

Journal of Applied Biosciences 133: 13592 - 13617

ISSN 1997-5902

Mushroom species richness, distribution and substrate specificity in the Kilum-Ijim forest reserve of Cameroon

Ache Neh Teke¹, Tonjock Rosemary Kinge^{2*}, Eneke Esoeyang Tambe Bechem ¹, Lawrence Monah Ndam^{1, 3} and Afui Mathias Mih¹

¹ Department of Botany and Plant Physiology, Faculty of Science, University of Buea, P.O. Box 63, South West Region, Cameroon

² Department of Biological Sciences, Faculty of Science, The University of Bamenda, P.O. Box 39, Bambili, North West Region, Cameroon

³Tokyo University of Agriculture and Technology, International Environmental and Agricultural Sciences, Fuchu Campus, Saiwai-cho, Fuchu, Tokyo 183-8509, Japan

Corresponding author: rosemary32us@yahoo.com

Original submitted in on 7th November 2018. Published online at <u>www.m.elewa.org/journals/</u> on 31st January 2019 <u>https://dx.doi.org/10.4314/jab.v133i1.11</u>

ABSTRACT

Objectives: Mushroom species richness, distribution and substrate specificity are essential considerations for conservation and management of forest ecosystems. In this study in the Kilum-Ijim mountain forest, mushroom species richness, distribution and substrate specificity was evaluated.

Methodology and results: Fixed size plot method, opportunistic and downed wood sampling methods according to Mueller *et al.* (2004) was used for mushroom survey in 2015 in five sites in the Kilum-Ijim forest. The number of species, diversity in each site as well as substrate and morphotypes were recorded and calculated. A total of 393 macrofungi samples were collected. Highest collection (135) was recorded in September while January registered the least (22). Plantlife Sanctuary Oku recorded the highest number of macrofungal (109) while the least (44) was recorded in Anyajua community forest. Macrofungi were found on five varying substrates and ten different morphological forms of macrofungal were recorded.

Conclusions and application of findings: Mushrooms species richness differed in the five sites surveyed in the Kilum-Ijim forest. *Podoscypha petalodes* had the highest number of species across all the five sites followed by *Coprinus fissolanatus*, *Polyporus dictopus*, *Favolachia calocera* and *Xylaria sp*. The Agaricaceae and Polyporaceae were the most abundant family. Majority of the mushroom species were found on dead wood substrate and few on dung and standing tree substrates. The result on species richness, distribution and substrate specificity of mushrooms widens the knowledge on mycodiversity and substrate relationship which is an important factor for conservation and utilization as well as for the sustainable forest ecosystem management. Also, the result projects the importance of geographic location of substrates on the distribution of mushrooms which is of immense value for conservation. There is variation in the substrate preferred by mushrooms and likely this factor influences the extent of occurrence and nutritional content.

Keywords: Mushrooms, Species richness, Substrate, Distribution, Kilum-Ijim

INTRODUCTION

Macrofungi are one of the richest and diverse groups of organisms on earth and constitute a significant part of terrestrial ecosystem, forming a large share of species richness and key players of ecosystem processing (Seen-Irlet et al., 2007). Macrofungi play essential roles in maintaining forest ecosystems and biodiversity (Hawksworth, 1991; Molina et al., 2008). Macrofungi substrate refers to any surface on which the macrofungi attach and grow whereas the macrofungi include fungi distinguished by having fruiting structures visible to the naked eye commonly referred to as mushrooms (Lodge et al., 2004). Most terrestrial macrofungi are decomposers, but some species form mycorrhiza and a few are parasitic. Fungi fruiting on woody substrata are usually either saprobes or plant pathogens (Mueller et al., 2007). Macrofungi play significant roles as an integral part of the forest ecosystem. Forest trees form a relationship with some species of macro-fungus (called mycorrhizae) that helps tree roots absorb water and minerals from the soil. Mycorrhiza constitutes the most efficient nutrient uptake facilitators particularly in nutrient deficient soils of tropical regions where it enhances mineral uptake by connecting the plant's roots to a huge nutrient absorbing mycelial network which solubilize minerals such as phosphate, making it available for absorption (Onguene and Kuyper, 2001; Eneke, 2011). Forestry managers and conservationists have realized that dead decaying wood which is mostly facilitated by fungi, forms an important source of biodiversity and an integral part of the recycling of carbon and other nutrients (Gates, 2009). Macrofungi are important source of food for forest animals and they serve as homes for many soil insects and other small organisms that are also part of a healthy forest ecosystem. Moreover, macrofungi fruit bodies have enormous use for the general welfare in human life (Boa, 2004). They are highly useful in pharmaceutical industry and in mass production of cultivated fungi in the food industry (Lindequist et al., 2005), playing vital roles in biodegradation and biodeterioration (Tibuhwa, 2011). Macrofungi comprise different

smuts, jelly fungi, club fungi, coral and shelf (bracket) fungi, mushrooms, puffballs, stinkhorns and bird's-nest fungi. Morphologically they can be broadly divided into the following forms; bracket shaped, stiped and poroid, gilled, smooth andresupniate on woods, coralloid, hood like, dentoid or with cup shaped cap having or lacking stipe (Pacioni and Lincoff, 1981). Species diversity is one of the most obvious and characteristic feature of a community (Krebs, 2014). Diversity comprises two separate ideas-species richness and evenness. Species richness is the oldest and simplest concept of species diversity. It measures the different kinds of organisms present in a community or region. McIntosh (1967) coined the name species richness to describe this concept. Species evenness compares the similarity of the population size of each of the species present. Lloyd and Ghelardi (1964) were the first to suggest the concept of evenness. In Cameroon, there are few community level studies of macrofungi such as the work of Egbe et al. (2013) in the Mount Cameroon Region, Kinge et al. (2017) who documented mushrooms in the Awing Forest Reserve. Also, Douanla-Meli (2007) studied the ecological diversity of mushrooms from the Mbalmayo forest reserves with emphasis on the taxonomy of non-gilled Hymenomycetes. 271 distinct species belonging to 110 genera in 58 families were recorded. Many new records and species science and new to important ethnomycological notes for people in and around the Mbalmayo forest reserves were documented. Roberts and Ryvarden (2006), reported over 70 poroid species was from the Korup rainforest, Cameroon. There are also single genus studies in Cameroon such as Kinge et al. (2012) who worked on the genus Ganoderma. Mossebo et al. (2009), and Mossebo et al. (2017) worked on the taxonomy genus Temitomyces from Cameroon. Despite the importance of macrofungi in natural and agroecosystems, there is scanty information on macrofungi community structure, substrate specificity and dynamics especially in the tropics

morphological forms. These include the rusts,

(Hawksworth, 1991; Osemwegie *et al.*, 2006; Muller *et al.*, 2007). Fungal diversity and substrate specificity are usually overlooked during management of forest ecosystems, (Amaranthus, 1998; Tibuhwa, 2011); yet successful conservation of any ecosystem requires understanding of

MATERIALS AND METHODS

Study area: The Kilum Mountain Range and the Ijim Ridge are situated in the Northwest Region of Cameroon commonly called the Bamenda Highlands. The Kilum-Ijim forest (KIF) is located between Latitude 6°07'N and 6°17'N and Longitude 10°20'E and 10°35'E covering an area of about 20,000 ha. It is found on Mount Oku with Lake Oku lying in a crater in its centre. At 3,011 m, Mount Oku is the second highest mountain in West Africa, after Mount Cameroon (Fomété *et al.*, 2001). The forest within this area borders three districts: Oku, Kom, and Nso. Part of the forest that borders Oku is called Kilum, and the rest that borders Kom and Nso is called Ijim – hence, jointly the Kilum-Ijim forest. The Kilum-Ijim forest has been

mushroom communities in terms of ecology and distribution. This study therefore aimed at determining the species richness, distribution and substrate specificity of mushrooms in the Kilumljim forest in the North West Region of Cameroon.

demarcated in to 18 community forests to enable better management of the forest resources by the communities surrounding the forest (Gardner *et al.*, 2001). The climate of the Kilum Mountain is very humid with very high presence of fog and mist almost throughout the year (Fomété *et al.*, 2001). The precipitation is unimodal (Asanga, 2001). The dry season begins from November to mid-March and the rainy season of 8 months long starts from mid-March to the month of October (Asanga, 2001). The total annual rainfall varies from 1800mm to 3000mm annually, with an average temperature that varies from 22°c at 1800m altitude to 16°c in the higher altitude areas Figure 1.

