9	39 1,440,765	586.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2280 849,7	41 1,447,067	767.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2281 849,7	25 1,447,111	764.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2282 849,7	77 1,447,077	768.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2283 849,8	12 1,447,092	2 767.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2284 849,8	08 1,447,127	763.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2285 843,4	28 1,443,637	654.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2286 843,3	61 1,443,629	658.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2287 843,4	42 1,443,559	0653.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2288 843,3	91 1,443,357	660.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2289 843,2	55 1,443,331	658.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2290 843,2	51 1,443,444	663.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2291 843,4	49 1,443,160	664.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2292 843,5	62 1,445,792	2 657.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2293 843,5	12 1,445,188	8 645.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2294 843,5	99 1,445,158	8 648.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2295 843.6	32 1,445,191	651.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2296 843.6	18 1,445,109	648.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2297 843 6	41 1,445.063	647.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2298 843 7	72 1.445 124	653.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2299 843 7	27 1,445 170	656.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2300 843 8	13 1 445 166	656.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2301 844 0	24 1 445 059	8 652 5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2302 844 0	08 1 445 040	651 4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2302 044,0	71 1 <u>4</u> 11 000	647 1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2303 043,9	04 1 444,990	8 647 6	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
2307 044,1		5 651 1	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
2000 044,Z	12 1,444,770	, 034.4	1.0	1.0	1.0	70.0	Sicci nouse moue	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

.continued from previous page

No. Easting Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
			-	a.g.l.	window		(ZVI) a.g.l.
	[m]	[m]	[m]	[m]	[°]		[m]
2306 844,965 1,444,806	652.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2307 845,033 1,444,726	652.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2308 845,139 1,444,554	660.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2309 845,336 1,444,616	663.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2310 845,085 1,444,393	660.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2311 845,329 1,444,091	679.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2312 845,415 1,444,117	681.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2313 845,594 1,444,036	6/5.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2314 845,492 1,444,234	687.4	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
2315 845,700 1,444,327	002.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2310 840,040 1,444,704	689.5	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
2317 040,100 1,444,730	671 /	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2310 040,141 1,444,914	660.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2317 040,131 1,444,933	660.2	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
2320 043,730 1,444,734	663 1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2327 846 065 1 444 979	664 4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2322 845,904 1,445,091	660.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2324 845.688 1.444.950	648.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2325 845,592 1,445,390	637.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2326 845,449 1,445,401	630.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2327 845,412 1,445,508	624.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2328 845,489 1,445,463	632.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2329 845,288 1,445,564	598.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2330 847,080 1,444,645	684.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2331 847,119 1,444,628	688.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2332 847,049 1,444,750	683.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2333 846,993 1,444,823	672.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2334 846,931 1,445,014	675.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2335 846,968 1,445,117	676.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2336 846,745 1,445,250	671.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2337 846,728 1,445,216	666.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2338 846,700 1,445,173	660.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2339 846,802 1,445,309	686.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2340 846,775 1,445,325	686.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2341 846,758 1,445,360	684.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2342 846,616 1,445,456	6/8./	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2343 840,418 1,445,548	684.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2344 840,357 1,445,028	671.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2345 045,079 1,445,050	622 0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2340 645,650 1,445,091	626.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2347 043,022 1,443,070	632.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2349 845 783 1 445 853	641 4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2350 845 389 1 445 950	636.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2351 845.422 1.446.019	636.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2352 845.213 1.446.161	631.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2353 845.228 1.446.203	628.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2354 845,248 1,446,194	628.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2355 845,107 1,446,245	627.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2356 845,079 1,446,253	625.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2357 845,142 1,446,316	623.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2358 844,958 1,446,440	618.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2359 845,122 1,446,563	581.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2360 844,829 1,446,462	624.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2361 844,934 1,446,541	613.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2362 844,710 1,446,513	619.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2363 844,558 1,446,502	612.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2364 844,198 1,446,501	571.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2365 844,171 1,446,634	564.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2366 844,335 1,446,875	561.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2367 844,148 1,447,000	568.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
			[]	[]	[]	a.g.l.	window		(ZVI) a.g.l.
2240	011 120	1 114 007 5	[m]	[m] 1.0	[m] 1.0	[m] 1.0		"Croop house mode"	2.0
2300	844,130 844,035	1,440,967 3	574 3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2309	843 938	1 446 891 5	561.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2371	843 828	1 446 949 5	561.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2372	844,432	1,446,966 5	575.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2373	844,478	1,446,913 5	566.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2374	844,498	1,447,008 5	576.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2375	844,511	1,447,028 5	576.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2376	844,097	1,447,293 6	511.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2377	843,908	1,447,347 5	590.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2378	844,649	1,446,941 5	559.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2379	844,614	1,446,984 5	560.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2380	844,669	1,446,874 5	64.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2381	844,745	1,447,115 5	62.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2382	844,888	1,440,827 5	5/3.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2383	044,941	1,440,930 3	567.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2304	8/5 577	1,447,008 5	502.6	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
2305	845 233	1 446 865 5	596.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2387	845.321	1.446.819 5	595.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2388	845,374	1,446,859 6	500.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2389	845,407	1,446,894 6	505.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2390	845,391	1,446,923 6	503.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2391	845,497	1,446,813 5	592.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2392	845,653	1,446,941 5	595.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2393	845,799	1,446,847 5	591.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2394	845,848	1,446,817 5	588.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2395	846,000	1,446,848 5	590.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2396	846,110	1,446,943 6	517.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2397	846,116	1,447,026 6	27.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2398	840,350	1,440,948 0	032.9 200 4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2399	8/6 303	1,440,903 0	53 1	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
2400	846 625	1 447 199 6	576.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2402	846.674	1,446,956,6	64.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2403	847,014	1,447,423 7	704.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2404	847,163	1,447,203 6	585.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2405	847,290	1,447,292 6	599.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2406	847,407	1,447,352 6	592.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2407	848,384	1,445,011 7	765.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2408	848,484	1,442,337 7	794.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2409	848,478	1,442,322 7	794.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2410	848,579	1,442,608 /	/91.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2411	848,478	1,442,508 /	198.9 141 E	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2412	848,100	1,442,543 /	04.5 758 8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2413	840,200	1,442,400 7	7/8 8	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
2414	8/7 225	1,442,5257	712.0	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
2416	847,289	1,442,634 7	712.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2417	847,984	1,440,844 6	579.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2418	847,316	1,440,659 6	566.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2419	847,308	1,440,650 6	667.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2420	847,312	1,440,688 6	665.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2421	847,378	1,440,689 6	664.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2422	847,380	1,440,705 6	666.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2423	847,229	1,440,498 6	581.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2424	847,241	1,440,330 6	572.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2425	84/,129	1,440,482 6	593.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2426	846,610	1,439,962 6	000./	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
2421 2120	040,/UI	1,437,707 0	566 0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2420 2/120	816 505	1,437,000 0	560.0	1.0	1.0	1.0	90.0 90.0	"Green house mode"	∠.∪ 2.0
2427	0-0,000	1,737,701 0	.00.7	1.0	1.0	1.0	70.0	Sicci nouse moue	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page

No. Ea	asting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
			[]	[]	[]	a.g.l.	window		(ZVI) a.g.l.
2120 01	16 551	1 110 102	[m] 642.2	[m] 1 0	[m] 1 0	[m] 1 0	[1]	"Groop bouso modo"	[[11]
2430 04	40,001	1,440,103	643.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2431 84	46 310	1 439 954	662 1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2433 84	46 157	1 440 056	650 5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2434 84	45.877	1.443.571	690.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2435 84	45,965	1,443,445	691.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2436 84	45,994	1,443,414	690.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2437 84	46,194	1,443,239	679.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2438 84	46,115	1,443,080	676.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2439 84	45,993	1,443,164	681.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2440 84	45,715	1,442,955	655.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2441 84	47,108	1,446,141	609.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2442 84	47,162	1,446,092	616.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2443 84	48,744	1,446,651	/3/.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2444 84	48,720	1,440,052	730.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2445 84	48,722	1,440,001	735.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2440 04	48,091	1,440,042	730.2	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
2448 84	48 726	1 446 617	736.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2449 84	48.611	1.446.594	734.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2450 84	48,601	1,446,619	732.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2451 84	49,049	1,446,745	763.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2452 84	49,033	1,446,738	762.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2453 84	48,976	1,446,383	732.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2454 84	48,324	1,442,167	787.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2455 84	47,552	1,441,852	699.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2456 84	47,442	1,441,790	691.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2457 84	47,422	1,441,782	690.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2458 84	47,256	1,441,361	667.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2459 84	46,667	1,440,642	654.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2460 84	40,725	1,440,654	651.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2401 04	47,100	1,440,002	651 0	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
2463 84	44 106	1 442 290	644 4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2464 84	44.098	1.442.322	645.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2465 84	43,862	1,442,701	640.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2466 84	43,230	1,441,803	615.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2467 84	43,017	1,441,072	620.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2468 84	43,235	1,441,057	630.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2469 84	46,642	1,442,652	687.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2470 84	46,714	1,442,470	696.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2471 84	46,719	1,442,317	698.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
24/2 84	46,772	1,442,292	699.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
24/3 84	46,513	1,442,098	695.6	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
2474 84	40,307	1,442,203	698.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2475 84	40,527	1 //1 022	690.7	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
2470 04	40,417	1 //1 //61	680.3	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
2478 84	45.795	1.441.419	659.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2479 84	46,392	1,441,616	678.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2480 85	55,530	1,452,119	819.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2481 85	55,676	1,452,149	817.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2482 85	55,826	1,452,201	812.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2483 85	55,815	1,452,243	810.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2484 85	55,985	1,452,111	798.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2485 85	55,909	1,452,083	812.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2486 85	56,108	1,452,030	790.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2487 85	55,173	1,451,878	804.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2488 85	55,014	1,451,914	191.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2489 85	53,068	1,450,756	003.0	1.0	1.0	1.U 1.0	90.0 00.0	"Green house mode"	2.0
2470 00	53,094	1 / 50 722	2004.U 200 2	1.0	1.0	1.0	90.0 90.0	"Green house mode"	∠.0 2.0
∠+71 0C	55,171	, , JU, IZZ	000.0	1.0	1.0	1.0	70.0	Sicci nouse moue	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page