Figure 1: View of the Kilum-Ijim mountain forest, Northwest Region Cameroon

The topography of the area is hilly and constitutes a chain of mountains. The highest of these mountains is mount Oku. The geological landscape found here are mainly of Basalts, trachytes, rhyolites, gneiss and granite origin. The soils here are humified ferralitic soils with a high organic matter content favored by the humid climate and cold. These soils are well drained and of good permeability (Fomété *et al.*, 2001). The montane forest has a unique ecosystem that provides a favorable milieu for the habitation of many endemic plant and bird species (Asanga, 2001). The area is one of the most densely populated parts of Cameroon. It is estimated that close to 300 000 people live within a day's walk of the forest (Forboseh and Maisels, 2000). The majority of the area enclosed by the Kilum-Ijim

boundary is at an altitude of over 2000 meters. The vegetation is at this altitude and above consists mainly of montane forest mixed with montane grassland and subalpine communities. Below this, most of the submontane forest has already disappeared due to clearance for agriculture.

Field survey and Sampling: Diversity study was carried out in five community forests of Kilum-Ijim (Figure 2). Before entering into the Kilum-Ijim forest, visitations were made to the fondoms and administrative authorities within the Kom and Oku districts to seek traditional and administrative permission to use the forest. Five community forests out of 18 were selected based on accessibility after a reconnaissance survey was carried out in the area.

Figure 2: Macrofungal species richness and distribution sites in Kilum-Ijim forest.

One reconnaissance survey and four field surveys were conducted in five community forests within the Kilumljim forest ridge. These included the Plantlife sanctuary (PLSB), Dichami community forest (DCF) and Anyajua community forest (ACF) in Belo subdivision, and Plantlife sanctuary (PLSO) and Upper shinga community forest (USCF) in Bui subdivision (Table 1).

Sampling site	Altitude (m)	Surface area (ha)							
Plantlife sanctuary Belo (PLSB)	2421	1081							
Anyajua community forest (ACF)	2497	1121							
Dichami community forest (DCF)	2032	1034							
Plantlife sanctuary Oku (PLSO)	2267	1081							
Upper-Shinga community forest (USCF)	2455	1556							
Courses Conduct at al. 2001									

Table 1: Locational coordinates of macrofungi sampling sites in Kilum-Ijim forest

Source: Gardner et al., 2001

The reconnaissance survey took place in November 2014 while the species richness survey trips were carried out in January, March, June, September and November 2015. These periods marked the beginning, middle and end of fructification season of different morphological types of macrofungi and each trip lasted seven days. Sampling methods comprised fixed size plot method, opportunistic sampling method and downed wood sampling method. These sampling methods according to Mueller et al. (2004), optimizes the number of macrofungal species recorded at any given site. For each sampling site, two plots of 50 X 20m were mapped out since all the studied sites were above 1000ha. Each plot was separated by a distance of 200m. Each plot was 1000m in length. A total of 10 plots were surveyed in all the five sampling sites. To capture maximum diversity, opportunistic sampling and downed wood sampling were carried out in and out of the plots. Coordinates of macrofungi sites were taken by the use of Garmin Etrex Venture Geographical Positioning System (GPS). For each macrofungus collected, the fungus was labelled and the growth substrate recorded. The morphological characters were assessed. These included cap shape, stipe length, size and color recorded. This information was used to place the fungus on different morphotypes according to Mueller et al. (2007). Photographs of labelled samples were recorded since some features can change during preservation. Macrofungal samples were dug off the soil or cut off with a knife where they were found on wood substrata. The samples were wrapped with their tags using aluminum foil and put in zip lock bags for drying. Drying at $45^{\circ}C-55^{\circ}C$ was done in a locally designed open air oven for up to 72 hours for thick samples. The number of samples collected in each site and sampling period were compared using the χ^2 statistics.

Estimation of diversity and similarity: The number of species in each sampling site was recorded and the diversity and similarity indices between sites were calculated using Simpson diversity index and Jaccard's similarity index, respectively. Simpson's Diversity Index, 1-D. was estimated as follows:

$$1-D = 1 - \frac{\Sigma n(n-1)}{N(N-1)}$$

n = the number of individuals of each different species

 ${\sf N}$ = the total number of individuals of all the species

The Jaccard similarity coefficient was estimated as follows:

$$I(A,B) = \frac{A \cap B}{A \cup B} = A \cap \frac{B}{(A)} + (B) - (A \cup B)$$

Where A and B are the number of species in each sample.

RESULT

Distribution of Macrofungi in Different Sampling Sites in the Kilum-Ijim Forest: Macrofungi were recorded at all the five sites studied in the KIF. They occurred in various shapes sizes and colors (Figure 3).

Figure 3: Tagged macrofungi samples of various shapes in their natural habitats

A total of 393 macrofungi samples were collected in the five forest sites studied (Table 2). Highest collection (135) was recorded in the month of September while January registered the least number of macrofungi (22). Plantlife Sanctuary Oku recorded the highest number of macrofungal samples (109) while the least number (44) was recorded in Anyajua community forest. Except for the collection of June 2015, there were no significant differences in the number of samples collected per site. Meanwhile there were significant differences in number of samples collected per sampling date in all the sites except in Anyajua community forest.

X²

		U U										
Month/Veer		Location										
Month/Year	PLSB	ACF	DCF	PLSO	USCF	Total						
January 2015	06	03	05	06	02	22						

Table 2: Collection frequence	cy of macrofungi samples in five sites of the KIF over different sam	pling periods	
	Location		

January 2015	06	03	05	06	02	22	0.929
March 2015	17	07	14	13	07	58	5.077
June 2015	27	10	24	31	11	103	18.341*
September 2015	21	15	32	37	30	135	10.207
November 2015	19	09	14	22	11	75	6.218
Total	90	44	89	109	61	393	
X ²	19.422*	5.167	24.522*	33.598*	37.152*		

*= Significant difference (p<0.05)

PLSB= Plantlife sanctuary Belo, ACF= Anyajua community forest, DCF= Dichami community forest, PLSO= Plantlife sanctuary Oku, USCF= Upper-shinga community forest

Macrofungi occurred in soil, deadwood, leaf litter, cow dung and on some standing stems. A total of 218 samples were collected from dead wood while cow dung registered the least number (03) of macrofungi. (Table 3).

Table 3: Occurrence of M	acrofungi on	different substrates	s in the diffe	erent sampling sites

Substrata			Total	×2				
Substrate	PLSB	ACF	DCF	PLSO	USCF	TOLAT	Χ-	
Deadwood	49	28	47	57	37	218	11.633*	
Leaf Litter	24	14	28	22	13	101	8.356	
Soil	15	06	13	16	15	65	5.077	
Cow Dung	00	00	03	00	00	03	0.000	
On standing stem	02	00	01	02	01	06	0.667	
Total	90	48	92	97	66	393		
X ²	54.489*	15.500*	80.391*	67.660*	37.152*			

*= Significant difference (p<0.05)

PLSB= Plantlife sanctuary Belo, ACF= Anyajua community forest, DCF= Dichami community forest, PLSO= Plantlife sanctuary Oku, USCF= Upper-shinga community forest

Morphological diversity of macrofungi: Ten different morphological forms of macrofungi were encountered in the Kilum-Ijim forest. These were the gilled fungi (60%), Earthstar fungi, Polypores fungi, Crampball fungi, Coral fungi, Jelly fungi, Stinkhorns fungi, Bird's nest fungi, and Cup fungi which together constituted 40% of all the collections (Table 4).

Table 4: Morphoforms and site location of the different macrofungi occurring in the Kilum-lin	n forest.
--	-----------

Species			Sites	S		Photograph
	1	2	3	4	5	
Gilled Fungi						
Callistosporium xanthophyllum**	+	-	-	-	-	PLAN UT
Crinipillis scabella**	+	-	-	+	-	PLSB 033

Parasola conopilus**	-	-	-	+	-	
Galerina marginata**	-	-	•	+	-	025 PI0
Coprinellus micaceus**	+	+	-	+	-	EIGT2015 20.47
Tubaria serrulata**	-	+	+	-	-	D 40 DCF
Cystolepiota hetieri**	-	-	-	+	-	CLU SD

Coprinopsis lagapus**	+	•	+	+	•	Exect for the second
Melanoleuca pseudoluscina**	-	-	+	-	+	
Panaeolus foenisecii**	-	+	+	+	-	Of7 DCF
Earthstar Fungi						
Geastrum triplex	-	-	+	+	+	
Geastrum minimum	-	•	+	•	+	

Polypores Fungi

Abortiporus biennis**	•	-	-	+	-	PIG PLSO
Physisponnus vitreus	-	-	-	+	-	
Laetiporus sulphureus**	-	-	+	-	+	Poor/GR/2015LIGE-29
Skeletocutis nivea**	-	-	+	-	-	
Ganoderma applanatum	+	+	-	•	-	

Crampball Fungi

Daldinia concentrica	+	-	+	-	
	1				
Ramaria decurrens	-	-	-	+	+ USCF 009
Jelly Fungi					
		-	-		030 PLSO
Stinkhorns Fungi					
Clathrus acheri**	+	-	-	-	-
Podosordaria muli**	-	-	•	+	-

Cordyceps takaomontana**	-	-	+	-	-	042 DCF
Puffballs Fungi						
Vascellum pretense	+	-	+	-	-	UT& DCF
Bird's nest Fungi	1					
Cyathus stercoreus	-	-	+	-	-	026 DCF
Cup Fungi	1					
Chlorociboria aeruginascens**	+	+	•	•	•	

**= Species reported for the first time in Cameroon

Site 1= Plantlife sanctuary Belo, Site 2= Anyajua community forest, Site 3= Dichami community forest, Site 4= Plantlife sanctuary Oku, Site 5= Upper-shinga community forest

Plantlife Sanctuary Oku (PLSO) had the highest number of mushroom species (86) and the site with the least number of species (35) was Anyajua Community Forest (ACF). *Podoscypha petalodes* had the highest number of species across all the five sites surveyed (11) followed by *Coprinus fissolanatus* (10), *Polyporus dictopus* (9) and *Favolaschia calocera* and *Xylaria* sp. with 8 species each Table 5.

			Frequency						
S/N	Species	Accession number	PLSB	ACF	DCF	PLSO	USCF	TOTAL	
	AGARICALES								
	Agaricaceae								
1	<i>Agaricus litoralis</i> (Wakef. & A. Pearson) Pilat.	JN204436	0	0	1	0	0	1	
2	Agaricus xanthodermus Genev. (1876)	EU326208	0	0	1	0	0	1	
3	Cystolepiota hetieri (Boud.) Singer	AY176459	0	0	0	2	0	2	
4	Lepiota sp PA620 (Pers.) Gray (1821)	EF527355	1	0	0	0	1	2	
5	Leucoagaricus cupresseus (Burl.) Boisselet & Guinb.	GU139787	1	0	1	2	0	4	
6	Leucoagaricus flavovirens J.F. Liang, Zhu L. Yang & J. Xu	EU416295	1	0	0	0	0	1	
7	Leucoagaricus gaillardii Bon & Boiffard 1974	GQ329042	0	0	1	0	0	1	
8	Leucoagaricus littoralis (Menier) Bon & Boiffard 1970	GQ329041	0	0	1	1	0	2	
9	Leucoagaricus rubrotinctus (Peck) Singer (1948)	JN944081	0	0	0	0	1	1	
10	Leucoagaricus serenus (Fr.) Bon & Boiffard 1974	AY176420	0	1	0	1	0	2	
11	Leucoagaricus viriditinctus (Berk. & Broome) J.F.	EU419375	0	0	0	1	0	1	
12	Macrolepiota dolichaula (Berk. & Broome) Pegler & R.W. Ravner	JQ683120	1	1	2	0	1	5	
13	Vascellum pretense (Pers.) Kreise	FJ481033	1	0	1	0	0	2	
14	Panaeolus foenisecii (Pers.) R.Maire (1933).	JF908520	0	1	1	3	0	5	
15	Panaeolus sphinctrinus (Fr.) Quél.	JF908513	1	0	1	0	0	2	
	Crepidotaceae								
16	Crepidotus epibryus (Fr.) Quél. 1888	HM240524	1	1	2	2	1	7	
17	<i>Crepidotus mollis</i> (Schaeff.) Staude 1857	JF907959	0	0	0	1	0	1	
	Entolomataceae								
18	Entoloma araneosum (Quél.) M.M. Moser.	EU784204	0	0	0	0	1	1	

Table 5: Frequency of occurrence of macrofungi collected from different sampling sites in the Kilum-Ijim forest

			Frequency						
S/N	Species	Accession number	PLSB	ACF	DCF	PLSO	USCF	TOTAL	
	Hygrophoraceae								
19	Camarophyllus pratensis (Pers.) P. Kumm.	FJ596880	0	1	0	0	0	1	
20	Hygrocybe helobia (Arnolds) Bon	JF908056	0	0	0	0	2	2	
21	Hygrocybe persistens (Britzelmayr) Singer	FM208893	0	0	0	0	1	1	
	Hymenogastraceae								
22	<i>Galerina badipes</i> (Pers.) Kühner	JF908012	1	0	0	1	0	2	
23	Galerina hybrida Kühner.	AJ585445	0	0	1	0	0	1	
24	<i>Galerina marginata</i> (Batsch) Kühner (1935)	AF501564	0	0	1	0	0	1	
25	Psilocybe cubensis (Earle) Singer	HM035082	1	0	1	1	0	3	
						-			
26	P.Karst.	JF908332	0	1	0	0	0	1	
27	Termitomyces microcarpus (Berk. & Broome) R.Heim	AF357023	0	0	0	0	3	3	
28	<i>Termitomyces striatus</i> (Beeli) R.Heim	AF321367	0	0	0	4	0	4	
29	<i>Termitomyces sp</i> V1P R.Heim	JF302830	0	0	0	0	1	1	
30	<i>Termitomyces sp</i> Group8 R.Heim	AB073529	0	0	0	1	0	1	
	Marasmiaceae								
31	Clitocybula lacerata (Scop.) Singer ex Métrod	FJ596916	1	1	0	2	0	4	
32	<i>Clitocybula oculus</i> (Peck) Singer 1962	DQ192178	1	1	2	3	0	7	
33	<i>Crinipellis scabella</i> (Alb. & Schwein.) Murrill	JF907969	1	0	0	1	0	2	
34	Hydropus marginellus (Pers.: Fr.) Singer 1948	EU669314	0	0	0	0	1	1	
35	Marasmius purpureostriatus Hongo 1958	FJ904978	0	1	2	0	0	3	
36	Marasmiellus ramealis (Bull.) Singer	JF313670	2	0	3	1	0	6	
37	Marasmius rotula (Scop.) Fr.	JN714927	2	0	0	4	0	6	
	Mycenaceae								
38	Favolaschia calocera R. Heim	EU489640	1	0	4	0	3	8	
39	<i>Mycena acicula</i> (Schaeff.) P.Kumm. (1871)	JF908384	1	1	0	4	1	7	