No. Eas	ting	Northing	Ž	Width	Height	Elevation	Slope of	Direction mode	Eye height
						a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
2492 853	,163	1,450,720	801.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2493 855	,851	1,449,897	760.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2494 853	,507	1,447,205	771.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2495 853	,660	1,447,061	771.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2496 853	,805	1,447,014	771.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2497 854	,023	1,446,973	776.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2498 853	.803	1,446,717	770.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2499 853	.775	1,446,664	772.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2500 853	.774	1,446,578	776.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2501 853	.415	1,446,365	770.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2502 853	664	1,446,195	767.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2503 853	218	1 445 910	770.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2504 852	970	1,445,880	765.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2505 852	989	1 445 762	765.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2506 853	145	1 445 782	765.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2507 853	119	1 445 670	767.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2508 852	983	1 445 580	757.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2509 852	621	1 445 708	760 7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2510 852	5021	1 115 620	756.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2510 052	336	1 445 681	758 7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2517 052	352	1 1 1 5 681	758.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2512 052	287	1 1 1 5 517	752.7	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
2517 052	102	1 1 1 5 7 1 9	735.7	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
2514 052	122	1,445,740	740.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2010 002	202	1,445,050	755.1	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
2010 002	,303	1,440,707	732.1	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
2017 002	201	1,440,700	740.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
2010 002	.,209	1,440,400	755.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
2019 002	.,221	1,440,429	730.4	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
2020 002	102	1,440,322	749.4	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
2021 002	020	1,440,307	741.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
	,030	1,440,200	710.1	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
2523 852	,810	1,444,222	721.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
	,007	1,444,227	721.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
2525 852	,110	1,444,220	719.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2520 852	,883	1,444,220	728.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2527 853	,001	1,444,153	751.0	1.0	1.0	1.0	90.0	Green house mode	2.0
2528 853	,221	1,444,700	753.4	1.0	1.0	1.0	90.0	Green house mode	2.0
2529 854	,404	1,444,434	764.0	1.0	1.0	1.0	90.0	Green house mode	2.0
2530 854	,601	1,444,292	/55.6	1.0	1.0	1.0	90.0	Green nouse mode	2.0
2531 855	,548	1,446,694	804.2	1.0	1.0	1.0	90.0	Green nouse mode	2.0
2532 855	,037	1,440,091	803.2	1.0	1.0	1.0	90.0	Green house mode	2.0
2533 855	,164	1,448,511	783.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2534 854	,945	1,448,538	761.1	1.0	1.0	1.0	90.0	Green nouse mode	2.0
2535 855	,249	1,448,426	784.8	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
2536 855	,344	1,448,357	/81.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2537 855	,292	1,448,665	//8.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2538 855	,738	1,447,439	801.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2539 855	,701	1,447,541	799.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2540 855	,720	1,447,523	801.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2541 855	,845	1,447,579	800.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2542 855	,823	1,447,639	/99.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2543 855	,745	1,447,763	795.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2544 855	,740	1,447,725	793.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2545 855	,734	1,447,724	793.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2546 855	,726	1,447,750	794.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2547 855	,718	1,447,713	792.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2548 855	,771	1,447,893	791.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2549 855	,822	1,447,908	791.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2550 855	,695	1,448,082	790.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2551 855	,536	1,448,145	787.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2552 855	,709	1,448,492	785.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2553 855	,777,	1,448,698	785.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

.continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
	-	-			-	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
2554	855,797	1,448,803	781.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2555	855,899	1,448,801	777.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2556	855,968	1,448,361	790.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2557	855,980	1,448,379	790.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2558	855,774	1,448,327	790.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2559	855,979	1,448,032	790.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2560	856,036	1,448,059	/86.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2561	856,155	1,448,044	111.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2562	854,875	1,447,505	//5./	1.0	1.0	1.0	90.0	"Green nouse mode"	2.0
2003	044,017	1,441,289	042.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2004	040,014	1,441,403	602.0 424.4	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
2505	044,011 944 505	1,441,114	627.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2500	844,303 845 385	1,440,907	620.7	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
2568	845 366	1 441 320	644 3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2569	844 615	1 442 157	618 3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2570	841 893	1 443 025	630.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2571	842.007	1,442,776	626.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2572	841.940	1.442.610	615.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2573	841,757	1,442,448	585.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2574	842,087	1,442,718	618.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2575	842,357	1,442,455	656.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2576	842,311	1,442,455	653.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2577	842,303	1,442,410	650.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2578	842,309	1,442,414	650.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2579	842,321	1,442,401	649.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2580	842,300	1,442,446	651.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2581	843,147	1,443,146	644.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2582	843,158	1,443,068	642.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2583	847,483	1,446,697	681.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2584	847,420	1,446,790	695.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2585	847,398	1,446,821	693.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2586	847,443	1,446,891	702.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2587	847,384	1,446,924	690.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2588	847,424	1,446,989	691.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2589	847,818	1,446,972	/18.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2590	847,832	1,446,892	699.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2591	848,194	1,445,018	755.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2592	040,100	1,445,052	700.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2093	040,393	1,444,999	767.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2594	Q/Q /11	1 / / 5 17/	703.0	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
2596	848 218	1 445 137	759.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2597	848 079	1 445 326	731.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2598	846.127	1,439,364	670.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2599	846.081	1,439,366	672.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2600	846.301	1,439,493	669.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2601	847,645	1,439,577	668.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2602	847,806	1,439,638	672.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2603	847,900	1,439,635	675.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2604	847,280	1,439,802	653.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2605	848,017	1,441,153	697.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2606	848,032	1,441,147	695.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2607	848,021	1,441,135	692.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2608	853,523	1,444,650	723.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2609	853,559	1,444,654	719.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2610	853,656	1,445,612	730.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2611	853,575	1,445,602	740.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2612	853,833	1,445,880	734.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2613	853,631	1,445,995	762.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2614	853,964	1,446,101	741.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2615	854.547	1.446.409	757.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
			[]	f	f	a.g.l.	window		(ZVI) a.g.l.
2/1/	054 440	1 1 1 4 2 0 2 7	[m]	[m] 1.0	[m] 1 0	[m] 1.0	[*]	"Croop bouloo modo"	[m]
2010	854,042	1,440,393 /	155.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2017	004,001	1,440,440 /	100.Z	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2010	Q15 100	1,440,4737	110.0 (02.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2620	8/5 105	1,447,9210	5/10 Q	1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
2620	845 324	1 447 844 6	566.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2627	844 996	1 447 944 6	567.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2622	844,952	1.447.814 6	563.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2624	844.577	1,447,898 6	647.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2625	844,402	1,447,876 6	539.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2626	844,449	1,447,871 6	641.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2627	844,497	1,447,746 6	653.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2628	844,203	1,447,779 6	612.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2629	844,232	1,447,790 6	619.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2630	848,822	1,447,504 7	749.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2631	848,820	1,447,673 7	764.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2632	845,867	1,447,894 6	661.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2633	844,531	1,443,297 6	673.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2634	844,441	1,443,268 6	668.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2635	844,425	1,443,238 6	570.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2636	844,661	1,443,294 6	686.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2637	844,649	1,443,344 6	584.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2638	844,619	1,443,446 6	578.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2639	844,673	1,443,455 6	581.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2640	844,636	1,443,470 6	5/8.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2641	844,859	1,443,603 0		1.0	1.0	1.0	90.0	Green house mode	2.0
2642	844,010	1,443,015 0	200.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2043	040,070	1,443,473 0	190.Z	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2044	045,300	1,443,403 0	575.0 577.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
2645	844 892	1 444 109 6	569 3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2640	844 885	1 444 136 6	569.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2648	844,686	1,444,492 6	561.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2649	844,402	1.444.399 6	565.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2650	844,413	1,444,602 6	547.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2651	844,492	1,444,517 6	560.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2652	844,188	1,444,172 6	680.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2653	844,512	1,444,136 6	579.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2654	844,027	1,444,611 6	653.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2655	844,173	1,444,633 6	650.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2656	844,447	1,444,855 6	549.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2657	843,977	1,444,207 6	677.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2658	843,877	1,443,723 6	540.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2659	845,018	1,443,373 7	701.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2660	844,721	1,443,295 6	587.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2661	845,860	1,443,668 6	596.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2662	847,351	1,443,766 /	/10.3	1.0	1.0	1.0	90.0	Green nouse mode	2.0
2003	84/,1/0	1,443,753 0	290.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2004	047,100	1,445,703 0	194.0 44.0	1.0	1.0	1.0	90.0	"Creen house mode"	2.0
2000	040,042	1,444,000 0	504.Z	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2000	846 768	1 / 22 012 6	540 5	1.0	1.0	1.0	90.0 00.0	"Green house mode"	2.0
2668	856 018	1 1 1 1 6 7 9 1 9	207.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2669	856 022	1,446 781 8	307.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2670	856 072	1,446 767 8	305.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2671	850,453	1,448,499 7	741.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2672	850,459	1,448,496 7	741.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2673	850,459	1,448.496 7	741.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2674	850,483	1,448,550 7	744.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2675	850,455	1,448,560 7	746.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2676	850,447	1,448,548 7	745.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2677	850,477	1,448,467 7	740.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0

To be continued on next page...