S/N	Species	Accession number	PLSB	ACF	DCF	PLSO	USCF	TOTAL
40	<i>Mycena laevigata</i> (Lasch) Gillet	JF908397	0	0	0	1	0	1
41	<i>Mycena pura</i> (Pers.) P. Kumm.	EU517506	0	1	2	0	0	3
42	<i>Panellus stipticus</i> (Bull.) P.Karst. (1879) Nidulariaceae	FJ481038	0	0	1	0	0	1
43	<i>Cyathus stercoreus</i> (Schwein.) De Toni (1888)	FJ478125	0	0	2	0	0	2
	Physalacriaceae							
44	<i>Flammulina mexicana</i> Redhead, Estrada & R.H. Petersen	AF032129	1	0	0	0	0	1
45	Oudemansiella canarii (Jungh.) Höhn. (1909)	AY216473	1	0	2	1	0	4
46	Pluteus romellii (Britzelm.) Sacc 1895.	HM562078	0	1	0	0	0	1
47	<i>Volvariella volvacea</i> (Bul. ex Fr.) Singer (1951)	HM246500	0	0	0	0	1	1
	Psathyrellaceae							
48	<i>Coprinus fissolanatus</i> Park,D.S., Shin,H.S. and Moncalvo,J.M.	AF345812	3	1	1	4	1	10
49	Coprinellus hiascens (Fr.) Redhead, Vilgalys & Moncalvo	JN159528	0	0	0	0	2	2
50	Coprinellus micaceus (Bull.:Fr.) Vilgalys, Hopple & Jacq. Johnson	JN943116	1	1	0	1	0	3
51	Coprinopsis lagopus (Fries) Redhead, Vilgalys & Moncalvo	AF345815	2	0	1	1	0	3
52	Coprinus sterquilinus (Fr.) Fr. 1838.	FJ501551	0	1	1	0	0	2
53	Parasola auricoma (Pat.) Redhead, Vilgalys & Hopple (2001).	JN943107	0	1	0	0	1	2
54	Parasola conopilus (Fr.) Örstadius & E. Larss.	FJ770396	0	0	0	1	0	1
55	Psathyrella bipellis (Quél.) A.H.Sm. (1946)	FN430689	1	1	0	2	0	4
56	Psathyrella candolleana (Fr.) Maire (1937)	AB306311	0	0	1	0	0	1

			Frequency						
S/N	Species	Accession number	PLSB	ACF	DCF	PLSO	USCF	TOTAL	
57	Psathyrella pyrotricha (Holmsk.) M.M. Moser	FJ481046	0	0	0	1	0	1	
58	Psathyrella spadicea (Schaeff.) Singer (1951)	FN396134	0	0	0	1	0	1	
59	<i>Psathyrella vestita</i> (Peck) A.H. Smith	FN430693	1	0	0	0	0	1	
	Strophariaceae								
60	Hypholoma fasciculare (Huds.Fr.) P.Kumm. (1871).	FJ481034	1	0	1	0	0	2	
61	Pholiota sp (Fr.) P.Kumm. (1871)	FJ596817	1	0	1	1	0	3	
62	Tricholomataceae Callistosporium xanthophyllum (Malençon	JF907781	1	0	0	0	0	1	
63	& Bertault) Bon 1976. <i>Lepista irina</i> (Fr.) Bigelow 1959.	HM237136	2	0	1	1	0	4	
64	<i>Melanoleuca pseudoluscina</i> (M. Bon) ex M. Bon 1980.	JN616457	0	0	1	0	1	2	
65	Tubariaceae <i>Tubaria serrulata</i> (Cleland) Bougher & Matheny	DQ182507	0	1	1	0	0	2	
	AURICULARIALES								
66	Auriculariaceae Auricularia polytricha (Mont.) Sacc. BOLETALES	FJ792587	0	0	2	1	2	5	
67	Hygrophoropsidaceae Hygrophoropsis aurantiaca (Wulfen) Maire	AJ419202	0	1	0	0	0	1	
	DACRYMYCETALES Dacrymycetaceae								
68	Dacrymyces chrysospermus Berk. & M.A. Curtis	AB712452	0	0	0	1	0	1	
	GEASTRALES Geastraceae								

S/N	Species	Accession number	PLSB	ACF	DCF	PLSO	USCF	TOTAL
69	Geastrum minimum	EU784238	0	0	1	0	1	2
70	Geastrum triplex Jungh.	JN942821	0	0	1	2	1	4
	GOMPHALES Gomphaceae							
71	R. H. Petersen	AJ408375	0	0	0	1	1	2
72	<i>Ramaria rubribrunnescens</i> Fr. ex Bonord.	EU652351	1	0	0	0	0	1
	HELOTIALES Helotiaceae Chlorociboria							
73	<i>aeruginascens</i> (Nyl.) Kanouse	JN943460	2	1	0	0	0	3
74	Chlorociboria awakinoana P.R.Johnst.	JN943462	1	0	0	0	0	1
75 76	Bionectriaceae HYMENOCHAETALES Hymenochaetaceae Phellinus repandus Quél. Fuscoporia gilva (Schwein) T. Wagner & M	AF534076	0	1	0	1	0	2
70	HYPOCREALES Bionectria ochroleuca (Schwein.) Schroers &	GU566253	1	0	0	0	0	1
	Samuels Cordycipitaceae							
	Cordvoans bronaniartii							
78	(Saccardo) Petch	AJ309349	0	0	1	0	0	1
79	Cordyceps takaomontana Fr. (1818)	AB189447	0	0	1	0	0	1
80	HYSTERANGIALES Phallogastraceae Protubera canescens G.W.Beaton & Malajczuk (1986) PEZIZALES	GQ981520	2	0	0	0	0	2

				Frequency						
S/N	Species	Accession number	PLSB	ACF	DCF	PLSO	USCF	TOTAL		
	Pezizaceae									
81	Peziza ostracoderma Dill. ex Fries (1822)	JN002180	0	0	0	1	0	1		
	PHALLALES									
	Phallaceae Clothrup probari (Dark)									
82	Dring 1980".	KP688386	0	0	0	1	0	1		
83	Clathrus ruber P.Micheli ex Pers. (1801)	GQ981501	0	0	0	2	0	2		
84	Phallus impudicus Linnaeus (1753)	AF324171	1	0	0	0	1	2		
85	POLYPORALES Fomitopsidaceae Fomitopsis cajanderi (P.Karst.) Kotl. & Pouzar (1957) Ganodermataceae	JQ673050	0	1	0	1	0	2		
86	Ganoderma applanatum	AJ608709	2	1	0	0	0	3		
87	Ganoderma pfeifferi Bres.	AM906059	1	1	0	0	0	2		
88	Physisporinus vitreus (Pers.) P.Karst. (1889) Meruliaceae	JN182920	0	0	0	1	0	1		
89	Abortiporus biennis (Schwein.) Murrill (1944)	FJ608589	0	0	0	1	0	1		
90	Panus sp Fr. (1838)	HM245784	0	1	0	0	0	1		
91	<i>Podoscypha petalodes</i> (Berk.) Boidin Polyporaceae	AM773629	2	2	4	1	2	11		
92	Coriolopsis sanguinaria (Klotzsch) Teng 1963	FJ627251	0	1	0	0	0	1		
93	Daedaleopsis confragosa (Bolton) J.Schröt. (1888).	FJ810177	0	0	0	1	0	1		
94	Laetiporus sulphureus (Bull.) Murrill (1920)	AY835667	0	0	2	0	1	3		
95	Lentinus squarrosulus Mont. 1842.	GU001951	1	2	1	2	0	6		
96	<i>Lenzites elegans</i> (Spreng.) Pat.	HQ248217	0	1	0	0	0	1		
97	<i>Microporus subaffinis</i> (Lloyd) Imazeki 1943.	FJ627249	1	0	1	1	0	3		
98	Polyporus arcularius	AB638344	1	0	1	1	0	3		