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
						a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
2678	850,481	1,448,470	740.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2679	850,418	1,448,692	756.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2680	850,431	1,448,734	755.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2681	850,426	1,448,869	752.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2682	850,438	1,448,954	750.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2683	850,457	1,449,050	747.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2684	850,462	1,449,017	745.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2685	850,514	1,449,049	737.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2686	849,232	1,444,951	763.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2687	849,216	1,444,969	764.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2688	849,252	1,444,931	761.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2689	849,243	1,444,897	755.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
2690	849,242	1,444,886	753.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0

Calculation Results

Shadow receptor

Shadow, expected values No

).	Shadow hours
	per year
	[h/year]
1	0:00
2	0:00
3	0:00
4	0:00
5	0:00
6	0:00
7	0:00
8	0:00
9	0:00
10	0:00
11	0:00
12	1:18
13	0:21
14	0:00
15	2:31
16	0:00
17	0:00
18	0:00
19	0:00
20	0:00
21	0:00
22	0:00
23	0:00
24	0:00
25	0:00
26	0:00
27	0:00
28	0:00
29	0:00
30	0:00
31	0:00
3Z 22	0:00
აა ა/	0.00
25	0.00
30	1.47
20	1.47
20 20	2.17
30	3.20 1.12
39	0.00
40	0.00

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com Calculated: 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page Shadow, expected values No. Shadow hours per year [h/year] 41 0:00 42 0:00 43 0:00 43 0:00 44 0:00 45 0:00 46 4:25 47 4:55 49 5:47

45	0:00
46	4:25
47	4:55
48	5:47
49	5:53
50	6:07
51	8:07
52	20:55
53	10:27
54	6:01
55	5:20
56	4:06
57	2:50
58	0:00
59	0:00
60	0:00
61	17:10
62	6:54
63	9:38
64	4:33
65	9:50
66	7:37
67	0:50
68	0:55
69	1:08
70	1:13
71	1:13
72	1:25
73	1:20
74	1:23
75	1:34
76	3:36
77	1:32
78	3:41
79	2:27
80	3:52
81	4:50
82	10:38
83	11:55
84	10:40
85	12:06
86	12:10
87	37:40
88	/:0/
89	10:36
90	14:20
91	15:15
92	12:19
73 04	13:42
94 05	0U:57
70 04	30:15 14:10
90 07	10:10
97 00	18:78
78 90	23:07
99	44:32

10028:3910131:47

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com Calculated: 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page Shadow, expected values No. Shadow hours per year [h/year]

	[h/vear]
102	19:53
103	28:33
104	9:36
105	8:03 27:34
100	25:12
108	30:17
109	55:04
110	6/:43 72.52
112	10:36
113	9:31
114	8:28
115	6:27
110	6:16 6:04
118	5:59
119	4:31
120	4:05
121	4:34 2:45
122	3:53
124	4:17
125	3:51
126	3:08
127	3:21
129	2:57
130	1:56
131	1:53
132 133	0:00 3:00
134	3:00
135	2:58
136	3:18
137	3:08 3:26
130	3:29
140	3:40
141	3:47
142 143	3:52
144	3:36
145	3:54
146	2:47
147	2:42
148	2:34
150	3:16
151	3:21
152	22:49
153 154	20.50 35:23
155	28:50
156	27:45
157	27:41
150 159	0:00 8:31
160	14:57
161	54:38

162 85:31 To be continued on next page...

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

con	tinued from previous page
	Shadow, expected values
No.	Shadow hours
	per year
	, , , , , , , , , , , , , , , , , , ,

	per year
140	[n/year]
164	33.00 40.06
165	20.43
165	24.05
167	24.03
162	20.47
160	117.19
170	109.04
171	145:56
172	12:25
173	297:40
174	29:20
175	25:31
176	23:00
177	13:36
178	10:54
179	10:56
180	12:53
181	18:11
182	19:39
183	27:10
184	29:19
185	22:33
186	33:30
187	40:22
188	30:10
189	42:43
190	9:51
191	7:50
192	13:35
193	15:11
194	14:08
195	51:45
196	225:05
197	54:07
198	55:32
199	24:43
200	33:50
201	26:57
202	18:19
203	19:50
204	16:58
205	20:03
206	23:46
207	27:07
208	34:23
209	28:19
210	30:15
211	21:20
212	15:36
213	14:13
214	13:56
215	14:07
210 217	20:40
∠1/ 210	20:42
∠1ŏ 210	15:22
217 220	30:01
22U 221	30.40 36.44
221 222	36.51

37:35

223

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

continued from previous page		
	Shadow, expected values	
No.	Shadow hours	
	per vear	

	per year
	[h/year]
224	37:53
225	38:26
226	41:05
227	28:50
228	29:47
229	35:40
230	35:09
231	33:05
232	33:52
233	30:12
234	31:06
235	26:36
230	22:27
237	21.00
230	20.15
237	27.30
240	15.03
241	14.12
243	15:36
244	23:43
245	20:33
246	19:51
247	19:03
248	18:07
249	17:22
250	17:08
251	16:28
252	16:07
253	15:50
254	15:49
255	15:36
256	15:05
257	14:20
258	14:08
259	13:53
200	11.02
201	11.34
202	12.11
263	10.59
265	10:47
266	9:54
267	14:42
268	14:08
269	16:24
270	10:02
271	15:08
272	14:59
273	15:31
274	15:40
275	15:13
276	11:06
277	10:58
218	10:20
219	9:40
∠ԾU 201	9:09
∠01 282	7.40 21.12
202 283	∠1.13 23·14
284	23:53

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com Calculated: 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page Shadow, expected values

No.	Shadow hours
	per year
	[h/year]
285	23:08
286	17:11
287	17:41
288	22:23
289	23:15
290	23:34
291	23:39
292	22:15
293	22:25
294	22:14
295	21:34
296	18:09
297	16:19
298	16:03
299	15:39
300	14:08
301	13:42
302	14:16
303	15:27
304	13:17
305	12:40
306	12:46
307	12:38
308	11:51
309	13:08
310	13:30
311	13:38
312	13:30
313	14:20
314 215	13.13
216	13.47
217	12.47
317 210	13.30
210	12.29
220	0.25
320 221	9.33
227	9.02
222	0.30 8·17
323	7.17
324	7.47
325	7.37
320	8.52
328	9.14
329	11:12
330	10:21
331	9:25
332	6:26
333	6:57
334	6:39
335	6:47
336	9:43
337	12:12
338	7:42
339	8:38
340	13:00
341	11:11
342	9:42
343	8:32
344	11:46

345

12:10

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

sult

Huadian Wind Power Project - Real Case

SHA	DOW - Main Resul
Calcu	ulation: 0599549 - Huad
cont	inued from previous page
No.	Shadow, expected values Shadow hours
	per year
346	8:08
347	8:25
348 349	5:24
350 351	5:28 5:54
352	8:49
353 354	9:17 9:35
355	9:40
356 357	10:18 6:39
358	7:18
359 360	6:28 6:35
361	7:14
363	7:47
364 365	6:08 5:53
366	5:28
367 368	5:12 4:58
369	5:05
370 371	4:44 5:11
372	9:47
373 374	5:50 4:54
375	7:00
376	10:22
378	11:19 11:54
380	10:58
381 382	9:37 10:12
383	9:47
384 385	8:18 7:16
386	5:53
387 388	5:21
389	4:48
390 391	19:13
392 303	14:24 13:40
394	13:24
395 396	9:25 9:42
397	9:45
398 399	6:46 6:16
400	6:11
401	6:26 6:23

2:04 406 1:51 To be continued on next page...

6:30

5:07

403

404

405

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 - Huadiar	Wind Power Project - Real C	ase
--------------------------------	-----------------------------	-----

ounoc	
conti	inued from previous page
No	Shadow, expected values
110.	per vear
	[h/year]
407	1:57
408	1:51
409	2:12
410	2:03
411	2:03
412	1:54
413	2.21
415	2:30
416	2:38
417	2:37
418	2:27
419	2:30
420	2:41
421	2:37
423	2.20
424	2:29
425	2:36
426	2:41
427	2:47
428	2:50
429	2:50
430	3.11
432	3:14
433	3:12
434	4:10
435	3:25
436	4:14
437	4:1/
430	3.31
440	4:24
441	3:18
442	3:24
443	3:16
444	3:13
445	4:29
440	5.22
448	6:15
449	3:02
450	3:01
451	3:50
452	3:54
453	4:05
404	2.48
456	2:44
457	2:40
458	2:51
459	3:02
460	4:01
461	4:09
40Z 162	4:17 3:56
464	3:08
465	2:50
466	2:26

467 3:11 To be continued on next page...

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 - Huadiar	Wind Power Project - Real Ca	ase
--------------------------------	------------------------------	-----

ounce	indition: 0077047 Hudd
cont	inued from previous page
No.	Shadow, expected values Shadow hours
	per year
	[h/year]
468	3:21
469	3:19
470	4:01
471	5:02
472	5:01
473	3:54
474	3:26
475	3:25
476	3:36
477	4:19
478	4:29
4/9	4:37
480	4:49
481	5:56
482	0:00
483	4:09
404 105	0.30
405	8.53
400	4:36
488	3.43
489	10:51
490	10:44
491	8:04
492	7:37
493	7:42
494	8:38
495	9:52
496	9:34
497	9:20
498	9:32
499	7:50
500	4:20
501	6:59
502	9:00
503	8:39 9:1 <i>1</i>
505	8.00
505	7.20
507	7.27
508	6:00
509	6:36
510	8:18
511	10:23
512	10:48
513	11:28
514	10:08
515	8:30
516	12:27
517	12:52
518	12:57
519	12:12
520	15:52
521	16:22
522	1U:44
523	10:48
ວ∠4 ⊑2⊑	9:59 10:01
020 524	0.58
520	11:19
~~ /	· · · · ·

528

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com Calculated: 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page Shadow, expected values No. Shadow hours per year [h/year] 529 11:01

	[h/year]
529	11:01
530	16:49
531	14:16
532	19:20
533	25:49
534	29:32
535	26:09
536	35:40
537	31:22
538	28:32
539	17:23
540	23.00
541	25.17
542	37:40
544	40.44
545	43:10
546	25:01
547	31:13
548	60:51
549	58:37
550	91:15
551	56:55
552	40:35
553	37:08
554	36:46
555	36:15
556	32:47
557	32:32
558	31:56
559	31:40
560	40:36
561	40:41
562	30:18
563	28:05
564	27:30
565	26:59
500	26:30
50/	20:20
560	20.01
570	23.20
570	30.46
572	31.46
573	32:03
574	31:13
575	30:39
576	30:10
577	34:54
578	33:58
579	36:19
580	37:46
581	42:49
582	31:50
583	36:12
584	33:59
585	20:02
586	9:21
587	10:05
588	7:25

589 7:35 To be continued on next page...