			Frequency						
S/N	Species	Accession number	PLSB	ACF	DCF	PLSO	USCF	TOTAL	
	(Batsch) Fr.								
99	Polyporus dictyopus Mont. 1835.	AF516561	1	0	4	3	1	9	
100	Polyporus tenuiculus (Beauv.) Fr.	JQ409357	2	2	1	1	1	7	
101	<i>Skeletocutis nivea</i> (Jungh.) Keller.	JQ673120	0	0	1	0	0	1	
102	<i>Trametes hirsuta</i> (Wulfen) Pilát	JN164952	1	0	1	1	0	3	
103	<i>Trametes polyzona</i> (Pers.) Corner	JN164980	0	0	1	0	0	1	
104	<i>Trametes sanguinea</i> (L.) Imazeki	JN164981	1	0	1	1	1	4	
105	<i>Trametes versicolor</i> (L.) Lloyd (1920)	EU153514	1	1	2	1	0	5	
	RUSSULALES								
	Lachnocladiaceae								
106	Lachnocladium sp Lév. (1846)	DQ192176	0	0	0	0	1	1	
	Stereaceae								
107	<i>Stereum hirsutum</i> (Willd.) Pers. (1800).	AM269810	1	0	1	0	2	4	
108	Stereum sanguinolentum (Alb. & Schwein.) Fr. (1838).	EU673084	0	0	1	0	1	2	
	Xvlariaceae								
109	Daldinia concentrica (Bolton) Cesati & de Notaris	AF163021	1	0	1	0	0	2	
110	<i>Podosordaria muli</i> J.D. Rogers, Y.M. Ju & F. San Martín	GU324761	0	0	0	1	0	1	
111	<i>Xylaria</i> sp MUCL 51605 Hill ex Schrank (1789)	FN689802	1	1	2	2	2	8	
112	<i>Xylaria adscendens</i> (Fr.) Fr., 1851.	GU322432	1	0	2	1	2	6	
113	<i>Xylaria bambusicola</i> Y.M. Ju & J.D. Rogers	GU300088	0	0	0	1	1	2	
114	Xylaria curta Fries	GU322444	1	0	1	2	1	5	
115	<i>Xylaria grammica</i> (Mont.) Mont.	AB524025	0	0	1	1	0	2	
116	<i>Xylaria ianthinovelutina</i> (Mont.) Mont.	GU322441	0	0	0	1	0	1	
	TOTAL		60	35	77	86	45	303	

The diversity and similarity indices between sampling sites are presented on Table 6 and 7 respectively. High diversity was observed in all the study sites, though a weak similarity was observed in all the study sites. Plantlife sanctuary Oku and Plantlife sanctuary Belo were more similar than all the other sites.

Table 6: Site variation in the sp	pecies diversity of macrofu	ngi in the Kilum-Ijim forest
	· · · · · · · · · · · · · · · · · · ·	

Sampling site	Simpson Diversity Index
PLSB	0.96
ACF	0.94
DCF	0.96
PLSO	0.96
USCF	0.94

PLSB= Plantlife sanctuary Belo, ACF= Anyajua community forest, DCF= Dichami community forest, PLSO= Plantlife sanctuary Oku, USCF= Upper-shinga community forest

 Table 7: Jaccard's similarity matrix among different sampling sites within Kilum-Ijim forest

	PLSB	ACF	DCF	PLSO	USCF
PLSB	1	0.257	0.391	0.408	0.224
ACF		1	0.188	0.211	0.138
DCF			1	0.298	0.277
PLSO				1	0.167
USCF					1

PLSB= Plantlife sanctuary Belo, ACF= Anyajua community forest, DCF= Dichami community forest, PLSO= Plantlife sanctuary Oku, USCF= Upper-shinga community forest

Substratum of molecularly identified macrofungi:

The substrata of the molecularly identified macrofungi in this study by Teke *et al.* (2017) in the Kilum-Ijim forest were recorded (Table 8). Majority of the macrofungi occurred on dead wood and accounts for high decomposition rate in forest wood while few macrofungi occurred on dung.

Table 8: Occurrence of macrofungi on different substrata in the Kilum-Ijim forest

S/N	Species	Family	Substratum
	AGARICALES		
1	Agaricus litoralis (Wakef. & A. Pearson) Pilat.	Agaricaceae	Dung
2	Agaricus xanthodermus Genev. (1876)	Agaricaceae	Dung
3	Cystolepiota hetieri (Boud.) Singer	Agaricaceae	Leaf litter
4	Lepiota sp PA620 (Pers.) Gray (1821)	Agaricaceae	Leaf litter
5	Leucoagaricus cupresseus (Burl.) Boisselet & Guinb.	Agaricaceae	Soil
6	Leucoagaricus flavovirens J.F. Liang, Zhu L. Yang & J. Xu	Agaricaceae	Soil
7	Leucoagaricus gaillardia Bon & Boiffard 1974	Agaricaceae	Soil
8	Leucoagaricus littoralis(Menier) Bon & Boiffard 1970	Agaricaceae	Soil
9	Leucoagaricus rubrotinctus(Peck) Singer (1948)	Agaricaceae	Soil
10	Leucoagaricus serenus(Fr.) Bon & Boiffard 1974	Agaricaceae	Soil
11	Leucoagaricus viriditinctus (Berk. & Broome) J.F.	Agaricaceae	Soil
12	Macrolepiota dolichaula (Berk. & Broome) Pegler & R.W. Rayner	Agaricaceae	Soil
13	Vascellum pretense(Pers.) Kreise	Agaricaceae	Leaf litter
14	Panaeolus foenisecii (Pers.) R.Maire (1933).	Bolbitiaceae	Leaf litter
15	Panaeolus sphinctrinus (Fr.) Quél.	Bolbitiaceae	Leaf litter
16	Crepidotus epibryus (Fr.) Quél. 1888	Crepidotaceae	Dead wood

S/N	Species	Family	Substratum
17	Crepidotus mollis (Schaeff.) Staude 1857	Crepidotaceae	Dead wood
18	Entoloma araneosum (Quél.) M.M. Moser.	Entolomataceae	Leaf litter
19	Camarophyllus pratensis (Pers.) P. Kumm.	Hygrophoraceae	Soil
20	Hvarocybe helobia (Arnolds) Bon	Hygrophoraceae	Soil
21	Hygrocybe persistens (Britzelmayr) Singer	Hygrophoraceae	Soil
22	Galerina badipes (Pers.) Kühner	Hymenogastraceae	Dead wood
23	Galerina hybrid Kühner.	Hymenogastraceae	Dead wood
24	Galerina marginata (Batsch) Kühner (1935)	Hymenogastraceae	Dead wood
25	Psilocvbe cubensis (Earle) Singer	Hymenogastraceae	Soil
26	Lvophyllum connatum P. Karst.	Lyophyllaceae	Soil
27	Termitomyces microcarpus (Berk &Broome) R Heim		Soil
28	Termitomyces striatus (Beeli) R Heim		Soil
29	Termitomyces sp V1PR Heim		Soil
30	Termitomyces sp Group8R Heim		Soil
31	Clitocybula lacerate (Scon) Singer ex Métrod	Marasmiaceae	Dead wood
32	Clitocybula oculus(Peck) Singer 1962	Marasmiaceae	Dead wood
32 32	Crininellis scabella (Alb. & Schwein) Murrill	Marasmiaceae	Dead wood
34	Hydronus marginellus (Pers : Fr.) Singer 1948	Marasmiaceae	Dead wood
25	Marasmius purpurpastriatus Hanga 1058	Marasmiaceae	Dead wood
36	Marasmiellus ramealis (Bull.) Singer	Marasmiaceae	Dead wood
30	Marasmius ratula (Scon) Fr	Marasmiaceae	Dead wood
20	Favolaschia calocara R. Heim	Mucanaceae	Dead wood
20	Mycona acioula (Sobaoff) D Kumm (1871)	Mycenaceae	Dead wood
39	Mycena docula (Schaen.) F. Kullini. (1071)	Mycenaceae	Dead wood
40	Mycena nura (Dara) D. Kumm	Mycenaceae	Dead wood
41	Mycena pula (Feis.) F. Kullill. Papallus stintiaus (Pull.) D.Karst. (1870)	Mycenaceae	Dead wood
42	Cuethus supilicus (Dull.) F. Kaisi. (1079)	Nidulariaaaa	Dead wood
43	Cyalitus stercoreus (Scriwein.) De Torii (1000)	Niculariaceae	Dead wood
44	Audomonoiollo conorii (Jungh) Höhn (1000)	Physalacriaceae	Dead wood
45	Dudemansiella canam (Jungn.) Honn. (1909)	Physalacriaceae	Lead Wood
40	Pluteus formenni (Britzenni) Sacc 1695.	Pluteaceae	Leaf litter
47	Volvariena Volvacea (Bull ex FL) Singer (1951)	Pluteaceae	Leaf litter
48	Coprindus Inscolariatus Park, D.S., Sillin, H.S. and Mondalvo, J.M.	Psathyrellaceae	
49 50	Coprinellus mascens(Fr.) Rednead, vilgalys & Moncalvo	Psathyrellaceae	Leaf litter
50	Coprinentias micaceus (Bull.: Fr.) Vilgalys, Hoppie & Jacq. Johnson	Psathyrellaceae	Leaf litter
51	Coprinupsis lagopus (Files) Reuneau, Vilgalys & Moncalvo	Psathyrellaceae	
52	Coprinus sierquinnus (Fr.) Fr. 1636.	Psatnyrellaceae	Lear litter
53	Parasola auricoma (Pat.) Rednead, Vilgalys & Hoppie (2001).	Psathyrellaceae	Leaf litter
54	Parasola conopilus (Fr.) Urstadius & E. Larss.	Psathyrellaceae	Leaf litter
55	Psatnyrella bipellis (Quel.) A.H.Sm. (1946)	Psathyrellaceae	Leaf litter
56	Psatnyrella candolleana (Fr.) Maire (1937)	Psathyrellaceae	Leat litter
57	Psatnyrella pyrotricha (Holmsk.) M.M. Moser	Psathyrellaceae	Leat litter
58	Psathyrella spadicea (Schaett.) Singer (1951)	Psathyrellaceae	Leat litter
59	Psatnyrella vestita(Peck) A.H. Smith	Psathyrellaceae	Leaf litter
60	Hypholoma fasciculare (Huds.Fr.) P.Kumm. (1871).	Strophariaceae	Leat litter
61	Pholiota sp (Fr.) P.Kumm. (1871)	Strophariaceae	Dung

S/N	Species	Family	Substratum
62	Callistosporium xanthophyllum (Malencon &Bertault) Bon 1976.	Tricholomataceae	Soil
63	Lepista irina (Fr.) Bigelow 1959.	Tricholomataceae	Soil
64	Melanoleuca pseudoluscina (M. Bon) ex M. Bon 1980.	Tricholomataceae	Soil
65	Tubaria serrulata(Cleland) Bougher & Matheny	Tubariaceae	Soil
66	Auricularia polytricha (Mont.) Sacc.	Auriculariaceae	Deadwood
67	Hygrophoropsis aurantiaca(Wulfen) Maire	Hygrophoropsidaceae	Dead wood
68	Dacrymyces chrysospermus Berk. & M.A. Curtis	Dacrymycetaceae	Dead wood
69	Geastrum minimum Schwein	Geastraceae	Leaf litter
70	Geastrum triplex Jungh.	Geastraceae	Leaf litter
72	Ramaria rubribrunnescens Fr. ex Bonord.	Gomphaceae	Soil
73	Chlorociboria aeruginascens (Nyl.) Kanouse	Helotiaceae	Deadwood
74	Chlorociboria awakinoana P.R.Johnst.	Helotiaceae	Deadwood
75	Phellinus repandus Quél.	Hymenochaetaceae	Dead wood
76	Fuscoporia gilva (Schwein.) T. Wagner & M. Fisch.	Hymenochaetaceae	Dead wood
77	Bionectria ochroleuca (Schwein.) Schroers & Samuels	Bionectriaceae	Soil
78	Cordyceps brongniartii (Saccardo) Petch	Cordycipitaceae	Soil
79	Cordyceps takaomontana Fr. (1818)	Cordycipitaceae	Soil
81	Peziza ostracoderma Dill. ex Fries (1822)	Pezizaceae	Soil
82	Clathrus archeri (Berk.) Dring 1980".	Phallaceae	Leaf litter
83	Clathrus ruber P.Micheli ex Pers. (1801)	Phallaceae	Leaf litter
84	Phallus impudicus Linnaeus (1753)	Phallaceae	Leaf litter
85	Fomitopsis cajanderi (P.Karst.) Kotl. Pouzar (1957)	Fomitopsidaceae	Leaf litter
86	Ganoderma applanatum (Pers.) Pat.	Ganodermataceae	Dead wood
87	Ganoderma pfeifferi Bres.	Ganodermataceae	Dead wood
88	Physisporinus vitreus (Pers.) P.Karst. (1889)	Meripilaceae	Dead wood
89	Abortiporus biennis (Schwein.) Murrill (1944)	Meripilaceae	Dead wood
90	<i>Panus</i> sp Fr. (1838)	Meripilaceae	Dead wood
91	Podoscypha petalodes (Berk.) Boidin	Meripilaceae	Dead wood
92	Coriolopsis sanguinaria(Klotzsch) Teng 1963	Polyporaceae	Dead wood
93	Daedaleopsis confragosa (Bolton) J.Schröt. (1888).	Polyporaceae	Dead wood
94	Laetiporus sulphureus (Bull.) Murrill (1920)	Polyporaceae	Dead wood
95	Lentinus squarrosulus Mont. 1842.	Polyporaceae	Dead wood
96	Lenzites elegans (Spreng.) Pat.	Polyporaceae	Dead wood
97	Microporus subaffinis (Lloyd) Imazeki 1943.	Polyporaceae	Dead wood
98	Polyporus arcularius(Batsch) Fr.	Polyporaceae	Dead wood
99	Polyporus dictyopus Mont. 1835.	Polyporaceae	Dead wood
100	Polyporus tenuiculus (Beauv.) Fr.	Polyporaceae	Dead wood
101	Skeletocutis nivea (Jungh.) Keller.	Polyporaceae	Dead wood
102	Trametes hirsute (Wulten) Pilât	Polyporaceae	Dead wood
103	I rametes polyzona (Pers.) Corner	Polyporaceae	Dead wood
104	Trametes sanguinea (L.) Imazeki	Polyporaceae	Dead wood
105	rametes versicolor (L.) Lloyd (1920)	Polyporaceae	Dead wood
106	Lachnocladium sp Lev. (1846)	Lachnocladiaceae	Dead wood
107	Stereum nirsutum (Willd.) Pers. (1800).	Stereaceae	Dead wood
108	Stereum sanguinolentum (Alb. & Schwein.) Fr. (1838).	Stereaceae	Dead wood

Ache *et al., J. Appl. Biosci.* 2019 Mushroom species richness, distribution and substrate specificity in the Kilum-Ijim forest reserve of Cameroon