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

- Huadian Wind Power Project - Real Case

Calc	ulation: 0599549 - Huad
con	tinued from previous page Shadow, expected values
No.	Shadow hours
	per year
	[h/year]
590	15:17
591	11:50
592	6:10
593	7:08
594	6:05
595	23.13
596	23.44
597	23.50
598	23.58
599	20:44
600	16:38
601	15:48
602	13:30
603	20:20
604	15:58
605	15:47
606	14:59
607	13:40
608	13:06
609	12:34
610	11:16
611	10:53
612	10:29
613	10:01
614	9:06
615	9:12
616	9:41
617	9:07
618	8:56
619	9:11
620	10:37
621	11:01
622	11:20
623	12:22
624	11:36
625	10:19
626	10:30
627	11:09
628	10:30
629	10:47
630	10:50
631	10:08
632	10:43
633	9:52
634	9:51
635	10:24
636	9:49
637	9:51
638	10:40
639	9:59
640	9:38
641	9:03
642	8:48
643	10:28
644	33:55
645	22:55
646	24:34
647	4:53
648	5.06

649 5:24 650 6:15

To be continued on next page...

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

cont	inued from previous page
	Shadow, expected values
No.	Shadow hours
	per year
	[h/year]
651	7:11
652	/:4/
653	9:54
054	10:40
000	10:51
657	14.03 15· <i>1</i> 1
658	16.12
659	16:37
660	17:05
661	17:11
662	19:00
663	22:05
664	20:49
665	56:47
666	12:50
667	12:12
668	19:12
669	12:12
6/0	10:46
6/1	4:15
672	3:43
674	2.03
675	3.15
676	3.34
677	5:16
678	2:01
679	1:56
680	1:58
681	4:52
682	5:09
683	5:29
684	5:15
685	5:32
686	4:35
687	2:31
688	1:04
600	1:05
690	1.00
692	1.10
693	1:21
694	1:23
695	1:44
696	1:53
697	2:18
698	2:20
699	3:13
700	3:37
701	3:32
702	4:25
/03	4:43
704	2:50
705	3:30
706	4:44 2:27
707	১.১ <i>।</i> 5.30
700 700	6.37
710	6:42

711 6:37 To be continued on next page...

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

Calc	ulation: 0599549 - Huad
cont	tinued from previous page
No	Shadow hours
100.	per year
	[h/vear]
712	6.33
712	8.22
717	0.22
715	4.33
716	4.20 5.00
710	5:06
710	4.57
710	4.57
720	5.18
720	5.28
721	6.30
722	6:46
723	6:40
724	7.54
725	10.33
720	0.13
729	9:43 Q·17
720	8.48
727	13.48
730	15.07
737	10.32
732	21.11
73/	23.11
735	29.08
736	36.29
737	55.14
738	40.53
739	52:01
740	44:40
741	36:28
742	54:20
743	17:31
744	11:40
745	12:44
746	45:47
747	40:01
748	55:34
749	44:24
750	106:01
751	151:47
752	89:11
753	14:06
754	15:59
755	12:11
756	18:35
757	20:54
758	18:00
759	17:29
760	17:13
761	19:07
762	13:34
763	8:10
764	12:04
765	16:30
766	18:25
767	14:42
768	4:21
769	5:54
770	9:06

771 4:14 772 0:42

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

Result

SHA	DOW - Main Resul
Calc	ulation: 0599549 - Huad
cont	inued from previous page Shadow, expected values
No.	Shadow hours
	[h/year]
773	0:35
775	0:38
776	4:41
777	1:11
779	22:22
780	10:17
781 782	30:15 34·05
783	33:59
784	25:49 21:07
786	20:19
787	22:10
789	13:20
790	20:05
791	29:30 30:03
793	32:30
794	11:52 33·19
796	26:04
797	26:25 27:26
799	23:16
800 801	26:47 19:54
802	19:28
803 804	19:58 17:50
805	18:30
806 807	18:40 15:24
808	14:16
809	13:40
811	15:11
812	10:17
814	12:53
815	14:03
810	5:45
818	7:51
819	12:21
821	12:07
822 823	10:53 9:47
824	11:05
825 826	10:12 8:48
827	9:17
828 820	11:10 13:09
830	8:49
831	10:17

832 7:53 833 9:31

To be continued on next page...

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

Calci	liation: 0599549 - Huad
cont	inued from previous page Shadow, expected values
No	Shadow hours
	ner vear
	[h/year]
024	
034	9.12
835	9:11
836	8:43
837	9:15
838	9:56
839	10:36
840	12:06
841	13:47
842	12:19
843	10:32
844	14:58
845	15:31
846	14:02
847	13:39
848	13:39
849	19:53
850	14:26
851	23.27
852	23.27
052	22.10
055	21:03
004	24.02
000	27.43
800	27:09
857	27:56
858	24:00
859	19:27
860	21:23
861	19:25
862	20:17
863	15:33
864	15:26
865	19:05
866	18:34
867	17:48
868	15:23
869	16:32
870	15:59
871	12:09
872	11:30
873	12:38
874	10:49
875	12:27
876	14:23
877	11:24
878	12:47
879	12:32
880	12:45
881	13:02
882	12:33
883	9:18
884	9:01
885	8:24
886	11:07
887	8:52
888	7:34
889	8.27
800	9.02
801	9.02
2071	7.27 Q·35
072	7.00

893 9:52 894 11:01

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

esult

Huadian Wind Power Project - Real Case

SHA	DOW - Main Resul
Calcu	ulation: 0599549 - Huad
cont	inued from previous page
	Shadow, expected values
INO.	Snadow nours
	[h/year]
895	11:17
896 897	12:23
898	12:22
899	11:52
900 901	8:18 12:19
902	7:59
903	7:36
904 905	7:48
906	6:21
907	7:10
908	9:53
910	9:15
911 012	9:46 6:26
912	8:02
914	10:55
915 016	8:51 12:20
917	14:07
918	14:27
919 920	12:59 11:48
920	14:29
922	14:28
923 924	16:40 13:24
925	12:51
926	18:46
927	15:41 28:06
929	38:01
930	54:10
931	24:37 35:51
933	20:01
934	19:52
935 936	7:24
937	8:07
938	7:55
939 940	14:03
941	35:24
942	72:10
943 944	10:40
945	13:52
946	9:30 17:07
947 948	15:23
949	17:37
950	19:45

951 19:24 952 29:08 953 37:54 954 34:43 955 30:11

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page Shadow, expected values ...

No.	Shadow hours
	per year
	[h/year]
956	28:29
957	25:05
958	26:22
959	27:48
960	29:35
961	32:36
962	35:42
963	30.04
964	26:56
965	24.33
966	29.33
900	27.47
040	24.02
900	24.03
909	24.04
970	24:07
971	12:50
972	9:49
973	9:42
974	13:01
975	13:40
976	8:54
977	31:52
978	20:43
979	19:12
980	14:03
981	13:48
982	19:33
983	10:54
984	9:45
985	7:22
986	7:56
987	6:43
088	6.22
000	6.20
202	6:07
990 001	0.07
991	5.50
992	5:04
993	4:35
994	4:40
995	4:08
996	4:00
997	6:52
998	8:16
999	3:28
1000	2:09
1001	0:00
1002	2:45
1003	4:36
1004	0:00
1005	0:00
1006	0:00
1007	0:00
1008	0:00
1009	0:00
1010	0:00
1011	0:00
1012	10.40
1013	46:35
1011	14.15
1014	26.27
1010	LU. LI

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

cont	inued from previous page
No	Shadow, expected values
NO.	per year
	[h/year]
1017	4:35
1018	9:28
1019	20:58
1021	16:14
1022	172:16
1023	10:20
1024	45:47 29:10
1026	43:01
1027	39:39
1028	36:13
1029	46:07 13·21
1031	15:50
1032	24:45
1033	65:47
1034	6:58 3:55
1036	2:44
1037	2:53
1038	2:39
1039	1:50
1040	15:01
1042	15:27
1043	12:12
1044	10:23
1045	23:56
1047	31:34
1048	12:49
1049	9:33 8:18
1050	14:14
1052	6:43
1053	5:54
1054	4:17 5:18
1055	1:12
1057	1:17
1058	0:00
1059	1:20 0:00
1061	0:00
1062	19:36
1063	21:46
1064	19:59 16:53
1065	12:27
1067	11:32
1068	11:57
1069	T2:24 12:14
1070	12:33
1072	12:51
1073	13:12
1074	14:12 13:40
1075	13:44

13:18 To be continued on next page...

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

00.00	
cont	inued from previous page Shadow, expected values
No.	Shadow hours
	per year
1070	[h/year]
1078	12.13
1080	10:52
1081	9:41
1082	9:02
1083	9:13 11·39
1085	10:54
1086	10:11
1087	9:14
1088	9:08 9:09
1009	9:13
1091	9:32
1092	6:24
1093	9:08
1094	9:39
1096	11:02
1097	11:09
1098	11:33
1099	9.14
1101	9:20
1102	10:05
1103	9:52
1104 1105	11:55 10:42
1105	9:52
1107	8:44
1108	8:56
1109	9:14 9:57
1111	11:11
1112	12:53
1113	14:39
1114	16:00
1115	14.40
1117	7:23
1118	12:35
1119	12:25
1120	12:28
1122	13:46
1123	10:24
1124	9:15
1125	9:33 12:34
1127	10:53
1128	8:26
1129	8:11
1130	/:18 6:46
1132	7:16
1133	9:24
1134	9:17
1135 1124	6:42 4:52
1130	4.32 5:39

1138 5:32 To be continued on next page...

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com ^{Calculated:} 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

ounce	
cont	inued from previous page Shadow, expected values
No.	Shadow hours
	per year
	[h/year]
1139	4:45
1140	4:42
1141	4:15
1142	4:19
1143	12:10
1144	12:06
1145	4:31
1146	5:09
1147	5:45
1148	5:16
1149	4:45
1150	7:19
1151	9:50
1152	6:36
1153	4:18
1154	1:19
1155	1:56
1156	5:42
1157	3:18
1158	8:29
1159	4:24
1160	5:30
1101	2:53
1162	1:51
1163	1:58
1164	2:29
1166	7.40
1167	11.16
1168	7:44
1160	1.12
1170	2:24
1171	4:36
1172	6:03
1173	6:51
1174	7:09
1175	7:29
1176	7:13
1177	7:12
1178	5:51
1179	4:36
1180	6:30
1181	5:52
1182	5:12
1183	4:14
1184	3:23
1185	3:10
1186	2:56
1187	3:11
1188	0:00
1100	0:00
1190	3:07
1100	4:09
119Z	0.0 9 5.02
1173	0.02
110F	2.45
1106	2.43
1197	3.02
1198	2:34

1199 2:25 To be continued on next page...

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

inued from previous page Shadow, expected values
Shadow hours
per vear
[h/vear]
2.35
2:08
2.57
3:02
3.10
3:40
3.32
4.12
2:24
2:23
2:16
2:11
2:13
2:15
2:20
2:21
2:23
2:30
2:26
2:40
3:00
2:36
2:44
2:45
2:27
2:15
2:12
2:11
4:52
4:20
3:36
3:59
2:26
2:22
2:26
2:23
2:27
2:04
2:10
2:02
2:05
2:02
1.50
1:00
1.47
1.47
1.55
1.50
2.00
1.45
1.46
1.51
1.35
1:40
1:41
1:47
1:52
1:55

1259 2:02 1260 1:59

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Cas	ase
--	-----

Calci	Jiation: 0599549 - Huat
cont	inued from previous page Shadow, expected values
No.	Shadow hours
	per year
	[h/vear]
1261	2.06
1267	2:07
1262	2.07
1203	2.10
1204	2.10
1200	2:21
1266	2:02
1267	2:00
1268	1:58
1269	1:55
1270	1:52
1271	1:50
1272	1:39
1273	2:02
1274	2:05
1275	1:58
1276	2:04
1277	2:09
1278	2:10
1279	1:54
1280	1.57
1281	2:01
1201	2.01
1282	1.50
1200	2:01
1204	0.00
1205	0:00
1200	0:00
1207	0.00
1200	0.00
1209	2.47
1290	2.47
1271	0.00
1272	0:00
1293	2:00
1294	2.00
1290	2.02
1290	2.03
1277	2.03
1290	2.04
1299	2.00
1201	1.00
1301	1:09
1302	2.12
1303	2:10
1304	2:19
1305	2:33
1306	2:25
1307	8:09
1308	2:26
1309	2:13
1310	1:41
1311	1:30
1312	1:46
1313	2:24
1314	2:02
1315	0:54
1316	3:38
1317	3:46
1318	4:17
1319	4:29

1320 3:16 1321 3:34 To be continued on next page...

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

ounce	
cont	inued from previous page
No.	Shadow hours
	per year
4000	[h/year]
1322	3:38
1323	2:15
1325	0:29
1326	0:38
1327	1:31
1328	0:51
1330	0:00
1331	0:28
1332	0:21
1333	1:30
1335	1:14
1336	1:40
1337	2:20
1338	0:00
1339	2:00
1341	0:00
1342	0:00
1343	0:00
1344	2:12 1·11
1346	0:47
1347	0:55
1348	1:07
1349	1:15
1351	3:51
1352	3:33
1353	2:27
1354	1.40
1356	0:59
1357	0:47
1358	0:22
1360	0:00
1361	0:00
1362	0:00
1363	0:34
1365	5:22
1366	4:23
1367	2:58
1368	0:28
1370	0:00
1371	3:08
1372	3:49
13/3	4:25 2:03
1375	2:03
1376	1:35
1377	1:39
1378	4:16 1:15
1379	0:05
1381	0:00

0:00

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

esult

Huadian Wind Power Project - Real Case

SHA	DOW - Main Resul
Calcu	ulation: 0599549 - Huad
cont	inued from previous page
	Shadow, expected values
NO.	Shadow hours
	[h/year]
1383	0:00
1384	2:21
1386	2:23
1387	2:29
1388	2:39 3:01
1390	3:19
1391	3:43
1392	3:43 4:06
1394	4:26
1395	3:11
1397	3:37
1398	3:46
1399	3:46 3:52
1401	4:03
1402	4:11
1403	4:30 4:27
1405	4:36
1406	4:54 5:10
1407	5:44
1409	6:04
1410	6:13 6:41
1412	6:56
1413	4:37
1414	4:54 5:37
1416	5:50
1417	6:49 7:27
1418	8:14
1420	8:38
1421	9:03 9:11
1423	9:17
1424	9:47
1425	10:32
1427	10:45
1428	9:55
1429	8:13
1431	8:08
1432	8:23 8:38
1434	8:36
1435	8:47
1436 1437	8:46 8:55
1438	8:51
1439	8:52
1440 1441	9:00

1442 8:49 1443 8:46

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 -	- Huadian	Wind Power	Project -	Real Case
------------------------	-----------	------------	-----------	-----------

ounce	
cont	inued from previous page Shadow, expected values
No.	Shadow hours
	per year
	[h/year]
1444	9:46
1445	9:24
1446	12:39
1447	11:05
1448	12:06
1449	9:20
1450	5.23 4·36
1452	1:41
1453	1:57
1454	1:59
1455	2:12
1456	2:13
1457	2:12
1458	3:28
1459	4:31
1400	4.54
1462	4:40
1463	2:14
1464	7:21
1465	6:55
1466	6:26
1467	5:10
1468	7:28
1469	2:49
1470	2.20
1472	1.57
1473	1:50
1474	1:44
1475	1:38
1476	1:46
1477	1:43
14/8	1:39
14/9	1:31
1/181	1.40
1482	1.37
1483	1:05
1484	0:58
1485	1:01
1486	0:54
1487	0:55
1488	1:02
1489	1:01
1490	1:07
1491	1.14 1.14
1493	1:21
1494	1:34
1495	2:36
1496	3:43
1497	3:46
1498	4:00
1499	2:34
1500	2:21
1501	∠:58 3·18
1502	3:54
.505	0.07

1504 4:12 To be continued on next page...

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 -	- Huadian	Wind Power	Project -	Real Case
------------------------	-----------	------------	-----------	-----------

Calco	Jiation. 0377347 - Huat
cont	inued from previous page Shadow, expected values
No	Shadow hours
140.	ner vear
	[b/vear]
1505	[17 year] 4.10
1505	4.10
1500	4:28
1507	4:37
1508	4:50
1509	4:18
1510	3:45
1511	5:55
1512	7:09
1513	22:46
1514	21:00
1515	34:05
1516	36:13
1517	42:29
1518	30:11
1519	22.42
1520	24.18
1520	25.17
1521	25.30
1522	34.38
1520	40.20
1525	40.20
1525	40.35
1520	65.30
1527	70.29
1520	10.20
1529	49.19
1530	109:08
1531	117:52
1532	80:03
1533	11:41
1534	15:49
1535	27:16
1536	22:23
1537	25:42
1538	79:17
1539	20:04
1540	19:32
1541	2:14
1542	2:13
1543	2:15
1544	2:17
1545	2:14
1546	3:30
1547	3:40
1548	3:50
1549	3:53
1550	3:46
1551	3:58
1552	4:12
1553	4:10
1554	4:25
1555	4:02
1556	4:37
1557	4:59
1558	5:06
1559	5:26
1560	5:36
1561	4.51
1562	4.39
1563	4:43

1564 4:26 1565 5:45 To be continued on next page...

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 -	- Huadian	Wind Power	Project -	Real Case
------------------------	-----------	------------	-----------	-----------

ourou	
cont	inued from previous page Shadow, expected values
No.	Shadow hours
	per year
	[h/year]
1566	7:27
1567	7:31
1568	/:33
1509	0:38 4:00
1570	0.02
1572	4.02
1573	5:30
1574	5:38
1575	4:58
1576	7:44
1577	7:20
1578	7:31
1579	7:15
1580	7:16
1581	7:11
1502	7.00
1584	5.28
1585	5:26
1586	4:46
1587	5:17
1588	5:04
1589	6:05
1590	6:10
1591	6:32
1592	0:58
1593	7:09
1595	7:28
1596	7:58
1597	7:18
1598	6:22
1599	6:35
1600	6:54
1601	7:13
1602	8.02
1603	8.16
1605	8:14
1606	8:48
1607	9:30
1608	9:44
1609	9:58
1610	10:13
1611	11:40
1613	12:04
1614	25:10
1615	22:16
1616	28:36
1617	28:45
1618	31:59
1619	40:31
1620	42:52
1021 1600	37:44 1.18
1622	4.40
1624	0:00
1625	0:00

1:37

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

cont	inued from previous page
No.	Shadow, expected values Shadow hours
	per year
1627	[n/year] 3:39
1628	3:44
1629	4:46
1630	9:45 10:23
1632	10:36
1633	9:42
1634	55:17 48:22
1636	53:06
1637	40:47
1638	40:35 38:18
1640	34:58
1641	29:55
1642	28:56
1644	25:28
1645	26:47
1646	23:28
1648	20:44
1649	25:31
1650	26:18 24:57
1652	18:15
1653	17:07
1654	15:24
1656	13:21
1657	17:01
1658	9:11 8:45
1660	8:07
1661	8:14
1662	7:54 7:37
1664	7:24
1665	7:40
1666	7:26 8:31
1668	8:05
1669	9:04
1670	9:01 8:44
1672	8:40
1673	8:19
1674	8:22
1675	6:30
1677	6:40
1678	5:04 2:19
1680	5:13
1681	5:04
1682	4:16
1684	4:29 4:12
1685	4:02
1686	3:57

3:58 To be continued on next page...