S/N	Species	Family	Substratum
109	Daldinia concentric (Bolton) Cesati & de Notaris	Xylariaceae	Standingwood
110	Podosordaria muli J.D. Rogers, Y.M. Ju & F. San Martín	Xylariaceae	Dead wood
111	Xylaria sp MUCL 51605 Hill ex Schrank (1789)	Xylariaceae	Dead wood
112	Xylaria adscendens (Fr.) Fr., 1851.	Xylariaceae	Dead wood
113	Xylaria bambusicola Y.M. Ju & J.D. Rogers	Xylariaceae	Dead wood
114	Xylaria curta Fries	Xylariaceae	Dead wood
115	Xylaria grammica(Mont.) Mont.	Xylariaceae	Dead wood
116	Xylaria ianthinovelutina(Mont.) Mont.	Xylariaceae	Dead wood

DISCUSSION

Macrofungi diversity was high in all the five forest sites sampled. The Plantlife Sanctuaries in Belo and Oku recorded the highest species diversity as well as species richness. This was probably due to the fact that these forests are restricted sites to the population and there is little disturbance. The community forests (Anyajua community forest and Upper-shinga community forest) with the exception of Dichami community forest, recorded lower diversity and were very low in species richness. This could be explained by the fact that these sites are more exposed and accessible to the community members and as such liable to large disturbances. These results are similar to the findings of Brown et al. (2006) and Douanla-Meli, (2007) who reported that habitat degradation and forest fragmentation were threats to macrofungal diversity in Western Ghats of India and in the Mbalmayo forest reserve in Cameroon respectively. The high macrofungi diversity in Dichami community forest could be due to the fact the inhabitants around this forest are the Fulanis who mostly carry out mostly crazing instead of farming and other anthropogenic activities. A relative high species similarity index was observed between Plantlife Sanctuary in Belo and Plantlife Sanctuary in Oku. This could probably be due to the fact that these sites are restricted to community members. Results also revealed that out of the 116 species identified molecularly, 12% (14) occurred in all or four sites while 47% (54) species occurred only in one site. This result could be explained by the fact that the macrofungal diversity is gradually reducing and some of these species risk being extinct even before they are identified. The highest occurring and most frequent species belong to the genera Favolaschia. Leucoagaricus, Marasmius, Polyporus, Lentinus, Podoscypha and Termitomyces. Some genera like Coprinus, Lepiota, Crepidotus, Ganoderma, Geastrum, Ramaria, Marasmius, Mycena, Polyporus, Trametes and Xylaria have been reported in previous works in

Cameroon by Kinge et al. (2013) and Douanla-Meli (2007). The order Agaricales was the most represented taxa (56%) recorded during this study. This is broadly consistent with previous works of Isikhuemhen, (2000) in his study on the first International mushroom foray in Nigeria, and Egbe et al. (2013) in their study on the diversity and distribution of macrofungi in the mount Cameroon region, and Yanxin et al. (2016) in their study on macrofungal diversity in Yaoluoping Nature Reserve Anhui China. Members of the polyporaceae represented the highest number of species. This is in line with different studies carried out by Tadiosa et al. (2011), De Leon et al. (2013) and Rajput et al. (2015), who all reported higher numbers of species belonging to Polyporaceae in the province of Aurora, Central Philippines and Gujarat State India, Luzon, respectively. These findings are probably justified by the fact that most wood inhabiting species are polypores. Seasonal variations recorded vast changes in macrofungi fruiting. The month of September the however recorded highest macrofungal fructification. These results are broadly consistent with those of Lagana et al. (2002), Salerni et al. (2002), Sibounnavong et al. (2008), Mani and Kumaresan (2009) and Baptista et al. (2010) who all reported that rainfall favors diversity and productivity of macrofungi fruit bodies. From the substratum point of view, majority of the macrofungi were recorded from dead wood (56%) followed by leaf litter (26%), soil (17%), cow dung (1%) and standing stem (1%). This high occurrence on dead wood is probably due to the fact that the habitat is forest which favors wood inhabiting macrofungi. This probably accounts for the high decomposition rate in forest wood. These results are similar with the findings of Brown et al. (2006) who reported that species occurrence in different substrata may probably be due to the environmental conditions and habitat. To the best of our knowledge, this is the first study to examine macrofungi species richness,

distribution and substrate specificity in the Kilum-Ijim forest. It is worth noting that the genera *Abortiporus*, *Callistosporium*, *Coprinellus*, *Coprinopsis*, *Cordyceps*, *Cystolepiota*, *Chlorociboria*, *Crinipellis*, *Clathrus*,

CONCLUSION

Plantlife Santuary Oku had the highest number of mushroom species and the least was the Anyajua community forest. *Podoscypha petalodes* had the highest number of species across all the five sites surveyed followed by *Coprinus fissolanatus*, *Polyporus dictopus*, *Favolachia calocera* and *Xylaria sp*. The highest collection of macrofungi was recorded in September while the least was in January. The substrate specificity general trend showed that fungi prefer certain specific substrates. Deadwood and leaf litter substrate supported more macrofungi while dung and standing stem substrates supported the least

ACKNOWLEDGEMENT

The authors gratefully acknowledge funding from the Rufford Small Grant for nature conservation. All the

REFERENCES

- Asanga CA, 2001. Facilitating Viable Partnership in Community Forest Management in Cameroon: The Case of the Kilum-Ijim Montain Forest Area. In: Wallenberg, E., Edmunds, D., Buck, L., Fox, J., Brodt, S. (2001). Social Learning in Community Forests. CIFOR, Indonesia, pp. 1-209.
- Amaranthus MP, 1998. The importance and conservation of ectomycorrhizal fungal diversity in forest ecosystems: lessons from Europe and the Pacific Northwest. Portland, OR, USA, USDA For. Serv., Gen.Tech. Rep. PNW-GTR-431: 15 p.
- Baptista, P., Martins, A., Taveres, R. M. and Lino-Neto, T, 2010. Diversity and fruiting pattern of Macrofungi associated with chestnut (*Castanea sativa*) in the Tras-os-Montes region (Northeast Portugal). Fungal Ecology 3: 9-19.
- Boa ER, 2004. Wild Edible Fungi: A Global Overview of Their Use and Importance to People Non Wood Forest Products 17. FAO Publishing Management Services, Rome 157pp.
- Brown N, Bhagwat S, Watkinson S, 2006. Macrofungal diversity in fragmented and disturbed forests of the Western Ghats of India. Journal of Applied Ecology 43: 11-17.

Galerina, Laetiporus, Melanoleuca, Panaeolus, Parasola, Podosordaria, Physisporinus, Skeletocutis and *Tubaria* are new records to the Cameroon macrofungi literature.

macrofungi. The Agaricaceae and Polyporaceae were more abundant while Entolomataceae, Tuberiaceae, Hygrophoropsidaceae, Auriculariaceae. Dacrvmv cetaceae, Gomphaceae, Bioectriaceae, Pezizaceae, Fomitopsidaceae and Lechnocladiaceae were represented by a single species only. This study adds to the baseline data of macrofungi diversity, distribution and substrate specificity in Cameroon. The data especially on the wood rotting fungi will be an indicator of ecological continuity of forest at the studied area and will be very useful for recording future changes in the climate, vegetation and air composition.

community leaders and field guides are appreciated for assistance.