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 -	- Huadian	Wind Power	Project -	Real Case
------------------------	-----------	------------	-----------	-----------

Calc	JIation: 0599549 - Huat
cont	inued from previous page Shadow, expected values
No.	Shadow hours
	per year
	[h/year]
1688	4:04
1689	4:08
1690	4:06
1691	4:09
1692	4:15
1693	3:52
1694	3:48
1695	3:53
1696	3:51
1697	3:49
1698	3:43
1700	3.30
1700	3.40
1702	3.30
1702	3:30
1703	3.29
1705	3:27
1706	3:27
1707	3:24
1708	2:13
1709	2:07
1710	2:08
1711	2:07
1712	2:02
1713	1:55
1714	1:52
1715	1:52
1716	1:51
1717	1:56
1718	1:55
1/19	1:43
1/20	1:43
1721	1:42
1722	1:41
1724	2:14
1724	2.45
1725	2.45
1720	2.30
1728	3.02
1729	2:35
1730	3:02
1731	2:30
1732	1:29
1733	3:19
1734	1:10
1735	1:18
1736	2:54
1737	4:41
1738	4:41
1739	5:03
1740	7:21
1741	7:30
1742	7:35
1743	4:38
1744	5:31
1/45	4:45
1746	4:11
1/4/	5:55

1748 7:12 To be continued on next page...

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

00.00	
cont	inued from previous page Shadow, expected values
No.	Shadow hours
	per year
	[h/year]
1749	2:27
1750	1:59
1751	2:04
1752	7:40
1754	7:33
1755	7:04
1756	6:16
1757	5:41
1758	8:25
1759	9:33
1760	6:42
1762	2:07
1763	3.19
1764	3:25
1765	3:36
1766	3:40
1767	3:51
1768	3:55
1/69	4:04
1771	4:05
1772	4.08
1773	4:15
1774	5:08
1775	5:14
1776	5:54
1777	6:02
1778	6:06
1700	6:13
1781	0.20
1782	6:35
1783	7:07
1784	7:18
1785	8:01
1786	8:18
1787	8:44
1700	9:49
1790	10.09
1791	10:08
1792	10:30
1793	9:18
1794	8:54
1795	8:35
1796	8:26
1/9/	16:34
1790	10.30
1800	12:29
1801	6:26
1802	9:27
1803	8:39
1804	9:19
1805	9:51
1806	9:39
1807 1800	9:53 7:37
1000	1.31

6:44 To be continued on next page...

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 -	-	Huadian	Wind	Power	Pro	ject -	Real	Case
------------------------	---	---------	------	-------	-----	--------	------	------

ounot	
cont	inued from previous page
No.	Shadow hours
	per year
	[h/year]
1810	7:03
1011	6:33 8:20
1813	8:20
1814	10:38
1815	11:02
1816	10:44
1817	11:00
1010	10:42
1820	11.20
1821	11:20
1822	11:03
1823	10:40
1824	10:33
1825	7:51
1827	6:11
1828	4:24
1829	4:18
1830	4:23
1831	3:58
1832	3:48 4·07
1834	4:07
1835	4:21
1836	5:03
1837	5:07
1838	4:21
1840	5.20
1841	6:17
1842	6:30
1843	6:53
1844	7:02
1845	7:18
1847	8:17
1848	8:34
1849	10:02
1850	10:20
1851	10:33
1852	9:40 10:02
1854	12:00
1855	11:17
1856	11:20
1857	11:36
1858	10:45
1860	14.06
1861	13:46
1862	13:41
1863	13:26
1864	10:24
1865	10:15
1867	9.43
1868	9:36

1869 9:28 1870 9:01

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

cont	inued from previous page
No.	Shadow hours
	per year
1871	8:46
1872	8:11
1873	8:16
1874	9:35 10:54
1876	7:06
1877	7:27
1878	8:54
1880	8:24
1881	7:43
1882	7:15
1883	6:05 6:31
1885	5:59
1886	5:51
1887	5:30
1888	5:27 5:18
1890	5:14
1891	6:38
1892	9:25 10:10
1894	8:54
1895	14:33
1896	14:16
1897	13:34
1899	12:41
1900	12:12
1901	9:56 9:51
1902	9:06
1904	8:15
1905	8:16
1906	9:07
1908	7:50
1909	9:19
1910	12:14 15:07
1912	14:33
1913	13:53
1914	13:32
1915	15:54
1917	25:02
1918	7:11
1919	7:21 7:21
1921	5:09
1922	4:47
1923	5:20
1924 1925	4:41 4:54
1926	3:20
1927	3:42
1928 1020	3:26 3:21
1930	4:40

4:15 To be continued on next page...

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 -	- Huadian	Wind Power	Project -	Real Case
------------------------	-----------	------------	-----------	-----------

ounce	
cont	inued from previous page Shadow, expected values
No	Shadow bours
NO.	bor yoar
	[b/vear]
1022	2.26
1932	3.30 2·21
1733	2.21
1934	2.11
1933	2.04
1930	2.21
1937	1.59
1020	1.55
1939	1.52
10/1	1:48
1942	0:57
1943	0.49
1944	0.50
1945	0:48
1946	0:45
1947	0:46
1948	5:23
1949	8:49
1950	9:38
1951	12:51
1952	15:33
1953	14:45
1954	11:58
1955	9:38
1956	10:21
1957	6:20
1958	5:31
1959	3:10
1960	3:29
1961	2:18
1962	2:07
1963	2:09
1964	5:52
1965	12:54
1966	10:46
1967	36:49
1968	34:24
1969	33:32
1970	30:11
1971	29:30
1972	28:50
19/3	27:04
1974	25:04
19/5	22:38 10:51
1970	19.01
1977	19.03
1970	21.20
1020	20.16
1900	19.55
1982	20:40
1982	20.10
1984	20:28
1985	20:53
1986	21:24
1987	21:26
1988	22:41
1989	24:14
1990	22:49
1991	25:43

1992 26:27 To be continued on next page...

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

Result

- Huadian Wind Power Project - Real Case

SHA	DOW - Main Resul
Calcu	ulation: 0599549 - Huad
cont	inued from previous page Shadow, expected values
No.	Shadow hours
	per year [b/year]
1993	30:31
1994	30:17
1995	40:38
1997	50:21
1998	50:37 35:53
2000	32:43
2001	23:06
2002	50:08 21:49
2004	23:11
2005	21:19
2000	27:39
2008	27:37
2009	25:36 28:22
2011	28:15
2012	26:35 24:05
2013	22:17
2015	36:17
2016	35:15 24:23
2018	23:41
2019	23:31
2020	3:08
2022	3:04
2023	3:10 3:01
2025	3:04
2026	3:04
2027	3:09
2029	3:15
2030	3:07
2032	3:29
2033	3:31 3:29
2034	3:27
2036	3:37
2037	3:38
2039	3:30
2040	3:28 3·23
2041	3:40
2043	3:57
∠044 2045	0:00
2046	0:00
2047 2048	0:00
2048	0:00
2050	3:54
2051	3:52

2052 5:28 2053 5:21

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real	Case
--	------

Calco	
cont	inued from previous page Shadow, expected values
No.	Shadow hours
	per year
	[h/year]
2054	5:09
2055	4:48
2056	4:33
2057	4:19
2058	4.23
2059	4.22
2060	4:37
2061	4:47
2062	3:27
2063	0:00
2064	0:00
2065	4:38
2066	3:06
2067	6:13
2068	4:43
2069	5:00
2070	5:04
2071	4:50
2072	4:59
2073	5:23
2074	5:22
2075	5:41
2076	5:52
2077	4:36
2078	4:36
2079	2:59
2080	4:50
2081	2:52
2082	4:48
2083	4:54
2084	6:05
2085	5:57
2086	5:34
2087	5:32
2088	5:29
2089	5:44
2090	7:27
2091	6:40
2092	4:35
2093	6:21
2094	7:37
2095	7:46
2096	7:52
2097	8:12
2098	9:21
2099	9:02
2100	8:40
2101	9:25
2102	8:56
2103	7:17
2104	7:07
2105	6:53
2106	8:00
2107	8:10
2108	10:44
2109	12:23
2110	12:25
2111	10:47
2112	11:22
2113	9:37

2114 10:02 To be continued on next page...

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 -	Huadian	Wind Power	Project -	Real Case
------------------------	---------	------------	-----------	-----------

ounce	
cont	inued from previous page
No	Shadow, expected values Shadow hours
110.	per year
	[h/year]
2115	8:59
2110	8:30 5:33
2117	13:01
2119	13:49
2120	13:42
2121	13:05
2122	12:55
2124	11:45
2125	12:35
2126	10:13
2127	10:05
2120	4:24
2130	9:03
2131	10:23
2132	10:44
2133	10:37
2135	9:48
2136	11:16
2137	11:07
2138	11:19
2140	11:50
2141	11:47
2142	11:20
2143	10:27
2144	0:00
2146	0:00
2147	0:00
2148	2:45
2149	3:46
2151	3:21
2152	3:14
2153	3:59
2154	3:58 4:10
2156	4:20
2157	4:12
2158	4:34
2159	4:35 3:43
2160	3:52
2162	3:54
2163	3:58
2164	3:16
2100	4:50
2167	4:53
2168	4:14
2169	4:46
2170	5:01 3:55
2172	3:37
2173	5:11

2174 5:26 2175 5:36

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 -	-	Huadian	Wind	Power	Pro	ject -	Real	Case
------------------------	---	---------	------	-------	-----	--------	------	------

ounce	
cont	inued from previous page Shadow, expected values
No.	Shadow hours
	per year
	[h/year]
2176	6:11
2177	6:35
2178	6:58
2179	6:59
2180	7:40
2181	8:19
2182	8:00
2103	0.09 10·10
2185	9.12
2186	8:01
2187	7:52
2188	7:40
2189	7:46
2190	7:53
2191	8:12
2192	2:45
2193	0:00
2194	0:00
2195	0:00
2190	0.00
2177	14.09
2199	10:06
2200	9:17
2201	9:07
2202	9:16
2203	8:58
2204	10:16
2205	11:39
2206	0.15
2207	9:15
2200	8.41
2210	13:54
2211	15:34
2212	15:29
2213	11:01
2214	10:53
2215	10:18
2216	1/:15
2217	16:50
2210	10.50
2219	9.36
2220	13:30
2222	8:17
2223	5:39
2224	3:47
2225	17:25
2226	4:12
2227	6:22
2228	6:37
2229	6:10 5:44
223U 2221	5.40 6.12
2231 2222	0.42 6·48
2233	6:51
2234	6:55

2235 6:41 2236 6:41

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 -	- Huadian	Wind Power	Project -	Real Case
------------------------	-----------	------------	-----------	-----------

ounce	
cont	inued from previous page Shadow, expected values
No.	Shadow hours
	per year
	[h/year]
2237	7:47
2238	7:34
2239	8:23
2240	3:54
2241	5:01
2242	5:56
2243	1:27
2244	1:26
2245	1:26
2246	1:51
2247	1:34
2248	1:37
2249	4:06
2250	1:41
2251	1:41
2252	3:33
2253	1:50
2254	1:51
2255	1:54
2256	1:54
2257	1:44
2258	1:45
2259	1:38
2260	1:38
2201	1.32
2202	1.23
2203	1.00
2204	2.21
2200	2.24
2200	2.41
2207	2.31
2260	2:05
2270	2.16
2270	2:15
2272	4:53
2273	3:37
2274	3:29
2275	3:26
2276	6:14
2277	2:50
2278	2:49
2279	2:58
2280	5:06
2281	6:01
2282	4:38
2283	4:28
2284	5:11
2285	11:36
2286	8:44
2287	7:27
2288	2:15
2289	0:00
2290	2:32
2291	0:45
2292	11:54
2293	17:24
2294	17:00
2295	17:32
2296	15:43

2297 15:37 To be continued on next page...

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 -	- Huadian	Wind Power	Project -	Real Case
------------------------	-----------	------------	-----------	-----------

ourou	
cont	inued from previous page Shadow, expected values
No.	Shadow hours
	per year
າງດວ	[n/year]
2290	19.37
2300	19:43
2301	39:36
2302	38:37
2303	32:17
2304	23:29
2305	26:10 202:59
2300	328:45
2308	80:32
2309	63:43
2310	154:32
2311	67:15
2312	
2313	171.30
2315	293:32
2316	95:38
2317	219:43
2318	31:09
2319	27:28
2320	64.51
2322	27:58
2323	92:35
2324	52:00
2325	18:35
2326	37:12
2327	20.27
2329	42:33
2330	19:34
2331	17:18
2332	21:47
2333	86:04 145:52
2334	84.43
2336	34:04
2337	50:41
2338	69:11
2339	24:27
2340	22:58
2341	22.23
2343	25:55
2344	13:05
2345	12:03
2346	20:31
234/	20:03
∠348 23⁄10	47.17 61·45
2350	237:00
2351	256:29
2352	8:18
2353	8:07
2354	8:35
2325 2254	9:53 10:16
2000	10.10

81:22 2357 2358 226:06

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

Result

- Huadian Wind Power Project - Real Case

SHA	DOW - Main Resul
Calcu	ulation: 0599549 - Huad
cont	inued from previous page Shadow, expected values
No.	Shadow hours
	per year
2359	110:25
2360	153:56
2361	73:01
2362	86:11
2303	47:56 19:48
2365	14:16
2366	1:59
2367	1:38
2368	1:33
2309	9:49
2371	7:40
2372	2:22
2373	2:25
2374	3:17 4·32
2376	0:00
2377	0:00
2378	4:54
2379	4:48 4·22
2381	1:18
2382	6:04
2383	7:21
2384	0:00
2386	6:48
2387	8:28
2388	5:31
2389	5:38 5:36
2390	7:14
2392	10:14
2393	32:48
2394	37:17
2395	28:34
2397	19:47
2398	30:17
2399	27:24
2400	35:10
2402	66:12
2403	8:10
2404	335:05
2405	66:18
2407	1:34
2408	0:57
2409	1:03
∠410 2411	0:20 0:30
2412	6:09
2413	6:42
2414	10:18
2415	57:07 42:02
∠410 2417	4∠.∪∠ 17·23

2417 2418 17:23 47:41 2419 47:49

To be continued on next page...

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Cas
--

Calce	
cont	inued from previous page Shadow, expected values
No.	Shadow hours
	per year
	[h/year]
2420	62:26
2421	40:06
2422	43:51
2423	27.45
2425	98:28
2426	0:00
2427	0:00
2428	0:00
2429	0:31
2430	0:27
2431	0:57
2433	1:04
2434	31:13
2435	181:23
2436	209:39
2437	25:51
2438	5:49
2439	17.33
2441	64:49
2442	99:22
2443	84:07
2444	95:24
2445	97:47
2446	122:17
2447	96.03
2449	158:09
2450	222:07
2451	28:15
2452	29:36
2453	10:41
2454	5.21
2456	6:53
2457	6:48
2458	81:58
2459	89:25
2460	/0:5/
2401	98:08 178:05
2463	24:56
2464	15:01
2465	37:22
2466	133:01
2467	15:45
2468	31:35
∠409 2470	174.55
2471	5:08
2472	5:41
2473	82:44
2474	15:06
2475	89:10
24/6 2477	130:14 65:09
∠477 2478	18.01
2.70	10.01

2479 19:05 2480 20:59

values

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 -	- Huadian	Wind Power	Project -	Real Case
------------------------	-----------	------------	-----------	-----------

Calc	ulation: 0599549 - Hi
con	inued from previous page
	Shadow, expected value
No.	Shadow hours
	per year
2401	[II/year]
2481	83:21 E0:10
2402	30.10
2403	47.40
2404	52.11
2403	60.23
2400	118.49
2488	46:40
2489	37:00
2490	42:21
2491	68:35
2492	63:51
2493	17:40
2494	28:33
2495	17:45
2496	86:34
2497	92:25
2498	84:51
2499	49:01
2500	40:06
2501	190:06
2502	41:38
2503	41:50
2504	33:15 121-10
2505	102.27
2500	198.57
2508	109.29
2509	22:16
2510	51:04
2511	11:14
2512	11:33
2513	76:18
2514	8:44
2515	13:55
2516	10:27
2517	9:01
2518	289:32
2519	218:56
2520	103:25
2521	130:17
2522	69:18
2023	0:00
2024	0.00
2525	0:00
2520	0:00
2528	0.00
2529	0:46
2530	0:00
2531	4:03
2532	3:14
2533	6:16
2534	9:02
2535	6:32
2536	5:14
2537	3:31
2538	15:35
2539	16:12

2540 13:34 2541 9:30 To be continued on next page...

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 -	- Huadian	Wind Power	Project -	Real Case
------------------------	-----------	------------	-----------	-----------

00.00	
cont	inued from previous page Shadow, expected values
No.	Shadow hours
	per year
0540	[h/year]
2542	11:42
2543	7:04
2544	7.47
2546	7:55
2547	8:22
2548	7:26
2549	6:34
2550	15:57
2551	28:57
2552	1:45
2554	4.20
2555	2:28
2556	10:41
2557	9:37
2558	8:59
2559	6:09
2560	4:38
2562	3:47
2563	96·19
2564	278:40
2565	93:46
2566	152:15
2567	45:42
2568	49:05
2569	36:39
2570	0:40
2572	12:15
2573	6:20
2574	0:00
2575	20:10
2576	20:53
25//	20:10
2578	20:23
2580	21:04
2581	0:00
2582	3:13
2583	16:56
2584	5:37
2585	5:28
2580	17:00
2588	175.02
2589	67:14
2590	85:45
2591	3:36
2592	3:43
2593	1:26
2594	1:37
2090	9.10 4·46
2597	42:57
2598	0:00
2599	0:00
2600	0:00
2601	0:00

0:00 To be continued on next page...

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

cont	inued from previous page
	Shadow, expected values
No.	Shadow hours
	per year
2602	
2003	0.00
2004	0.00
2005	10.39
2607	11:49
2608	0:00
2609	0:00
2610	50:57
2611	87:28
2612	56:40
2613	201:44
2614	170:58
2615	35:44
2616	31:57
2617	25:55
2618	11:31
2619	2:54
2620	2:09
2621	3:32
2622	1:37
2623	1:20
2624	0:00
2020	0:00
2020	0.00
2027	0.00
2620	0:00
2630	17:48
2631	2:47
2632	1:56
2633	3:46
2634	2:15
2635	2:09
2636	4:24
2637	4:37
2638	5:31
2639	5:24
2640	5:17
2641	6:15
2642	2:56
2043	16:01
2044	119.21
2045	51.22
2647	80.51
2648	21.18
2649	46:07
2650	53:26
2651	59:22
2652	24:48
2653	104:02
2654	25:04
2655	24:15
2656	46:44
2657	17:17
2658	9:40
2659	7:06
2660	3:11
2661	0:00
2062	214:19

2663 225:28 To be continued on next page...