- De Leon AM, Luangsa-ard JJD, Karunarathna SC, Hyde KD, Reyes RG, Dela-Cruz TEE, 2013. Species listing, distribution, and molecular identification of macrofungi in six Aeta tribal communities in Central Luzon, Philippines. Mycosphere 4(3):478–494.
- Douanla-Meli C, 2007. Fungi of Cameroon: ecological diversity with emphasis on the taxonomy of non-gilled Hymenomycetes from the Mbalmayo Forest Reserves. Bibliotheca Mycologica, 410.
- Egbe EA, Tonjock RK, Ebai MT, Nji T, Mih A M, 2013. Diversity and distribution of Macrofungi (Mushrooms) in the Mount Cameroon Region. Journal of Ecology and Natural Environment 5 (10):310-334.
- Eneke ETB, 2011. Growth and *in vitro* phosphate solubilizing ability of *Scleroderma sinnamariense*: A tropical mycorrhizal fungus isolated from *Gnetum* africanum ectomycorrhiza root tips. Journal of Yeast and Fungal Research 2 (9): 132-142.
- Fomété T, Vermaat, J, Gardner A, DeMarco J, Asanga C, Tekwe C, Percy F, 2001. A Conservation Partnership: Community Forestry at Kilum-Ijim, Cameroon, Rural Development Forestry

Network, Russell Press Ltd, Nottingham, UK, ISBN 0 85003 5392, pp. 9-16.

- Forboseh P. and Maisels F, 2000. The Kilum-Ijim forest survey: Ecological Monitoring Programme KIFP, BirdLife International/MINEF, Cameroon.
- Gates GM, 2009. Coarse woody debris, macrofungal assemblages, and sustainable forest management in a Eucalyptus oblique forest of southern Tasmania. Ph.D. thesis, University of Tasmania, Hobart, Tasmania, Australia 370pp.
- Gardner AA, De-Marco J, Asanga, CA, 2001. A conservation partnership: Community Forestry at Kilum-Ijim, Cameroon. In: Rural Forestry Network. 17pp.
- Hawksworth DL, 1991. The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycological Research 95: 641-655.
- Isikhuemhen OS, 2000. First International mushroom foray in Nigeria. Inoculum 51: 9-10
- Kinge TR, Mih AM, Coetzee MPA, 2012. Molecular phylogenetic relationships among species of Ganoderma in Cameroon. Australian Journal of Botany 60: 526-538
- Kinge TR, Egbe EA, Tabi EM, Nji TM, Mih AM, 2013. The first checklist of macro fungi of Mount Cameroon. Mycosphere 4: 694-699.
- Krebs CJ, 2014. Ecological methodology (3rd edition). Benjamin Cummings, University of British Columbia, Vancouver. 768pp.
- Lagana A, Angiolini C, Loppi S, Salerni E, Perini C, Barluzzi C, De Dominicis V, 2002. Periodicity, fluctuations and successions of macrofungi in fir forest (Abies Alba Miller) in Tuscany, Italy. Forest Ecology and Management 169: 187– 202.
- Lindequist U, Niedermeyer T, Jülich W, 2005. The pharmacological potential of mushrooms. Evidence-Based Complementary and Alternative Medicine 2 (3): 285-299.
- Lloyd M and Ghelardi RJ, 1964. A table calculating the "equitability" component of species diversity. Journal of Animal Ecology 33 (2): 217-225.
- Lodge JD, Ammirati FJ, O'Dell ET, Mueller MJ, 2004. Collecting and Describing Macrofungi. Pages 128–158, In: Biodiversity of Fungi: Inventory and Monitoring Methods, Mueller, M.G., F.G. Bills and S.M. Foster (Eds.). Elsevier Academic Press, San Diego, CA.

- Mani S. and Kumaresan V, 2009. Occurrence of macrofungi on the coromandel coast of Tamil Nadu, Southern India. Journal of Threatened Taxa 641 (1): 54-57.
- McIntosh RP, 1967. An index of diversity and the relation of certain concepts to diversity. Ecology 48: 392-404.
- Molina R, Pilz D, Smith J, Dunham S, Dreisbach T, O'Dell T, Castellano M, 2008. Conservation and management of forest fungi in the Pacic Northwestern United States: an integrated ecosystem approach. In: Moore D, Nauta NN, Evans SE, Rotheroe M, editors. Fungal conservation: issues and solutions. Cambridge: Cambridge University, pp. 19-63.
- Mossebo DC, Njouonkou AL, Piatek M, Ayissi KB, Djamndo DM, 2009. *Termitomyces striatus* f. *pileatus* f. Nov. and f. *brunneus* f. nov. from Cameroon with a key to central African species. Mycotaxon 107: 415–329.
- Mossobo DC, Essouman EPF, Machourt MC, Gueidan C, 2017. Phylogenetic relationships, taxonomic revision and new taxa of *Termitomyces* (Lyophyllaceae, Basidiomycota) inferred from combined nLSU- and mtSSUrDNA sequences. Phytotaxa 321, DOI: http://dx.doi.org/10.11646/phytotaxa.321.1.3
- Mueller GM, Bills GF, Foster MS, 2004. *Biodiversity of Fungi: Inventory and monitoring methods.* Elsevier Academic press, Burlington, MA. 777pp.
- Mueller GM, Schmit JP, Leacock PR, Buyck B, Cifuentes DJ, Kurt H, Teresa I, Karl-Henrik LD, Jean L, Tom WM, David M, Mario R, Scott AR, Leif R., James, MT, Roy W, Qiuxin W, 2007. Global diversity and distribution of macrofungi. Biodiversity and Conservation 16: 37-48.
- Onguene NA, Kuyper TW, 2001. Mycorrhizal association in the rain forest of south Cameroon. Forest Ecology and Management 140: 277-287.
- Osemwegie OO, Eriyaremu EG, Abdulmalik J, 2006. A survey of macrofungi in Edo/Delta region of Nigeria, their morphology and uses. Global Journal of Pure Applied Sciences 12: 149-157.
- Pacioni G. and Lincoff GH, 1981. Simon and Schusters guide to mushrooms. Simon and Schusters Inc. New York, U.S.A. 154pp.
- Rajput KS, Koyani RD, Patel, HP, Vasava AM, Patel RS, Patel AD, Singh AP, 2015. Preliminary checklist of fungi of Gujarat State, India.

Current Research in Environmental and Applied Mycology 5(4):285–306.

- Robert P. and Ryvarden L, 2006. Poroid fungi from the Korup National Park, Cameroon. Kew Bulletin 61:55-78.
- Salerni E, Lagana A, Perini C, Loppi S, De Dominicis V, 2002. Effects of temperature and rainfall on fruiting of macrofungi in oak forest of the Mediterranean area. Israel Journal of Plant Sciences **50**: 189–198.
- Seen-Irlet B, Heilmann-Clausen J, Genney D, Dahlberg A, 2007. Guidance for the conservation of mushrooms in Europe. Convention on the conservation of European wildlife and natural habitats 27th meeting, Strasbourg pp. 1-34.
- Sibounnavong P, Cynthia CD, Kalaw SP, Reyes RG, Saytong K, 2008. Some species of Macrofungi at Puncan, Carranglan, Nueva Ecija in the Phillipines. Journal of Agricultural Technology 4(2):105-115.
- Tadiosa ER, Agbayani ES, Agustin NT, 2011. Preliminary Study on the Macrofungi of Bazal Baubo Watershed, Aurora Province, Central Luzon, Philippines. Asian Journal of Biodiversity 2:149–171
- Teke NA, Kinge TR, Bechem E, Mih AM, Kyalo M, Stomeo F, 2017. Macro-fungal diversity in the Kilum-Ijim forest, Cameroon. Studies in Fungi 2(1): 47–58
- Tibuhwa DD, 2011. Substrate specificity and phenology of macrofungi community at the University of Dar es Salaam main campus, Tanzania. Journal of Applied Biosciences 46: 3173-3184.
- Kinge TR, Nkengmo AA, Nji TM, Ache NA, Mih AM, 2017. Species Richness and Traditional Knowledge of Macrofungi (Mushrooms) in the Awing Forest Reserve and Communities, Northwest Region, Cameroon. Journal of Mycology,

https://doi.org/10.1155/2017/2809239

Yanxin HE, Wangboa WU, Nengshu LI, 2016. A checklist of Macrofungi in Yaoluoping Nature Reserve, Anhui. Journal of Resources and Ecology 7(2):144-150.