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com Calculated: 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

...continued from previous page Shadow, expected values

No.	Shadow hours			
	per year			
	[h/year]			
2664	192:20			
2665	111:15			
2666	0:00			
2667	0:00			
2668	1:04			
2669	1:05			
2670	0:59			
2671	5:43			
2672	5:54			
2673	5:54			
2674	5:33			
2675	5:04			
2676	5:08			
2677	6:31			
2678	6:33			
2679	4:19			
2680	4:25			
2681	7:15			
2682	12:24			
2683	8:57			
2684	11:00			
2685	9:12			
2686	2:51			
2687	3:08			
2688	2:37			
2689	2:00			
2690	1:44			

Total amount of flickering on the shadow receptors caused by each WTG No. Name Worst case Expected

0.	Name		LAPCOLO
		[h/year]	[h/year]
1	D1	420:49	174:41
2	D2	566:52	202:04
3	D3	285:55	97:10
4	D4	568:50	202:18
5	D5	1326:17	519:29
6	D6	1244:20	381:52
7	D7	352:29	151:44
8	D8	385:53	154:47
9	D9	564:07	159:33
10	D10	159:53	67:58
11	D11	795:31	281:20
12	D12	428:07	168:13
13	D13	189:45	62:55
14	D14	227:14	73:18
15	D15	315:49	130:54
16	D16	660:24	236:48
17	D17	486:13	171:21
18	D18	210:48	73:39
19	D19	231:24	84:49
20	C1	313:44	106:10
21	C2	744:00	285:45
22	C3	277:43	97:20
23	C5	133:21	48:30
24	C6	295:15	102:17
25	C7	213:33	73:24
26	C8	268:00	90:22
27	C10	1365:12	512:46
28	C11	628:07	223:21
29	C12	1071:25	432:54

To be continued on next page...

windPRO 3.4.388 by EMD International A/S, Tel. +45 96 35 44 44, www.emd.dk, windpro@emd.dk

Licensed user: ERM Level 3, 09 Dinh Tien Hoang St VN-DAKAO WARD, District 1

Nam Le / nam.le@erm.com 7/24/2021 7:18 PM/3.4.388

SHADOW - Main Result

Calculation: 0599549 - Huadian Wind Power Project - Real Case

continued	from previous page				
No. Name	Worst case	Expected			
	[h/year]	[h/year]			
30 C16	1886:45	700:22			
31 C19	274:31	91:25			
32 B1	388:53	136:52			
33 B2	999:51	322:31			
34 B7	628:00	242:30			
35 B9	1298:11	397:18			
36 B10	1971:27	706:30			
37 B11	1049:46	347:49			
38 B13	1353:41	443:15			
39 B14	591:20	177:39			
40 B15	287:13	95:37			
41 B17	309:30	110:17			
42 B18	215:46	79:40			
43 B19	1164:28	391:51			
44 A2	1367:18	430:14			
45 A5	368:24	140:51			
46 A6	696:22	252:36			
47 A7	376:50	129:15			
48 A9	893:55	376:05			
49 A10	328:33	117:00			
50 A11	576:37	235:13			
51 A12	265:24	83:06			
52 A15	186:26	60:05			
53 A17	818:49	289:33			
54 A18	394:13	156:18			
55 A19	430:03	191:17			
56 C4	168:01	57:54			
57 C9	245:31	93:11			
58 C13	102:43	34:01			
59 C14	1407:58	4/3:39			
60 C15	680:24	285:34			
61 017	532:33	207:55			
62 B3	1297:07	529:12			
63 B4	241:43	83:40			
64 B5	1954:50	667:18			
65 B6	1206:03	459:09			
66 B8	1//4:1/	680:43			
6/ BI6	795:49	271:06			
08 AT	1307:24	2U3:38			
09 A3	197:02	03:40			
/U A8	292:13	95:04 121.01			
/ I AI 3	338:30	131:01			
12 AI4	900:4Z	321:14			
13 AIO	203:20	90°24			

Total times in Receptor wise and WTG wise tables can differ, as a WTG can lead to flicker at 2 or more receptors simultaneously and/or receptors may receive flicker from 2 or more WTGs simultaneously.

APPENDIX N BOUNDARY MAP OF UXO CLEARANCE

BẢNG TỔNG HỢP DIỆN TÍCH ĐÃ DÒ TÌM, XỬ LÝ BMVN (ĐỢT 1)

Căn cứ Quy trình dò tìm xử lý bom mìn, vật nổ còn sót lại sau chiến tranh.

Căn cứ Bản vẽ thiết kế do Chủ đầu tư cung cấp;

Căn cứ Khối lượng thực tế thi công;

	5	Diện tích rà phá BMVN (ha)								
TT	Tên dự án	Theo Hợp đồng		Thực hiện			Còn lại			
		Độ sâu 3m	Độ sâu 5m	Tổng	Độ sâu 3m	Độ sâu 5m	Tổng	Độ sâu 3m	Độ sâu 5m	Tổng
1	Dự án: Nhà máy điện gió Krông Búk 1	3,62	6,75	10,37	3,62	6,75	10,37		-	14
2	Dự án: Nhà máy điện gió Krông Búk 2	4,50	6,75	11,25	4,50	6,75	11,25	-	-	- 14
3	Dự án Nhà máy điện gió Cư Né 1	6,92	10,41	17,33	6,92	10,41	17,33			-
4	Dự án: Nhà máy điện gió Cư Né 2	4,55	7,13	11,68	4,55	7,13	11,68	-	-	-
	Tổng cộng:	19,59	31,04	50,63	19,59	31,04	50,63	-	-	-

ĐẠI DIỆN ĐƠN VỊ THI CÔNG

BẢNG TÍNH CHI TIẾT DIỆN TÍCH ĐÃ DÒ TÌM, XỬ LÝ BMVN (ĐỢT 1)

(Kèm theo Bảng tổng hợp diện tích đã dò tìm, xử lý BMVN (Đợt 1))

Căn cứ Quy trình dò tìm xử lý bom mìn, vật nổ còn sót lại sau chiến tranh.

Căn cứ Bản vẽ thiết kế do Chủ đầu tư cung cấp;

Căn cứ Khối lượng thực tế thi công

TT	Hạng mục	Diện tích công trình (m2)	Diện tích HLAT (m2)	Tổng diện tích RPBMVN	Độ sâu RPBMVN (m)	Ghi chú
A	Dự án: Nhà máy điện gió Krông Búk 1	77.367	26.367	103.734		CLIPPINE STAT
I	Tua bin (18 trų)	46.800	20.700	67.500	5	HLAT 5m
П	Bãi vật liệu					
1	Bãi số 1	18.644	3.068	21.712	3	
2	Bãi số 2	11.923	2.599	14.522	3	
	Tổng hợp (ha)	Line and	Sale Critic	10,37		
	Diện tích dò tìm đến độ sâu 3m (ha)			3,62		
	Diện tích dò tìm đến độ sâu 5m (ha)			6,75		
B	Dự án: Nhà máy điện gió Krông Búk 2	86.081	26.425	112.506		the stars of
I	Tua bin (18 tru)	46.800	20.700	67.500	5	HLAT 5m
П	Bãi vật liệu, đất kho bãi					
1	Bãi số 3	17.860	2.616	20.476	3	HLAT 5m
2	Đất kho bãi số 3	21.421	3.109	24.530	3	HLAT 5m
	Tổng hợp (ha)			4,50		
	Diên tích dò tìm đến độ sâu 3m (ha)			4,50		
	Diện tích dò tìm đến độ sâu 5m (ha)		and the second	0.00		
С	Dự án: Nhà máy điện gió Cư Né 1	98.970	28.323	173.280		
Ι	Tua bin (18 trụ)	46.800	20.700	67.500	5	HLAT 5m
П	Trạm biến áp, trạm trộn					
1	Trạm biến áp	27.580	3.470	31.050	5	HLAT 5m
2	Trạm trộn	4.098	1.418	5.516	5	HLAT 5m
Ш	Đất kho bãi, trại tạm thời	4.098				
1	Trại tạm thời	16.394	2.735	19.129	3	HLAT 5m
2	Đất kho bãi số 2	16.394	2.735	19.129	3	HLAT 5m
3	Đất kho bãi số 1	26.410	4.511	30.921	3	HLAT 5m
	Tổng hợp (ha)		A STATE OF STATE	17,33		Rest and
	Diện tích dò tìm đến độ sâu 3m (ha)			6,92		- Western
	Diện tích dò tìm đến độ sâu 5m (ha)			10,41		
D	Dự án: Nhà máy điện gió Cư Né 2	89.207	27.562	116.792	1.200	
I	Tua bin (19 trụ)	49.400	21.850	71.250	5	HLAT 5m
Π	Bãi vật liệu	5				
1	Bãi số 4	19.967	2.792	22.759	3	HLAT 5m
2	Bãi số 5	19.840	2.920	22.760	3	HLAT 5m
	Tổng hợp (ha)			11,68		In the second
	Diện tích dò tìm đến độ sâu 3m (ha)			4.55		
	Diện tích dò tìm đến độ sâu 5m (ha)			7,13		1954

Hà Ngọc Tuấn

+ Dò tìm đến độ sâu 3m đối với các tuyến đường giao thông, tuyến cáp, đất kho bãi, trại tạm thời ...

Đinh Hùng Dương

Ngô Huy Thắng

ERM has over 160 offices across the following countries and territories worldwide

Argentina Australia Belgium Brazil Canada China Colombia France Germany Hong Kong India Indonesia Ireland Italy Japan Kazakhstan Kenya Malaysia Mexico Mozambique Myanmar New Zealand Norway Panama Peru Poland Portugal Puerto Rico Romania Russia Singapore South Africa South Korea Spain Sweden Switzerland Taiwan Thailand The Netherlands UAE UK US Vietnam

ERM Vietnam

3rd Floor, Saigon Finance Centre 09 Dinh Tien Hoang, Dakao Ward District 1, Ho Chi Minh City Vietnam

T: +84 28 3914 7800 F: +84 28 3914 7801

www.erm.com

